hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
231fd77087bf5102bd7314a9822c5d40c1d988dc
3,194
py
Python
pre_processing/minio_args_poster.py
archital/perfgun
f814a40bc50e64879f2cb5fe2312e1f22817ec65
[ "Apache-2.0" ]
null
null
null
pre_processing/minio_args_poster.py
archital/perfgun
f814a40bc50e64879f2cb5fe2312e1f22817ec65
[ "Apache-2.0" ]
null
null
null
pre_processing/minio_args_poster.py
archital/perfgun
f814a40bc50e64879f2cb5fe2312e1f22817ec65
[ "Apache-2.0" ]
null
null
null
import argparse import json import requests from os import environ import shutil DATA_FOR_POST_PROCESSING_FOLDER = "/tmp/data_for_post_processing/" def get_args(): parser = argparse.ArgumentParser(description='Simlog parser.') parser.add_argument("-t", "--type", help="Test type.") parser.add_argument("-s", "--simulation", help='Test simulation', default=None) parser.add_argument("-b", "--build_id", help="build ID", default=None) parser.add_argument("-en", "--env", help="Test type.", default=None) parser.add_argument("-i", "--influx_host", help='InfluxDB host or IP', default=None) parser.add_argument("-p", "--influx_port", help='InfluxDB port', default=8086) parser.add_argument("-iu", "--influx_user", help='InfluxDB user', default="") parser.add_argument("-ip", "--influx_password", help='InfluxDB password', default="") parser.add_argument("-cm", "--comparison_metric", help='Comparison metric', default="pct95") parser.add_argument("-idb", "--influx_db", help='Comparison InfluxDB', default="gatling") parser.add_argument("-icdb", "--comparison_db", help='Comparison InfluxDB', default="comparison") parser.add_argument("-itdb", "--thresholds_db", help='Thresholds InfluxDB', default="thresholds") parser.add_argument("-tl", "--test_limit", help='test_limit', default=5) parser.add_argument("-l", "--lg_id", help='Load generator ID', default=None) parser.add_argument("-el", "--error_logs", help='Path to the error logs', default='/tmp/') parser.add_argument("-trl", "--test_results_log", help='Path to the test results log', default='/opt/gatling/bin/logs/test_results.log') return vars(parser.parse_args()) if __name__ == '__main__': args = get_args() prefix = environ.get('DISTRIBUTED_MODE_PREFIX') token = environ.get('token') if prefix: PROJECT_ID = environ.get('project_id') URL = environ.get('galloper_url') BUCKET = environ.get("results_bucket") if not all(a for a in [URL, BUCKET]): exit(0) # Make archive with data for post processing with open(DATA_FOR_POST_PROCESSING_FOLDER + "args.json", 'w') as f: f.write(json.dumps(args)) with open(DATA_FOR_POST_PROCESSING_FOLDER + "aggregated_errors.json", 'w') as f: f.write(json.dumps({})) path_to_test_results = "/tmp/" + prefix + "_" + str(args['lg_id']) shutil.make_archive(path_to_test_results, 'zip', DATA_FOR_POST_PROCESSING_FOLDER) # Send data to minio headers = {'Authorization': f'bearer {token}'} if token else {} if PROJECT_ID: upload_url = f'{URL}/api/v1/artifacts/{PROJECT_ID}/{BUCKET}/file' requests.post(f'{URL}/api/v1/artifacts/{PROJECT_ID}/{BUCKET}', allow_redirects=True, headers=headers) else: upload_url = f'{URL}/artifacts/{BUCKET}/upload' requests.post(f'{URL}/artifacts/bucket', allow_redirects=True, data={'bucket': BUCKET}, headers=headers) files = {'file': open(path_to_test_results + ".zip", 'rb')} requests.post(upload_url, allow_redirects=True, files=files, headers=headers)
50.698413
116
0.663745
666820acb34bc9a899f30c99d0f94570e2e71236
3,482
py
Python
Sandbox/.ycm_extra_conf.py
noidawt/AulysEngine
6e4a6482961fc27e48342d4767f2d075869b1abf
[ "MIT" ]
1
2020-09-28T10:04:02.000Z
2020-09-28T10:04:02.000Z
Sandbox/.ycm_extra_conf.py
noidawt/AulysEngine
6e4a6482961fc27e48342d4767f2d075869b1abf
[ "MIT" ]
null
null
null
Sandbox/.ycm_extra_conf.py
noidawt/AulysEngine
6e4a6482961fc27e48342d4767f2d075869b1abf
[ "MIT" ]
null
null
null
import os import ycm_core from clang_helpers import PrepareClangFlags def DirectoryOfThisScript(): #return os.path.dirname(os.path.abspath(__file__)) #print(os.path.join(os.path.dirname(os.path.abspath(__file__)), # "export-compile-commands/debug/")) return os.path.join(os.path.dirname(os.path.abspath(__file__)), ".export-compile-commands/debug/") #return os.path.dirname(os.path.join("/llvm_tools/debug/",os.path.abspath(__file__))) # This is the single most important line in this script. Everything else is just nice to have but # not strictly necessary. compilation_database_folder = DirectoryOfThisScript() # This provides a safe fall-back if no compilation commands are available. You could also add a # includes relative to your project directory, for example. flags = [ '-Wall', '-std=c++11', '-stdlib=libc++', '-x', 'c++', '-I', '.', '-isystem', '/usr/local/include', '-isystem', '/usr/include', '-I.', ] if compilation_database_folder: database = ycm_core.CompilationDatabase(compilation_database_folder) else: database = None SOURCE_EXTENSIONS = [ '.cpp', '.cxx', '.cc', '.c', '.m', '.mm', '.h', '.hpp' ] def MakeRelativePathsInFlagsAbsolute( flags, working_directory ): if not working_directory: return list( flags ) new_flags = [] make_next_absolute = False path_flags = [ '-isystem', '-I', '-iquote', '--sysroot=' ] for flag in flags: new_flag = flag if make_next_absolute: make_next_absolute = False if not flag.startswith( '/' ): new_flag = os.path.join( working_directory, flag ) for path_flag in path_flags: if flag == path_flag: make_next_absolute = True break if flag.startswith( path_flag ): path = flag[ len( path_flag ): ] new_flag = path_flag + os.path.join( working_directory, path ) break if new_flag: new_flags.append( new_flag ) return new_flags def IsHeaderFile( filename ): extension = os.path.splitext( filename )[ 1 ] return extension in [ '.h', '.hxx', '.hpp', '.hh' ] def GetCompilationInfoForFile( filename ): # The compilation_commands.json file generated by CMake does not have entries # for header files. So we do our best by asking the db for flags for a # corresponding source file, if any. If one exists, the flags for that file # should be good enough. if IsHeaderFile( filename ): basename = os.path.splitext( filename )[ 0 ] for extension in SOURCE_EXTENSIONS: replacement_file = basename + extension if os.path.exists( replacement_file ): compilation_info = database.GetCompilationInfoForFile( replacement_file ) if compilation_info.compiler_flags_: return compilation_info return None return database.GetCompilationInfoForFile( filename ) def FlagsForFile( filename, **kwargs ): if database: # Bear in mind that compilation_info.compiler_flags_ does NOT return a # python list, but a "list-like" StringVec object compilation_info = GetCompilationInfoForFile( filename ) if not compilation_info: return None final_flags = MakeRelativePathsInFlagsAbsolute( compilation_info.compiler_flags_, compilation_info.compiler_working_dir_ ) else: relative_to = DirectoryOfThisScript() final_flags = MakeRelativePathsInFlagsAbsolute( flags, relative_to ) return { 'flags': final_flags, 'do_cache': True }
30.814159
102
0.690408
249d09c91411708583bb718472c7917117b49761
14,634
py
Python
lib/galaxy/tool_util/deps/mulled/mulled_search.py
rhpvorderman/galaxy
178015f8eff0b0c7a59c0d6756658f6428222837
[ "CC-BY-3.0" ]
1
2021-05-18T02:20:43.000Z
2021-05-18T02:20:43.000Z
lib/galaxy/tool_util/deps/mulled/mulled_search.py
rhpvorderman/galaxy
178015f8eff0b0c7a59c0d6756658f6428222837
[ "CC-BY-3.0" ]
null
null
null
lib/galaxy/tool_util/deps/mulled/mulled_search.py
rhpvorderman/galaxy
178015f8eff0b0c7a59c0d6756658f6428222837
[ "CC-BY-3.0" ]
null
null
null
#!/usr/bin/env python import argparse import json import logging import sys import tempfile import requests from .mulled_list import get_singularity_containers from .util import build_target, v2_image_name try: from conda.cli.python_api import run_command except ImportError: run_command = None # type: ignore try: from whoosh.fields import Schema from whoosh.fields import TEXT from whoosh.fields import STORED from whoosh.index import create_in from whoosh.qparser import QueryParser except ImportError: Schema = TEXT = STORED = create_in = QueryParser = None # type: ignore QUAY_API_URL = 'https://quay.io/api/v1/repository' class QuaySearch(): """ Tool to search within a quay organization for a given software name. """ def __init__(self, organization): self.index = None self.organization = organization def build_index(self): """ Create an index to quickly examine the repositories of a given quay.io organization. """ # download all information about the repositories from the # given organization in self.organization parameters = {'public': 'true', 'namespace': self.organization} r = requests.get(QUAY_API_URL, headers={ 'Accept-encoding': 'gzip'}, params=parameters, timeout=12) tmp_dir = tempfile.mkdtemp() schema = Schema(title=TEXT(stored=True), content=STORED) self.index = create_in(tmp_dir, schema) json_decoder = json.JSONDecoder() decoded_request = json_decoder.decode(r.text) writer = self.index.writer() for repository in decoded_request['repositories']: writer.add_document( title=repository['name'], content=repository['description']) writer.commit() def search_repository(self, search_string, non_strict): """ Search Docker containers on quay.io. Results are displayed with all available versions, including the complete image name. """ # with statement closes searcher after usage. with self.index.searcher() as searcher: query = QueryParser( "title", self.index.schema).parse(search_string) results = searcher.search(query) if non_strict: # look for spelling errors and use suggestions as a search term too corrector = searcher.corrector("title") suggestions = corrector.suggest(search_string, limit=2) # get all repositories with suggested keywords for suggestion in suggestions: search_string = f"*{suggestion}*" query = QueryParser( "title", self.index.schema).parse(search_string) results_tmp = searcher.search(query) results.extend(results_tmp) out = list() for result in results: title = result['title'] for version in self.get_additional_repository_information(title): out.append({'package': title, 'version': version, }) return out def get_additional_repository_information(self, repository_string): """ Function downloads additional information from quay.io to get the tag-field which includes the version number. """ url = f"{QUAY_API_URL}/{self.organization}/{repository_string}" r = requests.get(url, headers={'Accept-encoding': 'gzip'}) json_decoder = json.JSONDecoder() decoded_request = json_decoder.decode(r.text) return decoded_request['tags'] class CondaSearch(): """ Tool to search the bioconda channel """ def __init__(self, channel): self.channel = channel def get_json(self, search_string): """ Function takes search_string variable and returns results from the bioconda channel in JSON format """ if run_command is None: raise Exception(f"Invalid search destination. {deps_error_message('conda')}") raw_out, err, exit_code = run_command( 'search', '-c', self.channel, search_string, use_exception_handler=True) if exit_code != 0: logging.info(f'Search failed with: {err}') return [] return [{'package': n.split()[0], 'version': n.split()[1], 'build': n.split()[2]} for n in raw_out.split('\n')[2:-1]] class GitHubSearch(): """ Tool to search the GitHub bioconda-recipes repo """ def get_json(self, search_string): """ Takes search_string variable and return results from the bioconda-recipes github repository in JSON format """ response = requests.get( f"https://api.github.com/search/code?q={search_string}+in:path+repo:bioconda/bioconda-recipes+path:recipes").json() return response def process_json(self, json, search_string): """ Take JSON input and process it, returning the required data """ json = json['items'][0:10] # get top ten results results = [] for result in json: results.append({'name': result['name'], 'path': result['path']}) return results def recipe_present(self, search_string): """ Check if a recipe exists in bioconda-recipes which matches search_string exactly """ if requests.get(f"https://api.github.com/repos/bioconda/bioconda-recipes/contents/recipes/{search_string}").status_code == 200: return True else: return False def get_package_hash(packages, versions): """ Take packages and versions (if the latter are given) and returns a hash for each. Also checks github to see if the container is already present. """ hash_results = {} targets = [] if versions: for p in packages: targets.append(build_target(p, version=versions[p])) else: # if versions are not given only calculate the package hash for p in packages: targets.append(build_target(p)) # make the hash from the processed targets package_hash = v2_image_name(targets) hash_results['package_hash'] = package_hash.split(':')[0] if versions: hash_results['version_hash'] = package_hash.split(':')[1] r = requests.get(f"https://quay.io/api/v1/repository/biocontainers/{hash_results['package_hash']}") if r.status_code == 200: hash_results['container_present'] = True if versions: # now test if the version hash is listed in the repository tags # remove -0, -1, etc from end of the tag tags = [n[:-2] for n in r.json()['tags']] if hash_results['version_hash'] in tags: hash_results['container_present_with_version'] = True else: hash_results['container_present_with_version'] = False else: hash_results['container_present'] = False return hash_results def singularity_search(search_string): """ Check if a singularity package is present and return the link. """ results = [] containers = get_singularity_containers() for container in containers: if search_string in container: name = container.split(':')[0] version = container.split(':')[1] results.append({'package': name, 'version': version}) return results def readable_output(json, organization='biocontainers', channel='bioconda'): # if json is empty: if sum([len(json[destination][results]) for destination in json for results in json[destination]]) == 0: sys.stdout.write('No results found for that query.\n') return # return results for quay, conda and singularity together if sum([len(json[destination][results]) for destination in ['quay', 'conda', 'singularity', ] for results in json.get(destination, [])]) > 0: sys.stdout.write("The query returned the following result(s).\n") # put quay, conda etc results as lists in lines lines = [['LOCATION', 'NAME', 'VERSION', 'COMMAND\n']] for results in json.get('quay', {}).values(): for result in results: lines.append(['quay', result['package'], result['version'], 'docker pull quay.io/%s/%s:%s\n' % (organization, result['package'], result['version'])]) # NOT a real solution for results in json.get('conda', {}).values(): for result in results: lines.append(['conda', result['package'], f"{result['version']}--{result['build']}", f"conda install -c {channel} {result['package']}={result['version']}={result['build']}\n"]) for results in json.get('singularity', {}).values(): for result in results: lines.append(['singularity', result['package'], result['version'], f"wget https://depot.galaxyproject.org/singularity/{result['package']}:{result['version']}\n"]) col_width0, col_width1, col_width2 = (max(len( line[n]) for line in lines) + 2 for n in (0, 1, 2)) # def max col widths for the output # create table for line in lines: sys.stdout.write("".join((line[0].ljust(col_width0), line[1].ljust( col_width1), line[2].ljust(col_width2), line[3]))) # output if json.get('github_recipe_present', False): sys.stdout.write('\n' if 'lines' in locals() else '') sys.stdout.write( 'The following recipes were found in the bioconda-recipes repository which exactly matched one of the search terms:\n') lines = [['QUERY', 'LOCATION\n']] for recipe in json['github_recipe_present']['recipes']: lines.append( [recipe, f"https://api.github.com/repos/bioconda/bioconda-recipes/contents/recipes/{recipe}\n"]) col_width0 = max(len(line[0]) for line in lines) + 2 for line in lines: sys.stdout.write( "".join((line[0].ljust(col_width0), line[1]))) # output if sum([len(json['github'][results]) for results in json.get('github', [])]) > 0: sys.stdout.write('\n' if 'lines' in locals() else '') sys.stdout.write( "Other result(s) on the bioconda-recipes GitHub repository:\n") lines = [['QUERY', 'FILE', 'URL\n']] for search_string, results in json.get('github', {}).items(): for result in results: lines.append([search_string, result['name'], f"https://github.com/bioconda/bioconda-recipes/tree/master/{result['path']}\n"]) # def max col widths for the output col_width0, col_width1 = ( max(len(line[n]) for line in lines) + 2 for n in (0, 1)) for line in lines: sys.stdout.write("".join( (line[0].ljust(col_width0), line[1].ljust(col_width1), line[2]))) # output def deps_error_message(package): return f"Required dependency [{package}] is not installed. Run 'pip install galaxy-tool-util[mulled]'." def main(argv=None): if Schema is None: sys.stdout.write(deps_error_message("Whoosh")) return destination_defaults = ['quay', 'singularity', 'github'] if run_command is not None: destination_defaults.append('conda') parser = argparse.ArgumentParser( description='Searches in a given quay organization for a repository') parser.add_argument('-d', '--destination', dest='search_dest', nargs='+', default=destination_defaults, help="Choose where to search. Options are 'conda', 'quay', 'singularity' and 'github'. If no option are given, all will be searched.") parser.add_argument('-o', '--organization', dest='organization_string', default="biocontainers", help='Change quay organization to search; default is biocontainers.') parser.add_argument('-c', '--channel', dest='channel_string', default="bioconda", help='Change conda channel to search; default is bioconda.') parser.add_argument('--non-strict', dest='non_strict', action="store_true", help='Autocorrection of typos activated. Lists more results but can be confusing.\ For too many queries quay.io blocks the request and the results can be incomplete.') parser.add_argument('-j', '--json', dest='json', action="store_true", help='Returns results as JSON.') parser.add_argument('-s', '--search', required=True, nargs='+', help='The name of the tool(s) to search for.') args = parser.parse_args() json_results = {dest: {} for dest in args.search_dest} versions = {} if len(args.search) > 1: # get hash if multiple packages are searched args.search.append(get_package_hash( args.search, versions)['package_hash']) if 'conda' in args.search_dest: conda_results = {} conda = CondaSearch(args.channel_string) for item in args.search: conda_results[item] = conda.get_json(item) json_results['conda'] = conda_results if 'github' in args.search_dest: github_results = {} github_recipe_present = [] github = GitHubSearch() for item in args.search: github_json = github.get_json(item) github_results[item] = github.process_json(github_json, item) if github.recipe_present(item): github_recipe_present.append(item) json_results['github'] = github_results json_results['github_recipe_present'] = { 'recipes': github_recipe_present} if 'quay' in args.search_dest: quay_results = {} quay = QuaySearch(args.organization_string) quay.build_index() for item in args.search: quay_results[item] = quay.search_repository(item, args.non_strict) json_results['quay'] = quay_results if 'singularity' in args.search_dest: singularity_results = {} for item in args.search: singularity_results[item] = singularity_search(item) json_results['singularity'] = singularity_results if args.json: print(json_results) else: readable_output(json_results, args.organization_string, args.channel_string) if __name__ == "__main__": main()
39.444744
158
0.617876
40f8408d07c7c370a6866a6361e2b728cd6edce0
824
py
Python
sample/sample_application/urls.py
2000charge/ap-python-sdk
ae96737b8021f5d2816ce73dd370544675e6b55d
[ "MIT" ]
null
null
null
sample/sample_application/urls.py
2000charge/ap-python-sdk
ae96737b8021f5d2816ce73dd370544675e6b55d
[ "MIT" ]
null
null
null
sample/sample_application/urls.py
2000charge/ap-python-sdk
ae96737b8021f5d2816ce73dd370544675e6b55d
[ "MIT" ]
null
null
null
"""sample_application URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.10/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url, include from django.contrib import admin urlpatterns = [ url(r'^app/', include('app.urls')), url(r'^admin/', admin.site.urls), ]
35.826087
79
0.700243
dce3f4c749099b7b8fe4881d65321643fd402174
8,515
py
Python
course/views.py
Nuclear-Smile/ClassSelectionManageSystem
c457716307a35f5d9742627114129688ae25513a
[ "MIT" ]
11
2021-01-13T05:12:24.000Z
2022-03-17T16:29:30.000Z
course/views.py
Nuclear-Smile/ClassSelectionManageSystem
c457716307a35f5d9742627114129688ae25513a
[ "MIT" ]
1
2021-04-21T04:16:11.000Z
2021-04-21T04:17:14.000Z
course/views.py
Nuclear-Smile/ClassSelectionManageSystem
c457716307a35f5d9742627114129688ae25513a
[ "MIT" ]
4
2021-04-26T02:35:49.000Z
2021-12-12T09:28:23.000Z
from django.http.response import HttpResponse from django.shortcuts import render, reverse, redirect from django.db.models import Q from constants import INVALID_KIND, INVALID_REQUEST_METHOD, ILLEGAL_KIND from course.forms import CourseForm, ScheduleForm from course.models import Course, StudentCourse, Schedule from user.util import get_user from django.utils import timezone def to_home(request): kind = request.session.get('kind', '') return redirect(reverse("course", kwargs={"kind": kind})) def home(request, kind): if kind == "teacher": return teacher_home(request) elif kind == "student": return student_home(request) return HttpResponse(INVALID_KIND) def teacher_home(request): user = get_user(request, "teacher") if not user: return redirect(reverse("login", kwargs={"kind": "teacher"})) info = { "name": user.name, "kind": "teacher", } is_search = False search_key = "" if request.method == "POST": search_key = request.POST.get("search") if search_key: is_search = True context = {"info": info} q = Q(teacher=user) if is_search: q = q & Q(name__icontains=search_key) context["search_key"] = search_key context["course_list"] = Course.objects.filter(q).order_by('status') return render(request, 'course/teacher/home.html', context) def student_home(request): return redirect(reverse("view_course", kwargs={"view_kind": "current"})) def create_course(request): user = get_user(request, "teacher") if not user: return redirect(reverse("login", kwargs={"kind": "teacher"})) info = { "name": user.name, "kind": "teacher", } if request.method == 'POST': form = CourseForm(request.POST) if form.is_valid(): obj = form.save(commit=False) obj.status = 1 obj.teacher = user obj.save() return redirect(reverse("course", kwargs={"kind": "teacher"})) elif request.method == 'GET': form = CourseForm() else: return HttpResponse(INVALID_REQUEST_METHOD) return render(request, 'course/teacher/create_course.html', {'info': info, 'form': form}) def create_schedule(request, course_id): user = get_user(request, "teacher") if not user: return redirect(reverse("login", kwargs={"kind": "teacher"})) info = { "name": user.name, "kind": "teacher", } course = Course.objects.get(pk=course_id) if request.method == 'POST': form = ScheduleForm(request.POST) if form.is_valid(): obj = form.save(commit=False) obj.course = course obj.save() return redirect(reverse("view_detail", kwargs={"course_id": course_id})) elif request.method == 'GET': form = ScheduleForm() else: return HttpResponse(INVALID_REQUEST_METHOD) return render(request, 'course/teacher/create_schedule.html', {'info': info, 'form': form, "course": course}) def delete_schedule(request, schedule_id): user = get_user(request, "teacher") if not user: return redirect(reverse("login", kwargs={"kind": "teacher"})) schedule = Schedule.objects.get(pk=schedule_id) course_id = request.GET.get("course_id") or schedule.course.id schedule.delete() return redirect(reverse("view_detail", kwargs={"course_id": course_id})) def handle_course(request, course_id, handle_kind): """ :param request: :param course_id: :param handle_kind: 1: "开始选课", 2: "结束选课", 3: "结课", 4: "给分完成" :return: """ user = get_user(request, "teacher") if not user: return redirect(reverse("login", kwargs={"kind": "teacher"})) info = { "name": user.name, "kind": "teacher", } course = Course.objects.get(pk=course_id) if course.status == handle_kind and course.status < 5: if course.status == 4: scs = StudentCourse.objects.filter(course=course) all_given = True res = "" for sc in scs: if sc.scores is None: all_given = False res += "<div>%s 未打分</div>" % sc.student if all_given: course.status += 1 course.save() return redirect(reverse("view_detail", kwargs={"course_id": course.id})) else: return HttpResponse(res) else: course.status += 1 course.save() course_list = Course.objects.filter(teacher=user) return render(request, 'course/teacher/home.html', {'info': info, 'course_list': course_list}) def view_detail(request, course_id): user = get_user(request, "teacher") if not user: return redirect(reverse("login", kwargs={"kind": "teacher"})) info = { "name": user.name, "kind": "teacher", } course = Course.objects.get(pk=course_id) c_stu_list = StudentCourse.objects.filter(course=course) sche_list = Schedule.objects.filter(course=course) context = { "info": info, "course": course, "course_students": c_stu_list, "schedules": sche_list } if course.status == 5: sorted_cs_list = sorted(c_stu_list, key=lambda cs: cs.scores) context["sorted_course_students"] = sorted_cs_list return render(request, "course/teacher/course.html", context) def view_course(request, view_kind): """ :param view_kind: current: 查看当前课程 is_end: 查看结课课程 select: 选课 withdraw: 撤课 """ user = get_user(request, "student") if not user: return redirect(reverse("login", kwargs={"kind": "student"})) is_search = False search_key = "" if request.method == "POST": search_key = request.POST.get("search") if search_key: is_search = True info = { "name": user.name, "kind": "student", } course_list = [] if view_kind in ["select", "current", "withdraw", "is_end"]: if view_kind == "select": q = Q(status=2) if is_search: q = q & (Q(name__icontains=search_key) | Q(teacher__name__icontains=search_key)) course_list = Course.objects.filter(q) my_course = StudentCourse.objects.filter(Q(student=user) & Q(with_draw=False)) my_cids = [c.course.id for c in my_course] course_list = [c for c in course_list if c.id not in my_cids] else: q = Q(student=user) & Q(with_draw=False) if is_search: q = q & (Q(course__name__icontains=search_key) | Q(course__teacher__name__icontains=search_key)) my_course = StudentCourse.objects.filter(q) if view_kind == "current": course_list = [c.course for c in my_course if c.course.status < 4] elif view_kind == "withdraw": course_list = [c.course for c in my_course if c.course.status == 2] elif view_kind == "is_end": course_list = [c for c in my_course if c.course.status >= 4] else: return HttpResponse(INVALID_REQUEST_METHOD) context = { 'info': info, 'view_kind': view_kind, 'course_list': course_list } if is_search: context["search_key"] = search_key return render(request, 'course/student/home.html', context) def operate_course(request, operate_kind, course_id): """ :param operate_kind: current: 查看当前课程 is_end: 查看结课课程 select: 选课 withdraw: 撤课 """ user = get_user(request, "student") if not user: return redirect(reverse("login", kwargs={"kind": "student"})) if operate_kind not in ["select", "withdraw"]: return HttpResponse(ILLEGAL_KIND) elif operate_kind == "select": course = Course.objects.filter(pk=course_id).get() new_course = StudentCourse(student=user, course=course) new_course.save() elif operate_kind == "withdraw": q = Q(course__id=course_id) & Q(student=user) & Q(with_draw=False) course = StudentCourse.objects.filter(q).get() course.with_draw = True course.with_draw_time = timezone.now() course.save() return redirect(reverse("view_course", kwargs={"view_kind": operate_kind}))
29.463668
113
0.601174
4a9d291f33e80fdfdf0da6fa2932307fbabc46bc
40,336
py
Python
vyper/parser/expr.py
olwee/vyper
b532e6e3b8a6912baad20f8cae5e4429b6e6c76b
[ "MIT" ]
null
null
null
vyper/parser/expr.py
olwee/vyper
b532e6e3b8a6912baad20f8cae5e4429b6e6c76b
[ "MIT" ]
null
null
null
vyper/parser/expr.py
olwee/vyper
b532e6e3b8a6912baad20f8cae5e4429b6e6c76b
[ "MIT" ]
null
null
null
import ast from vyper.exceptions import ( InvalidLiteralException, NonPayableViolationException, StructureException, TypeMismatchException, VariableDeclarationException, ParserException ) from vyper.parser.lll_node import LLLnode from vyper.parser import self_call from vyper.parser.parser_utils import ( getpos, unwrap_location, get_original_if_0_prefixed, get_number_as_fraction, add_variable_offset, ) from vyper.utils import ( MemoryPositions, SizeLimits, bytes_to_int, string_to_bytes, DECIMAL_DIVISOR, checksum_encode, is_varname_valid, ) from vyper.types import ( BaseType, ByteArrayType, ContractType, ListType, MappingType, NullType, StructType, TupleType, ) from vyper.types import ( is_base_type, ) from vyper.types import ( are_units_compatible, is_numeric_type, combine_units ) class Expr(object): # TODO: Once other refactors are made reevaluate all inline imports def __init__(self, expr, context): self.expr = expr self.context = context self.expr_table = { LLLnode: self.get_expr, ast.Num: self.number, ast.Str: self.string, ast.NameConstant: self.constants, ast.Name: self.variables, ast.Attribute: self.attribute, ast.Subscript: self.subscript, ast.BinOp: self.arithmetic, ast.Compare: self.compare, ast.BoolOp: self.boolean_operations, ast.UnaryOp: self.unary_operations, ast.Call: self.call, ast.List: self.list_literals, ast.Dict: self.struct_literals, ast.Tuple: self.tuple_literals, } expr_type = self.expr.__class__ if expr_type in self.expr_table: self.lll_node = self.expr_table[expr_type]() else: raise Exception("Unsupported operator: %r" % ast.dump(self.expr)) def get_expr(self): return self.expr def number(self): orignum = get_original_if_0_prefixed(self.expr, self.context) if orignum is None and isinstance(self.expr.n, int): # Literal (mostly likely) becomes int128 if SizeLimits.in_bounds('int128', self.expr.n) or self.expr.n < 0: return LLLnode.from_list(self.expr.n, typ=BaseType('int128', unit=None, is_literal=True), pos=getpos(self.expr)) # Literal is large enough (mostly likely) becomes uint256. else: return LLLnode.from_list(self.expr.n, typ=BaseType('uint256', unit=None, is_literal=True), pos=getpos(self.expr)) elif isinstance(self.expr.n, float): numstring, num, den = get_number_as_fraction(self.expr, self.context) # if not SizeLimits.in_bounds('decimal', num // den): # if not SizeLimits.MINDECIMAL * den <= num <= SizeLimits.MAXDECIMAL * den: if not (SizeLimits.MINNUM * den < num < SizeLimits.MAXNUM * den): raise InvalidLiteralException("Number out of range: " + numstring, self.expr) if DECIMAL_DIVISOR % den: raise InvalidLiteralException("Too many decimal places: " + numstring, self.expr) return LLLnode.from_list(num * DECIMAL_DIVISOR // den, typ=BaseType('decimal', unit=None), pos=getpos(self.expr)) # Binary literal. elif orignum[:2] == '0b': str_val = orignum[2:] total_bits = len(orignum[2:]) total_bits = total_bits if total_bits % 8 == 0 else total_bits + 8 - (total_bits % 8) # ceil8 to get byte length. if len(orignum[2:]) != total_bits: # Support only full formed bit definitions. raise InvalidLiteralException("Bit notation requires a multiple of 8 bits / 1 byte. {} bit(s) are missing.".format(total_bits - len(orignum[2:])), self.expr) byte_len = int(total_bits / 8) placeholder = self.context.new_placeholder(ByteArrayType(byte_len)) seq = [] seq.append(['mstore', placeholder, byte_len]) for i in range(0, total_bits, 256): section = str_val[i:i + 256] int_val = int(section, 2) << (256 - len(section)) # bytes are right padded. seq.append( ['mstore', ['add', placeholder, i + 32], int_val]) return LLLnode.from_list(['seq'] + seq + [placeholder], typ=ByteArrayType(byte_len), location='memory', pos=getpos(self.expr), annotation='Create ByteArray (Binary literal): %s' % str_val) elif len(orignum) == 42: if checksum_encode(orignum) != orignum: raise InvalidLiteralException("""Address checksum mismatch. If you are sure this is the right address, the correct checksummed form is: %s""" % checksum_encode(orignum), self.expr) return LLLnode.from_list(self.expr.n, typ=BaseType('address', is_literal=True), pos=getpos(self.expr)) elif len(orignum) == 66: return LLLnode.from_list(self.expr.n, typ=BaseType('bytes32', is_literal=True), pos=getpos(self.expr)) else: raise InvalidLiteralException("Cannot read 0x value with length %d. Expecting 42 (address incl 0x) or 66 (bytes32 incl 0x)" % len(orignum), self.expr) # Byte array literals def string(self): bytez, bytez_length = string_to_bytes(self.expr.s) placeholder = self.context.new_placeholder(ByteArrayType(bytez_length)) seq = [] seq.append(['mstore', placeholder, bytez_length]) for i in range(0, len(bytez), 32): seq.append(['mstore', ['add', placeholder, i + 32], bytes_to_int((bytez + b'\x00' * 31)[i: i + 32])]) return LLLnode.from_list(['seq'] + seq + [placeholder], typ=ByteArrayType(bytez_length), location='memory', pos=getpos(self.expr), annotation='Create ByteArray: %s' % bytez) # True, False, None constants def constants(self): if self.expr.value is True: return LLLnode.from_list(1, typ=BaseType('bool', is_literal=True), pos=getpos(self.expr)) elif self.expr.value is False: return LLLnode.from_list(0, typ=BaseType('bool', is_literal=True), pos=getpos(self.expr)) elif self.expr.value is None: return LLLnode.from_list(None, typ=NullType(), pos=getpos(self.expr)) else: raise Exception("Unknown name constant: %r" % self.expr.value.value) # Variable names def variables(self): builtin_constants = { 'ZERO_ADDRESS': LLLnode.from_list([0], typ=BaseType('address', None, is_literal=True), pos=getpos(self.expr)), 'MAX_INT128': LLLnode.from_list(['mload', MemoryPositions.MAXNUM], typ=BaseType('int128', None, is_literal=True), pos=getpos(self.expr)), 'MIN_INT128': LLLnode.from_list(['mload', MemoryPositions.MINNUM], typ=BaseType('int128', None, is_literal=True), pos=getpos(self.expr)), 'MAX_DECIMAL': LLLnode.from_list(['mload', MemoryPositions.MAXDECIMAL], typ=BaseType('decimal', None, is_literal=True), pos=getpos(self.expr)), 'MIN_DECIMAL': LLLnode.from_list(['mload', MemoryPositions.MINDECIMAL], typ=BaseType('decimal', None, is_literal=True), pos=getpos(self.expr)), 'MAX_UINT256': LLLnode.from_list([2**256 - 1], typ=BaseType('uint256', None, is_literal=True), pos=getpos(self.expr)), } if self.expr.id == 'self': return LLLnode.from_list(['address'], typ='address', pos=getpos(self.expr)) elif self.expr.id in self.context.vars: var = self.context.vars[self.expr.id] return LLLnode.from_list(var.pos, typ=var.typ, location='memory', pos=getpos(self.expr), annotation=self.expr.id, mutable=var.mutable) elif self.expr.id in builtin_constants: return builtin_constants[self.expr.id] elif self.expr.id in self.context.constants: # check if value is compatible with const = self.context.constants[self.expr.id] if isinstance(const, ast.AnnAssign): # Handle ByteArrays. expr = Expr(const.value, self.context).lll_node return expr # Other types are already unwrapped, no need return self.context.constants[self.expr.id] else: raise VariableDeclarationException("Undeclared variable: " + self.expr.id, self.expr) # x.y or x[5] def attribute(self): # x.balance: balance of address x if self.expr.attr == 'balance': addr = Expr.parse_value_expr(self.expr.value, self.context) if not is_base_type(addr.typ, 'address'): raise TypeMismatchException("Type mismatch: balance keyword expects an address as input", self.expr) return LLLnode.from_list(['balance', addr], typ=BaseType('uint256', {'wei': 1}), location=None, pos=getpos(self.expr)) # x.codesize: codesize of address x elif self.expr.attr == 'codesize' or self.expr.attr == 'is_contract': addr = Expr.parse_value_expr(self.expr.value, self.context) if not is_base_type(addr.typ, 'address'): raise TypeMismatchException("Type mismatch: codesize keyword expects an address as input", self.expr) if self.expr.attr == 'codesize': eval_code = ['extcodesize', addr] output_type = 'int128' else: eval_code = ['gt', ['extcodesize', addr], 0] output_type = 'bool' return LLLnode.from_list(eval_code, typ=BaseType(output_type), location=None, pos=getpos(self.expr)) # self.x: global attribute elif isinstance(self.expr.value, ast.Name) and self.expr.value.id == "self": if self.expr.attr not in self.context.globals: raise VariableDeclarationException("Persistent variable undeclared: " + self.expr.attr, self.expr) var = self.context.globals[self.expr.attr] return LLLnode.from_list(var.pos, typ=var.typ, location='storage', pos=getpos(self.expr), annotation='self.' + self.expr.attr) # Reserved keywords elif isinstance(self.expr.value, ast.Name) and self.expr.value.id in ("msg", "block", "tx"): key = self.expr.value.id + "." + self.expr.attr if key == "msg.sender": if self.context.is_private: raise ParserException("msg.sender not allowed in private functions.", self.expr) return LLLnode.from_list(['caller'], typ='address', pos=getpos(self.expr)) elif key == "msg.value": if not self.context.is_payable: raise NonPayableViolationException("Cannot use msg.value in a non-payable function", self.expr) return LLLnode.from_list(['callvalue'], typ=BaseType('uint256', {'wei': 1}), pos=getpos(self.expr)) elif key == "msg.gas": return LLLnode.from_list(['gas'], typ='uint256', pos=getpos(self.expr)) elif key == "block.difficulty": return LLLnode.from_list(['difficulty'], typ='uint256', pos=getpos(self.expr)) elif key == "block.timestamp": return LLLnode.from_list(['timestamp'], typ=BaseType('uint256', {'sec': 1}, True), pos=getpos(self.expr)) elif key == "block.coinbase": return LLLnode.from_list(['coinbase'], typ='address', pos=getpos(self.expr)) elif key == "block.number": return LLLnode.from_list(['number'], typ='uint256', pos=getpos(self.expr)) elif key == "block.prevhash": return LLLnode.from_list(['blockhash', ['sub', 'number', 1]], typ='bytes32', pos=getpos(self.expr)) elif key == "tx.origin": return LLLnode.from_list(['origin'], typ='address', pos=getpos(self.expr)) else: raise Exception("Unsupported keyword: " + key) # Other variables else: sub = Expr.parse_variable_location(self.expr.value, self.context) # contract type if isinstance(sub.typ, ContractType): return sub if not isinstance(sub.typ, StructType): raise TypeMismatchException("Type mismatch: member variable access not expected", self.expr.value) attrs = sorted(sub.typ.members.keys()) if self.expr.attr not in attrs: raise TypeMismatchException("Member %s not found. Only the following available: %s" % (self.expr.attr, " ".join(attrs)), self.expr) return add_variable_offset(sub, self.expr.attr, pos=getpos(self.expr)) def subscript(self): sub = Expr.parse_variable_location(self.expr.value, self.context) if isinstance(sub.typ, (MappingType, ListType)): if 'value' not in vars(self.expr.slice): raise StructureException("Array access must access a single element, not a slice", self.expr) index = Expr.parse_value_expr(self.expr.slice.value, self.context) elif isinstance(sub.typ, TupleType): if not isinstance(self.expr.slice.value, ast.Num) or self.expr.slice.value.n < 0 or self.expr.slice.value.n >= len(sub.typ.members): raise TypeMismatchException("Tuple index invalid", self.expr.slice.value) index = self.expr.slice.value.n else: raise TypeMismatchException("Bad subscript attempt", self.expr.value) o = add_variable_offset(sub, index, pos=getpos(self.expr)) o.mutable = sub.mutable return o def arithmetic_get_reference(self, item): item_lll = Expr.parse_value_expr(item, self.context) if isinstance(item, ast.Call): # We only want to perform call statements once. placeholder = self.context.new_placeholder(item_lll.typ) pre_alloc = ['mstore', placeholder, item_lll] return pre_alloc, LLLnode.from_list(['mload', placeholder], location='memory', typ=item_lll.typ) else: return None, item_lll def arithmetic(self): pre_alloc_left, left = self.arithmetic_get_reference(self.expr.left) pre_alloc_right, right = self.arithmetic_get_reference(self.expr.right) if not is_numeric_type(left.typ) or not is_numeric_type(right.typ): raise TypeMismatchException("Unsupported types for arithmetic op: %r %r" % (left.typ, right.typ), self.expr) arithmetic_pair = {left.typ.typ, right.typ.typ} # Special Case: Simplify any literal to literal arithmetic at compile time. if left.typ.is_literal and right.typ.is_literal and \ isinstance(right.value, int) and isinstance(left.value, int): if isinstance(self.expr.op, ast.Add): val = left.value + right.value elif isinstance(self.expr.op, ast.Sub): val = left.value - right.value elif isinstance(self.expr.op, ast.Mult): val = left.value * right.value elif isinstance(self.expr.op, ast.Div): val = left.value // right.value elif isinstance(self.expr.op, ast.Mod): val = left.value % right.value elif isinstance(self.expr.op, ast.Pow): val = left.value ** right.value else: raise ParserException('Unsupported literal operator: %s' % str(type(self.expr.op)), self.expr) num = ast.Num(val) num.source_code = self.expr.source_code num.lineno = self.expr.lineno num.col_offset = self.expr.col_offset return Expr.parse_value_expr(num, self.context) # Special case with uint256 were int literal may be casted. if arithmetic_pair == {'uint256', 'int128'}: # Check right side literal. if right.typ.is_literal and SizeLimits.in_bounds('uint256', right.value): right = LLLnode.from_list(right.value, typ=BaseType('uint256', None, is_literal=True), pos=getpos(self.expr)) arithmetic_pair = {left.typ.typ, right.typ.typ} # Check left side literal. elif left.typ.is_literal and SizeLimits.in_bounds('uint256', left.value): left = LLLnode.from_list(left.value, typ=BaseType('uint256', None, is_literal=True), pos=getpos(self.expr)) arithmetic_pair = {left.typ.typ, right.typ.typ} # Only allow explicit conversions to occur. if left.typ.typ != right.typ.typ: raise TypeMismatchException("Cannot implicitly convert {} to {}.".format(left.typ.typ, right.typ.typ), self.expr) ltyp, rtyp = left.typ.typ, right.typ.typ if isinstance(self.expr.op, (ast.Add, ast.Sub)): if left.typ.unit != right.typ.unit and left.typ.unit is not None and right.typ.unit is not None: raise TypeMismatchException("Unit mismatch: %r %r" % (left.typ.unit, right.typ.unit), self.expr) if left.typ.positional and right.typ.positional and isinstance(self.expr.op, ast.Add): raise TypeMismatchException("Cannot add two positional units!", self.expr) new_unit = left.typ.unit or right.typ.unit new_positional = left.typ.positional ^ right.typ.positional # xor, as subtracting two positionals gives a delta op = 'add' if isinstance(self.expr.op, ast.Add) else 'sub' if ltyp == 'uint256' and isinstance(self.expr.op, ast.Add): o = LLLnode.from_list(['seq', # Checks that: a + b >= a ['assert', ['ge', ['add', left, right], left]], ['add', left, right]], typ=BaseType('uint256', new_unit, new_positional), pos=getpos(self.expr)) elif ltyp == 'uint256' and isinstance(self.expr.op, ast.Sub): o = LLLnode.from_list(['seq', # Checks that: a >= b ['assert', ['ge', left, right]], ['sub', left, right]], typ=BaseType('uint256', new_unit, new_positional), pos=getpos(self.expr)) elif ltyp == rtyp: o = LLLnode.from_list([op, left, right], typ=BaseType(ltyp, new_unit, new_positional), pos=getpos(self.expr)) else: raise Exception("Unsupported Operation '%r(%r, %r)'" % (op, ltyp, rtyp)) elif isinstance(self.expr.op, ast.Mult): if left.typ.positional or right.typ.positional: raise TypeMismatchException("Cannot multiply positional values!", self.expr) new_unit = combine_units(left.typ.unit, right.typ.unit) if ltyp == rtyp == 'uint256': o = LLLnode.from_list(['if', ['eq', left, 0], [0], ['seq', ['assert', ['eq', ['div', ['mul', left, right], left], right]], ['mul', left, right]]], typ=BaseType('uint256', new_unit), pos=getpos(self.expr)) elif ltyp == rtyp == 'int128': o = LLLnode.from_list(['mul', left, right], typ=BaseType('int128', new_unit), pos=getpos(self.expr)) elif ltyp == rtyp == 'decimal': o = LLLnode.from_list(['with', 'r', right, ['with', 'l', left, ['with', 'ans', ['mul', 'l', 'r'], ['seq', ['assert', ['or', ['eq', ['sdiv', 'ans', 'l'], 'r'], ['iszero', 'l']]], ['sdiv', 'ans', DECIMAL_DIVISOR]]]]], typ=BaseType('decimal', new_unit), pos=getpos(self.expr)) else: raise Exception("Unsupported Operation 'mul(%r, %r)'" % (ltyp, rtyp)) elif isinstance(self.expr.op, ast.Div): if left.typ.positional or right.typ.positional: raise TypeMismatchException("Cannot divide positional values!", self.expr) new_unit = combine_units(left.typ.unit, right.typ.unit, div=True) if ltyp == rtyp == 'uint256': o = LLLnode.from_list(['seq', # Checks that: b != 0 ['assert', right], ['div', left, right]], typ=BaseType('uint256', new_unit), pos=getpos(self.expr)) elif ltyp == rtyp == 'int128': o = LLLnode.from_list(['sdiv', left, ['clamp_nonzero', right]], typ=BaseType('int128', new_unit), pos=getpos(self.expr)) elif ltyp == rtyp == 'decimal': o = LLLnode.from_list(['with', 'l', left, ['with', 'r', ['clamp_nonzero', right], ['sdiv', ['mul', 'l', DECIMAL_DIVISOR], 'r']]], typ=BaseType('decimal', new_unit), pos=getpos(self.expr)) else: raise Exception("Unsupported Operation 'div(%r, %r)'" % (ltyp, rtyp)) elif isinstance(self.expr.op, ast.Mod): if left.typ.positional or right.typ.positional: raise TypeMismatchException("Cannot use positional values as modulus arguments!", self.expr) if left.typ.unit != right.typ.unit and left.typ.unit is not None and right.typ.unit is not None: raise TypeMismatchException("Modulus arguments must have same unit", self.expr) new_unit = left.typ.unit or right.typ.unit if ltyp == rtyp == 'uint256': o = LLLnode.from_list(['seq', ['assert', right], ['mod', left, right]], typ=BaseType('uint256', new_unit), pos=getpos(self.expr)) elif ltyp == rtyp: o = LLLnode.from_list(['smod', left, ['clamp_nonzero', right]], typ=BaseType(ltyp, new_unit), pos=getpos(self.expr)) else: raise Exception("Unsupported Operation 'mod(%r, %r)'" % (ltyp, rtyp)) elif isinstance(self.expr.op, ast.Pow): if left.typ.positional or right.typ.positional: raise TypeMismatchException("Cannot use positional values as exponential arguments!", self.expr) if right.typ.unit: raise TypeMismatchException("Cannot use unit values as exponents", self.expr) if ltyp != 'int128' and ltyp != 'uint256' and isinstance(self.expr.right, ast.Name): raise TypeMismatchException("Cannot use dynamic values as exponents, for unit base types", self.expr) if ltyp == rtyp == 'uint256': o = LLLnode.from_list(['seq', ['assert', ['or', ['or', ['eq', right, 1], ['iszero', right]], ['lt', left, ['exp', left, right]]]], ['exp', left, right]], typ=BaseType('uint256'), pos=getpos(self.expr)) elif ltyp == rtyp == 'int128': new_unit = left.typ.unit if left.typ.unit and not isinstance(self.expr.right, ast.Name): new_unit = {left.typ.unit.copy().popitem()[0]: self.expr.right.n} o = LLLnode.from_list(['exp', left, right], typ=BaseType('int128', new_unit), pos=getpos(self.expr)) else: raise TypeMismatchException('Only whole number exponents are supported', self.expr) else: raise Exception("Unsupported binop: %r" % self.expr.op) p = ['seq'] if pre_alloc_left: p.append(pre_alloc_left) if pre_alloc_right: p.append(pre_alloc_right) if o.typ.typ == 'int128': p.append(['clamp', ['mload', MemoryPositions.MINNUM], o, ['mload', MemoryPositions.MAXNUM]]) return LLLnode.from_list(p, typ=o.typ, pos=getpos(self.expr)) elif o.typ.typ == 'decimal': p.append(['clamp', ['mload', MemoryPositions.MINDECIMAL], o, ['mload', MemoryPositions.MAXDECIMAL]]) return LLLnode.from_list(p, typ=o.typ, pos=getpos(self.expr)) if o.typ.typ == 'uint256': p.append(o) return LLLnode.from_list(p, typ=o.typ, pos=getpos(self.expr)) else: raise Exception("%r %r" % (o, o.typ)) def build_in_comparator(self): from vyper.parser.parser import make_setter left = Expr(self.expr.left, self.context).lll_node right = Expr(self.expr.comparators[0], self.context).lll_node if left.typ.typ != right.typ.subtype.typ: raise TypeMismatchException("%s cannot be in a list of %s" % (left.typ.typ, right.typ.subtype.typ)) result_placeholder = self.context.new_placeholder(BaseType('bool')) setter = [] # Load nth item from list in memory. if right.value == 'multi': # Copy literal to memory to be compared. tmp_list = LLLnode.from_list( obj=self.context.new_placeholder(ListType(right.typ.subtype, right.typ.count)), typ=ListType(right.typ.subtype, right.typ.count), location='memory' ) setter = make_setter(tmp_list, right, 'memory', pos=getpos(self.expr)) load_i_from_list = ['mload', ['add', tmp_list, ['mul', 32, ['mload', MemoryPositions.FREE_LOOP_INDEX]]]] elif right.location == "storage": load_i_from_list = ['sload', ['add', ['sha3_32', right], ['mload', MemoryPositions.FREE_LOOP_INDEX]]] else: load_i_from_list = ['mload', ['add', right, ['mul', 32, ['mload', MemoryPositions.FREE_LOOP_INDEX]]]] # Condition repeat loop has to break on. break_loop_condition = [ 'if', ['eq', unwrap_location(left), load_i_from_list], ['seq', ['mstore', '_result', 1], # store true. 'break'] ] # Repeat loop to loop-compare each item in the list. for_loop_sequence = [ ['mstore', result_placeholder, 0], ['with', '_result', result_placeholder, ['repeat', MemoryPositions.FREE_LOOP_INDEX, 0, right.typ.count, break_loop_condition]], ['mload', result_placeholder] ] # Save list to memory, so one can iterate over it, # used when literal was created with tmp_list. if setter: compare_sequence = ['seq', setter] + for_loop_sequence else: compare_sequence = ['seq'] + for_loop_sequence # Compare the result of the repeat loop to 1, to know if a match was found. o = LLLnode.from_list([ 'eq', 1, compare_sequence], typ='bool', annotation="in comporator" ) return o @staticmethod def _signed_to_unsigned_comparision_op(op): translation_map = { 'sgt': 'gt', 'sge': 'ge', 'sle': 'le', 'slt': 'lt', } if op in translation_map: return translation_map[op] else: return op def compare(self): left = Expr.parse_value_expr(self.expr.left, self.context) right = Expr.parse_value_expr(self.expr.comparators[0], self.context) if isinstance(left.typ, ByteArrayType) and isinstance(right.typ, ByteArrayType): if left.typ.maxlen != right.typ.maxlen: raise TypeMismatchException('Can only compare bytes of the same length', self.expr) if left.typ.maxlen > 32 or right.typ.maxlen > 32: raise ParserException('Can only compare bytes of length shorter than 32 bytes', self.expr) elif isinstance(self.expr.ops[0], ast.In) and \ isinstance(right.typ, ListType): if not are_units_compatible(left.typ, right.typ.subtype) and not are_units_compatible(right.typ.subtype, left.typ): raise TypeMismatchException("Can't use IN comparison with different types!", self.expr) return self.build_in_comparator() else: if not are_units_compatible(left.typ, right.typ) and not are_units_compatible(right.typ, left.typ): raise TypeMismatchException("Can't compare values with different units!", self.expr) if len(self.expr.ops) != 1: raise StructureException("Cannot have a comparison with more than two elements", self.expr) if isinstance(self.expr.ops[0], ast.Gt): op = 'sgt' elif isinstance(self.expr.ops[0], ast.GtE): op = 'sge' elif isinstance(self.expr.ops[0], ast.LtE): op = 'sle' elif isinstance(self.expr.ops[0], ast.Lt): op = 'slt' elif isinstance(self.expr.ops[0], ast.Eq): op = 'eq' elif isinstance(self.expr.ops[0], ast.NotEq): op = 'ne' else: raise Exception("Unsupported comparison operator") # Compare (limited to 32) byte arrays. if isinstance(left.typ, ByteArrayType) and isinstance(left.typ, ByteArrayType): left = Expr(self.expr.left, self.context).lll_node right = Expr(self.expr.comparators[0], self.context).lll_node def load_bytearray(side): if side.location == 'memory': return ['mload', ['add', 32, side]] elif side.location == 'storage': return ['sload', ['add', 1, ['sha3_32', side]]] return LLLnode.from_list( [op, load_bytearray(left), load_bytearray(right)], typ='bool', pos=getpos(self.expr)) # Compare other types. if not is_numeric_type(left.typ) or not is_numeric_type(right.typ): if op not in ('eq', 'ne'): raise TypeMismatchException("Invalid type for comparison op", self.expr) left_type, right_type = left.typ.typ, right.typ.typ # Special Case: comparison of a literal integer. If in valid range allow it to be compared. if {left_type, right_type} == {'int128', 'uint256'} and {left.typ.is_literal, right.typ.is_literal} == {True, False}: comparison_allowed = False if left.typ.is_literal and SizeLimits.in_bounds(right_type, left.value): comparison_allowed = True elif right.typ.is_literal and SizeLimits.in_bounds(left_type, right.value): comparison_allowed = True op = self._signed_to_unsigned_comparision_op(op) if comparison_allowed: return LLLnode.from_list([op, left, right], typ='bool', pos=getpos(self.expr)) elif {left_type, right_type} == {'uint256', 'uint256'}: op = self._signed_to_unsigned_comparision_op(op) elif (left_type in ('decimal', 'int128') or right_type in ('decimal', 'int128')) and left_type != right_type: raise TypeMismatchException( 'Implicit conversion from {} to {} disallowed, please convert.'.format(left_type, right_type), self.expr ) if left_type == right_type: return LLLnode.from_list([op, left, right], typ='bool', pos=getpos(self.expr)) else: raise TypeMismatchException("Unsupported types for comparison: %r %r" % (left_type, right_type), self.expr) def boolean_operations(self): # Iterate through values for value in self.expr.values: # Check for calls at assignment if self.context.in_assignment and isinstance(value, ast.Call): raise StructureException("Boolean operations with calls may not be performed on assignment", self.expr) # Check for boolean operations with non-boolean inputs _expr = Expr.parse_value_expr(value, self.context) if not is_base_type(_expr.typ, 'bool'): raise TypeMismatchException("Boolean operations can only be between booleans!", self.expr) # TODO: Handle special case of literals and simplify at compile time # Check for valid ops if isinstance(self.expr.op, ast.And): op = 'and' elif isinstance(self.expr.op, ast.Or): op = 'or' else: raise Exception("Unsupported bool op: " + self.expr.op) # Handle different numbers of inputs count = len(self.expr.values) if count < 2: raise StructureException("Expected at least two arguments for a bool op", self.expr) elif count == 2: left = Expr.parse_value_expr(self.expr.values[0], self.context) right = Expr.parse_value_expr(self.expr.values[1], self.context) return LLLnode.from_list([op, left, right], typ='bool', pos=getpos(self.expr)) else: left = Expr.parse_value_expr(self.expr.values[0], self.context) right = Expr.parse_value_expr(self.expr.values[1], self.context) p = ['seq', [op, left, right]] values = self.expr.values[2:] while len(values) > 0: value = Expr.parse_value_expr(values[0], self.context) p = [op, value, p] values = values[1:] return LLLnode.from_list(p, typ='bool', pos=getpos(self.expr)) # Unary operations (only "not" supported) def unary_operations(self): operand = Expr.parse_value_expr(self.expr.operand, self.context) if isinstance(self.expr.op, ast.Not): if isinstance(operand.typ, BaseType) and operand.typ.typ == 'bool': return LLLnode.from_list(["iszero", operand], typ='bool', pos=getpos(self.expr)) else: raise TypeMismatchException("Only bool is supported for not operation, %r supplied." % operand.typ, self.expr) elif isinstance(self.expr.op, ast.USub): if not is_numeric_type(operand.typ): raise TypeMismatchException("Unsupported type for negation: %r" % operand.typ, operand) if operand.typ.is_literal and 'int' in operand.typ.typ: num = ast.Num(0 - operand.value) num.source_code = self.expr.source_code num.lineno = self.expr.lineno num.col_offset = self.expr.col_offset return Expr.parse_value_expr(num, self.context) return LLLnode.from_list(["sub", 0, operand], typ=operand.typ, pos=getpos(self.expr)) else: raise StructureException("Only the 'not' unary operator is supported") def _get_external_contract_keywords(self): value, gas = None, None for kw in self.expr.keywords: if kw.arg not in ('value', 'gas'): raise TypeMismatchException('Invalid keyword argument, only "gas" and "value" supported.', self.expr) elif kw.arg == 'gas': gas = Expr.parse_value_expr(kw.value, self.context) elif kw.arg == 'value': value = Expr.parse_value_expr(kw.value, self.context) return value, gas # Function calls def call(self): from vyper.parser.parser import ( external_contract_call ) from vyper.functions import ( dispatch_table, ) if isinstance(self.expr.func, ast.Name): function_name = self.expr.func.id if function_name in dispatch_table: return dispatch_table[function_name](self.expr, self.context) else: err_msg = "Not a top-level function: {}".format(function_name) if function_name in [x.split('(')[0] for x, _ in self.context.sigs['self'].items()]: err_msg += ". Did you mean self.{}?".format(function_name) raise StructureException(err_msg, self.expr) elif isinstance(self.expr.func, ast.Attribute) and isinstance(self.expr.func.value, ast.Name) and self.expr.func.value.id == "self": return self_call.make_call(self.expr, self.context) elif isinstance(self.expr.func, ast.Attribute) and isinstance(self.expr.func.value, ast.Call): contract_name = self.expr.func.value.func.id contract_address = Expr.parse_value_expr(self.expr.func.value.args[0], self.context) value, gas = self._get_external_contract_keywords() return external_contract_call(self.expr, self.context, contract_name, contract_address, pos=getpos(self.expr), value=value, gas=gas) elif isinstance(self.expr.func.value, ast.Attribute) and self.expr.func.value.attr in self.context.sigs: contract_name = self.expr.func.value.attr var = self.context.globals[self.expr.func.value.attr] contract_address = unwrap_location(LLLnode.from_list(var.pos, typ=var.typ, location='storage', pos=getpos(self.expr), annotation='self.' + self.expr.func.value.attr)) value, gas = self._get_external_contract_keywords() return external_contract_call(self.expr, self.context, contract_name, contract_address, pos=getpos(self.expr), value=value, gas=gas) elif isinstance(self.expr.func.value, ast.Attribute) and self.expr.func.value.attr in self.context.globals: contract_name = self.context.globals[self.expr.func.value.attr].typ.unit var = self.context.globals[self.expr.func.value.attr] contract_address = unwrap_location(LLLnode.from_list(var.pos, typ=var.typ, location='storage', pos=getpos(self.expr), annotation='self.' + self.expr.func.value.attr)) value, gas = self._get_external_contract_keywords() return external_contract_call(self.expr, self.context, contract_name, contract_address, pos=getpos(self.expr), value=value, gas=gas) else: raise StructureException("Unsupported operator: %r" % ast.dump(self.expr), self.expr) def list_literals(self): if not len(self.expr.elts): raise StructureException("List must have elements", self.expr) o = [] out_type = None for elt in self.expr.elts: o.append(Expr(elt, self.context).lll_node) if not out_type: out_type = o[-1].typ previous_type = o[-1].typ.subtype.typ if hasattr(o[-1].typ, 'subtype') else o[-1].typ current_type = out_type.subtype.typ if hasattr(out_type, 'subtype') else out_type if len(o) > 1 and previous_type != current_type: raise TypeMismatchException("Lists may only contain one type", self.expr) return LLLnode.from_list(["multi"] + o, typ=ListType(out_type, len(o)), pos=getpos(self.expr)) def struct_literals(self): o = {} members = {} for key, value in zip(self.expr.keys, self.expr.values): if not isinstance(key, ast.Name) or not is_varname_valid(key.id, self.context.custom_units): raise TypeMismatchException("Invalid member variable for struct: %r" % vars(key).get('id', key), key) if key.id in o: raise TypeMismatchException("Member variable duplicated: " + key.id, key) o[key.id] = Expr(value, self.context).lll_node members[key.id] = o[key.id].typ return LLLnode.from_list(["multi"] + [o[key] for key in sorted(list(o.keys()))], typ=StructType(members), pos=getpos(self.expr)) def tuple_literals(self): if not len(self.expr.elts): raise StructureException("Tuple must have elements", self.expr) o = [] for elt in self.expr.elts: o.append(Expr(elt, self.context).lll_node) return LLLnode.from_list(["multi"] + o, typ=TupleType(o), pos=getpos(self.expr)) # Parse an expression that results in a value def parse_value_expr(expr, context): return unwrap_location(Expr(expr, context).lll_node) # Parse an expression that represents an address in memory or storage def parse_variable_location(expr, context): o = Expr(expr, context).lll_node if not o.location: raise Exception("Looking for a variable location, instead got a value") return o
53.781333
178
0.60058
cbd7a023e962af89cdd692b963f3fa1309d708c6
1,765
py
Python
lord_gym/envs/actions.py
tonkolviktor/lord-gym
ca0e2f01e28581a3a62ae7d37fa24e729edcae6e
[ "Apache-2.0" ]
null
null
null
lord_gym/envs/actions.py
tonkolviktor/lord-gym
ca0e2f01e28581a3a62ae7d37fa24e729edcae6e
[ "Apache-2.0" ]
null
null
null
lord_gym/envs/actions.py
tonkolviktor/lord-gym
ca0e2f01e28581a3a62ae7d37fa24e729edcae6e
[ "Apache-2.0" ]
null
null
null
import logging from functools import reduce from gym import spaces from lord_gym.envs.game import Player from lord_gym.envs.objects import IdleCitizen, WoodsMan, StoneMan, IronMan logger = logging.getLogger(__name__) class Action: def __init__(self, subtype_index: int): self.subtype_index = subtype_index def do_action(self, player: Player): raise NotImplementedError() @classmethod def get_subtypes(cls) -> int: raise NotImplementedError() class NoAction(Action): def do_action(self, player: Player): pass @classmethod def get_subtypes(cls) -> int: return 1 def __str__(self): return f"No-Action" class ConvertCitizen(Action): pairs = [(IdleCitizen, WoodsMan), (IdleCitizen, StoneMan), (IdleCitizen, IronMan)] subtypes = pairs + [(pair[1], pair[0]) for pair in pairs] def __init__(self, subtype_index: int): (self.from_type, self.to_type) = self.subtypes[subtype_index] def do_action(self, player: Player): player.replace_object(self.from_type, self.to_type) @classmethod def get_subtypes(cls) -> int: return len(cls.subtypes) def __str__(self): return f"Action: {self.from_type.__name__} -> {self.to_type.__name__}" action_order = [NoAction, ConvertCitizen] def get_action_space(): return spaces.Discrete(reduce(lambda x, y: x + y, map(lambda x: x.get_subtypes(), action_order))) # sum up subtypes def resolve_action(action_orig) -> Action: action = action_orig for action_class in action_order: if action < action_class.get_subtypes(): return action_class(action) action -= action_class.get_subtypes() raise ValueError(f"Unknown action: {action_orig}")
25.955882
120
0.690085
7d7bc4d9c2b086939ca90f2e88c29f5414722696
634
py
Python
examples/signature.py
streetster/zte-config-utility
b0ee9a3dc52c074a6567a69532a527d484048901
[ "MIT" ]
5
2020-06-09T12:22:23.000Z
2020-06-15T16:17:22.000Z
examples/signature.py
streetster/zte-config-utility
b0ee9a3dc52c074a6567a69532a527d484048901
[ "MIT" ]
1
2020-06-11T18:02:41.000Z
2020-06-12T13:02:48.000Z
examples/signature.py
streetster/zte-config-utility
b0ee9a3dc52c074a6567a69532a527d484048901
[ "MIT" ]
2
2020-06-09T13:56:27.000Z
2020-06-09T22:59:27.000Z
"""Extract signature text from config.bin""" import argparse import zcu def main(): """the main function""" parser = argparse.ArgumentParser(description='Extract signature from config.bin of ZTE Routers', formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument('infile', type=argparse.FileType('rb'), help='Configuration file (config.bin)') args = parser.parse_args() zcu.zte.read_header(args.infile) signature = zcu.zte.read_signature(args.infile) print(signature.decode('utf-8')) if __name__ == '__main__': main()
27.565217
100
0.656151
4352003618f087f2cf5003af8b0a7658455841ef
4,265
py
Python
neo/io/asciispiketrainio.py
neurodebian/python-neo
9be7cd97572ce9c1ea5583eae700a99a05423c11
[ "BSD-3-Clause" ]
1
2020-08-08T21:39:41.000Z
2020-08-08T21:39:41.000Z
neo/io/asciispiketrainio.py
michaelfsp/python-neo
56ce3b6a3f6944a096279404c22a75166b905844
[ "BSD-3-Clause" ]
null
null
null
neo/io/asciispiketrainio.py
michaelfsp/python-neo
56ce3b6a3f6944a096279404c22a75166b905844
[ "BSD-3-Clause" ]
null
null
null
# encoding: utf-8 """ Classe for reading/writing SpikeTrains in a text file. It is the simple case where different spiketrains are written line by line. Supported : Read/Write Author: sgarcia """ from .baseio import BaseIO from ..core import * from .tools import create_many_to_one_relationship import numpy as np import quantities as pq import csv import os from numpy import newaxis class AsciiSpikeTrainIO(BaseIO): """ Classe for reading/writing SpikeTrain in a text file. Each Spiketrain is a line. Usage: >>> from neo import io >>> r = io.AsciiSpikeTrainIO( filename = 'File_ascii_spiketrain_1.txt') >>> seg = r.read_segment(lazy = False, cascade = True,) >>> print seg.spiketrains # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE [<SpikeTrain(array([ 3.89981604, 4.73258781, 0.608428 , 4.60246277, 1.23805797, ... """ is_readable = True is_writable = True supported_objects = [Segment , SpikeTrain] readable_objects = [Segment] writeable_objects = [Segment] has_header = False is_streameable = False read_params = { Segment : [ ('delimiter' , {'value' : '\t', 'possible' : ['\t' , ' ' , ',' , ';'] }) , ('t_start' , { 'value' : 0., } ), ] } write_params = { Segment : [ ('delimiter' , {'value' : '\t', 'possible' : ['\t' , ' ' , ',' , ';'] }) , ] } name = None extensions = [ 'txt' ] mode = 'file' def __init__(self , filename = None) : """ This class read/write SpikeTrains in a text file. Each row is a spiketrain. **Arguments** filename : the filename to read/write """ BaseIO.__init__(self) self.filename = filename def read_segment(self, lazy = False, cascade = True, delimiter = '\t', t_start = 0.*pq.s, unit = pq.s, ): """ Arguments: delimiter : columns delimiter in file '\t' or one space or two space or ',' or ';' t_start : time start of all spiketrain 0 by default unit : unit of spike times, can be a str or directly a Quantities """ unit = pq.Quantity(1, unit) seg = Segment(file_origin = os.path.basename(self.filename)) if not cascade: return seg f = open(self.filename, 'Ur') for i,line in enumerate(f) : all = line[:-1].split(delimiter) if all[-1] == '': all = all[:-1] if all[0] == '': all = all[1:] if lazy: spike_times = [ ] t_stop = t_start else: spike_times = np.array(all).astype('f') t_stop = spike_times.max()*unit sptr = SpikeTrain(spike_times*unit, t_start=t_start, t_stop=t_stop) if lazy: sptr.lazy_shape = len(all) sptr.annotate(channel_index = i) seg.spiketrains.append(sptr) f.close() create_many_to_one_relationship(seg) return seg def write_segment(self, segment, delimiter = '\t', ): """ Write SpikeTrain of a Segment in a txt file. Each row is a spiketrain. Arguments: segment : the segment to write. Only analog signals will be written. delimiter : columns delimiter in file '\t' or one space or two space or ',' or ';' information of t_start is lost """ f = open(self.filename, 'w') for s,sptr in enumerate(segment.spiketrains) : for ts in sptr : f.write('%f%s'% (ts , delimiter) ) f.write('\n') f.close()
28.817568
115
0.481829
2f6416aa6ae6aca06100c02e27b48ed25762f6be
59,772
py
Python
cyclone/web.py
fiorix/niosted
792214fee9a9e46ea531415721bfda080aa030e7
[ "OLDAP-2.5", "OLDAP-2.3" ]
1
2019-06-27T08:20:55.000Z
2019-06-27T08:20:55.000Z
cyclone/web.py
fiorix/niosted
792214fee9a9e46ea531415721bfda080aa030e7
[ "OLDAP-2.5", "OLDAP-2.3" ]
null
null
null
cyclone/web.py
fiorix/niosted
792214fee9a9e46ea531415721bfda080aa030e7
[ "OLDAP-2.5", "OLDAP-2.3" ]
null
null
null
#!/usr/bin/env jython # coding: utf-8 # # Copyright 2010 Alexandre Fiori # based on the original Tornado by Facebook # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from cyclone.util import log from cyclone import __version__, escape, template, httpserver from net.fiorix.niosted import Factory import base64 import binascii import calendar import Cookie import cStringIO import datetime import email.utils import functools import gzip import hashlib import httplib import hmac import locale import mimetypes import os.path import re import stat import sys import time import types import urllib import urlparse import uuid import xmlrpclib import struct class RequestHandler(object): """Subclass this class and define get() or post() to make a handler. If you want to support more methods than the standard GET/HEAD/POST, you should override the class variable SUPPORTED_METHODS in your RequestHandler class. """ SUPPORTED_METHODS = ("GET", "HEAD", "POST", "DELETE", "PUT") no_keep_alive = False def __init__(self, application, request, transforms=None): self.application = application self.request = request self._headers_written = False self._finished = False self._auto_finish = True self._transforms = transforms or [] self.ui = _O((n, self._ui_method(m)) for n, m in application.ui_methods.iteritems()) self.ui["modules"] = _O((n, self._ui_module(n, m)) for n, m in application.ui_modules.iteritems()) self.clear() self.request.connection.no_keep_alive = self.no_keep_alive @property def settings(self): return self.application.settings def head(self, *args, **kwargs): raise HTTPError(405) def get(self, *args, **kwargs): raise HTTPError(405) def post(self, *args, **kwargs): raise HTTPError(405) def delete(self, *args, **kwargs): raise HTTPError(405) def put(self, *args, **kwargs): raise HTTPError(405) def prepare(self): """Called before the actual handler method. Useful to override in a handler if you want a common bottleneck for all of your requests. """ pass def on_connection_close(self, *args, **kwargs): """Called when the connection is closed. You may override this to clean up resources associated with long-lived connections. """ pass def clear(self): """Resets all headers and content for this response.""" self._headers = { "Server": "CycloneServer/" + __version__, "Content-Type": "text/html; charset=UTF-8", } if not self.request.supports_http_1_1(): if self.request.headers.get("Connection") == "Keep-Alive": self.set_header("Connection", "Keep-Alive") self._write_buffer = [] self._status_code = 200 def set_status(self, status_code): """Sets the status code for our response.""" assert status_code in httplib.responses self._status_code = status_code def set_header(self, name, value): """Sets the given response header name and value. If a datetime is given, we automatically format it according to the HTTP specification. If the value is not a string, we convert it to a string. All header values are then encoded as UTF-8. """ if isinstance(value, datetime.datetime): t = calendar.timegm(value.utctimetuple()) value = email.utils.formatdate(t, localtime=False, usegmt=True) elif isinstance(value, int) or isinstance(value, long): value = str(value) else: value = _utf8(value) # If \n is allowed into the header, it is possible to inject # additional headers or split the request. Also cap length to # prevent obviously erroneous values. safe_value = re.sub(r"[\x00-\x1f]", " ", value)[:4000] if safe_value != value: raise ValueError("Unsafe header value %r", value) self._headers[name] = value _ARG_DEFAULT = [] def get_argument(self, name, default=_ARG_DEFAULT, strip=True): """Returns the value of the argument with the given name. If default is not provided, the argument is considered to be required, and we throw an HTTP 404 exception if it is missing. The returned value is always unicode. """ values = self.request.arguments.get(name, None) if values is None: if default is self._ARG_DEFAULT: raise HTTPError(404, "Missing argument %s" % name) return default # Get rid of any weird control chars value = re.sub(r"[\x00-\x08\x0e-\x1f]", " ", values[-1]) value = _unicode(value) if strip: value = value.strip() return value @property def cookies(self): """A dictionary of Cookie.Morsel objects.""" if not hasattr(self, "_cookies"): self._cookies = Cookie.BaseCookie() if "Cookie" in self.request.headers: try: self._cookies.load(self.request.headers["Cookie"]) except: self.clear_all_cookies() return self._cookies def get_cookie(self, name, default=None): """Gets the value of the cookie with the given name, else default.""" if name in self.cookies: return self.cookies[name].value return default def set_cookie(self, name, value, domain=None, expires=None, path="/", expires_days=None): """Sets the given cookie name/value with the given options.""" name = _utf8(name) value = _utf8(value) if re.search(r"[\x00-\x20]", name + value): # Don't let us accidentally inject bad stuff raise ValueError("Invalid cookie %r: %r" % (name, value)) if not hasattr(self, "_new_cookies"): self._new_cookies = [] new_cookie = Cookie.BaseCookie() self._new_cookies.append(new_cookie) new_cookie[name] = value if domain: new_cookie[name]["domain"] = domain if expires_days is not None and not expires: expires = datetime.datetime.utcnow() + datetime.timedelta( days=expires_days) if expires: timestamp = calendar.timegm(expires.utctimetuple()) new_cookie[name]["expires"] = email.utils.formatdate( timestamp, localtime=False, usegmt=True) if path: new_cookie[name]["path"] = path return value def clear_cookie(self, name, path="/", domain=None): """Deletes the cookie with the given name.""" expires = datetime.datetime.utcnow() - datetime.timedelta(days=365) self.set_cookie(name, value="", path=path, expires=expires, domain=domain) def clear_all_cookies(self): """Deletes all the cookies the user sent with this request.""" for name in self.cookies.iterkeys(): self.clear_cookie(name) def set_secure_cookie(self, name, value, expires_days=30, **kwargs): """Signs and timestamps a cookie so it cannot be forged. You must specify the 'cookie_secret' setting in your Application to use this method. It should be a long, random sequence of bytes to be used as the HMAC secret for the signature. To read a cookie set with this method, use get_secure_cookie(). """ timestamp = str(int(time.time())) value = base64.b64encode(value) signature = self._cookie_signature(name, value, timestamp) value = "|".join([value, timestamp, signature]) return self.set_cookie(name, value, expires_days=expires_days, **kwargs) def get_secure_cookie(self, name, include_name=True, value=None): """Returns the given signed cookie if it validates, or None. In older versions of Tornado (0.1 and 0.2), we did not include the name of the cookie in the cookie signature. To read these old-style cookies, pass include_name=False to this method. Otherwise, all attempts to read old-style cookies will fail (and you may log all your users out whose cookies were written with a previous Tornado version). """ if value is None: value = self.get_cookie(name) if not value: return None parts = value.split("|") if len(parts) != 3: return None if include_name: signature = self._cookie_signature(name, parts[0], parts[1]) else: signature = self._cookie_signature(parts[0], parts[1]) if not _time_independent_equals(parts[2], signature): log.err("Invalid cookie signature %r" % value) return None timestamp = int(parts[1]) if timestamp < time.time() - 31 * 86400: log.err("Expired cookie %r" % value) return None try: return base64.b64decode(parts[0]) except: return None def _cookie_signature(self, *parts): self.require_setting("cookie_secret", "secure cookies") hash = hmac.new(self.application.settings["cookie_secret"], digestmod=hashlib.sha1) for part in parts: hash.update(part) return hash.hexdigest() def redirect(self, url, permanent=False): """Sends a redirect to the given (optionally relative) URL.""" if self._headers_written: raise Exception("Cannot redirect after headers have been written") self.set_status(301 if permanent else 302) # Remove whitespace url = re.sub(r"[\x00-\x20]+", "", _utf8(url)) self.set_header("Location", urlparse.urljoin(self.request.uri, url)) self.finish() def write(self, chunk): """Writes the given chunk to the output buffer. To write the output to the network, use the flush() method below. If the given chunk is a dictionary, we write it as JSON and set the Content-Type of the response to be text/javascript. """ assert not self._finished if isinstance(chunk, dict): chunk = escape.json_encode(chunk) self.set_header("Content-Type", "text/javascript; charset=UTF-8") chunk = _utf8(chunk) self._write_buffer.append(chunk) def render(self, template_name, **kwargs): """Renders the template with the given arguments as the response.""" html = self.render_string(template_name, **kwargs) # Insert the additional JS and CSS added by the modules on the page js_embed = [] js_files = [] css_embed = [] css_files = [] html_heads = [] for module in getattr(self, "_active_modules", {}).itervalues(): embed_part = module.embedded_javascript() if embed_part: js_embed.append(_utf8(embed_part)) file_part = module.javascript_files() if file_part: if isinstance(file_part, basestring): js_files.append(file_part) else: js_files.extend(file_part) embed_part = module.embedded_css() if embed_part: css_embed.append(_utf8(embed_part)) file_part = module.css_files() if file_part: if isinstance(file_part, basestring): css_files.append(file_part) else: css_files.extend(file_part) head_part = module.html_head() if head_part: html_heads.append(_utf8(head_part)) if js_files: # Maintain order of JavaScript files given by modules paths = [] unique_paths = set() for path in js_files: if not path.startswith("/") and not path.startswith("http:"): path = self.static_url(path) if path not in unique_paths: paths.append(path) unique_paths.add(path) js = ''.join('<script src="' + escape.xhtml_escape(p) + '" type="text/javascript"></script>' for p in paths) sloc = html.rindex('</body>') html = html[:sloc] + js + '\n' + html[sloc:] if js_embed: js = '<script type="text/javascript">\n//<![CDATA[\n' + \ '\n'.join(js_embed) + '\n//]]>\n</script>' sloc = html.rindex('</body>') html = html[:sloc] + js + '\n' + html[sloc:] if css_files: paths = set() for path in css_files: if not path.startswith("/") and not path.startswith("http:"): paths.add(self.static_url(path)) else: paths.add(path) css = ''.join('<link href="' + escape.xhtml_escape(p) + '" ' 'type="text/css" rel="stylesheet"/>' for p in paths) hloc = html.index('</head>') html = html[:hloc] + css + '\n' + html[hloc:] if css_embed: css = '<style type="text/css">\n' + '\n'.join(css_embed) + \ '\n</style>' hloc = html.index('</head>') html = html[:hloc] + css + '\n' + html[hloc:] if html_heads: hloc = html.index('</head>') html = html[:hloc] + ''.join(html_heads) + '\n' + html[hloc:] self.finish(html) def render_string(self, template_name, **kwargs): """Generate the given template with the given arguments. We return the generated string. To generate and write a template as a response, use render() above. """ # If no template_path is specified, use the path of the calling file template_path = self.application.settings.get("template_path") if not template_path: frame = sys._getframe(0) web_file = frame.f_code.co_filename while frame.f_code.co_filename == web_file: frame = frame.f_back template_path = os.path.dirname(frame.f_code.co_filename) if not getattr(RequestHandler, "_templates", None): RequestHandler._templates = {} if template_path not in RequestHandler._templates: RequestHandler._templates[template_path] = template.Loader( template_path) t = RequestHandler._templates[template_path].load(template_name) args = dict( handler=self, request=self.request, current_user=self.current_user, locale=self.locale, _=self.locale.translate, static_url=self.static_url, xsrf_form_html=self.xsrf_form_html, reverse_url=self.application.reverse_url ) args.update(self.ui) args.update(kwargs) return t.generate(**args) def flush(self, include_footers=False): """Flushes the current output buffer to the nextwork.""" chunk = "".join(self._write_buffer) self._write_buffer = [] if not self._headers_written: self._headers_written = True for transform in self._transforms: self._headers, chunk = transform.transform_first_chunk( self._headers, chunk, include_footers) headers = self._generate_headers() else: for transform in self._transforms: chunk = transform.transform_chunk(chunk, include_footers) headers = "" # Ignore the chunk and only write the headers for HEAD requests if self.request.method == "HEAD": if headers: self.request.write(headers) return if headers or chunk: self.request.write(headers + chunk) def notifyFinish(self): return self.request.notifyFinish() def finish(self, chunk=None): """Finishes this response, ending the HTTP request.""" assert not self._finished if chunk is not None: self.write(chunk) # Automatically support ETags and add the Content-Length header if # we have not flushed any content yet. if not self._headers_written: if self._status_code == 200 and self.request.method == "GET": hasher = hashlib.sha1() for part in self._write_buffer: hasher.update(part) etag = '"%s"' % hasher.hexdigest() inm = self.request.headers.get("If-None-Match") if inm and inm.find(etag) != -1: self._write_buffer = [] self.set_status(304) else: self.set_header("Etag", etag) if "Content-Length" not in self._headers: content_length = sum(len(part) for part in self._write_buffer) self.set_header("Content-Length", content_length) self.flush(include_footers=True) self.request.finish() self._log() self._finished = True def send_error(self, status_code=500, **kwargs): """Sends the given HTTP error code to the browser. We also send the error HTML for the given error code as returned by get_error_html. Override that method if you want custom error pages for your application. """ if self._headers_written: log.err("Cannot send error response after headers written") if not self._finished: self.finish() return self.clear() self.set_status(status_code) e = kwargs.get("exception") if isinstance(e, HTTPAuthenticationRequired): args = ",".join(['%s="%s"' % (k, v) for k, v in e.kwargs.items()]) self.set_header("WWW-Authenticate", "%s %s" % (e.auth_type, args)) message = self.get_error_html(status_code, **kwargs) self.finish(message) def get_error_html(self, status_code, **kwargs): """Override to implement custom error pages. If this error was caused by an uncaught exception, the exception object can be found in kwargs e.g. kwargs['exception'] """ return "<html><title>%(code)d: %(message)s</title>" \ "<body>%(code)d: %(message)s</body></html>" % { "code": status_code, "message": httplib.responses[status_code], } @property def locale(self): """The local for the current session. Determined by either get_user_locale, which you can override to set the locale based on, e.g., a user preference stored in a database, or get_browser_locale, which uses the Accept-Language header. """ if not hasattr(self, "_locale"): self._locale = self.get_user_locale() if not self._locale: self._locale = self.get_browser_locale() assert self._locale return self._locale def get_user_locale(self): """Override to determine the locale from the authenticated user. If None is returned, we use the Accept-Language header. """ return None def get_browser_locale(self, default="en_US"): """Determines the user's locale from Accept-Language header. See http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.4 """ if "Accept-Language" in self.request.headers: languages = self.request.headers["Accept-Language"].split(",") locales = [] for language in languages: parts = language.strip().split(";") if len(parts) > 1 and parts[1].startswith("q="): try: score = float(parts[1][2:]) except (ValueError, TypeError): score = 0.0 else: score = 1.0 locales.append((parts[0], score)) if locales: locales.sort(key=lambda (l, s): s, reverse=True) codes = [l[0] for l in locales] return locale.get(*codes) return locale.get(default) @property def current_user(self): """The authenticated user for this request. Determined by either get_current_user, which you can override to set the user based on, e.g., a cookie. If that method is not overridden, this method always returns None. We lazy-load the current user the first time this method is called and cache the result after that. """ if not hasattr(self, "_current_user"): self._current_user = self.get_current_user() return self._current_user def get_current_user(self): """Override to determine the current user from, e.g., a cookie.""" return None def get_login_url(self): """Override to customize the login URL based on the request. By default, we use the 'login_url' application setting. """ self.require_setting("login_url", "@tornado.web.authenticated") return self.application.settings["login_url"] @property def xsrf_token(self): """The XSRF-prevention token for the current user/session. To prevent cross-site request forgery, we set an '_xsrf' cookie and include the same '_xsrf' value as an argument with all POST requests. If the two do not match, we reject the form submission as a potential forgery. See http://en.wikipedia.org/wiki/Cross-site_request_forgery """ if not hasattr(self, "_xsrf_token"): token = self.get_cookie("_xsrf") if not token: token = binascii.b2a_hex(uuid.uuid4().bytes) expires_days = 30 if self.current_user else None self.set_cookie("_xsrf", token, expires_days=expires_days) self._xsrf_token = token return self._xsrf_token def check_xsrf_cookie(self): """Verifies that the '_xsrf' cookie matches the '_xsrf' argument. To prevent cross-site request forgery, we set an '_xsrf' cookie and include the same '_xsrf' value as an argument with all POST requests. If the two do not match, we reject the form submission as a potential forgery. See http://en.wikipedia.org/wiki/Cross-site_request_forgery """ if self.request.headers.get("X-Requested-With") == "XMLHttpRequest": return token = self.get_argument("_xsrf", None) if not token: raise HTTPError(403, "'_xsrf' argument missing from POST") if self.xsrf_token != token: raise HTTPError(403, "XSRF cookie does not match POST argument") def xsrf_form_html(self): """An HTML <input/> element to be included with all POST forms. It defines the _xsrf input value, which we check on all POST requests to prevent cross-site request forgery. If you have set the 'xsrf_cookies' application setting, you must include this HTML within all of your HTML forms. See check_xsrf_cookie() above for more information. """ return '<input type="hidden" name="_xsrf" value="' + \ escape.xhtml_escape(self.xsrf_token) + '"/>' def static_url(self, path): """Returns a static URL for the given relative static file path. This method requires you set the 'static_path' setting in your application (which specifies the root directory of your static files). We append ?v=<signature> to the returned URL, which makes our static file handler set an infinite expiration header on the returned content. The signature is based on the content of the file. If this handler has a "include_host" attribute, we include the full host for every static URL, including the "http://". Set this attribute for handlers whose output needs non-relative static path names. """ self.require_setting("static_path", "static_url") if not hasattr(RequestHandler, "_static_hashes"): RequestHandler._static_hashes = {} hashes = RequestHandler._static_hashes if path not in hashes: try: f = open(os.path.join( self.application.settings["static_path"], path)) hashes[path] = hashlib.md5(f.read()).hexdigest() f.close() except: log.err("Could not open static file %r" % path) hashes[path] = None base = self.request.protocol + "://" + self.request.host \ if getattr(self, "include_host", False) else "" static_url_prefix = self.settings.get('static_url_prefix', '/static/') if hashes.get(path): return base + static_url_prefix + path + "?v=" + hashes[path][:5] else: return base + static_url_prefix + path def async_callback(self, callback, *args, **kwargs): """Wrap callbacks with this if they are used on asynchronous requests. Catches exceptions and properly finishes the request. """ if callback is None: return None if args or kwargs: callback = functools.partial(callback, *args, **kwargs) def wrapper(*args, **kwargs): try: return callback(*args, **kwargs) except Exception, e: if self._headers_written: log.err("Exception after headers written: %s" % str(e)) else: self._handle_request_exception(e) return wrapper def require_setting(self, name, feature="this feature"): """Raises an exception if the given app setting is not defined.""" if not self.application.settings.get(name): raise Exception("You must define the '%s' setting in your " "application to use %s" % (name, feature)) def reverse_url(self, name, *args): return self.application.reverse_url(name, *args) def _execute(self, transforms, *args, **kwargs): """Executes this request with the given output transforms.""" self._transforms = transforms try: if self.request.method not in self.SUPPORTED_METHODS: raise HTTPError(405) # If XSRF cookies are turned on, reject form submissions without # the proper cookie if self.request.method == "POST" and \ self.application.settings.get("xsrf_cookies"): self.check_xsrf_cookie() self.prepare() if not self._finished: function = getattr(self, self.request.method.lower()) if callable(function): function(*args, **kwargs) #d = defer.maybeDeferred(function, *args, **kwargs) #d.addCallback(self._execute_success) #d.addErrback(self._execute_failure) #self.notifyFinish().addCallback(self.on_connection_close) except Exception, e: log.err("unexpected request exception: %s" % e) self._handle_request_exception(e) def _execute_success(self, ign): if self._auto_finish and not self._finished: self.finish() def _execute_failure(self, err): self._handle_request_exception(err) def _generate_headers(self): lines = [self.request.version + " " + str(self._status_code) + " " + httplib.responses[self._status_code]] lines.extend(["%s: %s" % (n, v) for n, v in self._headers.iteritems()]) for cookie_dict in getattr(self, "_new_cookies", []): for cookie in cookie_dict.values(): lines.append("Set-Cookie: " + cookie.OutputString(None)) return "\r\n".join(lines) + "\r\n\r\n" def _log(self): request_time = 1000.0 * self.request.request_time() log.msg("%d %s %.2fms" % (self._status_code, self._request_summary(), request_time)) def _request_summary(self): return self.request.method + " " + self.request.uri + " (" + \ self.request.remote_ip + ")" def _handle_request_exception(self, e): try: if isinstance(e.value, (HTTPError, HTTPAuthenticationRequired)): e = e.value except: pass if isinstance(e, (HTTPError, HTTPAuthenticationRequired)): #if e.log_message: # format = "%d %s: " + e.log_message # args = [e.status_code, self._request_summary()] + list(e.args) # msg = lambda *args: format % args # log.err(msg(*args)) if e.status_code not in httplib.responses: log.err("Bad HTTP status code: %d" % e.status_code) self.send_error(500, exception=e) else: self.send_error(e.status_code, exception=e) else: log.err(e) log.err("Uncaught exception %s :: %r" % (self._request_summary(), self.request)) self.send_error(500, exception=e) def _ui_module(self, name, module): def render(*args, **kwargs): if not hasattr(self, "_active_modules"): self._active_modules = {} if name not in self._active_modules: self._active_modules[name] = module(self) rendered = self._active_modules[name].render(*args, **kwargs) return rendered return render def _ui_method(self, method): return lambda *args, **kwargs: method(self, *args, **kwargs) class XmlrpcRequestHandler(RequestHandler): FAILURE = 8002 NOT_FOUND = 8001 separator = "." allowNone = False def post(self): self._auto_finish = False self.set_header("Content-Type", "text/xml") try: args, functionPath = xmlrpclib.loads(self.request.body) except Exception, e: f = xmlrpclib.Fault(self.FAILURE, "can't deserialize input: %s" % e) self._cbRender(f) else: try: function = self._getFunction(functionPath) except xmlrpclib.Fault, f: self._cbRender(f) else: d = defer.maybeDeferred(function, *args) d.addCallback(self._cbRender) d.addErrback(self._ebRender) def _getFunction(self, functionPath): if functionPath.find(self.separator) != -1: prefix, functionPath = functionPath.split(self.separator, 1) handler = self.getSubHandler(prefix) if handler is None: raise xmlrpclib.Fault(self.NOT_FOUND, "no such subHandler %s" % prefix) return self._getFunction(functionPath) f = getattr(self, "xmlrpc_%s" % functionPath, None) if f is None: raise xmlrpclib.Fault(self.NOT_FOUND, "function %s not found" % functionPath) elif not callable(f): raise xmlrpclib.Fault(self.NOT_FOUND, "function %s not callable" % functionPath) else: return f def _cbRender(self, result): if not isinstance(result, xmlrpclib.Fault): result = (result,) try: s = xmlrpclib.dumps(result, methodresponse=True, allow_none=self.allowNone) except Exception, e: f = Fault(self.FAILURE, "can't serialize output: %s" % e) s = xmlrpclib.dumps(f, methodresponse=True, allow_none=self.allowNone) self.finish(s) def _ebRender(self, failure): if isinstance(failure.value, xmlrpclib.Fault): s = failure.value else: s = xmlrpclib.Fault(self.FAILURE, "error") self.finish(xmlrpclib.dumps(s, methodresponse=True)) class JsonrpcRequestHandler(RequestHandler): def post(self, *args): self._auto_finish = False try: req = escape.json_decode(self.request.body) method = req["method"] assert isinstance(method, types.StringTypes), type(method) params = req["params"] assert isinstance(params, (types.ListType, types.TupleType)), type(params) jsonid = req["id"] assert isinstance(jsonid, types.IntType), type(jsonid) except Exception, e: log.err("bad request: %s" % str(e)) raise HTTPError(400) function = getattr(self, "jsonrpc_%s" % method, None) if callable(function): args = list(args) + params d = defer.maybeDeferred(function, *args) d.addBoth(self._cbResult, jsonid) else: self._cbResult(AttributeError("method not found: %s" % method), jsonid) def _cbResult(self, result, jsonid): if isinstance(result, failure.Failure): error = str(result.value) result = None else: error = None json_data = escape.json_encode({"result":result, "error":error, "id":jsonid}) self.finish(json_data) class WebSocketHandler(RequestHandler): def __init__(self, application, request): RequestHandler.__init__(self, application, request) self.transport = request.connection.transport self._wsbuffer = "" self.nonce = None self.k1 = None self.k2 = None self._postheader = False def headersReceived(self): pass def connectionMade(self, *args, **kwargs): pass def messageReceived(self, message): pass def sendMessage(self, message): if isinstance(message, dict): message = escape.json_encode(message) if isinstance(message, unicode): message = message.encode("utf-8") assert isinstance(message, str) self.transport.write("\x00" + message + "\xff") def _handle_request_exception(self, e): if isinstance(e, HTTPError): self.transport.loseConnection() else: log.err(e) log.err("Uncaught exception %s :: %r" % (self._request_summary(), self.request)) self.transport.loseConnection() def _rawDataReceived(self, data): if len(data) == 8 and self._postheader == True: self.nonce = data.strip() token = self._calculate_token(self.k1, self.k2, self.nonce) self.transport.write( "HTTP/1.1 101 Web Socket Protocol Handshake\r\n" "Upgrade: WebSocket\r\n" "Connection: Upgrade\r\n" "Server: CycloneServer/"+__version__+"\r\n" "Sec-WebSocket-Origin: " + self.request.headers["Origin"] + "\r\n" "Sec-WebSocket-Location: ws://" + self.request.host + self.request.path + "\r\n\r\n"+token+"\r\n") self._postheader = False self.flush() return elif ord(data[0]) & 0x80 == 0x80 and self._protocol < 76: raise Exception("Length-encoded format not yet supported") try: idx = data.find("\xff") message = data[1:idx] self._wsbuffer = data[idx+1:] except: log.err("Invalid WebSocket Message: %s" % repr(data)) else: try: self.messageReceived(message) except Exception, e: self._handle_request_exception(e) def _execute(self, transforms, *args, **kwargs): self.request.connection.setRawMode() self.request.connection.rawDataReceived = self._rawDataReceived self.notifyFinish().addCallback(self.connectionLost) try: assert self.request.headers["Upgrade"] == "WebSocket" assert self.request.headers["Connection"] == "Upgrade" assert self.request.headers.get("Origin") is not None except: message = "Expected WebSocket Headers" self.transport.write("HTTP/1.1 403 Forbidden\r\nContent-Length: " + str(len(message)) + "\r\n\r\n" + message) return self.transport.loseConnection() else: try: self.headersReceived() except Exception, e: return self._handle_request_exception(e) if self.request.headers.has_key('Sec-Websocket-Key1') == False or \ self.request.headers.has_key('Sec-Websocket-Key2') == False: log.msg('Using old ws spec (draft 75)') self.transport.write( "HTTP/1.1 101 Web Socket Protocol Handshake\r\n" "Upgrade: WebSocket\r\n" "Connection: Upgrade\r\n" "Server: CycloneServer/"+__version__+"\r\n" "WebSocket-Origin: " + self.request.headers["Origin"] + "\r\n" "WebSocket-Location: ws://" + self.request.host + self.request.path + "\r\n\r\n") self._protocol = 75 else: log.msg('Using ws draft 76 header exchange') self.k1 = self.request.headers["Sec-WebSocket-Key1"] self.k2 = self.request.headers["Sec-WebSocket-Key2"] self._protocol = 76 self._postheader = True self.connectionMade(*args, **kwargs) def _calculate_token(self, k1, k2, k3): token = struct.pack('>ii8s', self._filterella(k1), self._filterella(k2), k3) return hashlib.md5(token).digest() def _filterella(self, w): nums = [] spaces = 0 for l in w: if l.isdigit(): nums.append(l) if l.isspace(): spaces = spaces + 1 x = int(''.join(nums))/spaces return x def asynchronous(method): """Wrap request handler methods with this if they are asynchronous. If this decorator is given, the response is not finished when the method returns. It is up to the request handler to call self.finish() to finish the HTTP request. Without this decorator, the request is automatically finished when the get() or post() method returns. class MyRequestHandler(web.RequestHandler): @web.asynchronous def get(self): http = httpclient.AsyncHTTPClient() http.fetch("http://friendfeed.com/", self._on_download) def _on_download(self, response): self.write("Downloaded!") self.finish() """ @functools.wraps(method) def wrapper(self, *args, **kwargs): self._auto_finish = False return method(self, *args, **kwargs) return wrapper def addslash(method): """Use this decorator to add a missing trailing slash to the request path. For example, a request to '/foo' would redirect to '/foo/' with this decorator. Your request handler mapping should use a regular expression like r'/foo/?' in conjunction with using the decorator. """ @functools.wraps(method) def wrapper(self, *args, **kwargs): if not self.request.path.endswith("/"): if self.request.method == "GET": uri = self.request.path + "/" if self.request.query: uri += "?" + self.request.query self.redirect(uri) return raise HTTPError(404) return method(self, *args, **kwargs) return wrapper class Application(Factory): def buildProtocol(self): return httpserver.HTTPConnection(self) def __init__(self, handlers=None, default_host="", transforms=None, **settings): if transforms is None: self.transforms = [] if settings.get("gzip"): self.transforms.append(GZipContentEncoding) self.transforms.append(ChunkedTransferEncoding) else: self.transforms = transforms self.handlers = [] self.named_handlers = {} self.default_host = default_host self.settings = _O(settings) self.ui_modules = {} self.ui_methods = {} self._load_ui_modules(settings.get("ui_modules", {})) self._load_ui_methods(settings.get("ui_methods", {})) if self.settings.get("static_path"): path = self.settings["static_path"] handlers = list(handlers or []) static_url_prefix = settings.get("static_url_prefix", "/static/") handlers = [ (re.escape(static_url_prefix) + r"(.*)", StaticFileHandler, dict(path=path)), (r"/(favicon\.ico)", StaticFileHandler, dict(path=path)), (r"/(robots\.txt)", StaticFileHandler, dict(path=path)), ] + handlers if handlers: self.add_handlers(".*$", handlers) # Automatically reload modified modules #if self.settings.get("debug") and not wsgi: #import autoreload #autoreload.start() def add_handlers(self, host_pattern, host_handlers): """Appends the given handlers to our handler list.""" if not host_pattern.endswith("$"): host_pattern += "$" handlers = [] self.handlers.append((re.compile(host_pattern), handlers)) for spec in host_handlers: if type(spec) is type(()): assert len(spec) in (2, 3) pattern = spec[0] handler = spec[1] if len(spec) == 3: kwargs = spec[2] else: kwargs = {} spec = URLSpec(pattern, handler, kwargs) handlers.append(spec) if spec.name: self.named_handlers[spec.name] = spec def add_transform(self, transform_class): """Adds the given OutputTransform to our transform list.""" self.transforms.append(transform_class) def _get_host_handlers(self, request): host = request.host.lower().split(':')[0] for pattern, handlers in self.handlers: if pattern.match(host): return handlers # Look for default host if not behind load balancer (for debugging) if "X-Real-Ip" not in request.headers: for pattern, handlers in self.handlers: if pattern.match(self.default_host): return handlers return None def _load_ui_methods(self, methods): if type(methods) is types.ModuleType: self._load_ui_methods(dict((n, getattr(methods, n)) for n in dir(methods))) elif isinstance(methods, list): for m in list: self._load_ui_methods(m) else: for name, fn in methods.iteritems(): if not name.startswith("_") and hasattr(fn, "__call__") \ and name[0].lower() == name[0]: self.ui_methods[name] = fn def _load_ui_modules(self, modules): if type(modules) is types.ModuleType: self._load_ui_modules(dict((n, getattr(modules, n)) for n in dir(modules))) elif isinstance(modules, list): for m in list: self._load_ui_modules(m) else: assert isinstance(modules, dict) for name, cls in modules.iteritems(): try: if issubclass(cls, UIModule): self.ui_modules[name] = cls except TypeError: pass def __call__(self, request): """Called by HTTPServer to execute the request.""" transforms = [t(request) for t in self.transforms] handler = None args = [] handlers = self._get_host_handlers(request) if not handlers: handler = RedirectHandler( request, "http://" + self.default_host + "/") else: for spec in handlers: match = spec.regex.match(request.path) if match: handler = spec.handler_class(self, request, **spec.kwargs) args = match.groups() break if not handler: handler = ErrorHandler(self, request, 404) # In debug mode, re-compile templates and reload static files on every # request so you don't need to restart to see changes if self.settings.get("debug"): RequestHandler._templates = None RequestHandler._static_hashes = {} handler._execute(transforms, *args) return handler def reverse_url(self, name, *args): """Returns a URL path for handler named `name` The handler must be added to the application as a named URLSpec """ if name in self.named_handlers: return self.named_handlers[name].reverse(*args) raise KeyError("%s not found in named urls" % name) class HTTPError(Exception): """An exception that will turn into an HTTP error response.""" def __init__(self, status_code, log_message=None, *args): self.status_code = status_code self.log_message = log_message self.args = args def __str__(self): message = "HTTP %d: %s" % ( self.status_code, httplib.responses[self.status_code]) if self.log_message: return message + " (" + (self.log_message % self.args) + ")" else: return message class HTTPAuthenticationRequired(HTTPError): """An exception that will turn into an HTTP Authentication Required response""" def __init__(self, auth_type="Basic", realm="Restricted Access", **kwargs): self.status_code = 401 self.log_message = None self.auth_type = auth_type self.kwargs = kwargs self.kwargs["realm"] = realm class ErrorHandler(RequestHandler): """Generates an error response with status_code for all requests.""" def __init__(self, application, request, status_code): RequestHandler.__init__(self, application, request) self.set_status(status_code) def prepare(self): raise HTTPError(self._status_code) class RedirectHandler(RequestHandler): """Redirects the client to the given URL for all GET requests. You should provide the keyword argument "url" to the handler, e.g.: application = web.Application([ (r"/oldpath", web.RedirectHandler, {"url": "/newpath"}), ]) """ def __init__(self, application, request, url, permanent=True): RequestHandler.__init__(self, application, request) self._url = url self._permanent = permanent def get(self): self.redirect(self._url, permanent=self._permanent) class StaticFileHandler(RequestHandler): """A simple handler that can serve static content from a directory. To map a path to this handler for a static data directory /var/www, you would add a line to your application like: application = web.Application([ (r"/static/(.*)", web.StaticFileHandler, {"path": "/var/www"}), ]) The local root directory of the content should be passed as the "path" argument to the handler. To support aggressive browser caching, if the argument "v" is given with the path, we set an infinite HTTP expiration header. So, if you want browsers to cache a file indefinitely, send them to, e.g., /static/images/myimage.png?v=xxx. """ def __init__(self, application, request, path): RequestHandler.__init__(self, application, request) self.root = os.path.abspath(path) + "/" def head(self, path): self.get(path, include_body=False) def get(self, path, include_body=True): abspath = os.path.abspath(os.path.join(self.root, path)) if not abspath.startswith(self.root): raise HTTPError(403, "%s is not in root static directory", path) if not os.path.exists(abspath): raise HTTPError(404) if not os.path.isfile(abspath): raise HTTPError(403, "%s is not a file", path) stat_result = os.stat(abspath) modified = datetime.datetime.fromtimestamp(stat_result[stat.ST_MTIME]) self.set_header("Last-Modified", modified) if "v" in self.request.arguments: self.set_header("Expires", datetime.datetime.utcnow() + \ datetime.timedelta(days=365*10)) self.set_header("Cache-Control", "max-age=" + str(86400*365*10)) else: self.set_header("Cache-Control", "public") mime_type, encoding = mimetypes.guess_type(abspath) if mime_type: self.set_header("Content-Type", mime_type) # Check the If-Modified-Since, and don't send the result if the # content has not been modified ims_value = self.request.headers.get("If-Modified-Since") if ims_value is not None: date_tuple = email.utils.parsedate(ims_value) if_since = datetime.datetime.fromtimestamp(time.mktime(date_tuple)) if if_since >= modified: self.set_status(304) return if not include_body: return self.set_header("Content-Length", stat_result[stat.ST_SIZE]) file = open(abspath, "r") try: self.write(file.read()) finally: file.close() class FallbackHandler(RequestHandler): """A RequestHandler that wraps another HTTP server callback. The fallback is a callable object that accepts an HTTPRequest, such as an Application or tornado.wsgi.WSGIContainer. This is most useful to use both tornado RequestHandlers and WSGI in the same server. Typical usage: wsgi_app = tornado.wsgi.WSGIContainer( django.core.handlers.wsgi.WSGIHandler()) application = tornado.web.Application([ (r"/foo", FooHandler), (r".*", FallbackHandler, dict(fallback=wsgi_app), ]) """ def __init__(self, app, request, fallback): RequestHandler.__init__(self, app, request) self.fallback = fallback def prepare(self): self.fallback(self.request) self._finished = True class OutputTransform(object): """A transform modifies the result of an HTTP request (e.g., GZip encoding) A new transform instance is created for every request. See the ChunkedTransferEncoding example below if you want to implement a new Transform. """ def __init__(self, request): pass def transform_first_chunk(self, headers, chunk, finishing): return headers, chunk def transform_chunk(self, chunk, finishing): return chunk class GZipContentEncoding(OutputTransform): """Applies the gzip content encoding to the response. See http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.11 """ CONTENT_TYPES = set([ "text/plain", "text/html", "text/css", "text/xml", "application/x-javascript", "application/xml", "application/atom+xml", "text/javascript", "application/json", "application/xhtml+xml"]) MIN_LENGTH = 5 def __init__(self, request): self._gzipping = request.supports_http_1_1() and \ "gzip" in request.headers.get("Accept-Encoding", "") def transform_first_chunk(self, headers, chunk, finishing): if self._gzipping: ctype = headers.get("Content-Type", "").split(";")[0] self._gzipping = (ctype in self.CONTENT_TYPES) and \ (not finishing or len(chunk) >= self.MIN_LENGTH) and \ (finishing or "Content-Length" not in headers) and \ ("Content-Encoding" not in headers) if self._gzipping: headers["Content-Encoding"] = "gzip" self._gzip_value = cStringIO.StringIO() self._gzip_file = gzip.GzipFile(mode="w", fileobj=self._gzip_value) self._gzip_pos = 0 chunk = self.transform_chunk(chunk, finishing) if "Content-Length" in headers: headers["Content-Length"] = str(len(chunk)) return headers, chunk def transform_chunk(self, chunk, finishing): if self._gzipping: self._gzip_file.write(chunk) if finishing: self._gzip_file.close() else: self._gzip_file.flush() chunk = self._gzip_value.getvalue() if self._gzip_pos > 0: chunk = chunk[self._gzip_pos:] self._gzip_pos += len(chunk) return chunk class ChunkedTransferEncoding(OutputTransform): """Applies the chunked transfer encoding to the response. See http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.6.1 """ def __init__(self, request): self._chunking = request.supports_http_1_1() def transform_first_chunk(self, headers, chunk, finishing): if self._chunking: # No need to chunk the output if a Content-Length is specified if "Content-Length" in headers or "Transfer-Encoding" in headers: self._chunking = False else: headers["Transfer-Encoding"] = "chunked" chunk = self.transform_chunk(chunk, finishing) return headers, chunk def transform_chunk(self, block, finishing): if self._chunking: # Don't write out empty chunks because that means END-OF-STREAM # with chunked encoding if block: block = ("%x" % len(block)) + "\r\n" + block + "\r\n" if finishing: block += "0\r\n\r\n" return block def authenticated(method): """Decorate methods with this to require that the user be logged in.""" @functools.wraps(method) def wrapper(self, *args, **kwargs): if not self.current_user: if self.request.method == "GET": url = self.get_login_url() if "?" not in url: url += "?" + urllib.urlencode(dict(next=self.request.uri)) self.redirect(url) return raise HTTPError(403) return method(self, *args, **kwargs) return wrapper class UIModule(object): """A UI re-usable, modular unit on a page. UI modules often execute additional queries, and they can include additional CSS and JavaScript that will be included in the output page, which is automatically inserted on page render. """ def __init__(self, handler): self.handler = handler self.request = handler.request self.ui = handler.ui self.current_user = handler.current_user self.locale = handler.locale def render(self, *args, **kwargs): raise NotImplementedError() def embedded_javascript(self): """Returns a JavaScript string that will be embedded in the page.""" return None def javascript_files(self): """Returns a list of JavaScript files required by this module.""" return None def embedded_css(self): """Returns a CSS string that will be embedded in the page.""" return None def css_files(self): """Returns a list of JavaScript files required by this module.""" return None def html_head(self): """Returns a CSS string that will be put in the <head/> element""" return None def render_string(self, path, **kwargs): return self.handler.render_string(path, **kwargs) class URLSpec(object): """Specifies mappings between URLs and handlers.""" def __init__(self, pattern, handler_class, kwargs={}, name=None): """Creates a URLSpec. Parameters: pattern: Regular expression to be matched. Any groups in the regex will be passed in to the handler's get/post/etc methods as arguments. handler_class: RequestHandler subclass to be invoked. kwargs (optional): A dictionary of additional arguments to be passed to the handler's constructor. name (optional): A name for this handler. Used by Application.reverse_url. """ if not pattern.endswith('$'): pattern += '$' self.regex = re.compile(pattern) self.handler_class = handler_class self.kwargs = kwargs self.name = name self._path, self._group_count = self._find_groups() def _find_groups(self): """Returns a tuple (reverse string, group count) for a url. For example: Given the url pattern /([0-9]{4})/([a-z-]+)/, this method would return ('/%s/%s/', 2). """ pattern = self.regex.pattern if pattern.startswith('^'): pattern = pattern[1:] if pattern.endswith('$'): pattern = pattern[:-1] if self.regex.groups != pattern.count('('): # The pattern is too complicated for our simplistic matching, # so we can't support reversing it. return (None, None) pieces = [] for fragment in pattern.split('('): if ')' in fragment: paren_loc = fragment.index(')') if paren_loc >= 0: pieces.append('%s' + fragment[paren_loc + 1:]) else: pieces.append(fragment) return (''.join(pieces), self.regex.groups) def reverse(self, *args): assert self._path is not None, \ "Cannot reverse url regex " + self.regex.pattern assert len(args) == self._group_count, "required number of arguments "\ "not found" if not len(args): return self._path return self._path % tuple([str(a) for a in args]) url = URLSpec def _utf8(s): if isinstance(s, unicode): return s.encode("utf-8") assert isinstance(s, str) return s def _unicode(s): if isinstance(s, str): try: return s.decode("utf-8") except UnicodeDecodeError: raise HTTPError(400, "Non-utf8 argument") assert isinstance(s, unicode) return s def _time_independent_equals(a, b): if len(a) != len(b): return False result = 0 for x, y in zip(a, b): result |= ord(x) ^ ord(y) return result == 0 class _O(dict): """Makes a dictionary behave like an object.""" def __getattr__(self, name): try: return self[name] except KeyError: return None #raise AttributeError(name) def __setattr__(self, name, value): self[name] = value
38.217391
92
0.591146
92951d5fc02a6cecd20270def94c217e2216e2a9
4,186
py
Python
notebook/util.py
hampen2929/CenterTrack
7ccb4a07637785df4a450f312845bc37b2e53ac0
[ "MIT" ]
3
2020-04-17T22:19:31.000Z
2022-01-07T22:01:16.000Z
notebook/util.py
hampen2929/CenterTrack
7ccb4a07637785df4a450f312845bc37b2e53ac0
[ "MIT" ]
null
null
null
notebook/util.py
hampen2929/CenterTrack
7ccb4a07637785df4a450f312845bc37b2e53ac0
[ "MIT" ]
1
2021-05-13T04:47:49.000Z
2021-05-13T04:47:49.000Z
import os import json from glob import glob # court_label_dict = { # '0': 'center', # '1': 'singles_upper_right', # '2': 'singles_upper_left', # '3': 'singles_lower_left', # '4': 'singles_lower_right', # '5': 'doubles_upper_right', # '6': 'doubles_upper_left', # '7': 'doubles_lower_left', # '8': 'doubles_lower_right', # '9': 'service_upper_right', # '10': 'service_upper_center', # '11': 'service_upper_left', # '12': 'service_lower_left', # '13': 'service_lower_center', # '14': 'service_lower_right', # } category_id_dict = { 'person': 1, 'ball': 2, 'doubles_upper_right': 3, 'doubles_upper_left': 3, 'doubles_lower_left': 3, 'doubles_lower_right': 3, 'singles_upper_right': 4, 'singles_upper_left': 4, 'singles_lower_left': 4, 'singles_lower_right': 4, 'service_upper_right': 5, 'service_upper_center': 5, 'service_upper_left': 5, 'service_lower_left': 5, 'service_lower_center': 5, 'service_lower_right': 5, 'center': 0, } def load_json(data_path): f = open(data_path, 'r') jsonData = json.load(f) f.close() return jsonData def save_json(label, save_path): f = open(save_path, "w") json.dump(label, f, ensure_ascii=False, indent=4, sort_keys=True, separators=(',', ': ')) def get_json_file_paths(data_dir): data_path = os.path.join(data_dir, '*.json') label_file_paths = glob(data_path) label_file_paths.sort() return label_file_paths def get_info(): file_dict = { 'description': 'dummy', 'url': 'dummy', 'version': 'dummy', 'year': 2045, 'contributor': 'dummy', 'date_created': '1993/01/24' } return file_dict def get_licenses(): file_dict = { 'url': 'dummy', 'id': 1, 'name': 'dummy'} return file_dict def get_images(label_file, image_id, file_name=None): file_dict = { 'license': 1, 'file_name': None, 'coco_url': 'dummy', 'height': None, 'width': None, 'date_captured': 'dummy', 'flickr_url': 'dummy', 'id': 99999 } if file_name is None: file_name = label_file['imagePath'] height = label_file['imageHeight'] width = label_file['imageWidth'] file_dict['file_name'] = file_name file_dict['height'] = height file_dict['width'] = width file_dict['id'] = image_id return file_dict def get_annotations(shape, image_id, annotation_id, target_labels=None): file_dict = { 'segmentation': [[]], 'area': None, 'iscrowd': 0, 'image_id': 99999, 'bbox': [], 'category_id': None, 'id': 999 } point = shape['points'] xmin, ymin = point[0] xmax, ymax = point[1] width = xmax - xmin height = ymax - ymin area = width * height bbox = [xmin, ymin, width, height] label = shape['label'] if isinstance(label, str): if label.isdecimal(): category_id = int(label) else: category_id = category_id_dict[label] else: msg = 'label must be str not {}'.format(type(label)) raise ValueError(msg) file_dict['area'] = area file_dict['bbox'] = bbox file_dict['category_id'] = category_id file_dict['image_id'] = image_id file_dict['id'] = annotation_id return file_dict def get_categories(): # categories = [ # {'supercategory': 'court_edge', 'id': 1, 'name': 'court_edge'}, # {'supercategory': 'court_edge', 'id': 2, 'name': 'doubles_lower_left'}, # {'supercategory': 'court_edge', 'id': 3, 'name': 'doubles_lower_right'}, # {'supercategory': 'court_edge', 'id': 4, 'name': 'doubles_upper_left'}, # {'supercategory': 'court_edge', 'id': 5, 'name': 'doubles_upper_right'} # ] categories = [ {'supercategory': 'person', 'id': 1, 'name': 'person'}, {'supercategory': 'ball', 'id': 2, 'name': 'ball'}, {'supercategory': 'court', 'id': 3, 'name': 'court_edge'}, ] return categories
25.680982
93
0.571906
fde28e832f3dfb134bd0c9015af5cc225500362a
20,215
py
Python
datalad/distribution/tests/test_uninstall.py
driusan/datalad
97f990caff182547845e1096a4044d9cd17e6a31
[ "MIT" ]
null
null
null
datalad/distribution/tests/test_uninstall.py
driusan/datalad
97f990caff182547845e1096a4044d9cd17e6a31
[ "MIT" ]
null
null
null
datalad/distribution/tests/test_uninstall.py
driusan/datalad
97f990caff182547845e1096a4044d9cd17e6a31
[ "MIT" ]
null
null
null
# ex: set sts=4 ts=4 sw=4 noet: # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the datalad package for the # copyright and license terms. # # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Test uninstall action """ from datalad.tests.utils import known_failure_v6 from datalad.tests.utils import known_failure_direct_mode import os from os.path import join as opj, split as psplit from os.path import exists, lexists from os.path import realpath from os.path import isdir from glob import glob from datalad.api import uninstall from datalad.api import drop from datalad.api import remove from datalad.api import install from datalad.api import create from datalad.support.exceptions import InsufficientArgumentsError from datalad.support.exceptions import IncompleteResultsError from datalad.tests.utils import ok_ from datalad.tests.utils import eq_ from datalad.tests.utils import with_testrepos from datalad.tests.utils import SkipTest from datalad.tests.utils import assert_raises from datalad.tests.utils import assert_status from datalad.tests.utils import assert_in from datalad.tests.utils import assert_result_count from datalad.tests.utils import assert_result_values_cond from datalad.tests.utils import ok_file_under_git from datalad.tests.utils import ok_clean_git from datalad.tests.utils import with_tempfile from datalad.tests.utils import with_tree from datalad.tests.utils import create_tree from datalad.tests.utils import skip_if_no_network from datalad.tests.utils import use_cassette from datalad.tests.utils import usecase from datalad.utils import chpwd from datalad.utils import _path_ from datalad.support.external_versions import external_versions from ..dataset import Dataset @with_tempfile() def test_safetynet(path): ds = Dataset(path).create() os.makedirs(opj(ds.path, 'deep', 'down')) for p in (ds.path, opj(ds.path, 'deep'), opj(ds.path, 'deep', 'down')): with chpwd(p): # will never remove PWD, or anything outside the dataset for target in (ds.path, os.curdir, os.pardir, opj(os.pardir, os.pardir)): assert_status( ('error', 'impossible'), uninstall(path=target, on_failure='ignore')) @with_tempfile() def test_uninstall_uninstalled(path): # goal oriented error reporting. here: # nothing installed, any removal was already a success before it started ds = Dataset(path) assert_status('error', ds.drop(on_failure="ignore")) assert_status('error', ds.uninstall(on_failure='ignore')) assert_status('notneeded', ds.remove()) @with_tempfile() @known_failure_direct_mode #FIXME def test_clean_subds_removal(path): ds = Dataset(path).create() subds1 = ds.create('one') subds2 = ds.create('two') eq_(sorted(ds.subdatasets(result_xfm='relpaths')), ['one', 'two']) ok_clean_git(ds.path) # now kill one res = ds.remove('one', result_xfm=None) # subds1 got uninstalled, and ds got the removal of subds1 saved assert_result_count(res, 1, path=subds1.path, action='uninstall', status='ok') assert_result_count(res, 1, path=subds1.path, action='remove', status='ok') assert_result_count(res, 1, path=ds.path, action='save', status='ok') ok_(not subds1.is_installed()) ok_clean_git(ds.path) # two must remain eq_(ds.subdatasets(result_xfm='relpaths'), ['two']) # one is gone assert(not exists(subds1.path)) # and now again, but this time remove something that is not installed ds.create('three') ds.save() eq_(sorted(ds.subdatasets(result_xfm='relpaths')), ['three', 'two']) ds.uninstall('two') ok_clean_git(ds.path) eq_(sorted(ds.subdatasets(result_xfm='relpaths')), ['three', 'two']) ok_(not subds2.is_installed()) assert(exists(subds2.path)) res = ds.remove('two', result_xfm='datasets') ok_clean_git(ds.path) # subds2 was already uninstalled, now ds got the removal of subds2 saved assert(not exists(subds2.path)) eq_(ds.subdatasets(result_xfm='relpaths'), ['three']) eq_(res, [subds2, ds]) @with_testrepos('.*basic.*', flavors=['clone']) def test_uninstall_invalid(path): ds = Dataset(path).create(force=True) for method in (uninstall, remove, drop): assert_raises(InsufficientArgumentsError, method) # refuse to touch stuff outside the dataset assert_status('error', method(dataset=ds, path='..', on_failure='ignore')) # same if it doesn't exist, for consistency assert_status('error', method(dataset=ds, path='../madeupnonexist', on_failure='ignore')) @with_testrepos('basic_annex', flavors=['clone']) def test_uninstall_annex_file(path): ds = Dataset(path) ok_(ds.is_installed()) ok_file_under_git(ds.repo.path, 'test-annex.dat', annexed=True) ds.repo.get('test-annex.dat') ok_(ds.repo.file_has_content('test-annex.dat')) # remove file's content: res = ds.drop(path='test-annex.dat', result_xfm='paths') # test it happened: ok_(not ds.repo.file_has_content('test-annex.dat')) ok_file_under_git(ds.repo.path, 'test-annex.dat', annexed=True) # test result: eq_(res, [opj(ds.path, 'test-annex.dat')]) ds.repo.get('test-annex.dat') # remove file: ds.remove(path='test-annex.dat') assert_raises(AssertionError, ok_file_under_git, ds.repo.path, 'test-annex.dat', annexed=True) assert_raises(AssertionError, ok_file_under_git, ds.repo.path, 'test-annex.dat', annexed=False) ok_(not exists(opj(path, 'test-annex.dat'))) @known_failure_v6 # FIXME: git files end up in annex, therefore drop result is different @with_testrepos('.*basic.*', flavors=['clone']) def test_uninstall_git_file(path): ds = Dataset(path) ok_(ds.is_installed()) ok_(exists(opj(path, 'INFO.txt'))) ok_file_under_git(ds.repo.path, 'INFO.txt') # drop file in Git in an annex repo # regardless of the type of repo this is 'notneeded'... # it is less about education that about "can we # we get the content back?", and for a file in Git we can assert_result_count( ds.drop(path='INFO.txt'), 1, status='notneeded', message="no annex'ed content") res = ds.uninstall(path="INFO.txt", on_failure='ignore') assert_result_count( res, 1, status='impossible', message='can only uninstall datasets (consider the `drop` command)') # remove the file: res = ds.remove(path='INFO.txt', result_xfm='paths', result_filter=lambda x: x['action'] == 'remove') assert_raises(AssertionError, ok_file_under_git, ds.repo.path, 'INFO.txt') ok_(not exists(opj(path, 'INFO.txt'))) eq_(res, ['INFO.txt']) @known_failure_v6 #FIXME Note: Failure seems to somehow be depend on PY2/PY3 @with_testrepos('submodule_annex', flavors=['local']) @with_tempfile(mkdir=True) def test_uninstall_subdataset(src, dst): ds = install(dst, source=src, recursive=True) ok_(ds.is_installed()) known_subdss = ds.subdatasets(result_xfm='datasets') for subds in ds.subdatasets(result_xfm='datasets'): ok_(subds.is_installed()) annexed_files = subds.repo.get_annexed_files() subds.repo.get(annexed_files) # drop data of subds: res = ds.drop(path=subds.path, result_xfm='paths') ok_(all([opj(subds.path, f) in res for f in annexed_files])) ok_(all([not i for i in subds.repo.file_has_content(annexed_files)])) # subdataset is still known assert_in(subds.path, ds.subdatasets(result_xfm='paths')) eq_(ds.subdatasets(result_xfm='datasets'), known_subdss) for subds in ds.subdatasets(result_xfm='datasets'): # uninstall subds itself: if os.environ.get('DATALAD_TESTS_DATALADREMOTE') \ and external_versions['git'] < '2.0.9': raise SkipTest( "Known problem with GitPython. See " "https://github.com/gitpython-developers/GitPython/pull/521") res = ds.uninstall(path=subds.path, result_xfm='datasets') eq_(res[0], subds) ok_(not subds.is_installed()) # just a deinit must not remove the subdataset registration eq_(ds.subdatasets(result_xfm='datasets'), known_subdss) # mountpoint of subdataset should still be there ok_(exists(subds.path)) @with_tree({ 'deep': { 'dir': { 'keep': 'keep1', 'kill': 'kill1'}}, 'keep': 'keep2', 'kill': 'kill2'}) @known_failure_direct_mode #FIXME def test_uninstall_multiple_paths(path): ds = Dataset(path).create(force=True, save=False) subds = ds.create('deep', force=True) subds.add('.', recursive=True) ok_clean_git(subds.path) # needs to be able to add a combination of staged files, modified submodule, # and untracked files ds.add('.', recursive=True) ok_clean_git(ds.path) # drop content of all 'kill' files topfile = 'kill' deepfile = opj('deep', 'dir', 'kill') # use a tuple not a list! should also work ds.drop((topfile, deepfile), check=False) ok_clean_git(ds.path) files_left = glob(opj(ds.path, '*', '*', '*')) + glob(opj(ds.path, '*')) ok_(all([f.endswith('keep') for f in files_left if exists(f) and not isdir(f)])) ok_(not ds.repo.file_has_content(topfile)) ok_(not subds.repo.file_has_content(opj(*psplit(deepfile)[1:]))) # remove handles for all 'kill' files ds.remove([topfile, deepfile], check=False) ok_clean_git(ds.path) files_left = glob(opj(ds.path, '*', '*', '*')) + glob(opj(ds.path, '*')) ok_(all([f.endswith('keep') for f in files_left if exists(f) and not isdir(f)])) ok_(not any([f.endswith(topfile) for f in files_left])) @with_tempfile() def test_uninstall_dataset(path): ds = Dataset(path) ok_(not ds.is_installed()) ds.create() ok_(ds.is_installed()) ok_clean_git(ds.path) # would only drop data ds.drop() # actually same as this, for cmdline compat reasons ds.drop(path=[]) ok_clean_git(ds.path) # removing entire dataset, uninstall will refuse to act on top-level # datasets assert_raises(IncompleteResultsError, ds.uninstall) ds.remove() # completely gone ok_(not ds.is_installed()) ok_(not exists(ds.path)) @with_tree({'one': 'test', 'two': 'test', 'three': 'test2'}) @known_failure_direct_mode #FIXME def test_remove_file_handle_only(path): ds = Dataset(path).create(force=True) ds.add(os.curdir) ok_clean_git(ds.path) # make sure there is any key ok_(len(ds.repo.get_file_key('one'))) # both files link to the same key eq_(ds.repo.get_file_key('one'), ds.repo.get_file_key('two')) rpath_one = realpath(opj(ds.path, 'one')) eq_(rpath_one, realpath(opj(ds.path, 'two'))) path_two = opj(ds.path, 'two') ok_(exists(path_two)) # remove one handle, should not affect the other ds.remove('two', check=False, message="custom msg") eq_(ds.repo.repo.head.commit.message.rstrip(), "custom msg") eq_(rpath_one, realpath(opj(ds.path, 'one'))) ok_(exists(rpath_one)) ok_(not exists(path_two)) # remove file without specifying the dataset -- shouldn't fail with chpwd(path): remove('one', check=False) ok_(not exists("one")) # and we should be able to remove without saving ds.remove('three', check=False, save=False) ok_(ds.repo.is_dirty()) @with_tree({'deep': {'dir': {'test': 'testcontent'}}}) @known_failure_direct_mode #FIXME def test_uninstall_recursive(path): ds = Dataset(path).create(force=True) subds = ds.create('deep', force=True) # we add one file, but we get a response for the requested # directory too res = subds.add('.') assert_result_count(res, 1, action='add', status='ok', type='file') assert_result_count(res, 1, action='save', status='ok', type='dataset') # save all -> all clean ds.save(recursive=True) ok_clean_git(subds.path) ok_clean_git(ds.path) # now uninstall in subdataset through superdataset target_fname = opj('deep', 'dir', 'test') # sane starting point ok_(exists(opj(ds.path, target_fname))) # doesn't have the minimum number of copies for a safe drop res = ds.drop(target_fname, recursive=True, on_failure='ignore') assert_status('error', res) assert_result_values_cond( res, 'message', lambda x: "configured minimum number of copies not found" in x or "Could only verify the existence of 0 out of 1 necessary copies" in x ) # this should do it ds.drop(target_fname, check=False, recursive=True) # link is dead lname = opj(ds.path, target_fname) ok_(not exists(lname)) # entire hierarchy saved ok_clean_git(subds.path) ok_clean_git(ds.path) # now same with actual handle removal # content is dropped already, so no checks in place anyway ds.remove(target_fname, check=True, recursive=True) ok_(not exists(lname) and not lexists(lname)) ok_clean_git(subds.path) ok_clean_git(ds.path) @with_tempfile() def test_remove_dataset_hierarchy(path): ds = Dataset(path).create() ds.create('deep') ok_clean_git(ds.path) # fail on missing --recursive because subdataset is present assert_raises(IncompleteResultsError, ds.remove) ok_clean_git(ds.path) ds.remove(recursive=True) # completely gone ok_(not ds.is_installed()) ok_(not exists(ds.path)) # now do it again, but without a reference dataset ds = Dataset(path).create() ds.create('deep') ok_clean_git(ds.path) remove(ds.path, recursive=True) # completely gone ok_(not ds.is_installed()) ok_(not exists(ds.path)) @with_tempfile() @known_failure_direct_mode #FIXME def test_careless_subdataset_uninstall(path): # nested datasets ds = Dataset(path).create() subds1 = ds.create('deep1') ds.create('deep2') eq_(sorted(ds.subdatasets(result_xfm='relpaths')), ['deep1', 'deep2']) ok_clean_git(ds.path) # now we kill the sub without the parent knowing subds1.uninstall() ok_(not subds1.is_installed()) # mountpoint exists ok_(exists(subds1.path)) ok_clean_git(ds.path) # parent still knows the sub eq_(sorted(ds.subdatasets(result_xfm='relpaths')), ['deep1', 'deep2']) @with_tempfile() @known_failure_direct_mode #FIXME def test_kill(path): # nested datasets with load ds = Dataset(path).create() testfile = opj(ds.path, "file.dat") with open(testfile, 'w') as f: f.write("load") ds.add("file.dat") subds = ds.create('deep1') eq_(sorted(ds.subdatasets(result_xfm='relpaths')), ['deep1']) ok_clean_git(ds.path) # and we fail to remove since content can't be dropped res = ds.remove(on_failure='ignore') assert_result_count( res, 1, status='error', path=testfile) # Following two assertions on message are relying on the actual error. # We have a second result with status 'impossible' for the ds, that we need # to filter out for those assertions: err_result = [r for r in res if r['status'] == 'error'][0] assert_result_values_cond( [err_result], 'message', lambda x: "configured minimum number of copies not found" in x or "Could only verify the existence of 0 out of 1 necessary copies" in x ) eq_(ds.remove(recursive=True, check=False, result_xfm='datasets'), [subds, ds]) ok_(not exists(path)) @with_tempfile() def test_remove_recreation(path): # test recreation is possible and doesn't conflict with in-memory # remainings of the old instances # see issue #1311 ds = create(path) ds.remove() ds = create(path) ok_clean_git(ds.path) ok_(ds.is_installed()) @with_tempfile() def test_no_interaction_with_untracked_content(path): # extracted from what was a metadata test originally ds = Dataset(opj(path, 'origin')).create(force=True) create_tree(ds.path, {'sub': {'subsub': {'dat': 'lots of data'}}}) subds = ds.create('sub', force=True) subds.remove(opj('.datalad', 'config'), if_dirty='ignore') ok_(not exists(opj(subds.path, '.datalad', 'config'))) # this will only work, if `remove` didn't do anything stupid and # caused all content to be saved subds.create('subsub', force=True) @with_tempfile() def test_remove_nowhining(path): # when removing a dataset under a dataset (but not a subdataset) # should not provide a meaningless message that something was not right ds = create(path) # just install/clone inside of it subds_path = _path_(path, 'subds') install(subds_path, source=path) remove(subds_path) # should remove just fine @usecase @known_failure_v6 # https://github.com/datalad/datalad/pull/2391#issuecomment-379414293 @skip_if_no_network @with_tempfile(mkdir=True) @use_cassette('test_remove_recursive_2') def test_remove_recursive_2(tdir): # fails in some cases https://github.com/datalad/datalad/issues/1573 with chpwd(tdir): install('///labs') install('labs/tarr/face_place') remove('labs', recursive=True) @with_tempfile(mkdir=True) @known_failure_direct_mode #FIXME def test_failon_nodrop(path): # test to make sure that we do not wipe out data when checks are enabled # despite the general error behavior mode ds = Dataset(path).create() # we play with a subdataset to bypass the tests that prevent the removal # of top-level datasets sub = ds.create('sub') create_tree(sub.path, {'test': 'content'}) ds.add(opj('sub', 'test')) ok_clean_git(ds.path) eq_(['test'], sub.repo.get_annexed_files(with_content_only=True)) # we put one file into the dataset's annex, no redundant copies # neither uninstall nor remove should work res = ds.uninstall('sub', check=True, on_failure='ignore') assert_status(['error', 'impossible'], res) eq_(['test'], sub.repo.get_annexed_files(with_content_only=True)) # same with remove res = ds.remove('sub', check=True, on_failure='ignore') assert_status(['error', 'impossible'], res) eq_(['test'], sub.repo.get_annexed_files(with_content_only=True)) @with_tempfile(mkdir=True) def test_uninstall_without_super(path): # a parent dataset with a proper subdataset, and another dataset that # is just placed underneath the parent, but not an actual subdataset parent = Dataset(path).create() sub = parent.create('sub') ok_clean_git(parent.path) nosub = create(opj(parent.path, 'nosub')) ok_clean_git(nosub.path) subreport = parent.subdatasets() assert_result_count(subreport, 1, path=sub.path) assert_result_count(subreport, 0, path=nosub.path) # it should be possible to uninstall the proper subdataset, even without # explicitly calling the uninstall methods of the parent -- things should # be figured out by datalad uninstall(sub.path) assert not sub.is_installed() # no present subdatasets anymore subreport = parent.subdatasets() assert_result_count(subreport, 1) assert_result_count(subreport, 1, path=sub.path, state='absent') assert_result_count(subreport, 0, path=nosub.path) # but we should fail on an attempt to uninstall the non-subdataset res = uninstall(nosub.path, on_failure='ignore') assert_result_count( res, 1, path=nosub.path, status='error', message="will not uninstall top-level dataset (consider `remove` command)") @with_tempfile(mkdir=True) def test_drop_nocrash_absent_subds(path): parent = Dataset(path).create() sub = parent.create('sub') parent.uninstall('sub') ok_clean_git(parent.path) with chpwd(path): assert_status('notneeded', drop('.', recursive=True)) @with_tree({'one': 'one', 'two': 'two', 'three': 'three'}) def test_remove_more_than_one(path): ds = Dataset(path).create(force=True) ds.add('.') ok_clean_git(path) # ensure #1912 stays resolved ds.remove(['one', 'two'], check=False) ok_clean_git(path)
36.956124
97
0.680188
521ec627cd052031ba239215dd1b09a13a9a642b
12,440
py
Python
mycroft/util/lang/format_sv.py
JulianaCP/mycroft-core
2bfcb948b73a86a1625a8490c12bc031c2ff0379
[ "Apache-2.0" ]
1
2019-12-07T18:10:56.000Z
2019-12-07T18:10:56.000Z
mycroft/util/lang/format_sv.py
JulianaCP/mycroft-core
2bfcb948b73a86a1625a8490c12bc031c2ff0379
[ "Apache-2.0" ]
null
null
null
mycroft/util/lang/format_sv.py
JulianaCP/mycroft-core
2bfcb948b73a86a1625a8490c12bc031c2ff0379
[ "Apache-2.0" ]
1
2019-12-09T13:42:51.000Z
2019-12-09T13:42:51.000Z
# -*- coding: utf-8 -*- # # Copyright 2017 Mycroft AI Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from mycroft.util.lang.format_common import convert_to_mixed_fraction from math import floor months = ['januari', 'februari', 'mars', 'april', 'maj', 'juni', 'juli', 'augusti', 'september', 'oktober', 'november', 'december'] NUM_STRING_SV = { 0: 'noll', 1: 'en', 2: 'två', 3: 'tre', 4: 'fyra', 5: 'fem', 6: 'sex', 7: 'sju', 8: 'åtta', 9: 'nio', 10: 'tio', 11: 'elva', 12: 'tolv', 13: 'tretton', 14: 'fjorton', 15: 'femton', 16: 'sexton', 17: 'sjutton', 18: 'arton', 19: 'nitton', 20: 'tjugo', 30: 'trettio', 40: 'fyrtio', 50: 'femtio', 60: 'sextio', 70: 'sjuttio', 80: 'åttio', 90: 'nittio', 100: 'hundra' } NUM_POWERS_OF_TEN = [ 'hundra', 'tusen', 'miljon', 'miljard', 'biljon', 'biljard', 'triljon', 'triljard' ] FRACTION_STRING_SV = { 2: 'halv', 3: 'tredjedel', 4: 'fjärdedel', 5: 'femtedel', 6: 'sjättedel', 7: 'sjundedel', 8: 'åttondel', 9: 'niondel', 10: 'tiondel', 11: 'elftedel', 12: 'tolftedel', 13: 'trettondel', 14: 'fjortondel', 15: 'femtondel', 16: 'sextondel', 17: 'sjuttondel', 18: 'artondel', 19: 'nittondel', 20: 'tjugondel' } EXTRA_SPACE = " " def nice_number_sv(number, speech, denominators=range(1, 21)): """ Swedish helper for nice_number This function formats a float to human understandable functions. Like 4.5 becomes "4 och en halv" for speech and "4 1/2" for text Args: number (int or float): the float to format speech (bool): format for speech (True) or display (False) denominators (iter of ints): denominators to use, default [1 .. 20] Returns: (str): The formatted string. """ result = convert_to_mixed_fraction(number, denominators) if not result: # Give up, just represent as a 3 decimal number return str(round(number, 3)) whole, num, den = result if not speech: if num == 0: # TODO: Number grouping? E.g. "1,000,000" return str(whole) else: return '{} {}/{}'.format(whole, num, den) if num == 0: return str(whole) den_str = FRACTION_STRING_SV[den] if whole == 0: if num == 1: return_string = 'en {}'.format(den_str) else: return_string = '{} {}'.format(num, den_str) elif num == 1: return_string = '{} och en {}'.format(whole, den_str) else: return_string = '{} och {} {}'.format(whole, num, den_str) if num > 1: return_string += 'ar' return return_string def pronounce_number_sv(num, places=2): """ Convert a number to its spoken equivalent For example, '5.2' would return 'five point two' Args: num(float or int): the number to pronounce (set limit below) places(int): maximum decimal places to speak Returns: (str): The pronounced number """ def pronounce_triplet_sv(num): result = "" num = floor(num) if num > 99: hundreds = floor(num / 100) if hundreds > 0: if hundreds == 1: result += 'ett' + 'hundra' else: result += NUM_STRING_SV[hundreds] + 'hundra' num -= hundreds * 100 if num == 0: result += '' # do nothing elif num == 1: result += 'ett' elif num <= 20: result += NUM_STRING_SV[num] elif num > 20: tens = num % 10 ones = num - tens if ones > 0: result += NUM_STRING_SV[ones] if tens > 0: result += NUM_STRING_SV[tens] return result def pronounce_fractional_sv(num, places): # fixed number of places even with trailing zeros result = "" place = 10 while places > 0: # doesn't work with 1.0001 and places = 2: int( # num*place) % 10 > 0 and places > 0: result += " " + NUM_STRING_SV[int(num * place) % 10] place *= 10 places -= 1 return result def pronounce_whole_number_sv(num, scale_level=0): if num == 0: return '' num = floor(num) result = '' last_triplet = num % 1000 if last_triplet == 1: if scale_level == 0: if result != '': result += '' + 'ett' else: result += 'en' elif scale_level == 1: result += 'ettusen' + EXTRA_SPACE else: result += 'en ' + NUM_POWERS_OF_TEN[scale_level] + EXTRA_SPACE elif last_triplet > 1: result += pronounce_triplet_sv(last_triplet) if scale_level == 1: result += 'tusen' + EXTRA_SPACE if scale_level >= 2: result += NUM_POWERS_OF_TEN[scale_level] if scale_level >= 2: result += 'er' + EXTRA_SPACE # MiljonER num = floor(num / 1000) scale_level += 1 return pronounce_whole_number_sv(num, scale_level) + result result = "" if abs(num) >= 1000000000000000000000000: # cannot do more than this return str(num) elif num == 0: return str(NUM_STRING_SV[0]) elif num < 0: return "minus " + pronounce_number_sv(abs(num), places) else: if num == int(num): return pronounce_whole_number_sv(num) else: whole_number_part = floor(num) fractional_part = num - whole_number_part result += pronounce_whole_number_sv(whole_number_part) if places > 0: result += " komma" result += pronounce_fractional_sv(fractional_part, places) return result def pronounce_ordinal_sv(num): # ordinals for 1, 3, 7 and 8 are irregular # this produces the base form, it will have to be adapted for genus, # casus, numerus ordinals = ["noll", "första", "andra", "tredje", "fjärde", "femte", "sjätte", "sjunde", "åttonde", "nionde", "tionde"] tens = int(floor(num / 10.0)) * 10 ones = num % 10 if num < 0 or num != int(num): return num if num == 0: return ordinals[num] result = "" if num > 10: result += pronounce_number_sv(tens).rstrip() if ones > 0: result += ordinals[ones] else: result += 'de' return result def nice_time_sv(dt, speech=True, use_24hour=False, use_ampm=False): """ Format a time to a comfortable human format For example, generate 'five thirty' for speech or '5:30' for text display. Args: dt (datetime): date to format (assumes already in local timezone) speech (bool): format for speech (default/True) or display (False)=Fal use_24hour (bool): output in 24-hour/military or 12-hour format use_ampm (bool): include the am/pm for 12-hour format Returns: (str): The formatted time string """ if use_24hour: # e.g. "03:01" or "14:22" string = dt.strftime("%H:%M") else: if use_ampm: # e.g. "3:01 AM" or "2:22 PM" string = dt.strftime("%I:%M %p") else: # e.g. "3:01" or "2:22" string = dt.strftime("%I:%M") if not speech: return string # Generate a speakable version of the time speak = "" if use_24hour: if dt.hour == 1: speak += "ett" # 01:00 is "ett" not "en" else: speak += pronounce_number_sv(dt.hour) if not dt.minute == 0: if dt.minute < 10: speak += ' noll' if dt.minute == 1: speak += ' ett' else: speak += " " + pronounce_number_sv(dt.minute) return speak # ampm is ignored when use_24hour is true else: hour = dt.hour if not dt.minute == 0: if dt.minute < 30: if dt.minute != 15: speak += pronounce_number_sv(dt.minute) else: speak += 'kvart' if dt.minute == 1: speak += ' minut över ' elif dt.minute != 10 and dt.minute != 5 and dt.minute != 15: speak += ' minuter över ' else: speak += ' över ' elif dt.minute > 30: if dt.minute != 45: speak += pronounce_number_sv((60 - dt.minute)) else: speak += 'kvart' if dt.minute == 1: speak += ' minut i ' elif dt.minute != 50 and dt.minute != 55 and dt.minute != 45: speak += ' minuter i ' else: speak += ' i ' hour = (hour + 1) % 12 elif dt.minute == 30: speak += 'halv ' hour = (hour + 1) % 12 if hour == 0 and dt.minute == 0: return "midnatt" if hour == 12 and dt.minute == 0: return "middag" # TODO: "half past 3", "a quarter of 4" and other idiomatic times if hour == 0: speak += pronounce_number_sv(12) elif hour <= 13: if hour == 1 or hour == 13: # 01:00 and 13:00 is "ett" speak += 'ett' else: speak += pronounce_number_sv(hour) else: speak += pronounce_number_sv(hour - 12) if use_ampm: if dt.hour > 11: if dt.hour < 18: # 12:01 - 17:59 nachmittags/afternoon speak += " på eftermiddagen" elif dt.hour < 22: # 18:00 - 21:59 abends/evening speak += " på kvällen" else: # 22:00 - 23:59 nachts/at night speak += " på natten" elif dt.hour < 3: # 00:01 - 02:59 nachts/at night speak += " på natten" else: # 03:00 - 11:59 morgens/in the morning speak += " på morgonen" return speak def nice_response_sv(text): # check for months and call nice_ordinal_sv declension of ordinals # replace "^" with "hoch" (to the power of) words = text.split() for idx, word in enumerate(words): if word.lower() in months: text = nice_ordinal_sv(text) if word == '^': wordNext = words[idx + 1] if idx + 1 < len(words) else "" if wordNext.isnumeric(): words[idx] = "upphöjt till" text = " ".join(words) return text def nice_ordinal_sv(text): # check for months for declension of ordinals before months # depending on articles/prepositions normalized_text = text words = text.split() for idx, word in enumerate(words): wordNext = words[idx + 1] if idx + 1 < len(words) else "" wordPrev = words[idx - 1] if idx > 0 else "" if word[-1:] == ".": if word[:-1].isdecimal(): if wordNext.lower() in months: word = pronounce_ordinal_sv(int(word[:-1])) if wordPrev.lower() in ["om", "den", "från", "till", "(från", "(om", "till"]: word += "n" elif wordPrev.lower() not in ["den"]: word += "r" words[idx] = word normalized_text = " ".join(words) return normalized_text
29.201878
78
0.508923
dcbc981734d76d413997157fb3aef9992b537a71
13,768
py
Python
donghuangzhong/src/core/util.py
onsis/hack-tools
1a1dfebfab8c83379f17563900d3aeb9f240c658
[ "Apache-2.0" ]
null
null
null
donghuangzhong/src/core/util.py
onsis/hack-tools
1a1dfebfab8c83379f17563900d3aeb9f240c658
[ "Apache-2.0" ]
null
null
null
donghuangzhong/src/core/util.py
onsis/hack-tools
1a1dfebfab8c83379f17563900d3aeb9f240c658
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python # -*-coding:utf-8 -*- from scapy.error import Scapy_Exception from signal import SIGINT from datetime import date, datetime from commands import getoutput from subprocess import Popen from cmd import Cmd from pwd import getpwnam from colors import color from inspect import getmodule import scapy.arch import config import os import socket import fcntl import struct import re """Utility class housing various functions in use throughout the donghuangzhong framework. """ buffered = None def version(): """donghuangzhong version""" return "0.0.1" def header(): """donghuangzhong header""" ver = color.B_GREEN + ' [' + color.B_YELLOW + 'Version: ' + version() + \ color.B_GREEN + ']' + color.END print color.B_GREEN + '\t 00' print '\t 00 00 00' print '\t 0 东 0' print '\t 0 0' print '\t 0 皇 0' print '\t 0 0' print '\t 0 钟 0' print '\t 00 00' + ver print color.END if config.get('debug'): print '\t ' + color.B_BLUE + ' [DEBUGGING]' + color.END def Error(msg): """Prints the given message and, if debugging is on, logs it. """ print color.B_RED + '[-] %s' % (msg) + color.END if config.get('debug'): debug(msg) def Msg(msg): """Prints a warning message""" print color.B_YELLOW + '[' + color.B_GREEN + '!' + color.B_YELLOW + '] %s' % (msg) + color.END def debug(msg): """If debugging is enabled, write the given string to the debug file """ dbg = config.get('log') if config.get('debug') and not os.path.islink(dbg): with open(dbg, 'a+') as f: f.write(format('[%s] %s\n' % (timestamp(), msg))) # TODO add color def get_input(msg): """ fetch user input and unify input prompts """ tmp = None try: tmp = raw_input('[!] %s' % msg) except: tmp = None return tmp def get_calling_mod(stack): """ Retrieve the calling function based on the call stack """ form = stack[1] return getmodule(form[0]).__name__ def timestamp(): """ Generate a formatted timestamp """ return '%s %s' % (date.today().isoformat(), datetime.now().strftime('%I:%M%p')) def getipbyhost(hostname): """ return the IP address for a hostname """ return socket.gethostbyname(hostname) def next_ip(ip): """Return the next IP address following the given IP address. It needs to be converted to an integer, then add 1, then converted back to an IP address """ ip2int = lambda ipstr: struct.unpack('!I', socket.inet_aton(ipstr))[0] int2ip = lambda n: socket.inet_ntoa(struct.pack('!I', n)) return int2ip(ip2int(ip) + 1) def is_in_subnet(ip, mask): """Check if a given IP address is lies within the given netmask TRUE if 'ip' falls within 'mask' FALSE otherwise """ ipaddr = int(''.join(['%02x' % int(x) for x in ip.split('.')]), 16) netstr, bits = mask.split('/') netaddr = int(''.join(['%02x' % int(x) for x in netstr.split('.')]), 16) mask = (0xffffffff << (32 - int(bits))) & 0xffffffff return (ipaddr & mask) == (netaddr & mask) def check_program(prog): """Check if program is installed and pathed properly""" tmp = init_app('which {0}'.format(prog)) if len(tmp) > 0 and '/' in tmp: return True else: return False def init_app(prog, output=True): """inititalize an application PROG is the full command with args OUTPUT true if output should be returned false if output should be dumped to null. This will return a process handle and is meant for initializing background processes. Use wisely. """ # dump output to null if not output: try: null = open(os.devnull, 'w') proc = Popen(prog, stdout=null, stderr=null) except Exception, j: Error("Error initializing app: %s" % j) return False return proc # just grab output else: return getoutput(prog) def kill_app(proc): """Kill a process""" try: os.kill(proc.pid, SIGINT) except Exception, j: Error("Error killing app: %s" % (j)) return False return True def get_monitor_adapter(): """Try and automatically detect which adapter is in monitor mode. NONE if there are none. """ tmp = init_app('iwconfig', True) for line in tmp.split('\n'): if line.startswith(' '): continue elif len(line.split(' ')[0]) > 1: if 'Mode:Monitor' in line: return line.split(' ')[0] return None def enable_monitor(channel=None): """Enable monitor mode on the wireless adapter CHANNEL is the channel to monitor on. """ tmp = init_app('iwconfig', True) iface = None for line in tmp.split('\n'): if line.startswith('wlan'): try: iface = line.split(' ')[0] if channel is None: tmp = getoutput('airmon-ng start {0}'.format(iface)) else: tmp = getoutput('airmon-ng start {0} {1}' .format(iface, channel)) debug("started \'%s\' in monitor mode" % iface) except Exception, j: Error("Error enabling monitor mode: %s" % j) break return get_monitor_adapter() def disable_monitor(): """Kill the monitoring adapter""" try: adapt = get_monitor_adapter() if not adapt is None: tmp = getoutput('airmon-ng stop %s' % adapt) debug('killed monitor adapter %s' % adapt) except Exception, j: Error('error killing monitor adapter:%s' % j) def verify_iface(iface): """Verify that the given interface exists """ try: tmp = init_app('ifconfig', True) if not iface in tmp: return False return True except Exception: return False def does_file_exist(fle): """Check if a local file exists. """ try: with open(fle) as f: pass except IOError: return False return True def get_local_ip(adapter): """ Return the IP address of an adapter. @param adapter is the adapter to fetch from. I do not know how portable this is yet. """ s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) try: addr = socket.inet_ntoa(fcntl.ioctl( s.fileno(), 0x8915, struct.pack('256s', adapter[:15]) )[20:24]) except: addr = None return addr def test_filter(net_filter): """ Test a network filter to verify if its valid """ valid = False try: scapy.arch.attach_filter(None, net_filter) except Scapy_Exception: pass except: valid = True return valid def get_layer_bytes(layer): """I havent found a neat way to pull RAW bytes out of Scapy packets, so I just wrote a small utility function for it. """ arr = [] layer = layer.encode('hex') for (f, s) in zip(layer[0::2], layer[1::2]): arr.append(f + s) return arr def check_opts(choice): """ Parse up the user input and run whatever commands are needed. """ choice_opts = choice.split(' ') if len(choice_opts) == 1: if type(choice) is int: return choice elif 'help' in choice: help() choice = -1 elif 'gops' in choice: config.dump() choice = -1 elif 'quit' in choice or 'exit' in choice: # hard quit os._exit(1) elif 'bg' in choice: background() else: if 'set' in choice_opts[0]: opts = choice.split(' ') if opts[1] is None or opts[2] is None: return print '[!] Setting ' + color.YELLOW + '%s' % opts[1] + color.END + \ '-> ' + color.GREEN + '%s..' % opts[2] + color.END config.set(opts[1], opts[2]) choice = -1 return choice def check_dependency(module): """ Attempts to load the module; returns a boolean indicating success or fail. """ try: mod = __import__(module) except Exception, e: Error("Module %s failed to load! (%s)" % (module, e)) return False return True def help(): """ Dump a help menu with donghuangzhong options """ print color.B_YELLOW + '\n donghaungzhong options:' + color.B_WHITE print color.B_GREEN + '\thelp\t\t\t' + color.B_WHITE + '- This menu' print color.B_GREEN + '\tgops\t\t\t' + color.B_WHITE + '- Display global options' print color.B_GREEN + '\texit\t\t\t' + color.B_WHITE + '- Exit immediately' print color.B_GREEN + '\tbg\t\t\t' + color.B_WHITE + '- Put zarp to background' print color.B_GREEN + '\tset [' + color.B_YELLOW + 'key' + color.B_GREEN + '] [' + \ color.B_YELLOW + 'value' + color.B_GREEN + ']' + color.B_WHITE + \ ' \t- Set key to value' + color.END print color.B_YELLOW + '\n donghuangzhong module options:' + color.B_WHITE print color.B_GREEN + '\t[' + color.B_YELLOW + 'int' + color.B_GREEN + '] [' + \ color.B_YELLOW + 'value' + color.B_GREEN + ']\t\t' + color.B_WHITE + \ '- Set option [int] to value [value]' print color.B_GREEN + '\t[' + color.B_YELLOW + 'int' + color.B_GREEN + '] o\t\t\t' + \ color.B_WHITE + '- View options for setting' print color.B_GREEN + '\trun (r)\t\t\t' + color.B_WHITE + '- Run the selected module' print color.B_GREEN + '\tinfo \t\t\t' + color.B_WHITE + '- Display module information' print color.B_GREEN + '\tops \t\t\t' + color.B_WHITE + '- Display module options' print color.END def get_run_usr(): """ Fetch the user that launched zarp """ if 'SUDO_USER' in os.environ: usr = os.environ['SUDO_USER'] else: usr = init_app('who -m | awk \'{print $1;}\'') # verify the user exists try: getpwnam(usr) except: usr = None return usr def background(): """ Drops the user back into their shell environment. 'exit' brings them back. """ usr = get_run_usr() if usr is None: return Msg('\'exit\' when you\'re done..') shell = os.environ['SHELL'] if 'SHELL' in os.environ else '/bin/bash' if check_program(shell): os.system('su -c %s %s' % (shell, usr)) else: os.system('su -c /bin/sh %s' % usr) def print_menu(arr): global buffered """ Main menu printer @param arr is the menu array to print. Fetches input, parses and built-in command keywords, and returns the selected idx. """ if not buffered is None: # buffered input, return if len(buffered) > 0: return buffered.pop(0) else: buffered = None tmp = Cmd() arr = ['\t%s[%s%d%s] %s%s%s' % (color.B_GREEN, color.B_YELLOW, x + 1, color.B_GREEN, color.B_WHITE, arr[x], color.END) for x in xrange(len(arr))] tmp.columnize(arr, 100) print '\n' + color.B_YELLOW + '0' + color.B_GREEN + ')' + color.B_WHITE + ' Back' + color.END try: choice = raw_input(color.B_WHITE + '> ' + color.END) choice = check_opts(choice) # buffered input if choice > 1: choice = choice.split(' ') buffered = [] for entry in choice[1:]: buffered.append(int(entry)) choice = int(choice[0]) except KeyboardInterrupt: choice = -1 except Exception, e: debug(e) os.system('clear') choice = -1 return choice def eval_type(value, type): """ Generic evaluation of types; returns true if the value is of type, or false if it is not. Returns a tuple of (bool, obj), where bool determines success and obj is the value returned as type. """ rval = (False, None) if type == "int": try: rval = (True, int(value)) except: rval = (False, None) elif type == "bool": if value in ['True', 'true', '1']: rval = (True, True) elif value in ['False', 'false', '0']: rval = (True, False) elif type == "ip": ip = value.split('.') if len(ip) != 4: rval = (False, None) else: try: socket.inet_aton(value) rval = (True, value) except: rval = (False, None) elif type == "str": # anything can be a string rval = (True, str(value)) elif type == "ipmask": ip = value.split('.') if len(ip) != 4: rval = (False, None) else: try: int(ip[0]) int(ip[1]) int(ip[2]) rval = (True, value) if '/' in ip[3] else (False, None) except: rval = (False, None) elif type == "regex": try: tmp = re.compile(value) rval = (True, tmp) except re.error: rval = (False, None) elif type == 'list': # comma delimited try: rval = (True, value.split(',')) except: rval = (False, None) elif type == 'file': if does_file_exist(value): rval = (True, value) else: Error('Unrecognized type: %s' % type) return rval
28.863732
98
0.547647
ba688e0b7d008284f3b8588da83ec1395a3bdfd2
5,693
py
Python
orttraining/orttraining/python/training/ortmodule/_inference_manager.py
photoszzt/onnxruntime
523db6ef443b0a41de1401004ae4b394dad3314c
[ "MIT" ]
2
2021-07-02T23:57:21.000Z
2022-03-19T07:45:35.000Z
orttraining/orttraining/python/training/ortmodule/_inference_manager.py
photoszzt/onnxruntime
523db6ef443b0a41de1401004ae4b394dad3314c
[ "MIT" ]
1
2021-06-18T11:01:02.000Z
2021-06-18T11:01:02.000Z
orttraining/orttraining/python/training/ortmodule/_inference_manager.py
photoszzt/onnxruntime
523db6ef443b0a41de1401004ae4b394dad3314c
[ "MIT" ]
1
2021-06-18T10:35:22.000Z
2021-06-18T10:35:22.000Z
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. # -------------------------------------------------------------------------- from . import _utils, _io from ._graph_execution_manager import GraphExecutionManager, RunStateInfo from ._execution_agent import InferenceAgent from onnxruntime.capi import _pybind_state as C import onnx import torch class InferenceManager(GraphExecutionManager): """Concrete instance of GraphExecutionManager that is able to manage the inference model InferenceManager is resposible for building and running the forward graph of the inference model """ def __init__(self, model): super().__init__(model) self._export_mode = torch.onnx.TrainingMode.EVAL @staticmethod def execution_session_run_forward(execution_session, onnx_model, device, *inputs): """Runs the forward graph on execution_session with given model inputs and device""" # Assert that the input and model device match _utils._check_same_device(device, "Input argument to forward", *inputs) # TODO: Try to reuse the output buffers as some of the output tensors are same sizes, # especially the backward graph outputs. # REVIEW(codemzs): Consolidate Training Agent with InferenceAgent on C++ side to not # have the need for passing IOBinding. io_binding = execution_session.io_binding() run_options = C.RunOptions() # Use IO binding _utils._create_iobinding(io_binding, inputs, onnx_model, device) # Run and return module outputs. ort_output = execution_session.run_forward(io_binding, run_options) forward_outputs, run_id = ort_output.ortvalues, ort_output.run_id user_outputs = tuple(_utils._ortvalue_to_torch_tensor(forward_output._ortvalue) for forward_output in forward_outputs) state = None # Assert that the outputs and model device match _utils._check_same_device(device, "Output argument from forward", *user_outputs) output_info = [(output.shape, output.device, output.dtype) for output in user_outputs] run_info = RunStateInfo(state, output_info) # Return user outputs and forward run information return user_outputs, run_info def forward(self, *inputs, **kwargs): '''Forward pass of the inference model ONNX model is exported the first time this method is executed. Next, we build an optimized inference graph with module_graph_builder. Finally, we instantiate the ONNX Runtime InferenceSession through the InferenceAgent. ''' # Exporting module to ONNX for the first time build_graph = self._export_model(*inputs, **kwargs) if build_graph: # If model was exported, then initialize the graph builder self._initialize_graph_builder(training=False) # Save the onnx model if the model was exported if self._save_onnx: onnx.save(self._onnx_model, self._save_onnx_prefix + '_exported_inference_model.onnx') # Build the inference graph if build_graph: self._build_graph() module_device = _utils.get_device_from_module(self._original_module) # The inference session should be created every time # the graph was built or if the device changed between calls to forward create_execution_session = build_graph or self._device != module_device if self._device != module_device: self._device = module_device if create_execution_session: # Create execution session creates the inference_session self._create_execution_agent() user_outputs, _ = InferenceManager.execution_session_run_forward(self._execution_agent, self._optimized_onnx_model, self._device, *_io._combine_input_buffers_initializers( self._graph_initializers, self._graph_info.user_input_names, self._input_info, self._flattened_module.named_buffers(), inputs, kwargs, self._device)) return _io.unflatten_user_output(self._module_output_schema, user_outputs) def _build_graph(self): """Build an optimized inference graph using the module_graph_builder""" super()._build_graph() if self._save_onnx: onnx.save(self._optimized_onnx_model, self._save_onnx_prefix + '_inference.onnx') def _create_execution_agent(self): """Creates an InferenceAgent that can run forward graph on an inference model""" session_options, providers, provider_options = self._get_session_config() self._execution_agent = InferenceAgent(self._optimized_onnx_model.SerializeToString(), session_options, providers, provider_options)
49.077586
126
0.597576
45994fa3dc2038cf4afa2d6378398673a7c1edff
80,230
py
Python
src/pyhees/section4_2.py
jjj-design/pyhees
d63e7cd84abfc2f509bc1cd1256598a10aac1825
[ "MIT" ]
null
null
null
src/pyhees/section4_2.py
jjj-design/pyhees
d63e7cd84abfc2f509bc1cd1256598a10aac1825
[ "MIT" ]
3
2022-01-04T07:29:52.000Z
2022-03-19T08:02:51.000Z
src/pyhees/section4_2.py
jjj-design/pyhees
d63e7cd84abfc2f509bc1cd1256598a10aac1825
[ "MIT" ]
2
2022-01-19T07:57:10.000Z
2022-03-07T00:25:54.000Z
# ============================================================================ # 第四章 暖冷房設備 # 第二節 ダクト式セントラル空調機 # Ver.05(エネルギー消費性能計算プログラム(住宅版)Ver.02.01~) # ============================================================================ import numpy as np from functools import lru_cache import datetime import pyhees.section3_1 as ld from pyhees.section3_2_8 import \ get_r_env from pyhees.section11_1 import \ load_outdoor, \ get_T_ex, \ get_Theta_ex, \ get_X_ex, \ calc_h_ex, \ load_climate, \ get_J from pyhees.section3_1 import \ get_A_NR from pyhees.section4_7_i import \ get_A_A_R from pyhees.section11_3 import \ load_schedule, \ get_schedule_ac # 未処理負荷と機器の計算に必要な変数を取得 def calc_Q_UT_A(A_A, A_MR, A_OR, A_env, mu_H, mu_C, q_hs_rtd_H, q_hs_rtd_C, V_hs_dsgn_H, V_hs_dsgn_C, Q, VAV, general_ventilation, duct_insulation, region, L_H_d_t_i, L_CS_d_t_i, L_CL_d_t_i): """ Args: A_A: param A_MR: A_OR: param A_env: mu_H: param mu_C: q_hs_rtd_H: param q_hs_rtd_C: V_hs_dsgn_H: param V_hs_dsgn_C: Q: param VAV: general_ventilation: param duct_insulation: region: param L_H_d_t_i: L_CS_d_t_i: param L_CL_d_t_i: A_MR: A_env: mu_C: q_hs_rtd_C: V_hs_dsgn_C: VAV: duct_insulation: L_H_d_t_i: L_CL_d_t_i: Returns: """ # 外気条件 outdoor = load_outdoor() Theta_ex_d_t = get_Theta_ex(region, outdoor) X_ex_d_t = get_X_ex(region, outdoor) climate = load_climate(region) J_d_t = get_J(climate) h_ex_d_t = calc_h_ex(X_ex_d_t, Theta_ex_d_t) A_HCZ_i = np.array([ld.get_A_HCZ_i(i, A_A, A_MR, A_OR) for i in range(1, 6)]) A_HCZ_R_i = [ld.get_A_HCZ_R_i(i) for i in range(1, 6)] A_NR = get_A_NR(A_A, A_MR, A_OR) # (67) L_wtr = get_L_wtr() # (66d) n_p_NR_d_t = calc_n_p_NR_d_t(A_NR) # (66c) n_p_OR_d_t = calc_n_p_OR_d_t(A_OR) # (66b) n_p_MR_d_t = calc_n_p_MR_d_t(A_MR) # (66a) n_p_d_t = get_n_p_d_t(n_p_MR_d_t, n_p_OR_d_t, n_p_NR_d_t) # 人体発熱 q_p_H = get_q_p_H() q_p_CS = get_q_p_CS() q_p_CL = get_q_p_CL() # (65d) w_gen_NR_d_t = calc_w_gen_NR_d_t(A_NR) # (65c) w_gen_OR_d_t = calc_w_gen_OR_d_t(A_OR) # (65b) w_gen_MR_d_t = calc_w_gen_MR_d_t(A_MR) # (65a) w_gen_d_t = get_w_gen_d_t(w_gen_MR_d_t, w_gen_OR_d_t, w_gen_NR_d_t) # (64d) q_gen_NR_d_t = calc_q_gen_NR_d_t(A_NR) # (64c) q_gen_OR_d_t = calc_q_gen_OR_d_t(A_OR) # (64b) q_gen_MR_d_t = calc_q_gen_MR_d_t(A_MR) # (64a) q_gen_d_t = get_q_gen_d_t(q_gen_MR_d_t, q_gen_OR_d_t, q_gen_NR_d_t) # (63) V_vent_l_NR_d_t = get_V_vent_l_NR_d_t() V_vent_l_OR_d_t = get_V_vent_l_OR_d_t() V_vent_l_MR_d_t = get_V_vent_l_MR_d_t() V_vent_l_d_t = get_V_vent_l_d_t(V_vent_l_MR_d_t, V_vent_l_OR_d_t, V_vent_l_NR_d_t) # (62) V_vent_g_i = get_V_vent_g_i(A_HCZ_i, A_HCZ_R_i) # (61) U_prt = get_U_prt() # (60) r_env = get_r_env(A_env, A_A) A_prt_i = get_A_prt_i(A_HCZ_i, r_env, A_MR, A_NR, A_OR) # (59) Theta_SAT_d_t = get_Theta_SAT_d_t(Theta_ex_d_t, J_d_t) # (58) l_duct_ex_i = get_l_duct_ex_i(A_A) # (57) l_duct_in_i = get_l_duct_in_i(A_A) # (56) l_duct_i = get_l_duct__i(l_duct_in_i, l_duct_ex_i) # (51) X_star_HBR_d_t = get_X_star_HBR_d_t(X_ex_d_t, region) # (50) Theta_star_HBR_d_t = get_Theta_star_HBR_d_t(Theta_ex_d_t, region) # (55) Theta_attic_d_t = get_Theta_attic_d_t(Theta_SAT_d_t, Theta_star_HBR_d_t) # (54) Theta_sur_d_t_i = get_Theta_sur_d_t_i(Theta_star_HBR_d_t, Theta_attic_d_t, l_duct_in_i, l_duct_ex_i, duct_insulation) # (40) Q_hat_hs_d_t = calc_Q_hat_hs_d_t(Q, A_A, V_vent_l_d_t, V_vent_g_i, mu_H, mu_C, J_d_t, q_gen_d_t, n_p_d_t, q_p_H, q_p_CS, q_p_CL, X_ex_d_t, w_gen_d_t, Theta_ex_d_t, L_wtr, region) # (39) V_hs_min = get_V_hs_min(V_vent_g_i) # (38) Q_hs_rtd_C = get_Q_hs_rtd_C(q_hs_rtd_C) # (37) Q_hs_rtd_H = get_Q_hs_rtd_H(q_hs_rtd_H) # (36) V_dash_hs_supply_d_t = get_V_dash_hs_supply_d_t(V_hs_min, V_hs_dsgn_H, V_hs_dsgn_C, Q_hs_rtd_H, Q_hs_rtd_C, Q_hat_hs_d_t, region) # (45) r_supply_des_i = get_r_supply_des_i(A_HCZ_i) # (44) V_dash_supply_d_t_i = get_V_dash_supply_d_t_i(r_supply_des_i, V_dash_hs_supply_d_t, V_vent_g_i) # (53) X_star_NR_d_t = get_X_star_NR_d_t(X_star_HBR_d_t, L_CL_d_t_i, L_wtr, V_vent_l_NR_d_t, V_dash_supply_d_t_i, region) # (52) Theta_star_NR_d_t = get_Theta_star_NR_d_t(Theta_star_HBR_d_t, Q, A_NR, V_vent_l_NR_d_t, V_dash_supply_d_t_i, U_prt, A_prt_i, L_H_d_t_i, L_CS_d_t_i, region) # (49) X_NR_d_t = get_X_NR_d_t(X_star_NR_d_t) # (47) X_HBR_d_t_i = get_X_HBR_d_t_i(X_star_HBR_d_t) # (11) Q_star_trs_prt_d_t_i = get_Q_star_trs_prt_d_t_i(U_prt, A_prt_i, Theta_star_HBR_d_t, Theta_star_NR_d_t) # (10) L_star_CL_d_t_i = get_L_star_CL_d_t_i(L_CS_d_t_i, L_CL_d_t_i, region) # (9) L_star_CS_d_t_i = get_L_star_CS_d_t_i(L_CS_d_t_i, Q_star_trs_prt_d_t_i, region) # (8) L_star_H_d_t_i = get_L_star_H_d_t_i(L_H_d_t_i, Q_star_trs_prt_d_t_i, region) # (33) L_star_CL_d_t = get_L_star_CL_d_t(L_star_CL_d_t_i) # (32) L_star_CS_d_t = get_L_star_CS_d_t(L_star_CS_d_t_i) # (31) L_star_CL_max_d_t = get_L_star_CL_max_d_t(L_star_CS_d_t) # (30) L_star_dash_CL_d_t = get_L_star_dash_CL_d_t(L_star_CL_max_d_t, L_star_CL_d_t) # (29) L_star_dash_C_d_t = get_L_star_dash_C_d_t(L_star_CS_d_t, L_star_dash_CL_d_t) # (28) SHF_dash_d_t = get_SHF_dash_d_t(L_star_CS_d_t, L_star_dash_C_d_t) # (27) Q_hs_max_C_d_t = get_Q_hs_max_C_d_t(q_hs_rtd_C) # (26) Q_hs_max_CL_d_t = get_Q_hs_max_CL_d_t(Q_hs_max_C_d_t, SHF_dash_d_t, L_star_dash_CL_d_t) # (25) Q_hs_max_CS_d_t = get_Q_hs_max_CS_d_t(Q_hs_max_C_d_t, SHF_dash_d_t) # (24) C_df_H_d_t = get_C_df_H_d_t(Theta_ex_d_t, h_ex_d_t) # (23) Q_hs_max_H_d_t = get_Q_hs_max_H_d_t(q_hs_rtd_H, C_df_H_d_t) # (20) X_star_hs_in_d_t = get_X_star_hs_in_d_t(X_star_NR_d_t) # (19) Theta_star_hs_in_d_t = get_Theta_star_hs_in_d_t(Theta_star_NR_d_t) # (18) X_hs_out_min_C_d_t = get_X_hs_out_min_C_d_t(X_star_hs_in_d_t, Q_hs_max_CL_d_t, V_dash_supply_d_t_i) # (22) X_req_d_t_i = get_X_req_d_t_i(X_star_HBR_d_t, L_star_CL_d_t_i, V_dash_supply_d_t_i, region) # (21) Theta_req_d_t_i = get_Theta_req_d_t_i(Theta_sur_d_t_i, Theta_star_HBR_d_t, V_dash_supply_d_t_i, L_star_H_d_t_i, L_star_CS_d_t_i, l_duct_i, region) # (15) X_hs_out_d_t = get_X_hs_out_d_t(X_NR_d_t, X_req_d_t_i, V_dash_supply_d_t_i, X_hs_out_min_C_d_t, L_star_CL_d_t_i, region) # 式(14)(46)(48)の条件に合わせてTheta_NR_d_tを初期化 Theta_NR_d_t = np.zeros(24 * 365) # (17) Theta_hs_out_min_C_d_t = get_Theta_hs_out_min_C_d_t(Theta_star_hs_in_d_t, Q_hs_max_CS_d_t, V_dash_supply_d_t_i) # (16) Theta_hs_out_max_H_d_t = get_Theta_hs_out_max_H_d_t(Theta_star_hs_in_d_t, Q_hs_max_H_d_t, V_dash_supply_d_t_i) # L_star_H_d_t_i,L_star_CS_d_t_iの暖冷房区画1~5を合算し0以上だった場合の順序で計算 # (14) Theta_hs_out_d_t = get_Theta_hs_out_d_t(VAV, Theta_req_d_t_i, V_dash_supply_d_t_i, L_star_H_d_t_i, L_star_CS_d_t_i, region, Theta_NR_d_t, Theta_hs_out_max_H_d_t, Theta_hs_out_min_C_d_t) # (43) V_supply_d_t_i = get_V_supply_d_t_i(L_star_H_d_t_i, L_star_CS_d_t_i, Theta_sur_d_t_i, l_duct_i, Theta_star_HBR_d_t, V_vent_g_i, V_dash_supply_d_t_i, VAV, region, Theta_hs_out_d_t) # (41) Theta_supply_d_t_i = get_Thata_supply_d_t_i(Theta_sur_d_t_i, Theta_hs_out_d_t, Theta_star_HBR_d_t, l_duct_i, V_supply_d_t_i, L_star_H_d_t_i, L_star_CS_d_t_i, region) # (46) Theta_HBR_d_t_i = get_Theta_HBR_d_t_i(Theta_star_HBR_d_t, V_supply_d_t_i, Theta_supply_d_t_i, U_prt, A_prt_i, Q, A_HCZ_i, L_star_H_d_t_i, L_star_CS_d_t_i, region) # (48) Theta_NR_d_t = get_Theta_NR_d_t(Theta_star_NR_d_t, Theta_star_HBR_d_t, Theta_HBR_d_t_i, A_NR, V_vent_l_NR_d_t, V_dash_supply_d_t_i, V_supply_d_t_i, U_prt, A_prt_i, Q) # L_star_H_d_t_i,L_star_CS_d_t_iの暖冷房区画1~5を合算し0以下だった場合の為に再計算 # (14) Theta_hs_out_d_t = get_Theta_hs_out_d_t(VAV, Theta_req_d_t_i, V_dash_supply_d_t_i, L_star_H_d_t_i, L_star_CS_d_t_i, region, Theta_NR_d_t, Theta_hs_out_max_H_d_t, Theta_hs_out_min_C_d_t) # (42) X_supply_d_t_i = get_X_supply_d_t_i(X_star_HBR_d_t, X_hs_out_d_t, L_star_CL_d_t_i, region) # (35) V_hs_vent_d_t = get_V_hs_vent_d_t(V_vent_g_i, general_ventilation) # (34) V_hs_supply_d_t = get_V_hs_supply_d_t(V_supply_d_t_i) # (13) X_hs_in_d_t = get_X_hs_in_d_t(X_NR_d_t) # (12) Theta_hs_in_d_t = get_Theta_hs_in_d_t(Theta_NR_d_t) # (7) L_dash_CL_d_t_i = get_L_dash_CL_d_t_i(V_supply_d_t_i, X_HBR_d_t_i, X_supply_d_t_i, region) # (6) L_dash_CS_d_t_i = get_L_dash_CS_d_t_i(V_supply_d_t_i, Theta_supply_d_t_i, Theta_HBR_d_t_i, region) # (5) L_dash_H_d_t_i = get_L_dash_H_d_t_i(V_supply_d_t_i, Theta_supply_d_t_i, Theta_HBR_d_t_i, region) # (4) Q_UT_CL_d_t_i = get_Q_UT_CL_d_t_i(L_star_CL_d_t_i, L_dash_CL_d_t_i) # (3) Q_UT_CS_d_t_i = get_Q_UT_CS_d_t_i(L_star_CS_d_t_i, L_dash_CS_d_t_i) # (2) Q_UT_H_d_t_i = get_Q_UT_H_d_t_i(L_star_H_d_t_i, L_dash_H_d_t_i) # (1) E_C_UT_d_t = get_E_C_UT_d_t(Q_UT_CL_d_t_i, Q_UT_CS_d_t_i, region) return E_C_UT_d_t, Q_UT_H_d_t_i, Q_UT_CS_d_t_i, Q_UT_CL_d_t_i, Theta_hs_out_d_t, Theta_hs_in_d_t, \ X_hs_out_d_t, X_hs_in_d_t, V_hs_supply_d_t, V_hs_vent_d_t, C_df_H_d_t # ============================================================================ # 5 暖房エネルギー消費量 # ============================================================================ # ============================================================================ # 5.1 消費電力量 # ============================================================================ # 4_2_aで実装 # ============================================================================ # 5.2 ガス消費量 # ============================================================================ # 日付dの時刻tにおける1時間当たりのガス消費量 (MJ/h) def get_E_G_H_d_t(): """ガス消費量 ガス消費量は0とする Args: Returns: ndarray: ガス消費量 """ # ガス消費量は0とする return np.zeros(24 * 365) # ============================================================================ # 5.3 灯油消費量 # ============================================================================ # 日付dの時刻tにおける1時間当たりの灯油消費量 (MJ/h) def get_E_K_H_d_t(): """灯油消費量 灯油消費量は0とする Args: Returns: ndarray: 灯油消費量 """ # 灯油消費量は0とする return np.zeros(24 * 365) # ============================================================================ # 5.4 その他の燃料による一次エネルギ―消費量 # ============================================================================ # 日付dの時刻tにおける1時間当たりのその他の燃料による一次エネルギー消費量 (MJ/h) def get_E_M_H_d_t(): """その他の燃料による一次エネルギー消費量 Args: Returns: ndarray: その他の燃料による一次エネルギー消費量 """ # その他の燃料による一次エネルギー消費量は0とする return np.zeros(24 * 365) # ============================================================================ # 6 冷房エネルギー消費量 # ============================================================================ # ============================================================================ # 6.1 消費電力量 # ============================================================================ # 4_2_aで実装 # ============================================================================ # 6.2 ガス消費量 # ============================================================================ # 日付dの時刻tにおける1時間当たりのガス消費量 (MJ/h) def get_E_G_C_d_t(): """ """ # ガス消費量は0とする return np.zeros(24 * 365) # ============================================================================ # 6.3 灯油消費量 # ============================================================================ # 日付dの時刻tにおける1時間当たりの灯油消費量 (MJ/h) def get_E_K_C_d_t(): """ """ # 灯油消費量は0とする return np.zeros(24 * 365) # ============================================================================ # 6.4 その他の燃料による一次エネルギ―消費量 # ============================================================================ # 日付dの時刻tにおける1時間当たりのその他の燃料による一次エネルギー消費量 (MJ/h) def get_E_M_C_d_t(): """ """ # その他の燃料による一次エネルギー消費量は0とする return np.zeros(24 * 365) # ============================================================================ # 7 冷房設備の未処理冷房負荷の設計一次エネルギー消費量相当値 # ============================================================================ def get_E_C_UT_d_t(Q_UT_CL_d_t_i, Q_UT_CS_d_t_i, region): """(1) Args: Q_UT_CL_d_t_i: 日付dの時刻tにおける1時間当たりの暖冷房区画iに設置された冷房機器の未処理冷房潜熱負荷(MJ/h) Q_UT_CS_d_t_i: 日付dの時刻tにおける1時間当たりの暖冷房区画iに設置された冷房機器の未処理冷房顕熱負荷(MJ/h) region: 地域区分 Returns: 日付dの時刻tにおける1時間当たりの冷房設備の未処理冷房負荷の設計一次エネルギー消費量相当値(MJ/h) """ # 暖房設備の未処理冷房負荷を未処理暖房負荷の設計一次エネルギー消費量相当値に換算する係数α_(UT,H)(-)を取得 from pyhees.section4_1 import \ get_alpha_UT_H_A region = 7 if region == 8 else region alpha_UT_H_A = get_alpha_UT_H_A(region) # 冷房設備の未処理冷房負荷を未処理冷房負荷の設計一次エネルギー消費量相当値に換算する係数(-) alpha_UT_C = alpha_UT_H_A return np.sum(alpha_UT_C * (Q_UT_CL_d_t_i + Q_UT_CS_d_t_i), axis=0) # ============================================================================ # 8 未処理負荷 # ============================================================================ # メモ: i=1-5のみ i>=6 の場合はどこで計算するのか要確認 def get_Q_UT_H_d_t_i(L_star_H_d_t_i, L_dash_H_d_t_i): """(2) Args: L_star_H_d_t_i: 日付dの時刻tにおける暖冷房区画iの1時間当たりの熱損失を含む負荷バランス時の暖房負荷(MJ/h) L_dash_H_d_t_i: 日付dの時刻tにおける暖冷房区画iの1時間当たりの間仕切りの熱損失を含む実際の暖房負荷(MJ/h) Returns: 日付dの時刻tにおける1時間当たりの暖冷房区画iに設置された暖房設備機器等の未処理暖房負荷(MJ/h) """ return np.clip(L_star_H_d_t_i[:5] - L_dash_H_d_t_i[:5], 0, None) # メモ: i=1-5のみ i>=6 の場合はどこで計算するのか要確認 def get_Q_UT_CS_d_t_i(L_star_CS_d_t_i, L_dash_CS_d_t_i): """(3) Args: L_star_CS_d_t_i: 日付dの時刻tにおける暖冷房区画iの1時間当たりの熱損失を含む負荷バランス時の冷房顕熱負荷(MJ/h) L_dash_CS_d_t_i: 日付dの時刻tにおける暖冷房区画iの1時間当たりの間仕切りの熱損失を含む実際の冷房顕熱負荷(MJ/h) Returns: 日付dの時刻tにおける1時間当たりの暖冷房区画iに設置された冷房機器の未処理冷房顕熱負荷(MJ/h) """ return np.clip(L_star_CS_d_t_i[:5] - L_dash_CS_d_t_i[:5], 0, None) # メモ: i=1-5のみ i>=6 の場合はどこで計算するのか要確認 def get_Q_UT_CL_d_t_i(L_star_CL_d_t_i, L_dash_CL_d_t_i): """(4) Args: L_star_CL_d_t_i: 日付dの時刻tにおける暖冷房区画iの1時間当たりの熱損失を含む負荷バランス時の冷房潜熱負荷(MJ/h) L_dash_CS_d_t_i: 日付dの時刻tにおける暖冷房区画iの1時間当たりの間仕切りの熱損失を含む実際の冷房潜熱負荷(MJ/h) L_dash_CL_d_t_i: returns: 日付dの時刻tにおける1時間当たりの暖冷房区画iに設置された冷房機器の未処理冷房潜熱負荷(MJ/h) Returns: 日付dの時刻tにおける1時間当たりの暖冷房区画iに設置された冷房機器の未処理冷房潜熱負荷(MJ/h) """ return np.clip(L_star_CL_d_t_i[:5] - L_dash_CL_d_t_i[:5], 0, None) # メモ: i=1-5のみ i>=6 の場合はどこで計算するのか要確認 def get_L_dash_H_d_t_i(V_supply_d_t_i, Theta_supply_d_t_i, Theta_HBR_d_t_i, region): """(5-1)(5-2)(5-3) Args: V_supply_d_t_i: 日付dの時刻tにおける暖冷房区画iの吹き出し風量(m3/h) Theta_supply_d_t_i: 日付dの時刻tにおける暖冷房区画iの吹き出し温度(℃) Theta_HBR_d_t_i: 日付dの時刻tにおける暖冷房区画iの実際の居室の室温(℃) region: 地域区分 Returns: 日付dの時刻tにおける暖冷房区画iの1時間当たりの間仕切りの熱損失を含む実際の暖房負荷(MJ/h) """ c_p_air = get_c_p_air() rho_air = get_rho_air() H, C, M = get_season_array_d_t(region) L_dash_H_d_t_i = np.zeros((5, 24 * 365)) # 暖房期 (5-1) L_dash_H_d_t_i[:, H] = c_p_air * rho_air * V_supply_d_t_i[:, H] * (Theta_supply_d_t_i[:, H] - Theta_HBR_d_t_i[:, H]) * 10 ** -6 # 冷房期 (5-2) L_dash_H_d_t_i[:, C] = 0.0 # 中間期 (5-3) L_dash_H_d_t_i[:, M] = 0.0 return L_dash_H_d_t_i def get_L_dash_CS_d_t_i(V_supply_d_t_i, Theta_supply_d_t_i, Theta_HBR_d_t_i, region): """(6-1)(6-2)(6-3) Args: V_supply_d_t_i: 日付dの時刻tにおける暖冷房区画iの吹き出し風量(m3/h) Theta_supply_d_t_i: 日付dの時刻tにおける暖冷房区画iの吹き出し温度(℃) Theta_HBR_d_t_i: 日付dの時刻tにおける暖冷房区画iの実際の居室の室温(℃) region: 地域区分 Returns: 日付dの時刻tにおける暖冷房区画iの1時間当たりの間仕切りの熱損失を含む実際の冷房顕熱および潜熱負荷(MJ/h) """ c_p_air = get_c_p_air() rho_air = get_rho_air() H, C, M = get_season_array_d_t(region) L_dash_CS_d_t_i = np.zeros((5, 24 * 365)) # 暖房期 (6-1) L_dash_CS_d_t_i[:, H] = 0.0 # 冷房期 (6-2) L_dash_CS_d_t_i[:, C] = c_p_air * rho_air * V_supply_d_t_i[:, C] * (Theta_HBR_d_t_i[:, C] - Theta_supply_d_t_i[:, C]) * 10 ** -6 # 中間期 (6-3) L_dash_CS_d_t_i[:, M] = 0.0 return L_dash_CS_d_t_i def get_L_dash_CL_d_t_i(V_supply_d_t_i, X_HBR_d_t_i, X_supply_d_t_i, region): """(7-1)(7-2)(7-3) Args: V_supply_d_t_i: 日付dの時刻tにおける暖冷房区画iの吹き出し風量(m3/h) X_HBR_d_t_i: 日付dの時刻tにおける暖冷房区画iの実際の居室の絶対湿度(kg/kg(DA)) X_supply_d_t_i: 日付dの時刻tにおける暖冷房区画iの吹き出し絶対湿度(kg/kg(DA)) region: 地域区分 Returns: 日付dの時刻tにおける暖冷房区画iの1時間当たりの間仕切りの熱損失を含む実際の冷房顕熱および潜熱負荷(MJ/h) """ L_wtr = get_L_wtr() rho_air = get_rho_air() H, C, M = get_season_array_d_t(region) L_dash_CL_d_t_i = np.zeros((5, 24 * 365)) # 暖房期 (7-1) L_dash_CL_d_t_i[:, H] = 0.0 # 冷房期 (7-2) L_dash_CL_d_t_i[:, C] = L_wtr * rho_air * V_supply_d_t_i[:, C] * (X_HBR_d_t_i[:, C] - X_supply_d_t_i[:, C]) * 10 ** -3 # 中間期 (7-3) L_dash_CL_d_t_i[:, M] = 0.0 return L_dash_CL_d_t_i def get_L_star_H_d_t_i(L_H_d_t_i, Q_star_trs_prt_d_t_i, region): """(8-1)(8-2)(8-3) Args: L_H_d_t_i: 日付dの時刻tにおける暖冷房区画iの1時間当たりの暖房負荷(MJ/h) Q_star_trs_prt_d_t_i: 日付dの時刻tにおける暖冷房区画iの1時間当たりの熱損失を含む負荷バランス時の非居室への熱移動(MJ/h) region: 地域区分 Returns: 日付dの時刻tにおける暖冷房区画iの1時間当たりの熱損失を含む負荷バランス時の暖房負荷 """ H, C, M = get_season_array_d_t(region) L_H_d_t_i = L_H_d_t_i[:5] f = L_H_d_t_i > 0 Hf = np.logical_and(H, f) L_star_H_d_t_i = np.zeros((5, 24 * 365)) L_star_H_d_t_i[Hf] = np.clip(L_H_d_t_i[Hf] + Q_star_trs_prt_d_t_i[Hf], 0, None) return L_star_H_d_t_i def get_L_star_CS_d_t_i(L_CS_d_t_i, Q_star_trs_prt_d_t_i, region): """(9-2)(9-2)(9-3) Args: L_CS_t_i: 日付dの時刻tにおける暖冷房区画iの1時間当たりの冷房顕熱負荷(MJ/h) Q_star_trs_prt_d_t_i: 日付dの時刻tにおける暖冷房区画iの1時間当たりの熱損失を含む負荷バランス時の非居室への熱移動(MJ/h) region: 地域区分 L_CS_d_t_i: returns: 日付dの時刻tにおける暖冷房区画iの1時間当たりの熱損失を含む負荷バランス時の冷房顕熱負荷 Returns: 日付dの時刻tにおける暖冷房区画iの1時間当たりの熱損失を含む負荷バランス時の冷房顕熱負荷 """ H, C, M = get_season_array_d_t(region) L_CS_d_t_i = L_CS_d_t_i[:5] f = L_CS_d_t_i > 0 Cf = np.logical_and(C, f) L_star_CS_d_t_i = np.zeros((5, 24 * 365)) L_star_CS_d_t_i[Cf] = np.clip(L_CS_d_t_i[Cf] + Q_star_trs_prt_d_t_i[Cf], 0, None) return L_star_CS_d_t_i def get_L_star_CL_d_t_i(L_CS_d_t_i, L_CL_d_t_i, region): """(10-1)(10-2)(10-3) Args: L_CL_d_t_i: 日付dの時刻tにおける暖冷房区画iの1時間当たりの冷房潜熱負荷(MJ/h) region: 地域区分 L_CS_d_t_i: returns: 日付dの時刻tにおける暖冷房区画iの1時間当たりの熱損失を含む負荷バランス時の冷房潜熱負荷 Returns: 日付dの時刻tにおける暖冷房区画iの1時間当たりの熱損失を含む負荷バランス時の冷房潜熱負荷 """ H, C, M = get_season_array_d_t(region) L_CL_d_t_i = L_CL_d_t_i[:5] L_CS_d_t_i = L_CS_d_t_i[:5] f = L_CS_d_t_i > 0 Cf = np.logical_and(C, f) L_star_CL_d_t_i = np.zeros((5, 24 * 365)) L_star_CL_d_t_i[Cf] = L_CL_d_t_i[Cf] return L_star_CL_d_t_i def get_Q_star_trs_prt_d_t_i(U_prt, A_prt_i, Theta_star_HBR_d_t, Theta_star_NR_d_t): """(11) Args: U_prt: 間仕切りの熱貫流率(W/(m2・K)) A_prt_i: 暖冷房区画iから見た非居室の間仕切りの面積(m2) Theta_star_HBR_d_t: 日付dの時刻tにおける負荷バランス時の居室の室温(℃) Theta_star_NR_d_t: 日付dの時刻tにおける負荷バランス時の非居室の室温(℃) Returns: 日付dの時刻tにおける暖冷房区画iの1時間当たりの熱損失を含む負荷バランス時の非居室への熱移動(MJ/h) """ return U_prt * A_prt_i[:5, np.newaxis] * (Theta_star_HBR_d_t - Theta_star_NR_d_t) * 3600 * 10 ** -6 # ============================================================================ # 9 熱源機 # ============================================================================ # ============================================================================ # 9.1 熱源機の入り口における空気温度・絶対湿度 # ============================================================================ def get_Theta_hs_in_d_t(Theta_NR_d_t): """(12) Args: Theta_NR_d_t: 日付dの時刻tにおける非居室の室温(℃) Returns: 日付dの時刻tにおける熱源機の入口における空気温度(℃) """ return Theta_NR_d_t def get_X_hs_in_d_t(X_NR_d_t): """(13) Args: X_NR_d_t: 日付dの時刻tにおける非居室の絶対湿度(kg/kg(DA)) Returns: 日付dの時刻tにおける熱源機の入口における絶対湿度(kg/kg(DA)) """ return X_NR_d_t # ============================================================================ # 9.2 熱源機の出口における空気温度・絶対湿度 # ============================================================================ def get_Theta_hs_out_d_t(VAV, Theta_req_d_t_i, V_dash_supply_d_t_i, L_star_H_d_t_i, L_star_CS_d_t_i, region, Theta_NR_d_t, Theta_hs_out_max_H_d_t, Theta_hs_out_min_C_d_t): """(14-1)(14-2)(14-3)(14-4)(14-5)(14-6) Args: VAV: VAV有無 Theta_req_d_t_i: 日付dの時刻tにおける暖冷房区画iの熱源機の出口における要求空気温度(℃) V_dash_supply_d_t_i: 日付dの時刻tにおける暖冷房区画iのVAV調整前の吹き出し風量(m3/h) L_star_H_d_t_i: 日付dの時刻tにおける暖冷房区画iの1時間当たりの熱損失を含む負荷バランス時の暖房負荷(MJ/h) L_star_CS_d_t_i: 日付dの時刻tにおける暖冷房区画iの1時間当たりの熱損失を含む負荷バランス時の冷房負荷(MJ/h) region: 地域区分 Theta_NR_d_t: 日付dの時刻tにおける非居室の室温(℃) Theta_hs_out_max_H_d_t: param Theta_hs_out_min_C_d_t: Theta_hs_out_min_C_d_t: Returns: """ H, C, M = get_season_array_d_t(region) Theta_hs_out_d_t = np.zeros(24 * 365) f1 = np.logical_and(H, np.sum(L_star_H_d_t_i[:5], axis=0) > 0) f2 = np.logical_and(H, np.sum(L_star_H_d_t_i[:5], axis=0) <= 0) f3 = np.logical_and(C, np.sum(L_star_CS_d_t_i[:5], axis=0) > 0) f4 = np.logical_and(C, np.sum(L_star_CS_d_t_i[:5], axis=0) <= 0) if VAV == False: # 暖房期および冷房期 (14-1) Theta_hs_out_d_t[f1] = np.sum(Theta_req_d_t_i[:5, f1] * V_dash_supply_d_t_i[:5, f1], axis=0) / \ np.sum(V_dash_supply_d_t_i[:5, f1], axis=0) Theta_hs_out_d_t[f2] = Theta_NR_d_t[f2] # 熱源機の出口における空気温度θ_(hs,out,d,t)は、暖房期においては、暖房時の熱源機の出口における # 空気温度の最高値θ_(hs,out,max,H,d,t)を超える場合は、暖房時の熱源機の出口における空気温度の最高値θ_(hs,out,max,H,d,t)に等しい Theta_hs_out_d_t[H] = np.clip(Theta_hs_out_d_t[H], None, Theta_hs_out_max_H_d_t[H]) # 冷房期 (14-2) Theta_hs_out_d_t[f3] = np.sum(Theta_req_d_t_i[:5, f3] * V_dash_supply_d_t_i[:5, f3], axis=0) / \ np.sum(V_dash_supply_d_t_i[:5, f3], axis=0) Theta_hs_out_d_t[f4] = Theta_NR_d_t[f4] # 冷房期においては、冷房時の熱源機の出口における空気温度の最低値θ_(hs,out,min,C,d,t)を下回る場合は、 # 冷房時の熱源機の出口における空気温度の最低値θ_(hs,out,min,C,d,t)に等しい Theta_hs_out_d_t[C] = np.clip(Theta_hs_out_d_t[C], Theta_hs_out_min_C_d_t[C], None) # 中間期 (14-3) Theta_hs_out_d_t[M] = Theta_NR_d_t[M] else: # 暖房期 (14-4) Theta_hs_out_d_t[f1] = np.amax(Theta_req_d_t_i[:5, f1], axis=0) Theta_hs_out_d_t[f2] = Theta_NR_d_t[f2] # 熱源機の出口における空気温度θ_(hs,out,d,t)は、暖房期においては、暖房時の熱源機の出口における # 空気温度の最高値θ_(hs,out,max,H,d,t)を超える場合は、暖房時の熱源機の出口における空気温度の最高値θ_(hs,out,max,H,d,t)に等しい Theta_hs_out_d_t[H] = np.clip(Theta_hs_out_d_t[H], None, Theta_hs_out_max_H_d_t[H]) # 冷房期 (14-5) Theta_hs_out_d_t[f3] = np.amin(Theta_req_d_t_i[:5, f3], axis=0) Theta_hs_out_d_t[f4] = Theta_NR_d_t[f4] # 冷房期においては、冷房時の熱源機の出口における空気温度の最低値θ_(hs,out,min,C,d,t)を下回る場合は、 # 冷房時の熱源機の出口における空気温度の最低値θ_(hs,out,min,C,d,t)に等しい Theta_hs_out_d_t[C] = np.clip(Theta_hs_out_d_t[C], Theta_hs_out_min_C_d_t[C], None) # 中間期 (14-6) Theta_hs_out_d_t[M] = Theta_NR_d_t[M] return Theta_hs_out_d_t def get_X_hs_out_d_t(X_NR_d_t, X_req_d_t_i, V_dash_supply_d_t_i, X_hs_out_min_C_d_t, L_star_CL_d_t_i, region): """(15-1)(15-2) Args: X_NR_d_t: 日付dの時刻tにおける非居室の絶対湿度(kg/kg(DA)) X_req_d_t_i: 日付dの時刻tにおける暖冷房区画iの熱源機の出口における要求絶対湿度(kg/kg(DA)) V_dash_supply_d_t_i: 日付dの時刻tにおける暖冷房区画iのVAV調整前の吹き出し風量(m3/h) X_hs_out_min_C_d_t: 日付dの時刻tにおける冷房時の熱源機の出口における絶対湿度の最低値(kg/kg(DA)) L_star_CL_d_t_i: param region: 地域区分 region: returns: 日付dの時刻tにおける熱源機の出口における絶対湿度(kg/kg(DA)) Returns: 日付dの時刻tにおける熱源機の出口における絶対湿度(kg/kg(DA)) """ H, C, M = get_season_array_d_t(region) X_hs_out_d_t = np.zeros(24 * 365) # 暖房期および中間期 (15-1) HM = np.logical_or(H, M) X_hs_out_d_t[HM] = X_NR_d_t[HM] # 冷房期 (15-2) f1 = np.logical_and(C, np.sum(L_star_CL_d_t_i[:5], axis=0) > 0) f2 = np.logical_and(C, np.sum(L_star_CL_d_t_i[:5], axis=0) <= 0) X_hs_out_d_t[f1] = np.sum(X_req_d_t_i[:5, f1] * V_dash_supply_d_t_i[:5, f1], axis=0) / \ np.sum(V_dash_supply_d_t_i[:5, f1], axis=0) X_hs_out_d_t[f2] = X_NR_d_t[f2] # 冷房期に限って判定した方が良い??仕様があいまいな気がする!! X_hs_out_d_t = np.clip(X_hs_out_d_t, X_hs_out_min_C_d_t, None) return X_hs_out_d_t # ============================================================================ # 9.3 最大出力時の熱源機の出口の空気温度・絶対湿度 # ============================================================================ def get_Theta_hs_out_max_H_d_t(Theta_star_hs_in_d_t, Q_hs_max_H_d_t, V_dash_supply_d_t_i): """(16) Args: Theta_star_hs_in_d_t: 日付dの時刻tにおける負荷バランス時の熱源機の入口における空気温度(℃) Q_hs_max_H_d_t: 日付dの時刻tにおける1時間当たりの熱源機の最大暖房出力(MJ/h) V_dash_supply_d_t_i: 日付dの時刻tにおける暖冷房区画iのVAV調整前の吹き出し風量(m3/h) Returns: 日付dの時刻tにおける暖房時の熱源機の出口における空気温度の最高値(℃) """ c_p_air = get_c_p_air() rho_air = get_rho_air() return np.clip(Theta_star_hs_in_d_t + ((Q_hs_max_H_d_t * 10 ** 6) / \ (c_p_air * rho_air * np.sum(V_dash_supply_d_t_i[:5, :], axis=0))), None, 45) def get_Theta_hs_out_min_C_d_t(Theta_star_hs_in_d_t, Q_hs_max_CS_d_t, V_dash_supply_d_t_i): """(17) Args: Theta_star_hs_in_d_t: 日付dの時刻tにおける負荷バランス時の熱源機の入口における空気温度(℃) Q_hs_max_CS_d_t: 日付dの時刻tにおける1時間当たりの熱源機の最大冷房顕熱出力(MJ/h) V_dash_supply_d_t_i: 日付dの時刻tにおける暖冷房区画iのVAV調整前の吹き出し風量(m3/h) Returns: 日付dの時刻tにおける冷房時の熱源機の出口における空気温度の最低値(℃) """ c_p_air = get_c_p_air() rho_air = get_rho_air() return np.clip(Theta_star_hs_in_d_t - ((Q_hs_max_CS_d_t * 10 ** 6) / \ (c_p_air * rho_air * np.sum(V_dash_supply_d_t_i[:5, :], axis=0))), 15, None) def get_X_hs_out_min_C_d_t(X_star_hs_in_d_t, Q_hs_max_CL_d_t, V_dash_supply_d_t_i): """(18) Args: X_star_hs_in_d_t: 日付dの時刻tにおける負荷バランス時の熱源機の入口における絶対湿度(kg/kg(DA)) Q_hs_max_CL_d_t: 日付dの時刻tにおける1時間当たりの熱源機の最大冷房潜熱出力(MJ/h) V_dash_supply_d_t_i: 日付dの時刻tにおける暖冷房区画iのVAV調整前の吹き出し風量(m3/h) Returns: 日付dの時刻tにおける冷房時の熱源機の出口における空気温度の最低値(℃) """ rho_air = get_rho_air() L_wtr = get_L_wtr() return X_star_hs_in_d_t - ((Q_hs_max_CL_d_t * 10 ** 3) / (rho_air * L_wtr * np.sum(V_dash_supply_d_t_i[:5, :], axis=0))) def get_Theta_star_hs_in_d_t(Theta_star_NR_d_t): """(19) Args: Theta_star_NR_d_t: 日付dの時刻tにおける負荷バランス時の非居室の室温(℃) Returns: 日付dの時刻tにおける負荷バランス時の熱源機の入口における空気温度(℃) """ return Theta_star_NR_d_t def get_X_star_hs_in_d_t(X_star_NR_d_t): """(20) Args: X_star_NR_d_t: 日付dの時刻tにおける負荷バランス時の非居室の絶対湿度(kg/kg(DA)) Returns: 日付dの時刻tにおける負荷バランス時の熱源機の入口における絶対湿度(kg/kg(DA)) """ return X_star_NR_d_t # ============================================================================ # 9.4 熱源機の出口における要求空気温度・絶対湿度 # ============================================================================ def get_Theta_req_d_t_i(Theta_sur_d_t_i, Theta_star_HBR_d_t, V_dash_supply_d_t_i, L_star_H_d_t_i, L_star_CS_d_t_i, l_duct_i, region): """(21-1)(21-2)(21-3) Args: Theta_sur_d_t_i: 日付dの時刻tにおける負荷バランス時の居室の室温(℃) Theta_star_HBR_d_t: 日付dの時刻tにおける負荷バランス時の居室の室温(℃) V_dash_supply_d_t_i: 日付dの時刻tにおける暖冷房区画iのVAV調整前の吹き出し風量(m3/h) L_star_H_d_t_i: 日付dの時刻tにおける暖冷房区画iの1時間当たりの熱損失を含む負荷バランス時の暖房負荷(MJ/h) L_star_CS_d_t_i: 日付dの時刻tにおける暖冷房区画iの1時間当たりの熱取得を含む負荷バランス時の冷房顕熱負荷(MJ/h) l_duct_i: ダクトの長さ(m) region: 地域区分 Returns: 日付dの時刻tにおける暖冷房区画iの熱源機の出口における要求空気温度(℃) """ c_p_air = get_c_p_air() rho_air = get_rho_air() # ダクトiの線熱損失係数(W/(m・K)) phi_i = get_phi_i() H, C, M = get_season_array_d_t(region) Theta_req_d_t_i = np.zeros((5, 24 * 365)) e_exp_H = (phi_i[:, np.newaxis] * l_duct_i[:, np.newaxis] * 3600) / (c_p_air * rho_air * V_dash_supply_d_t_i[:, H]) # 暖房期 (21-1) Theta_req_d_t_i[:, H] = Theta_sur_d_t_i[:, H] \ + (Theta_star_HBR_d_t[H] + (L_star_H_d_t_i[:, H] * 10 ** 6) \ / (c_p_air * rho_air * V_dash_supply_d_t_i[:, H]) - Theta_sur_d_t_i[:, H]) \ * np.exp(e_exp_H) # 暖冷房区画iの熱源機の出口における要求空気温度が負荷バランス時の居室の室温を下回る場合 Theta_req_d_t_i[:, H] = np.clip(Theta_req_d_t_i[:, H], Theta_star_HBR_d_t[H], None) # 冷房期 (21-2) e_exp_C = (phi_i[:, np.newaxis] * l_duct_i[:, np.newaxis] * 3600) / (c_p_air * rho_air * V_dash_supply_d_t_i[:, C]) Theta_req_d_t_i[:, C] = Theta_sur_d_t_i[:, C] \ - (Theta_sur_d_t_i[:, C] - Theta_star_HBR_d_t[C] + (L_star_CS_d_t_i[:, C] * 10 ** 6) \ / (c_p_air * rho_air * V_dash_supply_d_t_i[:, C])) \ * np.exp(e_exp_C) # 暖冷房区画iの熱源機の出口における要求空気温度が負荷バランス時の居室の室温を上回る場合 Theta_req_d_t_i[:, C] = np.clip(Theta_req_d_t_i[:, C], None, Theta_star_HBR_d_t[C]) #中間期 (10-3) Theta_req_d_t_i[:, M] = Theta_star_HBR_d_t[M] return Theta_req_d_t_i def get_X_req_d_t_i(X_star_HBR_d_t, L_star_CL_d_t_i, V_dash_supply_d_t_i, region): """(22-1)(22-2) Args: X_star_HBR_d_t: 日付dの時刻tにおける負荷バランス時の居室の絶対湿度(kg/kg(DA)) L_star_CL_d_t_i: 日付dの時刻tにおける暖冷房区画iの1時間当たりの熱取得を含む負荷バランス時の冷房潜熱負荷(MJ/h) V_dash_supply_d_t_i: 日付dの時刻tにおける暖冷房区画iのVAV調整前の吹き出し風量(m3/h) region: 地域区分 Returns: 日付dの時刻tにおける暖冷房区画iの熱源機の出口における要求絶対湿度(kg/kg(DA)) """ rho_air = get_rho_air() L_wtr = get_L_wtr() H, C, M = get_season_array_d_t(region) # 暖房期および中間期 (22-1) HM = np.logical_or(H, M) X_req_d_t_i = np.zeros((5, 24 * 365)) X_req_d_t_i[:, HM] = X_star_HBR_d_t[HM] # 冷房期 (22-2) X_req_d_t_i[:, C] = X_star_HBR_d_t[C] - (L_star_CL_d_t_i[:, C] * 10 ** 3) / (rho_air * L_wtr * V_dash_supply_d_t_i[:, C]) return X_req_d_t_i # ============================================================================ # 9.5 熱源機の最大出力 # ============================================================================ # ============================================================================ # 9.5.1 熱源機の最大暖房出力 # ============================================================================ def get_Q_hs_max_H_d_t(q_hs_rtd_H, C_df_H_d_t): """(23) Args: q_hs_rtd_H: 熱源機の定格暖房能力 (W) C_df_H_d_t: 日付dの時刻tにおけるデフロストに関する暖房出力補正係数(-) Returns: 熱源機の最大暖房出力 (MJ/h) """ alpha_max_H = get_alpha_max_H() Q_hs_max_H_d_t = np.zeros(24 * 365) if q_hs_rtd_H is not None: Q_hs_max_H_d_t = q_hs_rtd_H * alpha_max_H * C_df_H_d_t * 3600 * 10 ** -6 return Q_hs_max_H_d_t def get_alpha_max_H(): """:return: 定格暖房能力に対する最大暖房能力の比(-)""" return 1.00 def get_C_df_H_d_t(Theta_ex_d_t, h_ex_d_t): """(24-1)(24-2) Args: Theta_ex_d_t: 日付dの時刻tにおける外気温度(℃) h_ex_d_t: 日付dの時刻tにおける外気相対湿度(%) Returns: 日付dの時刻tにおけるデフロストに関する暖房出力補正係数(-) """ C_df_H_d_t = np.ones(24 * 365) C_df_H_d_t[np.logical_and(Theta_ex_d_t < 5, h_ex_d_t > 80)] = 0.77 return C_df_H_d_t # ============================================================================ # 9.5.2 熱源機の最大冷房出力 # ============================================================================ # 1時間当たりの熱源機の最大冷房顕熱出力 (24) def get_Q_hs_max_CS_d_t(Q_hs_max_C_d_t, SHF_dash_d_t): """(25) Args: Q_hs_max_C_d_t: 日付dの時刻tにおける1時間当たりの熱源機の最大冷房出力(MJ/h) SHF_dash_d_t: 日付dの時刻tにおける冷房負荷補正顕熱比(-) Returns: 日付dの時刻tにおける1時間当たりの熱源機の最大冷房顕熱出力(MJ/h) """ return Q_hs_max_C_d_t * SHF_dash_d_t # 1時間当たりの熱源機の最大冷房潜熱出力 (25) def get_Q_hs_max_CL_d_t(Q_hs_max_C_d_t, SHF_dash_d_t, L_star_dash_CL_d_t): """(26) Args: Q_hs_max_C_d_t: 日付dの時刻tにおける1時間当たりの熱源機の最大冷房出力(MJ/h) SHF_dash_d_t: 日付dの時刻tにおける冷房負荷補正顕熱比(-) L_star_dash_CL_d_t: 日付dの時刻tにおける補正冷房潜熱負荷(MJ/h) Returns: 日付dの時刻tにおける1時間当たりの熱源機の最大冷房潜熱出力(MJ/h) """ return np.min([Q_hs_max_C_d_t * (1.0 - SHF_dash_d_t), L_star_dash_CL_d_t], axis=0) # 最大冷房出力 [MJ/h] (27) def get_Q_hs_max_C_d_t(q_hs_rtd_C): """(27) Args: q_hs_rtd_C: 熱源機の冷房時の定格出力[m^3/h] Returns: 最大冷房出力 [MJ/h] """ alpha_max_C = get_alpha_max_C() Q_hs_max_C_d_t = np.zeros(24 * 365) if q_hs_rtd_C is not None: Q_hs_max_C_d_t = q_hs_rtd_C * alpha_max_C * 3600 * 10 ** -6 return Q_hs_max_C_d_t def get_alpha_max_C(): """:return: 定格冷房能力に対する最大冷房能力の比(-)""" return 1.11 # 冷房負荷補正顕熱比 (28) def get_SHF_dash_d_t(L_star_CS_d_t, L_star_dash_C_d_t): """(28) Args: L_star_CS_d_t: 日付dの時刻tにおける1時間当たりの熱取得を含む負荷バランス時の冷房顕熱負荷(MJ/h) L_star_dash_C_d_t: 日付dの時刻tにおける補正冷房負荷(MJ/h) Returns: 日付dの時刻tにおける冷房負荷補正顕熱比(-) """ SHF_dash_d_t = np.zeros(24 * 365) f = L_star_dash_C_d_t > 0 SHF_dash_d_t[f] = L_star_CS_d_t[f] / L_star_dash_C_d_t[f] return SHF_dash_d_t # 1時間当たりの補正冷房負荷 (29) def get_L_star_dash_C_d_t(L_star_CS_d_t, L_star_dash_CL_d_t): """(29) Args: L_star_CS_d_t: 日付dの時刻tにおける1時間当たりの熱取得を含む負荷バランス時の冷房顕熱負荷(MJ/h) L_star_dash_CL_d_t: 日付dの時刻tにおける補正冷房潜熱負荷(MJ/h) Returns: 日付dの時刻tにおける時間当たりの補正冷房負荷(MJ/h) """ return L_star_CS_d_t + L_star_dash_CL_d_t def get_L_star_dash_CL_d_t(L_star_CL_max_d_t, L_star_CL_d_t): """(30) Args: L_star_CL_max_d_t: 日付dの時刻tにおける最大冷房潜熱負荷(MJ/h) L_star_CL_d_t: 日付dの時刻tにおける1時間当たりの熱取得を含む負荷バランス時の冷房潜熱負荷(MJ/h) Returns: 日付dの時刻tにおける補正冷房潜熱負荷(MJ/h) """ return np.minimum(L_star_CL_max_d_t, L_star_CL_d_t) # 1時間当たりの最大冷房潜熱負荷 (MJ/h) def get_L_star_CL_max_d_t(L_star_CS_d_t): """(31) Args: L_star_CS_d_t: 日付dの時刻tにおける1時間当たりの熱取得を含む負荷バランス時の冷房顕熱負荷(MJ/h) Returns: 日付dの時刻tにおける最大冷房潜熱負荷(MJ/h) """ # 冷房負荷最小顕熱比率 [-] SHF_L_min_C = get_SHF_L_min_C() return L_star_CS_d_t * ((1.0 - SHF_L_min_C) / SHF_L_min_C) def get_SHF_L_min_C(): """:return: 冷房負荷最小顕熱比率 (-)""" return 0.4 def get_L_star_CS_d_t(L_star_CS_d_t_i): """(32) Args: get_L_star_CS_d_t_i: 日付dの時刻tにおける暖冷房区画iの1時間当たりの熱取得を含む負荷バランス時の冷房顕熱負荷(MJ/h) L_star_CS_d_t_i: returns: 日付dの時刻tにおける1時間当たりの熱取得を含む負荷バランス時の冷房顕熱負荷(MJ/h) Returns: 日付dの時刻tにおける1時間当たりの熱取得を含む負荷バランス時の冷房顕熱負荷(MJ/h) """ return np.sum(L_star_CS_d_t_i[:5, :], axis=0) def get_L_star_CL_d_t(L_star_CL_d_t_i): """(33) Args: get_L_star_CL_d_t_i: 日付dの時刻tにおける暖冷房区画iの1時間当たりの熱取得を含む負荷バランス時の冷房潜熱負荷(MJ/h) L_star_CL_d_t_i: returns: 日付dの時刻tにおける1時間当たりの熱取得を含む負荷バランス時の冷房潜熱負荷(MJ/h) Returns: 日付dの時刻tにおける1時間当たりの熱取得を含む負荷バランス時の冷房潜熱負荷(MJ/h) """ return np.sum(L_star_CL_d_t_i[:5, :], axis=0) # ============================================================================ # 9.6 熱源機の風量 # ============================================================================ def get_V_hs_supply_d_t(V_supply_d_t_i): """(34) Args: V_supply_d_t_i: 日付dの時刻tにおける暖冷房区画iの吹き出し風量(m3/h) Returns: 日付dの時刻tにおける熱源機の風量(m3/h) """ return np.sum(V_supply_d_t_i[:5, :], axis=0) def get_V_hs_vent_d_t(V_vent_g_i, general_ventilation): """(35-1)(35-2) Args: V_vent_g_i: 暖冷房区画iの全般換気量(m3/h) general_ventilation: 全版換気の機能 Returns: 日付dの時刻tにおける熱源機の風量のうちの全般換気分(m3/h) """ # (35-2) V_hs_vent_d_t = np.zeros(24 * 365) # 当該システムが全般換気の機能を有する場合 (35-1) if general_ventilation == True: V_vent_g = np.sum(V_vent_g_i[:5], axis=0) V_hs_vent_d_t = np.repeat(V_vent_g, 24 * 365) elif general_ventilation == False: pass else: raise ValueError(general_ventilation) return V_hs_vent_d_t # ============================================================================ # 9.7 VAV調整前の熱源機の風量 # ============================================================================ def get_V_dash_hs_supply_d_t(V_hs_min, V_hs_dsgn_H, V_hs_dsgn_C, Q_hs_rtd_H, Q_hs_rtd_C, Q_hat_hs_d_t, region): """(36-1)(36-2)(36-3) Args: V_hs_min: 熱源機の最低風量(m3/h) V_hs_dsgn_H: 暖房時の設計風量(m3/h) V_hs_dsgn_C: 冷房時の設計風量(m3/h) Q_hs_rtd_H: 熱源機の暖房時の定格出力(MJ/h) Q_hs_rtd_C: 熱源機の冷房時の定格出力(MJ/h) Q_hat_hs_d_t: 日付dの時刻tにおける1時間当たりの熱源機の風量を計算するための熱源機の出力(MJ/h) region: 地域区分 Returns: 日付dの時刻tにおけるVAV調整前の熱源機の風量(m3/h) """ H, C, M = get_season_array_d_t(region) V_dash_hs_supply_d_t = np.zeros(24 * 365) # 暖房期:熱源機の出力が負の値に場合 f1 = np.logical_and(H, Q_hat_hs_d_t < 0) # 暖房期:熱源機の出力が正で出力が定格出力を超えない場合 if Q_hs_rtd_H is not None: f2 = np.logical_and(H, np.logical_and(0 <= Q_hat_hs_d_t, Q_hat_hs_d_t < Q_hs_rtd_H)) # 暖房期出力が定格出力を超えた場合 if Q_hs_rtd_H is not None: f3 = np.logical_and(H, Q_hat_hs_d_t >= Q_hs_rtd_H) # 冷房期:熱源機の出力が負の値に場合 f4 = np.logical_and(C, Q_hat_hs_d_t < 0) # 冷房期:熱源機の出力が正で出力が定格出力を超えない場合 if Q_hs_rtd_C is not None: f5 = np.logical_and(C, np.logical_and(0 <= Q_hat_hs_d_t, Q_hat_hs_d_t < Q_hs_rtd_C)) # 冷房期:出力が定格出力を超えた場合 if Q_hs_rtd_C is not None: f6 = np.logical_and(C, Q_hat_hs_d_t >= Q_hs_rtd_C) # 暖房期 (36-1) # 熱源機の出力が負の値に場合 V_dash_hs_supply_d_t[f1] = V_hs_min # 熱源機の出力が正で出力が定格出力を超えない場合 if Q_hs_rtd_H is not None: V_dash_hs_supply_d_t[f2] = (V_hs_dsgn_H - V_hs_min) / Q_hs_rtd_H * Q_hat_hs_d_t[f2] + V_hs_min # 出力が定格出力を超えた場合 if V_hs_dsgn_H is not None: V_dash_hs_supply_d_t[f3] = V_hs_dsgn_H # 冷房期 (36-2) # 熱源機の出力が負の値に場合 V_dash_hs_supply_d_t[f4] = V_hs_min # 熱源機の出力が正で出力が定格出力を超えない場合 if Q_hs_rtd_C is not None: V_dash_hs_supply_d_t[f5] = (V_hs_dsgn_C - V_hs_min) / Q_hs_rtd_C * Q_hat_hs_d_t[f5] + V_hs_min # 出力が定格出力を超えた場合 if V_hs_dsgn_C is not None: V_dash_hs_supply_d_t[f6] = V_hs_dsgn_C # 中間期 (36-3) V_dash_hs_supply_d_t[M] = V_hs_min return V_dash_hs_supply_d_t def get_Q_hs_rtd_H(q_hs_rtd_H): """(37) Args: q_hs_rtd_H: 熱源機の定格暖房能力(W) Returns: 暖房時の熱源機の定格出力(MJ/h) """ if q_hs_rtd_H is not None: return q_hs_rtd_H * 3600 * 10 ** -6 else: return None def get_Q_hs_rtd_C(q_hs_rtd_C): """(38) Args: q_hs_rtd_C: 熱源機の定格冷房能力(W) Returns: 冷房時の熱源機の定格出力(MJ/h) """ if q_hs_rtd_C is not None: return q_hs_rtd_C * 3600 * 10 ** -6 else: return None def get_V_hs_min(V_vent_g_i): """(39) Args: V_vent_g_i: 暖冷房区画iの全般換気量(m3/h) Returns: 熱源機の最低風量(m3/h) """ return np.sum(V_vent_g_i[:5], axis=0) def calc_Q_hat_hs_d_t(Q, A_A, V_vent_l_d_t, V_vent_g_i, mu_H, mu_C, J_d_t, q_gen_d_t, n_p_d_t, q_p_H, q_p_CS, q_p_CL, X_ex_d_t, w_gen_d_t, Theta_ex_d_t, L_wtr, region): """(40-1a)(40-1b)(40-2a)(40-2b)(40-2c)(40-3) Args: Q: 当該住戸の熱損失係数(W/(m2・K)) A_A: 床面積の合計(m2) V_vent_l_d_t: 日付dの時刻tにおける局所換気量(m3/h) V_vent_g_i: 暖冷房区画iの全般換気量(m3/h) mu_H: 当該住戸の暖房期の日射取得係数((W/m2)/(W/m2)) mu_C: 当該住戸の冷房期の日射取得係数((W/m2)/(W/m2)) J_d_t: 日付dの時刻tにおける水平面全天日射量(W/m2) q_gen_d_t: 日付dの時刻tにおける内部発熱(W) n_p_d_t: 日付dの時刻tにおける在室人数(人) q_p_H: 暖房期における人体からの1人当たりの顕熱発熱量(W/人) q_p_CS: 冷房期における人体からの1人当たりの顕熱発熱量(W/人) q_p_CL: 冷房期における人体からの1人当たりの潜熱発熱量(W/人) X_ex_d_t: 日付dの時刻tにおける外気の絶対湿度(kg/kg(DA)) w_gen_d_t: param Theta_ex_d_t: 日付dの時刻tにおける外気温度(℃) L_wtr: 水の蒸発潜熱(kJ/kg) region: 地域区分 Theta_ex_d_t: returns: 日付dの時刻tにおける1時間当たりの熱源機の風量を計算するための熱源機の暖房出力(MJ/h) Returns: 日付dの時刻tにおける1時間当たりの熱源機の風量を計算するための熱源機の暖房出力(MJ/h) """ H, C, M = get_season_array_d_t(region) c_p_air = get_c_p_air() rho_air = get_rho_air() Theta_set_H = get_Theta_set_H() Theta_set_C = get_Theta_set_C() X_set_C = get_X_set_C() Q_hat_hs_d_t = np.zeros(24 * 365) Q_hat_hs_H_d_t = np.zeros(24 * 365) Q_hat_hs_CS_d_t = np.zeros(24 * 365) Q_hat_hs_CL_d_t = np.zeros(24 * 365) # 暖房期 (40-1b) if mu_H is not None: Q_hat_hs_H_d_t[H] = (((Q - 0.35 * 0.5 * 2.4) * A_A + (c_p_air * rho_air * (V_vent_l_d_t[H] + np.sum(V_vent_g_i[:5]))) / 3600) * (Theta_set_H - Theta_ex_d_t[H]) \ - mu_H * A_A * J_d_t[H] - q_gen_d_t[H] - n_p_d_t[H] * q_p_H) * 3600 * 10 ** -6 # (40-1a) Q_hat_hs_d_t[H] = np.clip(Q_hat_hs_H_d_t[H], 0, None) # 冷房期 (40-2b) Q_hat_hs_CS_d_t[C] = (((Q - 0.35 * 0.5 * 2.4) * A_A + (c_p_air * rho_air * (V_vent_l_d_t[C] + np.sum(V_vent_g_i[:5]))) / 3600) * (Theta_ex_d_t[C] - Theta_set_C) \ + mu_C * A_A * J_d_t[C] + q_gen_d_t[C] + n_p_d_t[C] * q_p_CS) * 3600 * 10 ** -6 # (40-2c) Q_hat_hs_CL_d_t[C] = ((rho_air * (V_vent_l_d_t[C] + np.sum(V_vent_g_i[:5])) * (X_ex_d_t[C] - X_set_C) * 10 ** 3 + w_gen_d_t[C]) \ * L_wtr + n_p_d_t[C] * q_p_CL * 3600) * 10 ** -6 # (40-2a) Q_hat_hs_d_t[C] = np.clip(Q_hat_hs_CS_d_t[C], 0, None) + np.clip(Q_hat_hs_CL_d_t[C], 0, None) # 中間期 (40-3) Q_hat_hs_d_t[M] = 0 return Q_hat_hs_d_t # ============================================================================ # 10 吹き出し口 # ============================================================================ # ============================================================================ # 10.1 吹き出し空気温度 # ============================================================================ def get_Thata_supply_d_t_i(Theta_sur_d_t_i, Theta_hs_out_d_t, Theta_star_HBR_d_t, l_duct_i, V_supply_d_t_i, L_star_H_d_t_i, L_star_CS_d_t_i, region): """(41-1)(41-2)(41-3) Args: Theta_sur_d_t_i: 日付dの時刻tにおけるダクトiの周囲の空気温度(℃) Theta_star_HBR_d_t: 日付dの時刻tにおける負荷バランス時の居室の室温(℃) l_duct_i: ダクトiの長さ(m) V_supply_d_t_i: 日付dの時刻tにおける暖冷房区画iの吹き出し風量(m3/h) L_star_H_d_t_i: 日付dの時刻tにおける暖冷房区画iの1時間当たりの熱損失を含む負荷バランス時の暖房負荷(MJ/h) L_star_CS_d_t_i: param region: 地域区分 Theta_hs_out_d_t: 日付dの時刻tにおける熱源機の出口における空気温度(℃) region: returns: 日付dの時刻tにおける暖冷房区画iの吹き出し温度(℃) Returns: 日付dの時刻tにおける暖冷房区画iの吹き出し温度(℃) """ H, C, M = get_season_array_d_t(region) c_p_air = get_c_p_air() rho_air = get_rho_air() phi_i = get_phi_i() Thata_supply_d_t_i = np.zeros((5, 24 * 365)) f1 = np.logical_and(H, np.sum(L_star_H_d_t_i[:5, :], axis=0) > 0) f2 = np.logical_and(H, np.sum(L_star_H_d_t_i[:5, :], axis=0) <= 0) f3 = np.logical_and(C, np.sum(L_star_CS_d_t_i[:5, :], axis=0) > 0) f4 = np.logical_and(C, np.sum(L_star_CS_d_t_i[:5, :], axis=0) <= 0) # 暖房期 (41-1) e_exp_H = -(phi_i[:, np.newaxis] * l_duct_i[:, np.newaxis] * 3600) / (c_p_air * rho_air * V_supply_d_t_i[:, f1]) Thata_supply_d_t_i[:, f1] = Theta_sur_d_t_i[:, f1] + (Theta_hs_out_d_t[f1] - Theta_sur_d_t_i[:, f1]) \ * np.exp(e_exp_H) Thata_supply_d_t_i[:, f2] = Theta_star_HBR_d_t[f2] # 冷房期 (41-2) e_exp_C = -(phi_i[:, np.newaxis] * l_duct_i[:, np.newaxis] * 3600) / (c_p_air * rho_air * V_supply_d_t_i[:, f3]) Thata_supply_d_t_i[:, f3] = Theta_sur_d_t_i[:, f3] + (Theta_hs_out_d_t[f3] - Theta_sur_d_t_i[:, f3]) \ * np.exp(e_exp_C) Thata_supply_d_t_i[:, f4] = Theta_star_HBR_d_t[f4] # 中間期 (41-3) Thata_supply_d_t_i[:, M] = Theta_star_HBR_d_t[M] return Thata_supply_d_t_i # ============================================================================ # 10.2 吹き出し絶対湿度 # ============================================================================ def get_X_supply_d_t_i(X_star_HBR_d_t, X_hs_out_d_t, L_star_CL_d_t_i, region): """(42-1)(42-2) Args: X_star_HBR_d_t: 日付dの時刻tにおける負荷バランス時の居室の絶対湿度(kg/kg(DA)) X_hs_out_d_t: 日付dの時刻tにおける熱源機の出口における絶対湿度(kg/kg(DA)) L_star_CL_d_t_i: 日付dの時刻tにおける暖冷房区画iの1時間当たりの熱取得を含む負荷バランス時の冷房潜熱負荷(MJ/h) region: 地域区分 Returns: 日付dの時刻tにおける暖冷房区画iの吹き出し絶対湿度(kg/kg(DA)) """ H, C, M = get_season_array_d_t(region) X_supply_d_t_i = np.zeros((5, 24 * 365)) # 暖房期および中間期 (42-1) HM = np.logical_or(H, M) X_supply_d_t_i[:, HM] = X_star_HBR_d_t[HM] # 冷房期 (42-2) f1 = np.logical_and(C, np.sum(L_star_CL_d_t_i[:5, :], axis=0) > 0) f2 = np.logical_and(C, np.sum(L_star_CL_d_t_i[:5, :], axis=0) <= 0) X_supply_d_t_i[:, f1] = X_hs_out_d_t[f1] X_supply_d_t_i[:, f2] = X_star_HBR_d_t[f2] return X_supply_d_t_i # ============================================================================ # 10.3 吹き出し風量 # ============================================================================ def get_V_supply_d_t_i(L_star_H_d_t_i, L_star_CS_d_t_i, Theta_sur_d_t_i, l_duct_i, Theta_star_HBR_d_t, V_vent_g_i, V_dash_supply_d_t_i, VAV, region, Theta_hs_out_d_t): """(43-1)(43-2)(43-3)(43-4)(43-5) Args: L_star_H_d_t_i: 日付dの時刻tにおける暖冷房区画iの1時間当たりの熱取得を含む負荷バランス時の暖房負荷(MJ/h) L_star_CS_d_t_i: 日付dの時刻tにおける暖冷房区画iの1時間当たりの熱取得を含む負荷バランス時の冷房顕熱負荷(MJ/h) Theta_sur_d_t_i: 日付dの時刻tにおけるダクトiの周囲の空気温度(℃) l_duct_i: ダクトiの長さ(m) Theta_HBR_d_t: 日付dの時刻tにおける負荷バランス時の居室の室温(℃) V_vent_g_i: 暖冷房区画iの全般換気量(m3/h) V_dash_supply_d_t_i: 日付dの時刻tにおける暖冷房区画iのVAV調整前の吹き出し風量(m3/h) VAV: VAV region: 地域区分 Theta_hs_out_d_t: 日付dの時刻tにおける熱源機の出口における空気温度(℃) Theta_star_HBR_d_t: returns: 日付dの時刻tにおける暖冷房区画iの吹き出し風量(m3/h) Returns: 日付dの時刻tにおける暖冷房区画iの吹き出し風量(m3/h) """ H, C, M = get_season_array_d_t(region) c_p_air = get_c_p_air() rho_air = get_rho_air() phi_i = get_phi_i() V_supply_d_t_i = np.zeros((5, 24 * 365)) V_vent_g_i = np.reshape(V_vent_g_i, (5, 1)) V_vent_g_i = V_vent_g_i.repeat(24 * 365, axis=1) if VAV == True: # 暖房期 (43-1) f1 = np.logical_and(H, np.logical_and(Theta_hs_out_d_t > Theta_star_HBR_d_t, np.sum(L_star_H_d_t_i[:5, :], axis=0) > 0)) term2_H = (Theta_hs_out_d_t[f1] - Theta_sur_d_t_i[:, f1]) * phi_i[:, np.newaxis] * l_duct_i[:, np.newaxis] * 3600 V_supply_d_t_i[:, f1] = (L_star_H_d_t_i[:, f1] * 10 ** 6 + term2_H) / \ (c_p_air * rho_air * (Theta_hs_out_d_t[f1] - Theta_star_HBR_d_t[f1])) f2 = np.logical_and(H, np.logical_or(Theta_hs_out_d_t <= Theta_star_HBR_d_t, np.sum(L_star_H_d_t_i[:5, :], axis=0) <= 0)) V_supply_d_t_i[:, f2] = V_vent_g_i[:, f2] # 冷房期 (43-2) f3 = np.logical_and(C, np.logical_and(Theta_hs_out_d_t < Theta_star_HBR_d_t, np.sum(L_star_CS_d_t_i[:5, :], axis=0) > 0)) term2_C = (Theta_sur_d_t_i[:, f3] - Theta_hs_out_d_t[f3]) * phi_i[:, np.newaxis] * l_duct_i[:, np.newaxis] * 3600 V_supply_d_t_i[:, f3] = (L_star_CS_d_t_i[:, f3] * 10 ** 6 + term2_C) / \ (c_p_air * rho_air * (Theta_star_HBR_d_t[f3] - Theta_hs_out_d_t[f3])) f4 = np.logical_and(C, np.logical_or(Theta_hs_out_d_t >= Theta_star_HBR_d_t, np.sum(L_star_CS_d_t_i[:5, :], axis=0) <= 0)) V_supply_d_t_i[:, f4] = V_vent_g_i[:, f4] # 中間期 (43-3) V_supply_d_t_i[:, M] = V_vent_g_i[:, M] elif VAV == False: # 暖房期および冷房期 (43-4) HC = np.logical_or(H, C) V_supply_d_t_i[:, HC] = V_dash_supply_d_t_i[:, HC] # 中間期 (43-5) V_supply_d_t_i[:, M] = V_vent_g_i[:, M] else: raise ValueError(VAV) # 吹き出し風量V_(supply,d,t,i)は、VAV調整前の吹き出し風量V_(supply,d,t,i)^'を上回る場合はVAV調整前の \ # 吹き出し風量V_(supply,d,t,i)^'に等しいとし、全般換気量V_(vent,g,i)を下回る場合は全般換気量V_(vent,g,i)に等しいとする V_supply_d_t_i = np.clip(V_supply_d_t_i, V_vent_g_i, V_dash_supply_d_t_i) return V_supply_d_t_i # ============================================================================ # 10.4 VAV調整前の吹き出し風量 # ============================================================================ def get_V_dash_supply_d_t_i(r_supply_des_i, V_dash_hs_supply_d_t, V_vent_g_i): """(44) Args: r_supply_des_i: 暖冷房区画iの風量バランス(-) V_dash_hs_supply_d_t: 日付dの時刻tにおける暖冷房区画iのVAV調整前の吹き出し風量(m3/h) V_vent_g_i: 暖冷房区画iの全般換気量(m3/h) Returns: 日付dの時刻tにおけるVAV調整前の熱源機の風量(m3/h) """ return np.maximum(r_supply_des_i[:5, np.newaxis] * V_dash_hs_supply_d_t, V_vent_g_i[:5, np.newaxis]) def get_r_supply_des_i(A_HCZ_i): """(45) Args: A_HCZ_i: 暖冷房区画iの床面積(m2) Returns: 暖冷房区画iの風量バランス(-) """ return A_HCZ_i / np.sum(A_HCZ_i[:5]) # ============================================================================ # 11 暖冷房区画 # ============================================================================ # ============================================================================ # 11.1 実際の居室の室温・絶対湿度 # ============================================================================ def get_Theta_HBR_d_t_i(Theta_star_HBR_d_t, V_supply_d_t_i, Theta_supply_d_t_i, U_prt, A_prt_i, Q, A_HCZ_i, L_star_H_d_t_i, L_star_CS_d_t_i, region): """(46-1)(46-2)(46-3) Args: Theta_star_HBR_d_t: 日付dの時刻tにおける負荷バランス時の居室の室温(℃) V_supply_d_t_i: 日付dの時刻tにおける暖冷房区画iの吹き出し風量(m3/h) Theta_supply_d_t_i: 日付dの時刻tにおける負荷バランス時の居室の室温(℃) U_prt: 間仕切りの熱貫流率(W/(m2・K)) A_prt_i: 暖冷房区画iから見た非居室の間仕切りの面積(m2) Q: 当該住戸の熱損失係数(W/(m2・K)) A_HCZ_i: 暖冷房区画iの床面積(m2) L_star_H_d_t_i: 日付dの時刻tにおける暖冷房区画iの1時間当たりの間仕切りの熱取得を含む実際の暖房負荷(MJ/h) L_star_CS_d_t_i: 日付dの時刻tにおける暖冷房区画iの1時間当たりの間仕切りの熱取得を含む実際の冷房顕熱負荷(MJ/h) region: 地域区分 Returns: """ H, C, M = get_season_array_d_t(region) c_p_air = get_c_p_air() rho_air = get_rho_air() Theta_HBR_d_t_i = np.zeros((5, 24 * 365)) # A_HCZ_i = np.reshape(A_HCZ_i, (5, 0)) # 暖房期 (46-1) Theta_HBR_d_t_i[:, H] = Theta_star_HBR_d_t[H] + (c_p_air * rho_air * V_supply_d_t_i[:, H] * \ (Theta_supply_d_t_i[:, H] - Theta_star_HBR_d_t[H]) - L_star_H_d_t_i[:, H] * 10 ** 6) / \ (c_p_air * rho_air * V_supply_d_t_i[:, H] + (U_prt * A_prt_i[:, np.newaxis] + Q * A_HCZ_i[:, np.newaxis]) * 3600) # 暖冷房区画iの実際の居室の室温θ_(HBR,d,t,i)は、暖房期において負荷バランス時の居室の室温θ_(HBR,d,t)^*を下回る場合、 # 負荷バランス時の居室の室温θ_(HBR,d,t)^*に等しい Theta_HBR_d_t_i[:, H] = np.clip(Theta_HBR_d_t_i[:, H], Theta_star_HBR_d_t[H], None) # 冷房期 (46-2) Theta_HBR_d_t_i[:, C] = Theta_star_HBR_d_t[C] - (c_p_air * rho_air * V_supply_d_t_i[:, C] * \ (Theta_star_HBR_d_t[C] - Theta_supply_d_t_i[:, C]) - L_star_CS_d_t_i[:, C] * 10 ** 6) / \ (c_p_air * rho_air * V_supply_d_t_i[:, C] + (U_prt * A_prt_i[:, np.newaxis] + Q * A_HCZ_i[:, np.newaxis]) * 3600) # 冷房期において負荷バランス時の居室の室温θ_(HBR,d,t)^*を上回る場合、負荷バランス時の居室の室温θ_(HBR,d,t)^*に等しい Theta_HBR_d_t_i[:, C] = np.clip(Theta_HBR_d_t_i[:, C], None, Theta_star_HBR_d_t[C]) # 中間期 (46-3) Theta_HBR_d_t_i[:, M] = Theta_star_HBR_d_t[M] return Theta_HBR_d_t_i def get_X_HBR_d_t_i(X_star_HBR_d_t): """(47) Args: X_star_HBR_d_t: 日付dの時刻tにおける負荷バランス時の居室の絶対湿度(kg/kg(DA)) Returns: 日付dの時刻tにおける暖冷房区画iの実際の居室の絶対湿度(kg/kg(DA)) """ X_star_HBR_d_t_i = np.tile(X_star_HBR_d_t, (5, 1)) return X_star_HBR_d_t_i # ============================================================================ # 11.2 実際の非居室の室温・絶対湿度 # ============================================================================ def get_Theta_NR_d_t(Theta_star_NR_d_t, Theta_star_HBR_d_t, Theta_HBR_d_t_i, A_NR, V_vent_l_NR_d_t, V_dash_supply_d_t_i, V_supply_d_t_i, U_prt, A_prt_i, Q): """(48a)(48b)(48c)(48d) Args: Theta_star_NR_d_t: 日付dの時刻tにおける実際の非居室の室温(℃) Theta_star_HBR_d_t: 日付dの時刻tにおける負荷バランス時の居室の室温(℃) Theta_HBR_d_t_i: 日付dの時刻tにおける暖冷房区画iの実際の居室の室温(℃) A_NR: 非居室の床面積(m2) V_vent_l_NR_d_t: 日付dの時刻tにおける非居室の局所換気量(m3/h) V_dash_supply_d_t_i: 日付dの時刻tにおける暖冷房区画iのVAV調整前の吹き出し風量(m3/h) V_supply_d_t_i: 日付dの時刻tにおける暖冷房区画iの吹き出し風量(m3/h) U_prt: 間仕切りの熱貫流率(W/(m2・K)) A_prt_i: 暖冷房区画iから見た非居室の間仕切りの面積(m2) Q: 当該住戸の熱損失係数(W/(m2・K)) Returns: 日付dの時刻tにおける実際の非居室の室温 """ c_p_air = get_c_p_air() rho_air = get_rho_air() # (48d) k_dash_d_t_i = c_p_air * rho_air * (V_dash_supply_d_t_i / 3600) + U_prt * A_prt_i[:, np.newaxis] # (48c) k_prt_d_t_i = c_p_air * rho_air * (V_supply_d_t_i / 3600) + U_prt * A_prt_i[:, np.newaxis] # (48b) k_evp_d_t = (Q - 0.35 * 0.5 * 2.4) * A_NR + c_p_air * rho_air * (V_vent_l_NR_d_t / 3600) # (48a) Theta_NR_d_t = Theta_star_NR_d_t + (-1 * np.sum(k_dash_d_t_i[:5] * (Theta_star_HBR_d_t - Theta_star_NR_d_t), axis=0) + \ np.sum(k_prt_d_t_i[:5] * (Theta_HBR_d_t_i[:5] - Theta_star_NR_d_t), axis=0)) / \ (k_evp_d_t + np.sum(k_prt_d_t_i[:5], axis=0)) return Theta_NR_d_t def get_X_NR_d_t(X_star_NR_d_t): """(49) Args: X_star_NR_d_t: 日付dの時刻tにおける非居室の負荷バランス時の絶対湿度(kg/kg(DA)) Returns: 日付dの時刻tにおける実際の非居室の絶対湿度(kg/kg(DA)) """ return X_star_NR_d_t # ============================================================================ # 11.3 負荷バランス時の居室の室温・絶対湿度 # ============================================================================ def get_Theta_star_HBR_d_t(Theta_ex_d_t, region): """(50-1)(50-2)(50-3) Args: Theta_ex_d_t: 日付dの時刻tにおける外気温度(℃) region: 地域区分 Returns: 日付dの時刻tにおける負荷バランス時の居室の室温(℃) """ H, C, M = get_season_array_d_t(region) Theta_set_H = get_Theta_set_H() Theta_set_C = get_Theta_set_C() Theta_star_HBR_d_t = np.zeros(24 * 365) # 暖房期 Theta_star_HBR_d_t[H] = Theta_set_H # 冷房期 Theta_star_HBR_d_t[C] = Theta_set_C # 中間期 f1 = np.logical_and(M, np.logical_and(Theta_set_H <= Theta_ex_d_t, Theta_ex_d_t<= Theta_set_C)) Theta_star_HBR_d_t[f1] = Theta_ex_d_t[f1] f2 = np.logical_and(M, Theta_ex_d_t > Theta_set_C) Theta_star_HBR_d_t[f2] = Theta_set_C f3 = np.logical_and(M, Theta_ex_d_t < Theta_set_H) Theta_star_HBR_d_t[f3] = Theta_set_H return Theta_star_HBR_d_t def get_X_star_HBR_d_t(X_ex_d_t, region): """(51-1)(51-2)(51-3) Args: X_ex_d_t: 日付dの時刻tにおける外気絶対湿度(kg/kg(DA)) region: 地域区分 Returns: 日付dの時刻tにおける負荷バランス時の居室の絶対湿度(kg/kg(DA)) """ H, C, M = get_season_array_d_t(region) X_set_C = get_X_set_C() X_star_HBR_d_t = np.zeros(24 * 365) # 暖房期 X_star_HBR_d_t[H] = X_ex_d_t[H] # 冷房期 X_star_HBR_d_t[C] = X_set_C # 中間期 X_star_HBR_d_t[M] = X_ex_d_t[M] return X_star_HBR_d_t # ============================================================================ # 11.4 負荷バランス時の非居室の室温・絶対湿度 # ============================================================================ def get_Theta_star_NR_d_t(Theta_star_HBR_d_t, Q, A_NR, V_vent_l_NR_d_t, V_dash_supply_d_t_i, U_prt, A_prt_i, L_H_d_t_i, L_CS_d_t_i, region): """(52-1)(52-2)(52-3) Args: Theta_star_HBR_d_t: 日付dの時刻tにおける負荷バランス時の居室の室温(℃) Q: 当該住戸の熱損失係数(W/(m2・K)) A_NR: 非居室の床面積(m2) V_vent_l_NR_d_t: 日付dの時刻tにおける非居室の局所換気量(m3/h) V_dash_supply_d_t_i: 日付dの時刻tにおける暖冷房区画iのVAV調整前の吹き出し風量(m3/h) U_prt: 間仕切りの熱貫流率(W/(m2・K)) A_prt_i: 暖冷房区画iから見た非居室の間仕切りの面積(m2) L_H_d_t_i: 日付dの時刻tにおける暖冷房区画iの1時間当たりの暖房負荷(MJ/h) L_CS_d_t_i: 日付dの時刻tにおける暖冷房区画iの1時間当たりの冷房顕熱負荷(MJ/h) region: 地域区分 Returns: 日付dの時刻tにおける負荷バランス時の非居室の室温(℃) """ H, C, M = get_season_array_d_t(region) c_p_air = get_c_p_air() rho_air = get_rho_air() Theta_star_NR_d_t = np.zeros(24 * 365) # 暖房期 (52-1) Theta_star_NR_d_t[H] = Theta_star_HBR_d_t[H] - np.sum(L_H_d_t_i[5:12, H], axis=0) / \ ((Q - 0.35 * 0.5 * 2.4) * A_NR + c_p_air * rho_air * (V_vent_l_NR_d_t[H] / 3600) + \ np.sum(c_p_air * rho_air * (V_dash_supply_d_t_i[:5, H] / 3600) + U_prt * A_prt_i[:5, np.newaxis], axis=0)) * \ (10 ** 6 / 3600) # 冷房期 (52-2) Theta_star_NR_d_t[C] = Theta_star_HBR_d_t[C] + np.sum(L_CS_d_t_i[5:12, C], axis=0) / \ ((Q - 0.35 * 0.5 * 2.4) * A_NR + c_p_air * rho_air * (V_vent_l_NR_d_t[C] / 3600) + \ np.sum(c_p_air * rho_air * (V_dash_supply_d_t_i[:5, C] / 3600) + U_prt * A_prt_i[:5, np.newaxis], axis=0)) * \ (10 ** 6 / 3600) # 中間期 (52-3) Theta_star_NR_d_t[M] = Theta_star_HBR_d_t[M] return Theta_star_NR_d_t def get_X_star_NR_d_t(X_star_HBR_d_t, L_CL_d_t_i, L_wtr, V_vent_l_NR_d_t, V_dash_supply_d_t_i, region): """(53-1)(53-2)(53-3) Args: X_star_HBR_d_t: param L_CL_d_t_i: L_wtr: param V_vent_l_NR_d_t: V_dash_supply_d_t_i: param region: L_CL_d_t_i: param V_vent_l_NR_d_t: region: V_vent_l_NR_d_t: Returns: """ H, C, M = get_season_array_d_t(region) rho_air = get_rho_air() X_star_NR_d_t = np.zeros(24 * 365) # 暖房期 (53-1) X_star_NR_d_t[H] = X_star_HBR_d_t[H] # 冷房期 (53-2) X_star_NR_d_t[C] = X_star_HBR_d_t[C] + (np.sum(L_CL_d_t_i[5:12, C], axis=0) \ / (L_wtr * rho_air * (V_vent_l_NR_d_t[C] + np.sum(V_dash_supply_d_t_i[:5, C], axis=0)))) * 10 ** 3 # 中間期 (53-3) X_star_NR_d_t[M] = X_star_HBR_d_t[M] return X_star_NR_d_t # ============================================================================ # 12 ダクト # ============================================================================ # ============================================================================ # 12.1 ダクトの周囲の空気温度 # ============================================================================ def get_Theta_sur_d_t_i(Theta_star_HBR_d_t, Theta_attic_d_t, l_duct_in_i, l_duct_ex_i, duct_insulation): """(54-1)(54-2) Args: Theta_star_HBR_d_t: 日付dの時刻tにおける負荷バランス時の居室の室温(℃) l_duct_in_i: 断熱区画内を通るダクトiの長さ(m) l_duct_ex_i: 断熱区画外を通るダクトiの長さ(m) Theta_attic_d_t: 小屋裏の空気温度 (℃) duct_insulation: ダクトが通過する空間 Returns: 日付dの時刻tにおけるダクトiの周囲の空気温度(℃) """ Theta_sur_H_d_t_i = np.zeros((5, 24 * 365)) Theta_star_HBR_d_t_i = np.tile(Theta_star_HBR_d_t, (5, 1)) Theta_attic_d_t_i = np.tile(Theta_attic_d_t, (5, 1)) if duct_insulation == '全てもしくは一部が断熱区画外である': Theta_sur_H_d_t_i = (l_duct_in_i[:, np.newaxis] * Theta_star_HBR_d_t_i + l_duct_ex_i[:, np.newaxis] * Theta_attic_d_t_i) / \ (l_duct_in_i[:, np.newaxis] + l_duct_ex_i[:, np.newaxis]) elif duct_insulation == '全て断熱区画内である': Theta_sur_H_d_t_i = Theta_star_HBR_d_t_i else: raise ValueError(duct_insulation) return Theta_sur_H_d_t_i def get_Theta_attic_d_t(Theta_SAT_d_t, Theta_star_HBR_d_t): """(55) Args: Theta_SAT_d_t: 日付dの時刻tにおける水平面における等価外気温度(℃) Theta_star_HBR_d_t: 日付dの時刻tにおける負荷バランス時の居室の室温(℃) Returns: 小屋裏の空気温度 (℃) """ # 温度差係数 H = get_H() return Theta_SAT_d_t * H + Theta_star_HBR_d_t * (1.0 - H) # 温度差係数 (-) def get_H(): """ """ return 1.0 # ============================================================================ # 12.2 ダクトの長さ # ============================================================================ def get_l_duct__i(l_duct_in_i, l_duct_ex_i): """(56) Args: l_duct_in_i: 断熱区画内を通るダクトiの長さ(m) l_duct_ex_i: 断熱区画外を通るダクトiの長さ(m) Returns: ダクトiの長さ(m) """ return l_duct_in_i + l_duct_ex_i def get_l_duct_in_i(A_A): """(57) Args: A_A: 床面積の合計(m2) return: 断熱区画内を通るダクトiの長さ(m) Returns: """ # 標準住戸の床面積の合計 [m3] A_A_R = get_A_A_R() return l_duct_in_R_i * np.sqrt(A_A / A_A_R) def get_l_duct_ex_i(A_A): """(58) Args: A_A: 床面積の合計(m2) return: 断熱区画外を通るダクトiの長さ(m) Returns: """ # 標準住戸の床面積の合計 [m3] A_A_R = get_A_A_R() return l_duct_ex_R_i * np.sqrt(A_A / A_A_R) # 断熱区画内を通るダクトの長さ [m] l_duct_in_R_i = np.array([ 25.6, 8.6, 0.0, 0.0, 0.0, ]) # 断熱区画外を通るダクトの長さ [m] l_duct_ex_R_i = np.array([ 0.0, 0.0, 10.2, 11.8, 8.1, ]) # ダクトの長さ(合計) [m] l_duct_R_i = np.array([ 25.6, 8.6, 10.2, 11.8, 8.1, ]) # ============================================================================ # 12.3 ダクトの熱損失係数 # ============================================================================ # ダクトiの線熱損失係数 [W/mK] def get_phi_i(): """ """ return np.array([0.49] * 5) # ============================================================================ # 13 その他 # ============================================================================ # ============================================================================ # 13.1 外気条件 # ============================================================================ def get_Theta_SAT_d_t(Theta_ex_d_t, J_d_t): """(59) Args: Thate_ex_d_t: 日付dの時刻tにおける外気温度(℃) J_d_t: 日付dの時刻tにおける水平面全天日射量(W/m2) Theta_ex_d_t: returns: 日付dの時刻tにおける水平面における等価外温度(℃) Returns: 日付dの時刻tにおける水平面における等価外温度(℃) """ return Theta_ex_d_t + 0.034 * J_d_t # ============================================================================ # 13.2 住宅の仕様 # ============================================================================ # ============================================================================ # 13.2.2 間仕切り # ============================================================================ def get_A_prt_i(A_HCZ_i, r_env, A_MR, A_NR, A_OR): """(60-1)(60-2) Args: A_HCZ_i: 暖冷房区画iの床面積(m2) r_env: 床面積の合計に対しる外皮の部位の面積の合計の比(-) A_MR: 主たる居室の床面積(m2) A_NR: 非居室の床面積(m2) A_OR: その他の居室の床面積(m2) Returns: 居室(i=1~5)に対する暖冷房区画iから見た非居室の間仕切りの面積(m2) """ A_XR = np.array([A_OR, A_MR, A_MR, A_MR, A_MR]) return np.array([A_HCZ_i[i] * r_env * (A_NR / (A_XR[i] + A_NR)) for i in range(5)]) def get_U_prt(): """(61) :return: 間仕切りの熱貫流率(W/(m2・K)) Args: Returns: """ R_prt = get_R_prt() return 1 / R_prt def get_R_prt(): """:return: R_prt:間仕切りの熱抵抗((m2・K)/W)""" return 0.46 # ============================================================================ # 13.2.4 機械換気量 # ============================================================================ # 暖冷房区画iの全般換気量 def get_V_vent_g_i(A_HCZ_i, A_HCZ_R_i): """(62) Args: A_HCZ_i: 暖冷房区画iの床面積 (m2) A_HCZ_R_i: 標準住戸における暖冷房区画iの床面積(m2) Returns: ndarray[5]: 暖冷房区画iの機械換気量 (m3/h) """ # 標準住戸における暖冷房区画iの全般換気量 [m3/h] V_vent_g_R_i = get_V_vent_g_R_i() return V_vent_g_R_i * (np.array(A_HCZ_i[:5]) / np.array(A_HCZ_R_i[:5])) # 表2 標準住戸における暖冷房区画iの全般換気量 [m3/h] def get_V_vent_g_R_i(): """ """ return np.array([ 60, 20, 40, 20, 20 ]) # 局所換気 @lru_cache() def calc_V_vent_l_d_t(): """ """ V_vent_l_MR_d_t = get_V_vent_l_MR_d_t() V_vent_l_OR_d_t = get_V_vent_l_OR_d_t() V_vent_l_NR_d_t = get_V_vent_l_NR_d_t() return get_V_vent_l_d_t(V_vent_l_MR_d_t, V_vent_l_OR_d_t, V_vent_l_NR_d_t) # 日付dの時刻tにおける局所換気量 def get_V_vent_l_d_t(V_vent_l_MR_d_t, V_vent_l_OR_d_t, V_vent_l_NR_d_t): """(63) Args: V_vent_l_MR_d_t: 日付dの時刻tにおける主たる居室の局所換気量(m3/h) V_vent_l_OR_d_t: 日付dの時刻tにおけるその他の居室の局所換気量(m3/h) V_vent_l_NR_d_t: 日付dの時刻tにおける非居室の局所換気量(m3/h) Returns: 日付dの時刻tにおける局所換気量(m3/h) """ return V_vent_l_MR_d_t + V_vent_l_OR_d_t + V_vent_l_NR_d_t # 日付dの時刻tにおける主たる居室の局所換気量(m3/h) def get_V_vent_l_MR_d_t(): """:return: 日付dの時刻tにおける主たる居室の局所換気量(m3/h)""" schedule = load_schedule() schedule_ac = get_schedule_ac(schedule) table_3 = get_table_3() # 全日平日とみなした24時間365日の局所換気量 tmp_a = np.tile(table_3[0], 365) # 全日休日とみなした24時間365日の局所換気量 tmp_b = np.tile(table_3[1], 365) # 時間単位に展開した生活パターン schedule_extend = np.repeat(np.array(schedule_ac), 24) V_vent_l_MR_d_t = tmp_a * (schedule_extend == '平日') \ + tmp_b * (schedule_extend == '休日') return V_vent_l_MR_d_t # 日付dの時刻tにおけるその他の居室の局所換気量(m3/h) def get_V_vent_l_OR_d_t(): """:return: 日付dの時刻tにおけるその他の居室の局所換気量(m3/h)""" schedule = load_schedule() schedule_ac = get_schedule_ac(schedule) table_3 = get_table_3() # 全日平日とみなした24時間365日の局所換気量 tmp_a = np.tile(table_3[2], 365) # 全日休日とみなした24時間365日の局所換気量 tmp_b = np.tile(table_3[3], 365) # 時間単位に展開した生活パターン schedule_extend = np.repeat(np.array(schedule_ac), 24) V_vent_l_OR_d_t = tmp_a * (schedule_extend == '平日') \ + tmp_b * (schedule_extend == '休日') return V_vent_l_OR_d_t # 日付dの時刻tにおける非居室の局所換気量(m3/h) def get_V_vent_l_NR_d_t(): """:return: 日付dの時刻tにおける非居室の局所換気量(m3/h)""" schedule = load_schedule() schedule_ac = get_schedule_ac(schedule) table_3 = get_table_3() # 全日平日とみなした24時間365日の局所換気量 tmp_a = np.tile(table_3[4], 365) # 全日休日とみなした24時間365日の局所換気量 tmp_b = np.tile(table_3[5], 365) # 時間単位に展開した生活パターン schedule_extend = np.repeat(np.array(schedule_ac), 24) V_vent_l_NR_d_t = tmp_a * (schedule_extend == '平日') \ + tmp_b * (schedule_extend == '休日') return V_vent_l_NR_d_t # 局所換気量 def get_table_3(): """ """ return [ (0, 0, 0, 0, 0, 0, 75, 0, 0, 0, 0, 0, 75, 0, 0, 0, 0, 0, 150, 150, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 0, 75, 0, 0, 0, 75, 0, 0, 0, 0, 150, 150, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 6, 2, 0, 0.8, 0, 0, 0.8, 0, 0, 0, 0.8, 0.8, 0.8, 0.8, 0.8, 52, 25, 102.8), (0, 0, 0, 0, 0, 0, 0, 4, 4, 0, 1.2, 1.2, 0, 0, 0, 0, 2, 75.8, 25, 2, 0.8, 25, 27, 100.8), ] # ============================================================================ # 13.2.5 内部発熱・発湿(人体を除く) # ============================================================================ def get_q_gen_d_t(q_gen_MR_d_t, q_gen_OR_d_t, q_gen_NR_d_t): """(64a) Args: q_gen_MR_d_t: 日付dの時刻tにおける主たる居室の内部発熱(W) q_gen_OR_d_t: 日付dの時刻tにおけるその他の居室の内部発熱(W) q_gen_NR_d_t: 日付dの時刻tにおける非居室の内部発熱(W) Returns: 日付dの時刻tにおける内部発熱(W) """ return q_gen_MR_d_t + q_gen_OR_d_t + q_gen_NR_d_t def calc_q_gen_MR_d_t(A_MR): """(64b) Args: A_MR: 主たる居室の床面積(m2) Returns: """ q_gen_MR_R_d_t = get_q_gen_MR_R_d_t() return q_gen_MR_R_d_t * (A_MR / 29.81) def calc_q_gen_OR_d_t(A_OR): """(64c) Args: A_OR: その他の居室の床面積(m2) Returns: """ q_gen_OR_R_d_t = get_q_gen_OR_R_d_t() return q_gen_OR_R_d_t * (A_OR / 51.34) def calc_q_gen_NR_d_t(A_NR): """(64d) Args: A_NR: 非居室の床面積(m2) Returns: """ q_gen_NR_R_d_t = get_q_gen_NR_R_d_t() return q_gen_NR_R_d_t * (A_NR / 38.93) # 日付dの時刻tにおける標準住戸の主たる居室の内部発熱(W) def get_q_gen_MR_R_d_t(): """:return: 日付dの時刻tにおける標準住戸の主たる居室の内部発熱(W)""" schedule = load_schedule() schedule_ac = get_schedule_ac(schedule) table_4 = get_table_4() # 全日平日とみなした24時間365日の標準住戸における内部発熱 tmp_a = np.tile(table_4[0], 365) # 全日休日とみなした24時間365日の標準住戸における内部発熱 tmp_b = np.tile(table_4[1], 365) # 時間単位に展開した生活パターン schedule_extend = np.repeat(np.array(schedule_ac), 24) q_gen_MR_R_d_t = tmp_a * (schedule_extend == '平日') \ + tmp_b * (schedule_extend == '休日') return q_gen_MR_R_d_t # 日付dの時刻tにおける標準住戸のその他の居室の内部発熱(W) def get_q_gen_OR_R_d_t(): """:return: 日日付dの時刻tにおける標準住戸のその他の居室の内部発熱(W)""" schedule = load_schedule() schedule_ac = get_schedule_ac(schedule) table_4 = get_table_4() # 全日平日とみなした24時間365日の標準住戸における内部発熱 tmp_a = np.tile(table_4[2], 365) # 全日休日とみなした24時間365日の標準住戸における内部発熱 tmp_b = np.tile(table_4[3], 365) # 時間単位に展開した生活パターン schedule_extend = np.repeat(np.array(schedule_ac), 24) q_gen_OR_R_d_t = tmp_a * (schedule_extend == '平日') \ + tmp_b * (schedule_extend == '休日') return q_gen_OR_R_d_t # 日付dの時刻tにおける標準住戸の非居室の内部発熱(W) def get_q_gen_NR_R_d_t(): """:return: 日付dの時刻tにおける標準住戸の非居室の内部発熱(W)""" schedule = load_schedule() schedule_ac = get_schedule_ac(schedule) table_4 = get_table_4() # 全日平日とみなした24時間365日の標準住戸における内部発熱 tmp_a = np.tile(table_4[4], 365) # 全日休日とみなした24時間365日の標準住戸における内部発熱 tmp_b = np.tile(table_4[5], 365) # 時間単位に展開した生活パターン schedule_extend = np.repeat(np.array(schedule_ac), 24) q_gen_NR_R_d_t = tmp_a * (schedule_extend == '平日') \ + tmp_b * (schedule_extend == '休日') return q_gen_NR_R_d_t # 標準住戸における内部発熱 def get_table_4(): """ """ return [ (66.9,66.9,66.9,66.9,66.9,66.9,123.9,383.6,323.2,307.3,134.8,66.9,286.7,271.2,66.9,66.9,236.9,288.6,407.8,383.1,423.1,339.1,312.9,278), (66.9,66.9,66.9,66.9,66.9,66.9,66.9,66.9,440.5,443.3,515.1,488.9,422.9,174.4,66.9,66.9,237.8,407.8,383.1,326.8,339.1,339.1,312.9,66.9), (18,18,18,18,18,18,18,18,18,398.2,18,18,18,18,18,18,18,18,53,53,115.5,103,258.3,137.3), (18,18,18,18,18,18,18,18,35.5,654.3,223,223,53,18,18,18,93,93,55.5,18,270,168.8,270,18), (41.5,41.5,41.5,41.5,41.5,41.5,126.1,249.9,158.3,191.3,117.5,41.5,42.5,89,41.5,41.5,105.8,105.8,112.1,118.5,155.7,416.1,314.8,174.9), (41.5,41.5,41.5,41.5,41.5,41.5,41.5,281.3,311,269.5,100.4,106.7,98.5,55.8,41.5,41.5,158.4,171.3,82.7,101.4,99.5,255.1,232.1,157.8), ] # 日付dの時刻tにおける内部発湿 def get_w_gen_d_t(w_gen_MR_d_t, w_gen_OR_d_t, w_gen_NR_d_t): """(65a) Args: w_gen_MR_d_t: 日付dの時刻tにおける主たる居室の内部発湿(W) w_gen_OR_d_t: 日付dの時刻tにおけるその他の居室の内部発湿(W) w_gen_NR_d_t: 日付dの時刻tにおける非居室の内部発湿(W) Returns: 日付dの時刻tにおける内部発湿(W) """ return w_gen_MR_d_t + w_gen_OR_d_t + w_gen_NR_d_t def calc_w_gen_MR_d_t(A_MR): """(65b) Args: A_MR: 主たる居室の床面積(m2) Returns: """ w_gen_MR_R_d_t = get_w_gen_MR_R_d_t() return w_gen_MR_R_d_t * (A_MR / 29.81) def calc_w_gen_OR_d_t(A_OR): """(65c) Args: A_OR: その他の居室の床面積(m2) Returns: """ w_gen_OR_R_d_t = get_w_gen_OR_R_d_t() return w_gen_OR_R_d_t * (A_OR / 51.34) def calc_w_gen_NR_d_t(A_NR): """(65d) Args: A_NR: 非居室の床面積(m2) Returns: """ w_gen_NR_R_d_t = get_w_gen_NR_R_d_t() return w_gen_NR_R_d_t * (A_NR / 38.93) # 日付dの時刻tにおける標準住戸の主たる居室の内部発湿(W) def get_w_gen_MR_R_d_t(): """:return: 日付dの時刻tにおける標準住戸の主たる居室の内部発湿(W)""" schedule = load_schedule() schedule_ac = get_schedule_ac(schedule) table_5 = get_table_5() # 全日平日とみなした24時間365日の標準住戸における内部発湿 tmp_a = np.tile(table_5[0], 365) # 全日休日とみなした24時間365日の標準住戸における内部発湿 tmp_b = np.tile(table_5[1], 365) # 時間単位に展開した生活パターン schedule_extend = np.repeat(np.array(schedule_ac), 24) w_gen_MR_R_d_t = tmp_a * (schedule_extend == '平日') \ + tmp_b * (schedule_extend == '休日') return w_gen_MR_R_d_t # 日付dの時刻tにおける標準住戸のその他の居室の内部発湿(W) def get_w_gen_OR_R_d_t(): """:return: 日日付dの時刻tにおける標準住戸のその他の居室の内部発湿(W)""" schedule = load_schedule() schedule_ac = get_schedule_ac(schedule) table_5 = get_table_5() # 全日平日とみなした24時間365日の標準住戸における内部発湿 tmp_a = np.tile(table_5[2], 365) # 全日休日とみなした24時間365日の標準住戸における内部発湿 tmp_b = np.tile(table_5[3], 365) # 時間単位に展開した生活パターン schedule_extend = np.repeat(np.array(schedule_ac), 24) w_gen_OR_R_d_t = tmp_a * (schedule_extend == '平日') \ + tmp_b * (schedule_extend == '休日') return w_gen_OR_R_d_t # 日付dの時刻tにおける標準住戸の非居室の内部発湿(W) def get_w_gen_NR_R_d_t(): """:return: 日付dの時刻tにおける標準住戸の非居室の内部発湿(W)""" schedule = load_schedule() schedule_ac = get_schedule_ac(schedule) table_5 = get_table_5() # 全日平日とみなした24時間365日の標準住戸における内部発湿 tmp_a = np.tile(table_5[4], 365) # 全日休日とみなした24時間365日の標準住戸における内部発湿 tmp_b = np.tile(table_5[5], 365) # 時間単位に展開した生活パターン schedule_extend = np.repeat(np.array(schedule_ac), 24) w_gen_NR_R_d_t = tmp_a * (schedule_extend == '平日') \ + tmp_b * (schedule_extend == '休日') return w_gen_NR_R_d_t # 標準住戸における内部発熱 def get_table_5(): """ """ return [ (0, 0, 0, 0, 0, 0, 25, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 50, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 0, 25, 0, 0, 0, 0, 0, 0, 0, 0, 50, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), ] # ============================================================================ # 13.2.6 人体発熱および在室人数 # ============================================================================ # 暖房期における人体からの1人当たりの顕熱発熱量(W/人) def get_q_p_H(): """ """ return 79.0 # 冷房期における人体からの1人当たりの顕熱発熱量(W/人) def get_q_p_CS(): """ """ return 51.0 # 冷房期における人体からの1人当たりの潜熱発熱量(W/人) def get_q_p_CL(): """ """ return 40.0 # 日付dの時刻tにおける在室人数(人) def get_n_p_d_t(n_p_MR_d_t, n_p_OR_d_t, n_p_NR_d_t): """(66a) Args: q_gen_MR_d_t: 日付dの時刻tにおける主たる居室の在室人数(人) q_gen_OR_d_t: 日付dの時刻tにおけるその他の居室の在室人数(人) q_gen_NR_d_t: 日付dの時刻tにおける非居室の在室人数(人) n_p_MR_d_t: param n_p_OR_d_t: n_p_NR_d_t: returns: 日付dの時刻tにおける在室人数(人) n_p_OR_d_t: Returns: 日付dの時刻tにおける在室人数(人) """ return n_p_MR_d_t + n_p_OR_d_t + n_p_NR_d_t def calc_n_p_MR_d_t(A_MR): """(66b) Args: A_MR: 主たる居室の床面積(m2) Returns: """ n_p_MR_R_d_t = get_n_p_MR_R_d_t() return n_p_MR_R_d_t * (A_MR / 29.81) def calc_n_p_OR_d_t(A_OR): """(66c) Args: A_OR: その他の居室の床面積(m2) Returns: """ n_p_OR_R_d_t = get_n_p_OR_R_d_t() return n_p_OR_R_d_t * (A_OR / 51.34) def calc_n_p_NR_d_t(A_NR): """(66d) Args: A_NR: 非居室の床面積(m2) Returns: """ n_p_NR_R_d_t = get_n_p_NR_R_d_t() return n_p_NR_R_d_t * (A_NR / 38.93) # 日付dの時刻tにおける標準住戸の主たる居室の在室人数(W) def get_n_p_MR_R_d_t(): """:return: 日付dの時刻tにおける標準住戸の主たる居室の在室人数(W)""" schedule = load_schedule() schedule_ac = get_schedule_ac(schedule) table_6 = get_table_6() # 全日平日とみなした24時間365日の標準住戸における在室人数 tmp_a = np.tile(table_6[0], 365) # 全日休日とみなした24時間365日の標準住戸における在室人数 tmp_b = np.tile(table_6[1], 365) # 時間単位に展開した生活パターン schedule_extend = np.repeat(np.array(schedule_ac), 24) n_p_MR_R_d_t = tmp_a * (schedule_extend == '平日') \ + tmp_b * (schedule_extend == '休日') return n_p_MR_R_d_t # 日付dの時刻tにおける標準住戸のその他の居室の在室人数(W) def get_n_p_OR_R_d_t(): """:return: 日日付dの時刻tにおける標準住戸のその他の居室の在室人数(W)""" schedule = load_schedule() schedule_ac = get_schedule_ac(schedule) table_6 = get_table_6() # 全日平日とみなした24時間365日の標準住戸における在室人数 tmp_a = np.tile(table_6[2], 365) # 全日休日とみなした24時間365日の標準住戸における在室人数 tmp_b = np.tile(table_6[3], 365) # 時間単位に展開した生活パターン schedule_extend = np.repeat(np.array(schedule_ac), 24) n_p_OR_R_d_t = tmp_a * (schedule_extend == '平日') \ + tmp_b * (schedule_extend == '休日') return n_p_OR_R_d_t # 日付dの時刻tにおける標準住戸の非居室の在室人数(W) def get_n_p_NR_R_d_t(): """:return: 日付dの時刻tにおける標準住戸の非居室の在室人数(W)""" schedule = load_schedule() schedule_ac = get_schedule_ac(schedule) table_6 = get_table_6() # 全日平日とみなした24時間365日の標準住戸における在室人数 tmp_a = np.tile(table_6[4], 365) # 全日休日とみなした24時間365日の標準住戸における在室人数 tmp_b = np.tile(table_6[5], 365) # 時間単位に展開した生活パターン schedule_extend = np.repeat(np.array(schedule_ac), 24) n_p_NR_R_d_t = tmp_a * (schedule_extend == '平日') \ + tmp_b * (schedule_extend == '休日') return n_p_NR_R_d_t # 標準住戸における内部発熱 def get_table_6(): """ """ return [ (0, 0, 0, 0, 0, 0, 1, 2, 1, 1, 0, 0, 1, 1, 0, 0, 1, 2, 2, 3, 3, 2, 1, 1), (0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 2, 2, 2, 1, 0, 0, 2, 3, 3, 4, 2, 2, 1, 0), (4, 4, 4, 4, 4, 4, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 2, 3), (4, 4, 4, 4, 4, 4, 4, 3, 1, 2, 2, 2, 1, 0, 0, 0, 1, 1, 1, 0, 2, 2, 2, 3), (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), ] # ============================================================================ # 13.3 使い方 # ============================================================================ # ============================================================================ # 13.3.1 暖冷房期間 # ============================================================================ # 暖冷房期間 def get_season_array(region): """ Args: region: Returns: """ table_7 = get_table_7()[region-1] H = get_period_array(table_7[0], table_7[1]) C = get_period_array(table_7[2], table_7[3]) M = np.logical_and(np.logical_not(H), np.logical_not(C)) return H, C, M # 暖冷房期間を24*365の配列で返す def get_season_array_d_t(region): """ Args: region: Returns: """ H, C, M = get_season_array(region) H = np.repeat(H, 24) C = np.repeat(C, 24) M = np.repeat(M, 24) return H, C, M def get_period_array(p1, p2): """指定月日期間のみTrueのndarrayを作成する 指定月日期間のみTrueのndarrayを作成する。 開始月日が終了月日が逆転する場合は、年をまたいだとみなす。 Args: p1: 開始月日をtuple指定 例) 1月2日 であれば (1,2) p2: 終了月日をtuple指定 例) 5月4日 であれば (5,4) Returns: p1からp2の間はTrueである365の長さのndarray """ if p1 is None or p2 is None: return np.zeros(365, dtype=bool) d_base = datetime.date(2018, 1, 1) #年初 d1 = (datetime.date(2018, p1[0], p1[1]) - d_base).days #年初からの日数1 d2 = (datetime.date(2018, p2[0], p2[1]) - d_base).days #年初からの日数2 if d1 < d2: # d1からd2の間はTrue # 例) 7月10日~8月31日 arr = np.zeros(365, dtype=bool) arr[d1:d2+1] = True else: # d1からd2の間はFalse # 例) 9月24日~6月7日 arr = np.ones(365, dtype=bool) arr[d2+1:d1] = False return arr def get_table_7(): """ """ return [ ((9, 24), (6, 7), (7, 10), (8, 31)), ((9, 26), (6, 4), (7, 15), (8, 31)), ((9, 30), (5, 31), (7, 10), (8, 31)), ((10, 1), (5, 30), (7, 10), (8, 31)), ((10, 10), (5, 15), (7, 6), (8, 31)), ((11, 4), (4, 21), (5, 30), (9, 23)), ((11, 26), (3, 27), (5, 15), (10, 13)), (None, None, (3, 25), (12, 14)), ] # ============================================================================ # 13.3.2 設定温度・設定絶対湿度 # ============================================================================ # 暖房時の設定温度 (℃) def get_Theta_set_H(): """ """ return 20.0 # 冷房時の設定温度 (℃) def get_Theta_set_C(): """ """ return 27.0 # 冷房時の設定絶対湿度(空気温度27℃、60%の時の絶対湿度とする) (kg/kg(DA)) def get_X_set_C(): """ """ return 0.013425743 # ============================================================================ # 13.4 暖房負荷・冷房負荷 # ============================================================================ # ============================================================================ # 13.5 空気および水の物性値 # ============================================================================ # 空気の比熱 (J/Kg・K) def get_c_p_air(): """ """ return 1006.0 # 空気の密度 (kg/m3) def get_rho_air(): """ """ return 1.2 # 水の蒸発潜熱 (kJ/kg) (67) def get_L_wtr(): """ """ Theta = get_Theta() return 2500.8 - 2.3668 * Theta # 冷房時を仮定した温度 (℃) def get_Theta(): """ """ return 27
27.665517
169
0.579995
8057c8418396a2449fd9d79a518de7812de8ebb1
2,260
py
Python
tests/technologies/test_diffusion_technologies.py
nismod/energy_demand
247fcea074a846026710ed9b039b22f8b9835643
[ "MIT" ]
14
2018-02-23T10:03:45.000Z
2022-03-03T13:59:30.000Z
tests/technologies/test_diffusion_technologies.py
nismod/energy_demand
247fcea074a846026710ed9b039b22f8b9835643
[ "MIT" ]
59
2017-02-22T15:03:30.000Z
2020-12-16T12:26:17.000Z
tests/technologies/test_diffusion_technologies.py
nismod/energy_demand
247fcea074a846026710ed9b039b22f8b9835643
[ "MIT" ]
5
2017-08-22T11:31:42.000Z
2020-06-24T18:30:12.000Z
""" """ from energy_demand.technologies import diffusion_technologies def test_linear_diff(): """Testing function """ expected1 = 1 expected2 = 1.5 expected3 = 10 expected4 = 0 # call function out_value_1 = diffusion_technologies.linear_diff( base_yr=2015, curr_yr=2020, value_start=0.0, value_end=1.0, yr_until_changed=2020) assert out_value_1 == expected1 out_value_2 = diffusion_technologies.linear_diff( base_yr=2015, curr_yr=2016.5, value_start=1.0, value_end=2.0, yr_until_changed=2018) assert out_value_2 == expected2 out_value_3 = diffusion_technologies.linear_diff( base_yr=2000, curr_yr=2100, value_start=0, value_end=100.0, yr_until_changed=3000) assert out_value_3 == expected3 out_value_4 = diffusion_technologies.linear_diff( base_yr=2015, curr_yr=2015, value_start=0, value_end=1, yr_until_changed=2015) assert out_value_4 == expected4 def test_sigmoid_diffusion(): """testing """ base_yr = 2015 curr_yr = 2015 end_yr = 2020 sig_midpoint = 0 sig_steepness = 1 result = diffusion_technologies.sigmoid_diffusion( base_yr, curr_yr, end_yr, sig_midpoint, sig_steepness) assert result == 0 base_yr = 2015 curr_yr = 2020 end_yr = 2020 sig_midpoint = 0 sig_steepness = 1 result = diffusion_technologies.sigmoid_diffusion( base_yr, curr_yr, end_yr, sig_midpoint, sig_steepness) assert result == 1 # --- base_yr = 2015 curr_yr = 2015 end_yr = 2020 sig_midpoint = 0 sig_steepness = 1 result = diffusion_technologies.sigmoid_diffusion( base_yr, curr_yr, end_yr, sig_midpoint, sig_steepness) assert result == 0 # --- base_yr = 2015 curr_yr = 2020 end_yr = 2025 sig_midpoint = 0 sig_steepness = 1 result = diffusion_technologies.sigmoid_diffusion( base_yr, curr_yr, end_yr, sig_midpoint, sig_steepness) assert result == 0.5
20.545455
61
0.606195
58cdcccd3e76f7826197d10b46b515360c56d3de
272
py
Python
picker/host_key.py
laashub-sua/demo-pywinauto
5f33a62c35978b21ce14a3b7f2058dc750fa1945
[ "Apache-2.0" ]
1
2020-07-25T15:03:16.000Z
2020-07-25T15:03:16.000Z
picker/host_key.py
laashub-sua/demo-pywinauto
5f33a62c35978b21ce14a3b7f2058dc750fa1945
[ "Apache-2.0" ]
null
null
null
picker/host_key.py
laashub-sua/demo-pywinauto
5f33a62c35978b21ce14a3b7f2058dc750fa1945
[ "Apache-2.0" ]
null
null
null
from pynput import keyboard def on_activate_h(): print('<ctrl>+<alt>+h pressed') def on_activate_i(): print('<ctrl>+<alt>+i pressed') with keyboard.GlobalHotKeys({ '<ctrl>+<alt>+h': on_activate_h, '<ctrl>+<alt>+i': on_activate_i}) as h: h.join()
17
43
0.628676
d82b2181ce8de905139b8e6d54cf12918f0800ad
1,466
py
Python
doc/integrations/pytorch/parlai/crowdsourcing/tasks/model_chat/run.py
novium258/cortx-1
ce5b939b33b8d24d89b31807ac3bcaa8f24096bc
[ "Apache-2.0" ]
1
2020-09-27T05:00:06.000Z
2020-09-27T05:00:06.000Z
doc/integrations/pytorch/parlai/crowdsourcing/tasks/model_chat/run.py
novium258/cortx-1
ce5b939b33b8d24d89b31807ac3bcaa8f24096bc
[ "Apache-2.0" ]
1
2021-08-04T11:17:39.000Z
2021-08-04T11:17:39.000Z
doc/integrations/pytorch/parlai/crowdsourcing/tasks/model_chat/run.py
novium258/cortx-1
ce5b939b33b8d24d89b31807ac3bcaa8f24096bc
[ "Apache-2.0" ]
1
2021-05-03T13:27:14.000Z
2021-05-03T13:27:14.000Z
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os from dataclasses import dataclass, field from typing import Any, List import hydra from mephisto.operations.hydra_config import register_script_config from omegaconf import DictConfig from parlai.crowdsourcing.tasks.model_chat.model_chat_blueprint import BLUEPRINT_TYPE from parlai.crowdsourcing.tasks.model_chat.impl import run_task from parlai.crowdsourcing.utils.mturk import MTurkRunScriptConfig TASK_DIRECTORY = os.path.dirname(os.path.abspath(__file__)) defaults = [ {'mephisto/blueprint': BLUEPRINT_TYPE}, {"mephisto/architect": "local"}, {"mephisto/provider": "mock"}, {"conf": "example"}, ] @dataclass class ScriptConfig(MTurkRunScriptConfig): defaults: List[Any] = field(default_factory=lambda: defaults) task_dir: str = TASK_DIRECTORY monitoring_log_rate: int = field( default=30, metadata={ 'help': 'Frequency in seconds of logging the monitoring of the crowdsourcing task' }, ) register_script_config(name='scriptconfig', module=ScriptConfig) @hydra.main(config_name="scriptconfig") def main(cfg: DictConfig) -> None: run_task(cfg=cfg, task_directory=TASK_DIRECTORY) if __name__ == "__main__": main()
27.660377
95
0.72101
a5899efe41570ca1d9d1a29b03cfa5661f0f4802
197
py
Python
lab08/tests/q0.py
ucsb-ds/ds1-f20-content
25f62c7a597b98da436ca39631761c1f3feccfdd
[ "MIT" ]
2
2020-10-14T12:43:18.000Z
2021-01-06T18:06:16.000Z
lab08/tests/q0.py
ucsb-ds/ds1-f20-content
25f62c7a597b98da436ca39631761c1f3feccfdd
[ "MIT" ]
2
2020-10-13T05:21:15.000Z
2020-12-11T18:03:54.000Z
lab08/tests/q0.py
ucsb-ds/ds1-f20-content
25f62c7a597b98da436ca39631761c1f3feccfdd
[ "MIT" ]
3
2021-01-05T05:30:01.000Z
2021-03-16T22:09:08.000Z
test = {'name': 'q0', 'points': 1, 'suites': [{'cases': [{'code': '>>> float(distance)\n13.0', 'hidden': False, 'locked': False}], 'scored': True, 'setup': '', 'teardown': '', 'type': 'doctest'}]}
98.5
196
0.532995
a7def432d19e9f359dbed6c18816f0eacd8a55ab
5,688
py
Python
conll_extract/jackknifing/jackknife_conll2012.py
utahnlp/structured_tuning_for_srl
9d315575ddf929c1bc31252fd78dc85ba7319251
[ "Apache-2.0" ]
354
2017-06-01T03:35:56.000Z
2022-03-16T02:50:27.000Z
conll_extract/jackknifing/jackknife_conll2012.py
utahnlp/structured_tuning_for_srl
9d315575ddf929c1bc31252fd78dc85ba7319251
[ "Apache-2.0" ]
30
2017-10-15T05:48:57.000Z
2021-12-22T18:50:55.000Z
conll_extract/jackknifing/jackknife_conll2012.py
utahnlp/structured_tuning_for_srl
9d315575ddf929c1bc31252fd78dc85ba7319251
[ "Apache-2.0" ]
96
2017-06-16T10:05:04.000Z
2022-03-16T13:02:36.000Z
# Random shuffle by sentences instead of samples (predicates). import math import os import random import sys from os.path import join def get_sent_to_samples(input_file, domain_file): num_samples = 0 sent2samples = [] domain2sents = [] domain_names = [] fin = open(input_file, 'r') fin_domains = open(domain_file, 'r') prev_words = '' prev_predicate = -1 for line in fin: line = line.strip() line_left = line.split('|||')[0] pred_id = int(line_left.split()[0]) words = ' '.join(line_left.split()[1:]) dname = fin_domains.readline().strip() if not (len(domain_names) > 0 and domain_names[-1] == dname): domain2sents.append([]) domain_names.append(dname) if not (words == prev_words and pred_id > prev_predicate): sent2samples.append([]) assert (len(domain_names) > 0 and domain_names[-1] == dname) num_sents = len(sent2samples) - 1 domain2sents[-1].append(num_sents) prev_predicate = pred_id prev_words = words sent2samples[-1].append(num_samples) num_samples += 1 fin.close() fin_domains.close() return (sent2samples, domain2sents, domain_names) def get_sample_to_folds(sent2samples, sent_range, num_folds, dev_sents_pct): ''' ''' num_sents = sent_range[1] - sent_range[0] num_sents_per_fold = int(math.ceil(1.0 * num_sents / num_folds)) num_samples = sum([len(s) for s in sent2samples[sent_range[0]:sent_range[1]]]) print "Has %d training samples and %d sentences. Splitting to %d folds with %d sentences each."\ % (num_samples, num_sents, num_folds, num_sents_per_fold) num_dev_sents = int(math.ceil(dev_sents_pct * num_sents_per_fold)) print "Num. dev sentences: %d." % num_dev_sents strn = [set() for i in range(num_samples)] sdev = [set() for i in range(num_samples)] # prd: the entire heldout set. sprd = [set() for i in range(num_samples)] num_trn_samples = [0 for i in range(num_folds)] num_dev_samples = [0 for i in range(num_folds)] num_prd_samples = [0 for i in range(num_folds)] train_sents = range(sent_range[0], sent_range[1]) #random.shuffle(train_sents) s0 = sent2samples[sent_range[0]][0] print 'Sample id staring at %d' % s0 for fid in range(num_folds): ll = fid * num_sents_per_fold rr = min(num_sents, ll + num_sents_per_fold) #print fid, ll, rr, rr - ll for sent_id in train_sents[ll:rr]: for sample_id in sent2samples[sent_id]: # Assign training folds to sample. for fid2 in range(num_folds): if fid2 != fid: strn[sample_id - s0].add(fid2) num_trn_samples[fid2] += 1 # Assign pred folds to sample. sprd[sample_id - s0].add(fid) num_prd_samples[fid] += 1 prd_sents = train_sents[ll:rr] for sent_id in prd_sents[:min(len(prd_sents),num_dev_sents)]: # Assign dev folds to sample. for sample_id in sent2samples[sent_id]: sdev[sample_id - s0].add(fid) num_dev_samples[fid] += 1 #print strn[:10] #print sdev[:10] #print sprd[:10] print "Num trn samples:", num_trn_samples print "Num prd samples:", num_prd_samples print "Num dev samples:", num_dev_samples return (strn, sdev, sprd) def split_file(input_file, output_files, sample2fold): fin = open(input_file, 'r') fout = [open(fn, 'w') for fn in output_files] sample_id = 0 for line in fin: for fid in sample2fold[sample_id]: fout[fid].write(line.strip() + "\n") sample_id += 1 fin.close() for fo in fout: fo.close() if __name__ == '__main__': RANDOM_SEED = 12345 NUM_FOLDS = 5 DEV_SENTS_PCT = 0.3 input_file = sys.argv[1] domain_file = sys.argv[2] output_dir = sys.argv[3] sent2samples, domain2sents, domain_names = get_sent_to_samples(input_file, domain_file) print 'Totol samples: ', sum([len(s) for s in sent2samples]) sample2fold_trn = [] sample2fold_dev = [] sample2fold_prd = [] random.seed(RANDOM_SEED) for dname, in_domain_sents in zip(domain_names, domain2sents): sent_range = [in_domain_sents[0], in_domain_sents[-1] + 1] print dname, sent_range strn, sdev, sprd = get_sample_to_folds(sent2samples, sent_range, NUM_FOLDS, DEV_SENTS_PCT) sample2fold_trn.extend(strn) sample2fold_dev.extend(sdev) sample2fold_prd.extend(sprd) print len(sample2fold_trn), len(sample2fold_dev), len(sample2fold_prd) # Output ids fout_trn_ids = [open(join(output_dir, 'train.f%02d.ids'%fid), 'w') for fid in range(NUM_FOLDS)] fout_dev_ids = [open(join(output_dir, 'devel.f%02d.ids'%fid), 'w') for fid in range(NUM_FOLDS)] fout_prd_ids = [open(join(output_dir + 'pred.f%02d.ids'%fid), 'w') for fid in range(NUM_FOLDS)] num_samples = len(sample2fold_trn) for sid in range(num_samples): for fid in sample2fold_trn[sid]: fout_trn_ids[fid].write("%d\n" % sid) for fid in sample2fold_dev[sid]: fout_dev_ids[fid].write("%d\n" % sid) for fid in sample2fold_prd[sid]: fout_prd_ids[fid].write("%d\n" % sid) for fo in fout_trn_ids + fout_dev_ids + fout_prd_ids: fo.close() # Generate output files. filename = input_file.split('/')[-1].split('.')[0] print filename split_file(input_file, [join(output_dir, '%s.train.f%02d.txt'%(filename,fid)) for fid in range(NUM_FOLDS)], sample2fold_trn) split_file(input_file, [join(output_dir, '%s.devel.f%02d.txt'%(filename,fid)) for fid in range(NUM_FOLDS)], sample2fold_dev) split_file(input_file, [join(output_dir, '%s.pred.f%02d.txt'%(filename,fid)) for fid in range(NUM_FOLDS)], sample2fold_prd)
30.913043
98
0.667018
88a0661b6866321a72bdfd1c9f704b70a872bc20
118,006
py
Python
src/metpy/io/nexrad.py
jibbals/MetPy
321ac6ee90db236d587e8a07bbd6cd91620e651f
[ "BSD-3-Clause" ]
null
null
null
src/metpy/io/nexrad.py
jibbals/MetPy
321ac6ee90db236d587e8a07bbd6cd91620e651f
[ "BSD-3-Clause" ]
43
2021-12-03T20:39:27.000Z
2022-03-29T12:32:15.000Z
src/metpy/io/nexrad.py
jibbals/MetPy
321ac6ee90db236d587e8a07bbd6cd91620e651f
[ "BSD-3-Clause" ]
null
null
null
# Copyright (c) 2009,2015,2016,2017 MetPy Developers. # Distributed under the terms of the BSD 3-Clause License. # SPDX-License-Identifier: BSD-3-Clause """Support reading information from various NEXRAD formats.""" import bz2 from collections import defaultdict, namedtuple, OrderedDict import contextlib import datetime import logging import pathlib import re import struct from xdrlib import Unpacker import numpy as np from scipy.constants import day, milli from ._tools import (Array, BitField, Bits, DictStruct, Enum, IOBuffer, NamedStruct, open_as_needed, zlib_decompress_all_frames) from ..package_tools import Exporter exporter = Exporter(globals()) log = logging.getLogger(__name__) def version(val): """Calculate a string version from an integer value.""" if val / 100. > 2.: ver = val / 100. else: ver = val / 10. return f'{ver:.1f}' def scaler(scale): """Create a function that scales by a specific value.""" def inner(val): return val * scale return inner def angle(val): """Convert an integer value to a floating point angle.""" return val * 360. / 2**16 def az_rate(val): """Convert an integer value to a floating point angular rate.""" return val * 90. / 2**16 def bzip_blocks_decompress_all(data): """Decompress all of the bzip2-ed blocks. Returns the decompressed data as a `bytearray`. """ frames = bytearray() offset = 0 while offset < len(data): block_cmp_bytes = abs(int.from_bytes(data[offset:offset + 4], 'big', signed=True)) offset += 4 try: frames += bz2.decompress(data[offset:offset + block_cmp_bytes]) offset += block_cmp_bytes except OSError: # If we've decompressed any frames, this is an error mid-stream, so warn, stop # trying to decompress and let processing proceed if frames: logging.warning('Error decompressing bz2 block stream at offset: %d', offset - 4) break else: # Otherwise, this isn't a bzip2 stream, so bail raise ValueError('Not a bz2 stream.') return frames def nexrad_to_datetime(julian_date, ms_midnight): """Convert NEXRAD date time format to python `datetime.datetime`.""" # Subtracting one from julian_date is because epoch date is 1 return datetime.datetime.utcfromtimestamp((julian_date - 1) * day + ms_midnight * milli) def remap_status(val): """Convert status integer value to appropriate bitmask.""" status = 0 bad = BAD_DATA if val & 0xF0 else 0 val &= 0x0F if val == 0: status = START_ELEVATION elif val == 1: status = 0 elif val == 2: status = END_ELEVATION elif val == 3: status = START_ELEVATION | START_VOLUME elif val == 4: status = END_ELEVATION | END_VOLUME elif val == 5: status = START_ELEVATION | LAST_ELEVATION return status | bad START_ELEVATION = 0x1 END_ELEVATION = 0x2 START_VOLUME = 0x4 END_VOLUME = 0x8 LAST_ELEVATION = 0x10 BAD_DATA = 0x20 @exporter.export class Level2File: r"""Handle reading the NEXRAD Level 2 data and its various messages. This class attempts to decode every byte that is in a given data file. It supports both external compression, as well as the internal BZ2 compression that is used. Attributes ---------- stid : str The ID of the radar station dt : Datetime instance The date and time of the data vol_hdr : namedtuple The unpacked volume header sweeps : list of tuples Data for each of the sweeps found in the file rda_status : namedtuple, optional Unpacked RDA status information, if found maintenance_data : namedtuple, optional Unpacked maintenance data information, if found maintenance_data_desc : dict, optional Descriptions of maintenance data fields, if maintenance data present vcp_info : namedtuple, optional Unpacked VCP information, if found clutter_filter_bypass_map : dict, optional Unpacked clutter filter bypass map, if present rda : dict, optional Unpacked RDA adaptation data, if present rda_adaptation_desc : dict, optional Descriptions of RDA adaptation data, if adaptation data present Notes ----- The internal data structure that things are decoded into is still to be determined. """ # Number of bytes AR2_BLOCKSIZE = 2432 # 12 (CTM) + 2416 (Msg hdr + data) + 4 (FCS) CTM_HEADER_SIZE = 12 MISSING = float('nan') RANGE_FOLD = float('nan') # TODO: Need to separate from missing def __init__(self, filename, *, has_volume_header=True): r"""Create instance of `Level2File`. Parameters ---------- filename : str or file-like object If str, the name of the file to be opened. Gzip-ed files are recognized with the extension '.gz', as are bzip2-ed files with the extension `.bz2` If `filename` is a file-like object, this will be read from directly. """ fobj = open_as_needed(filename) with contextlib.closing(fobj): self._buffer = IOBuffer.fromfile(fobj) # Try to read the volume header. If this fails, or we're told we don't have one # then we fall back and try to just read messages, assuming we have e.g. one of # the real-time chunks. try: if has_volume_header: self._read_volume_header() except (OSError, ValueError): log.warning('Unable to read volume header. Attempting to read messages.') self._buffer.reset() # See if we need to apply bz2 decompression start = self._buffer.set_mark() try: self._buffer = IOBuffer(self._buffer.read_func(bzip_blocks_decompress_all)) except ValueError: self._buffer.jump_to(start) # Now we're all initialized, we can proceed with reading in data self._read_data() vol_hdr_fmt = NamedStruct([('version', '9s'), ('vol_num', '3s'), ('date', 'L'), ('time_ms', 'L'), ('stid', '4s')], '>', 'VolHdr') def _read_volume_header(self): self.vol_hdr = self._buffer.read_struct(self.vol_hdr_fmt) self.dt = nexrad_to_datetime(self.vol_hdr.date, self.vol_hdr.time_ms) self.stid = self.vol_hdr.stid msg_hdr_fmt = NamedStruct([('size_hw', 'H'), ('rda_channel', 'B', BitField('Redundant Channel 1', 'Redundant Channel 2', None, 'ORDA')), ('msg_type', 'B'), ('seq_num', 'H'), ('date', 'H'), ('time_ms', 'I'), ('num_segments', 'H'), ('segment_num', 'H')], '>', 'MsgHdr') def _read_data(self): self._msg_buf = {} self.sweeps = [] self.rda_status = [] while not self._buffer.at_end(): # Clear old file book marks and set the start of message for # easy jumping to the end self._buffer.clear_marks() msg_start = self._buffer.set_mark() # Skip CTM self._buffer.skip(self.CTM_HEADER_SIZE) # Read the message header msg_hdr = self._buffer.read_struct(self.msg_hdr_fmt) log.debug('Got message: %s (at offset %d)', str(msg_hdr), self._buffer._offset) # The AR2_BLOCKSIZE accounts for the CTM header before the # data, as well as the Frame Check Sequence (4 bytes) after # the end of the data. msg_bytes = self.AR2_BLOCKSIZE # If the size is 0, this is just padding, which is for certain # done in the metadata messages. Let the default block size handle rather # than any specific heuristic to skip. if msg_hdr.size_hw: # For new packets, the message size isn't on the fixed size boundaries, # so we use header to figure out. For these, we need to include the # CTM header but not FCS, in addition to the size. # As of 2620002P, this is a special value used to indicate that the segment # number/count bytes are used to indicate total size in bytes. if msg_hdr.size_hw == 65535: msg_bytes = (msg_hdr.num_segments << 16 | msg_hdr.segment_num + self.CTM_HEADER_SIZE) elif msg_hdr.msg_type in (29, 31): msg_bytes = self.CTM_HEADER_SIZE + 2 * msg_hdr.size_hw log.debug('Total message size: %d', msg_bytes) # Try to handle the message. If we don't handle it, skipping # past it is handled at the end anyway. decoder = f'_decode_msg{msg_hdr.msg_type:d}' if hasattr(self, decoder): getattr(self, decoder)(msg_hdr) else: log.warning('Unknown message: %d', msg_hdr.msg_type) # Jump to the start of the next message. This depends on whether # the message was legacy with fixed block size or not. self._buffer.jump_to(msg_start, msg_bytes) # Check if we have any message segments still in the buffer if self._msg_buf: log.warning('Remaining buffered message segments for message type(s): %s', ' '.join(f'{typ} ({len(rem)})' for typ, rem in self._msg_buf.items())) del self._msg_buf msg1_fmt = NamedStruct([('time_ms', 'L'), ('date', 'H'), ('unamb_range', 'H', scaler(0.1)), ('az_angle', 'H', angle), ('az_num', 'H'), ('rad_status', 'H', remap_status), ('el_angle', 'H', angle), ('el_num', 'H'), ('surv_first_gate', 'h', scaler(0.001)), ('doppler_first_gate', 'h', scaler(0.001)), ('surv_gate_width', 'H', scaler(0.001)), ('doppler_gate_width', 'H', scaler(0.001)), ('surv_num_gates', 'H'), ('doppler_num_gates', 'H'), ('cut_sector_num', 'H'), ('calib_dbz0', 'f'), ('ref_offset', 'H'), ('vel_offset', 'H'), ('sw_offset', 'H'), ('dop_res', 'H', BitField(None, 0.5, 1.0)), ('vcp', 'H'), (None, '14x'), ('nyq_vel', 'H', scaler(0.01)), ('atmos_atten', 'H', scaler(0.001)), ('tover', 'H', scaler(0.1)), ('spot_blanking', 'B', BitField('Radial', 'Elevation', 'Volume')), (None, '32x')], '>', 'Msg1Fmt') msg1_data_hdr = namedtuple('Msg1DataHdr', 'name first_gate gate_width num_gates scale offset') def _decode_msg1(self, msg_hdr): msg_start = self._buffer.set_mark() hdr = self._buffer.read_struct(self.msg1_fmt) data_dict = {} # Process all data pointers: read_info = [] if hdr.surv_num_gates and hdr.ref_offset: read_info.append((hdr.ref_offset, self.msg1_data_hdr('REF', hdr.surv_first_gate, hdr.surv_gate_width, hdr.surv_num_gates, 2.0, 66.0))) if hdr.doppler_num_gates and hdr.vel_offset: read_info.append((hdr.vel_offset, self.msg1_data_hdr('VEL', hdr.doppler_first_gate, hdr.doppler_gate_width, hdr.doppler_num_gates, 1. / hdr.dop_res, 129.0))) if hdr.doppler_num_gates and hdr.sw_offset: read_info.append((hdr.sw_offset, self.msg1_data_hdr('SW', hdr.doppler_first_gate, hdr.doppler_gate_width, hdr.doppler_num_gates, 2.0, 129.0))) for ptr, data_hdr in read_info: # Jump and read self._buffer.jump_to(msg_start, ptr) vals = self._buffer.read_array(data_hdr.num_gates, 'B') # Scale and flag data scaled_vals = (vals - data_hdr.offset) / data_hdr.scale scaled_vals[vals == 0] = self.MISSING scaled_vals[vals == 1] = self.RANGE_FOLD # Store data_dict[data_hdr.name] = (data_hdr, scaled_vals) self._add_sweep(hdr) self.sweeps[-1].append((hdr, data_dict)) msg2_fmt = NamedStruct([ ('rda_status', 'H', BitField('None', 'Start-Up', 'Standby', 'Restart', 'Operate', 'Spare', 'Off-line Operate')), ('op_status', 'H', BitField('Disabled', 'On-Line', 'Maintenance Action Required', 'Maintenance Action Mandatory', 'Commanded Shut Down', 'Inoperable', 'Automatic Calibration')), ('control_status', 'H', BitField('None', 'Local Only', 'RPG (Remote) Only', 'Either')), ('aux_power_gen_state', 'H', BitField('Switch to Aux Power', 'Utility PWR Available', 'Generator On', 'Transfer Switch Manual', 'Commanded Switchover')), ('avg_tx_pwr', 'H'), ('ref_calib_cor', 'h', scaler(0.01)), ('data_transmission_enabled', 'H', BitField('None', 'None', 'Reflectivity', 'Velocity', 'Width')), ('vcp_num', 'h'), ('rda_control_auth', 'H', BitField('No Action', 'Local Control Requested', 'Remote Control Enabled')), ('rda_build', 'H', version), ('op_mode', 'H', BitField('None', 'Test', 'Operational', 'Maintenance')), ('super_res_status', 'H', BitField('None', 'Enabled', 'Disabled')), ('cmd_status', 'H', Bits(6)), ('avset_status', 'H', BitField('None', 'Enabled', 'Disabled')), ('rda_alarm_status', 'H', BitField('No Alarms', 'Tower/Utilities', 'Pedestal', 'Transmitter', 'Receiver', 'RDA Control', 'Communication', 'Signal Processor')), ('command_acknowledge', 'H', BitField('Remote VCP Received', 'Clutter Bypass map received', 'Redundant Chan Ctrl Cmd received')), ('channel_control_status', 'H'), ('spot_blanking', 'H', BitField('Enabled', 'Disabled')), ('bypass_map_gen_date', 'H'), ('bypass_map_gen_time', 'H'), ('clutter_filter_map_gen_date', 'H'), ('clutter_filter_map_gen_time', 'H'), ('refv_calib_cor', 'h', scaler(0.01)), ('transition_pwr_src_state', 'H', BitField('Off', 'OK')), ('RMS_control_status', 'H', BitField('RMS in control', 'RDA in control')), # See Table IV-A for definition of alarms (None, '2x'), ('alarms', '28s', Array('>14H'))], '>', 'Msg2Fmt') msg2_additional_fmt = NamedStruct([ ('sig_proc_options', 'H', BitField('CMD RhoHV Test')), (None, '36x'), ('status_version', 'H')], '>', 'Msg2AdditionalFmt') def _decode_msg2(self, msg_hdr): msg_start = self._buffer.set_mark() self.rda_status.append(self._buffer.read_struct(self.msg2_fmt)) remaining = (msg_hdr.size_hw * 2 - self.msg_hdr_fmt.size - self._buffer.offset_from(msg_start)) # RDA Build 18.0 expanded the size if remaining >= self.msg2_additional_fmt.size: self.rda_status.append(self._buffer.read_struct(self.msg2_additional_fmt)) remaining -= self.msg2_additional_fmt.size if remaining: log.info('Padding detected in message 2. Length encoded as %d but offset when ' 'done is %d', 2 * msg_hdr.size_hw, self._buffer.offset_from(msg_start)) def _decode_msg3(self, msg_hdr): from ._nexrad_msgs.msg3 import descriptions, fields self.maintenance_data_desc = descriptions msg_fmt = DictStruct(fields, '>') self.maintenance_data = self._buffer.read_struct(msg_fmt) self._check_size(msg_hdr, msg_fmt.size) vcp_fmt = NamedStruct([('size_hw', 'H'), ('pattern_type', 'H'), ('num', 'H'), ('num_el_cuts', 'H'), ('vcp_version', 'B'), ('clutter_map_group', 'B'), ('dop_res', 'B', BitField(None, 0.5, 1.0)), ('pulse_width', 'B', BitField('None', 'Short', 'Long')), (None, '4x'), ('vcp_sequencing', 'H'), ('vcp_supplemental_info', 'H'), (None, '2x'), ('els', None)], '>', 'VCPFmt') vcp_el_fmt = NamedStruct([('el_angle', 'H', angle), ('channel_config', 'B', Enum('Constant Phase', 'Random Phase', 'SZ2 Phase')), ('waveform', 'B', Enum('None', 'Contiguous Surveillance', 'Contig. Doppler with Ambiguity Res.', 'Contig. Doppler without Ambiguity Res.', 'Batch', 'Staggered Pulse Pair')), ('super_res', 'B', BitField('0.5 azimuth and 0.25km range res.', 'Doppler to 300km', 'Dual Polarization Control', 'Dual Polarization to 300km')), ('surv_prf_num', 'B'), ('surv_pulse_count', 'H'), ('az_rate', 'h', az_rate), ('ref_thresh', 'h', scaler(0.125)), ('vel_thresh', 'h', scaler(0.125)), ('sw_thresh', 'h', scaler(0.125)), ('zdr_thresh', 'h', scaler(0.125)), ('phidp_thresh', 'h', scaler(0.125)), ('rhohv_thresh', 'h', scaler(0.125)), ('sector1_edge', 'H', angle), ('sector1_doppler_prf_num', 'H'), ('sector1_pulse_count', 'H'), ('supplemental_data', 'H'), ('sector2_edge', 'H', angle), ('sector2_doppler_prf_num', 'H'), ('sector2_pulse_count', 'H'), ('ebc_angle', 'H', angle), ('sector3_edge', 'H', angle), ('sector3_doppler_prf_num', 'H'), ('sector3_pulse_count', 'H'), (None, '2x')], '>', 'VCPEl') def _decode_msg5(self, msg_hdr): vcp_info = self._buffer.read_struct(self.vcp_fmt) els = [self._buffer.read_struct(self.vcp_el_fmt) for _ in range(vcp_info.num_el_cuts)] self.vcp_info = vcp_info._replace(els=els) self._check_size(msg_hdr, self.vcp_fmt.size + vcp_info.num_el_cuts * self.vcp_el_fmt.size) def _decode_msg13(self, msg_hdr): data = self._buffer_segment(msg_hdr) if data: data = struct.Struct(f'>{len(data) // 2:d}h').unpack(data) # Legacy format doesn't have date/time and has fewer azimuths if data[0] <= 5: num_el = data[0] dt = None num_az = 256 offset = 1 else: date, time, num_el = data[:3] # time is in "minutes since midnight", need to pass as ms since midnight dt = nexrad_to_datetime(date, 60 * 1000 * time) num_az = 360 offset = 3 self.clutter_filter_bypass_map = {'datetime': dt, 'data': []} chunk_size = 32 bit_conv = Bits(16) for e in range(num_el): seg_num = data[offset] if seg_num != (e + 1): log.warning('Message 13 segments out of sync -- read %d but on %d', seg_num, e + 1) az_data = [] for _ in range(num_az): gates = [] for i in range(1, chunk_size + 1): gates.extend(bit_conv(data[offset + i])) az_data.append(gates) self.clutter_filter_bypass_map['data'].append(az_data) offset += num_az * chunk_size + 1 if offset != len(data): log.warning('Message 13 left data -- Used: %d Avail: %d', offset, len(data)) msg15_code_map = {0: 'Bypass Filter', 1: 'Bypass map in Control', 2: 'Force Filter'} def _decode_msg15(self, msg_hdr): # buffer the segments until we have the whole thing. The data # will be returned concatenated when this is the case data = self._buffer_segment(msg_hdr) if data: date, time, num_el, *data = struct.Struct(f'>{len(data) // 2:d}h').unpack(data) if num_el == 0: log.info('Message 15 num_el is 0--likely legacy clutter filter notch width. ' 'Skipping...') return # time is in "minutes since midnight", need to pass as ms since midnight self.clutter_filter_map = {'datetime': nexrad_to_datetime(date, 60 * 1000 * time), 'data': []} offset = 0 for _ in range(num_el): az_data = [] for _ in range(360): num_rng = data[offset] codes = data[offset + 1:offset + 1 + 2 * num_rng:2] ends = data[offset + 2:offset + 2 + 2 * num_rng:2] az_data.append(list(zip(ends, codes))) offset += 2 * num_rng + 1 self.clutter_filter_map['data'].append(az_data) if offset != len(data): log.warning('Message 15 left data -- Used: %d Avail: %d', offset, len(data)) def _decode_msg18(self, msg_hdr): # buffer the segments until we have the whole thing. The data # will be returned concatenated when this is the case data = self._buffer_segment(msg_hdr) # Legacy versions don't even document this: if data and self.vol_hdr.version[:8] not in (b'ARCHIVE2', b'AR2V0001'): from ._nexrad_msgs.msg18 import descriptions, fields self.rda_adaptation_desc = descriptions # Can't use NamedStruct because we have more than 255 items--this # is a CPython limit for arguments. msg_fmt = DictStruct(fields, '>') # Be extra paranoid about passing too much data in case of legacy files self.rda = msg_fmt.unpack(data[:msg_fmt.size]) for num in (11, 21, 31, 32, 300, 301): attr = f'VCPAT{num}' dat = self.rda[attr] vcp_hdr = self.vcp_fmt.unpack_from(dat, 0) off = self.vcp_fmt.size els = [] for _ in range(vcp_hdr.num_el_cuts): els.append(self.vcp_el_fmt.unpack_from(dat, off)) off += self.vcp_el_fmt.size self.rda[attr] = vcp_hdr._replace(els=els) msg31_data_hdr_fmt = NamedStruct([('stid', '4s'), ('time_ms', 'L'), ('date', 'H'), ('az_num', 'H'), ('az_angle', 'f'), ('compression', 'B'), (None, 'x'), ('rad_length', 'H'), ('az_spacing', 'B', Enum(0, 0.5, 1.0)), ('rad_status', 'B', remap_status), ('el_num', 'B'), ('sector_num', 'B'), ('el_angle', 'f'), ('spot_blanking', 'B', BitField('Radial', 'Elevation', 'Volume')), ('az_index_mode', 'B', scaler(0.01)), ('num_data_blks', 'H')], '>', 'Msg31DataHdr') msg31_vol_const_fmt = NamedStruct([('type', 's'), ('name', '3s'), ('size', 'H'), ('major', 'B'), ('minor', 'B'), ('lat', 'f'), ('lon', 'f'), ('site_amsl', 'h'), ('feedhorn_agl', 'H'), ('calib_dbz', 'f'), ('txpower_h', 'f'), ('txpower_v', 'f'), ('sys_zdr', 'f'), ('phidp0', 'f'), ('vcp', 'H'), ('processing_status', 'H', BitField('RxR Noise', 'CBT'))], '>', 'VolConsts') msg31_el_const_fmt = NamedStruct([('type', 's'), ('name', '3s'), ('size', 'H'), ('atmos_atten', 'h', scaler(0.001)), ('calib_dbz0', 'f')], '>', 'ElConsts') rad_const_fmt_v1 = NamedStruct([('type', 's'), ('name', '3s'), ('size', 'H'), ('unamb_range', 'H', scaler(0.1)), ('noise_h', 'f'), ('noise_v', 'f'), ('nyq_vel', 'H', scaler(0.01)), (None, '2x')], '>', 'RadConstsV1') rad_const_fmt_v2 = NamedStruct([('type', 's'), ('name', '3s'), ('size', 'H'), ('unamb_range', 'H', scaler(0.1)), ('noise_h', 'f'), ('noise_v', 'f'), ('nyq_vel', 'H', scaler(0.01)), (None, '2x'), ('calib_dbz0_h', 'f'), ('calib_dbz0_v', 'f')], '>', 'RadConstsV2') data_block_fmt = NamedStruct([('type', 's'), ('name', '3s'), ('reserved', 'L'), ('num_gates', 'H'), ('first_gate', 'H', scaler(0.001)), ('gate_width', 'H', scaler(0.001)), ('tover', 'H', scaler(0.1)), ('snr_thresh', 'h', scaler(0.1)), ('recombined', 'B', BitField('Azimuths', 'Gates')), ('data_size', 'B'), ('scale', 'f'), ('offset', 'f')], '>', 'DataBlockHdr') Radial = namedtuple('Radial', 'header vol_consts elev_consts radial_consts moments') def _decode_msg31(self, msg_hdr): msg_start = self._buffer.set_mark() data_hdr = self._buffer.read_struct(self.msg31_data_hdr_fmt) if data_hdr.compression: log.warning('Compressed message 31 not supported!') # Read all the block pointers. While the ICD specifies that at least the vol, el, rad # constant blocks as well as REF moment block are present, it says "the pointers are # not order or location dependent." radial = self.Radial(data_hdr, None, None, None, {}) block_count = 0 for ptr in self._buffer.read_binary(data_hdr.num_data_blks, '>L'): if ptr: block_count += 1 self._buffer.jump_to(msg_start, ptr) info = self._buffer.get_next(6) if info.startswith(b'RVOL'): radial = radial._replace( vol_consts=self._buffer.read_struct(self.msg31_vol_const_fmt)) elif info.startswith(b'RELV'): radial = radial._replace( elev_consts=self._buffer.read_struct(self.msg31_el_const_fmt)) elif info.startswith(b'RRAD'): # Relies on the fact that the struct is small enough for its size # to fit in a single byte if int(info[-1]) == self.rad_const_fmt_v2.size: rad_consts = self._buffer.read_struct(self.rad_const_fmt_v2) else: rad_consts = self._buffer.read_struct(self.rad_const_fmt_v1) radial = radial._replace(radial_consts=rad_consts) elif info.startswith(b'D'): hdr = self._buffer.read_struct(self.data_block_fmt) # TODO: The correctness of this code is not tested vals = self._buffer.read_array(count=hdr.num_gates, dtype=f'>u{hdr.data_size // 8}') scaled_vals = (vals - hdr.offset) / hdr.scale scaled_vals[vals == 0] = self.MISSING scaled_vals[vals == 1] = self.RANGE_FOLD radial.moments[hdr.name.strip()] = (hdr, scaled_vals) else: log.warning('Unknown Message 31 block type: %s', str(info[:4])) self._add_sweep(data_hdr) self.sweeps[-1].append(radial) if data_hdr.num_data_blks != block_count: log.warning('Incorrect number of blocks detected -- Got %d' ' instead of %d', block_count, data_hdr.num_data_blks) if data_hdr.rad_length != self._buffer.offset_from(msg_start): log.info('Padding detected in message. Length encoded as %d but offset when ' 'done is %d', data_hdr.rad_length, self._buffer.offset_from(msg_start)) def _buffer_segment(self, msg_hdr): # Add to the buffer bufs = self._msg_buf.setdefault(msg_hdr.msg_type, {}) bufs[msg_hdr.segment_num] = self._buffer.read(2 * msg_hdr.size_hw - self.msg_hdr_fmt.size) # Warn for badly formatted data if len(bufs) != msg_hdr.segment_num: log.warning('Segment out of order (Got: %d Count: %d) for message type %d.', msg_hdr.segment_num, len(bufs), msg_hdr.msg_type) # If we're complete, return the full collection of data if msg_hdr.num_segments == len(bufs): self._msg_buf.pop(msg_hdr.msg_type) return b''.join(bytes(item[1]) for item in sorted(bufs.items())) else: return None def _add_sweep(self, hdr): if not self.sweeps and not hdr.rad_status & START_VOLUME: log.warning('Missed start of volume!') if hdr.rad_status & START_ELEVATION: self.sweeps.append([]) if len(self.sweeps) != hdr.el_num: log.warning('Missed elevation -- Have %d but data on %d.' ' Compensating...', len(self.sweeps), hdr.el_num) while len(self.sweeps) < hdr.el_num: self.sweeps.append([]) def _check_size(self, msg_hdr, size): hdr_size = msg_hdr.size_hw * 2 - self.msg_hdr_fmt.size if size != hdr_size: log.warning('Message type %d should be %d bytes but got %d', msg_hdr.msg_type, size, hdr_size) def reduce_lists(d): """Replace single item lists in a dictionary with the single item.""" for field in d: old_data = d[field] if len(old_data) == 1: d[field] = old_data[0] def two_comp16(val): """Return the two's-complement signed representation of a 16-bit unsigned integer.""" if val >> 15: val = -(~val & 0x7fff) - 1 return val def float16(val): """Convert a 16-bit floating point value to a standard Python float.""" # Fraction is 10 LSB, Exponent middle 5, and Sign the MSB frac = val & 0x03ff exp = (val >> 10) & 0x1F sign = val >> 15 if exp: value = 2 ** (exp - 16) * (1 + float(frac) / 2**10) else: value = float(frac) / 2**9 if sign: value *= -1 return value def float32(short1, short2): """Unpack a pair of 16-bit integers as a Python float.""" # Masking below in python will properly convert signed values to unsigned return struct.unpack('>f', struct.pack('>HH', short1 & 0xFFFF, short2 & 0xFFFF))[0] def date_elem(ind_days, ind_minutes): """Create a function to parse a datetime from the product-specific blocks.""" def inner(seq): return nexrad_to_datetime(seq[ind_days], seq[ind_minutes] * 60 * 1000) return inner def scaled_elem(index, scale): """Create a function to scale a certain product-specific block.""" def inner(seq): return seq[index] * scale return inner def combine_elem(ind1, ind2): """Create a function to combine two specified product-specific blocks into a single int.""" def inner(seq): shift = 2**16 if seq[ind1] < 0: seq[ind1] += shift if seq[ind2] < 0: seq[ind2] += shift return (seq[ind1] << 16) | seq[ind2] return inner def float_elem(ind1, ind2): """Create a function to combine two specified product-specific blocks into a float.""" return lambda seq: float32(seq[ind1], seq[ind2]) def high_byte(ind): """Create a function to return the high-byte of a product-specific block.""" def inner(seq): return seq[ind] >> 8 return inner def low_byte(ind): """Create a function to return the low-byte of a product-specific block.""" def inner(seq): return seq[ind] & 0x00FF return inner def delta_time(ind): """Create a function to return the delta time from a product-specific block.""" def inner(seq): return seq[ind] >> 5 return inner def supplemental_scan(ind): """Create a function to return the supplement scan type from a product-specific block.""" def inner(seq): # ICD says 1->SAILS, 2->MRLE, but testing on 2020-08-17 makes this seem inverted # given what's being reported by sites in the GSM. return {0: 'Non-supplemental scan', 2: 'SAILS scan', 1: 'MRLE scan'}.get(seq[ind] & 0x001F, 'Unknown') return inner # Data mappers used to take packed data and turn into physical units # Default is to use numpy array indexing to use LUT to change data bytes # into physical values. Can also have a 'labels' attribute to give # categorical labels class DataMapper: """Convert packed integer data into physical units.""" # Need to find way to handle range folded # RANGE_FOLD = -9999 RANGE_FOLD = float('nan') MISSING = float('nan') def __init__(self, num=256): self.lut = np.full(num, self.MISSING, dtype=float) def __call__(self, data): """Convert the values.""" return self.lut[data] class DigitalMapper(DataMapper): """Maps packed integers to floats using a scale and offset from the product.""" _min_scale = 0.1 _inc_scale = 0.1 _min_data = 2 _max_data = 255 range_fold = False def __init__(self, prod): """Initialize the mapper and the lookup table.""" super().__init__() min_val = two_comp16(prod.thresholds[0]) * self._min_scale inc = prod.thresholds[1] * self._inc_scale num_levels = prod.thresholds[2] # Generate lookup table -- sanity check on num_levels handles # the fact that DHR advertises 256 levels, which *includes* # missing, differing from other products num_levels = min(num_levels, self._max_data - self._min_data + 1) for i in range(num_levels): self.lut[i + self._min_data] = min_val + i * inc class DigitalRefMapper(DigitalMapper): """Mapper for digital reflectivity products.""" units = 'dBZ' class DigitalVelMapper(DigitalMapper): """Mapper for digital velocity products.""" units = 'm/s' range_fold = True class DigitalSPWMapper(DigitalVelMapper): """Mapper for digital spectrum width products.""" _min_data = 129 # ICD says up to 152, but also says max value is 19, which implies 129 + 19/0.5 -> 167 _max_data = 167 class PrecipArrayMapper(DigitalMapper): """Mapper for precipitation array products.""" _inc_scale = 0.001 _min_data = 1 _max_data = 254 units = 'dBA' class DigitalStormPrecipMapper(DigitalMapper): """Mapper for digital storm precipitation products.""" units = 'inches' _inc_scale = 0.01 class DigitalVILMapper(DataMapper): """Mapper for digital VIL products.""" def __init__(self, prod): """Initialize the VIL mapper.""" super().__init__() lin_scale = float16(prod.thresholds[0]) lin_offset = float16(prod.thresholds[1]) log_start = prod.thresholds[2] log_scale = float16(prod.thresholds[3]) log_offset = float16(prod.thresholds[4]) # VIL is allowed to use 2 through 254 inclusive. 0 is thresholded, # 1 is flagged, and 255 is reserved ind = np.arange(255) self.lut[2:log_start] = (ind[2:log_start] - lin_offset) / lin_scale self.lut[log_start:-1] = np.exp((ind[log_start:] - log_offset) / log_scale) class DigitalEETMapper(DataMapper): """Mapper for digital echo tops products.""" def __init__(self, prod): """Initialize the mapper.""" super().__init__() data_mask = prod.thresholds[0] scale = prod.thresholds[1] offset = prod.thresholds[2] topped_mask = prod.thresholds[3] self.topped_lut = [False] * 256 for i in range(2, 256): self.lut[i] = ((i & data_mask) - offset) / scale self.topped_lut[i] = bool(i & topped_mask) self.topped_lut = np.array(self.topped_lut) def __call__(self, data_vals): """Convert the data values.""" return self.lut[data_vals], self.topped_lut[data_vals] class GenericDigitalMapper(DataMapper): """Maps packed integers to floats using a scale and offset from the product. Also handles special data flags. """ def __init__(self, prod): """Initialize the mapper by pulling out all the information from the product.""" # Values will be [0, max] inclusive, so need to add 1 to max value to get proper size. max_data_val = prod.thresholds[5] super().__init__(max_data_val + 1) scale = float32(prod.thresholds[0], prod.thresholds[1]) offset = float32(prod.thresholds[2], prod.thresholds[3]) leading_flags = prod.thresholds[6] trailing_flags = prod.thresholds[7] if leading_flags > 1: self.lut[1] = self.RANGE_FOLD # Need to add 1 to the end of the range so that it's inclusive for i in range(leading_flags, max_data_val - trailing_flags + 1): self.lut[i] = (i - offset) / scale class DigitalHMCMapper(DataMapper): """Mapper for hydrometeor classification products. Handles assigning string labels based on values. """ labels = ['ND', 'BI', 'GC', 'IC', 'DS', 'WS', 'RA', 'HR', 'BD', 'GR', 'HA', 'LH', 'GH', 'UK', 'RF'] def __init__(self, prod): """Initialize the mapper.""" super().__init__() for i in range(10, 256): self.lut[i] = i // 10 self.lut[150] = self.RANGE_FOLD # 156, 157 class EDRMapper(DataMapper): """Mapper for eddy dissipation rate products.""" def __init__(self, prod): """Initialize the mapper based on the product.""" data_levels = prod.thresholds[2] super().__init__(data_levels) scale = prod.thresholds[0] / 1000. offset = prod.thresholds[1] / 1000. leading_flags = prod.thresholds[3] for i in range(leading_flags, data_levels): self.lut[i] = scale * i + offset class LegacyMapper(DataMapper): """Mapper for legacy products.""" lut_names = ['Blank', 'TH', 'ND', 'RF', 'BI', 'GC', 'IC', 'GR', 'WS', 'DS', 'RA', 'HR', 'BD', 'HA', 'UK'] def __init__(self, prod): """Initialize the values and labels from the product.""" # Don't worry about super() since we're using our own lut assembled sequentially self.labels = [] self.lut = [] for t in prod.thresholds: codes, val = t >> 8, t & 0xFF label = '' if codes >> 7: label = self.lut_names[val] if label in ('Blank', 'TH', 'ND'): val = self.MISSING elif label == 'RF': val = self.RANGE_FOLD elif codes >> 6: val *= 0.01 label = f'{val:.2f}' elif codes >> 5: val *= 0.05 label = f'{val:.2f}' elif codes >> 4: val *= 0.1 label = f'{val:.1f}' if codes & 0x1: val *= -1 label = '-' + label elif (codes >> 1) & 0x1: label = '+' + label if (codes >> 2) & 0x1: label = '<' + label elif (codes >> 3) & 0x1: label = '>' + label if not label: label = str(val) self.lut.append(val) self.labels.append(label) self.lut = np.array(self.lut) @exporter.export class Level3File: r"""Handle reading the wide array of NEXRAD Level 3 (NIDS) product files. This class attempts to decode every byte that is in a given product file. It supports all of the various compression formats that exist for these products in the wild. Attributes ---------- metadata : dict Various general metadata available from the product header : namedtuple Decoded product header prod_desc : namedtuple Decoded product description block siteID : str ID of the site found in the header, empty string if none found lat : float Radar site latitude lon : float Radar site longitude height : float Radar site height AMSL product_name : str Name of the product contained in file max_range : float Maximum range of the product, taken from the NIDS ICD map_data : Mapper Class instance mapping data int values to proper floating point values sym_block : list, optional Any symbology block packets that were found tab_pages : list, optional Any tabular pages that were found graph_pages : list, optional Any graphical pages that were found Notes ----- The internal data structure that things are decoded into is still to be determined. """ ij_to_km = 0.25 wmo_finder = re.compile('((?:NX|SD|NO)US)\\d{2}[\\s\\w\\d]+\\w*(\\w{3})\r\r\n') header_fmt = NamedStruct([('code', 'H'), ('date', 'H'), ('time', 'l'), ('msg_len', 'L'), ('src_id', 'h'), ('dest_id', 'h'), ('num_blks', 'H')], '>', 'MsgHdr') # See figure 3-17 in 2620001 document for definition of status bit fields gsm_fmt = NamedStruct([('divider', 'h'), ('block_len', 'H'), ('op_mode', 'h', BitField('Clear Air', 'Precip')), ('rda_op_status', 'h', BitField('Spare', 'Online', 'Maintenance Required', 'Maintenance Mandatory', 'Commanded Shutdown', 'Inoperable', 'Spare', 'Wideband Disconnect')), ('vcp', 'h'), ('num_el', 'h'), ('el1', 'h', scaler(0.1)), ('el2', 'h', scaler(0.1)), ('el3', 'h', scaler(0.1)), ('el4', 'h', scaler(0.1)), ('el5', 'h', scaler(0.1)), ('el6', 'h', scaler(0.1)), ('el7', 'h', scaler(0.1)), ('el8', 'h', scaler(0.1)), ('el9', 'h', scaler(0.1)), ('el10', 'h', scaler(0.1)), ('el11', 'h', scaler(0.1)), ('el12', 'h', scaler(0.1)), ('el13', 'h', scaler(0.1)), ('el14', 'h', scaler(0.1)), ('el15', 'h', scaler(0.1)), ('el16', 'h', scaler(0.1)), ('el17', 'h', scaler(0.1)), ('el18', 'h', scaler(0.1)), ('el19', 'h', scaler(0.1)), ('el20', 'h', scaler(0.1)), ('rda_status', 'h', BitField('Spare', 'Startup', 'Standby', 'Restart', 'Operate', 'Off-line Operate')), ('rda_alarms', 'h', BitField('Indeterminate', 'Tower/Utilities', 'Pedestal', 'Transmitter', 'Receiver', 'RDA Control', 'RDA Communications', 'Signal Processor')), ('tranmission_enable', 'h', BitField('Spare', 'None', 'Reflectivity', 'Velocity', 'Spectrum Width', 'Dual Pol')), ('rpg_op_status', 'h', BitField('Loadshed', 'Online', 'Maintenance Required', 'Maintenance Mandatory', 'Commanded shutdown')), ('rpg_alarms', 'h', BitField('None', 'Node Connectivity', 'Wideband Failure', 'RPG Control Task Failure', 'Data Base Failure', 'Spare', 'RPG Input Buffer Loadshed', 'Spare', 'Product Storage Loadshed' 'Spare', 'Spare', 'Spare', 'RPG/RPG Intercomputer Link Failure', 'Redundant Channel Error', 'Task Failure', 'Media Failure')), ('rpg_status', 'h', BitField('Restart', 'Operate', 'Standby')), ('rpg_narrowband_status', 'h', BitField('Commanded Disconnect', 'Narrowband Loadshed')), ('h_ref_calib', 'h', scaler(0.25)), ('prod_avail', 'h', BitField('Product Availability', 'Degraded Availability', 'Not Available')), ('super_res_cuts', 'h', Bits(16)), ('cmd_status', 'h', Bits(6)), ('v_ref_calib', 'h', scaler(0.25)), ('rda_build', 'h', version), ('rda_channel', 'h'), ('reserved', 'h'), ('reserved2', 'h'), ('build_version', 'h', version)], '>', 'GSM') # Build 14.0 added more bytes to the GSM additional_gsm_fmt = NamedStruct([('el21', 'h', scaler(0.1)), ('el22', 'h', scaler(0.1)), ('el23', 'h', scaler(0.1)), ('el24', 'h', scaler(0.1)), ('el25', 'h', scaler(0.1)), ('vcp_supplemental', 'H', BitField('AVSET', 'SAILS', 'Site VCP', 'RxR Noise', 'CBT', 'VCP Sequence', 'SPRT', 'MRLE', 'Base Tilt', 'MPDA')), ('supplemental_cut_map', 'H', Bits(16)), ('supplemental_cut_count', 'B'), ('supplemental_cut_map2', 'B', Bits(8)), ('spare', '80s')], '>', 'GSM') prod_desc_fmt = NamedStruct([('divider', 'h'), ('lat', 'l'), ('lon', 'l'), ('height', 'h'), ('prod_code', 'h'), ('op_mode', 'h'), ('vcp', 'h'), ('seq_num', 'h'), ('vol_num', 'h'), ('vol_date', 'h'), ('vol_start_time', 'l'), ('prod_gen_date', 'h'), ('prod_gen_time', 'l'), ('dep1', 'h'), ('dep2', 'h'), ('el_num', 'h'), ('dep3', 'h'), ('thr1', 'h'), ('thr2', 'h'), ('thr3', 'h'), ('thr4', 'h'), ('thr5', 'h'), ('thr6', 'h'), ('thr7', 'h'), ('thr8', 'h'), ('thr9', 'h'), ('thr10', 'h'), ('thr11', 'h'), ('thr12', 'h'), ('thr13', 'h'), ('thr14', 'h'), ('thr15', 'h'), ('thr16', 'h'), ('dep4', 'h'), ('dep5', 'h'), ('dep6', 'h'), ('dep7', 'h'), ('dep8', 'h'), ('dep9', 'h'), ('dep10', 'h'), ('version', 'b'), ('spot_blank', 'b'), ('sym_off', 'L'), ('graph_off', 'L'), ('tab_off', 'L')], '>', 'ProdDesc') sym_block_fmt = NamedStruct([('divider', 'h'), ('block_id', 'h'), ('block_len', 'L'), ('nlayer', 'H')], '>', 'SymBlock') tab_header_fmt = NamedStruct([('divider', 'h'), ('block_id', 'h'), ('block_len', 'L')], '>', 'TabHeader') tab_block_fmt = NamedStruct([('divider', 'h'), ('num_pages', 'h')], '>', 'TabBlock') sym_layer_fmt = NamedStruct([('divider', 'h'), ('length', 'L')], '>', 'SymLayer') graph_block_fmt = NamedStruct([('divider', 'h'), ('block_id', 'h'), ('block_len', 'L'), ('num_pages', 'H')], '>', 'GraphBlock') standalone_tabular = [62, 73, 75, 82] prod_spec_map = {16: ('Base Reflectivity', 230., LegacyMapper, (('el_angle', scaled_elem(2, 0.1)), ('max', 3), ('calib_const', float_elem(7, 8)))), 17: ('Base Reflectivity', 460., LegacyMapper, (('el_angle', scaled_elem(2, 0.1)), ('max', 3), ('calib_const', float_elem(7, 8)))), 18: ('Base Reflectivity', 460., LegacyMapper, (('el_angle', scaled_elem(2, 0.1)), ('max', 3), ('calib_const', float_elem(7, 8)))), 19: ('Base Reflectivity', 230., LegacyMapper, (('el_angle', scaled_elem(2, 0.1)), ('max', 3), ('delta_time', delta_time(6)), ('supplemental_scan', supplemental_scan(6)), ('calib_const', float_elem(7, 8)))), 20: ('Base Reflectivity', 460., LegacyMapper, (('el_angle', scaled_elem(2, 0.1)), ('max', 3), ('delta_time', delta_time(6)), ('supplemental_scan', supplemental_scan(6)), ('calib_const', float_elem(7, 8)))), 21: ('Base Reflectivity', 460., LegacyMapper, (('el_angle', scaled_elem(2, 0.1)), ('max', 3), ('calib_const', float_elem(7, 8)))), 22: ('Base Velocity', 60., LegacyMapper, (('el_angle', scaled_elem(2, 0.1)), ('min', 3), ('max', 4))), 23: ('Base Velocity', 115., LegacyMapper, (('el_angle', scaled_elem(2, 0.1)), ('min', 3), ('max', 4))), 24: ('Base Velocity', 230., LegacyMapper, (('el_angle', scaled_elem(2, 0.1)), ('min', 3), ('max', 4))), 25: ('Base Velocity', 60., LegacyMapper, (('el_angle', scaled_elem(2, 0.1)), ('min', 3), ('max', 4))), 26: ('Base Velocity', 115., LegacyMapper, (('el_angle', scaled_elem(2, 0.1)), ('min', 3), ('max', 4))), 27: ('Base Velocity', 230., LegacyMapper, (('el_angle', scaled_elem(2, 0.1)), ('min', 3), ('max', 4), ('delta_time', delta_time(6)), ('supplemental_scan', supplemental_scan(6)))), 28: ('Base Spectrum Width', 60., LegacyMapper, (('el_angle', scaled_elem(2, 0.1)), ('max', 3))), 29: ('Base Spectrum Width', 115., LegacyMapper, (('el_angle', scaled_elem(2, 0.1)), ('max', 3))), 30: ('Base Spectrum Width', 230., LegacyMapper, (('el_angle', scaled_elem(2, 0.1)), ('max', 3), ('delta_time', delta_time(6)), ('supplemental_scan', supplemental_scan(6)))), 31: ('User Selectable Storm Total Precipitation', 230., LegacyMapper, (('end_hour', 0), ('hour_span', 1), ('null_product', 2), ('max_rainfall', scaled_elem(3, 0.1)), ('rainfall_begin', date_elem(4, 5)), ('rainfall_end', date_elem(6, 7)), ('bias', scaled_elem(8, 0.01)), ('gr_pairs', scaled_elem(5, 0.01)))), 32: ('Digital Hybrid Scan Reflectivity', 230., DigitalRefMapper, (('max', 3), ('avg_time', date_elem(4, 5)), ('compression', 7), ('uncompressed_size', combine_elem(8, 9)))), 33: ('Hybrid Scan Reflectivity', 230., LegacyMapper, (('max', 3), ('avg_time', date_elem(4, 5)))), 34: ('Clutter Filter Control', 230., LegacyMapper, (('clutter_bitmap', 0), ('cmd_map', 1), ('bypass_map_date', date_elem(4, 5)), ('notchwidth_map_date', date_elem(6, 7)))), 35: ('Composite Reflectivity', 230., LegacyMapper, (('el_angle', scaled_elem(2, 0.1)), ('max', 3), ('calib_const', float_elem(7, 8)))), 36: ('Composite Reflectivity', 460., LegacyMapper, (('el_angle', scaled_elem(2, 0.1)), ('max', 3), ('calib_const', float_elem(7, 8)))), 37: ('Composite Reflectivity', 230., LegacyMapper, (('el_angle', scaled_elem(2, 0.1)), ('max', 3), ('calib_const', float_elem(7, 8)))), 38: ('Composite Reflectivity', 460., LegacyMapper, (('el_angle', scaled_elem(2, 0.1)), ('max', 3), ('calib_const', float_elem(7, 8)))), 41: ('Echo Tops', 230., LegacyMapper, (('el_angle', scaled_elem(2, 0.1)), ('max', scaled_elem(3, 1000)))), # Max in ft 48: ('VAD Wind Profile', None, LegacyMapper, (('max', 3), ('dir_max', 4), ('alt_max', scaled_elem(5, 10)))), # Max in ft 50: ('Cross Section Reflectivity', 230., LegacyMapper, (('azimuth1', scaled_elem(0, 0.1)), ('range1', scaled_elem(1, 0.1)), ('azimuth2', scaled_elem(2, 0.1)), ('range2', scaled_elem(3, 0.1)))), 51: ('Cross Section Velocity', 230., LegacyMapper, (('azimuth1', scaled_elem(0, 0.1)), ('range1', scaled_elem(1, 0.1)), ('azimuth2', scaled_elem(2, 0.1)), ('range2', scaled_elem(3, 0.1)))), 55: ('Storm Relative Mean Radial Velocity', 50., LegacyMapper, (('window_az', scaled_elem(0, 0.1)), ('window_range', scaled_elem(1, 0.1)), ('el_angle', scaled_elem(2, 0.1)), ('min', 3), ('max', 4), ('source', 5), ('height', 6), ('avg_speed', scaled_elem(7, 0.1)), ('avg_dir', scaled_elem(8, 0.1)), ('alert_category', 9))), 56: ('Storm Relative Mean Radial Velocity', 230., LegacyMapper, (('el_angle', scaled_elem(2, 0.1)), ('min', 3), ('max', 4), ('source', 5), ('avg_speed', scaled_elem(7, 0.1)), ('avg_dir', scaled_elem(8, 0.1)))), 57: ('Vertically Integrated Liquid', 230., LegacyMapper, (('el_angle', scaled_elem(2, 0.1)), ('max', 3))), # Max in kg / m^2 58: ('Storm Tracking Information', 460., LegacyMapper, (('num_storms', 3),)), 59: ('Hail Index', 230., LegacyMapper, ()), 61: ('Tornado Vortex Signature', 230., LegacyMapper, (('num_tvs', 3), ('num_etvs', 4))), 62: ('Storm Structure', 460., LegacyMapper, ()), 63: ('Layer Composite Reflectivity (Layer 1 Average)', 230., LegacyMapper, (('max', 3), ('layer_bottom', scaled_elem(4, 1000.)), ('layer_top', scaled_elem(5, 1000.)), ('calib_const', float_elem(7, 8)))), 64: ('Layer Composite Reflectivity (Layer 2 Average)', 230., LegacyMapper, (('max', 3), ('layer_bottom', scaled_elem(4, 1000.)), ('layer_top', scaled_elem(5, 1000.)), ('calib_const', float_elem(7, 8)))), 65: ('Layer Composite Reflectivity (Layer 1 Max)', 230., LegacyMapper, (('el_angle', scaled_elem(2, 0.1)), ('max', 3), ('layer_bottom', scaled_elem(4, 1000.)), ('layer_top', scaled_elem(5, 1000.)), ('calib_const', float_elem(7, 8)))), 66: ('Layer Composite Reflectivity (Layer 2 Max)', 230., LegacyMapper, (('el_angle', scaled_elem(2, 0.1)), ('max', 3), ('layer_bottom', scaled_elem(4, 1000.)), ('layer_top', scaled_elem(5, 1000.)), ('calib_const', float_elem(7, 8)))), 67: ('Layer Composite Reflectivity - AP Removed', 230., LegacyMapper, (('el_angle', scaled_elem(2, 0.1)), ('max', 3), ('layer_bottom', scaled_elem(4, 1000.)), ('layer_top', scaled_elem(5, 1000.)), ('calib_const', float_elem(7, 8)))), 74: ('Radar Coded Message', 460., LegacyMapper, ()), 78: ('Surface Rainfall Accumulation (1 hour)', 230., LegacyMapper, (('max_rainfall', scaled_elem(3, 0.1)), ('bias', scaled_elem(4, 0.01)), ('gr_pairs', scaled_elem(5, 0.01)), ('rainfall_end', date_elem(6, 7)))), 79: ('Surface Rainfall Accumulation (3 hour)', 230., LegacyMapper, (('max_rainfall', scaled_elem(3, 0.1)), ('bias', scaled_elem(4, 0.01)), ('gr_pairs', scaled_elem(5, 0.01)), ('rainfall_end', date_elem(6, 7)))), 80: ('Storm Total Rainfall Accumulation', 230., LegacyMapper, (('max_rainfall', scaled_elem(3, 0.1)), ('rainfall_begin', date_elem(4, 5)), ('rainfall_end', date_elem(6, 7)), ('bias', scaled_elem(8, 0.01)), ('gr_pairs', scaled_elem(9, 0.01)))), 81: ('Hourly Digital Precipitation Array', 230., PrecipArrayMapper, (('max_rainfall', scaled_elem(3, 0.001)), ('bias', scaled_elem(4, 0.01)), ('gr_pairs', scaled_elem(5, 0.01)), ('rainfall_end', date_elem(6, 7)))), 82: ('Supplemental Precipitation Data', None, LegacyMapper, ()), 89: ('Layer Composite Reflectivity (Layer 3 Average)', 230., LegacyMapper, (('max', 3), ('layer_bottom', scaled_elem(4, 1000.)), ('layer_top', scaled_elem(5, 1000.)), ('calib_const', float_elem(7, 8)))), 90: ('Layer Composite Reflectivity (Layer 3 Max)', 230., LegacyMapper, (('el_angle', scaled_elem(2, 0.1)), ('max', 3), ('layer_bottom', scaled_elem(4, 1000.)), ('layer_top', scaled_elem(5, 1000.)), ('calib_const', float_elem(7, 8)))), 93: ('ITWS Digital Base Velocity', 115., DigitalVelMapper, (('el_angle', scaled_elem(2, 0.1)), ('min', 3), ('max', 4), ('precision', 6))), 94: ('Base Reflectivity Data Array', 460., DigitalRefMapper, (('el_angle', scaled_elem(2, 0.1)), ('max', 3), ('delta_time', delta_time(6)), ('supplemental_scan', supplemental_scan(6)), ('compression', 7), ('uncompressed_size', combine_elem(8, 9)))), 95: ('Composite Reflectivity Edited for AP', 230., LegacyMapper, (('el_angle', scaled_elem(2, 0.1)), ('max', 3), ('calib_const', float_elem(7, 8)))), 96: ('Composite Reflectivity Edited for AP', 460., LegacyMapper, (('el_angle', scaled_elem(2, 0.1)), ('max', 3), ('calib_const', float_elem(7, 8)))), 97: ('Composite Reflectivity Edited for AP', 230., LegacyMapper, (('el_angle', scaled_elem(2, 0.1)), ('max', 3), ('calib_const', float_elem(7, 8)))), 98: ('Composite Reflectivity Edited for AP', 460., LegacyMapper, (('el_angle', scaled_elem(2, 0.1)), ('max', 3), ('calib_const', float_elem(7, 8)))), 99: ('Base Velocity Data Array', 300., DigitalVelMapper, (('el_angle', scaled_elem(2, 0.1)), ('min', 3), ('max', 4), ('delta_time', delta_time(6)), ('supplemental_scan', supplemental_scan(6)), ('compression', 7), ('uncompressed_size', combine_elem(8, 9)))), 113: ('Power Removed Control', 300., LegacyMapper, (('rpg_cut_num', 0), ('cmd_generated', 1), ('el_angle', scaled_elem(2, 0.1)), ('clutter_filter_map_dt', date_elem(4, 3)), # While the 2620001Y ICD doesn't talk about using these # product-specific blocks for this product, they have data in them # and the compression info is necessary for proper decoding. ('compression', 7), ('uncompressed_size', combine_elem(8, 9)))), 132: ('Clutter Likelihood Reflectivity', 230., LegacyMapper, (('el_angle', scaled_elem(2, 0.1)), ('delta_time', delta_time(6)), ('supplemental_scan', supplemental_scan(6)),)), 133: ('Clutter Likelihood Doppler', 230., LegacyMapper, (('el_angle', scaled_elem(2, 0.1)), ('delta_time', delta_time(6)), ('supplemental_scan', supplemental_scan(6)),)), 134: ('High Resolution VIL', 460., DigitalVILMapper, (('el_angle', scaled_elem(2, 0.1)), ('max', 3), ('num_edited', 4), ('compression', 7), ('uncompressed_size', combine_elem(8, 9)))), 135: ('Enhanced Echo Tops', 345., DigitalEETMapper, (('el_angle', scaled_elem(2, 0.1)), ('max', scaled_elem(3, 1000.)), # Max in ft ('num_edited', 4), ('ref_thresh', 5), ('points_removed', 6), ('compression', 7), ('uncompressed_size', combine_elem(8, 9)))), 138: ('Digital Storm Total Precipitation', 230., DigitalStormPrecipMapper, (('rainfall_begin', date_elem(0, 1)), ('bias', scaled_elem(2, 0.01)), ('max', scaled_elem(3, 0.01)), ('rainfall_end', date_elem(4, 5)), ('gr_pairs', scaled_elem(6, 0.01)), ('compression', 7), ('uncompressed_size', combine_elem(8, 9)))), 141: ('Mesocyclone Detection', 230., LegacyMapper, (('min_ref_thresh', 0), ('overlap_display_filter', 1), ('min_strength_rank', 2))), 152: ('Archive III Status Product', None, LegacyMapper, (('compression', 7), ('uncompressed_size', combine_elem(8, 9)))), 153: ('Super Resolution Reflectivity Data Array', 460., DigitalRefMapper, (('el_angle', scaled_elem(2, 0.1)), ('max', 3), ('delta_time', delta_time(6)), ('supplemental_scan', supplemental_scan(6)), ('compression', 7), ('uncompressed_size', combine_elem(8, 9)))), 154: ('Super Resolution Velocity Data Array', 300., DigitalVelMapper, (('el_angle', scaled_elem(2, 0.1)), ('min', 3), ('max', 4), ('delta_time', delta_time(6)), ('supplemental_scan', supplemental_scan(6)), ('compression', 7), ('uncompressed_size', combine_elem(8, 9)))), 155: ('Super Resolution Spectrum Width Data Array', 300., DigitalSPWMapper, (('el_angle', scaled_elem(2, 0.1)), ('max', 3), ('delta_time', delta_time(6)), ('supplemental_scan', supplemental_scan(6)), ('compression', 7), ('uncompressed_size', combine_elem(8, 9)))), 156: ('Turbulence Detection (Eddy Dissipation Rate)', 230., EDRMapper, (('el_start_time', 0), ('el_end_time', 1), ('el_angle', scaled_elem(2, 0.1)), ('min_el', scaled_elem(3, 0.01)), ('mean_el', scaled_elem(4, 0.01)), ('max_el', scaled_elem(5, 0.01)))), 157: ('Turbulence Detection (Eddy Dissipation Rate Confidence)', 230., EDRMapper, (('el_start_time', 0), ('el_end_time', 1), ('el_angle', scaled_elem(2, 0.1)), ('min_el', scaled_elem(3, 0.01)), ('mean_el', scaled_elem(4, 0.01)), ('max_el', scaled_elem(5, 0.01)))), 158: ('Differential Reflectivity', 230., LegacyMapper, (('el_angle', scaled_elem(2, 0.1)), ('min', scaled_elem(3, 0.1)), ('max', scaled_elem(4, 0.1)))), 159: ('Digital Differential Reflectivity', 300., GenericDigitalMapper, (('el_angle', scaled_elem(2, 0.1)), ('min', scaled_elem(3, 0.1)), ('max', scaled_elem(4, 0.1)), ('delta_time', delta_time(6)), ('supplemental_scan', supplemental_scan(6)), ('compression', 7), ('uncompressed_size', combine_elem(8, 9)))), 160: ('Correlation Coefficient', 230., LegacyMapper, (('el_angle', scaled_elem(2, 0.1)), ('min', scaled_elem(3, 0.00333)), ('max', scaled_elem(4, 0.00333)))), 161: ('Digital Correlation Coefficient', 300., GenericDigitalMapper, (('el_angle', scaled_elem(2, 0.1)), ('min', scaled_elem(3, 0.00333)), ('max', scaled_elem(4, 0.00333)), ('delta_time', delta_time(6)), ('supplemental_scan', supplemental_scan(6)), ('compression', 7), ('uncompressed_size', combine_elem(8, 9)))), 162: ('Specific Differential Phase', 230., LegacyMapper, (('el_angle', scaled_elem(2, 0.1)), ('min', scaled_elem(3, 0.05)), ('max', scaled_elem(4, 0.05)))), 163: ('Digital Specific Differential Phase', 300., GenericDigitalMapper, (('el_angle', scaled_elem(2, 0.1)), ('min', scaled_elem(3, 0.05)), ('max', scaled_elem(4, 0.05)), ('delta_time', delta_time(6)), ('supplemental_scan', supplemental_scan(6)), ('compression', 7), ('uncompressed_size', combine_elem(8, 9)))), 164: ('Hydrometeor Classification', 230., LegacyMapper, (('el_angle', scaled_elem(2, 0.1)),)), 165: ('Digital Hydrometeor Classification', 300., DigitalHMCMapper, (('el_angle', scaled_elem(2, 0.1)), ('delta_time', delta_time(6)), ('supplemental_scan', supplemental_scan(6)), ('compression', 7), ('uncompressed_size', combine_elem(8, 9)))), 166: ('Melting Layer', 230., LegacyMapper, (('el_angle', scaled_elem(2, 0.1)), ('delta_time', delta_time(6)), ('supplemental_scan', supplemental_scan(6)),)), 167: ('Super Res Digital Correlation Coefficient', 300., GenericDigitalMapper, (('el_angle', scaled_elem(2, 0.1)), ('min', scaled_elem(3, 0.00333)), ('max', scaled_elem(4, 0.00333)), ('delta_time', delta_time(6)), ('supplemental_scan', supplemental_scan(6)), ('compression', 7), ('uncompressed_size', combine_elem(8, 9)))), 168: ('Super Res Digital Phi', 300., GenericDigitalMapper, (('el_angle', scaled_elem(2, 0.1)), ('min', 3), ('max', 4), ('delta_time', delta_time(6)), ('supplemental_scan', supplemental_scan(6)), ('compression', 7), ('uncompressed_size', combine_elem(8, 9)))), 169: ('One Hour Accumulation', 230., LegacyMapper, (('null_product', low_byte(2)), ('max', scaled_elem(3, 0.1)), ('rainfall_end', date_elem(4, 5)), ('bias', scaled_elem(6, 0.01)), ('gr_pairs', scaled_elem(7, 0.01)))), 170: ('Digital Accumulation Array', 230., GenericDigitalMapper, (('null_product', low_byte(2)), ('max', scaled_elem(3, 0.1)), ('rainfall_end', date_elem(4, 5)), ('bias', scaled_elem(6, 0.01)), ('compression', 7), ('uncompressed_size', combine_elem(8, 9)))), 171: ('Storm Total Accumulation', 230., LegacyMapper, (('rainfall_begin', date_elem(0, 1)), ('null_product', low_byte(2)), ('max', scaled_elem(3, 0.1)), ('rainfall_end', date_elem(4, 5)), ('bias', scaled_elem(6, 0.01)), ('gr_pairs', scaled_elem(7, 0.01)))), 172: ('Digital Storm Total Accumulation', 230., GenericDigitalMapper, (('rainfall_begin', date_elem(0, 1)), ('null_product', low_byte(2)), ('max', scaled_elem(3, 0.1)), ('rainfall_end', date_elem(4, 5)), ('bias', scaled_elem(6, 0.01)), ('compression', 7), ('uncompressed_size', combine_elem(8, 9)))), 173: ('Digital User-Selectable Accumulation', 230., GenericDigitalMapper, (('period', 1), ('missing_period', high_byte(2)), ('null_product', low_byte(2)), ('max', scaled_elem(3, 0.1)), ('rainfall_end', date_elem(4, 0)), ('start_time', 5), ('bias', scaled_elem(6, 0.01)), ('compression', 7), ('uncompressed_size', combine_elem(8, 9)))), 174: ('Digital One-Hour Difference Accumulation', 230., GenericDigitalMapper, (('max', scaled_elem(3, 0.1)), ('rainfall_end', date_elem(4, 5)), ('min', scaled_elem(6, 0.1)), ('compression', 7), ('uncompressed_size', combine_elem(8, 9)))), 175: ('Digital Storm Total Difference Accumulation', 230., GenericDigitalMapper, (('rainfall_begin', date_elem(0, 1)), ('null_product', low_byte(2)), ('max', scaled_elem(3, 0.1)), ('rainfall_end', date_elem(4, 5)), ('min', scaled_elem(6, 0.1)), ('compression', 7), ('uncompressed_size', combine_elem(8, 9)))), 176: ('Digital Instantaneous Precipitation Rate', 230., GenericDigitalMapper, (('rainfall_begin', date_elem(0, 1)), ('precip_detected', high_byte(2)), ('need_bias', low_byte(2)), ('max', 3), ('percent_filled', scaled_elem(4, 0.01)), ('max_elev', scaled_elem(5, 0.1)), ('bias', scaled_elem(6, 0.01)), ('compression', 7), ('uncompressed_size', combine_elem(8, 9)))), 177: ('Hybrid Hydrometeor Classification', 230., DigitalHMCMapper, (('mode_filter_size', 3), ('hybrid_percent_filled', 4), ('max_elev', scaled_elem(5, 0.1)), ('compression', 7), ('uncompressed_size', combine_elem(8, 9)))), 180: ('TDWR Base Reflectivity', 90., DigitalRefMapper, (('el_angle', scaled_elem(2, 0.1)), ('max', 3), ('compression', 7), ('uncompressed_size', combine_elem(8, 9)))), 181: ('TDWR Base Reflectivity', 90., LegacyMapper, (('el_angle', scaled_elem(2, 0.1)), ('max', 3))), 182: ('TDWR Base Velocity', 90., DigitalVelMapper, (('el_angle', scaled_elem(2, 0.1)), ('min', 3), ('max', 4), ('compression', 7), ('uncompressed_size', combine_elem(8, 9)))), 183: ('TDWR Base Velocity', 90., LegacyMapper, (('el_angle', scaled_elem(2, 0.1)), ('min', 3), ('max', 4))), 185: ('TDWR Base Spectrum Width', 90., LegacyMapper, (('el_angle', scaled_elem(2, 0.1)), ('max', 3))), 186: ('TDWR Long Range Base Reflectivity', 416., DigitalRefMapper, (('el_angle', scaled_elem(2, 0.1)), ('max', 3), ('compression', 7), ('uncompressed_size', combine_elem(8, 9)))), 187: ('TDWR Long Range Base Reflectivity', 416., LegacyMapper, (('el_angle', scaled_elem(2, 0.1)), ('max', 3)))} def __init__(self, filename): r"""Create instance of `Level3File`. Parameters ---------- filename : str or file-like object If str, the name of the file to be opened. If file-like object, this will be read from directly. """ fobj = open_as_needed(filename) if isinstance(filename, str): self.filename = filename elif isinstance(filename, pathlib.Path): self.filename = str(filename) else: self.filename = 'No File' # Just read in the entire set of data at once with contextlib.closing(fobj): self._buffer = IOBuffer.fromfile(fobj) # Pop off the WMO header if we find it self._process_wmo_header() # Pop off last 4 bytes if necessary self._process_end_bytes() # Set up places to store data and metadata self.metadata = {} # Handle free text message products that are pure text if self.wmo_code == 'NOUS': self.header = None self.prod_desc = None self.thresholds = None self.depVals = None self.product_name = 'Free Text Message' self.text = ''.join(self._buffer.read_ascii()) return # Decompress the data if necessary, and if so, pop off new header self._buffer = IOBuffer(self._buffer.read_func(zlib_decompress_all_frames)) self._process_wmo_header() # Check for empty product if len(self._buffer) == 0: log.warning('%s: Empty product!', self.filename) return # Unpack the message header and the product description block msg_start = self._buffer.set_mark() self.header = self._buffer.read_struct(self.header_fmt) log.debug('Buffer size: %d (%d expected) Header: %s', len(self._buffer), self.header.msg_len, self.header) if not self._buffer.check_remains(self.header.msg_len - self.header_fmt.size): log.warning('Product contains an unexpected amount of data remaining--have: %d ' 'expected: %d. This product may not parse correctly.', len(self._buffer) - self._buffer._offset, self.header.msg_len - self.header_fmt.size) # Handle GSM and jump out if self.header.code == 2: self.gsm = self._buffer.read_struct(self.gsm_fmt) self.product_name = 'General Status Message' assert self.gsm.divider == -1 if self.gsm.block_len > 82: # Due to the way the structures read it in, one bit from the count needs # to be popped off and added as the supplemental cut status for the 25th # elevation cut. more = self._buffer.read_struct(self.additional_gsm_fmt) cut_count = more.supplemental_cut_count more.supplemental_cut_map2.append(bool(cut_count & 0x1)) self.gsm_additional = more._replace(supplemental_cut_count=cut_count >> 1) assert self.gsm.block_len == 178 else: assert self.gsm.block_len == 82 return self.prod_desc = self._buffer.read_struct(self.prod_desc_fmt) log.debug('Product description block: %s', self.prod_desc) # Convert thresholds and dependent values to lists of values self.thresholds = [getattr(self.prod_desc, f'thr{i}') for i in range(1, 17)] self.depVals = [getattr(self.prod_desc, f'dep{i}') for i in range(1, 11)] # Set up some time/location metadata self.metadata['msg_time'] = nexrad_to_datetime(self.header.date, self.header.time * 1000) self.metadata['vol_time'] = nexrad_to_datetime(self.prod_desc.vol_date, self.prod_desc.vol_start_time * 1000) self.metadata['prod_time'] = nexrad_to_datetime(self.prod_desc.prod_gen_date, self.prod_desc.prod_gen_time * 1000) self.lat = self.prod_desc.lat * 0.001 self.lon = self.prod_desc.lon * 0.001 self.height = self.prod_desc.height # Handle product-specific blocks. Default to compression and elevation angle # Also get other product specific information, like name, # maximum range, and how to map data bytes to values default = ('Unknown Product', 230., LegacyMapper, (('el_angle', scaled_elem(2, 0.1)), ('compression', 7), ('uncompressed_size', combine_elem(8, 9)), ('defaultVals', 0))) self.product_name, self.max_range, mapper, meta = self.prod_spec_map.get( self.header.code, default) log.debug('Product info--name: %s max_range: %f mapper: %s metadata: %s', self.product_name, self.max_range, mapper, meta) for name, block in meta: if callable(block): self.metadata[name] = block(self.depVals) else: self.metadata[name] = self.depVals[block] # Now that we have the header, we have everything needed to make tables # Store as class that can be called self.map_data = mapper(self) # Process compression if indicated. We need to fail # gracefully here since we default to it being on if self.metadata.get('compression', False): try: comp_start = self._buffer.set_mark() decomp_data = self._buffer.read_func(bz2.decompress) self._buffer.splice(comp_start, decomp_data) assert self._buffer.check_remains(self.metadata['uncompressed_size']) except OSError: # Compression didn't work, so we just assume it wasn't actually compressed. pass # Unpack the various blocks, if present. The factor of 2 converts from # 'half-words' to bytes # Check to see if this is one of the "special" products that uses # header-free blocks and re-assigns the offsets if self.header.code in self.standalone_tabular: if self.prod_desc.sym_off: # For standalone tabular alphanumeric, symbology offset is # actually tabular self._unpack_tabblock(msg_start, 2 * self.prod_desc.sym_off, False) if self.prod_desc.graph_off: # Offset seems to be off by 1 from where we're counting, but # it's not clear why. self._unpack_standalone_graphblock(msg_start, 2 * (self.prod_desc.graph_off - 1)) # Need special handling for (old) radar coded message format elif self.header.code == 74: self._unpack_rcm(msg_start, 2 * self.prod_desc.sym_off) else: if self.prod_desc.sym_off: self._unpack_symblock(msg_start, 2 * self.prod_desc.sym_off) if self.prod_desc.graph_off: self._unpack_graphblock(msg_start, 2 * self.prod_desc.graph_off) if self.prod_desc.tab_off: self._unpack_tabblock(msg_start, 2 * self.prod_desc.tab_off) if 'defaultVals' in self.metadata: log.warning('%s: Using default metadata for product %d', self.filename, self.header.code) def _process_wmo_header(self): # Read off the WMO header if necessary data = self._buffer.get_next(64).decode('ascii', 'ignore') match = self.wmo_finder.search(data) log.debug('WMO Header: %s', match) if match: self.wmo_code = match.groups()[0] self.siteID = match.groups()[-1] self._buffer.skip(match.end()) else: self.wmo_code = '' def _process_end_bytes(self): check_bytes = self._buffer[-4:-1] log.debug('End Bytes: %s', check_bytes) if check_bytes in (b'\r\r\n', b'\xff\xff\n'): self._buffer.truncate(4) @staticmethod def _unpack_rle_data(data): # Unpack Run-length encoded data unpacked = [] for run in data: num, val = run >> 4, run & 0x0F unpacked.extend([val] * num) return unpacked @staticmethod def pos_scale(is_sym_block): """Scale of the position information in km.""" return 0.25 if is_sym_block else 1 def _unpack_rcm(self, start, offset): self._buffer.jump_to(start, offset) header = self._buffer.read_ascii(10) assert header == '1234 ROBUU' text_data = self._buffer.read_ascii() end = 0 # Appendix B of ICD tells how to interpret this stuff, but that just # doesn't seem worth it. for marker, name in [('AA', 'ref'), ('BB', 'vad'), ('CC', 'remarks')]: start = text_data.find('/NEXR' + marker, end) # For part C the search for end fails, but returns -1, which works end = text_data.find('/END' + marker, start) setattr(self, 'rcm_' + name, text_data[start:end]) def _unpack_symblock(self, start, offset): self._buffer.jump_to(start, offset) blk = self._buffer.read_struct(self.sym_block_fmt) log.debug('Symbology block info: %s', blk) self.sym_block = [] assert blk.divider == -1, ('Bad divider for symbology block: {:d} should be -1' .format(blk.divider)) assert blk.block_id == 1, ('Bad block ID for symbology block: {:d} should be 1' .format(blk.block_id)) for _ in range(blk.nlayer): layer_hdr = self._buffer.read_struct(self.sym_layer_fmt) assert layer_hdr.divider == -1 layer = [] self.sym_block.append(layer) layer_start = self._buffer.set_mark() while self._buffer.offset_from(layer_start) < layer_hdr.length: packet_code = self._buffer.read_int(2, 'big', signed=False) if packet_code in self.packet_map: layer.append(self.packet_map[packet_code](self, packet_code, True)) else: log.warning('%s: Unknown symbology packet type %d/%x.', self.filename, packet_code, packet_code) self._buffer.jump_to(layer_start, layer_hdr.length) assert self._buffer.offset_from(layer_start) == layer_hdr.length def _unpack_graphblock(self, start, offset): self._buffer.jump_to(start, offset) hdr = self._buffer.read_struct(self.graph_block_fmt) assert hdr.divider == -1, ('Bad divider for graphical block: {:d} should be -1' .format(hdr.divider)) assert hdr.block_id == 2, ('Bad block ID for graphical block: {:d} should be 1' .format(hdr.block_id)) self.graph_pages = [] for page in range(hdr.num_pages): page_num = self._buffer.read_int(2, 'big', signed=False) assert page + 1 == page_num page_size = self._buffer.read_int(2, 'big', signed=False) page_start = self._buffer.set_mark() packets = [] while self._buffer.offset_from(page_start) < page_size: packet_code = self._buffer.read_int(2, 'big', signed=False) if packet_code in self.packet_map: packets.append(self.packet_map[packet_code](self, packet_code, False)) else: log.warning('%s: Unknown graphical packet type %d/%x.', self.filename, packet_code, packet_code) self._buffer.skip(page_size) self.graph_pages.append(packets) def _unpack_standalone_graphblock(self, start, offset): self._buffer.jump_to(start, offset) packets = [] while not self._buffer.at_end(): packet_code = self._buffer.read_int(2, 'big', signed=False) if packet_code in self.packet_map: packets.append(self.packet_map[packet_code](self, packet_code, False)) else: log.warning('%s: Unknown standalone graphical packet type %d/%x.', self.filename, packet_code, packet_code) # Assume next 2 bytes is packet length and try skipping num_bytes = self._buffer.read_int(2, 'big', signed=False) self._buffer.skip(num_bytes) self.graph_pages = [packets] def _unpack_tabblock(self, start, offset, have_header=True): self._buffer.jump_to(start, offset) block_start = self._buffer.set_mark() # Read the header and validate if needed if have_header: header = self._buffer.read_struct(self.tab_header_fmt) assert header.divider == -1 assert header.block_id == 3 # Read off secondary message and product description blocks, # but as far as I can tell, all we really need is the text that follows self._buffer.read_struct(self.header_fmt) self._buffer.read_struct(self.prod_desc_fmt) # Get the start of the block with number of pages and divider blk = self._buffer.read_struct(self.tab_block_fmt) assert blk.divider == -1 # Read the pages line by line, break pages on a -1 character count self.tab_pages = [] for _ in range(blk.num_pages): lines = [] num_chars = self._buffer.read_int(2, 'big', signed=True) while num_chars != -1: lines.append(''.join(self._buffer.read_ascii(num_chars))) num_chars = self._buffer.read_int(2, 'big', signed=True) self.tab_pages.append('\n'.join(lines)) if have_header: assert self._buffer.offset_from(block_start) == header.block_len def __repr__(self): """Return the string representation of the product.""" attrs = ('product_name', 'header', 'prod_desc', 'thresholds', 'depVals', 'metadata', 'gsm', 'gsm_additional', 'siteID') blocks = [str(getattr(self, name)) for name in attrs if hasattr(self, name)] return self.filename + ': ' + '\n'.join(blocks) def _unpack_packet_radial_data(self, code, in_sym_block): hdr_fmt = NamedStruct([('ind_first_bin', 'H'), ('nbins', 'H'), ('i_center', 'h'), ('j_center', 'h'), ('scale_factor', 'h'), ('num_rad', 'H')], '>', 'RadialHeader') rad_fmt = NamedStruct([('num_hwords', 'H'), ('start_angle', 'h'), ('angle_delta', 'h')], '>', 'RadialData') hdr = self._buffer.read_struct(hdr_fmt) rads = [] for _ in range(hdr.num_rad): rad = self._buffer.read_struct(rad_fmt) start_az = rad.start_angle * 0.1 end_az = start_az + rad.angle_delta * 0.1 rads.append((start_az, end_az, self._unpack_rle_data( self._buffer.read_binary(2 * rad.num_hwords)))) start, end, vals = zip(*rads) return {'start_az': list(start), 'end_az': list(end), 'data': list(vals), 'center': (hdr.i_center * self.pos_scale(in_sym_block), hdr.j_center * self.pos_scale(in_sym_block)), 'gate_scale': hdr.scale_factor * 0.001, 'first': hdr.ind_first_bin} digital_radial_hdr_fmt = NamedStruct([('ind_first_bin', 'H'), ('nbins', 'H'), ('i_center', 'h'), ('j_center', 'h'), ('scale_factor', 'h'), ('num_rad', 'H')], '>', 'DigitalRadialHeader') digital_radial_fmt = NamedStruct([('num_bytes', 'H'), ('start_angle', 'h'), ('angle_delta', 'h')], '>', 'DigitalRadialData') def _unpack_packet_digital_radial(self, code, in_sym_block): hdr = self._buffer.read_struct(self.digital_radial_hdr_fmt) rads = [] for _ in range(hdr.num_rad): rad = self._buffer.read_struct(self.digital_radial_fmt) start_az = rad.start_angle * 0.1 end_az = start_az + rad.angle_delta * 0.1 rads.append((start_az, end_az, self._buffer.read_binary(rad.num_bytes))) start, end, vals = zip(*rads) return {'start_az': list(start), 'end_az': list(end), 'data': list(vals), 'center': (hdr.i_center * self.pos_scale(in_sym_block), hdr.j_center * self.pos_scale(in_sym_block)), 'gate_scale': hdr.scale_factor * 0.001, 'first': hdr.ind_first_bin} def _unpack_packet_raster_data(self, code, in_sym_block): hdr_fmt = NamedStruct([('code', 'L'), ('i_start', 'h'), ('j_start', 'h'), # start in km/4 ('xscale_int', 'h'), ('xscale_frac', 'h'), ('yscale_int', 'h'), ('yscale_frac', 'h'), ('num_rows', 'h'), ('packing', 'h')], '>', 'RasterData') hdr = self._buffer.read_struct(hdr_fmt) assert hdr.code == 0x800000C0 assert hdr.packing == 2 rows = [] for _ in range(hdr.num_rows): num_bytes = self._buffer.read_int(2, 'big', signed=False) rows.append(self._unpack_rle_data(self._buffer.read_binary(num_bytes))) return {'start_x': hdr.i_start * hdr.xscale_int, 'start_y': hdr.j_start * hdr.yscale_int, 'data': rows} def _unpack_packet_uniform_text(self, code, in_sym_block): # By not using a struct, we can handle multiple codes num_bytes = self._buffer.read_int(2, 'big', signed=False) if code == 8: value = self._buffer.read_int(2, 'big', signed=False) read_bytes = 6 else: value = None read_bytes = 4 i_start = self._buffer.read_int(2, 'big', signed=True) j_start = self._buffer.read_int(2, 'big', signed=True) # Text is what remains beyond what's been read, not including byte count text = ''.join(self._buffer.read_ascii(num_bytes - read_bytes)) return {'x': i_start * self.pos_scale(in_sym_block), 'y': j_start * self.pos_scale(in_sym_block), 'color': value, 'text': text} def _unpack_packet_special_text_symbol(self, code, in_sym_block): d = self._unpack_packet_uniform_text(code, in_sym_block) # Translate special characters to their meaning ret = {} symbol_map = {'!': 'past storm position', '"': 'current storm position', '#': 'forecast storm position', '$': 'past MDA position', '%': 'forecast MDA position', ' ': None} # Use this meaning as the key in the returned packet for c in d['text']: if c not in symbol_map: log.warning('%s: Unknown special symbol %d/%x.', self.filename, c, ord(c)) else: key = symbol_map[c] if key: ret[key] = d['x'], d['y'] del d['text'] return ret def _unpack_packet_special_graphic_symbol(self, code, in_sym_block): type_map = {3: 'Mesocyclone', 11: '3D Correlated Shear', 12: 'TVS', 26: 'ETVS', 13: 'Positive Hail', 14: 'Probable Hail', 15: 'Storm ID', 19: 'HDA', 25: 'STI Circle'} point_feature_map = {1: 'Mesocyclone (ext.)', 3: 'Mesocyclone', 5: 'TVS (Ext.)', 6: 'ETVS (Ext.)', 7: 'TVS', 8: 'ETVS', 9: 'MDA', 10: 'MDA (Elev.)', 11: 'MDA (Weak)'} # Read the number of bytes and set a mark for sanity checking num_bytes = self._buffer.read_int(2, 'big', signed=False) packet_data_start = self._buffer.set_mark() scale = self.pos_scale(in_sym_block) # Loop over the bytes we have ret = defaultdict(list) while self._buffer.offset_from(packet_data_start) < num_bytes: # Read position ret['x'].append(self._buffer.read_int(2, 'big', signed=True) * scale) ret['y'].append(self._buffer.read_int(2, 'big', signed=True) * scale) # Handle any types that have additional info if code in (3, 11, 25): ret['radius'].append(self._buffer.read_int(2, 'big', signed=True) * scale) elif code == 15: ret['id'].append(''.join(self._buffer.read_ascii(2))) elif code == 19: ret['POH'].append(self._buffer.read_int(2, 'big', signed=True)) ret['POSH'].append(self._buffer.read_int(2, 'big', signed=True)) ret['Max Size'].append(self._buffer.read_int(2, 'big', signed=False)) elif code == 20: kind = self._buffer.read_int(2, 'big', signed=False) attr = self._buffer.read_int(2, 'big', signed=False) if kind < 5 or kind > 8: ret['radius'].append(attr * scale) if kind not in point_feature_map: log.warning('%s: Unknown graphic symbol point kind %d/%x.', self.filename, kind, kind) ret['type'].append(f'Unknown ({kind:d})') else: ret['type'].append(point_feature_map[kind]) # Map the code to a name for this type of symbol if code != 20: if code not in type_map: log.warning('%s: Unknown graphic symbol type %d/%x.', self.filename, code, code) ret['type'] = 'Unknown' else: ret['type'] = type_map[code] # Check and return assert self._buffer.offset_from(packet_data_start) == num_bytes # Reduce dimensions of lists if possible reduce_lists(ret) return ret def _unpack_packet_scit(self, code, in_sym_block): num_bytes = self._buffer.read_int(2, 'big', signed=False) packet_data_start = self._buffer.set_mark() ret = defaultdict(list) while self._buffer.offset_from(packet_data_start) < num_bytes: next_code = self._buffer.read_int(2, 'big', signed=False) if next_code not in self.packet_map: log.warning('%s: Unknown packet in SCIT %d/%x.', self.filename, next_code, next_code) self._buffer.jump_to(packet_data_start, num_bytes) return ret else: next_packet = self.packet_map[next_code](self, next_code, in_sym_block) if next_code == 6: ret['track'].append(next_packet['vectors']) elif next_code == 25: ret['STI Circle'].append(next_packet) elif next_code == 2: ret['markers'].append(next_packet) else: log.warning('%s: Unsupported packet in SCIT %d/%x.', self.filename, next_code, next_code) ret['data'].append(next_packet) reduce_lists(ret) return ret def _unpack_packet_digital_precipitation(self, code, in_sym_block): # Read off a couple of unused spares self._buffer.read_int(2, 'big', signed=False) self._buffer.read_int(2, 'big', signed=False) # Get the size of the grid lfm_boxes = self._buffer.read_int(2, 'big', signed=False) num_rows = self._buffer.read_int(2, 'big', signed=False) rows = [] # Read off each row and decode the RLE data for _ in range(num_rows): row_num_bytes = self._buffer.read_int(2, 'big', signed=False) row_bytes = self._buffer.read_binary(row_num_bytes) if code == 18: row = self._unpack_rle_data(row_bytes) else: row = [] for run, level in zip(row_bytes[::2], row_bytes[1::2]): row.extend([level] * run) assert len(row) == lfm_boxes rows.append(row) return {'data': rows} def _unpack_packet_linked_vector(self, code, in_sym_block): num_bytes = self._buffer.read_int(2, 'big', signed=True) if code == 9: value = self._buffer.read_int(2, 'big', signed=True) num_bytes -= 2 else: value = None scale = self.pos_scale(in_sym_block) pos = [b * scale for b in self._buffer.read_binary(num_bytes / 2, '>h')] vectors = list(zip(pos[::2], pos[1::2])) return {'vectors': vectors, 'color': value} def _unpack_packet_vector(self, code, in_sym_block): num_bytes = self._buffer.read_int(2, 'big', signed=True) if code == 10: value = self._buffer.read_int(2, 'big', signed=True) num_bytes -= 2 else: value = None scale = self.pos_scale(in_sym_block) pos = [p * scale for p in self._buffer.read_binary(num_bytes / 2, '>h')] vectors = list(zip(pos[::4], pos[1::4], pos[2::4], pos[3::4])) return {'vectors': vectors, 'color': value} def _unpack_packet_contour_color(self, code, in_sym_block): # Check for color value indicator assert self._buffer.read_int(2, 'big', signed=False) == 0x0002 # Read and return value (level) of contour return {'color': self._buffer.read_int(2, 'big', signed=False)} def _unpack_packet_linked_contour(self, code, in_sym_block): # Check for initial point indicator assert self._buffer.read_int(2, 'big', signed=False) == 0x8000 scale = self.pos_scale(in_sym_block) startx = self._buffer.read_int(2, 'big', signed=True) * scale starty = self._buffer.read_int(2, 'big', signed=True) * scale vectors = [(startx, starty)] num_bytes = self._buffer.read_int(2, 'big', signed=False) pos = [b * scale for b in self._buffer.read_binary(num_bytes / 2, '>h')] vectors.extend(zip(pos[::2], pos[1::2])) return {'vectors': vectors} def _unpack_packet_wind_barbs(self, code, in_sym_block): # Figure out how much to read num_bytes = self._buffer.read_int(2, 'big', signed=True) packet_data_start = self._buffer.set_mark() ret = defaultdict(list) # Read while we have data, then return while self._buffer.offset_from(packet_data_start) < num_bytes: ret['color'].append(self._buffer.read_int(2, 'big', signed=True)) ret['x'].append(self._buffer.read_int(2, 'big', signed=True) * self.pos_scale(in_sym_block)) ret['y'].append(self._buffer.read_int(2, 'big', signed=True) * self.pos_scale(in_sym_block)) ret['direc'].append(self._buffer.read_int(2, 'big', signed=True)) ret['speed'].append(self._buffer.read_int(2, 'big', signed=True)) return ret def _unpack_packet_generic(self, code, in_sym_block): # Reserved HW assert self._buffer.read_int(2, 'big', signed=True) == 0 # Read number of bytes (2 HW) and return num_bytes = self._buffer.read_int(4, 'big', signed=True) hunk = self._buffer.read(num_bytes) xdrparser = Level3XDRParser(hunk) return xdrparser(code) def _unpack_packet_trend_times(self, code, in_sym_block): self._buffer.read_int(2, 'big', signed=True) # number of bytes, not needed to process return {'times': self._read_trends()} def _unpack_packet_cell_trend(self, code, in_sym_block): code_map = ['Cell Top', 'Cell Base', 'Max Reflectivity Height', 'Probability of Hail', 'Probability of Severe Hail', 'Cell-based VIL', 'Maximum Reflectivity', 'Centroid Height'] code_scales = [100, 100, 100, 1, 1, 1, 1, 100] num_bytes = self._buffer.read_int(2, 'big', signed=True) packet_data_start = self._buffer.set_mark() cell_id = ''.join(self._buffer.read_ascii(2)) x = self._buffer.read_int(2, 'big', signed=True) * self.pos_scale(in_sym_block) y = self._buffer.read_int(2, 'big', signed=True) * self.pos_scale(in_sym_block) ret = {'id': cell_id, 'x': x, 'y': y} while self._buffer.offset_from(packet_data_start) < num_bytes: code = self._buffer.read_int(2, 'big', signed=True) try: ind = code - 1 key = code_map[ind] scale = code_scales[ind] except IndexError: log.warning('%s: Unsupported trend code %d/%x.', self.filename, code, code) key = 'Unknown' scale = 1 vals = self._read_trends() if code in (1, 2): ret[f'{key} Limited'] = [bool(v > 700) for v in vals] vals = [v - 1000 if v > 700 else v for v in vals] ret[key] = [v * scale for v in vals] return ret def _read_trends(self): num_vols, latest = self._buffer.read(2) vals = [self._buffer.read_int(2, 'big', signed=True) for _ in range(num_vols)] # Wrap the circular buffer so that latest is last return vals[latest:] + vals[:latest] packet_map = {1: _unpack_packet_uniform_text, 2: _unpack_packet_special_text_symbol, 3: _unpack_packet_special_graphic_symbol, 4: _unpack_packet_wind_barbs, 6: _unpack_packet_linked_vector, 8: _unpack_packet_uniform_text, # 9: _unpack_packet_linked_vector, 10: _unpack_packet_vector, 11: _unpack_packet_special_graphic_symbol, 12: _unpack_packet_special_graphic_symbol, 13: _unpack_packet_special_graphic_symbol, 14: _unpack_packet_special_graphic_symbol, 15: _unpack_packet_special_graphic_symbol, 16: _unpack_packet_digital_radial, 17: _unpack_packet_digital_precipitation, 18: _unpack_packet_digital_precipitation, 19: _unpack_packet_special_graphic_symbol, 20: _unpack_packet_special_graphic_symbol, 21: _unpack_packet_cell_trend, 22: _unpack_packet_trend_times, 23: _unpack_packet_scit, 24: _unpack_packet_scit, 25: _unpack_packet_special_graphic_symbol, 26: _unpack_packet_special_graphic_symbol, 28: _unpack_packet_generic, 29: _unpack_packet_generic, 0x0802: _unpack_packet_contour_color, 0x0E03: _unpack_packet_linked_contour, 0xaf1f: _unpack_packet_radial_data, 0xba07: _unpack_packet_raster_data} class Level3XDRParser(Unpacker): """Handle XDR-formatted Level 3 NEXRAD products.""" def __call__(self, code): """Perform the actual unpacking.""" xdr = OrderedDict() if code == 28: xdr.update(self._unpack_prod_desc()) else: log.warning('XDR: code %d not implemented', code) # Check that we got it all self.done() return xdr def unpack_string(self): """Unpack the internal data as a string.""" return Unpacker.unpack_string(self).decode('ascii') def _unpack_prod_desc(self): xdr = OrderedDict() # NOTE: The ICD (262001U) incorrectly lists op-mode, vcp, el_num, and # spare as int*2. Changing to int*4 makes things parse correctly. xdr['name'] = self.unpack_string() xdr['description'] = self.unpack_string() xdr['code'] = self.unpack_int() xdr['type'] = self.unpack_int() xdr['prod_time'] = self.unpack_uint() xdr['radar_name'] = self.unpack_string() xdr['latitude'] = self.unpack_float() xdr['longitude'] = self.unpack_float() xdr['height'] = self.unpack_float() xdr['vol_time'] = self.unpack_uint() xdr['el_time'] = self.unpack_uint() xdr['el_angle'] = self.unpack_float() xdr['vol_num'] = self.unpack_int() xdr['op_mode'] = self.unpack_int() xdr['vcp_num'] = self.unpack_int() xdr['el_num'] = self.unpack_int() xdr['compression'] = self.unpack_int() xdr['uncompressed_size'] = self.unpack_int() xdr['parameters'] = self._unpack_parameters() xdr['components'] = self._unpack_components() return xdr def _unpack_parameters(self): num = self.unpack_int() # ICD documents a "pointer" here, that seems to be garbage. Just read # and use the number, starting the list immediately. self.unpack_int() if num == 0: return None ret = [] for i in range(num): ret.append((self.unpack_string(), self.unpack_string())) if i < num - 1: self.unpack_int() # Another pointer for the 'list' ? if num == 1: ret = ret[0] return ret def _unpack_components(self): num = self.unpack_int() # ICD documents a "pointer" here, that seems to be garbage. Just read # and use the number, starting the list immediately. self.unpack_int() ret = [] for i in range(num): try: code = self.unpack_int() ret.append(self._component_lookup[code](self)) if i < num - 1: self.unpack_int() # Another pointer for the 'list' ? except KeyError: log.warning('Unknown XDR Component: %d', code) break if num == 1: ret = ret[0] return ret radial_fmt = namedtuple('RadialComponent', ['description', 'gate_width', 'first_gate', 'parameters', 'radials']) radial_data_fmt = namedtuple('RadialData', ['azimuth', 'elevation', 'width', 'num_bins', 'attributes', 'data']) def _unpack_radial(self): ret = self.radial_fmt(description=self.unpack_string(), gate_width=self.unpack_float(), first_gate=self.unpack_float(), parameters=self._unpack_parameters(), radials=None) num_rads = self.unpack_int() rads = [] for _ in range(num_rads): # ICD is wrong, says num_bins is float, should be int rads.append(self.radial_data_fmt(azimuth=self.unpack_float(), elevation=self.unpack_float(), width=self.unpack_float(), num_bins=self.unpack_int(), attributes=self.unpack_string(), data=self.unpack_array(self.unpack_int))) return ret._replace(radials=rads) text_fmt = namedtuple('TextComponent', ['parameters', 'text']) def _unpack_text(self): return self.text_fmt(parameters=self._unpack_parameters(), text=self.unpack_string()) _component_lookup = {1: _unpack_radial, 4: _unpack_text} @exporter.export def is_precip_mode(vcp_num): r"""Determine if the NEXRAD radar is operating in precipitation mode. Parameters ---------- vcp_num : int The NEXRAD volume coverage pattern (VCP) number Returns ------- bool True if the VCP corresponds to precipitation mode, False otherwise """ return vcp_num // 10 != 3
48.482334
95
0.492568
0082ee9e6f7f9553ccaac67cc20d5954b0b2297d
45,127
py
Python
verticapy/stats/math.py
vertica/vertica_ml_python
9e82dba94afe8447bfa2492f343af6669128e2fb
[ "Apache-2.0" ]
7
2018-05-10T08:16:31.000Z
2018-05-15T00:59:26.000Z
verticapy/stats/math.py
vertica/vertica_ml_python
9e82dba94afe8447bfa2492f343af6669128e2fb
[ "Apache-2.0" ]
1
2018-05-15T00:15:35.000Z
2018-05-15T13:40:19.000Z
verticapy/stats/math.py
vertica/vertica_ml_python
9e82dba94afe8447bfa2492f343af6669128e2fb
[ "Apache-2.0" ]
null
null
null
# (c) Copyright [2018-2022] Micro Focus or one of its affiliates. # Licensed under the Apache License, Version 2.0 (the "License"); # You may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # |_ |~) _ _| _ /~\ _ |. # |_)\/ |_)(_|(_|| \_/|_|(_||| # / # ____________ ______ # / __ `\ / / # | \/ / / / # |______ / / / # |____/ / / # _____________ / / # \ / / / # \ / / / # \_______/ / / # ______ / / # \ / / / # \ / / / # \/ / / # / / # / / # \ / # \ / # \/ # _ # \ / _ __|_. _ _ |_) # \/ (/_| | |(_(_|| \/ # / # VerticaPy is a Python library with scikit-like functionality for conducting # data science projects on data stored in Vertica, taking advantage Vertica’s # speed and built-in analytics and machine learning features. It supports the # entire data science life cycle, uses a ‘pipeline’ mechanism to sequentialize # data transformation operations, and offers beautiful graphical options. # # VerticaPy aims to do all of the above. The idea is simple: instead of moving # data around for processing, VerticaPy brings the logic to the data. # # # Modules # # VerticaPy Modules from verticapy.utilities import * from verticapy.toolbox import * from verticapy.stats.tools import * # # Variables # ---# pi = str_sql("PI()") e = str_sql("EXP(1)") tau = str_sql("2 * PI()") inf = str_sql("'inf'::float") nan = str_sql("'nan'::float") # Soundex # ---# def edit_distance( expr1, expr2, ): """ --------------------------------------------------------------------------- Calculates and returns the Levenshtein distance between the two strings. Parameters ---------- expr1: object Expression. expr2: object Expression. Returns ------- str_sql SQL expression. """ version(condition=[10, 1, 0]) expr1 = format_magic(expr1) expr2 = format_magic(expr2) return str_sql("EDIT_DISTANCE({}, {})".format(expr1, expr2), "int") levenshtein = edit_distance # ---# def soundex(expr): """ --------------------------------------------------------------------------- Returns Soundex encoding of a varchar strings as a four -character string. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ version(condition=[10, 1, 0]) expr = format_magic(expr) return str_sql("SOUNDEX({})".format(expr), "varchar") # ---# def soundex_matches( expr1, expr2, ): """ --------------------------------------------------------------------------- Generates and compares Soundex encodings of two strings, and returns a count of the matching characters (ranging from 0 for no match to 4 for an exact match). Parameters ---------- expr1: object Expression. expr2: object Expression. Returns ------- str_sql SQL expression. """ version(condition=[10, 1, 0]) expr1 = format_magic(expr1) expr2 = format_magic(expr2) return str_sql("SOUNDEX_MATCHES({}, {})".format(expr1, expr2), "int") # Regular Expressions # ---# def regexp_count( expr, pattern, position: int = 1, ): """ --------------------------------------------------------------------------- Returns the number times a regular expression matches a string. Parameters ---------- expr: object Expression. pattern: object The regular expression to search for within string. position: int, optional The number of characters from the start of the string where the function should start searching for matches. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) pattern = format_magic(pattern) return str_sql("REGEXP_COUNT({}, {}, {})".format(expr, pattern, position), "int") # ---# def regexp_ilike(expr, pattern): """ --------------------------------------------------------------------------- Returns true if the string contains a match for the regular expression. Parameters ---------- expr: object Expression. pattern: object A string containing the regular expression to match against the string. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) pattern = format_magic(pattern) return str_sql("REGEXP_ILIKE({}, {})".format(expr, pattern)) # ---# def regexp_instr( expr, pattern, position: int = 1, occurrence: int = 1, return_position: int = 0 ): """ --------------------------------------------------------------------------- Returns the starting or ending position in a string where a regular expression matches. Parameters ---------- expr: object Expression. pattern: object The regular expression to search for within the string. position: int, optional The number of characters from the start of the string where the function should start searching for matches. occurrence: int, optional Controls which occurrence of a pattern match in the string to return. return_position: int, optional Sets the position within the string to return. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) pattern = format_magic(pattern) return str_sql( "REGEXP_INSTR({}, {}, {}, {}, {})".format( expr, pattern, position, occurrence, return_position ) ) # ---# def regexp_like(expr, pattern): """ --------------------------------------------------------------------------- Returns true if the string matches the regular expression. Parameters ---------- expr: object Expression. pattern: object A string containing the regular expression to match against the string. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) pattern = format_magic(pattern) return str_sql("REGEXP_LIKE({}, {})".format(expr, pattern)) # ---# def regexp_replace(expr, target, replacement, position: int = 1, occurrence: int = 1): """ --------------------------------------------------------------------------- Replace all occurrences of a substring that match a regular expression with another substring. Parameters ---------- expr: object Expression. target: object The regular expression to search for within the string. replacement: object The string to replace matched substrings. position: int, optional The number of characters from the start of the string where the function should start searching for matches. occurrence: int, optional Controls which occurrence of a pattern match in the string to return. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) target = format_magic(target) replacement = format_magic(replacement) return str_sql( "REGEXP_REPLACE({}, {}, {}, {}, {})".format( expr, target, replacement, position, occurrence ) ) # ---# def regexp_substr(expr, pattern, position: int = 1, occurrence: int = 1): """ --------------------------------------------------------------------------- Returns the substring that matches a regular expression within a string. Parameters ---------- expr: object Expression. pattern: object The regular expression to find a substring to extract. position: int, optional The number of characters from the start of the string where the function should start searching for matches. occurrence: int, optional Controls which occurrence of a pattern match in the string to return. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) pattern = format_magic(pattern) return str_sql( "REGEXP_SUBSTR({}, {}, {}, {})".format(expr, pattern, position, occurrence) ) # String Functions # ---# def length(expr): """ --------------------------------------------------------------------------- Returns the length of a string. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("LENGTH({})".format(expr), "int") # ---# def lower(expr): """ --------------------------------------------------------------------------- Returns a VARCHAR value containing the argument converted to lowercase letters. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("LOWER({})".format(expr), "text") # ---# def substr(expr, position: int, extent: int = None): """ --------------------------------------------------------------------------- Returns VARCHAR or VARBINARY value representing a substring of a specified string. Parameters ---------- expr: object Expression. position: int Starting position of the substring. extent: int, optional Length of the substring to extract. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) if extent: position = "{}, {}".format(position, extent) return str_sql("SUBSTR({}, {})".format(expr, position), "text") # ---# def upper(expr): """ --------------------------------------------------------------------------- Returns a VARCHAR value containing the argument converted to uppercase letters. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("UPPER({})".format(expr), "text") # Aggregate & Analytical functions # ---# def apply(func: str, *args, **kwargs): """ --------------------------------------------------------------------------- Applies any Vertica function on the input expressions. Please check-out Vertica Documentation to see the available functions: https://www.vertica.com/docs/10.0.x/HTML/Content/Authoring/ SQLReferenceManual/Functions/SQLFunctions.htm?tocpath= SQL%20Reference%20Manual|SQL%20Functions|_____0 Parameters ---------- func : str Vertica Function. In case of geospatial, you can write the function name without the prefix ST_ or STV_. args : object, optional Expressions. kwargs: object, optional Optional Parameters Expressions. Returns ------- str_sql SQL expression. """ ST_f = [ "Area", "AsBinary", "Boundary", "Buffer", "Centroid", "Contains", "ConvexHull", "Crosses", "Difference", "Disjoint", "Distance", "Envelope", "Equals", "GeographyFromText", "GeographyFromWKB", "GeoHash", "GeometryN", "GeometryType", "GeomFromGeoHash", "GeomFromText", "GeomFromWKB", "Intersection", "Intersects", "IsEmpty", "IsSimple", "IsValid", "Length", "NumGeometries", "NumPoints", "Overlaps", "PointFromGeoHash", "PointN", "Relate", "SRID", "SymDifference", "Touches", "Transform", "Union", "Within", "X", "XMax", "XMin", "YMax", "YMin", "Y", ] STV_f = [ "AsGeoJSON", "Create_Index", "Describe_Index", "Drop_Index", "DWithin", "Export2Shapefile", "Extent", "ForceLHR", "Geography", "GeographyPoint", "Geometry", "GeometryPoint", "GetExportShapefileDirectory", "Intersect", "IsValidReason", "LineStringPoint", "MemSize", "NN", "PolygonPoint", "Reverse", "Rename_Index", "Refresh_Index", "SetExportShapefileDirectory", "ShpSource", "ShpParser", "ShpCreateTable", ] ST_f_lower = [elem.lower() for elem in ST_f] STV_f_lower = [elem.lower() for elem in STV_f] if func.lower() in ST_f_lower: func = "ST_" + func elif func.lower() in STV_f_lower: func = "STV_" + func if len(args) > 0: expr = ", ".join([str(format_magic(elem)) for elem in args]) else: expr = "" if len(kwargs) > 0: param_expr = ", ".join( [str((elem + " = ") + str(format_magic(kwargs[elem]))) for elem in kwargs] ) else: param_expr = "" if param_expr: param_expr = " USING PARAMETERS " + param_expr return str_sql("{}({}{})".format(func.upper(), expr, param_expr)) # ---# def avg(expr): """ --------------------------------------------------------------------------- Computes the average (arithmetic mean) of an expression over a group of rows. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("AVG({})".format(expr), "float") mean = avg # ---# def bool_and(expr): """ --------------------------------------------------------------------------- Processes Boolean values and returns a Boolean value result. If all input values are true, BOOL_AND returns True. Otherwise it returns False. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("BOOL_AND({})".format(expr), "int") # ---# def bool_or(expr): """ --------------------------------------------------------------------------- Processes Boolean values and returns a Boolean value result. If at least one input value is true, BOOL_OR returns True. Otherwise, it returns False. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("BOOL_OR({})".format(expr), "int") # ---# def bool_xor(expr): """ --------------------------------------------------------------------------- Processes Boolean values and returns a Boolean value result. If specifically only one input value is true, BOOL_XOR returns True. Otherwise, it returns False. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("BOOL_XOR({})".format(expr), "int") # ---# def conditional_change_event(expr): """ --------------------------------------------------------------------------- Assigns an event window number to each row, starting from 0, and increments by 1 when the result of evaluating the argument expression on the current row differs from that on the previous row. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("CONDITIONAL_CHANGE_EVENT({})".format(expr), "int") # ---# def conditional_true_event(expr): """ --------------------------------------------------------------------------- Assigns an event window number to each row, starting from 0, and increments the number by 1 when the result of the boolean argument expression evaluates true. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("CONDITIONAL_TRUE_EVENT({})".format(expr), "int") # ---# def count(expr): """ --------------------------------------------------------------------------- Returns as a BIGINT the number of rows in each group where the expression is not NULL. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("COUNT({})".format(expr), "int") # ---# def lag(expr, offset: int = 1): """ --------------------------------------------------------------------------- Returns the value of the input expression at the given offset before the current row within a window. Parameters ---------- expr: object Expression. offset: int Indicates how great is the lag. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("LAG({}, {})".format(expr, offset)) # ---# def lead(expr, offset: int = 1): """ --------------------------------------------------------------------------- Returns values from the row after the current row within a window, letting you access more than one row in a table at the same time. Parameters ---------- expr: object Expression. offset: int Indicates how great is the lead. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("LEAD({}, {})".format(expr, offset)) # ---# def max(expr): """ --------------------------------------------------------------------------- Returns the greatest value of an expression over a group of rows. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("MAX({})".format(expr), "float") # ---# def median(expr): """ --------------------------------------------------------------------------- Computes the approximate median of an expression over a group of rows. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("APPROXIMATE_MEDIAN({})".format(expr), "float") # ---# def min(expr): """ --------------------------------------------------------------------------- Returns the smallest value of an expression over a group of rows. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("MIN({})".format(expr), "float") # ---# def nth_value(expr, row_number: int): """ --------------------------------------------------------------------------- Returns the value evaluated at the row that is the nth row of the window (counting from 1). Parameters ---------- expr: object Expression. row_number: int Specifies the row to evaluate. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("NTH_VALUE({}, {})".format(expr, row_number), "int") # ---# def quantile(expr, number: float): """ --------------------------------------------------------------------------- Computes the approximate percentile of an expression over a group of rows. Parameters ---------- expr: object Expression. number: float Percentile value, which must be a FLOAT constant ranging from 0 to 1 (inclusive). Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql( "APPROXIMATE_PERCENTILE({} USING PARAMETERS percentile = {})".format( expr, number ), "float", ) # ---# def rank(): """ --------------------------------------------------------------------------- Within each window partition, ranks all rows in the query results set according to the order specified by the window's ORDER BY clause. Returns ------- str_sql SQL expression. """ return str_sql("RANK()", "int") # ---# def row_number(): """ --------------------------------------------------------------------------- Assigns a sequence of unique numbers, starting from 1, to each row in a window partition. Returns ------- str_sql SQL expression. """ return str_sql("ROW_NUMBER()", "int") # ---# def std(expr): """ --------------------------------------------------------------------------- Evaluates the statistical sample standard deviation for each member of the group. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("STDDEV({})".format(expr), "float") stddev = std # ---# def sum(expr): """ --------------------------------------------------------------------------- Computes the sum of an expression over a group of rows. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("SUM({})".format(expr), "float") # ---# def var(expr): """ --------------------------------------------------------------------------- Evaluates the sample variance for each row of the group. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("VARIANCE({})".format(expr), "float") variance = var # Mathematical Functions # ---# def abs(expr): """ --------------------------------------------------------------------------- Absolute Value. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("ABS({})".format(expr), "float") # ---# def acos(expr): """ --------------------------------------------------------------------------- Trigonometric Inverse Cosine. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("ACOS({})".format(expr), "float") # ---# def asin(expr): """ --------------------------------------------------------------------------- Trigonometric Inverse Sine. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("ASIN({})".format(expr), "float") # ---# def atan(expr): """ --------------------------------------------------------------------------- Trigonometric Inverse Tangent. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("ATAN({})".format(expr), "float") # ---# def case_when(*argv): """ --------------------------------------------------------------------------- Returns the conditional statement of the input arguments. Parameters ---------- argv: object Infinite Number of Expressions. The expression generated will look like: even: CASE ... WHEN argv[2 * i] THEN argv[2 * i + 1] ... END odd : CASE ... WHEN argv[2 * i] THEN argv[2 * i + 1] ... ELSE argv[n] END Returns ------- str_sql SQL expression. """ n = len(argv) if n < 2: raise ParameterError( "The number of arguments of the 'case_when' function must be strictly greater than 1." ) category = get_category_from_python_type(argv[1]) i = 0 expr = "CASE" while i < n: if i + 1 == n: expr += " ELSE " + str(format_magic(argv[i])) i += 1 else: expr += ( " WHEN " + str(format_magic(argv[i])) + " THEN " + str(format_magic(argv[i + 1])) ) i += 2 expr += " END" return str_sql(expr, category) # ---# def cbrt(expr): """ --------------------------------------------------------------------------- Cube Root. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("CBRT({})".format(expr), "float") # ---# def ceil(expr): """ --------------------------------------------------------------------------- Ceiling Function. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("CEIL({})".format(expr), "float") # ---# def coalesce(expr, *argv): """ --------------------------------------------------------------------------- Returns the value of the first non-null expression in the list. Parameters ---------- expr: object Expression. argv: object Infinite Number of Expressions. Returns ------- str_sql SQL expression. """ category = get_category_from_python_type(expr) expr = [format_magic(expr)] for arg in argv: expr += [format_magic(arg)] expr = ", ".join([str(elem) for elem in expr]) return str_sql("COALESCE({})".format(expr), category) # ---# def comb(n: int, k: int): """ --------------------------------------------------------------------------- Number of ways to choose k items from n items. Parameters ---------- n : int items to choose from. k : int items to choose. Returns ------- str_sql SQL expression. """ return str_sql("({})! / (({})! * ({} - {})!)".format(n, k, n, k), "float") # ---# def cos(expr): """ --------------------------------------------------------------------------- Trigonometric Cosine. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("COS({})".format(expr), "float") # ---# def cosh(expr): """ --------------------------------------------------------------------------- Hyperbolic Cosine. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("COSH({})".format(expr), "float") # ---# def cot(expr): """ --------------------------------------------------------------------------- Trigonometric Cotangent. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("COT({})".format(expr), "float") # ---# def date(expr): """ --------------------------------------------------------------------------- Converts the input value to a DATE data type. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("DATE({})".format(expr), "date") # ---# def day(expr): """ --------------------------------------------------------------------------- Returns as an integer the day of the month from the input expression. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("DAY({})".format(expr), "float") # ---# def dayofweek(expr): """ --------------------------------------------------------------------------- Returns the day of the week as an integer, where Sunday is day 1. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("DAYOFWEEK({})".format(expr), "float") # ---# def dayofyear(expr): """ --------------------------------------------------------------------------- Returns the day of the year as an integer, where January 1 is day 1. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("DAYOFYEAR({})".format(expr), "float") # ---# def decode(expr, *argv): """ --------------------------------------------------------------------------- Compares expression to each search value one by one. Parameters ---------- expr: object Expression. argv: object Infinite Number of Expressions. The expression generated will look like: even: CASE ... WHEN expr = argv[2 * i] THEN argv[2 * i + 1] ... END odd : CASE ... WHEN expr = argv[2 * i] THEN argv[2 * i + 1] ... ELSE argv[n] END Returns ------- str_sql SQL expression. """ n = len(argv) if n < 2: raise ParameterError( "The number of arguments of the 'decode' function must be greater than 3." ) category = get_category_from_python_type(argv[1]) expr = ( "DECODE(" + str(format_magic(expr)) + ", " + ", ".join([str(format_magic(elem)) for elem in argv]) + ")" ) return str_sql(expr, category) # ---# def degrees(expr): """ --------------------------------------------------------------------------- Converts Radians to Degrees. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("DEGREES({})".format(expr), "float") # ---# def distance( lat0: float, lon0: float, lat1: float, lon1: float, radius: float = 6371.009 ): """ --------------------------------------------------------------------------- Returns the distance (in kilometers) between two points. Parameters ---------- lat0: float Starting point latitude. lon0: float Starting point longitude. lat1: float Ending point latitude. lon1: float Ending point longitude. radius: float Specifies the radius of the curvature of the earth at the midpoint between the starting and ending points. Returns ------- str_sql SQL expression. """ return str_sql( "DISTANCE({}, {}, {}, {}, {})".format(lat0, lon0, lat1, lon1, radius), "float" ) # ---# def exp(expr): """ --------------------------------------------------------------------------- Exponential. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("EXP({})".format(expr), "float") # ---# def extract(expr, field: str): """ --------------------------------------------------------------------------- Extracts a sub-field such as year or hour from a date/time expression. Parameters ---------- expr: object Expression. field: str The field to extract. It must be one of the following: CENTURY / DAY / DECADE / DOQ / DOW / DOY / EPOCH / HOUR / ISODOW / ISOWEEK / ISOYEAR / MICROSECONDS / MILLENNIUM / MILLISECONDS / MINUTE / MONTH / QUARTER / SECOND / TIME ZONE / TIMEZONE_HOUR / TIMEZONE_MINUTE / WEEK / YEAR Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("DATE_PART('{}', {})".format(field, expr), "int") # ---# def factorial(expr): """ --------------------------------------------------------------------------- Factorial. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("({})!".format(expr), "int") # ---# def floor(expr): """ --------------------------------------------------------------------------- Floor Function. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("FLOOR({})".format(expr), "int") # ---# def gamma(expr): """ --------------------------------------------------------------------------- Gamma Function. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("({} - 1)!".format(expr), "float") # ---# def getdate(): """ --------------------------------------------------------------------------- Returns the current statement's start date and time as a TIMESTAMP value. Returns ------- str_sql SQL expression. """ return str_sql("GETDATE()", "date") # ---# def getutcdate(): """ --------------------------------------------------------------------------- Returns the current statement's start date and time at TIME ZONE 'UTC' as a TIMESTAMP value. Returns ------- str_sql SQL expression. """ return str_sql("GETUTCDATE()", "date") # ---# def hash(*argv): """ --------------------------------------------------------------------------- Calculates a hash value over the function arguments. Parameters ---------- argv: object Infinite Number of Expressions. Returns ------- str_sql SQL expression. """ expr = [] for arg in argv: expr += [format_magic(arg)] expr = ", ".join([str(elem) for elem in expr]) return str_sql("HASH({})".format(expr), "float") # ---# def hour(expr): """ --------------------------------------------------------------------------- Returns the hour portion of the specified date as an integer, where 0 is 00:00 to 00:59. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("HOUR({})".format(expr), "int") # ---# def interval(expr): """ --------------------------------------------------------------------------- Converts the input value to a INTERVAL data type. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("({})::interval".format(expr), "interval") # ---# def isfinite(expr): """ --------------------------------------------------------------------------- Returns True if the expression is finite. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ expr, cat = format_magic(expr, True) return str_sql( "(({}) = ({})) AND (ABS({}) < 'inf'::float)".format(expr, expr, expr), cat ) # ---# def isinf(expr): """ --------------------------------------------------------------------------- Returns True if the expression is infinite. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("ABS({}) = 'inf'::float".format(expr), "float") # ---# def isnan(expr): """ --------------------------------------------------------------------------- Returns True if the expression is NaN. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ expr, cat = format_magic(expr, True) return str_sql("(({}) != ({}))".format(expr, expr), cat) # ---# def lgamma(expr): """ --------------------------------------------------------------------------- Natural Logarithm of the expression Gamma. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("LN(({} - 1)!)".format(expr), "float") # ---# def ln(expr): """ --------------------------------------------------------------------------- Natural Logarithm. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("LN({})".format(expr), "float") # ---# def log(expr, base: int = 10): """ --------------------------------------------------------------------------- Logarithm. Parameters ---------- expr: object Expression. base: int Specifies the base. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("LOG({}, {})".format(base, expr), "float") # ---# def minute(expr): """ --------------------------------------------------------------------------- Returns the minute portion of the specified date as an integer. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("MINUTE({})".format(expr), "int") # ---# def microsecond(expr): """ --------------------------------------------------------------------------- Returns the microsecond portion of the specified date as an integer. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("MICROSECOND({})".format(expr), "int") # ---# def month(expr): """ --------------------------------------------------------------------------- Returns the month portion of the specified date as an integer. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("MONTH({})".format(expr), "int") # ---# def nullifzero(expr): """ --------------------------------------------------------------------------- Evaluates to NULL if the value in the expression is 0. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ expr, cat = format_magic(expr, True) return str_sql("NULLIFZERO({})".format(expr), cat) # ---# def overlaps(start0, end0, start1, end1): """ --------------------------------------------------------------------------- Evaluates two time periods and returns true when they overlap, false otherwise. Parameters ---------- start0: object DATE, TIME, or TIMESTAMP/TIMESTAMPTZ value that specifies the beginning of a time period. end0: object DATE, TIME, or TIMESTAMP/TIMESTAMPTZ value that specifies the end of a time period. start1: object DATE, TIME, or TIMESTAMP/TIMESTAMPTZ value that specifies the beginning of a time period. end1: object DATE, TIME, or TIMESTAMP/TIMESTAMPTZ value that specifies the end of a time period. Returns ------- str_sql SQL expression. """ return str_sql( "({}, {}) OVERLAPS ({}, {})".format( format_magic(start0), format_magic(end0), format_magic(start1), format_magic(end1), ), "int", ) # ---# def quarter(expr): """ --------------------------------------------------------------------------- Returns calendar quarter of the specified date as an integer, where the January-March quarter is 1. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("QUARTER({})".format(expr), "int") # ---# def radians(expr): """ --------------------------------------------------------------------------- Converts Degrees to Radians. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("RADIANS({})".format(expr), "float") # ---# def random(): """ --------------------------------------------------------------------------- Returns a Random Number. Returns ------- str_sql SQL expression. """ return str_sql("RANDOM()", "float") # ---# def randomint(n: int): """ --------------------------------------------------------------------------- Returns a Random Number from 0 through n – 1. Parameters ---------- n: int Integer Value. Returns ------- str_sql SQL expression. """ return str_sql("RANDOMINT({})".format(n), "int") # ---# def round(expr, places: int = 0): """ --------------------------------------------------------------------------- Rounds the expression. Parameters ---------- expr: object Expression. places: int Number used to round the expression. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("ROUND({}, {})".format(expr, places), "float") # ---# def round_date(expr, precision: str = "DD"): """ --------------------------------------------------------------------------- Rounds the specified date or time. Parameters ---------- expr: object Expression. precision: str, optional A string constant that specifies precision for the rounded value, one of the following: Century: CC | SCC Year: SYYY | YYYY | YEAR | YYY | YY | Y ISO Year: IYYY | IYY | IY | I Quarter: Q Month: MONTH | MON | MM | RM Same weekday as first day of year: WW Same weekday as first day of ISO year: IW Same weekday as first day of month: W Day (default): DDD | DD | J First weekday: DAY | DY | D Hour: HH | HH12 | HH24 Minute: MI Second: SS Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("ROUND({}, '{}')".format(expr, precision), "date") # ---# def second(expr): """ --------------------------------------------------------------------------- Returns the seconds portion of the specified date as an integer. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("SECOND({})".format(expr), "int") # ---# def seeded_random(random_state: int): """ --------------------------------------------------------------------------- Returns a Seeded Random Number using the input random state. Parameters ---------- random_state: int Integer used to seed the randomness. Returns ------- str_sql SQL expression. """ return str_sql("SEEDED_RANDOM({})".format(random_state), "float") # ---# def sign(expr): """ --------------------------------------------------------------------------- Sign of the expression. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("SIGN({})".format(expr), "int") # ---# def sin(expr): """ --------------------------------------------------------------------------- Trigonometric Sine. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("SIN({})".format(expr), "float") # ---# def sinh(expr): """ --------------------------------------------------------------------------- Hyperbolic Sine. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("SINH({})".format(expr), "float") # ---# def sqrt(expr): """ --------------------------------------------------------------------------- Arithmetic Square Root. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("SQRT({})".format(expr), "float") # ---# def tan(expr): """ --------------------------------------------------------------------------- Trigonometric Tangent. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("TAN({})".format(expr), "float") # ---# def tanh(expr): """ --------------------------------------------------------------------------- Hyperbolic Tangent. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("TANH({})".format(expr), "float") # ---# def timestamp(expr): """ --------------------------------------------------------------------------- Converts the input value to a TIMESTAMP data type. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("({})::timestamp".format(expr), "date") # ---# def trunc(expr, places: int = 0): """ --------------------------------------------------------------------------- Truncates the expression. Parameters ---------- expr: object Expression. places: int Number used to truncate the expression. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("TRUNC({}, {})".format(expr, places), "float") # ---# def week(expr): """ --------------------------------------------------------------------------- Returns the week of the year for the specified date as an integer, where the first week begins on the first Sunday on or preceding January 1. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("WEEK({})".format(expr), "int") # ---# def year(expr): """ --------------------------------------------------------------------------- Returns an integer that represents the year portion of the specified date. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) return str_sql("YEAR({})".format(expr), "int") # ---# def zeroifnull(expr): """ --------------------------------------------------------------------------- Evaluates to 0 if the expression is NULL. Parameters ---------- expr: object Expression. Returns ------- str_sql SQL expression. """ expr, cat = format_magic(expr, True) return str_sql("ZEROIFNULL({})".format(expr), cat)
20.400995
98
0.507767
b81268d0b948acbd3dcfcf935257f7d44cdb2ab1
1,763
py
Python
tools/ci_c.py
csirosat/kubos
fa5db37d5ecef479ebbbe4e69fbf765566eccdee
[ "Apache-2.0" ]
266
2018-01-10T04:41:19.000Z
2022-03-29T19:59:43.000Z
tools/ci_c.py
csirosat/kubos
fa5db37d5ecef479ebbbe4e69fbf765566eccdee
[ "Apache-2.0" ]
444
2018-01-09T18:08:26.000Z
2022-03-30T02:00:04.000Z
tools/ci_c.py
csirosat/kubos
fa5db37d5ecef479ebbbe4e69fbf765566eccdee
[ "Apache-2.0" ]
60
2018-02-03T02:19:12.000Z
2022-03-29T19:13:16.000Z
#!/usr/bin/env python3 import subprocess import os import shutil projects = [ "./cmocka", "./ccan/json", "./examples/adc-thermistor", "./examples/kubos-linux-uarttx", "./examples/kubos-linux-uartrx", "./examples/kubos-linux-example", "./examples/kubos-linux-tcprx", "./examples/rust-c-service/extern-lib", "./examples/kubos-linux-tcptx", "./test/integration/linux/iobc-supervisor-test", "./test/integration/linux/isis-imtq", "./test/integration/linux/bme280-spi", "./test/integration/linux/isis-trxvu/radio-test", "./test/integration/linux/isis-ants", "./test/integration/linux/nanopower-p31u", "./test/integration/linux/lsm303dlhc-i2c", "./test/integration/linux/hello-world", "./hal/kubos-hal", "./apis/gomspace-p31u-api", "./apis/isis-ants-api", "./apis/isis-imtq-api", "./apis/isis-trxvu-api", "./apis/isis-iobc-supervisor", ] def clean(dir): build_dir = "build" shutil.rmtree(build_dir, ignore_errors=True) def build(dir): build_dir = "build" cmake_dir = "../{}".format(dir) os.mkdir(build_dir) subprocess.run(["cmake", cmake_dir], cwd=build_dir, check=True) subprocess.run(["make"], cwd=build_dir, check=True) def run_test(dir): build_dir = "build" os.environ["CTEST_OUTPUT_ON_FAILURE"] = "1" subprocess.run(["make", "test"], cwd=build_dir, check=True) def test(dir): test_dir = "{}/test".format(dir) if os.path.isdir(test_dir): clean(test_dir) build(test_dir) run_test(test_dir) def main(): print("Building C projects") for dir in projects: print("Testing {}".format(dir)) clean(dir) build(dir) test(dir) if __name__ == '__main__': main()
26.313433
67
0.631877
ed53e2fb8673f501bc76e893b0b4a0b8eec8034b
28,744
py
Python
src/models/backbone_kpconv/kpconv_blocks.py
yewzijian/RegTR
64e5b3f0ccc1e1a11b514eb22734959d32e0cec6
[ "MIT" ]
25
2022-03-28T06:26:16.000Z
2022-03-30T14:21:24.000Z
src/models/backbone_kpconv/kpconv_blocks.py
yewzijian/RegTR
64e5b3f0ccc1e1a11b514eb22734959d32e0cec6
[ "MIT" ]
null
null
null
src/models/backbone_kpconv/kpconv_blocks.py
yewzijian/RegTR
64e5b3f0ccc1e1a11b514eb22734959d32e0cec6
[ "MIT" ]
2
2022-03-29T09:37:50.000Z
2022-03-30T06:26:35.000Z
# # # 0=================================0 # | Kernel Point Convolutions | # 0=================================0 # # # ---------------------------------------------------------------------------------------------------------------------- # # Define network blocks # # ---------------------------------------------------------------------------------------------------------------------- # # Hugues THOMAS - 06/03/2020 # # Modified by Zi Jian Yew to apply instance normalization on each point cloud # separately import logging import time import math import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.parameter import Parameter from torch.nn.init import kaiming_uniform_ from .kernels.kernel_points import load_kernels _logger = logging.getLogger(__name__) class Timer(object): """A simple timer.""" def __init__(self): self.total_time = 0. self.calls = 0 self.start_time = 0. self.diff = 0. self.avg = 0. def reset(self): self.total_time = 0 self.calls = 0 self.start_time = 0 self.diff = 0 self.avg = 0 def tic(self): # using time.time instead of time.clock because time time.clock # does not normalize for multithreading self.start_time = time.time() def toc(self, average=True): self.diff = time.time() - self.start_time self.total_time += self.diff self.calls += 1 self.avg = self.total_time / self.calls if average: return self.avg else: return self.diff def gather(x, idx, method=2): """ implementation of a custom gather operation for faster backwards. :param x: input with shape [N, D_1, ... D_d] :param idx: indexing with shape [n_1, ..., n_m] :param method: Choice of the method :return: x[idx] with shape [n_1, ..., n_m, D_1, ... D_d] """ if method == 0: return x[idx] elif method == 1: x = x.unsqueeze(1) x = x.expand((-1, idx.shape[-1], -1)) idx = idx.unsqueeze(2) idx = idx.expand((-1, -1, x.shape[-1])) return x.gather(0, idx) elif method == 2: for i, ni in enumerate(idx.size()[1:]): x = x.unsqueeze(i + 1) new_s = list(x.size()) new_s[i + 1] = ni x = x.expand(new_s) n = len(idx.size()) for i, di in enumerate(x.size()[n:]): idx = idx.unsqueeze(i + n) new_s = list(idx.size()) new_s[i + n] = di idx = idx.expand(new_s) return x.gather(0, idx) else: raise ValueError('Unkown method') def radius_gaussian(sq_r, sig, eps=1e-9): """ Compute a radius gaussian (gaussian of distance) :param sq_r: input radiuses [dn, ..., d1, d0] :param sig: extents of gaussians [d1, d0] or [d0] or float :return: gaussian of sq_r [dn, ..., d1, d0] """ return torch.exp(-sq_r / (2 * sig ** 2 + eps)) def closest_pool(x, inds): """ Pools features from the closest neighbors. WARNING: this function assumes the neighbors are ordered. :param x: [n1, d] features matrix :param inds: [n2, max_num] Only the first column is used for pooling :return: [n2, d] pooled features matrix """ # Add a last row with minimum features for shadow pools x = torch.cat((x, torch.zeros_like(x[:1, :])), 0) # Get features for each pooling location [n2, d] return gather(x, inds[:, 0]) def max_pool(x, inds): """ Pools features with the maximum values. :param x: [n1, d] features matrix :param inds: [n2, max_num] pooling indices :return: [n2, d] pooled features matrix """ # Add a last row with minimum features for shadow pools x = torch.cat((x, torch.zeros_like(x[:1, :])), 0) # Get all features for each pooling location [n2, max_num, d] pool_features = gather(x, inds) # Pool the maximum [n2, d] max_features, _ = torch.max(pool_features, 1) return max_features def global_average(x, batch_lengths): """ Block performing a global average over batch pooling :param x: [N, D] input features :param batch_lengths: [B] list of batch lengths :return: [B, D] averaged features """ # Loop over the clouds of the batch averaged_features = [] i0 = 0 for b_i, length in enumerate(batch_lengths): # Average features for each batch cloud averaged_features.append(torch.mean(x[i0:i0 + length], dim=0)) # Increment for next cloud i0 += length # Average features in each batch return torch.stack(averaged_features) # ---------------------------------------------------------------------------------------------------------------------- # # KPConv class # \******************/ # class KPConv(nn.Module): def __init__(self, kernel_size, p_dim, in_channels, out_channels, KP_extent, radius, fixed_kernel_points='center', KP_influence='linear', aggregation_mode='sum', deformable=False, modulated=False): """ Initialize parameters for KPConvDeformable. :param kernel_size: Number of kernel points. :param p_dim: dimension of the point space. :param in_channels: dimension of input features. :param out_channels: dimension of output features. :param KP_extent: influence radius of each kernel point. :param radius: radius used for kernel point init. Even for deformable, use the config.conv_radius :param fixed_kernel_points: fix position of certain kernel points ('none', 'center' or 'verticals'). :param KP_influence: influence function of the kernel points ('constant', 'linear', 'gaussian'). :param aggregation_mode: choose to sum influences, or only keep the closest ('closest', 'sum'). :param deformable: choose deformable or not :param modulated: choose if kernel weights are modulated in addition to deformed """ super(KPConv, self).__init__() # Save parameters self.K = kernel_size self.p_dim = p_dim self.in_channels = in_channels self.out_channels = out_channels self.radius = radius self.KP_extent = KP_extent self.fixed_kernel_points = fixed_kernel_points self.KP_influence = KP_influence self.aggregation_mode = aggregation_mode self.deformable = deformable self.modulated = modulated # Running variable containing deformed KP distance to input points. (used in regularization loss) self.min_d2 = None self.deformed_KP = None self.offset_features = None # Initialize weights self.weights = Parameter(torch.zeros((self.K, in_channels, out_channels), dtype=torch.float32), requires_grad=True) # Initiate weights for offsets if deformable: if modulated: self.offset_dim = (self.p_dim + 1) * self.K else: self.offset_dim = self.p_dim * self.K self.offset_conv = KPConv(self.K, self.p_dim, self.in_channels, self.offset_dim, KP_extent, radius, fixed_kernel_points=fixed_kernel_points, KP_influence=KP_influence, aggregation_mode=aggregation_mode) self.offset_bias = Parameter(torch.zeros(self.offset_dim, dtype=torch.float32), requires_grad=True) else: self.offset_dim = None self.offset_conv = None self.offset_bias = None # Reset parameters self.reset_parameters() # Initialize kernel points self.kernel_points = self.init_KP() return def reset_parameters(self): kaiming_uniform_(self.weights, a=math.sqrt(5)) if self.deformable: nn.init.zeros_(self.offset_bias) return def init_KP(self): """ Initialize the kernel point positions in a sphere :return: the tensor of kernel points """ # Create one kernel disposition (as numpy array). Choose the KP distance to center thanks to the KP extent K_points_numpy = load_kernels(self.radius, self.K, dimension=self.p_dim, fixed=self.fixed_kernel_points) return Parameter(torch.tensor(K_points_numpy, dtype=torch.float32), requires_grad=False) def forward(self, q_pts, s_pts, neighb_inds, x): ################### # Offset generation ################### if self.deformable: # Get offsets with a KPConv that only takes part of the features self.offset_features = self.offset_conv(q_pts, s_pts, neighb_inds, x) + self.offset_bias if self.modulated: # Get offset (in normalized scale) from features unscaled_offsets = self.offset_features[:, :self.p_dim * self.K] unscaled_offsets = unscaled_offsets.view(-1, self.K, self.p_dim) # Get modulations modulations = 2 * torch.sigmoid(self.offset_features[:, self.p_dim * self.K:]) else: # Get offset (in normalized scale) from features unscaled_offsets = self.offset_features.view(-1, self.K, self.p_dim) # No modulations modulations = None # Rescale offset for this layer offsets = unscaled_offsets * self.KP_extent else: offsets = None modulations = None ###################### # Deformed convolution ###################### # Add a fake point in the last row for shadow neighbors s_pts = torch.cat((s_pts, torch.zeros_like(s_pts[:1, :]) + 1e6), 0) # Get neighbor points [n_points, n_neighbors, dim] neighbors = s_pts[neighb_inds, :] # Center every neighborhood neighbors = neighbors - q_pts.unsqueeze(1) # Apply offsets to kernel points [n_points, n_kpoints, dim] if self.deformable: self.deformed_KP = offsets + self.kernel_points deformed_K_points = self.deformed_KP.unsqueeze(1) else: deformed_K_points = self.kernel_points # Get all difference matrices [n_points, n_neighbors, n_kpoints, dim] neighbors.unsqueeze_(2) differences = neighbors - deformed_K_points # Get the square distances [n_points, n_neighbors, n_kpoints] sq_distances = torch.sum(differences ** 2, dim=3) # Optimization by ignoring points outside a deformed KP range if self.deformable: # Save distances for loss self.min_d2, _ = torch.min(sq_distances, dim=1) # Boolean of the neighbors in range of a kernel point [n_points, n_neighbors] in_range = torch.any(sq_distances < self.KP_extent ** 2, dim=2).type(torch.int32) # New value of max neighbors new_max_neighb = torch.max(torch.sum(in_range, dim=1)) # For each row of neighbors, indices of the ones that are in range [n_points, new_max_neighb] neighb_row_bool, neighb_row_inds = torch.topk(in_range, new_max_neighb.item(), dim=1) # Gather new neighbor indices [n_points, new_max_neighb] new_neighb_inds = neighb_inds.gather(1, neighb_row_inds, sparse_grad=False) # Gather new distances to KP [n_points, new_max_neighb, n_kpoints] neighb_row_inds.unsqueeze_(2) neighb_row_inds = neighb_row_inds.expand(-1, -1, self.K) sq_distances = sq_distances.gather(1, neighb_row_inds, sparse_grad=False) # New shadow neighbors have to point to the last shadow point new_neighb_inds *= neighb_row_bool new_neighb_inds -= (neighb_row_bool.type(torch.int64) - 1) * int(s_pts.shape[0] - 1) else: new_neighb_inds = neighb_inds # Get Kernel point influences [n_points, n_kpoints, n_neighbors] if self.KP_influence == 'constant': # Every point get an influence of 1. all_weights = torch.ones_like(sq_distances) all_weights = torch.transpose(all_weights, 1, 2) elif self.KP_influence == 'linear': # Influence decrease linearly with the distance, and get to zero when d = KP_extent. all_weights = torch.clamp(1 - torch.sqrt(sq_distances) / self.KP_extent, min=0.0) all_weights = torch.transpose(all_weights, 1, 2) elif self.KP_influence == 'gaussian': # Influence in gaussian of the distance. sigma = self.KP_extent * 0.3 all_weights = radius_gaussian(sq_distances, sigma) all_weights = torch.transpose(all_weights, 1, 2) else: raise ValueError('Unknown influence function type (config.KP_influence)') # In case of closest mode, only the closest KP can influence each point if self.aggregation_mode == 'closest': neighbors_1nn = torch.argmin(sq_distances, dim=2) all_weights *= torch.transpose(nn.functional.one_hot(neighbors_1nn, self.K), 1, 2) elif self.aggregation_mode != 'sum': raise ValueError("Unknown convolution mode. Should be 'closest' or 'sum'") # Add a zero feature for shadow neighbors x = torch.cat((x, torch.zeros_like(x[:1, :])), 0) # Get the features of each neighborhood [n_points, n_neighbors, in_fdim] neighb_x = gather(x, new_neighb_inds) # Apply distance weights [n_points, n_kpoints, in_fdim] weighted_features = torch.matmul(all_weights, neighb_x) # Apply modulations if self.deformable and self.modulated: weighted_features *= modulations.unsqueeze(2) # Apply network weights [n_kpoints, n_points, out_fdim] weighted_features = weighted_features.permute((1, 0, 2)) kernel_outputs = torch.matmul(weighted_features, self.weights) # Convolution sum [n_points, out_fdim] # return torch.sum(kernel_outputs, dim=0) output_features = torch.sum(kernel_outputs, dim=0, keepdim=False) # normalization term. neighbor_features_sum = torch.sum(neighb_x, dim=-1) neighbor_num = torch.sum(torch.gt(neighbor_features_sum, 0.0), dim=-1) neighbor_num = torch.max(neighbor_num, torch.ones_like(neighbor_num)) output_features = output_features / neighbor_num.unsqueeze(1) return output_features def __repr__(self): return 'KPConv(radius: {:.2f}, extent: {:.2f}, in_feat: {:d}, out_feat: {:d})'.format(self.radius, self.KP_extent, self.in_channels, self.out_channels) # ---------------------------------------------------------------------------------------------------------------------- # # Complex blocks # \********************/ # def block_decider(block_name, radius, in_dim, out_dim, layer_ind, config): if block_name == 'unary': return UnaryBlock(in_dim, out_dim, config.use_batch_norm, config.batch_norm_momentum) elif block_name == 'unary2': return UnaryBlock2(in_dim, out_dim) elif block_name in ['simple', 'simple_deformable', 'simple_invariant', 'simple_equivariant', 'simple_strided', 'simple_deformable_strided', 'simple_invariant_strided', 'simple_equivariant_strided']: return SimpleBlock(block_name, in_dim, out_dim, radius, layer_ind, config) elif block_name in ['resnetb', 'resnetb_invariant', 'resnetb_equivariant', 'resnetb_deformable', 'resnetb_strided', 'resnetb_deformable_strided', 'resnetb_equivariant_strided', 'resnetb_invariant_strided']: return ResnetBottleneckBlock(block_name, in_dim, out_dim, radius, layer_ind, config) elif block_name == 'max_pool' or block_name == 'max_pool_wide': return MaxPoolBlock(layer_ind) elif block_name == 'global_average': return GlobalAverageBlock() elif block_name == 'nearest_upsample': return NearestUpsampleBlock(layer_ind) else: raise ValueError('Unknown block name in the architecture definition : ' + block_name) class BatchNormBlock(nn.Module): def __init__(self, in_dim, use_bn, bn_momentum): """ Initialize a batch normalization block. If network does not use batch normalization, replace with biases. :param in_dim: dimension input features :param use_bn: boolean indicating if we use Batch Norm :param bn_momentum: Batch norm momentum """ super(BatchNormBlock, self).__init__() self.bn_momentum = bn_momentum self.use_bn = use_bn self.in_dim = in_dim if self.use_bn: # self.norm = nn.BatchNorm1d(in_dim, momentum=bn_momentum) self.norm = nn.InstanceNorm1d(in_dim, momentum=bn_momentum) else: self.bias = Parameter(torch.zeros(in_dim, dtype=torch.float32), requires_grad=True) return def reset_parameters(self): nn.init.zeros_(self.bias) def forward(self, x, stack_lengths): assert x.shape[0] == stack_lengths.sum() if self.use_bn: if isinstance(self.norm, nn.BatchNorm1d): x = x.unsqueeze(2) x = x.transpose(0, 2) # (1, C, L) x = self.norm(x) x = x.transpose(0, 2) return x.squeeze() elif isinstance(self.norm, nn.InstanceNorm1d): B = len(stack_lengths) b_start_end = F.pad(torch.cumsum(stack_lengths, dim=0), (1, 0)) x = x.unsqueeze(2) x = x.transpose(0, 2) # (1, C, L) x = torch.cat([self.norm(x[:, :, b_start_end[b]:b_start_end[b+1]]) for b in range(B)], dim=2) x = x.transpose(0, 2) return x.squeeze() else: raise NotImplementedError else: return x + self.bias def __repr__(self): return 'BatchNormBlock(in_feat: {:d}, momentum: {:.3f}, only_bias: {:s})'.format(self.in_dim, self.bn_momentum, str(not self.use_bn)) class UnaryBlock(nn.Module): def __init__(self, in_dim, out_dim, use_bn, bn_momentum, no_relu=False): """ Initialize a standard unary block with its ReLU and BatchNorm. :param in_dim: dimension input features :param out_dim: dimension input features :param use_bn: boolean indicating if we use Batch Norm :param bn_momentum: Batch norm momentum """ super(UnaryBlock, self).__init__() self.bn_momentum = bn_momentum self.use_bn = use_bn self.no_relu = no_relu self.in_dim = in_dim self.out_dim = out_dim self.mlp = nn.Linear(in_dim, out_dim, bias=False) self.batch_norm = BatchNormBlock(out_dim, self.use_bn, self.bn_momentum) if not no_relu: self.leaky_relu = nn.LeakyReLU(0.1) return def forward(self, x, stack_lengths=None): x = self.mlp(x) x = self.batch_norm(x, stack_lengths) if not self.no_relu: x = self.leaky_relu(x) return x def __repr__(self): return 'UnaryBlock(in_feat: {:d}, out_feat: {:d}, BN: {:s}, ReLU: {:s})'.format(self.in_dim, self.out_dim, str(self.use_bn), str(not self.no_relu)) class UnaryBlock2(nn.Module): """Just a MLP""" def __init__(self, in_dim, out_dim): super().__init__() self.mlp = nn.Sequential( nn.Linear(in_dim, in_dim), nn.ReLU(), nn.Linear(in_dim, out_dim) ) self.in_dim = in_dim self.out_dim = out_dim def forward(self, x): return self.mlp(x) def __repr__(self): return 'UnaryBlock2(in_feat: {:d}, out_feat: {:d})'.format(self.in_dim, self.out_dim) class SimpleBlock(nn.Module): def __init__(self, block_name, in_dim, out_dim, radius, layer_ind, config): """ Initialize a simple convolution block with its ReLU and BatchNorm. :param in_dim: dimension input features :param out_dim: dimension input features :param radius: current radius of convolution :param config: parameters """ super(SimpleBlock, self).__init__() # get KP_extent from current radius current_extent = radius * config.KP_extent / config.conv_radius # Get other parameters self.bn_momentum = config.batch_norm_momentum self.use_bn = config.use_batch_norm self.layer_ind = layer_ind self.block_name = block_name self.in_dim = in_dim self.out_dim = out_dim # Define the KPConv class self.KPConv = KPConv(config.num_kernel_points, config.in_points_dim, in_dim, out_dim // 2, current_extent, radius, fixed_kernel_points=config.fixed_kernel_points, KP_influence=config.KP_influence, aggregation_mode=config.aggregation_mode, deformable='deform' in block_name, modulated=config.modulated) # Other opperations self.batch_norm = BatchNormBlock(out_dim // 2, self.use_bn, self.bn_momentum) self.leaky_relu = nn.LeakyReLU(0.1) return def forward(self, x, batch): if 'strided' in self.block_name: q_pts = batch['points'][self.layer_ind + 1] s_pts = batch['points'][self.layer_ind] neighb_inds = batch['pools'][self.layer_ind] stack_lengths = batch['stack_lengths'][self.layer_ind + 1] else: q_pts = batch['points'][self.layer_ind] s_pts = batch['points'][self.layer_ind] neighb_inds = batch['neighbors'][self.layer_ind] stack_lengths = batch['stack_lengths'][self.layer_ind] x = self.KPConv(q_pts, s_pts, neighb_inds, x) return self.leaky_relu(self.batch_norm(x, stack_lengths)) class ResnetBottleneckBlock(nn.Module): def __init__(self, block_name, in_dim, out_dim, radius, layer_ind, config): """ Initialize a resnet bottleneck block. :param in_dim: dimension input features :param out_dim: dimension input features :param radius: current radius of convolution :param config: parameters """ super(ResnetBottleneckBlock, self).__init__() # get KP_extent from current radius current_extent = radius * config.KP_extent / config.conv_radius # Get other parameters self.bn_momentum = config.batch_norm_momentum self.use_bn = config.use_batch_norm self.block_name = block_name self.layer_ind = layer_ind self.in_dim = in_dim self.out_dim = out_dim # First downscaling mlp if in_dim != out_dim // 4: self.unary1 = UnaryBlock(in_dim, out_dim // 4, self.use_bn, self.bn_momentum) else: self.unary1 = nn.Identity() # KPConv block self.KPConv = KPConv(config.num_kernel_points, config.in_points_dim, out_dim // 4, out_dim // 4, current_extent, radius, fixed_kernel_points=config.fixed_kernel_points, KP_influence=config.KP_influence, aggregation_mode=config.aggregation_mode, deformable='deform' in block_name, modulated=config.modulated) self.batch_norm_conv = BatchNormBlock(out_dim // 4, self.use_bn, self.bn_momentum) # Second upscaling mlp self.unary2 = UnaryBlock(out_dim // 4, out_dim, self.use_bn, self.bn_momentum, no_relu=True) # Shortcut optional mpl if in_dim != out_dim: self.unary_shortcut = UnaryBlock(in_dim, out_dim, self.use_bn, self.bn_momentum, no_relu=True) else: self.unary_shortcut = nn.Identity() # Other operations self.leaky_relu = nn.LeakyReLU(0.1) return def forward(self, features, batch): stack_lengths_pre = batch['stack_lengths'][self.layer_ind] if 'strided' in self.block_name: q_pts = batch['points'][self.layer_ind + 1] s_pts = batch['points'][self.layer_ind] neighb_inds = batch['pools'][self.layer_ind] stack_lengths_post = batch['stack_lengths'][self.layer_ind + 1] else: q_pts = batch['points'][self.layer_ind] s_pts = batch['points'][self.layer_ind] neighb_inds = batch['neighbors'][self.layer_ind] stack_lengths_post = batch['stack_lengths'][self.layer_ind] # First downscaling mlp x = self.unary1(features, stack_lengths_pre) if isinstance(self.unary1, UnaryBlock) else \ self.unary1(features) # Convolution x = self.KPConv(q_pts, s_pts, neighb_inds, x) x = self.leaky_relu(self.batch_norm_conv(x, stack_lengths_post)) # Second upscaling mlp x = self.unary2(x, stack_lengths_post) if isinstance(self.unary2, UnaryBlock) else \ self.unary2(x) # Shortcut if 'strided' in self.block_name: shortcut = max_pool(features, neighb_inds) else: shortcut = features shortcut = self.unary_shortcut(shortcut, stack_lengths_post) if isinstance(self.unary_shortcut, UnaryBlock) else \ self.unary_shortcut(shortcut) return self.leaky_relu(x + shortcut) class GlobalAverageBlock(nn.Module): def __init__(self): """ Initialize a global average block with its ReLU and BatchNorm. """ super(GlobalAverageBlock, self).__init__() return def forward(self, x, batch): return global_average(x, batch['stack_lengths'][-1]) class NearestUpsampleBlock(nn.Module): def __init__(self, layer_ind): """ Initialize a nearest upsampling block with its ReLU and BatchNorm. """ super(NearestUpsampleBlock, self).__init__() self.layer_ind = layer_ind return def forward(self, x, batch): return closest_pool(x, batch['upsamples'][self.layer_ind - 1]) def __repr__(self): return 'NearestUpsampleBlock(layer: {:d} -> {:d})'.format(self.layer_ind, self.layer_ind - 1) class MaxPoolBlock(nn.Module): def __init__(self, layer_ind): """ Initialize a max pooling block with its ReLU and BatchNorm. """ super(MaxPoolBlock, self).__init__() self.layer_ind = layer_ind return def forward(self, x, batch): return max_pool(x, batch['pools'][self.layer_ind + 1])
36.523507
122
0.566936
819c90ed16fff52b1673bc241322f561a26959c4
20,796
py
Python
assignment2/cs231n/classifiers/fc_net.py
pranav-s/Stanford_CS234_CV_2017
9b0536812477dd0ea0e2dc4f063976a2e79148cc
[ "MIT" ]
null
null
null
assignment2/cs231n/classifiers/fc_net.py
pranav-s/Stanford_CS234_CV_2017
9b0536812477dd0ea0e2dc4f063976a2e79148cc
[ "MIT" ]
null
null
null
assignment2/cs231n/classifiers/fc_net.py
pranav-s/Stanford_CS234_CV_2017
9b0536812477dd0ea0e2dc4f063976a2e79148cc
[ "MIT" ]
null
null
null
from builtins import range from builtins import object import numpy as np from ..layers import * from ..layer_utils import * class TwoLayerNet(object): """ A two-layer fully-connected neural network with ReLU nonlinearity and softmax loss that uses a modular layer design. We assume an input dimension of D, a hidden dimension of H, and perform classification over C classes. The architecure should be affine - relu - affine - softmax. Note that this class does not implement gradient descent; instead, it will interact with a separate Solver object that is responsible for running optimization. The learnable parameters of the model are stored in the dictionary self.params that maps parameter names to numpy arrays. """ def __init__( self, input_dim=3 * 32 * 32, hidden_dim=100, num_classes=10, weight_scale=1e-3, reg=0.0, ): """ Initialize a new network. Inputs: - input_dim: An integer giving the size of the input - hidden_dim: An integer giving the size of the hidden layer - num_classes: An integer giving the number of classes to classify - weight_scale: Scalar giving the standard deviation for random initialization of the weights. - reg: Scalar giving L2 regularization strength. """ self.params = {} self.reg = reg ############################################################################ # TODO: Initialize the weights and biases of the two-layer net. Weights # # should be initialized from a Gaussian centered at 0.0 with # # standard deviation equal to weight_scale, and biases should be # # initialized to zero. All weights and biases should be stored in the # # dictionary self.params, with first layer weights # # and biases using the keys 'W1' and 'b1' and second layer # # weights and biases using the keys 'W2' and 'b2'. # ############################################################################ # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** self.params['b1']=np.zeros(hidden_dim) self.params['b2']=np.zeros(num_classes) self.params['W1'] = np.array([[np.random.normal(scale=weight_scale) for i in range(hidden_dim)] for j in range(input_dim)]) self.params['W2'] = np.array([[np.random.normal(scale=weight_scale) for i in range(num_classes)] for j in range(hidden_dim)]) # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** ############################################################################ # END OF YOUR CODE # ############################################################################ def loss(self, X, y=None): """ Compute loss and gradient for a minibatch of data. Inputs: - X: Array of input data of shape (N, d_1, ..., d_k) - y: Array of labels, of shape (N,). y[i] gives the label for X[i]. Returns: If y is None, then run a test-time forward pass of the model and return: - scores: Array of shape (N, C) giving classification scores, where scores[i, c] is the classification score for X[i] and class c. If y is not None, then run a training-time forward and backward pass and return a tuple of: - loss: Scalar value giving the loss - grads: Dictionary with the same keys as self.params, mapping parameter names to gradients of the loss with respect to those parameters. """ scores = None ############################################################################ # TODO: Implement the forward pass for the two-layer net, computing the # # class scores for X and storing them in the scores variable. # ############################################################################ # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** layer_1_out, _ = affine_forward(X, self.params['W1'], self.params['b1']) layer_1_nonlinear, _ = relu_forward(layer_1_out) scores, _ = affine_forward(layer_1_nonlinear, self.params['W2'], self.params['b2']) # scores = softmax_forward(layer_2_out) # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** ############################################################################ # END OF YOUR CODE # ############################################################################ # If y is None then we are in test mode so just return scores loss, grads = 0, {} if y is None: return scores else: loss, softmax_grads = softmax_loss(scores, y) loss_regularized = loss + 0.5*self.reg*(np.linalg.norm(self.params['W1'])**2+np.linalg.norm(self.params['W2'])**2) #print(softmax_grads.shape) #print(layer_1_nonlinear.shape) ############################################################################ # TODO: Implement the backward pass for the two-layer net. Store the loss # # in the loss variable and gradients in the grads dictionary. Compute data # # loss using softmax, and make sure that grads[k] holds the gradients for # # self.params[k]. Don't forget to add L2 regularization! # # # # NOTE: To ensure that your implementation matches ours and you pass the # # automated tests, make sure that your L2 regularization includes a factor # # of 0.5 to simplify the expression for the gradient. # ############################################################################ # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** hidden_grad, grads['W2'], grads['b2'] = affine_backward(softmax_grads, (layer_1_nonlinear, self.params['W2'], self.params['b2'], self.reg)) hidden_grad_relu = relu_backward(hidden_grad, layer_1_out) #print('Shape of hidden grad_relu ', hidden_grad_relu.shape) #print('Shape of X ',X.shape) grad_input, grads['W1'], grads['b1'] = affine_backward(hidden_grad_relu, (X, self.params['W1'], self.params['b1'], self.reg)) # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** ############################################################################ # END OF YOUR CODE # ############################################################################ return loss_regularized, grads class FullyConnectedNet(object): """ A fully-connected neural network with an arbitrary number of hidden layers, ReLU nonlinearities, and a softmax loss function. This will also implement dropout and batch/layer normalization as options. For a network with L layers, the architecture will be {affine - [batch/layer norm] - relu - [dropout]} x (L - 1) - affine - softmax where batch/layer normalization and dropout are optional, and the {...} block is repeated L - 1 times. Similar to the TwoLayerNet above, learnable parameters are stored in the self.params dictionary and will be learned using the Solver class. """ def __init__( self, hidden_dims, input_dim=3 * 32 * 32, num_classes=10, dropout=1, normalization=None, reg=0.0, weight_scale=1e-2, dtype=np.float32, seed=None, ): """ Initialize a new FullyConnectedNet. Inputs: - hidden_dims: A list of integers giving the size of each hidden layer. - input_dim: An integer giving the size of the input. - num_classes: An integer giving the number of classes to classify. - dropout: Scalar between 0 and 1 giving dropout strength. If dropout=1 then the network should not use dropout at all. - normalization: What type of normalization the network should use. Valid values are "batchnorm", "layernorm", or None for no normalization (the default). - reg: Scalar giving L2 regularization strength. - weight_scale: Scalar giving the standard deviation for randomconnected initialization of the weights. - dtype: A numpy datatype object; all computations will be performed using this datatype. float32 is faster but less accurate, so you should use float64 for numeric gradient checking. - seed: If not None, then pass this random seed to the dropout layers. This will make the dropout layers deteriminstic so we can gradient check the model. """ self.normalization = normalization self.use_dropout = dropout != 1 self.reg = reg self.num_layers = 1 + len(hidden_dims) self.dtype = dtype self.params = {} ############################################################################ # TODO: Initialize the parameters of the network, storing all values in # # the self.params dictionary. Store weights and biases for the first layer # # in W1 and b1; for the second layer use W2 and b2, etc. Weights should be # # initialized from a normal distribution centered at 0 with standard # # deviation equal to weight_scale. Biases should be initialized to zero. # # # # When using batch normalization, store scale and shift parameters for the # # first layer in gamma1 and beta1; for the second layer use gamma2 and # # beta2, etc. Scale parameters should be initialized to ones and shift # # parameters should be initialized to zeros. # ############################################################################ # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** current_layer_index = 1 layer_input = input_dim for h in hidden_dims: self.params['b'+str(current_layer_index)] = np.zeros(h) self.params['W'+str(current_layer_index)] = np.array([[np.random.normal(scale=weight_scale) for i in range(h)] for j in range(layer_input)]) self.params['gamma'+str(current_layer_index)] = np.ones(h) self.params['beta'+str(current_layer_index)] = np.zeros(h) layer_input = h current_layer_index+=1 self.params['b'+str(current_layer_index)] = np.zeros(num_classes) self.params['W'+str(current_layer_index)] = np.array([[np.random.normal(scale=weight_scale) for i in range(num_classes)] for j in range(layer_input)]) # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** ############################################################################ # END OF YOUR CODE # ############################################################################ # When using dropout we need to pass a dropout_param dictionary to each # dropout layer so that the layer knows the dropout probability and the mode # (train / test). You can pass the same dropout_param to each dropout layer. self.dropout_param = {} if self.use_dropout: self.dropout_param = {"mode": "train", "p": dropout} if seed is not None: self.dropout_param["seed"] = seed # With batch normalization we need to keep track of running means and # variances, so we need to pass a special bn_param object to each batch # normalization layer. You should pass self.bn_params[0] to the forward pass # of the first batch normalization layer, self.bn_params[1] to the forward # pass of the second batch normalization layer, etc. self.bn_params = [] if self.normalization == "batchnorm": self.bn_params = [{"mode": "train"} for i in range(self.num_layers - 1)] if self.normalization == "layernorm": self.bn_params = [{} for i in range(self.num_layers - 1)] # Cast all parameters to the correct datatype # for k, v in self.params.items(): # self.params[k] = v.astype(dtype) def loss(self, X, y=None): """ Compute loss and gradient for the fully-connected net. Input / output: Same as TwoLayerNet above. """ X = X.astype(self.dtype) mode = "test" if y is None else "train" # Set train/test mode for batchnorm params and dropout param since they # behave differently during training and testing. if self.use_dropout: self.dropout_param["mode"] = mode if self.normalization == "batchnorm": for bn_param in self.bn_params: bn_param["mode"] = mode scores = None ############################################################################ # TODO: Implement the forward pass for the fully-connected net, computing # # the class scores for X and storing them in the scores variable. # # # # When using dropout, you'll need to pass self.dropout_param to each # # dropout forward pass. # # # # When using batch normalization, you'll need to pass self.bn_params[0] to # # the forward pass for the first batch normalization layer, pass # # self.bn_params[1] to the forward pass for the second batch normalization # # layer, etc. # ############################################################################ # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** layer_input = X layer_nonlinear_dict = {} layer_dict = {} layer_droput_dict = {} for layer in range(1, self.num_layers): if self.normalization is not None: layer_out, cache = affine_norm_relu_forward(layer_input, self.params['W'+str(layer)], self.params['b'+str(layer)], self.normalization, self.params['gamma'+str(layer)], self.params['beta'+str(layer)], self.bn_params[layer-1]) fc_cache, norm_cache, relu_cache = cache fc_cache = (*fc_cache, self.reg) cache = (fc_cache, norm_cache, relu_cache) layer_dict[layer] = cache else: layer_out, cache = affine_relu_forward(layer_input, self.params['W'+str(layer)], self.params['b'+str(layer)]) fc_cache, relu_cache = cache fc_cache = (*fc_cache, self.reg) cache = (fc_cache, relu_cache) layer_dict[layer] = cache if self.use_dropout: layer_dropout, cache = dropout_forward(layer_out, self.dropout_param) layer_droput_dict[layer] = cache layer_input = layer_dropout else: layer_input = layer_out scores, _ = affine_forward(layer_input, self.params['W'+str(self.num_layers)], self.params['b'+str(self.num_layers)]) # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** ############################################################################ # END OF YOUR CODE # ############################################################################ # If test mode return early if mode == "test": return scores loss, grads = 0.0, {} loss, softmax_grads = softmax_loss(scores, y) loss_regularized = loss + 0.5*self.reg*(np.sum([np.linalg.norm(self.params['W'+str(layer)])**2 for layer in range(1, self.num_layers+1)])) ############################################################################ # TODO: Implement the backward pass for the fully-connected net. Store the # # loss in the loss variable and gradients in the grads dictionary. Compute # # data loss using softmax, and make sure that grads[k] holds the gradients # # for self.params[k]. Don't forget to add L2 regularization! # # # # When using batch/layer normalization, you don't need to regularize the scale # # and shift parameters. # # # # NOTE: To ensure that your implementation matches ours and you pass the # # automated tests, make sure that your L2 regularization includes a factor # # of 0.5 to simplify the expression for the gradient. # ############################################################################ # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** hidden_grad = softmax_grads #print(hidden_grad.shape) hidden_grad, grads['W'+str(self.num_layers)], grads['b'+str(self.num_layers)] = affine_backward(hidden_grad, (layer_input, self.params['W'+str(self.num_layers)], self.params['b'+str(self.num_layers)], self.reg)) #print(hidden_grad.shape) for layer in range(self.num_layers, 1, -1): if self.use_dropout: hidden_grad = dropout_backward(hidden_grad, layer_droput_dict[layer-1]) if self.normalization is not None: hidden_grad, grads['W'+str(layer-1)], grads['b'+str(layer-1)], grads['gamma'+str(layer-1)], grads['beta'+str(layer-1)] = affine_norm_relu_backward(hidden_grad, self.normalization, layer_dict[layer-1]) else: hidden_grad, grads['W'+str(layer-1)], grads['b'+str(layer-1)] = affine_relu_backward(hidden_grad, layer_dict[layer-1]) #print(hidden_grad.shape) # hidden_grad = hidden_grad_input # hidden_grad_non_linear = relu_backward(hidden_grad, layer_dict[layer-1]) # grad_input, grads['W1'], grads['b1'] = affine_backward(hidden_grad_non_linear, (X, self.params['W1'], self.params['b1'], self.reg)) #print('Shape of hidden grad_relu ', hidden_grad_relu.shape) #print('Shape of X ',X.shape) pass # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** ############################################################################ # END OF YOUR CODE # ############################################################################ return loss_regularized, grads def affine_norm_relu_forward(x, w, b, normalization, gamma, beta, bn_param): """ Convenience layer that perorms an affine transform followed by a ReLU Inputs: - x: Input to the affine layer - w, b: Weights for the affine layer Returns a tuple of: - out: Output from the ReLU - cache: Object to give to the backward pass """ # print(x.shape, w.shape, b.shape) a, fc_cache = affine_forward(x, w, b) if normalization=='batchnorm': norm_out, norm_cache = batchnorm_forward(a, gamma, beta, bn_param) elif normalization=='layernorm': norm_out, norm_cache = layernorm_forward(a, gamma, beta, bn_param) out, relu_cache = relu_forward(norm_out) cache = (fc_cache, norm_cache, relu_cache) return out, cache def affine_norm_relu_backward(dout, normalization, cache): """ Backward pass for the affine-relu convenience layer """ fc_cache, norm_cache, relu_cache = cache da = relu_backward(dout, relu_cache) if normalization == 'batchnorm': dx, dgamma, dbeta = batchnorm_backward_alt(da, norm_cache) if normalization == 'layernorm': dx, dgamma, dbeta = layernorm_backward(da, norm_cache) dx, dw, db = affine_backward(dx, fc_cache) return dx, dw, db, dgamma, dbeta
51.475248
219
0.533276
3352ae4c6a028b1e86d38a9164d338229b57feca
3,709
py
Python
chexpert_labeler/stages/aggregate.py
stmharry/interpretable-report-gen
c4518b613526f76ef84e1dc58b4939b315e80cd9
[ "MIT" ]
2
2020-12-16T07:43:57.000Z
2021-07-09T01:15:30.000Z
chexpert_labeler/stages/aggregate.py
stmharry/interpretable-report-gen
c4518b613526f76ef84e1dc58b4939b315e80cd9
[ "MIT" ]
3
2021-06-08T21:34:27.000Z
2021-09-08T02:02:28.000Z
chexpert_labeler/stages/aggregate.py
stmharry/interpretable-report-gen
c4518b613526f76ef84e1dc58b4939b315e80cd9
[ "MIT" ]
null
null
null
"""Define mention aggregator class.""" import numpy as np from tqdm import tqdm from chexpert_labeler.constants import * class Aggregator(object): """Aggregate mentions of observations from radiology reports.""" def __init__(self, categories, verbose=False): self.categories = categories self.verbose = verbose def dict_to_vec(self, d): """ Convert a dictionary of the form {cardiomegaly: [1], opacity: [u, 1], fracture: [0]} into a vector of the form [np.nan, np.nan, 1, u, np.nan, ..., 0, np.nan] """ vec = [] for category in self.categories: # There was a mention of the category. if category in d: label_list = d[category] # Only one label, no conflicts. if len(label_list) == 1: vec.append(label_list[0]) # Multiple labels. else: # Case 1. There is negated and uncertain. if NEGATIVE in label_list and UNCERTAIN in label_list: vec.append(UNCERTAIN) # Case 2. There is negated and positive. elif NEGATIVE in label_list and POSITIVE in label_list: vec.append(POSITIVE) # Case 3. There is uncertain and positive. elif UNCERTAIN in label_list and POSITIVE in label_list: vec.append(POSITIVE) # Case 4. All labels are the same. else: vec.append(label_list[0]) # No mention of the category else: vec.append(np.nan) return vec def aggregate(self, collection): labels = [] documents = collection.documents if self.verbose: print("Aggregating mentions...") documents = tqdm(documents) for document in documents: label_dict = {} impression_passage = document.passages[0] no_finding = True for annotation in impression_passage.annotations: category = annotation.infons[OBSERVATION] if NEGATION in annotation.infons: label = NEGATIVE elif UNCERTAINTY in annotation.infons: label = UNCERTAIN else: label = POSITIVE # If at least one non-support category has a uncertain or # positive label, there was a finding if (category != SUPPORT_DEVICES and label in [UNCERTAIN, POSITIVE]): no_finding = False # Don't add any labels for No Finding if category == NO_FINDING: continue # add exception for 'chf' and 'heart failure' if ((label in [UNCERTAIN, POSITIVE]) and (annotation.text == 'chf' or annotation.text == 'heart failure')): if CARDIOMEGALY not in label_dict: label_dict[CARDIOMEGALY] = [UNCERTAIN] else: label_dict[CARDIOMEGALY].append(UNCERTAIN) if category not in label_dict: label_dict[category] = [label] else: label_dict[category].append(label) if no_finding: label_dict[NO_FINDING] = [POSITIVE] label_vec = self.dict_to_vec(label_dict) labels.append(label_vec) return np.array(labels)
34.342593
76
0.512807
4a0bc894f8c9e6aae7aeb0032ff235c583419c4b
6,048
py
Python
zaifapi/exchange_api/trade.py
techbureau/zaifapi
5b7db7d6abdc76b4e911a74457140b3faf0b7317
[ "MIT" ]
62
2017-05-10T12:24:48.000Z
2021-03-17T07:03:29.000Z
zaifapi/exchange_api/trade.py
techbureau/zaifapi
5b7db7d6abdc76b4e911a74457140b3faf0b7317
[ "MIT" ]
15
2017-06-12T07:12:14.000Z
2020-01-30T13:28:53.000Z
zaifapi/exchange_api/trade.py
techbureau/zaifapi
5b7db7d6abdc76b4e911a74457140b3faf0b7317
[ "MIT" ]
19
2017-08-23T20:47:14.000Z
2018-11-21T10:01:06.000Z
import time import hmac import hashlib from decimal import Decimal from datetime import datetime from abc import ABCMeta, abstractmethod from typing import Optional from urllib.parse import urlencode from zaifapi.api_common import ApiUrl, get_response, get_api_url, method_name from zaifapi.api_error import ZaifApiError, ZaifApiNonceError from . import ZaifExchangeApi class _ZaifTradeApiBase(ZaifExchangeApi, metaclass=ABCMeta): @abstractmethod def _get_header(self, params): raise NotImplementedError() @staticmethod def _get_nonce(): now = datetime.now() nonce = str(int(time.mktime(now.timetuple()))) microseconds = "{0:06d}".format(now.microsecond) return Decimal(nonce + "." + microseconds) def _execute_api(self, func_name, schema_keys=None, params=None): schema_keys = schema_keys or [] params = params or {} params = self._params_pre_processing(schema_keys, params, func_name) header = self._get_header(params) url = self._url.get_absolute_url() res = get_response(url, params, header) if res["success"] == 0: if res["error"].startswith("nonce"): raise ZaifApiNonceError(res["error"]) raise ZaifApiError(res["error"]) return res["return"] def _params_pre_processing(self, keys, params, func_name): params = self._validator.params_pre_processing(keys, params) params["method"] = func_name params["nonce"] = self._get_nonce() return urlencode(params) def _make_signature(key, secret, params): signature = hmac.new(bytearray(secret.encode("utf-8")), digestmod=hashlib.sha512) signature.update(params.encode("utf-8")) return {"key": key, "sign": signature.hexdigest()} class ZaifTradeApi(_ZaifTradeApiBase): def __init__(self, key, secret, api_url=None): super().__init__(get_api_url(api_url, "tapi")) self._key = key self._secret = secret def _get_header(self, params): return _make_signature(self._key, self._secret, params) def get_info(self): return self._execute_api(method_name()) def get_info2(self): return self._execute_api(method_name()) def get_personal_info(self): return self._execute_api(method_name()) def get_id_info(self): return self._execute_api(method_name()) def trade_history(self, **kwargs): schema_keys = [ "from_num", "count", "from_id", "end_id", "order", "since", "end", "currency_pair", "is_token", ] return self._execute_api(method_name(), schema_keys, kwargs) def active_orders(self, **kwargs): schema_keys = ["currency_pair", "is_token", "is_token_both"] return self._execute_api(method_name(), schema_keys, kwargs) def _inner_history_api(self, func_name, kwargs): schema_keys = [ "currency", "from_num", "count", "from_id", "end_id", "order", "since", "end", "is_token", ] return self._execute_api(func_name, schema_keys, kwargs) def withdraw_history(self, **kwargs): return self._inner_history_api(method_name(), kwargs) def deposit_history(self, **kwargs): return self._inner_history_api(method_name(), kwargs) def withdraw(self, **kwargs): schema_keys = ["currency", "address", "message", "amount", "opt_fee"] return self._execute_api(method_name(), schema_keys, kwargs) def cancel_order(self, **kwargs): schema_keys = ["order_id", "is_token", "currency_pair"] return self._execute_api(method_name(), schema_keys, kwargs) def trade(self, **kwargs): schema_keys = ["currency_pair", "action", "price", "amount", "limit", "comment"] return self._execute_api(method_name(), schema_keys, kwargs) class ZaifLeverageTradeApi(_ZaifTradeApiBase): def __init__(self, key, secret, api_url=None): api_url = get_api_url(api_url, "tlapi") super().__init__(api_url) self._key = key self._secret = secret def _get_header(self, params): return _make_signature(self._key, self._secret, params) def get_positions(self, **kwargs): schema_keys = [ "type", "group_id", "from_num", "count", "from_id", "end_id", "order", "since", "end", "currency_pair", ] return self._execute_api(method_name(), schema_keys, kwargs) def position_history(self, **kwargs): schema_keys = ["type", "group_id", "leverage_id"] return self._execute_api(method_name(), schema_keys, kwargs) def active_positions(self, **kwargs): schema_keys = ["type", "group_id", "currency_pair"] return self._execute_api(method_name(), schema_keys, kwargs) def create_position(self, **kwargs): schema_keys = [ "type", "group_id", "currency_pair", "action", "price", "amount", "leverage", "limit", "stop", ] return self._execute_api(method_name(), schema_keys, kwargs) def change_position(self, **kwargs): schema_keys = ["type", "group_id", "leverage_id", "price", "limit", "stop"] return self._execute_api(method_name(), schema_keys, kwargs) def cancel_position(self, **kwargs): schema_keys = ["type", "group_id", "leverage_id"] return self._execute_api(method_name(), schema_keys, kwargs) class ZaifTokenTradeApi(ZaifTradeApi): def __init__(self, token: str, api_url: Optional[ApiUrl] = None): self._token = token super().__init__(None, None, api_url) def get_header(self, params): return {"token": self._token}
31.831579
88
0.616237
6ca3c66bb40ead0935edfe9c434651b6246cbc39
2,008
py
Python
tests/sources/test_matlab_functions.py
SherlockSheep/webots
13bb7f13f15cd1a003b64368b1fd8783732e175e
[ "Apache-2.0" ]
1
2020-09-28T08:34:32.000Z
2020-09-28T08:34:32.000Z
tests/sources/test_matlab_functions.py
congleetea/webots
f7bf0cb385842478c5635e29db8e25689d3d0c65
[ "Apache-2.0" ]
null
null
null
tests/sources/test_matlab_functions.py
congleetea/webots
f7bf0cb385842478c5635e29db8e25689d3d0c65
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # Copyright 1996-2020 Cyberbotics Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test that all the required Matlab functions are defined.""" import unittest import os class TestMatlabFunctions(unittest.TestCase): """Unit test for checking that all the required Matlab functions are defined.""" def setUp(self): """Get all the required function.""" skippedLines = [ 'wbr', 'microphone', 'remote_control', 'robot', 'wb_device_get_type', 'wb_node_get_name', 'lookup_table_size', 'EXPORTS' ] self.functions = [] filename = os.environ['WEBOTS_HOME'] + '/src/Controller/Controller.def' self.assertTrue( os.path.isfile(filename), msg='Missing "%s" file.' % filename ) with open(filename) as file: for line in file: if not any(skippedLine in line for skippedLine in skippedLines): self.functions.append(line.replace('\n', '')) def test_matlab_function_exists(self): """Test that the fucntion file exists.""" for function in self.functions: filename = os.environ['WEBOTS_HOME'] + '/lib/controller/matlab/' + function + '.m' self.assertTrue( os.path.isfile(filename), msg='Missing "%s" file.' % filename ) if __name__ == '__main__': unittest.main()
33.466667
94
0.621016
eaeed368105f93a7198ca2ffd0b883e20fc903e3
8,135
py
Python
problems/dist_mnist_problem.py
javieryu/nn_distributed_training
ebbae5317efc514437374fc2f698fbcec9debab4
[ "MIT" ]
3
2021-10-14T19:53:19.000Z
2022-02-22T01:14:44.000Z
problems/dist_mnist_problem.py
javieryu/nn_distributed_training
ebbae5317efc514437374fc2f698fbcec9debab4
[ "MIT" ]
null
null
null
problems/dist_mnist_problem.py
javieryu/nn_distributed_training
ebbae5317efc514437374fc2f698fbcec9debab4
[ "MIT" ]
null
null
null
import os import copy import torch class DistMNISTProblem: """An object that manages the various datastructures for a distributed optimization problem on the MNIST classification problem. In addition, it computes, stores, and writes out relevant metrics. Author: Javier Yu, javieryu@stanford.edu, July 20, 2021 """ def __init__( self, graph, base_model, base_loss, train_sets, val_set, device, conf, ): self.graph = graph self.base_loss = base_loss self.train_sets = train_sets self.val_set = val_set self.conf = conf # Extract some useful info self.N = graph.number_of_nodes() self.n = torch.nn.utils.parameters_to_vector( base_model.parameters() ).shape[0] self.device = device # Copy the base_model for each node self.models = {i: copy.deepcopy(base_model) for i in range(self.N)} for i in range(self.N): self.models[i] = self.models[i].to(self.device) # Create train loaders and iterators with specified batch size self.train_loaders = {} self.train_iters = {} for i in range(self.N): self.train_loaders[i] = torch.utils.data.DataLoader( self.train_sets[i], batch_size=self.conf["train_batch_size"], shuffle=True, ) self.train_iters[i] = iter(self.train_loaders[i]) self.val_loader = torch.utils.data.DataLoader( self.val_set, batch_size=self.conf["val_batch_size"] ) # Initialize lists for metrics with names self.metrics = {met_name: [] for met_name in self.conf["metrics"]} self.epoch_tracker = torch.zeros(self.N) self.forward_cnt = 0 def local_batch_loss(self, i): """Forward pass on a batch data for model at node i, and if it's node_id = 0 then increment a metric that counts the number of forward passes. Also increment an epoch tracker for each node when the iterator resets. Finally compute loss based on base_loss function and return. Note: if for whatever reason there isn't a node zero then this method's metric increment step will fail. Args: i (int): Node id Returns: (torch.Tensor): Loss of node i's model on a batch of local data. """ try: x, y = next(self.train_iters[i]) except StopIteration: self.epoch_tracker[i] += 1 self.train_iters[i] = iter(self.train_loaders[i]) x, y = next(self.train_iters[i]) if i == 0: # Count the number of forward passes that have been performed # because this is symmetric across nodes we only have to do # this for node 0, and it will be consistent with all nodes. self.forward_cnt += self.conf["train_batch_size"] yh = self.models[i].forward(x.to(self.device)) return self.base_loss(yh, y.to(self.device)) def update_graph(self): """Placeholder because the graph is not dynamic in this problem.""" pass def save_metrics(self, output_dir): """Save current metrics lists to a PT file.""" file_name = self.conf["problem_name"] + "_results.pt" file_path = os.path.join(output_dir, file_name) torch.save(self.metrics, file_path) return def validate(self, i): """Compute the loss and accuracy of a single node's model on the validation set. Args: i (int): Node id """ with torch.no_grad(): loss = 0.0 correct = 0 correct_list = [] for x, y in self.val_loader: x, y = x.to(self.device), y.to(self.device) yh = self.models[i].forward(x) loss += self.base_loss(yh, y).item() pred = yh.argmax(dim=1, keepdim=True) correct_vec = pred.eq(y.view_as(pred)) correct += correct_vec.sum().item() correct_list.append(correct_vec) avg_loss = loss / len(self.val_loader.dataset) acc = correct / len(self.val_loader.dataset) return avg_loss, acc, torch.vstack(correct_list) def evaluate_metrics(self, at_end=False): """Evaluate models, and then append values to the metric lists.""" # Compute validation loss and accuracy (if you do one you might # as well do the other) if ( "validation_loss" in self.metrics or "top1_accuracy" in self.metrics or "valdiation_as_vector" in self.metrics ): avg_losses = torch.zeros(self.N) accs = torch.zeros(self.N) valid_vecs = {} for i in range(self.N): avg_losses[i], accs[i], valid_vecs[i] = self.validate(i) evalprint = "| " for met_name in self.conf["metrics"]: if met_name == "consensus_error": # The average distance from a single node to all # of the other nodes in the problem with torch.no_grad(): all_params = [ torch.nn.utils.parameters_to_vector( self.models[i].parameters() ) for i in range(self.N) ] # Stack all of the parameters into rows th_stack = torch.stack(all_params) # Normalize the stack th_stack = torch.nn.functional.normalize(th_stack, dim=1) # Compute row-wise distances distances_all = torch.cdist(th_stack, th_stack) th_mean = torch.mean(th_stack, dim=0).reshape(1, -1) distances_mean = torch.cdist(th_stack, th_mean) # append metrics and generate print string self.metrics[met_name].append((distances_all, distances_mean)) evalprint += "Consensus: {:.4f} - {:.4f} | ".format( torch.amin(distances_mean).item(), torch.amax(distances_mean).item(), ) elif met_name == "validation_loss": # Average node loss on the validation dataset self.metrics[met_name].append(avg_losses) evalprint += "Val Loss: {:.4f} - {:.4f} | ".format( torch.amin(avg_losses).item(), torch.amax(avg_losses).item(), ) elif met_name == "top1_accuracy": # Top1 accuracy of nodes on the validation dataset self.metrics[met_name].append(accs) evalprint += "Top1: {:.2f} - {:.2f} |".format( torch.amin(accs).item(), torch.amax(accs).item() ) elif met_name == "forward_pass_count": # Number of forward passes performed by each node self.metrics[met_name].append(self.forward_cnt) evalprint += "Num Forward: {} | ".format(self.forward_cnt) elif met_name == "current_epoch": # Current epoch of each node (only different if the datasets at # each node are not the same size) self.metrics[met_name].append( copy.deepcopy(self.epoch_tracker) ) evalprint += "Ep Range: {} - {} | ".format( int(torch.amin(self.epoch_tracker).item()), int(torch.amax(self.epoch_tracker).item()), ) elif met_name == "validation_as_vector": # Returns the validations prediction correctness vector # Nothing to print from here self.metrics[met_name].append(valid_vecs) else: raise NameError("Unknown metric.") print(evalprint) return
38.372642
79
0.55083
fc0f89b83d59281a84ab6dea909d143a4622a2ae
23,212
py
Python
python/ray/tune/ray_trial_executor.py
wingman-ai/ray
23e1ccc1ea5d7e5789628d3eb85ff6bc8d0a4359
[ "Apache-2.0" ]
null
null
null
python/ray/tune/ray_trial_executor.py
wingman-ai/ray
23e1ccc1ea5d7e5789628d3eb85ff6bc8d0a4359
[ "Apache-2.0" ]
4
2019-03-04T13:03:24.000Z
2019-06-06T11:25:07.000Z
python/ray/tune/ray_trial_executor.py
wingman-ai/ray
23e1ccc1ea5d7e5789628d3eb85ff6bc8d0a4359
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 from __future__ import absolute_import from __future__ import division from __future__ import print_function import logging import math import os import random import time import traceback import ray from ray.tune.error import AbortTrialExecution from ray.tune.logger import NoopLogger from ray.tune.trial import Trial, Resources, Checkpoint from ray.tune.trial_executor import TrialExecutor from ray.tune.util import warn_if_slow logger = logging.getLogger(__name__) RESOURCE_REFRESH_PERIOD = 0.5 # Refresh resources every 500 ms BOTTLENECK_WARN_PERIOD_S = 60 NONTRIVIAL_WAIT_TIME_THRESHOLD_S = 1e-3 class _LocalWrapper(object): def __init__(self, result): self._result = result def unwrap(self): """Returns the wrapped result.""" return self._result class RayTrialExecutor(TrialExecutor): """An implemention of TrialExecutor based on Ray.""" def __init__(self, queue_trials=False, reuse_actors=False, ray_auto_init=False, refresh_period=RESOURCE_REFRESH_PERIOD): super(RayTrialExecutor, self).__init__(queue_trials) self._running = {} # Since trial resume after paused should not run # trial.train.remote(), thus no more new remote object id generated. # We use self._paused to store paused trials here. self._paused = {} self._reuse_actors = reuse_actors self._cached_actor = None self._avail_resources = Resources(cpu=0, gpu=0) self._committed_resources = Resources(cpu=0, gpu=0) self._resources_initialized = False self._refresh_period = refresh_period self._last_resource_refresh = float("-inf") self._last_nontrivial_wait = time.time() if not ray.is_initialized() and ray_auto_init: logger.info("Initializing Ray automatically." "For cluster usage or custom Ray initialization, " "call `ray.init(...)` before `tune.run`.") ray.init() if ray.is_initialized(): self._update_avail_resources() def _setup_runner(self, trial, reuse_allowed): if (self._reuse_actors and reuse_allowed and self._cached_actor is not None): logger.debug("Reusing cached runner {} for {}".format( self._cached_actor, trial.trial_id)) existing_runner = self._cached_actor self._cached_actor = None else: if self._cached_actor: logger.debug( "Cannot reuse cached runner {} for new trial".format( self._cached_actor)) self._cached_actor.stop.remote() self._cached_actor.__ray_terminate__.remote() self._cached_actor = None existing_runner = None cls = ray.remote( num_cpus=trial.resources.cpu, num_gpus=trial.resources.gpu, resources=trial.resources.custom_resources)( trial._get_trainable_cls()) trial.init_logger() # We checkpoint metadata here to try mitigating logdir duplication self.try_checkpoint_metadata(trial) remote_logdir = trial.logdir if existing_runner: trial.runner = existing_runner if not self.reset_trial(trial, trial.config, trial.experiment_tag): raise AbortTrialExecution( "Trial runner reuse requires reset_trial() to be " "implemented and return True.") return existing_runner def logger_creator(config): # Set the working dir in the remote process, for user file writes if not os.path.exists(remote_logdir): os.makedirs(remote_logdir) if not ray.worker._mode() == ray.worker.LOCAL_MODE: os.chdir(remote_logdir) return NoopLogger(config, remote_logdir) # Logging for trials is handled centrally by TrialRunner, so # configure the remote runner to use a noop-logger. return cls.remote(config=trial.config, logger_creator=logger_creator) def _train(self, trial): """Start one iteration of training and save remote id.""" assert trial.status == Trial.RUNNING, trial.status remote = trial.runner.train.remote() # Local Mode if isinstance(remote, dict): remote = _LocalWrapper(remote) self._running[remote] = trial def _start_trial(self, trial, checkpoint=None): """Starts trial and restores last result if trial was paused. Raises: ValueError if restoring from checkpoint fails. """ prior_status = trial.status self.set_status(trial, Trial.RUNNING) trial.runner = self._setup_runner( trial, reuse_allowed=checkpoint is not None or trial._checkpoint.value is not None) if not self.restore(trial, checkpoint): if trial.status == Trial.ERROR: raise RuntimeError( "Restore from checkpoint failed for Trial {}.".format( str(trial))) previous_run = self._find_item(self._paused, trial) if (prior_status == Trial.PAUSED and previous_run): # If Trial was in flight when paused, self._paused stores result. self._paused.pop(previous_run[0]) self._running[previous_run[0]] = trial else: self._train(trial) def _stop_trial(self, trial, error=False, error_msg=None, stop_logger=True): """Stops this trial. Stops this trial, releasing all allocating resources. If stopping the trial fails, the run will be marked as terminated in error, but no exception will be thrown. Args: error (bool): Whether to mark this trial as terminated in error. error_msg (str): Optional error message. stop_logger (bool): Whether to shut down the trial logger. """ if stop_logger: trial.close_logger() if error: self.set_status(trial, Trial.ERROR) else: self.set_status(trial, Trial.TERMINATED) try: trial.write_error_log(error_msg) if hasattr(trial, "runner") and trial.runner: if (not error and self._reuse_actors and self._cached_actor is None): logger.debug("Reusing actor for {}".format(trial.runner)) self._cached_actor = trial.runner else: logger.info( "Destroying actor for trial {}. If your trainable is " "slow to initialize, consider setting " "reuse_actors=True to reduce actor creation " "overheads.".format(trial)) trial.runner.stop.remote() trial.runner.__ray_terminate__.remote() except Exception: logger.exception("Error stopping runner for Trial %s", str(trial)) self.set_status(trial, Trial.ERROR) finally: trial.runner = None def start_trial(self, trial, checkpoint=None): """Starts the trial. Will not return resources if trial repeatedly fails on start. Args: trial (Trial): Trial to be started. checkpoint (Checkpoint): A Python object or path storing the state of trial. """ self._commit_resources(trial.resources) try: self._start_trial(trial, checkpoint) except Exception as e: logger.exception("Error starting runner for Trial %s", str(trial)) error_msg = traceback.format_exc() time.sleep(2) self._stop_trial(trial, error=True, error_msg=error_msg) if isinstance(e, AbortTrialExecution): return # don't retry fatal Tune errors try: # This forces the trial to not start from checkpoint. trial.clear_checkpoint() logger.info( "Trying to start runner for Trial %s without checkpoint.", str(trial)) self._start_trial(trial) except Exception: logger.exception( "Error starting runner for Trial %s, aborting!", str(trial)) error_msg = traceback.format_exc() self._stop_trial(trial, error=True, error_msg=error_msg) # note that we don't return the resources, since they may # have been lost def _find_item(self, dictionary, item): out = [rid for rid, t in dictionary.items() if t is item] return out def stop_trial(self, trial, error=False, error_msg=None, stop_logger=True): """Only returns resources if resources allocated.""" prior_status = trial.status self._stop_trial( trial, error=error, error_msg=error_msg, stop_logger=stop_logger) if prior_status == Trial.RUNNING: logger.debug("Returning resources for Trial %s.", str(trial)) self._return_resources(trial.resources) out = self._find_item(self._running, trial) for result_id in out: self._running.pop(result_id) def continue_training(self, trial): """Continues the training of this trial.""" self._train(trial) def pause_trial(self, trial): """Pauses the trial. If trial is in-flight, preserves return value in separate queue before pausing, which is restored when Trial is resumed. """ trial_future = self._find_item(self._running, trial) if trial_future: self._paused[trial_future[0]] = trial super(RayTrialExecutor, self).pause_trial(trial) def reset_trial(self, trial, new_config, new_experiment_tag): """Tries to invoke `Trainable.reset_config()` to reset trial. Args: trial (Trial): Trial to be reset. new_config (dict): New configuration for Trial trainable. new_experiment_tag (str): New experiment name for trial. Returns: True if `reset_config` is successful else False. """ trial.experiment_tag = new_experiment_tag trial.config = new_config trainable = trial.runner with warn_if_slow("reset_config"): reset_val = ray.get(trainable.reset_config.remote(new_config)) return reset_val def get_running_trials(self): """Returns the running trials.""" return list(self._running.values()) def get_next_available_trial(self): shuffled_results = list(self._running.keys()) random.shuffle(shuffled_results) # Note: We shuffle the results because `ray.wait` by default returns # the first available result, and we want to guarantee that slower # trials (i.e. trials that run remotely) also get fairly reported. # See https://github.com/ray-project/ray/issues/4211 for details. start = time.time() [result_id], _ = ray.wait(shuffled_results) wait_time = time.time() - start if wait_time > NONTRIVIAL_WAIT_TIME_THRESHOLD_S: self._last_nontrivial_wait = time.time() if time.time() - self._last_nontrivial_wait > BOTTLENECK_WARN_PERIOD_S: logger.warn( "Over the last {} seconds, the Tune event loop has been " "backlogged processing new results. Consider increasing your " "period of result reporting to improve performance.".format( BOTTLENECK_WARN_PERIOD_S)) self._last_nontrivial_wait = time.time() return self._running[result_id] def fetch_result(self, trial): """Fetches one result of the running trials. Returns: Result of the most recent trial training run.""" trial_future = self._find_item(self._running, trial) if not trial_future: raise ValueError("Trial was not running.") self._running.pop(trial_future[0]) with warn_if_slow("fetch_result"): result = ray.get(trial_future[0]) # For local mode if isinstance(result, _LocalWrapper): result = result.unwrap() return result def _commit_resources(self, resources): committed = self._committed_resources all_keys = set(resources.custom_resources).union( set(committed.custom_resources)) custom_resources = { k: committed.get(k) + resources.get_res_total(k) for k in all_keys } self._committed_resources = Resources( committed.cpu + resources.cpu_total(), committed.gpu + resources.gpu_total(), custom_resources=custom_resources) def _return_resources(self, resources): committed = self._committed_resources all_keys = set(resources.custom_resources).union( set(committed.custom_resources)) custom_resources = { k: committed.get(k) - resources.get_res_total(k) for k in all_keys } self._committed_resources = Resources( committed.cpu - resources.cpu_total(), committed.gpu - resources.gpu_total(), custom_resources=custom_resources) assert self._committed_resources.is_nonnegative(), ( "Resource invalid: {}".format(resources)) def _update_avail_resources(self, num_retries=5): for i in range(num_retries): try: resources = ray.cluster_resources() except Exception: # TODO(rliaw): Remove this when local mode is fixed. # https://github.com/ray-project/ray/issues/4147 logger.debug("Using resources for local machine.") resources = ray.services.check_and_update_resources( None, None, None) if not resources: logger.warning( "Cluster resources not detected or are 0. Retrying...") time.sleep(0.5) if not resources: # NOTE: This hides the possibility that Ray may be waiting for # clients to connect. resources.setdefault("CPU", 0) resources.setdefault("GPU", 0) logger.warning("Cluster resources cannot be detected or are 0. " "You can resume this experiment by passing in " "`resume=True` to `run`.") resources = resources.copy() num_cpus = resources.pop("CPU", 0) num_gpus = resources.pop("GPU", 0) custom_resources = resources self._avail_resources = Resources( int(num_cpus), int(num_gpus), custom_resources=custom_resources) self._last_resource_refresh = time.time() self._resources_initialized = True def has_resources(self, resources): """Returns whether this runner has at least the specified resources. This refreshes the Ray cluster resources if the time since last update has exceeded self._refresh_period. This also assumes that the cluster is not resizing very frequently. """ if time.time() - self._last_resource_refresh > self._refresh_period: self._update_avail_resources() currently_available = Resources.subtract(self._avail_resources, self._committed_resources) have_space = ( resources.cpu_total() <= currently_available.cpu and resources.gpu_total() <= currently_available.gpu and all( resources.get_res_total(res) <= currently_available.get(res) for res in resources.custom_resources)) if have_space: return True can_overcommit = self._queue_trials if (resources.cpu_total() > 0 and currently_available.cpu <= 0) or \ (resources.gpu_total() > 0 and currently_available.gpu <= 0) or \ any((resources.get_res_total(res_name) > 0 and currently_available.get(res_name) <= 0) for res_name in resources.custom_resources): can_overcommit = False # requested resource is already saturated if can_overcommit: logger.warning( "Allowing trial to start even though the " "cluster does not have enough free resources. Trial actors " "may appear to hang until enough resources are added to the " "cluster (e.g., via autoscaling). You can disable this " "behavior by specifying `queue_trials=False` in " "ray.tune.run().") return True return False def debug_string(self): """Returns a human readable message for printing to the console.""" if self._resources_initialized: status = "Resources requested: {}/{} CPUs, {}/{} GPUs".format( self._committed_resources.cpu, self._avail_resources.cpu, self._committed_resources.gpu, self._avail_resources.gpu) customs = ", ".join([ "{}/{} {}".format( self._committed_resources.get_res_total(name), self._avail_resources.get_res_total(name), name) for name in self._avail_resources.custom_resources ]) if customs: status += " ({})".format(customs) return status else: return "Resources requested: ?" def resource_string(self): """Returns a string describing the total resources available.""" if self._resources_initialized: res_str = "{} CPUs, {} GPUs".format(self._avail_resources.cpu, self._avail_resources.gpu) if self._avail_resources.custom_resources: custom = ", ".join( "{} {}".format( self._avail_resources.get_res_total(name), name) for name in self._avail_resources.custom_resources) res_str += " ({})".format(custom) return res_str else: return "? CPUs, ? GPUs" def on_step_begin(self): """Before step() called, update the available resources.""" self._update_avail_resources() def save(self, trial, storage=Checkpoint.DISK): """Saves the trial's state to a checkpoint.""" trial._checkpoint.storage = storage trial._checkpoint.last_result = trial.last_result if storage == Checkpoint.MEMORY: trial._checkpoint.value = trial.runner.save_to_object.remote() else: # Keeps only highest performing checkpoints if enabled if trial.keep_checkpoints_num: try: last_attr_val = trial.last_result[ trial.checkpoint_score_attr] if (trial.compare_checkpoints(last_attr_val) and not math.isnan(last_attr_val)): trial.best_checkpoint_attr_value = last_attr_val self._checkpoint_and_erase(trial) except KeyError: logger.warning( "Result dict has no key: {}. keep" "_checkpoints_num flag will not work".format( trial.checkpoint_score_attr)) else: with warn_if_slow("save_to_disk"): trial._checkpoint.value = ray.get( trial.runner.save.remote()) return trial._checkpoint.value @staticmethod def _checkpoint_and_erase(trial): """Checkpoints the model and erases old checkpoints if needed. Parameters ---------- trial : trial to save """ with warn_if_slow("save_to_disk"): trial._checkpoint.value = ray.get(trial.runner.save.remote()) if len(trial.history) >= trial.keep_checkpoints_num: ray.get(trial.runner.delete_checkpoint.remote(trial.history[-1])) trial.history.pop() trial.history.insert(0, trial._checkpoint.value) def _checkpoint_and_erase(self, subdir, trial): """Checkpoints the model and erases old checkpoints if needed. Parameters ---------- subdir string: either "" or "best" trial : trial to save """ with warn_if_slow("save_to_disk"): trial._checkpoint.value, folder_path = ray.get(trial.runner.save_checkpoint_relative.remote(subdir)) if trial.prefix[subdir]["limit"]: if len(trial.prefix[subdir]["history"]) == trial.prefix[subdir]["limit"]: ray.get(trial.runner.delete_checkpoint.remote(trial.prefix[subdir]["history"][-1])) trial.prefix[subdir]["history"].pop() trial.prefix[subdir]["history"].insert(0, folder_path) def restore(self, trial, checkpoint=None): """Restores training state from a given model checkpoint. This will also sync the trial results to a new location if restoring on a different node. """ if checkpoint is None or checkpoint.value is None: checkpoint = trial._checkpoint if checkpoint is None or checkpoint.value is None: return True if trial.runner is None: logger.error("Unable to restore - no runner.") self.set_status(trial, Trial.ERROR) return False try: value = checkpoint.value if checkpoint.storage == Checkpoint.MEMORY: assert type(value) != Checkpoint, type(value) trial.runner.restore_from_object.remote(value) else: worker_ip = ray.get(trial.runner.current_ip.remote()) trial.sync_logger_to_new_location(worker_ip) with warn_if_slow("restore_from_disk"): ray.get(trial.runner.restore.remote(value)) trial.last_result = checkpoint.last_result return True except Exception: logger.exception("Error restoring runner for Trial %s.", trial) self.set_status(trial, Trial.ERROR) return False def export_trial_if_needed(self, trial): """Exports model of this trial based on trial.export_formats. Return: A dict that maps ExportFormats to successfully exported models. """ if trial.export_formats and len(trial.export_formats) > 0: return ray.get( trial.runner.export_model.remote(trial.export_formats)) return {}
39.678632
112
0.59844
8678dd567db519d670dca84b6f8a196b5074d200
2,377
py
Python
scripts/NineAnimeDownloader.py
jtatia/Anime-Downloader
619386734fa1412cf6eaa42c36a88f7e336bb93d
[ "MIT" ]
24
2017-05-25T19:20:46.000Z
2020-09-01T01:08:04.000Z
scripts/NineAnimeDownloader.py
jtatia/Anime-Downloader
619386734fa1412cf6eaa42c36a88f7e336bb93d
[ "MIT" ]
3
2017-06-05T13:04:45.000Z
2018-11-05T14:41:15.000Z
scripts/NineAnimeDownloader.py
jtatia/Anime-Downloader
619386734fa1412cf6eaa42c36a88f7e336bb93d
[ "MIT" ]
5
2017-10-23T21:01:57.000Z
2019-08-20T08:35:35.000Z
import os import re import sys import time import requests from selenium import webdriver from selenium.webdriver.common.keys import Keys site = "https://9anime.to/" # There will be an option between providing the anime name(option "1" ) and the anime episode 1 page (option "2"). anime_name = "" anime_episode_page = "" path = sys.argv[3] if not os.path.exists(os.path.dirname(path)): os.makedirs(os.path.dirname(path)) browser = webdriver.Firefox() browser.set_window_size(1024, 768) # Now search the anime if anime name is provided if "1" == sys.argv[1]: try: browser.get(site) time.sleep(5) anime_name = sys.argv[2] #browser.save_screenshot("mainpage.png") search = browser.find_element_by_css_selector(".inner > input:nth-child(2)") search.click() search.send_keys(anime_name + Keys.ENTER) time.sleep(5) #browser.save_screenshot('searchresult.png') anime_episode_page = browser.find_element_by_css_selector("div.col-lg-4:nth-child(1) > div:nth-child(1) > a:nth-child(1)") anime_episode_page.click() except: print("Error") sys.exit(1) else: try: anime_episode_page = sys.argv[2] browser.get(anime_episode_page) time.sleep(10) browser.execute_script("window.stop();") except: print(anime_episode_page) print("Error") sys.exit(2) # Now we have reached the page of episode number 1 (or n if used method 2)...Moving Forward download_link="" link="" time.sleep(5) count=1 while True: print("Downloading Episode "+str(count)+".mp4") try: time.sleep(3) download_link = browser.find_element_by_css_selector("a.item") link = download_link.get_attribute('href') downloaded = requests.get(link) except: print("Error") break d = downloaded.headers["content-disposition"] fname = re.findall("filename=(.+)", d)[0] f = open(path + fname[1:len(fname)-1], "wb") for con in downloaded.iter_content(100000): f.write(con) print("Downloaded " + fname) f.close() count+=1 # Let us go to the next page and if error occurs that means we have reached the last page and break try: next = browser.find_element_by_css_selector("div.item.mbtn.next.disabled") #print("Unable to click") break; except: next = browser.find_element_by_css_selector("div.item.mbtn.next") next.click() time.sleep(3) #print("clicked") browser.quit() #print("All possible episodes have been looped through")
23.77
124
0.717291
44a67328046fd7280dd63d7732ea6f91a6e284e3
1,786
py
Python
src/projects/ex49/ex49/parser.py
SpyrosDellas/learn-python-the-hard-way
bdbed7658f2650b12f7a1388adf27ad436353f61
[ "MIT" ]
null
null
null
src/projects/ex49/ex49/parser.py
SpyrosDellas/learn-python-the-hard-way
bdbed7658f2650b12f7a1388adf27ad436353f61
[ "MIT" ]
null
null
null
src/projects/ex49/ex49/parser.py
SpyrosDellas/learn-python-the-hard-way
bdbed7658f2650b12f7a1388adf27ad436353f61
[ "MIT" ]
null
null
null
class ParserError(Exception): pass class Sentence(object): def __init__(self, subject, verb, object): # remember we take ('noun', 'princess') tuples and convert them self.subject = subject[1] self.verb = verb[1] self.object = object[1] def peek(word_list): if word_list: word = word_list[0] return word[0] else: return None def match(word_list, expecting): if word_list: word = word_list.pop(0) if word[0] == expecting: return word else: return None else: return None def skip(word_list, word_type): while peek(word_list) == word_type: match(word_list, word_type) def parse_verb(word_list): skip(word_list, 'stop') if peek(word_list) == 'verb': return match(word_list, 'verb') else: raise ParserError("Expected a verb next.") def parse_object(word_list): skip(word_list, 'stop') next = peek(word_list) if next == 'noun': return match(word_list, 'noun') if next == 'direction': return match(word_list, 'direction') else: raise ParserError("Expected a noun or direction next.") def parse_subject(word_list, subj): verb = parse_verb(word_list) obj = parse_object(word_list) return Sentence(subj, verb, obj) def parse_sentence(word_list): skip(word_list, 'stop') start = peek(word_list) if start == 'noun': subj = match(word_list, 'noun') return parse_subject(word_list, subj) elif start == 'verb': # assume the subject is the player then return parse_subject(word_list, ('noun', 'player')) else: raise ParserError("Must start with subject, object, or verb not: %s" % start)
22.325
85
0.614222
c0ac5751ce285c5e4199f9c1a2a54af442dd63b3
8,246
py
Python
lldb/examples/python/lldb_module_utils.py
mkinsner/llvm
589d48844edb12cd357b3024248b93d64b6760bf
[ "Apache-2.0" ]
2,338
2018-06-19T17:34:51.000Z
2022-03-31T11:00:37.000Z
lldb/examples/python/lldb_module_utils.py
mkinsner/llvm
589d48844edb12cd357b3024248b93d64b6760bf
[ "Apache-2.0" ]
3,740
2019-01-23T15:36:48.000Z
2022-03-31T22:01:13.000Z
lldb/examples/python/lldb_module_utils.py
mkinsner/llvm
589d48844edb12cd357b3024248b93d64b6760bf
[ "Apache-2.0" ]
500
2019-01-23T07:49:22.000Z
2022-03-30T02:59:37.000Z
#!/usr/bin/env python from __future__ import print_function import lldb import optparse import shlex import string import sys class DumpLineTables: command_name = "dump-line-tables" short_decription = "Dumps full paths to compile unit files and optionally all line table files." description = 'Dumps all line tables from all compile units for any modules specified as arguments. Specifying the --verbose flag will output address ranges for each line entry.' usage = "usage: %prog [options] MODULE1 [MODULE2 ...]" def create_options(self): self.parser = optparse.OptionParser( description=self.description, prog=self.command_name, usage=self.usage) self.parser.add_option( '-v', '--verbose', action='store_true', dest='verbose', help='Display verbose output.', default=False) def get_short_help(self): return self.short_decription def get_long_help(self): return self.help_string def __init__(self, debugger, unused): self.create_options() self.help_string = self.parser.format_help() def __call__(self, debugger, command, exe_ctx, result): # Use the Shell Lexer to properly parse up command options just like a # shell would command_args = shlex.split(command) try: (options, args) = self.parser.parse_args(command_args) except: # if you don't handle exceptions, passing an incorrect argument to the OptionParser will cause LLDB to exit # (courtesy of OptParse dealing with argument errors by throwing SystemExit) result.SetError("option parsing failed") return # Always get program state from the SBExecutionContext passed in as exe_ctx target = exe_ctx.GetTarget() if not target.IsValid(): result.SetError("invalid target") return for module_path in args: module = target.module[module_path] if not module: result.SetError('no module found that matches "%s".' % (module_path)) return num_cus = module.GetNumCompileUnits() print('Module: "%s"' % (module.file.fullpath), end=' ', file=result) if num_cus == 0: print('no debug info.', file=result) continue print('has %u compile units:' % (num_cus), file=result) for cu_idx in range(num_cus): cu = module.GetCompileUnitAtIndex(cu_idx) print(' Compile Unit: %s' % (cu.file.fullpath), file=result) for line_idx in range(cu.GetNumLineEntries()): line_entry = cu.GetLineEntryAtIndex(line_idx) start_file_addr = line_entry.addr.file_addr end_file_addr = line_entry.end_addr.file_addr # If the two addresses are equal, this line table entry # is a termination entry if options.verbose: if start_file_addr != end_file_addr: result.PutCString( ' [%#x - %#x): %s' % (start_file_addr, end_file_addr, line_entry)) else: if start_file_addr == end_file_addr: result.PutCString(' %#x: END' % (start_file_addr)) else: result.PutCString( ' %#x: %s' % (start_file_addr, line_entry)) if start_file_addr == end_file_addr: result.PutCString("\n") class DumpFiles: command_name = "dump-files" short_description = "Dumps full paths to compile unit files and optionally all line table files." usage = "usage: %prog [options] MODULE1 [MODULE2 ...]" description = '''This class adds a dump-files command to the LLDB interpreter. This command will dump all compile unit file paths found for each source file for the binaries specified as arguments in the current target. Specify the --support-files or -s option to see all file paths that a compile unit uses in its lines tables. This is handy for troubleshooting why breakpoints aren't working in IDEs that specify full paths to source files when setting file and line breakpoints. Sometimes symlinks cause the debug info to contain the symlink path and an IDE will resolve the path to the actual file and use the resolved path when setting breakpoints. ''' def create_options(self): # Pass add_help_option = False, since this keeps the command in line with lldb commands, # and we wire up "help command" to work by providing the long & short help methods below. self.parser = optparse.OptionParser( description = self.description, prog = self.command_name, usage = self.usage, add_help_option = False) self.parser.add_option( '-s', '--support-files', action = 'store_true', dest = 'support_files', help = 'Dumps full paths to all files used in a compile unit.', default = False) def get_short_help(self): return self.short_description def get_long_help(self): return self.help_string def __init__(self, debugger, unused): self.create_options() self.help_string = self.parser.format_help() def __call__(self, debugger, command, exe_ctx, result): # Use the Shell Lexer to properly parse up command options just like a # shell would command_args = shlex.split(command) try: (options, args) = self.parser.parse_args(command_args) except: # if you don't handle exceptions, passing an incorrect argument to the OptionParser will cause LLDB to exit # (courtesy of OptParse dealing with argument errors by throwing SystemExit) result.SetError("option parsing failed") return # Always get program state from the SBExecutionContext passed in as exe_ctx target = exe_ctx.GetTarget() if not target.IsValid(): result.SetError("invalid target") return if len(args) == 0: result.SetError("one or more executable paths must be specified") return for module_path in args: module = target.module[module_path] if not module: result.SetError('no module found that matches "%s".' % (module_path)) return num_cus = module.GetNumCompileUnits() print('Module: "%s"' % (module.file.fullpath), end=' ', file=result) if num_cus == 0: print('no debug info.', file=result) continue print('has %u compile units:' % (num_cus), file=result) for i in range(num_cus): cu = module.GetCompileUnitAtIndex(i) print(' Compile Unit: %s' % (cu.file.fullpath), file=result) if options.support_files: num_support_files = cu.GetNumSupportFiles() for j in range(num_support_files): path = cu.GetSupportFileAtIndex(j).fullpath print(' file[%u]: %s' % (j, path), file=result) def __lldb_init_module(debugger, dict): # This initializer is being run from LLDB in the embedded command interpreter # Add any commands contained in this module to LLDB debugger.HandleCommand( 'command script add -c %s.DumpLineTables %s' % (__name__, DumpLineTables.command_name)) debugger.HandleCommand( 'command script add -c %s.DumpFiles %s' % (__name__, DumpFiles.command_name)) print('The "%s" and "%s" commands have been installed.' % (DumpLineTables.command_name, DumpFiles.command_name))
42.725389
182
0.590953
7461a5bd23d9ffc9b87c77c38227dbf8363abf4b
244
py
Python
venv/lib/python3.6/site-packages/pushshift_py/__init__.py
gonzaloetjo/Crypto_Trading_Bot
e67493a611ddded07455be35d46dd3cd4e8003d4
[ "Unlicense" ]
13
2019-07-13T08:20:39.000Z
2021-05-04T02:18:58.000Z
venv/lib/python3.6/site-packages/pushshift_py/__init__.py
gonzaloetjo/Crypto_Trading_Bot
e67493a611ddded07455be35d46dd3cd4e8003d4
[ "Unlicense" ]
5
2019-06-07T23:57:59.000Z
2021-06-25T15:20:08.000Z
venv/lib/python3.6/site-packages/pushshift_py/__init__.py
gonzaloetjo/Crypto_Trading_Bot
e67493a611ddded07455be35d46dd3cd4e8003d4
[ "Unlicense" ]
1
2021-07-07T16:07:13.000Z
2021-07-07T16:07:13.000Z
""" Pushshift.io API Wrapper (for reddit.com public comment/submission search) https://github.com/typenil/pushshift.py """ from pushshift_py.pushshift_api import PushshiftAPI from pushshift_py.pushshift_api_minimal import PushshiftAPIMinimal
27.111111
74
0.831967
b900a9d7b29ad7b68f9029c842e0fdcacef8eed3
10,988
py
Python
src/argteller/widgets/widgets.py
mozjay0619/argteller-viz
963c6d43019efb2b0e9bcdb4b3053b57cd4ff373
[ "BSD-3-Clause" ]
null
null
null
src/argteller/widgets/widgets.py
mozjay0619/argteller-viz
963c6d43019efb2b0e9bcdb4b3053b57cd4ff373
[ "BSD-3-Clause" ]
7
2021-08-04T15:54:07.000Z
2021-09-17T17:40:38.000Z
src/argteller/widgets/widgets.py
mozjay0619/argteller-viz
963c6d43019efb2b0e9bcdb4b3053b57cd4ff373
[ "BSD-3-Clause" ]
null
null
null
try: from IPython.display import display import ipywidgets as widgets from ipywidgets import HBox, Label, VBox from ipywidgets import Button, Layout, HTML from traitlets import MetaHasTraits except ModuleNotFoundError: class VBox(): pass class MetaHasTraits(): pass class ParamTextWidget(VBox): def __init__(self, name, example=None, default_value=None, preset_value=None, optional=False, widget=None, widget_initialized=None, param_setter_event=None, set_from=None): if not isinstance(VBox, MetaHasTraits): return self.name = name self.type = 'text' self.initial = not widget_initialized self.param_setter_event = param_setter_event style = style = {'description_width': 'initial'} layout = Layout(display='flex', flex_flow='row', flex_basis='auto', align_content='stretch', justify_content='center', # align_items='baseline stretch', width='70%', flex_wrap='wrap', border=None, # flex_basis='200%' ) if set_from: label = widgets.HTML(f"<b><font size=2 color='grey'>{self.name} (set via {set_from})</b>") elif preset_value: label = widgets.HTML(f"<b><font size=2 color='blue'>{self.name}</b>") elif optional: label = widgets.HTML(f"<b><font size=2 color='grey'>{self.name} (optional)</b>") else: label = widgets.HTML(f"<b><font size=2 color='black'>{self.name}</b>") if widget: self.widget = widget else: if example is None: self.widget = VBox([widgets.Text(style=style, layout=layout)]) else: self.widget = VBox([ widgets.Label(value=example), widgets.Text(style=style, layout=layout)]) if self.initial or self.param_setter_event.isSet() : # So that user input is not overwritten every time. if preset_value is not None: # So that preset values take precedence over default values. self.widget.children[-1].value = str(preset_value) elif default_value is not None: self.widget.children[-1].value = str(default_value) self.initial = False children = [label, self.widget] super().__init__(children=children) def get_value(self): return self.widget.children[-1].value class ParamBooleanWidget(VBox): def __init__(self, name, example=None, default_value=None, preset_value=None, optional=False, widget=None, widget_initialized=None, param_setter_event=None): if not isinstance(VBox, MetaHasTraits): return self.name = name self.type = 'boolean' self.initial = not widget_initialized self.param_setter_event = param_setter_event if preset_value: label = widgets.HTML(f"<b><font size=2 color='blue'>{self.name}</b>") elif optional: label = widgets.HTML(f"<b><font size=2 color='grey'>{self.name}</b>") else: label = widgets.HTML(f"<b><font size=2 color='black'>{self.name}</b>") if widget: self.widget = widget else: # if example is None: # self.widget = VBox([widgets.Text(style=style, layout=layout)]) # else: # self.widget = VBox([ # widgets.Label(value=example), # widgets.Text(style=style, layout=layout)]) if example is None: self.widget = VBox([ widgets.Checkbox( value=False, description='True', disabled=False, indent=False )]) else: self.widget = VBox([ widgets.Label(value=example), widgets.Checkbox( value=False, description='True', disabled=False, indent=False) ]) # self.widget = VBox([ # widgets.Label(value=example), # widgets.Text(style=style, layout=layout)]) if self.initial or self.param_setter_event.isSet() : # So that user input is not overwritten every time. if preset_value is not None: # So that preset values take precedence over default values. self.widget.children[-1].value = bool(preset_value) elif default_value is not None: self.widget.children[-1].value = bool(default_value) else: self.widget.children[-1].value = False self.initial = False children = [label, self.widget] super().__init__(children=children) def get_value(self): return self.widget.children[-1].value class ParamChoiceWidget(VBox): def __init__(self, name, example=None, options=None, default_value=None, preset_value=None, optional=False, widget=None, widget_initialized=None, param_setter_event=None): if not isinstance(VBox, MetaHasTraits): return self.name = name self.type = 'choice' self.initial = not widget_initialized self.param_setter_event = param_setter_event layout = Layout(width='auto') if preset_value: label = widgets.HTML(f"<b><font size=2 color='blue'>{self.name}</b>") elif optional: label = widgets.HTML(f"<b><font size=2 color='grey'>{self.name}</b>") else: label = widgets.HTML(f"<b><font size=2 color='black'>{self.name}</b>") if widget: self.widget = widget else: self.widget = VBox([widgets.RadioButtons(options=options, disabled=False, layout=layout)]) if self.initial or self.param_setter_event.isSet() : # So that user input is not overwritten every time. if preset_value is not None: # So that preset values take precedence over default values. self.widget.children[0].value = str(preset_value) elif default_value is not None: self.widget.children[0].value = str(default_value) else: self.widget.children[0].value = None self.initial = False children = [label, self.widget] super().__init__(children=children) def get_value(self): return self.widget.children[-1].value class ParamSetterWidget(VBox): def __init__(self, name, widget, default_value=None, preset_value=None, widget_initialized=None, param_setter_event=None): # this widget already exists if not isinstance(VBox, MetaHasTraits): return self.name = name self.type = 'param_setter' self.initial = not widget_initialized self.param_setter_event = param_setter_event # This is just label for this widget. The values are actually being # set on different widgets. if default_value: label = widgets.HTML(f"<b><font size=2 color='blue'>{self.name}</b>") else: label = widgets.HTML(f"<b><font size=2 color='black'>{self.name}</b>") self.widget = widget if self.initial or self.param_setter_event.isSet() : # So that user input is not overwritten every time. if preset_value is not None: # So that preset values take precedence over default values. # the widget is now VBox self.widget.children[-1].value = str(preset_value) elif default_value is not None: self.widget.children[-1].value = str(default_value) self.initial = False children = [label, self.widget] super().__init__(children=children) class Custom1(VBox): def __init__(self): if not isinstance(VBox, MetaHasTraits): return self.name = 'custom1' self.type = 'custom' layout = {'width': '600px'} style = {'description_width': 'initial'} w1=widgets.IntRangeSlider( value=[10, 150], min=0, max=300, step=1, description='Regs search range:', disabled=False, continuous_update=False, orientation='horizontal', readout=True, readout_format='d', layout=layout, style=style ) layout = {'width': '150px'} style = {'description_width': 'initial'} w2=widgets.Dropdown( options=[str(elem) for elem in list(range(1, 10))], value='1', description='Search gaps:', disabled=False, layout=layout ) layout = {'width': '600px'} style = {'description_width': 'initial'} w3=widgets.IntRangeSlider( value=[5, 60], min=0, max=120, step=1, description='Days search range:', disabled=False, continuous_update=False, orientation='horizontal', readout=True, readout_format='d', layout=layout, style=style ) layout = {'width': '150px'} style = {'description_width': 'initial'} w4=widgets.Dropdown( options=[str(elem) for elem in list(range(1, 10))], value='1', description='Search gaps:', disabled=False, layout=layout ) h1 = HBox([w1, w2]) h2 = HBox([w3, w4]) label = widgets.HTML(f"<b><font size=2 color='black'>{'search_space'}</b>") children = [label, h1, h2] super().__init__(children=children) def get_value(self): region_range = self.children[0].children[0].value region_jump = self.children[0].children[1].value day_range = self.children[1].children[0].value day_jump = self.children[1].children[1].value d = {'num_days': list(range(*day_range, int(day_jump))), 'num_regions': list(range(*region_range, int(region_jump)))} return d
30.865169
140
0.531762
fe5121a4666184393de6f2a4fca70c1cf2006da9
3,620
py
Python
build/lib.linux-x86_64-2.7/birdspotter/user_influence.py
rohitram96/BirdSpotter
f1697280ed9e4d4025529b535b8616de28b8efe7
[ "MIT" ]
17
2020-07-15T00:56:51.000Z
2022-03-31T11:34:03.000Z
build/lib.linux-x86_64-2.7/birdspotter/user_influence.py
rohitram96/BirdSpotter
f1697280ed9e4d4025529b535b8616de28b8efe7
[ "MIT" ]
6
2020-01-19T07:31:13.000Z
2021-01-26T22:47:08.000Z
build/lib.linux-x86_64-2.7/birdspotter/user_influence.py
rohitram96/BirdSpotter
f1697280ed9e4d4025529b535b8616de28b8efe7
[ "MIT" ]
null
null
null
from functools import reduce import pandas as pd import numpy as np def casIn(cascade, time_decay = -0.000068, alpha = None, beta = 1.0): """Computes influence in one cascade Parameters ---------- cascade : str or DataFrame Path to one cascade in a file time_decay : float The r parameter described in the paper alpha : float, optional A float between 0 and 1, as described in the paper. If None DebateNight method is used, else spatial-decay method, by default None Returns ------- DataFrame A dataframe describing the influence of each user in a single cascade. """ if isinstance(cascade, str): cascade = pd.read_csv(cascade_path) # Read one cascade from local file p_ij = P(cascade, alpha = alpha, r=time_decay, beta = beta) # compute p_ij in given cascade inf, m_ij = influence(p_ij, alpha) # compute user influence cascade["influence"] = pd.Series(inf) return cascade def P(cascade, alpha = None, r = -0.000068, beta = 1.0): """Computes the P matrix of a cascade The P matrix describes the stochastic retweet graph. Parameters ---------- cascade : DataFrame A dataframe describing a single cascade, with a time column ascending from 0, a magnitude column and index of user ids alpha : float, optional A float between 0 and 1, as described in the paper. If None DebateNight method is used, else spatial-decay method, by default None r : float, optional The time-decay r parameter described in the paper, by default -0.000068 beta : float, optional A social strength hyper-parameter, by default 1.0 Returns ------- array-like A matrix of size (n,n), where n is the number of tweets in the cascade, where P[i][j] is the probability that j is a retweet of tweet i. """ n = len(cascade) t = np.zeros(n,dtype = np.float64) f = np.zeros(n,dtype = np.float64) p = np.zeros((n,n),dtype = np.float64) norm = np.zeros(n,dtype = np.float64) for k, row in cascade.iterrows(): if k == 0: p[0][0] = 1 t[0] = row['time'] if np.isnan(row['magnitude']): print(row) f[0] = 1 if row['magnitude'] == 0 else row['magnitude'] continue t[k] = row['time'] f[k] = (1 if row['magnitude'] == 0 else row['magnitude'])**beta p[:k, k] = ((r * (t[k] - t[0:k])) + np.log(f[0:k])) # store the P_ji in log space norm[k] = reduce(np.logaddexp, p[:k, k]) p[:k, k] = np.exp(p[:k, k] - norm[k])# recover the P_ji from log space p *= (alpha if alpha else 1) return p def influence(p, alpha = None): """Estimates user influence This function compute the user influence and store it in matirx m_ij Parameters ---------- p : array-like The P matrix describing the stochastic retweet graph alpha : float, optional A float between 0 and 1, as described in the paper. If None DebateNight method is used, else spatial-decay method, by default None Returns ------- array-like, array-like A n-array describing the influence of n users/tweets and the (n,n)-array describing the intermediary contribution of influence between tweets """ n = len(p) m = np.zeros((n, n)) m[0, 0] = 1 for i in range(0, n-1): vec = p[:i+1, i+1] m[:i+1, i+1] = m[:i+1, :i+1]@vec m[i+1, i+1] = (1-alpha if alpha else 1) influence = np.sum(m, axis = 1) return influence, m
35.490196
149
0.60442
6f463d4d5f9fc781ef84969e16cf6ea3544b6f83
2,037
py
Python
src/rubrix/sdk/models/token_classification_aggregations_mentions_additional_property.py
sakares/rubrix
791ffb29815b5d24f2bbbb0fa422f85f8b30098f
[ "Apache-2.0" ]
null
null
null
src/rubrix/sdk/models/token_classification_aggregations_mentions_additional_property.py
sakares/rubrix
791ffb29815b5d24f2bbbb0fa422f85f8b30098f
[ "Apache-2.0" ]
null
null
null
src/rubrix/sdk/models/token_classification_aggregations_mentions_additional_property.py
sakares/rubrix
791ffb29815b5d24f2bbbb0fa422f85f8b30098f
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # Copyright 2021-present, the Recognai S.L. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, List, Type, TypeVar import attr T = TypeVar("T", bound="TokenClassificationAggregationsMentionsAdditionalProperty") @attr.s(auto_attribs=True) class TokenClassificationAggregationsMentionsAdditionalProperty: """ """ additional_properties: Dict[str, int] = attr.ib(init=False, factory=dict) def to_dict(self) -> Dict[str, Any]: field_dict: Dict[str, Any] = {} field_dict.update(self.additional_properties) field_dict.update({}) return field_dict @classmethod def from_dict(cls: Type[T], src_dict: Dict[str, Any]) -> T: d = src_dict.copy() token_classification_aggregations_mentions_additional_property = cls() token_classification_aggregations_mentions_additional_property.additional_properties = ( d ) return token_classification_aggregations_mentions_additional_property @property def additional_keys(self) -> List[str]: return list(self.additional_properties.keys()) def __getitem__(self, key: str) -> int: return self.additional_properties[key] def __setitem__(self, key: str, value: int) -> None: self.additional_properties[key] = value def __delitem__(self, key: str) -> None: del self.additional_properties[key] def __contains__(self, key: str) -> bool: return key in self.additional_properties
32.854839
96
0.71134
8dbc9ce5e77aa0255444dc1e90397c8070647101
10,724
py
Python
sdks/python/apache_beam/transforms/userstate_test.py
lgajowy/beam
2834b2ddc5a7cdc553adf0cafb1e7850181e0e68
[ "Apache-2.0" ]
1
2018-07-13T02:57:48.000Z
2018-07-13T02:57:48.000Z
sdks/python/apache_beam/transforms/userstate_test.py
lgajowy/beam
2834b2ddc5a7cdc553adf0cafb1e7850181e0e68
[ "Apache-2.0" ]
null
null
null
sdks/python/apache_beam/transforms/userstate_test.py
lgajowy/beam
2834b2ddc5a7cdc553adf0cafb1e7850181e0e68
[ "Apache-2.0" ]
null
null
null
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Unit tests for the Beam State and Timer API interfaces.""" import unittest import mock from apache_beam.coders import BytesCoder from apache_beam.coders import VarIntCoder from apache_beam.runners.common import DoFnSignature from apache_beam.transforms.combiners import TopCombineFn from apache_beam.transforms.core import DoFn from apache_beam.transforms.timeutil import TimeDomain from apache_beam.transforms.userstate import BagStateSpec from apache_beam.transforms.userstate import CombiningValueStateSpec from apache_beam.transforms.userstate import TimerSpec from apache_beam.transforms.userstate import UserStateUtils from apache_beam.transforms.userstate import on_timer class TestStatefulDoFn(DoFn): """An example stateful DoFn with state and timers.""" BUFFER_STATE_1 = BagStateSpec('buffer', BytesCoder()) BUFFER_STATE_2 = BagStateSpec('buffer2', VarIntCoder()) EXPIRY_TIMER_1 = TimerSpec('expiry1', TimeDomain.WATERMARK) EXPIRY_TIMER_2 = TimerSpec('expiry2', TimeDomain.WATERMARK) EXPIRY_TIMER_3 = TimerSpec('expiry3', TimeDomain.WATERMARK) def process(self, element, t=DoFn.TimestampParam, buffer_1=DoFn.StateParam(BUFFER_STATE_1), buffer_2=DoFn.StateParam(BUFFER_STATE_2), timer_1=DoFn.TimerParam(EXPIRY_TIMER_1), timer_2=DoFn.TimerParam(EXPIRY_TIMER_2)): yield element @on_timer(EXPIRY_TIMER_1) def on_expiry_1(self, buffer=DoFn.StateParam(BUFFER_STATE_1), timer_1=DoFn.TimerParam(EXPIRY_TIMER_1), timer_2=DoFn.TimerParam(EXPIRY_TIMER_2), timer_3=DoFn.TimerParam(EXPIRY_TIMER_3)): yield 'expired1' @on_timer(EXPIRY_TIMER_2) def on_expiry_2(self, buffer=DoFn.StateParam(BUFFER_STATE_2), timer_2=DoFn.TimerParam(EXPIRY_TIMER_2), timer_3=DoFn.TimerParam(EXPIRY_TIMER_3)): yield 'expired2' @on_timer(EXPIRY_TIMER_3) def on_expiry_3(self, buffer_1=DoFn.StateParam(BUFFER_STATE_1), buffer_2=DoFn.StateParam(BUFFER_STATE_2), timer_3=DoFn.TimerParam(EXPIRY_TIMER_3)): yield 'expired3' class InterfaceTest(unittest.TestCase): def _validate_dofn(self, dofn): # Construction of DoFnSignature performs validation of the given DoFn. # In particular, it ends up calling userstate._validate_stateful_dofn. # That behavior is explicitly tested below in test_validate_dofn() DoFnSignature(dofn) @mock.patch( 'apache_beam.transforms.userstate.UserStateUtils.validate_stateful_dofn') def test_validate_dofn(self, unused_mock): dofn = TestStatefulDoFn() self._validate_dofn(dofn) UserStateUtils.validate_stateful_dofn.assert_called_with(dofn) def test_spec_construction(self): BagStateSpec('statename', VarIntCoder()) with self.assertRaises(AssertionError): BagStateSpec(123, VarIntCoder()) CombiningValueStateSpec('statename', VarIntCoder(), TopCombineFn(10)) with self.assertRaises(AssertionError): CombiningValueStateSpec(123, VarIntCoder(), TopCombineFn(10)) with self.assertRaises(AssertionError): CombiningValueStateSpec('statename', VarIntCoder(), object()) # BagStateSpec('bag', ) # TODO: add more spec tests with self.assertRaises(ValueError): DoFn.TimerParam(BagStateSpec('elements', BytesCoder())) TimerSpec('timer', TimeDomain.WATERMARK) TimerSpec('timer', TimeDomain.REAL_TIME) with self.assertRaises(ValueError): TimerSpec('timer', 'bogus_time_domain') with self.assertRaises(ValueError): DoFn.StateParam(TimerSpec('timer', TimeDomain.WATERMARK)) def test_param_construction(self): with self.assertRaises(ValueError): DoFn.StateParam(TimerSpec('timer', TimeDomain.WATERMARK)) with self.assertRaises(ValueError): DoFn.TimerParam(BagStateSpec('elements', BytesCoder())) def test_good_signatures(self): class BasicStatefulDoFn(DoFn): BUFFER_STATE = BagStateSpec('buffer', BytesCoder()) EXPIRY_TIMER = TimerSpec('expiry1', TimeDomain.WATERMARK) def process(self, element, buffer=DoFn.StateParam(BUFFER_STATE), timer1=DoFn.TimerParam(EXPIRY_TIMER)): yield element @on_timer(EXPIRY_TIMER) def expiry_callback(self, element, timer=DoFn.TimerParam(EXPIRY_TIMER)): yield element self._validate_dofn(BasicStatefulDoFn()) self._validate_dofn(TestStatefulDoFn()) def test_bad_signatures(self): # (1) The same state parameter is duplicated on the process method. class BadStatefulDoFn1(DoFn): BUFFER_STATE = BagStateSpec('buffer', BytesCoder()) def process(self, element, b1=DoFn.StateParam(BUFFER_STATE), b2=DoFn.StateParam(BUFFER_STATE)): yield element with self.assertRaises(ValueError): self._validate_dofn(BadStatefulDoFn1()) # (2) The same timer parameter is duplicated on the process method. class BadStatefulDoFn2(DoFn): TIMER = TimerSpec('timer', TimeDomain.WATERMARK) def process(self, element, t1=DoFn.TimerParam(TIMER), t2=DoFn.TimerParam(TIMER)): yield element with self.assertRaises(ValueError): self._validate_dofn(BadStatefulDoFn2()) # (3) The same state parameter is duplicated on the on_timer method. class BadStatefulDoFn3(DoFn): BUFFER_STATE = BagStateSpec('buffer', BytesCoder()) EXPIRY_TIMER_1 = TimerSpec('expiry1', TimeDomain.WATERMARK) EXPIRY_TIMER_2 = TimerSpec('expiry2', TimeDomain.WATERMARK) @on_timer(EXPIRY_TIMER_1) def expiry_callback(self, element, b1=DoFn.StateParam(BUFFER_STATE), b2=DoFn.StateParam(BUFFER_STATE)): yield element with self.assertRaises(ValueError): self._validate_dofn(BadStatefulDoFn3()) # (4) The same timer parameter is duplicated on the on_timer method. class BadStatefulDoFn4(DoFn): BUFFER_STATE = BagStateSpec('buffer', BytesCoder()) EXPIRY_TIMER_1 = TimerSpec('expiry1', TimeDomain.WATERMARK) EXPIRY_TIMER_2 = TimerSpec('expiry2', TimeDomain.WATERMARK) @on_timer(EXPIRY_TIMER_1) def expiry_callback(self, element, t1=DoFn.TimerParam(EXPIRY_TIMER_2), t2=DoFn.TimerParam(EXPIRY_TIMER_2)): yield element with self.assertRaises(ValueError): self._validate_dofn(BadStatefulDoFn4()) def test_validation_typos(self): # (1) Here, the user mistakenly used the same timer spec twice for two # different timer callbacks. with self.assertRaisesRegexp( ValueError, r'Multiple on_timer callbacks registered for TimerSpec\(expiry1\).'): class StatefulDoFnWithTimerWithTypo1(DoFn): # pylint: disable=unused-variable BUFFER_STATE = BagStateSpec('buffer', BytesCoder()) EXPIRY_TIMER_1 = TimerSpec('expiry1', TimeDomain.WATERMARK) EXPIRY_TIMER_2 = TimerSpec('expiry2', TimeDomain.WATERMARK) def process(self, element): pass @on_timer(EXPIRY_TIMER_1) def on_expiry_1(self, buffer_state=DoFn.StateParam(BUFFER_STATE)): yield 'expired1' # Note that we mistakenly associate this with the first timer. @on_timer(EXPIRY_TIMER_1) def on_expiry_2(self, buffer_state=DoFn.StateParam(BUFFER_STATE)): yield 'expired2' # (2) Here, the user mistakenly used the same callback name and overwrote # the first on_expiry_1 callback. class StatefulDoFnWithTimerWithTypo2(DoFn): BUFFER_STATE = BagStateSpec('buffer', BytesCoder()) EXPIRY_TIMER_1 = TimerSpec('expiry1', TimeDomain.WATERMARK) EXPIRY_TIMER_2 = TimerSpec('expiry2', TimeDomain.WATERMARK) def process(self, element, timer1=DoFn.TimerParam(EXPIRY_TIMER_1), timer2=DoFn.TimerParam(EXPIRY_TIMER_2)): pass @on_timer(EXPIRY_TIMER_1) def on_expiry_1(self, buffer_state=DoFn.StateParam(BUFFER_STATE)): yield 'expired1' # Note that we mistakenly reuse the "on_expiry_2" name; this is valid # syntactically in Python. @on_timer(EXPIRY_TIMER_2) def on_expiry_1(self, buffer_state=DoFn.StateParam(BUFFER_STATE)): yield 'expired2' # Use a stable string value for matching. def __repr__(self): return 'StatefulDoFnWithTimerWithTypo2' dofn = StatefulDoFnWithTimerWithTypo2() with self.assertRaisesRegexp( ValueError, (r'The on_timer callback for TimerSpec\(expiry1\) is not the ' r'specified .on_expiry_1 method for DoFn ' r'StatefulDoFnWithTimerWithTypo2 \(perhaps it was overwritten\?\).')): UserStateUtils.validate_stateful_dofn(dofn) # (2) Here, the user forgot to add an on_timer decorator for 'expiry2' class StatefulDoFnWithTimerWithTypo3(DoFn): BUFFER_STATE = BagStateSpec('buffer', BytesCoder()) EXPIRY_TIMER_1 = TimerSpec('expiry1', TimeDomain.WATERMARK) EXPIRY_TIMER_2 = TimerSpec('expiry2', TimeDomain.WATERMARK) def process(self, element, timer1=DoFn.TimerParam(EXPIRY_TIMER_1), timer2=DoFn.TimerParam(EXPIRY_TIMER_2)): pass @on_timer(EXPIRY_TIMER_1) def on_expiry_1(self, buffer_state=DoFn.StateParam(BUFFER_STATE)): yield 'expired1' def on_expiry_2(self, buffer_state=DoFn.StateParam(BUFFER_STATE)): yield 'expired2' # Use a stable string value for matching. def __repr__(self): return 'StatefulDoFnWithTimerWithTypo3' dofn = StatefulDoFnWithTimerWithTypo3() with self.assertRaisesRegexp( ValueError, (r'DoFn StatefulDoFnWithTimerWithTypo3 has a TimerSpec without an ' r'associated on_timer callback: TimerSpec\(expiry2\).')): UserStateUtils.validate_stateful_dofn(dofn) if __name__ == '__main__': unittest.main()
39.138686
84
0.713726
2cb1309ec70b2cf91425ac18412c1d65a1e91ab7
832
py
Python
python/linalg/blas.py
hmatuschek/linalg
b4b8337ba001b24572f13349cc5804a416bfe5a7
[ "MIT" ]
1
2016-05-24T15:27:52.000Z
2016-05-24T15:27:52.000Z
python/linalg/blas.py
hmatuschek/linalg
b4b8337ba001b24572f13349cc5804a416bfe5a7
[ "MIT" ]
null
null
null
python/linalg/blas.py
hmatuschek/linalg
b4b8337ba001b24572f13349cc5804a416bfe5a7
[ "MIT" ]
null
null
null
import linalg._blas as _blas import numpy as np def dot(x,y): """ Implements the some dot-product of two vectors x and y. """ assert (x.dtype == y.dtype) if (np.float64 == x.dtype): return _blas.ddot(x,y) else: raise TypeError("Can not call dot() with vector of type {0}".format(x.dtype)); def nrm2(x): """ Implements the 2-norm of a vector. """ if (np.float64 == x.dtype): return _blas.nrm2(x) else: raise TypeError("Can not call nrm2() with vector of type {0}".format(x.dtype)); def gemv(alpha, A, x, beta, y): """ Implements general matrix-vector product so y' = alphaA*x + beta*y. """ assert (A.dtype == x.dtype) assert (A.dtype == x.dtype) if (np.float64 == x.dtype): _blas.dgemv(alpha, A, x, beta, y) else: raise TypeError("Can not call gemv() with arrays of type {0}".format(x.dtype));
27.733333
81
0.646635
b0f38b73afa2592d3a9583f24b23319f544dcd6c
1,447
py
Python
emotion_classification/main.py
vijay4313/proxemo
98c4e2133047aa8519cc2f482b59565d9160e81a
[ "MIT" ]
23
2020-08-18T17:31:54.000Z
2022-03-10T10:37:31.000Z
emotion_classification/main.py
vijay4313/proxemo
98c4e2133047aa8519cc2f482b59565d9160e81a
[ "MIT" ]
3
2020-11-09T10:18:19.000Z
2021-10-31T21:34:37.000Z
emotion_classification/main.py
vijay4313/proxemo
98c4e2133047aa8519cc2f482b59565d9160e81a
[ "MIT" ]
10
2020-08-15T16:46:22.000Z
2021-07-08T06:54:03.000Z
#!/usr/bin/env python # Title :loader.py # Author :Venkatraman Narayanan, Bala Murali Manoghar, Vishnu Shashank Dorbala, Aniket Bera, Dinesh Manocha # Copyright :"Copyright 2020, Proxemo project" # Version :1.0 # License :"MIT" # Maintainer :Venkatraman Narayanan, Bala Murali Manoghar # Email :vnarayan@terpmail.umd.edu, bsaisudh@terpmail.umd.edu #============================================================================== from utils import yaml_parser from runner.trainer import Trainer import torch import numpy as np import os import argparse import sys sys.path.append("../") # python main.py --settings stgcn # Load settings def arg_parser(): """CLI arg parser. Returns: [dict]: CLI args """ parser = argparse.ArgumentParser(description='Proxemo Runner') parser.add_argument('--settings', type=str, default='infer', metavar='s', help='config file for running the network.') cli_args = parser.parse_args() args = yaml_parser.yaml_parser(cli_args.settings) return args def main(): """Main routine.""" args = arg_parser() gen_args, model_args, data_args = args.values() # Build model model = Trainer(gen_args, data_args, model_args) if gen_args['MODE'] == 'train': model.train() elif gen_args['MODE'] == 'test': model.test() if __name__ == '__main__': main()
25.839286
116
0.612992
40bcd009a9ad9d3d73d43b028865e970e7b1a7a4
14,674
py
Python
electrum/gui/qt/__init__.py
akshaynexus/qtum-electrum
9fdda51bbc7e541b6f5743f16313d0b8b6123b48
[ "MIT" ]
null
null
null
electrum/gui/qt/__init__.py
akshaynexus/qtum-electrum
9fdda51bbc7e541b6f5743f16313d0b8b6123b48
[ "MIT" ]
null
null
null
electrum/gui/qt/__init__.py
akshaynexus/qtum-electrum
9fdda51bbc7e541b6f5743f16313d0b8b6123b48
[ "MIT" ]
null
null
null
#!/usr/bin/env python # # Electrum - lightweight Bitcoin client # Copyright (C) 2012 thomasv@gitorious # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation files # (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, # publish, distribute, sublicense, and/or sell copies of the Software, # and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import os import signal import sys import traceback import threading from typing import Optional, TYPE_CHECKING from .theme_helper import set_qtum_theme_if_needed try: import PyQt5 except Exception: sys.exit("Error: Could not import PyQt5 on Linux systems, you may try 'sudo apt-get install python3-pyqt5'") from PyQt5.QtGui import QGuiApplication from PyQt5.QtWidgets import (QApplication, QSystemTrayIcon, QWidget, QMenu, QMessageBox) from PyQt5.QtCore import QObject, pyqtSignal, QTimer import PyQt5.QtCore as QtCore from electrum.i18n import _, set_language from electrum.plugin import run_hook from electrum.base_wizard import GoBack from electrum.util import (UserCancelled, profiler, WalletFileException, BitcoinException, get_new_wallet_name) from electrum.wallet import Wallet, Abstract_Wallet from electrum.logging import Logger from .installwizard import InstallWizard, WalletAlreadyOpenInMemory from .util import get_default_language, read_QIcon, ColorScheme, custom_message_box from .main_window import ElectrumWindow from .network_dialog import NetworkDialog from .stylesheet_patcher import patch_qt_stylesheet from .lightning_dialog import LightningDialog from .watchtower_dialog import WatchtowerDialog if TYPE_CHECKING: from electrum.daemon import Daemon from electrum.simple_config import SimpleConfig from electrum.plugin import Plugins class OpenFileEventFilter(QObject): def __init__(self, windows): self.windows = windows super(OpenFileEventFilter, self).__init__() def eventFilter(self, obj, event): if event.type() == QtCore.QEvent.FileOpen: if len(self.windows) >= 1: self.windows[0].pay_to_URI(event.url().toEncoded()) return True return False class QElectrumApplication(QApplication): new_window_signal = pyqtSignal(str, object) class QNetworkUpdatedSignalObject(QObject): network_updated_signal = pyqtSignal(str, object) class ElectrumGui(Logger): @profiler def __init__(self, config: 'SimpleConfig', daemon: 'Daemon', plugins: 'Plugins'): set_language(config.get('language', get_default_language())) Logger.__init__(self) # Uncomment this call to verify objects are being properly # GC-ed when windows are closed #network.add_jobs([DebugMem([Abstract_Wallet, SPV, Synchronizer, # ElectrumWindow], interval=5)]) QtCore.QCoreApplication.setAttribute(QtCore.Qt.AA_X11InitThreads) if hasattr(QtCore.Qt, "AA_ShareOpenGLContexts"): QtCore.QCoreApplication.setAttribute(QtCore.Qt.AA_ShareOpenGLContexts) if hasattr(QGuiApplication, 'setDesktopFileName'): QGuiApplication.setDesktopFileName('electrum.desktop') self.gui_thread = threading.current_thread() self.config = config self.daemon = daemon self.plugins = plugins self.windows = [] self.efilter = OpenFileEventFilter(self.windows) self.app = QElectrumApplication(sys.argv) self.app.installEventFilter(self.efilter) self.app.setWindowIcon(read_QIcon("electrum.png")) # timer self.timer = QTimer(self.app) self.timer.setSingleShot(False) self.timer.setInterval(500) # msec self.network_dialog = None self.lightning_dialog = None self.watchtower_dialog = None self.network_updated_signal_obj = QNetworkUpdatedSignalObject() self._num_wizards_in_progress = 0 self._num_wizards_lock = threading.Lock() # init tray self.dark_icon = self.config.get("dark_icon", False) self.tray = QSystemTrayIcon(self.tray_icon(), None) self.tray.setToolTip('Electrum') self.tray.activated.connect(self.tray_activated) self.build_tray_menu() self.tray.show() self.app.new_window_signal.connect(self.start_new_window) set_qtum_theme_if_needed(self.config) run_hook('init_qt', self) def build_tray_menu(self): # Avoid immediate GC of old menu when window closed via its action if self.tray.contextMenu() is None: m = QMenu() self.tray.setContextMenu(m) else: m = self.tray.contextMenu() m.clear() network = self.daemon.network m.addAction(_("Network"), self.show_network_dialog) if network.lngossip: m.addAction(_("Lightning Network"), self.show_lightning_dialog) if network.local_watchtower: m.addAction(_("Local Watchtower"), self.show_watchtower_dialog) for window in self.windows: name = window.wallet.basename() submenu = m.addMenu(name) submenu.addAction(_("Show/Hide"), window.show_or_hide) submenu.addAction(_("Close"), window.close) m.addAction(_("Dark/Light"), self.toggle_tray_icon) m.addSeparator() m.addAction(_("Exit Electrum"), self.close) def tray_icon(self): if self.dark_icon: return read_QIcon('electrum_dark_icon.png') else: return read_QIcon('electrum_light_icon.png') def toggle_tray_icon(self): self.dark_icon = not self.dark_icon self.config.set_key("dark_icon", self.dark_icon, True) self.tray.setIcon(self.tray_icon()) def tray_activated(self, reason): if reason == QSystemTrayIcon.DoubleClick: if all([w.is_hidden() for w in self.windows]): for w in self.windows: w.bring_to_top() else: for w in self.windows: w.hide() def close(self): for window in self.windows: window.close() if self.network_dialog: self.network_dialog.close() if self.lightning_dialog: self.lightning_dialog.close() if self.watchtower_dialog: self.watchtower_dialog.close() def new_window(self, path, uri=None): # Use a signal as can be called from daemon thread self.app.new_window_signal.emit(path, uri) def show_lightning_dialog(self): if not self.lightning_dialog: self.lightning_dialog = LightningDialog(self) self.lightning_dialog.bring_to_top() def show_watchtower_dialog(self): if not self.watchtower_dialog: self.watchtower_dialog = WatchtowerDialog(self) self.watchtower_dialog.bring_to_top() def show_network_dialog(self): if self.network_dialog: self.network_dialog.on_update() self.network_dialog.show() self.network_dialog.raise_() return self.network_dialog = NetworkDialog(self.daemon.network, self.config, self.network_updated_signal_obj) self.network_dialog.show() def _create_window_for_wallet(self, wallet): w = ElectrumWindow(self, wallet) self.windows.append(w) self.build_tray_menu() # FIXME: Remove in favour of the load_wallet hook run_hook('on_new_window', w) w.warn_if_testnet() w.warn_if_watching_only() return w def count_wizards_in_progress(func): def wrapper(self: 'ElectrumGui', *args, **kwargs): with self._num_wizards_lock: self._num_wizards_in_progress += 1 try: return func(self, *args, **kwargs) finally: with self._num_wizards_lock: self._num_wizards_in_progress -= 1 return wrapper @count_wizards_in_progress def start_new_window(self, path, uri, *, app_is_starting=False): '''Raises the window for the wallet if it is open. Otherwise opens the wallet and creates a new window for it''' wallet = None try: wallet = self.daemon.load_wallet(path, None) except BaseException as e: self.logger.exception('') custom_message_box(icon=QMessageBox.Warning, parent=None, title=_('Error'), text=_('Cannot load wallet') + ' (1):\n' + repr(e)) # if app is starting, still let wizard to appear if not app_is_starting: return if not wallet: try: wallet = self._start_wizard_to_select_or_create_wallet(path) except (WalletFileException, BitcoinException) as e: self.logger.exception('') custom_message_box(icon=QMessageBox.Warning, parent=None, title=_('Error'), text=_('Cannot load wallet') + ' (2):\n' + repr(e)) if not wallet: return # create or raise window try: for window in self.windows: if window.wallet.storage.path == wallet.storage.path: break else: window = self._create_window_for_wallet(wallet) except BaseException as e: self.logger.exception('') custom_message_box(icon=QMessageBox.Warning, parent=None, title=_('Error'), text=_('Cannot create window for wallet') + ':\n' + repr(e)) if app_is_starting: wallet_dir = os.path.dirname(path) path = os.path.join(wallet_dir, get_new_wallet_name(wallet_dir)) self.start_new_window(path, uri) return if uri: window.pay_to_URI(uri) window.bring_to_top() window.setWindowState(window.windowState() & ~QtCore.Qt.WindowMinimized | QtCore.Qt.WindowActive) window.activateWindow() return window def _start_wizard_to_select_or_create_wallet(self, path) -> Optional[Abstract_Wallet]: wizard = InstallWizard(self.config, self.app, self.plugins) try: path, storage = wizard.select_storage(path, self.daemon.get_wallet) # storage is None if file does not exist if storage is None: wizard.path = path # needed by trustedcoin plugin wizard.run('new') storage = wizard.create_storage(path) else: wizard.run_upgrades(storage) except (UserCancelled, GoBack): return except WalletAlreadyOpenInMemory as e: return e.wallet finally: wizard.terminate() # return if wallet creation is not complete if storage is None or storage.get_action(): return wallet = Wallet(storage, config=self.config) wallet.start_network(self.daemon.network) self.daemon.add_wallet(wallet) return wallet def close_window(self, window: ElectrumWindow): if window in self.windows: self.windows.remove(window) self.build_tray_menu() # save wallet path of last open window if not self.windows: self.config.save_last_wallet(window.wallet) run_hook('on_close_window', window) self.daemon.stop_wallet(window.wallet.storage.path) def init_network(self): # Show network dialog if config does not exist if self.daemon.network: if self.config.get('auto_connect') is None: wizard = InstallWizard(self.config, self.app, self.plugins) wizard.init_network(self.daemon.network) wizard.terminate() def main(self): try: self.init_network() except UserCancelled: return except GoBack: return except BaseException as e: self.logger.exception('') return self.timer.start() path = self.config.get_wallet_path(use_gui_last_wallet=True) if not self.start_new_window(path, self.config.get('url'), app_is_starting=True): return signal.signal(signal.SIGINT, lambda *args: self.app.quit()) def quit_after_last_window(): # keep daemon running after close if self.config.get('daemon'): return # check if a wizard is in progress with self._num_wizards_lock: if self._num_wizards_in_progress > 0 or len(self.windows) > 0: return if self.config.get('persist_daemon'): return self.app.quit() self.app.setQuitOnLastWindowClosed(False) # so _we_ can decide whether to quit self.app.lastWindowClosed.connect(quit_after_last_window) def clean_up(): # Shut down the timer cleanly self.timer.stop() # clipboard persistence. see http://www.mail-archive.com/pyqt@riverbankcomputing.com/msg17328.html event = QtCore.QEvent(QtCore.QEvent.Clipboard) self.app.sendEvent(self.app.clipboard(), event) self.tray.hide() self.app.aboutToQuit.connect(clean_up) # main loop self.app.exec_() # on some platforms the exec_ call may not return, so use clean_up() def stop(self): self.logger.info('closing GUI') self.app.quit()
39.026596
112
0.634251
9985acbbbab2a160874370678975fc8b2bf77e58
224
py
Python
dsql/api/models/__init__.py
gustavwilliam/discordSQL
95ba62dd9b9d7bffa1e8c2a9fc60d35c916b7b45
[ "MIT" ]
4
2021-07-08T12:24:39.000Z
2022-03-03T02:51:18.000Z
dsql/api/models/__init__.py
gustavwilliam/discordSQL
95ba62dd9b9d7bffa1e8c2a9fc60d35c916b7b45
[ "MIT" ]
1
2021-12-28T00:13:33.000Z
2021-12-28T00:13:33.000Z
dsql/api/models/__init__.py
gustavwilliam/discordSQL
95ba62dd9b9d7bffa1e8c2a9fc60d35c916b7b45
[ "MIT" ]
null
null
null
from dsql.api.models.snowflake import Snowflake from dsql.api.models.component import Component from dsql.api.models.database import Database from dsql.api.models.table import Table from dsql.api.models.column import Column
37.333333
47
0.84375
e37bc04bd81e51973229e72b73e57214172c8991
4,554
py
Python
pydysofu/fuzz_weaver.py
probablytom/automata_with_variance
36aabfe76313ecb751d5a33152f7277813ab4afc
[ "Apache-2.0" ]
null
null
null
pydysofu/fuzz_weaver.py
probablytom/automata_with_variance
36aabfe76313ecb751d5a33152f7277813ab4afc
[ "Apache-2.0" ]
null
null
null
pydysofu/fuzz_weaver.py
probablytom/automata_with_variance
36aabfe76313ecb751d5a33152f7277813ab4afc
[ "Apache-2.0" ]
null
null
null
""" Core fuzzing functionality. @author twsswt """ import ast import copy import inspect from core_fuzzers import identity from inspect import getmembers from workflow_transformer import WorkflowTransformer _reference_syntax_trees = dict() _reference_get_attributes = dict() def get_reference_syntax_tree(func): if func not in _reference_syntax_trees: func_source_lines = inspect.getsourcelines(func)[0] global_indentation = len(func_source_lines[0]) - len(func_source_lines[0].strip()) for i in range(len(func_source_lines)): func_source_lines[i] = func_source_lines[i][global_indentation - 1:] func_source = ''.join(func_source_lines) _reference_syntax_trees[func] = ast.parse(func_source) return _reference_syntax_trees[func] def fuzz_function(reference_function, fuzzer=identity, context=None): reference_syntax_tree = get_reference_syntax_tree(reference_function) fuzzed_syntax_tree = copy.deepcopy(reference_syntax_tree) workflow_transformer = WorkflowTransformer(fuzzer=fuzzer, context=context) workflow_transformer.visit(fuzzed_syntax_tree) # Compile the newly mutated function into a module, extract the mutated function code object and replace the # reference function's code object for this call. compiled_module = compile(fuzzed_syntax_tree, inspect.getsourcefile(reference_function), 'exec') reference_function.func_code = compiled_module.co_consts[0] def fuzz_clazz(clazz, advice): """ Applies fuzzers specified in the supplied advice dictionary to methods in the supplied class. Fuzzing is applied dynamically at runtime by intercepting invocations of __getattribute__ on target objects. The method requested by the __getattribute__ call is fuzzed using the fuzzer specified in the supplied advice dictionary (which maps method references to fuzzers)before returning it to the requester. If no fuzzer is specified for a function then the identity fuzzer is applied in case the method has been previously fuzzed. A fuzzer value may itself be a dictionary of object filter->fuzzer mappings. In this case, the dictionary is searched for a filter that matches the target (self) object specified in the __getattribute__ call. :param clazz : the class to fuzz. :param advice : the dictionary of method reference->fuzzer mappings to apply for the class. """ if clazz not in _reference_get_attributes: _reference_get_attributes[clazz] = clazz.__getattribute__ def __fuzzed_getattribute__(self, item): attribute = object.__getattribute__(self, item) if item[0:2] == '__': return attribute elif inspect.ismethod(attribute): def wrap(*args, **kwargs): reference_function = attribute.im_func # Ensure that advice key is unbound method for instance methods. advice_key = getattr(attribute.im_class, attribute.func_name) fuzzer = advice.get(advice_key, identity) fuzz_function(reference_function, fuzzer, self) # Execute the mutated method. return reference_function(self, *args, **kwargs) wrap.func_name = attribute.func_name return wrap elif inspect.isfunction(attribute): def wrap(*args, **kwargs): reference_function = attribute advice_key = reference_function fuzzer = advice.get(advice_key, identity) fuzz_function(reference_function, fuzzer) # Execute the mutated function. return reference_function(*args, **kwargs) return wrap else: return attribute clazz.__getattribute__ = __fuzzed_getattribute__ def defuzz_class(clazz): if clazz in _reference_get_attributes: clazz.__getattribute__ = _reference_get_attributes[clazz] def defuzz_all_classes(): for clazz in _reference_get_attributes.keys(): defuzz_class(clazz) def fuzz_module(mod, advice): """ Applies fuzzers specified in the supplied advice dictionary to methods in supplied module. All member classes and functions are inspected in turn, with the specified advice being applied to each. :param mod : the module to fuzz. :param advice : the dictionary of method->fuzzer mappings to apply. """ for _, member in getmembers(mod): if inspect.isclass(member): fuzz_clazz(member, advice)
34.5
119
0.711243
0a423d57e4be63a93037ea31ec7196695323ea9f
7,253
py
Python
dnnlib/tflib/custom_ops.py
cvcomar/gansformer
ca698df4da32584a22f1b6a3b7cbdbf4bb0537be
[ "MIT" ]
null
null
null
dnnlib/tflib/custom_ops.py
cvcomar/gansformer
ca698df4da32584a22f1b6a3b7cbdbf4bb0537be
[ "MIT" ]
null
null
null
dnnlib/tflib/custom_ops.py
cvcomar/gansformer
ca698df4da32584a22f1b6a3b7cbdbf4bb0537be
[ "MIT" ]
null
null
null
# TensorFlow custom ops builder. Compiles new operations. import os import re import uuid import hashlib import tempfile import shutil import tensorflow as tf from tensorflow.python.client import device_lib # Global options # ---------------------------------------------------------------------------- cuda_cache_path = os.path.join(os.path.dirname(__file__), "_cudacache") cuda_cache_version_tag = "v1" # Speed up compilation by assuming that headers included by the CUDA code never change. Unsafe.. do_not_hash_included_headers = False # Print status messages to stdout verbose = True compiler_bindir_search_path = [ "C:/Program Files (x86)/Microsoft Visual Studio/2017/Community/VC/Tools/MSVC/14.14.26428/bin/Hostx64/x64", "C:/Program Files (x86)/Microsoft Visual Studio/2019/Community/VC/Tools/MSVC/14.23.28105/bin/Hostx64/x64", "C:/Program Files (x86)/Microsoft Visual Studio 14.0/vc/bin", ] # Internal helper functions # ---------------------------------------------------------------------------- def _find_compiler_bindir(): for compiler_path in compiler_bindir_search_path: if os.path.isdir(compiler_path): return compiler_path return None def _get_compute_cap(device): caps_str = device.physical_device_desc m = re.search('compute capability: (\\d+).(\\d+)', caps_str) major = m.group(1) minor = m.group(2) return (major, minor) def _get_cuda_gpu_arch_string(): gpus = [x for x in device_lib.list_local_devices() if x.device_type == "GPU"] if len(gpus) == 0: return "sm_70" # raise RuntimeError("No GPU devices found") (major, minor) = _get_compute_cap(gpus[0]) return "sm_%s%s" % (major, minor) def _run_cmd(cmd): # print(cmd) with os.popen(cmd) as pipe: output = pipe.read() status = pipe.close() if status is not None: raise RuntimeError("NVCC returned an error. See below for full command line and output log:\n\n%s\n\n%s" % (cmd, output)) def _prepare_nvcc_cli(opts): cmd = 'nvcc ' + opts.strip() cmd += ' --disable-warnings' cmd += ' --include-path "%s"' % tf.sysconfig.get_include() cmd += ' --include-path "%s"' % os.path.join(tf.sysconfig.get_include(), 'external', 'protobuf_archive', 'src') cmd += ' --include-path "%s"' % os.path.join(tf.sysconfig.get_include(), 'external', 'com_google_absl') cmd += ' --include-path "%s"' % os.path.join(tf.sysconfig.get_include(), 'external', 'eigen_archive') compiler_bindir = _find_compiler_bindir() if compiler_bindir is None: # Require that _find_compiler_bindir succeeds on Windows # Allow nvcc to use whatever is the default on Linux if os.name == "nt": raise RuntimeError('Could not find MSVC/GCC/CLANG installation on this computer. Check compiler_bindir_search_path list in "%s".' % __file__) else: cmd += ' --compiler-bindir "%s"' % compiler_bindir cmd += ' 2>&1' return cmd # Main entry point # ---------------------------------------------------------------------------- _plugin_cache = dict() def get_plugin(cuda_file): cuda_file_base = os.path.basename(cuda_file) cuda_file_name, cuda_file_ext = os.path.splitext(cuda_file_base) # Already in cache? if cuda_file in _plugin_cache: return _plugin_cache[cuda_file] # Setup plugin if verbose: print("Setting up TensorFlow plugin '%s': " % cuda_file_base, end = "", flush = True) try: # Hash CUDA source md5 = hashlib.md5() with open(cuda_file, "rb") as f: md5.update(f.read()) md5.update(b"\n") # Compile if not already compiled tf_ver = float(".".join(tf.__version__.split(".")[:-1])) bin_file_ext = '.dll' if os.name == 'nt' else '.so' bin_file = os.path.join(cuda_cache_path, cuda_file_name + "_{}_".format(tf_ver) + bin_file_ext) # + '_' + md5.hexdigest() if not os.path.isfile(bin_file): # Hash headers included by the CUDA code by running it through the preprocessor if not do_not_hash_included_headers: if verbose: print("Preprocessing... ", end = "", flush = True) with tempfile.TemporaryDirectory() as tmp_dir: tmp_file = os.path.join(tmp_dir, cuda_file_name + '_tmp' + cuda_file_ext) _run_cmd(_prepare_nvcc_cli('"%s" --preprocess -std=c++11 -o "%s" --keep --keep-dir "%s"' % (cuda_file, tmp_file, tmp_dir))) with open(tmp_file, 'rb') as f: bad_file_str = ('"' + cuda_file.replace('\\', '/') + '"').encode('utf-8') # __FILE__ in error check macros good_file_str = ('"' + cuda_file_base + '"').encode('utf-8') for ln in f: if not ln.startswith(b'# ') and not ln.startswith(b'#line '): # ignore line number pragmas ln = ln.replace(bad_file_str, good_file_str) md5.update(ln) md5.update(b'\n') # Select compiler options compile_opts = '' if os.name == 'nt': compile_opts += '"%s"' % os.path.join(tf.sysconfig.get_lib(), 'python', '_pywrap_tensorflow_internal.lib') elif os.name == 'posix': compile_opts += '"%s"' % os.path.join(tf.sysconfig.get_lib(), 'python', '_pywrap_tensorflow_internal.so') compile_opts += ' --compiler-options \'-fPIC -D_GLIBCXX_USE_CXX11_ABI=%s\'' % (0) else: assert False # not Windows or Linux compile_opts += ' --gpu-architecture=%s' % _get_cuda_gpu_arch_string() compile_opts += ' --use_fast_math' nvcc_cmd = _prepare_nvcc_cli(compile_opts) # Hash build configuration md5.update(('nvcc_cmd: ' + nvcc_cmd).encode('utf-8') + b'\n') md5.update(('tf.VERSION: ' + tf.VERSION).encode('utf-8') + b'\n') md5.update(('cuda_cache_version_tag: ' + cuda_cache_version_tag).encode('utf-8') + b'\n') # if not os.path.isfile(bin_file): if verbose: print("Compiling... ", end = "", flush = True) with tempfile.TemporaryDirectory() as tmp_dir: tmp_file = os.path.join(tmp_dir, cuda_file_name + '_tmp' + bin_file_ext) _run_cmd(nvcc_cmd + ' "%s" --shared -std=c++11 -DNDEBUG -o "%s" --keep --keep-dir "%s"' % (cuda_file, tmp_file, tmp_dir)) os.makedirs(cuda_cache_path, exist_ok = True) intermediate_file = os.path.join(cuda_cache_path, cuda_file_name + '_' + uuid.uuid4().hex + '_tmp' + bin_file_ext) shutil.copyfile(tmp_file, intermediate_file) os.rename(intermediate_file, bin_file) # atomic # Load if verbose: print("Loading... ", end = "", flush = True) plugin = tf.load_op_library(bin_file) # Add to cache _plugin_cache[cuda_file] = plugin if verbose: print("Done.", flush = True) return plugin except: if verbose: print("Failed!", flush = True) raise
43.172619
153
0.587067
2749c4fb8a814492f411eb03fce9ded1289aba9b
1,350
py
Python
datasets/NewsgroupsArr.py
rist-ro/argo
a10c33346803239db8a64c104db7f22ec4e05bef
[ "MIT" ]
4
2020-12-07T19:13:13.000Z
2022-01-30T18:52:18.000Z
datasets/NewsgroupsArr.py
rist-ro/argo
a10c33346803239db8a64c104db7f22ec4e05bef
[ "MIT" ]
12
2020-09-25T22:41:28.000Z
2022-02-09T23:46:34.000Z
datasets/NewsgroupsArr.py
rist-ro/argo
a10c33346803239db8a64c104db7f22ec4e05bef
[ "MIT" ]
2
2021-03-02T18:31:04.000Z
2021-03-02T21:56:43.000Z
import os os.environ['NUMEXPR_MAX_THREADS'] = '20' from word_embedding.test.core.load_20newsgroup import read_20newsgroup from .AlphaDatasetArr import AlphaDatasetArr NPROCS = 4 class NewsgroupsArr(AlphaDatasetArr): default_params = { 'split_seed' : 42, } def __init__(self, params): super().__init__(NewsgroupsArr.process_params(params)) random_state = params.get('split_seed', 42) train_data, train_target, validation_data, validation_target, test_data, test_target = read_20newsgroup( ratio_datasets=[0.7, 0.15, 0.15], random_state=random_state) self._train_set_x, self._train_set_y = self._preprocess_arrays(train_data, train_target) self._validation_set_x, self._validation_set_y = self._preprocess_arrays(validation_data, validation_target) self._test_set_x, self._test_set_y = self._preprocess_arrays(test_data, test_target) self._set_shapes(n_samples_train = self._train_set_x.shape[0], n_labels = 20) def dataset_id(self, params): """ This method interprets the parameters and generate an id """ NewsgroupsArr.check_params_impl(params) _id = '20newsgroupsArr' _id += AlphaDatasetArr.dataset_id(self, params) _id += '-s{:d}'.format(params['split_seed']) return _id
27.55102
116
0.702963
007c94d0441674c13f741b40ff733d72957cbf00
5,920
py
Python
gnuradio-3.7.13.4/gr-qtgui/apps/plot_time_base.py
v1259397/cosmic-gnuradio
64c149520ac6a7d44179c3f4a38f38add45dd5dc
[ "BSD-3-Clause" ]
1
2021-03-09T07:32:37.000Z
2021-03-09T07:32:37.000Z
gnuradio-3.7.13.4/gr-qtgui/apps/plot_time_base.py
v1259397/cosmic-gnuradio
64c149520ac6a7d44179c3f4a38f38add45dd5dc
[ "BSD-3-Clause" ]
null
null
null
gnuradio-3.7.13.4/gr-qtgui/apps/plot_time_base.py
v1259397/cosmic-gnuradio
64c149520ac6a7d44179c3f4a38f38add45dd5dc
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # # Copyright 2013 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # from gnuradio import gr, blocks from gnuradio.eng_option import eng_option from optparse import OptionParser import os, sys try: from gnuradio import qtgui from PyQt4 import QtGui, QtCore import sip except ImportError: print "Error: Program requires PyQt4 and gr-qtgui." sys.exit(1) try: import scipy except ImportError: print "Error: Scipy required (www.scipy.org)." sys.exit(1) try: from gnuradio.qtgui.plot_form import * from gnuradio.qtgui.plot_base import * except ImportError: from plot_form import * from plot_base import * class plot_base(gr.top_block): def __init__(self, filelist, samp_rate, start, nsamples, max_nsamples, auto_scale): gr.top_block.__init__(self) self._filelist = filelist self._samp_rate = samp_rate self._center_freq = 0 self._start = start self._max_nsamps = max_nsamples self._nsigs = len(self._filelist) self._auto_scale = auto_scale self._nsamps = nsamples self._is_setup = False self._y_min = -20 self._y_max = 20 self._y_range = 2 self._y_value = 1 self.gui_y_axis = None self.qapp = QtGui.QApplication(sys.argv) def setup(self): self.skip = blocks.skiphead(self.dsize, self._start) n = 0 self.srcs = list() self._data_min = sys.maxint self._data_max = -sys.maxint - 1 for f in self._filelist: data,_min,_max = self.read_samples(f, self._start, self._nsamps) if(_min < self._data_min): self._data_min = _min if(_max > self._data_max): self._data_max = _max self.srcs.append(self.src_type(data)) # Set default labels based on file names fname = f.split("/")[-1] if(type(self.gui_snk) == qtgui.time_sink_c_sptr): self.gui_snk.set_line_label(n, "Re{{{0}}}".format(fname)) self.gui_snk.set_line_label(n+1, "Im{{{0}}}".format(fname)) n += 2 else: self.gui_snk.set_line_label(n, "{0}".format(fname)) n += 1 self.connect(self.srcs[0], self.skip) self.connect(self.skip, (self.gui_snk, 0)) for i,s in enumerate(self.srcs[1:]): self.connect(s, (self.gui_snk, i+1)) self.gui_snk.set_update_time(0) self.gui_snk.enable_menu(False) self.auto_scale(self._auto_scale) # Get Python Qt references pyQt = self.gui_snk.pyqwidget() self.pyWin = sip.wrapinstance(pyQt, QtGui.QWidget) self._is_setup = True def is_setup(self): return self._is_setup def set_y_axis(self, y_min, y_max): self.gui_snk.set_y_axis(y_min, y_max) return y_min, y_max def get_gui(self): if(self.is_setup()): return self.pyWin else: return None def reset(self, newstart, newnsamps): self.stop() self.wait() self._start = newstart self._data_min = sys.maxint self._data_max = -sys.maxint - 1 for s,f in zip(self.srcs, self._filelist): data,_min,_max = self.read_samples(f, self._start, newnsamps) if(_min < self._data_min): self._data_min = _min if(_max > self._data_max): self._data_max = _max s.set_data(data) if(len(data) < newnsamps): newnsamps = len(data) self.auto_scale(self._auto_scale) self._nsamps = newnsamps self.gui_snk.set_nsamps(self._nsamps) self.start() def auto_scale(self, state): if(state > 0): self.gui_snk.set_y_axis(self._data_min, self._data_max) self._auto_scale = True self._y_value = self._data_max self._y_range = self._data_max - self._data_min self._y_min = 10*self._data_min self._y_max = 10*self._data_max if(self.gui_y_axis): self.gui_y_axis(self._data_min, self._data_max) else: self._auto_scale = False def setup_options(desc): parser = OptionParser(option_class=eng_option, description=desc, conflict_handler="resolve") parser.add_option("-N", "--nsamples", type="int", default=1000000, help="Set the number of samples to display [default=%default]") parser.add_option("-S", "--start", type="int", default=0, help="Starting sample number [default=%default]") parser.add_option("-r", "--sample-rate", type="eng_float", default=1.0, help="Set the sample rate of the signal [default=%default]") parser.add_option("", "--no-auto-scale", action="store_true", default=False, help="Do not auto-scale the plot [default=%default]") (options,args) = parser.parse_args() if(len(args) < 1): parser.print_help() sys.exit(0) return (options,args)
32
85
0.609291
ab7c70b9581b8d9b3dd5b8dfa3ddecfb2981c82e
5,201
py
Python
voice_similarity/analyzer.py
itanium-R/rcc_winter_hackathon_2020
cecd43d8b89d2d656e3b11ca5bdfb35965451d37
[ "MIT" ]
null
null
null
voice_similarity/analyzer.py
itanium-R/rcc_winter_hackathon_2020
cecd43d8b89d2d656e3b11ca5bdfb35965451d37
[ "MIT" ]
null
null
null
voice_similarity/analyzer.py
itanium-R/rcc_winter_hackathon_2020
cecd43d8b89d2d656e3b11ca5bdfb35965451d37
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import pyaudio, wave import os, sys, gc, time, threading, math import numpy as np from lib.record import * from engine import * import warnings warnings.simplefilter("ignore", DeprecationWarning) class Detecation(Recording): def __init__(self): ## -----*----- コンストラクタ -----*----- ## super().__init__() # 親クラスのstreamとは異なる(Float32,rateが2倍) self.f_stream = self._pa.open( format=pyaudio.paFloat32, channels=self.settings['channels'], rate=self.settings['rate'] * 2, input=True, output=False, frames_per_buffer=self.settings['chunk'] ) # 立ち上がり・下がり検出数 self.cnt_edge = {'up': 0, 'down': 0} # 音量・閾値などの状態保管 self.state = {'amp': 0, 'total': 0, 'cnt': 0, 'border': 9999, 'average': 0} # コンソール出力 self.console = Console('./config/outfmt.txt') self.color = 90 def start(self): ## -----*----- 検出スタート -----*----- ## time.sleep(self.settings['past_second']) # 閾値の更新を行うサブスレッドの起動 self.thread = threading.Thread(target=self.update_border) self.thread.start() self.pastTime = time.time() while not self.is_exit: try: if time.time() - self.pastTime > 0.5: self.reset_state() self.state['cnt'] += 1 self.detection() sys.stdout.flush() except KeyboardInterrupt: os.system('clear') self.is_exit = True def detection(self): ## -----*----- 立ち上がり・立ち下がり検出 -----*----- ## voiceData = np.fromstring(self.f_stream.read(self.settings['chunk'], exception_on_overflow=False), np.float32) voiceData *= np.hanning(self.settings['chunk']) # 振幅スペクトル(0~8000[Hz]) x = np.fft.fft(voiceData) # パワースペクトル amplitudeSpectrum = [np.sqrt(c.real ** 2 + c.imag ** 2) for c in x] # バンドパスフィルタ(100~5000[Hz]) amplitudeSpectrum = amplitudeSpectrum[ int((self.settings['chunk'] / (self.settings['rate'] * 2)) * 100): int((self.settings['chunk'] / (self.settings['rate'] * 2)) * 5000)] # Amp値・平均値の算出 self.state['amp'] = sum(amplitudeSpectrum) self.state['total'] += self.state['amp'] self.state['average'] = self.state['total'] / self.state['cnt'] # コンソール出力 self.console.draw(int(self.state['average']), int(self.state['amp']), int(self.state['border']), '\033[{0}m録音中\033[0m'.format(self.color), *self.meter(), str(self.similarity) + '%') # 立ち上がり検出 if self.up_edge() and self.record_end.is_set(): self.record_start.set() self.record_end.clear() self.color = 32 self.state['border'] = self.state['average'] if self.down_edge() and (not self.record_end.is_set()): self.record_start.clear() self.reset_state() def up_edge(self): ## -----*----- 立ち上がり検出 -----*----- ## if not self.record_start.is_set(): if self.state['amp'] >= self.state['border']: self.cnt_edge['up'] += 1 if self.cnt_edge['up'] > 5: return True return False def down_edge(self): ## -----*----- 立ち下がり検出 -----*----- ## if self.record_start.is_set(): if self.state['average'] <= self.state['border']: self.cnt_edge['down'] += 1 if self.cnt_edge['down'] > 10: self.cnt_edge['up'] = self.cnt_edge['down'] = 0 return True return False def reset_state(self): ## -----*----- 状態のリセット -----*----- ## self.state['total'] = self.state['average'] * 15 self.state['cnt'] = 15 if self.state['average'] >= self.state['amp']: self.cnt_edge['up'] = 0 self.color = 90 self.pastTime = time.time() def update_border(self): ## -----*----- 閾値の更新 -----*----- ## offset = range(50, 201, 10) while not self.is_exit: time.sleep(0.2) if self.cnt_edge['up'] < 3 and not self.record_start.is_set(): if int(self.state['average'] / 20) > len(offset) - 1: i = len(offset) - 1 else: i = int(self.state['average'] / 20) self.state['border'] = pow(10, 1.13) * pow(self.state['average'], 0.72) def meter(self): ## -----*----- 音量メーター生成 -----*----- ## meter = [''] * 3 keys = ['average', 'amp', 'border'] for i in range(3): for j in range(int(self.state[keys[i]] / 20 + 3)): meter[i] += '■' if self.record_start.is_set(): if self.state['average'] >= self.state['border']: meter[0] = '\033[94m' + meter[0] + '\033[0m' elif self.state['amp'] >= self.state['border']: meter[1] = '\033[94m' + meter[1] + '\033[0m' return meter if __name__ == '__main__': detection = Detecation() detection.start()
36.370629
118
0.502403
7c6f40233db706cb6f638c1d908279877c518fd2
2,439
py
Python
pmgr/param.py
mcb64/pmgr
70b372385ed8e67b30ecaa20e1ae356c85222256
[ "BSD-3-Clause-LBNL" ]
null
null
null
pmgr/param.py
mcb64/pmgr
70b372385ed8e67b30ecaa20e1ae356c85222256
[ "BSD-3-Clause-LBNL" ]
13
2018-05-10T00:06:48.000Z
2021-07-14T21:47:20.000Z
pmgr/param.py
mcb64/pmgr
70b372385ed8e67b30ecaa20e1ae356c85222256
[ "BSD-3-Clause-LBNL" ]
3
2018-07-31T20:11:09.000Z
2020-08-17T20:14:28.000Z
from PyQt5 import QtCore, QtGui import pwd, os AUTH_FILE = "/reg/g/pcds/pyps/config/%s/pmgr.auth" params = None def equal(v1, v2): try: if type(v1) == float: # I hate floating point. OK, we need to be "close", but if we are *at* zero # the "close" test fails! return v1 == v2 or abs(v1 - v2) < (abs(v1) + abs(v2)) * 1e-12 else: return v1 == v2 except: return False class param_structure(object): def __init__(self): self.myuid = pwd.getpwuid(os.getuid())[0] self.user = None self.almond = QtGui.QColor(255,235,205) self.almond.name = "almond" self.white = QtGui.QColor(255,255,255) self.white.name = "white" self.gray = QtGui.QColor(160,160,160) self.gray.name = "gray" self.ltgray = QtGui.QColor(224,224,224) self.ltgray.name = "ltgray" self.ltblue = QtGui.QColor(0, 255,255) self.ltblue.name = "ltblue" self.blue = QtGui.QColor(QtCore.Qt.blue) self.blue.name = "blue" self.red = QtGui.QColor(QtCore.Qt.red) self.red.name = "red" self.black = QtGui.QColor(QtCore.Qt.black) self.black.name = "black" self.purple = QtGui.QColor(204, 0, 102) self.purple.name = "purple" self.cfgdialog = None self.colusedialog = None self.colsavedialog = None self.deriveddialog = None self.confirmdialog = None self.settings = ("SLAC", "ParamMgr") self.debug = False self.applyOK = False self.ui = None self.objmodel = None self.cfgmodel = None self.db = None self.pobj = None self.hutch = None self.table = None self.PROTECTED = 0 self.MANUAL = 1 self.AUTO = 2 self.catenum = ["Protected", "Manual", "Auto"] # Database names. self.setCatEnum(["Protected", "Manual"]) # Displayed names. def setCatEnum(self, l): self.catenum2 = l if self.ui != None: self.ui.actionProtected.setText("Show " + l[0]) self.ui.actionManual.setText("Show " + l[1]) def setTable(self, v): self.table = v def setHutch(self, v): self.hutch = v lines = open(AUTH_FILE % v).readlines() self.auth_users = [l.strip() for l in lines]
31.675325
88
0.547765
1abc09d0e7c352b2ef3ac9113e8bc73f8cd14662
1,368
py
Python
chembl_webservices/resources/source.py
chembl/chembl_new_webservices
59fb52665cc1fc09a495d9a8c118687ddd0ad781
[ "Apache-2.0" ]
16
2015-02-20T15:54:56.000Z
2022-03-04T15:33:11.000Z
chembl_webservices/resources/source.py
chembl/chembl_webservices_2
59fb52665cc1fc09a495d9a8c118687ddd0ad781
[ "Apache-2.0" ]
144
2015-02-18T22:14:18.000Z
2022-03-07T13:01:20.000Z
chembl_webservices/resources/source.py
chembl/chembl_new_webservices
59fb52665cc1fc09a495d9a8c118687ddd0ad781
[ "Apache-2.0" ]
5
2015-03-03T12:58:29.000Z
2020-11-03T21:16:20.000Z
__author__ = 'mnowotka' from chembl_webservices.core.utils import NUMBER_FILTERS, CHAR_FILTERS from chembl_webservices.core.resource import ChemblModelResource from chembl_webservices.core.meta import ChemblResourceMeta from chembl_webservices.core.serialization import ChEMBLApiSerializer try: from chembl_compatibility.models import Source except ImportError: from chembl_core_model.models import Source from chembl_webservices.core.fields import monkeypatch_tastypie_field monkeypatch_tastypie_field() # ---------------------------------------------------------------------------------------------------------------------- class SourceResource(ChemblModelResource): class Meta(ChemblResourceMeta): queryset = Source.objects.all() resource_name = 'source' collection_name = 'sources' serializer = ChEMBLApiSerializer(resource_name, {collection_name: resource_name}) filtering = { 'src_description': CHAR_FILTERS, 'src_id': NUMBER_FILTERS, 'src_short_name': CHAR_FILTERS, } ordering = [field for field in filtering.keys() if not ('comment' in field or 'description' in field)] excludes = ['default_doc_id', 'default_loadtype'] # ----------------------------------------------------------------------------------------------------------------------
40.235294
120
0.616959
95dc1f888eb490472b7d76b3037663652fd74a66
697
py
Python
core/urls.py
GDSC-BUK/sc-22.forum-service
2202e61003f7b23f2871465e4a110f9083595f5b
[ "MIT" ]
null
null
null
core/urls.py
GDSC-BUK/sc-22.forum-service
2202e61003f7b23f2871465e4a110f9083595f5b
[ "MIT" ]
null
null
null
core/urls.py
GDSC-BUK/sc-22.forum-service
2202e61003f7b23f2871465e4a110f9083595f5b
[ "MIT" ]
null
null
null
from django.urls import path from core.api import ( ReplyDiscussionAPI, RetrieveUpdateDestroyReplyAPI, RetriveUpdateDestroyDiscussionAPI, StartDiscussionAPI, ) app_name = "core" urlpatterns = [ path("discussion/", StartDiscussionAPI.as_view(), name="start_discussion"), path( "discussion/<uuid:discussion_id>/", RetriveUpdateDestroyDiscussionAPI.as_view(), name="rud_discussion", ), path( "reply/<uuid:discussion_id>/new/", ReplyDiscussionAPI.as_view(), name="reply_discussion", ), path( "reply/<uuid:reply_id>/", RetrieveUpdateDestroyReplyAPI.as_view(), name="rud_reply", ), ]
23.233333
79
0.651363
cb379774c3e3951844d9879b11fb80c58ec330aa
6,215
py
Python
data_utils.py
ggsonic/mellotron
8e93e4c814d984f79e758a8ae57e86d6503eaceb
[ "BSD-3-Clause" ]
null
null
null
data_utils.py
ggsonic/mellotron
8e93e4c814d984f79e758a8ae57e86d6503eaceb
[ "BSD-3-Clause" ]
null
null
null
data_utils.py
ggsonic/mellotron
8e93e4c814d984f79e758a8ae57e86d6503eaceb
[ "BSD-3-Clause" ]
null
null
null
import random import os import re import numpy as np import torch import torch.utils.data import librosa import layers from utils import load_wav_to_torch, load_filepaths_and_text from text import text_to_sequence, cmudict from yin import compute_yin class TextMelLoader(torch.utils.data.Dataset): """ 1) loads audio, text and speaker ids 2) normalizes text and converts them to sequences of one-hot vectors 3) computes mel-spectrograms and f0s from audio files. """ def __init__(self, audiopaths_and_text, hparams, speaker_ids=None): self.audiopaths_and_text = load_filepaths_and_text(audiopaths_and_text) self.text_cleaners = hparams.text_cleaners self.max_wav_value = hparams.max_wav_value self.sampling_rate = hparams.sampling_rate self.stft = layers.TacotronSTFT( hparams.filter_length, hparams.hop_length, hparams.win_length, hparams.n_mel_channels, hparams.sampling_rate, hparams.mel_fmin, hparams.mel_fmax) self.sampling_rate = hparams.sampling_rate self.filter_length = hparams.filter_length self.hop_length = hparams.hop_length self.f0_min = hparams.f0_min self.f0_max = hparams.f0_max self.harm_thresh = hparams.harm_thresh self.p_arpabet = hparams.p_arpabet self.cmudict = None if hparams.cmudict_path is not None: self.cmudict = cmudict.CMUDict(hparams.cmudict_path) self.speaker_ids = speaker_ids if speaker_ids is None: self.speaker_ids = self.create_speaker_lookup_table(self.audiopaths_and_text) random.seed(1234) random.shuffle(self.audiopaths_and_text) def create_speaker_lookup_table(self, audiopaths_and_text): speaker_ids = np.sort(np.unique([x[2] for x in audiopaths_and_text])) d = {int(speaker_ids[i]): i for i in range(len(speaker_ids))} return d def get_f0(self, audio, sampling_rate=22050, frame_length=1024, hop_length=256, f0_min=100, f0_max=300, harm_thresh=0.1): f0, harmonic_rates, argmins, times = compute_yin( audio, sampling_rate, frame_length, hop_length, f0_min, f0_max, harm_thresh) pad = int((frame_length / hop_length) / 2) f0 = [0.0] * pad + f0 + [0.0] * pad f0 = np.array(f0, dtype=np.float32) return f0 def get_data(self, audiopath_and_text): audiopath, text, speaker = audiopath_and_text text = self.get_text(text) mel, f0 = self.get_mel_and_f0(audiopath) speaker_id = self.get_speaker_id(speaker) return (text, mel, speaker_id, f0) def get_speaker_id(self, speaker_id): return torch.IntTensor([self.speaker_ids[int(speaker_id)]]) def get_mel_and_f0(self, filepath): audio, sampling_rate = load_wav_to_torch(filepath) if sampling_rate != self.stft.sampling_rate: raise ValueError("{} {} SR doesn't match target {} SR".format( sampling_rate, self.stft.sampling_rate)) audio_norm = audio / self.max_wav_value audio_norm = audio_norm.unsqueeze(0) melspec = self.stft.mel_spectrogram(audio_norm) melspec = torch.squeeze(melspec, 0) f0 = self.get_f0(audio.cpu().numpy(), self.sampling_rate, self.filter_length, self.hop_length, self.f0_min, self.f0_max, self.harm_thresh) f0 = torch.from_numpy(f0)[None] f0 = f0[:, :melspec.size(1)] return melspec, f0 def get_text(self, text): text_norm = torch.IntTensor( text_to_sequence(text, self.text_cleaners, self.cmudict)) return text_norm def __getitem__(self, index): return self.get_data(self.audiopaths_and_text[index]) def __len__(self): return len(self.audiopaths_and_text) class TextMelCollate(): """ Zero-pads model inputs and targets based on number of frames per setep """ def __init__(self, n_frames_per_step): self.n_frames_per_step = n_frames_per_step def __call__(self, batch): """Collate's training batch from normalized text and mel-spectrogram PARAMS ------ batch: [text_normalized, mel_normalized] """ # Right zero-pad all one-hot text sequences to max input length input_lengths, ids_sorted_decreasing = torch.sort( torch.LongTensor([len(x[0]) for x in batch]), dim=0, descending=True) max_input_len = input_lengths[0] text_padded = torch.LongTensor(len(batch), max_input_len) text_padded.zero_() for i in range(len(ids_sorted_decreasing)): text = batch[ids_sorted_decreasing[i]][0] text_padded[i, :text.size(0)] = text # Right zero-pad mel-spec num_mels = batch[0][1].size(0) max_target_len = max([x[1].size(1) for x in batch]) if max_target_len % self.n_frames_per_step != 0: max_target_len += self.n_frames_per_step - max_target_len % self.n_frames_per_step assert max_target_len % self.n_frames_per_step == 0 # include mel padded, gate padded and speaker ids mel_padded = torch.FloatTensor(len(batch), num_mels, max_target_len) mel_padded.zero_() gate_padded = torch.FloatTensor(len(batch), max_target_len) gate_padded.zero_() output_lengths = torch.LongTensor(len(batch)) speaker_ids = torch.LongTensor(len(batch)) f0_padded = torch.FloatTensor(len(batch), 1, max_target_len) f0_padded.zero_() for i in range(len(ids_sorted_decreasing)): mel = batch[ids_sorted_decreasing[i]][1] mel_padded[i, :, :mel.size(1)] = mel gate_padded[i, mel.size(1)-1:] = 1 output_lengths[i] = mel.size(1) speaker_ids[i] = batch[ids_sorted_decreasing[i]][2] f0 = batch[ids_sorted_decreasing[i]][3] f0_padded[i, :, :f0.size(1)] = f0 model_inputs = (text_padded, input_lengths, mel_padded, gate_padded, output_lengths, speaker_ids, f0_padded) return model_inputs
39.08805
94
0.654224
0958c18d0493de42abe4b188e76e9cce9ba5ea42
5,249
py
Python
tools/repl_test.py
fluency03/deno
013c82e700111c79d3646fa7b150f48e142d10de
[ "MIT" ]
null
null
null
tools/repl_test.py
fluency03/deno
013c82e700111c79d3646fa7b150f48e142d10de
[ "MIT" ]
null
null
null
tools/repl_test.py
fluency03/deno
013c82e700111c79d3646fa7b150f48e142d10de
[ "MIT" ]
null
null
null
# Copyright 2018-2019 the Deno authors. All rights reserved. MIT license. import os from subprocess import CalledProcessError, PIPE, Popen import sys import time from util import build_path, executable_suffix, green_ok class Repl(object): def __init__(self, deno_exe): self.deno_exe = deno_exe self._warm_up() def _warm_up(self): # This may output an error message about the history file (ignore it). self.input("") def input(self, *lines, **kwargs): exit_ = kwargs.pop("exit", True) sleep_ = kwargs.pop("sleep", 0) p = Popen([self.deno_exe, "-A"], stdout=PIPE, stderr=PIPE, stdin=PIPE) try: # Note: The repl takes a >100ms until it's ready. time.sleep(sleep_) for line in lines: p.stdin.write(line.encode("utf-8") + b'\n') p.stdin.flush() time.sleep(sleep_) if exit_: p.stdin.write(b'deno.exit(0)\n') else: time.sleep(1) # wait to be killed by js out, err = p.communicate() except CalledProcessError as e: p.kill() p.wait() raise e retcode = p.poll() # Ignore Windows CRLF (\r\n). return out.replace('\r\n', '\n'), err.replace('\r\n', '\n'), retcode def run(self): print('repl_test.py') test_names = [name for name in dir(self) if name.startswith("test_")] for t in test_names: self.__getattribute__(t)() sys.stdout.write(".") sys.stdout.flush() print(' {}\n'.format(green_ok())) def test_console_log(self): out, err, code = self.input("console.log('hello')", "'world'") assertEqual(out, 'hello\nundefined\nworld\n') assertEqual(err, '') assertEqual(code, 0) def test_exit_command(self): out, err, code = self.input("exit", "'ignored'", exit=False) assertEqual(out, '') assertEqual(err, '') assertEqual(code, 0) def test_help_command(self): out, err, code = self.input("help") expectedOut = '\n'.join([ "exit Exit the REPL", "help Print this help message", "", ]) assertEqual(out, expectedOut) assertEqual(err, '') assertEqual(code, 0) def test_function(self): out, err, code = self.input("deno.writeFileSync") assertEqual(out, '[Function: writeFileSync]\n') assertEqual(err, '') assertEqual(code, 0) def test_multiline(self): out, err, code = self.input("(\n1 + 2\n)") assertEqual(out, '3\n') assertEqual(err, '') assertEqual(code, 0) # This should print error instead of wait for input def test_eval_unterminated(self): out, err, code = self.input("eval('{')") assertEqual(out, '') assert "Unexpected end of input" in err assertEqual(code, 0) def test_reference_error(self): out, err, code = self.input("not_a_variable") assertEqual(out, '') assert "not_a_variable is not defined" in err assertEqual(code, 0) def test_set_timeout(self): out, err, code = self.input( "setTimeout(() => { console.log('b'); deno.exit(0); }, 10)", "'a'", exit=False) assertEqual(out, '1\na\nb\n') assertEqual(err, '') assertEqual(code, 0) def test_set_timeout_interlaced(self): out, err, code = self.input( "setTimeout(() => console.log('a'), 1000)", "setTimeout(() => console.log('b'), 600)", sleep=0.8) assertEqual(out, '1\n2\na\nb\n') assertEqual(err, '') assertEqual(code, 0) def test_async_op(self): out, err, code = self.input( "fetch('http://localhost:4545/tests/001_hello.js')" + ".then(res => res.text()).then(console.log)", sleep=1) assertEqual(out, 'Promise {}\nconsole.log("Hello World");\n\n') assertEqual(err, '') assertEqual(code, 0) def test_syntax_error(self): out, err, code = self.input("syntax error") assertEqual(out, '') assert "Unexpected identifier" in err assertEqual(code, 0) def test_type_error(self): out, err, code = self.input("console()") assertEqual(out, '') assert "console is not a function" in err assertEqual(code, 0) def test_variable(self): out, err, code = self.input("var a = 123;", "a") assertEqual(out, 'undefined\n123\n') assertEqual(err, '') assertEqual(code, 0) def test_lexical_scoped_variable(self): out, err, code = self.input("let a = 123;", "a") assertEqual(out, 'undefined\n123\n') assertEqual(err, '') assertEqual(code, 0) def assertEqual(left, right): if left != right: raise AssertionError("{} != {}".format(repr(left), repr(right))) def repl_tests(deno_exe): Repl(deno_exe).run() def main(): deno_exe = os.path.join(build_path(), "deno" + executable_suffix) repl_tests(deno_exe) if __name__ == "__main__": main()
31.244048
78
0.560107
129c611f2361887a2e27b25d4a9f1b0b4779d0bc
8,302
py
Python
django_auth_lti/middleware.py
jfmcoronel/django-auth-lti
1dc4a9c11d4c389769149fc43d2d99387b70162f
[ "Apache-2.0" ]
23
2015-04-23T02:09:40.000Z
2022-01-21T20:53:20.000Z
django_auth_lti/middleware.py
jfmcoronel/django-auth-lti
1dc4a9c11d4c389769149fc43d2d99387b70162f
[ "Apache-2.0" ]
22
2015-04-10T21:21:02.000Z
2019-10-28T16:05:26.000Z
django_auth_lti/middleware.py
jfmcoronel/django-auth-lti
1dc4a9c11d4c389769149fc43d2d99387b70162f
[ "Apache-2.0" ]
18
2015-02-05T20:10:16.000Z
2021-09-22T12:40:41.000Z
import logging import json from django.contrib import auth from django.core.exceptions import ImproperlyConfigured from django.conf import settings from .timer import Timer try: from django.utils.deprecation import MiddlewareMixin except ImportError: # Django < 1.10 MiddlewareMixin = object logger = logging.getLogger(__name__) class LTIAuthMiddleware(MiddlewareMixin): """ Middleware for authenticating users via an LTI launch URL. If the request is an LTI launch request, then this middleware attempts to authenticate the username and signature passed in the POST data. If authentication is successful, the user is automatically logged in to persist the user in the session. If the request is not an LTI launch request, do nothing. """ def process_request(self, request): logger.debug('inside process_request %s' % request.path) # AuthenticationMiddleware is required so that request.user exists. if not hasattr(request, 'user'): logger.debug('improperly configured: requeset has no user attr') raise ImproperlyConfigured( "The Django LTI auth middleware requires the" " authentication middleware to be installed. Edit your" " MIDDLEWARE_CLASSES setting to insert" " 'django.contrib.auth.middleware.AuthenticationMiddleware'" " before the PINAuthMiddleware class.") if request.method == 'POST' and request.POST.get('lti_message_type') == 'basic-lti-launch-request': logger.debug('received a basic-lti-launch-request - authenticating the user') # authenticate and log the user in with Timer() as t: user = auth.authenticate(request=request) logger.debug('authenticate() took %s s' % t.secs) if user is not None: # User is valid. Set request.user and persist user in the session # by logging the user in. logger.debug('user was successfully authenticated; now log them in') request.user = user with Timer() as t: auth.login(request, user) logger.debug('login() took %s s' % t.secs) lti_launch = { 'context_id': request.POST.get('context_id', None), 'context_label': request.POST.get('context_label', None), 'context_title': request.POST.get('context_title', None), 'context_type': request.POST.get('context_type', None), 'custom_canvas_account_id': request.POST.get('custom_canvas_account_id', None), 'custom_canvas_account_sis_id': request.POST.get('custom_canvas_account_sis_id', None), 'custom_canvas_api_domain': request.POST.get('custom_canvas_api_domain', None), 'custom_canvas_course_id': request.POST.get('custom_canvas_course_id', None), 'custom_canvas_course_sectionsissourceids': request.POST.get('custom_canvas_course_sectionsissourceids', '').split(','), 'custom_canvas_enrollment_state': request.POST.get('custom_canvas_enrollment_state', None), 'custom_canvas_membership_roles': request.POST.get('custom_canvas_membership_roles', '').split(','), 'custom_canvas_person_email_sis': request.POST.get('custom_canvas_person_email_sis'), 'custom_canvas_term_name': request.POST.get('custom_canvas_term_name'), 'custom_canvas_user_id': request.POST.get('custom_canvas_user_id', None), 'custom_canvas_user_login_id': request.POST.get('custom_canvas_user_login_id', None), 'launch_presentation_css_url': request.POST.get('launch_presentation_css_url', None), 'launch_presentation_document_target': request.POST.get('launch_presentation_document_target', None), 'launch_presentation_height': request.POST.get('launch_presentation_height', None), 'launch_presentation_locale': request.POST.get('launch_presentation_locale', None), 'launch_presentation_return_url': request.POST.get('launch_presentation_return_url', None), 'launch_presentation_width': request.POST.get('launch_presentation_width', None), 'lis_course_offering_sourcedid': request.POST.get('lis_course_offering_sourcedid', None), 'lis_outcome_service_url': request.POST.get('lis_outcome_service_url', None), 'lis_person_contact_email_primary': request.POST.get('lis_person_contact_email_primary', None), 'lis_person_name_family': request.POST.get('lis_person_name_family', None), 'lis_person_name_full': request.POST.get('lis_person_name_full', None), 'lis_person_name_given': request.POST.get('lis_person_name_given', None), 'lis_person_sourcedid': request.POST.get('lis_person_sourcedid', None), 'lti_message_type': request.POST.get('lti_message_type', None), 'resource_link_description': request.POST.get('resource_link_description', None), 'resource_link_id': request.POST.get('resource_link_id', None), 'resource_link_title': request.POST.get('resource_link_title', None), 'roles': request.POST.get('roles', '').split(','), 'selection_directive': request.POST.get('selection_directive', None), 'tool_consumer_info_product_family_code': request.POST.get('tool_consumer_info_product_family_code', None), 'tool_consumer_info_version': request.POST.get('tool_consumer_info_version', None), 'tool_consumer_instance_contact_email': request.POST.get('tool_consumer_instance_contact_email', None), 'tool_consumer_instance_description': request.POST.get('tool_consumer_instance_description', None), 'tool_consumer_instance_guid': request.POST.get('tool_consumer_instance_guid', None), 'tool_consumer_instance_name': request.POST.get('tool_consumer_instance_name', None), 'tool_consumer_instance_url': request.POST.get('tool_consumer_instance_url', None), 'user_id': request.POST.get('user_id', None), 'user_image': request.POST.get('user_image', None), } # If a custom role key is defined in project, merge into existing role list if hasattr(settings, 'LTI_CUSTOM_ROLE_KEY'): custom_roles = request.POST.get(settings.LTI_CUSTOM_ROLE_KEY, '').split(',') lti_launch['roles'] += [_f for _f in custom_roles if _f] # Filter out any empty roles request.session['LTI_LAUNCH'] = lti_launch else: # User could not be authenticated! logger.warning('user could not be authenticated via LTI params; let the request continue in case another auth plugin is configured') # Other functions in django-auth-lti expect there to be an LTI attribute on the request object # This enables backwards compatibility with consumers of this package who still want to use this # single launch version of LTIAuthMiddleware setattr(request, 'LTI', request.session.get('LTI_LAUNCH', {})) if not request.LTI: logger.warning("Could not find LTI launch parameters") def clean_username(self, username, request): """ Allows the backend to clean the username, if the backend defines a clean_username method. """ backend_str = request.session[auth.BACKEND_SESSION_KEY] backend = auth.load_backend(backend_str) try: logger.debug('calling the backend %s clean_username with %s' % (backend, username)) username = backend.clean_username(username) logger.debug('cleaned username is %s' % username) except AttributeError: # Backend has no clean_username method. pass return username
59.3
148
0.648398
234e7a5ff826d721ccd6f0e8e5236b662cdeb4eb
4,000
py
Python
tests/test_webhooks.py
marty-2015/django-hurricane
fe05ed1360ad504167aa403c999357eb4f0cdb8b
[ "MIT" ]
30
2020-12-23T21:07:42.000Z
2022-03-24T17:09:43.000Z
tests/test_webhooks.py
marty-2015/django-hurricane
fe05ed1360ad504167aa403c999357eb4f0cdb8b
[ "MIT" ]
60
2021-02-05T13:20:32.000Z
2022-03-24T20:56:48.000Z
tests/test_webhooks.py
marty-2015/django-hurricane
fe05ed1360ad504167aa403c999357eb4f0cdb8b
[ "MIT" ]
3
2021-02-11T10:46:09.000Z
2021-11-04T16:48:15.000Z
import requests from hurricane.testing.drivers import HurricaneServerDriver from hurricane.testing.testcases import HurricaneWebhookServerTest class HurricaneWebhookStartServerTests(HurricaneWebhookServerTest): starting_message = "Started webhook receiver server" @HurricaneWebhookServerTest.cycle_server def test_webhook_on_success(self): hurricane_server = HurricaneServerDriver() hurricane_server.start_server( params=["--command", "makemigrations", "--webhook-url", "http://localhost:8074/webhook"] ) out, err = self.driver.get_output(read_all=True) hurricane_server.stop_server() self.assertIn(self.starting_message, out) self.assertIn("succeeded", out) @HurricaneWebhookServerTest.cycle_server def test_webhook_on_failure(self): hurricane_server = HurricaneServerDriver() hurricane_server.start_server( params=["--command", "failingcommand", "--webhook-url", "http://localhost:8074/webhook"] ) out, err = self.driver.get_output(read_all=True) hurricane_server.stop_server() self.assertIn(self.starting_message, out) self.assertIn("failed", out) @HurricaneWebhookServerTest.cycle_server def test_webhook_without_management_commands(self): hurricane_server = HurricaneServerDriver() hurricane_server.start_server(params=["--webhook-url", "http://localhost:8074/webhook"]) out, err = self.driver.get_output(read_all=True) hurricane_server.stop_server() self.assertIn(self.starting_message, out) self.assertIn("succeeded", out) @HurricaneWebhookServerTest.cycle_server def test_webhook_wrong_url(self): response = requests.post( "http://localhost:8074/web", timeout=5, data={"status": "succeeded", "type": "startup"} ) self.assertEqual(response.status_code, 404) @HurricaneWebhookServerTest.cycle_server def test_liveness_webhook(self): hurricane_server = HurricaneServerDriver() hurricane_server.start_server(params=["--webhook-url", "http://localhost:8074/webhook"]) response = requests.get("http://localhost:8001/alive", timeout=5) out, err = self.driver.get_output(read_all=True) hurricane_server.stop_server() self.assertEqual(response.status_code, 200) self.assertIn(self.starting_message, out) self.assertIn("succeeded", out) @HurricaneWebhookServerTest.cycle_server def test_readiness_webhook(self): hurricane_server = HurricaneServerDriver() hurricane_server.start_server(params=["--webhook-url", "http://localhost:8074/webhook"]) response = requests.get("http://localhost:8001/ready", timeout=5) out, err = self.driver.get_output(read_all=True) hurricane_server.stop_server() self.assertEqual(response.status_code, 200) self.assertIn(self.starting_message, out) self.assertIn("succeeded", out) @HurricaneWebhookServerTest.cycle_server def test_readiness_webhook_request_queue_length(self): hurricane_server = HurricaneServerDriver() hurricane_server.start_server(params=["--webhook-url", "http://localhost:8074/webhook", "--req-queue-len", "0"]) response = requests.get("http://localhost:8001/ready", timeout=5) out, err = self.driver.get_output(read_all=True) hurricane_server.stop_server() self.assertEqual(response.status_code, 400) self.assertIn(self.starting_message, out) self.assertIn("failed", out) @HurricaneWebhookServerTest.cycle_server def test_get_webhook_from_registry(self): from hurricane.webhooks.base import Webhook from hurricane.webhooks.webhook_types import StartupWebhook Webhook(code="new_webhook") StartupWebhook.get_from_registry() out, err = self.driver.get_output(read_all=True) self.assertIn(self.starting_message, out)
44.444444
120
0.70825
d0756bfa143865dba44009cabd5359203aa39ca0
443
py
Python
examples/python/basic/image_filter.py
collector-m/cupoch
1b2bb3f806695b93d6d0dd87855cf2a4da8d1ce1
[ "MIT" ]
522
2020-01-19T05:59:00.000Z
2022-03-25T04:36:52.000Z
examples/python/basic/image_filter.py
collector-m/cupoch
1b2bb3f806695b93d6d0dd87855cf2a4da8d1ce1
[ "MIT" ]
87
2020-02-23T09:56:48.000Z
2022-03-25T13:35:15.000Z
examples/python/basic/image_filter.py
collector-m/cupoch
1b2bb3f806695b93d6d0dd87855cf2a4da8d1ce1
[ "MIT" ]
74
2020-01-27T15:33:30.000Z
2022-03-27T11:58:22.000Z
import cupoch as cph import numpy as np img = cph.io.read_image("../../testdata/lena_color.jpg") img.downsample() cph.visualization.draw_geometries([img]) img = cph.io.read_image("../../testdata/lena_gray.jpg") cph.visualization.draw_geometries([img]) g_img = img.filter(cph.geometry.ImageFilterType.Gaussian3) cph.visualization.draw_geometries([g_img]) b_img = img.bilateral_filter(3, 0.1, 10.0) cph.visualization.draw_geometries([b_img])
29.533333
58
0.769752
d29dc4ed09e3b4e8db05c60edb7effea5fac2829
111
py
Python
webapp/settings/local.py
araceli24/TimeWorking
75e25d3710ff58701d844c57686540ffa7a11604
[ "MIT" ]
null
null
null
webapp/settings/local.py
araceli24/TimeWorking
75e25d3710ff58701d844c57686540ffa7a11604
[ "MIT" ]
17
2018-04-30T08:01:36.000Z
2021-06-10T20:25:13.000Z
webapp/settings/local.py
araceli24/TimeWorking
75e25d3710ff58701d844c57686540ffa7a11604
[ "MIT" ]
2
2018-05-02T10:29:03.000Z
2018-05-02T13:02:30.000Z
from .base import * ALLOWED_HOSTS = [ '127.0.0.1', 'localhost', ] INTERNAL_IPS = ( '127.0.0.1', )
11.1
19
0.540541
d6e3c3369154a2e139a4a4eee9ae11a71ad435f6
1,714
py
Python
cogs/askthebot.py
Samrid-Pandit/Samrids-Bot
f0f4dd740111bc328493668899ae047dd68c4776
[ "Apache-2.0" ]
3
2020-10-24T08:58:04.000Z
2020-12-02T14:59:31.000Z
cogs/askthebot.py
Samrid-Pandit/Ihihi-Bot
f0f4dd740111bc328493668899ae047dd68c4776
[ "Apache-2.0" ]
4
2020-10-24T03:58:21.000Z
2020-10-28T11:39:32.000Z
cogs/askthebot.py
Samrid-Pandit/Samrids-Bot
f0f4dd740111bc328493668899ae047dd68c4776
[ "Apache-2.0" ]
1
2020-10-24T08:58:03.000Z
2020-10-24T08:58:03.000Z
from discord.ext import commands import discord import random class askthebot(commands.Cog): def __init__(self, bot): self.bot = bot @commands.command(aliases = ['gay','gayr8', 'gae']) @commands.cooldown(1, 5, commands.BucketType.user) async def gayrate(self, ctx, user: discord.Member = None): if user == None: user = ctx.author gayr8 = random.randrange(1,100) rate = f"{user.mention}, You are {str(gayr8)}% Gay!" embed = discord.Embed(title = "Gay Rate", description = rate, colour = discord.Colour.green()) await ctx.send(embed=embed) @commands.command() async def anyone(self, ctx,*, input = None): guild_members = ctx.guild.members members = [member for member in guild_members if not member.bot] member = random.choice(members) if input == None: await ctx.send(f"{member.mention} is the chosen one!") else: await ctx.send(f"{member.mention} is chosen to {input}!") @commands.command() @commands.cooldown(1, 5, commands.BucketType.user) async def waifu(self, ctx, user: discord.Member = None): if not user: user = ctx.author waifu = random.randrange(1,10) if waifu == 1 or waifu == 2: emoji = ":face_vomiting:" elif waifu == 3 or waifu == 4: emoji = ":nauseated_face:" elif waifu == 5 or waifu == 6: emoji = ":cold_sweat:" elif waifu == 7: emoji = ":kissing:" elif waifu == 8: emoji = ":smirk:" elif waifu == 9: emoji = ":relaxed:" elif waifu == 10: emoji = ":heart_eyes:" rate = f"{user.mention}, You are {str(waifu)}/10 waifu! {emoji}" embed = discord.Embed(title = "Waifu Rate", description = rate, colour = discord.Colour.red()) await ctx.send(embed=embed) def setup(bot): bot.add_cog(askthebot(bot))
28.566667
96
0.663361
649549cccf3bed113c126ff540f2cd319bf9a7d4
18,621
py
Python
pyaf/TS/SignalDecomposition_Cycle.py
jmabry/pyaf
afbc15a851a2445a7824bf255af612dc429265af
[ "BSD-3-Clause" ]
null
null
null
pyaf/TS/SignalDecomposition_Cycle.py
jmabry/pyaf
afbc15a851a2445a7824bf255af612dc429265af
[ "BSD-3-Clause" ]
null
null
null
pyaf/TS/SignalDecomposition_Cycle.py
jmabry/pyaf
afbc15a851a2445a7824bf255af612dc429265af
[ "BSD-3-Clause" ]
null
null
null
# Copyright (C) 2016 Antoine Carme <Antoine.Carme@Laposte.net> # All rights reserved. # This file is part of the Python Automatic Forecasting (PyAF) library and is made available under # the terms of the 3 Clause BSD license import pandas as pd import numpy as np from . import Time as tsti from . import Perf as tsperf from . import Plots as tsplot from . import Utils as tsutil # for timing import time class cAbstractCycle: def __init__(self , trend): self.mTimeInfo = tsti.cTimeInfo() self.mTrendFrame = pd.DataFrame() self.mCycleFrame = pd.DataFrame() self.mTrend = trend; self.mTrend_residue_name = self.mTrend.mOutName + '_residue' self.mFormula = None; self.mComplexity = None; def getCycleResidueName(self): return self.getCycleName() + "_residue"; def plot(self): tsplot.decomp_plot(self.mCycleFrame, self.mTimeInfo.mNormalizedTimeColumn, self.mTrend_residue_name, self.getCycleName() , self.getCycleResidueName()); def check_not_nan(self, sig , name): #print("check_not_nan"); if(np.isnan(sig).any() or np.isinf(sig).any() ): logger = tsutil.get_pyaf_logger(); logger.error("CYCLE_RESIDUE_WITH_NAN_IN_SIGNAL" + str(sig)); raise tsutil.Internal_PyAF_Error("CYCLE_COLUMN _FOR_TREND_RESIDUE ['" + name + "'"); pass def computePerf(self): if(self.mOptions.mDebug): self.check_not_nan(self.mCycleFrame[self.getCycleResidueName()], self.getCycleResidueName()) # self.mCycleFrame.to_csv(self.getCycleResidueName() + ".csv"); self.mCycleFitPerf = tsperf.cPerf(); self.mCycleForecastPerf = tsperf.cPerf(); # self.mCycleFrame[[self.mTrend_residue_name, self.getCycleName()]].to_csv(self.getCycleName() + ".csv"); (lFrameFit, lFrameForecast, lFrameTest) = self.mTimeInfo.cutFrame(self.mCycleFrame); self.mCycleFitPerf.compute( lFrameFit[self.mTrend_residue_name], lFrameFit[self.getCycleName()], self.getCycleName()) self.mCycleForecastPerf.compute( lFrameForecast[self.mTrend_residue_name], lFrameForecast[self.getCycleName()], self.getCycleName()) class cZeroCycle(cAbstractCycle): def __init__(self , trend): super().__init__(trend); self.mFormula = "NoCycle" self.mComplexity = 0; def getCycleName(self): return self.mTrend_residue_name + "_zeroCycle"; def fit(self): self.mTime = self.mTimeInfo.mTime; self.mSignal = self.mTimeInfo.mSignal; self.mTimeInfo.addVars(self.mCycleFrame); self.mCycleFrame[self.mTrend_residue_name] = self.mTrendFrame[self.mTrend_residue_name] self.mCycleFrame[self.getCycleName()] = np.zeros_like(self.mTrendFrame[self.mTrend_residue_name]) self.mCycleFrame[self.getCycleResidueName()] = self.mCycleFrame[self.mTrend_residue_name]; self.mOutName = self.getCycleName() def transformDataset(self, df): target = df[self.mTrend_residue_name] df[self.getCycleName()] = np.zeros_like(df[self.mTrend_residue_name]); df[self.getCycleResidueName()] = target - df[self.getCycleName()].values return df; class cSeasonalPeriodic(cAbstractCycle): def __init__(self , trend, date_part): super().__init__(trend); self.mDatePart = date_part; self.mEncodedValueDict = {} self.mFormula = "Seasonal_" + self.mDatePart; self.mComplexity = 1; def getCycleName(self): return self.mTrend_residue_name + "_Seasonal_" + self.mDatePart; def hasEnoughData(self, iTimeMin, iTimeMax): lTimeDelta = iTimeMax - iTimeMin; lDays = lTimeDelta / np.timedelta64(1,'D'); lSeconds = lTimeDelta / np.timedelta64(1,'s'); if(self.mDatePart == "Hour"): return (lDays >= 10); if(self.mDatePart == "Minute"): lHours = lSeconds // 3600; return (lHours >= 10); if(self.mDatePart == "Second"): lMinutes = lSeconds // 60; return (lMinutes >= 10); if(self.mDatePart == "DayOfMonth"): lMonths = lDays // 30; return (lMonths >= 10); if(self.mDatePart == "DayOfWeek"): lWeeks = lDays // 7; return (lWeeks >= 10); if(self.mDatePart == "MonthOfYear"): lYears = lDays // 360; return (lYears >= 10); if(self.mDatePart == "WeekOfYear"): lYears = lDays // 360; return (lYears >= 10); return False; def fit(self): assert(self.mTimeInfo.isPhysicalTime()); lHor = self.mTimeInfo.mHorizon; self.mTime = self.mTimeInfo.mTime; self.mSignal = self.mTimeInfo.mSignal; self.mTimeInfo.addVars(self.mCycleFrame); lName = self.getCycleName(); self.mCycleFrame[self.mTrend_residue_name] = self.mTrendFrame[self.mTrend_residue_name] self.mCycleFrame[lName] = self.mTrendFrame[self.mTime].apply(self.get_date_part); # we encode only using estimation lCycleFrameEstim = self.mTimeInfo.getEstimPart(self.mCycleFrame); lTrendMeanEstim = lCycleFrameEstim[self.mTrend_residue_name].mean(); lGroupBy = lCycleFrameEstim.groupby(by=[lName] , sort=False)[self.mTrend_residue_name].mean(); self.mEncodedValueDict = lGroupBy.to_dict() self.mDefaultValue = lTrendMeanEstim; # print("cSeasonalPeriodic_DefaultValue" , self.getCycleName(), self.mDefaultValue); self.mCycleFrame[lName + '_enc'] = self.mCycleFrame[lName].apply(lambda x : self.mEncodedValueDict.get(x , self.mDefaultValue)) self.mCycleFrame[lName + '_enc'].fillna(lTrendMeanEstim, inplace=True); self.mCycleFrame[self.getCycleResidueName()] = self.mCycleFrame[self.mTrend_residue_name] - self.mCycleFrame[lName + '_enc']; self.mCycleFrame[lName + '_NotEncoded'] = self.mCycleFrame[lName]; self.mCycleFrame[lName] = self.mCycleFrame[lName + '_enc']; self.mOutName = self.getCycleName() #print("encoding '" + lName + "' " + str(self.mEncodedValueDict)); @tsutil.cMemoize def get_date_part(self, x): lDatepartComputer = self.mTimeInfo.get_date_part_value_computer(self.mDatePart) return lDatepartComputer(x) @tsutil.cMemoize def get_date_part_encoding(self, x): lDatepartComputer = self.mTimeInfo.get_date_part_value_computer(self.mDatePart) dp = lDatepartComputer(x) return self.mEncodedValueDict.get(dp , self.mDefaultValue) def transformDataset(self, df): target = df[self.mTrend_residue_name] df[self.getCycleName()] = df[self.mTime].apply(self.get_date_part_encoding); df[self.getCycleResidueName()] = target - df[self.getCycleName()].values return df; class cBestCycleForTrend(cAbstractCycle): def __init__(self , trend, criterion): super().__init__(trend); self.mCycleFrame = pd.DataFrame() self.mCyclePerfDict = {} self.mBestCycleValueDict = {} self.mBestCycleLength = None self.mCriterion = criterion self.mComplexity = 2; self.mFormula = "BestCycle" def getCycleName(self): return self.mTrend_residue_name + "_bestCycle_by" + self.mCriterion; def dumpCyclePerfs(self): print(self.mCyclePerfDict); def computeBestCycle(self): # self.dumpCyclePerfs(); lCycleFrameEstim = self.mTimeInfo.getEstimPart(self.mCycleFrame); self.mDefaultValue = lCycleFrameEstim[self.mTrend_residue_name].mean(); self.mBestCycleLength = None; lBestCycleIdx = None; lBestCriterion = None; if(self.mCyclePerfDict): for k in sorted(self.mCyclePerfDict.keys()): # smallest cycles are better if((lBestCriterion is None) or (self.mCyclePerfDict[k] < lBestCriterion)): lBestCycleIdx = k; lBestCriterion = self.mCyclePerfDict[k]; if(self.mOptions.mCycle_Criterion_Threshold is None or (self.mCyclePerfDict[lBestCycleIdx] < self.mOptions.mCycle_Criterion_Threshold)) : self.mBestCycleLength = lBestCycleIdx # print("BEST_CYCLE_PERF" , self.mTrend_residue_name, self.mBestCycleLength) self.transformDataset(self.mCycleFrame); pass def generate_cycles(self): self.mTimeInfo.addVars(self.mCycleFrame); self.mCycleFrame[self.mTrend_residue_name ] = self.mTrendFrame[self.mTrend_residue_name] lCycleFrameEstim = self.mTimeInfo.getEstimPart(self.mCycleFrame); self.mDefaultValue = lCycleFrameEstim[self.mTrend_residue_name].mean(); del lCycleFrameEstim; self.mCyclePerfDict = {} lMaxRobustCycle = self.mTrendFrame.shape[0]//12; # print("MAX_ROBUST_CYCLE_LENGTH", self.mTrendFrame.shape[0], lMaxRobustCycle); lCycleLengths = self.mOptions.mCycleLengths or range(2,lMaxRobustCycle + 1) lCycleFrame = pd.DataFrame(); lCycleFrame[self.mTrend_residue_name ] = self.mTrendFrame[self.mTrend_residue_name] for i in lCycleLengths: if ((i > 1) and (i <= lMaxRobustCycle)): name_i = self.mTrend_residue_name + '_Cycle'; lCycleFrame[name_i] = self.mCycleFrame[self.mTimeInfo.mRowNumberColumn] % i lCycleFrameEstim = self.mTimeInfo.getEstimPart(lCycleFrame); lGroupBy = lCycleFrameEstim.groupby(by=[name_i] , sort=False)[self.mTrend_residue_name].mean(); lEncodedValueDict = lGroupBy.to_dict() lCycleFrame[name_i + '_enc'] = lCycleFrame[name_i].apply( lambda x : lEncodedValueDict.get(x , self.mDefaultValue)) self.mBestCycleValueDict[i] = lEncodedValueDict; lPerf = tsperf.cPerf(); # validate the cycles on the validation part lValidFrame = self.mTimeInfo.getValidPart(lCycleFrame); lCritValue = lPerf.computeCriterion(lValidFrame[self.mTrend_residue_name], lValidFrame[name_i + "_enc"], self.mCriterion, "Validation") self.mCyclePerfDict[i] = lCritValue; if(self.mOptions.mDebugCycles): logger = tsutil.get_pyaf_logger(); logger.debug("CYCLE_INTERNAL_CRITERION " + name_i + " " + str(i) + \ " " + self.mCriterion +" " + str(lCritValue)) pass def fit(self): # print("cycle_fit" , self.mTrend_residue_name); self.mTime = self.mTimeInfo.mTime; self.mSignal = self.mTimeInfo.mSignal; self.generate_cycles(); self.computeBestCycle(); self.mOutName = self.getCycleName() self.mFormula = "Cycle_None" if(self.mBestCycleLength is not None): self.mFormula = "Cycle_Length_" + str(self.mBestCycleLength); self.transformDataset(self.mCycleFrame); def transformDataset(self, df): if(self.mBestCycleLength is not None): lValueCol = df[self.mTimeInfo.mRowNumberColumn].apply(lambda x : x % self.mBestCycleLength); df['cycle_internal'] = lValueCol; # print("BEST_CYCLE" , self.mBestCycleLength) # print(self.mBestCycleValueDict); lDict = self.mBestCycleValueDict[self.mBestCycleLength]; df[self.getCycleName()] = lValueCol.apply(lambda x : lDict.get(x , self.mDefaultValue)); else: df[self.getCycleName()] = np.zeros_like(df[self.mTimeInfo.mRowNumberColumn]); target = df[self.mTrend_residue_name] df[self.getCycleResidueName()] = target - df[self.getCycleName()].values if(self.mOptions.mDebug): self.check_not_nan(self.mCycleFrame[self.getCycleName()].values , self.getCycleName()); return df; class cCycleEstimator: def __init__(self): self.mTimeInfo = tsti.cTimeInfo() self.mTrendFrame = pd.DataFrame() self.mCycleFrame = pd.DataFrame() self.mCycleList = {} def addSeasonal(self, trend, seas_type, resolution): if(resolution >= self.mTimeInfo.mResolution): lSeasonal = cSeasonalPeriodic(trend, seas_type); if(self.mOptions.mActivePeriodics[lSeasonal.mFormula]): if(lSeasonal.hasEnoughData(self.mTimeInfo.mTimeMin, self.mTimeInfo.mTimeMax)): self.mCycleList[trend] = self.mCycleList[trend] + [lSeasonal]; pass def defineCycles(self): for trend in self.mTrendList: self.mCycleList[trend] = []; if(self.mOptions.mActivePeriodics['NoCycle']): self.mCycleList[trend] = [cZeroCycle(trend)]; if(self.mOptions.mActivePeriodics['BestCycle']): self.mCycleList[trend] = self.mCycleList[trend] + [ cBestCycleForTrend(trend, self.mOptions.mCycle_Criterion)]; if(self.mTimeInfo.isPhysicalTime()): # The order used here is mandatory. see filterSeasonals before changing this order. self.addSeasonal(trend, "MonthOfYear", tsti.cTimeInfo.sRES_MONTH); self.addSeasonal(trend, "WeekOfYear", tsti.cTimeInfo.sRES_DAY); self.addSeasonal(trend, "DayOfMonth", tsti.cTimeInfo.sRES_DAY); self.addSeasonal(trend, "DayOfWeek", tsti.cTimeInfo.sRES_DAY); self.addSeasonal(trend, "Hour", tsti.cTimeInfo.sRES_HOUR); self.addSeasonal(trend, "Minute", tsti.cTimeInfo.sRES_MINUTE); self.addSeasonal(trend, "Second", tsti.cTimeInfo.sRES_SECOND); for trend in self.mTrendList: if(len(self.mCycleList[trend]) == 0): self.mCycleList[trend] = [cZeroCycle(trend)]; for cycle in self.mCycleList[trend]: cycle.mTrendFrame = self.mTrendFrame; cycle.mTimeInfo = self.mTimeInfo; cycle.mOptions = self.mOptions; def plotCycles(self): for trend in self.mTrendList: for cycle in self.mCycleList[trend]: cycle.plot() def dumpCyclePerf(self, cycle): if(self.mOptions.mDebugCycles): logger = tsutil.get_pyaf_logger(); logger.debug("CYCLE_PERF_DETAIL_COUNT_FIT_FORECAST " + cycle.mOutName + " %.3f" % (cycle.mCycleFitPerf.mCount) + " %.3f" % (cycle.mCycleForecastPerf.mCount)); logger.debug("CYCLE_PERF_DETAIL_MAPE_FIT_FORECAST " + cycle.mOutName + " %.3f" % (cycle.mCycleFitPerf.mMAPE)+ " %.3f" % (cycle.mCycleForecastPerf.mMAPE)); logger.debug("CYCLE_PERF_DETAIL_L2_FIT_FORECAST " + cycle.mOutName + " %.3f" % (cycle.mCycleFitPerf.mL2) + " %.3f" % (cycle.mCycleForecastPerf.mL2)); logger.debug("CYCLE_PERF_DETAIL_R2_FIT_FORECAST " + cycle.mOutName + " %.3f" % (cycle.mCycleFitPerf.mR2) + " %.3f" % (cycle.mCycleForecastPerf.mR2)); logger.debug("CYCLE_PERF_DETAIL_PEARSONR_FIT_FORECAST " + cycle.mOutName + " %.3f" % (cycle.mCycleFitPerf.mPearsonR) + " %.3f" % (cycle.mCycleForecastPerf.mPearsonR)); def estimateCycles(self): self.mTime = self.mTimeInfo.mTime; self.mSignal = self.mTimeInfo.mSignal; self.mTimeInfo.addVars(self.mCycleFrame); for trend in self.mTrendList: lTrend_residue_name = trend.mOutName + '_residue' self.mCycleFrame[lTrend_residue_name] = self.mTrendFrame[lTrend_residue_name] for cycle in self.mCycleList[trend]: start_time = time.time() cycle.fit(); if(self.mOptions.mDebugPerformance): cycle.computePerf(); self.dumpCyclePerf(cycle) self.mCycleFrame[cycle.getCycleName()] = cycle.mCycleFrame[cycle.getCycleName()] self.mCycleFrame[cycle.getCycleResidueName()] = cycle.mCycleFrame[cycle.getCycleResidueName()] if(self.mOptions.mDebug): cycle.check_not_nan(self.mCycleFrame[cycle.getCycleResidueName()].values , cycle.getCycleResidueName()) end_time = time.time() lTrainingTime = round(end_time - start_time , 2); if(self.mOptions.mDebugProfile): logger = tsutil.get_pyaf_logger(); logger.info("CYCLE_TRAINING_TIME_IN_SECONDS '" + cycle.mOutName + "' " + str(lTrainingTime)) pass def filterSeasonals(self): logger = tsutil.get_pyaf_logger(); logger.debug("CYCLE_TRAINING_FILTER_SEASONALS_START") for trend in self.mTrendList: lPerfs = {} lTrend_residue_name = trend.mOutName + '_residue' lCycleList = [] lSeasonals = [] for cycle in self.mCycleList[trend]: if(isinstance(cycle , cSeasonalPeriodic)): cycle.computePerf(); lPerfs[cycle.mOutName] = cycle.mCycleForecastPerf.getCriterionValue(self.mOptions.mCycle_Criterion) lSeasonals = lSeasonals + [cycle] else: lCycleList = lCycleList + [cycle] if(len(lSeasonals) == 0): return lBestCriterion = None lBestSeasonal = None for (k,cycle) in enumerate(lSeasonals): lCriterionValue = lPerfs[cycle.mOutName] if((lBestCriterion is None) or (lCriterionValue < (1.05 * lBestCriterion))): lBestSeasonal = cycle lBestCriterion = lCriterionValue; lCycleList = lCycleList + [lBestSeasonal] self.mCycleList[trend] = lCycleList logger.debug("CYCLE_TRAINING_FILTER_SEASONALS " + trend.mOutName + " " + lBestSeasonal.mOutName) logger.debug("CYCLE_TRAINING_FILTER_SEASONALS_END") pass def estimateAllCycles(self): self.defineCycles(); self.estimateCycles() if(self.mOptions.mFilterSeasonals): self.filterSeasonals()
45.306569
135
0.619784
192a79387e5fc6493141704c0b6aae70d4b6a9f6
822
py
Python
setup.py
Nburkhal/lambdata
47f079fa3f49506730def1db1a91bbad931fb260
[ "MIT" ]
null
null
null
setup.py
Nburkhal/lambdata
47f079fa3f49506730def1db1a91bbad931fb260
[ "MIT" ]
6
2020-03-24T17:39:48.000Z
2021-09-08T01:24:07.000Z
setup.py
Nburkhal/lambdata
47f079fa3f49506730def1db1a91bbad931fb260
[ "MIT" ]
null
null
null
""" A collection of Data Science helper functions @author: Nick Burkhalter @url: https://github.com/Nburkhal/lambdata """ # Always prefer setuptools over distutils import setuptools REQUIRED = [ 'numpy', 'pandas', 'scikit-learn', 'category-encoders', 'matplotlib', 'seaborn', 'pdpbox', 'shap' ] with open("README.md", "r") as fh: long_description = fh.read() setuptools.setup( name='lambdata_nburkhal', version = '0.0.6', description='A collection of Data Science helper functions', long_description= long_description, long_description_content_type="text/markdown", packages=setuptools.find_packages(), python_requires=">=3.6", install_requires=REQUIRED, author = 'Nick Burkhalter', author_email = 'nburkhal.nb@gmail.com', license='MIT' )
22.833333
64
0.681265
407dee9b3a066a9863a8215dc3f134bf0056bcc4
161
py
Python
yapftests/huawei/huaweistyle/resources/paragraph_2/2_2_a_function_comment_correct_.py
akuleshov7/huawei-yapf
72c188257e2bafa4da9e553ba0ee9b86831c51b8
[ "Apache-2.0" ]
12
2020-04-24T18:12:08.000Z
2021-06-09T16:53:10.000Z
yapftests/huawei/huaweistyle/resources/paragraph_2/2_2_a_function_comment_correct_.py
akuleshov7/h-yapf
72c188257e2bafa4da9e553ba0ee9b86831c51b8
[ "Apache-2.0" ]
1
2020-09-09T19:55:35.000Z
2020-09-14T00:07:29.000Z
yapftests/huawei/huaweistyle/resources/paragraph_2/2_2_a_function_comment_correct_.py
akuleshov7/h-yapf
72c188257e2bafa4da9e553ba0ee9b86831c51b8
[ "Apache-2.0" ]
null
null
null
def some_function(): """ Function description: some description Parameters: Return Value: Exception Description: Change History: """
17.888889
42
0.645963
9fc10540c482aadac9f861e947075535b58c712d
2,857
py
Python
intro-to-pytorch/helper.py
iArunava/Intro-to-Deep-Learning-with-Pytorch-Udacity-Solutions
2149499fa1ed4757362d9b743503718b4a26c3bc
[ "MIT" ]
16
2018-11-22T14:35:45.000Z
2022-02-05T10:40:28.000Z
intro-to-pytorch/helper.py
iArunava/Intro-to-Deep-Learning-with-Pytorch-Udacity-Solutions
2149499fa1ed4757362d9b743503718b4a26c3bc
[ "MIT" ]
null
null
null
intro-to-pytorch/helper.py
iArunava/Intro-to-Deep-Learning-with-Pytorch-Udacity-Solutions
2149499fa1ed4757362d9b743503718b4a26c3bc
[ "MIT" ]
11
2019-02-03T09:16:08.000Z
2020-07-22T21:19:49.000Z
# This helper module is taken from udacity/deep-learning-v2-pytorch/intro-to-pytorch/helper.py # The code here may contain modifications import matplotlib.pyplot as plt import numpy as np from torch import nn, optim from torch.autograd import Variable def test_network(net, trainloader): criterion = nn.MSELoss() optimizer = optim.Adam(net.parameters(), lr=0.001) dataiter = iter(trainloader) images, labels = dataiter.next() # Create Variables for the inputs and targets inputs = Variable(images) targets = Variable(images) # Clear the gradients from all Variables optimizer.zero_grad() # Forward pass, then backward pass, then update weights output = net.forward(inputs) loss = criterion(output, targets) loss.backward() optimizer.step() return True def imshow(image, ax=None, title=None, normalize=True): """Imshow for Tensor.""" if ax is None: fig, ax = plt.subplots() image = image.numpy().transpose((1, 2, 0)) if normalize: mean = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) image = std * image + mean image = np.clip(image, 0, 1) ax.imshow(image) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['left'].set_visible(False) ax.spines['bottom'].set_visible(False) ax.tick_params(axis='both', length=0) ax.set_xticklabels('') ax.set_yticklabels('') return ax def view_recon(img, recon): ''' Function for displaying an image (as a PyTorch Tensor) and its reconstruction also a PyTorch Tensor ''' fig, axes = plt.subplots(ncols=2, sharex=True, sharey=True) axes[0].imshow(img.numpy().squeeze()) axes[1].imshow(recon.data.numpy().squeeze()) for ax in axes: ax.axis('off') ax.set_adjustable('box-forced') def view_classify(img, ps, version="MNIST"): ''' Function for viewing an image and it's predicted classes. ''' ps = ps.data.numpy().squeeze() fig, (ax1, ax2) = plt.subplots(figsize=(6,9), ncols=2) ax1.imshow(img.resize_(1, 28, 28).numpy().squeeze()) ax1.axis('off') ax2.barh(np.arange(10), ps) ax2.set_aspect(0.1) ax2.set_yticks(np.arange(10)) if version == "MNIST": ax2.set_yticklabels(np.arange(10)) elif version == "Fashion": ax2.set_yticklabels(['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle Boot'], size='small'); ax2.set_title('Class Probability') ax2.set_xlim(0, 1.1) plt.tight_layout()
29.153061
94
0.59013
4728b58b7bfdcb5de67291484c04a21ee2351e39
250
py
Python
manage.py
anoited007/country-dashboard
577bbcc4992e24c484650895fabbcdf4343e1bdb
[ "MIT" ]
16
2017-10-19T03:36:41.000Z
2022-03-03T11:46:20.000Z
manage.py
ChrisAchinga/wazimap
a66a1524030a8b98e7ea0dfb270d1946ca75b3b2
[ "MIT" ]
66
2016-02-15T08:59:29.000Z
2017-09-21T14:00:43.000Z
manage.py
ChrisAchinga/wazimap
a66a1524030a8b98e7ea0dfb270d1946ca75b3b2
[ "MIT" ]
18
2017-10-06T12:26:37.000Z
2021-08-30T01:38:37.000Z
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "wazimap.settings") from django.core.management import execute_from_command_line execute_from_command_line(sys.argv)
22.727273
71
0.772
e6bab8365ae1ee803f7308a6dda547fe2548b2fd
5,624
py
Python
miscellaneous/PDBscraper.py
frumpowy/miscellaneous
07b7a0ae035a13de6bbd4f0f92318e1a5fb6864a
[ "MIT" ]
null
null
null
miscellaneous/PDBscraper.py
frumpowy/miscellaneous
07b7a0ae035a13de6bbd4f0f92318e1a5fb6864a
[ "MIT" ]
null
null
null
miscellaneous/PDBscraper.py
frumpowy/miscellaneous
07b7a0ae035a13de6bbd4f0f92318e1a5fb6864a
[ "MIT" ]
null
null
null
""" This script will submit a query to Protein Data Bank, download all PBD files associated with the keywords and write a summary to a CSV file, which includes structure code, title, resolution, reference DOI, etc. To run it on command line: $ python PDBscraper.py --query "..." --download ... Example: $ python PDBscraper.py --query "integrin alpha V beta 6" --download False """ import argparse from lxml import html import os import pandas as pd import requests def pdb_search(search_string): search_string = search_string[0] url = "https://www.rcsb.org/pdb/rest/search/" header = {'Content-Type': 'application/x-www-form-urlencoded'} data = """ <orgPdbQuery><queryType>org.pdb.query.simple.AdvancedKeywordQuery</queryType> <keywords>{}</keywords></orgPdbQuery> """.format(search_string) pdb_codes = requests.post(url, data=data, headers=header).text.split() return pdb_codes, search_string.replace(" ", "_") def filter_results(pdb_codes, included, excluded): filtered = [] for code in pdb_codes: pdb = PDBObject(code) title = pdb.title[0].lower() if pdb.title else None included = included.lower() if included is not None else "" excluded = excluded.lower() if excluded else None if excluded: if included in title and excluded not in title: filtered.append(pdb) else: if included in title: filtered.append(pdb) return filtered def substructure_search(substructure_file, inchi_keys): from rdkit import Chem sub = Chem.SDMolSupploer(substructure_file) matched = [] for key in inchi_keys: ligand = Chem.MolFromInchi(key) if ligand.HasSubstructMatch(sub): matched.append(key) return matched class PDBObject: def __init__(self, code): self.code = code self.info_url = "https://www.rcsb.org/structure/{}".format(self.code) self.download_url = "https://files.rcsb.org/download/{}.pdb".format(self.code) response = requests.get(self.info_url) tree = html.fromstring(response.content) self.title = tree.xpath("//span[@id='structureTitle']/text()") self.reference_title = tree.xpath("//div[@id='primarycitation']/h4/text()") self.reference_DOI = tree.xpath("//li[@id='pubmedDOI']/a/text()") self.resolution = tree.xpath("//ul[contains(@id,'exp_header')]/li[contains(@id,'resolution')]/text()") self.ligands = tree.xpath("//tr[contains(@id,'ligand_row')]//a[contains(@href, '/ligand/')]/text()") self.inchi_keys = tree.xpath("//tr[contains(@id, 'ligand_row')]//td[3]/text()") self.inchi_keys = [key for key in self.inchi_keys if len(key) == 27] def get_file(self, folder="."): file_content = requests.get(self.download_url).text file_name = os.path.join(folder, "{}.pdb".format(self.code)) with open(file_name, "w") as PDB_file: PDB_file.write(file_content) def download_structure(pdb_codes, folder="."): if not os.path.isdir(folder): os.mkdir(folder) for code in pdb_codes: pdb = PDBObject(code) if pdb.title: pdb.get_file(folder) def write_csv(pdb_codes, matched, folder="."): if not os.path.isdir(folder): os.mkdir(folder) file = os.path.join(folder, "summary.csv") for pdb in pdb_codes: df = pd.DataFrame( {'PDB code': pdb.code, 'Title': pdb.title if pdb.title else ["unknown"], 'Resolution': [resolution.replace("Ã…", "Å").replace("&nbsp", "") for resolution in pdb.resolution] if pdb.resolution else ["unknown"], 'Reference Title': pdb.reference_title if pdb.reference_title else ["unknown"], 'Reference DOI': pdb.reference_DOI if pdb.reference_DOI else ["unknown"], 'Ligands': [", ".join(pdb.ligands)] if pdb.ligands else ["none"], 'InChi keys': [", ".join(pdb.inchi_keys)] if pdb.inchi_keys else ["none"], 'Matched substructures': [key for key in pdb.inchi_keys if key in matched] }) df.to_csv(file, mode='a', header=False) return file def main(search_string, download, included, excluded, substructure_file): pdb_codes, folder = pdb_search(search_string) filtered = filter_results(pdb_codes, included, excluded) for f in filtered: if download: print("Downloading structures...") download_structure(f, folder) if substructure_file: matched = substructure_search(substructure_file, f.inchi_keys) file = write_csv(filtered, matched, folder) print("Done! Summary available in {}.".format(file)) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--query', nargs=1, required=True, help="PDB query (string)") parser.add_argument('--download', required=False, default=False, help="Set to 'True', if you want to download associated PDB files") parser.add_argument('--included', required=False, help="PDB title must include...") parser.add_argument('--excluded', required=False, help="PDB title must not include...") parser.add_argument('--substructure', required=False, help="SD file with substructure") args = parser.parse_args() return args.query, args.download, args.included, args.excluded, args.substructure if __name__ == "__main__": query, download, included, excluded, substructure = parse_args() main(query, download, included, excluded, substructure)
35.594937
110
0.648293
17473324feccc38a12a2d7ee0d681ebb0b67fd6d
10,801
py
Python
tests/test_rst_compiler.py
magmax/nikola
4cd4584c574cb5ebff8ca90535498ef47dd05a04
[ "MIT" ]
1
2016-09-12T18:10:07.000Z
2016-09-12T18:10:07.000Z
tests/test_rst_compiler.py
magmax/nikola
4cd4584c574cb5ebff8ca90535498ef47dd05a04
[ "MIT" ]
null
null
null
tests/test_rst_compiler.py
magmax/nikola
4cd4584c574cb5ebff8ca90535498ef47dd05a04
[ "MIT" ]
null
null
null
# coding: utf8 # Author: Rodrigo Bistolfi # Date: 03/2013 """ Test cases for Nikola ReST extensions. A base class ReSTExtensionTestCase provides the tests basic behaivor. Subclasses must override the "sample" class attribute with the ReST markup. The sample will be rendered as HTML using publish_parts() by setUp(). One method is provided for checking the resulting HTML: * assertHTMLContains(element, attributes=None, text=None) The HTML is parsed with lxml for checking against the data you provide. The method takes an element argument, a string representing the *name* of an HTML tag, like "script" or "iframe". We will try to find this tag in the document and perform the tests on it. You can pass a dictionary to the attributes kwarg representing the name and the value of the tag attributes. The text kwarg takes a string argument, which will be tested against the contents of the HTML element. One last caveat: you need to url unquote your urls if you are going to test attributes like "src" or "link", since the HTML rendered by docutils will be always unquoted. """ from __future__ import unicode_literals, absolute_import import os import sys import io try: from io import StringIO except ImportError: from StringIO import StringIO # NOQA import tempfile import docutils from lxml import html import pytest import unittest import nikola.plugins.compile.rest from nikola.plugins.compile.rest import gist from nikola.plugins.compile.rest import vimeo import nikola.plugins.compile.rest.listing from nikola.plugins.compile.rest.doc import Plugin as DocPlugin from nikola.utils import _reload from .base import BaseTestCase, FakeSite class ReSTExtensionTestCase(BaseTestCase): """ Base class for testing ReST extensions """ sample = 'foo' deps = None def setUp(self): self.compiler = nikola.plugins.compile.rest.CompileRest() self.compiler.set_site(FakeSite()) return super(ReSTExtensionTestCase, self).setUp() def basic_test(self): """ Parse cls.sample into a HTML document tree """ self.setHtmlFromRst(self.sample) def setHtmlFromRst(self, rst): """ Create html output from rst string """ tmpdir = tempfile.mkdtemp() inf = os.path.join(tmpdir, 'inf') outf = os.path.join(tmpdir, 'outf') depf = os.path.join(tmpdir, 'outf.dep') with io.open(inf, 'w+', encoding='utf8') as f: f.write(rst) self.html = self.compiler.compile_html(inf, outf) with io.open(outf, 'r', encoding='utf8') as f: self.html = f.read() os.unlink(inf) os.unlink(outf) if os.path.isfile(depf): with io.open(depf, 'r', encoding='utf8') as f: self.assertEqual(self.deps, f.read()) os.unlink(depf) else: self.assertEqual(self.deps, None) os.rmdir(tmpdir) self.html_doc = html.parse(StringIO(self.html)) def assertHTMLContains(self, element, attributes=None, text=None): """ Test if HTML document includes an element with the given attributes and text content """ try: tag = next(self.html_doc.iter(element)) except StopIteration: raise Exception("<{0}> not in {1}".format(element, self.html)) else: if attributes: arg_attrs = set(attributes.items()) tag_attrs = set(tag.items()) self.assertTrue(arg_attrs.issubset(tag_attrs)) if text: self.assertIn(text, tag.text) class ReSTExtensionTestCaseTestCase(ReSTExtensionTestCase): """ Simple test for our base class :) """ sample = '.. raw:: html\n\n <iframe src="foo" height="bar">spam</iframe>' def test_test(self): self.basic_test() self.assertHTMLContains("iframe", attributes={"src": "foo"}, text="spam") self.assertRaises(Exception, self.assertHTMLContains, "eggs", {}) class MathTestCase(ReSTExtensionTestCase): sample = ':math:`e^{ix} = \cos x + i\sin x`' def test_mathjax(self): """ Test that math is outputting MathJax.""" self.basic_test() self.assertHTMLContains("span", attributes={"class": "math"}, text="\(e^{ix} = \cos x + i\sin x\)") class GistTestCase(ReSTExtensionTestCase): """ Test GitHubGist. We will replace get_raw_gist() and get_raw_gist_with_filename() monkeypatching the GitHubGist class for avoiding network dependency """ gist_type = gist.GitHubGist sample = '.. gist:: fake_id\n :file: spam.py' sample_without_filename = '.. gist:: fake_id2' def setUp(self): """ Patch GitHubGist for avoiding network dependency """ super(GistTestCase, self).setUp() self.gist_type.get_raw_gist_with_filename = lambda *_: 'raw_gist_file' self.gist_type.get_raw_gist = lambda *_: "raw_gist" _reload(nikola.plugins.compile.rest) @pytest.mark.skipif(True, reason="This test indefinitely skipped.") def test_gist(self): """ Test the gist directive with filename """ self.setHtmlFromRst(self.sample) output = 'https://gist.github.com/fake_id.js?file=spam.py' self.assertHTMLContains("script", attributes={"src": output}) self.assertHTMLContains("pre", text="raw_gist_file") @pytest.mark.skipif(True, reason="This test indefinitely skipped.") def test_gist_without_filename(self): """ Test the gist directive without filename """ self.setHtmlFromRst(self.sample_without_filename) output = 'https://gist.github.com/fake_id2.js' self.assertHTMLContains("script", attributes={"src": output}) self.assertHTMLContains("pre", text="raw_gist") class GistIntegrationTestCase(ReSTExtensionTestCase): """ Test requests integration. The gist plugin uses requests to fetch gist contents and place it in a noscript tag. """ sample = '.. gist:: 1812835' def test_gist_integration(self): """ Fetch contents of the gist from GH and render in a noscript tag """ self.basic_test() text = ('Be alone, that is the secret of invention: be alone, that is' ' when ideas are born. -- Nikola Tesla') self.assertHTMLContains('pre', text=text) class SlidesTestCase(ReSTExtensionTestCase): """ Slides test case """ sample = '.. slides:: IMG.jpg\n' def test_slides(self): """ Test the slides js generation and img tag creation """ self.basic_test() self.assertHTMLContains("img", attributes={"src": "IMG.jpg"}) class SoundCloudTestCase(ReSTExtensionTestCase): """ SoundCloud test case """ sample = '.. soundcloud:: SID\n :height: 400\n :width: 600' def test_soundcloud(self): """ Test SoundCloud iframe tag generation """ self.basic_test() self.assertHTMLContains("iframe", attributes={"src": ("https://w.soundcloud.com" "/player/?url=http://" "api.soundcloud.com/" "tracks/SID"), "height": "400", "width": "600"}) class VimeoTestCase(ReSTExtensionTestCase): """Vimeo test. Set Vimeo.request_size to False for avoiding querying the Vimeo api over the network """ sample = '.. vimeo:: VID\n :height: 400\n :width: 600' def setUp(self): """ Disable query of the vimeo api over the wire """ vimeo.Vimeo.request_size = False super(VimeoTestCase, self).setUp() _reload(nikola.plugins.compile.rest) def test_vimeo(self): """ Test Vimeo iframe tag generation """ self.basic_test() self.assertHTMLContains("iframe", attributes={"src": ("//player.vimeo.com/" "video/VID"), "height": "400", "width": "600"}) class YoutubeTestCase(ReSTExtensionTestCase): """ Youtube test case """ sample = '.. youtube:: YID\n :height: 400\n :width: 600' def test_youtube(self): """ Test Youtube iframe tag generation """ self.basic_test() self.assertHTMLContains("iframe", attributes={"src": ("//www.youtube.com/" "embed/YID?rel=0&hd=1&" "wmode=transparent"), "height": "400", "width": "600"}) class ListingTestCase(ReSTExtensionTestCase): """ Listing test case and CodeBlock alias tests """ deps = None sample1 = '.. listing:: nikola.py python\n\n' sample2 = '.. code-block:: python\n\n import antigravity' sample3 = '.. sourcecode:: python\n\n import antigravity' # def test_listing(self): # """ Test that we can render a file object contents without errors """ # with cd(os.path.dirname(__file__)): # self.deps = 'listings/nikola.py' # self.setHtmlFromRst(self.sample1) def test_codeblock_alias(self): """ Test CodeBlock aliases """ self.deps = None self.setHtmlFromRst(self.sample2) self.setHtmlFromRst(self.sample3) class DocTestCase(ReSTExtensionTestCase): """ Ref role test case """ sample = 'Sample for testing my :doc:`doesnt-exist-post`' sample1 = 'Sample for testing my :doc:`fake-post`' sample2 = 'Sample for testing my :doc:`titled post <fake-post>`' def setUp(self): # Initialize plugin, register role self.plugin = DocPlugin() self.plugin.set_site(FakeSite()) # Hack to fix leaked state from integration tests try: f = docutils.parsers.rst.roles.role('doc', None, None, None)[0] f.site = FakeSite() except AttributeError: pass return super(DocTestCase, self).setUp() def test_doc_doesnt_exist(self): self.assertRaises(Exception, self.assertHTMLContains, 'anything', {}) def test_doc(self): self.setHtmlFromRst(self.sample1) self.assertHTMLContains('a', text='Fake post', attributes={'href': '/posts/fake-post'}) def test_doc_titled(self): self.setHtmlFromRst(self.sample2) self.assertHTMLContains('a', text='titled post', attributes={'href': '/posts/fake-post'}) if __name__ == "__main__": unittest.main()
35.529605
79
0.612351
3efccdbaba59e551984c10ea06ec55e1f47aaf75
1,008
py
Python
resources/store.py
mahmoudtokura/flask-rest-api
c979286e8a752aa56f841bbe9eafdf6052c4479e
[ "MIT" ]
null
null
null
resources/store.py
mahmoudtokura/flask-rest-api
c979286e8a752aa56f841bbe9eafdf6052c4479e
[ "MIT" ]
null
null
null
resources/store.py
mahmoudtokura/flask-rest-api
c979286e8a752aa56f841bbe9eafdf6052c4479e
[ "MIT" ]
null
null
null
from flask_restful import Resource from models.storemodel import StoreModel class Store(Resource): def get(self, name): store = StoreModel.find_by_name(name) if store: return store.json() else: return {"message": "Store not found"}, 404 def post(self, name): store = StoreModel.find_by_name(name) if store: return {"message": "Store name taken"}, 400 store = StoreModel(name=name) try: store.save_to_db() except: return {"message": "Error creating store"}, 500 return store.json(), 201 def delete(self, name): store = StoreModel.find_by_name(name) if store: store.delete_from_db() return {"message": "Store deleted"} return {"message": "Store does not exist"} class StoreList(Resource): def get(self): stores = StoreModel.query.all() return {"Stores": [store.json() for store in stores]}
26.526316
61
0.584325
dbfea6a896d55680ab5c5ea1e5b8d093ffe1ba42
9,442
py
Python
pajbot/modules/predict.py
gigglearrows/anniesbot
fb9fb92b827c6c78efebb415f10d015216fb3ba2
[ "MIT" ]
null
null
null
pajbot/modules/predict.py
gigglearrows/anniesbot
fb9fb92b827c6c78efebb415f10d015216fb3ba2
[ "MIT" ]
1
2015-12-24T02:01:21.000Z
2018-02-19T01:08:16.000Z
pajbot/modules/predict.py
gigglearrows/anniesbot
fb9fb92b827c6c78efebb415f10d015216fb3ba2
[ "MIT" ]
null
null
null
import logging import datetime from pajbot.modules import BaseModule from pajbot.models.db import DBManager, Base from pajbot.models.command import Command, CommandExample import sqlalchemy from sqlalchemy import orm from sqlalchemy.orm import relationship, joinedload, backref from sqlalchemy import Column, Integer, Boolean, DateTime, ForeignKey, String from sqlalchemy.dialects.mysql import TEXT log = logging.getLogger(__name__) class PredictionRun(Base): __tablename__ = 'tb_prediction_run' id = Column(Integer, primary_key=True) winner_id = Column(Integer, nullable=True) started = Column(DateTime, nullable=False) ended = Column(DateTime, nullable=True) open = Column(Boolean, nullable=False, default=True, server_default=sqlalchemy.sql.expression.true()) def __init__(self): self.id = None self.winner_id = None self.started = datetime.datetime.now() self.ended = None class PredictionRunEntry(Base): __tablename__ = 'tb_prediction_run_entry' id = Column(Integer, primary_key=True) prediction_run_id = Column(Integer, ForeignKey('tb_prediction_run.id'), nullable=False) user_id = Column(Integer, nullable=False) prediction = Column(Integer, nullable=False) user = relationship('User', cascade='', uselist=False, lazy='noload', foreign_keys='User.id', primaryjoin='User.id==PredictionRunEntry.user_id') def __init__(self, prediction_run_id, user_id, prediction): self.id = None self.prediction_run_id = prediction_run_id self.user_id = user_id self.prediction = prediction class PredictModule(BaseModule): ID = __name__.split('.')[-1] NAME = 'Prediction module' DESCRIPTION = 'Handles predictions of arena wins' def load_commands(self, **options): self.commands['predict'] = Command.raw_command(self.predict, delay_all=0, delay_user=10, sub_only=True, can_execute_with_whisper=True, description='Predict how many wins will occur in the Arena challenge') self.commands['newpredict'] = Command.raw_command(self.new_predict, delay_all=10, delay_user=10, description='Starts a new 100in10 arena run', level=750) self.commands['endpredict'] = Command.raw_command(self.end_predict, delay_all=10, delay_user=10, description='Ends a 100in10 arena run', level=750) self.commands['closepredict'] = Command.raw_command(self.close_predict, delay_all=10, delay_user=10, description='Close submissions to the latest 100in10 arena run', level=750) def predict(self, **options): bot = options['bot'] message = options['message'] source = options['source'] if source.id is None: log.warn('Source ID is NONE, attempting to salvage by commiting users to the database.') bot.users.commit() log.info('New ID is: {}'.format(source.id)) prediction_number = None if message is None or len(message) < 0: # bot.whisper(source.username, 'Missing argument to !predict command. Usage: !predict 69 where 69 is a number between 0 and 120 (inclusive).') bot.say('{}, Missing argument to !predict command. Usage: !predict 69 where 69 is a number between 0 and 120 (inclusive).'.format(source.username_raw)) return True try: prediction_number = int(message.split(' ')[0]) except (KeyError, ValueError): # bot.whisper(source.username, 'Invalid argument to !predict command. Usage: !predict 69 where 69 is a number between 0 and 120 (inclusive).') bot.say('{}, Invalid argument to !predict command. Usage: !predict 69 where 69 is a number between 0 and 120 (inclusive).'.format(source.username_raw)) return True if prediction_number < 0 or prediction_number > 120: # bot.whisper(source.username, 'Invalid argument to !predict command. The prediction must be a value between 0 and 120 (inclusive).') bot.say('{}, Invalid argument to !predict command. Usage: !predict 69 where 69 is a number between 0 and 120 (inclusive).'.format(source.username_raw)) return True with DBManager.create_session_scope() as db_session: # Get the current open prediction current_prediction_run = db_session.query(PredictionRun).filter_by(ended=None, open=True).one_or_none() if current_prediction_run is None: # bot.whisper(source.username, 'There is no arena run active that accepts predictions right now.') bot.say('{}, There is no arena run active that accepts predictions right now.'.format(source.username_raw)) return True user_entry = db_session.query(PredictionRunEntry).filter_by(prediction_run_id=current_prediction_run.id, user_id=source.id).one_or_none() if user_entry is not None: old_prediction_num = user_entry.prediction user_entry.prediction = prediction_number # bot.whisper(source.username, 'Updated your prediction for run {} from {} to {}'.format( # current_prediction_run.id, old_prediction_num, prediction_number)) bot.say('{}, Updated your prediction for run {} from {} to {}'.format( source.username_raw, current_prediction_run.id, old_prediction_num, prediction_number)) else: user_entry = PredictionRunEntry(current_prediction_run.id, source.id, prediction_number) db_session.add(user_entry) # bot.whisper(source.username, 'Your prediction for {} wins in run {} has been submitted.'.format( # prediction_number, current_prediction_run.id)) bot.say('{}, Your prediction for {} wins in run {} has been submitted.'.format( source.username_raw, prediction_number, current_prediction_run.id)) def new_predict(self, **options): bot = options['bot'] source = options['source'] with DBManager.create_session_scope() as db_session: # Check if there is already an open prediction current_prediction_run = db_session.query(PredictionRun).filter_by(ended=None, open=True).one_or_none() if current_prediction_run is not None: # bot.whisper(source.username, 'There is already a prediction run accepting submissions, use !closepredict to close submissions for that prediction.') bot.say('{}, There is already a prediction run accepting submissions, use !closepredict to close submissions for that prediction.'.format(source.username_raw)) return True new_prediction_run = PredictionRun() db_session.add(new_prediction_run) db_session.commit() # bot.whisper(source.username, 'A new prediction run has been started, and is now accepting submissions. Prediction run ID: {}'.format(new_prediction_run.id)) bot.say('A new prediction run has been started, and is now accepting submissions. Prediction run ID: {}'.format(new_prediction_run.id)) def end_predict(self, **options): bot = options['bot'] source = options['source'] with DBManager.create_session_scope() as db_session: # Check if there is a non-ended, but closed prediction run we can end current_prediction_run = db_session.query(PredictionRun).filter_by(ended=None, open=False).one_or_none() if current_prediction_run is None: # bot.whisper(source.username, 'There is no closed prediction runs we can end right now.') bot.say('{}, There is no closed prediction runs we can end right now.'.format(source.username_raw)) return True current_prediction_run.ended = datetime.datetime.now() # bot.whisper(source.username, 'Prediction run with ID {} has been closed.'.format(current_prediction_run.id)) bot.say('Prediction run with ID {} has been closed.'.format(current_prediction_run.id)) def close_predict(self, **options): bot = options['bot'] source = options['source'] with DBManager.create_session_scope() as db_session: # Check if there is a non-ended, but closed prediction run we can end current_prediction_run = db_session.query(PredictionRun).filter_by(ended=None, open=True).one_or_none() if current_prediction_run is None: # bot.whisper(source.username, 'There is no open prediction runs we can close right now.') bot.say('{}, There is no open prediction runs we can close right now.'.format(source.username_raw)) return True current_prediction_run.open = False # bot.whisper(source.username, 'Predictions are no longer accepted for prediction run {}'.format(current_prediction_run.id)) bot.say('{}, Predictions are no longer accepted for prediction run {}'.format(source.username_raw, current_prediction_run.id))
50.491979
175
0.654522
9195f5e986eb857cdf9a95aa4ae87e1fd72afe7d
1,127
py
Python
galaxy_utils/sequence/scripts/fastq_paired_end_splitter.py
galaxyproject/sequence_utils
f7e8cd163d27cb6c16a86ae63e5912ffe32e92ba
[ "CC-BY-3.0" ]
5
2015-10-31T11:28:50.000Z
2020-09-08T20:13:48.000Z
galaxy_utils/sequence/scripts/fastq_paired_end_splitter.py
galaxyproject/sequence_utils
f7e8cd163d27cb6c16a86ae63e5912ffe32e92ba
[ "CC-BY-3.0" ]
22
2015-12-09T00:13:48.000Z
2020-02-18T12:25:38.000Z
galaxy_utils/sequence/scripts/fastq_paired_end_splitter.py
galaxyproject/sequence_utils
f7e8cd163d27cb6c16a86ae63e5912ffe32e92ba
[ "CC-BY-3.0" ]
8
2015-10-21T13:22:18.000Z
2020-02-07T09:54:00.000Z
# Dan Blankenberg import sys from galaxy_utils.sequence.fastq import ( fastqReader, fastqSplitter, fastqWriter, ) def main(): # Read command line arguments input_filename = sys.argv[1] input_type = sys.argv[2] or 'sanger' output1_filename = sys.argv[3] output2_filename = sys.argv[4] splitter = fastqSplitter() i = None skip_count = 0 writer1 = fastqWriter(path=output1_filename, format=input_type) writer2 = fastqWriter(path=output2_filename, format=input_type) reader = fastqReader(path=input_filename, format=input_type) with writer1, writer2, reader: for i, fastq_read in enumerate(reader): read1, read2 = splitter.split(fastq_read) if read1 and read2: writer1.write(read1) writer2.write(read2) else: skip_count += 1 if i is None: print("Your file contains no valid FASTQ reads.") else: print(f'Split {i - skip_count + 1} of {i + 1} reads ({float(i - skip_count + 1) / float(i + 1) * 100.0:.2f}%).') if __name__ == "__main__": main()
26.209302
120
0.62378
3791acafa95695c51dff40a3519b9d86b1e08a8f
1,909
py
Python
benchmark/startPyquil2796.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
benchmark/startPyquil2796.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
benchmark/startPyquil2796.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
# qubit number=4 # total number=43 import pyquil from pyquil.api import local_forest_runtime, QVMConnection from pyquil import Program, get_qc from pyquil.gates import * import numpy as np conn = QVMConnection() def make_circuit()-> Program: prog = Program() # circuit begin prog += H(3) # number=23 prog += RX(-0.6848671984825748,1) # number=26 prog += CZ(0,3) # number=24 prog += H(3) # number=25 prog += H(3) # number=37 prog += CZ(0,3) # number=38 prog += H(3) # number=39 prog += CNOT(0,3) # number=30 prog += CNOT(0,3) # number=40 prog += X(3) # number=41 prog += CNOT(0,3) # number=42 prog += CNOT(0,3) # number=32 prog += H(3) # number=33 prog += CZ(0,3) # number=34 prog += H(3) # number=35 prog += CNOT(0,3) # number=15 prog += H(1) # number=2 prog += H(2) # number=3 prog += H(3) # number=4 prog += Y(3) # number=12 prog += H(0) # number=5 prog += H(1) # number=6 prog += H(2) # number=7 prog += CNOT(3,0) # number=20 prog += Z(3) # number=21 prog += H(0) # number=27 prog += CZ(3,0) # number=28 prog += H(0) # number=29 prog += H(3) # number=8 prog += H(0) # number=9 prog += Y(2) # number=10 prog += H(1) # number=36 prog += Y(2) # number=11 # circuit end return prog def summrise_results(bitstrings) -> dict: d = {} for l in bitstrings: if d.get(l) is None: d[l] = 1 else: d[l] = d[l] + 1 return d if __name__ == '__main__': prog = make_circuit() qvm = get_qc('4q-qvm') results = qvm.run_and_measure(prog,1024) bitstrings = np.vstack([results[i] for i in qvm.qubits()]).T bitstrings = [''.join(map(str, l)) for l in bitstrings] writefile = open("../data/startPyquil2796.csv","w") print(summrise_results(bitstrings),file=writefile) writefile.close()
25.453333
64
0.563646
17772207bdc95492a90498ea50aa17ce67006318
185
py
Python
sentimental_analysis/audio/test_AudioAnalyzer.py
se20z09/p3_celt
44925fad94d412d1e48d0319d793e7a5b5b34288
[ "MIT" ]
null
null
null
sentimental_analysis/audio/test_AudioAnalyzer.py
se20z09/p3_celt
44925fad94d412d1e48d0319d793e7a5b5b34288
[ "MIT" ]
19
2020-09-28T21:14:08.000Z
2020-10-27T20:20:33.000Z
sentimental_analysis/audio/test_AudioAnalyzer.py
se20z09/p3_celt
44925fad94d412d1e48d0319d793e7a5b5b34288
[ "MIT" ]
10
2020-09-29T21:52:36.000Z
2021-09-29T01:02:11.000Z
from pydoc import text def speech_to_text(self, filename): return text def sentiment_analyzer_scores(analyser=None): assert score==analyser.polarity_scores(sentence)
20.555556
53
0.756757
fee70c77082862f18b222bc0c6a587726ee059c9
5,342
py
Python
image_classification/ConvMLP/config.py
gdj8510/PaddleViT
6a2c063ddbd7e1d0f271eb4699516493e3fd327f
[ "Apache-2.0" ]
1
2022-01-12T00:46:53.000Z
2022-01-12T00:46:53.000Z
image_classification/ConvMLP/config.py
gdj8510/PaddleViT
6a2c063ddbd7e1d0f271eb4699516493e3fd327f
[ "Apache-2.0" ]
null
null
null
image_classification/ConvMLP/config.py
gdj8510/PaddleViT
6a2c063ddbd7e1d0f271eb4699516493e3fd327f
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2021 PPViT Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Configuration Configuration for data, model archtecture, and training, etc. Config can be set by .yaml file or by argparser(limited usage) """ import os from yacs.config import CfgNode as CN import yaml _C = CN() _C.BASE = [''] # data settings _C.DATA = CN() _C.DATA.BATCH_SIZE = 8 #1024 batch_size for single GPU _C.DATA.BATCH_SIZE_EVAL = 8 #1024 batch_size for single GPU _C.DATA.DATA_PATH = '/dataset/imagenet/' # path to dataset _C.DATA.DATASET = 'imagenet2012' # dataset name _C.DATA.IMAGE_SIZE = 224 # input image size _C.DATA.CROP_PCT = 0.9 # input image scale ratio, scale is applied before centercrop in eval mode _C.DATA.NUM_WORKERS = 4 # number of data loading threads _C.DATA.IMAGENET_MEAN = [0.485, 0.456, 0.406] # [0.5, 0.5, 0.5] _C.DATA.IMAGENET_STD = [0.229, 0.224, 0.225] # [0.5, 0.5, 0.5] # model settings _C.MODEL = CN() _C.MODEL.TYPE = 'ConvMLP' _C.MODEL.NAME = 'ConvMLP' _C.MODEL.RESUME = None _C.MODEL.PRETRAINED = None _C.MODEL.NUM_CLASSES = 1000 _C.MODEL.DROPOUT = 0.0 _C.MODEL.ATTENTION_DROPOUT = 0.0 _C.MODEL.DROP_PATH = 0.1 # transformer settings _C.MODEL.MIXER = CN() _C.MODEL.MIXER.BLOCKS = [2, 4, 2] _C.MODEL.MIXER.DIMS = [128, 256, 512] _C.MODEL.MIXER.MLP_RATIOS = [2, 2, 2] _C.MODEL.MIXER.CHANNELS = 64 _C.MODEL.MIXER.N_CONV_BLOCKS = 2 # training settings _C.TRAIN = CN() _C.TRAIN.LAST_EPOCH = 0 _C.TRAIN.NUM_EPOCHS = 300 _C.TRAIN.WARMUP_EPOCHS = 20 _C.TRAIN.WEIGHT_DECAY = 0.05 _C.TRAIN.BASE_LR = 0.001 _C.TRAIN.WARMUP_START_LR = 5e-7 _C.TRAIN.END_LR = 5e-6 _C.TRAIN.GRAD_CLIP = 5.0 _C.TRAIN.ACCUM_ITER = 1 _C.TRAIN.LINEAR_SCALED_LR = None _C.TRAIN.LR_SCHEDULER = CN() _C.TRAIN.LR_SCHEDULER.NAME = 'warmupcosine' _C.TRAIN.LR_SCHEDULER.MILESTONES = "30, 60, 90" # only used in StepLRScheduler _C.TRAIN.LR_SCHEDULER.DECAY_EPOCHS = 30 # only used in StepLRScheduler _C.TRAIN.LR_SCHEDULER.DECAY_RATE = 0.1 # only used in StepLRScheduler _C.TRAIN.OPTIMIZER = CN() _C.TRAIN.OPTIMIZER.NAME = 'AdamW' _C.TRAIN.OPTIMIZER.EPS = 1e-8 _C.TRAIN.OPTIMIZER.BETAS = (0.9, 0.999) # for adamW _C.TRAIN.OPTIMIZER.MOMENTUM = 0.9 # train augmentation _C.TRAIN.MIXUP_ALPHA = 0.8 _C.TRAIN.CUTMIX_ALPHA = 1.0 _C.TRAIN.CUTMIX_MINMAX = None _C.TRAIN.MIXUP_PROB = 1.0 _C.TRAIN.MIXUP_SWITCH_PROB = 0.5 _C.TRAIN.MIXUP_MODE = 'batch' _C.TRAIN.SMOOTHING = 0.1 _C.TRAIN.COLOR_JITTER = 0.4 _C.TRAIN.AUTO_AUGMENT = False #'rand-m9-mstd0.5-inc1' _C.TRAIN.RAND_AUGMENT = False _C.TRAIN.RANDOM_ERASE_PROB = 0.25 _C.TRAIN.RANDOM_ERASE_MODE = 'pixel' _C.TRAIN.RANDOM_ERASE_COUNT = 1 _C.TRAIN.RANDOM_ERASE_SPLIT = False # misc _C.SAVE = "./output" _C.TAG = "default" _C.SAVE_FREQ = 1 # freq to save chpt _C.REPORT_FREQ = 50 # freq to logging info _C.VALIDATE_FREQ = 20 # freq to do validation _C.SEED = 0 _C.EVAL = False # run evaluation only _C.AMP = False # mix precision training _C.LOCAL_RANK = 0 _C.NGPUS = -1 def _update_config_from_file(config, cfg_file): config.defrost() with open(cfg_file, 'r') as infile: yaml_cfg = yaml.load(infile, Loader=yaml.FullLoader) for cfg in yaml_cfg.setdefault('BASE', ['']): if cfg: _update_config_from_file( config, os.path.join(os.path.dirname(cfg_file), cfg) ) print('merging config from {}'.format(cfg_file)) config.merge_from_file(cfg_file) config.freeze() def update_config(config, args): """Update config by ArgumentParser Args: args: ArgumentParser contains options Return: config: updated config """ if args.cfg: _update_config_from_file(config, args.cfg) config.defrost() if args.dataset: config.DATA.DATASET = args.dataset if args.batch_size: config.DATA.BATCH_SIZE = args.batch_size if args.image_size: config.DATA.IMAGE_SIZE = args.image_size if args.num_classes: config.MODEL.NUM_CLASSES = args.num_classes if args.data_path: config.DATA.DATA_PATH = args.data_path if args.output is not None: config.SAVE = args.output if args.ngpus: config.NGPUS = args.ngpus if args.eval: config.EVAL = True config.DATA.BATCH_SIZE_EVAL = args.batch_size if args.pretrained: config.MODEL.PRETRAINED = args.pretrained if args.resume: config.MODEL.RESUME = args.resume if args.last_epoch: config.TRAIN.LAST_EPOCH = args.last_epoch if args.amp: # only during training if config.EVAL is True: config.AMP = False else: config.AMP = True #config.freeze() return config def get_config(cfg_file=None): """Return a clone of config or load from yaml file""" config = _C.clone() if cfg_file: _update_config_from_file(config, cfg_file) return config
29.843575
97
0.703482
a650e241562c87d9e77c8865c8cb037b1b4fe1be
242
py
Python
python-upbit/basic/unit12/01.py
sharebook-kr/learningspoons-bootcamp-finance
0288f3f3b39f54420e4e9987f1de12892dc680ea
[ "MIT" ]
9
2020-10-25T15:13:32.000Z
2022-03-26T11:27:21.000Z
python-upbit/basic/unit12/01.py
sharebook-kr/learningspoons-bootcamp-finance
0288f3f3b39f54420e4e9987f1de12892dc680ea
[ "MIT" ]
null
null
null
python-upbit/basic/unit12/01.py
sharebook-kr/learningspoons-bootcamp-finance
0288f3f3b39f54420e4e9987f1de12892dc680ea
[ "MIT" ]
7
2021-03-01T11:06:45.000Z
2022-03-14T07:06:04.000Z
import pyupbit import pprint f = open("upbit.txt") lines = f.readlines() access = lines[0].strip() secret = lines[1].strip() f.close() upbit = pyupbit.Upbit(access, secret) resp = upbit.buy_market_order("KRW-XRP", 10000) pprint.pprint(resp)
20.166667
47
0.719008
2b2eac080b6ec01006676a63defb95793630017f
38,582
py
Python
src/robot/libraries/Process.py
ncbi/robotframework
f5426d54f92dfa884615cea4eae08023b23a1b2e
[ "ECL-2.0", "Apache-2.0" ]
4
2016-01-13T13:48:28.000Z
2021-09-05T07:14:07.000Z
src/robot/libraries/Process.py
ncbi/robotframework
f5426d54f92dfa884615cea4eae08023b23a1b2e
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
src/robot/libraries/Process.py
ncbi/robotframework
f5426d54f92dfa884615cea4eae08023b23a1b2e
[ "ECL-2.0", "Apache-2.0" ]
2
2018-01-18T22:00:17.000Z
2018-07-26T10:53:00.000Z
# Copyright 2008-2014 Nokia Solutions and Networks # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import with_statement import ctypes import os import subprocess import sys import time import signal as signal_module from robot.utils import (ConnectionCache, abspath, encode_to_system, decode_output, secs_to_timestr, timestr_to_secs) from robot.version import get_version from robot.api import logger if os.sep == '/' and sys.platform.startswith('java'): encode_to_system = lambda string: unicode(string) class Process(object): """Robot Framework test library for running processes. This library utilizes Python's [http://docs.python.org/2/library/subprocess.html|subprocess] module and its [http://docs.python.org/2/library/subprocess.html#subprocess.Popen|Popen] class. The library has following main usages: - Running processes in system and waiting for their completion using `Run Process` keyword. - Starting processes on background using `Start Process`. - Waiting started process to complete using `Wait For Process` or stopping them with `Terminate Process` or `Terminate All Processes`. This library is new in Robot Framework 2.8. == Table of contents == - `Specifying command and arguments` - `Process configuration` - `Active process` - `Result object` - `Boolean arguments` - `Using with OperatingSystem library` - `Example` - `Shortcuts` - `Keywords` = Specifying command and arguments = Both `Run Process` and `Start Process` accept the command to execute and all arguments passed to it as separate arguments. This is convenient to use and also allows these keywords to automatically escape possible spaces and other special characters in the command or arguments. When `running processes in shell`, it is also possible to give the whole command to execute as a single string. The command can then contain multiple commands, for example, connected with pipes. When using this approach the caller is responsible on escaping. Examples: | `Run Process` | ${progdir}${/}prog.py | first arg | second | | `Run Process` | script1.sh arg && script2.sh | shell=yes | cwd=${progdir} | Starting from Robot Framework 2.8.6, possible non-string arguments are converted to strings automatically. = Process configuration = `Run Process` and `Start Process` keywords can be configured using optional `**configuration` keyword arguments. Configuration arguments must be given after other arguments passed to these keywords and must use syntax like `name=value`. Available configuration arguments are listed below and discussed further in sections afterwards. | = Name = | = Explanation = | | shell | Specifies whether to run the command in shell or not | | cwd | Specifies the working directory. | | env | Specifies environment variables given to the process. | | env:<name> | Overrides the named environment variable(s) only. | | stdout | Path of a file where to write standard output. | | stderr | Path of a file where to write standard error. | | alias | Alias given to the process. | Note that because `**configuration` is passed using `name=value` syntax, possible equal signs in other arguments passed to `Run Process` and `Start Process` must be escaped with a backslash like `name\\=value`. See `Run Process` for an example. == Running processes in shell == The `shell` argument specifies whether to run the process in a shell or not. By default shell is not used, which means that shell specific commands, like `copy` and `dir` on Windows, are not available. Giving the `shell` argument any non-false value, such as `shell=True`, changes the program to be executed in a shell. It allows using the shell capabilities, but can also make the process invocation operating system dependent. When using a shell it is possible to give the whole command to execute as a single string. See `Specifying command and arguments` section for examples and more details in general. == Current working directory == By default the child process will be executed in the same directory as the parent process, the process running tests, is executed. This can be changed by giving an alternative location using the `cwd` argument. Forward slashes in the given path are automatically converted to backslashes on Windows. `Standard output and error streams`, when redirected to files, are also relative to the current working directory possibly set using the `cwd` argument. Example: | `Run Process` | prog.exe | cwd=${ROOT}/directory | stdout=stdout.txt | == Environment variables == By default the child process will get a copy of the parent process's environment variables. The `env` argument can be used to give the child a custom environment as a Python dictionary. If there is a need to specify only certain environment variable, it is possible to use the `env:<name>=<value>` format to set or override only that named variables. It is also possible to use these two approaches together. Examples: | `Run Process` | program | env=${environ} | | `Run Process` | program | env:http_proxy=10.144.1.10:8080 | env:PATH=%{PATH}${:}${PROGDIR} | | `Run Process` | program | env=${environ} | env:EXTRA=value | == Standard output and error streams == By default processes are run so that their standard output and standard error streams are kept in the memory. This works fine normally, but if there is a lot of output, the output buffers may get full and the program can hang. To avoid output buffers getting full, it is possible to use `stdout` and `stderr` arguments to specify files on the file system where to redirect the outputs. This can also be useful if other processes or other keywords need to read or manipulate the outputs somehow. Given `stdout` and `stderr` paths are relative to the `current working directory`. Forward slashes in the given paths are automatically converted to backslashes on Windows. As a special feature, it is possible to redirect the standard error to the standard output by using `stderr=STDOUT`. Regardless are outputs redirected to files or not, they are accessible through the `result object` returned when the process ends. Examples: | ${result} = | `Run Process` | program | stdout=${TEMPDIR}/stdout.txt | stderr=${TEMPDIR}/stderr.txt | | `Log Many` | stdout: ${result.stdout} | stderr: ${result.stderr} | | ${result} = | `Run Process` | program | stderr=STDOUT | | `Log` | all output: ${result.stdout} | Note that the created output files are not automatically removed after the test run. The user is responsible to remove them if needed. == Alias == A custom name given to the process that can be used when selecting the `active process`. Examples: | `Start Process` | program | alias=example | | `Run Process` | python | -c | print 'hello' | alias=hello | = Active process = The test library keeps record which of the started processes is currently active. By default it is latest process started with `Start Process`, but `Switch Process` can be used to select a different one. Using `Run Process` does not affect the active process. The keywords that operate on started processes will use the active process by default, but it is possible to explicitly select a different process using the `handle` argument. The handle can be the identifier returned by `Start Process` or an `alias` explicitly given to `Start Process` or `Run Process`. = Result object = `Run Process`, `Wait For Process` and `Terminate Process` keywords return a result object that contains information about the process execution as its attributes. The same result object, or some of its attributes, can also be get using `Get Process Result` keyword. Attributes available in the object are documented in the table below. | = Attribute = | = Explanation = | | rc | Return code of the process as an integer. | | stdout | Contents of the standard output stream. | | stderr | Contents of the standard error stream. | | stdout_path | Path where stdout was redirected or `None` if not redirected. | | stderr_path | Path where stderr was redirected or `None` if not redirected. | Example: | ${result} = | `Run Process` | program | | `Should Be Equal As Integers` | ${result.rc} | 0 | | `Should Match` | ${result.stdout} | Some t?xt* | | `Should Be Empty` | ${result.stderr} | | | ${stdout} = | `Get File` | ${result.stdout_path} | | `Should Be Equal` | ${stdout} | ${result.stdout} | | `File Should Be Empty` | ${result.stderr_path} | | = Boolean arguments = Some keywords accept arguments that are handled as Boolean values. If such an argument is given as a string, it is considered false if it is either empty or case-insensitively equal to `false`. Other strings are considered true regardless what they contain, and other argument types are tested using same [http://docs.python.org/2/library/stdtypes.html#truth-value-testing|rules as in Python]. True examples: | `Terminate Process` | kill=True | # Strings are generally true. | | `Terminate Process` | kill=yes | # Same as above. | | `Terminate Process` | kill=${TRUE} | # Python `True` is true. | | `Terminate Process` | kill=${42} | # Numbers other than 0 are true. | False examples: | `Terminate Process` | kill=False | # String `False` is false. | | `Terminate Process` | kill=${EMPTY} | # Empty string is false. | | `Terminate Process` | kill=${FALSE} | # Python `False` is false. | | `Terminate Process` | kill=${0} | # Number 0 is false. | Note that prior to Robot Framework 2.8 all non-empty strings, including `false`, were considered true. = Using with OperatingSystem library = The OperatingSystem library also contains keywords for running processes. They are not as flexible as the keywords provided by this library, and thus not recommended to be used anymore. They may eventually even be deprecated. There is a name collision because both of these libraries have `Start Process` and `Switch Process` keywords. This is handled so that if both libraries are imported, the keywords in the Process library are used by default. If there is a need to use the OperatingSystem variants, it is possible to use `OperatingSystem.Start Process` syntax or use the `BuiltIn` keyword `Set Library Search Order` to change the priority. Other keywords in the OperatingSystem library can be used freely with keywords in the Process library. = Example = | ***** Settings ***** | Library Process | Suite Teardown `Terminate All Processes` kill=True | | ***** Test Cases ***** | Example | `Start Process` program arg1 arg2 alias=First | ${handle} = `Start Process` command.sh arg | command2.sh shell=True cwd=/path | ${result} = `Run Process` ${CURDIR}/script.py | `Should Not Contain` ${result.stdout} FAIL | `Terminate Process` ${handle} | ${result} = `Wait For Process` First | `Should Be Equal As Integers` ${result.rc} 0 """ ROBOT_LIBRARY_SCOPE = 'GLOBAL' ROBOT_LIBRARY_VERSION = get_version() TERMINATE_TIMEOUT = 30 KILL_TIMEOUT = 10 def __init__(self): self._processes = ConnectionCache('No active process.') self._results = {} def run_process(self, command, *arguments, **configuration): """Runs a process and waits for it to complete. `command` and `*arguments` specify the command to execute and arguments passed to it. See `Specifying command and arguments` for more details. `**configuration` contains additional configuration related to starting processes and waiting for them to finish. See `Process configuration` for more details about configuration related to starting processes. Configuration related to waiting for processes consists of `timeout` and `on_timeout` arguments that have same semantics as with `Wait For Process` keyword. By default there is no timeout, and if timeout is defined the default action on timeout is `terminate`. Returns a `result object` containing information about the execution. Note that possible equal signs in `*arguments` must be escaped with a backslash (e.g. `name\\=value`) to avoid them to be passed in as `**configuration`. Examples: | ${result} = | Run Process | python | -c | print 'Hello, world!' | | Should Be Equal | ${result.stdout} | Hello, world! | | ${result} = | Run Process | ${command} | stderr=STDOUT | timeout=10s | | ${result} = | Run Process | ${command} | timeout=1min | on_timeout=continue | | ${result} = | Run Process | java -Dname\\=value Example | shell=True | cwd=${EXAMPLE} | This command does not change the `active process`. `timeout` and `on_timeout` arguments are new in Robot Framework 2.8.4. """ current = self._processes.current timeout = configuration.pop('timeout', None) on_timeout = configuration.pop('on_timeout', 'terminate') try: handle = self.start_process(command, *arguments, **configuration) return self.wait_for_process(handle, timeout, on_timeout) finally: self._processes.current = current def start_process(self, command, *arguments, **configuration): """Starts a new process on background. See `Specifying command and arguments` and `Process configuration` for more information about the arguments, and `Run Process` keyword for related examples. Makes the started process new `active process`. Returns an identifier that can be used as a handle to active the started process if needed. Starting from Robot Framework 2.8.5, processes are started so that they create a new process group. This allows sending signals to and terminating also possible child processes. """ config = ProcessConfig(**configuration) executable_command = self._cmd(command, arguments, config.shell) logger.info('Starting process:\n%s' % executable_command) logger.debug('Process configuration:\n%s' % config) process = subprocess.Popen(executable_command, **config.full_config) self._results[process] = ExecutionResult(process, config.stdout_stream, config.stderr_stream) return self._processes.register(process, alias=config.alias) def _cmd(self, command, args, use_shell): command = [encode_to_system(item) for item in [command] + list(args)] if not use_shell: return command if args: return subprocess.list2cmdline(command) return command[0] def is_process_running(self, handle=None): """Checks is the process running or not. If `handle` is not given, uses the current `active process`. Returns `True` if the process is still running and `False` otherwise. """ return self._processes[handle].poll() is None def process_should_be_running(self, handle=None, error_message='Process is not running.'): """Verifies that the process is running. If `handle` is not given, uses the current `active process`. Fails if the process has stopped. """ if not self.is_process_running(handle): raise AssertionError(error_message) def process_should_be_stopped(self, handle=None, error_message='Process is running.'): """Verifies that the process is not running. If `handle` is not given, uses the current `active process`. Fails if the process is still running. """ if self.is_process_running(handle): raise AssertionError(error_message) def wait_for_process(self, handle=None, timeout=None, on_timeout='continue'): """Waits for the process to complete or to reach the given timeout. The process to wait for must have been started earlier with `Start Process`. If `handle` is not given, uses the current `active process`. `timeout` defines the maximum time to wait for the process. It is interpreted according to Robot Framework User Guide Appendix `Time Format`, for example, '42', '42 s', or '1 minute 30 seconds'. `on_timeout` defines what to do if the timeout occurs. Possible values and corresponding actions are explained in the table below. Notice that reaching the timeout never fails the test. | = Value = | = Action = | | `continue` | The process is left running (default). | | `terminate` | The process is gracefully terminated. | | `kill` | The process is forcefully stopped. | See `Terminate Process` keyword for more details how processes are terminated and killed. If the process ends before the timeout or it is terminated or killed, this keyword returns a `result object` containing information about the execution. If the process is left running, Python `None` is returned instead. Examples: | # Process ends cleanly | | | | ${result} = | Wait For Process | example | | Process Should Be Stopped | example | | | Should Be Equal As Integers | ${result.rc} | 0 | | # Process does not end | | | | ${result} = | Wait For Process | timeout=42 secs | | Process Should Be Running | | | | Should Be Equal | ${result} | ${NONE} | | # Kill non-ending process | | | | ${result} = | Wait For Process | timeout=1min 30s | on_timeout=kill | | Process Should Be Stopped | | | | Should Be Equal As Integers | ${result.rc} | -9 | `timeout` and `on_timeout` are new in Robot Framework 2.8.2. """ process = self._processes[handle] logger.info('Waiting for process to complete.') if timeout: timeout = timestr_to_secs(timeout) if not self._process_is_stopped(process, timeout): logger.info('Process did not complete in %s.' % secs_to_timestr(timeout)) return self._manage_process_timeout(handle, on_timeout.lower()) return self._wait(process) def _manage_process_timeout(self, handle, on_timeout): if on_timeout == 'terminate': return self.terminate_process(handle) elif on_timeout == 'kill': return self.terminate_process(handle, kill=True) else: logger.info('Leaving process intact.') return None def _wait(self, process): result = self._results[process] result.rc = process.wait() or 0 result.close_streams() logger.info('Process completed.') return result def terminate_process(self, handle=None, kill=False): """Stops the process gracefully or forcefully. If `handle` is not given, uses the current `active process`. Waits for the process to stop after terminating it. Returns a `result object` containing information about the execution similarly as `Wait For Process`. On Unix-like machines, by default, first tries to terminate the process group gracefully, but forcefully kills it if it does not stop in 30 seconds. Kills the process group immediately if the `kill` argument is given any value considered true. See `Boolean arguments` section for more details about true and false values. Termination is done using `TERM (15)` signal and killing using `KILL (9)`. Use `Send Signal To Process` instead if you just want to send either of these signals without waiting for the process to stop. On Windows, by default, sends `CTRL_BREAK_EVENT` signal to the process group. If that does not stop the process in 30 seconds, or `kill` argument is given a true value, uses Win32 API function `TerminateProcess()` to kill the process forcefully. Note that `TerminateProcess()` does not kill possible child processes. | ${result} = | Terminate Process | | | Should Be Equal As Integers | ${result.rc} | -15 | # On Unixes | | Terminate Process | myproc | kill=true | *NOTE:* Stopping processes requires the [http://docs.python.org/2/library/subprocess.html|subprocess] module to have working `terminate` and `kill` functions. They were added in Python 2.6 and are thus missing from earlier versions. Unfortunately at least beta releases of Jython 2.7 [http://bugs.jython.org/issue1898|do not seem to support them either]. Automatically killing the process if termination fails as well as returning a result object are new features in Robot Framework 2.8.2. Terminating also possible child processes, including using `CTRL_BREAK_EVENT` on Windows, is new in Robot Framework 2.8.5. """ process = self._processes[handle] if not hasattr(process, 'terminate'): raise RuntimeError('Terminating processes is not supported ' 'by this Python version.') terminator = self._kill if is_true(kill) else self._terminate try: terminator(process) except OSError: if not self._process_is_stopped(process, self.KILL_TIMEOUT): raise logger.debug('Ignored OSError because process was stopped.') return self._wait(process) def _kill(self, process): logger.info('Forcefully killing process.') if hasattr(os, 'killpg'): os.killpg(process.pid, signal_module.SIGKILL) else: process.kill() if not self._process_is_stopped(process, self.KILL_TIMEOUT): raise RuntimeError('Failed to kill process.') def _terminate(self, process): logger.info('Gracefully terminating process.') # Sends signal to the whole process group both on POSIX and on Windows # if supported by the interpreter. if hasattr(os, 'killpg'): os.killpg(process.pid, signal_module.SIGTERM) elif hasattr(signal_module, 'CTRL_BREAK_EVENT'): if sys.platform == 'cli': # https://ironpython.codeplex.com/workitem/35020 ctypes.windll.kernel32.GenerateConsoleCtrlEvent( signal_module.CTRL_BREAK_EVENT, process.pid) else: process.send_signal(signal_module.CTRL_BREAK_EVENT) else: process.terminate() if not self._process_is_stopped(process, self.TERMINATE_TIMEOUT): logger.info('Graceful termination failed.') self._kill(process) def terminate_all_processes(self, kill=False): """Terminates all still running processes started by this library. This keyword can be used in suite teardown or elsewhere to make sure that all processes are stopped, By default tries to terminate processes gracefully, but can be configured to forcefully kill them immediately. See `Terminate Process` that this keyword uses internally for more details. """ for handle in range(1, len(self._processes) + 1): if self.is_process_running(handle): self.terminate_process(handle, kill=kill) self.__init__() def send_signal_to_process(self, signal, handle=None, group=False): """Sends the given `signal` to the specified process. If `handle` is not given, uses the current `active process`. Signal can be specified either as an integer, or anything that can be converted to an integer, or as a signal name. In the latter case it is possible to give the name both with or without a `SIG` prefix, but names are case-sensitive. For example, all the examples below send signal `INT (2)`: | Send Signal To Process | 2 | | # Send to active process | | Send Signal To Process | INT | | | | Send Signal To Process | SIGINT | myproc | # Send to named process | What signals are supported depends on the system. For a list of existing signals on your system, see the Unix man pages related to signal handling (typically `man signal` or `man 7 signal`). By default sends the signal only to the parent process, not to possible child processes started by it. Notice that when `running processes in shell`, the shell is the parent process and it depends on the system does the shell propagate the signal to the actual started process. To send the signal to the whole process group, `group` argument can be set to any true value: | Send Signal To Process | TERM | group=yes | If you are stopping a process, it is often easier and safer to use `Terminate Process` keyword instead. *NOTE:* Sending signals requires the [http://docs.python.org/2/library/subprocess.html|subprocess] module to have working `send_signal` function. It was added in Python 2.6 and are thus missing from earlier versions. How well it will work with forthcoming Jython 2.7 is unknown. New in Robot Framework 2.8.2. Support for `group` argument is new in Robot Framework 2.8.5. """ if os.sep == '\\': raise RuntimeError('This keyword does not work on Windows.') process = self._processes[handle] signum = self._get_signal_number(signal) logger.info('Sending signal %s (%d).' % (signal, signum)) if is_true(group) and hasattr(os, 'killpg'): os.killpg(process.pid, signum) elif hasattr(process, 'send_signal'): process.send_signal(signum) else: raise RuntimeError('Sending signals is not supported ' 'by this Python version.') def _get_signal_number(self, int_or_name): try: return int(int_or_name) except ValueError: return self._convert_signal_name_to_number(int_or_name) def _convert_signal_name_to_number(self, name): try: return getattr(signal_module, name if name.startswith('SIG') else 'SIG' + name) except AttributeError: raise RuntimeError("Unsupported signal '%s'." % name) def get_process_id(self, handle=None): """Returns the process ID (pid) of the process. If `handle` is not given, uses the current `active process`. Returns the pid assigned by the operating system as an integer. Note that with Jython, at least with the 2.5 version, the returned pid seems to always be `None`. The pid is not the same as the identifier returned by `Start Process` that is used internally by this library. """ return self._processes[handle].pid def get_process_object(self, handle=None): """Return the underlying `subprocess.Popen` object. If `handle` is not given, uses the current `active process`. """ return self._processes[handle] def get_process_result(self, handle=None, rc=False, stdout=False, stderr=False, stdout_path=False, stderr_path=False): """Returns the specified `result object` or some of its attributes. The given `handle` specifies the process whose results should be returned. If no `handle` is given, results of the current `active process` are returned. In either case, the process must have been finishes before this keyword can be used. In practice this means that processes started with `Start Process` must be finished either with `Wait For Process` or `Terminate Process` before using this keyword. If no other arguments than the optional `handle` are given, a whole `result object` is returned. If one or more of the other arguments are given any true value, only the specified attributes of the `result object` are returned. These attributes are always returned in the same order as arguments are specified in the keyword signature. See `Boolean arguments` section for more details about true and false values. Examples: | Run Process | python | -c | print 'Hello, world!' | alias=myproc | | # Get result object | | | | ${result} = | Get Process Result | myproc | | Should Be Equal | ${result.rc} | ${0} | | Should Be Equal | ${result.stdout} | Hello, world! | | Should Be Empty | ${result.stderr} | | | # Get one attribute | | | | ${stdout} = | Get Process Result | myproc | stdout=true | | Should Be Equal | ${stdout} | Hello, world! | | # Multiple attributes | | | | ${stdout} | ${stderr} = | Get Process Result | myproc | stdout=yes | stderr=yes | | Should Be Equal | ${stdout} | Hello, world! | | Should Be Empty | ${stderr} | | Although getting results of a previously executed process can be handy in general, the main use case for this keyword is returning results over the remote library interface. The remote interface does not support returning the whole result object, but individual attributes can be returned without problems. New in Robot Framework 2.8.2. """ result = self._results[self._processes[handle]] if result.rc is None: raise RuntimeError('Getting results of unfinished processes ' 'is not supported.') attributes = self._get_result_attributes(result, rc, stdout, stderr, stdout_path, stderr_path) if not attributes: return result elif len(attributes) == 1: return attributes[0] return attributes def _get_result_attributes(self, result, *includes): attributes = (result.rc, result.stdout, result.stderr, result.stdout_path, result.stderr_path) includes = (is_true(incl) for incl in includes) return tuple(attr for attr, incl in zip(attributes, includes) if incl) def switch_process(self, handle): """Makes the specified process the current `active process`. The handle can be an identifier returned by `Start Process` or the `alias` given to it explicitly. Example: | Start Process | prog1 | alias=process1 | | Start Process | prog2 | alias=process2 | | # currently active process is process2 | | Switch Process | process1 | | # now active process is process1 | """ self._processes.switch(handle) def _process_is_stopped(self, process, timeout): max_time = time.time() + timeout while time.time() <= max_time: if process.poll() is not None: return True time.sleep(0.1) return False class ExecutionResult(object): def __init__(self, process, stdout, stderr, rc=None): self._process = process self.stdout_path = self._get_path(stdout) self.stderr_path = self._get_path(stderr) self.rc = rc self._stdout = None self._stderr = None self._custom_streams = [stream for stream in (stdout, stderr) if self._is_custom_stream(stream)] def _get_path(self, stream): return stream.name if self._is_custom_stream(stream) else None def _is_custom_stream(self, stream): return stream not in (subprocess.PIPE, subprocess.STDOUT) @property def stdout(self): if self._stdout is None: self._read_stdout() return self._stdout @property def stderr(self): if self._stderr is None: self._read_stderr() return self._stderr def _read_stdout(self): self._stdout = self._read_stream(self.stdout_path, self._process.stdout) def _read_stderr(self): self._stderr = self._read_stream(self.stderr_path, self._process.stderr) def _read_stream(self, stream_path, stream): if stream_path: stream = open(stream_path, 'r') elif not self._is_open(stream): return '' try: return self._format_output(stream.read()) finally: if stream_path: stream.close() def _is_open(self, stream): return stream and not stream.closed def _format_output(self, output): if output.endswith('\n'): output = output[:-1] return decode_output(output, force=True) def close_streams(self): standard_streams = self._get_and_read_standard_streams(self._process) for stream in standard_streams + self._custom_streams: if self._is_open(stream): stream.close() def _get_and_read_standard_streams(self, process): stdin, stdout, stderr = process.stdin, process.stdout, process.stderr if stdout: self._read_stdout() if stderr: self._read_stderr() return [stdin, stdout, stderr] def __str__(self): return '<result object with rc %d>' % self.rc class ProcessConfig(object): def __init__(self, cwd=None, shell=False, stdout=None, stderr=None, alias=None, env=None, **rest): self.cwd = self._get_cwd(cwd) self.stdout_stream = self._new_stream(stdout) self.stderr_stream = self._get_stderr(stderr, stdout, self.stdout_stream) self.shell = is_true(shell) self.alias = alias self.env = self._construct_env(env, rest) def _get_cwd(self, cwd): if cwd: return cwd.replace('/', os.sep) return abspath('.') def _new_stream(self, name): if name: name = name.replace('/', os.sep) return open(os.path.join(self.cwd, name), 'w') return subprocess.PIPE def _get_stderr(self, stderr, stdout, stdout_stream): if stderr and stderr in ['STDOUT', stdout]: if stdout_stream != subprocess.PIPE: return stdout_stream return subprocess.STDOUT return self._new_stream(stderr) def _construct_env(self, env, extra): if env: env = dict((encode_to_system(k), encode_to_system(v)) for k, v in env.items()) for key in extra: if not key.startswith('env:'): raise RuntimeError("Keyword argument '%s' is not supported by " "this keyword." % key) if env is None: env = os.environ.copy() env[encode_to_system(key[4:])] = encode_to_system(extra[key]) return env @property def full_config(self): config = {'stdout': self.stdout_stream, 'stderr': self.stderr_stream, 'stdin': subprocess.PIPE, 'shell': self.shell, 'cwd': self.cwd, 'env': self.env, 'universal_newlines': True} if hasattr(os, 'setsid') and not sys.platform.startswith('java'): config['preexec_fn'] = os.setsid if hasattr(subprocess, 'CREATE_NEW_PROCESS_GROUP'): config['creationflags'] = subprocess.CREATE_NEW_PROCESS_GROUP return config def __str__(self): return encode_to_system("""\ cwd = %s stdout_stream = %s stderr_stream = %s shell = %r alias = %s env = %r""" % (self.cwd, self.stdout_stream, self.stderr_stream, self.shell, self.alias, self.env)) def is_true(argument): if isinstance(argument, basestring) and argument.upper() == 'FALSE': return False return bool(argument)
43.843182
111
0.628998
58adfc497b54251db4d9d3004b471a7044f5020f
1,220
py
Python
main/migrations/0005_auto_20171108_0714.py
julian-londono/Capital_One_Optimization
8853e45919c1ec972b4a02c6678e0233fb8984e9
[ "MIT" ]
1
2018-10-21T02:59:13.000Z
2018-10-21T02:59:13.000Z
main/migrations/0005_auto_20171108_0714.py
julian-londono/Capital_One_Optimization
8853e45919c1ec972b4a02c6678e0233fb8984e9
[ "MIT" ]
null
null
null
main/migrations/0005_auto_20171108_0714.py
julian-londono/Capital_One_Optimization
8853e45919c1ec972b4a02c6678e0233fb8984e9
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.11.7 on 2017-11-08 07:14 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('main', '0004_auto_20171108_0659'), ] operations = [ migrations.AlterField( model_name='listing', name='host_since', field=models.DateField(default='1998-01-02'), ), migrations.AlterField( model_name='listing', name='lat', field=models.DecimalField(decimal_places=15, default=0.0, max_digits=19), ), migrations.AlterField( model_name='listing', name='long', field=models.DecimalField(decimal_places=15, default=0.0, max_digits=19), ), migrations.AlterField( model_name='listing', name='price_cleaning', field=models.DecimalField(decimal_places=3, default=0.0, max_digits=8), ), migrations.AlterField( model_name='listing', name='price_night', field=models.DecimalField(decimal_places=3, default=0.0, max_digits=8), ), ]
29.756098
85
0.586066
f811cc7e878ee34c7bc9b274997e8c2679d46bc9
2,050
py
Python
tests/test_day06.py
FollowTheProcess/advent_of_code_2021
27427bf76732f5257d369a9455dbbb337dd7a0bc
[ "MIT" ]
null
null
null
tests/test_day06.py
FollowTheProcess/advent_of_code_2021
27427bf76732f5257d369a9455dbbb337dd7a0bc
[ "MIT" ]
null
null
null
tests/test_day06.py
FollowTheProcess/advent_of_code_2021
27427bf76732f5257d369a9455dbbb337dd7a0bc
[ "MIT" ]
null
null
null
from src.day06.day06 import State, simulate def test_state_parse(): input = "3,4,3,1,2\n" assert State.parse(input) == State(current=[3, 4, 3, 1, 2]) def test_get_zeros(): current = [3, 4, 0, 1, 4, 0, 3, 1, 7, 0] # Want the indices of every 0 want = [2, 5, 9] state = State(current=current) assert state.get_zeros() == want def test_next(): current = [3, 4, 3, 1, 2] state = State(current=current) assert state.next() == [2, 3, 2, 0, 1] def test_advance(): current = [3, 4, 3, 1, 2] state = State(current=current) state.advance() assert state.current == [2, 3, 2, 0, 1] def test_next_series_example(): start = [3, 4, 3, 1, 2] # The intermediate states from the example want = [ [2, 3, 2, 0, 1], [1, 2, 1, 6, 0, 8], [0, 1, 0, 5, 6, 7, 8], [6, 0, 6, 4, 5, 6, 7, 8, 8], [5, 6, 5, 3, 4, 5, 6, 7, 7, 8], [4, 5, 4, 2, 3, 4, 5, 6, 6, 7], [3, 4, 3, 1, 2, 3, 4, 5, 5, 6], [2, 3, 2, 0, 1, 2, 3, 4, 4, 5], [1, 2, 1, 6, 0, 1, 2, 3, 3, 4, 8], [0, 1, 0, 5, 6, 0, 1, 2, 2, 3, 7, 8], [6, 0, 6, 4, 5, 6, 0, 1, 1, 2, 6, 7, 8, 8, 8], [5, 6, 5, 3, 4, 5, 6, 0, 0, 1, 5, 6, 7, 7, 7, 8, 8], [4, 5, 4, 2, 3, 4, 5, 6, 6, 0, 4, 5, 6, 6, 6, 7, 7, 8, 8], [3, 4, 3, 1, 2, 3, 4, 5, 5, 6, 3, 4, 5, 5, 5, 6, 6, 7, 7, 8], [2, 3, 2, 0, 1, 2, 3, 4, 4, 5, 2, 3, 4, 4, 4, 5, 5, 6, 6, 7], [1, 2, 1, 6, 0, 1, 2, 3, 3, 4, 1, 2, 3, 3, 3, 4, 4, 5, 5, 6, 8], [0, 1, 0, 5, 6, 0, 1, 2, 2, 3, 0, 1, 2, 2, 2, 3, 3, 4, 4, 5, 7, 8], [6, 0, 6, 4, 5, 6, 0, 1, 1, 2, 6, 0, 1, 1, 1, 2, 2, 3, 3, 4, 6, 7, 8, 8, 8, 8], ] # Start at the beginning, the next state should be the next # thing in want state = State(start) for i, item in enumerate(want): state.advance() assert state.current == item def test_simulate_example_part1(): start = [3, 4, 3, 1, 2] assert simulate(start, 18) == 26 assert simulate(start, 80) == 5934
26.973684
87
0.444878
feeb8fe1419a94ba252dbdc0f308012d41e52f94
5,380
py
Python
akshare/stock_feature/stock_em_analyst.py
szj2ys/akshare
d61ccbff50539bff1e07ffd15b841921b4846958
[ "MIT" ]
1
2021-11-30T06:33:53.000Z
2021-11-30T06:33:53.000Z
akshare/stock_feature/stock_em_analyst.py
HustCoderHu/akshare
0ae3a936af2f552e1c41e2f10a0097f35d897c3b
[ "MIT" ]
null
null
null
akshare/stock_feature/stock_em_analyst.py
HustCoderHu/akshare
0ae3a936af2f552e1c41e2f10a0097f35d897c3b
[ "MIT" ]
1
2021-01-21T06:04:15.000Z
2021-01-21T06:04:15.000Z
# -*- coding:utf-8 -*- # /usr/bin/env python """ Date: 2020/11/15 13:39 Desc: 东方财富网-数据中心-研究报告-东方财富分析师指数 http://data.eastmoney.com/invest/invest/list.html """ import pandas as pd import requests def stock_em_analyst_rank(year: str = '2020') -> pd.DataFrame: """ 东方财富网-数据中心-研究报告-东方财富分析师指数-东方财富分析师指数2020最新排行 http://data.eastmoney.com/invest/invest/list.html :param year: 从 2015 年至今 :type year: str :return: 东方财富分析师指数2020最新排行 :rtype: pandas.DataFrame """ headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36" } url = "http://data.eastmoney.com/dataapi/invest/data" params = { "st": year, "sr": "1", "p": "1", "ps": "5000", "name": "", "type": "list", "industrycode": "all", "pageNo": "1", "pageNum": "1", } r = requests.get(url, params=params, headers=headers) data_json = r.json() data_df = pd.DataFrame(data_json['data']) del data_df['_id'] data_df.reset_index(inplace=True) data_df['index'] = list(range(1, len(data_df)+1)) data_df.columns = [ "序号", "_", f"{year}年收益率", "_", "分析师名称", "分析师单位", "年度指数", "3个月收益率", "6个月收益率", "12个月收益率", f"{year}最新个股评级", "_", "_", "分析师ID", "_", "成分股个数", "_", ] data_df = data_df[[ "序号", "分析师名称", "分析师单位", "年度指数", f"{year}年收益率", "3个月收益率", "6个月收益率", "12个月收益率", "成分股个数", f"{year}最新个股评级", '分析师ID', ]] return data_df def stock_em_analyst_detail( analyst_id: str = "11000200926", indicator: str = "最新跟踪成分股" ) -> pd.DataFrame: """ 东方财富网-数据中心-研究报告-东方财富分析师指数-东方财富分析师指数2020最新排行-分析师详情 http://data.eastmoney.com/invest/invest/11000200926.html :param analyst_id: 分析师ID, 从 stock_em_analyst_rank 获取 :type analyst_id: str :param indicator: ["最新跟踪成分股", "历史跟踪成分股", "历史指数"] :type indicator: str :return: 具体指标的数据 :rtype: pandas.DataFrame """ headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36" } url = "http://data.eastmoney.com/dataapi/invest/other" if indicator == "最新跟踪成分股": params = { 'href': '/api/Zgfxzs/json/AnalysisIndexNew.aspx', 'paramsstr': f'index=1&size=100&code={analyst_id}', } r = requests.get(url, params=params, headers=headers) json_data = r.json() temp_df = pd.DataFrame(json_data['re']) temp_df.reset_index(inplace=True) temp_df['index'] = list(range(1, len(temp_df)+1)) temp_df.columns = [ '序号', '股票代码', '股票名称', '调入日期', '当前评级名称', '成交价格(前复权)', '最新价格', '最新评级日期', "_", '阶段涨跌幅', ] temp_df = temp_df[[ '序号', '股票代码', '股票名称', '调入日期', '最新评级日期', '当前评级名称', '成交价格(前复权)', '最新价格', '阶段涨跌幅', ]] return temp_df elif indicator == "历史跟踪成分股": params = { 'href': '/api/Zgfxzs/json/AnalysisIndexls.aspx', 'paramsstr': f'index=1&size=100&code={analyst_id}', } r = requests.get(url, params=params, headers=headers) json_data = r.json() temp_df = pd.DataFrame(json_data['re']) temp_df.reset_index(inplace=True) temp_df['index'] = list(range(1, len(temp_df) + 1)) temp_df.columns = [ '序号', '股票代码', '股票名称', '调入日期', '调出日期', '调入时评级名称', '调出原因', '_', '累计涨跌幅', ] temp_df = temp_df[[ '序号', '股票代码', '股票名称', '调入日期', '调出日期', '调入时评级名称', '调出原因', '累计涨跌幅', ]] return temp_df elif indicator == "历史指数": params = { 'href': '/DataCenter_V3/chart/AnalystsIndex.ashx', 'paramsstr': f'code={analyst_id}&d=&isxml=True', } r = requests.get(url, params=params, headers=headers) json_data = r.json() temp_df = pd.DataFrame( [json_data["X"].split(","), json_data["Y"][0].split(",")], index=["date", "value"], ).T return temp_df if __name__ == "__main__": stock_em_analyst_rank_df = stock_em_analyst_rank(year='2018') print(stock_em_analyst_rank_df) stock_em_analyst_detail_current_stock_df = stock_em_analyst_detail( analyst_id="11000200926", indicator="最新跟踪成分股" ) print(stock_em_analyst_detail_current_stock_df) stock_em_analyst_detail_history_stock_df = stock_em_analyst_detail( analyst_id="11000200926", indicator="历史跟踪成分股" ) print(stock_em_analyst_detail_history_stock_df) stock_em_analyst_detail_index_df = stock_em_analyst_detail( analyst_id="11000200926", indicator="历史指数" ) print(stock_em_analyst_detail_index_df)
28.465608
139
0.521004
033c7e4655dbc54d78747622531988cf988af810
3,731
py
Python
plotly/tests/test_core/test_api/test_v2/test_files.py
faezs/plotly.py
6009b5b9c746e5d2a2849ad255a4eb234b551ed7
[ "MIT" ]
1
2018-07-16T01:51:47.000Z
2018-07-16T01:51:47.000Z
plotly/tests/test_core/test_api/test_v2/test_files.py
faezs/plotly.py
6009b5b9c746e5d2a2849ad255a4eb234b551ed7
[ "MIT" ]
null
null
null
plotly/tests/test_core/test_api/test_v2/test_files.py
faezs/plotly.py
6009b5b9c746e5d2a2849ad255a4eb234b551ed7
[ "MIT" ]
1
2019-02-18T04:12:56.000Z
2019-02-18T04:12:56.000Z
from __future__ import absolute_import from plotly.api.v2 import files from plotly.tests.test_core.test_api import PlotlyApiTestCase class FilesTest(PlotlyApiTestCase): def setUp(self): super(FilesTest, self).setUp() # Mock the actual api call, we don't want to do network tests here. self.request_mock = self.mock('plotly.api.v2.utils.requests.request') self.request_mock.return_value = self.get_response() # Mock the validation function since we can test that elsewhere. self.mock('plotly.api.v2.utils.validate_response') def test_retrieve(self): files.retrieve('hodor:88') assert self.request_mock.call_count == 1 args, kwargs = self.request_mock.call_args method, url = args self.assertEqual(method, 'get') self.assertEqual( url, '{}/v2/files/hodor:88'.format(self.plotly_api_domain) ) self.assertEqual(kwargs['params'], {}) def test_retrieve_share_key(self): files.retrieve('hodor:88', share_key='foobar') assert self.request_mock.call_count == 1 args, kwargs = self.request_mock.call_args method, url = args self.assertEqual(method, 'get') self.assertEqual( url, '{}/v2/files/hodor:88'.format(self.plotly_api_domain) ) self.assertEqual(kwargs['params'], {'share_key': 'foobar'}) def test_update(self): new_filename = '..zzZ ..zzZ' files.update('hodor:88', body={'filename': new_filename}) assert self.request_mock.call_count == 1 args, kwargs = self.request_mock.call_args method, url = args self.assertEqual(method, 'put') self.assertEqual( url, '{}/v2/files/hodor:88'.format(self.plotly_api_domain) ) self.assertEqual(kwargs['data'], '{{"filename": "{}"}}'.format(new_filename)) def test_trash(self): files.trash('hodor:88') assert self.request_mock.call_count == 1 args, kwargs = self.request_mock.call_args method, url = args self.assertEqual(method, 'post') self.assertEqual( url, '{}/v2/files/hodor:88/trash'.format(self.plotly_api_domain) ) def test_restore(self): files.restore('hodor:88') assert self.request_mock.call_count == 1 args, kwargs = self.request_mock.call_args method, url = args self.assertEqual(method, 'post') self.assertEqual( url, '{}/v2/files/hodor:88/restore'.format(self.plotly_api_domain) ) def test_permanent_delete(self): files.permanent_delete('hodor:88') assert self.request_mock.call_count == 1 args, kwargs = self.request_mock.call_args method, url = args self.assertEqual(method, 'delete') self.assertEqual( url, '{}/v2/files/hodor:88/permanent_delete' .format(self.plotly_api_domain) ) def test_lookup(self): # requests does urlencode, so don't worry about the `' '` character! path = '/mah plot' parent = 43 user = 'someone' exists = True files.lookup(path=path, parent=parent, user=user, exists=exists) assert self.request_mock.call_count == 1 args, kwargs = self.request_mock.call_args method, url = args expected_params = {'path': path, 'parent': parent, 'exists': 'true', 'user': user} self.assertEqual(method, 'get') self.assertEqual( url, '{}/v2/files/lookup'.format(self.plotly_api_domain) ) self.assertEqual(kwargs['params'], expected_params)
35.533333
78
0.61324
7718dff260fec8778e57ab9a14df05e5c41f32d3
7,804
py
Python
user/user.py
heicat1337/BiliLiveBot
68474226cda7f76140911dbc1b0a608371c84110
[ "MIT" ]
63
2020-02-12T15:41:27.000Z
2022-03-19T14:22:07.000Z
user/user.py
heicat1337/BiliLiveBot
68474226cda7f76140911dbc1b0a608371c84110
[ "MIT" ]
16
2020-02-14T14:02:46.000Z
2022-01-10T11:38:00.000Z
user/user.py
heicat1337/BiliLiveBot
68474226cda7f76140911dbc1b0a608371c84110
[ "MIT" ]
18
2020-02-18T04:52:33.000Z
2022-03-02T04:28:45.000Z
import asyncio import json from itertools import count from typing import Callable, Optional import conf_loader import exceptions import printer from tasks.login import LoginTask from web_session import WebSession from .platform import AppPlatform, PcPlatform, TvPlatform # user.toml 里面的东西全在self.dict_user里面,与 user 一一对应 # bili.toml 东西在 self.pc、self.app、self.tv 里面,因为这一串东西太复杂了,不方便在直接写在 User 里面了 class User: _ids = count(0) __slots__ = ( 'id', 'force_sleep', 'name', 'password', 'alias', 'task_ctrl', 'task_arrangement', 'is_in_jail', 'bililive_session', 'login_session', 'other_session', 'dict_user', 'pc', 'app', 'tv', 'repost_del_lock', 'dyn_lottery_friends', '_waiting_login', '_loop', ### 'manage_room', 'alerts', 'gift_comb_delay', 'alert_second', 'gift_thx_format', 'focus_thx_format', 'danmu_length', 'random_list_1', 'random_list_2', 'random_list_3', 'medal_update_format', 'medal_update_check_delay', 'guard_thx_format', 'fans_check_delay', 'only_live_thx', 'silver_gift_thx_format', 'gold_gift_thx_format', 'disable_gift_thx', 'reply', 'ban', 'height', 'weight', 'const_json', 'only_live_alert', 'anchor_alert_format', ) def __init__( self, dict_user: dict, task_ctrl: dict, task_arrangement: dict, dict_bili: dict, force_sleep: Callable): self.id = next(self._ids) self.force_sleep = force_sleep self.name = dict_user['username'] self.password = dict_user['password'] self.alias = dict_user.get('alias', self.name) self.task_ctrl = task_ctrl self.task_arrangement = task_arrangement self.is_in_jail = False # 是否小黑屋 ## self.manage_room = dict_user['manage_room'] self.alerts = dict_user.get('alerts', []) self.gift_comb_delay = dict_user['gift_comb_delay'] self.alert_second = dict_user['alert_second'] self.gift_thx_format = dict_user.get('gift_thx_format', '感谢{username}投喂的{giftname}x{num}') self.silver_gift_thx_format = dict_user.get('silver_gift_thx_format', self.gift_thx_format) self.gold_gift_thx_format = dict_user.get('gold_gift_thx_format', self.gift_thx_format) self.focus_thx_format = dict_user['focus_thx_format'] self.guard_thx_format = dict_user.get('guard_thx_format', self.gift_thx_format) self.danmu_length = dict_user.get('danmu_length', 30) self.medal_update_format = dict_user.get('medal_update_format', '') self.medal_update_check_delay = dict_user.get('medal_update_check_delay', 30) self.only_live_thx = dict_user.get('only_live_thx', False) self.only_live_alert = dict_user.get('only_live_alert', True) self.anchor_alert_format = dict_user.get('anchor_alert_format', '') self.reply = dict_user.get('reply', []) self.ban = dict_user.get('ban', []) self.height = dict_user.get('height', 0) self.weight = dict_user.get('weight', 0) self.disable_gift_thx = dict_user.get('disable_gift_thx', False) if dict_user.get('const_json'): self.const_json = json.load(open(dict_user.get('const_json'), 'r')) else: self.const_json = {} self.fans_check_delay = dict_user.get('fans_check_delay', 20) self.random_list_1 = dict_user.get('random_list_1', []) self.random_list_2 = dict_user.get('random_list_2', []) self.random_list_3 = dict_user.get('random_list_3', []) if len(self.random_list_1) == 0: self.random_list_1 = [""] if len(self.random_list_2) == 0: self.random_list_2 = [""] if len(self.random_list_3) == 0: self.random_list_3 = [""] ## self.bililive_session = WebSession() self.login_session = WebSession() self.other_session = WebSession() # 每个user里面都分享了同一个dict,必须要隔离,否则更新cookie这些的时候会互相覆盖 self.pc = PcPlatform(dict_bili['pc_headers'].copy()) self.app = AppPlatform(dict_bili['app_headers'].copy(), dict_bili['app_params']) self.tv = TvPlatform(dict_bili['tv_headers'].copy(), dict_bili['tv_params']) self.dict_user = dict_user self.update_login_data(dict_user) self._waiting_login = None self._loop = asyncio.get_event_loop() self.repost_del_lock = asyncio.Lock() # 在follow与unfollow过程中必须保证安全(repost和del整个过程加锁) dyn_lottery_friends = [(str(uid), name) for uid, name in task_ctrl['dyn_lottery_friends'].items()] self.dyn_lottery_friends = dyn_lottery_friends # list (uid, name) def update_login_data(self, login_data): for key, value in login_data.items(): self.dict_user[key] = value if key == 'cookie': self.pc.update_cookie(value) self.app.update_cookie(value) self.tv.update_cookie(value) conf_loader.write_user(login_data, self.id) def is_online(self): return self.pc.headers['cookie'] and self.app.headers['cookie'] and self.tv.headers['cookie'] def update_log(self): conf_loader.write_user({'weight': self.weight, 'height': self.height}, self.id) def info( self, *objects, with_userid=True, **kwargs): if with_userid: printer.info( *objects, **kwargs, extra_info=f'用户id:{self.id} 名字:{self.alias}') else: printer.info(*objects, **kwargs) def warn(self, *objects, **kwargs): printer.warn( *objects, **kwargs, extra_info=f'用户id:{self.id} 名字:{self.alias}') def app_sign(self, extra_params: Optional[dict] = None) -> dict: return self.app.sign(extra_params) def tv_sign(self, extra_params: Optional[dict] = None) -> dict: return self.tv.sign(extra_params) async def req_s(self, func, *args, timeout=None): while True: if self._waiting_login is None: try: return await asyncio.wait_for(func(*args), timeout=timeout) except asyncio.TimeoutError: self.info(f'TASK {func} 请求超时,即将 CANCEL') raise asyncio.CancelledError() except exceptions.LogoutError: # logout if self._waiting_login is None: # 当前没有处理的运行 self.info('判定出现了登陆失败,且未处理') self._waiting_login = self._loop.create_future() try: await LoginTask.handle_login_status(self) self.info('已经登陆了') except asyncio.CancelledError: # 登陆中取消,把waiting_login设置,否则以后的req会一直堵塞 raise finally: self._waiting_login.set_result(-1) self._waiting_login = None else: # 已有处理的运行了 self.info('判定出现了登陆失败,已经处理') await self._waiting_login except exceptions.ForbiddenError: await asyncio.shield(self.force_sleep(3600)) # bili_sched.force_sleep await asyncio.sleep(3600) # 有的function不受sched控制,主动sleep即可,不cancel原因是怕堵死一些协程 else: await self._waiting_login def fall_in_jail(self): self.is_in_jail = True self.info(f'用户进入小黑屋') def out_of_jail(self): self.is_in_jail = False self.info(f'抽奖脚本尝试性设置用户已出小黑屋(如果实际没出还会再判定进去)') def print_status(self): jail_status = '恭喜中奖' if self.is_in_jail else '自由之身' self.info('当前用户的状态:', jail_status)
41.073684
116
0.614172
c1934b07b518d424b37a7a052d684195b42dd3bd
608
py
Python
momoko/__init__.py
Tsumanga-Studios/momoko
d967fc17251d013680aea648a36a4f4914226ba1
[ "MIT" ]
null
null
null
momoko/__init__.py
Tsumanga-Studios/momoko
d967fc17251d013680aea648a36a4f4914226ba1
[ "MIT" ]
null
null
null
momoko/__init__.py
Tsumanga-Studios/momoko
d967fc17251d013680aea648a36a4f4914226ba1
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ momoko ====== Momoko wraps Psycopg2's functionality for use in Tornado. Copyright 2011-2013 by Frank Smit. MIT, see LICENSE for more details. """ import psycopg2 from psycopg2 import ProgrammingError from .connection import Pool, Connection from .exceptions import PoolError from .utils import Op, WaitOp, WaitAllOps try: psycopg2.extensions.POLL_OK except AttributeError: import warnings warnings.warn(RuntimeWarning( 'Psycopg2 does not have support for asynchronous connections. ' 'You need at least version 2.2.0 of Psycopg2 to use Momoko.'))
22.518519
71
0.736842
9b932d4bc85bf4256a9cbecc55e9a829188aad4f
4,741
py
Python
kalliope/neurons/neurotimer/neurotimer.py
joshuaboniface/kalliope
0e040be3165e838485d1e5addc4d2c5df12bfd84
[ "MIT" ]
1
2020-03-30T15:03:19.000Z
2020-03-30T15:03:19.000Z
kalliope/neurons/neurotimer/neurotimer.py
joshuaboniface/kalliope
0e040be3165e838485d1e5addc4d2c5df12bfd84
[ "MIT" ]
null
null
null
kalliope/neurons/neurotimer/neurotimer.py
joshuaboniface/kalliope
0e040be3165e838485d1e5addc4d2c5df12bfd84
[ "MIT" ]
null
null
null
import logging import sys import threading import time from kalliope.core import NeuronModule from kalliope.core.NeuronModule import MissingParameterException, InvalidParameterException logging.basicConfig() logger = logging.getLogger("kalliope") class TimerThread(threading.Thread): def __init__(self, time_to_wait_seconds, callback): """ A Thread that will call the given callback method after waiting time_to_wait_seconds :param time_to_wait_seconds: number of second to wait before call the callback method :param callback: callback method """ threading.Thread.__init__(self) self.time_to_wait_seconds = time_to_wait_seconds self.callback = callback def run(self): # wait the amount of seconds logger.debug("[Neurotimer] wait %s seconds" % self.time_to_wait_seconds) time.sleep(self.time_to_wait_seconds) # then run the callback method self.callback() class Neurotimer(NeuronModule): def __init__(self, **kwargs): super(Neurotimer, self).__init__(**kwargs) # get parameters self.seconds = kwargs.get('seconds', None) self.minutes = kwargs.get('minutes', None) self.hours = kwargs.get('hours', None) self.synapse = kwargs.get('synapse', None) self.forwarded_parameter = kwargs.get('forwarded_parameters', None) # do some check if self._is_parameters_ok(): # make the sum of all time parameter in seconds retarding_time_seconds = self._get_retarding_time_seconds() # now wait before running the target synapse ds = TimerThread(time_to_wait_seconds=retarding_time_seconds, callback=self.callback_run_synapse) # ds.daemon = True ds.start() def _is_parameters_ok(self): """ Check given neuron parameters are valid :return: True if the neuron has been well configured """ # at least one time parameter must be set if self.seconds is None and self.minutes is None and self.hours is None: raise MissingParameterException("Neurotimer must have at least one time " "parameter: seconds, minutes, hours") self.seconds = self.get_integer_time_parameter(self.seconds) self.minutes = self.get_integer_time_parameter(self.minutes) self.hours = self.get_integer_time_parameter(self.hours) if self.synapse is None: raise MissingParameterException("Neurotimer must have a synapse name parameter") return True @staticmethod def get_integer_time_parameter(time_parameter): """ Check if a given time parameter is a valid integer: - must be > 0 - if type no an integer, must be convertible to integer :param time_parameter: string or integer :return: integer """ if time_parameter is not None: if not isinstance(time_parameter, int): # try to convert into integer try: time_parameter = int(time_parameter) except ValueError: raise InvalidParameterException("[Neurotimer] %s is not a valid integer" % time_parameter) # check if positive if time_parameter < 0: raise InvalidParameterException("[Neurotimer] %s must be > 0" % time_parameter) return time_parameter def _get_retarding_time_seconds(self): """ Return the sum of given time parameters seconds + minutes + hours :return: integer, number of total seconds """ returned_time = 0 if self.seconds is not None: returned_time += self.seconds if self.minutes is not None: returned_time += self.minutes * 60 if self.hours is not None: returned_time += self.hours * 3600 logger.debug("[Neurotimer] get_retarding_time_seconds: %s" % returned_time) return returned_time def callback_run_synapse(self): """ Callback method which will be started by the timer thread once the time is over :return: """ logger.debug("[Neurotimer] waiting time is over, start the synapse %s" % self.synapse) # trick to remove unicode problem when loading jinja template with non ascii char if sys.version_info[0] == 2: reload(sys) sys.setdefaultencoding('utf-8') self.run_synapse_by_name(synapse_name=self.synapse, high_priority=False, overriding_parameter_dict=self.forwarded_parameter)
37.330709
110
0.639317
ba43a057ca3a6106ffb0b3b2ed9378abfe24ab3c
16,551
py
Python
homeassistant/helpers/config_entry_oauth2_flow.py
jamesmyatt/core
12da814470b7b4bb13b4d18b098aa4938c8a34ac
[ "Apache-2.0" ]
null
null
null
homeassistant/helpers/config_entry_oauth2_flow.py
jamesmyatt/core
12da814470b7b4bb13b4d18b098aa4938c8a34ac
[ "Apache-2.0" ]
4
2022-03-01T06:32:53.000Z
2022-03-31T06:30:35.000Z
homeassistant/helpers/config_entry_oauth2_flow.py
jamesmyatt/core
12da814470b7b4bb13b4d18b098aa4938c8a34ac
[ "Apache-2.0" ]
null
null
null
"""Config Flow using OAuth2. This module exists of the following parts: - OAuth2 config flow which supports multiple OAuth2 implementations - OAuth2 implementation that works with local provided client ID/secret """ from abc import ABC, ABCMeta, abstractmethod import asyncio import logging import secrets import time from typing import Any, Awaitable, Callable, Dict, Optional, cast from aiohttp import client, web import async_timeout import jwt import voluptuous as vol from yarl import URL from homeassistant import config_entries from homeassistant.components.http import HomeAssistantView from homeassistant.core import HomeAssistant, callback from homeassistant.helpers.network import NoURLAvailableError, get_url from .aiohttp_client import async_get_clientsession _LOGGER = logging.getLogger(__name__) DATA_JWT_SECRET = "oauth2_jwt_secret" DATA_VIEW_REGISTERED = "oauth2_view_reg" DATA_IMPLEMENTATIONS = "oauth2_impl" DATA_PROVIDERS = "oauth2_providers" AUTH_CALLBACK_PATH = "/auth/external/callback" CLOCK_OUT_OF_SYNC_MAX_SEC = 20 class AbstractOAuth2Implementation(ABC): """Base class to abstract OAuth2 authentication.""" @property @abstractmethod def name(self) -> str: """Name of the implementation.""" @property @abstractmethod def domain(self) -> str: """Domain that is providing the implementation.""" @abstractmethod async def async_generate_authorize_url(self, flow_id: str) -> str: """Generate a url for the user to authorize. This step is called when a config flow is initialized. It should redirect the user to the vendor website where they can authorize Home Assistant. The implementation is responsible to get notified when the user is authorized and pass this to the specified config flow. Do as little work as possible once notified. You can do the work inside async_resolve_external_data. This will give the best UX. Pass external data in with: await hass.config_entries.flow.async_configure( flow_id=flow_id, user_input=external_data ) """ @abstractmethod async def async_resolve_external_data(self, external_data: Any) -> dict: """Resolve external data to tokens. Turn the data that the implementation passed to the config flow as external step data into tokens. These tokens will be stored as 'token' in the config entry data. """ async def async_refresh_token(self, token: dict) -> dict: """Refresh a token and update expires info.""" new_token = await self._async_refresh_token(token) # Force int for non-compliant oauth2 providers new_token["expires_in"] = int(new_token["expires_in"]) new_token["expires_at"] = time.time() + new_token["expires_in"] return new_token @abstractmethod async def _async_refresh_token(self, token: dict) -> dict: """Refresh a token.""" class LocalOAuth2Implementation(AbstractOAuth2Implementation): """Local OAuth2 implementation.""" def __init__( self, hass: HomeAssistant, domain: str, client_id: str, client_secret: str, authorize_url: str, token_url: str, ): """Initialize local auth implementation.""" self.hass = hass self._domain = domain self.client_id = client_id self.client_secret = client_secret self.authorize_url = authorize_url self.token_url = token_url @property def name(self) -> str: """Name of the implementation.""" return "Configuration.yaml" @property def domain(self) -> str: """Domain providing the implementation.""" return self._domain @property def redirect_uri(self) -> str: """Return the redirect uri.""" return f"{get_url(self.hass, require_current_request=True)}{AUTH_CALLBACK_PATH}" @property def extra_authorize_data(self) -> dict: """Extra data that needs to be appended to the authorize url.""" return {} async def async_generate_authorize_url(self, flow_id: str) -> str: """Generate a url for the user to authorize.""" return str( URL(self.authorize_url) .with_query( { "response_type": "code", "client_id": self.client_id, "redirect_uri": self.redirect_uri, "state": _encode_jwt(self.hass, {"flow_id": flow_id}), } ) .update_query(self.extra_authorize_data) ) async def async_resolve_external_data(self, external_data: Any) -> dict: """Resolve the authorization code to tokens.""" return await self._token_request( { "grant_type": "authorization_code", "code": external_data, "redirect_uri": self.redirect_uri, } ) async def _async_refresh_token(self, token: dict) -> dict: """Refresh tokens.""" new_token = await self._token_request( { "grant_type": "refresh_token", "client_id": self.client_id, "refresh_token": token["refresh_token"], } ) return {**token, **new_token} async def _token_request(self, data: dict) -> dict: """Make a token request.""" session = async_get_clientsession(self.hass) data["client_id"] = self.client_id if self.client_secret is not None: data["client_secret"] = self.client_secret resp = await session.post(self.token_url, data=data) resp.raise_for_status() return cast(dict, await resp.json()) class AbstractOAuth2FlowHandler(config_entries.ConfigFlow, metaclass=ABCMeta): """Handle a config flow.""" DOMAIN = "" VERSION = 1 CONNECTION_CLASS = config_entries.CONN_CLASS_UNKNOWN def __init__(self) -> None: """Instantiate config flow.""" if self.DOMAIN == "": raise TypeError( f"Can't instantiate class {self.__class__.__name__} without DOMAIN being set" ) self.external_data: Any = None self.flow_impl: AbstractOAuth2Implementation = None # type: ignore @property @abstractmethod def logger(self) -> logging.Logger: """Return logger.""" @property def extra_authorize_data(self) -> dict: """Extra data that needs to be appended to the authorize url.""" return {} async def async_step_pick_implementation( self, user_input: Optional[dict] = None ) -> dict: """Handle a flow start.""" assert self.hass implementations = await async_get_implementations(self.hass, self.DOMAIN) if user_input is not None: self.flow_impl = implementations[user_input["implementation"]] return await self.async_step_auth() if not implementations: return self.async_abort(reason="missing_configuration") if len(implementations) == 1: # Pick first implementation as we have only one. self.flow_impl = list(implementations.values())[0] return await self.async_step_auth() return self.async_show_form( step_id="pick_implementation", data_schema=vol.Schema( { vol.Required( "implementation", default=list(implementations.keys())[0] ): vol.In({key: impl.name for key, impl in implementations.items()}) } ), ) async def async_step_auth( self, user_input: Optional[Dict[str, Any]] = None ) -> Dict[str, Any]: """Create an entry for auth.""" # Flow has been triggered by external data if user_input: self.external_data = user_input return self.async_external_step_done(next_step_id="creation") try: with async_timeout.timeout(10): url = await self.flow_impl.async_generate_authorize_url(self.flow_id) except asyncio.TimeoutError: return self.async_abort(reason="authorize_url_timeout") except NoURLAvailableError: return self.async_abort( reason="no_url_available", description_placeholders={ "docs_url": "https://www.home-assistant.io/more-info/no-url-available" }, ) url = str(URL(url).update_query(self.extra_authorize_data)) return self.async_external_step(step_id="auth", url=url) async def async_step_creation( self, user_input: Optional[Dict[str, Any]] = None ) -> Dict[str, Any]: """Create config entry from external data.""" token = await self.flow_impl.async_resolve_external_data(self.external_data) # Force int for non-compliant oauth2 providers try: token["expires_in"] = int(token["expires_in"]) except ValueError as err: _LOGGER.warning("Error converting expires_in to int: %s", err) return self.async_abort(reason="oauth_error") token["expires_at"] = time.time() + token["expires_in"] self.logger.info("Successfully authenticated") return await self.async_oauth_create_entry( {"auth_implementation": self.flow_impl.domain, "token": token} ) async def async_oauth_create_entry(self, data: dict) -> dict: """Create an entry for the flow. Ok to override if you want to fetch extra info or even add another step. """ return self.async_create_entry(title=self.flow_impl.name, data=data) async def async_step_discovery( self, discovery_info: Dict[str, Any] ) -> Dict[str, Any]: """Handle a flow initialized by discovery.""" await self.async_set_unique_id(self.DOMAIN) assert self.hass is not None if self.hass.config_entries.async_entries(self.DOMAIN): return self.async_abort(reason="already_configured") return await self.async_step_pick_implementation() async_step_user = async_step_pick_implementation async_step_mqtt = async_step_discovery async_step_ssdp = async_step_discovery async_step_zeroconf = async_step_discovery async_step_homekit = async_step_discovery @classmethod def async_register_implementation( cls, hass: HomeAssistant, local_impl: LocalOAuth2Implementation ) -> None: """Register a local implementation.""" async_register_implementation(hass, cls.DOMAIN, local_impl) @callback def async_register_implementation( hass: HomeAssistant, domain: str, implementation: AbstractOAuth2Implementation ) -> None: """Register an OAuth2 flow implementation for an integration.""" if isinstance(implementation, LocalOAuth2Implementation) and not hass.data.get( DATA_VIEW_REGISTERED, False ): hass.http.register_view(OAuth2AuthorizeCallbackView()) # type: ignore hass.data[DATA_VIEW_REGISTERED] = True implementations = hass.data.setdefault(DATA_IMPLEMENTATIONS, {}) implementations.setdefault(domain, {})[implementation.domain] = implementation async def async_get_implementations( hass: HomeAssistant, domain: str ) -> Dict[str, AbstractOAuth2Implementation]: """Return OAuth2 implementations for specified domain.""" registered = cast( Dict[str, AbstractOAuth2Implementation], hass.data.setdefault(DATA_IMPLEMENTATIONS, {}).get(domain, {}), ) if DATA_PROVIDERS not in hass.data: return registered registered = dict(registered) for provider_domain, get_impl in hass.data[DATA_PROVIDERS].items(): implementation = await get_impl(hass, domain) if implementation is not None: registered[provider_domain] = implementation return registered async def async_get_config_entry_implementation( hass: HomeAssistant, config_entry: config_entries.ConfigEntry ) -> AbstractOAuth2Implementation: """Return the implementation for this config entry.""" implementations = await async_get_implementations(hass, config_entry.domain) implementation = implementations.get(config_entry.data["auth_implementation"]) if implementation is None: raise ValueError("Implementation not available") return implementation @callback def async_add_implementation_provider( hass: HomeAssistant, provider_domain: str, async_provide_implementation: Callable[ [HomeAssistant, str], Awaitable[Optional[AbstractOAuth2Implementation]] ], ) -> None: """Add an implementation provider. If no implementation found, return None. """ hass.data.setdefault(DATA_PROVIDERS, {})[ provider_domain ] = async_provide_implementation class OAuth2AuthorizeCallbackView(HomeAssistantView): """OAuth2 Authorization Callback View.""" requires_auth = False url = AUTH_CALLBACK_PATH name = "auth:external:callback" async def get(self, request: web.Request) -> web.Response: """Receive authorization code.""" if "code" not in request.query or "state" not in request.query: return web.Response( text=f"Missing code or state parameter in {request.url}" ) hass = request.app["hass"] state = _decode_jwt(hass, request.query["state"]) if state is None: return web.Response(text="Invalid state") await hass.config_entries.flow.async_configure( flow_id=state["flow_id"], user_input=request.query["code"] ) return web.Response( headers={"content-type": "text/html"}, text="<script>window.close()</script>", ) class OAuth2Session: """Session to make requests authenticated with OAuth2.""" def __init__( self, hass: HomeAssistant, config_entry: config_entries.ConfigEntry, implementation: AbstractOAuth2Implementation, ): """Initialize an OAuth2 session.""" self.hass = hass self.config_entry = config_entry self.implementation = implementation @property def token(self) -> dict: """Return the token.""" return cast(dict, self.config_entry.data["token"]) @property def valid_token(self) -> bool: """Return if token is still valid.""" return ( cast(float, self.token["expires_at"]) > time.time() + CLOCK_OUT_OF_SYNC_MAX_SEC ) async def async_ensure_token_valid(self) -> None: """Ensure that the current token is valid.""" if self.valid_token: return new_token = await self.implementation.async_refresh_token(self.token) self.hass.config_entries.async_update_entry( self.config_entry, data={**self.config_entry.data, "token": new_token} ) async def async_request( self, method: str, url: str, **kwargs: Any ) -> client.ClientResponse: """Make a request.""" await self.async_ensure_token_valid() return await async_oauth2_request( self.hass, self.config_entry.data["token"], method, url, **kwargs ) async def async_oauth2_request( hass: HomeAssistant, token: dict, method: str, url: str, **kwargs: Any ) -> client.ClientResponse: """Make an OAuth2 authenticated request. This method will not refresh tokens. Use OAuth2 session for that. """ session = async_get_clientsession(hass) return await session.request( method, url, **kwargs, headers={ **(kwargs.get("headers") or {}), "authorization": f"Bearer {token['access_token']}", }, ) @callback def _encode_jwt(hass: HomeAssistant, data: dict) -> str: """JWT encode data.""" secret = hass.data.get(DATA_JWT_SECRET) if secret is None: secret = hass.data[DATA_JWT_SECRET] = secrets.token_hex() return jwt.encode(data, secret, algorithm="HS256").decode() @callback def _decode_jwt(hass: HomeAssistant, encoded: str) -> Optional[dict]: """JWT encode data.""" secret = cast(str, hass.data.get(DATA_JWT_SECRET)) try: return jwt.decode(encoded, secret, algorithms=["HS256"]) except jwt.InvalidTokenError: return None
32.709486
93
0.650595
9f142ad07eac065622312206def240afbc96537b
1,682
py
Python
thermo/management/commands/get_weather.py
tprzybylek/RPi_thermometer
4dc59985accdd5838b11877f128e0cbe80af79ca
[ "MIT" ]
null
null
null
thermo/management/commands/get_weather.py
tprzybylek/RPi_thermometer
4dc59985accdd5838b11877f128e0cbe80af79ca
[ "MIT" ]
4
2021-03-30T13:01:41.000Z
2021-09-22T18:48:51.000Z
thermo/management/commands/get_weather.py
tprzybylek/RPi_thermometer
4dc59985accdd5838b11877f128e0cbe80af79ca
[ "MIT" ]
null
null
null
from django.core.management.base import BaseCommand from thermo.models import Record from datetime import datetime, timedelta from django.db.models import Q import pytz import requests class Command(BaseCommand): help = 'Retrieves weather data from OpenWeatherMap' def handle(self, *args, **options): def round_datetime(t): dt = timedelta(hours=t.minute // 30) t = t.replace(second=0, microsecond=0, minute=0) t = t + dt return t def create_record(): response = requests. \ get(request_url, params={'id': city_id, 'appid': api_key, 'units': 'metric', 'lang': 'pl'}) \ .json() utc = pytz.utc ts = response['dt'] ts = round_datetime(utc.localize(datetime.utcfromtimestamp(ts))) defaults = { 'outdoor_temperature': response['main']['temp'], 'outdoor_humidity': response['main']['humidity'], } Record.objects.update_or_create( date=ts, defaults=defaults ) api_key = 'df2fbf0c442d4a6319693cb6e72cdb49' city_id = '3081368' request_url = 'http://api.openweathermap.org/data/2.5/weather' last_record = Record.objects.filter(Q(outdoor_temperature__isnull=False) | Q(outdoor_humidity__isnull=False)).order_by('date').last() if last_record: time_diff = datetime.now(pytz.utc) - last_record.date if time_diff.total_seconds() / 3600 > 1: create_record() else: create_record()
32.346154
109
0.56956
57120b4d1a1c73d193b5dc7985fd75b60044bf58
2,251
py
Python
forms/forms110.py
VoprosiKira/l2
49f3624b4b2d25329a8e3aa166b03735cf759c37
[ "MIT" ]
null
null
null
forms/forms110.py
VoprosiKira/l2
49f3624b4b2d25329a8e3aa166b03735cf759c37
[ "MIT" ]
null
null
null
forms/forms110.py
VoprosiKira/l2
49f3624b4b2d25329a8e3aa166b03735cf759c37
[ "MIT" ]
null
null
null
from reportlab.lib.pagesizes import A4 from forms.sql_func import get_extra_notification_data_for_pdf from reportlab.lib.styles import getSampleStyleSheet from reportlab.lib import colors from reportlab.lib.units import mm from reportlab.lib.enums import TA_JUSTIFY from forms.views import get_epid_data from laboratory.settings import FONTS_FOLDER import os.path from reportlab.pdfbase import pdfmetrics from reportlab.pdfbase.ttfonts import TTFont import simplejson as json from io import BytesIO from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Table, TableStyle, PageBreak from laboratory.settings import EXTRA_MASTER_RESEARCH_PK, EXTRA_SLAVE_RESEARCH_PK from utils.dates import normalize_date def form_01(request_data): # Результат Экстренные извещения pdfmetrics.registerFont(TTFont('PTAstraSerifReg', os.path.join(FONTS_FOLDER, 'PTAstraSerif-Regular.ttf'))) styleSheet = getSampleStyleSheet() style = styleSheet["Normal"] style.fontName = "PTAstraSerifReg" style.fontSize = 9 style.alignment = TA_JUSTIFY directions = [x for x in json.loads(request_data["pk"]) if x is not None] buffer = BytesIO() doc = SimpleDocTemplate(buffer, pagesize=A4, leftMargin=25 * mm, rightMargin=5 * mm, topMargin=6 * mm, bottomMargin=6 * mm, allowSplitting=1, title="Форма {}".format("Эпид. извещение")) data_result = get_epid_data(directions, 1) objs = [] for k, v in data_result.items(): opinion = [ [Paragraph('Эпид Номер', style), Paragraph(v.get('epid_value'), style)], ] for i in v.get('master_field_results'): opinion.append( [Paragraph(i.get('master_field_title'), style), Paragraph(i.get('master_value'), style)], ) tbl = Table(opinion, colWidths=(60 * mm, 120 * mm)) tbl.setStyle( TableStyle( [ ('GRID', (0, 0), (-1, -1), 1.0, colors.black), ('BOTTOMPADDING', (0, 0), (-1, -1), 0.1 * mm), ] ) ) objs.append(Spacer(1, 3 * mm)) objs.append(tbl) objs.append(PageBreak()) doc.build(objs) pdf = buffer.getvalue() buffer.close() return pdf
34.106061
189
0.668147
6dcb66d99a2889da896cc1bd9d6a9710e68cf030
27,185
py
Python
sidpy/hdf/dtype_utils.py
ondrejdyck/sidpy
779034440b8233e1dae609a58a64ce2d25ca41c0
[ "MIT" ]
5
2020-10-07T14:34:32.000Z
2021-11-17T11:25:06.000Z
sidpy/hdf/dtype_utils.py
ondrejdyck/sidpy
779034440b8233e1dae609a58a64ce2d25ca41c0
[ "MIT" ]
94
2020-07-31T17:34:23.000Z
2022-02-11T21:57:09.000Z
sidpy/hdf/dtype_utils.py
ondrejdyck/sidpy
779034440b8233e1dae609a58a64ce2d25ca41c0
[ "MIT" ]
15
2020-08-16T14:22:47.000Z
2021-08-20T18:15:37.000Z
# -*- coding: utf-8 -*- """ Utilities for transforming and validating data types Given that many of the data transformations involve copying the data, they should ideally happen in a lazy manner to avoid memory issues. Created on Tue Nov 3 21:14:25 2015 @author: Suhas Somnath, Chris Smith """ from __future__ import division, absolute_import, unicode_literals, print_function import sys from warnings import warn import h5py import numpy as np import dask.array as da __all__ = ['flatten_complex_to_real', 'get_compound_sub_dtypes', 'flatten_compound_to_real', 'check_dtype', 'stack_real_to_complex', 'validate_dtype', 'is_complex_dtype', 'stack_real_to_compound', 'stack_real_to_target_dtype', 'flatten_to_real'] from sidpy.hdf.hdf_utils import lazy_load_array if sys.version_info.major == 3: unicode = str def flatten_complex_to_real(dataset, lazy=False): """ Stacks the real values followed by the imaginary values in the last dimension of the given N dimensional matrix. Thus a complex matrix of shape (2, 3, 5) will turn into a matrix of shape (2, 3, 10) Parameters ---------- dataset : array-like or :class:`numpy.ndarray`, or :class:`h5py.Dataset`, or :class:`dask.array.core.Array` Dataset of complex data type lazy : bool, optional. Default = False If set to True, will use lazy Dask arrays instead of in-memory numpy arrays Returns ------- retval : :class:`numpy.ndarray`, or :class:`dask.array.core.Array` real valued dataset Examples -------- >>> import numpy as np >>> import sidpy >>> length = 3 >>> complex_array = np.random.randint(-5, high=5, size=length) + 1j * np.random.randint(-5, high=5, size=length) >>> print('Complex value: {} has shape: {}'.format(complex_array, complex_array.shape)) Complex value: [2.-2.j 0.-3.j 0.-4.j] has shape: (3,) >>> stacked_real_array = sidpy.dtype_utils.flatten_complex_to_real(complex_array) >>> print('Stacked real value: {} has shape: ' >>> '{}'.format(stacked_real_array, stacked_real_array.shape)) Stacked real value: [ 2. 0. 0. -2. -3. -4.] has shape: (6,) """ if not isinstance(dataset, (h5py.Dataset, np.ndarray, da.core.Array)): raise TypeError('dataset should either be a h5py.Dataset or numpy / dask array') if not is_complex_dtype(dataset.dtype): raise TypeError("Expected a complex valued dataset") if isinstance(dataset, da.core.Array): lazy = True xp = np if lazy: dataset = lazy_load_array(dataset) xp = da axis = xp.array(dataset).ndim - 1 if axis == -1: return xp.hstack([xp.real(dataset), xp.imag(dataset)]) else: # along the last axis return xp.concatenate([xp.real(dataset), xp.imag(dataset)], axis=axis) def flatten_compound_to_real(dataset, lazy=False): """ Flattens the individual components in a structured array or compound valued hdf5 dataset along the last axis to form a real valued array. Thus a compound h5py.Dataset or structured numpy matrix of shape (2, 3, 5) having 3 components will turn into a real valued matrix of shape (2, 3, 15), assuming that all the sub-dtypes of the matrix are real valued. ie - this function does not handle structured dtypes having complex values Parameters ---------- dataset : :class:`numpy.ndarray`, or :class:`h5py.Dataset`, or :class:`dask.array.core.Array` Numpy array that is a structured array or a :class:`h5py.Dataset` of compound dtype lazy : bool, optional. Default = False If set to True, will use lazy Dask arrays instead of in-memory numpy arrays Returns ------- retval : :class:`numpy.ndarray`, or :class:`dask.array.core.Array` real valued dataset Examples -------- >>> import numpy as np >>> import sidpy >>> num_elems = 5 >>> struct_dtype = np.dtype({'names': ['r', 'g', 'b'], >>> 'formats': [np.float32, np.uint16, np.float64]}) >>> structured_array = np.zeros(shape=num_elems, dtype=struct_dtype) >>> structured_array['r'] = np.random.random(size=num_elems) * 1024 >>> structured_array['g'] = np.random.randint(0, high=1024, size=num_elems) >>> structured_array['b'] = np.random.random(size=num_elems) * 1024 >>> print('Structured array is of shape {} and have values:'.format(structured_array.shape)) >>> print(structured_array) Structured array is of shape (5,) and have values: [(859.62445, 54, 1012.22256219) (959.5565 , 678, 296.19788769) (383.20737, 689, 192.45427816) (201.56635, 889, 939.01082338) (334.22015, 467, 980.9081472 )] >>> real_array = sidpy.dtype_utils.flatten_compound_to_real(structured_array) >>> print("This array converted to regular scalar matrix has shape: {} and values:".format(real_array.shape)) >>> print(real_array) This array converted to regular scalar matrix has shape: (15,) and values: [ 859.62445068 959.55651855 383.20736694 201.56634521 334.22015381 54. 678. 689. 889. 467. 1012.22256219 296.19788769 192.45427816 939.01082338 980.9081472 ] """ if isinstance(dataset, h5py.Dataset): if len(dataset.dtype) == 0: raise TypeError("Expected compound h5py dataset") if lazy: xp = da dataset = lazy_load_array(dataset) else: xp = np warn('HDF5 datasets will be loaded as Dask arrays in the future. ie - kwarg lazy will default to True in future releases of sidpy') return xp.concatenate([xp.array(dataset[name]) for name in dataset.dtype.names], axis=len(dataset.shape) - 1) elif isinstance(dataset, (np.ndarray, da.core.Array)): if isinstance(dataset, da.core.Array): lazy = True xp = np if lazy: dataset = lazy_load_array(dataset) xp = da if len(dataset.dtype) == 0: raise TypeError("Expected structured array") if dataset.ndim > 0: return xp.concatenate([dataset[name] for name in dataset.dtype.names], axis=dataset.ndim - 1) else: return xp.hstack([dataset[name] for name in dataset.dtype.names]) elif isinstance(dataset, np.void): return np.hstack([dataset[name] for name in dataset.dtype.names]) else: raise TypeError('Datatype {} not supported'.format(type(dataset))) def flatten_to_real(ds_main, lazy=False): """ Flattens complex / compound / real valued arrays to real valued arrays Parameters ---------- ds_main : :class:`numpy.ndarray`, or :class:`h5py.Dataset`, or :class:`dask.array.core.Array` Compound, complex or real valued numpy array or HDF5 dataset lazy : bool, optional. Default = False If set to True, will use lazy Dask arrays instead of in-memory numpy arrays Returns ---------- ds_main : :class:`numpy.ndarray`, or :class:`dask.array.core.Array` Array raveled to a float data type Examples -------- >>> import numpy as np >>> import sidpy >>> num_elems = 5 >>> struct_dtype = np.dtype({'names': ['r', 'g', 'b'], >>> 'formats': [np.float32, np.uint16, np.float64]}) >>> structured_array = np.zeros(shape=num_elems, dtype=struct_dtype) >>> structured_array['r'] = np.random.random(size=num_elems) * 1024 >>> structured_array['g'] = np.random.randint(0, high=1024, size=num_elems) >>> structured_array['b'] = np.random.random(size=num_elems) * 1024 >>> print('Structured array is of shape {} and have values:'.format(structured_array.shape)) >>> print(structured_array) Structured array is of shape (5,) and have values: [(859.62445, 54, 1012.22256219) (959.5565 , 678, 296.19788769) (383.20737, 689, 192.45427816) (201.56635, 889, 939.01082338) (334.22015, 467, 980.9081472 )] >>> real_array = sidpy.dtype_utils.flatten_to_real(structured_array) >>> print('This array converted to regular scalar matrix has shape: {} and values:'.format(real_array.shape)) >>> print(real_array) This array converted to regular scalar matrix has shape: (15,) and values: [ 859.62445068 959.55651855 383.20736694 201.56634521 334.22015381 54. 678. 689. 889. 467. 1012.22256219 296.19788769 192.45427816 939.01082338 980.9081472 ] """ if not isinstance(ds_main, (h5py.Dataset, np.ndarray, da.core.Array)): ds_main = np.array(ds_main) if is_complex_dtype(ds_main.dtype): return flatten_complex_to_real(ds_main, lazy=lazy) elif len(ds_main.dtype) > 0: return flatten_compound_to_real(ds_main, lazy=lazy) else: return ds_main def get_compound_sub_dtypes(struct_dtype): """ Returns a dictionary of the dtypes of each of the fields in the given structured array dtype Parameters ---------- struct_dtype : :class:`numpy.dtype` dtype of a structured array Returns ------- dtypes : dict Dictionary whose keys are the field names and values are the corresponding dtypes Examples -------- >>> import numpy as np >>> import sidpy >>> struct_dtype = np.dtype({'names': ['r', 'g', 'b'], >>> 'formats': [np.float32, np.uint16, np.float64]}) >>> sub_dtypes = sidpy.dtype_utils.get_compound_sub_dtypes(struct_dtype) >>> for key, val in sub_dtypes.items(): >>> print('{} : {}'.format(key, val)) g : uint16 r : float32 b : float64 """ if not isinstance(struct_dtype, np.dtype): raise TypeError('Provided object must be a structured array dtype') dtypes = dict() for field_name in struct_dtype.fields: dtypes[field_name] = struct_dtype.fields[field_name][0] return dtypes def check_dtype(h5_dset): """ Checks the datatype of the input HDF5 dataset and provides the appropriate function calls to convert it to a float Parameters ---------- h5_dset : :class:`h5py.Dataset` Dataset of interest Returns ------- func : callable function that will convert the dataset to a float is_complex : bool is the input dataset complex? is_compound : bool is the input dataset compound? n_features : Unsigned int Unsigned integer - the length of the 2nd dimension of the data after `func` is called on it type_mult : Unsigned int multiplier that converts from the typesize of the input :class:`~numpy.dtype` to the typesize of the data after func is run on it Examples -------- >>> import numpy as np >>> import h5py >>> import sidpy >>> struct_dtype = np.dtype({'names': ['r', 'g', 'b'], >>> 'formats': [np.float32, np.uint16, np.float64]}) >>> file_path = 'dtype_utils_example.h5' >>> if os.path.exists(file_path): >>> os.remove(file_path) >>> with h5py.File(file_path, mode='w') as h5_f: >>> num_elems = (5, 7) >>> structured_array = np.zeros(shape=num_elems, dtype=struct_dtype) >>> structured_array['r'] = 450 * np.random.random(size=num_elems) >>> structured_array['g'] = np.random.randint(0, high=1024, size=num_elems) >>> structured_array['b'] = 3178 * np.random.random(size=num_elems) >>> _ = h5_f.create_dataset('compound', data=structured_array) >>> _ = h5_f.create_dataset('real', data=450 * np.random.random(size=num_elems), dtype=np.float16) >>> _ = h5_f.create_dataset('complex', data=np.random.random(size=num_elems) + 1j * np.random.random(size=num_elems), >>> dtype=np.complex64) >>> h5_f.flush() >>> # Now, lets test the the function on compound-, complex-, and real-valued HDF5 datasets: >>> def check_dataset(h5_dset): >>> print('\tDataset being tested: {}'.format(h5_dset)) >>> func, is_complex, is_compound, n_features, type_mult = sidpy.dtype_utils.check_dtype(h5_dset) >>> print('\tFunction to transform to real: %s' % func) >>> print('\tis_complex? %s' % is_complex) >>> print('\tis_compound? %s' % is_compound) >>> print('\tShape of dataset in its current form: {}'.format(h5_dset.shape)) >>> print('\tAfter flattening to real, shape is expected to be: ({}, {})'.format(h5_dset.shape[0], n_features)) >>> print('\tByte-size of a single element in its current form: {}'.format(type_mult)) >>> with h5py.File(file_path, mode='r') as h5_f: >>> print('Checking a compound-valued dataset:') >>> check_dataset(h5_f['compound']) >>> print('') >>> print('Checking a complex-valued dataset:') >>> check_dataset(h5_f['complex']) >>> print('') >>> print('Checking a real-valued dataset:') >>> check_dataset(h5_f['real']) >>> os.remove(file_path) Checking a compound-valued dataset: Dataset being tested: <HDF5 dataset "compound": shape (5, 7), type "|V14"> Function to transform to real: <function flatten_compound_to_real at 0x112c130d0> is_complex? False is_compound? True Shape of dataset in its current form: (5, 7) After flattening to real, shape is expected to be: (5, 21) Byte-size of a single element in its current form: 12 - - - - - - - - - - - - - - - - - - Checking a complex-valued dataset: Dataset being tested: <HDF5 dataset "complex": shape (5, 7), type "<c8"> Function to transform to real: <function flatten_complex_to_real at 0x112c13048> is_complex? True is_compound? False Shape of dataset in its current form: (5, 7) After flattening to real, shape is expected to be: (5, 14) Byte-size of a single element in its current form: 8 - - - - - - - - - - - - - - - - - - Checking a real-valued dataset: Dataset being tested: <HDF5 dataset "real": shape (5, 7), type "<f2"> Function to transform to real: <class 'numpy.float32'> is_complex? False is_compound? False Shape of dataset in its current form: (5, 7) After flattening to real, shape is expected to be: (5, 7) Byte-size of a single element in its current form: 4 """ if not isinstance(h5_dset, h5py.Dataset): raise TypeError('h5_dset should be a h5py.Dataset object') is_complex = False is_compound = False in_dtype = h5_dset.dtype # TODO: avoid assuming 2d shape - why does one even need n_samples!? We only care about the last dimension! n_features = h5_dset.shape[-1] if is_complex_dtype(h5_dset.dtype): is_complex = True new_dtype = np.real(h5_dset[0, 0]).dtype type_mult = new_dtype.itemsize * 2 func = flatten_complex_to_real n_features *= 2 elif len(h5_dset.dtype) > 0: """ Some form of structured numpy is in use We only support real scalars for the component types at the current time """ is_compound = True # TODO: Avoid hard-coding to float32 new_dtype = np.float32 type_mult = len(in_dtype) * new_dtype(0).itemsize func = flatten_compound_to_real n_features *= len(in_dtype) else: if h5_dset.dtype not in [np.float32, np.float64]: new_dtype = np.float32 else: new_dtype = h5_dset.dtype.type type_mult = new_dtype(0).itemsize func = new_dtype return func, is_complex, is_compound, n_features, type_mult def stack_real_to_complex(ds_real, lazy=False): """ Puts the real and imaginary sections of the provided matrix (in the last axis) together to make complex matrix Parameters ------------ ds_real : :class:`numpy.ndarray`, :class:`dask.array.core.Array`, or :class:`h5py.Dataset` n dimensional real-valued numpy array or HDF5 dataset where data arranged as [instance, 2 x features], where the first half of the features are the real component and the second half contains the imaginary components lazy : bool, optional. Default = False If set to True, will use lazy Dask arrays instead of in-memory numpy arrays Returns ---------- ds_compound : :class:`numpy.ndarray` or :class:`dask.array.core.Array` 2D complex array arranged as [sample, features] Examples -------- >>> import numpy as np >>> import sidpy >>> real_val = np.hstack([5 * np.random.rand(6), >>> 7 * np.random.rand(6)]) >>> print('Real valued dataset of shape {}:'.format(real_val.shape)) >>> print(real_val) Real valued dataset of shape (12,): [3.59249723 1.05674621 4.41035214 1.84720102 1.79672691 4.7636207 3.09574246 0.76396171 3.38140637 4.97629028 0.83303717 0.32816285] >>> comp_val = sidpy.dtype_utils.stack_real_to_complex(real_val) >>> print('Complex-valued array of shape: {}'.format(comp_val.shape)) >>> print(comp_val) Complex-valued array of shape: (6,) [3.59249723+3.09574246j 1.05674621+0.76396171j 4.41035214+3.38140637j 1.84720102+4.97629028j 1.79672691+0.83303717j 4.7636207 +0.32816285j] """ if not isinstance(ds_real, (np.ndarray, da.core.Array, h5py.Dataset)): if not isinstance(ds_real, (tuple, list)): raise TypeError("Expected at least an iterable like a list or tuple") ds_real = np.array(ds_real) if len(ds_real.dtype) > 0: raise TypeError("Array cannot have a compound dtype") if is_complex_dtype(ds_real.dtype): raise TypeError("Array cannot have complex dtype") if ds_real.shape[-1] / 2 != ds_real.shape[-1] // 2: raise ValueError("Last dimension must be even sized") half_point = ds_real.shape[-1] // 2 if isinstance(ds_real, da.core.Array): lazy = True if lazy and not isinstance(ds_real, da.core.Array): ds_real = lazy_load_array(ds_real) return ds_real[..., :half_point] + 1j * ds_real[..., half_point:] def stack_real_to_compound(ds_real, compound_type, lazy=False): """ Converts a real-valued dataset to a compound dataset (along the last axis) of the provided compound d-type Parameters ------------ ds_real : :class:`numpy.ndarray`, :class:`dask.array.core.Array`, or :class:`h5py.Dataset` n dimensional real-valued numpy array or HDF5 dataset where data arranged as [instance, features] compound_type : :class:`numpy.dtype` Target complex data-type lazy : bool, optional. Default = False If set to True, will use lazy Dask arrays instead of in-memory numpy arrays Returns ---------- ds_compound : :class:`numpy.ndarray` or :class:`dask.array.core.Array` N-dimensional complex-valued array arranged as [sample, features] Examples -------- >>> import numpy as np >>> import sidpy >>> struct_dtype = np.dtype({'names': ['r', 'g', 'b'], >>> 'formats': [np.float32, np.uint16, np.float64]}) >>> num_elems = 5 >>> real_val = np.concatenate((np.random.random(size=num_elems) * 1024, >>> np.random.randint(0, high=1024, size=num_elems), >>> np.random.random(size=num_elems) * 1024)) >>> print('Real valued dataset of shape {}:'.format(real_val.shape)) >>> print(real_val) Real valued dataset of shape (15,): [276.65339095 527.80665658 741.38145798 647.06743252 710.41729083 380. 796. 504. 355. 985. 960.70015068 567.47024098 881.25140299 105.48936013 933.13686734] >>> comp_val = sidpy.dtype_utils.stack_real_to_compound(real_val, struct_dtype) >>> print('Structured array of shape: {}'.format(comp_val.shape)) >>> print(comp_val) Structured array of shape: (5,) [(276.65338, 380, 960.70015068) (527.80664, 796, 567.47024098) (741.3815 , 504, 881.25140299) (647.06744, 355, 105.48936013) (710.4173 , 985, 933.13686734)] """ if lazy or isinstance(ds_real, da.core.Array): raise NotImplementedError('Lazy operation not available due to absence of Dask support') if not isinstance(ds_real, (np.ndarray, h5py.Dataset)): if not isinstance(ds_real, (list, tuple)): raise TypeError("Expected at least an iterable like a list or tuple") ds_real = np.array(ds_real) if len(ds_real.dtype) > 0: raise TypeError("Array cannot have a compound dtype") elif is_complex_dtype(ds_real.dtype): raise TypeError("Array cannot have complex dtype") if not isinstance(compound_type, np.dtype): raise TypeError('Provided object must be a structured array dtype') new_spec_length = ds_real.shape[-1] / len(compound_type) if new_spec_length % 1: raise ValueError('Provided compound type was not compatible by number of elements') new_spec_length = int(new_spec_length) new_shape = list(ds_real.shape) # Make mutable new_shape[-1] = new_spec_length xp = np kwargs = {} """ if isinstance(ds_real, h5py.Dataset) and not lazy: warn('HDF5 datasets will be loaded as Dask arrays in the future. ie - kwarg lazy will default to True in future releases of sidpy') if isinstance(ds_real, da.core.Array): lazy = True if lazy: xp = da ds_real = lazy_load_array(ds_real) kwargs = {'chunks': 'auto'} """ ds_compound = xp.empty(new_shape, dtype=compound_type, **kwargs) for name_ind, name in enumerate(compound_type.names): i_start = name_ind * new_spec_length i_end = (name_ind + 1) * new_spec_length ds_compound[name] = ds_real[..., i_start:i_end] return ds_compound.squeeze() def stack_real_to_target_dtype(ds_real, new_dtype, lazy=False): """ Transforms real data into the target dtype Parameters ---------- ds_real : :class:`numpy.ndarray`, :class:`dask.array.core.Array` or :class:`h5py.Dataset` n dimensional real-valued numpy array or HDF5 dataset new_dtype : :class:`numpy.dtype` Target data-type Returns ---------- ret_val : :class:`numpy.ndarray` or :class:`dask.array.core.Array` N-dimensional array of the target data-type Examples -------- >>> import numpy as np >>> import sidpy >>> struct_dtype = np.dtype({'names': ['r', 'g', 'b'], >>> 'formats': [np.float32, np.uint16, np.float64]}) >>> num_elems = 5 >>> real_val = np.concatenate((np.random.random(size=num_elems) * 1024, >>> np.random.randint(0, high=1024, size=num_elems), >>> np.random.random(size=num_elems) * 1024)) >>> print('Real valued dataset of shape {}:'.format(real_val.shape)) >>> print(real_val) Real valued dataset of shape (15,): [276.65339095 527.80665658 741.38145798 647.06743252 710.41729083 380. 796. 504. 355. 985. 960.70015068 567.47024098 881.25140299 105.48936013 933.13686734] >>> comp_val = sidpy.dtype_utils.stack_real_to_target_dtype(real_val, struct_dtype) >>> print('Structured array of shape: {}'.format(comp_val.shape)) >>> print(comp_val) Structured array of shape: (5,) [(276.65338, 380, 960.70015068) (527.80664, 796, 567.47024098) (741.3815 , 504, 881.25140299) (647.06744, 355, 105.48936013) (710.4173 , 985, 933.13686734)] """ if is_complex_dtype(new_dtype): return stack_real_to_complex(ds_real, lazy=lazy) try: if len(new_dtype) > 0: return stack_real_to_compound(ds_real, new_dtype, lazy=lazy) except TypeError: return new_dtype(ds_real) # catching all other cases, such as np.dtype('<f4') return new_dtype.type(ds_real) def validate_dtype(dtype): """ Checks the provided object to ensure that it is a valid dtype that can be written to an HDF5 file. Raises a type error if invalid. Returns True if the object passed the tests Parameters ---------- dtype : object Object that is hopefully a :class:`h5py.Datatype`, or :class:`numpy.dtype` object Returns ------- status : bool True if the object was a valid data-type Examples -------- >>> import numpy as np >>> import sidpy >>> for item in [np.float16, np.complex64, np.uint8, np.int16]: >>> print('Is {} a valid dtype? : {}'.format(item, sidpy.dtype_utils.validate_dtype(item))) Is <class 'numpy.float16'> a valid dtype? : True Is <class 'numpy.complex64'> a valid dtype? : True Is <class 'numpy.uint8'> a valid dtype? : True Is <class 'numpy.int16'> a valid dtype? : True # This function is especially useful on compound or structured data types: >>> struct_dtype = np.dtype({'names': ['r', 'g', 'b'], >>> 'formats': [np.float32, np.uint16, np.float64]}) >>> print('Is {} a valid dtype? : {}'.format(struct_dtype, sidpy.dtype_utils.validate_dtype(struct_dtype))) Is [('r', '<f4'), ('g', '<u2'), ('b', '<f8')] a valid dtype? : True """ if isinstance(dtype, (h5py.Datatype, np.dtype)): pass elif isinstance(np.dtype(dtype), np.dtype): # This should catch all those instances when dtype is something familiar like - np.float32 pass else: raise TypeError('dtype should either be a numpy or h5py dtype') return True def is_complex_dtype(dtype): """ Checks if the provided dtype is a complex dtype Parameters ---------- dtype : object Object that is a class:`h5py.Datatype`, or :class:`numpy.dtype` object Returns ------- is_complex : bool True if the dtype was a complex dtype. Else returns False Examples -------- >>> import numpy as np >>> import sidpy >>> for dtype in [np.float32, np.float16, np.uint8, np.int16, bool]: >>> print('Is {} a complex dtype?: {}'.format(dtype, (sidpy.dtype_utils.is_complex_dtype(dtype)))) Is <class 'numpy.float32'> a complex dtype?: False Is <class 'numpy.float16'> a complex dtype?: False Is <class 'numpy.uint8'> a complex dtype?: False Is <class 'numpy.int16'> a complex dtype?: False Is <class 'bool'> a complex dtype?: False >>> struct_dtype = np.dtype({'names': ['r', 'g', 'b'], >>> 'formats': [np.float32, np.uint16, np.float64]}) Is [('r', '<f4'), ('g', '<u2'), ('b', '<f8')] a complex dtype?: False >>> for dtype in [np.complex, np.complex64, np.complex128, np.complex256]: >>> print('Is {} a complex dtype?: {}'.format(dtype, (sidpy.dtype_utils.is_complex_dtype(dtype)))) Is <class 'complex'> a complex dtype?: True Is <class 'numpy.complex64'> a complex dtype?: True Is <class 'numpy.complex128'> a complex dtype?: True Is <class 'numpy.complex256'> a complex dtype?: False """ validate_dtype(dtype) if dtype in [np.complex, np.complex64, np.complex128]: return True return False
41.12708
143
0.634872
ba65fc8806ad47ab257dc5956c5ff0cb759e6f83
2,603
py
Python
pydrr/GeometryContext.py
yuta-hi/pycuda_drr
08cc20c651d4288be67c40e4936f4280b04eec6f
[ "MIT" ]
16
2019-12-14T09:24:43.000Z
2022-03-11T04:31:48.000Z
pydrr/GeometryContext.py
yuta-hi/pycuda_drr
08cc20c651d4288be67c40e4936f4280b04eec6f
[ "MIT" ]
6
2020-07-05T16:59:45.000Z
2021-04-21T11:20:31.000Z
pydrr/GeometryContext.py
yuta-hi/pycuda_drr
08cc20c651d4288be67c40e4936f4280b04eec6f
[ "MIT" ]
2
2020-07-13T09:11:44.000Z
2022-02-20T07:14:04.000Z
import numpy as np from . import utils class GeometryContext: def __init__(self): self.SOD_ = 0.0 self.SDD_ = 0.0 self.pixel_spacing_ = (1.0, 1.0) self.image_size_ = (1024, 1024) self.view_matrix_ = np.eye(4,4, dtype=np.float32) self.intrinsic_ = None self.extrinsic_ = None self.projection_matrix_ = None @property def SOD(self): return self.SOD_ @SOD.setter def SOD(self, value): self.intrinsic = None self.SOD_ = value @property def SDD(self): return self.SDD_ @SDD.setter def SDD(self, value): self.intrinsic = None self.extrinsic = None self.SDD_ = value @property def pixel_spacing(self): return self.pixel_spacing_ @pixel_spacing.setter def pixel_spacing(self, value): self.intrinsic = None self.pixel_spacing_ = value @property def image_size(self): return self.image_size_ @image_size.setter def image_size(self, value): self.intrinsic = None self.image_size_ = value @property def view_matrix(self): return self.view_matrix_ @view_matrix.setter def view_matrix(self, value): self.extrinsic = None self.view_matrix_ = value @property def intrinsic(self): if self.intrinsic_ is None: self.intrinsic_ = np.array([ [ self.SOD / self.pixel_spacing[0], 0, self.image_size[0] / 2 ], [ 0, self.SOD / self.pixel_spacing[1], self.image_size[1] / 2 ], [0, 0, 1] ]) return self.intrinsic_ @intrinsic.setter def intrinsic(self, new_intrinsic): self.projection_matrix = None self.intrinsic_ = new_intrinsic @property def extrinsic(self): if self.extrinsic_ is None: extrinsic_T = utils.convertTransRotTo4x4([0, 0, -self.SOD, 0, 0, 0]) self.extrinsic_ = utils.concatenate4x4(extrinsic_T, self.view_matrix) return self.extrinsic_ @extrinsic.setter def extrinsic(self, new_extrinsic): self.projection_matrix = None self.extrinsic_ = new_extrinsic @property def projection_matrix(self): if self.projection_matrix_ is None: self.projection_matrix_ = utils.constructProjectionMatrix(self.intrinsic, self.extrinsic) return self.projection_matrix_ @projection_matrix.setter def projection_matrix(self, value): self.projection_matrix_ = value
26.03
101
0.609681
9026659b28aff9c04d705f4afae884168fcdbbb2
3,626
py
Python
backend/apps/volontulo/tests/views/api/organizations/test_list.py
Simon323/volontulo
7a9eb2d201a1745ad18dd79c9ff4014031dbd195
[ "MIT" ]
null
null
null
backend/apps/volontulo/tests/views/api/organizations/test_list.py
Simon323/volontulo
7a9eb2d201a1745ad18dd79c9ff4014031dbd195
[ "MIT" ]
null
null
null
backend/apps/volontulo/tests/views/api/organizations/test_list.py
Simon323/volontulo
7a9eb2d201a1745ad18dd79c9ff4014031dbd195
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ .. module:: test_list """ from rest_framework import status from rest_framework.test import APITestCase from apps.volontulo.tests.views.offers.commons import TestOffersCommons class _TestOrganizationsListAPIView(TestOffersCommons, APITestCase): """Tests for REST API's list organizations view.""" def test_organization_list_fields(self): """Test list's fields of organization REST API endpoint.""" response = self.client.get('/api/organizations/') self.assertEqual(response.status_code, status.HTTP_200_OK) for organization in response.data: self.assertIsInstance(organization.pop('id'), int) self.assertIsInstance(organization.pop('name'), str) self.assertIsInstance(organization.pop('slug'), str) self.assertIsInstance(organization.pop('url'), str) self.assertEqual(len(organization), 0) class TestAdminUserOrganizationsListAPIView(_TestOrganizationsListAPIView): """Tests for REST API's list organizations view for admin user.""" def setUp(self): """Set up each test.""" super(TestAdminUserOrganizationsListAPIView, self).setUp() self.client.login(username='admin@example.com', password='123admin') def test_organization_list_length(self): """Test organizations list length for admin user. Organizations are readable for everyone. """ response = self.client.get('/api/organizations/') self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(len(response.data), 1) class TestOrganizationUserOrganizationsListAPIView( _TestOrganizationsListAPIView): """Tests for API's list organizations view for user with organization.""" def setUp(self): """Set up each test.""" super(TestOrganizationUserOrganizationsListAPIView, self).setUp() self.client.login( username='cls.organization@example.com', password='123org' ) def test_organization_list_length(self): """Test organizations list length for user with organization. Organizations are readable for everyone. """ response = self.client.get('/api/organizations/') self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(len(response.data), 1) class TestRegularUserOrganizationsListAPIView(_TestOrganizationsListAPIView): """Tests for REST API's list organizations view for regular user.""" def setUp(self): """Set up each test.""" super(TestRegularUserOrganizationsListAPIView, self).setUp() self.client.login( username='volunteer@example.com', password='123volunteer' ) def test_organization_list_length(self): """Test organizations list length for regular user. Organizations are readable for everyone. """ response = self.client.get('/api/organizations/') self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(len(response.data), 1) class TestAnonymousUserOrganizationsListAPIView(_TestOrganizationsListAPIView): """Tests for REST API's list organizations view for anonymous user.""" def test_organization_list_length(self): """Test organizations list length for anonymous user. Organizations are readable for everyone. """ response = self.client.get('/api/organizations/') self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(len(response.data), 1)
33.266055
79
0.690292
86d248e9f8fcd095ebd3753ddcdef27c368a9f7d
1,362
py
Python
sdk/ingestion/microsoft/bing/commerce/ingestion/models/schema_detection_response.py
microsoft/bing-commerce-sdk-for-python
cf555ea0bb14792708617d2435dd5aab1c4cbe90
[ "MIT" ]
1
2020-05-04T09:58:07.000Z
2020-05-04T09:58:07.000Z
sdk/ingestion/microsoft/bing/commerce/ingestion/models/schema_detection_response.py
microsoft/bing-commerce-sdk-for-python
cf555ea0bb14792708617d2435dd5aab1c4cbe90
[ "MIT" ]
2
2020-04-21T02:32:32.000Z
2020-04-21T19:37:54.000Z
sdk/ingestion/microsoft/bing/commerce/ingestion/models/schema_detection_response.py
microsoft/bing-commerce-sdk-for-python
cf555ea0bb14792708617d2435dd5aab1c4cbe90
[ "MIT" ]
4
2020-07-31T10:39:22.000Z
2021-11-10T08:14:07.000Z
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. # coding=utf-8 # -------------------------------------------------------------------------- # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class SchemaDetectionResponse(Model): """SchemaDetectionResponse. :param index: :type index: ~microsoft.bing.commerce.ingestion.models.ResponseIndex :param transformation_config: :type transformation_config: ~microsoft.bing.commerce.ingestion.models.TransformationConfigResponse :param warnings: :type warnings: list[str] """ _attribute_map = { 'index': {'key': 'index', 'type': 'ResponseIndex'}, 'transformation_config': {'key': 'transformationConfig', 'type': 'TransformationConfigResponse'}, 'warnings': {'key': 'warnings', 'type': '[str]'}, } def __init__(self, **kwargs): super(SchemaDetectionResponse, self).__init__(**kwargs) self.index = kwargs.get('index', None) self.transformation_config = kwargs.get('transformation_config', None) self.warnings = kwargs.get('warnings', None)
36.810811
106
0.599119
d6fb88d579e9ae53329cd82825a8be3f1b9db84e
2,896
py
Python
tests/integration/offer/shipping_benefit_tests.py
ahmetdaglarbas/e-commerce
ff190244ccd422b4e08d7672f50709edcbb6ebba
[ "BSD-3-Clause" ]
2
2015-12-11T00:19:15.000Z
2021-11-14T19:44:42.000Z
tests/integration/offer/shipping_benefit_tests.py
ahmetdaglarbas/e-commerce
ff190244ccd422b4e08d7672f50709edcbb6ebba
[ "BSD-3-Clause" ]
null
null
null
tests/integration/offer/shipping_benefit_tests.py
ahmetdaglarbas/e-commerce
ff190244ccd422b4e08d7672f50709edcbb6ebba
[ "BSD-3-Clause" ]
null
null
null
from decimal import Decimal as D from django.test import TestCase from django.test.client import RequestFactory import mock from oscar.apps.offer import models, utils from oscar.apps.order.utils import OrderCreator from oscar.apps.shipping.repository import Repository from oscar.apps.shipping.methods import FixedPrice from oscar.test.basket import add_product from oscar.test import factories def create_offer(): range = models.Range.objects.create( name="All products", includes_all_products=True) condition = models.CountCondition.objects.create( range=range, type=models.Condition.COUNT, value=1) benefit = models.ShippingFixedPriceBenefit.objects.create( type=models.Benefit.SHIPPING_FIXED_PRICE, value=D('1.00')) return models.ConditionalOffer.objects.create( condition=condition, benefit=benefit, offer_type=models.ConditionalOffer.SITE) def apply_offers(basket): req = RequestFactory().get('/') req.user = mock.Mock() utils.Applicator().apply(req, basket) class StubRepository(Repository): """ Stubbed shipped repository which overrides the get_shipping_methods method in order to use a non-free default shipping method. This allows the shipping discounts to be tested. """ methods = [FixedPrice(D('10.00'), D('10.00'))] class TestAnOfferWithAShippingBenefit(TestCase): def setUp(self): self.basket = factories.create_basket(empty=True) create_offer() def test_applies_correctly_to_basket_which_matches_condition(self): add_product(self.basket, D('12.00')) apply_offers(self.basket) self.assertEqual(1, len(self.basket.offer_applications)) def test_applies_correctly_to_basket_which_exceeds_condition(self): add_product(self.basket, D('12.00'), 2) apply_offers(self.basket) self.assertEqual(1, len(self.basket.offer_applications)) def test_wraps_shipping_method_from_repository(self): add_product(self.basket, D('12.00'), 1) apply_offers(self.basket) methods = StubRepository().get_shipping_methods(self.basket) method = methods[0] charge = method.calculate(self.basket) self.assertEqual(D('1.00'), charge.incl_tax) def test_has_discount_recorded_correctly_when_order_is_placed(self): add_product(self.basket, D('12.00'), 1) apply_offers(self.basket) methods = StubRepository().get_shipping_methods(self.basket) method = methods[0] order = factories.create_order(basket=self.basket, shipping_method=method) discounts = order.discounts.all() self.assertEqual(1, len(discounts)) discount = discounts[0] self.assertTrue(discount.is_shipping_discount) self.assertEqual(D('9.00'), discount.amount)
34.070588
78
0.703729
4d2488c387475fed0f30a9f48dc558b6d00efa92
4,297
py
Python
salt/loader_context.py
JochemGit/salt
d159b93ca77be3ec04cc5d349be82c210ffeb49d
[ "Apache-2.0" ]
2
2015-08-21T01:05:03.000Z
2015-09-02T07:30:45.000Z
salt/loader_context.py
JochemGit/salt
d159b93ca77be3ec04cc5d349be82c210ffeb49d
[ "Apache-2.0" ]
4
2021-02-06T14:30:48.000Z
2021-12-13T20:50:10.000Z
salt/loader_context.py
JochemGit/salt
d159b93ca77be3ec04cc5d349be82c210ffeb49d
[ "Apache-2.0" ]
1
2020-06-02T14:15:24.000Z
2020-06-02T14:15:24.000Z
""" Manage the context a module loaded by Salt's loader """ import collections.abc import contextlib import contextvars DEFAULT_CTX_VAR = "loader_ctxvar" loader_ctxvar = contextvars.ContextVar(DEFAULT_CTX_VAR) @contextlib.contextmanager def loader_context(loader): """ A context manager that sets and un-sets the loader context """ tok = loader_ctxvar.set(loader) try: yield finally: loader_ctxvar.reset(tok) class NamedLoaderContext(collections.abc.MutableMapping): """ A NamedLoaderContext object is injected by the loader providing access to Salt's 'magic dunders' (__salt__, __utils__, ect). """ def __init__(self, name, loader_context, default=None): self.name = name self.loader_context = loader_context self.default = default def loader(self): """ The LazyLoader in the current context. This will return None if there is no context established. """ try: return self.loader_context.loader() except AttributeError: return None def eldest_loader(self): if self.loader() is None: return None loader = self.loader() while loader.parent_loader is not None: loader = loader.parent_loader return loader def value(self): """ The value of the current for this context """ loader = self.loader() if loader is None: return self.default if self.name == "__context__": return loader.pack[self.name] if self.name == loader.pack_self: return loader return loader.pack[self.name] def get(self, key, default=None): return self.value().get(key, default) def __getitem__(self, item): return self.value()[item] def __contains__(self, item): return item in self.value() def __setitem__(self, item, value): self.value()[item] = value def __bool__(self): try: self.loader except LookupError: return False return True def __len__(self): return self.value().__len__() def __iter__(self): return self.value().__iter__() def __delitem__(self, item): return self.value().__delitem__(item) def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.loader_context == other.loader_context and self.name == other.name def __getstate__(self): return { "name": self.name, "loader_context": self.loader_context, "default": None, } def __setstate__(self, state): self.name = state["name"] self.loader_context = state["loader_context"] self.default = state["default"] def __getattr__(self, name): return getattr(self.value(), name) def missing_fun_string(self, name): return self.loader().missing_fun_string(name) class LoaderContext: """ A loader context object, this object is injected at <loaded module>.__salt_loader__ by the Salt loader. It is responsible for providing access to the current context's loader """ def __init__(self, loader_ctxvar=loader_ctxvar): self.loader_ctxvar = loader_ctxvar def __getitem__(self, item): return self.loader[item] def loader(self): """ Return the LazyLoader in the current context. If there is no value set raise an AttributeError """ try: return self.loader_ctxvar.get() except LookupError: raise AttributeError("No loader context") def named_context(self, name, default=None, ctx_class=NamedLoaderContext): """ Return a NamedLoaderContext instance which will use this LoaderContext """ return ctx_class(name, self, default) def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.loader_ctxvar == other.loader_ctxvar def __getstate__(self): return {"varname": self.loader_ctxvar.name} def __setstate__(self, state): self.loader_ctxvar = contextvars.ContextVar(state["varname"])
27.369427
102
0.627647
752a41d5e66914345312c169dcc5466b22a36637
1,515
py
Python
ppci/arch/jvm/printer.py
rakati/ppci-mirror
8f5b0282fd1122d7c389b39c86fcf5d9352b7bb2
[ "BSD-2-Clause" ]
161
2020-05-31T03:29:42.000Z
2022-03-07T08:36:19.000Z
ppci/arch/jvm/printer.py
rakati/ppci-mirror
8f5b0282fd1122d7c389b39c86fcf5d9352b7bb2
[ "BSD-2-Clause" ]
74
2020-05-26T18:05:48.000Z
2021-02-13T21:55:39.000Z
ppci/arch/jvm/printer.py
rakati/ppci-mirror
8f5b0282fd1122d7c389b39c86fcf5d9352b7bb2
[ "BSD-2-Clause" ]
19
2020-05-27T19:22:11.000Z
2022-02-17T18:53:52.000Z
""" Functions to print class contents in a verbose way. """ def print_class_file(class_file): """ Dump a class file. """ ClassFilePrinter(class_file) class ClassFilePrinter: def __init__(self, class_file): self.class_file = class_file class_info = class_file.get_constant(class_file.this_class) class_name = class_file.get_name(class_info.value) print("class {}".format(class_name)) print(" minor version:", class_file.minor_version) print(" major version:", class_file.major_version) print(" flags:", class_file.access_flags) print("Constant pool:") for i, value in enumerate(class_file.constant_pool): if not value: continue print(" #{} = {} {}".format(i, value.tag.name, value.value)) print("{") for field in class_file.fields: print(field) self.print_attributes(" ", field.attributes) for method in class_file.methods: print(" {};".format(method.name)) print(" descriptor:", method.descriptor) print(" flags:", method.access_flags) self.print_attributes(" ", method.attributes) print("}") self.print_attributes("", class_file.attributes) def print_attributes(self, indent, attributes): for attribute in attributes: name = attribute.name value = attribute print("{}{}: {}".format(indent, name, value))
32.934783
74
0.60132
fe3a3a9bd27d57285d7b190b681d0431c6e73d74
806
py
Python
Ex075.py
raphaeltertuliano/Python
ffa9813aaa13ccca807f7c08be9489a2d88d3d62
[ "MIT" ]
1
2021-11-23T21:38:46.000Z
2021-11-23T21:38:46.000Z
Ex075.py
raphaeltertuliano/Python
ffa9813aaa13ccca807f7c08be9489a2d88d3d62
[ "MIT" ]
null
null
null
Ex075.py
raphaeltertuliano/Python
ffa9813aaa13ccca807f7c08be9489a2d88d3d62
[ "MIT" ]
null
null
null
#Desenvolva um programa que leia quatro valores pelo teclado #e guarde-os em uma tupla. No final mostre: #A)-Quantas vezes apareceu o valor 9 #B)-Em que posição foi digitado o primeiro valor 3 #C)-Quais foram os números pares num = (int(input('Digite um número: ')), int(input('Digite um número: ')), int(input('Digite um número: ')), int(input('Digite um número: '))) print(f'A lista é: {num}') if num.count(9) == 0: print('Não foi digitado nenhum número 9') else: print(f'O número 9 foi digitado {num.count(9)} vezes') if 3 in num: print(f'O número 3 aparece pela primeira vez na posição {num.index(3)+1}') else: print('Não foi digitado nenhum número 3') print('Os números pares digitados foram: ', end='') for n in num: if n % 2 == 0: print(n, end=' ')
33.583333
78
0.653846
f6fafb60a333f5ff97de5f1aed1948aed49dc4c7
979
py
Python
expyfun/__init__.py
nordme/expyfun
e644bba8cbfb6edd2a076099536417d4854d64af
[ "BSD-3-Clause" ]
2
2015-12-31T07:56:16.000Z
2016-08-22T17:23:02.000Z
expyfun/__init__.py
nordme/expyfun
e644bba8cbfb6edd2a076099536417d4854d64af
[ "BSD-3-Clause" ]
6
2015-02-18T04:25:46.000Z
2017-01-25T01:00:35.000Z
expyfun/__init__.py
nordme/expyfun
e644bba8cbfb6edd2a076099536417d4854d64af
[ "BSD-3-Clause" ]
1
2015-12-31T07:56:20.000Z
2015-12-31T07:56:20.000Z
""" Experiment control ================== Experiment control functions. """ from ._version import __version__ # have to import verbose first since it's needed by many things from ._utils import (set_log_level, set_log_file, set_config, check_units, get_config, get_config_path, fetch_data_file, run_subprocess) from ._utils import verbose_dec as verbose, building_doc from ._git import assert_version, download_version from ._experiment_controller import ExperimentController, get_keyboard_input from ._eyelink_controller import EyelinkController from ._sound_controllers import SoundCardController from ._trigger_controllers import (decimals_to_binary, binary_to_decimals, ParallelTrigger) from ._tdt_controller import TDTController from . import analyze from . import codeblocks from . import io from . import stimuli from . import _fixes # INIT LOGGING set_log_level(None, False) set_log_file()
31.580645
76
0.754852
f3954927662d7fb9cd55f42b2cfd03b7ceac3990
1,309
py
Python
Lib/site-packages/sphinx/util/rst.py
TencentCodeDog/win-Python-v2.7.13
13dfc85fee2537ea352e6058bc25e6f94bb3f467
[ "bzip2-1.0.6" ]
1
2019-01-12T13:17:32.000Z
2019-01-12T13:17:32.000Z
venv/Lib/site-packages/sphinx/util/rst.py
prats1997/Euphorum
16bfee9c71ea5b1332c6263233c79a633ddfdd83
[ "MIT" ]
7
2020-03-24T15:50:06.000Z
2021-06-08T19:57:39.000Z
venv/Lib/site-packages/sphinx/util/rst.py
prats1997/Euphorum
16bfee9c71ea5b1332c6263233c79a633ddfdd83
[ "MIT" ]
2
2018-07-19T16:53:00.000Z
2018-08-02T21:59:44.000Z
# -*- coding: utf-8 -*- """ sphinx.util.rst ~~~~~~~~~~~~~~~ reST helper functions. :copyright: Copyright 2007-2018 by the Sphinx team, see AUTHORS. :license: BSD, see LICENSE for details. """ from __future__ import absolute_import import re from contextlib import contextmanager from docutils.parsers.rst import roles from docutils.parsers.rst.languages import en as english from docutils.utils import Reporter from sphinx.util import logging if False: # For type annotation from typing import Generator # NOQA symbols_re = re.compile(r'([!-\-/:-@\[-`{-~])') # symbols without dot(0x2e) logger = logging.getLogger(__name__) def escape(text): # type: (unicode) -> unicode text = symbols_re.sub(r'\\\1', text) # type: ignore text = re.sub(r'^\.', r'\.', text) # escape a dot at top return text @contextmanager def default_role(docname, name): # type: (unicode, unicode) -> Generator if name: dummy_reporter = Reporter('', 4, 4) role_fn, _ = roles.role(name, english, 0, dummy_reporter) if role_fn: roles._roles[''] = role_fn else: logger.warning('default role %s not found', name, location=docname) yield roles._roles.pop('', None) # if a document has set a local default role
25.666667
79
0.647059
7985efa0f7c14f6239771375971c057dfa0f5a13
54,983
py
Python
gensrc/script/vectorized/vectorized_functions.py
niexiongchao/starRocks
afecea80e50ee505261fffc3cff5f546ee285475
[ "Zlib", "PSF-2.0", "Apache-2.0" ]
null
null
null
gensrc/script/vectorized/vectorized_functions.py
niexiongchao/starRocks
afecea80e50ee505261fffc3cff5f546ee285475
[ "Zlib", "PSF-2.0", "Apache-2.0" ]
null
null
null
gensrc/script/vectorized/vectorized_functions.py
niexiongchao/starRocks
afecea80e50ee505261fffc3cff5f546ee285475
[ "Zlib", "PSF-2.0", "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # encoding: utf-8 # This file is licensed under the Elastic License 2.0. Copyright 2021-present, StarRocks Limited. # The format is: # <function id> <name>, <return_type>, [<args>], <backend fn>, # With an optional # <prepare fn>, <close fn> # # example: # [1, "add", "TINYINT", ["TINYINT", "TINYINT"], "Math::add", "Math::add_prepare", "Math::add_close"] # # the id rule: {module function group}|0|{function group}|{sub-function/alias-function} # # example round functions: 1 013 0 = 10130 # ^ ^ ^ # {math function} {function group} {sub-function} vectorized_functions = [ # 10xxx: math functions [10010, "pi", "DOUBLE", [], "MathFunctions::pi"], [10020, "e", "DOUBLE", [], "MathFunctions::e"], [10030, "sign", "FLOAT", ["DOUBLE"], "MathFunctions::sign"], [10040, "abs", "DOUBLE", ["DOUBLE"], "MathFunctions::abs_double"], [10041, "abs", "FLOAT", ["FLOAT"], "MathFunctions::abs_float"], [10042, "abs", "LARGEINT", ["LARGEINT"], "MathFunctions::abs_largeint"], [10043, "abs", "LARGEINT", ["BIGINT"], "MathFunctions::abs_bigint"], [10044, "abs", "BIGINT", ["INT"], "MathFunctions::abs_int"], [10045, "abs", "INT", ["SMALLINT"], "MathFunctions::abs_smallint"], [10046, "abs", "SMALLINT", ["TINYINT"], "MathFunctions::abs_tinyint"], [10047, "abs", "DECIMALV2", ["DECIMALV2"], "MathFunctions::abs_decimalv2val"], [100470, "abs", "DECIMAL32", ["DECIMAL32"], "MathFunctions::abs_decimal32"], [100471, "abs", "DECIMAL64", ["DECIMAL64"], "MathFunctions::abs_decimal64"], [100472, "abs", "DECIMAL128", ["DECIMAL128"], "MathFunctions::abs_decimal128"], [10050, "sin", "DOUBLE", ["DOUBLE"], "MathFunctions::sin"], [10060, "asin", "DOUBLE", ["DOUBLE"], "MathFunctions::asin"], [10070, "cos", "DOUBLE", ["DOUBLE"], "MathFunctions::cos"], [10080, "acos", "DOUBLE", ["DOUBLE"], "MathFunctions::acos"], [10090, "tan", "DOUBLE", ["DOUBLE"], "MathFunctions::tan"], [10100, "atan", "DOUBLE", ["DOUBLE"], "MathFunctions::atan"], [10110, "ceil", "BIGINT", ["DOUBLE"], "MathFunctions::ceil"], [10111, "ceiling", "BIGINT", ["DOUBLE"], "MathFunctions::ceil"], [10112, "dceil", "BIGINT", ["DOUBLE"], "MathFunctions::ceil"], [10120, "floor", "BIGINT", ["DOUBLE"], "MathFunctions::floor"], [10121, "dfloor", "BIGINT", ["DOUBLE"], "MathFunctions::floor"], [10127, "round", "DECIMAL128", ["DECIMAL128"], "MathFunctions::round_decimal128"], [10128, "round", "DECIMAL128", ["DECIMAL128", "INT"], "MathFunctions::round_up_to_decimal128"], [10129, "truncate", "DECIMAL128", ["DECIMAL128", "INT"], "MathFunctions::truncate_decimal128"], [10130, "round", "BIGINT", ["DOUBLE"], "MathFunctions::round"], [10131, "dround", "BIGINT", ["DOUBLE"], "MathFunctions::round"], [10132, "round", "DOUBLE", ["DOUBLE", "INT"], "MathFunctions::round_up_to"], [10133, "dround", "DOUBLE", ["DOUBLE", "INT"], "MathFunctions::round_up_to"], [10134, "truncate", "DOUBLE", ["DOUBLE", "INT"], "MathFunctions::truncate"], [10140, "ln", "DOUBLE", ["DOUBLE"], "MathFunctions::ln"], [10141, "dlog1", "DOUBLE", ["DOUBLE"], "MathFunctions::ln"], [10142, "log", "DOUBLE", ["DOUBLE"], "MathFunctions::ln"], [10150, "log", "DOUBLE", ["DOUBLE", "DOUBLE"], "MathFunctions::log"], [10160, "log2", "DOUBLE", ["DOUBLE"], "MathFunctions::log2"], [10170, "log10", "DOUBLE", ["DOUBLE"], "MathFunctions::log10"], [10171, "dlog10", "DOUBLE", ["DOUBLE"], "MathFunctions::log10"], [10180, "exp", "DOUBLE", ["DOUBLE"], "MathFunctions::exp"], [10181, "dexp", "DOUBLE", ["DOUBLE"], "MathFunctions::exp"], [10190, "radians", "DOUBLE", ["DOUBLE"], "MathFunctions::radians"], [10200, "degrees", "DOUBLE", ["DOUBLE"], "MathFunctions::degrees"], [10210, "sqrt", "DOUBLE", ["DOUBLE"], "MathFunctions::sqrt"], [10211, "dsqrt", "DOUBLE", ["DOUBLE"], "MathFunctions::sqrt"], [10220, "pow", "DOUBLE", ["DOUBLE", "DOUBLE"], "MathFunctions::pow"], [10221, "power", "DOUBLE", ["DOUBLE", "DOUBLE"], "MathFunctions::pow"], [10222, "dpow", "DOUBLE", ["DOUBLE", "DOUBLE"], "MathFunctions::pow"], [10223, "fpow", "DOUBLE", ["DOUBLE", "DOUBLE"], "MathFunctions::pow"], [10224, "atan2", "DOUBLE", ["DOUBLE", "DOUBLE"], "MathFunctions::atan2"], [10225, "cot", "DOUBLE", ["DOUBLE"], "MathFunctions::cot"], [10230, "pmod", "BIGINT", ["BIGINT", "BIGINT"], "MathFunctions::pmod<TYPE_BIGINT>"], [10231, "pmod", "DOUBLE", ["DOUBLE", "DOUBLE"], "MathFunctions::pmod<TYPE_DOUBLE>"], [10240, "fmod", "FLOAT", ["FLOAT", "FLOAT"], "MathFunctions::fmod<TYPE_FLOAT>"], [10241, "fmod", "DOUBLE", ["DOUBLE", "DOUBLE"], "MathFunctions::fmod<TYPE_DOUBLE>"], [10250, "mod", "TINYINT", ["TINYINT", "TINYINT"], "MathFunctions::mod<TYPE_TINYINT>"], [10251, "mod", "SMALLINT", ["SMALLINT", "SMALLINT"], "MathFunctions::mod<TYPE_SMALLINT>"], [10252, "mod", "INT", ["INT", "INT"], "MathFunctions::mod<TYPE_INT>"], [10253, "mod", "BIGINT", ["BIGINT", "BIGINT"], "MathFunctions::mod<TYPE_BIGINT>"], [10254, "mod", "LARGEINT", ["LARGEINT", "LARGEINT"], "MathFunctions::mod<TYPE_LARGEINT>"], [10255, "mod", "FLOAT", ["FLOAT", "FLOAT"], "MathFunctions::fmod<TYPE_FLOAT>"], [10256, "mod", "DOUBLE", ["DOUBLE", "DOUBLE"], "MathFunctions::fmod<TYPE_DOUBLE>"], [10257, "mod", "DECIMALV2", ["DECIMALV2", "DECIMALV2"], "MathFunctions::mod<TYPE_DECIMALV2>"], [102570, "mod", "DECIMAL32", ["DECIMAL32", "DECIMAL32"], "MathFunctions::mod<TYPE_DECIMAL32>"], [102571, "mod", "DECIMAL64", ["DECIMAL64", "DECIMAL64"], "MathFunctions::mod<TYPE_DECIMAL64>"], [102572, "mod", "DECIMAL128", ["DECIMAL128", "DECIMAL128"], "MathFunctions::mod<TYPE_DECIMAL128>"], [10260, "positive", "DOUBLE", ["DOUBLE"], "MathFunctions::positive<TYPE_DOUBLE>"], [10261, "positive", "BIGINT", ["BIGINT"], "MathFunctions::positive<TYPE_BIGINT>"], [10262, "positive", "DECIMALV2", ["DECIMALV2"], "MathFunctions::positive<TYPE_DECIMALV2>"], [102620, "positive", "DECIMAL32", ["DECIMAL32"], "MathFunctions::positive<TYPE_DECIMAL32>"], [102621, "positive", "DECIMAL64", ["DECIMAL64"], "MathFunctions::positive<TYPE_DECIMAL64>"], [102622, "positive", "DECIMAL128", ["DECIMAL128"], "MathFunctions::positive<TYPE_DECIMAL128>"], [10270, "negative", "DOUBLE", ["DOUBLE"], "MathFunctions::negative<TYPE_DOUBLE>"], [10271, "negative", "BIGINT", ["BIGINT"], "MathFunctions::negative<TYPE_BIGINT>"], [10272, "negative", "DECIMALV2", ["DECIMALV2"], "MathFunctions::negative<TYPE_DECIMALV2>"], [102720, "negative", "DECIMAL32", ["DECIMAL32"], "MathFunctions::negative<TYPE_DECIMAL32>"], [102721, "negative", "DECIMAL64", ["DECIMAL64"], "MathFunctions::negative<TYPE_DECIMAL64>"], [102722, "negative", "DECIMAL128", ["DECIMAL128"], "MathFunctions::negative<TYPE_DECIMAL128>"], [10280, "least", "TINYINT", ["TINYINT", "..."], "MathFunctions::least<TYPE_TINYINT>"], [10281, "least", "SMALLINT", ["SMALLINT", "..."], "MathFunctions::least<TYPE_SMALLINT>"], [10282, "least", "INT", ["INT", "..."], "MathFunctions::least<TYPE_INT>"], [10283, "least", "BIGINT", ["BIGINT", "..."], "MathFunctions::least<TYPE_BIGINT>"], [10284, "least", "LARGEINT", ["LARGEINT", "..."], "MathFunctions::least<TYPE_LARGEINT>"], [10285, "least", "FLOAT", ["FLOAT", "..."], "MathFunctions::least<TYPE_FLOAT>"], [10286, "least", "DOUBLE", ["DOUBLE", "..."], "MathFunctions::least<TYPE_DOUBLE>"], [10287, "least", "DECIMALV2", ["DECIMALV2", "..."], "MathFunctions::least<TYPE_DECIMALV2>"], [102870, "least", "DECIMAL32", ["DECIMAL32", "..."], "MathFunctions::least<TYPE_DECIMAL32>"], [102871, "least", "DECIMAL64", ["DECIMAL64", "..."], "MathFunctions::least<TYPE_DECIMAL64>"], [102872, "least", "DECIMAL128", ["DECIMAL128", "..."], "MathFunctions::least<TYPE_DECIMAL128>"], [10288, "least", "DATETIME", ["DATETIME", "..."], "MathFunctions::least<TYPE_DATETIME>"], [10289, "least", "VARCHAR", ["VARCHAR", "..."], "MathFunctions::least<TYPE_VARCHAR>"], [10290, "greatest", "TINYINT", ["TINYINT", "..."], "MathFunctions::greatest<TYPE_TINYINT>"], [10291, "greatest", "SMALLINT", ["SMALLINT", "..."], "MathFunctions::greatest<TYPE_SMALLINT>"], [10292, "greatest", "INT", ["INT", "..."], "MathFunctions::greatest<TYPE_INT>"], [10293, "greatest", "BIGINT", ["BIGINT", "..."], "MathFunctions::greatest<TYPE_BIGINT>"], [10294, "greatest", "LARGEINT", ["LARGEINT", "..."], "MathFunctions::greatest<TYPE_LARGEINT>"], [10295, "greatest", "FLOAT", ["FLOAT", "..."], "MathFunctions::greatest<TYPE_FLOAT>"], [10296, "greatest", "DOUBLE", ["DOUBLE", "..."], "MathFunctions::greatest<TYPE_DOUBLE>"], [10297, "greatest", "DECIMALV2", ["DECIMALV2", "..."], "MathFunctions::greatest<TYPE_DECIMALV2>"], [102970, "greatest", "DECIMAL32", ["DECIMAL32", "..."], "MathFunctions::greatest<TYPE_DECIMAL32>"], [102971, "greatest", "DECIMAL64", ["DECIMAL64", "..."], "MathFunctions::greatest<TYPE_DECIMAL64>"], [102972, "greatest", "DECIMAL128", ["DECIMAL128", "..."], "MathFunctions::greatest<TYPE_DECIMAL128>"], [10298, "greatest", "DATETIME", ["DATETIME", "..."], "MathFunctions::greatest<TYPE_DATETIME>"], [10299, "greatest", "VARCHAR", ["VARCHAR", "..."], "MathFunctions::greatest<TYPE_VARCHAR>"], [10300, "rand", "DOUBLE", [], "MathFunctions::rand", "MathFunctions::rand_prepare", "MathFunctions::rand_close"], [10301, "random", "DOUBLE", [], "MathFunctions::rand", "MathFunctions::rand_prepare", "MathFunctions::rand_close"], [10302, "rand", "DOUBLE", ["BIGINT"], "MathFunctions::rand_seed", "MathFunctions::rand_prepare", "MathFunctions::rand_close"], [10303, "random", "DOUBLE", ["BIGINT"], "MathFunctions::rand_seed", "MathFunctions::rand_prepare", "MathFunctions::rand_close"], [10311, "bin", "VARCHAR", ['BIGINT'], "MathFunctions::bin"], [10312, "hex", "VARCHAR", ['BIGINT'], "StringFunctions::hex_int"], [10313, "hex", "VARCHAR", ['VARCHAR'], "StringFunctions::hex_string"], [10314, "unhex", "VARCHAR", ['VARCHAR'], "StringFunctions::unhex"], [10315, "sm3", "VARCHAR", ['VARCHAR'], "StringFunctions::sm3"], [10320, "conv", "VARCHAR", ["BIGINT", "TINYINT", "TINYINT"], "MathFunctions::conv_int"], [10321, "conv", "VARCHAR", ["VARCHAR", "TINYINT", "TINYINT"], "MathFunctions::conv_string"], [10322, "square", "DOUBLE", ["DOUBLE"], "MathFunctions::square"], # 20xxx: bit functions [20010, 'bitand', 'TINYINT', ['TINYINT', 'TINYINT'], "BitFunctions::bitAnd<TYPE_TINYINT>"], [20011, 'bitand', 'SMALLINT', ['SMALLINT', 'SMALLINT'], "BitFunctions::bitAnd<TYPE_SMALLINT>"], [20012, 'bitand', 'INT', ['INT', 'INT'], "BitFunctions::bitAnd<TYPE_INT>"], [20013, 'bitand', 'BIGINT', ['BIGINT', 'BIGINT'], "BitFunctions::bitAnd<TYPE_BIGINT>"], [20014, 'bitand', 'LARGEINT', ['LARGEINT', 'LARGEINT'], "BitFunctions::bitAnd<TYPE_LARGEINT>"], [20020, 'bitor', 'TINYINT', ['TINYINT', 'TINYINT'], "BitFunctions::bitOr<TYPE_TINYINT>"], [20021, 'bitor', 'SMALLINT', ['SMALLINT', 'SMALLINT'], "BitFunctions::bitOr<TYPE_SMALLINT>"], [20022, 'bitor', 'INT', ['INT', 'INT'], "BitFunctions::bitOr<TYPE_INT>"], [20023, 'bitor', 'BIGINT', ['BIGINT', 'BIGINT'], "BitFunctions::bitOr<TYPE_BIGINT>"], [20024, 'bitor', 'LARGEINT', ['LARGEINT', 'LARGEINT'], "BitFunctions::bitOr<TYPE_LARGEINT>"], [20030, 'bitxor', 'TINYINT', ['TINYINT', 'TINYINT'], "BitFunctions::bitXor<TYPE_TINYINT>"], [20031, 'bitxor', 'SMALLINT', ['SMALLINT', 'SMALLINT'], "BitFunctions::bitXor<TYPE_SMALLINT>"], [20032, 'bitxor', 'INT', ['INT', 'INT'], "BitFunctions::bitXor<TYPE_INT>"], [20033, 'bitxor', 'BIGINT', ['BIGINT', 'BIGINT'], "BitFunctions::bitXor<TYPE_BIGINT>"], [20034, 'bitxor', 'LARGEINT', ['LARGEINT', 'LARGEINT'], "BitFunctions::bitXor<TYPE_LARGEINT>"], [20040, 'bitnot', 'TINYINT', ['TINYINT'], "BitFunctions::bitNot<TYPE_TINYINT>"], [20041, 'bitnot', 'SMALLINT', ['SMALLINT'], "BitFunctions::bitNot<TYPE_SMALLINT>"], [20042, 'bitnot', 'INT', ['INT'], "BitFunctions::bitNot<TYPE_INT>"], [20043, 'bitnot', 'BIGINT', ['BIGINT'], "BitFunctions::bitNot<TYPE_BIGINT>"], [20044, 'bitnot', 'LARGEINT', ['LARGEINT'], "BitFunctions::bitNot<TYPE_LARGEINT>"], # 30xxx: string functions [30010, 'substr', 'VARCHAR', ['VARCHAR', 'INT'], 'StringFunctions::substring', 'StringFunctions::sub_str_prepare', 'StringFunctions::sub_str_close'], [30011, 'substr', 'VARCHAR', ['VARCHAR', 'INT', 'INT'], 'StringFunctions::substring', 'StringFunctions::sub_str_prepare', 'StringFunctions::sub_str_close'], [30012, 'substring', 'VARCHAR', ['VARCHAR', 'INT'], 'StringFunctions::substring', 'StringFunctions::sub_str_prepare', 'StringFunctions::sub_str_close'], [30013, 'substring', 'VARCHAR', ['VARCHAR', 'INT', 'INT'], 'StringFunctions::substring', 'StringFunctions::sub_str_prepare', 'StringFunctions::sub_str_close'], [30020, 'left', 'VARCHAR', ['VARCHAR', 'INT'], 'StringFunctions::left', 'StringFunctions::left_or_right_prepare', 'StringFunctions::left_or_right_close'], [30021, 'strleft', 'VARCHAR', ['VARCHAR', 'INT'], 'StringFunctions::left', 'StringFunctions::left_or_right_prepare', 'StringFunctions::left_or_right_close'], [30030, 'right', 'VARCHAR', ['VARCHAR', 'INT'], 'StringFunctions::right', 'StringFunctions::left_or_right_prepare', 'StringFunctions::left_or_right_close'], [30031, 'strright', 'VARCHAR', ['VARCHAR', 'INT'], 'StringFunctions::right', 'StringFunctions::left_or_right_prepare', 'StringFunctions::left_or_right_close'], [30040, 'ends_with', 'BOOLEAN', ['VARCHAR', 'VARCHAR'], 'StringFunctions::ends_with'], [30050, 'starts_with', 'BOOLEAN', ['VARCHAR', 'VARCHAR'], 'StringFunctions::starts_with'], [30060, 'null_or_empty', 'BOOLEAN', ['VARCHAR'], 'StringFunctions::null_or_empty'], [30070, 'space', 'VARCHAR', ['INT'], 'StringFunctions::space'], [30080, 'repeat', 'VARCHAR', ['VARCHAR', 'INT'], 'StringFunctions::repeat'], [30090, 'lpad', 'VARCHAR', ['VARCHAR', 'INT', 'VARCHAR'], 'StringFunctions::lpad', 'StringFunctions::pad_prepare', 'StringFunctions::pad_close'], [30100, 'rpad', 'VARCHAR', ['VARCHAR', 'INT', 'VARCHAR'], 'StringFunctions::rpad', 'StringFunctions::pad_prepare', 'StringFunctions::pad_close'], [30110, 'append_trailing_char_if_absent', 'VARCHAR', ['VARCHAR', 'VARCHAR'], 'StringFunctions::append_trailing_char_if_absent'], [30120, 'length', 'INT', ['VARCHAR'], 'StringFunctions::length'], [30130, 'char_length', 'INT', ['VARCHAR'], 'StringFunctions::utf8_length'], [30131, 'character_length', 'INT', ['VARCHAR'], 'StringFunctions::utf8_length'], [30140, 'lower', 'VARCHAR', ['VARCHAR'], 'StringFunctions::lower'], [30141, 'lcase', 'VARCHAR', ['VARCHAR'], 'StringFunctions::lower'], [30150, 'upper', 'VARCHAR', ['VARCHAR'], 'StringFunctions::upper'], [30151, 'ucase', 'VARCHAR', ['VARCHAR'], 'StringFunctions::upper'], [30160, 'reverse', 'VARCHAR', ['VARCHAR'], 'StringFunctions::reverse'], [30170, 'trim', 'VARCHAR', ['VARCHAR'], 'StringFunctions::trim'], [30180, 'ltrim', 'VARCHAR', ['VARCHAR'], 'StringFunctions::ltrim'], [30190, 'rtrim', 'VARCHAR', ['VARCHAR'], 'StringFunctions::rtrim'], [30200, 'ascii', 'INT', ['VARCHAR'], 'StringFunctions::ascii'], [30500, 'char', 'VARCHAR', ['INT'], "StringFunctions::get_char"], [30210, 'instr', 'INT', ['VARCHAR', 'VARCHAR'], 'StringFunctions::instr'], [30220, 'locate', 'INT', ['VARCHAR', 'VARCHAR'], 'StringFunctions::locate'], [30221, 'locate', 'INT', ['VARCHAR', 'VARCHAR', 'INT'], 'StringFunctions::locate_pos'], [30250, 'concat', 'VARCHAR', ['VARCHAR', '...'], 'StringFunctions::concat', 'StringFunctions::concat_prepare', 'StringFunctions::concat_close'], [30260, 'concat_ws', 'VARCHAR', ['VARCHAR', 'VARCHAR', '...'], 'StringFunctions::concat_ws'], [30270, 'find_in_set', 'INT', ['VARCHAR', 'VARCHAR'], 'StringFunctions::find_in_set'], [30310, 'split_part', 'VARCHAR', ['VARCHAR', 'VARCHAR', 'INT'], 'StringFunctions::split_part'], [30311, 'split', 'ARRAY_VARCHAR', ['VARCHAR', 'VARCHAR'], 'StringFunctions::split', 'StringFunctions::split_prepare', 'StringFunctions::split_close'], [30320, 'regexp_extract', 'VARCHAR', ['VARCHAR', 'VARCHAR', 'BIGINT'], 'StringFunctions::regexp_extract', 'StringFunctions::regexp_prepare', 'StringFunctions::regexp_close'], [30330, 'regexp_replace', 'VARCHAR', ['VARCHAR', 'VARCHAR', 'VARCHAR'], 'StringFunctions::regexp_replace', 'StringFunctions::regexp_prepare', 'StringFunctions::regexp_close'], [30331, 'replace', 'VARCHAR', ['VARCHAR', 'VARCHAR', 'VARCHAR'], 'StringFunctions::regexp_replace', 'StringFunctions::regexp_prepare', 'StringFunctions::regexp_close'], [30400, "money_format", "VARCHAR", ["BIGINT"], "StringFunctions::money_format_bigint"], [30401, "money_format", "VARCHAR", ["LARGEINT"], "StringFunctions::money_format_largeint"], [30402, "money_format", "VARCHAR", ["DECIMALV2"], "StringFunctions::money_format_decimalv2val"], [304020, "money_format", "VARCHAR", ["DECIMAL32"], "StringFunctions::money_format_decimal<TYPE_DECIMAL32>"], [304021, "money_format", "VARCHAR", ["DECIMAL64"], "StringFunctions::money_format_decimal<TYPE_DECIMAL64>"], [304022, "money_format", "VARCHAR", ["DECIMAL128"], "StringFunctions::money_format_decimal<TYPE_DECIMAL128>"], [30403, "money_format", "VARCHAR", ["DOUBLE"], "StringFunctions::money_format_double"], [30410, 'parse_url', 'VARCHAR', ['VARCHAR', 'VARCHAR'], 'StringFunctions::parse_url', 'StringFunctions::parse_url_prepare', 'StringFunctions::parse_url_close'], # 50xxx: timestamp functions [50009, 'year', 'SMALLINT', ['DATETIME'], 'TimeFunctions::yearV2'], [50010, 'year', 'INT', ['DATETIME'], 'TimeFunctions::year'], [50019, 'month', 'TINYINT', ['DATETIME'], 'TimeFunctions::monthV2'], [50020, 'month', 'INT', ['DATETIME'], 'TimeFunctions::month'], [50030, 'quarter', 'INT', ['DATETIME'], 'TimeFunctions::quarter'], [50040, 'dayofweek', 'INT', ['DATETIME'], 'TimeFunctions::day_of_week'], [50050, 'to_date', 'DATE', ['DATETIME'], 'TimeFunctions::to_date'], [50051, 'date', 'DATE', ['DATETIME'], 'TimeFunctions::to_date'], [50058, 'day', 'TINYINT', ['DATETIME'], 'TimeFunctions::dayV2'], [50059, 'dayofmonth', 'TINYINT', ['DATETIME'], 'TimeFunctions::dayV2'], [50060, 'dayofmonth', 'INT', ['DATETIME'], 'TimeFunctions::day'], [50061, 'day', 'INT', ['DATETIME'], 'TimeFunctions::day'], [50062, 'dayofyear', 'INT', ['DATETIME'], 'TimeFunctions::day_of_year'], [50063, 'weekofyear', 'INT', ['DATETIME'], 'TimeFunctions::week_of_year'], [50069, 'hour', 'TINYINT', ['DATETIME'], 'TimeFunctions::hourV2'], [50070, 'hour', 'INT', ['DATETIME'], 'TimeFunctions::hour'], [50079, 'minute', 'TINYINT', ['DATETIME'], 'TimeFunctions::minuteV2'], [50080, 'minute', 'INT', ['DATETIME'], 'TimeFunctions::minute'], [50089, 'second', 'TINYINT', ['DATETIME'], 'TimeFunctions::secondV2'], [50090, 'second', 'INT', ['DATETIME'], 'TimeFunctions::second'], [50110, 'years_add', 'DATETIME', ['DATETIME', 'INT'], 'TimeFunctions::years_add'], [50111, 'years_sub', 'DATETIME', ['DATETIME', 'INT'], 'TimeFunctions::years_sub'], [50120, 'months_add', 'DATETIME', ['DATETIME', 'INT'], 'TimeFunctions::months_add'], [50121, 'months_sub', 'DATETIME', ['DATETIME', 'INT'], 'TimeFunctions::months_sub'], [50122, 'add_months', 'DATETIME', ['DATETIME', 'INT'], 'TimeFunctions::months_add'], [50130, 'weeks_add', 'DATETIME', ['DATETIME', 'INT'], 'TimeFunctions::weeks_add'], [50131, 'weeks_sub', 'DATETIME', ['DATETIME', 'INT'], 'TimeFunctions::weeks_sub'], [50140, 'days_add', 'DATETIME', ['DATETIME', 'INT'], 'TimeFunctions::days_add'], [50141, 'days_sub', 'DATETIME', ['DATETIME', 'INT'], 'TimeFunctions::days_sub'], [50142, 'date_add', 'DATETIME', ['DATETIME', 'INT'], 'TimeFunctions::days_add'], [50143, 'date_sub', 'DATETIME', ['DATETIME', 'INT'], 'TimeFunctions::days_sub'], [50144, 'adddate', 'DATETIME', ['DATETIME', 'INT'], 'TimeFunctions::days_add'], [50145, 'subdate', 'DATETIME', ['DATETIME', 'INT'], 'TimeFunctions::days_sub'], [50150, 'hours_add', 'DATETIME', ['DATETIME', 'INT'], 'TimeFunctions::hours_add'], [50151, 'hours_sub', 'DATETIME', ['DATETIME', 'INT'], 'TimeFunctions::hours_sub'], [50160, 'minutes_add', 'DATETIME', ['DATETIME', 'INT'], 'TimeFunctions::minutes_add'], [50161, 'minutes_sub', 'DATETIME', ['DATETIME', 'INT'], 'TimeFunctions::minutes_sub'], [50170, 'seconds_add', 'DATETIME', ['DATETIME', 'INT'], 'TimeFunctions::seconds_add'], [50171, 'seconds_sub', 'DATETIME', ['DATETIME', 'INT'], 'TimeFunctions::seconds_sub'], [50180, 'microseconds_add', 'DATETIME', ['DATETIME', 'INT'], 'TimeFunctions::micros_add'], [50181, 'microseconds_sub', 'DATETIME', ['DATETIME', 'INT'], 'TimeFunctions::micros_sub'], [50190, 'years_diff', 'BIGINT', ['DATETIME', 'DATETIME'], 'TimeFunctions::years_diff'], [50191, 'months_diff', 'BIGINT', ['DATETIME', 'DATETIME'], 'TimeFunctions::months_diff'], [50192, 'weeks_diff', 'BIGINT', ['DATETIME', 'DATETIME'], 'TimeFunctions::weeks_diff'], [50193, 'days_diff', 'BIGINT', ['DATETIME', 'DATETIME'], 'TimeFunctions::days_diff'], [50194, 'hours_diff', 'BIGINT', ['DATETIME', 'DATETIME'], 'TimeFunctions::hours_diff'], [50195, 'minutes_diff', 'BIGINT', ['DATETIME', 'DATETIME'], 'TimeFunctions::minutes_diff'], [50196, 'seconds_diff', 'BIGINT', ['DATETIME', 'DATETIME'], 'TimeFunctions::seconds_diff'], [50197, 'datediff', 'INT', ['DATETIME', 'DATETIME'], 'TimeFunctions::date_diff'], [50198, 'timediff', 'TIME', ['DATETIME', 'DATETIME'], 'TimeFunctions::time_diff'], [50200, 'now', 'DATETIME', [], 'TimeFunctions::now'], [50201, 'current_timestamp', 'DATETIME', [], 'TimeFunctions::now'], [50202, 'localtime', 'DATETIME', [], 'TimeFunctions::now'], [50203, 'localtimestamp', 'DATETIME', [], 'TimeFunctions::now'], [50210, 'curtime', 'TIME', [], 'TimeFunctions::curtime'], [50211, 'current_time', 'TIME', [], 'TimeFunctions::curtime'], [50220, 'curdate', 'DATE', [], 'TimeFunctions::curdate'], [50221, 'current_date', 'DATE', [], 'TimeFunctions::curdate'], [50230, 'from_days', 'DATE', ['INT'], 'TimeFunctions::from_days'], [50231, 'to_days', 'INT', ['DATE'], 'TimeFunctions::to_days'], [50240, 'str_to_date', 'DATETIME', ['VARCHAR', 'VARCHAR'], 'TimeFunctions::str_to_date', 'TimeFunctions::str_to_date_prepare', 'TimeFunctions::str_to_date_close'], [50241, 'date_format', 'VARCHAR', ['DATETIME', 'VARCHAR'], 'TimeFunctions::datetime_format', 'TimeFunctions::format_prepare', 'TimeFunctions::format_close'], [50242, 'date_format', 'VARCHAR', ['DATE', 'VARCHAR'], 'TimeFunctions::date_format', 'TimeFunctions::format_prepare', 'TimeFunctions::format_close'], # cast string to date, the function will call by FE getStrToDateFunction, and is invisible to user [50243, 'str2date', 'DATE', ['VARCHAR', 'VARCHAR'], 'TimeFunctions::str2date', 'TimeFunctions::str_to_date_prepare', 'TimeFunctions::str_to_date_close'], [50250, 'time_to_sec', 'BIGINT', ['TIME'], 'TimeFunctions::time_to_sec'], [50300, 'unix_timestamp', 'INT', [], 'TimeFunctions::to_unix_for_now'], [50301, 'unix_timestamp', 'INT', ['DATETIME'], 'TimeFunctions::to_unix_from_datetime'], [50302, 'unix_timestamp', 'INT', ['DATE'], 'TimeFunctions::to_unix_from_date'], [50303, 'unix_timestamp', 'INT', ['VARCHAR', 'VARCHAR'], 'TimeFunctions::to_unix_from_datetime_with_format'], [50304, 'from_unixtime', 'VARCHAR', ['INT'], 'TimeFunctions::from_unix_to_datetime'], [50305, 'from_unixtime', 'VARCHAR', ['INT', 'VARCHAR'], 'TimeFunctions::from_unix_to_datetime_with_format', 'TimeFunctions::from_unix_prepare', 'TimeFunctions::from_unix_close'], [50310, 'dayname', 'VARCHAR', ['DATETIME'], 'TimeFunctions::day_name'], [50311, 'monthname', 'VARCHAR', ['DATETIME'], 'TimeFunctions::month_name'], [50320, 'convert_tz', 'DATETIME', ['DATETIME', 'VARCHAR', 'VARCHAR'], 'TimeFunctions::convert_tz', 'TimeFunctions::convert_tz_prepare', 'TimeFunctions::convert_tz_close'], [50330, 'utc_timestamp', 'DATETIME', [], 'TimeFunctions::utc_timestamp'], [50340, 'date_trunc', 'DATETIME', ['VARCHAR', 'DATETIME'], 'TimeFunctions::datetime_trunc', 'TimeFunctions::datetime_trunc_prepare', 'TimeFunctions::datetime_trunc_close'], [50350, 'date_trunc', 'DATE', ['VARCHAR', 'DATE'], 'TimeFunctions::date_trunc', 'TimeFunctions::date_trunc_prepare', 'TimeFunctions::date_trunc_close'], [50360, 'timestamp', 'DATETIME', ['DATETIME'], 'TimeFunctions::timestamp'], # 60xxx: like predicate # important ref: LikePredicate.java, must keep name equals LikePredicate.Operator [60010, 'LIKE', 'BOOLEAN', ['VARCHAR', 'VARCHAR'], 'LikePredicate::like', 'LikePredicate::like_prepare', 'LikePredicate::like_close'], [60020, 'REGEXP', 'BOOLEAN', ['VARCHAR', 'VARCHAR'], 'LikePredicate::regex', 'LikePredicate::regex_prepare', 'LikePredicate::regex_close'], # 70xxx: condition functions # In fact, condition function will use condition express, not function. There just support # a function name for FE. # Why use express and not functions? I think one of the reasons is performance, we need to # execute all the children expressions ahead of time in function_call_expr, but condition # expressions may not need execute all children expressions if the condition be true ahead # of time [70100, 'if', 'BOOLEAN', ['BOOLEAN', 'BOOLEAN', 'BOOLEAN'], 'nullptr'], [70101, 'if', 'TINYINT', ['BOOLEAN', 'TINYINT', 'TINYINT'], 'nullptr'], [70102, 'if', 'SMALLINT', ['BOOLEAN', 'SMALLINT', 'SMALLINT'], 'nullptr'], [70103, 'if', 'INT', ['BOOLEAN', 'INT', 'INT'], 'nullptr'], [70104, 'if', 'BIGINT', ['BOOLEAN', 'BIGINT', 'BIGINT'], 'nullptr'], [70105, 'if', 'LARGEINT', ['BOOLEAN', 'LARGEINT', 'LARGEINT'], 'nullptr'], [70106, 'if', 'FLOAT', ['BOOLEAN', 'FLOAT', 'FLOAT'], 'nullptr'], [70107, 'if', 'DOUBLE', ['BOOLEAN', 'DOUBLE', 'DOUBLE'], 'nullptr'], [70108, 'if', 'DATETIME', ['BOOLEAN', 'DATETIME', 'DATETIME'], 'nullptr'], [70109, 'if', 'DATE', ['BOOLEAN', 'DATE', 'DATE'], 'nullptr'], [70110, 'if', 'DECIMALV2', ['BOOLEAN', 'DECIMALV2', 'DECIMALV2'], 'nullptr'], [701100, 'if', 'DECIMAL32', ['BOOLEAN', 'DECIMAL32', 'DECIMAL32'], 'nullptr'], [701101, 'if', 'DECIMAL64', ['BOOLEAN', 'DECIMAL64', 'DECIMAL64'], 'nullptr'], [701102, 'if', 'DECIMAL128', ['BOOLEAN', 'DECIMAL128', 'DECIMAL128'], 'nullptr'], [70111, 'if', 'VARCHAR', ['BOOLEAN', 'VARCHAR', 'VARCHAR'], 'nullptr'], [70112, 'if', 'BITMAP', ['BOOLEAN', 'BITMAP', 'BITMAP'], 'nullptr'], [70113, 'if', 'PERCENTILE', ['BOOLEAN', 'PERCENTILE', 'PERCENTILE'], 'nullptr'], [70114, 'if', 'HLL', ['BOOLEAN', 'HLL', 'HLL'], 'nullptr'], [70115, 'if', 'TIME', ['BOOLEAN', 'TIME', 'TIME'], 'nullptr'], [70200, 'ifnull', 'BOOLEAN', ['BOOLEAN', 'BOOLEAN'], 'nullptr'], [70201, 'ifnull', 'TINYINT', ['TINYINT', 'TINYINT'], 'nullptr'], [70202, 'ifnull', 'SMALLINT', ['SMALLINT', 'SMALLINT'], 'nullptr'], [70203, 'ifnull', 'INT', ['INT', 'INT'], 'nullptr'], [70204, 'ifnull', 'BIGINT', ['BIGINT', 'BIGINT'], 'nullptr'], [70205, 'ifnull', 'LARGEINT', ['LARGEINT', 'LARGEINT'], 'nullptr'], [70206, 'ifnull', 'FLOAT', ['FLOAT', 'FLOAT'], 'nullptr'], [70207, 'ifnull', 'DOUBLE', ['DOUBLE', 'DOUBLE'], 'nullptr'], [70208, 'ifnull', 'DATE', ['DATE', 'DATE'], 'nullptr'], [70209, 'ifnull', 'DATETIME', ['DATETIME', 'DATETIME'], 'nullptr'], [70210, 'ifnull', 'DECIMALV2', ['DECIMALV2', 'DECIMALV2'], 'nullptr'], [702100, 'ifnull', 'DECIMAL32', ['DECIMAL32', 'DECIMAL32'], 'nullptr'], [702101, 'ifnull', 'DECIMAL64', ['DECIMAL64', 'DECIMAL64'], 'nullptr'], [702102, 'ifnull', 'DECIMAL128', ['DECIMAL128', 'DECIMAL128'], 'nullptr'], [70211, 'ifnull', 'VARCHAR', ['VARCHAR', 'VARCHAR'], 'nullptr'], [70212, 'ifnull', 'BITMAP', ['BITMAP', 'BITMAP'], 'nullptr'], [70213, 'ifnull', 'PERCENTILE', ['PERCENTILE', 'PERCENTILE'], 'nullptr'], [70214, 'ifnull', 'HLL', ['HLL', 'HLL'], 'nullptr'], [70215, 'ifnull', 'TIME', ['TIME', 'TIME'], 'nullptr'], [70300, 'nullif', 'BOOLEAN', ['BOOLEAN', 'BOOLEAN'], 'nullptr'], [70301, 'nullif', 'TINYINT', ['TINYINT', 'TINYINT'], 'nullptr'], [70302, 'nullif', 'SMALLINT', ['SMALLINT', 'SMALLINT'], 'nullptr'], [70303, 'nullif', 'INT', ['INT', 'INT'], 'nullptr'], [70304, 'nullif', 'BIGINT', ['BIGINT', 'BIGINT'], 'nullptr'], [70305, 'nullif', 'LARGEINT', ['LARGEINT', 'LARGEINT'], 'nullptr'], [70306, 'nullif', 'FLOAT', ['FLOAT', 'FLOAT'], 'nullptr'], [70307, 'nullif', 'DOUBLE', ['DOUBLE', 'DOUBLE'], 'nullptr'], [70308, 'nullif', 'DATE', ['DATE', 'DATE'], 'nullptr'], [70309, 'nullif', 'DATETIME', ['DATETIME', 'DATETIME'], 'nullptr'], [70310, 'nullif', 'DECIMALV2', ['DECIMALV2', 'DECIMALV2'], 'nullptr'], [703100, 'nullif', 'DECIMAL32', ['DECIMAL32', 'DECIMAL32'], 'nullptr'], [703101, 'nullif', 'DECIMAL64', ['DECIMAL64', 'DECIMAL64'], 'nullptr'], [703102, 'nullif', 'DECIMAL128', ['DECIMAL128', 'DECIMAL128'], 'nullptr'], [70311, 'nullif', 'VARCHAR', ['VARCHAR', 'VARCHAR'], 'nullptr'], [70312, 'nullif', 'BITMAP', ['BITMAP', 'BITMAP'], 'nullptr'], [70313, 'nullif', 'PERCENTILE', ['PERCENTILE', 'PERCENTILE'], 'nullptr'], [70314, 'nullif', 'HLL', ['HLL', 'HLL'], 'nullptr'], [70315, 'nullif', 'TIME', ['TIME', 'TIME'], 'nullptr'], [70400, 'coalesce', 'BOOLEAN', ['BOOLEAN', '...'], 'nullptr'], [70401, 'coalesce', 'TINYINT', ['TINYINT', '...'], 'nullptr'], [70402, 'coalesce', 'SMALLINT', ['SMALLINT', '...'], 'nullptr'], [70403, 'coalesce', 'INT', ['INT', '...'], 'nullptr'], [70404, 'coalesce', 'BIGINT', ['BIGINT', '...'], 'nullptr'], [70405, 'coalesce', 'LARGEINT', ['LARGEINT', '...'], 'nullptr'], [70406, 'coalesce', 'FLOAT', ['FLOAT', '...'], 'nullptr'], [70407, 'coalesce', 'DOUBLE', ['DOUBLE', '...'], 'nullptr'], [70408, 'coalesce', 'DATETIME', ['DATETIME', '...'], 'nullptr'], [70409, 'coalesce', 'DATE', ['DATE', '...'], 'nullptr'], [70410, 'coalesce', 'DECIMALV2', ['DECIMALV2', '...'], 'nullptr'], [704100, 'coalesce', 'DECIMAL32', ['DECIMAL32', '...'], 'nullptr'], [704101, 'coalesce', 'DECIMAL64', ['DECIMAL64', '...'], 'nullptr'], [704102, 'coalesce', 'DECIMAL128', ['DECIMAL128', '...'], 'nullptr'], [70411, 'coalesce', 'VARCHAR', ['VARCHAR', '...'], 'nullptr'], [70412, 'coalesce', 'BITMAP', ['BITMAP', '...'], 'nullptr'], [70413, 'coalesce', 'PERCENTILE', ['PERCENTILE', '...'], 'nullptr'], [70414, 'coalesce', 'HLL', ['HLL', '...'], 'nullptr'], [70416, 'coalesce', 'TIME', ['TIME', '...'], 'nullptr'], [70415, 'esquery', 'BOOLEAN', ['VARCHAR', 'VARCHAR'], 'ESFunctions::match'], # hyperloglog function [80010, 'hll_cardinality', 'BIGINT', ['HLL'], 'HyperloglogFunction::hll_cardinality'], [80011, 'hll_cardinality', 'BIGINT', ['VARCHAR'], 'HyperloglogFunction::hll_cardinality_from_string'], [80020, 'hll_hash', 'HLL', ['VARCHAR'], 'HyperloglogFunction::hll_hash'], [80030, 'hll_empty', 'HLL', [], 'HyperloglogFunction::hll_empty'], # bitmap function [90010, 'to_bitmap', 'BITMAP', ['VARCHAR'], 'BitmapFunctions::to_bitmap'], [90020, 'bitmap_hash', 'BITMAP', ['VARCHAR'], 'BitmapFunctions::bitmap_hash'], [90030, 'bitmap_count', 'BIGINT', ['BITMAP'], 'BitmapFunctions::bitmap_count'], [90040, 'bitmap_empty', 'BITMAP', [], 'BitmapFunctions::bitmap_empty'], [90050, 'bitmap_or', 'BITMAP', ['BITMAP', 'BITMAP'], 'BitmapFunctions::bitmap_or'], [90060, 'bitmap_and', 'BITMAP', ['BITMAP', 'BITMAP'], 'BitmapFunctions::bitmap_and'], [90070, 'bitmap_to_string', 'VARCHAR', ['BITMAP'], 'BitmapFunctions::bitmap_to_string'], [90080, 'bitmap_from_string', 'BITMAP', ['VARCHAR'], 'BitmapFunctions::bitmap_from_string'], [90090, 'bitmap_contains', 'BOOLEAN', ['BITMAP', 'BIGINT'], 'BitmapFunctions::bitmap_contains'], [90100, 'bitmap_has_any', 'BOOLEAN', ['BITMAP', 'BITMAP'], 'BitmapFunctions::bitmap_has_any'], [90200, 'bitmap_andnot', 'BITMAP', ['BITMAP', 'BITMAP'], 'BitmapFunctions::bitmap_andnot'], [90300, 'bitmap_xor', 'BITMAP', ['BITMAP', 'BITMAP'], 'BitmapFunctions::bitmap_xor'], [90400, 'bitmap_remove', 'BITMAP', ['BITMAP', 'BIGINT'], 'BitmapFunctions::bitmap_remove'], [90500, 'bitmap_to_array', 'ARRAY_BIGINT', ['BITMAP'], 'BitmapFunctions::bitmap_to_array'], [90600, 'bitmap_max', 'BIGINT', ['BITMAP'], 'BitmapFunctions::bitmap_max'], [90700, 'bitmap_min', 'BIGINT', ['BITMAP'], 'BitmapFunctions::bitmap_min'], # hash function [100010, 'murmur_hash3_32', 'INT', ['VARCHAR', '...'], 'HashFunctions::murmur_hash3_32'], # Utility functions [100011, 'sleep', 'BOOLEAN', ['INT'], "UtilityFunctions::sleep"], [100012, 'version', 'VARCHAR', [], "UtilityFunctions::version"], [100013, 'current_version', 'VARCHAR', [], "UtilityFunctions::current_version"], [100014, 'last_query_id', 'VARCHAR', [], "UtilityFunctions::last_query_id"], [100015, 'uuid', 'VARCHAR', [], "UtilityFunctions::uuid"], # json string function [110000, "get_json_int", "INT", ["VARCHAR", "VARCHAR"], "JsonFunctions::get_json_int", "JsonFunctions::json_path_prepare", "JsonFunctions::json_path_close"], [110001, "get_json_double", "DOUBLE", ["VARCHAR", "VARCHAR"], "JsonFunctions::get_json_double", "JsonFunctions::json_path_prepare", "JsonFunctions::json_path_close"], [110002, "get_json_string", "VARCHAR", ["VARCHAR", "VARCHAR"], "JsonFunctions::get_json_string", "JsonFunctions::json_path_prepare", "JsonFunctions::json_path_close"], # json type function [110003, "parse_json", "JSON", ["VARCHAR"], "JsonFunctions::parse_json"], [110004, "json_string", "VARCHAR", ["JSON"], "JsonFunctions::json_string"], [110005, "json_query", "JSON", ["JSON", "VARCHAR"], "JsonFunctions::json_query", "JsonFunctions::native_json_path_prepare", "JsonFunctions::native_json_path_close"], # [110006, "json_value", "JSON", ["JSON", "VARCHAR"], "JsonFunctions::json_query"], [110007, "json_exists", "BOOLEAN", ["JSON", "VARCHAR"], "JsonFunctions::json_exists", "JsonFunctions::native_json_path_prepare", "JsonFunctions::native_json_path_close"], [110008, "json_object", "JSON", ["JSON", "..."], "JsonFunctions::json_object"], [110009, "json_array", "JSON", ["JSON", "..."], "JsonFunctions::json_array"], [110010, "json_object", "JSON", [], "JsonFunctions::json_object_empty"], [110011, "json_array", "JSON", [], "JsonFunctions::json_array_empty"], # aes and base64 function [120100, "aes_encrypt", "VARCHAR", ["VARCHAR", "VARCHAR"], "EncryptionFunctions::aes_encrypt"], [120110, "aes_decrypt", "VARCHAR", ["VARCHAR", "VARCHAR"], "EncryptionFunctions::aes_decrypt"], [120120, "from_base64", "VARCHAR", ["VARCHAR"], "EncryptionFunctions::from_base64"], [120130, "to_base64", "VARCHAR", ["VARCHAR"], "EncryptionFunctions::to_base64"], [120140, "md5", "VARCHAR", ["VARCHAR"], "EncryptionFunctions::md5"], [120150, "md5sum", "VARCHAR", ["VARCHAR", "..."], "EncryptionFunctions::md5sum"], [120160, "sha2", "VARCHAR", ["VARCHAR", "INT"], "EncryptionFunctions::sha2", "EncryptionFunctions::sha2_prepare", "EncryptionFunctions::sha2_close"], # geo function [120000, "ST_Point", "VARCHAR", ["DOUBLE", "DOUBLE"], "GeoFunctions::st_point"], [120001, "ST_X", "DOUBLE", ["VARCHAR"], "GeoFunctions::st_x"], [120002, "ST_Y", "DOUBLE", ["VARCHAR"], "GeoFunctions::st_y"], [120003, "ST_Distance_Sphere", "DOUBLE", ["DOUBLE", "DOUBLE", "DOUBLE", "DOUBLE"], "GeoFunctions::st_distance_sphere"], [120004, "ST_AsText", "VARCHAR", ["VARCHAR"], "GeoFunctions::st_as_wkt"], [120005, "ST_AsWKT", "VARCHAR", ["VARCHAR"], "GeoFunctions::st_as_wkt"], [120006, "ST_GeometryFromText", "VARCHAR", ["VARCHAR"], "GeoFunctions::st_from_wkt", "GeoFunctions::st_from_wkt_prepare", "GeoFunctions::st_from_wkt_close"], [120007, "ST_GeomFromText", "VARCHAR", ["VARCHAR"], "GeoFunctions::st_from_wkt", "GeoFunctions::st_from_wkt_prepare", "GeoFunctions::st_from_wkt_close"], [120008, "ST_LineFromText", "VARCHAR", ["VARCHAR"], "GeoFunctions::st_line", "GeoFunctions::st_line_prepare", "GeoFunctions::st_from_wkt_close"], [120009, "ST_LineStringFromText", "VARCHAR", ["VARCHAR"], "GeoFunctions::st_line", "GeoFunctions::st_line_prepare", "GeoFunctions::st_from_wkt_close"], [120010, "ST_Polygon", "VARCHAR", ["VARCHAR"], "GeoFunctions::st_polygon", "GeoFunctions::st_polygon_prepare", "GeoFunctions::st_from_wkt_close"], [120011, "ST_PolyFromText", "VARCHAR", ["VARCHAR"], "GeoFunctions::st_polygon", "GeoFunctions::st_polygon_prepare", "GeoFunctions::st_from_wkt_close"], [120012, "ST_PolygonFromText", "VARCHAR", ["VARCHAR"], "GeoFunctions::st_polygon", "GeoFunctions::st_polygon_prepare", "GeoFunctions::st_from_wkt_close"], [120013, "ST_Circle", "VARCHAR", ["DOUBLE", "DOUBLE", "DOUBLE"], "GeoFunctions::st_circle", "GeoFunctions::st_circle_prepare", "GeoFunctions::st_from_wkt_close"], [120014, "ST_Contains", "BOOLEAN", ["VARCHAR", "VARCHAR"], "GeoFunctions::st_contains", "GeoFunctions::st_contains_prepare", "GeoFunctions::st_contains_close"], # percentile function [130000, 'percentile_hash', 'PERCENTILE', ['DOUBLE'], 'PercentileFunctions::percentile_hash'], [130001, 'percentile_empty', 'PERCENTILE', [], 'PercentileFunctions::percentile_empty'], [130002, 'percentile_approx_raw', 'DOUBLE', ['PERCENTILE', 'DOUBLE'], 'PercentileFunctions::percentile_approx_raw'], [140000, 'grouping_id', 'BIGINT', ['BIGINT'], 'GroupingSetsFunctions::grouping_id'], [140001, 'grouping', 'BIGINT', ['BIGINT'], 'GroupingSetsFunctions::grouping'], [150000, 'array_length', 'INT', ['ANY_ARRAY'], 'ArrayFunctions::array_length'], [150001, 'array_append', 'ANY_ARRAY', ['ANY_ARRAY', 'ANY_ELEMENT'], 'ArrayFunctions::array_append'], [150002, 'array_contains', 'BOOLEAN', ['ANY_ARRAY', 'ANY_ELEMENT'], 'ArrayFunctions::array_contains'], #sum [150003, 'array_sum', 'BIGINT', ['ARRAY_BOOLEAN'], 'ArrayFunctions::array_sum_boolean'], [150004, 'array_sum', 'BIGINT', ['ARRAY_TINYINT'], 'ArrayFunctions::array_sum_tinyint'], [150005, 'array_sum', 'BIGINT', ['ARRAY_SMALLINT'], 'ArrayFunctions::array_sum_smallint'], [150006, 'array_sum', 'BIGINT', ['ARRAY_INT'], 'ArrayFunctions::array_sum_int'], [150007, 'array_sum', 'BIGINT', ['ARRAY_BIGINT'], 'ArrayFunctions::array_sum_bigint'], [150008, 'array_sum', 'LARGEINT', ['ARRAY_LARGEINT'], 'ArrayFunctions::array_sum_largeint'], [150009, 'array_sum', 'DOUBLE', ['ARRAY_FLOAT'], 'ArrayFunctions::array_sum_float'], [150010, 'array_sum', 'DOUBLE', ['ARRAY_DOUBLE'], 'ArrayFunctions::array_sum_double'], [150011, 'array_sum', 'DECIMALV2', ['ARRAY_DECIMALV2'], 'ArrayFunctions::array_sum_decimalv2'], #[150012, 'array_sum', 'DECIMAL64', ['ARRAY_DECIMAL32'], 'ArrayFunctions::array_sum'], #[150013, 'array_sum', 'DECIMAL64', ['ARRAY_DECIMAL64'], 'ArrayFunctions::array_sum'], #[150014, 'array_sum', 'DECIMAL128', ['ARRAY_DECIMAL128'], 'ArrayFunctions::array_sum'], #avg [150023, 'array_avg', 'DOUBLE', ['ARRAY_BOOLEAN'], 'ArrayFunctions::array_avg_boolean'], [150024, 'array_avg', 'DOUBLE', ['ARRAY_TINYINT'], 'ArrayFunctions::array_avg_tinyint'], [150025, 'array_avg', 'DOUBLE', ['ARRAY_SMALLINT'], 'ArrayFunctions::array_avg_smallint'], [150026, 'array_avg', 'DOUBLE', ['ARRAY_INT'], 'ArrayFunctions::array_avg_int'], [150027, 'array_avg', 'DOUBLE', ['ARRAY_BIGINT'], 'ArrayFunctions::array_avg_bigint'], [150028, 'array_avg', 'DOUBLE', ['ARRAY_LARGEINT'], 'ArrayFunctions::array_avg_largeint'], [150029, 'array_avg', 'DOUBLE', ['ARRAY_FLOAT'], 'ArrayFunctions::array_avg_float'], [150030, 'array_avg', 'DOUBLE', ['ARRAY_DOUBLE'], 'ArrayFunctions::array_avg_double'], [150031, 'array_avg', 'DECIMALV2', ['ARRAY_DECIMALV2'], 'ArrayFunctions::array_avg_decimalv2'], #[150032, 'array_avg', 'DATE', ['ARRAY_DATE'], 'ArrayFunctions::array_avg_date'], #[150033, 'array_avg', 'DATETIME', ['ARRAY_DATETIME'], 'ArrayFunctions::array_avg_datetime'], #[150012, 'array_avg', 'DECIMAL64', ['ARRAY_DECIMAL32'], 'ArrayFunctions::array_avg'], #[150013, 'array_avg', 'DECIMAL64', ['ARRAY_DECIMAL64'], 'ArrayFunctions::array_avg'], #[150014, 'array_avg', 'DECIMAL128', ['ARRAY_DECIMAL128'], 'ArrayFunctions::array_avg'], #min [150043, 'array_min', 'BOOLEAN', ['ARRAY_BOOLEAN'], 'ArrayFunctions::array_min_boolean'], [150044, 'array_min', 'TINYINT', ['ARRAY_TINYINT'], 'ArrayFunctions::array_min_tinyint'], [150045, 'array_min', 'SMALLINT', ['ARRAY_SMALLINT'], 'ArrayFunctions::array_min_smallint'], [150046, 'array_min', 'INT', ['ARRAY_INT'], 'ArrayFunctions::array_min_int'], [150047, 'array_min', 'BIGINT', ['ARRAY_BIGINT'], 'ArrayFunctions::array_min_bigint'], [150048, 'array_min', 'LARGEINT', ['ARRAY_LARGEINT'], 'ArrayFunctions::array_min_largeint'], [150049, 'array_min', 'FLOAT', ['ARRAY_FLOAT'], 'ArrayFunctions::array_min_float'], [150050, 'array_min', 'DOUBLE', ['ARRAY_DOUBLE'], 'ArrayFunctions::array_min_double'], [150051, 'array_min', 'DECIMALV2', ['ARRAY_DECIMALV2'], 'ArrayFunctions::array_min_decimalv2'], [150052, 'array_min', 'DATE', ['ARRAY_DATE'], 'ArrayFunctions::array_min_date'], [150053, 'array_min', 'DATETIME', ['ARRAY_DATETIME'], 'ArrayFunctions::array_min_datetime'], [150054, 'array_min', 'VARCHAR', ['ARRAY_VARCHAR'], 'ArrayFunctions::array_min_varchar'], #[150012, 'array_min', 'DECIMAL64', ['ARRAY_DECIMAL32'], 'ArrayFunctions::array_min'], #[150013, 'array_min', 'DECIMAL64', ['ARRAY_DECIMAL64'], 'ArrayFunctions::array_min'], #[150014, 'array_min', 'DECIMAL128', ['ARRAY_DECIMAL128'], 'ArrayFunctions::array_min'], #max [150063, 'array_max', 'BOOLEAN', ['ARRAY_BOOLEAN'], 'ArrayFunctions::array_max_boolean'], [150064, 'array_max', 'TINYINT', ['ARRAY_TINYINT'], 'ArrayFunctions::array_max_tinyint'], [150065, 'array_max', 'SMALLINT', ['ARRAY_SMALLINT'], 'ArrayFunctions::array_max_smallint'], [150066, 'array_max', 'INT', ['ARRAY_INT'], 'ArrayFunctions::array_max_int'], [150067, 'array_max', 'BIGINT', ['ARRAY_BIGINT'], 'ArrayFunctions::array_max_bigint'], [150068, 'array_max', 'LARGEINT', ['ARRAY_LARGEINT'], 'ArrayFunctions::array_max_largeint'], [150069, 'array_max', 'FLOAT', ['ARRAY_FLOAT'], 'ArrayFunctions::array_max_float'], [150070, 'array_max', 'DOUBLE', ['ARRAY_DOUBLE'], 'ArrayFunctions::array_max_double'], [150071, 'array_max', 'DECIMALV2', ['ARRAY_DECIMALV2'], 'ArrayFunctions::array_max_decimalv2'], [150072, 'array_max', 'DATE', ['ARRAY_DATE'], 'ArrayFunctions::array_max_date'], [150073, 'array_max', 'DATETIME', ['ARRAY_DATETIME'], 'ArrayFunctions::array_max_datetime'], [150074, 'array_max', 'VARCHAR', ['ARRAY_VARCHAR'], 'ArrayFunctions::array_max_varchar'], #[150012, 'array_max', 'DECIMAL64', ['ARRAY_DECIMAL32'], 'ArrayFunctions::array_max'], #[150013, 'array_max', 'DECIMAL64', ['ARRAY_DECIMAL64'], 'ArrayFunctions::array_max'], #[150014, 'array_max', 'DECIMAL128', ['ARRAY_DECIMAL128'], 'ArrayFunctions::array_max'], [150083, 'array_remove', 'ANY_ARRAY', ['ANY_ARRAY', 'ANY_ELEMENT'], 'ArrayFunctions::array_remove'], [150084, 'array_position', 'INT', ['ANY_ARRAY', 'ANY_ELEMENT'], 'ArrayFunctions::array_position'], [150090, 'array_distinct', 'ARRAY_BOOLEAN', ['ARRAY_BOOLEAN'], 'ArrayFunctions::array_distinct_boolean'], [150091, 'array_distinct', 'ARRAY_TINYINT', ['ARRAY_TINYINT'], 'ArrayFunctions::array_distinct_tinyint'], [150092, 'array_distinct', 'ARRAY_SMALLINT', ['ARRAY_SMALLINT'], 'ArrayFunctions::array_distinct_smallint'], [150093, 'array_distinct', 'ARRAY_INT', ['ARRAY_INT'], 'ArrayFunctions::array_distinct_int'], [150094, 'array_distinct', 'ARRAY_BIGINT', ['ARRAY_BIGINT'], 'ArrayFunctions::array_distinct_bigint'], [150095, 'array_distinct', 'ARRAY_LARGEINT', ['ARRAY_LARGEINT'], 'ArrayFunctions::array_distinct_largeint'], [150096, 'array_distinct', 'ARRAY_FLOAT', ['ARRAY_FLOAT'], 'ArrayFunctions::array_distinct_float'], [150097, 'array_distinct', 'ARRAY_DOUBLE', ['ARRAY_DOUBLE'], 'ArrayFunctions::array_distinct_double'], [150098, 'array_distinct', 'ARRAY_VARCHAR', ['ARRAY_VARCHAR'], 'ArrayFunctions::array_distinct_varchar'], [150099, 'array_distinct', 'ARRAY_DECIMALV2', ['ARRAY_DECIMALV2'], 'ArrayFunctions::array_distinct_decimalv2'], [150100, 'array_distinct', 'ARRAY_DATETIME', ['ARRAY_DATETIME'], 'ArrayFunctions::array_distinct_datetime'], [150101, 'array_distinct', 'ARRAY_DATE', ['ARRAY_DATE'], 'ArrayFunctions::array_distinct_date'], [150110, 'array_sort', 'ARRAY_BOOLEAN', ['ARRAY_BOOLEAN'], 'ArrayFunctions::array_sort_boolean'], [150111, 'array_sort', 'ARRAY_TINYINT', ['ARRAY_TINYINT'], 'ArrayFunctions::array_sort_tinyint'], [150112, 'array_sort', 'ARRAY_SMALLINT', ['ARRAY_SMALLINT'], 'ArrayFunctions::array_sort_smallint'], [150113, 'array_sort', 'ARRAY_INT', ['ARRAY_INT'], 'ArrayFunctions::array_sort_int'], [150114, 'array_sort', 'ARRAY_BIGINT', ['ARRAY_BIGINT'], 'ArrayFunctions::array_sort_bigint'], [150115, 'array_sort', 'ARRAY_LARGEINT', ['ARRAY_LARGEINT'], 'ArrayFunctions::array_sort_largeint'], [150116, 'array_sort', 'ARRAY_FLOAT', ['ARRAY_FLOAT'], 'ArrayFunctions::array_sort_float'], [150117, 'array_sort', 'ARRAY_DOUBLE', ['ARRAY_DOUBLE'], 'ArrayFunctions::array_sort_double'], [150118, 'array_sort', 'ARRAY_VARCHAR', ['ARRAY_VARCHAR'], 'ArrayFunctions::array_sort_varchar'], [150119, 'array_sort', 'ARRAY_DECIMALV2', ['ARRAY_DECIMALV2'], 'ArrayFunctions::array_sort_decimalv2'], [150120, 'array_sort', 'ARRAY_DATETIME', ['ARRAY_DATETIME'], 'ArrayFunctions::array_sort_datetime'], [150121, 'array_sort', 'ARRAY_DATE', ['ARRAY_DATE'], 'ArrayFunctions::array_sort_date'], [150130, 'reverse', 'ARRAY_BOOLEAN', ['ARRAY_BOOLEAN'], 'ArrayFunctions::array_reverse_boolean'], [150131, 'reverse', 'ARRAY_TINYINT', ['ARRAY_TINYINT'], 'ArrayFunctions::array_reverse_tinyint'], [150132, 'reverse', 'ARRAY_SMALLINT', ['ARRAY_SMALLINT'], 'ArrayFunctions::array_reverse_smallint'], [150133, 'reverse', 'ARRAY_INT', ['ARRAY_INT'], 'ArrayFunctions::array_reverse_int'], [150134, 'reverse', 'ARRAY_BIGINT', ['ARRAY_BIGINT'], 'ArrayFunctions::array_reverse_bigint'], [150135, 'reverse', 'ARRAY_LARGEINT', ['ARRAY_LARGEINT'], 'ArrayFunctions::array_reverse_largeint'], [150136, 'reverse', 'ARRAY_FLOAT', ['ARRAY_FLOAT'], 'ArrayFunctions::array_reverse_float'], [150137, 'reverse', 'ARRAY_DOUBLE', ['ARRAY_DOUBLE'], 'ArrayFunctions::array_reverse_double'], [150138, 'reverse', 'ARRAY_VARCHAR', ['ARRAY_VARCHAR'], 'ArrayFunctions::array_reverse_varchar'], [150139, 'reverse', 'ARRAY_DECIMALV2', ['ARRAY_DECIMALV2'], 'ArrayFunctions::array_reverse_decimalv2'], [150140, 'reverse', 'ARRAY_DATETIME', ['ARRAY_DATETIME'], 'ArrayFunctions::array_reverse_datetime'], [150141, 'reverse', 'ARRAY_DATE', ['ARRAY_DATE'], 'ArrayFunctions::array_reverse_date'], [150150, 'array_join', 'VARCHAR', ['ARRAY_VARCHAR', 'VARCHAR'], 'ArrayFunctions::array_join_varchar'], [150151, 'array_join', 'VARCHAR', ['ARRAY_VARCHAR', 'VARCHAR', 'VARCHAR'], 'ArrayFunctions::array_join_varchar'], [150160, 'array_difference', 'ARRAY_BIGINT', ['ARRAY_BOOLEAN'], 'ArrayFunctions::array_difference_boolean'], [150161, 'array_difference', 'ARRAY_BIGINT', ['ARRAY_TINYINT'], 'ArrayFunctions::array_difference_tinyint'], [150162, 'array_difference', 'ARRAY_BIGINT', ['ARRAY_SMALLINT'], 'ArrayFunctions::array_difference_smallint'], [150163, 'array_difference', 'ARRAY_BIGINT', ['ARRAY_INT'], 'ArrayFunctions::array_difference_int'], [150164, 'array_difference', 'ARRAY_BIGINT', ['ARRAY_BIGINT'], 'ArrayFunctions::array_difference_bigint'], [150165, 'array_difference', 'ARRAY_LARGEINT', ['ARRAY_LARGEINT'], 'ArrayFunctions::array_difference_largeint'], [150166, 'array_difference', 'ARRAY_DOUBLE', ['ARRAY_FLOAT'], 'ArrayFunctions::array_difference_float'], [150167, 'array_difference', 'ARRAY_DOUBLE', ['ARRAY_DOUBLE'], 'ArrayFunctions::array_difference_double'], [150168, 'array_difference', 'ARRAY_DECIMALV2', ['ARRAY_DECIMALV2'], 'ArrayFunctions::array_difference_decimalv2'], [150170, 'array_slice', 'ARRAY_DATE', ['ARRAY_DATE', 'BIGINT', 'BIGINT'], 'ArrayFunctions::array_slice_date'], [150171, 'array_slice', 'ARRAY_DATETIME', ['ARRAY_DATETIME', 'BIGINT', 'BIGINT'], 'ArrayFunctions::array_slice_datetime'], [150172, 'array_slice', 'ARRAY_BOOLEAN', ['ARRAY_BOOLEAN', 'BIGINT', 'BIGINT'], 'ArrayFunctions::array_slice_boolean'], [150173, 'array_slice', 'ARRAY_TINYINT', ['ARRAY_TINYINT', 'BIGINT', 'BIGINT'], 'ArrayFunctions::array_slice_tinyint'], [150174, 'array_slice', 'ARRAY_SMALLINT', ['ARRAY_SMALLINT', 'BIGINT', 'BIGINT'], 'ArrayFunctions::array_slice_smallint'], [150175, 'array_slice', 'ARRAY_INT', ['ARRAY_INT', 'BIGINT', 'BIGINT'], 'ArrayFunctions::array_slice_int'], [150176, 'array_slice', 'ARRAY_BIGINT', ['ARRAY_BIGINT', 'BIGINT', 'BIGINT'], 'ArrayFunctions::array_slice_bigint'], [150177, 'array_slice', 'ARRAY_LARGEINT', ['ARRAY_LARGEINT', 'BIGINT', 'BIGINT'], 'ArrayFunctions::array_slice_largeint'], [150178, 'array_slice', 'ARRAY_FLOAT', ['ARRAY_FLOAT', 'BIGINT', 'BIGINT'], 'ArrayFunctions::array_slice_float'], [150179, 'array_slice', 'ARRAY_DOUBLE', ['ARRAY_DOUBLE', 'BIGINT', 'BIGINT'], 'ArrayFunctions::array_slice_double'], [150180, 'array_slice', 'ARRAY_DECIMALV2', ['ARRAY_DECIMALV2', 'BIGINT', 'BIGINT'], 'ArrayFunctions::array_slice_decimalv2'], [150181, 'array_slice', 'ARRAY_VARCHAR', ['ARRAY_VARCHAR', 'BIGINT', 'BIGINT'], 'ArrayFunctions::array_slice_varchar'], [150190, 'array_concat', 'ARRAY_DATE', ['ARRAY_DATE', "..."], 'ArrayFunctions::array_concat_date'], [150191, 'array_concat', 'ARRAY_DATETIME', ['ARRAY_DATETIME', "..."], 'ArrayFunctions::array_concat_datetime'], [150192, 'array_concat', 'ARRAY_BOOLEAN', ['ARRAY_BOOLEAN', "..."], 'ArrayFunctions::array_concat_boolean'], [150193, 'array_concat', 'ARRAY_TINYINT', ['ARRAY_TINYINT', "..."], 'ArrayFunctions::array_concat_tinyint'], [150194, 'array_concat', 'ARRAY_SMALLINT', ['ARRAY_SMALLINT', "..."], 'ArrayFunctions::array_concat_smallint'], [150195, 'array_concat', 'ARRAY_INT', ['ARRAY_INT', "..."], 'ArrayFunctions::array_concat_int'], [150196, 'array_concat', 'ARRAY_BIGINT', ['ARRAY_BIGINT', "..."], 'ArrayFunctions::array_concat_bigint'], [150197, 'array_concat', 'ARRAY_LARGEINT', ['ARRAY_LARGEINT', "..."], 'ArrayFunctions::array_concat_largeint'], [150198, 'array_concat', 'ARRAY_FLOAT', ['ARRAY_FLOAT', "..."], 'ArrayFunctions::array_concat_float'], [150199, 'array_concat', 'ARRAY_DOUBLE', ['ARRAY_DOUBLE', "..."], 'ArrayFunctions::array_concat_double'], [150200, 'array_concat', 'ARRAY_DECIMALV2', ['ARRAY_DECIMALV2', "..."], 'ArrayFunctions::array_concat_decimalv2'], [150201, 'array_concat', 'ARRAY_VARCHAR', ['ARRAY_VARCHAR', "..."], 'ArrayFunctions::array_concat_varchar'], [150210, 'array_overlap', 'BOOLEAN', ['ARRAY_DATE', 'ARRAY_DATE'], 'ArrayFunctions::array_overlap_date'], [150211, 'array_overlap', 'BOOLEAN', ['ARRAY_DATETIME', 'ARRAY_DATETIME'], 'ArrayFunctions::array_overlap_datetime'], [150212, 'array_overlap', 'BOOLEAN', ['ARRAY_BOOLEAN', 'ARRAY_BOOLEAN'], 'ArrayFunctions::array_overlap_boolean'], [150213, 'array_overlap', 'BOOLEAN', ['ARRAY_TINYINT', 'ARRAY_TINYINT'], 'ArrayFunctions::array_overlap_tinyint'], [150214, 'array_overlap', 'BOOLEAN', ['ARRAY_SMALLINT', 'ARRAY_SMALLINT'], 'ArrayFunctions::array_overlap_smallint'], [150215, 'array_overlap', 'BOOLEAN', ['ARRAY_INT', 'ARRAY_INT'], 'ArrayFunctions::array_overlap_int'], [150216, 'array_overlap', 'BOOLEAN', ['ARRAY_BIGINT', 'ARRAY_BIGINT'], 'ArrayFunctions::array_overlap_bigint'], [150217, 'array_overlap', 'BOOLEAN', ['ARRAY_LARGEINT', 'ARRAY_LARGEINT'], 'ArrayFunctions::array_overlap_largeint'], [150218, 'array_overlap', 'BOOLEAN', ['ARRAY_FLOAT', 'ARRAY_FLOAT'], 'ArrayFunctions::array_overlap_float'], [150219, 'array_overlap', 'BOOLEAN', ['ARRAY_DOUBLE', 'ARRAY_DOUBLE'], 'ArrayFunctions::array_overlap_double'], [150220, 'array_overlap', 'BOOLEAN', ['ARRAY_DECIMALV2', 'ARRAY_DECIMALV2'], 'ArrayFunctions::array_overlap_decimalv2'], [150221, 'array_overlap', 'BOOLEAN', ['ARRAY_VARCHAR', 'ARRAY_VARCHAR'], 'ArrayFunctions::array_overlap_varchar'], [150230, 'array_intersect', 'ARRAY_DATE', ['ARRAY_DATE', "..."], 'ArrayFunctions::array_intersect_date'], [150231, 'array_intersect', 'ARRAY_DATETIME', ['ARRAY_DATETIME', "..."], 'ArrayFunctions::array_intersect_datetime'], [150232, 'array_intersect', 'ARRAY_BOOLEAN', ['ARRAY_BOOLEAN', "..."], 'ArrayFunctions::array_intersect_boolean'], [150233, 'array_intersect', 'ARRAY_TINYINT', ['ARRAY_TINYINT', "..."], 'ArrayFunctions::array_intersect_tinyint'], [150234, 'array_intersect', 'ARRAY_SMALLINT', ['ARRAY_SMALLINT', "..."], 'ArrayFunctions::array_intersect_smallint'], [150235, 'array_intersect', 'ARRAY_INT', ['ARRAY_INT', "..."], 'ArrayFunctions::array_intersect_int'], [150236, 'array_intersect', 'ARRAY_BIGINT', ['ARRAY_BIGINT', "..."], 'ArrayFunctions::array_intersect_bigint'], [150237, 'array_intersect', 'ARRAY_LARGEINT', ['ARRAY_LARGEINT', "..."], 'ArrayFunctions::array_intersect_largeint'], [150238, 'array_intersect', 'ARRAY_FLOAT', ['ARRAY_FLOAT', "..."], 'ArrayFunctions::array_intersect_float'], [150239, 'array_intersect', 'ARRAY_DOUBLE', ['ARRAY_DOUBLE', "..."], 'ArrayFunctions::array_intersect_double'], [150240, 'array_intersect', 'ARRAY_DECIMALV2', ['ARRAY_DECIMALV2', "..."], 'ArrayFunctions::array_intersect_decimalv2'], [150241, 'array_intersect', 'ARRAY_VARCHAR', ['ARRAY_VARCHAR', "..."], 'ArrayFunctions::array_intersect_varchar'], ]
77.223315
182
0.652165
8924b1fecbeeee766a9c091702e1d158b0881832
707
py
Python
python--learnings/coding-practice/hourglass_sums.py
jekhokie/scriptbox
93c03d8ab9b7e7cd9c5c6a65b444392ffe92fd70
[ "MIT" ]
11
2020-03-29T09:12:25.000Z
2022-03-24T01:01:50.000Z
python--learnings/coding-practice/hourglass_sums.py
jekhokie/scriptbox
93c03d8ab9b7e7cd9c5c6a65b444392ffe92fd70
[ "MIT" ]
5
2021-06-02T03:41:51.000Z
2022-02-26T03:48:50.000Z
python--learnings/coding-practice/hourglass_sums.py
jekhokie/scriptbox
93c03d8ab9b7e7cd9c5c6a65b444392ffe92fd70
[ "MIT" ]
8
2019-02-01T13:33:14.000Z
2021-12-14T20:16:03.000Z
#!/usr/bin/env python # # Given a 6x6 array, find sum of all hourglass values where an hourglass is: # X X X # X # X X X # import math import os import random import re import sys # Complete the hourglassSum function below. def hourglassSum(arr): sum_vals = [] for x in range(1, 5): for y in range(1, 5): vals = [arr[x-1][y-1], arr[x-1][y], arr[x-1][y+1], arr[x][y], arr[x+1][y-1], arr[x+1][y], arr[x+1][y+1]] sum_vals.append(sum(vals)) return max(sum_vals) if __name__ == '__main__': arr = [] for _ in range(6): arr.append(list(map(int, input().rstrip().split()))) result = hourglassSum(arr) print(result)
22.09375
116
0.570014
faea131b4a7856c0f22a87570d0fcac3693cba59
172
py
Python
cookiecutter/fileupload/admin.py
binygreenberg/cookiecutter
ed32c55505dc49faaf75cb6739c30e98f995969d
[ "MIT" ]
null
null
null
cookiecutter/fileupload/admin.py
binygreenberg/cookiecutter
ed32c55505dc49faaf75cb6739c30e98f995969d
[ "MIT" ]
null
null
null
cookiecutter/fileupload/admin.py
binygreenberg/cookiecutter
ed32c55505dc49faaf75cb6739c30e98f995969d
[ "MIT" ]
null
null
null
from .models import Picture from django.contrib import admin @admin.register(Picture) class MyPictureAdmin(admin.ModelAdmin): list_display = ('profile','slug','file')
24.571429
44
0.767442
f299c576b66a3595cc5ef78f557f55a4349a8138
5,190
py
Python
uiautomation/pages/tmhomepage.py
fingerella2000/e2enuggets
8f2c6a88106985a3409bb032de1d2b9b7dcfb2fe
[ "MIT" ]
null
null
null
uiautomation/pages/tmhomepage.py
fingerella2000/e2enuggets
8f2c6a88106985a3409bb032de1d2b9b7dcfb2fe
[ "MIT" ]
null
null
null
uiautomation/pages/tmhomepage.py
fingerella2000/e2enuggets
8f2c6a88106985a3409bb032de1d2b9b7dcfb2fe
[ "MIT" ]
null
null
null
from uiautomation.pages.basepage import BasePage from uiautomation.common import Constants from uiautomation.elements import BasePageElement from selenium.webdriver.common.by import By from selenium.webdriver.common.keys import Keys from selenium.webdriver.support.ui import WebDriverWait # available since 2.4.0 from selenium.webdriver.support import expected_conditions as EC # available since 2.26.0 from selenium.webdriver.common.action_chains import ActionChains import time class Locators(object): dictionary = { # """tmall home page elements""" "body":(By.CSS_SELECTOR,"html > body"), "search_bar":(By.CSS_SELECTOR,"#mq"), "search_button":(By.CSS_SELECTOR,"#mallSearch > form > fieldset > div > button"), "top1_product":(By.CSS_SELECTOR,"#J_ItemList > div:nth-child(1)"), "top2_product":(By.CSS_SELECTOR,"#J_ItemList > div:nth-child(2)"), "top3_product":(By.CSS_SELECTOR,"#J_ItemList > div:nth-child(3)"), "next_page":(By.CSS_SELECTOR,"#content > div > div.ui-page > div > b.ui-page-num > a.ui-page-next") } class SearchBarElement(BasePageElement): locator = Locators.dictionary["search_bar"] class SearchButtonElement(BasePageElement): locator = Locators.dictionary["search_button"] class NextPageElement(BasePageElement): locator = Locators.dictionary["next_page"] class Top1ProductElement(BasePageElement): locator = Locators.dictionary["top1_product"] class Top2ProductElement(BasePageElement): locator = Locators.dictionary["top2_product"] class Top3ProductElement(BasePageElement): locator = Locators.dictionary["top3_product"] class TMHomePage(BasePage): search_bar_element = SearchBarElement() search_button_element = SearchButtonElement() top1_product_element = Top1ProductElement() top2_product_element = Top2ProductElement() top3_product_element = Top3ProductElement() next_page_element = NextPageElement() def search(self, keywords): WebDriverWait(self.driver, Constants.WAIT_TIME_SHORT).until(EC.visibility_of_any_elements_located(Locators.dictionary["body"])) self._scrollDownAndUp() """entering search keywords""" _search_bar = self.search_bar_element _keywords_chain_actions = ActionChains(self.driver) _keywords_chain_actions.move_to_element(_search_bar) _keywords_chain_actions.click(_search_bar) for c in list(keywords): _keywords_chain_actions.send_keys(c) _keywords_chain_actions.perform() """click search button""" self.driver.element = self.search_button_element self.driver.element.click() # self._scrollDownAndUp() return keywords in self.driver.title def viewTop3Products(self): self._scrollDownAndUp() _top1_product = self.top1_product_element _top1_product_actions = ActionChains(self.driver) _top1_product_actions.move_to_element(_top1_product).key_down(Keys.CONTROL).click().key_up(Keys.CONTROL).perform() self._viewNewTabAndCloseAfter() _top2_product = self.top2_product_element _top2_product_actions = ActionChains(self.driver) _top2_product_actions.move_to_element(_top2_product).key_down(Keys.CONTROL).click().key_up(Keys.CONTROL).perform() self._viewNewTabAndCloseAfter() _tope3_product = self.top3_product_element _tope3_product_actions = ActionChains(self.driver) _tope3_product_actions.move_to_element(_tope3_product).key_down(Keys.CONTROL).click().key_up(Keys.CONTROL).perform() self._viewNewTabAndCloseAfter() return True def viewTopPages(self, number_of_pages): for i in range(number_of_pages): print("viewing page: " + str(i+1)) self.viewTop3Products() if i+1 == number_of_pages: continue self.driver.element = self.next_page_element self.driver.element.click() self.driver.switch_to_default_content() return True def _viewNewTabAndCloseAfter(self): self.driver.switch_to_window(self.driver.window_handles[-1]) self._scrollDownAndUp() self.driver.close() self.driver.switch_to_window(self.driver.window_handles[-1]) self.driver.switch_to_default_content() def _scrollDownAndUp(self): _scroll_step = Constants.SCROLL_STEP _scroll_interval = Constants.SCROLL_INTERVAL """scroll down""" _last_height = self.driver.execute_script("return document.body.scrollHeight") for h in range(int(_last_height/_scroll_step)): time.sleep(_scroll_interval) self.driver.execute_script("window.scrollTo(0," + str(_scroll_step*(h+1)) + ");") """scroll up""" _last_height = self.driver.execute_script("return document.body.scrollHeight") for h in range(int(_last_height/_scroll_step)): time.sleep(_scroll_interval) self.driver.execute_script("window.scrollTo(0," + str(_last_height - _scroll_step*(h+1)) + ");") self.driver.execute_script("window.scrollTo(0, 0);")
45.526316
135
0.705588
891f85e9ac5ee1f4f9889cab4c551b2b23103bd4
9,694
py
Python
RestPy/ixnetwork_restpy/testplatform/sessions/ixnetwork/topology/msrplistenerdomains.py
kakkotetsu/IxNetwork
f9fb614b51bb8988af035967991ad36702933274
[ "MIT" ]
null
null
null
RestPy/ixnetwork_restpy/testplatform/sessions/ixnetwork/topology/msrplistenerdomains.py
kakkotetsu/IxNetwork
f9fb614b51bb8988af035967991ad36702933274
[ "MIT" ]
null
null
null
RestPy/ixnetwork_restpy/testplatform/sessions/ixnetwork/topology/msrplistenerdomains.py
kakkotetsu/IxNetwork
f9fb614b51bb8988af035967991ad36702933274
[ "MIT" ]
null
null
null
# Copyright 1997 - 2018 by IXIA Keysight # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from ixnetwork_restpy.base import Base from ixnetwork_restpy.files import Files class MsrpListenerDomains(Base): """The MsrpListenerDomains class encapsulates a required msrpListenerDomains node in the ixnetwork hierarchy. An instance of the class can be obtained by accessing the MsrpListenerDomains property from a parent instance. The internal properties list will contain one and only one set of properties which is populated when the property is accessed. """ _SDM_NAME = 'msrpListenerDomains' def __init__(self, parent): super(MsrpListenerDomains, self).__init__(parent) @property def Active(self): """Activate/Deactivate Configuration Returns: obj(ixnetwork_restpy.multivalue.Multivalue) """ return self._get_attribute('active') @property def Count(self): """Number of elements inside associated multiplier-scaled container object, e.g. number of devices inside a Device Group Returns: number """ return self._get_attribute('count') @property def DescriptiveName(self): """Longer, more descriptive name for element. It's not guaranteed to be unique like -name-, but maybe offers more context Returns: str """ return self._get_attribute('descriptiveName') @property def Name(self): """Name of NGPF element, guaranteed to be unique in Scenario Returns: str """ return self._get_attribute('name') @Name.setter def Name(self, value): self._set_attribute('name', value) @property def SrClassIdType(self): """SR Class ID Returns: obj(ixnetwork_restpy.multivalue.Multivalue) """ return self._get_attribute('srClassIdType') @property def SrClassPriorityType(self): """SR Class Priority.Class A maps to priority 3 and Class B maps to priority 2. Returns: obj(ixnetwork_restpy.multivalue.Multivalue) """ return self._get_attribute('srClassPriorityType') @property def SrClassVid(self): """VLAN ID that associated streams will be tagged with by Talker Returns: obj(ixnetwork_restpy.multivalue.Multivalue) """ return self._get_attribute('srClassVid') def get_device_ids(self, PortNames=None, Active=None, SrClassIdType=None, SrClassPriorityType=None, SrClassVid=None): """Base class infrastructure that gets a list of msrpListenerDomains device ids encapsulated by this object. Use the optional regex parameters in the method to refine the list of device ids encapsulated by this object. Args: PortNames (str): optional regex of port names Active (str): optional regex of active SrClassIdType (str): optional regex of srClassIdType SrClassPriorityType (str): optional regex of srClassPriorityType SrClassVid (str): optional regex of srClassVid Returns: list(int): A list of device ids that meets the regex criteria provided in the method parameters Raises: ServerError: The server has encountered an uncategorized error condition """ return self._get_ngpf_device_ids(locals()) def FetchAndUpdateConfigFromCloud(self, Mode): """Executes the fetchAndUpdateConfigFromCloud operation on the server. Args: Arg1 (str(None|/api/v1/sessions/1/ixnetwork/globals?deepchild=*|/api/v1/sessions/1/ixnetwork/topology?deepchild=*)): The method internally sets Arg1 to the current href for this instance Mode (str): Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ Arg1 = self.href return self._execute('FetchAndUpdateConfigFromCloud', payload=locals(), response_object=None) def Start(self): """Executes the start operation on the server. Start MSRP Listener Domain Args: Arg1 (list(str[None|/api/v1/sessions/1/ixnetwork/topology])): The method internally sets Arg1 to the encapsulated list of hrefs for this instance Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ Arg1 = self return self._execute('Start', payload=locals(), response_object=None) def Start(self, SessionIndices): """Executes the start operation on the server. Start MSRP Listener Domain Args: Arg1 (list(str[None|/api/v1/sessions/1/ixnetwork/topology])): The method internally sets Arg1 to the encapsulated list of hrefs for this instance SessionIndices (list(number)): This parameter requires an array of session numbers 0 1 2 3 Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ Arg1 = self return self._execute('Start', payload=locals(), response_object=None) def Start(self, SessionIndices): """Executes the start operation on the server. Start MSRP Listener Domain Args: Arg1 (list(str[None|/api/v1/sessions/1/ixnetwork/topology])): The method internally sets Arg1 to the encapsulated list of hrefs for this instance SessionIndices (str): This parameter requires a string of session numbers 1-4;6;7-12 Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ Arg1 = self return self._execute('Start', payload=locals(), response_object=None) def Start(self, Arg2): """Executes the start operation on the server. Start Args: Arg1 (str(None|/api/v1/sessions/1/ixnetwork/topology)): The method internally sets Arg1 to the current href for this instance Arg2 (list(number)): List of indices into the protocol plugin. An empty list indicates all instances in the plugin. Returns: list(str): ID to associate each async action invocation Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ Arg1 = self.href return self._execute('Start', payload=locals(), response_object=None) def Stop(self): """Executes the stop operation on the server. Stop MSRP Listener Domain Args: Arg1 (list(str[None|/api/v1/sessions/1/ixnetwork/topology])): The method internally sets Arg1 to the encapsulated list of hrefs for this instance Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ Arg1 = self return self._execute('Stop', payload=locals(), response_object=None) def Stop(self, SessionIndices): """Executes the stop operation on the server. Stop MSRP Listener Domain Args: Arg1 (list(str[None|/api/v1/sessions/1/ixnetwork/topology])): The method internally sets Arg1 to the encapsulated list of hrefs for this instance SessionIndices (list(number)): This parameter requires an array of session numbers 0 1 2 3 Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ Arg1 = self return self._execute('Stop', payload=locals(), response_object=None) def Stop(self, SessionIndices): """Executes the stop operation on the server. Stop MSRP Listener Domain Args: Arg1 (list(str[None|/api/v1/sessions/1/ixnetwork/topology])): The method internally sets Arg1 to the encapsulated list of hrefs for this instance SessionIndices (str): This parameter requires a string of session numbers 1-4;6;7-12 Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ Arg1 = self return self._execute('Stop', payload=locals(), response_object=None) def Stop(self, Arg2): """Executes the stop operation on the server. Stop Args: Arg1 (str(None|/api/v1/sessions/1/ixnetwork/topology)): The method internally sets Arg1 to the current href for this instance Arg2 (list(number)): List of indices into the protocol plugin. An empty list indicates all instances in the plugin. Returns: list(str): ID to associate each async action invocation Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ Arg1 = self.href return self._execute('Stop', payload=locals(), response_object=None)
36.037175
190
0.737466
1a3d58f84d4056a1a8d51ee22a6bc740357a6f05
5,082
py
Python
src/transformers/models/reformer/tokenization_reformer_fast.py
timpal0l/transformers
d86d57faa3b6511c6e4d9139535d77b695b9af8a
[ "Apache-2.0" ]
2
2020-11-28T12:51:07.000Z
2020-11-28T12:52:14.000Z
src/transformers/models/reformer/tokenization_reformer_fast.py
timpal0l/transformers
d86d57faa3b6511c6e4d9139535d77b695b9af8a
[ "Apache-2.0" ]
1
2020-11-12T11:00:12.000Z
2020-11-12T11:00:12.000Z
src/transformers/models/reformer/tokenization_reformer_fast.py
timpal0l/transformers
d86d57faa3b6511c6e4d9139535d77b695b9af8a
[ "Apache-2.0" ]
1
2020-11-17T02:48:00.000Z
2020-11-17T02:48:00.000Z
# coding=utf-8 # Copyright 2020 The Trax Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tokenization class for model Reformer.""" import os from shutil import copyfile from typing import Optional, Tuple from ...file_utils import is_sentencepiece_available from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if is_sentencepiece_available(): from .tokenization_reformer import ReformerTokenizer else: ReformerTokenizer = None logger = logging.get_logger(__name__) SPIECE_UNDERLINE = "▁" #################################################### # Mapping from the keyword arguments names of Tokenizer `__init__` # to file names for serializing Tokenizer instances #################################################### VOCAB_FILES_NAMES = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} #################################################### # Mapping from the keyword arguments names of Tokenizer `__init__` # to pretrained vocabulary URL for all the model ids. #################################################### PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "google/reformer-crime-and-punishment": "https://cdn.huggingface.co/google/reformer-crime-and-punishment/spiece.model" }, "tokenizer_file": { "google/reformer-crime-and-punishment": "https://cdn.huggingface.co/google/reformer-crime-and-punishment/tokenizer.json" }, } #################################################### # Mapping from model ids to max length of inputs #################################################### PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "google/reformer-crime-and-punishment": 524288, } class ReformerTokenizerFast(PreTrainedTokenizerFast): """ Construct a "fast" Reformer tokenizer (backed by HuggingFace's `tokenizers` library). Based on `SentencePiece <https://github.com/google/sentencepiece>`__ . This tokenizer inherits from :class:`~transformers.PreTrainedTokenizerFast` which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (:obj:`str`): `SentencePiece <https://github.com/google/sentencepiece>`__ file (generally has a `.spm` extension) that contains the vocabulary necessary to instantiate a tokenizer. eos_token (:obj:`str`, `optional`, defaults to :obj:`"</s>"`): The end of sequence token. .. note:: When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the :obj:`sep_token`. unk_token (:obj:`str`, `optional`, defaults to :obj:`"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (:obj:`str`, `optional`, defaults to :obj:`"<pad>"`): The token used for padding, for example when batching sequences of different lengths. additional_special_tokens (:obj:`List[str]`, `optional`): Additional special tokens used by the tokenizer. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["attention_mask"] slow_tokenizer_class = ReformerTokenizer def __init__( self, vocab_file, tokenizer_file=None, eos_token="</s>", unk_token="<unk>", additional_special_tokens=[], **kwargs ): super().__init__( vocab_file, tokenizer_file=tokenizer_file, eos_token=eos_token, unk_token=unk_token, additional_special_tokens=additional_special_tokens, **kwargs, ) self.vocab_file = vocab_file def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error("Vocabulary path ({}) should be a directory".format(save_directory)) return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): copyfile(self.vocab_file, out_vocab_file) return (out_vocab_file,)
38.793893
128
0.654073
6ca5de09096f221f24fb3ffd45968b6d8837860a
2,850
py
Python
python/games/flappypixel.py
umbc-hackafe/sign-drivers
cd2a80a455a0956f23afb5dc15eb67f48c69f289
[ "MIT" ]
null
null
null
python/games/flappypixel.py
umbc-hackafe/sign-drivers
cd2a80a455a0956f23afb5dc15eb67f48c69f289
[ "MIT" ]
1
2015-08-17T16:28:45.000Z
2015-08-17T16:28:45.000Z
python/games/flappypixel.py
umbc-hackafe/sign-drivers
cd2a80a455a0956f23afb5dc15eb67f48c69f289
[ "MIT" ]
null
null
null
import graphics import driver import game import random import string class FlappyPixel(game.Game): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.reset() def reset(self): self.sprites.clear() self.playing = True self.flappy = graphics.Rectangle(1, 1, x=24, y=0, wrapx=False, wrapy=False) self.sprites.add(self.flappy) # XXX: hard-coded width self.scoretext = graphics.TextSprite("0", width=4, height=4, x=1, y=0) self.sprites.add(self.scoretext) self.terrain = self.terrain_gen() self.ticks = 0 self.score = 0 self.up = 0 def terrain_gen(self): while True: width, height = 2, random.randint(1, 10) if random.randint(0, 1): top = 0 else: top = 15 - height yield graphics.Rectangle(width, height, 113, top) def check_collision(self): for sprite in self.sprites: if sprite is self.flappy: continue if sprite.x <= self.flappy.x <= (sprite.x+sprite.width) and sprite.y <= self.flappy.y <= (sprite.y+sprite.height): return True return False def scroll_terrain(self): for sprite in list(self.sprites): if sprite is not self.flappy and sprite is not self.scoretext: sprite.x -= 1 if sprite.x < -sprite.width: self.sprites.remove(sprite) def loop(self): if self.playing: if set(string.ascii_lowercase + ' ').intersection(self.keys) and not self.up: print("AHH") self.up = 3 if self.up and not self.ticks % 3: self.up -= 1 self.flappy.y -= self.up elif not self.ticks % 4: self.flappy.y += 1 if self.flappy.y > 15 or self.flappy.y < 0 or self.check_collision(): self.sprites = set([graphics.TextSprite("GAME OVER: SCORE %d" % self.score, width=5, height=7), graphics.TextSprite("R TO RELOAD", width=5, height=7, y=8)]) self.playing = False return if not self.ticks % 3: self.scroll_terrain() if not self.ticks % 45: self.sprites.add(next(self.terrain)) # Only add to the score if you're in the process of passing # terrain. if self.ticks > 45 * 5: self.score += 1 self.scoretext.set_text(str(self.score)) self.ticks += 1 else: if 'r' in self.keys: self.reset() super().loop() GAME = FlappyPixel
30.645161
126
0.512281