hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
debe9e4f5079c1767ee4a5874a12704d9b6439c7
808
py
Python
hackerVote/urls.py
v786/hacker_vote
7a1af94a99e2c4c2393147784c1acd2bcf0258ee
[ "MIT" ]
null
null
null
hackerVote/urls.py
v786/hacker_vote
7a1af94a99e2c4c2393147784c1acd2bcf0258ee
[ "MIT" ]
null
null
null
hackerVote/urls.py
v786/hacker_vote
7a1af94a99e2c4c2393147784c1acd2bcf0258ee
[ "MIT" ]
null
null
null
"""hackerVote URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import include, path urlpatterns = [ path('hackers/', include('hackers.urls')), path('admin/', admin.site.urls), ]
35.130435
77
0.705446
3b1f900d24a318773800855a5dd3091b1cf3dfc9
3,066
py
Python
baracus/prepare.py
jelman/baracus
d5d024af2209f91fb384b23bee8273c505f31b91
[ "Apache-2.0" ]
8
2017-06-26T22:46:09.000Z
2020-08-28T05:08:34.000Z
baracus/prepare.py
jelman/baracus
d5d024af2209f91fb384b23bee8273c505f31b91
[ "Apache-2.0" ]
11
2017-06-08T10:19:24.000Z
2020-05-13T13:11:52.000Z
baracus/prepare.py
jelman/baracus
d5d024af2209f91fb384b23bee8273c505f31b91
[ "Apache-2.0" ]
13
2017-06-08T10:20:46.000Z
2022-03-30T22:06:03.000Z
import os from baracus.utils import run, run_fs_if_not_available def prepare_fs_data(fs_dir, out_dir, subject): out_files = downsample_surfs(fs_dir, out_dir, subject) out_files["aseg" + "_file"] = prepare_aseg(fs_dir, out_dir, subject) return out_files def downsample_surfs(fs_dir, out_dir, subject, hemis=["lh", "rh"], meas=["thickness", "area"]): out_files = {} for m in meas: for h in hemis: subject_dir = os.path.join(out_dir, subject, "data") if not os.path.isdir(subject_dir): os.makedirs(subject_dir) out_file = os.path.join(subject_dir, "{h}.{m}.mgh".format(h=h, m=m)) out_files[h + "_" + m + "_file"] = out_file if not os.path.isfile(out_file): cmd = "mris_preproc --s {subject} --target fsaverage4 --hemi {h} " \ "--meas {m} --out {out_file}".format( subject=subject, h=h, m=m, out_file=out_file) run(cmd, env={"SUBJECTS_DIR": fs_dir}) return out_files def prepare_aseg(fs_dir, out_dir, subject): subject_dir = os.path.join(out_dir, subject, "data") if not os.path.isdir(subject_dir): os.makedirs(subject_dir) out_file = os.path.join(subject_dir, "aseg") if not os.path.isfile(out_file): cmd = "asegstats2table --subjects {subject} --meas volume --tablefile {out_file}".format(subject=subject, out_file=out_file) print(cmd) run(cmd, env={"SUBJECTS_DIR": fs_dir}) return out_file def run_prepare_all(bids_dir, freesurfer_dir, out_dir, subjects_to_analyze, sessions_to_analyze, n_cpus, license_key, skip_missing=False): """ :param bids_dir: :param freesurfer_dir: :param out_dir: :param subjects_to_analyze: :param sessions_to_analyze: {"subject_label": ["test", "retest"],...}; {} if not truly_long_study :return: """ fsav_dir = os.path.join(os.environ["FREESURFER_HOME"], "subjects") for fsav in ["fsaverage", "fsaverage4"]: if not os.path.exists(os.path.join(freesurfer_dir, fsav)): cmd = "cp -rf {} {}".format(os.path.join(fsav_dir, fsav), os.path.join(freesurfer_dir, fsav)) run(cmd) # check if freesurfer is available and run if missing freesurfer_subjects = [] for subject in subjects_to_analyze: sessions = sessions_to_analyze.get(subject) freesurfer_subjects.extend(run_fs_if_not_available(bids_dir, freesurfer_dir, subject, license_key, n_cpus, sessions, skip_missing)) # downsample surfaces to fsaverage4 and extract subcortical data from aseg out_files = {} for fs_subject in freesurfer_subjects: print("preparing %s" % fs_subject) out_files[fs_subject] = prepare_fs_data(freesurfer_dir, out_dir, fs_subject) print("FINISHED. Prepared %s" % " ".join(freesurfer_subjects)) return out_files
41.432432
117
0.6197
d90be90b5bbf7b1790d03b677d9c9f6a43fcf7a6
82,193
py
Python
torch/quantization/fx/quantization_patterns.py
xiaomengy/pytorch
5060b69d62943e11f053f8c86b8154a7d009af11
[ "Intel" ]
3
2019-01-21T12:15:39.000Z
2019-06-08T13:59:44.000Z
torch/quantization/fx/quantization_patterns.py
BIT-silence/pytorch
5060b69d62943e11f053f8c86b8154a7d009af11
[ "Intel" ]
null
null
null
torch/quantization/fx/quantization_patterns.py
BIT-silence/pytorch
5060b69d62943e11f053f8c86b8154a7d009af11
[ "Intel" ]
null
null
null
import torch from torch.fx import GraphModule from torch.fx.graph import ( Node, Graph, ) from torch.quantization import ( default_affine_fixed_qparams_fake_quant, default_symmetric_fixed_qparams_fake_quant, ) from ..quantization_mappings import ( get_static_quant_module_class, get_dynamic_quant_module_class, get_quantized_operator, ) from ..utils import ( get_swapped_custom_module_class, activation_is_statically_quantized, activation_is_int8_quantized, weight_is_statically_quantized, get_qconfig_dtypes, activation_dtype, get_qparam_dict, ) from torch.ao.quantization.quantize import ( is_activation_post_process, ) from .pattern_utils import ( register_quant_pattern, get_default_output_activation_post_process_map, Pattern, ) from .utils import ( _parent_name, all_node_args_have_no_tensors, quantize_node, get_per_tensor_qparams, get_linear_prepack_op_for_dtype, create_qparam_nodes, get_qconv_prepack_op, get_qconv_op, ) from ..qconfig import QConfigAny from abc import ABC, abstractmethod import operator import warnings from typing import Any, Callable, Dict, Union, Optional, Tuple, List # ------------------------- # Pattern Registrations # ------------------------- # 1. Post Training Static Quantization and Quantization Aware Training Patterns # Base Pattern Handler class QuantizeHandler(ABC): """ Base handler class for the quantizer patterns """ def __init__(self, node: Node, modules: Dict[str, torch.nn.Module]): """ Records pattern information in __init__, which will be used in convert """ # this is an indicator of whether all the inputs are Node or not # since some op might be quantized differently depending on whether # all inputs are tensors or not, e.g. add/mul self.num_tensor_args = len(node.args) self.all_node_args_are_tensors = True # the last node of the matched pattern self.last_node = node def _maybe_get_last_node_only_observer( self, modules: Dict[str, torch.nn.Module] ) -> Optional[torch.nn.Module]: """ If the last node of the pattern is observed, return the observer instance. Otherwise, return None. """ for maybe_obs_node, _ in self.last_node.users.items(): if maybe_obs_node.op == 'call_module': maybe_obs = modules[str(maybe_obs_node.target)] if is_activation_post_process(maybe_obs): return maybe_obs return None def input_output_observed(self) -> bool: """ Returns True if the pattern matched to this qhandler could be be observed, and False it it should not be observed. """ return True def is_general_tensor_value_op(self) -> bool: """ Returns True if the operator works for both floating point and quantized input, and does some computation based on the input Tensor, so we need to insert observer/fake_quant for the output of the operator since the distribution of values is different for input and output Tensors (for HistogramObserver) while they share the same quantization parameters Example: avgpool2d """ return False def is_general_tensor_shape_op(self) -> bool: """ Similar to is_general_tensor_value_op, this is a check for ops that works for both floating point and quantized input, that only re-arranges the Tensor values or query some metadata about the Tensor We don't insert observer/fake_quant for the output of these operators Example: reshape, transpose, maxpool2d """ return False def should_insert_observer_for_output( self, qconfig: Any, model_is_training: bool, ) -> bool: """ Returns true if an observer should be inserted for the output of the pattern matched to this QuantizeHandler instance during the prepare step. """ # TODO(future PR): potentially clean up and deduplicate these # mappings. return self.all_node_args_are_tensors and self.input_output_observed() def should_mark_output_quantized_from_input_quantized_status( self, qconfig: QConfigAny ) -> bool: """ Returns true if after convert, the output of the matched pattern is quantized iff the first input is also quantized. """ return False def get_activation_ctr( self, qconfig: Any, pattern: Pattern, ) -> Optional[Callable]: """ Returns the constructor for the activation observer which should be used for the pattern matched to this handler. Some handlers override this to a different value than what is specified in the qconfig. """ return qconfig.activation def is_output_quantized(self, qconfig, is_reference): """ Returns true if the output node of convert is quantized when is_reference is False, we would return float node when a certain dtype combination is not supported (since fbgemm/qnnpack only support certain dtype combinations), so the output may be float, but when is_reference is True, we support all dtype combinations so the output will always be quantized. """ return True @abstractmethod def convert(self, node: Node, qconfig: QConfigAny, modules: Dict[str, torch.nn.Module], quantized_graph: Graph, node_name_to_scope: Dict[str, Tuple[str, type]], load_arg: Callable, is_reference: bool = False, convert_custom_config_dict: Dict[str, Any] = None) -> Node: """ Convert the given node to a quantized node and insert it to the quantized graph """ return NotImplemented # Binary op configs # Supported combinations are: # quant_type | activation (compute_type) | weight # static quint8 qint8 # tuple (activation_dtype, weight_dtype, compute_dtype) # these are supported types for common binary ops like add/mul etc. all_dtypes = [ (torch.quint8, torch.qint8, None), (torch.float16, torch.float16, None), ] fp16_dtypes = [ (torch.float16, torch.float16, None) ] int8_dtypes = [ (torch.quint8, torch.qint8, None), ] binary_op_supported_dtypes : Dict[Union[Callable, str], List[Tuple[torch.dtype, torch.dtype, None]]] = { operator.add: all_dtypes, torch.add: all_dtypes, operator.mul: all_dtypes, torch.mul: all_dtypes, torch.bmm: fp16_dtypes, torch.sub: fp16_dtypes, operator.sub: fp16_dtypes, torch.div: fp16_dtypes, operator.truediv: fp16_dtypes, } default_op_supported_dtypes = { torch.nn.ConvTranspose1d: int8_dtypes, torch.nn.ConvTranspose2d: int8_dtypes, torch.nn.ELU: int8_dtypes, torch.nn.LeakyReLU: int8_dtypes, torch.nn.Hardswish: int8_dtypes, torch.nn.InstanceNorm1d: int8_dtypes, torch.nn.InstanceNorm2d: int8_dtypes, torch.nn.InstanceNorm3d: int8_dtypes, torch.nn.LayerNorm: all_dtypes, torch.nn.SiLU: fp16_dtypes, torch.nn.Mish: fp16_dtypes, torch.nn.GELU: int8_dtypes, torch.nn.Softmax: int8_dtypes, torch.nn.functional.elu: int8_dtypes, torch.nn.functional.hardswish: int8_dtypes, torch.nn.functional.instance_norm: int8_dtypes, torch.nn.functional.layer_norm: all_dtypes, torch.nn.functional.leaky_relu: int8_dtypes, torch.nn.functional.silu: fp16_dtypes, torch.nn.functional.mish: fp16_dtypes, torch.nn.functional.gelu: int8_dtypes, torch.nn.functional.softmax: int8_dtypes, torch.sum: fp16_dtypes, } QAT_CONV_MODULE_CLASSES = \ (torch.nn.qat.Conv2d, torch.nn.qat.Conv3d, torch.nn.intrinsic.qat.ConvBn2d, torch.nn.intrinsic.qat.ConvBnReLU2d, torch.nn.intrinsic.qat.ConvReLU2d, torch.nn.intrinsic.qat.ConvBn3d, torch.nn.intrinsic.qat.ConvBnReLU3d, torch.nn.intrinsic.qat.ConvReLU3d) ########################## # Helper Functions ########################## def _load_weight_qparams( self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): key = prefix + "_weight_qparams" if key in state_dict: self._weight_qparams = state_dict[key] state_dict.pop(key) def _save_weight_qparams(self, destination, prefix, keep_vars): for attr_name in dir(self): if "_weight_qparams" == attr_name and \ isinstance(getattr(self, attr_name), dict): weight_qparams = getattr(self, attr_name) destination[prefix + attr_name] = weight_qparams def _to_reference(float_module, weight_qparams): """ Make a weighted float module (e.g. conv and linear )a reference module by attaching _weight_qparams that records the qparams for weight and change the name for the module so that it's recognized when people print the model """ float_module._weight_qparams = weight_qparams float_module._register_state_dict_hook(_save_weight_qparams) float_module._register_load_state_dict_pre_hook(_load_weight_qparams, with_module=True) float_module_name = float_module._get_name() def _get_name(): return float_module_name + "(Reference)" float_module._get_name = _get_name @register_quant_pattern(operator.add) @register_quant_pattern(operator.sub) @register_quant_pattern(operator.mul) @register_quant_pattern(operator.truediv) @register_quant_pattern(torch.add) @register_quant_pattern(torch.sub) @register_quant_pattern(torch.mul) @register_quant_pattern(torch.div) @register_quant_pattern(torch.bmm) @register_quant_pattern((torch.nn.ReLU, operator.add)) @register_quant_pattern((torch.nn.ReLU, operator.mul)) @register_quant_pattern((torch.nn.ReLU, torch.add)) @register_quant_pattern((torch.nn.ReLU, torch.mul)) @register_quant_pattern((torch.nn.functional.relu, operator.add)) @register_quant_pattern((torch.nn.functional.relu, operator.mul)) @register_quant_pattern((torch.nn.functional.relu, torch.add)) @register_quant_pattern((torch.nn.functional.relu, torch.mul)) class BinaryOpQuantizeHandler(QuantizeHandler): def __init__( self, node: Node, modules: Dict[str, torch.nn.Module]): super().__init__(node, modules) self.relu_node = None if (node.op == 'call_function' and node.target is torch.nn.functional.relu) or \ (node.op == 'call_module' and isinstance(modules[str(node.target)], torch.nn.ReLU)): self.relu_node = node node = node.args[0] # type: ignore[assignment] self.binary_op_node = node self.binary_op = node.target # determine how many of the first two args are Tensors (versus scalars) # this distinguishes things like "x + y" from "x + 2" or "2 + x" self.num_tensor_args = 0 cache_for_no_tensor_check: Dict[Node, bool] = dict() for arg_idx in range(len(self.binary_op_node.args)): arg = self.binary_op_node.args[arg_idx] if isinstance(arg, Node) and (not all_node_args_have_no_tensors(arg, modules, cache_for_no_tensor_check)): self.num_tensor_args += 1 self.all_node_args_are_tensors = \ (self.num_tensor_args == len(self.binary_op_node.args)) qbin_op_mapping: Dict[Union[Callable, str], Callable] = { operator.add: torch.ops.quantized.add, torch.add: torch.ops.quantized.add, operator.mul: torch.ops.quantized.mul, torch.mul: torch.ops.quantized.mul, } qbin_relu_op_mapping: Dict[Union[Callable, str], Callable] = { operator.add: torch.ops.quantized.add_relu, torch.add: torch.ops.quantized.add_relu, operator.mul: torch.ops.quantized.mul_relu, torch.mul: torch.ops.quantized.mul_relu, } # corresponding quantized op self.quantized_binary_op: Optional[Callable] = None if self.binary_op in qbin_op_mapping: self.quantized_binary_op = qbin_relu_op_mapping[self.binary_op] \ if self.relu_node is not None \ else qbin_op_mapping[self.binary_op] def should_insert_observer_for_output( self, qconfig: Any, model_is_training: bool, ) -> bool: """ Returns true if an observer should be inserted for the output of the pattern matched to this QuantizeHandler instance during the prepare step. """ dtypes = get_qconfig_dtypes(qconfig) if not (self.binary_op in binary_op_supported_dtypes and dtypes in binary_op_supported_dtypes[self.binary_op]): return False if self.num_tensor_args == 1: return True elif self.all_node_args_are_tensors and self.input_output_observed(): return True else: return False def is_general_tensor_value_op(self) -> bool: return self.num_tensor_args == 1 def input_output_observed(self): # for x + y where x and y are scalars, we do not observe anything return self.num_tensor_args > 0 def is_output_quantized(self, qconfig, is_reference): dtypes = get_qconfig_dtypes(qconfig) if not is_reference: return self.binary_op in binary_op_supported_dtypes and \ dtypes in binary_op_supported_dtypes[self.binary_op] return True def convert(self, node: Node, qconfig: QConfigAny, modules: Dict[str, torch.nn.Module], quantized_graph: Graph, node_name_to_scope: Dict[str, Tuple[str, type]], load_arg: Callable, is_reference: bool = False, convert_custom_config_dict: Dict[str, Any] = None) -> Node: if self.num_tensor_args == 0: # example: x + y, when x and y are scalars return quantized_graph.node_copy( node, load_arg(quantized=None)) dtypes = get_qconfig_dtypes(qconfig) if is_reference: act_dtype = activation_dtype(qconfig) dtypes = get_qconfig_dtypes(qconfig) if act_dtype == torch.float or \ not (self.binary_op in binary_op_supported_dtypes and dtypes in binary_op_supported_dtypes[self.binary_op]): return quantized_graph.node_copy(node, load_arg(quantized=torch.float)) else: if self.num_tensor_args == 2: # make sure both inputs are quantized to act_dtype load_arg(quantized={0: act_dtype, 1: act_dtype})(self.binary_op_node.args) args = load_arg(quantized=torch.float)(self.binary_op_node.args) kwargs = load_arg(quantized=torch.float)(self.binary_op_node.kwargs) op_out = quantized_graph.node_copy(self.binary_op_node, load_arg(quantized=torch.float)) def modified_load_arg(n: Node): if n.name == self.binary_op_node.name: return op_out else: return load_arg(quantized=torch.float)(n) if self.relu_node: op_out = quantized_graph.node_copy(self.relu_node, modified_load_arg) activation_post_process = \ self._maybe_get_last_node_only_observer(modules) assert activation_post_process is not None return quantize_node( op_out, activation_post_process, node, modules, quantized_graph, node_name_to_scope, is_input=False) elif not is_reference and self.binary_op in binary_op_supported_dtypes and \ dtypes in binary_op_supported_dtypes[self.binary_op]: if dtypes in [(torch.quint8, torch.qint8, None)]: assert self.quantized_binary_op is not None if self.num_tensor_args == 1: # add/mul scalar first_arg = self.binary_op_node.args[0] cache_for_no_tensor_check: Dict[Node, bool] = dict() if isinstance(first_arg, Node) and ( not all_node_args_have_no_tensors( first_arg, modules, cache_for_no_tensor_check)): quantized_index = 0 else: quantized_index = 1 return quantized_graph.create_node( 'call_function', self.quantized_binary_op, load_arg(quantized=[quantized_index])(self.binary_op_node.args), self.binary_op_node.kwargs) else: activation_post_process = \ self._maybe_get_last_node_only_observer(modules) assert activation_post_process is not None scale, zero_point = activation_post_process.calculate_qparams() # type: ignore[operator] scale = float(scale) zero_point = int(zero_point) scale_arg, zero_point_arg = \ create_qparam_nodes( node.name, scale, zero_point, modules, quantized_graph, node_name_to_scope) kwargs = {**self.binary_op_node.kwargs} add_args = (*load_arg(quantized=activation_dtype(qconfig))(self.binary_op_node.args), scale_arg, zero_point_arg) op = quantized_graph.create_node( 'call_function', self.quantized_binary_op, add_args, kwargs) return op else: assert dtypes == (torch.float16, torch.float16, None) # TODO (refactor) this is duplicated, maybe have a helper function if self.relu_node: op_out = quantized_graph.node_copy(self.binary_op_node, load_arg(quantized=torch.float)) relu_args = [op_out] relu_args.extend(load_arg(quantized=torch.float)(self.relu_node.args[1:])) relu_kwargs = load_arg(quantized=torch.float)(self.relu_node.kwargs) op_out = quantized_graph.create_node( "call_function", torch.nn.functional.relu, tuple(relu_args), relu_kwargs) else: op_out = quantized_graph.node_copy(node, load_arg(quantized=torch.float)) return quantized_graph.create_node( "call_method", "to", (op_out, torch.float16,), {} ) else: # leave the op unquantized if the dtype,reference combination is not supported warnings.warn( "dtype combination: {} is not " "supported by {} for is_reference={}. " "Supported non-reference dtype combinations are: {} " "".format(dtypes, self.binary_op, is_reference, binary_op_supported_dtypes[self.binary_op] ) ) if self.relu_node: op_out = quantized_graph.node_copy(self.binary_op_node, load_arg(quantized=torch.float)) relu_args = [op_out] relu_args.extend(load_arg(quantized=torch.float)(self.relu_node.args[1:])) relu_kwargs = load_arg(quantized=torch.float)(self.relu_node.kwargs) return quantized_graph.create_node( "call_function", torch.nn.functional.relu, tuple(relu_args), relu_kwargs) else: return quantized_graph.node_copy(node, load_arg(quantized=torch.float)) @register_quant_pattern(torch.cat) class CatQuantizeHandler(QuantizeHandler): def is_general_tensor_value_op(self) -> bool: return True def convert(self, node: Node, qconfig: QConfigAny, modules: Dict[str, torch.nn.Module], quantized_graph: Graph, node_name_to_scope: Dict[str, Tuple[str, type]], load_arg: Callable, is_reference: bool = False, convert_custom_config_dict: Dict[str, Any] = None) -> Node: if not self.all_node_args_are_tensors: return NotImplemented if is_reference: act_dtype = activation_dtype(qconfig) if act_dtype == torch.float: op_out = quantized_graph.node_copy(node, load_arg(quantized=torch.float)) return op_out else: activation_post_process = \ self._maybe_get_last_node_only_observer(modules) assert activation_post_process is not None # make sure the first argument is quantized to act_dtype load_arg(quantized={0: act_dtype})(node.args) args = list(load_arg(quantized=torch.float)(node.args)) kwargs = load_arg(quantized=torch.float)(node.kwargs) op_out = quantized_graph.node_copy(node, load_arg(quantized=torch.float)) return quantize_node( op_out, activation_post_process, node, modules, quantized_graph, node_name_to_scope, is_input=False) else: return quantized_graph.node_copy(node, load_arg(quantized=torch.quint8)) # handle conv, maybe followed by relu # NB: matching order is reversed, that is we match from the bottom of this list to the beginning @register_quant_pattern(torch.nn.Conv1d) @register_quant_pattern(torch.nn.Conv2d) @register_quant_pattern(torch.nn.Conv3d) @register_quant_pattern(torch.nn.functional.conv1d) @register_quant_pattern(torch.nn.functional.conv2d) @register_quant_pattern(torch.nn.functional.conv3d) # TODO: add qat.Conv1d @register_quant_pattern(torch.nn.qat.Conv2d) @register_quant_pattern(torch.nn.qat.Conv3d) @register_quant_pattern(torch.nn.intrinsic.ConvReLU1d) @register_quant_pattern(torch.nn.intrinsic.ConvReLU2d) @register_quant_pattern(torch.nn.intrinsic.ConvReLU3d) @register_quant_pattern(torch.nn.intrinsic.qat.ConvBn1d) @register_quant_pattern(torch.nn.intrinsic.qat.ConvBn2d) @register_quant_pattern(torch.nn.intrinsic.qat.ConvBn3d) @register_quant_pattern(torch.nn.intrinsic.qat.ConvBnReLU1d) @register_quant_pattern(torch.nn.intrinsic.qat.ConvBnReLU2d) @register_quant_pattern(torch.nn.intrinsic.qat.ConvBnReLU3d) @register_quant_pattern(torch.nn.intrinsic.qat.ConvReLU2d) @register_quant_pattern(torch.nn.intrinsic.qat.ConvReLU3d) @register_quant_pattern((torch.nn.functional.relu, torch.nn.functional.conv1d)) @register_quant_pattern((torch.nn.functional.relu, torch.nn.functional.conv2d)) @register_quant_pattern((torch.nn.functional.relu, torch.nn.functional.conv3d)) @register_quant_pattern((torch.nn.ReLU, torch.nn.functional.conv1d)) @register_quant_pattern((torch.nn.ReLU, torch.nn.functional.conv2d)) @register_quant_pattern((torch.nn.ReLU, torch.nn.functional.conv3d)) # just for error checks @register_quant_pattern((torch.nn.ReLU, torch.nn.Conv1d)) @register_quant_pattern((torch.nn.ReLU, torch.nn.Conv2d)) @register_quant_pattern((torch.nn.ReLU, torch.nn.Conv3d)) @register_quant_pattern((torch.nn.functional.relu, torch.nn.Conv2d)) @register_quant_pattern((torch.nn.functional.relu, torch.nn.Conv3d)) class ConvReluQuantizeHandler(QuantizeHandler): def __init__(self, node: Node, modules: Dict[str, torch.nn.Module]): super().__init__(node, modules) self.relu_node = None if (node.op == 'call_function' and node.target is torch.nn.functional.relu) or \ (node.op == 'call_module' and isinstance(modules[str(node.target)], torch.nn.ReLU)): self.relu_node = node node = node.args[0] # type: ignore[assignment] self.conv_node = node if node.op == "call_module": self.conv = modules[str(self.conv_node.target)] elif node.op == "call_function": self.conv = node.target # type: ignore[assignment] def convert(self, node: Node, qconfig: QConfigAny, modules: Dict[str, torch.nn.Module], quantized_graph: Graph, node_name_to_scope: Dict[str, Tuple[str, type]], load_arg: Callable, is_reference: bool = False, convert_custom_config_dict: Dict[str, Any] = None) -> Node: # Supported combinations are: # quant_type | activation (compute_type) | weight # static quint8 qint8 # tuple (activation_dtype, weight_dtype, compute_dtype) supported_dtypes = [ (torch.quint8, torch.qint8, None), ] # TODO: is_reference option for conv module dtypes = get_qconfig_dtypes(qconfig) # leave the op unquantized if the dtype combination is not supported if not is_reference and dtypes not in supported_dtypes: warnings.warn( "dtype combination: {} is not " "supported by Conv " "supported dtype combinations are: {}".format(dtypes, supported_dtypes)) if self.relu_node: conv_out = quantized_graph.node_copy(self.conv_node, load_arg(quantized=torch.float)) relu_args = [conv_out] relu_args.extend(load_arg(quantized=torch.float)(self.relu_node.args[1:])) relu_kwargs = load_arg(quantized=torch.float)(self.relu_node.kwargs) return quantized_graph.create_node( "call_function", torch.nn.functional.relu, tuple(relu_args), relu_kwargs) else: return quantized_graph.node_copy(node, load_arg(quantized=torch.float)) activation_int8_quantized = activation_is_int8_quantized(qconfig) if self.conv_node.op == 'call_module': # note that relu should already be fused into conv module in the fusion step assert self.relu_node is None, 'conv module and relu fusion is not executed, ' \ 'please make sure to run fusion before prepare' output_activation_post_process = \ self._maybe_get_last_node_only_observer(modules) assert output_activation_post_process is not None if is_reference: # produce dequant - float_op - quant pattern dtype = torch.float if activation_int8_quantized: dtype = activation_dtype(qconfig) activation = load_arg(quantized=dtype)(self.conv_node.args[0]) args = load_arg(quantized=torch.float)(self.conv_node.args) # Get the float conv and attach quantization scheme and quantization # parameters of weight to the module # and qparam is a dictionary of # {"qscheme": ..., "scale": ..., "zero_point": ...} for per tensor quantization or # {"qscheme": ..., "scale": ..., "zero_point": ..., "axis": ...} for per channel quantization float_conv = self.conv fused_conv = None if isinstance( float_conv, QAT_CONV_MODULE_CLASSES): # case 1. converting qat conv module to # a float conv module, we need to attch # weight fake_quant to the conv module, # weight fake_quant is assumed to be run during # QAT so we don't need to run it again here float_conv = self.conv.to_float() # type: ignore[operator] # change qat conv to conv parent_name, name = _parent_name(self.conv_node.target) setattr(modules[parent_name], name, float_conv) if isinstance(float_conv, torch.nn.intrinsic._FusedModule): fused_conv = float_conv float_conv = float_conv[0] weight_post_process = self.conv.weight_fake_quant else: # case 2. converting a conv module/fused conv module # to float conv module, we need to attach # weight observer to the conv module and run it # with conv weight if isinstance(float_conv, torch.nn.intrinsic._FusedModule): fused_conv = float_conv float_conv = float_conv[0] # type: ignore[index] assert qconfig is not None weight_post_process = qconfig.weight() # run weight observer weight_post_process(float_conv.weight) # type: ignore[operator] weight_qparams = get_qparam_dict(weight_post_process) # hardcoded for now, TODO: expose the api to user, # we can have a map from module to reference module # and allow user to register new ones qconv_cls = get_static_quant_module_class( type(float_conv), is_reference=is_reference) ref_conv = qconv_cls.from_float(float_conv, weight_qparams) # type: ignore[attr-defined] # if the parent is a fused conv (Sequential), we can replace the first # item to ref conv, otherwise we can update # the conv instance in the module tree if fused_conv is not None: fused_conv[0] = ref_conv else: parent_name, name = _parent_name(self.conv_node.target) setattr(modules[parent_name], name, ref_conv) op_out = quantized_graph.create_node( 'call_module', self.conv_node.target, args, {}) if output_activation_post_process: op_out = quantize_node( op_out, output_activation_post_process, node, modules, quantized_graph, node_name_to_scope, is_input=False) return op_out else: if convert_custom_config_dict is None: convert_custom_config_dict = {} additional_static_quant_mapping = convert_custom_config_dict.get("static", {}) # 1. attach activation post process to module self.conv.activation_post_process = output_activation_post_process # 2. select quantized class qconv_cls = get_static_quant_module_class( type(self.conv), additional_static_quant_mapping, is_reference=is_reference) quantized = qconv_cls.from_float(self.conv) parent_name, name = _parent_name(self.conv_node.target) setattr(modules[parent_name], name, quantized) return quantized_graph.create_node( 'call_module', self.conv_node.target, (load_arg(quantized=torch.quint8)(self.conv_node.args[0]),), {}) else: # call_function assert self.conv_node.op == "call_function" if is_reference: # make sure the input and weight are quantized to torch.quint8, torch.qint8, respectively load_arg(quantized={0: torch.quint8, 1: torch.qint8})(self.conv_node.args) args = load_arg(quantized=torch.float)(self.conv_node.args) kwargs = load_arg(quantized=torch.float)(self.conv_node.kwargs) op_out = quantized_graph.create_node( "call_function", self.conv, args, kwargs) if self.relu_node: relu_args = [op_out] relu_args.extend(load_arg(quantized=torch.float)(self.relu_node.args[1:])) relu_kwargs = load_arg(quantized=torch.float)(self.relu_node.kwargs) op_out = quantized_graph.create_node( "call_function", torch.nn.functional.relu, tuple(relu_args), relu_kwargs) if activation_int8_quantized: root_module = modules[''] act_post_process_name = self.relu_node.name if self.relu_node else self.conv_node.name act_post_process_node = self.relu_node if self.relu_node else self.conv_node activation_post_process = \ self._maybe_get_last_node_only_observer(modules) assert activation_post_process is not None return quantize_node( op_out, activation_post_process, act_post_process_node, modules, quantized_graph, node_name_to_scope, is_input=False) else: # output for dynamically quantized conv op is not quantized return op_out else: assert len(self.conv_node.args) >= 7, \ "only conv2d calls with all arguments specified is supported right now in is_reference=False option" # make sure the input and weight are quantized to torch.quint8, torch.qint8, respectively args = load_arg(quantized={0: torch.quint8, 1: torch.qint8})(self.conv_node.args) # pack weight weight = load_arg(quantized=torch.qint8)(self.conv_node.args[1]) other_args = load_arg(quantized=torch.float)(self.conv_node.args[2:]) bias, stride, padding, dilation, groups = other_args if self.conv == torch.nn.functional.conv1d: # F.conv1d can take `int` as well as `list[int]` for stride, # padding, dilation, but the prepack op cannot. Convert # these to lists if needed. stride = [stride] if isinstance(stride, int) else stride padding = [padding] if isinstance(padding, int) else padding dilation = [dilation] if isinstance(dilation, int) else dilation prepack_args = (weight, bias, stride, padding, dilation, groups) prepack_op = get_qconv_prepack_op(self.conv) packed_weight = quantized_graph.create_node( "call_function", prepack_op, prepack_args, {}) assert activation_int8_quantized, \ "currently only static quantization is supported for conv" # construct conv input if activation_int8_quantized: qconv_op = get_qconv_op(self.conv, self.relu_node is not None) conv_input = load_arg(quantized=torch.quint8)(self.conv_node.args[0]) activation_post_process = \ self._maybe_get_last_node_only_observer(modules) assert activation_post_process is not None scale, zero_point, _ = get_per_tensor_qparams(activation_post_process) scale_node, zero_point_node = \ create_qparam_nodes( self.conv_node.name, scale, zero_point, modules, quantized_graph, node_name_to_scope) qconv_args = (conv_input, packed_weight, scale_node, zero_point_node) kwargs = load_arg(quantized=torch.float)(self.conv_node.kwargs) op = quantized_graph.create_node( 'call_function', qconv_op, qconv_args, kwargs) # Store the name of the fused op to get the path of node after fusion as well. # TODO: may need to change the key to Node regenerate the map in each transformation, # since we might not be able to rely on the name node_name_to_scope[op.name] = node_name_to_scope[self.conv_node.name] return op else: # conv2d_dyanmic branch raise Exception("Only static quant is supported for conv") @register_quant_pattern(torch.nn.Linear) @register_quant_pattern(torch.nn.functional.linear) @register_quant_pattern(torch.nn.qat.Linear) @register_quant_pattern(torch.nn.intrinsic.LinearReLU) @register_quant_pattern(torch.nn.intrinsic.qat.LinearReLU) @register_quant_pattern((torch.nn.functional.relu, torch.nn.functional.linear)) @register_quant_pattern((torch.nn.ReLU, torch.nn.functional.linear)) # for error checks @register_quant_pattern((torch.nn.ReLU, torch.nn.Linear)) @register_quant_pattern((torch.nn.functional.relu, torch.nn.Linear)) class LinearReLUQuantizeHandler(QuantizeHandler): def __init__( self, node: Node, modules: Dict[str, torch.nn.Module]): super().__init__(node, modules) self.relu_node = None if (node.op == 'call_function' and node.target is torch.nn.functional.relu) or \ (node.op == 'call_module' and isinstance(modules[str(node.target)], torch.nn.ReLU)): self.relu_node = node node = node.args[0] # type: ignore[assignment] self.linear_node = node if node.op == 'call_module': self.linear = modules[str(self.linear_node.target)] def convert(self, node: Node, qconfig: QConfigAny, modules: Dict[str, torch.nn.Module], quantized_graph: Graph, node_name_to_scope: Dict[str, Tuple[str, type]], load_arg: Callable, is_reference: bool = False, convert_custom_config_dict: Dict[str, Any] = None) -> Node: if convert_custom_config_dict is None: convert_custom_config_dict = {} # Supported combinations are: # quant_type | activation (compute_type) | weight # static quint8 qint8 # dynamic float32 (quint8) qint8 # weight_only float32 float16 # tuple (activation_dtype, weight_dtype, compute_dtype) supported_dtypes = [ (torch.quint8, torch.qint8, None), (torch.float32, torch.qint8, torch.quint8), (torch.float32, torch.float16, None), # static float16 quantization (torch.float16, torch.float16, None), ] dtypes = get_qconfig_dtypes(qconfig) # leave the op unquantized if the dtype combination is not supported if not is_reference and dtypes not in supported_dtypes: warnings.warn( "dtype combination: {} is not " "supported by Linear " "supported dtype combinations are: {}".format(dtypes, supported_dtypes)) if self.relu_node: op_out = quantized_graph.node_copy(self.linear_node, load_arg(quantized=torch.float)) relu_args = [op_out] relu_args.extend(load_arg(quantized=torch.float)(self.relu_node.args[1:])) relu_kwargs = load_arg(quantized=torch.float)(self.relu_node.kwargs) return quantized_graph.create_node( "call_function", torch.nn.functional.relu, tuple(relu_args), relu_kwargs) else: return quantized_graph.node_copy(node, load_arg(quantized=None)) activation_int8_quantized = activation_is_int8_quantized(qconfig) activation_statically_quantized = activation_is_statically_quantized(qconfig) weight_dtype = dtypes[1] # TODO: reference_model option for linear module if self.linear_node.op == 'call_module': output_activation_post_process = \ self._maybe_get_last_node_only_observer(modules) # note that relu should already be fused into linear modul in the fusion step assert self.relu_node is None, 'linear module and relu fusion is not executed, ' \ 'please make sure to run fusion before prepare' if is_reference: # produce dequant - float_op - quant pattern dtype = torch.float if activation_int8_quantized: dtype = activation_dtype(qconfig) activation = load_arg(quantized=dtype)(self.linear_node.args[0]) args = load_arg(quantized=torch.float)(self.linear_node.args) # Get the float linear and attach qscheme and qparams # the the module float_linear = self.linear fused_linear = None if isinstance(float_linear, (torch.nn.qat.Linear, torch.nn.intrinsic.qat.LinearReLU)): float_linear = float_linear.to_float() # change qat linear to linear parent_name, name = _parent_name(self.linear_node.target) setattr(modules[parent_name], name, float_linear) # Attach weight fake quant to the linear module if isinstance(float_linear, torch.nn.intrinsic.LinearReLU): fused_linear = float_linear float_linear = float_linear[0] weight_post_process = self.linear.weight_fake_quant else: if isinstance(float_linear, torch.nn.intrinsic.LinearReLU): fused_linear = float_linear float_linear = self.linear[0] # type: ignore[index] # Attach the weight observer to the module weight_post_process = qconfig.weight() # type: ignore[union-attr] # Run weight observer weight_post_process(float_linear.weight) # type: ignore[operator] weight_qparams = get_qparam_dict(weight_post_process) # TODO: include the configuration in backend_config_dict # we can have a map from module to reference module # and allow user to register new ones qlinear_cls = get_static_quant_module_class( type(float_linear), is_reference=is_reference) ref_linear = qlinear_cls.from_float(float_linear, weight_qparams) # if the parent is a fused linear (Sequential), we can replace the first # item to ref linear, otherwise we can update # the linear instance in the module tree if fused_linear is not None: fused_linear[0] = ref_linear else: parent_name, name = _parent_name(self.linear_node.target) setattr(modules[parent_name], name, ref_linear) op_out = quantized_graph.create_node( 'call_module', self.linear_node.target, args, {}) if output_activation_post_process: op_out = quantize_node( op_out, output_activation_post_process, node, modules, quantized_graph, node_name_to_scope, is_input=False) return op_out else: # 1. attach output activation post process to linear module if output_activation_post_process: self.linear.activation_post_process = output_activation_post_process # 2. select corresponding quantized linear class for the float linear class if activation_int8_quantized: additional_static_quant_mapping = convert_custom_config_dict.get("static", {}) qlinear = get_static_quant_module_class( type(self.linear), additional_static_quant_mapping) else: assert dtypes in [ (torch.float32, torch.qint8, torch.quint8), (torch.float32, torch.float16, None), ], f"dtype {dtypes} not supported yet" additional_dynamic_quant_mapping = convert_custom_config_dict.get("dynamic", {}) qlinear = get_dynamic_quant_module_class(type(self.linear), additional_dynamic_quant_mapping) quantized = qlinear.from_float(self.linear) parent_name, name = _parent_name(self.linear_node.target) setattr(modules[parent_name], name, quantized) # activation needs to be quantized for static quantization dtype = torch.float if activation_int8_quantized: dtype = activation_dtype(qconfig) return quantized_graph.create_node( 'call_module', self.linear_node.target, (load_arg(quantized=dtype)(self.linear_node.args[0]),), {}) else: # call_function assert self.linear_node.op == 'call_function' if is_reference: quantized_input_dtypes = [torch.float, torch.float] if activation_int8_quantized: quantized_input_dtypes[0] = torch.quint8 if weight_is_statically_quantized(qconfig): quantized_input_dtypes[1] = torch.qint8 args = load_arg(quantized=quantized_input_dtypes)(self.linear_node.args) args = load_arg(quantized=torch.float)(self.linear_node.args) kwargs = load_arg(quantized=torch.float)(self.linear_node.kwargs) op_out = quantized_graph.create_node( "call_function", torch.nn.functional.linear, args, kwargs) if self.relu_node: relu_args = [op_out] relu_args.extend(load_arg(quantized=torch.float)(self.relu_node.args[1:])) relu_kwargs = load_arg(quantized=torch.float)(self.relu_node.kwargs) op_out = quantized_graph.create_node( "call_function", torch.nn.functional.relu, tuple(relu_args), relu_kwargs) if activation_statically_quantized: # quantize output for statically quantized linear op root_module = modules[''] act_post_process_name = self.relu_node.name if self.relu_node else self.linear_node.name act_post_process_node = self.relu_node if self.relu_node else self.linear_node activation_post_process = \ self._maybe_get_last_node_only_observer(modules) assert activation_post_process is not None return quantize_node( op_out, activation_post_process, act_post_process_node, modules, quantized_graph, node_name_to_scope, is_input=False) else: # output for dynamically quantized linear op is not quantized return op_out else: # non-reference option # prepacking weights for static int8 quant and dynamic quant if dtypes != (torch.float16, torch.float16, None): # linear args # (x, weight, bias, ...) # TODO: the name should be weight is int8 quantized weight_quantized = weight_is_statically_quantized(qconfig) dtype = weight_dtype if weight_quantized else torch.float linear_weight = load_arg(quantized=dtype)(self.linear_node.args[1]) # get other arguments kwargs = {**load_arg(quantized=torch.float)(self.linear_node.kwargs)} # pack weight bias = None # all args after bias, including bias other_args = load_arg(quantized=torch.float)(self.linear_node.args[2:]) if len(self.linear_node.args) > 2: bias = load_arg(quantized=torch.float)(self.linear_node.args[2]) other_args = other_args[1:] # remove the bias argument else: assert 'bias' in kwargs, \ 'expect bias provided as a keyword argument when it is not a positional argument' bias = kwargs['bias'] kwargs.pop('bias') prepack_args = (linear_weight, bias) prepack_op = get_linear_prepack_op_for_dtype(weight_dtype) packed_weight = quantized_graph.create_node( 'call_function', prepack_op, prepack_args, {}) # construct linear input if activation_int8_quantized: qlinear_op = torch.ops.quantized.linear_relu if self.relu_node else torch.ops.quantized.linear linear_input = load_arg(quantized=torch.quint8)(self.linear_node.args[0]) activation_post_process = \ self._maybe_get_last_node_only_observer(modules) assert activation_post_process is not None scale, zero_point, _ = get_per_tensor_qparams(activation_post_process) scale_node, zero_point_node = \ create_qparam_nodes( self.linear_node.name, scale, zero_point, modules, quantized_graph, node_name_to_scope) qlinear_args = (linear_input, packed_weight, scale_node, zero_point_node) op = quantized_graph.create_node( "call_function", qlinear_op, qlinear_args, kwargs) # Store the name of the fused op to get the path of node after fusion as well. # TODO: may need to change the key to Node regenerate the map in each transformation, # since we might not be able to rely on the name node_name_to_scope[op.name] = node_name_to_scope[self.linear_node.name] return op elif dtypes in [(torch.float32, torch.qint8, torch.quint8), (torch.float32, torch.float16, None)]: # choose linear dynamic or linear dynamic fp16 op based on weight dtype if weight_dtype == torch.qint8: if self.relu_node: qlinear_op = torch.ops.quantized.linear_relu_dynamic else: qlinear_op = torch.ops.quantized.linear_dynamic else: if self.relu_node: qlinear_op = torch.ops.quantized.linear_relu_dynamic_fp16 else: qlinear_op = torch.ops.quantized.linear_dynamic_fp16 linear_input = load_arg(quantized=torch.float)(self.linear_node.args[0]) qlinear_args = (linear_input, packed_weight) # type: ignore[assignment] op_out = quantized_graph.create_node( "call_function", qlinear_op, qlinear_args, kwargs) # Store the name of the dynamic op to get the path of node after replacement as well. # TODO: may need to change the key to Node regenerate the map in each transformation, # since we might not be able to rely on the name node_name_to_scope[op_out.name] = node_name_to_scope[self.linear_node.name] return op_out else: assert dtypes == (torch.float16, torch.float16, None) # TODO (refactor) this is duplicated, maybe have a helper function if self.relu_node: op_out = quantized_graph.node_copy(self.linear_node, load_arg(quantized=torch.float)) relu_args = [op_out] relu_args.extend(load_arg(quantized=torch.float)(self.relu_node.args[1:])) relu_kwargs = load_arg(quantized=torch.float)(self.relu_node.kwargs) op_out = quantized_graph.create_node( "call_function", torch.nn.functional.relu, tuple(relu_args), relu_kwargs) else: op_out = quantized_graph.node_copy(node, load_arg(quantized=torch.float)) return quantized_graph.create_node( "call_method", "to", (op_out, torch.float16), {}) @register_quant_pattern(torch.nn.BatchNorm2d) @register_quant_pattern(torch.nn.BatchNorm3d) @register_quant_pattern(torch.nn.intrinsic.BNReLU2d) @register_quant_pattern(torch.nn.intrinsic.BNReLU3d) class BatchNormQuantizeHandler(QuantizeHandler): def __init__( self, node: Node, modules: Dict[str, torch.nn.Module]): super().__init__(node, modules) assert node.op == 'call_module' self.bn_node = node self.bn = modules[str(self.bn_node.target)] def convert(self, node: Node, qconfig: QConfigAny, modules: Dict[str, torch.nn.Module], quantized_graph: Graph, node_name_to_scope: Dict[str, Tuple[str, type]], load_arg: Callable, is_reference: bool = False, convert_custom_config_dict: Dict[str, Any] = None) -> Node: if convert_custom_config_dict is None: convert_custom_config_dict = {} additional_static_quant_mapping = convert_custom_config_dict.get("static", {}) # 1. attach activation post process to module output_activation_post_process = \ self._maybe_get_last_node_only_observer(modules) assert output_activation_post_process is not None if is_reference: # produce dequant - float_op - quant pattern dtype = activation_dtype(qconfig) activation = load_arg(quantized=dtype)(self.bn_node.args[0]) args = load_arg(quantized=torch.float)(self.bn_node.args) op_out = quantized_graph.create_node( "call_module", self.bn_node.target, args, {}) if output_activation_post_process: op_out = quantize_node( op_out, output_activation_post_process, node, modules, quantized_graph, node_name_to_scope, is_input=False) return op_out else: self.bn.activation_post_process = output_activation_post_process qbn_cls = get_static_quant_module_class(type(self.bn), additional_static_quant_mapping) quantized = qbn_cls.from_float(self.bn) parent_name, name = _parent_name(self.bn_node.target) setattr(modules[parent_name], name, quantized) return quantized_graph.create_node( 'call_module', self.bn_node.target, load_arg(quantized=[0])(self.bn_node.args), load_arg(quantized=torch.float)(self.bn_node.kwargs)) @register_quant_pattern(torch.nn.Embedding) @register_quant_pattern(torch.nn.EmbeddingBag) class EmbeddingQuantizeHandler(QuantizeHandler): def __init__( self, node: Node, modules: Dict[str, torch.nn.Module]): super().__init__(node, modules) def input_output_observed(self) -> bool: return False def convert(self, node: Node, qconfig: QConfigAny, modules: Dict[str, torch.nn.Module], quantized_graph: Graph, node_name_to_scope: Dict[str, Tuple[str, type]], load_arg: Callable, is_reference: bool = False, convert_custom_config_dict: Dict[str, Any] = None) -> Node: # Supported combinations are: # quant_type | activation | weight | activation_compute_type # weight_only | float32 | quint8 | None # weight_only | float32 | quint4x2 | None # tuple (activation_dtype, weight_dtype, compute_dtype) supported_dtypes = [ (torch.float32, torch.quint8, None), (torch.float32, torch.quint4x2, None), ] assert node.op == 'call_module' emb_node = node dtypes = get_qconfig_dtypes(qconfig) # leave the op unquantized if the dtype combination is not supported if dtypes not in supported_dtypes: warnings.warn( "dtype combination: {} is not " "supported by Embedding/EmbeddingBag, " "supported dtype combinations are: {}".format(dtypes, supported_dtypes)) return quantized_graph.node_copy(node, load_arg(quantized=None)) emb = modules[str(emb_node.target)] qemb = get_static_quant_module_class(type(emb)) quantized = qemb.from_float(emb) parent_name, name = _parent_name(emb_node.target) setattr(modules[parent_name], name, quantized) return quantized_graph.create_node( 'call_module', emb_node.target, load_arg(quantized=torch.float)(emb_node.args), load_arg(quantized=torch.float)(emb_node.kwargs)) # TODO (maybe): merge with embedding quantize handler @register_quant_pattern(torch.nn.GRUCell) @register_quant_pattern(torch.nn.LSTMCell) @register_quant_pattern(torch.nn.RNNCell) @register_quant_pattern(torch.nn.LSTM) class RNNDynamicQuantizeHandler(QuantizeHandler): def __init__( self, node: Node, modules: Dict[str, torch.nn.Module]): super().__init__(node, modules) def input_output_observed(self) -> bool: return False def convert(self, node: Node, qconfig: QConfigAny, modules: Dict[str, torch.nn.Module], quantized_graph: Graph, node_name_to_scope: Dict[str, Tuple[str, type]], load_arg: Callable, is_reference: bool = False, convert_custom_config_dict: Dict[str, Any] = None) -> Node: # Supported combinations are: # quant_type | activation | weight | activation_compute_type # dynamic | float32 | qint8 | quint8 # dynamic | float32 | float16 | None # tuple (activation_dtype, weight_dtype, compute_dtype) supported_dtypes = [ (torch.float32, torch.qint8, torch.quint8), (torch.float32, torch.float16, None), ] assert node.op == 'call_module' dtypes = get_qconfig_dtypes(qconfig) # leave the op unquantized if the dtype combination is not supported if dtypes not in supported_dtypes: warnings.warn( "dtype combination: {} is not " "supported by Embedding/EmbeddingBag, " "supported dtype combinations are: {}".format(dtypes, supported_dtypes)) return quantized_graph.node_copy(node, load_arg(quantized=None)) module = modules[str(node.target)] qmodule_cls = get_dynamic_quant_module_class(type(module)) qmodule = qmodule_cls.from_float(module) parent_name, name = _parent_name(node.target) setattr(modules[parent_name], name, qmodule) return quantized_graph.create_node( 'call_module', node.target, load_arg(quantized=torch.float)(node.args), load_arg(quantized=torch.float)(node.kwargs)) ARGS_TO_SKIP = { torch._ops.ops.quantized.hardswish: ['inplace'], torch._ops.ops.quantized.elu: ['inplace'], torch._ops.ops.quantized.instance_norm: ['running_mean', 'running_var', 'use_input_stats', 'momentum'], } @register_quant_pattern(torch.nn.ConvTranspose1d) @register_quant_pattern(torch.nn.ConvTranspose2d) @register_quant_pattern(torch.nn.ELU) @register_quant_pattern(torch.nn.LeakyReLU) @register_quant_pattern(torch.nn.Hardswish) @register_quant_pattern(torch.nn.InstanceNorm1d) @register_quant_pattern(torch.nn.InstanceNorm2d) @register_quant_pattern(torch.nn.InstanceNorm3d) @register_quant_pattern(torch.nn.LayerNorm) @register_quant_pattern(torch.nn.SiLU) @register_quant_pattern(torch.nn.Mish) # we currently only support reference patterns for these ops so they have been removed # until they receive a proper fp16 kernel. To use the reference pattern, use a custom qconfig # @register_quant_pattern(torch.nn.GELU) # @register_quant_pattern(torch.nn.Softmax) @register_quant_pattern(torch.nn.functional.elu) @register_quant_pattern(torch.nn.functional.hardswish) @register_quant_pattern(torch.nn.functional.instance_norm) @register_quant_pattern(torch.nn.functional.layer_norm) @register_quant_pattern(torch.nn.functional.leaky_relu) @register_quant_pattern(torch.nn.functional.silu) @register_quant_pattern(torch.nn.functional.mish) # we currently only support reference patterns for these ops so they have been removed # until they receive a proper fp16 kernel. To use the reference pattern, use a custom qconfig # @register_quant_pattern(torch.nn.functional.gelu) # @register_quant_pattern(torch.nn.functional.softmax) @register_quant_pattern(torch.sum) class DefaultNodeQuantizeHandler(QuantizeHandler): """ Common quantized op, first input and first output will be quantized """ def __init__( self, node: Node, modules: Dict[str, torch.nn.Module]): super().__init__(node, modules) if node.op == "call_function" or node.op == "call_method": self.op = node.target elif node.op == "call_module": self.op = type(modules[str(node.target)]) def is_output_quantized(self, qconfig, is_reference): dtypes = get_qconfig_dtypes(qconfig) if not is_reference: return self.op in default_op_supported_dtypes and \ dtypes in default_op_supported_dtypes[self.op] return True def convert(self, node: Node, qconfig: QConfigAny, modules: Dict[str, torch.nn.Module], quantized_graph: Graph, node_name_to_scope: Dict[str, Tuple[str, type]], load_arg: Callable, is_reference: bool = False, convert_custom_config_dict: Dict[str, Any] = None) -> Node: if not self.all_node_args_are_tensors: return NotImplemented assert node.op in ['call_module', 'call_function'], 'Only call_module and ' + \ 'call_function are handled in DefaultNode' if convert_custom_config_dict is None: convert_custom_config_dict = {} additional_static_quant_mapping = convert_custom_config_dict.get("static", {}) dtypes = get_qconfig_dtypes(qconfig) if not is_reference and dtypes not in default_op_supported_dtypes[self.op]: warnings.warn( "dtype combination: {} is not " "supported by {} " "supported dtype combinations are: {}".format(dtypes, self.op, default_op_supported_dtypes[self.op])) return quantized_graph.node_copy(node, load_arg(quantized=torch.float)) # TODO: make helper functions for (torch.quint8, torch.qint8, None) if not is_reference: if dtypes in [(torch.quint8, torch.qint8, None)]: activation_post_process = \ self._maybe_get_last_node_only_observer(modules) assert activation_post_process is not None if node.op == 'call_module': module = modules[str(node.target)] module.activation_post_process = activation_post_process quantized_module_cls = get_static_quant_module_class( type(module), additional_static_quant_mapping) quantized_module = quantized_module_cls.from_float(module) parent_name, name = _parent_name(node.target) setattr(modules[parent_name], name, quantized_module) return quantized_graph.create_node( 'call_module', node.target, load_arg(quantized=[0])(node.args), load_arg(quantized=torch.float)(node.kwargs)) else: assert node.op == "call_function" # call_function scale, zero_point = activation_post_process.calculate_qparams() # type: ignore[operator] scale = float(scale) zero_point = int(zero_point) scale_arg, zero_point_arg = \ create_qparam_nodes( node.name, scale, zero_point, modules, quantized_graph, node_name_to_scope) assert not isinstance(node.target, str), "Expecting node.target for " "call_function to be a function instead of a string" quantized_op = get_quantized_operator(node.target) args = load_arg(quantized=[0])(node.args) kwargs = {**load_arg(quantized=torch.float)(node.kwargs), "output_scale": scale_arg, "output_zero_point": zero_point_arg} if quantized_op in ARGS_TO_SKIP: args_to_skip = ARGS_TO_SKIP[quantized_op] for arg in args_to_skip: if arg in kwargs: kwargs.pop(arg) return quantized_graph.create_node( "call_function", quantized_op, args, kwargs) # type: ignore[arg-type] else: assert dtypes in [(torch.float16, torch.float16, None)] # Generally fp16 kernels don't exist for fp16 ops warnings.warn( "Only reference patterns are currently supported for {dtype} dtype with {op} op" "".format(dtype=dtypes, op=self.op)) op_out = quantized_graph.node_copy(node, load_arg(quantized=torch.float)) return quantized_graph.create_node( "call_method", "to", (op_out, torch.float16), {}) else: assert is_reference # We can produce reference for a dtypes including # (torch.quint8, torch.qint8, torch.qint32, torch.float16) act_dtype = activation_dtype(qconfig) if act_dtype == torch.float: op_out = quantized_graph.node_copy(node, load_arg(quantized=torch.float)) return op_out else: activation_post_process = \ self._maybe_get_last_node_only_observer(modules) assert activation_post_process is not None # make sure the input is quantized to act_dtype load_arg(quantized={0: act_dtype})(node.args) args = load_arg(quantized=torch.float)(node.args) kwargs = load_arg(quantized=torch.float)(node.kwargs) op_out = quantized_graph.node_copy(node, load_arg(quantized=torch.float)) return quantize_node( op_out, activation_post_process, node, modules, quantized_graph, node_name_to_scope, is_input=False) @register_quant_pattern(torch.nn.Hardsigmoid, default_affine_fixed_qparams_fake_quant) @register_quant_pattern(torch.nn.functional.hardsigmoid, default_affine_fixed_qparams_fake_quant) @register_quant_pattern('hardsigmoid', default_affine_fixed_qparams_fake_quant) @register_quant_pattern('hardsigmoid_', default_affine_fixed_qparams_fake_quant) @register_quant_pattern(torch.nn.Sigmoid, default_affine_fixed_qparams_fake_quant) @register_quant_pattern(torch.sigmoid, default_affine_fixed_qparams_fake_quant) @register_quant_pattern('sigmoid', default_affine_fixed_qparams_fake_quant) @register_quant_pattern('sigmoid_', default_affine_fixed_qparams_fake_quant) @register_quant_pattern(torch.nn.Tanh, default_symmetric_fixed_qparams_fake_quant) @register_quant_pattern(torch.tanh, default_symmetric_fixed_qparams_fake_quant) @register_quant_pattern('tanh', default_symmetric_fixed_qparams_fake_quant) @register_quant_pattern('tanh_', default_symmetric_fixed_qparams_fake_quant) class FixedQParamsOpQuantizeHandler(QuantizeHandler): def __init__(self, node: Node, modules: Dict[str, torch.nn.Module]): super().__init__(node, modules) self.node = node def should_mark_output_quantized_from_input_quantized_status( self, qconfig: QConfigAny ) -> bool: # FixQParamOps are the same as CopyNode in int8 quantization return activation_dtype(qconfig) in [torch.quint8, torch.qint8] # some qhandlers override the activations constructor def get_activation_ctr(self, qconfig, pattern) -> Optional[Callable]: if activation_dtype(qconfig) == torch.float16: return qconfig.activation else: return get_default_output_activation_post_process_map().get( pattern, None) def convert(self, node: Node, qconfig: QConfigAny, modules: Dict[str, torch.nn.Module], quantized_graph: Graph, node_name_to_scope: Dict[str, Tuple[str, type]], load_arg: Callable, is_reference: bool = False, convert_custom_config_dict: Dict[str, Any] = None) -> Node: if not is_reference: dtypes = get_qconfig_dtypes(qconfig) if dtypes == (torch.float16, torch.float16, None): op_out = quantized_graph.node_copy(node, load_arg(quantized=torch.float)) return quantized_graph.create_node( "call_method", "to", (op_out, torch.float16,), {} ) else: return quantized_graph.node_copy(node, load_arg(quantized=None)) else: act_dtype = activation_dtype(qconfig) if act_dtype == torch.float: op_out = quantized_graph.node_copy(node, load_arg(quantized=torch.float)) return op_out else: activation_post_process = \ self._maybe_get_last_node_only_observer(modules) assert activation_post_process is not None # make sure the input is quantized to act_dtype load_arg(quantized={0: act_dtype})(node.args) args = load_arg(quantized=torch.float)(node.args) kwargs = load_arg(quantized=torch.float)(node.kwargs) op_out = quantized_graph.node_copy(node, load_arg(quantized=torch.float)) return quantize_node( op_out, activation_post_process, node, modules, quantized_graph, node_name_to_scope, is_input=False) @register_quant_pattern(torch.nn.AdaptiveAvgPool1d) @register_quant_pattern(torch.nn.AdaptiveAvgPool2d) @register_quant_pattern(torch.nn.AdaptiveAvgPool3d) @register_quant_pattern(torch.nn.AvgPool1d) @register_quant_pattern(torch.nn.AvgPool2d) @register_quant_pattern(torch.nn.AvgPool3d) @register_quant_pattern(torch.nn.Dropout) @register_quant_pattern(torch.nn.Hardtanh) @register_quant_pattern(torch.nn.MaxPool1d) @register_quant_pattern(torch.nn.MaxPool2d) @register_quant_pattern(torch.nn.MaxPool3d) @register_quant_pattern(torch.nn.ReLU) @register_quant_pattern(torch.nn.ReLU6) @register_quant_pattern(torch.adaptive_avg_pool1d) @register_quant_pattern(torch.nn.functional.adaptive_avg_pool2d) @register_quant_pattern(torch.nn.functional.adaptive_avg_pool3d) @register_quant_pattern(torch.nn.functional.dropout) @register_quant_pattern(torch.nn.functional.hardtanh) @register_quant_pattern(torch.nn.functional.hardtanh_) @register_quant_pattern(torch.nn.functional.interpolate) @register_quant_pattern(torch.nn.functional.max_pool1d) @register_quant_pattern(torch.nn.functional.max_pool2d) @register_quant_pattern(torch.nn.functional.max_pool3d) @register_quant_pattern(torch.nn.functional.relu) @register_quant_pattern(torch.nn.functional.relu6) @register_quant_pattern(torch.avg_pool1d) @register_quant_pattern(torch._C._nn.avg_pool2d) @register_quant_pattern(torch._C._nn.avg_pool3d) @register_quant_pattern(torch.clamp) @register_quant_pattern(torch.flatten) @register_quant_pattern(torch.max) @register_quant_pattern(torch.mean) @register_quant_pattern(torch.min) @register_quant_pattern(operator.floordiv) @register_quant_pattern('clamp') @register_quant_pattern('mean') @register_quant_pattern('relu') @register_quant_pattern('relu_') class CopyNodeQuantizeHandler(QuantizeHandler): """ Operators that works on both float and quantized input if input is quantized, the output Tensor shares the same quantization parameter with input. These ops will do computation on the input Tensor, e.g. average pool, so we will insert extra observer/fake_quant for the output of these operators. TODO: maybe rename this to TensorValueOpQuantizeHandler """ def should_mark_output_quantized_from_input_quantized_status( self, qconfig: QConfigAny ) -> bool: return True def is_general_tensor_value_op(self) -> bool: return True def convert(self, node: Node, qconfig: QConfigAny, modules: Dict[str, torch.nn.Module], quantized_graph: Graph, node_name_to_scope: Dict[str, Tuple[str, type]], load_arg: Callable, is_reference: bool = False, convert_custom_config_dict: Dict[str, Any] = None) -> Node: # always produce reference pattern for relu is_relu = node.op == "call_function" and node.target == torch.nn.functional.relu if is_reference or is_relu: # when activation dtype is torch.float, the node does not require # observation # e.g. dynamic quantization or weight_only quantization act_dtype = activation_dtype(qconfig) if act_dtype == torch.float: op_out = quantized_graph.node_copy(node, load_arg(quantized=torch.float)) return op_out else: activation_post_process = \ self._maybe_get_last_node_only_observer(modules) assert activation_post_process is not None # make sure the input is quantized to act_dtype load_arg(quantized={0: act_dtype})(node.args) args = list(load_arg(quantized=torch.float)(node.args)) kwargs = load_arg(quantized=torch.float)(node.kwargs) op_out = quantized_graph.node_copy(node, load_arg(quantized=torch.float)) return quantize_node( op_out, activation_post_process, node, modules, quantized_graph, node_name_to_scope, is_input=False) else: return quantized_graph.node_copy(node, load_arg(quantized=None)) class CustomModuleQuantizeHandler(QuantizeHandler): def convert(self, node: Node, qconfig: QConfigAny, modules: Dict[str, torch.nn.Module], quantized_graph: Graph, node_name_to_scope: Dict[str, Tuple[str, type]], load_arg: Callable, is_reference: bool = False, convert_custom_config_dict: Dict[str, Any] = None) -> Node: """ Convert a float custom module to quantized custom module """ assert node.op == 'call_module' assert convert_custom_config_dict is not None custom_module_class_mapping = convert_custom_config_dict.get("observed_to_quantized_custom_module_class", None) assert custom_module_class_mapping is not None observed_custom_module = modules[str(node.target)] if activation_is_statically_quantized(qconfig): activation_post_process = \ self._maybe_get_last_node_only_observer(modules) assert activation_post_process is not None observed_custom_module.activation_post_process = activation_post_process quantized_custom_module_class = get_swapped_custom_module_class( observed_custom_module, custom_module_class_mapping, qconfig) quantized_custom_module = \ quantized_custom_module_class.from_observed(observed_custom_module) parent_name, name = _parent_name(node.target) setattr(modules[parent_name], name, quantized_custom_module) # hardcoded the quntized input to be None (take whatever is in the environemnt), # we can extend this # if there is a need, e.g. get the indexes of quantized inputs from some # module attribute like module._QUANTIZED_INPUT_INDEXES return quantized_graph.node_copy(node, load_arg(quantized=None)) @register_quant_pattern(torch.nn.Identity) @register_quant_pattern(torch.chunk) @register_quant_pattern(torch.transpose) @register_quant_pattern(torch.repeat_interleave) @register_quant_pattern(torch.sort) @register_quant_pattern(torch.squeeze) @register_quant_pattern(torch.stack) @register_quant_pattern(torch.unsqueeze) @register_quant_pattern(operator.getitem) @register_quant_pattern('chunk') @register_quant_pattern('contiguous') @register_quant_pattern('detach') @register_quant_pattern('detach_') @register_quant_pattern('numel') @register_quant_pattern('permute') @register_quant_pattern('repeat') @register_quant_pattern('repeat_interleave') @register_quant_pattern('reshape') @register_quant_pattern('resize_') @register_quant_pattern('shape') @register_quant_pattern('size') @register_quant_pattern('squeeze') @register_quant_pattern('squeeze_') @register_quant_pattern('transpose') @register_quant_pattern('unsqueeze') @register_quant_pattern('unsqueeze_') @register_quant_pattern('view') class GeneralTensorShapeOpQuantizeHandler(QuantizeHandler): """ Operators that works on both float and quantized input if input is quantized, the output Tensor shares the same quantization parameter with input. These ops only do rearrangement of Tensor values, for example reshape, or just query the information about Tensor e.g. size, and we do not insert extra observer/fake_quant for the output of the operator. """ def is_general_tensor_shape_op(self) -> bool: return True def should_mark_output_quantized_from_input_quantized_status( self, qconfig: QConfigAny ) -> bool: return True def convert(self, node: Node, qconfig: QConfigAny, modules: Dict[str, torch.nn.Module], quantized_graph: Graph, node_name_to_scope: Dict[str, Tuple[str, type]], load_arg: Callable, is_reference: bool = False, convert_custom_config_dict: Dict[str, Any] = None) -> Node: return quantized_graph.node_copy(node, load_arg(quantized=None)) class StandaloneModuleQuantizeHandler(QuantizeHandler): """ Converts an observed standalone module to quantized standalone module by calling convert_fx on the observed standalone module. """ def convert(self, node: Node, qconfig: QConfigAny, modules: Dict[str, torch.nn.Module], quantized_graph: Graph, node_name_to_scope: Dict[str, Tuple[str, type]], load_arg: Callable, is_reference: bool = False, convert_custom_config_dict: Dict[str, Any] = None) -> Node: assert node.op == 'call_module' convert = torch.quantization.quantize_fx._convert_standalone_module_fx # type: ignore[attr-defined] # We know that observed standalone module is a GraphModule since # it's produced by us observed_standalone_module : GraphModule = modules[str(node.target)] # type: ignore[assignment] input_quantized_idxs = observed_standalone_module._standalone_module_input_quantized_idxs.tolist() # type: ignore[operator] quantized_standalone_module = convert(observed_standalone_module, is_reference=is_reference) parent_name, name = _parent_name(node.target) # update the modules dict setattr(modules[parent_name], name, quantized_standalone_module) modules[str(node.target)] = quantized_standalone_module return quantized_graph.node_copy(node, load_arg(quantized=input_quantized_idxs))
48.60615
132
0.623289
a6c381c609a0f46ed1db7b960599e39daf2604ab
1,436
py
Python
venv/Lib/site-packages/tests/test_048_FetchTupleBinaryData_02.py
shehzadulislam/Assignment4
a9cced70be6ae5d2685027d68032d5849f638301
[ "Apache-2.0" ]
null
null
null
venv/Lib/site-packages/tests/test_048_FetchTupleBinaryData_02.py
shehzadulislam/Assignment4
a9cced70be6ae5d2685027d68032d5849f638301
[ "Apache-2.0" ]
null
null
null
venv/Lib/site-packages/tests/test_048_FetchTupleBinaryData_02.py
shehzadulislam/Assignment4
a9cced70be6ae5d2685027d68032d5849f638301
[ "Apache-2.0" ]
null
null
null
# # Licensed Materials - Property of IBM # # (c) Copyright IBM Corp. 2007-2008 # import unittest, sys import ibm_db import config from testfunctions import IbmDbTestFunctions class IbmDbTestCase(unittest.TestCase): def test_048_FetchTupleBinaryData_02(self): obj = IbmDbTestFunctions() obj.assert_expect(self.run_test_048) def run_test_048(self): conn = ibm_db.connect(config.database, config.user, config.password) if (not conn): print("Could not make a connection.") return 0 server = ibm_db.server_info( conn ) fp = open("tests/spook_out.png", "wb") if (server.DBMS_NAME[0:3] == 'IDS'): result = ibm_db.exec_immediate(conn, "SELECT picture FROM animal_pics WHERE name = 'Spook'") else: result = ibm_db.exec_immediate(conn, "SELECT picture, LENGTH(picture) FROM animal_pics WHERE name = 'Spook'") if (not result): print("Could not execute SELECT statement.") return 0 row = ibm_db.fetch_tuple(result) if row: fp.write(row[0]) else: print(ibm_db.stmt_errormsg()) fp.close() cmp = (open('tests/spook_out.png', "rb").read() == open('tests/spook.png', "rb").read()) print("Are the files the same:", cmp) #__END__ #__LUW_EXPECTED__ #Are the files the same: True #__ZOS_EXPECTED__ #Are the files the same: True #__SYSTEMI_EXPECTED__ #Are the files the same: True #__IDS_EXPECTED__ #Are the files the same: True
28.156863
117
0.688022
b7453292ffc5d462d75a472e25d11e8f08708731
2,785
py
Python
backend/exc.py
al-indigo/vmemperor
80eb6d47d839a4736eb6f9d2fcfad35f0a7b3bb1
[ "Apache-2.0" ]
null
null
null
backend/exc.py
al-indigo/vmemperor
80eb6d47d839a4736eb6f9d2fcfad35f0a7b3bb1
[ "Apache-2.0" ]
8
2017-10-11T13:26:10.000Z
2021-12-13T20:27:52.000Z
backend/exc.py
ispras/vmemperor
80eb6d47d839a4736eb6f9d2fcfad35f0a7b3bb1
[ "Apache-2.0" ]
4
2017-07-27T12:25:42.000Z
2018-01-28T02:06:26.000Z
import json from rethinkdb import RethinkDB r = RethinkDB() import tornado.options as opts __all__ = ['EmperorException', 'XenAdapterException', 'XenAdapterAPIError', 'XenAdapterArgumentError', 'XenAdapterConnectionError', 'AuthenticationException', 'AuthenticationRealmException', 'AuthenticationUserNotFoundException', 'AuthenticationWithEmptyPasswordException'] class EmperorException(Exception): def __init__(self, log, message): log.error(f"{type(self).__name__}: {message}", exc_info=True) super().__init__() self.message = message self.log = log def __str__(self): return f"<{self.__class__.__name__}>: {self.message}" class XenAdapterException(EmperorException): pass class XenAdapterConnectionError(XenAdapterException): pass class XenAdapterAPIError(XenAdapterException): def __init__(self, log, message, details=None): self.details = self.print_details(details) super().__init__(log, message=json.dumps({'message' : message, 'details' : self.details})) @staticmethod def print_details(details): if not details: return None if details[0] == 'VDI_MISSING': return { "error_code" : details[0], "SR": details[1], "VDI": details[2], } elif details[0] == 'UUID_INVALID': return { "error_code": details[0], "object_type": details[1], "uuid": details[2], } elif details[0] == 'HANDLE_INVALID': return { "error_code": details[0], "object_type": details[1], "ref": details[2] } else: return details class XenAdapterArgumentError(XenAdapterException): pass class AuthenticationException(EmperorException): pass class AuthenticationRealmException(AuthenticationException): pass class AuthenticationUserNotFoundException(AuthenticationException): def __init__(self, log, realm): super().__init__(log, f"Realm {type(realm).__name__} can't find user {realm.username}") class AuthenticationPasswordException(AuthenticationException): def __init__(self, log, realm): super().__init__(log, f"Realm {type(realm).__name__} can't find authenticate user {realm.get_id()}: incorrect password") class AuthenticationWithEmptyPasswordException(AuthenticationException): def __init__(self, log, realm): super().__init__(log, f"Realm {type(realm).__name__} can't find authenticate user {realm.username}: empty password") class UnauthorizedException(AuthenticationException): pass
31.647727
153
0.64237
2dc9a99e818ef96a36d30df790bace2c18172635
4,296
py
Python
models.py
jbmyre/ip
99178b3e25b91cdabdbb1e453ad753dd775f773a
[ "MIT" ]
1
2016-11-02T20:32:34.000Z
2016-11-02T20:32:34.000Z
models.py
jbmyre/ip_manager
99178b3e25b91cdabdbb1e453ad753dd775f773a
[ "MIT" ]
null
null
null
models.py
jbmyre/ip_manager
99178b3e25b91cdabdbb1e453ad753dd775f773a
[ "MIT" ]
null
null
null
from __future__ import unicode_literals from django.db import models from django.db.models.signals import post_save class Subnet(models.Model): STATIC = 'Static' DHCP = 'DHCP' name = models.CharField( verbose_name="Subnet Name", max_length=100 ) vlan = models.IntegerField( verbose_name='Vlan Id' ) first_host = models.GenericIPAddressField( protocol='IPv4' ) last_host = models.GenericIPAddressField( protocol='IPv4' ) cidr = models.CharField( verbose_name="CIDR Scope", max_length=3, default='/24', help_text='The CIDR notation for the subnet (ie "/24"). defaults to /24' ) netmask = models.GenericIPAddressField( protocol='IPv4', default="255.255.255.0" ) broadcast = models.GenericIPAddressField( protocol='IPv4' ) dns_1 = models.GenericIPAddressField( verbose_name="Primary DNS Server", blank=True, null=True, protocol='IPv4' ) dns_2 = models.GenericIPAddressField( verbose_name="Secondary DNS Server", blank=True, null=True, protocol='IPv4' ) gateway = models.GenericIPAddressField( verbose_name="Gateway", protocol='IPv4' ) last_sweep = models.DateTimeField( blank=True, null=True, ) SUBNET_TYPE_CHOICES = ( (STATIC, 'Static'), (DHCP, 'DHCP'), ) type = models.CharField( verbose_name="Subnet Type", max_length=20, choices=SUBNET_TYPE_CHOICES, default=STATIC, ) dhcp_start = models.GenericIPAddressField( blank=True, null=True, protocol='IPv4', ) dhcp_end = models.GenericIPAddressField( blank=True, null=True, protocol='IPv4', ) def __str__(self): return "%s" % self.name class Meta: verbose_name = ('Subnet') verbose_name_plural = ('Subnets') class Host(models.Model): STATIC = 'Static' DHCP_RESERVATION = 'DHCP_RESERVATION' DHCP = 'DHCP' SUCCESS = 'Success' UNDETERMINED = 'Undetermined' FAIL = 'Fail' address = models.GenericIPAddressField(protocol='IPv4',unique=True) subnet = models.ForeignKey( Subnet, on_delete=models.CASCADE, ) machine_name = models.CharField( blank=True, null=True, max_length=100 ) building = models.CharField( blank=True, null=True, max_length=100 ) location = models.CharField( blank=True, null=True, max_length=100 ) machine_dec = models.TextField( verbose_name="Machine Description", blank=True, null=True, ) ADDRESS_TYPE_CHOICES = ( (STATIC, 'Static'), (DHCP_RESERVATION, 'DHCP Reservation'), (DHCP, 'DHCP'), ) address_type = models.CharField( max_length=20, choices=ADDRESS_TYPE_CHOICES, default=STATIC, ) eth_port = models.IntegerField( blank=True, null=True, verbose_name='Vlan Id', default=0, ) notes = models.TextField( blank=True, null=True, ) PING_STATUS_CHOICES = ( (SUCCESS, 'Success'), (UNDETERMINED, 'Undetermined'), (FAIL, 'Failed'), ) ping_status = models.CharField( max_length=20, choices=PING_STATUS_CHOICES, default=UNDETERMINED, ) last_ping = models.DateTimeField( blank=True, null=True ) def __str__(self): return "%s" % self.address class Meta: ordering = ('id',) verbose_name = 'Host' verbose_name_plural = 'Hosts' class PingHistory(models.Model): SUCCESS = 'Success' UNDETERMINED = 'Undetermined' FAIL = 'Fail' host = models.ForeignKey(Host, on_delete=models.CASCADE) PING_STATUS_CHOICES = ( (SUCCESS, 'Success'), (UNDETERMINED, 'Undetermined'), (FAIL, 'Failed'), ) ping_status = models.CharField( max_length=20, choices=PING_STATUS_CHOICES, default=UNDETERMINED, ) ping_date = models.DateTimeField( blank=True, null=True )
22.259067
80
0.583333
68e5866b35ae2616b3079c3221dd469bcee91f16
12,020
py
Python
tests/_server_test.py
tods-doc/axolotl
6fc87bedb514677db09c039d492d1d3c7864913d
[ "Apache-2.0" ]
null
null
null
tests/_server_test.py
tods-doc/axolotl
6fc87bedb514677db09c039d492d1d3c7864913d
[ "Apache-2.0" ]
null
null
null
tests/_server_test.py
tods-doc/axolotl
6fc87bedb514677db09c039d492d1d3c7864913d
[ "Apache-2.0" ]
null
null
null
# from __future__ import print_function import argparse import os import pathlib from pprint import pprint import grpc from d3m import utils as d3m_utils, runtime as runtime_module from d3m.metadata import problem as problem_module from ta3ta2_api import core_pb2, core_pb2_grpc, value_pb2, utils from axolotl.utils import pipeline as pipeline_utils from axolotl.d3m_grpc import constants # with d3m_utils.silence(): # d3m_index.load_all(blocklist=constants.PrimitivesList.BLACK_LIST) # primitives = [ # 'd3m.primitives.datasets.DatasetToDataFrame', # 'd3m.primitives.data_transformation.denormalize.Common' # ] # # with d3m_utils.silence(): # for primitive in primitives: # d3m_index.get_primitive(primitive) LENGTH = 60 ALLOWED_VALUE_TYPES = ['DATASET_URI', 'CSV_URI', 'RAW'] FULL_SPECIFIED_PIPELINE_PATH = 'modules/server/test_full_pipeline.json' PRE_SPECIFIED_PIPELINE_PATH = 'modules/server/test_placeholder.json' # PRE_SPECIFIED_PIPELINE_PATH = 'modules/server/test_placeholder_pipeline.json' def hello_request(): request = core_pb2.HelloRequest() return request def list_primitives_request(): request = core_pb2.ListPrimitivesRequest() return request def search_solutions_request(test_paths, specified_template=None): user_agent = "test_agent" version = core_pb2.DESCRIPTOR.GetOptions().Extensions[core_pb2.protocol_version] time_bound = 0.5 priority = 10 # allowed_value_types = [value_pb2.ValueType.Value(value) for value in ALLOWED_VALUE_TYPES] problem_description = utils.encode_problem_description( problem_module.Problem.load(test_paths['TRAIN']['problem']) ) template = None if specified_template == 'FULL': with d3m_utils.silence(): pipeline = pipeline_utils.load_pipeline(FULL_SPECIFIED_PIPELINE_PATH) template = utils.encode_pipeline_description(pipeline, ALLOWED_VALUE_TYPES, constants.Path.TEMP_STORAGE_ROOT) elif specified_template == 'PRE': # PRE for PREPROCESSING pipeline = runtime_module.get_pipeline(PRE_SPECIFIED_PIPELINE_PATH, load_all_primitives=False) template = utils.encode_pipeline_description(pipeline, ALLOWED_VALUE_TYPES, constants.Path.TEMP_STORAGE_ROOT) inputs = [ value_pb2.Value( dataset_uri=test_paths['TRAIN']['dataset'] ) ] request = core_pb2.SearchSolutionsRequest( user_agent=user_agent, version=version, time_bound_search=time_bound, priority=priority, allowed_value_types=ALLOWED_VALUE_TYPES, problem=problem_description, template=template, inputs=inputs ) return request def get_search_solution_results_request(search_id): request = core_pb2.GetSearchSolutionsResultsRequest(search_id=search_id) return request def fit_solution_request(solution_id, test_paths): inputs = [ value_pb2.Value( dataset_uri=test_paths['TRAIN']['dataset'] ) ] expose_outputs = ['outputs.0'] expose_value_types = ['CSV_URI'] users = [ core_pb2.SolutionRunUser( id='test_user', chosen=True, reason='just because' ) ] request = core_pb2.FitSolutionRequest( solution_id=solution_id, inputs=inputs, expose_outputs=expose_outputs, expose_value_types=expose_value_types, users=users ) return request def get_fit_solution_results_request(request_id): request = core_pb2.GetFitSolutionResultsRequest( request_id=request_id ) return request def produce_solution_request(fitted_solution_id, test_paths): inputs = [ value_pb2.Value( dataset_uri=test_paths['TEST']['dataset'] ) ] expose_outputs = ['outputs.0'] expose_value_types = ['CSV_URI'] users = [ core_pb2.SolutionRunUser( id='test_user', chosen=True, reason='just because' ) ] request = core_pb2.ProduceSolutionRequest( fitted_solution_id=fitted_solution_id, inputs=inputs, expose_outputs=expose_outputs, expose_value_types=expose_value_types, users=users ) return request def get_produce_solution_results_request(request_id): request = core_pb2.GetProduceSolutionResultsRequest( request_id=request_id ) return request def describe_solution_request(solution_id): request = core_pb2.DescribeSolutionRequest( solution_id=solution_id ) return request def score_solution_request(solution_id, test_paths): inputs = [ value_pb2.Value( dataset_uri=test_paths['SCORE']['dataset'] ) ] problem = problem_module.Problem.load(test_paths['SCORE']['problem']) performance_metrics = [] for performance_metric in problem['problem'].get('performance_metrics', []): performance_metrics.append(utils.encode_performance_metric(performance_metric)) # TODO add support for more evaluation methods users = [] evaluation_method = 'K_FOLD' configuration = core_pb2.ScoringConfiguration( method=evaluation_method, folds=2, # train_test_ratio shuffle=True, random_seed=42, stratified=True, ) request = core_pb2.ScoreSolutionRequest( solution_id=solution_id, inputs=inputs, performance_metrics=performance_metrics, users=users, configuration=configuration ) return request def get_score_solution_request(solution_id): request = core_pb2.ScoreSolutionRequest( solution_id=solution_id ) return request def solution_export_request(solution_id): rank = 0.1 request = core_pb2.SolutionExportRequest( solution_id=solution_id, rank=rank ) return request def end_search_solutions_request(search_id): request = core_pb2.EndSearchSolutionsRequest(search_id=search_id) return request def stop_search_solution_request(search_id): request = core_pb2.StopSearchSolutionsRequest(search_id=search_id) return request def run(test_paths, specified_template=None): channel = grpc.insecure_channel('localhost:45042') stub = core_pb2_grpc.CoreStub(channel) print_name('Hello') hello_r = stub.Hello(hello_request()) pprint(hello_r) print_name('ListPrimitive') list_primitives_r = stub.ListPrimitives(list_primitives_request()) for _primitive in list_primitives_r.primitives: print_space() pprint(_primitive) print_name('SearchSolution') search_solutions_r = stub.SearchSolutions(search_solutions_request(test_paths, specified_template)) search_id = search_solutions_r.search_id pprint(search_solutions_r) print_name('GetSearchSolutionsResults') solution_id = None for get_search_solution_r in stub.GetSearchSolutionsResults(get_search_solution_results_request(search_id)): print_space() pprint(get_search_solution_r) if get_search_solution_r.solution_id: solution_id = get_search_solution_r.solution_id print_name('DescribeSolution') describe_solution_r = stub.DescribeSolution(describe_solution_request(solution_id)) pprint(describe_solution_r) print_name('FitSolution') fit_solution_r = stub.FitSolution(fit_solution_request(solution_id, test_paths)) fit_request_id = fit_solution_r.request_id pprint(fit_solution_r) print_name('GetFitSolutionResultsRequest') fitted_solution_id = None for get_git_solution_results_r in stub.GetFitSolutionResults(get_fit_solution_results_request(fit_request_id)): print_space() pprint(get_git_solution_results_r) fitted_solution_id = get_git_solution_results_r.fitted_solution_id print_name('ProduceSolutionRequest') produce_solution_r = stub.ProduceSolution(produce_solution_request(fitted_solution_id, test_paths)) produce_request_id = produce_solution_r.request_id pprint(produce_solution_r) print_name('GetProduceSolutionResultsRequest') for get_produce_solution_results_r in stub.GetProduceSolutionResults( get_produce_solution_results_request(produce_request_id)): print_space() pprint(get_produce_solution_results_r) print_name('ScoreSolution') score_solution_r = stub.ScoreSolution(score_solution_request(solution_id, test_paths)) score_request_id = score_solution_r.request_id pprint(score_solution_r) print_name('GetScoreSolutionResults') for score_solution_r in stub.GetScoreSolutionResults(get_score_solution_request(score_request_id)): print_space() pprint(score_solution_r) print_name('SolutionExport') solution_export_r = stub.SolutionExport(solution_export_request(solution_id)) pprint(solution_export_r) print_name('StopSearchSolutions') stop_search_solution_r = stub.StopSearchSolutions(stop_search_solution_request(search_id)) pprint(stop_search_solution_r) print_name('EndSearchSolutions') end_search_solutions_r = stub.EndSearchSolutions(end_search_solutions_request(search_id)) pprint(end_search_solutions_r) def print_name(name): length = LENGTH free_space = length - len(name) - 2 space = int(free_space / 2) name = '#' + ' ' * space + name + ' ' * space if free_space % 2 == 0: name = name + '#' else: name = name + ' #' print("#" * length) print(name) print("#" * length) def print_space(): print('-' * LENGTH) def configure_parser(parser, *, skip_arguments=()): parser.add_argument( '-t', '--test-path', type=str, default="/D3M/internal_d3m/Winter_2018_tamuta2/datasets/26/", help="path of d3m dataset to test." ) def get_problem_id(test_path): problem_description = problem_module.Problem.load(test_path) print(problem_description) problem_id = problem_description.get('id', None) return problem_id def get_paths(test_path): # Classification Score dataset path is (problem_SCORE, dataset_SCORE) not # However, regression and other Score dataset path is (problem_TEST, dataset_TEST) score_problem_relative_path = os.path.join(test_path, 'SCORE/problem_SCORE/problemDoc.json') score_dataset_relative_path = os.path.join(test_path, 'SCORE/dataset_SCORE/datasetDoc.json') if not os.path.exists(score_problem_relative_path) or not os.path.exists(score_dataset_relative_path): score_problem_relative_path = os.path.join(test_path, 'SCORE/problem_TEST/problemDoc.json') score_dataset_relative_path = os.path.join(test_path, 'SCORE/dataset_TEST/datasetDoc.json') test_paths = { 'TRAIN': { 'dataset': os.path.join(test_path, 'TRAIN/dataset_TRAIN/datasetDoc.json'), 'problem': pathlib.Path( os.path.abspath(os.path.join(test_path, 'TRAIN/problem_TRAIN/problemDoc.json'))).as_uri() }, 'TEST': { 'dataset': os.path.join(test_path, 'TEST/dataset_TEST/datasetDoc.json'), 'problem': pathlib.Path( os.path.abspath(os.path.join(test_path, 'TEST/problem_TEST/problemDoc.json'))).as_uri() }, 'SCORE': { 'dataset': os.path.join(test_path, score_dataset_relative_path), 'problem': pathlib.Path(os.path.abspath(score_problem_relative_path)).as_uri() }, } return test_paths if __name__ == '__main__': # Creating parser parser = argparse.ArgumentParser(description="Test from command line") configure_parser(parser) arguments = parser.parse_args() # Getting test root path test_path = arguments.test_path # Getting test paths train/test/score test_paths = get_paths(test_path) # Getting problem id test_id = get_problem_id(test_paths['TEST']['problem']) print_name('Starting Test: ' + test_id) run(test_paths, None) print_name('Finishing Test: ' + test_id)
31.302083
117
0.717138
c35a1659aff0b7a706eb906ded01bb6281a11109
116
py
Python
__init__.py
anglebinbin/Barista-tool
2d51507fb3566881923f0b273127f59d23ed317f
[ "MIT" ]
1
2020-02-11T19:05:17.000Z
2020-02-11T19:05:17.000Z
__init__.py
anglebinbin/Barista-tool
2d51507fb3566881923f0b273127f59d23ed317f
[ "MIT" ]
null
null
null
__init__.py
anglebinbin/Barista-tool
2d51507fb3566881923f0b273127f59d23ed317f
[ "MIT" ]
null
null
null
# required for providing correct package import, see https://stackoverflow.com/questions/448271/what-is-init-py-for
58
115
0.810345
fad79b5ded46394dfd6cd98da41e75a080dcd875
17,067
py
Python
packages/python/plotly/plotly/tests/test_optional/test_px/test_px_functions.py
adehad/plotly.py
bca292530c400c61e8b7f8a6571262a9dde43ee3
[ "MIT" ]
1
2021-10-08T18:37:36.000Z
2021-10-08T18:37:36.000Z
packages/python/plotly/plotly/tests/test_optional/test_px/test_px_functions.py
adehad/plotly.py
bca292530c400c61e8b7f8a6571262a9dde43ee3
[ "MIT" ]
null
null
null
packages/python/plotly/plotly/tests/test_optional/test_px/test_px_functions.py
adehad/plotly.py
bca292530c400c61e8b7f8a6571262a9dde43ee3
[ "MIT" ]
null
null
null
import plotly.express as px import plotly.graph_objects as go from numpy.testing import assert_array_equal import numpy as np import pandas as pd import pytest def _compare_figures(go_trace, px_fig): """Compare a figure created with a go trace and a figure created with a px function call. Check that all values inside the go Figure are the same in the px figure (which sets more parameters). """ go_fig = go.Figure(go_trace) go_fig = go_fig.to_plotly_json() px_fig = px_fig.to_plotly_json() del go_fig["layout"]["template"] del px_fig["layout"]["template"] for key in go_fig["data"][0]: assert_array_equal(go_fig["data"][0][key], px_fig["data"][0][key]) for key in go_fig["layout"]: assert go_fig["layout"][key] == px_fig["layout"][key] def test_pie_like_px(): # Pie labels = ["Oxygen", "Hydrogen", "Carbon_Dioxide", "Nitrogen"] values = [4500, 2500, 1053, 500] fig = px.pie(names=labels, values=values) trace = go.Pie(labels=labels, values=values) _compare_figures(trace, fig) labels = ["Eve", "Cain", "Seth", "Enos", "Noam", "Abel", "Awan", "Enoch", "Azura"] parents = ["", "Eve", "Eve", "Seth", "Seth", "Eve", "Eve", "Awan", "Eve"] values = [10, 14, 12, 10, 2, 6, 6, 4, 4] # Sunburst fig = px.sunburst(names=labels, parents=parents, values=values) trace = go.Sunburst(labels=labels, parents=parents, values=values) _compare_figures(trace, fig) # Treemap fig = px.treemap(names=labels, parents=parents, values=values) trace = go.Treemap(labels=labels, parents=parents, values=values) _compare_figures(trace, fig) # Funnel x = ["A", "B", "C"] y = [3, 2, 1] fig = px.funnel(y=y, x=x) trace = go.Funnel(y=y, x=x) _compare_figures(trace, fig) # Funnelarea fig = px.funnel_area(values=y, names=x) trace = go.Funnelarea(values=y, labels=x) _compare_figures(trace, fig) def test_sunburst_treemap_colorscales(): labels = ["Eve", "Cain", "Seth", "Enos", "Noam", "Abel", "Awan", "Enoch", "Azura"] parents = ["", "Eve", "Eve", "Seth", "Seth", "Eve", "Eve", "Awan", "Eve"] values = [10, 14, 12, 10, 2, 6, 6, 4, 4] for func, colorway in zip( [px.sunburst, px.treemap], ["sunburstcolorway", "treemapcolorway"] ): # Continuous colorscale fig = func( names=labels, parents=parents, values=values, color=values, color_continuous_scale="Viridis", range_color=(5, 15), ) assert fig.layout.coloraxis.cmin, fig.layout.coloraxis.cmax == (5, 15) # Discrete colorscale, color arg passed color_seq = px.colors.sequential.Reds fig = func( names=labels, parents=parents, values=values, color=labels, color_discrete_sequence=color_seq, ) assert np.all([col in color_seq for col in fig.data[0].marker.colors]) # Numerical color arg passed, fall back to continuous fig = func(names=labels, parents=parents, values=values, color=values,) assert [ el[0] == px.colors.sequential.Viridis for i, el in enumerate(fig.layout.coloraxis.colorscale) ] # Numerical color arg passed, continuous colorscale # even if color_discrete_sequence if passed fig = func( names=labels, parents=parents, values=values, color=values, color_discrete_sequence=color_seq, ) assert [ el[0] == px.colors.sequential.Viridis for i, el in enumerate(fig.layout.coloraxis.colorscale) ] # Discrete colorscale, no color arg passed color_seq = px.colors.sequential.Reds fig = func( names=labels, parents=parents, values=values, color_discrete_sequence=color_seq, ) assert list(fig.layout[colorway]) == color_seq def test_sunburst_treemap_with_path(): vendors = ["A", "B", "C", "D", "E", "F", "G", "H"] sectors = [ "Tech", "Tech", "Finance", "Finance", "Tech", "Tech", "Finance", "Finance", ] regions = ["North", "North", "North", "North", "South", "South", "South", "South"] values = [1, 3, 2, 4, 2, 2, 1, 4] total = ["total"] * 8 df = pd.DataFrame( dict( vendors=vendors, sectors=sectors, regions=regions, values=values, total=total, ) ) path = ["total", "regions", "sectors", "vendors"] # No values fig = px.sunburst(df, path=path) assert fig.data[0].branchvalues == "total" # Values passed fig = px.sunburst(df, path=path, values="values") assert fig.data[0].branchvalues == "total" assert fig.data[0].values[-1] == np.sum(values) # Values passed fig = px.sunburst(df, path=path, values="values") assert fig.data[0].branchvalues == "total" assert fig.data[0].values[-1] == np.sum(values) # Error when values cannot be converted to numerical data type df["values"] = ["1 000", "3 000", "2", "4", "2", "2", "1 000", "4 000"] msg = "Column `values` of `df` could not be converted to a numerical data type." with pytest.raises(ValueError, match=msg): fig = px.sunburst(df, path=path, values="values") # path is a mixture of column names and array-like path = [df.total, "regions", df.sectors, "vendors"] fig = px.sunburst(df, path=path) assert fig.data[0].branchvalues == "total" # Continuous colorscale df["values"] = 1 fig = px.sunburst(df, path=path, values="values", color="values") assert "coloraxis" in fig.data[0].marker assert np.all(np.array(fig.data[0].marker.colors) == 1) assert fig.data[0].values[-1] == 8 def test_sunburst_treemap_with_path_and_hover(): df = px.data.tips() fig = px.sunburst( df, path=["sex", "day", "time", "smoker"], color="smoker", hover_data=["smoker"] ) assert "smoker" in fig.data[0].hovertemplate df = px.data.gapminder().query("year == 2007") fig = px.sunburst( df, path=["continent", "country"], color="lifeExp", hover_data=df.columns ) assert fig.layout.coloraxis.colorbar.title.text == "lifeExp" df = px.data.tips() fig = px.sunburst(df, path=["sex", "day", "time", "smoker"], hover_name="smoker") assert "smoker" not in fig.data[0].hovertemplate # represented as '%{hovertext}' assert "%{hovertext}" in fig.data[0].hovertemplate # represented as '%{hovertext}' df = px.data.tips() fig = px.sunburst(df, path=["sex", "day", "time", "smoker"], custom_data=["smoker"]) assert fig.data[0].customdata[0][0] in ["Yes", "No"] assert "smoker" not in fig.data[0].hovertemplate assert "%{hovertext}" not in fig.data[0].hovertemplate def test_sunburst_treemap_with_path_color(): vendors = ["A", "B", "C", "D", "E", "F", "G", "H"] sectors = [ "Tech", "Tech", "Finance", "Finance", "Tech", "Tech", "Finance", "Finance", ] regions = ["North", "North", "North", "North", "South", "South", "South", "South"] values = [1, 3, 2, 4, 2, 2, 1, 4] calls = [8, 2, 1, 3, 2, 2, 4, 1] total = ["total"] * 8 df = pd.DataFrame( dict( vendors=vendors, sectors=sectors, regions=regions, values=values, total=total, calls=calls, ) ) path = ["total", "regions", "sectors", "vendors"] fig = px.sunburst(df, path=path, values="values", color="calls") colors = fig.data[0].marker.colors assert np.all(np.array(colors[:8]) == np.array(calls)) fig = px.sunburst(df, path=path, color="calls") colors = fig.data[0].marker.colors assert np.all(np.array(colors[:8]) == np.array(calls)) # Hover info df["hover"] = [el.lower() for el in vendors] fig = px.sunburst(df, path=path, color="calls", hover_data=["hover"]) custom = fig.data[0].customdata assert [el[0] for el in custom[:8]] == df["hover"].tolist() assert [el[0] for el in custom[8:]] == ["(?)"] * 7 assert [el[1] for el in custom[:8]] == df["calls"].tolist() # Discrete color fig = px.sunburst(df, path=path, color="vendors") assert len(np.unique(fig.data[0].marker.colors)) == 9 # Discrete color and color_discrete_map cmap = {"Tech": "yellow", "Finance": "magenta", "(?)": "black"} fig = px.sunburst(df, path=path, color="sectors", color_discrete_map=cmap) assert np.all(np.in1d(fig.data[0].marker.colors, list(cmap.values()))) # Numerical column in path df["regions"] = df["regions"].map({"North": 1, "South": 2}) path = ["total", "regions", "sectors", "vendors"] fig = px.sunburst(df, path=path, values="values", color="calls") colors = fig.data[0].marker.colors assert np.all(np.array(colors[:8]) == np.array(calls)) def test_sunburst_treemap_column_parent(): vendors = ["A", "B", "C", "D", "E", "F", "G", "H"] sectors = [ "Tech", "Tech", "Finance", "Finance", "Tech", "Tech", "Finance", "Finance", ] regions = ["North", "North", "North", "North", "South", "South", "South", "South"] values = [1, 3, 2, 4, 2, 2, 1, 4] df = pd.DataFrame(dict(id=vendors, sectors=sectors, parent=regions, values=values,)) path = ["parent", "sectors", "id"] # One column of the path is a reserved name - this is ok and should not raise px.sunburst(df, path=path, values="values") def test_sunburst_treemap_with_path_non_rectangular(): vendors = ["A", "B", "C", "D", None, "E", "F", "G", "H", None] sectors = [ "Tech", "Tech", "Finance", "Finance", None, "Tech", "Tech", "Finance", "Finance", "Finance", ] regions = [ "North", "North", "North", "North", "North", "South", "South", "South", "South", "South", ] values = [1, 3, 2, 4, 1, 2, 2, 1, 4, 1] total = ["total"] * 10 df = pd.DataFrame( dict( vendors=vendors, sectors=sectors, regions=regions, values=values, total=total, ) ) path = ["total", "regions", "sectors", "vendors"] msg = "Non-leaves rows are not permitted in the dataframe" with pytest.raises(ValueError, match=msg): fig = px.sunburst(df, path=path, values="values") df.loc[df["vendors"].isnull(), "sectors"] = "Other" fig = px.sunburst(df, path=path, values="values") assert fig.data[0].values[-1] == np.sum(values) def test_pie_funnelarea_colorscale(): labels = ["A", "B", "C", "D"] values = [3, 2, 1, 4] for func, colorway in zip( [px.sunburst, px.treemap], ["sunburstcolorway", "treemapcolorway"] ): # Discrete colorscale, no color arg passed color_seq = px.colors.sequential.Reds fig = func(names=labels, values=values, color_discrete_sequence=color_seq,) assert list(fig.layout[colorway]) == color_seq # Discrete colorscale, color arg passed color_seq = px.colors.sequential.Reds fig = func( names=labels, values=values, color=labels, color_discrete_sequence=color_seq, ) assert np.all([col in color_seq for col in fig.data[0].marker.colors]) def test_funnel(): fig = px.funnel( x=[5, 4, 3, 3, 2, 1], y=["A", "B", "C", "A", "B", "C"], color=["0", "0", "0", "1", "1", "1"], ) assert len(fig.data) == 2 def test_parcats_dimensions_max(): df = px.data.tips() # default behaviour fig = px.parallel_categories(df) assert [d.label for d in fig.data[0].dimensions] == [ "sex", "smoker", "day", "time", "size", ] # explicit subset of default fig = px.parallel_categories(df, dimensions=["sex", "smoker", "day"]) assert [d.label for d in fig.data[0].dimensions] == ["sex", "smoker", "day"] # shrinking max fig = px.parallel_categories(df, dimensions_max_cardinality=4) assert [d.label for d in fig.data[0].dimensions] == [ "sex", "smoker", "day", "time", ] # explicit superset of default, violating the max fig = px.parallel_categories( df, dimensions=["sex", "smoker", "day", "size"], dimensions_max_cardinality=4 ) assert [d.label for d in fig.data[0].dimensions] == ["sex", "smoker", "day", "size"] @pytest.mark.parametrize("histfunc,y", [(None, None), ("count", "tip")]) def test_histfunc_hoverlabels_univariate(histfunc, y): def check_label(label, fig): assert fig.layout.yaxis.title.text == label assert label + "=" in fig.data[0].hovertemplate df = px.data.tips() # base case, just "count" (note count(tip) is same as count()) fig = px.histogram(df, x="total_bill", y=y, histfunc=histfunc) check_label("count", fig) # without y, label is just histnorm for histnorm in ["probability", "percent", "density", "probability density"]: fig = px.histogram( df, x="total_bill", y=y, histfunc=histfunc, histnorm=histnorm ) check_label(histnorm, fig) for histnorm in ["probability", "percent", "density", "probability density"]: for barnorm in ["percent", "fraction"]: fig = px.histogram( df, x="total_bill", y=y, histfunc=histfunc, histnorm=histnorm, barnorm=barnorm, ) check_label("%s (normalized as %s)" % (histnorm, barnorm), fig) def test_histfunc_hoverlabels_bivariate(): def check_label(label, fig): assert fig.layout.yaxis.title.text == label assert label + "=" in fig.data[0].hovertemplate df = px.data.tips() # with y, should be same as forcing histfunc to sum fig = px.histogram(df, x="total_bill", y="tip") check_label("sum of tip", fig) # change probability to fraction when histfunc is sum fig = px.histogram(df, x="total_bill", y="tip", histnorm="probability") check_label("fraction of sum of tip", fig) # percent is percent fig = px.histogram(df, x="total_bill", y="tip", histnorm="percent") check_label("percent of sum of tip", fig) # the other two are "weighted by" for histnorm in ["density", "probability density"]: fig = px.histogram(df, x="total_bill", y="tip", histnorm=histnorm) check_label("%s weighted by tip" % histnorm, fig) # check a few "normalized by" for histnorm in ["density", "probability density"]: for barnorm in ["fraction", "percent"]: fig = px.histogram( df, x="total_bill", y="tip", histnorm=histnorm, barnorm=barnorm ) check_label( "%s weighted by tip (normalized as %s)" % (histnorm, barnorm), fig ) # these next two are weird but OK... fig = px.histogram( df, x="total_bill", y="tip", histfunc="min", histnorm="probability", barnorm="percent", ) check_label("fraction of sum of min of tip (normalized as percent)", fig) fig = px.histogram( df, x="total_bill", y="tip", histfunc="avg", histnorm="percent", barnorm="fraction", ) check_label("percent of sum of avg of tip (normalized as fraction)", fig) # this next one is basically "never do this" but needs a defined behaviour fig = px.histogram(df, x="total_bill", y="tip", histfunc="max", histnorm="density") check_label("density of max of tip", fig) def test_timeline(): df = pd.DataFrame( [ dict(Task="Job A", Start="2009-01-01", Finish="2009-02-28"), dict(Task="Job B", Start="2009-03-05", Finish="2009-04-15"), dict(Task="Job C", Start="2009-02-20", Finish="2009-05-30"), ] ) fig = px.timeline(df, x_start="Start", x_end="Finish", y="Task", color="Task") assert len(fig.data) == 3 assert fig.layout.xaxis.type == "date" assert fig.layout.xaxis.title.text is None fig = px.timeline(df, x_start="Start", x_end="Finish", y="Task", facet_row="Task") assert len(fig.data) == 3 assert fig.data[1].xaxis == "x2" assert fig.layout.xaxis.type == "date" msg = "Both x_start and x_end are required" with pytest.raises(ValueError, match=msg): px.timeline(df, x_start="Start", y="Task", color="Task") msg = "Both x_start and x_end must refer to data convertible to datetimes." with pytest.raises(TypeError, match=msg): px.timeline(df, x_start="Start", x_end=["a", "b", "c"], y="Task", color="Task")
34.271084
88
0.576786
33af7bca94df4bd7c6d4b1304c2512f85d9ab759
3,317
py
Python
sdk/network/azure-mgmt-frontdoor/azure/mgmt/frontdoor/_configuration.py
vincenttran-msft/azure-sdk-for-python
348b56f9f03eeb3f7b502eed51daf494ffff874d
[ "MIT" ]
1
2022-01-24T08:54:57.000Z
2022-01-24T08:54:57.000Z
sdk/network/azure-mgmt-frontdoor/azure/mgmt/frontdoor/_configuration.py
vincenttran-msft/azure-sdk-for-python
348b56f9f03eeb3f7b502eed51daf494ffff874d
[ "MIT" ]
null
null
null
sdk/network/azure-mgmt-frontdoor/azure/mgmt/frontdoor/_configuration.py
vincenttran-msft/azure-sdk-for-python
348b56f9f03eeb3f7b502eed51daf494ffff874d
[ "MIT" ]
null
null
null
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, TYPE_CHECKING from azure.core.configuration import Configuration from azure.core.pipeline import policies from azure.mgmt.core.policies import ARMChallengeAuthenticationPolicy, ARMHttpLoggingPolicy from ._version import VERSION if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from azure.core.credentials import TokenCredential class FrontDoorManagementClientConfiguration(Configuration): """Configuration for FrontDoorManagementClient. Note that all parameters used to create this instance are saved as instance attributes. :param credential: Credential needed for the client to connect to Azure. :type credential: ~azure.core.credentials.TokenCredential :param subscription_id: The subscription credentials which uniquely identify the Microsoft Azure subscription. The subscription ID forms part of the URI for every service call. :type subscription_id: str """ def __init__( self, credential: "TokenCredential", subscription_id: str, **kwargs: Any ) -> None: super(FrontDoorManagementClientConfiguration, self).__init__(**kwargs) if credential is None: raise ValueError("Parameter 'credential' must not be None.") if subscription_id is None: raise ValueError("Parameter 'subscription_id' must not be None.") self.credential = credential self.subscription_id = subscription_id self.credential_scopes = kwargs.pop('credential_scopes', ['https://management.azure.com/.default']) kwargs.setdefault('sdk_moniker', 'mgmt-frontdoor/{}'.format(VERSION)) self._configure(**kwargs) def _configure( self, **kwargs # type: Any ): # type: (...) -> None self.user_agent_policy = kwargs.get('user_agent_policy') or policies.UserAgentPolicy(**kwargs) self.headers_policy = kwargs.get('headers_policy') or policies.HeadersPolicy(**kwargs) self.proxy_policy = kwargs.get('proxy_policy') or policies.ProxyPolicy(**kwargs) self.logging_policy = kwargs.get('logging_policy') or policies.NetworkTraceLoggingPolicy(**kwargs) self.http_logging_policy = kwargs.get('http_logging_policy') or ARMHttpLoggingPolicy(**kwargs) self.retry_policy = kwargs.get('retry_policy') or policies.RetryPolicy(**kwargs) self.custom_hook_policy = kwargs.get('custom_hook_policy') or policies.CustomHookPolicy(**kwargs) self.redirect_policy = kwargs.get('redirect_policy') or policies.RedirectPolicy(**kwargs) self.authentication_policy = kwargs.get('authentication_policy') if self.credential and not self.authentication_policy: self.authentication_policy = ARMChallengeAuthenticationPolicy(self.credential, *self.credential_scopes, **kwargs)
48.779412
180
0.700935
51d0bd367f395a42963328f02eb81555b11d6930
72,935
py
Python
venv/lib/python2.7/site-packages/pyramid/tests/test_viewderivers.py
bhavul/GIDS-Endurance-Hacker-Puzzle
78b057b9158e7e818de833f1fd91c7f5d598ac8a
[ "MIT" ]
null
null
null
venv/lib/python2.7/site-packages/pyramid/tests/test_viewderivers.py
bhavul/GIDS-Endurance-Hacker-Puzzle
78b057b9158e7e818de833f1fd91c7f5d598ac8a
[ "MIT" ]
null
null
null
venv/lib/python2.7/site-packages/pyramid/tests/test_viewderivers.py
bhavul/GIDS-Endurance-Hacker-Puzzle
78b057b9158e7e818de833f1fd91c7f5d598ac8a
[ "MIT" ]
null
null
null
import unittest from zope.interface import implementer from pyramid import testing from pyramid.exceptions import ConfigurationError from pyramid.interfaces import ( IResponse, IRequest, ) class TestDeriveView(unittest.TestCase): def setUp(self): self.config = testing.setUp() def tearDown(self): self.config = None testing.tearDown() def _makeRequest(self): request = DummyRequest() request.registry = self.config.registry return request def _registerLogger(self): from pyramid.interfaces import IDebugLogger logger = DummyLogger() self.config.registry.registerUtility(logger, IDebugLogger) return logger def _registerSecurityPolicy(self, permissive): from pyramid.interfaces import IAuthenticationPolicy from pyramid.interfaces import IAuthorizationPolicy policy = DummySecurityPolicy(permissive) self.config.registry.registerUtility(policy, IAuthenticationPolicy) self.config.registry.registerUtility(policy, IAuthorizationPolicy) def test_function_returns_non_adaptable(self): def view(request): return None result = self.config.derive_view(view) self.assertFalse(result is view) try: result(None, None) except ValueError as e: self.assertEqual( e.args[0], 'Could not convert return value of the view callable function ' 'pyramid.tests.test_viewderivers.view into a response ' 'object. The value returned was None. You may have forgotten ' 'to return a value from the view callable.' ) else: # pragma: no cover raise AssertionError def test_function_returns_non_adaptable_dict(self): def view(request): return {'a':1} result = self.config.derive_view(view) self.assertFalse(result is view) try: result(None, None) except ValueError as e: self.assertEqual( e.args[0], "Could not convert return value of the view callable function " "pyramid.tests.test_viewderivers.view into a response " "object. The value returned was {'a': 1}. You may have " "forgotten to define a renderer in the view configuration." ) else: # pragma: no cover raise AssertionError def test_instance_returns_non_adaptable(self): class AView(object): def __call__(self, request): return None view = AView() result = self.config.derive_view(view) self.assertFalse(result is view) try: result(None, None) except ValueError as e: msg = e.args[0] self.assertTrue(msg.startswith( 'Could not convert return value of the view callable object ' '<pyramid.tests.test_viewderivers.')) self.assertTrue(msg.endswith( '> into a response object. The value returned was None. You ' 'may have forgotten to return a value from the view callable.')) else: # pragma: no cover raise AssertionError def test_function_returns_true_Response_no_renderer(self): from pyramid.response import Response r = Response('Hello') def view(request): return r result = self.config.derive_view(view) self.assertFalse(result is view) response = result(None, None) self.assertEqual(response, r) def test_function_returns_true_Response_with_renderer(self): from pyramid.response import Response r = Response('Hello') def view(request): return r renderer = object() result = self.config.derive_view(view) self.assertFalse(result is view) response = result(None, None) self.assertEqual(response, r) def test_requestonly_default_method_returns_non_adaptable(self): request = DummyRequest() class AView(object): def __init__(self, request): pass def __call__(self): return None result = self.config.derive_view(AView) self.assertFalse(result is AView) try: result(None, request) except ValueError as e: self.assertEqual( e.args[0], 'Could not convert return value of the view callable ' 'method __call__ of ' 'class pyramid.tests.test_viewderivers.AView into a ' 'response object. The value returned was None. You may have ' 'forgotten to return a value from the view callable.' ) else: # pragma: no cover raise AssertionError def test_requestonly_nondefault_method_returns_non_adaptable(self): request = DummyRequest() class AView(object): def __init__(self, request): pass def theviewmethod(self): return None result = self.config.derive_view(AView, attr='theviewmethod') self.assertFalse(result is AView) try: result(None, request) except ValueError as e: self.assertEqual( e.args[0], 'Could not convert return value of the view callable ' 'method theviewmethod of ' 'class pyramid.tests.test_viewderivers.AView into a ' 'response object. The value returned was None. You may have ' 'forgotten to return a value from the view callable.' ) else: # pragma: no cover raise AssertionError def test_requestonly_function(self): response = DummyResponse() def view(request): return response result = self.config.derive_view(view) self.assertFalse(result is view) self.assertEqual(result(None, None), response) def test_requestonly_function_with_renderer(self): response = DummyResponse() class moo(object): def render_view(inself, req, resp, view_inst, ctx): self.assertEqual(req, request) self.assertEqual(resp, 'OK') self.assertEqual(view_inst, view) self.assertEqual(ctx, context) return response def clone(self): return self def view(request): return 'OK' result = self.config.derive_view(view, renderer=moo()) self.assertFalse(result.__wraps__ is view) request = self._makeRequest() context = testing.DummyResource() self.assertEqual(result(context, request), response) def test_requestonly_function_with_renderer_request_override(self): def moo(info): def inner(value, system): self.assertEqual(value, 'OK') self.assertEqual(system['request'], request) self.assertEqual(system['context'], context) return b'moo' return inner def view(request): return 'OK' self.config.add_renderer('moo', moo) result = self.config.derive_view(view, renderer='string') self.assertFalse(result is view) request = self._makeRequest() request.override_renderer = 'moo' context = testing.DummyResource() self.assertEqual(result(context, request).body, b'moo') def test_requestonly_function_with_renderer_request_has_view(self): response = DummyResponse() class moo(object): def render_view(inself, req, resp, view_inst, ctx): self.assertEqual(req, request) self.assertEqual(resp, 'OK') self.assertEqual(view_inst, 'view') self.assertEqual(ctx, context) return response def clone(self): return self def view(request): return 'OK' result = self.config.derive_view(view, renderer=moo()) self.assertFalse(result.__wraps__ is view) request = self._makeRequest() request.__view__ = 'view' context = testing.DummyResource() r = result(context, request) self.assertEqual(r, response) self.assertFalse(hasattr(request, '__view__')) def test_class_without_attr(self): response = DummyResponse() class View(object): def __init__(self, request): pass def __call__(self): return response result = self.config.derive_view(View) request = self._makeRequest() self.assertEqual(result(None, request), response) self.assertEqual(request.__view__.__class__, View) def test_class_with_attr(self): response = DummyResponse() class View(object): def __init__(self, request): pass def another(self): return response result = self.config.derive_view(View, attr='another') request = self._makeRequest() self.assertEqual(result(None, request), response) self.assertEqual(request.__view__.__class__, View) def test_as_function_context_and_request(self): def view(context, request): return 'OK' result = self.config.derive_view(view) self.assertTrue(result.__wraps__ is view) self.assertFalse(hasattr(result, '__call_permissive__')) self.assertEqual(view(None, None), 'OK') def test_as_function_requestonly(self): response = DummyResponse() def view(request): return response result = self.config.derive_view(view) self.assertFalse(result is view) self.assertEqual(view.__module__, result.__module__) self.assertEqual(view.__doc__, result.__doc__) self.assertEqual(view.__name__, result.__name__) self.assertFalse(hasattr(result, '__call_permissive__')) self.assertEqual(result(None, None), response) def test_as_newstyle_class_context_and_request(self): response = DummyResponse() class view(object): def __init__(self, context, request): pass def __call__(self): return response result = self.config.derive_view(view) self.assertFalse(result is view) self.assertEqual(view.__module__, result.__module__) self.assertEqual(view.__doc__, result.__doc__) self.assertEqual(view.__name__, result.__name__) self.assertFalse(hasattr(result, '__call_permissive__')) request = self._makeRequest() self.assertEqual(result(None, request), response) self.assertEqual(request.__view__.__class__, view) def test_as_newstyle_class_requestonly(self): response = DummyResponse() class view(object): def __init__(self, context, request): pass def __call__(self): return response result = self.config.derive_view(view) self.assertFalse(result is view) self.assertEqual(view.__module__, result.__module__) self.assertEqual(view.__doc__, result.__doc__) self.assertEqual(view.__name__, result.__name__) self.assertFalse(hasattr(result, '__call_permissive__')) request = self._makeRequest() self.assertEqual(result(None, request), response) self.assertEqual(request.__view__.__class__, view) def test_as_oldstyle_class_context_and_request(self): response = DummyResponse() class view: def __init__(self, context, request): pass def __call__(self): return response result = self.config.derive_view(view) self.assertFalse(result is view) self.assertEqual(view.__module__, result.__module__) self.assertEqual(view.__doc__, result.__doc__) self.assertEqual(view.__name__, result.__name__) self.assertFalse(hasattr(result, '__call_permissive__')) request = self._makeRequest() self.assertEqual(result(None, request), response) self.assertEqual(request.__view__.__class__, view) def test_as_oldstyle_class_requestonly(self): response = DummyResponse() class view: def __init__(self, context, request): pass def __call__(self): return response result = self.config.derive_view(view) self.assertFalse(result is view) self.assertEqual(view.__module__, result.__module__) self.assertEqual(view.__doc__, result.__doc__) self.assertEqual(view.__name__, result.__name__) self.assertFalse(hasattr(result, '__call_permissive__')) request = self._makeRequest() self.assertEqual(result(None, request), response) self.assertEqual(request.__view__.__class__, view) def test_as_instance_context_and_request(self): response = DummyResponse() class View: def __call__(self, context, request): return response view = View() result = self.config.derive_view(view) self.assertTrue(result.__wraps__ is view) self.assertFalse(hasattr(result, '__call_permissive__')) self.assertEqual(result(None, None), response) def test_as_instance_requestonly(self): response = DummyResponse() class View: def __call__(self, request): return response view = View() result = self.config.derive_view(view) self.assertFalse(result is view) self.assertEqual(view.__module__, result.__module__) self.assertEqual(view.__doc__, result.__doc__) self.assertTrue('test_viewderivers' in result.__name__) self.assertFalse(hasattr(result, '__call_permissive__')) self.assertEqual(result(None, None), response) def test_with_debug_authorization_no_authpol(self): response = DummyResponse() view = lambda *arg: response self.config.registry.settings = dict( debug_authorization=True, reload_templates=True) logger = self._registerLogger() result = self.config._derive_view(view, permission='view') self.assertEqual(view.__module__, result.__module__) self.assertEqual(view.__doc__, result.__doc__) self.assertEqual(view.__name__, result.__name__) self.assertFalse(hasattr(result, '__call_permissive__')) request = self._makeRequest() request.view_name = 'view_name' request.url = 'url' self.assertEqual(result(None, request), response) self.assertEqual(len(logger.messages), 1) self.assertEqual(logger.messages[0], "debug_authorization of url url (view name " "'view_name' against context None): Allowed " "(no authorization policy in use)") def test_with_debug_authorization_authn_policy_no_authz_policy(self): response = DummyResponse() view = lambda *arg: response self.config.registry.settings = dict(debug_authorization=True) from pyramid.interfaces import IAuthenticationPolicy policy = DummySecurityPolicy(False) self.config.registry.registerUtility(policy, IAuthenticationPolicy) logger = self._registerLogger() result = self.config._derive_view(view, permission='view') self.assertEqual(view.__module__, result.__module__) self.assertEqual(view.__doc__, result.__doc__) self.assertEqual(view.__name__, result.__name__) self.assertFalse(hasattr(result, '__call_permissive__')) request = self._makeRequest() request.view_name = 'view_name' request.url = 'url' self.assertEqual(result(None, request), response) self.assertEqual(len(logger.messages), 1) self.assertEqual(logger.messages[0], "debug_authorization of url url (view name " "'view_name' against context None): Allowed " "(no authorization policy in use)") def test_with_debug_authorization_authz_policy_no_authn_policy(self): response = DummyResponse() view = lambda *arg: response self.config.registry.settings = dict(debug_authorization=True) from pyramid.interfaces import IAuthorizationPolicy policy = DummySecurityPolicy(False) self.config.registry.registerUtility(policy, IAuthorizationPolicy) logger = self._registerLogger() result = self.config._derive_view(view, permission='view') self.assertEqual(view.__module__, result.__module__) self.assertEqual(view.__doc__, result.__doc__) self.assertEqual(view.__name__, result.__name__) self.assertFalse(hasattr(result, '__call_permissive__')) request = self._makeRequest() request.view_name = 'view_name' request.url = 'url' self.assertEqual(result(None, request), response) self.assertEqual(len(logger.messages), 1) self.assertEqual(logger.messages[0], "debug_authorization of url url (view name " "'view_name' against context None): Allowed " "(no authorization policy in use)") def test_with_debug_authorization_no_permission(self): response = DummyResponse() view = lambda *arg: response self.config.registry.settings = dict( debug_authorization=True, reload_templates=True) self._registerSecurityPolicy(True) logger = self._registerLogger() result = self.config._derive_view(view) self.assertEqual(view.__module__, result.__module__) self.assertEqual(view.__doc__, result.__doc__) self.assertEqual(view.__name__, result.__name__) self.assertFalse(hasattr(result, '__call_permissive__')) request = self._makeRequest() request.view_name = 'view_name' request.url = 'url' self.assertEqual(result(None, request), response) self.assertEqual(len(logger.messages), 1) self.assertEqual(logger.messages[0], "debug_authorization of url url (view name " "'view_name' against context None): Allowed (" "no permission registered)") def test_debug_auth_permission_authpol_permitted(self): response = DummyResponse() view = lambda *arg: response self.config.registry.settings = dict( debug_authorization=True, reload_templates=True) logger = self._registerLogger() self._registerSecurityPolicy(True) result = self.config._derive_view(view, permission='view') self.assertEqual(view.__module__, result.__module__) self.assertEqual(view.__doc__, result.__doc__) self.assertEqual(view.__name__, result.__name__) self.assertEqual(result.__call_permissive__.__wraps__, view) request = self._makeRequest() request.view_name = 'view_name' request.url = 'url' self.assertEqual(result(None, request), response) self.assertEqual(len(logger.messages), 1) self.assertEqual(logger.messages[0], "debug_authorization of url url (view name " "'view_name' against context None): True") def test_debug_auth_permission_authpol_permitted_no_request(self): response = DummyResponse() view = lambda *arg: response self.config.registry.settings = dict( debug_authorization=True, reload_templates=True) logger = self._registerLogger() self._registerSecurityPolicy(True) result = self.config._derive_view(view, permission='view') self.assertEqual(view.__module__, result.__module__) self.assertEqual(view.__doc__, result.__doc__) self.assertEqual(view.__name__, result.__name__) self.assertEqual(result.__call_permissive__.__wraps__, view) self.assertEqual(result(None, None), response) self.assertEqual(len(logger.messages), 1) self.assertEqual(logger.messages[0], "debug_authorization of url None (view name " "None against context None): True") def test_debug_auth_permission_authpol_denied(self): from pyramid.httpexceptions import HTTPForbidden response = DummyResponse() view = lambda *arg: response self.config.registry.settings = dict( debug_authorization=True, reload_templates=True) logger = self._registerLogger() self._registerSecurityPolicy(False) result = self.config._derive_view(view, permission='view') self.assertEqual(view.__module__, result.__module__) self.assertEqual(view.__doc__, result.__doc__) self.assertEqual(view.__name__, result.__name__) self.assertEqual(result.__call_permissive__.__wraps__, view) request = self._makeRequest() request.view_name = 'view_name' request.url = 'url' self.assertRaises(HTTPForbidden, result, None, request) self.assertEqual(len(logger.messages), 1) self.assertEqual(logger.messages[0], "debug_authorization of url url (view name " "'view_name' against context None): False") def test_debug_auth_permission_authpol_denied2(self): view = lambda *arg: 'OK' self.config.registry.settings = dict( debug_authorization=True, reload_templates=True) self._registerLogger() self._registerSecurityPolicy(False) result = self.config._derive_view(view, permission='view') self.assertEqual(view.__module__, result.__module__) self.assertEqual(view.__doc__, result.__doc__) self.assertEqual(view.__name__, result.__name__) request = self._makeRequest() request.view_name = 'view_name' request.url = 'url' permitted = result.__permitted__(None, None) self.assertEqual(permitted, False) def test_debug_auth_permission_authpol_overridden(self): from pyramid.security import NO_PERMISSION_REQUIRED response = DummyResponse() view = lambda *arg: response self.config.registry.settings = dict( debug_authorization=True, reload_templates=True) logger = self._registerLogger() self._registerSecurityPolicy(False) result = self.config._derive_view(view, permission=NO_PERMISSION_REQUIRED) self.assertEqual(view.__module__, result.__module__) self.assertEqual(view.__doc__, result.__doc__) self.assertEqual(view.__name__, result.__name__) self.assertFalse(hasattr(result, '__call_permissive__')) request = self._makeRequest() request.view_name = 'view_name' request.url = 'url' self.assertEqual(result(None, request), response) self.assertEqual(len(logger.messages), 1) self.assertEqual(logger.messages[0], "debug_authorization of url url (view name " "'view_name' against context None): " "Allowed (NO_PERMISSION_REQUIRED)") def test_debug_auth_permission_authpol_permitted_excview(self): response = DummyResponse() view = lambda *arg: response self.config.registry.settings = dict( debug_authorization=True, reload_templates=True) logger = self._registerLogger() self._registerSecurityPolicy(True) result = self.config._derive_view( view, context=Exception, permission='view') self.assertEqual(view.__module__, result.__module__) self.assertEqual(view.__doc__, result.__doc__) self.assertEqual(view.__name__, result.__name__) self.assertEqual(result.__call_permissive__.__wraps__, view) request = self._makeRequest() request.view_name = 'view_name' request.url = 'url' self.assertEqual(result(Exception(), request), response) self.assertEqual(len(logger.messages), 1) self.assertEqual(logger.messages[0], "debug_authorization of url url (view name " "'view_name' against context Exception()): True") def test_secured_view_authn_policy_no_authz_policy(self): response = DummyResponse() view = lambda *arg: response self.config.registry.settings = {} from pyramid.interfaces import IAuthenticationPolicy policy = DummySecurityPolicy(False) self.config.registry.registerUtility(policy, IAuthenticationPolicy) result = self.config._derive_view(view, permission='view') self.assertEqual(view.__module__, result.__module__) self.assertEqual(view.__doc__, result.__doc__) self.assertEqual(view.__name__, result.__name__) self.assertFalse(hasattr(result, '__call_permissive__')) request = self._makeRequest() request.view_name = 'view_name' request.url = 'url' self.assertEqual(result(None, request), response) def test_secured_view_authz_policy_no_authn_policy(self): response = DummyResponse() view = lambda *arg: response self.config.registry.settings = {} from pyramid.interfaces import IAuthorizationPolicy policy = DummySecurityPolicy(False) self.config.registry.registerUtility(policy, IAuthorizationPolicy) result = self.config._derive_view(view, permission='view') self.assertEqual(view.__module__, result.__module__) self.assertEqual(view.__doc__, result.__doc__) self.assertEqual(view.__name__, result.__name__) self.assertFalse(hasattr(result, '__call_permissive__')) request = self._makeRequest() request.view_name = 'view_name' request.url = 'url' self.assertEqual(result(None, request), response) def test_secured_view_raises_forbidden_no_name(self): from pyramid.interfaces import IAuthenticationPolicy from pyramid.interfaces import IAuthorizationPolicy from pyramid.httpexceptions import HTTPForbidden response = DummyResponse() view = lambda *arg: response self.config.registry.settings = {} policy = DummySecurityPolicy(False) self.config.registry.registerUtility(policy, IAuthenticationPolicy) self.config.registry.registerUtility(policy, IAuthorizationPolicy) result = self.config._derive_view(view, permission='view') request = self._makeRequest() request.view_name = 'view_name' request.url = 'url' try: result(None, request) except HTTPForbidden as e: self.assertEqual(e.message, 'Unauthorized: <lambda> failed permission check') else: # pragma: no cover raise AssertionError def test_secured_view_raises_forbidden_with_name(self): from pyramid.interfaces import IAuthenticationPolicy from pyramid.interfaces import IAuthorizationPolicy from pyramid.httpexceptions import HTTPForbidden def myview(request): pass self.config.registry.settings = {} policy = DummySecurityPolicy(False) self.config.registry.registerUtility(policy, IAuthenticationPolicy) self.config.registry.registerUtility(policy, IAuthorizationPolicy) result = self.config._derive_view(myview, permission='view') request = self._makeRequest() request.view_name = 'view_name' request.url = 'url' try: result(None, request) except HTTPForbidden as e: self.assertEqual(e.message, 'Unauthorized: myview failed permission check') else: # pragma: no cover raise AssertionError def test_secured_view_skipped_by_default_on_exception_view(self): from pyramid.request import Request from pyramid.security import NO_PERMISSION_REQUIRED def view(request): raise ValueError def excview(request): return 'hello' self._registerSecurityPolicy(False) self.config.add_settings({'debug_authorization': True}) self.config.set_default_permission('view') self.config.add_view(view, name='foo', permission=NO_PERMISSION_REQUIRED) self.config.add_view(excview, context=ValueError, renderer='string') app = self.config.make_wsgi_app() request = Request.blank('/foo', base_url='http://example.com') request.method = 'POST' response = request.get_response(app) self.assertTrue(b'hello' in response.body) def test_secured_view_failed_on_explicit_exception_view(self): from pyramid.httpexceptions import HTTPForbidden from pyramid.request import Request from pyramid.security import NO_PERMISSION_REQUIRED def view(request): raise ValueError def excview(request): pass self._registerSecurityPolicy(False) self.config.add_view(view, name='foo', permission=NO_PERMISSION_REQUIRED) self.config.add_view(excview, context=ValueError, renderer='string', permission='view') app = self.config.make_wsgi_app() request = Request.blank('/foo', base_url='http://example.com') request.method = 'POST' try: request.get_response(app) except HTTPForbidden: pass else: # pragma: no cover raise AssertionError def test_secured_view_passed_on_explicit_exception_view(self): from pyramid.request import Request from pyramid.security import NO_PERMISSION_REQUIRED def view(request): raise ValueError def excview(request): return 'hello' self._registerSecurityPolicy(True) self.config.add_view(view, name='foo', permission=NO_PERMISSION_REQUIRED) self.config.add_view(excview, context=ValueError, renderer='string', permission='view') app = self.config.make_wsgi_app() request = Request.blank('/foo', base_url='http://example.com') request.method = 'POST' request.headers['X-CSRF-Token'] = 'foo' response = request.get_response(app) self.assertTrue(b'hello' in response.body) def test_predicate_mismatch_view_has_no_name(self): from pyramid.exceptions import PredicateMismatch response = DummyResponse() view = lambda *arg: response def predicate1(context, request): return False predicate1.text = lambda *arg: 'text' result = self.config._derive_view(view, predicates=[predicate1]) request = self._makeRequest() request.method = 'POST' try: result(None, None) except PredicateMismatch as e: self.assertEqual(e.detail, 'predicate mismatch for view <lambda> (text)') else: # pragma: no cover raise AssertionError def test_predicate_mismatch_view_has_name(self): from pyramid.exceptions import PredicateMismatch def myview(request): pass def predicate1(context, request): return False predicate1.text = lambda *arg: 'text' result = self.config._derive_view(myview, predicates=[predicate1]) request = self._makeRequest() request.method = 'POST' try: result(None, None) except PredicateMismatch as e: self.assertEqual(e.detail, 'predicate mismatch for view myview (text)') else: # pragma: no cover raise AssertionError def test_predicate_mismatch_exception_has_text_in_detail(self): from pyramid.exceptions import PredicateMismatch def myview(request): pass def predicate1(context, request): return True predicate1.text = lambda *arg: 'pred1' def predicate2(context, request): return False predicate2.text = lambda *arg: 'pred2' result = self.config._derive_view(myview, predicates=[predicate1, predicate2]) request = self._makeRequest() request.method = 'POST' try: result(None, None) except PredicateMismatch as e: self.assertEqual(e.detail, 'predicate mismatch for view myview (pred2)') else: # pragma: no cover raise AssertionError def test_with_predicates_all(self): response = DummyResponse() view = lambda *arg: response predicates = [] def predicate1(context, request): predicates.append(True) return True def predicate2(context, request): predicates.append(True) return True result = self.config._derive_view(view, predicates=[predicate1, predicate2]) request = self._makeRequest() request.method = 'POST' next = result(None, None) self.assertEqual(next, response) self.assertEqual(predicates, [True, True]) def test_with_predicates_checker(self): view = lambda *arg: 'OK' predicates = [] def predicate1(context, request): predicates.append(True) return True def predicate2(context, request): predicates.append(True) return True result = self.config._derive_view(view, predicates=[predicate1, predicate2]) request = self._makeRequest() request.method = 'POST' next = result.__predicated__(None, None) self.assertEqual(next, True) self.assertEqual(predicates, [True, True]) def test_with_predicates_notall(self): from pyramid.httpexceptions import HTTPNotFound view = lambda *arg: 'OK' predicates = [] def predicate1(context, request): predicates.append(True) return True predicate1.text = lambda *arg: 'text' def predicate2(context, request): predicates.append(True) return False predicate2.text = lambda *arg: 'text' result = self.config._derive_view(view, predicates=[predicate1, predicate2]) request = self._makeRequest() request.method = 'POST' self.assertRaises(HTTPNotFound, result, None, None) self.assertEqual(predicates, [True, True]) def test_with_wrapper_viewname(self): from pyramid.response import Response from pyramid.interfaces import IView from pyramid.interfaces import IViewClassifier inner_response = Response('OK') def inner_view(context, request): return inner_response def outer_view(context, request): self.assertEqual(request.wrapped_response, inner_response) self.assertEqual(request.wrapped_body, inner_response.body) self.assertEqual(request.wrapped_view.__original_view__, inner_view) return Response(b'outer ' + request.wrapped_body) self.config.registry.registerAdapter( outer_view, (IViewClassifier, None, None), IView, 'owrap') result = self.config._derive_view(inner_view, viewname='inner', wrapper_viewname='owrap') self.assertFalse(result is inner_view) self.assertEqual(inner_view.__module__, result.__module__) self.assertEqual(inner_view.__doc__, result.__doc__) request = self._makeRequest() response = result(None, request) self.assertEqual(response.body, b'outer OK') def test_with_wrapper_viewname_notfound(self): from pyramid.response import Response inner_response = Response('OK') def inner_view(context, request): return inner_response wrapped = self.config._derive_view(inner_view, viewname='inner', wrapper_viewname='owrap') request = self._makeRequest() self.assertRaises(ValueError, wrapped, None, request) def test_as_newstyle_class_context_and_request_attr_and_renderer(self): response = DummyResponse() class renderer(object): def render_view(inself, req, resp, view_inst, ctx): self.assertEqual(req, request) self.assertEqual(resp, {'a':'1'}) self.assertEqual(view_inst.__class__, View) self.assertEqual(ctx, context) return response def clone(self): return self class View(object): def __init__(self, context, request): pass def index(self): return {'a':'1'} result = self.config._derive_view(View, renderer=renderer(), attr='index') self.assertFalse(result is View) self.assertEqual(result.__module__, View.__module__) self.assertEqual(result.__doc__, View.__doc__) self.assertEqual(result.__name__, View.__name__) request = self._makeRequest() context = testing.DummyResource() self.assertEqual(result(context, request), response) def test_as_newstyle_class_requestonly_attr_and_renderer(self): response = DummyResponse() class renderer(object): def render_view(inself, req, resp, view_inst, ctx): self.assertEqual(req, request) self.assertEqual(resp, {'a':'1'}) self.assertEqual(view_inst.__class__, View) self.assertEqual(ctx, context) return response def clone(self): return self class View(object): def __init__(self, request): pass def index(self): return {'a':'1'} result = self.config.derive_view(View, renderer=renderer(), attr='index') self.assertFalse(result is View) self.assertEqual(result.__module__, View.__module__) self.assertEqual(result.__doc__, View.__doc__) self.assertEqual(result.__name__, View.__name__) request = self._makeRequest() context = testing.DummyResource() self.assertEqual(result(context, request), response) def test_as_oldstyle_cls_context_request_attr_and_renderer(self): response = DummyResponse() class renderer(object): def render_view(inself, req, resp, view_inst, ctx): self.assertEqual(req, request) self.assertEqual(resp, {'a':'1'}) self.assertEqual(view_inst.__class__, View) self.assertEqual(ctx, context) return response def clone(self): return self class View: def __init__(self, context, request): pass def index(self): return {'a':'1'} result = self.config.derive_view(View, renderer=renderer(), attr='index') self.assertFalse(result is View) self.assertEqual(result.__module__, View.__module__) self.assertEqual(result.__doc__, View.__doc__) self.assertEqual(result.__name__, View.__name__) request = self._makeRequest() context = testing.DummyResource() self.assertEqual(result(context, request), response) def test_as_oldstyle_cls_requestonly_attr_and_renderer(self): response = DummyResponse() class renderer(object): def render_view(inself, req, resp, view_inst, ctx): self.assertEqual(req, request) self.assertEqual(resp, {'a':'1'}) self.assertEqual(view_inst.__class__, View) self.assertEqual(ctx, context) return response def clone(self): return self class View: def __init__(self, request): pass def index(self): return {'a':'1'} result = self.config.derive_view(View, renderer=renderer(), attr='index') self.assertFalse(result is View) self.assertEqual(result.__module__, View.__module__) self.assertEqual(result.__doc__, View.__doc__) self.assertEqual(result.__name__, View.__name__) request = self._makeRequest() context = testing.DummyResource() self.assertEqual(result(context, request), response) def test_as_instance_context_and_request_attr_and_renderer(self): response = DummyResponse() class renderer(object): def render_view(inself, req, resp, view_inst, ctx): self.assertEqual(req, request) self.assertEqual(resp, {'a':'1'}) self.assertEqual(view_inst, view) self.assertEqual(ctx, context) return response def clone(self): return self class View: def index(self, context, request): return {'a':'1'} view = View() result = self.config.derive_view(view, renderer=renderer(), attr='index') self.assertFalse(result is view) self.assertEqual(result.__module__, view.__module__) self.assertEqual(result.__doc__, view.__doc__) request = self._makeRequest() context = testing.DummyResource() self.assertEqual(result(context, request), response) def test_as_instance_requestonly_attr_and_renderer(self): response = DummyResponse() class renderer(object): def render_view(inself, req, resp, view_inst, ctx): self.assertEqual(req, request) self.assertEqual(resp, {'a':'1'}) self.assertEqual(view_inst, view) self.assertEqual(ctx, context) return response def clone(self): return self class View: def index(self, request): return {'a':'1'} view = View() result = self.config.derive_view(view, renderer=renderer(), attr='index') self.assertFalse(result is view) self.assertEqual(result.__module__, view.__module__) self.assertEqual(result.__doc__, view.__doc__) request = self._makeRequest() context = testing.DummyResource() self.assertEqual(result(context, request), response) def test_with_view_mapper_config_specified(self): response = DummyResponse() class mapper(object): def __init__(self, **kw): self.kw = kw def __call__(self, view): def wrapped(context, request): return response return wrapped def view(context, request): return 'NOTOK' result = self.config._derive_view(view, mapper=mapper) self.assertFalse(result.__wraps__ is view) self.assertEqual(result(None, None), response) def test_with_view_mapper_view_specified(self): from pyramid.response import Response response = Response() def mapper(**kw): def inner(view): def superinner(context, request): self.assertEqual(request, None) return response return superinner return inner def view(context, request): return 'NOTOK' view.__view_mapper__ = mapper result = self.config.derive_view(view) self.assertFalse(result.__wraps__ is view) self.assertEqual(result(None, None), response) def test_with_view_mapper_default_mapper_specified(self): from pyramid.response import Response response = Response() def mapper(**kw): def inner(view): def superinner(context, request): self.assertEqual(request, None) return response return superinner return inner self.config.set_view_mapper(mapper) def view(context, request): return 'NOTOK' result = self.config.derive_view(view) self.assertFalse(result.__wraps__ is view) self.assertEqual(result(None, None), response) def test_attr_wrapped_view_branching_default_phash(self): from pyramid.config.util import DEFAULT_PHASH def view(context, request): pass result = self.config._derive_view(view, phash=DEFAULT_PHASH) self.assertEqual(result.__wraps__, view) def test_attr_wrapped_view_branching_nondefault_phash(self): def view(context, request): pass result = self.config._derive_view(view, phash='nondefault') self.assertNotEqual(result, view) def test_http_cached_view_integer(self): import datetime from pyramid.response import Response response = Response('OK') def inner_view(context, request): return response result = self.config._derive_view(inner_view, http_cache=3600) self.assertFalse(result is inner_view) self.assertEqual(inner_view.__module__, result.__module__) self.assertEqual(inner_view.__doc__, result.__doc__) request = self._makeRequest() when = datetime.datetime.utcnow() + datetime.timedelta(hours=1) result = result(None, request) self.assertEqual(result, response) headers = dict(result.headerlist) expires = parse_httpdate(headers['Expires']) assert_similar_datetime(expires, when) self.assertEqual(headers['Cache-Control'], 'max-age=3600') def test_http_cached_view_timedelta(self): import datetime from pyramid.response import Response response = Response('OK') def inner_view(context, request): return response result = self.config._derive_view(inner_view, http_cache=datetime.timedelta(hours=1)) self.assertFalse(result is inner_view) self.assertEqual(inner_view.__module__, result.__module__) self.assertEqual(inner_view.__doc__, result.__doc__) request = self._makeRequest() when = datetime.datetime.utcnow() + datetime.timedelta(hours=1) result = result(None, request) self.assertEqual(result, response) headers = dict(result.headerlist) expires = parse_httpdate(headers['Expires']) assert_similar_datetime(expires, when) self.assertEqual(headers['Cache-Control'], 'max-age=3600') def test_http_cached_view_tuple(self): import datetime from pyramid.response import Response response = Response('OK') def inner_view(context, request): return response result = self.config._derive_view(inner_view, http_cache=(3600, {'public':True})) self.assertFalse(result is inner_view) self.assertEqual(inner_view.__module__, result.__module__) self.assertEqual(inner_view.__doc__, result.__doc__) request = self._makeRequest() when = datetime.datetime.utcnow() + datetime.timedelta(hours=1) result = result(None, request) self.assertEqual(result, response) headers = dict(result.headerlist) expires = parse_httpdate(headers['Expires']) assert_similar_datetime(expires, when) self.assertEqual(headers['Cache-Control'], 'max-age=3600, public') def test_http_cached_view_tuple_seconds_None(self): from pyramid.response import Response response = Response('OK') def inner_view(context, request): return response result = self.config._derive_view(inner_view, http_cache=(None, {'public':True})) self.assertFalse(result is inner_view) self.assertEqual(inner_view.__module__, result.__module__) self.assertEqual(inner_view.__doc__, result.__doc__) request = self._makeRequest() result = result(None, request) self.assertEqual(result, response) headers = dict(result.headerlist) self.assertFalse('Expires' in headers) self.assertEqual(headers['Cache-Control'], 'public') def test_http_cached_view_prevent_auto_set(self): from pyramid.response import Response response = Response() response.cache_control.prevent_auto = True def inner_view(context, request): return response result = self.config._derive_view(inner_view, http_cache=3600) request = self._makeRequest() result = result(None, request) self.assertEqual(result, response) # doesn't blow up headers = dict(result.headerlist) self.assertFalse('Expires' in headers) self.assertFalse('Cache-Control' in headers) def test_http_cached_prevent_http_cache_in_settings(self): self.config.registry.settings['prevent_http_cache'] = True from pyramid.response import Response response = Response() def inner_view(context, request): return response result = self.config._derive_view(inner_view, http_cache=3600) request = self._makeRequest() result = result(None, request) self.assertEqual(result, response) headers = dict(result.headerlist) self.assertFalse('Expires' in headers) self.assertFalse('Cache-Control' in headers) def test_http_cached_view_bad_tuple(self): def view(request): pass self.assertRaises(ConfigurationError, self.config._derive_view, view, http_cache=(None,)) def test_csrf_view_ignores_GET(self): response = DummyResponse() def inner_view(request): return response request = self._makeRequest() request.method = 'GET' view = self.config._derive_view(inner_view, require_csrf=True) result = view(None, request) self.assertTrue(result is response) def test_csrf_view_fails_with_bad_POST_header(self): from pyramid.exceptions import BadCSRFToken def inner_view(request): pass request = self._makeRequest() request.scheme = "http" request.method = 'POST' request.session = DummySession({'csrf_token': 'foo'}) request.headers = {'X-CSRF-Token': 'bar'} view = self.config._derive_view(inner_view, require_csrf=True) self.assertRaises(BadCSRFToken, lambda: view(None, request)) def test_csrf_view_passes_with_good_POST_header(self): response = DummyResponse() def inner_view(request): return response request = self._makeRequest() request.scheme = "http" request.method = 'POST' request.session = DummySession({'csrf_token': 'foo'}) request.headers = {'X-CSRF-Token': 'foo'} view = self.config._derive_view(inner_view, require_csrf=True) result = view(None, request) self.assertTrue(result is response) def test_csrf_view_fails_with_bad_POST_token(self): from pyramid.exceptions import BadCSRFToken def inner_view(request): pass request = self._makeRequest() request.scheme = "http" request.method = 'POST' request.session = DummySession({'csrf_token': 'foo'}) request.POST = {'csrf_token': 'bar'} view = self.config._derive_view(inner_view, require_csrf=True) self.assertRaises(BadCSRFToken, lambda: view(None, request)) def test_csrf_view_passes_with_good_POST_token(self): response = DummyResponse() def inner_view(request): return response request = self._makeRequest() request.scheme = "http" request.method = 'POST' request.session = DummySession({'csrf_token': 'foo'}) request.POST = {'csrf_token': 'foo'} view = self.config._derive_view(inner_view, require_csrf=True) result = view(None, request) self.assertTrue(result is response) def test_csrf_view_https_domain(self): response = DummyResponse() def inner_view(request): return response request = self._makeRequest() request.scheme = "https" request.domain = "example.com" request.host_port = "443" request.referrer = "https://example.com/login/" request.method = 'POST' request.session = DummySession({'csrf_token': 'foo'}) request.POST = {'csrf_token': 'foo'} view = self.config._derive_view(inner_view, require_csrf=True) result = view(None, request) self.assertTrue(result is response) def test_csrf_view_fails_on_bad_PUT_header(self): from pyramid.exceptions import BadCSRFToken def inner_view(request): pass request = self._makeRequest() request.scheme = "http" request.method = 'PUT' request.session = DummySession({'csrf_token': 'foo'}) request.headers = {'X-CSRF-Token': 'bar'} view = self.config._derive_view(inner_view, require_csrf=True) self.assertRaises(BadCSRFToken, lambda: view(None, request)) def test_csrf_view_fails_on_bad_referrer(self): from pyramid.exceptions import BadCSRFOrigin def inner_view(request): pass request = self._makeRequest() request.method = "POST" request.scheme = "https" request.host_port = "443" request.domain = "example.com" request.referrer = "https://not-example.com/evil/" request.registry.settings = {} view = self.config._derive_view(inner_view, require_csrf=True) self.assertRaises(BadCSRFOrigin, lambda: view(None, request)) def test_csrf_view_fails_on_bad_origin(self): from pyramid.exceptions import BadCSRFOrigin def inner_view(request): pass request = self._makeRequest() request.method = "POST" request.scheme = "https" request.host_port = "443" request.domain = "example.com" request.headers = {"Origin": "https://not-example.com/evil/"} request.registry.settings = {} view = self.config._derive_view(inner_view, require_csrf=True) self.assertRaises(BadCSRFOrigin, lambda: view(None, request)) def test_csrf_view_enabled_by_default(self): from pyramid.exceptions import BadCSRFToken def inner_view(request): pass request = self._makeRequest() request.scheme = "http" request.method = 'POST' request.session = DummySession({'csrf_token': 'foo'}) self.config.set_default_csrf_options(require_csrf=True) view = self.config._derive_view(inner_view) self.assertRaises(BadCSRFToken, lambda: view(None, request)) def test_csrf_view_enabled_via_callback(self): def callback(request): return True from pyramid.exceptions import BadCSRFToken def inner_view(request): pass request = self._makeRequest() request.scheme = "http" request.method = 'POST' request.session = DummySession({'csrf_token': 'foo'}) self.config.set_default_csrf_options(require_csrf=True, callback=callback) view = self.config._derive_view(inner_view) self.assertRaises(BadCSRFToken, lambda: view(None, request)) def test_csrf_view_disabled_via_callback(self): def callback(request): return False response = DummyResponse() def inner_view(request): return response request = self._makeRequest() request.scheme = "http" request.method = 'POST' request.session = DummySession({'csrf_token': 'foo'}) self.config.set_default_csrf_options(require_csrf=True, callback=callback) view = self.config._derive_view(inner_view) result = view(None, request) self.assertTrue(result is response) def test_csrf_view_uses_custom_csrf_token(self): response = DummyResponse() def inner_view(request): return response request = self._makeRequest() request.scheme = "http" request.method = 'POST' request.session = DummySession({'csrf_token': 'foo'}) request.POST = {'DUMMY': 'foo'} self.config.set_default_csrf_options(require_csrf=True, token='DUMMY') view = self.config._derive_view(inner_view) result = view(None, request) self.assertTrue(result is response) def test_csrf_view_uses_custom_csrf_header(self): response = DummyResponse() def inner_view(request): return response request = self._makeRequest() request.scheme = "http" request.method = 'POST' request.session = DummySession({'csrf_token': 'foo'}) request.headers = {'DUMMY': 'foo'} self.config.set_default_csrf_options(require_csrf=True, header='DUMMY') view = self.config._derive_view(inner_view) result = view(None, request) self.assertTrue(result is response) def test_csrf_view_uses_custom_methods(self): response = DummyResponse() def inner_view(request): return response request = self._makeRequest() request.scheme = "http" request.method = 'PUT' request.session = DummySession({'csrf_token': 'foo'}) self.config.set_default_csrf_options( require_csrf=True, safe_methods=['PUT']) view = self.config._derive_view(inner_view) result = view(None, request) self.assertTrue(result is response) def test_csrf_view_uses_view_option_override(self): response = DummyResponse() def inner_view(request): return response request = self._makeRequest() request.scheme = "http" request.method = 'POST' request.session = DummySession({'csrf_token': 'foo'}) request.POST = {'csrf_token': 'bar'} self.config.set_default_csrf_options(require_csrf=True) view = self.config._derive_view(inner_view, require_csrf=False) result = view(None, request) self.assertTrue(result is response) def test_csrf_view_skipped_by_default_on_exception_view(self): from pyramid.request import Request def view(request): raise ValueError def excview(request): return 'hello' self.config.set_default_csrf_options(require_csrf=True) self.config.set_session_factory( lambda request: DummySession({'csrf_token': 'foo'})) self.config.add_view(view, name='foo', require_csrf=False) self.config.add_view(excview, context=ValueError, renderer='string') app = self.config.make_wsgi_app() request = Request.blank('/foo', base_url='http://example.com') request.method = 'POST' response = request.get_response(app) self.assertTrue(b'hello' in response.body) def test_csrf_view_failed_on_explicit_exception_view(self): from pyramid.exceptions import BadCSRFToken from pyramid.request import Request def view(request): raise ValueError def excview(request): pass self.config.set_default_csrf_options(require_csrf=True) self.config.set_session_factory( lambda request: DummySession({'csrf_token': 'foo'})) self.config.add_view(view, name='foo', require_csrf=False) self.config.add_view(excview, context=ValueError, renderer='string', require_csrf=True) app = self.config.make_wsgi_app() request = Request.blank('/foo', base_url='http://example.com') request.method = 'POST' try: request.get_response(app) except BadCSRFToken: pass else: # pragma: no cover raise AssertionError def test_csrf_view_passed_on_explicit_exception_view(self): from pyramid.request import Request def view(request): raise ValueError def excview(request): return 'hello' self.config.set_default_csrf_options(require_csrf=True) self.config.set_session_factory( lambda request: DummySession({'csrf_token': 'foo'})) self.config.add_view(view, name='foo', require_csrf=False) self.config.add_view(excview, context=ValueError, renderer='string', require_csrf=True) app = self.config.make_wsgi_app() request = Request.blank('/foo', base_url='http://example.com') request.method = 'POST' request.headers['X-CSRF-Token'] = 'foo' response = request.get_response(app) self.assertTrue(b'hello' in response.body) class TestDerivationOrder(unittest.TestCase): def setUp(self): self.config = testing.setUp() def tearDown(self): self.config = None testing.tearDown() def test_right_order_user_sorted(self): from pyramid.interfaces import IViewDerivers self.config.add_view_deriver(None, 'deriv1') self.config.add_view_deriver(None, 'deriv2', 'decorated_view', 'deriv1') self.config.add_view_deriver(None, 'deriv3', 'deriv2', 'deriv1') derivers = self.config.registry.getUtility(IViewDerivers) derivers_sorted = derivers.sorted() dlist = [d for (d, _) in derivers_sorted] self.assertEqual([ 'secured_view', 'csrf_view', 'owrapped_view', 'http_cached_view', 'decorated_view', 'deriv2', 'deriv3', 'deriv1', 'rendered_view', 'mapped_view', ], dlist) def test_right_order_implicit(self): from pyramid.interfaces import IViewDerivers self.config.add_view_deriver(None, 'deriv1') self.config.add_view_deriver(None, 'deriv2') self.config.add_view_deriver(None, 'deriv3') derivers = self.config.registry.getUtility(IViewDerivers) derivers_sorted = derivers.sorted() dlist = [d for (d, _) in derivers_sorted] self.assertEqual([ 'secured_view', 'csrf_view', 'owrapped_view', 'http_cached_view', 'decorated_view', 'deriv3', 'deriv2', 'deriv1', 'rendered_view', 'mapped_view', ], dlist) def test_right_order_under_rendered_view(self): from pyramid.interfaces import IViewDerivers self.config.add_view_deriver(None, 'deriv1', 'rendered_view', 'mapped_view') derivers = self.config.registry.getUtility(IViewDerivers) derivers_sorted = derivers.sorted() dlist = [d for (d, _) in derivers_sorted] self.assertEqual([ 'secured_view', 'csrf_view', 'owrapped_view', 'http_cached_view', 'decorated_view', 'rendered_view', 'deriv1', 'mapped_view', ], dlist) def test_right_order_under_rendered_view_others(self): from pyramid.interfaces import IViewDerivers self.config.add_view_deriver(None, 'deriv1', 'rendered_view', 'mapped_view') self.config.add_view_deriver(None, 'deriv2') self.config.add_view_deriver(None, 'deriv3') derivers = self.config.registry.getUtility(IViewDerivers) derivers_sorted = derivers.sorted() dlist = [d for (d, _) in derivers_sorted] self.assertEqual([ 'secured_view', 'csrf_view', 'owrapped_view', 'http_cached_view', 'decorated_view', 'deriv3', 'deriv2', 'rendered_view', 'deriv1', 'mapped_view', ], dlist) class TestAddDeriver(unittest.TestCase): def setUp(self): self.config = testing.setUp() def tearDown(self): self.config = None testing.tearDown() def test_add_single_deriver(self): response = DummyResponse() response.deriv = False view = lambda *arg: response def deriv(view, info): self.assertFalse(response.deriv) response.deriv = True return view result = self.config._derive_view(view) self.assertFalse(response.deriv) self.config.add_view_deriver(deriv, 'test_deriv') result = self.config._derive_view(view) self.assertTrue(response.deriv) def test_override_deriver(self): flags = {} class AView: def __init__(self): self.response = DummyResponse() def deriv1(view, info): flags['deriv1'] = True return view def deriv2(view, info): flags['deriv2'] = True return view view1 = AView() self.config.add_view_deriver(deriv1, 'test_deriv') result = self.config._derive_view(view1) self.assertTrue(flags.get('deriv1')) self.assertFalse(flags.get('deriv2')) flags.clear() view2 = AView() self.config.add_view_deriver(deriv2, 'test_deriv') result = self.config._derive_view(view2) self.assertFalse(flags.get('deriv1')) self.assertTrue(flags.get('deriv2')) def test_override_mapped_view(self): from pyramid.viewderivers import VIEW response = DummyResponse() view = lambda *arg: response flags = {} def deriv1(view, info): flags['deriv1'] = True return view result = self.config._derive_view(view) self.assertFalse(flags.get('deriv1')) flags.clear() self.config.add_view_deriver( deriv1, name='mapped_view', under='rendered_view', over=VIEW) result = self.config._derive_view(view) self.assertTrue(flags.get('deriv1')) def test_add_multi_derivers_ordered(self): from pyramid.viewderivers import INGRESS response = DummyResponse() view = lambda *arg: response response.deriv = [] def deriv1(view, info): response.deriv.append('deriv1') return view def deriv2(view, info): response.deriv.append('deriv2') return view def deriv3(view, info): response.deriv.append('deriv3') return view self.config.add_view_deriver(deriv1, 'deriv1') self.config.add_view_deriver(deriv2, 'deriv2', INGRESS, 'deriv1') self.config.add_view_deriver(deriv3, 'deriv3', 'deriv2', 'deriv1') result = self.config._derive_view(view) self.assertEqual(response.deriv, ['deriv1', 'deriv3', 'deriv2']) def test_add_deriver_without_name(self): from pyramid.interfaces import IViewDerivers def deriv1(view, info): pass self.config.add_view_deriver(deriv1) derivers = self.config.registry.getUtility(IViewDerivers) self.assertTrue('deriv1' in derivers.names) def test_add_deriver_reserves_ingress(self): from pyramid.exceptions import ConfigurationError from pyramid.viewderivers import INGRESS def deriv1(view, info): pass self.assertRaises( ConfigurationError, self.config.add_view_deriver, deriv1, INGRESS) def test_add_deriver_enforces_ingress_is_first(self): from pyramid.exceptions import ConfigurationError from pyramid.viewderivers import INGRESS def deriv1(view, info): pass try: self.config.add_view_deriver(deriv1, over=INGRESS) except ConfigurationError as ex: self.assertTrue('cannot be over INGRESS' in ex.args[0]) else: # pragma: no cover raise AssertionError def test_add_deriver_enforces_view_is_last(self): from pyramid.exceptions import ConfigurationError from pyramid.viewderivers import VIEW def deriv1(view, info): pass try: self.config.add_view_deriver(deriv1, under=VIEW) except ConfigurationError as ex: self.assertTrue('cannot be under VIEW' in ex.args[0]) else: # pragma: no cover raise AssertionError def test_add_deriver_enforces_mapped_view_is_last(self): from pyramid.exceptions import ConfigurationError def deriv1(view, info): pass try: self.config.add_view_deriver(deriv1, 'deriv1', under='mapped_view') except ConfigurationError as ex: self.assertTrue('cannot be under "mapped_view"' in ex.args[0]) else: # pragma: no cover raise AssertionError class TestDeriverIntegration(unittest.TestCase): def setUp(self): self.config = testing.setUp() def tearDown(self): self.config = None testing.tearDown() def _getViewCallable(self, config, ctx_iface=None, request_iface=None, name=''): from zope.interface import Interface from pyramid.interfaces import IRequest from pyramid.interfaces import IView from pyramid.interfaces import IViewClassifier classifier = IViewClassifier if ctx_iface is None: ctx_iface = Interface if request_iface is None: request_iface = IRequest return config.registry.adapters.lookup( (classifier, request_iface, ctx_iface), IView, name=name, default=None) def _makeRequest(self, config): request = DummyRequest() request.registry = config.registry return request def test_view_options(self): response = DummyResponse() view = lambda *arg: response response.deriv = [] def deriv1(view, info): response.deriv.append(info.options['deriv1']) return view deriv1.options = ('deriv1',) def deriv2(view, info): response.deriv.append(info.options['deriv2']) return view deriv2.options = ('deriv2',) self.config.add_view_deriver(deriv1, 'deriv1') self.config.add_view_deriver(deriv2, 'deriv2') self.config.add_view(view, deriv1='test1', deriv2='test2') wrapper = self._getViewCallable(self.config) request = self._makeRequest(self.config) request.method = 'GET' self.assertEqual(wrapper(None, request), response) self.assertEqual(['test1', 'test2'], response.deriv) def test_unexpected_view_options(self): from pyramid.exceptions import ConfigurationError def deriv1(view, info): pass self.config.add_view_deriver(deriv1, 'deriv1') self.assertRaises( ConfigurationError, lambda: self.config.add_view(lambda r: {}, deriv1='test1')) @implementer(IResponse) class DummyResponse(object): content_type = None default_content_type = None body = None class DummyRequest: subpath = () matchdict = None request_iface = IRequest def __init__(self, environ=None): if environ is None: environ = {} self.environ = environ self.params = {} self.POST = {} self.cookies = {} self.headers = {} self.response = DummyResponse() class DummyLogger: def __init__(self): self.messages = [] def info(self, msg): self.messages.append(msg) warn = info debug = info class DummySecurityPolicy: def __init__(self, permitted=True): self.permitted = permitted def effective_principals(self, request): return [] def permits(self, context, principals, permission): return self.permitted class DummySession(dict): def get_csrf_token(self): return self['csrf_token'] def parse_httpdate(s): import datetime # cannot use %Z, must use literal GMT; Jython honors timezone # but CPython does not return datetime.datetime.strptime(s, "%a, %d %b %Y %H:%M:%S GMT") def assert_similar_datetime(one, two): for attr in ('year', 'month', 'day', 'hour', 'minute'): one_attr = getattr(one, attr) two_attr = getattr(two, attr) if not one_attr == two_attr: # pragma: no cover raise AssertionError('%r != %r in %s' % (one_attr, two_attr, attr))
40.632312
84
0.633167
2eb1aa285d90f9682ed0aaf0c389501fd4f045ee
971
py
Python
blog/urls.py
samiksha-patil/Knowledge-Sharing-Platform
22e61a659d5ad63fe656fa639dc897cbdebad4fe
[ "bzip2-1.0.6" ]
1
2021-05-09T08:18:49.000Z
2021-05-09T08:18:49.000Z
blog/urls.py
samiksha-patil/Knowledge-Sharing-Platform
22e61a659d5ad63fe656fa639dc897cbdebad4fe
[ "bzip2-1.0.6" ]
9
2021-03-19T01:11:35.000Z
2022-03-12T00:20:13.000Z
blog/urls.py
samiksha-patil/Knowledge-Sharing-Platform
22e61a659d5ad63fe656fa639dc897cbdebad4fe
[ "bzip2-1.0.6" ]
null
null
null
from django.urls import path from . import views from django.conf.urls import url from .views import PostListView,PostDetailView,PostCreateView,PostUpdateView,PostDeleteView,UserPostListView,UserAnswerListView urlpatterns = [ path('',PostListView.as_view(),name='blog-home'), path('post/<int:pk>/',PostDetailView.as_view(),name='post-detail'), path('post/new/',PostCreateView.as_view(),name='post-create'), path('post/<int:pk>/update/',PostUpdateView.as_view(),name='post-update'), path('post/<int:pk>/delete/',PostDeleteView.as_view(),name='post-delete'), path('user/<str:username>',UserPostListView.as_view(),name='user-posts'), # path('post/<int:pk>/answer/',AnswerCreateView.as_view(), name='add_answer_to_post'), path('post/<int:pk>/answer/', views.add_answer_to_post, name='add_answer_to_post'), path('answer/<str:username>',UserAnswerListView.as_view(),name='user-answer'), path('prof/<int:pk>',views.prof,name='user-prof'), ]
44.136364
127
0.729145
67185af64e290521a0643af8efc9fd89c4e3e344
1,531
py
Python
sa/profiles/DLink/DVG/ping.py
prorevizor/noc
37e44b8afc64318b10699c06a1138eee9e7d6a4e
[ "BSD-3-Clause" ]
84
2017-10-22T11:01:39.000Z
2022-02-27T03:43:48.000Z
sa/profiles/DLink/DVG/ping.py
prorevizor/noc
37e44b8afc64318b10699c06a1138eee9e7d6a4e
[ "BSD-3-Clause" ]
22
2017-12-11T07:21:56.000Z
2021-09-23T02:53:50.000Z
sa/profiles/DLink/DVG/ping.py
prorevizor/noc
37e44b8afc64318b10699c06a1138eee9e7d6a4e
[ "BSD-3-Clause" ]
23
2017-12-06T06:59:52.000Z
2022-02-24T00:02:25.000Z
# --------------------------------------------------------------------- # DLink.DVG.ping # --------------------------------------------------------------------- # Copyright (C) 2007-2011 The NOC Project # See LICENSE for details # --------------------------------------------------------------------- # Python modules import re # NOC modules from noc.core.script.base import BaseScript from noc.sa.interfaces.iping import IPing class Script(BaseScript): name = "DLink.DVG.ping" interface = IPing rx_result = re.compile( r"^(?P<count>\d+) packets transmitted, (?P<success>\d+) " r"(packets received|received), \d+% packet loss$", re.MULTILINE, ) rx_stat = re.compile( r"^round-trip min/avg/max = (?P<min>.+)/(?P<avg>.+)/(?P<max>.+) ms$", re.MULTILINE ) def execute(self, address, count=None, source_address=None, size=None, df=None): cmd = "ping %s" % address if count: cmd += " %d" % int(count) else: cmd += " 5" if size: cmd += " %d" % int(size) else: cmd += " 64" ping = self.cli(cmd) result = self.rx_result.search(ping) if result: r = {"success": result.group("success"), "count": result.group("count")} else: raise self.NotSupportedError() stat = self.rx_stat.search(ping) if stat: r.update({"min": stat.group("min"), "avg": stat.group("avg"), "max": stat.group("max")}) return r
31.244898
100
0.472894
9a129b601df40ff4df214bf709dcf1c690cd8c54
13,619
py
Python
appion/bin/pyace2.py
leschzinerlab/myami-3.2-freeHand
974b8a48245222de0d9cfb0f433533487ecce60d
[ "MIT" ]
null
null
null
appion/bin/pyace2.py
leschzinerlab/myami-3.2-freeHand
974b8a48245222de0d9cfb0f433533487ecce60d
[ "MIT" ]
null
null
null
appion/bin/pyace2.py
leschzinerlab/myami-3.2-freeHand
974b8a48245222de0d9cfb0f433533487ecce60d
[ "MIT" ]
1
2019-09-05T20:58:37.000Z
2019-09-05T20:58:37.000Z
#!/usr/bin/env python #pythonlib import os import re import sys import math import time import glob import numpy import shutil import subprocess #appion from appionlib import apFile from appionlib import apParam from appionlib import apImage from appionlib import apDisplay from appionlib import apDatabase from appionlib import appiondata from appionlib import appionLoop2 from appionlib import apInstrument from appionlib.apCtf import ctfdb from appionlib.apCtf import ctfinsert # other myami from pyami import mrc, primefactor, imagefun class Ace2Loop(appionLoop2.AppionLoop): """ appion Loop function that runs Craig's ace2 program to estimate the CTF in images """ #====================== def setProcessingDirName(self): self.processdirname = "ctf" #====================== def preLoopFunctions(self): self.powerspecdir = os.path.join(self.params['rundir'], "opimages") apParam.createDirectory(self.powerspecdir, warning=False) self.ace2exe = self.getACE2Path() self.ctfrundata = None return #====================== def getACE2Path(self): exename = 'ace2.exe' ace2exe = subprocess.Popen("which "+exename, shell=True, stdout=subprocess.PIPE).stdout.read().strip() if not os.path.isfile(ace2exe): ace2exe = os.path.join(apParam.getAppionDirectory(), 'bin', exename) if not os.path.isfile(ace2exe): apDisplay.printError(exename+" was not found at: "+apParam.getAppionDirectory()) return ace2exe #====================== def postLoopFunctions(self): pattern = os.path.join(self.params['rundir'], self.params['sessionname']+'*.corrected.mrc') apFile.removeFilePattern(pattern) ctfdb.printCtfSummary(self.params, self.imgtree) #====================== def reprocessImage(self, imgdata): """ Returns True, if an image should be reprocessed False, if an image was processed and should NOT be reprocessed None, if image has not yet been processed e.g. a confidence less than 80% """ if self.params['reprocess'] is None: return True ctfvalue = ctfdb.getBestCtfByResolution(imgdata, msg=False) if ctfvalue is None: return True if conf > self.params['reprocess']: # small, unbinned images can give same defocus values for 1 & 2: if self.params['bin'] == 1 or ctfvalue['defocus1'] != ctfvalue['defocus2']: return False return True #====================== def processImage(self, imgdata): self.ctfvalues = {} bestdef = ctfdb.getBestCtfByResolution(imgdata, msg=True) apix = apDatabase.getPixelSize(imgdata) if (not (self.params['onepass'] and self.params['zeropass'])): maskhighpass = False ace2inputpath = os.path.join(imgdata['session']['image path'],imgdata['filename']+".mrc") else: maskhighpass = True filterimg = apImage.maskHighPassFilter(imgdata['image'],apix,1,self.params['zeropass'],self.params['onepass']) ace2inputpath = os.path.join(self.params['rundir'],imgdata['filename']+".mrc") mrc.write(filterimg,ace2inputpath) # make sure that the image is a square dimx = imgdata['camera']['dimension']['x'] dimy = imgdata['camera']['dimension']['y'] if dimx != dimy: dims = [dimx,dimy] dims.sort() apDisplay.printMsg("resizing image: %ix%i to %ix%i" % (dimx,dimy,dims[0],dims[0])) mrcarray = apImage.mrcToArray(ace2inputpath,msg=False) clippedmrc = apImage.frame_cut(mrcarray,[dims[0],dims[0]]) ace2inputpath = os.path.join(self.params['rundir'],imgdata['filename']+".mrc") apImage.arrayToMrc(clippedmrc,ace2inputpath,msg=False) ### pad out image to speed up FFT calculations for non-standard image sizes print "checking prime factor" if primefactor.isGoodStack(dimx) is False: goodsize = primefactor.getNextEvenPrime(dimx) factor = float(goodsize) / float(dimx) apDisplay.printMsg("padding image: %ix%i to %ix%i" % (dimx,dimy,dimx*factor,dimy*factor)) mrcarray = apImage.mrcToArray(ace2inputpath,msg=False) # paddedmrc = imagefun.pad(mrcarray, None, factor) paddedmrc = apImage.frame_constant(mrcarray, (dimx*factor,dimy*factor), cval=mrcarray.mean()) ace2inputpath = os.path.join(self.params['rundir'],imgdata['filename']+".mrc") apImage.arrayToMrc(paddedmrc,ace2inputpath,msg=False) inputparams = { 'input': ace2inputpath, 'cs': self.params['cs'], 'kv': imgdata['scope']['high tension']/1000.0, 'apix': apix, 'binby': self.params['bin'], } ### make standard input for ACE 2 apDisplay.printMsg("Ace2 executable: "+self.ace2exe) commandline = ( self.ace2exe + " -i " + str(inputparams['input']) + " -b " + str(inputparams['binby']) + " -c " + str(inputparams['cs']) + " -k " + str(inputparams['kv']) + " -a " + str(inputparams['apix']) + " -e " + str(self.params['edge_b'])+","+str(self.params['edge_t']) + " -r " + str(self.params['rotblur']) + "\n" ) ### run ace2 apDisplay.printMsg("running ace2 at "+time.asctime()) apDisplay.printColor(commandline, "purple") t0 = time.time() if self.params['verbose'] is True: ace2proc = subprocess.Popen(commandline, shell=True) else: aceoutf = open("ace2.out", "a") aceerrf = open("ace2.err", "a") ace2proc = subprocess.Popen(commandline, shell=True, stderr=aceerrf, stdout=aceoutf) ace2proc.wait() ### check if ace2 worked basename = os.path.basename(ace2inputpath) imagelog = basename+".ctf.txt" if not os.path.isfile(imagelog) and self.stats['count'] <= 1: ### ace2 always crashes on first image??? .fft_wisdom file?? time.sleep(1) if self.params['verbose'] is True: ace2proc = subprocess.Popen(commandline, shell=True) else: aceoutf = open("ace2.out", "a") aceerrf = open("ace2.err", "a") ace2proc = subprocess.Popen(commandline, shell=True, stderr=aceerrf, stdout=aceoutf) ace2proc.wait() if self.params['verbose'] is False: aceoutf.close() aceerrf.close() if not os.path.isfile(imagelog): lddcmd = "ldd "+self.ace2exe lddproc = subprocess.Popen(lddcmd, shell=True) lddproc.wait() apDisplay.printError("ace2 did not run") apDisplay.printMsg("ace2 completed in " + apDisplay.timeString(time.time()-t0)) ### parse log file self.ctfvalues = { 'cs': self.params['cs'], 'volts': imgdata['scope']['high tension'], } logf = open(imagelog, "r") apDisplay.printMsg("reading log file %s"%(imagelog)) for line in logf: sline = line.strip() if re.search("^Final Defocus: ", sline): ### old ACE2 apDisplay.printError("This old version of ACE2 has a bug in the astigmastism, please upgrade ACE2 now") #parts = sline.split() #self.ctfvalues['defocus1'] = float(parts[2]) #self.ctfvalues['defocus2'] = float(parts[3]) ### convert to degrees #self.ctfvalues['angle_astigmatism'] = math.degrees(float(parts[4])) elif re.search("^Final Defocus \(m,m,deg\):", sline): ### new ACE2 apDisplay.printMsg("Reading new ACE2 defocus") parts = sline.split() #print parts self.ctfvalues['defocus1'] = float(parts[3]) self.ctfvalues['defocus2'] = float(parts[4]) # ace2 defines negative angle from +x toward +y self.ctfvalues['angle_astigmatism'] = -float(parts[5]) elif re.search("^Amplitude Contrast:",sline): parts = sline.split() self.ctfvalues['amplitude_contrast'] = float(parts[2]) elif re.search("^Confidence:",sline): parts = sline.split() self.ctfvalues['confidence'] = float(parts[1]) self.ctfvalues['confidence_d'] = float(parts[1]) logf.close() ### summary stats apDisplay.printMsg("============") avgdf = (self.ctfvalues['defocus1']+self.ctfvalues['defocus2'])/2.0 ampconst = 100.0*self.ctfvalues['amplitude_contrast'] pererror = 100.0 * (self.ctfvalues['defocus1']-self.ctfvalues['defocus2']) / avgdf apDisplay.printMsg("Defocus: %.3f x %.3f um (%.2f percent astigmatism)"% (self.ctfvalues['defocus1']*1.0e6, self.ctfvalues['defocus2']*1.0e6, pererror )) apDisplay.printMsg("Angle astigmatism: %.2f degrees"%(self.ctfvalues['angle_astigmatism'])) apDisplay.printMsg("Amplitude contrast: %.2f percent"%(ampconst)) apDisplay.printColor("Final confidence: %.3f"%(self.ctfvalues['confidence']),'cyan') ### double check that the values are reasonable if avgdf > self.params['maxdefocus'] or avgdf < self.params['mindefocus']: apDisplay.printWarning("bad defocus estimate, not committing values to database") self.badprocess = True if ampconst < 0.0 or ampconst > 80.0: apDisplay.printWarning("bad amplitude contrast, not committing values to database") self.badprocess = True if self.ctfvalues['confidence'] < 0.2: apDisplay.printWarning("bad confidence value, not committing values to database") self.badprocess = True ## create power spectra jpeg mrcfile = imgdata['filename']+".mrc.edge.mrc" if os.path.isfile(mrcfile): jpegfile = os.path.join(self.powerspecdir, apDisplay.short(imgdata['filename'])+".jpg") ps = apImage.mrcToArray(mrcfile,msg=False) c = numpy.array(ps.shape)/2.0 ps[c[0]-0,c[1]-0] = ps.mean() ps[c[0]-1,c[1]-0] = ps.mean() ps[c[0]-0,c[1]-1] = ps.mean() ps[c[0]-1,c[1]-1] = ps.mean() #print "%.3f -- %.3f -- %.3f"%(ps.min(), ps.mean(), ps.max()) ps = numpy.log(ps+1.0) ps = (ps-ps.mean())/ps.std() cutoff = -2.0*ps.min() ps = numpy.where(ps > cutoff, cutoff, ps) cutoff = ps.mean() ps = numpy.where(ps < cutoff, cutoff, ps) #print "%.3f -- %.3f -- %.3f"%(ps.min(), ps.mean(), ps.max()) apImage.arrayToJpeg(ps, jpegfile, msg=False) apFile.removeFile(mrcfile) self.ctfvalues['graph3'] = jpegfile otherfiles = glob.glob(imgdata['filename']+".*.txt") ### remove extra debugging files for filename in otherfiles: if filename[-9:] == ".norm.txt": continue elif filename[-8:] == ".ctf.txt": continue else: apFile.removeFile(filename) if maskhighpass and os.path.isfile(ace2inputpath): apFile.removeFile(ace2inputpath) return #====================== def commitToDatabase(self, imgdata): if self.ctfrundata is None: self.insertRunData() ctfinsert.validateAndInsertCTFData(imgdata, self.ctfvalues, self.ctfrundata, self.params['rundir']) return True #====================== def insertRunData(self): paramq = appiondata.ApAce2ParamsData() paramq['bin'] = self.params['bin'] paramq['reprocess'] = self.params['reprocess'] paramq['cs'] = self.params['cs'] paramq['stig'] = True paramq['min_defocus'] = self.params['mindefocus'] paramq['max_defocus'] = self.params['maxdefocus'] paramq['edge_thresh'] = self.params['edge_t'] paramq['edge_blur'] = self.params['edge_b'] paramq['rot_blur'] = self.params['rotblur'] paramq['refine2d'] = self.params['refine2d'] paramq['onepass'] = self.params['onepass'] paramq['zeropass'] = self.params['zeropass'] runq=appiondata.ApAceRunData() runq['name'] = self.params['runname'] runq['session'] = self.getSessionData() runq['hidden'] = False runq['path'] = appiondata.ApPathData(path=os.path.abspath(self.params['rundir'])) runq['ace2_params'] = paramq runq.insert() self.ctfrundata = runq #====================== def setupParserOptions(self): ### values self.parser.add_option("-b", "--bin", dest="bin", type="int", default=1, help="Binning of the image before FFT", metavar="#") self.parser.add_option("--mindefocus", dest="mindefocus", type="float", default=0.1e-6, help="Minimal acceptable defocus (in meters)", metavar="#") self.parser.add_option("--maxdefocus", dest="maxdefocus", type="float", default=15e-6, help="Maximal acceptable defocus (in meters)", metavar="#") self.parser.add_option("--edge1", dest="edge_b", type="float", default=12.0, help="Canny edge parameters Blur Sigma", metavar="#") self.parser.add_option("--edge2", dest="edge_t", type="float", default=0.001, help="Canny edge parameters Edge Treshold(0.0-1.0)", metavar="#") self.parser.add_option("--rotblur", dest="rotblur", type="float", default=0.0, help="Rotational blur for low contrast CTF (in degrees), default 0", metavar="#") ### true/false self.parser.add_option("--refine2d", dest="refine2d", default=False, action="store_true", help="Refine the defocus after initial ACE with 2d cross-correlation") self.parser.add_option("--verbose", dest="verbose", default=True, action="store_true", help="Show all ace2 messages") self.parser.add_option("--quiet", dest="verbose", default=True, action="store_false", help="Hide all ace2 messages") self.parser.add_option("--onepass", dest="onepass", type="float", help="Mask High pass filter radius for end of gradient mask in Angstroms", metavar="FLOAT") self.parser.add_option("--zeropass", dest="zeropass", type="float", help="Mask High pass filter radius for zero mask in Angstroms", metavar="FLOAT") #self.parser.add_option("--refineapix", dest="refineapix", default=False, # action="store_true", help="Refine the pixel size") #====================== def checkConflicts(self): if self.params['bin'] < 1: apDisplay.printError("bin must be positive") if (self.params['mindefocus'] is not None and (self.params['mindefocus'] > 1e-3 or self.params['mindefocus'] < 1e-9)): apDisplay.printError("min defocus is not in an acceptable range, e.g. mindefocus=1.5e-6") if (self.params['maxdefocus'] is not None and (self.params['maxdefocus'] > 1e-3 or self.params['maxdefocus'] < 1e-9)): apDisplay.printError("max defocus is not in an acceptable range, e.g. maxdefocus=1.5e-6") ### set cs value self.params['cs'] = apInstrument.getCsValueFromSession(self.getSessionData()) return if __name__ == '__main__': imgLoop = Ace2Loop() imgLoop.run()
37.414835
113
0.677363
8228e15dc3fca8b2a2bca9452ab2b2c4b3132354
225
py
Python
media_management/media_management/doctype/film_element/test_film_element.py
ashish-greycube/media_management
1f295b8ca3c54c51f3be2b48d1976c94455767b0
[ "MIT" ]
null
null
null
media_management/media_management/doctype/film_element/test_film_element.py
ashish-greycube/media_management
1f295b8ca3c54c51f3be2b48d1976c94455767b0
[ "MIT" ]
null
null
null
media_management/media_management/doctype/film_element/test_film_element.py
ashish-greycube/media_management
1f295b8ca3c54c51f3be2b48d1976c94455767b0
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright (c) 2020, GreyCube Technologies and Contributors # See license.txt from __future__ import unicode_literals # import frappe import unittest class TestFilmElement(unittest.TestCase): pass
20.454545
60
0.773333
0533b0234631e0a72023c7824a3a4ac5fd6276e5
808
py
Python
medianeg.py
lessen/src
bc09a33d22e942214df5608806b11370e21ce7e8
[ "MIT" ]
null
null
null
medianeg.py
lessen/src
bc09a33d22e942214df5608806b11370e21ce7e8
[ "MIT" ]
1
2016-12-28T22:44:52.000Z
2016-12-28T22:44:52.000Z
medianeg.py
lessen/src
bc09a33d22e942214df5608806b11370e21ce7e8
[ "MIT" ]
null
null
null
from median import median from eg import eg import time from random import random as r @eg def _med(): "pre-sorting lists only really useful for large lists (over 10,000) items" assert median([1,2,3,4,5]) == 3 assert median([1,2,4,5]) == 3 for pow in range(2,7): slow=fast=0 for i in range(100): size=int(r()*10**pow) if size < 1: continue lst1 = [x for x in range(size)] lst2 = sorted(lst1[:]) t1 = time.process_time() n1 = median(lst1,ordered=False) t2 = time.process_time() n2 = median(lst2,ordered=True) t3 = time.process_time() assert n1==n2 fast += t3-t2 slow += t2-t1 print("size: %10s slow: %8.5f fast: %8.5f slow/fast: %8.5f " % ( 10**pow,slow, fast, slow/fast)) if __name__ == "__main__": eg()
26.933333
76
0.591584
1bf623c80050edba6f7926bb1bf182f6216e54e0
470
py
Python
Aulasatualizada/execicio_curso em video/execicio_90_dicionario_em_python.py
swellington231/AulaPaython
7b72ddec4d85f4660c0c395de07a133993aa2c70
[ "MIT" ]
null
null
null
Aulasatualizada/execicio_curso em video/execicio_90_dicionario_em_python.py
swellington231/AulaPaython
7b72ddec4d85f4660c0c395de07a133993aa2c70
[ "MIT" ]
null
null
null
Aulasatualizada/execicio_curso em video/execicio_90_dicionario_em_python.py
swellington231/AulaPaython
7b72ddec4d85f4660c0c395de07a133993aa2c70
[ "MIT" ]
null
null
null
aluno = dict() aluno['nome'] = str(input('Nome: ')) aluno['média'] = float(input(f'Méida do {aluno["nome"]}: ')) if aluno['média'] >= 7: aluno['Situação '] = 'Aprovado' elif 5 <= aluno['média'] < 7: aluno['Situação'] = 'recuperação' else: aluno['Situação'] = 'reprovado' for k , v in aluno.items(): print(f'{k} é igual a {v}') # # print(f'O aluno {aluno["nome"]}') # print(f'A média foi {aluno["média"]}') # print(f'A Situação foi {aluno["situação"]}')
27.647059
60
0.587234
3b118e1063e8bc7eaabd2d0c9af22a9146ed4883
135,948
py
Python
env/lib/python3.6/site-packages/autopep8.py
phoebekaranja/Pitch1
6f64b8a330db35af0462ebdb6517cd99da810baa
[ "MIT" ]
null
null
null
env/lib/python3.6/site-packages/autopep8.py
phoebekaranja/Pitch1
6f64b8a330db35af0462ebdb6517cd99da810baa
[ "MIT" ]
6
2020-06-05T19:04:55.000Z
2021-12-13T19:50:25.000Z
virtual/lib/python3.6/site-packages/autopep8.py
LoiseMwarangu/Instagram
1bb0791a69350e0b9a3d2864d7132c6a605360d7
[ "MIT" ]
1
2019-01-17T07:17:31.000Z
2019-01-17T07:17:31.000Z
#!/usr/bin/env python # Copyright (C) 2010-2011 Hideo Hattori # Copyright (C) 2011-2013 Hideo Hattori, Steven Myint # Copyright (C) 2013-2016 Hideo Hattori, Steven Myint, Bill Wendling # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """Automatically formats Python code to conform to the PEP 8 style guide. Fixes that only need be done once can be added by adding a function of the form "fix_<code>(source)" to this module. They should return the fixed source code. These fixes are picked up by apply_global_fixes(). Fixes that depend on pycodestyle should be added as methods to FixPEP8. See the class documentation for more information. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import argparse import codecs import collections import copy import difflib import fnmatch import inspect import io import keyword import locale import os import re import signal import sys import textwrap import token import tokenize import pycodestyle try: unicode except NameError: unicode = str __version__ = '1.4' CR = '\r' LF = '\n' CRLF = '\r\n' PYTHON_SHEBANG_REGEX = re.compile(r'^#!.*\bpython[23]?\b\s*$') LAMBDA_REGEX = re.compile(r'([\w.]+)\s=\slambda\s*([\(\)=\w,\s.]*):') COMPARE_NEGATIVE_REGEX = re.compile(r'\b(not)\s+([^][)(}{]+?)\s+(in|is)\s') COMPARE_NEGATIVE_REGEX_THROUGH = re.compile(r'\b(not\s+in|is\s+not)\s') BARE_EXCEPT_REGEX = re.compile(r'except\s*:') STARTSWITH_DEF_REGEX = re.compile(r'^(async\s+def|def)\s.*\):') # For generating line shortening candidates. SHORTEN_OPERATOR_GROUPS = frozenset([ frozenset([',']), frozenset(['%']), frozenset([',', '(', '[', '{']), frozenset(['%', '(', '[', '{']), frozenset([',', '(', '[', '{', '%', '+', '-', '*', '/', '//']), frozenset(['%', '+', '-', '*', '/', '//']), ]) DEFAULT_IGNORE = 'E226,E24,W503,W690' # TODO: use pycodestyle.DEFAULT_IGNORE DEFAULT_INDENT_SIZE = 4 SELECTED_GLOBAL_FIXED_METHOD_CODES = ['W602', ] # W602 is handled separately due to the need to avoid "with_traceback". CODE_TO_2TO3 = { 'E231': ['ws_comma'], 'E721': ['idioms'], 'W601': ['has_key'], 'W603': ['ne'], 'W604': ['repr'], 'W690': ['apply', 'except', 'exitfunc', 'numliterals', 'operator', 'paren', 'reduce', 'renames', 'standarderror', 'sys_exc', 'throw', 'tuple_params', 'xreadlines']} if sys.platform == 'win32': # pragma: no cover DEFAULT_CONFIG = os.path.expanduser(r'~\.pep8') else: DEFAULT_CONFIG = os.path.join(os.getenv('XDG_CONFIG_HOME') or os.path.expanduser('~/.config'), 'pep8') PROJECT_CONFIG = ('setup.cfg', 'tox.ini', '.pep8') MAX_PYTHON_FILE_DETECTION_BYTES = 1024 def open_with_encoding(filename, encoding=None, mode='r', limit_byte_check=-1): """Return opened file with a specific encoding.""" if not encoding: encoding = detect_encoding(filename, limit_byte_check=limit_byte_check) return io.open(filename, mode=mode, encoding=encoding, newline='') # Preserve line endings def detect_encoding(filename, limit_byte_check=-1): """Return file encoding.""" try: with open(filename, 'rb') as input_file: from lib2to3.pgen2 import tokenize as lib2to3_tokenize encoding = lib2to3_tokenize.detect_encoding(input_file.readline)[0] with open_with_encoding(filename, encoding) as test_file: test_file.read(limit_byte_check) return encoding except (LookupError, SyntaxError, UnicodeDecodeError): return 'latin-1' def readlines_from_file(filename): """Return contents of file.""" with open_with_encoding(filename) as input_file: return input_file.readlines() def extended_blank_lines(logical_line, blank_lines, blank_before, indent_level, previous_logical): """Check for missing blank lines after class declaration.""" if previous_logical.startswith('def '): if blank_lines and pycodestyle.DOCSTRING_REGEX.match(logical_line): yield (0, 'E303 too many blank lines ({})'.format(blank_lines)) elif pycodestyle.DOCSTRING_REGEX.match(previous_logical): # Missing blank line between class docstring and method declaration. if ( indent_level and not blank_lines and not blank_before and logical_line.startswith(('def ')) and '(self' in logical_line ): yield (0, 'E301 expected 1 blank line, found 0') pycodestyle.register_check(extended_blank_lines) def continued_indentation(logical_line, tokens, indent_level, hang_closing, indent_char, noqa): """Override pycodestyle's function to provide indentation information.""" first_row = tokens[0][2][0] nrows = 1 + tokens[-1][2][0] - first_row if noqa or nrows == 1: return # indent_next tells us whether the next block is indented. Assuming # that it is indented by 4 spaces, then we should not allow 4-space # indents on the final continuation line. In turn, some other # indents are allowed to have an extra 4 spaces. indent_next = logical_line.endswith(':') row = depth = 0 valid_hangs = ( (DEFAULT_INDENT_SIZE,) if indent_char != '\t' else (DEFAULT_INDENT_SIZE, 2 * DEFAULT_INDENT_SIZE) ) # Remember how many brackets were opened on each line. parens = [0] * nrows # Relative indents of physical lines. rel_indent = [0] * nrows # For each depth, collect a list of opening rows. open_rows = [[0]] # For each depth, memorize the hanging indentation. hangs = [None] # Visual indents. indent_chances = {} last_indent = tokens[0][2] indent = [last_indent[1]] last_token_multiline = None line = None last_line = '' last_line_begins_with_multiline = False for token_type, text, start, end, line in tokens: newline = row < start[0] - first_row if newline: row = start[0] - first_row newline = (not last_token_multiline and token_type not in (tokenize.NL, tokenize.NEWLINE)) last_line_begins_with_multiline = last_token_multiline if newline: # This is the beginning of a continuation line. last_indent = start # Record the initial indent. rel_indent[row] = pycodestyle.expand_indent(line) - indent_level # Identify closing bracket. close_bracket = (token_type == tokenize.OP and text in ']})') # Is the indent relative to an opening bracket line? for open_row in reversed(open_rows[depth]): hang = rel_indent[row] - rel_indent[open_row] hanging_indent = hang in valid_hangs if hanging_indent: break if hangs[depth]: hanging_indent = (hang == hangs[depth]) visual_indent = (not close_bracket and hang > 0 and indent_chances.get(start[1])) if close_bracket and indent[depth]: # Closing bracket for visual indent. if start[1] != indent[depth]: yield (start, 'E124 {}'.format(indent[depth])) elif close_bracket and not hang: # closing bracket matches indentation of opening bracket's line if hang_closing: yield (start, 'E133 {}'.format(indent[depth])) elif indent[depth] and start[1] < indent[depth]: # Visual indent is broken. yield (start, 'E128 {}'.format(indent[depth])) elif (hanging_indent or (indent_next and rel_indent[row] == 2 * DEFAULT_INDENT_SIZE)): # Hanging indent is verified. if close_bracket and not hang_closing: yield (start, 'E123 {}'.format(indent_level + rel_indent[open_row])) hangs[depth] = hang elif visual_indent is True: # Visual indent is verified. indent[depth] = start[1] elif visual_indent in (text, unicode): # Ignore token lined up with matching one from a previous line. pass else: one_indented = (indent_level + rel_indent[open_row] + DEFAULT_INDENT_SIZE) # Indent is broken. if hang <= 0: error = ('E122', one_indented) elif indent[depth]: error = ('E127', indent[depth]) elif not close_bracket and hangs[depth]: error = ('E131', one_indented) elif hang > DEFAULT_INDENT_SIZE: error = ('E126', one_indented) else: hangs[depth] = hang error = ('E121', one_indented) yield (start, '{} {}'.format(*error)) # Look for visual indenting. if ( parens[row] and token_type not in (tokenize.NL, tokenize.COMMENT) and not indent[depth] ): indent[depth] = start[1] indent_chances[start[1]] = True # Deal with implicit string concatenation. elif (token_type in (tokenize.STRING, tokenize.COMMENT) or text in ('u', 'ur', 'b', 'br')): indent_chances[start[1]] = unicode # Special case for the "if" statement because len("if (") is equal to # 4. elif not indent_chances and not row and not depth and text == 'if': indent_chances[end[1] + 1] = True elif text == ':' and line[end[1]:].isspace(): open_rows[depth].append(row) # Keep track of bracket depth. if token_type == tokenize.OP: if text in '([{': depth += 1 indent.append(0) hangs.append(None) if len(open_rows) == depth: open_rows.append([]) open_rows[depth].append(row) parens[row] += 1 elif text in ')]}' and depth > 0: # Parent indents should not be more than this one. prev_indent = indent.pop() or last_indent[1] hangs.pop() for d in range(depth): if indent[d] > prev_indent: indent[d] = 0 for ind in list(indent_chances): if ind >= prev_indent: del indent_chances[ind] del open_rows[depth + 1:] depth -= 1 if depth: indent_chances[indent[depth]] = True for idx in range(row, -1, -1): if parens[idx]: parens[idx] -= 1 break assert len(indent) == depth + 1 if ( start[1] not in indent_chances and # This is for purposes of speeding up E121 (GitHub #90). not last_line.rstrip().endswith(',') ): # Allow to line up tokens. indent_chances[start[1]] = text last_token_multiline = (start[0] != end[0]) if last_token_multiline: rel_indent[end[0] - first_row] = rel_indent[row] last_line = line if ( indent_next and not last_line_begins_with_multiline and pycodestyle.expand_indent(line) == indent_level + DEFAULT_INDENT_SIZE ): pos = (start[0], indent[0] + 4) desired_indent = indent_level + 2 * DEFAULT_INDENT_SIZE if visual_indent: yield (pos, 'E129 {}'.format(desired_indent)) else: yield (pos, 'E125 {}'.format(desired_indent)) del pycodestyle._checks['logical_line'][pycodestyle.continued_indentation] pycodestyle.register_check(continued_indentation) class FixPEP8(object): """Fix invalid code. Fixer methods are prefixed "fix_". The _fix_source() method looks for these automatically. The fixer method can take either one or two arguments (in addition to self). The first argument is "result", which is the error information from pycodestyle. The second argument, "logical", is required only for logical-line fixes. The fixer method can return the list of modified lines or None. An empty list would mean that no changes were made. None would mean that only the line reported in the pycodestyle error was modified. Note that the modified line numbers that are returned are indexed at 1. This typically would correspond with the line number reported in the pycodestyle error information. [fixed method list] - e111,e114,e115,e116 - e121,e122,e123,e124,e125,e126,e127,e128,e129 - e201,e202,e203 - e211 - e221,e222,e223,e224,e225 - e231 - e251,e252 - e261,e262 - e271,e272,e273,e274 - e301,e302,e303,e304,e305,e306 - e401 - e502 - e701,e702,e703,e704 - e711,e712,e713,e714 - e722 - e731 - w291 - w503 """ def __init__(self, filename, options, contents=None, long_line_ignore_cache=None): self.filename = filename if contents is None: self.source = readlines_from_file(filename) else: sio = io.StringIO(contents) self.source = sio.readlines() self.options = options self.indent_word = _get_indentword(''.join(self.source)) self.long_line_ignore_cache = ( set() if long_line_ignore_cache is None else long_line_ignore_cache) # Many fixers are the same even though pycodestyle categorizes them # differently. self.fix_e115 = self.fix_e112 self.fix_e121 = self._fix_reindent self.fix_e122 = self._fix_reindent self.fix_e123 = self._fix_reindent self.fix_e124 = self._fix_reindent self.fix_e126 = self._fix_reindent self.fix_e127 = self._fix_reindent self.fix_e128 = self._fix_reindent self.fix_e129 = self._fix_reindent self.fix_e133 = self.fix_e131 self.fix_e202 = self.fix_e201 self.fix_e203 = self.fix_e201 self.fix_e211 = self.fix_e201 self.fix_e221 = self.fix_e271 self.fix_e222 = self.fix_e271 self.fix_e223 = self.fix_e271 self.fix_e226 = self.fix_e225 self.fix_e227 = self.fix_e225 self.fix_e228 = self.fix_e225 self.fix_e241 = self.fix_e271 self.fix_e242 = self.fix_e224 self.fix_e252 = self.fix_e225 self.fix_e261 = self.fix_e262 self.fix_e272 = self.fix_e271 self.fix_e273 = self.fix_e271 self.fix_e274 = self.fix_e271 self.fix_e306 = self.fix_e301 self.fix_e501 = ( self.fix_long_line_logically if options and (options.aggressive >= 2 or options.experimental) else self.fix_long_line_physically) self.fix_e703 = self.fix_e702 self.fix_w293 = self.fix_w291 def _fix_source(self, results): try: (logical_start, logical_end) = _find_logical(self.source) logical_support = True except (SyntaxError, tokenize.TokenError): # pragma: no cover logical_support = False completed_lines = set() for result in sorted(results, key=_priority_key): if result['line'] in completed_lines: continue fixed_methodname = 'fix_' + result['id'].lower() if hasattr(self, fixed_methodname): fix = getattr(self, fixed_methodname) line_index = result['line'] - 1 original_line = self.source[line_index] is_logical_fix = len(_get_parameters(fix)) > 2 if is_logical_fix: logical = None if logical_support: logical = _get_logical(self.source, result, logical_start, logical_end) if logical and set(range( logical[0][0] + 1, logical[1][0] + 1)).intersection( completed_lines): continue modified_lines = fix(result, logical) else: modified_lines = fix(result) if modified_lines is None: # Force logical fixes to report what they modified. assert not is_logical_fix if self.source[line_index] == original_line: modified_lines = [] if modified_lines: completed_lines.update(modified_lines) elif modified_lines == []: # Empty list means no fix if self.options.verbose >= 2: print( '---> Not fixing {error} on line {line}'.format( error=result['id'], line=result['line']), file=sys.stderr) else: # We assume one-line fix when None. completed_lines.add(result['line']) else: if self.options.verbose >= 3: print( "---> '{}' is not defined.".format(fixed_methodname), file=sys.stderr) info = result['info'].strip() print('---> {}:{}:{}:{}'.format(self.filename, result['line'], result['column'], info), file=sys.stderr) def fix(self): """Return a version of the source code with PEP 8 violations fixed.""" pep8_options = { 'ignore': self.options.ignore, 'select': self.options.select, 'max_line_length': self.options.max_line_length, 'hang_closing': self.options.hang_closing, } results = _execute_pep8(pep8_options, self.source) if self.options.verbose: progress = {} for r in results: if r['id'] not in progress: progress[r['id']] = set() progress[r['id']].add(r['line']) print('---> {n} issue(s) to fix {progress}'.format( n=len(results), progress=progress), file=sys.stderr) if self.options.line_range: start, end = self.options.line_range results = [r for r in results if start <= r['line'] <= end] self._fix_source(filter_results(source=''.join(self.source), results=results, aggressive=self.options.aggressive)) if self.options.line_range: # If number of lines has changed then change line_range. count = sum(sline.count('\n') for sline in self.source[start - 1:end]) self.options.line_range[1] = start + count - 1 return ''.join(self.source) def _fix_reindent(self, result): """Fix a badly indented line. This is done by adding or removing from its initial indent only. """ num_indent_spaces = int(result['info'].split()[1]) line_index = result['line'] - 1 target = self.source[line_index] self.source[line_index] = ' ' * num_indent_spaces + target.lstrip() def fix_e112(self, result): """Fix under-indented comments.""" line_index = result['line'] - 1 target = self.source[line_index] if not target.lstrip().startswith('#'): # Don't screw with invalid syntax. return [] self.source[line_index] = self.indent_word + target def fix_e113(self, result): """Fix unexpected indentation.""" line_index = result['line'] - 1 target = self.source[line_index] indent = _get_indentation(target) stripped = target.lstrip() self.source[line_index] = indent[1:] + stripped def fix_e116(self, result): """Fix over-indented comments.""" line_index = result['line'] - 1 target = self.source[line_index] indent = _get_indentation(target) stripped = target.lstrip() if not stripped.startswith('#'): # Don't screw with invalid syntax. return [] self.source[line_index] = indent[1:] + stripped def fix_e125(self, result): """Fix indentation undistinguish from the next logical line.""" num_indent_spaces = int(result['info'].split()[1]) line_index = result['line'] - 1 target = self.source[line_index] spaces_to_add = num_indent_spaces - len(_get_indentation(target)) indent = len(_get_indentation(target)) modified_lines = [] while len(_get_indentation(self.source[line_index])) >= indent: self.source[line_index] = (' ' * spaces_to_add + self.source[line_index]) modified_lines.append(1 + line_index) # Line indexed at 1. line_index -= 1 return modified_lines def fix_e131(self, result): """Fix indentation undistinguish from the next logical line.""" num_indent_spaces = int(result['info'].split()[1]) line_index = result['line'] - 1 target = self.source[line_index] spaces_to_add = num_indent_spaces - len(_get_indentation(target)) if spaces_to_add >= 0: self.source[line_index] = (' ' * spaces_to_add + self.source[line_index]) else: offset = abs(spaces_to_add) self.source[line_index] = self.source[line_index][offset:] def fix_e201(self, result): """Remove extraneous whitespace.""" line_index = result['line'] - 1 target = self.source[line_index] offset = result['column'] - 1 fixed = fix_whitespace(target, offset=offset, replacement='') self.source[line_index] = fixed def fix_e224(self, result): """Remove extraneous whitespace around operator.""" target = self.source[result['line'] - 1] offset = result['column'] - 1 fixed = target[:offset] + target[offset:].replace('\t', ' ') self.source[result['line'] - 1] = fixed def fix_e225(self, result): """Fix missing whitespace around operator.""" target = self.source[result['line'] - 1] offset = result['column'] - 1 fixed = target[:offset] + ' ' + target[offset:] # Only proceed if non-whitespace characters match. # And make sure we don't break the indentation. if ( fixed.replace(' ', '') == target.replace(' ', '') and _get_indentation(fixed) == _get_indentation(target) ): self.source[result['line'] - 1] = fixed error_code = result.get('id', 0) try: ts = generate_tokens(fixed) except (SyntaxError, tokenize.TokenError): return if not check_syntax(fixed.lstrip()): return errors = list( pycodestyle.missing_whitespace_around_operator(fixed, ts)) for e in reversed(errors): if error_code != e[1].split()[0]: continue offset = e[0][1] fixed = fixed[:offset] + ' ' + fixed[offset:] self.source[result['line'] - 1] = fixed else: return [] def fix_e231(self, result): """Add missing whitespace.""" line_index = result['line'] - 1 target = self.source[line_index] offset = result['column'] fixed = target[:offset].rstrip() + ' ' + target[offset:].lstrip() self.source[line_index] = fixed def fix_e251(self, result): """Remove whitespace around parameter '=' sign.""" line_index = result['line'] - 1 target = self.source[line_index] # This is necessary since pycodestyle sometimes reports columns that # goes past the end of the physical line. This happens in cases like, # foo(bar\n=None) c = min(result['column'] - 1, len(target) - 1) if target[c].strip(): fixed = target else: fixed = target[:c].rstrip() + target[c:].lstrip() # There could be an escaped newline # # def foo(a=\ # 1) if fixed.endswith(('=\\\n', '=\\\r\n', '=\\\r')): self.source[line_index] = fixed.rstrip('\n\r \t\\') self.source[line_index + 1] = self.source[line_index + 1].lstrip() return [line_index + 1, line_index + 2] # Line indexed at 1 self.source[result['line'] - 1] = fixed def fix_e262(self, result): """Fix spacing after comment hash.""" target = self.source[result['line'] - 1] offset = result['column'] code = target[:offset].rstrip(' \t#') comment = target[offset:].lstrip(' \t#') fixed = code + (' # ' + comment if comment.strip() else '\n') self.source[result['line'] - 1] = fixed def fix_e271(self, result): """Fix extraneous whitespace around keywords.""" line_index = result['line'] - 1 target = self.source[line_index] offset = result['column'] - 1 fixed = fix_whitespace(target, offset=offset, replacement=' ') if fixed == target: return [] else: self.source[line_index] = fixed def fix_e301(self, result): """Add missing blank line.""" cr = '\n' self.source[result['line'] - 1] = cr + self.source[result['line'] - 1] def fix_e302(self, result): """Add missing 2 blank lines.""" add_linenum = 2 - int(result['info'].split()[-1]) cr = '\n' * add_linenum self.source[result['line'] - 1] = cr + self.source[result['line'] - 1] def fix_e303(self, result): """Remove extra blank lines.""" delete_linenum = int(result['info'].split('(')[1].split(')')[0]) - 2 delete_linenum = max(1, delete_linenum) # We need to count because pycodestyle reports an offset line number if # there are comments. cnt = 0 line = result['line'] - 2 modified_lines = [] while cnt < delete_linenum and line >= 0: if not self.source[line].strip(): self.source[line] = '' modified_lines.append(1 + line) # Line indexed at 1 cnt += 1 line -= 1 return modified_lines def fix_e304(self, result): """Remove blank line following function decorator.""" line = result['line'] - 2 if not self.source[line].strip(): self.source[line] = '' def fix_e305(self, result): """Add missing 2 blank lines after end of function or class.""" add_delete_linenum = 2 - int(result['info'].split()[-1]) cnt = 0 offset = result['line'] - 2 modified_lines = [] if add_delete_linenum < 0: # delete cr add_delete_linenum = abs(add_delete_linenum) while cnt < add_delete_linenum and offset >= 0: if not self.source[offset].strip(): self.source[offset] = '' modified_lines.append(1 + offset) # Line indexed at 1 cnt += 1 offset -= 1 else: # add cr cr = '\n' # check comment line while True: if offset < 0: break line = self.source[offset].lstrip() if not line: break if line[0] != '#': break offset -= 1 offset += 1 self.source[offset] = cr + self.source[offset] modified_lines.append(1 + offset) # Line indexed at 1. return modified_lines def fix_e401(self, result): """Put imports on separate lines.""" line_index = result['line'] - 1 target = self.source[line_index] offset = result['column'] - 1 if not target.lstrip().startswith('import'): return [] indentation = re.split(pattern=r'\bimport\b', string=target, maxsplit=1)[0] fixed = (target[:offset].rstrip('\t ,') + '\n' + indentation + 'import ' + target[offset:].lstrip('\t ,')) self.source[line_index] = fixed def fix_long_line_logically(self, result, logical): """Try to make lines fit within --max-line-length characters.""" if ( not logical or len(logical[2]) == 1 or self.source[result['line'] - 1].lstrip().startswith('#') ): return self.fix_long_line_physically(result) start_line_index = logical[0][0] end_line_index = logical[1][0] logical_lines = logical[2] previous_line = get_item(self.source, start_line_index - 1, default='') next_line = get_item(self.source, end_line_index + 1, default='') single_line = join_logical_line(''.join(logical_lines)) try: fixed = self.fix_long_line( target=single_line, previous_line=previous_line, next_line=next_line, original=''.join(logical_lines)) except (SyntaxError, tokenize.TokenError): return self.fix_long_line_physically(result) if fixed: for line_index in range(start_line_index, end_line_index + 1): self.source[line_index] = '' self.source[start_line_index] = fixed return range(start_line_index + 1, end_line_index + 1) return [] def fix_long_line_physically(self, result): """Try to make lines fit within --max-line-length characters.""" line_index = result['line'] - 1 target = self.source[line_index] previous_line = get_item(self.source, line_index - 1, default='') next_line = get_item(self.source, line_index + 1, default='') try: fixed = self.fix_long_line( target=target, previous_line=previous_line, next_line=next_line, original=target) except (SyntaxError, tokenize.TokenError): return [] if fixed: self.source[line_index] = fixed return [line_index + 1] return [] def fix_long_line(self, target, previous_line, next_line, original): cache_entry = (target, previous_line, next_line) if cache_entry in self.long_line_ignore_cache: return [] if target.lstrip().startswith('#'): if self.options.aggressive: # Wrap commented lines. return shorten_comment( line=target, max_line_length=self.options.max_line_length, last_comment=not next_line.lstrip().startswith('#')) return [] fixed = get_fixed_long_line( target=target, previous_line=previous_line, original=original, indent_word=self.indent_word, max_line_length=self.options.max_line_length, aggressive=self.options.aggressive, experimental=self.options.experimental, verbose=self.options.verbose) if fixed and not code_almost_equal(original, fixed): return fixed self.long_line_ignore_cache.add(cache_entry) return None def fix_e502(self, result): """Remove extraneous escape of newline.""" (line_index, _, target) = get_index_offset_contents(result, self.source) self.source[line_index] = target.rstrip('\n\r \t\\') + '\n' def fix_e701(self, result): """Put colon-separated compound statement on separate lines.""" line_index = result['line'] - 1 target = self.source[line_index] c = result['column'] fixed_source = (target[:c] + '\n' + _get_indentation(target) + self.indent_word + target[c:].lstrip('\n\r \t\\')) self.source[result['line'] - 1] = fixed_source return [result['line'], result['line'] + 1] def fix_e702(self, result, logical): """Put semicolon-separated compound statement on separate lines.""" if not logical: return [] # pragma: no cover logical_lines = logical[2] # Avoid applying this when indented. # https://docs.python.org/reference/compound_stmts.html for line in logical_lines: if (result['id'] == 'E702' and ':' in line and STARTSWITH_DEF_REGEX.match(line)): return [] line_index = result['line'] - 1 target = self.source[line_index] if target.rstrip().endswith('\\'): # Normalize '1; \\\n2' into '1; 2'. self.source[line_index] = target.rstrip('\n \r\t\\') self.source[line_index + 1] = self.source[line_index + 1].lstrip() return [line_index + 1, line_index + 2] if target.rstrip().endswith(';'): self.source[line_index] = target.rstrip('\n \r\t;') + '\n' return [line_index + 1] offset = result['column'] - 1 first = target[:offset].rstrip(';').rstrip() second = (_get_indentation(logical_lines[0]) + target[offset:].lstrip(';').lstrip()) # Find inline comment. inline_comment = None if target[offset:].lstrip(';').lstrip()[:2] == '# ': inline_comment = target[offset:].lstrip(';') if inline_comment: self.source[line_index] = first + inline_comment else: self.source[line_index] = first + '\n' + second return [line_index + 1] def fix_e704(self, result): """Fix multiple statements on one line def""" (line_index, _, target) = get_index_offset_contents(result, self.source) match = STARTSWITH_DEF_REGEX.match(target) if match: self.source[line_index] = '{}\n{}{}'.format( match.group(0), _get_indentation(target) + self.indent_word, target[match.end(0):].lstrip()) def fix_e711(self, result): """Fix comparison with None.""" (line_index, offset, target) = get_index_offset_contents(result, self.source) right_offset = offset + 2 if right_offset >= len(target): return [] left = target[:offset].rstrip() center = target[offset:right_offset] right = target[right_offset:].lstrip() if not right.startswith('None'): return [] if center.strip() == '==': new_center = 'is' elif center.strip() == '!=': new_center = 'is not' else: return [] self.source[line_index] = ' '.join([left, new_center, right]) def fix_e712(self, result): """Fix (trivial case of) comparison with boolean.""" (line_index, offset, target) = get_index_offset_contents(result, self.source) # Handle very easy "not" special cases. if re.match(r'^\s*if [\w."\'\[\]]+ == False:$', target): self.source[line_index] = re.sub(r'if ([\w."\'\[\]]+) == False:', r'if not \1:', target, count=1) elif re.match(r'^\s*if [\w."\'\[\]]+ != True:$', target): self.source[line_index] = re.sub(r'if ([\w."\'\[\]]+) != True:', r'if not \1:', target, count=1) else: right_offset = offset + 2 if right_offset >= len(target): return [] left = target[:offset].rstrip() center = target[offset:right_offset] right = target[right_offset:].lstrip() # Handle simple cases only. new_right = None if center.strip() == '==': if re.match(r'\bTrue\b', right): new_right = re.sub(r'\bTrue\b *', '', right, count=1) elif center.strip() == '!=': if re.match(r'\bFalse\b', right): new_right = re.sub(r'\bFalse\b *', '', right, count=1) if new_right is None: return [] if new_right[0].isalnum(): new_right = ' ' + new_right self.source[line_index] = left + new_right def fix_e713(self, result): """Fix (trivial case of) non-membership check.""" (line_index, offset, target) = get_index_offset_contents(result, self.source) # to convert once 'not in' -> 'in' before_target = target[:offset] target = target[offset:] match_notin = COMPARE_NEGATIVE_REGEX_THROUGH.search(target) notin_pos_start, notin_pos_end = 0, 0 if match_notin: notin_pos_start = match_notin.start(1) notin_pos_end = match_notin.end() target = '{}{} {}'.format( target[:notin_pos_start], 'in', target[notin_pos_end:]) # fix 'not in' match = COMPARE_NEGATIVE_REGEX.search(target) if match: if match.group(3) == 'in': pos_start = match.start(1) new_target = '{5}{0}{1} {2} {3} {4}'.format( target[:pos_start], match.group(2), match.group(1), match.group(3), target[match.end():], before_target) if match_notin: # revert 'in' -> 'not in' pos_start = notin_pos_start + offset pos_end = notin_pos_end + offset - 4 # len('not ') new_target = '{}{} {}'.format( new_target[:pos_start], 'not in', new_target[pos_end:]) self.source[line_index] = new_target def fix_e714(self, result): """Fix object identity should be 'is not' case.""" (line_index, offset, target) = get_index_offset_contents(result, self.source) # to convert once 'is not' -> 'is' before_target = target[:offset] target = target[offset:] match_isnot = COMPARE_NEGATIVE_REGEX_THROUGH.search(target) isnot_pos_start, isnot_pos_end = 0, 0 if match_isnot: isnot_pos_start = match_isnot.start(1) isnot_pos_end = match_isnot.end() target = '{}{} {}'.format( target[:isnot_pos_start], 'in', target[isnot_pos_end:]) match = COMPARE_NEGATIVE_REGEX.search(target) if match: if match.group(3).startswith('is'): pos_start = match.start(1) new_target = '{5}{0}{1} {2} {3} {4}'.format( target[:pos_start], match.group(2), match.group(3), match.group(1), target[match.end():], before_target) if match_isnot: # revert 'is' -> 'is not' pos_start = isnot_pos_start + offset pos_end = isnot_pos_end + offset - 4 # len('not ') new_target = '{}{} {}'.format( new_target[:pos_start], 'is not', new_target[pos_end:]) self.source[line_index] = new_target def fix_e722(self, result): """fix bare except""" (line_index, _, target) = get_index_offset_contents(result, self.source) match = BARE_EXCEPT_REGEX.search(target) if match: self.source[line_index] = '{}{}{}'.format( target[:result['column'] - 1], "except BaseException:", target[match.end():]) def fix_e731(self, result): """Fix do not assign a lambda expression check.""" (line_index, _, target) = get_index_offset_contents(result, self.source) match = LAMBDA_REGEX.search(target) if match: end = match.end() self.source[line_index] = '{}def {}({}): return {}'.format( target[:match.start(0)], match.group(1), match.group(2), target[end:].lstrip()) def fix_w291(self, result): """Remove trailing whitespace.""" fixed_line = self.source[result['line'] - 1].rstrip() self.source[result['line'] - 1] = fixed_line + '\n' def fix_w391(self, _): """Remove trailing blank lines.""" blank_count = 0 for line in reversed(self.source): line = line.rstrip() if line: break else: blank_count += 1 original_length = len(self.source) self.source = self.source[:original_length - blank_count] return range(1, 1 + original_length) def fix_w503(self, result): (line_index, _, target) = get_index_offset_contents(result, self.source) one_string_token = target.split()[0] try: ts = generate_tokens(one_string_token) except (SyntaxError, tokenize.TokenError): return if not _is_binary_operator(ts[0][0], one_string_token): return # find comment comment_index = 0 for i in range(5): # NOTE: try to parse code in 5 times if (line_index - i) < 0: break from_index = line_index - i - 1 to_index = line_index + 1 try: ts = generate_tokens("".join(self.source[from_index:to_index])) except (SyntaxError, tokenize.TokenError): continue newline_count = 0 newline_index = [] for index, t in enumerate(ts): if t[0] in (tokenize.NEWLINE, tokenize.NL): newline_index.append(index) newline_count += 1 if newline_count > 2: tts = ts[newline_index[-3]:] else: tts = ts old = [] for t in tts: if tokenize.COMMENT == t[0] and old: comment_index = old[3][1] break old = t break i = target.index(one_string_token) self.source[line_index] = '{}{}'.format( target[:i], target[i + len(one_string_token):].lstrip()) nl = find_newline(self.source[line_index - 1:line_index]) before_line = self.source[line_index - 1] bl = before_line.index(nl) if comment_index: self.source[line_index - 1] = '{} {} {}'.format( before_line[:comment_index], one_string_token, before_line[comment_index + 1:]) else: self.source[line_index - 1] = '{} {}{}'.format( before_line[:bl], one_string_token, before_line[bl:]) def fix_w605(self, result): (line_index, _, target) = get_index_offset_contents(result, self.source) tokens = list(generate_tokens(target)) for (pos, _msg) in get_w605_position(tokens): self.source[line_index] = '{}r{}'.format( target[:pos], target[pos:]) def get_w605_position(tokens): """workaround get pointing out position by W605.""" # TODO: When this PR(*) change is released, use pos of pycodestyle # *: https://github.com/PyCQA/pycodestyle/pull/747 valid = [ '\n', '\\', '\'', '"', 'a', 'b', 'f', 'n', 'r', 't', 'v', '0', '1', '2', '3', '4', '5', '6', '7', 'x', # Escape sequences only recognized in string literals 'N', 'u', 'U', ] for token_type, text, start, end, line in tokens: if token_type == tokenize.STRING: quote = text[-3:] if text[-3:] in ('"""', "'''") else text[-1] # Extract string modifiers (e.g. u or r) quote_pos = text.index(quote) prefix = text[:quote_pos].lower() start = quote_pos + len(quote) string = text[start:-len(quote)] if 'r' not in prefix: pos = string.find('\\') while pos >= 0: pos += 1 if string[pos] not in valid: yield ( line.find(text), "W605 invalid escape sequence '\\%s'" % string[pos], ) pos = string.find('\\', pos + 1) def get_index_offset_contents(result, source): """Return (line_index, column_offset, line_contents).""" line_index = result['line'] - 1 return (line_index, result['column'] - 1, source[line_index]) def get_fixed_long_line(target, previous_line, original, indent_word=' ', max_line_length=79, aggressive=False, experimental=False, verbose=False): """Break up long line and return result. Do this by generating multiple reformatted candidates and then ranking the candidates to heuristically select the best option. """ indent = _get_indentation(target) source = target[len(indent):] assert source.lstrip() == source assert not target.lstrip().startswith('#') # Check for partial multiline. tokens = list(generate_tokens(source)) candidates = shorten_line( tokens, source, indent, indent_word, max_line_length, aggressive=aggressive, experimental=experimental, previous_line=previous_line) # Also sort alphabetically as a tie breaker (for determinism). candidates = sorted( sorted(set(candidates).union([target, original])), key=lambda x: line_shortening_rank( x, indent_word, max_line_length, experimental=experimental)) if verbose >= 4: print(('-' * 79 + '\n').join([''] + candidates + ['']), file=wrap_output(sys.stderr, 'utf-8')) if candidates: best_candidate = candidates[0] # Don't allow things to get longer. if longest_line_length(best_candidate) > longest_line_length(original): return None return best_candidate def longest_line_length(code): """Return length of longest line.""" return max(len(line) for line in code.splitlines()) def join_logical_line(logical_line): """Return single line based on logical line input.""" indentation = _get_indentation(logical_line) return indentation + untokenize_without_newlines( generate_tokens(logical_line.lstrip())) + '\n' def untokenize_without_newlines(tokens): """Return source code based on tokens.""" text = '' last_row = 0 last_column = -1 for t in tokens: token_string = t[1] (start_row, start_column) = t[2] (end_row, end_column) = t[3] if start_row > last_row: last_column = 0 if ( (start_column > last_column or token_string == '\n') and not text.endswith(' ') ): text += ' ' if token_string != '\n': text += token_string last_row = end_row last_column = end_column return text.rstrip() def _find_logical(source_lines): # Make a variable which is the index of all the starts of lines. logical_start = [] logical_end = [] last_newline = True parens = 0 for t in generate_tokens(''.join(source_lines)): if t[0] in [tokenize.COMMENT, tokenize.DEDENT, tokenize.INDENT, tokenize.NL, tokenize.ENDMARKER]: continue if not parens and t[0] in [tokenize.NEWLINE, tokenize.SEMI]: last_newline = True logical_end.append((t[3][0] - 1, t[2][1])) continue if last_newline and not parens: logical_start.append((t[2][0] - 1, t[2][1])) last_newline = False if t[0] == tokenize.OP: if t[1] in '([{': parens += 1 elif t[1] in '}])': parens -= 1 return (logical_start, logical_end) def _get_logical(source_lines, result, logical_start, logical_end): """Return the logical line corresponding to the result. Assumes input is already E702-clean. """ row = result['line'] - 1 col = result['column'] - 1 ls = None le = None for i in range(0, len(logical_start), 1): assert logical_end x = logical_end[i] if x[0] > row or (x[0] == row and x[1] > col): le = x ls = logical_start[i] break if ls is None: return None original = source_lines[ls[0]:le[0] + 1] return ls, le, original def get_item(items, index, default=None): if 0 <= index < len(items): return items[index] return default def reindent(source, indent_size): """Reindent all lines.""" reindenter = Reindenter(source) return reindenter.run(indent_size) def code_almost_equal(a, b): """Return True if code is similar. Ignore whitespace when comparing specific line. """ split_a = split_and_strip_non_empty_lines(a) split_b = split_and_strip_non_empty_lines(b) if len(split_a) != len(split_b): return False for (index, _) in enumerate(split_a): if ''.join(split_a[index].split()) != ''.join(split_b[index].split()): return False return True def split_and_strip_non_empty_lines(text): """Return lines split by newline. Ignore empty lines. """ return [line.strip() for line in text.splitlines() if line.strip()] def fix_e265(source, aggressive=False): # pylint: disable=unused-argument """Format block comments.""" if '#' not in source: # Optimization. return source ignored_line_numbers = multiline_string_lines( source, include_docstrings=True) | set(commented_out_code_lines(source)) fixed_lines = [] sio = io.StringIO(source) for (line_number, line) in enumerate(sio.readlines(), start=1): if ( line.lstrip().startswith('#') and line_number not in ignored_line_numbers and not pycodestyle.noqa(line) ): indentation = _get_indentation(line) line = line.lstrip() # Normalize beginning if not a shebang. if len(line) > 1: pos = next((index for index, c in enumerate(line) if c != '#')) if ( # Leave multiple spaces like '# ' alone. (line[:pos].count('#') > 1 or line[1].isalnum() or not line[1].isspace()) and line[1] not in ':!' and # Leave stylistic outlined blocks alone. not line.rstrip().endswith('#') ): line = '# ' + line.lstrip('# \t') fixed_lines.append(indentation + line) else: fixed_lines.append(line) return ''.join(fixed_lines) def refactor(source, fixer_names, ignore=None, filename=''): """Return refactored code using lib2to3. Skip if ignore string is produced in the refactored code. """ from lib2to3 import pgen2 try: new_text = refactor_with_2to3(source, fixer_names=fixer_names, filename=filename) except (pgen2.parse.ParseError, SyntaxError, UnicodeDecodeError, UnicodeEncodeError): return source if ignore: if ignore in new_text and ignore not in source: return source return new_text def code_to_2to3(select, ignore, where='', verbose=False): fixes = set() for code, fix in CODE_TO_2TO3.items(): if code_match(code, select=select, ignore=ignore): if verbose: print('---> Applying {} fix for {}'.format(where, code.upper()), file=sys.stderr) fixes |= set(fix) return fixes def fix_2to3(source, aggressive=True, select=None, ignore=None, filename='', where='global', verbose=False): """Fix various deprecated code (via lib2to3).""" if not aggressive: return source select = select or [] ignore = ignore or [] return refactor(source, code_to_2to3(select=select, ignore=ignore, where=where, verbose=verbose), filename=filename) def fix_w602(source, aggressive=True): """Fix deprecated form of raising exception.""" if not aggressive: return source return refactor(source, ['raise'], ignore='with_traceback') def find_newline(source): """Return type of newline used in source. Input is a list of lines. """ assert not isinstance(source, unicode) counter = collections.defaultdict(int) for line in source: if line.endswith(CRLF): counter[CRLF] += 1 elif line.endswith(CR): counter[CR] += 1 elif line.endswith(LF): counter[LF] += 1 return (sorted(counter, key=counter.get, reverse=True) or [LF])[0] def _get_indentword(source): """Return indentation type.""" indent_word = ' ' # Default in case source has no indentation try: for t in generate_tokens(source): if t[0] == token.INDENT: indent_word = t[1] break except (SyntaxError, tokenize.TokenError): pass return indent_word def _get_indentation(line): """Return leading whitespace.""" if line.strip(): non_whitespace_index = len(line) - len(line.lstrip()) return line[:non_whitespace_index] return '' def get_diff_text(old, new, filename): """Return text of unified diff between old and new.""" newline = '\n' diff = difflib.unified_diff( old, new, 'original/' + filename, 'fixed/' + filename, lineterm=newline) text = '' for line in diff: text += line # Work around missing newline (http://bugs.python.org/issue2142). if text and not line.endswith(newline): text += newline + r'\ No newline at end of file' + newline return text def _priority_key(pep8_result): """Key for sorting PEP8 results. Global fixes should be done first. This is important for things like indentation. """ priority = [ # Fix multiline colon-based before semicolon based. 'e701', # Break multiline statements early. 'e702', # Things that make lines longer. 'e225', 'e231', # Remove extraneous whitespace before breaking lines. 'e201', # Shorten whitespace in comment before resorting to wrapping. 'e262' ] middle_index = 10000 lowest_priority = [ # We need to shorten lines last since the logical fixer can get in a # loop, which causes us to exit early. 'e501', ] key = pep8_result['id'].lower() try: return priority.index(key) except ValueError: try: return middle_index + lowest_priority.index(key) + 1 except ValueError: return middle_index def shorten_line(tokens, source, indentation, indent_word, max_line_length, aggressive=False, experimental=False, previous_line=''): """Separate line at OPERATOR. Multiple candidates will be yielded. """ for candidate in _shorten_line(tokens=tokens, source=source, indentation=indentation, indent_word=indent_word, aggressive=aggressive, previous_line=previous_line): yield candidate if aggressive: for key_token_strings in SHORTEN_OPERATOR_GROUPS: shortened = _shorten_line_at_tokens( tokens=tokens, source=source, indentation=indentation, indent_word=indent_word, key_token_strings=key_token_strings, aggressive=aggressive) if shortened is not None and shortened != source: yield shortened if experimental: for shortened in _shorten_line_at_tokens_new( tokens=tokens, source=source, indentation=indentation, max_line_length=max_line_length): yield shortened def _shorten_line(tokens, source, indentation, indent_word, aggressive=False, previous_line=''): """Separate line at OPERATOR. The input is expected to be free of newlines except for inside multiline strings and at the end. Multiple candidates will be yielded. """ for (token_type, token_string, start_offset, end_offset) in token_offsets(tokens): if ( token_type == tokenize.COMMENT and not is_probably_part_of_multiline(previous_line) and not is_probably_part_of_multiline(source) and not source[start_offset + 1:].strip().lower().startswith( ('noqa', 'pragma:', 'pylint:')) ): # Move inline comments to previous line. first = source[:start_offset] second = source[start_offset:] yield (indentation + second.strip() + '\n' + indentation + first.strip() + '\n') elif token_type == token.OP and token_string != '=': # Don't break on '=' after keyword as this violates PEP 8. assert token_type != token.INDENT first = source[:end_offset] second_indent = indentation if (first.rstrip().endswith('(') and source[end_offset:].lstrip().startswith(')')): pass elif first.rstrip().endswith('('): second_indent += indent_word elif '(' in first: second_indent += ' ' * (1 + first.find('(')) else: second_indent += indent_word second = (second_indent + source[end_offset:].lstrip()) if ( not second.strip() or second.lstrip().startswith('#') ): continue # Do not begin a line with a comma if second.lstrip().startswith(','): continue # Do end a line with a dot if first.rstrip().endswith('.'): continue if token_string in '+-*/': fixed = first + ' \\' + '\n' + second else: fixed = first + '\n' + second # Only fix if syntax is okay. if check_syntax(normalize_multiline(fixed) if aggressive else fixed): yield indentation + fixed def _is_binary_operator(token_type, text): return ((token_type == tokenize.OP or text in ['and', 'or']) and text not in '()[]{},:.;@=%~') # A convenient way to handle tokens. Token = collections.namedtuple('Token', ['token_type', 'token_string', 'spos', 'epos', 'line']) class ReformattedLines(object): """The reflowed lines of atoms. Each part of the line is represented as an "atom." They can be moved around when need be to get the optimal formatting. """ ########################################################################### # Private Classes class _Indent(object): """Represent an indentation in the atom stream.""" def __init__(self, indent_amt): self._indent_amt = indent_amt def emit(self): return ' ' * self._indent_amt @property def size(self): return self._indent_amt class _Space(object): """Represent a space in the atom stream.""" def emit(self): return ' ' @property def size(self): return 1 class _LineBreak(object): """Represent a line break in the atom stream.""" def emit(self): return '\n' @property def size(self): return 0 def __init__(self, max_line_length): self._max_line_length = max_line_length self._lines = [] self._bracket_depth = 0 self._prev_item = None self._prev_prev_item = None def __repr__(self): return self.emit() ########################################################################### # Public Methods def add(self, obj, indent_amt, break_after_open_bracket): if isinstance(obj, Atom): self._add_item(obj, indent_amt) return self._add_container(obj, indent_amt, break_after_open_bracket) def add_comment(self, item): num_spaces = 2 if len(self._lines) > 1: if isinstance(self._lines[-1], self._Space): num_spaces -= 1 if len(self._lines) > 2: if isinstance(self._lines[-2], self._Space): num_spaces -= 1 while num_spaces > 0: self._lines.append(self._Space()) num_spaces -= 1 self._lines.append(item) def add_indent(self, indent_amt): self._lines.append(self._Indent(indent_amt)) def add_line_break(self, indent): self._lines.append(self._LineBreak()) self.add_indent(len(indent)) def add_line_break_at(self, index, indent_amt): self._lines.insert(index, self._LineBreak()) self._lines.insert(index + 1, self._Indent(indent_amt)) def add_space_if_needed(self, curr_text, equal=False): if ( not self._lines or isinstance( self._lines[-1], (self._LineBreak, self._Indent, self._Space)) ): return prev_text = unicode(self._prev_item) prev_prev_text = ( unicode(self._prev_prev_item) if self._prev_prev_item else '') if ( # The previous item was a keyword or identifier and the current # item isn't an operator that doesn't require a space. ((self._prev_item.is_keyword or self._prev_item.is_string or self._prev_item.is_name or self._prev_item.is_number) and (curr_text[0] not in '([{.,:}])' or (curr_text[0] == '=' and equal))) or # Don't place spaces around a '.', unless it's in an 'import' # statement. ((prev_prev_text != 'from' and prev_text[-1] != '.' and curr_text != 'import') and # Don't place a space before a colon. curr_text[0] != ':' and # Don't split up ending brackets by spaces. ((prev_text[-1] in '}])' and curr_text[0] not in '.,}])') or # Put a space after a colon or comma. prev_text[-1] in ':,' or # Put space around '=' if asked to. (equal and prev_text == '=') or # Put spaces around non-unary arithmetic operators. ((self._prev_prev_item and (prev_text not in '+-' and (self._prev_prev_item.is_name or self._prev_prev_item.is_number or self._prev_prev_item.is_string)) and prev_text in ('+', '-', '%', '*', '/', '//', '**', 'in'))))) ): self._lines.append(self._Space()) def previous_item(self): """Return the previous non-whitespace item.""" return self._prev_item def fits_on_current_line(self, item_extent): return self.current_size() + item_extent <= self._max_line_length def current_size(self): """The size of the current line minus the indentation.""" size = 0 for item in reversed(self._lines): size += item.size if isinstance(item, self._LineBreak): break return size def line_empty(self): return (self._lines and isinstance(self._lines[-1], (self._LineBreak, self._Indent))) def emit(self): string = '' for item in self._lines: if isinstance(item, self._LineBreak): string = string.rstrip() string += item.emit() return string.rstrip() + '\n' ########################################################################### # Private Methods def _add_item(self, item, indent_amt): """Add an item to the line. Reflow the line to get the best formatting after the item is inserted. The bracket depth indicates if the item is being inserted inside of a container or not. """ if self._prev_item and self._prev_item.is_string and item.is_string: # Place consecutive string literals on separate lines. self._lines.append(self._LineBreak()) self._lines.append(self._Indent(indent_amt)) item_text = unicode(item) if self._lines and self._bracket_depth: # Adding the item into a container. self._prevent_default_initializer_splitting(item, indent_amt) if item_text in '.,)]}': self._split_after_delimiter(item, indent_amt) elif self._lines and not self.line_empty(): # Adding the item outside of a container. if self.fits_on_current_line(len(item_text)): self._enforce_space(item) else: # Line break for the new item. self._lines.append(self._LineBreak()) self._lines.append(self._Indent(indent_amt)) self._lines.append(item) self._prev_item, self._prev_prev_item = item, self._prev_item if item_text in '([{': self._bracket_depth += 1 elif item_text in '}])': self._bracket_depth -= 1 assert self._bracket_depth >= 0 def _add_container(self, container, indent_amt, break_after_open_bracket): actual_indent = indent_amt + 1 if ( unicode(self._prev_item) != '=' and not self.line_empty() and not self.fits_on_current_line( container.size + self._bracket_depth + 2) ): if unicode(container)[0] == '(' and self._prev_item.is_name: # Don't split before the opening bracket of a call. break_after_open_bracket = True actual_indent = indent_amt + 4 elif ( break_after_open_bracket or unicode(self._prev_item) not in '([{' ): # If the container doesn't fit on the current line and the # current line isn't empty, place the container on the next # line. self._lines.append(self._LineBreak()) self._lines.append(self._Indent(indent_amt)) break_after_open_bracket = False else: actual_indent = self.current_size() + 1 break_after_open_bracket = False if isinstance(container, (ListComprehension, IfExpression)): actual_indent = indent_amt # Increase the continued indentation only if recursing on a # container. container.reflow(self, ' ' * actual_indent, break_after_open_bracket=break_after_open_bracket) def _prevent_default_initializer_splitting(self, item, indent_amt): """Prevent splitting between a default initializer. When there is a default initializer, it's best to keep it all on the same line. It's nicer and more readable, even if it goes over the maximum allowable line length. This goes back along the current line to determine if we have a default initializer, and, if so, to remove extraneous whitespaces and add a line break/indent before it if needed. """ if unicode(item) == '=': # This is the assignment in the initializer. Just remove spaces for # now. self._delete_whitespace() return if (not self._prev_item or not self._prev_prev_item or unicode(self._prev_item) != '='): return self._delete_whitespace() prev_prev_index = self._lines.index(self._prev_prev_item) if ( isinstance(self._lines[prev_prev_index - 1], self._Indent) or self.fits_on_current_line(item.size + 1) ): # The default initializer is already the only item on this line. # Don't insert a newline here. return # Replace the space with a newline/indent combo. if isinstance(self._lines[prev_prev_index - 1], self._Space): del self._lines[prev_prev_index - 1] self.add_line_break_at(self._lines.index(self._prev_prev_item), indent_amt) def _split_after_delimiter(self, item, indent_amt): """Split the line only after a delimiter.""" self._delete_whitespace() if self.fits_on_current_line(item.size): return last_space = None for current_item in reversed(self._lines): if ( last_space and (not isinstance(current_item, Atom) or not current_item.is_colon) ): break else: last_space = None if isinstance(current_item, self._Space): last_space = current_item if isinstance(current_item, (self._LineBreak, self._Indent)): return if not last_space: return self.add_line_break_at(self._lines.index(last_space), indent_amt) def _enforce_space(self, item): """Enforce a space in certain situations. There are cases where we will want a space where normally we wouldn't put one. This just enforces the addition of a space. """ if isinstance(self._lines[-1], (self._Space, self._LineBreak, self._Indent)): return if not self._prev_item: return item_text = unicode(item) prev_text = unicode(self._prev_item) # Prefer a space around a '.' in an import statement, and between the # 'import' and '('. if ( (item_text == '.' and prev_text == 'from') or (item_text == 'import' and prev_text == '.') or (item_text == '(' and prev_text == 'import') ): self._lines.append(self._Space()) def _delete_whitespace(self): """Delete all whitespace from the end of the line.""" while isinstance(self._lines[-1], (self._Space, self._LineBreak, self._Indent)): del self._lines[-1] class Atom(object): """The smallest unbreakable unit that can be reflowed.""" def __init__(self, atom): self._atom = atom def __repr__(self): return self._atom.token_string def __len__(self): return self.size def reflow( self, reflowed_lines, continued_indent, extent, break_after_open_bracket=False, is_list_comp_or_if_expr=False, next_is_dot=False ): if self._atom.token_type == tokenize.COMMENT: reflowed_lines.add_comment(self) return total_size = extent if extent else self.size if self._atom.token_string not in ',:([{}])': # Some atoms will need an extra 1-sized space token after them. total_size += 1 prev_item = reflowed_lines.previous_item() if ( not is_list_comp_or_if_expr and not reflowed_lines.fits_on_current_line(total_size) and not (next_is_dot and reflowed_lines.fits_on_current_line(self.size + 1)) and not reflowed_lines.line_empty() and not self.is_colon and not (prev_item and prev_item.is_name and unicode(self) == '(') ): # Start a new line if there is already something on the line and # adding this atom would make it go over the max line length. reflowed_lines.add_line_break(continued_indent) else: reflowed_lines.add_space_if_needed(unicode(self)) reflowed_lines.add(self, len(continued_indent), break_after_open_bracket) def emit(self): return self.__repr__() @property def is_keyword(self): return keyword.iskeyword(self._atom.token_string) @property def is_string(self): return self._atom.token_type == tokenize.STRING @property def is_name(self): return self._atom.token_type == tokenize.NAME @property def is_number(self): return self._atom.token_type == tokenize.NUMBER @property def is_comma(self): return self._atom.token_string == ',' @property def is_colon(self): return self._atom.token_string == ':' @property def size(self): return len(self._atom.token_string) class Container(object): """Base class for all container types.""" def __init__(self, items): self._items = items def __repr__(self): string = '' last_was_keyword = False for item in self._items: if item.is_comma: string += ', ' elif item.is_colon: string += ': ' else: item_string = unicode(item) if ( string and (last_was_keyword or (not string.endswith(tuple('([{,.:}]) ')) and not item_string.startswith(tuple('([{,.:}])')))) ): string += ' ' string += item_string last_was_keyword = item.is_keyword return string def __iter__(self): for element in self._items: yield element def __getitem__(self, idx): return self._items[idx] def reflow(self, reflowed_lines, continued_indent, break_after_open_bracket=False): last_was_container = False for (index, item) in enumerate(self._items): next_item = get_item(self._items, index + 1) if isinstance(item, Atom): is_list_comp_or_if_expr = ( isinstance(self, (ListComprehension, IfExpression))) item.reflow(reflowed_lines, continued_indent, self._get_extent(index), is_list_comp_or_if_expr=is_list_comp_or_if_expr, next_is_dot=(next_item and unicode(next_item) == '.')) if last_was_container and item.is_comma: reflowed_lines.add_line_break(continued_indent) last_was_container = False else: # isinstance(item, Container) reflowed_lines.add(item, len(continued_indent), break_after_open_bracket) last_was_container = not isinstance(item, (ListComprehension, IfExpression)) if ( break_after_open_bracket and index == 0 and # Prefer to keep empty containers together instead of # separating them. unicode(item) == self.open_bracket and (not next_item or unicode(next_item) != self.close_bracket) and (len(self._items) != 3 or not isinstance(next_item, Atom)) ): reflowed_lines.add_line_break(continued_indent) break_after_open_bracket = False else: next_next_item = get_item(self._items, index + 2) if ( unicode(item) not in ['.', '%', 'in'] and next_item and not isinstance(next_item, Container) and unicode(next_item) != ':' and next_next_item and (not isinstance(next_next_item, Atom) or unicode(next_item) == 'not') and not reflowed_lines.line_empty() and not reflowed_lines.fits_on_current_line( self._get_extent(index + 1) + 2) ): reflowed_lines.add_line_break(continued_indent) def _get_extent(self, index): """The extent of the full element. E.g., the length of a function call or keyword. """ extent = 0 prev_item = get_item(self._items, index - 1) seen_dot = prev_item and unicode(prev_item) == '.' while index < len(self._items): item = get_item(self._items, index) index += 1 if isinstance(item, (ListComprehension, IfExpression)): break if isinstance(item, Container): if prev_item and prev_item.is_name: if seen_dot: extent += 1 else: extent += item.size prev_item = item continue elif (unicode(item) not in ['.', '=', ':', 'not'] and not item.is_name and not item.is_string): break if unicode(item) == '.': seen_dot = True extent += item.size prev_item = item return extent @property def is_string(self): return False @property def size(self): return len(self.__repr__()) @property def is_keyword(self): return False @property def is_name(self): return False @property def is_comma(self): return False @property def is_colon(self): return False @property def open_bracket(self): return None @property def close_bracket(self): return None class Tuple(Container): """A high-level representation of a tuple.""" @property def open_bracket(self): return '(' @property def close_bracket(self): return ')' class List(Container): """A high-level representation of a list.""" @property def open_bracket(self): return '[' @property def close_bracket(self): return ']' class DictOrSet(Container): """A high-level representation of a dictionary or set.""" @property def open_bracket(self): return '{' @property def close_bracket(self): return '}' class ListComprehension(Container): """A high-level representation of a list comprehension.""" @property def size(self): length = 0 for item in self._items: if isinstance(item, IfExpression): break length += item.size return length class IfExpression(Container): """A high-level representation of an if-expression.""" def _parse_container(tokens, index, for_or_if=None): """Parse a high-level container, such as a list, tuple, etc.""" # Store the opening bracket. items = [Atom(Token(*tokens[index]))] index += 1 num_tokens = len(tokens) while index < num_tokens: tok = Token(*tokens[index]) if tok.token_string in ',)]}': # First check if we're at the end of a list comprehension or # if-expression. Don't add the ending token as part of the list # comprehension or if-expression, because they aren't part of those # constructs. if for_or_if == 'for': return (ListComprehension(items), index - 1) elif for_or_if == 'if': return (IfExpression(items), index - 1) # We've reached the end of a container. items.append(Atom(tok)) # If not, then we are at the end of a container. if tok.token_string == ')': # The end of a tuple. return (Tuple(items), index) elif tok.token_string == ']': # The end of a list. return (List(items), index) elif tok.token_string == '}': # The end of a dictionary or set. return (DictOrSet(items), index) elif tok.token_string in '([{': # A sub-container is being defined. (container, index) = _parse_container(tokens, index) items.append(container) elif tok.token_string == 'for': (container, index) = _parse_container(tokens, index, 'for') items.append(container) elif tok.token_string == 'if': (container, index) = _parse_container(tokens, index, 'if') items.append(container) else: items.append(Atom(tok)) index += 1 return (None, None) def _parse_tokens(tokens): """Parse the tokens. This converts the tokens into a form where we can manipulate them more easily. """ index = 0 parsed_tokens = [] num_tokens = len(tokens) while index < num_tokens: tok = Token(*tokens[index]) assert tok.token_type != token.INDENT if tok.token_type == tokenize.NEWLINE: # There's only one newline and it's at the end. break if tok.token_string in '([{': (container, index) = _parse_container(tokens, index) if not container: return None parsed_tokens.append(container) else: parsed_tokens.append(Atom(tok)) index += 1 return parsed_tokens def _reflow_lines(parsed_tokens, indentation, max_line_length, start_on_prefix_line): """Reflow the lines so that it looks nice.""" if unicode(parsed_tokens[0]) == 'def': # A function definition gets indented a bit more. continued_indent = indentation + ' ' * 2 * DEFAULT_INDENT_SIZE else: continued_indent = indentation + ' ' * DEFAULT_INDENT_SIZE break_after_open_bracket = not start_on_prefix_line lines = ReformattedLines(max_line_length) lines.add_indent(len(indentation.lstrip('\r\n'))) if not start_on_prefix_line: # If splitting after the opening bracket will cause the first element # to be aligned weirdly, don't try it. first_token = get_item(parsed_tokens, 0) second_token = get_item(parsed_tokens, 1) if ( first_token and second_token and unicode(second_token)[0] == '(' and len(indentation) + len(first_token) + 1 == len(continued_indent) ): return None for item in parsed_tokens: lines.add_space_if_needed(unicode(item), equal=True) save_continued_indent = continued_indent if start_on_prefix_line and isinstance(item, Container): start_on_prefix_line = False continued_indent = ' ' * (lines.current_size() + 1) item.reflow(lines, continued_indent, break_after_open_bracket) continued_indent = save_continued_indent return lines.emit() def _shorten_line_at_tokens_new(tokens, source, indentation, max_line_length): """Shorten the line taking its length into account. The input is expected to be free of newlines except for inside multiline strings and at the end. """ # Yield the original source so to see if it's a better choice than the # shortened candidate lines we generate here. yield indentation + source parsed_tokens = _parse_tokens(tokens) if parsed_tokens: # Perform two reflows. The first one starts on the same line as the # prefix. The second starts on the line after the prefix. fixed = _reflow_lines(parsed_tokens, indentation, max_line_length, start_on_prefix_line=True) if fixed and check_syntax(normalize_multiline(fixed.lstrip())): yield fixed fixed = _reflow_lines(parsed_tokens, indentation, max_line_length, start_on_prefix_line=False) if fixed and check_syntax(normalize_multiline(fixed.lstrip())): yield fixed def _shorten_line_at_tokens(tokens, source, indentation, indent_word, key_token_strings, aggressive): """Separate line by breaking at tokens in key_token_strings. The input is expected to be free of newlines except for inside multiline strings and at the end. """ offsets = [] for (index, _t) in enumerate(token_offsets(tokens)): (token_type, token_string, start_offset, end_offset) = _t assert token_type != token.INDENT if token_string in key_token_strings: # Do not break in containers with zero or one items. unwanted_next_token = { '(': ')', '[': ']', '{': '}'}.get(token_string) if unwanted_next_token: if ( get_item(tokens, index + 1, default=[None, None])[1] == unwanted_next_token or get_item(tokens, index + 2, default=[None, None])[1] == unwanted_next_token ): continue if ( index > 2 and token_string == '(' and tokens[index - 1][1] in ',(%[' ): # Don't split after a tuple start, or before a tuple start if # the tuple is in a list. continue if end_offset < len(source) - 1: # Don't split right before newline. offsets.append(end_offset) else: # Break at adjacent strings. These were probably meant to be on # separate lines in the first place. previous_token = get_item(tokens, index - 1) if ( token_type == tokenize.STRING and previous_token and previous_token[0] == tokenize.STRING ): offsets.append(start_offset) current_indent = None fixed = None for line in split_at_offsets(source, offsets): if fixed: fixed += '\n' + current_indent + line for symbol in '([{': if line.endswith(symbol): current_indent += indent_word else: # First line. fixed = line assert not current_indent current_indent = indent_word assert fixed is not None if check_syntax(normalize_multiline(fixed) if aggressive > 1 else fixed): return indentation + fixed return None def token_offsets(tokens): """Yield tokens and offsets.""" end_offset = 0 previous_end_row = 0 previous_end_column = 0 for t in tokens: token_type = t[0] token_string = t[1] (start_row, start_column) = t[2] (end_row, end_column) = t[3] # Account for the whitespace between tokens. end_offset += start_column if previous_end_row == start_row: end_offset -= previous_end_column # Record the start offset of the token. start_offset = end_offset # Account for the length of the token itself. end_offset += len(token_string) yield (token_type, token_string, start_offset, end_offset) previous_end_row = end_row previous_end_column = end_column def normalize_multiline(line): """Normalize multiline-related code that will cause syntax error. This is for purposes of checking syntax. """ if line.startswith('def ') and line.rstrip().endswith(':'): return line + ' pass' elif line.startswith('return '): return 'def _(): ' + line elif line.startswith('@'): return line + 'def _(): pass' elif line.startswith('class '): return line + ' pass' elif line.startswith(('if ', 'elif ', 'for ', 'while ')): return line + ' pass' return line def fix_whitespace(line, offset, replacement): """Replace whitespace at offset and return fixed line.""" # Replace escaped newlines too left = line[:offset].rstrip('\n\r \t\\') right = line[offset:].lstrip('\n\r \t\\') if right.startswith('#'): return line return left + replacement + right def _execute_pep8(pep8_options, source): """Execute pycodestyle via python method calls.""" class QuietReport(pycodestyle.BaseReport): """Version of checker that does not print.""" def __init__(self, options): super(QuietReport, self).__init__(options) self.__full_error_results = [] def error(self, line_number, offset, text, check): """Collect errors.""" code = super(QuietReport, self).error(line_number, offset, text, check) if code: self.__full_error_results.append( {'id': code, 'line': line_number, 'column': offset + 1, 'info': text}) def full_error_results(self): """Return error results in detail. Results are in the form of a list of dictionaries. Each dictionary contains 'id', 'line', 'column', and 'info'. """ return self.__full_error_results checker = pycodestyle.Checker('', lines=source, reporter=QuietReport, **pep8_options) checker.check_all() return checker.report.full_error_results() def _remove_leading_and_normalize(line): # ignore FF in first lstrip() return line.lstrip(' \t\v').rstrip(CR + LF) + '\n' class Reindenter(object): """Reindents badly-indented code to uniformly use four-space indentation. Released to the public domain, by Tim Peters, 03 October 2000. """ def __init__(self, input_text): sio = io.StringIO(input_text) source_lines = sio.readlines() self.string_content_line_numbers = multiline_string_lines(input_text) # File lines, rstripped & tab-expanded. Dummy at start is so # that we can use tokenize's 1-based line numbering easily. # Note that a line is all-blank iff it is a newline. self.lines = [] for line_number, line in enumerate(source_lines, start=1): # Do not modify if inside a multiline string. if line_number in self.string_content_line_numbers: self.lines.append(line) else: # Only expand leading tabs. self.lines.append(_get_indentation(line).expandtabs() + _remove_leading_and_normalize(line)) self.lines.insert(0, None) self.index = 1 # index into self.lines of next line self.input_text = input_text def run(self, indent_size=DEFAULT_INDENT_SIZE): """Fix indentation and return modified line numbers. Line numbers are indexed at 1. """ if indent_size < 1: return self.input_text try: stats = _reindent_stats(tokenize.generate_tokens(self.getline)) except (SyntaxError, tokenize.TokenError): return self.input_text # Remove trailing empty lines. lines = self.lines # Sentinel. stats.append((len(lines), 0)) # Map count of leading spaces to # we want. have2want = {} # Program after transformation. after = [] # Copy over initial empty lines -- there's nothing to do until # we see a line with *something* on it. i = stats[0][0] after.extend(lines[1:i]) for i in range(len(stats) - 1): thisstmt, thislevel = stats[i] nextstmt = stats[i + 1][0] have = _leading_space_count(lines[thisstmt]) want = thislevel * indent_size if want < 0: # A comment line. if have: # An indented comment line. If we saw the same # indentation before, reuse what it most recently # mapped to. want = have2want.get(have, -1) if want < 0: # Then it probably belongs to the next real stmt. for j in range(i + 1, len(stats) - 1): jline, jlevel = stats[j] if jlevel >= 0: if have == _leading_space_count(lines[jline]): want = jlevel * indent_size break if want < 0: # Maybe it's a hanging # comment like this one, # in which case we should shift it like its base # line got shifted. for j in range(i - 1, -1, -1): jline, jlevel = stats[j] if jlevel >= 0: want = (have + _leading_space_count( after[jline - 1]) - _leading_space_count(lines[jline])) break if want < 0: # Still no luck -- leave it alone. want = have else: want = 0 assert want >= 0 have2want[have] = want diff = want - have if diff == 0 or have == 0: after.extend(lines[thisstmt:nextstmt]) else: for line_number, line in enumerate(lines[thisstmt:nextstmt], start=thisstmt): if line_number in self.string_content_line_numbers: after.append(line) elif diff > 0: if line == '\n': after.append(line) else: after.append(' ' * diff + line) else: remove = min(_leading_space_count(line), -diff) after.append(line[remove:]) return ''.join(after) def getline(self): """Line-getter for tokenize.""" if self.index >= len(self.lines): line = '' else: line = self.lines[self.index] self.index += 1 return line def _reindent_stats(tokens): """Return list of (lineno, indentlevel) pairs. One for each stmt and comment line. indentlevel is -1 for comment lines, as a signal that tokenize doesn't know what to do about them; indeed, they're our headache! """ find_stmt = 1 # Next token begins a fresh stmt? level = 0 # Current indent level. stats = [] for t in tokens: token_type = t[0] sline = t[2][0] line = t[4] if token_type == tokenize.NEWLINE: # A program statement, or ENDMARKER, will eventually follow, # after some (possibly empty) run of tokens of the form # (NL | COMMENT)* (INDENT | DEDENT+)? find_stmt = 1 elif token_type == tokenize.INDENT: find_stmt = 1 level += 1 elif token_type == tokenize.DEDENT: find_stmt = 1 level -= 1 elif token_type == tokenize.COMMENT: if find_stmt: stats.append((sline, -1)) # But we're still looking for a new stmt, so leave # find_stmt alone. elif token_type == tokenize.NL: pass elif find_stmt: # This is the first "real token" following a NEWLINE, so it # must be the first token of the next program statement, or an # ENDMARKER. find_stmt = 0 if line: # Not endmarker. stats.append((sline, level)) return stats def _leading_space_count(line): """Return number of leading spaces in line.""" i = 0 while i < len(line) and line[i] == ' ': i += 1 return i def refactor_with_2to3(source_text, fixer_names, filename=''): """Use lib2to3 to refactor the source. Return the refactored source code. """ from lib2to3.refactor import RefactoringTool fixers = ['lib2to3.fixes.fix_' + name for name in fixer_names] tool = RefactoringTool(fixer_names=fixers, explicit=fixers) from lib2to3.pgen2 import tokenize as lib2to3_tokenize try: # The name parameter is necessary particularly for the "import" fixer. return unicode(tool.refactor_string(source_text, name=filename)) except lib2to3_tokenize.TokenError: return source_text def check_syntax(code): """Return True if syntax is okay.""" try: return compile(code, '<string>', 'exec', dont_inherit=True) except (SyntaxError, TypeError, ValueError): return False def filter_results(source, results, aggressive): """Filter out spurious reports from pycodestyle. If aggressive is True, we allow possibly unsafe fixes (E711, E712). """ non_docstring_string_line_numbers = multiline_string_lines( source, include_docstrings=False) all_string_line_numbers = multiline_string_lines( source, include_docstrings=True) commented_out_code_line_numbers = commented_out_code_lines(source) has_e901 = any(result['id'].lower() == 'e901' for result in results) for r in results: issue_id = r['id'].lower() if r['line'] in non_docstring_string_line_numbers: if issue_id.startswith(('e1', 'e501', 'w191')): continue if r['line'] in all_string_line_numbers: if issue_id in ['e501']: continue # We must offset by 1 for lines that contain the trailing contents of # multiline strings. if not aggressive and (r['line'] + 1) in all_string_line_numbers: # Do not modify multiline strings in non-aggressive mode. Remove # trailing whitespace could break doctests. if issue_id.startswith(('w29', 'w39')): continue if aggressive <= 0: if issue_id.startswith(('e711', 'e72', 'w6')): continue if aggressive <= 1: if issue_id.startswith(('e712', 'e713', 'e714', 'w5')): continue if aggressive <= 2: if issue_id.startswith(('e704', 'w5')): continue if r['line'] in commented_out_code_line_numbers: if issue_id.startswith(('e26', 'e501')): continue # Do not touch indentation if there is a token error caused by # incomplete multi-line statement. Otherwise, we risk screwing up the # indentation. if has_e901: if issue_id.startswith(('e1', 'e7')): continue yield r def multiline_string_lines(source, include_docstrings=False): """Return line numbers that are within multiline strings. The line numbers are indexed at 1. Docstrings are ignored. """ line_numbers = set() previous_token_type = '' try: for t in generate_tokens(source): token_type = t[0] start_row = t[2][0] end_row = t[3][0] if token_type == tokenize.STRING and start_row != end_row: if ( include_docstrings or previous_token_type != tokenize.INDENT ): # We increment by one since we want the contents of the # string. line_numbers |= set(range(1 + start_row, 1 + end_row)) previous_token_type = token_type except (SyntaxError, tokenize.TokenError): pass return line_numbers def commented_out_code_lines(source): """Return line numbers of comments that are likely code. Commented-out code is bad practice, but modifying it just adds even more clutter. """ line_numbers = [] try: for t in generate_tokens(source): token_type = t[0] token_string = t[1] start_row = t[2][0] line = t[4] # Ignore inline comments. if not line.lstrip().startswith('#'): continue if token_type == tokenize.COMMENT: stripped_line = token_string.lstrip('#').strip() if ( ' ' in stripped_line and '#' not in stripped_line and check_syntax(stripped_line) ): line_numbers.append(start_row) except (SyntaxError, tokenize.TokenError): pass return line_numbers def shorten_comment(line, max_line_length, last_comment=False): """Return trimmed or split long comment line. If there are no comments immediately following it, do a text wrap. Doing this wrapping on all comments in general would lead to jagged comment text. """ assert len(line) > max_line_length line = line.rstrip() # PEP 8 recommends 72 characters for comment text. indentation = _get_indentation(line) + '# ' max_line_length = min(max_line_length, len(indentation) + 72) MIN_CHARACTER_REPEAT = 5 if ( len(line) - len(line.rstrip(line[-1])) >= MIN_CHARACTER_REPEAT and not line[-1].isalnum() ): # Trim comments that end with things like --------- return line[:max_line_length] + '\n' elif last_comment and re.match(r'\s*#+\s*\w+', line): split_lines = textwrap.wrap(line.lstrip(' \t#'), initial_indent=indentation, subsequent_indent=indentation, width=max_line_length, break_long_words=False, break_on_hyphens=False) return '\n'.join(split_lines) + '\n' return line + '\n' def normalize_line_endings(lines, newline): """Return fixed line endings. All lines will be modified to use the most common line ending. """ return [line.rstrip('\n\r') + newline for line in lines] def mutual_startswith(a, b): return b.startswith(a) or a.startswith(b) def code_match(code, select, ignore): if ignore: assert not isinstance(ignore, unicode) for ignored_code in [c.strip() for c in ignore]: if mutual_startswith(code.lower(), ignored_code.lower()): return False if select: assert not isinstance(select, unicode) for selected_code in [c.strip() for c in select]: if mutual_startswith(code.lower(), selected_code.lower()): return True return False return True def fix_code(source, options=None, encoding=None, apply_config=False): """Return fixed source code. "encoding" will be used to decode "source" if it is a byte string. """ options = _get_options(options, apply_config) if not isinstance(source, unicode): source = source.decode(encoding or get_encoding()) sio = io.StringIO(source) return fix_lines(sio.readlines(), options=options) def _get_options(raw_options, apply_config): """Return parsed options.""" if not raw_options: return parse_args([''], apply_config=apply_config) if isinstance(raw_options, dict): options = parse_args([''], apply_config=apply_config) for name, value in raw_options.items(): if not hasattr(options, name): raise ValueError("No such option '{}'".format(name)) # Check for very basic type errors. expected_type = type(getattr(options, name)) if not isinstance(expected_type, (str, unicode)): if isinstance(value, (str, unicode)): raise ValueError( "Option '{}' should not be a string".format(name)) setattr(options, name, value) else: options = raw_options return options def fix_lines(source_lines, options, filename=''): """Return fixed source code.""" # Transform everything to line feed. Then change them back to original # before returning fixed source code. original_newline = find_newline(source_lines) tmp_source = ''.join(normalize_line_endings(source_lines, '\n')) # Keep a history to break out of cycles. previous_hashes = set() if options.line_range: # Disable "apply_local_fixes()" for now due to issue #175. fixed_source = tmp_source else: pep8_options = { 'ignore': options.ignore, 'select': options.select, 'max_line_length': options.max_line_length, 'hang_closing': options.hang_closing, } sio = io.StringIO(tmp_source) contents = sio.readlines() results = _execute_pep8(pep8_options, contents) codes = {result['id'] for result in results if result['id'] in SELECTED_GLOBAL_FIXED_METHOD_CODES} # Apply global fixes only once (for efficiency). fixed_source = apply_global_fixes(tmp_source, options, filename=filename, codes=codes) passes = 0 long_line_ignore_cache = set() while hash(fixed_source) not in previous_hashes: if options.pep8_passes >= 0 and passes > options.pep8_passes: break passes += 1 previous_hashes.add(hash(fixed_source)) tmp_source = copy.copy(fixed_source) fix = FixPEP8( filename, options, contents=tmp_source, long_line_ignore_cache=long_line_ignore_cache) fixed_source = fix.fix() sio = io.StringIO(fixed_source) return ''.join(normalize_line_endings(sio.readlines(), original_newline)) def fix_file(filename, options=None, output=None, apply_config=False): if not options: options = parse_args([filename], apply_config=apply_config) original_source = readlines_from_file(filename) fixed_source = original_source if options.in_place or output: encoding = detect_encoding(filename) if output: output = LineEndingWrapper(wrap_output(output, encoding=encoding)) fixed_source = fix_lines(fixed_source, options, filename=filename) if options.diff: new = io.StringIO(fixed_source) new = new.readlines() diff = get_diff_text(original_source, new, filename) if output: output.write(diff) output.flush() else: return diff elif options.in_place: fp = open_with_encoding(filename, encoding=encoding, mode='w') fp.write(fixed_source) fp.close() else: if output: output.write(fixed_source) output.flush() else: return fixed_source def global_fixes(): """Yield multiple (code, function) tuples.""" for function in list(globals().values()): if inspect.isfunction(function): arguments = _get_parameters(function) if arguments[:1] != ['source']: continue code = extract_code_from_function(function) if code: yield (code, function) def _get_parameters(function): # pylint: disable=deprecated-method if sys.version_info.major >= 3: # We need to match "getargspec()", which includes "self" as the first # value for methods. # https://bugs.python.org/issue17481#msg209469 if inspect.ismethod(function): function = function.__func__ return list(inspect.signature(function).parameters) else: return inspect.getargspec(function)[0] def apply_global_fixes(source, options, where='global', filename='', codes=None): """Run global fixes on source code. These are fixes that only need be done once (unlike those in FixPEP8, which are dependent on pycodestyle). """ if codes is None: codes = [] if any(code_match(code, select=options.select, ignore=options.ignore) for code in ['E101', 'E111']): source = reindent(source, indent_size=options.indent_size) for (code, function) in global_fixes(): if code.upper() in SELECTED_GLOBAL_FIXED_METHOD_CODES \ and code.upper() not in codes: continue if code_match(code, select=options.select, ignore=options.ignore): if options.verbose: print('---> Applying {} fix for {}'.format(where, code.upper()), file=sys.stderr) source = function(source, aggressive=options.aggressive) source = fix_2to3(source, aggressive=options.aggressive, select=options.select, ignore=options.ignore, filename=filename, where=where, verbose=options.verbose) return source def extract_code_from_function(function): """Return code handled by function.""" if not function.__name__.startswith('fix_'): return None code = re.sub('^fix_', '', function.__name__) if not code: return None try: int(code[1:]) except ValueError: return None return code def _get_package_version(): packages = ["pycodestyle: {}".format(pycodestyle.__version__)] return ", ".join(packages) def create_parser(): """Return command-line parser.""" parser = argparse.ArgumentParser(description=docstring_summary(__doc__), prog='autopep8') parser.add_argument('--version', action='version', version='%(prog)s {} ({})'.format( __version__, _get_package_version())) parser.add_argument('-v', '--verbose', action='count', default=0, help='print verbose messages; ' 'multiple -v result in more verbose messages') parser.add_argument('-d', '--diff', action='store_true', help='print the diff for the fixed source') parser.add_argument('-i', '--in-place', action='store_true', help='make changes to files in place') parser.add_argument('--global-config', metavar='filename', default=DEFAULT_CONFIG, help='path to a global pep8 config file; if this file ' 'does not exist then this is ignored ' '(default: {})'.format(DEFAULT_CONFIG)) parser.add_argument('--ignore-local-config', action='store_true', help="don't look for and apply local config files; " 'if not passed, defaults are updated with any ' "config files in the project's root directory") parser.add_argument('-r', '--recursive', action='store_true', help='run recursively over directories; ' 'must be used with --in-place or --diff') parser.add_argument('-j', '--jobs', type=int, metavar='n', default=1, help='number of parallel jobs; ' 'match CPU count if value is less than 1') parser.add_argument('-p', '--pep8-passes', metavar='n', default=-1, type=int, help='maximum number of additional pep8 passes ' '(default: infinite)') parser.add_argument('-a', '--aggressive', action='count', default=0, help='enable non-whitespace changes; ' 'multiple -a result in more aggressive changes') parser.add_argument('--experimental', action='store_true', help='enable experimental fixes') parser.add_argument('--exclude', metavar='globs', help='exclude file/directory names that match these ' 'comma-separated globs') parser.add_argument('--list-fixes', action='store_true', help='list codes for fixes; ' 'used by --ignore and --select') parser.add_argument('--ignore', metavar='errors', default='', help='do not fix these errors/warnings ' '(default: {})'.format(DEFAULT_IGNORE)) parser.add_argument('--select', metavar='errors', default='', help='fix only these errors/warnings (e.g. E4,W)') parser.add_argument('--max-line-length', metavar='n', default=79, type=int, help='set maximum allowed line length ' '(default: %(default)s)') parser.add_argument('--line-range', '--range', metavar='line', default=None, type=int, nargs=2, help='only fix errors found within this inclusive ' 'range of line numbers (e.g. 1 99); ' 'line numbers are indexed at 1') parser.add_argument('--indent-size', default=DEFAULT_INDENT_SIZE, type=int, help=argparse.SUPPRESS) parser.add_argument('--hang-closing', action='store_true', help='hang-closing option passed to pycodestyle') parser.add_argument('files', nargs='*', help="files to format or '-' for standard in") return parser def parse_args(arguments, apply_config=False): """Parse command-line options.""" parser = create_parser() args = parser.parse_args(arguments) if not args.files and not args.list_fixes: parser.error('incorrect number of arguments') args.files = [decode_filename(name) for name in args.files] if apply_config: parser = read_config(args, parser) args = parser.parse_args(arguments) args.files = [decode_filename(name) for name in args.files] if '-' in args.files: if len(args.files) > 1: parser.error('cannot mix stdin and regular files') if args.diff: parser.error('--diff cannot be used with standard input') if args.in_place: parser.error('--in-place cannot be used with standard input') if args.recursive: parser.error('--recursive cannot be used with standard input') if len(args.files) > 1 and not (args.in_place or args.diff): parser.error('autopep8 only takes one filename as argument ' 'unless the "--in-place" or "--diff" args are ' 'used') if args.recursive and not (args.in_place or args.diff): parser.error('--recursive must be used with --in-place or --diff') if args.in_place and args.diff: parser.error('--in-place and --diff are mutually exclusive') if args.max_line_length <= 0: parser.error('--max-line-length must be greater than 0') if args.select: args.select = _split_comma_separated(args.select) if args.ignore: args.ignore = _split_comma_separated(args.ignore) elif not args.select: if args.aggressive: # Enable everything by default if aggressive. args.select = {'E', 'W'} else: args.ignore = _split_comma_separated(DEFAULT_IGNORE) if args.exclude: args.exclude = _split_comma_separated(args.exclude) else: args.exclude = {} if args.jobs < 1: # Do not import multiprocessing globally in case it is not supported # on the platform. import multiprocessing args.jobs = multiprocessing.cpu_count() if args.jobs > 1 and not args.in_place: parser.error('parallel jobs requires --in-place') if args.line_range: if args.line_range[0] <= 0: parser.error('--range must be positive numbers') if args.line_range[0] > args.line_range[1]: parser.error('First value of --range should be less than or equal ' 'to the second') return args def read_config(args, parser): """Read both user configuration and local configuration.""" try: from configparser import ConfigParser as SafeConfigParser from configparser import Error except ImportError: from ConfigParser import SafeConfigParser from ConfigParser import Error config = SafeConfigParser() try: config.read(args.global_config) if not args.ignore_local_config: parent = tail = args.files and os.path.abspath( os.path.commonprefix(args.files)) while tail: if config.read([os.path.join(parent, fn) for fn in PROJECT_CONFIG]): break (parent, tail) = os.path.split(parent) defaults = {} option_list = {o.dest: o.type or type(o.default) for o in parser._actions} for section in ['pep8', 'pycodestyle', 'flake8']: if not config.has_section(section): continue for (k, _) in config.items(section): norm_opt = k.lstrip('-').replace('-', '_') if not option_list.get(norm_opt): continue opt_type = option_list[norm_opt] if opt_type is int: value = config.getint(section, k) elif opt_type is bool: value = config.getboolean(section, k) else: value = config.get(section, k) if args.verbose: print("enable config: section={}, key={}, value={}".format( section, k, value)) defaults[norm_opt] = value parser.set_defaults(**defaults) except Error: # Ignore for now. pass return parser def _split_comma_separated(string): """Return a set of strings.""" return {text.strip() for text in string.split(',') if text.strip()} def decode_filename(filename): """Return Unicode filename.""" if isinstance(filename, unicode): return filename return filename.decode(sys.getfilesystemencoding()) def supported_fixes(): """Yield pep8 error codes that autopep8 fixes. Each item we yield is a tuple of the code followed by its description. """ yield ('E101', docstring_summary(reindent.__doc__)) instance = FixPEP8(filename=None, options=None, contents='') for attribute in dir(instance): code = re.match('fix_([ew][0-9][0-9][0-9])', attribute) if code: yield ( code.group(1).upper(), re.sub(r'\s+', ' ', docstring_summary(getattr(instance, attribute).__doc__)) ) for (code, function) in sorted(global_fixes()): yield (code.upper() + (4 - len(code)) * ' ', re.sub(r'\s+', ' ', docstring_summary(function.__doc__))) for code in sorted(CODE_TO_2TO3): yield (code.upper() + (4 - len(code)) * ' ', re.sub(r'\s+', ' ', docstring_summary(fix_2to3.__doc__))) def docstring_summary(docstring): """Return summary of docstring.""" return docstring.split('\n')[0] if docstring else '' def line_shortening_rank(candidate, indent_word, max_line_length, experimental=False): """Return rank of candidate. This is for sorting candidates. """ if not candidate.strip(): return 0 rank = 0 lines = candidate.rstrip().split('\n') offset = 0 if ( not lines[0].lstrip().startswith('#') and lines[0].rstrip()[-1] not in '([{' ): for (opening, closing) in ('()', '[]', '{}'): # Don't penalize empty containers that aren't split up. Things like # this "foo(\n )" aren't particularly good. opening_loc = lines[0].find(opening) closing_loc = lines[0].find(closing) if opening_loc >= 0: if closing_loc < 0 or closing_loc != opening_loc + 1: offset = max(offset, 1 + opening_loc) current_longest = max(offset + len(x.strip()) for x in lines) rank += 4 * max(0, current_longest - max_line_length) rank += len(lines) # Too much variation in line length is ugly. rank += 2 * standard_deviation(len(line) for line in lines) bad_staring_symbol = { '(': ')', '[': ']', '{': '}'}.get(lines[0][-1]) if len(lines) > 1: if ( bad_staring_symbol and lines[1].lstrip().startswith(bad_staring_symbol) ): rank += 20 for lineno, current_line in enumerate(lines): current_line = current_line.strip() if current_line.startswith('#'): continue for bad_start in ['.', '%', '+', '-', '/']: if current_line.startswith(bad_start): rank += 100 # Do not tolerate operators on their own line. if current_line == bad_start: rank += 1000 if ( current_line.endswith(('.', '%', '+', '-', '/')) and "': " in current_line ): rank += 1000 if current_line.endswith(('(', '[', '{', '.')): # Avoid lonely opening. They result in longer lines. if len(current_line) <= len(indent_word): rank += 100 # Avoid the ugliness of ", (\n". if ( current_line.endswith('(') and current_line[:-1].rstrip().endswith(',') ): rank += 100 # Avoid the ugliness of "something[\n" and something[index][\n. if ( current_line.endswith('[') and len(current_line) > 1 and (current_line[-2].isalnum() or current_line[-2] in ']') ): rank += 300 # Also avoid the ugliness of "foo.\nbar" if current_line.endswith('.'): rank += 100 if has_arithmetic_operator(current_line): rank += 100 # Avoid breaking at unary operators. if re.match(r'.*[(\[{]\s*[\-\+~]$', current_line.rstrip('\\ ')): rank += 1000 if re.match(r'.*lambda\s*\*$', current_line.rstrip('\\ ')): rank += 1000 if current_line.endswith(('%', '(', '[', '{')): rank -= 20 # Try to break list comprehensions at the "for". if current_line.startswith('for '): rank -= 50 if current_line.endswith('\\'): # If a line ends in \-newline, it may be part of a # multiline string. In that case, we would like to know # how long that line is without the \-newline. If it's # longer than the maximum, or has comments, then we assume # that the \-newline is an okay candidate and only # penalize it a bit. total_len = len(current_line) lineno += 1 while lineno < len(lines): total_len += len(lines[lineno]) if lines[lineno].lstrip().startswith('#'): total_len = max_line_length break if not lines[lineno].endswith('\\'): break lineno += 1 if total_len < max_line_length: rank += 10 else: rank += 100 if experimental else 1 # Prefer breaking at commas rather than colon. if ',' in current_line and current_line.endswith(':'): rank += 10 # Avoid splitting dictionaries between key and value. if current_line.endswith(':'): rank += 100 rank += 10 * count_unbalanced_brackets(current_line) return max(0, rank) def standard_deviation(numbers): """Return standard deviation.""" numbers = list(numbers) if not numbers: return 0 mean = sum(numbers) / len(numbers) return (sum((n - mean) ** 2 for n in numbers) / len(numbers)) ** .5 def has_arithmetic_operator(line): """Return True if line contains any arithmetic operators.""" for operator in pycodestyle.ARITHMETIC_OP: if operator in line: return True return False def count_unbalanced_brackets(line): """Return number of unmatched open/close brackets.""" count = 0 for opening, closing in ['()', '[]', '{}']: count += abs(line.count(opening) - line.count(closing)) return count def split_at_offsets(line, offsets): """Split line at offsets. Return list of strings. """ result = [] previous_offset = 0 current_offset = 0 for current_offset in sorted(offsets): if current_offset < len(line) and previous_offset != current_offset: result.append(line[previous_offset:current_offset].strip()) previous_offset = current_offset result.append(line[current_offset:]) return result class LineEndingWrapper(object): r"""Replace line endings to work with sys.stdout. It seems that sys.stdout expects only '\n' as the line ending, no matter the platform. Otherwise, we get repeated line endings. """ def __init__(self, output): self.__output = output def write(self, s): self.__output.write(s.replace('\r\n', '\n').replace('\r', '\n')) def flush(self): self.__output.flush() def match_file(filename, exclude): """Return True if file is okay for modifying/recursing.""" base_name = os.path.basename(filename) if base_name.startswith('.'): return False for pattern in exclude: if fnmatch.fnmatch(base_name, pattern): return False if fnmatch.fnmatch(filename, pattern): return False if not os.path.isdir(filename) and not is_python_file(filename): return False return True def find_files(filenames, recursive, exclude): """Yield filenames.""" while filenames: name = filenames.pop(0) if recursive and os.path.isdir(name): for root, directories, children in os.walk(name): filenames += [os.path.join(root, f) for f in children if match_file(os.path.join(root, f), exclude)] directories[:] = [d for d in directories if match_file(os.path.join(root, d), exclude)] else: yield name def _fix_file(parameters): """Helper function for optionally running fix_file() in parallel.""" if parameters[1].verbose: print('[file:{}]'.format(parameters[0]), file=sys.stderr) try: fix_file(*parameters) except IOError as error: print(unicode(error), file=sys.stderr) def fix_multiple_files(filenames, options, output=None): """Fix list of files. Optionally fix files recursively. """ filenames = find_files(filenames, options.recursive, options.exclude) if options.jobs > 1: import multiprocessing pool = multiprocessing.Pool(options.jobs) pool.map(_fix_file, [(name, options) for name in filenames]) else: for name in filenames: _fix_file((name, options, output)) def is_python_file(filename): """Return True if filename is Python file.""" if filename.endswith('.py'): return True try: with open_with_encoding( filename, limit_byte_check=MAX_PYTHON_FILE_DETECTION_BYTES) as f: text = f.read(MAX_PYTHON_FILE_DETECTION_BYTES) if not text: return False first_line = text.splitlines()[0] except (IOError, IndexError): return False if not PYTHON_SHEBANG_REGEX.match(first_line): return False return True def is_probably_part_of_multiline(line): """Return True if line is likely part of a multiline string. When multiline strings are involved, pep8 reports the error as being at the start of the multiline string, which doesn't work for us. """ return ( '"""' in line or "'''" in line or line.rstrip().endswith('\\') ) def wrap_output(output, encoding): """Return output with specified encoding.""" return codecs.getwriter(encoding)(output.buffer if hasattr(output, 'buffer') else output) def get_encoding(): """Return preferred encoding.""" return locale.getpreferredencoding() or sys.getdefaultencoding() def main(argv=None, apply_config=True): """Command-line entry.""" if argv is None: argv = sys.argv try: # Exit on broken pipe. signal.signal(signal.SIGPIPE, signal.SIG_DFL) except AttributeError: # pragma: no cover # SIGPIPE is not available on Windows. pass try: args = parse_args(argv[1:], apply_config=apply_config) if args.list_fixes: for code, description in sorted(supported_fixes()): print('{code} - {description}'.format( code=code, description=description)) return 0 if args.files == ['-']: assert not args.in_place encoding = sys.stdin.encoding or get_encoding() # LineEndingWrapper is unnecessary here due to the symmetry between # standard in and standard out. wrap_output(sys.stdout, encoding=encoding).write( fix_code(sys.stdin.read(), args, encoding=encoding)) else: if args.in_place or args.diff: args.files = list(set(args.files)) else: assert len(args.files) == 1 assert not args.recursive fix_multiple_files(args.files, args, sys.stdout) except KeyboardInterrupt: return 1 # pragma: no cover class CachedTokenizer(object): """A one-element cache around tokenize.generate_tokens(). Original code written by Ned Batchelder, in coverage.py. """ def __init__(self): self.last_text = None self.last_tokens = None def generate_tokens(self, text): """A stand-in for tokenize.generate_tokens().""" if text != self.last_text: string_io = io.StringIO(text) self.last_tokens = list( tokenize.generate_tokens(string_io.readline) ) self.last_text = text return self.last_tokens _cached_tokenizer = CachedTokenizer() generate_tokens = _cached_tokenizer.generate_tokens if __name__ == '__main__': sys.exit(main())
33.759126
79
0.554124
164b0b6736683c348cfd7260abda065f9fd219eb
57,827
py
Python
pyDEA/core/gui_modules/table_gui.py
olga-perederieieva/pyDEA
eac02bac901b9109efb5d6a3841809f70e378912
[ "MIT" ]
29
2017-10-22T03:03:20.000Z
2022-03-21T09:15:22.000Z
pyDEA/core/gui_modules/table_gui.py
olga-perederieieva/pyDEA
eac02bac901b9109efb5d6a3841809f70e378912
[ "MIT" ]
6
2018-07-18T01:40:43.000Z
2021-04-11T00:38:30.000Z
pyDEA/core/gui_modules/table_gui.py
olga-perederieieva/pyDEA
eac02bac901b9109efb5d6a3841809f70e378912
[ "MIT" ]
20
2018-01-23T05:50:29.000Z
2022-02-22T05:04:56.000Z
''' This module contains classes responsible for displaying input data in a table (TableFrame and TableFrameWithInputOutputBox). It also contains many classes necessary for TableFrameWithInputOutputBox. Attributes: CELL_WIDTH (int): constant that defined width of a cell in a table ''' from tkinter import S, N, E, W, END, VERTICAL, HORIZONTAL, ALL from tkinter import IntVar, DISABLED, StringVar, NORMAL from tkinter.ttk import Frame, Entry, Scrollbar, Checkbutton from pyDEA.core.gui_modules.scrollable_frame_gui import MouseWheel from pyDEA.core.utils.dea_utils import is_valid_coeff, NOT_VALID_COEFF, VALID_COEFF from pyDEA.core.utils.dea_utils import WARNING_COEFF, EMPTY_COEFF, CELL_DESTROY from pyDEA.core.utils.dea_utils import CHANGE_CATEGORY_NAME, INPUT_OBSERVER from pyDEA.core.utils.dea_utils import OUTPUT_OBSERVER, on_canvas_resize from pyDEA.core.utils.dea_utils import validate_category_name, calculate_nb_pages from pyDEA.core.gui_modules.custom_canvas_gui import StyledCanvas from pyDEA.core.data_processing.read_data import convert_to_dictionary CELL_WIDTH = 10 class TableFrame(Frame): ''' This class is a base class that defines minimal functionality of a table. Attributes: parent (Tk object): parent of this widget. nb_rows (int): number of rows of the table. nb_cols (int): number of columns of the table. cells (list of list of Entry): list with Entry widgets (or derivatives of Entry) that describes the table and its content. canvas (Canvas): canvas that holds all widgets (it is necessary to make the table scrollable). frame_with_table (Frame): frame that holds all widgets. Args: parent (Tk object): parent of this widget. nb_rows (int, optional): number of rows of the table, defaults to 20. nb_cols (int, optional): number of columns of the table, defaults to 5. ''' def __init__(self, parent, data, nb_rows=20, nb_cols=5): Frame.__init__(self, parent) self.data = data self.parent = parent self.nb_rows = nb_rows self.nb_cols = nb_cols self.cells = [] self.canvas = None self.frame_with_table = None self.create_widgets() def create_widgets(self): ''' Creates all widgets. ''' self.rowconfigure(0, weight=1) self.columnconfigure(0, weight=1) yScrollbar = Scrollbar(self, orient=VERTICAL) yScrollbar.grid(row=0, column=1, sticky=N+S) xScrollbar = Scrollbar(self, orient=HORIZONTAL) xScrollbar.grid(row=1, column=0, sticky=E+W) canvas = StyledCanvas(self, yscrollcommand=yScrollbar.set, xscrollcommand=xScrollbar.set, bd=0) self.canvas = canvas canvas.grid(row=0, column=0, sticky=N+S+W+E) frame_with_table = Frame(canvas) self.frame_with_table = frame_with_table frame_with_table.grid(sticky=N+S+W+E, pady=15, padx=3) for i in range(2, self.nb_rows + 2): cols = [] for j in range(1, self.nb_cols + 1): ent = self.create_entry_widget(frame_with_table) ent.grid(row=i, column=j, sticky=N+S+E+W) cols.append(ent) self.cells.append(cols) canvas.create_window(0, 0, window=frame_with_table, anchor='nw') canvas.update_idletasks() yScrollbar['command'] = canvas.yview xScrollbar['command'] = canvas.xview self._update_scroll_region() MouseWheel(self).add_scrolling(canvas, yscrollbar=yScrollbar) def create_entry_widget(self, parent): ''' Creates Entry widget. Args: parent (Tk object): parent of the Entry widget. Returns: Entry: created Entry widget. ''' return Entry(parent, width=CELL_WIDTH) def add_row(self): ''' Adds one row to the end of the table. ''' self.cells.append([]) for j in range(self.nb_cols): grid_row_index = self.nb_rows + 2 ent = self.create_entry_widget(self.frame_with_table) ent.grid(row=grid_row_index, column=j + 1, sticky=N+S+E+W) self.cells[self.nb_rows].append(ent) self.nb_rows += 1 self._update_scroll_region() def add_column(self): ''' Adds one column to the end of the table. ''' for i in range(self.nb_rows): grid_row_index = i + 2 ent = self.create_entry_widget(self.frame_with_table) ent.grid(row=grid_row_index, column=self.nb_cols + 1, sticky=N+S+E+W) self.cells[i].append(ent) self.nb_cols += 1 self._update_scroll_region() def remove_row(self, row_index): ''' Removes row with a specified index from the table. If row_index is zero or larger than the total number of rows, no row is removed. Args: row_index (int): index of the row to remove. Returns: bool: True if row was deleted, False otherwise. ''' # forbid deleting first row if self.should_remove_row(row_index): for j in range(self.nb_cols): self.before_cell_destroy(self.cells[row_index][j]) self.cells[row_index][j].destroy() for i in range(row_index + 1, self.nb_rows): self.cells[i][j].grid_remove() self.cells[i][j].grid(row=i + 1) self.cells.remove(self.cells[row_index]) self.nb_rows -= 1 self._update_scroll_region() return True return False def should_remove_row(self, row_index): ''' Checks if row with a specified row index can be removed. Args: row_index (int): index of the row to remove. Returns: bool: True if row_index is >= 1 and < total number of rows, False otherwise. ''' return row_index >= 1 and row_index < self.nb_rows def remove_column(self, column_index): ''' Removes column with a specified index from the table. If column index is zero or larger than the total number of columns of the table, no column is removed. Args: column_index (int): index of the column to remove. Returns: bool: True if column was removed, False otherwise. ''' # do not allow to delete first column if column_index > 0 and column_index < self.nb_cols: for i in range(self.nb_rows): self.cells[i][column_index].destroy() for j in range(column_index + 1, self.nb_cols): self.cells[i][j].grid_remove() self.cells[i][j].grid(column=j) self.cells[i].remove(self.cells[i][column_index]) self.nb_cols -= 1 self._update_scroll_region() return True return False def before_cell_destroy(self, cell): ''' This method is called before a table cell is destroyed. In this class this method does nothing, but can be redefined in children classes. Args: cell (Entry): cell that will be destroyed after call to this method. ''' pass def clear_all_data(self): ''' Clears all data from all cells. ''' for i in range(self.nb_rows): for j in range(self.nb_cols): self.before_cell_clear(self.cells[i][j]) self.cells[i][j].delete(0, END) def before_cell_clear(self, cell): ''' This method is called before data is cleared from a given cell. In this class this method does nothing, but can be redefined in children classes. Args: cell (Entry): cell that will be cleared after call to this method. ''' pass def _update_scroll_region(self): ''' Updates scroll region. This method must be called each time table size or number of columns or rows change. ''' # ensures that bbox will calculate border correctly self.frame_with_table.update() on_canvas_resize(self.canvas) def read_coefficients(self): ''' Converts data stored as a list to a proper dictionary necessary for constructing data instance. ''' return convert_to_dictionary(self.data, self.check_value) def check_value(self, count): ''' This method is called in read_coefficients method to check what values must be returned for data instance construction. In this class it always returns True and can be redefined in children classes. ''' return True class TableFrameWithInputOutputBox(TableFrame): ''' Extends TableFrame with extra functionality necessary for data modification and choosing input and output categories. Attributes: params_frame (ParamsFrame): frame with parameters, this class communicates with params_frame when data is loaded or modified. combobox_text_var (StringVar): StringVar object that stores categorical category. panel_text_observer (PanelTextObserver): observer that adds star to label frame of the parent of this widget. This class notifies panel_text_observer when data was modified. frames (list of Frame): list of frames that hold Checkbuttons for choosing input and output categories. row_checkboxes (list of Checkbutton): list of Checkbuttons used for removing rows. col_checkboxes (list of Checkbutton): list of Checkbuttons used for removing columns. current_categories (list of str): list of current valid categories. This class might modify this list. str_var_for_input_output_boxes (StringVar): StringVar object that is used for communication with ParamsFrame. If the content of str_var_for_input_output_boxes was modified, it means that data was loaded from parameters file and input and output categories must be checked depending on parameters file. data (list of list of str or float): input data, it might be modified by this class. Args: parent (Tk object): parent of this widget. params_frame (ParamsFrame): frame with parameters, this class communicates with params_frame when data is loaded or modified. combobox_text_var (StringVar): StringVar object that stores categorical category. current_categories (list of str): list of current valid categories. This class might modify this list. str_var_for_input_output_boxes (StringVar): StringVar object that is used for communication with ParamsFrame. If the content of str_var_for_input_output_boxes was modified, it means that data was loaded from parameters file and input and output categories must be checked depending on parameters file. if_text_modified_str (StringVar): StringVar object that is used by PanelTextObserver, its content is modified when data was modified. data (list of list of str or float): input data, it might be modified by this class. nb_rows (int, optional): number of rows of the table, defaults to 20. nb_cols (int, optional): number of columns of the table, defaults to 5. ''' def __init__(self, parent, params_frame, combobox_text_var, current_categories, str_var_for_input_output_boxes, if_text_modified_str, data, nb_rows=20, nb_cols=5): self.params_frame = params_frame self.combobox_text_var = combobox_text_var self.panel_text_observer = PanelTextObserver(if_text_modified_str) self.frames = [] self.row_checkboxes = [] self.col_checkboxes = [] self.current_categories = current_categories self.str_var_for_input_output_boxes = str_var_for_input_output_boxes self.str_var_for_input_output_boxes.trace('w', self.on_load_categories) super().__init__(parent, data, nb_rows, nb_cols) def create_widgets(self): ''' Creates widgets of this class. ''' super().create_widgets() for column_index in range(self.nb_cols - 1): self._create_input_output_box(column_index) for row_index in range(self.nb_rows): self.add_row_check_box(row_index) # add observers to add * in the first column for row_index in range(self.nb_rows): self.cells[row_index][0].panel_text_observer = self.panel_text_observer def create_entry_widget(self, parent): ''' Creates SelfValidatingEntry widget. Args: parent (Tk object): parent of the SelfValidatingEntry widget. Returns: SelfValidatingEntry: created SelfValidatingEntry widget. ''' return SelfValidatingEntry(parent, self.data, self.cells, width=CELL_WIDTH) def deselect_all_boxes(self): ''' Deselects all Checkbuttons used for choosing input and output categories. ''' for frame in self.frames: for child in frame.winfo_children(): child.deselect() def _create_input_output_box(self, column_index): ''' Creates Checkbuttons used for choosing input and output categories. Args: column_index (int): index of a column for which Checkbuttons must be created. ''' frame_for_btns = Frame(self.frame_with_table) self.frames.append(frame_for_btns) input_var = IntVar() output_var = IntVar() input_btn = ObserverCheckbutton( frame_for_btns, input_var, output_var, self.params_frame.input_categories_frame, self.params_frame.output_categories_frame, self.current_categories, self.cells, INPUT_OBSERVER, self.params_frame.change_category_name, self.data, self.combobox_text_var, text='Input', state=DISABLED) input_btn.grid(row=1, column=0, sticky=N+W) output_btn = FollowingObserverCheckbutton( frame_for_btns, output_var, input_var, self.params_frame.output_categories_frame, self.params_frame.input_categories_frame, self.current_categories, self.cells, OUTPUT_OBSERVER, self.params_frame.change_category_name, self.data, self.combobox_text_var, input_btn, text='Output', state=DISABLED) output_btn.grid(row=2, column=0, sticky=N+W) self._add_observers(input_btn, output_btn, column_index + 1) var = IntVar() column_checkbox = CheckbuttonWithVar(frame_for_btns, var) column_checkbox.grid(row=0, column=0) self.col_checkboxes.append((column_checkbox, var)) frame_for_btns.grid(row=1, column=column_index + 2, sticky=N) def _add_observers(self, input_btn, output_btn, column_index): ''' Adds observers to newly created cells in a given column. Args: input_btn (ObserverCheckbutton): observer used to select input categories. output_btn (FollowingObserverCheckbutton): observer used to select output categories. column_index (int): index of the column to cells of which observers must be added. ''' names_modifier = DefaultCategoriesAndDMUModifier( self.cells, self.current_categories) for row_index in range(self.nb_rows): self._add_observers_to_cell(self.cells[row_index][column_index], names_modifier, input_btn, output_btn) def _add_observers_to_cell(self, cell, names_modifier, input_btn, output_btn): ''' Adds given observers to a given cell. Args: cell (SelfValidatingEntry): cell where observers must be added. names_modifier (DefaultCategoriesAndDMUModifier): observer, for details see DefaultCategoriesAndDMUModifier. input_btn (ObserverCheckbutton): observer used to select input categories. output_btn (FollowingObserverCheckbutton): observer used to select output categories. ''' cell.observers.append(names_modifier) # IMPORTANT: # this observer MUST be added first, it modifies data that # is used by other observers! cell.observers.append(input_btn) cell.observers.append(output_btn) cell.panel_text_observer = self.panel_text_observer def on_load_categories(self, *args): ''' Selects input and output categories when data is loaded from parameters file. Args are provided by the StringVar trace methods and are ignored in this method. ''' for frame in self.frames: for child in frame.winfo_children(): try: category = child.get_category() except AttributeError: pass else: if (child.observer_type == INPUT_OBSERVER and child.get_category() in self.str_var_for_input_output_boxes.input_categories): child.select() if (child.observer_type == OUTPUT_OBSERVER and child.get_category() in self.str_var_for_input_output_boxes.output_categories): child.select() def add_row_check_box(self, row_index): ''' Adds Checkbutton used for removing rows to a given row. Args: row_index (int): index of row to which Checkbutton must be added. ''' if row_index >= 1: var = IntVar() row_checkbox = Checkbutton(self.frame_with_table, variable=var) self.row_checkboxes.append((row_checkbox, var)) row_checkbox.grid(row=row_index + 2, column=0) else: self.row_checkboxes.append((None, None)) def add_column(self): ''' Adds one column to the end of table. ''' super().add_column() self._create_input_output_box(self.nb_cols - 2) def add_row(self): ''' Adds one row to the end of table. Note: When data is spread across several pages, addition of row must also update the display of data. This functionality is implemented in TableModifierFrame. ''' super().add_row() self.add_row_check_box(self.nb_rows - 1) names_modifier = DefaultCategoriesAndDMUModifier( self.cells, self.current_categories) for col in range(1, self.nb_cols): input_btn, output_btn = self.get_check_boxes(col - 1) self._add_observers_to_cell(self.cells[self.nb_rows - 1][col], names_modifier, input_btn, output_btn) def get_check_boxes(self, column_index): ''' Gets Checkbuttons used for selecting input and output categories for a given column. Args: column_index (int): index of the column for which Checkbuttons must be returned. Returns: tuple of ObserverCheckbutton, FollowingObserverCheckbutton: tuple of observers or None, None if no observers were found. ''' if column_index < 0 or column_index >= len(self.frames): return None, None input_btn = None output_btn = None for child in self.frames[column_index].winfo_children(): try: observer_type = child.observer_type except AttributeError: pass else: if observer_type == INPUT_OBSERVER: input_btn = child elif observer_type == OUTPUT_OBSERVER: output_btn = child return input_btn, output_btn def remove_column(self, column_index): ''' Removes column with a specified index from the table. If column index is zero or larger than the total number of columns of the table, no column is removed. Args: column_index (int): index of the column to remove. Returns: bool: True if column was removed, False otherwise. ''' # we must record category name before removing column, # because it will disappear if column_index < len(self.cells[0]): category_name = self.cells[0][column_index].get().strip() else: category_name = '' if super().remove_column(column_index): col = column_index - 1 if category_name: self.params_frame.input_categories_frame.remove_category( category_name) self.params_frame.output_categories_frame.remove_category( category_name) if col < len(self.current_categories): self.current_categories[col] = '' # remove from data only if category is present if self.data: column_with_data_removed = False for row_index in range(len(self.data)): if column_index < len(self.data[row_index]): self.data[row_index].pop(column_index) column_with_data_removed = True if column_with_data_removed: for row in range(1, self.nb_rows): for j in range(column_index, self.nb_cols): self.cells[row][j].data_column -= 1 self.panel_text_observer.change_state_if_needed() self.frames[col].destroy() for i in range(col + 1, len(self.frames)): self.frames[i].grid_remove() self.frames[i].grid(column=i + 1) self.frames.pop(col) self.col_checkboxes.pop(col) return True return False def remove_row(self, row_index): ''' Removes data row with a specified index from the table. Row is not physically removed. If row_index is zero or larger than the total number of rows, no row is removed. Args: row_index (int): index of the row to remove. Returns: bool: True if row was deleted, False otherwise. ''' if self.should_remove_row(row_index): if self.data: nb_pages = calculate_nb_pages(len(self.data), self.nb_rows) data_index = self.get_data_index(row_index) nb_cols = len(self.cells[row_index]) if data_index != -1 and data_index < len(self.data): nb_rows_to_change = min(self.nb_rows, len(self.data) + 1) self.data.pop(data_index) for row in range(row_index + 1, nb_rows_to_change): for col in range(0, nb_cols): if self.cells[row][col].data_row != -1: self.cells[row][col].data_row -= 1 self.panel_text_observer.change_state_if_needed() super().remove_row(row_index) if (nb_pages > 1): self.add_row() else: super().remove_row(row_index) self.row_checkboxes[row_index][0].destroy() for i in range(row_index + 1, len(self.row_checkboxes)): self.row_checkboxes[i][0].grid_remove() self.row_checkboxes[i][0].grid(row=i + 1) self.row_checkboxes.pop(row_index) return True return False def get_data_index(self, row_index): for j in range(0, len(self.cells[row_index])): if self.cells[row_index][j].data_row != -1: return self.cells[row_index][j].data_row return -1 def before_cell_destroy(self, cell): ''' This method is called before a table cell is destroyed. Notifies observers if data is not empty. Args: cell (SelfValidatingEntry): cell that will be destroyed after call to this method. ''' info = cell.grid_info() col = int(info['column']) row = int(info['row']) if len(self.data) == 0: cell.notify_observers(CELL_DESTROY, row, col) def load_visible_data(self): ''' Displays data in the table. First, it adds more rows to fill the frame, second, it displays data that fits the table. ''' self.add_rows_to_fill_visible_frame() self.display_data() def display_data(self, start_row=0): ''' Displays data starting from a given data row. This method is usually called by NavigationForTableFrame when data spans across several pages and users clicks on page navigation buttons. Args: start_row (int, optional): index of input data starting from which data should be displayed, defaults to 0. ''' nb_data_rows = len(self.data) nb_displayed_rows = 0 for row_index in range(start_row, nb_data_rows): values = self.data[row_index] # do not insert data that is not visible if nb_displayed_rows + 1 >= self.nb_rows: return for column_index, coeff in enumerate(values): # row_index + 1 - first row has categories self._display_one_cell(nb_displayed_rows, column_index, coeff, row_index, column_index, False) row_index += 1 nb_displayed_rows += 1 if len(self.data) > 0: nb_cols = len(self.data[0]) else: nb_cols = self.nb_cols nb_rows = self.nb_rows - 1 # -1 because we add +1 to row_index while nb_displayed_rows < nb_rows: for column_index in range(nb_cols): self._display_one_cell(nb_displayed_rows, column_index, '', -1, -1, False) nb_displayed_rows += 1 def _display_one_cell(self, row_index, column_index, value_to_dispay, data_row, data_col, modify_data=True): ''' Displays data in a cell and sets cell's fields to proper values. Args: row_index (int): index of a row where the cell is. column_index (int): index of a column where the cell is. value_to_dispay (str): new cell value_to_dispay. data_row (int): row index of input data. data_col (int): column index of input data. modify_data (bool, optional): True if data was modified and observers must be notified, False otherwise. ''' cell_row_index = row_index + 1 self.cells[cell_row_index][column_index].modify_data = modify_data self.cells[cell_row_index][column_index].text_value.set(value_to_dispay) self.cells[cell_row_index][column_index].data_row = data_row self.cells[cell_row_index][column_index].data_column = data_col def add_rows_to_fill_visible_frame(self): ''' Adds rows to table to fill the frame. Usually adds a bit more and scroll gets activated. Exact number of added rows depends on operating system, height of widgets and screen size. ''' self.canvas.update_idletasks() frame_height = self.canvas.winfo_height() while self.canvas.bbox(ALL)[3] <= frame_height - 20: self.add_row() self._update_scroll_region() def check_value(self, count): ''' This method is called in read_coefficients method to check what values must be returned for data instance construction. Args: count (int): data column index. Returns: bool: True if the category in the given column index is not an empty string, False otherwise. ''' if self.current_categories[count]: return True return False def clear_all_data(self): ''' Clears all data from all cells and clears input data. ''' self.data.clear() super().clear_all_data() self.current_categories.clear() # reset modify data back to true for cell_row in self.cells: for cell in cell_row: cell.modify_data = True def before_cell_clear(self, cell): ''' This method is called before data is cleared from a given cell. It sets fields of the given cell to initial values. Args: cell (SelfValidatingEntry): cell that will be cleared after call to this method. ''' cell.modify_data = False cell.data_row = -1 cell.data_column = -1 class ObserverCheckbutton(Checkbutton): ''' This class implements Checkbutton for choosing input/output categories. Attributes: var (IntVar): variable that is set to 1 when Checkbutton is selected, to 0 otherwise. opposite_var (IntVar): variable of the other Checkbutton that must deselected if this Checkbutton is selected. parent (Tk object): frame that holds this Checkbutton. Warning: it is important for the parent to be gridded in the same column as the entire column of table entries is gridded, because this class uses parent grid column index to determine the column where the category name can be read from. category_frame (CategoriesCheckBox): frame that displays selected input or output categories. Note: if this Checkbutton is used to select input categories, category_frame must be CategoriesCheckBox object that displays selected input categories. if this Checkbutton is used to select output categories, category_frame must be CategoriesCheckBox object that displays selected output categories. opposite_category_frame (CategoriesCheckBox): frame that displays selected input or output categories. If category_frame displays input categories, then opposite_category_frame must display output categories, and vice versa. current_categories (list of str): list of categories. This class might modify this list by removing invalid categories and adding the valid ones. cells (list of list of SelfValidatingEntry): all entry widgets collected in list. data (list of list of str or float): input data. observer_type (int): describes type of the observer, for possible values see dea_utils. change_category_name (callable function): this function is called when name of a category was changed. combobox_text_var (StringVar): variable of the combobox used for selecting categorical category. Arguments are the same as attributes. ''' def __init__(self, parent, var, opposite_var, category_frame, opposite_category_frame, current_categories, cells, observer_type, change_category_name, data, combobox_text_var, *args, **kw): Checkbutton.__init__(self, parent, variable=var, command=self._process, *args, **kw) self.var = var self.opposite_var = opposite_var self.parent = parent self.category_frame = category_frame self.opposite_category_frame = opposite_category_frame self.current_categories = current_categories self.cells = cells self.data = data self.observer_type = observer_type self.change_category_name = change_category_name self.combobox_text_var = combobox_text_var def _process(self): ''' This method is called when user clicks on Checkbutton. Makes sure that the same category can be only input or only output, but not both, and that selected category cannot also be selected as a categorical category. ''' category_name = self.get_category() if self.var.get() == 1: self.opposite_var.set(0) if category_name: self.category_frame.add_category(category_name) self.opposite_category_frame.remove_category(category_name) if category_name == self.combobox_text_var.get(): self.combobox_text_var.set('') elif category_name: self.category_frame.remove_category(category_name) def deselect(self): ''' Deselects Checkbutton. Note: method _process() is not called in this case. ''' self.var.set(0) def select(self): ''' Selects Checkbutton. Note: method _process() is not called in this case. ''' self.var.set(1) def change_state_if_needed(self, entry, entry_state, row, col): ''' Changes state of Checkbutton when data or categories were modified. Also modifies current_categories if needed. This widget becomes disabled if invalid category name value or input data value were provided by user. Args: entry (SelfValidatingEntry): Entry widget whose content was modified. entry_state (int): state of the Entry widget after content modification, for possible values see dea_utils module. row (int): row index of entry widget. It is the real grid value, we need to subtract 2 to get internal index. col (int): column index of entry widget. It is the real grid value, we need to subtract 2 to get internal index. ''' if entry_state == CHANGE_CATEGORY_NAME: old_name = '' internal_col = col - 2 if internal_col < len(self.current_categories): old_name = self.current_categories[internal_col] category_name = validate_category_name( self.cells[0][col - 1].text_value.get().strip(), internal_col, self.current_categories) if category_name: index = len(self.current_categories) while index <= internal_col: self.current_categories.append('') index += 1 self.current_categories[internal_col] = category_name if old_name: # change category name in params_frame self.change_category_name(old_name.strip(), category_name) self.change_state_based_on_data(entry, entry_state, row, col) entry.config(foreground='black') else: # if category name is empty, disable self.disable(internal_col, old_name) entry.config(foreground='red') else: self.change_state_based_on_data(entry, entry_state, row, col) def change_state_based_on_data(self, entry, entry_state, row, col): ''' Changes state of Checkbutton when data was modified. Args: entry (SelfValidatingEntry): Entry widget whose content was modified. entry_state (int): state of the Entry widget after content modification, for possible values see dea_utils module. row (int): row index of entry widget. It is the real grid value, we need to subtract 2 to get internal index. col (int): column index of entry widget. It is the real grid value, we need to subtract 2 to get internal index. ''' internal_col = col - 2 # IMPORTANT: read from cells, not from current_categories, they might # be empty at this stage category_name = self.cells[0][col - 1].text_value.get().strip() nb_rows = len(self.data) if nb_rows == 0: self.disable(internal_col, category_name) return elif len(self.data[0]) == 0: self.disable(internal_col, category_name) return has_one_valid_entry = False for row_index in range(nb_rows): # can happen if some values are empty while col - 1 >= len(self.data[row_index]): self.data[row_index].append('') try: # col - 1 - first column contains DMU names data_elem = float(self.data[row_index][col - 1]) except ValueError: state = NOT_VALID_COEFF else: state = is_valid_coeff(data_elem) if state == NOT_VALID_COEFF: has_one_valid_entry = False self.disable(internal_col, category_name) return elif state == VALID_COEFF or state == WARNING_COEFF: has_one_valid_entry = True if has_one_valid_entry: self.config(state=NORMAL) if category_name: if category_name not in self.current_categories: assert internal_col < len(self.current_categories) self.current_categories[internal_col] = category_name if entry_state != CELL_DESTROY and self.var.get() == 1: self.category_frame.add_category(category_name) return def disable(self, internal_col, category_name): ''' Disables Checkbutton. Args: internal_col (int): internal column index. category_name (str): name of category. ''' self.config(state=DISABLED) if category_name: if self.var.get() == 1: self.category_frame.remove_category(category_name) if self.opposite_var.get() == 1: self.opposite_category_frame.remove_category(category_name) if category_name in self.current_categories: assert(internal_col < len(self.current_categories)) self.current_categories[internal_col] = '' if category_name == self.combobox_text_var.get(): self.combobox_text_var.set('') def get_category(self): ''' Finds category name stored in the corresponding Entry widget based on where parent of Checkbutton was gridded. Returns: str: category name, might be empty string. ''' info = self.parent.grid_info() # convertion to int is necessary for Windows # for some reason in Windows grid info is stored as str col = int(info['column']) return self.cells[0][col - 1].text_value.get().strip() class FollowingObserverCheckbutton(ObserverCheckbutton): ''' This class follows state of another ObserverCheckbutton that is used to select input or output categories. This class is used in order to skip checking if data is valid second time. The first Checkbutton has already performed this check. Attributes: var (IntVar): variable that is set to 1 when Checkbutton is selected, to 0 otherwise. opposite_var (IntVar): variable of the other Checkbutton that must deselected if this Checkbutton is selected. parent (Tk object): frame that holds this Checkbutton. Warning: it is important for the parent to be gridded in the same column as the entire column of table entries is gridded, because this class uses parent grid column index to determine the column where the category name can be read from. category_frame (CategoriesCheckBox): frame that displays selected input or output categories. Note: if this Checkbutton is used to select input categories, category_frame must be CategoriesCheckBox object that displays selected input categories. if this Checkbutton is used to select output categories, category_frame must be CategoriesCheckBox object that displays selected output categories. opposite_category_frame (CategoriesCheckBox): frame that displays selected input or output categories. If category_frame displays input categories, then opposite_category_frame must display output categories, and vice versa. current_categories (list of str): list of categories. This class might modify this list by removing invalid categories and adding the valid ones. cells (list of list of SelfValidatingEntry): all entry widgets collected in list. data (list of list of str or float): input data. observer_type (int): describes type of the observer, for possible values see dea_utils. change_category_name (callable function): this function is called when name of a category was changed. combobox_text_var (StringVar): variable of the combobox used for selecting categorical category. main_box (ObserverCheckbutton): Checkbutton that changes state first. This Checkbutton changes its state to the same state as main_box, but does not do extra things that have been already performed by main_box (changes to current_categories, for example). ''' def __init__(self, parent, var, opposite_var, category_frame, opposite_category_frame, current_categories, cells, observer_type, params_frame, data, combobox_text_var, main_box, *args, **kw): super().__init__(parent, var, opposite_var, category_frame, opposite_category_frame, current_categories, cells, observer_type, params_frame, data, combobox_text_var, *args, **kw) self.main_box = main_box def change_state_if_needed(self, entry, entry_state, row, col): ''' Changes state of Checkbutton when data was modified depending on the state of main_box. Args: entry (SelfValidatingEntry): Entry widget whose content was modified. entry_state (int): state of the Entry widget after content modification, for possible values see dea_utils module. row (int): row index of entry widget. It is the real grid value, we need to subtract 2 to get internal index. col (int): column index of entry widget. It is the real grid value, we need to subtract 2 to get internal index. ''' category_name = self.get_category() if str(self.main_box.cget('state')) == DISABLED: self.disable(col - 2, category_name) else: self.config(state=NORMAL) if entry_state != CELL_DESTROY and self.var.get() == 1: self.category_frame.add_category(category_name) class DefaultCategoriesAndDMUModifier(object): ''' This class is responsible for adding automatic category and DMU names if user starts typing data without providing such names first. Attributes: cells (list of list of SelfValidatingEntry): list of all Entry widgets with data. current_categories (list of str): list of categories. Args: cells (list of list of SelfValidatingEntry): list of all Entry widgets with data. current_categories (list of str): list of categories. ''' def __init__(self, cells, current_categories): self.cells = cells self.current_categories = current_categories def change_state_if_needed(self, entry, entry_state, row, col): ''' Writes automatic category and DMU names if they were not specified before. Args: entry (SelfValidatingEntry): Entry widget the content of which was modified. entry_state (int): constant that describes entry state, for details see dea_utils module. row (int): row index of entry widget. It is the real grid value, we need to subtract 2 to get internal index. col (int): column index of entry widget. It is the real grid value, we need to subtract 2 to get internal index. ''' if (entry_state != EMPTY_COEFF and entry_state != CELL_DESTROY and entry_state != CHANGE_CATEGORY_NAME): internal_row_index = row - 2 dmu_name = self.cells[internal_row_index][0].text_value.get().strip() if not dmu_name: self.cells[internal_row_index][0].text_value.set( 'DMU{0}'.format(internal_row_index)) category_name = self.cells[0][col - 1].text_value.get().strip() if not category_name: internal_col_index = col - 2 name = 'Category{0}'.format(internal_col_index) if internal_col_index >= len(self.current_categories): index = len(self.current_categories) - 1 while index != internal_col_index: self.current_categories.append('') index += 1 # category name MUST be written first, because next line calls # ObserverCheckbutton self.cells[0][col - 1].text_value.set(name) class SelfValidatingEntry(Entry): ''' This class implement Entry widget that knows how to highlight invalid data. It also notifies other widgets if the content of Entry changes. Other widgets must implement method change_state_if_needed(). Such widgets should be appended to the list of listening widgets called observers. Attributes: text_value (StringVar): textvariable of Entry widget that calls method on_text_changed when the content on Entry changes. observers (list of objects that implement method change_state_if_needed): list of widgets or other objects that must be notified if the content of Entry changes. data_row (int): row index in data table which should be modified when the content of Entry changes. data_column (int): column index in data table which should be modified when the content of Entry changes. data (list of list of srt or float): data that will be modified. modify_data (bool): True if data should be modified, False otherwise. It is usually set to False when data is uploaded from file. panel_text_observer (PanelTextObserver): object that is notified when data changes. This object is responsible for adding star to file name when data was modified. all_cells (list of list of SelfValidatingEntry): refernce where all cells are stored. Warning: all cells must be created before any cell content can be modified. Args: parent (Tk object): parent of this Entry widget. data (list of list of srt or float): input data that will be modified. all_cells (list of list of SelfValidatingEntry): refernce where all cells are stored. Warning: all cells must be created before any cell content can be modified. ''' def __init__(self, parent, data, all_cells, *args, **kw): self.text_value = StringVar(master=parent) self.text_value.trace("w", self.on_text_changed) super().__init__(parent, *args, **kw) self.config(textvariable=self.text_value) self.observers = [] self.all_cells = all_cells self.data_row = -1 self.data_column = -1 self.data = data self.modify_data = True self.panel_text_observer = None def on_text_changed(self, *args): ''' This method is called each time the content of Entry is modified. It highlights invalid data, changes data if needed and notifies other objects when data was changed. Args are provided by StringVar trace method, but are not used. ''' info = self.grid_info() # phisical grid indeces col = int(info['column']) row = int(info['row']) self.notify_panel_observer() if row == 2: # possibly name of category is modified self.notify_observers(CHANGE_CATEGORY_NAME, row, col) elif col == 1 and row > 2: # column with DMU names, strings are allowed self.modify_data_if_needed(row, col) elif col > 1 and row > 2: # everything left self.modify_data_if_needed(row, col) try: value = float(self.text_value.get().strip()) except ValueError: self.modify_data = True self.config(foreground='red') if len(self.text_value.get().strip()) == 0: self.notify_observers(EMPTY_COEFF, row, col) else: self.notify_observers(NOT_VALID_COEFF, row, col) return text_status = is_valid_coeff(value) if text_status == NOT_VALID_COEFF: self.config(foreground='red') elif text_status == WARNING_COEFF: self.config(foreground='orange') else: self.config(foreground='black') self.notify_observers(text_status, row, col) self.modify_data = True def modify_data_if_needed(self, row, col): ''' Modifies data if modify_data is set to True. Adds empty strings to data when user modifies Entry for which data_row or/and data_column are equal to -1. Updates data with new values entered by user. Args: row (int): row where Entry is gridded col (int): column where Entry is gridded ''' if self.modify_data: if self.data_row != -1 and self.data_column != -1: self.data[self.data_row][self.data_column] = self.text_value.get().strip() else: row_for_data = len(self.data) added_rows = False # -2 because row is physical grid index, not cell index row_count = len(self.all_cells) - 1 for cells_row in reversed(self.all_cells): if cells_row[0].data_row != -1: break row_count -= 1 if row_count == -1: row_count = 0 while row_count < row - 2: self.data.append([]) added_rows = True row_count += 1 if added_rows: self.data_row = len(self.data) - 1 else: assert row_count >= row - 2 self.data_row = len(self.data) - 1 - (row_count - (row - 2)) col_for_data = len(self.data[self.data_row]) added_cols = False max_nb_col = 0 nb_rows = len(self.data) for r_ind in range(nb_rows): row_len = len(self.data[r_ind]) if row_len > max_nb_col: max_nb_col = row_len max_nb_col = max(max_nb_col, col) c_ind = col_for_data while c_ind < max_nb_col: self.data[self.data_row].append('') grid_col = len(self.data[self.data_row]) self.all_cells[row - 2][grid_col - 1].data_row = self.data_row self.all_cells[row - 2][grid_col - 1].data_column = c_ind self.notify_observers(EMPTY_COEFF, row, grid_col) added_cols = True c_ind += 1 if (col_for_data < col): col_for_data += 1 if added_cols: for r_ind in range(nb_rows): while len(self.data[r_ind]) < max_nb_col: self.data[r_ind].append('') grid_col = len(self.data[r_ind]) if r_ind >= self.data_row - (row - 3): # 3 is the first physical # row with data on the page grid_row = row - (self.data_row - r_ind) self.all_cells[grid_row - 2][grid_col - 1].data_row = r_ind self.all_cells[grid_row - 2][grid_col - 1].data_column = grid_col - 1 self.notify_observers(EMPTY_COEFF, grid_row, grid_col) self.data_column = col_for_data - 1 else: self.data_column = col - 1 self.data[self.data_row][self.data_column] = self.text_value.get().strip() def notify_panel_observer(self): ''' Notifies panel observer that data was modified. ''' if self.panel_text_observer is not None and self.modify_data is True: self.panel_text_observer.change_state_if_needed() def notify_observers(self, entry_state, row, col): ''' Notifies all observers stored in list of observers that data was modified. Args: entry_state (int): state of the Entry widget that describes if data is valid after modification, for possible values see dea_utils module. row (int): row where Entry is gridded. col (int): column where Entry is gridded. ''' for observer in self.observers: observer.change_state_if_needed(self, entry_state, row, col) class PanelTextObserver(object): ''' This class changes StringVar value that is traced in other classes. Attributes: if_text_modified_str (StringVar): StringVar object that changes value when this observer is notified. ''' def __init__(self, if_text_modified_str): self.if_text_modified_str = if_text_modified_str def change_state_if_needed(self): ''' Changes value of internal StringVar object. ''' self.if_text_modified_str.set('*') class CheckbuttonWithVar(Checkbutton): ''' Custom Checkbutton widget that provides deselect method. Attributes: var (IntVar): 0 if not selected, 1 otherwise. Args: parent (Tk object): parent of this widget. var (IntVar): variable that controls if Checkbutton is selected. ''' def __init__(self, parent, var, *args, **kw): super().__init__(parent, variable=var, *args, **kw) self.var = var def deselect(self): ''' Deselects Checkbutton. ''' self.var.set(0)
43.186706
101
0.586473
0d1cb2bd13372c70e8d90b7d4a0a7f5ca93d8028
1,487
py
Python
haipproxy-0.1/utils/redis_util.py
sampleCJ/haipproxy
656f7b1ee884ff20f6b58662b7a80e92c9c7f881
[ "MIT" ]
1
2018-03-20T09:14:33.000Z
2018-03-20T09:14:33.000Z
haipproxy-0.1/utils/redis_util.py
sampleCJ/haipproxy
656f7b1ee884ff20f6b58662b7a80e92c9c7f881
[ "MIT" ]
null
null
null
haipproxy-0.1/utils/redis_util.py
sampleCJ/haipproxy
656f7b1ee884ff20f6b58662b7a80e92c9c7f881
[ "MIT" ]
1
2018-09-08T08:06:54.000Z
2018-09-08T08:06:54.000Z
import uuid import time import redis from config.settings import ( REDIS_HOST, REDIS_PORT, DEFAULT_REDIS_DB, REDIS_PASSWORD, LOCKER_PREFIX) def get_redis_conn(**kwargs): host = kwargs.get('host', REDIS_HOST) port = kwargs.get('port', REDIS_PORT) db = kwargs.get('db', DEFAULT_REDIS_DB) password = kwargs.get('password', REDIS_PASSWORD) return redis.StrictRedis(host, port, db, password) def acquire_lock(conn, lock_name, acquire_timeout=10, lock_timeout=10): """inspired by book 'redis in action' """ identifier = str(uuid.uuid4()) lock_name = LOCKER_PREFIX + lock_name end = time.time() + acquire_timeout while time.time() < end: if conn.set(lock_name, identifier, lock_timeout, nx=True): return identifier elif not conn.ttl(lock_name) or conn.ttl(lock_name) == -1: conn.expire(lock_name, lock_timeout) time.sleep(0.1) return False def release_lock(conn, lock_name, identifier): pipe = conn.pipeline(True) lock_name = LOCKER_PREFIX + lock_name while True: try: pipe.watch(lock_name) identifier_origin = pipe.get(lock_name).decode() if identifier_origin == identifier: pipe.multi() pipe.delete(lock_name) pipe.execute() return True pipe.unwatch() break except redis.exceptions.WatchError: pass return False
27.537037
71
0.631473
2d556724ace48fefdd785ad63151add648429fc7
6,264
py
Python
projects/ibsr/config.py
vuhoangminh/medical-segmentation
4a2a663d1f2d6de5c78bc521f6ed2aa1681a8804
[ "MIT" ]
1
2018-12-06T09:17:26.000Z
2018-12-06T09:17:26.000Z
projects/ibsr/config.py
vuhoangminh/medical-segmentation
4a2a663d1f2d6de5c78bc521f6ed2aa1681a8804
[ "MIT" ]
null
null
null
projects/ibsr/config.py
vuhoangminh/medical-segmentation
4a2a663d1f2d6de5c78bc521f6ed2aa1681a8804
[ "MIT" ]
2
2019-05-07T10:07:33.000Z
2019-05-20T12:50:37.000Z
config = dict() config["env"] = "SERVER" # change this to "FULL" if you want to run full # config["mode"] = "TEST" # change this to "FULL" if you want to run full config["mode"] = "FULL" # change this to "FULL" if you want to run full config["data_folders"] = ["data_train", "data_valid"] # change this if you want to only use some of the modalities config["all_modalities"] = ["t1"] config["training_modalities"] = config["all_modalities"] config["nb_channels"] = len(config["training_modalities"]) config["truth_old"] = ["seg"] config["truth"] = ["truth"] config["groundtruth_modalities"] = config["truth_old"] + config["truth"] config["mask"] = ["mask"] if config["mode"] == "TEST": config["dataset"] = ["test"] else: config["dataset"] = ["original", "preprocessed", "denoised_original", "denoised_preprocessed", "test"] config["dataset_minh_normalize"] = ["original_minh_normalize", "preprocessed_minh_normalize", "denoised_original_minh_normalize", "denoised_preprocessed_minh_normalize", "test_minh_normalize"] config["original_folder"] = ["original_bak"] config["project_name"] = "3DUnetCNN_BRATS" config["brats_folder"] = "projects/ibsr" config["dataset_folder"] = "projects/ibsr/database" config["template_data_folder"] = "database/data_train" config["template_folder"] = "IBSR_01" # config_unet["image_shape"] = (240, 240, 155) # This determines what shape the images will be cropped/resampled to. # This determines what shape the images will be cropped/resampled to. # config["image_shape"] = (160, 192, 128) config["image_shape"] = (144,144,144) # config["is_create_patch_index_list_original"] = False config["labels"] = (1, 2, 3) # the label numbers on the input image # config["labels"] = (0, 1, 2, 4) # the label numbers on the input image config["n_labels"] = len(config["labels"]) # configs of u-net config_unet = dict() # pool size for the max pooling operations config_unet["pool_size"] = (2, 2, 2) # switch to None to train on the whole image config_unet["patch_shape"] = (128, 128, 128) if "patch_shape" in config_unet and config_unet["patch_shape"] is not None: config_unet["input_shape"] = tuple( [config["nb_channels"]] + list(config_unet["patch_shape"])) else: config_unet["input_shape"] = tuple( [config["nb_channels"]] + list(config_unet["image_shape"])) config_unet["truth_channel"] = config["nb_channels"] # if False, will use upsampling instead of deconvolution config_unet["deconvolution"] = True config_unet["depth"] = 4 config_unet["n_base_filters"] = 16 config_unet["batch_size"] = 1 config_unet["validation_batch_size"] = 2 config_unet["n_epochs"] = 200 # cutoff the training after this many epochs # learning rate will be reduced after this many epochs if the validation loss is not improving # config_unet["patience"] = 10 config_unet["patience"] = 20 # training will be stopped after this many epochs without the validation loss improving config_unet["early_stop"] = 50 config_unet["initial_learning_rate"] = 1e-4 # factor by which the learning rate will be reduced config_unet["learning_rate_drop"] = 0.2 # portion of the data that will be used for training # config_unet["learning_rate_epochs"] = 1 config_unet["validation_split"] = 0.8 # if > 0, during training, validation patches will be overlapping config_unet["validation_patch_overlap"] = 0 # randomly offset the first patch index by up to this offset config_unet["training_patch_start_offset"] = None # if False, extract patches only in bouding box of mask config_unet["is_create_patch_index_list_original"] = True config["augment_flipud"] = False # config["augment_fliplr"] = True config["augment_fliplr"] = False # config["augment_elastic"] = True config["augment_elastic"] = False config["augment_rotation"] = False # config["augment_rotation"] = True config["augment_shift"] = False config["augment_shear"] = False config["augment_zoom"] = False config["n_augment"] = 0 config["flip"] = False # augments the data by randomly flipping an axis during # data shape must be a cube. Augments the data by permuting in various directions config["permute"] = True config["distort"] = None # switch to None if you want no distortion config["augment"] = config["flip"] or config["distort"] # if True, then patches without any target will be skipped config["skip_blank"] = True # Dictionary config_dict = dict() config_dict["challenge"] = ["brats"] config_dict["year"] = [2018, 2019] config_dict["model"] = ["unet", "isensee", "densefcn", "denseunet", "resunet", "seunet", "seisensee", "simple", "eye", "m", "m2", "multi"] config_dict["model_depth"] = ["unet", "seunet", "multi", "denseunet", "resunet"] # "deepmedic", "maskrcnn", "cascaded", "proposed"] config_dict["depth_unet"] = [3, 4, 5, 6] # depth of unet config_dict["n_base_filters_unet"] = [4, 8, 16, 32] # number of base filters of unet config_dict["image_shape"] = ["160-192-128", "144-144-144", "240-240-155"] config_dict["patch_shape"] = ["16-16-16", "32-32-32", "64-64-64", "128-128-128", "160-192-128", "160-192-1", "160-192-7"] config_dict["is_bias_correction"] = ["0","1"] config_dict["is_denoise"] = ["0", "bm4d", "gaussian", "median"] config_dict["is_normalize"] = ["z", "01"] config_dict["is_crf"] = ["0", "post", "cnn", "rnn"] config_dict["crop"] = ["0", "1"] config_dict["hist_match"] = ["0", "1"] config_dict["loss"] = ["weighted", "minh", "tversky", "tv_minh"] config_convert_name = { "original": "bias-0_denoise-0", "preprocessed": "bias-1_denoise-0", "denoised_original": "bias-0_denoise-bm4d", "denoised_preprocessed": "bias-1_denoise-bm4d", } config_finetune = dict() config_finetune["n_epochs"] = 100 # cutoff the training after this many epochs # learning rate will be reduced after this many epochs if the validation loss is not improving config_finetune["patience"] = 5 # training will be stopped after this many epochs without the validation loss improving config_finetune["early_stop"] = 16 config_finetune["initial_learning_rate"] = 4e-5 # factor by which the learning rate will be reduced config_finetune["learning_rate_drop"] = 0.2 # portion of the data that will be used for training
46.058824
138
0.706258
1256290643e8c03c0652e705e96b3a0ff7dfb61b
741
py
Python
data-mining/cluster-analysis/assignment/clustering-data/python/main_k_means.py
4979/courses
dd9efa0a6b60cead833f36a6bfa518dd4fece17f
[ "Apache-2.0" ]
null
null
null
data-mining/cluster-analysis/assignment/clustering-data/python/main_k_means.py
4979/courses
dd9efa0a6b60cead833f36a6bfa518dd4fece17f
[ "Apache-2.0" ]
null
null
null
data-mining/cluster-analysis/assignment/clustering-data/python/main_k_means.py
4979/courses
dd9efa0a6b60cead833f36a6bfa518dd4fece17f
[ "Apache-2.0" ]
null
null
null
import sys from LoadData import * from k_means import * from evaluation import * if __name__ == "__main__": if len(sys.argv) != 3: print "[usage] <data-file> <ground-truth-file>" exit(1) dataFilename = sys.argv[1] groundtruthFilename = sys.argv[2] data = loadPoints(dataFilename) groundtruth = loadClusters(groundtruthFilename) nDim = len(data[0]) K = 2 # Suppose there are 2 clusters centers = [] centers.append(data[0]) centers.append(data[1]) results = kmeans(data, centers) res_Purity = purity(groundtruth, results) res_NMI = NMI(groundtruth, results) print "Purity =", res_Purity print "NMI = ", res_NMI
21.171429
55
0.608637
1b4981087626856baeb84bb50ff45392b851c655
473
py
Python
caluculating_error.py
araj29011998/refjdnsdf
7dadbc393b061e2b1e671c386572aa469dd80770
[ "MIT" ]
null
null
null
caluculating_error.py
araj29011998/refjdnsdf
7dadbc393b061e2b1e671c386572aa469dd80770
[ "MIT" ]
null
null
null
caluculating_error.py
araj29011998/refjdnsdf
7dadbc393b061e2b1e671c386572aa469dd80770
[ "MIT" ]
null
null
null
import pandas as pd from math import sqrt from sklearn.metrics import mean_squared_error #predicted and expected values obtained by implementing ARIMA model code on data set of each user res=pd.read_csv('predicted_expected_values_for_all_users.csv') #userid=[x for x in res['userid']] predicted=[x for x in res['predicted']] expected=[x for x in res['expected']] #caluculating RMSE value error = sqrt(mean_squared_error(predicted, expected)) print(error)
31.533333
98
0.767442
17f7cda687dd4e78d7c2979b3a5d49cff66f5202
1,340
py
Python
cleanplots.py
markessien/meplotter
393af7058530f82c7a37cd13d357021fe5ea87fd
[ "MIT" ]
null
null
null
cleanplots.py
markessien/meplotter
393af7058530f82c7a37cd13d357021fe5ea87fd
[ "MIT" ]
null
null
null
cleanplots.py
markessien/meplotter
393af7058530f82c7a37cd13d357021fe5ea87fd
[ "MIT" ]
null
null
null
debug_file = "/home/mark/.chia/mainnet/log/debug.log" file = open(debug_file, "r") def get_file_name(str): plotpos = str.find(".plot") return str[:plotpos+5] files_not_found = [] files_no_pk = [] for line in file: err = -1 pos = line.find(" Failed to open file ") if pos > -1: err = 1 file_name = get_file_name(line[pos+21:]) pos = line.find("Looking up qualities on ") if pos > -1: err = 2 file_name = get_file_name(line[pos+24:]) time_pos = line.find(file_name + " took:") + len(file_name + " took:") + 1 time_required = float(line[time_pos:time_pos+4]) pos1 = line.find("WARNING Plot ") pos2 = line.find("has a farmer public key that is not") if pos1 > -1 and pos2 > -1: err = 3 file_name = get_file_name(line[pos1+14:]) if err == 1: print("File not found on " + file_name) files_not_found.append(file_name) if err == 2: print("Slow lookup on " + file_name + " Time: " + str(time_required) + "s") if err == 3: print("PK not found for " + file_name) files_no_pk.append(file_name) print("Files not found") for file_name in files_not_found: print("rm " + file_name) print("\n\nFiles without pk") for file_name in files_no_pk: print("rm " + file_name)
24.363636
83
0.59403
ad7b0e1de089fb7456efc881bbb88bbb29e1e2d8
2,862
py
Python
src/setup.py
Oire/TheQube
fcfd8a68b15948e0740642d635db24adef8cc314
[ "MIT" ]
21
2015-08-02T21:26:14.000Z
2019-12-27T09:57:44.000Z
src/setup.py
Oire/TheQube
fcfd8a68b15948e0740642d635db24adef8cc314
[ "MIT" ]
34
2015-01-12T00:38:14.000Z
2020-08-31T11:19:37.000Z
src/setup.py
Oire/TheQube
fcfd8a68b15948e0740642d635db24adef8cc314
[ "MIT" ]
15
2015-03-24T15:42:30.000Z
2020-09-24T20:26:42.000Z
# -*- coding: utf-8 -*- from setuptools import setup, find_packages import py2exe import shutil from glob import glob import os from logger import logger logging = logger.getChild("Installer") name = 'TheQube' __version__ = 0.9 __author__ = 'Andre Polykanine also known as Menelion Elensúlë' def get_datafiles(): return [("", ["main.defaults"] + glob('*.exe') + glob("*.dll")) ] + list_all_documentation() + list_session_defaults() + accessible_output_data() + sound_lib_data() + certifi_data() + get_soundpacks() + get_locales() def accessible_output_data(): import accessible_output2 return accessible_output2.find_datafiles() def sound_lib_data(): import sound_lib return sound_lib.find_datafiles() def certifi_data(): import certifi path = os.path.join(certifi.__path__[0], '*.pem') results = glob(path) dest_dir = os.path.join('certifi') return [(dest_dir, results)] def list_session_defaults(): files = glob('session/*/*.defaults') + glob('core/sessions/*/*.defaults') answer = [] for i in files: answer.append((os.path.split(i)[0], [i])) return answer def get_soundpacks(): answer = [] depth = 6 for root, dirs, files in os.walk('sounds'): if depth == 0: break new = (root, glob('%s/*.wav' % root)) answer.append(new) depth -= 1 return answer def get_locales(): answer = [] for root, dirs, files in os.walk('locale'): new = (root, glob(os.path.join(root, '*.mo'))) answer.append(new) return answer def list_all_documentation (): answer = [] depth = 6 for root, dirs, files in os.walk('../Documentation'): if depth == 0: break readme = (root[3:], [os.path.join(root, 'readme.html')]) answer.append(readme) changelog = (root[3:], [os.path.join(root, 'changelog.html')]) answer.append(changelog) depth -= 1 return answer if __name__ == '__main__': setup( name = name, author = __author__, author_email = "theqube@groups.io", version = __version__, url = 'http://theqube.oire.org/', packages = find_packages(), data_files = get_datafiles(), options = { 'py2exe': { 'packages': ['packaging', 'appdirs'], 'compressed': False, 'dll_excludes': ['w9xpopen.exe', 'MSVCP90.dll', 'mswsock.dll', 'powrprof.dll', 'MPR.dll', 'MSVCR100.dll', 'mfc90.dll', 'MSVFW32.dll', 'AVIFIL32.dll', 'AVICAP32.dll', 'ADVAPI32.dll', 'CRYPT32.dll', 'WLDAP32.dll'], 'optimize': 1, 'skip_archive': True, 'excludes': ["win32ui", "pywin.dialogs", "pywin.debugger.dbgcon", "tkinter", "tk", "Tkconstants", "Tkinter", "tcl", "_imagingtk", "PIL._imagingtk", "ImageTk", "PIL.ImageTk", "FixTk", "django", "gobject", "gtk", "unittest", "remote", "ZODB"], } }, windows = [ { 'script': 'main.pyw', 'dest_base': 'TheQube', } ], install_requires = [ ] )
27.519231
246
0.63522
5b37d85fafcc76f3684ecdfea45db41b28935524
8,593
py
Python
TH/forecast_models/LGBM.py
lorenzodonadio/TimeHierarchy
a84693d8f701cd88904313610d863add8b79769f
[ "MIT" ]
1
2021-06-19T16:58:31.000Z
2021-06-19T16:58:31.000Z
TH/forecast_models/LGBM.py
lorenzodonadio/TimeHierarchy
a84693d8f701cd88904313610d863add8b79769f
[ "MIT" ]
null
null
null
TH/forecast_models/LGBM.py
lorenzodonadio/TimeHierarchy
a84693d8f701cd88904313610d863add8b79769f
[ "MIT" ]
null
null
null
import numpy as np import pandas as pd import warnings from tbats import TBATS from tqdm import tqdm from .BaseFuncs import BaseFuncs from ..utils.regressors import RegLGBM from lightgbm import LGBMRegressor import pdb class ForecastLGBM(BaseFuncs): def __init__(self, col_name, n_nodes, hierarchy = None, hierarchy_short = None, use_short = True, look_back = 96, features = None): '''Empty docstring''' super().__init__() if use_short and hierarchy_short is None: raise ValueError('Must provide hierarchy_short') if not use_short and hierarchy is None: raise ValueError('Must provide hierarchy') self.col_name = col_name self.n_nodes = n_nodes self.use_short = use_short self.hierarchy = hierarchy self.hierarchy_short = hierarchy_short self.look_back = look_back self.features = features def prepare_y(self,df,horizon = 1): y = [] for i in range(0,df.shape[0]-(self.look_back + horizon)): tmp_y = df[self.col_name][i+self.look_back : i+self.look_back+horizon].values.reshape(1,-1).ravel() y.append(tmp_y) return np.array(y) def prepare_x(self, df,horizon = 1,features = None): df = self.df if df is None else df x = [] for i in range(0,df.shape[0]-(self.look_back + horizon)): tmp_x = df[self.col_name][i:i+self.look_back].values.reshape(1,-1).ravel() if features is None: x.append(tmp_x) elif type(features) is type(list()): ex = df[features].iloc[i+self.look_back + horizon].values #exhugenous features x.append(np.hstack([tmp_x,ex])) else: raise ValueError('features must be a list of column names contained in df') #pdb.set_trace() return np.array(x) def fit(self,eval_metric = 'l2', sample_weight = None, disable_tqdm = True, **kwargs): self.model_tree = {} if self.use_short: for k in tqdm(self.hierarchy_short, disable = disable_tqdm): # train the models tmp_dict = {} for k2 in self.hierarchy_short[k]: X = self.prepare_x(self.hierarchy_short[k][k2],features = self.features) y = self.prepare_y(self.hierarchy_short[k][k2]) tmp_dict[k2] = LGBMRegressor(**kwargs).fit(X, y.ravel(), eval_metric = eval_metric, sample_weight = sample_weight) self.model_tree[k] = tmp_dict # create in sample prediction for the reconciliation errors for k2 in self.hierarchy_short[k]: ys = [] # ys = y sample ->in sample predict series = self.hierarchy_short[k][k2][self.col_name] for i in range(len(series)-self.look_back-1): tmp = series[i:i+self.look_back] #endogenous features if self.features is not None: ex = self.hierarchy_short[k][k2][self.features].iloc[i+self.look_back+1].values ex = ex if np.size(ex) else None # exogenous features else: ex = None ys.append(self._one_step_ahead(tmp,self.model_tree[k][k2],ex = ex)[0]) fitted_values = self.look_back*[ys[0]] + ys ld = len(self.hierarchy_short[k][k2]) - len(fitted_values) # add extra data for point where we could not forecast due to exogenous regressors self.model_tree[k][k2].fittedvalues = pd.Series(np.array(fitted_values+ld*[np.mean(ys)])) else: for k in tqdm(self.hierarchy, disable = disable_tqdm): horizon = self.n_nodes[k] ys = [] # ys = y sample ->in sample predict #fit the model X = self.prepare_x(self.hierarchy[k],horizon = horizon,features = self.features) y = self.prepare_y(self.hierarchy[k],horizon = horizon) self.model_tree[k] = RegLGBM(X,y, eval_metric = eval_metric, sample_weight = sample_weight, **kwargs) # create in sample prediction for the reconciliation errors series = self.hierarchy[k][self.col_name] node = self.n_nodes[k] for i in range(int(np.ceil((len(series)-self.look_back)/node))-horizon): if self.features is not None: ex = self.hierarchy[k][self.features].iloc[i+self.look_back+horizon].values ex = ex if np.size(ex) else None # ex ogenous features else: ex = None tmp = series[i*node:i*node+self.look_back] #endogenous features ys.extend(self._one_step_ahead(tmp,self.model_tree[k],ex = ex)) # make the lengths consistent, the redundant data will be removed after fitted_values = self.look_back*[ys[0]] + ys ld = len(self.hierarchy_short[k][0]) - len(fitted_values) # add extra data for point where we could not forecast due to exogenous regressors fitted_values = np.array(fitted_values+ld*[np.mean(ys)]) self.model_tree[k].fittedvalues = pd.Series(fitted_values[:len(series)]) # compute in sample errors for reconcilitation self._compute_errors(to_remove = self.look_back) if self.error_df.isna().any().any(): self.error_df = self.error_df.fillna(method='ffill') def _one_step_ahead(self,series,lgbm_model,ex=None): if ex is None: return lgbm_model.predict(np.array(series[-self.look_back:].values).reshape(1, -1)) else: x_in = np.hstack([np.array(series[-self.look_back:].values),ex]).reshape(1, -1) return lgbm_model.predict(x_in) def forecast(self,h,ex=None): '''Empty docstring''' self.forecast_tree = {} if self.use_short: for k in self.model_tree: tmp_dict = {} for k2 in self.model_tree[k]: ###DO YOUR THING WITH LGBM series = self.hierarchy_short[k][k2][self.col_name].copy() for i in range(h): if ex is None: y_pred = self._one_step_ahead(series,self.model_tree[k][k2])[0] else: #pdb.set_trace() y_pred = self._one_step_ahead(series,self.model_tree[k][k2],ex = ex[i,:])[0] # forecasted value series = series.append(pd.Series(data = y_pred,index = [series.index.argmax() + 1])) tmp_dict[k2] = series[-h:] self.forecast_tree[k] = tmp_dict else: for k,node in zip(self.model_tree,self.n_nodes): mdl = self.model_tree[k] series = self.hierarchy[k][self.col_name] for i in range(h): if ex is None: series = series.append(pd.Series(self._one_step_ahead(series,mdl))).reset_index(drop=True) else: series = series.append(pd.Series(self._one_step_ahead(series,mdl,ex=ex[i,:]))).reset_index(drop=True) tmp = series[-int(h*self.n_nodes[k]):] # retrieve the forecasted values tmp_dict = {} for k2 in range(int(node)): tmp_dict[k2] = tmp[k2::int(node)] self.forecast_tree[k] = tmp_dict self.yhat = self.compute_y_hat(self.forecast_tree)
49.102857
125
0.509368
1b75b21e78d9d4278036883c5d97923a2f0fdaee
1,825
py
Python
benchmarks/Evolution/both/evo_tests/fetch_json_tests/html_test_case.py
nuprl/retic_performance
621211c2f40251ce5364c33e72e4067e34a32013
[ "MIT" ]
3
2018-08-03T02:41:29.000Z
2021-03-19T03:18:47.000Z
benchmarks/Evolution/both/evo_tests/fetch_json_tests/html_test_case.py
nuprl/retic_performance
621211c2f40251ce5364c33e72e4067e34a32013
[ "MIT" ]
3
2018-02-04T17:53:56.000Z
2018-11-10T17:06:57.000Z
benchmarks/Evolution/both/evo_tests/fetch_json_tests/html_test_case.py
nuprl/retic_performance
621211c2f40251ce5364c33e72e4067e34a32013
[ "MIT" ]
1
2018-08-04T00:14:12.000Z
2018-08-04T00:14:12.000Z
__author__ = 'Edwin Cowart, Kevin McDonough' class JSONTestCase: """ A JSON Test Case """ def __init__(self, name=None, in_json=None, out_json=None): """ Construct a JSON Test Case :param name: The name of the JSON Test Cases :type name: String or None :param in_json: The in_json data :type in_json: String or None :param out_json: The out_json data :type out_json: String or None """ self.name = name self.in_json = in_json self.out_json = out_json def has_name(self): """ Does this Test Case have a name? :return: True if this Test Case has a name, False otherwise :rtype: Boolean """ return self.name is not None def has_in_json(self): """ Does this Test Case have a in_json? :return: True if this Test Case has a in_json, False otherwise :rtype: Boolean """ return self.in_json is not None def has_out_json(self): """ Does this Test Case have a out_json? :return: True if this Test Case has a out_json, False otherwise :rtype: Boolean """ return self.out_json is not None def is_complete(self): """ Is this Test Case complete? :return: True if this Test Case complete, False otherwise :rtype: Boolean """ return self.has_name() and self.has_in_json() and self.has_out_json() def get_in_json_filename(self): """ Get the full in filename :return: The in filename :rtype: String """ return self.name + "-in.json" def get_out_json_filename(self): """ Get the full out filename :return: The out filename :rtype: String """ return self.name + "-out.json"
30.416667
77
0.591781
b451124b3406d1253972c4c38d5de6ee59f88c18
45,032
py
Python
statsmodels/tsa/statespace/representation.py
o-P-o/statsmodels
ee9f5c0bd7ee7f646bdbaf31fbc295e5a0ab02f8
[ "BSD-3-Clause" ]
1
2020-06-18T07:38:11.000Z
2020-06-18T07:38:11.000Z
statsmodels/tsa/statespace/representation.py
o-P-o/statsmodels
ee9f5c0bd7ee7f646bdbaf31fbc295e5a0ab02f8
[ "BSD-3-Clause" ]
null
null
null
statsmodels/tsa/statespace/representation.py
o-P-o/statsmodels
ee9f5c0bd7ee7f646bdbaf31fbc295e5a0ab02f8
[ "BSD-3-Clause" ]
null
null
null
""" State Space Representation Author: Chad Fulton License: Simplified-BSD """ import numpy as np from .tools import ( find_best_blas_type, validate_matrix_shape, validate_vector_shape ) from .initialization import Initialization from . import tools class OptionWrapper(object): def __init__(self, mask_attribute, mask_value): # Name of the class-level bitmask attribute self.mask_attribute = mask_attribute # Value of this option self.mask_value = mask_value def __get__(self, obj, objtype): # Return True / False based on whether the bit is set in the bitmask return bool(getattr(obj, self.mask_attribute, 0) & self.mask_value) def __set__(self, obj, value): mask_attribute_value = getattr(obj, self.mask_attribute, 0) if bool(value): value = mask_attribute_value | self.mask_value else: value = mask_attribute_value & ~self.mask_value setattr(obj, self.mask_attribute, value) class MatrixWrapper(object): def __init__(self, name, attribute): self.name = name self.attribute = attribute self._attribute = '_' + attribute def __get__(self, obj, objtype): matrix = getattr(obj, self._attribute, None) # # Remove last dimension if the array is not actually time-varying # if matrix is not None and matrix.shape[-1] == 1: # return np.squeeze(matrix, -1) return matrix def __set__(self, obj, value): value = np.asarray(value, order="F") shape = obj.shapes[self.attribute] if len(shape) == 3: value = self._set_matrix(obj, value, shape) else: value = self._set_vector(obj, value, shape) setattr(obj, self._attribute, value) obj.shapes[self.attribute] = value.shape def _set_matrix(self, obj, value, shape): # Expand 1-dimensional array if possible if (value.ndim == 1 and shape[0] == 1 and value.shape[0] == shape[1]): value = value[None, :] # Enforce that the matrix is appropriate size validate_matrix_shape( self.name, value.shape, shape[0], shape[1], obj.nobs ) # Expand time-invariant matrix if value.ndim == 2: value = np.array(value[:, :, None], order="F") return value def _set_vector(self, obj, value, shape): # Enforce that the vector has appropriate length validate_vector_shape( self.name, value.shape, shape[0], obj.nobs ) # Expand the time-invariant vector if value.ndim == 1: value = np.array(value[:, None], order="F") return value class Representation(object): r""" State space representation of a time series process Parameters ---------- k_endog : {array_like, int} The observed time-series process :math:`y` if array like or the number of variables in the process if an integer. k_states : int The dimension of the unobserved state process. k_posdef : int, optional The dimension of a guaranteed positive definite covariance matrix describing the shocks in the measurement equation. Must be less than or equal to `k_states`. Default is `k_states`. initial_variance : float, optional Initial variance used when approximate diffuse initialization is specified. Default is 1e6. initialization : Initialization object or str, optional Initialization method for the initial state. If a string, must be one of {'diffuse', 'approximate_diffuse', 'stationary', 'known'}. initial_state : array_like, optional If `initialization='known'` is used, the mean of the initial state's distribution. initial_state_cov : array_like, optional If `initialization='known'` is used, the covariance matrix of the initial state's distribution. nobs : int, optional If an endogenous vector is not given (i.e. `k_endog` is an integer), the number of observations can optionally be specified. If not specified, they will be set to zero until data is bound to the model. dtype : np.dtype, optional If an endogenous vector is not given (i.e. `k_endog` is an integer), the default datatype of the state space matrices can optionally be specified. Default is `np.float64`. design : array_like, optional The design matrix, :math:`Z`. Default is set to zeros. obs_intercept : array_like, optional The intercept for the observation equation, :math:`d`. Default is set to zeros. obs_cov : array_like, optional The covariance matrix for the observation equation :math:`H`. Default is set to zeros. transition : array_like, optional The transition matrix, :math:`T`. Default is set to zeros. state_intercept : array_like, optional The intercept for the transition equation, :math:`c`. Default is set to zeros. selection : array_like, optional The selection matrix, :math:`R`. Default is set to zeros. state_cov : array_like, optional The covariance matrix for the state equation :math:`Q`. Default is set to zeros. **kwargs Additional keyword arguments. Not used directly. It is present to improve compatibility with subclasses, so that they can use `**kwargs` to specify any default state space matrices (e.g. `design`) without having to clean out any other keyword arguments they might have been passed. Attributes ---------- nobs : int The number of observations. k_endog : int The dimension of the observation series. k_states : int The dimension of the unobserved state process. k_posdef : int The dimension of a guaranteed positive definite covariance matrix describing the shocks in the measurement equation. shapes : dictionary of name:tuple A dictionary recording the initial shapes of each of the representation matrices as tuples. initialization : str Kalman filter initialization method. Default is unset. initial_variance : float Initial variance for approximate diffuse initialization. Default is 1e6. Notes ----- A general state space model is of the form .. math:: y_t & = Z_t \alpha_t + d_t + \varepsilon_t \\ \alpha_t & = T_t \alpha_{t-1} + c_t + R_t \eta_t \\ where :math:`y_t` refers to the observation vector at time :math:`t`, :math:`\alpha_t` refers to the (unobserved) state vector at time :math:`t`, and where the irregular components are defined as .. math:: \varepsilon_t \sim N(0, H_t) \\ \eta_t \sim N(0, Q_t) \\ The remaining variables (:math:`Z_t, d_t, H_t, T_t, c_t, R_t, Q_t`) in the equations are matrices describing the process. Their variable names and dimensions are as follows Z : `design` :math:`(k\_endog \times k\_states \times nobs)` d : `obs_intercept` :math:`(k\_endog \times nobs)` H : `obs_cov` :math:`(k\_endog \times k\_endog \times nobs)` T : `transition` :math:`(k\_states \times k\_states \times nobs)` c : `state_intercept` :math:`(k\_states \times nobs)` R : `selection` :math:`(k\_states \times k\_posdef \times nobs)` Q : `state_cov` :math:`(k\_posdef \times k\_posdef \times nobs)` In the case that one of the matrices is time-invariant (so that, for example, :math:`Z_t = Z_{t+1} ~ \forall ~ t`), its last dimension may be of size :math:`1` rather than size `nobs`. References ---------- .. [*] Durbin, James, and Siem Jan Koopman. 2012. Time Series Analysis by State Space Methods: Second Edition. Oxford University Press. """ endog = None r""" (array) The observation vector, alias for `obs`. """ design = MatrixWrapper('design', 'design') r""" (array) Design matrix: :math:`Z~(k\_endog \times k\_states \times nobs)` """ obs_intercept = MatrixWrapper('observation intercept', 'obs_intercept') r""" (array) Observation intercept: :math:`d~(k\_endog \times nobs)` """ obs_cov = MatrixWrapper('observation covariance matrix', 'obs_cov') r""" (array) Observation covariance matrix: :math:`H~(k\_endog \times k\_endog \times nobs)` """ transition = MatrixWrapper('transition', 'transition') r""" (array) Transition matrix: :math:`T~(k\_states \times k\_states \times nobs)` """ state_intercept = MatrixWrapper('state intercept', 'state_intercept') r""" (array) State intercept: :math:`c~(k\_states \times nobs)` """ selection = MatrixWrapper('selection', 'selection') r""" (array) Selection matrix: :math:`R~(k\_states \times k\_posdef \times nobs)` """ state_cov = MatrixWrapper('state covariance matrix', 'state_cov') r""" (array) State covariance matrix: :math:`Q~(k\_posdef \times k\_posdef \times nobs)` """ def __init__(self, k_endog, k_states, k_posdef=None, initial_variance=1e6, nobs=0, dtype=np.float64, design=None, obs_intercept=None, obs_cov=None, transition=None, state_intercept=None, selection=None, state_cov=None, statespace_classes=None, **kwargs): self.shapes = {} # Check if k_endog is actually the endog array endog = None if isinstance(k_endog, np.ndarray): endog = k_endog # If so, assume that it is either column-ordered and in wide format # or row-ordered and in long format if (endog.flags['C_CONTIGUOUS'] and (endog.shape[0] > 1 or nobs == 1)): endog = endog.T k_endog = endog.shape[0] # Endogenous array, dimensions, dtype self.k_endog = k_endog if k_endog < 1: raise ValueError('Number of endogenous variables in statespace' ' model must be a positive number.') self.nobs = nobs # Get dimensions from transition equation if k_states < 1: raise ValueError('Number of states in statespace model must be a' ' positive number.') self.k_states = k_states self.k_posdef = k_posdef if k_posdef is not None else k_states # Make sure k_posdef <= k_states # TODO: we could technically allow k_posdef > k_states, but the Cython # code needs to be more thoroughly checked to avoid seg faults. if self.k_posdef > self.k_states: raise ValueError('Dimension of state innovation `k_posdef` cannot' ' be larger than the dimension of the state.') # Bind endog, if it was given if endog is not None: self.bind(endog) # Record the shapes of all of our matrices # Note: these are time-invariant shapes; in practice the last dimension # may also be `self.nobs` for any or all of these. self.shapes = { 'obs': (self.k_endog, self.nobs), 'design': (self.k_endog, self.k_states, 1), 'obs_intercept': (self.k_endog, 1), 'obs_cov': (self.k_endog, self.k_endog, 1), 'transition': (self.k_states, self.k_states, 1), 'state_intercept': (self.k_states, 1), 'selection': (self.k_states, self.k_posdef, 1), 'state_cov': (self.k_posdef, self.k_posdef, 1), } # Representation matrices # These matrices are only used in the Python object as containers, # which will be copied to the appropriate _statespace object if a # filter is called. scope = locals() for name, shape in self.shapes.items(): if name == 'obs': continue # Create the initial storage array for each matrix setattr(self, '_' + name, np.zeros(shape, dtype=dtype, order="F")) # If we were given an initial value for the matrix, set it # (notice it is being set via the descriptor) if scope[name] is not None: setattr(self, name, scope[name]) # Options self.initial_variance = initial_variance self.prefix_statespace_map = (statespace_classes if statespace_classes is not None else tools.prefix_statespace_map.copy()) # State-space initialization data self.initialization = kwargs.get('initialization', None) basic_inits = ['diffuse', 'approximate_diffuse', 'stationary'] if self.initialization in basic_inits: self.initialize(self.initialization) elif self.initialization == 'known': if 'constant' in kwargs: constant = kwargs['constant'] elif 'initial_state' in kwargs: # TODO deprecation warning constant = kwargs['initial_state'] else: raise ValueError('Initial state must be provided when "known"' ' is the specified initialization method.') if 'stationary_cov' in kwargs: stationary_cov = kwargs['stationary_cov'] elif 'initial_state_cov' in kwargs: # TODO deprecation warning stationary_cov = kwargs['initial_state_cov'] else: raise ValueError('Initial state covariance matrix must be' ' provided when "known" is the specified' ' initialization method.') self.initialize('known', constant=constant, stationary_cov=stationary_cov) elif (not isinstance(self.initialization, Initialization) and self.initialization is not None): raise ValueError("Invalid state space initialization method.") # Matrix representations storage self._representations = {} # Setup the underlying statespace object storage self._statespaces = {} # Caches self._time_invariant = None def __getitem__(self, key): _type = type(key) # If only a string is given then we must be getting an entire matrix if _type is str: if key not in self.shapes: raise IndexError('"%s" is an invalid state space matrix name' % key) matrix = getattr(self, '_' + key) # See note on time-varying arrays, below if matrix.shape[-1] == 1: return matrix[(slice(None),)*(matrix.ndim-1) + (0,)] else: return matrix # Otherwise if we have a tuple, we want a slice of a matrix elif _type is tuple: name, slice_ = key[0], key[1:] if name not in self.shapes: raise IndexError('"%s" is an invalid state space matrix name' % name) matrix = getattr(self, '_' + name) # Since the model can support time-varying arrays, but often we # will instead have time-invariant arrays, we want to allow setting # a matrix slice like mod['transition',0,:] even though technically # it should be mod['transition',0,:,0]. Thus if the array in # question is time-invariant but the last slice was excluded, # add it in as a zero. if matrix.shape[-1] == 1 and len(slice_) <= matrix.ndim-1: slice_ = slice_ + (0,) return matrix[slice_] # Otherwise, we have only a single slice index, but it is not a string else: raise IndexError('First index must the name of a valid state space' ' matrix.') def __setitem__(self, key, value): _type = type(key) # If only a string is given then we must be setting an entire matrix if _type is str: if key not in self.shapes: raise IndexError('"%s" is an invalid state space matrix name' % key) setattr(self, key, value) # If it's a tuple (with a string as the first element) then we must be # setting a slice of a matrix elif _type is tuple: name, slice_ = key[0], key[1:] if name not in self.shapes: raise IndexError('"%s" is an invalid state space matrix name' % key[0]) # Change the dtype of the corresponding matrix dtype = np.array(value).dtype matrix = getattr(self, '_' + name) valid_types = ['f', 'd', 'F', 'D'] if not matrix.dtype == dtype and dtype.char in valid_types: matrix = getattr(self, '_' + name).real.astype(dtype) # Since the model can support time-varying arrays, but often we # will instead have time-invariant arrays, we want to allow setting # a matrix slice like mod['transition',0,:] even though technically # it should be mod['transition',0,:,0]. Thus if the array in # question is time-invariant but the last slice was excluded, # add it in as a zero. if matrix.shape[-1] == 1 and len(slice_) == matrix.ndim-1: slice_ = slice_ + (0,) # Set the new value matrix[slice_] = value setattr(self, name, matrix) # Otherwise we got a single non-string key, (e.g. mod[:]), which is # invalid else: raise IndexError('First index must the name of a valid state space' ' matrix.') def _clone_kwargs(self, endog, **kwargs): """ Construct keyword arguments for cloning a state space model Parameters ---------- endog : array_like An observed time-series process :math:`y`. **kwargs Keyword arguments to pass to the new state space representation model constructor. Those that are not specified are copied from the specification of the current state space model. """ # We always need the base dimensions, but they cannot change from # the base model when cloning (the idea is: if these need to change, # need to make a new instance manually, since it's not really cloning). kwargs['nobs'] = len(endog) kwargs['k_endog'] = self.k_endog for key in ['k_states', 'k_posdef']: val = getattr(self, key) if key not in kwargs or kwargs[key] is None: kwargs[key] = val if kwargs[key] != val: raise ValueError('Cannot change the dimension of %s when' ' cloning.' % key) # Get defaults for time-invariant system matrices, if not otherwise # provided # Time-varying matrices must be replaced. for name in self.shapes.keys(): if name == 'obs': continue if name not in kwargs: mat = getattr(self, name) if mat.shape[-1] != 1: raise ValueError('The `%s` matrix is time-varying. Cloning' ' this model requires specifying an' ' updated matrix.' % name) kwargs[name] = mat # Default is to use the same initialization kwargs.setdefault('initialization', self.initialization) return kwargs def clone(self, endog, **kwargs): """ Clone a state space representation while overriding some elements Parameters ---------- endog : array_like An observed time-series process :math:`y`. **kwargs Keyword arguments to pass to the new state space representation model constructor. Those that are not specified are copied from the specification of the current state space model. Returns ------- Representation Notes ----- If some system matrices are time-varying, then new time-varying matrices *must* be provided. """ kwargs = self._clone_kwargs(endog, **kwargs) mod = self.__class__(**kwargs) mod.bind(endog) return mod def extend(self, endog, start=None, end=None, **kwargs): """ Extend the current state space model, or a specific (time) subset Parameters ---------- endog : array_like An observed time-series process :math:`y`. start : int, optional The first period of a time-varying state space model to include in the new model. Has no effect if the state space model is time-invariant. Default is the initial period. end : int, optional The last period of a time-varying state space model to include in the new model. Has no effect if the state space model is time-invariant. Default is the final period. **kwargs Keyword arguments to pass to the new state space representation model constructor. Those that are not specified are copied from the specification of the current state space model. Returns ------- Representation Notes ----- This method does not allow replacing a time-varying system matrix with a time-invariant one (or vice-versa). If that is required, use `clone`. """ endog = np.atleast_1d(endog) if endog.ndim == 1: endog = endog[:, np.newaxis] nobs = len(endog) if start is None: start = 0 if end is None: end = self.nobs if start < 0: start = self.nobs + start if end < 0: end = self.nobs + end if start > self.nobs: raise ValueError('The `start` argument of the extension within the' ' base model cannot be after the end of the' ' base model.') if end > self.nobs: raise ValueError('The `end` argument of the extension within the' ' base model cannot be after the end of the' ' base model.') if start > end: raise ValueError('The `start` argument of the extension within the' ' base model cannot be after the `end` argument.') # Note: if start == end or if end < self.nobs, then we're just cloning # (no extension) endog = tools.concat([self.endog[:, start:end].T, endog]) # Extend any time-varying arrays error_ti = ('Model has time-invariant %s matrix, so cannot provide' ' an extended matrix.') error_tv = ('Model has time-varying %s matrix, so an updated' ' time-varying matrix for the extension period' ' is required.') for name, shape in self.shapes.items(): if name == 'obs': continue mat = getattr(self, name) # If we were *not* given an extended value for this matrix... if name not in kwargs: # If this is a time-varying matrix in the existing model if mat.shape[-1] > 1: # If we have an extension period, then raise an error # because we should have been given an extended value if end + nobs > self.nobs: raise ValueError(error_tv % name) # If we do not have an extension period, then set the new # time-varying matrix to be the portion of the existing # time-varying matrix that corresponds to the period of # interest else: kwargs[name] = mat[..., start:end + nobs] elif nobs == 0: raise ValueError('Extension is being performed within-sample' ' so cannot provide an extended matrix') # If we were given an extended value for this matrix else: # TODO: Need to add a check for ndim, and if the matrix has # one fewer dimensions than the existing matrix, add a new axis # If this is a time-invariant matrix in the existing model, # raise an error if mat.shape[-1] == 1 and self.nobs > 1: raise ValueError(error_ti % name) # Otherwise, validate the shape of the given extended value # Note: we do not validate the number of observations here # (so we pass in updated_mat.shape[-1] as the nobs argument # in the validate_* calls); instead, we check below that we # at least `nobs` values were passed in and then only take the # first of them as required. This can be useful when e.g. the # end user knows the extension values up to some maximum # endpoint, but does not know what the calling methods may # specifically require. updated_mat = np.asarray(kwargs[name]) if len(shape) == 2: validate_vector_shape(name, updated_mat.shape, shape[0], updated_mat.shape[-1]) else: validate_matrix_shape(name, updated_mat.shape, shape[0], shape[1], updated_mat.shape[-1]) if updated_mat.shape[-1] < nobs: raise ValueError(error_tv % name) else: updated_mat = updated_mat[..., :nobs] # Concatenate to get the new time-varying matrix kwargs[name] = np.c_[mat[..., start:end], updated_mat] return self.clone(endog, **kwargs) def diff_endog(self, new_endog): # TODO: move this function to tools? endog = self.endog.T if len(new_endog) < len(endog): raise ValueError('Given data (length %d) is too short to diff' ' against model data (length %d).' % (len(new_endog), len(endog))) if len(new_endog) > len(endog): nobs_append = len(new_endog) - len(endog) endog = np.c_[endog.T, new_endog[-nobs_append:].T * np.nan].T new_nan = np.isnan(new_endog) existing_nan = np.isnan(endog) if np.any(new_nan & ~existing_nan): raise ValueError('New data cannot have missing values for' ' observations that are non-missing in model' ' data.') is_revision = ~existing_nan & ~(new_endog == endog) revision_ix = list(zip(*np.where(is_revision))) is_new = existing_nan & ~new_nan new_ix = list(zip(*np.where(is_new))) return revision_ix, new_ix @property def prefix(self): """ (str) BLAS prefix of currently active representation matrices """ arrays = ( self._design, self._obs_intercept, self._obs_cov, self._transition, self._state_intercept, self._selection, self._state_cov ) if self.endog is not None: arrays = (self.endog,) + arrays return find_best_blas_type(arrays)[0] @property def dtype(self): """ (dtype) Datatype of currently active representation matrices """ return tools.prefix_dtype_map[self.prefix] @property def time_invariant(self): """ (bool) Whether or not currently active representation matrices are time-invariant """ if self._time_invariant is None: return ( self._design.shape[2] == self._obs_intercept.shape[1] == self._obs_cov.shape[2] == self._transition.shape[2] == self._state_intercept.shape[1] == self._selection.shape[2] == self._state_cov.shape[2] ) else: return self._time_invariant @property def _statespace(self): prefix = self.prefix if prefix in self._statespaces: return self._statespaces[prefix] return None @property def obs(self): r""" (array) Observation vector: :math:`y~(k\_endog \times nobs)` """ return self.endog def bind(self, endog): """ Bind data to the statespace representation Parameters ---------- endog : ndarray Endogenous data to bind to the model. Must be column-ordered ndarray with shape (`k_endog`, `nobs`) or row-ordered ndarray with shape (`nobs`, `k_endog`). Notes ----- The strict requirements arise because the underlying statespace and Kalman filtering classes require Fortran-ordered arrays in the wide format (shaped (`k_endog`, `nobs`)), and this structure is setup to prevent copying arrays in memory. By default, numpy arrays are row (C)-ordered and most time series are represented in the long format (with time on the 0-th axis). In this case, no copying or re-ordering needs to be performed, instead the array can simply be transposed to get it in the right order and shape. Although this class (Representation) has stringent `bind` requirements, it is assumed that it will rarely be used directly. """ if not isinstance(endog, np.ndarray): raise ValueError("Invalid endogenous array; must be an ndarray.") # Make sure we have a 2-dimensional array # Note: reshaping a 1-dim array into a 2-dim array by changing the # shape tuple always results in a row (C)-ordered array, so it # must be shaped (nobs, k_endog) if endog.ndim == 1: # In the case of nobs x 0 arrays if self.k_endog == 1: endog.shape = (endog.shape[0], 1) # In the case of k_endog x 0 arrays else: endog.shape = (1, endog.shape[0]) if not endog.ndim == 2: raise ValueError('Invalid endogenous array provided; must be' ' 2-dimensional.') # Check for valid column-ordered arrays if endog.flags['F_CONTIGUOUS'] and endog.shape[0] == self.k_endog: pass # Check for valid row-ordered arrays, and transpose them to be the # correct column-ordered array elif endog.flags['C_CONTIGUOUS'] and endog.shape[1] == self.k_endog: endog = endog.T # Invalid column-ordered arrays elif endog.flags['F_CONTIGUOUS']: raise ValueError('Invalid endogenous array; column-ordered' ' arrays must have first axis shape of' ' `k_endog`.') # Invalid row-ordered arrays elif endog.flags['C_CONTIGUOUS']: raise ValueError('Invalid endogenous array; row-ordered' ' arrays must have last axis shape of' ' `k_endog`.') # Non-contiguous arrays else: raise ValueError('Invalid endogenous array; must be ordered in' ' contiguous memory.') # In some corner cases (e.g. np.array(1., ndmin=2) with numpy < 1.8) # we may still have a non-fortran contiguous array, so double-check # that now if not endog.flags['F_CONTIGUOUS']: endog = np.asfortranarray(endog) # Set a flag for complex data self._complex_endog = np.iscomplexobj(endog) # Set the data self.endog = endog self.nobs = self.endog.shape[1] # Reset shapes if hasattr(self, 'shapes'): self.shapes['obs'] = self.endog.shape def initialize(self, initialization, approximate_diffuse_variance=None, constant=None, stationary_cov=None): """Create an Initialization object if necessary""" if initialization == 'known': initialization = Initialization(self.k_states, 'known', constant=constant, stationary_cov=stationary_cov) elif initialization == 'approximate_diffuse': if approximate_diffuse_variance is None: approximate_diffuse_variance = self.initial_variance initialization = Initialization( self.k_states, 'approximate_diffuse', approximate_diffuse_variance=approximate_diffuse_variance) elif initialization == 'stationary': initialization = Initialization(self.k_states, 'stationary') elif initialization == 'diffuse': initialization = Initialization(self.k_states, 'diffuse') # We must have an initialization object at this point if not isinstance(initialization, Initialization): raise ValueError("Invalid state space initialization method.") self.initialization = initialization def initialize_known(self, constant, stationary_cov): """ Initialize the statespace model with known distribution for initial state. These values are assumed to be known with certainty or else filled with parameters during, for example, maximum likelihood estimation. Parameters ---------- constant : array_like Known mean of the initial state vector. stationary_cov : array_like Known covariance matrix of the initial state vector. """ constant = np.asarray(constant, order="F") stationary_cov = np.asarray(stationary_cov, order="F") if not constant.shape == (self.k_states,): raise ValueError('Invalid dimensions for constant state vector.' ' Requires shape (%d,), got %s' % (self.k_states, str(constant.shape))) if not stationary_cov.shape == (self.k_states, self.k_states): raise ValueError('Invalid dimensions for stationary covariance' ' matrix. Requires shape (%d,%d), got %s' % (self.k_states, self.k_states, str(stationary_cov.shape))) self.initialize('known', constant=constant, stationary_cov=stationary_cov) def initialize_approximate_diffuse(self, variance=None): """ Initialize the statespace model with approximate diffuse values. Rather than following the exact diffuse treatment (which is developed for the case that the variance becomes infinitely large), this assigns an arbitrary large number for the variance. Parameters ---------- variance : float, optional The variance for approximating diffuse initial conditions. Default is 1e6. """ if variance is None: variance = self.initial_variance self.initialize('approximate_diffuse', approximate_diffuse_variance=variance) def initialize_stationary(self): """ Initialize the statespace model as stationary. """ self.initialize('stationary') def initialize_diffuse(self): """ Initialize the statespace model as stationary. """ self.initialize('diffuse') def _initialize_representation(self, prefix=None): if prefix is None: prefix = self.prefix dtype = tools.prefix_dtype_map[prefix] # If the dtype-specific representation matrices do not exist, create # them if prefix not in self._representations: # Copy the statespace representation matrices self._representations[prefix] = {} for matrix in self.shapes.keys(): if matrix == 'obs': self._representations[prefix][matrix] = ( self.obs.astype(dtype) ) else: # Note: this always makes a copy self._representations[prefix][matrix] = ( getattr(self, '_' + matrix).astype(dtype) ) # If they do exist, update them else: for matrix in self.shapes.keys(): existing = self._representations[prefix][matrix] if matrix == 'obs': # existing[:] = self.obs.astype(dtype) pass else: new = getattr(self, '_' + matrix).astype(dtype) if existing.shape == new.shape: existing[:] = new[:] else: self._representations[prefix][matrix] = new # Determine if we need to (re-)create the _statespace models # (if time-varying matrices changed) if prefix in self._statespaces: ss = self._statespaces[prefix] create = ( not ss.obs.shape[1] == self.endog.shape[1] or not ss.design.shape[2] == self.design.shape[2] or not ss.obs_intercept.shape[1] == self.obs_intercept.shape[1] or not ss.obs_cov.shape[2] == self.obs_cov.shape[2] or not ss.transition.shape[2] == self.transition.shape[2] or not (ss.state_intercept.shape[1] == self.state_intercept.shape[1]) or not ss.selection.shape[2] == self.selection.shape[2] or not ss.state_cov.shape[2] == self.state_cov.shape[2] ) else: create = True # (re-)create if necessary if create: if prefix in self._statespaces: del self._statespaces[prefix] # Setup the base statespace object cls = self.prefix_statespace_map[prefix] self._statespaces[prefix] = cls( self._representations[prefix]['obs'], self._representations[prefix]['design'], self._representations[prefix]['obs_intercept'], self._representations[prefix]['obs_cov'], self._representations[prefix]['transition'], self._representations[prefix]['state_intercept'], self._representations[prefix]['selection'], self._representations[prefix]['state_cov'] ) return prefix, dtype, create def _initialize_state(self, prefix=None, complex_step=False): # TODO once the transition to using the Initialization objects is # complete, this should be moved entirely to the _{{prefix}}Statespace # object. if prefix is None: prefix = self.prefix # (Re-)initialize the statespace model if isinstance(self.initialization, Initialization): if not self.initialization.initialized: raise RuntimeError('Initialization is incomplete.') self._statespaces[prefix].initialize(self.initialization, complex_step=complex_step) else: raise RuntimeError('Statespace model not initialized.') class FrozenRepresentation(object): """ Frozen Statespace Model Takes a snapshot of a Statespace model. Parameters ---------- model : Representation A Statespace representation Attributes ---------- nobs : int Number of observations. k_endog : int The dimension of the observation series. k_states : int The dimension of the unobserved state process. k_posdef : int The dimension of a guaranteed positive definite covariance matrix describing the shocks in the measurement equation. dtype : dtype Datatype of representation matrices prefix : str BLAS prefix of representation matrices shapes : dictionary of name:tuple A dictionary recording the shapes of each of the representation matrices as tuples. endog : ndarray The observation vector. design : ndarray The design matrix, :math:`Z`. obs_intercept : ndarray The intercept for the observation equation, :math:`d`. obs_cov : ndarray The covariance matrix for the observation equation :math:`H`. transition : ndarray The transition matrix, :math:`T`. state_intercept : ndarray The intercept for the transition equation, :math:`c`. selection : ndarray The selection matrix, :math:`R`. state_cov : ndarray The covariance matrix for the state equation :math:`Q`. missing : array of bool An array of the same size as `endog`, filled with boolean values that are True if the corresponding entry in `endog` is NaN and False otherwise. nmissing : array of int An array of size `nobs`, where the ith entry is the number (between 0 and `k_endog`) of NaNs in the ith row of the `endog` array. time_invariant : bool Whether or not the representation matrices are time-invariant initialization : Initialization object Kalman filter initialization method. initial_state : array_like The state vector used to initialize the Kalamn filter. initial_state_cov : array_like The state covariance matrix used to initialize the Kalamn filter. """ _model_attributes = [ 'model', 'prefix', 'dtype', 'nobs', 'k_endog', 'k_states', 'k_posdef', 'time_invariant', 'endog', 'design', 'obs_intercept', 'obs_cov', 'transition', 'state_intercept', 'selection', 'state_cov', 'missing', 'nmissing', 'shapes', 'initialization', 'initial_state', 'initial_state_cov', 'initial_variance' ] _attributes = _model_attributes def __init__(self, model): # Initialize all attributes to None for name in self._attributes: setattr(self, name, None) # Update the representation attributes self.update_representation(model) def update_representation(self, model): """Update model Representation""" # Model self.model = model # Data type self.prefix = model.prefix self.dtype = model.dtype # Copy the model dimensions self.nobs = model.nobs self.k_endog = model.k_endog self.k_states = model.k_states self.k_posdef = model.k_posdef self.time_invariant = model.time_invariant # Save the state space representation at the time self.endog = model.endog self.design = model._design.copy() self.obs_intercept = model._obs_intercept.copy() self.obs_cov = model._obs_cov.copy() self.transition = model._transition.copy() self.state_intercept = model._state_intercept.copy() self.selection = model._selection.copy() self.state_cov = model._state_cov.copy() self.missing = np.array(model._statespaces[self.prefix].missing, copy=True) self.nmissing = np.array(model._statespaces[self.prefix].nmissing, copy=True) # Save the final shapes of the matrices self.shapes = dict(model.shapes) for name in self.shapes.keys(): if name == 'obs': continue self.shapes[name] = getattr(self, name).shape self.shapes['obs'] = self.endog.shape # Save the state space initialization self.initialization = model.initialization if model.initialization is not None: model._initialize_state() self.initial_state = np.array( model._statespaces[self.prefix].initial_state, copy=True) self.initial_state_cov = np.array( model._statespaces[self.prefix].initial_state_cov, copy=True) self.initial_diffuse_state_cov = np.array( model._statespaces[self.prefix].initial_diffuse_state_cov, copy=True)
40.064057
79
0.583874
0c39d2419a0ee61981a3a71ea61a1e0a0a9ccd9e
12,952
py
Python
edward/inferences.py
twiecki/edward
1ac2eeb7f5163915848afd3b027c714255459de3
[ "Apache-2.0" ]
4
2016-05-09T18:48:21.000Z
2018-03-01T22:50:42.000Z
edward/inferences.py
twiecki/edward
1ac2eeb7f5163915848afd3b027c714255459de3
[ "Apache-2.0" ]
null
null
null
edward/inferences.py
twiecki/edward
1ac2eeb7f5163915848afd3b027c714255459de3
[ "Apache-2.0" ]
3
2016-07-05T14:19:08.000Z
2019-09-04T13:48:59.000Z
from __future__ import print_function import numpy as np import tensorflow as tf from edward.data import Data from edward.util import kl_multivariate_normal, log_sum_exp from edward.variationals import PointMass try: import prettytensor as pt except ImportError: pass class Inference: """ Base class for inference methods. Arguments ---------- model: Model probability model p(x, z) data: Data, optional data x """ def __init__(self, model, data=Data()): self.model = model self.data = data class MonteCarlo(Inference): """ Base class for Monte Carlo methods. Arguments ---------- model: Model probability model p(x, z) data: Data, optional data x """ def __init__(self, *args, **kwargs): Inference.__init__(self, *args, **kwargs) class VariationalInference(Inference): """ Base class for variational inference methods. Arguments ---------- model: Model probability model p(x, z) variational: Variational variational model q(z; lambda) data: Data, optional data x """ def __init__(self, model, variational, data=Data()): Inference.__init__(self, model, data) self.variational = variational def run(self, *args, **kwargs): """ A simple wrapper to run the inference algorithm. """ sess = self.initialize(*args, **kwargs) for t in range(self.n_iter): loss = self.update(sess) self.print_progress(t, loss, sess) return sess def initialize(self, n_iter=1000, n_data=None, n_print=100): """ Initialize inference algorithm. Arguments ---------- n_iter: int, optional Number of iterations for optimization. n_data: int, optional Number of samples for data subsampling. Default is to use all the data. n_print: int, optional Number of iterations for each print progress. """ self.n_iter = n_iter self.n_data = n_data self.n_print = n_print self.losses = tf.constant(0.0) loss = self.build_loss() # Use ADAM with a decaying scale factor global_step = tf.Variable(0, trainable=False) starter_learning_rate = 0.1 learning_rate = tf.train.exponential_decay(starter_learning_rate, global_step, 100, 0.9, staircase=True) self.train = tf.train.AdamOptimizer(learning_rate).minimize( loss, global_step=global_step) init = tf.initialize_all_variables() sess = tf.Session() sess.run(init) return sess def update(self, sess): _, loss = sess.run([self.train, self.losses]) return loss def print_progress(self, t, losses, sess): if t % self.n_print == 0: print("iter %d loss %.2f " % (t, np.mean(losses))) self.variational.print_params(sess) def build_loss(self): raise NotImplementedError() class MFVI(VariationalInference): # TODO this isn't MFVI so much as VI where q is analytic """ Mean-field variational inference (Ranganath et al., 2014) """ def __init__(self, *args, **kwargs): VariationalInference.__init__(self, *args, **kwargs) def initialize(self, n_minibatch=1, score=None, *args, **kwargs): # TODO if score=True, make Normal do sess.run() """ Parameters ---------- n_minibatch: int, optional Number of samples from variational model for calculating stochastic gradients. score: bool, optional Whether to force inference to use the score function gradient estimator. Otherwise default is to use the reparameterization gradient if available. """ if score is None and self.variational.is_reparam: self.score = False else: self.score = True self.n_minibatch = n_minibatch self.samples = tf.placeholder(shape=(self.n_minibatch, self.variational.num_vars), dtype=tf.float32, name='samples') return VariationalInference.initialize(self, *args, **kwargs) def update(self, sess): if self.score: # TODO the mapping should go here before sampling. # In principle the mapping should go here but we don't # want to have to run this twice. Also I've noticed that it # is significantly slower if I have it here for some reason, # so I'm leaving this as an open problem. #x = self.data.sample(self.n_data) #self.variational.set_params(self.variational.mapping(x)) samples = self.variational.sample(self.samples.get_shape(), sess) else: samples = self.variational.sample_noise(self.samples.get_shape()) _, loss = sess.run([self.train, self.losses], {self.samples: samples}) return loss def build_loss(self): if self.score and hasattr(self.variational, 'entropy'): return self.build_score_loss_entropy() elif self.score: return self.build_score_loss() elif not self.score and hasattr(self.variational, 'entropy'): return self.build_reparam_loss_entropy() else: return self.build_reparam_loss() def build_score_loss(self): """ Loss function to minimize, whose gradient is a stochastic gradient based on the score function estimator. (Paisley et al., 2012) """ # ELBO = E_{q(z; lambda)} [ log p(x, z) - log q(z; lambda) ] x = self.data.sample(self.n_data) self.variational.set_params(self.variational.mapping(x)) q_log_prob = tf.zeros([self.n_minibatch], dtype=tf.float32) for i in range(self.variational.num_vars): q_log_prob += self.variational.log_prob_zi(i, self.samples) self.losses = self.model.log_prob(x, self.samples) - q_log_prob return -tf.reduce_mean(q_log_prob * tf.stop_gradient(self.losses)) def build_reparam_loss(self): """ Loss function to minimize, whose gradient is a stochastic gradient based on the reparameterization trick. (Kingma and Welling, 2014) """ # ELBO = E_{q(z; lambda)} [ log p(x, z) - log q(z; lambda) ] x = self.data.sample(self.n_data) self.variational.set_params(self.variational.mapping(x)) z = self.variational.reparam(self.samples) q_log_prob = tf.zeros([self.n_minibatch], dtype=tf.float32) for i in range(self.variational.num_vars): q_log_prob += self.variational.log_prob_zi(i, z) self.losses = self.model.log_prob(x, z) - q_log_prob return -tf.reduce_mean(self.losses) def build_score_loss_entropy(self): """ Loss function to minimize, whose gradient is a stochastic gradient based on the score function estimator. """ # ELBO = E_{q(z; lambda)} [ log p(x, z) ] + H(q(z; lambda)) # where entropy is analytic x = self.data.sample(self.n_data) self.variational.set_params(self.variational.mapping(x)) q_log_prob = tf.zeros([self.n_minibatch], dtype=tf.float32) for i in range(self.variational.num_vars): q_log_prob += self.variational.log_prob_zi(i, self.samples) x = self.data.sample(self.n_data) p_log_prob = self.model.log_prob(x, self.samples) q_entropy = self.variational.entropy() self.losses = p_log_prob + q_entropy return tf.reduce_mean(q_log_prob * tf.stop_gradient(p_log_prob)) + \ q_entropy def build_reparam_loss_entropy(self): """ Loss function to minimize, whose gradient is a stochastic gradient based on the reparameterization trick. """ # ELBO = E_{q(z; lambda)} [ log p(x, z) ] + H(q(z; lambda)) # where entropy is analytic x = self.data.sample(self.n_data) self.variational.set_params(self.variational.mapping(x)) z = self.variational.reparam(self.samples) self.losses = self.model.log_prob(x, z) + self.variational.entropy() return -tf.reduce_mean(self.losses) class VAE(VariationalInference): # TODO refactor into MFVI def __init__(self, *args, **kwargs): VariationalInference.__init__(self, *args, **kwargs) def initialize(self, n_data=None): # TODO refactor to use VariationalInference's initialize() self.n_data = n_data # TODO don't fix number of covariates self.x = tf.placeholder(tf.float32, [self.n_data, 28 * 28]) self.losses = tf.constant(0.0) loss = self.build_loss() optimizer = tf.train.AdamOptimizer(1e-2, epsilon=1.0) # TODO move this to not rely on Pretty Tensor self.train = pt.apply_optimizer(optimizer, losses=[loss]) init = tf.initialize_all_variables() sess = tf.Session() sess.run(init) return sess def update(self, sess): x = self.data.sample(self.n_data) _, loss_value = sess.run([self.train, self.losses], {self.x: x}) return loss_value def build_loss(self): # ELBO = E_{q(z | x)} [ log p(x | z) ] - KL(q(z | x) || p(z)) # In general, there should be a scale factor due to data # subsampling, so that # ELBO = N / M * ( ELBO using x_b ) # where x^b is a mini-batch of x, with sizes M and N respectively. # This is absorbed into the learning rate. with tf.variable_scope("model") as scope: self.variational.set_params(self.variational.mapping(self.x)) z = self.variational.sample([self.n_data, self.variational.num_vars]) self.losses = tf.reduce_sum(self.model.log_likelihood(self.x, z)) - \ kl_multivariate_normal(self.variational.m, self.variational.s) return -self.losses class KLpq(VariationalInference): """ Kullback-Leibler divergence from posterior to variational model, KL( p(z |x) || q(z) ). (Cappe et al., 2008) """ def __init__(self, *args, **kwargs): VariationalInference.__init__(self, *args, **kwargs) def initialize(self, n_minibatch=1, *args, **kwargs): self.n_minibatch = n_minibatch self.samples = tf.placeholder(shape=(self.n_minibatch, self.variational.num_vars), dtype=tf.float32, name='samples') return VariationalInference.initialize(self, *args, **kwargs) def update(self, sess): samples = self.variational.sample(self.samples.get_shape(), sess) _, loss = sess.run([self.train, self.losses], {self.samples: samples}) return loss def build_loss(self): """ Loss function to minimize, whose gradient is a stochastic gradient inspired by adaptive importance sampling. """ # loss = E_{q(z; lambda)} [ w_norm(z; lambda) * # ( log p(x, z) - log q(z; lambda) ) ] # where # w_norm(z; lambda) = w(z; lambda) / sum_z( w(z; lambda) ) # w(z; lambda) = p(x, z) / q(z; lambda) # # gradient = - E_{q(z; lambda)} [ w_norm(z; lambda) * # grad_{lambda} log q(z; lambda) ] x = self.data.sample(self.n_data) self.variational.set_params(self.variational.mapping(x)) q_log_prob = tf.zeros([self.n_minibatch], dtype=tf.float32) for i in range(self.variational.num_vars): q_log_prob += self.variational.log_prob_zi(i, self.samples) # 1/B sum_{b=1}^B grad_log_q * w_norm # = 1/B sum_{b=1}^B grad_log_q * exp{ log(w_norm) } log_w = self.model.log_prob(x, self.samples) - q_log_prob # normalized log importance weights log_w_norm = log_w - log_sum_exp(log_w) w_norm = tf.exp(log_w_norm) self.losses = w_norm * log_w return -tf.reduce_mean(q_log_prob * tf.stop_gradient(w_norm)) class MAP(VariationalInference): """ Maximum a posteriori """ def __init__(self, model, data=Data(), transform=tf.identity): variational = PointMass(model.num_vars, transform) VariationalInference.__init__(self, model, variational, data) def build_loss(self): x = self.data.sample(self.n_data) self.variational.set_params(self.variational.mapping(x)) z = self.variational.get_params() self.losses = self.model.log_prob(x, z) return -tf.reduce_mean(self.losses)
36.178771
90
0.603613
d202a5abda56b9e3577009497e4e7d84fb8f2c56
3,012
py
Python
tg/handler.py
pandov/myitacademy
e674816f325d68c84b908bf3429fda9b8d14e615
[ "Apache-2.0" ]
1
2021-08-03T12:30:59.000Z
2021-08-03T12:30:59.000Z
tg/handler.py
pandov/myitacademy
e674816f325d68c84b908bf3429fda9b8d14e615
[ "Apache-2.0" ]
null
null
null
tg/handler.py
pandov/myitacademy
e674816f325d68c84b908bf3429fda9b8d14e615
[ "Apache-2.0" ]
null
null
null
import cv2 import numpy as np from io import BytesIO from src.connections import connections from src.dlib_wrapper import * from src.utils import * from pathlib import Path # detector = dlib_cnn_face_detector() detector = dlib_face_frontal_detector() predictor2d = dlib_face_landmarks_predictor() predictor3d = get_fm_depth_predictor() landmarks_transform = get_landmarks_transform() face_images_transform = get_face_images_transform() num_classes = 5 predictor_fer_fc = get_fc_fer_predictor(num_classes=num_classes, hidden_size=284) predictor_fer_cnn = get_cnn_fer_predictor(num_classes=num_classes) predictor_fer_cascade = get_cascade_fer_predictor(num_classes=num_classes) get_features = lambda image: get_face_features(image, detector, predictor2d, predictor3d, landmarks_transform) CACHE_PATH = Path(__file__).absolute().parent.joinpath('cache') CACHE_PATH.mkdir(exist_ok=True) fer_colors = { 'anger': (231, 30, 46), 'contempt': (72, 82, 166), 'disgust': (97, 45, 145), 'fear': (25, 0, 0), 'happy': (74, 200, 71), 'sadness': (26, 97, 175), 'surprise': (251, 233, 37), 'neutral': (150, 150, 150), } def get_fer_color(name): color = fer_colors[name] r, g, b = color return (b, g, r) def backup(message, image): savepath = CACHE_PATH.joinpath(str(message.chat.username)) savepath.mkdir(exist_ok=True) savename = savepath.joinpath(str(message.date) + '.jpg') cv2.imwrite(savename.as_posix(), image) def byte2numpy(byte): arr = np.frombuffer(byte, dtype=np.uint8) image = cv2.imdecode(arr, cv2.IMREAD_COLOR) return image def numpy2byte(image): _, data = cv2.imencode('.jpg', image) bio = BytesIO(data) bio.name = 'image.jpeg' bio.seek(0) return bio def print_faces(image, rectangles, landmarks, expressions, mesh=False, rect=False): for i, rectangle in enumerate(rectangles): x, y, w, h = dlib_rectangle_to_numpy_box(image.shape, rectangle) output = expressions['output'][i] if mesh: color = get_fer_color(output) for j, k in connections: cv2.line(image, tuple(landmarks[i][j]), tuple(landmarks[i][k]), color, 1, cv2.LINE_AA) if rect: cv2.rectangle(image, (x, y), (x + w, y + h), (255, 255, 0), 1) for n, (expression, values) in enumerate(expressions.items()): if expression == 'output': continue scale = 0.45 if expression == output: expression = '*' + expression scale = 0.5 value = float(values[i]) text = '{} {}'.format(expression, round(value, 2)) tx, ty = x + w // 5, y + n * 15 - h // 4 cv2.putText(image, text, (tx, ty), cv2.FONT_HERSHEY_SIMPLEX, scale, (0, 0, 0), 2, cv2.LINE_AA) cv2.putText(image, text, (tx, ty), cv2.FONT_HERSHEY_SIMPLEX, scale, (255, 255, 255), 1, cv2.LINE_AA) # cv2.rectangle(image, (tx, ty), (tx + w // 3, ty + h // 4 - 10), (0, 0, 0, 50), -1)
37.185185
112
0.64741
1e8dff84bf260e37d0a7da4269b967a651c8336e
147
py
Python
capitulo-05/ex05.py
bryan-lima/exercicios-livro-introd-prog-python-3ed
b6bc26dced9728510865704a80cb0d97f81f756b
[ "MIT" ]
3
2021-11-09T17:54:10.000Z
2022-01-30T22:32:25.000Z
capitulo-05/ex05.py
bryan-lima/exercicios-livro-introd-prog-python-3ed
b6bc26dced9728510865704a80cb0d97f81f756b
[ "MIT" ]
null
null
null
capitulo-05/ex05.py
bryan-lima/exercicios-livro-introd-prog-python-3ed
b6bc26dced9728510865704a80cb0d97f81f756b
[ "MIT" ]
null
null
null
# Reescreva o programa anterior para escrever os 10 primeiros múltiplos de 3 lastNumber = 30 n = 3 while n <= lastNumber: print(n) n += 3
18.375
76
0.687075
7df9ca3daf76852d74d8144f772a538efc1a64f0
447
py
Python
summary.py
TheEvolt/yolo3-pytorch
4c31e8ab3e619dcd93b9d1dc11b89aa252bca84b
[ "MIT" ]
null
null
null
summary.py
TheEvolt/yolo3-pytorch
4c31e8ab3e619dcd93b9d1dc11b89aa252bca84b
[ "MIT" ]
null
null
null
summary.py
TheEvolt/yolo3-pytorch
4c31e8ab3e619dcd93b9d1dc11b89aa252bca84b
[ "MIT" ]
null
null
null
# --------------------------------------------# # 该部分代码用于看网络结构 # --------------------------------------------# import torch from torchsummary import summary from nets.yolo import YoloBody if __name__ == "__main__": # 需要使用device来指定网络在GPU还是CPU运行 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") m = YoloBody([[6, 7, 8], [3, 4, 5], [0, 1, 2]], 80).to(device) summary(m, input_size=(3, 416, 416))
31.928571
74
0.505593
a2f4149c89e5e951abb08e29d11c6a259872a1b0
13,695
py
Python
pelita/maze_generator.py
DanBenHa/pelita
557c3a757a24e0f1abe25f7edf5c4ffee83a077e
[ "BSD-2-Clause" ]
null
null
null
pelita/maze_generator.py
DanBenHa/pelita
557c3a757a24e0f1abe25f7edf5c4ffee83a077e
[ "BSD-2-Clause" ]
null
null
null
pelita/maze_generator.py
DanBenHa/pelita
557c3a757a24e0f1abe25f7edf5c4ffee83a077e
[ "BSD-2-Clause" ]
null
null
null
""" Generate maze layouts for 'pelita', without dead ends. Algorithm: * start with an empty grid * draw a wall with gaps, dividing the grid in 2 * repeat recursively for each sub-grid * find dead ends * remove a wall at the dead ends Players 1,3 always start in the bottom left; 2,4 in the top right Food is placed randomly (though not too close to the pacmen starting positions) Notes: the final map includes a symmetric, flipped copy the first wall has k gaps, the next wall has k/2 gaps, etc. (min=1) Inspired by code by Dan Gillick Completely rewritten by Pietro Berkes Rewritten again (but not completely) by Tiziano Zito """ import random import sys import numpy import networkx as nx north = (0, -1) south = (0, 1) east = (1, 0) west = (-1, 0) # character constants for walls, food, and empty spaces W = b'#' F = b'.' E = b' ' def empty_maze(height, width): """Return an empty maze with external walls. A maze is a 2D array of characters representing walls, food, and agents. An empty maze is made of empty tiles, except for the external walls. """ maze = numpy.empty((height, width), dtype='c') maze.fill(E) # add external walls maze[0, :].fill(W) maze[-1, :].fill(W) maze[:, 0].fill(W) maze[:, -1].fill(W) return maze def maze_to_bytes(maze): """Return bytes representation of maze.""" lines = [b''.join(maze[i,:]) for i in range(maze.shape[0])] return b'\n'.join(lines) def maze_to_str(maze): """Return a ascii-string representation of maze.""" bytes_ = maze_to_bytes(maze) return bytes_.decode('ascii') def bytes_to_maze(bytes_): """Return a maze numpy bytes array from a bytes representation.""" rows = [] for line in bytes_.splitlines(): line = line.strip() if len(line) == 0: # skip empty lines continue cols = [] for idx in range(len(line.strip())): # this crazyness is needed because bytes do not iterate like # strings: see the comments about iterating over bytes in # https://docs.python.org/3/library/stdtypes.html#bytes-objects cols.append(line[idx:idx+1]) rows.append(cols) maze = numpy.array(rows, dtype=bytes) return maze def str_to_maze(str_): """Return a maze numpy bytes array from a ascii string representation.""" bytes_maze = str_.encode('ascii') return bytes_to_maze(bytes_maze) def create_half_maze(maze, ngaps_center): """Fill the left half of the maze with random walls. The second half can be created by mirroring the left part using the 'complete_maze' function. """ # first, we need a wall in the middle # the gaps in the central wall have to be chosen such that they can # be mirrored ch = maze.shape[0] - 2 candidates = list(range(ch//2)) random.shuffle(candidates) half_gaps_pos = candidates[:ngaps_center // 2] gaps_pos = [] for pos in half_gaps_pos: gaps_pos.append(pos) gaps_pos.append(ch - pos - 1) # make wall _add_wall_at(maze, (maze.shape[1] - 2) // 2 - 1, ngaps_center, vertical=True, gaps_pos=gaps_pos) # then, fill the left half with walls _add_wall(maze[:, :maze.shape[1] // 2], ngaps_center // 2, vertical=False) def _add_wall_at(maze, pos, ngaps, vertical, gaps_pos=None): """ add a wall with gaps maze -- maze where to place wall, plus a border of one element pos -- position where to put the wall within the center of the maze (border excluded) """ if not vertical: maze = maze.T center = maze[1:-1, 1:-1] ch, cw = center.shape # place wall center[:, pos].fill(W) # place gaps ngaps = max(1, ngaps) # choose position of gaps if necessary if gaps_pos is None: # choose aandom positions gaps_pos = list(range(ch)) random.shuffle(gaps_pos) gaps_pos = gaps_pos[:ngaps] # do not block entrances if maze[0][pos + 1] == E: gaps_pos.insert(0, 0) if maze[-1][pos + 1] == E: gaps_pos.insert(0, ch - 1) for gp in gaps_pos: center[gp, pos] = E sub_mazes = [maze[:, :pos + 2], maze[:, pos + 1:]] if not vertical: sub_mazes = [sm.T for sm in sub_mazes] return sub_mazes def _add_wall(maze, ngaps, vertical): """Recursively build the walls of the maze. grid -- 2D array of characters representing the maze ngaps -- number of empty spaces to leave in the wall vertical -- if True, create a vertical wall, otherwise horizontal """ h, w = maze.shape center = maze[1:-1, 1:-1] ch, cw = center.shape # no space for walls, interrupt recursion if ch < 3 and cw < 3: return size = cw if vertical else ch # create a wall only if there is some space in this direction min_size = random.randint(3, 5) if size >= min_size: # place the wall at random spot pos = random.randint(1, size-2) sub_mazes = _add_wall_at(maze, pos, ngaps, vertical) # recursively add walls for sub_maze in sub_mazes: _add_wall(sub_maze, max(1, ngaps // 2), not vertical) def walls_to_graph(maze): """Transform a maze in a graph. The data on the nodes correspond to their coordinates, data on edges is the actions to take to transition to that edge. Returns: graph -- a Graph first_node -- the first node in the Graph """ h, w = maze.shape directions = [west, east, north, south] graph = nx.Graph() # define nodes for maze for x in range(w): for y in range(h): if maze[y, x] != W: graph.add_node((x,y)) # this is a free position, get its neighbors too for dx, dy in directions: nbx, nby = (x+dx, y+dy) # do not go out of bounds try: if maze[nby, nbx] == E: graph.add_edge((x, y), (nbx, nby)) except IndexError: # this move brought us out of the maze, just ignore it continue return graph def find_dead_ends(graph, width): """Find dead ends in a graph.""" dead_ends = [] for node in graph.nodes(): if graph.degree(node) == 1 and node[0] < width-1: dead_ends.append(node) return dead_ends def remove_dead_end(dead_node, maze): """Remove one dead end in a maze.""" h, w = maze.shape # loop through the neighboring positions and remove the first wall we find # as long as it is not on the outer border or in the middle of the maze # not in the central wall x==w//2-1 directions = (north, south, east, west) for direction in directions: nbx = dead_node[0]+direction[0] nby = dead_node[1]+direction[1] if nbx not in (0,w-1,w//2-1) and nby not in (0,h-1): neighbor = maze[nby, nbx] if neighbor == W: maze[nby, nbx] = E break def remove_all_dead_ends(maze): height, width = maze.shape while True: maze_graph = walls_to_graph(maze) dead_ends = find_dead_ends(maze_graph, width) if len(dead_ends) == 0: break remove_dead_end(dead_ends[0], maze) def find_chamber(graph): """Detect chambers (rooms with a single square entrance). Return (entrance, chamber), where `entrance` is the node representing the entrance to the chamber (None if no chamber is found), and `chamber` is the list of nodes within the chamber (empty list if no nodes are in the chamber). The entrance to a chamber is a node that when removed from the graph will result in the graph to be split into two disconnected graphs.""" # minimum_node_cut returns a set of nodes of minimum cardinality that # disconnects the graph. This means that we have a chamber if the length # of this set is one, i.e. there is one node that when removed disconnects # the graph cuts = nx.minimum_node_cut(graph) if len(cuts) > 1: # no chambers, yeah! return None, [] entrance = cuts.pop() # remove the cut, i.e. put a wall on the entrance lgraph = nx.restricted_view(graph, [entrance],[]) # now get the resulting subgraphs subgraphs = sorted(nx.connected_components(lgraph), key=len) # let's get the smallest subgraph: this is going to be a chamber # (other subgraphs are other chambers (if any) and the 'rest' of the graph # return a list of nodes, instead of a set chamber = list(subgraphs[0]) return entrance, chamber def get_neighboring_walls(maze, locs): """Given a list of coordinates in the maze, return all neighboring walls. Walls on the outer border are ignored automatically.""" height, width = maze.shape walls = [] seen = [] for nodex, nodey in locs: # if we are already on the border, skip this node if nodex<=0 or nodex>=(width-1) or nodey<=0 or nodey>=(height-1): continue # explore all directions around the current node for dirx, diry in (north, south, east, west): # get coordinates of neighbor in direction (dirx, diry) adjx, adjy = nodex+dirx, nodey+diry if (adjx, adjy) in seen: # we have visited this neighbor already continue else: seen.append((adjx, adjy)) # check that we still are inside the maze if adjx<=0 or adjx>=(width-1) or adjy<=0 or adjy>=(height-1): # the neighbor is out of the maze continue if maze[adjy,adjx] == W: # this is a wall, store it walls.append((adjx, adjy)) return walls def remove_all_chambers(maze): maze_graph = walls_to_graph(maze) # this will find one of the chambers, if there is any entrance, chamber = find_chamber(maze_graph) while entrance is not None: # get all the walls around the chamber walls = get_neighboring_walls(maze, chamber) # choose a wall at random among the neighboring one and get rid of it bad_wall = random.choice(walls) maze[bad_wall[1], bad_wall[0]] = E # we may have opened a door into this chamber, but there may be more # chambers to get rid of. Or, the wall we picked wasn't good enough and # didn't really open a new door to the chamber. I have no idea how to # distinguish this two cases. If we knew how to, we would spare quite # a few iterations here? # Well, as long as we keep on doing this we will eventually get rid # of all the chambers maze_graph = walls_to_graph(maze) entrance, chamber = find_chamber(maze_graph) def add_food(maze, max_food): """Add max_food pellets on the left side of the maze. We exclude the pacmen's starting positions and the central dividing border """ if max_food == 0: # no food needs to be added, return here return h, w = maze.shape pacmen = [(1,h-2), (1,h-3)] # get all free slots on the left side, excluding the dividing border free_y, free_x = numpy.where(maze[:,:w//2-1] == E) # convert it to a list of coordinate tuples free = list(zip(free_x, free_y)) # remove the pacmen starting coordinates (we have to check that they are # indeed free before try to remove them [free.remove(pacman) for pacman in pacmen if pacman in free] # check if we have any free slots left if len(free) == 0 and max_food > 0: raise ValueError(f'No space left for food in maze') elif max_food > len(free): # check if we can indeed fit so much food in the maze raise ValueError(f'Can not fit {max_food} pellet in {len(free)} free slots') elif max_food < 0: raise ValueError(f'Can not add negative number of food ({max_food} given)') # now take max_food random positions out of this list food = random.sample(free, max_food) # fit it in the maze for col, row in food: maze[row, col] = F def add_pacmen(maze): ## starting pacmen positions maze[-2, 1] = b'2' maze[-3, 1] = b'0' maze[1, -2] = b'3' maze[2, -2] = b'1' def get_new_maze(height, width, nfood, seed=None): """Create a new maze in text format. The maze is created with a recursive creation algorithm. The maze part of the blue team is a center-mirror version of the one for the red team. The function reserves space for 2 PacMan for each team in upper-right and lower-left corners of the maze. Food is added at random. Input arguments: height, width -- the size of the maze, including the outer walls nfood -- number of food dots for each team seed -- if not None, the random seed used to generate the maze """ if width%2 != 0: raise ValueError(f'Width must be even ({width} given)') if seed is None: seed = random.randint(1, 2 ** 31 - 1) random.seed(seed) maze = empty_maze(height, width) create_half_maze(maze, height // 2) # make space for pacman (2 pacman each) maze[-2, 1] = E maze[-3, 1] = E # remove dead ends remove_all_dead_ends(maze) # remove chambers remove_all_chambers(maze) # add food add_food(maze, nfood) # complete right part of maze with mirror copy maze[:, width // 2:] = numpy.flipud(numpy.fliplr(maze[:, :width // 2])) # add pacman add_pacmen(maze) return maze_to_str(maze)
32.147887
84
0.623512
d97485675f99c8ef7071a4e23a53b07780e7c4fa
881
py
Python
deeppavlov/core/models/nn_model.py
khakhulin/DeepPavlov
5f631cc887aa935f2e67b7c65a19c7e777cf7db7
[ "Apache-2.0" ]
1
2018-07-18T11:50:45.000Z
2018-07-18T11:50:45.000Z
deeppavlov/core/models/nn_model.py
khakhulin/DeepPavlov
5f631cc887aa935f2e67b7c65a19c7e777cf7db7
[ "Apache-2.0" ]
null
null
null
deeppavlov/core/models/nn_model.py
khakhulin/DeepPavlov
5f631cc887aa935f2e67b7c65a19c7e777cf7db7
[ "Apache-2.0" ]
null
null
null
""" Copyright 2017 Neural Networks and Deep Learning lab, MIPT Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from abc import abstractmethod from .component import Component from .serializable import Serializable class NNModel(Component, Serializable): @abstractmethod def train_on_batch(self, x: list, y: list): pass def process_event(self, event_name, data): pass
29.366667
72
0.76504
bd5be189c12eb187b2e4b895f42d9ee4e79c85b0
1,683
py
Python
publictitles/resources.py
LandRegistry/public-titles
1d52e5dd80e4632d98f40356262819bbf5c907ed
[ "MIT" ]
null
null
null
publictitles/resources.py
LandRegistry/public-titles
1d52e5dd80e4632d98f40356262819bbf5c907ed
[ "MIT" ]
null
null
null
publictitles/resources.py
LandRegistry/public-titles
1d52e5dd80e4632d98f40356262819bbf5c907ed
[ "MIT" ]
null
null
null
from flask import Response from flask.ext.restful import Resource, fields, marshal_with, abort, reqparse from publictitles.models import Title from publictitles import app, db class TitleResource(Resource): resource_fields = { 'title_number': fields.String, 'house_number': fields.String, 'road': fields.String, 'town': fields.String, 'postcode': fields.String, 'price_paid': fields.String} def __init__(self): self.parser = reqparse.RequestParser() for key, val in TitleResource.resource_fields.items(): self.parser.add_argument(key, type=str) @marshal_with(resource_fields) def get(self, title_number): title = Title.query.filter_by( title_number = title_number).first() if title: return title else: abort(404, message="Title number {} doesn't exist".format(title_number)) def put(self, title_number): args = self.parser.parse_args() existing_title = Title.query.filter_by( title_number = args['title_number']).first() status = 201 if existing_title: app.logger.info('Title number %s already exists. Replace with %s' % (args['title_number'], args)) db.session.delete(existing_title) db.session.commit() status = 200 app.logger.info('Create title with args %s' % args) title = Title(**args) db.session.add( title ) db.session.commit() return Response(status =status)
38.25
109
0.582294
077b7075a41e205a16b2d53d41eb915518d3f483
4,252
py
Python
azure-mgmt-dns/azure/mgmt/dns/v2016_04_01/models/record_set.py
JonathanGailliez/azure-sdk-for-python
f0f051bfd27f8ea512aea6fc0c3212ee9ee0029b
[ "MIT" ]
1
2021-09-07T18:36:04.000Z
2021-09-07T18:36:04.000Z
azure-mgmt-dns/azure/mgmt/dns/v2016_04_01/models/record_set.py
JonathanGailliez/azure-sdk-for-python
f0f051bfd27f8ea512aea6fc0c3212ee9ee0029b
[ "MIT" ]
2
2019-10-02T23:37:38.000Z
2020-10-02T01:17:31.000Z
azure-mgmt-dns/azure/mgmt/dns/v2016_04_01/models/record_set.py
JonathanGailliez/azure-sdk-for-python
f0f051bfd27f8ea512aea6fc0c3212ee9ee0029b
[ "MIT" ]
1
2018-08-28T14:36:47.000Z
2018-08-28T14:36:47.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class RecordSet(Model): """Describes a DNS record set (a collection of DNS records with the same name and type). :param id: The ID of the record set. :type id: str :param name: The name of the record set. :type name: str :param type: The type of the record set. :type type: str :param etag: The etag of the record set. :type etag: str :param metadata: The metadata attached to the record set. :type metadata: dict[str, str] :param ttl: The TTL (time-to-live) of the records in the record set. :type ttl: long :param arecords: The list of A records in the record set. :type arecords: list[~azure.mgmt.dns.v2016_04_01.models.ARecord] :param aaaa_records: The list of AAAA records in the record set. :type aaaa_records: list[~azure.mgmt.dns.v2016_04_01.models.AaaaRecord] :param mx_records: The list of MX records in the record set. :type mx_records: list[~azure.mgmt.dns.v2016_04_01.models.MxRecord] :param ns_records: The list of NS records in the record set. :type ns_records: list[~azure.mgmt.dns.v2016_04_01.models.NsRecord] :param ptr_records: The list of PTR records in the record set. :type ptr_records: list[~azure.mgmt.dns.v2016_04_01.models.PtrRecord] :param srv_records: The list of SRV records in the record set. :type srv_records: list[~azure.mgmt.dns.v2016_04_01.models.SrvRecord] :param txt_records: The list of TXT records in the record set. :type txt_records: list[~azure.mgmt.dns.v2016_04_01.models.TxtRecord] :param cname_record: The CNAME record in the record set. :type cname_record: ~azure.mgmt.dns.v2016_04_01.models.CnameRecord :param soa_record: The SOA record in the record set. :type soa_record: ~azure.mgmt.dns.v2016_04_01.models.SoaRecord """ _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'etag': {'key': 'etag', 'type': 'str'}, 'metadata': {'key': 'properties.metadata', 'type': '{str}'}, 'ttl': {'key': 'properties.TTL', 'type': 'long'}, 'arecords': {'key': 'properties.ARecords', 'type': '[ARecord]'}, 'aaaa_records': {'key': 'properties.AAAARecords', 'type': '[AaaaRecord]'}, 'mx_records': {'key': 'properties.MXRecords', 'type': '[MxRecord]'}, 'ns_records': {'key': 'properties.NSRecords', 'type': '[NsRecord]'}, 'ptr_records': {'key': 'properties.PTRRecords', 'type': '[PtrRecord]'}, 'srv_records': {'key': 'properties.SRVRecords', 'type': '[SrvRecord]'}, 'txt_records': {'key': 'properties.TXTRecords', 'type': '[TxtRecord]'}, 'cname_record': {'key': 'properties.CNAMERecord', 'type': 'CnameRecord'}, 'soa_record': {'key': 'properties.SOARecord', 'type': 'SoaRecord'}, } def __init__(self, **kwargs): super(RecordSet, self).__init__(**kwargs) self.id = kwargs.get('id', None) self.name = kwargs.get('name', None) self.type = kwargs.get('type', None) self.etag = kwargs.get('etag', None) self.metadata = kwargs.get('metadata', None) self.ttl = kwargs.get('ttl', None) self.arecords = kwargs.get('arecords', None) self.aaaa_records = kwargs.get('aaaa_records', None) self.mx_records = kwargs.get('mx_records', None) self.ns_records = kwargs.get('ns_records', None) self.ptr_records = kwargs.get('ptr_records', None) self.srv_records = kwargs.get('srv_records', None) self.txt_records = kwargs.get('txt_records', None) self.cname_record = kwargs.get('cname_record', None) self.soa_record = kwargs.get('soa_record', None)
49.44186
82
0.630997
50be50c7f3029a8436bff1d8f72cd6fad42340a4
6,974
py
Python
Detector/train.py
ColinWine/Accurate-and-rapid-pulmonary-tuberculosis-diagnosis-system
7be433b3a495a7c4db2b850a79dc505e413909c4
[ "Apache-2.0" ]
null
null
null
Detector/train.py
ColinWine/Accurate-and-rapid-pulmonary-tuberculosis-diagnosis-system
7be433b3a495a7c4db2b850a79dc505e413909c4
[ "Apache-2.0" ]
null
null
null
Detector/train.py
ColinWine/Accurate-and-rapid-pulmonary-tuberculosis-diagnosis-system
7be433b3a495a7c4db2b850a79dc505e413909c4
[ "Apache-2.0" ]
1
2022-02-19T09:07:55.000Z
2022-02-19T09:07:55.000Z
import os import sys import time import argparse sys.path.insert(0, os.path.join(os.path.dirname(__file__), 'lib')) # os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # see issue #152 # os.environ["CUDA_VISIBLE_DEVICES"] = '0' import numpy as np import torch.nn as nn import torch.utils.data import torch.distributed as dist from datasets.coco import COCO, COCO_eval from datasets.pascal import PascalVOC, PascalVOC_eval from nets.hourglass import get_hourglass from utils.utils import _tranpose_and_gather_feature, load_model from utils.image import transform_preds from utils.losses import _neg_loss, _reg_loss from utils.summary import create_summary, create_logger, create_saver, DisablePrint from utils.post_process import ctdet_decode from validation import evaluation # Training settings parser = argparse.ArgumentParser(description='simple_centernet45') parser.add_argument('--local_rank', type=int, default=0) parser.add_argument('--dist', action='store_true') parser.add_argument('--root_dir', type=str, default='./') parser.add_argument('--data_dir', type=str, default='data') parser.add_argument('--log_name', type=str, default='test') parser.add_argument('--pretrain_name', type=str, default='pretrain') parser.add_argument('--dataset', type=str, default='coco', choices=['coco', 'pascal']) parser.add_argument('--arch', type=str, default='large_hourglass') parser.add_argument('--img_size', type=int, default=512) parser.add_argument('--split_ratio', type=float, default=1.0) parser.add_argument('--lr', type=float, default=5e-4) parser.add_argument('--lr_step', type=str, default='40,80,120') parser.add_argument('--batch_size', type=int, default=1) parser.add_argument('--num_epochs', type=int, default=160) parser.add_argument('--test_topk', type=int, default=100) parser.add_argument('--log_interval', type=int, default=60) parser.add_argument('--val_interval', type=int, default=5) parser.add_argument('--num_workers', type=int, default=2) cfg = parser.parse_args() os.chdir(cfg.root_dir) cfg.log_dir = os.path.join(cfg.root_dir, 'logs', cfg.log_name) cfg.ckpt_dir = os.path.join(cfg.root_dir, 'ckpt', cfg.log_name) cfg.pretrain_dir = os.path.join(cfg.root_dir, 'ckpt', cfg.pretrain_name, 'checkpoint.t7') os.makedirs(cfg.log_dir, exist_ok=True) os.makedirs(cfg.ckpt_dir, exist_ok=True) cfg.lr_step = [int(s) for s in cfg.lr_step.split(',')] def main(): saver = create_saver(cfg.local_rank, save_dir=cfg.ckpt_dir) logger = create_logger(cfg.local_rank, save_dir=cfg.log_dir) summary_writer = create_summary(cfg.local_rank, log_dir=cfg.log_dir) print = logger.info print(cfg) torch.manual_seed(317) torch.backends.cudnn.benchmark = True # disable this if OOM at beginning of training num_gpus = torch.cuda.device_count() if cfg.dist: cfg.device = torch.device('cuda:%d' % cfg.local_rank) torch.cuda.set_device(cfg.local_rank) dist.init_process_group(backend='nccl', init_method='env://', world_size=num_gpus, rank=cfg.local_rank) else: cfg.device = torch.device('cuda') print('Setting up data...') Dataset = COCO if cfg.dataset == 'coco' else PascalVOC train_dataset = Dataset(cfg.data_dir, 'train', split_ratio=cfg.split_ratio, img_size=cfg.img_size) train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset, num_replicas=num_gpus, rank=cfg.local_rank) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=cfg.batch_size // num_gpus if cfg.dist else cfg.batch_size, shuffle=not cfg.dist, num_workers=cfg.num_workers, pin_memory=True, drop_last=True, sampler=train_sampler if cfg.dist else None) print('Creating model...') if 'hourglass' in cfg.arch: model = get_hourglass[cfg.arch] else: raise NotImplementedError if cfg.dist: # model = nn.SyncBatchNorm.convert_sync_batchnorm(model) model = model.to(cfg.device) model = nn.parallel.DistributedDataParallel(model, device_ids=[cfg.local_rank, ], output_device=cfg.local_rank) else: model = nn.DataParallel(model).to(cfg.device) if os.path.isfile(cfg.pretrain_dir): model = load_model(model, cfg.pretrain_dir) optimizer = torch.optim.Adam(model.parameters(), cfg.lr) lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, cfg.lr_step, gamma=0.1) validation_folder=r'L:\FullProcess\FocusDetection\LabelVal' def train(epoch): print('\n Epoch: %d' % epoch) model.train() tic = time.perf_counter() for batch_idx, batch in enumerate(train_loader): for k in batch: if k != 'meta': batch[k] = batch[k].to(device=cfg.device, non_blocking=True) outputs = model(batch['image']) hmap, regs, w_h_ = zip(*outputs) regs = [_tranpose_and_gather_feature(r, batch['inds']) for r in regs] w_h_ = [_tranpose_and_gather_feature(r, batch['inds']) for r in w_h_] hmap_loss = _neg_loss(hmap, batch['hmap']) reg_loss = _reg_loss(regs, batch['regs'], batch['ind_masks']) w_h_loss = _reg_loss(w_h_, batch['w_h_'], batch['ind_masks']) loss = hmap_loss + 1 * reg_loss + 0.1 * w_h_loss optimizer.zero_grad() loss.backward() optimizer.step() if batch_idx % cfg.log_interval == 0: duration = time.perf_counter() - tic tic = time.perf_counter() print('[%d/%d-%d/%d] ' % (epoch, cfg.num_epochs, batch_idx, len(train_loader)) + ' hmap_loss= %.5f reg_loss= %.5f w_h_loss= %.5f' % (hmap_loss.item(), reg_loss.item(), w_h_loss.item()) + ' (%d samples/sec)' % (cfg.batch_size * cfg.log_interval / duration)) step = len(train_loader) * epoch + batch_idx summary_writer.add_scalar('hmap_loss', hmap_loss.item(), step) summary_writer.add_scalar('reg_loss', reg_loss.item(), step) summary_writer.add_scalar('w_h_loss', w_h_loss.item(), step) return print('Starting training...') for epoch in range(1, cfg.num_epochs + 1): train_sampler.set_epoch(epoch) train(epoch) if cfg.val_interval > 0 and epoch % cfg.val_interval == 0: model.eval() evaluation(model,validation_folder,map_save_name='epoch_' + str(epoch) + '.png') print(saver.save(model.module.state_dict(), 'checkpoint')) lr_scheduler.step(epoch) # move to here after pytorch1.1.0 summary_writer.close() if __name__ == '__main__': with DisablePrint(local_rank=cfg.local_rank): main()
38.530387
100
0.659736
22c9daeaa0f648562e27b6593c6954571ab20327
2,778
py
Python
Web App/SignLanguage/detect.py
Aravindhan-G/Sign-Language-Synthesis
6f306a3055419eedfe0a6e877ee8ee6967cfa06c
[ "MIT" ]
null
null
null
Web App/SignLanguage/detect.py
Aravindhan-G/Sign-Language-Synthesis
6f306a3055419eedfe0a6e877ee8ee6967cfa06c
[ "MIT" ]
null
null
null
Web App/SignLanguage/detect.py
Aravindhan-G/Sign-Language-Synthesis
6f306a3055419eedfe0a6e877ee8ee6967cfa06c
[ "MIT" ]
null
null
null
from flask import Blueprint, render_template, Response import cv2 import time import pickle import numpy as np import mediapipe as mp detect= Blueprint('detect',__name__) mp_drawing = mp.solutions.drawing_utils mp_hands = mp.solutions.hands drawing_styles = mp.solutions.drawing_styles mod = pickle.load(open('', 'rb'))#Location of XGBoost.sav le = pickle.load(open('', 'rb'))#Location of XEncoder1.sav word = ' ' cap = cv2.VideoCapture(0) def gen_frames(): global word prev = time.time() with mp_hands.Hands(min_detection_confidence=0.67, min_tracking_confidence=0.6) as hands: while cap.isOpened(): success, image = cap.read() if not success: break else: curr = time.time() image = cv2.cvtColor(cv2.flip(image,1), cv2.COLOR_BGR2RGB) image.flags.writeable = False results = hands.process(image) # Draw the hand annotations on the image. image.flags.writeable = True image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) if results.multi_hand_landmarks: lst = [] for coords in results.multi_hand_landmarks: mp_drawing.draw_landmarks( image, coords, mp.solutions.hands.HAND_CONNECTIONS, drawing_styles.get_default_hand_landmarks_style(), drawing_styles.get_default_hand_connections_style()) for crd in coords.landmark: lst.append(crd.x) lst.append(crd.y) lst.append(crd.z) lst = np.asarray(lst).reshape(1,-1) if (curr-prev) >= 4: prev = time.time() txt = predict(lst) if txt=='del': word = word[:-1] elif txt == 'space': word += ' ' else: word+=txt ret, buffer = cv2.imencode('.jpg', image) frame = buffer.tobytes() yield (b'--frame\r\n' b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n') def predict(coords): tmp = mod.predict(coords) txt = str(le.inverse_transform(tmp)).strip("'][") return txt @detect.route('/home', methods=['GET','POST']) def home(): return render_template('index.html') @detect.route('/video_feed') def video_feed(): return Response(gen_frames(), mimetype='multipart/x-mixed-replace; boundary=frame') @detect.route('/text_feed') def text_feed(): return f'Predicted text - {word}'
36.077922
94
0.537077
5f3a4f37cf22ce1c6cb864631d290aa8ea0f80d9
3,584
py
Python
2_ Preprocessing/properties/MissingData.py
DavidStahl97/Predictive-Analytics
c607ef2a5fc2b6654122b0b5ef90cb1a23f88eb0
[ "MIT" ]
null
null
null
2_ Preprocessing/properties/MissingData.py
DavidStahl97/Predictive-Analytics
c607ef2a5fc2b6654122b0b5ef90cb1a23f88eb0
[ "MIT" ]
null
null
null
2_ Preprocessing/properties/MissingData.py
DavidStahl97/Predictive-Analytics
c607ef2a5fc2b6654122b0b5ef90cb1a23f88eb0
[ "MIT" ]
null
null
null
import numpy as np import pandas as pd import missingno as msno from sklearn.impute import SimpleImputer import matplotlib.pyplot as plt def review_data(): # Read csv file into pandas dataframe propertydata = pd.read_csv("propertydata.csv") # Print first five rows print(propertydata.head()) # Print whole table print(propertydata) # Print all columns separately print(propertydata['ST_NUM']) print(propertydata['ST_NAME']) print(propertydata['OWN_OCCUPIED']) print(propertydata['NUM_BEDROOMS']) print(propertydata['NUM_BATH']) print(propertydata['SQ_FT']) # Visualize gaps in data msno.matrix(propertydata) plt.show() msno.matrix(propertydata) msno.bar(propertydata, color="blue") plt.show() def preprocess_data(): # Read csv file into pandas dataframe, replace missing values with NaN # Handle NUM_BEDROOMS and SQ_FT propertydata = pd.read_csv("propertydata.csv", na_values=["na", "--"]) print(propertydata['ST_NAME']) print(propertydata['NUM_BEDROOMS']) print(propertydata['SQ_FT']) # Handle OWN_OCCUPIED cnt = 0 for row in propertydata['OWN_OCCUPIED']: try: # Try to cast value to int int(row) # If possible, replace that value propertydata.loc[cnt, 'OWN_OCCUPIED'] = np.nan except ValueError: pass cnt += 1 print(propertydata['OWN_OCCUPIED']) # Handle NUM_BATH cnt = 0 for row in propertydata['NUM_BATH']: try: # Try to cast value to float float(row) except ValueError: # If NOT possible, replace that value propertydata.loc[cnt, 'NUM_BATH'] = np.nan cnt += 1 print(propertydata['NUM_BATH']) # Show missing value matrix msno.matrix(propertydata) plt.show() # Simulate listwise deletion print(propertydata.dropna()) # Handle ST_NUM, NUM_BEDROOMS, NUM_BATH, SQ_FT # Perform mean imputation and down-cast to int to get rid of values like 2.167 bedrooms imp_mean = SimpleImputer(missing_values=np.nan, strategy='mean') propertydata['ST_NUM'] = imp_mean.fit_transform(propertydata['ST_NUM'].values.reshape(-1, 1)) propertydata['ST_NUM'] = propertydata['ST_NUM'].astype(int) propertydata['NUM_BEDROOMS'] = imp_mean.fit_transform(propertydata['NUM_BEDROOMS'].values.reshape(-1, 1)) propertydata['NUM_BEDROOMS'] = propertydata['NUM_BEDROOMS'].astype(int) propertydata['NUM_BATH'] = imp_mean.fit_transform(propertydata['NUM_BATH'].values.reshape(-1, 1)) propertydata['NUM_BATH'] = propertydata['NUM_BATH'].astype(int) propertydata['SQ_FT'] = imp_mean.fit_transform(propertydata['SQ_FT'].values.reshape(-1, 1)) propertydata['SQ_FT'] = propertydata['SQ_FT'].astype(int) print(propertydata['ST_NUM']) print(propertydata['ST_NAME']) print(propertydata['OWN_OCCUPIED']) print(propertydata['NUM_BEDROOMS']) print(propertydata['NUM_BATH']) print(propertydata['SQ_FT']) # Show missing value matrix msno.matrix(propertydata) plt.show() # Simulate listwise deletion print(propertydata.dropna()) # Handle OWN_OCCUPIED # Perform most frequent imputation imp_most_frequent = SimpleImputer(missing_values=np.nan, strategy='most_frequent') propertydata['OWN_OCCUPIED'] = imp_most_frequent.fit_transform(propertydata['OWN_OCCUPIED'].values.reshape(-1, 1)) # Show missing value matrix msno.matrix(propertydata) plt.show() review_data() # preprocess_data()
30.632479
118
0.681083
30b2fcda38e3f910b4f7c7212fb480217de14864
301
py
Python
pytest/mod.py
free31jafar/Zeref
9cfe9f2e753e6d30d974ced6177080575635e17c
[ "MIT" ]
null
null
null
pytest/mod.py
free31jafar/Zeref
9cfe9f2e753e6d30d974ced6177080575635e17c
[ "MIT" ]
null
null
null
pytest/mod.py
free31jafar/Zeref
9cfe9f2e753e6d30d974ced6177080575635e17c
[ "MIT" ]
null
null
null
import pytest from redbot.core import modlog __all__ = ["mod"] @pytest.fixture def mod(config, monkeypatch): from redbot.core import Config with monkeypatch.context() as m: m.setattr(Config, "get_conf", lambda *args, **kwargs: config) modlog._init() return modlog
18.8125
69
0.671096
f5ea565ea94ce8fa326d82a47f95a13bd5351fcc
24,397
py
Python
46/swagger_client/api_client.py
apitore/apitore-sdk-python
c0814c5635ddd09e9a20fcb155b62122bee41d33
[ "Apache-2.0" ]
3
2018-08-21T06:14:33.000Z
2019-10-18T23:05:50.000Z
46/swagger_client/api_client.py
apitore/apitore-sdk-python
c0814c5635ddd09e9a20fcb155b62122bee41d33
[ "Apache-2.0" ]
null
null
null
46/swagger_client/api_client.py
apitore/apitore-sdk-python
c0814c5635ddd09e9a20fcb155b62122bee41d33
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ WordNet APIs You can access ALL WordNet DB.<BR />[Endpoint] https://api.apitore.com/api/46 # noqa: E501 OpenAPI spec version: 0.0.1 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import datetime import json import mimetypes from multiprocessing.pool import ThreadPool import os import re import tempfile # python 2 and python 3 compatibility library import six from six.moves.urllib.parse import quote from swagger_client.configuration import Configuration import swagger_client.models from swagger_client import rest class ApiClient(object): """Generic API client for Swagger client library builds. Swagger generic API client. This client handles the client- server communication, and is invariant across implementations. Specifics of the methods and models for each application are generated from the Swagger templates. NOTE: This class is auto generated by the swagger code generator program. Ref: https://github.com/swagger-api/swagger-codegen Do not edit the class manually. :param configuration: .Configuration object for this client :param header_name: a header to pass when making calls to the API. :param header_value: a header value to pass when making calls to the API. :param cookie: a cookie to include in the header when making calls to the API """ PRIMITIVE_TYPES = (float, bool, bytes, six.text_type) + six.integer_types NATIVE_TYPES_MAPPING = { 'int': int, 'long': int if six.PY3 else long, # noqa: F821 'float': float, 'str': str, 'bool': bool, 'date': datetime.date, 'datetime': datetime.datetime, 'object': object, } def __init__(self, configuration=None, header_name=None, header_value=None, cookie=None): if configuration is None: configuration = Configuration() self.configuration = configuration self.pool = ThreadPool() self.rest_client = rest.RESTClientObject(configuration) self.default_headers = {} if header_name is not None: self.default_headers[header_name] = header_value self.cookie = cookie # Set default User-Agent. self.user_agent = 'Swagger-Codegen/1.0.0/python' def __del__(self): self.pool.close() self.pool.join() @property def user_agent(self): """User agent for this API client""" return self.default_headers['User-Agent'] @user_agent.setter def user_agent(self, value): self.default_headers['User-Agent'] = value def set_default_header(self, header_name, header_value): self.default_headers[header_name] = header_value def __call_api( self, resource_path, method, path_params=None, query_params=None, header_params=None, body=None, post_params=None, files=None, response_type=None, auth_settings=None, _return_http_data_only=None, collection_formats=None, _preload_content=True, _request_timeout=None): config = self.configuration # header parameters header_params = header_params or {} header_params.update(self.default_headers) if self.cookie: header_params['Cookie'] = self.cookie if header_params: header_params = self.sanitize_for_serialization(header_params) header_params = dict(self.parameters_to_tuples(header_params, collection_formats)) # path parameters if path_params: path_params = self.sanitize_for_serialization(path_params) path_params = self.parameters_to_tuples(path_params, collection_formats) for k, v in path_params: # specified safe chars, encode everything resource_path = resource_path.replace( '{%s}' % k, quote(str(v), safe=config.safe_chars_for_path_param) ) # query parameters if query_params: query_params = self.sanitize_for_serialization(query_params) query_params = self.parameters_to_tuples(query_params, collection_formats) # post parameters if post_params or files: post_params = self.prepare_post_parameters(post_params, files) post_params = self.sanitize_for_serialization(post_params) post_params = self.parameters_to_tuples(post_params, collection_formats) # auth setting self.update_params_for_auth(header_params, query_params, auth_settings) # body if body: body = self.sanitize_for_serialization(body) # request url url = self.configuration.host + resource_path # perform request and return response response_data = self.request( method, url, query_params=query_params, headers=header_params, post_params=post_params, body=body, _preload_content=_preload_content, _request_timeout=_request_timeout) self.last_response = response_data return_data = response_data if _preload_content: # deserialize response data if response_type: return_data = self.deserialize(response_data, response_type) else: return_data = None if _return_http_data_only: return (return_data) else: return (return_data, response_data.status, response_data.getheaders()) def sanitize_for_serialization(self, obj): """Builds a JSON POST object. If obj is None, return None. If obj is str, int, long, float, bool, return directly. If obj is datetime.datetime, datetime.date convert to string in iso8601 format. If obj is list, sanitize each element in the list. If obj is dict, return the dict. If obj is swagger model, return the properties dict. :param obj: The data to serialize. :return: The serialized form of data. """ if obj is None: return None elif isinstance(obj, self.PRIMITIVE_TYPES): return obj elif isinstance(obj, list): return [self.sanitize_for_serialization(sub_obj) for sub_obj in obj] elif isinstance(obj, tuple): return tuple(self.sanitize_for_serialization(sub_obj) for sub_obj in obj) elif isinstance(obj, (datetime.datetime, datetime.date)): return obj.isoformat() if isinstance(obj, dict): obj_dict = obj else: # Convert model obj to dict except # attributes `swagger_types`, `attribute_map` # and attributes which value is not None. # Convert attribute name to json key in # model definition for request. obj_dict = {obj.attribute_map[attr]: getattr(obj, attr) for attr, _ in six.iteritems(obj.swagger_types) if getattr(obj, attr) is not None} return {key: self.sanitize_for_serialization(val) for key, val in six.iteritems(obj_dict)} def deserialize(self, response, response_type): """Deserializes response into an object. :param response: RESTResponse object to be deserialized. :param response_type: class literal for deserialized object, or string of class name. :return: deserialized object. """ # handle file downloading # save response body into a tmp file and return the instance if response_type == "file": return self.__deserialize_file(response) # fetch data from response object try: data = json.loads(response.data) except ValueError: data = response.data return self.__deserialize(data, response_type) def __deserialize(self, data, klass): """Deserializes dict, list, str into an object. :param data: dict, list or str. :param klass: class literal, or string of class name. :return: object. """ if data is None: return None if type(klass) == str: if klass.startswith('list['): sub_kls = re.match('list\[(.*)\]', klass).group(1) return [self.__deserialize(sub_data, sub_kls) for sub_data in data] if klass.startswith('dict('): sub_kls = re.match('dict\(([^,]*), (.*)\)', klass).group(2) return {k: self.__deserialize(v, sub_kls) for k, v in six.iteritems(data)} # convert str to class if klass in self.NATIVE_TYPES_MAPPING: klass = self.NATIVE_TYPES_MAPPING[klass] else: klass = getattr(swagger_client.models, klass) if klass in self.PRIMITIVE_TYPES: return self.__deserialize_primitive(data, klass) elif klass == object: return self.__deserialize_object(data) elif klass == datetime.date: return self.__deserialize_date(data) elif klass == datetime.datetime: return self.__deserialize_datatime(data) else: return self.__deserialize_model(data, klass) def call_api(self, resource_path, method, path_params=None, query_params=None, header_params=None, body=None, post_params=None, files=None, response_type=None, auth_settings=None, async=None, _return_http_data_only=None, collection_formats=None, _preload_content=True, _request_timeout=None): """Makes the HTTP request (synchronous) and returns deserialized data. To make an async request, set the async parameter. :param resource_path: Path to method endpoint. :param method: Method to call. :param path_params: Path parameters in the url. :param query_params: Query parameters in the url. :param header_params: Header parameters to be placed in the request header. :param body: Request body. :param post_params dict: Request post form parameters, for `application/x-www-form-urlencoded`, `multipart/form-data`. :param auth_settings list: Auth Settings names for the request. :param response: Response data type. :param files dict: key -> filename, value -> filepath, for `multipart/form-data`. :param async bool: execute request asynchronously :param _return_http_data_only: response data without head status code and headers :param collection_formats: dict of collection formats for path, query, header, and post parameters. :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: If async parameter is True, the request will be called asynchronously. The method will return the request thread. If parameter async is False or missing, then the method will return the response directly. """ if not async: return self.__call_api(resource_path, method, path_params, query_params, header_params, body, post_params, files, response_type, auth_settings, _return_http_data_only, collection_formats, _preload_content, _request_timeout) else: thread = self.pool.apply_async(self.__call_api, (resource_path, method, path_params, query_params, header_params, body, post_params, files, response_type, auth_settings, _return_http_data_only, collection_formats, _preload_content, _request_timeout)) return thread def request(self, method, url, query_params=None, headers=None, post_params=None, body=None, _preload_content=True, _request_timeout=None): """Makes the HTTP request using RESTClient.""" if method == "GET": return self.rest_client.GET(url, query_params=query_params, _preload_content=_preload_content, _request_timeout=_request_timeout, headers=headers) elif method == "HEAD": return self.rest_client.HEAD(url, query_params=query_params, _preload_content=_preload_content, _request_timeout=_request_timeout, headers=headers) elif method == "OPTIONS": return self.rest_client.OPTIONS(url, query_params=query_params, headers=headers, post_params=post_params, _preload_content=_preload_content, _request_timeout=_request_timeout, body=body) elif method == "POST": return self.rest_client.POST(url, query_params=query_params, headers=headers, post_params=post_params, _preload_content=_preload_content, _request_timeout=_request_timeout, body=body) elif method == "PUT": return self.rest_client.PUT(url, query_params=query_params, headers=headers, post_params=post_params, _preload_content=_preload_content, _request_timeout=_request_timeout, body=body) elif method == "PATCH": return self.rest_client.PATCH(url, query_params=query_params, headers=headers, post_params=post_params, _preload_content=_preload_content, _request_timeout=_request_timeout, body=body) elif method == "DELETE": return self.rest_client.DELETE(url, query_params=query_params, headers=headers, _preload_content=_preload_content, _request_timeout=_request_timeout, body=body) else: raise ValueError( "http method must be `GET`, `HEAD`, `OPTIONS`," " `POST`, `PATCH`, `PUT` or `DELETE`." ) def parameters_to_tuples(self, params, collection_formats): """Get parameters as list of tuples, formatting collections. :param params: Parameters as dict or list of two-tuples :param dict collection_formats: Parameter collection formats :return: Parameters as list of tuples, collections formatted """ new_params = [] if collection_formats is None: collection_formats = {} for k, v in six.iteritems(params) if isinstance(params, dict) else params: # noqa: E501 if k in collection_formats: collection_format = collection_formats[k] if collection_format == 'multi': new_params.extend((k, value) for value in v) else: if collection_format == 'ssv': delimiter = ' ' elif collection_format == 'tsv': delimiter = '\t' elif collection_format == 'pipes': delimiter = '|' else: # csv is the default delimiter = ',' new_params.append( (k, delimiter.join(str(value) for value in v))) else: new_params.append((k, v)) return new_params def prepare_post_parameters(self, post_params=None, files=None): """Builds form parameters. :param post_params: Normal form parameters. :param files: File parameters. :return: Form parameters with files. """ params = [] if post_params: params = post_params if files: for k, v in six.iteritems(files): if not v: continue file_names = v if type(v) is list else [v] for n in file_names: with open(n, 'rb') as f: filename = os.path.basename(f.name) filedata = f.read() mimetype = (mimetypes.guess_type(filename)[0] or 'application/octet-stream') params.append( tuple([k, tuple([filename, filedata, mimetype])])) return params def select_header_accept(self, accepts): """Returns `Accept` based on an array of accepts provided. :param accepts: List of headers. :return: Accept (e.g. application/json). """ if not accepts: return accepts = [x.lower() for x in accepts] if 'application/json' in accepts: return 'application/json' else: return ', '.join(accepts) def select_header_content_type(self, content_types): """Returns `Content-Type` based on an array of content_types provided. :param content_types: List of content-types. :return: Content-Type (e.g. application/json). """ if not content_types: return 'application/json' content_types = [x.lower() for x in content_types] if 'application/json' in content_types or '*/*' in content_types: return 'application/json' else: return content_types[0] def update_params_for_auth(self, headers, querys, auth_settings): """Updates header and query params based on authentication setting. :param headers: Header parameters dict to be updated. :param querys: Query parameters tuple list to be updated. :param auth_settings: Authentication setting identifiers list. """ if not auth_settings: return for auth in auth_settings: auth_setting = self.configuration.auth_settings().get(auth) if auth_setting: if not auth_setting['value']: continue elif auth_setting['in'] == 'header': headers[auth_setting['key']] = auth_setting['value'] elif auth_setting['in'] == 'query': querys.append((auth_setting['key'], auth_setting['value'])) else: raise ValueError( 'Authentication token must be in `query` or `header`' ) def __deserialize_file(self, response): """Deserializes body to file Saves response body into a file in a temporary folder, using the filename from the `Content-Disposition` header if provided. :param response: RESTResponse. :return: file path. """ fd, path = tempfile.mkstemp(dir=self.configuration.temp_folder_path) os.close(fd) os.remove(path) content_disposition = response.getheader("Content-Disposition") if content_disposition: filename = re.search(r'filename=[\'"]?([^\'"\s]+)[\'"]?', content_disposition).group(1) path = os.path.join(os.path.dirname(path), filename) with open(path, "wb") as f: f.write(response.data) return path def __deserialize_primitive(self, data, klass): """Deserializes string to primitive type. :param data: str. :param klass: class literal. :return: int, long, float, str, bool. """ try: return klass(data) except UnicodeEncodeError: return six.text_type(data) except TypeError: return data def __deserialize_object(self, value): """Return a original value. :return: object. """ return value def __deserialize_date(self, string): """Deserializes string to date. :param string: str. :return: date. """ try: from dateutil.parser import parse return parse(string).date() except ImportError: return string except ValueError: raise rest.ApiException( status=0, reason="Failed to parse `{0}` as date object".format(string) ) def __deserialize_datatime(self, string): """Deserializes string to datetime. The string should be in iso8601 datetime format. :param string: str. :return: datetime. """ try: from dateutil.parser import parse return parse(string) except ImportError: return string except ValueError: raise rest.ApiException( status=0, reason=( "Failed to parse `{0}` as datetime object" .format(string) ) ) def __deserialize_model(self, data, klass): """Deserializes list or dict to model. :param data: dict, list. :param klass: class literal. :return: model object. """ if not klass.swagger_types and not hasattr(klass, 'get_real_child_model'): return data kwargs = {} if klass.swagger_types is not None: for attr, attr_type in six.iteritems(klass.swagger_types): if (data is not None and klass.attribute_map[attr] in data and isinstance(data, (list, dict))): value = data[klass.attribute_map[attr]] kwargs[attr] = self.__deserialize(value, attr_type) instance = klass(**kwargs) if hasattr(instance, 'get_real_child_model'): klass_name = instance.get_real_child_model(data) if klass_name: instance = self.__deserialize(data, klass_name) return instance
39.223473
96
0.550519
b9a1d22e9b6453c6264fc1b5bf39db08f385a293
903
py
Python
tests/test_auth_refresh_request.py
ConsenSys/mythx-models
e912c2fc6e7d18041310d3b9f0f95085db47ed9b
[ "MIT" ]
2
2019-08-26T13:42:28.000Z
2019-11-13T15:44:16.000Z
tests/test_auth_refresh_request.py
ConsenSys/mythx-models
e912c2fc6e7d18041310d3b9f0f95085db47ed9b
[ "MIT" ]
22
2019-08-26T13:14:55.000Z
2021-04-18T14:22:52.000Z
tests/test_auth_refresh_request.py
ConsenSys/mythx-models
e912c2fc6e7d18041310d3b9f0f95085db47ed9b
[ "MIT" ]
6
2019-08-29T15:51:38.000Z
2021-04-05T11:41:34.000Z
from hypothesis import given from mythx_models.request import AuthRefreshRequest from .strategies.auth import auth_refresh_request @given(auth_refresh_request()) def test_serde(response): obj = AuthRefreshRequest(**response) assert obj.dict(by_alias=True) == { "accessToken": response["accessToken"], "refreshToken": response["refreshToken"], } @given(auth_refresh_request()) def test_attributes(request): parsed = AuthRefreshRequest(**request) assert parsed.dict(by_alias=True) == { "accessToken": request["accessToken"], "refreshToken": request["refreshToken"], } assert parsed.headers == {} assert parsed.payload == { "jwtTokens": {"access": parsed.access_token, "refresh": parsed.refresh_token} } assert parsed.method == "POST" assert parsed.endpoint == f"v1/auth/refresh" assert parsed.parameters == {}
28.21875
85
0.688815
c1f12be3bcd3311db12df082f6cefce22b8d31fe
1,684
py
Python
j3a-crypter/src/file_worker.py
PraserX/j3a
f98f0cf9f940d9ae9af22cdb6b9e8ec4a8f02367
[ "MIT" ]
1
2020-04-23T12:09:58.000Z
2020-04-23T12:09:58.000Z
j3a-crypter/src/file_worker.py
PraserX/j3a
f98f0cf9f940d9ae9af22cdb6b9e8ec4a8f02367
[ "MIT" ]
null
null
null
j3a-crypter/src/file_worker.py
PraserX/j3a
f98f0cf9f940d9ae9af22cdb6b9e8ec4a8f02367
[ "MIT" ]
null
null
null
import codecs import io import json import os import sys class FileWorker(object): """ File worker - easy file loading There can be a problem with encoding, so we have to try open file as standard UTF-8 and as a UTF-8 with BOM. """ def open_file(self, file): """ Open specified file """ input_file = self.try_open_as_utf8(file) if input_file == None: input_file = self.try_open_as_utf8_bom(file) return input_file def open_json_file(self, file): """ Open specified file and load it as JSON object """ input_json_file = None # First try open as standard UTF-8 (not BOM) try: input_file = self.try_open_as_utf8(file) input_json_file = json.load(input_file) except: input_json_file = None # Second try open as UTF-8 BOM if firt try fails if input_json_file == None: try: input_file = self.try_open_as_utf8_bom(file) input_json_file = json.load(input_file) except: input_json_file = None return input_json_file def try_open_as_utf8(self, file): """ Method tries open file in utf-8 encoding """ try: input_file = codecs.open(file, 'r', 'utf-8') except: return None return input_file def try_open_as_utf8_bom(self, file): """ Method tries open file in utf-8 bom encoding """ try: input_file = codecs.open(file, 'r', 'utf-8-sig') except: return None return input_file
26.730159
81
0.570071
948e85e26769003f9af6b012a163f9e1a59d48f5
3,402
py
Python
Bioinformatics_k-mer_generator_with_Flask/venv/Lib/site-packages/Bio/Align/Applications/_MSAProbs.py
ee2110/Machine_Learning_based_web_applications
a414f3906e49003230f5440bb7f035a8d72767a6
[ "MIT" ]
2
2019-10-25T18:20:34.000Z
2019-10-28T15:26:40.000Z
Bioinformatics_k-mer_generator_with_Flask/venv/Lib/site-packages/Bio/Align/Applications/_MSAProbs.py
ee2110/Machine_Learning_based_web_applications
a414f3906e49003230f5440bb7f035a8d72767a6
[ "MIT" ]
1
2020-04-25T20:36:07.000Z
2020-04-25T20:36:07.000Z
site-packages/Bio/Align/Applications/_MSAProbs.py
Wristlebane/Pyto
901ac307b68486d8289105c159ca702318bea5b0
[ "MIT" ]
1
2019-04-12T20:52:12.000Z
2019-04-12T20:52:12.000Z
# Copyright 2013 by Christian Brueffer. All rights reserved. # # This file is part of the Biopython distribution and governed by your # choice of the "Biopython License Agreement" or the "BSD 3-Clause License". # Please see the LICENSE file that should have been included as part of this # package. """Command line wrapper for the multiple sequence alignment program MSAProbs.""" from __future__ import print_function from Bio.Application import _Argument, _Option, _Switch, AbstractCommandline class MSAProbsCommandline(AbstractCommandline): """Command line wrapper for MSAProbs. http://msaprobs.sourceforge.net Notes ----- Last checked against version: 0.9.7 References ---------- Yongchao Liu, Bertil Schmidt, Douglas L. Maskell: "MSAProbs: multiple sequence alignment based on pair hidden Markov models and partition function posterior probabilities". Bioinformatics, 2010, 26(16): 1958 -1964 Examples -------- >>> from Bio.Align.Applications import MSAProbsCommandline >>> in_file = "unaligned.fasta" >>> out_file = "aligned.cla" >>> cline = MSAProbsCommandline(infile=in_file, outfile=out_file, clustalw=True) >>> print(cline) msaprobs -o aligned.cla -clustalw unaligned.fasta You would typically run the command line with cline() or via the Python subprocess module, as described in the Biopython tutorial. """ def __init__(self, cmd="msaprobs", **kwargs): """Initialize the class.""" # order of parameters is the same as in msaprobs -help self.parameters = [ _Option(["-o", "--outfile", "outfile"], "specify the output file name (STDOUT by default)", filename=True, equate=False), _Option(["-num_threads", "numthreads"], "specify the number of threads used, and otherwise detect automatically", checker_function=lambda x: isinstance(x, int)), _Switch(["-clustalw", "clustalw"], "use CLUSTALW output format instead of FASTA format"), _Option(["-c", "consistency"], "use 0 <= REPS <= 5 (default: 2) passes of consistency transformation", checker_function=lambda x: isinstance(x, int) and 0 <= x <= 5), _Option(["-ir", "--iterative-refinement", "iterative_refinement"], "use 0 <= REPS <= 1000 (default: 10) passes of iterative-refinement", checker_function=lambda x: isinstance(x, int) and 0 <= x <= 1000), _Switch(["-v", "verbose"], "report progress while aligning (default: off)"), _Option(["-annot", "annot"], "write annotation for multiple alignment to FILENAME", filename=True), _Switch(["-a", "--alignment-order", "alignment_order"], "print sequences in alignment order rather than input order (default: off)"), _Option(["-version", "version"], "print out version of MSAPROBS"), _Argument(["infile"], "Multiple sequence input file", filename=True), ] AbstractCommandline.__init__(self, cmd, **kwargs) if __name__ == "__main__": from Bio._utils import run_doctest run_doctest()
41.487805
97
0.611993
bccfb9677d99bf1200ffd241439a9320e9180492
6,562
py
Python
tests/test_ppp.py
pettni/posipoly
a40afd093567f62979bba73eae61a6416009bedc
[ "MIT" ]
1
2021-07-09T02:07:44.000Z
2021-07-09T02:07:44.000Z
tests/test_ppp.py
pettni/posipoly
a40afd093567f62979bba73eae61a6416009bedc
[ "MIT" ]
1
2018-07-24T18:21:44.000Z
2018-07-24T18:29:50.000Z
tests/test_ppp.py
pettni/posipoly
a40afd093567f62979bba73eae61a6416009bedc
[ "MIT" ]
1
2020-04-28T17:18:59.000Z
2020-04-28T17:18:59.000Z
import sympy from sympy.abc import x, y import numpy as np from posipoly import * from posipoly.ppp import * def test_is_dd(): np.testing.assert_equal(is_dd(np.array([[1, 0],[0, 1]] )), True) np.testing.assert_equal(is_dd(np.array([[1, 1],[1, 1]] )), True) np.testing.assert_equal(is_dd(np.array([[1, 1.01],[1.01, 1]] )), False) np.testing.assert_equal(is_dd(np.array([[1, 1.01,0],[1.01, 1, 0], [0,0,1]] )), False) np.testing.assert_equal(is_dd(np.array([[1, 0.3,-0.69],[0.3, 1, 0.69], [-0.69,0.69,1]] )), False) np.testing.assert_equal(is_dd(np.array([[1, 0.3,-0.69],[0.3, 1, 0.69], [-0.69,0.69,1.5]] )), True) np.testing.assert_equal(is_sdd(np.array([[1, 0],[0, 1]] )), True) np.testing.assert_equal(is_sdd(np.array([[1, 1],[1, 1]] )), True) np.testing.assert_equal(is_sdd(np.array([[1, 0.3,-0.69],[0.3, 1, 0.69], [-0.69,0.69,1]] )), False) np.testing.assert_equal(is_sdd(np.array([[1, 0.3,-0.69],[0.3, 1, 0.69], [-0.69,0.69,1.5]] )), True) np.testing.assert_equal(is_sdd(np.array([[-1, 0], [0, -1]] )), False) def test_sdd_index1(): x11,x22,x12,y11,y22,y12,z11,z22,z12 = sympy.symbols('x11,x22,x12,y11,y22,y12,z11,z22,z12') M = [[x11,x22,x12], [y11,y22,y12], [z11,z22,z12]] tt = [[0 for i in range(3)] for j in range(3)] for i in range(3): for j in range(3): for idx in sdd_index(i,j,3): tt[i][j] = tt[i][j] + M[idx[0]][idx[1]] np.testing.assert_equal(tt[0][0]-x11-y11, sympy.numbers.Zero) np.testing.assert_equal(tt[0][1]-x12, sympy.numbers.Zero) np.testing.assert_equal(tt[0][2]-y12, sympy.numbers.Zero) np.testing.assert_equal(tt[1][1]-x22-z11, sympy.numbers.Zero) np.testing.assert_equal(tt[1][2]-z12, sympy.numbers.Zero) np.testing.assert_equal(tt[2][2]-z22-y22, sympy.numbers.Zero) def test_sdd_index2(): x11,x22,x12 = sympy.symbols('x11,x22,x12') M = [[x11,x22,x12]] tt = [[0 for i in range(2)] for j in range(2)] for i in range(2): for j in range(2): for idx in sdd_index(i,j,2): tt[i][j] = tt[i][j] + M[idx[0]][idx[1]] np.testing.assert_equal(tt[0][0]-x11, sympy.numbers.Zero) np.testing.assert_equal(tt[0][1]-x12, sympy.numbers.Zero) np.testing.assert_equal(tt[1][1]-x22, sympy.numbers.Zero) def test_ppp_0(): # find minimal value x such that # [1 1; 1 x] is positive semi-definite c = np.array([0,0,1]) Aeq = sp.coo_matrix(np.array([[1,0,0], [0,1,0]])) beq = np.array([1, 1]) env = mosek.Env() task = env.Task(0,0) # Add free variables and objective task.appendvars(3) task.putvarboundslice(0, 3, [mosek.boundkey.fr] * 3, [0.]*3, [0.]*3 ) task.putcslice(0, 3, c) task.putobjsense(mosek.objsense.minimize) task.appendcons(2) task.putaijlist(Aeq.row, Aeq.col, Aeq.data) task.putconboundslice(0, 2, [mosek.boundkey.fx] * 2, beq, beq) add_psd_mosek( task, sp.coo_matrix(np.eye(3)), np.zeros(3) ) task.optimize() solution = [0.] * len(c) task.getxxslice(mosek.soltype.itr, 0, len(c), solution) mat = vec_to_mat(solution) v, _ = np.linalg.eig(mat) np.testing.assert_almost_equal(min(v), 0) def test_ppp_1(): # p(x) = a0 + a1 x + a2 x^2 sos # p(2) = 1 # max a1 # sos constraint added via variable prob = PPP() prob.add_var('s', 1, 2, 'pp') prob.add_constraint({'s': PTrans.eval(1, 2, [0], [2])}, Polynomial.one(1), 'eq') prob.set_objective({'s': -PTrans.eval0(1, 1)*PTrans.diff(1,2,0)}) sol, _ = prob.solve('psd') pol = prob.get_poly('s') np.testing.assert_almost_equal(pol(2), 1) np.testing.assert_almost_equal((PTrans.eval0(1, 1)*PTrans.diff(1,2,0)*pol)(1), 0.25) np.testing.assert_almost_equal([pol[(0,)], pol[(1,)], pol[(2,)]], [0.25, 0.25, 0.0625], decimal=3) # same problem, sos constraint added via add_constraint prob = PPP() prob.add_var('s', 1, 2, 'coef') prob.add_constraint({'s': PTrans.eval(1, 2, [0], [2])}, Polynomial.one(1), 'eq') prob.set_objective({'s': -PTrans.eval0(1, 1)*PTrans.diff(1,2,0)}) prob.add_constraint({'s': PTrans.eye(1,2)}, Polynomial.zero(1), 'pp') sol, _ = prob.solve('psd') pol = prob.get_poly('s') np.testing.assert_almost_equal(pol(2), 1) np.testing.assert_almost_equal((PTrans.eval0(1, 1)*PTrans.diff(1,2,0)*pol)(1), 0.25) np.testing.assert_almost_equal([pol[(0,)], pol[(1,)], pol[(2,)]], [0.25, 0.25, 0.0625], decimal=3) def test_ppp1(): tot_deg = 6 # overall degree of problem sigma_deg = tot_deg - 2 # degree of sigma n = 2 p = Polynomial.from_sympy(-x**2 - y**2 + x, [x,y]) g = Polynomial.from_sympy(1 - x**2 - y**2, [x,y]) prob = PPP() prob.add_var('gamma', n, 0, 'coef') prob.add_var('sigma', n, sigma_deg, 'pp') prob.add_constraint({'gamma': -PTrans.eye(n, 0, n, tot_deg), 'sigma': -PTrans.mul_pol(n, sigma_deg, g)}, -p, 'pp') prob.set_objective({'gamma': [-1]}) prob.solve('psd') opt_gamma = prob.get_poly('gamma')(0,0) np.testing.assert_almost_equal(opt_gamma, -2.) prob.solve('sdd') opt_gamma = prob.get_poly('gamma')(0,0) np.testing.assert_almost_equal(opt_gamma, -2.) def test_ppp2(): tot_deg = 6 # overall degree of problem sigma_deg = tot_deg - 2 # degree of sigma n = 2 p = Polynomial.from_sympy(x**2 + y**2, [x,y]) g = Polynomial.from_sympy(1 - x**2 - y**2, [x,y]) prob = PPP() prob.add_var('gamma', n, 0, 'coef') prob.add_var('sigma', n, sigma_deg, 'pp') prob.add_constraint({'gamma': -PTrans.eye(n, 0, n, tot_deg), 'sigma': -PTrans.mul_pol(n, sigma_deg, g)}, -p, 'pp') prob.set_objective({'gamma': [-1]}) prob.solve('psd') opt_gamma = prob.get_poly('gamma')(0,0) np.testing.assert_almost_equal(opt_gamma, 0.) prob.solve('sdd') opt_gamma = prob.get_poly('gamma')(0,0) np.testing.assert_almost_equal(opt_gamma, 0.) def test_ppp3(): tot_deg = 6 # overall degree of problem sigma_deg = tot_deg - 2 # degree of sigma n = 2 p = Polynomial.from_sympy(2+(x-0.5)**2 + y**2, [x,y]) g = Polynomial.from_sympy(1 - x**2 - y**2, [x,y]) prob = PPP() prob.add_var('gamma', n, 0, 'coef') prob.add_var('sigma', n, sigma_deg, 'pp') prob.add_constraint({'gamma': -PTrans.eye(n, 0, n, tot_deg), 'sigma': -PTrans.mul_pol(n, sigma_deg, g)}, -p, 'pp') prob.set_objective({'gamma': [-1]}) prob.solve('psd') opt_gamma = prob.get_poly('gamma')(0,0) np.testing.assert_almost_equal(opt_gamma, 2.) prob.solve('sdd') opt_gamma = prob.get_poly('gamma')(0,0) np.testing.assert_almost_equal(opt_gamma, 2.)
33.141414
101
0.611856
fb3d428bcf4bf55da0a938ee0b0a35b9e029083d
49,758
py
Python
pandas/tests/resample/test_datetime_index.py
LauraCollard/pandas
b1c3a9031569334cafc4e8d45d35408421f7dea4
[ "BSD-3-Clause" ]
2
2019-12-02T11:24:30.000Z
2021-02-28T12:13:54.000Z
pandas/tests/resample/test_datetime_index.py
LauraCollard/pandas
b1c3a9031569334cafc4e8d45d35408421f7dea4
[ "BSD-3-Clause" ]
1
2019-10-31T08:19:49.000Z
2019-10-31T08:19:49.000Z
pandas/tests/resample/test_datetime_index.py
LauraCollard/pandas
b1c3a9031569334cafc4e8d45d35408421f7dea4
[ "BSD-3-Clause" ]
4
2019-10-09T07:52:08.000Z
2021-07-12T02:37:59.000Z
from datetime import datetime, timedelta from functools import partial from io import StringIO import numpy as np import pytest import pytz from pandas.errors import UnsupportedFunctionCall import pandas as pd from pandas import DataFrame, Series, Timedelta, Timestamp, isna, notna from pandas.core.groupby.grouper import Grouper from pandas.core.indexes.datetimes import date_range from pandas.core.indexes.period import Period, period_range from pandas.core.resample import DatetimeIndex, _get_timestamp_range_edges import pandas.util.testing as tm from pandas.util.testing import ( assert_almost_equal, assert_frame_equal, assert_series_equal, ) import pandas.tseries.offsets as offsets from pandas.tseries.offsets import BDay, Minute @pytest.fixture() def _index_factory(): return date_range @pytest.fixture def _index_freq(): return "Min" @pytest.fixture def _static_values(index): return np.random.rand(len(index)) def test_custom_grouper(index): dti = index s = Series(np.array([1] * len(dti)), index=dti, dtype="int64") b = Grouper(freq=Minute(5)) g = s.groupby(b) # check all cython functions work funcs = ["add", "mean", "prod", "ohlc", "min", "max", "var"] for f in funcs: g._cython_agg_general(f) b = Grouper(freq=Minute(5), closed="right", label="right") g = s.groupby(b) # check all cython functions work funcs = ["add", "mean", "prod", "ohlc", "min", "max", "var"] for f in funcs: g._cython_agg_general(f) assert g.ngroups == 2593 assert notna(g.mean()).all() # construct expected val arr = [1] + [5] * 2592 idx = dti[0:-1:5] idx = idx.append(dti[-1:]) expect = Series(arr, index=idx) # GH2763 - return in put dtype if we can result = g.agg(np.sum) assert_series_equal(result, expect) df = DataFrame(np.random.rand(len(dti), 10), index=dti, dtype="float64") r = df.groupby(b).agg(np.sum) assert len(r.columns) == 10 assert len(r.index) == 2593 @pytest.mark.parametrize( "_index_start,_index_end,_index_name", [("1/1/2000 00:00:00", "1/1/2000 00:13:00", "index")], ) @pytest.mark.parametrize( "closed, expected", [ ( "right", lambda s: Series( [s[0], s[1:6].mean(), s[6:11].mean(), s[11:].mean()], index=date_range("1/1/2000", periods=4, freq="5min", name="index"), ), ), ( "left", lambda s: Series( [s[:5].mean(), s[5:10].mean(), s[10:].mean()], index=date_range( "1/1/2000 00:05", periods=3, freq="5min", name="index" ), ), ), ], ) def test_resample_basic(series, closed, expected): s = series expected = expected(s) result = s.resample("5min", closed=closed, label="right").mean() assert_series_equal(result, expected) def test_resample_integerarray(): # GH 25580, resample on IntegerArray ts = pd.Series( range(9), index=pd.date_range("1/1/2000", periods=9, freq="T"), dtype="Int64" ) result = ts.resample("3T").sum() expected = Series( [3, 12, 21], index=pd.date_range("1/1/2000", periods=3, freq="3T"), dtype="Int64", ) assert_series_equal(result, expected) result = ts.resample("3T").mean() expected = Series( [1, 4, 7], index=pd.date_range("1/1/2000", periods=3, freq="3T"), dtype="Int64" ) assert_series_equal(result, expected) def test_resample_basic_grouper(series): s = series result = s.resample("5Min").last() grouper = Grouper(freq=Minute(5), closed="left", label="left") expected = s.groupby(grouper).agg(lambda x: x[-1]) assert_series_equal(result, expected) @pytest.mark.parametrize( "_index_start,_index_end,_index_name", [("1/1/2000 00:00:00", "1/1/2000 00:13:00", "index")], ) @pytest.mark.parametrize( "keyword,value", [("label", "righttt"), ("closed", "righttt"), ("convention", "starttt")], ) def test_resample_string_kwargs(series, keyword, value): # see gh-19303 # Check that wrong keyword argument strings raise an error msg = "Unsupported value {value} for `{keyword}`".format( value=value, keyword=keyword ) with pytest.raises(ValueError, match=msg): series.resample("5min", **({keyword: value})) @pytest.mark.parametrize( "_index_start,_index_end,_index_name", [("1/1/2000 00:00:00", "1/1/2000 00:13:00", "index")], ) def test_resample_how(series, downsample_method): if downsample_method == "ohlc": pytest.skip("covered by test_resample_how_ohlc") s = series grouplist = np.ones_like(s) grouplist[0] = 0 grouplist[1:6] = 1 grouplist[6:11] = 2 grouplist[11:] = 3 expected = s.groupby(grouplist).agg(downsample_method) expected.index = date_range("1/1/2000", periods=4, freq="5min", name="index") result = getattr( s.resample("5min", closed="right", label="right"), downsample_method )() assert_series_equal(result, expected) @pytest.mark.parametrize( "_index_start,_index_end,_index_name", [("1/1/2000 00:00:00", "1/1/2000 00:13:00", "index")], ) def test_resample_how_ohlc(series): s = series grouplist = np.ones_like(s) grouplist[0] = 0 grouplist[1:6] = 1 grouplist[6:11] = 2 grouplist[11:] = 3 def _ohlc(group): if isna(group).all(): return np.repeat(np.nan, 4) return [group[0], group.max(), group.min(), group[-1]] expected = DataFrame( s.groupby(grouplist).agg(_ohlc).values.tolist(), index=date_range("1/1/2000", periods=4, freq="5min", name="index"), columns=["open", "high", "low", "close"], ) result = s.resample("5min", closed="right", label="right").ohlc() assert_frame_equal(result, expected) @pytest.mark.parametrize("func", ["min", "max", "sum", "prod", "mean", "var", "std"]) def test_numpy_compat(func): # see gh-12811 s = Series([1, 2, 3, 4, 5], index=date_range("20130101", periods=5, freq="s")) r = s.resample("2s") msg = "numpy operations are not valid with resample" with pytest.raises(UnsupportedFunctionCall, match=msg): getattr(r, func)(func, 1, 2, 3) with pytest.raises(UnsupportedFunctionCall, match=msg): getattr(r, func)(axis=1) def test_resample_how_callables(): # GH#7929 data = np.arange(5, dtype=np.int64) ind = date_range(start="2014-01-01", periods=len(data), freq="d") df = DataFrame({"A": data, "B": data}, index=ind) def fn(x, a=1): return str(type(x)) class FnClass: def __call__(self, x): return str(type(x)) df_standard = df.resample("M").apply(fn) df_lambda = df.resample("M").apply(lambda x: str(type(x))) df_partial = df.resample("M").apply(partial(fn)) df_partial2 = df.resample("M").apply(partial(fn, a=2)) df_class = df.resample("M").apply(FnClass()) assert_frame_equal(df_standard, df_lambda) assert_frame_equal(df_standard, df_partial) assert_frame_equal(df_standard, df_partial2) assert_frame_equal(df_standard, df_class) def test_resample_rounding(): # GH 8371 # odd results when rounding is needed data = """date,time,value 11-08-2014,00:00:01.093,1 11-08-2014,00:00:02.159,1 11-08-2014,00:00:02.667,1 11-08-2014,00:00:03.175,1 11-08-2014,00:00:07.058,1 11-08-2014,00:00:07.362,1 11-08-2014,00:00:08.324,1 11-08-2014,00:00:08.830,1 11-08-2014,00:00:08.982,1 11-08-2014,00:00:09.815,1 11-08-2014,00:00:10.540,1 11-08-2014,00:00:11.061,1 11-08-2014,00:00:11.617,1 11-08-2014,00:00:13.607,1 11-08-2014,00:00:14.535,1 11-08-2014,00:00:15.525,1 11-08-2014,00:00:17.960,1 11-08-2014,00:00:20.674,1 11-08-2014,00:00:21.191,1""" df = pd.read_csv( StringIO(data), parse_dates={"timestamp": ["date", "time"]}, index_col="timestamp", ) df.index.name = None result = df.resample("6s").sum() expected = DataFrame( {"value": [4, 9, 4, 2]}, index=date_range("2014-11-08", freq="6s", periods=4) ) assert_frame_equal(result, expected) result = df.resample("7s").sum() expected = DataFrame( {"value": [4, 10, 4, 1]}, index=date_range("2014-11-08", freq="7s", periods=4) ) assert_frame_equal(result, expected) result = df.resample("11s").sum() expected = DataFrame( {"value": [11, 8]}, index=date_range("2014-11-08", freq="11s", periods=2) ) assert_frame_equal(result, expected) result = df.resample("13s").sum() expected = DataFrame( {"value": [13, 6]}, index=date_range("2014-11-08", freq="13s", periods=2) ) assert_frame_equal(result, expected) result = df.resample("17s").sum() expected = DataFrame( {"value": [16, 3]}, index=date_range("2014-11-08", freq="17s", periods=2) ) assert_frame_equal(result, expected) def test_resample_basic_from_daily(): # from daily dti = date_range( start=datetime(2005, 1, 1), end=datetime(2005, 1, 10), freq="D", name="index" ) s = Series(np.random.rand(len(dti)), dti) # to weekly result = s.resample("w-sun").last() assert len(result) == 3 assert (result.index.dayofweek == [6, 6, 6]).all() assert result.iloc[0] == s["1/2/2005"] assert result.iloc[1] == s["1/9/2005"] assert result.iloc[2] == s.iloc[-1] result = s.resample("W-MON").last() assert len(result) == 2 assert (result.index.dayofweek == [0, 0]).all() assert result.iloc[0] == s["1/3/2005"] assert result.iloc[1] == s["1/10/2005"] result = s.resample("W-TUE").last() assert len(result) == 2 assert (result.index.dayofweek == [1, 1]).all() assert result.iloc[0] == s["1/4/2005"] assert result.iloc[1] == s["1/10/2005"] result = s.resample("W-WED").last() assert len(result) == 2 assert (result.index.dayofweek == [2, 2]).all() assert result.iloc[0] == s["1/5/2005"] assert result.iloc[1] == s["1/10/2005"] result = s.resample("W-THU").last() assert len(result) == 2 assert (result.index.dayofweek == [3, 3]).all() assert result.iloc[0] == s["1/6/2005"] assert result.iloc[1] == s["1/10/2005"] result = s.resample("W-FRI").last() assert len(result) == 2 assert (result.index.dayofweek == [4, 4]).all() assert result.iloc[0] == s["1/7/2005"] assert result.iloc[1] == s["1/10/2005"] # to biz day result = s.resample("B").last() assert len(result) == 7 assert (result.index.dayofweek == [4, 0, 1, 2, 3, 4, 0]).all() assert result.iloc[0] == s["1/2/2005"] assert result.iloc[1] == s["1/3/2005"] assert result.iloc[5] == s["1/9/2005"] assert result.index.name == "index" def test_resample_upsampling_picked_but_not_correct(): # Test for issue #3020 dates = date_range("01-Jan-2014", "05-Jan-2014", freq="D") series = Series(1, index=dates) result = series.resample("D").mean() assert result.index[0] == dates[0] # GH 5955 # incorrect deciding to upsample when the axis frequency matches the # resample frequency s = Series( np.arange(1.0, 6), index=[datetime(1975, 1, i, 12, 0) for i in range(1, 6)] ) expected = Series( np.arange(1.0, 6), index=date_range("19750101", periods=5, freq="D") ) result = s.resample("D").count() assert_series_equal(result, Series(1, index=expected.index)) result1 = s.resample("D").sum() result2 = s.resample("D").mean() assert_series_equal(result1, expected) assert_series_equal(result2, expected) def test_resample_frame_basic(): df = tm.makeTimeDataFrame() b = Grouper(freq="M") g = df.groupby(b) # check all cython functions work funcs = ["add", "mean", "prod", "min", "max", "var"] for f in funcs: g._cython_agg_general(f) result = df.resample("A").mean() assert_series_equal(result["A"], df["A"].resample("A").mean()) result = df.resample("M").mean() assert_series_equal(result["A"], df["A"].resample("M").mean()) df.resample("M", kind="period").mean() df.resample("W-WED", kind="period").mean() @pytest.mark.parametrize( "loffset", [timedelta(minutes=1), "1min", Minute(1), np.timedelta64(1, "m")] ) def test_resample_loffset(loffset): # GH 7687 rng = date_range("1/1/2000 00:00:00", "1/1/2000 00:13:00", freq="min") s = Series(np.random.randn(14), index=rng) result = s.resample("5min", closed="right", label="right", loffset=loffset).mean() idx = date_range("1/1/2000", periods=4, freq="5min") expected = Series( [s[0], s[1:6].mean(), s[6:11].mean(), s[11:].mean()], index=idx + timedelta(minutes=1), ) assert_series_equal(result, expected) assert result.index.freq == Minute(5) # from daily dti = date_range(start=datetime(2005, 1, 1), end=datetime(2005, 1, 10), freq="D") ser = Series(np.random.rand(len(dti)), dti) # to weekly result = ser.resample("w-sun").last() business_day_offset = BDay() expected = ser.resample("w-sun", loffset=-business_day_offset).last() assert result.index[0] - business_day_offset == expected.index[0] def test_resample_loffset_upsample(): # GH 20744 rng = date_range("1/1/2000 00:00:00", "1/1/2000 00:13:00", freq="min") s = Series(np.random.randn(14), index=rng) result = s.resample( "5min", closed="right", label="right", loffset=timedelta(minutes=1) ).ffill() idx = date_range("1/1/2000", periods=4, freq="5min") expected = Series([s[0], s[5], s[10], s[-1]], index=idx + timedelta(minutes=1)) assert_series_equal(result, expected) def test_resample_loffset_count(): # GH 12725 start_time = "1/1/2000 00:00:00" rng = date_range(start_time, periods=100, freq="S") ts = Series(np.random.randn(len(rng)), index=rng) result = ts.resample("10S", loffset="1s").count() expected_index = date_range(start_time, periods=10, freq="10S") + timedelta( seconds=1 ) expected = Series(10, index=expected_index) assert_series_equal(result, expected) # Same issue should apply to .size() since it goes through # same code path result = ts.resample("10S", loffset="1s").size() assert_series_equal(result, expected) def test_resample_upsample(): # from daily dti = date_range( start=datetime(2005, 1, 1), end=datetime(2005, 1, 10), freq="D", name="index" ) s = Series(np.random.rand(len(dti)), dti) # to minutely, by padding result = s.resample("Min").pad() assert len(result) == 12961 assert result[0] == s[0] assert result[-1] == s[-1] assert result.index.name == "index" def test_resample_how_method(): # GH9915 s = Series( [11, 22], index=[ Timestamp("2015-03-31 21:48:52.672000"), Timestamp("2015-03-31 21:49:52.739000"), ], ) expected = Series( [11, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, 22], index=[ Timestamp("2015-03-31 21:48:50"), Timestamp("2015-03-31 21:49:00"), Timestamp("2015-03-31 21:49:10"), Timestamp("2015-03-31 21:49:20"), Timestamp("2015-03-31 21:49:30"), Timestamp("2015-03-31 21:49:40"), Timestamp("2015-03-31 21:49:50"), ], ) assert_series_equal(s.resample("10S").mean(), expected) def test_resample_extra_index_point(): # GH#9756 index = date_range(start="20150101", end="20150331", freq="BM") expected = DataFrame({"A": Series([21, 41, 63], index=index)}) index = date_range(start="20150101", end="20150331", freq="B") df = DataFrame({"A": Series(range(len(index)), index=index)}, dtype="int64") result = df.resample("BM").last() assert_frame_equal(result, expected) def test_upsample_with_limit(): rng = date_range("1/1/2000", periods=3, freq="5t") ts = Series(np.random.randn(len(rng)), rng) result = ts.resample("t").ffill(limit=2) expected = ts.reindex(result.index, method="ffill", limit=2) assert_series_equal(result, expected) def test_nearest_upsample_with_limit(): rng = date_range("1/1/2000", periods=3, freq="5t") ts = Series(np.random.randn(len(rng)), rng) result = ts.resample("t").nearest(limit=2) expected = ts.reindex(result.index, method="nearest", limit=2) assert_series_equal(result, expected) def test_resample_ohlc(series): s = series grouper = Grouper(freq=Minute(5)) expect = s.groupby(grouper).agg(lambda x: x[-1]) result = s.resample("5Min").ohlc() assert len(result) == len(expect) assert len(result.columns) == 4 xs = result.iloc[-2] assert xs["open"] == s[-6] assert xs["high"] == s[-6:-1].max() assert xs["low"] == s[-6:-1].min() assert xs["close"] == s[-2] xs = result.iloc[0] assert xs["open"] == s[0] assert xs["high"] == s[:5].max() assert xs["low"] == s[:5].min() assert xs["close"] == s[4] def test_resample_ohlc_result(): # GH 12332 index = pd.date_range("1-1-2000", "2-15-2000", freq="h") index = index.union(pd.date_range("4-15-2000", "5-15-2000", freq="h")) s = Series(range(len(index)), index=index) a = s.loc[:"4-15-2000"].resample("30T").ohlc() assert isinstance(a, DataFrame) b = s.loc[:"4-14-2000"].resample("30T").ohlc() assert isinstance(b, DataFrame) # GH12348 # raising on odd period rng = date_range("2013-12-30", "2014-01-07") index = rng.drop( [ Timestamp("2014-01-01"), Timestamp("2013-12-31"), Timestamp("2014-01-04"), Timestamp("2014-01-05"), ] ) df = DataFrame(data=np.arange(len(index)), index=index) result = df.resample("B").mean() expected = df.reindex(index=date_range(rng[0], rng[-1], freq="B")) assert_frame_equal(result, expected) def test_resample_ohlc_dataframe(): df = ( DataFrame( { "PRICE": { Timestamp("2011-01-06 10:59:05", tz=None): 24990, Timestamp("2011-01-06 12:43:33", tz=None): 25499, Timestamp("2011-01-06 12:54:09", tz=None): 25499, }, "VOLUME": { Timestamp("2011-01-06 10:59:05", tz=None): 1500000000, Timestamp("2011-01-06 12:43:33", tz=None): 5000000000, Timestamp("2011-01-06 12:54:09", tz=None): 100000000, }, } ) ).reindex(["VOLUME", "PRICE"], axis=1) res = df.resample("H").ohlc() exp = pd.concat( [df["VOLUME"].resample("H").ohlc(), df["PRICE"].resample("H").ohlc()], axis=1, keys=["VOLUME", "PRICE"], ) assert_frame_equal(exp, res) df.columns = [["a", "b"], ["c", "d"]] res = df.resample("H").ohlc() exp.columns = pd.MultiIndex.from_tuples( [ ("a", "c", "open"), ("a", "c", "high"), ("a", "c", "low"), ("a", "c", "close"), ("b", "d", "open"), ("b", "d", "high"), ("b", "d", "low"), ("b", "d", "close"), ] ) assert_frame_equal(exp, res) # dupe columns fail atm # df.columns = ['PRICE', 'PRICE'] def test_resample_dup_index(): # GH 4812 # dup columns with resample raising df = DataFrame( np.random.randn(4, 12), index=[2000, 2000, 2000, 2000], columns=[Period(year=2000, month=i + 1, freq="M") for i in range(12)], ) df.iloc[3, :] = np.nan result = df.resample("Q", axis=1).mean() expected = df.groupby(lambda x: int((x.month - 1) / 3), axis=1).mean() expected.columns = [Period(year=2000, quarter=i + 1, freq="Q") for i in range(4)] assert_frame_equal(result, expected) def test_resample_reresample(): dti = date_range(start=datetime(2005, 1, 1), end=datetime(2005, 1, 10), freq="D") s = Series(np.random.rand(len(dti)), dti) bs = s.resample("B", closed="right", label="right").mean() result = bs.resample("8H").mean() assert len(result) == 22 assert isinstance(result.index.freq, offsets.DateOffset) assert result.index.freq == offsets.Hour(8) def test_resample_timestamp_to_period(simple_date_range_series): ts = simple_date_range_series("1/1/1990", "1/1/2000") result = ts.resample("A-DEC", kind="period").mean() expected = ts.resample("A-DEC").mean() expected.index = period_range("1990", "2000", freq="a-dec") assert_series_equal(result, expected) result = ts.resample("A-JUN", kind="period").mean() expected = ts.resample("A-JUN").mean() expected.index = period_range("1990", "2000", freq="a-jun") assert_series_equal(result, expected) result = ts.resample("M", kind="period").mean() expected = ts.resample("M").mean() expected.index = period_range("1990-01", "2000-01", freq="M") assert_series_equal(result, expected) result = ts.resample("M", kind="period").mean() expected = ts.resample("M").mean() expected.index = period_range("1990-01", "2000-01", freq="M") assert_series_equal(result, expected) def test_ohlc_5min(): def _ohlc(group): if isna(group).all(): return np.repeat(np.nan, 4) return [group[0], group.max(), group.min(), group[-1]] rng = date_range("1/1/2000 00:00:00", "1/1/2000 5:59:50", freq="10s") ts = Series(np.random.randn(len(rng)), index=rng) resampled = ts.resample("5min", closed="right", label="right").ohlc() assert (resampled.loc["1/1/2000 00:00"] == ts[0]).all() exp = _ohlc(ts[1:31]) assert (resampled.loc["1/1/2000 00:05"] == exp).all() exp = _ohlc(ts["1/1/2000 5:55:01":]) assert (resampled.loc["1/1/2000 6:00:00"] == exp).all() def test_downsample_non_unique(): rng = date_range("1/1/2000", "2/29/2000") rng2 = rng.repeat(5).values ts = Series(np.random.randn(len(rng2)), index=rng2) result = ts.resample("M").mean() expected = ts.groupby(lambda x: x.month).mean() assert len(result) == 2 assert_almost_equal(result[0], expected[1]) assert_almost_equal(result[1], expected[2]) def test_asfreq_non_unique(): # GH #1077 rng = date_range("1/1/2000", "2/29/2000") rng2 = rng.repeat(2).values ts = Series(np.random.randn(len(rng2)), index=rng2) msg = "cannot reindex from a duplicate axis" with pytest.raises(ValueError, match=msg): ts.asfreq("B") def test_resample_axis1(): rng = date_range("1/1/2000", "2/29/2000") df = DataFrame(np.random.randn(3, len(rng)), columns=rng, index=["a", "b", "c"]) result = df.resample("M", axis=1).mean() expected = df.T.resample("M").mean().T tm.assert_frame_equal(result, expected) def test_resample_anchored_ticks(): # If a fixed delta (5 minute, 4 hour) evenly divides a day, we should # "anchor" the origin at midnight so we get regular intervals rather # than starting from the first timestamp which might start in the # middle of a desired interval rng = date_range("1/1/2000 04:00:00", periods=86400, freq="s") ts = Series(np.random.randn(len(rng)), index=rng) ts[:2] = np.nan # so results are the same freqs = ["t", "5t", "15t", "30t", "4h", "12h"] for freq in freqs: result = ts[2:].resample(freq, closed="left", label="left").mean() expected = ts.resample(freq, closed="left", label="left").mean() assert_series_equal(result, expected) def test_resample_single_group(): mysum = lambda x: x.sum() rng = date_range("2000-1-1", "2000-2-10", freq="D") ts = Series(np.random.randn(len(rng)), index=rng) assert_series_equal(ts.resample("M").sum(), ts.resample("M").apply(mysum)) rng = date_range("2000-1-1", "2000-1-10", freq="D") ts = Series(np.random.randn(len(rng)), index=rng) assert_series_equal(ts.resample("M").sum(), ts.resample("M").apply(mysum)) # GH 3849 s = Series( [30.1, 31.6], index=[Timestamp("20070915 15:30:00"), Timestamp("20070915 15:40:00")], ) expected = Series([0.75], index=[Timestamp("20070915")]) result = s.resample("D").apply(lambda x: np.std(x)) assert_series_equal(result, expected) def test_resample_base(): rng = date_range("1/1/2000 00:00:00", "1/1/2000 02:00", freq="s") ts = Series(np.random.randn(len(rng)), index=rng) resampled = ts.resample("5min", base=2).mean() exp_rng = date_range("12/31/1999 23:57:00", "1/1/2000 01:57", freq="5min") tm.assert_index_equal(resampled.index, exp_rng) def test_resample_float_base(): # GH25161 dt = pd.to_datetime( ["2018-11-26 16:17:43.51", "2018-11-26 16:17:44.51", "2018-11-26 16:17:45.51"] ) s = Series(np.arange(3), index=dt) base = 17 + 43.51 / 60 result = s.resample("3min", base=base).size() expected = Series(3, index=pd.DatetimeIndex(["2018-11-26 16:17:43.51"])) assert_series_equal(result, expected) def test_resample_daily_anchored(): rng = date_range("1/1/2000 0:00:00", periods=10000, freq="T") ts = Series(np.random.randn(len(rng)), index=rng) ts[:2] = np.nan # so results are the same result = ts[2:].resample("D", closed="left", label="left").mean() expected = ts.resample("D", closed="left", label="left").mean() assert_series_equal(result, expected) def test_resample_to_period_monthly_buglet(): # GH #1259 rng = date_range("1/1/2000", "12/31/2000") ts = Series(np.random.randn(len(rng)), index=rng) result = ts.resample("M", kind="period").mean() exp_index = period_range("Jan-2000", "Dec-2000", freq="M") tm.assert_index_equal(result.index, exp_index) def test_period_with_agg(): # aggregate a period resampler with a lambda s2 = Series( np.random.randint(0, 5, 50), index=pd.period_range("2012-01-01", freq="H", periods=50), dtype="float64", ) expected = s2.to_timestamp().resample("D").mean().to_period() result = s2.resample("D").agg(lambda x: x.mean()) assert_series_equal(result, expected) def test_resample_segfault(): # GH 8573 # segfaulting in older versions all_wins_and_wagers = [ (1, datetime(2013, 10, 1, 16, 20), 1, 0), (2, datetime(2013, 10, 1, 16, 10), 1, 0), (2, datetime(2013, 10, 1, 18, 15), 1, 0), (2, datetime(2013, 10, 1, 16, 10, 31), 1, 0), ] df = DataFrame.from_records( all_wins_and_wagers, columns=("ID", "timestamp", "A", "B") ).set_index("timestamp") result = df.groupby("ID").resample("5min").sum() expected = df.groupby("ID").apply(lambda x: x.resample("5min").sum()) assert_frame_equal(result, expected) def test_resample_dtype_preservation(): # GH 12202 # validation tests for dtype preservation df = DataFrame( { "date": pd.date_range(start="2016-01-01", periods=4, freq="W"), "group": [1, 1, 2, 2], "val": Series([5, 6, 7, 8], dtype="int32"), } ).set_index("date") result = df.resample("1D").ffill() assert result.val.dtype == np.int32 result = df.groupby("group").resample("1D").ffill() assert result.val.dtype == np.int32 def test_resample_dtype_coercion(): pytest.importorskip("scipy.interpolate") # GH 16361 df = {"a": [1, 3, 1, 4]} df = DataFrame(df, index=pd.date_range("2017-01-01", "2017-01-04")) expected = df.astype("float64").resample("H").mean()["a"].interpolate("cubic") result = df.resample("H")["a"].mean().interpolate("cubic") tm.assert_series_equal(result, expected) result = df.resample("H").mean()["a"].interpolate("cubic") tm.assert_series_equal(result, expected) def test_weekly_resample_buglet(): # #1327 rng = date_range("1/1/2000", freq="B", periods=20) ts = Series(np.random.randn(len(rng)), index=rng) resampled = ts.resample("W").mean() expected = ts.resample("W-SUN").mean() assert_series_equal(resampled, expected) def test_monthly_resample_error(): # #1451 dates = date_range("4/16/2012 20:00", periods=5000, freq="h") ts = Series(np.random.randn(len(dates)), index=dates) # it works! ts.resample("M") def test_nanosecond_resample_error(): # GH 12307 - Values falls after last bin when # Resampling using pd.tseries.offsets.Nano as period start = 1443707890427 exp_start = 1443707890400 indx = pd.date_range(start=pd.to_datetime(start), periods=10, freq="100n") ts = Series(range(len(indx)), index=indx) r = ts.resample(pd.tseries.offsets.Nano(100)) result = r.agg("mean") exp_indx = pd.date_range(start=pd.to_datetime(exp_start), periods=10, freq="100n") exp = Series(range(len(exp_indx)), index=exp_indx) assert_series_equal(result, exp) def test_resample_anchored_intraday(simple_date_range_series): # #1471, #1458 rng = date_range("1/1/2012", "4/1/2012", freq="100min") df = DataFrame(rng.month, index=rng) result = df.resample("M").mean() expected = df.resample("M", kind="period").mean().to_timestamp(how="end") expected.index += Timedelta(1, "ns") - Timedelta(1, "D") tm.assert_frame_equal(result, expected) result = df.resample("M", closed="left").mean() exp = df.tshift(1, freq="D").resample("M", kind="period").mean() exp = exp.to_timestamp(how="end") exp.index = exp.index + Timedelta(1, "ns") - Timedelta(1, "D") tm.assert_frame_equal(result, exp) rng = date_range("1/1/2012", "4/1/2012", freq="100min") df = DataFrame(rng.month, index=rng) result = df.resample("Q").mean() expected = df.resample("Q", kind="period").mean().to_timestamp(how="end") expected.index += Timedelta(1, "ns") - Timedelta(1, "D") tm.assert_frame_equal(result, expected) result = df.resample("Q", closed="left").mean() expected = df.tshift(1, freq="D").resample("Q", kind="period", closed="left").mean() expected = expected.to_timestamp(how="end") expected.index += Timedelta(1, "ns") - Timedelta(1, "D") tm.assert_frame_equal(result, expected) ts = simple_date_range_series("2012-04-29 23:00", "2012-04-30 5:00", freq="h") resampled = ts.resample("M").mean() assert len(resampled) == 1 def test_resample_anchored_monthstart(simple_date_range_series): ts = simple_date_range_series("1/1/2000", "12/31/2002") freqs = ["MS", "BMS", "QS-MAR", "AS-DEC", "AS-JUN"] for freq in freqs: ts.resample(freq).mean() def test_resample_anchored_multiday(): # When resampling a range spanning multiple days, ensure that the # start date gets used to determine the offset. Fixes issue where # a one day period is not a multiple of the frequency. # # See: https://github.com/pandas-dev/pandas/issues/8683 index = pd.date_range( "2014-10-14 23:06:23.206", periods=3, freq="400L" ) | pd.date_range("2014-10-15 23:00:00", periods=2, freq="2200L") s = Series(np.random.randn(5), index=index) # Ensure left closing works result = s.resample("2200L").mean() assert result.index[-1] == Timestamp("2014-10-15 23:00:02.000") # Ensure right closing works result = s.resample("2200L", label="right").mean() assert result.index[-1] == Timestamp("2014-10-15 23:00:04.200") def test_corner_cases(simple_period_range_series, simple_date_range_series): # miscellaneous test coverage rng = date_range("1/1/2000", periods=12, freq="t") ts = Series(np.random.randn(len(rng)), index=rng) result = ts.resample("5t", closed="right", label="left").mean() ex_index = date_range("1999-12-31 23:55", periods=4, freq="5t") tm.assert_index_equal(result.index, ex_index) len0pts = simple_period_range_series("2007-01", "2010-05", freq="M")[:0] # it works result = len0pts.resample("A-DEC").mean() assert len(result) == 0 # resample to periods ts = simple_date_range_series("2000-04-28", "2000-04-30 11:00", freq="h") result = ts.resample("M", kind="period").mean() assert len(result) == 1 assert result.index[0] == Period("2000-04", freq="M") def test_anchored_lowercase_buglet(): dates = date_range("4/16/2012 20:00", periods=50000, freq="s") ts = Series(np.random.randn(len(dates)), index=dates) # it works! ts.resample("d").mean() def test_upsample_apply_functions(): # #1596 rng = pd.date_range("2012-06-12", periods=4, freq="h") ts = Series(np.random.randn(len(rng)), index=rng) result = ts.resample("20min").aggregate(["mean", "sum"]) assert isinstance(result, DataFrame) def test_resample_not_monotonic(): rng = pd.date_range("2012-06-12", periods=200, freq="h") ts = Series(np.random.randn(len(rng)), index=rng) ts = ts.take(np.random.permutation(len(ts))) result = ts.resample("D").sum() exp = ts.sort_index().resample("D").sum() assert_series_equal(result, exp) def test_resample_median_bug_1688(): for dtype in ["int64", "int32", "float64", "float32"]: df = DataFrame( [1, 2], index=[datetime(2012, 1, 1, 0, 0, 0), datetime(2012, 1, 1, 0, 5, 0)], dtype=dtype, ) result = df.resample("T").apply(lambda x: x.mean()) exp = df.asfreq("T") tm.assert_frame_equal(result, exp) result = df.resample("T").median() exp = df.asfreq("T") tm.assert_frame_equal(result, exp) def test_how_lambda_functions(simple_date_range_series): ts = simple_date_range_series("1/1/2000", "4/1/2000") result = ts.resample("M").apply(lambda x: x.mean()) exp = ts.resample("M").mean() tm.assert_series_equal(result, exp) foo_exp = ts.resample("M").mean() foo_exp.name = "foo" bar_exp = ts.resample("M").std() bar_exp.name = "bar" result = ts.resample("M").apply([lambda x: x.mean(), lambda x: x.std(ddof=1)]) result.columns = ["foo", "bar"] tm.assert_series_equal(result["foo"], foo_exp) tm.assert_series_equal(result["bar"], bar_exp) # this is a MI Series, so comparing the names of the results # doesn't make sense result = ts.resample("M").aggregate( {"foo": lambda x: x.mean(), "bar": lambda x: x.std(ddof=1)} ) tm.assert_series_equal(result["foo"], foo_exp, check_names=False) tm.assert_series_equal(result["bar"], bar_exp, check_names=False) def test_resample_unequal_times(): # #1772 start = datetime(1999, 3, 1, 5) # end hour is less than start end = datetime(2012, 7, 31, 4) bad_ind = date_range(start, end, freq="30min") df = DataFrame({"close": 1}, index=bad_ind) # it works! df.resample("AS").sum() def test_resample_consistency(): # GH 6418 # resample with bfill / limit / reindex consistency i30 = pd.date_range("2002-02-02", periods=4, freq="30T") s = Series(np.arange(4.0), index=i30) s[2] = np.NaN # Upsample by factor 3 with reindex() and resample() methods: i10 = pd.date_range(i30[0], i30[-1], freq="10T") s10 = s.reindex(index=i10, method="bfill") s10_2 = s.reindex(index=i10, method="bfill", limit=2) rl = s.reindex_like(s10, method="bfill", limit=2) r10_2 = s.resample("10Min").bfill(limit=2) r10 = s.resample("10Min").bfill() # s10_2, r10, r10_2, rl should all be equal assert_series_equal(s10_2, r10) assert_series_equal(s10_2, r10_2) assert_series_equal(s10_2, rl) def test_resample_timegrouper(): # GH 7227 dates1 = [ datetime(2014, 10, 1), datetime(2014, 9, 3), datetime(2014, 11, 5), datetime(2014, 9, 5), datetime(2014, 10, 8), datetime(2014, 7, 15), ] dates2 = dates1[:2] + [pd.NaT] + dates1[2:4] + [pd.NaT] + dates1[4:] dates3 = [pd.NaT] + dates1 + [pd.NaT] for dates in [dates1, dates2, dates3]: df = DataFrame(dict(A=dates, B=np.arange(len(dates)))) result = df.set_index("A").resample("M").count() exp_idx = pd.DatetimeIndex( ["2014-07-31", "2014-08-31", "2014-09-30", "2014-10-31", "2014-11-30"], freq="M", name="A", ) expected = DataFrame({"B": [1, 0, 2, 2, 1]}, index=exp_idx) assert_frame_equal(result, expected) result = df.groupby(pd.Grouper(freq="M", key="A")).count() assert_frame_equal(result, expected) df = DataFrame(dict(A=dates, B=np.arange(len(dates)), C=np.arange(len(dates)))) result = df.set_index("A").resample("M").count() expected = DataFrame( {"B": [1, 0, 2, 2, 1], "C": [1, 0, 2, 2, 1]}, index=exp_idx, columns=["B", "C"], ) assert_frame_equal(result, expected) result = df.groupby(pd.Grouper(freq="M", key="A")).count() assert_frame_equal(result, expected) def test_resample_nunique(): # GH 12352 df = DataFrame( { "ID": { Timestamp("2015-06-05 00:00:00"): "0010100903", Timestamp("2015-06-08 00:00:00"): "0010150847", }, "DATE": { Timestamp("2015-06-05 00:00:00"): "2015-06-05", Timestamp("2015-06-08 00:00:00"): "2015-06-08", }, } ) r = df.resample("D") g = df.groupby(pd.Grouper(freq="D")) expected = df.groupby(pd.Grouper(freq="D")).ID.apply(lambda x: x.nunique()) assert expected.name == "ID" for t in [r, g]: result = r.ID.nunique() assert_series_equal(result, expected) result = df.ID.resample("D").nunique() assert_series_equal(result, expected) result = df.ID.groupby(pd.Grouper(freq="D")).nunique() assert_series_equal(result, expected) def test_resample_nunique_preserves_column_level_names(): # see gh-23222 df = tm.makeTimeDataFrame(freq="1D").abs() df.columns = pd.MultiIndex.from_arrays( [df.columns.tolist()] * 2, names=["lev0", "lev1"] ) result = df.resample("1h").nunique() tm.assert_index_equal(df.columns, result.columns) def test_resample_nunique_with_date_gap(): # GH 13453 index = pd.date_range("1-1-2000", "2-15-2000", freq="h") index2 = pd.date_range("4-15-2000", "5-15-2000", freq="h") index3 = index.append(index2) s = Series(range(len(index3)), index=index3, dtype="int64") r = s.resample("M") # Since all elements are unique, these should all be the same results = [r.count(), r.nunique(), r.agg(Series.nunique), r.agg("nunique")] assert_series_equal(results[0], results[1]) assert_series_equal(results[0], results[2]) assert_series_equal(results[0], results[3]) @pytest.mark.parametrize("n", [10000, 100000]) @pytest.mark.parametrize("k", [10, 100, 1000]) def test_resample_group_info(n, k): # GH10914 # use a fixed seed to always have the same uniques prng = np.random.RandomState(1234) dr = date_range(start="2015-08-27", periods=n // 10, freq="T") ts = Series(prng.randint(0, n // k, n).astype("int64"), index=prng.choice(dr, n)) left = ts.resample("30T").nunique() ix = date_range(start=ts.index.min(), end=ts.index.max(), freq="30T") vals = ts.values bins = np.searchsorted(ix.values, ts.index, side="right") sorter = np.lexsort((vals, bins)) vals, bins = vals[sorter], bins[sorter] mask = np.r_[True, vals[1:] != vals[:-1]] mask |= np.r_[True, bins[1:] != bins[:-1]] arr = np.bincount(bins[mask] - 1, minlength=len(ix)).astype("int64", copy=False) right = Series(arr, index=ix) assert_series_equal(left, right) def test_resample_size(): n = 10000 dr = date_range("2015-09-19", periods=n, freq="T") ts = Series(np.random.randn(n), index=np.random.choice(dr, n)) left = ts.resample("7T").size() ix = date_range(start=left.index.min(), end=ts.index.max(), freq="7T") bins = np.searchsorted(ix.values, ts.index.values, side="right") val = np.bincount(bins, minlength=len(ix) + 1)[1:].astype("int64", copy=False) right = Series(val, index=ix) assert_series_equal(left, right) def test_resample_across_dst(): # The test resamples a DatetimeIndex with values before and after a # DST change # Issue: 14682 # The DatetimeIndex we will start with # (note that DST happens at 03:00+02:00 -> 02:00+01:00) # 2016-10-30 02:23:00+02:00, 2016-10-30 02:23:00+01:00 df1 = DataFrame([1477786980, 1477790580], columns=["ts"]) dti1 = DatetimeIndex( pd.to_datetime(df1.ts, unit="s") .dt.tz_localize("UTC") .dt.tz_convert("Europe/Madrid") ) # The expected DatetimeIndex after resampling. # 2016-10-30 02:00:00+02:00, 2016-10-30 02:00:00+01:00 df2 = DataFrame([1477785600, 1477789200], columns=["ts"]) dti2 = DatetimeIndex( pd.to_datetime(df2.ts, unit="s") .dt.tz_localize("UTC") .dt.tz_convert("Europe/Madrid") ) df = DataFrame([5, 5], index=dti1) result = df.resample(rule="H").sum() expected = DataFrame([5, 5], index=dti2) assert_frame_equal(result, expected) def test_groupby_with_dst_time_change(): # GH 24972 index = pd.DatetimeIndex( [1478064900001000000, 1480037118776792000], tz="UTC" ).tz_convert("America/Chicago") df = pd.DataFrame([1, 2], index=index) result = df.groupby(pd.Grouper(freq="1d")).last() expected_index_values = pd.date_range( "2016-11-02", "2016-11-24", freq="d", tz="America/Chicago" ) index = pd.DatetimeIndex(expected_index_values) expected = pd.DataFrame([1.0] + ([np.nan] * 21) + [2.0], index=index) assert_frame_equal(result, expected) def test_resample_dst_anchor(): # 5172 dti = DatetimeIndex([datetime(2012, 11, 4, 23)], tz="US/Eastern") df = DataFrame([5], index=dti) assert_frame_equal( df.resample(rule="D").sum(), DataFrame([5], index=df.index.normalize()) ) df.resample(rule="MS").sum() assert_frame_equal( df.resample(rule="MS").sum(), DataFrame([5], index=DatetimeIndex([datetime(2012, 11, 1)], tz="US/Eastern")), ) dti = date_range("2013-09-30", "2013-11-02", freq="30Min", tz="Europe/Paris") values = range(dti.size) df = DataFrame({"a": values, "b": values, "c": values}, index=dti, dtype="int64") how = {"a": "min", "b": "max", "c": "count"} assert_frame_equal( df.resample("W-MON").agg(how)[["a", "b", "c"]], DataFrame( { "a": [0, 48, 384, 720, 1056, 1394], "b": [47, 383, 719, 1055, 1393, 1586], "c": [48, 336, 336, 336, 338, 193], }, index=date_range("9/30/2013", "11/4/2013", freq="W-MON", tz="Europe/Paris"), ), "W-MON Frequency", ) assert_frame_equal( df.resample("2W-MON").agg(how)[["a", "b", "c"]], DataFrame( { "a": [0, 48, 720, 1394], "b": [47, 719, 1393, 1586], "c": [48, 672, 674, 193], }, index=date_range( "9/30/2013", "11/11/2013", freq="2W-MON", tz="Europe/Paris" ), ), "2W-MON Frequency", ) assert_frame_equal( df.resample("MS").agg(how)[["a", "b", "c"]], DataFrame( {"a": [0, 48, 1538], "b": [47, 1537, 1586], "c": [48, 1490, 49]}, index=date_range("9/1/2013", "11/1/2013", freq="MS", tz="Europe/Paris"), ), "MS Frequency", ) assert_frame_equal( df.resample("2MS").agg(how)[["a", "b", "c"]], DataFrame( {"a": [0, 1538], "b": [1537, 1586], "c": [1538, 49]}, index=date_range("9/1/2013", "11/1/2013", freq="2MS", tz="Europe/Paris"), ), "2MS Frequency", ) df_daily = df["10/26/2013":"10/29/2013"] assert_frame_equal( df_daily.resample("D").agg({"a": "min", "b": "max", "c": "count"})[ ["a", "b", "c"] ], DataFrame( { "a": [1248, 1296, 1346, 1394], "b": [1295, 1345, 1393, 1441], "c": [48, 50, 48, 48], }, index=date_range("10/26/2013", "10/29/2013", freq="D", tz="Europe/Paris"), ), "D Frequency", ) def test_downsample_across_dst(): # GH 8531 tz = pytz.timezone("Europe/Berlin") dt = datetime(2014, 10, 26) dates = date_range(tz.localize(dt), periods=4, freq="2H") result = Series(5, index=dates).resample("H").mean() expected = Series( [5.0, np.nan] * 3 + [5.0], index=date_range(tz.localize(dt), periods=7, freq="H"), ) tm.assert_series_equal(result, expected) def test_downsample_across_dst_weekly(): # GH 9119, GH 21459 df = DataFrame( index=DatetimeIndex( ["2017-03-25", "2017-03-26", "2017-03-27", "2017-03-28", "2017-03-29"], tz="Europe/Amsterdam", ), data=[11, 12, 13, 14, 15], ) result = df.resample("1W").sum() expected = DataFrame( [23, 42], index=pd.DatetimeIndex(["2017-03-26", "2017-04-02"], tz="Europe/Amsterdam"), ) tm.assert_frame_equal(result, expected) idx = pd.date_range("2013-04-01", "2013-05-01", tz="Europe/London", freq="H") s = Series(index=idx) result = s.resample("W").mean() expected = Series( index=pd.date_range("2013-04-07", freq="W", periods=5, tz="Europe/London") ) tm.assert_series_equal(result, expected) def test_resample_with_nat(): # GH 13020 index = DatetimeIndex( [ pd.NaT, "1970-01-01 00:00:00", pd.NaT, "1970-01-01 00:00:01", "1970-01-01 00:00:02", ] ) frame = DataFrame([2, 3, 5, 7, 11], index=index) index_1s = DatetimeIndex( ["1970-01-01 00:00:00", "1970-01-01 00:00:01", "1970-01-01 00:00:02"] ) frame_1s = DataFrame([3, 7, 11], index=index_1s) assert_frame_equal(frame.resample("1s").mean(), frame_1s) index_2s = DatetimeIndex(["1970-01-01 00:00:00", "1970-01-01 00:00:02"]) frame_2s = DataFrame([5, 11], index=index_2s) assert_frame_equal(frame.resample("2s").mean(), frame_2s) index_3s = DatetimeIndex(["1970-01-01 00:00:00"]) frame_3s = DataFrame([7], index=index_3s) assert_frame_equal(frame.resample("3s").mean(), frame_3s) assert_frame_equal(frame.resample("60s").mean(), frame_3s) def test_resample_datetime_values(): # GH 13119 # check that datetime dtype is preserved when NaT values are # introduced by the resampling dates = [datetime(2016, 1, 15), datetime(2016, 1, 19)] df = DataFrame({"timestamp": dates}, index=dates) exp = Series( [datetime(2016, 1, 15), pd.NaT, datetime(2016, 1, 19)], index=date_range("2016-01-15", periods=3, freq="2D"), name="timestamp", ) res = df.resample("2D").first()["timestamp"] tm.assert_series_equal(res, exp) res = df["timestamp"].resample("2D").first() tm.assert_series_equal(res, exp) def test_resample_apply_with_additional_args(series): # GH 14615 def f(data, add_arg): return np.mean(data) * add_arg multiplier = 10 result = series.resample("D").apply(f, multiplier) expected = series.resample("D").mean().multiply(multiplier) tm.assert_series_equal(result, expected) # Testing as kwarg result = series.resample("D").apply(f, add_arg=multiplier) expected = series.resample("D").mean().multiply(multiplier) tm.assert_series_equal(result, expected) # Testing dataframe df = pd.DataFrame({"A": 1, "B": 2}, index=pd.date_range("2017", periods=10)) result = df.groupby("A").resample("D").agg(f, multiplier) expected = df.groupby("A").resample("D").mean().multiply(multiplier) assert_frame_equal(result, expected) @pytest.mark.parametrize("k", [1, 2, 3]) @pytest.mark.parametrize( "n1, freq1, n2, freq2", [ (30, "S", 0.5, "Min"), (60, "S", 1, "Min"), (3600, "S", 1, "H"), (60, "Min", 1, "H"), (21600, "S", 0.25, "D"), (86400, "S", 1, "D"), (43200, "S", 0.5, "D"), (1440, "Min", 1, "D"), (12, "H", 0.5, "D"), (24, "H", 1, "D"), ], ) def test_resample_equivalent_offsets(n1, freq1, n2, freq2, k): # GH 24127 n1_ = n1 * k n2_ = n2 * k s = pd.Series( 0, index=pd.date_range("19910905 13:00", "19911005 07:00", freq=freq1) ) s = s + range(len(s)) result1 = s.resample(str(n1_) + freq1).mean() result2 = s.resample(str(n2_) + freq2).mean() assert_series_equal(result1, result2) @pytest.mark.parametrize( "first,last,offset,exp_first,exp_last", [ ("19910905", "19920406", "D", "19910905", "19920407"), ("19910905 00:00", "19920406 06:00", "D", "19910905", "19920407"), ("19910905 06:00", "19920406 06:00", "H", "19910905 06:00", "19920406 07:00"), ("19910906", "19920406", "M", "19910831", "19920430"), ("19910831", "19920430", "M", "19910831", "19920531"), ("1991-08", "1992-04", "M", "19910831", "19920531"), ], ) def test_get_timestamp_range_edges(first, last, offset, exp_first, exp_last): first = pd.Period(first) first = first.to_timestamp(first.freq) last = pd.Period(last) last = last.to_timestamp(last.freq) exp_first = pd.Timestamp(exp_first, freq=offset) exp_last = pd.Timestamp(exp_last, freq=offset) offset = pd.tseries.frequencies.to_offset(offset) result = _get_timestamp_range_edges(first, last, offset) expected = (exp_first, exp_last) assert result == expected
31.632549
88
0.60332
560fe1546104fe817f956ee5d06f91a70113683a
1,950
py
Python
config/settings/local.py
roger-link/tacky
8c8b37bcf8c9773f9c7d283c9038c962b9923620
[ "MIT" ]
null
null
null
config/settings/local.py
roger-link/tacky
8c8b37bcf8c9773f9c7d283c9038c962b9923620
[ "MIT" ]
null
null
null
config/settings/local.py
roger-link/tacky
8c8b37bcf8c9773f9c7d283c9038c962b9923620
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Local settings - Run in Debug mode - Use console backend for emails - Add Django Debug Toolbar - Add django-extensions as app """ from .common import * # noqa # DEBUG # ------------------------------------------------------------------------------ DEBUG = env.bool('DJANGO_DEBUG', default=True) TEMPLATES[0]['OPTIONS']['debug'] = DEBUG # SECRET CONFIGURATION # ------------------------------------------------------------------------------ # See: https://docs.djangoproject.com/en/dev/ref/settings/#secret-key # Note: This key only used for development and testing. SECRET_KEY = env('DJANGO_SECRET_KEY', default='jx66uy!6uz@w6lb0tb37&e5=0@73^r=9ugzhx5n4sz&3z^xs^(') # Mail settings # ------------------------------------------------------------------------------ EMAIL_HOST = 'localhost' EMAIL_PORT = 1025 EMAIL_BACKEND = env('DJANGO_EMAIL_BACKEND', default='django.core.mail.backends.console.EmailBackend') # CACHING # ------------------------------------------------------------------------------ CACHES = { 'default': { 'BACKEND': 'django.core.cache.backends.locmem.LocMemCache', 'LOCATION': '' } } # django-debug-toolbar # ------------------------------------------------------------------------------ MIDDLEWARE_CLASSES += ('debug_toolbar.middleware.DebugToolbarMiddleware',) INSTALLED_APPS += ('debug_toolbar', ) INTERNAL_IPS = ('127.0.0.1', '10.0.2.2',) DEBUG_TOOLBAR_CONFIG = { 'DISABLE_PANELS': [ 'debug_toolbar.panels.redirects.RedirectsPanel', ], 'SHOW_TEMPLATE_CONTEXT': True, } # django-extensions # ------------------------------------------------------------------------------ INSTALLED_APPS += ('django_extensions', ) # TESTING # ------------------------------------------------------------------------------ TEST_RUNNER = 'django.test.runner.DiscoverRunner' # Your local stuff: Below this line define 3rd party library settings
30.952381
99
0.498974
0849bbd8fc29f9b6fee5b4e0b854bfbd588a4caa
1,750
py
Python
packages/nbextension/nteract_on_jupyter/extension.py
lgeiger/nteract
fbb426fd2a9fd9def57aca5e89444db86de25562
[ "BSD-3-Clause" ]
null
null
null
packages/nbextension/nteract_on_jupyter/extension.py
lgeiger/nteract
fbb426fd2a9fd9def57aca5e89444db86de25562
[ "BSD-3-Clause" ]
1
2018-10-19T15:07:06.000Z
2018-10-19T15:07:06.000Z
packages/nbextension/nteract_on_jupyter/extension.py
lgeiger/nteract
fbb426fd2a9fd9def57aca5e89444db86de25562
[ "BSD-3-Clause" ]
null
null
null
# coding: utf-8 """A tornado based nteract server.""" # Copyright (c) nteract development team. # Distributed under the terms of the Modified BSD License. import os from notebook.utils import url_path_join as ujoin from os.path import join as pjoin from jupyter_core.paths import ENV_JUPYTER_PATH, jupyter_config_path from ._version import __version__ from .config import Config from .handlers import add_handlers def get_app_dir(app_dir=None): """Get the configured nteract app directory. """ app_dir = app_dir or os.environ.get('NTERACT_DIR') app_dir = app_dir or pjoin(ENV_JUPYTER_PATH[0], 'nteract') return os.path.realpath(app_dir) def load_jupyter_server_extension(nbapp): """Load the JupyterLab server extension. """ # Print messages. here = os.path.dirname(__file__) nbapp.log.info('nteract extension loaded from %s' % here) #app_dir = get_app_dir() #if hasattr(nbapp, 'app_dir'): # app_dir = get_app_dir(nbapp.app_dir) app_dir = here # bundle is part of the python package web_app = nbapp.web_app config = Config() # original # config.assets_dir = os.path.join(app_dir, 'static') config.assets_dir = app_dir config.page_title = 'nteract' config.page_url = '/nteract' config.dev_mode = False # Check for core mode. core_mode = '' if hasattr(nbapp, 'core_mode'): core_mode = nbapp.core_mode # Check for an app dir that is local. if app_dir == here or app_dir == os.path.join(here, 'build'): core_mode = True config.settings_dir = '' web_app.settings.setdefault('page_config_data', dict()) web_app.settings['page_config_data']['token'] = nbapp.token add_handlers(web_app, config)
27.34375
68
0.695429
0c48013030433aa41a8d9b86561c5388c0a8b9c9
3,743
py
Python
main.py
adarshchbs/adda_sketch
25f7adf3563d8e1edb8c431fb93876bbed4d4e76
[ "MIT" ]
null
null
null
main.py
adarshchbs/adda_sketch
25f7adf3563d8e1edb8c431fb93876bbed4d4e76
[ "MIT" ]
null
null
null
main.py
adarshchbs/adda_sketch
25f7adf3563d8e1edb8c431fb93876bbed4d4e76
[ "MIT" ]
null
null
null
"""Main script for ADDA.""" import os import numpy as np import torch import params from pretrain import eval_src, train_src from resnet_18 import ResNetClassifier, ResNetEncoder from discriminator import Discriminator from utils import init_model, init_random_seed from test import eval_tgt from adopt import train_target from image_loader import image_loader from torchvision import models resnet = models.resnet50(pretrained=True) resnet1 = models.resnet50(pretrained=True) encoder = torch.nn.Sequential(*(list(resnet.children())[:-1])) encoder1 = torch.nn.Sequential(*(list(resnet1.children())[:-1])) if __name__ == '__main__': # init random seed init_random_seed(params.manual_seed) path_sketchy = '/home/adarsh/project/adda_sketch/dataset/sketches/' path_quickdraw = '/home/adarsh/project/adda_sketch/dataset/QuickDraw_sketches_final/' path_class_list = '/home/adarsh/project/adda_sketch/common_class_list.txt' gpu_name = 'cuda:1' class_list = np.loadtxt(path_class_list,dtype='str') # load dataset source_loader = image_loader(parent_folder_path = path_sketchy, folder_list= class_list, split= [0.8,0.2,0] ) # print(source_loader.size_total) src_data_loader = source_loader.image_gen(split_type='train') src_data_loader_eval = source_loader.image_gen(split_type='val') target_loader = image_loader(parent_folder_path = path_quickdraw, folder_list = class_list, split = [0.8, 0.005, 0] ) # load models src_encoder = ResNetEncoder(encoder) src_encoder.cuda(gpu_name) src_classifier = ResNetClassifier() src_classifier.cuda(gpu_name) tgt_encoder = ResNetEncoder(encoder1) tgt_encoder.cuda(gpu_name) critic = Discriminator(input_dim=params.d_input_dims, hidden_dim=params.d_hidden_dims, output_dim=params.d_output_dims) critic.cuda(gpu_name) if(os.path.exists(params.src_encoder_restore) and os.path.exists(params.src_classifier_restore)): src_encoder.load_state_dict(torch.load(params.src_encoder_restore)) src_classifier.load_state_dict(torch.load(params.src_classifier_restore)) else: src_encoder, src_classifier = train_src( src_encoder, src_classifier, source_loader, gpu_flag = True, gpu_name = gpu_name) # eval source model # print("=== Evaluating classifier for source domain ===") # eval_src(src_encoder, src_classifier, source_loader, gpu_flag = True, gpu_name = gpu_name) # print("=== Evaluating target encoder for source domain ===") # eval_src(tgt_encoder, src_classifier, source_loader, gpu_flag = True, gpu_name = gpu_name) # train target encoder by GAN tgt_encoder.load_state_dict(src_encoder.state_dict()) if(os.path.exists(params.tgt_encoder_restore)): tgt_encoder.load_state_dict(torch.load(params.tgt_encoder_restore)) else: tgt_encoder = train_target(src_encoder, tgt_encoder, critic,src_classifier, source_loader, target_loader, gpu_flag = True, gpu_name = gpu_name) # eval target encoder on test set of target dataset print("=== Evaluating classifier for encoded target domain ===") print(">>> source only <<<") eval_tgt(src_encoder, src_classifier, target_loader, gpu_flag = True, gpu_name=gpu_name) print(">>> domain adaption <<<") eval_tgt(tgt_encoder, src_classifier, target_loader, gpu_flag = True, gpu_name= gpu_name)
34.33945
100
0.6786
26c059bde1c2f2f5ba30184429168dae8efe8965
1,900
py
Python
setup.py
dhalbert/Adafruit_CircuitPython_BLE_iBBQ
586b3bbebdb7fe04b5c1ede501a5b546bf80756e
[ "MIT" ]
null
null
null
setup.py
dhalbert/Adafruit_CircuitPython_BLE_iBBQ
586b3bbebdb7fe04b5c1ede501a5b546bf80756e
[ "MIT" ]
null
null
null
setup.py
dhalbert/Adafruit_CircuitPython_BLE_iBBQ
586b3bbebdb7fe04b5c1ede501a5b546bf80756e
[ "MIT" ]
null
null
null
"""A setuptools based setup module. See: https://packaging.python.org/en/latest/distributing.html https://github.com/pypa/sampleproject """ from setuptools import setup, find_packages # To use a consistent encoding from codecs import open from os import path here = path.abspath(path.dirname(__file__)) # Get the long description from the README file with open(path.join(here, "README.rst"), encoding="utf-8") as f: long_description = f.read() setup( name="adafruit-circuitpython-ble-ibbq", use_scm_version=True, setup_requires=["setuptools_scm"], description="BLE support for iBBQ thermometers", long_description=long_description, long_description_content_type="text/x-rst", # The project's main homepage. url="https://github.com/adafruit/Adafruit_CircuitPython_BLE_iBBQ", # Author details author="Adafruit Industries", author_email="circuitpython@adafruit.com", install_requires=["Adafruit-Blinka", "adafruit-circuitpython-ble"], # Choose your license license="MIT", # See https://pypi.python.org/pypi?%3Aaction=list_classifiers classifiers=[ "Development Status :: 3 - Alpha", "Intended Audience :: Developers", "Topic :: Software Development :: Libraries", "Topic :: System :: Hardware", "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.4", "Programming Language :: Python :: 3.5", ], # What does your project relate to? keywords="adafruit blinka circuitpython micropython ble_ibbq ble ibbq thermometer", # You can just specify the packages manually here if your project is # simple. Or you can use find_packages(). # TODO: IF LIBRARY FILES ARE A PACKAGE FOLDER, # CHANGE `py_modules=['...']` TO `packages=['...']` py_modules=["adafruit_ble_ibbq"], )
35.185185
87
0.689474
cf9f86b17d9ee1ac661c5f3a6aa151a31fd168eb
2,796
py
Python
server/templates/user/adduser.py
chenqianhe/CreditStatisticsSystem
882ae725dbb429303e3dce4da703116ae3c954fe
[ "MIT" ]
null
null
null
server/templates/user/adduser.py
chenqianhe/CreditStatisticsSystem
882ae725dbb429303e3dce4da703116ae3c954fe
[ "MIT" ]
null
null
null
server/templates/user/adduser.py
chenqianhe/CreditStatisticsSystem
882ae725dbb429303e3dce4da703116ae3c954fe
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding:utf-8 -*- # project: credit-statistics-system # author: Chen Qianhe # GitHub: https://github.com/chenqianhe # datetime: 2021/12/14 13:03 from server.database.link_database import LinkDatabase import time from email.mime.text import MIMEText from email.header import Header import smtplib import hashlib def add_user(name: str, id: str, grade: str, college: str, major: str, classtype: str, mailbox: str, password: str, database: LinkDatabase) -> dict: userdata = {"name": name, "id": id, "grade": grade, "college": college, "major": major, "classtype": classtype, "mailbox": mailbox, "password": password } if database.count_data("USER", "user", {"id": id}) == 0: database.add_data("USER", "user", userdata) if database.count_data("USER", "user", {"id": id}): database.add_data("course", "required", {"id": id, "course": "", "credit": 0.0}) database.add_data("course", "professionalelective", {"id": id, "course": "", "credit": 0.0}) database.add_data("course", "professionalpreparation", {"id": id, "course": "", "credit": 0.0}) database.add_data("course", "publicelective", {"id": id, "course": "", "credit": 0.0}) database.add_data("course", "publicpreparation", {"id": id, "course": "", "credit": 0.0}) database.add_data("course", "outside", {"id": id, "course": "", "credit": 0.0}) return {"state": "OK"} else: return {"state": "异常,未正常添加"} else: return {"state": "用户已存在"} def send_email(mailbox: str) -> str: verification_code = hashlib.md5(str(time.time())[-10:].encode(encoding='UTF-8')).hexdigest()[:5].upper() addr = '1278095698@qq.com' # 发件邮箱 password = 'ivhbcvtjnpxjhhgg' # 邮箱密码(或者客户端授权码) # 登录邮箱 smtp_server = 'smtp.qq.com' server = smtplib.SMTP_SSL(smtp_server, 465) try: print('开始登录') server.login(addr, password) # 登录邮箱 print('登录成功') except Exception as e: print('Error:', e) print("邮件开始发送") msg = MIMEText("您的验证码为:\n" + verification_code + "\n (3分钟内有效,请尽快输入。)", 'plain', 'utf-8') msg['Subject'] = Header("学分统计系统验证码", 'utf-8') msg['From'] = Header(addr) flag = 1 try: msg['To'] = Header(mailbox, 'utf-8') server.sendmail(addr, mailbox, msg.as_string()) # 将msg转化成string发出 print("邮件发送成功") except Exception as e: flag = 0 print('Error:', e) server.quit() if flag: return verification_code else: return "error"
32.137931
108
0.550787
72de1622d5fc406861fb42eb1ea1c397735b0a33
29,814
py
Python
bzt/modules/gatling.py
Avi-Labs/taurus
3aa9bc294778d99be545575467fb5897dc815330
[ "Apache-2.0" ]
1,743
2015-03-30T20:56:03.000Z
2022-03-31T09:08:37.000Z
bzt/modules/gatling.py
Avi-Labs/taurus
3aa9bc294778d99be545575467fb5897dc815330
[ "Apache-2.0" ]
1,159
2015-04-01T08:25:53.000Z
2022-03-29T08:15:31.000Z
bzt/modules/gatling.py
Avi-Labs/taurus
3aa9bc294778d99be545575467fb5897dc815330
[ "Apache-2.0" ]
497
2015-03-31T21:05:18.000Z
2022-03-17T12:45:21.000Z
""" Module holds all stuff regarding Gatling tool usage Copyright 2015 BlazeMeter Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import codecs import json import os import re import time from collections import defaultdict from bzt import TaurusConfigError, ToolError from bzt.engine import ScenarioExecutor, Scenario from bzt.modules.aggregator import ConsolidatingAggregator, ResultsReader from bzt.modules.console import ExecutorWidget from bzt.requests_model import HTTPRequest, SetVariables, HierarchicRequestParser from bzt.utils import TclLibrary, EXE_SUFFIX, dehumanize_time, get_full_path, FileReader, RESOURCES_DIR, BetterDict from bzt.utils import simple_body_dict, CALL_PROBLEMS, numeric_types from bzt.utils import unzip, RequiredTool, JavaVM, shutdown_process, ensure_is_dict, is_windows class GatlingScriptBuilder(object): def __init__(self, load, scenario, parent_logger, class_name, gatling_version=None): super(GatlingScriptBuilder, self).__init__() self.log = parent_logger.getChild(self.__class__.__name__) self.load = load self.feeder_names = {} self.scenario = scenario self.class_name = class_name if gatling_version is None: self.gatling_version = Gatling.VERSION else: self.gatling_version = gatling_version # add prefix 'http://' if user forgot it @staticmethod def fixed_addr(addr): if len(addr) > 0 and not addr.startswith('http'): return 'http://' + addr else: return addr @staticmethod def indent(text, level): return " " * level + text def _get_http(self): default_address = self.scenario.get("default-address", "") http_str = '("%(addr)s")\n' % {'addr': self.fixed_addr(default_address)} if self.scenario.get("retrieve-resources", False): regex = self.scenario.get("retrieve-resources-regex") params = 'BlackList(), WhiteList("""%s""")' % regex if regex else "" http_str += self.indent(".inferHtmlResources(%s)\n" % params, level=2) if not self.scenario.get('store-cache', True): http_str += self.indent('.disableCaching\n', level=2) scenario_headers = self.scenario.get_headers() for key in scenario_headers: http_str += self.indent('.header("%(key)s", "%(val)s")\n' % {'key': key, 'val': scenario_headers[key]}, level=2) return http_str def _get_exec(self): exec_str = '' for req in self.scenario.get_requests(parser=HierarchicRequestParser): if isinstance(req, SetVariables): if len(exec_str) > 0: exec_str += '.' exec_str += "exec(\n" exec_str += self.indent("_", level=2) for k, v in sorted(req.mapping.items()): exec_str += '.set("%s", "%s")' % (k.replace("\"", "\\\""), v.replace("\"", "\\\"")) exec_str += "\n" + self.indent(")", level=1) continue if not isinstance(req, HTTPRequest): msg = "Gatling simulation generator doesn't support '%s' blocks, skipping" self.log.warning(msg, req.NAME) continue if len(exec_str) > 0: exec_str += '.' default_address = self.scenario.get("default-address") if default_address: url = req.url else: url = self.fixed_addr(req.url) exec_str += 'exec(\n' exec_template = self.indent('http("%(req_label)s").%(method)s("%(url)s")\n', level=2) exec_str += exec_template % {'req_label': req.label, 'method': req.method.lower(), 'url': url} for key in req.headers: exec_template = self.indent('.header("%(key)s", "%(val)s")\n', level=3) exec_str += exec_template % {'key': key, 'val': req.headers[key]} # todo: join with the same in get_sampler_pair if isinstance(req.body, (dict, list, numeric_types)): if req.get_header('content-type') == 'application/json' or isinstance(req.body, numeric_types): req.body = json.dumps(req.body) elif not simple_body_dict(req.body): self.log.debug('Header "Content-Type: application/json" is required for body: "%s"', req.body) req.body = json.dumps(req.body) if isinstance(req.body, str): stmt = '.body(%(method)s("""%(body)s"""))\n' % {'method': 'StringBody', 'body': req.body} exec_str += self.indent(stmt, level=3) elif isinstance(req.body, dict): for key in sorted(req.body.keys()): stmt = '.formParam("%(key)s", "%(val)s")\n' % {'key': key, 'val': req.body[key]} exec_str += self.indent(stmt, level=3) elif req.body is not None: self.log.warning("Unknown body type: %s", req.body) exec_str += self.__get_assertions(req.config.get('assert', [])) if not req.priority_option('follow-redirects', default=True): exec_str += self.indent('.disableFollowRedirect\n', level=3) exec_str += self.indent(')', level=1) think_time = int(dehumanize_time(req.get_think_time())) if think_time: exec_str += '.pause(%(think_time)s)' % {'think_time': think_time} return exec_str @staticmethod def __get_check_template(assertion): a_not = assertion.get('not', False) a_regexp = assertion.get('regexp', False) a_subject = assertion.get('subject', Scenario.FIELD_BODY) if a_subject == Scenario.FIELD_RESP_CODE: if a_not: res = 'status.not(%(sample)s)' else: res = 'status.is(%(sample)s)' elif a_subject == Scenario.FIELD_HEADERS: res = '' else: # FIELD_BODY if a_regexp: res = 'regex("""%(sample)s""").' else: res = 'substring("""%(sample)s""").' if a_not: res += 'notExists' else: res += 'exists' return res def __get_assertions(self, assertions): if len(assertions) == 0: return '' first_check = True check_result = self.indent('.check(\n', level=3) for idx, assertion in enumerate(assertions): assertion = ensure_is_dict(assertions, idx, "contains") error_str = 'You must specify "contains" parameter for assertion item' a_contains = assertion.get('contains', TaurusConfigError(error_str)) check_template = self.__get_check_template(assertion) if check_template == '': # FIELD_HEADERS self.log.warning('Sorry, but "headers" subject is not implemented for gatling asserts') return '' if not isinstance(a_contains, list): a_contains = [a_contains] for sample in a_contains: if not first_check: check_result += ',\n' check_result += self.indent(check_template % {'sample': sample}, level=4) first_check = False check_result += '\n' + self.indent(')', level=3) + '\n' return check_result def _get_feeder_name(self, source_filename): base_feeder_name = ".".join(os.path.basename(source_filename).split(".")[:-1]) base_feeder_name = re.sub(r'[^A-Za-z0-9_]', '', base_feeder_name) + "Feed" index = 0 feeder_name = base_feeder_name while feeder_name in self.feeder_names and self.feeder_names[feeder_name] != source_filename: index += 1 feeder_name = base_feeder_name + "_%s" % index if feeder_name not in self.feeder_names: self.feeder_names[feeder_name] = source_filename return feeder_name def _get_feeders(self): feeders_def = "" feeding = "" for source in self.scenario.get_data_sources(): path = self.scenario.engine.find_file(source["path"]) delimiter = source.get('delimiter', None) loop_over = source.get("loop", True) var_name = self._get_feeder_name(path) params = dict(varname=var_name, filename=path, delimiter=delimiter) if delimiter is not None: tpl = """val %(varname)s = separatedValues("%(filename)s", '%(delimiter)s')""" else: tpl = 'val %(varname)s = csv("%(filename)s")' line = self.indent(tpl % params, level=1) if loop_over: line += '.circular' feeders_def += line + '\n' feeding += "feed(%s)." % var_name if feeders_def: feeders_def = '\n' + feeders_def return feeders_def, feeding def gen_test_case(self): template_path = os.path.join(RESOURCES_DIR, "gatling", "v3_script.tpl") with open(template_path) as template_file: template_line = template_file.read() feeders_def, feeding = self._get_feeders() params = { 'class_name': self.class_name, 'httpConf': self._get_http(), '_exec': self._get_exec(), 'feeders': feeders_def, 'feeding': feeding, } return template_line % params class GatlingExecutor(ScenarioExecutor): """ Gatling executor module """ def __init__(self): super(GatlingExecutor, self).__init__() self.script = None self.process = None self.end_time = None self.retcode = None self.simulation_started = False self.dir_prefix = "gatling-%s" % id(self) self.tool = None def get_cp_from_files(self): jar_files = [] files = self.execution.get('files', []) for candidate in files: candidate = self.engine.find_file(candidate) if os.path.isfile(candidate) and candidate.lower().endswith('.jar'): jar_files.append(candidate) elif os.path.isdir(candidate): for element in os.listdir(candidate): element = os.path.join(candidate, element) if os.path.isfile(element) and element.lower().endswith('.jar'): jar_files.append(element) return jar_files def get_additional_classpath(self): cp = self.get_scenario().get("additional-classpath", []) cp.extend(self.settings.get("additional-classpath", [])) return cp def prepare(self): super(GatlingExecutor, self).prepare() self.install_required_tools() scenario = self.get_scenario() self.env.set({"GATLING_HOME": self.tool.tool_dir}) cpath = self.get_additional_classpath() self.log.debug("Classpath for Gatling: %s", cpath) for element in cpath: self.env.add_path({"JAVA_CLASSPATH": element}) self.env.add_path({"COMPILATION_CLASSPATH": element}) new_name = self.engine.create_artifact('gatling-launcher', EXE_SUFFIX) self.log.debug("Building Gatling launcher: %s", new_name) self.tool.build_launcher(new_name) self.script = self.get_script_path() if not self.script: if "requests" in scenario: self.get_scenario()['simulation'], self.script = self.__generate_script() else: msg = "There must be a script file or requests for its generation " msg += "to run Gatling tool (%s)" % self.execution.get('scenario') raise TaurusConfigError(msg) self.dir_prefix = self.settings.get("dir-prefix", self.dir_prefix) self.stdout = open(self.engine.create_artifact("gatling", ".out"), "w") self.stderr = open(self.engine.create_artifact("gatling", ".err"), "w") self.reader = DataLogReader(self.engine.artifacts_dir, self.log, self.dir_prefix) if isinstance(self.engine.aggregator, ConsolidatingAggregator): self.engine.aggregator.add_underling(self.reader) def __generate_script(self): simulation = "TaurusSimulation_%s" % id(self) file_name = self.engine.create_artifact(simulation, ".scala") gen_script = GatlingScriptBuilder(self.get_load(), self.get_scenario(), self.log, simulation, self.tool.version) with codecs.open(file_name, 'w', encoding='utf-8') as script: script.write(gen_script.gen_test_case()) return simulation, file_name def _get_simulation_props(self): props = {} if os.path.isfile(self.script): if self.script.endswith('.jar'): self.env.add_path({"JAVA_CLASSPATH": self.script}) self.env.add_path({"COMPILATION_CLASSPATH": self.script}) else: props['gatling.core.directory.simulations'] = get_full_path(self.script, step_up=1) else: props['gatling.core.directory.simulations'] = self.script simulation = self.get_scenario().get("simulation") if simulation: props['gatling.core.simulationClass'] = simulation else: props['gatling.core.runDescription'] = "Taurus_Test" return props def _get_load_props(self): load = self.get_load() props = {} if load.concurrency: props['concurrency'] = load.concurrency if load.ramp_up is not None: props['ramp-up'] = int(load.ramp_up) if load.hold is not None: props['hold-for'] = int(load.hold) if load.iterations: props['iterations'] = int(load.iterations) if load.throughput: if load.duration: props['throughput'] = load.throughput else: self.log.warning("You should set up 'ramp-up' and/or 'hold-for' for usage of 'throughput'") return props def _get_scenario_props(self): props = {} scenario = self.get_scenario() timeout = scenario.get('timeout', None) if timeout is not None: props['gatling.http.ahc.requestTimeout'] = int(dehumanize_time(timeout) * 1000) return props def _set_env(self): props = BetterDict() props.merge(self.settings.get('properties')) props.merge(self.get_scenario().get("properties")) props['gatling.core.outputDirectoryBaseName'] = self.dir_prefix props['gatling.core.directory.resources'] = self.engine.artifacts_dir props['gatling.core.directory.results'] = self.engine.artifacts_dir props.merge(self._get_simulation_props()) props.merge(self._get_load_props()) props.merge(self._get_scenario_props()) for key in sorted(props.keys()): prop = props[key] val_tpl = "%s" if isinstance(prop, str): if not is_windows(): # extend properties support (contained separators/quotes/etc.) on lin/mac val_tpl = "%r" self.env.add_java_param({"JAVA_OPTS": ("-D%s=" + val_tpl) % (key, prop)}) self.env.set({"NO_PAUSE": "TRUE"}) self.env.add_java_param({"JAVA_OPTS": self.settings.get("java-opts", None)}) self.log.debug('JAVA_OPTS: "%s"', self.env.get("JAVA_OPTS")) def startup(self): self._set_env() self.process = self._execute([self.tool.tool_path]) def check(self): """ Checks if tool is still running. Also checks if resulting logs contains any data and throws exception otherwise. :return: bool :raise TaurusConfigError: :raise TaurusToolError: """ self.retcode = self.process.poll() # detect interactive mode and raise exception if it found if not self.simulation_started: wrong_line = "Choose a simulation number:" with open(self.stdout.name) as out: file_header = out.read(1024) if wrong_line in file_header: # gatling can't select test scenario scenarios = file_header[file_header.find(wrong_line) + len(wrong_line):].rstrip() msg = 'Several gatling simulations are found, you must ' msg += 'specify one of them to use in "simulation" option: %s' % scenarios raise TaurusConfigError(msg) if 'started...' in file_header: self.simulation_started = True if self.retcode is None: return False elif self.retcode == 0: return True else: raise ToolError("Gatling tool exited with non-zero code: %s" % self.retcode, self.get_error_diagnostics()) def shutdown(self): """ If tool is still running - let's stop it. """ shutdown_process(self.process, self.log) if self.start_time: self.end_time = time.time() self.log.debug("Gatling worked for %s seconds", self.end_time - self.start_time) def post_process(self): """ Save data log as artifact """ if self.reader and self.reader.file and self.reader.file.name: self.engine.existing_artifact(self.reader.file.name) super(GatlingExecutor, self).post_process() def install_required_tools(self): self.tool = self._get_tool(Gatling, config=self.settings) java = self._get_tool(JavaVM) required_tools = [self._get_tool(TclLibrary), java, self.tool] for tool in required_tools: if not tool.check_if_installed(): tool.install() def get_widget(self): if not self.widget: simulation = self.get_scenario().get('simulation', None) if simulation == "TaurusSimulation_%s" % id(self): simulation = 'generated script' if simulation is None: simulation = os.path.basename(self.script) self.widget = ExecutorWidget(self, 'Gatling: %s' % simulation) return self.widget def resource_files(self): files = [] script = self.get_script_path() if script: files.append(script) else: for source in self.get_scenario().get_data_sources(): source_path = self.engine.find_file(source["path"]) files.append(source_path) files.extend(self.get_additional_classpath()) return files def get_error_diagnostics(self): diagnostics = [] if self.stdout is not None: with open(self.stdout.name) as fds: contents = fds.read().strip() if contents.strip(): diagnostics.append("Gatling STDOUT:\n" + contents) if self.stderr is not None: with open(self.stderr.name) as fds: contents = fds.read().strip() if contents.strip(): diagnostics.append("Gatling STDERR:\n" + contents) if self.reader and self.reader.file and self.reader.file.name: with open(self.reader.file.name) as fds: contents = fds.read().strip() if contents.strip(): diagnostics.append("Simulation log:\n" + contents) return diagnostics class DataLogReader(ResultsReader): """ Class to read KPI from data log """ def __init__(self, basedir, parent_logger, dir_prefix): super(DataLogReader, self).__init__() self.concurrency = 0 self.log = parent_logger.getChild(self.__class__.__name__) self.basedir = basedir self.file = FileReader(file_opener=self.open_fds, parent_logger=self.log) self.partial_buffer = "" self.delimiter = "\t" self.dir_prefix = dir_prefix self.guessed_gatling_version = None self._group_errors = defaultdict(set) def _extract_log(self, fields): """ Extract stats from Gatling format of version 3.1 and after :param fields: :return: """ # 0 ${RequestRecordHeader.value} # 1 $scenario # -|2 $userId, absent in Gatling 3.4+ # 2 ${serializeGroups(groupHierarchy)} # 3 $label # 4 $startTimestamp # 5 $endTimestamp # 6 $status # [7] ${serializeMessage(message)}${serializeExtraInfo(extraInfo)} if fields[0].strip() == "USER": if self.guessed_gatling_version < "3.4+": del fields[2] # ignore obsolete $userId if fields[2].strip() == "START": self.concurrency += 1 elif fields[2].strip() == "END": self.concurrency -= 1 elif fields[0].strip() == "GROUP": del fields[0] return self.__parse_group(fields) elif fields[0].strip() == "REQUEST": del fields[0] return self.__parse_request(fields) else: return None def __parse_group(self, fields): latency = 0.0 con_time = 0.0 if len(fields) < 3: label = "" t_stamp = int(fields[1]) / 1000.0 r_time = 0 error = fields[0] r_code = "N/A" else: if self.guessed_gatling_version < "3.4+": del fields[0] # ignore obsolete $userId label = fields[0] if ',' in label: return None # skip nested groups for now t_stamp = int(fields[2]) / 1000.0 r_time = int(fields[3]) / 1000.0 if label in self._group_errors: error = ';'.join(self._group_errors.pop(label)) else: error = None if fields[4] == 'OK': r_code = '200' else: r_code = self.__rc_from_msg(fields[-1]) return int(t_stamp), label, r_time, con_time, latency, r_code, error def __parse_request(self, fields): # see LogFileDataWriter.ResponseMessageSerializer in gatling-core if self.guessed_gatling_version < "3.4+": del fields[0] # ignore obsolete $userId if len(fields) >= 6 and fields[5]: error = fields[5] else: error = None req_hierarchy = fields[0].split(',')[0] if req_hierarchy: if error: self._group_errors[req_hierarchy].add(error) return None label = fields[1] t_stamp = int(fields[3]) / 1000.0 r_time = (int(fields[3]) - int(fields[2])) / 1000.0 latency = 0.0 con_time = 0.0 if fields[4] == 'OK': r_code = '200' else: r_code = self.__rc_from_msg(fields[-1]) return int(t_stamp), label, r_time, con_time, latency, r_code, error def __rc_from_msg(self, msg): _tmp_rc = msg.split("but actually ")[-1] # gatling-core/src/main/scala/io/gatling/core/check/Validator.scala if _tmp_rc.startswith("unexpectedly "): _tmp_rc = _tmp_rc[len("unexpectedly "):] if _tmp_rc.startswith("found "): _tmp_rc = _tmp_rc[len("found "):] parts = _tmp_rc.split(' ') if len(parts) > 1 and parts[1] == 'is': _tmp_rc = parts[0] return _tmp_rc if _tmp_rc.isdigit() else 'N/A' def _guess_gatling_version(self, fields): if fields and fields[-1].strip() < "3.4": return "3.3.X" elif fields[-1].strip() >= "3.4": return "3.4+" else: return "" def _extract_log_data(self, fields): if self.guessed_gatling_version is None: self.guessed_gatling_version = self._guess_gatling_version(fields) return self._extract_log(fields) if self.guessed_gatling_version else None def _read(self, last_pass=False): """ Generator method that returns next portion of data :param last_pass: """ lines = self.file.get_lines(size=1024 * 1024, last_pass=last_pass) for line in lines: if not line.endswith("\n"): self.partial_buffer += line continue line = "%s%s" % (self.partial_buffer, line) self.partial_buffer = "" line = line.strip() fields = line.split(self.delimiter) data = self._extract_log_data(fields) if data is None: continue t_stamp, label, r_time, con_time, latency, r_code, error = data bytes_count = None yield t_stamp, label, self.concurrency, r_time, con_time, latency, r_code, error, '', bytes_count def open_fds(self, filename): """ open gatling simulation.log """ if os.path.isdir(self.basedir): prog = re.compile("^%s-[0-9]+$" % self.dir_prefix) for fname in os.listdir(self.basedir): if prog.match(fname): filename = os.path.join(self.basedir, fname, "simulation.log") break if not filename or not os.path.isfile(filename): self.log.debug('simulation.log not found') return elif os.path.isfile(self.basedir): filename = self.basedir else: self.log.debug('Path not found: %s', self.basedir) return if not os.path.getsize(filename): self.log.debug('simulation.log is empty') else: return open(filename, 'rb') class Gatling(RequiredTool): """ Gatling tool """ DOWNLOAD_LINK = "https://repo1.maven.org/maven2/io/gatling/highcharts/gatling-charts-highcharts-bundle" \ "/{version}/gatling-charts-highcharts-bundle-{version}-bundle.zip" VERSION = "3.5.1" LOCAL_PATH = "~/.bzt/gatling-taurus/{version}/bin/gatling{suffix}" def __init__(self, config=None, **kwargs): settings = config or {} version = settings.get("version", self.VERSION) def_path = self.LOCAL_PATH.format(version=version, suffix=EXE_SUFFIX) gatling_path = get_full_path(settings.get("path", def_path)) download_link = settings.get("download-link", self.DOWNLOAD_LINK).format(version=version) super(Gatling, self).__init__(tool_path=gatling_path, download_link=download_link, version=version, **kwargs) self.tool_dir = get_full_path(self.tool_path, step_up=2) def check_if_installed(self): self.log.debug("Trying Gatling...") try: out, err = self.call([self.tool_path, '--help']) self.log.debug("Gatling check output: %s", out) except CALL_PROBLEMS as exc: self.log.info("Gatling check failed: %s", exc) return False if err: self.log.warning("Gatling check stderr: %s", err) return True def install(self): dest = get_full_path(self.tool_path, step_up=2) self.log.info("Will install %s into %s", self.tool_name, dest) gatling_dist = self._download(use_link=True) self.log.info("Unzipping %s", gatling_dist) unzip(gatling_dist, dest, 'gatling-charts-highcharts-bundle-' + self.version) os.remove(gatling_dist) os.chmod(get_full_path(self.tool_path), 0o755) self.log.info("Installed Gatling successfully") if not self.check_if_installed(): raise ToolError("Unable to run %s after installation!" % self.tool_name) def build_launcher(self, new_name): # legacy, for v2 only modified_lines = [] mod_success = False with open(self.tool_path) as fds: for line in fds.readlines(): if is_windows(): if line.startswith('set COMPILER_CLASSPATH='): mod_success = True line = line.rstrip() + ';%COMPILATION_CLASSPATH%\n' # add from env elif line.startswith('set GATLING_CLASSPATH='): mod_success = True line = line.rstrip() + ';%JAVA_CLASSPATH%\n' # add from env else: if line.startswith('COMPILER_CLASSPATH='): mod_success = True line = line.rstrip()[:-1] + '${COMPILATION_CLASSPATH}"\n' # add from env elif line.startswith('GATLING_CLASSPATH='): mod_success = True line = line.rstrip()[:-1] + '${JAVA_CLASSPATH}"\n' # add from env elif line.startswith('"$JAVA"'): line = 'eval ' + line modified_lines.append(line) if not mod_success: raise ToolError("Can't modify gatling launcher for jar usage, ability isn't supported") self.tool_path = new_name with open(self.tool_path, 'w') as modified: modified.writelines(modified_lines) if not is_windows(): os.chmod(self.tool_path, 0o755)
37.979618
120
0.581438
91cac733cd43ef59c57f2a1a42d31ebc89e2564e
4,262
py
Python
Kanta.py
TomasJouhilampi/Painonhallinta
dd5ca4931316ba25f9946f8c91dd5697aae1d127
[ "CC0-1.0" ]
null
null
null
Kanta.py
TomasJouhilampi/Painonhallinta
dd5ca4931316ba25f9946f8c91dd5697aae1d127
[ "CC0-1.0" ]
null
null
null
Kanta.py
TomasJouhilampi/Painonhallinta
dd5ca4931316ba25f9946f8c91dd5697aae1d127
[ "CC0-1.0" ]
null
null
null
# Tietokantamoduli # Modulien ja kirjastojen lataukset import sqlite3 from sqlite3.dbapi2 import SQLITE_INSERT # Luodaan uusi tietokanta projektin hakemistoon tietokannan_nimi = 'painonhallinta.db' def luo_tietokanta(tiedosto): """Luo tietokannan huom. tiedoston tyyppi po. .db Args: tiedosto (string): SQL Lite tietokantatiedoston nimi """ yhteys = sqlite3.connect(tiedosto) yhteys.close() def luo_taulut(tiedosto): """Luo SQL Lite tietokantaan tarvittavat taulut """ # Muodostetaan yhteys tietokantaan, luodaan kanta tarvittaessa yhteys = sqlite3.connect(tiedosto) # Luodaan Henkilö-taulu yhteys.execute('''CREATE TABLE henkilo (henkilo_id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL, etunimi TEXT NOT NULL, sukunimi TEXT NOT NULL, sukupuoli INTEGER NOT NULL, spaiva DATE NOT NULL);''') # Luodaan Mittaukset-taulu yhteys.execute('''CREATE TABLE mittaus (mittaus_id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL, henkilo_id INTEGER NOT NULL, pituus REAL NOT NULL, paino REAL NOT NULL, FOREIGN KEY (henkilo_id) REFERENCES henkilo (henkilo_id) ON DELETE CASCADE);''') # Suljetaan tietokantayhteys taulujen luonnin jälkeen yhteys.close() # Luodaan testidataa def lisaa_henkilo(tiedosto, etunimi, sukunimi, sukupuoli, spaiva): """Lisätään argumenttina annetun tietokannan henkilo-tauluun uusi tietue Args: tiedosto (string): tietokantatiedoston nimi etunimi (string): Henkilön etunimi sukunimi (string): Henkilön sukunimi sukupuoli (int): Sukupuolikoodi 1: mies 0: nainen spaiva (string): ISO-standardin mukainen päiväys YYYY-MM-DD """ # Rakennetaan SQL-lause argumenttien arvoista sql_lause = "INSERT INTO henkilo (etunimi, sukunimi, sukupuoli, spaiva) VALUES (" + "'" + etunimi + "', " + "'" + sukunimi + "', " + str(sukupuoli) + ", " + "'" + spaiva + "');" # Luodaan yhteys tietokantaan yhteys = sqlite3.connect(tiedosto) # Suoritetaan tietueen lisäys SQL-lauseena yhteys.execute(sql_lause) # Vahvistetaan tapahtuma (transaktio) yhteys.commit() # Suljetaan yheys yhteys.close() # TODO: luo funktio, jolla saadaan puolilainausmerkit merkkijonon ympärille def sql_string(kentta): kentta = "'" + kentta +"'" return kentta # TODO: luo rutiini mittaustietojen syöttämiseksi mittaukset tauluun def lisaa_mittaus(tiedosto, henkilo_id, pituus, paino): """Lisää henkilön mittaustiedot mittaus-tauluuun Args: henkilo_id (integer): henkiön id pituus (float): henkilön pituus sentteinä paino (float): henkilön paino kiloina """ sql_lause = "INSERT INTO mittaus (henkilo_id, pituus, paino) VALUES (" + str(henkilo_id) + "," + str(pituus) + "," + str(paino) + ");" # Luodaan yhteys tietokantaan yhteys = sqlite3.connect(tiedosto) # Suoritetaan tietueen lisäys SQL-lauseena yhteys.execute(sql_lause) # Vahvistetaan tapahtuma (transaktio) yhteys.commit() # Suljetaan yheys yhteys.close() # TODO: luo rutiini tietojen lukemiseksi molemmista tauluita def lue_kaikki(tiedosto, taulu): """[summary] Args: tiedosto (string): tietokantatiedoston nimi taulu (string): taulun nimi Returns: list tulosjoukon tietueet """ # Paikallinen testaus if __name__ == "__main__": luo_tietokanta(tietokannan_nimi) luo_taulut(tietokannan_nimi) ''' etunimi = 'Mikko' sukunimi = 'Viljanen' sukupuoli = 1 spaiva = '1968-12-03' sql_lause = "INSERT INTO henkilo (etunimi, sukunimi, sukupuoli, spaiva) VALUES (" + "'" + etunimi + "', " + "'" + sukunimi + "', " + str(sukupuoli) + ", " + "'" + spaiva + "');" print(sql_lause) ''' lisaa_henkilo(tietokannan_nimi, 'Mikko', 'Viljanen', 1, '1968-12-03') lisaa_henkilo(tietokannan_nimi, 'Mika', 'Vainio', 1, '1962-06-26') ''' henkilo_id = 1 pituus = 171 paino = 74 sql_lause = "INSERT INTO mittaus (henkilo_id, pituus, paino) VALUES (" + str(henkilo_id) + "," + str(pituus) + "," + str(paino) + ");" print(sql_lause) ''' lisaa_mittaus(tietokannan_nimi, 2, 171, 74)
32.287879
181
0.665415
97e0a8690f0eef7fcecc3005f2550e2768d4714e
1,045
py
Python
frappe/core/doctype/language/language.py
sbkolate/jacfrappe
40cdb5b5fb0f1ccf802cb43df3cf65b593134fb5
[ "MIT" ]
null
null
null
frappe/core/doctype/language/language.py
sbkolate/jacfrappe
40cdb5b5fb0f1ccf802cb43df3cf65b593134fb5
[ "MIT" ]
null
null
null
frappe/core/doctype/language/language.py
sbkolate/jacfrappe
40cdb5b5fb0f1ccf802cb43df3cf65b593134fb5
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright (c) 2015, Frappe Technologies and contributors # For license information, please see license.txt from __future__ import unicode_literals import frappe, json from frappe.model.document import Document class Language(Document): pass def export_languages_json(): '''Export list of all languages''' languages = frappe.db.get_all('Language', fields=['name', 'language_name']) languages = [{'name': d.language_name, 'code': d.name} for d in languages] languages.sort(lambda a,b: 1 if a['code'] > b['code'] else -1) with open(frappe.get_app_path('frappe', 'geo', 'languages.json'), 'w') as f: f.write(frappe.as_json(languages)) def sync_languages(): '''Sync frappe/geo/languages.json with Language''' with open(frappe.get_app_path('frappe', 'geo', 'languages.json'), 'r') as f: data = json.loads(f.read()) for l in data: if not frappe.db.exists('Language', l['code']): frappe.get_doc({ 'doctype': 'Language', 'language_code': l['code'], 'language_name': l['name'] }).insert()
30.735294
77
0.689952
9770616e911b7c9607656a82995664db40988d38
3,443
py
Python
mwa_pb/measured_beamformer.py
NickSwainston/mwa_pb
6656ee2b83c23e6c31ae8dac6f67a46d9b881eae
[ "MIT" ]
2
2020-07-20T05:38:00.000Z
2020-08-10T01:31:52.000Z
mwa_pb/measured_beamformer.py
NickSwainston/mwa_pb
6656ee2b83c23e6c31ae8dac6f67a46d9b881eae
[ "MIT" ]
15
2019-05-01T01:58:06.000Z
2022-03-23T15:54:13.000Z
mwa_pb/measured_beamformer.py
NickSwainston/mwa_pb
6656ee2b83c23e6c31ae8dac6f67a46d9b881eae
[ "MIT" ]
7
2019-04-16T08:30:40.000Z
2022-03-28T13:34:13.000Z
import os import numpy from scipy import interpolate from . import config ################################## def delayset2delaylines(delayset): """ Calculate an array of 5 delay line flags based on the delay setting. NOT VECTOR. """ # See if we have a valid delay setting if delayset < 0 or delayset > 63: raise ValueError("Invalid Delay Setting %s" % repr(delayset)) # Delay settings with the MSB set are turned off, return None if delayset > 31: return None # Iterate through delaylines t = delayset dlines = [False] * 5 for i in range(4, -1, -1): if t >= 2 ** i: t = t - 2 ** i dlines[i] = True return dlines ################################## def get_delay_length(delayset, freq, delayfile=None): """ Get a delay length (in seconds) from a delay set """ if delayfile is None: delayfile = config.MEAS_DELAYS if not os.path.exists(delayfile): raise ValueError("Delay File %s does not exist" % delayfile) # Read in the array from the delay file t = [] f = open(delayfile) for line in f: t.append(list(map(float, line.split()))) darr = numpy.array(t) f_freqs = darr[:, 0] # Array of frequencies in the delay file. # Columns 1 through 5 in the delay file correspond to those delay lines delayset = numpy.array(delayset) outdelay = numpy.zeros(delayset.size, dtype='float64') for j in range(delayset.size): # stupid numpy zero-length array type.... if delayset.size == 1: dlines = delayset2delaylines(delayset) else: dlines = delayset2delaylines(delayset[j]) for i in range(5): # Check if each delay line is on. If it is, interpolate the file # to find the amount of delay to add if dlines[i]: ifunc = interpolate.splrep(f_freqs, darr[:, i + 1], s=0) outdelay[j] = outdelay[j] + interpolate.splev(freq, ifunc, der=0) return outdelay ################################## def get_delay_gains(delayset, freq, delayfile=None): """ Get a delay gains (linear scale) from a delay set """ gainfile = '' if delayfile is None: gainfile = config.MEAS_GAINS if not os.path.exists(gainfile): raise ValueError("Gain File %s does not exist" % gainfile) # Read in the array from the delay file t = [] f = open(gainfile) for line in f: t.append(list(map(float, line.split()))) garr = numpy.array(t) f_freqs = garr[:, 0] # Array of frequencies in the delay file. # Columns 1 through 5 in the delay file correspond to those delay lines delayset = numpy.array(delayset) outgain = numpy.zeros(delayset.size, dtype='float64') for j in range(delayset.size): # stupid numpy zero-length array type.... if delayset.size == 1: dlines = delayset2delaylines(delayset) else: dlines = delayset2delaylines(delayset[j]) for i in range(5): # Check if each delay line is on. If it is, interpolate the file # to find the amount of delay to add if dlines[i]: ifunc = interpolate.splrep(f_freqs, garr[:, i + 1], s=0) outgain[j] = outgain[j] + interpolate.splev(freq, ifunc, der=0) return (10.0 ** (outgain / 20.0))
29.681034
81
0.584084
e6d7556e0f81f73317ad863f5224df2799653de4
9,001
py
Python
shopify_yearmakemodel_advanced_search/shopify_yearmakemodel_advanced_search.py
chaps/py_shopify_ymm_advance_search
f83a3c8d30728d4c281b879cbc458e82771654f7
[ "MIT" ]
null
null
null
shopify_yearmakemodel_advanced_search/shopify_yearmakemodel_advanced_search.py
chaps/py_shopify_ymm_advance_search
f83a3c8d30728d4c281b879cbc458e82771654f7
[ "MIT" ]
null
null
null
shopify_yearmakemodel_advanced_search/shopify_yearmakemodel_advanced_search.py
chaps/py_shopify_ymm_advance_search
f83a3c8d30728d4c281b879cbc458e82771654f7
[ "MIT" ]
null
null
null
"""Main module.""" import requests from enum import Enum class SearchConditionsEnum(Enum): EQUALS = "equals" NOT_EQUALS = "not_equals" BEGINS_WITH = "begins_with" ENDS_WITH = "ends_with" CONTAINS = "contains" DOES_NOT_CONTAINS = "does_not_contains" GREATER_THAN = "greater_than" GREATER_THAN_OR_EQUAL = "greater_than_or_equal" LESS_THAN = "less_than" LESS_THAN_OR_EQUAL = "less_than_or_equal" class Shopify_YMM_AS: DEFAULT_USER_AGENT = "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/47.0.2526.111 Safari/537.36" ROUTES = { "GET_YMM": "/ajax/manage_ymm.php", "POST_YMM": "/ajax/manage_ymm.php", "ASSIGN_YMM": "/ajax/bulk_ymm.php", "GET_PROD_YMM": "/ajax/manage_ymm.php" } def __init__( self, domain, service_domain="https://www.ymmshopify.capacitywebservices.com" ): self.domain = domain self.service_domain = service_domain self.headers = {} def build_default_headers(self): headers = self.headers if not "user-agent" in headers: headers["user-agent"] = self.DEFAULT_USER_AGENT return headers def build_post_fields(self, fields): """ Given an array of values, build the array with the data expected by the payload for each entry. """ return [ { "field_val": value, "tag_val": value, "field":"field_{}".format(i), "tag_field":"field_{}_tag".format(i) } for i, value in enumerate(fields, start=1) ] def get_ymms(self): """ Performs a GET request to obtain all YMM entries for the domain object's target domain. Given the correct parameters, Returns an HTTP response with the JSON YMM data example: {"all_count":"3","total":3,"list":[{"id":"1","field_1":"1999","field_2":"Make ","field_3":"Nano"}]} """ headers = self.build_default_headers() response = requests.get( f"{self.service_domain}{self.ROUTES['GET_YMM']}", params={ "action": "get", "domain": self.domain }, headers=headers ) return response def search_ymms( self, text_search, filter_year=True, filter_make=True, filter_model=True, page=1, search_type=SearchConditionsEnum.EQUALS ): """ Performs a POST request to obtain all YMM entries for the domain object's target domain, that match a certain search criteria. """ headers = self.build_default_headers() payload = {} payload["txt"] = text_search filter_fields = [] if filter_year: filter_fields.append("field_1") if filter_make: filter_fields.append("field_2") if filter_model: filter_fields.append("field_3") payload["search_cond"] = search_type.value if type(search_type) == SearchConditionsEnum else search_type payload["page"] = page payload["filter_fields"] = filter_fields response = requests.post( f"{self.service_domain}{self.ROUTES['GET_YMM']}", params={ "action": "get", "domain": self.domain }, json=payload, headers=headers ) return response def search_ymm(self, *args, **kwargs): """ Performs a search_ymms, returns None if no results were found returns the id if only 1 result was found , or return the list of results if many are found. """ response_data = self.search_ymms(*args, **kwargs).json() if response_data["total"] == 1: return response_data["list"][0]["id"] if response_data["total"] > 0: return response_data["list"] return None def get_single_ymm(self, ymm_id): """ Performs a GET request to obtain a single YMM entry for the domain object's target domain. Given the correct parameters, Returns an HTTP response with the JSON YMM data example: {"id":"18","shop_id":"49639227552", "product_ids":"6074816233632,6071459348640,6071459610784","field_1":"2020","field_1_tag":"yr_2020", "field_2":"model2","field_2_tag":"mk_model2","field_3":"make2","field_3_tag":"md_make2"} """ headers = self.build_default_headers() response = requests.get( f"{self.service_domain}{self.ROUTES['GET_YMM']}", params={ "action": "edit", "data_id": ymm_id, "domain": self.domain }, headers=headers ) return response def add_ymm(self, fields, prod_ids=[]): """ Given an array of YMM field values, and an optional array of product ids. build the fields expected payload and perform a POST request to create a new YMM entry, if product_ids where given, the new entry will be related to the given product_ids. """ payload = { "ymm_fields": self.build_post_fields(fields), "product_ids": prod_ids } headers = self.build_default_headers() return requests.post( f"{self.service_domain}{self.ROUTES['POST_YMM']}", json = payload, params = { "domain": self.domain, "action": "save" }, headers = headers ) def update_ymm(self, fields, ymm_id, prod_ids=[]): """ Given an array of YMM field values, and an optional array of product ids. build the fields expected payload and perform a POST request to update a YMM entry, if product_ids where given, the new entry will be related to the given product_ids. """ payload = { "ymm_fields": self.build_post_fields(fields), "product_ids": prod_ids } headers = self.build_default_headers() return requests.post( f"{self.service_domain}{self.ROUTES['POST_YMM']}", json = payload, params = { "domain": self.domain, "data_id": ymm_id, "action": "save" }, headers = headers ) def assign_prods_ymms(self, prods, ymms): """ Given a list of shopify product ids and a list of YMM ids. Perform a POST request to create a relation between them. Returns the response object from the performed request. """ payload = { "product_ids": prods, "ymm_row_ids": ymms, } headers = self.build_default_headers() return requests.post( f"{self.service_domain}{self.ROUTES['ASSIGN_YMM']}", json = payload, params = { "domain": self.domain, "action": "bulk_assign" }, headers=headers ) def get_prod_ymms(self, prod_ymms_id): """ Given a YMM id, Perform a GET request to obtain the given YMM id information and all the Product-YMMs relations Returns the response object from the performed request. """ headers = self.build_default_headers() return requests.get( f"{self.service_domain}{self.ROUTES['GET_PROD_YMM']}", params = { "domain": self.domain, "action": "edit", "data_id": prod_ymms_id }, headers=headers ) def delete_ymm(self, ymm_id): """ Given an array of a single or multiple YMM ids as string, perform a POST request to delete existent YMM entries. """ payload = { "delete_id": ymm_id } headers = self.build_default_headers() return requests.post( f"{self.service_domain}{self.ROUTES['POST_YMM']}", json = payload, params = { "domain": self.domain, "action": "delete" }, headers = headers ) def delete_all_ymms(self): """ Performs a GET request to delate all YMM entries for the domain object's target domain. Given the correct parameters, Returns an HTTP response with code 200 """ headers = self.build_default_headers() response = requests.get( f"{self.service_domain}{self.ROUTES['GET_YMM']}", params={ "action": "delete_all", "domain": self.domain }, headers=headers ) return response
32.970696
136
0.553383
ade3c20b4a698e2f676fbe78717055cde6382852
1,037
py
Python
esp32/tools/run_initial_lopy_test.py
knagymate/pycom-micropython-sigfox-ble
03a166e7e5a98eeab273305fb4a22d3f32326b93
[ "MIT" ]
3
2020-03-06T16:14:00.000Z
2021-09-11T20:50:27.000Z
esp32/tools/run_initial_lopy_test.py
knagymate/pycom-micropython-sigfox-ble
03a166e7e5a98eeab273305fb4a22d3f32326b93
[ "MIT" ]
2
2020-03-12T07:59:22.000Z
2020-03-12T08:41:29.000Z
esp32/tools/run_initial_lopy_test.py
knagymate/pycom-micropython-sigfox-ble
03a166e7e5a98eeab273305fb4a22d3f32326b93
[ "MIT" ]
1
2020-08-27T21:29:52.000Z
2020-08-27T21:29:52.000Z
# # Copyright (c) 2020, Pycom Limited. # # This software is licensed under the GNU GPL version 3 or any # later version, with permitted additional terms. For more information # see the Pycom Licence v1.0 document supplied with this file, or # available at https://www.pycom.io/opensource/licensing # import pyboard import os def load_board_script(): with open(os.path.dirname(os.path.realpath(__file__)) + '/lopy_initial_test_board_script.py', 'rb') as input: remote_code = input.read() return remote_code def run_program_script(pyb): flash_test_code = load_board_script() pyb.enter_raw_repl_no_reset() pyb.exec_raw_no_follow(flash_test_code) def detect_test_status(pyb): if pyb._wait_for_exact_text("Test "): status = pyb.read_until("\n") if "OK" in status: return True else: return False else: return False def test_board(serial_port): pyb = pyboard.Pyboard(serial_port) run_program_script(pyb) return detect_test_status(pyb)
28.027027
113
0.707811
2a728b68cd416b82e16d4e753d1c4edfa426117f
2,017
py
Python
english/clustering/Meanshift/Meanshift_predict_cloud.py
Lyuyangdaisy/DS_package
ca0f220598ee156028646fbefccde08b2ece62ea
[ "MIT" ]
6
2021-03-13T10:33:47.000Z
2022-01-23T07:22:40.000Z
english/clustering/Meanshift/Meanshift_predict_cloud.py
Lyuyangdaisy/DS_package
ca0f220598ee156028646fbefccde08b2ece62ea
[ "MIT" ]
null
null
null
english/clustering/Meanshift/Meanshift_predict_cloud.py
Lyuyangdaisy/DS_package
ca0f220598ee156028646fbefccde08b2ece62ea
[ "MIT" ]
2
2021-05-05T17:47:34.000Z
2021-10-10T16:13:53.000Z
from sklearn.model_selection import train_test_split import sys import os import joblib import warnings from mlp_training_cloud import get_data,data_process import pandas as pd import matplotlib.pyplot as plt import datetime warnings.filterwarnings("ignore") # **********************************************************Parameter Adjustment Part************************************************************************* CHOICE = 1 # data pre-processing method -- 0.Robust Standardization 1.normalization 2.Standardization # file #FEATURE_FILE_PATH = "/tmp/feature.xlsx" # file where the features are located #LABEL_FILE_PATH = "/tmp/label.xlsx" # file where the labels are located def main(): FEATURE_FILE_PATH = sys.argv[1] LABEL_FILE_PATH = sys.argv[2] INPUT_MODEL = sys.argv[3] OUTPUT_RESULTS = sys.argv[4] TIMESTAMP = datetime.datetime.now().strftime("%Y_%m_%d_%H_%M_%S").replace("'","") # base = os.getcwd() base = INPUT_MODEL dir = os.path.join(base,"test.pkl") if not os.path.exists(dir): raise ValueError("The model file does not exist.") Mshift = joblib.load(INPUT_MODEL+'test.pkl') # call the pre-trained model print(Mshift) # get data print("Read file.........") print("Feature file:{}".format(FEATURE_FILE_PATH)) if not os.path.exists(FEATURE_FILE_PATH): raise ValueError("The feature file does not exist.") X = pd.read_excel(FEATURE_FILE_PATH).fillna(0) for col in X.columns: X[col] = X[col].apply(lambda x:str(x).replace(" ","")) if X.isnull().any().any(): raise ValueError("There is missing data in the feature file.") # data pre-process X_ = data_process(X,CHOICE) # data prediction and results visualization y_pred = Mshift.predict(X_) y_pred = pd.DataFrame(y_pred,columns=['predict']) df = pd.concat([X,y_pred],axis=1) df.to_csv(OUTPUT_RESULTS+"{}_results.csv".format(TIMESTAMP),index=None) if __name__ == '__main__': main()
32.015873
158
0.639068
2afb1e5a36b9e5908b3b07a9ebb1817345fe5bb6
310
py
Python
practical/core/views.py
Ekhel/django-practical
ef92d09e841cdef2c9fc1dd935f02a16ed67a60b
[ "MIT" ]
null
null
null
practical/core/views.py
Ekhel/django-practical
ef92d09e841cdef2c9fc1dd935f02a16ed67a60b
[ "MIT" ]
null
null
null
practical/core/views.py
Ekhel/django-practical
ef92d09e841cdef2c9fc1dd935f02a16ed67a60b
[ "MIT" ]
null
null
null
from django.shortcuts import render from django.contrib.auth import (login as auth_login, authenticate) from django.http import HttpResponseRedirect from django.contrib.auth.decorators import login_required from django.http import HttpResponse def index(request): return render(request,'apl/home.html')
31
68
0.822581
a47aba75e5ffb691a45490d9b080292b83d26fce
32,205
py
Python
daemon/tests/test_gui.py
montag451/core
3be162b0b0f54b35520b980023abdfad4ff5e489
[ "BSD-2-Clause" ]
null
null
null
daemon/tests/test_gui.py
montag451/core
3be162b0b0f54b35520b980023abdfad4ff5e489
[ "BSD-2-Clause" ]
null
null
null
daemon/tests/test_gui.py
montag451/core
3be162b0b0f54b35520b980023abdfad4ff5e489
[ "BSD-2-Clause" ]
null
null
null
""" Tests for testing tlv message handling. """ import os import time import mock import netaddr import pytest from mock import MagicMock from core.api.tlv import coreapi from core.emane.ieee80211abg import EmaneIeee80211abgModel from core.emulator.enumerations import ( ConfigFlags, ConfigTlvs, EventTlvs, EventTypes, ExecuteTlvs, FileTlvs, LinkTlvs, MessageFlags, NodeTlvs, NodeTypes, RegisterTlvs, SessionTlvs, ) from core.errors import CoreError from core.location.mobility import BasicRangeModel def dict_to_str(values): return "|".join(f"{x}={values[x]}" for x in values) class TestGui: @pytest.mark.parametrize( "node_type, model", [ (NodeTypes.DEFAULT, "PC"), (NodeTypes.EMANE, None), (NodeTypes.HUB, None), (NodeTypes.SWITCH, None), (NodeTypes.WIRELESS_LAN, None), (NodeTypes.TUNNEL, None), ], ) def test_node_add(self, coretlv, node_type, model): node_id = 1 message = coreapi.CoreNodeMessage.create( MessageFlags.ADD.value, [ (NodeTlvs.NUMBER, node_id), (NodeTlvs.TYPE, node_type.value), (NodeTlvs.NAME, "n1"), (NodeTlvs.X_POSITION, 0), (NodeTlvs.Y_POSITION, 0), (NodeTlvs.MODEL, model), ], ) coretlv.handle_message(message) assert coretlv.session.get_node(node_id) is not None def test_node_update(self, coretlv): node_id = 1 coretlv.session.add_node(_id=node_id) x = 50 y = 100 message = coreapi.CoreNodeMessage.create( 0, [ (NodeTlvs.NUMBER, node_id), (NodeTlvs.X_POSITION, x), (NodeTlvs.Y_POSITION, y), ], ) coretlv.handle_message(message) node = coretlv.session.get_node(node_id) assert node is not None assert node.position.x == x assert node.position.y == y def test_node_delete(self, coretlv): node_id = 1 coretlv.session.add_node(_id=node_id) message = coreapi.CoreNodeMessage.create( MessageFlags.DELETE.value, [(NodeTlvs.NUMBER, node_id)] ) coretlv.handle_message(message) with pytest.raises(CoreError): coretlv.session.get_node(node_id) def test_link_add_node_to_net(self, coretlv): node_one = 1 coretlv.session.add_node(_id=node_one) switch = 2 coretlv.session.add_node(_id=switch, _type=NodeTypes.SWITCH) ip_prefix = netaddr.IPNetwork("10.0.0.0/24") interface_one = str(ip_prefix[node_one]) message = coreapi.CoreLinkMessage.create( MessageFlags.ADD.value, [ (LinkTlvs.N1_NUMBER, node_one), (LinkTlvs.N2_NUMBER, switch), (LinkTlvs.INTERFACE1_NUMBER, 0), (LinkTlvs.INTERFACE1_IP4, interface_one), (LinkTlvs.INTERFACE1_IP4_MASK, 24), ], ) coretlv.handle_message(message) switch_node = coretlv.session.get_node(switch) all_links = switch_node.all_link_data(0) assert len(all_links) == 1 def test_link_add_net_to_node(self, coretlv): node_one = 1 coretlv.session.add_node(_id=node_one) switch = 2 coretlv.session.add_node(_id=switch, _type=NodeTypes.SWITCH) ip_prefix = netaddr.IPNetwork("10.0.0.0/24") interface_one = str(ip_prefix[node_one]) message = coreapi.CoreLinkMessage.create( MessageFlags.ADD.value, [ (LinkTlvs.N1_NUMBER, switch), (LinkTlvs.N2_NUMBER, node_one), (LinkTlvs.INTERFACE2_NUMBER, 0), (LinkTlvs.INTERFACE2_IP4, interface_one), (LinkTlvs.INTERFACE2_IP4_MASK, 24), ], ) coretlv.handle_message(message) switch_node = coretlv.session.get_node(switch) all_links = switch_node.all_link_data(0) assert len(all_links) == 1 def test_link_add_node_to_node(self, coretlv): node_one = 1 coretlv.session.add_node(_id=node_one) node_two = 2 coretlv.session.add_node(_id=node_two) ip_prefix = netaddr.IPNetwork("10.0.0.0/24") interface_one = str(ip_prefix[node_one]) interface_two = str(ip_prefix[node_two]) message = coreapi.CoreLinkMessage.create( MessageFlags.ADD.value, [ (LinkTlvs.N1_NUMBER, node_one), (LinkTlvs.N2_NUMBER, node_two), (LinkTlvs.INTERFACE1_NUMBER, 0), (LinkTlvs.INTERFACE1_IP4, interface_one), (LinkTlvs.INTERFACE1_IP4_MASK, 24), (LinkTlvs.INTERFACE2_NUMBER, 0), (LinkTlvs.INTERFACE2_IP4, interface_two), (LinkTlvs.INTERFACE2_IP4_MASK, 24), ], ) coretlv.handle_message(message) all_links = [] for node_id in coretlv.session.nodes: node = coretlv.session.nodes[node_id] all_links += node.all_link_data(0) assert len(all_links) == 1 def test_link_update(self, coretlv): node_one = 1 coretlv.session.add_node(_id=node_one) switch = 2 coretlv.session.add_node(_id=switch, _type=NodeTypes.SWITCH) ip_prefix = netaddr.IPNetwork("10.0.0.0/24") interface_one = str(ip_prefix[node_one]) message = coreapi.CoreLinkMessage.create( MessageFlags.ADD.value, [ (LinkTlvs.N1_NUMBER, node_one), (LinkTlvs.N2_NUMBER, switch), (LinkTlvs.INTERFACE1_NUMBER, 0), (LinkTlvs.INTERFACE1_IP4, interface_one), (LinkTlvs.INTERFACE1_IP4_MASK, 24), ], ) coretlv.handle_message(message) switch_node = coretlv.session.get_node(switch) all_links = switch_node.all_link_data(0) assert len(all_links) == 1 link = all_links[0] assert link.bandwidth is None bandwidth = 50000 message = coreapi.CoreLinkMessage.create( 0, [ (LinkTlvs.N1_NUMBER, node_one), (LinkTlvs.N2_NUMBER, switch), (LinkTlvs.INTERFACE1_NUMBER, 0), (LinkTlvs.BANDWIDTH, bandwidth), ], ) coretlv.handle_message(message) switch_node = coretlv.session.get_node(switch) all_links = switch_node.all_link_data(0) assert len(all_links) == 1 link = all_links[0] assert link.bandwidth == bandwidth def test_link_delete_node_to_node(self, coretlv): node_one = 1 coretlv.session.add_node(_id=node_one) node_two = 2 coretlv.session.add_node(_id=node_two) ip_prefix = netaddr.IPNetwork("10.0.0.0/24") interface_one = str(ip_prefix[node_one]) interface_two = str(ip_prefix[node_two]) message = coreapi.CoreLinkMessage.create( MessageFlags.ADD.value, [ (LinkTlvs.N1_NUMBER, node_one), (LinkTlvs.N2_NUMBER, node_two), (LinkTlvs.INTERFACE1_NUMBER, 0), (LinkTlvs.INTERFACE1_IP4, interface_one), (LinkTlvs.INTERFACE1_IP4_MASK, 24), (LinkTlvs.INTERFACE2_IP4, interface_two), (LinkTlvs.INTERFACE2_IP4_MASK, 24), ], ) coretlv.handle_message(message) all_links = [] for node_id in coretlv.session.nodes: node = coretlv.session.nodes[node_id] all_links += node.all_link_data(0) assert len(all_links) == 1 message = coreapi.CoreLinkMessage.create( MessageFlags.DELETE.value, [ (LinkTlvs.N1_NUMBER, node_one), (LinkTlvs.N2_NUMBER, node_two), (LinkTlvs.INTERFACE1_NUMBER, 0), (LinkTlvs.INTERFACE2_NUMBER, 0), ], ) coretlv.handle_message(message) all_links = [] for node_id in coretlv.session.nodes: node = coretlv.session.nodes[node_id] all_links += node.all_link_data(0) assert len(all_links) == 0 def test_link_delete_node_to_net(self, coretlv): node_one = 1 coretlv.session.add_node(_id=node_one) switch = 2 coretlv.session.add_node(_id=switch, _type=NodeTypes.SWITCH) ip_prefix = netaddr.IPNetwork("10.0.0.0/24") interface_one = str(ip_prefix[node_one]) message = coreapi.CoreLinkMessage.create( MessageFlags.ADD.value, [ (LinkTlvs.N1_NUMBER, node_one), (LinkTlvs.N2_NUMBER, switch), (LinkTlvs.INTERFACE1_NUMBER, 0), (LinkTlvs.INTERFACE1_IP4, interface_one), (LinkTlvs.INTERFACE1_IP4_MASK, 24), ], ) coretlv.handle_message(message) switch_node = coretlv.session.get_node(switch) all_links = switch_node.all_link_data(0) assert len(all_links) == 1 message = coreapi.CoreLinkMessage.create( MessageFlags.DELETE.value, [ (LinkTlvs.N1_NUMBER, node_one), (LinkTlvs.N2_NUMBER, switch), (LinkTlvs.INTERFACE1_NUMBER, 0), ], ) coretlv.handle_message(message) switch_node = coretlv.session.get_node(switch) all_links = switch_node.all_link_data(0) assert len(all_links) == 0 def test_link_delete_net_to_node(self, coretlv): node_one = 1 coretlv.session.add_node(_id=node_one) switch = 2 coretlv.session.add_node(_id=switch, _type=NodeTypes.SWITCH) ip_prefix = netaddr.IPNetwork("10.0.0.0/24") interface_one = str(ip_prefix[node_one]) message = coreapi.CoreLinkMessage.create( MessageFlags.ADD.value, [ (LinkTlvs.N1_NUMBER, node_one), (LinkTlvs.N2_NUMBER, switch), (LinkTlvs.INTERFACE1_NUMBER, 0), (LinkTlvs.INTERFACE1_IP4, interface_one), (LinkTlvs.INTERFACE1_IP4_MASK, 24), ], ) coretlv.handle_message(message) switch_node = coretlv.session.get_node(switch) all_links = switch_node.all_link_data(0) assert len(all_links) == 1 message = coreapi.CoreLinkMessage.create( MessageFlags.DELETE.value, [ (LinkTlvs.N1_NUMBER, switch), (LinkTlvs.N2_NUMBER, node_one), (LinkTlvs.INTERFACE2_NUMBER, 0), ], ) coretlv.handle_message(message) switch_node = coretlv.session.get_node(switch) all_links = switch_node.all_link_data(0) assert len(all_links) == 0 def test_session_update(self, coretlv): session_id = coretlv.session.id name = "test" message = coreapi.CoreSessionMessage.create( 0, [(SessionTlvs.NUMBER, str(session_id)), (SessionTlvs.NAME, name)] ) coretlv.handle_message(message) assert coretlv.session.name == name def test_session_query(self, coretlv): coretlv.dispatch_replies = mock.MagicMock() message = coreapi.CoreSessionMessage.create(MessageFlags.STRING.value, []) coretlv.handle_message(message) args, _ = coretlv.dispatch_replies.call_args replies = args[0] assert len(replies) == 1 def test_session_join(self, coretlv): coretlv.dispatch_replies = mock.MagicMock() session_id = coretlv.session.id message = coreapi.CoreSessionMessage.create( MessageFlags.ADD.value, [(SessionTlvs.NUMBER, str(session_id))] ) coretlv.handle_message(message) assert coretlv.session.id == session_id def test_session_delete(self, coretlv): assert len(coretlv.coreemu.sessions) == 1 session_id = coretlv.session.id message = coreapi.CoreSessionMessage.create( MessageFlags.DELETE.value, [(SessionTlvs.NUMBER, str(session_id))] ) coretlv.handle_message(message) assert len(coretlv.coreemu.sessions) == 0 def test_file_hook_add(self, coretlv): state = EventTypes.DATACOLLECT_STATE.value assert coretlv.session._hooks.get(state) is None file_name = "test.sh" file_data = "echo hello" message = coreapi.CoreFileMessage.create( MessageFlags.ADD.value, [ (FileTlvs.TYPE, f"hook:{state}"), (FileTlvs.NAME, file_name), (FileTlvs.DATA, file_data), ], ) coretlv.handle_message(message) hooks = coretlv.session._hooks.get(state) assert len(hooks) == 1 name, data = hooks[0] assert file_name == name assert file_data == data def test_file_service_file_set(self, coretlv): node = coretlv.session.add_node() service = "DefaultRoute" file_name = "defaultroute.sh" file_data = "echo hello" message = coreapi.CoreFileMessage.create( MessageFlags.ADD.value, [ (FileTlvs.NODE, node.id), (FileTlvs.TYPE, f"service:{service}"), (FileTlvs.NAME, file_name), (FileTlvs.DATA, file_data), ], ) coretlv.handle_message(message) service_file = coretlv.session.services.get_service_file( node, service, file_name ) assert file_data == service_file.data def test_file_node_file_copy(self, request, coretlv): file_name = "/var/log/test/node.log" node = coretlv.session.add_node() node.makenodedir() file_data = "echo hello" message = coreapi.CoreFileMessage.create( MessageFlags.ADD.value, [ (FileTlvs.NODE, node.id), (FileTlvs.NAME, file_name), (FileTlvs.DATA, file_data), ], ) coretlv.handle_message(message) if not request.config.getoption("mock"): directory, basename = os.path.split(file_name) created_directory = directory[1:].replace("/", ".") create_path = os.path.join(node.nodedir, created_directory, basename) assert os.path.exists(create_path) def test_exec_node_tty(self, coretlv): coretlv.dispatch_replies = mock.MagicMock() node = coretlv.session.add_node() message = coreapi.CoreExecMessage.create( MessageFlags.TTY.value, [ (ExecuteTlvs.NODE, node.id), (ExecuteTlvs.NUMBER, 1), (ExecuteTlvs.COMMAND, "bash"), ], ) coretlv.handle_message(message) args, _ = coretlv.dispatch_replies.call_args replies = args[0] assert len(replies) == 1 def test_exec_local_command(self, request, coretlv): if request.config.getoption("mock"): pytest.skip("mocking calls") coretlv.dispatch_replies = mock.MagicMock() node = coretlv.session.add_node() cmd = "echo hello" message = coreapi.CoreExecMessage.create( MessageFlags.TEXT.value | MessageFlags.LOCAL.value, [ (ExecuteTlvs.NODE, node.id), (ExecuteTlvs.NUMBER, 1), (ExecuteTlvs.COMMAND, cmd), ], ) coretlv.handle_message(message) args, _ = coretlv.dispatch_replies.call_args replies = args[0] assert len(replies) == 1 def test_exec_node_command(self, coretlv): coretlv.dispatch_replies = mock.MagicMock() node = coretlv.session.add_node() cmd = "echo hello" message = coreapi.CoreExecMessage.create( MessageFlags.TEXT.value, [ (ExecuteTlvs.NODE, node.id), (ExecuteTlvs.NUMBER, 1), (ExecuteTlvs.COMMAND, cmd), ], ) node.cmd = MagicMock(return_value="hello") coretlv.handle_message(message) node.cmd.assert_called_with(cmd) @pytest.mark.parametrize( "state", [ EventTypes.SHUTDOWN_STATE, EventTypes.RUNTIME_STATE, EventTypes.DATACOLLECT_STATE, EventTypes.CONFIGURATION_STATE, EventTypes.DEFINITION_STATE, ], ) def test_event_state(self, coretlv, state): message = coreapi.CoreEventMessage.create(0, [(EventTlvs.TYPE, state.value)]) coretlv.handle_message(message) assert coretlv.session.state == state.value def test_event_schedule(self, coretlv): coretlv.session.add_event = mock.MagicMock() node = coretlv.session.add_node() message = coreapi.CoreEventMessage.create( MessageFlags.ADD.value, [ (EventTlvs.TYPE, EventTypes.SCHEDULED.value), (EventTlvs.TIME, str(time.monotonic() + 100)), (EventTlvs.NODE, node.id), (EventTlvs.NAME, "event"), (EventTlvs.DATA, "data"), ], ) coretlv.handle_message(message) coretlv.session.add_event.assert_called_once() def test_event_save_xml(self, coretlv, tmpdir): xml_file = tmpdir.join("coretlv.session.xml") file_path = xml_file.strpath coretlv.session.add_node() message = coreapi.CoreEventMessage.create( 0, [(EventTlvs.TYPE, EventTypes.FILE_SAVE.value), (EventTlvs.NAME, file_path)], ) coretlv.handle_message(message) assert os.path.exists(file_path) def test_event_open_xml(self, coretlv, tmpdir): xml_file = tmpdir.join("coretlv.session.xml") file_path = xml_file.strpath node = coretlv.session.add_node() coretlv.session.save_xml(file_path) coretlv.session.delete_node(node.id) message = coreapi.CoreEventMessage.create( 0, [(EventTlvs.TYPE, EventTypes.FILE_OPEN.value), (EventTlvs.NAME, file_path)], ) coretlv.handle_message(message) assert coretlv.session.get_node(node.id) @pytest.mark.parametrize( "state", [ EventTypes.START, EventTypes.STOP, EventTypes.RESTART, EventTypes.PAUSE, EventTypes.RECONFIGURE, ], ) def test_event_service(self, coretlv, state): coretlv.session.broadcast_event = mock.MagicMock() node = coretlv.session.add_node() message = coreapi.CoreEventMessage.create( 0, [ (EventTlvs.TYPE, state.value), (EventTlvs.NODE, node.id), (EventTlvs.NAME, "service:DefaultRoute"), ], ) coretlv.handle_message(message) coretlv.session.broadcast_event.assert_called_once() @pytest.mark.parametrize( "state", [ EventTypes.START, EventTypes.STOP, EventTypes.RESTART, EventTypes.PAUSE, EventTypes.RECONFIGURE, ], ) def test_event_mobility(self, coretlv, state): message = coreapi.CoreEventMessage.create( 0, [(EventTlvs.TYPE, state.value), (EventTlvs.NAME, "mobility:ns2script")] ) coretlv.handle_message(message) def test_register_gui(self, coretlv): message = coreapi.CoreRegMessage.create(0, [(RegisterTlvs.GUI, "gui")]) coretlv.handle_message(message) def test_register_xml(self, coretlv, tmpdir): xml_file = tmpdir.join("coretlv.session.xml") file_path = xml_file.strpath node = coretlv.session.add_node() coretlv.session.save_xml(file_path) coretlv.session.delete_node(node.id) message = coreapi.CoreRegMessage.create( 0, [(RegisterTlvs.EXECUTE_SERVER, file_path)] ) coretlv.session.instantiate() coretlv.handle_message(message) assert coretlv.coreemu.sessions[1].get_node(node.id) def test_register_python(self, coretlv, tmpdir): xml_file = tmpdir.join("test.py") file_path = xml_file.strpath with open(file_path, "w") as f: f.write("coreemu = globals()['coreemu']\n") f.write(f"session = coreemu.sessions[{coretlv.session.id}]\n") f.write("session.add_node()\n") message = coreapi.CoreRegMessage.create( 0, [(RegisterTlvs.EXECUTE_SERVER, file_path)] ) coretlv.session.instantiate() coretlv.handle_message(message) assert len(coretlv.session.nodes) == 1 def test_config_all(self, coretlv): message = coreapi.CoreConfMessage.create( MessageFlags.ADD.value, [(ConfigTlvs.OBJECT, "all"), (ConfigTlvs.TYPE, ConfigFlags.RESET.value)], ) coretlv.session.location.refxyz = (10, 10, 10) coretlv.handle_message(message) assert coretlv.session.location.refxyz == (0, 0, 0) def test_config_options_request(self, coretlv): message = coreapi.CoreConfMessage.create( 0, [ (ConfigTlvs.OBJECT, "session"), (ConfigTlvs.TYPE, ConfigFlags.REQUEST.value), ], ) coretlv.handle_broadcast_config = mock.MagicMock() coretlv.handle_message(message) coretlv.handle_broadcast_config.assert_called_once() def test_config_options_update(self, coretlv): test_key = "test" test_value = "test" values = {test_key: test_value} message = coreapi.CoreConfMessage.create( 0, [ (ConfigTlvs.OBJECT, "session"), (ConfigTlvs.TYPE, ConfigFlags.UPDATE.value), (ConfigTlvs.VALUES, dict_to_str(values)), ], ) coretlv.handle_message(message) assert coretlv.session.options.get_config(test_key) == test_value def test_config_location_reset(self, coretlv): message = coreapi.CoreConfMessage.create( 0, [ (ConfigTlvs.OBJECT, "location"), (ConfigTlvs.TYPE, ConfigFlags.RESET.value), ], ) coretlv.session.location.refxyz = (10, 10, 10) coretlv.handle_message(message) assert coretlv.session.location.refxyz == (0, 0, 0) def test_config_location_update(self, coretlv): message = coreapi.CoreConfMessage.create( 0, [ (ConfigTlvs.OBJECT, "location"), (ConfigTlvs.TYPE, ConfigFlags.UPDATE.value), (ConfigTlvs.VALUES, "10|10|70|50|0|0.5"), ], ) coretlv.handle_message(message) assert coretlv.session.location.refxyz == (10, 10, 0.0) assert coretlv.session.location.refgeo == (70, 50, 0) assert coretlv.session.location.refscale == 0.5 def test_config_metadata_request(self, coretlv): message = coreapi.CoreConfMessage.create( 0, [ (ConfigTlvs.OBJECT, "metadata"), (ConfigTlvs.TYPE, ConfigFlags.REQUEST.value), ], ) coretlv.handle_broadcast_config = mock.MagicMock() coretlv.handle_message(message) coretlv.handle_broadcast_config.assert_called_once() def test_config_metadata_update(self, coretlv): test_key = "test" test_value = "test" values = {test_key: test_value} message = coreapi.CoreConfMessage.create( 0, [ (ConfigTlvs.OBJECT, "metadata"), (ConfigTlvs.TYPE, ConfigFlags.UPDATE.value), (ConfigTlvs.VALUES, dict_to_str(values)), ], ) coretlv.handle_message(message) assert coretlv.session.metadata[test_key] == test_value def test_config_broker_request(self, coretlv): server = "test" host = "10.0.0.1" port = 50000 message = coreapi.CoreConfMessage.create( 0, [ (ConfigTlvs.OBJECT, "broker"), (ConfigTlvs.TYPE, ConfigFlags.UPDATE.value), (ConfigTlvs.VALUES, f"{server}:{host}:{port}"), ], ) coretlv.session.distributed.add_server = mock.MagicMock() coretlv.handle_message(message) coretlv.session.distributed.add_server.assert_called_once_with(server, host) def test_config_services_request_all(self, coretlv): message = coreapi.CoreConfMessage.create( 0, [ (ConfigTlvs.OBJECT, "services"), (ConfigTlvs.TYPE, ConfigFlags.REQUEST.value), ], ) coretlv.handle_broadcast_config = mock.MagicMock() coretlv.handle_message(message) coretlv.handle_broadcast_config.assert_called_once() def test_config_services_request_specific(self, coretlv): node = coretlv.session.add_node() message = coreapi.CoreConfMessage.create( 0, [ (ConfigTlvs.NODE, node.id), (ConfigTlvs.OBJECT, "services"), (ConfigTlvs.TYPE, ConfigFlags.REQUEST.value), (ConfigTlvs.OPAQUE, "service:DefaultRoute"), ], ) coretlv.handle_broadcast_config = mock.MagicMock() coretlv.handle_message(message) coretlv.handle_broadcast_config.assert_called_once() def test_config_services_request_specific_file(self, coretlv): node = coretlv.session.add_node() message = coreapi.CoreConfMessage.create( 0, [ (ConfigTlvs.NODE, node.id), (ConfigTlvs.OBJECT, "services"), (ConfigTlvs.TYPE, ConfigFlags.REQUEST.value), (ConfigTlvs.OPAQUE, "service:DefaultRoute:defaultroute.sh"), ], ) coretlv.session.broadcast_file = mock.MagicMock() coretlv.handle_message(message) coretlv.session.broadcast_file.assert_called_once() def test_config_services_reset(self, coretlv): node = coretlv.session.add_node() service = "DefaultRoute" coretlv.session.services.set_service(node.id, service) message = coreapi.CoreConfMessage.create( 0, [ (ConfigTlvs.OBJECT, "services"), (ConfigTlvs.TYPE, ConfigFlags.RESET.value), ], ) assert coretlv.session.services.get_service(node.id, service) is not None coretlv.handle_message(message) assert coretlv.session.services.get_service(node.id, service) is None def test_config_services_set(self, coretlv): node = coretlv.session.add_node() service = "DefaultRoute" values = {"meta": "metadata"} message = coreapi.CoreConfMessage.create( 0, [ (ConfigTlvs.NODE, node.id), (ConfigTlvs.OBJECT, "services"), (ConfigTlvs.TYPE, ConfigFlags.UPDATE.value), (ConfigTlvs.OPAQUE, f"service:{service}"), (ConfigTlvs.VALUES, dict_to_str(values)), ], ) assert coretlv.session.services.get_service(node.id, service) is None coretlv.handle_message(message) assert coretlv.session.services.get_service(node.id, service) is not None def test_config_mobility_reset(self, coretlv): wlan = coretlv.session.add_node(_type=NodeTypes.WIRELESS_LAN) message = coreapi.CoreConfMessage.create( 0, [ (ConfigTlvs.OBJECT, "MobilityManager"), (ConfigTlvs.TYPE, ConfigFlags.RESET.value), ], ) coretlv.session.mobility.set_model_config(wlan.id, BasicRangeModel.name, {}) assert len(coretlv.session.mobility.node_configurations) == 1 coretlv.handle_message(message) assert len(coretlv.session.mobility.node_configurations) == 0 def test_config_mobility_model_request(self, coretlv): wlan = coretlv.session.add_node(_type=NodeTypes.WIRELESS_LAN) message = coreapi.CoreConfMessage.create( 0, [ (ConfigTlvs.NODE, wlan.id), (ConfigTlvs.OBJECT, BasicRangeModel.name), (ConfigTlvs.TYPE, ConfigFlags.REQUEST.value), ], ) coretlv.handle_broadcast_config = mock.MagicMock() coretlv.handle_message(message) coretlv.handle_broadcast_config.assert_called_once() def test_config_mobility_model_update(self, coretlv): wlan = coretlv.session.add_node(_type=NodeTypes.WIRELESS_LAN) config_key = "range" config_value = "1000" values = {config_key: config_value} message = coreapi.CoreConfMessage.create( 0, [ (ConfigTlvs.NODE, wlan.id), (ConfigTlvs.OBJECT, BasicRangeModel.name), (ConfigTlvs.TYPE, ConfigFlags.UPDATE.value), (ConfigTlvs.VALUES, dict_to_str(values)), ], ) coretlv.handle_message(message) config = coretlv.session.mobility.get_model_config( wlan.id, BasicRangeModel.name ) assert config[config_key] == config_value def test_config_emane_model_request(self, coretlv): wlan = coretlv.session.add_node(_type=NodeTypes.WIRELESS_LAN) message = coreapi.CoreConfMessage.create( 0, [ (ConfigTlvs.NODE, wlan.id), (ConfigTlvs.OBJECT, EmaneIeee80211abgModel.name), (ConfigTlvs.TYPE, ConfigFlags.REQUEST.value), ], ) coretlv.handle_broadcast_config = mock.MagicMock() coretlv.handle_message(message) coretlv.handle_broadcast_config.assert_called_once() def test_config_emane_model_update(self, coretlv): wlan = coretlv.session.add_node(_type=NodeTypes.WIRELESS_LAN) config_key = "distance" config_value = "50051" values = {config_key: config_value} message = coreapi.CoreConfMessage.create( 0, [ (ConfigTlvs.NODE, wlan.id), (ConfigTlvs.OBJECT, EmaneIeee80211abgModel.name), (ConfigTlvs.TYPE, ConfigFlags.UPDATE.value), (ConfigTlvs.VALUES, dict_to_str(values)), ], ) coretlv.handle_message(message) config = coretlv.session.emane.get_model_config( wlan.id, EmaneIeee80211abgModel.name ) assert config[config_key] == config_value def test_config_emane_request(self, coretlv): message = coreapi.CoreConfMessage.create( 0, [ (ConfigTlvs.OBJECT, "emane"), (ConfigTlvs.TYPE, ConfigFlags.REQUEST.value), ], ) coretlv.handle_broadcast_config = mock.MagicMock() coretlv.handle_message(message) coretlv.handle_broadcast_config.assert_called_once() def test_config_emane_update(self, coretlv): config_key = "eventservicedevice" config_value = "eth4" values = {config_key: config_value} message = coreapi.CoreConfMessage.create( 0, [ (ConfigTlvs.OBJECT, "emane"), (ConfigTlvs.TYPE, ConfigFlags.UPDATE.value), (ConfigTlvs.VALUES, dict_to_str(values)), ], ) coretlv.handle_message(message) config = coretlv.session.emane.get_configs() assert config[config_key] == config_value
33.132716
88
0.589412
36f871b4f33d2a47025528d6bbaf5ebdf20e71b0
49,849
py
Python
sfepy/terms/terms.py
antonykamp/sfepy
8213d3c8cc2825602b41dc65eb543b575856ca8c
[ "BSD-3-Clause" ]
1
2021-05-15T16:28:45.000Z
2021-05-15T16:28:45.000Z
sfepy/terms/terms.py
Moyunning/sfepy
127ab753a2f4f24ed359d0152088d11227c3dd49
[ "BSD-3-Clause" ]
null
null
null
sfepy/terms/terms.py
Moyunning/sfepy
127ab753a2f4f24ed359d0152088d11227c3dd49
[ "BSD-3-Clause" ]
null
null
null
from __future__ import absolute_import import re from copy import copy import numpy as nm from sfepy.base.base import (as_float_or_complex, get_default, assert_, Container, Struct, basestr, goptions) from sfepy.base.compat import in1d # Used for imports in term files. from sfepy.terms.extmods import terms import six from six.moves import range from functools import reduce _match_args = re.compile('^([^\(\}]*)\((.*)\)$').match _match_virtual = re.compile('^virtual$').match _match_state = re.compile('^state(_[_a-zA-Z0-9]+)?$').match _match_parameter = re.compile('^parameter(_[_a-zA-Z0-9]+)?$').match _match_material = re.compile('^material(_[_a-zA-Z0-9]+)?$').match _match_material_opt = re.compile('^opt_material(_[_a-zA-Z0-9]+)?$').match _match_material_root = re.compile('(.+)\.(.*)').match _match_ts = re.compile('^ts$').match def get_arg_kinds(arg_types): """ Translate `arg_types` of a Term to a canonical form. Parameters ---------- arg_types : tuple of strings The term argument types, as given in the `arg_types` attribute. Returns ------- arg_kinds : list of strings The argument kinds - one of 'virtual_variable', 'state_variable', 'parameter_variable', 'opt_material', 'ts', 'user'. """ arg_kinds = [] for ii, arg_type in enumerate(arg_types): if _match_virtual(arg_type): arg_kinds.append('virtual_variable') elif _match_state(arg_type): arg_kinds.append('state_variable') elif _match_parameter(arg_type): arg_kinds.append('parameter_variable') elif _match_material(arg_type): arg_kinds.append('material') elif _match_material_opt(arg_type): arg_kinds.append('opt_material') if ii > 0: msg = 'opt_material at position %d, must be at 0!' % ii raise ValueError(msg) elif _match_ts(arg_type): arg_kinds.append('ts') else: arg_kinds.append('user') return arg_kinds def get_shape_kind(integration): """ Get data shape kind for given integration type. """ if integration == 'surface': shape_kind = 'surface' elif integration in ('volume', 'plate', 'surface_extra'): shape_kind = 'volume' elif integration == 'point': shape_kind = 'point' else: raise NotImplementedError('unsupported term integration! (%s)' % integration) return shape_kind def split_complex_args(args): """ Split complex arguments to real and imaginary parts. Returns ------- newargs : dictionary Dictionary with lists corresponding to `args` such that each argument of numpy.complex128 data type is split to its real and imaginary part. The output depends on the number of complex arguments in 'args': - 0: list (key 'r') identical to input one - 1: two lists with keys 'r', 'i' corresponding to real and imaginary parts - 2: output dictionary contains four lists: - 'r' - real(arg1), real(arg2) - 'i' - imag(arg1), imag(arg2) - 'ri' - real(arg1), imag(arg2) - 'ir' - imag(arg1), real(arg2) """ newargs = {} cai = [] for ii, arg in enumerate(args): if isinstance(arg, nm.ndarray) and (arg.dtype == nm.complex128): cai.append(ii) if len(cai) > 0: newargs['r'] = list(args[:]) newargs['i'] = list(args[:]) arg1 = cai[0] newargs['r'][arg1] = args[arg1].real.copy() newargs['i'][arg1] = args[arg1].imag.copy() if len(cai) == 2: arg2 = cai[1] newargs['r'][arg2] = args[arg2].real.copy() newargs['i'][arg2] = args[arg2].imag.copy() newargs['ri'] = list(args[:]) newargs['ir'] = list(args[:]) newargs['ri'][arg1] = newargs['r'][arg1] newargs['ri'][arg2] = newargs['i'][arg2] newargs['ir'][arg1] = newargs['i'][arg1] newargs['ir'][arg2] = newargs['r'][arg2] elif len(cai) > 2: raise NotImplementedError('more than 2 complex arguments! (%d)' % len(cai)) else: newargs['r'] = args[:] return newargs def create_arg_parser(): from pyparsing import Literal, Word, delimitedList, Group, \ StringStart, StringEnd, Optional, nums, alphas, alphanums ident = Word(alphas, alphanums + "_") inumber = Word("+-" + nums, nums) history = Optional(Literal('[').suppress() + inumber + Literal(']').suppress(), default=0)("history") history.setParseAction(lambda str, loc, toks: int(toks[0])) variable = Group(Word(alphas, alphanums + '._') + history) derivative = Group(Literal('d') + variable\ + Literal('/').suppress() + Literal('dt')) trace = Group(Literal('tr') + Literal('(').suppress() + Optional(ident + Literal(',').suppress(), default=None) + variable + Literal(')').suppress()) generalized_var = derivative | trace | variable args = StringStart() + delimitedList(generalized_var) + StringEnd() return args class ConnInfo(Struct): def get_region(self, can_trace=True): if self.is_trace and can_trace: return self.region.get_mirror_region(self.trace_region) else: return self.region def get_region_name(self, can_trace=True): if self.is_trace and can_trace: reg = self.region.get_mirror_region(self.trace_region) else: reg = self.region if reg is not None: return reg.name else: return None class Terms(Container): @staticmethod def from_desc(term_descs, regions, integrals=None): """ Create terms, assign each term its region. """ from sfepy.terms import term_table terms = Terms() for td in term_descs: try: constructor = term_table[td.name] except: msg = "term '%s' is not in %s" % (td.name, sorted(term_table.keys())) raise ValueError(msg) try: region = regions[td.region] except IndexError: raise KeyError('region "%s" does not exist!' % td.region) term = Term.from_desc(constructor, td, region, integrals=integrals) terms.append(term) return terms def __init__(self, objs=None): Container.__init__(self, objs=objs) self.update_expression() def insert(self, ii, obj): Container.insert(self, ii, obj) self.update_expression() def append(self, obj): Container.append(self, obj) self.update_expression() def update_expression(self): self.expression = [] for term in self: aux = [term.sign, term.name, term.arg_str, term.integral_name, term.region.name] self.expression.append(aux) def __mul__(self, other): out = Terms() for name, term in self.iteritems(): out.append(term * other) return out def __rmul__(self, other): return self * other def __add__(self, other): if isinstance(other, Term): out = self.copy() out.append(other) elif isinstance(other, Terms): out = Terms(self._objs + other._objs) else: raise ValueError('cannot add Terms with %s!' % other) return out def __radd__(self, other): return self + other def __sub__(self, other): if isinstance(other, Term): out = self + (-other) elif isinstance(other, Terms): out = self + (-other) else: raise ValueError('cannot subtract Terms with %s!' % other) return out def __rsub__(self, other): return -self + other def __pos__(self): return self def __neg__(self): return -1.0 * self def setup(self): for term in self: term.setup() def assign_args(self, variables, materials, user=None): """ Assign all term arguments. """ for term in self: term.assign_args(variables, materials, user) def get_variable_names(self): out = [] for term in self: out.extend(term.get_variable_names()) return list(set(out)) def get_material_names(self): out = [] for term in self: out.extend(term.get_material_names()) return list(set(out)) def get_user_names(self): out = [] for term in self: out.extend(term.get_user_names()) return list(set(out)) class Term(Struct): name = '' arg_types = () arg_shapes = {} integration = 'volume' geometries = ['1_2', '2_3', '2_4', '3_4', '3_8'] @staticmethod def new(name, integral, region, **kwargs): from sfepy.terms import term_table arg_str = _match_args(name) if arg_str is not None: name, arg_str = arg_str.groups() else: raise ValueError('bad term syntax! (%s)' % name) if name in term_table: constructor = term_table[name] else: msg = "term '%s' is not in %s" % (name, sorted(term_table.keys())) raise ValueError(msg) obj = constructor(name, arg_str, integral, region, **kwargs) return obj @staticmethod def from_desc(constructor, desc, region, integrals=None): from sfepy.discrete import Integrals if integrals is None: integrals = Integrals() integral = integrals.get(desc.integral) obj = constructor(desc.name, desc.args, integral, region) obj.sign = desc.sign return obj def __init__(self, name, arg_str, integral, region, **kwargs): self.name = name self.arg_str = arg_str self.region = region self._kwargs = kwargs self._integration = self.integration self.sign = 1.0 self.set_integral(integral) def __mul__(self, other): try: mul = as_float_or_complex(other) except ValueError: raise ValueError('cannot multiply Term with %s!' % other) out = self.copy(name=self.name) out.sign = mul * self.sign return out def __rmul__(self, other): return self * other def __add__(self, other): if isinstance(other, Term): out = Terms([self, other]) else: out = NotImplemented return out def __sub__(self, other): if isinstance(other, Term): out = Terms([self, -1.0 * other]) else: out = NotImplemented return out def __pos__(self): return self def __neg__(self): out = -1.0 * self return out def get_str(self): return '{:+} * {}.{}.{}({})'.format( self.sign, self.name, self.integral.order, self.region.name, self.arg_str) def set_integral(self, integral): """ Set the term integral. """ self.integral = integral if self.integral is not None: self.integral_name = self.integral.name def setup(self): self.function = Struct.get(self, 'function', None) self.step = 0 self.dt = 1.0 self.is_quasistatic = False self.has_region = True self.setup_formal_args() if self._kwargs: self.setup_args(**self._kwargs) else: self.args = [] def setup_formal_args(self): self.arg_names = [] self.arg_steps = {} self.arg_derivatives = {} self.arg_traces = {} self.arg_trace_regions = {} parser = create_arg_parser() self.arg_desc = parser.parseString(self.arg_str) for arg in self.arg_desc: derivative = None trace = False trace_region = None if isinstance(arg[1], int): name, step = arg else: kind = arg[0] if kind == 'd': name, step = arg[1] derivative = arg[2] elif kind == 'tr': trace = True trace_region = arg[1] name, step = arg[2] match = _match_material_root(name) if match: name = (match.group(1), match.group(2)) self.arg_names.append(name) self.arg_steps[name] = step self.arg_derivatives[name] = derivative self.arg_traces[name] = trace self.arg_trace_regions[name] = trace_region def setup_args(self, **kwargs): self._kwargs = kwargs self.args = [] for arg_name in self.arg_names: if isinstance(arg_name, basestr): self.args.append(self._kwargs[arg_name]) else: self.args.append((self._kwargs[arg_name[0]], arg_name[1])) self.classify_args() self.check_args() def assign_args(self, variables, materials, user=None): """ Check term argument existence in variables, materials, user data and assign the arguments to terms. Also check compatibility of field and term regions. """ if user is None: user = {} user.setdefault('ts', Struct()) kwargs = {} for arg_name in self.arg_names: if isinstance(arg_name, basestr): if arg_name in variables.names: kwargs[arg_name] = variables[arg_name] elif arg_name in user: kwargs[arg_name] = user[arg_name] else: raise ValueError('argument %s not found!' % arg_name) else: arg_name = arg_name[0] if arg_name in materials.names: kwargs[arg_name] = materials[arg_name] else: raise ValueError('material argument %s not found!' % arg_name) self.setup_args(**kwargs) def classify_args(self): """ Classify types of the term arguments and find matching call signature. A state variable can be in place of a parameter variable and vice versa. """ self.names = Struct(name='arg_names', material=[], variable=[], user=[], state=[], virtual=[], parameter=[]) # Prepare for 'opt_material' - just prepend a None argument if needed. if isinstance(self.arg_types[0], tuple): arg_types = self.arg_types[0] else: arg_types = self.arg_types if len(arg_types) == (len(self.args) + 1): self.args.insert(0, (None, None)) self.arg_names.insert(0, (None, None)) if isinstance(self.arg_types[0], tuple): assert_(len(self.modes) == len(self.arg_types)) # Find matching call signature using variable arguments - material # and user arguments are ignored! matched = [] for it, arg_types in enumerate(self.arg_types): arg_kinds = get_arg_kinds(arg_types) if self._check_variables(arg_kinds): matched.append((it, arg_kinds)) if len(matched) == 1: i_match, arg_kinds = matched[0] arg_types = self.arg_types[i_match] self.mode = self.modes[i_match] elif len(matched) == 0: msg = 'cannot match arguments! (%s)' % self.arg_names raise ValueError(msg) else: msg = 'ambiguous arguments! (%s)' % self.arg_names raise ValueError(msg) else: arg_types = self.arg_types arg_kinds = get_arg_kinds(self.arg_types) self.mode = Struct.get(self, 'mode', None) if not self._check_variables(arg_kinds): raise ValueError('cannot match variables! (%s)' % self.arg_names) # Set actual argument types. self.ats = list(arg_types) for ii, arg_kind in enumerate(arg_kinds): name = self.arg_names[ii] if arg_kind.endswith('variable'): names = self.names.variable if arg_kind == 'virtual_variable': self.names.virtual.append(name) elif arg_kind == 'state_variable': self.names.state.append(name) elif arg_kind == 'parameter_variable': self.names.parameter.append(name) elif arg_kind.endswith('material'): # This should be better checked already in create_arg_parser(). if not isinstance(name, tuple): raise ValueError('wrong material argument %s of term %s!' % (name, self.get_str())) names = self.names.material else: names = self.names.user names.append(name) self.n_virtual = len(self.names.virtual) if self.n_virtual > 1: raise ValueError('at most one virtual variable is allowed! (%d)' % self.n_virtual) self.set_arg_types() self.setup_integration() def _check_variables(self, arg_kinds): for ii, arg_kind in enumerate(arg_kinds): if arg_kind.endswith('variable'): var = self.args[ii] check = {'virtual_variable' : var.is_virtual, 'state_variable' : var.is_state_or_parameter, 'parameter_variable' : var.is_state_or_parameter} if not check[arg_kind](): return False else: return True def set_arg_types(self): pass def check_args(self): """ Common checking to all terms. Check compatibility of field and term regions. """ vns = self.get_variable_names() for name in vns: field = self._kwargs[name].get_field() if field is None: continue region = self.region if self.arg_traces[name]: mreg_name = self.arg_trace_regions[name] if mreg_name is None: mreg_name = region.setup_mirror_region(mreg_name, ret_name=True) self.arg_trace_regions[name] = mreg_name else: region.setup_mirror_region(mreg_name) region = region.get_mirror_region(mreg_name) if not nm.all(in1d(region.vertices, field.region.vertices)): msg = ('%s: incompatible regions: (self, field %s)' + '(%s in %s)') %\ (self.name, field.name, self.region.vertices, field.region.vertices) raise ValueError(msg) def get_variable_names(self): return self.names.variable def get_material_names(self): out = [] for aux in self.names.material: if aux[0] is not None: out.append(aux[0]) return out def get_user_names(self): return self.names.user def get_virtual_name(self): if not self.names.virtual: return None var = self.get_virtual_variable() return var.name def get_state_names(self): """ If variables are given, return only true unknowns whose data are of the current time step (0). """ variables = self.get_state_variables() return [var.name for var in variables] def get_parameter_names(self): return copy(self.names.parameter) def get_conn_key(self): """The key to be used in DOF connectivity information.""" key = (self.name,) + tuple(self.arg_names) arg_traces = [k for k, v in self.arg_traces.items() if v] if len(arg_traces) > 0: atr = arg_traces[-1] trace = True, self.arg_trace_regions[atr], atr else: trace = False, None, None key += (self.integral_name, self.region.name) + trace return key def get_conn_info(self): vvar = self.get_virtual_variable() svars = self.get_state_variables() pvars = self.get_parameter_variables() all_vars = self.get_variables() dc_type = self.get_dof_conn_type() tgs = self.get_geometry_types() v_tg = None if vvar is not None: field = vvar.get_field() if field is not None: if vvar.name in tgs: v_tg = tgs[vvar.name] else: v_tg = None else: # No virtual variable -> all unknowns are in fact known parameters. pvars += svars svars = [] region = self.get_region() if region is not None: arg_traces = [k for k, v in self.arg_traces.items() if v] if len(arg_traces) > 0: aname = arg_traces[-1] mreg_name = self.arg_trace_regions[aname] if mreg_name is None: mreg_name = region.setup_mirror_region(mreg_name, ret_name=True) self.arg_trace_regions[aname] = mreg_name else: region.setup_mirror_region(mreg_name) vals = [] aux_pvars = [] for svar in svars: # Allow only true state variables. if not svar.is_state(): aux_pvars.append(svar) continue field = svar.get_field() is_trace = self.arg_traces[svar.name] trace_region = self.arg_trace_regions[svar.name] if svar.name in tgs: ps_tg = tgs[svar.name] else: ps_tg = v_tg val = ConnInfo(virtual=vvar, state=svar, primary=svar, has_virtual=True, has_state=True, is_trace=is_trace, trace_region=trace_region, dc_type=dc_type, v_tg=v_tg, ps_tg=ps_tg, region=region, all_vars=all_vars) vals.append(val) pvars += aux_pvars for pvar in pvars: field = pvar.get_field() is_trace = self.arg_traces[pvar.name] trace_region = self.arg_trace_regions[pvar.name] if pvar.name in tgs: ps_tg = tgs[pvar.name] else: ps_tg = v_tg val = ConnInfo(virtual=vvar, state=None, primary=pvar.get_primary(), has_virtual=vvar is not None, has_state=False, is_trace=is_trace, trace_region=trace_region, dc_type=dc_type, v_tg=v_tg, ps_tg=ps_tg, region=region, all_vars=all_vars) vals.append(val) if vvar and (len(vals) == 0): # No state, parameter variables, just the virtual one. val = ConnInfo(virtual=vvar, state=vvar.get_primary(), primary=vvar.get_primary(), has_virtual=True, has_state=False, is_trace=False, trace_region=None, dc_type=dc_type, v_tg=v_tg, ps_tg=v_tg, region=region, all_vars=all_vars) vals.append(val) return vals def get_args_by_name(self, arg_names): """ Return arguments by name. """ out = [] for name in arg_names: try: ii = self.arg_names.index(name) except ValueError: raise ValueError('non-existing argument! (%s)' % name) out.append(self.args[ii]) return out def get_args(self, arg_types=None, **kwargs): """ Return arguments by type as specified in arg_types (or self.ats). Arguments in **kwargs can override the ones assigned at the term construction - this is useful for passing user data. """ ats = self.ats if arg_types is None: arg_types = ats args = [] region_name, iorder = self.region.name, self.integral.order for at in arg_types: ii = ats.index(at) arg_name = self.arg_names[ii] if isinstance(arg_name, basestr): if arg_name in kwargs: args.append(kwargs[arg_name]) else: args.append(self.args[ii]) else: mat, par_name = self.args[ii] if mat is not None: mat_data = mat.get_data((region_name, iorder), par_name) else: mat_data = None args.append(mat_data) return args def get_kwargs(self, keys, **kwargs): """Extract arguments from **kwargs listed in keys (default is None).""" return [kwargs.get(name) for name in keys] def get_arg_name(self, arg_type, full=False, join=None): """ Get the name of the argument specified by `arg_type.` Parameters ---------- arg_type : str The argument type string. full : bool If True, return the full name. For example, if the name of a variable argument is 'u' and its time derivative is requested, the full name is 'du/dt'. join : str, optional Optionally, the material argument name tuple can be joined to a single string using the `join` string. Returns ------- name : str The argument name. """ try: ii = self.ats.index(arg_type) except ValueError: return None name = self.arg_names[ii] if full: # Include derivatives. if self.arg_derivatives[name]: name = 'd%s/%s' % (name, self.arg_derivatives[name]) if (join is not None) and isinstance(name, tuple): name = join.join(name) return name def setup_integration(self): self.has_geometry = True self.geometry_types = {} if isinstance(self.integration, basestr): for var in self.get_variables(): self.geometry_types[var.name] = self.integration else: if self.mode is not None: self.integration = self._integration[self.mode] if self.integration is not None: for arg_type, gtype in six.iteritems(self.integration): var = self.get_args(arg_types=[arg_type])[0] self.geometry_types[var.name] = gtype gtypes = list(set(self.geometry_types.values())) if 'surface_extra' in gtypes: self.dof_conn_type = 'volume' elif len(gtypes): self.dof_conn_type = gtypes[0] def get_region(self): return self.region def get_geometry_types(self): """ Returns ------- out : dict The required geometry types for each variable argument. """ return self.geometry_types def get_dof_conn_type(self): return Struct(name='dof_conn_info', type=self.dof_conn_type, region_name=self.region.name) def get_assembling_cells(self, shape=None): """ Return the assembling cell indices into a DOF connectivity. """ cells = nm.arange(shape[0], dtype=nm.int32) return cells def time_update(self, ts): if ts is not None: self.step = ts.step self.dt = ts.dt self.is_quasistatic = ts.is_quasistatic if 'ts' in self._kwargs: self._kwargs['ts'].update(ts) def advance(self, ts): """ Advance to the next time step. Implemented in subclasses. """ def get_vector(self, variable): """Get the vector stored in `variable` according to self.arg_steps and self.arg_derivatives. Supports only the backward difference w.r.t. time.""" name = variable.name return variable(step=self.arg_steps[name], derivative=self.arg_derivatives[name]) def get_variables(self, as_list=True): if as_list: variables = self.get_args_by_name(self.names.variable) else: variables = {} for var in self.get_args_by_name(self.names.variable): variables[var.name] = var return variables def get_virtual_variable(self): aux = self.get_args_by_name(self.names.virtual) if len(aux) == 1: var = aux[0] else: var = None return var def get_state_variables(self, unknown_only=False): variables = self.get_args_by_name(self.names.state) if unknown_only: variables = [var for var in variables if (var.kind == 'unknown') and (self.arg_steps[var.name] == 0)] return variables def get_parameter_variables(self): return self.get_args_by_name(self.names.parameter) def get_materials(self, join=False): materials = self.get_args_by_name(self.names.material) for mat in materials: if mat[0] is None: materials.remove(mat) if join: materials = list(set(mat[0] for mat in materials)) return materials def get_qp_key(self): """ Return a key identifying uniquely the term quadrature points. """ return (self.region.name, self.integral.order) def get_physical_qps(self): """ Get physical quadrature points corresponding to the term region and integral. """ from sfepy.discrete.common.mappings import get_physical_qps, PhysicalQPs if self.integration == 'point': phys_qps = PhysicalQPs() else: phys_qps = get_physical_qps(self.region, self.integral) return phys_qps def get_mapping(self, variable, get_saved=False, return_key=False): """ Get the reference mapping from a variable. Notes ----- This is a convenience wrapper of Field.get_mapping() that initializes the arguments using the term data. """ integration = self.geometry_types[variable.name] is_trace = self.arg_traces[variable.name] if is_trace: mreg_name = self.arg_trace_regions[variable.name] region = self.region.get_mirror_region(mreg_name) else: region = self.region out = variable.field.get_mapping(region, self.integral, integration, get_saved=get_saved, return_key=return_key) return out def get_data_shape(self, variable): """ Get data shape information from variable. Notes ----- This is a convenience wrapper of FieldVariable.get_data_shape() that initializes the arguments using the term data. """ integration = self.geometry_types[variable.name] is_trace = self.arg_traces[variable.name] if is_trace: mreg_name = self.arg_trace_regions[variable.name] region = self.region.get_mirror_region(mreg_name) else: region = self.region out = variable.get_data_shape(self.integral, integration, region.name) return out def get(self, variable, quantity_name, bf=None, integration=None, step=None, time_derivative=None): """ Get the named quantity related to the variable. Notes ----- This is a convenience wrapper of Variable.evaluate() that initializes the arguments using the term data. """ name = variable.name step = get_default(step, self.arg_steps[name]) time_derivative = get_default(time_derivative, self.arg_derivatives[name]) integration = get_default(integration, self.geometry_types[name]) data = variable.evaluate(mode=quantity_name, region=self.region, integral=self.integral, integration=integration, step=step, time_derivative=time_derivative, is_trace=self.arg_traces[name], bf=bf, trace_region=self.arg_trace_regions[name]) return data def check_shapes(self, *args, **kwargs): """ Check term argument shapes at run-time. """ from sfepy.base.base import output from sfepy.mechanics.tensors import dim2sym dim = self.region.dim sym = dim2sym(dim) def _parse_scalar_shape(sh): if isinstance(sh, basestr): if sh == 'D': return dim elif sh == 'D2': return dim**2 elif sh == 'S': return sym elif sh == 'N': # General number. return nm.inf elif sh == 'str': return 'str' else: return int(sh) else: return sh def _parse_tuple_shape(sh): if isinstance(sh, basestr): return tuple((_parse_scalar_shape(ii.strip()) for ii in sh.split(','))) else: return (int(sh),) arg_kinds = get_arg_kinds(self.ats) arg_shapes_list = self.arg_shapes if not isinstance(arg_shapes_list, list): arg_shapes_list = [arg_shapes_list] # Loop allowed shapes until a match is found, else error. allowed_shapes = [] prev_shapes = {} actual_shapes = {} for _arg_shapes in arg_shapes_list: # Unset shapes are taken from the previous iteration. arg_shapes = copy(prev_shapes) arg_shapes.update(_arg_shapes) prev_shapes = arg_shapes allowed_shapes.append(arg_shapes) n_ok = 0 for ii, arg_kind in enumerate(arg_kinds): if arg_kind in ('user', 'ts'): n_ok += 1 continue arg = args[ii] key = '%s:%s' % (self.ats[ii], self.arg_names[ii]) if self.mode is not None: extended_ats = self.ats[ii] + ('/%s' % self.mode) else: extended_ats = self.ats[ii] try: sh = arg_shapes[self.ats[ii]] except KeyError: sh = arg_shapes[extended_ats] if arg_kind.endswith('variable'): n_el, n_qp, _dim, n_en, n_c = self.get_data_shape(arg) actual_shapes[key] = (n_c,) shape = _parse_scalar_shape(sh[0] if isinstance(sh, tuple) else sh) if nm.isinf(shape): n_ok += 1 else: n_ok += shape == n_c elif arg_kind.endswith('material'): if arg is None: # Switched-off opt_material. n_ok += sh is None continue if sh is None: continue prefix = '' if isinstance(sh, basestr): aux = tuple(ii.strip() for ii in sh.split(':')) if len(aux) == 2: prefix, sh = aux if sh == 'str': n_ok += isinstance(arg, basestr) continue shape = _parse_tuple_shape(sh) ls = len(shape) aarg = nm.array(arg, ndmin=1) actual_shapes[key] = aarg.shape # Substiture general dimension 'N' with actual value. iinfs = nm.where(nm.isinf(shape))[0] if len(iinfs): shape = list(shape) for iinf in iinfs: shape[iinf] = aarg.shape[-ls+iinf] shape = tuple(shape) if (ls > 1) or (shape[0] > 1): # Array. n_ok += shape == aarg.shape[-ls:] actual_shapes[key] = aarg.shape[-ls:] elif (ls == 1) and (shape[0] == 1): # Scalar constant or callable as term argument from numbers import Number n_ok += isinstance(arg, Number) or callable(arg) else: n_ok += 1 if n_ok == len(arg_kinds): break else: term_str = self.get_str() output('allowed argument shapes for term "%s":' % term_str) output(allowed_shapes) output('actual argument shapes:') output(actual_shapes) raise ValueError('wrong arguments shapes for "%s" term! (see above)' % term_str) def standalone_setup(self): from sfepy.discrete import create_adof_conns, Variables conn_info = {'aux' : self.get_conn_info()} adcs = create_adof_conns(conn_info, None) variables = Variables(self.get_variables()) variables.set_adof_conns(adcs) materials = self.get_materials(join=True) for mat in materials: mat.time_update(None, [Struct(terms=[self])]) def call_get_fargs(self, args, kwargs): try: fargs = self.get_fargs(*args, **kwargs) except (RuntimeError, ValueError): terms.errclear() raise return fargs def call_function(self, out, fargs): try: status = self.function(out, *fargs) except (RuntimeError, ValueError): terms.errclear() raise if status: terms.errclear() raise ValueError('term evaluation failed! (%s)' % self.name) return status def eval_real(self, shape, fargs, mode='eval', term_mode=None, diff_var=None, **kwargs): out = nm.empty(shape, dtype=nm.float64) if mode == 'eval': status = self.call_function(out, fargs) # Sum over elements but not over components. out1 = nm.sum(out, 0).squeeze() return out1, status else: status = self.call_function(out, fargs) return out, status def eval_complex(self, shape, fargs, mode='eval', term_mode=None, diff_var=None, **kwargs): rout = nm.empty(shape, dtype=nm.float64) fargsd = split_complex_args(fargs) # Assuming linear forms. Then the matrix is the # same both for real and imaginary part. rstatus = self.call_function(rout, fargsd['r']) if (diff_var is None) and len(fargsd) >= 2: iout = nm.empty(shape, dtype=nm.float64) istatus = self.call_function(iout, fargsd['i']) if mode == 'eval' and len(fargsd) >= 4: irout = nm.empty(shape, dtype=nm.float64) irstatus = self.call_function(irout, fargsd['ir']) riout = nm.empty(shape, dtype=nm.float64) ristatus = self.call_function(riout, fargsd['ri']) out = (rout - iout) + (riout + irout) * 1j status = rstatus or istatus or ristatus or irstatus else: out = rout + 1j * iout status = rstatus or istatus else: out, status = rout + 0j, rstatus if mode == 'eval': out1 = nm.sum(out, 0).squeeze() return out1, status else: return out, status def evaluate(self, mode='eval', diff_var=None, standalone=True, ret_status=False, **kwargs): """ Evaluate the term. Parameters ---------- mode : 'eval' (default), or 'weak' The term evaluation mode. Returns ------- val : float or array In 'eval' mode, the term returns a single value (the integral, it does not need to be a scalar), while in 'weak' mode it returns an array for each element. status : int, optional The flag indicating evaluation success (0) or failure (nonzero). Only provided if `ret_status` is True. iels : array of ints, optional The local elements indices in 'weak' mode. Only provided in non-'eval' modes. """ if standalone: self.standalone_setup() kwargs = kwargs.copy() term_mode = kwargs.pop('term_mode', None) if mode in ('eval', 'el_eval', 'el_avg', 'qp'): args = self.get_args(**kwargs) self.check_shapes(*args) emode = 'eval' if mode == 'el_eval' else mode _args = tuple(args) + (emode, term_mode, diff_var) shape, dtype = self.get_eval_shape(*_args, **kwargs) if shape[0] == 0: val = nm.zeros(shape, dtype=dtype) status = 0 else: fargs = self.call_get_fargs(_args, kwargs) if dtype == nm.float64: val, status = self.eval_real(shape, fargs, mode, term_mode, **kwargs) elif dtype == nm.complex128: val, status = self.eval_complex(shape, fargs, mode, term_mode, **kwargs) else: raise ValueError('unsupported term dtype! (%s)' % dtype) val *= self.sign out = (val,) elif mode == 'weak': varr = self.get_virtual_variable() if varr is None: raise ValueError('no virtual variable in weak mode! (in "%s")' % self.get_str()) if diff_var is not None: varc = self.get_variables(as_list=False)[diff_var] args = self.get_args(**kwargs) self.check_shapes(*args) n_elr, n_qpr, dim, n_enr, n_cr = self.get_data_shape(varr) n_row = n_cr * n_enr if diff_var is None: shape = (n_elr, 1, n_row, 1) else: n_elc, n_qpc, dim, n_enc, n_cc = self.get_data_shape(varc) n_col = n_cc * n_enc shape = (n_elr, 1, n_row, n_col) if shape[0] == 0: vals = nm.zeros(shape, dtype=varr.dtype) status = 0 else: _args = tuple(args) + (mode, term_mode, diff_var) fargs = self.call_get_fargs(_args, kwargs) if varr.dtype == nm.float64: vals, status = self.eval_real(shape, fargs, mode, term_mode, diff_var, **kwargs) elif varr.dtype == nm.complex128: vals, status = self.eval_complex(shape, fargs, mode, term_mode, diff_var, **kwargs) else: raise ValueError('unsupported term dtype! (%s)' % varr.dtype) if not isinstance(vals, tuple): vals *= self.sign iels = self.get_assembling_cells(vals.shape) else: vals = (self.sign * vals[0],) + vals[1:] iels = None out = (vals, iels) if goptions['check_term_finiteness']: assert_(nm.isfinite(out[0]).all(), msg='"%s" term values not finite!' % self.get_str()) if ret_status: out = out + (status,) if len(out) == 1: out = out[0] return out def assemble_to(self, asm_obj, val, iels, mode='vector', diff_var=None): """ Assemble the results of term evaluation. For standard terms, assemble the values in `val` corresponding to elements/cells `iels` into a vector or a CSR sparse matrix `asm_obj`, depending on `mode`. For terms with a dynamic connectivity (e.g. contact terms), in `'matrix'` mode, return the extra COO sparse matrix instead. The extra matrix has to be added to the global matrix by the caller. By default, this is done in :func:`Equations.evaluate() <sfepy.discrete.equations.Equations.evaluate()>`. """ import sfepy.discrete.common.extmods.assemble as asm vvar = self.get_virtual_variable() dc_type = self.get_dof_conn_type() extra = None if mode == 'vector': if asm_obj.dtype == nm.float64: assemble = asm.assemble_vector else: assert_(asm_obj.dtype == nm.complex128) assemble = asm.assemble_vector_complex for ii in range(len(val)): if not(val[ii].dtype == nm.complex128): val[ii] = nm.complex128(val[ii]) if not isinstance(val, tuple): dc = vvar.get_dof_conn(dc_type) assert_(val.shape[2] == dc.shape[1]) assemble(asm_obj, val, iels, 1.0, dc) else: vals, rows, var = val if var.eq_map is not None: eq = var.eq_map.eq rows = eq[rows] active = (rows >= 0) vals, rows = vals[active], rows[active] # Assumes no repeated indices in rows! asm_obj[rows] += vals elif mode == 'matrix': if asm_obj.dtype == nm.float64: assemble = asm.assemble_matrix else: assert_(asm_obj.dtype == nm.complex128) assemble = asm.assemble_matrix_complex svar = diff_var tmd = (asm_obj.data, asm_obj.indptr, asm_obj.indices) if ((asm_obj.dtype == nm.complex128) and (val.dtype == nm.float64)): val = val.astype(nm.complex128) sign = 1.0 if self.arg_derivatives[svar.name]: if not self.is_quasistatic or (self.step > 0): sign *= 1.0 / self.dt else: sign = 0.0 if not isinstance(val, tuple): rdc = vvar.get_dof_conn(dc_type) is_trace = self.arg_traces[svar.name] trace_region = self.arg_trace_regions[svar.name] cdc = svar.get_dof_conn(dc_type, is_trace, trace_region) assert_(val.shape[2:] == (rdc.shape[1], cdc.shape[1])) assemble(tmd[0], tmd[1], tmd[2], val, iels, sign, rdc, cdc) else: from scipy.sparse import coo_matrix vals, rows, cols, rvar, cvar = val if rvar.eq_map is not None: req, ceq = rvar.eq_map.eq, cvar.eq_map.eq rows, cols = req[rows], ceq[cols] active = (rows >= 0) & (cols >= 0) vals, rows, cols = vals[active], rows[active], cols[active] extra = coo_matrix((sign * vals, (rows, cols)), shape=asm_obj.shape) else: raise ValueError('unknown assembling mode! (%s)' % mode) return extra
31.253292
80
0.517523
fef8a49653a2cf5b206d375068d17900eb8776dd
606
py
Python
filmfestival/migrations/0013_auto_20150610_1459.py
mykonosbiennale/mykonosbiennale.github.io
fba479807204768ac440c77c4850b64fb25d113d
[ "Apache-2.0" ]
1
2017-08-19T01:07:22.000Z
2017-08-19T01:07:22.000Z
filmfestival/migrations/0013_auto_20150610_1459.py
thanos/mykonosbiennale.org
ddb53fbe4198ce29c252c72f9dca49ed277c50dc
[ "Apache-2.0" ]
7
2015-04-02T04:48:43.000Z
2022-03-11T23:14:58.000Z
filmfestival/migrations/0013_auto_20150610_1459.py
mykonosbiennale/mykonosbiennale.github.io
fba479807204768ac440c77c4850b64fb25d113d
[ "Apache-2.0" ]
1
2015-04-15T20:56:03.000Z
2015-04-15T20:56:03.000Z
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('filmfestival', '0012_auto_20150610_1454'), ] operations = [ migrations.AlterModelOptions( name='screening', options={'ordering': ('order',)}, ), migrations.AddField( model_name='screening', name='order', field=models.PositiveIntegerField(default=1, editable=False, db_index=True), preserve_default=False, ), ]
24.24
88
0.59571
87b274db799595f219c0dfcf7a9f8b79e096e49d
9,479
py
Python
IR_DACF_KW.py
LePingKYXK/Dipole-ACF
fcbb22c904c6a1019095ef66c5e94f37446357f1
[ "BSD-4-Clause-UC" ]
10
2016-09-25T02:45:34.000Z
2021-12-26T02:44:20.000Z
IR_DACF_KW.py
LePingKYXK/Dipole-ACF
fcbb22c904c6a1019095ef66c5e94f37446357f1
[ "BSD-4-Clause-UC" ]
2
2016-09-23T22:50:55.000Z
2017-07-12T00:16:35.000Z
IR_DACF_KW.py
LePingKYXK/Dipole-ACF
fcbb22c904c6a1019095ef66c5e94f37446357f1
[ "BSD-4-Clause-UC" ]
7
2016-11-11T04:26:48.000Z
2021-05-22T12:18:06.000Z
#!/usr/bin/env python ''' This script (VERSION 3.3) is the improved version based on Dr. Kulig's first version of ir_total_QC.py, which is a pure Python script, without using Numpy, Scipy and no visulization of the results. The author renamed it into IR_DACF_KW.py, where "K" refers to Dr. Kulig, and "W" refers to Dr. Wang. The main improvement are: (1) Implementation of the powerful Numpy module, which facilitating the fast calculation of the data array. The Numpy module accelerates the calculations dramatically by converting all data lists into data array. Usually, the calculations would complete within 1 second. (2) Built a "zero_padding" function. This function dynamically add a series of zeros to the end of the Dipole moment array before FFT. The length of the whole data series is the power-of-two (2^n). *[Note] FFT (Fast Fourier Transform) refers to a way the discrete Fourier Transform (DFT) can be calculated efficiently, by using symmetries in the calculated terms.The symmetry is highest when n is a power of 2, and the transform is therefore most efficient for these sizes. (3) Using built-in fftconvolve function in scipy.signal module for accelerating the auto-correlation function calculation. (4) Window Function was taken into consideration for suppressing noise. The window function is imported from scipy.signal module. (5) Built a Visualization Function for plotting the results. Contribution: Dr. Huan Wang (The 3rd and 2nd version) Dr. Waldemar Kulig (The 1st version) E-mail address for contacting the authors: huan.wang@mail.huji.ac.il or wanghuan@iccas.ac.cn (China) Copyright: The Hebrew University of Jerusalem, Givat Ram, Jerusalem, 91904, Israel. ''' from __future__ import division import sys import math import numpy as np import matplotlib.pyplot as plt from scipy import signal import time ##### PLEASE READ THE FOLLOWING INSTRUCTIONs BEFORE RUNNING SCRIPT ##### #### #### #### The Format for Running This Script: #### #### python IR_total_KW.py INPUT_FILE DELTA_T WINDOW OUTPUT_FILE #### #### #### #### The values need to input manually when runing this script #### #### #### #### (1) INPUT_FILE_NAME: The Total_Dipole_Moment_*.Diople file #### #### (NOTE: do NOT need to re-split the Dipole file) #### #### #### #### (2) DELTA_T: The Time_step set in simulation, in unit of fs #### #### #### #### (3) WINDOW: The Name of the Window Function #### #### #### #### (4) OUTPUT_FILE_NAME: The Name of the Output File. #### #### (NOTE: do NOT need to type > sign!) #### #### #### ############################# Let's Try It! ########################### #### The values need to input manually when running this script #### fname = sys.argv[1] # The name of the input file delta_t = float(sys.argv[2])*1.0e-15 # The time step in unit of femtoseconds window = sys.argv[3] # The name of the window function fout = sys.argv[4] # The name of the output file #### The constants will be used in this script #### c = 2.9979245899e10 # speed of light in vacuum in [cm/s], from Wikipedia. kB = 0.6950347 # Boltzman constant in [cm^-1/K], from Wikipedia. h_bar = 6.283185 # Reduced Planck constant in atomic unit, where h = 2*pi #beta = 1.0/(kB * T) #### Functions will used in this script #### def read_data(fname): with open(fname, "r") as fo: dipole = np.genfromtxt(fo, dtype=np.float64, delimiter=None, usecols=(1,2,3)) return dipole def calc_derivative(data, delta_t): dy = np.zeros(np.shape(data)) for i in xrange(3): dy[:,i] = np.gradient(data[:,i], edge_order=2) print "dy = ", dy dy = dy[~(np.absolute(dy) > 0.1).any(1),:] return np.divide(dy, delta_t) def zero_padding(sample_data): ''' A series of Zeros will be padded to the end of the dipole moment array (before FFT performed), in order to obtain a array with the length which is the "next power of two" of numbers. #### Next power of two is calculated as: 2**np.ceil(log2(x)) #### or Nfft = 2**int(math.log(len(data_array)*2-1, 2)) ''' N = 2**int(math.log(len(sample_data)*2-1, 2)) return N def calc_ACF(array): ''' This function deals with the auto-correlation function (ACF) of the total dipole moment derivatives. With the Wiener-Khintchine theorem, the autocorrelation function is http://en.wikipedia.org/wiki/Wiener%E2%80%93Khinchin_theorem #### #### http://stackoverflow.com/questions/4503325/autocorrelation-of-a-multidimensional-array-in-numpy #### #### for fast convolution #### http://sebug.net/paper/books/scipydoc/frequency_process.html#id5 ''' # normalization yunbiased = array - np.mean(array, axis=0) ynorm = np.sum(np.power(yunbiased,2), axis=0) # print "the average value of input data array", ynorm autocor = np.zeros(np.shape(array)) for i in xrange(3): autocor[:,i] = signal.fftconvolve(array[:,i], array[:,i][::-1], mode='full')[len(array)-1:]/ynorm[i] print "shape of the result3 from signal.FFTcorrelate()", np.shape(autocor) return autocor def choose_window(data, kind='string'): if kind == 'Gaussian': sigma = 2 * math.sqrt(2 * math.log(2)) window = signal.gaussian(len(data), std=4000.0/sigma, sym=False) elif kind == 'BH': window = signal.blackmanharris(len(data), sym=False) elif kind == 'Hamming': window = signal.hamming(len(data), sym=False) elif kind == 'Hann': window = signal.hann(len(data), sym=False) return window def calc_FFT(data, window): ''' This function is for calculating the "intensity" of the ACF at each frequency by using the discrete fast Fourier transform. #### #### http://stackoverflow.com/questions/20165193/fft-normalization #### ''' window = choose_window(data, kind=window) WE = sum(window) / len(data) wf = window / WE # convolve the window function. sig = data * wf[None,:].T # A series of number of zeros will be padded to the end of the DACF \ # array before FFT. N = zero_padding(sig) yfft = np.fft.fft(sig, N, axis=0) / len(sig) # without window function # yfft = np.fft.fft(data, n=int(N_fft), axis=0) / len(data) return np.square(np.absolute(yfft)) ######## Save The Results to A TEXT File ######## def save_results(fout, wavenumber, intensity): title = ("Wavenumber", "IR Intensity", "cm^-1", "a.u.") with open(fout, "w") as fw: np.savetxt(fout, np.c_[wavenumber[0:5000], intensity[0:5000]], fmt="%10.5f %15.5e", header="{0:>10}{1:>16}\n{2:^11}{3:^20}".format(*title), comments='') ######## Plot The Spectrum by Using Matplotlib module ######## def visualization(D_p, DACF, wavenumber, intensity): plt.subplot(3,1,1) L1 = np.arange(len(D_p)) plt.plot(L1, D_p[:,0], color='red', linewidth=1.5) plt.plot(L1, D_p[:,1], color='green', linewidth=1.5) plt.plot(L1, D_p[:,2], color='blue', linewidth=1.5) plt.axis([0, len(D_p), 1.1*np.min(D_p), 1.1*np.max(D_p)], fontsize=15) plt.xlabel("Data Points", fontsize=15) plt.ylabel("Derivative of Dipole (a.u.)", fontsize=15) plt.subplot(3,1,2) L2 = np.arange(len(DACF)) plt.plot(L2, DACF[:,0], color='red', linewidth=1.5) plt.plot(L2, DACF[:,1], color='green', linewidth=1.5) plt.plot(L2, DACF[:,2], color='blue', linewidth=1.5) plt.axis([0, len(DACF), 1.1*np.min(DACF), 1.1*np.max(DACF)], fontsize=15) plt.xlabel("Data Points", fontsize=15) plt.ylabel("DACF (a.u.)", fontsize=15) plt.subplot(3,1,3) plt.plot(wavenumber, intensity, color='black', linewidth=1.5) plt.axis([0, 4000, -1.1*np.min(intensity), 1.1*np.max(intensity)], fontsize=15) plt.xlabel("Wavenumber (cm$^{-1}$)", fontsize=15) plt.ylabel("Intensity (a.u.)", fontsize=15) plt.subplots_adjust(hspace = 0.5) plt.show() ######## The main program ######## if __name__ == '__main__': start = time.clock() # The system clock, for checking the running speed. dipole = read_data(fname) print "dipole \n", dipole, np.shape(dipole) D_p = calc_derivative(dipole, delta_t) DACF = calc_ACF(D_p) yfft = calc_FFT(DACF, window) print "\n The Shape OF YFFT = ", np.shape(yfft) wavenumber = np.fft.fftfreq(len(yfft), delta_t*c)[0:int(len(yfft)/2)] intensity = np.sum(yfft, axis=1)[0:int(len(yfft)/2)] #### Normalized the intensity # intensity = intensity/max(intensity) save_results(fout, wavenumber, intensity) print "\n Work Completed! Used Time = ", time.clock() - start visualization(D_p, DACF, wavenumber, intensity)
35.501873
101
0.598797
f0ba5be658d70d07e8c26c9d8b61196b30949662
1,420
py
Python
app/core/tests/test_admin.py
GerryBolanos/recipe-app-api
8a3dd2f8bceee86950d89a8eabe8d8584cbf67ac
[ "MIT" ]
null
null
null
app/core/tests/test_admin.py
GerryBolanos/recipe-app-api
8a3dd2f8bceee86950d89a8eabe8d8584cbf67ac
[ "MIT" ]
null
null
null
app/core/tests/test_admin.py
GerryBolanos/recipe-app-api
8a3dd2f8bceee86950d89a8eabe8d8584cbf67ac
[ "MIT" ]
null
null
null
from django.test import TestCase, Client from django.contrib.auth import get_user_model from django.urls import reverse class AdminSiteTests(TestCase): def setUp(self): """Create test client, add new user""" self.client = Client() self.admin_user = get_user_model().objects.create_superuser( email='admin@test.com', password='password123', ) self.client.force_login(self.admin_user) self.user = get_user_model().objects.create_user( email='test@test.com', password='password123', name='Test User Full Name', ) def test_users_listed(self): """Test that users are listed on the user page""" url = reverse('admin:core_user_changelist') res = self.client.get(url) self.assertContains(res, self.user.name) self.assertContains(res, self.user.email) def test_user_change_page(self): """Test that the user edit page works""" url = reverse('admin:core_user_change', args=[self.user.id]) # Create a URL like so: /admin/core/user/:id/ res = self.client.get(url) self.assertEqual(res.status_code, 200) def test_create_user_page(self): """Test that the create user page works""" url = reverse('admin:core_user_add') res = self.client.get(url) self.assertTrue(res.status_code, 200)
33.023256
68
0.633099
f65196c5cebb513061671c71a29e1421bc263653
1,316
py
Python
tests/conftest.py
iwanb/sphinx-autodoc-typehints
a25fa05084b4cee7e9e733603b79e68986a0ffee
[ "MIT" ]
null
null
null
tests/conftest.py
iwanb/sphinx-autodoc-typehints
a25fa05084b4cee7e9e733603b79e68986a0ffee
[ "MIT" ]
null
null
null
tests/conftest.py
iwanb/sphinx-autodoc-typehints
a25fa05084b4cee7e9e733603b79e68986a0ffee
[ "MIT" ]
1
2020-05-17T17:11:26.000Z
2020-05-17T17:11:26.000Z
import os import sys import pathlib import shutil import pytest from sphinx.testing.path import path from sphobjinv import Inventory pytest_plugins = 'sphinx.testing.fixtures' collect_ignore = ['roots'] @pytest.fixture(scope='session') def inv(pytestconfig): cache_path = 'python{v.major}.{v.minor}/objects.inv'.format(v=sys.version_info) inv_dict = pytestconfig.cache.get(cache_path, None) if inv_dict is not None: return Inventory(inv_dict) print("Downloading objects.inv") url = 'https://docs.python.org/{v.major}.{v.minor}/objects.inv'.format(v=sys.version_info) inv = Inventory(url=url) pytestconfig.cache.set(cache_path, inv.json_dict()) return inv @pytest.fixture(autouse=True) def remove_sphinx_projects(sphinx_test_tempdir): # Remove any directory which appears to be a Sphinx project from # the temporary directory area. # See https://github.com/sphinx-doc/sphinx/issues/4040 roots_path = pathlib.Path(sphinx_test_tempdir) for entry in roots_path.iterdir(): try: if entry.is_dir() and pathlib.Path(entry, '_build').exists(): shutil.rmtree(str(entry)) except PermissionError: pass @pytest.fixture def rootdir(): return path(os.path.dirname(__file__) or '.').abspath() / 'roots'
29.244444
94
0.705167
f29f89cbf65a01d6a423e7fd00f7fdf4f4f28e6a
2,056
py
Python
tests/keras/utils/generic_utils_test.py
nils-werner/keras
78f26df8fb2b8aa5c6262aef44a494a8335a9c6e
[ "MIT" ]
30
2017-04-11T04:17:22.000Z
2020-09-08T08:18:37.000Z
tests/keras/utils/generic_utils_test.py
nils-werner/keras
78f26df8fb2b8aa5c6262aef44a494a8335a9c6e
[ "MIT" ]
null
null
null
tests/keras/utils/generic_utils_test.py
nils-werner/keras
78f26df8fb2b8aa5c6262aef44a494a8335a9c6e
[ "MIT" ]
21
2017-03-27T08:06:11.000Z
2020-06-18T09:35:07.000Z
import sys import pytest from keras.utils.generic_utils import custom_object_scope, has_arg from keras import activations from keras import regularizers def test_custom_objects_scope(): def custom_fn(): pass class CustomClass(object): pass with custom_object_scope({'CustomClass': CustomClass, 'custom_fn': custom_fn}): act = activations.get('custom_fn') assert act == custom_fn cl = regularizers.get('CustomClass') assert cl.__class__ == CustomClass @pytest.mark.parametrize('fn, name, accept_all, expected', [ ('f(x)', 'x', False, True), ('f(x)', 'y', False, False), ('f(x)', 'y', True, False), ('f(x, y)', 'y', False, True), ('f(x, y=1)', 'y', False, True), ('f(x, **kwargs)', 'x', False, True), ('f(x, **kwargs)', 'y', False, False), ('f(x, **kwargs)', 'y', True, True), ('f(x, y=1, **kwargs)', 'y', False, True), # Keyword-only arguments (Python 3 only) ('f(x, *args, y=1)', 'y', False, True), ('f(x, *args, y=1)', 'z', True, False), ('f(x, *, y=1)', 'x', False, True), ('f(x, *, y=1)', 'y', False, True), # lambda (lambda x: x, 'x', False, True), (lambda x: x, 'y', False, False), (lambda x: x, 'y', True, False), ]) def test_has_arg(fn, name, accept_all, expected): if isinstance(fn, str): context = dict() try: exec('def {}: pass'.format(fn), context) except SyntaxError: if sys.version_info >= (3,): raise pytest.skip('Function is not compatible with Python 2') context.pop('__builtins__', None) # Sometimes exec adds builtins to the context fn, = context.values() assert has_arg(fn, name, accept_all) is expected @pytest.mark.xfail(sys.version_info < (3, 3), reason='inspect API does not reveal positional-only arguments') def test_has_arg_positional_only(): assert has_arg(pow, 'x') is False if __name__ == '__main__': pytest.main([__file__])
30.686567
88
0.572471
e83ea00c001ad3d2b1e05877b70f433e6a22bea1
1,363
py
Python
fuzz/helper.py
xumia/debian-openssl
f3694133edbc53065100d6cc2250ae6745e63638
[ "OpenSSL" ]
18,396
2015-11-11T09:36:37.000Z
2022-03-31T23:31:51.000Z
fuzz/helper.py
xumia/debian-openssl
f3694133edbc53065100d6cc2250ae6745e63638
[ "OpenSSL" ]
2,471
2015-11-10T04:01:38.000Z
2022-03-31T21:37:21.000Z
fuzz/helper.py
xumia/debian-openssl
f3694133edbc53065100d6cc2250ae6745e63638
[ "OpenSSL" ]
4,219
2015-11-10T12:17:34.000Z
2022-03-31T10:41:43.000Z
#!/usr/bin/python # # Copyright 2016-2018 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html """Fuzzing helper, creates and uses corpus/crash directories. fuzzer.py <fuzzer> <extra fuzzer arguments> """ import os import subprocess import sys FUZZER = sys.argv[1] THIS_DIR = os.path.abspath(os.path.dirname(__file__)) CORPORA_DIR = os.path.abspath(os.path.join(THIS_DIR, "corpora")) FUZZER_DIR = os.path.abspath(os.path.join(CORPORA_DIR, FUZZER)) if not os.path.isdir(FUZZER_DIR): os.mkdir(FUZZER_DIR) corpora = [] def _create(d): dd = os.path.abspath(os.path.join(CORPORA_DIR, d)) if not os.path.isdir(dd): os.mkdir(dd) corpora.append(dd) def _add(d): dd = os.path.abspath(os.path.join(CORPORA_DIR, d)) if os.path.isdir(dd): corpora.append(dd) def main(): _create(FUZZER) _create(FUZZER + "-crash") _add(FUZZER + "-seed") cmd = ([os.path.abspath(os.path.join(THIS_DIR, FUZZER))] + sys.argv[2:] + ["-artifact_prefix=" + corpora[1] + "/"] + corpora) print(" ".join(cmd)) subprocess.call(cmd) if __name__ == "__main__": main()
25.716981
76
0.677916
e70e4b50a6610b065c5099e192d010a6c1106b63
240
py
Python
xitorch/__init__.py
mfkasim91/lintorch
7a7da4b960e83c07e45ddb999da99510d3c9e909
[ "MIT" ]
4
2020-10-15T15:07:54.000Z
2022-01-29T23:01:10.000Z
xitorch/__init__.py
mfkasim91/lintorch
7a7da4b960e83c07e45ddb999da99510d3c9e909
[ "MIT" ]
7
2020-09-16T11:44:34.000Z
2020-09-24T13:17:19.000Z
xitorch/__init__.py
mfkasim91/lintorch
7a7da4b960e83c07e45ddb999da99510d3c9e909
[ "MIT" ]
2
2020-09-17T09:41:33.000Z
2020-09-17T10:00:40.000Z
from xitorch._core.editable_module import * from xitorch._core.pure_function import * from xitorch._core.linop import * from xitorch.debug.modes import * from xitorch.version import get_version as _get_version __version__ = _get_version()
30
55
0.825
0e34ef15d5974e6c1eb27689b2411ee481202311
2,611
py
Python
src/constants.py
BoseSean/db-explain-viz
bb2b0fa52558b1ffdb0940cce3a977ccebcae8c3
[ "Apache-2.0" ]
1
2018-12-06T08:41:31.000Z
2018-12-06T08:41:31.000Z
src/constants.py
BoseSean/db-explain-viz
bb2b0fa52558b1ffdb0940cce3a977ccebcae8c3
[ "Apache-2.0" ]
null
null
null
src/constants.py
BoseSean/db-explain-viz
bb2b0fa52558b1ffdb0940cce3a977ccebcae8c3
[ "Apache-2.0" ]
null
null
null
from inspect import getmembers, isfunction NaN = float("NaN") class Fields: ''' Fields contain all the possible attribute names of a node in QEP tree ''' NODE_TYPE = 'Node Type' ACTUAL_ROWS = 'Actual Rows' PLAN_ROWS = 'Plan Rows' ACTUAL_TOTAL_TIME = 'Actual Total Time' ACTUAL_LOOPS = 'Actual Loops' ACTUAL_STARTUP_TIME = 'Actual Startup Time' TOTAL_COST = 'Total Cost' PLANS = 'Plans' PLAN = 'Plan' RELATION_NAME = 'Relation Name' SCHEMA = 'Schema' ALIAS = 'Alias' GROUP_KEY = 'Group Key' SORT_KEY = 'Sort Key' JOIN_TYPE = 'Join Type' INDEX_NAME = 'Index Name' INDEX_COND = 'Index Cond' HASH_CONDITION = 'Hash Cond' CTE_SCAN = "CTE Scan" CTE_NAME = "CTE Name" EXECUTION_TIME = 'Execution Time' COMPUTED_TAGS = '*Tags' COSTLIEST_NODE = '*Costiest Node (by cost)' LARGEST_NODE = '*Largest Node (by rows)' SLOWEST_NODE = '*Slowest Node (by duration)' MAXIMUM_COSTS = '*Most Expensive Node (cost)' MAXIMUM_ROWS = '*Largest Node (rows)' MAXIMUM_DURATION = '*Slowest Node (time)' ACTUAL_DURATION = '*Actual Duration' ACTUAL_COST = '*Actual Cost' PLANNER_ESTIMATE_FACTOR = '*Planner Row Estimate Factor' PLANNER_ESIMATE_DIRECTION = '*Planner Row Estimate Direction' @staticmethod def as_list(): return list( map(lambda i: i[1], filter(lambda i: i[0][0]!='_', getmembers(Fields, lambda x: not isfunction(x)) ) ) ) class NodeTypes: ''' All the node types (physical operators) of QEP tree ''' SEQ_SCAN = 'Seq Scan' INDEX_SCAN = 'Index Scan' INDEX_ONLY_SCAN = 'Index Only Scan' BITMAP_HEAP_SCAN = 'Bitmap Heap Scan' BITMAP_INDEX_SCAN = 'Bitmap Index Scan' CTE_SCAN = 'CTE Scan' HASH_JOIN = 'Hash Join' MERGE_JOIN = 'Merge Join' NESTED_LOOP = 'Nested Loop' AGGREGATE = 'Aggregate' HASH_AGGREGATE = 'Hash Aggregate' SORT = 'Sort' LIMIT = 'Limit' SCAN_NORMAL_TYPES = [SEQ_SCAN, INDEX_SCAN, INDEX_ONLY_SCAN, BITMAP_HEAP_SCAN] SCAN_INDEX_TYPES = [BITMAP_INDEX_SCAN] SCAN_TYPES = SCAN_NORMAL_TYPES + SCAN_INDEX_TYPES AGGREGATE_TYPES = [AGGREGATE, HASH_AGGREGATE] class Strings: TITLE = 'QEP Visualizer' HIGHLIGHT_LABEL = "highlight.TLabel" BW_LABLE = "BW.TLabel" PADDING = "3 3 12 12" COL_EXE_TIME = 'exe_time' EXE_TIME_TEXT = 'exe_time / ms' COL_PERCENTAGE = 'percentage' PERCENTAGE_TEXT = 'percentage' ATTRIBUTE_TEXT = 'ATTRIBUTE' VALUE_TEXT = "VALUE"
30.011494
81
0.641517
26fa10bdd7cc2e39aec30800a4bc6cb62c1b0136
402
py
Python
radio/migrations/0004_system_recorder_uuid.py
MaxwellDPS/trunk-player
19f116e64249823f3a12b35ed55252db60b1cf78
[ "MIT" ]
null
null
null
radio/migrations/0004_system_recorder_uuid.py
MaxwellDPS/trunk-player
19f116e64249823f3a12b35ed55252db60b1cf78
[ "MIT" ]
7
2021-06-10T23:24:05.000Z
2022-03-03T21:48:12.000Z
radio/migrations/0004_system_recorder_uuid.py
MaxwellDPS/trunk-player
19f116e64249823f3a12b35ed55252db60b1cf78
[ "MIT" ]
1
2022-03-26T07:04:21.000Z
2022-03-26T07:04:21.000Z
# Generated by Django 3.2.7 on 2021-09-19 16:52 from django.db import migrations, models import uuid class Migration(migrations.Migration): dependencies = [ ('radio', '0003_defaultagenecy'), ] operations = [ migrations.AddField( model_name='system', name='recorder_uuid', field=models.UUIDField(default=uuid.uuid4), ), ]
20.1
55
0.606965
031fcbc56203bf898e89b17a9ff3683514a33b46
26,957
py
Python
simple_rl/agents/func_approx/sam_stuff/main.py
samlobel/simple_rl_mbrl
ed868916d06dbf68f4af23bea83b0e852e88df6e
[ "Apache-2.0" ]
1
2020-01-30T13:14:24.000Z
2020-01-30T13:14:24.000Z
simple_rl/agents/func_approx/sam_stuff/main.py
samlobel/simple_rl_mbrl
ed868916d06dbf68f4af23bea83b0e852e88df6e
[ "Apache-2.0" ]
null
null
null
simple_rl/agents/func_approx/sam_stuff/main.py
samlobel/simple_rl_mbrl
ed868916d06dbf68f4af23bea83b0e852e88df6e
[ "Apache-2.0" ]
null
null
null
import numpy as np import random from collections import namedtuple, deque, defaultdict import matplotlib.pyplot as plt import seaborn as sns sns.set() import pdb from copy import deepcopy import shutil import os import time import argparse import pickle import torch.optim as optim import torch import torch.nn as nn import torch.nn.functional as F from tensorboardX import SummaryWriter from simple_rl.agents.AgentClass import Agent from simple_rl.agents.func_approx.ddpg.utils import compute_gradient_norm # from simple_rl.agents.func_approx.sam_stuff.replay_buffer import ReplayBuffer from simple_rl.agents.func_approx.sam_stuff.model import ConvQNetwork, DenseQNetwork from simple_rl.agents.func_approx.sam_stuff.epsilon_schedule import * from simple_rl.tasks.gym.GymMDPClass import GymMDP from simple_rl.tasks.lunar_lander.LunarLanderMDPClass import LunarLanderMDP # from simple_rl.agents.func_approx.sam_stuff.RandomNetworkDistillationClass import RNDModel, RunningMeanStd from simple_rl.agents.func_approx.sam_stuff.RandomNetworkDistillationClass import RunningMeanStd from simple_rl.agents.func_approx.sam_stuff.DQNAgentClass import DQNAgent from simple_rl.agents.func_approx.sam_stuff.DQNAgentClass import WorldModel from simple_rl.agents.func_approx.sam_stuff.DQNAgentClass import OnlineComposer from simple_rl.agents.func_approx.sam_stuff.ModelQNetworkComposer import Composer NUM_EPISODES = 3500 NUM_STEPS = 10000 # def test_forward_pass(dqn_agent, mdp): # # load the weights from file # mdp.reset() # state = deepcopy(mdp.init_state) # overall_reward = 0. # mdp.render = True # while not state.is_terminal(): # action = dqn_agent.act(state.features(), train_mode=False) # reward, next_state = mdp.execute_agent_action(action) # overall_reward += reward # state = next_state # mdp.render = False # return overall_reward def show_video(dqn_agent, mdp): # load the weights from file mdp.reset() state = deepcopy(mdp.init_state) overall_reward = 0. mdp.render = True while not state.is_terminal(): action = dqn_agent.act(state.features(), train_mode=False) reward, next_state = mdp.execute_agent_action(action) overall_reward += reward state = next_state mdp.render = False return overall_reward def save_all_scores(experiment_name, log_dir, seed, scores): print("\rSaving training and validation scores..") training_scores_file_name = "{}_{}_training_scores.pkl".format(experiment_name, seed) if log_dir: training_scores_file_name = os.path.join(log_dir, training_scores_file_name) with open(training_scores_file_name, "wb+") as _f: pickle.dump(scores, _f) def create_log_dir(experiment_name): path = os.path.join(os.getcwd(), "logs", experiment_name) try: os.mkdir(path) except OSError: print("Creation of the directory %s failed" % path) else: print("Successfully created the directory %s " % path) return path def test_render(agent, mdp): while True: print("Press ctrl-C to quit") mdp.set_render(True) mdp.reset() state = mdp.init_state while True: # action = agent.act(state.features(), train_mode=False) action = agent.get_best_action(state.features()) reward, next_state = mdp.execute_agent_action(action) state = next_state game_over = mdp.game_over if hasattr(mdp, 'game_over') else False if state.is_terminal() or game_over: print('bye bye') break def collect_data_for_bias_variance_calculation(mdp, q_agent, num_runs): """ Runs on-policy, and just makes the data that we'll pass to the composer. """ exp = namedtuple("Experience", field_names=["state","action","reward","next_state", "done", "time_limit_truncated"]) experiences = [] states = [] actions = [] rewards = [] next_states = [] dones = [] time_limit_truncateds = [] for _ in range(num_runs): mdp.reset() state = deepcopy(mdp.init_state) state = np.asarray(state.features()) true_finish = False while True: # action = agent.act(state.features(), train_mode=True) # reward, next_state = mdp.execute_agent_action(action) action = composer.q_agent.get_best_action(state) reward, next_state = mdp.execute_agent_action(action) # is_terminal = next_state.is_terminal() # time_limit_truncated = next_state.is_time_limit_truncated() experiences.append( exp(state=state, action=action, reward=reward, next_state=np.asarray(next_state.features()), done=next_state.is_terminal(), time_limit_truncated=next_state.is_time_limit_truncated() )) states.append(state) actions.append(action) rewards.append(reward) next_states.append(np.asarray(next_state.features())) dones.append(next_state.is_terminal()) time_limit_truncateds.append(next_state.is_time_limit_truncated()) game_over = mdp.game_over if hasattr(mdp, 'game_over') else False if game_over and not next_state.is_terminal(): print('howza') # import ipdb; ipdb.set_trace() raise Exception("Honestly, we're just not dealing with this well here.") if next_state.is_terminal(): break state = np.asarray(next_state.features()) return experiences # return dict( # states=states, # actions=actions, # rewards=rewards, # next_states=next_states, # dones=dones, # time_limit_truncateds=time_limit_truncateds, # ) pass class Evaluator: def __init__(self, mdp, composer, num_runs_each=1, rollout_depth=5, lambdas_to_test=None, logdir="."): self.mdp = mdp self.composer = composer self.num_runs_each = num_runs_each self.rollout_depth = rollout_depth self.logdir = logdir self._bias = None self._variance = None if lambdas_to_test is None: self.lambdas_to_test = [0.0, 0.5, 1.0] else: self.lambdas_to_test = lambdas_to_test self.results = defaultdict(list) def _set_bias_variance(self, num_runs_to_collect_over): data = collect_data_for_bias_variance_calculation(self.mdp, self.composer.q_agent, num_runs_to_collect_over) # bias, variance = self.composer.create_bias_variance_from_data(data, self.rollout_depth) bias, variance, covariance = self.composer.create_bias_variance_covariance_from_data(data, self.rollout_depth) # print("This is about to be mega self-defeating...") # self._bias = np.zeros((self.rollout_depth,), dtype=np.float32) # self._variance = np.ones((self.rollout_depth,), dtype=np.float32) # self._variance[0] -= 0.999 # self._variance *= 1000 # print("self, defeated") self._bias = bias self._variance = variance self._covariance = covariance print(f"Bias: {bias}\nVariance: {variance}") print(f"Covariance: {covariance}") def evaluate_different_models(self, *, training_steps): """ This does the evaluation, prints out results, but then importantly populates some storage list, which we can then use to make plots. """ assert self._bias is not None assert self._variance is not None lambdas_to_test = self.lambdas_to_test # print(self.lambdas_to_test) mdp = self.mdp composer = self.composer num_runs_each = self.num_runs_each rollout_depth = self.rollout_depth # lambdas_to_test.reverse() # funcs = [] print("TODO: I know that it's a scoping and reference problem. Maybe use partials?") # There's a really annoying referencing problem here. Let's see how it goes. funcs = [(lam, (lambda l: lambda s: composer.get_best_action_td_lambda(s, rollout_depth, gamma=0.99, lam=l))(lam)) for lam in lambdas_to_test] # print(funcs) funcs.append(("OptimalVariance", lambda s: composer.get_best_action_for_bias_variance(s, rollout_depth, self._bias, self._variance, gamma=0.99))) funcs.append(("OptimalCovariance", lambda s: composer.get_best_action_for_bias_covariance(s, rollout_depth, self._bias, self._covariance, gamma=0.99))) # for lam in lambdas_to_test: for key, func in funcs: all_rewards = [] for _ in range(num_runs_each): mdp.reset() state = deepcopy(mdp.init_state) state = np.asarray(state.features()) reward_so_far = 0.0 while True: # state = torch.from_numpy(state).float().unsqueeze(0).to("cuda") # action = composer.get_best_action_td_lambda(state, rollout_depth, gamma=0.99, lam=lam) action = func(state) # print(action) reward, next_state = mdp.execute_agent_action(action) reward_so_far += reward game_over = mdp.game_over if hasattr(mdp, 'game_over') else False if next_state.is_terminal() or game_over: break state = np.asarray(next_state.features()) self.results[key].append((training_steps, reward_so_far)) all_rewards.append(reward_so_far) all_rewards = np.asarray(all_rewards) print(f"{num_runs_each} runs: Key={key}, Reward={np.mean(all_rewards)} ({np.std(all_rewards)})") print(all_rewards) def write_graphs(self): plt.figure() for lam, vals in self.results.items(): xs, ys = zip(*vals) ax = sns.lineplot(x=xs, y=ys, label=f"Lam={lam}") plt.savefig(os.path.join(self.logdir, "results.png")) # plt.show() plt.clf() # def evaluate_different_models(mdp, composer, num_runs_each=1, training_steps=None): # # Somehow I want to also graph this... How should I do that? # # I could make this a class, and keep track of past things. But that does # # seem heavy-handed. How about I start by just printing them out... # lambdas_to_test = [0.0, 0.5, 1.0] # rollout_depth = 5 # for lam in lambdas_to_test: # all_rewards = [] # for _ in range(num_runs_each): # mdp.reset() # state = deepcopy(mdp.init_state) # state = np.asarray(state.features()) # reward_so_far = 0.0 # while True: # # state = torch.from_numpy(state).float().unsqueeze(0).to("cuda") # action = composer.get_best_action_td_lambda(state, rollout_depth, gamma=0.99, lam=lam) # reward, next_state = mdp.execute_agent_action(action) # reward_so_far += reward # game_over = mdp.game_over if hasattr(mdp, 'game_over') else False # if next_state.is_terminal() or game_over: # break # state = np.asarray(next_state.features()) # all_rewards.append(reward_so_far) # all_rewards = np.asarray(all_rewards) # print(f"{num_runs_each} runs: Lam={lam}, Reward={np.mean(all_rewards)} ({np.std(all_rewards)})") # print(all_rewards) def test_optimal(agent, mdp, num_episodes=1): # Going to return a total reward... scores = [] for _ in range(num_episodes): score = 0 mdp.reset() state = deepcopy(mdp.init_state) while True: action = agent.get_best_action(state.features()) qvalues = agent.get_qvalues(state.features()) # print(action) # print(qvalues) # print(state.features()) reward, next_state = mdp.execute_agent_action(action) score += reward state = next_state game_over = mdp.game_over if hasattr(mdp, 'game_over') else False if state.is_terminal() or game_over: break scores.append(score) average_score = np.mean(scores) print(f"score is {average_score}") return average_score def train(agent, mdp, episodes, steps, init_episodes=10, evaluate_every=25, *, save_every, logdir, world_model, composer): model_save_loc = os.path.join(logdir, 'model.tar') per_episode_scores = [] last_10_scores = deque(maxlen=100) iteration_counter = 0 state_ri_buffer = [] # Observation and reward normalization reward_rms = RunningMeanStd() obs_rms = RunningMeanStd(shape=(1, 84, 84)) last_save = time.time() ## Commenting this out for now while we switch to something more reasonable. if composer: evaluator = Evaluator(mdp, composer, num_runs_each=5, rollout_depth=5, logdir=logdir) for episode in range(episodes): if evaluate_every > 0 and episode % evaluate_every == 0 and episode != 0: print(f"Evaluating on episode {episode}") test_optimal(agent, mdp) # test_optimal(composer.q_agent, mdp) # test_optimal(agent, mdp) # print("just kidding") # evaluator._set_bias_variance(10) # if composer: # print("Shouldn't be here?") # evaluator._set_bias_variance(10) # evaluator.evaluate_different_models(training_steps=episode) # print("At some point definitely make this a CL-Arg") # evaluator.write_graphs() if time.time() - last_save > save_every: print("Saving Model") last_save = time.time() torch.save(agent.state_dict(), model_save_loc) mdp.reset() state = deepcopy(mdp.init_state) observation_buffer = [] init_features = np.asarray(mdp.init_state.features()) if len(init_features.shape) == 3: init_observation = init_features[-1, :, :] assert init_observation.shape == (84, 84), init_observation.shape else: init_observation = init_features #### FROM AKHIL # init_observation = np.array(mdp.init_state.features())[-1, :, :] # assert init_observation.shape == (84, 84), init_observation.shape observation_buffer.append(init_observation) score = 0. while True: iteration_counter += 1 action = agent.act(state.features(), train_mode=True) reward, next_state = mdp.execute_agent_action(action) agent.step(state.features(), action, reward, next_state.features(), next_state.is_terminal(), num_steps=1, time_limit_truncated=next_state.is_time_limit_truncated()) agent.update_epsilon() if world_model: world_model.step(state.features(), action, reward, next_state.features(), next_state.is_terminal(), num_steps=1, time_limit_truncated=next_state.is_time_limit_truncated()) state = next_state score += reward game_over = mdp.game_over if hasattr(mdp, 'game_over') else False if state.is_terminal() or game_over: if agent.tensor_log: print("Is this happening too?") agent.writer.add_scalar("Score", score, episode) break last_10_scores.append(score) per_episode_scores.append(score) print('\rEpisode {}\tAverage Score: {:.2f}\tEpsilon: {:.2f}'.format(episode, np.mean(last_10_scores), agent.epsilon), end="") if episode % 100 == 0: print('\rEpisode {}\tAverage Score: {:.2f}\tEpsilon: {:.2f}'.format(episode, np.mean(last_10_scores), agent.epsilon)) return per_episode_scores, state_ri_buffer def bayes_functional(*, mdp, args): """ This will like do the setup and stuff, and then return a singular number at the end. We would like this to return a function that has all the constants filled in. Because bayes_opt doesn't seem to have a good way of passing the same thing to everyone... """ def functional(lr_exp, tau_exp): print(f"Running for {lr_exp} {tau_exp}") state_dim = overall_mdp.env.observation_space.shape if args.pixel_observation else overall_mdp.env.observation_space.shape[0] action_dim = len(overall_mdp.actions) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # device = torch.device("cpu") # We're going to pass in something like lr=4, and it'll translate it to 10^-4 # And we'll bound at 0 and 5 or something. lr = 10**-lr_exp tau = 10**-tau_exp print(f"Running for lr_exp={lr_exp} tau_exp={tau_exp}") print(f"AKA lr={lr} tau={tau}") ddqn_agent = DQNAgent(state_size=state_dim, action_size=action_dim, seed=args.seed, device=device, name="GlobalDDQN", lr=lr, tau=tau, tensor_log=args.tensor_log, use_double_dqn=True, exploration_method=args.exploration_method, pixel_observation=args.pixel_observation, evaluation_epsilon=args.eval_eps, epsilon_linear_decay=args.epsilon_linear_decay, use_softmax_target=args.use_softmax_target) world_model = WorldModel(state_size=state_dim, action_size=action_dim, seed=args.seed, device=device, name="WorldModel", lr=lr, tensor_log=args.tensor_log,# use_double_dqn=True, writer = ddqn_agent.writer, # Because I'm concerned it's over-writing... #exploration_method=args.exploration_method, pixel_observation=args.pixel_observation, #evaluation_epsilon=args.eval_eps, #epsilon_linear_decay=args.epsilon_linear_decay ) composer = Composer( q_agent=ddqn_agent, world_model=world_model, action_size=action_dim, device=device) train( ddqn_agent, overall_mdp, args.episodes, args.steps, save_every=args.save_every, logdir=logdir, world_model=world_model, composer=composer, evaluate_every=0) print("Boom, training complete. Now testing optimal!") val = test_optimal(ddqn_agent, mdp, num_episodes=25) return val return functional if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--experiment_name", type=str, help="Experiment Name") parser.add_argument("--seed", type=int, help="Random seed for this run (default=0)", default=0) parser.add_argument("--episodes", type=int, help="# episodes", default=NUM_EPISODES) parser.add_argument("--steps", type=int, help="# steps", default=NUM_STEPS) parser.add_argument("--render", type=bool, help="Render the mdp env", default=False) parser.add_argument("--pixel_observation", action='store_true', help="Images / Dense input", default=False) parser.add_argument("--exploration_method", type=str, default="eps-greedy") parser.add_argument("--eval_eps", type=float, default=0.05) parser.add_argument("--tensor_log", default=False, action='store_true', help="Include this option if you want logging.") parser.add_argument("--env", type=str, default="Acrobot-v1") parser.add_argument("--save_every", type=int, help="Save every n seconds", default=60) parser.add_argument("--mode", type=str, help="'train' or 'view'", default='train') parser.add_argument("--epsilon_linear_decay", type=int, help="'train' or 'view'", default=100000) parser.add_argument("--use_softmax_target", default=False, action='store_true', help='When calculating backups, do you use the max or the softmax?') parser.add_argument("--learning_rate", default=1e-3, type=float, help='What do you think!') parser.add_argument("--tau", default=1e-3, type=float, help='Target copying rate') parser.add_argument("--evaluate_every", default=25, type=int, help='Expensive evaluation step for tracking') parser.add_argument("--use_online_composer", default=False, action="store_true", help='If you include this option, the model is used to make more accurate Q updates') parser.add_argument("--num_rollouts", default=5, type=int, help='Only used if use_online_composer') # parser.add_argument("--use_world_model", default=False, action='store_true', help="Include this option if you want to see how a world model trains.") args = parser.parse_args() logdir = create_log_dir(args.experiment_name) model_save_loc = os.path.join(logdir, 'model.tar') # learning_rate = 1e-3 # 0.00025 for pong overall_mdp = GymMDP(env_name=args.env, pixel_observation=args.pixel_observation, render=args.render, clip_rewards=False, term_func=None, seed=args.seed) ### THIS ONE WORKS FINE SO LONG AS YOU HAVE PIXEL OBSERVATIONS #### # overall_mdp = GymMDP(env_name="MontezumaRevengeNoFrameskip-v0", pixel_observation=args.pixel_observation, render=args.render, # clip_rewards=False, term_func=None, seed=args.seed) ### END ### # overall_mdp = GymMDP(env_name="MontezumaRevengeNoFrameskip-v4", pixel_observation=args.pixel_observation, render=args.render, # clip_rewards=False, term_func=None, seed=args.seed) # overall_mdp = GymMDP(env_name="CartPole-v0", pixel_observation=args.pixel_observation, render=args.render, # clip_rewards=False, term_func=None, seed=args.seed) # overall_mdp = LunarLanderMDP(render=args.render, seed=args.seed) state_dim = overall_mdp.env.observation_space.shape if args.pixel_observation else overall_mdp.env.observation_space.shape[0] action_dim = len(overall_mdp.actions) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # device = torch.device("cpu") if args.use_online_composer: world_model = WorldModel(state_size=state_dim, action_size=action_dim, seed=args.seed, device=device, name="WorldModel", lr=args.learning_rate, tensor_log=args.tensor_log,# use_double_dqn=True, # writer = agent.writer, # Because I'm concerned it's over-writing... #exploration_method=args.exploration_method, pixel_observation=args.pixel_observation, #evaluation_epsilon=args.eval_eps, #epsilon_linear_decay=args.epsilon_linear_decay ) agent = OnlineComposer( world_model=world_model, num_rollouts=args.num_rollouts, state_size=state_dim, action_size=action_dim, seed=args.seed, device=device, name="OnlineComposer", mixing_speed=0.9999, lr=args.learning_rate, tau=args.tau, tensor_log=args.tensor_log, use_double_dqn=True, writer = world_model.writer, # Because I'm concerned it's oevr-writing. exploration_method=args.exploration_method, pixel_observation=args.pixel_observation, evaluation_epsilon=args.eval_eps, epsilon_linear_decay=args.epsilon_linear_decay, use_softmax_target=args.use_softmax_target) world_model = None composer = None else: agent = DQNAgent(state_size=state_dim, action_size=action_dim, seed=args.seed, device=device, name="GlobalDDQN", lr=args.learning_rate, tau=args.tau, tensor_log=args.tensor_log, use_double_dqn=True, exploration_method=args.exploration_method, pixel_observation=args.pixel_observation, evaluation_epsilon=args.eval_eps, epsilon_linear_decay=args.epsilon_linear_decay, use_softmax_target=args.use_softmax_target) world_model = WorldModel(state_size=state_dim, action_size=action_dim, seed=args.seed, device=device, name="WorldModel", lr=args.learning_rate, tensor_log=args.tensor_log,# use_double_dqn=True, writer = agent.writer, # Because I'm concerned it's over-writing... #exploration_method=args.exploration_method, pixel_observation=args.pixel_observation, #evaluation_epsilon=args.eval_eps, #epsilon_linear_decay=args.epsilon_linear_decay ) composer = Composer( q_agent=agent, world_model=world_model, action_size=action_dim, device=device) # data = collect_data_for_bias_variance_calculation(overall_mdp, ddqn_agent, 1) # bias, variance = composer.create_bias_variance_from_data(data, 5) if args.mode == 'train': ddqn_episode_scores, s_ri_buffer = train( agent, overall_mdp, args.episodes, args.steps, save_every=args.save_every, logdir=logdir, world_model=world_model, composer=composer, evaluate_every=args.evaluate_every) save_all_scores(args.experiment_name, logdir, args.seed, ddqn_episode_scores) elif args.mode == 'view': print('waow') print(model_save_loc) agent.load_state_dict(torch.load(model_save_loc)) test_render(agent, overall_mdp) pass elif args.mode == 'hyper': from bayes_opt import BayesianOptimization f = bayes_functional(mdp=overall_mdp, args=args) pbounds = {'lr_exp': (1, 5), 'tau_exp': (1,5)} optimizer = BayesianOptimization( f=f, pbounds=pbounds, random_state=1, ) optimizer.maximize( init_points=5, n_iter=10, ) print(optimizer.max) for i, res in enumerate(optimizer.res): print("Iteration {}: \n\t{}".format(i, res)) import pdb; pdb.set_trace() print('bingester') else: raise Exception("HEELLOOO")
41.472308
170
0.63171
cbab773b5151b5c4bd0aeda45af0b629d25ed47a
1,317
py
Python
benchmark/backup_googlenet.py
Oneflow-Inc/vision
352e9240f63118112ea174bb2d0b502fa54be16f
[ "BSD-3-Clause" ]
40
2021-10-19T02:34:56.000Z
2022-03-25T07:49:44.000Z
benchmark/backup_googlenet.py
Oneflow-Inc/vision
352e9240f63118112ea174bb2d0b502fa54be16f
[ "BSD-3-Clause" ]
53
2021-10-22T02:24:44.000Z
2022-03-31T04:20:47.000Z
benchmark/backup_googlenet.py
Oneflow-Inc/vision
352e9240f63118112ea174bb2d0b502fa54be16f
[ "BSD-3-Clause" ]
11
2022-01-06T02:57:07.000Z
2022-03-23T15:19:51.000Z
from benchmark import * import oneflow_benchmark from flowvision.models.googlenet import googlenet @oneflow_benchmark.ci_settings(compare={"median": "5%"}) def test_googlenet_batch_size1(benchmark, net=googlenet, input_shape=[1, 3, 224, 224]): model, x, optimizer = fetch_args(net, input_shape) benchmark(run, model, x, optimizer) @oneflow_benchmark.ci_settings(compare={"median": "5%"}) def test_googlenet_batch_size2(benchmark, net=googlenet, input_shape=[2, 3, 224, 224]): model, x, optimizer = fetch_args(net, input_shape) benchmark(run, model, x, optimizer) @oneflow_benchmark.ci_settings(compare={"median": "5%"}) def test_googlenet_batch_size4(benchmark, net=googlenet, input_shape=[4, 3, 224, 224]): model, x, optimizer = fetch_args(net, input_shape) benchmark(run, model, x, optimizer) @oneflow_benchmark.ci_settings(compare={"median": "5%"}) def test_googlenet_batch_size8(benchmark, net=googlenet, input_shape=[8, 3, 224, 224]): model, x, optimizer = fetch_args(net, input_shape) benchmark(run, model, x, optimizer) @oneflow_benchmark.ci_settings(compare={"median": "5%"}) def test_googlenet_batch_size16( benchmark, net=googlenet, input_shape=[16, 3, 224, 224] ): model, x, optimizer = fetch_args(net, input_shape) benchmark(run, model, x, optimizer)
36.583333
87
0.7388
ad249aad4b58c47c0bc3495f7074208912e483bd
26,507
py
Python
lib/googlecloudsdk/third_party/apis/artifactregistry/v1alpha1/artifactregistry_v1alpha1_client.py
google-cloud-sdk-unofficial/google-cloud-sdk
2a48a04df14be46c8745050f98768e30474a1aac
[ "Apache-2.0" ]
2
2019-11-10T09:17:07.000Z
2019-12-18T13:44:08.000Z
lib/googlecloudsdk/third_party/apis/artifactregistry/v1alpha1/artifactregistry_v1alpha1_client.py
google-cloud-sdk-unofficial/google-cloud-sdk
2a48a04df14be46c8745050f98768e30474a1aac
[ "Apache-2.0" ]
null
null
null
lib/googlecloudsdk/third_party/apis/artifactregistry/v1alpha1/artifactregistry_v1alpha1_client.py
google-cloud-sdk-unofficial/google-cloud-sdk
2a48a04df14be46c8745050f98768e30474a1aac
[ "Apache-2.0" ]
1
2020-07-25T01:40:19.000Z
2020-07-25T01:40:19.000Z
"""Generated client library for artifactregistry version v1alpha1.""" # NOTE: This file is autogenerated and should not be edited by hand. from __future__ import absolute_import from apitools.base.py import base_api from googlecloudsdk.third_party.apis.artifactregistry.v1alpha1 import artifactregistry_v1alpha1_messages as messages class ArtifactregistryV1alpha1(base_api.BaseApiClient): """Generated client library for service artifactregistry version v1alpha1.""" MESSAGES_MODULE = messages BASE_URL = 'https://artifactregistry.googleapis.com/' MTLS_BASE_URL = 'https://artifactregistry.mtls.googleapis.com/' _PACKAGE = 'artifactregistry' _SCOPES = ['https://www.googleapis.com/auth/cloud-platform', 'https://www.googleapis.com/auth/cloud-platform.read-only'] _VERSION = 'v1alpha1' _CLIENT_ID = '1042881264118.apps.googleusercontent.com' _CLIENT_SECRET = 'x_Tw5K8nnjoRAqULM9PFAC2b' _USER_AGENT = 'google-cloud-sdk' _CLIENT_CLASS_NAME = 'ArtifactregistryV1alpha1' _URL_VERSION = 'v1alpha1' _API_KEY = None def __init__(self, url='', credentials=None, get_credentials=True, http=None, model=None, log_request=False, log_response=False, credentials_args=None, default_global_params=None, additional_http_headers=None, response_encoding=None): """Create a new artifactregistry handle.""" url = url or self.BASE_URL super(ArtifactregistryV1alpha1, self).__init__( url, credentials=credentials, get_credentials=get_credentials, http=http, model=model, log_request=log_request, log_response=log_response, credentials_args=credentials_args, default_global_params=default_global_params, additional_http_headers=additional_http_headers, response_encoding=response_encoding) self.projects_locations_operations = self.ProjectsLocationsOperationsService(self) self.projects_locations_repositories_aptArtifacts = self.ProjectsLocationsRepositoriesAptArtifactsService(self) self.projects_locations_repositories_aptartifacts = self.ProjectsLocationsRepositoriesAptartifactsService(self) self.projects_locations_repositories_gooGetArtifacts = self.ProjectsLocationsRepositoriesGooGetArtifactsService(self) self.projects_locations_repositories_googetartifacts = self.ProjectsLocationsRepositoriesGoogetartifactsService(self) self.projects_locations_repositories_yumArtifacts = self.ProjectsLocationsRepositoriesYumArtifactsService(self) self.projects_locations_repositories_yumartifacts = self.ProjectsLocationsRepositoriesYumartifactsService(self) self.projects_locations_repositories = self.ProjectsLocationsRepositoriesService(self) self.projects_locations = self.ProjectsLocationsService(self) self.projects = self.ProjectsService(self) class ProjectsLocationsOperationsService(base_api.BaseApiService): """Service class for the projects_locations_operations resource.""" _NAME = 'projects_locations_operations' def __init__(self, client): super(ArtifactregistryV1alpha1.ProjectsLocationsOperationsService, self).__init__(client) self._upload_configs = { } def Get(self, request, global_params=None): r"""Gets the latest state of a long-running operation. Clients can use this method to poll the operation result at intervals as recommended by the API service. Args: request: (ArtifactregistryProjectsLocationsOperationsGetRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Operation) The response message. """ config = self.GetMethodConfig('Get') return self._RunMethod( config, request, global_params=global_params) Get.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1alpha1/projects/{projectsId}/locations/{locationsId}/operations/{operationsId}', http_method='GET', method_id='artifactregistry.projects.locations.operations.get', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='v1alpha1/{+name}', request_field='', request_type_name='ArtifactregistryProjectsLocationsOperationsGetRequest', response_type_name='Operation', supports_download=False, ) class ProjectsLocationsRepositoriesAptArtifactsService(base_api.BaseApiService): """Service class for the projects_locations_repositories_aptArtifacts resource.""" _NAME = 'projects_locations_repositories_aptArtifacts' def __init__(self, client): super(ArtifactregistryV1alpha1.ProjectsLocationsRepositoriesAptArtifactsService, self).__init__(client) self._upload_configs = { } def Import(self, request, global_params=None): r"""Imports Apt artifacts. The returned Operation will complete once the resources are imported. Package, Version, and File resources are created based on the imported artifacts. Imported artifacts that conflict with existing resources are ignored. Args: request: (ArtifactregistryProjectsLocationsRepositoriesAptArtifactsImportRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Operation) The response message. """ config = self.GetMethodConfig('Import') return self._RunMethod( config, request, global_params=global_params) Import.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1alpha1/projects/{projectsId}/locations/{locationsId}/repositories/{repositoriesId}/aptArtifacts:import', http_method='POST', method_id='artifactregistry.projects.locations.repositories.aptArtifacts.import', ordered_params=['parent'], path_params=['parent'], query_params=[], relative_path='v1alpha1/{+parent}/aptArtifacts:import', request_field='googleDevtoolsArtifactregistryV1alpha1ImportAptArtifactsRequest', request_type_name='ArtifactregistryProjectsLocationsRepositoriesAptArtifactsImportRequest', response_type_name='Operation', supports_download=False, ) class ProjectsLocationsRepositoriesAptartifactsService(base_api.BaseApiService): """Service class for the projects_locations_repositories_aptartifacts resource.""" _NAME = 'projects_locations_repositories_aptartifacts' def __init__(self, client): super(ArtifactregistryV1alpha1.ProjectsLocationsRepositoriesAptartifactsService, self).__init__(client) self._upload_configs = { 'Upload': base_api.ApiUploadInfo( accept=['*/*'], max_size=None, resumable_multipart=None, resumable_path=None, simple_multipart=True, simple_path='/upload/v1alpha1/{+parent}/aptArtifacts:create', ), } def Upload(self, request, global_params=None, upload=None): r"""Directly uploads an Apt artifact. The returned Operation will complete once the resources are uploaded. Package, Version, and File resources are created based on the imported artifact. Imported artifacts that conflict with existing resources are ignored. Args: request: (ArtifactregistryProjectsLocationsRepositoriesAptartifactsUploadRequest) input message global_params: (StandardQueryParameters, default: None) global arguments upload: (Upload, default: None) If present, upload this stream with the request. Returns: (GoogleDevtoolsArtifactregistryV1alpha1UploadAptArtifactMediaResponse) The response message. """ config = self.GetMethodConfig('Upload') upload_config = self.GetUploadConfig('Upload') return self._RunMethod( config, request, global_params=global_params, upload=upload, upload_config=upload_config) Upload.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1alpha1/projects/{projectsId}/locations/{locationsId}/repositories/{repositoriesId}/aptArtifacts:create', http_method='POST', method_id='artifactregistry.projects.locations.repositories.aptartifacts.upload', ordered_params=['parent'], path_params=['parent'], query_params=[], relative_path='v1alpha1/{+parent}/aptArtifacts:create', request_field='googleDevtoolsArtifactregistryV1alpha1UploadAptArtifactRequest', request_type_name='ArtifactregistryProjectsLocationsRepositoriesAptartifactsUploadRequest', response_type_name='GoogleDevtoolsArtifactregistryV1alpha1UploadAptArtifactMediaResponse', supports_download=False, ) class ProjectsLocationsRepositoriesGooGetArtifactsService(base_api.BaseApiService): """Service class for the projects_locations_repositories_gooGetArtifacts resource.""" _NAME = 'projects_locations_repositories_gooGetArtifacts' def __init__(self, client): super(ArtifactregistryV1alpha1.ProjectsLocationsRepositoriesGooGetArtifactsService, self).__init__(client) self._upload_configs = { } def Import(self, request, global_params=None): r"""Imports GooGet artifacts. The returned Operation will complete once the resources are imported. Package, Version, and File resources are created based on the imported artifacts. Imported artifacts that conflict with existing resources are ignored. Args: request: (ArtifactregistryProjectsLocationsRepositoriesGooGetArtifactsImportRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Operation) The response message. """ config = self.GetMethodConfig('Import') return self._RunMethod( config, request, global_params=global_params) Import.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1alpha1/projects/{projectsId}/locations/{locationsId}/repositories/{repositoriesId}/gooGetArtifacts:import', http_method='POST', method_id='artifactregistry.projects.locations.repositories.gooGetArtifacts.import', ordered_params=['parent'], path_params=['parent'], query_params=[], relative_path='v1alpha1/{+parent}/gooGetArtifacts:import', request_field='googleDevtoolsArtifactregistryV1alpha1ImportGooGetArtifactsRequest', request_type_name='ArtifactregistryProjectsLocationsRepositoriesGooGetArtifactsImportRequest', response_type_name='Operation', supports_download=False, ) class ProjectsLocationsRepositoriesGoogetartifactsService(base_api.BaseApiService): """Service class for the projects_locations_repositories_googetartifacts resource.""" _NAME = 'projects_locations_repositories_googetartifacts' def __init__(self, client): super(ArtifactregistryV1alpha1.ProjectsLocationsRepositoriesGoogetartifactsService, self).__init__(client) self._upload_configs = { 'Upload': base_api.ApiUploadInfo( accept=['*/*'], max_size=None, resumable_multipart=None, resumable_path=None, simple_multipart=True, simple_path='/upload/v1alpha1/{+parent}/googetArtifacts:create', ), } def Upload(self, request, global_params=None, upload=None): r"""Directly uploads a GooGet artifact. The returned Operation will complete once the resources are uploaded. Package, Version, and File resources are created based on the imported artifact. Imported artifacts that conflict with existing resources are ignored. Args: request: (ArtifactregistryProjectsLocationsRepositoriesGoogetartifactsUploadRequest) input message global_params: (StandardQueryParameters, default: None) global arguments upload: (Upload, default: None) If present, upload this stream with the request. Returns: (GoogleDevtoolsArtifactregistryV1alpha1UploadGooGetArtifactMediaResponse) The response message. """ config = self.GetMethodConfig('Upload') upload_config = self.GetUploadConfig('Upload') return self._RunMethod( config, request, global_params=global_params, upload=upload, upload_config=upload_config) Upload.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1alpha1/projects/{projectsId}/locations/{locationsId}/repositories/{repositoriesId}/googetArtifacts:create', http_method='POST', method_id='artifactregistry.projects.locations.repositories.googetartifacts.upload', ordered_params=['parent'], path_params=['parent'], query_params=[], relative_path='v1alpha1/{+parent}/googetArtifacts:create', request_field='googleDevtoolsArtifactregistryV1alpha1UploadGooGetArtifactRequest', request_type_name='ArtifactregistryProjectsLocationsRepositoriesGoogetartifactsUploadRequest', response_type_name='GoogleDevtoolsArtifactregistryV1alpha1UploadGooGetArtifactMediaResponse', supports_download=False, ) class ProjectsLocationsRepositoriesYumArtifactsService(base_api.BaseApiService): """Service class for the projects_locations_repositories_yumArtifacts resource.""" _NAME = 'projects_locations_repositories_yumArtifacts' def __init__(self, client): super(ArtifactregistryV1alpha1.ProjectsLocationsRepositoriesYumArtifactsService, self).__init__(client) self._upload_configs = { } def Import(self, request, global_params=None): r"""Imports Yum (RPM) artifacts. The returned Operation will complete once the resources are imported. Package, Version, and File resources are created based on the imported artifacts. Imported artifacts that conflict with existing resources are ignored. Args: request: (ArtifactregistryProjectsLocationsRepositoriesYumArtifactsImportRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Operation) The response message. """ config = self.GetMethodConfig('Import') return self._RunMethod( config, request, global_params=global_params) Import.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1alpha1/projects/{projectsId}/locations/{locationsId}/repositories/{repositoriesId}/yumArtifacts:import', http_method='POST', method_id='artifactregistry.projects.locations.repositories.yumArtifacts.import', ordered_params=['parent'], path_params=['parent'], query_params=[], relative_path='v1alpha1/{+parent}/yumArtifacts:import', request_field='googleDevtoolsArtifactregistryV1alpha1ImportYumArtifactsRequest', request_type_name='ArtifactregistryProjectsLocationsRepositoriesYumArtifactsImportRequest', response_type_name='Operation', supports_download=False, ) class ProjectsLocationsRepositoriesYumartifactsService(base_api.BaseApiService): """Service class for the projects_locations_repositories_yumartifacts resource.""" _NAME = 'projects_locations_repositories_yumartifacts' def __init__(self, client): super(ArtifactregistryV1alpha1.ProjectsLocationsRepositoriesYumartifactsService, self).__init__(client) self._upload_configs = { 'Upload': base_api.ApiUploadInfo( accept=['*/*'], max_size=None, resumable_multipart=None, resumable_path=None, simple_multipart=True, simple_path='/upload/v1alpha1/{+parent}/yumArtifacts:create', ), } def Upload(self, request, global_params=None, upload=None): r"""Directly uploads a Yum artifact. The returned Operation will complete once the resources are uploaded. Package, Version, and File resources are created based on the imported artifact. Imported artifacts that conflict with existing resources are ignored. Args: request: (ArtifactregistryProjectsLocationsRepositoriesYumartifactsUploadRequest) input message global_params: (StandardQueryParameters, default: None) global arguments upload: (Upload, default: None) If present, upload this stream with the request. Returns: (GoogleDevtoolsArtifactregistryV1alpha1UploadYumArtifactMediaResponse) The response message. """ config = self.GetMethodConfig('Upload') upload_config = self.GetUploadConfig('Upload') return self._RunMethod( config, request, global_params=global_params, upload=upload, upload_config=upload_config) Upload.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1alpha1/projects/{projectsId}/locations/{locationsId}/repositories/{repositoriesId}/yumArtifacts:create', http_method='POST', method_id='artifactregistry.projects.locations.repositories.yumartifacts.upload', ordered_params=['parent'], path_params=['parent'], query_params=[], relative_path='v1alpha1/{+parent}/yumArtifacts:create', request_field='googleDevtoolsArtifactregistryV1alpha1UploadYumArtifactRequest', request_type_name='ArtifactregistryProjectsLocationsRepositoriesYumartifactsUploadRequest', response_type_name='GoogleDevtoolsArtifactregistryV1alpha1UploadYumArtifactMediaResponse', supports_download=False, ) class ProjectsLocationsRepositoriesService(base_api.BaseApiService): """Service class for the projects_locations_repositories resource.""" _NAME = 'projects_locations_repositories' def __init__(self, client): super(ArtifactregistryV1alpha1.ProjectsLocationsRepositoriesService, self).__init__(client) self._upload_configs = { } def Create(self, request, global_params=None): r"""Creates a repository. The returned Operation will finish once the repository has been created. Its response will be the created Repository. Args: request: (ArtifactregistryProjectsLocationsRepositoriesCreateRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Operation) The response message. """ config = self.GetMethodConfig('Create') return self._RunMethod( config, request, global_params=global_params) Create.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1alpha1/projects/{projectsId}/locations/{locationsId}/repositories', http_method='POST', method_id='artifactregistry.projects.locations.repositories.create', ordered_params=['parent'], path_params=['parent'], query_params=['repositoryId'], relative_path='v1alpha1/{+parent}/repositories', request_field='googleDevtoolsArtifactregistryV1alpha1Repository', request_type_name='ArtifactregistryProjectsLocationsRepositoriesCreateRequest', response_type_name='Operation', supports_download=False, ) def Delete(self, request, global_params=None): r"""Deletes a repository and all of its contents. The returned Operation will finish once the repository has been deleted. It will not have any Operation metadata and will return a google.protobuf.Empty response. Args: request: (ArtifactregistryProjectsLocationsRepositoriesDeleteRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Operation) The response message. """ config = self.GetMethodConfig('Delete') return self._RunMethod( config, request, global_params=global_params) Delete.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1alpha1/projects/{projectsId}/locations/{locationsId}/repositories/{repositoriesId}', http_method='DELETE', method_id='artifactregistry.projects.locations.repositories.delete', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='v1alpha1/{+name}', request_field='', request_type_name='ArtifactregistryProjectsLocationsRepositoriesDeleteRequest', response_type_name='Operation', supports_download=False, ) def Get(self, request, global_params=None): r"""Gets a repository. Args: request: (ArtifactregistryProjectsLocationsRepositoriesGetRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (GoogleDevtoolsArtifactregistryV1alpha1Repository) The response message. """ config = self.GetMethodConfig('Get') return self._RunMethod( config, request, global_params=global_params) Get.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1alpha1/projects/{projectsId}/locations/{locationsId}/repositories/{repositoriesId}', http_method='GET', method_id='artifactregistry.projects.locations.repositories.get', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='v1alpha1/{+name}', request_field='', request_type_name='ArtifactregistryProjectsLocationsRepositoriesGetRequest', response_type_name='GoogleDevtoolsArtifactregistryV1alpha1Repository', supports_download=False, ) def List(self, request, global_params=None): r"""Lists repositories. Args: request: (ArtifactregistryProjectsLocationsRepositoriesListRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (GoogleDevtoolsArtifactregistryV1alpha1ListRepositoriesResponse) The response message. """ config = self.GetMethodConfig('List') return self._RunMethod( config, request, global_params=global_params) List.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1alpha1/projects/{projectsId}/locations/{locationsId}/repositories', http_method='GET', method_id='artifactregistry.projects.locations.repositories.list', ordered_params=['parent'], path_params=['parent'], query_params=['pageSize', 'pageToken'], relative_path='v1alpha1/{+parent}/repositories', request_field='', request_type_name='ArtifactregistryProjectsLocationsRepositoriesListRequest', response_type_name='GoogleDevtoolsArtifactregistryV1alpha1ListRepositoriesResponse', supports_download=False, ) def Patch(self, request, global_params=None): r"""Updates a repository. Args: request: (ArtifactregistryProjectsLocationsRepositoriesPatchRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (GoogleDevtoolsArtifactregistryV1alpha1Repository) The response message. """ config = self.GetMethodConfig('Patch') return self._RunMethod( config, request, global_params=global_params) Patch.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1alpha1/projects/{projectsId}/locations/{locationsId}/repositories/{repositoriesId}', http_method='PATCH', method_id='artifactregistry.projects.locations.repositories.patch', ordered_params=['name'], path_params=['name'], query_params=['updateMask'], relative_path='v1alpha1/{+name}', request_field='googleDevtoolsArtifactregistryV1alpha1Repository', request_type_name='ArtifactregistryProjectsLocationsRepositoriesPatchRequest', response_type_name='GoogleDevtoolsArtifactregistryV1alpha1Repository', supports_download=False, ) class ProjectsLocationsService(base_api.BaseApiService): """Service class for the projects_locations resource.""" _NAME = 'projects_locations' def __init__(self, client): super(ArtifactregistryV1alpha1.ProjectsLocationsService, self).__init__(client) self._upload_configs = { } def Get(self, request, global_params=None): r"""Gets information about a location. Args: request: (ArtifactregistryProjectsLocationsGetRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Location) The response message. """ config = self.GetMethodConfig('Get') return self._RunMethod( config, request, global_params=global_params) Get.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1alpha1/projects/{projectsId}/locations/{locationsId}', http_method='GET', method_id='artifactregistry.projects.locations.get', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='v1alpha1/{+name}', request_field='', request_type_name='ArtifactregistryProjectsLocationsGetRequest', response_type_name='Location', supports_download=False, ) def List(self, request, global_params=None): r"""Lists information about the supported locations for this service. Args: request: (ArtifactregistryProjectsLocationsListRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (ListLocationsResponse) The response message. """ config = self.GetMethodConfig('List') return self._RunMethod( config, request, global_params=global_params) List.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1alpha1/projects/{projectsId}/locations', http_method='GET', method_id='artifactregistry.projects.locations.list', ordered_params=['name'], path_params=['name'], query_params=['filter', 'pageSize', 'pageToken'], relative_path='v1alpha1/{+name}/locations', request_field='', request_type_name='ArtifactregistryProjectsLocationsListRequest', response_type_name='ListLocationsResponse', supports_download=False, ) class ProjectsService(base_api.BaseApiService): """Service class for the projects resource.""" _NAME = 'projects' def __init__(self, client): super(ArtifactregistryV1alpha1.ProjectsService, self).__init__(client) self._upload_configs = { }
46.832155
266
0.732674
fd95a40cac16b245badc74e58480545ea1139f70
7,760
py
Python
xfraud/supplement/07Learning_hybrid/ours_learn-grid-A.py
eBay/xFraud
55525c472f40c452b6fb3508f4f8b273af596081
[ "Apache-2.0" ]
17
2021-11-04T12:49:28.000Z
2022-03-27T14:55:14.000Z
xfraud/supplement/07Learning_hybrid/ours_learn-grid-A.py
eBay/xFraud
55525c472f40c452b6fb3508f4f8b273af596081
[ "Apache-2.0" ]
1
2022-03-12T01:03:11.000Z
2022-03-12T01:03:11.000Z
xfraud/supplement/07Learning_hybrid/ours_learn-grid-A.py
eBay/xFraud
55525c472f40c452b6fb3508f4f8b273af596081
[ "Apache-2.0" ]
1
2022-03-01T08:06:49.000Z
2022-03-01T08:06:49.000Z
#!/usr/bin/env python # coding: utf-8 # - Edge weight is inferred by GNNExplainer and node importance is given by five Ebay annotators. Not every annotator has annotated each node. # - Seed is the txn to explain. # - id is the community id. import math from tqdm.auto import tqdm import random import pandas as pd import numpy as np import networkx as nx import itertools from collections import Counter import scipy.stats import sklearn from sklearn.metrics import accuracy_score from sklearn.metrics import roc_auc_score import matplotlib.pyplot as plt import warnings warnings.filterwarnings('ignore') from optparse import OptionParser parser = OptionParser() parser.add_option('--random-draw', action = 'store', dest = 'random_draw', type = int, default = 100, help = 'Random draws to break the tie in ranking topk edges.') parser.add_option('--edge-agg', action = 'store', dest = 'edge_agg', default = 'avg', choices = ['avg', 'min', 'sum'], help = 'Aggregation method to compute edge importance score based on the node importance scores.') # parser.add_option('--explainer-w', action = 'store', dest = 'explainer_w', default = '0', type = float, help = 'Learned parameter for explainer weights.') parser.add_option('-c', '--centrality-w', action = 'store', dest = 'centrality_w', default = '0', type = float, help = 'Learned parameter for centrality measures.') (options, args) = parser.parse_args() print ("Options:", options) explainer_w = 1-options.centrality_w learner = 'grid-{}'.format(options.centrality_w) # Load in the annotation file, the data seed, the edge weights by explainer, the edges in the communities. DataNodeImp = pd.read_csv('../05GNNExplainer-eval-hitrate/input/annotation_publish.csv') DataSeed = pd.read_csv('../05GNNExplainer-eval-hitrate/input/data-seed.txt') DataEdgeWeight = pd.read_csv('../05GNNExplainer-eval-hitrate/input/data-edge-weight.txt') df_e = pd.read_csv('../05GNNExplainer-eval-hitrate/input/masked_df_e.csv') x_y_df = pd.read_csv('x_y_df_learn.csv') del x_y_df['max_hitrate'] x_y_df['combined_weights'] = explainer_w * x_y_df['explainer'] + options.centrality_w * x_y_df['edge_btw'] print('AUC score of the sample:', roc_auc_score(DataSeed.y, DataSeed['yhat'])) # Communities labeled 0 and 1. comm0 = DataSeed[DataSeed.y==0].id.unique() comm1 = DataSeed[DataSeed.y==1].id.unique() df_node_weight = pd.read_csv('./results/df_node_weight_with_avgimp.csv') # Preprocess explainer weights: calculate undirectional edge weight by taking the max weight of bidirectional edge weights. # From node importance scores to edge importance score: "min"/"avg"/"sum". df_edge_weight = df_e.copy() df_edge_weight['importance'] = None df_edge_weight['weight'] = None df_edge_weight['weight_positive'] = None df_edge_weight['weight_negative'] = None for i, row in tqdm(df_edge_weight.iterrows(), total=len(df_edge_weight), ncols=80, mininterval=5): src_node_id = row['source'] dst_node_id = row['target'] cc_id = row['community_id'] src_row = df_node_weight[(df_node_weight['node_id']==src_node_id) & (df_node_weight['community_id']==cc_id)].iloc[0] dst_row = df_node_weight[(df_node_weight['node_id']==dst_node_id) & (df_node_weight['community_id']==cc_id)].iloc[0] if options.edge_agg == 'min': edge_imp_annotate = min(src_row['importance_avg'], dst_row['importance_avg']) if options.edge_agg == 'avg': edge_imp_annotate = np.mean([src_row['importance_avg'], dst_row['importance_avg']]) if options.edge_agg == 'sum': edge_imp_annotate = src_row['importance_avg'] + dst_row['importance_avg'] edge_weights = DataEdgeWeight[DataEdgeWeight['src'].isin([src_node_id, dst_node_id]) & DataEdgeWeight['dst'].isin([src_node_id, dst_node_id]) & DataEdgeWeight['id'].isin([cc_id])]['edge_weight'].max() df_edge_weight['importance'].iloc[i] = edge_imp_annotate df_edge_weight['weight'].iloc[i] = edge_weights df_edge_weight['weight_positive'].iloc[i] = DataEdgeWeight[DataEdgeWeight['src'].isin([src_node_id]) & DataEdgeWeight['dst'].isin([dst_node_id]) & DataEdgeWeight['id'].isin([cc_id])]['edge_weight'].iloc[0] df_edge_weight['weight_negative'].iloc[i] = DataEdgeWeight[DataEdgeWeight['src'].isin([dst_node_id]) & DataEdgeWeight['dst'].isin([src_node_id]) & DataEdgeWeight['id'].isin([cc_id])]['edge_weight'].iloc[0] df_edge_weight['combined_weights'] = x_y_df['combined_weights'] # Avg edge/community. print('Average edges per community:', df_edge_weight.shape[0]/41) df_edge_weight.rename(columns={'source':'src', 'target': 'dst', 'community_id': 'id', 'importance': 'edge_importance', 'combined_weights': 'edge_weight'}, inplace=True) df_edge_weight.to_csv('./results/df_edge_weight_imp-{}-{}.csv'.format(options.edge_agg, learner)) df_edge_weight.rename(columns={'edge_importance':'importance'}, inplace=True) df_edge_weight = df_edge_weight.reset_index() # Topk hit rate hitrate_df = pd.DataFrame(index=['all', 'comm0', 'comm1'] + list(range(0,41))) for k in [i*5 for i in range(1,11)]: hitrate_list_topk_comm = [] for cid in df_edge_weight.id.unique(): df_edge_weight_sub = df_edge_weight[df_edge_weight.id==cid] imp_largest = sorted(dict(Counter(df_edge_weight_sub.importance)).items(), reverse=True)[0][0] count_largest = sorted(dict(Counter(df_edge_weight_sub.importance)).items(), reverse=True)[0][1] hitrate_list_topk = [] for r in tqdm(range(0,options.random_draw), total=options.random_draw, ncols=80, mininterval=5): random.seed(r) if count_largest <= k: src_id_human_topk = df_edge_weight_sub[['src','dst']].values.tolist() else: all_human_top_edge_idx = df_edge_weight_sub[df_edge_weight_sub.importance == imp_largest].index human_topk_edge_idx = random.sample(list(all_human_top_edge_idx), k) src_id_human_topk = df_edge_weight.iloc[human_topk_edge_idx][['src','dst']].values.tolist() explainer_topk_edge = df_edge_weight_sub.sort_values(by=['edge_weight'], ascending=False)[['edge_weight', 'src', 'dst']][:k] src_id_explainer_topk = explainer_topk_edge[['src','dst']].values.tolist() hitrate = len([p for p in src_id_explainer_topk if p in src_id_human_topk or (p[1], p[0]) in src_id_human_topk])/k hitrate_list_topk.append(hitrate) hitrate_list_topk_comm.append(np.mean(hitrate_list_topk)) all_hitrate = np.mean(hitrate_list_topk_comm) comm0_hitrate = np.mean([h for (i,h) in enumerate(hitrate_list_topk_comm) if i in comm0]) comm1_hitrate = np.mean([h for (i,h) in enumerate(hitrate_list_topk_comm) if i in comm1]) hitrate_df['top{}'.format(k)] = [all_hitrate, comm0_hitrate, comm1_hitrate] + hitrate_list_topk_comm hitrate_df.to_csv('./results/topk-{}-{}-{}.csv'.format(options.random_draw, options.edge_agg, learner), index=True) ours = hitrate_df.loc[['all', 'comm0', 'comm1']] print('Our topk hit rate:', ours) print(ours) # In[17]: train = hitrate_df.loc[range(0,21)] test = hitrate_df.loc[range(21, 41)] all = hitrate_df.loc[range(0, 41)] np.mean(train).to_csv('./results/ours_{}_train.csv'.format(learner)) np.mean(test).to_csv('./results/ours_{}_test.csv'.format(learner)) np.mean(all).to_csv('./results/ours_{}_all.csv'.format(learner))
44.597701
217
0.683634
63f17d48f8c4626dd76450f86c4282b3b5f5ce93
8,469
py
Python
pylatex/utils.py
yxqd/PyLaTeX
467823012185bcdb7a7a6f6f253c2835193ab5c8
[ "MIT" ]
null
null
null
pylatex/utils.py
yxqd/PyLaTeX
467823012185bcdb7a7a6f6f253c2835193ab5c8
[ "MIT" ]
null
null
null
pylatex/utils.py
yxqd/PyLaTeX
467823012185bcdb7a7a6f6f253c2835193ab5c8
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ This module implements some simple utility functions. .. :copyright: (c) 2014 by Jelte Fennema. :license: MIT, see License for more details. """ import os.path import getpass import shutil import tempfile import pylatex.base_classes _latex_special_chars = { '&': r'\&', '%': r'\%', '$': r'\$', '#': r'\#', '_': r'\_', '{': r'\{', '}': r'\}', '~': r'\textasciitilde{}', '^': r'\^{}', '\\': r'\textbackslash{}', '\n': '\\newline%\n', '-': r'{-}', '\xA0': '~', # Non-breaking space '[': r'{[}', ']': r'{]}', } _tmp_path = os.path.abspath( os.path.join( tempfile.gettempdir(), getpass.getuser(), "pylatex" ) ) def _is_iterable(element): return hasattr(element, '__iter__') and not isinstance(element, str) class NoEscape(str): """ A simple string class that is not escaped. When a `.NoEscape` string is added to another `.NoEscape` string it will produce a `.NoEscape` string. If it is added to normal string it will produce a normal string. Args ---- string: str The content of the `NoEscape` string. """ def __repr__(self): return '%s(%s)' % (self.__class__.__name__, self) def __add__(self, right): s = super().__add__(right) if isinstance(right, NoEscape): return NoEscape(s) return s def escape_latex(s): r"""Escape characters that are special in latex. Args ---- s : `str`, `NoEscape` or anything that can be converted to string The string to be escaped. If this is not a string, it will be converted to a string using `str`. If it is a `NoEscape` string, it will pass through unchanged. Returns ------- NoEscape The string, with special characters in latex escaped. Examples -------- >>> escape_latex("Total cost: $30,000") 'Total cost: \$30,000' >>> escape_latex("Issue #5 occurs in 30% of all cases") 'Issue \#5 occurs in 30\% of all cases' >>> print(escape_latex("Total cost: $30,000")) References ---------- * http://tex.stackexchange.com/a/34586/43228 * http://stackoverflow.com/a/16264094/2570866 """ if isinstance(s, NoEscape): return s return NoEscape(''.join(_latex_special_chars.get(c, c) for c in str(s))) def fix_filename(path): r"""Fix filenames for use in LaTeX. Latex has problems if there are one or more points in the filename, thus 'abc.def.jpg' will be changed to '{abc.def}.jpg' Args ---- filename : str The filen name to be changed. Returns ------- str The new filename. Examples -------- >>> fix_filename("foo.bar.pdf") '{foo.bar}.pdf' >>> fix_filename("/etc/local/foo.bar.pdf") '/etc/local/{foo.bar}.pdf' >>> fix_filename("/etc/local/foo.bar.baz/document.pdf") '/etc/local/foo.bar.baz/document.pdf' >>> fix_filename("/etc/local/foo.bar.baz/foo~1/document.pdf") '\detokenize{/etc/local/foo.bar.baz/foo~1/document.pdf}' """ path_parts = path.split('/' if os.name == 'posix' else '\\') dir_parts = path_parts[:-1] filename = path_parts[-1] file_parts = filename.split('.') if len(file_parts) > 2: filename = '{' + '.'.join(file_parts[0:-1]) + '}.' + file_parts[-1] dir_parts.append(filename) fixed_path = '/'.join(dir_parts) if '~' in fixed_path: fixed_path = r'\detokenize{' + fixed_path + '}' return fixed_path def dumps_list(l, *, escape=True, token='%\n', mapper=None, as_content=True): r"""Try to generate a LaTeX string of a list that can contain anything. Args ---- l : list A list of objects to be converted into a single string. escape : bool Whether to escape special LaTeX characters in converted text. token : str The token (default is a newline) to separate objects in the list. mapper: callable or `list` A function, class or a list of functions/classes that should be called on all entries of the list after converting them to a string, for instance `~.bold` or `~.MediumText`. as_content: bool Indicates whether the items in the list should be dumped using `~.LatexObject.dumps_as_content` Returns ------- NoEscape A single LaTeX string. Examples -------- >>> dumps_list([r"\textbf{Test}", r"\nth{4}"]) '\\textbf{Test}%\n\\nth{4}' >>> print(dumps_list([r"\textbf{Test}", r"\nth{4}"])) \textbf{Test} \nth{4} >>> print(pylatex.utils.dumps_list(["There are", 4, "lights!"])) There are 4 lights! >>> print(dumps_list(["$100%", "True"], escape=True)) \$100\% True """ strings = (_latex_item_to_string(i, escape=escape, as_content=as_content) for i in l) if mapper is not None: if not isinstance(mapper, list): mapper = [mapper] for m in mapper: strings = [m(s) for s in strings] strings = [_latex_item_to_string(s) for s in strings] return NoEscape(token.join(strings)) def _latex_item_to_string(item, *, escape=False, as_content=False): """Use the render method when possible, otherwise uses str. Args ---- item: object An object that needs to be converted to a string escape: bool Flag that indicates if escaping is needed as_content: bool Indicates whether the item should be dumped using `~.LatexObject.dumps_as_content` Returns ------- NoEscape Latex """ if isinstance(item, pylatex.base_classes.LatexObject): if as_content: return item.dumps_as_content() else: return item.dumps() elif not isinstance(item, str): item = str(item) if escape: item = escape_latex(item) return item def bold(s, *, escape=True): r"""Make a string appear bold in LaTeX formatting. bold() wraps a given string in the LaTeX command \textbf{}. Args ---- s : str The string to be formatted. escape: bool If true the bold text will be escaped Returns ------- NoEscape The formatted string. Examples -------- >>> bold("hello") '\\textbf{hello}' >>> print(bold("hello")) \textbf{hello} """ if escape: s = escape_latex(s) return NoEscape(r'\textbf{' + s + '}') def italic(s, *, escape=True): r"""Make a string appear italicized in LaTeX formatting. italic() wraps a given string in the LaTeX command \textit{}. Args ---- s : str The string to be formatted. escape: bool If true the italic text will be escaped Returns ------- NoEscape The formatted string. Examples -------- >>> italic("hello") '\\textit{hello}' >>> print(italic("hello")) \textit{hello} """ if escape: s = escape_latex(s) return NoEscape(r'\textit{' + s + '}') def verbatim(s, *, delimiter='|'): r"""Make the string verbatim. Wraps the given string in a \verb LaTeX command. Args ---- s : str The string to be formatted. delimiter : str How to designate the verbatim text (default is a pipe | ) Returns ------- NoEscape The formatted string. Examples -------- >>> verbatim(r"\renewcommand{}") '\\verb|\\renewcommand{}|' >>> print(verbatim(r"\renewcommand{}")) \verb|\renewcommand{}| >>> print(verbatim('pi|pe', '!')) \verb!pi|pe! """ return NoEscape(r'\verb' + delimiter + s + delimiter) def make_temp_dir(): """Create a temporary directory if it doesn't exist. Directories created by this functionn follow the format specified by ``_tmp_path`` and are a pylatex subdirectory within a standard ``tempfile`` tempdir. Returns ------- str The absolute filepath to the created temporary directory. Examples -------- >>> make_temp_dir() '/var/folders/g9/ct5f3_r52c37rbls5_9nc_qc0000gn/T/pylatex' """ if not os.path.exists(_tmp_path): os.makedirs(_tmp_path) return _tmp_path def rm_temp_dir(): """Remove the temporary directory specified in ``_tmp_path``.""" if os.path.exists(_tmp_path): shutil.rmtree(_tmp_path)
23.789326
79
0.585902
247b4470485d9e341902906feeb941e49ad98be2
2,539
py
Python
mysite/account/models.py
wuhaoqiu/engr597-stable
284ab9efae8361c139d330313abb831bfea9e5b9
[ "MIT" ]
null
null
null
mysite/account/models.py
wuhaoqiu/engr597-stable
284ab9efae8361c139d330313abb831bfea9e5b9
[ "MIT" ]
6
2020-06-05T20:18:51.000Z
2022-03-11T23:42:53.000Z
mysite/account/models.py
wuhaoqiu/engr597-stable
284ab9efae8361c139d330313abb831bfea9e5b9
[ "MIT" ]
1
2020-06-24T01:39:15.000Z
2020-06-24T01:39:15.000Z
# User,Group,Permission from django.db import models from django.conf import settings from django.contrib.auth.models import User # Create your models here. # this will create one more table called Profile, 并不是在原User table里直接增加 class Profile(models.Model): # instead of inheritance, we use OneToOneField to extend models, so this is usually used in a child model # Using settings.AUTH_USER_MODEL to relate profile with auth.user model # get_user_model will attempt to retrieve the model class at the moment your app is imported the first time. user=models.OneToOneField(settings.AUTH_USER_MODEL, on_delete=models.CASCADE) date_of_birth=models.DateField(blank=True, null=True) # in order to upload images, we need to add some lines in settings.py photo=models.ImageField(upload_to='users/%Y/%m/%d/', blank=True,default='default/default_profile.png') def __str__(self): return 'Profile for user {}'.format(self.user.username) # # this is a intermediary model for this many to many relationship, use it when you want to add extra features for your many to many relationship # class Contact(models.Model): # # follower # user_from = models.ForeignKey('auth.User',related_name='rel_from_set',on_delete=models.CASCADE) # # being followed # user_to = models.ForeignKey('auth.User',related_name='rel_to_set',on_delete=models.CASCADE) # created = models.DateTimeField(auto_now_add=True,db_index=True) # # class Meta: # ordering = ('-created',) # # def __str__(self): # return '{} follows {}'.format(self.user_from,self.user_to) # now that we have built the intermediary, its time to tell 那两个有关系的Model 来使用这个intermediary to construct relationship # here because <User> is built by system, so we canot modify it, instead, dynamically add this manytomanyfield that need to be built through <Contact> to the class # also, tell django this relationship is not symmetric, which means a follows b, b donot need to follow a # also, when we using intermediay, when we want to delete or remove a relatioship, we can only remove corresponding <Contact> instance instead of directly chaning <User> instance # Fianlly warning, this adding method is not recommened, the better way is # 1. adding this to <Profile> model # 2. using django customized model https://docs.djangoproject.com/en/2.0/topics/auth/customizing/#specifying-a-custom-user-model # User.add_to_class('following', models.ManyToManyField('self',through=Contact, related_name='followers',symmetrical=False))
59.046512
178
0.760142
919dd5cc6e139ab4a3fbf1e71dd8607700e407f7
7,137
py
Python
manim/animation/animation.py
yy/manim
2ed00b6b26499afa23ba419373e6899448e29f15
[ "MIT" ]
1
2019-01-13T19:21:00.000Z
2019-01-13T19:21:00.000Z
manim/animation/animation.py
yy/manim
2ed00b6b26499afa23ba419373e6899448e29f15
[ "MIT" ]
null
null
null
manim/animation/animation.py
yy/manim
2ed00b6b26499afa23ba419373e6899448e29f15
[ "MIT" ]
null
null
null
"""Animate mobjects.""" __all__ = ["Animation", "Wait"] import typing from copy import deepcopy import numpy as np if typing.TYPE_CHECKING: from manim.scene.scene import Scene from .. import logger from ..mobject.mobject import Mobject from ..utils.rate_functions import smooth DEFAULT_ANIMATION_RUN_TIME: float = 1.0 DEFAULT_ANIMATION_LAG_RATIO: float = 0.0 class Animation: def __init__( self, mobject: Mobject, # If lag_ratio is 0, the animation is applied to all submobjects # at the same time # If 1, it is applied to each successively. # If 0 < lag_ratio < 1, its applied to each # with lagged start times lag_ratio: float = DEFAULT_ANIMATION_LAG_RATIO, run_time: int = DEFAULT_ANIMATION_RUN_TIME, rate_func: typing.Callable[[float, float], np.ndarray] = smooth, name: str = None, remover: bool = False, # remove a mobject from the screen? suspend_mobject_updating: bool = True, **kwargs ) -> None: self._typecheck_input(mobject) self.run_time = run_time self.rate_func = rate_func self.name = name self.remover = remover self.suspend_mobject_updating = suspend_mobject_updating self.lag_ratio = lag_ratio self.starting_mobject = None self.mobject = mobject if kwargs: logger.debug("Animation received extra kwargs: %s", kwargs) if hasattr(self, "CONFIG"): logger.error( ( "CONFIG has been removed from ManimCommunity.", "Please use keyword arguments instead.", ) ) def _typecheck_input(self, mobject: Mobject) -> None: if mobject is None: logger.warning("creating dummy animation") elif not isinstance(mobject, Mobject): raise TypeError("Animation only works on Mobjects") def __str__(self) -> str: if self.name: return self.name return self.__class__.__name__ + str(self.mobject) def begin(self) -> None: # This is called right as an animation is being # played. As much initialization as possible, # especially any mobject copying, should live in # this method self.starting_mobject = self.create_starting_mobject() if self.suspend_mobject_updating: # All calls to self.mobject's internal updaters # during the animation, either from this Animation # or from the surrounding scene, should do nothing. # It is, however, okay and desirable to call # the internal updaters of self.starting_mobject, # or any others among self.get_all_mobjects() self.mobject.suspend_updating() self.interpolate(0) def finish(self) -> None: self.interpolate(1) if self.suspend_mobject_updating: self.mobject.resume_updating() def clean_up_from_scene(self, scene: "Scene") -> None: if self.is_remover(): scene.remove(self.mobject) def create_starting_mobject(self) -> Mobject: # Keep track of where the mobject starts return self.mobject.copy() def get_all_mobjects(self) -> typing.Tuple[Mobject, typing.Union[Mobject, None]]: """ Ordering must match the ordering of arguments to interpolate_submobject """ return self.mobject, self.starting_mobject def get_all_families_zipped(self) -> typing.Iterator[typing.Tuple]: return zip( *[mob.family_members_with_points() for mob in self.get_all_mobjects()] ) def update_mobjects(self, dt: int) -> None: """ Updates things like starting_mobject, and (for Transforms) target_mobject. Note, since typically (always?) self.mobject will have its updating suspended during the animation, this will do nothing to self.mobject. """ for mob in self.get_all_mobjects_to_update(): mob.update(dt) def get_all_mobjects_to_update(self) -> list: # The surrounding scene typically handles # updating of self.mobject. Besides, in # most cases its updating is suspended anyway return list(filter(lambda m: m is not self.mobject, self.get_all_mobjects())) def copy(self) -> "Animation": return deepcopy(self) # Methods for interpolation, the mean of an Animation def interpolate(self, alpha: float) -> None: alpha = np.clip(alpha, 0, 1) self.interpolate_mobject(self.rate_func(alpha)) def update(self, alpha: float) -> None: """ This method shouldn't exist, but it's here to keep many old scenes from breaking """ logger.warning( "animation.update() has been deprecated. " "Please use animation.interpolate() instead." ) self.interpolate(alpha) def interpolate_mobject(self, alpha: float) -> None: families = list(self.get_all_families_zipped()) for i, mobs in enumerate(families): sub_alpha = self.get_sub_alpha(alpha, i, len(families)) self.interpolate_submobject(*mobs, sub_alpha) def interpolate_submobject( self, submobject: Mobject, starting_submobject: Mobject, alpha: float ) -> None: # Typically implemented by subclass pass def get_sub_alpha(self, alpha: float, index: int, num_submobjects: int): # TODO, make this more understandable, and/or combine # its functionality with AnimationGroup's method # build_animations_with_timings lag_ratio = self.lag_ratio full_length = (num_submobjects - 1) * lag_ratio + 1 value = alpha * full_length lower = index * lag_ratio return np.clip((value - lower), 0, 1) # Getters and setters def set_run_time(self, run_time: float) -> "Animation": self.run_time = run_time return self def get_run_time(self) -> float: return self.run_time def set_rate_func( self, rate_func: typing.Callable[[float, float], np.ndarray] ) -> "Animation": self.rate_func = rate_func return self def get_rate_func(self) -> typing.Callable[[float, float], np.ndarray]: return self.rate_func def set_name(self, name: str) -> "Animation": self.name = name return self def is_remover(self) -> bool: return self.remover class Wait(Animation): def __init__( self, duration: float = 1, stop_condition=None, **kwargs ): # what is stop_condition? self.duration = duration self.mobject = None self.stop_condition = stop_condition super().__init__(None, **kwargs) def begin(self) -> None: pass def finish(self) -> None: pass def clean_up_from_scene(self, scene: "Scene") -> None: pass def update_mobjects(self, dt: int) -> None: pass def interpolate(self, alpha: float) -> None: pass
32.889401
85
0.628555
71a43f80646b0b3a01d151b1838849b9ac192a0b
327
py
Python
test/integration/test_config_schema.py
beatrizserrano/galaxy
e149d9d32e1bca6c07c38b1a9cdabfee60323610
[ "CC-BY-3.0" ]
null
null
null
test/integration/test_config_schema.py
beatrizserrano/galaxy
e149d9d32e1bca6c07c38b1a9cdabfee60323610
[ "CC-BY-3.0" ]
6
2021-11-11T20:57:49.000Z
2021-12-10T15:30:33.000Z
test/integration/test_config_schema.py
beatrizserrano/galaxy
e149d9d32e1bca6c07c38b1a9cdabfee60323610
[ "CC-BY-3.0" ]
null
null
null
from galaxy_test.driver import integration_util class ConfigSchemaTestCase(integration_util.IntegrationTestCase): def test_schema_path_resolution_graph(self): # Run schema's validation method; throws error if schema invalid schema = self._app.config.schema schema.validate_path_resolution_graph()
36.333333
72
0.785933
513069c763cf41e5dcc341806a5302ae1a490ae5
4,600
py
Python
horovod/spark/util/safe_shell_exec.py
rahul003/horovod
6a933cd4c60f7eae5816aa380adefda5b70ef3cf
[ "Apache-2.0" ]
4
2018-10-10T18:17:45.000Z
2019-03-15T05:29:20.000Z
horovod/spark/util/safe_shell_exec.py
rahul003/horovod
6a933cd4c60f7eae5816aa380adefda5b70ef3cf
[ "Apache-2.0" ]
7
2018-10-15T23:04:29.000Z
2019-01-17T23:15:03.000Z
horovod/spark/util/safe_shell_exec.py
rahul003/horovod
6a933cd4c60f7eae5816aa380adefda5b70ef3cf
[ "Apache-2.0" ]
2
2018-11-01T18:30:11.000Z
2018-11-08T05:41:30.000Z
# Copyright 2018 Uber Technologies, Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import os import psutil import signal import subprocess import sys import threading import time GRACEFUL_TERMINATION_TIME_S = 5 def terminate_executor_shell_and_children(pid): p = psutil.Process(pid) # Terminate children gracefully. for child in p.children(): try: child.terminate() except psutil.NoSuchProcess: pass # Wait for graceful termination. time.sleep(GRACEFUL_TERMINATION_TIME_S) # Send STOP to executor shell to stop progress. p.send_signal(signal.SIGSTOP) # Kill children recursively. for child in p.children(recursive=True): try: child.kill() except psutil.NoSuchProcess: pass # Kill shell itself. p.kill() def forward_stream(src_fd, dst_stream): if hasattr(dst_stream, 'buffer'): # If dst stream is a text buffer, we need to get its binary buffer. dst_stream = dst_stream.buffer with os.fdopen(src_fd, 'rb') as src: while True: line = src.readline() if not line: break dst_stream.write(line) dst_stream.flush() def execute(command, env=None, stdout=None, stderr=None): # Make a pipe for the subprocess stdout/stderr. (stdout_r, stdout_w) = os.pipe() (stderr_r, stderr_w) = os.pipe() # Make a pipe for notifying the child that parent has died. (r, w) = os.pipe() middleman_pid = os.fork() if middleman_pid == 0: # Close unused file descriptors to enforce PIPE behavior. os.close(w) os.setpgid(0, 0) executor_shell = subprocess.Popen(command, shell=True, env=env, stdout=stdout_w, stderr=stderr_w) sigterm_received = threading.Event() def set_sigterm_received(signum, frame): sigterm_received.set() signal.signal(signal.SIGINT, set_sigterm_received) signal.signal(signal.SIGTERM, set_sigterm_received) def kill_executor_children_if_parent_dies(): # This read blocks until the pipe is closed on the other side # due to the process termination. os.read(r, 1) terminate_executor_shell_and_children(executor_shell.pid) bg = threading.Thread(target=kill_executor_children_if_parent_dies) bg.daemon = True bg.start() def kill_executor_children_if_sigterm_received(): sigterm_received.wait() terminate_executor_shell_and_children(executor_shell.pid) bg = threading.Thread(target=kill_executor_children_if_sigterm_received) bg.daemon = True bg.start() exit_code = executor_shell.wait() os._exit(exit_code) # Close unused file descriptors to enforce PIPE behavior. os.close(r) os.close(stdout_w) os.close(stderr_w) # Redirect command stdout & stderr to provided streams or sys.stdout/sys.stderr. # This is useful for Jupyter Notebook that uses custom sys.stdout/sys.stderr or # for redirecting to a file on disk. if stdout is None: stdout = sys.stdout if stderr is None: stderr = sys.stderr stdout_fwd = threading.Thread(target=forward_stream, args=(stdout_r, stdout)) stderr_fwd = threading.Thread(target=forward_stream, args=(stderr_r, stderr)) stdout_fwd.start() stderr_fwd.start() try: _, status = os.waitpid(middleman_pid, 0) except: # interrupted, send middleman TERM signal which will terminate children os.kill(middleman_pid, signal.SIGTERM) while True: try: _, status = os.waitpid(middleman_pid, 0) break except: # interrupted, wait for middleman to finish pass stdout_fwd.join() stderr_fwd.join() exit_code = status >> 8 return exit_code
30.872483
84
0.644783
a3a4873b216defa4635804e665fcffac42cf1a97
1,163
py
Python
readthedocs/settings/proxito/base.py
yohalchan/readthedocs.org
77df2790b985eb17f345a36656e15778443931b6
[ "MIT" ]
1
2020-09-24T22:01:38.000Z
2020-09-24T22:01:38.000Z
readthedocs/settings/proxito/base.py
https-microsoft-com-powershell/readthedocs.org
a1d2de8907ecb2da84402bbb6cc5c271be20b5c0
[ "MIT" ]
null
null
null
readthedocs/settings/proxito/base.py
https-microsoft-com-powershell/readthedocs.org
a1d2de8907ecb2da84402bbb6cc5c271be20b5c0
[ "MIT" ]
null
null
null
""" Base settings for Proxito Some of these settings will eventually be backported into the main settings file, but currently we have them to be able to run the site with the old middleware for a staged rollout of the proxito code. """ class CommunityProxitoSettingsMixin: ROOT_URLCONF = 'readthedocs.proxito.urls' USE_SUBDOMAIN = True SECURE_REFERRER_POLICY = "no-referrer-when-downgrade" @property def DATABASES(self): # This keeps connections to the DB alive, # which reduces latency with connecting to postgres dbs = getattr(super(), 'DATABASES', {}) for db in dbs.keys(): dbs[db]['CONN_MAX_AGE'] = 86400 return dbs @property def MIDDLEWARE(self): # noqa # Use our new middleware instead of the old one classes = super().MIDDLEWARE classes = list(classes) classes.append('readthedocs.proxito.middleware.ProxitoMiddleware') middleware_to_remove = ( 'csp.middleware.CSPMiddleware', ) for mw in middleware_to_remove: if mw in classes: classes.remove(mw) return classes
29.075
81
0.654342
a485961ac05eb1e7dfb7ec6821462004c4a201ce
1,623
py
Python
pyfov.py
flags/Reactor-3
b41a2904c9ec8cc14bcee03611602d0e568acf12
[ "MIT" ]
56
2015-04-20T08:31:29.000Z
2021-12-19T14:05:18.000Z
pyfov.py
HexDecimal/Reactor-3
b41a2904c9ec8cc14bcee03611602d0e568acf12
[ "MIT" ]
2
2018-07-24T11:24:41.000Z
2021-05-16T03:04:53.000Z
pyfov.py
HexDecimal/Reactor-3
b41a2904c9ec8cc14bcee03611602d0e568acf12
[ "MIT" ]
9
2015-11-03T02:56:20.000Z
2021-04-28T08:19:57.000Z
def old_light(los_map, world_pos, size, row, start_slope, end_slope, xx, xy, yx, yy, collision_map, map_size): _return_chunks = set() if start_slope < end_slope: return los_map, _return_chunks x, y, z = world_pos _next_start_slope = start_slope for i in range(row, size): _blocked = False _d_x = -i _d_y = -i while _d_x <= 0: _l_slope = (_d_x - 0.5) / (_d_y + 0.5) _r_slope = (_d_x + 0.5) / (_d_y - 0.5) if start_slope < _r_slope: _d_x += 1 continue elif end_slope>_l_slope: break _sax = _d_x * xx + _d_y * xy _say = _d_x * yx + _d_y * yy if (_sax<0 and abs(_sax)>x) or (_say<0 and abs(_say)>y): _d_x += 1 continue _a_x = x + _sax _a_y = y + _say if _a_x >= map_size[0] or _a_y >= map_size[1]: _d_x += 1 continue _rad2 = size*size _solid = collision_map[_sax+size, _say+size] if (_d_x * _d_x + _d_y * _d_y) < _rad2: los_map[_sax+size, _say+size] = 1 if not _solid: _chunk_key = '%s,%s' % ((_a_x/5)*5, (_a_y/5)*5) if not _chunk_key in _return_chunks: _return_chunks.add(_chunk_key) if _blocked: if _solid: _next_start_slope = _r_slope _d_x += 1 continue else: _blocked = False start_slope = _next_start_slope elif _solid: _blocked = True _next_start_slope = _r_slope _map, _chunk_keys = old_light(los_map, world_pos, size, i+1, start_slope, _l_slope, xx, xy, yx, yy, collision_map, map_size) los_map += _map _return_chunks.update(_chunk_keys) _d_x += 1 if _blocked: break return los_map, _return_chunks
22.232877
128
0.617375
dff37a9bfafeafe6be435860ab916e5ecf533b32
3,142
py
Python
buildout_env/lib/python2.7/site-packages/scipy/interpolate/__init__.py
salayhin/talkofacta
8b5a14245dd467bb1fda75423074c4840bd69fb7
[ "MIT" ]
11
2017-12-25T23:22:13.000Z
2021-09-28T00:23:37.000Z
buildout_env/lib/python2.7/site-packages/scipy/interpolate/__init__.py
salayhin/talkofacta
8b5a14245dd467bb1fda75423074c4840bd69fb7
[ "MIT" ]
1
2017-01-12T09:51:20.000Z
2017-03-09T23:19:57.000Z
buildout_env/lib/python2.7/site-packages/scipy/interpolate/__init__.py
salayhin/talkofacta
8b5a14245dd467bb1fda75423074c4840bd69fb7
[ "MIT" ]
4
2017-01-11T15:40:52.000Z
2018-07-25T16:03:52.000Z
"""======================================== Interpolation (:mod:`scipy.interpolate`) ======================================== .. currentmodule:: scipy.interpolate Sub-package for objects used in interpolation. As listed below, this sub-package contains spline functions and classes, one-dimensional and multi-dimensional (univariate and multivariate) interpolation classes, Lagrange and Taylor polynomial interpolators, and wrappers for `FITPACK <http://www.netlib.org/dierckx/>`__ and DFITPACK functions. Univariate interpolation ======================== .. autosummary:: :toctree: generated/ interp1d BarycentricInterpolator KroghInterpolator PiecewisePolynomial PchipInterpolator barycentric_interpolate krogh_interpolate piecewise_polynomial_interpolate pchip_interpolate Akima1DInterpolator PPoly BPoly Multivariate interpolation ========================== Unstructured data: .. autosummary:: :toctree: generated/ griddata LinearNDInterpolator NearestNDInterpolator CloughTocher2DInterpolator Rbf interp2d For data on a grid: .. autosummary:: :toctree: generated/ interpn RegularGridInterpolator RectBivariateSpline .. seealso:: `scipy.ndimage.interpolation.map_coordinates` 1-D Splines =========== .. autosummary:: :toctree: generated/ UnivariateSpline InterpolatedUnivariateSpline LSQUnivariateSpline Functional interface to FITPACK functions: .. autosummary:: :toctree: generated/ splrep splprep splev splint sproot spalde splder splantider insert 2-D Splines =========== For data on a grid: .. autosummary:: :toctree: generated/ RectBivariateSpline RectSphereBivariateSpline For unstructured data: .. autosummary:: :toctree: generated/ BivariateSpline SmoothBivariateSpline SmoothSphereBivariateSpline LSQBivariateSpline LSQSphereBivariateSpline Low-level interface to FITPACK functions: .. autosummary:: :toctree: generated/ bisplrep bisplev Additional tools ================ .. autosummary:: :toctree: generated/ lagrange approximate_taylor_polynomial .. seealso:: `scipy.ndimage.interpolation.map_coordinates`, `scipy.ndimage.interpolation.spline_filter`, `scipy.signal.resample`, `scipy.signal.bspline`, `scipy.signal.gauss_spline`, `scipy.signal.qspline1d`, `scipy.signal.cspline1d`, `scipy.signal.qspline1d_eval`, `scipy.signal.cspline1d_eval`, `scipy.signal.qspline2d`, `scipy.signal.cspline2d`. Functions existing for backward compatibility (should not be used in new code): .. autosummary:: :toctree: generated/ ppform spleval spline splmake spltopp pchip """ from __future__ import division, print_function, absolute_import from .interpolate import * from .fitpack import * # New interface to fitpack library: from .fitpack2 import * from .rbf import Rbf from .polyint import * from ._monotone import * from .ndgriddata import * __all__ = [s for s in dir() if not s.startswith('_')] from numpy.testing import Tester test = Tester().test bench = Tester().bench
17.852273
72
0.706238
a0a5bc9014071cbd73a5ac2cb48f3db38cea9565
2,023
py
Python
court_scraper/platforms/oscn/pages/daily_filings.py
mscarey/court-scraper
0e13976d901352a09cfd7e48450bbe427494f48e
[ "0BSD" ]
30
2020-09-08T23:59:34.000Z
2022-03-24T03:02:47.000Z
court_scraper/platforms/oscn/pages/daily_filings.py
palewire/court-scraper
da4b614fb16806d8b5117373d273f802ca93a8cb
[ "0BSD" ]
111
2020-09-16T23:42:40.000Z
2022-02-19T01:25:55.000Z
court_scraper/platforms/oscn/pages/daily_filings.py
palewire/court-scraper
da4b614fb16806d8b5117373d273f802ca93a8cb
[ "0BSD" ]
9
2020-10-05T13:19:03.000Z
2021-12-11T12:12:13.000Z
import requests from court_scraper.utils import dates_for_range from .base_search import BaseSearch from .daily_filings_results import DailyFilingsResultsPage class DailyFilings(BaseSearch): """Search daily filings by county for limited number of larger counties. Supports searches by date only. Args: - place_id (str): Standard place id (e.g. ok_tulsa or ok_roger_mills) """ def __init__(self, place_id): self.url = 'https://www.oscn.net/applications/oscn/report.asp' self.place_id = place_id def search(self, start_date, end_date, case_details=False): date_format = "%m-%d-%y" dates = dates_for_range(start_date, end_date, output_format=date_format) search_results = [] for date_str in dates: # Convert date_str to standard YYYY-MM-DD for upstream usage date_key = self._standardize_date(date_str, date_format, "%Y-%m-%d") basic_case_data = self._run_search_for_day(date_str) # Skip if there were no results for date if not basic_case_data: continue if case_details: results = self._scrape_case_details(date_key, basic_case_data) search_results.extend(results) else: # Add the filing date to CaseInfo instances if it's only a metadata search # since it's not listed on results page for case in basic_case_data: case.update({'filing_date': date_key}) search_results.append(case) return search_results def _run_search_for_day(self, day): payload = { 'report': 'DailyFilings', 'errorcheck': 'true', 'database': '', 'db': self._place, 'StartDate': day } response = requests.get(self.url, params=payload) html = response.text page = DailyFilingsResultsPage(self.place_id, html) return page.results
36.781818
90
0.622837
615cdacf1566ffb3afa10469197aad0ddba40f10
4,463
py
Python
code/sf_t3d/settings.py
superfluidity/RDCL3D
3c5717941bd4046aa1be178e9004db1dc1c469a0
[ "Apache-2.0" ]
8
2017-03-13T16:34:28.000Z
2021-11-16T11:35:56.000Z
code/sf_t3d/settings.py
superfluidity/RDCL3D
3c5717941bd4046aa1be178e9004db1dc1c469a0
[ "Apache-2.0" ]
null
null
null
code/sf_t3d/settings.py
superfluidity/RDCL3D
3c5717941bd4046aa1be178e9004db1dc1c469a0
[ "Apache-2.0" ]
3
2017-03-28T09:26:40.000Z
2020-12-08T14:16:12.000Z
""" Django settings for sf_t3d project. Generated by 'django-admin startproject' using Django 1.9. For more information on this file, see https://docs.djangoproject.com/en/1.9/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.9/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.9/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'o5+o2jv(3-dqr(&ia#-@79cgr%xi*s+6xjws^8cxp211ge#buf' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] AUTH_USER_MODEL = "sf_user.CustomUser" SITE_NAME = "RDCL 3D" SHORT_SITE_NAME = "RDCL" LOGIN_URL = '/auth/' LOGOUT_URL = '/auth/' VERSION = "0.0.1" # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.messages', 'django.contrib.staticfiles', 'sf_user', 'projecthandler', 'deploymenthandler', 'webhookhandler' ] MIDDLEWARE_CLASSES = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] SESSION_ENGINE='sf_user.sessions' SESSION_COOKIE_AGE = 3500 #25 min SESSION_EXPIRE_AT_BROWSER_CLOSE = True SESSION_SAVE_EVERY_REQUEST = True ROOT_URLCONF = 'sf_t3d.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [ os.path.join(BASE_DIR, 'template'), os.path.join(BASE_DIR, 'projecthandler', 'template'), os.path.join(BASE_DIR, 'projecthandler', 'template', 'download'), os.path.join(BASE_DIR, 'projecthandler', 'template', 'project'), os.path.join(BASE_DIR, 'deploymenthandler', 'template'), ], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', 'sf_t3d.context_processor.conf_constants', ], 'libraries':{ 'get': 'sf_t3d.templatetags.get', } }, }, ] WSGI_APPLICATION = 'sf_t3d.wsgi.application' # Database # https://docs.djangoproject.com/en/1.9/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.9/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.9/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.9/howto/static-files/ STATIC_URL = '/static/' STATICFILES_FINDERS = ( 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', ) STATICFILES_DIRS = ( # Put strings here, like "/home/html/static" or "C:/www/django/static". # Always use forward slashes, even on Windows. # Don't forget to use absolute paths, not relative paths. os.path.join(BASE_DIR, "static"), ) LOCALE_PATHS = ( os.path.join(BASE_DIR, 'locale'), )
26.885542
91
0.686758
a1d26b4b1ab781aeb7a08930d510bb6093b06a37
1,186
py
Python
v2.5.7/toontown/hood/SBHoodDataAI.py
TTOFFLINE-LEAK/ttoffline
bb0e91704a755d34983e94288d50288e46b68380
[ "MIT" ]
4
2019-07-01T15:46:43.000Z
2021-07-23T16:26:48.000Z
v2.5.7/toontown/hood/SBHoodDataAI.py
TTOFFLINE-LEAK/ttoffline
bb0e91704a755d34983e94288d50288e46b68380
[ "MIT" ]
1
2019-06-29T03:40:05.000Z
2021-06-13T01:15:16.000Z
v2.5.7/toontown/hood/SBHoodDataAI.py
TTOFFLINE-LEAK/ttoffline
bb0e91704a755d34983e94288d50288e46b68380
[ "MIT" ]
4
2019-07-28T21:18:46.000Z
2021-02-25T06:37:25.000Z
from direct.directnotify import DirectNotifyGlobal import HoodDataAI from toontown.toonbase import ToontownGlobals from toontown.safezone import ButterflyGlobals from toontown.episodes.DistributedPrologueEventAI import DistributedPrologueEventAI class SBHoodDataAI(HoodDataAI.HoodDataAI): notify = DirectNotifyGlobal.directNotify.newCategory('HoodAI') def __init__(self, air, zoneId=None): hoodId = ToontownGlobals.ScroogeBank if zoneId == None: zoneId = hoodId HoodDataAI.HoodDataAI.__init__(self, air, zoneId, hoodId) return def startup(self): self.notify.info('Creating prologue...') HoodDataAI.HoodDataAI.startup(self) self.butterflies = [] self.proEv = None self.createButterflies(ButterflyGlobals.DG) if self.air.wantPrologue: self.createPrologueEvent() return def createPrologueEvent(self): self.proEv = self.air.doFind('PrologueEvent') if self.proEv is None: self.proEv = DistributedPrologueEventAI(self.air) self.proEv.generateWithRequired(self.zoneId) self.proEv.b_setState('Idle') return
35.939394
83
0.699831
e35971a3344bda446a680bfee708ae69607e10c8
736
py
Python
examples/LandmarkDetection/DQN/utils/change_paths.py
Jdorri/rl-medical
750b1f10413daa9cd8e346332bd844212e76ddd8
[ "Apache-2.0" ]
6
2020-01-10T15:32:00.000Z
2021-06-14T17:28:03.000Z
examples/LandmarkDetection/DQN/utils/change_paths.py
Jdorri/rl-medical
750b1f10413daa9cd8e346332bd844212e76ddd8
[ "Apache-2.0" ]
78
2020-01-19T10:47:31.000Z
2020-05-13T11:13:05.000Z
examples/LandmarkDetection/DQN/utils/change_paths.py
Jdorri/rl-medical
750b1f10413daa9cd8e346332bd844212e76ddd8
[ "Apache-2.0" ]
1
2020-10-04T12:04:26.000Z
2020-10-04T12:04:26.000Z
import os new_base_path = "/vol/biomedic/users/aa16914/shared/data/RL_data/cardiac_mri_adult" file_path = "/vol/biomedic/users/aa16914/shared/data/RL_data/" data_files = ["cardiac_test_files.txt", "cardiac_train_files.txt"] landmark_files = ["cardiac_test_landmarks.txt", "cardiac_train_landmarks.txt"] file_full_path = os.path.join(file_path, landmark_files[0]) print(file_path) with open(file_full_path) as fp: for line in fp.readlines(): new_path = '/'.join(new_base_path.split('/') + line.split('/')[7:]) # print(new_path) write_path = os.path.join(file_path, "cardiac_test_landmarks_new_paths.txt") f_new=open(write_path, "a+") f_new.write(new_path) f_new.close()
32
84
0.703804
f0c83b1c1795b799bf17d60b046b9de50a0af6eb
2,750
py
Python
build_vectors.py
alekseimi/code2vec_mag
49281e64c437066fd510787d7b3c4867a1b32a21
[ "MIT" ]
null
null
null
build_vectors.py
alekseimi/code2vec_mag
49281e64c437066fd510787d7b3c4867a1b32a21
[ "MIT" ]
4
2020-03-04T23:19:59.000Z
2022-02-10T00:15:38.000Z
build_vectors.py
alekseimi/code2vec_mag
49281e64c437066fd510787d7b3c4867a1b32a21
[ "MIT" ]
null
null
null
from common import common from extractor import Extractor import os import csv SHOW_TOP_CONTEXTS = 2 MAX_PATH_LENGTH = 8 MAX_PATH_WIDTH = 2 JAR_PATH = 'JavaExtractor/JPredict/target/JavaExtractor-0.0.1-SNAPSHOT.jar' # 1. Pridobi vektor in ime metode # raw_prediction, method_prediction_results # raw_prediction.original__name # 2. Ime metode oblike x|y|z pretvori class VectorBuilder: # exit_keywords = ['exit', 'quit', 'q'] def __init__(self, config, model): model.predict([]) self.model = model self.config = config self.path_extractor = Extractor(config, jar_path=JAR_PATH, max_path_length=MAX_PATH_LENGTH, max_path_width=MAX_PATH_WIDTH) def iterate_over_directory(self, rootdir, project_name): dir_list = [] full_list = [] for subdir, dirs, files in os.walk(rootdir): for file in files: # print os.path.join(subdir, file) filepath = subdir + os.sep + file if filepath.endswith(".java"): generated_list = self.generate_code_vectors(filepath, project_name) if generated_list is None: continue print(filepath + "list size: " + str(len(generated_list))) full_list.extend(generated_list) dir_list.append(filepath) self.dump_dirlist_to_csv(dir_list, project_name) return full_list def dump_dirlist_to_csv(self, dirlist, project_name): with open(project_name+'.csv', 'w', newline='') as myfile: wr = csv.writer(myfile, quoting=csv.QUOTE_ALL) wr.writerow(dirlist) return True return False def generate_code_vectors(self, filename, project_name): try: predict_lines, hash_to_string_dict = self.path_extractor.extract_paths(filename) except ValueError as e: return None raw_prediction_results = self.model.predict(predict_lines) method_prediction_results = common.parse_prediction_results( raw_prediction_results, hash_to_string_dict, self.model.vocabs.target_vocab.special_words, topk=SHOW_TOP_CONTEXTS) item_list = [] for raw_prediction, method_prediction in zip(raw_prediction_results, method_prediction_results): #values_list = [project_name, raw_prediction.original_name] #full_values = values_list + raw_prediction.code_vector.tolist() #item_list.append(full_values) item_list.append(raw_prediction.code_vector.tolist()) return item_list
39.285714
104
0.630909
480955c3b68ec4c9d8e9c1b28f061222a212b819
968
py
Python
statbus/models/util.py
psykzz/statbus
67fb9ed487b45cdab36b61e7d037952a13fff492
[ "MIT" ]
null
null
null
statbus/models/util.py
psykzz/statbus
67fb9ed487b45cdab36b61e7d037952a13fff492
[ "MIT" ]
null
null
null
statbus/models/util.py
psykzz/statbus
67fb9ed487b45cdab36b61e7d037952a13fff492
[ "MIT" ]
null
null
null
from enum import Enum from typing import Callable, Any from peewee import * from statbus.utils.FlaskDB import FlaskDBWrapper as FlaskDB db_wrapper = FlaskDB() class DBModel(db_wrapper.Model): """Meta model all models should parent from""" pass """ Enum field hack This isn't supported by peewee but easy enough to add """ class EnumField(CharField): """ This class enable an Enum like field for Peewee """ def __init__(self, choices: Callable, *args: Any, **kwargs: Any) -> None: super(CharField, self).__init__(*args, **kwargs) self.choices = choices self.max_length = 255 def db_value(self, value: Any) -> Any: return value.value def python_value(self, value: Any) -> Any: return self.choices(type(list(self.choices)[0].value)(value)) class KeyTypeEnum(Enum): TEXT = "text" AMOUNT = "amount" TALLY = "tally" NESTED = "nested tally" ASSOCIATIVE = "associative"
22
77
0.663223
6d7bcf35d1948be5683e503a1e54a003104650fd
1,180
py
Python
dummy_package/subpackage2/submoduleB.py
b1quint/testing_rtd
4745a223eebbf182ff217d05615298f88453b085
[ "MIT" ]
null
null
null
dummy_package/subpackage2/submoduleB.py
b1quint/testing_rtd
4745a223eebbf182ff217d05615298f88453b085
[ "MIT" ]
null
null
null
dummy_package/subpackage2/submoduleB.py
b1quint/testing_rtd
4745a223eebbf182ff217d05615298f88453b085
[ "MIT" ]
1
2019-01-16T13:40:38.000Z
2019-01-16T13:40:38.000Z
""" This is a submodule living inside subpackage1. """ import os def my_other_method1(p): """ This is the doctring used on subpackage2. It has nothing to do with the `dummy_package.greet_people` module. Parameters ---------- p : str I have no idea why this should be a string. """ return p * 5 def my_other_method2(o): """ This is anoooother doctring of a method living inside package2. Why? Just because I wanted to have more than one. Parameters ---------- o : int Note that this parameter should be a string because it wanted to be different. Returns ------- Five times 'o' """ return 5 * o class MyOtherClass: """ A dummy class with no contructor. """ def __init__(self): self.my_attribute = None def public_method(self, an_int_number): """ And I am doing all this to simulate a complete package. Seems boring but makes me understand it easier. Parameters ---------- an_int_number : bool This is a bad variable name """ self.my_attribute = an_int_number
21.454545
117
0.590678
1604bc534278e67327c499859427504aa3818a78
114,693
py
Python
source/list_future_reminders/list_future_reminders.py
peterlynch/MoneydancePythonScripts
ecadd7bf5e4197e8e457ee6a9ba13bc586fd4346
[ "MIT" ]
null
null
null
source/list_future_reminders/list_future_reminders.py
peterlynch/MoneydancePythonScripts
ecadd7bf5e4197e8e457ee6a9ba13bc586fd4346
[ "MIT" ]
null
null
null
source/list_future_reminders/list_future_reminders.py
peterlynch/MoneydancePythonScripts
ecadd7bf5e4197e8e457ee6a9ba13bc586fd4346
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: UTF-8 -*- # list_future_reminders.py (build: 1004) ############################################################################### # MIT License # # Copyright (c) 2020 Stuart Beesley - StuWareSoftSystems # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. ############################################################################### # Build: 1000 - Initial release - cribbed from extract_reminders_csv (for @CanSaver) # Build: 1001 - Enhancement to prevent duplicate extension running..... # Build: 1002 - Tweak to block old MD versions... # Build: 1003 - tweak to common code for launch detection # Build: 1004 - tweak to common code (minor, non-functional change) # Displays Moneydance future reminders # Detect another instance of this code running in same namespace - i.e. a Moneydance Extension # CUSTOMIZE AND COPY THIS ############################################################################################## # CUSTOMIZE AND COPY THIS ############################################################################################## # CUSTOMIZE AND COPY THIS ############################################################################################## myModuleID = u"list_future_reminders" global list_future_reminders_frame_ global moneydance, moneydance_data, moneydance_ui global moneydance_extension_loader from java.lang import System from javax.swing import JFrame from java.awt.event import WindowEvent class MyJFrame(JFrame): def __init__(self, frameTitle=None): super(JFrame, self).__init__(frameTitle) self.myJFrameVersion = 2 self.isActiveInMoneydance = False self.isRunTimeExtension = False self.MoneydanceAppListener = None self.HomePageViewObj = None def getMyJFrame( moduleName ): try: frames = JFrame.getFrames() for fr in frames: if (fr.getName().lower().startswith(u"%s_main" %moduleName) and type(fr).__name__ == MyJFrame.__name__ # isinstance() won't work across namespaces and fr.isActiveInMoneydance): print("%s: Found live frame: %s (MyJFrame() version: %s)" %(myModuleID,fr.getName(),fr.myJFrameVersion)) System.err.write("%s: Found live frame: %s (MyJFrame() version: %s)\n" %(myModuleID, fr.getName(),fr.myJFrameVersion)) if fr.isRunTimeExtension: print("%s: This extension is a run-time self-installed extension too..." %(myModuleID)) if fr.isRunTimeExtension: System.err.write("%s: This extension is a run-time self-installed extension too...\n" %(myModuleID)) return fr except: System.err.write("%s: Critical error in getMyJFrame(); caught and ignoring...!\n" %(myModuleID)) return None frameToResurrect = None try: if (u"%s_frame_"%myModuleID in globals() and isinstance(list_future_reminders_frame_, MyJFrame) and list_future_reminders_frame_.isActiveInMoneydance): frameToResurrect = list_future_reminders_frame_ else: getFr = getMyJFrame( myModuleID ) if getFr is not None: frameToResurrect = getFr del getFr except: System.err.write("%s: Critical error checking frameToResurrect(1); caught and ignoring...!\n" %(myModuleID)) lTerminatedExtension = False try: if frameToResurrect: # and it's still alive..... if frameToResurrect.isRunTimeExtension: # this must be an install/reinstall. I need to deactivate and re-register extension... print("%s: Detected that runtime extension %s is already running..... Assuming a re-installation... Taking appropriate action..." %(myModuleID, myModuleID)) System.err.write("%s: Detected that runtime extension %s is already running..... Assuming a re-installation... Taking appropriate action...\n" %(myModuleID, myModuleID)) frameToResurrect.isActiveInMoneydance = False try: frameToResurrect.setVisible(False) frameToResurrect.dispatchEvent(WindowEvent(frameToResurrect, WindowEvent.WINDOW_CLOSING)) System.err.write("%s: Pushed a windowClosing event to existing extension... Hopefully it will close to allow re-installation...\n" %(myModuleID)) except: System.err.write("%s: ERROR pushing a windowClosing event to existing extension!\n" %(myModuleID)) lTerminatedExtension = True frameToResurrect = None else: print("%s: Detected that %s is already running..... Attempting to resurrect.." %(myModuleID, myModuleID)) System.err.write("%s: Detected that %s is already running..... Attempting to resurrect..\n" %(myModuleID, myModuleID)) except: System.err.write("%s: Critical error checking frameToResurrect(2); caught and ignoring...!\n" %(myModuleID)) if float(moneydance.getBuild()) < 1904: # Check for builds less than 1904 / version < 2019.4 try: moneydance.getUI().showInfoMessage("SORRY YOUR VERSION IS TOO OLD FOR THIS SCRIPT/EXTENSION") except: raise Exception("SORRY YOUR MONEYDANCE VERSION IS TOO OLD FOR THIS SCRIPT/EXTENSION") elif frameToResurrect: try: frameToResurrect.setVisible(True) if frameToResurrect.getExtendedState() == JFrame.ICONIFIED: frameToResurrect.setExtendedState(JFrame.NORMAL) frameToResurrect.toFront() except: print("%s: Failed to resurrect main Frame.. This duplicate Script/extension is now terminating....." %(myModuleID)) System.err.write("%s: Failed to resurrect main Frame.. This duplicate Script/extension is now terminating.....\n" %(myModuleID)) raise Exception("SORRY - YOU CAN ONLY HAVE ONE INSTANCE OF %s RUNNING AT ONCE" %(myModuleID.upper())) else: del frameToResurrect if not lTerminatedExtension: print("%s: No other 'live' instances of this program detected (or I terminated it) - running as normal" %(myModuleID)) System.err.write("%s: No other instances of this program detected (or I terminated it) - running as normal\n" %(myModuleID)) else: print("%s: I terminated extension in memory, running script to allow new installation..." %(myModuleID)) System.err.write("%s: I terminated extension in memory, running script to allow new installation...\n" %(myModuleID)) # COMMON IMPORTS ####################################################################################################### # COMMON IMPORTS ####################################################################################################### # COMMON IMPORTS ####################################################################################################### import sys reload(sys) # Dirty hack to eliminate UTF-8 coding errors sys.setdefaultencoding('utf8') # Dirty hack to eliminate UTF-8 coding errors. Without this str() fails on unicode strings... import os import os.path import codecs import inspect import pickle import platform import csv import datetime from org.python.core.util import FileUtil from com.moneydance.util import Platform from com.moneydance.awt import JTextPanel, GridC, JDateField from com.moneydance.apps.md.view.gui import MDImages from com.infinitekind.util import DateUtil, CustomDateFormat from com.infinitekind.moneydance.model import * from com.infinitekind.moneydance.model import AccountUtil, AcctFilter, CurrencyType, CurrencyUtil from com.infinitekind.moneydance.model import Account, Reminder, ParentTxn, SplitTxn, TxnSearch, InvestUtil, TxnUtil from javax.swing import JButton, JScrollPane, WindowConstants, JLabel, JPanel, JComponent, KeyStroke, JDialog, JComboBox from javax.swing import JOptionPane, JTextArea, JMenuBar, JMenu, JMenuItem, AbstractAction, JCheckBoxMenuItem, JFileChooser from javax.swing import JTextField, JPasswordField, Box, UIManager, JTable, JCheckBox, JRadioButton, ButtonGroup from javax.swing.text import PlainDocument from javax.swing.border import EmptyBorder from java.awt import Color, Dimension, FileDialog, FlowLayout, Toolkit, Font, GridBagLayout, GridLayout from java.awt import BorderLayout, Dialog, Insets from java.awt.event import KeyEvent, WindowAdapter, InputEvent from java.util import Date from java.text import DecimalFormat, SimpleDateFormat from java.util import Calendar, ArrayList from java.lang import Double, Math, Character from java.io import FileNotFoundException, FilenameFilter, File, FileInputStream, FileOutputStream, IOException, StringReader from java.io import BufferedReader, InputStreamReader if isinstance(None, (JDateField,CurrencyUtil,Reminder,ParentTxn,SplitTxn,TxnSearch, JComboBox, JCheckBox, JTextArea, JMenuBar, JMenu, JMenuItem, JCheckBoxMenuItem, JFileChooser, JDialog, JButton, FlowLayout, InputEvent, ArrayList, File, IOException, StringReader, BufferedReader, InputStreamReader, Dialog, JTable, BorderLayout, Double, InvestUtil, JRadioButton, ButtonGroup, AccountUtil, AcctFilter, CurrencyType, Account, TxnUtil, JScrollPane, WindowConstants, JFrame, JComponent, KeyStroke, AbstractAction, UIManager, Color, Dimension, Toolkit, KeyEvent, WindowAdapter, CustomDateFormat, SimpleDateFormat, Insets, FileDialog)): pass if codecs.BOM_UTF8 is not None: pass if csv.QUOTE_ALL is not None: pass if datetime.MINYEAR is not None: pass if Math.max(1,1): pass # END COMMON IMPORTS ################################################################################################### # COMMON GLOBALS ####################################################################################################### global debug # Set to True if you want verbose messages, else set to False.... global myParameters, myScriptName, version_build, _resetParameters, i_am_an_extension_so_run_headless, moneydanceIcon global lPickle_version_warning, decimalCharSep, groupingCharSep, lIamAMac, lGlobalErrorDetected global MYPYTHON_DOWNLOAD_URL # END COMMON GLOBALS ################################################################################################### # SET THESE VARIABLES FOR ALL SCRIPTS ################################################################################## version_build = "1004" # noqa myScriptName = u"%s.py(Extension)" %myModuleID # noqa debug = False # noqa myParameters = {} # noqa _resetParameters = False # noqa lPickle_version_warning = False # noqa lIamAMac = False # noqa lGlobalErrorDetected = False # noqa MYPYTHON_DOWNLOAD_URL = "https://yogi1967.github.io/MoneydancePythonScripts/" # noqa # END SET THESE VARIABLES FOR ALL SCRIPTS ############################################################################## # >>> THIS SCRIPT'S IMPORTS ############################################################################################ from com.moneydance.apps.md.view.gui import EditRemindersWindow from java.awt.event import MouseAdapter from java.util import Comparator from javax.swing import SortOrder, ListSelectionModel from javax.swing.table import DefaultTableCellRenderer, DefaultTableModel, TableRowSorter from javax.swing.border import CompoundBorder, MatteBorder from javax.swing.event import TableColumnModelListener from java.lang import String, Number from com.infinitekind.util import StringUtils from java.awt.event import WindowEvent from java.lang import Runnable, Thread from com.moneydance.apps.md.controller import AppEventListener # >>> END THIS SCRIPT'S IMPORTS ######################################################################################## # >>> THIS SCRIPT'S GLOBALS ############################################################################################ # Saved to parameters file global __list_future_reminders global userdateformat, lStripASCII, csvDelimiter, _column_widths_LFR, scriptpath, daysToLookForward_LFR global lWriteBOMToExportFile_SWSS # Other used by this program global csvfilename, lDisplayOnly global baseCurrency, sdf, csvlines, csvheaderline, headerFormats global table, focus, row, scrollpane, EditedReminderCheck, ReminderTable_Count, ExtractDetails_Count global saveStatusLabel # >>> END THIS SCRIPT'S GLOBALS ############################################################################################ # Set programmatic defaults/parameters for filters HERE.... Saved Parameters will override these now # NOTE: You can override in the pop-up screen userdateformat = "%Y/%m/%d" # noqa lStripASCII = False # noqa csvDelimiter = "," # noqa scriptpath = "" # noqa _column_widths_LFR = [] # noqa daysToLookForward_LFR = 365 # noqa lWriteBOMToExportFile_SWSS = True # noqa extract_filename="%s.csv" %(myModuleID) # >>> END THIS SCRIPT'S GLOBALS ############################################################################################ # COMMON CODE ########################################################################################################## i_am_an_extension_so_run_headless = False # noqa try: myScriptName = os.path.basename(__file__) except: i_am_an_extension_so_run_headless = True # noqa scriptExit = """ ---------------------------------------------------------------------------------------------------------------------- Thank you for using %s! The author has other useful Extensions / Moneybot Python scripts available...: Extension (.mxt) format only: toolbox View Moneydance settings, diagnostics, fix issues, change settings and much more Extension (.mxt) and Script (.py) Versions available: extract_data Extract various data to screen and/or csv.. Consolidation of: - stockglance2020 View summary of Securities/Stocks on screen, total by Security, export to csv - extract_reminders_csv View reminders on screen, edit if required, extract all to csv - extract_currency_history_csv Extract currency history to csv - extract_investment_transactions_csv Extract investment transactions to csv - extract_account_registers_csv Extract Account Register(s) to csv along with any attachments list_future_reminders: View future reminders on screen. Allows you to set the days to look forward A collection of useful ad-hoc scripts (zip file) useful_scripts: Just unzip and select the script you want for the task at hand... Visit: %s (Author's site) ---------------------------------------------------------------------------------------------------------------------- """ %(myScriptName, MYPYTHON_DOWNLOAD_URL) # P=Display on Python Console, J=Display on MD (Java) Console Error Log, B=Both, D=If Debug Only print, DB=print both def myPrint(where, *args): global myScriptName, debug, i_am_an_extension_so_run_headless if where[0] == "D" and not debug: return printString = "" for what in args: printString += "%s " %what printString = printString.strip() if where == "P" or where == "B" or where[0] == "D": if not i_am_an_extension_so_run_headless: try: print(printString) except: print("Error writing to screen...") dump_sys_error_to_md_console_and_errorlog() if where == "J" or where == "B" or where == "DB": dt = datetime.datetime.now().strftime("%Y/%m/%d-%H:%M:%S") try: System.err.write(myScriptName + ":" + dt + ": ") System.err.write(printString) System.err.write("\n") except: System.err.write(myScriptName + ":" + dt + ": "+"Error writing to console") dump_sys_error_to_md_console_and_errorlog() return def dump_sys_error_to_md_console_and_errorlog( lReturnText=False ): theText = "" myPrint("B","Unexpected error caught: %s" %(sys.exc_info()[0])) myPrint("B","Unexpected error caught: %s" %(sys.exc_info()[1])) myPrint("B","Error on Script Line Number: %s" %(sys.exc_info()[2].tb_lineno)) if lReturnText: theText += "\n@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@\n" theText += "Unexpected error caught: %s\n" %(sys.exc_info()[0]) theText += "Unexpected error caught: %s\n" %(sys.exc_info()[1]) theText += "Error on Script Line Number: %s\n" %(sys.exc_info()[2].tb_lineno) theText += "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@\n" return theText return def pad(theText, theLength): theText = theText[:theLength].ljust(theLength, u" ") return theText def rpad(theText, theLength): if not (isinstance(theText, unicode) or isinstance(theText, str)): theText = str(theText) theText = theText[:theLength].rjust(theLength, u" ") return theText def cpad(theText, theLength): if not (isinstance(theText, unicode) or isinstance(theText, str)): theText = str(theText) if len(theText)>=theLength: return theText[:theLength] padLength = int((theLength - len(theText)) / 2) theText = theText[:theLength] theText = ((" "*padLength)+theText+(" "*padLength))[:theLength] return theText myPrint("B", myScriptName, ": Python Script Initialising.......", "Build:", version_build) def is_moneydance_loaded_properly(): global debug if debug or moneydance is None or moneydance_data is None or moneydance_ui is None: for theClass in ["moneydance", moneydance], ["moneydance_ui",moneydance_ui], ["moneydance_data",moneydance]: myPrint("B","Moneydance Objects now....: Class: %s %s@{:x}".format(System.identityHashCode(theClass[1])) %(pad(theClass[0],20), theClass[1].__class__)) myPrint("P","") if moneydance is not None and moneydance_data is not None and moneydance_ui is not None: # noqa if debug: myPrint("B","Success - Moneydance variables are already set....") return myPrint("B","ERROR - Moneydance variables are NOT set properly....!") # to cope with being run as Extension.... temporary if moneydance is not None and (moneydance_data is None or moneydance_ui is None): # noqa myPrint("B", "@@@ Moneydance variables not set (run as extension?) - attempting to manually set @@@") try: exec "global moneydance_ui;" + "moneydance_ui=moneydance.getUI();" except: myPrint("B","Failed to set moneydance_ui... This is a critical failure... (perhaps a run-time extension and too early - will continue)!") # raise try: exec "global moneydance_data;" + "moneydance_data=moneydance.getCurrentAccount().getBook();" except: myPrint("B","Failed to set moneydance_data... I expect I am executing at MD runtime to self-install as a FeatureModule extension.. no matter...") for theClass in ["moneydance",moneydance], ["moneydance_ui",moneydance_ui], ["moneydance_data",moneydance]: myPrint("B","Moneydance Objects after manual setting....: Class: %s %s@{:x}".format(System.identityHashCode(theClass[1])) %(pad(theClass[0],20), theClass[1].__class__)) myPrint("P","") return is_moneydance_loaded_properly() def getMonoFont(): global debug try: theFont = moneydance.getUI().getFonts().code # if debug: myPrint("B","Success setting Font set to Moneydance code: %s" %theFont) except: theFont = Font("monospaced", Font.PLAIN, 15) if debug: myPrint("B","Failed to Font set to Moneydance code - So using: %s" %theFont) return theFont def getTheSetting(what): x = moneydance.getPreferences().getSetting(what, None) if not x or x == u"": return None return what + u": %s" %(x) def get_home_dir(): homeDir = None # noinspection PyBroadException try: if Platform.isOSX(): homeDir = System.getProperty(u"UserHome") # On a Mac in a Java VM, the homedir is hidden else: # homeDir = System.getProperty("user.home") homeDir = os.path.expanduser(u"~") # Should work on Unix and Windows if homeDir is None or homeDir == u"": homeDir = System.getProperty(u"user.home") if homeDir is None or homeDir == u"": homeDir = os.environ.get(u"HOMEPATH") except: pass if not homeDir: homeDir = u"?" return homeDir def getDecimalPoint(lGetPoint=False, lGetGrouping=False): global debug decimalFormat = DecimalFormat.getInstance() # noinspection PyUnresolvedReferences decimalSymbols = decimalFormat.getDecimalFormatSymbols() if not lGetGrouping: lGetPoint = True if lGetGrouping and lGetPoint: return u"error" try: if lGetPoint: _decimalCharSep = decimalSymbols.getDecimalSeparator() myPrint(u"D",u"Decimal Point Character: %s" %(_decimalCharSep)) return _decimalCharSep if lGetGrouping: _groupingCharSep = decimalSymbols.getGroupingSeparator() if _groupingCharSep is None or _groupingCharSep == u"": myPrint(u"B", u"Caught empty Grouping Separator") return u"" if ord(_groupingCharSep) >= 128: # Probably a nbsp (160) = e.g. South Africa for example..! myPrint(u"B", u"Caught special character in Grouping Separator. Ord(%s)" %(ord(_groupingCharSep))) if ord(_groupingCharSep) == 160: return u" (non breaking space character)" return u" (non printable character)" myPrint(u"D",u"Grouping Separator Character:", _groupingCharSep) return _groupingCharSep except: myPrint(u"B",u"Error in getDecimalPoint() routine....?") dump_sys_error_to_md_console_and_errorlog() return u"error" decimalCharSep = getDecimalPoint(lGetPoint=True) groupingCharSep = getDecimalPoint(lGetGrouping=True) # JOptionPane.DEFAULT_OPTION, JOptionPane.YES_NO_OPTION, JOptionPane.YES_NO_CANCEL_OPTION, JOptionPane.OK_CANCEL_OPTION # JOptionPane.ERROR_MESSAGE, JOptionPane.INFORMATION_MESSAGE, JOptionPane.WARNING_MESSAGE, JOptionPane.QUESTION_MESSAGE, JOptionPane.PLAIN_MESSAGE # Copies Moneydance_ui.showInfoMessage def myPopupInformationBox(theParent=None, theMessage="What no message?!", theTitle="Info", theMessageType=JOptionPane.INFORMATION_MESSAGE): if theParent is None: if theMessageType == JOptionPane.PLAIN_MESSAGE or theMessageType == JOptionPane.INFORMATION_MESSAGE: icon_to_use=moneydance.getUI().getIcon("/com/moneydance/apps/md/view/gui/glyphs/appicon_64.png") JOptionPane.showMessageDialog(theParent, JTextPanel(theMessage), theTitle, theMessageType, icon_to_use) return JOptionPane.showMessageDialog(theParent, JTextPanel(theMessage), theTitle, theMessageType) return def wrapLines(message, numChars=40): charCount = 0 result="" for ch in message: if ch == '\n' or ch == '\r': charCount = 0 elif charCount > numChars and not Character.isWhitespace(ch): result+="\n" charCount = 0 else: charCount+=1 result+=ch return result def myPopupAskBackup(theParent=None, theMessage="What no message?!"): _options=["STOP", "PROCEED WITHOUT BACKUP", "DO BACKUP NOW"] response = JOptionPane.showOptionDialog(theParent, theMessage, "PERFORM BACKUP BEFORE UPDATE?", 0, JOptionPane.WARNING_MESSAGE, None, _options, _options[0]) if response == 2: myPrint("B", "User requested to perform Export Backup before update/fix - calling moneydance export backup routine...") moneydance.getUI().saveToBackup(None) return True elif response == 1: myPrint("B", "User DECLINED to perform Export Backup before update/fix...!") return True return False # Copied Moneydance_ui.askQuestion def myPopupAskQuestion(theParent=None, theTitle="Question", theQuestion="What?", theOptionType=JOptionPane.YES_NO_OPTION, theMessageType=JOptionPane.QUESTION_MESSAGE): icon_to_use = None if theParent is None: if theMessageType == JOptionPane.PLAIN_MESSAGE or theMessageType == JOptionPane.INFORMATION_MESSAGE: icon_to_use=moneydance.getUI().getIcon("/com/moneydance/apps/md/view/gui/glyphs/appicon_64.png") # question = wrapLines(theQuestion) question = theQuestion result = JOptionPane.showConfirmDialog(theParent, question, theTitle, theOptionType, theMessageType, icon_to_use) # getIcon("/com/moneydance/apps/md/view/gui/glyphs/appicon_64.png")) return result == 0 # Copies Moneydance .askForQuestion def myPopupAskForInput(theParent, theTitle, theFieldLabel, theFieldDescription="", defaultValue=None, isPassword=False, theMessageType=JOptionPane.INFORMATION_MESSAGE): icon_to_use = None if theParent is None: if theMessageType == JOptionPane.PLAIN_MESSAGE or theMessageType == JOptionPane.INFORMATION_MESSAGE: icon_to_use=moneydance.getUI().getIcon("/com/moneydance/apps/md/view/gui/glyphs/appicon_64.png") p = JPanel(GridBagLayout()) defaultText = None if defaultValue: defaultText = defaultValue if isPassword: field = JPasswordField(defaultText) else: field = JTextField(defaultText) x = 0 if theFieldLabel: p.add(JLabel(theFieldLabel), GridC.getc(x, 0).east()) x+=1 p.add(field, GridC.getc(x, 0).field()) p.add(Box.createHorizontalStrut(244), GridC.getc(x, 0)) if theFieldDescription: p.add(JTextPanel(theFieldDescription), GridC.getc(x, 1).field().colspan(x + 1)) if (JOptionPane.showConfirmDialog(theParent, p, theTitle, JOptionPane.OK_CANCEL_OPTION, theMessageType, icon_to_use) == 0): return field.getText() return None # APPLICATION_MODAL, DOCUMENT_MODAL, MODELESS, TOOLKIT_MODAL class MyPopUpDialogBox(): def __init__(self, theParent=None, theStatus="", theMessage="", theWidth=200, theTitle="Info", lModal=True, lCancelButton=False, OKButtonText="OK", lAlertLevel=0): self.theParent = theParent self.theStatus = theStatus self.theMessage = theMessage self.theWidth = max(80,theWidth) self.theTitle = theTitle self.lModal = lModal self.lCancelButton = lCancelButton self.OKButtonText = OKButtonText self.lAlertLevel = lAlertLevel self.fakeJFrame = None self._popup_d = None self.lResult = [None] if not self.theMessage.endswith("\n"): self.theMessage+="\n" if self.OKButtonText == "": self.OKButtonText="OK" class WindowListener(WindowAdapter): def __init__(self, theDialog, theFakeFrame, lResult): self.theDialog = theDialog self.theFakeFrame = theFakeFrame self.lResult = lResult def windowClosing(self, WindowEvent): # noqa global debug myPrint("D", "In ", inspect.currentframe().f_code.co_name, "()", "Event: ", WindowEvent) myPrint("DB", "JDialog Frame shutting down....") self.lResult[0] = False if self.theFakeFrame is not None: self.theDialog.dispose() self.theFakeFrame.dispose() else: self.theDialog.dispose() myPrint("D", "Exiting ", inspect.currentframe().f_code.co_name, "()") return class OKButtonAction(AbstractAction): # noinspection PyMethodMayBeStatic def __init__(self, theDialog, theFakeFrame, lResult): self.theDialog = theDialog self.theFakeFrame = theFakeFrame self.lResult = lResult def actionPerformed(self, event): global debug myPrint("D", "In ", inspect.currentframe().f_code.co_name, "()", "Event: ", event) self.lResult[0] = True if self.theFakeFrame is not None: self.theDialog.dispose() self.theFakeFrame.dispose() else: self.theDialog.dispose() myPrint("D", "Exiting ", inspect.currentframe().f_code.co_name, "()") return class CancelButtonAction(AbstractAction): # noinspection PyMethodMayBeStatic def __init__(self, theDialog, theFakeFrame, lResult): self.theDialog = theDialog self.theFakeFrame = theFakeFrame self.lResult = lResult def actionPerformed(self, event): global debug myPrint("D", "In ", inspect.currentframe().f_code.co_name, "()", "Event: ", event) self.lResult[0] = False if self.theFakeFrame is not None: self.theDialog.dispose() self.theFakeFrame.dispose() else: self.theDialog.dispose() myPrint("D", "Exiting ", inspect.currentframe().f_code.co_name, "()") return def kill(self): global debug myPrint("D", "In ", inspect.currentframe().f_code.co_name, "()") self._popup_d.setVisible(False) if self.fakeJFrame is not None: self._popup_d.dispose() self.fakeJFrame.dispose() else: self._popup_d.dispose() myPrint("D", "Exiting ", inspect.currentframe().f_code.co_name, "()") return def result(self): global debug return self.lResult[0] def go(self): global debug myPrint("D", "In ", inspect.currentframe().f_code.co_name, "()") # Create a fake JFrame so we can set the Icons... if self.theParent is None: self.fakeJFrame = MyJFrame() self.fakeJFrame.setName(u"%s_fake_dialog" %(myModuleID)) self.fakeJFrame.setDefaultCloseOperation(WindowConstants.DO_NOTHING_ON_CLOSE) self.fakeJFrame.setUndecorated(True) self.fakeJFrame.setVisible( False ) if not Platform.isOSX(): self.fakeJFrame.setIconImage(MDImages.getImage(moneydance.getSourceInformation().getIconResource())) if self.lModal: # noinspection PyUnresolvedReferences self._popup_d = JDialog(self.theParent, self.theTitle, Dialog.ModalityType.APPLICATION_MODAL) else: # noinspection PyUnresolvedReferences self._popup_d = JDialog(self.theParent, self.theTitle, Dialog.ModalityType.MODELESS) self._popup_d.setDefaultCloseOperation(WindowConstants.DO_NOTHING_ON_CLOSE) shortcut = Toolkit.getDefaultToolkit().getMenuShortcutKeyMaskEx() # Add standard CMD-W keystrokes etc to close window self._popup_d.getRootPane().getInputMap(JComponent.WHEN_ANCESTOR_OF_FOCUSED_COMPONENT).put(KeyStroke.getKeyStroke(KeyEvent.VK_W, shortcut), "close-window") self._popup_d.getRootPane().getInputMap(JComponent.WHEN_ANCESTOR_OF_FOCUSED_COMPONENT).put(KeyStroke.getKeyStroke(KeyEvent.VK_F4, shortcut), "close-window") self._popup_d.getRootPane().getInputMap(JComponent.WHEN_IN_FOCUSED_WINDOW).put(KeyStroke.getKeyStroke(KeyEvent.VK_ESCAPE, 0), "close-window") self._popup_d.getRootPane().getActionMap().put("close-window", self.CancelButtonAction(self._popup_d, self.fakeJFrame,self.lResult)) self._popup_d.addWindowListener(self.WindowListener(self._popup_d, self.fakeJFrame,self.lResult)) if (not Platform.isMac()): # moneydance_ui.getImages() self._popup_d.setIconImage(MDImages.getImage(moneydance.getSourceInformation().getIconResource())) displayJText = JTextArea(self.theMessage) displayJText.setFont( getMonoFont() ) displayJText.setEditable(False) displayJText.setLineWrap(False) displayJText.setWrapStyleWord(False) _popupPanel=JPanel() # maxHeight = 500 _popupPanel.setLayout(GridLayout(0,1)) _popupPanel.setBorder(EmptyBorder(8, 8, 8, 8)) # _popupPanel.setMinimumSize(Dimension(self.theWidth, 0)) # _popupPanel.setMaximumSize(Dimension(self.theWidth, maxHeight)) if self.theStatus: _label1 = JLabel(pad(self.theStatus,self.theWidth-20)) _label1.setForeground(Color.BLUE) _popupPanel.add(_label1) myScrollPane = JScrollPane(displayJText, JScrollPane.VERTICAL_SCROLLBAR_AS_NEEDED,JScrollPane.HORIZONTAL_SCROLLBAR_AS_NEEDED) if displayJText.getLineCount()>5: # myScrollPane.setMinimumSize(Dimension(self.theWidth-20, 10)) # myScrollPane.setMaximumSize(Dimension(self.theWidth-20, maxHeight-100)) myScrollPane.setWheelScrollingEnabled(True) _popupPanel.add(myScrollPane) else: _popupPanel.add(displayJText) buttonPanel = JPanel() if self.lModal or self.lCancelButton: buttonPanel.setLayout(FlowLayout(FlowLayout.CENTER)) if self.lCancelButton: cancel_button = JButton("CANCEL") cancel_button.setPreferredSize(Dimension(100,40)) cancel_button.setBackground(Color.LIGHT_GRAY) cancel_button.setBorderPainted(False) cancel_button.setOpaque(True) cancel_button.addActionListener( self.CancelButtonAction(self._popup_d, self.fakeJFrame,self.lResult) ) buttonPanel.add(cancel_button) if self.lModal: ok_button = JButton(self.OKButtonText) if len(self.OKButtonText) <= 2: ok_button.setPreferredSize(Dimension(100,40)) else: ok_button.setPreferredSize(Dimension(200,40)) ok_button.setBackground(Color.LIGHT_GRAY) ok_button.setBorderPainted(False) ok_button.setOpaque(True) ok_button.addActionListener( self.OKButtonAction(self._popup_d, self.fakeJFrame, self.lResult) ) buttonPanel.add(ok_button) _popupPanel.add(buttonPanel) if self.lAlertLevel>=2: # internalScrollPane.setBackground(Color.RED) # theJText.setBackground(Color.RED) # theJText.setForeground(Color.BLACK) displayJText.setBackground(Color.RED) displayJText.setForeground(Color.BLACK) _popupPanel.setBackground(Color.RED) _popupPanel.setForeground(Color.BLACK) buttonPanel.setBackground(Color.RED) myScrollPane.setBackground(Color.RED) elif self.lAlertLevel>=1: # internalScrollPane.setBackground(Color.YELLOW) # theJText.setBackground(Color.YELLOW) # theJText.setForeground(Color.BLACK) displayJText.setBackground(Color.YELLOW) displayJText.setForeground(Color.BLACK) _popupPanel.setBackground(Color.YELLOW) _popupPanel.setForeground(Color.BLACK) buttonPanel.setBackground(Color.YELLOW) myScrollPane.setBackground(Color.RED) self._popup_d.add(_popupPanel) self._popup_d.pack() self._popup_d.setLocationRelativeTo(None) self._popup_d.setVisible(True) myPrint("D", "Exiting ", inspect.currentframe().f_code.co_name, "()") return self.lResult[0] def play_the_money_sound(): # Seems to cause a crash on Virtual Machine with no Audio - so just in case.... try: moneydance.getUI().getSounds().playSound("cash_register.wav") except: pass return def get_filename_addition(): cal = Calendar.getInstance() hhmm = str(10000 + cal.get(11) * 100 + cal.get(12))[1:] nameAddition = "-" + str(DateUtil.getStrippedDateInt()) + "-"+hhmm return nameAddition def check_file_writable(fnm): myPrint("D", "In ", inspect.currentframe().f_code.co_name, "()" ) myPrint("DB","Checking path: ", fnm) if os.path.exists(fnm): myPrint("DB", "path exists..") # path exists if os.path.isfile(fnm): # is it a file or a dir? myPrint("DB","path is a file..") # also works when file is a link and the target is writable return os.access(fnm, os.W_OK) else: myPrint("DB", "path is not a file..") return False # path is a dir, so cannot write as a file # target does not exist, check perms on parent dir myPrint("DB","path does not exist...") pdir = os.path.dirname(fnm) if not pdir: pdir = '.' # target is creatable if parent dir is writable return os.access(pdir, os.W_OK) class ExtFilenameFilter(FilenameFilter): ext = "" def __init__(self, ext): self.ext = "." + ext.upper() def accept(self, thedir, filename): # noqa if filename is not None and filename.upper().endswith(self.ext): return True return False try: moneydanceIcon = MDImages.getImage(moneydance.getSourceInformation().getIconResource()) except: moneydanceIcon = None def MDDiag(): global debug myPrint("D", "Moneydance Build:", moneydance.getVersion(), "Build:", moneydance.getBuild()) MDDiag() myPrint("DB","System file encoding is:", sys.getfilesystemencoding() ) # Not used, but interesting. Perhaps useful when switching between Windows/Macs and writing files... def checkVersions(): global debug lError = False plat_j = platform.system() plat_p = platform.python_implementation() python_maj = sys.version_info.major python_min = sys.version_info.minor myPrint("DB","Platform:", plat_p, plat_j, python_maj, ".", python_min) myPrint("DB", sys.version) if plat_p != "Jython": lError = True myPrint("DB", "Error: Script requires Jython") if plat_j != "Java": lError = True myPrint("DB", "Error: Script requires Java base") if (python_maj != 2 or python_min != 7): lError = True myPrint("DB", "\n\nError: Script was designed on version 2.7. By all means bypass this test and see what happens.....") if lError: myPrint("J", "Platform version issue - will terminate script!") myPrint("P", "\n@@@ TERMINATING PROGRAM @@@\n") raise(Exception("Platform version issue - will terminate script!")) return not lError checkVersions() def setDefaultFonts(): myFont = moneydance.getUI().getFonts().defaultText if myFont.getSize()>18: try: myFont = myFont.deriveFont(16.0) myPrint("B", "I have reduced the font size down to point-size 16 - Default Fonts are now set to: %s" %(myFont)) except: myPrint("B","ERROR - failed to override font point size down to 16.... will ignore and continue. Font set to: %s" %(myFont)) else: myPrint("DB", "Attempting to set default font to %s" %myFont) try: UIManager.getLookAndFeelDefaults().put("defaultFont", myFont ) # https://thebadprogrammer.com/swing-uimanager-keys/ UIManager.put("CheckBoxMenuItem.acceleratorFont", myFont) UIManager.put("Button.font", myFont) UIManager.put("ToggleButton.font", myFont) UIManager.put("RadioButton.font", myFont) UIManager.put("CheckBox.font", myFont) UIManager.put("ColorChooser.font", myFont) UIManager.put("ComboBox.font", myFont) UIManager.put("Label.font", myFont) UIManager.put("List.font", myFont) UIManager.put("MenuBar.font", myFont) UIManager.put("Menu.acceleratorFont", myFont) UIManager.put("RadioButtonMenuItem.acceleratorFont", myFont) UIManager.put("MenuItem.acceleratorFont", myFont) UIManager.put("MenuItem.font", myFont) UIManager.put("RadioButtonMenuItem.font", myFont) UIManager.put("CheckBoxMenuItem.font", myFont) UIManager.put("OptionPane.buttonFont", myFont) UIManager.put("OptionPane.messageFont", myFont) UIManager.put("Menu.font", myFont) UIManager.put("PopupMenu.font", myFont) UIManager.put("OptionPane.font", myFont) UIManager.put("Panel.font", myFont) UIManager.put("ProgressBar.font", myFont) UIManager.put("ScrollPane.font", myFont) UIManager.put("Viewport.font", myFont) UIManager.put("TabbedPane.font", myFont) UIManager.put("Slider.font", myFont) UIManager.put("Table.font", myFont) UIManager.put("TableHeader.font", myFont) UIManager.put("TextField.font", myFont) UIManager.put("Spinner.font", myFont) UIManager.put("PasswordField.font", myFont) UIManager.put("TextArea.font", myFont) UIManager.put("TextPane.font", myFont) UIManager.put("EditorPane.font", myFont) UIManager.put("TabbedPane.smallFont", myFont) UIManager.put("TitledBorder.font", myFont) UIManager.put("ToolBar.font", myFont) UIManager.put("ToolTip.font", myFont) UIManager.put("Tree.font", myFont) UIManager.put("FormattedTextField.font", myFont) UIManager.put("IconButton.font", myFont) UIManager.put("InternalFrame.optionDialogTitleFont", myFont) UIManager.put("InternalFrame.paletteTitleFont", myFont) UIManager.put("InternalFrame.titleFont", myFont) except: myPrint("B","Failed to set Swing default fonts to use Moneydance defaults... sorry") return if moneydance_ui is not None: setDefaultFonts() def who_am_i(): try: username = System.getProperty("user.name") except: username = "???" return username def getHomeDir(): # Yup - this can be all over the place... myPrint("D", 'System.getProperty("user.dir")', System.getProperty("user.dir")) myPrint("D", 'System.getProperty("UserHome")', System.getProperty("UserHome")) myPrint("D", 'System.getProperty("user.home")', System.getProperty("user.home")) myPrint("D", 'os.path.expanduser("~")', os.path.expanduser("~")) myPrint("D", 'os.environ.get("HOMEPATH")', os.environ.get("HOMEPATH")) return def amIaMac(): return Platform.isOSX() myPrint("D", "I am user:", who_am_i()) if debug: getHomeDir() lIamAMac = amIaMac() def myDir(): global lIamAMac homeDir = None try: if lIamAMac: homeDir = System.getProperty("UserHome") # On a Mac in a Java VM, the homedir is hidden else: # homeDir = System.getProperty("user.home") homeDir = os.path.expanduser("~") # Should work on Unix and Windows if homeDir is None or homeDir == "": homeDir = System.getProperty("user.home") if homeDir is None or homeDir == "": homeDir = os.environ.get("HOMEPATH") except: pass if homeDir is None or homeDir == "": homeDir = moneydance.getCurrentAccountBook().getRootFolder().getParent() # Better than nothing! myPrint("DB", "Home Directory selected...:", homeDir) if homeDir is None: return "" return homeDir # noinspection PyArgumentList class JTextFieldLimitYN(PlainDocument): limit = 10 # Default toUpper = False what = "" def __init__(self, limit, toUpper, what): super(PlainDocument, self).__init__() self.limit = limit self.toUpper = toUpper self.what = what def insertString(self, myOffset, myString, myAttr): if (myString is None): return if self.toUpper: myString = myString.upper() if (self.what == "YN" and (myString in "YN")) \ or (self.what == "DELIM" and (myString in ";|,")) \ or (self.what == "1234" and (myString in "1234")) \ or (self.what == "CURR"): if ((self.getLength() + len(myString)) <= self.limit): super(JTextFieldLimitYN, self).insertString(myOffset, myString, myAttr) # noqa def fix_delimiter( theDelimiter ): try: if sys.version_info.major >= 3: return theDelimiter if sys.version_info.major < 2: return str(theDelimiter) if sys.version_info.minor > 7: return theDelimiter if sys.version_info.minor < 7: return str(theDelimiter) if sys.version_info.micro >= 2: return theDelimiter except: pass return str( theDelimiter ) def get_StuWareSoftSystems_parameters_from_file(myFile="StuWareSoftSystems.dict"): global debug, myParameters, lPickle_version_warning, version_build, _resetParameters # noqa myPrint("D", "In ", inspect.currentframe().f_code.co_name, "()" ) if _resetParameters: myPrint("B", "User has specified to reset parameters... keeping defaults and skipping pickle()") myParameters = {} return old_dict_filename = os.path.join("..", myFile) # Pickle was originally encrypted, no need, migrating to unencrypted migratedFilename = os.path.join(moneydance.getCurrentAccountBook().getRootFolder().getAbsolutePath(),myFile) myPrint("DB", "Now checking for parameter file:", migratedFilename) if os.path.exists( migratedFilename ): myPrint("DB", "loading parameters from non-encrypted Pickle file:", migratedFilename) myPrint("DB", "Parameter file", migratedFilename, "exists..") # Open the file try: istr = FileInputStream(migratedFilename) load_file = FileUtil.wrap(istr) # noinspection PyTypeChecker myParameters = pickle.load(load_file) load_file.close() except FileNotFoundException: myPrint("B", "Error: failed to find parameter file...") myParameters = None except EOFError: myPrint("B", "Error: reached EOF on parameter file....") myParameters = None except: myPrint("B","Error opening Pickle File (will try encrypted version) - Unexpected error ", sys.exc_info()[0]) myPrint("B","Error opening Pickle File (will try encrypted version) - Unexpected error ", sys.exc_info()[1]) myPrint("B","Error opening Pickle File (will try encrypted version) - Line Number: ", sys.exc_info()[2].tb_lineno) # OK, so perhaps from older version - encrypted, try to read try: local_storage = moneydance.getCurrentAccountBook().getLocalStorage() istr = local_storage.openFileForReading(old_dict_filename) load_file = FileUtil.wrap(istr) # noinspection PyTypeChecker myParameters = pickle.load(load_file) load_file.close() myPrint("B","Success loading Encrypted Pickle file - will migrate to non encrypted") lPickle_version_warning = True except: myPrint("B","Opening Encrypted Pickle File - Unexpected error ", sys.exc_info()[0]) myPrint("B","Opening Encrypted Pickle File - Unexpected error ", sys.exc_info()[1]) myPrint("B","Error opening Pickle File - Line Number: ", sys.exc_info()[2].tb_lineno) myPrint("B", "Error: Pickle.load() failed.... Is this a restored dataset? Will ignore saved parameters, and create a new file...") myParameters = None if myParameters is None: myParameters = {} myPrint("DB","Parameters did not load, will keep defaults..") else: myPrint("DB","Parameters successfully loaded from file...") else: myPrint("J", "Parameter Pickle file does not exist - will use default and create new file..") myPrint("D", "Parameter Pickle file does not exist - will use default and create new file..") myParameters = {} if not myParameters: return myPrint("DB","myParameters read from file contains...:") for key in sorted(myParameters.keys()): myPrint("DB","...variable:", key, myParameters[key]) if myParameters.get("debug") is not None: debug = myParameters.get("debug") if myParameters.get("lUseMacFileChooser") is not None: myPrint("B", "Detected old lUseMacFileChooser parameter/variable... Will delete it...") myParameters.pop("lUseMacFileChooser", None) # Old variable - not used - delete from parameter file myPrint("DB","Parameter file loaded if present and myParameters{} dictionary set.....") # Now load into memory! load_StuWareSoftSystems_parameters_into_memory() return def save_StuWareSoftSystems_parameters_to_file(myFile="StuWareSoftSystems.dict"): global debug, myParameters, lPickle_version_warning, version_build myPrint("D", "In ", inspect.currentframe().f_code.co_name, "()" ) if myParameters is None: myParameters = {} # Don't forget, any parameters loaded earlier will be preserved; just add changed variables.... myParameters["__Author"] = "Stuart Beesley - (c) StuWareSoftSystems" myParameters["debug"] = debug dump_StuWareSoftSystems_parameters_from_memory() # Pickle was originally encrypted, no need, migrating to unencrypted migratedFilename = os.path.join(moneydance.getCurrentAccountBook().getRootFolder().getAbsolutePath(),myFile) myPrint("DB","Will try to save parameter file:", migratedFilename) ostr = FileOutputStream(migratedFilename) myPrint("DB", "about to Pickle.dump and save parameters to unencrypted file:", migratedFilename) try: save_file = FileUtil.wrap(ostr) # noinspection PyTypeChecker pickle.dump(myParameters, save_file) save_file.close() myPrint("DB","myParameters now contains...:") for key in sorted(myParameters.keys()): myPrint("DB","...variable:", key, myParameters[key]) except: myPrint("B", "Error - failed to create/write parameter file.. Ignoring and continuing.....") dump_sys_error_to_md_console_and_errorlog() return myPrint("DB","Parameter file written and parameters saved to disk.....") return def get_time_stamp_as_nice_text( timeStamp ): prettyDate = "" try: c = Calendar.getInstance() c.setTime(Date(timeStamp)) dateFormatter = SimpleDateFormat("yyyy/MM/dd HH:mm:ss(.SSS) Z z zzzz") prettyDate = dateFormatter.format(c.getTime()) except: pass return prettyDate def currentDateTimeMarker(): c = Calendar.getInstance() dateformat = SimpleDateFormat("_yyyyMMdd_HHmmss") _datetime = dateformat.format(c.getTime()) return _datetime def destroyOldFrames(moduleName): frames = JFrame.getFrames() for fr in frames: if fr.getName().lower().startswith(moduleName): myPrint("DB","Found old frame %s and active status is: %s" %(fr.getName(),fr.isActiveInMoneydance)) # if fr.isActiveInMoneydance: try: fr.isActiveInMoneydance = False fr.setVisible(False) fr.dispose() # This should call windowClosed() which should remove MD listeners..... myPrint("DB","disposed of old frame: %s" %(fr.getName())) except: myPrint("B","Failed to dispose old frame: %s" %(fr.getName())) dump_sys_error_to_md_console_and_errorlog() def classPrinter(className, theObject): try: text = "Class: %s %s@{:x}".format(System.identityHashCode(theObject)) %(className, theObject.__class__) except: text = "Error in classPrinter(): %s: %s" %(className, theObject) return text # END COMMON DEFINITIONS ############################################################################################### # END COMMON DEFINITIONS ############################################################################################### # END COMMON DEFINITIONS ############################################################################################### # >>> CUSTOMISE & DO THIS FOR EACH SCRIPT # >>> CUSTOMISE & DO THIS FOR EACH SCRIPT # >>> CUSTOMISE & DO THIS FOR EACH SCRIPT def load_StuWareSoftSystems_parameters_into_memory(): global debug, myParameters, lPickle_version_warning, version_build # >>> THESE ARE THIS SCRIPT's PARAMETERS TO LOAD global __list_future_reminders, lStripASCII, csvDelimiter, scriptpath, userdateformat, _column_widths_LFR global lWriteBOMToExportFile_SWSS, daysToLookForward_LFR # noqa myPrint("D", "In ", inspect.currentframe().f_code.co_name, "()" ) myPrint("DB", "Loading variables into memory...") if myParameters is None: myParameters = {} if myParameters.get("__list_future_reminders") is not None: __list_future_reminders = myParameters.get("__list_future_reminders") if myParameters.get("userdateformat") is not None: userdateformat = myParameters.get("userdateformat") if myParameters.get("lStripASCII") is not None: lStripASCII = myParameters.get("lStripASCII") if myParameters.get("csvDelimiter") is not None: csvDelimiter = myParameters.get("csvDelimiter") if myParameters.get("_column_widths_LFR") is not None: _column_widths_LFR = myParameters.get("_column_widths_LFR") if myParameters.get("daysToLookForward_LFR") is not None: daysToLookForward_LFR = myParameters.get("daysToLookForward_LFR") if myParameters.get("lWriteBOMToExportFile_SWSS") is not None: lWriteBOMToExportFile_SWSS = myParameters.get("lWriteBOMToExportFile_SWSS") # noqa if myParameters.get("scriptpath") is not None: scriptpath = myParameters.get("scriptpath") if not os.path.isdir(scriptpath): myPrint("B", "Warning: loaded parameter scriptpath does not appear to be a valid directory:", scriptpath, "will ignore") scriptpath = "" myPrint("DB","myParameters{} set into memory (as variables).....") return # >>> CUSTOMISE & DO THIS FOR EACH SCRIPT def dump_StuWareSoftSystems_parameters_from_memory(): global debug, myParameters, lPickle_version_warning, version_build global lWriteBOMToExportFile_SWSS # noqa # >>> THESE ARE THIS SCRIPT's PARAMETERS TO SAVE global __list_future_reminders, lStripASCII, csvDelimiter, scriptpath, lDisplayOnly, userdateformat, _column_widths_LFR, daysToLookForward_LFR myPrint("D", "In ", inspect.currentframe().f_code.co_name, "()" ) # NOTE: Parameters were loaded earlier on... Preserve existing, and update any used ones... # (i.e. other StuWareSoftSystems programs might be sharing the same file) if myParameters is None: myParameters = {} myParameters["__list_future_reminders"] = version_build myParameters["userdateformat"] = userdateformat myParameters["lStripASCII"] = lStripASCII myParameters["csvDelimiter"] = csvDelimiter myParameters["_column_widths_LFR"] = _column_widths_LFR myParameters["daysToLookForward_LFR"] = daysToLookForward_LFR myParameters["lWriteBOMToExportFile_SWSS"] = lWriteBOMToExportFile_SWSS if not lDisplayOnly and scriptpath != "" and os.path.isdir(scriptpath): myParameters["scriptpath"] = scriptpath myPrint("DB","variables dumped from memory back into myParameters{}.....") return get_StuWareSoftSystems_parameters_from_file() myPrint("DB", "DEBUG IS ON..") # clear up any old left-overs.... destroyOldFrames(myModuleID) # END ALL CODE COPY HERE ############################################################################################### # END ALL CODE COPY HERE ############################################################################################### # END ALL CODE COPY HERE ############################################################################################### moneydance_ui.firstMainFrame.setStatus(">> StuWareSoftSystems - %s launching......." %(myScriptName),0) # Create fake JFrame() so that all popups have correct Moneydance Icons etc JFrame.setDefaultLookAndFeelDecorated(True) list_future_reminders_frame_ = MyJFrame() list_future_reminders_frame_.setName(u"%s_fake" %(myModuleID)) if (not Platform.isMac()): moneydance_ui.getImages() list_future_reminders_frame_.setIconImage(MDImages.getImage(moneydance_ui.getMain().getSourceInformation().getIconResource())) list_future_reminders_frame_.setVisible(False) list_future_reminders_frame_.setDefaultCloseOperation(WindowConstants.DISPOSE_ON_CLOSE) class CloseAboutAction(AbstractAction): # noinspection PyMethodMayBeStatic # noinspection PyUnusedLocal def __init__(self, theFrame): self.theFrame = theFrame def actionPerformed(self, event): global debug myPrint("D", "In ", inspect.currentframe().f_code.co_name, "()", "Event:", event) self.theFrame.dispose() def about_this_script(): global debug, scriptExit myPrint("D", "In ", inspect.currentframe().f_code.co_name, "()") # noinspection PyUnresolvedReferences about_d = JDialog(list_future_reminders_frame_, "About", Dialog.ModalityType.MODELESS) shortcut = Toolkit.getDefaultToolkit().getMenuShortcutKeyMaskEx() about_d.getRootPane().getInputMap(JComponent.WHEN_ANCESTOR_OF_FOCUSED_COMPONENT).put(KeyStroke.getKeyStroke(KeyEvent.VK_W, shortcut), "close-window") about_d.getRootPane().getInputMap(JComponent.WHEN_ANCESTOR_OF_FOCUSED_COMPONENT).put(KeyStroke.getKeyStroke(KeyEvent.VK_F4, shortcut), "close-window") about_d.getRootPane().getInputMap(JComponent.WHEN_IN_FOCUSED_WINDOW).put(KeyStroke.getKeyStroke(KeyEvent.VK_ESCAPE, 0), "close-window") about_d.getRootPane().getActionMap().put("close-window", CloseAboutAction(about_d)) about_d.setDefaultCloseOperation(WindowConstants.DISPOSE_ON_CLOSE) # The CloseAction() and WindowListener() will handle dispose() - else change back to DISPOSE_ON_CLOSE if (not Platform.isMac()): # moneydance_ui.getImages() about_d.setIconImage(MDImages.getImage(moneydance_ui.getMain().getSourceInformation().getIconResource())) aboutPanel=JPanel() aboutPanel.setLayout(FlowLayout(FlowLayout.LEFT)) aboutPanel.setPreferredSize(Dimension(1120, 500)) _label1 = JLabel(pad("Author: Stuart Beesley", 800)) _label1.setForeground(Color.BLUE) aboutPanel.add(_label1) _label2 = JLabel(pad("StuWareSoftSystems (2020)", 800)) _label2.setForeground(Color.BLUE) aboutPanel.add(_label2) displayString=scriptExit displayJText = JTextArea(displayString) displayJText.setFont( getMonoFont() ) displayJText.setEditable(False) # displayJText.setCaretPosition(0) displayJText.setLineWrap(False) displayJText.setWrapStyleWord(False) displayJText.setMargin(Insets(8, 8, 8, 8)) # displayJText.setBackground((mdGUI.getColors()).defaultBackground) # displayJText.setForeground((mdGUI.getColors()).defaultTextForeground) aboutPanel.add(displayJText) about_d.add(aboutPanel) about_d.pack() about_d.setLocationRelativeTo(None) about_d.setVisible(True) return class DoTheMenu(AbstractAction): def __init__(self, menu): self.menu = menu def actionPerformed(self, event): # noqa global list_future_reminders_frame_, debug global _column_widths_LFR, daysToLookForward_LFR, saveStatusLabel myPrint("D", "In ", inspect.currentframe().f_code.co_name, "()", "Event: ", event ) # ########################################################################################################## if event.getActionCommand().lower().startswith("change look"): days = myPopupAskForInput(list_future_reminders_frame_, "LOOK FORWARD", "DAYS:", "Enter the number of days to look forward", defaultValue=str(daysToLookForward_LFR)) if days is None or days == "" or not StringUtils.isInteger(days) or int(days) < 1 or int(days) > 365: myPopupInformationBox(list_future_reminders_frame_,"ERROR - Days must be between 1-365 - no changes made....",theMessageType=JOptionPane.WARNING_MESSAGE) else: daysToLookForward_LFR = int(days) myPrint("B","Days to look forward changed to %s" %(daysToLookForward_LFR)) formatDate = DateUtil.incrementDate(DateUtil.getStrippedDateInt(),0,0,daysToLookForward_LFR) formatDate = str(formatDate/10000).zfill(4) + "-" + str((formatDate/100)%100).zfill(2) + "-" + str(formatDate%100).zfill(2) saveStatusLabel.setText("** Looking forward %s days to %s **" %(daysToLookForward_LFR, formatDate)) RefreshMenuAction().refresh() # ########################################################################################################## if event.getActionCommand().lower().startswith("debug"): debug = not debug myPrint("B","DEBUG is now set to: %s" %(debug)) # ########################################################################################################## if event.getActionCommand().lower().startswith("reset"): _column_widths_LFR = [] RefreshMenuAction().refresh() # ########################################################################################################## if event.getActionCommand().lower().startswith("refresh"): RefreshMenuAction().refresh() # ########################################################################################################## if event.getActionCommand().lower().startswith("extract") or event.getActionCommand().lower().startswith("close"): ExtractMenuAction().extract_or_close() # ########################################################################################################## if event.getActionCommand() == "About": about_this_script() # Save parameters now... if (event.getActionCommand().lower().startswith("change look") or event.getActionCommand().lower().startswith("debug") or event.getActionCommand().lower().startswith("reset") or event.getActionCommand().lower().startswith("extract") or event.getActionCommand().lower().startswith("close")): try: save_StuWareSoftSystems_parameters_to_file() except: myPrint("B", "Error - failed to save parameters to pickle file...!") dump_sys_error_to_md_console_and_errorlog() myPrint("D", "Exiting ", inspect.currentframe().f_code.co_name, "()") return def terminate_script(): global debug, list_future_reminders_frame_, lDisplayOnly, lGlobalErrorDetected myPrint("D", "In ", inspect.currentframe().f_code.co_name, "()") # We now do this at the beginning, not the end.... # try: # save_StuWareSoftSystems_parameters_to_file() # except: # myPrint("B", "Error - failed to save parameters to pickle file...!") # dump_sys_error_to_md_console_and_errorlog() moneydance_ui.firstMainFrame.setStatus(">> StuWareSoftSystems - thanks for using >> %s......." %(myScriptName),0) if not i_am_an_extension_so_run_headless: print(scriptExit) try: list_future_reminders_frame_.dispose() except: myPrint("B","Error. Final dispose failed....?") dump_sys_error_to_md_console_and_errorlog() # Cleanup any mess and left-overs destroyOldFrames(myModuleID) myPrint("B","Script/extension is terminating.....") return csvfilename = None if decimalCharSep != "." and csvDelimiter == ",": csvDelimiter = ";" # Override for EU countries or where decimal point is actually a comma... myPrint("DB", "Decimal point:", decimalCharSep, "Grouping Separator", groupingCharSep, "CSV Delimiter set to:", csvDelimiter) sdf = SimpleDateFormat("dd/MM/yyyy") dateStrings=["dd/mm/yyyy", "mm/dd/yyyy", "yyyy/mm/dd", "yyyymmdd"] # 1=dd/mm/yyyy, 2=mm/dd/yyyy, 3=yyyy/mm/dd, 4=yyyymmdd label1 = JLabel("Select Output Date Format (default yyyy/mm/dd):") user_dateformat = JComboBox(dateStrings) if userdateformat == "%d/%m/%Y": user_dateformat.setSelectedItem("dd/mm/yyyy") elif userdateformat == "%m/%d/%Y": user_dateformat.setSelectedItem("mm/dd/yyyy") elif userdateformat == "%Y%m%d": user_dateformat.setSelectedItem("yyyymmdd") else: user_dateformat.setSelectedItem("yyyy/mm/dd") labelRC = JLabel("Reset Column Widths to Defaults?") user_selectResetColumns = JCheckBox("", False) label2 = JLabel("Strip non ASCII characters from CSV export?") user_selectStripASCII = JCheckBox("", lStripASCII) delimStrings = [";","|",","] label3 = JLabel("Change CSV Export Delimiter from default to: ';|,'") user_selectDELIMITER = JComboBox(delimStrings) user_selectDELIMITER.setSelectedItem(csvDelimiter) labelBOM = JLabel("Write BOM (Byte Order Mark) to file (helps Excel open files)?") user_selectBOM = JCheckBox("", lWriteBOMToExportFile_SWSS) label4 = JLabel("Turn DEBUG Verbose messages on?") user_selectDEBUG = JCheckBox("", debug) userFilters = JPanel(GridLayout(0, 2)) userFilters.add(label1) userFilters.add(user_dateformat) userFilters.add(labelRC) userFilters.add(user_selectResetColumns) userFilters.add(label2) userFilters.add(user_selectStripASCII) userFilters.add(label3) userFilters.add(user_selectDELIMITER) userFilters.add(labelBOM) userFilters.add(user_selectBOM) userFilters.add(label4) userFilters.add(user_selectDEBUG) lExit = False # lDisplayOnly = False lDisplayOnly = True # options = ["Abort", "Display & CSV Export", "Display Only"] # userAction = (JOptionPane.showOptionDialog(list_future_reminders_frame_, # userFilters, # "%s(build: %s) Set Script Parameters...." % (myScriptName, version_build), # JOptionPane.OK_CANCEL_OPTION, # JOptionPane.QUESTION_MESSAGE, # moneydance_ui.getIcon("/com/moneydance/apps/md/view/gui/glyphs/appicon_64.png"), # options, # options[2]) # ) # if userAction == 1: # Display & Export # myPrint("DB", "Display and export chosen") # lDisplayOnly = False # elif userAction == 2: # Display Only # lDisplayOnly = True # myPrint("DB", "Display only with no export chosen") # else: # # Abort # myPrint("DB", "User Cancelled Parameter selection.. Will abort..") # myPopupInformationBox(list_future_reminders_frame_, "User Cancelled Parameter selection.. Will abort..", "PARAMETERS") # lDisplayOnly = False # lExit = True if not lExit: debug = user_selectDEBUG.isSelected() myPrint("DB", "DEBUG turned on") if debug: myPrint("DB","Parameters Captured", "User Date Format:", user_dateformat.getSelectedItem(), "Reset Columns", user_selectResetColumns.isSelected(), "Strip ASCII:", user_selectStripASCII.isSelected(), "Write BOM to file:", user_selectBOM.isSelected(), "Verbose Debug Messages: ", user_selectDEBUG.isSelected(), "CSV File Delimiter:", user_selectDELIMITER.getSelectedItem()) # endif if user_dateformat.getSelectedItem() == "dd/mm/yyyy": userdateformat = "%d/%m/%Y" elif user_dateformat.getSelectedItem() == "mm/dd/yyyy": userdateformat = "%m/%d/%Y" elif user_dateformat.getSelectedItem() == "yyyy/mm/dd": userdateformat = "%Y/%m/%d" elif user_dateformat.getSelectedItem() == "yyyymmdd": userdateformat = "%Y%m%d" else: # PROBLEM / default userdateformat = "%Y/%m/%d" if user_selectResetColumns.isSelected(): myPrint("B","User asked to reset columns.... Resetting Now....") _column_widths_LFR=[] # This will invalidate them lStripASCII = user_selectStripASCII.isSelected() csvDelimiter = user_selectDELIMITER.getSelectedItem() if csvDelimiter == "" or (not (csvDelimiter in ";|,")): myPrint("B", "Invalid Delimiter:", csvDelimiter, "selected. Overriding with:','") csvDelimiter = "," if decimalCharSep == csvDelimiter: myPrint("B", "WARNING: The CSV file delimiter:", csvDelimiter, "cannot be the same as your decimal point character:", decimalCharSep, " - Proceeding without file export!!") lDisplayOnly = True myPopupInformationBox(None, "ERROR - The CSV file delimiter: %s ""cannot be the same as your decimal point character: %s. " "Proceeding without file export (i.e. I will do nothing)!!" %(csvDelimiter, decimalCharSep), "INVALID FILE DELIMITER", theMessageType=JOptionPane.ERROR_MESSAGE) lWriteBOMToExportFile_SWSS = user_selectBOM.isSelected() myPrint("B", "User Parameters...") myPrint("B", "user date format....:", userdateformat) # Now get the export filename csvfilename = None if not lDisplayOnly: # i.e. we have asked for a file export - so get the filename if lStripASCII: myPrint("DB", "Will strip non-ASCII characters - e.g. Currency symbols from output file...", " Using Delimiter:", csvDelimiter) else: myPrint("DB", "Non-ASCII characters will not be stripped from file: ", " Using Delimiter:", csvDelimiter) if lWriteBOMToExportFile_SWSS: myPrint("B", "Script will add a BOM (Byte Order Mark) to front of the extracted file...") else: myPrint("B", "No BOM (Byte Order Mark) will be added to the extracted file...") def grabTheFile(): global debug, lDisplayOnly, csvfilename, lIamAMac, scriptpath, myScriptName myPrint("D", "In ", inspect.currentframe().f_code.co_name, "()") if scriptpath == "" or scriptpath is None: # No parameter saved / loaded from disk scriptpath = myDir() myPrint("DB", "Default file export output path is....:", scriptpath) csvfilename = "" if lIamAMac: myPrint("D", "MacOS X detected: Therefore I will run FileDialog with no extension filters to get filename....") # jFileChooser hangs on Mac when using file extension filters, also looks rubbish. So using Mac(ish)GUI System.setProperty("com.apple.macos.use-file-dialog-packages","true") # In theory prevents access to app file structure (but doesnt seem to work) System.setProperty("apple.awt.fileDialogForDirectories", "false") filename = FileDialog(list_future_reminders_frame_, "Select/Create CSV file for extract (CANCEL=NO EXPORT)") filename.setMultipleMode(False) filename.setMode(FileDialog.SAVE) filename.setFile(extract_filename) if (scriptpath is not None and scriptpath != ""): filename.setDirectory(scriptpath) # Copied from MD code... File filters only work on non Macs (or Macs below certain versions) if (not Platform.isOSX() or not Platform.isOSXVersionAtLeast("10.13")): extfilter = ExtFilenameFilter("csv") filename.setFilenameFilter(extfilter) # I'm not actually sure this works...? filename.setVisible(True) csvfilename = filename.getFile() if (csvfilename is None) or csvfilename == "": lDisplayOnly = True csvfilename = None myPrint("B", "User chose to cancel or no file selected >> So no Extract will be performed... ") myPopupInformationBox(list_future_reminders_frame_, "User chose to cancel or no file selected >> So no Extract will be performed... ", "FILE SELECTION") elif str(csvfilename).endswith(".moneydance"): myPrint("B", "User selected file:", csvfilename) myPrint("B", "Sorry - User chose to use .moneydance extension - I will not allow it!... So no Extract will be performed...") myPopupInformationBox(list_future_reminders_frame_, "Sorry - User chose to use .moneydance extension - I will not allow it!... So no Extract will be performed...", "FILE SELECTION") lDisplayOnly = True csvfilename = None elif ".moneydance" in filename.getDirectory(): myPrint("B", "User selected file:", filename.getDirectory(), csvfilename) myPrint("B", "Sorry - FileDialog() User chose to save file in .moneydance location. NOT Good practice so I will not allow it!... So no Extract will be performed...") myPopupInformationBox(list_future_reminders_frame_, "Sorry - FileDialog() User chose to save file in .moneydance location. NOT Good practice so I will not allow it!... So no Extract will be performed...", "FILE SELECTION") lDisplayOnly = True csvfilename = None else: csvfilename = os.path.join(filename.getDirectory(), filename.getFile()) scriptpath = str(filename.getDirectory()) if not lDisplayOnly: if os.path.exists(csvfilename) and os.path.isfile(csvfilename): myPrint("DB", "WARNING: file exists,but assuming user said OK to overwrite..") if not lDisplayOnly: if check_file_writable(csvfilename): if lStripASCII: myPrint("B", 'Will display Reminders and then extract to file: ', csvfilename, "(NOTE: Should drop non utf8 characters...)") else: myPrint("B", 'Will display Reminders and then extract to file: ', csvfilename, "...") scriptpath = os.path.dirname(csvfilename) else: myPrint("B", "Sorry - I just checked and you do not have permissions to create this file:", csvfilename) myPopupInformationBox(list_future_reminders_frame_, "Sorry - I just checked and you do not have permissions to create this file: %s" % csvfilename, "FILE SELECTION") csvfilename="" lDisplayOnly = True return # enddef if not lDisplayOnly: grabTheFile() else: pass # endif if csvfilename is None: lDisplayOnly = True myPrint("B","No Export will be performed") # save here instead of at the end. save_StuWareSoftSystems_parameters_to_file() # Moneydance dates are int yyyymmddd - convert to locale date string for CSV format def dateoutput(dateinput, theformat): if dateinput == "EXPIRED": _dateoutput = dateinput elif dateinput == "": _dateoutput = "" elif dateinput == 0: _dateoutput = "" elif dateinput == "0": _dateoutput = "" else: dateasdate = datetime.datetime.strptime(str(dateinput), "%Y%m%d") # Convert to Date field _dateoutput = dateasdate.strftime(theformat) return _dateoutput def myGetNextOccurance(theRem, startDate, maximumDate): cal = Calendar.getInstance() ackPlusOne = theRem.getDateAcknowledgedInt() if ackPlusOne > 0: ackPlusOne = DateUtil.incrementDate(ackPlusOne, 0, 0, 1) DateUtil.setCalendarDate(cal, Math.max(startDate, ackPlusOne)) while True: intDate = DateUtil.convertCalToInt(cal) if (intDate > maximumDate or (theRem.getLastDateInt() > 0 and intDate > theRem.getLastDateInt())): # noqa return 0 if (theRem.occursOnDate(cal)): return DateUtil.convertCalToInt(cal) cal.add(Calendar.DAY_OF_MONTH, 1) def build_the_data_file(ind): global sdf, userdateformat, csvlines, csvheaderline, myScriptName, baseCurrency, headerFormats global debug, ExtractDetails_Count, daysToLookForward_LFR # Just override it as the sort is broken as it's sorting on strings and dd/mm/yy won't work etc - fix later overridedateformat = "%Y/%m/%d" ExtractDetails_Count += 1 myPrint("D", "In ", inspect.currentframe().f_code.co_name, "()", ind, " - On iteration/call: ", ExtractDetails_Count) # ind == 1 means that this is a repeat call, so the table should be refreshed root = moneydance.getCurrentAccountBook() baseCurrency = moneydance_data.getCurrencies().getBaseType() rems = root.getReminders().getAllReminders() if rems.size() < 1: return False myPrint("B", 'Success: read ', rems.size(), 'reminders') print csvheaderline = [ "Number#", "NextDue", # "ReminderType", # "Frequency", # "AutoCommitDays", # "LastAcknowledged", # "FirstDate", # "EndDate", "ReminderDescription", "NetAmount" # "TxfrType", # "Account", # "MainDescription", # "Split#", # "SplitAmount", # "Category", # "Description", # "Memo" ] headerFormats = [ [Number,JLabel.CENTER], [String,JLabel.CENTER], # [String,JLabel.LEFT], # [String,JLabel.LEFT], # [String,JLabel.LEFT], # [String,JLabel.CENTER], # [String,JLabel.CENTER], # [String,JLabel.CENTER], [String,JLabel.LEFT], [Number,JLabel.RIGHT] # [String,JLabel.LEFT], # [String,JLabel.LEFT], # [String,JLabel.LEFT], # [String,JLabel.CENTER], # [Number,JLabel.RIGHT], # [String,JLabel.LEFT], # [String,JLabel.LEFT], # [String,JLabel.LEFT] ] # Read each reminder and create a csv line for each in the csvlines array csvlines = [] # Set up an empty array for index in range(0, int(rems.size())): rem = rems[index] # Get the reminder remtype = rem.getReminderType() # NOTE or TRANSACTION desc = rem.getDescription().replace(",", " ") # remove commas to keep csv format happy # memo = str(rem.getMemo()).replace(",", " ").strip() # remove commas to keep csv format happy # memo = str(memo).replace("\n", "*").strip() # remove newlines to keep csv format happy myPrint("P", "Reminder: ", index + 1, rem.getDescription()) # Name of Reminder # determine the frequency of the transaction daily = rem.getRepeatDaily() weekly = rem.getRepeatWeeklyModifier() monthly = rem.getRepeatMonthlyModifier() yearly = rem.getRepeatYearly() countfreqs = 0 remfreq = '' if daily > 0: remfreq += 'DAILY' remfreq += '(every ' + str(daily) + ' days)' countfreqs += 1 if len(rem.getRepeatWeeklyDays()) > 0 and rem.getRepeatWeeklyDays()[0] > 0: for freq in range(0, len(rem.getRepeatWeeklyDays())): if len(remfreq) > 0: remfreq += " & " if weekly == Reminder.WEEKLY_EVERY: remfreq += 'WEEKLY_EVERY' if weekly == Reminder.WEEKLY_EVERY_FIFTH: remfreq += 'WEEKLY_EVERY_FIFTH' if weekly == Reminder.WEEKLY_EVERY_FIRST: remfreq += 'WEEKLY_EVERY_FIRST' if weekly == Reminder.WEEKLY_EVERY_FOURTH: remfreq += 'WEEKLY_EVERY_FOURTH' if weekly == Reminder.WEEKLY_EVERY_LAST: remfreq += 'WEEKLY_EVERY_LAST' if weekly == Reminder.WEEKLY_EVERY_SECOND: remfreq += 'WEEKLY_EVERY_SECOND' if weekly == Reminder.WEEKLY_EVERY_THIRD: remfreq += 'WEEKLY_EVERY_THIRD' if rem.getRepeatWeeklyDays()[freq] == 1: remfreq += '(on Sunday)' if rem.getRepeatWeeklyDays()[freq] == 2: remfreq += '(on Monday)' if rem.getRepeatWeeklyDays()[freq] == 3: remfreq += '(on Tuesday)' if rem.getRepeatWeeklyDays()[freq] == 4: remfreq += '(on Wednesday)' if rem.getRepeatWeeklyDays()[freq] == 5: remfreq += '(on Thursday)' if rem.getRepeatWeeklyDays()[freq] == 6: remfreq += '(on Friday)' if rem.getRepeatWeeklyDays()[freq] == 7: remfreq += '(on Saturday)' if rem.getRepeatWeeklyDays()[freq] < 1 or rem.getRepeatWeeklyDays()[ freq] > 7: remfreq += '(*ERROR*)' countfreqs += 1 if len(rem.getRepeatMonthly()) > 0 and rem.getRepeatMonthly()[0] > 0: for freq in range(0, len(rem.getRepeatMonthly())): if len(remfreq) > 0: remfreq += " & " if monthly == Reminder.MONTHLY_EVERY: remfreq += 'MONTHLY_EVERY' if monthly == Reminder.MONTHLY_EVERY_FOURTH: remfreq += 'MONTHLY_EVERY_FOURTH' if monthly == Reminder.MONTHLY_EVERY_OTHER: remfreq += 'MONTHLY_EVERY_OTHER' if monthly == Reminder.MONTHLY_EVERY_SIXTH: remfreq += 'MONTHLY_EVERY_SIXTH' if monthly == Reminder.MONTHLY_EVERY_THIRD: remfreq += 'MONTHLY_EVERY_THIRD' theday = rem.getRepeatMonthly()[freq] if theday == Reminder.LAST_DAY_OF_MONTH: remfreq += '(on LAST_DAY_OF_MONTH)' else: if 4 <= theday <= 20 or 24 <= theday <= 30: suffix = "th" else: suffix = ["st", "nd", "rd"][theday % 10 - 1] remfreq += '(on ' + str(theday) + suffix + ')' countfreqs += 1 if yearly: if len(remfreq) > 0: remfreq += " & " remfreq += 'YEARLY' countfreqs += 1 if len(remfreq) < 1 or countfreqs == 0: remfreq = '!ERROR! NO ACTUAL FREQUENCY OPTIONS SET PROPERLY ' + remfreq if countfreqs > 1: remfreq = "**MULTI** " + remfreq # noqa todayInt = DateUtil.getStrippedDateInt() lastdate = rem.getLastDateInt() if lastdate < 1: # Detect if an enddate is set stopDate = min(DateUtil.incrementDate(todayInt, 0, 0, daysToLookForward_LFR),20991231) nextDate = rem.getNextOccurance(stopDate) # Use cutoff far into the future else: stopDate = min(DateUtil.incrementDate(todayInt, 0, 0, daysToLookForward_LFR),lastdate) nextDate = rem.getNextOccurance(stopDate) # Stop at enddate if nextDate < 1: continue # nextDate = DateUtil.incrementDate(nextDate, 0, 0, -1) loopDetector=0 while True: loopDetector+=1 if loopDetector > 10000: myPrint("B","Loop detected..? Breaking out.... Reminder %s" %(rem)) myPopupInformationBox(list_future_reminders_frame_,"ERROR - Loop detected..?! Will exit (review console log)",theMessageType=JOptionPane.ERROR_MESSAGE) raise Exception("Loop detected..? Aborting.... Reminder %s" %(rem)) calcNext = myGetNextOccurance(rem,nextDate, stopDate) if calcNext < 1: break remdate = str(calcNext) # nextDate = DateUtil.incrementDate(calcNext, 0, 0, 1) nextDate = DateUtil.incrementDate(calcNext, 0, 0, 1) lastack = rem.getDateAcknowledgedInt() if lastack == 0 or lastack == 19700101: lastack = '' # noqa auto = rem.getAutoCommitDays() if auto >= 0: auto = 'YES: (' + str(auto) + ' days before scheduled)' # noqa else: auto = 'NO' # noqa if str(remtype) == 'NOTE': csvline = [] csvline.append(index + 1) csvline.append(dateoutput(remdate, overridedateformat)) # csvline.append(str(rem.getReminderType())) # csvline.append(remfreq) # csvline.append(auto) # csvline.append(dateoutput(lastack, overridedateformat)) # csvline.append(dateoutput(rem.getInitialDateInt(), overridedateformat)) # csvline.append(dateoutput(lastdate, overridedateformat)) csvline.append(desc) csvline.append('') # NetAmount # csvline.append('') # TxfrType # csvline.append('') # Account # csvline.append('') # MainDescription # csvline.append(str(index + 1) + '.0') # Split# # csvline.append('') # SplitAmount # csvline.append('') # Category # csvline.append('') # Description # csvline.append('"' + memo + '"') # Memo csvlines.append(csvline) elif str(remtype) == 'TRANSACTION': txnparent = rem.getTransaction() amount = baseCurrency.getDoubleValue(txnparent.getValue()) # for index2 in range(0, int(txnparent.getOtherTxnCount())): for index2 in [0]: # splitdesc = txnparent.getOtherTxn(index2).getDescription().replace(","," ") # remove commas to keep csv format happy # splitmemo = txnparent.getMemo().replace(",", " ") # remove commas to keep csv format happy # maindesc = txnparent.getDescription().replace(",", " ").strip() if index2 > 0: amount = '' # Don't repeat the new amount on subsequent split lines (so you can total column). The split amount will be correct # stripacct = str(txnparent.getAccount()).replace(",", # " ").strip() # remove commas to keep csv format happy # stripcat = str(txnparent.getOtherTxn(index2).getAccount()).replace(","," ").strip() # remove commas to keep csv format happy csvline = [] csvline.append(index + 1) csvline.append(dateoutput(remdate, overridedateformat)) # csvline.append(str(rem.getReminderType())) # csvline.append(remfreq) # csvline.append(auto) # csvline.append(dateoutput(lastack, overridedateformat)) # csvline.append(dateoutput(rem.getInitialDateInt(), overridedateformat)) # csvline.append(dateoutput(lastdate, overridedateformat)) csvline.append(desc) csvline.append((amount)) # csvline.append(txnparent.getTransferType()) # csvline.append(stripacct) # csvline.append(maindesc) # csvline.append(str(index + 1) + '.' + str(index2 + 1)) # csvline.append(baseCurrency.getDoubleValue(txnparent.getOtherTxn(index2).getValue()) * -1) # csvline.append(stripcat) # csvline.append(splitdesc) # csvline.append(splitmemo) csvlines.append(csvline) index += 1 # if len(csvlines) < 1: # return False # ReminderTable(csvlines, ind) myPrint("D", "Exiting ", inspect.currentframe().f_code.co_name) ExtractDetails_Count -= 1 return True # ENDDEF # Synchronises column widths of both JTables class ColumnChangeListener(TableColumnModelListener): sourceTable = None targetTable = None def __init__(self, source): self.sourceTable = source def columnAdded(self, e): pass def columnSelectionChanged(self, e): pass def columnRemoved(self, e): pass def columnMoved(self, e): pass # noinspection PyUnusedLocal def columnMarginChanged(self, e): global _column_widths_LFR sourceModel = self.sourceTable.getColumnModel() for _i in range(0, sourceModel.getColumnCount()): # Saving for later... Yummy!! _column_widths_LFR[_i] = sourceModel.getColumn(_i).getWidth() myPrint("D","Saving column %s as width %s for later..." %(_i,_column_widths_LFR[_i])) # The javax.swing package and its subpackages provide a fairly comprehensive set of default renderer implementations, suitable for customization via inheritance. A notable omission is the lack #of a default renderer for a JTableHeader in the public API. The renderer used by default is a Sun proprietary class, sun.swing.table.DefaultTableCellHeaderRenderer, which cannot be extended. # DefaultTableHeaderCellRenderer seeks to fill this void, by providing a rendering designed to be identical with that of the proprietary class, with one difference: the vertical alignment of #the header text has been set to BOTTOM, to provide a better match between DefaultTableHeaderCellRenderer and other custom renderers. # The name of the class has been chosen considering this to be a default renderer for the cells of a table header, and not the table cells of a header as implied by the proprietary class name class DefaultTableHeaderCellRenderer(DefaultTableCellRenderer): # /** # * Constructs a <code>DefaultTableHeaderCellRenderer</code>. # * <P> # * The horizontal alignment and text position are set as appropriate to a # * table header cell, and the opaque property is set to false. # */ def __init__(self): # super(DefaultTableHeaderCellRenderer, self).__init__() self.setHorizontalAlignment(JLabel.CENTER) # This one changes the text alignment self.setHorizontalTextPosition(JLabel.RIGHT) # This positions the text to the left/right of the sort icon self.setVerticalAlignment(JLabel.BOTTOM) self.setOpaque(True) # if this is false then it hides the background colour # enddef # /** # * returns the default table header cell renderer. # * <P> # * If the column is sorted, the appropriate icon is retrieved from the # * current Look and Feel, and a border appropriate to a table header cell # * is applied. # * <P> # * Subclasses may overide this method to provide custom content or # * formatting. # * # * @param table the <code>JTable</code>. # * @param value the value to assign to the header cell # * @param isSelected This parameter is ignored. # * @param hasFocus This parameter is ignored. # * @param row This parameter is ignored. # * @param column the column of the header cell to render # * @return the default table header cell renderer # */ def getTableCellRendererComponent(self, table, value, isSelected, hasFocus, row, column): # noqa # noinspection PyUnresolvedReferences super(DefaultTableHeaderCellRenderer, self).getTableCellRendererComponent(table, value, isSelected,hasFocus, row, column) # tableHeader = table.getTableHeader() # if (tableHeader is not None): self.setForeground(tableHeader.getForeground()) align = table.getCellRenderer(0, column).getHorizontalAlignment() self.setHorizontalAlignment(align) if align == JLabel.RIGHT: self.setHorizontalTextPosition(JLabel.RIGHT) elif align == JLabel.LEFT: self.setHorizontalTextPosition(JLabel.LEFT) elif align == JLabel.CENTER: self.setHorizontalTextPosition(JLabel.LEFT) self.setIcon(self._getIcon(table, column)) self.setBorder(UIManager.getBorder("TableHeader.cellBorder")) self.setForeground(Color.BLACK) self.setBackground(Color.lightGray) # self.setHorizontalAlignment(JLabel.CENTER) return self # enddef # /** # * Overloaded to return an icon suitable to the primary sorted column, or null if # * the column is not the primary sort key. # * # * @param table the <code>JTable</code>. # * @param column the column index. # * @return the sort icon, or null if the column is unsorted. # */ def _getIcon(self, table, column): # noqa sortKey = self.getSortKey(table, column) if (sortKey is not None and table.convertColumnIndexToView(sortKey.getColumn()) == column): x = (sortKey.getSortOrder()) if x == SortOrder.ASCENDING: return UIManager.getIcon("Table.ascendingSortIcon") elif x == SortOrder.DESCENDING: return UIManager.getIcon("Table.descendingSortIcon") elif x == SortOrder.UNSORTED: return UIManager.getIcon("Table.naturalSortIcon") return None # enddef # /** # * returns the current sort key, or null if the column is unsorted. # * # * @param table the table # * @param column the column index # * @return the SortKey, or null if the column is unsorted # */ # noinspection PyMethodMayBeStatic # noinspection PyUnusedLocal def getSortKey(self, table, column): # noqa rowSorter = table.getRowSorter() if (rowSorter is None): return None sortedColumns = rowSorter.getSortKeys() if (sortedColumns.size() > 0): return sortedColumns.get(0) return None focus = "initial" row = 0 EditedReminderCheck = False ReminderTable_Count = 0 ExtractDetails_Count = 0 class MyRunnable(Runnable): def __init__(self, theFrame): self.theFrame = theFrame # noinspection PyMethodMayBeStatic def run(self): global debug myPrint("DB","Inside %s MyRunnable.... About to trigger WindowClosing event to close %s" %(myModuleID,myModuleID)) try: self.theFrame.dispatchEvent(WindowEvent(self.theFrame, WindowEvent.WINDOW_CLOSING)) myPrint("DB","Back from pushing a WINDOW_CLOSING Event to %s...." %myModuleID) except: dump_sys_error_to_md_console_and_errorlog() myPrint("B","@@ ERROR pushing a WINDOW_CLOSING Event to %s.... :-< " %myModuleID) return class MyEventListener(AppEventListener): def __init__(self, theFrame): self.alreadyClosed = False self.theFrame = theFrame self.myModuleID = myModuleID def getMyself(self): fm = moneydance.getModuleForID(self.myModuleID) if fm is None: return None, None try: pyo = fm.getClass().getDeclaredField("extensionObject") pyo.setAccessible(True) pyObject = pyo.get(fm) pyo.setAccessible(False) except: myPrint("DB","Error retrieving my own Python extension object..?") dump_sys_error_to_md_console_and_errorlog() return None, None return fm, pyObject # noinspection PyMethodMayBeStatic def handleEvent(self, appEvent): global debug myPrint("DB", "I am .handleEvent() within %s" %(classPrinter("MoneydanceAppListener", self.theFrame.MoneydanceAppListener))) if self.alreadyClosed: myPrint("DB","....I'm actually still here (MD EVENT %s CALLED).. - Ignoring and returning back to MD...." %(appEvent)) return # MD doesn't call .unload() or .cleanup(), so if uninstalled I need to close myself fm, pyObject = self.getMyself() myPrint("DB", "Checking myself: %s : %s" %(fm, pyObject)) # if (fm is None or pyObject is None) and appEvent != "md:app:exiting": if (fm is None or (self.theFrame.isRunTimeExtension and pyObject is None)) and appEvent != "md:app:exiting": myPrint("B", "@@ ALERT - I've detected that I'm no longer installed as an extension - I will deactivate.. (switching event code to :close)") appEvent = "%s:customevent:close" %self.myModuleID # I am only closing Toolbox when a new Dataset is opened.. I was calling it on MD Close/Exit, but it seemed to cause an Exception... if (appEvent == "md:file:closing" or appEvent == "md:file:closed" or appEvent == "md:file:opening" or appEvent == "md:app:exiting"): myPrint("DB","@@ Ignoring MD handleEvent: %s" %(appEvent)) elif (appEvent == "md:file:opened" or appEvent == "%s:customevent:close" %self.myModuleID): if debug: myPrint("DB","MD event %s triggered.... Will call MyRunnable (on a new Thread) to push a WINDOW_CLOSING Event to %s to close itself (while I exit back to MD quickly) ...." %(appEvent, self.myModuleID)) else: myPrint("B","Moneydance triggered event %s triggered - So I am closing %s now...." %(appEvent, self.myModuleID)) self.alreadyClosed = True try: t = Thread(MyRunnable(self.theFrame)) t.start() myPrint("DB","Back from calling MyRunnable to push a WINDOW_CLOSING Event to %s.... ;-> ** I'm getting out quick! **" %(self.myModuleID)) except: dump_sys_error_to_md_console_and_errorlog() myPrint("B","@@ ERROR calling MyRunnable to push a WINDOW_CLOSING Event to %s.... :-< ** I'm getting out quick! **" %(self.myModuleID)) if not debug: myPrint("DB","Returning back to Moneydance after calling for %s to close...." %self.myModuleID) return myPrint("DB","@@ Detected MD handleEvent: %s" %(appEvent)) # md:file:closing The Moneydance file is being closed # md:file:closed The Moneydance file has closed # md:file:opening The Moneydance file is being opened # md:file:opened The Moneydance file has opened # md:file:presave The Moneydance file is about to be saved # md:file:postsave The Moneydance file has been saved # md:app:exiting Moneydance is shutting down # md:account:select An account has been selected by the user # md:account:root The root account has been selected # md:graphreport An embedded graph or report has been selected # md:viewbudget One of the budgets has been selected # md:viewreminders One of the reminders has been selected # md:licenseupdated The user has updated the license class WindowListener(WindowAdapter): def __init__(self, theFrame): self.theFrame = theFrame # type: MyJFrame def windowClosing(self, WindowEvent): # noqa global debug myPrint("D", "In ", inspect.currentframe().f_code.co_name, "()") terminate_script() def windowClosed(self, WindowEvent): # noqa global debug myPrint("D","In ", inspect.currentframe().f_code.co_name, "()") self.theFrame.isActiveInMoneydance = False myPrint("DB","applistener is %s" %(classPrinter("MoneydanceAppListener", self.theFrame.MoneydanceAppListener))) if self.theFrame.MoneydanceAppListener is not None: try: moneydance.removeAppEventListener(self.theFrame.MoneydanceAppListener) myPrint("DB","\n@@@ Removed my MD App Listener... %s\n" %(classPrinter("MoneydanceAppListener", self.theFrame.MoneydanceAppListener))) self.theFrame.MoneydanceAppListener = None except: myPrint("B","FAILED to remove my MD App Listener... %s" %(classPrinter("MoneydanceAppListener", self.theFrame.MoneydanceAppListener))) dump_sys_error_to_md_console_and_errorlog() if self.theFrame.HomePageViewObj is not None: self.theFrame.HomePageViewObj.unload() myPrint("DB","@@ Called HomePageView.unload() and Removed reference to HomePageView %s from MyJFrame()...@@\n" %(classPrinter("HomePageView", self.theFrame.HomePageViewObj))) self.theFrame.HomePageViewObj = None myPrint("D","Exit ", inspect.currentframe().f_code.co_name, "()") # noinspection PyMethodMayBeStatic # noinspection PyUnusedLocal def windowGainedFocus(self, WindowEvent): # noqa global focus, table, row, debug, EditedReminderCheck myPrint("D", "In ", inspect.currentframe().f_code.co_name, "()") if focus == "lost": focus = "gained" if EditedReminderCheck: # Disable refresh data on all gained-focus events, just refresh if Reminder is Edited... # To always refresh data remove this if statement and always run ExtractDetails(1) myPrint("DB", "pre-build_the_data_file()") build_the_data_file(1) # Re-extract data when window focus gained - assume something changed myPrint("DB", "back from build_the_data_file(), gained focus, row: ", row) EditedReminderCheck = False if table.getRowCount() > 0: table.setRowSelectionInterval(0, row) cellRect = table.getCellRect(row, 0, True) table.scrollRectToVisible(cellRect) # force the scrollpane to make the row visible table.requestFocus() myPrint("D", "Exiting ", inspect.currentframe().f_code.co_name, "()") return # noinspection PyMethodMayBeStatic # noinspection PyUnusedLocal def windowLostFocus(self, WindowEvent): # noqa global focus, table, row, debug myPrint("D", "In ", inspect.currentframe().f_code.co_name, "()") row = table.getSelectedRow() if focus == "gained": focus = "lost" myPrint("D", "Exiting ", inspect.currentframe().f_code.co_name, "()") return WL = WindowListener(list_future_reminders_frame_) class MouseListener(MouseAdapter): # noinspection PyMethodMayBeStatic def mousePressed(self, event): global table, row, debug myPrint("D", "In ", inspect.currentframe().f_code.co_name, "()") clicks = event.getClickCount() if clicks == 2: row = table.getSelectedRow() index = table.getValueAt(row, 0) ShowEditForm(index) myPrint("D", "Exiting ", inspect.currentframe().f_code.co_name, "()") return ML = MouseListener() class EnterAction(AbstractAction): # noinspection PyMethodMayBeStatic # noinspection PyUnusedLocal def actionPerformed(self, event): global focus, table, row, debug myPrint("D", "In ", inspect.currentframe().f_code.co_name, "()") row = table.getSelectedRow() index = table.getValueAt(row, 0) ShowEditForm(index) myPrint("D", "Exiting ", inspect.currentframe().f_code.co_name, "()") return class CloseAction(AbstractAction): # noinspection PyMethodMayBeStatic # noinspection PyUnusedLocal def actionPerformed(self, event): global list_future_reminders_frame_, debug myPrint("D", "In ", inspect.currentframe().f_code.co_name, "()") terminate_script() return class ExtractMenuAction(): def __init__(self): pass # noinspection PyMethodMayBeStatic def extract_or_close(self): global list_future_reminders_frame_, debug myPrint("D", "In ", inspect.currentframe().f_code.co_name, "()") myPrint("D", "inside ExtractMenuAction() ;->") terminate_script() class RefreshMenuAction(): def __init__(self): pass # noinspection PyMethodMayBeStatic def refresh(self): global list_future_reminders_frame_, table, row, debug row = 0 # reset to row 1 myPrint("D", "In ", inspect.currentframe().f_code.co_name, "()", "\npre-extract details(1), row: ", row) build_the_data_file(1) # Re-extract data myPrint("D", "back from extractdetails(1), row: ", row) if table.getRowCount() > 0: table.setRowSelectionInterval(0, row) table.requestFocus() myPrint("D", "Exiting ", inspect.currentframe().f_code.co_name, "()") return class MyJTable(JTable): myPrint("D", "In ", inspect.currentframe().f_code.co_name, "()") def __init__(self, tableModel): global debug super(JTable, self).__init__(tableModel) self.fixTheRowSorter() # noinspection PyMethodMayBeStatic # noinspection PyUnusedLocal def isCellEditable(self, row, column): # noqa return False # Rendering depends on row (i.e. security's currency) as well as column # noinspection PyUnusedLocal # noinspection PyMethodMayBeStatic def getCellRenderer(self, row, column): # noqa global headerFormats if column == 0: renderer = MyPlainNumberRenderer() elif headerFormats[column][0] == Number: renderer = MyNumberRenderer() else: renderer = DefaultTableCellRenderer() renderer.setHorizontalAlignment(headerFormats[column][1]) return renderer class MyTextNumberComparator(Comparator): lSortNumber = False lSortRealNumber = False def __init__(self, sortType): if sortType == "N": self.lSortNumber = True elif sortType == "%": self.lSortRealNumber = True else: self.lSortNumber = False def compare(self, str1, str2): global decimalCharSep validString = "-0123456789" + decimalCharSep # Yes this will strip % sign too, but that still works # if debug: print str1, str2, self.lSortNumber, self.lSortRealNumber, type(str1), type(str2) if isinstance(str1, (float,int)) or isinstance(str2,(float,int)): if str1 is None or str1 == "": str1 = 0 if str2 is None or str2 == "": str2 = 0 if (str1) > (str2): return 1 elif str1 == str2: return 0 else: return -1 if self.lSortNumber: # strip non numerics from string so can convert back to float - yes, a bit of a reverse hack conv_string1 = "" if str1 is None or str1 == "": str1 = "0" if str2 is None or str2 == "": str2 = "0" for char in str1: if char in validString: conv_string1 = conv_string1 + char conv_string2 = "" for char in str2: if char in validString: conv_string2 = conv_string2 + char str1 = float(conv_string1) str2 = float(conv_string2) if str1 > str2: return 1 elif str1 == str2: return 0 else: return -1 elif self.lSortRealNumber: if float(str1) > float(str2): return 1 elif str1 == str2: return 0 else: return -1 else: if str1.upper() > str2.upper(): return 1 elif str1.upper() == str2.upper(): return 0 else: return -1 # enddef def fixTheRowSorter(self): # by default everything gets converted to strings. We need to fix this and code for my string number formats sorter = TableRowSorter() self.setRowSorter(sorter) sorter.setModel(self.getModel()) for _i in range(0, self.getColumnCount()): if _i == 0: sorter.setComparator(_i, self.MyTextNumberComparator("%")) if _i == 3 or _i == 3: sorter.setComparator(_i, self.MyTextNumberComparator("N")) else: sorter.setComparator(_i, self.MyTextNumberComparator("T")) self.getRowSorter().toggleSortOrder(1) # make Banded rows def prepareRenderer(self, renderer, row, column): # noqa lightLightGray = Color(0xDCDCDC) # noinspection PyUnresolvedReferences component = super(MyJTable, self).prepareRenderer(renderer, row, column) if not self.isRowSelected(row): component.setBackground(self.getBackground() if row % 2 == 0 else lightLightGray) return component # This copies the standard class and just changes the colour to RED if it detects a negative - leaves field intact # noinspection PyArgumentList class MyNumberRenderer(DefaultTableCellRenderer): global baseCurrency def __init__(self): super(DefaultTableCellRenderer, self).__init__() def setValue(self, value): global decimalCharSep myGreen = Color(0,102,0) if isinstance(value, (float,int)): if value < 0.0: self.setForeground(Color.RED) else: # self.setForeground(Color.DARK_GRAY) self.setForeground(myGreen) # DARK_GREEN self.setText(baseCurrency.formatFancy(int(value*100), decimalCharSep, True)) else: self.setText(str(value)) return # noinspection PyArgumentList class MyPlainNumberRenderer(DefaultTableCellRenderer): global baseCurrency def __init__(self): super(DefaultTableCellRenderer, self).__init__() def setValue(self, value): self.setText(str(value)) return def ReminderTable(tabledata, ind): global list_future_reminders_frame_, scrollpane, table, row, debug, ReminderTable_Count, csvheaderline, lDisplayOnly global _column_widths_LFR, daysToLookForward_LFR, saveStatusLabel ReminderTable_Count += 1 myPrint("D", "In ", inspect.currentframe().f_code.co_name, "()", ind, " - On iteration/call: ", ReminderTable_Count) myDefaultWidths = [0,95,400,100] validCount=0 lInvalidate=True if _column_widths_LFR is not None and isinstance(_column_widths_LFR,(list)) and len(_column_widths_LFR) == len(myDefaultWidths): # if sum(_column_widths_LFR)<1: for width in _column_widths_LFR: if width >= 0 and width <= 1000: # noqa validCount += 1 if validCount == len(myDefaultWidths): lInvalidate=False if lInvalidate: myPrint("DB","Found invalid saved columns = resetting to defaults") myPrint("DB","Found: %s" %_column_widths_LFR) myPrint("DB","Resetting to: %s" %myDefaultWidths) _column_widths_LFR = myDefaultWidths else: myPrint("DB","Valid column widths loaded - Setting to: %s" %_column_widths_LFR) myDefaultWidths = _column_widths_LFR # allcols = col0 + col1 + col2 + col3 + col4 + col5 + col6 + col7 + col8 + col9 + col10 + col11 + col12 + col13 + col14 + col15 + col16 + col17 allcols = sum(myDefaultWidths) screenSize = Toolkit.getDefaultToolkit().getScreenSize() # button_width = 220 # button_height = 40 # frame_width = min(screenSize.width-20, allcols + 100) # frame_height = min(screenSize.height, 900) frame_width = min(screenSize.width-20, max(1024,int(round(moneydance_ui.firstMainFrame.getSize().width *.95,0)))) frame_height = min(screenSize.height-20, max(768, int(round(moneydance_ui.firstMainFrame.getSize().height *.95,0)))) frame_width = min( allcols+20, frame_width) # panel_width = frame_width - 50 # button_panel_height = button_height + 5 if ind == 1: scrollpane.getViewport().remove(table) # On repeat, just remove/refresh the table & rebuild the viewport colnames = csvheaderline table = MyJTable(DefaultTableModel(tabledata, colnames)) if ind == 0: # Function can get called multiple times; only set main frames up once JFrame.setDefaultLookAndFeelDecorated(True) # list_future_reminders_frame_ = JFrame("Listing future reminders - StuWareSoftSystems(build: %s)..." % version_build) list_future_reminders_frame_.setTitle("Listing future reminders - StuWareSoftSystems(build: %s)..." % version_build) list_future_reminders_frame_.setName("%s_main" %(myModuleID)) # list_future_reminders_frame_.setLayout(FlowLayout()) if (not Platform.isMac()): moneydance_ui.getImages() list_future_reminders_frame_.setIconImage(MDImages.getImage(moneydance_ui.getMain().getSourceInformation().getIconResource())) # list_future_reminders_frame_.setPreferredSize(Dimension(frame_width, frame_height)) # frame.setExtendedState(JFrame.MAXIMIZED_BOTH) list_future_reminders_frame_.setDefaultCloseOperation(WindowConstants.DO_NOTHING_ON_CLOSE) shortcut = Toolkit.getDefaultToolkit().getMenuShortcutKeyMaskEx() # Add standard CMD-W keystrokes etc to close window list_future_reminders_frame_.getRootPane().getInputMap(JComponent.WHEN_ANCESTOR_OF_FOCUSED_COMPONENT).put(KeyStroke.getKeyStroke(KeyEvent.VK_W, shortcut), "close-window") list_future_reminders_frame_.getRootPane().getInputMap(JComponent.WHEN_ANCESTOR_OF_FOCUSED_COMPONENT).put(KeyStroke.getKeyStroke(KeyEvent.VK_F4, shortcut), "close-window") list_future_reminders_frame_.getRootPane().getInputMap(JComponent.WHEN_IN_FOCUSED_WINDOW).put(KeyStroke.getKeyStroke(KeyEvent.VK_ESCAPE, 0), "close-window") list_future_reminders_frame_.getRootPane().getActionMap().put("close-window", CloseAction()) list_future_reminders_frame_.addWindowFocusListener(WL) list_future_reminders_frame_.addWindowListener(WL) if Platform.isOSX(): save_useScreenMenuBar= System.getProperty("apple.laf.useScreenMenuBar") System.setProperty("apple.laf.useScreenMenuBar", "false") mb = JMenuBar() menuO = JMenu("<html><B>OPTIONS</b></html>") menuItemR = JMenuItem("Refresh Data/Default Sort") menuItemR.setToolTipText("Refresh (re-extract) the data, revert to default sort order....") menuItemR.addActionListener(DoTheMenu(menuO)) menuItemR.setEnabled(True) menuO.add(menuItemR) menuItemL = JMenuItem("Change look forward days") menuItemL.setToolTipText("Change the days to look forward") menuItemL.addActionListener(DoTheMenu(menuO)) menuItemL.setEnabled(True) menuO.add(menuItemL) menuItemRC = JMenuItem("Reset default Column Widths") menuItemRC.setToolTipText("Reset default Column Widths") menuItemRC.addActionListener(DoTheMenu(menuO)) menuItemRC.setEnabled(True) menuO.add(menuItemRC) menuItemDEBUG = JCheckBoxMenuItem("Debug") menuItemDEBUG.addActionListener(DoTheMenu(menuO)) menuItemDEBUG.setToolTipText("Enables script to output debug information (internal technical stuff)") menuItemDEBUG.setSelected(debug) menuO.add(menuItemDEBUG) menuItemE = JMenuItem("Close Window") menuItemE.setToolTipText("Exit and close the window") menuItemE.addActionListener(DoTheMenu(menuO)) menuItemE.setEnabled(True) menuO.add(menuItemE) mb.add(menuO) menuH = JMenu("<html><B>ABOUT</b></html>") menuItemA = JMenuItem("About") menuItemA.setToolTipText("About...") menuItemA.addActionListener(DoTheMenu(menuH)) menuItemA.setEnabled(True) menuH.add(menuItemA) mb.add(menuH) # mb.add(Box.createHorizontalGlue()) mb.add(Box.createRigidArea(Dimension(40, 0))) formatDate = DateUtil.incrementDate(DateUtil.getStrippedDateInt(),0,0,daysToLookForward_LFR) formatDate = str(formatDate/10000).zfill(4) + "-" + str((formatDate/100)%100).zfill(2) + "-" + str(formatDate%100).zfill(2) lblDays = JLabel("** Looking forward %s days to %s **" %(daysToLookForward_LFR, formatDate)) lblDays.setBackground(Color.WHITE) lblDays.setForeground(Color.RED) mb.add(lblDays) saveStatusLabel = lblDays # mb.add(Box.createRigidArea(Dimension(20, 0))) list_future_reminders_frame_.setJMenuBar(mb) if Platform.isOSX(): System.setProperty("apple.laf.useScreenMenuBar", save_useScreenMenuBar) # noqa table.getTableHeader().setReorderingAllowed(True) # no more drag and drop columns, it didn't work (on the footer) table.getTableHeader().setDefaultRenderer(DefaultTableHeaderCellRenderer()) table.selectionMode = ListSelectionModel.SINGLE_SELECTION fontSize = table.getFont().getSize()+5 table.setRowHeight(fontSize) table.setRowMargin(0) table.getInputMap(JComponent.WHEN_ANCESTOR_OF_FOCUSED_COMPONENT).put(KeyStroke.getKeyStroke("ENTER"), "Enter") table.getActionMap().put("Enter", EnterAction()) for _i in range(0, table.getColumnModel().getColumnCount()): tcm = table.getColumnModel().getColumn(_i) tcm.setPreferredWidth(myDefaultWidths[_i]) if myDefaultWidths[_i] == 0: tcm.setMinWidth(0) tcm.setMaxWidth(0) tcm.setWidth(0) cListener1 = ColumnChangeListener(table) # Put the listener here - else it sets the defaults wrongly above.... table.getColumnModel().addColumnModelListener(cListener1) table.getTableHeader().setBackground(Color.LIGHT_GRAY) # table.setAutoCreateRowSorter(True) # DON'T DO THIS - IT WILL OVERRIDE YOUR NICE CUSTOM SORT table.addMouseListener(ML) if ind == 0: scrollpane = JScrollPane(JScrollPane.VERTICAL_SCROLLBAR_ALWAYS, JScrollPane.HORIZONTAL_SCROLLBAR_ALWAYS) # On first call, create the scrollpane scrollpane.setBorder(CompoundBorder(MatteBorder(1, 1, 1, 1, Color.gray), EmptyBorder(0, 0, 0, 0))) # scrollpane.setPreferredSize(Dimension(frame_width-20, frame_height-20 )) table.setPreferredScrollableViewportSize(Dimension(frame_width-20, frame_height-100)) # table.setAutoResizeMode(JTable.AUTO_RESIZE_OFF) # scrollpane.setViewportView(table) if ind == 0: list_future_reminders_frame_.add(scrollpane) list_future_reminders_frame_.pack() list_future_reminders_frame_.setLocationRelativeTo(None) try: list_future_reminders_frame_.MoneydanceAppListener = MyEventListener(list_future_reminders_frame_) moneydance.addAppEventListener(list_future_reminders_frame_.MoneydanceAppListener) myPrint("DB","@@ added AppEventListener() %s @@" %(classPrinter("MoneydanceAppListener", list_future_reminders_frame_.MoneydanceAppListener))) except: myPrint("B","FAILED to add MD App Listener...") dump_sys_error_to_md_console_and_errorlog() list_future_reminders_frame_.isActiveInMoneydance = True if True or Platform.isOSX(): # list_future_reminders_frame_.setAlwaysOnTop(True) list_future_reminders_frame_.toFront() list_future_reminders_frame_.setVisible(True) myPrint("D", "Exiting ", inspect.currentframe().f_code.co_name, "()") ReminderTable_Count -= 1 return def FormatAmount(oldamount): # Amount is held as an integer in pence # Remove - sign if present if oldamount < 0: oldamount = oldamount * -1 oldamount = str(oldamount) # Ensure at least 3 character if len(oldamount) < 3: oldamount = "000" + oldamount oldamount = (oldamount)[-3:] # Extract whole portion of amount whole = (oldamount)[0:-2] if len(whole) == 0: whole = "0" # Extract decimal part of amount decimal = (oldamount)[-2:] declen = len(decimal) if declen == 0: decimal = "00" whole = "0" if declen == 1: decimal = "0" + decimal whole = "0" # Insert , commas in whole part wholelist = list(whole) listlen = len(wholelist) if wholelist[0] == "-": listlen = listlen - 1 listpos = 3 while listpos < listlen: wholelist.insert(-listpos, ",") listpos = listpos + 4 listlen = listlen + 1 newwhole = "".join(wholelist) newamount = newwhole + "." + decimal return newamount def FormatDate(olddate): # Date is held as an integer in format YYYYMMDD olddate = str(olddate) if len(olddate) < 8: olddate = "00000000" year = olddate[0:4] month = olddate[4:6] day = olddate[6:8] newdate = day + "/" + month + "/" + year if newdate == "00/00/0000": newdate = "Unavailable" return newdate def ShowEditForm(item): global debug, EditedReminderCheck myPrint("D", "In ", inspect.currentframe().f_code.co_name, "()") reminders = moneydance_data.getReminders() reminder = reminders.getAllReminders()[item-1] myPrint("D", "Calling MD EditRemindersWindow() function...") EditRemindersWindow.editReminder(None, moneydance_ui, reminder) EditedReminderCheck = True myPrint("D", "Exiting ", inspect.currentframe().f_code.co_name, "()") return if build_the_data_file(0): # saveStatusLabel = None # focus = "gained" # noqa if table.getRowCount() > 0: table.setRowSelectionInterval(0, row) table.requestFocus() else: myPopupInformationBox(list_future_reminders_frame_, "You have no reminders to display!", myScriptName) # ENDDEF if not list_future_reminders_frame_.isActiveInMoneydance: destroyOldFrames(myModuleID) myPrint("B", "StuWareSoftSystems - %s script ending......" %myScriptName)
40.130511
386
0.676022
67b4fe96574a0f27f540c675daec327b9241132d
8,910
py
Python
gscommands.py
charlievieth/GoSubl
07dec6a5fef09e4e1d686cfe5d586edcda003381
[ "MIT" ]
null
null
null
gscommands.py
charlievieth/GoSubl
07dec6a5fef09e4e1d686cfe5d586edcda003381
[ "MIT" ]
1
2020-11-06T22:01:04.000Z
2020-11-06T22:01:04.000Z
gscommands.py
charlievieth/GoSubl
07dec6a5fef09e4e1d686cfe5d586edcda003381
[ "MIT" ]
null
null
null
from gosubl import gs from gosubl import gspatch from gosubl import mg9 import datetime import os import re import sublime import sublime_plugin DOMAIN = "GoSublime" GENERATED_CODE_RE = re.compile( r"^\/\/ Code generated .* DO NOT EDIT\.$", re.MULTILINE, ) # TODO: make this configurable FMT_IGNORED_EXTS = tuple([ ".pb.go" ]) class GsCommentForwardCommand(sublime_plugin.TextCommand): def run(self, edit): self.view.run_command("toggle_comment", {"block": False}) self.view.run_command("move", {"by": "lines", "forward": True}) class GsStartNextLineCommentCommand(sublime_plugin.TextCommand): def run(self, edit): self.view.run_command( "run_macro_file", {"file": "Packages/Default/Add Line.sublime-macro"} ) self.view.run_command("toggle_comment", {"block": False}) class GsFmtCommand(sublime_plugin.TextCommand): def is_enabled(self): if gs.setting("fmt_enabled") is True: fn = self.view.file_name() or "" if self.is_ignored(fn): self.log_ignored("extension", fn) return False if fn.endswith(".go") or gs.is_go_source_view(self.view): return True return False def run(self, edit): vsize = self.view.size() src = self.view.substr(sublime.Region(0, vsize)) if src.isspace(): return # Check if the file is ignored by extension or is generated. file_name = self.view.file_name() if self.is_ignored(file_name): self.log_ignored("extension", file_name) return if self.is_generated(src): self.log_ignored("generated", file_name) return res, err = mg9.fmt(file_name, src) if err: gs.println(DOMAIN, "cannot fmt file. error: `%s'" % err) return if res.get("no_change", False): return src = res.get("src", "") if not src: gs.println(DOMAIN, "cannot fmt file. it appears to be empty") return _, err = gspatch.merge(self.view, vsize, src, edit) if err: msg = "PANIC: Cannot fmt file. Check your source for errors (and maybe undo any changes)." sublime.error_message("%s: %s: Merge failure: `%s'" % (DOMAIN, msg, err)) @classmethod def is_generated(cls, src: str) -> bool: # require the "Code Generated" comment to occur before the "package" # statement so that we don't search the entire file i = src.find("package ") if i > 32: # min_len = len("// Code generated by DO NOT EDIT.") return GENERATED_CODE_RE.search(src, 0, i) is not None return False @classmethod def is_ignored(cls, filename: str) -> bool: return filename is not None and filename.endswith(FMT_IGNORED_EXTS) @classmethod def log_ignored(cls, reason: str, file_name: str) -> None: msg = "fmt: ignoring file ({}): {}".format( reason, os.path.basename(file_name), ) gs.println(DOMAIN, msg) gs.status_message(msg) class GsFmtSaveCommand(sublime_plugin.TextCommand): def is_enabled(self): if gs.setting("fmt_enabled") is True: fn = self.view.file_name() or "" return fn.endswith(".go") or gs.is_go_source_view(self.view) return False def run(self, edit): self.view.run_command("gs_fmt") sublime.set_timeout(lambda: self.view.run_command("save"), 0) class GsFmtPromptSaveAsCommand(sublime_plugin.TextCommand): def is_enabled(self): return gs.is_go_source_view(self.view) def run(self, edit): self.view.run_command("gs_fmt") sublime.set_timeout(lambda: self.view.run_command("prompt_save_as"), 0) class GsGotoRowColCommand(sublime_plugin.TextCommand): # WARN (CEV): use the Jumper logic def run(self, edit, row, col=0): pt = self.view.text_point(row, col) r = sublime.Region(pt, pt) self.view.sel().clear() self.view.sel().add(r) self.view.show(pt) dmn = "gs.focus.%s:%s:%s" % (gs.view_fn(self.view), row, col) flags = sublime.DRAW_EMPTY_AS_OVERWRITE show = lambda: self.view.add_regions(dmn, [r], "comment", "bookmark", flags) hide = lambda: self.view.erase_regions(dmn) for i in range(3): m = 300 s = i * m * 2 h = s + m sublime.set_timeout(show, s) sublime.set_timeout(hide, h) # TODO (CEV): this is worthless - remove it and the set_syntax stuff class GsNewGoFileCommand(sublime_plugin.WindowCommand): def run(self): pkg_name = "main" view = gs.active_valid_go_view() try: basedir = gs.basedir_or_cwd(view and view.file_name()) for fn in os.listdir(basedir): if fn.endswith(".go"): name, _ = mg9.pkg_name(os.path.join(basedir, fn), "") if name: pkg_name = name break except Exception: gs.error_traceback("GsNewGoFile") self.window.new_file().run_command( "gs_create_new_go_file", {"pkg_name": pkg_name, "file_name": "main.go"} ) # TODO (CEV): this is worthless - remove it and the set_syntax stuff class GsCreateNewGoFileCommand(sublime_plugin.TextCommand): def run(self, edit, pkg_name, file_name): view = self.view view.set_name(file_name) view.set_syntax_file(gs.tm_path("go")) view.replace(edit, sublime.Region(0, view.size()), "package %s\n" % pkg_name) view.sel().clear() view.sel().add(view.find(pkg_name, 0, sublime.LITERAL)) class GsShowTasksCommand(sublime_plugin.WindowCommand): def run(self): ents = [] now = datetime.datetime.now() m = {} try: tasks = gs.task_list() ents.insert(0, ["", "%d active task(s)" % len(tasks)]) for tid, t in tasks: cancel_text = "" if t["cancel"]: cancel_text = " (cancel task)" m[len(ents)] = tid ents.append( [ "#%s %s%s" % (tid, t["domain"], cancel_text), t["message"], "started: %s" % t["start"], "elapsed: %s" % (now - t["start"]), ] ) except: ents = [["", "Failed to gather active tasks"]] def cb(i, _): gs.cancel_task(m.get(i, "")) gs.show_quick_panel(ents, cb) class GsOpenHomePathCommand(sublime_plugin.WindowCommand): def run(self, fn): self.window.open_file(gs.home_path(fn)) class GsOpenDistPathCommand(sublime_plugin.WindowCommand): def run(self, fn): self.window.open_file(gs.dist_path(fn)) class GsSanityCheckCommand(sublime_plugin.WindowCommand): def run(self): s = "GoSublime Sanity Check\n\n%s" % "\n".join( mg9.sanity_check_sl(mg9.sanity_check({}, True)) ) gs.show_output("GoSublime", s) class GsSetOutputPanelContentCommand(sublime_plugin.TextCommand): def run(self, edit, content, syntax_file, scroll_end, replace): panel = self.view panel.set_read_only(False) if replace: panel.replace(edit, sublime.Region(0, panel.size()), content) else: panel.insert(edit, panel.size(), content + "\n") panel.sel().clear() pst = panel.settings() pst.set("rulers", []) pst.set("fold_buttons", True) pst.set("fade_fold_buttons", False) pst.set("gutter", False) pst.set("line_numbers", False) if syntax_file: if syntax_file == "GsDoc": panel.set_syntax_file(gs.tm_path("doc")) panel.run_command("fold_by_level", {"level": 1}) else: panel.set_syntax_file(syntax_file) panel.set_read_only(True) if scroll_end: panel.show(panel.size()) class GsInsertContentCommand(sublime_plugin.TextCommand): def run(self, edit, pos, content): pos = int(pos) # un-fucking-believable self.view.insert(edit, pos, content) class GsPatchImportsCommand(sublime_plugin.TextCommand): def run(self, edit, pos, content, added_path=""): pos = int(pos) # un-fucking-believable view = self.view dirty, err = gspatch.merge(view, pos, content, edit) if err: gs.notice_undo(DOMAIN, err, view, dirty) elif dirty: k = "last_import_path.%s" % gs.view_fn(self.view) if added_path: gs.set_attr(k, added_path) else: gs.del_attr(k)
31.935484
102
0.580471
c745ab4e1060e8b72708f7bbaa04fa2de5ad9536
6,071
py
Python
tests/projects/test_docker_projects.py
cclauss/mlflow
05f18899df6db3364673d39910cc71bef4b95d27
[ "Apache-2.0" ]
3
2019-10-07T01:12:25.000Z
2020-07-06T04:27:51.000Z
tests/projects/test_docker_projects.py
aelmasry/mlflow
50efb4e4a7af6c351592f027681243d59f288254
[ "Apache-2.0" ]
15
2019-10-07T01:11:46.000Z
2022-03-08T23:33:53.000Z
tests/projects/test_docker_projects.py
aelmasry/mlflow
50efb4e4a7af6c351592f027681243d59f288254
[ "Apache-2.0" ]
6
2019-11-28T13:23:35.000Z
2020-07-08T19:22:12.000Z
import os import mock import pytest from databricks_cli.configure.provider import DatabricksConfig import mlflow from mlflow.entities import ViewType from mlflow.projects import ExecutionException, _get_docker_image_uri from mlflow.store import file_store from mlflow.utils.mlflow_tags import MLFLOW_PROJECT_ENV, MLFLOW_DOCKER_IMAGE_URI, \ MLFLOW_DOCKER_IMAGE_ID from tests.projects.utils import TEST_DOCKER_PROJECT_DIR from tests.projects.utils import docker_example_base_image # pylint: disable=unused-import from tests.projects.utils import tracking_uri_mock # pylint: disable=unused-import from mlflow.projects import _project_spec def _build_uri(base_uri, subdirectory): if subdirectory != "": return "%s#%s" % (base_uri, subdirectory) return base_uri @pytest.mark.parametrize("use_start_run", map(str, [0, 1])) def test_docker_project_execution( use_start_run, tmpdir, tracking_uri_mock, docker_example_base_image): # pylint: disable=unused-argument expected_params = {"use_start_run": use_start_run} submitted_run = mlflow.projects.run( TEST_DOCKER_PROJECT_DIR, experiment_id=file_store.FileStore.DEFAULT_EXPERIMENT_ID, parameters=expected_params, entry_point="test_tracking") # Validate run contents in the FileStore run_id = submitted_run.run_id mlflow_service = mlflow.tracking.MlflowClient() run_infos = mlflow_service.list_run_infos( experiment_id=file_store.FileStore.DEFAULT_EXPERIMENT_ID, run_view_type=ViewType.ACTIVE_ONLY) assert len(run_infos) == 1 store_run_id = run_infos[0].run_id assert run_id == store_run_id run = mlflow_service.get_run(run_id) assert run.data.params == expected_params assert run.data.metrics == {"some_key": 3} exact_expected_tags = {MLFLOW_PROJECT_ENV: "docker"} approx_expected_tags = { MLFLOW_DOCKER_IMAGE_URI: "docker-example", MLFLOW_DOCKER_IMAGE_ID: "sha256:", } run_tags = run.data.tags for k, v in exact_expected_tags.items(): assert run_tags[k] == v for k, v in approx_expected_tags.items(): assert run_tags[k].startswith(v) artifacts = mlflow_service.list_artifacts(run_id=run_id) assert len(artifacts) == 1 @pytest.mark.parametrize("tracking_uri, expected_command_segment", [ (None, "-e MLFLOW_TRACKING_URI=/mlflow/tmp/mlruns"), ("http://some-tracking-uri", "-e MLFLOW_TRACKING_URI=http://some-tracking-uri"), ("databricks://some-profile", "-e MLFLOW_TRACKING_URI=databricks ") ]) @mock.patch('databricks_cli.configure.provider.ProfileConfigProvider') def test_docker_project_tracking_uri_propagation( ProfileConfigProvider, tmpdir, tracking_uri, expected_command_segment, docker_example_base_image): # pylint: disable=unused-argument mock_provider = mock.MagicMock() mock_provider.get_config.return_value = \ DatabricksConfig("host", "user", "pass", None, insecure=True) ProfileConfigProvider.return_value = mock_provider # Create and mock local tracking directory local_tracking_dir = os.path.join(tmpdir.strpath, "mlruns") if tracking_uri is None: tracking_uri = local_tracking_dir old_uri = mlflow.get_tracking_uri() try: mlflow.set_tracking_uri(tracking_uri) with mock.patch("mlflow.tracking.utils._get_store") as _get_store_mock: _get_store_mock.return_value = file_store.FileStore(local_tracking_dir) mlflow.projects.run( TEST_DOCKER_PROJECT_DIR, experiment_id=file_store.FileStore.DEFAULT_EXPERIMENT_ID) finally: mlflow.set_tracking_uri(old_uri) def test_docker_uri_mode_validation( tracking_uri_mock, docker_example_base_image): # pylint: disable=unused-argument with pytest.raises(ExecutionException): mlflow.projects.run(TEST_DOCKER_PROJECT_DIR, backend="databricks") @mock.patch('mlflow.projects._get_git_commit') def test_docker_image_uri_with_git(get_git_commit_mock): get_git_commit_mock.return_value = '1234567890' image_uri = _get_docker_image_uri("my_project", "my_workdir") assert image_uri == "my_project:1234567" get_git_commit_mock.assert_called_with('my_workdir') @mock.patch('mlflow.projects._get_git_commit') def test_docker_image_uri_no_git(get_git_commit_mock): get_git_commit_mock.return_value = None image_uri = _get_docker_image_uri("my_project", "my_workdir") assert image_uri == "my_project" get_git_commit_mock.assert_called_with('my_workdir') def test_docker_valid_project_backend_local(): work_dir = "./examples/docker" project = _project_spec.load_project(work_dir) mlflow.projects._validate_docker_env(project) def test_docker_invalid_project_backend_local(): work_dir = "./examples/docker" project = _project_spec.load_project(work_dir) project.name = None with pytest.raises(ExecutionException): mlflow.projects._validate_docker_env(project) @pytest.mark.parametrize("artifact_uri, host_artifact_uri, container_artifact_uri, should_mount", [ ("/tmp/mlruns/artifacts", "/tmp/mlruns/artifacts", "/tmp/mlruns/artifacts", True), ("s3://my_bucket", None, None, False), ("file:///tmp/mlruns/artifacts", "/tmp/mlruns/artifacts", "/tmp/mlruns/artifacts", True), ("./mlruns", os.path.abspath("./mlruns"), "/mlflow/projects/code/mlruns", True) ]) def test_docker_mount_local_artifact_uri(artifact_uri, host_artifact_uri, container_artifact_uri, should_mount): active_run = mock.MagicMock() run_info = mock.MagicMock() run_info.run_id = "fake_run_id" run_info.experiment_id = "fake_experiment_id" run_info.artifact_uri = artifact_uri active_run.info = run_info image = mock.MagicMock() image.tags = ["image:tag"] docker_command = mlflow.projects._get_docker_command(image, active_run) docker_volume_expected = "-v {}:{}".format(host_artifact_uri, container_artifact_uri) assert (docker_volume_expected in " ".join(docker_command)) == should_mount
41.582192
99
0.748641
c232a78fc7e8b959a75d7390ae2b8dd837067df8
88
py
Python
tests/test_cli.py
vivainio/cftool
e3d53b3849e271c6ab93df426b5f543f38af5617
[ "MIT" ]
null
null
null
tests/test_cli.py
vivainio/cftool
e3d53b3849e271c6ab93df426b5f543f38af5617
[ "MIT" ]
null
null
null
tests/test_cli.py
vivainio/cftool
e3d53b3849e271c6ab93df426b5f543f38af5617
[ "MIT" ]
null
null
null
from cfut.cli import do_ecr_push def test_do_ecr_publish(init): do_ecr_push(None)
14.666667
32
0.784091
c271c44f47b4dba0e192db479ec207eb8681558c
3,248
py
Python
src/ansiblemdgen/AutoDocumenterIndex.py
murphypetercl/ansible-mdgen
86668f29bed5d206bca01fcbf568c8cd45cd8b4d
[ "MIT" ]
14
2021-01-27T23:54:44.000Z
2022-03-30T01:27:54.000Z
src/ansiblemdgen/AutoDocumenterIndex.py
murphypetercl/ansible-mdgen
86668f29bed5d206bca01fcbf568c8cd45cd8b4d
[ "MIT" ]
7
2021-01-29T20:31:50.000Z
2021-03-31T17:10:00.000Z
src/ansiblemdgen/AutoDocumenterIndex.py
murphypetercl/ansible-mdgen
86668f29bed5d206bca01fcbf568c8cd45cd8b4d
[ "MIT" ]
1
2022-03-18T18:59:41.000Z
2022-03-18T18:59:41.000Z
#!/usr/bin/env python3 from ansiblemdgen.Config import SingleConfig import sys import yaml import os from os import walk from ansiblemdgen.Utils import SingleLog,FileUtils from mdutils.mdutils import MdUtils class IndexWriter: def __init__(self): self.config = SingleConfig() self.log = SingleLog() def render(self): self.createIndexMDFile() def createIndexMDFile(self): self.log.info("(createIndexMDFile) Create Index MD File") role_name = self.config.get_base_dir()[self.config.get_base_dir().rfind('/')+1:] page_title = "Role: "+role_name mdFile = MdUtils(file_name=self.config.get_output_dir()+"/index.md") self.createMDFileContent(mdFile) mdFile.create_md_file() self.log.info("(createIndexMDFile) Create Index MD File Complete") def createMDFileContent(self, mdFile): author = '' description = '' company = '' license = '' min_ansible_version = '' dependencies = [] galaxy_metafile = self.config.get_base_dir()+'/meta/main.yml' if os.path.isfile(galaxy_metafile): with open(galaxy_metafile, 'r') as stream: try: metadata = yaml.safe_load(stream) author = metadata.get("galaxy_info").get('author') description = metadata.get("galaxy_info").get('description') company = metadata.get("galaxy_info").get('company') license = metadata.get("galaxy_info").get('license') min_ansible_version = metadata.get("galaxy_info").get('min_ansible_version') dependencies = metadata.get('dependencies') except yaml.YAMLError as exc: print(exc) else: self.log.info("(createIndexMDFile) No meta/main.yml file") role_name = self.config.get_base_dir()[self.config.get_base_dir().rfind('/')+1:] mdFile.new_header(level=1, title='Home') mdFile.new_line("---") mdFile.new_header(level=2, title='Role Name') mdFile.new_line(role_name) mdFile.new_line() mdFile.new_line("---") mdFile.new_header(level=2, title='Description') mdFile.new_line(description) mdFile.new_line() mdFile.new_line("---") mdFile.new_header(level=2, title='Dependencies') if dependencies != []: for dependency in dependencies: if isinstance(dependency, dict): for dep_part in dependency: mdFile.new_line("> "+dep_part+": "+dependency[dep_part]) else: mdFile.new_line("> "+ dependency) mdFile.new_line() else: mdFile.new_line('None') mdFile.new_line() mdFile.new_line("---") mdFile.new_header(level=2, title='Information') table_entries = ["Author", "Company", "License","Minimum Ansible Version"] table_entries.extend([author, company, license, str(min_ansible_version)]) mdFile.new_line() mdFile.new_table(columns=4, rows=2, text=table_entries, text_align='center')
32.808081
96
0.593596
8496ae51fad6daae86de2ec33d946cefd84dd494
4,695
py
Python
qiskit/optimization/ising/stable_set.py
IanJoel/qiskit-aqua
7707172d01f0539358f1ce2406f307e830105303
[ "Apache-2.0" ]
null
null
null
qiskit/optimization/ising/stable_set.py
IanJoel/qiskit-aqua
7707172d01f0539358f1ce2406f307e830105303
[ "Apache-2.0" ]
null
null
null
qiskit/optimization/ising/stable_set.py
IanJoel/qiskit-aqua
7707172d01f0539358f1ce2406f307e830105303
[ "Apache-2.0" ]
2
2020-02-13T02:17:58.000Z
2020-08-09T07:56:25.000Z
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2018, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Convert stable set instances into Pauli list. We read instances in the Gset format, see https://web.stanford.edu/~yyye/yyye/Gset/ , for compatibility with the maxcut format, but the weights on the edges as they are not really used and are always assumed to be 1. The graph is represented by an adjacency matrix. """ import logging import warnings import numpy as np from qiskit.quantum_info import Pauli from qiskit.aqua.operators import WeightedPauliOperator logger = logging.getLogger(__name__) def get_operator(w): """Generate Hamiltonian for the maximum stable set in a graph. Args: w (numpy.ndarray) : adjacency matrix. Returns: tuple(WeightedPauliOperator, float): operator for the Hamiltonian and a constant shift for the obj function. """ num_nodes = len(w) pauli_list = [] shift = 0 for i in range(num_nodes): for j in range(i+1, num_nodes): if w[i, j] != 0: x_p = np.zeros(num_nodes, dtype=np.bool) z_p = np.zeros(num_nodes, dtype=np.bool) z_p[i] = True z_p[j] = True pauli_list.append([1.0, Pauli(z_p, x_p)]) shift += 1 for i in range(num_nodes): degree = np.sum(w[i, :]) x_p = np.zeros(num_nodes, dtype=np.bool) z_p = np.zeros(num_nodes, dtype=np.bool) z_p[i] = True pauli_list.append([degree - 1/2, Pauli(z_p, x_p)]) return WeightedPauliOperator(paulis=pauli_list), shift - num_nodes/2 def stable_set_value(x, w): """Compute the value of a stable set, and its feasibility. Args: x (numpy.ndarray): binary string in original format -- not graph solution!. w (numpy.ndarray): adjacency matrix. Returns: tuple(float, bool): size of the stable set, and Boolean indicating feasibility. """ assert len(x) == w.shape[0] feasible = True num_nodes = w.shape[0] for i in range(num_nodes): for j in range(i+1, num_nodes): if w[i, j] != 0 and x[i] == 0 and x[j] == 0: feasible = False break return len(x) - np.sum(x), feasible def get_graph_solution(x): """Get graph solution from binary string. Args: x (numpy.ndarray) : binary string as numpy array. Returns: numpy.ndarray: graph solution as binary numpy array. """ return 1 - x def random_graph(n, edge_prob=0.5, savefile=None, seed=None): """ random graph """ # pylint: disable=import-outside-toplevel from .common import random_graph as redirect_func warnings.warn("random_graph function has been moved to " "qiskit.optimization.ising.common, " "the method here will be removed after Aqua 0.7+", DeprecationWarning) return redirect_func(n=n, weight_range=2, edge_prob=edge_prob, negative_weight=False, savefile=savefile, seed=seed) def parse_gset_format(filename): """ parse gset format """ # pylint: disable=import-outside-toplevel from .common import parse_gset_format as redirect_func warnings.warn("parse_gset_format function has been moved to " "qiskit.optimization.ising.common, " "the method here will be removed after Aqua 0.7+", DeprecationWarning) return redirect_func(filename) def sample_most_likely(state_vector): """ sample most likely """ # pylint: disable=import-outside-toplevel from .common import sample_most_likely as redirect_func warnings.warn("sample_most_likely function has been moved to " "qiskit.optimization.ising.common, " "the method here will be removed after Aqua 0.7+", DeprecationWarning) return redirect_func(state_vector=state_vector) def get_stable_set_qubitops(w): """ get stable set qubit ops """ warnings.warn("get_stable_set_qubitops function has been changed to get_operator" "the method here will be removed after Aqua 0.7+", DeprecationWarning) return get_operator(w)
33.297872
85
0.644941
fceb36dd10a7c2e8d6eea587eff7fe47021932ef
3,741
py
Python
HW2/gradebook_202101-14765_HW20220Assignment_2021-03-11-18-59-42/Libraries/HT_natural_convection.py
CarlGriffinsteed/UVM-ME144-Heat-Transfer
9c477449d6ba5d6a9ee7c57f1c0ed4aab0ce4cca
[ "CC-BY-3.0" ]
7
2017-06-02T20:31:22.000Z
2021-04-05T13:52:33.000Z
HW2/gradebook_202101-14765_HW20220Assignment_2021-03-11-18-59-42/Libraries/HT_natural_convection.py
CarlGriffinsteed/UVM-ME144-Heat-Transfer
9c477449d6ba5d6a9ee7c57f1c0ed4aab0ce4cca
[ "CC-BY-3.0" ]
null
null
null
HW2/gradebook_202101-14765_HW20220Assignment_2021-03-11-18-59-42/Libraries/HT_natural_convection.py
CarlGriffinsteed/UVM-ME144-Heat-Transfer
9c477449d6ba5d6a9ee7c57f1c0ed4aab0ce4cca
[ "CC-BY-3.0" ]
9
2019-01-24T17:43:41.000Z
2021-07-25T18:08:34.000Z
""" Object name: HorizontalCylinder Functions: Gr(g,beta,DT,D,nu) gives the Grashoff number based on: gravity g, thermal expansion coefficient beta, Temperature difference DT, length scale D, viscosity nu Ra(g,beta,DT,D,nu,alpha) gives the Rayleigh number where alpha is the thermal conductivity. """ import numpy as np import scipy import scipy.optimize class HorizontalCylinder(object): """ Natural convection about a horizontal cylinder from NewLibraries import HT_natural_convection as natconv cyl = natconv.HorizontalCylinder(correlation, Ra, Pr = 0.0) where correlation is "Morgan" or "Churchill-Chu" cyl = natconv.HorizontalCylinder("Morgan", Ra) cyl = natconv.HorizontalCylinder("Churchill-Chu", Ra, Pr = xx) """ def __init__(self,correlation="Morgan", Ra=0.0, Pr = 0.0): self.correlation = correlation self.Ra = Ra if correlation == "Morgan": if (Ra <= 1e-2): C=0.675 n=0.058 elif (Ra <= 1e2): C=1.02 n=0.148 elif (Ra <= 1e4): C=0.85 n=0.188 elif (Ra <= 1e7): C=0.480 n=0.250 elif (Ra <= 1e12): C=0.125 n=0.333 self.Nu = C*Ra**n elif correlation == "Churchill-Chu": if Pr == 0.: print("Warning you must specify Pr for Churchill and Chu correlation") else: self.Nu = (0.60+(0.387*Ra**(1./6.))/(1.+(0.559/Pr)**(9./16.))**(8./27.))**2 else: print("Warning wrong correlation name") class VerticalEnclosure(object): """ Natural convection about a horizontal cylinder from NewLibraries import HT_natural_convection as natconv cyl = natconv.HorizontalCylinder(correlation, Ra, Pr = 0.0) where correlation is "Morgan" or "Churchill-Chu" cyl = natconv.HorizontalCylinder("Morgan", Ra) cyl = natconv.HorizontalCylinder("Churchill-Chu", Ra, Pr = xx) """ def __init__(self,Ra,Pr,H,L): self.Ra = Ra self.Pr = Pr self.H = H self.L = L if correlation == "Morgan": if (H/L) < 2.: if Ra*Pr/(0.2+Pr)> 1.e3: self.Nu = 0.18*(Pr/(0.2+Pr)*Ra)**0.29 else: print('Ra is too low for this correlation') self.Nu = np.inf elif H/L < 10: if Ra < 1e10: self.Nu = 0.22*(Pr/(0.2+Pr)*Ra)**0.28*(H/L)**(-0.25) else: print('Ra is too high for this correlation') self.Nu = np.inf elif Ra < 1e4: print('Ra is too low for this correlation') self.Nu = np.inf elif Ra < 1e7: if Pr > 0.6 and Pr < 2e4: print('ok') self.Nu =0.42*Ra**0.25*Pr**0.012*(H/L)**(-0.3) else : print('Pr is out of bounds for this correlation') self.Nu = np.inf elif Ra < 1e9: if Pr > 0.6 and Pr < 20.: self.Nu =0.46*Ra**(1./3.) else : print('Pr is out of bounds for this correlation') self.Nu = np.inf else: print('Ra is too high, got nothing for you') self.Nu = np.inf def Gr(g=9.81,beta=0.0,DT=0.0,D=0.0,nu=1.0): return (g*beta*DT*D**3)/(nu**2) def Ra(g=9.81,beta=0.0,DT=0.0,D=0.0,nu=1.0,alpha=1.0): return (g*beta*DT*D**3)/(nu*alpha)
35.971154
102
0.493718
8a082a521a272e45316d72513cad8cc5c78a172e
572
py
Python
code_eval/utils/shapenet_pre_handle.py
leonardozcm/Point-Completion-Fig-AutoGenerator
109f5a414f51469fac82d0d23cde69efb9cf97e0
[ "Apache-2.0" ]
null
null
null
code_eval/utils/shapenet_pre_handle.py
leonardozcm/Point-Completion-Fig-AutoGenerator
109f5a414f51469fac82d0d23cde69efb9cf97e0
[ "Apache-2.0" ]
null
null
null
code_eval/utils/shapenet_pre_handle.py
leonardozcm/Point-Completion-Fig-AutoGenerator
109f5a414f51469fac82d0d23cde69efb9cf97e0
[ "Apache-2.0" ]
null
null
null
import os def pre_handle(path): shapenet_list = [] for folder in os.listdir(path): dense_path = path + "/" + folder + "/pcds/dense/" gt_path = path + "/" + folder + "/pcds/gt/" item_list = [] for pcd in os.listdir(dense_path): item_list.append([dense_path + pcd,gt_path + pcd]) shapenet_list.append(item_list) return shapenet_list if __name__ == "__main__": path = "../../dataset/ShapeNetCompletion/PRNet_Voxel/test" shape_net_list = pre_handle(path) print(shape_net_list)
28.6
63
0.601399
c81e8d507d33b857658f520f84f36e820df38171
4,126
py
Python
cryomem/common/plotproc.py
bebaek/cryomem
088fba2568d10451adda51a068c15c8c2a73d9ce
[ "MIT" ]
1
2018-09-16T12:29:04.000Z
2018-09-16T12:29:04.000Z
cryomem/common/plotproc.py
bebaek/cryomem
088fba2568d10451adda51a068c15c8c2a73d9ce
[ "MIT" ]
null
null
null
cryomem/common/plotproc.py
bebaek/cryomem
088fba2568d10451adda51a068c15c8c2a73d9ce
[ "MIT" ]
null
null
null
import multiprocessing as mp import queue import matplotlib as mpl mpl.use("tkagg") import matplotlib.pyplot as plt import time from .plothyst import plothyst #def _f_proc(q, **kwargs): # """Process target function""" # _Plotter(q, **kwargs) class _Plotter(mp.Process): """Core plotting object. Controlled by queue message.""" def __init__(self, q_in, q_out, **kwargs): """Init with keyword arguments for plotting parameters.""" super().__init__() self.q_in = q_in self.q_out = q_out self.kwargs = kwargs def run(self): """Loop""" self._setup_plot(**self.kwargs) while True: if self.q_in.empty(): plt.pause(0.1) else: msg = self.q_in.get() if msg[0] == "exit": plt.close(self.fig) break else: self._process_msg(msg) def _process_msg(self, msg): """Process the argument tuple, of which 1st element is the command.""" if msg[0] == "plot": self._update_plot(msg[1:]) #self._update_plot2(msg[1:]) elif msg[0] == "get_wloc": self.q_out.put(self._get_wloc()) else: print("Invalid queue message:", msg) def _setup_plot(self, **kwargs): """Create figure.""" self.xlabel = kwargs.pop("xlabel", "x") self.ylabel = kwargs.pop("ylabel", "y") self.title = kwargs.pop("title", "Plot") self.plotparams = kwargs self.plotstyle = "o-" mpl.rcParams["toolbar"] = "None" # disable toolbar self.fig = plt.figure() self._set_wloc() # place window self._set_title(self.title) # set title self.ax = self.fig.add_subplot(111) self.ax.set_xlabel(self.xlabel) self.ax.set_ylabel(self.ylabel) plt.pause(0.1) def _update_plot(self, msg): x, y = msg[0], msg[1] self.ax.cla() self.line = self.ax.plot(x, y, self.plotstyle) self.ax.set_xlabel(self.xlabel) self.ax.set_ylabel(self.ylabel) plt.tight_layout() plt.pause(0.1) def _update_plot2(self, msg): x, y = msg[0], msg[1] self.ax.cla() #self.line = self.ax.plot(x, y, self.plotstyle) self.line = plothyst(x, y, self.plotstyle) self.ax.set_xlabel(self.xlabel) self.ax.set_ylabel(self.ylabel) plt.tight_layout() plt.pause(0.1) def _set_title(self, title): cfm = plt.get_current_fig_manager() cfm.set_window_title(title) def _set_wloc(self): cfm = plt.get_current_fig_manager() if "wx" in self.plotparams and "wy" in self.plotparams: cfm.window.geometry("+{}+{}".format(self.plotparams["wx"], self.plotparams["wy"])) def _get_wloc(self): cfm = plt.get_current_fig_manager() return tuple(map(int, cfm.window.geometry().split("+")[1:])) class PlotProc: """Spawn and manage plotting process.""" def __init__(self, **kwargs): """Init with keyword arguments for plotting parameters.""" self.q_in = mp.Queue() self.q_out = mp.Queue() #self.proc = mp.Process(target=_Plotter, args=(self.q,), kwargs=kwargs) self.proc = _Plotter(self.q_out, self.q_in, **kwargs) #self.proc = _Plotter() self.proc.start() def plot(self, x, y): """Update plot with arguments x, y.""" self.q_out.put(("plot", x, y)) def close(self): """Finish plotting thread.""" self.q_out.put(("exit",)) self.proc.join() def get_wloc(self): self.q_out.put(("get_wloc",)) return self.q_in.get() def demo(): import numpy as np import time x = np.arange(10) y = np.arange(10) pp = PlotProc() for k, _ in enumerate(x): print(k, x[:(k+1)], y[:(k+1)]) pp.plot(x[:(k+1)], y[:(k+1)]) time.sleep(1) pp.close() print("demo() finishing.") if __name__ == "__main__": demo()
30.338235
94
0.554532
00e4870359998193f0559d67e24c0df288e0876c
975
py
Python
examples/neko.py
ahmed-amr1/schtabtag
d5f1e550fccaf58cbcf9fac39528b921659cec7c
[ "MIT" ]
null
null
null
examples/neko.py
ahmed-amr1/schtabtag
d5f1e550fccaf58cbcf9fac39528b921659cec7c
[ "MIT" ]
null
null
null
examples/neko.py
ahmed-amr1/schtabtag
d5f1e550fccaf58cbcf9fac39528b921659cec7c
[ "MIT" ]
null
null
null
from anekos import NekosLifeClient, SFWImageTags import discord from discord.ext import commands neko = NekosLifeClient() client = commands.Bot(command_prefix=".") """ <'solog', 'smug', 'feet', 'smallboobs', 'lewdkemo', 'woof', 'gasm', 'solo', '8ball', 'goose', 'cuddle', 'avatar', 'cum', 'slap', 'les', 'v3', 'erokemo', 'bj', 'pwankg', 'nekoapi_v3.1', 'ero', 'hololewd', 'pat', 'gecg', 'holo', 'poke', 'feed', 'fox_girl', 'tits', 'nsfw_neko_gif', 'eroyuri', 'holoero', 'pussy', 'Random_hentai_gif', 'lizard', 'yuri', 'keta', 'neko', 'hentai', 'feetg', 'eron', 'erok', 'baka', 'kemonomimi', 'hug', 'cum_jpg', 'nsfw_avatar', 'erofeet', 'meow', 'kiss', 'wallpaper', 'tickle', 'blowjob', 'spank', 'kuni', 'classic', 'waifu', 'femdom', 'boobs', 'trap', 'lewd', 'pussy_jpg', 'anal', 'futanari', 'ngif', 'lewdk'>" """ @client.command() async def nekos(ctx): result = await neko.image(SFWImageTags.CUDDLE) await ctx.send(result.url) client.run('token')
54.166667
640
0.624615
898014f906d180a1e1f52b8cbe5b548feec2fc70
5,092
py
Python
tests/integration/lambdas/lambda_integration.py
lsdev693/localstack
f384f5837caad840201258a3d94e19d4bf68571f
[ "Apache-2.0" ]
1
2020-02-21T04:43:55.000Z
2020-02-21T04:43:55.000Z
tests/integration/lambdas/lambda_integration.py
lsdev693/localstack
f384f5837caad840201258a3d94e19d4bf68571f
[ "Apache-2.0" ]
null
null
null
tests/integration/lambdas/lambda_integration.py
lsdev693/localstack
f384f5837caad840201258a3d94e19d4bf68571f
[ "Apache-2.0" ]
1
2020-04-17T15:02:32.000Z
2020-04-17T15:02:32.000Z
import json import base64 import logging import boto3.dynamodb.types from io import BytesIO from localstack.utils.aws import aws_stack from localstack.utils.common import to_str, to_bytes TEST_BUCKET_NAME = 'test-bucket' KINESIS_STREAM_NAME = 'test_stream_1' MSG_BODY_RAISE_ERROR_FLAG = 'raise_error' MSG_BODY_MESSAGE_TARGET = 'message_target' logging.basicConfig(level=logging.INFO) LOGGER = logging.getLogger(__name__) LOGGER.setLevel(logging.INFO) # Subclass of boto's TypeDeserializer for DynamoDB # to adjust for DynamoDB Stream format. class TypeDeserializer(boto3.dynamodb.types.TypeDeserializer): def _deserialize_n(self, value): return float(value) def _deserialize_b(self, value): return value # already in Base64 def handler(event, context): """ Generic event forwarder Lambda. """ # print test messages (to test CloudWatch Logs integration) LOGGER.info('Lambda log message - logging module') print('Lambda log message - print function') if MSG_BODY_RAISE_ERROR_FLAG in event: raise Exception('Test exception (this is intentional)') if 'httpMethod' in event: # looks like this is a call from an AWS_PROXY API Gateway try: body = json.loads(event['body']) except Exception: body = {} body['pathParameters'] = event.get('pathParameters') body['requestContext'] = event.get('requestContext') body['queryStringParameters'] = event.get('queryStringParameters') body['httpMethod'] = event.get('httpMethod') status_code = body.get('return_status_code', 200) headers = body.get('return_headers', {}) body = body.get('return_raw_body') or body return { 'body': body, 'statusCode': status_code, 'headers': headers } if 'Records' not in event: return { 'event': event, 'context': { 'invoked_function_arn': context.invoked_function_arn, 'function_version': context.function_version, 'function_name': context.function_name } } raw_event_messages = [] for record in event['Records']: # Deserialize into Python dictionary and extract the # "NewImage" (the new version of the full ddb document) ddb_new_image = deserialize_event(record) if MSG_BODY_RAISE_ERROR_FLAG in ddb_new_image.get('data', {}): raise Exception('Test exception (this is intentional)') # Place the raw event message document into the Kinesis message format kinesis_record = { 'PartitionKey': 'key123', 'Data': json.dumps(ddb_new_image) } if MSG_BODY_MESSAGE_TARGET in ddb_new_image.get('data', {}): forwarding_target = ddb_new_image['data'][MSG_BODY_MESSAGE_TARGET] target_name = forwarding_target.split(':')[-1] if forwarding_target.startswith('kinesis:'): ddb_new_image['data'][MSG_BODY_MESSAGE_TARGET] = 's3:/test_chain_result' kinesis_record['Data'] = json.dumps(ddb_new_image['data']) forward_event_to_target_stream(kinesis_record, target_name) elif forwarding_target.startswith('s3:'): s3_client = aws_stack.connect_to_service('s3') test_data = to_bytes(json.dumps({'test_data': ddb_new_image['data']['test_data']})) s3_client.upload_fileobj(BytesIO(test_data), TEST_BUCKET_NAME, target_name) else: raw_event_messages.append(kinesis_record) # Forward messages to Kinesis forward_events(raw_event_messages) def deserialize_event(event): # Deserialize into Python dictionary and extract the "NewImage" (the new version of the full ddb document) ddb = event.get('dynamodb') if ddb: result = { '__action_type': event.get('eventName'), } ddb_deserializer = TypeDeserializer() if ddb.get('OldImage'): result['old_image'] = ddb_deserializer.deserialize({'M': ddb.get('OldImage')}) if ddb.get('NewImage'): result['new_image'] = ddb_deserializer.deserialize({'M': ddb.get('NewImage')}) return result kinesis = event.get('kinesis') if kinesis: assert kinesis['sequenceNumber'] kinesis['data'] = json.loads(to_str(base64.b64decode(kinesis['data']))) return kinesis sqs = event.get('sqs') if sqs: result = {'data': event['body']} return result sns = event.get('Sns') if sns: result = {'data': sns['Message']} return result def forward_events(records): if not records: return kinesis = aws_stack.connect_to_service('kinesis') kinesis.put_records(StreamName=KINESIS_STREAM_NAME, Records=records) def forward_event_to_target_stream(record, stream_name): kinesis = aws_stack.connect_to_service('kinesis') kinesis.put_record(StreamName=stream_name, Data=record['Data'], PartitionKey=record['PartitionKey'])
36.113475
110
0.654556