hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
2a07b7ade1a2a41f2a562fa8fa5cc67a39804a53
152
py
Python
api/urls.py
RahulML2505/My-Django-App
57c93b1cbfd95e298d33bb2b2b632ee65533113d
[ "MIT" ]
null
null
null
api/urls.py
RahulML2505/My-Django-App
57c93b1cbfd95e298d33bb2b2b632ee65533113d
[ "MIT" ]
null
null
null
api/urls.py
RahulML2505/My-Django-App
57c93b1cbfd95e298d33bb2b2b632ee65533113d
[ "MIT" ]
null
null
null
from django.urls import path from . import views urlpatterns = [ path('member', views.memberApi), path('member/<int:id>', views.memberApi), ]
16.888889
45
0.677632
4c348de52059a9ce5cbd5b68460bc8b5ef706dcd
5,573
py
Python
checkers/board.py
danielkaichis/CheckersMinimax
0d54d745c0f5cb57131bf8774312d5bcd584134b
[ "MIT" ]
null
null
null
checkers/board.py
danielkaichis/CheckersMinimax
0d54d745c0f5cb57131bf8774312d5bcd584134b
[ "MIT" ]
null
null
null
checkers/board.py
danielkaichis/CheckersMinimax
0d54d745c0f5cb57131bf8774312d5bcd584134b
[ "MIT" ]
null
null
null
import pygame from .constants import BLACK, ROWS, RED, SQUARE_SIZE, COLS, WHITE, RED_STRING, WHITE_STRING from .piece import Piece class Board: def __init__(self): self.board = [] self.red_left = self.white_left = 12 self.red_kings = self.white_kings = 0 self.create_board() def draw_squares(self, win): win.fill(BLACK) for row in range(ROWS): for col in range(row % 2, ROWS, 2): pygame.draw.rect(win, RED, (row * SQUARE_SIZE, col * SQUARE_SIZE, SQUARE_SIZE, SQUARE_SIZE)) def move(self, piece, row, col): self.board[piece.row][piece.col], self.board[row][col] = self.board[row][col], self.board[piece.row][piece.col] piece.move(row, col) if row == ROWS - 1 or row == 0: piece.make_king() if piece.colour == WHITE: self.white_kings += 1 else: self.red_kings += 1 def get_piece(self, row, col): return self.board[row][col] def create_board(self): for row in range(ROWS): self.board.append([]) for col in range(COLS): if col % 2 == ((row + 1) % 2): if row <= 2: self.board[row].append(Piece(row, col, WHITE)) elif row >= 5: self.board[row].append(Piece(row, col, RED)) else: self.board[row].append(0) else: self.board[row].append(0) def draw(self, win): self.draw_squares(win) for row in range(ROWS): for col in range(COLS): piece = self.board[row][col] if piece: piece.draw(win) def get_valid_moves(self, piece): moves = {} left = piece.col - 1 right = piece.col + 1 row = piece.row if piece.colour == RED or piece.king: moves.update(self._check_left(row - 1, max(row - 3, -1), -1, piece.colour, left)) moves.update(self._check_right(row - 1, max(row - 3, -1), -1, piece.colour, right)) if piece.colour == WHITE or piece.king: moves.update(self._check_left(row + 1, min(row + 3, ROWS), 1, piece.colour, left)) moves.update(self._check_right(row + 1, min(row + 3, ROWS), 1, piece.colour, right)) return moves def _check_left(self, start, stop, interval, colour, left, skipped=[]): moves = {} last = [] for r in range(start, stop, interval): if left < 0: break current = self.board[r][left] if current == 0: if skipped and not last: break elif skipped: moves[(r, left)] = last + skipped else: moves[(r, left)] = last if last: if interval == -1: row = max(r - 3, 0) else: row = min(r + 3, ROWS) moves.update(self._check_left(r + interval, row, interval, colour, left - 1, skipped=last)) moves.update(self._check_right(r + interval, row, interval, colour, left + 1, skipped=last)) break elif current.colour == colour: break else: last = [current] left -= 1 return moves def _check_right(self, start, stop, interval, colour, right, skipped=[]): moves = {} last = [] for r in range(start, stop, interval): if right >= COLS: break current = self.board[r][right] if current == 0: if skipped and not last: break elif skipped: moves[(r, right)] = last + skipped else: moves[(r, right)] = last if last: if interval == -1: row = max(r - 3, 0) else: row = min(r + 3, ROWS) moves.update(self._check_left(r + interval, row, interval, colour, right - 1, skipped=last)) moves.update(self._check_right(r + interval, row, interval, colour, right + 1, skipped=last)) break elif current.colour == colour: break else: last = [current] right += 1 return moves def remove(self, pieces): for piece in pieces: self.board[piece.row][piece.col] = 0 if piece != 0: if piece.colour == RED: self.red_left -= 1 else: self.white_left -= 1 def winner(self): if self.red_left <= 0: return WHITE_STRING elif self.white_left <= 0: return RED_STRING return None def evaluate(self): return self.white_left - self.red_left + (self.white_kings * 0.5 - self.red_kings * 0.5) def get_all_pieces(self, colour): pieces = [] for row in self.board: for piece in row: if piece != 0 and piece.colour == colour: pieces.append(piece) return pieces
32.782353
119
0.464382
31f649fd8cb99f624d351cb262af0b737b97ada7
1,369
py
Python
setup.py
garanews/jbxapi
195d4e44762c081214fdb691ba61310dbc962dc8
[ "MIT" ]
null
null
null
setup.py
garanews/jbxapi
195d4e44762c081214fdb691ba61310dbc962dc8
[ "MIT" ]
null
null
null
setup.py
garanews/jbxapi
195d4e44762c081214fdb691ba61310dbc962dc8
[ "MIT" ]
null
null
null
import re import os from setuptools import setup def get_version(): """ Extract the version number from the code. """ here = os.path.abspath(os.path.dirname(__file__)) jbxapi_file = os.path.join(here, "jbxapi.py") with open(jbxapi_file) as f: content = f.read() match = re.search(r"^__version__ = ['\"]([^'\"]*)['\"]", content, re.M) if not match: raise RuntimeError("Unable to find version string.") return match.group(1) setup(name='jbxapi', version=get_version(), description='API for Joe Sandbox', url='https://github.com/joesecurity/joesandboxcloudapi', author='Joe Security LLC', license='MIT', py_modules=['jbxapi'], install_requires=[ 'requests>=2.18.4,<3', ], entry_points={ 'console_scripts': [ 'jbxapi=jbxapi:main' ], }, zip_safe=False, keywords="security sandbox joe", classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Topic :: Security', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.4', ])
26.843137
79
0.569028
3d011c180f31275b6fe5460be6f0124c43a052b2
1,168
py
Python
PortScanner/AdvScanner.py
saadhaxxan/Python-For-Ethical-Hacking
87ef18b2c2876bf1711442a5f00ddb7d2dacfd43
[ "MIT" ]
26
2020-09-16T18:26:00.000Z
2022-02-09T15:18:34.000Z
PortScanner/AdvScanner.py
saadhaxxan/Python-For-Ethical-Hacking
87ef18b2c2876bf1711442a5f00ddb7d2dacfd43
[ "MIT" ]
null
null
null
PortScanner/AdvScanner.py
saadhaxxan/Python-For-Ethical-Hacking
87ef18b2c2876bf1711442a5f00ddb7d2dacfd43
[ "MIT" ]
3
2020-11-27T20:30:22.000Z
2022-02-16T05:57:16.000Z
#!/usr/bin/python from socket import * import socket from termcolor import colored from threading import * print(colored("[*] Enter Host IP Address or Website Name:","green")) host = input() print(colored("[*] Enter number of ports to scan:","green")) num = int(input()) def PScanner(port): # AF_INT means we want to connect to IPv4 and IPv6 Addresses # SOCK_STREAM means we want to connect using the TCP protocol not the UDP try: soc = socket.socket(socket.AF_INET,socket.SOCK_STREAM) soc.connect((host,port)) print(colored("[+] %d/tcp is Open" %(port),"blue")) except: print(colored("[!!] %d/tcp is Closed" %(port),"red")) finally: soc.close() def ResolveScan(tHost,tPorts): try: targetIP = gethostbyname(tHost) except: print(colored("Unknown Host"),"red") try: targetname = gethostbyaddr(targetIP) print(colored("[+] Scan results for: "+ targetname[0],"blue")) except: print(colored("[+] Scan Results for: "+ targetIP,"blue")) setdefaulttimeout(1) for port in range(1,num): PScanner(port) ResolveScan(host,num)
25.955556
77
0.629281
751619e1b09b688ac2db2dcb55dbbd87c919594a
6,165
py
Python
utils/interactive_plotting.py
TUM-LMF/ijgi18
f6e5aed5c59af084a91428fdd285a17fcf6344f4
[ "MIT" ]
68
2018-03-23T01:32:39.000Z
2021-07-29T14:00:02.000Z
utils/interactive_plotting.py
natumeyuzuru/MTLCC
8abe62dfc759e2e8034ee372bf22dce510e15a59
[ "MIT" ]
2
2020-03-02T16:19:45.000Z
2020-05-21T02:08:29.000Z
utils/interactive_plotting.py
natumeyuzuru/MTLCC
8abe62dfc759e2e8034ee372bf22dce510e15a59
[ "MIT" ]
29
2018-07-26T07:31:53.000Z
2021-08-21T17:41:02.000Z
from __future__ import print_function import matplotlib.pyplot as plt from ipywidgets import interact, interactive, fixed, interact_manual import ipywidgets as widgets import numpy as np def show_rgb(x, name=""): if len(x.shape)==5: # BTHWD max_b, max_t,_,_,max_d = x.shape elif len(x.shape)==4: # BHWD max_b,_,_,max_d = x.shape def norm(band): return (band - band.min()) / (band - band.min()).max() def _show_map_BTHWD(t,d,b): plt.title("{name} RGB map {rd}-{gn}-{bl}, b={b}, t={t}".format(name=name,b=b,t=t,rd=d-1,gn=d,bl=d+1)) plt.imshow(np.stack((norm(x[b,t,:,:,d-1]),norm(x[b,t,:,:,d]),norm(x[b,t,:,:,d+1])),axis=-1)) def _show_map_BHWD(d,b): plt.title("{name} RGB map {rd}-{gn}-{bl}, b={b}".format(name=name,b=b,rd=d-1,gn=d,bl=d+1)) plt.imshow(np.stack((norm(x[b,:,:,d-1]),norm(x[b,:,:,d]),norm(x[b,:,:,d+1])),axis=-1)) # both b_slider = widgets.IntSlider(description='batch',min=0,max=max_b-1,step=1,value=max_b/2) d_slider = widgets.IntSlider(description='band',min=1,max=max_d-2,step=1,value=max_d/2) if len(x.shape)==5: # BTHWD t_slider = widgets.IntSlider(description='time',min=0,max=max_t-1,step=1,value=max_t/2) w = interactive(_show_map_BTHWD, t=t_slider, d=d_slider, b=b_slider) elif len(x.shape)==4: # BHWD w = interactive(_show_map_BHWD, d=d_slider, b=b_slider) w.layout.height = '400px' display(w) def show_gray(x, name="",vmin=None, vmax=None): if len(x.shape)==5: # BTHWD max_b, max_t,_,_,max_d = x.shape elif len(x.shape)==4: # BHWD max_b,_,_,max_d = x.shape elif len(x.shape)==3: # BHW max_b,_,_ = x.shape def _show(x,title): plt.title(title) plt.imshow(x,vmax=vmax, vmin=vmin); plt.colorbar() def _show_map_BTHWD(t,d,b): _show(x[b,t,:,:,d],"{name} feature map b={b}, t={t}, d={d}".format(name=name,b=b,t=t,d=d)) def _show_map_BHWD(d,b): _show(x[b,:,:,d],"{name} feature map b={b}, d={d}".format(name=name,b=b,d=d)) def _show_map_BHW(b): _show(x[b,:,:],"{name} feature map b={b}".format(name=name,b=b)) # all b_slider = widgets.IntSlider(description='batch',min=0,max=max_b-1,step=1,value=max_b/2) if len(x.shape)==5: # BTHWD d_slider = widgets.IntSlider(description='band',min=0,max=max_d-1,step=1,value=max_d/2) t_slider = widgets.IntSlider(description='time',min=0,max=max_t-1,step=1,value=max_t/2) w = interactive(_show_map_BTHWD, t=t_slider, d=d_slider, b=b_slider) elif len(x.shape)==4: # BHWD d_slider = widgets.IntSlider(description='band',min=0,max=max_d-1,step=1,value=max_d/2) w = interactive(_show_map_BHWD, d=d_slider, b=b_slider) elif len(x.shape)==3: # BHW w = interactive(_show_map_BHW, b=b_slider) w.layout.height = '400px' display(w) def show(x,name="",mode="RGB"): if mode=="RGB": show_rgb(x,name) elif mode=="gray": show_gray(x,name) def norm_ptp(arr): return (arr-arr.min()) / (arr-arr.min()).max() def norm_std(arr,stddev=1): arr -= arr.mean(axis=0).mean(axis=0) arr /= stddev*arr.std(axis=0).std(axis=0) # [-1,1] arr = (arr/2) + 0.5 # [0,1] arr = np.clip(arr*255,0,255) # [0,255] return arr.astype("uint8") def norm_rgb(arr): # taken from QGIS mean +- 2 stddev over cloudfree image vmin = np.array([-0.0433,-0.0054,-0.0237]) vmax = np.array([0.1756,0.1483,0.1057]) arr-=vmin arr/=(vmax-vmin) return np.clip((arr*255),0,255).astype("uint8") def write(arr,outfile): #norm_img = norm(arr) img = Image.fromarray(arr) img.save(outfile) def dump3(array,name,outfolder,cmap="inferno",norm=norm_ptp): filenpath="{outfolder}/sample{s}/{name}/{d}.png" cmap = plt.get_cmap(cmap) # normalize over the entire array #array = norm(array) samples,h,w,depth = array.shape for s in range(samples): for d in range(depth): outfilepath = filenpath.format(outfolder=outfolder,s=s,name=name,d=d) if not os.path.exists(os.path.dirname(outfilepath)): os.makedirs(os.path.dirname(outfilepath)) arr = array[s,:,:,d] arr = cmap(arr) write((arr*255).astype('uint8'),outfilepath) def dump(array,name,outfolder,cmap="inferno",norm=norm_ptp): filenpath="{outfolder}/sample{s}/time{t}/{d}_{name}.png" cmap = plt.get_cmap(cmap) # normalize over the entire array #array = norm(array) samples,times,h,w,depth = array.shape for s in range(samples): for t in range(times): for d in range(depth): outfilepath = filenpath.format(outfolder=outfolder,s=s,t=t,name=name,d=d) if not os.path.exists(os.path.dirname(outfilepath)): os.makedirs(os.path.dirname(outfilepath)) arr = array[s,t,:,:,d] arr = cmap(arr) write((arr*255).astype('uint8'),outfilepath) def dump_rgb(array,name,outfolder,stddev): filenpath="{outfolder}/sample{s}/time{t}_{name}.png" samples,times,h,w,depth = array.shape for s in range(samples): for t in range(times): outfilepath = filenpath.format(outfolder=outfolder,s=s,t=t,name=name) if not os.path.exists(os.path.dirname(outfilepath)): os.makedirs(os.path.dirname(outfilepath)) arr = array[s,t,:,:,0:3] arr = norm_std(arr,stddev=stddev) write(arr,outfilepath) def dump_class(array,name,outfolder,cmap="Accent"): filenpath="{outfolder}/sample{s}/{name}.png" samples,h,w = array.shape array = array.astype(float) / 26 cmap = plt.get_cmap(cmap) for s in range(samples): outfilepath = filenpath.format(outfolder=outfolder,s=s,name=name) arr = (cmap(array[s])*255).astype("uint8") write(arr,outfilepath)
32.792553
109
0.586699
514571375cedc9738249d0632f9eda3d051b2ffb
11,662
py
Python
docs/conf.py
soheil191/translate.py
b136ec92dfe225aba06d96b7009318e3707ee465
[ "Apache-2.0" ]
null
null
null
docs/conf.py
soheil191/translate.py
b136ec92dfe225aba06d96b7009318e3707ee465
[ "Apache-2.0" ]
1
2021-02-24T06:42:22.000Z
2021-02-24T06:42:22.000Z
docs/conf.py
isabella232/python-translate
6fb2effa6903cae5584f51a74d1399f12697db1f
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # # google-cloud-translate documentation build configuration file # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os import shlex # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.insert(0, os.path.abspath("..")) # For plugins that can not read conf.py. # See also: https://github.com/docascode/sphinx-docfx-yaml/issues/85 sys.path.insert(0, os.path.abspath(".")) __version__ = "" # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. needs_sphinx = "1.5.5" # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ "sphinx.ext.autodoc", "sphinx.ext.autosummary", "sphinx.ext.intersphinx", "sphinx.ext.coverage", "sphinx.ext.doctest", "sphinx.ext.napoleon", "sphinx.ext.todo", "sphinx.ext.viewcode", "recommonmark", ] # autodoc/autosummary flags autoclass_content = "both" autodoc_default_options = {"members": True} autosummary_generate = True # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # source_suffix = ['.rst', '.md'] source_suffix = [".rst", ".md"] # The encoding of source files. # source_encoding = 'utf-8-sig' # The master toctree document. master_doc = "index" # General information about the project. project = u"google-cloud-translate" copyright = u"2019, Google" author = u"Google APIs" # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The full version, including alpha/beta/rc tags. release = __version__ # The short X.Y version. version = ".".join(release.split(".")[0:2]) # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # today = '' # Else, today_fmt is used as the format for a strftime call. # today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = [ "_build", "samples/AUTHORING_GUIDE.md", "samples/CONTRIBUTING.md", "samples/snippets/README.rst", ] # The reST default role (used for this markup: `text`) to use for all # documents. # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = "sphinx" # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. # keep_warnings = False # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = True # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = "alabaster" # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. html_theme_options = { "description": "Google Cloud Client Libraries for google-cloud-translate", "github_user": "googleapis", "github_repo": "python-translate", "github_banner": True, "font_family": "'Roboto', Georgia, sans", "head_font_family": "'Roboto', Georgia, serif", "code_font_family": "'Roboto Mono', 'Consolas', monospace", } # Add any paths that contain custom themes here, relative to this directory. # html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". # html_title = None # A shorter title for the navigation bar. Default is the same as html_title. # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. # html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. # html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ["_static"] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. # html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. # html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. # html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. # html_additional_pages = {} # If false, no module index is generated. # html_domain_indices = True # If false, no index is generated. # html_use_index = True # If true, the index is split into individual pages for each letter. # html_split_index = False # If true, links to the reST sources are added to the pages. # html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. # html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. # html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = None # Language to be used for generating the HTML full-text search index. # Sphinx supports the following languages: # 'da', 'de', 'en', 'es', 'fi', 'fr', 'hu', 'it', 'ja' # 'nl', 'no', 'pt', 'ro', 'ru', 'sv', 'tr' # html_search_language = 'en' # A dictionary with options for the search language support, empty by default. # Now only 'ja' uses this config value # html_search_options = {'type': 'default'} # The name of a javascript file (relative to the configuration directory) that # implements a search results scorer. If empty, the default will be used. # html_search_scorer = 'scorer.js' # Output file base name for HTML help builder. htmlhelp_basename = "google-cloud-translate-doc" # -- Options for warnings ------------------------------------------------------ suppress_warnings = [ # Temporarily suppress this to avoid "more than one target found for # cross-reference" warning, which are intractable for us to avoid while in # a mono-repo. # See https://github.com/sphinx-doc/sphinx/blob # /2a65ffeef5c107c19084fabdd706cdff3f52d93c/sphinx/domains/python.py#L843 "ref.python" ] # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', # Latex figure (float) alignment #'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ ( master_doc, "google-cloud-translate.tex", u"google-cloud-translate Documentation", author, "manual", ) ] # The name of an image file (relative to this directory) to place at the top of # the title page. # latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # latex_use_parts = False # If true, show page references after internal links. # latex_show_pagerefs = False # If true, show URL addresses after external links. # latex_show_urls = False # Documents to append as an appendix to all manuals. # latex_appendices = [] # If false, no module index is generated. # latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ( master_doc, "google-cloud-translate", u"google-cloud-translate Documentation", [author], 1, ) ] # If true, show URL addresses after external links. # man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ( master_doc, "google-cloud-translate", u"google-cloud-translate Documentation", author, "google-cloud-translate", "google-cloud-translate Library", "APIs", ) ] # Documents to append as an appendix to all manuals. # texinfo_appendices = [] # If false, no module index is generated. # texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. # texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. # texinfo_no_detailmenu = False # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = { "python": ("http://python.readthedocs.org/en/latest/", None), "google-auth": ("https://google-auth.readthedocs.io/en/stable", None), "google.api_core": ("https://googleapis.dev/python/google-api-core/latest/", None,), "grpc": ("https://grpc.io/grpc/python/", None), } # Napoleon settings napoleon_google_docstring = True napoleon_numpy_docstring = True napoleon_include_private_with_doc = False napoleon_include_special_with_doc = True napoleon_use_admonition_for_examples = False napoleon_use_admonition_for_notes = False napoleon_use_admonition_for_references = False napoleon_use_ivar = False napoleon_use_param = True napoleon_use_rtype = True
31.863388
88
0.703653
492d50a1df2a3d6ba5d0fba4fae6bd58552cb06e
1,815
py
Python
src/main.py
lukas2511/bbb-streaming
3ce86576e1921236d329a8002d7aedfa9528f36d
[ "MIT" ]
60
2021-03-06T10:50:27.000Z
2022-03-19T06:26:52.000Z
src/main.py
aguerson/bbb-streaming
3ce86576e1921236d329a8002d7aedfa9528f36d
[ "MIT" ]
8
2021-03-11T13:09:16.000Z
2021-08-05T07:49:23.000Z
src/main.py
aguerson/bbb-streaming
3ce86576e1921236d329a8002d7aedfa9528f36d
[ "MIT" ]
15
2021-03-11T03:17:40.000Z
2022-03-30T10:07:15.000Z
#!/usr/bin/env python3 import argparse from lib import run import logging logging.basicConfig() log = logging.getLogger('bbb-streamer') def main(): argp = argparse.ArgumentParser(allow_abbrev=False) argp.add_argument("--debug", help="Print debug log", action='store_true') argp.add_argument("--background", help="Background image, either direct file path or via http/https URL") jnurlgroup = argp.add_argument_group('URL', 'Join using fully prepared API join URL') jnurlgroup.add_argument("--join-url", help="Fully prepared API join URL, e.g. https://bbb.example.org/bigbluebutton/api/join?...") glgroup = argp.add_argument_group('Greenlight', 'Join using Greenlight Frontend') glgroup.add_argument("--greenlight-url", help="Greenlight URL, e.g. https://bbb.example.org/gl/my-cool-room") glgroup.add_argument("--greenlight-name", help="Name for stream user", default="stream") glgroup.add_argument("--greenlight-password", help="Greenlight password for protected rooms") argp.add_argument("--rtmp-url", help="Output RTMP URL, e.g. rtmp://example.org/app/stream?auth=key", required=True) args = argp.parse_args() if sum([0 if x is None else 1 for x in [args.join_url, args.greenlight_url]]) != 1: argp.error("Exactly one of --join-url/--greenlight-url is required") if args.debug: log.setLevel(logging.DEBUG) if args.join_url: log.info("Joining using prepared API join URL") join_url = args.join_url elif args.greenlight_url: log.info("Joining using Greenlight frontend") join_url = run.greenlight_join(args.greenlight_url, args.greenlight_name, args.greenlight_password) run.start(join_url=join_url, rtmp_url=args.rtmp_url, background=args.background) if __name__ == '__main__': main()
40.333333
134
0.71405
3deb5b0f57e4b46fa49ae20c52eed49acc76483a
3,108
py
Python
satyrus/sat/types/problem.py
lucasvg/Satyrus3-FinalProject-EspTopsOTM
024785752abdc46e3463d8c94df7c3da873c354d
[ "MIT" ]
null
null
null
satyrus/sat/types/problem.py
lucasvg/Satyrus3-FinalProject-EspTopsOTM
024785752abdc46e3463d8c94df7c3da873c354d
[ "MIT" ]
null
null
null
satyrus/sat/types/problem.py
lucasvg/Satyrus3-FinalProject-EspTopsOTM
024785752abdc46e3463d8c94df7c3da873c354d
[ "MIT" ]
null
null
null
from collections import deque ## Local from ...satlib import arange from .expr import Expr from .main import Var, Number from .symbols import CONS_INT, CONS_OPT from .symbols.tokens import T_FORALL, T_EXISTS, T_EXISTS_ONE, T_AND, T_OR class Loop(object): """ :: LOOP :: ========== """ def __init__(self, var: Var, loop_type: str, start: Number, stop: Number, step: Number, conds: list=None): self.var = var self.type = str(loop_type) self.start = start self.stop = stop self.step = step self.conds = conds def cond_func(self, compiler): """ """ if self.conds is None: return True conds = [compiler.eval_expr(cond, calc=True) for cond in self.conds] return all([type(conds) is Number and (conds != Number('0')) for cond in conds]) def indices(self, compiler): I = [] start = compiler.eval_expr(self.start, calc=True) stop = compiler.eval_expr(self.stop, calc=True) step = compiler.eval_expr(self.step, calc=True) for i in arange(start, stop, step): i = Number(i) compiler.memset(self.var, i) if self.cond_func(compiler): I.append(i) else: continue return I class Constraint(object): """ :: CONSTRAINT :: ================ """ HEAD_TABLE = { T_FORALL: T_AND, T_EXISTS: T_OR, T_EXISTS_ONE: None, } def __init__(self, name: Var, cons_type: Var, level: int): """ """ self.name = str(name) self.type = str(cons_type) self.level = int(level) self.loop_stack = deque([]) self.expr = None def add_loop(self, var: Var, loop_type: Var, start: Number, stop: Number, step: Number, conds: list): """ ADD_LOOP ======== """ self.loop_stack.append(Loop(var, loop_type, start, stop, step, conds)) def set_expr(self, expr: Expr): """ SET_EXPR ======== Sets the expr of this constraint in the C.N.F. """ self.expr = Expr.cnf(expr) def get_expr(self, compiler): """ GET_EXPR ======== """ return self._get_expr(compiler) def _get_expr(self, compiler): """ """ if not self.loop_stack: return self.expr ## Retrieves the outermost loop from the stack loop = self.loop_stack.popleft() ## Expression head = self.HEAD_TABLE[loop.type] tail = [] ## Push compiler memory scope compiler.push() for i in loop.indices(compiler): compiler.memset(loop.var, i) expr = compiler.eval_expr(self._get_expr(compiler)) tail.append(expr) else: self.loop_stack.appendleft(loop) compiler.pop() return Expr(head, *tail)
26.793103
111
0.517053
fc77c82f88c02f562c2c58c18b3a7e97843f7536
5,241
py
Python
AutomatedTesting/Gem/PythonTests/Prefab/TestSuite_Main.py
LB-KatarzynaDylska/o3de
d8d273697ea8e1beeb698f62b84904a192b0ab76
[ "Apache-2.0", "MIT" ]
null
null
null
AutomatedTesting/Gem/PythonTests/Prefab/TestSuite_Main.py
LB-KatarzynaDylska/o3de
d8d273697ea8e1beeb698f62b84904a192b0ab76
[ "Apache-2.0", "MIT" ]
null
null
null
AutomatedTesting/Gem/PythonTests/Prefab/TestSuite_Main.py
LB-KatarzynaDylska/o3de
d8d273697ea8e1beeb698f62b84904a192b0ab76
[ "Apache-2.0", "MIT" ]
null
null
null
""" Copyright (c) Contributors to the Open 3D Engine Project. For complete copyright and license terms please see the LICENSE at the root of this distribution. SPDX-License-Identifier: Apache-2.0 OR MIT """ # This suite consists of all test cases that are passing and have been verified. import pytest import os import sys sys.path.append(os.path.dirname(os.path.abspath(__file__)) + '/../automatedtesting_shared') from base import TestAutomationBase @pytest.mark.SUITE_main @pytest.mark.parametrize("launcher_platform", ['windows_editor']) @pytest.mark.parametrize("project", ["AutomatedTesting"]) class TestAutomation(TestAutomationBase): def _run_prefab_test(self, request, workspace, editor, test_module, batch_mode=True, autotest_mode=True): self._run_test(request, workspace, editor, test_module, batch_mode=batch_mode, autotest_mode=autotest_mode) def test_OpenLevel_ContainingTwoEntities(self, request, workspace, editor, launcher_platform): from Prefab.tests.open_level import OpenLevel_ContainingTwoEntities as test_module self._run_prefab_test(request, workspace, editor, test_module) def test_CreatePrefab_WithSingleEntity(self, request, workspace, editor, launcher_platform): from Prefab.tests.create_prefab import CreatePrefab_WithSingleEntity as test_module self._run_prefab_test(request, workspace, editor, test_module) def test_InstantiatePrefab_ContainingASingleEntity(self, request, workspace, editor, launcher_platform): from Prefab.tests.instantiate_prefab import InstantiatePrefab_ContainingASingleEntity as test_module self._run_prefab_test(request, workspace, editor, test_module) def test_InstantiatePrefab_FromCreatedPrefabWithSingleEntity(self, request, workspace, editor, launcher_platform): from Prefab.tests.instantiate_prefab import InstantiatePrefab_FromCreatedPrefabWithSingleEntity as test_module self._run_prefab_test(request, workspace, editor, test_module) def test_DeletePrefab_ContainingASingleEntity(self, request, workspace, editor, launcher_platform): from Prefab.tests.delete_prefab import DeletePrefab_ContainingASingleEntity as test_module self._run_prefab_test(request, workspace, editor, test_module) def test_ReparentPrefab_UnderPrefabAndEntityHierarchies(self, request, workspace, editor, launcher_platform): from Prefab.tests.reparent_prefab import ReparentPrefab_UnderPrefabAndEntityHierarchies as test_module self._run_prefab_test(request, workspace, editor, test_module, autotest_mode=False) def test_DetachPrefab_UnderAnotherPrefab(self, request, workspace, editor, launcher_platform): from Prefab.tests.detach_prefab import DetachPrefab_UnderAnotherPrefab as test_module self._run_prefab_test(request, workspace, editor, test_module, autotest_mode=False) def test_DuplicatePrefab_ContainingASingleEntity(self, request, workspace, editor, launcher_platform): from Prefab.tests.duplicate_prefab import DuplicatePrefab_ContainingASingleEntity as test_module self._run_prefab_test(request, workspace, editor, test_module) def test_CreatePrefab_UnderAnEntity(self, request, workspace, editor, launcher_platform): from Prefab.tests.create_prefab import CreatePrefab_UnderAnEntity as test_module self._run_prefab_test(request, workspace, editor, test_module, autotest_mode=False) def test_CreatePrefab_UnderAnotherPrefab(self, request, workspace, editor, launcher_platform): from Prefab.tests.create_prefab import CreatePrefab_UnderAnotherPrefab as test_module self._run_prefab_test(request, workspace, editor, test_module, autotest_mode=False) def test_CreatePrefab_UnderChildEntityOfAnotherPrefab(self, request, workspace, editor, launcher_platform): from Prefab.tests.create_prefab import CreatePrefab_UnderChildEntityOfAnotherPrefab as test_module self._run_prefab_test(request, workspace, editor, test_module, autotest_mode=False) def test_CreatePrefab_WithNestedEntities(self, request, workspace, editor, launcher_platform): from Prefab.tests.create_prefab import CreatePrefab_WithNestedEntities as test_module self._run_prefab_test(request, workspace, editor, test_module, autotest_mode=False) def test_CreatePrefab_WithNestedEntitiesAndNestedPrefabs(self, request, workspace, editor, launcher_platform): from Prefab.tests.create_prefab import CreatePrefab_WithNestedEntitiesAndNestedPrefabs as test_module self._run_prefab_test(request, workspace, editor, test_module, autotest_mode=False) def test_DeleteEntity_UnderAnotherPrefab(self, request, workspace, editor, launcher_platform): from Prefab.tests.delete_entity import DeleteEntity_UnderAnotherPrefab as test_module self._run_prefab_test(request, workspace, editor, test_module, autotest_mode=False) def test_DeleteEntity_UnderLevelPrefab(self, request, workspace, editor, launcher_platform): from Prefab.tests.delete_entity import DeleteEntity_UnderLevelPrefab as test_module self._run_prefab_test(request, workspace, editor, test_module, autotest_mode=False)
59.556818
118
0.803854
1aee38404db49305005ca712f5ae49f2550d4cf3
4,353
py
Python
example_problems/tutorial/eggs/services/get_tables.py
DottaPaperella/TALight
580322c3121c9acde9827f996fd4e39e31d93a6f
[ "MIT" ]
4
2021-06-27T13:27:24.000Z
2022-03-24T10:46:28.000Z
example_problems/tutorial/eggs/services/get_tables.py
DottaPaperella/TALight
580322c3121c9acde9827f996fd4e39e31d93a6f
[ "MIT" ]
1
2021-01-23T06:50:31.000Z
2021-03-17T15:35:18.000Z
example_problems/tutorial/eggs/services/get_tables.py
DottaPaperella/TALight
580322c3121c9acde9827f996fd4e39e31d93a6f
[ "MIT" ]
5
2021-04-01T15:21:57.000Z
2022-01-29T15:07:38.000Z
#!/usr/bin/env python3 from sys import stderr, exit def convert2number(s): try: risp = int(s) return risp except (TypeError, ValueError): pass try: risp = float(s) return risp except (TypeError, ValueError): return None def get_one_numeric_table(sep=None, should_be_int=False, should_be_nat=False, row_names_start_from=0, col_names_start_from=0, checks=[]): """ When sep=None, the fields are separated by sequences of white characters. When sep="," then a .csv format is assumed, but you can specify use other separator characters or string. A "#" starts a comment for the rest of the line. Examples: >[tk.strip() for tk in "wfwqf, wqfwqfq, wfwfq".split(None)] returns ['wfwqf,', 'wqfwqfq,', 'wfwfq'] > [tk.strip() for tk in "wfwqf, wqfwqfq, wfwfq".split(",")] returns ['wfwqf', 'wqfwqfq', 'wfwfq'] """ print("#? waiting for a rectangular table of numbers (a matrix). Insert a closing line '#end' after the last row of the table. Any other line beggining with the '#' character is ignored. You can use the 'TA_send_txt_file.py' util here to send us the lines of a file. Just plug in the util at the 'rtal connect' command like you do with any other bot and let the util feed in the file.") def get_line(): raw_line = input().strip() if raw_line[0] != "#": return [tk.strip() for tk in raw_line.split("#")[0].split(sep)], None key = raw_line[1:].strip().split()[0].upper() if key.upper() == "END" or key.upper() == "NEXT": return None, key return None, "GEN_COMMENT" first_line, cmd = get_line() while first_line == None: first_line, cmd = get_line() last_col = len(first_line) -1 table_submitted = [ list(map(convert2number, first_line)) ] if any(_== None for _ in table_submitted[-1]): print(f"# Error (in the table format): All entries in your table should be numbers. Just check row {len(table_submitted)-1+row_names_start_from} in your file for a first occurrence of a type mismatch.") exit(1) def one_by_one_check(): for col, val in zip(range(len(table_submitted[-1])), table_submitted[-1]): if should_be_int or should_be_nat: if type(val) != int: print(f"# Error (in the table format): the entry ({len(table_submitted)-1+row_names_start_from},{col+col_names_start_from}) in your table should be an integer number. However, the value {val} is a non integer float with decimal part.") exit(1) if should_be_nat: if val<0: print(f"# Error (in the table format): the entry ({len(table_submitted)-1+row_names_start_from},{col+row_names_start_from}) in your table should be a natural (i.e., non-negative) number. However, you entered the {val}<0 for that entry.") exit(1) for check in checks: check(row_index_name=len(table_submitted)-1+row_names_start_from, col_index_name=col+col_names_start_from, entry_val=val) one_by_one_check() next_line, cmd = get_line() while cmd == None or cmd.upper() != "END": if cmd != None and cmd.upper() == "NEXT": print("# Warning: I have asked for one single table! I will assume this line was a comment and proceed reading and loading the previous table line by line.") elif next_line != None: if len(next_line) != last_col+1: print(f"# Error (in the table format): The row {len(table_submitted)+row_names_start_from} (rows are counted starting from {row_names_start_from}) of your table contains {len(next_line)} elements whereas all previous rows contain {last_col+1} elements.") exit(1) table_submitted.append(list(map(convert2number, next_line))) if any(_== None for _ in table_submitted[-1]): print(f"# Error (in the table format): All entries in your table should be numbers. Just check row {len(table_submitted)-1+row_names_start_from} in your file for a first occurrence of a type mismatch.") exit(1) one_by_one_check() next_line, cmd = get_line() print("# FILE GOT") return table_submitted
56.532468
390
0.637721
0d41fdc3abb34a6668696f810b09df3d1f133f81
2,931
py
Python
pynetworking/features/ats_vlan_config_interface_lexer.py
alliedtelesis/py-networking
6c5d4bdafabfb4feef235a02344432e1f0336e48
[ "Apache-2.0" ]
4
2015-04-24T20:36:56.000Z
2021-05-03T20:21:54.000Z
pynetworking/features/ats_vlan_config_interface_lexer.py
alliedtelesis/py-networking
6c5d4bdafabfb4feef235a02344432e1f0336e48
[ "Apache-2.0" ]
1
2019-07-14T07:07:21.000Z
2019-07-14T07:07:21.000Z
pynetworking/features/ats_vlan_config_interface_lexer.py
alliedtelesis/py-networking
6c5d4bdafabfb4feef235a02344432e1f0336e48
[ "Apache-2.0" ]
3
2015-04-24T20:37:04.000Z
2017-03-02T15:14:46.000Z
# -*- coding: utf-8 -*- import re import ply.lex as lex class VlanInterfaceConfigLexer(object): states = ( ('ifport', 'exclusive'), ('ifportrange', 'exclusive'), ) tokens = ( 'IF_PORT', 'IF_PORT_RANGE', 'IF_VLAN', 'switchport_mode', 'switchport_access', 'switchport_trunk_native', 'switchport_trunk_allowed', 'END', ) def t_if_end(self, t): r'!.*' t.lexer.begin('INITIAL') def t_INITIAL_IF_PORT_RANGE(self, t): r'interface\s+range\s+ethernet\s+[^\n]+\n' t.value = re.split('\s+', t.value, maxsplit=3)[3] t.lexer.push_state('ifportrange') t.lexer.id = t.value def t_INITIAL_IF_PORT(self, t): r'interface\s+ethernet\s+\d\/[eg]\d+\n' t.value = re.split('\s+', t.value)[2] t.lexer.push_state('ifport') t.lexer.id = t.value def t_ifport_ifportrange_switchport_mode(self, t): r'switchport\s+mode\s+(access|trunk)' v = re.split('\s+', t.value, maxsplit=2) t.value = (t.lexer.id, v[2]) return t def t_ifport_ifportrange_switchport_access(self, t): r'switchport\s+access\s+vlan\s+\d+' v = re.split('\s+', t.value) t.value = (t.lexer.id, v[3]) return t def t_ifport_ifportrange_switchport_trunk_native(self, t): r'switchport\s+trunk\s+native\s+vlan\s+\d+' v = re.split('\s+', t.value) t.value = (t.lexer.id, v[4]) return t def t_ifport_ifportrange_switchport_trunk_allowed(self, t): r'switchport\s+trunk\s+allowed\s+vlan\s+add\s+\d+' v = re.split('\s+', t.value) t.value = (t.lexer.id, v[5]) return t def t_ifport_ifportrange_end(self, t): r'exit' t.lexer.pop_state() def t_ANY_newline(self, t): r'\n+' pass t_ANY_ignore = ' \t' def t_ifport_ifportrange_SKIP(self, t): r'[a-z].*\n' pass def t_INITIAL_SKIP(self, t): r'[a-z].*' pass def t_ANY_error(self, t): # pragma: no cover print "Illegal character '%s'" % t.value[0] t.lexer.skip(1) def __init__(self): self.lexer = lex.lex(object=self, debug=0) def run(self, data): self.lexer.input(data) result = {} for tok in self.lexer: t = tok.type.replace('_', ' ') if tok.value[0] in result.keys(): if t in result[tok.value[0]]: if isinstance(result[tok.value[0]][t], unicode): result[tok.value[0]][t] = [result[tok.value[0]][t], tok.value[1]] else: result[tok.value[0]][t].append(tok.value[1]) else: result[tok.value[0]][t] = tok.value[1] else: result[tok.value[0]] = {t: tok.value[1]} return result
28.182692
89
0.528489
db9d4fb4678ecbb690deb214fe46e62301b6d84a
890
py
Python
release/scripts/templates/driver_functions.py
wycivil08/blendocv
f6cce83e1f149fef39afa8043aade9c64378f33e
[ "Unlicense" ]
30
2015-01-29T14:06:05.000Z
2022-01-10T07:47:29.000Z
release/scripts/templates/driver_functions.py
ttagu99/blendocv
f6cce83e1f149fef39afa8043aade9c64378f33e
[ "Unlicense" ]
1
2017-02-20T20:57:48.000Z
2018-12-19T23:44:38.000Z
release/scripts/templates/driver_functions.py
ttagu99/blendocv
f6cce83e1f149fef39afa8043aade9c64378f33e
[ "Unlicense" ]
15
2015-04-23T02:38:36.000Z
2021-03-01T20:09:39.000Z
# This script defines functions to be used directly in drivers expressions to # extend the builtin set of python functions. # # This can be executed on manually or set to 'Register' to # initialize thefunctions on file load. # two sample functions def invert(f): """ Simple function call: invert(val) """ return 1.0 - f uuid_store = {} def slow_value(value, fac, uuid): """ Delay the value by a factor, use a unique string to allow use in multiple drivers without conflict: slow_value(val, 0.5, "my_value") """ value_prev = uuid_store.get(uuid, value) uuid_store[uuid] = value_new = (value_prev * fac) + (value * (1.0 - fac)) return value_new import bpy # Add variable defined in this script into the drivers namespace. bpy.app.driver_namespace["invert"] = invert bpy.app.driver_namespace["slow_value"] = slow_value
25.428571
77
0.68427
b2ba4b07e83ee203d0b4282ba0772985cfb69142
28
py
Python
mbserializer/tests/__init__.py
gomafutofu/mbserializer
013f287520fa593d5f8162ce31097f9c1bf34622
[ "MIT" ]
1
2015-09-08T05:56:23.000Z
2015-09-08T05:56:23.000Z
mbserializer/tests/__init__.py
gomafutofu/mbserializer
013f287520fa593d5f8162ce31097f9c1bf34622
[ "MIT" ]
null
null
null
mbserializer/tests/__init__.py
gomafutofu/mbserializer
013f287520fa593d5f8162ce31097f9c1bf34622
[ "MIT" ]
null
null
null
__author__ = 'Junki Ishida'
14
27
0.75
46dede09821db8d973ea630be006581c99400533
987
py
Python
sp_products/suggested_keywords.py
wufangjie/adapi
0015cfef1b85f2c64be828c3ce3122469763fa83
[ "MIT" ]
5
2021-01-07T07:11:39.000Z
2021-10-30T09:57:01.000Z
sp_products/suggested_keywords.py
wufangjie/adapi
0015cfef1b85f2c64be828c3ce3122469763fa83
[ "MIT" ]
1
2020-08-10T06:49:11.000Z
2020-08-10T06:49:57.000Z
sp_products/suggested_keywords.py
wufangjie/adapi
0015cfef1b85f2c64be828c3ce3122469763fa83
[ "MIT" ]
4
2021-02-03T12:38:37.000Z
2021-10-30T09:57:08.000Z
from ..adapi import Client class SuggestKeywords(Client): def get_suggest_keywords_by_ad_group_id(self, ad_group_id): self.method = "get" self.uri_path = "/v2/sp/adGroups/{}/suggested/keywords".format(ad_group_id) return self.execute() def get_suggest_keywords_extended_by_ad_group_id(self, ad_group_id): self.method = "get" self.uri_path = "/v2/sp/adGroups/{}//suggested/keywords/extended".format(ad_group_id) return self.execute() def get_suggest_keywords_by_asin(self, asin): self.method = "get" self.uri_path = "/v2/sp/asin/{}/suggested/keywords".format(asin) return self.execute() def get_suggest_keywords_by_asins(self, asins, max_num_suggestions=None): self.method = "get" self.uri_path = "/v2/sp/asin/suggested/keywords" self.data = { "asins": asins, "maxNumSuggestions": max_num_suggestions } return self.execute()
29.029412
93
0.655522
64cd3683b67a8bb67ad65d03b75b21e34000b7f6
5,238
py
Python
models.py
twuilliam/open-search
5f74e3de5552a185e5d13d706bb3a9322606e704
[ "MIT" ]
10
2020-07-29T13:06:20.000Z
2022-03-29T14:50:28.000Z
models.py
twuilliam/open-search
5f74e3de5552a185e5d13d706bb3a9322606e704
[ "MIT" ]
null
null
null
models.py
twuilliam/open-search
5f74e3de5552a185e5d13d706bb3a9322606e704
[ "MIT" ]
4
2020-10-05T02:18:04.000Z
2022-03-29T07:26:30.000Z
import torch import numpy as np import torch.nn as nn from torch.autograd import Variable from torchvision import models from utils import cosine_similarity class VGG16(nn.Module): def __init__(self, pretrained=True): super(VGG16, self).__init__() model = models.vgg16(pretrained=pretrained) self.features = model.features layers = list(model.classifier.children())[:-1] self.classifier = nn.Sequential(*layers) def forward(self, x): # from 224x224 to 4096 x = self.features(x) x = self.classifier(x.view(x.size(0), -1)) return x class VGG19(nn.Module): def __init__(self, pretrained=True): super(VGG19, self).__init__() model = models.vgg19(pretrained=pretrained) self.features = model.features layers = list(model.classifier.children())[:-1] self.classifier = nn.Sequential(*layers) def forward(self, x): # from 224x224 to 4096 x = self.features(x) x = self.classifier(x.view(x.size(0), -1)) return x class ResNet50(nn.Module): def __init__(self, pretrained=True): super(ResNet50, self).__init__() model = models.resnet50(pretrained=pretrained) layers = list(model.children())[:-1] self.model = nn.Sequential(*layers) def forward(self, x): # from 224x224 to 2048 x = self.model(x) return x.view(x.size(0), -1) def logits(self, x): return self.last_layer(x) class SEResNet50(nn.Module): def __init__(self, pretrained=True): super(SEResNet50, self).__init__() import pretrainedmodels if pretrained: model = pretrainedmodels.se_resnet50() else: model = pretrainedmodels.se_resnet50(pretrained=None) layers = list(model.children())[:-1] self.model = nn.Sequential(*layers) def forward(self, x): # from 224x224 to 2048 x = self.model(x) return x.view(x.size(0), -1) class LinearProjection(nn.Module): '''Linear projection''' def __init__(self, n_in, n_out): super(LinearProjection, self).__init__() self.fc_embed = nn.Linear(n_in, n_out, bias=True) self.bn1d = nn.BatchNorm1d(n_out) self._init_params() def forward(self, x): x = self.fc_embed(x) x = self.bn1d(x) return x def _init_params(self): nn.init.xavier_normal(self.fc_embed.weight) nn.init.constant(self.fc_embed.bias, 0) nn.init.constant(self.bn1d.weight, 1) nn.init.constant(self.bn1d.bias, 0) class ConvNet(nn.Module): def __init__(self, backbone, embedding): super(ConvNet, self).__init__() self.backbone = backbone self.embedding = embedding def forward(self, x): x = self.backbone(x) x = self.embedding(x) return x class ProxyNet(nn.Module): """ProxyNet""" def __init__(self, n_classes, dim, proxies=None, L2=False): super(ProxyNet, self).__init__() self.n_classes = n_classes self.dim = dim self.proxies = nn.Embedding(n_classes, dim, scale_grad_by_freq=False) if proxies is None: self.proxies.weight = nn.Parameter( torch.randn(self.n_classes, self.dim), requires_grad=True) else: self.proxies.weight = nn.Parameter(proxies, requires_grad=False) if L2: self.normalize_proxies() def normalize_proxies(self): norm = self.proxies.weight.data.norm(p=2, dim=1)[:, None] self.proxies.weight.data = self.proxies.weight.data / norm def forward(self, y_true): proxies_y_true = self.proxies(Variable(y_true)) return proxies_y_true class ProxyLoss(nn.Module): def __init__(self, temperature=1.): super(ProxyLoss, self).__init__() self.temperature = temperature def forward(self, x, y, proxies): """Proxy loss Arguments: x (Tensor): batch of features y (LongTensor): corresponding instance """ loss = self.softmax_embedding_loss(x, y, proxies) preds = self.predict(x, proxies) acc = (y == preds).type(torch.FloatTensor).mean() return loss.mean(), acc def softmax_embedding_loss(self, x, y, proxies): idx = torch.from_numpy(np.arange(len(x), dtype=np.int)).cuda() diff_iZ = cosine_similarity(x, proxies) numerator_ip = torch.exp(diff_iZ[idx, y] / self.temperature) denominator_ip = torch.exp(diff_iZ / self.temperature).sum(1) + 1e-8 return - torch.log(numerator_ip / denominator_ip) def classify(self, x, proxies): idx = torch.from_numpy(np.arange(len(x), dtype=np.int)).cuda() diff_iZ = cosine_similarity(x, proxies) numerator_ip = torch.exp(diff_iZ[idx, :] / self.temperature) denominator_ip = torch.exp(diff_iZ / self.temperature).sum(1) + 1e-8 probs = numerator_ip / denominator_ip[:, None] return probs def predict(self, x, proxies): probs = self.classify(x, proxies) return probs.max(1)[1].data
29.761364
76
0.612447
e2f7627a494c774560dd7df0e635044b102909f1
1,741
py
Python
mars/worker/prochelper.py
pingrunhuang/mars
ae920c374e9844d7426d0cc09c0d97059dc5341c
[ "Apache-2.0" ]
1
2019-09-22T16:00:48.000Z
2019-09-22T16:00:48.000Z
mars/worker/prochelper.py
turboFei/mars
cde691285d921add5460944764c7278e7ddec8ff
[ "Apache-2.0" ]
null
null
null
mars/worker/prochelper.py
turboFei/mars
cde691285d921add5460944764c7278e7ddec8ff
[ "Apache-2.0" ]
null
null
null
# Copyright 1999-2018 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os from .utils import WorkerActor logger = logging.getLogger(__name__) class ProcessHelperActor(WorkerActor): """ Actor handling utils on every process """ def __init__(self): super(ProcessHelperActor, self).__init__() self._dispatch_ref = None self._daemon_ref = None def post_create(self): from .dispatcher import DispatchActor from .daemon import WorkerDaemonActor super(ProcessHelperActor, self).post_create() self._dispatch_ref = self.promise_ref(DispatchActor.default_name()) self._dispatch_ref.register_free_slot(self.uid, 'process_helper') self._daemon_ref = self.ctx.actor_ref(WorkerDaemonActor.default_name()) if self.ctx.has_actor(self._daemon_ref): self._daemon_ref.register_process(self.ref(), os.getpid(), _tell=True) else: self._daemon_ref = None def free_mkl_buffers(self): """ Free MKL buffer """ from ..lib.mkl_interface import mkl_free_buffers if mkl_free_buffers is None: return mkl_free_buffers()
32.240741
82
0.699598
34e043a44c07582eb2be3b2e63d9ffe81dde4f20
10,658
py
Python
quantstats/utils.py
gabrieljenik/quantstats
a76c1e3f5cfab91305c91f4deea132413222c3e7
[ "Apache-2.0" ]
2
2021-08-01T15:38:34.000Z
2021-10-01T13:20:29.000Z
quantstats/utils.py
gabrieljenik/quantstats
a76c1e3f5cfab91305c91f4deea132413222c3e7
[ "Apache-2.0" ]
null
null
null
quantstats/utils.py
gabrieljenik/quantstats
a76c1e3f5cfab91305c91f4deea132413222c3e7
[ "Apache-2.0" ]
2
2021-07-11T12:55:31.000Z
2021-08-31T06:57:05.000Z
#!/usr/bin/env python # -*- coding: UTF-8 -*- # # QuantStats: Portfolio analytics for quants # https://github.com/ranaroussi/quantstats # # Copyright 2019 Ran Aroussi # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # ˜ # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import io as _io import datetime as _dt import pandas as _pd import numpy as _np import yfinance as _yf from . import stats as _stats def _mtd(df): return df[df.index >= _dt.datetime.now( ).strftime('%Y-%m-01')] def _qtd(df): date = _dt.datetime.now() for q in [1, 4, 7, 10]: if date.month <= q: return df[df.index >= _dt.datetime( date.year, q, 1).strftime('%Y-%m-01')] return df[df.index >= date.strftime('%Y-%m-01')] def _ytd(df): return df[df.index >= _dt.datetime.now( ).strftime('%Y-01-01')] def _pandas_date(df, dates): if not isinstance(dates, list): dates = [dates] return df[df.index.isin(dates)] def _pandas_current_month(df): n = _dt.datetime.now() daterange = _pd.date_range(_dt.date(n.year, n.month, 1), n) return df[df.index.isin(daterange)] def multi_shift(df, shift=3): """ get last N rows relative to another row in pandas """ if isinstance(df, _pd.Series): df = _pd.DataFrame(df) dfs = [df.shift(i) for i in _np.arange(shift)] for ix, dfi in enumerate(dfs[1:]): dfs[ix + 1].columns = [str(col) for col in dfi.columns + str(ix + 1)] return _pd.concat(dfs, 1, sort=True) def to_returns(prices, rf=0.): """ Calculates the simple arithmetic returns of a price series """ return _prepare_returns(prices, rf) def to_prices(returns, base=1e5): """ Converts returns series to price data """ returns = returns.copy().fillna(0).replace( [_np.inf, -_np.inf], float('NaN')) return base + base * _stats.compsum(returns) def log_returns(returns, rf=0., nperiods=None): """ shorthand for to_log_returns """ return to_log_returns(returns, rf, nperiods) def to_log_returns(returns, rf=0., nperiods=None): """ Converts returns series to log returns """ returns = _prepare_returns(returns, rf, nperiods) try: return _np.log(returns+1).replace([_np.inf, -_np.inf], float('NaN')) except Exception: return 0. def exponential_stdev(returns, window=30, is_halflife=False): """ Returns series representing exponential volatility of returns """ returns = _prepare_returns(returns) halflife = window if is_halflife else None return returns.ewm(com=None, span=window, halflife=halflife, min_periods=window).std() def rebase(prices, base=100.): """ Rebase all series to a given intial base. This makes comparing/plotting different series together easier. Args: * prices: Expects a price series/dataframe * base (number): starting value for all series. """ return prices.dropna() / prices.dropna().iloc[0] * base def group_returns(returns, groupby, compounded=False): """ summarize returns group_returns(df, df.index.year) group_returns(df, [df.index.year, df.index.month]) """ if compounded: return returns.groupby(groupby).apply(_stats.comp) return returns.groupby(groupby).sum() def aggregate_returns(returns, period=None, compounded=True): """ Aggregates returns based on date periods """ if period is None or 'day' in period: return returns index = returns.index if 'month' in period: return group_returns(returns, index.month, compounded=compounded) if 'quarter' in period: return group_returns(returns, index.quarter, compounded=compounded) if period == "A" or any(x in period for x in ['year', 'eoy', 'yoy']): return group_returns(returns, index.year, compounded=compounded) if 'week' in period: return group_returns(returns, index.week, compounded=compounded) if 'eow' in period or period == "W": return group_returns(returns, [index.year, index.week], compounded=compounded) if 'eom' in period or period == "M": return group_returns(returns, [index.year, index.month], compounded=compounded) if 'eoq' in period or period == "Q": return group_returns(returns, [index.year, index.quarter], compounded=compounded) if not isinstance(period, str): return group_returns(returns, period, compounded) return returns def to_excess_returns(returns, rf, nperiods=None): """ Calculates excess returns by subtracting risk-free returns from total returns Args: * returns (Series, DataFrame): Returns * rf (float, Series, DataFrame): Risk-Free rate(s) * nperiods (int): Optional. If provided, will convert rf to different frequency using deannualize Returns: * excess_returns (Series, DataFrame): Returns - rf """ if isinstance(rf, int): rf = float(rf) if not isinstance(rf, float): rf = rf[rf.index.isin(returns.index)] if nperiods is not None: # deannualize rf = _np.power(1 + rf, 1. / nperiods) - 1. return returns - rf def _prepare_prices(data, base=1.): """ Converts return data into prices + cleanup """ data = data.copy() if isinstance(data, _pd.DataFrame): for col in data.columns: if data[col].dropna().min() <= 0 or data[col].dropna().max() < 1: data[col] = to_prices(data[col], base) # is it returns? # elif data.min() < 0 and data.max() < 1: elif data.min() < 0 or data.max() < 1: data = to_prices(data, base) if isinstance(data, (_pd.DataFrame, _pd.Series)): data = data.fillna(0).replace( [_np.inf, -_np.inf], float('NaN')) return data def _prepare_returns(data, rf=0., nperiods=None): """ Converts price data into returns + cleanup """ data = data.copy() if isinstance(data, _pd.DataFrame): for col in data.columns: if data[col].dropna().min() >= 0 or data[col].dropna().max() > 1: data[col] = data[col].pct_change() elif data.min() >= 0 and data.max() > 1: data = data.pct_change() # cleanup data data = data.replace([_np.inf, -_np.inf], float('NaN')) if isinstance(data, (_pd.DataFrame, _pd.Series)): data = data.fillna(0).replace( [_np.inf, -_np.inf], float('NaN')) if rf > 0: return to_excess_returns(data, rf, nperiods) return data def download_returns(ticker, period="max"): if isinstance(period, _pd.DatetimeIndex): p = {"start": period[0]} else: p = {"period": period} return _yf.Ticker(ticker).history(**p)['Close'].pct_change() def _prepare_benchmark(benchmark=None, period="max", rf=0.): """ fetch benchmark if ticker is provided, and pass through _prepare_returns() period can be options or (expected) _pd.DatetimeIndex range """ if benchmark is None: return None if isinstance(benchmark, str): benchmark = download_returns(benchmark) elif isinstance(benchmark, _pd.DataFrame): benchmark = benchmark[benchmark.columns[0]].copy() if isinstance(period, _pd.DatetimeIndex): benchmark = benchmark[benchmark.index.isin(period)] return _prepare_returns(benchmark.dropna(), rf=rf) def _round_to_closest(val, res, decimals=None): """ round to closest resolution """ if decimals is None and "." in str(res): decimals = len(str(res).split('.')[1]) return round(round(val / res) * res, decimals) def _file_stream(): """ Returns a file stream """ return _io.BytesIO() def _in_notebook(matplotlib_inline=False): """ Identify enviroment (notebook, terminal, etc) """ try: shell = get_ipython().__class__.__name__ if shell == 'ZMQInteractiveShell': # Jupyter notebook or qtconsole if matplotlib_inline: get_ipython().magic("matplotlib inline") return True if shell == 'TerminalInteractiveShell': # Terminal running IPython return False # Other type (?) return False except NameError: # Probably standard Python interpreter return False def _count_consecutive(data): """ Counts consecutive data (like cumsum() with reset on zeroes) """ def _count(data): return data * (data.groupby( (data != data.shift(1)).cumsum()).cumcount() + 1) if isinstance(data, _pd.DataFrame): for col in data.columns: data[col] = _count(data[col]) return data return _count(data) def _score_str(val): """ Returns + sign for positive values (used in plots) """ return ("" if "-" in val else "+") + str(val) def make_portfolio(returns, start_balance=1e5, mode="comp", round_to=None): """ Calculates compounded value of portfolio """ returns = _prepare_returns(returns) if mode.lower() in ["cumsum", "sum"]: p1 = start_balance + start_balance * returns.cumsum() elif mode.lower() in ["compsum", "comp"]: p1 = to_prices(returns, start_balance) else: # fixed amount every day comp_rev = (start_balance + start_balance * returns.shift(1)).fillna(start_balance) * returns p1 = start_balance + comp_rev.cumsum() # add day before with starting balance p0 = _pd.Series(data=start_balance, index=p1.index + _pd.Timedelta(days=-1))[:1] portfolio = _pd.concat([p0, p1]) if isinstance(returns, _pd.DataFrame): portfolio.loc[:1, :] = start_balance portfolio.drop(columns=[0], inplace=True) if round_to: portfolio = _np.round(portfolio, round_to) return portfolio def _flatten_dataframe(df, set_index=None): """ Dirty method for flattening multi-index dataframe """ s_buf = _io.StringIO() df.to_csv(s_buf) s_buf.seek(0) df = _pd.read_csv(s_buf) if set_index is not None: df.set_index(set_index, inplace=True) return df
30.192635
77
0.633702
3894ed3b72f9993a722248d15a2554286b2a5012
1,566
py
Python
tests/models/rl/unit/test_a2c.py
lavoiems/lightning-bolts
208e92ba3dcdbc029afd37e09ec9461fbcf3f293
[ "Apache-2.0" ]
822
2020-04-21T03:30:43.000Z
2021-03-07T06:41:31.000Z
tests/models/rl/unit/test_a2c.py
lavoiems/lightning-bolts
208e92ba3dcdbc029afd37e09ec9461fbcf3f293
[ "Apache-2.0" ]
538
2020-04-18T01:07:58.000Z
2021-03-09T13:48:50.000Z
tests/models/rl/unit/test_a2c.py
lavoiems/lightning-bolts
208e92ba3dcdbc029afd37e09ec9461fbcf3f293
[ "Apache-2.0" ]
162
2020-04-17T15:44:54.000Z
2021-03-09T14:04:02.000Z
import argparse import torch from torch import Tensor from pl_bolts.models.rl.advantage_actor_critic_model import AdvantageActorCritic def test_a2c_loss(): """Test the reinforce loss function.""" parent_parser = argparse.ArgumentParser(add_help=False) parent_parser = AdvantageActorCritic.add_model_specific_args(parent_parser) args_list = [ "--env", "CartPole-v0", "--batch_size", "32", ] hparams = parent_parser.parse_args(args_list) model = AdvantageActorCritic(**vars(hparams)) batch_states = torch.rand(32, 4) batch_actions = torch.rand(32).long() batch_qvals = torch.rand(32) loss = model.loss(batch_states, batch_actions, batch_qvals) assert isinstance(loss, Tensor) def test_a2c_train_batch(): """Tests that a single batch generates correctly.""" parent_parser = argparse.ArgumentParser(add_help=False) parent_parser = AdvantageActorCritic.add_model_specific_args(parent_parser) args_list = [ "--env", "CartPole-v0", "--batch_size", "32", ] hparams = parent_parser.parse_args(args_list) model = AdvantageActorCritic(**vars(hparams)) model.n_steps = 4 model.hparams.batch_size = 1 xp_dataloader = model.train_dataloader() batch = next(iter(xp_dataloader)) assert len(batch) == 3 assert len(batch[0]) == model.hparams.batch_size assert isinstance(batch, list) assert isinstance(batch[0], Tensor) assert isinstance(batch[1], Tensor) assert isinstance(batch[2], Tensor)
27.964286
80
0.692209
e05e9a95170a5d9cdc87f3c3adb0bb27ee4c2f65
763
py
Python
boost/tools/build/v2/test/core_option_l.py
randolphwong/mcsema
eb5b376736e7f57ff0a61f7e4e5a436bbb874720
[ "BSD-3-Clause" ]
11
2016-04-12T16:29:29.000Z
2021-06-28T11:01:57.000Z
boost/tools/build/v2/test/core_option_l.py
randolphwong/mcsema
eb5b376736e7f57ff0a61f7e4e5a436bbb874720
[ "BSD-3-Clause" ]
3
2018-10-31T19:35:14.000Z
2019-06-04T17:11:27.000Z
boost/tools/build/v2/test/core_option_l.py
randolphwong/mcsema
eb5b376736e7f57ff0a61f7e4e5a436bbb874720
[ "BSD-3-Clause" ]
9
2015-09-09T02:38:32.000Z
2021-01-30T00:24:24.000Z
#!/usr/bin/python # Copyright 2007 Rene Rivera. # Copyright 2011 Steven Watanabe # Distributed under the Boost Software License, Version 1.0. # (See accompanying file LICENSE_1_0.txt or http://www.boost.org/LICENSE_1_0.txt) import BoostBuild t = BoostBuild.Tester(pass_toolset=0) t.write("sleep.bat","""@setlocal @echo off @REM timeout /T %1 /NOBREAK >nul ping 127.0.0.1 -n 2 -w 1000 >nul ping 127.0.0.1 -n %1 -w 1000 >nul @endlocal @exit /B 0 """) t.write("file.jam", """ if $(NT) { SLEEP = @call sleep.bat ; } else { SLEEP = sleep ; } actions .a. { echo 001 $(SLEEP) 4 echo 002 } .a. sleeper ; DEPENDS all : sleeper ; """) t.run_build_system("-ffile.jam -d1 -l2", status=1) t.expect_output_line("2 second time limit exceeded") t.cleanup()
15.895833
82
0.672346
239b8fd625aae72787ba7e8703d3178d696eee65
21,928
py
Python
applications/incompressible_fluid_application/python_scripts/monolithic_solver_lagrangian_compressible_two_fluids_splited.py
AndreaVoltan/MyKratos7.0
e977752722e8ef1b606f25618c4bf8fd04c434cc
[ "BSD-4-Clause" ]
2
2020-04-30T19:13:08.000Z
2021-04-14T19:40:47.000Z
applications/incompressible_fluid_application/python_scripts/monolithic_solver_lagrangian_compressible_two_fluids_splited.py
Jacklwln/Kratos
12ffe332622d7e8ea3e4a10bc061beb9d8e6e8de
[ "BSD-4-Clause" ]
1
2020-04-30T19:19:09.000Z
2020-05-02T14:22:36.000Z
applications/incompressible_fluid_application/python_scripts/monolithic_solver_lagrangian_compressible_two_fluids_splited.py
Jacklwln/Kratos
12ffe332622d7e8ea3e4a10bc061beb9d8e6e8de
[ "BSD-4-Clause" ]
1
2020-06-12T08:51:24.000Z
2020-06-12T08:51:24.000Z
from __future__ import print_function, absolute_import, division #makes KratosMultiphysics backward compatible with python 2.6 and 2.7 # importing the Kratos Library from KratosMultiphysics import * from KratosMultiphysics.IncompressibleFluidApplication import * from KratosMultiphysics.PFEMApplication import * from KratosMultiphysics.MeshingApplication import * from KratosMultiphysics.ExternalSolversApplication import * CheckForPreviousImport() def AddVariables(model_part): model_part.AddNodalSolutionStepVariable(VELOCITY) model_part.AddNodalSolutionStepVariable(ACCELERATION) model_part.AddNodalSolutionStepVariable(MESH_VELOCITY) model_part.AddNodalSolutionStepVariable(PRESSURE) model_part.AddNodalSolutionStepVariable(AIR_PRESSURE) model_part.AddNodalSolutionStepVariable(WATER_PRESSURE) model_part.AddNodalSolutionStepVariable(AIR_PRESSURE_DT) model_part.AddNodalSolutionStepVariable(WATER_PRESSURE_DT) model_part.AddNodalSolutionStepVariable(IS_FLUID) model_part.AddNodalSolutionStepVariable(IS_WATER) model_part.AddNodalSolutionStepVariable(IS_VISITED) model_part.AddNodalSolutionStepVariable(IS_POROUS) model_part.AddNodalSolutionStepVariable(IS_STRUCTURE) model_part.AddNodalSolutionStepVariable(IS_FREE_SURFACE) model_part.AddNodalSolutionStepVariable(IS_INTERFACE) model_part.AddNodalSolutionStepVariable(IS_BOUNDARY) model_part.AddNodalSolutionStepVariable(ERASE_FLAG) model_part.AddNodalSolutionStepVariable(DISPLACEMENT) model_part.AddNodalSolutionStepVariable(VISCOSITY) model_part.AddNodalSolutionStepVariable(VISCOSITY_AIR) model_part.AddNodalSolutionStepVariable(VISCOSITY_WATER) model_part.AddNodalSolutionStepVariable(DENSITY) model_part.AddNodalSolutionStepVariable(DENSITY_AIR) model_part.AddNodalSolutionStepVariable(DENSITY_WATER) model_part.AddNodalSolutionStepVariable(AIR_SOUND_VELOCITY) model_part.AddNodalSolutionStepVariable(WATER_SOUND_VELOCITY) model_part.AddNodalSolutionStepVariable(SOUND_VELOCITY) model_part.AddNodalSolutionStepVariable(BODY_FORCE) model_part.AddNodalSolutionStepVariable(NODAL_AREA) model_part.AddNodalSolutionStepVariable(NODAL_H) model_part.AddNodalSolutionStepVariable(ADVPROJ) model_part.AddNodalSolutionStepVariable(DIVPROJ) model_part.AddNodalSolutionStepVariable(THAWONE) model_part.AddNodalSolutionStepVariable(THAWTWO) model_part.AddNodalSolutionStepVariable(REACTION) model_part.AddNodalSolutionStepVariable(REACTION_WATER_PRESSURE) model_part.AddNodalSolutionStepVariable(EXTERNAL_PRESSURE) model_part.AddNodalSolutionStepVariable(ARRHENIUS) model_part.AddNodalSolutionStepVariable(DISTANCE) model_part.AddNodalSolutionStepVariable(AUX_INDEX) print("variables for monolithic solver lagrangian compressible solution added correctly") def AddDofs(model_part): for node in model_part.Nodes: # adding dofs node.AddDof(VELOCITY_X, REACTION_X) node.AddDof(VELOCITY_Y, REACTION_Y) node.AddDof(VELOCITY_Z, REACTION_Z) node.AddDof(WATER_PRESSURE, REACTION_WATER_PRESSURE) node.AddDof(AIR_PRESSURE, REACTION_AIR_PRESSURE) print("dofs for the monolithic solver lagrangian compressible added correctly") class MonolithicSolver: # def __init__(self, model_part, domain_size, box_corner1, box_corner2): self.model_part = model_part self.alpha = -0.1 self.move_mesh_strategy = 2 self.time_scheme = ResidualBasedPredictorCorrectorVelocityBossakSchemeCompressible( self.alpha, self.move_mesh_strategy) # definition of the solvers # self.linear_solver = SkylineLUFactorizationSolver() # self.linear_solver =SuperLUSolver() pPrecond = DiagonalPreconditioner() # pPrecond = ILU0Preconditioner() self.linear_solver = BICGSTABSolver(1e-6, 5000, pPrecond) # definition of the convergence criteria # self.conv_criteria = UPCriteria(1e-7,1e-9,1e-7,1e-9) self.conv_criteria = UPCriteria(1e-5, 1e-6, 1e-5, 1e-6) self.max_iter = 2 self.SetDivided = ElemBasedBCUtilities(model_part) self.ChooseElement = ChooseElementProcess(model_part, 2) # default settings self.echo_level = 1 self.CalculateReactionFlag = False self.ReformDofSetAtEachStep = True self.CalculateNormDxFlag = True self.MoveMeshFlag = True self.remeshing_flag = True # MESH CHANGES self.PfemUtils = PfemUtils() self.MeshMover = MoveMeshProcess(self.model_part) self.node_erase_process = NodeEraseProcess(model_part) # self.Mesher = TriGenPFEMModeler() # self.Mesher = MSuitePFEMModeler() self.Mesher = TriGenPFEMSegment() self.neigh_finder = FindNodalNeighboursProcess(model_part, 9, 18) self.elem_neighbor_finder = FindElementalNeighboursProcess( model_part, 2, 10) self.alpha_shape = 10000.0 self.h_factor = 0.5 # assign IS_FLUID to all nodes # for node in self.model_part.Nodes: # node.SetSolutionStepValue(IS_FLUID,0,1.0) # detecting free_surface to all nodes for node in self.model_part.Nodes: if (node.GetSolutionStepValue(IS_BOUNDARY) == 1 and node.GetSolutionStepValue(IS_STRUCTURE) != 1): node.SetSolutionStepValue(IS_FREE_SURFACE, 0, 1.0) # U NEED IT FOR ALPHA-shape (self.neigh_finder).Execute() self.Hfinder = FindNodalHProcess(model_part) (self.Hfinder).Execute() # runtime box self.box_corner1 = box_corner1 self.box_corner2 = box_corner2 # def Initialize(self, output_time_increment): # creating the solution strategy self.solver = NewtonRaphsonStrategy( self.model_part, self.time_scheme, self.linear_solver, self.conv_criteria, self.max_iter, self.CalculateReactionFlag, self.ReformDofSetAtEachStep, self.MoveMeshFlag) (self.solver).SetEchoLevel(self.echo_level) # time increment for output self.output_time_increment = output_time_increment self.next_output_time = self.output_time_increment # self.CalculateDistanceAndDiviedSet(2); # (self.neigh_finder).Execute(); # FIND NEIGHBOUR ELEMENTS AND COLORing # (self.elem_neighbor_finder).ClearNeighbours() # (self.elem_neighbor_finder).Execute() # (self.PfemUtils).ColourAirWaterElement(self.model_part,2) # def Solve(self, time, gid_io): # (self.neigh_finder).Execute(); # (self.solver).Solve() # print"After solve before clear" # (self.solver).Clear() # print"After clear" # (self.PfemUtils).MarkOuterNodes(self.box_corner1,self.box_corner2,(self.model_part).Nodes ); # (self.PfemUtils).MarkExcessivelyCloseNodes((self.model_part).Nodes, .05) # (self.node_erase_process).Execute(); # self.Remesh() # self.OutputStep(time,gid_io) self.CalculateDistanceAndDiviedSet(2) # self.AssignH() # self.ImplosionDistToH() # (FindElementalNeighboursProcess(self.model_part, 2, 10)).Execute() (self.solver).Predict() print("AFTER PREDICT") self.Remesh() print("AFTER REMESH") self.DistToH() (self.solver).Solve() print("AFTER SOLVE") (self.PfemUtils).MoveNodes(self.model_part) print("AFTER Move") (self.solver).Clear() self.OutputStep(time, gid_io) # def EstimateDeltaTime(self, min_dt, max_dt): print("Estimating delta time") calc_dt = ( self.PfemUtils).EstimateDeltaTime( min_dt, max_dt, self.model_part) print("calculated dt") return calc_dt # def EstimateDeltaTime(self,min_dt,max_dt): # print "Estimating delta time" # return (self.UlfUtils).EstimateDeltaTime(max_dt,domain_size) # def SetEchoLevel(self, level): (self.solver).SetEchoLevel(level) # # def Remesh(self): # # if (self.remeshing_flag==True): # print "BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB" # (self.Mesher).ReGenerateMesh("ASGSCompressible2D", "Monolithic2DNeumann",self.model_part,self.node_erase_process,True, True, self.alpha_shape, self.h_factor) # (self.Mesher).ReGenerateMesh("ASGSCompressible2D", "Monolithic2DNeumann",self.model_part,self.node_erase_process,True, False, self.alpha_shape, self.h_factor) # print "AAAAAAAAAAFFFFFFFFFFFFFTTTTTTTTTTTTTERRRRRRRRRRRRRR" # calculating fluid neighbours before applying boundary conditions # (self.neigh_finder).Execute(); # def Remesh(self): if (self.remeshing_flag): (self.PfemUtils).MoveLonelyNodes(self.model_part) #(self.MeshMover).Execute(); print(self.box_corner1) (self.PfemUtils).MarkOuterNodes( self.box_corner1, self.box_corner2, (self.model_part).Nodes) (self.PfemUtils).MarkNodesTouchingWall(self.model_part, 2, .05) (self.PfemUtils).MarkExcessivelyCloseNodes( (self.model_part).Nodes, 0.5) (self.PfemUtils).MarkNodesTouchingInterface(self.model_part, 2, .1) # FIND NEIGHBOUR ELEMENTS AND COLORing (self.elem_neighbor_finder).ClearNeighbours() (self.elem_neighbor_finder).Execute() (self.PfemUtils).ColourAirWaterElement(self.model_part, 2) # # (self.PfemUtils).InterfaceDetecting(self.model_part,2, .9) # (self.PfemUtils).ChangeWallWaterFlag(self.model_part,2) # (self.PfemUtils).ChangeInterfaceWaterFlag(self.model_part,2) # for node in (self.model_part).Nodes: # if(node.GetSolutionStepValue(IS_INTERFACE) == 1.0): # print node.GetValue(ERASE_FLAG) #(self.node_erase_process).Execute(); to be able to compute neighbors earase process is done inside the mesher (self.neigh_finder).ClearNeighbours() (self.neigh_finder).Execute() # ((self.model_part).Elements).clear(); # ((self.model_part).Conditions).clear(); (self.Mesher).ReGenerateMesh("ASGSCompressible2D", "Monolithic2DNeumann", self.model_part, self.node_erase_process, True, True, self.alpha_shape, self.h_factor) # (self.Mesher).ReGenerateMesh("ASGSCOMPPRDC2D", "Monolithic2DNeumann",self.model_part,self.node_erase_process,True, False, self.alpha_shape, self.h_factor) (self.elem_neighbor_finder).ClearNeighbours() (self.elem_neighbor_finder).Execute() # (self.neigh_finder).Execute(); (self.PfemUtils).ColourAirWaterElement(self.model_part, 2) (self.PfemUtils).InterfaceDetecting(self.model_part, 2, .9) (self.ChooseElement).Execute() # calculating fluid neighbours before applying boundary conditions (self.neigh_finder).ClearNeighbours() (self.neigh_finder).Execute() (self.PfemUtils).ApplyBoundaryConditions(self.model_part, 2) (self.PfemUtils).IdentifyFluidNodes(self.model_part) # (self.PfemUtils).ApplyMinimalPressureConditions(self.model_part); # (self.PfemUtils).InterfaceDetecting(self.model_part,2, .9) # (self.PfemUtils).ChangeWallWaterFlag(self.model_part,2) # (self.PfemUtils).ChangeInterfaceWaterFlag(self.model_part,2) # (self.PfemUtils).ColourAirWaterElement(self.model_part,2) # for node in self.model_part.Nodes: # node.SetSolutionStepValue(IS_FREE_SURFACE,0,0.0) # # for node in self.model_part.Nodes: # if (node.GetSolutionStepValue(IS_BOUNDARY)==1 and node.GetSolutionStepValue(IS_STRUCTURE)!=1): # node.SetSolutionStepValue(IS_FREE_SURFACE,0,1.0) # def FindNeighbours(self): (self.neigh_finder).Execute() # def OutputStep(self, time, gid_io): if(time >= self.next_output_time): self.next_output_time = self.next_output_time + \ self.output_time_increment # writing mesh gid_io.InitializeMesh(time) gid_io.WriteNodeMesh((self.model_part).GetMesh()) gid_io.WriteMesh((self.model_part).GetMesh()) gid_io.FinalizeMesh() gid_io.InitializeResults(time, (self.model_part).GetMesh()) gid_io.WriteNodalResults( PRESSURE, (self.model_part).Nodes, time, 0) gid_io.WriteNodalResults( EXTERNAL_PRESSURE, (self.model_part).Nodes, time, 0) gid_io.WriteNodalResults( IS_FREE_SURFACE, (self.model_part).Nodes, time, 0) gid_io.WriteNodalResults( IS_BOUNDARY, (self.model_part).Nodes, time, 0) gid_io.WriteNodalResults( IS_STRUCTURE, (self.model_part).Nodes, time, 0) gid_io.WriteNodalResults( IS_INTERFACE, (self.model_part).Nodes, time, 0) gid_io.WriteNodalResults( VELOCITY, (self.model_part).Nodes, time, 0) gid_io.WriteNodalResults( MESH_VELOCITY, (self.model_part).Nodes, time, 0) gid_io.WriteNodalResults( DENSITY, (self.model_part).Nodes, time, 0) gid_io.WriteNodalResults( AIR_PRESSURE, (self.model_part).Nodes, time, 0) gid_io.WriteNodalResults( WATER_PRESSURE, (self.model_part).Nodes, time, 0) gid_io.WriteNodalResults( DENSITY_AIR, (self.model_part).Nodes, time, 0) gid_io.WriteNodalResults( DENSITY_WATER, (self.model_part).Nodes, time, 0) gid_io.WriteNodalResults( AIR_SOUND_VELOCITY, (self.model_part).Nodes, time, 0) gid_io.WriteNodalResults( WATER_SOUND_VELOCITY, (self.model_part).Nodes, time, 0) gid_io.WriteNodalResults( IS_FLUID, (self.model_part).Nodes, time, 0) gid_io.WriteNodalResults( IS_WATER, (self.model_part).Nodes, time, 0) gid_io.WriteNodalResults( NODAL_H, (self.model_part).Nodes, time, 0) gid_io.WriteNodalResults( DISTANCE, (self.model_part).Nodes, time, 0) gid_io.WriteNodalResults( DISPLACEMENT, (self.model_part).Nodes, time, 0) gid_io.WriteNodalResults( IS_VISITED, (self.model_part).Nodes, time, 0) gid_io.WriteNodalResults( AUX_INDEX, (self.model_part).Nodes, time, 0) gid_io.PrintOnGaussPoints(IS_WATER_ELEMENT, self.model_part, time) gid_io.Flush() gid_io.FinalizeResults() # def CalculateDistanceAndDiviedSet(self, domain_size): (self.neigh_finder).Execute() distance_tools = ElemBasedDistanceUtilities(self.model_part) distance_calculator = BodyDistanceCalculationUtils() # assign IS_VISITED1 to elem with DISTANCE>=0 and change DSITANCE to posetive for external ones # Assign Zero distance to interface nodes for node in (self.model_part).Nodes: if(node.GetSolutionStepValue(IS_INTERFACE) == 1.0): node.SetSolutionStepValue(DISTANCE, 0, 0.0) distance_tools.MarkExternalAndMixedNodes() distance_tools.ChangeSignToDistance() # calculate distances towards the interior of the domain if(domain_size == 2): distance_calculator.CalculateDistances2D( (self.model_part).Elements, DISTANCE, True) else: distance_calculator.CalculateDistances3D( (self.model_part).Elements, DISTANCE, True) # change sign distance_tools.ChangeSignToDistance() # mark as visited all of the nodes inside the fluid domain distance_tools.MarkInternalAndMixedNodes() print(((self.model_part).Elements).Size()) # calculate distances towards the outside if(domain_size == 2): distance_calculator.CalculateDistances2D( (self.model_part).Elements, DISTANCE, True) else: distance_calculator.CalculateDistances3D( (self.model_part).Elements, DISTANCE, True) # Decide IS_WATER flag due to DISTANCE # for node in (self.model_part).Nodes: # if(node.GetSolutionStepValue(DISTANCE)<= 0.0): # node.SetSolutionStepValue(IS_WATER,0,0.0) # else: # node.SetSolutionStepValue(IS_WATER,0,1.0) # if(node.GetSolutionStepValue(DISTANCE)== 0.0): # print"This node has distance zero, is_interface is assigned" # node.SetSolutionStepValue(IS_INTERFACE,0,1.0) # node.SetSolutionStepValue(IS_VISITED,0,1.0) # save as distance of the old time step distance_tools.SaveScalarVariableToOldStep(DISTANCE) print("finished RecalculateDistanceFunction") # (self.SetDivided).SetDividedElem_2D() print(">>>>>ELEMENTS ARE DIVIDED<<<<<<<<<<<<") # def DistToH(self): possible_h = self.CalculateRadius() print(possible_h) min_H = possible_h * 3.14 / 200 # min_H = .0007#0.001 sec_min_H = 10 * min_H # .004 max_H = .02 ref_dist = 4 * min_H sec_ref_dist = 20 * min_H third_ref_dist = 200 * min_H slope = (sec_min_H - min_H) / (sec_ref_dist - ref_dist) second_slope = (max_H - sec_min_H) / (third_ref_dist - sec_ref_dist) # search for min an max of H # for node in (self.model_part).Nodes: # node_H = node.GetSolutionStepValue(NODAL_H,0) # if(node_H<self.min_H): # self.min_H = node_H # else: # if(node_H > self.max_H): # self.max_H = node_H # H = H + dist * dist # print ">>>>>DISt TO H ASSIGNMENT<<<<<<<<<<<<" for node in (self.model_part).Nodes: current_dist = node.GetSolutionStepValue(DISTANCE, 0) if(abs(current_dist) <= ref_dist): node_H = min_H # + slope*abs(current_dist) node.SetSolutionStepValue(NODAL_H, 0, node_H) if(ref_dist < abs(current_dist) and abs(current_dist) <= sec_ref_dist): node_H = min_H + slope * (abs(current_dist) - ref_dist) node.SetSolutionStepValue(NODAL_H, 0, node_H) if(sec_ref_dist < abs(current_dist) and abs(current_dist) <= third_ref_dist): node_H = sec_min_H + second_slope * \ (abs(current_dist) - sec_ref_dist) node.SetSolutionStepValue(NODAL_H, 0, node_H) if(abs(current_dist) > third_ref_dist): node_H = max_H node.SetSolutionStepValue(NODAL_H, 0, node_H) # assign new value # node.SetSolutionStepValue(NODAL_H,0,node_H) # NearboundaryH (self.PfemUtils).AssignNearBoundaryH(self.model_part, 5.0) # def CalculateRadius(self): max_radi = 0.0 for node in (self.model_part).Nodes: if node.GetSolutionStepValue(IS_INTERFACE) == 1.0: X_ref = node.X Y_ref = node.Y for node in (self.model_part).Nodes: if node.GetSolutionStepValue(IS_INTERFACE) == 1.0: radi = pow(node.X - X_ref, 2) + pow(node.Y - Y_ref, 2) if(radi > max_radi): max_radi = radi max_radi = pow(max_radi, 0.5) return max_radi # def AssignH(self): for node in (self.model_part).Nodes: if(node.GetSolutionStepValue(IS_INTERFACE) == 1.0): node.SetSolutionStepValue(NODAL_H, 0, .03) else: node.SetSolutionStepValue(NODAL_H, 0, .1) print(">>>>>HHHHHH ASSIGNMENT<<<<<<<<<<<<") # # def ImplosionDistToH(self): min_H = .0005 max_H = .05 ref_dist = .0025 tol = .001 slope = (max_H - min_H) / ref_dist # search for min an max of H # for node in (self.model_part).Nodes: # node_H = node.GetSolutionStepValue(NODAL_H,0) # if(node_H<self.min_H): # self.min_H = node_H # else: # if(node_H > self.max_H): # self.max_H = node_H # H = H + dist * dist print(">>>>>DISt TO H ASSIGNMENT<<<<<<<<<<<<") for node in (self.model_part).Nodes: current_dist = node.GetSolutionStepValue(DISTANCE, 0) if(current_dist > tol): if(abs(current_dist) <= ref_dist): node_H = min_H + slope * abs(current_dist) else: node_H = max_H if(current_dist < -tol): node_H = min_H # assign new value node.SetSolutionStepValue(NODAL_H, 0, node_H) print(">>>>>DISt TO H ASSIGNMENT<<<<<<<<<<<<") #
36.304636
160
0.631202
4e4eafe9018b3a5ed5dc51b08d419da24cc73636
765
py
Python
odps/mars_extension/dataframe/__init__.py
hekaisheng/aliyun-odps-python-sdk
a08f5a9f006487dd3443ebe000f363e9cbee6a80
[ "Apache-2.0" ]
null
null
null
odps/mars_extension/dataframe/__init__.py
hekaisheng/aliyun-odps-python-sdk
a08f5a9f006487dd3443ebe000f363e9cbee6a80
[ "Apache-2.0" ]
null
null
null
odps/mars_extension/dataframe/__init__.py
hekaisheng/aliyun-odps-python-sdk
a08f5a9f006487dd3443ebe000f363e9cbee6a80
[ "Apache-2.0" ]
1
2017-06-27T08:18:29.000Z
2017-06-27T08:18:29.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 1999-2018 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .datasource import read_odps_table, DataFrameReadTable from .datastore import write_odps_table, DataFrameWriteTable
38.25
74
0.76732
f4ad0af4262b460e5b1d7b516e11a19812a03318
754
py
Python
Tutorial_Kivy_Codemy/codemy_KivyMd_32_ButtonBar.py
LivioAlvarenga/Tutoriais_Kivy_KivyMD
b6225578e764eaf0312afafbb2f76dc06f92342d
[ "MIT" ]
null
null
null
Tutorial_Kivy_Codemy/codemy_KivyMd_32_ButtonBar.py
LivioAlvarenga/Tutoriais_Kivy_KivyMD
b6225578e764eaf0312afafbb2f76dc06f92342d
[ "MIT" ]
null
null
null
Tutorial_Kivy_Codemy/codemy_KivyMd_32_ButtonBar.py
LivioAlvarenga/Tutoriais_Kivy_KivyMD
b6225578e764eaf0312afafbb2f76dc06f92342d
[ "MIT" ]
null
null
null
# https://www.youtube.com/watch?v=G-Rp41BzGxg&list=PLCC34OHNcOtpz7PJQ7Tv7hqFBP_xDDjqg&index=44 from kivymd.app import MDApp from kivy.lang import Builder class Codemy_Tutorial_App(MDApp): def build(self): self.theme_cls.theme_style = 'Dark' self.theme_cls.primary_palette = 'BlueGray' return Builder.load_file('codemy_KivyMd_32_ButtonBar.kv') def presser(self): self.root.ids.my_label.text = 'Botão toolbar pressionado!' self.root.ids.top_toolbar.title = 'Botão toolbar pressionado!' def presser1(self): self.root.ids.my_label.text = 'Botão menu pressionado!' self.root.ids.top_toolbar.title = 'Botão menu pressionado!' if __name__ == '__main__': Codemy_Tutorial_App().run()
31.416667
94
0.713528
35b09c9674eb99f74242c8fd482bf9436add9c2c
91
py
Python
cogdl/__init__.py
li-ziang/cogdl
60022d3334e3abae2d2a505e6e049a26acf10f39
[ "MIT" ]
1
2020-06-17T08:47:41.000Z
2020-06-17T08:47:41.000Z
cogdl/__init__.py
li-ziang/cogdl
60022d3334e3abae2d2a505e6e049a26acf10f39
[ "MIT" ]
null
null
null
cogdl/__init__.py
li-ziang/cogdl
60022d3334e3abae2d2a505e6e049a26acf10f39
[ "MIT" ]
1
2020-05-19T11:45:45.000Z
2020-05-19T11:45:45.000Z
__version__ = "0.5.2" from .experiments import experiment from .pipelines import pipeline
18.2
35
0.791209
6523a7871aca73b34087adb1e132e0b9292ddd67
18,318
py
Python
utils/reconstruct.py
hengwei-chan/3D_SBDD
eda6d51aaf01ef25581a46920a25161678fab76d
[ "MIT" ]
67
2021-12-02T05:53:44.000Z
2022-03-31T07:21:26.000Z
utils/reconstruct.py
hengwei-chan/3D_SBDD
eda6d51aaf01ef25581a46920a25161678fab76d
[ "MIT" ]
13
2021-12-05T14:23:46.000Z
2022-03-25T21:07:20.000Z
utils/reconstruct.py
hengwei-chan/3D_SBDD
eda6d51aaf01ef25581a46920a25161678fab76d
[ "MIT" ]
16
2022-01-11T11:48:24.000Z
2022-03-27T19:20:58.000Z
""" https://github.com/mattragoza/liGAN/blob/master/fitting.py License: GNU General Public License v2.0 https://github.com/mattragoza/liGAN/blob/master/LICENSE """ import numpy as np from rdkit.Chem import AllChem as Chem from rdkit import Geometry from openbabel import openbabel as ob from openbabel import pybel from scipy.spatial.distance import pdist from scipy.spatial.distance import squareform from .protein_ligand import ATOM_FAMILIES_ID class MolReconsError(Exception): pass def reachable_r(a,b, seenbonds): '''Recursive helper.''' for nbr in ob.OBAtomAtomIter(a): bond = a.GetBond(nbr).GetIdx() if bond not in seenbonds: seenbonds.add(bond) if nbr == b: return True elif reachable_r(nbr,b,seenbonds): return True return False def reachable(a,b): '''Return true if atom b is reachable from a without using the bond between them.''' if a.GetExplicitDegree() == 1 or b.GetExplicitDegree() == 1: return False #this is the _only_ bond for one atom #otherwise do recursive traversal seenbonds = set([a.GetBond(b).GetIdx()]) return reachable_r(a,b,seenbonds) def forms_small_angle(a,b,cutoff=45): '''Return true if bond between a and b is part of a small angle with a neighbor of a only.''' for nbr in ob.OBAtomAtomIter(a): if nbr != b: degrees = b.GetAngle(a,nbr) if degrees < cutoff: return True return False def make_obmol(xyz, atomic_numbers): mol = ob.OBMol() mol.BeginModify() atoms = [] for xyz,t in zip(xyz, atomic_numbers): x,y,z = xyz # ch = struct.channels[t] atom = mol.NewAtom() atom.SetAtomicNum(t) atom.SetVector(x,y,z) atoms.append(atom) return mol, atoms def connect_the_dots(mol, atoms, indicators, maxbond=4): '''Custom implementation of ConnectTheDots. This is similar to OpenBabel's version, but is more willing to make long bonds (up to maxbond long) to keep the molecule connected. It also attempts to respect atom type information from struct. atoms and struct need to correspond in their order Assumes no hydrogens or existing bonds. ''' pt = Chem.GetPeriodicTable() if len(atoms) == 0: return mol.BeginModify() #just going to to do n^2 comparisons, can worry about efficiency later coords = np.array([(a.GetX(),a.GetY(),a.GetZ()) for a in atoms]) dists = squareform(pdist(coords)) # types = [struct.channels[t].name for t in struct.c] for (i,a) in enumerate(atoms): for (j,b) in enumerate(atoms): if a == b: break if dists[i,j] < 0.01: #reduce from 0.4 continue #don't bond too close atoms if dists[i,j] < maxbond: flag = 0 if indicators[i][ATOM_FAMILIES_ID['Aromatic']] and indicators[j][ATOM_FAMILIES_ID['Aromatic']]: # print('Aromatic', ATOM_FAMILIES_ID['Aromatic'], indicators[i]) flag = ob.OB_AROMATIC_BOND # if 'Aromatic' in types[i] and 'Aromatic' in types[j]: # flag = ob.OB_AROMATIC_BOND mol.AddBond(a.GetIdx(),b.GetIdx(),1,flag) atom_maxb = {} for (i,a) in enumerate(atoms): #set max valance to the smallest max allowed by openbabel or rdkit #since we want the molecule to be valid for both (rdkit is usually lower) maxb = ob.GetMaxBonds(a.GetAtomicNum()) maxb = min(maxb,pt.GetDefaultValence(a.GetAtomicNum())) if a.GetAtomicNum() == 16: # sulfone check if count_nbrs_of_elem(a, 8) >= 2: maxb = 6 # if indicators[i][ATOM_FAMILIES_ID['Donor']]: # maxb -= 1 #leave room for hydrogen # if 'Donor' in types[i]: # maxb -= 1 #leave room for hydrogen atom_maxb[a.GetIdx()] = maxb #remove any impossible bonds between halogens for bond in ob.OBMolBondIter(mol): a1 = bond.GetBeginAtom() a2 = bond.GetEndAtom() if atom_maxb[a1.GetIdx()] == 1 and atom_maxb[a2.GetIdx()] == 1: mol.DeleteBond(bond) def get_bond_info(biter): '''Return bonds sorted by their distortion''' bonds = [b for b in biter] binfo = [] for bond in bonds: bdist = bond.GetLength() #compute how far away from optimal we are a1 = bond.GetBeginAtom() a2 = bond.GetEndAtom() ideal = ob.GetCovalentRad(a1.GetAtomicNum()) + ob.GetCovalentRad(a2.GetAtomicNum()) stretch = bdist-ideal binfo.append((stretch,bdist,bond)) binfo.sort(reverse=True, key=lambda t: t[:2]) #most stretched bonds first return binfo #prioritize removing hypervalency causing bonds, do more valent #constrained atoms first since their bonds introduce the most problems #with reachability (e.g. oxygen) # hypers = sorted([(atom_maxb[a.GetIdx()],a.GetExplicitValence() - atom_maxb[a.GetIdx()], a) for a in atoms],key=lambda aa: (aa[0],-aa[1])) # for mb,diff,a in hypers: # if a.GetExplicitValence() <= atom_maxb[a.GetIdx()]: # continue # binfo = get_bond_info(ob.OBAtomBondIter(a)) # for stretch,bdist,bond in binfo: # #can we remove this bond without disconnecting the molecule? # a1 = bond.GetBeginAtom() # a2 = bond.GetEndAtom() # #get right valence # if a1.GetExplicitValence() > atom_maxb[a1.GetIdx()] or \ # a2.GetExplicitValence() > atom_maxb[a2.GetIdx()]: # #don't fragment the molecule # if not reachable(a1,a2): # continue # mol.DeleteBond(bond) # if a.GetExplicitValence() <= atom_maxb[a.GetIdx()]: # break #let nbr atoms choose what bonds to throw out binfo = get_bond_info(ob.OBMolBondIter(mol)) #now eliminate geometrically poor bonds for stretch,bdist,bond in binfo: #can we remove this bond without disconnecting the molecule? a1 = bond.GetBeginAtom() a2 = bond.GetEndAtom() #as long as we aren't disconnecting, let's remove things #that are excessively far away (0.45 from ConnectTheDots) #get bonds to be less than max allowed #also remove tight angles, because that is what ConnectTheDots does if stretch > 0.45 or forms_small_angle(a1,a2) or forms_small_angle(a2,a1): #don't fragment the molecule if not reachable(a1,a2): continue mol.DeleteBond(bond) mol.EndModify() def convert_ob_mol_to_rd_mol(ob_mol,struct=None): '''Convert OBMol to RDKit mol, fixing up issues''' ob_mol.DeleteHydrogens() n_atoms = ob_mol.NumAtoms() rd_mol = Chem.RWMol() rd_conf = Chem.Conformer(n_atoms) for ob_atom in ob.OBMolAtomIter(ob_mol): rd_atom = Chem.Atom(ob_atom.GetAtomicNum()) #TODO copy format charge if ob_atom.IsAromatic() and ob_atom.IsInRing() and ob_atom.MemberOfRingSize() <= 6: #don't commit to being aromatic unless rdkit will be okay with the ring status #(this can happen if the atoms aren't fit well enough) rd_atom.SetIsAromatic(True) i = rd_mol.AddAtom(rd_atom) ob_coords = ob_atom.GetVector() x = ob_coords.GetX() y = ob_coords.GetY() z = ob_coords.GetZ() rd_coords = Geometry.Point3D(x, y, z) rd_conf.SetAtomPosition(i, rd_coords) rd_mol.AddConformer(rd_conf) for ob_bond in ob.OBMolBondIter(ob_mol): i = ob_bond.GetBeginAtomIdx()-1 j = ob_bond.GetEndAtomIdx()-1 bond_order = ob_bond.GetBondOrder() if bond_order == 1: rd_mol.AddBond(i, j, Chem.BondType.SINGLE) elif bond_order == 2: rd_mol.AddBond(i, j, Chem.BondType.DOUBLE) elif bond_order == 3: rd_mol.AddBond(i, j, Chem.BondType.TRIPLE) else: raise Exception('unknown bond order {}'.format(bond_order)) if ob_bond.IsAromatic(): bond = rd_mol.GetBondBetweenAtoms (i,j) bond.SetIsAromatic(True) rd_mol = Chem.RemoveHs(rd_mol, sanitize=False) pt = Chem.GetPeriodicTable() #if double/triple bonds are connected to hypervalent atoms, decrement the order positions = rd_mol.GetConformer().GetPositions() nonsingles = [] for bond in rd_mol.GetBonds(): if bond.GetBondType() == Chem.BondType.DOUBLE or bond.GetBondType() == Chem.BondType.TRIPLE: i = bond.GetBeginAtomIdx() j = bond.GetEndAtomIdx() dist = np.linalg.norm(positions[i]-positions[j]) nonsingles.append((dist,bond)) nonsingles.sort(reverse=True, key=lambda t: t[0]) for (d,bond) in nonsingles: a1 = bond.GetBeginAtom() a2 = bond.GetEndAtom() if calc_valence(a1) > pt.GetDefaultValence(a1.GetAtomicNum()) or \ calc_valence(a2) > pt.GetDefaultValence(a2.GetAtomicNum()): btype = Chem.BondType.SINGLE if bond.GetBondType() == Chem.BondType.TRIPLE: btype = Chem.BondType.DOUBLE bond.SetBondType(btype) for atom in rd_mol.GetAtoms(): #set nitrogens with 4 neighbors to have a charge if atom.GetAtomicNum() == 7 and atom.GetDegree() == 4: atom.SetFormalCharge(1) rd_mol = Chem.AddHs(rd_mol,addCoords=True) positions = rd_mol.GetConformer().GetPositions() center = np.mean(positions[np.all(np.isfinite(positions),axis=1)],axis=0) for atom in rd_mol.GetAtoms(): i = atom.GetIdx() pos = positions[i] if not np.all(np.isfinite(pos)): #hydrogens on C fragment get set to nan (shouldn't, but they do) rd_mol.GetConformer().SetAtomPosition(i,center) try: Chem.SanitizeMol(rd_mol,Chem.SANITIZE_ALL^Chem.SANITIZE_KEKULIZE) except: raise MolReconsError() # try: # Chem.SanitizeMol(rd_mol,Chem.SANITIZE_ALL^Chem.SANITIZE_KEKULIZE) # except: # mtr22 - don't assume mols will pass this # pass # # dkoes - but we want to make failures as rare as possible and should debug them # m = pybel.Molecule(ob_mol) # i = np.random.randint(1000000) # outname = 'bad%d.sdf'%i # print("WRITING",outname) # m.write('sdf',outname,overwrite=True) # pickle.dump(struct,open('bad%d.pkl'%i,'wb')) #but at some point stop trying to enforce our aromaticity - #openbabel and rdkit have different aromaticity models so they #won't always agree. Remove any aromatic bonds to non-aromatic atoms for bond in rd_mol.GetBonds(): a1 = bond.GetBeginAtom() a2 = bond.GetEndAtom() if bond.GetIsAromatic(): if not a1.GetIsAromatic() or not a2.GetIsAromatic(): bond.SetIsAromatic(False) elif a1.GetIsAromatic() and a2.GetIsAromatic(): bond.SetIsAromatic(True) return rd_mol def calc_valence(rdatom): '''Can call GetExplicitValence before sanitize, but need to know this to fix up the molecule to prevent sanitization failures''' cnt = 0.0 for bond in rdatom.GetBonds(): cnt += bond.GetBondTypeAsDouble() return cnt def count_nbrs_of_elem(atom, atomic_num): ''' Count the number of neighbors atoms of atom with the given atomic_num. ''' count = 0 for nbr in ob.OBAtomAtomIter(atom): if nbr.GetAtomicNum() == atomic_num: count += 1 return count def fixup(atoms, mol, indicators): '''Set atom properties to match channel. Keep doing this to beat openbabel over the head with what we want to happen.''' mol.SetAromaticPerceived(True) #avoid perception for i, atom in enumerate(atoms): # ch = struct.channels[t] ind = indicators[i] if ind[ATOM_FAMILIES_ID['Aromatic']]: atom.SetAromatic(True) atom.SetHyb(2) # if ind[ATOM_FAMILIES_ID['Donor']]: # if atom.GetExplicitDegree() == atom.GetHvyDegree(): # if atom.GetHvyDegree() == 1 and atom.GetAtomicNum() == 7: # atom.SetImplicitHCount(2) # else: # atom.SetImplicitHCount(1) # elif ind[ATOM_FAMILIES_ID['Acceptor']]: # NOT AcceptorDonor because of else # atom.SetImplicitHCount(0) if (atom.GetAtomicNum() in (7, 8)) and atom.IsInRing(): # Nitrogen, Oxygen #this is a little iffy, ommitting until there is more evidence it is a net positive #we don't have aromatic types for nitrogen, but if it #is in a ring with aromatic carbon mark it aromatic as well acnt = 0 for nbr in ob.OBAtomAtomIter(atom): if nbr.IsAromatic(): acnt += 1 if acnt > 1: atom.SetAromatic(True) def raw_obmol_from_generated(data): xyz = data.ligand_context_pos.clone().cpu().tolist() atomic_nums = data.ligand_context_element.clone().cpu().tolist() # indicators = data.ligand_context_feature_full[:, -len(ATOM_FAMILIES_ID):].clone().cpu().bool().tolist() mol, atoms = make_obmol(xyz, atomic_nums) return mol, atoms UPGRADE_BOND_ORDER = {Chem.BondType.SINGLE:Chem.BondType.DOUBLE, Chem.BondType.DOUBLE:Chem.BondType.TRIPLE} def postprocess_rd_mol_1(rdmol): rdmol = Chem.RemoveHs(rdmol) # Construct bond nbh list nbh_list = {} for bond in rdmol.GetBonds(): begin, end = bond.GetBeginAtomIdx(), bond.GetEndAtomIdx() if begin not in nbh_list: nbh_list[begin] = [end] else: nbh_list[begin].append(end) if end not in nbh_list: nbh_list[end] = [begin] else: nbh_list[end].append(begin) # Fix missing bond-order for atom in rdmol.GetAtoms(): idx = atom.GetIdx() num_radical = atom.GetNumRadicalElectrons() if num_radical > 0: for j in nbh_list[idx]: if j <= idx: continue nb_atom = rdmol.GetAtomWithIdx(j) nb_radical = nb_atom.GetNumRadicalElectrons() if nb_radical > 0: bond = rdmol.GetBondBetweenAtoms(idx, j) bond.SetBondType(UPGRADE_BOND_ORDER[bond.GetBondType()]) nb_atom.SetNumRadicalElectrons(nb_radical - 1) num_radical -= 1 atom.SetNumRadicalElectrons(num_radical) num_radical = atom.GetNumRadicalElectrons() if num_radical > 0: atom.SetNumRadicalElectrons(0) num_hs = atom.GetNumExplicitHs() atom.SetNumExplicitHs(num_hs + num_radical) return rdmol def postprocess_rd_mol_2(rdmol): rdmol_edit = Chem.RWMol(rdmol) ring_info = rdmol.GetRingInfo() ring_info.AtomRings() rings = [set(r) for r in ring_info.AtomRings()] for i, ring_a in enumerate(rings): if len(ring_a) == 3: non_carbon = [] atom_by_symb = {} for atom_idx in ring_a: symb = rdmol.GetAtomWithIdx(atom_idx).GetSymbol() if symb != 'C': non_carbon.append(atom_idx) if symb not in atom_by_symb: atom_by_symb[symb] = [atom_idx] else: atom_by_symb[symb].append(atom_idx) if len(non_carbon) == 2: rdmol_edit.RemoveBond(*non_carbon) if 'O' in atom_by_symb and len(atom_by_symb['O']) == 2: rdmol_edit.RemoveBond(*atom_by_symb['O']) rdmol_edit.GetAtomWithIdx(atom_by_symb['O'][0]).SetNumExplicitHs( rdmol_edit.GetAtomWithIdx(atom_by_symb['O'][0]).GetNumExplicitHs() + 1 ) rdmol_edit.GetAtomWithIdx(atom_by_symb['O'][1]).SetNumExplicitHs( rdmol_edit.GetAtomWithIdx(atom_by_symb['O'][1]).GetNumExplicitHs() + 1 ) rdmol = rdmol_edit.GetMol() for atom in rdmol.GetAtoms(): if atom.GetFormalCharge() > 0: atom.SetFormalCharge(0) return rdmol def reconstruct_from_generated(data): xyz = data.ligand_context_pos.clone().cpu().tolist() atomic_nums = data.ligand_context_element.clone().cpu().tolist() indicators = data.ligand_context_feature_full[:, -len(ATOM_FAMILIES_ID):].clone().cpu().bool().tolist() mol, atoms = make_obmol(xyz, atomic_nums) fixup(atoms, mol, indicators) connect_the_dots(mol, atoms, indicators, 2) fixup(atoms, mol, indicators) mol.EndModify() fixup(atoms, mol, indicators) mol.AddPolarHydrogens() mol.PerceiveBondOrders() fixup(atoms, mol, indicators) for (i,a) in enumerate(atoms): ob.OBAtomAssignTypicalImplicitHydrogens(a) fixup(atoms, mol, indicators) mol.AddHydrogens() fixup(atoms, mol, indicators) #make rings all aromatic if majority of carbons are aromatic for ring in ob.OBMolRingIter(mol): if 5 <= ring.Size() <= 6: carbon_cnt = 0 aromatic_ccnt = 0 for ai in ring._path: a = mol.GetAtom(ai) if a.GetAtomicNum() == 6: carbon_cnt += 1 if a.IsAromatic(): aromatic_ccnt += 1 if aromatic_ccnt >= carbon_cnt/2 and aromatic_ccnt != ring.Size(): #set all ring atoms to be aromatic for ai in ring._path: a = mol.GetAtom(ai) a.SetAromatic(True) #bonds must be marked aromatic for smiles to match for bond in ob.OBMolBondIter(mol): a1 = bond.GetBeginAtom() a2 = bond.GetEndAtom() if a1.IsAromatic() and a2.IsAromatic(): bond.SetAromatic(True) mol.PerceiveBondOrders() rd_mol = convert_ob_mol_to_rd_mol(mol) # Post-processing rd_mol = postprocess_rd_mol_1(rd_mol) rd_mol = postprocess_rd_mol_2(rd_mol) return rd_mol
36.273267
143
0.609455
57206868362f89b168d73742319f64e0c10709a8
2,516
py
Python
tests/test_binary.py
tchaye59/torchutils
ca7b01bf63b6c3adaa36a4a66dfd87e927ef2460
[ "MIT" ]
null
null
null
tests/test_binary.py
tchaye59/torchutils
ca7b01bf63b6c3adaa36a4a66dfd87e927ef2460
[ "MIT" ]
null
null
null
tests/test_binary.py
tchaye59/torchutils
ca7b01bf63b6c3adaa36a4a66dfd87e927ef2460
[ "MIT" ]
null
null
null
import os import pandas as pd import pytorch_lightning as pl import torch import torch.nn as nn import torch.nn.functional as F import torchmetrics as tm from torch.utils.data import random_split from torch.utils.data.dataloader import DataLoader from torchvision import transforms as T from torchvision.datasets import MNIST from torchvision.transforms import ToTensor from torchutils.losses import binary_cross_entropy_weighted_focal_loss from torchutils.metrics import accuracy, binary_accuracy from torchutils.models import BaseModel dataset = MNIST(root='data', download=True, transform=ToTensor(), target_transform=T.Lambda(lambda y: torch.tensor([int(y == 8), ])), ) val_size = 10000 train_size = len(dataset) - val_size train_ds, val_ds = random_split(dataset, [train_size, val_size]) len(train_ds), len(val_ds) batch_size = 128 train_loader = DataLoader(train_ds, batch_size, shuffle=True, num_workers=0, pin_memory=True) val_loader = DataLoader(val_ds, batch_size * 2, num_workers=0, pin_memory=True) for x, y in train_loader: break class MnistModel(BaseModel): """Feedfoward neural network with 1 hidden layer""" def __init__(self, in_size, hidden_size, out_size): super().__init__() # hidden layer self.linear1 = nn.Linear(in_size, hidden_size) # output layer self.linear2 = nn.Linear(hidden_size, out_size) def forward(self, xb): # Flatten the image tensors xb = xb.view(xb.size(0), -1) # Get intermediate outputs using hidden layer out = self.linear1(xb) # Apply activation function out = F.relu(out) # Get predictions using output layer out = self.linear2(out) return torch.sigmoid(out) input_size = 784 hidden_size = 32 num_classes = 1 model = MnistModel(input_size, hidden_size, num_classes) optim = torch.optim.Adam(model.parameters(), 0.0001) callbacks = [ ] metrics = { "acc": tm.Accuracy(), 'precision': tm.Precision(), 'recall': tm.Recall(), 'f1': tm.F1(), # 'ss': tm.StatScores(), } model.compile(loss=binary_cross_entropy_weighted_focal_loss, optimizer=optim, metrics=metrics) trainer = pl.Trainer(logger=False, max_epochs=5, callbacks=callbacks) trainer.fit(model, train_loader, val_loader) print(model.get_history()) df = pd.DataFrame(model.get_history()) df.to_csv('pretrained.csv', index=False) # test (pass in the loader) # trainer.test(model=model, dataloaders=val_loader)
27.955556
93
0.715024
a0242e302235693d21bc12dfab659059bbaad25b
3,021
py
Python
boardencoder/snapshotencoder.py
luxunxiansheng/DRLGP
85b08186fbf189b625dcfce2b5c3bf6c3f428bbe
[ "MIT" ]
null
null
null
boardencoder/snapshotencoder.py
luxunxiansheng/DRLGP
85b08186fbf189b625dcfce2b5c3bf6c3f428bbe
[ "MIT" ]
null
null
null
boardencoder/snapshotencoder.py
luxunxiansheng/DRLGP
85b08186fbf189b625dcfce2b5c3bf6c3f428bbe
[ "MIT" ]
1
2020-08-05T01:39:38.000Z
2020-08-05T01:39:38.000Z
# #### BEGIN LICENSE BLOCK ##### # Version: MPL 1.1/GPL 2.0/LGPL 2.1 # # The contents of this file are subject to the Mozilla Public License Version # 1.1 (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # http://www.mozilla.org/MPL/ # # Software distributed under the License is distributed on an "AS IS" basis, # WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License # for the specific language governing rights and limitations under the # License. # # # Contributor(s): # # Bin.Li (ornot2008@yahoo.com) # # # Alternatively, the contents of this file may be used under the terms of # either the GNU General Public License Version 2 or later (the "GPL"), or # the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), # in which case the provisions of the GPL or the LGPL are applicable instead # of those above. If you wish to allow use of your version of this file only # under the terms of either the GPL or the LGPL, and not to allow others to # use your version of this file under the terms of the MPL, indicate your # decision by deleting the provisions above and replace them with the notice # and other provisions required by the GPL or the LGPL. If you do not delete # the provisions above, a recipient may use your version of this file under # the terms of any one of the MPL, the GPL or the LGPL. # # #### END LICENSE BLOCK ##### # # / import numpy as np from common.encoder import Encoder from common.point import Point class SnapshotEncoder(Encoder): def __init__(self, num_plane, board_size): self._board_size = board_size self._board_width = board_size self._board_height = board_size self._num_plane = num_plane def name(self): return 'SnapshotEncoder' @property def num_plane(self): return self._num_plane @property def board_width(self): return self._board_width @property def board_height(self): return self._board_height def encode(self, boards, player_in_action, previous_move=None): board_matrix = np.zeros(self.shape(), dtype=int) for plane in range(len(boards)): for row in range(self._board_height): for col in range(self._board_width): point = Point(row+1, col+1) piece = boards[plane].get_piece_at_point(point) if piece.owner_id != -1: board_matrix[plane, row, col] = piece.owner_id return board_matrix def shape(self): return self._num_plane, self._board_height, self._board_width def encode_point(self, point): return self._board_width*(point.row-1)+(point.col-1) def decode_point_index(self, index): row = index // self._board_width col = index % self._board_width return Point(row=row+1, col=col+1) def num_points(self): return self._board_width*self._board_height
34.724138
77
0.684211
8800820d9dccf0330e6e37ad2382b038d148d339
861
py
Python
problem_39.py
alfonsokim/project-euler
cdc5a271c22f3ad78681ac920f2d9be6e75cdbc5
[ "Unlicense" ]
null
null
null
problem_39.py
alfonsokim/project-euler
cdc5a271c22f3ad78681ac920f2d9be6e75cdbc5
[ "Unlicense" ]
null
null
null
problem_39.py
alfonsokim/project-euler
cdc5a271c22f3ad78681ac920f2d9be6e75cdbc5
[ "Unlicense" ]
null
null
null
import itertools from collections import defaultdict # ======================================================================================= def next_triangle(max_perimeter): for a, b in itertools.product(range(1, max_perimeter), range(1, max_perimeter)): c = ((a*a) + (b*b)) ** 0.5 if c.is_integer() and (a + b + c) <= max_perimeter: yield a, b, int(c) # ======================================================================================= def solve(): solutions = defaultdict(list) for sides in next_triangle(1000): solutions[sum(sides)].append(sides) max_solutions = sorted(solutions.items(), key=lambda e: len(e[1]) * -1)[0] return max_solutions[0] # ======================================================================================= if __name__ == '__main__': print solve()
37.434783
89
0.432056
adbdddeda45cdc228058a4b3cb55b954ed8d7051
4,670
py
Python
tests/garage/sampler/test_off_policy_vectorized_sampler_integration.py
bainro/garage
c5afbb19524792d9bbad9b9741f45e1d48ddca3d
[ "MIT" ]
null
null
null
tests/garage/sampler/test_off_policy_vectorized_sampler_integration.py
bainro/garage
c5afbb19524792d9bbad9b9741f45e1d48ddca3d
[ "MIT" ]
null
null
null
tests/garage/sampler/test_off_policy_vectorized_sampler_integration.py
bainro/garage
c5afbb19524792d9bbad9b9741f45e1d48ddca3d
[ "MIT" ]
null
null
null
import gym import numpy as np import pytest import tensorflow as tf from garage.envs import normalize from garage.np.exploration_strategies import OUStrategy from garage.replay_buffer import SimpleReplayBuffer from garage.sampler import OffPolicyVectorizedSampler from garage.tf.algos import DDPG from garage.tf.envs import TfEnv from garage.tf.experiment import LocalTFRunner from garage.tf.policies import ContinuousMLPPolicy from garage.tf.q_functions import ContinuousMLPQFunction from tests.fixtures import snapshot_config, TfGraphTestCase from tests.fixtures.envs.dummy import DummyDictEnv from tests.fixtures.policies import DummyPolicy from tests.fixtures.tf.algos.dummy_off_policy_algo import DummyOffPolicyAlgo class TestOffPolicyVectorizedSampler(TfGraphTestCase): @pytest.mark.mujoco def test_no_reset(self): with LocalTFRunner(snapshot_config, sess=self.sess) as runner: # This tests if off-policy sampler respect batch_size # when no_reset is set to True env = TfEnv(normalize(gym.make('InvertedDoublePendulum-v2'))) action_noise = OUStrategy(env.spec, sigma=0.2) policy = ContinuousMLPPolicy(env_spec=env.spec, hidden_sizes=[64, 64], hidden_nonlinearity=tf.nn.relu, output_nonlinearity=tf.nn.tanh) qf = ContinuousMLPQFunction(env_spec=env.spec, hidden_sizes=[64, 64], hidden_nonlinearity=tf.nn.relu) replay_buffer = SimpleReplayBuffer(env_spec=env.spec, size_in_transitions=int(1e6), time_horizon=100) algo = DDPG( env_spec=env.spec, policy=policy, policy_lr=1e-4, qf_lr=1e-3, qf=qf, replay_buffer=replay_buffer, target_update_tau=1e-2, n_train_steps=50, discount=0.9, min_buffer_size=int(1e4), exploration_strategy=action_noise, ) sampler = OffPolicyVectorizedSampler(algo, env, 1, no_reset=True) sampler.start_worker() runner.initialize_tf_vars() paths1 = sampler.obtain_samples(0, 5) paths2 = sampler.obtain_samples(0, 5) len1 = sum([len(path['rewards']) for path in paths1]) len2 = sum([len(path['rewards']) for path in paths2]) assert len1 == 5 and len2 == 5, 'Sampler should respect batch_size' # yapf: disable # When done is False in 1st sampling, the next sampling should be # stacked with the last batch in 1st sampling case1 = (len(paths1[-1]['rewards']) + len(paths2[0]['rewards']) == paths2[0]['running_length']) # When done is True in 1st sampling, the next sampling should be # separated case2 = len(paths2[0]['rewards']) == paths2[0]['running_length'] done = paths1[-1]['dones'][-1] assert ( (not done and case1) or (done and case2) ), 'Running length should be the length of full path' # yapf: enable case1 = np.isclose( paths1[-1]['rewards'].sum() + paths2[0]['rewards'].sum(), paths2[0]['undiscounted_return']) case2 = np.isclose(paths2[0]['rewards'].sum(), paths2[0]['undiscounted_return']) assert ( (not done and case1) or (done and case2) ), 'Undiscounted_return should be the sum of rewards of full path' def test_algo_with_goal_without_es(self): # This tests if sampler works properly when algorithm # includes goal but is without exploration policy env = DummyDictEnv() policy = DummyPolicy(env) replay_buffer = SimpleReplayBuffer(env_spec=env, size_in_transitions=int(1e6), time_horizon=100) algo = DummyOffPolicyAlgo(env_spec=env, qf=None, replay_buffer=replay_buffer, policy=policy, exploration_strategy=None) sampler = OffPolicyVectorizedSampler(algo, env, 1, no_reset=True) sampler.start_worker() sampler.obtain_samples(0, 30)
44.056604
79
0.571949
502d43fea9653e2fc0be16d73a85ac9c685f9873
334
py
Python
models/backbone/__init__.py
killf/FarSeg
a696576bfe76ad4b2c5fea842830ae2e60e0b867
[ "MIT" ]
7
2020-10-22T08:27:12.000Z
2021-11-14T15:27:18.000Z
models/backbone/__init__.py
killf/FarSeg
a696576bfe76ad4b2c5fea842830ae2e60e0b867
[ "MIT" ]
1
2020-10-29T02:13:04.000Z
2020-10-29T13:27:58.000Z
models/backbone/__init__.py
killf/FarSeg
a696576bfe76ad4b2c5fea842830ae2e60e0b867
[ "MIT" ]
1
2021-05-05T05:32:28.000Z
2021-05-05T05:32:28.000Z
from .resnet import * BACKBONES = { "ResNet18": resnet18, "ResNet34": resnet34, "ResNet50": resnet50, "ResNet101": resnet101, "ResNet152": resnet152, "ResNext50_32x4d": resnext50_32x4d, "ResNeXt101_32x8d": resnext101_32x8d, "WideResNet50_2": wide_resnet50_2, "WideResNet101_2": wide_resnet101_2 }
23.857143
41
0.691617
41433f3c17fb6ab214e7490d9731bffbd3df1648
21,010
py
Python
test/functional/tests/cli/test_cli_standby.py
kmajzero/open-cas-linux
9d7afc467494cc6a929c00c1b938d9894e96ec8b
[ "BSD-3-Clause" ]
null
null
null
test/functional/tests/cli/test_cli_standby.py
kmajzero/open-cas-linux
9d7afc467494cc6a929c00c1b938d9894e96ec8b
[ "BSD-3-Clause" ]
null
null
null
test/functional/tests/cli/test_cli_standby.py
kmajzero/open-cas-linux
9d7afc467494cc6a929c00c1b938d9894e96ec8b
[ "BSD-3-Clause" ]
null
null
null
# # Copyright(c) 2019-2022 Intel Corporation # SPDX-License-Identifier: BSD-3-Clause # import pytest from api.cas import casadm, casadm_parser, dmesg from api.cas.casadm import standby_init from api.cas.cli import casadm_bin from core.test_run import TestRun from storage_devices.device import Device from storage_devices.disk import DiskType, DiskTypeSet from test_tools.dd import Dd from test_utils.filesystem.file import File from test_utils.os_utils import sync from test_utils.output import CmdException from test_utils.size import Size, Unit from api.cas.cli_messages import ( check_stderr_msg, missing_param, disallowed_param, operation_forbiden_in_standby, mutually_exclusive_params_init, mutually_exclusive_params_load, activate_without_detach, cache_line_size_mismatch, ) from api.cas.cache_config import CacheLineSize, CacheStatus from api.cas import cli from api.cas.ioclass_config import IoClass @pytest.mark.require_disk("cache", DiskTypeSet([DiskType.nand, DiskType.optane])) def test_standby_neg_cli_params(): """ title: Verifying parameters for starting a standby cache instance description: | Try executing the standby init command with required arguments missing or disallowed arguments present. pass_criteria: - The execution is unsuccessful for all improper argument combinations - A proper error message is displayed for unsuccessful executions """ with TestRun.step("Prepare the device for the cache."): cache_device = TestRun.disks["cache"] cache_device.create_partitions([Size(500, Unit.MebiByte)]) cache_device = cache_device.partitions[0] with TestRun.step("Prepare config for testing standby init without required params"): init_required_params = dict( [("--cache-device", cache_device.path), ("--cache-id", 5), ("--cache-line-size", 32)] ) # Prepare full valid `standby init` command valid_cmd = casadm_bin + " --standby --init" for name, value in init_required_params.items(): valid_cmd += f" {name} {value}" # Try to initialize standby instance with one missing param at the time for name, value in init_required_params.items(): with TestRun.step(f'Try to init standby instance without "{name}" param'): tested_param = f"{name} {value}" tested_cmd = valid_cmd.replace(tested_param, "") output = TestRun.executor.run(tested_cmd) if output.exit_code == 0: TestRun.LOGGER.error( f'"{tested_cmd}" command succeeded despite missing required "{name}" parameter!' ) if not check_stderr_msg(output, missing_param) or name not in output.stderr: TestRun.LOGGER.error( f'Expected error message in format "{missing_param[0]}" with "{name}" ' f'(the missing param). Got "{output.stderr}" instead.' ) with TestRun.step("Prepare config for testing standby init with disallowed params"): init_disallowed_params = dict( [ ("--core-device", "/dev/disk/by-id/core_dev_id"), ("--core-id", 5), ("--cache-mode", 32), ("--file", "/etc/opencas/ioclass-config.csv"), ("--io-class-id", "0"), ] ) for name, value in init_disallowed_params.items(): with TestRun.step(f'Try to init standby instance with disallowed "{name}" param'): tested_param = f"{name} {value}" tested_cmd = f"{valid_cmd} {tested_param}" output = TestRun.executor.run(tested_cmd) if output.exit_code == 0: TestRun.LOGGER.error( f'"{tested_cmd}" command succeeded despite disallowed "{name}" parameter!' ) if not check_stderr_msg(output, disallowed_param): TestRun.LOGGER.error( f'Expected error message in format "{disallowed_param[0]}" ' f'Got "{output.stderr}" instead.' ) @pytest.mark.require_disk("cache", DiskTypeSet([DiskType.nand, DiskType.optane])) def test_activate_neg_cli_params(): """ title: Verifying parameters for activating a standby cache instance. description: | Try executing the standby activate command with required arguments missing or disallowed arguments present. pass_criteria: -The execution is unsuccessful for all improper argument combinations -A proper error message is displayed for unsuccessful executions """ with TestRun.step("Prepare the device for the cache."): cache_device = TestRun.disks["cache"] cache_device.create_partitions([Size(500, Unit.MebiByte)]) cache_device = cache_device.partitions[0] cache_id = 1 cache_line_size = 32 with TestRun.step("Init standby cache"): cache_dev = Device(cache_device.path) cache = standby_init( cache_dev=cache_dev, cache_id=cache_id, cache_line_size=cache_line_size, force=True ) with TestRun.step("Detach standby cache"): cache.standby_detach() # Test standby activate with TestRun.step("Prepare config for testing standby activate with required params"): standby_activate_required_params = dict( [("--cache-device", cache_device.path), ("--cache-id", cache_id)] ) # Prepare full valid `standby activate` command valid_cmd = casadm_bin + " --standby --activate" for name, value in standby_activate_required_params.items(): valid_cmd += f" {name} {value}" for name, value in standby_activate_required_params.items(): with TestRun.step(f'Try to standby activate instance without "{name}" param'): tested_param = f"{name} {value}" tested_cmd = valid_cmd.replace(tested_param, "") output = TestRun.executor.run(tested_cmd) if output.exit_code == 0: TestRun.LOGGER.error( f'"{tested_cmd}" command succeeded despite missing obligatory' f' "{name}" parameter!' ) if not check_stderr_msg(output, missing_param) or name not in output.stderr: TestRun.LOGGER.error( f'Expected error message in format "{missing_param[0]}" with "{name}" ' f'(the missing param). Got "{output.stderr}" instead.' ) with TestRun.step("Prepare config for testing standby activate with disallowed params"): activate_disallowed_params = dict( [ ("--core-device", "/dev/disk/by-id/core_dev_id"), ("--core-id", 5), ("--cache-mode", 32), ("--file", "/etc/opencas/ioclass-config.csv"), ("--io-class-id", "0"), ("--cache-line-size", 32), ] ) for name, value in activate_disallowed_params.items(): with TestRun.step(f'Try to activate standby instance with disallowed "{name}" param'): tested_param = f"{name} {value}" tested_cmd = f"{valid_cmd} {tested_param}" output = TestRun.executor.run(tested_cmd) if output.exit_code == 0: TestRun.LOGGER.error( f'"{tested_cmd}" command succeeded despite disallowed "{name}" parameter!' ) if not check_stderr_msg(output, disallowed_param): TestRun.LOGGER.error( f'Expected error message in format "{disallowed_param[0]}" ' f'Got "{output.stderr}" instead.' ) @pytest.mark.require_disk("cache", DiskTypeSet([DiskType.nand, DiskType.optane])) def test_standby_neg_cli_management(): """ title: Blocking management commands in standby state description: | Try executing management commands for a cache in standby state pass_criteria: - The execution is unsuccessful for blocked management commands - The execution is successful for allowed management commands - A proper error message is displayed for unsuccessful executions """ with TestRun.step("Prepare the device for the cache."): device = TestRun.disks["cache"] device.create_partitions([Size(500, Unit.MebiByte), Size(500, Unit.MebiByte)]) cache_device = device.partitions[0] core_device = device.partitions[1] with TestRun.step("Prepare the standby instance"): cache_id = 1 cache = casadm.standby_init( cache_dev=cache_device, cache_id=cache_id, cache_line_size=32, force=True ) ioclass_config_path = "/tmp/standby_cli_neg_mngt_test_ioclass_config_file.csv" TestRun.executor.run(f"rm -rf {ioclass_config_path}") random_ioclass_config = IoClass.generate_random_ioclass_list(5) IoClass.save_list_to_config_file( random_ioclass_config, ioclass_config_path=ioclass_config_path ) blocked_mngt_commands = [ cli.get_param_cutoff_cmd(str(cache_id), "1"), cli.get_param_cleaning_cmd(str(cache_id)), cli.get_param_cleaning_alru_cmd(str(cache_id)), cli.get_param_cleaning_acp_cmd(str(cache_id)), cli.set_param_cutoff_cmd(str(cache_id), "1", threshold="1"), cli.set_param_cutoff_cmd(str(cache_id), policy="never"), cli.set_param_cleaning_cmd(str(cache_id), policy="nop"), cli.set_param_cleaning_alru_cmd(str(cache_id), wake_up="30"), cli.set_param_cleaning_acp_cmd(str(cache_id), wake_up="100"), cli.set_param_promotion_cmd(str(cache_id), policy="nhit"), cli.set_param_promotion_nhit_cmd(str(cache_id), threshold="5"), cli.set_cache_mode_cmd("wb", str(cache_id)), cli.add_core_cmd(str(cache_id), core_device.path), cli.remove_core_cmd(str(cache_id), "1"), cli.remove_inactive_cmd(str(cache_id), "1"), cli.reset_counters_cmd(str(cache_id)), cli.flush_cache_cmd(str(cache_id)), cli.flush_core_cmd(str(cache_id), "1"), cli.load_io_classes_cmd(str(cache_id), ioclass_config_path), cli.list_io_classes_cmd(str(cache_id), output_format="csv"), cli.script_try_add_cmd(str(cache_id), core_device.path, core_id=1), cli.script_purge_cache_cmd(str(cache_id)), cli.script_purge_core_cmd(str(cache_id), "1"), cli.script_detach_core_cmd(str(cache_id), "1"), cli.script_remove_core_cmd(str(cache_id), "1"), ] with TestRun.step("Try to execute forbidden management commands in standby mode"): for cmd in blocked_mngt_commands: TestRun.LOGGER.info(f"Verify {cmd}") output = TestRun.executor.run_expect_fail(cmd) if not check_stderr_msg(output, operation_forbiden_in_standby): TestRun.LOGGER.error( f'Expected the following error message "{operation_forbiden_in_standby[0]}" ' f'Got "{output.stderr}" instead.' ) with TestRun.step("Stop the standby instance"): TestRun.executor.run(f"rm -rf {ioclass_config_path}") cache.stop() @pytest.mark.require_disk("cache", DiskTypeSet([DiskType.nand, DiskType.optane])) def test_start_neg_cli_flags(): """ title: Blocking standby start command with mutually exclusive flags description: | Try executing the standby start command with different combinations of mutually exclusive flags. pass_criteria: - The command execution is unsuccessful for commands with mutually exclusive flags - A proper error message is displayed """ with TestRun.step("Prepare the device for the cache."): cache_device = TestRun.disks["cache"] cache_device.create_partitions([Size(500, Unit.MebiByte)]) cache_device = cache_device.partitions[0] cache_id = 1 cache_line_size = 32 with TestRun.step("Try to start standby cache with mutually exclusive parameters"): init_required_params = f' --cache-device {cache_device.path}' \ f' --cache-id {cache_id}' \ f' --cache-line-size {cache_line_size}' mutually_exclusive_cmd_init = f"{casadm_bin} --standby --init --load" \ f" {init_required_params}" output = TestRun.executor.run_expect_fail(mutually_exclusive_cmd_init) if not check_stderr_msg(output, mutually_exclusive_params_init): TestRun.LOGGER.error( f'Expected error message in format ' f'"{mutually_exclusive_params_init[0]}"' f'Got "{output.stderr}" instead.' ) mutually_exclusive_cmd_load = [ f"{casadm_bin} --standby --load --cache-device {cache_device.path}" f" --cache-id {cache_id}", f"{casadm_bin} --standby --load --cache-device {cache_device.path}" f" --cache-line-size {cache_line_size}", f"{casadm_bin} --standby --load --cache-device {cache_device.path}" f" --force" ] for cmd in mutually_exclusive_cmd_load: output = TestRun.executor.run_expect_fail(cmd) if not check_stderr_msg(output, mutually_exclusive_params_load): TestRun.LOGGER.error( f'Expected error message in format ' f'"{mutually_exclusive_params_load[0]}"' f'Got "{output.stderr}" instead.' ) @pytest.mark.require_disk("cache", DiskTypeSet([DiskType.nand, DiskType.optane])) def test_activate_without_detach(): """ title: Activate cache without detach command. description: | Try activate passive cache without detach command before activation. pass_criteria: - The activation is not possible - The cache remains in Standby state after unsuccessful activation - The cache exported object is present after an unsuccessful activation """ with TestRun.step("Prepare the device for the cache."): cache_dev = TestRun.disks["cache"] cache_dev.create_partitions([Size(500, Unit.MebiByte)]) cache_dev = cache_dev.partitions[0] cache_id = 1 cache_exp_obj_name = f"cas-cache-{cache_id}" with TestRun.step("Start cache instance."): cache = casadm.start_cache(cache_dev=cache_dev, cache_id=cache_id) with TestRun.step("Stop cache instance."): cache.stop() with TestRun.step("Load standby cache instance."): casadm.standby_load(cache_dev=cache_dev) with TestRun.step("Verify if the cache exported object appeared in the system"): output = TestRun.executor.run_expect_success(f"ls -la /dev/ | grep {cache_exp_obj_name}") if output.stdout[0] != "b": TestRun.fail("The cache exported object is not a block device") with TestRun.step("Try to activate cache instance"): cmd = f"{casadm_bin} --standby --activate --cache-id {cache_id} --cache-device " \ f"{cache_dev.path}" output = TestRun.executor.run(cmd) if not check_stderr_msg(output, activate_without_detach): TestRun.LOGGER.error( f'Expected error message in format ' f'"{activate_without_detach[0]}"' f'Got "{output.stderr}" instead.' ) with TestRun.step("Verify if cache is in standby state after failed activation"): caches = casadm_parser.get_caches() if len(caches) < 1: TestRun.LOGGER.error(f'Cache not present in system') else: cache_status = caches[0].get_status() if cache_status != CacheStatus.standby: TestRun.LOGGER.error( f'Expected Cache state: "{CacheStatus.standby.value}" ' f'Got "{cache_status.value}" instead.' ) with TestRun.step("Verify if the cache exported object remains in the system"): output = TestRun.executor.run_expect_success(f"ls -la /dev/ | grep {cache_exp_obj_name}") if output.stdout[0] != "b": TestRun.fail("The cache exported object is not a block device") @pytest.mark.require_disk("active_cache", DiskTypeSet([DiskType.nand, DiskType.optane])) @pytest.mark.require_disk("standby_cache", DiskTypeSet([DiskType.nand, DiskType.optane])) def test_activate_neg_cache_line_size(): """ title: Blocking cache with mismatching cache line size activation. description: | Try restoring cache operations from a replicated cache that was initialized with different cache line size than the original cache. pass_criteria: - The activation is cancelled - The cache remains in Standby detached state after an unsuccessful activation - A proper error message is displayed """ with TestRun.step("Prepare cache devices"): active_cache_dev = TestRun.disks["active_cache"] active_cache_dev.create_partitions([Size(500, Unit.MebiByte)]) active_cache_dev = active_cache_dev.partitions[0] standby_cache_dev = TestRun.disks["standby_cache"] standby_cache_dev.create_partitions([Size(500, Unit.MebiByte)]) standby_cache_dev = standby_cache_dev.partitions[0] cache_id = 1 active_cls, standby_cls = CacheLineSize.LINE_4KiB, CacheLineSize.LINE_16KiB cache_exp_obj_name = f"cas-cache-{cache_id}" with TestRun.step("Start active cache instance."): active_cache = casadm.start_cache(cache_dev=active_cache_dev, cache_id=cache_id, cache_line_size=active_cls) with TestRun.step("Create dump file with cache metadata"): with TestRun.step("Get metadata size"): dmesg_out = TestRun.executor.run_expect_success("dmesg").stdout md_size = dmesg.get_metadata_size(dmesg_out) with TestRun.step("Dump the metadata of the cache"): dump_file_path = "/tmp/test_activate_corrupted.dump" md_dump = File(dump_file_path) md_dump.remove(force=True, ignore_errors=True) dd_count = int(md_size / Size(1, Unit.MebiByte)) + 1 ( Dd().input(active_cache_dev.path) .output(md_dump.full_path) .block_size(Size(1, Unit.MebiByte)) .count(dd_count) .run() ) md_dump.refresh_item() with TestRun.step("Stop cache instance."): active_cache.stop() with TestRun.step("Start standby cache instance."): standby_cache = casadm.standby_init(cache_dev=standby_cache_dev, cache_id=cache_id, cache_line_size=int( standby_cls.value.value / Unit.KibiByte.value), force=True) with TestRun.step("Verify if the cache exported object appeared in the system"): output = TestRun.executor.run_expect_success( f"ls -la /dev/ | grep {cache_exp_obj_name}" ) if output.stdout[0] != "b": TestRun.fail("The cache exported object is not a block device") with TestRun.step("Detach standby cache instance"): standby_cache.standby_detach() with TestRun.step(f"Copy changed metadata to the standby instance"): Dd().input(md_dump.full_path).output(standby_cache_dev.path).run() sync() with TestRun.step("Try to activate cache instance"): with pytest.raises(CmdException) as cmdExc: output = standby_cache.standby_activate(standby_cache_dev) if not check_stderr_msg(output, cache_line_size_mismatch): TestRun.LOGGER.error( f'Expected error message in format ' f'"{cache_line_size_mismatch[0]}"' f'Got "{output.stderr}" instead.' ) assert "Failed to activate standby cache." in str(cmdExc.value) with TestRun.step("Verify if cache is in standby detached state after failed activation"): cache_status = standby_cache.get_status() if cache_status != CacheStatus.standby_detached: TestRun.LOGGER.error( f'Expected Cache state: "{CacheStatus.standby.value}" ' f'Got "{cache_status.value}" instead.' )
45.47619
100
0.625083
03ba26d7075b9d70df7043455f1ff1dc3c87c65d
399
py
Python
exercicios_resolvidos/ex015.py
WagnerAndrade-DEV/Python-Basics
77b6f4b48721809c6a13ddbb7b7bc4c3bc9f712f
[ "MIT" ]
null
null
null
exercicios_resolvidos/ex015.py
WagnerAndrade-DEV/Python-Basics
77b6f4b48721809c6a13ddbb7b7bc4c3bc9f712f
[ "MIT" ]
null
null
null
exercicios_resolvidos/ex015.py
WagnerAndrade-DEV/Python-Basics
77b6f4b48721809c6a13ddbb7b7bc4c3bc9f712f
[ "MIT" ]
null
null
null
#Escreva um programa que pergunte a quantidade de Km percorridos por um carro alugado e a quantidade de dias pelos quais ele foi alugado. Calcule o preço a pagar, sabendo que o carro custa R$60 por dia e R$0,15 por Km rodado dias = int(input('Quantos dias alugados?: ')) km = int(input('Quantos Km rodados?: ')) valor = (dias * 60) + (km * 0.15) print('O total a pagar é R${:.2f}' .format(valor))
49.875
224
0.706767
3671bc35da7afa873db50671fafe420e51c0e587
3,117
py
Python
oakling/oakling/settings.py
zym1115718204/oakling
e925e324c0a18b4cb246a1811f2dca522c4e2892
[ "Apache-2.0" ]
1
2018-03-22T10:45:22.000Z
2018-03-22T10:45:22.000Z
oakling/oakling/settings.py
zym1115718204/oakling
e925e324c0a18b4cb246a1811f2dca522c4e2892
[ "Apache-2.0" ]
null
null
null
oakling/oakling/settings.py
zym1115718204/oakling
e925e324c0a18b4cb246a1811f2dca522c4e2892
[ "Apache-2.0" ]
null
null
null
""" Django settings for oakling project. Generated by 'django-admin startproject' using Django 1.11.1. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ from common import * # -------------------------------------------------------------------- # Version Info # -------------------------------------------------------------------- # Version Info VERSION = 'Oakling 1.0' # -------------------------------------------------------------------- # MongdDB Settings # -------------------------------------------------------------------- # Mongodb settings MongoDBS = { 'oakling_project': { 'host': 'mongodb://localhost/oakling_project', }, 'oakling_task': { 'host': 'mongodb://localhost/oakling_task', } } from mongoengine import connect # noqa for name, db in MongoDBS.iteritems(): connect(host=db['host'], alias=name) # -------------------------------------------------------------------- # APP Tree Settings # -------------------------------------------------------------------- REGISTER_DATASYSTEMS = [ "LOCAL", "HDFS", ] # default, Tree root url; BASETREE_URL = "/dashboard/data/" # default, Local File data directory LOCAL_DATAFILE_DIRS = os.path.join(os.path.dirname(BASE_DIR), "data") # default hdfs data settings HDFS_NAMENODE_HOST = "namenode" HDFS_NAMENODE_PORT = 8020 HDFS_DATAFILE_DIRS = os.path.join("/tmp", "data") # -------------------------------------------------------------------- # Utils Settings # -------------------------------------------------------------------- # Spiders Path PROJECTS_PATH = os.path.join(os.path.dirname(BASE_DIR), "projects") # Execute Path EXECUTE_PATH = os.path.join(BASE_DIR, "execute") # -------------------------------------------------------------------- # Celery settings # -------------------------------------------------------------------- # BROKER_URL = 'amqp://guest:guest@localhost//' BROKER_URL = 'redis://localhost:6379/0' ANALYSIS_REDIS = 'redis://localhost:6379/1' NODES_REDIS = 'redis://localhost:6379/1' #: Only add pickle to this list if your broker is secured #: from unwanted access (see userguide/security.html) # BROKER_URL = 'amqp://' CELERY_RESULT_BACKEND = 'redis://localhost:6379/0' CELERY_TASK_SERIALIZER = 'json' CELERY_RESULT_SERIALIZER = 'json' CELERY_ACCEPT_CONTENT = ['json'] CELERY_TIMEZONE = 'Europe/Oslo' CELERY_ENABLE_UTC = True CELERY_ROUTES = { 'oakling.celery.debug_task': 'test', 'collector.tasks.low_processor': 'low_processor', 'collector.tasks.mid_processor': 'mid_processor', 'collector.tasks.high_processor': 'high_processor', } CELERY_ANNOTATIONS = { 'collector.tasks.low_processor': {'rate_limit': '6000/m'}, 'collector.tasks.mid_processor': {'rate_limit': '6000/m'}, 'collector.tasks.high_processor': {'rate_limit': '6000/m'}, 'oakling.celery.debug_task': {'rate_limit': '6000/m'}, } CELERY_IMPORTS = ( 'oakling.celery', 'collector.tasks', )
28.59633
70
0.545075
59827d555348300a1d315c0f322126b508a33533
8,637
py
Python
snsim/utils.py
bcarreres/snsim
86ffc49f254cd89c74be9c3350c00982e3d216e2
[ "BSD-3-Clause" ]
5
2021-07-14T18:23:59.000Z
2022-02-02T13:09:55.000Z
snsim/utils.py
bcarreres/snsim
86ffc49f254cd89c74be9c3350c00982e3d216e2
[ "BSD-3-Clause" ]
7
2021-02-25T15:19:59.000Z
2021-11-24T08:24:55.000Z
snsim/utils.py
bcarreres/snsim
86ffc49f254cd89c74be9c3350c00982e3d216e2
[ "BSD-3-Clause" ]
1
2021-05-19T11:25:18.000Z
2021-05-19T11:25:18.000Z
"""This module contains usefull function for the simulation.""" import numpy as np import sncosmo as snc import astropy.time as atime from astropy.coordinates import SkyCoord from astropy import cosmology as acosmo import astropy.units as u from .constants import C_LIGHT_KMS def set_cosmo(cosmo_dic): """Load an astropy cosmological model. Parameters ---------- cosmo_dic : dict A dict containing cosmology parameters. Returns ------- astropy.cosmology.object An astropy cosmological model. """ astropy_mod = list(map(lambda x: x.lower(), acosmo.parameters.available)) if 'name' in cosmo_dic.keys(): name = cosmo_dic['name'].lower() if name in astropy_mod: if name == 'planck18': return acosmo.Planck18 elif name == 'planck18_arxiv_v2': return acosmo.Planck18_arXiv_v2 elif name == 'planck15': return acosmo.Planck15 elif name == 'planck13': return acosmo.Planck13 elif name == 'wmap9': return acosmo.WMAP9 elif name == 'wmap7': return acosmo.WMAP7 elif name == 'wmap5': return acosmo.WMAP5 else: raise ValueError(f'Available model are {astropy_mod}') else: if 'Ode0' not in cosmo_dic.keys(): cosmo_dic['Ode0'] = 1 - cosmo_dic['Om0'] return acosmo.w0waCDM(**cosmo_dic) def scale_M0_jla(H0): """Compute a value of M0 corresponding to JLA results. Parameters ---------- H0 : float The H0 constant to scale M0. Returns ------- float Scaled SN absolute magnitude. """ # mb = 5 * log10(c/H0_jla * Dl(z)) + 25 + MB_jla # mb = 5 * log10(c/HO_True * Dl(z)) + 25 + MB_jla - 5 * log10(1 + dH0) # with dH0 = (H0_jla - H0_True)/ H0_True # MB_True = MB_jla - 5 * log10(1 + dH0) # Scale the H0 value of JLA to the H0 value of sim H0_jla = 70 # km/s/Mpc M0_jla = -19.05 dH0 = (H0_jla - H0) / H0 return M0_jla - 5 * np.log10(1 + dH0) def init_astropy_time(date): """Take a date and give a astropy.time.Time object. Parameters ---------- date : int, float or str The date in MJD number or YYYY-MM-DD string. Returns ------- astropy.time.Time An astropy.time Time object of the given date. """ if isinstance(date, (int, float)): date_format = 'mjd' elif isinstance(date, str): date_format = 'iso' return atime.Time(date, format=date_format) def compute_z_cdf(z_shell, shell_time_rate): """Compute the cumulative distribution function of redshift. Parameters ---------- z_shell : numpy.ndarray(float) The redshift of the shell edges. shell_time_rate : numpy.ndarray(float) The time rate of each shell. Returns ------- list(numpy.ndarray(float), numpy.ndarray(float)) redshift, CDF(redshift). """ dist = np.append(0, np.cumsum(shell_time_rate)) norm = dist[-1] return [z_shell, dist / norm] def asym_gauss(mean, sig_low, sig_high=None, rand_gen=None, size=1): """Generate random parameters using an asymetric Gaussian distribution. Parameters ---------- mean : float The central value of the Gaussian. sig_low : float The low sigma. sig_high : float The high sigma. rand_gen : numpy.random.default_rng, optional Numpy random generator. size: int Number of numbers to generate Returns ------- numpy.ndarray(float) Random(s) variable(s). """ if sig_high is None: sig_high = sig_low if rand_gen is None: low_or_high = np.random.random(size=size) nbr = abs(np.random.normal(size=size)) else: low_or_high = rand_gen.random(size) nbr = abs(rand_gen.normal(size=size)) cond = low_or_high < sig_low / (sig_high + sig_low) nbr *= -sig_low * cond + sig_high * ~cond return mean + nbr def compute_z2cmb(ra, dec, cmb): """Compute the redshifts of a list of objects relative to the CMB. Parameters ---------- ra : np.ndarray(float) Right Ascension of the objects. dec : np.ndarray(float) Declinaison of the objects. cmb : dict Dict containing cmb coords and velocity. Returns ------- np.ndarray(float) Redshifts relative to cmb. """ l_cmb = cmb['l_cmb'] b_cmb = cmb['b_cmb'] v_cmb = cmb['v_cmb'] # use ra dec to simulate the effect of our motion coordfk5 = SkyCoord(ra * u.rad, dec * u.rad, frame='fk5') # coord in fk5 frame galac_coord = coordfk5.transform_to('galactic') l_gal = galac_coord.l.rad - 2 * np.pi * \ np.sign(galac_coord.l.rad) * (abs(galac_coord.l.rad) > np.pi) b_gal = galac_coord.b.rad ss = np.sin(b_gal) * np.sin(b_cmb * np.pi / 180) ccc = np.cos(b_gal) * np.cos(b_cmb * np.pi / 180) * np.cos(l_gal - l_cmb * np.pi / 180) return (1 - v_cmb * (ss + ccc) / C_LIGHT_KMS) - 1. def init_sn_model(name, model_dir=None): """Initialise a sncosmo model. Parameters ---------- name : str Name of the model. model_dir : str Path to the model files. Returns ------- sncosmo.Model sncosmo Model corresponding to input configuration. """ if model_dir is None: return snc.Model(source=name) else: if name == 'salt2': return snc.Model(source=snc.SALT2Source(model_dir, name='salt2')) elif name == 'salt3': return snc.Model(source=snc.SALT3Source(model_dir, name='salt3')) return None def snc_fitter(lc, fit_model, fit_par, **kwargs): """Fit a given lightcurve with sncosmo. Parameters ---------- lc : astropy.Table The SN lightcurve. fit_model : sncosmo.Model Model used to fit the ligthcurve. fit_par : list(str) The parameters to fit. Returns ------- sncosmo.utils.Result (numpy.nan if no result) sncosmo dict of fit results. """ try: res = snc.fit_lc(data=lc, model=fit_model, vparam_names=fit_par, **kwargs) if res[0]['covariance'] is None: res[0]['covariance'] = np.empty((len(res[0]['vparam_names']), len(res[0]['vparam_names']))) res[0]['covariance'][:] = np.nan res[0]['param_names'] = np.append(res[0]['param_names'], 'mb') res[0]['parameters'] = np.append(res[0]['parameters'], res[1].source_peakmag('bessellb', 'ab')) res_dic = {k: v for k, v in zip(res[0]['param_names'], res[0]['parameters'])} res = np.append(res, res_dic) except (RuntimeError, snc.fitting.DataQualityError): res = ['NaN', 'NaN', 'NaN'] return res def norm_flux(flux_table, zp): """Rescale the flux to a given zeropoint. Parameters ---------- flux_table : astropy.Table A table containing at least flux and fluxerr. zp : float The zeropoint to rescale the flux. Returns ------- np.ndarray(float), np.ndarray(float) Rescaled flux and fluxerr arry. """ norm_factor = 10**(0.4 * (zp - flux_table['zp'])) flux_norm = flux_table['flux'] * norm_factor fluxerr_norm = flux_table['fluxerr'] * norm_factor return flux_norm, fluxerr_norm def flux_to_Jansky(zp, band): """Give the factor to convert flux in uJy. Parameters ---------- zp : float The actual zeropoint of flux. band : str The sncosmo band in which compute the factor. Returns ------- float The conversion factor. """ magsys = snc.get_magsystem('ab') b = snc.get_bandpass(band) nu, dnu = snc.utils.integration_grid( snc.constants.C_AA_PER_S / b.maxwave(), snc.constants.C_AA_PER_S / b.minwave(), snc.constants.C_AA_PER_S / snc.constants.MODEL_BANDFLUX_SPACING) trans = b(snc.constants.C_AA_PER_S / nu) trans_int = np.sum(trans / nu) * dnu / snc.constants.H_ERG_S norm = 10**(-0.4 * zp) * magsys.zpbandflux(b) / trans_int * 10**23 * 10**6 return norm def print_dic(dic, prefix=''): indent = ' ' for K in dic: if isinstance(dic[K], dict): print(prefix + K + ':') print_dic(dic[K], prefix=prefix + indent) else: print(prefix + f'{K}: {dic[K]}')
27.506369
91
0.582031
87fe37fb12032f1b9127840d796ca56a211169f5
14,527
py
Python
nailgun/nailgun/test/integration/test_network_manager.py
Axam/nsx-web
4f60d71c05e08740cbdf19b6c9bb0c4cb1e29ad5
[ "Apache-2.0" ]
1
2021-04-06T16:13:35.000Z
2021-04-06T16:13:35.000Z
nailgun/nailgun/test/integration/test_network_manager.py
Axam/nsx-web
4f60d71c05e08740cbdf19b6c9bb0c4cb1e29ad5
[ "Apache-2.0" ]
null
null
null
nailgun/nailgun/test/integration/test_network_manager.py
Axam/nsx-web
4f60d71c05e08740cbdf19b6c9bb0c4cb1e29ad5
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2013 Mirantis, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import itertools from mock import Mock from mock import patch from netaddr import IPAddress from netaddr import IPNetwork from netaddr import IPRange from sqlalchemy import not_ import nailgun from nailgun.db.sqlalchemy.models import IPAddr from nailgun.db.sqlalchemy.models import IPAddrRange from nailgun.db.sqlalchemy.models import NetworkGroup from nailgun.db.sqlalchemy.models import Node from nailgun.db.sqlalchemy.models import NodeNICInterface from nailgun.network.neutron import NeutronManager from nailgun.network.nova_network import NovaNetworkManager from nailgun.openstack.common import jsonutils from nailgun.test.base import BaseIntegrationTest from nailgun.test.base import fake_tasks class TestNetworkManager(BaseIntegrationTest): @fake_tasks(fake_rpc=False, mock_rpc=False) @patch('nailgun.rpc.cast') def test_assign_ips(self, mocked_rpc): self.env.create( cluster_kwargs={}, nodes_kwargs=[ {"pending_addition": True, "api": True}, {"pending_addition": True, "api": True} ] ) nailgun.task.task.Cobbler = Mock() self.env.network_manager.assign_ips( [n.id for n in self.env.nodes], "management" ) management_net = self.db.query(NetworkGroup).\ filter( NetworkGroup.cluster_id == self.env.clusters[0].id ).filter_by( name='management' ).first() assigned_ips = [] for node in self.env.nodes: ips = self.db.query(IPAddr).\ filter_by(node=node.id).\ filter_by(network=management_net.id).all() self.assertEqual(1, len(ips)) self.assertEqual( True, self.env.network_manager.check_ip_belongs_to_net( ips[0].ip_addr, management_net ) ) assigned_ips.append(ips[0].ip_addr) # check for uniqueness of IPs: self.assertEqual(len(assigned_ips), len(list(set(assigned_ips)))) # check it doesn't contain broadcast and other special IPs net_ip = IPNetwork(management_net.cidr)[0] gateway = management_net.gateway broadcast = IPNetwork(management_net.cidr)[-1] self.assertEqual(False, net_ip in assigned_ips) self.assertEqual(False, gateway in assigned_ips) self.assertEqual(False, broadcast in assigned_ips) @fake_tasks(fake_rpc=False, mock_rpc=False) @patch('nailgun.rpc.cast') def test_assign_ips_idempotent(self, mocked_rpc): self.env.create( cluster_kwargs={}, nodes_kwargs=[ { "pending_addition": True, "api": True, "status": "discover" } ] ) node_db = self.env.nodes[0] self.env.network_manager.assign_ips( [node_db.id], "management" ) self.env.network_manager.assign_ips( [node_db.id], "management" ) self.db.refresh(node_db) self.assertEqual( len( filter( lambda n: n['name'] == 'management', self.env.network_manager.get_node_networks( node_db ) ) ), 1 ) def test_assign_vip_is_idempotent(self): cluster = self.env.create_cluster(api=True) vip = self.env.network_manager.assign_vip( cluster['id'], "management" ) vip2 = self.env.network_manager.assign_vip( cluster['id'], "management" ) self.assertEqual(vip, vip2) def test_get_node_networks_for_vlan_manager(self): cluster = self.env.create( cluster_kwargs={}, nodes_kwargs=[ {"pending_addition": True}, ] ) networks_data = \ {'networking_parameters': {'net_manager': 'VlanManager'}} resp = self.env.nova_networks_put(cluster['id'], networks_data) task = jsonutils.loads(resp.body) self.assertEqual(task['status'], 'ready') network_data = self.env.network_manager.get_node_networks( self.env.nodes[0] ) self.assertEqual(len(network_data), 4) fixed_nets = filter(lambda net: net['name'] == 'fixed', network_data) self.assertEqual(fixed_nets, []) def test_ipaddr_joinedload_relations(self): self.env.create( cluster_kwargs={}, nodes_kwargs=[ {"pending_addition": True, "api": True}, {"pending_addition": True, "api": True} ] ) self.env.network_manager.assign_ips( [n.id for n in self.env.nodes], "management" ) ips = self.env.network_manager._get_ips_except_admin(joined=True) self.assertEqual(len(ips), 2) self.assertTrue(isinstance(ips[0].node_data, Node)) self.assertTrue(isinstance(ips[0].network_data, NetworkGroup)) def test_nets_empty_list_if_node_does_not_belong_to_cluster(self): node = self.env.create_node(api=False) network_data = self.env.network_manager.get_node_networks(node) self.assertEqual(network_data, []) def test_assign_admin_ips(self): node = self.env.create_node() self.env.network_manager.assign_admin_ips(node.id, 2) admin_ng_id = self.env.network_manager.get_admin_network_group_id() admin_network_range = self.db.query(IPAddrRange).\ filter_by(network_group_id=admin_ng_id).all()[0] admin_ips = self.db.query(IPAddr).\ filter_by(node=node.id).\ filter_by(network=admin_ng_id).all() self.assertEqual(len(admin_ips), 2) map( lambda x: self.assertIn( IPAddress(x.ip_addr), IPRange( admin_network_range.first, admin_network_range.last ) ), admin_ips ) def test_assign_admin_ips_large_range(self): map(self.db.delete, self.db.query(IPAddrRange).all()) admin_ng_id = self.env.network_manager.get_admin_network_group_id() mock_range = IPAddrRange( first='10.0.0.1', last='10.255.255.254', network_group_id=admin_ng_id ) self.db.add(mock_range) self.db.commit() # Creating two nodes n1 = self.env.create_node() n2 = self.env.create_node() nc = zip([n1.id, n2.id], [2048, 2]) # Assinging admin IPs on created nodes map(lambda (n, c): self.env.network_manager.assign_admin_ips(n, c), nc) # Asserting count of admin node IPs def asserter(x): n, c = x l = len(self.db.query(IPAddr).filter_by(network=admin_ng_id). filter_by(node=n).all()) self.assertEqual(l, c) map(asserter, nc) def test_assign_admin_ips_idempotent(self): node = self.env.create_node() self.env.network_manager.assign_admin_ips(node.id, 2) admin_net_id = self.env.network_manager.get_admin_network_group_id() admin_ips = set([i.ip_addr for i in self.db.query(IPAddr). filter_by(node=node.id). filter_by(network=admin_net_id).all()]) self.env.network_manager.assign_admin_ips(node.id, 2) admin_ips2 = set([i.ip_addr for i in self.db.query(IPAddr). filter_by(node=node.id). filter_by(network=admin_net_id).all()]) self.assertEqual(admin_ips, admin_ips2) def test_assign_admin_ips_only_one(self): map(self.db.delete, self.db.query(IPAddrRange).all()) admin_net_id = self.env.network_manager.get_admin_network_group_id() mock_range = IPAddrRange( first='10.0.0.1', last='10.0.0.1', network_group_id=admin_net_id ) self.db.add(mock_range) self.db.commit() node = self.env.create_node() self.env.network_manager.assign_admin_ips(node.id, 1) admin_net_id = self.env.network_manager.get_admin_network_group_id() admin_ips = self.db.query(IPAddr).\ filter_by(node=node.id).\ filter_by(network=admin_net_id).all() self.assertEqual(len(admin_ips), 1) self.assertEqual(admin_ips[0].ip_addr, '10.0.0.1') @fake_tasks(fake_rpc=False, mock_rpc=False) @patch('nailgun.rpc.cast') def test_admin_ip_cobbler(self, mocked_rpc): node_1_meta = {} self.env.set_interfaces_in_meta(node_1_meta, [{ "name": "eth0", "mac": "00:00:00:00:00:00", }, { "name": "eth1", "mac": "00:00:00:00:00:01"}]) node_2_meta = {} self.env.set_interfaces_in_meta(node_2_meta, [{ "name": "eth0", "mac": "00:00:00:00:00:02", }, { "name": "eth1", "mac": "00:00:00:00:00:03"}]) self.env.create( cluster_kwargs={}, nodes_kwargs=[ { "api": True, "pending_addition": True, "mac": "00:00:00:00:00:00", "meta": node_1_meta }, { "api": True, "pending_addition": True, "mac": "00:00:00:00:00:02", "meta": node_2_meta } ] ) self.env.launch_deployment() rpc_nodes_provision = nailgun.task.manager.rpc.cast. \ call_args_list[0][0][1][0]['args']['provisioning_info']['nodes'] admin_ng_id = self.env.network_manager.get_admin_network_group_id() admin_network_range = self.db.query(IPAddrRange).\ filter_by(network_group_id=admin_ng_id).all()[0] map( lambda (x, y): self.assertIn( IPAddress( rpc_nodes_provision[x]['interfaces'][y]['ip_address'] ), IPRange( admin_network_range.first, admin_network_range.last ) ), itertools.product((0, 1), ('eth0',)) ) class TestNovaNetworkManager(BaseIntegrationTest): def setUp(self): super(TestNovaNetworkManager, self).setUp() self.env.create( cluster_kwargs={}, nodes_kwargs=[ {'api': True, 'pending_addition': True} ]) self.node_db = self.env.nodes[0] def test_get_default_nic_assignment(self): admin_nic_id = self.node_db.admin_interface.id admin_nets = [n.name for n in self.db.query( NodeNICInterface).get(admin_nic_id).assigned_networks_list] other_nic = self.db.query(NodeNICInterface).filter_by( node_id=self.node_db.id ).filter( not_(NodeNICInterface.id == admin_nic_id) ).first() other_nets = [n.name for n in other_nic.assigned_networks_list] nics = NovaNetworkManager.get_default_networks_assignment(self.node_db) def_admin_nic = [n for n in nics if n['id'] == admin_nic_id] def_other_nic = [n for n in nics if n['id'] == other_nic.id] self.assertEqual(len(def_admin_nic), 1) self.assertEqual(len(def_other_nic), 1) self.assertEqual( set(admin_nets), set([n['name'] for n in def_admin_nic[0]['assigned_networks']])) self.assertEqual( set(other_nets), set([n['name'] for n in def_other_nic[0]['assigned_networks']])) class TestNeutronManager(BaseIntegrationTest): def check_networks_assignment(self, node_db): node_nics = self.db.query(NodeNICInterface).filter_by( node_id=node_db.id ).all() def_nics = NeutronManager.get_default_networks_assignment(node_db) self.assertEqual(len(node_nics), len(def_nics)) for n_nic in node_nics: n_assigned = set(n['name'] for n in n_nic.assigned_networks) for d_nic in def_nics: if d_nic['id'] == n_nic.id: d_assigned = set(n['name'] for n in d_nic['assigned_networks']) \ if d_nic.get('assigned_networks') else set() self.assertEqual(n_assigned, d_assigned) break else: self.fail("NIC is not found") def test_gre_get_default_nic_assignment(self): self.env.create( cluster_kwargs={ 'net_provider': 'neutron', 'net_segment_type': 'gre'}, nodes_kwargs=[ {'api': True, 'pending_addition': True} ]) self.check_networks_assignment(self.env.nodes[0]) def test_vlan_get_default_nic_assignment(self): meta = self.env.default_metadata() self.env.set_interfaces_in_meta( meta, [{'name': 'eth0', 'mac': '00:00:00:00:00:11'}, {'name': 'eth1', 'mac': '00:00:00:00:00:22'}, {'name': 'eth2', 'mac': '00:00:00:00:00:33'}]) self.env.create( cluster_kwargs={ 'net_provider': 'neutron', 'net_segment_type': 'vlan'}, nodes_kwargs=[ {'api': True, 'meta': meta, 'pending_addition': True} ]) self.check_networks_assignment(self.env.nodes[0])
34.588095
79
0.570799
07b0009a020c1a5dc29d6c312813895952d1e6ad
1,797
py
Python
src/plugins/pcr/config.py
cdlaimin/CoolQBot
eb77046dd9f8c53c4e7b2e8419d2e447261ade97
[ "MIT" ]
72
2019-10-23T08:07:58.000Z
2022-03-31T12:02:08.000Z
src/plugins/pcr/config.py
cdlaimin/CoolQBot
eb77046dd9f8c53c4e7b2e8419d2e447261ade97
[ "MIT" ]
87
2019-03-11T09:52:31.000Z
2022-03-21T21:56:48.000Z
src/plugins/pcr/config.py
cdlaimin/CoolQBot
eb77046dd9f8c53c4e7b2e8419d2e447261ade97
[ "MIT" ]
24
2019-03-08T08:15:17.000Z
2021-12-24T05:25:58.000Z
""" 配置文件 """ from typing import List from nonebot import get_driver from pydantic import BaseSettings, validator from src.utils.helpers import groupidtostr, strtogroupid from src.utils.plugin import PluginData DATA = PluginData("pcr") class Config(BaseSettings): # 新闻推送相关配置 # 自动推送新闻的间隔,单位 分钟 push_news_interval: int = int(DATA.config.get("news", "push_news_interval", "30")) # 上次推送新闻的发布 ID push_news_last_news_id: int = int( DATA.config.get("news", "push_news_last_news_id", "0") ) @validator("push_news_last_news_id") def push_news_last_news_id_validator(cls, v): """验证并保存配置""" DATA.config.set("news", "push_news_last_news_id", str(v)) return v # 启用新闻推送的群 push_news_group_id: List[int] = strtogroupid(DATA.config.get("news", "group_id")) @validator("push_news_group_id", always=True) def push_news_group_id_validator(cls, v: List[int]): """验证并保存配置""" DATA.config.set("news", "group_id", groupidtostr(v)) return v # 日程推送功能 calender_hour: int = int(DATA.config.get("calender", "hour", fallback="7")) calender_minute: int = int(DATA.config.get("calender", "minute", fallback="30")) calender_second: int = int(DATA.config.get("calender", "second", fallback="0")) # 启用日程推送的群 push_calender_group_id: List[int] = strtogroupid( DATA.config.get("calender", "group_id") ) @validator("push_calender_group_id", always=True) def push_calender_group_id_validator(cls, v: List[int]): """验证并保存配置""" DATA.config.set("calender", "group_id", groupidtostr(v)) return v class Config: extra = "ignore" validate_assignment = True global_config = get_driver().config plugin_config = Config(**global_config.dict())
29.459016
86
0.671675
44df28fae9a71b9af5ad8e7864a6ecbd5ac4ebae
614
py
Python
Prime3.py
rashidulhasanhridoy/Prime-Number-Problem-in-Python-3
15edc619b6d282cf482dc312fc01aa5d4a9ee6d1
[ "Apache-2.0" ]
1
2020-07-21T18:01:04.000Z
2020-07-21T18:01:04.000Z
Prime3.py
rashidulhasanhridoy/Prime-Number-Problem-in-Python-3
15edc619b6d282cf482dc312fc01aa5d4a9ee6d1
[ "Apache-2.0" ]
null
null
null
Prime3.py
rashidulhasanhridoy/Prime-Number-Problem-in-Python-3
15edc619b6d282cf482dc312fc01aa5d4a9ee6d1
[ "Apache-2.0" ]
null
null
null
#This program will show n-th number prime. def prime(X): if X == 1: return 0 else: for i in range(2, X): if X % i == 0: return 0 break else: return 1 P = [] count = 0 i = 1 while True: Y = prime(i) if Y == 1: P.append(i) count += 1 i += 1 if count == 1500: #Here you can change the total number of prime, # you want to see. 1500 means this program will shom first 1500 prime numbers. break N = int(input('')) for i in range(N): M = int(input('')) print(P[M - 1])
21.928571
86
0.480456
40214ade0843fb29c7958bb6e5eb25440757e5e5
50,130
py
Python
gplearn/genetic.py
hofesh/gplearn
2f93916a134fc0a2e4410025aa31f7805848c9d5
[ "BSD-3-Clause" ]
null
null
null
gplearn/genetic.py
hofesh/gplearn
2f93916a134fc0a2e4410025aa31f7805848c9d5
[ "BSD-3-Clause" ]
null
null
null
gplearn/genetic.py
hofesh/gplearn
2f93916a134fc0a2e4410025aa31f7805848c9d5
[ "BSD-3-Clause" ]
null
null
null
"""Genetic Programming in Python, with a scikit-learn inspired API The :mod:`gplearn.genetic` module implements Genetic Programming. These are supervised learning methods based on applying evolutionary operations on computer programs. """ # Author: Trevor Stephens <trevorstephens.com> # # License: BSD 3 clause import itertools from abc import ABCMeta, abstractmethod from time import time from warnings import warn import numpy as np from scipy.stats import rankdata from sklearn.base import BaseEstimator, RegressorMixin, TransformerMixin from sklearn.externals import six from sklearn.externals.joblib import Parallel, delayed from sklearn.utils.validation import check_X_y, check_array from ._program import _Program from .fitness import _fitness_map, _Fitness from .functions import _function_map, _Function from .utils import _partition_estimators from .utils import check_random_state, NotFittedError __all__ = ['SymbolicRegressor', 'SymbolicTransformer'] MAX_INT = np.iinfo(np.int32).max def _parallel_evolve(n_programs, parents, X, y, sample_weight, seeds, params): """Private function used to build a batch of programs within a job.""" n_samples, n_features = X.shape # Unpack parameters tournament_size = params['tournament_size'] function_set = params['function_set'] arities = params['arities'] init_depth = params['init_depth'] init_method = params['init_method'] const_range = params['const_range'] metric = params['_metric'] parsimony_coefficient = params['parsimony_coefficient'] method_probs = params['method_probs'] p_point_replace = params['p_point_replace'] max_samples = params['max_samples'] feature_names = params['feature_names'] max_samples = int(max_samples * n_samples) def _tournament(): """Find the fittest individual from a sub-population.""" contenders = random_state.randint(0, len(parents), tournament_size) fitness = [parents[p].fitness_ for p in contenders] if metric.greater_is_better: parent_index = contenders[np.argmax(fitness)] else: parent_index = contenders[np.argmin(fitness)] return parents[parent_index], parent_index # Build programs programs = [] for i in range(n_programs): random_state = check_random_state(seeds[i]) if parents is None: program = None genome = None else: method = random_state.uniform() parent, parent_index = _tournament() if method < method_probs[0]: # crossover donor, donor_index = _tournament() program, removed, remains = parent.crossover(donor.program, random_state) genome = {'method': 'Crossover', 'parent_idx': parent_index, 'parent_nodes': removed, 'donor_idx': donor_index, 'donor_nodes': remains} elif method < method_probs[1]: # subtree_mutation program, removed, _ = parent.subtree_mutation(random_state) genome = {'method': 'Subtree Mutation', 'parent_idx': parent_index, 'parent_nodes': removed} elif method < method_probs[2]: # hoist_mutation program, removed = parent.hoist_mutation(random_state) genome = {'method': 'Hoist Mutation', 'parent_idx': parent_index, 'parent_nodes': removed} elif method < method_probs[3]: # point_mutation program, mutated = parent.point_mutation(random_state) genome = {'method': 'Point Mutation', 'parent_idx': parent_index, 'parent_nodes': mutated} else: # reproduction program = parent.reproduce() genome = {'method': 'Reproduction', 'parent_idx': parent_index, 'parent_nodes': []} program = _Program(function_set=function_set, arities=arities, init_depth=init_depth, init_method=init_method, n_features=n_features, metric=metric, const_range=const_range, p_point_replace=p_point_replace, parsimony_coefficient=parsimony_coefficient, feature_names=feature_names, random_state=random_state, program=program) program.parents = genome # Draw samples, using sample weights, and then fit if sample_weight is None: curr_sample_weight = np.ones((n_samples,)) else: curr_sample_weight = sample_weight.copy() oob_sample_weight = curr_sample_weight.copy() indices, not_indices = program.get_all_indices(n_samples, max_samples, random_state) curr_sample_weight[not_indices] = 0 oob_sample_weight[indices] = 0 program.raw_fitness_ = program.raw_fitness(X, y, curr_sample_weight) if max_samples < n_samples: # Calculate OOB fitness program.oob_fitness_ = program.raw_fitness(X, y, oob_sample_weight) programs.append(program) return programs class BaseSymbolic(six.with_metaclass(ABCMeta, BaseEstimator)): """Base class for symbolic regression / classification estimators. Warning: This class should not be used directly. Use derived classes instead. """ @abstractmethod def __init__(self, population_size=1000, hall_of_fame=None, n_components=None, generations=20, tournament_size=20, stopping_criteria=0.0, const_range=(-1., 1.), init_depth=(2, 6), init_method='half and half', function_set=('add', 'sub', 'mul', 'div'), metric='mean absolute error', parsimony_coefficient=0.001, p_crossover=0.9, p_subtree_mutation=0.01, p_hoist_mutation=0.01, p_point_mutation=0.01, p_point_replace=0.05, max_samples=1.0, feature_names=None, warm_start=False, low_memory=False, n_jobs=1, verbose=0, random_state=None): self.population_size = population_size self.hall_of_fame = hall_of_fame self.n_components = n_components self.generations = generations self.tournament_size = tournament_size self.stopping_criteria = stopping_criteria self.const_range = const_range self.init_depth = init_depth self.init_method = init_method self.function_set = function_set self.metric = metric self.parsimony_coefficient = parsimony_coefficient self.p_crossover = p_crossover self.p_subtree_mutation = p_subtree_mutation self.p_hoist_mutation = p_hoist_mutation self.p_point_mutation = p_point_mutation self.p_point_replace = p_point_replace self.max_samples = max_samples self.feature_names = feature_names self.warm_start = warm_start self.low_memory = low_memory self.n_jobs = n_jobs self.verbose = verbose self.random_state = random_state def _verbose_reporter(self, run_details=None): """A report of the progress of the evolution process. Parameters ---------- run_details : dict Information about the evolution. """ if run_details is None: print(' |{:^25}|{:^42}|'.format('Population Average', 'Best Individual')) print('-' * 4 + ' ' + '-' * 25 + ' ' + '-' * 42 + ' ' + '-' * 10) line_format = '{:>4} {:>8} {:>16} {:>8} {:>16} {:>16} {:>10}' print(line_format.format('Gen', 'Length', 'Fitness', 'Length', 'Fitness', 'OOB Fitness', 'Time Left')) else: # Estimate remaining time for run gen = run_details['generation'][-1] generation_time = np.mean(run_details['generation_time'][-3:]) remaining_time = (self.generations - gen - 1) * generation_time if remaining_time > 60: remaining_time = '{0:.2f}m'.format(remaining_time / 60.0) else: remaining_time = '{0:.2f}s'.format(remaining_time) oob_fitness = 'N/A' line_format = '{:4d} {:8.2f} {:16g} {:8d} {:16g} {:>16} {:>10}' if self.max_samples < 1.0: oob_fitness = run_details['best_oob_fitness'][-1] line_format = '{:4d} {:8.2f} {:16.8f} {:8d} {:16.8f} {:16.8f} {:>10}' # line_format = '{:4d} {:8.2f} {:16g} {:8d} {:16g} {:16g} {:>10}' print(line_format.format(run_details['generation'][-1], run_details['average_length'][-1], run_details['average_fitness'][-1], run_details['best_length'][-1], run_details['best_fitness'][-1], oob_fitness, remaining_time)) def fit(self, X, y, sample_weight=None): """Fit the Genetic Program according to X, y. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] Target values. sample_weight : array-like, shape = [n_samples], optional Weights applied to individual samples. Returns ------- self : object Returns self. """ random_state = check_random_state(self.random_state) # Check arrays X, y = check_X_y(X, y, y_numeric=True) if sample_weight is not None: sample_weight = check_array(sample_weight, ensure_2d=False) _, self.n_features_ = X.shape hall_of_fame = self.hall_of_fame if hall_of_fame is None: hall_of_fame = self.population_size if hall_of_fame > self.population_size or hall_of_fame < 1: raise ValueError('hall_of_fame (%d) must be less than or equal to ' 'population_size (%d).' % (self.hall_of_fame, self.population_size)) n_components = self.n_components if n_components is None: n_components = hall_of_fame if n_components > hall_of_fame or n_components < 1: raise ValueError('n_components (%d) must be less than or equal to ' 'hall_of_fame (%d).' % (self.n_components, self.hall_of_fame)) self._function_set = [] for function in self.function_set: if isinstance(function, six.string_types): if function not in _function_map: raise ValueError('invalid function name %s found in ' '`function_set`.' % function) self._function_set.append(_function_map[function]) elif isinstance(function, _Function): self._function_set.append(function) else: raise ValueError('invalid type %s found in `function_set`.' % type(function)) if not self._function_set: raise ValueError('No valid functions found in `function_set`.') # For point-mutation to find a compatible replacement node self._arities = {} for function in self._function_set: arity = function.arity self._arities[arity] = self._arities.get(arity, []) self._arities[arity].append(function) if isinstance(self.metric, _Fitness): self._metric = self.metric elif isinstance(self, RegressorMixin): if self.metric not in ('mean absolute error', 'mse', 'rmse', 'pearson', 'spearman'): raise ValueError('Unsupported metric: %s' % self.metric) else: self._metric = _fitness_map[self.metric] elif isinstance(self, TransformerMixin): if self.metric not in ('pearson', 'spearman'): raise ValueError('Unsupported metric: %s' % self.metric) else: self._metric = _fitness_map[self.metric] self._method_probs = np.array([self.p_crossover, self.p_subtree_mutation, self.p_hoist_mutation, self.p_point_mutation]) self._method_probs = np.cumsum(self._method_probs) if self._method_probs[-1] > 1: raise ValueError('The sum of p_crossover, p_subtree_mutation, ' 'p_hoist_mutation and p_point_mutation should ' 'total to 1.0 or less.') if self.init_method not in ('half and half', 'grow', 'full'): raise ValueError('Valid program initializations methods include ' '"grow", "full" and "half and half". Given %s.' % self.init_method) if not((isinstance(self.const_range, tuple) and len(self.const_range) == 2) or self.const_range is None): raise ValueError('const_range should be a tuple with length two, ' 'or None.') if (not isinstance(self.init_depth, tuple) or len(self.init_depth) != 2): raise ValueError('init_depth should be a tuple with length two.') if self.init_depth[0] > self.init_depth[1]: raise ValueError('init_depth should be in increasing numerical ' 'order: (min_depth, max_depth).') if self.feature_names is not None: if self.n_features_ != len(self.feature_names): raise ValueError('The supplied `feature_names` has different ' 'length to n_features. Expected %d, got %d.' % (self.n_features_, len(self.feature_names))) for feature_name in self.feature_names: if not isinstance(feature_name, six.string_types): raise ValueError('invalid type %s found in ' '`feature_names`.' % type(feature_name)) params = self.get_params() params['_metric'] = self._metric params['function_set'] = self._function_set params['arities'] = self._arities params['method_probs'] = self._method_probs if not self.warm_start or not hasattr(self, '_programs'): # Free allocated memory, if any self._programs = [] self.run_details_ = {'generation': [], 'average_length': [], 'average_fitness': [], 'best_length': [], 'best_fitness': [], 'best_program': [], 'best_oob_fitness': [], 'generation_time': []} prior_generations = len(self._programs) n_more_generations = self.generations - prior_generations if n_more_generations < 0: raise ValueError('generations=%d must be larger or equal to ' 'len(_programs)=%d when warm_start==True' % (self.generations, len(self._programs))) elif n_more_generations == 0: fitness = [program.raw_fitness_ for program in self._programs[-1]] warn('Warm-start fitting without increasing n_estimators does not ' 'fit new programs.') if self.warm_start: # Generate and discard seeds that would have been produced on the # initial fit call. for i in range(len(self._programs)): _ = random_state.randint(MAX_INT, size=self.population_size) if self.verbose: # Print header fields self._verbose_reporter() for gen in range(prior_generations, self.generations): start_time = time() if gen == 0: parents = None else: parents = self._programs[gen - 1] # Parallel loop n_jobs, n_programs, starts = _partition_estimators( self.population_size, self.n_jobs) seeds = random_state.randint(MAX_INT, size=self.population_size) population = Parallel(n_jobs=n_jobs, verbose=int(self.verbose > 1))( delayed(_parallel_evolve)(n_programs[i], parents, X, y, sample_weight, seeds[starts[i]:starts[i + 1]], params) for i in range(n_jobs)) # Reduce, maintaining order across different n_jobs population = list(itertools.chain.from_iterable(population)) fitness = [program.raw_fitness_ for program in population] length = [program.length_ for program in population] parsimony_coefficient = None if self.parsimony_coefficient == 'auto': parsimony_coefficient = (np.cov(length, fitness)[1, 0] / np.var(length)) # parsimony_coefficient = parsimony_coefficient * parsimony_coefficient # print('parsimony_coefficient:', parsimony_coefficient) for program in population: program.fitness_ = program.fitness(parsimony_coefficient) self._programs.append(population) # Remove old programs that didn't make it into the new population. if not self.low_memory: for old_gen in np.arange(gen, 0, -1): indices = [] for program in self._programs[old_gen]: if program is not None: for idx in program.parents: if 'idx' in idx: indices.append(program.parents[idx]) indices = set(indices) for idx in range(self.population_size): if idx not in indices: self._programs[old_gen - 1][idx] = None elif gen > 0: # Remove old generations self._programs[gen - 1] = None # Record run details if self._metric.greater_is_better: best_program = population[np.argmax(fitness)] else: best_program = population[np.argmin(fitness)] self.run_details_['generation'].append(gen) self.run_details_['average_length'].append(np.mean(length)) self.run_details_['average_fitness'].append(np.mean(fitness)) self.run_details_['best_length'].append(best_program.length_) self.run_details_['best_fitness'].append(best_program.raw_fitness_) self.run_details_['best_program'].append(best_program) oob_fitness = np.nan if self.max_samples < 1.0: oob_fitness = best_program.oob_fitness_ self.run_details_['best_oob_fitness'].append(oob_fitness) generation_time = time() - start_time self.run_details_['generation_time'].append(generation_time) if self.verbose: self._verbose_reporter(self.run_details_) # Check for early stopping if self._metric.greater_is_better: best_fitness = fitness[np.argmax(fitness)] if best_fitness >= self.stopping_criteria: break else: best_fitness = fitness[np.argmin(fitness)] if best_fitness <= self.stopping_criteria: break if isinstance(self, RegressorMixin): # Find the best individual in the final generation if self._metric.greater_is_better: self._program = self._programs[-1][np.argmax(fitness)] else: self._program = self._programs[-1][np.argmin(fitness)] if isinstance(self, TransformerMixin): # Find the best individuals in the final generation fitness = np.array(fitness) if self._metric.greater_is_better: hall_of_fame = fitness.argsort()[::-1][:self.hall_of_fame] else: hall_of_fame = fitness.argsort()[:self.hall_of_fame] evaluation = np.array([gp.execute(X) for gp in [self._programs[-1][i] for i in hall_of_fame]]) if self.metric == 'spearman': evaluation = np.apply_along_axis(rankdata, 1, evaluation) with np.errstate(divide='ignore', invalid='ignore'): correlations = np.abs(np.corrcoef(evaluation)) np.fill_diagonal(correlations, 0.) components = list(range(self.hall_of_fame)) indices = list(range(self.hall_of_fame)) # Iteratively remove least fit individual of most correlated pair while len(components) > self.n_components: most_correlated = np.unravel_index(np.argmax(correlations), correlations.shape) # The correlation matrix is sorted by fitness, so identifying # the least fit of the pair is simply getting the higher index worst = max(most_correlated) components.pop(worst) indices.remove(worst) correlations = correlations[:, indices][indices, :] indices = list(range(len(components))) self._best_programs = [self._programs[-1][i] for i in hall_of_fame[components]] return self class SymbolicRegressor(BaseSymbolic, RegressorMixin): """A Genetic Programming symbolic regressor. A symbolic regressor is an estimator that begins by building a population of naive random formulas to represent a relationship. The formulas are represented as tree-like structures with mathematical functions being recursively applied to variables and constants. Each successive generation of programs is then evolved from the one that came before it by selecting the fittest individuals from the population to undergo genetic operations such as crossover, mutation or reproduction. Parameters ---------- population_size : integer, optional (default=500) The number of programs in each generation. generations : integer, optional (default=10) The number of generations to evolve. tournament_size : integer, optional (default=20) The number of programs that will compete to become part of the next generation. stopping_criteria : float, optional (default=0.0) The required metric value required in order to stop evolution early. const_range : tuple of two floats, or None, optional (default=(-1., 1.)) The range of constants to include in the formulas. If None then no constants will be included in the candidate programs. init_depth : tuple of two ints, optional (default=(2, 6)) The range of tree depths for the initial population of naive formulas. Individual trees will randomly choose a maximum depth from this range. When combined with `init_method='half and half'` this yields the well- known 'ramped half and half' initialization method. init_method : str, optional (default='half and half') - 'grow' : Nodes are chosen at random from both functions and terminals, allowing for smaller trees than `init_depth` allows. Tends to grow asymmetrical trees. - 'full' : Functions are chosen until the `init_depth` is reached, and then terminals are selected. Tends to grow 'bushy' trees. - 'half and half' : Trees are grown through a 50/50 mix of 'full' and 'grow', making for a mix of tree shapes in the initial population. function_set : iterable, optional (default=('add', 'sub', 'mul', 'div')) The functions to use when building and evolving programs. This iterable can include strings to indicate either individual functions as outlined below, or you can also include your own functions as built using the ``make_function`` factory from the ``functions`` module. Available individual functions are: - 'add' : addition, arity=2. - 'sub' : subtraction, arity=2. - 'mul' : multiplication, arity=2. - 'div' : protected division where a denominator near-zero returns 1., arity=2. - 'sqrt' : protected square root where the absolute value of the argument is used, arity=1. - 'log' : protected log where the absolute value of the argument is used and a near-zero argument returns 0., arity=1. - 'abs' : absolute value, arity=1. - 'neg' : negative, arity=1. - 'inv' : protected inverse where a near-zero argument returns 0., arity=1. - 'max' : maximum, arity=2. - 'min' : minimum, arity=2. - 'sin' : sine (radians), arity=1. - 'cos' : cosine (radians), arity=1. - 'tan' : tangent (radians), arity=1. metric : str, optional (default='mean absolute error') The name of the raw fitness metric. Available options include: - 'mean absolute error'. - 'mse' for mean squared error. - 'rmse' for root mean squared error. - 'pearson', for Pearson's product-moment correlation coefficient. - 'spearman' for Spearman's rank-order correlation coefficient. Note that 'pearson' and 'spearman' will not directly predict the target but could be useful as value-added features in a second-step estimator. This would allow the user to generate one engineered feature at a time, using the SymbolicTransformer would allow creation of multiple features at once. parsimony_coefficient : float or "auto", optional (default=0.001) This constant penalizes large programs by adjusting their fitness to be less favorable for selection. Larger values penalize the program more which can control the phenomenon known as 'bloat'. Bloat is when evolution is increasing the size of programs without a significant increase in fitness, which is costly for computation time and makes for a less understandable final result. This parameter may need to be tuned over successive runs. If "auto" the parsimony coefficient is recalculated for each generation using c = Cov(l,f)/Var( l), where Cov(l,f) is the covariance between program size l and program fitness f in the population, and Var(l) is the variance of program sizes. p_crossover : float, optional (default=0.9) The probability of performing crossover on a tournament winner. Crossover takes the winner of a tournament and selects a random subtree from it to be replaced. A second tournament is performed to find a donor. The donor also has a subtree selected at random and this is inserted into the original parent to form an offspring in the next generation. p_subtree_mutation : float, optional (default=0.01) The probability of performing subtree mutation on a tournament winner. Subtree mutation takes the winner of a tournament and selects a random subtree from it to be replaced. A donor subtree is generated at random and this is inserted into the original parent to form an offspring in the next generation. p_hoist_mutation : float, optional (default=0.01) The probability of performing hoist mutation on a tournament winner. Hoist mutation takes the winner of a tournament and selects a random subtree from it. A random subtree of that subtree is then selected and this is 'hoisted' into the original subtrees location to form an offspring in the next generation. This method helps to control bloat. p_point_mutation : float, optional (default=0.01) The probability of performing point mutation on a tournament winner. Point mutation takes the winner of a tournament and selects random nodes from it to be replaced. Terminals are replaced by other terminals and functions are replaced by other functions that require the same number of arguments as the original node. The resulting tree forms an offspring in the next generation. Note : The above genetic operation probabilities must sum to less than one. The balance of probability is assigned to 'reproduction', where a tournament winner is cloned and enters the next generation unmodified. p_point_replace : float, optional (default=0.05) For point mutation only, the probability that any given node will be mutated. max_samples : float, optional (default=1.0) The fraction of samples to draw from X to evaluate each program on. feature_names : list, optional (default=None) Optional list of feature names, used purely for representations in the `print` operation or `export_graphviz`. If None, then X0, X1, etc will be used for representations. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more generations to the evolution, otherwise, just fit a new evolution. low_memory : bool, optional (default=False) When set to ``True``, only the current generation is retained. Parent information is discarded. For very large populations or runs with many generations, this can result in substantial memory use reduction. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for `fit`. If -1, then the number of jobs is set to the number of cores. verbose : int, optional (default=0) Controls the verbosity of the evolution building process. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Attributes ---------- run_details_ : dict Details of the evolution process. Includes the following elements: - 'generation' : The generation index. - 'average_length' : The average program length of the generation. - 'average_fitness' : The average program fitness of the generation. - 'best_length' : The length of the best program in the generation. - 'best_fitness' : The fitness of the best program in the generation. - 'best_oob_fitness' : The out of bag fitness of the best program in the generation (requires `max_samples` < 1.0). - 'generation_time' : The time it took for the generation to evolve. See Also -------- SymbolicTransformer References ---------- .. [1] J. Koza, "Genetic Programming", 1992. .. [2] R. Poli, et al. "A Field Guide to Genetic Programming", 2008. """ def __init__(self, population_size=1000, generations=20, tournament_size=20, stopping_criteria=0.0, const_range=(-1., 1.), init_depth=(2, 6), init_method='half and half', function_set=('add', 'sub', 'mul', 'div'), metric='mean absolute error', parsimony_coefficient=0.001, p_crossover=0.9, p_subtree_mutation=0.01, p_hoist_mutation=0.01, p_point_mutation=0.01, p_point_replace=0.05, max_samples=1.0, feature_names=None, warm_start=False, low_memory=False, n_jobs=1, verbose=0, random_state=None): super(SymbolicRegressor, self).__init__( population_size=population_size, generations=generations, tournament_size=tournament_size, stopping_criteria=stopping_criteria, const_range=const_range, init_depth=init_depth, init_method=init_method, function_set=function_set, metric=metric, parsimony_coefficient=parsimony_coefficient, p_crossover=p_crossover, p_subtree_mutation=p_subtree_mutation, p_hoist_mutation=p_hoist_mutation, p_point_mutation=p_point_mutation, p_point_replace=p_point_replace, max_samples=max_samples, feature_names=feature_names, warm_start=warm_start, low_memory=low_memory, n_jobs=n_jobs, verbose=verbose, random_state=random_state) def __str__(self): """Overloads `print` output of the object to resemble a LISP tree.""" if not hasattr(self, '_program'): return self.__repr__() return self._program.__str__() def predict(self, X): """Perform regression on test vectors X. Parameters ---------- X : array-like, shape = [n_samples, n_features] Input vectors, where n_samples is the number of samples and n_features is the number of features. Returns ------- y : array, shape = [n_samples] Predicted values for X. """ if not hasattr(self, '_program'): raise NotFittedError('SymbolicRegressor not fitted.') X = check_array(X) _, n_features = X.shape if self.n_features_ != n_features: raise ValueError('Number of features of the model must match the ' 'input. Model n_features is %s and input ' 'n_features is %s.' % (self.n_features_, n_features)) y = self._program.execute(X) return y class SymbolicTransformer(BaseSymbolic, TransformerMixin): """A Genetic Programming symbolic transformer. A symbolic transformer is a supervised transformer that begins by building a population of naive random formulas to represent a relationship. The formulas are represented as tree-like structures with mathematical functions being recursively applied to variables and constants. Each successive generation of programs is then evolved from the one that came before it by selecting the fittest individuals from the population to undergo genetic operations such as crossover, mutation or reproduction. The final population is searched for the fittest individuals with the least correlation to one another. Parameters ---------- population_size : integer, optional (default=500) The number of programs in each generation. hall_of_fame : integer, or None, optional (default=100) The number of fittest programs to compare from when finding the least-correlated individuals for the n_components. If `None`, the entire final generation will be used. n_components : integer, or None, optional (default=10) The number of best programs to return after searching the hall_of_fame for the least-correlated individuals. If `None`, the entire hall_of_fame will be used. generations : integer, optional (default=10) The number of generations to evolve. tournament_size : integer, optional (default=20) The number of programs that will compete to become part of the next generation. stopping_criteria : float, optional (default=1.0) The required metric value required in order to stop evolution early. const_range : tuple of two floats, or None, optional (default=(-1., 1.)) The range of constants to include in the formulas. If None then no constants will be included in the candidate programs. init_depth : tuple of two ints, optional (default=(2, 6)) The range of tree depths for the initial population of naive formulas. Individual trees will randomly choose a maximum depth from this range. When combined with `init_method='half and half'` this yields the well- known 'ramped half and half' initialization method. init_method : str, optional (default='half and half') - 'grow' : Nodes are chosen at random from both functions and terminals, allowing for smaller trees than `init_depth` allows. Tends to grow asymmetrical trees. - 'full' : Functions are chosen until the `init_depth` is reached, and then terminals are selected. Tends to grow 'bushy' trees. - 'half and half' : Trees are grown through a 50/50 mix of 'full' and 'grow', making for a mix of tree shapes in the initial population. function_set : iterable, optional (default=('add', 'sub', 'mul', 'div')) The functions to use when building and evolving programs. This iterable can include strings to indicate either individual functions as outlined below, or you can also include your own functions as built using the ``make_function`` factory from the ``functions`` module. Available individual functions are: - 'add' : addition, arity=2. - 'sub' : subtraction, arity=2. - 'mul' : multiplication, arity=2. - 'div' : protected division where a denominator near-zero returns 1., arity=2. - 'sqrt' : protected square root where the absolute value of the argument is used, arity=1. - 'log' : protected log where the absolute value of the argument is used and a near-zero argument returns 0., arity=1. - 'abs' : absolute value, arity=1. - 'neg' : negative, arity=1. - 'inv' : protected inverse where a near-zero argument returns 0., arity=1. - 'max' : maximum, arity=2. - 'min' : minimum, arity=2. - 'sin' : sine (radians), arity=1. - 'cos' : cosine (radians), arity=1. - 'tan' : tangent (radians), arity=1. metric : str, optional (default='pearson') The name of the raw fitness metric. Available options include: - 'pearson', for Pearson's product-moment correlation coefficient. - 'spearman' for Spearman's rank-order correlation coefficient. parsimony_coefficient : float or "auto", optional (default=0.001) This constant penalizes large programs by adjusting their fitness to be less favorable for selection. Larger values penalize the program more which can control the phenomenon known as 'bloat'. Bloat is when evolution is increasing the size of programs without a significant increase in fitness, which is costly for computation time and makes for a less understandable final result. This parameter may need to be tuned over successive runs. If "auto" the parsimony coefficient is recalculated for each generation using c = Cov(l,f)/Var( l), where Cov(l,f) is the covariance between program size l and program fitness f in the population, and Var(l) is the variance of program sizes. p_crossover : float, optional (default=0.9) The probability of performing crossover on a tournament winner. Crossover takes the winner of a tournament and selects a random subtree from it to be replaced. A second tournament is performed to find a donor. The donor also has a subtree selected at random and this is inserted into the original parent to form an offspring in the next generation. p_subtree_mutation : float, optional (default=0.01) The probability of performing subtree mutation on a tournament winner. Subtree mutation takes the winner of a tournament and selects a random subtree from it to be replaced. A donor subtree is generated at random and this is inserted into the original parent to form an offspring in the next generation. p_hoist_mutation : float, optional (default=0.01) The probability of performing hoist mutation on a tournament winner. Hoist mutation takes the winner of a tournament and selects a random subtree from it. A random subtree of that subtree is then selected and this is 'hoisted' into the original subtrees location to form an offspring in the next generation. This method helps to control bloat. p_point_mutation : float, optional (default=0.01) The probability of performing point mutation on a tournament winner. Point mutation takes the winner of a tournament and selects random nodes from it to be replaced. Terminals are replaced by other terminals and functions are replaced by other functions that require the same number of arguments as the original node. The resulting tree forms an offspring in the next generation. Note : The above genetic operation probabilities must sum to less than one. The balance of probability is assigned to 'reproduction', where a tournament winner is cloned and enters the next generation unmodified. p_point_replace : float, optional (default=0.05) For point mutation only, the probability that any given node will be mutated. max_samples : float, optional (default=1.0) The fraction of samples to draw from X to evaluate each program on. feature_names : list, optional (default=None) Optional list of feature names, used purely for representations in the `print` operation or `export_graphviz`. If None, then X0, X1, etc will be used for representations. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more generations to the evolution, otherwise, just fit a new evolution. low_memory : bool, optional (default=False) When set to ``True``, only the current generation is retained. Parent information is discarded. For very large populations or runs with many generations, this can result in substantial memory use reduction. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for `fit`. If -1, then the number of jobs is set to the number of cores. verbose : int, optional (default=0) Controls the verbosity of the evolution building process. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Attributes ---------- run_details_ : dict Details of the evolution process. Includes the following elements: - 'generation' : The generation index. - 'average_length' : The average program length of the generation. - 'average_fitness' : The average program fitness of the generation. - 'best_length' : The length of the best program in the generation. - 'best_fitness' : The fitness of the best program in the generation. - 'best_oob_fitness' : The out of bag fitness of the best program in the generation (requires `max_samples` < 1.0). - 'generation_time' : The time it took for the generation to evolve. See Also -------- SymbolicRegressor References ---------- .. [1] J. Koza, "Genetic Programming", 1992. .. [2] R. Poli, et al. "A Field Guide to Genetic Programming", 2008. """ def __init__(self, population_size=1000, hall_of_fame=100, n_components=10, generations=20, tournament_size=20, stopping_criteria=1.0, const_range=(-1., 1.), init_depth=(2, 6), init_method='half and half', function_set=('add', 'sub', 'mul', 'div'), metric='pearson', parsimony_coefficient=0.001, p_crossover=0.9, p_subtree_mutation=0.01, p_hoist_mutation=0.01, p_point_mutation=0.01, p_point_replace=0.05, max_samples=1.0, feature_names=None, warm_start=False, low_memory=False, n_jobs=1, verbose=0, random_state=None): super(SymbolicTransformer, self).__init__( population_size=population_size, hall_of_fame=hall_of_fame, n_components=n_components, generations=generations, tournament_size=tournament_size, stopping_criteria=stopping_criteria, const_range=const_range, init_depth=init_depth, init_method=init_method, function_set=function_set, metric=metric, parsimony_coefficient=parsimony_coefficient, p_crossover=p_crossover, p_subtree_mutation=p_subtree_mutation, p_hoist_mutation=p_hoist_mutation, p_point_mutation=p_point_mutation, p_point_replace=p_point_replace, max_samples=max_samples, feature_names=feature_names, warm_start=warm_start, low_memory=low_memory, n_jobs=n_jobs, verbose=verbose, random_state=random_state) def __len__(self): """Overloads `len` output to be the number of fitted components.""" if not hasattr(self, '_best_programs'): return 0 return self.n_components def __getitem__(self, item): """Return the ith item of the fitted components.""" if item >= len(self): raise IndexError return self._best_programs[item] def __str__(self): """Overloads `print` output of the object to resemble LISP trees.""" if not hasattr(self, '_best_programs'): return self.__repr__() output = str([gp.__str__() for gp in self]) return output.replace("',", ",\n").replace("'", "") def transform(self, X): """Transform X according to the fitted transformer. Parameters ---------- X : array-like, shape = [n_samples, n_features] Input vectors, where n_samples is the number of samples and n_features is the number of features. Returns ------- X_new : array-like, shape = [n_samples, n_components] Transformed array. """ if not hasattr(self, '_best_programs'): raise NotFittedError('SymbolicTransformer not fitted.') X = check_array(X) _, n_features = X.shape if self.n_features_ != n_features: raise ValueError('Number of features of the model must match the ' 'input. Model n_features is %s and input ' 'n_features is %s.' % (self.n_features_, n_features)) X_new = np.array([gp.execute(X) for gp in self._best_programs]).T return X_new def fit_transform(self, X, y, sample_weight=None): """Fit to data, then transform it. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] Target values. sample_weight : array-like, shape = [n_samples], optional Weights applied to individual samples. Returns ------- X_new : array-like, shape = [n_samples, n_components] Transformed array. """ return self.fit(X, y, sample_weight).transform(X)
43.629243
87
0.601456
6f23cf58cc6c297356a20b4a8e6a1b00fa2e9db3
4,575
py
Python
micropython-maixpy-0_6_2-66/stubs/fpioa_manager.py
mongonta0716/stub_for_maixpy
f8f29454668919873f9a0f14bb5a9b01ab103bc8
[ "MIT" ]
1
2021-08-22T09:10:43.000Z
2021-08-22T09:10:43.000Z
micropython-maixpy-0_6_2-66/stubs/fpioa_manager.py
mongonta0716/stub_for_maixpy
f8f29454668919873f9a0f14bb5a9b01ab103bc8
[ "MIT" ]
null
null
null
micropython-maixpy-0_6_2-66/stubs/fpioa_manager.py
mongonta0716/stub_for_maixpy
f8f29454668919873f9a0f14bb5a9b01ab103bc8
[ "MIT" ]
null
null
null
""" Module: 'fpioa_manager' on micropython-maixpy-0.6.2-66 """ # MCU: {'ver': '0.6.2-66', 'build': '66', 'sysname': 'MaixPy', 'platform': 'MaixPy', 'version': '0.6.2', 'release': '0.6.2', 'port': 'MaixPy', 'family': 'micropython', 'name': 'micropython', 'machine': 'Sipeed_M1 with kendryte-k210', 'nodename': 'MaixPy'} # Stubber: 1.3.9 class FPIOA: '' CLK_I2C1 = 23 CLK_I2C2 = 203 CLK_SPI1 = 22 CLK_SPI2 = 202 CMOS_D0 = 138 CMOS_D1 = 139 CMOS_D2 = 140 CMOS_D3 = 141 CMOS_D4 = 142 CMOS_D5 = 143 CMOS_D6 = 144 CMOS_D7 = 145 CMOS_HREF = 136 CMOS_PCLK = 137 CMOS_PWDN = 134 CMOS_RST = 133 CMOS_VSYNC = 135 CMOS_XCLK = 132 GPIO0 = 56 GPIO1 = 57 GPIO2 = 58 GPIO3 = 59 GPIO4 = 60 GPIO5 = 61 GPIO6 = 62 GPIO7 = 63 GPIOHS0 = 24 GPIOHS1 = 25 GPIOHS10 = 34 GPIOHS11 = 35 GPIOHS12 = 36 GPIOHS13 = 37 GPIOHS14 = 38 GPIOHS15 = 39 GPIOHS16 = 40 GPIOHS17 = 41 GPIOHS18 = 42 GPIOHS19 = 43 GPIOHS2 = 26 GPIOHS20 = 44 GPIOHS21 = 45 GPIOHS22 = 46 GPIOHS23 = 47 GPIOHS24 = 48 GPIOHS25 = 49 GPIOHS26 = 50 GPIOHS27 = 51 GPIOHS28 = 52 GPIOHS29 = 53 GPIOHS3 = 27 GPIOHS30 = 54 GPIOHS31 = 55 GPIOHS4 = 28 GPIOHS5 = 29 GPIOHS6 = 30 GPIOHS7 = 31 GPIOHS8 = 32 GPIOHS9 = 33 I2C0_SCLK = 126 I2C0_SDA = 127 I2C1_SCLK = 128 I2C1_SDA = 129 I2C2_SCLK = 130 I2C2_SDA = 131 I2S0_IN_D0 = 90 I2S0_IN_D1 = 91 I2S0_IN_D2 = 92 I2S0_IN_D3 = 93 I2S0_MCLK = 87 I2S0_OUT_D0 = 94 I2S0_OUT_D1 = 95 I2S0_OUT_D2 = 96 I2S0_OUT_D3 = 97 I2S0_SCLK = 88 I2S0_WS = 89 I2S1_IN_D0 = 101 I2S1_IN_D1 = 102 I2S1_IN_D2 = 103 I2S1_IN_D3 = 104 I2S1_MCLK = 98 I2S1_OUT_D0 = 105 I2S1_OUT_D1 = 106 I2S1_OUT_D2 = 107 I2S1_OUT_D3 = 108 I2S1_SCLK = 99 I2S1_WS = 100 I2S2_IN_D0 = 112 I2S2_IN_D1 = 113 I2S2_IN_D2 = 114 I2S2_IN_D3 = 115 I2S2_MCLK = 109 I2S2_OUT_D0 = 116 I2S2_OUT_D1 = 117 I2S2_OUT_D2 = 118 I2S2_OUT_D3 = 119 I2S2_SCLK = 110 I2S2_WS = 111 JTAG_TCLK = 0 JTAG_TDI = 1 JTAG_TDO = 3 JTAG_TMS = 2 RESV0 = 120 RESV1 = 121 RESV2 = 122 RESV3 = 123 RESV4 = 124 RESV5 = 125 RESV6 = 20 RESV7 = 21 SCCB_SCLK = 146 SCCB_SDA = 147 SPI0_ARB = 16 SPI0_D0 = 4 SPI0_D1 = 5 SPI0_D2 = 6 SPI0_D3 = 7 SPI0_D4 = 8 SPI0_D5 = 9 SPI0_D6 = 10 SPI0_D7 = 11 SPI0_SCLK = 17 SPI0_SS0 = 12 SPI0_SS1 = 13 SPI0_SS2 = 14 SPI0_SS3 = 15 SPI1_ARB = 82 SPI1_D0 = 70 SPI1_D1 = 71 SPI1_D2 = 72 SPI1_D3 = 73 SPI1_D4 = 74 SPI1_D5 = 75 SPI1_D6 = 76 SPI1_D7 = 77 SPI1_SCLK = 83 SPI1_SS0 = 78 SPI1_SS1 = 79 SPI1_SS2 = 80 SPI1_SS3 = 81 SPI_SLAVE_D0 = 84 SPI_SLAVE_SCLK = 86 SPI_SLAVE_SS = 85 TIMER0_TOGGLE1 = 190 TIMER0_TOGGLE2 = 191 TIMER0_TOGGLE3 = 192 TIMER0_TOGGLE4 = 193 TIMER1_TOGGLE1 = 194 TIMER1_TOGGLE2 = 195 TIMER1_TOGGLE3 = 196 TIMER1_TOGGLE4 = 197 TIMER2_TOGGLE1 = 198 TIMER2_TOGGLE2 = 199 TIMER2_TOGGLE3 = 200 TIMER2_TOGGLE4 = 201 UART1_BAUD = 158 UART1_CTS = 148 UART1_DCD = 150 UART1_DE = 160 UART1_DSR = 149 UART1_DTR = 153 UART1_OUT1 = 156 UART1_OUT2 = 155 UART1_RE = 159 UART1_RI = 151 UART1_RS485_EN = 161 UART1_RTS = 154 UART1_RX = 64 UART1_SIR_IN = 152 UART1_SIR_OUT = 157 UART1_TX = 65 UART2_BAUD = 172 UART2_CTS = 162 UART2_DCD = 164 UART2_DE = 174 UART2_DSR = 163 UART2_DTR = 167 UART2_OUT1 = 170 UART2_OUT2 = 169 UART2_RE = 173 UART2_RI = 165 UART2_RS485_EN = 175 UART2_RTS = 168 UART2_RX = 66 UART2_SIR_IN = 166 UART2_SIR_OUT = 171 UART2_TX = 67 UART3_BAUD = 186 UART3_CTS = 176 UART3_DCD = 178 UART3_DE = 188 UART3_DSR = 177 UART3_DTR = 181 UART3_OUT1 = 184 UART3_OUT2 = 183 UART3_RE = 187 UART3_RI = 179 UART3_RS485_EN = 189 UART3_RTS = 182 UART3_RX = 68 UART3_SIR_IN = 180 UART3_SIR_OUT = 185 UART3_TX = 69 UARTHS_RX = 18 UARTHS_TX = 19 def get_Pin_num(): pass def help(): pass def set_function(): pass class fm: '' fpioa = None get_gpio_used = None get_pin_by_function = None help = None register = None def str_function(): pass unregister = None
19.551282
255
0.582951
2bc2bfcf615486f068ed5f13a90cea210ddff6de
1,589
py
Python
src/wai/bynning/binners/_MinSizeBinner.py
waikato-datamining/bynning
01b7368d4dc1094651d7cbe067576dfb3756a1d3
[ "MIT" ]
null
null
null
src/wai/bynning/binners/_MinSizeBinner.py
waikato-datamining/bynning
01b7368d4dc1094651d7cbe067576dfb3756a1d3
[ "MIT" ]
null
null
null
src/wai/bynning/binners/_MinSizeBinner.py
waikato-datamining/bynning
01b7368d4dc1094651d7cbe067576dfb3756a1d3
[ "MIT" ]
null
null
null
from typing import List from .._Binnable import Binnable from ._TwoPassBinner import TwoPassBinner class MinSizeBinner(TwoPassBinner[int, int]): """ Binner which bins items by their size, placing items in indexed bins until they exceed a certain minimum total size. """ def __init__(self, min_size: int): # Minimum size must be positive if min_size < 1: raise ValueError(f"Min size of bins must be positive, got {min_size}") self.min_size: int = min_size self._bin_index: int = 0 self._remaining_size: int = 0 self._current_size: int = 0 def _configure(self, items: List[Binnable[int]]): # Calculate the total size of all items self._remaining_size = sum(Binnable.map_bin_keys(items)) # Check there is enough size available if self._remaining_size < self.min_size: raise ValueError(f"Not enough total size in given items ({self._remaining_size}) " f"to meet minimum size requirement of {self.min_size}") def _reset(self): self._bin_index = 0 self._current_size = 0 def _bin(self, key: int) -> int: # Move to the next bin if the current bin is full and # we can guarantee to fill another bin if self._current_size >= self.min_size and self._remaining_size >= self.min_size: self._bin_index += 1 self._current_size = 0 # Update the sizes self._current_size += key self._remaining_size -= key return self._bin_index
32.428571
94
0.638137
3db62ca594a470366b81fcae9762bd06b120655e
683
py
Python
tests/runners/lib/env.py
CyberFlameGO/tilck
4c32541874102e524374ab79d46b68af9d759390
[ "BSD-2-Clause" ]
1,059
2018-07-30T14:48:42.000Z
2022-03-30T19:54:49.000Z
tests/runners/lib/env.py
CyberFlameGO/tilck
4c32541874102e524374ab79d46b68af9d759390
[ "BSD-2-Clause" ]
15
2019-06-17T13:58:08.000Z
2021-10-16T18:19:25.000Z
tests/runners/lib/env.py
CyberFlameGO/tilck
4c32541874102e524374ab79d46b68af9d759390
[ "BSD-2-Clause" ]
47
2020-03-09T16:54:07.000Z
2022-03-12T08:53:56.000Z
# SPDX-License-Identifier: BSD-2-Clause import os import sys from .lang_aux import Const, ReloadAsConstModule def env_bool(x): return Const(os.environ.get(x, '0') == '1') def env_int(x, val): return Const(int(os.environ.get(x, str(val)))) VM_MEMORY_SIZE_IN_MB = env_int('TILCK_VM_MEM', 128) GEN_TEST_DATA = env_bool('GEN_TEST_DATA') IN_TRAVIS = env_bool('TRAVIS') IN_CIRCLECI = env_bool('CIRCLECI') IN_AZURE = env_bool('AZURE_HTTP_USER_AGENT') CI = env_bool('CI') DUMP_COV = env_bool('DUMP_COV') REPORT_COV = env_bool('REPORT_COV') VERBOSE = env_bool('VERBOSE') IN_ANY_CI = Const(IN_TRAVIS.val or IN_CIRCLECI.val or IN_AZURE.val or CI.val) ReloadAsConstModule(__name__)
25.296296
77
0.751098
a50d92ea7ad239e15d642bffd39cff71238d0877
3,042
py
Python
main.py
guntata/-2-
87814dbddc4e95b5413b09ceec6527c896e3eb66
[ "Apache-2.0" ]
null
null
null
main.py
guntata/-2-
87814dbddc4e95b5413b09ceec6527c896e3eb66
[ "Apache-2.0" ]
null
null
null
main.py
guntata/-2-
87814dbddc4e95b5413b09ceec6527c896e3eb66
[ "Apache-2.0" ]
null
null
null
from __future__ import print_function import matplotlib; matplotlib.use('Agg') import os import os.path as osp import argparse from train import train from test import test from test_beam import test_beam parser = argparse.ArgumentParser(description='PyTorch Convolutional Image Captioning Model') parser.add_argument('model_dir', help='output directory to save models & results') parser.add_argument('-g', '--gpu', type=int, default=1,\ help='gpu device id') parser.add_argument('--coco_root', type=str, default= './data/coco/',\ help='directory containing coco dataset train2014, val2014, & annotations') parser.add_argument('-t', '--is_train', type=int, default=1,\ help='use 1 to train model') parser.add_argument('-e', '--epochs', type=int, default=30,\ help='number of training epochs') parser.add_argument('-b', '--batchsize', type=int, default=20,\ help='number of images per training batch') parser.add_argument('-c', '--ncap_per_img', type=int, default=5,\ help='ground-truth captions per image in training batch') parser.add_argument('-n', '--num_layers', type=int, default=3,\ help='depth of convcap network') parser.add_argument('-m', '--nthreads', type=int, default=4,\ help='pytorch data loader threads') parser.add_argument('-ft', '--finetune_after', type=int, default=8,\ help='epochs after which vgg16 is fine-tuned') parser.add_argument('-lr', '--learning_rate', type=float, default=5e-5,\ help='learning rate for convcap') parser.add_argument('-st', '--lr_step_size', type=int, default=15,\ help='epochs to decay learning rate after') parser.add_argument('-sc', '--score_select', type=str, default='CIDEr',\ help='metric to pick best model') parser.add_argument('--beam_size', type=int, default=1, \ help='beam size to use for test') parser.add_argument('--attention', dest='attention', action='store_true', \ help='Use this for convcap with attention (by default set)') parser.add_argument('--no-attention', dest='attention', action='store_false', \ help='Use this for convcap without attention') parser.set_defaults(attention=True) args = parser.parse_args() def main(): """Train model and run inference on coco test set to output metrics""" os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu) if(args.is_train == 1): train(args) bestmodelfn = osp.join(args.model_dir, 'bestmodel.pth') if(osp.exists(bestmodelfn)): if(args.beam_size == 1): scores = test(args, 'test', modelfn=bestmodelfn) else: scores = test_beam(args, 'test', modelfn=bestmodelfn) print('TEST set scores') for k, v in scores[0].iteritems(): print('%s: %f' % (k, v)) else: raise Exception('No checkpoint found %s' % bestmodelfn) if __name__ == '__main__': main()
33.8
95
0.642669
19802b903dba28a18c9f316c2f7adb7edac2c1db
12,091
py
Python
galloper/api/sequrity_report.py
borysvorona/galloper
09d5e78f0e17c8f309666db7bcf3f7bf6a766ffa
[ "Apache-2.0" ]
1
2020-03-11T13:36:16.000Z
2020-03-11T13:36:16.000Z
galloper/api/sequrity_report.py
borysvorona/galloper
09d5e78f0e17c8f309666db7bcf3f7bf6a766ffa
[ "Apache-2.0" ]
null
null
null
galloper/api/sequrity_report.py
borysvorona/galloper
09d5e78f0e17c8f309666db7bcf3f7bf6a766ffa
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 getcarrier.io # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import hashlib from datetime import datetime from flask import request from flask_restful import Resource from sqlalchemy import or_, and_ from galloper.database.models.project import Project from galloper.database.models.security_details import SecurityDetails from galloper.database.models.security_reports import SecurityReport from galloper.database.models.security_results import SecurityResults from galloper.utils.api_utils import build_req_parser class SecurityReportAPI(Resource): get_rules = ( dict(name="offset", type=int, default=0, location="args"), dict(name="limit", type=int, default=0, location="args"), dict(name="search", type=str, default="", location="args"), dict(name="sort", type=str, default="", location="args"), dict(name="order", type=str, default="", location="args"), ) delete_rules = ( dict(name="id[]", type=int, action="append", location="args"), ) post_rules = ( dict(name="project_name", type=str, location="json"), dict(name="app_name", type=str, location="json"), dict(name="scan_time", type=float, location="json"), dict(name="dast_target", type=str, location="json"), dict(name="sast_code", type=str, location="json"), dict(name="scan_type", type=str, location="json"), dict(name="findings", type=int, location="json"), dict(name="false_positives", type=int, location="json"), dict(name="excluded", type=int, location="json"), dict(name="info_findings", type=int, location="json"), dict(name="environment", type=str, location="json") ) def __init__(self): self.__init_req_parsers() def __init_req_parsers(self): self._parser_get = build_req_parser(rules=self.get_rules) self._parser_post = build_req_parser(rules=self.post_rules) self._parser_delete = build_req_parser(rules=self.delete_rules) def get(self, project_id): reports = [] args = self._parser_get.parse_args(strict=False) search_ = args.get("search") limit_ = args.get("limit") offset_ = args.get("offset") if args.get("sort"): sort_rule = getattr(getattr(SecurityResults, args["sort"]), args["order"])() else: sort_rule = SecurityResults.id.desc() if not args.get("search") and not args.get("sort"): total = SecurityResults.query.filter_by(project_id=project_id).order_by(sort_rule).count() res = SecurityResults.query.filter_by(project_id=project_id).\ order_by(sort_rule).limit(limit_).offset(offset_).all() else: filter_ = and_(SecurityResults.project_id==project_id, or_(SecurityResults.project_name.like(f"%{search_}%"), SecurityResults.app_name.like(f"%{search_}%"), SecurityResults.scan_type.like(f"%{search_}%"), SecurityResults.environment.like(f"%{search_}%"))) res = SecurityResults.query.filter(filter_).order_by(sort_rule).limit(limit_).offset(offset_).all() total = SecurityResults.query.filter(filter_).order_by(sort_rule).count() for each in res: each_json = each.to_json() each_json["scan_time"] = each_json["scan_time"].replace("T", " ").split(".")[0] each_json["scan_duration"] = float(each_json["scan_duration"]) reports.append(each_json) return {"total": total, "rows": reports} def delete(self, project_id: int): args = self._parser_delete.parse_args(strict=False) project = Project.query.get_or_404(project_id) for each in SecurityReport.query.filter( and_(SecurityReport.project_id == project.id, SecurityReport.report_id.in_(args["id[]"])) ).order_by(SecurityReport.id.asc()).all(): each.delete() for each in SecurityResults.query.filter( SecurityResults.id.in_(args["id[]"]) ).order_by(SecurityResults.id.asc()).all(): each.delete() return {"message": "deleted"} def post(self, project_id: int): args = self._parser_post.parse_args(strict=False) project = Project.query.get_or_404(project_id) # TODO DAST scans limit check report = SecurityResults(scan_time=datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S"), project_id=project.id, scan_duration=args["scan_time"], project_name=args["project_name"], app_name=args["app_name"], dast_target=args["dast_target"], sast_code=args["sast_code"], scan_type=args["scan_type"], findings=args["findings"], false_positives=args["false_positives"], excluded=args["excluded"], info_findings=args["info_findings"], environment=args["environment"]) report.insert() return {"id": report.id} class FindingsAPI(Resource): get_rules = ( dict(name="id", type=int, location="args"), dict(name="type", type=str, location="args") ) put_rules = ( dict(name="id", type=int, location="json"), dict(name="action", type=str, location="json"), dict(name="issue_id", type=int, location="json") ) def __init__(self): self.__init_req_parsers() def __init_req_parsers(self): self._parser_get = build_req_parser(rules=self.get_rules) self._parser_put = build_req_parser(rules=self.put_rules) def get(self, project_id: int): args = self._parser_get.parse_args(strict=False) if args["type"] == "false_positives": filt = and_(SecurityReport.project_id == project_id, SecurityReport.report_id == args["id"], SecurityReport.false_positive == 1) elif args["type"] == "findings": filt = and_(SecurityReport.project_id == project_id, SecurityReport.report_id == args["id"], SecurityReport.info_finding == 0, SecurityReport.false_positive == 0, SecurityReport.excluded_finding == 0) elif args["type"] == "info_findings": filt = and_(SecurityReport.project_id == project_id, SecurityReport.report_id == args["id"], SecurityReport.info_finding == 1) elif args["type"] == "excluded_finding": filt = and_(SecurityReport.project_id == project_id, SecurityReport.report_id == args["id"], SecurityReport.excluded_finding == 1) else: filt = and_(SecurityReport.project_id == project_id, SecurityReport.report_id == args["id"]) issues = SecurityReport.query.filter(filt).all() results = [] for issue in issues: _res = issue.to_json() _res["details"] = SecurityDetails.query.filter_by(id=_res["details"]).first().details results.append(_res) return results def post(self, project_id: int): finding_db = None for finding in request.json: md5 = hashlib.md5(finding["details"].encode("utf-8")).hexdigest() hash_id = SecurityDetails.query.filter( and_(SecurityDetails.project_id == project_id, SecurityDetails.detail_hash == md5) ).first() if not hash_id: hash_id = SecurityDetails(detail_hash=md5, project_id=project_id, details=finding["details"]) hash_id.insert() # Verify issue is false_positive or ignored finding["details"] = hash_id.id finding['project_id'] = project_id entrypoints = "" if finding.get("endpoints"): for each in finding.get("endpoints"): if isinstance(each, list): entrypoints += "<br />".join(each) else: entrypoints += f"<br />{each}" finding["endpoints"] = entrypoints if not (finding["false_positive"] == 1 or finding["excluded_finding"] == 1): # TODO: add validation that finding is a part of project, application. etc. issues = SecurityReport.query.filter( and_(SecurityReport.issue_hash == finding["issue_hash"], or_(SecurityReport.false_positive == 1, SecurityReport.excluded_finding == 1) )).all() false_positive = sum(issue.false_positive for issue in issues) excluded_finding = sum(issue.excluded_finding for issue in issues) finding["false_positive"] = 1 if false_positive > 0 else 0 finding["excluded_finding"] = 1 if excluded_finding > 0 else 0 finding_db = SecurityReport(**finding) finding_db.add() if finding_db: finding_db.commit() def put(self, project_id: int): args = self._parser_put.parse_args(strict=False) issue_hash = SecurityReport.query.filter(and_(SecurityReport.project_id == project_id, SecurityReport.id == args["issue_id"]) ).first().issue_hash if args["action"] in ("false_positive", "excluded_finding"): upd = {args["action"]: 1} else: upd = {"false_positive": 0, "info_finding": 0} # TODO: add validation that finding is a part of project, application. etc. SecurityReport.query.filter(and_( SecurityReport.project_id == project_id, SecurityReport.issue_hash == issue_hash) ).update(upd) SecurityReport.commit() return {"message": "accepted"} class FindingsAnalysisAPI(Resource): get_rules = ( dict(name="project_name", type=str, location="args"), dict(name="app_name", type=str, location="args"), dict(name="scan_type", type=str, location="args"), dict(name="type", type=str, default="false-positive", location="args") ) def __init__(self): self.__init_req_parsers() def __init_req_parsers(self): self._parser_get = build_req_parser(rules=self.get_rules) def get(self, project_id: int): args = self._parser_get.parse_args(strict=False) projects_filter = and_(SecurityResults.project_id == project_id, SecurityResults.project_name == args["project_name"], SecurityResults.app_name == args["app_name"], SecurityResults.scan_type == args["scan_type"]) ids = SecurityResults.query.filter(projects_filter).all() ids = [each.id for each in ids] hashs = SecurityReport.query.filter( and_(SecurityReport.false_positive == 1, SecurityReport.report_id.in_(ids)) ).with_entities(SecurityReport.issue_hash).distinct() return [_.issue_hash for _ in hashs]
47.415686
111
0.592259
1673dff8123bbcb4f2d081f9e0d321fb5e76890b
1,887
py
Python
src/maintenance/setup.py
haroonf/azure-cli-extensions
61c044d34c224372f186934fa7c9313f1cd3a525
[ "MIT" ]
1
2022-02-18T00:16:47.000Z
2022-02-18T00:16:47.000Z
src/maintenance/setup.py
haroonf/azure-cli-extensions
61c044d34c224372f186934fa7c9313f1cd3a525
[ "MIT" ]
9
2022-03-25T19:35:49.000Z
2022-03-31T06:09:47.000Z
src/maintenance/setup.py
haroonf/azure-cli-extensions
61c044d34c224372f186934fa7c9313f1cd3a525
[ "MIT" ]
1
2022-03-10T22:13:02.000Z
2022-03-10T22:13:02.000Z
#!/usr/bin/env python # -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- from codecs import open from setuptools import setup, find_packages # HISTORY.rst entry. VERSION = '1.3.0' try: from azext_maintenance.manual.version import VERSION except ImportError: pass # The full list of classifiers is available at # https://pypi.python.org/pypi?%3Aaction=list_classifiers CLASSIFIERS = [ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Intended Audience :: System Administrators', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'License :: OSI Approved :: MIT License', ] DEPENDENCIES = [] try: from azext_maintenance.manual.dependency import DEPENDENCIES except ImportError: pass with open('README.md', 'r', encoding='utf-8') as f: README = f.read() with open('HISTORY.rst', 'r', encoding='utf-8') as f: HISTORY = f.read() setup( name='maintenance', version=VERSION, description='Microsoft Azure Command-Line Tools MaintenanceManagementClient Extension', author='Microsoft Corporation', author_email='azpycli@microsoft.com', url='https://github.com/Azure/azure-cli-extensions/tree/main/src/maintenance', long_description=README + '\n\n' + HISTORY, license='MIT', classifiers=CLASSIFIERS, packages=find_packages(), install_requires=DEPENDENCIES, package_data={'azext_maintenance': ['azext_metadata.json']}, )
31.983051
94
0.6354
88ba44a50899b0dd7d69b492ce481c7870b373f0
56,972
py
Python
clifter_slam/structures/pointclouds.py
slowy07/clifter_slam
4b4fc2dde07bb4d66084c09f53b88a87c8cbf319
[ "MIT" ]
12
2021-09-05T10:56:42.000Z
2021-11-21T07:38:17.000Z
clifter_slam/structures/pointclouds.py
slowy07/clifter_slam
4b4fc2dde07bb4d66084c09f53b88a87c8cbf319
[ "MIT" ]
null
null
null
clifter_slam/structures/pointclouds.py
slowy07/clifter_slam
4b4fc2dde07bb4d66084c09f53b88a87c8cbf319
[ "MIT" ]
2
2021-09-05T10:56:46.000Z
2021-10-23T00:46:43.000Z
from typing import List, Optional, Union import open3d as o3d import plotly.graph_objects as go import torch from ..geometry import projutils from . import structutils __all__ = ["Pointclouds"] class Pointclouds(object): r"""Batch of pointclouds (with varying numbers of points), enabling conversion between 2 representations: - List: Store points of each pointcloud of shape :math:`(N_b, 3)` in a list of length :math:`B`. - Padded: Store all points in a :math:`(B, max(N_b), 3)` tensor with zero padding as required. Args: points (torch.Tensor or list of torch.Tensor or None): :math:`(X, Y, Z)` coordinates of each point. Default: None normals (torch.Tensor or list of torch.Tensor or None): Normals :math:`(N_x, N_y, N_z)` of each point. Default: None colors (torch.Tensor or list of torch.Tensor or None): :math:`(R, G, B)` color of each point. Default: None features (torch.Tensor or list of torch.Tensor or None): :math:`C` features of each point. Default: None device (torch.device or str or None): The desired device of internal tensors. If None, sets device to be same as `points` device. Default: None Shape: - points: Can either be a list of tensors of shape :math:`(N_b, 3)` or a padded tensor of shape :math:`(B, N, 3)`. - normals: Can either be a list of tensors of shape :math:`(N_b, 3)` or a padded tensor of shape :math:`(B, N, 3)`. - colors: Can either be a list of tensors of shape :math:`(N_b, 3)` or a padded tensor of shape :math:`(B, N, 3)`. - features: Can either be a list of tensors of shape :math:`(N_b, C)` or a padded tensor of shape :math:`(B, N, C)`. Examples:: >>> points_list = [torch.rand(1, 3), torch.rand(4, 3)] >>> pcs1 = clifter_slam.Pointclouds(points_list) >>> print(pcs1.points_padded.shape) torch.Size([2, 4, 3]) >>> print(len(pcs1.points_list)) 2 >>> pcs2 = clifter_slam.Pointclouds(torch.rand((2, 4, 3))) >>> print(pcs2.points_padded.shape) torch.Size([2, 4, 3]) """ _INTERNAL_TENSORS = [ "_points_padded", "_normals_padded", "_colors_padded", "_features_padded", "_nonpad_mask", "_num_points_per_pointcloud", ] def __init__( self, points: Union[List[torch.Tensor], torch.Tensor, None] = None, normals: Union[List[torch.Tensor], torch.Tensor, None] = None, colors: Union[List[torch.Tensor], torch.Tensor, None] = None, features: Union[List[torch.Tensor], torch.Tensor, None] = None, device: Union[torch.device, str, None] = None, ): super().__init__() # input types: list or tensor or None if not (points is None or isinstance(points, list) or torch.is_tensor(points)): msg = "Expected points to be of type list or tensor or None; got %r" raise TypeError(msg % type(points)) if not (normals is None or isinstance(normals, type(points))): msg = "Expected normals to be of same type as points (%r); got %r" raise TypeError(msg % (type(points), type(normals))) if not (colors is None or isinstance(colors, type(points))): msg = "Expected colors to be of same type as points (%r); got %r" raise TypeError(msg % (type(points), type(colors))) if not (features is None or isinstance(features, type(points))): msg = "Expected features to be of same type as points (%r); got %r" raise TypeError(msg % (type(points), type(features))) if points is not None and len(points) == 0: raise ValueError("len(points) (= 0) should be > 0") self._points_list = None self._normals_list = None self._colors_list = None self._features_list = None self._points_padded = None self._normals_padded = None self._colors_padded = None self._features_padded = None self._nonpad_mask = None self._has_points = None self._has_normals = None self._has_colors = None self._has_features = None self._num_points_per_pointcloud = None self.equisized = False if isinstance(points, list): # points shape check points_shape_per_pointcloud = [p.shape for p in points] if any([p.ndim != 2 for p in points]): raise ValueError("ndim of all tensors in points list should be 2") if any([x[-1] != 3 for x in points_shape_per_pointcloud]): raise ValueError( "last dim of all tensors in points should have shape 3 (X, Y, Z)" ) self.device = ( torch.Tensor().to(device).device if device is not None else points[0].device ) self._points_list = [p.to(self.device) for p in points] num_points_per_pointcloud = [x[0] for x in points_shape_per_pointcloud] # attributes shape check if not ( normals is None or [n.shape for n in normals] == points_shape_per_pointcloud ): raise ValueError( "normals tensors should have same shape as points tensors, but didn't" ) if not ( colors is None or [c.shape for c in colors] == points_shape_per_pointcloud ): raise ValueError( "colors tensors should have same shape as points tensors, but didn't" ) if not (features is None or all([f.ndim == 2 for f in features])): raise ValueError("ndim of all tensors in features list should be 2") if not ( features is None or [len(f) for f in features] == num_points_per_pointcloud ): raise ValueError( "number of features per pointcloud has to be equal to number of points" ) if not (features is None or len(set([f.shape[-1] for f in features])) == 1): raise ValueError("number of features per pointcloud has to be the same") self._normals_list = ( None if normals is None else [n.to(self.device) for n in normals] ) self._colors_list = ( None if colors is None else [c.to(self.device) for c in colors] ) self._features_list = ( None if features is None else [f.to(self.device) for f in features] ) self._B = len(self._points_list) self._num_points_per_pointcloud = torch.tensor( num_points_per_pointcloud, device=self.device ) self._N = self._num_points_per_pointcloud.max().item() self.equisized = len(self._num_points_per_pointcloud.unique()) == 1 elif torch.is_tensor(points): self.device = ( torch.Tensor().to(device).device if device is not None else points.device ) # check points shape (B, N, 3) if points.ndim != 3: msg = "points should have ndim=3, but had ndim={}".format(points.ndim) raise ValueError(msg) if points.shape[-1] != 3: msg = ( "last dim of points should have shape 3 (X, Y, Z) but had shape %r" ) raise ValueError(msg % (points.shape[-1])) if points.shape[0] == 0: msg = "Batch size of 0 not supported yet. Got input points shape {}.".format( points.shape ) raise ValueError(msg) # check attribute shapes match points shape if not (normals is None or normals.shape == points.shape): msg = "normals tensor should have same shape as points tensor, but didn't: %r != %r" raise ValueError(msg % (normals.shape, points.shape)) if not (colors is None or colors.shape == points.shape): msg = "colors tensor should have same shape as points tensor, but didn't: %r != %r" raise ValueError(msg % (colors.shape, points.shape)) if not (features is None or features.ndim == 3): msg = "features should have ndim=3, but had ndim={}".format( features.ndim ) raise ValueError(msg) if not (features is None or features.shape[:-1] == points.shape[:-1]): msg = "first 2 dims of features tensor and points tensor should have same shape, but didn't: %r != %r" raise ValueError(msg % (features.shape[:-1], points.shape[:-1])) self._points_padded = points.to(self.device) self._normals_padded = None if normals is None else normals.to(self.device) self._colors_padded = None if colors is None else colors.to(self.device) self._features_padded = ( None if features is None else features.to(self.device) ) self._B = self._points_padded.shape[0] self._N = self._points_padded.shape[1] self._num_points_per_pointcloud = torch.tensor( [self._N for _ in range(self._B)], device=self.device ) self.equisized = True elif points is None: self.device = ( torch.Tensor().to(device).device if device is not None else torch.device("cpu") ) self._B = 0 self._N = 0 self._num_points_per_pointcloud = torch.tensor([0], device=self.device) self.equisized = None else: raise ValueError( "points must either be None, a list, or a tensor with shape (batch_size, N, 3) where N is \ the maximum number of points." ) def __len__(self): return self._B def __getitem__(self, index): r""" Args: index (int or slice or list of int or torch.Tensor): Specifying the index of the pointclouds to retrieve. Can be an int, slice, list of ints or a boolean tensor. Returns: clifter_slam.Pointclouds: Selected pointclouds. The pointclouds tensors are not cloned. """ if not self.has_points: raise IndexError("Cannot index empty pointclouds object") if isinstance(index, (int, slice)): points = self.points_list[index] normals = self.normals_list[index] if self.has_normals else None colors = self.colors_list[index] if self.has_colors else None features = self.features_list[index] if self.has_features else None elif isinstance(index, list): points = [self.points_list[i] for i in index] normals = ( [self.normals_list[i] for i in index] if self.has_normals else None ) colors = [self.colors_list[i] for i in index] if self.has_colors else None features = ( [self.features_list[i] for i in index] if self.has_features else None ) elif isinstance(index, torch.Tensor): if index.dim() != 1 or index.dtype.is_floating_point: raise IndexError(index) if index.dtype == torch.bool: index = index.nonzero() index = index.squeeze(1) if index.numel() > 0 else index index = index.tolist() points = [self.points_list[i] for i in index] normals = ( [self.normals_list[i] for i in index] if self.has_normals else None ) colors = [self.colors_list[i] for i in index] if self.has_colors else None features = ( [self.features_list[i] for i in index] if self.has_features else None ) else: raise IndexError(index) if isinstance(points, list): return Pointclouds( points=points, normals=normals, colors=colors, features=features ) elif torch.is_tensor(points): points = [points] normals = None if normals is None else [normals] colors = None if colors is None else [colors] features = None if features is None else [features] return Pointclouds( points=points, normals=normals, colors=colors, features=features ) else: raise ValueError("points not defined correctly") def __add__(self, other): r"""Out-of-place implementation of `Pointclouds.offset_`""" try: return self.clone().offset_(other) except TypeError: raise NotImplementedError( "Pointclouds + {} currently not implemented.".format(type(other)) ) def __sub__(self, other): r"""Subtracts `other` from all Pointclouds' points (`Pointclouds` - `other`). Args: other (torch.Tensor or float or int): Value(s) to subtract from all points. returns: clifter_slam.Pointclouds: Subtracted Pointclouds """ try: return self.clone().offset_(other * -1) except TypeError: raise NotImplementedError( "Pointclouds - {} currently not implemented.".format(type(other)) ) def __mul__(self, other): r"""Out-of-place implementation of `Pointclouds.scale_`""" try: return self.clone().scale_(other) except TypeError: raise NotImplementedError( "Pointclouds * {} currently not implemented.".format(type(other)) ) def __truediv__(self, other): r"""Divides all Pointclouds' points by `other`. Args: other (torch.Tensor or float or int): Value(s) to divide all points by. Returns: self Shape: - other: Any. Must be compatible with :math:`(B, N, 3)`. """ try: return self.__mul__(1.0 / other) except TypeError: raise NotImplementedError( "Pointclouds / {} currently not implemented.".format(type(other)) ) def __matmul__(self, other): r"""Post-multiplication :math:`SE(3)` transformation or :math:`SO(3)` rotation of Pointclouds' points and normals. Args: other (torch.Tensor): Either :math:`SE(3)` transformation or :math:`SO(3)` rotation Returns: self Shape: - other: Either :math:`SE(3)` transformation of shape :math:`(4, 4)` or :math:`(B, 4, 4)`, or :math:`SO(3)` rotation of shape :math:`(3, 3)` or :math:`(B, 3, 3)` """ if not torch.is_tensor(other): raise NotImplementedError( "Pointclouds @ {} currently not implemented.".format(type(other)) ) if not ( (other.ndim == 2 or other.ndim == 3) and (other.shape[-2:] == (3, 3) or other.shape[-2:] == (4, 4)) ): msg = "Unsupported shape for Pointclouds @ operand: {}\n".format( other.shape ) msg += "Use tensor of shape (3, 3) or (B, 3, 3) for rotations, or (4, 4) or (B, 4, 4) for transformations" raise ValueError(msg) if other.shape[-2:] == (3, 3): return self.clone().rotate_(other, pre_multiplication=False) if other.shape[-2:] == (4, 4): return self.clone().transform_(other, pre_multiplication=False) def rotate(self, rmat: torch.Tensor, *, pre_multiplication=True): r"""Out-of-place implementation of `Pointclouds.rotate_`""" return self.clone().rotate_(rmat, pre_multiplication=pre_multiplication) def transform(self, transform: torch.Tensor, *, pre_multiplication=True): r"""Out-of-place implementation of `Pointclouds.transform_`""" return self.clone().transform_(transform, pre_multiplication=pre_multiplication) def pinhole_projection(self, intrinsics: torch.Tensor): r"""Out-of-place implementation of `Pointclouds.pinhole_projection_`""" return self.clone().pinhole_projection_(intrinsics) def offset_(self, offset: Union[torch.Tensor, float, int]): r"""Adds :math:`offset` to all Pointclouds' points. In place operation. Args: offset (torch.Tensor or float or int): Value(s) to add to all points. Returns: self Shape: - offset: Any. Must be compatible with :math:`(B, N, 3)`. """ if not ( torch.is_tensor(offset) or isinstance(offset, float) or isinstance(offset, int) ): raise TypeError( "Operand should be tensor, float or int but was %r instead" % type(offset) ) if not self.has_points: return self # update padded representation self._points_padded = self.points_padded + ( offset * self.nonpad_mask.to(self.points_padded.dtype).unsqueeze(-1) ) # update list representation when inferred self._points_list = None return self def scale_(self, scale: Union[torch.Tensor, float, int]): r"""Scales all Pointclouds' points by `scale`. In place operation. Args: scale (torch.Tensor or float or int): Value(s) to scale all points by. Returns: self Shape: - scale: Any. Must be compatible with :math:`(B, N, 3)`. """ if not ( torch.is_tensor(scale) or isinstance(scale, float) or isinstance(scale, int) ): raise TypeError( "Operand should be tensor, float or int but was %r instead" % type(scale) ) if not self.has_points: return self # update padded representation self._points_padded = ( self.points_padded * scale * self.nonpad_mask.to(self.points_padded.dtype).unsqueeze(-1) ) # update list representation when inferred self._points_list = None return self def rotate_(self, rmat: torch.Tensor, *, pre_multiplication=True): r"""Applies batch or single :math:`SO(3)` rotation to all Pointclouds' points and normals. In place operation. Args: rmat (torch.Tensor): Either batch or single :math:`SO(3)` rotation matrix pre_multiplication (torch.Tensor): If True, will pre-multiply the rotation. Otherwise will post-multiply the rotation. Default: True Returns: self Shape: - rmat: :math:`(3, 3)` or :math:`(B, 3, 3)` """ if not torch.is_tensor(rmat): raise TypeError( "Rotation matrix should be tensor, but was %r instead" % type(rmat) ) if not ((rmat.ndim == 2 or rmat.ndim == 3) and rmat.shape[-2:] == (3, 3)): raise ValueError( "Rotation matrix should be of shape (3, 3) or (B, 3, 3), but was {} instead.".format( rmat.shape ) ) if rmat.ndim == 3 and rmat.shape[0] != self._B: raise ValueError( "Rotation matrix batch size ({}) != Pointclouds batch size ({})".format( rmat.shape[0], self._B ) ) if not self.has_points: return self if pre_multiplication: rmat = rmat.transpose(-1, -2) # update padded representation if rmat.ndim == 2: self._points_padded = torch.einsum("bij,jk->bik", self.points_padded, rmat) self._normals_padded = ( None if self.normals_padded is None else torch.einsum("bij,jk->bik", self.normals_padded, rmat) ) elif rmat.ndim == 3: self._points_padded = torch.einsum("bij,bjk->bik", self.points_padded, rmat) self._normals_padded = ( None if self.normals_padded is None else torch.einsum("bij,bjk->bik", self.normals_padded, rmat) ) # force update of list representation self._points_list = None self._normals_list = None return self def transform_(self, transform: torch.Tensor, *, pre_multiplication=True): r"""Applies batch or single :math:`SE(3)` transformation to all Pointclouds' points and normals. In place operation. Args: transform (torch.Tensor): Either batch or single :math:`SE(3)` transformation tensor pre_multiplication (torch.Tensor): If True, will pre-multiply the transformation. Otherwise will post-multiply the transformation. Default: True Returns: self Shape: - transform: :math:`(4, 4)` or :math:`(B, 4, 4)` """ if not torch.is_tensor(transform): raise TypeError( "transform should be tensor, but was %r instead" % type(transform) ) if not ( (transform.ndim == 2 or transform.ndim == 3) and transform.shape[-2:] == (4, 4) ): raise ValueError( "transform should be of shape (4, 4) or (B, 4, 4), but was {} instead.".format( transform.shape ) ) if transform.ndim == 3 and transform.shape[0] != self._B: raise ValueError( "transform batch size ({}) != Pointclouds batch size ({})".format( transform.shape[0], self._B ) ) if not self.has_points: return self # rotation and translation matrix rmat = transform[..., :3, :3] tvec = transform[..., :3, 3] # expand dims to ensure correct broadcasting of offset while tvec.ndim < self.points_padded.ndim: tvec = tvec.unsqueeze(-2) return self.rotate_(rmat, pre_multiplication=pre_multiplication).offset_(tvec) def pinhole_projection_(self, intrinsics: torch.Tensor): r"""Projects Pointclouds' points onto :math:`z=1` plane using intrinsics of a pinhole camera. In place operation. Args: intrinsics (torch.Tensor): Either batch or single intrinsics matrix Returns: self Shape: - intrinsics: :math:`(4, 4)` or :math:`(B, 4, 4)` """ if not torch.is_tensor(intrinsics): raise TypeError( "intrinsics should be tensor, but was {} instead".format( type(intrinsics) ) ) if not ( (intrinsics.ndim == 2 or intrinsics.ndim == 3) and intrinsics.shape[-2:] == (4, 4) ): msg = "intrinsics should be of shape (4, 4) or (B, 4, 4), but was {} instead.".format( intrinsics.shape ) raise ValueError(msg) if not self.has_points: return self projected_2d = projutils.project_points(self.points_padded, intrinsics) self._points_padded = projutils.homogenize_points( projected_2d ) * self.nonpad_mask.to(projected_2d.dtype).unsqueeze(-1) # force update of list representation self._points_list = None return self @property def has_points(self): r"""Determines whether pointclouds have points or not Returns: bool """ if self._has_points is None: self._has_points = ( self._points_list is not None or self._points_padded is not None ) return self._has_points @property def has_normals(self): r"""Determines whether pointclouds have normals or not Returns: bool """ if self._has_normals is None: self._has_normals = ( self._normals_list is not None or self._normals_padded is not None ) return self._has_normals @property def has_colors(self): r"""Determines whether pointclouds have colors or not Returns: bool """ if self._has_colors is None: self._has_colors = ( self._colors_list is not None or self._colors_padded is not None ) return self._has_colors @property def has_features(self): r"""Determines whether pointclouds have features or not Returns: bool """ if self._has_features is None: self._has_features = ( self._features_list is not None or self._features_padded is not None ) return self._has_features @property def num_features(self): r"""Determines number of features in pointclouds Returns: int """ if not self.has_features: return 0 if self._features_padded is not None: return self._features_padded.shape[-1] if self._features_list is not None: return self._features_list[0].shape[-1] @property def points_list(self): r"""Gets the list representation of the points. Returns: list of torch.Tensor: list of :math:`B` tensors of points of shape :math:`(N_b, 3)`. """ if self._points_list is None and self._points_padded is not None: self._points_list = [ p[0, : self._num_points_per_pointcloud[b]] for b, p in enumerate(self._points_padded.split([1] * self._B, 0)) ] return self._points_list @property def normals_list(self): r"""Gets the list representation of the point normals. Returns: list of torch.Tensor: list of :math:`B` tensors of normals of shape :math:`(N_b, 3)`. """ if self._normals_list is None and self._normals_padded is not None: self._normals_list = [ n[0, : self._num_points_per_pointcloud[b]] for b, n in enumerate(self._normals_padded.split([1] * self._B, 0)) ] return self._normals_list @property def colors_list(self): r"""Gets the list representation of the point colors. Returns: list of torch.Tensor: list of :math:`B` tensors of colors of shape :math:`(N_b, 3)`. """ if self._colors_list is None and self._colors_padded is not None: self._colors_list = [ c[0, : self._num_points_per_pointcloud[b]] for b, c in enumerate(self._colors_padded.split([1] * self._B, 0)) ] return self._colors_list @property def features_list(self): r"""Gets the list representation of the point features. Returns: list of torch.Tensor: list of :math:`B` tensors of features of shape :math:`(N_b, 3)`. """ if self._features_list is None and self._features_padded is not None: self._features_list = [ f[0, : self._num_points_per_pointcloud[b]] for b, f in enumerate(self._features_padded.split([1] * self._B, 0)) ] return self._features_list @property def points_padded(self): r"""Gets the padded representation of the points. Returns: torch.Tensor: tensor representation of points with zero padding as required Shape: - Output: :math:`(B, max(N_b), 3)` """ self._compute_padded() return self._points_padded @property def normals_padded(self): r"""Gets the padded representation of the normals. Returns: torch.Tensor: tensor representation of normals with zero padding as required Shape: - Output: :math:`(B, max(N_b), 3)` """ self._compute_padded() return self._normals_padded @property def colors_padded(self): r"""Gets the padded representation of the colors. Returns: torch.Tensor: tensor representation of colors with zero padding as required Shape: - Output: :math:`(B, max(N_b), 3)` """ self._compute_padded() return self._colors_padded @property def features_padded(self): r"""Gets the padded representation of the features. Returns: torch.Tensor: tensor representation of features with zero padding as required Shape: - Output: :math:`(B, max(N_b), C)` """ self._compute_padded() return self._features_padded @property def nonpad_mask(self): r"""Returns tensor of `bool` values which are True wherever points exist and False wherever there is padding. Returns: torch.Tensor: 2d `bool` mask Shape: - Output: :math:`(B, N)` """ if self._nonpad_mask is None and self.has_points: self._nonpad_mask = torch.ones( (self._B, self._N), dtype=torch.bool, device=self.device ) if self.equisized: self._nonpad_mask[:, self._num_points_per_pointcloud[0] :] = 0 else: for b in range(self._B): self._nonpad_mask[b, self._num_points_per_pointcloud[b] :] = 0 return self._nonpad_mask @property def num_points_per_pointcloud(self): r"""Returns a 1D tensor with length equal to the number of pointclouds giving the number of points in each pointcloud. Returns: torch.Tensor: 1D tensor of sizes Shape: - Output: tensor of shape :math:`(B)`. """ return self._num_points_per_pointcloud @points_list.setter def points_list(self, value: List[torch.Tensor]): r"""Updates `points_list` representation. .. note:: The number of pointclouds and the number of points per pointcloud can not change. Args: value (list of torch.Tensor): list of :math:`B` tensors of points of shape :math:`(N_b, 3)`. Shape of tensors in `value` and `pointclouds.points_list` must match. """ self._assert_set_list(value) self._points_list = [v.clone().to(self.device) for v in value] self._points_padded = None @normals_list.setter def normals_list(self, value: List[torch.Tensor]): r"""Updates `normals_list` representation. .. note:: The number of pointclouds and the number of points per pointcloud can not change. Args: value (list of torch.Tensor): list of :math:`B` tensors of points of shape :math:`(N_b, 3)`. Shape of tensors in `value` and `pointclouds.points_list` must match. """ self._assert_set_list(value) self._normals_list = [v.clone().to(self.device) for v in value] self._noramls_padded = None @colors_list.setter def colors_list(self, value: List[torch.Tensor]): r"""Updates `colors_list` representation. .. note:: The number of pointclouds and the number of points per pointcloud can not change. Args: value (list of torch.Tensor): list of :math:`B` tensors of points of shape :math:`(N_b, 3)`. Shape of tensors in `value` and `pointclouds.points_list` must match. """ self._assert_set_list(value) self._colors_list = [v.clone().to(self.device) for v in value] self._noramls_padded = None @features_list.setter def features_list(self, value: List[torch.Tensor]): r"""Updates `features_list` representation. .. note:: The number of pointclouds and the number of points per pointcloud can not change. Args: value (list of torch.Tensor): list of :math:`B` tensors of points of shape :math:`(N_b, C)`. Shape of tensors in `value` and `pointclouds.points_list` must match. """ self._assert_set_list(value, first_dim_only=True) self._features_list = [v.clone().to(self.device) for v in value] self._noramls_padded = None @points_padded.setter def points_padded(self, value: torch.Tensor): r"""Updates `points_padded` representation. .. note:: The number of pointclouds and the number of points per pointcloud can not change (can not change the shape or padding of `points_padded`). Args: value (torch.Tensor): tensor representation of (zero padded) points with the same shape and number of points per pointcloud as `self.points_padded` Shape: - value: :math:`(B, max(N_b), 3)` """ self._assert_set_padded(value) self._points_padded = value.clone().to(self.device) self._points_list = None @normals_padded.setter def normals_padded(self, value: torch.Tensor): r"""Updates `normals_padded` representation. .. note:: The number of pointclouds and the number of points per pointcloud can not change (can not change the shape or padding of `normals_padded`). Args: value (torch.Tensor): tensor representation of (zero padded) normals with the same shape and number of points per pointcloud as `self.points_padded` Shape: - value: :math:`(B, max(N_b), 3)` """ self._assert_set_padded(value) self._normals_padded = value.clone().to(self.device) self._normals_list = None @colors_padded.setter def colors_padded(self, value: torch.Tensor): r"""Updates `colors_padded` representation. .. note:: The number of pointclouds and the number of points per pointcloud can not change (can not change the shape or padding of `colors_padded`). Args: value (torch.Tensor): tensor representation of (zero padded) colors with the same shape and number of points per pointcloud as `self.points_padded` Shape: - value: :math:`(B, max(N_b), 3)` """ self._assert_set_padded(value) self._colors_padded = value.clone().to(self.device) self._colors_list = None @features_padded.setter def features_padded(self, value: torch.Tensor): r"""Updates `features_padded` representation. .. note:: The number of pointclouds and the number of points per pointcloud can not change (can not change the shape or padding of `features_padded`). Args: value (torch.Tensor): tensor representation of (zero padded) features with the same shape and number of points per pointcloud as `self.points_padded` Shape: - value: :math:`(B, max(N_b), C)` """ self._assert_set_padded(value, first_2_dims_only=True) self._features_padded = value.clone().to(self.device) self._features_list = None def _compute_padded(self, refresh: bool = False): r"""Computes the padded version of pointclouds. Args: refresh (bool): If True, will recompute padded representation even if it already exists """ if not self.has_points: return if not (refresh or self._points_padded is None): return self._points_padded = structutils.list_to_padded( self._points_list, (self._N, 3), pad_value=0.0, equisized=self.equisized, ) self._normals_padded = ( None if self._normals_list is None else structutils.list_to_padded( self._normals_list, (self._N, 3), pad_value=0.0, equisized=self.equisized, ) ) self._colors_padded = ( None if self._colors_list is None else structutils.list_to_padded( self._colors_list, (self._N, 3), pad_value=0.0, equisized=self.equisized, ) ) self._features_padded = ( None if self._features_list is None else structutils.list_to_padded( self._features_list, (self._N, self.num_features), pad_value=0.0, equisized=self.equisized, ) ) def clone(self): r"""Returns deep copy of Pointclouds object. All internal tensors are cloned individually. Returns: clifter_slam.Pointclouds: cloned clifter_slam.Pointclouds object """ if not self.has_points: return Pointclouds(device=self.device) elif self._points_list is not None: new_points = [p.clone() for p in self.points_list] new_normals = ( None if self._normals_list is None else [n.clone() for n in self._normals_list] ) new_colors = ( None if self._colors_list is None else [c.clone() for c in self._colors_list] ) new_features = ( None if self._features_list is None else [f.clone() for f in self._features_list] ) elif self._points_padded is not None: new_points = self._points_padded.clone() new_normals = ( None if self._normals_padded is None else self._normals_padded.clone() ) new_colors = ( None if self._colors_padded is None else self._colors_padded.clone() ) new_features = ( None if self._features_padded is None else self._features_padded.clone() ) other = Pointclouds( points=new_points, normals=new_normals, colors=new_colors, features=new_features, ) for k in self._INTERNAL_TENSORS: v = getattr(self, k) if torch.is_tensor(v): setattr(other, k, v.clone()) return other def detach(self): r"""Detachs Pointclouds object. All internal tensors are detached individually. Returns: clifter_slam.Pointclouds: detached clifter_slam.Pointclouds object """ other = self.clone() if other._points_list is not None: other._points_list = [p.detach() for p in other._points_list] if other._normals_list is not None: other._normals_list = [n.detach() for n in other._normals_list] if other._colors_list is not None: other._colors_list = [c.detach() for c in other._colors_list] if other._features_list is not None: other._features_list = [f.detach() for f in other._features_list] for k in self._INTERNAL_TENSORS: v = getattr(self, k) if torch.is_tensor(v): setattr(other, k, v.detach()) return other def to(self, device: Union[torch.device, str], copy: bool = False): r"""Match functionality of torch.Tensor.to(device) If copy = True or the self Tensor is on a different device, the returned tensor is a copy of self with the desired torch.device. If copy = False and the self Tensor already has the correct torch.device, then self is returned. Args: device (torch.device or str): Device id for the new tensor. copy (bool): Boolean indicator whether or not to clone self. Default False. Returns: clifter_slam.Pointclouds """ if not copy and self.device == device: return self other = self.clone() if self.device != device: # hack to know which gpu is used when device("cuda") other.device = torch.Tensor().to(device).device if other._points_list is not None: other._points_list = [p.to(device) for p in other._points_list] if other._normals_list is not None: other._normals_list = [n.to(device) for n in other._normals_list] if other._colors_list is not None: other._colors_list = [c.to(device) for c in other._colors_list] if other._features_list is not None: other._features_list = [f.to(device) for f in other._features_list] for k in self._INTERNAL_TENSORS: v = getattr(self, k) if torch.is_tensor(v): setattr(other, k, v.to(device)) return other def cpu(self): r"""Match functionality of torch.Tensor.cpu() Returns: clifter_slam.Pointclouds """ return self.to(torch.device("cpu")) def cuda(self): r"""Match functionality of torch.Tensor.cuda() Returns: clifter_slam.Pointclouds """ return self.to(torch.device("cuda")) def append_points(self, pointclouds: "Pointclouds"): r"""Appends points, normals, colors and features of a clifter_slam.Pointclouds object to the current pointclouds. Both Pointclouds must have/not have the same attributes. In place operation. Args: pointclouds (clifter_slam.Pointclouds): Pointclouds to get appended to self. Must have same batch size as self. Returns: self """ if not isinstance(pointclouds, type(self)): raise TypeError( "Append object must be of type clifter_slam.Pointclouds, but was of type {}.".format( type(pointclouds) ) ) if not (pointclouds.device == self.device): raise ValueError( "Device of pointclouds to append and to be appended must match: ({0} != {1})".format( pointclouds.device, self.device ) ) if not pointclouds.has_points: return self if not self.has_points: if pointclouds.has_points: self._points_list = [ p.clone().to(self.device) for p in pointclouds.points_list ] if pointclouds.has_normals: self._normals_list = [ n.clone().to(self.device) for n in pointclouds.normals_list ] if pointclouds.has_colors: self._colors_list = [ c.clone().to(self.device) for c in pointclouds.colors_list ] if pointclouds.has_features: self._features_list = [ f.clone().to(self.device) for f in pointclouds.features_list ] self._has_points = pointclouds._has_points self._has_normals = pointclouds._has_normals self._has_colors = pointclouds._has_colors self._has_features = pointclouds._has_features self._B = pointclouds._B self._N = pointclouds._N self.equisized = pointclouds.equisized for k in self._INTERNAL_TENSORS: v = getattr(pointclouds, k) if torch.is_tensor(v): setattr(self, k, v.clone()) return self if not (len(pointclouds) == len(self)): raise ValueError( "Batch size of pointclouds to append and to be appended must match: ({0} != {1})".format( len(pointclouds), len(self) ) ) if self.has_normals != pointclouds.has_normals: raise ValueError( "pointclouds to append and to be appended must either both have or not have normals: ({0} != {1})".format( pointclouds.has_normals, self.has_normals ) ) if self.has_colors != pointclouds.has_colors: raise ValueError( "pointclouds to append and to be appended must either both have or not have colors: ({0} != {1})".format( pointclouds.has_colors, self.has_colors ) ) if self.has_features != pointclouds.has_features: raise ValueError( "pointclouds to append and to be appended must either both have or not have features: ({0} != {1})".format( pointclouds.has_features, self.has_features ) ) if self.has_features and self.num_features != pointclouds.num_features: raise ValueError( "pointclouds to append and to be appended must have the same number of features: ({0} != {1})".format( pointclouds.num_features, self.num_features ) ) self._points_list = [ torch.cat([self.points_list[b], pointclouds.points_list[b]], 0) for b in range(self._B) ] self._points_padded = None if self.has_normals: self._normals_list = [ torch.cat([self.normals_list[b], pointclouds.normals_list[b]], 0) for b in range(self._B) ] self._normals_padded = None if self.has_colors: self._colors_list = [ torch.cat([self.colors_list[b], pointclouds.colors_list[b]], 0) for b in range(self._B) ] self._colors_padded = None if self.has_features: self._features_list = [ torch.cat([self.features_list[b], pointclouds.features_list[b]], 0) for b in range(self._B) ] self._features_padded = None self._num_points_per_pointcloud = ( self._num_points_per_pointcloud + pointclouds._num_points_per_pointcloud ) self.equisized = len(self._num_points_per_pointcloud.unique()) == 1 self._N = self._num_points_per_pointcloud.max() self._nonpad_mask = None return self def open3d( self, index: int, include_colors: bool = True, max_num_points: Optional[int] = None, include_normals: bool = False, ): r"""Converts `index`-th pointcloud to a `open3d.geometry.Pointcloud` object (e.g. for visualization). Args: index (int): Index of which pointcloud (from the batch of pointclouds) to convert to `open3d.geometry.Pointcloud`. include_colors (bool): If True, will include colors in the `o3d.geometry.Pointcloud` objects. Default: True max_num_points (int): Maximum number of points to include in the returned object. If None, will not set a max size (will not downsample). Default: None include_normals (bool): If True, will include normal vectors in the `o3d.geometry.Pointcloud` objects. Default: False Returns: pcd (open3d.geometry.Pointcloud): `open3d.geometry.Pointcloud` object from `index`-th pointcloud. """ if not isinstance(index, int): raise TypeError("Index should be int, but was {}.".format(type(index))) pcd = o3d.geometry.PointCloud() num_points = self.num_points_per_pointcloud[index] torch_points = self.points_list[index] subsample = max_num_points is not None and max_num_points < num_points if subsample: perm = torch.randperm(num_points) point_inds = perm[:max_num_points] torch_points = torch_points[point_inds] numpy_points = torch_points.detach().cpu().numpy() pcd.points = o3d.utility.Vector3dVector(numpy_points) if self.has_colors and include_colors: torch_colors = self.colors_list[index] if subsample: torch_colors = torch_colors[point_inds] # if colors > 1, assume 255 range if (torch_colors.max() > 1.1).item(): torch_colors = torch_colors / 255 torch_colors = torch.clamp(torch_colors, min=0.0, max=1.0) numpy_colors = torch_colors.detach().cpu().numpy() pcd.colors = o3d.utility.Vector3dVector(numpy_colors) if self.has_normals and include_normals: torch_normals = self.normals_list[index] if subsample: torch_normals = torch_normals[point_inds] numpy_normals = torch_normals.detach().cpu().numpy() pcd.normals = o3d.utility.Vector3dVector(numpy_normals) return pcd def plotly( self, index: int, include_colors: bool = True, max_num_points: Optional[int] = 200000, as_figure: bool = True, point_size: int = 2, ): r"""Converts `index`-th pointcloud to either a `plotly.graph_objects.Figure` or a `plotly.graph_objects.Scatter3d` object (for visualization). Args: index (int): Index of which pointcloud (from the batch of pointclouds) to convert to plotly representation. include_colors (bool): If True, will include point colors in the returned object. Default: True max_num_points (int): Maximum number of points to include in the returned object. If None, will not set a max size (will not downsample). Default: 200000 as_figure (bool): If True, returns a `plotly.graph_objects.Figure` object which can easily be visualized by calling `.show()` on. Otherwise, returns a `plotly.graph_objects.Scatter3d` object. Default: True point_size (int): Point size radius (for visualization). Default: 2 Returns: plotly.graph_objects.Figure or plotly.graph_objects.Scatter3d: If `as_figure` is True, will return `plotly.graph_objects.Figure` object from the `index`-th pointcloud. Else, returns `plotly.graph_objects.Scatter3d` object from the `index`-th pointcloud. """ if not isinstance(index, int): raise TypeError("Index should be int, but was {}.".format(type(index))) num_points = self.num_points_per_pointcloud[index] torch_points = self.points_list[index] subsample = max_num_points is not None and max_num_points < num_points if subsample: perm = torch.randperm(num_points) point_inds = perm[:max_num_points] torch_points = torch_points[point_inds] numpy_points = torch_points.detach().cpu().numpy() marker_dict = {"size": point_size} if self.has_colors and include_colors: torch_colors = self.colors_list[index] if subsample: torch_colors = torch_colors[point_inds] # if colors > 1, assume 255 range if (torch_colors.max() < 1.1).item(): torch_colors = torch_colors * 255 torch_colors = torch.clamp(torch_colors, min=0.0, max=255.0) numpy_colors = torch_colors.detach().cpu().numpy().astype("uint8") marker_dict["color"] = numpy_colors scatter3d = go.Scatter3d( x=numpy_points[..., 0], y=numpy_points[..., 1], z=numpy_points[..., 2], mode="markers", marker=marker_dict, ) if not as_figure: return scatter3d fig = go.Figure(data=[scatter3d]) fig.update_layout( showlegend=False, scene=dict( xaxis=dict( showticklabels=False, showgrid=False, zeroline=False, visible=False, ), yaxis=dict( showticklabels=False, showgrid=False, zeroline=False, visible=False, ), zaxis=dict( showticklabels=False, showgrid=False, zeroline=False, visible=False, ), ), ) return fig def _assert_set_padded(self, value: torch.Tensor, first_2_dims_only: bool = False): r"""Checks if value can be set as a padded representation attribute Args: value (torch.Tensor): value we want to set as one of the padded representation attributes first_2_dims_only (bool): If True, will only check if first 2 dimensions of value are the same as `self.points_padded`. Otherwise will check the entire shape. Default: False """ if not isinstance(value, torch.Tensor): raise TypeError("value must be torch.Tensor. Got {}".format(type(value))) if not self.has_points: raise ValueError( "cannot set padded representation for an empty pointclouds object" ) if self.device != torch.device(value.device): raise ValueError( "value must have the same device as pointclouds object: {} != {}".format( value.device, torch.device(self.device) ) ) if value.ndim != 3: raise ValueError("value.ndim should be 3. Got {}".format(value.ndim)) if first_2_dims_only and self.points_padded.shape[:2] != value.shape[:2]: raise ValueError( "first 2 dims of value tensor and points tensor should have same shape, but didn't: {} != {}.".format( value.shape[:2], self.points_padded.shape[:2] ) ) if (not first_2_dims_only) and self.points_padded.shape != value.shape: raise ValueError( "value tensor and points tensor should have same shape, but didn't: {} != {}.".format( value.shape, self.points_padded.shape ) ) if not all( [ value[b][N_b:].eq(0).all().item() for b, N_b in enumerate(self.num_points_per_pointcloud) ] ): raise ValueError( "value must have zeros wherever pointclouds.points_padded has zero padding." ) def _assert_set_list(self, value: List[torch.Tensor], first_dim_only: bool = False): r"""Checks if value can be set as a list representation attribute Args: value (list of torch.Tensor): value we want to set as one of the list representation attributes first_dim_only (bool): If True, will only check if first dimension of value is the same as `self.points_padded`. Otherwise will check the entire shape. Default: False """ if not isinstance(value, list): raise TypeError( "value must be list of torch.Tensors. Got {}".format(type(value)) ) if not self.has_points: raise ValueError( "cannot set list representation for an empty pointclouds object" ) if len(self) != len(value): raise ValueError( "value must have same length as pointclouds.points_list. Got {} != {}.".format( len(value), len(self) ) ) if any([v.ndim != 2 for v in value]): raise ValueError("ndim of all tensors in value list should be 2") if first_dim_only and any( [ self.points_list[b].shape[:1] != value[b].shape[:1] for b in range(len(self)) ] ): raise ValueError( "shape of first 2 dims of tensors in value and pointclouds.points_list must match" ) if (not first_dim_only) and any( [self.points_list[b].shape != value[b].shape for b in range(len(self))] ): raise ValueError( "shape of tensors in value and pointclouds.points_list must match" )
38.809264
123
0.568771
aeb6ca53a6eda4a7ad863c9fdebbcc8ac7c9f404
2,036
py
Python
version.py
KD-Group/prett
b605a5637958eb9a475494bba2622b712b23c680
[ "MIT" ]
1
2017-11-28T10:31:45.000Z
2017-11-28T10:31:45.000Z
version.py
KD-Group/prett
b605a5637958eb9a475494bba2622b712b23c680
[ "MIT" ]
1
2018-05-21T04:53:15.000Z
2018-05-21T04:53:15.000Z
version.py
KD-Group/prett
b605a5637958eb9a475494bba2622b712b23c680
[ "MIT" ]
2
2018-01-03T12:13:13.000Z
2018-01-19T06:19:10.000Z
# 获取git的tag并保存在RELEASE-VERSION中, 以便每次打包自动识别最新的tag, # 并且作为version去发布, 如果不存在RELEASE-VERSION文件且无tag, 默认使用"0.0.1" # 使用前必须在MANIFEST.in中加入 # include RELEASE-VERSION # include version.py __all__ = ("get_git_version") import subprocess import os def get_git_latest_tag(): def _minimal_ext_cmd(cmd: str): # construct minimal environment env = {} for k in ['SYSTEMROOT', 'PATH']: v = os.environ.get(k) if v is not None: env[k] = v # LANGUAGE is used on win32 env['LANGUAGE'] = 'C' env['LANG'] = 'C' env['LC_ALL'] = 'C' out = subprocess.Popen(cmd.split(" "), stdout=subprocess.PIPE, env=env).communicate()[0] return out try: out = _minimal_ext_cmd("git describe --abbrev=0 --tags") git_tag = out.strip().decode('ascii') # 去除tag中的v/V if str(git_tag).startswith("v") or str(git_tag).startswith("V"): git_tag = str(git_tag)[1:] if git_tag == "": git_tag = None except Exception: git_tag = None return git_tag def read_release_version(): try: f = open("RELEASE-VERSION", "r") try: version = f.readlines()[0].strip() if version == "": return None else: return version finally: f.close() except Exception: return None def write_release_version(version): f = open("RELEASE-VERSION", "w") f.write("%s\n" % version) f.close() def get_git_version(): release_version = read_release_version() version = get_git_latest_tag() if version is None: version = release_version # 如果release-version文件没有, 且git没有打tag, 则默认使用"0.0.1" if version is None: version = "0.0.1" # raise ValueError("Cannot find the version number!") if version != release_version: write_release_version(version) return version if __name__ == "__main__": print(get_git_version())
24.53012
96
0.582515
d9ee75336dc50fa9d021fbb61b5dad52534edc05
4,716
py
Python
Virtual_Piano.py
PrathameshDeshpande/Virtual_Piano_OpenCV
a5587b3ebe795c1fa4e2a816ef02f1e8e700444c
[ "Apache-2.0" ]
6
2020-07-30T19:12:02.000Z
2020-08-06T16:04:48.000Z
Virtual_Piano.py
PrathameshDeshpande/Virtual_Piano_OpenCV
a5587b3ebe795c1fa4e2a816ef02f1e8e700444c
[ "Apache-2.0" ]
null
null
null
Virtual_Piano.py
PrathameshDeshpande/Virtual_Piano_OpenCV
a5587b3ebe795c1fa4e2a816ef02f1e8e700444c
[ "Apache-2.0" ]
1
2020-08-02T05:09:55.000Z
2020-08-02T05:09:55.000Z
import cv2 import numpy as np import time import pygame pygame.init() w,h = 78,110 x1,y1= 10,10 x2,y2 = 10+w,10 x3,y3 = 10+2*w,10 x4,y4 = 10+3*w,10 x5,y5 = 10+4*w,10 x6,y6 = 10+5*w,10 x7,y7 = 10+6*w,10 x8,y8 =10+7*w,10 def draw_piano(frame): cv2.rectangle(frame, (x1, y1), (x1 + w, y1 + h), (255, 255, 255), -1) cv2.rectangle(frame, (x2, y2), (x2 + w, y2 + h), (255, 255, 255), -1) cv2.rectangle(frame, (x3, y3), (x3 + w, y3 + h), (255, 255, 255), -1) cv2.rectangle(frame, (x4, y4), (x4 + w, y4 + h), (255, 255, 255), -1) cv2.rectangle(frame, (x5, y5), (x5 + w, y5 + h), (255, 255, 255), -1) cv2.rectangle(frame, (x6, y6), (x6 + w, y6 + h), (255, 255, 255), -1) cv2.rectangle(frame, (x7, y7), (x7 + w, y7 + h), (255, 255, 255), -1) cv2.rectangle(frame, (x8, y8), (x8 + w, y8 + h), (255, 255, 255), -1) cv2.rectangle(frame,(x1, y1),(x8 + w, y8 + h),(0,0,0),1) cv2.line(frame, (x2, y2), (x2, y2+h) , (0,0,0) ,1) cv2.line(frame, (x3, y3), (x3, y3 + h), (0, 0, 0), 1) cv2.line(frame, (x4, y4), (x4, y4 + h), (0,0,0), 1) cv2.line(frame, (x5, y5), (x5, y5 + h), (0,0,0,), 1) cv2.line(frame, (x6, y6), (x6, y6 + h), (0,0,0), 1) cv2.line(frame, (x7, y7), (x7, y7 + h), (0,0,0), 1) cv2.line(frame, (x8, y8), (x8, y8 + h), (0, 0, 0), 1) def key_press(frame,x,y,w1,h1): if x>x1 and y>y1 and x+w1<(x1 + w) and y+h1<(y1+h): cv2.rectangle(frame, (x1, y1), (x1 + w, y1 + h), (211,211,211), -1) pygame.mixer.Sound('wav/a1.wav').play() time.sleep(0.10) pygame.mixer.Sound('wav/a1.wav').stop() elif x>x2 and y>y2 and x+w1<(x2 + w) and y+h1<(y2+h): cv2.rectangle(frame, (x2, y2), (x2 + w, y2 + h), (211,211,211), -1) pygame.mixer.Sound('wav/b1.wav').play() time.sleep(0.10) pygame.mixer.Sound('wav/b1.wav').stop() elif x>x3 and y>y3 and x+w1<(x3 + w) and y+h1<(y3+h): cv2.rectangle(frame, (x3, y3), (x3 + w, y3 + h), (211,211,211), -1) pygame.mixer.Sound('wav/c1.wav').play() time.sleep(0.10) pygame.mixer.Sound('wav/c1.wav').stop() elif x>x4 and y>y4 and x+w1<(x4 + w) and y+h1<(y4+h): cv2.rectangle(frame, (x4, y4), (x4 + w, y4 + h), (211,211,211), -1) pygame.mixer.Sound('wav/c2.wav').play() time.sleep(0.10) pygame.mixer.Sound('wav/c2.wav').stop() elif x>x5 and y>y5 and x+w1<(x5 + w) and y+h1<(y5+h): cv2.rectangle(frame, (x5, y5), (x5 + w, y5 + h), (211,211,211), -1) pygame.mixer.Sound('wav/d1.wav').play() time.sleep(0.10) pygame.mixer.Sound('wav/d1.wav').stop() elif x>x6 and y>y6 and x+w1<(x6 + w) and y+h1<(y6+h): cv2.rectangle(frame, (x6, y6), (x6 + w, y6 + h), (211,211,211), -1) pygame.mixer.Sound('wav/e1.wav').play() time.sleep(0.10) pygame.mixer.Sound('wav/e1.wav').stop() elif x>x7 and y>y7 and x+w1<(x7 + w) and y+h1<(y7+h): cv2.rectangle(frame, (x7, y7), (x7 + w, y7 + h), (211,211,211), -1) pygame.mixer.Sound('wav/f1.wav').play() time.sleep(0.10) pygame.mixer.Sound('wav/f1.wav').stop() elif x>x8 and y>y8 and x+w1<(x8 + w) and y+h1<(y8+h): cv2.rectangle(frame, (x8, y8), (x8 + w, y8 + h), (211,211,211), -1) pygame.mixer.Sound('wav/g1.wav').play() time.sleep(0.10) pygame.mixer.Sound('wav/g1.wav').stop() cap = cv2.VideoCapture(0) while True: ret,frame = cap.read() frame = cv2.flip(frame, 1) frame =cv2.GaussianBlur(frame,(9,9),0) frame_hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) draw_piano(frame) lower_red = np.array([132, 90, 120]) # creating the mask for red color upper_red = np.array([179, 255, 255]) mask_1 = cv2.inRange(frame_hsv, lower_red, upper_red) lower_red = np.array([0, 110, 100]) upper_red = np.array([3, 255, 255]) mask_2 = cv2.inRange(frame_hsv, lower_red, upper_red) masked = mask_1 + mask_2 kernel_1 = np.ones((4,4),np.uint8) kernel_2 = np.ones((15,15),np.uint8) masked=cv2.erode(masked,kernel_1,iterations = 1) masked=cv2.morphologyEx(masked,cv2.MORPH_CLOSE,kernel_2) xr, yr, wr, hr = 0, 0, 0, 0 contours, hierarchy = cv2.findContours(masked, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) try: for i in range(0,10): xr, yr, wr, hr = cv2.boundingRect(contours[i]) if wr*hr > 1000: break except: pass cv2.rectangle(frame, (xr, yr), (xr + wr, yr + hr), (0, 0, 255), 2) key_press(frame, xr, yr, wr, hr) frame = cv2.resize(frame, (800, 800)) cv2.imshow('frame', frame) cv2.imshow('mask',masked) if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows()
43.266055
90
0.553223
d5a1cd165c93547dcc99d7272d1224eefc73e114
7,907
py
Python
ctypesgencore/parser/pplexer.py
kernsuite-debian/ctypesgen
391c5eecac347e91c720295866c9d2431a378ee1
[ "BSD-3-Clause" ]
null
null
null
ctypesgencore/parser/pplexer.py
kernsuite-debian/ctypesgen
391c5eecac347e91c720295866c9d2431a378ee1
[ "BSD-3-Clause" ]
null
null
null
ctypesgencore/parser/pplexer.py
kernsuite-debian/ctypesgen
391c5eecac347e91c720295866c9d2431a378ee1
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python '''Preprocess a C source file using gcc and convert the result into a token stream Reference is C99: * http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1124.pdf ''' __docformat__ = 'restructuredtext' import os, re, shlex, sys, tokenize, lex, yacc, traceback import ctypes from lex import TOKEN tokens = ( 'HEADER_NAME', 'IDENTIFIER', 'PP_NUMBER', 'CHARACTER_CONSTANT', 'STRING_LITERAL', 'OTHER', 'PTR_OP', 'INC_OP', 'DEC_OP', 'LEFT_OP', 'RIGHT_OP', 'LE_OP', 'GE_OP', 'EQ_OP', 'NE_OP', 'AND_OP', 'OR_OP', 'MUL_ASSIGN', 'DIV_ASSIGN', 'MOD_ASSIGN', 'ADD_ASSIGN', 'SUB_ASSIGN', 'LEFT_ASSIGN', 'RIGHT_ASSIGN', 'AND_ASSIGN', 'XOR_ASSIGN', 'OR_ASSIGN', 'PERIOD', 'ELLIPSIS', 'LPAREN', 'NEWLINE', 'PP_DEFINE', 'PP_DEFINE_NAME', 'PP_DEFINE_MACRO_NAME', 'PP_MACRO_PARAM', 'PP_STRINGIFY', 'PP_IDENTIFIER_PASTE', 'PP_END_DEFINE' ) states = [('DEFINE',"exclusive")] subs = { 'D': '[0-9]', 'L': '[a-zA-Z_]', 'H': '[a-fA-F0-9]', 'E': '[Ee][+-]?\s*{D}+', 'FS': '([FfLl]|d[dfl]|D[DFL]|[fFdD][0-9]+x?)', 'IS': '[uUlL]*', } # Helper: substitute {foo} with subs[foo] in string (makes regexes more lexy) sub_pattern = re.compile('{([^}]*)}') def sub_repl_match(m): return subs[m.groups()[0]] def sub(s): return sub_pattern.sub(sub_repl_match, s) # -------------------------------------------------------------------------- # Token value types # -------------------------------------------------------------------------- # Numbers represented as int and float types. # For all other tokens, type is just str representation. class StringLiteral(str): def __new__(cls, value): assert value[0] == '"' and value[-1] == '"' # Unescaping probably not perfect but close enough. value = value[1:-1].decode('string_escape') return str.__new__(cls, value) # -------------------------------------------------------------------------- # Token declarations # -------------------------------------------------------------------------- punctuators = { # value: (regex, type) r'...': (r'\.\.\.', 'ELLIPSIS'), r'>>=': (r'>>=', 'RIGHT_ASSIGN'), r'<<=': (r'<<=', 'LEFT_ASSIGN'), r'+=': (r'\+=', 'ADD_ASSIGN'), r'-=': (r'-=', 'SUB_ASSIGN'), r'*=': (r'\*=', 'MUL_ASSIGN'), r'/=': (r'/=', 'DIV_ASSIGN'), r'%=': (r'%=', 'MOD_ASSIGN'), r'&=': (r'&=', 'AND_ASSIGN'), r'^=': (r'\^=', 'XOR_ASSIGN'), r'|=': (r'\|=', 'OR_ASSIGN'), r'>>': (r'>>', 'RIGHT_OP'), r'<<': (r'<<', 'LEFT_OP'), r'++': (r'\+\+', 'INC_OP'), r'--': (r'--', 'DEC_OP'), r'->': (r'->', 'PTR_OP'), r'&&': (r'&&', 'AND_OP'), r'||': (r'\|\|', 'OR_OP'), r'<=': (r'<=', 'LE_OP'), r'>=': (r'>=', 'GE_OP'), r'==': (r'==', 'EQ_OP'), r'!=': (r'!=', 'NE_OP'), r'<:': (r'<:', '['), r':>': (r':>', ']'), r'<%': (r'<%', '{'), r'%>': (r'%>', '}'), r';': (r';', ';'), r'{': (r'{', '{'), r'}': (r'}', '}'), r',': (r',', ','), r':': (r':', ':'), r'=': (r'=', '='), r')': (r'\)', ')'), r'[': (r'\[', '['), r']': (r']', ']'), r'.': (r'\.', 'PERIOD'), r'&': (r'&', '&'), r'!': (r'!', '!'), r'~': (r'~', '~'), r'-': (r'-', '-'), r'+': (r'\+', '+'), r'*': (r'\*', '*'), r'/': (r'/', '/'), r'%': (r'%', '%'), r'<': (r'<', '<'), r'>': (r'>', '>'), r'^': (r'\^', '^'), r'|': (r'\|', '|'), r'?': (r'\?', '?') } def punctuator_regex(punctuators): punctuator_regexes = [v[0] for v in punctuators.values()] punctuator_regexes.sort(lambda a, b: -cmp(len(a), len(b))) return '(%s)' % '|'.join(punctuator_regexes) # Process line-number directives from the preprocessor # See http://docs.freebsd.org/info/cpp/cpp.info.Output.html DIRECTIVE = r'\#\s+(\d+)\s+"([^"]+)"[ \d]*\n' @TOKEN(DIRECTIVE) def t_ANY_directive(t): t.lexer.filename = t.groups[2] t.lexer.lineno = int(t.groups[1]) return None @TOKEN(punctuator_regex(punctuators)) def t_ANY_punctuator(t): t.type = punctuators[t.value][1] return t IDENTIFIER = sub('{L}({L}|{D})*') @TOKEN(IDENTIFIER) def t_INITIAL_identifier(t): t.type = 'IDENTIFIER' return t @TOKEN(IDENTIFIER) def t_DEFINE_identifier(t): if t.lexer.next_is_define_name: # This identifier is the name of a macro # We need to look ahead and see if this macro takes parameters or not. if t.lexpos + len(t.value) < t.lexer.lexlen and \ t.lexer.lexdata[t.lexpos + len(t.value)] == '(': t.type = 'PP_DEFINE_MACRO_NAME' # Look ahead and read macro parameter list lexdata = t.lexer.lexdata pos = t.lexpos + len(t.value) + 1 while lexdata[pos] not in '\n)': pos+=1 params = lexdata[t.lexpos+len(t.value)+1 : pos] paramlist = [x.strip() for x in params.split(",") if x.strip()] t.lexer.macro_params = paramlist else: t.type = 'PP_DEFINE_NAME' t.lexer.next_is_define_name = False elif t.value in t.lexer.macro_params: t.type = 'PP_MACRO_PARAM' else: t.type = 'IDENTIFIER' return t FLOAT_LITERAL = sub(r"(?P<p1>{D}+)?(?P<dp>[.]?)(?P<p2>(?(p1){D}*|{D}+))" \ r"(?P<exp>(?:[Ee][+-]?{D}+)?)(?P<suf>{FS}?)(?!\w)") @TOKEN(FLOAT_LITERAL) def t_ANY_float(t): t.type = 'PP_NUMBER' m = t.lexer.lexmatch p1 = m.group("p1") dp = m.group("dp") p2 = m.group("p2") exp = m.group("exp") suf = m.group("suf") if dp or exp or (suf and suf not in ("Ll")): s = m.group(0) if suf: s = s[:-len(suf)] # Attach a prefix so the parser can figure out if should become an # integer, float, or long t.value = "f" + s elif (suf and suf in ("Ll")): t.value = "l" + p1 else: t.value = "i" + p1 return t INT_LITERAL = sub(r"(?P<p1>(?:0x{H}+)|(?:0[0-7]+)|(?:[1-9]{D}+))(?P<suf>{IS})") @TOKEN(INT_LITERAL) def t_ANY_int(t): t.type = 'PP_NUMBER' m = t.lexer.lexmatch if "L" in m.group(3) or "l" in m.group(2): prefix = "l" else: prefix = "i" g1 = m.group(2) if g1.startswith("0x"): # Convert base from hexadecimal g1 = str(long(g1[2:],16)) elif g1[0]=="0": # Convert base from octal g1 = str(long(g1,8)) t.value = prefix + g1 return t CHARACTER_CONSTANT = sub(r"L?'(\\.|[^\\'])+'") @TOKEN(CHARACTER_CONSTANT) def t_ANY_character_constant(t): t.type = 'CHARACTER_CONSTANT' return t STRING_LITERAL = sub(r'L?"(\\.|[^\\"])*"') @TOKEN(STRING_LITERAL) def t_ANY_string_literal(t): t.type = 'STRING_LITERAL' t.value = StringLiteral(t.value) return t @TOKEN(r'\(') def t_ANY_lparen(t): if t.lexpos == 0 or t.lexer.lexdata[t.lexpos-1] not in (' \t\f\v\n'): t.type = 'LPAREN' else: t.type = '(' return t @TOKEN(r'\n') def t_INITIAL_newline(t): t.lexer.lineno += 1 return None @TOKEN(r'\#define') def t_INITIAL_pp_define(t): t.type = 'PP_DEFINE' t.lexer.begin("DEFINE") t.lexer.next_is_define_name = True t.lexer.macro_params = set() return t @TOKEN(r'\n') def t_DEFINE_newline(t): t.type = 'PP_END_DEFINE' t.lexer.begin("INITIAL") t.lexer.lineno += 1 del t.lexer.macro_params # Damage control in case the token immediately after the #define failed # to handle this t.lexer.next_is_define_name = False return t @TOKEN(r'(\#\#)|(\#)') def t_DEFINE_pp_param_op(t): if t.value=='#': t.type = 'PP_STRINGIFY' else: t.type = 'PP_IDENTIFIER_PASTE' return t def t_INITIAL_error(t): t.type = 'OTHER' return t def t_DEFINE_error(t): t.type = 'OTHER' t.value = t.value[0] t.lexer.lexpos+=1 # Skip it if it's an error in a #define return t t_ANY_ignore = ' \t\v\f\r'
27.359862
79
0.502846
e773dd39ce91e41bae2b1b2a5885788456933304
13,500
py
Python
test/models/test_model_list_gp_regression.py
talesa/botorch
ab04dd39a2d4c7734e41c5f26eb2dbba5b0e1771
[ "MIT" ]
null
null
null
test/models/test_model_list_gp_regression.py
talesa/botorch
ab04dd39a2d4c7734e41c5f26eb2dbba5b0e1771
[ "MIT" ]
null
null
null
test/models/test_model_list_gp_regression.py
talesa/botorch
ab04dd39a2d4c7734e41c5f26eb2dbba5b0e1771
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import itertools import warnings import torch from botorch.acquisition.objective import ScalarizedPosteriorTransform from botorch.exceptions.errors import BotorchTensorDimensionError from botorch.exceptions.warnings import OptimizationWarning from botorch.fit import fit_gpytorch_model from botorch.models import ModelListGP from botorch.models.gp_regression import FixedNoiseGP, SingleTaskGP from botorch.models.transforms import Standardize from botorch.models.transforms.input import Normalize from botorch.posteriors import GPyTorchPosterior from botorch.utils.testing import _get_random_data, BotorchTestCase from gpytorch.distributions import MultitaskMultivariateNormal, MultivariateNormal from gpytorch.kernels import MaternKernel, ScaleKernel from gpytorch.likelihoods import LikelihoodList from gpytorch.means import ConstantMean from gpytorch.mlls import SumMarginalLogLikelihood from gpytorch.mlls.exact_marginal_log_likelihood import ExactMarginalLogLikelihood from gpytorch.priors import GammaPrior def _get_model(fixed_noise=False, use_octf=False, use_intf=False, **tkwargs): train_x1, train_y1 = _get_random_data( batch_shape=torch.Size(), m=1, n=10, **tkwargs ) train_x2, train_y2 = _get_random_data( batch_shape=torch.Size(), m=1, n=11, **tkwargs ) octfs = [Standardize(m=1), Standardize(m=1)] if use_octf else [None, None] intfs = [Normalize(d=1), Normalize(d=1)] if use_intf else [None, None] if fixed_noise: train_y1_var = 0.1 + 0.1 * torch.rand_like(train_y1, **tkwargs) train_y2_var = 0.1 + 0.1 * torch.rand_like(train_y2, **tkwargs) model1 = FixedNoiseGP( train_X=train_x1, train_Y=train_y1, train_Yvar=train_y1_var, outcome_transform=octfs[0], input_transform=intfs[0], ) model2 = FixedNoiseGP( train_X=train_x2, train_Y=train_y2, train_Yvar=train_y2_var, outcome_transform=octfs[1], input_transform=intfs[1], ) else: model1 = SingleTaskGP( train_X=train_x1, train_Y=train_y1, outcome_transform=octfs[0], input_transform=intfs[0], ) model2 = SingleTaskGP( train_X=train_x2, train_Y=train_y2, outcome_transform=octfs[1], input_transform=intfs[1], ) model = ModelListGP(model1, model2) return model.to(**tkwargs) class TestModelListGP(BotorchTestCase): def test_ModelListGP(self): for dtype, use_octf in itertools.product( (torch.float, torch.double), (False, True) ): tkwargs = {"device": self.device, "dtype": dtype} model = _get_model(use_octf=use_octf, **tkwargs) self.assertIsInstance(model, ModelListGP) self.assertIsInstance(model.likelihood, LikelihoodList) for m in model.models: self.assertIsInstance(m.mean_module, ConstantMean) self.assertIsInstance(m.covar_module, ScaleKernel) matern_kernel = m.covar_module.base_kernel self.assertIsInstance(matern_kernel, MaternKernel) self.assertIsInstance(matern_kernel.lengthscale_prior, GammaPrior) if use_octf: self.assertIsInstance(m.outcome_transform, Standardize) # test constructing likelihood wrapper mll = SumMarginalLogLikelihood(model.likelihood, model) for mll_ in mll.mlls: self.assertIsInstance(mll_, ExactMarginalLogLikelihood) # test model fitting (sequential) with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=OptimizationWarning) mll = fit_gpytorch_model(mll, options={"maxiter": 1}, max_retries=1) with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=OptimizationWarning) # test model fitting (joint) mll = fit_gpytorch_model( mll, options={"maxiter": 1}, max_retries=1, sequential=False ) # test subset outputs subset_model = model.subset_output([1]) self.assertIsInstance(subset_model, ModelListGP) self.assertEqual(len(subset_model.models), 1) sd_subset = subset_model.models[0].state_dict() sd = model.models[1].state_dict() self.assertTrue(set(sd_subset.keys()) == set(sd.keys())) self.assertTrue(all(torch.equal(v, sd[k]) for k, v in sd_subset.items())) # test posterior test_x = torch.tensor([[0.25], [0.75]], **tkwargs) posterior = model.posterior(test_x) self.assertIsInstance(posterior, GPyTorchPosterior) self.assertIsInstance(posterior.mvn, MultitaskMultivariateNormal) if use_octf: # ensure un-transformation is applied submodel = model.models[0] p0 = submodel.posterior(test_x) tmp_tf = submodel.outcome_transform del submodel.outcome_transform p0_tf = submodel.posterior(test_x) submodel.outcome_transform = tmp_tf expected_var = tmp_tf.untransform_posterior(p0_tf).variance self.assertTrue(torch.allclose(p0.variance, expected_var)) # test observation_noise posterior = model.posterior(test_x, observation_noise=True) self.assertIsInstance(posterior, GPyTorchPosterior) self.assertIsInstance(posterior.mvn, MultitaskMultivariateNormal) # test output_indices posterior = model.posterior( test_x, output_indices=[0], observation_noise=True ) self.assertIsInstance(posterior, GPyTorchPosterior) self.assertIsInstance(posterior.mvn, MultivariateNormal) # test condition_on_observations f_x = torch.rand(2, 1, **tkwargs) f_y = torch.rand(2, 2, **tkwargs) cm = model.condition_on_observations(f_x, f_y) self.assertIsInstance(cm, ModelListGP) # test condition_on_observations batched f_x = torch.rand(3, 2, 1, **tkwargs) f_y = torch.rand(3, 2, 2, **tkwargs) cm = model.condition_on_observations(f_x, f_y) self.assertIsInstance(cm, ModelListGP) # test condition_on_observations batched (fast fantasies) f_x = torch.rand(2, 1, **tkwargs) f_y = torch.rand(3, 2, 2, **tkwargs) cm = model.condition_on_observations(f_x, f_y) self.assertIsInstance(cm, ModelListGP) # test condition_on_observations (incorrect input shape error) with self.assertRaises(BotorchTensorDimensionError): model.condition_on_observations(f_x, torch.rand(3, 2, 3, **tkwargs)) # test posterior transform X = torch.rand(3, 1, **tkwargs) weights = torch.tensor([1, 2], **tkwargs) post_tf = ScalarizedPosteriorTransform(weights=weights) posterior_tf = model.posterior(X, posterior_transform=post_tf) self.assertTrue( torch.allclose( posterior_tf.mean, model.posterior(X).mean @ weights.unsqueeze(-1), ) ) def test_ModelListGP_fixed_noise(self): for dtype, use_octf in itertools.product( (torch.float, torch.double), (False, True) ): tkwargs = {"device": self.device, "dtype": dtype} model = _get_model(fixed_noise=True, use_octf=use_octf, **tkwargs) self.assertIsInstance(model, ModelListGP) self.assertIsInstance(model.likelihood, LikelihoodList) for m in model.models: self.assertIsInstance(m.mean_module, ConstantMean) self.assertIsInstance(m.covar_module, ScaleKernel) matern_kernel = m.covar_module.base_kernel self.assertIsInstance(matern_kernel, MaternKernel) self.assertIsInstance(matern_kernel.lengthscale_prior, GammaPrior) # test model fitting mll = SumMarginalLogLikelihood(model.likelihood, model) for mll_ in mll.mlls: self.assertIsInstance(mll_, ExactMarginalLogLikelihood) with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=OptimizationWarning) mll = fit_gpytorch_model(mll, options={"maxiter": 1}, max_retries=1) # test posterior test_x = torch.tensor([[0.25], [0.75]], **tkwargs) posterior = model.posterior(test_x) self.assertIsInstance(posterior, GPyTorchPosterior) self.assertIsInstance(posterior.mvn, MultitaskMultivariateNormal) if use_octf: # ensure un-transformation is applied submodel = model.models[0] p0 = submodel.posterior(test_x) tmp_tf = submodel.outcome_transform del submodel.outcome_transform p0_tf = submodel.posterior(test_x) submodel.outcome_transform = tmp_tf expected_var = tmp_tf.untransform_posterior(p0_tf).variance self.assertTrue(torch.allclose(p0.variance, expected_var)) # test output_indices posterior = model.posterior( test_x, output_indices=[0], observation_noise=True ) self.assertIsInstance(posterior, GPyTorchPosterior) self.assertIsInstance(posterior.mvn, MultivariateNormal) # test condition_on_observations f_x = torch.rand(2, 1, **tkwargs) f_y = torch.rand(2, 2, **tkwargs) noise = 0.1 + 0.1 * torch.rand_like(f_y) cm = model.condition_on_observations(f_x, f_y, noise=noise) self.assertIsInstance(cm, ModelListGP) # test condition_on_observations batched f_x = torch.rand(3, 2, 1, **tkwargs) f_y = torch.rand(3, 2, 2, **tkwargs) noise = 0.1 + 0.1 * torch.rand_like(f_y) cm = model.condition_on_observations(f_x, f_y, noise=noise) self.assertIsInstance(cm, ModelListGP) # test condition_on_observations batched (fast fantasies) f_x = torch.rand(2, 1, **tkwargs) f_y = torch.rand(3, 2, 2, **tkwargs) noise = 0.1 + 0.1 * torch.rand(2, 2, **tkwargs) cm = model.condition_on_observations(f_x, f_y, noise=noise) self.assertIsInstance(cm, ModelListGP) # test condition_on_observations (incorrect input shape error) with self.assertRaises(BotorchTensorDimensionError): model.condition_on_observations( f_x, torch.rand(3, 2, 3, **tkwargs), noise=noise ) # test condition_on_observations (incorrect noise shape error) f_y = torch.rand(2, 2, **tkwargs) with self.assertRaises(BotorchTensorDimensionError): model.condition_on_observations( f_x, f_y, noise=torch.rand(2, 3, **tkwargs) ) def test_ModelListGP_single(self): tkwargs = {"device": self.device, "dtype": torch.float} train_x1, train_y1 = _get_random_data( batch_shape=torch.Size(), m=1, n=10, **tkwargs ) model1 = SingleTaskGP(train_X=train_x1, train_Y=train_y1) model = ModelListGP(model1) model.to(**tkwargs) test_x = torch.tensor([[0.25], [0.75]], **tkwargs) posterior = model.posterior(test_x) self.assertIsInstance(posterior, GPyTorchPosterior) self.assertIsInstance(posterior.mvn, MultivariateNormal) def test_transform_revert_train_inputs(self): tkwargs = {"device": self.device, "dtype": torch.float} model_list = _get_model(use_intf=True, **tkwargs) org_inputs = [m.train_inputs[0] for m in model_list.models] model_list.eval() for i, m in enumerate(model_list.models): self.assertTrue( torch.allclose( m.train_inputs[0], m.input_transform.preprocess_transform(org_inputs[i]), ) ) self.assertTrue(m._has_transformed_inputs) self.assertTrue(torch.equal(m._original_train_inputs, org_inputs[i])) model_list.train(mode=True) for i, m in enumerate(model_list.models): self.assertTrue(torch.equal(m.train_inputs[0], org_inputs[i])) self.assertFalse(m._has_transformed_inputs) model_list.train(mode=False) for i, m in enumerate(model_list.models): self.assertTrue( torch.allclose( m.train_inputs[0], m.input_transform.preprocess_transform(org_inputs[i]), ) ) self.assertTrue(m._has_transformed_inputs) self.assertTrue(torch.equal(m._original_train_inputs, org_inputs[i]))
45.302013
85
0.625259
0f9b908cfe4b72a0ec925317c7359c3bc6b0bc88
3,364
py
Python
portality/blog.py
gaybro8777/doaj
27d9d98ce4f496ae52acbaba6ee8e42c84cf1a58
[ "Apache-2.0" ]
null
null
null
portality/blog.py
gaybro8777/doaj
27d9d98ce4f496ae52acbaba6ee8e42c84cf1a58
[ "Apache-2.0" ]
null
null
null
portality/blog.py
gaybro8777/doaj
27d9d98ce4f496ae52acbaba6ee8e42c84cf1a58
[ "Apache-2.0" ]
null
null
null
from portality.core import app import feedparser from portality.dao import DomainObject as DomainObject from copy import deepcopy from datetime import datetime class FeedError(Exception): pass class News(DomainObject): __type__ = "news" @classmethod def by_remote_id(cls, remote_id): q = NewsQuery(remote_id) es_result = cls.query(q=q.query()) records = [News(**r.get("_source")) for r in es_result.get("hits", {}).get("hits", [])] return records @classmethod def latest(cls, n): q = NewsQuery(size=n) es_result = cls.query(q=q.query()) records = [News(**r.get("_source")) for r in es_result.get("hits", {}).get("hits", [])] return records @property def remote_id(self): return self.data.get("remote_id") @remote_id.setter def remote_id(self, rid): self.data["remote_id"] = rid @property def url(self): return self.data.get("url") @url.setter def url(self, link): self.data["url"] = link @property def title(self): return self.data.get("title") @title.setter def title(self, t): self.data["title"] = t @property def updated(self): return self.data.get("updated") @updated.setter def updated(self, date): self.data["updated"] = date @property def published(self): return self.data.get("published") @published.setter def published(self, date): self.data["published"] = date @property def summary(self): return self.data.get("summary") @summary.setter def summary(self, s): self.data["summary"] = s def published_formatted(self, format="%-d %B %Y"): try: dt = datetime.strptime(self.published, "%Y-%m-%dT%H:%M:%SZ") return dt.strftime(format) except: return self.published class NewsQuery(object): _remote_term = { "term" : { "remote_id.exact" : "<remote id>" } } def __init__(self, remote_id=None, size=5): self.remote_id = remote_id self.size = size def query(self): q = {"query" : {}, "size" : self.size, "sort" : {"published" : {"order" : "desc"}}} if self.remote_id is not None: rt = deepcopy(self._remote_term) rt["term"]["remote_id.exact"] = self.remote_id q["query"].update(rt) else: q["query"]["match_all"] = {} return q def read_feed(): feed_url = app.config.get("BLOG_FEED_URL") if feed_url is None: raise FeedError("No BLOG_FEED_URL defined in settings") f = feedparser.parse(feed_url) if f.bozo > 0: raise FeedError(f.bozo_exception) for e in f.entries: save_entry(e) def save_entry(entry): news = None existing = News.by_remote_id(entry.id) if len(existing) > 1: raise FeedError("There is more than one object with this id in the index: " + entry.id) elif len(existing) == 1: news = existing[0] else: news = News() alts = [l.get("href") for l in entry.links if l.get("rel") == "alternate"] if len(alts) == 0: raise FeedError("Unable to get url of post from link@rel=alternate") news.remote_id = entry.id news.url = alts[0] news.title = entry.title news.updated = entry.updated news.summary = entry.summary news.published = entry.published news.save()
29.252174
95
0.611772
73732cf9a7098402f3caf0cf3b6697f868149a08
2,319
py
Python
osplugin/config.py
mkr1481/mecm-applcm
87538ac4aa5d5607597d3bf43b0ac0f675cc292b
[ "Apache-2.0" ]
null
null
null
osplugin/config.py
mkr1481/mecm-applcm
87538ac4aa5d5607597d3bf43b0ac0f675cc292b
[ "Apache-2.0" ]
null
null
null
osplugin/config.py
mkr1481/mecm-applcm
87538ac4aa5d5607597d3bf43b0ac0f675cc292b
[ "Apache-2.0" ]
null
null
null
""" # Copyright 2021 21CN Corporation Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ # -*- coding: utf-8 -*- import os ssl_enabled = os.getenv('ENABLE_SSL', 'true') != 'false' listen_ip = os.getenv('LISTEN_IP', '[::]') base_dir = os.getenv('BASE_DIR', '/usr/app') log_dir = os.getenv("LOG_DIR", base_dir + '/log') private_key_certificate_chain_pairs = ( base_dir + '/ssl/server_tls.key', base_dir + '/ssl/server_tls.crt', ) root_certificates = base_dir + '/ssl/ca.crt' _JWT_PUBLIC_KEY_DEF = '-----BEGIN PUBLIC KEY-----\n' \ 'MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAmesVPVWJmsRIzitiu6rs\n' \ 'bbIfBbt3t97qiJ4yQH1bCHpYu+ab+Xs5heSnfFjHH8nZDAR0n2zvliztIvTDwl/2\n' \ 'NF9+/loFvmQMrSv1dQQCOBc5qZ5rw/0o7Cq3buXHHJ7CwP0NnreK4N1sZ4oLBTQQ\n' \ 'e4ERkXhiBNVxAmnbgl7QuhemMV0gxPABSLLKGIrzYR7n8OFDCuSAyOcaoyxJihA/\n' \ '4Tkh+Vs82tWlFglV7UxtU2+3e5sN9u/TJ5J3qRZnYq/NWymix9RRD53vp1RGUMCg\n' \ 'kT40wK5Ak9qdVkr82JTR1g7AtXm9SxlgMNr0rD35WSacioFwECWun+VPL4FyzZ30\n' \ 'BwIDAQAB\n'\ '-----END PUBLIC KEY-----' jwt_public_key = os.getenv('JWT_PUBLIC_KEY', _JWT_PUBLIC_KEY_DEF) db_user = os.getenv('DB_USER', 'osplugin') db_password = os.getenv('DB_PASSWORD', '') db_host = os.getenv('DB_HOST', 'mepm-postgres') db_port = int(os.getenv('DB_PORT', '5432')) db_name = os.getenv('DB_NAME', 'osplugindb') # default chunk_size 2M _DEFAULT_IMAGE_CHUNK_SIZE = 1021 * 1024 * 2 chunk_size = int(os.getenv("IMAGE_CHUNK_SIZE", str(_DEFAULT_IMAGE_CHUNK_SIZE))) _SERVER_CA_VERIFY = os.getenv('SERVER_CA_VERIFY_DIR', 'false') if _SERVER_CA_VERIFY == 'false': _SERVER_CA_VERIFY = False elif _SERVER_CA_VERIFY == 'true': _SERVER_CA_VERIFY = True server_ca_verify = _SERVER_CA_VERIFY
38.016393
87
0.710651
04c3908a2fb7ca0310b228c1394661d40d9c5143
6,681
py
Python
src/driving_node/src/deeplearning_driving_node.py
mommy79/AuDi-GIT-turtlebot3_autorace
fd1382246f1ee74ee70857006563184d672a6666
[ "Apache-2.0" ]
1
2021-06-13T06:20:15.000Z
2021-06-13T06:20:15.000Z
src/driving_node/src/deeplearning_driving_node.py
taening/AuDi-GIT-turtlebot3_autorace
fd1382246f1ee74ee70857006563184d672a6666
[ "Apache-2.0" ]
null
null
null
src/driving_node/src/deeplearning_driving_node.py
taening/AuDi-GIT-turtlebot3_autorace
fd1382246f1ee74ee70857006563184d672a6666
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- from std_msgs.msg import Float32, UInt8 from geometry_msgs.msg import Twist from sensor_msgs.msg import Image, CompressedImage from cv_bridge import CvBridge import tensorflow as tf import numpy as np import enum import rospy import cv2 import threading import time # Hyper Prarameters training_epochs = 10 batch_size = 100 learning_rate = 0.0001 img_height = 64 img_width = 120 img_channel = 3 total_data = 50000 class DeeplearningDrivingNode: def __init__(self, sess, name): self.cvBridge = CvBridge() self.sess = sess self.name = name self._build_net() self.driving_mode_step = enum.Enum('step_of_driving_mode', 'manual_mode lane_mode right_lane_mode left_lane_mode intensity_lane_mode deeplearning_lane_mode tunnel_mode spectate_mode') self.driving_mode = self.driving_mode_step.manual_mode.value self.sub_driving_mode = rospy.Subscriber('/mission/mod/driving', UInt8, self.cb_driving_mode, queue_size=1) self.sub_img_rev = rospy.Subscriber('/controller/image/driving', CompressedImage, self.cb_image_receive, queue_size=1) self.pub_vel = rospy.Publisher('/cmd_vel', Twist, queue_size=1) rospy.on_shutdown(self.fn_stop) def fn_driving_deeplearning(self, linear_vel, angular_vel): twist_msg = Twist() twist_msg.linear.x = linear_vel twist_msg.angular.z = angular_vel self.pub_vel.publish(twist_msg) def cb_image_receive(self, msg): np_arr = np.fromstring(msg.data, np.uint8) img_ori = cv2.imdecode(np_arr, cv2.IMREAD_COLOR) if self.driving_mode == self.driving_mode_step.deeplearning_lane_mode.value: driving_time_pre = time.time() process_time_pre = time.time() driving_time_now = time.time() rospy.loginfo('dt: ' + str(driving_time_now - driving_time_pre)) driving_time_pre = driving_time_now try: src = img_ori src = src[240:480, 0:640] re_frame = cv2.resize(src, (120, 64), interpolation=cv2.INTER_AREA) re_frame = [re_frame] result = self.predict(re_frame) rospy.loginfo(result) linear_vel = 0.18 angular_vel = result[0][0] * 1.7 self.fn_driving_deeplearning(linear_vel, angular_vel) except Exception as e: rospy.logerr("Fail : " + str(e)) process_time_now = time.time() rospy.loginfo('process time: ' + str(process_time_now - process_time_pre)) def cb_driving_mode(self, msg): self.driving_mode = msg.data def fn_stop(self): rospy.loginfo("[Process End] Shut down") rospy.sleep(0.3) twist_msg = Twist() twist_msg.linear.x = 0.0 twist_msg.angular.z = 0.0 self.pub_vel.publish(twist_msg) def _build_net(self): # 입력 받은 이름으로 변수 명을 설정한다. with tf.variable_scope(self.name): # Boolean Tensor 생성 for dropout # tf.layers.dropout( training= True/Fals) True/False에 따라서 학습인지 / 예측인지 선택하게 됨 # default = False self.training = tf.placeholder(tf.bool) # 입력 그래프 생성 self.X = tf.placeholder(tf.float32, [None, img_height, img_width, img_channel], name='X_im') self.Y = tf.placeholder(tf.float32, [None, 1]) # Convolutional Layer1 conv1 = tf.layers.conv2d(inputs=self.X, filters=32, kernel_size=[3, 3], padding='SAME', activation=tf.nn.relu) pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2], strides=2, padding="SAME") # Convolutional Layer2 conv2 = tf.layers.conv2d(inputs=pool1, filters=64, kernel_size=[3, 3], padding='SAME', activation=tf.nn.relu) pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], strides=2, padding='SAME') # Convolutional Layer3 conv3 = tf.layers.conv2d(inputs=pool2, filters=128, kernel_size=[5, 5], padding='SAME', activation=tf.nn.relu) pool3 = tf.layers.max_pooling2d(inputs=conv3, pool_size=[2, 2], strides=2, padding='SAME') # Convolutional Layer4 conv4 = tf.layers.conv2d(inputs=pool3, filters=128, kernel_size=[3, 3], padding='SAME', activation=tf.nn.relu) # Dropout Layer # Dense Layer4 with Relu flat = tf.reshape(conv4, [-1, 128 * 15 * 8]) dropout1 = tf.layers.dropout(inputs=flat, rate=0.2, training=self.training) dense4 = tf.layers.dense(inputs=dropout1, units=128, activation=tf.nn.relu) dropout2 = tf.layers.dropout(inputs=dense4, rate=0.5, training=self.training) dense5 = tf.layers.dense(inputs=dropout2, units=128, activation=tf.nn.relu) dropout3 = tf.layers.dropout(inputs=dense5, rate=0.5, training=self.training) dense6 = tf.layers.dense(inputs=dropout3, units=64, activation=tf.nn.relu) self.logits = tf.layers.dense(inputs=dense6, units=1, name='logits') #self.softmax = tf.nn.softmax(self.logits, axis=None, name=None, dim=None) # Cost Function self.cost = tf.reduce_mean(tf.square(self.logits-self.Y)) self.optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(self.cost) def train(self, x_data, y_data, training=False): return self.sess.run([self.cost, self.optimizer], feed_dict={self.X: x_data, self.Y: y_data, self.training: training}) def predict(self, x_test, training=False): return self.sess.run(self.logits, feed_dict={self.X: x_test, self.training: training}) def restore(self, mode): # save_file = './dcgan_model/DCGAN_cnn.ckpt' if mode == 'test': save_file = '/home/nvidia/Auto-Mobile-Robot/deeplearning/driving_model/auto.ckpt' saver = tf.train.Saver() saver.restore(self.sess, save_file) @staticmethod def main(): rospy.spin() if __name__ == "__main__": rospy.init_node('Deeplearning_Driving_Node') print('\n' + 'Learning started...' + '\n') sess = tf.Session() m = DeeplearningDrivingNode(sess, "model") m.restore('test') m.main() # ret, frame = src.read() # re_frame =cv2.resize(frame,(120,64),interpolation=cv2.INTER_AREA) # cv2.imshow('d', re_frame) # re_frame = [re_frame] #res = m.predict(re_frame)
38.177143
191
0.624457
0d08d871cdab4cdc8b0b7bd3d39ec380b184b88d
804
py
Python
python-scrips/PDF extraction-elsie/main.py
emetikos/chatbot
b28378661afda009e8b5e93d856ada6f34ef151a
[ "MIT" ]
null
null
null
python-scrips/PDF extraction-elsie/main.py
emetikos/chatbot
b28378661afda009e8b5e93d856ada6f34ef151a
[ "MIT" ]
null
null
null
python-scrips/PDF extraction-elsie/main.py
emetikos/chatbot
b28378661afda009e8b5e93d856ada6f34ef151a
[ "MIT" ]
null
null
null
import PyPDF2 # open the pdf file pdfFileObj = open("Hello.pdf", "rb") # creating an object reader to read file pdfReader = PyPDF2.PdfFileReader(pdfFileObj) # print out no. of pages in the file print("Number of Pages: ",pdfReader.numPages) pageObj = pdfReader.getPage(0) # extract all the text from file/doc print(pageObj.extractText()) pdfFileObj.close() # for loop to extract each page from the file/doc p = 0 while p < pdfReader.getNumPages(): pageinfo = pdfReader.getPage(p) print(pageinfo.extractText()) p = p+1 # search_keywords=['chatbot', 'testing', 'open'] # # ['project', 'group', 'interest', 'report', 'submitted'] # # for sentence in sentences : # lst = [] # for word in search_keywords: if word in sentence: # lst.append(word);
22.971429
63
0.665423
502acc91902f829c346d2af504a0cd0526fc4629
5,822
py
Python
rldb/db/paper__acktr/algo__acktr/entries.py
seungjaeryanlee/sotarl
8c471c4666d6210c68f3cb468e439a2b168c785d
[ "MIT" ]
45
2019-05-13T17:39:33.000Z
2022-03-07T23:44:13.000Z
rldb/db/paper__acktr/algo__acktr/entries.py
seungjaeryanlee/sotarl
8c471c4666d6210c68f3cb468e439a2b168c785d
[ "MIT" ]
2
2019-03-29T01:41:59.000Z
2019-07-02T02:48:31.000Z
rldb/db/paper__acktr/algo__acktr/entries.py
seungjaeryanlee/sotarl
8c471c4666d6210c68f3cb468e439a2b168c785d
[ "MIT" ]
2
2020-04-07T20:57:30.000Z
2020-07-08T12:55:15.000Z
atari_entries = [ { 'env-title': 'atari-alien', 'env-variant': 'No-op start', 'score': 3197.1, }, { 'env-title': 'atari-amidar', 'env-variant': 'No-op start', 'score': 1059.4, }, { 'env-title': 'atari-assault', 'env-variant': 'No-op start', 'score': 10777.7, }, { 'env-title': 'atari-asterix', 'env-variant': 'No-op start', 'score': 31583.0, }, { 'env-title': 'atari-asteroids', 'env-variant': 'No-op start', 'score': 34171.6, }, { 'env-title': 'atari-atlantis', 'env-variant': 'No-op start', 'score': 3433182.0, }, { 'env-title': 'atari-bank-heist', 'env-variant': 'No-op start', 'score': 1289.7, }, { 'env-title': 'atari-battle-zone', 'env-variant': 'No-op start', 'score': 8910.0, }, { 'env-title': 'atari-beam-rider', 'env-variant': 'No-op start', 'score': 13581.4, }, { 'env-title': 'atari-berzerk', 'env-variant': 'No-op start', 'score': 927.2, }, { 'env-title': 'atari-bowling', 'env-variant': 'No-op start', 'score': 24.3, }, { 'env-title': 'atari-boxing', 'env-variant': 'No-op start', 'score': 1.45, }, { 'env-title': 'atari-breakout', 'env-variant': 'No-op start', 'score': 735.7, }, { 'env-title': 'atari-centipede', 'env-variant': 'No-op start', 'score': 7125.28, }, { 'env-title': 'atari-crazy-climber', 'env-variant': 'No-op start', 'score': 150444.0 }, { 'env-title': 'atari-demon-attack', 'env-variant': 'No-op start', 'score': 274176.7 }, { 'env-title': 'atari-double-dunk', 'env-variant': 'No-op start', 'score': -0.54, }, { 'env-title': 'atari-enduro', 'env-variant': 'No-op start', 'score': 0.0, }, { 'env-title': 'atari-fishing-derby', 'env-variant': 'No-op start', 'score': 33.73, }, { 'env-title': 'atari-freeway', 'env-variant': 'No-op start', 'score': 0.0, }, { 'env-title': 'atari-gopher', 'env-variant': 'No-op start', 'score': 47730.8, }, { 'env-title': 'atari-ice-hockey', 'env-variant': 'No-op start', 'score': -4.2, }, { 'env-title': 'atari-jamesbond', 'env-variant': 'No-op start', 'score': 490.0, }, { 'env-title': 'atari-kangaroo', 'env-variant': 'No-op start', 'score': 3150.0, }, { 'env-title': 'atari-krull', 'env-variant': 'No-op start', 'score': 9686.9, }, { 'env-title': 'atari-kung-fu-master', 'env-variant': 'No-op start', 'score': 34954.0, }, { 'env-title': 'atari-phoenix', 'env-variant': 'No-op start', 'score': 133433.7, }, { 'env-title': 'atari-pitfall', 'env-variant': 'No-op start', 'score': -1.1, }, { 'env-title': 'atari-pong', 'env-variant': 'No-op start', 'score': 20.9, }, { 'env-title': 'atari-qbert', 'env-variant': 'No-op start', 'score': 23151.5, }, { 'env-title': 'atari-riverraid', 'env-variant': 'No-op start', 'score': 17762.8, }, { 'env-title': 'atari-road-runner', 'env-variant': 'No-op start', 'score': 53446.0, }, { 'env-title': 'atari-robotank', 'env-variant': 'No-op start', 'score': 16.5, }, { 'env-title': 'atari-seaquest', 'env-variant': 'No-op start', 'score': 1776.0, }, { 'env-title': 'atari-solaris', 'env-variant': 'No-op start', 'score': 2368.6, }, { 'env-title': 'atari-space-invaders', 'env-variant': 'No-op start', 'score': 19723.0, }, { 'env-title': 'atari-star-gunner', 'env-variant': 'No-op start', 'score': 82920.0, }, { 'env-title': 'atari-time-pilot', 'env-variant': 'No-op start', 'score': 22286.0, }, { 'env-title': 'atari-tutankham', 'env-variant': 'No-op start', 'score': 314.3, }, { 'env-title': 'atari-up-n-down', 'env-variant': 'No-op start', 'score': 436665.8, }, { 'env-title': 'atari-video-pinball', 'env-variant': 'No-op start', 'score': 100496.6, }, { 'env-title': 'atari-wizard-of-wor', 'env-variant': 'No-op start', 'score': 702.0, }, { 'env-title': 'atari-yars-revenge', 'env-variant': 'No-op start', 'score': 125169.0, }, { 'env-title': 'atari-zaxxon', 'env-variant': 'No-op start', 'score': 17448.0, }, ] mujoco_entries = [ { 'env-title': 'mujoco-ant', 'score': 4621.6, }, { 'env-title': 'mujoco-half-cheetah', 'score': 5586.3, }, { 'env-title': 'mujoco-hopper', 'score': 3915.9, }, { 'env-title': 'mujoco-inverted-pendulum', 'score': 1000.0, }, { 'env-title': 'mujoco-inverted-double-pendulum', 'score': 9356.0, }, { 'env-title': 'mujoco-reacher', 'score': -1.5, }, { 'env-title': 'mujoco-swimmer', 'score': 138.0, }, { 'env-title': 'mujoco-walker2d', 'score': 6198.8, }, ] entries = atari_entries + mujoco_entries
22.392308
55
0.437135
f1d07b906971c12d57649f79c1464352dac2a01c
2,287
py
Python
tests/unit/test_diffusion2d_functions.py
LarissaBrencher/testing-python-exercise
84787d0ee8905addd6c738e737532465780c0733
[ "CC-BY-4.0" ]
null
null
null
tests/unit/test_diffusion2d_functions.py
LarissaBrencher/testing-python-exercise
84787d0ee8905addd6c738e737532465780c0733
[ "CC-BY-4.0" ]
null
null
null
tests/unit/test_diffusion2d_functions.py
LarissaBrencher/testing-python-exercise
84787d0ee8905addd6c738e737532465780c0733
[ "CC-BY-4.0" ]
null
null
null
""" Tests for functions in class SolveDiffusion2D """ from diffusion2d import SolveDiffusion2D import pytest import numpy as np from unittest import TestCase class TestDiffusion2D(TestCase): def setUp(self): # fixture self.solver = SolveDiffusion2D() def test_initialize_domain(self): """ Check function SolveDiffusion2D.initialize_domain """ w = 1. h = 2. dx = 0.2 dy = 0.5 # expected result expected_nx = 5 expected_ny = 4 # actual result self.solver.initialize_domain(w, h, dx, dy) # test self.assertEqual(self.solver.nx, expected_nx) self.assertEqual(self.solver.ny, expected_ny) def test_initialize_physical_parameters(self): """ Checks function SolveDiffusion2D.initialize_domain """ # fixture d = 2. T_cold = 350. T_hot = 420. self.solver.dx = 1. self.solver.dy = 1. # expected result expected_dt = 0.125 # actual result self.solver.initialize_physical_parameters(d, T_cold, T_hot) # test self.assertAlmostEqual(expected_dt, self.solver.dt) self.assertAlmostEqual(T_cold, self.solver.T_cold) self.assertAlmostEqual(T_hot, self.solver.T_hot) def test_set_initial_condition(self): """ Checks function SolveDiffusion2D.get_initial_function """ # fixture self.solver.nx = 2 self.solver.ny = 2 self.solver.dx = 4.5 self.solver.dy = 5.5 self.solver.T_cold = 200. self.solver.T_hot = 420. # expected result # expected_u = np.array([[200., 200.], [200., 420.]]) expected_u = self.solver.T_cold * np.ones((self.solver.nx,self.solver.ny)) expected_u[1,1] = self.solver.T_hot # actual result actual_u = self.solver.set_initial_condition() # expected_u_approx = pytest.approx(expected_u, abs=0.01) # test # self.assertAlmostEqual(expected_u_approx, actual_u) for idx_x in range(self.solver.nx): for idx_y in range(self.solver.ny): self.assertEqual(expected_u[idx_x, idx_y], actual_u[idx_x, idx_y])
30.493333
82
0.602973
72564a7635f7a6cf2d4863f61957b787f1bfc3e3
2,751
py
Python
tensorpack/utils/timer.py
ChriPo92/tensorpack
45d2155850d3870bbf110c94c73508c707e1ae42
[ "Apache-2.0" ]
121
2019-06-04T08:30:53.000Z
2021-12-17T13:27:54.000Z
tensorpack/utils/timer.py
lkn123/tensorpack
d7a13cb74c9066bc791d7aafc3b744b60ee79a9f
[ "Apache-2.0" ]
1
2019-11-21T04:29:09.000Z
2019-11-21T04:29:09.000Z
tensorpack/utils/timer.py
lkn123/tensorpack
d7a13cb74c9066bc791d7aafc3b744b60ee79a9f
[ "Apache-2.0" ]
22
2019-10-10T15:35:47.000Z
2021-09-13T12:46:09.000Z
# -*- coding: utf-8 -*- # File: timer.py import atexit from collections import defaultdict from contextlib import contextmanager from time import time as timer import six from . import logger from .stats import StatCounter if six.PY3: from time import perf_counter as timer # noqa __all__ = ['total_timer', 'timed_operation', 'print_total_timer', 'IterSpeedCounter'] @contextmanager def timed_operation(msg, log_start=False): """ Surround a context with a timer. Args: msg(str): the log to print. log_start(bool): whether to print also at the beginning. Example: .. code-block:: python with timed_operation('Good Stuff'): time.sleep(1) Will print: .. code-block:: python Good stuff finished, time:1sec. """ assert len(msg) if log_start: logger.info('Start {} ...'.format(msg)) start = timer() yield msg = msg[0].upper() + msg[1:] logger.info('{} finished, time:{:.4f} sec.'.format( msg, timer() - start)) _TOTAL_TIMER_DATA = defaultdict(StatCounter) @contextmanager def total_timer(msg): """ A context which add the time spent inside to TotalTimer. """ start = timer() yield t = timer() - start _TOTAL_TIMER_DATA[msg].feed(t) def print_total_timer(): """ Print the content of the TotalTimer, if it's not empty. This function will automatically get called when program exits. """ if len(_TOTAL_TIMER_DATA) == 0: return for k, v in six.iteritems(_TOTAL_TIMER_DATA): logger.info("Total Time: {} -> {:.2f} sec, {} times, {:.3g} sec/time".format( k, v.sum, v.count, v.average)) atexit.register(print_total_timer) class IterSpeedCounter(object): """ Test how often some code gets reached. Example: Print the speed of the iteration every 100 times. .. code-block:: python speed = IterSpeedCounter(100) for k in range(1000): # do something speed() """ def __init__(self, print_every, name=None): """ Args: print_every(int): interval to print. name(str): name to used when print. """ self.cnt = 0 self.print_every = int(print_every) self.name = name if name else 'IterSpeed' def reset(self): self.start = timer() def __call__(self): if self.cnt == 0: self.reset() self.cnt += 1 if self.cnt % self.print_every != 0: return t = timer() - self.start logger.info("{}: {:.2f} sec, {} times, {:.3g} sec/time".format( self.name, t, self.cnt, t / self.cnt))
23.715517
96
0.586696
1748197936ae4cc554cc49a1cbd241171b134478
55,316
py
Python
tests/unit/utils/test_jinja.py
ContextLogic/salt
f98839c72df2294cdd1670835d10904b12089622
[ "Apache-2.0" ]
null
null
null
tests/unit/utils/test_jinja.py
ContextLogic/salt
f98839c72df2294cdd1670835d10904b12089622
[ "Apache-2.0" ]
null
null
null
tests/unit/utils/test_jinja.py
ContextLogic/salt
f98839c72df2294cdd1670835d10904b12089622
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- ''' Tests for salt.utils.jinja ''' # Import Python libs from __future__ import absolute_import, unicode_literals, print_function from jinja2 import Environment, DictLoader, exceptions import ast import copy import datetime import os import pprint import re import tempfile # Import Salt Testing libs from tests.support.unit import skipIf, TestCase from tests.support.case import ModuleCase from tests.support.helpers import flaky from tests.support.mock import NO_MOCK, NO_MOCK_REASON, patch, MagicMock, Mock from tests.support.paths import BASE_FILES, TMP, TMP_CONF_DIR # Import Salt libs import salt.config import salt.loader from salt.exceptions import SaltRenderError from salt.ext import six from salt.ext.six.moves import builtins import salt.utils.json from salt.utils.decorators.jinja import JinjaFilter from salt.utils.jinja import ( SaltCacheLoader, SerializerExtension, ensure_sequence_filter, tojson ) from salt.utils.odict import OrderedDict from salt.utils.templates import JINJA, render_jinja_tmpl # dateutils is needed so that the strftime jinja filter is loaded import salt.utils.dateutils # pylint: disable=unused-import import salt.utils.files import salt.utils.stringutils import salt.utils.yaml # Import 3rd party libs try: import timelib # pylint: disable=W0611 HAS_TIMELIB = True except ImportError: HAS_TIMELIB = False CACHEDIR = os.path.join(TMP, 'jinja-template-cache') BLINESEP = salt.utils.stringutils.to_bytes(os.linesep) class JinjaTestCase(TestCase): def test_tojson(self): ''' Test the tojson filter for those using Jinja < 2.9. Non-ascii unicode content should be dumped with ensure_ascii=True. ''' data = {'Non-ascii words': ['süß', 'спам', 'яйца']} result = tojson(data) expected = '{"Non-ascii words": ["s\\u00fc\\u00df", "\\u0441\\u043f\\u0430\\u043c", "\\u044f\\u0439\\u0446\\u0430"]}' assert result == expected, result class MockFileClient(object): ''' Does not download files but records any file request for testing ''' def __init__(self, loader=None): if loader: loader._file_client = self self.requests = [] def get_file(self, template, dest='', makedirs=False, saltenv='base'): self.requests.append({ 'path': template, 'dest': dest, 'makedirs': makedirs, 'saltenv': saltenv }) def _setup_test_dir(src_dir, test_dir): os.makedirs(test_dir) salt.utils.files.recursive_copy(src_dir, test_dir) filename = os.path.join(test_dir, 'non_ascii') with salt.utils.files.fopen(filename, 'wb') as fp: fp.write(b'Assun\xc3\xa7\xc3\xa3o' + BLINESEP) filename = os.path.join(test_dir, 'hello_simple') with salt.utils.files.fopen(filename, 'wb') as fp: fp.write(b'world' + BLINESEP) filename = os.path.join(test_dir, 'hello_import') lines = [ r"{% from 'macro' import mymacro -%}", r"{% from 'macro' import mymacro -%}", r"{{ mymacro('Hey') ~ mymacro(a|default('a'), b|default('b')) }}", ] with salt.utils.files.fopen(filename, 'wb') as fp: for line in lines: fp.write(line.encode('utf-8') + BLINESEP) class TestSaltCacheLoader(TestCase): def setUp(self): self.tempdir = tempfile.mkdtemp() self.template_dir = os.path.join(self.tempdir, 'files', 'test') _setup_test_dir( os.path.join(BASE_FILES, 'templates'), self.template_dir ) self.opts = { 'cachedir': self.tempdir, 'file_roots': { 'test': [self.template_dir] }, 'pillar_roots': { 'test': [self.template_dir] } } super(TestSaltCacheLoader, self).setUp() def tearDown(self): salt.utils.files.rm_rf(self.tempdir) def test_searchpath(self): ''' The searchpath is based on the cachedir option and the saltenv parameter ''' tmp = tempfile.gettempdir() opts = copy.deepcopy(self.opts) opts.update({'cachedir': tmp}) loader = self.get_loader(opts=opts, saltenv='test') assert loader.searchpath == [os.path.join(tmp, 'files', 'test')] def test_mockclient(self): ''' A MockFileClient is used that records all file requests normally sent to the master. ''' loader = self.get_loader(opts=self.opts, saltenv='test') res = loader.get_source(None, 'hello_simple') assert len(res) == 3 # res[0] on Windows is unicode and use os.linesep so it works cross OS self.assertEqual(six.text_type(res[0]), 'world' + os.linesep) tmpl_dir = os.path.join(self.template_dir, 'hello_simple') self.assertEqual(res[1], tmpl_dir) assert res[2](), 'Template up to date?' assert len(loader._file_client.requests) self.assertEqual(loader._file_client.requests[0]['path'], 'salt://hello_simple') def get_loader(self, opts=None, saltenv='base'): ''' Now that we instantiate the client in the __init__, we need to mock it ''' if opts is None: opts = self.opts with patch.object(SaltCacheLoader, 'file_client', Mock()): loader = SaltCacheLoader(opts, saltenv) # Create a mock file client and attach it to the loader MockFileClient(loader) return loader def get_test_saltenv(self): ''' Setup a simple jinja test environment ''' loader = self.get_loader(saltenv='test') jinja = Environment(loader=loader) return loader._file_client, jinja def test_import(self): ''' You can import and use macros from other files ''' fc, jinja = self.get_test_saltenv() result = jinja.get_template('hello_import').render() self.assertEqual(result, 'Hey world !a b !') assert len(fc.requests) == 2 self.assertEqual(fc.requests[0]['path'], 'salt://hello_import') self.assertEqual(fc.requests[1]['path'], 'salt://macro') def test_relative_import(self): ''' You can import using relative paths issue-13889 ''' fc, jinja = self.get_test_saltenv() tmpl = jinja.get_template('relative/rhello') result = tmpl.render() self.assertEqual(result, 'Hey world !a b !') assert len(fc.requests) == 3 self.assertEqual(fc.requests[0]['path'], 'salt://relative/rhello') self.assertEqual(fc.requests[1]['path'], 'salt://relative/rmacro') self.assertEqual(fc.requests[2]['path'], 'salt://macro') # This must fail when rendered: attempts to import from outside file root template = jinja.get_template('relative/rescape') self.assertRaises(exceptions.TemplateNotFound, template.render) def test_include(self): ''' You can also include a template that imports and uses macros ''' fc, jinja = self.get_test_saltenv() result = jinja.get_template('hello_include').render() self.assertEqual(result, 'Hey world !a b !') assert len(fc.requests) == 3 self.assertEqual(fc.requests[0]['path'], 'salt://hello_include') self.assertEqual(fc.requests[1]['path'], 'salt://hello_import') self.assertEqual(fc.requests[2]['path'], 'salt://macro') def test_include_context(self): ''' Context variables are passes to the included template by default. ''' _, jinja = self.get_test_saltenv() result = jinja.get_template('hello_include').render(a='Hi', b='Salt') self.assertEqual(result, 'Hey world !Hi Salt !') class TestGetTemplate(TestCase): def setUp(self): self.tempdir = tempfile.mkdtemp() self.template_dir = os.path.join(self.tempdir, 'files', 'test') _setup_test_dir( os.path.join(BASE_FILES, 'templates'), self.template_dir ) self.local_opts = { 'cachedir': self.tempdir, 'file_client': 'local', 'file_ignore_regex': None, 'file_ignore_glob': None, 'file_roots': { 'test': [self.template_dir] }, 'pillar_roots': { 'test': [self.template_dir] }, 'fileserver_backend': ['roots'], 'hash_type': 'md5', 'extension_modules': os.path.join( os.path.dirname(os.path.abspath(__file__)), 'extmods'), } self.local_salt = {} super(TestGetTemplate, self).setUp() def tearDown(self): salt.utils.files.rm_rf(self.tempdir) def test_fallback(self): ''' A Template with a filesystem loader is returned as fallback if the file is not contained in the searchpath ''' fn_ = os.path.join(self.template_dir, 'hello_simple') with salt.utils.files.fopen(fn_) as fp_: out = render_jinja_tmpl( salt.utils.stringutils.to_unicode(fp_.read()), dict(opts=self.local_opts, saltenv='test', salt=self.local_salt) ) self.assertEqual(out, 'world' + os.linesep) def test_fallback_noloader(self): ''' A Template with a filesystem loader is returned as fallback if the file is not contained in the searchpath ''' filename = os.path.join(self.template_dir, 'hello_import') with salt.utils.files.fopen(filename) as fp_: out = render_jinja_tmpl( salt.utils.stringutils.to_unicode(fp_.read()), dict(opts=self.local_opts, saltenv='test', salt=self.local_salt) ) self.assertEqual(out, 'Hey world !a b !' + os.linesep) def test_saltenv(self): ''' If the template is within the searchpath it can import, include and extend other templates. The initial template is expected to be already cached get_template does not request it from the master again. ''' fc = MockFileClient() with patch.object(SaltCacheLoader, 'file_client', MagicMock(return_value=fc)): filename = os.path.join(self.template_dir, 'hello_import') with salt.utils.files.fopen(filename) as fp_: out = render_jinja_tmpl( salt.utils.stringutils.to_unicode(fp_.read()), dict(opts={'cachedir': self.tempdir, 'file_client': 'remote', 'file_roots': self.local_opts['file_roots'], 'pillar_roots': self.local_opts['pillar_roots']}, a='Hi', b='Salt', saltenv='test', salt=self.local_salt)) self.assertEqual(out, 'Hey world !Hi Salt !' + os.linesep) self.assertEqual(fc.requests[0]['path'], 'salt://macro') def test_macro_additional_log_for_generalexc(self): ''' If we failed in a macro because of e.g. a TypeError, get more output from trace. ''' expected = r'''Jinja error:.*division.* .*macrogeneral\(2\): --- \{% macro mymacro\(\) -%\} \{\{ 1/0 \}\} <====================== \{%- endmacro %\} ---.*''' filename = os.path.join(self.template_dir, 'hello_import_generalerror') fc = MockFileClient() with patch.object(SaltCacheLoader, 'file_client', MagicMock(return_value=fc)): with salt.utils.files.fopen(filename) as fp_: self.assertRaisesRegex( SaltRenderError, expected, render_jinja_tmpl, salt.utils.stringutils.to_unicode(fp_.read()), dict(opts=self.local_opts, saltenv='test', salt=self.local_salt)) def test_macro_additional_log_for_undefined(self): ''' If we failed in a macro because of undefined variables, get more output from trace. ''' expected = r'''Jinja variable 'b' is undefined .*macroundefined\(2\): --- \{% macro mymacro\(\) -%\} \{\{b.greetee\}\} <-- error is here <====================== \{%- endmacro %\} ---''' filename = os.path.join(self.template_dir, 'hello_import_undefined') fc = MockFileClient() with patch.object(SaltCacheLoader, 'file_client', MagicMock(return_value=fc)): with salt.utils.files.fopen(filename) as fp_: self.assertRaisesRegex( SaltRenderError, expected, render_jinja_tmpl, salt.utils.stringutils.to_unicode(fp_.read()), dict(opts=self.local_opts, saltenv='test', salt=self.local_salt)) def test_macro_additional_log_syntaxerror(self): ''' If we failed in a macro, get more output from trace. ''' expected = r'''Jinja syntax error: expected token .*end.*got '-'.* .*macroerror\(2\): --- # macro \{% macro mymacro\(greeting, greetee='world'\) -\} <-- error is here <====================== \{\{ greeting ~ ' ' ~ greetee \}\} ! \{%- endmacro %\} ---.*''' filename = os.path.join(self.template_dir, 'hello_import_error') fc = MockFileClient() with patch.object(SaltCacheLoader, 'file_client', MagicMock(return_value=fc)): with salt.utils.files.fopen(filename) as fp_: self.assertRaisesRegex( SaltRenderError, expected, render_jinja_tmpl, salt.utils.stringutils.to_unicode(fp_.read()), dict(opts=self.local_opts, saltenv='test', salt=self.local_salt)) def test_non_ascii_encoding(self): fc = MockFileClient() with patch.object(SaltCacheLoader, 'file_client', MagicMock(return_value=fc)): filename = os.path.join(self.template_dir, 'hello_import') with salt.utils.files.fopen(filename) as fp_: out = render_jinja_tmpl( salt.utils.stringutils.to_unicode(fp_.read()), dict(opts={'cachedir': self.tempdir, 'file_client': 'remote', 'file_roots': self.local_opts['file_roots'], 'pillar_roots': self.local_opts['pillar_roots']}, a='Hi', b='Sàlt', saltenv='test', salt=self.local_salt)) self.assertEqual(out, salt.utils.stringutils.to_unicode('Hey world !Hi Sàlt !' + os.linesep)) self.assertEqual(fc.requests[0]['path'], 'salt://macro') filename = os.path.join(self.template_dir, 'non_ascii') with salt.utils.files.fopen(filename, 'rb') as fp_: out = render_jinja_tmpl( salt.utils.stringutils.to_unicode(fp_.read(), 'utf-8'), dict(opts={'cachedir': self.tempdir, 'file_client': 'remote', 'file_roots': self.local_opts['file_roots'], 'pillar_roots': self.local_opts['pillar_roots']}, a='Hi', b='Sàlt', saltenv='test', salt=self.local_salt)) self.assertEqual('Assunção' + os.linesep, out) self.assertEqual(fc.requests[0]['path'], 'salt://macro') @skipIf(HAS_TIMELIB is False, 'The `timelib` library is not installed.') def test_strftime(self): response = render_jinja_tmpl( '{{ "2002/12/25"|strftime }}', dict( opts=self.local_opts, saltenv='test', salt=self.local_salt )) self.assertEqual(response, '2002-12-25') objects = ( datetime.datetime(2002, 12, 25, 12, 00, 00, 00), '2002/12/25', 1040814000, '1040814000' ) for object in objects: response = render_jinja_tmpl( '{{ object|strftime }}', dict( object=object, opts=self.local_opts, saltenv='test', salt=self.local_salt )) self.assertEqual(response, '2002-12-25') response = render_jinja_tmpl( '{{ object|strftime("%b %d, %Y") }}', dict( object=object, opts=self.local_opts, saltenv='test', salt=self.local_salt )) self.assertEqual(response, 'Dec 25, 2002') response = render_jinja_tmpl( '{{ object|strftime("%y") }}', dict( object=object, opts=self.local_opts, saltenv='test', salt=self.local_salt )) self.assertEqual(response, '02') def test_non_ascii(self): fn = os.path.join(self.template_dir, 'non_ascii') out = JINJA( fn, opts=self.local_opts, saltenv='test', salt=self.local_salt ) with salt.utils.files.fopen(out['data'], 'rb') as fp: result = salt.utils.stringutils.to_unicode(fp.read(), 'utf-8') self.assertEqual(salt.utils.stringutils.to_unicode('Assunção' + os.linesep), result) def test_get_context_has_enough_context(self): template = '1\n2\n3\n4\n5\n6\n7\n8\n9\na\nb\nc\nd\ne\nf' context = salt.utils.stringutils.get_context(template, 8) expected = '---\n[...]\n3\n4\n5\n6\n7\n8\n9\na\nb\nc\nd\n[...]\n---' self.assertEqual(expected, context) def test_get_context_at_top_of_file(self): template = '1\n2\n3\n4\n5\n6\n7\n8\n9\na\nb\nc\nd\ne\nf' context = salt.utils.stringutils.get_context(template, 1) expected = '---\n1\n2\n3\n4\n5\n6\n[...]\n---' self.assertEqual(expected, context) def test_get_context_at_bottom_of_file(self): template = '1\n2\n3\n4\n5\n6\n7\n8\n9\na\nb\nc\nd\ne\nf' context = salt.utils.stringutils.get_context(template, 15) expected = '---\n[...]\na\nb\nc\nd\ne\nf\n---' self.assertEqual(expected, context) def test_get_context_2_context_lines(self): template = '1\n2\n3\n4\n5\n6\n7\n8\n9\na\nb\nc\nd\ne\nf' context = salt.utils.stringutils.get_context(template, 8, num_lines=2) expected = '---\n[...]\n6\n7\n8\n9\na\n[...]\n---' self.assertEqual(expected, context) def test_get_context_with_marker(self): template = '1\n2\n3\n4\n5\n6\n7\n8\n9\na\nb\nc\nd\ne\nf' context = salt.utils.stringutils.get_context(template, 8, num_lines=2, marker=' <---') expected = '---\n[...]\n6\n7\n8 <---\n9\na\n[...]\n---' self.assertEqual(expected, context) def test_render_with_syntax_error(self): template = 'hello\n\n{{ bad\n\nfoo' expected = r'.*---\nhello\n\n{{ bad\n\nfoo <======================\n---' self.assertRaisesRegex( SaltRenderError, expected, render_jinja_tmpl, template, dict(opts=self.local_opts, saltenv='test', salt=self.local_salt) ) @skipIf(six.PY3, 'Not applicable to Python 3') @skipIf(NO_MOCK, NO_MOCK_REASON) def test_render_with_unicode_syntax_error(self): with patch.object(builtins, '__salt_system_encoding__', 'utf-8'): template = 'hello\n\n{{ bad\n\nfoo한' expected = r'.*---\nhello\n\n{{ bad\n\nfoo\xed\x95\x9c <======================\n---' self.assertRaisesRegex( SaltRenderError, expected, render_jinja_tmpl, template, dict(opts=self.local_opts, saltenv='test', salt=self.local_salt) ) @skipIf(NO_MOCK, NO_MOCK_REASON) def test_render_with_utf8_syntax_error(self): with patch.object(builtins, '__salt_system_encoding__', 'utf-8'): template = 'hello\n\n{{ bad\n\nfoo한' expected = salt.utils.stringutils.to_str( r'.*---\nhello\n\n{{ bad\n\nfoo한 <======================\n---' ) self.assertRaisesRegex( SaltRenderError, expected, render_jinja_tmpl, template, dict(opts=self.local_opts, saltenv='test', salt=self.local_salt) ) def test_render_with_undefined_variable(self): template = "hello\n\n{{ foo }}\n\nfoo" expected = r'Jinja variable \'foo\' is undefined' self.assertRaisesRegex( SaltRenderError, expected, render_jinja_tmpl, template, dict(opts=self.local_opts, saltenv='test', salt=self.local_salt) ) def test_render_with_undefined_variable_utf8(self): template = "hello\xed\x95\x9c\n\n{{ foo }}\n\nfoo" expected = r'Jinja variable \'foo\' is undefined' self.assertRaisesRegex( SaltRenderError, expected, render_jinja_tmpl, template, dict(opts=self.local_opts, saltenv='test', salt=self.local_salt) ) def test_render_with_undefined_variable_unicode(self): template = 'hello한\n\n{{ foo }}\n\nfoo' expected = r'Jinja variable \'foo\' is undefined' self.assertRaisesRegex( SaltRenderError, expected, render_jinja_tmpl, template, dict(opts=self.local_opts, saltenv='test', salt=self.local_salt) ) class TestJinjaDefaultOptions(TestCase): def __init__(self, *args, **kws): TestCase.__init__(self, *args, **kws) self.local_opts = { 'cachedir': CACHEDIR, 'file_client': 'local', 'file_ignore_regex': None, 'file_ignore_glob': None, 'file_roots': { 'test': [os.path.join(BASE_FILES, 'templates')] }, 'pillar_roots': { 'test': [os.path.join(BASE_FILES, 'templates')] }, 'fileserver_backend': ['roots'], 'hash_type': 'md5', 'extension_modules': os.path.join( os.path.dirname(os.path.abspath(__file__)), 'extmods'), 'jinja_env': { 'line_comment_prefix': '##', 'line_statement_prefix': '%', }, } self.local_salt = { 'myvar': 'zero', 'mylist': [0, 1, 2, 3], } def test_comment_prefix(self): template = """ %- set myvar = 'one' ## ignored comment 1 {{- myvar -}} {%- set myvar = 'two' %} ## ignored comment 2 {{- myvar }} ## ignored comment 3 %- if myvar == 'two': %- set myvar = 'three' %- endif {{- myvar -}} """ rendered = render_jinja_tmpl(template, dict(opts=self.local_opts, saltenv='test', salt=self.local_salt)) self.assertEqual(rendered, 'onetwothree') def test_statement_prefix(self): template = """ {%- set mylist = ['1', '2', '3'] %} %- set mylist = ['one', 'two', 'three'] %- for item in mylist: {{- item }} %- endfor """ rendered = render_jinja_tmpl(template, dict(opts=self.local_opts, saltenv='test', salt=self.local_salt)) self.assertEqual(rendered, 'onetwothree') class TestCustomExtensions(TestCase): def __init__(self, *args, **kws): super(TestCustomExtensions, self).__init__(*args, **kws) self.local_opts = { 'cachedir': CACHEDIR, 'file_client': 'local', 'file_ignore_regex': None, 'file_ignore_glob': None, 'file_roots': { 'test': [os.path.join(BASE_FILES, 'templates')] }, 'pillar_roots': { 'test': [os.path.join(BASE_FILES, 'templates')] }, 'fileserver_backend': ['roots'], 'hash_type': 'md5', 'extension_modules': os.path.join( os.path.dirname(os.path.abspath(__file__)), 'extmods'), } self.local_salt = { # 'dns.A': dnsutil.A, # 'dns.AAAA': dnsutil.AAAA, # 'file.exists': filemod.file_exists, # 'file.basename': filemod.basename, # 'file.dirname': filemod.dirname } def test_regex_escape(self): dataset = 'foo?:.*/\\bar' env = Environment(extensions=[SerializerExtension]) env.filters.update(JinjaFilter.salt_jinja_filters) rendered = env.from_string('{{ dataset|regex_escape }}').render(dataset=dataset) self.assertEqual(rendered, re.escape(dataset)) def test_unique_string(self): dataset = 'foo' unique = set(dataset) env = Environment(extensions=[SerializerExtension]) env.filters.update(JinjaFilter.salt_jinja_filters) if six.PY3: rendered = env.from_string('{{ dataset|unique }}').render(dataset=dataset).strip("'{}").split("', '") self.assertEqual(sorted(rendered), sorted(list(unique))) else: rendered = env.from_string('{{ dataset|unique }}').render(dataset=dataset) self.assertEqual(rendered, "{0}".format(unique)) def test_unique_tuple(self): dataset = ('foo', 'foo', 'bar') unique = set(dataset) env = Environment(extensions=[SerializerExtension]) env.filters.update(JinjaFilter.salt_jinja_filters) if six.PY3: rendered = env.from_string('{{ dataset|unique }}').render(dataset=dataset).strip("'{}").split("', '") self.assertEqual(sorted(rendered), sorted(list(unique))) else: rendered = env.from_string('{{ dataset|unique }}').render(dataset=dataset) self.assertEqual(rendered, "{0}".format(unique)) def test_unique_list(self): dataset = ['foo', 'foo', 'bar'] unique = ['foo', 'bar'] env = Environment(extensions=[SerializerExtension]) env.filters.update(JinjaFilter.salt_jinja_filters) if six.PY3: rendered = env.from_string('{{ dataset|unique }}').render(dataset=dataset).strip("'[]").split("', '") self.assertEqual(rendered, unique) else: rendered = env.from_string('{{ dataset|unique }}').render(dataset=dataset) self.assertEqual(rendered, "{0}".format(unique)) def test_serialize_json(self): dataset = { "foo": True, "bar": 42, "baz": [1, 2, 3], "qux": 2.0 } env = Environment(extensions=[SerializerExtension]) rendered = env.from_string('{{ dataset|json }}').render(dataset=dataset) self.assertEqual(dataset, salt.utils.json.loads(rendered)) def test_serialize_yaml(self): dataset = { "foo": True, "bar": 42, "baz": [1, 2, 3], "qux": 2.0, "spam": OrderedDict([ ('foo', OrderedDict([ ('bar', 'baz'), ('qux', 42) ]) ) ]) } env = Environment(extensions=[SerializerExtension]) rendered = env.from_string('{{ dataset|yaml }}').render(dataset=dataset) self.assertEqual(dataset, salt.utils.yaml.safe_load(rendered)) def test_serialize_yaml_str(self): dataset = "str value" env = Environment(extensions=[SerializerExtension]) rendered = env.from_string('{{ dataset|yaml }}').render(dataset=dataset) self.assertEqual(dataset, rendered) def test_serialize_yaml_unicode(self): dataset = 'str value' env = Environment(extensions=[SerializerExtension]) rendered = env.from_string('{{ dataset|yaml }}').render(dataset=dataset) if six.PY3: self.assertEqual("str value", rendered) else: # Due to a bug in the equality handler, this check needs to be split # up into several different assertions. We need to check that the various # string segments are present in the rendered value, as well as the # type of the rendered variable (should be unicode, which is the same as # six.text_type). This should cover all use cases but also allow the test # to pass on CentOS 6 running Python 2.7. self.assertIn('str value', rendered) self.assertIsInstance(rendered, six.text_type) def test_serialize_python(self): dataset = { "foo": True, "bar": 42, "baz": [1, 2, 3], "qux": 2.0 } env = Environment(extensions=[SerializerExtension]) rendered = env.from_string('{{ dataset|python }}').render(dataset=dataset) self.assertEqual(rendered, pprint.pformat(dataset)) def test_load_yaml(self): env = Environment(extensions=[SerializerExtension]) rendered = env.from_string('{% set document = "{foo: it works}"|load_yaml %}{{ document.foo }}').render() self.assertEqual(rendered, "it works") rendered = env.from_string('{% set document = document|load_yaml %}' '{{ document.foo }}').render(document="{foo: it works}") self.assertEqual(rendered, "it works") with self.assertRaises((TypeError, exceptions.TemplateRuntimeError)): env.from_string('{% set document = document|load_yaml %}' '{{ document.foo }}').render(document={"foo": "it works"}) def test_load_tag(self): env = Environment(extensions=[SerializerExtension]) source = '{{ bar }}, ' + \ '{% load_yaml as docu %}{foo: it works, {{ bar }}: baz}{% endload %}' + \ '{{ docu.foo }}' rendered = env.from_string(source).render(bar="barred") self.assertEqual(rendered, "barred, it works") source = '{{ bar }}, {% load_json as docu %}{"foo": "it works", "{{ bar }}": "baz"}{% endload %}' + \ '{{ docu.foo }}' rendered = env.from_string(source).render(bar="barred") self.assertEqual(rendered, "barred, it works") with self.assertRaises(exceptions.TemplateSyntaxError): env.from_string('{% load_yamle as document %}{foo, bar: it works}{% endload %}').render() with self.assertRaises(exceptions.TemplateRuntimeError): env.from_string('{% load_json as document %}{foo, bar: it works}{% endload %}').render() def test_load_json(self): env = Environment(extensions=[SerializerExtension]) rendered = env.from_string('{% set document = \'{"foo": "it works"}\'|load_json %}' '{{ document.foo }}').render() self.assertEqual(rendered, "it works") rendered = env.from_string('{% set document = document|load_json %}' '{{ document.foo }}').render(document='{"foo": "it works"}') self.assertEqual(rendered, "it works") # bad quotes with self.assertRaises(exceptions.TemplateRuntimeError): env.from_string("{{ document|load_json }}").render(document="{'foo': 'it works'}") # not a string with self.assertRaises(exceptions.TemplateRuntimeError): env.from_string('{{ document|load_json }}').render(document={"foo": "it works"}) def test_load_yaml_template(self): loader = DictLoader({'foo': '{bar: "my god is blue", foo: [1, 2, 3]}'}) env = Environment(extensions=[SerializerExtension], loader=loader) rendered = env.from_string('{% import_yaml "foo" as doc %}{{ doc.bar }}').render() self.assertEqual(rendered, "my god is blue") with self.assertRaises(exceptions.TemplateNotFound): env.from_string('{% import_yaml "does not exists" as doc %}').render() def test_load_json_template(self): loader = DictLoader({'foo': '{"bar": "my god is blue", "foo": [1, 2, 3]}'}) env = Environment(extensions=[SerializerExtension], loader=loader) rendered = env.from_string('{% import_json "foo" as doc %}{{ doc.bar }}').render() self.assertEqual(rendered, "my god is blue") with self.assertRaises(exceptions.TemplateNotFound): env.from_string('{% import_json "does not exists" as doc %}').render() def test_load_text_template(self): loader = DictLoader({'foo': 'Foo!'}) env = Environment(extensions=[SerializerExtension], loader=loader) rendered = env.from_string('{% import_text "foo" as doc %}{{ doc }}').render() self.assertEqual(rendered, "Foo!") with self.assertRaises(exceptions.TemplateNotFound): env.from_string('{% import_text "does not exists" as doc %}').render() def test_catalog(self): loader = DictLoader({ 'doc1': '{bar: "my god is blue"}', 'doc2': '{% import_yaml "doc1" as local2 %} never exported', 'doc3': '{% load_yaml as local3 %}{"foo": "it works"}{% endload %} me neither', 'main1': '{% from "doc2" import local2 %}{{ local2.bar }}', 'main2': '{% from "doc3" import local3 %}{{ local3.foo }}', 'main3': ''' {% import "doc2" as imported2 %} {% import "doc3" as imported3 %} {{ imported2.local2.bar }} ''', 'main4': ''' {% import "doc2" as imported2 %} {% import "doc3" as imported3 %} {{ imported3.local3.foo }} ''', 'main5': ''' {% from "doc2" import local2 as imported2 %} {% from "doc3" import local3 as imported3 %} {{ imported2.bar }} ''', 'main6': ''' {% from "doc2" import local2 as imported2 %} {% from "doc3" import local3 as imported3 %} {{ imported3.foo }} ''' }) env = Environment(extensions=[SerializerExtension], loader=loader) rendered = env.get_template('main1').render() self.assertEqual(rendered, "my god is blue") rendered = env.get_template('main2').render() self.assertEqual(rendered, "it works") rendered = env.get_template('main3').render().strip() self.assertEqual(rendered, "my god is blue") rendered = env.get_template('main4').render().strip() self.assertEqual(rendered, "it works") rendered = env.get_template('main5').render().strip() self.assertEqual(rendered, "my god is blue") rendered = env.get_template('main6').render().strip() self.assertEqual(rendered, "it works") def test_nested_structures(self): env = Environment(extensions=[SerializerExtension]) rendered = env.from_string('{{ data }}').render(data="foo") self.assertEqual(rendered, "foo") data = OrderedDict([ ('foo', OrderedDict([ ('bar', 'baz'), ('qux', 42) ]) ) ]) rendered = env.from_string('{{ data }}').render(data=data) self.assertEqual( rendered, "{u'foo': {u'bar': u'baz', u'qux': 42}}" if six.PY2 else "{'foo': {'bar': 'baz', 'qux': 42}}" ) rendered = env.from_string('{{ data }}').render(data=[ OrderedDict( foo='bar', ), OrderedDict( baz=42, ) ]) self.assertEqual( rendered, "[{'foo': u'bar'}, {'baz': 42}]" if six.PY2 else "[{'foo': 'bar'}, {'baz': 42}]" ) def test_sequence(self): env = Environment() env.filters['sequence'] = ensure_sequence_filter rendered = env.from_string('{{ data | sequence | length }}') \ .render(data='foo') self.assertEqual(rendered, '1') rendered = env.from_string('{{ data | sequence | length }}') \ .render(data=['foo', 'bar']) self.assertEqual(rendered, '2') rendered = env.from_string('{{ data | sequence | length }}') \ .render(data=('foo', 'bar')) self.assertEqual(rendered, '2') rendered = env.from_string('{{ data | sequence | length }}') \ .render(data=set(['foo', 'bar'])) self.assertEqual(rendered, '2') rendered = env.from_string('{{ data | sequence | length }}') \ .render(data={'foo': 'bar'}) self.assertEqual(rendered, '1') def test_is_ip(self): ''' Test the `is_ip` Jinja filter. ''' rendered = render_jinja_tmpl("{{ '192.168.0.1' | is_ip }}", dict(opts=self.local_opts, saltenv='test', salt=self.local_salt)) self.assertEqual(rendered, 'True') rendered = render_jinja_tmpl("{{ 'FE80::' | is_ip }}", dict(opts=self.local_opts, saltenv='test', salt=self.local_salt)) self.assertEqual(rendered, 'True') rendered = render_jinja_tmpl("{{ 'random' | is_ip }}", dict(opts=self.local_opts, saltenv='test', salt=self.local_salt)) self.assertEqual(rendered, 'False') def test_is_ipv4(self): ''' Test the `is_ipv4` Jinja filter. ''' rendered = render_jinja_tmpl("{{ '192.168.0.1' | is_ipv4 }}", dict(opts=self.local_opts, saltenv='test', salt=self.local_salt)) self.assertEqual(rendered, 'True') rendered = render_jinja_tmpl("{{ 'FE80::' | is_ipv4 }}", dict(opts=self.local_opts, saltenv='test', salt=self.local_salt)) self.assertEqual(rendered, 'False') rendered = render_jinja_tmpl("{{ 'random' | is_ipv4 }}", dict(opts=self.local_opts, saltenv='test', salt=self.local_salt)) self.assertEqual(rendered, 'False') def test_is_ipv6(self): ''' Test the `is_ipv6` Jinja filter. ''' rendered = render_jinja_tmpl("{{ '192.168.0.1' | is_ipv6 }}", dict(opts=self.local_opts, saltenv='test', salt=self.local_salt)) self.assertEqual(rendered, 'False') rendered = render_jinja_tmpl("{{ 'FE80::' | is_ipv6 }}", dict(opts=self.local_opts, saltenv='test', salt=self.local_salt)) self.assertEqual(rendered, 'True') rendered = render_jinja_tmpl("{{ 'random' | is_ipv6 }}", dict(opts=self.local_opts, saltenv='test', salt=self.local_salt)) self.assertEqual(rendered, 'False') def test_ipaddr(self): ''' Test the `ipaddr` Jinja filter. ''' rendered = render_jinja_tmpl("{{ '::' | ipaddr }}", dict(opts=self.local_opts, saltenv='test', salt=self.local_salt)) self.assertEqual(rendered, '::') rendered = render_jinja_tmpl("{{ '192.168.0.1' | ipaddr }}", dict(opts=self.local_opts, saltenv='test', salt=self.local_salt)) self.assertEqual(rendered, '192.168.0.1') # provides a list with valid IP addresses only rendered = render_jinja_tmpl("{{ ['192.168.0.1', '172.17.17.1', 'foo', 'bar', '::'] | ipaddr | join(', ') }}", dict(opts=self.local_opts, saltenv='test', salt=self.local_salt)) self.assertEqual(rendered, '192.168.0.1, 172.17.17.1, ::') # return only multicast addresses rendered = render_jinja_tmpl("{{ ['224.0.0.1', 'FF01::1', '::'] | ipaddr(options='multicast') | join(', ') }}", dict(opts=self.local_opts, saltenv='test', salt=self.local_salt)) self.assertEqual(rendered, '224.0.0.1, ff01::1') def test_ipv4(self): ''' Test the `ipv4` Jinja filter. ''' rendered = render_jinja_tmpl("{{ '192.168.0.1' | ipv4 }}", dict(opts=self.local_opts, saltenv='test', salt=self.local_salt)) self.assertEqual(rendered, '192.168.0.1') rendered = render_jinja_tmpl("{{ ['192.168.0.1', '172.17.17.1'] | ipv4 | join(', ')}}", dict(opts=self.local_opts, saltenv='test', salt=self.local_salt)) self.assertEqual(rendered, '192.168.0.1, 172.17.17.1') rendered = render_jinja_tmpl("{{ 'fe80::' | ipv4 }}", dict(opts=self.local_opts, saltenv='test', salt=self.local_salt)) self.assertEqual(rendered, 'None') rendered = render_jinja_tmpl("{{ 'random' | ipv4 }}", dict(opts=self.local_opts, saltenv='test', salt=self.local_salt)) self.assertEqual(rendered, 'None') rendered = render_jinja_tmpl("{{ '192.168.0.1' | ipv4(options='lo') }}", dict(opts=self.local_opts, saltenv='test', salt=self.local_salt)) self.assertEqual(rendered, 'None') rendered = render_jinja_tmpl("{{ '127.0.0.1' | ipv4(options='lo') }}", dict(opts=self.local_opts, saltenv='test', salt=self.local_salt)) self.assertEqual(rendered, '127.0.0.1') def test_ipv6(self): ''' Test the `ipv6` Jinja filter. ''' rendered = render_jinja_tmpl("{{ '192.168.0.1' | ipv6 }}", dict(opts=self.local_opts, saltenv='test', salt=self.local_salt)) self.assertEqual(rendered, 'None') rendered = render_jinja_tmpl("{{ 'random' | ipv6 }}", dict(opts=self.local_opts, saltenv='test', salt=self.local_salt)) self.assertEqual(rendered, 'None') # returns the standard format value rendered = render_jinja_tmpl("{{ 'FE80:0:0::0' | ipv6 }}", dict(opts=self.local_opts, saltenv='test', salt=self.local_salt)) self.assertEqual(rendered, 'fe80::') # fe80:: is link local therefore will be returned rendered = render_jinja_tmpl("{{ 'fe80::' | ipv6(options='ll') }}", dict(opts=self.local_opts, saltenv='test', salt=self.local_salt)) self.assertEqual(rendered, 'fe80::') # fe80:: is not loopback rendered = render_jinja_tmpl("{{ 'fe80::' | ipv6(options='lo') }}", dict(opts=self.local_opts, saltenv='test', salt=self.local_salt)) self.assertEqual(rendered, 'None') # returns only IPv6 addresses in the list rendered = render_jinja_tmpl("{{ ['fe80::', '192.168.0.1'] | ipv6 | join(', ') }}", dict(opts=self.local_opts, saltenv='test', salt=self.local_salt)) self.assertEqual(rendered, 'fe80::') rendered = render_jinja_tmpl("{{ ['fe80::', '::'] | ipv6 | join(', ') }}", dict(opts=self.local_opts, saltenv='test', salt=self.local_salt)) self.assertEqual(rendered, 'fe80::, ::') def test_network_hosts(self): ''' Test the `network_hosts` Jinja filter. ''' rendered = render_jinja_tmpl("{{ '192.168.0.1/30' | network_hosts | join(', ') }}", dict(opts=self.local_opts, saltenv='test', salt=self.local_salt)) self.assertEqual(rendered, '192.168.0.1, 192.168.0.2') def test_network_size(self): ''' Test the `network_size` Jinja filter. ''' rendered = render_jinja_tmpl("{{ '192.168.0.1' | network_size }}", dict(opts=self.local_opts, saltenv='test', salt=self.local_salt)) self.assertEqual(rendered, '1') rendered = render_jinja_tmpl("{{ '192.168.0.1/8' | network_size }}", dict(opts=self.local_opts, saltenv='test', salt=self.local_salt)) self.assertEqual(rendered, '16777216') @flaky def test_http_query(self): ''' Test the `http_query` Jinja filter. ''' for backend in ('requests', 'tornado', 'urllib2'): rendered = render_jinja_tmpl("{{ 'http://icanhazip.com' | http_query(backend='" + backend + "') }}", dict(opts=self.local_opts, saltenv='test', salt=self.local_salt)) self.assertIsInstance(rendered, six.text_type, 'Failed with backend: {}'.format(backend)) dict_reply = ast.literal_eval(rendered) self.assertIsInstance(dict_reply, dict, 'Failed with backend: {}'.format(backend)) self.assertIsInstance(dict_reply['body'], six.string_types, 'Failed with backend: {}'.format(backend)) def test_to_bool(self): ''' Test the `to_bool` Jinja filter. ''' rendered = render_jinja_tmpl("{{ 1 | to_bool }}", dict(opts=self.local_opts, saltenv='test', salt=self.local_salt)) self.assertEqual(rendered, 'True') rendered = render_jinja_tmpl("{{ 'True' | to_bool }}", dict(opts=self.local_opts, saltenv='test', salt=self.local_salt)) self.assertEqual(rendered, 'True') rendered = render_jinja_tmpl("{{ 0 | to_bool }}", dict(opts=self.local_opts, saltenv='test', salt=self.local_salt)) self.assertEqual(rendered, 'False') rendered = render_jinja_tmpl("{{ 'Yes' | to_bool }}", dict(opts=self.local_opts, saltenv='test', salt=self.local_salt)) self.assertEqual(rendered, 'True') def test_quote(self): ''' Test the `quote` Jinja filter. ''' rendered = render_jinja_tmpl("{{ 'random' | quote }}", dict(opts=self.local_opts, saltenv='test', salt=self.local_salt)) self.assertEqual(rendered, 'random') def test_regex_search(self): ''' Test the `regex_search` Jinja filter. ''' rendered = render_jinja_tmpl("{{ 'abcdefabcdef' | regex_search('BC(.*)', ignorecase=True) }}", dict(opts=self.local_opts, saltenv='test', salt=self.local_salt)) self.assertEqual(rendered, "('defabcdef',)") # because search looks only at the beginning def test_regex_match(self): ''' Test the `regex_match` Jinja filter. ''' rendered = render_jinja_tmpl("{{ 'abcdefabcdef' | regex_match('BC(.*)', ignorecase=True)}}", dict(opts=self.local_opts, saltenv='test', salt=self.local_salt)) self.assertEqual(rendered, "None") def test_regex_replace(self): ''' Test the `regex_replace` Jinja filter. ''' rendered = render_jinja_tmpl(r"{{ 'lets replace spaces' | regex_replace('\s+', '__') }}", dict(opts=self.local_opts, saltenv='test', salt=self.local_salt)) self.assertEqual(rendered, 'lets__replace__spaces') def test_uuid(self): ''' Test the `uuid` Jinja filter. ''' rendered = render_jinja_tmpl("{{ 'random' | uuid }}", dict(opts=self.local_opts, saltenv='test', salt=self.local_salt)) self.assertEqual(rendered, '3652b285-26ad-588e-a5dc-c2ee65edc804') def test_min(self): ''' Test the `min` Jinja filter. ''' rendered = render_jinja_tmpl("{{ [1, 2, 3] | min }}", dict(opts=self.local_opts, saltenv='test', salt=self.local_salt)) self.assertEqual(rendered, '1') def test_max(self): ''' Test the `max` Jinja filter. ''' rendered = render_jinja_tmpl("{{ [1, 2, 3] | max }}", dict(opts=self.local_opts, saltenv='test', salt=self.local_salt)) self.assertEqual(rendered, '3') def test_avg(self): ''' Test the `avg` Jinja filter. ''' rendered = render_jinja_tmpl("{{ [1, 2, 3] | avg }}", dict(opts=self.local_opts, saltenv='test', salt=self.local_salt)) self.assertEqual(rendered, '2.0') def test_union(self): ''' Test the `union` Jinja filter. ''' rendered = render_jinja_tmpl("{{ [1, 2, 3] | union([2, 3, 4]) | join(', ') }}", dict(opts=self.local_opts, saltenv='test', salt=self.local_salt)) self.assertEqual(rendered, '1, 2, 3, 4') def test_intersect(self): ''' Test the `intersect` Jinja filter. ''' rendered = render_jinja_tmpl("{{ [1, 2, 3] | intersect([2, 3, 4]) | join(', ') }}", dict(opts=self.local_opts, saltenv='test', salt=self.local_salt)) self.assertEqual(rendered, '2, 3') def test_difference(self): ''' Test the `difference` Jinja filter. ''' rendered = render_jinja_tmpl("{{ [1, 2, 3] | difference([2, 3, 4]) | join(', ') }}", dict(opts=self.local_opts, saltenv='test', salt=self.local_salt)) self.assertEqual(rendered, '1') def test_symmetric_difference(self): ''' Test the `symmetric_difference` Jinja filter. ''' rendered = render_jinja_tmpl("{{ [1, 2, 3] | symmetric_difference([2, 3, 4]) | join(', ') }}", dict(opts=self.local_opts, saltenv='test', salt=self.local_salt)) self.assertEqual(rendered, '1, 4') def test_md5(self): ''' Test the `md5` Jinja filter. ''' rendered = render_jinja_tmpl("{{ 'random' | md5 }}", dict(opts=self.local_opts, saltenv='test', salt=self.local_salt)) self.assertEqual(rendered, '7ddf32e17a6ac5ce04a8ecbf782ca509') def test_sha256(self): ''' Test the `sha256` Jinja filter. ''' rendered = render_jinja_tmpl("{{ 'random' | sha256 }}", dict(opts=self.local_opts, saltenv='test', salt=self.local_salt)) self.assertEqual(rendered, 'a441b15fe9a3cf56661190a0b93b9dec7d04127288cc87250967cf3b52894d11') def test_sha512(self): ''' Test the `sha512` Jinja filter. ''' rendered = render_jinja_tmpl("{{ 'random' | sha512 }}", dict(opts=self.local_opts, saltenv='test', salt=self.local_salt)) self.assertEqual(rendered, six.text_type(('811a90e1c8e86c7b4c0eef5b2c0bf0ec1b19c4b1b5a242e6455be93787cb473cb7bc' '9b0fdeb960d00d5c6881c2094dd63c5c900ce9057255e2a4e271fc25fef1'))) def test_hmac(self): ''' Test the `hmac` Jinja filter. ''' rendered = render_jinja_tmpl("{{ 'random' | hmac('secret', 'blah') }}", dict(opts=self.local_opts, saltenv='test', salt=self.local_salt)) self.assertEqual(rendered, 'False') rendered = render_jinja_tmpl(("{{ 'get salted' | " "hmac('shared secret', 'eBWf9bstXg+NiP5AOwppB5HMvZiYMPzEM9W5YMm/AmQ=') }}"), dict(opts=self.local_opts, saltenv='test', salt=self.local_salt)) self.assertEqual(rendered, 'True') def test_base64_encode(self): ''' Test the `base64_encode` Jinja filter. ''' rendered = render_jinja_tmpl("{{ 'random' | base64_encode }}", dict(opts=self.local_opts, saltenv='test', salt=self.local_salt)) self.assertEqual(rendered, 'cmFuZG9t') def test_base64_decode(self): ''' Test the `base64_decode` Jinja filter. ''' rendered = render_jinja_tmpl("{{ 'cmFuZG9t' | base64_decode }}", dict(opts=self.local_opts, saltenv='test', salt=self.local_salt)) self.assertEqual(rendered, 'random') # def test_print(self): # env = Environment(extensions=[SerializerExtension]) # source = '{% import_yaml "toto.foo" as docu %}' # name, filename = None, '<filename>' # parsed = env._parse(source, name, filename) # print parsed # print # compiled = env._generate(parsed, name, filename) # print compiled # return class TestDotNotationLookup(ModuleCase): ''' Tests to call Salt functions via Jinja with various lookup syntaxes ''' def setUp(self, *args, **kwargs): functions = { 'mocktest.ping': lambda: True, 'mockgrains.get': lambda x: 'jerry', } minion_opts = salt.config.minion_config(os.path.join(TMP_CONF_DIR, 'minion')) render = salt.loader.render(minion_opts, functions) self.jinja = render.get('jinja') def tearDown(self): del self.jinja def render(self, tmpl_str, context=None): return self.jinja(tmpl_str, context=context or {}, from_str=True).read() def test_normlookup(self): ''' Sanity-check the normal dictionary-lookup syntax for our stub function ''' tmpl_str = '''Hello, {{ salt['mocktest.ping']() }}.''' with patch.object(SaltCacheLoader, 'file_client', Mock()): ret = self.render(tmpl_str) self.assertEqual(ret, 'Hello, True.') def test_dotlookup(self): ''' Check calling a stub function using awesome dot-notation ''' tmpl_str = '''Hello, {{ salt.mocktest.ping() }}.''' with patch.object(SaltCacheLoader, 'file_client', Mock()): ret = self.render(tmpl_str) self.assertEqual(ret, 'Hello, True.') def test_shadowed_dict_method(self): ''' Check calling a stub function with a name that shadows a ``dict`` method name ''' tmpl_str = '''Hello, {{ salt.mockgrains.get('id') }}.''' with patch.object(SaltCacheLoader, 'file_client', Mock()): ret = self.render(tmpl_str) self.assertEqual(ret, 'Hello, jerry.')
41.127138
125
0.553258
44f6ef45a2ddaf43310c6cb20183d83d527b6c2f
1,823
py
Python
var/spack/repos/builtin/packages/votca-csgapps/package.py
gwagenbreth/spack
e10c0a6a340956a8626de747036a745cd10d606d
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
1
2021-09-19T10:20:43.000Z
2021-09-19T10:20:43.000Z
var/spack/repos/builtin/packages/votca-csgapps/package.py
gwagenbreth/spack
e10c0a6a340956a8626de747036a745cd10d606d
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
9
2021-05-12T05:42:26.000Z
2022-03-30T17:06:14.000Z
var/spack/repos/builtin/packages/votca-csgapps/package.py
gwagenbreth/spack
e10c0a6a340956a8626de747036a745cd10d606d
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
null
null
null
# Copyright 2013-2021 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class VotcaCsgapps(CMakePackage): """Versatile Object-oriented Toolkit for Coarse-graining Applications (VOTCA) is a package intended to reduce the amount of routine work when doing systematic coarse-graining of various systems. The core is written in C++. This package contains the VOTCA coarse-graining extra apps. """ homepage = "http://www.votca.org" url = "https://github.com/votca/csgapps/tarball/v1.4" git = "https://github.com/votca/csgapps.git" maintainers = ['junghans'] version('master', branch='master') version('stable', branch='stable') version('1.6.3', sha256='fdb6a94eabdfe1bfae6002da16e364086d036c2dc24700a941b73d5bb1afc422') version('1.6.2', sha256='f7db0bda27d4419c570f44dc60d04b1fd7b4cdcf10db6301005fca70111fcfe3') version('1.6.1', sha256='03c7cef2a76e73cf953b2b5ea2cdca765ec1a2627d0a9d8869d46166e63d197c') version('1.6', sha256='084bbc5b179bb7eb8f6671d2d5fa13e69e68946570c9120a7e4b10aff1866e2e') version('1.5.1', sha256='b4946711e88a1745688b6cce5aad872e6e2ea200fededf38d77a864883e3750e') version('1.5', sha256='18b40ce6222509bc70aa9d56b8c538cd5903edf7294d6f95530668e555206d5b') version('1.4.1', sha256='095d9ee4cd49d2fd79c10e0e84e6890b755e54dec6a5cd580a2b4241ba230a2b') version('1.4', sha256='4ea8348c2f7de3cc488f48fbd8652e69b52515441952766c06ff67ed1aaf69a0') for v in ["1.4", "1.4.1", "1.5", "1.5.1", "1.6", "1.6.1", "1.6.2", "1.6.3", "master", "stable"]: depends_on('votca-csg@%s' % v, when="@%s:%s.0" % (v, v)) depends_on("boost")
47.973684
97
0.719144
1e5ff2c329009d0a50a8daff526b12d4949b452c
1,616
py
Python
main/sign.py
6688aa/-
e810e433fa5088d9df615881a475e5ceeccfe6ff
[ "Apache-2.0" ]
27
2021-01-24T15:30:46.000Z
2022-03-22T04:28:40.000Z
main/sign.py
6688aa/-
e810e433fa5088d9df615881a475e5ceeccfe6ff
[ "Apache-2.0" ]
13
2021-03-22T05:24:20.000Z
2022-03-26T18:12:29.000Z
main/sign.py
6688aa/-
e810e433fa5088d9df615881a475e5ceeccfe6ff
[ "Apache-2.0" ]
39
2021-02-02T07:45:21.000Z
2022-03-25T04:06:02.000Z
# coding=utf-8 import requests from urllib.parse import quote def login(user, retry=False): """获取处理后的数据 :param user:用户信息 :return : 传回登陆成功的cookie """ # 姓名,学号,密码,学校编码 name = user.get("name") stucode = user.get("stucode") password = user.get("password") schoolcode = user.get("schoolcode") api = 'https://api.weishao.com.cn' # 分析协议得出的 oauth = '/oauth/authorize?client_id=pqZ3wGM07i8R9mR3&redirect_uri=https%3A%2F%2Fyq.weishao.com.cn%2Fcheck%2Fquestionnaire&response_type=code&scope=base_api&state=ruijie' # 直接获取登陆链接的cookie(该链接极大可能是固定的) url = api + "/login?source=" + oauth try: # 得到初始cookie session = requests.Session() cook = session.get(url).headers['set-cookie'] # 提交的个人数据 dat = "schoolcode=" + schoolcode + "&username=" + stucode + "&password=" + quote(password, "utf-8") + "&verifyValue=&verifyKey=" + stucode + "_" + schoolcode + "&ssokey=" head = { 'Content-Type': 'application/x-www-form-urlencoded', 'Cookie': cook, } # 提交个人信息(模拟登录) session.post(url, data=dat, headers=head) url1 = session.get(api + oauth, headers=head, allow_redirects=False).headers['Location'] # 登陆成功,获取登陆cookie cook = session.get(url1, headers=head, allow_redirects=False).headers['set-cookie'] return cook except requests.exceptions.ConnectionError: print("网络错误") return "网络错误" except KeyError: if retry: print(name + " 登录错误") return "登录错误" else: return login(user, True)
35.130435
178
0.612624
a89dd2cf7e546a9353b376e0ce96c56c443ca9bd
10,187
py
Python
python/taichi/misc/util.py
youyufeng92/taichi
c826de521d254745db556835e322dd2e0cfdbfa0
[ "MIT" ]
1
2020-07-17T08:59:53.000Z
2020-07-17T08:59:53.000Z
python/taichi/misc/util.py
youyufeng92/taichi
c826de521d254745db556835e322dd2e0cfdbfa0
[ "MIT" ]
null
null
null
python/taichi/misc/util.py
youyufeng92/taichi
c826de521d254745db556835e322dd2e0cfdbfa0
[ "MIT" ]
null
null
null
import sys import datetime import platform import random import taichi def get_os_name(): name = platform.platform() # in python 3.8, platform.platform() uses mac_ver() on macOS # it will return 'macOS-XXXX' instead of 'Darwin-XXXX' if name.lower().startswith('darwin') or name.lower().startswith('macos'): return 'osx' elif name.lower().startswith('windows'): return 'win' elif name.lower().startswith('linux'): return 'linux' assert False, "Unknown platform name %s" % name def get_uuid(): print( 'Warning: get_uuid is deprecated. Please use get_unique_task_id instead.') return get_unique_task_id() def get_unique_task_id(): return datetime.datetime.now().strftime('task-%Y-%m-%d-%H-%M-%S-r') + ( '%05d' % random.randint(0, 10000)) import copy import numpy as np import ctypes def config_from_dict(args): from taichi.core import tc_core d = copy.copy(args) for k in d: if isinstance(d[k], tc_core.Vector2f): d[k] = '({}, {})'.format(d[k].x, d[k].y) if isinstance(d[k], tc_core.Vector3f): d[k] = '({}, {}, {})'.format(d[k].x, d[k].y, d[k].z) d[k] = str(d[k]) return tc_core.config_from_dict(d) def make_polygon(points, scale): import taichi as tc polygon = tc.core.Vector2fList() for p in points: if type(p) == list or type(p) == tuple: polygon.append(scale * vec(p[0], p[1])) else: polygon.append(scale * p) return polygon def veci(*args): from taichi.core import tc_core if isinstance(args[0], tc_core.Vector2i): return args[0] if isinstance(args[0], tc_core.Vector3i): return args[0] if isinstance(args[0], tuple): args = tuple(*args) if len(args) == 2: return tc_core.Vector2i(int(args[0]), int(args[1])) elif len(args) == 3: return tc_core.Vector3i(int(args[0]), int(args[1]), int(args[2])) elif len(args) == 4: return tc_core.Vector4i( int(args[0]), int(args[1]), int(args[2]), int(args[3])) else: assert False, type(args[0]) def vec(*args): from taichi.core import tc_core if isinstance(args[0], tc_core.Vector2f): return args[0] if isinstance(args[0], tc_core.Vector3f): return args[0] if isinstance(args[0], tc_core.Vector4f): return args[0] if isinstance(args[0], tc_core.Vector2d): return args[0] if isinstance(args[0], tc_core.Vector3d): return args[0] if isinstance(args[0], tc_core.Vector4d): return args[0] if isinstance(args[0], tuple): args = tuple(*args) if tc_core.get_default_float_size() == 4: if len(args) == 2: return tc_core.Vector2f(float(args[0]), float(args[1])) elif len(args) == 3: return tc_core.Vector3f(float(args[0]), float(args[1]), float(args[2])) elif len(args) == 4: return tc_core.Vector4f( float(args[0]), float(args[1]), float(args[2]), float(args[3])) else: assert False, type(args[0]) else: if len(args) == 2: return tc_core.Vector2d(float(args[0]), float(args[1])) elif len(args) == 3: return tc_core.Vector3d(float(args[0]), float(args[1]), float(args[2])) elif len(args) == 4: return tc_core.Vector4d( float(args[0]), float(args[1]), float(args[2]), float(args[3])) else: assert False, type(args[0]) def default_const_or_evaluate(f, default, u, v): if f == None: return default if type(f) in [float, int, tuple]: return f return f(u, v) def const_or_evaluate(f, u, v): import taichi as tc if type(f) in [float, int, tuple, tc.core.Vector2, tc.core.Vector3]: return f return f(u, v) # color_255: actual color # arr: the transparance of the image, if transform is not 'levelset' # transform: (x0, x1) as rescaling or simply 'levelset' def array2d_to_image(arr, width, height, color_255=None, transform='levelset', alpha_scale=1.0): from taichi import tc_core if color_255 is None: assert isinstance(arr, tc_core.Array2DVector3) or isinstance( arr, tc_core.Array2DVector4) import pyglet rasterized = arr.rasterize(width, height) raw_data = np.empty((width, height, arr.get_channels()), dtype=np.float32) rasterized.to_ndarray(raw_data.ctypes.data_as(ctypes.c_void_p).value) if transform == 'levelset': raw_data = (raw_data <= 0).astype(np.float32) else: x0, x1 = transform raw_data = (np.clip(raw_data, x0, x1) - x0) / (x1 - x0) raw_data = raw_data.swapaxes(0, 1).copy() if isinstance(arr, tc_core.Array2DVector3): dat = np.stack( [raw_data, np.ones(shape=(width, height, 1), dtype=np.float32)], axis=2).flatten().reshape((height * width, 4)) dat = dat * 255.0 elif isinstance(arr, tc_core.Array2DVector4): dat = raw_data.flatten().reshape((height * width, 4)) dat = dat * 255.0 else: raw_data = raw_data.flatten() dat = np.outer(np.ones_like(raw_data), color_255) dat[:, 3] = (color_255[3] * raw_data) dat[:, 3] *= alpha_scale dat = np.clip(dat, 0.0, 255.0) dat = dat.astype(np.uint8) assert dat.shape == (height * width, 4) image_data = pyglet.image.ImageData(width, height, 'RGBA', dat.tostring()) return image_data def image_buffer_to_image(arr): import pyglet raw_data = np.empty((arr.get_width() * arr.get_height() * 3,), dtype='float32') arr.to_ndarray(raw_data.ctypes.data_as(ctypes.c_void_p).value) dat = (raw_data * 255.0).astype('uint8') dat.reshape((len(raw_data) / 3, 3)) data_string = dat.tostring() image_data = pyglet.image.ImageData(arr.get_width(), arr.get_height(), 'RGB', data_string) return image_data def image_buffer_to_ndarray(arr, bgr=False): channels = arr.get_channels() raw_data = np.empty((arr.get_width() * arr.get_height() * channels,), dtype='float32') arr.to_ndarray(raw_data.ctypes.data_as(ctypes.c_void_p).value) dat = raw_data.astype('float32') ret = dat.reshape((arr.get_width(), arr.get_height(), channels)) if bgr: ret = ret[:, :, ::-1] return ret def arange(x, y, d): while x < y: yield x x += d # TODO: remove this... def P(**kwargs): return config_from_dict(kwargs) def imread(fn, bgr=False): img = taichi.core.Array2DVector3(taichi.veci(0, 0), taichi.vec(0.0, 0.0, 0.0)) img.read(fn) return image_buffer_to_ndarray(img, bgr)[::-1] def read_image(fn, linearize=False): img = taichi.core.Array2DVector3(taichi.veci(0, 0), taichi.vec(0.0, 0.0, 0.0)) img.read(fn, linearize) return img def show_image(window_name, img): from taichi.gui.image_viewer import show_image show_image(window_name, img) def save_image(fn, img): img.write(fn) def ndarray_to_array2d(array): if array.dtype == np.uint8: array = (array * (1 / 255.0)).astype(np.float32) assert array.dtype == np.float32 array = array.copy() input_ptr = array.ctypes.data_as(ctypes.c_void_p).value if len(array.shape) == 2 or array.shape[2] == 1: arr = taichi.core.Array2Dreal(Vectori(0, 0)) elif array.shape[2] == 3: arr = taichi.core.Array2DVector3(Vectori(0, 0), taichi.Vector(0, 0, 0)) elif array.shape[2] == 4: arr = taichi.core.Array2DVector4(Vectori(0, 0), taichi.Vector(0, 0, 0, 0)) else: assert False, 'ndarray has to be n*m, n*m*3, or n*m*4' arr.from_ndarray(input_ptr, array.shape[0], array.shape[1]) return arr def array2d_to_ndarray(arr): if isinstance(arr, taichi.core.Array2DVector3): ndarray = np.empty((arr.get_width(), arr.get_height(), 3), dtype='float32') elif isinstance(arr, taichi.core.Array2DVector4): ndarray = np.empty((arr.get_width(), arr.get_height(), 4), dtype='float32') elif isinstance(arr, taichi.core.Array2Dreal): ndarray = np.empty((arr.get_width(), arr.get_height()), dtype='float32') else: assert False, 'Array2d must have type real, Vector3, or Vector4' output_ptr = ndarray.ctypes.data_as(ctypes.c_void_p).value arr.to_ndarray(output_ptr) return ndarray def opencv_img_to_taichi_img(img): return (img.swapaxes(0, 1)[:, ::-1, ::-1] * (1 / 255.0)).astype(np.float32) def sleep(seconds=-1): if seconds == -1: while True: time.sleep(1) # Wait for Ctrl-C else: time.sleep(seconds) class Tee(): def __init__(self, name): self.file = open(name, 'w') self.stdout = sys.stdout self.stderr = sys.stderr sys.stdout = self sys.stderr = self def __del__(self): self.file.close() def write(self, data): self.file.write(data) self.stdout.write(data) self.file.flush() self.stdout.flush() def write_to_file(self, data): self.file.write(data) import inspect def get_file_name(asc=0): return inspect.stack()[1 + asc][1] def get_function_name(asc=0): return inspect.stack()[1 + asc][3] def get_line_number(asc=0): return inspect.stack()[1 + asc][2] def get_logging(name): def logger(msg, *args, **kwargs): # Python inspection takes time (~0.1ms) so avoid it as much as possible if taichi.tc_core.logging_effective(name): msg_formatted = msg.format(*args, **kwargs) func = getattr(taichi.tc_core, name) frame = inspect.currentframe().f_back.f_back file_name, lineno, func_name, _, _ = inspect.getframeinfo(frame) msg = f'[{file_name}:{func_name}@{lineno}] {msg_formatted}' func(msg) return logger DEBUG = 'debug' TRACE = 'trace' INFO = 'info' WARN = 'warn' ERROR = 'error' CRITICAL = 'critical' debug = get_logging(DEBUG) trace = get_logging(TRACE) info = get_logging(INFO) warn = get_logging(WARN) error = get_logging(ERROR) critical = get_logging(CRITICAL) def redirect_print_to_log(): class Logger: def write(self, msg): taichi.core.info('[{}:{}@{}] {}'.format( get_file_name(1), get_function_name(1), get_line_number(1), msg)) def flush(self): taichi.core.flush_log() sys.stdout = Logger() def duplicate_stdout_to_file(fn): taichi.tc_core.duplicate_stdout_to_file(fn) def set_logging_level(level): taichi.tc_core.set_logging_level(level) def set_gdb_trigger(on=True): taichi.tc_core.set_core_trigger_gdb_when_crash(on)
27.833333
80
0.652596
5f8129d533d8a5052006008e39412acf7863788a
752
py
Python
distributed_frontera/messagebus/zeromq/socket_config.py
abael/ScrapyFronteraDistributed
50a636be9dbff1e27698f55968ffb0a0b53a6123
[ "BSD-3-Clause" ]
null
null
null
distributed_frontera/messagebus/zeromq/socket_config.py
abael/ScrapyFronteraDistributed
50a636be9dbff1e27698f55968ffb0a0b53a6123
[ "BSD-3-Clause" ]
null
null
null
distributed_frontera/messagebus/zeromq/socket_config.py
abael/ScrapyFronteraDistributed
50a636be9dbff1e27698f55968ffb0a0b53a6123
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- class SocketConfig(object): hostname = None base_port = None def __init__(self, hostname, base_port): self.hostname = hostname self.base_port = base_port def spiders_in(self): return 'tcp://%s:%d' % (self.hostname, self.base_port) def spiders_out(self): return 'tcp://%s:%d' % (self.hostname, self.base_port + 1) def sw_in(self): return 'tcp://%s:%d' % (self.hostname, self.base_port + 2) def sw_out(self): return 'tcp://%s:%d' % (self.hostname, self.base_port + 3) def db_in(self): return 'tcp://%s:%d' % (self.hostname, self.base_port + 4) def db_out(self): return 'tcp://%s:%d' % (self.hostname, self.base_port + 5)
25.931034
66
0.582447
1f4a9b194306e44403bff0be0b7b6c948fe73861
291
py
Python
flow-control/Demos/add_nums.py
WebucatorTraining/classfiles-actionable-python
930c154a6dbfa6c54768557a998b4dbafb43df38
[ "MIT" ]
2
2022-01-04T22:25:01.000Z
2022-01-16T16:50:23.000Z
flow-control/Demos/add_nums.py
WebucatorTraining/classfiles-actionable-python
930c154a6dbfa6c54768557a998b4dbafb43df38
[ "MIT" ]
null
null
null
flow-control/Demos/add_nums.py
WebucatorTraining/classfiles-actionable-python
930c154a6dbfa6c54768557a998b4dbafb43df38
[ "MIT" ]
null
null
null
def add_nums(num, *nums): total = sum(nums, num) nums_joined = ', '.join([str(n) for n in nums]) print(f"The sum of {nums_joined} and {num} is {total}.") def main(): add_nums(1, 2) add_nums(1, 2, 3, 4, 5) add_nums(11, 12, 13, 14) add_nums(101, 201, 301) main()
22.384615
60
0.573883
4e2feca1d7b9f3231a38137e96b01c6af8ee06ed
374
py
Python
bin/uwin-lift-hlp/uwin_lift_hlp/dump_debug.py
DCNick3/uwin-remill
1434c3e102b781690c764fb8a21cdba3380a8b06
[ "Apache-2.0" ]
null
null
null
bin/uwin-lift-hlp/uwin_lift_hlp/dump_debug.py
DCNick3/uwin-remill
1434c3e102b781690c764fb8a21cdba3380a8b06
[ "Apache-2.0" ]
null
null
null
bin/uwin-lift-hlp/uwin_lift_hlp/dump_debug.py
DCNick3/uwin-remill
1434c3e102b781690c764fb8a21cdba3380a8b06
[ "Apache-2.0" ]
null
null
null
from .watcom_debug_info import try_get_watcom_debug_info import pefile import sys def main(): fname = sys.argv[1] pe = pefile.PE(fname) debug = try_get_watcom_debug_info(pe, fname) for x in debug: lo, hi = debug[x] print(f"0x{lo:00000000x}{' ' if not hi else f' - 0x{hi:00000000x}'} {x}") if __name__ == '__main__': main()
23.375
93
0.622995
ed3b21943c2f9baae29dd5ad2e45a0e03bc0e035
4,284
py
Python
compliance/verify_submission/mlperf_submission_helper/crypto.py
sanyalington/mlperf_training_mitest
d07b360e475afb87c7da57f173952822d84ed212
[ "Apache-2.0" ]
1
2019-02-19T09:53:42.000Z
2019-02-19T09:53:42.000Z
compliance/verify_submission/mlperf_submission_helper/crypto.py
sanyalington/mlperf_training_mitest
d07b360e475afb87c7da57f173952822d84ed212
[ "Apache-2.0" ]
1
2018-11-06T06:03:30.000Z
2018-11-06T06:03:30.000Z
compliance/verify_submission/mlperf_submission_helper/crypto.py
sanyalington/mlperf_training_mitest
d07b360e475afb87c7da57f173952822d84ed212
[ "Apache-2.0" ]
3
2019-01-14T13:57:03.000Z
2019-02-22T23:19:41.000Z
import fnmatch import os import shutil from Cryptodome.PublicKey import RSA from Cryptodome.Random import get_random_bytes from Cryptodome.Cipher import AES, PKCS1_OAEP def encrypt_file(public_key, src_file, dest_file): try: with open(src_file) as f: rsa_key = RSA.import_key(open(public_key).read()) session_key = get_random_bytes(16) # Encrypt session key cipher_rsa = PKCS1_OAEP.new(rsa_key) encrypted_session_key = cipher_rsa.encrypt(session_key) # Encrypt data cipher_aes = AES.new(session_key, AES.MODE_EAX) ciphertext, tag = cipher_aes.encrypt_and_digest(f.read().encode("utf-8")) except Exception as e: print("Unable to encrypt file: {}".format(src_file)) raise e try: with open(dest_file, "wb") as f: for x in (encrypted_session_key, cipher_aes.nonce, tag, ciphertext): f.write(x) except Exception as e: print("Unable to write output file {}".format(dest_file)) raise e def decrypt_file(private_key, src_file, dest_file): try: with open(src_file, "rb") as f: rsa_key = RSA.import_key(open(private_key).read()) encrypted_session_key = f.read(rsa_key.size_in_bytes()) nonce = f.read(16) tag = f.read(16) ciphertext = f.read(-1) # Decrypt session key cipher_rsa = PKCS1_OAEP.new(rsa_key) session_key = cipher_rsa.decrypt(encrypted_session_key) # Decrypt data cipher_aes = AES.new(session_key, AES.MODE_EAX, nonce) data = cipher_aes.decrypt_and_verify(ciphertext, tag) data = data.decode("utf-8") except Exception as e: print("Unable to decrypt file: {}".format(src_file)) raise e try: with open(dest_file, "w") as f: f.write(data) except Exception as e: print("Unable to write output file: {}".format(dest_file)) raise e def encrypt_submission(key, src_dir, dest_dir): if os.path.isdir(dest_dir): raise Exception("Output directory already exists.") os.mkdir(dest_dir, mode=0o755) for root, dirs, files in os.walk(src_dir): # identify result files and encrypt, else directly copy if fnmatch.fnmatch(root, os.path.join(src_dir, "results", "*", "*")): for f in files: from_file = os.path.join(root, f) to_file = from_file.replace(src_dir.rstrip(os.sep), dest_dir.rstrip(os.sep), 1) encrypt_file(key, from_file, to_file) else: for d in dirs: from_dir = os.path.join(root, d) to_dir = from_dir.replace(src_dir.rstrip(os.sep), dest_dir.rstrip(os.sep), 1) os.mkdir(to_dir, mode=0o755) for f in files: from_file = os.path.join(root, f) to_file = from_file.replace(src_dir.rstrip(os.sep), dest_dir.rstrip(os.sep), 1) shutil.copyfile(from_file, to_file) def decrypt_submission(key, src_dir, dest_dir): if os.path.isdir(dest_dir): raise Exception("Output directory already exists.") os.mkdir(dest_dir, mode=0o755) for root, dirs, files in os.walk(src_dir): # identify result files and encrypt, else directly copy if fnmatch.fnmatch(root, os.path.join(src_dir, "results", "*", "*")): for f in files: from_file = os.path.join(root, f) to_file = from_file.replace(src_dir.rstrip(os.sep), dest_dir.rstrip(os.sep), 1) decrypt_file(key, from_file, to_file) else: for d in dirs: from_dir = os.path.join(root, d) to_dir = from_dir.replace(src_dir.rstrip(os.sep), dest_dir.rstrip(os.sep), 1) os.mkdir(to_dir, mode=0o755) for f in files: from_file = os.path.join(root, f) to_file = from_file.replace(src_dir.rstrip(os.sep), dest_dir.rstrip(os.sep), 1) shutil.copyfile(from_file, to_file)
39.302752
85
0.582166
1cc546629589d38106c72d66572f36ff499a6f28
129,828
py
Python
pandas/indexes/base.py
RTBHOUSE/pandas
e27b29697f0dcf9359f01a19edb2f20c6d728b6c
[ "PSF-2.0", "Apache-2.0", "BSD-2-Clause", "MIT", "BSD-3-Clause" ]
1
2019-10-24T09:00:26.000Z
2019-10-24T09:00:26.000Z
pandas/indexes/base.py
RTBHOUSE/pandas
e27b29697f0dcf9359f01a19edb2f20c6d728b6c
[ "PSF-2.0", "Apache-2.0", "BSD-2-Clause", "MIT", "BSD-3-Clause" ]
null
null
null
pandas/indexes/base.py
RTBHOUSE/pandas
e27b29697f0dcf9359f01a19edb2f20c6d728b6c
[ "PSF-2.0", "Apache-2.0", "BSD-2-Clause", "MIT", "BSD-3-Clause" ]
3
2019-12-24T18:46:58.000Z
2021-09-04T11:57:13.000Z
import datetime import warnings import operator import numpy as np import pandas.tslib as tslib import pandas.lib as lib import pandas._join as _join import pandas.algos as _algos import pandas.index as _index from pandas.lib import Timestamp, Timedelta, is_datetime_array from pandas.compat import range, u from pandas.compat.numpy import function as nv from pandas import compat from pandas.types.generic import ABCSeries, ABCMultiIndex, ABCPeriodIndex from pandas.types.missing import isnull, array_equivalent from pandas.types.common import (_ensure_int64, _ensure_object, _ensure_categorical, _ensure_platform_int, is_integer, is_float, is_dtype_equal, is_object_dtype, is_categorical_dtype, is_bool_dtype, is_integer_dtype, is_float_dtype, is_datetime64_any_dtype, is_timedelta64_dtype, needs_i8_conversion, is_iterator, is_list_like, is_scalar) from pandas.types.cast import _coerce_indexer_dtype from pandas.core.common import (is_bool_indexer, _values_from_object, _asarray_tuplesafe) from pandas.core.base import (PandasObject, FrozenList, FrozenNDArray, IndexOpsMixin) import pandas.core.base as base from pandas.util.decorators import (Appender, Substitution, cache_readonly, deprecate, deprecate_kwarg) import pandas.core.common as com import pandas.types.concat as _concat import pandas.core.missing as missing import pandas.core.algorithms as algos from pandas.formats.printing import pprint_thing from pandas.core.ops import _comp_method_OBJECT_ARRAY from pandas.core.strings import StringAccessorMixin from pandas.core.config import get_option # simplify default_pprint = lambda x, max_seq_items=None: \ pprint_thing(x, escape_chars=('\t', '\r', '\n'), quote_strings=True, max_seq_items=max_seq_items) __all__ = ['Index'] _unsortable_types = frozenset(('mixed', 'mixed-integer')) _index_doc_kwargs = dict(klass='Index', inplace='', unique='Index', duplicated='np.ndarray') _index_shared_docs = dict() def _try_get_item(x): try: return x.item() except AttributeError: return x class InvalidIndexError(Exception): pass _o_dtype = np.dtype(object) _Identity = object def _new_Index(cls, d): """ This is called upon unpickling, rather than the default which doesn't have arguments and breaks __new__ """ return cls.__new__(cls, **d) class Index(IndexOpsMixin, StringAccessorMixin, PandasObject): """ Immutable ndarray implementing an ordered, sliceable set. The basic object storing axis labels for all pandas objects Parameters ---------- data : array-like (1-dimensional) dtype : NumPy dtype (default: object) copy : bool Make a copy of input ndarray name : object Name to be stored in the index tupleize_cols : bool (default: True) When True, attempt to create a MultiIndex if possible Notes ----- An Index instance can **only** contain hashable objects """ # To hand over control to subclasses _join_precedence = 1 # Cython methods _arrmap = _algos.arrmap_object _left_indexer_unique = _join.left_join_indexer_unique_object _left_indexer = _join.left_join_indexer_object _inner_indexer = _join.inner_join_indexer_object _outer_indexer = _join.outer_join_indexer_object _box_scalars = False _typ = 'index' _data = None _id = None name = None asi8 = None _comparables = ['name'] _attributes = ['name'] _allow_index_ops = True _allow_datetime_index_ops = False _allow_period_index_ops = False _is_numeric_dtype = False _can_hold_na = True # prioritize current class for _shallow_copy_with_infer, # used to infer integers as datetime-likes _infer_as_myclass = False _engine_type = _index.ObjectEngine def __new__(cls, data=None, dtype=None, copy=False, name=None, fastpath=False, tupleize_cols=True, **kwargs): if name is None and hasattr(data, 'name'): name = data.name if fastpath: return cls._simple_new(data, name) from .range import RangeIndex # range if isinstance(data, RangeIndex): return RangeIndex(start=data, copy=copy, dtype=dtype, name=name) elif isinstance(data, range): return RangeIndex.from_range(data, copy=copy, dtype=dtype, name=name) # categorical if is_categorical_dtype(data) or is_categorical_dtype(dtype): from .category import CategoricalIndex return CategoricalIndex(data, copy=copy, name=name, **kwargs) # index-like elif isinstance(data, (np.ndarray, Index, ABCSeries)): if (is_datetime64_any_dtype(data) or (dtype is not None and is_datetime64_any_dtype(dtype)) or 'tz' in kwargs): from pandas.tseries.index import DatetimeIndex result = DatetimeIndex(data, copy=copy, name=name, dtype=dtype, **kwargs) if dtype is not None and is_dtype_equal(_o_dtype, dtype): return Index(result.to_pydatetime(), dtype=_o_dtype) else: return result elif (is_timedelta64_dtype(data) or (dtype is not None and is_timedelta64_dtype(dtype))): from pandas.tseries.tdi import TimedeltaIndex result = TimedeltaIndex(data, copy=copy, name=name, **kwargs) if dtype is not None and _o_dtype == dtype: return Index(result.to_pytimedelta(), dtype=_o_dtype) else: return result if dtype is not None: try: # we need to avoid having numpy coerce # things that look like ints/floats to ints unless # they are actually ints, e.g. '0' and 0.0 # should not be coerced # GH 11836 if is_integer_dtype(dtype): inferred = lib.infer_dtype(data) if inferred == 'integer': data = np.array(data, copy=copy, dtype=dtype) elif inferred in ['floating', 'mixed-integer-float']: # if we are actually all equal to integers # then coerce to integer from .numeric import Int64Index, Float64Index try: res = data.astype('i8') if (res == data).all(): return Int64Index(res, copy=copy, name=name) except (TypeError, ValueError): pass # return an actual float index return Float64Index(data, copy=copy, dtype=dtype, name=name) elif inferred == 'string': pass else: data = data.astype(dtype) elif is_float_dtype(dtype): inferred = lib.infer_dtype(data) if inferred == 'string': pass else: data = data.astype(dtype) else: data = np.array(data, dtype=dtype, copy=copy) except (TypeError, ValueError): pass # maybe coerce to a sub-class from pandas.tseries.period import (PeriodIndex, IncompatibleFrequency) if isinstance(data, PeriodIndex): return PeriodIndex(data, copy=copy, name=name, **kwargs) if issubclass(data.dtype.type, np.integer): from .numeric import Int64Index return Int64Index(data, copy=copy, dtype=dtype, name=name) elif issubclass(data.dtype.type, np.floating): from .numeric import Float64Index return Float64Index(data, copy=copy, dtype=dtype, name=name) elif issubclass(data.dtype.type, np.bool) or is_bool_dtype(data): subarr = data.astype('object') else: subarr = _asarray_tuplesafe(data, dtype=object) # _asarray_tuplesafe does not always copy underlying data, # so need to make sure that this happens if copy: subarr = subarr.copy() if dtype is None: inferred = lib.infer_dtype(subarr) if inferred == 'integer': from .numeric import Int64Index return Int64Index(subarr.astype('i8'), copy=copy, name=name) elif inferred in ['floating', 'mixed-integer-float']: from .numeric import Float64Index return Float64Index(subarr, copy=copy, name=name) elif inferred == 'boolean': # don't support boolean explicity ATM pass elif inferred != 'string': if inferred.startswith('datetime'): if (lib.is_datetime_with_singletz_array(subarr) or 'tz' in kwargs): # only when subarr has the same tz from pandas.tseries.index import DatetimeIndex try: return DatetimeIndex(subarr, copy=copy, name=name, **kwargs) except tslib.OutOfBoundsDatetime: pass elif inferred.startswith('timedelta'): from pandas.tseries.tdi import TimedeltaIndex return TimedeltaIndex(subarr, copy=copy, name=name, **kwargs) elif inferred == 'period': try: return PeriodIndex(subarr, name=name, **kwargs) except IncompatibleFrequency: pass return cls._simple_new(subarr, name) elif hasattr(data, '__array__'): return Index(np.asarray(data), dtype=dtype, copy=copy, name=name, **kwargs) elif data is None or is_scalar(data): cls._scalar_data_error(data) else: if (tupleize_cols and isinstance(data, list) and data and isinstance(data[0], tuple)): # we must be all tuples, otherwise don't construct # 10697 if all(isinstance(e, tuple) for e in data): try: # must be orderable in py3 if compat.PY3: sorted(data) from .multi import MultiIndex return MultiIndex.from_tuples( data, names=name or kwargs.get('names')) except (TypeError, KeyError): # python2 - MultiIndex fails on mixed types pass # other iterable of some kind subarr = _asarray_tuplesafe(data, dtype=object) return Index(subarr, dtype=dtype, copy=copy, name=name, **kwargs) """ NOTE for new Index creation: - _simple_new: It returns new Index with the same type as the caller. All metadata (such as name) must be provided by caller's responsibility. Using _shallow_copy is recommended because it fills these metadata otherwise specified. - _shallow_copy: It returns new Index with the same type (using _simple_new), but fills caller's metadata otherwise specified. Passed kwargs will overwrite corresponding metadata. - _shallow_copy_with_infer: It returns new Index inferring its type from passed values. It fills caller's metadata otherwise specified as the same as _shallow_copy. See each method's docstring. """ @classmethod def _simple_new(cls, values, name=None, dtype=None, **kwargs): """ we require the we have a dtype compat for the values if we are passed a non-dtype compat, then coerce using the constructor Must be careful not to recurse. """ if not hasattr(values, 'dtype'): if values is None and dtype is not None: values = np.empty(0, dtype=dtype) else: values = np.array(values, copy=False) if is_object_dtype(values): values = cls(values, name=name, dtype=dtype, **kwargs)._values result = object.__new__(cls) result._data = values result.name = name for k, v in compat.iteritems(kwargs): setattr(result, k, v) return result._reset_identity() _index_shared_docs['_shallow_copy'] = """ create a new Index with the same class as the caller, don't copy the data, use the same object attributes with passed in attributes taking precedence *this is an internal non-public method* Parameters ---------- values : the values to create the new Index, optional kwargs : updates the default attributes for this Index """ @Appender(_index_shared_docs['_shallow_copy']) def _shallow_copy(self, values=None, **kwargs): if values is None: values = self.values attributes = self._get_attributes_dict() attributes.update(kwargs) return self._simple_new(values, **attributes) def _shallow_copy_with_infer(self, values=None, **kwargs): """ create a new Index inferring the class with passed value, don't copy the data, use the same object attributes with passed in attributes taking precedence *this is an internal non-public method* Parameters ---------- values : the values to create the new Index, optional kwargs : updates the default attributes for this Index """ if values is None: values = self.values attributes = self._get_attributes_dict() attributes.update(kwargs) attributes['copy'] = False if self._infer_as_myclass: try: return self._constructor(values, **attributes) except (TypeError, ValueError): pass return Index(values, **attributes) def _deepcopy_if_needed(self, orig, copy=False): """ .. versionadded:: 0.19.0 Make a copy of self if data coincides (in memory) with orig. Subclasses should override this if self._base is not an ndarray. Parameters ---------- orig : ndarray other ndarray to compare self._data against copy : boolean, default False when False, do not run any check, just return self Returns ------- A copy of self if needed, otherwise self : Index """ if copy: # Retrieve the "base objects", i.e. the original memory allocations orig = orig if orig.base is None else orig.base new = self._data if self._data.base is None else self._data.base if orig is new: return self.copy(deep=True) return self def _update_inplace(self, result, **kwargs): # guard when called from IndexOpsMixin raise TypeError("Index can't be updated inplace") _index_shared_docs['_get_grouper_for_level'] = """ Get index grouper corresponding to an index level Parameters ---------- mapper: Group mapping function or None Function mapping index values to groups level : int or None Index level Returns ------- grouper : Index Index of values to group on labels : ndarray of int or None Array of locations in level_index uniques : Index or None Index of unique values for level """ @Appender(_index_shared_docs['_get_grouper_for_level']) def _get_grouper_for_level(self, mapper, level=None): assert level is None or level == 0 if mapper is None: grouper = self else: grouper = self.map(mapper) return grouper, None, None def is_(self, other): """ More flexible, faster check like ``is`` but that works through views Note: this is *not* the same as ``Index.identical()``, which checks that metadata is also the same. Parameters ---------- other : object other object to compare against. Returns ------- True if both have same underlying data, False otherwise : bool """ # use something other than None to be clearer return self._id is getattr( other, '_id', Ellipsis) and self._id is not None def _reset_identity(self): """Initializes or resets ``_id`` attribute with new object""" self._id = _Identity() return self # ndarray compat def __len__(self): """ return the length of the Index """ return len(self._data) def __array__(self, dtype=None): """ the array interface, return my values """ return self._data.view(np.ndarray) def __array_wrap__(self, result, context=None): """ Gets called after a ufunc """ if is_bool_dtype(result): return result attrs = self._get_attributes_dict() attrs = self._maybe_update_attributes(attrs) return Index(result, **attrs) @cache_readonly def dtype(self): """ return the dtype object of the underlying data """ return self._data.dtype @cache_readonly def dtype_str(self): """ return the dtype str of the underlying data """ return str(self.dtype) @property def values(self): """ return the underlying data as an ndarray """ return self._data.view(np.ndarray) def get_values(self): """ return the underlying data as an ndarray """ return self.values # ops compat def tolist(self): """ return a list of the Index values """ return list(self.values) @deprecate_kwarg(old_arg_name='n', new_arg_name='repeats') def repeat(self, repeats, *args, **kwargs): """ Repeat elements of an Index. Refer to `numpy.ndarray.repeat` for more information about the `repeats` argument. See also -------- numpy.ndarray.repeat """ nv.validate_repeat(args, kwargs) return self._shallow_copy(self._values.repeat(repeats)) def where(self, cond, other=None): """ .. versionadded:: 0.19.0 Return an Index of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other. Parameters ---------- cond : boolean same length as self other : scalar, or array-like """ if other is None: other = self._na_value values = np.where(cond, self.values, other) return self._shallow_copy_with_infer(values, dtype=self.dtype) def ravel(self, order='C'): """ return an ndarray of the flattened values of the underlying data See also -------- numpy.ndarray.ravel """ return self._values.ravel(order=order) # construction helpers @classmethod def _scalar_data_error(cls, data): raise TypeError('{0}(...) must be called with a collection of some ' 'kind, {1} was passed'.format(cls.__name__, repr(data))) @classmethod def _string_data_error(cls, data): raise TypeError('String dtype not supported, you may need ' 'to explicitly cast to a numeric type') @classmethod def _coerce_to_ndarray(cls, data): """coerces data to ndarray, raises on scalar data. Converts other iterables to list first and then to array. Does not touch ndarrays. """ if not isinstance(data, (np.ndarray, Index)): if data is None or is_scalar(data): cls._scalar_data_error(data) # other iterable of some kind if not isinstance(data, (ABCSeries, list, tuple)): data = list(data) data = np.asarray(data) return data def _get_attributes_dict(self): """ return an attributes dict for my class """ return dict([(k, getattr(self, k, None)) for k in self._attributes]) def view(self, cls=None): # we need to see if we are subclassing an # index type here if cls is not None and not hasattr(cls, '_typ'): result = self._data.view(cls) else: result = self._shallow_copy() if isinstance(result, Index): result._id = self._id return result def _coerce_scalar_to_index(self, item): """ we need to coerce a scalar to a compat for our index type Parameters ---------- item : scalar item to coerce """ return Index([item], dtype=self.dtype, **self._get_attributes_dict()) _index_shared_docs['copy'] = """ Make a copy of this object. Name and dtype sets those attributes on the new object. Parameters ---------- name : string, optional deep : boolean, default False dtype : numpy dtype or pandas type Returns ------- copy : Index Notes ----- In most cases, there should be no functional difference from using ``deep``, but if ``deep`` is passed it will attempt to deepcopy. """ @Appender(_index_shared_docs['copy']) def copy(self, name=None, deep=False, dtype=None, **kwargs): if deep: new_index = self._shallow_copy(self._data.copy()) else: new_index = self._shallow_copy() names = kwargs.get('names') names = self._validate_names(name=name, names=names, deep=deep) new_index = new_index.set_names(names) if dtype: new_index = new_index.astype(dtype) return new_index __copy__ = copy def _validate_names(self, name=None, names=None, deep=False): """ Handles the quirks of having a singular 'name' parameter for general Index and plural 'names' parameter for MultiIndex. """ from copy import deepcopy if names is not None and name is not None: raise TypeError("Can only provide one of `names` and `name`") elif names is None and name is None: return deepcopy(self.names) if deep else self.names elif names is not None: if not is_list_like(names): raise TypeError("Must pass list-like as `names`.") return names else: if not is_list_like(name): return [name] return name def __unicode__(self): """ Return a string representation for this object. Invoked by unicode(df) in py2 only. Yields a Unicode String in both py2/py3. """ klass = self.__class__.__name__ data = self._format_data() attrs = self._format_attrs() space = self._format_space() prepr = (u(",%s") % space).join([u("%s=%s") % (k, v) for k, v in attrs]) # no data provided, just attributes if data is None: data = '' res = u("%s(%s%s)") % (klass, data, prepr) return res def _format_space(self): # using space here controls if the attributes # are line separated or not (the default) # max_seq_items = get_option('display.max_seq_items') # if len(self) > max_seq_items: # space = "\n%s" % (' ' * (len(klass) + 1)) return " " @property def _formatter_func(self): """ Return the formatted data as a unicode string """ return default_pprint def _format_data(self): """ Return the formatted data as a unicode string """ from pandas.formats.format import get_console_size, _get_adjustment display_width, _ = get_console_size() if display_width is None: display_width = get_option('display.width') or 80 space1 = "\n%s" % (' ' * (len(self.__class__.__name__) + 1)) space2 = "\n%s" % (' ' * (len(self.__class__.__name__) + 2)) n = len(self) sep = ',' max_seq_items = get_option('display.max_seq_items') or n formatter = self._formatter_func # do we want to justify (only do so for non-objects) is_justify = not (self.inferred_type in ('string', 'unicode') or (self.inferred_type == 'categorical' and is_object_dtype(self.categories))) # are we a truncated display is_truncated = n > max_seq_items # adj can optionaly handle unicode eastern asian width adj = _get_adjustment() def _extend_line(s, line, value, display_width, next_line_prefix): if (adj.len(line.rstrip()) + adj.len(value.rstrip()) >= display_width): s += line.rstrip() line = next_line_prefix line += value return s, line def best_len(values): if values: return max([adj.len(x) for x in values]) else: return 0 if n == 0: summary = '[], ' elif n == 1: first = formatter(self[0]) summary = '[%s], ' % first elif n == 2: first = formatter(self[0]) last = formatter(self[-1]) summary = '[%s, %s], ' % (first, last) else: if n > max_seq_items: n = min(max_seq_items // 2, 10) head = [formatter(x) for x in self[:n]] tail = [formatter(x) for x in self[-n:]] else: head = [] tail = [formatter(x) for x in self] # adjust all values to max length if needed if is_justify: # however, if we are not truncated and we are only a single # line, then don't justify if (is_truncated or not (len(', '.join(head)) < display_width and len(', '.join(tail)) < display_width)): max_len = max(best_len(head), best_len(tail)) head = [x.rjust(max_len) for x in head] tail = [x.rjust(max_len) for x in tail] summary = "" line = space2 for i in range(len(head)): word = head[i] + sep + ' ' summary, line = _extend_line(summary, line, word, display_width, space2) if is_truncated: # remove trailing space of last line summary += line.rstrip() + space2 + '...' line = space2 for i in range(len(tail) - 1): word = tail[i] + sep + ' ' summary, line = _extend_line(summary, line, word, display_width, space2) # last value: no sep added + 1 space of width used for trailing ',' summary, line = _extend_line(summary, line, tail[-1], display_width - 2, space2) summary += line summary += '],' if len(summary) > (display_width): summary += space1 else: # one row summary += ' ' # remove initial space summary = '[' + summary[len(space2):] return summary def _format_attrs(self): """ Return a list of tuples of the (attr,formatted_value) """ attrs = [] attrs.append(('dtype', "'%s'" % self.dtype)) if self.name is not None: attrs.append(('name', default_pprint(self.name))) max_seq_items = get_option('display.max_seq_items') or len(self) if len(self) > max_seq_items: attrs.append(('length', len(self))) return attrs def to_series(self, **kwargs): """ Create a Series with both index and values equal to the index keys useful with map for returning an indexer based on an index Returns ------- Series : dtype will be based on the type of the Index values. """ from pandas import Series return Series(self._to_embed(), index=self, name=self.name) def _to_embed(self, keep_tz=False): """ *this is an internal non-public method* return an array repr of this object, potentially casting to object """ return self.values.copy() _index_shared_docs['astype'] = """ Create an Index with values cast to dtypes. The class of a new Index is determined by dtype. When conversion is impossible, a ValueError exception is raised. Parameters ---------- dtype : numpy dtype or pandas type copy : bool, default True By default, astype always returns a newly allocated object. If copy is set to False and internal requirements on dtype are satisfied, the original data is used to create a new Index or the original Index is returned. .. versionadded:: 0.19.0 """ @Appender(_index_shared_docs['astype']) def astype(self, dtype, copy=True): return Index(self.values.astype(dtype, copy=copy), name=self.name, dtype=dtype) def _to_safe_for_reshape(self): """ convert to object if we are a categorical """ return self def to_datetime(self, dayfirst=False): """ DEPRECATED: use :meth:`pandas.to_datetime` instead. For an Index containing strings or datetime.datetime objects, attempt conversion to DatetimeIndex """ warnings.warn("to_datetime is deprecated. Use pd.to_datetime(...)", FutureWarning, stacklevel=2) from pandas.tseries.index import DatetimeIndex if self.inferred_type == 'string': from dateutil.parser import parse parser = lambda x: parse(x, dayfirst=dayfirst) parsed = lib.try_parse_dates(self.values, parser=parser) return DatetimeIndex(parsed) else: return DatetimeIndex(self.values) def _assert_can_do_setop(self, other): if not is_list_like(other): raise TypeError('Input must be Index or array-like') return True def _convert_can_do_setop(self, other): if not isinstance(other, Index): other = Index(other, name=self.name) result_name = self.name else: result_name = self.name if self.name == other.name else None return other, result_name def _convert_for_op(self, value): """ Convert value to be insertable to ndarray """ return value def _assert_can_do_op(self, value): """ Check value is valid for scalar op """ if not lib.isscalar(value): msg = "'value' must be a scalar, passed: {0}" raise TypeError(msg.format(type(value).__name__)) @property def nlevels(self): return 1 def _get_names(self): return FrozenList((self.name, )) def _set_names(self, values, level=None): if len(values) != 1: raise ValueError('Length of new names must be 1, got %d' % len(values)) self.name = values[0] names = property(fset=_set_names, fget=_get_names) def set_names(self, names, level=None, inplace=False): """ Set new names on index. Defaults to returning new index. Parameters ---------- names : str or sequence name(s) to set level : int, level name, or sequence of int/level names (default None) If the index is a MultiIndex (hierarchical), level(s) to set (None for all levels). Otherwise level must be None inplace : bool if True, mutates in place Returns ------- new index (of same type and class...etc) [if inplace, returns None] Examples -------- >>> Index([1, 2, 3, 4]).set_names('foo') Int64Index([1, 2, 3, 4], dtype='int64') >>> Index([1, 2, 3, 4]).set_names(['foo']) Int64Index([1, 2, 3, 4], dtype='int64') >>> idx = MultiIndex.from_tuples([(1, u'one'), (1, u'two'), (2, u'one'), (2, u'two')], names=['foo', 'bar']) >>> idx.set_names(['baz', 'quz']) MultiIndex(levels=[[1, 2], [u'one', u'two']], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=[u'baz', u'quz']) >>> idx.set_names('baz', level=0) MultiIndex(levels=[[1, 2], [u'one', u'two']], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=[u'baz', u'bar']) """ if level is not None and self.nlevels == 1: raise ValueError('Level must be None for non-MultiIndex') if level is not None and not is_list_like(level) and is_list_like( names): raise TypeError("Names must be a string") if not is_list_like(names) and level is None and self.nlevels > 1: raise TypeError("Must pass list-like as `names`.") if not is_list_like(names): names = [names] if level is not None and not is_list_like(level): level = [level] if inplace: idx = self else: idx = self._shallow_copy() idx._set_names(names, level=level) if not inplace: return idx def rename(self, name, inplace=False): """ Set new names on index. Defaults to returning new index. Parameters ---------- name : str or list name to set inplace : bool if True, mutates in place Returns ------- new index (of same type and class...etc) [if inplace, returns None] """ return self.set_names([name], inplace=inplace) def reshape(self, *args, **kwargs): """ NOT IMPLEMENTED: do not call this method, as reshaping is not supported for Index objects and will raise an error. Reshape an Index. """ raise NotImplementedError("reshaping is not supported " "for Index objects") @property def _has_complex_internals(self): # to disable groupby tricks in MultiIndex return False def summary(self, name=None): if len(self) > 0: head = self[0] if (hasattr(head, 'format') and not isinstance(head, compat.string_types)): head = head.format() tail = self[-1] if (hasattr(tail, 'format') and not isinstance(tail, compat.string_types)): tail = tail.format() index_summary = ', %s to %s' % (pprint_thing(head), pprint_thing(tail)) else: index_summary = '' if name is None: name = type(self).__name__ return '%s: %s entries%s' % (name, len(self), index_summary) def _mpl_repr(self): # how to represent ourselves to matplotlib return self.values _na_value = np.nan """The expected NA value to use with this index.""" # introspection @property def is_monotonic(self): """ alias for is_monotonic_increasing (deprecated) """ return self._engine.is_monotonic_increasing @property def is_monotonic_increasing(self): """ return if the index is monotonic increasing (only equal or increasing) values. """ return self._engine.is_monotonic_increasing @property def is_monotonic_decreasing(self): """ return if the index is monotonic decreasing (only equal or decreasing) values. """ return self._engine.is_monotonic_decreasing def is_lexsorted_for_tuple(self, tup): return True @cache_readonly(allow_setting=True) def is_unique(self): """ return if the index has unique values """ return self._engine.is_unique @property def has_duplicates(self): return not self.is_unique def is_boolean(self): return self.inferred_type in ['boolean'] def is_integer(self): return self.inferred_type in ['integer'] def is_floating(self): return self.inferred_type in ['floating', 'mixed-integer-float'] def is_numeric(self): return self.inferred_type in ['integer', 'floating'] def is_object(self): return is_object_dtype(self.dtype) def is_categorical(self): return self.inferred_type in ['categorical'] def is_mixed(self): return self.inferred_type in ['mixed'] def holds_integer(self): return self.inferred_type in ['integer', 'mixed-integer'] # validate / convert indexers def _convert_scalar_indexer(self, key, kind=None): """ convert a scalar indexer Parameters ---------- key : label of the slice bound kind : {'ix', 'loc', 'getitem', 'iloc'} or None """ assert kind in ['ix', 'loc', 'getitem', 'iloc', None] if kind == 'iloc': return self._validate_indexer('positional', key, kind) if len(self) and not isinstance(self, ABCMultiIndex,): # we can raise here if we are definitive that this # is positional indexing (eg. .ix on with a float) # or label indexing if we are using a type able # to be represented in the index if kind in ['getitem', 'ix'] and is_float(key): if not self.is_floating(): return self._invalid_indexer('label', key) elif kind in ['loc'] and is_float(key): # we want to raise KeyError on string/mixed here # technically we *could* raise a TypeError # on anything but mixed though if self.inferred_type not in ['floating', 'mixed-integer-float', 'string', 'unicode', 'mixed']: return self._invalid_indexer('label', key) elif kind in ['loc'] and is_integer(key): if not self.holds_integer(): return self._invalid_indexer('label', key) return key def _convert_slice_indexer(self, key, kind=None): """ convert a slice indexer. disallow floats in the start/stop/step Parameters ---------- key : label of the slice bound kind : {'ix', 'loc', 'getitem', 'iloc'} or None """ assert kind in ['ix', 'loc', 'getitem', 'iloc', None] # if we are not a slice, then we are done if not isinstance(key, slice): return key # validate iloc if kind == 'iloc': return slice(self._validate_indexer('slice', key.start, kind), self._validate_indexer('slice', key.stop, kind), self._validate_indexer('slice', key.step, kind)) # potentially cast the bounds to integers start, stop, step = key.start, key.stop, key.step # figure out if this is a positional indexer def is_int(v): return v is None or is_integer(v) is_null_slicer = start is None and stop is None is_index_slice = is_int(start) and is_int(stop) is_positional = is_index_slice and not self.is_integer() if kind == 'getitem': """ called from the getitem slicers, validate that we are in fact integers """ if self.is_integer() or is_index_slice: return slice(self._validate_indexer('slice', key.start, kind), self._validate_indexer('slice', key.stop, kind), self._validate_indexer('slice', key.step, kind)) # convert the slice to an indexer here # if we are mixed and have integers try: if is_positional and self.is_mixed(): # TODO: i, j are not used anywhere if start is not None: i = self.get_loc(start) # noqa if stop is not None: j = self.get_loc(stop) # noqa is_positional = False except KeyError: if self.inferred_type == 'mixed-integer-float': raise if is_null_slicer: indexer = key elif is_positional: indexer = key else: try: indexer = self.slice_indexer(start, stop, step, kind=kind) except Exception: if is_index_slice: if self.is_integer(): raise else: indexer = key else: raise return indexer def _convert_list_indexer(self, keyarr, kind=None): """ passed a key that is tuplesafe that is integer based and we have a mixed index (e.g. number/labels). figure out the indexer. return None if we can't help """ if (kind in [None, 'iloc', 'ix'] and is_integer_dtype(keyarr) and not self.is_floating() and not isinstance(keyarr, ABCPeriodIndex)): if self.inferred_type == 'mixed-integer': indexer = self.get_indexer(keyarr) if (indexer >= 0).all(): return indexer # missing values are flagged as -1 by get_indexer and negative # indices are already converted to positive indices in the # above if-statement, so the negative flags are changed to # values outside the range of indices so as to trigger an # IndexError in maybe_convert_indices indexer[indexer < 0] = len(self) from pandas.core.indexing import maybe_convert_indices return maybe_convert_indices(indexer, len(self)) elif not self.inferred_type == 'integer': keyarr = np.where(keyarr < 0, len(self) + keyarr, keyarr) return keyarr return None def _invalid_indexer(self, form, key): """ consistent invalid indexer message """ raise TypeError("cannot do {form} indexing on {klass} with these " "indexers [{key}] of {kind}".format( form=form, klass=type(self), key=key, kind=type(key))) def get_duplicates(self): from collections import defaultdict counter = defaultdict(lambda: 0) for k in self.values: counter[k] += 1 return sorted(k for k, v in compat.iteritems(counter) if v > 1) _get_duplicates = get_duplicates def _cleanup(self): self._engine.clear_mapping() @cache_readonly def _constructor(self): return type(self) @cache_readonly def _engine(self): # property, for now, slow to look up return self._engine_type(lambda: self._values, len(self)) def _validate_index_level(self, level): """ Validate index level. For single-level Index getting level number is a no-op, but some verification must be done like in MultiIndex. """ if isinstance(level, int): if level < 0 and level != -1: raise IndexError("Too many levels: Index has only 1 level," " %d is not a valid level number" % (level, )) elif level > 0: raise IndexError("Too many levels:" " Index has only 1 level, not %d" % (level + 1)) elif level != self.name: raise KeyError('Level %s must be same as name (%s)' % (level, self.name)) def _get_level_number(self, level): self._validate_index_level(level) return 0 @cache_readonly def inferred_type(self): """ return a string of the type inferred from the values """ return lib.infer_dtype(self) def is_type_compatible(self, kind): return kind == self.inferred_type @cache_readonly def is_all_dates(self): if self._data is None: return False return is_datetime_array(_ensure_object(self.values)) def __iter__(self): return iter(self.values) def __reduce__(self): d = dict(data=self._data) d.update(self._get_attributes_dict()) return _new_Index, (self.__class__, d), None def __setstate__(self, state): """Necessary for making this object picklable""" if isinstance(state, dict): self._data = state.pop('data') for k, v in compat.iteritems(state): setattr(self, k, v) elif isinstance(state, tuple): if len(state) == 2: nd_state, own_state = state data = np.empty(nd_state[1], dtype=nd_state[2]) np.ndarray.__setstate__(data, nd_state) self.name = own_state[0] else: # pragma: no cover data = np.empty(state) np.ndarray.__setstate__(data, state) self._data = data self._reset_identity() else: raise Exception("invalid pickle state") _unpickle_compat = __setstate__ def __deepcopy__(self, memo=None): if memo is None: memo = {} return self.copy(deep=True) def __nonzero__(self): raise ValueError("The truth value of a {0} is ambiguous. " "Use a.empty, a.bool(), a.item(), a.any() or a.all()." .format(self.__class__.__name__)) __bool__ = __nonzero__ def __contains__(self, key): hash(key) # work around some kind of odd cython bug try: return key in self._engine except TypeError: return False def __hash__(self): raise TypeError("unhashable type: %r" % type(self).__name__) def __setitem__(self, key, value): raise TypeError("Index does not support mutable operations") def __getitem__(self, key): """ Override numpy.ndarray's __getitem__ method to work as desired. This function adds lists and Series as valid boolean indexers (ndarrays only supports ndarray with dtype=bool). If resulting ndim != 1, plain ndarray is returned instead of corresponding `Index` subclass. """ # There's no custom logic to be implemented in __getslice__, so it's # not overloaded intentionally. getitem = self._data.__getitem__ promote = self._shallow_copy if is_scalar(key): return getitem(key) if isinstance(key, slice): # This case is separated from the conditional above to avoid # pessimization of basic indexing. return promote(getitem(key)) if is_bool_indexer(key): key = np.asarray(key) key = _values_from_object(key) result = getitem(key) if not is_scalar(result): return promote(result) else: return result def append(self, other): """ Append a collection of Index options together Parameters ---------- other : Index or list/tuple of indices Returns ------- appended : Index """ to_concat = [self] if isinstance(other, (list, tuple)): to_concat = to_concat + list(other) else: to_concat.append(other) for obj in to_concat: if not isinstance(obj, Index): raise TypeError('all inputs must be Index') names = set([obj.name for obj in to_concat]) name = None if len(names) > 1 else self.name if self.is_categorical(): # if calling index is category, don't check dtype of others from pandas.indexes.category import CategoricalIndex return CategoricalIndex._append_same_dtype(self, to_concat, name) typs = _concat.get_dtype_kinds(to_concat) if len(typs) == 1: return self._append_same_dtype(to_concat, name=name) return _concat._concat_index_asobject(to_concat, name=name) def _append_same_dtype(self, to_concat, name): """ Concatenate to_concat which has the same class """ # must be overrided in specific classes return _concat._concat_index_asobject(to_concat, name) _index_shared_docs['take'] = """ return a new %(klass)s of the values selected by the indices For internal compatibility with numpy arrays. Parameters ---------- indices : list Indices to be taken axis : int, optional The axis over which to select values, always 0. allow_fill : bool, default True fill_value : bool, default None If allow_fill=True and fill_value is not None, indices specified by -1 is regarded as NA. If Index doesn't hold NA, raise ValueError See also -------- numpy.ndarray.take """ @Appender(_index_shared_docs['take']) def take(self, indices, axis=0, allow_fill=True, fill_value=None, **kwargs): nv.validate_take(tuple(), kwargs) indices = _ensure_platform_int(indices) if self._can_hold_na: taken = self._assert_take_fillable(self.values, indices, allow_fill=allow_fill, fill_value=fill_value, na_value=self._na_value) else: if allow_fill and fill_value is not None: msg = 'Unable to fill values because {0} cannot contain NA' raise ValueError(msg.format(self.__class__.__name__)) taken = self.values.take(indices) return self._shallow_copy(taken) def _assert_take_fillable(self, values, indices, allow_fill=True, fill_value=None, na_value=np.nan): """ Internal method to handle NA filling of take """ indices = _ensure_platform_int(indices) # only fill if we are passing a non-None fill_value if allow_fill and fill_value is not None: if (indices < -1).any(): msg = ('When allow_fill=True and fill_value is not None, ' 'all indices must be >= -1') raise ValueError(msg) taken = values.take(indices) mask = indices == -1 if mask.any(): taken[mask] = na_value else: taken = values.take(indices) return taken @cache_readonly def _isnan(self): """ return if each value is nan""" if self._can_hold_na: return isnull(self) else: # shouldn't reach to this condition by checking hasnans beforehand values = np.empty(len(self), dtype=np.bool_) values.fill(False) return values @cache_readonly def _nan_idxs(self): if self._can_hold_na: w, = self._isnan.nonzero() return w else: return np.array([], dtype=np.int64) @cache_readonly def hasnans(self): """ return if I have any nans; enables various perf speedups """ if self._can_hold_na: return self._isnan.any() else: return False def putmask(self, mask, value): """ return a new Index of the values set with the mask See also -------- numpy.ndarray.putmask """ values = self.values.copy() try: np.putmask(values, mask, self._convert_for_op(value)) return self._shallow_copy(values) except (ValueError, TypeError): # coerces to object return self.astype(object).putmask(mask, value) def format(self, name=False, formatter=None, **kwargs): """ Render a string representation of the Index """ header = [] if name: header.append(pprint_thing(self.name, escape_chars=('\t', '\r', '\n')) if self.name is not None else '') if formatter is not None: return header + list(self.map(formatter)) return self._format_with_header(header, **kwargs) def _format_with_header(self, header, na_rep='NaN', **kwargs): values = self.values from pandas.formats.format import format_array if is_categorical_dtype(values.dtype): values = np.array(values) elif is_object_dtype(values.dtype): values = lib.maybe_convert_objects(values, safe=1) if is_object_dtype(values.dtype): result = [pprint_thing(x, escape_chars=('\t', '\r', '\n')) for x in values] # could have nans mask = isnull(values) if mask.any(): result = np.array(result) result[mask] = na_rep result = result.tolist() else: result = _trim_front(format_array(values, None, justify='left')) return header + result def to_native_types(self, slicer=None, **kwargs): """ slice and dice then format """ values = self if slicer is not None: values = values[slicer] return values._format_native_types(**kwargs) def _format_native_types(self, na_rep='', quoting=None, **kwargs): """ actually format my specific types """ mask = isnull(self) if not self.is_object() and not quoting: values = np.asarray(self).astype(str) else: values = np.array(self, dtype=object, copy=True) values[mask] = na_rep return values def equals(self, other): """ Determines if two Index objects contain the same elements. """ if self.is_(other): return True if not isinstance(other, Index): return False if is_object_dtype(self) and not is_object_dtype(other): # if other is not object, use other's logic for coercion return other.equals(self) try: return array_equivalent(_values_from_object(self), _values_from_object(other)) except: return False def identical(self, other): """Similar to equals, but check that other comparable attributes are also equal """ return (self.equals(other) and all((getattr(self, c, None) == getattr(other, c, None) for c in self._comparables)) and type(self) == type(other)) def asof(self, label): """ For a sorted index, return the most recent label up to and including the passed label. Return NaN if not found. See also -------- get_loc : asof is a thin wrapper around get_loc with method='pad' """ try: loc = self.get_loc(label, method='pad') except KeyError: return _get_na_value(self.dtype) else: if isinstance(loc, slice): loc = loc.indices(len(self))[-1] return self[loc] def asof_locs(self, where, mask): """ where : array of timestamps mask : array of booleans where data is not NA """ locs = self.values[mask].searchsorted(where.values, side='right') locs = np.where(locs > 0, locs - 1, 0) result = np.arange(len(self))[mask].take(locs) first = mask.argmax() result[(locs == 0) & (where < self.values[first])] = -1 return result def sort_values(self, return_indexer=False, ascending=True): """ Return sorted copy of Index """ _as = self.argsort() if not ascending: _as = _as[::-1] sorted_index = self.take(_as) if return_indexer: return sorted_index, _as else: return sorted_index def order(self, return_indexer=False, ascending=True): """ Return sorted copy of Index DEPRECATED: use :meth:`Index.sort_values` """ warnings.warn("order is deprecated, use sort_values(...)", FutureWarning, stacklevel=2) return self.sort_values(return_indexer=return_indexer, ascending=ascending) def sort(self, *args, **kwargs): raise TypeError("cannot sort an Index object in-place, use " "sort_values instead") def sortlevel(self, level=None, ascending=True, sort_remaining=None): """ For internal compatibility with with the Index API Sort the Index. This is for compat with MultiIndex Parameters ---------- ascending : boolean, default True False to sort in descending order level, sort_remaining are compat parameters Returns ------- sorted_index : Index """ return self.sort_values(return_indexer=True, ascending=ascending) def shift(self, periods=1, freq=None): """ Shift Index containing datetime objects by input number of periods and DateOffset Returns ------- shifted : Index """ raise NotImplementedError("Not supported for type %s" % type(self).__name__) def argsort(self, *args, **kwargs): """ Returns the indices that would sort the index and its underlying data. Returns ------- argsorted : numpy array See also -------- numpy.ndarray.argsort """ result = self.asi8 if result is None: result = np.array(self) return result.argsort(*args, **kwargs) def __add__(self, other): return Index(np.array(self) + other) def __radd__(self, other): return Index(other + np.array(self)) __iadd__ = __add__ def __sub__(self, other): raise TypeError("cannot perform __sub__ with this index type: " "{typ}".format(typ=type(self))) def __and__(self, other): return self.intersection(other) def __or__(self, other): return self.union(other) def __xor__(self, other): return self.symmetric_difference(other) def _get_consensus_name(self, other): """ Given 2 indexes, give a consensus name meaning we take the not None one, or None if the names differ. Return a new object if we are resetting the name """ if self.name != other.name: if self.name is None or other.name is None: name = self.name or other.name else: name = None if self.name != name: return self._shallow_copy(name=name) return self def union(self, other): """ Form the union of two Index objects and sorts if possible. Parameters ---------- other : Index or array-like Returns ------- union : Index Examples -------- >>> idx1 = pd.Index([1, 2, 3, 4]) >>> idx2 = pd.Index([3, 4, 5, 6]) >>> idx1.union(idx2) Int64Index([1, 2, 3, 4, 5, 6], dtype='int64') """ self._assert_can_do_setop(other) other = _ensure_index(other) if len(other) == 0 or self.equals(other): return self._get_consensus_name(other) if len(self) == 0: return other._get_consensus_name(self) if not is_dtype_equal(self.dtype, other.dtype): this = self.astype('O') other = other.astype('O') return this.union(other) if self.is_monotonic and other.is_monotonic: try: result = self._outer_indexer(self._values, other._values)[0] except TypeError: # incomparable objects result = list(self._values) # worth making this faster? a very unusual case value_set = set(self._values) result.extend([x for x in other._values if x not in value_set]) else: indexer = self.get_indexer(other) indexer, = (indexer == -1).nonzero() if len(indexer) > 0: other_diff = algos.take_nd(other._values, indexer, allow_fill=False) result = _concat._concat_compat((self._values, other_diff)) try: self._values[0] < other_diff[0] except TypeError as e: warnings.warn("%s, sort order is undefined for " "incomparable objects" % e, RuntimeWarning, stacklevel=3) else: types = frozenset((self.inferred_type, other.inferred_type)) if not types & _unsortable_types: result.sort() else: result = self._values try: result = np.sort(result) except TypeError as e: warnings.warn("%s, sort order is undefined for " "incomparable objects" % e, RuntimeWarning, stacklevel=3) # for subclasses return self._wrap_union_result(other, result) def _wrap_union_result(self, other, result): name = self.name if self.name == other.name else None return self.__class__(result, name=name) def intersection(self, other): """ Form the intersection of two Index objects. This returns a new Index with elements common to the index and `other`. Sortedness of the result is not guaranteed. Parameters ---------- other : Index or array-like Returns ------- intersection : Index Examples -------- >>> idx1 = pd.Index([1, 2, 3, 4]) >>> idx2 = pd.Index([3, 4, 5, 6]) >>> idx1.intersection(idx2) Int64Index([3, 4], dtype='int64') """ self._assert_can_do_setop(other) other = _ensure_index(other) if self.equals(other): return self._get_consensus_name(other) if not is_dtype_equal(self.dtype, other.dtype): this = self.astype('O') other = other.astype('O') return this.intersection(other) if self.is_monotonic and other.is_monotonic: try: result = self._inner_indexer(self._values, other._values)[0] return self._wrap_union_result(other, result) except TypeError: pass try: indexer = Index(self._values).get_indexer(other._values) indexer = indexer.take((indexer != -1).nonzero()[0]) except: # duplicates indexer = Index(self._values).get_indexer_non_unique( other._values)[0].unique() indexer = indexer[indexer != -1] taken = self.take(indexer) if self.name != other.name: taken.name = None return taken def difference(self, other): """ Return a new Index with elements from the index that are not in `other`. This is the set difference of two Index objects. It's sorted if sorting is possible. Parameters ---------- other : Index or array-like Returns ------- difference : Index Examples -------- >>> idx1 = pd.Index([1, 2, 3, 4]) >>> idx2 = pd.Index([3, 4, 5, 6]) >>> idx1.difference(idx2) Int64Index([1, 2], dtype='int64') """ self._assert_can_do_setop(other) if self.equals(other): return Index([], name=self.name) other, result_name = self._convert_can_do_setop(other) this = self._get_unique_index() indexer = this.get_indexer(other) indexer = indexer.take((indexer != -1).nonzero()[0]) label_diff = np.setdiff1d(np.arange(this.size), indexer, assume_unique=True) the_diff = this.values.take(label_diff) try: the_diff = algos.safe_sort(the_diff) except TypeError: pass return this._shallow_copy(the_diff, name=result_name, freq=None) def symmetric_difference(self, other, result_name=None): """ Compute the symmetric difference of two Index objects. It's sorted if sorting is possible. Parameters ---------- other : Index or array-like result_name : str Returns ------- symmetric_difference : Index Notes ----- ``symmetric_difference`` contains elements that appear in either ``idx1`` or ``idx2`` but not both. Equivalent to the Index created by ``idx1.difference(idx2) | idx2.difference(idx1)`` with duplicates dropped. Examples -------- >>> idx1 = Index([1, 2, 3, 4]) >>> idx2 = Index([2, 3, 4, 5]) >>> idx1.symmetric_difference(idx2) Int64Index([1, 5], dtype='int64') You can also use the ``^`` operator: >>> idx1 ^ idx2 Int64Index([1, 5], dtype='int64') """ self._assert_can_do_setop(other) other, result_name_update = self._convert_can_do_setop(other) if result_name is None: result_name = result_name_update this = self._get_unique_index() other = other._get_unique_index() indexer = this.get_indexer(other) # {this} minus {other} common_indexer = indexer.take((indexer != -1).nonzero()[0]) left_indexer = np.setdiff1d(np.arange(this.size), common_indexer, assume_unique=True) left_diff = this.values.take(left_indexer) # {other} minus {this} right_indexer = (indexer == -1).nonzero()[0] right_diff = other.values.take(right_indexer) the_diff = _concat._concat_compat([left_diff, right_diff]) try: the_diff = algos.safe_sort(the_diff) except TypeError: pass attribs = self._get_attributes_dict() attribs['name'] = result_name if 'freq' in attribs: attribs['freq'] = None return self._shallow_copy_with_infer(the_diff, **attribs) sym_diff = deprecate('sym_diff', symmetric_difference) def _get_unique_index(self, dropna=False): """ Returns an index containing unique values. Parameters ---------- dropna : bool If True, NaN values are dropped. Returns ------- uniques : index """ if self.is_unique and not dropna: return self values = self.values if not self.is_unique: values = self.unique() if dropna: try: if self.hasnans: values = values[~isnull(values)] except NotImplementedError: pass return self._shallow_copy(values) def get_loc(self, key, method=None, tolerance=None): """ Get integer location for requested label Parameters ---------- key : label method : {None, 'pad'/'ffill', 'backfill'/'bfill', 'nearest'}, optional * default: exact matches only. * pad / ffill: find the PREVIOUS index value if no exact match. * backfill / bfill: use NEXT index value if no exact match * nearest: use the NEAREST index value if no exact match. Tied distances are broken by preferring the larger index value. tolerance : optional Maximum distance from index value for inexact matches. The value of the index at the matching location most satisfy the equation ``abs(index[loc] - key) <= tolerance``. .. versionadded:: 0.17.0 Returns ------- loc : int if unique index, possibly slice or mask if not """ if method is None: if tolerance is not None: raise ValueError('tolerance argument only valid if using pad, ' 'backfill or nearest lookups') key = _values_from_object(key) try: return self._engine.get_loc(key) except KeyError: return self._engine.get_loc(self._maybe_cast_indexer(key)) indexer = self.get_indexer([key], method=method, tolerance=tolerance) if indexer.ndim > 1 or indexer.size > 1: raise TypeError('get_loc requires scalar valued input') loc = indexer.item() if loc == -1: raise KeyError(key) return loc def get_value(self, series, key): """ Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you're doing """ # if we have something that is Index-like, then # use this, e.g. DatetimeIndex s = getattr(series, '_values', None) if isinstance(s, Index) and is_scalar(key): try: return s[key] except (IndexError, ValueError): # invalid type as an indexer pass s = _values_from_object(series) k = _values_from_object(key) k = self._convert_scalar_indexer(k, kind='getitem') try: return self._engine.get_value(s, k, tz=getattr(series.dtype, 'tz', None)) except KeyError as e1: if len(self) > 0 and self.inferred_type in ['integer', 'boolean']: raise try: return tslib.get_value_box(s, key) except IndexError: raise except TypeError: # generator/iterator-like if is_iterator(key): raise InvalidIndexError(key) else: raise e1 except Exception: # pragma: no cover raise e1 except TypeError: # python 3 if is_scalar(key): # pragma: no cover raise IndexError(key) raise InvalidIndexError(key) def set_value(self, arr, key, value): """ Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you're doing """ self._engine.set_value(_values_from_object(arr), _values_from_object(key), value) def get_level_values(self, level): """ Return vector of label values for requested level, equal to the length of the index Parameters ---------- level : int Returns ------- values : ndarray """ # checks that level number is actually just 1 self._validate_index_level(level) return self def get_indexer(self, target, method=None, limit=None, tolerance=None): """ Compute indexer and mask for new index given the current index. The indexer should be then used as an input to ndarray.take to align the current data to the new index. Parameters ---------- target : Index method : {None, 'pad'/'ffill', 'backfill'/'bfill', 'nearest'}, optional * default: exact matches only. * pad / ffill: find the PREVIOUS index value if no exact match. * backfill / bfill: use NEXT index value if no exact match * nearest: use the NEAREST index value if no exact match. Tied distances are broken by preferring the larger index value. limit : int, optional Maximum number of consecutive labels in ``target`` to match for inexact matches. tolerance : optional Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations most satisfy the equation ``abs(index[indexer] - target) <= tolerance``. .. versionadded:: 0.17.0 Examples -------- >>> indexer = index.get_indexer(new_index) >>> new_values = cur_values.take(indexer) Returns ------- indexer : ndarray of int Integers from 0 to n - 1 indicating that the index at these positions matches the corresponding target values. Missing values in the target are marked by -1. """ method = missing.clean_reindex_fill_method(method) target = _ensure_index(target) if tolerance is not None: tolerance = self._convert_tolerance(tolerance) pself, ptarget = self._possibly_promote(target) if pself is not self or ptarget is not target: return pself.get_indexer(ptarget, method=method, limit=limit, tolerance=tolerance) if not is_dtype_equal(self.dtype, target.dtype): this = self.astype(object) target = target.astype(object) return this.get_indexer(target, method=method, limit=limit, tolerance=tolerance) if not self.is_unique: raise InvalidIndexError('Reindexing only valid with uniquely' ' valued Index objects') if method == 'pad' or method == 'backfill': indexer = self._get_fill_indexer(target, method, limit, tolerance) elif method == 'nearest': indexer = self._get_nearest_indexer(target, limit, tolerance) else: if tolerance is not None: raise ValueError('tolerance argument only valid if doing pad, ' 'backfill or nearest reindexing') if limit is not None: raise ValueError('limit argument only valid if doing pad, ' 'backfill or nearest reindexing') indexer = self._engine.get_indexer(target._values) return _ensure_platform_int(indexer) def _convert_tolerance(self, tolerance): # override this method on subclasses return tolerance def _get_fill_indexer(self, target, method, limit=None, tolerance=None): if self.is_monotonic_increasing and target.is_monotonic_increasing: method = (self._engine.get_pad_indexer if method == 'pad' else self._engine.get_backfill_indexer) indexer = method(target._values, limit) else: indexer = self._get_fill_indexer_searchsorted(target, method, limit) if tolerance is not None: indexer = self._filter_indexer_tolerance(target._values, indexer, tolerance) return indexer def _get_fill_indexer_searchsorted(self, target, method, limit=None): """ Fallback pad/backfill get_indexer that works for monotonic decreasing indexes and non-monotonic targets """ if limit is not None: raise ValueError('limit argument for %r method only well-defined ' 'if index and target are monotonic' % method) side = 'left' if method == 'pad' else 'right' target = np.asarray(target) # find exact matches first (this simplifies the algorithm) indexer = self.get_indexer(target) nonexact = (indexer == -1) indexer[nonexact] = self._searchsorted_monotonic(target[nonexact], side) if side == 'left': # searchsorted returns "indices into a sorted array such that, # if the corresponding elements in v were inserted before the # indices, the order of a would be preserved". # Thus, we need to subtract 1 to find values to the left. indexer[nonexact] -= 1 # This also mapped not found values (values of 0 from # np.searchsorted) to -1, which conveniently is also our # sentinel for missing values else: # Mark indices to the right of the largest value as not found indexer[indexer == len(self)] = -1 return indexer def _get_nearest_indexer(self, target, limit, tolerance): """ Get the indexer for the nearest index labels; requires an index with values that can be subtracted from each other (e.g., not strings or tuples). """ left_indexer = self.get_indexer(target, 'pad', limit=limit) right_indexer = self.get_indexer(target, 'backfill', limit=limit) target = np.asarray(target) left_distances = abs(self.values[left_indexer] - target) right_distances = abs(self.values[right_indexer] - target) op = operator.lt if self.is_monotonic_increasing else operator.le indexer = np.where(op(left_distances, right_distances) | (right_indexer == -1), left_indexer, right_indexer) if tolerance is not None: indexer = self._filter_indexer_tolerance(target, indexer, tolerance) return indexer def _filter_indexer_tolerance(self, target, indexer, tolerance): distance = abs(self.values[indexer] - target) indexer = np.where(distance <= tolerance, indexer, -1) return indexer def get_indexer_non_unique(self, target): """ return an indexer suitable for taking from a non unique index return the labels in the same order as the target, and return a missing indexer into the target (missing are marked as -1 in the indexer); target must be an iterable """ target = _ensure_index(target) pself, ptarget = self._possibly_promote(target) if pself is not self or ptarget is not target: return pself.get_indexer_non_unique(ptarget) if self.is_all_dates: self = Index(self.asi8) tgt_values = target.asi8 else: tgt_values = target._values indexer, missing = self._engine.get_indexer_non_unique(tgt_values) return Index(indexer), missing def get_indexer_for(self, target, **kwargs): """ guaranteed return of an indexer even when non-unique """ if self.is_unique: return self.get_indexer(target, **kwargs) indexer, _ = self.get_indexer_non_unique(target, **kwargs) return indexer def _possibly_promote(self, other): # A hack, but it works from pandas.tseries.index import DatetimeIndex if self.inferred_type == 'date' and isinstance(other, DatetimeIndex): return DatetimeIndex(self), other elif self.inferred_type == 'boolean': if not is_object_dtype(self.dtype): return self.astype('object'), other.astype('object') return self, other def groupby(self, values): """ Group the index labels by a given array of values. Parameters ---------- values : array Values used to determine the groups. Returns ------- groups : dict {group name -> group labels} """ # TODO: if we are a MultiIndex, we can do better # that converting to tuples from .multi import MultiIndex if isinstance(values, MultiIndex): values = values.values values = _ensure_categorical(values) result = values._reverse_indexer() # map to the label result = {k: self.take(v) for k, v in compat.iteritems(result)} return result def map(self, mapper): """Apply mapper function to an index. Parameters ---------- mapper : callable Function to be applied. Returns ------- applied : Union[Index, MultiIndex], inferred The output of the mapping function applied to the index. If the function returns a tuple with more than one element a MultiIndex will be returned. """ from .multi import MultiIndex mapped_values = self._arrmap(self.values, mapper) attributes = self._get_attributes_dict() if mapped_values.size and isinstance(mapped_values[0], tuple): return MultiIndex.from_tuples(mapped_values, names=attributes.get('name')) attributes['copy'] = False return Index(mapped_values, **attributes) def isin(self, values, level=None): """ Compute boolean array of whether each index value is found in the passed set of values. Parameters ---------- values : set or list-like Sought values. .. versionadded:: 0.18.1 Support for values as a set level : str or int, optional Name or position of the index level to use (if the index is a MultiIndex). Notes ----- If `level` is specified: - if it is the name of one *and only one* index level, use that level; - otherwise it should be a number indicating level position. Returns ------- is_contained : ndarray (boolean dtype) """ if level is not None: self._validate_index_level(level) return algos.isin(np.array(self), values) def _can_reindex(self, indexer): """ *this is an internal non-public method* Check if we are allowing reindexing with this particular indexer Parameters ---------- indexer : an integer indexer Raises ------ ValueError if its a duplicate axis """ # trying to reindex on an axis with duplicates if not self.is_unique and len(indexer): raise ValueError("cannot reindex from a duplicate axis") def reindex(self, target, method=None, level=None, limit=None, tolerance=None): """ Create index with target's values (move/add/delete values as necessary) Parameters ---------- target : an iterable Returns ------- new_index : pd.Index Resulting index indexer : np.ndarray or None Indices of output values in original index """ # GH6552: preserve names when reindexing to non-named target # (i.e. neither Index nor Series). preserve_names = not hasattr(target, 'name') # GH7774: preserve dtype/tz if target is empty and not an Index. target = _ensure_has_len(target) # target may be an iterator if not isinstance(target, Index) and len(target) == 0: attrs = self._get_attributes_dict() attrs.pop('freq', None) # don't preserve freq target = self._simple_new(None, dtype=self.dtype, **attrs) else: target = _ensure_index(target) if level is not None: if method is not None: raise TypeError('Fill method not supported if level passed') _, indexer, _ = self._join_level(target, level, how='right', return_indexers=True) else: if self.equals(target): indexer = None else: if self.is_unique: indexer = self.get_indexer(target, method=method, limit=limit, tolerance=tolerance) else: if method is not None or limit is not None: raise ValueError("cannot reindex a non-unique index " "with a method or limit") indexer, missing = self.get_indexer_non_unique(target) if preserve_names and target.nlevels == 1 and target.name != self.name: target = target.copy() target.name = self.name return target, indexer def _reindex_non_unique(self, target): """ *this is an internal non-public method* Create a new index with target's values (move/add/delete values as necessary) use with non-unique Index and a possibly non-unique target Parameters ---------- target : an iterable Returns ------- new_index : pd.Index Resulting index indexer : np.ndarray or None Indices of output values in original index """ target = _ensure_index(target) indexer, missing = self.get_indexer_non_unique(target) check = indexer != -1 new_labels = self.take(indexer[check]) new_indexer = None if len(missing): l = np.arange(len(indexer)) missing = _ensure_platform_int(missing) missing_labels = target.take(missing) missing_indexer = _ensure_int64(l[~check]) cur_labels = self.take(indexer[check]).values cur_indexer = _ensure_int64(l[check]) new_labels = np.empty(tuple([len(indexer)]), dtype=object) new_labels[cur_indexer] = cur_labels new_labels[missing_indexer] = missing_labels # a unique indexer if target.is_unique: # see GH5553, make sure we use the right indexer new_indexer = np.arange(len(indexer)) new_indexer[cur_indexer] = np.arange(len(cur_labels)) new_indexer[missing_indexer] = -1 # we have a non_unique selector, need to use the original # indexer here else: # need to retake to have the same size as the indexer indexer = indexer.values indexer[~check] = 0 # reset the new indexer to account for the new size new_indexer = np.arange(len(self.take(indexer))) new_indexer[~check] = -1 new_index = self._shallow_copy_with_infer(new_labels, freq=None) return new_index, indexer, new_indexer def join(self, other, how='left', level=None, return_indexers=False): """ *this is an internal non-public method* Compute join_index and indexers to conform data structures to the new index. Parameters ---------- other : Index how : {'left', 'right', 'inner', 'outer'} level : int or level name, default None return_indexers : boolean, default False Returns ------- join_index, (left_indexer, right_indexer) """ from .multi import MultiIndex self_is_mi = isinstance(self, MultiIndex) other_is_mi = isinstance(other, MultiIndex) # try to figure out the join level # GH3662 if level is None and (self_is_mi or other_is_mi): # have the same levels/names so a simple join if self.names == other.names: pass else: return self._join_multi(other, how=how, return_indexers=return_indexers) # join on the level if level is not None and (self_is_mi or other_is_mi): return self._join_level(other, level, how=how, return_indexers=return_indexers) other = _ensure_index(other) if len(other) == 0 and how in ('left', 'outer'): join_index = self._shallow_copy() if return_indexers: rindexer = np.repeat(-1, len(join_index)) return join_index, None, rindexer else: return join_index if len(self) == 0 and how in ('right', 'outer'): join_index = other._shallow_copy() if return_indexers: lindexer = np.repeat(-1, len(join_index)) return join_index, lindexer, None else: return join_index if self._join_precedence < other._join_precedence: how = {'right': 'left', 'left': 'right'}.get(how, how) result = other.join(self, how=how, level=level, return_indexers=return_indexers) if return_indexers: x, y, z = result result = x, z, y return result if not is_dtype_equal(self.dtype, other.dtype): this = self.astype('O') other = other.astype('O') return this.join(other, how=how, return_indexers=return_indexers) _validate_join_method(how) if not self.is_unique and not other.is_unique: return self._join_non_unique(other, how=how, return_indexers=return_indexers) elif not self.is_unique or not other.is_unique: if self.is_monotonic and other.is_monotonic: return self._join_monotonic(other, how=how, return_indexers=return_indexers) else: return self._join_non_unique(other, how=how, return_indexers=return_indexers) elif self.is_monotonic and other.is_monotonic: try: return self._join_monotonic(other, how=how, return_indexers=return_indexers) except TypeError: pass if how == 'left': join_index = self elif how == 'right': join_index = other elif how == 'inner': join_index = self.intersection(other) elif how == 'outer': join_index = self.union(other) if return_indexers: if join_index is self: lindexer = None else: lindexer = self.get_indexer(join_index) if join_index is other: rindexer = None else: rindexer = other.get_indexer(join_index) return join_index, lindexer, rindexer else: return join_index def _join_multi(self, other, how, return_indexers=True): from .multi import MultiIndex self_is_mi = isinstance(self, MultiIndex) other_is_mi = isinstance(other, MultiIndex) # figure out join names self_names = [n for n in self.names if n is not None] other_names = [n for n in other.names if n is not None] overlap = list(set(self_names) & set(other_names)) # need at least 1 in common, but not more than 1 if not len(overlap): raise ValueError("cannot join with no level specified and no " "overlapping names") if len(overlap) > 1: raise NotImplementedError("merging with more than one level " "overlap on a multi-index is not " "implemented") jl = overlap[0] # make the indices into mi's that match if not (self_is_mi and other_is_mi): flip_order = False if self_is_mi: self, other = other, self flip_order = True # flip if join method is right or left how = {'right': 'left', 'left': 'right'}.get(how, how) level = other.names.index(jl) result = self._join_level(other, level, how=how, return_indexers=return_indexers) if flip_order: if isinstance(result, tuple): return result[0], result[2], result[1] return result # 2 multi-indexes raise NotImplementedError("merging with both multi-indexes is not " "implemented") def _join_non_unique(self, other, how='left', return_indexers=False): from pandas.tools.merge import _get_join_indexers left_idx, right_idx = _get_join_indexers([self.values], [other._values], how=how, sort=True) left_idx = _ensure_platform_int(left_idx) right_idx = _ensure_platform_int(right_idx) join_index = self.values.take(left_idx) mask = left_idx == -1 np.putmask(join_index, mask, other._values.take(right_idx)) join_index = self._wrap_joined_index(join_index, other) if return_indexers: return join_index, left_idx, right_idx else: return join_index def _join_level(self, other, level, how='left', return_indexers=False, keep_order=True): """ The join method *only* affects the level of the resulting MultiIndex. Otherwise it just exactly aligns the Index data to the labels of the level in the MultiIndex. If `keep_order` == True, the order of the data indexed by the MultiIndex will not be changed; otherwise, it will tie out with `other`. """ from pandas.algos import groupsort_indexer from .multi import MultiIndex def _get_leaf_sorter(labels): """ returns sorter for the inner most level while preserving the order of higher levels """ if labels[0].size == 0: return np.empty(0, dtype='int64') if len(labels) == 1: lab = _ensure_int64(labels[0]) sorter, _ = groupsort_indexer(lab, 1 + lab.max()) return sorter # find indexers of begining of each set of # same-key labels w.r.t all but last level tic = labels[0][:-1] != labels[0][1:] for lab in labels[1:-1]: tic |= lab[:-1] != lab[1:] starts = np.hstack(([True], tic, [True])).nonzero()[0] lab = _ensure_int64(labels[-1]) return lib.get_level_sorter(lab, _ensure_int64(starts)) if isinstance(self, MultiIndex) and isinstance(other, MultiIndex): raise TypeError('Join on level between two MultiIndex objects ' 'is ambiguous') left, right = self, other flip_order = not isinstance(self, MultiIndex) if flip_order: left, right = right, left how = {'right': 'left', 'left': 'right'}.get(how, how) level = left._get_level_number(level) old_level = left.levels[level] if not right.is_unique: raise NotImplementedError('Index._join_level on non-unique index ' 'is not implemented') new_level, left_lev_indexer, right_lev_indexer = \ old_level.join(right, how=how, return_indexers=True) if left_lev_indexer is None: if keep_order or len(left) == 0: left_indexer = None join_index = left else: # sort the leaves left_indexer = _get_leaf_sorter(left.labels[:level + 1]) join_index = left[left_indexer] else: left_lev_indexer = _ensure_int64(left_lev_indexer) rev_indexer = lib.get_reverse_indexer(left_lev_indexer, len(old_level)) new_lev_labels = algos.take_nd(rev_indexer, left.labels[level], allow_fill=False) new_labels = list(left.labels) new_labels[level] = new_lev_labels new_levels = list(left.levels) new_levels[level] = new_level if keep_order: # just drop missing values. o.w. keep order left_indexer = np.arange(len(left), dtype=np.intp) mask = new_lev_labels != -1 if not mask.all(): new_labels = [lab[mask] for lab in new_labels] left_indexer = left_indexer[mask] else: # tie out the order with other if level == 0: # outer most level, take the fast route ngroups = 1 + new_lev_labels.max() left_indexer, counts = groupsort_indexer(new_lev_labels, ngroups) # missing values are placed first; drop them! left_indexer = left_indexer[counts[0]:] new_labels = [lab[left_indexer] for lab in new_labels] else: # sort the leaves mask = new_lev_labels != -1 mask_all = mask.all() if not mask_all: new_labels = [lab[mask] for lab in new_labels] left_indexer = _get_leaf_sorter(new_labels[:level + 1]) new_labels = [lab[left_indexer] for lab in new_labels] # left_indexers are w.r.t masked frame. # reverse to original frame! if not mask_all: left_indexer = mask.nonzero()[0][left_indexer] join_index = MultiIndex(levels=new_levels, labels=new_labels, names=left.names, verify_integrity=False) if right_lev_indexer is not None: right_indexer = algos.take_nd(right_lev_indexer, join_index.labels[level], allow_fill=False) else: right_indexer = join_index.labels[level] if flip_order: left_indexer, right_indexer = right_indexer, left_indexer if return_indexers: left_indexer = (None if left_indexer is None else _ensure_platform_int(left_indexer)) right_indexer = (None if right_indexer is None else _ensure_platform_int(right_indexer)) return join_index, left_indexer, right_indexer else: return join_index def _join_monotonic(self, other, how='left', return_indexers=False): if self.equals(other): ret_index = other if how == 'right' else self if return_indexers: return ret_index, None, None else: return ret_index sv = self._values ov = other._values if self.is_unique and other.is_unique: # We can perform much better than the general case if how == 'left': join_index = self lidx = None ridx = self._left_indexer_unique(sv, ov) elif how == 'right': join_index = other lidx = self._left_indexer_unique(ov, sv) ridx = None elif how == 'inner': join_index, lidx, ridx = self._inner_indexer(sv, ov) join_index = self._wrap_joined_index(join_index, other) elif how == 'outer': join_index, lidx, ridx = self._outer_indexer(sv, ov) join_index = self._wrap_joined_index(join_index, other) else: if how == 'left': join_index, lidx, ridx = self._left_indexer(sv, ov) elif how == 'right': join_index, ridx, lidx = self._left_indexer(ov, sv) elif how == 'inner': join_index, lidx, ridx = self._inner_indexer(sv, ov) elif how == 'outer': join_index, lidx, ridx = self._outer_indexer(sv, ov) join_index = self._wrap_joined_index(join_index, other) if return_indexers: lidx = None if lidx is None else _ensure_platform_int(lidx) ridx = None if ridx is None else _ensure_platform_int(ridx) return join_index, lidx, ridx else: return join_index def _wrap_joined_index(self, joined, other): name = self.name if self.name == other.name else None return Index(joined, name=name) def _get_string_slice(self, key, use_lhs=True, use_rhs=True): # this is for partial string indexing, # overridden in DatetimeIndex, TimedeltaIndex and PeriodIndex raise NotImplementedError def slice_indexer(self, start=None, end=None, step=None, kind=None): """ For an ordered Index, compute the slice indexer for input labels and step Parameters ---------- start : label, default None If None, defaults to the beginning end : label, default None If None, defaults to the end step : int, default None kind : string, default None Returns ------- indexer : ndarray or slice Notes ----- This function assumes that the data is sorted, so use at your own peril """ start_slice, end_slice = self.slice_locs(start, end, step=step, kind=kind) # return a slice if not is_scalar(start_slice): raise AssertionError("Start slice bound is non-scalar") if not is_scalar(end_slice): raise AssertionError("End slice bound is non-scalar") return slice(start_slice, end_slice, step) def _maybe_cast_indexer(self, key): """ If we have a float key and are not a floating index then try to cast to an int if equivalent """ if is_float(key) and not self.is_floating(): try: ckey = int(key) if ckey == key: key = ckey except (ValueError, TypeError): pass return key def _validate_indexer(self, form, key, kind): """ if we are positional indexer validate that we have appropriate typed bounds must be an integer """ assert kind in ['ix', 'loc', 'getitem', 'iloc'] if key is None: pass elif is_integer(key): pass elif kind in ['iloc', 'getitem']: self._invalid_indexer(form, key) return key def _maybe_cast_slice_bound(self, label, side, kind): """ This function should be overloaded in subclasses that allow non-trivial casting on label-slice bounds, e.g. datetime-like indices allowing strings containing formatted datetimes. Parameters ---------- label : object side : {'left', 'right'} kind : {'ix', 'loc', 'getitem'} Returns ------- label : object Notes ----- Value of `side` parameter should be validated in caller. """ assert kind in ['ix', 'loc', 'getitem', None] # We are a plain index here (sub-class override this method if they # wish to have special treatment for floats/ints, e.g. Float64Index and # datetimelike Indexes # reject them if is_float(label): if not (kind in ['ix'] and (self.holds_integer() or self.is_floating())): self._invalid_indexer('slice', label) # we are trying to find integer bounds on a non-integer based index # this is rejected (generally .loc gets you here) elif is_integer(label): self._invalid_indexer('slice', label) return label def _searchsorted_monotonic(self, label, side='left'): if self.is_monotonic_increasing: return self.searchsorted(label, side=side) elif self.is_monotonic_decreasing: # np.searchsorted expects ascending sort order, have to reverse # everything for it to work (element ordering, search side and # resulting value). pos = self[::-1].searchsorted(label, side='right' if side == 'left' else 'right') return len(self) - pos raise ValueError('index must be monotonic increasing or decreasing') def get_slice_bound(self, label, side, kind): """ Calculate slice bound that corresponds to given label. Returns leftmost (one-past-the-rightmost if ``side=='right'``) position of given label. Parameters ---------- label : object side : {'left', 'right'} kind : {'ix', 'loc', 'getitem'} """ assert kind in ['ix', 'loc', 'getitem', None] if side not in ('left', 'right'): raise ValueError("Invalid value for side kwarg," " must be either 'left' or 'right': %s" % (side, )) original_label = label # For datetime indices label may be a string that has to be converted # to datetime boundary according to its resolution. label = self._maybe_cast_slice_bound(label, side, kind) # we need to look up the label try: slc = self.get_loc(label) except KeyError as err: try: return self._searchsorted_monotonic(label, side) except ValueError: # raise the original KeyError raise err if isinstance(slc, np.ndarray): # get_loc may return a boolean array or an array of indices, which # is OK as long as they are representable by a slice. if is_bool_dtype(slc): slc = lib.maybe_booleans_to_slice(slc.view('u1')) else: slc = lib.maybe_indices_to_slice(slc.astype('i8'), len(self)) if isinstance(slc, np.ndarray): raise KeyError("Cannot get %s slice bound for non-unique " "label: %r" % (side, original_label)) if isinstance(slc, slice): if side == 'left': return slc.start else: return slc.stop else: if side == 'right': return slc + 1 else: return slc def slice_locs(self, start=None, end=None, step=None, kind=None): """ Compute slice locations for input labels. Parameters ---------- start : label, default None If None, defaults to the beginning end : label, default None If None, defaults to the end step : int, defaults None If None, defaults to 1 kind : {'ix', 'loc', 'getitem'} or None Returns ------- start, end : int """ inc = (step is None or step >= 0) if not inc: # If it's a reverse slice, temporarily swap bounds. start, end = end, start start_slice = None if start is not None: start_slice = self.get_slice_bound(start, 'left', kind) if start_slice is None: start_slice = 0 end_slice = None if end is not None: end_slice = self.get_slice_bound(end, 'right', kind) if end_slice is None: end_slice = len(self) if not inc: # Bounds at this moment are swapped, swap them back and shift by 1. # # slice_locs('B', 'A', step=-1): s='B', e='A' # # s='A' e='B' # AFTER SWAP: | | # v ------------------> V # ----------------------------------- # | | |A|A|A|A| | | | | |B|B| | | | | # ----------------------------------- # ^ <------------------ ^ # SHOULD BE: | | # end=s-1 start=e-1 # end_slice, start_slice = start_slice - 1, end_slice - 1 # i == -1 triggers ``len(self) + i`` selection that points to the # last element, not before-the-first one, subtracting len(self) # compensates that. if end_slice == -1: end_slice -= len(self) if start_slice == -1: start_slice -= len(self) return start_slice, end_slice def delete(self, loc): """ Make new Index with passed location(-s) deleted Returns ------- new_index : Index """ return self._shallow_copy(np.delete(self._data, loc)) def insert(self, loc, item): """ Make new Index inserting new item at location. Follows Python list.append semantics for negative values Parameters ---------- loc : int item : object Returns ------- new_index : Index """ _self = np.asarray(self) item = self._coerce_scalar_to_index(item)._values idx = np.concatenate((_self[:loc], item, _self[loc:])) return self._shallow_copy_with_infer(idx) def drop(self, labels, errors='raise'): """ Make new Index with passed list of labels deleted Parameters ---------- labels : array-like errors : {'ignore', 'raise'}, default 'raise' If 'ignore', suppress error and existing labels are dropped. Returns ------- dropped : Index """ labels = com._index_labels_to_array(labels) indexer = self.get_indexer(labels) mask = indexer == -1 if mask.any(): if errors != 'ignore': raise ValueError('labels %s not contained in axis' % labels[mask]) indexer = indexer[~mask] return self.delete(indexer) @Appender(base._shared_docs['unique'] % _index_doc_kwargs) def unique(self): result = super(Index, self).unique() return self._shallow_copy(result) @deprecate_kwarg('take_last', 'keep', mapping={True: 'last', False: 'first'}) @Appender(base._shared_docs['drop_duplicates'] % _index_doc_kwargs) def drop_duplicates(self, keep='first'): return super(Index, self).drop_duplicates(keep=keep) @deprecate_kwarg('take_last', 'keep', mapping={True: 'last', False: 'first'}) @Appender(base._shared_docs['duplicated'] % _index_doc_kwargs) def duplicated(self, keep='first'): return super(Index, self).duplicated(keep=keep) _index_shared_docs['fillna'] = """ Fill NA/NaN values with the specified value Parameters ---------- value : scalar Scalar value to use to fill holes (e.g. 0). This value cannot be a list-likes. downcast : dict, default is None a dict of item->dtype of what to downcast if possible, or the string 'infer' which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible) Returns ------- filled : %(klass)s """ @Appender(_index_shared_docs['fillna']) def fillna(self, value=None, downcast=None): self._assert_can_do_op(value) if self.hasnans: result = self.putmask(self._isnan, value) if downcast is None: # no need to care metadata other than name # because it can't have freq if return Index(result, name=self.name) return self._shallow_copy() _index_shared_docs['dropna'] = """ Return Index without NA/NaN values Parameters ---------- how : {'any', 'all'}, default 'any' If the Index is a MultiIndex, drop the value when any or all levels are NaN. Returns ------- valid : Index """ @Appender(_index_shared_docs['dropna']) def dropna(self, how='any'): if how not in ('any', 'all'): raise ValueError("invalid how option: {0}".format(how)) if self.hasnans: return self._shallow_copy(self.values[~self._isnan]) return self._shallow_copy() def _evaluate_with_timedelta_like(self, other, op, opstr): raise TypeError("can only perform ops with timedelta like values") def _evaluate_with_datetime_like(self, other, op, opstr): raise TypeError("can only perform ops with datetime like values") def _evalute_compare(self, op): raise base.AbstractMethodError(self) @classmethod def _add_comparison_methods(cls): """ add in comparison methods """ def _make_compare(op): def _evaluate_compare(self, other): if isinstance(other, (np.ndarray, Index, ABCSeries)): if other.ndim > 0 and len(self) != len(other): raise ValueError('Lengths must match to compare') # we may need to directly compare underlying # representations if needs_i8_conversion(self) and needs_i8_conversion(other): return self._evaluate_compare(other, op) if is_object_dtype(self) and self.nlevels == 1: # don't pass MultiIndex with np.errstate(all='ignore'): result = _comp_method_OBJECT_ARRAY( op, self.values, other) else: with np.errstate(all='ignore'): result = op(self.values, np.asarray(other)) # technically we could support bool dtyped Index # for now just return the indexing array directly if is_bool_dtype(result): return result try: return Index(result) except TypeError: return result return _evaluate_compare cls.__eq__ = _make_compare(operator.eq) cls.__ne__ = _make_compare(operator.ne) cls.__lt__ = _make_compare(operator.lt) cls.__gt__ = _make_compare(operator.gt) cls.__le__ = _make_compare(operator.le) cls.__ge__ = _make_compare(operator.ge) @classmethod def _add_numeric_methods_add_sub_disabled(cls): """ add in the numeric add/sub methods to disable """ def _make_invalid_op(name): def invalid_op(self, other=None): raise TypeError("cannot perform {name} with this index type: " "{typ}".format(name=name, typ=type(self))) invalid_op.__name__ = name return invalid_op cls.__add__ = cls.__radd__ = __iadd__ = _make_invalid_op('__add__') # noqa cls.__sub__ = __isub__ = _make_invalid_op('__sub__') # noqa @classmethod def _add_numeric_methods_disabled(cls): """ add in numeric methods to disable other than add/sub """ def _make_invalid_op(name): def invalid_op(self, other=None): raise TypeError("cannot perform {name} with this index type: " "{typ}".format(name=name, typ=type(self))) invalid_op.__name__ = name return invalid_op cls.__pow__ = cls.__rpow__ = _make_invalid_op('__pow__') cls.__mul__ = cls.__rmul__ = _make_invalid_op('__mul__') cls.__floordiv__ = cls.__rfloordiv__ = _make_invalid_op('__floordiv__') cls.__truediv__ = cls.__rtruediv__ = _make_invalid_op('__truediv__') if not compat.PY3: cls.__div__ = cls.__rdiv__ = _make_invalid_op('__div__') cls.__neg__ = _make_invalid_op('__neg__') cls.__pos__ = _make_invalid_op('__pos__') cls.__abs__ = _make_invalid_op('__abs__') cls.__inv__ = _make_invalid_op('__inv__') def _maybe_update_attributes(self, attrs): """ Update Index attributes (e.g. freq) depending on op """ return attrs def _validate_for_numeric_unaryop(self, op, opstr): """ validate if we can perform a numeric unary operation """ if not self._is_numeric_dtype: raise TypeError("cannot evaluate a numeric op " "{opstr} for type: {typ}".format( opstr=opstr, typ=type(self)) ) def _validate_for_numeric_binop(self, other, op, opstr): """ return valid other, evaluate or raise TypeError if we are not of the appropriate type internal method called by ops """ from pandas.tseries.offsets import DateOffset # if we are an inheritor of numeric, # but not actually numeric (e.g. DatetimeIndex/PeriodInde) if not self._is_numeric_dtype: raise TypeError("cannot evaluate a numeric op {opstr} " "for type: {typ}".format( opstr=opstr, typ=type(self)) ) if isinstance(other, Index): if not other._is_numeric_dtype: raise TypeError("cannot evaluate a numeric op " "{opstr} with type: {typ}".format( opstr=type(self), typ=type(other)) ) elif isinstance(other, np.ndarray) and not other.ndim: other = other.item() if isinstance(other, (Index, ABCSeries, np.ndarray)): if len(self) != len(other): raise ValueError("cannot evaluate a numeric op with " "unequal lengths") other = _values_from_object(other) if other.dtype.kind not in ['f', 'i']: raise TypeError("cannot evaluate a numeric op " "with a non-numeric dtype") elif isinstance(other, (DateOffset, np.timedelta64, Timedelta, datetime.timedelta)): # higher up to handle pass elif isinstance(other, (Timestamp, np.datetime64)): # higher up to handle pass else: if not (is_float(other) or is_integer(other)): raise TypeError("can only perform ops with scalar values") return other @classmethod def _add_numeric_methods_binary(cls): """ add in numeric methods """ def _make_evaluate_binop(op, opstr, reversed=False, constructor=Index): def _evaluate_numeric_binop(self, other): from pandas.tseries.offsets import DateOffset other = self._validate_for_numeric_binop(other, op, opstr) # handle time-based others if isinstance(other, (DateOffset, np.timedelta64, Timedelta, datetime.timedelta)): return self._evaluate_with_timedelta_like(other, op, opstr) elif isinstance(other, (Timestamp, np.datetime64)): return self._evaluate_with_datetime_like(other, op, opstr) # if we are a reversed non-communative op values = self.values if reversed: values, other = other, values attrs = self._get_attributes_dict() attrs = self._maybe_update_attributes(attrs) with np.errstate(all='ignore'): result = op(values, other) return constructor(result, **attrs) return _evaluate_numeric_binop cls.__add__ = cls.__radd__ = _make_evaluate_binop( operator.add, '__add__') cls.__sub__ = _make_evaluate_binop( operator.sub, '__sub__') cls.__rsub__ = _make_evaluate_binop( operator.sub, '__sub__', reversed=True) cls.__mul__ = cls.__rmul__ = _make_evaluate_binop( operator.mul, '__mul__') cls.__pow__ = cls.__rpow__ = _make_evaluate_binop( operator.pow, '__pow__') cls.__mod__ = _make_evaluate_binop( operator.mod, '__mod__') cls.__floordiv__ = _make_evaluate_binop( operator.floordiv, '__floordiv__') cls.__rfloordiv__ = _make_evaluate_binop( operator.floordiv, '__floordiv__', reversed=True) cls.__truediv__ = _make_evaluate_binop( operator.truediv, '__truediv__') cls.__rtruediv__ = _make_evaluate_binop( operator.truediv, '__truediv__', reversed=True) if not compat.PY3: cls.__div__ = _make_evaluate_binop( operator.div, '__div__') cls.__rdiv__ = _make_evaluate_binop( operator.div, '__div__', reversed=True) cls.__divmod__ = _make_evaluate_binop( divmod, '__divmod__', constructor=lambda result, **attrs: ( Index(result[0], **attrs), Index(result[1], **attrs), ), ) @classmethod def _add_numeric_methods_unary(cls): """ add in numeric unary methods """ def _make_evaluate_unary(op, opstr): def _evaluate_numeric_unary(self): self._validate_for_numeric_unaryop(op, opstr) attrs = self._get_attributes_dict() attrs = self._maybe_update_attributes(attrs) return Index(op(self.values), **attrs) return _evaluate_numeric_unary cls.__neg__ = _make_evaluate_unary(lambda x: -x, '__neg__') cls.__pos__ = _make_evaluate_unary(lambda x: x, '__pos__') cls.__abs__ = _make_evaluate_unary(np.abs, '__abs__') cls.__inv__ = _make_evaluate_unary(lambda x: -x, '__inv__') @classmethod def _add_numeric_methods(cls): cls._add_numeric_methods_unary() cls._add_numeric_methods_binary() @classmethod def _add_logical_methods(cls): """ add in logical methods """ _doc = """ %(desc)s Parameters ---------- All arguments to numpy.%(outname)s are accepted. Returns ------- %(outname)s : bool or array_like (if axis is specified) A single element array_like may be converted to bool.""" def _make_logical_function(name, desc, f): @Substitution(outname=name, desc=desc) @Appender(_doc) def logical_func(self, *args, **kwargs): result = f(self.values) if (isinstance(result, (np.ndarray, ABCSeries, Index)) and result.ndim == 0): # return NumPy type return result.dtype.type(result.item()) else: # pragma: no cover return result logical_func.__name__ = name return logical_func cls.all = _make_logical_function('all', 'Return whether all elements ' 'are True', np.all) cls.any = _make_logical_function('any', 'Return whether any element is True', np.any) @classmethod def _add_logical_methods_disabled(cls): """ add in logical methods to disable """ def _make_invalid_op(name): def invalid_op(self, other=None): raise TypeError("cannot perform {name} with this index type: " "{typ}".format(name=name, typ=type(self))) invalid_op.__name__ = name return invalid_op cls.all = _make_invalid_op('all') cls.any = _make_invalid_op('any') Index._add_numeric_methods_disabled() Index._add_logical_methods() Index._add_comparison_methods() def _ensure_index(index_like, copy=False): if isinstance(index_like, Index): if copy: index_like = index_like.copy() return index_like if hasattr(index_like, 'name'): return Index(index_like, name=index_like.name, copy=copy) # must check for exactly list here because of strict type # check in clean_index_list if isinstance(index_like, list): if type(index_like) != list: index_like = list(index_like) # 2200 ? converted, all_arrays = lib.clean_index_list(index_like) if len(converted) > 0 and all_arrays: from .multi import MultiIndex return MultiIndex.from_arrays(converted) else: index_like = converted else: # clean_index_list does the equivalent of copying # so only need to do this if not list instance if copy: from copy import copy index_like = copy(index_like) return Index(index_like) def _get_na_value(dtype): return {np.datetime64: tslib.NaT, np.timedelta64: tslib.NaT}.get(dtype, np.nan) def _ensure_frozen(array_like, categories, copy=False): array_like = _coerce_indexer_dtype(array_like, categories) array_like = array_like.view(FrozenNDArray) if copy: array_like = array_like.copy() return array_like def _ensure_has_len(seq): """If seq is an iterator, put its values into a list.""" try: len(seq) except TypeError: return list(seq) else: return seq def _trim_front(strings): """ Trims zeros and decimal points """ trimmed = strings while len(strings) > 0 and all([x[0] == ' ' for x in trimmed]): trimmed = [x[1:] for x in trimmed] return trimmed def _validate_join_method(method): if method not in ['left', 'right', 'inner', 'outer']: raise ValueError('do not recognize join method %s' % method)
34.937567
83
0.551068
03173d8098eebf2d45f338127756a5883be03511
1,040
py
Python
datadog_checks_base/datadog_checks/base/utils/prometheus/functions.py
mchelen-gov/integrations-core
81281600b3cc7025a7a32148c59620c9592a564f
[ "BSD-3-Clause" ]
663
2016-08-23T05:23:45.000Z
2022-03-29T00:37:23.000Z
datadog_checks_base/datadog_checks/base/utils/prometheus/functions.py
mchelen-gov/integrations-core
81281600b3cc7025a7a32148c59620c9592a564f
[ "BSD-3-Clause" ]
6,642
2016-06-09T16:29:20.000Z
2022-03-31T22:24:09.000Z
datadog_checks_base/datadog_checks/base/utils/prometheus/functions.py
mchelen-gov/integrations-core
81281600b3cc7025a7a32148c59620c9592a564f
[ "BSD-3-Clause" ]
1,222
2017-01-27T15:51:38.000Z
2022-03-31T18:17:51.000Z
# (C) Datadog, Inc. 2016-present # All rights reserved # Licensed under Simplified BSD License (see LICENSE) from google.protobuf.internal.decoder import _DecodeVarint32 # pylint: disable=E0611,E0401 from . import metrics_pb2 # Deprecated, please use the PrometheusCheck class def parse_metric_family(buf): """ Parse the binary buffer in input, searching for Prometheus messages of type MetricFamily [0] delimited by a varint32 [1]. [0] https://github.com/prometheus/client_model/blob/086fe7ca28bde6cec2acd5223423c1475a362858/metrics.proto#L76-%20%20L81 # noqa: E501 [1] https://developers.google.com/protocol-buffers/docs/reference/java/com/google/protobuf/AbstractMessageLite#writeDelimitedTo(java.io.OutputStream) # noqa: E501 """ n = 0 while n < len(buf): msg_len, new_pos = _DecodeVarint32(buf, n) n = new_pos msg_buf = buf[n : n + msg_len] n += msg_len message = metrics_pb2.MetricFamily() message.ParseFromString(msg_buf) yield message
35.862069
167
0.714423
c6f9855ea24bab4a6fe1a0d931a21d7371e5fa5d
4,027
py
Python
src/evaluate.py
Fantoni0/RingCTPerformance
84fc27f052919625a0db4d905614b52f693e59a3
[ "MIT" ]
2
2020-11-14T05:33:06.000Z
2021-01-15T10:31:21.000Z
src/evaluate.py
Fantoni0/RingCTPerformance
84fc27f052919625a0db4d905614b52f693e59a3
[ "MIT" ]
null
null
null
src/evaluate.py
Fantoni0/RingCTPerformance
84fc27f052919625a0db4d905614b52f693e59a3
[ "MIT" ]
1
2021-08-12T18:23:16.000Z
2021-08-12T18:23:16.000Z
# Standard library imports import secrets from timeit import default_timer as timer import os # Custom imports from src.ringCT import sign, verify from src.utils import utils from src.plot import plot # Third party library from joblib import Parallel, delayed def auxSign(index, parameters, signatures): """ Auxiliary function to parallelize the generation of ring signatures. :param index: Index used to access signatures. :param parameters: Parameters of the ring signature. :param signatures: List of crafted signatures. Data structure used to store generated signatures. :return: """ # Create and store signature signatures[index] = sign(parameters[0], # List of public keys parameters[1], # Signer index parameters[2], # Signer's private key parameters[3], # Message to sign parameters[4]) # Curve used return signatures def auxVerify(index, parameters, signatures, used_keys): """ Auxiliary function to parallelize the verification of ring signatures. :param index: Index used to access signatures. :param parameters: Parameters of the ring signature. :param signatures: List of signatures to verify. Data structure used to store generated signatures. :param used_keys: List of already used keys. :return: {True, False} """ return verify(signatures[index][0], # List of public keys signatures[index][1], # Key image signatures[index][2], # Seed signatures[index][3], # List of random numbers used_keys, parameters[3], # Message parameters[4]) # Curve used def evaluate(args): """ Evaluates the performance of ring signatures (sign and verify algorithms) under the different parameters provided in args. :param args: Object containing the parameters such as ring size, curves to evaluate :return: """ total_stimes = [] total_vtimes = [] num_cpus = os.cpu_count() for c in args.curves: # Define the used keys max_size = max(args.ringsizes) pair_keys = [utils.generateKeyPair(c) for _ in range(max_size)] public_keys = [pair_keys[i][1] for i in range(len(pair_keys))] private_keys = [pair_keys[i][0] for i in range(len(pair_keys))] used_keys = [] stimes = [] vtimes = [] for rs in args.ringsizes: keys = public_keys[:rs] signer = secrets.randbelow(rs) # Simulate signatures and verifications it = 64 # Number of signatures crafted/verified in parallel parameters = keys, signer, private_keys[signer], args.message, c signatures = [None for _ in range(it)] # Sign t0 = timer() signatures = Parallel(n_jobs=num_cpus)(delayed(auxSign)(i, parameters, signatures) for i in range(it)) sign_time = timer() - t0 stimes.append(sign_time / it) # Each parallel job returns a different list. # We get a matrix with elements in the diagonal. # We apply list comprehension to get a single non-empty list. signatures = [signatures[i][i] for i in range(it)] # Verify t0 = timer() Parallel(n_jobs=num_cpus)(delayed(auxVerify)(i, parameters, signatures, used_keys) for i in range(it)) verify_time = timer() - t0 vtimes.append(verify_time / it) total_stimes.append(stimes) total_vtimes.append(vtimes) # Plot signing times plot(args.ringsizes, 'Ring size', total_stimes, 'Time in seconds', args.curves, 'Time to craft a signature', 'graph', save_csv=True) # Plot verification times plot(args.ringsizes, 'Ring size', total_vtimes, 'Time in seconds', args.curves, 'Time to verify a signature', 'graph', save_csv=True)
38.721154
114
0.625528
a74f41b8c63e9716f46430fe18d6b543d0682cb3
8,258
py
Python
device/app.py
panjanek/IotCenter
e139617d14617c10a18c35515e2d3aaae797bcac
[ "MIT" ]
2
2016-12-12T15:16:16.000Z
2018-10-30T02:35:36.000Z
device/app.py
panjanek/IotCenter
e139617d14617c10a18c35515e2d3aaae797bcac
[ "MIT" ]
null
null
null
device/app.py
panjanek/IotCenter
e139617d14617c10a18c35515e2d3aaae797bcac
[ "MIT" ]
null
null
null
import logging import threading import json import base64 import os from subprocess import Popen import glob import time import urllib2 import re import string import datetime class DeviceHandler: logger = logging.getLogger() def __init__(self, config): self.service = None self.tunnel = None self.video = None self.config = config self.first = True self.counter = 1; self.uploadfile = '/tmp/upload.txt' def start(self): self.logger.info("starting device handler") def getMessagePayload(self): self.logger.debug("Preparing client->device message payload") gputemp = os.popen("vcgencmd measure_temp").readline().replace("temp=","").replace("'C","") cputemp = os.popen("cat /sys/class/thermal/thermal_zone0/temp").readline() payloadDict = {"values":{}} payloadDict["mid"] = self.counter self.counter += 1 payloadDict["values"]["status"] = 1 payloadDict["values"]["gpu_temp"] = float(gputemp) payloadDict["values"]["cpu_temp"] = float(cputemp) / 1000 log = self.getLogToUpload() if log is not None: payloadDict["log"] = log payload = json.dumps(payloadDict) return payload def getLogToUpload(self): log = None if self.first: self.first = False with open(self.uploadfile, "a") as upfile: upfile.write("First message, communucation started\n") uploadfiletmp = self.uploadfile + ".tmp" if os.path.exists(self.uploadfile) and os.path.getsize(self.uploadfile) > 0: with open(self.uploadfile, 'r+') as upfile: content = upfile.read() upfile.truncate(0) self.logger.info("found log data to upload: {0}, moving to {1}".format(content, uploadfiletmp)) with open(uploadfiletmp, "a") as tmpfile: tmpfile.write(content) if os.path.exists(uploadfiletmp) and os.path.getsize(uploadfiletmp) > 0: with open(uploadfiletmp, 'r') as tmpfile: toupload = tmpfile.read() log = toupload return log def handleServerCall(self, payload): self.logger.info("Handling server callback with payload {0}".format(payload)) payloadDict = json.loads(payload) if "ack" in payloadDict: mid = payloadDict["ack"] self.logger.info("received ack for mid {0}".format(mid)) uploadfiletmp = self.uploadfile + ".tmp" if mid == self.counter - 1 and os.path.exists(uploadfiletmp) and os.path.getsize(uploadfiletmp) > 0: self.logger.info("Removing file {0}".format(uploadfiletmp)) os.remove(uploadfiletmp) if "command" in payloadDict: command = payloadDict["command"] self.logger.info("Received command: {0}".format(command)) if command == "blink": self.logger.info("Blinking status LED") os.system("echo none | sudo tee /sys/class/leds/led0/trigger") os.system("echo 1 | sudo tee /sys/class/leds/led0/brightness") time.sleep(0.5) os.system("echo 0 | sudo tee /sys/class/leds/led0/brightness") time.sleep(0.5) os.system("echo 1 | sudo tee /sys/class/leds/led0/brightness") time.sleep(0.5) os.system("echo 0 | sudo tee /sys/class/leds/led0/brightness") time.sleep(0.5) os.system("echo 1 | sudo tee /sys/class/leds/led0/brightness") time.sleep(0.5) os.system("echo 0 | sudo tee /sys/class/leds/led0/brightness") time.sleep(0.5) os.system("echo 1 | sudo tee /sys/class/leds/led0/brightness") elif command == "reboot": self.logger.info("REBOOT!!!") os.system("sudo reboot") elif command == "photo": quality = payloadDict.get("quality", "sd") self.logger.info("Taking {0} photo".format(quality)) photoFile = "/tmp/snapshot_{0}.jpg".format(datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S')) if quality == "hd": os.system("raspistill -hf -t 1000 -o {0}".format(photoFile)) else: os.system("raspistill -hf -t 1000 -w 640 -h 480 -o {0}".format(photoFile)) with open(photoFile, mode='rb') as file: photoData = file.read() base64data = base64.b64encode(photoData) self.service.sendMessage(json.dumps({'image':base64data, 'type':'jpg'})) elif command == "relay": state = payloadDict.get("state", 1) self.logger.info("Changing relay state to: {0}".format(state)) os.system("curl {0}/?relay={1}".format(relay1_addr, state)) elif command == "light": state = payloadDict.get("state", 1) self.logger.info("Changing light state to: {0}".format(state)) if state == 0: led_rgb(0,0,0) else: led_rgb(1,1,0) elif command == "tunnel": if self.tunnel: self.logger.warning("Tunnel already active - ingoring command") else: remotePort = payloadDict.get("remotePort", 18888) localPort = payloadDict.get("localPort", 22) addr = payloadDict["addr"] self.startTunnel(remotePort, localPort, addr) elif command == "video": if self.tunnel: self.logger.warning("Tunnel already active - ingoring command") else: port = payloadDict.get("port", 8081) addr = payloadDict["addr"] self.startVideo(port, addr) elif command == "tunnel-close": if self.tunnel: self.logger.info("terminating tunnel process") self.tunnel.kill() self.tunnel = None else: self.logger.warning("no tunnel process active, ignoring command") if self.video: self.logger.info("terminating video process") self.video.kill() self.video = None else: self.logger.info("Command '{0}' unknown".format(command)) def startTunnel(self, remotePort, localPort, addr): sshPrivateKeyFile = self.config.get('client', 'sshPrivateKeyFile') self.logger.info("Opening SSH tunneling session for remotePort={0}, localPort={1}, addr={2} using privateKey={3}".format(remotePort, localPort, addr, sshPrivateKeyFile)) cmd = "/usr/bin/ssh -o BatchMode=yes -o StrictHostKeyChecking=no -i {0} -N -R {1}:localhost:{2} {3}".format(sshPrivateKeyFile, remotePort, localPort, addr) self.logger.info("Starting process: {0}".format(cmd)) self.tunnel = Popen(cmd.split()) self.logger.info("SSH tunneling process started") def startVideo(self, port, addr): sshPrivateKeyFile = self.config.get('client', 'sshPrivateKeyFile') self.logger.info("Starting video streaming session") self.logger.info("loading driver bcm2835-v4l2") os.system("sudo modprobe bcm2835-v4l2") time.sleep(0.5) cmdVideo = "sudo motion" self.logger.info("Starting processes: {0}".format(cmdVideo)) self.video = Popen(cmdVideo.split()) cmdTunnel = "sudo /usr/bin/ssh -o BatchMode=yes -o StrictHostKeyChecking=no -i {0} -N -R {1}:localhost:8081 {2}".format(sshPrivateKeyFile, port, addr) self.logger.info("Starting processes: {0}".format(cmdTunnel)) self.tunnel = Popen(cmdTunnel.split()) self.logger.info("SSH video tunneling session started")
47.45977
177
0.552434
cba18e98a43145e22cc372bdce693139ef160ef3
6,333
py
Python
auto_ts/utils/etl.py
ahmedgu1/Auto_TS
fd40bb6c47e6079b8c9974662e0baea11edf09fa
[ "Apache-2.0" ]
423
2020-05-11T10:47:49.000Z
2022-03-30T14:14:20.000Z
auto_ts/utils/etl.py
Moehrenbaum/Auto_TS
e0a6634a727e44b4d5bbf6fbfefde99b6b3e8f86
[ "Apache-2.0" ]
70
2020-06-05T13:38:49.000Z
2022-03-17T11:42:25.000Z
auto_ts/utils/etl.py
Moehrenbaum/Auto_TS
e0a6634a727e44b4d5bbf6fbfefde99b6b3e8f86
[ "Apache-2.0" ]
75
2020-02-16T00:55:20.000Z
2022-03-22T03:55:09.000Z
from typing import List import numpy as np import pandas as pd # type: ignore import copy import pdb from sklearn.model_selection import TimeSeriesSplit # type: ignore import dask import dask.dataframe as dd ##### This function loads a time series data and sets the index as a time series def load_ts_data(filename, ts_column, sep, target): """ This function loads a given filename into a pandas dataframe and sets the ts_column as a Time Series index. Note that filename should contain the full path to the file. """ if isinstance(filename, str): print('First loading %s and then setting %s as date time index...' % (filename, ts_column)) try: dft = pd.read_csv(filename,index_col=ts_column, parse_dates=True) print(' Loaded %s into pandas dataframe. Dask dataframe type not working for this file...' % filename) except: dft = dd.read_csv(filename, blocksize=100e6) print(' Too big to fit into pandas. Hence loaded file %s into a Dask dataframe ...' % filename) else: ### If filename is not a string, it must be a dataframe and can be loaded if filename.shape[0] < 100000: dft = copy.deepcopy(filename) print(' Loaded pandas dataframe...') else: dft = dd.from_pandas(filename, npartitions=1) print(' Converted pandas dataframe into a Dask dataframe ...' ) #### Now check if DFT has an index. If not, set one ############ if type(dft.index) == pd.DatetimeIndex: return dft elif dft.index.dtype == '<M8[ns]': return dft else: try: if type(dft) == dask.dataframe.core.DataFrame: dft.index = dd.to_datetime(dft[ts_column]) dft = dft.drop(ts_column, axis=1) else: dft.index = pd.to_datetime(dft.pop(ts_column)) preds = [x for x in list(dft) if x not in [target]] dft = dft[[target]+preds] except Exception as e: print(e) print('Error: Could not convert Time Series column to an index. Please check your input and try again') return '' return dft def time_series_split(ts_df): """ This utility splits any dataframe sent as a time series split using the sklearn function. """ tscv = TimeSeriesSplit(n_splits=2) train_index, test_index = list(tscv.split(ts_df))[1][0], list(tscv.split(ts_df))[1][1] ts_train, ts_test = ts_df[ts_df.index.isin(train_index)], ts_df[ ts_df.index.isin(test_index)] print(ts_train.shape, ts_test.shape) return ts_train, ts_test def convert_timeseries_dataframe_to_supervised(df: pd.DataFrame, namevars, target, n_in=1, n_out=0, dropT=True): """ Transform a time series in dataframe format into a supervised learning dataset while keeping dataframe intact. Returns the transformed pandas DataFrame, the name of the target column and the names of the predictor columns Arguments: df: A timeseries dataframe that you want to convert to Supervised dataset. namevars: columns that you want to lag in the data frame. Other columns will be untouched. target: this is the target variable you intend to use in supervised learning n_in: Number of lag periods as input (X). n_out: Number of future periods (optional) as output for the taget variable (y). dropT: Boolean - whether or not to drop columns at time 't'. Returns: df: This is the transformed data frame with the time series columns laggged. Note that the original columns are dropped if you set the 'dropT' argument to True. If not, they are preserved. This Pandas DataFrame of lagged time series data is immediately available for supervised learning. rtype: pd.DataFrame, str, List[str] """ df = copy.deepcopy(df) int_vars = df.select_dtypes(include='integer').columns.tolist() # Notice that we will create a sequence of columns from name vars with suffix (t-n,... t-1), etc. drops = [] int_changes = [] for i in range(n_in, -1, -1): if i == 0: for var in namevars: addname = var + '(t)' df = df.rename(columns={var:addname}) drops.append(addname) if var in int_vars: int_changes.append(addname) else: for var in namevars: addname = var + '(t-' + str(i) + ')' df[addname] = df[var].shift(i) if var in int_vars: int_changes.append(addname) ## forecast sequence (t, t+1,... t+n) if n_out == 0: n_out = False for i in range(1, n_out): for var in namevars: addname = var + '(t+' + str(i) + ')' df[addname] = df[var].shift(-i) # drop rows with NaN values df = df.dropna() ### Make sure that whatever vars came in as integers return back as integers! df[int_changes] = df[int_changes].astype(np.int64) # put it all together df = df.rename(columns={target+'(t)':target}) if dropT: ### If dropT is true, all the "t" series of the target column (in case it is in the namevars) ### will be removed if you don't want the target to learn from its "t" values. ### Similarly, we will also drop all the "t" series of name_vars if you set dropT to Trueself. try: drops.remove(target) except: pass df.drop(drops, axis=1, inplace=True) preds = [x for x in list(df) if x not in [target]] return df, target, preds ############ def find_max_min_value_in_a_dataframe(df, max_min='min'): """ This returns the lowest or highest value in a df and its row value where it can be found. Unfortunately, it does not return the column where it is found. So not used much. """ if max_min == 'min': return df.loc[:, list(df)].min(axis=1).min(), df.loc[:, list(df)].min(axis=1).idxmin() else: return df.loc[:, list(df)].max(axis=1).max(), df.loc[:, list(df)].min(axis=1).idxmax()
43.979167
118
0.605558
cf3ee8fdc1038f141c16ab31743278cb4c2b9637
21,326
py
Python
lib/lib-python/2.7/site.py
ojii/sandlib
f822eb308a86e413076c185724bd28a450c59187
[ "BSD-3-Clause" ]
1
2019-04-11T22:53:51.000Z
2019-04-11T22:53:51.000Z
lib/lib-python/2.7/site.py
ojii/sandlib
f822eb308a86e413076c185724bd28a450c59187
[ "BSD-3-Clause" ]
null
null
null
lib/lib-python/2.7/site.py
ojii/sandlib
f822eb308a86e413076c185724bd28a450c59187
[ "BSD-3-Clause" ]
null
null
null
"""Append module search paths for third-party packages to sys.path. **************************************************************** * This module is automatically imported during initialization. * **************************************************************** In earlier versions of Python (up to 1.5a3), scripts or modules that needed to use site-specific modules would place ``import site'' somewhere near the top of their code. Because of the automatic import, this is no longer necessary (but code that does it still works). This will append site-specific paths to the module search path. On Unix (including Mac OSX), it starts with sys.prefix and sys.exec_prefix (if different) and appends lib/python<version>/site-packages as well as lib/site-python. On other platforms (such as Windows), it tries each of the prefixes directly, as well as with lib/site-packages appended. The resulting directories, if they exist, are appended to sys.path, and also inspected for path configuration files. A path configuration file is a file whose name has the form <package>.pth; its contents are additional directories (one per line) to be added to sys.path. Non-existing directories (or non-directories) are never added to sys.path; no directory is added to sys.path more than once. Blank lines and lines beginning with '#' are skipped. Lines starting with 'import' are executed. For example, suppose sys.prefix and sys.exec_prefix are set to /usr/local and there is a directory /usr/local/lib/python2.5/site-packages with three subdirectories, foo, bar and spam, and two path configuration files, foo.pth and bar.pth. Assume foo.pth contains the following: # foo package configuration foo bar bletch and bar.pth contains: # bar package configuration bar Then the following directories are added to sys.path, in this order: /usr/local/lib/python2.5/site-packages/bar /usr/local/lib/python2.5/site-packages/foo Note that bletch is omitted because it doesn't exist; bar precedes foo because bar.pth comes alphabetically before foo.pth; and spam is omitted because it is not mentioned in either path configuration file. After these path manipulations, an attempt is made to import a module named sitecustomize, which can perform arbitrary additional site-specific customizations. If this import fails with an ImportError exception, it is silently ignored. """ import sys import os import __builtin__ import traceback # Prefixes for site-packages; add additional prefixes like /usr/local here PREFIXES = [sys.prefix, sys.exec_prefix] # Enable per user site-packages directory # set it to False to disable the feature or True to force the feature ENABLE_USER_SITE = None # for distutils.commands.install # These values are initialized by the getuserbase() and getusersitepackages() # functions, through the main() function when Python starts. USER_SITE = None USER_BASE = None def makepath(*paths): dir = os.path.join(*paths) try: dir = os.path.abspath(dir) except OSError: pass return dir, os.path.normcase(dir) def abs__file__(): """Set all module' __file__ attribute to an absolute path""" for m in sys.modules.values(): if hasattr(m, '__loader__'): continue # don't mess with a PEP 302-supplied __file__ try: prev = m.__file__ new = os.path.abspath(m.__file__) if prev != new: m.__file__ = new except (AttributeError, OSError): pass def removeduppaths(): """ Remove duplicate entries from sys.path along with making them absolute""" # This ensures that the initial path provided by the interpreter contains # only absolute pathnames, even if we're running from the build directory. L = [] known_paths = set() for dir in sys.path: # Filter out duplicate paths (on case-insensitive file systems also # if they only differ in case); turn relative paths into absolute # paths. dir, dircase = makepath(dir) if not dircase in known_paths: L.append(dir) known_paths.add(dircase) sys.path[:] = L return known_paths # XXX This should not be part of site.py, since it is needed even when # using the -S option for Python. See http://www.python.org/sf/586680 def addbuilddir(): """Append ./build/lib.<platform> in case we're running in the build dir (especially for Guido :-)""" from sysconfig import get_platform s = "build/lib.%s-%.3s" % (get_platform(), sys.version) if hasattr(sys, 'gettotalrefcount'): s += '-pydebug' s = os.path.join(os.path.dirname(sys.path.pop()), s) sys.path.append(s) def _init_pathinfo(): """Return a set containing all existing directory entries from sys.path""" d = set() for dir in sys.path: try: if os.path.isdir(dir): dir, dircase = makepath(dir) d.add(dircase) except TypeError: continue return d def addpackage(sitedir, name, known_paths): """Process a .pth file within the site-packages directory: For each line in the file, either combine it with sitedir to a path and add that to known_paths, or execute it if it starts with 'import '. """ if known_paths is None: _init_pathinfo() reset = 1 else: reset = 0 fullname = os.path.join(sitedir, name) try: f = open(fullname, "rU") except IOError: return with f: for n, line in enumerate(f): if line.startswith("#"): continue try: if line.startswith(("import ", "import\t")): exec line continue line = line.rstrip() dir, dircase = makepath(sitedir, line) if not dircase in known_paths and os.path.exists(dir): sys.path.append(dir) known_paths.add(dircase) except Exception as err: print >>sys.stderr, "Error processing line {:d} of {}:\n".format( n+1, fullname) for record in traceback.format_exception(*sys.exc_info()): for line in record.splitlines(): print >>sys.stderr, ' '+line print >>sys.stderr, "\nRemainder of file ignored" break if reset: known_paths = None return known_paths def addsitedir(sitedir, known_paths=None): """Add 'sitedir' argument to sys.path if missing and handle .pth files in 'sitedir'""" if known_paths is None: known_paths = _init_pathinfo() reset = 1 else: reset = 0 sitedir, sitedircase = makepath(sitedir) if not sitedircase in known_paths: sys.path.append(sitedir) # Add path component try: names = os.listdir(sitedir) except os.error: return dotpth = os.extsep + "pth" names = [name for name in names if name.endswith(dotpth)] for name in sorted(names): addpackage(sitedir, name, known_paths) if reset: known_paths = None return known_paths def check_enableusersite(): """Check if user site directory is safe for inclusion The function tests for the command line flag (including environment var), process uid/gid equal to effective uid/gid. None: Disabled for security reasons False: Disabled by user (command line option) True: Safe and enabled """ if sys.flags.no_user_site: return False if hasattr(os, "getuid") and hasattr(os, "geteuid"): # check process uid == effective uid if os.geteuid() != os.getuid(): return None if hasattr(os, "getgid") and hasattr(os, "getegid"): # check process gid == effective gid if os.getegid() != os.getgid(): return None return True def getuserbase(): """Returns the `user base` directory path. The `user base` directory can be used to store data. If the global variable ``USER_BASE`` is not initialized yet, this function will also set it. """ global USER_BASE if USER_BASE is not None: return USER_BASE from sysconfig import get_config_var USER_BASE = get_config_var('userbase') return USER_BASE def getusersitepackages(): """Returns the user-specific site-packages directory path. If the global variable ``USER_SITE`` is not initialized yet, this function will also set it. """ global USER_SITE user_base = getuserbase() # this will also set USER_BASE if USER_SITE is not None: return USER_SITE from sysconfig import get_path import os if sys.platform == 'darwin': from sysconfig import get_config_var if get_config_var('PYTHONFRAMEWORK'): USER_SITE = get_path('purelib', 'osx_framework_user') return USER_SITE USER_SITE = get_path('purelib', '%s_user' % os.name) return USER_SITE def addusersitepackages(known_paths): """Add a per user site-package to sys.path Each user has its own python directory with site-packages in the home directory. """ # get the per user site-package path # this call will also make sure USER_BASE and USER_SITE are set user_site = getusersitepackages() if ENABLE_USER_SITE and os.path.isdir(user_site): addsitedir(user_site, known_paths) return known_paths def getsitepackages(): """Returns a list containing all global site-packages directories (and possibly site-python). For each directory present in the global ``PREFIXES``, this function will find its `site-packages` subdirectory depending on the system environment, and will return a list of full paths. """ is_pypy = '__pypy__' in sys.builtin_module_names sitepackages = [] seen = set() for prefix in PREFIXES: if not prefix or prefix in seen: continue seen.add(prefix) if sys.platform in ('os2emx', 'riscos'): sitepackages.append(os.path.join(prefix, "Lib", "site-packages")) elif is_pypy: from distutils.sysconfig import get_python_lib sitedir = get_python_lib(standard_lib=False, prefix=prefix) sitepackages.append(sitedir) elif os.sep == '/': sitepackages.append(os.path.join(prefix, "lib", "python" + sys.version[:3], "site-packages")) sitepackages.append(os.path.join(prefix, "lib", "site-python")) else: sitepackages.append(prefix) sitepackages.append(os.path.join(prefix, "lib", "site-packages")) if sys.platform == "darwin": # for framework builds *only* we add the standard Apple # locations. from sysconfig import get_config_var framework = get_config_var("PYTHONFRAMEWORK") if framework: sitepackages.append( os.path.join("/Library", framework, sys.version[:3], "site-packages")) return sitepackages def addsitepackages(known_paths): """Add site-packages (and possibly site-python) to sys.path""" for sitedir in getsitepackages(): if os.path.isdir(sitedir): addsitedir(sitedir, known_paths) return known_paths def setBEGINLIBPATH(): """The OS/2 EMX port has optional extension modules that do double duty as DLLs (and must use the .DLL file extension) for other extensions. The library search path needs to be amended so these will be found during module import. Use BEGINLIBPATH so that these are at the start of the library search path. """ dllpath = os.path.join(sys.prefix, "Lib", "lib-dynload") libpath = os.environ['BEGINLIBPATH'].split(';') if libpath[-1]: libpath.append(dllpath) else: libpath[-1] = dllpath os.environ['BEGINLIBPATH'] = ';'.join(libpath) def setquit(): """Define new builtins 'quit' and 'exit'. These are objects which make the interpreter exit when called. The repr of each object contains a hint at how it works. """ if os.sep == ':': eof = 'Cmd-Q' elif os.sep == '\\': eof = 'Ctrl-Z plus Return' else: eof = 'Ctrl-D (i.e. EOF)' class Quitter(object): def __init__(self, name): self.name = name def __repr__(self): return 'Use %s() or %s to exit' % (self.name, eof) def __call__(self, code=None): # Shells like IDLE catch the SystemExit, but listen when their # stdin wrapper is closed. try: sys.stdin.close() except: pass raise SystemExit(code) __builtin__.quit = Quitter('quit') __builtin__.exit = Quitter('exit') class _Printer(object): """interactive prompt objects for printing the license text, a list of contributors and the copyright notice.""" MAXLINES = 23 def __init__(self, name, data, files=(), dirs=()): self.__name = name self.__data = data self.__files = files self.__dirs = dirs self.__lines = None def __setup(self): if self.__lines: return data = None for dir in self.__dirs: for filename in self.__files: filename = os.path.join(dir, filename) try: fp = file(filename, "rU") data = fp.read() fp.close() break except IOError: pass if data: break if not data: data = self.__data self.__lines = data.split('\n') self.__linecnt = len(self.__lines) def __repr__(self): self.__setup() if len(self.__lines) <= self.MAXLINES: return "\n".join(self.__lines) else: return "Type %s() to see the full %s text" % ((self.__name,)*2) def __call__(self): self.__setup() prompt = 'Hit Return for more, or q (and Return) to quit: ' lineno = 0 while 1: try: for i in range(lineno, lineno + self.MAXLINES): print self.__lines[i] except IndexError: break else: lineno += self.MAXLINES key = None while key is None: key = raw_input(prompt) if key not in ('', 'q'): key = None if key == 'q': break ##def setcopyright(): ## """Set 'copyright' and 'credits' in __builtin__""" ## __builtin__.copyright = _Printer("copyright", sys.copyright) ## if sys.platform[:4] == 'java': ## __builtin__.credits = _Printer( ## "credits", ## "Jython is maintained by the Jython developers (www.jython.org).") ## else: ## __builtin__.credits = _Printer("credits", """\ ## Thanks to CWI, CNRI, BeOpen.com, Zope Corporation and a cast of thousands ## for supporting Python development. See www.python.org for more information.""") ## here = os.path.dirname(os.__file__) ## __builtin__.license = _Printer( ## "license", "See http://www.python.org/%.3s/license.html" % sys.version, ## ["LICENSE.txt", "LICENSE"], ## [os.path.join(here, os.pardir), here, os.curdir]) def setcopyright(): # XXX this is the PyPy-specific version. Should be unified with the above. __builtin__.copyright = _Printer("copyright", sys.copyright) __builtin__.credits = _Printer( "credits", "PyPy is maintained by the PyPy developers: http://pypy.org/") __builtin__.license = _Printer( "license", "See https://bitbucket.org/pypy/pypy/src/default/LICENSE") class _Helper(object): """Define the builtin 'help'. This is a wrapper around pydoc.help (with a twist). """ def __repr__(self): return "Type help() for interactive help, " \ "or help(object) for help about object." def __call__(self, *args, **kwds): import pydoc return pydoc.help(*args, **kwds) def sethelper(): __builtin__.help = _Helper() def aliasmbcs(): """On Windows, some default encodings are not provided by Python, while they are always available as "mbcs" in each locale. Make them usable by aliasing to "mbcs" in such a case.""" if sys.platform == 'win32': import locale, codecs enc = locale.getdefaultlocale()[1] if enc is not None and enc.startswith('cp'): # "cp***" ? try: codecs.lookup(enc) except LookupError: import encodings encodings._cache[enc] = encodings._unknown encodings.aliases.aliases[enc] = 'mbcs' def setencoding(): """Set the string encoding used by the Unicode implementation. The default is 'ascii', but if you're willing to experiment, you can change this.""" encoding = "ascii" # Default value set by _PyUnicode_Init() if 0: # Enable to support locale aware default string encodings. import locale loc = locale.getdefaultlocale() if loc[1]: encoding = loc[1] if 0: # Enable to switch off string to Unicode coercion and implicit # Unicode to string conversion. encoding = "undefined" if encoding != "ascii": # On Non-Unicode builds this will raise an AttributeError... sys.setdefaultencoding(encoding) # Needs Python Unicode build ! def execsitecustomize(): """Run custom site specific code, if available.""" try: import sitecustomize except ImportError: pass except Exception: if sys.flags.verbose: sys.excepthook(*sys.exc_info()) else: print >>sys.stderr, \ "'import sitecustomize' failed; use -v for traceback" def execusercustomize(): """Run custom user specific code, if available.""" try: import usercustomize except ImportError: pass except Exception: if sys.flags.verbose: sys.excepthook(*sys.exc_info()) else: print>>sys.stderr, \ "'import usercustomize' failed; use -v for traceback" def import_builtin_stuff(): """PyPy specific: pre-import a few built-in modules, because some programs actually rely on them to be in sys.modules :-(""" import exceptions if 'zipimport' in sys.builtin_module_names: import zipimport def main(): global ENABLE_USER_SITE import_builtin_stuff() abs__file__() known_paths = removeduppaths() if (os.name == "posix" and sys.path and os.path.basename(sys.path[-1]) == "Modules"): addbuilddir() if ENABLE_USER_SITE is None: ENABLE_USER_SITE = check_enableusersite() known_paths = addusersitepackages(known_paths) known_paths = addsitepackages(known_paths) if sys.platform == 'os2emx': setBEGINLIBPATH() setquit() setcopyright() sethelper() aliasmbcs() setencoding() execsitecustomize() if ENABLE_USER_SITE: execusercustomize() # Remove sys.setdefaultencoding() so that users cannot change the # encoding after initialization. The test for presence is needed when # this module is run as a script, because this code is executed twice. if hasattr(sys, "setdefaultencoding"): del sys.setdefaultencoding main() def _script(): help = """\ %s [--user-base] [--user-site] Without arguments print some useful information With arguments print the value of USER_BASE and/or USER_SITE separated by '%s'. Exit codes with --user-base or --user-site: 0 - user site directory is enabled 1 - user site directory is disabled by user 2 - uses site directory is disabled by super user or for security reasons >2 - unknown error """ args = sys.argv[1:] if not args: print "sys.path = [" for dir in sys.path: print " %r," % (dir,) print "]" print "USER_BASE: %r (%s)" % (USER_BASE, "exists" if os.path.isdir(USER_BASE) else "doesn't exist") print "USER_SITE: %r (%s)" % (USER_SITE, "exists" if os.path.isdir(USER_SITE) else "doesn't exist") print "ENABLE_USER_SITE: %r" % ENABLE_USER_SITE sys.exit(0) buffer = [] if '--user-base' in args: buffer.append(USER_BASE) if '--user-site' in args: buffer.append(USER_SITE) if buffer: print os.pathsep.join(buffer) if ENABLE_USER_SITE: sys.exit(0) elif ENABLE_USER_SITE is False: sys.exit(1) elif ENABLE_USER_SITE is None: sys.exit(2) else: sys.exit(3) else: import textwrap print textwrap.dedent(help % (sys.argv[0], os.pathsep)) sys.exit(10) if __name__ == '__main__': _script()
33.166407
86
0.615352
311a0ae5e08f83bc782f3290b4d360ef06216e5c
679
py
Python
scout/commands/export/exon.py
szilvajuhos/scout
2f4a03fb3192a57c99fd62be626e8c22051e81af
[ "BSD-3-Clause" ]
null
null
null
scout/commands/export/exon.py
szilvajuhos/scout
2f4a03fb3192a57c99fd62be626e8c22051e81af
[ "BSD-3-Clause" ]
null
null
null
scout/commands/export/exon.py
szilvajuhos/scout
2f4a03fb3192a57c99fd62be626e8c22051e81af
[ "BSD-3-Clause" ]
null
null
null
import logging import click from flask.cli import with_appcontext from scout.commands.utils import builds_option from scout.export.exon import export_exons from scout.server.extensions import store LOG = logging.getLogger(__name__) @click.command('exons', short_help='Export exons') @builds_option @with_appcontext def exons(build): """Export all exons to chanjo compatible .bed like format""" LOG.info("Running scout export exons") adapter = store header = ["#Chrom\tStart\tEnd\tExonId\tTranscripts\tHgncIDs\tHgncSymbols"] for line in header: click.echo(line) for exon_line in export_exons(adapter, build): click.echo(exon_line)
23.413793
78
0.748159
e8d067db9ebb42e3a7ca556fc0cc24a9131fbb36
8,938
py
Python
cogs/background_tasks.py
Dakskihedron/snakebot
5770aed8663df47a3182bdf56c4202b2874c056f
[ "MIT" ]
null
null
null
cogs/background_tasks.py
Dakskihedron/snakebot
5770aed8663df47a3182bdf56c4202b2874c056f
[ "MIT" ]
null
null
null
cogs/background_tasks.py
Dakskihedron/snakebot
5770aed8663df47a3182bdf56c4202b2874c056f
[ "MIT" ]
null
null
null
import aiohttp import os import asyncio import subprocess import orjson from discord.ext import commands, tasks import discord import cogs.utils.database as DB class background_tasks(commands.Cog): """Commands related to the background tasks of the bot.""" def __init__(self, bot: commands.Bot) -> None: self.bot = bot self.start_tasks() def cog_unload(self): """When the cog is unloaded stop all running tasks.""" for task in self.tasks: self.tasks[task].cancel() def start_tasks(self): """Finds all the tasks in the cog and starts them.""" task_dict = {} for task in dir(background_tasks): task_obj = getattr(self, task) if isinstance(task_obj, tasks.Loop): task_obj.start() task_dict[task] = task_obj self.tasks = task_dict @commands.group(hidden=True) @commands.is_owner() async def task(self, ctx): """The task command group.""" if ctx.invoked_subcommand is None: await ctx.send("```No subcommand passed```") @task.command() async def restart(self, ctx, task): """Restarts a background task. task: str The name of the task to restart. """ try: getattr(self, task).restart() await ctx.send(f"{task} restarted") except AttributeError: return await ctx.send("```Task not found```") @task.command() async def start(self, ctx, task): """Starts a background task. task: str The name of the task to start. """ try: getattr(self, task).start() await ctx.send(f"{task} started") except AttributeError: return await ctx.send("```Task not found```") @task.command() async def stop(self, ctx, task): """Stops a background task. task: str The name of the task to stop. """ try: getattr(self, task).stop() await ctx.send(f"{task} stopped") except AttributeError: return await ctx.send("```Task not found```") @task.command() async def list(self, ctx): """Lists background tasks. Example Name: Interval: Running/Failed/Count backup_bot 2h 0m 0s True/False/10 check_end_dates 0h 0m 10s True/False/7200 update_bot 0h 5m 0s True/False/240 update_languages 0h 0m 0s False/False/1 update_stocks 0h 30m 0s True/False/40 """ embed = discord.Embed(color=discord.Color.blurple()) msg = "Name: Interval: Running/Failed/Count:\n\n" for task in self.tasks: task_obj = self.tasks[task] msg += "{:<20}{:<15}{}/{}/{}\n".format( task, f"{task_obj.hours}h {task_obj.minutes}m {task_obj.seconds}s", task_obj.is_running(), task_obj.failed(), task_obj.current_loop, ) embed.description = f"```\n{msg}```" await ctx.send(embed=embed) @tasks.loop(minutes=10) async def update_stocks(self): """Updates stock data every 10 minutes.""" url = "https://api.nasdaq.com/api/screener/stocks?limit=50000" headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.67 Safari/537.36", "accept-language": "en-US,en;q=0.9", } async with aiohttp.ClientSession(headers=headers) as session, session.get( url ) as response: stocks = await response.json() with DB.stocks.write_batch() as wb: for stock in stocks["data"]["table"]["rows"]: stock_data = { "name": stock["name"], "price": stock["lastsale"][1:], "change": stock["netchange"], "%change": stock["pctchange"][:-1] if stock["pctchange"] != "--" else 0, "cap": stock["marketCap"], } wb.put( stock["symbol"].encode(), orjson.dumps(stock_data), ) async def run_process(self, command): """Runs a shell command and returns the output. command: str The command to run. """ try: process = await asyncio.create_subprocess_shell( command, stdout=subprocess.PIPE, stderr=subprocess.PIPE ) result = await process.communicate() except NotImplementedError: process = subprocess.Popen( command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE ) result = await self.bot.loop.run_in_executor(None, process.communicate) return "".join([output.decode() for output in result]).split() @tasks.loop(minutes=5) async def update_bot(self): """Tries to update every 5 minutes and then reloads if needed.""" pull = await self.run_process("git pull") if pull[:4] == ["Already", "up", "to", "date."]: return diff = await self.run_process("git diff --name-only HEAD@{0} HEAD@{1}") if "poetry.lock" in diff: await self.run_process("poetry install") for ext in [f[:-3] for f in os.listdir("cogs") if f.endswith(".py")]: try: self.bot.reload_extension(f"cogs.{ext}") except Exception as e: if isinstance(e, commands.errors.ExtensionNotLoaded): self.bot.load_extension(f"cogs.{ext}") @tasks.loop(hours=6) async def backup_bot(self): """Makes a backup of the db every 6 hours.""" if DB.db.get(b"restart") == b"1": DB.db.delete(b"restart") return number = DB.db.get(b"backup_number") if not number: number = -1 else: number = int(number.decode()) number += 1 if number == 11: number = 0 DB.db.put(b"backup_number", str(number).encode()) os.makedirs("backup/", exist_ok=True) with open(f"backup/{number}backup.json", "w", encoding="utf-8") as file: # I don't know why I did this as a jumbled mess but I did # Basically it just formats the db to json json = "".join( [ f'"{key.decode()}": "{value.decode()}", ' if '"' not in value.decode() else f'"{key.decode()}": {value.decode()}, ' for key, value in DB.db if not key.startswith(b"crypto-") and not key.startswith(b"stocks-") ] ) file.write(f"{{{json[:-3]}}}") @tasks.loop(count=1) async def update_languages(self): """Updates pistons supported languages for the run command.""" url = "https://emkc.org/api/v1/piston/versions" async with aiohttp.ClientSession() as session, session.get(url) as page: data = await page.json() languages = set() for language in data: languages.update(set(language["aliases"])) languages.add(language["name"]) DB.db.put(b"languages", orjson.dumps(list(languages))) @tasks.loop(minutes=10) async def crypto_update(self): """Updates crypto currency data every 10 minutes.""" url = "https://api.coinmarketcap.com/data-api/v3/cryptocurrency/listing?limit=50000&convert=NZD&cryptoType=coins" async with aiohttp.ClientSession() as session, session.get(url) as response: crypto = await response.json() with DB.crypto.write_batch() as wb: for coin in crypto["data"]["cryptoCurrencyList"]: if "price" not in coin["quotes"][0]: continue wb.put( coin["symbol"].encode(), orjson.dumps( { "name": coin["name"], "id": coin["id"], "price": coin["quotes"][0]["price"], "circulating_supply": coin["circulatingSupply"], "max_supply": coin.get("maxSupply", 0), "market_cap": coin["quotes"][0].get("marketCap", 0), "change_24h": coin["quotes"][0]["percentChange24h"], "volume_24h": coin["quotes"][0].get("volume24h", 0), } ), ) def setup(bot): bot.add_cog(background_tasks(bot))
34.114504
143
0.522264
9fce33945ff2f01bd2e396a3b4626104ee578462
18,645
py
Python
tests/test_process.py
ducdk90/tilequeue
c664b5c89a9f0e6743405ab266aa9ca80b57806e
[ "MIT" ]
29
2016-11-03T18:39:21.000Z
2022-02-27T17:42:37.000Z
tests/test_process.py
ducdk90/tilequeue
c664b5c89a9f0e6743405ab266aa9ca80b57806e
[ "MIT" ]
146
2016-07-07T16:41:07.000Z
2021-12-11T00:27:20.000Z
tests/test_process.py
ducdk90/tilequeue
c664b5c89a9f0e6743405ab266aa9ca80b57806e
[ "MIT" ]
28
2016-08-19T16:08:52.000Z
2021-07-26T10:16:29.000Z
from ModestMaps.Core import Coordinate import unittest class TestProcess(unittest.TestCase): def _make_json_tiles( self, coord, post_process_data={}, db_features=[], cut_coords=[], buffer_cfg={}): from tilequeue.process import process_coord from tilequeue.tile import coord_to_mercator_bounds from tilequeue.format import json_format unpadded_bounds = coord_to_mercator_bounds(coord) feature_layers = [dict( layer_datum=dict( name='fake_layer', geometry_types=['Point'], transform_fn_names=[], sort_fn_name=None, is_clipped=False ), padded_bounds=dict(point=unpadded_bounds), features=db_features )] formats = [json_format] def _test_output_fn(*args): return dict(foo='bar', min_zoom=0) output_calc_mapping = dict(fake_layer=_test_output_fn) all_coords = [coord] + cut_coords tiles, extra = process_coord( coord, coord.zoom, feature_layers, post_process_data, formats, unpadded_bounds, all_coords, buffer_cfg, output_calc_mapping) return tiles def _make_json_tile(self, coord, **kwargs): from tilequeue.format import json_format import json tiles = self._make_json_tiles(coord, **kwargs) self.assertEqual(1, len(tiles)) tile = tiles[0] self.assertEqual(coord, tile['coord']) self.assertEqual(json_format, tile['format']) self.assertEqual('all', tile['layer']) return json.loads(tile['tile']) def test_process_coord_empty(self): from tilequeue.process import process_coord from tilequeue.tile import coord_to_mercator_bounds coord = Coordinate(0, 0, 0) feature_layers = [] post_process_data = {} formats = [] unpadded_bounds = coord_to_mercator_bounds(coord) cut_coords = [coord] buffer_cfg = {} def _test_output_fn(*args): return dict(foo='bar') output_calc_mapping = dict(fake_layer=_test_output_fn) tiles, extra = process_coord( coord, coord.zoom, feature_layers, post_process_data, formats, unpadded_bounds, cut_coords, buffer_cfg, output_calc_mapping) self.assertEqual([], tiles) self.assertEqual({'size': {}}, extra) def test_process_coord_single_layer(self): self.maxDiff = 10000 def _check(coord, post_process_name, should_have_point): features = [dict( __id__=1, # this is a point at (90, 40) in mercator __geometry__='\x01\x01\x00\x00\x00\xd7\xa3pE\xf8\x1b' + \ 'cA\x1f\x85\xeb\x91\xe5\x8fRA', __properties__=dict(foo='bar'), )] post_process_data = [ dict( fn_name=('tests.test_process.%s' % post_process_name), params={}, resources={} ) ] json_data = { 'type': 'FeatureCollection', 'features': [] } if should_have_point: json_data['features'] = [{ 'geometry': { 'type': 'Point', 'coordinates': [90.0, 40.0] }, 'type': 'Feature', 'properties': { 'foo': 'bar', 'min_zoom': 0, 'tags': dict(foo='bar'), }, 'id': 1 }] tile = self._make_json_tile( coord, post_process_data=post_process_data, db_features=features) self.assertEqual(json_data, tile) _check(Coordinate(0, 0, 0), '_only_zoom_zero', True) _check(Coordinate(0, 0, 0), '_only_zoom_one', False) _check(Coordinate(0, 1, 1), '_only_zoom_one', True) _check(Coordinate(0, 1, 1), '_only_zoom_zero', False) def test_process_coord_cut_coords(self): import json self.maxDiff = 10000 coord = Coordinate(0, 0, 0) cut_coord = Coordinate(0, 1, 1) features = [dict( __id__=1, # this is a point at (90, 40) in mercator __geometry__='\x01\x01\x00\x00\x00\xd7\xa3pE\xf8\x1b' + \ 'cA\x1f\x85\xeb\x91\xe5\x8fRA', __properties__=dict(foo='bar'), )] post_process_data = [ dict( fn_name='tests.test_process._only_zoom_zero', params={}, resources={} ) ] tiles = self._make_json_tiles( coord, post_process_data=post_process_data, db_features=features, cut_coords=[cut_coord]) tiles_0 = [t for t in tiles if t['coord'] == coord] self.assertEqual(1, len(tiles_0)) tile_0 = json.loads(tiles_0[0]['tile']) self.assertEqual(1, len(tile_0['features'])) self.assertEqual([90.0, 40.0], tile_0['features'][0]['geometry']['coordinates']) # cut coord at zoom 1 is currently implemented as being re-processed # from the original feature data, so will run the post-processor stuff # at a different zoom level, and drop the point. tiles_1 = [t for t in tiles if t['coord'] == cut_coord] self.assertEqual(1, len(tiles_1)) tile_1 = json.loads(tiles_1[0]['tile']) self.assertEqual(1, len(tile_1['features'])) self.assertEqual([90.0, 40.0], tile_1['features'][0]['geometry']['coordinates']) def test_cut_coord_exclusive(self): # test that cut coords are the only ones in the response, and that # the coordinate itself can be omitted. from tilequeue.process import process_coord from tilequeue.tile import coord_to_mercator_bounds from tilequeue.format import json_format coord = Coordinate(0, 0, 0) db_features = [] cut_coords = [ Coordinate(zoom=1, column=0, row=0), Coordinate(zoom=1, column=1, row=0), Coordinate(zoom=1, column=0, row=1), ] buffer_cfg = {} post_process_data = {} unpadded_bounds = coord_to_mercator_bounds(coord) feature_layers = [dict( layer_datum=dict( name='fake_layer', geometry_types=['Point'], transform_fn_names=[], sort_fn_name=None, is_clipped=False ), padded_bounds=dict(point=unpadded_bounds), features=db_features )] formats = [json_format] def _test_output_fn(*args): return dict(foo='bar', min_zoom=0) output_calc_mapping = dict(fake_layer=_test_output_fn) tiles, extra = process_coord( coord, coord.zoom, feature_layers, post_process_data, formats, unpadded_bounds, cut_coords, buffer_cfg, output_calc_mapping) self.assertEqual(len(cut_coords), len(tiles)) self.assertNotIn(coord, [t['coord'] for t in tiles]) class TestCalculateCutZooms(unittest.TestCase): def test_max_zoom(self): from tilequeue.process import calculate_sizes_by_zoom from tilequeue.tile import metatile_zoom_from_size def _calc(metatile_size, tile_sizes, max_zoom): metatile_zoom = metatile_zoom_from_size(metatile_size) coord = Coordinate(zoom=max_zoom - metatile_zoom, row=0, column=0) return calculate_sizes_by_zoom( coord, metatile_zoom, tile_sizes, max_zoom - metatile_zoom) # sweep max zoom to check the output is the same nominal max zoom. self.assertEqual({16: [256]}, _calc(8, [256], 16)) self.assertEqual({15: [256]}, _calc(8, [256], 15)) self.assertEqual({14: [256]}, _calc(8, [256], 14)) # check we get 256 tiles as well as 512 at max zoom, even when the # configured tile size is only 512. self.assertEqual({16: [512, 256]}, _calc(8, [512], 16)) # we should get _both_ 512 and 256 tiles if we've configured to only # have 1024 tiles at mid zooms. self.assertEqual({16: [1024, 512, 256]}, _calc(8, [1024], 16)) def test_only_overzoom_at_max_zoom(self): from tilequeue.process import calculate_sizes_by_zoom # constants metatile_zoom = 3 cfg_tile_sizes = [512] max_zoom = 13 # zoom 13 (nominal 16) tile should contain everything sizes = calculate_sizes_by_zoom( Coordinate(zoom=13, column=0, row=0), metatile_zoom, cfg_tile_sizes, max_zoom) self.assertEquals(sizes, {16: [512, 256]}) # zoom 12 (nominal 15) should be 512 only sizes = calculate_sizes_by_zoom( Coordinate(zoom=12, column=0, row=0), metatile_zoom, cfg_tile_sizes, max_zoom) self.assertEquals(sizes, {15: [512]}) def test_mid_zoom(self): from tilequeue.process import calculate_sizes_by_zoom from tilequeue.tile import metatile_zoom_from_size tile_sizes = [512] metatile_size = 8 metatile_zoom = metatile_zoom_from_size(metatile_size) max_zoom = 16 - metatile_zoom for zoom in range(1, max_zoom - metatile_zoom): coord = Coordinate(zoom=zoom, row=0, column=0) sizes_by_zoom = calculate_sizes_by_zoom( coord, metatile_zoom, tile_sizes, max_zoom) nominal_zoom = zoom + metatile_zoom self.assertEqual({nominal_zoom: tile_sizes}, sizes_by_zoom) def test_zoom_zero(self): from tilequeue.process import calculate_sizes_by_zoom from tilequeue.tile import metatile_zoom_from_size def _calc(metatile_size, tile_sizes): coord = Coordinate(zoom=0, row=0, column=0) metatile_zoom = metatile_zoom_from_size(metatile_size) max_zoom = 16 - metatile_zoom return calculate_sizes_by_zoom( coord, metatile_zoom, tile_sizes, max_zoom) # for an 8x8 metatile configured for 512 tiles, then by default we # would get a 0/0/0 metatile with 4x4 nominal zoom 3 512px tiles. we # want to extend that "upwards" towards nominal zoom 0, so we should # also get: 2x2 nominal zoom 2 512px tiles plus 1x1 nominal zoom 1 # 512px tile. self.assertEqual({ 1: [512], 2: [512], 3: [512], }, _calc(8, [512])) # when we do the same with 256px tiles, we should get a nominal zoom # zero tile. self.assertEqual({ 0: [256], 1: [256], 2: [256], 3: [256], }, _calc(8, [256])) # when we configure both 256 and 512px tiles, we should only get the # 256 ones at the largest nominal zoom. self.assertEqual({ 1: [512], 2: [512], 3: [512, 256], }, _calc(8, [512, 256])) self.assertEqual({ 2: [1024], 3: [1024, 512, 256], }, _calc(8, [1024, 512, 256])) # with a smaller metatile, we just get fewer nominal zooms in the range # inside the metatile. self.assertEqual({ 1: [512], 2: [512, 256], }, _calc(4, [512, 256])) # with a 1x1 metatile (i.e: not really a metatile) then we just get # the configured size. for z in xrange(0, 3): meta_sz = 1 << z tile_sz = 256 * meta_sz self.assertEqual({z: [tile_sz]}, _calc(meta_sz, [tile_sz])) class TestMetatileChildrenWithSize(unittest.TestCase): def test_single_tile(self): from tilequeue.process import metatile_children_with_size coord = Coordinate(zoom=0, column=0, row=0) result = metatile_children_with_size(coord, 0, 0, 256) self.assertEqual([coord], result) def test_2x2_tile(self): from tilequeue.process import metatile_children_with_size coord = Coordinate(zoom=0, column=0, row=0) result = metatile_children_with_size(coord, 1, 1, 256) self.assertEqual(set([ Coordinate(zoom=1, column=0, row=0), Coordinate(zoom=1, column=1, row=0), Coordinate(zoom=1, column=0, row=1), Coordinate(zoom=1, column=1, row=1), ]), set(result)) def test_8x8_512_tile(self): from tilequeue.process import metatile_children_with_size coord = Coordinate(zoom=0, column=0, row=0) result = metatile_children_with_size(coord, 3, 3, 512) self.assertEqual(set([ Coordinate(zoom=2, column=0, row=0), Coordinate(zoom=2, column=1, row=0), Coordinate(zoom=2, column=2, row=0), Coordinate(zoom=2, column=3, row=0), Coordinate(zoom=2, column=0, row=1), Coordinate(zoom=2, column=1, row=1), Coordinate(zoom=2, column=2, row=1), Coordinate(zoom=2, column=3, row=1), Coordinate(zoom=2, column=0, row=2), Coordinate(zoom=2, column=1, row=2), Coordinate(zoom=2, column=2, row=2), Coordinate(zoom=2, column=3, row=2), Coordinate(zoom=2, column=0, row=3), Coordinate(zoom=2, column=1, row=3), Coordinate(zoom=2, column=2, row=3), Coordinate(zoom=2, column=3, row=3), ]), set(result)) def test_2x2_tile_nominal_1(self): from tilequeue.process import metatile_children_with_size coord = Coordinate(zoom=0, column=0, row=0) result = metatile_children_with_size(coord, 1, 0, 256) self.assertEqual(set([ Coordinate(zoom=0, column=0, row=0), ]), set(result)) class TestCalculateCutCoords(unittest.TestCase): def test_1x1(self): from tilequeue.process import calculate_cut_coords_by_zoom # note! not using zoom level 0 because that has special properties! coord = Coordinate(zoom=1, column=0, row=0) cut_coords = calculate_cut_coords_by_zoom( coord, 0, [256], 16) self.assertEqual({1: [coord]}, cut_coords) def test_2x2_256(self): from tilequeue.process import calculate_cut_coords_by_zoom def _c(z, x, y): return Coordinate(zoom=z, column=x, row=y) # note! not using zoom level 0 because that has special properties! cut_coords = calculate_cut_coords_by_zoom( _c(1, 0, 0), 1, [256], 16) self.assertEqual({ 2: [ _c(2, 0, 0), _c(2, 0, 1), _c(2, 1, 0), _c(2, 1, 1), ] }, cut_coords) def test_4x4_512(self): from tilequeue.process import calculate_cut_coords_by_zoom def _c(z, x, y): return Coordinate(zoom=z, column=x, row=y) # note! not using zoom level 0 because that has special properties! cut_coords = calculate_cut_coords_by_zoom( _c(1, 0, 0), 2, [512], 16) self.assertEqual({ 3: [ # <- note nominal zoom is _3_ here. _c(2, 0, 0), _c(2, 0, 1), _c(2, 1, 0), _c(2, 1, 1), ] }, cut_coords) def test_4x4_512_max(self): from tilequeue.process import calculate_cut_coords_by_zoom def _c(z, x, y): return Coordinate(zoom=z, column=x, row=y) # even though we only configured 512 tiles, we get 256 ones as well at # max zoom. max_zoom = 16 metatile_zoom = 2 cut_coords = calculate_cut_coords_by_zoom( _c(max_zoom - metatile_zoom, 0, 0), metatile_zoom, [512], max_zoom - metatile_zoom) self.assertEqual([max_zoom], cut_coords.keys()) self.assertEqual(set([ # some 512 tiles _c(max_zoom - 1, 0, 0), _c(max_zoom - 1, 0, 1), _c(max_zoom - 1, 1, 0), _c(max_zoom - 1, 1, 1), # some 256 tiles _c(max_zoom, 0, 0), _c(max_zoom, 1, 0), _c(max_zoom, 2, 0), _c(max_zoom, 3, 0), _c(max_zoom, 0, 1), _c(max_zoom, 1, 1), _c(max_zoom, 2, 1), _c(max_zoom, 3, 1), _c(max_zoom, 0, 2), _c(max_zoom, 1, 2), _c(max_zoom, 2, 2), _c(max_zoom, 3, 2), _c(max_zoom, 0, 3), _c(max_zoom, 1, 3), _c(max_zoom, 2, 3), _c(max_zoom, 3, 3), ]), set(cut_coords[max_zoom])) def test_8x8_512_min(self): from tilequeue.process import calculate_cut_coords_by_zoom def _c(z, x, y): return Coordinate(zoom=z, column=x, row=y) # we get the 512px tiles at nominal zoom 3, plus additional ones at 2 # & 1. metatile_zoom = 3 cut_coords = calculate_cut_coords_by_zoom( _c(0, 0, 0), metatile_zoom, [512], 16 - metatile_zoom) self.assertEqual([1, 2, 3], cut_coords.keys()) # we get 1x1 nominal zoom 1 tile self.assertEqual(set([ _c(0, 0, 0), ]), set(cut_coords[1])) # we get 2x2 nominal zoom 2 tiles self.assertEqual(set([ _c(1, 0, 0), _c(1, 0, 1), _c(1, 1, 0), _c(1, 1, 1), ]), set(cut_coords[2])) # we get 4x4 nominal zoom 3 tiles self.assertEqual(set([ _c(2, 0, 0), _c(2, 0, 1), _c(2, 0, 2), _c(2, 0, 3), _c(2, 1, 0), _c(2, 1, 1), _c(2, 1, 2), _c(2, 1, 3), _c(2, 2, 0), _c(2, 2, 1), _c(2, 2, 2), _c(2, 2, 3), _c(2, 3, 0), _c(2, 3, 1), _c(2, 3, 2), _c(2, 3, 3), ]), set(cut_coords[3])) def _only_zoom(ctx, zoom): layer = ctx.feature_layers[0] if ctx.nominal_zoom != zoom: layer['features'] = [] return layer # a "post process" function which deletes all data except at zoom zero. this # is used to check that the nominal zoom passed in the context is the same as # what we expect. def _only_zoom_zero(ctx): return _only_zoom(ctx, 0) def _only_zoom_one(ctx): return _only_zoom(ctx, 1)
34.91573
79
0.560472
26f69dab763dc0ae696381120f40417ab76f59dc
1,608
py
Python
expert.py
bbrighttaer/guided-irl
470302c272af1226aa268ffe81737fc14c5a1a50
[ "MIT" ]
9
2020-02-19T10:11:40.000Z
2021-07-21T03:16:24.000Z
expert.py
bbrighttaer/guided-irl
470302c272af1226aa268ffe81737fc14c5a1a50
[ "MIT" ]
null
null
null
expert.py
bbrighttaer/guided-irl
470302c272af1226aa268ffe81737fc14c5a1a50
[ "MIT" ]
3
2020-05-08T04:50:04.000Z
2021-07-12T21:58:23.000Z
from collections import namedtuple import pickle import gym import ptan from ptan.agent import float32_preprocessor import torch import numpy as np from util import PGN GAMMA = 0.99 NUM_TRAJS = 100 EpisodeStep = namedtuple('EpisodeStep', field_names=['state', 'action', 'reward', 'next_state']) Trajectory = namedtuple('Trajectory', field_names=['prob', 'episode_steps']) if __name__ == '__main__': env = gym.make('CartPole-v1') net = PGN(env.observation_space.shape[0], env.action_space.n) net.load_state_dict(torch.load('cartpole_expert.mod')) net.eval() agent = ptan.agent.PolicyAgent(net, apply_softmax=True, preprocessor=float32_preprocessor) exp_source = ptan.experience.ExperienceSourceFirstLast(env, agent, gamma=GAMMA) trajectories = [] for ep in range(NUM_TRAJS): episode = [] qt = 1.0 for step_idx, exp in enumerate(exp_source): probs = torch.softmax(net(float32_preprocessor(exp.state).view(1, -1)), dim=1) probs = probs.squeeze()[int(exp.action)].item() qt *= probs episode.append(EpisodeStep(state=exp.state, action=int(exp.action), reward=exp.reward, next_state=exp.last_state)) if exp.last_state is None: break print(np.prod()) trajectories.append(Trajectory(prob=qt, episode_steps=episode)) print(f'Number of trajectories: {len(trajectories)}') with open('demonstrations.list.pkl', 'wb') as f: pickle.dump(trajectories, f) env.close()
38.285714
99
0.647388
b5714b01b740d4103ad31394410f195fc60ced0c
9,273
py
Python
radiobear/brightness.py
david-deboer/radiobear
aedc716c7acf0c69d278988842407545f1043c17
[ "BSD-2-Clause" ]
3
2019-05-13T21:03:57.000Z
2021-04-22T05:33:33.000Z
radiobear/brightness.py
david-deboer/radiobear
aedc716c7acf0c69d278988842407545f1043c17
[ "BSD-2-Clause" ]
1
2020-02-11T20:34:49.000Z
2020-02-11T20:34:49.000Z
radiobear/brightness.py
david-deboer/radiobear
aedc716c7acf0c69d278988842407545f1043c17
[ "BSD-2-Clause" ]
null
null
null
# -*- mode: python; coding: utf-8 -*- # Copyright 2018 David DeBoer # Licensed under the 2-clause BSD license. import numpy as np from scipy.special import expn import os.path from . import utils from . import raypath as ray from . import logging class Brightness(): def __init__(self, config=None, log=None, verbose=True, **kwargs): """This calculates the brightness temperature of the planets. It must be used with atmosphere and alpha""" self.verbose = verbose self.log = logging.setup(log) if config is None or isinstance(config, str): from . import config as pcfg config = pcfg.planetConfig('x', configFile=config) config.update_config(**kwargs) self.config = config def single(self, b, freqs, atm, alpha, orientation=None, taulimit=20.0): """This computes the brightness temperature along one ray path""" disc_average = utils.b_type(b).startswith('dis') if disc_average: b = [0.0, 0.0] self.alpha = alpha self.freqs = freqs self.b = b if self.alpha.layers is None: self.alpha.get_layers(freqs, atm) # get path lengths (ds_layer) vs layer number (num_layer) # currently frequency independent refractivity print_meta = (self.verbose == 'loud') travel = ray.compute_ds(atm, b, orientation, gtype=None, verbose=print_meta) self.travel = travel if travel.ds is None: print('Off planet') self.Tb = [] for j in range(len(freqs)): self.Tb.append(utils.T_cmb) return self.Tb # set and initialize arrays integrated_W = [0.0 for f in freqs] self.tau = [[0.0 for f in freqs]] self.Tb_lyr = [[0.0 for f in freqs]] self.W = [[0.0 for f in freqs]] P_layers = atm.gas[atm.config.C['P']] T_layers = atm.gas[atm.config.C['T']] z_layers = atm.gas[atm.config.C['Z']] self.P = [P_layers[travel.layer4ds[0]]] self.z = [z_layers[travel.layer4ds[0]]] for i in range(len(travel.ds) - 1): ds = travel.ds[i] * utils.Units[utils.atmLayerUnit] / utils.Units['cm'] taus = [] Ws = [] Tbs = [] ii = travel.layer4ds[i] ii1 = travel.layer4ds[i + 1] T1 = T_layers[ii1] T0 = T_layers[ii] self.P.append((P_layers[ii] + P_layers[ii1]) / 2.0) self.z.append((z_layers[ii] + z_layers[ii1]) / 2.0) if self.alpha.layers is None: print("is None at ", i) for j, f in enumerate(freqs): if not alpha.config.Doppler: a1 = self.alpha.layers[j][ii1] a0 = self.alpha.layers[j][ii] else: print("\n\nDoppler currently broken since the get_alpha call is different.") fshifted = [[f / travel.doppler[i]], [f / travel.doppler[i + 1]]] print('\rdoppler corrected frequency at layer', i, end='') a1 = alpha.get_alpha(fshifted[0], T_layers[ii1], P_layers[ii1], atm.gas[:, ii1], atm.config.C, atm.cloud[:, ii1], atm.config.Cl, units=utils.alphaUnit) a0 = alpha.get_alpha(fshifted[1], T_layers[ii], P_layers[ii], atm.gas[:, ii], atm.config.C, atm.cloud[:, ii], atm.config.Cl, units=utils.alphaUnit) dtau = (a0 + a1) * ds / 2.0 taus.append(self.tau[i][j] + dtau) # this is tau_(i+1) if disc_average: Ws.append(2.0 * a1 * expn(2, taus[j])) # this is W_(i+1) for disc average else: Ws.append(a1 * np.exp(-taus[j])) # this is W_(i+1) for non disc average integrated_W[j] += (Ws[j] + self.W[i][j]) * ds / 2.0 dTb = (T1 * Ws[j] + T0 * self.W[i][j]) * ds / 2.0 Tbs.append(self.Tb_lyr[i][j] + dTb) self.tau.append(taus) self.W.append(Ws) self.Tb_lyr.append(Tbs) # final spectrum self.Tb = [] for j in range(len(freqs)): top_Tb_lyr = self.Tb_lyr[-1][j] if top_Tb_lyr < utils.T_cmb: top_Tb_lyr = utils.T_cmb else: top_Tb_lyr /= integrated_W[j] # Normalize by integrated weights (makes assumptions) if integrated_W[j] < 0.96 and self.verbose: print("Weight correction at {:.2f} is {:.4f} (showing below 0.96)" .format(freqs[j], integrated_W[j])) self.Tb.append(top_Tb_lyr) self.tau = np.array(self.tau).transpose() self.W = np.array(self.W).transpose() self.Tb_lyr = np.array(self.Tb_lyr).transpose() self.P = np.array(self.P) self.z = np.array(self.z) self.integrated_W = np.array(integrated_W) del taus, Tbs, Ws, travel return self.Tb def savertm(self, tag=None, path=None): if tag is None: filename = None else: filename = 'alpha_' + tag + '.out' self.saveAlpha(filename, self.config.output_directory) if tag is None: filename = None else: filename = 'wgt_' + tag + '.out' self.saveWeight(filename, path) if tag is None: filename = None else: filename = 'tau_' + tag + '.out' self.saveTau(filename, path) if tag is None: filename = None else: filename = 'tblayer_' + tag + '.out' self.saveTblayer(filename, path) def saveit(self): for i, f in enumerate(self.freqs): filename = 'pawtt_{:.3f}.out'.format(f) fp = open(filename, 'w') print("{}: Pressure, alpha, weight, tau, Tb".format(filename)) for j in range(len(self.P)): s = '{}\t'.format(repr(self.P[j])) s += '{}\t'.format(repr(self.alpha.layers[i][j])) s += '{}\t'.format(repr(self.W[i][j])) s += '{}\t'.format(repr(self.tau[i][j])) s += '{}\n'.format(repr(self.Tb_lyr[i][j])) fp.write(s) fp.close() def saveAlpha(self, filename=None, path='.'): if filename is None: filename = 'alpha.out' filename = os.path.join(path, filename) fp = open(filename, 'w') s = '#P \tz \t' for f in self.freqs: s += '{:.2f}\t'.format(f) s += 'GHz\n' fp.write(s) for j in range(len(self.P)): s = ('{}\t{:.2f}\t').format(repr(self.P[j]), self.z[j]) for i in range(len(self.freqs)): s += '{}\t'.format(repr(self.alpha.layers[i][j])) s += '\n' fp.write(s) s = ('{} ({} x {})').format(filename, i + 1, j + 1) def saveWeight(self, norm=False, filename=None, path='.'): if filename is None: filename = 'wgt.out' fp = open(filename, 'w') s = '#P \tz \t' for f in self.freqs: s += ('{:.2f}\t').format(f) s = s.strip() + 'GHz\n' fp.write(s) scale = [] for i in range(len(self.freqs)): if norm: scale.append(np.max(self.W[i])) else: scale.append(1.0) for j in range(len(self.P)): s = ('{}\t{:.2f}\t').format(repr(self.P[j]), self.z[j]) for i in range(len(self.freqs)): s += ('{}\t').format(repr(self.W[i][j] / scale[i])) s = s.strip() + '\n' fp.write(s) s = ('{} ({} x {})').format(filename, i + 1, j + 1) return s def saveTau(self, filename=None, path='.'): if filename is None: filename = 'tau.out' os.path.join(path, filename) fp = open(filename, 'w') s = '#P \tz \t' for f in self.freqs: s += '{:.2f}\t'.format(f) s += 'GHz\n' fp.write(s) for j in range(len(self.P)): s = ('{}\t{:.2f}\t').format(repr(self.P[j]), self.z[j]) for i in range(len(self.freqs)): s += ('{}\t').format(repr(self.tau[i][j])) s += '\n' fp.write(s) s = ('{} ({} x {})').format(filename, i + 1, j + 1) return s def saveTblayer(self, filename=None, path='.'): if filename is None: filename = 'tblayer.out' os.path.join(path, filename) fp = open(filename, 'w') s = '#P \tz \t' for f in self.freqs: s += ('{:.2f}\t').format(f) s += 'GHz\n' fp.write(s) for j in range(len(self.P)): s = ('{}\t{:.2f}\t').format(repr(self.P[j]), self.z[j]) for i in range(len(self.freqs)): s += ('{}\t').format(repr(self.Tb_lyr[i][j])) s += '\n' fp.write(s) s = ('{} ({} x {})').format(filename, i + 1, j + 1) return s
38.799163
100
0.485496
7055d4bfb9e72fa7d3b37c9c57004539fe049216
10,050
py
Python
examples/example.py
godchen0212/pymilvus
09848e14206d956e3728131e73da1cc870f3c19b
[ "Apache-2.0" ]
null
null
null
examples/example.py
godchen0212/pymilvus
09848e14206d956e3728131e73da1cc870f3c19b
[ "Apache-2.0" ]
null
null
null
examples/example.py
godchen0212/pymilvus
09848e14206d956e3728131e73da1cc870f3c19b
[ "Apache-2.0" ]
null
null
null
import random from pprint import pprint from milvus import Milvus, DataType # ------ # Setup: # First of all, you need a runing Milvus(0.11.x). By default, Milvus runs on localhost in port 19530. # Then, you can use pymilvus(0.3.x) to connect to the server, You can change the _HOST and _PORT accordingly. # ------ _HOST = '127.0.0.1' _PORT = '19530' client = Milvus(_HOST, _PORT) # ------ # Basic create collection: # You already have a Milvus instance running, and pymilvus connecting to Milvus. # The first thing we will do is to create a collection `demo_films`. Incase we've already had a collection # named `demo_films`, we drop it before we create. # ------ collection_name = 'demo_films' if collection_name in client.list_collections(): client.drop_collection(collection_name) # ------ # Basic create collection: # For a specific field, you can provide extra infos by a dictionary with `key = "params"`. If the field # has a type of `FLOAT_VECTOR` and `BINARY_VECTOR`, "dim" must be provided in extra infos. Otherwise # you can provide customed infos like `{"unit": "minutes"}` for you own need. # # In our case, the extra infos in "duration" field means the unit of "duration" field is "minutes". # And `auto_id` in the parameter is set to `False` so that we can provide our own unique ids. # For more information you can refer to the pymilvus # documentation (https://milvus-io.github.io/milvus-sdk-python/pythondoc/v0.3.0/index.html). # ------ collection_param = { "fields": [ # Milvus doesn't support string type now, but we are considering supporting it soon. # {"name": "title", "type": DataType.STRING}, {"name": "duration", "type": DataType.INT32, "params": {"unit": "minute"}}, {"name": "release_year", "type": DataType.INT32}, {"name": "embedding", "type": DataType.FLOAT_VECTOR, "params": {"dim": 8}}, ], "segment_row_limit": 4096, "auto_id": False } # ------ # Basic create collection: # After create collection `demo_films`, we create a partition tagged "American", it means the films we # will be inserted are from American. # ------ client.create_collection(collection_name, collection_param) client.create_partition(collection_name, "American") # ------ # Basic create collection: # You can check the collection info and partitions we've created by `get_collection_info` and # `list_partitions` # ------ print("--------get collection info--------") collection = client.get_collection_info(collection_name) pprint(collection) partitions = client.list_partitions(collection_name) print("\n----------list partitions----------") pprint(partitions) # ------ # Basic insert entities: # We have three films of The_Lord_of_the_Rings serises here with their id, duration release_year # and fake embeddings to be inserted. They are listed below to give you a overview of the structure. # ------ The_Lord_of_the_Rings = [ { "title": "The_Fellowship_of_the_Ring", "id": 1, "duration": 208, "release_year": 2001, "embedding": [random.random() for _ in range(8)] }, { "title": "The_Two_Towers", "id": 2, "duration": 226, "release_year": 2002, "embedding": [random.random() for _ in range(8)] }, { "title": "The_Return_of_the_King", "id": 3, "duration": 252, "release_year": 2003, "embedding": [random.random() for _ in range(8)] } ] # ------ # Basic insert entities: # To insert these films into Milvus, we have to group values from the same field together like below. # Then these grouped data are used to create `hybrid_entities`. # ------ ids = [k.get("id") for k in The_Lord_of_the_Rings] durations = [k.get("duration") for k in The_Lord_of_the_Rings] release_years = [k.get("release_year") for k in The_Lord_of_the_Rings] embeddings = [k.get("embedding") for k in The_Lord_of_the_Rings] hybrid_entities = [ # Milvus doesn't support string type yet, so we cannot insert "title". {"name": "duration", "values": durations, "type": DataType.INT32}, {"name": "release_year", "values": release_years, "type": DataType.INT32}, {"name": "embedding", "values": embeddings, "type": DataType.FLOAT_VECTOR}, ] # ------ # Basic insert entities: # We insert the `hybrid_entities` into our collection, into partition `American`, with ids we provide. # If succeed, ids we provide will be returned. # ------ ids = client.insert(collection_name, hybrid_entities, ids, partition_tag="American") print("\n----------insert----------") print("Films are inserted and the ids are: {}".format(ids)) # ------ # Basic insert entities: # After insert entities into collection, we need to flush collection to make sure its on disk, # so that we are able to retrive it. # ------ before_flush_counts = client.count_entities(collection_name) client.flush([collection_name]) after_flush_counts = client.count_entities(collection_name) print("\n----------flush----------") print("There are {} films in collection `{}` before flush".format(before_flush_counts, collection_name)) print("There are {} films in collection `{}` after flush".format(after_flush_counts, collection_name)) # ------ # Basic insert entities: # We can get the detail of collection statistics info by `get_collection_stats` # ------ info = client.get_collection_stats(collection_name) print("\n----------get collection stats----------") pprint(info) # ------ # Basic search entities: # Now that we have 3 films inserted into our collection, it's time to obtain them. # We can get films by ids, if milvus can't find entity for a given id, `None` will be returned. # In the case we provide below, we will only get 1 film with id=1 and the other is `None` # ------ films = client.get_entity_by_id(collection_name, ids=[1, 200]) print("\n----------get entity by id = 1, id = 200----------") for film in films: if film is not None: print(" > id: {},\n > duration: {}m,\n > release_years: {},\n > embedding: {}" .format(film.id, film.duration, film.release_year, film.embedding)) # ------ # Basic hybrid search entities: # Getting films by id is not enough, we are going to get films based on vector similarities. # Let's say we have a film with its `embedding` and we want to find `top3` films that are most similar # with it by L2 distance. # Other than vector similarities, we also want to obtain films that: # `released year` term in 2002 or 2003, # `duration` larger than 250 minutes. # # Milvus provides Query DSL(Domain Specific Language) to support structured data filtering in queries. # For now milvus suppots TermQuery and RangeQuery, they are structured as below. # For more information about the meaning and other options about "must" and "bool", # please refer to DSL chapter of our pymilvus documentation # (https://milvus-io.github.io/milvus-sdk-python/pythondoc/v0.3.0/index.html). # ------ query_embedding = [random.random() for _ in range(8)] query_hybrid = { "bool": { "must": [ { "term": {"release_year": [2002, 2003]} }, { # "GT" for greater than "range": {"duration": {"GT": 250}} }, { "vector": { "embedding": {"topk": 3, "query": [query_embedding], "metric_type": "L2"} } } ] } } # ------ # Basic hybrid search entities: # And we want to get all the fields back in reasults, so fields = ["duration", "release_year", "embedding"]. # If searching successfully, results will be returned. # `results` have `nq`(number of queries) seperate results, since we only query for 1 film, The length of # `results` is 1. # We ask for top 3 in-return, but our condition is too strict while the database is too small, so we can # only get 1 film, which means length of `entities` in below is also 1. # # Now we've gotten the results, and known it's a 1 x 1 structure, how can we get ids, distances and fields? # It's very simple, for every `topk_film`, it has three properties: `id, distance and entity`. # All fields are stored in `entity`, so you can finally obtain these data as below: # And the result should be film with id = 3. # ------ results = client.search(collection_name, query_hybrid, fields=["duration", "release_year", "embedding"]) print("\n----------search----------") for entities in results: for topk_film in entities: current_entity = topk_film.entity print("- id: {}".format(topk_film.id)) print("- distance: {}".format(topk_film.distance)) print("- release_year: {}".format(current_entity.release_year)) print("- duration: {}".format(current_entity.duration)) print("- embedding: {}".format(current_entity.embedding)) # ------ # Basic delete: # Now let's see how to delete things in Milvus. # You can simply delete entities by their ids. # ------ client.delete_entity_by_id(collection_name, ids=[1, 2]) client.flush() # flush is important result = client.get_entity_by_id(collection_name, ids=[1, 2]) counts_delete = sum([1 for entity in result if entity is not None]) counts_in_collection = client.count_entities(collection_name) print("\n----------delete id = 1, id = 2----------") print("Get {} entities by id 1, 2".format(counts_delete)) print("There are {} entities after delete films with 1, 2".format(counts_in_collection)) # ------ # Basic delete: # You can drop partitions we create, and drop the collection we create. # ------ client.drop_partition(collection_name, partition_tag='American') if collection_name in client.list_collections(): client.drop_collection(collection_name) # ------ # Summary: # Now we've went through all basic communications pymilvus can do with Milvus server, hope it's helpful! # ------
41.020408
112
0.657313
b78abe04e41b87829e6b9954ba648e9ca6d697d2
1,688
py
Python
pdf_to_scan/make_pdfs_look_scanned.py
apurvmishra99/pdf-to-scan
20ae5423224174cc2800f62318e2313e649957ab
[ "MIT" ]
42
2020-05-13T22:02:34.000Z
2022-02-27T18:35:14.000Z
pdf_to_scan/make_pdfs_look_scanned.py
apurvmishra99/pdf-to-scan
20ae5423224174cc2800f62318e2313e649957ab
[ "MIT" ]
1
2020-12-11T16:29:01.000Z
2020-12-11T16:29:01.000Z
pdf_to_scan/make_pdfs_look_scanned.py
apurvmishra99/pdf-to-scan
20ae5423224174cc2800f62318e2313e649957ab
[ "MIT" ]
2
2021-06-08T11:49:02.000Z
2021-08-03T14:18:31.000Z
#! /usr/bin/env python # Copyright (c) 2020 apurv # # This software is released under the MIT License. # https://opensource.org/licenses/MIT import os import sys import subprocess from pathlib import Path import click import locale import ghostscript from wand.image import Image @click.command() @click.argument( "file_name", type=click.Path(exists=True) ) def convert(file_name): try: orig_file = Path(file_name).resolve() output_path = Path(f"{file_name.split('.')[0]}_.pdf").resolve() output_path_temp = Path(f"{file_name.split('.')[0]}__.pdf").resolve() with Image(filename=str(orig_file), resolution=150) as img: img.transform_colorspace('gray') img.linear_stretch(black_point=0.035, white_point=0.1) img.blur(radius=0, sigma=0.5) img.noise(noise_type='gaussian', attenuate=0.25) img.rotate(0.5) img.save(filename=str(output_path)) cmd_gs = ['gs', '-dSAFER', '-dBATCH', '-dNOPAUSE', '-dNOCACHE', '-sDEVICE=pdfwrite', '-sColorConversionStrategy=LeaveColorUnchanged', '-dAutoFilterColorImages=true', '-dAutoFilterGrayImages=true', '-dDownsampleMonoImages=true', '-dDownsampleGrayImages=true', '-dDownsampleColorImages=true', f'-sOutputFile={str(output_path_temp)}', str(output_path)] encoding = locale.getpreferredencoding() cmd_gs = [a.encode(encoding) for a in cmd_gs] ghostscript.Ghostscript(*cmd_gs) os.remove(str(output_path_temp)) click.secho("File processed and saved", fg="green") except Exception as e: print(e) if __name__ == "__main__": convert()
35.914894
199
0.658768
1c8101f3524f904dfb19c5f6e85c42d23132ed8a
570
py
Python
ontask/migrations/0015_auto_20180530_0914.py
pinheiroo27/ontask_b
23fee8caf4e1c5694a710a77f3004ca5d9effeac
[ "MIT" ]
33
2017-12-02T04:09:24.000Z
2021-11-07T08:41:57.000Z
ontask/migrations/0015_auto_20180530_0914.py
pinheiroo27/ontask_b
23fee8caf4e1c5694a710a77f3004ca5d9effeac
[ "MIT" ]
189
2017-11-16T04:06:29.000Z
2022-03-11T23:35:59.000Z
ontask/migrations/0015_auto_20180530_0914.py
pinheiroo27/ontask_b
23fee8caf4e1c5694a710a77f3004ca5d9effeac
[ "MIT" ]
30
2017-11-30T03:35:44.000Z
2022-01-31T03:08:08.000Z
# -*- coding: utf-8 -*- # Generated by Django 1.11.13 on 2018-05-29 23:44 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('ontask', '0014_auto_20180530_0754'), ] operations = [ migrations.AlterModelOptions( name='sqlconnection', options={'ordering': ('name',)}, ), migrations.RenameField( model_name='sqlconnection', old_name='Connection name', new_name='name', ), ]
22.8
49
0.587719
0c2610f8d10e9f0be45e18eb51e2edd56804faa8
1,317
py
Python
mindspore/ops/_op_impl/tbe/sqrt.py
GuoSuiming/mindspore
48afc4cfa53d970c0b20eedfb46e039db2a133d5
[ "Apache-2.0" ]
3,200
2020-02-17T12:45:41.000Z
2022-03-31T20:21:16.000Z
mindspore/ops/_op_impl/tbe/sqrt.py
forwhat461/mindspore
59a277756eb4faad9ac9afcc7fd526e8277d4994
[ "Apache-2.0" ]
176
2020-02-12T02:52:11.000Z
2022-03-28T22:15:55.000Z
mindspore/ops/_op_impl/tbe/sqrt.py
forwhat461/mindspore
59a277756eb4faad9ac9afcc7fd526e8277d4994
[ "Apache-2.0" ]
621
2020-03-09T01:31:41.000Z
2022-03-30T03:43:19.000Z
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Sqrt op""" from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType sqrt_op_info = TBERegOp("Sqrt") \ .fusion_type("ELEMWISE") \ .async_flag(False) \ .binfile_name("sqrt.so") \ .compute_cost(10) \ .kernel_name("sqrt") \ .partial_flag(True) \ .input(0, "x", False, "required", "all") \ .output(0, "y", False, "required", "all") \ .op_pattern("formatAgnostic") \ .dtype_format(DataType.F16_None, DataType.F16_None) \ .dtype_format(DataType.F32_None, DataType.F32_None) \ .get_op_info() @op_info_register(sqrt_op_info) def _sqrt_tbe(): """Sqrt TBE register""" return
34.657895
79
0.668185
e186226e0895d9787f179f8f29faabc35d7d8a8f
6,415
py
Python
tfx/extensions/google_cloud_big_query/example_gen/executor_test.py
Anon-Artist/tfx
2692c9ab437d76b5d9517996bfe2596862e0791d
[ "Apache-2.0" ]
2
2021-05-10T21:39:48.000Z
2021-11-17T11:24:29.000Z
tfx/extensions/google_cloud_big_query/example_gen/executor_test.py
Anon-Artist/tfx
2692c9ab437d76b5d9517996bfe2596862e0791d
[ "Apache-2.0" ]
1
2021-01-28T13:44:51.000Z
2021-04-28T16:15:47.000Z
tfx/extensions/google_cloud_big_query/example_gen/executor_test.py
Anon-Artist/tfx
2692c9ab437d76b5d9517996bfe2596862e0791d
[ "Apache-2.0" ]
1
2021-01-28T13:41:51.000Z
2021-01-28T13:41:51.000Z
# Lint as: python2, python3 # Copyright 2019 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for tfx.extensions.google_cloud_big_query.example_gen.executor.""" import os import random import apache_beam as beam from apache_beam.testing import util from google.cloud import bigquery import mock import tensorflow as tf from tfx.dsl.components.base import base_executor from tfx.dsl.io import fileio from tfx.extensions.google_cloud_big_query import utils from tfx.extensions.google_cloud_big_query.example_gen import executor from tfx.proto import example_gen_pb2 from tfx.types import artifact_utils from tfx.types import standard_artifacts from tfx.utils import proto_utils @beam.ptransform_fn def _MockReadFromBigQuery(pipeline, query): del query # Unused arg mock_query_results = [] for i in range(10000): mock_query_result = { 'i': None if random.randrange(10) == 0 else i, 'f': None if random.randrange(10) == 0 else float(i), 's': None if random.randrange(10) == 0 else str(i) } mock_query_results.append(mock_query_result) return pipeline | beam.Create(mock_query_results) @beam.ptransform_fn def _MockReadFromBigQuery2(pipeline, query): del query # Unused arg mock_query_results = [{ 'i': 1, 'i2': [2, 3], 'b': True, 'f': 2.0, 'f2': [2.7, 3.8], 's': 'abc', 's2': ['abc', 'def'] }] return pipeline | beam.Create(mock_query_results) class ExecutorTest(tf.test.TestCase): def setUp(self): # Mock BigQuery result schema. self._schema = [ bigquery.SchemaField('i', 'INTEGER', mode='REQUIRED'), bigquery.SchemaField('i2', 'INTEGER', mode='REPEATED'), bigquery.SchemaField('b', 'BOOLEAN', mode='REQUIRED'), bigquery.SchemaField('f', 'FLOAT', mode='REQUIRED'), bigquery.SchemaField('f2', 'FLOAT', mode='REPEATED'), bigquery.SchemaField('s', 'STRING', mode='REQUIRED'), bigquery.SchemaField('s2', 'STRING', mode='REPEATED'), ] super(ExecutorTest, self).setUp() @mock.patch.multiple( utils, ReadFromBigQuery=_MockReadFromBigQuery2, ) @mock.patch.object(bigquery, 'Client') def testBigQueryToExample(self, mock_client): # Mock query result schema for _BigQueryConverter. mock_client.return_value.query.return_value.result.return_value.schema = self._schema with beam.Pipeline() as pipeline: examples = ( pipeline | 'ToTFExample' >> executor._BigQueryToExample( exec_properties={'_beam_pipeline_args': []}, split_pattern='SELECT i, i2, b, f, f2, s, s2 FROM `fake`')) feature = {} feature['i'] = tf.train.Feature(int64_list=tf.train.Int64List(value=[1])) feature['i2'] = tf.train.Feature( int64_list=tf.train.Int64List(value=[2, 3])) feature['b'] = tf.train.Feature(int64_list=tf.train.Int64List(value=[1])) feature['f'] = tf.train.Feature( float_list=tf.train.FloatList(value=[2.0])) feature['f2'] = tf.train.Feature( float_list=tf.train.FloatList(value=[2.7, 3.8])) feature['s'] = tf.train.Feature( bytes_list=tf.train.BytesList(value=[tf.compat.as_bytes('abc')])) feature['s2'] = tf.train.Feature( bytes_list=tf.train.BytesList( value=[tf.compat.as_bytes('abc'), tf.compat.as_bytes('def')])) example_proto = tf.train.Example( features=tf.train.Features(feature=feature)) util.assert_that(examples, util.equal_to([example_proto])) @mock.patch.multiple( utils, ReadFromBigQuery=_MockReadFromBigQuery, ) @mock.patch.object(bigquery, 'Client') def testDo(self, mock_client): # Mock query result schema for _BigQueryConverter. mock_client.return_value.query.return_value.result.return_value.schema = self._schema output_data_dir = os.path.join( os.environ.get('TEST_UNDECLARED_OUTPUTS_DIR', self.get_temp_dir()), self._testMethodName) # Create output dict. examples = standard_artifacts.Examples() examples.uri = output_data_dir output_dict = {'examples': [examples]} # Create exe properties. exec_properties = { 'input_config': proto_utils.proto_to_json( example_gen_pb2.Input(splits=[ example_gen_pb2.Input.Split( name='bq', pattern='SELECT i, b, f, s FROM `fake`'), ])), 'output_config': proto_utils.proto_to_json( example_gen_pb2.Output( split_config=example_gen_pb2.SplitConfig(splits=[ example_gen_pb2.SplitConfig.Split( name='train', hash_buckets=2), example_gen_pb2.SplitConfig.Split( name='eval', hash_buckets=1) ]))) } # Run executor. big_query_example_gen = executor.Executor( base_executor.BaseExecutor.Context( beam_pipeline_args=['--project=test-project'])) big_query_example_gen.Do({}, output_dict, exec_properties) mock_client.assert_called_with(project='test-project') self.assertEqual( artifact_utils.encode_split_names(['train', 'eval']), examples.split_names) # Check BigQuery example gen outputs. train_output_file = os.path.join(examples.uri, 'train', 'data_tfrecord-00000-of-00001.gz') eval_output_file = os.path.join(examples.uri, 'eval', 'data_tfrecord-00000-of-00001.gz') self.assertTrue(fileio.exists(train_output_file)) self.assertTrue(fileio.exists(eval_output_file)) self.assertGreater( fileio.open(train_output_file).size(), fileio.open(eval_output_file).size()) if __name__ == '__main__': tf.test.main()
36.448864
89
0.656898
e0449d2d865ed7916fb9278262d7ae47ff780f25
105,614
py
Python
sympy/solvers/tests/test_solveset.py
MaqOwais/sympy
c14ff3308aa416b4e9412af6f6682bff7a24e376
[ "BSD-3-Clause" ]
null
null
null
sympy/solvers/tests/test_solveset.py
MaqOwais/sympy
c14ff3308aa416b4e9412af6f6682bff7a24e376
[ "BSD-3-Clause" ]
null
null
null
sympy/solvers/tests/test_solveset.py
MaqOwais/sympy
c14ff3308aa416b4e9412af6f6682bff7a24e376
[ "BSD-3-Clause" ]
null
null
null
from sympy.core.containers import Tuple from sympy.core.function import (Function, Lambda, nfloat, diff) from sympy.core.mod import Mod from sympy.core.numbers import (E, I, Rational, oo, pi) from sympy.core.relational import (Eq, Gt, Ne) from sympy.core.singleton import S from sympy.core.symbol import (Dummy, Symbol, symbols) from sympy.functions.elementary.complexes import (Abs, arg, im, re, sign) from sympy.functions.elementary.exponential import (LambertW, exp, log) from sympy.functions.elementary.hyperbolic import (HyperbolicFunction, sinh, tanh, cosh, sech, coth) from sympy.functions.elementary.miscellaneous import sqrt, Min, Max from sympy.functions.elementary.piecewise import Piecewise from sympy.functions.elementary.trigonometric import ( TrigonometricFunction, acos, acot, acsc, asec, asin, atan, atan2, cos, cot, csc, sec, sin, tan) from sympy.functions.special.error_functions import (erf, erfc, erfcinv, erfinv) from sympy.logic.boolalg import And from sympy.matrices.dense import MutableDenseMatrix as Matrix from sympy.matrices.immutable import ImmutableDenseMatrix from sympy.polys.polytools import Poly from sympy.polys.rootoftools import CRootOf from sympy.sets.contains import Contains from sympy.sets.conditionset import ConditionSet from sympy.sets.fancysets import ImageSet from sympy.sets.sets import (Complement, EmptySet, FiniteSet, Intersection, Interval, Union, imageset, ProductSet) from sympy.simplify import simplify from sympy.tensor.indexed import Indexed from sympy.utilities.iterables import numbered_symbols from sympy.testing.pytest import (XFAIL, raises, skip, slow, SKIP) from sympy.testing.randtest import verify_numerically as tn from sympy.physics.units import cm from sympy.solvers.solveset import ( solveset_real, domain_check, solveset_complex, linear_eq_to_matrix, linsolve, _is_function_class_equation, invert_real, invert_complex, solveset, solve_decomposition, substitution, nonlinsolve, solvify, _is_finite_with_finite_vars, _transolve, _is_exponential, _solve_exponential, _is_logarithmic, _solve_logarithm, _term_factors, _is_modular, _is_lambert, NonlinearError) from sympy.abc import (a, b, c, d, e, f, g, h, i, j, k, l, m, n, q, r, t, w, x, y, z) def dumeq(i, j): if type(i) in (list, tuple): return all(dumeq(i, j) for i, j in zip(i, j)) return i == j or i.dummy_eq(j) def test_invert_real(): x = Symbol('x', real=True) def ireal(x, s=S.Reals): return Intersection(s, x) # issue 14223 assert invert_real(x, 0, x, Interval(1, 2)) == (x, S.EmptySet) assert invert_real(exp(x), z, x) == (x, ireal(FiniteSet(log(z)))) y = Symbol('y', positive=True) n = Symbol('n', real=True) assert invert_real(x + 3, y, x) == (x, FiniteSet(y - 3)) assert invert_real(x*3, y, x) == (x, FiniteSet(y / 3)) assert invert_real(exp(x), y, x) == (x, FiniteSet(log(y))) assert invert_real(exp(3*x), y, x) == (x, FiniteSet(log(y) / 3)) assert invert_real(exp(x + 3), y, x) == (x, FiniteSet(log(y) - 3)) assert invert_real(exp(x) + 3, y, x) == (x, ireal(FiniteSet(log(y - 3)))) assert invert_real(exp(x)*3, y, x) == (x, FiniteSet(log(y / 3))) assert invert_real(log(x), y, x) == (x, FiniteSet(exp(y))) assert invert_real(log(3*x), y, x) == (x, FiniteSet(exp(y) / 3)) assert invert_real(log(x + 3), y, x) == (x, FiniteSet(exp(y) - 3)) assert invert_real(Abs(x), y, x) == (x, FiniteSet(y, -y)) assert invert_real(2**x, y, x) == (x, FiniteSet(log(y)/log(2))) assert invert_real(2**exp(x), y, x) == (x, ireal(FiniteSet(log(log(y)/log(2))))) assert invert_real(x**2, y, x) == (x, FiniteSet(sqrt(y), -sqrt(y))) assert invert_real(x**S.Half, y, x) == (x, FiniteSet(y**2)) raises(ValueError, lambda: invert_real(x, x, x)) raises(ValueError, lambda: invert_real(x**pi, y, x)) raises(ValueError, lambda: invert_real(S.One, y, x)) assert invert_real(x**31 + x, y, x) == (x**31 + x, FiniteSet(y)) lhs = x**31 + x base_values = FiniteSet(y - 1, -y - 1) assert invert_real(Abs(x**31 + x + 1), y, x) == (lhs, base_values) assert dumeq(invert_real(sin(x), y, x), (x, imageset(Lambda(n, n*pi + (-1)**n*asin(y)), S.Integers))) assert dumeq(invert_real(sin(exp(x)), y, x), (x, imageset(Lambda(n, log((-1)**n*asin(y) + n*pi)), S.Integers))) assert dumeq(invert_real(csc(x), y, x), (x, imageset(Lambda(n, n*pi + (-1)**n*acsc(y)), S.Integers))) assert dumeq(invert_real(csc(exp(x)), y, x), (x, imageset(Lambda(n, log((-1)**n*acsc(y) + n*pi)), S.Integers))) assert dumeq(invert_real(cos(x), y, x), (x, Union(imageset(Lambda(n, 2*n*pi + acos(y)), S.Integers), \ imageset(Lambda(n, 2*n*pi - acos(y)), S.Integers)))) assert dumeq(invert_real(cos(exp(x)), y, x), (x, Union(imageset(Lambda(n, log(2*n*pi + acos(y))), S.Integers), \ imageset(Lambda(n, log(2*n*pi - acos(y))), S.Integers)))) assert dumeq(invert_real(sec(x), y, x), (x, Union(imageset(Lambda(n, 2*n*pi + asec(y)), S.Integers), \ imageset(Lambda(n, 2*n*pi - asec(y)), S.Integers)))) assert dumeq(invert_real(sec(exp(x)), y, x), (x, Union(imageset(Lambda(n, log(2*n*pi + asec(y))), S.Integers), \ imageset(Lambda(n, log(2*n*pi - asec(y))), S.Integers)))) assert dumeq(invert_real(tan(x), y, x), (x, imageset(Lambda(n, n*pi + atan(y)), S.Integers))) assert dumeq(invert_real(tan(exp(x)), y, x), (x, imageset(Lambda(n, log(n*pi + atan(y))), S.Integers))) assert dumeq(invert_real(cot(x), y, x), (x, imageset(Lambda(n, n*pi + acot(y)), S.Integers))) assert dumeq(invert_real(cot(exp(x)), y, x), (x, imageset(Lambda(n, log(n*pi + acot(y))), S.Integers))) assert dumeq(invert_real(tan(tan(x)), y, x), (tan(x), imageset(Lambda(n, n*pi + atan(y)), S.Integers))) x = Symbol('x', positive=True) assert invert_real(x**pi, y, x) == (x, FiniteSet(y**(1/pi))) def test_invert_complex(): assert invert_complex(x + 3, y, x) == (x, FiniteSet(y - 3)) assert invert_complex(x*3, y, x) == (x, FiniteSet(y / 3)) assert dumeq(invert_complex(exp(x), y, x), (x, imageset(Lambda(n, I*(2*pi*n + arg(y)) + log(Abs(y))), S.Integers))) assert invert_complex(log(x), y, x) == (x, FiniteSet(exp(y))) raises(ValueError, lambda: invert_real(1, y, x)) raises(ValueError, lambda: invert_complex(x, x, x)) raises(ValueError, lambda: invert_complex(x, x, 1)) # https://github.com/skirpichev/omg/issues/16 assert invert_complex(sinh(x), 0, x) != (x, FiniteSet(0)) def test_domain_check(): assert domain_check(1/(1 + (1/(x+1))**2), x, -1) is False assert domain_check(x**2, x, 0) is True assert domain_check(x, x, oo) is False assert domain_check(0, x, oo) is False def test_issue_11536(): assert solveset(0**x - 100, x, S.Reals) == S.EmptySet assert solveset(0**x - 1, x, S.Reals) == FiniteSet(0) def test_issue_17479(): from sympy.solvers.solveset import nonlinsolve f = (x**2 + y**2)**2 + (x**2 + z**2)**2 - 2*(2*x**2 + y**2 + z**2) fx = f.diff(x) fy = f.diff(y) fz = f.diff(z) sol = nonlinsolve([fx, fy, fz], [x, y, z]) assert len(sol) >= 4 and len(sol) <= 20 # nonlinsolve has been giving a varying number of solutions # (originally 18, then 20, now 19) due to various internal changes. # Unfortunately not all the solutions are actually valid and some are # redundant. Since the original issue was that an exception was raised, # this first test only checks that nonlinsolve returns a "plausible" # solution set. The next test checks the result for correctness. @XFAIL def test_issue_18449(): x, y, z = symbols("x, y, z") f = (x**2 + y**2)**2 + (x**2 + z**2)**2 - 2*(2*x**2 + y**2 + z**2) fx = diff(f, x) fy = diff(f, y) fz = diff(f, z) sol = nonlinsolve([fx, fy, fz], [x, y, z]) for (xs, ys, zs) in sol: d = {x: xs, y: ys, z: zs} assert tuple(_.subs(d).simplify() for _ in (fx, fy, fz)) == (0, 0, 0) # After simplification and removal of duplicate elements, there should # only be 4 parametric solutions left: # simplifiedsolutions = FiniteSet((sqrt(1 - z**2), z, z), # (-sqrt(1 - z**2), z, z), # (sqrt(1 - z**2), -z, z), # (-sqrt(1 - z**2), -z, z)) # TODO: Is the above solution set definitely complete? def test_is_function_class_equation(): from sympy.abc import x, a assert _is_function_class_equation(TrigonometricFunction, tan(x), x) is True assert _is_function_class_equation(TrigonometricFunction, tan(x) - 1, x) is True assert _is_function_class_equation(TrigonometricFunction, tan(x) + sin(x), x) is True assert _is_function_class_equation(TrigonometricFunction, tan(x) + sin(x) - a, x) is True assert _is_function_class_equation(TrigonometricFunction, sin(x)*tan(x) + sin(x), x) is True assert _is_function_class_equation(TrigonometricFunction, sin(x)*tan(x + a) + sin(x), x) is True assert _is_function_class_equation(TrigonometricFunction, sin(x)*tan(x*a) + sin(x), x) is True assert _is_function_class_equation(TrigonometricFunction, a*tan(x) - 1, x) is True assert _is_function_class_equation(TrigonometricFunction, tan(x)**2 + sin(x) - 1, x) is True assert _is_function_class_equation(TrigonometricFunction, tan(x) + x, x) is False assert _is_function_class_equation(TrigonometricFunction, tan(x**2), x) is False assert _is_function_class_equation(TrigonometricFunction, tan(x**2) + sin(x), x) is False assert _is_function_class_equation(TrigonometricFunction, tan(x)**sin(x), x) is False assert _is_function_class_equation(TrigonometricFunction, tan(sin(x)) + sin(x), x) is False assert _is_function_class_equation(HyperbolicFunction, tanh(x), x) is True assert _is_function_class_equation(HyperbolicFunction, tanh(x) - 1, x) is True assert _is_function_class_equation(HyperbolicFunction, tanh(x) + sinh(x), x) is True assert _is_function_class_equation(HyperbolicFunction, tanh(x) + sinh(x) - a, x) is True assert _is_function_class_equation(HyperbolicFunction, sinh(x)*tanh(x) + sinh(x), x) is True assert _is_function_class_equation(HyperbolicFunction, sinh(x)*tanh(x + a) + sinh(x), x) is True assert _is_function_class_equation(HyperbolicFunction, sinh(x)*tanh(x*a) + sinh(x), x) is True assert _is_function_class_equation(HyperbolicFunction, a*tanh(x) - 1, x) is True assert _is_function_class_equation(HyperbolicFunction, tanh(x)**2 + sinh(x) - 1, x) is True assert _is_function_class_equation(HyperbolicFunction, tanh(x) + x, x) is False assert _is_function_class_equation(HyperbolicFunction, tanh(x**2), x) is False assert _is_function_class_equation(HyperbolicFunction, tanh(x**2) + sinh(x), x) is False assert _is_function_class_equation(HyperbolicFunction, tanh(x)**sinh(x), x) is False assert _is_function_class_equation(HyperbolicFunction, tanh(sinh(x)) + sinh(x), x) is False def test_garbage_input(): raises(ValueError, lambda: solveset_real([y], y)) x = Symbol('x', real=True) assert solveset_real(x, 1) == S.EmptySet assert solveset_real(x - 1, 1) == FiniteSet(x) assert solveset_real(x, pi) == S.EmptySet assert solveset_real(x, x**2) == S.EmptySet raises(ValueError, lambda: solveset_complex([x], x)) assert solveset_complex(x, pi) == S.EmptySet raises(ValueError, lambda: solveset((x, y), x)) raises(ValueError, lambda: solveset(x + 1, S.Reals)) raises(ValueError, lambda: solveset(x + 1, x, 2)) def test_solve_mul(): assert solveset_real((a*x + b)*(exp(x) - 3), x) == \ Union({log(3)}, Intersection({-b/a}, S.Reals)) anz = Symbol('anz', nonzero=True) bb = Symbol('bb', real=True) assert solveset_real((anz*x + bb)*(exp(x) - 3), x) == \ FiniteSet(-bb/anz, log(3)) assert solveset_real((2*x + 8)*(8 + exp(x)), x) == FiniteSet(S(-4)) assert solveset_real(x/log(x), x) == EmptySet() def test_solve_invert(): assert solveset_real(exp(x) - 3, x) == FiniteSet(log(3)) assert solveset_real(log(x) - 3, x) == FiniteSet(exp(3)) assert solveset_real(3**(x + 2), x) == FiniteSet() assert solveset_real(3**(2 - x), x) == FiniteSet() assert solveset_real(y - b*exp(a/x), x) == Intersection( S.Reals, FiniteSet(a/log(y/b))) # issue 4504 assert solveset_real(2**x - 10, x) == FiniteSet(1 + log(5)/log(2)) def test_errorinverses(): assert solveset_real(erf(x) - S.Half, x) == \ FiniteSet(erfinv(S.Half)) assert solveset_real(erfinv(x) - 2, x) == \ FiniteSet(erf(2)) assert solveset_real(erfc(x) - S.One, x) == \ FiniteSet(erfcinv(S.One)) assert solveset_real(erfcinv(x) - 2, x) == FiniteSet(erfc(2)) def test_solve_polynomial(): x = Symbol('x', real=True) y = Symbol('y', real=True) assert solveset_real(3*x - 2, x) == FiniteSet(Rational(2, 3)) assert solveset_real(x**2 - 1, x) == FiniteSet(-S.One, S.One) assert solveset_real(x - y**3, x) == FiniteSet(y ** 3) a11, a12, a21, a22, b1, b2 = symbols('a11, a12, a21, a22, b1, b2') assert solveset_real(x**3 - 15*x - 4, x) == FiniteSet( -2 + 3 ** S.Half, S(4), -2 - 3 ** S.Half) assert solveset_real(sqrt(x) - 1, x) == FiniteSet(1) assert solveset_real(sqrt(x) - 2, x) == FiniteSet(4) assert solveset_real(x**Rational(1, 4) - 2, x) == FiniteSet(16) assert solveset_real(x**Rational(1, 3) - 3, x) == FiniteSet(27) assert len(solveset_real(x**5 + x**3 + 1, x)) == 1 assert len(solveset_real(-2*x**3 + 4*x**2 - 2*x + 6, x)) > 0 assert solveset_real(x**6 + x**4 + I, x) is S.EmptySet def test_return_root_of(): f = x**5 - 15*x**3 - 5*x**2 + 10*x + 20 s = list(solveset_complex(f, x)) for root in s: assert root.func == CRootOf # if one uses solve to get the roots of a polynomial that has a CRootOf # solution, make sure that the use of nfloat during the solve process # doesn't fail. Note: if you want numerical solutions to a polynomial # it is *much* faster to use nroots to get them than to solve the # equation only to get CRootOf solutions which are then numerically # evaluated. So for eq = x**5 + 3*x + 7 do Poly(eq).nroots() rather # than [i.n() for i in solve(eq)] to get the numerical roots of eq. assert nfloat(list(solveset_complex(x**5 + 3*x**3 + 7, x))[0], exponent=False) == CRootOf(x**5 + 3*x**3 + 7, 0).n() sol = list(solveset_complex(x**6 - 2*x + 2, x)) assert all(isinstance(i, CRootOf) for i in sol) and len(sol) == 6 f = x**5 - 15*x**3 - 5*x**2 + 10*x + 20 s = list(solveset_complex(f, x)) for root in s: assert root.func == CRootOf s = x**5 + 4*x**3 + 3*x**2 + Rational(7, 4) assert solveset_complex(s, x) == \ FiniteSet(*Poly(s*4, domain='ZZ').all_roots()) # Refer issue #7876 eq = x*(x - 1)**2*(x + 1)*(x**6 - x + 1) assert solveset_complex(eq, x) == \ FiniteSet(-1, 0, 1, CRootOf(x**6 - x + 1, 0), CRootOf(x**6 - x + 1, 1), CRootOf(x**6 - x + 1, 2), CRootOf(x**6 - x + 1, 3), CRootOf(x**6 - x + 1, 4), CRootOf(x**6 - x + 1, 5)) def test__has_rational_power(): from sympy.solvers.solveset import _has_rational_power assert _has_rational_power(sqrt(2), x)[0] is False assert _has_rational_power(x*sqrt(2), x)[0] is False assert _has_rational_power(x**2*sqrt(x), x) == (True, 2) assert _has_rational_power(sqrt(2)*x**Rational(1, 3), x) == (True, 3) assert _has_rational_power(sqrt(x)*x**Rational(1, 3), x) == (True, 6) def test_solveset_sqrt_1(): assert solveset_real(sqrt(5*x + 6) - 2 - x, x) == \ FiniteSet(-S.One, S(2)) assert solveset_real(sqrt(x - 1) - x + 7, x) == FiniteSet(10) assert solveset_real(sqrt(x - 2) - 5, x) == FiniteSet(27) assert solveset_real(sqrt(x) - 2 - 5, x) == FiniteSet(49) assert solveset_real(sqrt(x**3), x) == FiniteSet(0) assert solveset_real(sqrt(x - 1), x) == FiniteSet(1) def test_solveset_sqrt_2(): x = Symbol('x', real=True) y = Symbol('y', real=True) # http://tutorial.math.lamar.edu/Classes/Alg/SolveRadicalEqns.aspx#Solve_Rad_Ex2_a assert solveset_real(sqrt(2*x - 1) - sqrt(x - 4) - 2, x) == \ FiniteSet(S(5), S(13)) assert solveset_real(sqrt(x + 7) + 2 - sqrt(3 - x), x) == \ FiniteSet(-6) # http://www.purplemath.com/modules/solverad.htm assert solveset_real(sqrt(17*x - sqrt(x**2 - 5)) - 7, x) == \ FiniteSet(3) eq = x + 1 - (x**4 + 4*x**3 - x)**Rational(1, 4) assert solveset_real(eq, x) == FiniteSet(Rational(-1, 2), Rational(-1, 3)) eq = sqrt(2*x + 9) - sqrt(x + 1) - sqrt(x + 4) assert solveset_real(eq, x) == FiniteSet(0) eq = sqrt(x + 4) + sqrt(2*x - 1) - 3*sqrt(x - 1) assert solveset_real(eq, x) == FiniteSet(5) eq = sqrt(x)*sqrt(x - 7) - 12 assert solveset_real(eq, x) == FiniteSet(16) eq = sqrt(x - 3) + sqrt(x) - 3 assert solveset_real(eq, x) == FiniteSet(4) eq = sqrt(2*x**2 - 7) - (3 - x) assert solveset_real(eq, x) == FiniteSet(-S(8), S(2)) # others eq = sqrt(9*x**2 + 4) - (3*x + 2) assert solveset_real(eq, x) == FiniteSet(0) assert solveset_real(sqrt(x - 3) - sqrt(x) - 3, x) == FiniteSet() eq = (2*x - 5)**Rational(1, 3) - 3 assert solveset_real(eq, x) == FiniteSet(16) assert solveset_real(sqrt(x) + sqrt(sqrt(x)) - 4, x) == \ FiniteSet((Rational(-1, 2) + sqrt(17)/2)**4) eq = sqrt(x) - sqrt(x - 1) + sqrt(sqrt(x)) assert solveset_real(eq, x) == FiniteSet() eq = (sqrt(x) + sqrt(x + 1) + sqrt(1 - x) - 6*sqrt(5)/5) ans = solveset_real(eq, x) ra = S('''-1484/375 - 4*(-1/2 + sqrt(3)*I/2)*(-12459439/52734375 + 114*sqrt(12657)/78125)**(1/3) - 172564/(140625*(-1/2 + sqrt(3)*I/2)*(-12459439/52734375 + 114*sqrt(12657)/78125)**(1/3))''') rb = Rational(4, 5) assert all(abs(eq.subs(x, i).n()) < 1e-10 for i in (ra, rb)) and \ len(ans) == 2 and \ {i.n(chop=True) for i in ans} == \ {i.n(chop=True) for i in (ra, rb)} assert solveset_real(sqrt(x) + x**Rational(1, 3) + x**Rational(1, 4), x) == FiniteSet(0) assert solveset_real(x/sqrt(x**2 + 1), x) == FiniteSet(0) eq = (x - y**3)/((y**2)*sqrt(1 - y**2)) assert solveset_real(eq, x) == FiniteSet(y**3) # issue 4497 assert solveset_real(1/(5 + x)**Rational(1, 5) - 9, x) == \ FiniteSet(Rational(-295244, 59049)) @XFAIL def test_solve_sqrt_fail(): # this only works if we check real_root(eq.subs(x, Rational(1, 3))) # but checksol doesn't work like that eq = (x**3 - 3*x**2)**Rational(1, 3) + 1 - x assert solveset_real(eq, x) == FiniteSet(Rational(1, 3)) @slow def test_solve_sqrt_3(): R = Symbol('R') eq = sqrt(2)*R*sqrt(1/(R + 1)) + (R + 1)*(sqrt(2)*sqrt(1/(R + 1)) - 1) sol = solveset_complex(eq, R) fset = [Rational(5, 3) + 4*sqrt(10)*cos(atan(3*sqrt(111)/251)/3)/3, -sqrt(10)*cos(atan(3*sqrt(111)/251)/3)/3 + 40*re(1/((Rational(-1, 2) - sqrt(3)*I/2)*(Rational(251, 27) + sqrt(111)*I/9)**Rational(1, 3)))/9 + sqrt(30)*sin(atan(3*sqrt(111)/251)/3)/3 + Rational(5, 3) + I*(-sqrt(30)*cos(atan(3*sqrt(111)/251)/3)/3 - sqrt(10)*sin(atan(3*sqrt(111)/251)/3)/3 + 40*im(1/((Rational(-1, 2) - sqrt(3)*I/2)*(Rational(251, 27) + sqrt(111)*I/9)**Rational(1, 3)))/9)] cset = [40*re(1/((Rational(-1, 2) + sqrt(3)*I/2)*(Rational(251, 27) + sqrt(111)*I/9)**Rational(1, 3)))/9 - sqrt(10)*cos(atan(3*sqrt(111)/251)/3)/3 - sqrt(30)*sin(atan(3*sqrt(111)/251)/3)/3 + Rational(5, 3) + I*(40*im(1/((Rational(-1, 2) + sqrt(3)*I/2)*(Rational(251, 27) + sqrt(111)*I/9)**Rational(1, 3)))/9 - sqrt(10)*sin(atan(3*sqrt(111)/251)/3)/3 + sqrt(30)*cos(atan(3*sqrt(111)/251)/3)/3)] assert sol._args[0] == FiniteSet(*fset) assert sol._args[1] == ConditionSet( R, Eq(sqrt(2)*R*sqrt(1/(R + 1)) + (R + 1)*(sqrt(2)*sqrt(1/(R + 1)) - 1), 0), FiniteSet(*cset)) # the number of real roots will depend on the value of m: for m=1 there are 4 # and for m=-1 there are none. eq = -sqrt((m - q)**2 + (-m/(2*q) + S.Half)**2) + sqrt((-m**2/2 - sqrt( 4*m**4 - 4*m**2 + 8*m + 1)/4 - Rational(1, 4))**2 + (m**2/2 - m - sqrt( 4*m**4 - 4*m**2 + 8*m + 1)/4 - Rational(1, 4))**2) unsolved_object = ConditionSet(q, Eq(sqrt((m - q)**2 + (-m/(2*q) + S.Half)**2) - sqrt((-m**2/2 - sqrt(4*m**4 - 4*m**2 + 8*m + 1)/4 - Rational(1, 4))**2 + (m**2/2 - m - sqrt(4*m**4 - 4*m**2 + 8*m + 1)/4 - Rational(1, 4))**2), 0), S.Reals) assert solveset_real(eq, q) == unsolved_object def test_solve_polynomial_symbolic_param(): assert solveset_complex((x**2 - 1)**2 - a, x) == \ FiniteSet(sqrt(1 + sqrt(a)), -sqrt(1 + sqrt(a)), sqrt(1 - sqrt(a)), -sqrt(1 - sqrt(a))) # issue 4507 assert solveset_complex(y - b/(1 + a*x), x) == \ FiniteSet((b/y - 1)/a) - FiniteSet(-1/a) # issue 4508 assert solveset_complex(y - b*x/(a + x), x) == \ FiniteSet(-a*y/(y - b)) - FiniteSet(-a) def test_solve_rational(): assert solveset_real(1/x + 1, x) == FiniteSet(-S.One) assert solveset_real(1/exp(x) - 1, x) == FiniteSet(0) assert solveset_real(x*(1 - 5/x), x) == FiniteSet(5) assert solveset_real(2*x/(x + 2) - 1, x) == FiniteSet(2) assert solveset_real((x**2/(7 - x)).diff(x), x) == \ FiniteSet(S.Zero, S(14)) def test_solveset_real_gen_is_pow(): assert solveset_real(sqrt(1) + 1, x) == EmptySet() def test_no_sol(): assert solveset(1 - oo*x) == EmptySet() assert solveset(oo*x, x) == EmptySet() assert solveset(oo*x - oo, x) == EmptySet() assert solveset_real(4, x) == EmptySet() assert solveset_real(exp(x), x) == EmptySet() assert solveset_real(x**2 + 1, x) == EmptySet() assert solveset_real(-3*a/sqrt(x), x) == EmptySet() assert solveset_real(1/x, x) == EmptySet() assert solveset_real(-(1 + x)/(2 + x)**2 + 1/(2 + x), x) == \ EmptySet() def test_sol_zero_real(): assert solveset_real(0, x) == S.Reals assert solveset(0, x, Interval(1, 2)) == Interval(1, 2) assert solveset_real(-x**2 - 2*x + (x + 1)**2 - 1, x) == S.Reals def test_no_sol_rational_extragenous(): assert solveset_real((x/(x + 1) + 3)**(-2), x) == EmptySet() assert solveset_real((x - 1)/(1 + 1/(x - 1)), x) == EmptySet() def test_solve_polynomial_cv_1a(): """ Test for solving on equations that can be converted to a polynomial equation using the change of variable y -> x**Rational(p, q) """ assert solveset_real(sqrt(x) - 1, x) == FiniteSet(1) assert solveset_real(sqrt(x) - 2, x) == FiniteSet(4) assert solveset_real(x**Rational(1, 4) - 2, x) == FiniteSet(16) assert solveset_real(x**Rational(1, 3) - 3, x) == FiniteSet(27) assert solveset_real(x*(x**(S.One / 3) - 3), x) == \ FiniteSet(S.Zero, S(27)) def test_solveset_real_rational(): """Test solveset_real for rational functions""" x = Symbol('x', real=True) y = Symbol('y', real=True) assert solveset_real((x - y**3) / ((y**2)*sqrt(1 - y**2)), x) \ == FiniteSet(y**3) # issue 4486 assert solveset_real(2*x/(x + 2) - 1, x) == FiniteSet(2) def test_solveset_real_log(): assert solveset_real(log((x-1)*(x+1)), x) == \ FiniteSet(sqrt(2), -sqrt(2)) def test_poly_gens(): assert solveset_real(4**(2*(x**2) + 2*x) - 8, x) == \ FiniteSet(Rational(-3, 2), S.Half) def test_solve_abs(): n = Dummy('n') raises(ValueError, lambda: solveset(Abs(x) - 1, x)) assert solveset(Abs(x) - n, x, S.Reals).dummy_eq( ConditionSet(x, Contains(n, Interval(0, oo)), {-n, n})) assert solveset_real(Abs(x) - 2, x) == FiniteSet(-2, 2) assert solveset_real(Abs(x) + 2, x) is S.EmptySet assert solveset_real(Abs(x + 3) - 2*Abs(x - 3), x) == \ FiniteSet(1, 9) assert solveset_real(2*Abs(x) - Abs(x - 1), x) == \ FiniteSet(-1, Rational(1, 3)) sol = ConditionSet( x, And( Contains(b, Interval(0, oo)), Contains(a + b, Interval(0, oo)), Contains(a - b, Interval(0, oo))), FiniteSet(-a - b - 3, -a + b - 3, a - b - 3, a + b - 3)) eq = Abs(Abs(x + 3) - a) - b assert invert_real(eq, 0, x)[1] == sol reps = {a: 3, b: 1} eqab = eq.subs(reps) for si in sol.subs(reps): assert not eqab.subs(x, si) assert dumeq(solveset(Eq(sin(Abs(x)), 1), x, domain=S.Reals), Union( Intersection(Interval(0, oo), ImageSet(Lambda(n, (-1)**n*pi/2 + n*pi), S.Integers)), Intersection(Interval(-oo, 0), ImageSet(Lambda(n, n*pi - (-1)**(-n)*pi/2), S.Integers)))) def test_issue_9824(): assert dumeq(solveset(sin(x)**2 - 2*sin(x) + 1, x), ImageSet(Lambda(n, 2*n*pi + pi/2), S.Integers)) assert dumeq(solveset(cos(x)**2 - 2*cos(x) + 1, x), ImageSet(Lambda(n, 2*n*pi), S.Integers)) def test_issue_9565(): assert solveset_real(Abs((x - 1)/(x - 5)) <= Rational(1, 3), x) == Interval(-1, 2) def test_issue_10069(): eq = abs(1/(x - 1)) - 1 > 0 assert solveset_real(eq, x) == Union( Interval.open(0, 1), Interval.open(1, 2)) def test_real_imag_splitting(): a, b = symbols('a b', real=True) assert solveset_real(sqrt(a**2 - b**2) - 3, a) == \ FiniteSet(-sqrt(b**2 + 9), sqrt(b**2 + 9)) assert solveset_real(sqrt(a**2 + b**2) - 3, a) != \ S.EmptySet def test_units(): assert solveset_real(1/x - 1/(2*cm), x) == FiniteSet(2*cm) def test_solve_only_exp_1(): y = Symbol('y', positive=True) assert solveset_real(exp(x) - y, x) == FiniteSet(log(y)) assert solveset_real(exp(x) + exp(-x) - 4, x) == \ FiniteSet(log(-sqrt(3) + 2), log(sqrt(3) + 2)) assert solveset_real(exp(x) + exp(-x) - y, x) != S.EmptySet def test_atan2(): # The .inverse() method on atan2 works only if x.is_real is True and the # second argument is a real constant assert solveset_real(atan2(x, 2) - pi/3, x) == FiniteSet(2*sqrt(3)) def test_piecewise_solveset(): eq = Piecewise((x - 2, Gt(x, 2)), (2 - x, True)) - 3 assert set(solveset_real(eq, x)) == set(FiniteSet(-1, 5)) absxm3 = Piecewise( (x - 3, 0 <= x - 3), (3 - x, 0 > x - 3)) y = Symbol('y', positive=True) assert solveset_real(absxm3 - y, x) == FiniteSet(-y + 3, y + 3) f = Piecewise(((x - 2)**2, x >= 0), (0, True)) assert solveset(f, x, domain=S.Reals) == Union(FiniteSet(2), Interval(-oo, 0, True, True)) assert solveset( Piecewise((x + 1, x > 0), (I, True)) - I, x, S.Reals ) == Interval(-oo, 0) assert solveset(Piecewise((x - 1, Ne(x, I)), (x, True)), x) == FiniteSet(1) # issue 19718 g = Piecewise((1, x > 10), (0, True)) assert solveset(g > 0, x, S.Reals) == Interval.open(10, oo) from sympy.logic.boolalg import BooleanTrue f = BooleanTrue() assert solveset(f, x, domain=Interval(-3, 10)) == Interval(-3, 10) # issue 20552 f = Piecewise((0, Eq(x, 0)), (x**2/Abs(x), True)) g = Piecewise((0, Eq(x, pi)), ((x - pi)/sin(x), True)) assert solveset(f, x, domain=S.Reals) == FiniteSet(0) assert solveset(g) == FiniteSet(pi) def test_solveset_complex_polynomial(): assert solveset_complex(a*x**2 + b*x + c, x) == \ FiniteSet(-b/(2*a) - sqrt(-4*a*c + b**2)/(2*a), -b/(2*a) + sqrt(-4*a*c + b**2)/(2*a)) assert solveset_complex(x - y**3, y) == FiniteSet( (-x**Rational(1, 3))/2 + I*sqrt(3)*x**Rational(1, 3)/2, x**Rational(1, 3), (-x**Rational(1, 3))/2 - I*sqrt(3)*x**Rational(1, 3)/2) assert solveset_complex(x + 1/x - 1, x) == \ FiniteSet(S.Half + I*sqrt(3)/2, S.Half - I*sqrt(3)/2) def test_sol_zero_complex(): assert solveset_complex(0, x) == S.Complexes def test_solveset_complex_rational(): assert solveset_complex((x - 1)*(x - I)/(x - 3), x) == \ FiniteSet(1, I) assert solveset_complex((x - y**3)/((y**2)*sqrt(1 - y**2)), x) == \ FiniteSet(y**3) assert solveset_complex(-x**2 - I, x) == \ FiniteSet(-sqrt(2)/2 + sqrt(2)*I/2, sqrt(2)/2 - sqrt(2)*I/2) def test_solve_quintics(): skip("This test is too slow") f = x**5 - 110*x**3 - 55*x**2 + 2310*x + 979 s = solveset_complex(f, x) for root in s: res = f.subs(x, root.n()).n() assert tn(res, 0) f = x**5 + 15*x + 12 s = solveset_complex(f, x) for root in s: res = f.subs(x, root.n()).n() assert tn(res, 0) def test_solveset_complex_exp(): from sympy.abc import x, n assert dumeq(solveset_complex(exp(x) - 1, x), imageset(Lambda(n, I*2*n*pi), S.Integers)) assert dumeq(solveset_complex(exp(x) - I, x), imageset(Lambda(n, I*(2*n*pi + pi/2)), S.Integers)) assert solveset_complex(1/exp(x), x) == S.EmptySet assert dumeq(solveset_complex(sinh(x).rewrite(exp), x), imageset(Lambda(n, n*pi*I), S.Integers)) def test_solveset_real_exp(): from sympy.abc import x, y assert solveset(Eq((-2)**x, 4), x, S.Reals) == FiniteSet(2) assert solveset(Eq(-2**x, 4), x, S.Reals) == S.EmptySet assert solveset(Eq((-3)**x, 27), x, S.Reals) == S.EmptySet assert solveset(Eq((-5)**(x+1), 625), x, S.Reals) == FiniteSet(3) assert solveset(Eq(2**(x-3), -16), x, S.Reals) == S.EmptySet assert solveset(Eq((-3)**(x - 3), -3**39), x, S.Reals) == FiniteSet(42) assert solveset(Eq(2**x, y), x, S.Reals) == Intersection(S.Reals, FiniteSet(log(y)/log(2))) assert invert_real((-2)**(2*x) - 16, 0, x) == (x, FiniteSet(2)) def test_solve_complex_log(): assert solveset_complex(log(x), x) == FiniteSet(1) assert solveset_complex(1 - log(a + 4*x**2), x) == \ FiniteSet(-sqrt(-a + E)/2, sqrt(-a + E)/2) def test_solve_complex_sqrt(): assert solveset_complex(sqrt(5*x + 6) - 2 - x, x) == \ FiniteSet(-S.One, S(2)) assert solveset_complex(sqrt(5*x + 6) - (2 + 2*I) - x, x) == \ FiniteSet(-S(2), 3 - 4*I) assert solveset_complex(4*x*(1 - a * sqrt(x)), x) == \ FiniteSet(S.Zero, 1 / a ** 2) def test_solveset_complex_tan(): s = solveset_complex(tan(x).rewrite(exp), x) assert dumeq(s, imageset(Lambda(n, pi*n), S.Integers) - \ imageset(Lambda(n, pi*n + pi/2), S.Integers)) def test_solve_trig(): from sympy.abc import n assert dumeq(solveset_real(sin(x), x), Union(imageset(Lambda(n, 2*pi*n), S.Integers), imageset(Lambda(n, 2*pi*n + pi), S.Integers))) assert dumeq(solveset_real(sin(x) - 1, x), imageset(Lambda(n, 2*pi*n + pi/2), S.Integers)) assert dumeq(solveset_real(cos(x), x), Union(imageset(Lambda(n, 2*pi*n + pi/2), S.Integers), imageset(Lambda(n, 2*pi*n + pi*Rational(3, 2)), S.Integers))) assert dumeq(solveset_real(sin(x) + cos(x), x), Union(imageset(Lambda(n, 2*n*pi + pi*Rational(3, 4)), S.Integers), imageset(Lambda(n, 2*n*pi + pi*Rational(7, 4)), S.Integers))) assert solveset_real(sin(x)**2 + cos(x)**2, x) == S.EmptySet assert dumeq(solveset_complex(cos(x) - S.Half, x), Union(imageset(Lambda(n, 2*n*pi + pi*Rational(5, 3)), S.Integers), imageset(Lambda(n, 2*n*pi + pi/3), S.Integers))) assert dumeq(solveset(sin(y + a) - sin(y), a, domain=S.Reals), Union(ImageSet(Lambda(n, 2*n*pi), S.Integers), Intersection(ImageSet(Lambda(n, -I*(I*( 2*n*pi + arg(-exp(-2*I*y))) + 2*im(y))), S.Integers), S.Reals))) assert dumeq(solveset_real(sin(2*x)*cos(x) + cos(2*x)*sin(x)-1, x), ImageSet(Lambda(n, n*pi*Rational(2, 3) + pi/6), S.Integers)) assert dumeq(solveset_real(2*tan(x)*sin(x) + 1, x), Union( ImageSet(Lambda(n, 2*n*pi + atan(sqrt(2)*sqrt(-1 + sqrt(17))/ (1 - sqrt(17))) + pi), S.Integers), ImageSet(Lambda(n, 2*n*pi - atan(sqrt(2)*sqrt(-1 + sqrt(17))/ (1 - sqrt(17))) + pi), S.Integers))) assert dumeq(solveset_real(cos(2*x)*cos(4*x) - 1, x), ImageSet(Lambda(n, n*pi), S.Integers)) assert dumeq(solveset(sin(x/10) + Rational(3, 4)), Union( ImageSet(Lambda(n, 20*n*pi + 10*atan(3*sqrt(7)/7) + 10*pi), S.Integers), ImageSet(Lambda(n, 20*n*pi - 10*atan(3*sqrt(7)/7) + 20*pi), S.Integers))) assert dumeq(solveset(cos(x/15) + cos(x/5)), Union( ImageSet(Lambda(n, 30*n*pi + 15*pi/2), S.Integers), ImageSet(Lambda(n, 30*n*pi + 45*pi/2), S.Integers), ImageSet(Lambda(n, 30*n*pi + 75*pi/4), S.Integers), ImageSet(Lambda(n, 30*n*pi + 45*pi/4), S.Integers), ImageSet(Lambda(n, 30*n*pi + 105*pi/4), S.Integers), ImageSet(Lambda(n, 30*n*pi + 15*pi/4), S.Integers))) assert dumeq(solveset(sec(sqrt(2)*x/3) + 5), Union( ImageSet(Lambda(n, 3*sqrt(2)*(2*n*pi - pi + atan(2*sqrt(6)))/2), S.Integers), ImageSet(Lambda(n, 3*sqrt(2)*(2*n*pi - atan(2*sqrt(6)) + pi)/2), S.Integers))) assert dumeq(simplify(solveset(tan(pi*x) - cot(pi/2*x))), Union( ImageSet(Lambda(n, 4*n + 1), S.Integers), ImageSet(Lambda(n, 4*n + 3), S.Integers), ImageSet(Lambda(n, 4*n + Rational(7, 3)), S.Integers), ImageSet(Lambda(n, 4*n + Rational(5, 3)), S.Integers), ImageSet(Lambda(n, 4*n + Rational(11, 3)), S.Integers), ImageSet(Lambda(n, 4*n + Rational(1, 3)), S.Integers))) assert dumeq(solveset(cos(9*x)), Union( ImageSet(Lambda(n, 2*n*pi/9 + pi/18), S.Integers), ImageSet(Lambda(n, 2*n*pi/9 + pi/6), S.Integers))) assert dumeq(solveset(sin(8*x) + cot(12*x), x, S.Reals), Union( ImageSet(Lambda(n, n*pi/2 + pi/8), S.Integers), ImageSet(Lambda(n, n*pi/2 + 3*pi/8), S.Integers), ImageSet(Lambda(n, n*pi/2 + 5*pi/16), S.Integers), ImageSet(Lambda(n, n*pi/2 + 3*pi/16), S.Integers), ImageSet(Lambda(n, n*pi/2 + 7*pi/16), S.Integers), ImageSet(Lambda(n, n*pi/2 + pi/16), S.Integers))) # This is the only remaining solveset test that actually ends up being solved # by _solve_trig2(). All others are handled by the improved _solve_trig1. assert dumeq(solveset_real(2*cos(x)*cos(2*x) - 1, x), Union(ImageSet(Lambda(n, 2*n*pi + 2*atan(sqrt(-2*2**Rational(1, 3)*(67 + 9*sqrt(57))**Rational(2, 3) + 8*2**Rational(2, 3) + 11*(67 + 9*sqrt(57))**Rational(1, 3))/(3*(67 + 9*sqrt(57))**Rational(1, 6)))), S.Integers), ImageSet(Lambda(n, 2*n*pi - 2*atan(sqrt(-2*2**Rational(1, 3)*(67 + 9*sqrt(57))**Rational(2, 3) + 8*2**Rational(2, 3) + 11*(67 + 9*sqrt(57))**Rational(1, 3))/(3*(67 + 9*sqrt(57))**Rational(1, 6))) + 2*pi), S.Integers))) # issue #16870 assert dumeq(simplify(solveset(sin(x/180*pi) - S.Half, x, S.Reals)), Union( ImageSet(Lambda(n, 360*n + 150), S.Integers), ImageSet(Lambda(n, 360*n + 30), S.Integers))) def test_solve_hyperbolic(): # actual solver: _solve_trig1 n = Dummy('n') assert solveset(sinh(x) + cosh(x), x) == S.EmptySet assert solveset(sinh(x) + cos(x), x) == ConditionSet(x, Eq(cos(x) + sinh(x), 0), S.Complexes) assert solveset_real(sinh(x) + sech(x), x) == FiniteSet( log(sqrt(sqrt(5) - 2))) assert solveset_real(3*cosh(2*x) - 5, x) == FiniteSet( -log(3)/2, log(3)/2) assert solveset_real(sinh(x - 3) - 2, x) == FiniteSet( log((2 + sqrt(5))*exp(3))) assert solveset_real(cosh(2*x) + 2*sinh(x) - 5, x) == FiniteSet( log(-2 + sqrt(5)), log(1 + sqrt(2))) assert solveset_real((coth(x) + sinh(2*x))/cosh(x) - 3, x) == FiniteSet( log(S.Half + sqrt(5)/2), log(1 + sqrt(2))) assert solveset_real(cosh(x)*sinh(x) - 2, x) == FiniteSet( log(4 + sqrt(17))/2) assert solveset_real(sinh(x) + tanh(x) - 1, x) == FiniteSet( log(sqrt(2)/2 + sqrt(-S(1)/2 + sqrt(2)))) assert dumeq(solveset_complex(sinh(x) - I/2, x), Union( ImageSet(Lambda(n, I*(2*n*pi + 5*pi/6)), S.Integers), ImageSet(Lambda(n, I*(2*n*pi + pi/6)), S.Integers))) assert dumeq(solveset_complex(sinh(x) + sech(x), x), Union( ImageSet(Lambda(n, 2*n*I*pi + log(sqrt(-2 + sqrt(5)))), S.Integers), ImageSet(Lambda(n, I*(2*n*pi + pi/2) + log(sqrt(2 + sqrt(5)))), S.Integers), ImageSet(Lambda(n, I*(2*n*pi + pi) + log(sqrt(-2 + sqrt(5)))), S.Integers), ImageSet(Lambda(n, I*(2*n*pi - pi/2) + log(sqrt(2 + sqrt(5)))), S.Integers))) assert dumeq(solveset(sinh(x/10) + Rational(3, 4)), Union( ImageSet(Lambda(n, 10*I*(2*n*pi + pi) + 10*log(2)), S.Integers), ImageSet(Lambda(n, 20*n*I*pi - 10*log(2)), S.Integers))) assert dumeq(solveset(cosh(x/15) + cosh(x/5)), Union( ImageSet(Lambda(n, 15*I*(2*n*pi + pi/2)), S.Integers), ImageSet(Lambda(n, 15*I*(2*n*pi - pi/2)), S.Integers), ImageSet(Lambda(n, 15*I*(2*n*pi - 3*pi/4)), S.Integers), ImageSet(Lambda(n, 15*I*(2*n*pi + 3*pi/4)), S.Integers), ImageSet(Lambda(n, 15*I*(2*n*pi - pi/4)), S.Integers), ImageSet(Lambda(n, 15*I*(2*n*pi + pi/4)), S.Integers))) assert dumeq(solveset(sech(sqrt(2)*x/3) + 5), Union( ImageSet(Lambda(n, 3*sqrt(2)*I*(2*n*pi - pi + atan(2*sqrt(6)))/2), S.Integers), ImageSet(Lambda(n, 3*sqrt(2)*I*(2*n*pi - atan(2*sqrt(6)) + pi)/2), S.Integers))) assert dumeq(solveset(tanh(pi*x) - coth(pi/2*x)), Union( ImageSet(Lambda(n, 2*I*(2*n*pi + pi/2)/pi), S.Integers), ImageSet(Lambda(n, 2*I*(2*n*pi - pi/2)/pi), S.Integers))) assert dumeq(solveset(cosh(9*x)), Union( ImageSet(Lambda(n, I*(2*n*pi + pi/2)/9), S.Integers), ImageSet(Lambda(n, I*(2*n*pi - pi/2)/9), S.Integers))) # issues #9606 / #9531: assert solveset(sinh(x), x, S.Reals) == FiniteSet(0) assert dumeq(solveset(sinh(x), x, S.Complexes), Union( ImageSet(Lambda(n, I*(2*n*pi + pi)), S.Integers), ImageSet(Lambda(n, 2*n*I*pi), S.Integers))) # issues #11218 / #18427 assert dumeq(solveset(sin(pi*x), x, S.Reals), Union( ImageSet(Lambda(n, (2*n*pi + pi)/pi), S.Integers), ImageSet(Lambda(n, 2*n), S.Integers))) assert dumeq(solveset(sin(pi*x), x), Union( ImageSet(Lambda(n, (2*n*pi + pi)/pi), S.Integers), ImageSet(Lambda(n, 2*n), S.Integers))) # issue #17543 assert dumeq(simplify(solveset(I*cot(8*x - 8*E), x)), Union( ImageSet(Lambda(n, n*pi/4 - 13*pi/16 + E), S.Integers), ImageSet(Lambda(n, n*pi/4 - 11*pi/16 + E), S.Integers))) # issues #18490 / #19489 assert solveset(cosh(x) + cosh(3*x) - cosh(5*x), x, S.Reals ).dummy_eq(ConditionSet(x, Eq(cosh(x) + cosh(3*x) - cosh(5*x), 0), S.Reals)) assert solveset(sinh(8*x) + coth(12*x)).dummy_eq( ConditionSet(x, Eq(sinh(8*x) + coth(12*x), 0), S.Complexes)) def test_solve_trig_hyp_symbolic(): # actual solver: _solve_trig1 assert dumeq(solveset(sin(a*x), x), ConditionSet(x, Ne(a, 0), Union( ImageSet(Lambda(n, (2*n*pi + pi)/a), S.Integers), ImageSet(Lambda(n, 2*n*pi/a), S.Integers)))) assert dumeq(solveset(cosh(x/a), x), ConditionSet(x, Ne(a, 0), Union( ImageSet(Lambda(n, I*a*(2*n*pi + pi/2)), S.Integers), ImageSet(Lambda(n, I*a*(2*n*pi - pi/2)), S.Integers)))) assert dumeq(solveset(sin(2*sqrt(3)/3*a**2/(b*pi)*x) + cos(4*sqrt(3)/3*a**2/(b*pi)*x), x), ConditionSet(x, Ne(b, 0) & Ne(a**2, 0), Union( ImageSet(Lambda(n, sqrt(3)*pi*b*(2*n*pi + pi/2)/(2*a**2)), S.Integers), ImageSet(Lambda(n, sqrt(3)*pi*b*(2*n*pi - 5*pi/6)/(2*a**2)), S.Integers), ImageSet(Lambda(n, sqrt(3)*pi*b*(2*n*pi - pi/6)/(2*a**2)), S.Integers)))) assert dumeq(simplify(solveset(cot((1 + I)*x) - cot((3 + 3*I)*x), x)), Union( ImageSet(Lambda(n, pi*(1 - I)*(4*n + 1)/4), S.Integers), ImageSet(Lambda(n, pi*(1 - I)*(4*n - 1)/4), S.Integers))) assert dumeq(solveset(cosh((a**2 + 1)*x) - 3, x), ConditionSet(x, Ne(a**2 + 1, 0), Union( ImageSet(Lambda(n, (2*n*I*pi + log(3 - 2*sqrt(2)))/(a**2 + 1)), S.Integers), ImageSet(Lambda(n, (2*n*I*pi + log(2*sqrt(2) + 3))/(a**2 + 1)), S.Integers)))) ar = Symbol('ar', real=True) assert solveset(cosh((ar**2 + 1)*x) - 2, x, S.Reals) == FiniteSet( log(sqrt(3) + 2)/(ar**2 + 1), log(2 - sqrt(3))/(ar**2 + 1)) def test_issue_9616(): assert dumeq(solveset(sinh(x) + tanh(x) - 1, x), Union( ImageSet(Lambda(n, 2*n*I*pi + log(sqrt(2)/2 + sqrt(-S.Half + sqrt(2)))), S.Integers), ImageSet(Lambda(n, I*(2*n*pi - atan(sqrt(2)*sqrt(S.Half + sqrt(2))) + pi) + log(sqrt(1 + sqrt(2)))), S.Integers), ImageSet(Lambda(n, I*(2*n*pi + pi) + log(-sqrt(2)/2 + sqrt(-S.Half + sqrt(2)))), S.Integers), ImageSet(Lambda(n, I*(2*n*pi - pi + atan(sqrt(2)*sqrt(S.Half + sqrt(2)))) + log(sqrt(1 + sqrt(2)))), S.Integers))) f1 = (sinh(x)).rewrite(exp) f2 = (tanh(x)).rewrite(exp) assert dumeq(solveset(f1 + f2 - 1, x), Union( Complement(ImageSet( Lambda(n, I*(2*n*pi + pi) + log(-sqrt(2)/2 + sqrt(-S.Half + sqrt(2)))), S.Integers), ImageSet(Lambda(n, I*(2*n*pi + pi)/2), S.Integers)), Complement(ImageSet(Lambda(n, I*(2*n*pi - pi + atan(sqrt(2)*sqrt(S.Half + sqrt(2)))) + log(sqrt(1 + sqrt(2)))), S.Integers), ImageSet(Lambda(n, I*(2*n*pi + pi)/2), S.Integers)), Complement(ImageSet(Lambda(n, I*(2*n*pi - atan(sqrt(2)*sqrt(S.Half + sqrt(2))) + pi) + log(sqrt(1 + sqrt(2)))), S.Integers), ImageSet(Lambda(n, I*(2*n*pi + pi)/2), S.Integers)), Complement( ImageSet(Lambda(n, 2*n*I*pi + log(sqrt(2)/2 + sqrt(-S.Half + sqrt(2)))), S.Integers), ImageSet(Lambda(n, I*(2*n*pi + pi)/2), S.Integers)))) def test_solve_invalid_sol(): assert 0 not in solveset_real(sin(x)/x, x) assert 0 not in solveset_complex((exp(x) - 1)/x, x) @XFAIL def test_solve_trig_simplified(): from sympy.abc import n assert dumeq(solveset_real(sin(x), x), imageset(Lambda(n, n*pi), S.Integers)) assert dumeq(solveset_real(cos(x), x), imageset(Lambda(n, n*pi + pi/2), S.Integers)) assert dumeq(solveset_real(cos(x) + sin(x), x), imageset(Lambda(n, n*pi - pi/4), S.Integers)) def test_solveset(): f = Function('f') raises(ValueError, lambda: solveset(x + y)) assert solveset(x, 1) == S.EmptySet assert solveset(f(1)**2 + y + 1, f(1) ) == FiniteSet(-sqrt(-y - 1), sqrt(-y - 1)) assert solveset(f(1)**2 - 1, f(1), S.Reals) == FiniteSet(-1, 1) assert solveset(f(1)**2 + 1, f(1)) == FiniteSet(-I, I) assert solveset(x - 1, 1) == FiniteSet(x) assert solveset(sin(x) - cos(x), sin(x)) == FiniteSet(cos(x)) assert solveset(0, domain=S.Reals) == S.Reals assert solveset(1) == S.EmptySet assert solveset(True, domain=S.Reals) == S.Reals # issue 10197 assert solveset(False, domain=S.Reals) == S.EmptySet assert solveset(exp(x) - 1, domain=S.Reals) == FiniteSet(0) assert solveset(exp(x) - 1, x, S.Reals) == FiniteSet(0) assert solveset(Eq(exp(x), 1), x, S.Reals) == FiniteSet(0) assert solveset(exp(x) - 1, exp(x), S.Reals) == FiniteSet(1) A = Indexed('A', x) assert solveset(A - 1, A, S.Reals) == FiniteSet(1) assert solveset(x - 1 >= 0, x, S.Reals) == Interval(1, oo) assert solveset(exp(x) - 1 >= 0, x, S.Reals) == Interval(0, oo) assert dumeq(solveset(exp(x) - 1, x), imageset(Lambda(n, 2*I*pi*n), S.Integers)) assert dumeq(solveset(Eq(exp(x), 1), x), imageset(Lambda(n, 2*I*pi*n), S.Integers)) # issue 13825 assert solveset(x**2 + f(0) + 1, x) == {-sqrt(-f(0) - 1), sqrt(-f(0) - 1)} # issue 19977 assert solveset(atan(log(x)) > 0, x, domain=Interval.open(0, oo)) == Interval.open(1, oo) def test__solveset_multi(): from sympy.solvers.solveset import _solveset_multi from sympy import Reals # Basic univariate case: from sympy.abc import x assert _solveset_multi([x**2-1], [x], [S.Reals]) == FiniteSet((1,), (-1,)) # Linear systems of two equations from sympy.abc import x, y assert _solveset_multi([x+y, x+1], [x, y], [Reals, Reals]) == FiniteSet((-1, 1)) assert _solveset_multi([x+y, x+1], [y, x], [Reals, Reals]) == FiniteSet((1, -1)) assert _solveset_multi([x+y, x-y-1], [x, y], [Reals, Reals]) == FiniteSet((S(1)/2, -S(1)/2)) assert _solveset_multi([x-1, y-2], [x, y], [Reals, Reals]) == FiniteSet((1, 2)) # assert dumeq(_solveset_multi([x+y], [x, y], [Reals, Reals]), ImageSet(Lambda(x, (x, -x)), Reals)) assert dumeq(_solveset_multi([x+y], [x, y], [Reals, Reals]), Union( ImageSet(Lambda(((x,),), (x, -x)), ProductSet(Reals)), ImageSet(Lambda(((y,),), (-y, y)), ProductSet(Reals)))) assert _solveset_multi([x+y, x+y+1], [x, y], [Reals, Reals]) == S.EmptySet assert _solveset_multi([x+y, x-y, x-1], [x, y], [Reals, Reals]) == S.EmptySet assert _solveset_multi([x+y, x-y, x-1], [y, x], [Reals, Reals]) == S.EmptySet # Systems of three equations: from sympy.abc import x, y, z assert _solveset_multi([x+y+z-1, x+y-z-2, x-y-z-3], [x, y, z], [Reals, Reals, Reals]) == FiniteSet((2, -S.Half, -S.Half)) # Nonlinear systems: from sympy.abc import r, theta, z, x, y assert _solveset_multi([x**2+y**2-2, x+y], [x, y], [Reals, Reals]) == FiniteSet((-1, 1), (1, -1)) assert _solveset_multi([x**2-1, y], [x, y], [Reals, Reals]) == FiniteSet((1, 0), (-1, 0)) #assert _solveset_multi([x**2-y**2], [x, y], [Reals, Reals]) == Union( # ImageSet(Lambda(x, (x, -x)), Reals), ImageSet(Lambda(x, (x, x)), Reals)) assert dumeq(_solveset_multi([x**2-y**2], [x, y], [Reals, Reals]), Union( ImageSet(Lambda(((x,),), (x, -Abs(x))), ProductSet(Reals)), ImageSet(Lambda(((x,),), (x, Abs(x))), ProductSet(Reals)), ImageSet(Lambda(((y,),), (-Abs(y), y)), ProductSet(Reals)), ImageSet(Lambda(((y,),), (Abs(y), y)), ProductSet(Reals)))) assert _solveset_multi([r*cos(theta)-1, r*sin(theta)], [theta, r], [Interval(0, pi), Interval(-1, 1)]) == FiniteSet((0, 1), (pi, -1)) assert _solveset_multi([r*cos(theta)-1, r*sin(theta)], [r, theta], [Interval(0, 1), Interval(0, pi)]) == FiniteSet((1, 0)) #assert _solveset_multi([r*cos(theta)-r, r*sin(theta)], [r, theta], # [Interval(0, 1), Interval(0, pi)]) == ? assert dumeq(_solveset_multi([r*cos(theta)-r, r*sin(theta)], [r, theta], [Interval(0, 1), Interval(0, pi)]), Union( ImageSet(Lambda(((r,),), (r, 0)), ImageSet(Lambda(r, (r,)), Interval(0, 1))), ImageSet(Lambda(((theta,),), (0, theta)), ImageSet(Lambda(theta, (theta,)), Interval(0, pi))))) def test_conditionset(): assert solveset(Eq(sin(x)**2 + cos(x)**2, 1), x, domain=S.Reals ) is S.Reals assert solveset(Eq(x**2 + x*sin(x), 1), x, domain=S.Reals ).dummy_eq(ConditionSet(x, Eq(x**2 + x*sin(x) - 1, 0), S.Reals)) assert dumeq(solveset(Eq(-I*(exp(I*x) - exp(-I*x))/2, 1), x ), imageset(Lambda(n, 2*n*pi + pi/2), S.Integers)) assert solveset(x + sin(x) > 1, x, domain=S.Reals ).dummy_eq(ConditionSet(x, x + sin(x) > 1, S.Reals)) assert solveset(Eq(sin(Abs(x)), x), x, domain=S.Reals ).dummy_eq(ConditionSet(x, Eq(-x + sin(Abs(x)), 0), S.Reals)) assert solveset(y**x-z, x, S.Reals ).dummy_eq(FiniteSet(log(z)/log(y))) @XFAIL def test_conditionset_equality(): ''' Checking equality of different representations of ConditionSet''' assert solveset(Eq(tan(x), y), x) == ConditionSet(x, Eq(tan(x), y), S.Complexes) def test_solveset_domain(): assert solveset(x**2 - x - 6, x, Interval(0, oo)) == FiniteSet(3) assert solveset(x**2 - 1, x, Interval(0, oo)) == FiniteSet(1) assert solveset(x**4 - 16, x, Interval(0, 10)) == FiniteSet(2) def test_improve_coverage(): from sympy.solvers.solveset import _has_rational_power solution = solveset(exp(x) + sin(x), x, S.Reals) unsolved_object = ConditionSet(x, Eq(exp(x) + sin(x), 0), S.Reals) assert solution.dummy_eq(unsolved_object) assert _has_rational_power(sin(x)*exp(x) + 1, x) == (False, S.One) assert _has_rational_power((sin(x)**2)*(exp(x) + 1)**3, x) == (False, S.One) def test_issue_9522(): expr1 = Eq(1/(x**2 - 4) + x, 1/(x**2 - 4) + 2) expr2 = Eq(1/x + x, 1/x) assert solveset(expr1, x, S.Reals) == EmptySet() assert solveset(expr2, x, S.Reals) == EmptySet() def test_solvify(): assert solvify(x**2 + 10, x, S.Reals) == [] assert solvify(x**3 + 1, x, S.Complexes) == [-1, S.Half - sqrt(3)*I/2, S.Half + sqrt(3)*I/2] assert solvify(log(x), x, S.Reals) == [1] assert solvify(cos(x), x, S.Reals) == [pi/2, pi*Rational(3, 2)] assert solvify(sin(x) + 1, x, S.Reals) == [pi*Rational(3, 2)] raises(NotImplementedError, lambda: solvify(sin(exp(x)), x, S.Complexes)) def test_abs_invert_solvify(): assert solvify(sin(Abs(x)), x, S.Reals) is None def test_linear_eq_to_matrix(): eqns1 = [2*x + y - 2*z - 3, x - y - z, x + y + 3*z - 12] eqns2 = [Eq(3*x + 2*y - z, 1), Eq(2*x - 2*y + 4*z, -2), -2*x + y - 2*z] A, B = linear_eq_to_matrix(eqns1, x, y, z) assert A == Matrix([[2, 1, -2], [1, -1, -1], [1, 1, 3]]) assert B == Matrix([[3], [0], [12]]) A, B = linear_eq_to_matrix(eqns2, x, y, z) assert A == Matrix([[3, 2, -1], [2, -2, 4], [-2, 1, -2]]) assert B == Matrix([[1], [-2], [0]]) # Pure symbolic coefficients eqns3 = [a*b*x + b*y + c*z - d, e*x + d*x + f*y + g*z - h, i*x + j*y + k*z - l] A, B = linear_eq_to_matrix(eqns3, x, y, z) assert A == Matrix([[a*b, b, c], [d + e, f, g], [i, j, k]]) assert B == Matrix([[d], [h], [l]]) # raise ValueError if # 1) no symbols are given raises(ValueError, lambda: linear_eq_to_matrix(eqns3)) # 2) there are duplicates raises(ValueError, lambda: linear_eq_to_matrix(eqns3, [x, x, y])) # 3) there are non-symbols raises(ValueError, lambda: linear_eq_to_matrix(eqns3, [x, 1/a, y])) # 4) a nonlinear term is detected in the original expression raises(NonlinearError, lambda: linear_eq_to_matrix(Eq(1/x + x, 1/x), [x])) assert linear_eq_to_matrix(1, x) == (Matrix([[0]]), Matrix([[-1]])) # issue 15195 assert linear_eq_to_matrix(x + y*(z*(3*x + 2) + 3), x) == ( Matrix([[3*y*z + 1]]), Matrix([[-y*(2*z + 3)]])) assert linear_eq_to_matrix(Matrix( [[a*x + b*y - 7], [5*x + 6*y - c]]), x, y) == ( Matrix([[a, b], [5, 6]]), Matrix([[7], [c]])) # issue 15312 assert linear_eq_to_matrix(Eq(x + 2, 1), x) == ( Matrix([[1]]), Matrix([[-1]])) def test_issue_16577(): assert linear_eq_to_matrix(Eq(a*(2*x + 3*y) + 4*y, 5), x, y) == ( Matrix([[2*a, 3*a + 4]]), Matrix([[5]])) def test_linsolve(): x1, x2, x3, x4 = symbols('x1, x2, x3, x4') # Test for different input forms M = Matrix([[1, 2, 1, 1, 7], [1, 2, 2, -1, 12], [2, 4, 0, 6, 4]]) system1 = A, B = M[:, :-1], M[:, -1] Eqns = [x1 + 2*x2 + x3 + x4 - 7, x1 + 2*x2 + 2*x3 - x4 - 12, 2*x1 + 4*x2 + 6*x4 - 4] sol = FiniteSet((-2*x2 - 3*x4 + 2, x2, 2*x4 + 5, x4)) assert linsolve(Eqns, (x1, x2, x3, x4)) == sol assert linsolve(Eqns, *(x1, x2, x3, x4)) == sol assert linsolve(system1, (x1, x2, x3, x4)) == sol assert linsolve(system1, *(x1, x2, x3, x4)) == sol # issue 9667 - symbols can be Dummy symbols x1, x2, x3, x4 = symbols('x:4', cls=Dummy) assert linsolve(system1, x1, x2, x3, x4) == FiniteSet( (-2*x2 - 3*x4 + 2, x2, 2*x4 + 5, x4)) # raise ValueError for garbage value raises(ValueError, lambda: linsolve(Eqns)) raises(ValueError, lambda: linsolve(x1)) raises(ValueError, lambda: linsolve(x1, x2)) raises(ValueError, lambda: linsolve((A,), x1, x2)) raises(ValueError, lambda: linsolve(A, B, x1, x2)) #raise ValueError if equations are non-linear in given variables raises(NonlinearError, lambda: linsolve([x + y - 1, x ** 2 + y - 3], [x, y])) raises(NonlinearError, lambda: linsolve([cos(x) + y, x + y], [x, y])) assert linsolve([x + z - 1, x ** 2 + y - 3], [z, y]) == {(-x + 1, -x**2 + 3)} # Fully symbolic test A = Matrix([[a, b], [c, d]]) B = Matrix([[e], [g]]) system2 = (A, B) sol = FiniteSet(((-b*g + d*e)/(a*d - b*c), (a*g - c*e)/(a*d - b*c))) assert linsolve(system2, [x, y]) == sol # No solution A = Matrix([[1, 2, 3], [2, 4, 6], [3, 6, 9]]) B = Matrix([0, 0, 1]) assert linsolve((A, B), (x, y, z)) == EmptySet() # Issue #10056 A, B, J1, J2 = symbols('A B J1 J2') Augmatrix = Matrix([ [2*I*J1, 2*I*J2, -2/J1], [-2*I*J2, -2*I*J1, 2/J2], [0, 2, 2*I/(J1*J2)], [2, 0, 0], ]) assert linsolve(Augmatrix, A, B) == FiniteSet((0, I/(J1*J2))) # Issue #10121 - Assignment of free variables Augmatrix = Matrix([[0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0]]) assert linsolve(Augmatrix, a, b, c, d, e) == FiniteSet((a, 0, c, 0, e)) #raises(IndexError, lambda: linsolve(Augmatrix, a, b, c)) x0, x1, x2, _x0 = symbols('tau0 tau1 tau2 _tau0') assert linsolve(Matrix([[0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, _x0]]) ) == FiniteSet((x0, 0, x1, _x0, x2)) x0, x1, x2, _x0 = symbols('tau00 tau01 tau02 tau0') assert linsolve(Matrix([[0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, _x0]]) ) == FiniteSet((x0, 0, x1, _x0, x2)) x0, x1, x2, _x0 = symbols('tau00 tau01 tau02 tau1') assert linsolve(Matrix([[0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, _x0]]) ) == FiniteSet((x0, 0, x1, _x0, x2)) # symbols can be given as generators x0, x2, x4 = symbols('x0, x2, x4') assert linsolve(Augmatrix, numbered_symbols('x') ) == FiniteSet((x0, 0, x2, 0, x4)) Augmatrix[-1, -1] = x0 # use Dummy to avoid clash; the names may clash but the symbols # will not Augmatrix[-1, -1] = symbols('_x0') assert len(linsolve( Augmatrix, numbered_symbols('x', cls=Dummy)).free_symbols) == 4 # Issue #12604 f = Function('f') assert linsolve([f(x) - 5], f(x)) == FiniteSet((5,)) # Issue #14860 from sympy.physics.units import meter, newton, kilo kN = kilo*newton Eqns = [8*kN + x + y, 28*kN*meter + 3*x*meter] assert linsolve(Eqns, x, y) == { (kilo*newton*Rational(-28, 3), kN*Rational(4, 3))} # linsolve fully expands expressions, so removable singularities # and other nonlinearity does not raise an error assert linsolve([Eq(x, x + y)], [x, y]) == {(x, 0)} assert linsolve([Eq(1/x, 1/x + y)], [x, y]) == {(x, 0)} assert linsolve([Eq(y/x, y/x + y)], [x, y]) == {(x, 0)} assert linsolve([Eq(x*(x + 1), x**2 + y)], [x, y]) == {(y, y)} def test_linsolve_large_sparse(): # # This is mainly a performance test # def _mk_eqs_sol(n): xs = symbols('x:{}'.format(n)) ys = symbols('y:{}'.format(n)) syms = xs + ys eqs = [] sol = (-S.Half,) * n + (S.Half,) * n for xi, yi in zip(xs, ys): eqs.extend([xi + yi, xi - yi + 1]) return eqs, syms, FiniteSet(sol) n = 500 eqs, syms, sol = _mk_eqs_sol(n) assert linsolve(eqs, syms) == sol def test_linsolve_immutable(): A = ImmutableDenseMatrix([[1, 1, 2], [0, 1, 2], [0, 0, 1]]) B = ImmutableDenseMatrix([2, 1, -1]) assert linsolve([A, B], (x, y, z)) == FiniteSet((1, 3, -1)) A = ImmutableDenseMatrix([[1, 1, 7], [1, -1, 3]]) assert linsolve(A) == FiniteSet((5, 2)) def test_solve_decomposition(): n = Dummy('n') f1 = exp(3*x) - 6*exp(2*x) + 11*exp(x) - 6 f2 = sin(x)**2 - 2*sin(x) + 1 f3 = sin(x)**2 - sin(x) f4 = sin(x + 1) f5 = exp(x + 2) - 1 f6 = 1/log(x) f7 = 1/x s1 = ImageSet(Lambda(n, 2*n*pi), S.Integers) s2 = ImageSet(Lambda(n, 2*n*pi + pi), S.Integers) s3 = ImageSet(Lambda(n, 2*n*pi + pi/2), S.Integers) s4 = ImageSet(Lambda(n, 2*n*pi - 1), S.Integers) s5 = ImageSet(Lambda(n, 2*n*pi - 1 + pi), S.Integers) assert solve_decomposition(f1, x, S.Reals) == FiniteSet(0, log(2), log(3)) assert dumeq(solve_decomposition(f2, x, S.Reals), s3) assert dumeq(solve_decomposition(f3, x, S.Reals), Union(s1, s2, s3)) assert dumeq(solve_decomposition(f4, x, S.Reals), Union(s4, s5)) assert solve_decomposition(f5, x, S.Reals) == FiniteSet(-2) assert solve_decomposition(f6, x, S.Reals) == S.EmptySet assert solve_decomposition(f7, x, S.Reals) == S.EmptySet assert solve_decomposition(x, x, Interval(1, 2)) == S.EmptySet # nonlinsolve testcases def test_nonlinsolve_basic(): assert nonlinsolve([],[]) == S.EmptySet assert nonlinsolve([],[x, y]) == S.EmptySet system = [x, y - x - 5] assert nonlinsolve([x],[x, y]) == FiniteSet((0, y)) assert nonlinsolve(system, [y]) == FiniteSet((x + 5,)) soln = (ImageSet(Lambda(n, 2*n*pi + pi/2), S.Integers),) assert dumeq(nonlinsolve([sin(x) - 1], [x]), FiniteSet(tuple(soln))) assert nonlinsolve([x**2 - 1], [x]) == FiniteSet((-1,), (1,)) soln = FiniteSet((y, y)) assert nonlinsolve([x - y, 0], x, y) == soln assert nonlinsolve([0, x - y], x, y) == soln assert nonlinsolve([x - y, x - y], x, y) == soln assert nonlinsolve([x, 0], x, y) == FiniteSet((0, y)) f = Function('f') assert nonlinsolve([f(x), 0], f(x), y) == FiniteSet((0, y)) assert nonlinsolve([f(x), 0], f(x), f(y)) == FiniteSet((0, f(y))) A = Indexed('A', x) assert nonlinsolve([A, 0], A, y) == FiniteSet((0, y)) assert nonlinsolve([x**2 -1], [sin(x)]) == FiniteSet((S.EmptySet,)) assert nonlinsolve([x**2 -1], sin(x)) == FiniteSet((S.EmptySet,)) assert nonlinsolve([x**2 -1], 1) == FiniteSet((x**2,)) assert nonlinsolve([x**2 -1], x + y) == FiniteSet((S.EmptySet,)) def test_nonlinsolve_abs(): soln = FiniteSet((x, Abs(x))) assert nonlinsolve([Abs(x) - y], x, y) == soln def test_raise_exception_nonlinsolve(): raises(IndexError, lambda: nonlinsolve([x**2 -1], [])) raises(ValueError, lambda: nonlinsolve([x**2 -1])) raises(NotImplementedError, lambda: nonlinsolve([(x+y)**2 - 9, x**2 - y**2 - 0.75], (x, y))) def test_trig_system(): # TODO: add more simple testcases when solveset returns # simplified soln for Trig eq assert nonlinsolve([sin(x) - 1, cos(x) -1 ], x) == S.EmptySet soln1 = (ImageSet(Lambda(n, 2*n*pi + pi/2), S.Integers),) soln = FiniteSet(soln1) assert dumeq(nonlinsolve([sin(x) - 1, cos(x)], x), soln) @XFAIL def test_trig_system_fail(): # fails because solveset trig solver is not much smart. sys = [x + y - pi/2, sin(x) + sin(y) - 1] # solveset returns conditionset for sin(x) + sin(y) - 1 soln_1 = (ImageSet(Lambda(n, n*pi + pi/2), S.Integers), ImageSet(Lambda(n, n*pi)), S.Integers) soln_1 = FiniteSet(soln_1) soln_2 = (ImageSet(Lambda(n, n*pi), S.Integers), ImageSet(Lambda(n, n*pi+ pi/2), S.Integers)) soln_2 = FiniteSet(soln_2) soln = soln_1 + soln_2 assert dumeq(nonlinsolve(sys, [x, y]), soln) # Add more cases from here # http://www.vitutor.com/geometry/trigonometry/equations_systems.html#uno sys = [sin(x) + sin(y) - (sqrt(3)+1)/2, sin(x) - sin(y) - (sqrt(3) - 1)/2] soln_x = Union(ImageSet(Lambda(n, 2*n*pi + pi/3), S.Integers), ImageSet(Lambda(n, 2*n*pi + pi*Rational(2, 3)), S.Integers)) soln_y = Union(ImageSet(Lambda(n, 2*n*pi + pi/6), S.Integers), ImageSet(Lambda(n, 2*n*pi + pi*Rational(5, 6)), S.Integers)) assert dumeq(nonlinsolve(sys, [x, y]), FiniteSet((soln_x, soln_y))) def test_nonlinsolve_positive_dimensional(): x, y, z, a, b, c, d = symbols('x, y, z, a, b, c, d', extended_real=True) assert nonlinsolve([x*y, x*y - x], [x, y]) == FiniteSet((0, y)) system = [a**2 + a*c, a - b] assert nonlinsolve(system, [a, b]) == FiniteSet((0, 0), (-c, -c)) # here (a= 0, b = 0) is independent soln so both is printed. # if symbols = [a, b, c] then only {a : -c ,b : -c} eq1 = a + b + c + d eq2 = a*b + b*c + c*d + d*a eq3 = a*b*c + b*c*d + c*d*a + d*a*b eq4 = a*b*c*d - 1 system = [eq1, eq2, eq3, eq4] sol1 = (-1/d, -d, 1/d, FiniteSet(d) - FiniteSet(0)) sol2 = (1/d, -d, -1/d, FiniteSet(d) - FiniteSet(0)) soln = FiniteSet(sol1, sol2) assert nonlinsolve(system, [a, b, c, d]) == soln def test_nonlinsolve_polysys(): x, y, z = symbols('x, y, z', real=True) assert nonlinsolve([x**2 + y - 2, x**2 + y], [x, y]) == S.EmptySet s = (-y + 2, y) assert nonlinsolve([(x + y)**2 - 4, x + y - 2], [x, y]) == FiniteSet(s) system = [x**2 - y**2] soln_real = FiniteSet((-y, y), (y, y)) soln_complex = FiniteSet((-Abs(y), y), (Abs(y), y)) soln =soln_real + soln_complex assert nonlinsolve(system, [x, y]) == soln system = [x**2 - y**2] soln_real= FiniteSet((y, -y), (y, y)) soln_complex = FiniteSet((y, -Abs(y)), (y, Abs(y))) soln = soln_real + soln_complex assert nonlinsolve(system, [y, x]) == soln system = [x**2 + y - 3, x - y - 4] assert nonlinsolve(system, (x, y)) != nonlinsolve(system, (y, x)) def test_nonlinsolve_using_substitution(): x, y, z, n = symbols('x, y, z, n', real = True) system = [(x + y)*n - y**2 + 2] s_x = (n*y - y**2 + 2)/n soln = (-s_x, y) assert nonlinsolve(system, [x, y]) == FiniteSet(soln) # def test_nonlinsolve_using_substitution1(): # n = Dummy('n') # system = [z**2*x**2 - z**2*y**2/exp(x)] # syms = [y, x, z] # lam1 = Lambda(n, 2*LambertW(-y/2, n) # soln1 = (ImageSet(lam1, S.Integers), y, z) # lam2 = Lambda(n, 2*LambertW(y/2, n)) # soln2 = (ImageSet(lam2, S.Integers), y, z) # assert dumeq(nonlinsolve(system,syms) , { (x, y, 0), soln1, soln2}) def test_nonlinsolve_complex(): n = Dummy('n') assert dumeq(nonlinsolve([exp(x) - sin(y), 1/y - 3], [x, y]), { (ImageSet(Lambda(n, 2*n*I*pi + log(sin(Rational(1, 3)))), S.Integers), Rational(1, 3))}) system = [exp(x) - sin(y), 1/exp(y) - 3] assert dumeq(nonlinsolve(system, [x, y]), { (ImageSet(Lambda(n, I*(2*n*pi + pi) + log(sin(log(3)))), S.Integers), -log(3)), (ImageSet(Lambda(n, I*(2*n*pi + arg(sin(2*n*I*pi - log(3)))) + log(Abs(sin(2*n*I*pi - log(3))))), S.Integers), ImageSet(Lambda(n, 2*n*I*pi - log(3)), S.Integers))}) system = [exp(x) - sin(y), y**2 - 4] assert dumeq(nonlinsolve(system, [x, y]), { (ImageSet(Lambda(n, I*(2*n*pi + pi) + log(sin(2))), S.Integers), -2), (ImageSet(Lambda(n, 2*n*I*pi + log(sin(2))), S.Integers), 2)}) @XFAIL def test_solve_nonlinear_trans(): # After the transcendental equation solver these will work x, y, z = symbols('x, y, z', real=True) soln1 = FiniteSet((2*LambertW(y/2), y)) soln2 = FiniteSet((-x*sqrt(exp(x)), y), (x*sqrt(exp(x)), y)) soln3 = FiniteSet((x*exp(x/2), x)) soln4 = FiniteSet(2*LambertW(y/2), y) assert nonlinsolve([x**2 - y**2/exp(x)], [x, y]) == soln1 assert nonlinsolve([x**2 - y**2/exp(x)], [y, x]) == soln2 assert nonlinsolve([x**2 - y**2/exp(x)], [y, x]) == soln3 assert nonlinsolve([x**2 - y**2/exp(x)], [x, y]) == soln4 def test_issue_5132_1(): system = [sqrt(x**2 + y**2) - sqrt(10), x + y - 4] assert nonlinsolve(system, [x, y]) == FiniteSet((1, 3), (3, 1)) n = Dummy('n') eqs = [exp(x)**2 - sin(y) + z**2, 1/exp(y) - 3] s_real_y = -log(3) s_real_z = sqrt(-exp(2*x) - sin(log(3))) soln_real = FiniteSet((s_real_y, s_real_z), (s_real_y, -s_real_z)) lam = Lambda(n, 2*n*I*pi + -log(3)) s_complex_y = ImageSet(lam, S.Integers) lam = Lambda(n, sqrt(-exp(2*x) + sin(2*n*I*pi + -log(3)))) s_complex_z_1 = ImageSet(lam, S.Integers) lam = Lambda(n, -sqrt(-exp(2*x) + sin(2*n*I*pi + -log(3)))) s_complex_z_2 = ImageSet(lam, S.Integers) soln_complex = FiniteSet( (s_complex_y, s_complex_z_1), (s_complex_y, s_complex_z_2) ) soln = soln_real + soln_complex assert dumeq(nonlinsolve(eqs, [y, z]), soln) def test_issue_5132_2(): x, y = symbols('x, y', real=True) eqs = [exp(x)**2 - sin(y) + z**2, 1/exp(y) - 3] n = Dummy('n') soln_real = (log(-z**2 + sin(y))/2, z) lam = Lambda( n, I*(2*n*pi + arg(-z**2 + sin(y)))/2 + log(Abs(z**2 - sin(y)))/2) img = ImageSet(lam, S.Integers) # not sure about the complex soln. But it looks correct. soln_complex = (img, z) soln = FiniteSet(soln_real, soln_complex) assert dumeq(nonlinsolve(eqs, [x, z]), soln) system = [r - x**2 - y**2, tan(t) - y/x] s_x = sqrt(r/(tan(t)**2 + 1)) s_y = sqrt(r/(tan(t)**2 + 1))*tan(t) soln = FiniteSet((s_x, s_y), (-s_x, -s_y)) assert nonlinsolve(system, [x, y]) == soln def test_issue_6752(): a,b,c,d = symbols('a, b, c, d', real=True) assert nonlinsolve([a**2 + a, a - b], [a, b]) == {(-1, -1), (0, 0)} @SKIP("slow") def test_issue_5114_solveset(): # slow testcase from sympy.abc import d, e, f, g, h, i, j, k, l, o, p, q, r # there is no 'a' in the equation set but this is how the # problem was originally posed syms = [a, b, c, f, h, k, n] eqs = [b + r/d - c/d, c*(1/d + 1/e + 1/g) - f/g - r/d, f*(1/g + 1/i + 1/j) - c/g - h/i, h*(1/i + 1/l + 1/m) - f/i - k/m, k*(1/m + 1/o + 1/p) - h/m - n/p, n*(1/p + 1/q) - k/p] assert len(nonlinsolve(eqs, syms)) == 1 @SKIP("Hangs") def _test_issue_5335(): # Not able to check zero dimensional system. # is_zero_dimensional Hangs lam, a0, conc = symbols('lam a0 conc') eqs = [lam + 2*y - a0*(1 - x/2)*x - 0.005*x/2*x, a0*(1 - x/2)*x - 1*y - 0.743436700916726*y, x + y - conc] sym = [x, y, a0] # there are 4 solutions but only two are valid assert len(nonlinsolve(eqs, sym)) == 2 # float eqs = [lam + 2*y - a0*(1 - x/2)*x - 0.005*x/2*x, a0*(1 - x/2)*x - 1*y - 0.743436700916726*y, x + y - conc] sym = [x, y, a0] assert len(nonlinsolve(eqs, sym)) == 2 def test_issue_2777(): # the equations represent two circles x, y = symbols('x y', real=True) e1, e2 = sqrt(x**2 + y**2) - 10, sqrt(y**2 + (-x + 10)**2) - 3 a, b = Rational(191, 20), 3*sqrt(391)/20 ans = {(a, -b), (a, b)} assert nonlinsolve((e1, e2), (x, y)) == ans assert nonlinsolve((e1, e2/(x - a)), (x, y)) == S.EmptySet # make the 2nd circle's radius be -3 e2 += 6 assert nonlinsolve((e1, e2), (x, y)) == S.EmptySet def test_issue_8828(): x1 = 0 y1 = -620 r1 = 920 x2 = 126 y2 = 276 x3 = 51 y3 = 205 r3 = 104 v = [x, y, z] f1 = (x - x1)**2 + (y - y1)**2 - (r1 - z)**2 f2 = (x2 - x)**2 + (y2 - y)**2 - z**2 f3 = (x - x3)**2 + (y - y3)**2 - (r3 - z)**2 F = [f1, f2, f3] g1 = sqrt((x - x1)**2 + (y - y1)**2) + z - r1 g2 = f2 g3 = sqrt((x - x3)**2 + (y - y3)**2) + z - r3 G = [g1, g2, g3] # both soln same A = nonlinsolve(F, v) B = nonlinsolve(G, v) assert A == B def test_nonlinsolve_conditionset(): # when solveset failed to solve all the eq # return conditionset f = Function('f') f1 = f(x) - pi/2 f2 = f(y) - pi*Rational(3, 2) intermediate_system = Eq(2*f(x) - pi, 0) & Eq(2*f(y) - 3*pi, 0) symbols = Tuple(x, y) soln = ConditionSet( symbols, intermediate_system, S.Complexes**2) assert nonlinsolve([f1, f2], [x, y]) == soln def test_substitution_basic(): assert substitution([], [x, y]) == S.EmptySet assert substitution([], []) == S.EmptySet system = [2*x**2 + 3*y**2 - 30, 3*x**2 - 2*y**2 - 19] soln = FiniteSet((-3, -2), (-3, 2), (3, -2), (3, 2)) assert substitution(system, [x, y]) == soln soln = FiniteSet((-1, 1)) assert substitution([x + y], [x], [{y: 1}], [y], set(), [x, y]) == soln assert substitution( [x + y], [x], [{y: 1}], [y], {x + 1}, [y, x]) == S.EmptySet def test_issue_5132_substitution(): x, y, z, r, t = symbols('x, y, z, r, t', real=True) system = [r - x**2 - y**2, tan(t) - y/x] s_x_1 = Complement(FiniteSet(-sqrt(r/(tan(t)**2 + 1))), FiniteSet(0)) s_x_2 = Complement(FiniteSet(sqrt(r/(tan(t)**2 + 1))), FiniteSet(0)) s_y = sqrt(r/(tan(t)**2 + 1))*tan(t) soln = FiniteSet((s_x_2, s_y)) + FiniteSet((s_x_1, -s_y)) assert substitution(system, [x, y]) == soln n = Dummy('n') eqs = [exp(x)**2 - sin(y) + z**2, 1/exp(y) - 3] s_real_y = -log(3) s_real_z = sqrt(-exp(2*x) - sin(log(3))) soln_real = FiniteSet((s_real_y, s_real_z), (s_real_y, -s_real_z)) lam = Lambda(n, 2*n*I*pi + -log(3)) s_complex_y = ImageSet(lam, S.Integers) lam = Lambda(n, sqrt(-exp(2*x) + sin(2*n*I*pi + -log(3)))) s_complex_z_1 = ImageSet(lam, S.Integers) lam = Lambda(n, -sqrt(-exp(2*x) + sin(2*n*I*pi + -log(3)))) s_complex_z_2 = ImageSet(lam, S.Integers) soln_complex = FiniteSet( (s_complex_y, s_complex_z_1), (s_complex_y, s_complex_z_2)) soln = soln_real + soln_complex assert dumeq(substitution(eqs, [y, z]), soln) def test_raises_substitution(): raises(ValueError, lambda: substitution([x**2 -1], [])) raises(TypeError, lambda: substitution([x**2 -1])) raises(ValueError, lambda: substitution([x**2 -1], [sin(x)])) raises(TypeError, lambda: substitution([x**2 -1], x)) raises(TypeError, lambda: substitution([x**2 -1], 1)) # end of tests for nonlinsolve def test_issue_9556(): b = Symbol('b', positive=True) assert solveset(Abs(x) + 1, x, S.Reals) == EmptySet() assert solveset(Abs(x) + b, x, S.Reals) == EmptySet() assert solveset(Eq(b, -1), b, S.Reals) == EmptySet() def test_issue_9611(): assert solveset(Eq(x - x + a, a), x, S.Reals) == S.Reals assert solveset(Eq(y - y + a, a), y) == S.Complexes def test_issue_9557(): assert solveset(x**2 + a, x, S.Reals) == Intersection(S.Reals, FiniteSet(-sqrt(-a), sqrt(-a))) def test_issue_9778(): x = Symbol('x', real=True) y = Symbol('y', real=True) assert solveset(x**3 + 1, x, S.Reals) == FiniteSet(-1) assert solveset(x**Rational(3, 5) + 1, x, S.Reals) == S.EmptySet assert solveset(x**3 + y, x, S.Reals) == \ FiniteSet(-Abs(y)**Rational(1, 3)*sign(y)) def test_issue_10214(): assert solveset(x**Rational(3, 2) + 4, x, S.Reals) == S.EmptySet assert solveset(x**(Rational(-3, 2)) + 4, x, S.Reals) == S.EmptySet ans = FiniteSet(-2**Rational(2, 3)) assert solveset(x**(S(3)) + 4, x, S.Reals) == ans assert (x**(S(3)) + 4).subs(x,list(ans)[0]) == 0 # substituting ans and verifying the result. assert (x**(S(3)) + 4).subs(x,-(-2)**Rational(2, 3)) == 0 def test_issue_9849(): assert solveset(Abs(sin(x)) + 1, x, S.Reals) == S.EmptySet def test_issue_9953(): assert linsolve([ ], x) == S.EmptySet def test_issue_9913(): assert solveset(2*x + 1/(x - 10)**2, x, S.Reals) == \ FiniteSet(-(3*sqrt(24081)/4 + Rational(4027, 4))**Rational(1, 3)/3 - 100/ (3*(3*sqrt(24081)/4 + Rational(4027, 4))**Rational(1, 3)) + Rational(20, 3)) def test_issue_10397(): assert solveset(sqrt(x), x, S.Complexes) == FiniteSet(0) def test_issue_14987(): raises(ValueError, lambda: linear_eq_to_matrix( [x**2], x)) raises(ValueError, lambda: linear_eq_to_matrix( [x*(-3/x + 1) + 2*y - a], [x, y])) raises(ValueError, lambda: linear_eq_to_matrix( [(x**2 - 3*x)/(x - 3) - 3], x)) raises(ValueError, lambda: linear_eq_to_matrix( [(x + 1)**3 - x**3 - 3*x**2 + 7], x)) raises(ValueError, lambda: linear_eq_to_matrix( [x*(1/x + 1) + y], [x, y])) raises(ValueError, lambda: linear_eq_to_matrix( [(x + 1)*y], [x, y])) raises(ValueError, lambda: linear_eq_to_matrix( [Eq(1/x, 1/x + y)], [x, y])) raises(ValueError, lambda: linear_eq_to_matrix( [Eq(y/x, y/x + y)], [x, y])) raises(ValueError, lambda: linear_eq_to_matrix( [Eq(x*(x + 1), x**2 + y)], [x, y])) def test_simplification(): eq = x + (a - b)/(-2*a + 2*b) assert solveset(eq, x) == FiniteSet(S.Half) assert solveset(eq, x, S.Reals) == Intersection({-((a - b)/(-2*a + 2*b))}, S.Reals) # So that ap - bn is not zero: ap = Symbol('ap', positive=True) bn = Symbol('bn', negative=True) eq = x + (ap - bn)/(-2*ap + 2*bn) assert solveset(eq, x) == FiniteSet(S.Half) assert solveset(eq, x, S.Reals) == FiniteSet(S.Half) def test_issue_10555(): f = Function('f') g = Function('g') assert solveset(f(x) - pi/2, x, S.Reals).dummy_eq( ConditionSet(x, Eq(f(x) - pi/2, 0), S.Reals)) assert solveset(f(g(x)) - pi/2, g(x), S.Reals).dummy_eq( ConditionSet(g(x), Eq(f(g(x)) - pi/2, 0), S.Reals)) def test_issue_8715(): eq = x + 1/x > -2 + 1/x assert solveset(eq, x, S.Reals) == \ (Interval.open(-2, oo) - FiniteSet(0)) assert solveset(eq.subs(x,log(x)), x, S.Reals) == \ Interval.open(exp(-2), oo) - FiniteSet(1) def test_issue_11174(): eq = z**2 + exp(2*x) - sin(y) soln = Intersection(S.Reals, FiniteSet(log(-z**2 + sin(y))/2)) assert solveset(eq, x, S.Reals) == soln eq = sqrt(r)*Abs(tan(t))/sqrt(tan(t)**2 + 1) + x*tan(t) s = -sqrt(r)*Abs(tan(t))/(sqrt(tan(t)**2 + 1)*tan(t)) soln = Intersection(S.Reals, FiniteSet(s)) assert solveset(eq, x, S.Reals) == soln def test_issue_11534(): # eq and eq2 should give the same solution as a Complement x = Symbol('x', real=True) y = Symbol('y', real=True) eq = -y + x/sqrt(-x**2 + 1) eq2 = -y**2 + x**2/(-x**2 + 1) soln = Complement(FiniteSet(-y/sqrt(y**2 + 1), y/sqrt(y**2 + 1)), FiniteSet(-1, 1)) assert solveset(eq, x, S.Reals) == soln assert solveset(eq2, x, S.Reals) == soln def test_issue_10477(): assert solveset((x**2 + 4*x - 3)/x < 2, x, S.Reals) == \ Union(Interval.open(-oo, -3), Interval.open(0, 1)) def test_issue_10671(): assert solveset(sin(y), y, Interval(0, pi)) == FiniteSet(0, pi) i = Interval(1, 10) assert solveset((1/x).diff(x) < 0, x, i) == i def test_issue_11064(): eq = x + sqrt(x**2 - 5) assert solveset(eq > 0, x, S.Reals) == \ Interval(sqrt(5), oo) assert solveset(eq < 0, x, S.Reals) == \ Interval(-oo, -sqrt(5)) assert solveset(eq > sqrt(5), x, S.Reals) == \ Interval.Lopen(sqrt(5), oo) def test_issue_12478(): eq = sqrt(x - 2) + 2 soln = solveset_real(eq, x) assert soln is S.EmptySet assert solveset(eq < 0, x, S.Reals) is S.EmptySet assert solveset(eq > 0, x, S.Reals) == Interval(2, oo) def test_issue_12429(): eq = solveset(log(x)/x <= 0, x, S.Reals) sol = Interval.Lopen(0, 1) assert eq == sol def test_solveset_arg(): assert solveset(arg(x), x, S.Reals) == Interval.open(0, oo) assert solveset(arg(4*x -3), x) == Interval.open(Rational(3, 4), oo) def test__is_finite_with_finite_vars(): f = _is_finite_with_finite_vars # issue 12482 assert all(f(1/x) is None for x in ( Dummy(), Dummy(real=True), Dummy(complex=True))) assert f(1/Dummy(real=False)) is True # b/c it's finite but not 0 def test_issue_13550(): assert solveset(x**2 - 2*x - 15, symbol = x, domain = Interval(-oo, 0)) == FiniteSet(-3) def test_issue_13849(): assert nonlinsolve((t*(sqrt(5) + sqrt(2)) - sqrt(2), t), t) == EmptySet() def test_issue_14223(): assert solveset((Abs(x + Min(x, 2)) - 2).rewrite(Piecewise), x, S.Reals) == FiniteSet(-1, 1) assert solveset((Abs(x + Min(x, 2)) - 2).rewrite(Piecewise), x, Interval(0, 2)) == FiniteSet(1) def test_issue_10158(): dom = S.Reals assert solveset(x*Max(x, 15) - 10, x, dom) == FiniteSet(Rational(2, 3)) assert solveset(x*Min(x, 15) - 10, x, dom) == FiniteSet(-sqrt(10), sqrt(10)) assert solveset(Max(Abs(x - 3) - 1, x + 2) - 3, x, dom) == FiniteSet(-1, 1) assert solveset(Abs(x - 1) - Abs(y), x, dom) == FiniteSet(-Abs(y) + 1, Abs(y) + 1) assert solveset(Abs(x + 4*Abs(x + 1)), x, dom) == FiniteSet(Rational(-4, 3), Rational(-4, 5)) assert solveset(2*Abs(x + Abs(x + Max(3, x))) - 2, x, S.Reals) == FiniteSet(-1, -2) dom = S.Complexes raises(ValueError, lambda: solveset(x*Max(x, 15) - 10, x, dom)) raises(ValueError, lambda: solveset(x*Min(x, 15) - 10, x, dom)) raises(ValueError, lambda: solveset(Max(Abs(x - 3) - 1, x + 2) - 3, x, dom)) raises(ValueError, lambda: solveset(Abs(x - 1) - Abs(y), x, dom)) raises(ValueError, lambda: solveset(Abs(x + 4*Abs(x + 1)), x, dom)) def test_issue_14300(): f = 1 - exp(-18000000*x) - y a1 = FiniteSet(-log(-y + 1)/18000000) assert solveset(f, x, S.Reals) == \ Intersection(S.Reals, a1) assert dumeq(solveset(f, x), ImageSet(Lambda(n, -I*(2*n*pi + arg(-y + 1))/18000000 - log(Abs(y - 1))/18000000), S.Integers)) def test_issue_14454(): number = CRootOf(x**4 + x - 1, 2) raises(ValueError, lambda: invert_real(number, 0, x, S.Reals)) assert invert_real(x**2, number, x, S.Reals) # no error def test_issue_17882(): assert solveset(-8*x**2/(9*(x**2 - 1)**(S(4)/3)) + 4/(3*(x**2 - 1)**(S(1)/3)), x, S.Complexes) == \ FiniteSet(sqrt(3), -sqrt(3)) def test_term_factors(): assert list(_term_factors(3**x - 2)) == [-2, 3**x] expr = 4**(x + 1) + 4**(x + 2) + 4**(x - 1) - 3**(x + 2) - 3**(x + 3) assert set(_term_factors(expr)) == { 3**(x + 2), 4**(x + 2), 3**(x + 3), 4**(x - 1), -1, 4**(x + 1)} #################### tests for transolve and its helpers ############### def test_transolve(): assert _transolve(3**x, x, S.Reals) == S.EmptySet assert _transolve(3**x - 9**(x + 5), x, S.Reals) == FiniteSet(-10) # exponential tests def test_exponential_real(): from sympy.abc import x, y, z e1 = 3**(2*x) - 2**(x + 3) e2 = 4**(5 - 9*x) - 8**(2 - x) e3 = 2**x + 4**x e4 = exp(log(5)*x) - 2**x e5 = exp(x/y)*exp(-z/y) - 2 e6 = 5**(x/2) - 2**(x/3) e7 = 4**(x + 1) + 4**(x + 2) + 4**(x - 1) - 3**(x + 2) - 3**(x + 3) e8 = -9*exp(-2*x + 5) + 4*exp(3*x + 1) e9 = 2**x + 4**x + 8**x - 84 assert solveset(e1, x, S.Reals) == FiniteSet( -3*log(2)/(-2*log(3) + log(2))) assert solveset(e2, x, S.Reals) == FiniteSet(Rational(4, 15)) assert solveset(e3, x, S.Reals) == S.EmptySet assert solveset(e4, x, S.Reals) == FiniteSet(0) assert solveset(e5, x, S.Reals) == Intersection( S.Reals, FiniteSet(y*log(2*exp(z/y)))) assert solveset(e6, x, S.Reals) == FiniteSet(0) assert solveset(e7, x, S.Reals) == FiniteSet(2) assert solveset(e8, x, S.Reals) == FiniteSet(-2*log(2)/5 + 2*log(3)/5 + Rational(4, 5)) assert solveset(e9, x, S.Reals) == FiniteSet(2) assert solveset_real(-9*exp(-2*x + 5) + 2**(x + 1), x) == FiniteSet( -((-5 - 2*log(3) + log(2))/(log(2) + 2))) assert solveset_real(4**(x/2) - 2**(x/3), x) == FiniteSet(0) b = sqrt(6)*sqrt(log(2))/sqrt(log(5)) assert solveset_real(5**(x/2) - 2**(3/x), x) == FiniteSet(-b, b) # coverage test C1, C2 = symbols('C1 C2') f = Function('f') assert solveset_real(C1 + C2/x**2 - exp(-f(x)), f(x)) == Intersection( S.Reals, FiniteSet(-log(C1 + C2/x**2))) y = symbols('y', positive=True) assert solveset_real(x**2 - y**2/exp(x), y) == Intersection( S.Reals, FiniteSet(-sqrt(x**2*exp(x)), sqrt(x**2*exp(x)))) p = Symbol('p', positive=True) assert solveset_real((1/p + 1)**(p + 1), p) == EmptySet() @XFAIL def test_exponential_complex(): from sympy.abc import x from sympy import Dummy n = Dummy('n') assert dumeq(solveset_complex(2**x + 4**x, x),imageset( Lambda(n, I*(2*n*pi + pi)/log(2)), S.Integers)) assert solveset_complex(x**z*y**z - 2, z) == FiniteSet( log(2)/(log(x) + log(y))) assert dumeq(solveset_complex(4**(x/2) - 2**(x/3), x), imageset( Lambda(n, 3*n*I*pi/log(2)), S.Integers)) assert dumeq(solveset(2**x + 32, x), imageset( Lambda(n, (I*(2*n*pi + pi) + 5*log(2))/log(2)), S.Integers)) eq = (2**exp(y**2/x) + 2)/(x**2 + 15) a = sqrt(x)*sqrt(-log(log(2)) + log(log(2) + 2*n*I*pi)) assert solveset_complex(eq, y) == FiniteSet(-a, a) union1 = imageset(Lambda(n, I*(2*n*pi - pi*Rational(2, 3))/log(2)), S.Integers) union2 = imageset(Lambda(n, I*(2*n*pi + pi*Rational(2, 3))/log(2)), S.Integers) assert dumeq(solveset(2**x + 4**x + 8**x, x), Union(union1, union2)) eq = 4**(x + 1) + 4**(x + 2) + 4**(x - 1) - 3**(x + 2) - 3**(x + 3) res = solveset(eq, x) num = 2*n*I*pi - 4*log(2) + 2*log(3) den = -2*log(2) + log(3) ans = imageset(Lambda(n, num/den), S.Integers) assert dumeq(res, ans) def test_expo_conditionset(): f1 = (exp(x) + 1)**x - 2 f2 = (x + 2)**y*x - 3 f3 = 2**x - exp(x) - 3 f4 = log(x) - exp(x) f5 = 2**x + 3**x - 5**x assert solveset(f1, x, S.Reals).dummy_eq(ConditionSet( x,Eq(x*log(exp(x) + 1) - log(2), 0), S.Reals)) assert solveset(f2, x, S.Reals).dummy_eq(ConditionSet( x, Eq(x*(x + 2)**y - 3, 0), S.Reals)) assert solveset(f3, x, S.Reals).dummy_eq(ConditionSet( x, Eq(2**x - exp(x) - 3, 0), S.Reals)) assert solveset(f4, x, S.Reals).dummy_eq(ConditionSet( x, Eq(-exp(x) + log(x), 0), S.Reals)) assert solveset(f5, x, S.Reals).dummy_eq(ConditionSet( x, Eq(2**x + 3**x - 5**x, 0), S.Reals)) def test_exponential_symbols(): x, y, z = symbols('x y z', positive=True) assert solveset(z**x - y, x, S.Reals) == Intersection( S.Reals, FiniteSet(log(y)/log(z))) f1 = 2*x**w - 4*y**w f2 = (x/y)**w - 2 sol1 = Intersection({log(2)/(log(x) - log(y))}, S.Reals) sol2 = Intersection({log(2)/log(x/y)}, S.Reals) assert solveset(f1, w, S.Reals) == sol1, solveset(f1, w, S.Reals) assert solveset(f2, w, S.Reals) == sol2, solveset(f2, w, S.Reals) assert solveset(x**y - 1, y, S.Reals) == FiniteSet(0) assert solveset(exp(x/y)*exp(-z/y) - 2, y, S.Reals) == FiniteSet( (x - z)/log(2)) - FiniteSet(0) assert solveset(a**x - b**x, x).dummy_eq(ConditionSet( w, Ne(a, 0) & Ne(b, 0), FiniteSet(0))) assert solveset(x**x, x, Interval.Lopen(0,oo)) == EmptySet() def test_ignore_assumptions(): # make sure assumptions are ignored xpos = symbols('x', positive=True) x = symbols('x') assert solveset_complex(xpos**2 - 4, xpos ) == solveset_complex(x**2 - 4, x) @XFAIL def test_issue_10864(): assert solveset(x**(y*z) - x, x, S.Reals) == FiniteSet(1) def test_solve_only_exp_2(): assert solveset_real(sqrt(exp(x)) + sqrt(exp(-x)) - 4, x) == \ FiniteSet(log(7 - 4*sqrt(3)), log(4*sqrt(3) + 7)) def test_is_exponential(): assert _is_exponential(y, x) is False assert _is_exponential(3**x - 2, x) is True assert _is_exponential(5**x - 7**(2 - x), x) is True assert _is_exponential(sin(2**x) - 4*x, x) is False assert _is_exponential(x**y - z, y) is True assert _is_exponential(x**y - z, x) is False assert _is_exponential(2**x + 4**x - 1, x) is True assert _is_exponential(x**(y*z) - x, x) is False assert _is_exponential(x**(2*x) - 3**x, x) is False assert _is_exponential(x**y - y*z, y) is False assert _is_exponential(x**y - x*z, y) is True def test_solve_exponential(): assert _solve_exponential(3**(2*x) - 2**(x + 3), 0, x, S.Reals) == \ FiniteSet(-3*log(2)/(-2*log(3) + log(2))) assert _solve_exponential(2**y + 4**y, 1, y, S.Reals) == \ FiniteSet(log(Rational(-1, 2) + sqrt(5)/2)/log(2)) assert _solve_exponential(2**y + 4**y, 0, y, S.Reals) == \ S.EmptySet assert _solve_exponential(2**x + 3**x - 5**x, 0, x, S.Reals) == \ ConditionSet(x, Eq(2**x + 3**x - 5**x, 0), S.Reals) # end of exponential tests # logarithmic tests def test_logarithmic(): assert solveset_real(log(x - 3) + log(x + 3), x) == FiniteSet( -sqrt(10), sqrt(10)) assert solveset_real(log(x + 1) - log(2*x - 1), x) == FiniteSet(2) assert solveset_real(log(x + 3) + log(1 + 3/x) - 3, x) == FiniteSet( -3 + sqrt(-12 + exp(3))*exp(Rational(3, 2))/2 + exp(3)/2, -sqrt(-12 + exp(3))*exp(Rational(3, 2))/2 - 3 + exp(3)/2) eq = z - log(x) + log(y/(x*(-1 + y**2/x**2))) assert solveset_real(eq, x) == \ Intersection(S.Reals, FiniteSet(-sqrt(y**2 - y*exp(z)), sqrt(y**2 - y*exp(z)))) - \ Intersection(S.Reals, FiniteSet(-sqrt(y**2), sqrt(y**2))) assert solveset_real( log(3*x) - log(-x + 1) - log(4*x + 1), x) == FiniteSet(Rational(-1, 2), S.Half) assert solveset(log(x**y) - y*log(x), x, S.Reals) == S.Reals @XFAIL def test_uselogcombine_2(): eq = log(exp(2*x) + 1) + log(-tanh(x) + 1) - log(2) assert solveset_real(eq, x) == EmptySet() eq = log(8*x) - log(sqrt(x) + 1) - 2 assert solveset_real(eq, x) == EmptySet() def test_is_logarithmic(): assert _is_logarithmic(y, x) is False assert _is_logarithmic(log(x), x) is True assert _is_logarithmic(log(x) - 3, x) is True assert _is_logarithmic(log(x)*log(y), x) is True assert _is_logarithmic(log(x)**2, x) is False assert _is_logarithmic(log(x - 3) + log(x + 3), x) is True assert _is_logarithmic(log(x**y) - y*log(x), x) is True assert _is_logarithmic(sin(log(x)), x) is False assert _is_logarithmic(x + y, x) is False assert _is_logarithmic(log(3*x) - log(1 - x) + 4, x) is True assert _is_logarithmic(log(x) + log(y) + x, x) is False assert _is_logarithmic(log(log(x - 3)) + log(x - 3), x) is True assert _is_logarithmic(log(log(3) + x) + log(x), x) is True assert _is_logarithmic(log(x)*(y + 3) + log(x), y) is False def test_solve_logarithm(): y = Symbol('y') assert _solve_logarithm(log(x**y) - y*log(x), 0, x, S.Reals) == S.Reals y = Symbol('y', positive=True) assert _solve_logarithm(log(x)*log(y), 0, x, S.Reals) == FiniteSet(1) # end of logarithmic tests # lambert tests def test_solve_lambert(): a = Symbol('a', real=True) assert solveset_real(3*log(x) - x*log(3), x) == FiniteSet( -3*LambertW(-log(3)/3)/log(3), -3*LambertW(-log(3)/3, -1)/log(3)) assert solveset_real(exp(x) - 10*x, x) == FiniteSet(-LambertW(Rational(-1,10)), -LambertW(Rational(-1, 10), -1)) assert solveset(exp(x) - 10*x, x) == FiniteSet(-LambertW(Rational(-1, 10)), -LambertW(Rational(-1, 10), -1)) assert solveset_real(exp(x) + x, x) == FiniteSet(-LambertW(1)) assert solveset(exp(x) + x, x) == FiniteSet(-LambertW(1)) assert solveset_real(x + 2**x, x) == FiniteSet(-LambertW(log(2))/log(2)) assert solveset(x + 2**x, x) == FiniteSet(-LambertW(log(2))/log(2)) assert solveset_real(3*x + log(4*x), x) == FiniteSet(LambertW(Rational(3, 4))/3) assert solveset(3*x + log(4*x), x) == FiniteSet(LambertW(Rational(3, 4))/3) assert solveset_real(x*exp(x) - 1, x) == FiniteSet(LambertW(1)) assert solveset(x*exp(x) - 1, x) == FiniteSet(LambertW(1)) assert solveset_real(x**2 - 2**x, x) == solveset_real(-x**2 + 2**x, x) assert solveset_real(x**x - 2, x) == FiniteSet(exp(LambertW(log(2)))) assert solveset(x**x - 2, x) == FiniteSet(exp(LambertW(log(2)))) #--> takes solve n much time assert solveset_real(x**3 - 3**x, x) == FiniteSet( -3*LambertW(-log(3)/3)/log(3), -3*LambertW(-log(3)/3, -1)/log(3)) assert solveset_real(log(log(x - 3)) + log(x-3), x) == FiniteSet(exp(LambertW(1)) + 3) assert solveset(log(log(x - 3)) + log(x-3), x) == FiniteSet(exp(LambertW(1)) + 3) assert solveset_real(2*x + 5 + log(3*x - 2), x) == \ FiniteSet(Rational(2, 3) + LambertW(2*exp(-Rational(19, 3))/3)/2) assert dumeq(solveset(2*x + 5 + log(3*x - 2), x) , Union(FiniteSet(LambertW(2*exp(Rational(-19,3))/3)/2 + Rational(2,3)),\ ImageSet(Lambda(n, LambertW(-exp(Rational(-19,3))/3 - sqrt(3)*I*exp(Rational(-19,3))/3, n)/2 + Rational(2,3)), S.Integers), \ ImageSet(Lambda(n, LambertW(-exp(Rational(-19,3))/3 + sqrt(3)*I*exp(Rational(-19,3))/3, n)/2 + Rational(2,3)), S.Integers))) assert solveset_real(x*log(x) + 3*x + 1, x) == S.EmptySet assert dumeq(solveset(x*log(x) + 3*x + 1, x),ImageSet(Lambda(n, exp(LambertW(-exp(3), n) - 3)), S.Integers)) eq = (x*exp(x) - 3).subs(x, x*exp(x)) assert solveset_real(eq, x) == FiniteSet(LambertW(3*exp(-LambertW(3)))) assert solveset_real(tanh(x + 3)*tanh(x - 3) - 1, x) == EmptySet() assert solveset_real(3**cos(x) - cos(x)**3,x) == S.EmptySet assert solveset_real(LambertW(2*x) - y, x) == Intersection(FiniteSet(y*exp(y)/2), S.Reals) a = Symbol('a',positive=True) assert solveset_real(x*exp(x)- a, x) == \ Intersection(FiniteSet(LambertW(a)), Interval(0, oo)) a = Symbol('a',positive=True,real=True) assert solveset_real(x*exp(x)- a, x) == \ Intersection(FiniteSet(LambertW(a)), Interval(0, oo)) a = Symbol('a',positive=True,complex=True) assert solveset_real(x*exp(x)- a, x) == Intersection(FiniteSet(LambertW(a)), Interval(0, oo)) a = Symbol('a',negative=True) assert solveset_real(x*exp(x)- a, x) == Union(FiniteSet(LambertW(a), LambertW(a, -1)), Interval(-exp(-1), 0)) a = Symbol('a') assert solveset_real(x*exp(x)- a, x) == Union(Intersection(FiniteSet(LambertW(a,-1)), Interval(-exp(-1), 0)), \ Intersection(FiniteSet(LambertW(a)), Interval(-exp(-1), oo))) assert dumeq(solveset(x*exp(x)- a, x), ImageSet(Lambda(n, LambertW(a, n)), S.Integers)) assert solveset_real(a/x + exp(x/2), x) == Union(\ Complement(Intersection(FiniteSet(2*LambertW(-a/2, -1)), Interval(-exp(-1), 0)), FiniteSet(0)), \ Complement(Intersection(FiniteSet(2*LambertW(-a/2)), Interval(-exp(-1), oo)), FiniteSet(0))) assert dumeq(solveset(a/x + exp(x/2), x),\ Complement(ImageSet(Lambda(n, 2*LambertW(-a/2, n)), S.Integers), FiniteSet(0))) # check collection b = Symbol('b') eq = 3*log(a**(3*x + 5)) + b*log(a**(3*x + 5)) + a**(3*x + 5) assert solveset_real(eq, x) == Union(Intersection(FiniteSet((-log(a**5) - LambertW(1/(b + 3), -1))/(3*log(a))), Interval(-exp(-1), 0)),\ Intersection(FiniteSet((-log(a**5) - LambertW(1/(b + 3)))/(3*log(a))), Interval(-exp(-1), oo))) assert dumeq(solveset(eq, x), ImageSet(Lambda(n, (-log(a**5) - LambertW(1/(b + 3), n))/(3*log(a))), S.Integers)) p = symbols('p', positive=True) eq = 3*log(p**(3*x + 5)) + p**(3*x + 5) assert solveset(eq, x) == FiniteSet(-S(5)/3 - LambertW(S(1)/3)/(3*log(p))) assert solveset_real(eq, x) == Intersection(FiniteSet(Rational(-5, 3) - LambertW(Rational(1, 3))/(3*log(p))), Interval(0, oo)) assert solveset_real((a/x + exp(x/2)).diff(x), x) == \ Union(Complement(Intersection(FiniteSet(4*LambertW(-sqrt(2)*sqrt(a)/4, -1), 4*LambertW(sqrt(2)*sqrt(a)/4, -1)), Interval(-exp(-1), 0)), FiniteSet(0)), \ Complement(Intersection(FiniteSet(4*LambertW(-sqrt(2)*sqrt(a)/4), 4*LambertW(sqrt(2)*sqrt(a)/4)), Interval(-exp(-1), S.Infinity)), FiniteSet(0))) assert dumeq(solveset((a/x + exp(x/2)).diff(x), x), Union(Complement(ImageSet(Lambda(n, 4*LambertW(-sqrt(2)*sqrt(a)/4, n)), S.Integers), FiniteSet(0)), Complement(ImageSet(Lambda(n, 4*LambertW(sqrt(2)*sqrt(a)/4, n)), S.Integers), FiniteSet(0)))) a = -1 assert solveset_real((a/x + exp(x/2)).diff(x), x) == S.EmptySet assert dumeq(solveset((a/x + exp(x/2)).diff(x), x), \ Union(Complement(ImageSet(Lambda(n, 4*LambertW(-sqrt(2)*I/4, n)), S.Integers), FiniteSet(0)), Complement(ImageSet(Lambda(n, 4*LambertW(sqrt(2)*I/4, n)), S.Integers), FiniteSet(0)))) a = 1 assert solveset_real((a/x + exp(x/2)).diff(x), x) == FiniteSet( 4*LambertW(sqrt(2)/4),4*LambertW(-sqrt(2)/4, -1),4*LambertW(-sqrt(2)/4)) assert solveset((a/x + exp(x/2)).diff(x), x) == FiniteSet(4*LambertW(-sqrt(2)/4), 4*LambertW(sqrt(2)/4),\ 4*LambertW(-sqrt(2)/4, -1)) assert solveset_real(3*x + 5 + 2**(-5*x + 3), x) is S.EmptySet def test_is_lambert(): a, b, c = symbols('a,b,c') assert _is_lambert(x**2,x) is False assert _is_lambert(a**x**2+b*x+c,x) is True assert _is_lambert(E**2,x) is False assert _is_lambert(x*E**2,x) is False assert _is_lambert(3*log(x) - x*log(3),x) is True assert _is_lambert(log(log(x - 3)) + log(x-3),x) is True assert _is_lambert(5*x - 1 + 3*exp(2 - 7*x),x) is True assert _is_lambert((a/x + exp(x/2)).diff(x, 2),x) is True assert _is_lambert((x**2 - 2*x + 1).subs(x, log(x) + 3*x), x) is True def test_solve_bivariate(): assert solveset_real((x**2 - 2*x + 1).subs(x, log(x) + 3*x), x) == \ FiniteSet(LambertW(3*S.Exp1)/3) assert solveset_real((x**2 - 2*x + 1).subs(x, (log(x) + 3*x)**2 - 1), x) == \ FiniteSet(LambertW(3*exp(sqrt(2)))/3, LambertW(3*exp(-sqrt(2)))/3) assert solveset_real((x**2 - 2*x - 2).subs(x, log(x) + 3*x), x) == \ FiniteSet(LambertW(3*exp(1 + sqrt(3)))/3, LambertW(3*exp(1 - sqrt(3)))/3) eq = 2*(3*x + 4)**5 - 6*7**(3*x + 9) result = solveset_real(eq, x) ans = S.EmptySet assert result == ans assert solveset_real(eq.expand(), x) == result # it takes solve and too much time to complete assert solveset_real(-a*x + 2*x*log(x), x) == FiniteSet(exp(a/2)) @XFAIL def test_other_solve_lambert(): assert solveset_real(x**a - a**x, x) == \ FiniteSet(a, -a*LambertW(-log(a)/a)/log(a)) # end of transolve's tests def test_linear_coeffs(): from sympy.solvers.solveset import linear_coeffs assert linear_coeffs(0, x) == [0, 0] assert all(i is S.Zero for i in linear_coeffs(0, x)) assert linear_coeffs(x + 2*y + 3, x, y) == [1, 2, 3] assert linear_coeffs(x + 2*y + 3, y, x) == [2, 1, 3] assert linear_coeffs(x + 2*x**2 + 3, x, x**2) == [1, 2, 3] raises(ValueError, lambda: linear_coeffs(x + 2*x**2 + x**3, x, x**2)) raises(ValueError, lambda: linear_coeffs(1/x*(x - 1) + 1/x, x)) assert linear_coeffs(a*(x + y), x, y) == [a, a, 0] assert linear_coeffs(1.0, x, y) == [0, 0, 1.0] # modular tests def test_is_modular(): assert _is_modular(y, x) is False assert _is_modular(Mod(x, 3) - 1, x) is True assert _is_modular(Mod(x**3 - 3*x**2 - x + 1, 3) - 1, x) is True assert _is_modular(Mod(exp(x + y), 3) - 2, x) is True assert _is_modular(Mod(exp(x + y), 3) - log(x), x) is True assert _is_modular(Mod(x, 3) - 1, y) is False assert _is_modular(Mod(x, 3)**2 - 5, x) is False assert _is_modular(Mod(x, 3)**2 - y, x) is False assert _is_modular(exp(Mod(x, 3)) - 1, x) is False assert _is_modular(Mod(3, y) - 1, y) is False def test_invert_modular(): n = Dummy('n', integer=True) from sympy.solvers.solveset import _invert_modular as invert_modular # non invertible cases assert invert_modular(Mod(sin(x), 7), S(5), n, x) == (Mod(sin(x), 7), 5) assert invert_modular(Mod(exp(x), 7), S(5), n, x) == (Mod(exp(x), 7), 5) assert invert_modular(Mod(log(x), 7), S(5), n, x) == (Mod(log(x), 7), 5) # a is symbol assert dumeq(invert_modular(Mod(x, 7), S(5), n, x), (x, ImageSet(Lambda(n, 7*n + 5), S.Integers))) # a.is_Add assert dumeq(invert_modular(Mod(x + 8, 7), S(5), n, x), (x, ImageSet(Lambda(n, 7*n + 4), S.Integers))) assert invert_modular(Mod(x**2 + x, 7), S(5), n, x) == \ (Mod(x**2 + x, 7), 5) # a.is_Mul assert dumeq(invert_modular(Mod(3*x, 7), S(5), n, x), (x, ImageSet(Lambda(n, 7*n + 4), S.Integers))) assert invert_modular(Mod((x + 1)*(x + 2), 7), S(5), n, x) == \ (Mod((x + 1)*(x + 2), 7), 5) # a.is_Pow assert invert_modular(Mod(x**4, 7), S(5), n, x) == \ (x, EmptySet()) assert dumeq(invert_modular(Mod(3**x, 4), S(3), n, x), (x, ImageSet(Lambda(n, 2*n + 1), S.Naturals0))) assert dumeq(invert_modular(Mod(2**(x**2 + x + 1), 7), S(2), n, x), (x**2 + x + 1, ImageSet(Lambda(n, 3*n + 1), S.Naturals0))) assert invert_modular(Mod(sin(x)**4, 7), S(5), n, x) == (x, EmptySet()) def test_solve_modular(): n = Dummy('n', integer=True) # if rhs has symbol (need to be implemented in future). assert solveset(Mod(x, 4) - x, x, S.Integers ).dummy_eq( ConditionSet(x, Eq(-x + Mod(x, 4), 0), S.Integers)) # when _invert_modular fails to invert assert solveset(3 - Mod(sin(x), 7), x, S.Integers ).dummy_eq( ConditionSet(x, Eq(Mod(sin(x), 7) - 3, 0), S.Integers)) assert solveset(3 - Mod(log(x), 7), x, S.Integers ).dummy_eq( ConditionSet(x, Eq(Mod(log(x), 7) - 3, 0), S.Integers)) assert solveset(3 - Mod(exp(x), 7), x, S.Integers ).dummy_eq(ConditionSet(x, Eq(Mod(exp(x), 7) - 3, 0), S.Integers)) # EmptySet solution definitely assert solveset(7 - Mod(x, 5), x, S.Integers) == EmptySet() assert solveset(5 - Mod(x, 5), x, S.Integers) == EmptySet() # Negative m assert dumeq(solveset(2 + Mod(x, -3), x, S.Integers), ImageSet(Lambda(n, -3*n - 2), S.Integers)) assert solveset(4 + Mod(x, -3), x, S.Integers) == EmptySet() # linear expression in Mod assert dumeq(solveset(3 - Mod(x, 5), x, S.Integers), ImageSet(Lambda(n, 5*n + 3), S.Integers)) assert dumeq(solveset(3 - Mod(5*x - 8, 7), x, S.Integers), ImageSet(Lambda(n, 7*n + 5), S.Integers)) assert dumeq(solveset(3 - Mod(5*x, 7), x, S.Integers), ImageSet(Lambda(n, 7*n + 2), S.Integers)) # higher degree expression in Mod assert dumeq(solveset(Mod(x**2, 160) - 9, x, S.Integers), Union(ImageSet(Lambda(n, 160*n + 3), S.Integers), ImageSet(Lambda(n, 160*n + 13), S.Integers), ImageSet(Lambda(n, 160*n + 67), S.Integers), ImageSet(Lambda(n, 160*n + 77), S.Integers), ImageSet(Lambda(n, 160*n + 83), S.Integers), ImageSet(Lambda(n, 160*n + 93), S.Integers), ImageSet(Lambda(n, 160*n + 147), S.Integers), ImageSet(Lambda(n, 160*n + 157), S.Integers))) assert solveset(3 - Mod(x**4, 7), x, S.Integers) == EmptySet() assert dumeq(solveset(Mod(x**4, 17) - 13, x, S.Integers), Union(ImageSet(Lambda(n, 17*n + 3), S.Integers), ImageSet(Lambda(n, 17*n + 5), S.Integers), ImageSet(Lambda(n, 17*n + 12), S.Integers), ImageSet(Lambda(n, 17*n + 14), S.Integers))) # a.is_Pow tests assert dumeq(solveset(Mod(7**x, 41) - 15, x, S.Integers), ImageSet(Lambda(n, 40*n + 3), S.Naturals0)) assert dumeq(solveset(Mod(12**x, 21) - 18, x, S.Integers), ImageSet(Lambda(n, 6*n + 2), S.Naturals0)) assert dumeq(solveset(Mod(3**x, 4) - 3, x, S.Integers), ImageSet(Lambda(n, 2*n + 1), S.Naturals0)) assert dumeq(solveset(Mod(2**x, 7) - 2 , x, S.Integers), ImageSet(Lambda(n, 3*n + 1), S.Naturals0)) assert dumeq(solveset(Mod(3**(3**x), 4) - 3, x, S.Integers), Intersection(ImageSet(Lambda(n, Intersection({log(2*n + 1)/log(3)}, S.Integers)), S.Naturals0), S.Integers)) # Implemented for m without primitive root assert solveset(Mod(x**3, 7) - 2, x, S.Integers) == EmptySet() assert dumeq(solveset(Mod(x**3, 8) - 1, x, S.Integers), ImageSet(Lambda(n, 8*n + 1), S.Integers)) assert dumeq(solveset(Mod(x**4, 9) - 4, x, S.Integers), Union(ImageSet(Lambda(n, 9*n + 4), S.Integers), ImageSet(Lambda(n, 9*n + 5), S.Integers))) # domain intersection assert dumeq(solveset(3 - Mod(5*x - 8, 7), x, S.Naturals0), Intersection(ImageSet(Lambda(n, 7*n + 5), S.Integers), S.Naturals0)) # Complex args assert solveset(Mod(x, 3) - I, x, S.Integers) == \ EmptySet() assert solveset(Mod(I*x, 3) - 2, x, S.Integers ).dummy_eq( ConditionSet(x, Eq(Mod(I*x, 3) - 2, 0), S.Integers)) assert solveset(Mod(I + x, 3) - 2, x, S.Integers ).dummy_eq( ConditionSet(x, Eq(Mod(x + I, 3) - 2, 0), S.Integers)) # issue 17373 (https://github.com/sympy/sympy/issues/17373) assert dumeq(solveset(Mod(x**4, 14) - 11, x, S.Integers), Union(ImageSet(Lambda(n, 14*n + 3), S.Integers), ImageSet(Lambda(n, 14*n + 11), S.Integers))) assert dumeq(solveset(Mod(x**31, 74) - 43, x, S.Integers), ImageSet(Lambda(n, 74*n + 31), S.Integers)) # issue 13178 n = symbols('n', integer=True) a = 742938285 b = 1898888478 m = 2**31 - 1 c = 20170816 assert dumeq(solveset(c - Mod(a**n*b, m), n, S.Integers), ImageSet(Lambda(n, 2147483646*n + 100), S.Naturals0)) assert dumeq(solveset(c - Mod(a**n*b, m), n, S.Naturals0), Intersection(ImageSet(Lambda(n, 2147483646*n + 100), S.Naturals0), S.Naturals0)) assert dumeq(solveset(c - Mod(a**(2*n)*b, m), n, S.Integers), Intersection(ImageSet(Lambda(n, 1073741823*n + 50), S.Naturals0), S.Integers)) assert solveset(c - Mod(a**(2*n + 7)*b, m), n, S.Integers) == EmptySet() assert dumeq(solveset(c - Mod(a**(n - 4)*b, m), n, S.Integers), Intersection(ImageSet(Lambda(n, 2147483646*n + 104), S.Naturals0), S.Integers)) # end of modular tests def test_issue_17276(): assert nonlinsolve([Eq(x, 5**(S(1)/5)), Eq(x*y, 25*sqrt(5))], x, y) == \ FiniteSet((5**(S(1)/5), 25*5**(S(3)/10))) def test_issue_10426(): x=Dummy('x') a=Symbol('a') n=Dummy('n') assert (solveset(sin(x + a) - sin(x), a)).dummy_eq(Dummy('x')) == (Union( ImageSet(Lambda(n, 2*n*pi), S.Integers), Intersection(S.Complexes, ImageSet(Lambda(n, -I*(I*(2*n*pi + arg(-exp(-2*I*x))) + 2*im(x))), S.Integers)))).dummy_eq(Dummy('x,n')) @XFAIL def test_substitution_with_infeasible_solution(): a00, a01, a10, a11, l0, l1, l2, l3, m0, m1, m2, m3, m4, m5, m6, m7, c00, c01, c10, c11, p00, p01, p10, p11 = symbols( 'a00, a01, a10, a11, l0, l1, l2, l3, m0, m1, m2, m3, m4, m5, m6, m7, c00, c01, c10, c11, p00, p01, p10, p11' ) solvefor = [p00, p01, p10, p11, c00, c01, c10, c11, m0, m1, m3, l0, l1, l2, l3] system = [ -l0 * c00 - l1 * c01 + m0 + c00 + c01, -l0 * c10 - l1 * c11 + m1, -l2 * c00 - l3 * c01 + c00 + c01, -l2 * c10 - l3 * c11 + m3, -l0 * p00 - l2 * p10 + p00 + p10, -l1 * p00 - l3 * p10 + p00 + p10, -l0 * p01 - l2 * p11, -l1 * p01 - l3 * p11, -a00 + c00 * p00 + c10 * p01, -a01 + c01 * p00 + c11 * p01, -a10 + c00 * p10 + c10 * p11, -a11 + c01 * p10 + c11 * p11, -m0 * p00, -m1 * p01, -m2 * p10, -m3 * p11, -m4 * c00, -m5 * c01, -m6 * c10, -m7 * c11, m2, m4, m5, m6, m7 ] sol = FiniteSet( (0, Complement(FiniteSet(p01), FiniteSet(0)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, l2, l3), (p00, Complement(FiniteSet(p01), FiniteSet(0)), 0, p11, 0, 0, 0, 0, 0, 0, 0, 1, 1, -p01/p11, -p01/p11), (0, Complement(FiniteSet(p01), FiniteSet(0)), 0, p11, 0, 0, 0, 0, 0, 0, 0, 1, -l3*p11/p01, -p01/p11, l3), (0, Complement(FiniteSet(p01), FiniteSet(0)), 0, p11, 0, 0, 0, 0, 0, 0, 0, -l2*p11/p01, -l3*p11/p01, l2, l3), ) assert sol != nonlinsolve(system, solvefor)
40.935659
160
0.563155
c320c3f3b7a034f8a18ee62226c2749a4fd174af
1,427
py
Python
rllib/environment/vectorized/pendulum.py
SamueleMeta/optimal_IS
7d8e0041825acfa003874cd1ad2aec0581f6a9e1
[ "MIT" ]
null
null
null
rllib/environment/vectorized/pendulum.py
SamueleMeta/optimal_IS
7d8e0041825acfa003874cd1ad2aec0581f6a9e1
[ "MIT" ]
null
null
null
rllib/environment/vectorized/pendulum.py
SamueleMeta/optimal_IS
7d8e0041825acfa003874cd1ad2aec0581f6a9e1
[ "MIT" ]
null
null
null
"""Vectorized Gym Pendulum Environment.""" import numpy as np from gym.envs.classic_control.pendulum import PendulumEnv, angle_normalize from rllib.environment.vectorized.util import VectorizedEnv class VectorizedPendulumEnv(PendulumEnv, VectorizedEnv): """Vectorized implementation of Pendulum.""" def step(self, action): """See `PendulumEnv.step()'.""" g = self.g m = self.m length = self.l inertia = m * length ** 2 bk = self.bk dt = self.dt theta, theta_dot = self.state[..., 0], self.state[..., 1] u = self.clip(action, -self.max_torque, self.max_torque)[..., 0] if not u.shape: self.last_u = u # for rendering costs = angle_normalize(theta) ** 2 + 0.1 * theta_dot ** 2 + 0.001 * (u ** 2) theta_d_dot = -3 * g / (2 * length) * bk.sin(theta + np.pi) + 3.0 / inertia * u new_theta_dot = theta_dot + theta_d_dot * dt new_theta = theta + new_theta_dot * dt new_theta_dot = self.clip(new_theta_dot, -self.max_speed, self.max_speed) self.state = self.bk.stack((new_theta, new_theta_dot), -1) done = bk.zeros_like(costs, dtype=bk.bool) return self._get_obs(), -costs, done, {} def _get_obs(self): theta, theta_dot = self.state[..., 0], self.state[..., 1] return self.bk.stack((self.bk.cos(theta), self.bk.sin(theta), theta_dot), -1)
34.804878
87
0.60897
d750caaf7b3d26c7f24346867e370302ed4a76d1
1,308
py
Python
dataloader/CustomDataSetLoader.py
BadlyDrunkScotsman/PSMNet
2bed5282daccb7eba2ef1f454e1e9f34e0f9aed3
[ "MIT" ]
null
null
null
dataloader/CustomDataSetLoader.py
BadlyDrunkScotsman/PSMNet
2bed5282daccb7eba2ef1f454e1e9f34e0f9aed3
[ "MIT" ]
null
null
null
dataloader/CustomDataSetLoader.py
BadlyDrunkScotsman/PSMNet
2bed5282daccb7eba2ef1f454e1e9f34e0f9aed3
[ "MIT" ]
null
null
null
import torch.utils.data as data from PIL import Image import os import os.path IMG_EXTENSIONS = [ '.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP', ] def is_image_file(filename): return any(filename.endswith(extension) for extension in IMG_EXTENSIONS) def dataloader(filepath): all_left_img = [] all_right_img = [] all_left_disp = [] eval_left_img = [] eval_right_img = [] eval_left_disp = [] dir = filepath dir_disp = filepath + '/cam_dep_60_Bl0/' subdir = ['/cam_60_BL0/', '/cam_60_BL30/'] train_file = open(os.path.join(dir, 'train.txt'), 'r') valid_file = open(os.path.join(dir, 'valid.txt'), 'r') train_lines = train_file.readlines() valid_lines = valid_file.readlines() for line in train_lines: line = line.strip() all_left_img.append(dir + subdir[0] + line) all_left_disp.append(dir_disp + line) all_right_img.append(dir + subdir[1] + line) for line in valid_lines: line = line.strip() eval_left_img.append(dir + subdir[0] + line) eval_left_disp.append(dir_disp + line) eval_right_img.append(dir + subdir[1] + line) return all_left_img, all_right_img, all_left_disp, eval_left_img, eval_right_img, eval_left_disp
25.153846
100
0.643731
ac1e30cd9512b0892980ed668f38d0302521e61c
2,686
py
Python
IMLearn/learners/regressors/linear_regression.py
LidarAb/IML.HUJI
798c99f9b1c29a701c1e06e923a429cae639937f
[ "MIT" ]
null
null
null
IMLearn/learners/regressors/linear_regression.py
LidarAb/IML.HUJI
798c99f9b1c29a701c1e06e923a429cae639937f
[ "MIT" ]
null
null
null
IMLearn/learners/regressors/linear_regression.py
LidarAb/IML.HUJI
798c99f9b1c29a701c1e06e923a429cae639937f
[ "MIT" ]
null
null
null
from __future__ import annotations from typing import NoReturn from ...base import BaseEstimator import numpy as np from numpy.linalg import pinv import IMLearn.metrics.loss_functions as loss_functions class LinearRegression(BaseEstimator): """ Linear Regression Estimator Solving Ordinary Least Squares optimization problem """ def __init__(self, include_intercept: bool = True) -> LinearRegression: """ Instantiate a linear regression estimator Parameters ---------- include_intercept: bool, default=True Should fitted model include an intercept or not Attributes ---------- include_intercept_: bool Should fitted model include an intercept or not coefs_: ndarray of shape (n_features,) or (n_features+1,) Coefficients vector fitted by linear regression. To be set in `LinearRegression.fit` function. """ super().__init__() self.include_intercept_, self.coefs_ = include_intercept, None def _fit(self, X: np.ndarray, y: np.ndarray) -> NoReturn: """ Fit Least Squares model to given samples Parameters ---------- X : ndarray of shape (n_samples, n_features) Input data to fit an estimator for y : ndarray of shape (n_samples, ) Responses of input data to fit to Notes ----- Fits model with or without an intercept depending on value of `self.include_intercept_` """ if not self.include_intercept_: new_x = np.delete(X, 0, 1) else: new_x = X self.coefs_ = pinv(new_x) @ y def _predict(self, X: np.ndarray) -> np.ndarray: """ Predict responses for given samples using fitted estimator Parameters ---------- X : ndarray of shape (n_samples, n_features) Input data to predict responses for Returns ------- responses : ndarray of shape (n_samples, ) Predicted responses of given samples """ return X @ self.coefs_ def _loss(self, X: np.ndarray, y: np.ndarray) -> float: """ Evaluate performance under MSE loss function Parameters ---------- X : ndarray of shape (n_samples, n_features) Test samples y : ndarray of shape (n_samples, ) True labels of test samples Returns ------- loss : float Performance under MSE loss function """ y_pred = self._predict(X) return loss_functions.mean_square_error(y, y_pred)
28.574468
95
0.593075
e7898c08bc90f34ff16a94f0674b31474b60a3f2
11,215
py
Python
flask_dance/consumer/storage/sqla.py
timgates42/flask-dance
ebe3ea48d3263136e18ccea37e50292b7c503c67
[ "MIT" ]
null
null
null
flask_dance/consumer/storage/sqla.py
timgates42/flask-dance
ebe3ea48d3263136e18ccea37e50292b7c503c67
[ "MIT" ]
null
null
null
flask_dance/consumer/storage/sqla.py
timgates42/flask-dance
ebe3ea48d3263136e18ccea37e50292b7c503c67
[ "MIT" ]
null
null
null
from datetime import datetime from sqlalchemy import Column, Integer, String, DateTime from sqlalchemy.ext.mutable import MutableDict from sqlalchemy.ext.declarative import declared_attr from sqlalchemy_utils import JSONType from sqlalchemy.orm.exc import NoResultFound from flask_dance.utils import FakeCache, first from flask_dance.consumer.storage import BaseStorage try: from flask_login import AnonymousUserMixin except ImportError: AnonymousUserMixin = None class OAuthConsumerMixin(object): """ A :ref:`SQLAlchemy declarative mixin <sqlalchemy:declarative_mixins>` with some suggested columns for a model to store OAuth tokens: ``id`` an integer primary key ``provider`` a short name to indicate which OAuth provider issued this token ``created_at`` an automatically generated datetime that indicates when the OAuth provider issued this token ``token`` a :class:`JSON <sqlalchemy_utils.types.json.JSONType>` field to store the actual token received from the OAuth provider """ @declared_attr def __tablename__(cls): return "flask_dance_{}".format(cls.__name__.lower()) id = Column(Integer, primary_key=True) provider = Column(String(50), nullable=False) created_at = Column(DateTime, default=datetime.utcnow, nullable=False) token = Column(MutableDict.as_mutable(JSONType), nullable=False) def __repr__(self): parts = [] parts.append(self.__class__.__name__) if self.id: parts.append("id={}".format(self.id)) if self.provider: parts.append('provider="{}"'.format(self.provider)) return "<{}>".format(" ".join(parts)) class SQLAlchemyStorage(BaseStorage): """ Stores and retrieves OAuth tokens using a relational database through the `SQLAlchemy`_ ORM. .. _SQLAlchemy: http://www.sqlalchemy.org/ """ def __init__( self, model, session, user=None, user_id=None, user_required=None, anon_user=None, cache=None, ): """ Args: model: The SQLAlchemy model class that represents the OAuth token table in the database. At a minimum, it must have a ``provider`` column and a ``token`` column. If tokens are to be associated with individual users in the application, it must also have a ``user`` relationship to your User model. It is recommended, though not required, that your model class inherit from :class:`~flask_dance.consumer.storage.sqla.OAuthConsumerMixin`. session: The :class:`SQLAlchemy session <sqlalchemy.orm.session.Session>` for the database. If you're using `Flask-SQLAlchemy`_, this is ``db.session``. user: If you want OAuth tokens to be associated with individual users in your application, this is a reference to the user that you want to use for the current request. It can be an actual User object, a function that returns a User object, or a proxy to the User object. If you're using `Flask-Login`_, this is :attr:`~flask.ext.login.current_user`. user_id: If you want to pass an identifier for a user instead of an actual User object, use this argument instead. Sometimes it can save a database query or two. If both ``user`` and ``user_id`` are provided, ``user_id`` will take precendence. user_required: If set to ``True``, an exception will be raised if you try to set or retrieve an OAuth token without an associated user. If set to ``False``, OAuth tokens can be set with or without an associated user. The default is auto-detection: it will be ``True`` if you pass a ``user`` or ``user_id`` parameter, ``False`` otherwise. anon_user: If anonymous users are represented by a class in your application, provide that class here. If you are using `Flask-Login`_, anonymous users are represented by the :class:`flask_login.AnonymousUserMixin` class, but you don't have to provide that -- Flask-Dance treats it as the default. cache: An instance of `Flask-Caching`_. Providing a caching system is highly recommended, but not required. .. _Flask-SQLAlchemy: http://pythonhosted.org/Flask-SQLAlchemy/ .. _Flask-Login: https://flask-login.readthedocs.io/ .. _Flask-Caching: https://flask-caching.readthedocs.io/en/latest/ """ self.model = model self.session = session self.user = user self.user_id = user_id if user_required is None: self.user_required = user is not None or user_id is not None else: self.user_required = user_required self.anon_user = anon_user or AnonymousUserMixin self.cache = cache or FakeCache() def make_cache_key(self, blueprint, user=None, user_id=None): uid = first([user_id, self.user_id, blueprint.config.get("user_id")]) if not uid: u = first( _get_real_user(ref, self.anon_user) for ref in (user, self.user, blueprint.config.get("user")) ) uid = getattr(u, "id", u) return "flask_dance_token|{name}|{user_id}".format( name=blueprint.name, user_id=uid ) def get(self, blueprint, user=None, user_id=None): """ When you have a statement in your code that says "if <provider>.authorized:" (for example "if twitter.authorized:"), a long string of function calls result in this function being used to check the Flask server's cache and database for any records associated with the current_user. The `user` and `user_id` parameters are actually not set in that case (see base.py:token(), that's what calls this function), so the user information is instead loaded from the current_user (if that's what you specified when you created the blueprint) with blueprint.config.get('user_id'). :param blueprint: :param user: :param user_id: :return: """ # check cache cache_key = self.make_cache_key(blueprint=blueprint, user=user, user_id=user_id) token = self.cache.get(cache_key) if token: return token # if not cached, make database queries query = self.session.query(self.model).filter_by(provider=blueprint.name) uid = first([user_id, self.user_id, blueprint.config.get("user_id")]) u = first( _get_real_user(ref, self.anon_user) for ref in (user, self.user, blueprint.config.get("user")) ) if self.user_required and not u and not uid: raise ValueError("Cannot get OAuth token without an associated user") # check for user ID if hasattr(self.model, "user_id") and uid: query = query.filter_by(user_id=uid) # check for user (relationship property) elif hasattr(self.model, "user") and u: query = query.filter_by(user=u) # if we have the property, but not value, filter by None elif hasattr(self.model, "user_id"): query = query.filter_by(user_id=None) # run query try: token = query.one().token except NoResultFound: token = None # cache the result self.cache.set(cache_key, token) return token def set(self, blueprint, token, user=None, user_id=None): uid = first([user_id, self.user_id, blueprint.config.get("user_id")]) u = first( _get_real_user(ref, self.anon_user) for ref in (user, self.user, blueprint.config.get("user")) ) if self.user_required and not u and not uid: raise ValueError("Cannot set OAuth token without an associated user") # if there was an existing model, delete it existing_query = self.session.query(self.model).filter_by( provider=blueprint.name ) # check for user ID has_user_id = hasattr(self.model, "user_id") if has_user_id and uid: existing_query = existing_query.filter_by(user_id=uid) # check for user (relationship property) has_user = hasattr(self.model, "user") if has_user and u: existing_query = existing_query.filter_by(user=u) # queue up delete query -- won't be run until commit() existing_query.delete() # create a new model for this token kwargs = {"provider": blueprint.name, "token": token} if has_user_id and uid: kwargs["user_id"] = uid if has_user and u: kwargs["user"] = u self.session.add(self.model(**kwargs)) # commit to delete and add simultaneously self.session.commit() # invalidate cache self.cache.delete( self.make_cache_key(blueprint=blueprint, user=user, user_id=user_id) ) def delete(self, blueprint, user=None, user_id=None): query = self.session.query(self.model).filter_by(provider=blueprint.name) uid = first([user_id, self.user_id, blueprint.config.get("user_id")]) u = first( _get_real_user(ref, self.anon_user) for ref in (user, self.user, blueprint.config.get("user")) ) if self.user_required and not u and not uid: raise ValueError("Cannot delete OAuth token without an associated user") # check for user ID if hasattr(self.model, "user_id") and uid: query = query.filter_by(user_id=uid) # check for user (relationship property) elif hasattr(self.model, "user") and u: query = query.filter_by(user=u) # if we have the property, but not value, filter by None elif hasattr(self.model, "user_id"): query = query.filter_by(user_id=None) # run query query.delete() self.session.commit() # invalidate cache self.cache.delete( self.make_cache_key(blueprint=blueprint, user=user, user_id=user_id) ) def _get_real_user(user, anon_user=None): """ Given a "user" that could be: * a real user object * a function that returns a real user object * a LocalProxy to a real user object (like Flask-Login's ``current_user``) This function returns the real user object, regardless of which we have. """ if hasattr(user, "_get_current_object"): # this is a proxy user = user._get_current_object() if callable(user): # this is a function user = user() if anon_user and isinstance(user, anon_user): return None return user
39.911032
88
0.618457
086fcdea8dda34e51db9417f80d5f372f1251f5f
2,798
py
Python
commons/c2cgeoportal_commons/alembic/main/338b57593823_remove_trigger_on_role_name_change.py
rbovard/c2cgeoportal
61b7a4fc98f686f9b7d4c5fda7bb4c5cc09f8de8
[ "BSD-2-Clause-FreeBSD" ]
43
2015-02-16T06:56:25.000Z
2021-09-12T17:49:16.000Z
commons/c2cgeoportal_commons/alembic/main/338b57593823_remove_trigger_on_role_name_change.py
rbovard/c2cgeoportal
61b7a4fc98f686f9b7d4c5fda7bb4c5cc09f8de8
[ "BSD-2-Clause-FreeBSD" ]
3,227
2015-01-05T10:30:59.000Z
2022-03-31T03:25:39.000Z
commons/c2cgeoportal_commons/alembic/main/338b57593823_remove_trigger_on_role_name_change.py
rbovard/c2cgeoportal
61b7a4fc98f686f9b7d4c5fda7bb4c5cc09f8de8
[ "BSD-2-Clause-FreeBSD" ]
57
2015-01-29T08:32:12.000Z
2022-03-16T07:07:33.000Z
# Copyright (c) 2018-2019, Camptocamp SA # All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR # ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # The views and conclusions contained in the software and documentation are those # of the authors and should not be interpreted as representing official policies, # either expressed or implied, of the FreeBSD Project. # pylint: disable=no-member """ Remove trigger on_role_name_change. Revision ID: 338b57593823 Revises: dba87f2647f9 Create Date: 2018-12-05 09:13:21.191424 """ from alembic import op from c2c.template.config import config # revision identifiers, used by Alembic. revision = "338b57593823" down_revision = "dba87f2647f9" branch_labels = None depends_on = None def upgrade() -> None: """Upgrade.""" schema = config["schema"] op.execute(f"DROP TRIGGER on_role_name_change ON {schema}.role") op.execute(f"DROP FUNCTION {schema}.on_role_name_change()") def downgrade() -> None: """Downgrade.""" schema = config["schema"] staticschema = config["schema_static"] op.execute( """ CREATE OR REPLACE FUNCTION {schema}.on_role_name_change() RETURNS trigger AS $$ BEGIN IF NEW.name <> OLD.name THEN UPDATE {staticschema}."user" SET role_name = NEW.name WHERE role_name = OLD.name; END IF; RETURN NEW; END; $$ LANGUAGE plpgsql""".format( schema=schema, staticschema=staticschema ) ) op.execute( "CREATE TRIGGER on_role_name_change AFTER UPDATE ON {schema}.role FOR EACH ROW " "EXECUTE PROCEDURE {schema}.on_role_name_change()".format(schema=schema) )
34.54321
88
0.750179
4261d5c311787ac0dda83085eb784eabf66362a9
2,498
py
Python
snippets.py
dmidlo/histdata.com-tools
dd1f17134711e5588ba019d6575287937936afb7
[ "MIT" ]
null
null
null
snippets.py
dmidlo/histdata.com-tools
dd1f17134711e5588ba019d6575287937936afb7
[ "MIT" ]
null
null
null
snippets.py
dmidlo/histdata.com-tools
dd1f17134711e5588ba019d6575287937936afb7
[ "MIT" ]
null
null
null
# import datatable as dt # from datatable import f # Try something like this # DT = dt.Frame(["20220401 001612839"]) # print(DT) # | C0 # | str32 # -- + ------------------ # 0 | 20220401 000012839 # year, month, day, hour # DT = DT[:, dt.time.ymdt(f[:][0:4].as_type(int), \ # f[:][4:6].as_type(int), \ # f[:][6:8].as_type(int), \ # f[:][9:11].as_type(int), \ # f[:][11:13].as_type(int), \ # f[:][13:15].as_type(int), \ # 10**6 * f[:][15:18].as_type(int))] # # > | C0 # # > | time64 # # > -- + ----------------------- # # > 0 | 2022-04-01T00:00:12.839 # # > [1 row x 1 column] # print(DT) # DT = DT[:, (f[:].as_type(int)//10**6)] # print(DT) # DT = DT[:, f[:].as_type(dt.Type.time64)**6] # print(DT) # print(DT) # > | C0 # > | int64 # > -- + ------------- # > 0 | 1648771212839 # > [1 row x 1 column] # DT = dt.Frame(["20220401 000012839"]) # DT = DT[:, f[:][0:4]+"-"+f[:][4:6]+"-"+f[:][6:8]+" "+f[:][9:11]+":"+f[:][11:13]+":"+f[:][13:15]+"."+f[:][15:18]] # DT[0] = dt.Type.time64 # print(DT[:, f[:].as_type(int)//10**6]) # | C0 # | int64 # -- + ------------- # 0 | 1648771212839 # [1 row x 1 column] # histdatacom -I -p eurusd usdjpy gbpusd usdcad usdchf audusd nzdusd -f ascii -t tick-data-quotes -s start -e now # histdatacom -I -p eurgbp euraud gbpchf audnzd audcad audchf gbpaud usdmxn -f ascii -t tick-data-quotes -s start -e now -c low # histdatacom -I -p eurchf eurcad eurnzd eurjpy gbpjpy chfjpy cadjpy -f ascii -t tick-data-quotes -s start -e now -c low # histdatacom -I -p audjpy nzdjpy gbpcad nzdcad sgdjpy gbpnzd cadchf -f ascii -t tick-data-quotes -s start -e now -c low # histdatacom -I -p eurtry usdtry usdsek usdnok usddkk usdzar usdhkd -f ascii -t tick-data-quotes -s start -e now -c low # histdatacom -I -p usdsgd eurpln eurhuf nzdchf usdhuf usdpln eurczk -f ascii -t tick-data-quotes -s start -e now -c low # histdatacom -I -p eursek usdczk zarjpy eurdkk eurnok usddkk-f ascii -t tick-data-quotes -s start -e now -c low # histdatacom -I -p xauusd xauaud xauchf bcousd wtiusd xaueur xagusd xaugbp -f ascii -t tick-data-quotes -s start -e now -c low # histdatacom -I -p grxeur auxaud frxeur hkxhkd spxusd jpxjpy udxusd -f ascii -t tick-data-quotes -s start -e now -c low # histdatacom -I -p nsxusd ukxgbp etxeur -f ascii -t tick-data-quotes -s start -e now -c low
41.633333
127
0.558847
e1714ff66e00b41a99eeb0443e2f72c1d4917702
22,478
py
Python
file/importer.py
stylekilla/syncmrt
816bb57d80d6595719b8b9d7f027f4f17d0a6c0a
[ "Apache-2.0" ]
null
null
null
file/importer.py
stylekilla/syncmrt
816bb57d80d6595719b8b9d7f027f4f17d0a6c0a
[ "Apache-2.0" ]
25
2019-03-05T05:56:35.000Z
2019-07-24T13:11:57.000Z
file/importer.py
stylekilla/syncmrt
816bb57d80d6595719b8b9d7f027f4f17d0a6c0a
[ "Apache-2.0" ]
1
2019-11-27T05:10:47.000Z
2019-11-27T05:10:47.000Z
import os import pydicom as dicom import numpy as np from file.image import Image2d from file import hdf5 from tools.opencl import gpu as gpuInterface from tools.math import wcs2wcs from natsort import natsorted from PyQt5 import QtCore, QtWidgets import csv import logging np.set_printoptions(formatter={'float': lambda x: "{0:0.3f}".format(x)}) ''' The importer class takes DICOM/HDF5 images and turns them into a class (image2d or image3d) for plotting in QsWidgets.QPlot(). This is where we disconnect the DICOM information and take only what the internals of SyncMRT requires to operate. Maybe in the future such integrations could just see the use of DICOM throughout but then things would have to be re-written to understand DICOM. This is just currently my own interface. Think of this class as the interface to QPlot. As such it should probably be packaged with it. ''' class sync_dx: def __init__(self,dataset,new=False): # Read in hdf5 dataset. if new: self.file = hdf5.new(dataset) else: self.file = hdf5.load(dataset) def getImageList(self): """ Reads the image names in the HDF5 file. Return as list. """ return list(self.file['Image'].keys()) def getImageSet(self,idx): logging.debug("Reading image set {}.".format(idx)) _set = self.file.getImageSet(idx) imageSet = [] for i in range(len(_set)): # Get the image and its attributes. image = Image2d() image.pixelArray = _set[str(i+1)][()] image.extent = _set[str(i+1)].attrs.get('Extent',default=None) image.patientIsocenter = _set[str(i+1)].attrs.get('Image Isocenter',default=None) image.patientPosition = list(_set[str(i+1)].attrs.get('Patient Support Position',default=None)) + list(_set[str(i+1)].attrs.get('Patient Support Angle',default=None)) image.view['title'] = str(_set[str(i+1)].attrs.get('Image Angle',default="None"))+"\u00B0" image.imagingAngle = _set[str(i+1)].attrs.get('Image Angle',default=None) image.M = _set[str(i+1)].attrs.get('M',default=None) image.Mi = _set[str(i+1)].attrs.get('Mi',default=None) image.comment = _set[str(i+1)].attrs.get('Comment',default=None) # Append the image. imageSet.append(image) return imageSet class csvPlan(QtCore.QObject): newSequence = QtCore.pyqtSignal() def __init__(self,file=None): """ Create a customised treatment plan that can be delivered on the beamline. """ super().__init__() # Create an empty sequence. self.sequence = [] if type(file) != type(None): self.loadPlan(file) def addSequence(self,position,speed,contour): """ Add a new delivery sequence to the plan. """ kwargs = {} kwargs['position'] = position kwargs['speed'] = speed kwargs['contour'] = contour kwargs['treated'] = False self.sequence.append(kwargs) def insertSequence(self,index,position,speed,contour): """ Insert a new delivery sequence in the plan. """ kwargs = {} kwargs['position'] = position kwargs['speed'] = speed kwargs['contour'] = contour kwargs['treated'] = False self.sequence.insert(index,kwargs) def removeSequence(self,index): """ Remove a beam delivery sequence. """ del self.sequence[index] def getSequence(self,index): """ Get a specified delivery sequence. """ return self.sequence[index] def numberOfBeams(self): """ Return the number of beam delivery sequences present in the plan. """ return len(self.sequence) def loadPlan(self,file): """ Load a csv file containing the plan. """ import csv with open(file) as csvfile: reader = csv.DictReader(csvfile) for row in reader: row['Sequence'] = int(row['Sequence']) # row['Position'] = list(map(float,row['Position'][1:-1].split(','))) row['Angle'] = float(row['Angle']) row['Speed'] = float(row['Speed']) self.sequence.append(row) self.newSequence.emit() def reset(self): """ Reset the plan. This removes all sequences. """ self.sequence = [] def checkDicomModality(dataset,modality): """ Check the modality of each dicom file and return only the files that match the desired modality. """ # Start with empty list of files. files = {} for i in range(len(dataset)): # Read the file in. testFile = dicom.dcmread(dataset[i]) if testFile.Modality == modality: # Save in dict where the key is the slice position. # files[int(testFile.SliceLocation)] = dataset[i] files[list(map(float,testFile.ImagePositionPatient))[2]] = dataset[i] else: pass # Sort the files based on slice location. sortedFiles = [] for key in sorted(files.keys()): sortedFiles.append(files[key]) # Return the sorted file list. return sortedFiles class ct(QtCore.QObject): newCtView = QtCore.pyqtSignal() def __init__(self,dataset,gpu): super().__init__() # Hold a reference to the gpu instance. self.gpu = gpu # Check that the dataset is indeed a DICOM CT dataset. dataset = checkDicomModality(dataset,'CT') if len(dataset) is 0: # If the dataset has no CT files, then exit this function. return else: # Else, read the first one as a reference point. ref = dicom.dcmread(dataset[0]) # Get the 3D CT array shape. shape = np.array([int(ref.Rows), int(ref.Columns), len(dataset)]) # Create an empty python array to dump the CT data into. self.pixelArray = np.zeros(shape, dtype=np.int32) # Read array in one slice at a time. for index,fn in enumerate(dataset): ctSlice = dicom.dcmread(fn) self.pixelArray[:,:,dataset.index(fn)] = ctSlice.pixel_array # Rescale the Hounsfield Units. self.pixelArray = (self.pixelArray*ref.RescaleSlope) + ref.RescaleIntercept # Get current CT orientation. self.patientPosition = ref.PatientPosition # Python coordinate system. self.PCS = np.array([[0,1,0],[1,0,0],[0,0,1]]) # Patient reference coordinate system (RCS). dcmAxes = np.array(list(map(float,ref.ImageOrientationPatient))) x = dcmAxes[:3] y = dcmAxes[3:6] z = np.cross(x,y) self.RCS = np.vstack((x,y,z)) # Calculate spacing between slices as it isn't always provided. z1 = list(map(float,ref.ImagePositionPatient))[2] z2 = list(map(float,dicom.dcmread(dataset[-1]).ImagePositionPatient))[2] spacingBetweenSlices = (z2-z1)/(len(dataset)-1) # Get the pixel size. self.pixelSize = np.append(np.array(list(map(float,ref.PixelSpacing))),spacingBetweenSlices) # Get the top left front pixel position in the RCS (set as the centre of the voxel). self.TLF = np.array(list(map(float,ref.ImagePositionPatient))) # Adjust the TLF to sit on the outside corner of the voxel (to align with the expected inputs for matplotlib's extent). self.TLF += np.sign(self.TLF)*(self.pixelSize/2) # Construct the transformation matrix, M. self.M = np.zeros((4,4)) self.M[:3,0] = self.pixelSize[0]*x self.M[:3,1] = self.pixelSize[1]*y self.M[:3,2] = self.pixelSize[2]*z self.M[:3,3] = self.TLF self.M[3,3] = 1 # Get the top left front and bottom right back indices for caclualting extent. voxelIndex1 = np.array([0,0,0,1]).reshape((4,1)) voxelIndex2 = np.array([shape[0],shape[1],shape[2],1]).reshape((4,1)) # Compute the voxel indices in mm. voxelPosition1 = self.M@voxelIndex1 voxelPosition2 = self.M@voxelIndex2 # Extent is [Left,Right,Bottom,Top,Front,Back] _x = [voxelPosition1[0],voxelPosition2[0]] _y = [voxelPosition2[1],voxelPosition1[1]] _z = [voxelPosition1[2],voxelPosition2[2]] self.extent = np.array(_x+_y+_z).reshape((6,)) # Placeholder for a view extent. self.viewExtent = np.zeros(self.extent.shape) # Calculate the base extent. # self.baseExtent = np.array(sorted(_x)+sorted(_y)+sorted(_z)).reshape((6,)) # Find the (0,0,0) mm as an 'index' (float). # self.zeroIndex = np.linalg.inv(self.M)@np.array([0,0,0,1]) # Load array onto GPU for future reference. self.gpu.loadData(self.pixelArray) # Create a 2d image list for plotting. self.image = [Image2d(),Image2d()] # Create an isocenter for treatment if desired. This must be in DICOM XYZ. self.isocenter = None # Set the default. self.calculateView('AP') def calculateView(self,view,roi=None,flatteningMethod='sum'): """ Rotate the CT array for a new view of the dataset. """ # Make the RCS for each view. default = np.array([[1,0,0],[0,1,0],[0,0,1]]) si = np.array([[-1,0,0],[0,1,0],[0,0,-1]]) lr = np.array([[0,0,1],[0,1,0],[-1,0,0]]) rl = np.array([[0,0,-1],[0,1,0],[1,0,0]]) ap = np.array([[1,0,0],[0,0,1],[0,-1,0]]) pa = np.array([[-1,0,0],[0,0,-1],[0,-1,0]]) # Assign matrix, m, to the view matrix and axis titles. if view == 'SI': RCS = si t1 = 'SI' t2 = 'RL' elif view == 'IS': RCS = default t1 = 'IS' t2 = 'LR' elif view == 'LR': RCS = lr t1 = 'LR' t2 = 'SI' elif view == 'RL': RCS = rl t1 = 'RL' t2 = 'IS' elif view == 'AP': RCS = ap t1 = 'AP' t2 = 'LR' elif view == 'PA': RCS = pa t1 = 'PA' t2 = 'RL' # Calculate a transform, W, that takes us from the original CT RCS to the new RCS. W = wcs2wcs(self.RCS,RCS) # Rotate the CT if required. if np.array_equal(W,np.identity(3)): pixelArray = self.pixelArray else: pixelArray = self.gpu.rotate(W) # Calculate the new extent. # Find Origin origin = (np.linalg.inv(self.M)@np.array([0,0,0,1]))[:3] # Rotate the Origin origin_rot = W@origin # Rotate the pixel size. pixelSize_rot = np.absolute(W@self.pixelSize) # Find bounding box of output array. basicBox = np.array([ [0,0,0], [1,0,0], [0,1,0], [1,1,0], [0,0,1], [1,0,1], [0,1,1], [1,1,1] ]) inputShape = basicBox * self.pixelArray.shape outputShape = np.zeros(basicBox.shape) for index in range(8): outputShape[index,:] = W@inputShape[index,:] mins = np.absolute(np.amin(outputShape,axis=0)) outputShape += mins # Calculate new origin situated in output array. origin_new = origin_rot + mins # Calculate new extent. extent = np.zeros(self.extent.shape) TLF = -origin_new * np.sum(RCS,axis=0) * pixelSize_rot extent[::2] = TLF extent[1::2] = TLF + np.amax(outputShape,axis=0) * np.sum(RCS,axis=0) * pixelSize_rot # Extent is calculated as: [left, right, BOTTOM, TOP, front, back]. Swap top/bot values. extent[2], extent[3] = extent[3], extent[2] self.viewExtent = extent # Calculate the view matrix. self.viewM = np.zeros((4,4)) self.viewM[0,:3] = pixelSize_rot[0] * (np.sign(np.sum(RCS[:,0]))*np.array([1,0,0])) self.viewM[1,:3] = pixelSize_rot[1] * (np.sign(np.sum(RCS[:,1]))*np.array([0,1,0])) self.viewM[2,:3] = pixelSize_rot[2] * (np.sign(np.sum(RCS[:,2]))*np.array([0,0,1])) self.viewM[:3,3] = TLF self.viewM[3,3] = 1 if np.array_equal(roi,self.viewExtent): # This does not work... temporary_extent = self.viewExtent elif type(roi) is not type(None): # Set the view extent to the ROI. temporary_extent = roi # Get the array indices that match the roi. indices = self.calculateIndices(temporary_extent) x1,x2,y1,y2,z1,z2 = indices # Calculate new extent based of approximate indices of input ROI. p1 = self.viewM@np.array([x1,y1,z1,1]) p2 = self.viewM@np.array([x2,y2,z2,1]) temporary_extent = np.zeros(extent.shape) temporary_extent[::2] = p1[:3] temporary_extent[1::2] = p2[:3] # Order the indices x1,x2 = sorted([x1,x2]) y1,y2 = sorted([y1,y2]) z1,z2 = sorted([z1,z2]) # Slice the array. pixelArray = pixelArray[y1:y2,x1:x2,z1:z2] else: temporary_extent = self.viewExtent # Split up into x, y and z extents for 2D image. x,y,z = [temporary_extent[i:i+2] for i in range(0,len(temporary_extent),2)] # Get the first flattened image. if flatteningMethod == 'sum': self.image[0].pixelArray = np.sum(pixelArray,axis=2) elif flatteningMethod == 'max': self.image[0].pixelArray = np.amax(pixelArray,axis=2) self.image[0].extent = np.array(list(x)+list(y)) self.image[0].view = { 'title':t1 } # Get the second flattened image. if flatteningMethod == 'sum': self.image[1].pixelArray = np.sum(pixelArray,axis=1) elif flatteningMethod == 'max': self.image[1].pixelArray = np.amax(pixelArray,axis=1) self.image[1].extent = np.array(list(z)+list(y)) self.image[1].view = { 'title':t2 } # Emit a signal to say a new view has been loaded. self.newCtView.emit() def calculateIndices(self,extent): """ Calculate the indices of the CT array for a given ROI. """ p1 = np.insert(extent[::2],3,1) p2 = np.insert(extent[1::2],3,1) i1 = (np.linalg.inv(self.viewM)@p1)[:3] i2 = (np.linalg.inv(self.viewM)@p2)[:3] indices = np.zeros(np.array(self.extent.shape)) indices[::2] = i1 indices[1::2] = i2 indices = list(map(int,indices)) return indices class beamClass: def __init__(self): self.image = None self.mask = None self.maskThickness = None self.gantry = None self.patientSupport = None self.collimator = None self.pitch = None self.roll = None self.isocenter = None self.BCS = None self._arr2bcs = None self._dcm2bcs = None class rtplan: def __init__(self,rtplan,ct,gpu): """ RCS: Reference Coordinate System (Patient) BCS: Beam Coordinate System (Linac) PCS: Pyhon Coordinate System (DICOM to Python) """ self.PCS = np.array([[0,1,0],[1,0,0],[0,0,1]]) # Firstly, read in DICOM rtplan file. ref = dicom.dcmread(rtplan[0]) # Construct an object array of the amount of beams to be delivered. self.beam = np.empty(ref.FractionGroupSequence[0].NumberOfBeams,dtype=object) # Get the isocenter. Current only supports a single isocenter. self.isocenter = np.array(list(map(float,ref.BeamSequence[0].ControlPointSequence[0].IsocenterPosition))) # logging.info("Isocenter (DICOM) {}".format(self.isocenter)) for i in range(len(self.beam)): # Get the appropriate data for each beam. self.beam[i] = beamClass() # Extract confromal mask data. # If a block is specified for the MLC then get it. if ref.BeamSequence[0].NumberOfBlocks > 0: temp = np.array(list(map(float,ref.BeamSequence[i].BlockSequence[0].BlockData))) class Mask: x = np.append(temp[0::2],temp[0]) y = np.append(temp[1::2],temp[1]) self.beam[i].mask = Mask self.beam[i].maskThickness = ref.BeamSequence[i].BlockSequence[0].BlockThickness # Get the jaws position for backup. # Get the machine positions. self.beam[i].gantry = float(ref.BeamSequence[i].ControlPointSequence[0].GantryAngle) self.beam[i].patientSupport = float(ref.BeamSequence[i].ControlPointSequence[0].PatientSupportAngle) self.beam[i].collimator = float(ref.BeamSequence[i].ControlPointSequence[0].BeamLimitingDeviceAngle) # Currently... these aren't available in treatment planning. Sad face. self.beam[i].pitch = float(ref.BeamSequence[i].ControlPointSequence[0].TableTopPitchAngle) self.beam[i].roll = float(ref.BeamSequence[i].ControlPointSequence[0].TableTopRollAngle) logging.info("Gantry Rotation: {}".format(self.beam[i].gantry)) logging.info("Patient Support: {}".format(self.beam[i].patientSupport)) logging.info("Collimator Rotation: {}".format(self.beam[i].collimator)) # Linac Coordinate System w.r.t WCS. LCS = np.array([[1,0,0],[0,0,1],[0,-1,0]]) # Beam Port Coordinate system w.r.t WCS. BCS = np.array([[1,0,0],[0,-1,0],[0,0,-1]]) # Calculate the rotation of the bed in the LCS. # rotations = [-self.beam[i].patientSupport,self.beam[i].roll,self.beam[i].pitch] # axes = ['y','z','x'] # cs_bed = (LCS@activeRotation(np.identity(3),rotations,axes))@np.linalg.inv(LCS) rotations = [self.beam[i].patientSupport] axes = ['z'] cs_bed = (LCS@activeRotation(np.identity(3),rotations,axes))@np.linalg.inv(LCS) # Rotate the WCS to the beam port view w.r.t the WCS. rotations = [90] axes = ['x'] cs_beamport = activeRotation(np.identity(3),rotations,axes) # Rotate the gantry and collimator w.r.t to the BCS. rotations = [self.beam[i].gantry,self.beam[i].collimator] axes = ['y','z'] cs_linac = (BCS@activeRotation(np.identity(3),rotations,axes))@np.linalg.inv(BCS) # Calculate the new patient coordin ate system. # A passive rotation of the patient position w.r.t to the LCS. temp = ct.RCS@cs_bed # A passive rotation of the inverse beam port takes the WCS into the view of the BCS w.r.t the WCS. temp = temp@np.linalg.inv(cs_beamport) # A passive rotation of the BEV w.r.t the BCS. self.beam[i].RCS = temp@cs_linac # Calculate a transform, W, that takes anything from the ct RCS to the beam RCS. self.beam[i].W = wcs2wcs(ct.RCS, self.beam[i].RCS) logging.info("\nBED R:\n {}".format(cs_bed)) logging.info("\nBEAM PORT R:\n {}".format(cs_beamport)) logging.info("\nLINAC R:\n {}".format(cs_linac)) # logging.info("\nCT RCS:\n {}".format(ct.RCS)) logging.info("\nBEV RCS:\n {}".format(self.beam[i].RCS)) logging.info("\nW:\n {}".format(self.beam[i].W)) # Rotate the CT. self.beam[i].pixelArray = gpu.rotate(self.beam[i].W) # Calculate the new pixel size. self.beam[i].pixelSize = np.absolute(self.beam[i].W@ct.pixelSize) logging.info("\nPixelSize: {}".format(self.beam[i].pixelSize)) # Create the 2d projection images. self.beam[i].image = [Image2d(),Image2d()] # testAxes = np.absolute(self.beam[i].W) # Find the RCS of the beam view. testAxes = np.absolute(self.beam[i].RCS) # Axes (x is fixed, so which ever arg is maxed means that axis is mapped onto our x fixed axis). x = np.argmax(testAxes[:,0]) y = np.argmax(testAxes[:,1]) z = np.argmax(testAxes[:,2]) # Directions. Add +1 to axis identifiers since you can't have -0 but you can have -1... xd = (x+1)*np.sign(self.beam[i].RCS[x,0]) yd = (y+1)*np.sign(self.beam[i].RCS[y,1]) zd = (z+1)*np.sign(self.beam[i].RCS[z,2]) # Extent. # Axis tells us which extent modifer to take and in what order. xe = ct.baseExtent[x*2:x*2+2][::np.sign(xd).astype(int)] ye = ct.baseExtent[y*2:y*2+2][::np.sign(yd).astype(int)] ze = ct.baseExtent[z*2:z*2+2][::np.sign(zd).astype(int)] self.beam[i].extent = np.hstack((xe,ye,ze)).reshape((6,)) # Top left front. self.beam[i].TLF = self.beam[i].extent[::2] # Get each axis for transform M. x = self.beam[i].RCS[0,:] y = self.beam[i].RCS[1,:] z = self.beam[i].RCS[2,:] # Construct the transformation matrix, M. self.beam[i].M = np.zeros((4,4)) self.beam[i].M[:3,0] = self.beam[i].pixelSize[0]*x self.beam[i].M[:3,1] = self.beam[i].pixelSize[1]*y self.beam[i].M[:3,2] = self.beam[i].pixelSize[2]*z self.beam[i].M[:3,3] = self.beam[i].TLF self.beam[i].M[3,3] = 1 # Calculate new isocenter position. self.beam[i].isocenter = np.absolute(wcs2wcs(np.identity(3),self.beam[i].RCS))@self.isocenter logging.info("\nIsocenter: {}".format(self.beam[i].isocenter)) # Flatten the 3d image to the two 2d images. self.beam[i].image[0].pixelArray = np.sum(self.beam[i].pixelArray,axis=2) self.beam[i].image[0].extent = np.array([self.beam[i].extent[0],self.beam[i].extent[1],self.beam[i].extent[3],self.beam[i].extent[2]]) self.beam[i].image[1].pixelArray = np.sum(self.beam[i].pixelArray,axis=1) self.beam[i].image[1].extent = np.array([self.beam[i].extent[4],self.beam[i].extent[5],self.beam[i].extent[3],self.beam[i].extent[2]]) def getIsocenter(self,beamIndex): return self.PCS@self.beam[beamIndex].isocenter def activeRotation(cs,theta,axis): """ Active rotation of 'cs' by 'theta' about 'axis' for a Right Handed Coordinate System. When viewed from the end of an axis, a positive rotation results in an anticlockwise direction. When viewed from looking down the axis, a positive rotation results in an clockwise direction. If theta = T: T = T3 x T2 x T1 ... If cs = P: P' = T x P """ # Put angles into radians. rotations = [] for i, _ in enumerate(theta): t = np.deg2rad(theta[i]) if axis[i] == 'x': r = np.array([[1,0,0],[0,np.cos(t),-np.sin(t)],[0,np.sin(t),np.cos(t)]]) elif axis[i] == 'y': r = np.array([[np.cos(t),0,np.sin(t)],[0,1,0],[-np.sin(t),0,np.cos(t)]]) elif axis[i] == 'z': r = np.array([[np.cos(t),-np.sin(t),0],[np.sin(t),np.cos(t),0],[0,0,1]]) rotations.append(r) # Calculate out the combined rotations. m = np.identity(3) for i, _ in enumerate(rotations): m = m@rotations[i] # Rotate coordinate system. rotated_cs = m@cs return rotated_cs def calculateNewImageInformation(patientPosition,cs,arraySize,pixelSize,leftTopFront): # Find which python axes the dicom axes are maximised in. magnitudes = np.argmax(np.absolute(cs),axis=0) sx = np.sign(cs[:,0][magnitudes[0]]) sy = np.sign(cs[:,1][magnitudes[1]]) sz = np.sign(cs[:,2][magnitudes[2]]) signs = np.array([sx,sy,sz]) # Set the labels for the patient position. rcsLabels = np.array(['?','?','?','?','?','?']) if patientPosition == 'HFS': rcsLabels = np.array(['P','A','R','L','I','S']) elif patientPosition == 'HFP': rcsLabels = np.array(['A','P','R','L','I','S']) elif patientPosition == 'FFS': rcsLabels = np.array(['P','A','L','R','S','I']) elif patientPosition == 'FFP': rcsLabels = np.array(['A','P','L','R','S','I']) # If magnitudes[0] = 0, then this is the DCM X axis mapped onto the python X axis. # DCM X Axis = Right to Left (- to +). # DCM Input for TLF corner is always assigned to (-x,-y,-z), otherwise described as (-0,-1,-2). # The extent is then that corner + the pixelsize * arraysize * direction (from R to L, T to B, F to B). for i in range(len(magnitudes)): if magnitudes[i] == 0: if signs[i] == +1: xAxis = str(rcsLabels[0]+rcsLabels[1]) top = leftTopFront[0] bottom = top + (pixelSize[0]*arraySize[0]*signs[i]) elif signs[i] == -1: xAxis = str(rcsLabels[1]+rcsLabels[0]) bottom = leftTopFront[0] top = bottom + (pixelSize[0]*arraySize[0]*signs[i]) elif magnitudes[i] == 1: if signs[i] == +1: yAxis = str(rcsLabels[2]+rcsLabels[3]) left = leftTopFront[1] right = left + (pixelSize[1]*arraySize[1]*signs[i]) elif signs[i] == -1: yAxis = str(rcsLabels[3]+rcsLabels[2]) right = leftTopFront[1] left = right + (pixelSize[1]*arraySize[1]*signs[i]) elif magnitudes[i] == 2: if signs[i] == +1: zAxis = str(rcsLabels[4]+rcsLabels[5]) front = leftTopFront[2] back = front + (pixelSize[2]*arraySize[2]*signs[i]) elif signs[i] == -1: zAxis = str(rcsLabels[5]+rcsLabels[4]) back = leftTopFront[2] front = back + (pixelSize[2]*arraySize[2]*signs[i]) extent = np.array([left,right,bottom,top,front,back]) labels = np.array([xAxis,yAxis,zAxis]) return extent, labels
36.788871
169
0.666162
eee36d733f56b35ea257a19a7406ae9a31da74f7
6,197
py
Python
SEIR_ImpVac.py
malenetxeberria/TFG-IngElec
1a60be3d767540e9254aa3ae0348ae0dbc669758
[ "MIT" ]
null
null
null
SEIR_ImpVac.py
malenetxeberria/TFG-IngElec
1a60be3d767540e9254aa3ae0348ae0dbc669758
[ "MIT" ]
null
null
null
SEIR_ImpVac.py
malenetxeberria/TFG-IngElec
1a60be3d767540e9254aa3ae0348ae0dbc669758
[ "MIT" ]
1
2021-01-27T19:27:59.000Z
2021-01-27T19:27:59.000Z
# -*- coding: utf-8 -*- """ Date: 18/02/2020 Description: The SEIR epidemic model with pulse vaccination. """ import numpy as np from scipy.integrate import odeint import matplotlib import matplotlib.pyplot as plt import sys # ----------------------------------------------------------------------------- # LaTex # ----------------------------------------------------------------------------- matplotlib.rcParams['text.usetex'] = True plt.rc('text', usetex=True) plt.rc('font', family='serif') font = {'weight': 'normal', 'size': 12} # Graph number's fontsize plt.rc('font', **font) plt.rc('legend', fontsize=11) # Legend's fontsize # ----------------------------------------------------------------------------- # Parameter Declaration # ----------------------------------------------------------------------------- # Initial number of population N0 = 4e7 # Initial proportion of susceptible, exposed, infectious and recovered ind. S0, E0, I0, R0 = 1.0 - (1.0/N0), 0, 1.0/N0, 0 # Demographic parameters A, mu = 0.005, 0.005 # Epidemiologic parameters alpha, beta, gamma, sigma = 0.01, 0.57, 0.067, 0.13 # Vaccination proportion p = 0.60 # Pulse vaccination period T = 30 # Time interval limits t0, tmax = 0, 1000 # Time subintervals' step number ss = 350 # ----------------------------------------------------------------------------- # Differential equations # ----------------------------------------------------------------------------- def deriv(y, t, A, alpha, beta, gamma, mu, sigma): """ Implements the differential equations in which the SEIR model is based. Args: y (tuple): tuple containing S, E, I and R variables t (Numpy.ndarray): grid of time points in [t0, tmax] interval A (float): proportion of new individuals per unit time mu (float): natural death rate alpha (float): disease-related death rate beta (float): contact rate gamma (float): recovery rate sigma (float): inverse latent period Returns: dSdt (float): derivative of S in time t dEdt (float): derivative of E in time t dIdt (float): derivative of I in time t dRdt (float): derivative of R in time t """ S, E, I, R = y dSdt = A - (beta*I+mu)*S dEdt = beta*S*I - (mu+sigma)*E dIdt = sigma*E - (mu+gamma+alpha)*I dRdt = gamma*I - mu*R return dSdt, dEdt, dIdt, dRdt def integrate(y0, t): """ Function that integrates the SEIR equations over the given time interval. Args: y0 (tuple): tuple containing S, E, I and R variablesi initial values t (Numpy.ndarray): grid of time points in [t0, tmax] interval Returns: S (Numpy.ndarray): solution of S in [t0, tmax] interval E (Numpy.ndarray): solution of E in [t0, tmax] interval I (Numpy.ndarray): solution of I in [t0, tmax] interval R (Numpy.ndarray): solution of R in [t0, tmax] interval N (Numpy.ndarray): solution of N in [t0, tmax] interval """ ret = odeint(deriv, y0, t, args=(A, alpha, beta, gamma, mu, sigma)) S, E, I, R = ret.T N = S + E + I + R return [S, E, I, R, N] # ----------------------------------------------------------------------------- # Integrate over the different time subintervals # ----------------------------------------------------------------------------- # First time interval y0 = S0, E0, I0, R0 t = np.linspace(t0, T, ss) [S, E, I, R, N] = integrate(y0, t) # Time interval number: IT MUST BE BIGGER THAN OR EQUAL TO 1 nf = (tmax-t0)/T n = int(np.floor(nf)) # Middle time intervals for i in range(1,n): length = len(N) S0 = (1-p)*S[length-1] R0 = R[length-1] + p*S[length-1] y0 = S0, E[length-1], I[length-1], R0 t = np.linspace(i*T, (i+1)*T, ss) [subS, subE, subI, subR, subN] = integrate(y0, t) S = np.append(S, subS) E = np.append(E, subE) I = np.append(I, subI) R = np.append(R, subR) N = np.append(N, subN) # Last time interval if nf!=n: S0 = (1-p)*S[length+ss-1] R0 = R[length+ss-1] + p*S[length+ss-1] y0 = S0, E[length+ss-1], I[length+ss-1], R0 t = np.linspace(n*T, tmax, ss) [subS, subE, subI, subR, subN] = integrate(y0, t) S = np.append(S, subS) E = np.append(E, subE) I = np.append(I, subI) R = np.append(R, subR) N = np.append(N, subN) # Whole time interval (for future plots) length = len(N) t = np.linspace(t0, tmax, length) print("Infectious prop:" , I[len(I)-1]) # Critical susceptible proportion Rep = A*beta*sigma / ( (mu)*(mu+sigma)*(mu+gamma+alpha) ) print("Reprodutive number:", Rep) print("Inverse reproductive numer:", 1.0/Rep) line=[] for inst in t: line.append(1.0/Rep) # ----------------------------------------------------------------------------- # Plot the data # ----------------------------------------------------------------------------- fig = plt.figure(facecolor='w',figsize=(7,4)) ax = fig.add_subplot(111, axisbelow=True) ax.plot(t, S, 'tomato', alpha=0.6, lw=1.2, label='Susceptibles') #ax.plot(t, E, 'tomato', alpha=0.7, lw=1.2, label='Expuestos') ax.plot(t, I, 'r', alpha=0.8, lw=1.2, label='Infecciosos') #ax.plot(t, R, 'grey', alpha=0.6, lw=1.2, label='Recuperados') ax.plot(t, line, "black", alpha=0.8, linestyle="dashdot", lw=1.0, label='$S_c$') ax.ticklabel_format(axis="y", style="sci", scilimits=(0,0)) ax.set_xlabel('Tiempo (días)', fontsize=13.5, labelpad=6) ax.set_ylabel('Proporción de individuos', fontsize=13.5, labelpad=10) ax.yaxis.set_tick_params(length=0) ax.xaxis.set_tick_params(length=0) ax.grid(b=True, which='major', c='silver', lw=0.5, ls='-') legend = ax.legend(loc=1) legend.get_frame().set_alpha(0.9) for spine in ('top', 'right', 'bottom', 'left'): ax.spines[spine].set_visible(False) plt.savefig('422.png', dpi=600) plt.show()
32.615789
81
0.512345
cf427f1d9c02a665d96cef051d10239cb77038b0
6,416
py
Python
lib/core/loss.py
lsrock1/human-pose-estimation-polar-coordinate
378ed6fb8ac37a90758381fdeabcc5f936ce0f60
[ "MIT" ]
null
null
null
lib/core/loss.py
lsrock1/human-pose-estimation-polar-coordinate
378ed6fb8ac37a90758381fdeabcc5f936ce0f60
[ "MIT" ]
null
null
null
lib/core/loss.py
lsrock1/human-pose-estimation-polar-coordinate
378ed6fb8ac37a90758381fdeabcc5f936ce0f60
[ "MIT" ]
null
null
null
# ------------------------------------------------------------------------------ # Copyright (c) Microsoft # Licensed under the MIT License. # Written by Bin Xiao (Bin.Xiao@microsoft.com) # ------------------------------------------------------------------------------ from __future__ import absolute_import from __future__ import division from __future__ import print_function import torch import torch.nn as nn import torch.nn.functional as F class KeypointIOULoss(nn.Module): def __init__(self, use_target_weight): super().__init__() self.use_target_weight = use_target_weight # def forward(self, output, target, target_weight): # # output [bs, 14, 2] # # target same # # target_weight [bs, 14, 1] # target = target.float() # inter = torch.min(output, target) # union = output + target - inter # losses = -torch.log((inter + 1.0) / (union + 1.0)) # # print('angle loss : ', losses[:, :, 0].sum() * 0.5, " length loss : ", losses[:, :, 1].sum() * 0.5) # losses = losses[:, :, 0] * 0.5 + losses[:, :, 1] * 0.5 # losses.unsqueeze_(2) # # print('pred : ', output[0]) # # print('target : ', target[0]) # if self.use_target_weight and target_weight.sum() > 0: # return (losses * target_weight).sum() / (target_weight.sum()) # else: # losses.mean() # def forward(self, output, target, target_weight): # # output [bs, 16, 361] # index = target_weight > 0 # # output [bs * 16] # index = index.view(-1) # degree = F.cross_entropy(output[:, :, :361].view(-1, 361)[index, :], target[:, :, 0].view(-1).long()[index]) # length_target = target[:, :, 1].float().view(-1)[index] # length_pred = output[:, :, 361].view(-1)[index] # inter = torch.min(length_pred, length_target) # union = length_pred + length_target - inter # length = -torch.log((inter + 1.) / (union + 1.)) # length = length.sum() / index.sum() # return degree + 0.5 + length * 0.5 def forward(self, output, target, target_weight): # index (bs * joints) # print('output: ', output[0]) # print('target: ', target[0]) index = target_weight > 0 index = index.view(-1) output = output.view(-1, 3)[index, :] target = target.view(-1, 3)[index, :].float() angle_loss = F.mse_loss(output[:, :2], target[:, :2]) inter = torch.min(output[:, 2], target[:, 2]) union = output[:, 2] + target[:, 2] - inter length_loss = -torch.log((inter + 1.) / (union + 1.)) length_loss = length_loss.sum() / index.sum() # length_loss = F.mse_loss(output[:, 9], target[:, 9]) # print('angle : ', angle_loss, " length : ", length_loss) return 0.5 * angle_loss + 0.5 * length_loss # def forward(self, output, target, target_weight): # # index (bs * joints) # index = target_weight > 0 # index = index.view(-1) # output = output.view(-1, 10)[index, :] # target = target.view(-1, 10)[index, :].float() # angle_loss = F.mse_loss(output[:, :9].view(-1, 3, 3)[:, :2, :2], target[:, :9].view(-1, 3, 3)[:, :2, :2]) # length_loss = F.mse_loss(output[:, 9], target[:, 9]) # return 0.5 * angle_loss + 0.5 * length_loss # # length_loss = F.mse_loss(output[:, 9], target[:, 9]) # # print('angle : ', angle_loss, " length : ", length_loss) # # return 0.5 * angle_loss + 0.5 * length_loss # # length = -torch.log((inter + 1.0) / ( + 1.0))-torch.log(output[:, :, 361], target[:, :, 1].float()) class JointsMSELoss(nn.Module): def __init__(self, use_target_weight): super(JointsMSELoss, self).__init__() self.criterion = nn.MSELoss(reduction='mean') self.use_target_weight = use_target_weight def forward(self, output, target, target_weight): target = target.float() batch_size = output.size(0) num_joints = output.size(1) heatmaps_pred = output.reshape((batch_size, num_joints, -1)).split(1, 1) heatmaps_gt = target.reshape((batch_size, num_joints, -1)).split(1, 1) loss = 0 for idx in range(num_joints): heatmap_pred = heatmaps_pred[idx].squeeze() heatmap_gt = heatmaps_gt[idx].squeeze() if self.use_target_weight: loss += 0.5 * self.criterion( heatmap_pred.mul(target_weight[:, idx]), heatmap_gt.mul(target_weight[:, idx]) ) else: loss += 0.5 * self.criterion(heatmap_pred, heatmap_gt) return loss / num_joints class JointsOHKMMSELoss(nn.Module): def __init__(self, use_target_weight, topk=8): super(JointsOHKMMSELoss, self).__init__() self.criterion = nn.MSELoss(reduction='none') self.use_target_weight = use_target_weight self.topk = topk def ohkm(self, loss): ohkm_loss = 0. for i in range(loss.size()[0]): sub_loss = loss[i] topk_val, topk_idx = torch.topk( sub_loss, k=self.topk, dim=0, sorted=False ) tmp_loss = torch.gather(sub_loss, 0, topk_idx) ohkm_loss += torch.sum(tmp_loss) / self.topk ohkm_loss /= loss.size()[0] return ohkm_loss def forward(self, output, target, target_weight): batch_size = output.size(0) num_joints = output.size(1) heatmaps_pred = output.reshape((batch_size, num_joints, -1)).split(1, 1) heatmaps_gt = target.reshape((batch_size, num_joints, -1)).split(1, 1) loss = [] for idx in range(num_joints): heatmap_pred = heatmaps_pred[idx].squeeze() heatmap_gt = heatmaps_gt[idx].squeeze() if self.use_target_weight: loss.append(0.5 * self.criterion( heatmap_pred.mul(target_weight[:, idx]), heatmap_gt.mul(target_weight[:, idx]) )) else: loss.append( 0.5 * self.criterion(heatmap_pred, heatmap_gt) ) loss = [l.mean(dim=1).unsqueeze(dim=1) for l in loss] loss = torch.cat(loss, dim=1) return self.ohkm(loss)
38.884848
118
0.541771
0d8cad0980295b6751e3723add416e505790795a
6,058
py
Python
test/integration/component/test_asa1000v_fw.py
ksowmya/cloudstack-1
f8f779158da056be7da669884ae4ddd109cec044
[ "Apache-2.0" ]
1
2020-03-27T22:21:20.000Z
2020-03-27T22:21:20.000Z
test/integration/component/test_asa1000v_fw.py
ksowmya/cloudstack-1
f8f779158da056be7da669884ae4ddd109cec044
[ "Apache-2.0" ]
null
null
null
test/integration/component/test_asa1000v_fw.py
ksowmya/cloudstack-1
f8f779158da056be7da669884ae4ddd109cec044
[ "Apache-2.0" ]
1
2019-12-26T07:16:06.000Z
2019-12-26T07:16:06.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ Cisco ASA1000v external firewall """ #Import Local Modules import marvin from nose.plugins.attrib import attr from marvin.cloudstackTestCase import * from marvin.cloudstackAPI import * from marvin.integration.lib.utils import * from marvin.integration.lib.base import * from marvin.integration.lib.common import * from marvin.remoteSSHClient import remoteSSHClient import datetime class Services: """Test Cisco ASA1000v services """ def __init__(self): self.services = { "vnmc": { "ipaddress": '10.147.28.236', "username": 'admin', "password": 'Password_123', }, "asa": { "ipaddress": '10.147.28.238', "insideportprofile": 'asa-in123', }, "network_offering": { "name": 'CiscoVnmc', "displaytext": 'CiscoVnmc', "guestiptype": 'Isolated', "supportedservices": 'Dhcp,Dns,SourceNat,PortForwarding,Firewall,UserData,StaticNat', "traffictype": 'GUEST', "availability": 'Optional', "serviceProviderList": { "Dhcp": 'VirtualRouter', "Dns": 'VirtualRouter', "SourceNat": 'CiscoVnmc', "PortForwarding": 'CiscoVnmc', "Firewall": 'CiscoVnmc', "UserData": 'VirtualRouter', "StaticNat": 'CiscoVnmc', }, }, "network": { "name": "CiscoVnmc", "displaytext": "CiscoVnmc", }, } class TestASASetup(cloudstackTestCase): @classmethod def setUpClass(cls): cls.apiclient = super( TestASASetup, cls ).getClsTestClient().getApiClient() cls.services = Services().services cls.network_offering = NetworkOffering.create( cls.apiclient, cls.services["network_offering"], conservemode=True) # Enable network offering cls.network_offering.update(cls.apiclient, state='Enabled') cls._cleanup = [ cls.network_offering, ] return @classmethod def tearDownClass(cls): try: # Cleanup cleanup_resources(cls.apiclient, cls._cleanup) except Exception as e: raise Exception("Warning: Exception during cleanup : %s" % e) return def setUp(self): self.apiclient = self.testClient.getApiClient() self.dbclient = self.testClient.getDbConnection() self.zone = get_zone(self.apiclient, self.services) self.physicalnetworks = PhysicalNetwork.list(self.apiclient, zoneid=self.zone.id) self.assertNotEqual(len(self.physicalnetworks), 0, "Check if the list physical network API returns a non-empty response") self.clusters = Cluster.list(self.apiclient, hypervisor='VMware') self.assertNotEqual(len(self.clusters), 0, "Check if the list cluster API returns a non-empty response") self.cleanup = [] return def tearDown(self): try: self.debug("Cleaning up the resources") cleanup_resources(self.apiclient, self.cleanup) self.debug("Cleanup complete!") except Exception as e: raise Exception("Warning: Exception during cleanup : %s" % e) return @attr(tags=["device", "asa"]) def test_registerVnmc(self): Vnmc = VNMC.create(self.apiclient, self.services["vnmc"]["ipaddress"], self.services["vnmc"]["username"], self.services["vnmc"]["password"], self.physicalnetworks[0].id) self.debug("Cisco VNMC appliance with id %s deployed"%(Vnmc.id)) VnmcList = VNMC.list(self.apiclient, physicalnetworkid = self.physicalnetworks[0].id) self.assertNotEqual(len(VnmcList), 0, "List VNMC API returned an empty response") Vnmc.delete(self.apiclient) @attr(tags=["device", "asa"]) def test_registerAsa1000v(self): Asa = ASA1000V.create(self.apiclient, self.services["asa"]["ipaddress"], self.services["asa"]["insideportprofile"], self.clusters[0].id, self.physicalnetworks[0].id) self.debug("Cisco ASA 1000v appliance with id %s deployed"%(Asa.id)) AsaList = ASA1000V.list(self.apiclient, physicalnetworkid = self.physicalnetworks[0].id) self.assertNotEqual(len(AsaList), 0, "List ASA 1000v API returned an empty response") Asa.delete(self.apiclient)
44.218978
177
0.551172
10a7c6d5ad36d9a07821a4e5b70c301030e8d031
4,243
py
Python
pong-server.py
hsubbaraj/pong-demo
dd747a6e25862e4dd0e3e4c553ae31a3f388553b
[ "MIT" ]
null
null
null
pong-server.py
hsubbaraj/pong-demo
dd747a6e25862e4dd0e3e4c553ae31a3f388553b
[ "MIT" ]
null
null
null
pong-server.py
hsubbaraj/pong-demo
dd747a6e25862e4dd0e3e4c553ae31a3f388553b
[ "MIT" ]
null
null
null
from __future__ import print_function, absolute_import from socketserver import ThreadingMixIn from http.server import BaseHTTPRequestHandler, HTTPServer import mimetypes mimetypes.init() import os import requests from datetime import datetime import logging import json import sys cur_dir = os.path.dirname(os.path.abspath(__file__)) static_dir = os.path.join(cur_dir, "static") logging.basicConfig( format='%(asctime)s %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s', datefmt='%y-%m-%d:%H:%M:%S', level=logging.INFO) logger = logging.getLogger(__name__) PORT = 3000 # NOTE: This is definitely not secure def in_static_dir(file): # make both absolute directory = os.path.join(os.path.realpath(static_dir), '') file = os.path.realpath(file) # return true, if the common prefix of both is equal to directory # e.g. /a/b/c/d.rst and directory is /a/b, the common prefix is /a/b return os.path.commonprefix([file, directory]) == directory class PongServer(BaseHTTPRequestHandler): def _respond_not_found(self): pass # GET requests serve the corresponding file from the "static/" subdirectory def do_GET(self): if self.path == "/pong" or self.path == "/pong/": self.path = "/pong/index.html" if self.path.startswith("/pong/"): self.path = self.path.replace("/pong/", "", 1) local_path = os.path.abspath(os.path.join(static_dir, self.path)) logger.info("Local path: {}".format(local_path)) if not in_static_dir(local_path): self.send_error(403, "Forbidden") elif not os.path.exists(local_path) or not os.path.isfile(local_path): self.send_error(404, "Not Found") else: with open(local_path, "rb") as f: self.send_response(200) mtype, encoding = mimetypes.guess_type(local_path) self.send_header('Content-Type', mtype) self.end_headers() self.wfile.write(f.read()) return def do_POST(self): if not self.path == "/pong/predict": self.send_error(404, "Not Found") return print(self.rfile) clipper_url = "http://{}/pong/predict".format(self.server.clipper_addr) content_length = int(self.headers['Content-Length']) logger.info(content_length) print(content_length) logger.info(clipper_url) # # Stupid workaround because Javascript's JSON.stringify will turn 1.0 into 1, which # # Clipper's JSON parsing will parse as an integer not a double req_json = json.loads(self.rfile.read(content_length).decode("utf-8")) req_json["input"] = [float(i) for i in req_json["input"]] print(req_json) # logger.info("DATA ------------------------------------------------------------------------") # logger.info(req_json) logger.debug("Request JSON: {}".format(req_json)) headers = {'Content-Type': 'application/json'} start = datetime.now() clipper_response = requests.post(clipper_url, headers=headers, data=json.dumps(req_json)) end = datetime.now() latency = (end - start).total_seconds() * 1000.0 logger.debug("Clipper responded with '{txt}' in {time} ms".format( txt=clipper_response.text, time=latency)) self.send_response(clipper_response.status_code) # Forward headers print("Clipper responded with '{txt}' in {time} ms".format( txt=clipper_response.text, time=latency)) print(clipper_response.headers) print(type(clipper_response.headers)) for k, v in clipper_response.headers.items(): self.send_header(k, v) self.end_headers() self.wfile.write(clipper_response.text.encode()) class ThreadingServer(ThreadingMixIn, HTTPServer): pass def run(clipper_addr): server_addr = ('', PORT) logger.info("Starting Pong Server on localhost:{port}".format(port=PORT)) server = ThreadingServer(server_addr, PongServer) server.clipper_addr = clipper_addr server.serve_forever() if __name__ == '__main__': clipper_addr = sys.argv[1] run(clipper_addr)
35.957627
102
0.63917
f5c7978a4bceb8949af73bf64e42a1743ec4117d
8,503
py
Python
app.py
reecestart/SessionManagerTGWControlTower
951c12e261ea46b9c37bfe3064878359e3b47118
[ "MIT" ]
null
null
null
app.py
reecestart/SessionManagerTGWControlTower
951c12e261ea46b9c37bfe3064878359e3b47118
[ "MIT" ]
null
null
null
app.py
reecestart/SessionManagerTGWControlTower
951c12e261ea46b9c37bfe3064878359e3b47118
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 from enum import auto from aws_cdk import ( aws_ec2 as ec2, aws_rds as rds, aws_secretsmanager as secretsmanager, aws_iam as iam, aws_autoscaling as autoscaling, aws_glue as glue, core, ) from session_manager_tgw_control_tower.session_manager_tgw_control_tower_stack import SessionManagerTgwControlTowerStack class SessionManagerTgwControlTowerStack(core.Stack): def __init__(self, app: core.App, id: str, **kwargs) -> None: super().__init__(app, id, **kwargs) vpc = ec2.Vpc( self, "VPC", max_azs=3, cidr='10.0.0.0/16', enable_dns_hostnames=True, enable_dns_support=True, subnet_configuration= [ ec2.SubnetConfiguration( name='DBSubnet', subnet_type=ec2.SubnetType.ISOLATED, cidr_mask=24 ), ec2.SubnetConfiguration( name='Application-A', subnet_type=ec2.SubnetType.PRIVATE, cidr_mask=24 ), ec2.SubnetConfiguration( name='Application-B', subnet_type=ec2.SubnetType.PRIVATE, cidr_mask=24 ), ec2.SubnetConfiguration( name='Web', subnet_type=ec2.SubnetType.PUBLIC, cidr_mask=24 ), ] ) dbSecurityGroup = ec2.SecurityGroup( self, id= "dbSecurityGroup", vpc=vpc, security_group_name="DBSecurityGroup" ) dbSubnetGroup = rds.SubnetGroup( self, "dbSubnetGroup", subnet_group_name="dbSubnetGroup", vpc_subnets=ec2.SubnetSelection(subnet_type=ec2.SubnetType.ISOLATED), description="dbSubnetGroup", vpc=vpc ) dbPassword = secretsmanager.Secret( self, "dbPassword", description="dbPassword", generate_secret_string=secretsmanager.SecretStringGenerator( password_length=30, secret_string_template='{"username": "dbAdmin"}', generate_string_key="password", exclude_characters='"@\\\/', exclude_punctuation=True ), secret_name="dbPassword" ) WindowsASG = autoscaling.AutoScalingGroup( self, "WindowsASG", instance_type=ec2.InstanceType.of( ec2.InstanceClass.BURSTABLE3_AMD, ec2.InstanceSize.SMALL ), machine_image=ec2.MachineImage.generic_windows( ami_map={ 'ap-northeast-2': 'ami-0133b1a5b9ca9be36' #Windows } ), vpc=vpc, vpc_subnets=ec2.SubnetSelection(subnet_type=ec2.SubnetType.PRIVATE), desired_capacity=1, min_capacity=1, max_capacity=2 ) AppASG = autoscaling.AutoScalingGroup( self, "AppASG", instance_type=ec2.InstanceType.of( ec2.InstanceClass.BURSTABLE3_AMD, ec2.InstanceSize.SMALL ), machine_image=ec2.MachineImage.generic_linux( ami_map={ 'ap-southeast-2': 'ami-044c46b1952ad5861', #RHEL 'ap-northeast-2': 'ami-07464b2b9929898f8' #AMZLNX2 } ), vpc=vpc, vpc_subnets=ec2.SubnetSelection(subnet_type=ec2.SubnetType.PRIVATE), user_data=ec2.UserData.custom('\n'.join([ "#!/bin/bash", "yum install python3 -y", "dnf install -y https://s3.ap-southeast-2.amazonaws.com/amazon-ssm-ap-southeast-2/latest/linux_amd64/amazon-ssm-agent.rpm", "dnf install -y https://s3.ap-southeast-1.amazonaws.com/amazon-ssm-ap-southeast-1/latest/linux_amd64/amazon-ssm-agent.rpm", "systemctl enable amazon-ssm-agent", "systemctl start amazon-ssm-agent", "yum install -y postgresql", "yum install -y git", "yum update -y", "cd /home/ec2-user", "DIR=\"aws-database-migration-samples\"", "if [ ! -d \"$DIR\" ]; then", "git clone https://github.com/aws-samples/aws-database-migration-samples.git", "fi", "cd aws-database-migration-samples/PostgreSQL/sampledb/v1/", "kill -9 16673", "dnf install python2-pip -y", "dnf install python3-pip -y", "pip2 --version", "pip3 --version", "cd /home/ec2-user", "curl 'https://awscli.amazonaws.com/awscli-exe-linux-x86_64.zip' -o 'awscliv2.zip'", "yum install zip unzip -y", "unzip awscliv2.zip", "./aws/install -i /usr/local/aws-cli -b /usr/local/bin", "/usr/local/bin/aws --version", "DBDETAILS=`/usr/local/bin/aws rds describe-db-instances`", "sudo yum install jq -y", "DBIDENTIFIER=$(echo $DBDETAILS | jq -r '.[\"DBInstances\"][0][\"DBInstanceIdentifier\"]')", "/usr/local/bin/aws rds wait db-instance-available --db-instance-identifier $DBIDENTIFIER", "SECRETSTRING=`/usr/local/bin/aws secretsmanager get-secret-value --secret-id dbPassword --query SecretString --output text`", "PGPASSWORD=$(echo $SECRETSTRING | jq -r '.[\"password\"]')", "PGUSER=$(echo $SECRETSTRING | jq -r '.[\"username\"]')", "DBPROXY=`/usr/local/bin/aws rds describe-db-proxies`", "PROXYENDPOINT=$(echo $DBPROXY | jq -r '.[\"DBProxies\"][0][\"Endpoint\"]')", "PGDATABASE=$(echo $SECRETSTRING | jq -r '.[\"dbname\"]')", "PGPORT=$(echo $SECRETSTRING | jq -r '.[\"port\"]')", "cd /home/ec2-user", "cd aws-database-migration-samples/PostgreSQL/sampledb/v1/", "PGHOST=${PROXYENDPOINT} PGPORT=${PGPORT} PGDATABASE=${PGDATABASE} PGUSER=${PGUSER} PGPASSWORD=${PGPASSWORD} psql -f install-postgresql.sql" ])), desired_capacity=1, min_capacity=1, max_capacity=2 ) dbSecurityGroup.connections.allow_from( other=AppASG, port_range=ec2.Port.tcp(5432), description="Allow pg connection from AppInstance" ) AppASG.role.add_managed_policy( policy=iam.ManagedPolicy.from_aws_managed_policy_name( managed_policy_name="AmazonSSMManagedInstanceCore" ) ) WindowsASG.role.add_managed_policy( policy=iam.ManagedPolicy.from_aws_managed_policy_name( managed_policy_name="AmazonSSMManagedInstanceCore" ) ) AppASG.role.add_managed_policy( policy=iam.ManagedPolicy.from_aws_managed_policy_name( managed_policy_name="AmazonRDSFullAccess" ) ) AppASG.role.add_managed_policy( policy=iam.ManagedPolicy.from_aws_managed_policy_name( managed_policy_name="AmazonEC2FullAccess " ) ) WindowsASG.role.add_managed_policy( policy=iam.ManagedPolicy.from_aws_managed_policy_name( managed_policy_name="AmazonEC2FullAccess " ) ) WindowsASG.role.add_managed_policy( policy=iam.ManagedPolicy.from_aws_managed_policy_name( managed_policy_name="SecretsManagerReadWrite " ) ) AppASG.role.add_managed_policy( policy=iam.ManagedPolicy.from_aws_managed_policy_name( managed_policy_name="SecretsManagerReadWrite" ) ) S3Endpoint = ec2.GatewayVpcEndpointAwsService( name="S3" ) TransitGW = ec2.CfnTransitGateway( self, "TransitGW", auto_accept_shared_attachments="enable", default_route_table_association="enable", default_route_table_propagation="enable" ) app = core.App() SessionManagerTgwControlTowerStack(app, "session-manager-tgw-control-tower") app.synth()
38.301802
156
0.552628
c006e2459a82b3a12e9d9c2bcea003fa6a6f50fb
15,521
py
Python
tools/accuracy_checker/accuracy_checker/metrics/reid.py
apankratovantonp/open_model_zoo
e372d4173e50741a6828cda415d55c37320f89cd
[ "Apache-2.0" ]
5
2020-03-09T07:39:04.000Z
2021-08-16T07:17:28.000Z
tools/accuracy_checker/accuracy_checker/metrics/reid.py
ananda89/open_model_zoo
e372d4173e50741a6828cda415d55c37320f89cd
[ "Apache-2.0" ]
null
null
null
tools/accuracy_checker/accuracy_checker/metrics/reid.py
ananda89/open_model_zoo
e372d4173e50741a6828cda415d55c37320f89cd
[ "Apache-2.0" ]
3
2020-07-06T08:45:26.000Z
2020-11-12T10:14:45.000Z
""" Copyright (c) 2019 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from collections import defaultdict, namedtuple from sklearn.metrics import auc, precision_recall_curve # noinspection PyProtectedMember from sklearn.metrics.base import _average_binary_score import numpy as np from ..representation import ( ReIdentificationClassificationAnnotation, ReIdentificationAnnotation, ReIdentificationPrediction ) from ..config import BaseField, BoolField, NumberField from .metric import FullDatasetEvaluationMetric PairDesc = namedtuple('PairDesc', 'image1 image2 same') class CMCScore(FullDatasetEvaluationMetric): """ Cumulative Matching Characteristics (CMC) score. Config: annotation: reid annotation. prediction: predicted embeddings. top_k: number of k highest ranked samples to consider when matching. separate_camera_set: should identities from the same camera view be filtered out. single_gallery_shot: each identity has only one instance in the gallery. number_single_shot_repeats: number of repeats for single_gallery_shot setting. first_match_break: break on first matched gallery sample. """ __provider__ = 'cmc' annotation_types = (ReIdentificationAnnotation, ) prediction_types = (ReIdentificationPrediction, ) @classmethod def parameters(cls): parameters = super().parameters() parameters.update({ 'top_k': NumberField( value_type=int, min_value=1, default=1, optional=True, description="Number of k highest ranked samples to consider when matching." ), 'separate_camera_set': BoolField( optional=True, default=False, description="Should identities from the same camera view be filtered out." ), 'single_gallery_shot': BoolField( optional=True, default=False, description="Each identity has only one instance in the gallery." ), 'first_match_break': BoolField( optional=True, default=True, description="Break on first matched gallery sample." ), 'number_single_shot_repeats': NumberField( value_type=int, optional=True, default=10, description="Number of repeats for single_gallery_shot setting (required for CUHK)." ) }) return parameters def configure(self): self.top_k = self.get_value_from_config('top_k') self.separate_camera_set = self.get_value_from_config('separate_camera_set') self.single_gallery_shot = self.get_value_from_config('single_gallery_shot') self.first_match_break = self.get_value_from_config('first_match_break') self.number_single_shot_repeats = self.get_value_from_config('number_single_shot_repeats') def evaluate(self, annotations, predictions): dist_matrix = distance_matrix(annotations, predictions) gallery_cameras, gallery_pids, query_cameras, query_pids = get_gallery_query_pids(annotations) _cmc_score = eval_cmc( dist_matrix, query_pids, gallery_pids, query_cameras, gallery_cameras, self.separate_camera_set, self.single_gallery_shot, self.first_match_break, self.number_single_shot_repeats ) return _cmc_score[self.top_k - 1] class ReidMAP(FullDatasetEvaluationMetric): """ Mean Average Precision score. Config: annotation: reid annotation. prediction: predicted embeddings. interpolated_auc: should area under precision recall curve be computed using trapezoidal rule or directly. """ __provider__ = 'reid_map' annotation_types = (ReIdentificationAnnotation, ) prediction_types = (ReIdentificationPrediction, ) @classmethod def parameters(cls): parameters = super().parameters() parameters.update({ 'interpolated_auc': BoolField( optional=True, default=True, description="Should area under precision recall" " curve be computed using trapezoidal rule or directly." ) }) return parameters def configure(self): self.interpolated_auc = self.get_value_from_config('interpolated_auc') def evaluate(self, annotations, predictions): dist_matrix = distance_matrix(annotations, predictions) gallery_cameras, gallery_pids, query_cameras, query_pids = get_gallery_query_pids(annotations) return eval_map( dist_matrix, query_pids, gallery_pids, query_cameras, gallery_cameras, self.interpolated_auc ) class PairwiseAccuracy(FullDatasetEvaluationMetric): __provider__ = 'pairwise_accuracy' annotation_types = (ReIdentificationClassificationAnnotation, ) prediction_types = (ReIdentificationPrediction, ) @classmethod def parameters(cls): parameters = super().parameters() parameters.update({ 'min_score': BaseField( optional=True, default='train_median', description="Min score for determining that objects are different. " "You can provide value or use train_median value which will be calculated " "if annotations has training subset." ) }) return parameters def configure(self): self.min_score = self.get_value_from_config('min_score') def evaluate(self, annotations, predictions): embed_distances, pairs = get_embedding_distances(annotations, predictions) min_score = self.min_score if min_score == 'train_median': train_distances, _train_pairs = get_embedding_distances(annotations, predictions, train=True) min_score = np.median(train_distances) embed_same_class = embed_distances < min_score accuracy = 0 for i, pair in enumerate(pairs): same_label = pair.same out_same = embed_same_class[i] correct_prediction = same_label and out_same or (not same_label and not out_same) if correct_prediction: accuracy += 1 return float(accuracy) / len(pairs) class PairwiseAccuracySubsets(FullDatasetEvaluationMetric): __provider__ = 'pairwise_accuracy_subsets' annotation_types = (ReIdentificationClassificationAnnotation, ) prediction_types = (ReIdentificationPrediction, ) @classmethod def parameters(cls): parameters = super().parameters() parameters.update({ 'subset_number': NumberField( optional=True, min_value=1, value_type=int, default=10, description="Number of subsets for separating." ) }) return parameters def configure(self): self.subset_num = self.get_value_from_config('subset_number') self.accuracy_metric = PairwiseAccuracy(self.config, self.dataset) def evaluate(self, annotations, predictions): subset_results = [] first_images_annotations = list(filter( lambda annotation: (len(annotation.negative_pairs) > 0 or len(annotation.positive_pairs) > 0), annotations )) idx_subsets = self.make_subsets(self.subset_num, len(first_images_annotations)) for subset in range(self.subset_num): test_subset = self.get_subset(first_images_annotations, idx_subsets[subset]['test']) test_subset = self.mark_subset(test_subset, False) train_subset = self.get_subset(first_images_annotations, idx_subsets[subset]['train']) train_subset = self.mark_subset(train_subset) subset_result = self.accuracy_metric.evaluate(test_subset+train_subset, predictions) subset_results.append(subset_result) return np.mean(subset_results) @staticmethod def make_subsets(subset_num, dataset_size): subsets = [] if subset_num > dataset_size: raise ValueError('It is impossible to divide dataset on more than number of annotations subsets.') for subset in range(subset_num): lower_bnd = subset * dataset_size // subset_num upper_bnd = (subset + 1) * dataset_size // subset_num subset_test = [(lower_bnd, upper_bnd)] subset_train = [(0, lower_bnd), (upper_bnd, dataset_size)] subsets.append({'test': subset_test, 'train': subset_train}) return subsets @staticmethod def mark_subset(subset_annotations, train=True): for annotation in subset_annotations: annotation.metadata['train'] = train return subset_annotations @staticmethod def get_subset(container, subset_bounds): subset = [] for bound in subset_bounds: subset += container[bound[0]: bound[1]] return subset def extract_embeddings(annotation, prediction, query): return np.stack([pred.embedding for pred, ann in zip(prediction, annotation) if ann.query == query]) def get_gallery_query_pids(annotation): gallery_pids = np.asarray([ann.person_id for ann in annotation if not ann.query]) query_pids = np.asarray([ann.person_id for ann in annotation if ann.query]) gallery_cameras = np.asarray([ann.camera_id for ann in annotation if not ann.query]) query_cameras = np.asarray([ann.camera_id for ann in annotation if ann.query]) return gallery_cameras, gallery_pids, query_cameras, query_pids def distance_matrix(annotation, prediction): gallery_embeddings = extract_embeddings(annotation, prediction, query=False) query_embeddings = extract_embeddings(annotation, prediction, query=True) return 1. - np.matmul(gallery_embeddings, np.transpose(query_embeddings)).T def unique_sample(ids_dict, num): mask = np.zeros(num, dtype=np.bool) for indices in ids_dict.values(): mask[np.random.choice(indices)] = True return mask def eval_map(distance_mat, query_ids, gallery_ids, query_cams, gallery_cams, interpolated_auc=False): number_queries, _number_gallery = distance_mat.shape # Sort and find correct matches indices = np.argsort(distance_mat, axis=1) matches = (gallery_ids[indices] == query_ids[:, np.newaxis]) # type: np.ndarray # Compute AP for each query average_precisions = [] for query in range(number_queries): # Filter out the same id and same camera valid = (gallery_ids[indices[query]] != query_ids[query]) | (gallery_cams[indices[query]] != query_cams[query]) y_true = matches[query, valid] y_score = -distance_mat[query][indices[query]][valid] if not np.any(y_true): continue average_precisions.append(binary_average_precision(y_true, y_score, interpolated_auc=interpolated_auc)) if not average_precisions: raise RuntimeError("No valid query") return np.mean(average_precisions) def eval_cmc(distance_mat, query_ids, gallery_ids, query_cams, gallery_cams, separate_camera_set=False, single_gallery_shot=False, first_match_break=False, number_single_shot_repeats=10, top_k=100): number_queries, _number_gallery = distance_mat.shape if not single_gallery_shot: number_single_shot_repeats = 1 # Sort and find correct matches indices = np.argsort(distance_mat, axis=1) matches = gallery_ids[indices] == query_ids[:, np.newaxis] # type: np.ndarray # Compute CMC for each query ret = np.zeros(top_k) num_valid_queries = 0 for query in range(number_queries): valid = get_valid_subset( gallery_cams, gallery_ids, query, indices, query_cams, query_ids, separate_camera_set ) # type: np.ndarray if not np.any(matches[query, valid]): continue ids_dict = defaultdict(list) if single_gallery_shot: gallery_indexes = gallery_ids[indices[query][valid]] for j, x in zip(np.where(valid)[0], gallery_indexes): ids_dict[x].append(j) for _ in range(number_single_shot_repeats): if single_gallery_shot: # Randomly choose one instance for each id # required for correct validation on CUHK datasets # http://www.ee.cuhk.edu.hk/~xgwang/CUHK_identification.html sampled = (valid & unique_sample(ids_dict, len(valid))) index = np.nonzero(matches[query, sampled])[0] else: index = np.nonzero(matches[query, valid])[0] delta = 1. / (len(index) * number_single_shot_repeats) for j, k in enumerate(index): if k - j >= top_k: break if first_match_break: ret[k - j] += 1 break ret[k - j] += delta num_valid_queries += 1 if num_valid_queries == 0: raise RuntimeError("No valid query") return ret.cumsum() / num_valid_queries def get_valid_subset(gallery_cams, gallery_ids, query_index, indices, query_cams, query_ids, separate_camera_set): # Filter out the same id and same camera valid = ( (gallery_ids[indices[query_index]] != query_ids[query_index]) | (gallery_cams[indices[query_index]] != query_cams[query_index]) ) if separate_camera_set: # Filter out samples from same camera valid &= (gallery_cams[indices[query_index]] != query_cams[query_index]) return valid def get_embedding_distances(annotation, prediction, train=False): image_indexes = {} for i, pred in enumerate(prediction): image_indexes[pred.identifier] = i pairs = [] for image1 in annotation: if train != image1.metadata.get("train", False): continue for image2 in image1.positive_pairs: pairs.append(PairDesc(image_indexes[image1.identifier], image_indexes[image2], True)) for image2 in image1.negative_pairs: pairs.append(PairDesc(image_indexes[image1.identifier], image_indexes[image2], False)) embed1 = np.asarray([prediction[idx].embedding for idx, _, _ in pairs]) embed2 = np.asarray([prediction[idx].embedding for _, idx, _ in pairs]) return 0.5 * (1 - np.sum(embed1 * embed2, axis=1)), pairs def binary_average_precision(y_true, y_score, interpolated_auc=True): def _average_precision(y_true_, y_score_, sample_weight=None): precision, recall, _ = precision_recall_curve(y_true_, y_score_, sample_weight) if not interpolated_auc: # Return the step function integral # The following works because the last entry of precision is # guaranteed to be 1, as returned by precision_recall_curve return -1 * np.sum(np.diff(recall) * np.array(precision)[:-1]) return auc(recall, precision) return _average_binary_score(_average_precision, y_true, y_score, average="macro")
38.418317
120
0.679918
cef3dfcf89b4c0012921ac579cf9f2950b4180b9
5,535
py
Python
pwncat/target.py
Mitul16/pwncat
b8d7876a9779c2c7796a9a29110d3f1cda721dff
[ "MIT" ]
1,454
2020-05-07T02:20:52.000Z
2022-03-31T21:32:22.000Z
pwncat/target.py
akr3ch/pwncat
d67865bdaac60dd0761d0698062e7b443a62c6db
[ "MIT" ]
187
2020-05-08T06:26:01.000Z
2022-03-07T21:15:29.000Z
pwncat/target.py
akr3ch/pwncat
d67865bdaac60dd0761d0698062e7b443a62c6db
[ "MIT" ]
184
2020-05-07T02:31:58.000Z
2022-03-31T09:11:59.000Z
""" A target is the data structure stored in the ZODB. It contains all enumerated facts, installed implants, unique ID, last remote address identified and other information needed across pwncat sessions to identify or interact with a target. No information in this object is specific to a connection protocol or session. """ import enum from typing import Tuple, Optional import persistent import persistent.list from BTrees.OOBTree import OOBTree class NAT(enum.Enum): """Indicates the current known state of NAT on the target host""" UNKNOWN = enum.auto() """ We currently don't have enough information to determine if NAT is used """ ENABLED = enum.auto() """ NAT is definitely enabled. Public/private addresses differ. """ DISABLED = enum.auto() """ NAT is definitely disabled. Public/private addresses are identical. """ class OS(enum.Enum): """Describes the operating system on the target host. This is normally set by the platform type when connecting, however may be interrogated from the target host directly. For example, in the case of similar OS's like Linux, Mac, and BSD, the platform may double check the OS prior to establishing a session. If the OS doesn't match your platform specifically, session establishment may fail, but any details collected so far will be stored (such as addresses and target OS information). """ LINUX = enum.auto() """ A linux-based operating system """ WINDOWS = enum.auto() """ Windows NT based operating system """ MAC = enum.auto() """ Apple Mac OS """ BSD = enum.auto() """ A BSD variant """ UNKNOWN = enum.auto() """ Unknown Operatin System """ class Target(persistent.Persistent): """Describes collected data on a target host. This replaces the database in previous versions of pwncat. It collects enumeration facts, system info, persistence state, and any other contextual information stored across instances of pwncat. Properties added to this class are automatically stored in the ZODB database as described by your configuration. A target is initialized with no information, and has no requirement for what data is available. Depending on the state of the active connection (if any) and the type of system, some information may not be available. During construction of a new session, some information is automatically queried such as the public address (routable IP address from attacking perspective) and port number, internal address (IP address from perspective of target) and port, NAT state, hostname, and a platform specific unique identifier. """ def __init__(self): self.name: Optional[str] = None """ An optional friendly name that can be used to refer to this target """ self.public_address: Optional[Tuple[str, int]] = None """ Public address as routable by the attacker """ self.platform: str = None """ Name of the platform used to interact with this target """ self.internal_address: Optional[Tuple[str, int]] = None """ Internal address as viewed by the target """ self.hostname: Optional[str] = None """ Hostname from the targets perspective """ self.guid: Optional[str] = None """ Globally unique identifier normally determined by a platform specific algorithm. """ self.os: OS = OS.UNKNOWN """ Target host operating system """ self.facts: persistent.list.PersistentList = persistent.list.PersistentList() """ List of enumerated facts about the target host """ self.enumerate_state: OOBTree = OOBTree() """ The state of all enumeration modules which drives the module schedule """ self.tampers: persistent.list.PersistentList = persistent.list.PersistentList() """ List of files/properties of the target that have been modified and/or created. """ self.users: persistent.list.PersistentList = persistent.list.PersistentList() """ List of users known on the target system (may not be all-encompassing depending on access) """ self.utilities: OOBTree() = OOBTree() """ Mapping of utility names to paths. This is mainly used on Unix platforms to identify binaries available in the path. """ self.implants: persistent.list.PersistentList = persistent.list.PersistentList() """ List of installed implants on this target host """ @property def nat(self) -> NAT: """Determine if NAT is applied for this host. This simply tests whether the target views it's IP in the same way we do. This simply compares the public and internal addresses to infer the state of NAT on the target network. """ if self.public_address is None or self.internal_address is None: return NAT.UNKNOWN return ( NAT.DISABLED if self.public_address[0] == self.internal_address[0] else NAT.ENABLED ) def facts_with(self, **kwargs): """Return a generator yielding facts which match the given properties. This is a relatively restrictive search and the properties must match exactly. For a more general search of facts, you can use a Python generator expression over the ``facts`` list instead.""" return ( fact for fact in self.facts if all(getattr(fact, k, None) == v for k, v in kwargs.items()) )
44.637097
132
0.685456
a2f01771aff7cf5b4fbd1b7f7ea0beddf92a62d0
549
py
Python
bslint/messages/handler.py
alexmakii/bslint
0795467166ca10c362fecc12ac17765cb85b659b
[ "BSD-3-Clause" ]
null
null
null
bslint/messages/handler.py
alexmakii/bslint
0795467166ca10c362fecc12ac17765cb85b659b
[ "BSD-3-Clause" ]
null
null
null
bslint/messages/handler.py
alexmakii/bslint
0795467166ca10c362fecc12ac17765cb85b659b
[ "BSD-3-Clause" ]
1
2017-04-12T09:39:54.000Z
2017-04-12T09:39:54.000Z
import bslint.messages.error_constants as err_const import bslint.messages.print_constants as print_const def get_error_msg(key, params=None): return get_message(key, err_const.MESSAGE_TABLE, params, "") def get_print_msg(key, params=None): return get_message(key, print_const.MESSAGE_TABLE, params, "\n") def get_message(key, message_table, params, extra_chars): params = params or [] if key not in message_table: raise ValueError(err_const.NO_SUCH_KEY) return message_table[key].get_message(params) + extra_chars
30.5
68
0.765027
4d0f61d7894d643dc577190297c341ac36ea806e
36,172
py
Python
flexget/manager.py
tvcsantos/Flexget
e08ce2957dd4f0668911d1e56347369939e4d0a5
[ "MIT" ]
null
null
null
flexget/manager.py
tvcsantos/Flexget
e08ce2957dd4f0668911d1e56347369939e4d0a5
[ "MIT" ]
null
null
null
flexget/manager.py
tvcsantos/Flexget
e08ce2957dd4f0668911d1e56347369939e4d0a5
[ "MIT" ]
null
null
null
from __future__ import absolute_import, division, print_function, unicode_literals import atexit import codecs import copy import fnmatch import logging import os import shutil import signal import sys import threading from contextlib import contextmanager from datetime import datetime, timedelta import pkg_resources import sqlalchemy import yaml from sqlalchemy.exc import OperationalError from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import sessionmaker from sqlalchemy.pool import SingletonThreadPool # These need to be declared before we start importing from other flexget modules, since they might import them from flexget.utils.sqlalchemy_utils import ContextSession Base = declarative_base() Session = sessionmaker(class_=ContextSession) from flexget import config_schema, db_schema, logger, plugin from flexget.event import fire_event from flexget.ipc import IPCClient, IPCServer from flexget.options import CoreArgumentParser, get_parser, manager_parser, ParserError, unicode_argv from flexget.task import Task from flexget.task_queue import TaskQueue from flexget.utils.tools import pid_exists log = logging.getLogger('manager') manager = None DB_CLEANUP_INTERVAL = timedelta(days=7) @sqlalchemy.event.listens_for(Session, 'before_commit') def before_commit(session): if not manager.has_lock and session.dirty: log.debug('BUG?: Database writes should not be tried when there is no database lock.') @sqlalchemy.event.listens_for(sqlalchemy.engine.Engine, 'connect') def set_sqlite_pragma(dbapi_connection, connection_record): cursor = dbapi_connection.cursor() # There were reported db problems with WAL mode on XFS filesystem, which is sticky and may have been turned # on with certain FlexGet versions (e2c118e) #2749 cursor.execute('PRAGMA journal_mode=delete') cursor.close() class Manager(object): """Manager class for FlexGet Fires events: * manager.initialize The first time the manager is initialized, before config is loaded * manager.before_config_load Before the config file is loaded from disk * manager.before_config_validate When updating the config, before the validator is run on it * manager.config_updated After a configuration file has been loaded or changed (and validated) this event is fired * manager.startup After manager has been initialized. This is when application becomes ready to use, however no database lock is present, so the database must not be modified on this event. * manager.lock_acquired The manager does not always require a lock on startup, if one is requested, this event will run when it has been acquired successfully * manager.upgrade If any plugins have declared a newer schema version than exists in the database, this event will be fired to allow plugins to upgrade their tables * manager.shutdown When the manager is exiting * manager.execute.completed If execution in current process was completed * manager.daemon.started * manager.daemon.completed * manager.db_cleanup """ unit_test = False options = None def __init__(self, args): """ :param args: CLI args """ global manager assert not manager, 'Only one instance of Manager should be created at a time!' if args is None: # Decode all arguments to unicode before parsing args = unicode_argv()[1:] self.args = args self.config_base = None self.config_name = None self.config_path = None self.db_filename = None self.engine = None self.lockfile = None self.database_uri = None self.db_upgraded = False self._has_lock = False self.is_daemon = False self.ipc_server = None self.task_queue = None self.persist = None self.initialized = False self.config = {} try: self.options, extra = CoreArgumentParser().parse_known_args(args) except ParserError: # If a non-built-in command was used, we need to parse with a parser that doesn't define the subparsers self.options, extra = manager_parser.parse_known_args(args) try: self.find_config(create=False) except: logger.start(level=self.options.loglevel.upper(), to_file=False) raise else: log_file = os.path.expanduser(self.options.logfile) # If an absolute path is not specified, use the config directory. if not os.path.isabs(log_file): log_file = os.path.join(self.config_base, log_file) logger.start(log_file, self.options.loglevel.upper(), to_console=not self.options.cron) manager = self log.debug('sys.defaultencoding: %s' % sys.getdefaultencoding()) log.debug('sys.getfilesystemencoding: %s' % sys.getfilesystemencoding()) log.debug('os.path.supports_unicode_filenames: %s' % os.path.supports_unicode_filenames) if codecs.lookup(sys.getfilesystemencoding()).name == 'ascii' and not os.path.supports_unicode_filenames: log.warning('Your locale declares ascii as the filesystem encoding. Any plugins reading filenames from ' 'disk will not work properly for filenames containing non-ascii characters. Make sure your ' 'locale env variables are set up correctly for the environment which is launching FlexGet.') def __del__(self): global manager manager = None def initialize(self): """ Load plugins, database, and config. Also initializes (but does not start) the task queue and ipc server. This should only be called after obtaining a lock. """ if self.initialized: raise RuntimeError('Cannot call initialize on an already initialized manager.') plugin.load_plugins() # Reparse CLI options now that plugins are loaded self.options = get_parser().parse_args(self.args) self.task_queue = TaskQueue() self.ipc_server = IPCServer(self, self.options.ipc_port) self.setup_yaml() self.init_sqlalchemy() fire_event('manager.initialize', self) try: self.load_config() except ValueError as e: log.critical('Failed to load config file: %s' % e.args[0]) raise # cannot be imported at module level because of circular references from flexget.utils.simple_persistence import SimplePersistence self.persist = SimplePersistence('manager') if db_schema.upgrade_required(): log.info('Database upgrade is required. Attempting now.') fire_event('manager.upgrade', self) if manager.db_upgraded: fire_event('manager.db_upgraded', self) fire_event('manager.startup', self) self.initialized = True @property def tasks(self): """A list of tasks in the config""" if not self.config: return [] return self.config.get('tasks', {}).keys() @property def has_lock(self): return self._has_lock def execute(self, options=None, output=None, priority=1): """ Run all (can be limited with options) tasks from the config. :param options: Either an :class:`argparse.Namespace` instance, or a dict, containing options for execution :param output: If a file-like object is specified here, log messages and stdout from the execution will be written to it. :param priority: If there are other executions waiting to be run, they will be run in priority order, lowest first. :returns: a list of :class:`threading.Event` instances which will be set when each respective task has finished running """ if options is None: options = copy.copy(self.options.execute) elif isinstance(options, dict): options_namespace = copy.copy(self.options.execute) options_namespace.__dict__.update(options) options = options_namespace task_names = self.tasks # Handle --tasks if options.tasks: # Create list of tasks to run, preserving order task_names = [] for arg in options.tasks: matches = [t for t in self.tasks if fnmatch.fnmatchcase(unicode(t).lower(), arg.lower())] if not matches: msg = '`%s` does not match any tasks' % arg log.error(msg) if output: output.write(msg) continue task_names.extend(m for m in matches if m not in task_names) # Set the option as a list of matching task names so plugins can use it easily options.tasks = task_names # TODO: 1.2 This is a hack to make task priorities work still, not sure if it's the best one task_names = sorted(task_names, key=lambda t: self.config['tasks'][t].get('priority', 65535)) finished_events = [] for task_name in task_names: task = Task(self, task_name, options=options, output=output, priority=priority) self.task_queue.put(task) finished_events.append(task.finished_event) return finished_events def start(self): """ Starting point when executing from commandline, dispatch execution to correct destination. If there is a FlexGet process with an ipc server already running, the command will be sent there for execution and results will be streamed back. If not, this will attempt to obtain a lock, initialize the manager, and run the command here. """ # If another process is started, send the execution to the running process ipc_info = self.check_ipc_info() if ipc_info: try: log.info('There is a FlexGet process already running for this config, sending execution there.') client = IPCClient(ipc_info['port'], ipc_info['password']) except ValueError as e: log.error(e) else: try: client.handle_cli(self.args) except KeyboardInterrupt: log.error('Disconnecting from daemon due to ctrl-c. Executions will still continue in the ' 'background.') except EOFError: log.error('Connection from daemon was severed.') return # No running process, we start our own to handle command with self.acquire_lock(): self.initialize() self.handle_cli() self._shutdown() def handle_cli(self, options=None): """ Dispatch a cli command to the appropriate function. * :meth:`.execute_command` * :meth:`.daemon_command` * :meth:`.webui_command` * CLI plugin callback function The manager should have a lock and be initialized before calling this method. :param options: argparse options for command. Defaults to options that manager was instantiated with. """ if not options: options = self.options command = options.cli_command options = getattr(options, command) # First check for built-in commands if command in ['execute', 'daemon', 'webui']: if command == 'execute': self.execute_command(options) elif command == 'daemon': self.daemon_command(options) elif command == 'webui': self.webui_command(options) else: # Otherwise dispatch the command to the callback function options.cli_command_callback(self, options) def execute_command(self, options): """ Handles the 'execute' CLI command. If there is already a task queue running in this process, adds the execution to the queue. If FlexGet is being invoked with this command, starts up a task queue and runs the execution. Fires events: * manager.execute.started * manager.execute.completed :param options: argparse options """ fire_event('manager.execute.started', self, options) if self.task_queue.is_alive(): if len(self.task_queue): log.verbose('There is a task already running, execution queued.') finished_events = self.execute(options, output=logger.get_output()) if not options.cron: # Wait until execution of all tasks has finished for event in finished_events: event.wait() else: self.task_queue.start() self.ipc_server.start() self.execute(options) self.shutdown(finish_queue=True) self.task_queue.wait() fire_event('manager.execute.completed', self, options) def daemon_command(self, options): """ Handles the 'daemon' CLI command. Fires events: * manager.daemon.started * manager.daemon.completed :param options: argparse options """ if options.action == 'start': if self.is_daemon: log.error('Daemon already running for this config.') return if options.daemonize: self.daemonize() try: signal.signal(signal.SIGTERM, self._handle_sigterm) except ValueError as e: # If flexget is being called from another script, e.g. windows service helper, and we are not the # main thread, this error will occur. log.debug('Error registering sigterm handler: %s' % e) self.is_daemon = True fire_event('manager.daemon.started', self) self.task_queue.start() self.ipc_server.start() self.task_queue.wait() fire_event('manager.daemon.completed', self) elif options.action in ['stop', 'reload', 'status']: if not self.is_daemon: log.error('There does not appear to be a daemon running.') return if options.action == 'status': log.info('Daemon running. (PID: %s)' % os.getpid()) elif options.action == 'stop': self.shutdown(options.wait) elif options.action == 'reload': log.info('Reloading config from disk.') try: self.load_config() except ValueError as e: log.error('Error loading config: %s' % e.args[0]) else: log.info('Config successfully reloaded from disk.') def webui_command(self, options): """ Handles the 'webui' CLI command. :param options: argparse options """ if self.is_daemon: log.error('Webui or daemon is already running.') return # TODO: make webui an enablable plugin in regular daemon mode try: pkg_resources.require('flexget[webui]') except pkg_resources.DistributionNotFound as e: log.error('Dependency not met. %s' % e) log.error('Webui dependencies not installed. You can use `pip install flexget[webui]` to install them.') self.shutdown() return if options.daemonize: self.daemonize() self.is_daemon = True from flexget.ui import webui self.task_queue.start() self.ipc_server.start() webui.start(self) self.task_queue.wait() def _handle_sigterm(self, signum, frame): log.info('Got SIGTERM. Shutting down.') self.shutdown(finish_queue=False) def setup_yaml(self): """Sets up the yaml loader to return unicode objects for strings by default""" def construct_yaml_str(self, node): # Override the default string handling function # to always return unicode objects return self.construct_scalar(node) yaml.Loader.add_constructor(u'tag:yaml.org,2002:str', construct_yaml_str) yaml.SafeLoader.add_constructor(u'tag:yaml.org,2002:str', construct_yaml_str) # Set up the dumper to not tag every string with !!python/unicode def unicode_representer(dumper, uni): node = yaml.ScalarNode(tag=u'tag:yaml.org,2002:str', value=uni) return node yaml.add_representer(unicode, unicode_representer) # Set up the dumper to increase the indent for lists def increase_indent_wrapper(func): def increase_indent(self, flow=False, indentless=False): func(self, flow, False) return increase_indent yaml.Dumper.increase_indent = increase_indent_wrapper(yaml.Dumper.increase_indent) yaml.SafeDumper.increase_indent = increase_indent_wrapper(yaml.SafeDumper.increase_indent) def find_config(self, create=False): """ Find the configuration file. :param bool create: If a config file is not found, and create is True, one will be created in the home folder :raises: `IOError` when no config file could be found, and `create` is False. """ config = None home_path = os.path.join(os.path.expanduser('~'), '.flexget') options_config = os.path.expanduser(self.options.config) possible = [] if os.path.isabs(options_config): # explicit path given, don't try anything config = options_config possible = [config] else: log.debug('Figuring out config load paths') try: possible.append(os.getcwdu()) except OSError: log.debug('current directory invalid, not searching for config there') # for virtualenv / dev sandbox if hasattr(sys, 'real_prefix'): log.debug('Adding virtualenv path') possible.append(sys.prefix.decode(sys.getfilesystemencoding())) # normal lookup locations possible.append(home_path) if sys.platform.startswith('win'): # On windows look in ~/flexget as well, as explorer does not let you create a folder starting with a dot home_path = os.path.join(os.path.expanduser('~'), 'flexget') possible.append(home_path) else: # The freedesktop.org standard config location xdg_config = os.environ.get('XDG_CONFIG_HOME', os.path.join(os.path.expanduser('~'), '.config')) possible.append(os.path.join(xdg_config, 'flexget')) for path in possible: config = os.path.join(path, options_config) if os.path.exists(config): log.debug('Found config: %s' % config) break else: config = None if create and not (config and os.path.exists(config)): config = os.path.join(home_path, options_config) log.info('Config file %s not found. Creating new config %s' % (options_config, config)) with open(config, 'w') as newconfig: # Write empty tasks to the config newconfig.write(yaml.dump({'tasks': {}})) elif not config: log.critical('Failed to find configuration file %s' % options_config) log.info('Tried to read from: %s' % ', '.join(possible)) raise IOError('No configuration file found.') if not os.path.isfile(config): raise IOError('Config `%s` does not appear to be a file.' % config) log.debug('Config file %s selected' % config) self.config_path = config self.config_name = os.path.splitext(os.path.basename(config))[0] self.config_base = os.path.normpath(os.path.dirname(config)) self.lockfile = os.path.join(self.config_base, '.%s-lock' % self.config_name) def load_config(self): """ Loads the config file from disk, validates and activates it. :raises: `ValueError` if there is a problem loading the config file """ fire_event('manager.before_config_load', self) with codecs.open(self.config_path, 'rb', 'utf-8') as f: try: raw_config = f.read() except UnicodeDecodeError: log.critical('Config file must be UTF-8 encoded.') raise ValueError('Config file is not UTF-8 encoded') try: config = yaml.safe_load(raw_config) or {} except Exception as e: msg = str(e).replace('\n', ' ') msg = ' '.join(msg.split()) log.critical(msg, exc_info=False) print('') print('-' * 79) print(' Malformed configuration file (check messages above). Common reasons:') print('-' * 79) print('') print(' o Indentation error') print(' o Missing : from end of the line') print(' o Non ASCII characters (use UTF8)') print(' o If text contains any of :[]{}% characters it must be single-quoted ' \ '(eg. value{1} should be \'value{1}\')\n') # Not very good practice but we get several kind of exceptions here, I'm not even sure all of them # At least: ReaderError, YmlScannerError (or something like that) if hasattr(e, 'problem') and hasattr(e, 'context_mark') and hasattr(e, 'problem_mark'): lines = 0 if e.problem is not None: print(' Reason: %s\n' % e.problem) if e.problem == 'mapping values are not allowed here': print(' ----> MOST LIKELY REASON: Missing : from end of the line!') print('') if e.context_mark is not None: print(' Check configuration near line %s, column %s' % (e.context_mark.line, e.context_mark.column)) lines += 1 if e.problem_mark is not None: print(' Check configuration near line %s, column %s' % (e.problem_mark.line, e.problem_mark.column)) lines += 1 if lines: print('') if lines == 1: print(' Fault is almost always in this or previous line\n') if lines == 2: print(' Fault is almost always in one of these lines or previous ones\n') # When --debug escalate to full stacktrace if self.options.debug: raise raise ValueError('Config file is not valid YAML') # config loaded successfully log.debug('config_name: %s' % self.config_name) log.debug('config_base: %s' % self.config_base) # Install the newly loaded config self.update_config(config) def update_config(self, config): """ Provide a new config for the manager to use. :raises: `ValueError` and rolls back to previous config if the provided config is not valid. """ old_config = self.config try: self.config = self.validate_config(config) except ValueError as e: for error in getattr(e, 'errors', []): log.critical('[%s] %s', error.json_pointer, error.message) log.debug('invalid config, rolling back') self.config = old_config raise log.debug('New config data loaded.') fire_event('manager.config_updated', self) def save_config(self): """Dumps current config to yaml config file""" # Back up the user's current config before overwriting backup_path = os.path.join(self.config_base, '%s-%s.bak' % (self.config_name, datetime.now().strftime('%y%m%d%H%M%S'))) log.debug('backing up old config to %s before new save' % backup_path) shutil.copy(self.config_path, backup_path) with open(self.config_path, 'w') as config_file: config_file.write(yaml.dump(self.config, default_flow_style=False)) def config_changed(self): """Makes sure that all tasks will have the config_modified flag come out true on the next run. Useful when changing the db and all tasks need to be completely reprocessed.""" from flexget.task import config_changed for task in self.tasks: config_changed(task) def validate_config(self, config=None): """ Check all root level keywords are valid. Config may be modified by before_config_validate hooks. Modified config will be returned. :param config: Config to check. If not provided, current manager config will be checked. :raises: `ValueError` when config fails validation. There will be an `errors` attribute with the schema errors. :returns: Final validated config. """ if not config: config = self.config config = fire_event('manager.before_config_validate', config, self) errors = config_schema.process_config(config) if errors: err = ValueError('Did not pass schema validation.') err.errors = errors raise err else: return config def init_sqlalchemy(self): """Initialize SQLAlchemy""" try: if [int(part) for part in sqlalchemy.__version__.split('.')] < [0, 7, 0]: print('FATAL: SQLAlchemy 0.7.0 or newer required. Please upgrade your SQLAlchemy.', file=sys.stderr) sys.exit(1) except ValueError as e: log.critical('Failed to check SQLAlchemy version, you may need to upgrade it') # SQLAlchemy if self.database_uri is None: self.db_filename = os.path.join(self.config_base, 'db-%s.sqlite' % self.config_name) if self.options.test: db_test_filename = os.path.join(self.config_base, 'test-%s.sqlite' % self.config_name) log.info('Test mode, creating a copy from database ...') if os.path.exists(self.db_filename): shutil.copy(self.db_filename, db_test_filename) self.db_filename = db_test_filename # Different database, different lock file self.lockfile = os.path.join(self.config_base, '.test-%s-lock' % self.config_name) log.info('Test database created') # in case running on windows, needs double \\ filename = self.db_filename.replace('\\', '\\\\') self.database_uri = 'sqlite:///%s' % filename if self.db_filename and not os.path.exists(self.db_filename): log.verbose('Creating new database %s ...' % self.db_filename) # fire up the engine log.debug('Connecting to: %s' % self.database_uri) try: self.engine = sqlalchemy.create_engine(self.database_uri, echo=self.options.debug_sql, poolclass=SingletonThreadPool, connect_args={'check_same_thread': False, 'timeout': 10}) except ImportError: print('FATAL: Unable to use SQLite. Are you running Python 2.5 - 2.7 ?\n' 'Python should normally have SQLite support built in.\n' 'If you\'re running correct version of Python then it is not equipped with SQLite.\n' 'You can try installing `pysqlite`. If you have compiled python yourself, ' 'recompile it with SQLite support.', file=sys.stderr) sys.exit(1) Session.configure(bind=self.engine) # create all tables, doesn't do anything to existing tables try: Base.metadata.create_all(bind=self.engine) except OperationalError as e: if os.path.exists(self.db_filename): print('%s - make sure you have write permissions to file %s' % (e.message, self.db_filename), file=sys.stderr) else: print('%s - make sure you have write permissions to directory %s' % (e.message, self.config_base), file=sys.stderr) raise def _read_lock(self): """ Read the values from the lock file. Returns None if there is no current lock file. """ if self.lockfile and os.path.exists(self.lockfile): result = {} with open(self.lockfile) as f: lines = [l for l in f.readlines() if l] for line in lines: try: key, value = line.split(b':', 1) except ValueError: log.debug('Invalid line in lock file: %s' % line) continue result[key.strip().lower()] = value.strip() for key in result: if result[key].isdigit(): result[key] = int(result[key]) result.setdefault('pid', None) if not result['pid']: log.error('Invalid lock file. Make sure FlexGet is not running, then delete it.') elif not pid_exists(result['pid']): return None return result return None def check_lock(self): """Returns True if there is a lock on the database.""" lock_info = self._read_lock() if not lock_info: return False # Don't count it if we hold the lock if os.getpid() == lock_info['pid']: return False return True def check_ipc_info(self): """If a daemon has a lock on the database, return info to connect to IPC.""" lock_info = self._read_lock() if lock_info and 'port' in lock_info: return lock_info return None @contextmanager def acquire_lock(self, event=True): """ :param bool event: If True, the 'manager.lock_acquired' event will be fired after a lock is obtained """ acquired = False try: # Don't do anything if we already have a lock. This means only the outermost call will release the lock file if not self._has_lock: # Exit if there is an existing lock. if self.check_lock(): with open(self.lockfile) as f: pid = f.read() print('Another process (%s) is running, will exit.' % pid.split('\n')[0], file=sys.stderr) print('If you\'re sure there is no other instance running, delete %s' % self.lockfile, file=sys.stderr) sys.exit(1) self._has_lock = True self.write_lock() acquired = True if event: fire_event('manager.lock_acquired', self) yield finally: if acquired: self.release_lock() self._has_lock = False def write_lock(self, ipc_info=None): assert self._has_lock with open(self.lockfile, 'w') as f: f.write(b'PID: %s\n' % os.getpid()) if ipc_info: for key in sorted(ipc_info): f.write(b'%s: %s\n' % (key, ipc_info[key])) def release_lock(self): if os.path.exists(self.lockfile): os.remove(self.lockfile) log.debug('Removed %s' % self.lockfile) else: log.debug('Lockfile %s not found' % self.lockfile) def daemonize(self): """Daemonizes the current process. Returns the new pid""" if sys.platform.startswith('win'): log.error('Cannot daemonize on windows') return if threading.activeCount() != 1: log.critical('There are %r active threads. ' 'Daemonizing now may cause strange failures.' % threading.enumerate()) log.info('Daemonizing...') try: pid = os.fork() if pid > 0: # Don't run the exit handlers on the parent atexit._exithandlers = [] # exit first parent sys.exit(0) except OSError as e: sys.stderr.write('fork #1 failed: %d (%s)\n' % (e.errno, e.strerror)) sys.exit(1) # decouple from parent environment os.chdir('/') os.setsid() os.umask(0) # do second fork try: pid = os.fork() if pid > 0: # Don't run the exit handlers on the parent atexit._exithandlers = [] # exit from second parent sys.exit(0) except OSError as e: sys.stderr.write('fork #2 failed: %d (%s)\n' % (e.errno, e.strerror)) sys.exit(1) log.info('Daemonize complete. New PID: %s' % os.getpid()) # redirect standard file descriptors sys.stdout.flush() sys.stderr.flush() si = file('/dev/null', 'r') so = file('/dev/null', 'a+') se = file('/dev/null', 'a+', 0) os.dup2(si.fileno(), sys.stdin.fileno()) os.dup2(so.fileno(), sys.stdout.fileno()) os.dup2(se.fileno(), sys.stderr.fileno()) # If we have a lock, update the lock file with our new pid if self._has_lock: self.write_lock() def db_cleanup(self, force=False): """ Perform database cleanup if cleanup interval has been met. Fires events: * manager.db_cleanup If interval was met. Gives session to do the cleanup as a parameter. :param bool force: Run the cleanup no matter whether the interval has been met. """ expired = self.persist.get('last_cleanup', datetime(1900, 1, 1)) < datetime.now() - DB_CLEANUP_INTERVAL if force or expired: log.info('Running database cleanup.') session = Session() try: fire_event('manager.db_cleanup', session) session.commit() finally: session.close() # Just in case some plugin was overzealous in its cleaning, mark the config changed self.config_changed() self.persist['last_cleanup'] = datetime.now() else: log.debug('Not running db cleanup, last run %s' % self.persist.get('last_cleanup')) def shutdown(self, finish_queue=True): """ Request manager shutdown. :param bool finish_queue: Should scheduler finish the task queue """ if not self.initialized: raise RuntimeError('Cannot shutdown manager that was never initialized.') self.task_queue.shutdown(finish_queue) def _shutdown(self): """Runs when the manager is done processing everything.""" fire_event('manager.shutdown', self) if not self.unit_test: # don't scroll "nosetests" summary results when logging is enabled log.debug('Shutting down') self.engine.dispose() # remove temporary database used in test mode if self.options.test: if not 'test' in self.db_filename: raise Exception('trying to delete non test database?') if self._has_lock: os.remove(self.db_filename) log.info('Removed test database') if not self.unit_test: # don't scroll "nosetests" summary results when logging is enabled log.debug('Shutdown completed')
40.780158
120
0.595488
c37ed6aec9858119f329b590a81bb91d689fd540
3,337
py
Python
cloudframe/manager/builder.py
cloudken/faas-build
ab72151c7a518377f368c10136ecadb3e86430b7
[ "Apache-2.0" ]
null
null
null
cloudframe/manager/builder.py
cloudken/faas-build
ab72151c7a518377f368c10136ecadb3e86430b7
[ "Apache-2.0" ]
null
null
null
cloudframe/manager/builder.py
cloudken/faas-build
ab72151c7a518377f368c10136ecadb3e86430b7
[ "Apache-2.0" ]
null
null
null
from six.moves import http_client from datetime import datetime import logging import os from cloudframe.common import exception from cloudframe.common.config import HostConfig from cloudframe.common.config import get_faas_buildinfo from cloudframe.common.config import FAAS_CONFIG_PATH from cloudframe.common.http_rpc import HRPC from cloudframe.pipeline.ans_docker import Faas LOG = logging.getLogger(__name__) MAX_INS = 20 RES_STATUS_DONE = 'done' RES_STATUS_INIT = 'initializing' RES_STATUS_DOING = 'doing' RES_STATUS_ERROR = 'error' class FaaSBuilder(object): def __init__(self, host_config, base_package): config_file = FAAS_CONFIG_PATH + host_config base_file = FAAS_CONFIG_PATH + base_package self.isReady = False if not (os.path.isfile(config_file) and os.path.isfile(base_file)): LOG.error('FaaSBuilder: config %(cnf)s or package %(pkg)s is invalid.', {'cnf': config_file, 'pkg': base_file}) return try: hc = HostConfig(config_file) rv = hc.get_host_info() self.hosts = rv[0] self.host_global = rv[1] self.driver = Faas(self.hosts, self.host_global['registry'], base_package) self.pipelines = {} LOG.debug('---- config info ----') LOG.debug('---- global: %(global)s', {'global': self.host_global}) for host in self.hosts: LOG.debug('---- host: %(host)s', {'host': host}) self.isReady = True except Exception as e: LOG.error('Read host_config(%(config)s) failed, error_info: %(error)s', {'config': config_file, 'error': e}) def get(self, res_name): if not self.isReady: raise exception.HttpError if res_name not in self.pipelines: raise exception.NotFound return http_client.OK, self.pipelines[res_name] def create_pipeline(self, info): if not self.isReady: raise exception.HttpError res_name = info['res_name'] faas_desc = info['faas_desc'] faas_pkg = info['faas_pkg'] LOG.debug('Pipeline for %(res)s begin...', {'res': res_name}) resource = { 'name': res_name, 'package': faas_pkg, 'created_at': datetime.now(), 'status': RES_STATUS_INIT } self.pipelines[res_name] = resource try: faas_input = get_faas_buildinfo(faas_desc, resource) resource['status'] = RES_STATUS_DOING LOG.debug('Get description end, %(res)s', {'res': resource}) self.driver.create(resource) host = os.environ['FAAS_API_SERVER'] rpc = HRPC(host, '/serverless/v1/faas') rpc.put(faas_input) resource['status'] = RES_STATUS_DONE resource['finished_at'] = datetime.now() LOG.debug('Pipeline for %(res_name)s end.', {'res_name': res_name}) LOG.debug('Resource info: %(res)s', {'res': resource}) except Exception as e: resource['status'] = RES_STATUS_ERROR resource['finished_at'] = datetime.now() LOG.error('Pipeline for %(res_name)s failed, error info: %(err)s', {'res_name': res_name, 'err': e})
38.356322
86
0.603536
6208aedca6f392e06035f826e6922af4bd68bf3a
3,207
py
Python
requests/exceptions.py
hwms/requests
fa3fabc0732980230bae00bd8a30098f0a0bd30f
[ "Apache-2.0" ]
null
null
null
requests/exceptions.py
hwms/requests
fa3fabc0732980230bae00bd8a30098f0a0bd30f
[ "Apache-2.0" ]
3
2020-03-24T18:09:12.000Z
2021-02-02T22:28:25.000Z
requests/exceptions.py
hwms/requests
fa3fabc0732980230bae00bd8a30098f0a0bd30f
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """ requests.exceptions ~~~~~~~~~~~~~~~~~~~ This module contains the set of Requests' exceptions. """ from urllib3.exceptions import HTTPError as BaseHTTPError class RequestException(IOError): """There was an ambiguous exception that occurred while handling your request. """ def __init__(self, *args, **kwargs): """Initialize RequestException with `request` and `response` objects.""" response = kwargs.pop('response', None) self.response = response self.request = kwargs.pop('request', None) if (response is not None and not self.request and hasattr(response, 'request')): self.request = self.response.request super(RequestException, self).__init__(*args, **kwargs) class HTTPError(RequestException): """An HTTP error occurred.""" class ConnectionError(RequestException): #@ReservedAssignment """A Connection error occurred.""" class ProxyError(ConnectionError): """A proxy error occurred.""" class SSLError(ConnectionError): """An SSL error occurred.""" class Timeout(RequestException): """The request timed out. Catching this error will catch both :exc:`~requests.exceptions.ConnectTimeout` and :exc:`~requests.exceptions.ReadTimeout` errors. """ class ConnectTimeout(ConnectionError, Timeout): """The request timed out while trying to connect to the remote server. Requests that produced this error are safe to retry. """ class ReadTimeout(Timeout): """The server did not send any data in the allotted amount of time.""" class URLRequired(RequestException): """A valid URL is required to make a request.""" class TooManyRedirects(RequestException): """Too many redirects.""" class MissingSchema(RequestException, ValueError): """The URL schema (e.g. http or https) is missing.""" class InvalidSchema(RequestException, ValueError): """See defaults.py for valid schemas.""" class InvalidURL(RequestException, ValueError): """The URL provided was somehow invalid.""" class InvalidHeader(RequestException, ValueError): """The header value provided was somehow invalid.""" class InvalidProxyURL(InvalidURL): """The proxy URL provided is invalid.""" class ChunkedEncodingError(RequestException): """The server declared chunked encoding but sent an invalid chunk.""" class ContentDecodingError(RequestException, BaseHTTPError): """Failed to decode response content""" class StreamConsumedError(RequestException, TypeError): """The content for this response was already consumed""" class RetryError(RequestException): """Custom retries logic failed""" class UnrewindableBodyError(RequestException): """Requests encountered an error when trying to rewind a body""" # Warnings class RequestsWarning(Warning): """Base warning for Requests.""" pass class FileModeWarning(RequestsWarning, DeprecationWarning): """A file was opened in text mode, but Requests determined its binary length.""" pass class RequestsDependencyWarning(RequestsWarning): """An imported dependency doesn't match the expected version range.""" pass
25.251969
84
0.708762
4bfc3af22040261928a63c8e80461d789fbe86d4
19,982
py
Python
processit/preprocessor.py
tatkaal/preprocessor
f3002d976f3cedbb46d96122e47b1d922118abed
[ "MIT" ]
null
null
null
processit/preprocessor.py
tatkaal/preprocessor
f3002d976f3cedbb46d96122e47b1d922118abed
[ "MIT" ]
null
null
null
processit/preprocessor.py
tatkaal/preprocessor
f3002d976f3cedbb46d96122e47b1d922118abed
[ "MIT" ]
null
null
null
# Install this # pip install --upgrade google-api-python-client google-auth-httplib2 google-auth-oauthlib import os import re import io import unidecode import pickle from googleapiclient.discovery import build from google_auth_oauthlib.flow import InstalledAppFlow from google.auth.transport.requests import Request from googleapiclient.http import MediaIoBaseDownload from nltk.tokenize import word_tokenize, sent_tokenize from nltk.stem import WordNetLemmatizer from nltk.stem.snowball import SnowballStemmer from nltk.corpus import stopwords from pycontractions import Contractions from autocorrect import Speller from processit.file_reader import prepare_text from processit.contractions import to_replace from gensim import downloader as api from processit.configurations import pretrained_model, file_storage, token_file, credentials_json java_path = "C:/Program Files/Java/jdk1.8.0_261/bin/java.exe" os.environ['JAVAHOME'] = java_path # If modifying these scopes, delete the file token.pickle. SCOPES = ['https://www.googleapis.com/auth/drive.readonly'] class PreProcessor(): def __init__(self, file_path=None,doc_link=None,folder_link=None,remove_stopwords=True, lower=True, tokenize_word=True,contraction_method='mapping', remove_numbers=True, remove_html_tags=True, remove_punctuations=True, remove_accented_chars=True, remove_whitespace=True, lemmatize_method='wordnet', embedding_method='word2vec', auto_correct=True): """ This package contains functions that can help during the preprocessing of text data. :param remove_stopwords: boolean default value = True :param replace_words: str default value = regex """ if (type(remove_stopwords) != bool or type(lower) != bool or type(tokenize_word) != bool or # type(tokenize_sent) != bool or type(remove_numbers) != bool or type(remove_html_tags) != bool or type(remove_punctuations) != bool or type(remove_accented_chars) != bool or type(auto_correct) != bool or type(remove_whitespace) != bool): raise Exception("Error - expecting a boolean parameter") if lemmatize_method not in ['wordnet', 'snowball']: raise Exception("Error - lemmatizer method not supported") else: self.lemmatize = True if contraction_method not in ['glove','word2vec','mapping']: raise Exception("Error - contraction method not supported") else: self.contractions = True if embedding_method not in ['glove','word2vec','bow']: raise Exception("Error - embedding method not supported") else: self.word_embedding = True if file_path == None and doc_link==None and folder_link==None: raise Exception("Error - expecting the file path") self.doc = None self.sents = None self.tweets = None self.lemmatizer = None self.file_path = file_path self.doc_link = doc_link self.folder_link = folder_link self.lower = lower self.remove_stopwords = remove_stopwords self.contraction_method = contraction_method self.embedding_method = embedding_method self.remove_numbers = remove_numbers self.remove_html_tags = remove_html_tags self.remove_punctations = remove_punctuations self.remove_accented_chars = remove_accented_chars self.remove_whitespace = remove_whitespace self.lemmatize_method = lemmatize_method self.stopword_list = stopwords.words('english') self.replacement_list = to_replace self.tokenize_word = tokenize_word # self.tokenize_sent = tokenize_sent self.auto_correct = auto_correct if self.lemmatize_method == 'wordnet': self.lemmatizer = WordNetLemmatizer() if self.lemmatize_method == 'snowball': self.lemmatizer = SnowballStemmer('english') def file_reader(self): file_content = prepare_text(self.file_path, dolower=False) return file_content def doc_downloader(self,document_link,document_type,document_name): # Extracting the ID from the given link pattern = r"(?<=d/)(.+)(?=/)" DOCUMENT_ID = re.findall(pattern,document_link)[0] print (f"DOCUMENT ID: {DOCUMENT_ID}") # Specifying the format in which the document will be downloaded if document_type.lower() in ['docx',"doc"]: file_format = "docx" elif document_type.lower() in ['pdf']: file_format = "pdf" else: print ("Document Format Not Supported. Only Docs, Doc and PDF are supported") return None creds = None if os.path.exists(token_file): with open(token_file,'rb') as token: creds = pickle.load(token) if not creds or not creds.valid: if creds and creds.expired and creds.refresh_token: creds.refresh(Request()) else: flow = InstalledAppFlow.from_client_secrets_file( credentials_json,SCOPES) creds = flow.run_local_server(port=0) with open(token_file,'wb') as token: pickle.dump(creds,token) service = build('drive','v3',credentials=creds) file_name = '.'.join([document_name,file_format]) try: print ("Downloading file") request = service.files().get_media(fileId=DOCUMENT_ID) fh = io.BytesIO() downloader = MediaIoBaseDownload(fd=fh,request=request) done = False while done is False: status, done = downloader.next_chunk() print (f"Download {status.progress()*100}") except: print ("Downloading MS Word Document file") request = service.files().export_media(fileId=DOCUMENT_ID,mimeType='application/vnd.openxmlformats-officedocument.wordprocessingml.document') fh = io.BytesIO() downloader = MediaIoBaseDownload(fd=fh,request=request) done = False while done is False: status, done = downloader.next_chunk() print (f"Download {status.progress()*100}") fh.seek(0) with open(os.path.join(file_storage,file_name),'wb') as f: f.write(fh.read()) f.close() print("SAVED") def folder_downloader(self,folder_link): # Extracting the ID from the given link pattern = r'(?<=folders/)(\w+)' DOCUMENT_ID = re.findall(pattern,folder_link)[0] print (f"DOCUMENT ID: {DOCUMENT_ID}") creds = None if os.path.exists(token_file): with open(token_file,'rb') as token: creds = pickle.load(token) if not creds or not creds.valid: if creds and creds.expired and creds.refresh_token: creds.refresh(Request()) else: flow = InstalledAppFlow.from_client_secrets_file( credentials_json,SCOPES) creds = flow.run_local_server(port=0) with open(token_file,'wb') as token: pickle.dump(creds,token) service = build('drive','v3',credentials=creds) listofFiles = [] page_token = None # docx_query = f"'{DOCUMENT_ID}' in parents and mimeType='application/vnd.openxmlformats-officedocument.wordprocessingml.document'" # pdf_query = f"'{DOCUMENT_ID}' in parents and mimeType='application/pdf'" # txt_query = f"'{DOCUMENT_ID}' in parents and mimeType='text/plain'" query = f"'{DOCUMENT_ID}' in parents" while True: response = service.files().list( q=query, fields='nextPageToken, files(id, name)', pageToken = page_token, includeItemsFromAllDrives=True, supportsAllDrives=True ).execute() for file in response.get('files',[]): listofFiles.append(file) page_token = response.get('nextPageToken',None) if page_token is None: break for item in listofFiles: document_id = item['id'] file_name = item['name'] name_splitted = file_name.split(".") if len(name_splitted) == 1: file_name = '.'.join([file_name,"docx"]) try: print ("Downloading docx file") print (file_name) request = service.files().get_media(fileId=document_id) fh = io.BytesIO() downloader = MediaIoBaseDownload(fd=fh,request=request) done = False while done is False: status, done = downloader.next_chunk() print (f"Download {status.progress()*100}") except: print ("Downloading doc file") print (file_name) request = service.files().export_media(fileId=document_id,mimeType='application/vnd.openxmlformats-officedocument.wordprocessingml.document') fh = io.BytesIO() downloader = MediaIoBaseDownload(fd=fh,request=request) done = False while done is False: status, done = downloader.next_chunk() print (f"Download {status.progress()*100}") fh.seek(0) with open(file_storage+'/'+file_name,'wb') as f: f.write(fh.read()) f.close() def lower_fun(self): """ This function converts text to lower """ self.doc = self.doc.lower() def remove_stopwords_fun(self): """ This function removes stopwords from doc. It works by tokenizing the doc and then checking if the word is present in stopwords """ # tokens = str(self.doc).split() tokens = word_tokenize(self.doc) cleaned_tokens = [token for token in tokens if token.lower() not in self.stopword_list] self.doc = ' '.join(cleaned_tokens) def word_embedding_fun(self): # if(self.tokenize_sent==False): # self.doc = sent_tokenize(self.doc) if(self.tokenize_word==False): self.tokenize_word_fun() if self.embedding_method == 'glove': model = api.load("glove-twitter-25") vecs=[] for x in self.doc: vec = [model[i] for i in x] vecs.append(vec) self.doc = vecs # print(vecs) elif self.embedding_method == 'word2vec': pass elif self.embedding_method == 'bow': pass def mapping_decontraction(self,phrase): cleaned_doc = [] for word in str(self.doc).split(): if word.lower() in self.replacement_list.keys(): cleaned_doc.append(self.replacement_list[word.lower()]) else: cleaned_doc.append(word) phrase = ' '.join(cleaned_doc) return phrase def contractions_fun(self): """ This function replaces words that are -- by checking a word if a word is present in a dictionary if the word is present in dictionary then it is replaced with its value from dictionary """ if self.contraction_method == 'mapping': self.doc = self.mapping_decontraction(str(self.doc)) elif self.contraction_method == 'word2vec': model = pretrained_model cont = Contractions(model) cont.load_models() self.doc = list(cont.expand_texts([str(self.doc)],precise=True))[0] elif self.contraction_method == 'glove': model = api.load("glove-twitter-25") cont = Contractions(kv_model=model) cont.load_models() self.doc = list(cont.expand_texts([str(self.doc)],precise=True))[0] def remove_numbers_fun(self): """ This function uses regex to remve all the numbers from the doc. """ self.doc = re.sub("[0-9]", "", self.doc) self.doc = self.doc.strip() self.doc = " ".join(self.doc.split()) def autocorrect_fun(self): spell = Speller(lang='en') self.doc = [spell(w) for w in word_tokenize(self.doc)] def remove_html_tags_fun(self): """ This function uses regex's complile method to remove all the HTML tags from the doc """ cleaner = re.compile('<.*?>') cleaned_text = re.sub(cleaner, '', self.doc) cleaned_text = re.sub('[\n\t]', '', cleaned_text) self.doc = cleaned_text.strip() self.doc = " ".join(self.doc.split()) def remove_punctations_fun(self): """ This function uses regex to remove alk the punctations from the doc. """ self.doc = re.sub('[^a-zA-Z0-9]', ' ', self.doc) self.doc = self.doc.strip() self.doc = " ".join(self.doc.split()) def remove_accented_chars_fun(self): """remove accented characters from text, e.g. café""" self.doc = unidecode.unidecode(self.doc) def remove_whitespace_fun(self): """remove extra whitespaces from text""" text = self.doc.strip() self.doc = " ".join(text.split()) def tokenize_word_fun(self): """tokenizes the sentences to words""" self.doc = word_tokenize(self.doc) # def tokenize_sent_fun(self): # """tokenizes the paragraphs to sentences""" # self.sents = sent_tokenize(self.doc) def lemmatize_fun(self): """ This function applies the stemming to the words It can be operated with either WordNetLemmatizer or Snowball Stemmer --------------------------- Example: lemmatize(method='snowball') default value = 'wordnet """ cleaned_tokens = None if self.lemmatize_method == 'wordnet': cleaned_tokens = [self.lemmatizer.lemmatize(token) for token in self.doc] elif self.lemmatize_method == 'snowball': cleaned_tokens = [self.lemmatizer.stem(token) for token in self.doc] self.doc = ' '.join(cleaned_tokens) def add_stopword(self, *args): """ This function is used to add new stopwords to the predefined list Parameters - ["new_stopword"] ------------------------------ Example - obj = NLP() obj.add_stopword(["first_word", "second_word"]) """ if self.remove_stopwords is False: raise Exception("Please enable removal of stopwords") if type(args) != list: raise Exception("Error - pass stopwords in list") for arg in args: self.stopword_list.add(arg) def print_stopwords(self): """ This function prints all the stopwords that are present in the list Return Type - list ------------------------------ Example obj = NLP() obj.print_stopwords() """ if self.stopword_list == []: raise Exception("Error - stopword list is empty") print(self.stopword_list) def process(self): """ This function processes the doc If the remove_stopwords flag is True - it will remove stopwords from doc If the clean_words flag is True - it will clean the doc by replacing words Parameters - [doc] ------------------------------ Example obj = NLP() obj.process(["process this text"]) How to use with pandas? obj = NLP() df = df['text].apply(obj.process) """ if self.file_path != None: data = self.file_reader() if self.doc_link != None: self.doc_downloader(self.doc_link,"docx","testing_document") path = file_storage+'/testing_document.docx' data = prepare_text(path, dolower=False) if self.folder_link != None: self.folder_downloader(self.folder_link) data = 'test' output=[] self.sents = sent_tokenize(data) for doc in self.sents: self.doc = doc if self.lower is True: self.lower_fun() if self.contractions is True: self.contractions_fun() if self.remove_html_tags is True: self.remove_html_tags_fun() if self.remove_numbers is True: self.remove_numbers_fun() if self.remove_punctations is True: self.remove_punctations_fun() if self.remove_accented_chars is True: self.remove_accented_chars_fun() if self.remove_stopwords is True: self.remove_stopwords_fun() if self.remove_whitespace is True: self.remove_whitespace_fun() if self.auto_correct is True: self.autocorrect_fun() if self.lemmatize is True: self.lemmatize_fun() if self.tokenize_word is True: self.tokenize_word_fun() if self.word_embedding is True: self.word_embedding_fun() output.append(self.doc) return output def local_processor(path): prepObj = PreProcessor( file_path=path, lower=True, tokenize_word=False, #if false the output will be in list of sentences remove_stopwords=True, remove_numbers=True, remove_html_tags=True, remove_punctuations=True, remove_accented_chars=True, remove_whitespace=True, auto_correct=True, lemmatize_method='snowball', embedding_method='word2vec', contraction_method='mapping', ) preprocessed = prepObj.process() with open(file_storage+'/local_processed.txt','w', encoding='utf-8') as f: f.write(str(preprocessed)) return preprocessed def url_file_processor(path): prepObj = PreProcessor( doc_link=path, lower=True, tokenize_word=False, #if false the output will be in list of sentences remove_stopwords=True, remove_numbers=True, remove_html_tags=True, remove_punctuations=True, remove_accented_chars=True, remove_whitespace=True, auto_correct=True, lemmatize_method='snowball', embedding_method='word2vec', contraction_method='mapping', ) preprocessed = prepObj.process() with open(file_storage+'/url_file_processed.txt','w', encoding='utf-8') as f: f.write(str(preprocessed)) return preprocessed def url_folder_processor(path): prepObj = PreProcessor( folder_link=path, lower=True, tokenize_word=False, #if false the output will be in list of sentences remove_stopwords=True, remove_numbers=True, remove_html_tags=True, remove_punctuations=True, remove_accented_chars=True, remove_whitespace=True, auto_correct=True, lemmatize_method='snowball', embedding_method='word2vec', contraction_method='mapping', ) preprocessed = prepObj.process() with open(file_storage+'/url_folder_processed.txt','w', encoding='utf-8') as f: f.write(str(preprocessed)) return preprocessed
38.57529
157
0.590381
b314c31995d4c078e1b65049b12c9366a038b216
5,432
py
Python
src/main.py
gfjiangly/RCNet
ef6860f23943eb8e21fdec565019f2f8eda17673
[ "MIT" ]
null
null
null
src/main.py
gfjiangly/RCNet
ef6860f23943eb8e21fdec565019f2f8eda17673
[ "MIT" ]
null
null
null
src/main.py
gfjiangly/RCNet
ef6860f23943eb8e21fdec565019f2f8eda17673
[ "MIT" ]
null
null
null
from __future__ import absolute_import from __future__ import division from __future__ import print_function import _init_paths import os import torch import torch.utils.data from opts import opts from models.model import create_model, load_model, save_model from models.data_parallel import DataParallel from logger import Logger from datasets.dataset_factory import get_dataset from trains.train_factory import train_factory def main(opt): torch.manual_seed(opt.seed) torch.backends.cudnn.benchmark = not opt.not_cuda_benchmark and not opt.test # torch.backends.cudnn.benchmark = False Dataset = get_dataset(opt.dataset, opt.task) opt = opts().update_dataset_info_and_set_heads(opt, Dataset) print(opt) logger = Logger(opt) os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpus_str opt.device = torch.device('cuda' if opt.gpus[0] >= 0 else 'cpu') print(torch.version.cuda) print(torch.backends.cudnn.version()) print('Creating model...') model = create_model(opt.arch, opt.heads, opt.head_conv, opt.fpn) # from thop import profile # input = torch.randn(1, 3, 512, 512) # flops, params = profile(model, (1, 3, 512, 512), device='cuda') # from thop.utils import clever_format # flops = clever_format(flops, "%.3f") # params = clever_format(params, "%.3f") optimizer = torch.optim.Adam(model.parameters(), opt.lr) start_epoch = 0 if opt.load_model != '': model, optimizer, start_epoch = load_model( model, opt.load_model, optimizer, opt.resume, opt.lr, opt.lr_step) Trainer = train_factory[opt.task] trainer = Trainer(opt, model, optimizer) trainer.set_device(opt.gpus, opt.chunk_sizes, opt.device) print('Setting up data...') val_loader = torch.utils.data.DataLoader( Dataset(opt, 'val'), batch_size=1, shuffle=False, num_workers=1, pin_memory=True ) if opt.test: _, preds = trainer.val(0, val_loader) val_loader.dataset.run_eval(preds, opt.save_dir) return train_dataset = Dataset(opt, 'trainval') if opt.weighted: import _pickle as pickle weights = pickle.load(open('/CenterNet/data/log_weights.pkl', 'rb')) # seq_sample = torch.utils.data.sampler.SequentialSampler(train_dataset) # train_loader = torch.utils.data.DataLoader( # train_dataset, # shuffle=False, # # num_workers=opt.num_workers, # num_workers=0, # pin_memory=False, # # drop_last=True, # sampler=seq_sample # ) # for inds in train_loader: # data = train_dataset[inds[0]['inds']] # print(data) sampler = torch.utils.data.sampler.WeightedRandomSampler(weights, len(weights)) train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=opt.batch_size, # shuffle=False, num_workers=opt.num_workers, # num_workers=0, pin_memory=True, # drop_last=True, sampler=sampler ) # for i in range(100): # print(torch.multinomial(torch.tensor(weights, dtype=torch.double), 16, replacement=True)) else: train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=opt.batch_size, shuffle=True, num_workers=opt.num_workers, pin_memory=True, drop_last=True, # collate_fn=collate_fn ) print('Starting training...') best = 1e10 for epoch in range(start_epoch + 1, opt.num_epochs + 1): mark = epoch if opt.save_all else 'last' log_dict_train, _ = trainer.train(epoch, train_loader) logger.write('epoch: {} |'.format(epoch)) for k, v in log_dict_train.items(): logger.scalar_summary('train_{}'.format(k), v, epoch) logger.write('{} {:8f} | '.format(k, v)) if opt.val_intervals > 0 and epoch % opt.val_intervals == 0: save_model(os.path.join(opt.save_dir, 'model_{}.pth'.format(mark)), epoch, model, optimizer) with torch.no_grad(): log_dict_val, preds = trainer.val(epoch, val_loader) for k, v in log_dict_val.items(): logger.scalar_summary('val_{}'.format(k), v, epoch) logger.write('{} {:8f} | '.format(k, v)) if log_dict_val[opt.metric] < best: best = log_dict_val[opt.metric] save_model(os.path.join(opt.save_dir, 'model_best.pth'), epoch, model) else: save_model(os.path.join(opt.save_dir, 'model_last.pth'), epoch, model, optimizer) logger.write('\n') if epoch in opt.lr_step: save_model(os.path.join(opt.save_dir, 'model_{}.pth'.format(epoch)), epoch, model, optimizer) lr = opt.lr * (0.1 ** (opt.lr_step.index(epoch) + 1)) print('Drop LR to', lr) for param_group in optimizer.param_groups: param_group['lr'] = lr logger.close() if __name__ == '__main__': opt = opts().parse() main(opt)
36.952381
104
0.591863