hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
โŒ€
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
โŒ€
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
โŒ€
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
โŒ€
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
โŒ€
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
โŒ€
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
โŒ€
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
โŒ€
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
โŒ€
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
06dad1410e2a02e151efb9ec9b2aee561ebc438e
1,784
py
Python
b3j0f/aop/__init__.py
b3j0f/aop
22b9ba335d103edd929c25eb6dbb94037d3615bc
[ "MIT" ]
6
2015-03-17T12:42:32.000Z
2020-04-19T04:03:54.000Z
b3j0f/aop/__init__.py
b3j0f/aop
22b9ba335d103edd929c25eb6dbb94037d3615bc
[ "MIT" ]
3
2016-01-25T13:13:29.000Z
2020-04-19T21:23:17.000Z
b3j0f/aop/__init__.py
b3j0f/aop
22b9ba335d103edd929c25eb6dbb94037d3615bc
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # -------------------------------------------------------------------- # The MIT License (MIT) # #ย Copyright (c) 2014 Jonathan Labรฉjof <jonathan.labejof@gmail.com> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # -------------------------------------------------------------------- """Aspect Oriented Programming Library for Python. Provides tools to (un)weave and get advices, and check joinpoint status.""" __all__ = [ '__version__', 'weave', 'weave_on', 'get_advices', 'unweave', 'Joinpoint', 'JoinpointError', 'is_intercepted', 'get_intercepted' ] from .version import __version__ from .advice import weave, unweave, get_advices, weave_on from .joinpoint import ( Joinpoint, JoinpointError, is_intercepted, get_intercepted )
42.47619
79
0.700673
176795ef52d33e3324215277414451113e11980a
800
py
Python
04-Date.py
tgjeon/Zero-to-Hero-Python
cdb8dd5282152110d25262254741302d2d24ec6d
[ "MIT" ]
3
2016-09-20T15:50:30.000Z
2019-05-14T03:46:53.000Z
04-Date.py
tgjeon/Zero-to-Hero-Python
cdb8dd5282152110d25262254741302d2d24ec6d
[ "MIT" ]
null
null
null
04-Date.py
tgjeon/Zero-to-Hero-Python
cdb8dd5282152110d25262254741302d2d24ec6d
[ "MIT" ]
2
2018-06-08T15:20:00.000Z
2019-05-14T03:46:53.000Z
# -*- coding: utf8 -*- """ 04. ๋‚ ์งœ๋ฅผ ์‚ฌ์šฉํ•ด๋ด…์‹œ๋‹ค. (์†Œ์š”์‹œ๊ฐ„: 16๋ถ„ ๊ฐ•์˜) - Original version (MVA): https://mva.microsoft.com/ko/training-courses/python%EC%9D%84-%EC%82%AC%EC%9A%A9%ED%95%9C-%ED%94%84%EB%A1%9C%EA%B7%B8%EB%9E%98%EB%B0%8D-%EC%86%8C%EA%B0%9C-8360 - Compact version (Youtube): https://youtu.be/emY34tSKXc4?t=1h17m24s - ์ฐธ๊ณ : - ์•„๋ž˜ ์„ค๋ช…์€ Compact version์„ ๊ธฐ์ค€์œผ๋กœ ํ•ฉ๋‹ˆ๋‹ค. """ """ ๋‚ ์งœ ๋ฐ ์‹œ๊ฐ„์„ ๋‹ค๋ค„๋ด…์‹œ๋‹ค. """ # datetime ํด๋ž˜์Šค๋ฅผ ์ด์šฉํ•ฉ๋‹ˆ๋‹ค. import datetime today = datetime.date.today() print(today) """ ์ž์ฃผ ์‚ฌ์šฉ๋˜๋Š” ๋‚ ์งœ๋“ค %b: ์›” (์•ฝ์–ด) %B: ์›” %y: 2์ž๋ฆฌ ์—ฐ๋„ %a: ์š”์ผ (์•ฝ์–ด) %A: ์š”์ผ ์ž์„ธํ•œ ๋‚ด์šฉ: strftime.org """ print(today) print(today.month) print(today.year) print(today.strftime('%d %b, %Y')) """ ์‚ฌ์šฉ์ž๋กœ๋ถ€ํ„ฐ ์ž…๋ ฅ์„ ๋ฐ›์•„์„œ ํฌ๋งท์„ ๋ฐ”๊ฟ”๋ด…์‹œ๋‹ค. """ birthday = input("์ƒ์ผ์ด ์–ธ์ œ์ž…๋‹ˆ๊นŒ? ") birthdate = datetime.datetime.strptime(birthday, "%m/%d/%Y") print(birthdate)
15.09434
185
0.65125
f1e7bd5562a319d29630285960901b0d24e6544a
304
py
Python
flask_app/app/api/__init__.py
ruteckimikolaj/demo-gatsby-flask-scraper
09490bac49147760a1301012ffa2619e1c690c78
[ "MIT" ]
null
null
null
flask_app/app/api/__init__.py
ruteckimikolaj/demo-gatsby-flask-scraper
09490bac49147760a1301012ffa2619e1c690c78
[ "MIT" ]
1
2021-03-31T19:32:20.000Z
2021-03-31T19:32:20.000Z
flask_app/app/api/__init__.py
ruteckimikolaj/demo-gatsby-flask-scraper
09490bac49147760a1301012ffa2619e1c690c78
[ "MIT" ]
null
null
null
from flask import Blueprint, Config, Flask from app.api import receiver, sender, tokens bp = Blueprint('api', __name__) def create_app(config_class=Config): app = Flask(__name__) # ... from app.api import bp as api_bp app.register_blueprint(api_bp, url_prefix='/api')
20.266667
54
0.677632
32d480e9c81c44a68a02b8206991f417add1fd2d
10,430
py
Python
accelbyte_py_sdk/api/platform/operations/reward/query_rewards.py
AccelByte/accelbyte-python-sdk
dcd311fad111c59da828278975340fb92e0f26f7
[ "MIT" ]
null
null
null
accelbyte_py_sdk/api/platform/operations/reward/query_rewards.py
AccelByte/accelbyte-python-sdk
dcd311fad111c59da828278975340fb92e0f26f7
[ "MIT" ]
1
2021-10-13T03:46:58.000Z
2021-10-13T03:46:58.000Z
accelbyte_py_sdk/api/platform/operations/reward/query_rewards.py
AccelByte/accelbyte-python-sdk
dcd311fad111c59da828278975340fb92e0f26f7
[ "MIT" ]
null
null
null
# Copyright (c) 2021 AccelByte Inc. All Rights Reserved. # This is licensed software from AccelByte Inc, for limitations # and restrictions contact your company contract manager. # # Code generated. DO NOT EDIT! # template file: justice_py_sdk_codegen/__main__.py # pylint: disable=duplicate-code # pylint: disable=line-too-long # pylint: disable=missing-function-docstring # pylint: disable=missing-module-docstring # pylint: disable=too-many-arguments # pylint: disable=too-many-branches # pylint: disable=too-many-instance-attributes # pylint: disable=too-many-lines # pylint: disable=too-many-locals # pylint: disable=too-many-public-methods # pylint: disable=too-many-return-statements # pylint: disable=too-many-statements # pylint: disable=unused-import # justice-platform-service (4.10.0) from __future__ import annotations from typing import Any, Dict, List, Optional, Tuple, Union from .....core import Operation from .....core import HeaderStr from .....core import HttpResponse from .....core import StrEnum from ...models import RewardPagingSlicedResult from ...models import ValidationErrorEntity class SortByEnum(StrEnum): NAMESPACE = "namespace" NAMESPACE_ASC = "namespace:asc" NAMESPACE_DESC = "namespace:desc" REWARDCODE = "rewardCode" REWARDCODE_ASC = "rewardCode:asc" REWARDCODE_DESC = "rewardCode:desc" class QueryRewards(Operation): """Query rewards by criteria (queryRewards) This API is used to query rewards by criteria. Other detail info: * Required permission : resource="ADMIN:NAMESPACE:{namespace}:REWARD", action=2 (READ) * Returns : the list of rewards Required Permission(s): - ADMIN:NAMESPACE:{namespace}:REWARD [READ] Properties: url: /platform/admin/namespaces/{namespace}/rewards/byCriteria method: GET tags: ["Reward"] consumes: [] produces: ["application/json"] securities: [BEARER_AUTH] or [BEARER_AUTH] namespace: (namespace) REQUIRED str in path event_topic: (eventTopic) OPTIONAL str in query limit: (limit) OPTIONAL int in query offset: (offset) OPTIONAL int in query sort_by: (sortBy) OPTIONAL List[Union[str, SortByEnum]] in query Responses: 200: OK - RewardPagingSlicedResult (successful operation) 422: Unprocessable Entity - ValidationErrorEntity (20002: validation error) """ # region fields _url: str = "/platform/admin/namespaces/{namespace}/rewards/byCriteria" _method: str = "GET" _consumes: List[str] = [] _produces: List[str] = ["application/json"] _securities: List[List[str]] = [["BEARER_AUTH"], ["BEARER_AUTH"]] _location_query: str = None namespace: str # REQUIRED in [path] event_topic: str # OPTIONAL in [query] limit: int # OPTIONAL in [query] offset: int # OPTIONAL in [query] sort_by: List[Union[str, SortByEnum]] # OPTIONAL in [query] # endregion fields # region properties @property def url(self) -> str: return self._url @property def method(self) -> str: return self._method @property def consumes(self) -> List[str]: return self._consumes @property def produces(self) -> List[str]: return self._produces @property def securities(self) -> List[List[str]]: return self._securities @property def location_query(self) -> str: return self._location_query # endregion properties # region get methods # endregion get methods # region get_x_params methods def get_all_params(self) -> dict: return { "path": self.get_path_params(), "query": self.get_query_params(), } def get_path_params(self) -> dict: result = {} if hasattr(self, "namespace"): result["namespace"] = self.namespace return result def get_query_params(self) -> dict: result = {} if hasattr(self, "event_topic"): result["eventTopic"] = self.event_topic if hasattr(self, "limit"): result["limit"] = self.limit if hasattr(self, "offset"): result["offset"] = self.offset if hasattr(self, "sort_by"): result["sortBy"] = self.sort_by return result # endregion get_x_params methods # region is/has methods # endregion is/has methods # region with_x methods def with_namespace(self, value: str) -> QueryRewards: self.namespace = value return self def with_event_topic(self, value: str) -> QueryRewards: self.event_topic = value return self def with_limit(self, value: int) -> QueryRewards: self.limit = value return self def with_offset(self, value: int) -> QueryRewards: self.offset = value return self def with_sort_by(self, value: List[Union[str, SortByEnum]]) -> QueryRewards: self.sort_by = value return self # endregion with_x methods # region to methods def to_dict(self, include_empty: bool = False) -> dict: result: dict = {} if hasattr(self, "namespace") and self.namespace: result["namespace"] = str(self.namespace) elif include_empty: result["namespace"] = "" if hasattr(self, "event_topic") and self.event_topic: result["eventTopic"] = str(self.event_topic) elif include_empty: result["eventTopic"] = "" if hasattr(self, "limit") and self.limit: result["limit"] = int(self.limit) elif include_empty: result["limit"] = 0 if hasattr(self, "offset") and self.offset: result["offset"] = int(self.offset) elif include_empty: result["offset"] = 0 if hasattr(self, "sort_by") and self.sort_by: result["sortBy"] = [str(i0) for i0 in self.sort_by] elif include_empty: result["sortBy"] = [] return result # endregion to methods # region response methods # noinspection PyMethodMayBeStatic def parse_response(self, code: int, content_type: str, content: Any) -> Tuple[Union[None, RewardPagingSlicedResult], Union[None, HttpResponse, ValidationErrorEntity]]: """Parse the given response. 200: OK - RewardPagingSlicedResult (successful operation) 422: Unprocessable Entity - ValidationErrorEntity (20002: validation error) ---: HttpResponse (Undocumented Response) ---: HttpResponse (Unexpected Content-Type Error) ---: HttpResponse (Unhandled Error) """ pre_processed_response, error = self.pre_process_response(code=code, content_type=content_type, content=content) if error is not None: return None, None if error.is_no_content() else error code, content_type, content = pre_processed_response if code == 200: return RewardPagingSlicedResult.create_from_dict(content), None if code == 422: return None, ValidationErrorEntity.create_from_dict(content) return None, self.handle_undocumented_response(code=code, content_type=content_type, content=content) # endregion response methods # region static methods @classmethod def create( cls, namespace: str, event_topic: Optional[str] = None, limit: Optional[int] = None, offset: Optional[int] = None, sort_by: Optional[List[Union[str, SortByEnum]]] = None, ) -> QueryRewards: instance = cls() instance.namespace = namespace if event_topic is not None: instance.event_topic = event_topic if limit is not None: instance.limit = limit if offset is not None: instance.offset = offset if sort_by is not None: instance.sort_by = sort_by return instance @classmethod def create_from_dict(cls, dict_: dict, include_empty: bool = False) -> QueryRewards: instance = cls() if "namespace" in dict_ and dict_["namespace"] is not None: instance.namespace = str(dict_["namespace"]) elif include_empty: instance.namespace = "" if "eventTopic" in dict_ and dict_["eventTopic"] is not None: instance.event_topic = str(dict_["eventTopic"]) elif include_empty: instance.event_topic = "" if "limit" in dict_ and dict_["limit"] is not None: instance.limit = int(dict_["limit"]) elif include_empty: instance.limit = 0 if "offset" in dict_ and dict_["offset"] is not None: instance.offset = int(dict_["offset"]) elif include_empty: instance.offset = 0 if "sortBy" in dict_ and dict_["sortBy"] is not None: instance.sort_by = [str(i0) for i0 in dict_["sortBy"]] elif include_empty: instance.sort_by = [] return instance @staticmethod def get_field_info() -> Dict[str, str]: return { "namespace": "namespace", "eventTopic": "event_topic", "limit": "limit", "offset": "offset", "sortBy": "sort_by", } @staticmethod def get_required_map() -> Dict[str, bool]: return { "namespace": True, "eventTopic": False, "limit": False, "offset": False, "sortBy": False, } @staticmethod def get_collection_format_map() -> Dict[str, Union[None, str]]: return { "sortBy": "csv", # in query } @staticmethod def get_enum_map() -> Dict[str, List[Any]]: return { "sortBy": ["namespace", "namespace:asc", "namespace:desc", "rewardCode", "rewardCode:asc", "rewardCode:desc"],# in query } # endregion static methods
31.415663
171
0.598274
0a65278c2b6ccec0553194d6fea1d096e7717cbd
964
py
Python
idb/cli/commands/location.py
doc22940/idb
8eb2d82c6b560a5c243986da28124245284e65e9
[ "MIT" ]
null
null
null
idb/cli/commands/location.py
doc22940/idb
8eb2d82c6b560a5c243986da28124245284e65e9
[ "MIT" ]
5
2021-09-02T15:20:04.000Z
2022-02-27T09:50:05.000Z
idb/cli/commands/location.py
Rezduan83/idb
a43b499302a37ada164cd183b9edb0e3a4699a1d
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from argparse import ArgumentParser, Namespace from idb.cli.commands.base import CompanionCommand from idb.common.types import IdbClient class LocationSetCommand(CompanionCommand): @property def description(self) -> str: return "Set a simulator's location" @property def name(self) -> str: return "set-location" def add_parser_arguments(self, parser: ArgumentParser) -> None: parser.add_argument("latitude", help="Latitude to set", type=float) parser.add_argument("longitude", help="Longitude to set", type=float) super().add_parser_arguments(parser) async def run_with_client(self, args: Namespace, client: IdbClient) -> None: await client.set_location(args.latitude, args.longitude)
33.241379
80
0.724066
ede8136b2f9e57638aba43ef11f5a892e0f316a3
1,822
py
Python
spack/packages/dla-future/package.py
msimberg/DLA-Future
4b15374e234a0c30369ce6ae35b0816e2a19d687
[ "BSD-3-Clause" ]
null
null
null
spack/packages/dla-future/package.py
msimberg/DLA-Future
4b15374e234a0c30369ce6ae35b0816e2a19d687
[ "BSD-3-Clause" ]
null
null
null
spack/packages/dla-future/package.py
msimberg/DLA-Future
4b15374e234a0c30369ce6ae35b0816e2a19d687
[ "BSD-3-Clause" ]
null
null
null
# Copyright 2013-2020 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class DlaFuture(CMakePackage, CudaPackage): """DLA-Future library: Distributed Linear Algebra with Future""" homepage = "https://github.com/eth-cscs/DLA-Future/wiki" git = "https://github.com/eth-cscs/DLA-Future" maintainers = ['teonnik', 'albestro', 'Sely85'] version('develop', branch='master') variant('doc', default=False, description='Build documentation.') depends_on('cmake@3.14:', type='build') depends_on('doxygen', type='build', when='+doc') depends_on('mpi') depends_on('blaspp') depends_on('lapackpp') depends_on('hpx@1.4.0:1.4.1 cxxstd=14 networking=none') depends_on('hpx build_type=Debug', when='build_type=Debug') depends_on('hpx build_type=Release', when='build_type=Release') depends_on('hpx build_type=RelWithDebInfo', when='build_type=RelWithDebInfo') def cmake_args(self): spec = self.spec # BLAS/LAPACK if '^mkl' in spec: args = [ self.define('DLAF_WITH_MKL', True) ] else: args = [ self.define('DLAF_WITH_MKL', False), self.define('LAPACK_TYPE', 'Custom'), self.define('LAPACK_LIBRARY', ' '.join([spec[dep].libs.ld_flags for dep in ['blas', 'lapack']])) ] # CUDA args.append(self.define_from_variant('DLAF_WITH_CUDA', 'cuda')) # DOC args.append(self.define_from_variant('BUILD_DOC', 'doc')) # TESTs args.append(self.define('DLAF_WITH_TEST', self.run_tests)) return args
31.413793
90
0.617453
9066833649dcf82854eb6f0ac4157768cc1e26df
8,173
py
Python
scripts/generate_synthetic_data.py
JonasFrey96/RPOSE
7da77499ab777ce7ee37b731541982870da8d40b
[ "BSD-3-Clause" ]
null
null
null
scripts/generate_synthetic_data.py
JonasFrey96/RPOSE
7da77499ab777ce7ee37b731541982870da8d40b
[ "BSD-3-Clause" ]
null
null
null
scripts/generate_synthetic_data.py
JonasFrey96/RPOSE
7da77499ab777ce7ee37b731541982870da8d40b
[ "BSD-3-Clause" ]
null
null
null
import pickle import numpy as np import scipy.io as scio import os import numpy as np import os from scipy.spatial.transform import Rotation as R import random from math import radians import time from pathlib import Path import scipy import imageio # RENDERING from trimesh import collision from pyrender.constants import RenderFlags import trimesh import pyrender os.environ["PYOPENGL_PLATFORM"] = "egl" with open( "/home/jonfrey/RPOSE/cfg/datasets/ycb/test.pkl", "rb") as f: res = pickle.load(f) np.unique( res['base_path_list'] ).shape, len( res['base_path_list']) paths = np.unique( res['base_path_list'] ).tolist() base = "/home/jonfrey/Datasets/ycb" data = [] for j, pa in enumerate( paths ): pa = os.path.join( base, pa+'-meta.mat' ) meta = scio.loadmat( pa ) for k,i in enumerate( meta['cls_indexes'][:,0].tolist()): data.append( { 'pose': meta['poses'][:,:,k], 'index': i, 'scene_indexes': meta['cls_indexes'][:,0], 'path': pa, 'intrinsic_matrix': meta['intrinsic_matrix']} ) poses = np.array( [d['pose'] for d in data]) indexes = np.array( [d['index'] for d in data]) scene_indexes = np.array( [d['scene_indexes'] for d in data] ) # COMPUTE STATISTICS stats = [] objects = 21 for i in range(1, objects+1): try: mask = indexes == i me = poses[mask][:,:,3].mean(axis=0) std = poses[mask][:,:,3].std(axis=0) mi_val = poses[mask][:,:,3].min(axis=0) ma_val = poses[mask][:,:,3].max(axis=0) count_correlated = np.zeros(( objects )) for j in scene_indexes[mask]: for n in j: count_correlated[n-1] += 1 # prior equally distributed count_correlated += int( count_correlated.sum() /objects ) count_correlated /= count_correlated.sum() stat = { 'indexes': i-1, 'count_correlated': count_correlated, 'mean': me, 'std': std, 'min_val': mi_val, 'max_val': ma_val} stats.append(stat) except: pass # LOAD DATA FOR RENDERING objs_scaled = [ trimesh.load(f'{base}/models/{s}/scaled.obj') for s in os.listdir( "/home/jonfrey/Datasets/ycb/models" ) ] K = scio.loadmat("/home/jonfrey/Datasets/ycb/data_syn/000001-meta.mat")["intrinsic_matrix"] objs = [ trimesh.load(f'{base}/models/{s}/textured.obj') for s in os.listdir( "/home/jonfrey/Datasets/ycb/models" ) ] camera = pyrender.camera.IntrinsicsCamera( K[0,0], K[1,1], K[0,2], K[1,2] ) camera_pose = np.eye(4) camera_pose[:3,:3 ] = R.from_euler('xyz', [0,180,180], degrees=True).as_matrix() # RENDERING HELPER AND METHODS def get_random_light(): inten = np.random.uniform( 10, 25 , (1,) ) #5 + random.random() * 10 color = np.random.uniform( 0.7, 1 , (3,) ) if random.random() > 0.3: light = pyrender.DirectionalLight(color= color, intensity= inten) else: light = pyrender.SpotLight(color=color, intensity=inten, innerConeAngle=radians(30+(random.random()*29)), outerConeAngle=radians(60+(random.random()*29))) return light def get_obj_pose(index): pose = np.eye(4) pose[:3,3] = np.random.uniform( stats[index]['min_val'],stats[index]['max_val'], (3,) ) pose[:3,:3] = R.random().as_matrix() return pose def get_neighbour_pose(pose): pose = np.copy(pose) pose[:3,:3] = R.random().as_matrix() pose[:3,3] = pose[:3,3] + np.random.uniform( [-0.1,-0.1,-0.3] , [0.1,0.1,0.1], (3,) ) return pose def render(): try: index = np.random.randint( 0, len(objs) ) obj = objs[index] H,W = 480,640 # Sample other object according to correlation in dataset fac = stats[index]['count_correlated'] fac[index] = 0 index2 = np.argmax( np.random.rand(21) * fac ) # Set metallic randomly side_obj = objs[index2] mesh2 = pyrender.Mesh.from_trimesh(side_obj ) mesh2.primitives[0].material.metallicFactor = random.random() * 0.3 mesh = pyrender.Mesh.from_trimesh(obj ) mesh.primitives[0].material.metallicFactor = random.random() * 0.3 scene = pyrender.Scene() # Get random pose uniformly in dataset boundary cube obj_pose = get_obj_pose( index ) # Uniformly sample collision free pose for other object cm = collision.CollisionManager() cm.add_object(name="obj", mesh=objs_scaled[index], transform=obj_pose) while True: obj_pose_two = get_neighbour_pose( obj_pose ) is_collision = cm.in_collision_single(mesh=objs_scaled[index2], transform=obj_pose_two) if not is_collision: break # Add objects to the scene st = time.time() n_mesh = pyrender.Node(mesh=mesh, matrix= obj_pose ) scene.add_node(n_mesh) n_mesh2 = pyrender.Node(mesh=mesh2, matrix= obj_pose_two ) scene.add_node(n_mesh2) # Add camera scene.add(camera, pose=camera_pose) # Add random light light_pose = np.copy( camera_pose ) light_pose[2,3] -= 1 light_pose[:3,3] += np.random.uniform( 0.3, 0.3 , (3,) ) scene.add(get_random_light(), pose=light_pose) # get mask renderer = pyrender.OffscreenRenderer(640, 480) flags = RenderFlags.DEPTH_ONLY full_depth = renderer.render(scene, flags=flags) for mn in scene.mesh_nodes: mn.mesh.is_visible = False segimg = np.zeros((H, W), dtype=np.uint8) for ind, node in zip( [index, index2], [n_mesh, n_mesh2 ] ): node.mesh.is_visible = True depth = renderer.render(scene, flags=flags) mask = np.logical_and( (np.abs(depth - full_depth) < 1e-6), np.abs(full_depth) > 0 ) segimg[mask] = ind + 1 node.mesh.is_visible = False if (segimg == index+1).sum() < 100: return (False, ) # Show all meshes again for mn in scene.mesh_nodes: mn.mesh.is_visible = True color, depth = renderer.render(scene) ind = np.zeros( (1,1), dtype=np.float32 ) ind[0,0] = index + 1 meta = { "cls_indexes": ind, # NR,1 "factor_depth": np.array([[10000]], dtype=np.float64), 'poses': obj_pose[:3,:,None].astype(np.float32) , 'intrinsic_matrix': np.array([[1.066778e+03, 0.000000e+00, 3.129869e+02], [0.000000e+00, 1.067487e+03, 2.413109e+02], [0.000000e+00, 0.000000e+00, 1.000000e+00]]) #3,4,NR } depth = np.uint16( depth * meta["factor_depth"][0,0] ) co = np.full( (H,W,4),255, dtype=np.uint8) co[:,:,:3] = color del renderer time.sleep(0.1) return co, depth, meta, segimg except Exception as e: print("Failed") return (False,) dir_out = "/home/jonfrey/Datasets/ycb/data_syn_new" def do(i): np.random.seed(i) random.seed(i) while 1: tup = render() if len(tup) != 1: break color, depth, meta, label = tup p_color = os.path.join( dir_out, f"{i:06d}-color.png" ) p_depth = os.path.join( dir_out, f"{i:06d}-depth.png" ) p_label = os.path.join( dir_out, f"{i:06d}-label.png" ) p_meta = os.path.join( dir_out, f"{i:06d}-meta.mat" ) Path(p_color).parent.mkdir(exist_ok=True, parents= True) imageio.imwrite( p_color, color) imageio.imwrite( p_depth, depth) imageio.imwrite( p_label, label) scipy.io.savemat( p_meta, meta) start_time = time.time() la = 100000 if os.path.exists("/home/jonfrey/tmp/nr.npy"): start = np.load( "/home/jonfrey/tmp/nr.npy" ) lam = start[0] else: lam = 3500 start= np.array( [ lam ] ) for j,i in enumerate( range(start[0], la)): st = time.time() do(i) start[0] = i np.save( "/home/jonfrey/tmp/nr.npy", start) if j > 0: print( f"{i} Time gone: ", (time.time()-st), "Time left: ", (time.time()-start_time)/(i-lam)*(la-i) )
32.05098
105
0.589135
ee4eb29e742b47b4208b1a3d3744b448dd472c48
233
py
Python
laboratorios/quiz1.py
ncenteno31/uip-prog3
90fc05cd7ef1c89fbadb54dc68c917f40a8cae14
[ "MIT" ]
null
null
null
laboratorios/quiz1.py
ncenteno31/uip-prog3
90fc05cd7ef1c89fbadb54dc68c917f40a8cae14
[ "MIT" ]
null
null
null
laboratorios/quiz1.py
ncenteno31/uip-prog3
90fc05cd7ef1c89fbadb54dc68c917f40a8cae14
[ "MIT" ]
null
null
null
# Clase 3 QUIZ # Noel Centeno 8-840-2233 # Calcular el Area y el Perimetro de un Rectangulo. base= 5 altura= 7 metro= 100 pulgadas= 2.54 area = base * altura perimetro = base*2 + altura*2 print (str (area)) print (str (perimetro))
17.923077
51
0.703863
9bf2041d4955c00801be5a56ccc3cc8413796fe8
7,757
py
Python
Assignment 2/super_baseline_tagger.py
anishvaidya/CSCI-544---Applied-Natural-Language-Processing
c2a96f25d99e9dc664f6b4e81a12acb5e43a7d36
[ "MIT" ]
1
2020-05-10T04:08:20.000Z
2020-05-10T04:08:20.000Z
Assignment 2/super_baseline_tagger.py
anishvaidya/CSCI-544---Applied-Natural-Language-Processing
c2a96f25d99e9dc664f6b4e81a12acb5e43a7d36
[ "MIT" ]
null
null
null
Assignment 2/super_baseline_tagger.py
anishvaidya/CSCI-544---Applied-Natural-Language-Processing
c2a96f25d99e9dc664f6b4e81a12acb5e43a7d36
[ "MIT" ]
null
null
null
import random import sys import shutil import glob import os import subprocess max_accuracy = 0 train_files = [] test_files = [] max_acc_test = [] def data_splitter(): global train_files, test_files k = 4 os.chdir("all") shutil.rmtree("test") shutil.rmtree("train") os.mkdir("train") os.mkdir("test") all_files = glob.glob("*.csv") random.shuffle(all_files) test_files = random.sample(all_files, len(all_files)//k) train_files = list(set(all_files) - set(test_files)) os.chdir("..") for each_files in test_files: shutil.copy2(str("all/"+each_files), str("all/test/"+each_files)) for each_files in train_files: shutil.copy2(str("all/"+each_files), str("all/train/"+each_files)) print("TEST: ",len(test_files)) print("TRAIN: ",len(train_files)) '''Baseline Tagger This code tags each utterance in a conversation with a label called dialog act. The data source is taken from command line along with final out file name and destination. Author - Anish Amul Vaidya ''' # Import required libraries # import sys import pycrfsuite import hw2_corpus_tool import time # Retrieve file-paths and file-names from command line INPUTDIR = "all/train" TESTDIR = "all/test" # OUTPUTFILE = sys.argv[3] class BaselineTagger(): ''' Take the input data path and generate 2 lists: 1. a list of list features for each utterance in each conversation. 2. a list of labels for utterances in each conversation. ''' def generate_features_and_labels(data): features = [] labels = [] for conversation in data: speaker1 = None speaker2 = None conversation_start = True conversation_features = [] conversation_labels = [] for dialog in conversation: dialog_features = [] speaker2 = getattr(dialog, "speaker") if conversation_start: dialog_features.append("Speaker change: False") dialog_features.append("First Utterance: True") conversation_start = False else: if speaker1 != speaker2: dialog_features.append("Speaker change: True") dialog_features.append("First Utterance: False") else: dialog_features.append("Speaker change: False") dialog_features.append("First Utterance: False") postag_object_list = getattr(dialog, "pos") if postag_object_list is not None: for postag_object in postag_object_list: token = getattr(postag_object, "token") pos = getattr(postag_object, "pos") dialog_features.append("TOKEN_" + token) dialog_features.append("POS_" + pos) else: # dialog_features.append("TOKEN_BLANK") # dialog_features.append("POS_BLANK") dialog_features.append("NO_WORDS") conversation_features.append(dialog_features) act_tag = getattr(dialog, "act_tag") if act_tag: conversation_labels.append(act_tag) speaker1 = speaker2 features.append(conversation_features) labels.append(conversation_labels) return features, labels ''' Train the pycrfsuite model: Set the required model parameters. Input data to model and train. ''' def train_model(train_features, train_labels): trainer=pycrfsuite.Trainer(verbose = False) for x, y in zip(train_features, train_labels): trainer.append(x, y) trainer.set_params({ 'c1': 1.0, # coefficient for L1 penalty 'c2': 1e-3, # coefficient for L2 penalty 'max_iterations': 50, # stop earlier # include transitions that are possible, but not observed 'feature.possible_transitions': True }) trainer.train("baseline_dialog_act_tagger.crfsuite") ''' Predict on test data: Use the trained model on the given test data. ''' def predict(test_features, test_labels): global max_acc_test, test_files, max_accuracy predictor = pycrfsuite.Tagger(verbose = False) predictor.open("baseline_dialog_act_tagger.crfsuite") # output_file = open(OUTPUTFILE, "w+") correct_predictions = 0 total_predictions = 0 for conversation in range(len(test_features)): for label_index, predicted_label in enumerate(predictor.tag(test_features[conversation])): if predicted_label == test_labels[conversation][label_index]: correct_predictions += 1 total_predictions += 1 predicted_label += "\n" # output_file.writelines(predicted_label) # output_file.writelines("\n") # output_file.close() accuracy = (correct_predictions / total_predictions) print ("Accuracy is " , accuracy) if accuracy > max_accuracy: max_accuracy = accuracy max_acc_test = test_files # def main(): # global max_accuracy # for i in range(50): # print ("-----------------------------------------------------------") # print ("Iteration ", i) # data_splitter() # training_set = list(hw2_corpus_tool.get_data(INPUTDIR)) # dev_set = list(hw2_corpus_tool.get_data(TESTDIR)) # train_features, train_labels = BaselineTagger.generate_features_and_labels(training_set) # test_features, test_labels = BaselineTagger.generate_features_and_labels(dev_set) # BaselineTagger.train_model(train_features, train_labels) # BaselineTagger.predict(test_features, test_labels) # print ("Max accuracy is ", max_accuracy) if __name__ == "__main__": input_dir_list = ["data/train", "data/train_best", "data/train_sid", "data/train1"] test_dir_list = ["data/dev", "data/dev_best", "data/dev_sid", "data/dev1"] for INPUTDIR, TESTDIR in zip(input_dir_list, test_dir_list): start = time.time() training_set = list(hw2_corpus_tool.get_data(INPUTDIR)) dev_set = list(hw2_corpus_tool.get_data(TESTDIR)) train_features, train_labels = BaselineTagger.generate_features_and_labels(training_set) test_features, test_labels = BaselineTagger.generate_features_and_labels(dev_set) print ("Training model " + INPUTDIR) BaselineTagger.train_model(train_features, train_labels) BaselineTagger.predict(test_features, test_labels) print ("Time taken (in seconds) :", (time.time() - start)) print ("-----------------------------------------------------------------") ''' Training model data/train Accuracy is 0.72200983069361 Time taken (in seconds) : 68.87009882926941 ----------------------------------------------------------------- Training model data/train_best Accuracy is 0.7335149756939 Time taken (in seconds) : 71.86131548881531 ----------------------------------------------------------------- Training model data/train_sid Accuracy is 0.7334733041618429 Time taken (in seconds) : 81.44987893104553 ----------------------------------------------------------------- Training model data/train1 Accuracy is 0.7215160225699989 Time taken (in seconds) : 67.47267532348633 ----------------------------------------------------------------- '''
39.375635
102
0.592239
f06c83e6768c2bfa7588f77dc40f4f111cbff866
1,170
py
Python
src/foolscap/test/test_eventual.py
jaraco/foolscap
845bea550447991b194ef884713a7b3be4b4a6c2
[ "MIT" ]
29
2015-01-05T19:37:27.000Z
2021-03-03T21:59:13.000Z
src/foolscap/test/test_eventual.py
jaraco/foolscap
845bea550447991b194ef884713a7b3be4b4a6c2
[ "MIT" ]
65
2015-03-01T03:18:03.000Z
2022-03-24T16:00:48.000Z
src/foolscap/test/test_eventual.py
jaraco/foolscap
845bea550447991b194ef884713a7b3be4b4a6c2
[ "MIT" ]
22
2015-01-28T10:51:46.000Z
2022-01-26T07:56:25.000Z
from twisted.trial import unittest from foolscap.eventual import eventually, fireEventually, flushEventualQueue class TestEventual(unittest.TestCase): def tearDown(self): return flushEventualQueue() def testSend(self): results = [] eventually(results.append, 1) self.assertFalse(results) def _check(): self.assertEqual(results, [1]) eventually(_check) def _check2(): self.assertEqual(results, [1,2]) eventually(results.append, 2) eventually(_check2) def testFlush(self): results = [] eventually(results.append, 1) eventually(results.append, 2) d = flushEventualQueue() def _check(res): self.assertEqual(results, [1,2]) d.addCallback(_check) return d def testFire(self): results = [] fireEventually(1).addCallback(results.append) fireEventually(2).addCallback(results.append) self.assertFalse(results) def _check(res): self.assertEqual(results, [1,2]) d = flushEventualQueue() d.addCallback(_check) return d
27.209302
76
0.610256
1ccd41224b74967e7188facf4c21964dfa810e03
965
py
Python
time_audit/scratch.py
mweiden/productivity-tools
b7026908ff5ea8db001884dd9abbf8316c06c5a7
[ "MIT" ]
null
null
null
time_audit/scratch.py
mweiden/productivity-tools
b7026908ff5ea8db001884dd9abbf8316c06c5a7
[ "MIT" ]
null
null
null
time_audit/scratch.py
mweiden/productivity-tools
b7026908ff5ea8db001884dd9abbf8316c06c5a7
[ "MIT" ]
null
null
null
while ind_transitions < (len(transitions) - 1): print( f"day_bucket[{ind_day_buckets}]={day_buckets[ind_day_buckets]}, transitions[{ind_transitions}]={transitions[ind_transitions][0].isoformat()}" ) if transitions[ind_transitions + 1][0] < day_buckets[ind_day_buckets + 1]: print("advance transitions") ind_transitions += 1 else: print("advance day bucket") ind_day_buckets += 1 active_set = set() for dt, changes in sorted(transitions.items(), key=lambda x: x[0]): added = set() removed = set() for summary, delta in changes.items(): if delta > 0: added.add(summary) elif delta < 0: removed.add(summary) did_not_change = active_set - removed active_set |= added active_set -= removed date_ind = date_to_ind[dt.replace(hour=0, minute=0, second=0, microsecond=0)] for summary in added: summary_ind = summary_to_ind[summary]
30.15625
149
0.642487
a28e20a636ce23665e010908ffbc6c5f914856a4
21,272
py
Python
asv_bench/benchmarks/frame_methods.py
rendner/pandas
47494a48edf25d5a49b0fb5b896b454c15c83595
[ "BSD-3-Clause" ]
1
2019-11-01T08:44:40.000Z
2019-11-01T08:44:40.000Z
asv_bench/benchmarks/frame_methods.py
sdrees/pandas
bef454f0893efe2fa5e49317635f89c03467d16e
[ "BSD-3-Clause" ]
null
null
null
asv_bench/benchmarks/frame_methods.py
sdrees/pandas
bef454f0893efe2fa5e49317635f89c03467d16e
[ "BSD-3-Clause" ]
null
null
null
import string import warnings import numpy as np from pandas import ( DataFrame, MultiIndex, NaT, Series, date_range, isnull, period_range, timedelta_range, ) from .pandas_vb_common import tm class GetNumericData: def setup(self): self.df = DataFrame(np.random.randn(10000, 25)) self.df["foo"] = "bar" self.df["bar"] = "baz" self.df = self.df._consolidate() def time_frame_get_numeric_data(self): self.df._get_numeric_data() class Lookup: def setup(self): self.df = DataFrame(np.random.randn(10000, 8), columns=list("abcdefgh")) self.df["foo"] = "bar" self.row_labels = list(self.df.index[::10])[:900] self.col_labels = list(self.df.columns) * 100 self.row_labels_all = np.array( list(self.df.index) * len(self.df.columns), dtype="object" ) self.col_labels_all = np.array( list(self.df.columns) * len(self.df.index), dtype="object" ) def time_frame_fancy_lookup(self): self.df.lookup(self.row_labels, self.col_labels) def time_frame_fancy_lookup_all(self): self.df.lookup(self.row_labels_all, self.col_labels_all) class Reindex: def setup(self): N = 10**3 self.df = DataFrame(np.random.randn(N * 10, N)) self.idx = np.arange(4 * N, 7 * N) self.idx_cols = np.random.randint(0, N, N) self.df2 = DataFrame( { c: { 0: np.random.randint(0, 2, N).astype(np.bool_), 1: np.random.randint(0, N, N).astype(np.int16), 2: np.random.randint(0, N, N).astype(np.int32), 3: np.random.randint(0, N, N).astype(np.int64), }[np.random.randint(0, 4)] for c in range(N) } ) def time_reindex_axis0(self): self.df.reindex(self.idx) def time_reindex_axis1(self): self.df.reindex(columns=self.idx_cols) def time_reindex_axis1_missing(self): self.df.reindex(columns=self.idx) def time_reindex_both_axes(self): self.df.reindex(index=self.idx, columns=self.idx_cols) def time_reindex_upcast(self): self.df2.reindex(np.random.permutation(range(1200))) class Rename: def setup(self): N = 10**3 self.df = DataFrame(np.random.randn(N * 10, N)) self.idx = np.arange(4 * N, 7 * N) self.dict_idx = {k: k for k in self.idx} self.df2 = DataFrame( { c: { 0: np.random.randint(0, 2, N).astype(np.bool_), 1: np.random.randint(0, N, N).astype(np.int16), 2: np.random.randint(0, N, N).astype(np.int32), 3: np.random.randint(0, N, N).astype(np.int64), }[np.random.randint(0, 4)] for c in range(N) } ) def time_rename_single(self): self.df.rename({0: 0}) def time_rename_axis0(self): self.df.rename(self.dict_idx) def time_rename_axis1(self): self.df.rename(columns=self.dict_idx) def time_rename_both_axes(self): self.df.rename(index=self.dict_idx, columns=self.dict_idx) def time_dict_rename_both_axes(self): self.df.rename(index=self.dict_idx, columns=self.dict_idx) class Iteration: # mem_itertuples_* benchmarks are slow timeout = 120 def setup(self): N = 1000 self.df = DataFrame(np.random.randn(N * 10, N)) self.df2 = DataFrame(np.random.randn(N * 50, 10)) self.df3 = DataFrame( np.random.randn(N, 5 * N), columns=["C" + str(c) for c in range(N * 5)] ) self.df4 = DataFrame(np.random.randn(N * 1000, 10)) def time_items(self): # (monitor no-copying behaviour) if hasattr(self.df, "_item_cache"): self.df._item_cache.clear() for name, col in self.df.items(): pass def time_items_cached(self): for name, col in self.df.items(): pass def time_iteritems_indexing(self): for col in self.df3: self.df3[col] def time_itertuples_start(self): self.df4.itertuples() def time_itertuples_read_first(self): next(self.df4.itertuples()) def time_itertuples(self): for row in self.df4.itertuples(): pass def time_itertuples_to_list(self): list(self.df4.itertuples()) def mem_itertuples_start(self): return self.df4.itertuples() def peakmem_itertuples_start(self): self.df4.itertuples() def mem_itertuples_read_first(self): return next(self.df4.itertuples()) def peakmem_itertuples(self): for row in self.df4.itertuples(): pass def mem_itertuples_to_list(self): return list(self.df4.itertuples()) def peakmem_itertuples_to_list(self): list(self.df4.itertuples()) def time_itertuples_raw_start(self): self.df4.itertuples(index=False, name=None) def time_itertuples_raw_read_first(self): next(self.df4.itertuples(index=False, name=None)) def time_itertuples_raw_tuples(self): for row in self.df4.itertuples(index=False, name=None): pass def time_itertuples_raw_tuples_to_list(self): list(self.df4.itertuples(index=False, name=None)) def mem_itertuples_raw_start(self): return self.df4.itertuples(index=False, name=None) def peakmem_itertuples_raw_start(self): self.df4.itertuples(index=False, name=None) def peakmem_itertuples_raw_read_first(self): next(self.df4.itertuples(index=False, name=None)) def peakmem_itertuples_raw(self): for row in self.df4.itertuples(index=False, name=None): pass def mem_itertuples_raw_to_list(self): return list(self.df4.itertuples(index=False, name=None)) def peakmem_itertuples_raw_to_list(self): list(self.df4.itertuples(index=False, name=None)) def time_iterrows(self): for row in self.df.iterrows(): pass class ToString: def setup(self): self.df = DataFrame(np.random.randn(100, 10)) def time_to_string_floats(self): self.df.to_string() class ToHTML: def setup(self): nrows = 500 self.df2 = DataFrame(np.random.randn(nrows, 10)) self.df2[0] = period_range("2000", periods=nrows) self.df2[1] = range(nrows) def time_to_html_mixed(self): self.df2.to_html() class ToDict: params = [["dict", "list", "series", "split", "records", "index"]] param_names = ["orient"] def setup(self, orient): data = np.random.randint(0, 1000, size=(10000, 4)) self.int_df = DataFrame(data) self.datetimelike_df = self.int_df.astype("timedelta64[ns]") def time_to_dict_ints(self, orient): self.int_df.to_dict(orient=orient) def time_to_dict_datetimelike(self, orient): self.datetimelike_df.to_dict(orient=orient) class ToNumpy: def setup(self): N = 10000 M = 10 self.df_tall = DataFrame(np.random.randn(N, M)) self.df_wide = DataFrame(np.random.randn(M, N)) self.df_mixed_tall = self.df_tall.copy() self.df_mixed_tall["foo"] = "bar" self.df_mixed_tall[0] = period_range("2000", periods=N) self.df_mixed_tall[1] = range(N) self.df_mixed_wide = self.df_wide.copy() self.df_mixed_wide["foo"] = "bar" self.df_mixed_wide[0] = period_range("2000", periods=M) self.df_mixed_wide[1] = range(M) def time_to_numpy_tall(self): self.df_tall.to_numpy() def time_to_numpy_wide(self): self.df_wide.to_numpy() def time_to_numpy_mixed_tall(self): self.df_mixed_tall.to_numpy() def time_to_numpy_mixed_wide(self): self.df_mixed_wide.to_numpy() def time_values_tall(self): self.df_tall.values def time_values_wide(self): self.df_wide.values def time_values_mixed_tall(self): self.df_mixed_tall.values def time_values_mixed_wide(self): self.df_mixed_wide.values class ToRecords: def setup(self): N = 100_000 data = np.random.randn(N, 2) mi = MultiIndex.from_arrays( [ np.arange(N), date_range("1970-01-01", periods=N, freq="ms"), ] ) self.df = DataFrame(data) self.df_mi = DataFrame(data, index=mi) def time_to_records(self): self.df.to_records(index=True) def time_to_records_multiindex(self): self.df_mi.to_records(index=True) class Repr: def setup(self): nrows = 10000 data = np.random.randn(nrows, 10) arrays = np.tile(np.random.randn(3, nrows // 100), 100) idx = MultiIndex.from_arrays(arrays) self.df3 = DataFrame(data, index=idx) self.df4 = DataFrame(data, index=np.random.randn(nrows)) self.df_tall = DataFrame(np.random.randn(nrows, 10)) self.df_wide = DataFrame(np.random.randn(10, nrows)) def time_html_repr_trunc_mi(self): self.df3._repr_html_() def time_html_repr_trunc_si(self): self.df4._repr_html_() def time_repr_tall(self): repr(self.df_tall) def time_frame_repr_wide(self): repr(self.df_wide) class MaskBool: def setup(self): data = np.random.randn(1000, 500) df = DataFrame(data) df = df.where(df > 0) self.bools = df > 0 self.mask = isnull(df) def time_frame_mask_bools(self): self.bools.mask(self.mask) def time_frame_mask_floats(self): self.bools.astype(float).mask(self.mask) class Isnull: def setup(self): N = 10**3 self.df_no_null = DataFrame(np.random.randn(N, N)) sample = np.array([np.nan, 1.0]) data = np.random.choice(sample, (N, N)) self.df = DataFrame(data) sample = np.array(list(string.ascii_letters + string.whitespace)) data = np.random.choice(sample, (N, N)) self.df_strings = DataFrame(data) sample = np.array( [ NaT, np.nan, None, np.datetime64("NaT"), np.timedelta64("NaT"), 0, 1, 2.0, "", "abcd", ] ) data = np.random.choice(sample, (N, N)) self.df_obj = DataFrame(data) def time_isnull_floats_no_null(self): isnull(self.df_no_null) def time_isnull(self): isnull(self.df) def time_isnull_strngs(self): isnull(self.df_strings) def time_isnull_obj(self): isnull(self.df_obj) class Fillna: params = ( [True, False], ["pad", "bfill"], [ "float64", "float32", "object", "Int64", "Float64", "datetime64[ns]", "datetime64[ns, tz]", "timedelta64[ns]", ], ) param_names = ["inplace", "method", "dtype"] def setup(self, inplace, method, dtype): N, M = 10000, 100 if dtype in ("datetime64[ns]", "datetime64[ns, tz]", "timedelta64[ns]"): data = { "datetime64[ns]": date_range("2011-01-01", freq="H", periods=N), "datetime64[ns, tz]": date_range( "2011-01-01", freq="H", periods=N, tz="Asia/Tokyo" ), "timedelta64[ns]": timedelta_range(start="1 day", periods=N, freq="1D"), } self.df = DataFrame({f"col_{i}": data[dtype] for i in range(M)}) self.df[::2] = None else: values = np.random.randn(N, M) values[::2] = np.nan if dtype == "Int64": values = values.round() self.df = DataFrame(values, dtype=dtype) def time_frame_fillna(self, inplace, method, dtype): self.df.fillna(inplace=inplace, method=method) class Dropna: params = (["all", "any"], [0, 1]) param_names = ["how", "axis"] def setup(self, how, axis): self.df = DataFrame(np.random.randn(10000, 1000)) self.df.iloc[50:1000, 20:50] = np.nan self.df.iloc[2000:3000] = np.nan self.df.iloc[:, 60:70] = np.nan self.df_mixed = self.df.copy() self.df_mixed["foo"] = "bar" def time_dropna(self, how, axis): self.df.dropna(how=how, axis=axis) def time_dropna_axis_mixed_dtypes(self, how, axis): self.df_mixed.dropna(how=how, axis=axis) class Count: params = [0, 1] param_names = ["axis"] def setup(self, axis): self.df = DataFrame(np.random.randn(10000, 1000)) self.df.iloc[50:1000, 20:50] = np.nan self.df.iloc[2000:3000] = np.nan self.df.iloc[:, 60:70] = np.nan self.df_mixed = self.df.copy() self.df_mixed["foo"] = "bar" self.df.index = MultiIndex.from_arrays([self.df.index, self.df.index]) self.df.columns = MultiIndex.from_arrays([self.df.columns, self.df.columns]) self.df_mixed.index = MultiIndex.from_arrays( [self.df_mixed.index, self.df_mixed.index] ) self.df_mixed.columns = MultiIndex.from_arrays( [self.df_mixed.columns, self.df_mixed.columns] ) def time_count_level_multi(self, axis): self.df.count(axis=axis, level=1) def time_count_level_mixed_dtypes_multi(self, axis): self.df_mixed.count(axis=axis, level=1) class Apply: def setup(self): self.df = DataFrame(np.random.randn(1000, 100)) self.s = Series(np.arange(1028.0)) self.df2 = DataFrame({i: self.s for i in range(1028)}) self.df3 = DataFrame(np.random.randn(1000, 3), columns=list("ABC")) def time_apply_user_func(self): self.df2.apply(lambda x: np.corrcoef(x, self.s)[(0, 1)]) def time_apply_axis_1(self): self.df.apply(lambda x: x + 1, axis=1) def time_apply_lambda_mean(self): self.df.apply(lambda x: x.mean()) def time_apply_np_mean(self): self.df.apply(np.mean) def time_apply_pass_thru(self): self.df.apply(lambda x: x) def time_apply_ref_by_name(self): self.df3.apply(lambda x: x["A"] + x["B"], axis=1) class Dtypes: def setup(self): self.df = DataFrame(np.random.randn(1000, 1000)) def time_frame_dtypes(self): self.df.dtypes class Equals: def setup(self): N = 10**3 self.float_df = DataFrame(np.random.randn(N, N)) self.float_df_nan = self.float_df.copy() self.float_df_nan.iloc[-1, -1] = np.nan self.object_df = DataFrame("foo", index=range(N), columns=range(N)) self.object_df_nan = self.object_df.copy() self.object_df_nan.iloc[-1, -1] = np.nan self.nonunique_cols = self.object_df.copy() self.nonunique_cols.columns = ["A"] * len(self.nonunique_cols.columns) self.nonunique_cols_nan = self.nonunique_cols.copy() self.nonunique_cols_nan.iloc[-1, -1] = np.nan def time_frame_float_equal(self): self.float_df.equals(self.float_df) def time_frame_float_unequal(self): self.float_df.equals(self.float_df_nan) def time_frame_nonunique_equal(self): self.nonunique_cols.equals(self.nonunique_cols) def time_frame_nonunique_unequal(self): self.nonunique_cols.equals(self.nonunique_cols_nan) def time_frame_object_equal(self): self.object_df.equals(self.object_df) def time_frame_object_unequal(self): self.object_df.equals(self.object_df_nan) class Interpolate: params = [None, "infer"] param_names = ["downcast"] def setup(self, downcast): N = 10000 # this is the worst case, where every column has NaNs. arr = np.random.randn(N, 100) # NB: we need to set values in array, not in df.values, otherwise # the benchmark will be misleading for ArrayManager arr[::2] = np.nan self.df = DataFrame(arr) self.df2 = DataFrame( { "A": np.arange(0, N), "B": np.random.randint(0, 100, N), "C": np.random.randn(N), "D": np.random.randn(N), } ) self.df2.loc[1::5, "A"] = np.nan self.df2.loc[1::5, "C"] = np.nan def time_interpolate(self, downcast): self.df.interpolate(downcast=downcast) def time_interpolate_some_good(self, downcast): self.df2.interpolate(downcast=downcast) class Shift: # frame shift speedup issue-5609 params = [0, 1] param_names = ["axis"] def setup(self, axis): self.df = DataFrame(np.random.rand(10000, 500)) def time_shift(self, axis): self.df.shift(1, axis=axis) class Nunique: def setup(self): self.df = DataFrame(np.random.randn(10000, 1000)) def time_frame_nunique(self): self.df.nunique() class SeriesNuniqueWithNan: def setup(self): self.ser = Series(100000 * (100 * [np.nan] + list(range(100)))).astype(float) def time_series_nunique_nan(self): self.ser.nunique() class Duplicated: def setup(self): n = 1 << 20 t = date_range("2015-01-01", freq="S", periods=(n // 64)) xs = np.random.randn(n // 64).round(2) self.df = DataFrame( { "a": np.random.randint(-1 << 8, 1 << 8, n), "b": np.random.choice(t, n), "c": np.random.choice(xs, n), } ) self.df2 = DataFrame(np.random.randn(1000, 100).astype(str)).T def time_frame_duplicated(self): self.df.duplicated() def time_frame_duplicated_wide(self): self.df2.duplicated() def time_frame_duplicated_subset(self): self.df.duplicated(subset=["a"]) class XS: params = [0, 1] param_names = ["axis"] def setup(self, axis): self.N = 10**4 self.df = DataFrame(np.random.randn(self.N, self.N)) def time_frame_xs(self, axis): self.df.xs(self.N / 2, axis=axis) class SortValues: params = [True, False] param_names = ["ascending"] def setup(self, ascending): self.df = DataFrame(np.random.randn(1000000, 2), columns=list("AB")) def time_frame_sort_values(self, ascending): self.df.sort_values(by="A", ascending=ascending) class SortIndexByColumns: def setup(self): N = 10000 K = 10 self.df = DataFrame( { "key1": tm.makeStringIndex(N).values.repeat(K), "key2": tm.makeStringIndex(N).values.repeat(K), "value": np.random.randn(N * K), } ) def time_frame_sort_values_by_columns(self): self.df.sort_values(by=["key1", "key2"]) class Quantile: params = [0, 1] param_names = ["axis"] def setup(self, axis): self.df = DataFrame(np.random.randn(1000, 3), columns=list("ABC")) def time_frame_quantile(self, axis): self.df.quantile([0.1, 0.5], axis=axis) class Rank: param_names = ["dtype"] params = [ ["int", "uint", "float", "object"], ] def setup(self, dtype): self.df = DataFrame( np.random.randn(10000, 10).astype(dtype), columns=range(10), dtype=dtype ) def time_rank(self, dtype): self.df.rank() class GetDtypeCounts: # 2807 def setup(self): self.df = DataFrame(np.random.randn(10, 10000)) def time_frame_get_dtype_counts(self): with warnings.catch_warnings(record=True): self.df.dtypes.value_counts() def time_info(self): self.df.info() class NSort: params = ["first", "last", "all"] param_names = ["keep"] def setup(self, keep): self.df = DataFrame(np.random.randn(100000, 3), columns=list("ABC")) def time_nlargest_one_column(self, keep): self.df.nlargest(100, "A", keep=keep) def time_nlargest_two_columns(self, keep): self.df.nlargest(100, ["A", "B"], keep=keep) def time_nsmallest_one_column(self, keep): self.df.nsmallest(100, "A", keep=keep) def time_nsmallest_two_columns(self, keep): self.df.nsmallest(100, ["A", "B"], keep=keep) class Describe: def setup(self): self.df = DataFrame( { "a": np.random.randint(0, 100, 10**6), "b": np.random.randint(0, 100, 10**6), "c": np.random.randint(0, 100, 10**6), } ) def time_series_describe(self): self.df["a"].describe() def time_dataframe_describe(self): self.df.describe() class MemoryUsage: def setup(self): self.df = DataFrame(np.random.randn(100000, 2), columns=list("AB")) self.df2 = self.df.copy() self.df2["A"] = self.df2["A"].astype("object") def time_memory_usage(self): self.df.memory_usage(deep=True) def time_memory_usage_object_dtype(self): self.df2.memory_usage(deep=True) from .pandas_vb_common import setup # noqa: F401 isort:skip
27.590143
88
0.588943
bf4687e6da8e97cd946723376014a59c0d6c5875
2,173
py
Python
examples/example5.py
jvansteirteghem/twunnel3
717ad40e114cfe63fa366465643ecb9f16ea6df9
[ "MIT" ]
13
2015-01-01T09:41:57.000Z
2019-09-25T18:02:22.000Z
examples/example5.py
jvansteirteghem/twunnel3
717ad40e114cfe63fa366465643ecb9f16ea6df9
[ "MIT" ]
3
2015-08-30T06:59:05.000Z
2019-05-16T11:23:12.000Z
examples/example5.py
jvansteirteghem/twunnel3
717ad40e114cfe63fa366465643ecb9f16ea6df9
[ "MIT" ]
4
2015-06-11T13:10:21.000Z
2019-11-20T12:00:29.000Z
import sys import os sys.path.insert(0, os.path.abspath("..")) import asyncio from twunnel3 import local_proxy_server, logger from examples import example configuration = \ { "LOGGER": { "LEVEL": 3 } } logger.configure(configuration) loop = asyncio.get_event_loop() configuration = \ { "PROXY_SERVERS": [], "LOCAL_PROXY_SERVER": { "TYPE": "HTTPS", "ADDRESS": "127.0.0.1", "PORT": 8080 } } https_server = loop.run_until_complete(local_proxy_server.create_server(configuration)) configuration = \ { "PROXY_SERVERS": [], "LOCAL_PROXY_SERVER": { "TYPE": "SOCKS4", "ADDRESS": "127.0.0.1", "PORT": 8081 } } socks4_server = loop.run_until_complete(local_proxy_server.create_server(configuration)) configuration = \ { "PROXY_SERVERS": [], "LOCAL_PROXY_SERVER": { "TYPE": "SOCKS5", "ADDRESS": "127.0.0.1", "PORT": 8082, "ACCOUNTS": [ { "NAME": "", "PASSWORD": "" } ] } } socks5_server = loop.run_until_complete(local_proxy_server.create_server(configuration)) configuration = \ { "PROXY_SERVERS": [ { "TYPE": "HTTPS", "ADDRESS": "127.0.0.1", "PORT": 8080, "ACCOUNT": { "NAME": "", "PASSWORD": "" } }, { "TYPE": "SOCKS4", "ADDRESS": "127.0.0.1", "PORT": 8081, "ACCOUNT": { "NAME": "" } }, { "TYPE": "SOCKS5", "ADDRESS": "127.0.0.1", "PORT": 8082, "ACCOUNT": { "NAME": "", "PASSWORD": "" } } ] } loop.call_later(5, example.create_connection, configuration) loop.call_later(10, example.create_connection, configuration, True) loop.call_later(15, socks5_server.close) loop.call_later(20, socks4_server.close) loop.call_later(25, https_server.close) loop.call_later(30, loop.stop) loop.run_forever()
19.93578
88
0.505292
090b035d66a637fe1f62c8760e21443532b659e2
3,097
py
Python
alicraper/settings.py
VictorVSa/alicraper
54a9d005a38140ab4f4a39564269cc056840b7a0
[ "MIT" ]
3
2021-04-22T08:50:43.000Z
2021-12-10T16:07:09.000Z
alicraper/settings.py
VictorVSa/alicraper
54a9d005a38140ab4f4a39564269cc056840b7a0
[ "MIT" ]
null
null
null
alicraper/settings.py
VictorVSa/alicraper
54a9d005a38140ab4f4a39564269cc056840b7a0
[ "MIT" ]
2
2021-05-18T13:16:41.000Z
2021-12-10T16:07:16.000Z
# -*- coding: utf-8 -*- # Scrapy settings for alicraper project # # For simplicity, this file contains only settings considered important or # commonly used. You can find more settings consulting the documentation: # # https://doc.scrapy.org/en/latest/topics/settings.html # https://doc.scrapy.org/en/latest/topics/downloader-middleware.html # https://doc.scrapy.org/en/latest/topics/spider-middleware.html BOT_NAME = 'alicraper' SPIDER_MODULES = ['alicraper.spiders'] NEWSPIDER_MODULE = 'alicraper.spiders' # Crawl responsibly by identifying yourself (and your website) on the user-agent #USER_AGENT = 'alicraper (+http://www.yourdomain.com)' # Obey robots.txt rules ROBOTSTXT_OBEY = True # Configure maximum concurrent requests performed by Scrapy (default: 16) #CONCURRENT_REQUESTS = 32 # Configure a delay for requests for the same website (default: 0) # See https://doc.scrapy.org/en/latest/topics/settings.html#download-delay # See also autothrottle settings and docs DOWNLOAD_DELAY = 3 # The download delay setting will honor only one of: #CONCURRENT_REQUESTS_PER_DOMAIN = 16 #CONCURRENT_REQUESTS_PER_IP = 16 # Disable cookies (enabled by default) #COOKIES_ENABLED = False # Disable Telnet Console (enabled by default) #TELNETCONSOLE_ENABLED = False # Override the default request headers: DEFAULT_REQUEST_HEADERS = { 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', 'Accept-Language': 'es', } # Enable or disable spider middlewares # See https://doc.scrapy.org/en/latest/topics/spider-middleware.html #SPIDER_MIDDLEWARES = { # 'alicraper.middlewares.AlicraperSpiderMiddleware': 543, #} # Enable or disable downloader middlewares # See https://doc.scrapy.org/en/latest/topics/downloader-middleware.html #DOWNLOADER_MIDDLEWARES = { # 'alicraper.middlewares.AlicraperDownloaderMiddleware': 543, #} # Enable or disable extensions # See https://doc.scrapy.org/en/latest/topics/extensions.html #EXTENSIONS = { # 'scrapy.extensions.telnet.TelnetConsole': None, #} # Configure item pipelines # See https://doc.scrapy.org/en/latest/topics/item-pipeline.html #ITEM_PIPELINES = { # 'alicraper.pipelines.AlicraperPipeline': 300, #} # Enable and configure the AutoThrottle extension (disabled by default) # See https://doc.scrapy.org/en/latest/topics/autothrottle.html #AUTOTHROTTLE_ENABLED = True # The initial download delay #AUTOTHROTTLE_START_DELAY = 5 # The maximum download delay to be set in case of high latencies #AUTOTHROTTLE_MAX_DELAY = 60 # The average number of requests Scrapy should be sending in parallel to # each remote server #AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0 # Enable showing throttling stats for every response received: #AUTOTHROTTLE_DEBUG = False # Enable and configure HTTP caching (disabled by default) # See https://doc.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings #HTTPCACHE_ENABLED = True #HTTPCACHE_EXPIRATION_SECS = 0 #HTTPCACHE_DIR = 'httpcache' #HTTPCACHE_IGNORE_HTTP_CODES = [] #HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'
34.411111
104
0.776881
882aab73404e6fdc435416d53e5bb7ac37d48ac2
26,765
py
Python
sharpy/solvers/steplinearuvlm.py
ostodieck/sharpy
b85aa1c001a0ec851af4eb259cce7c01dfa68b9e
[ "BSD-3-Clause" ]
1
2020-07-27T05:15:35.000Z
2020-07-27T05:15:35.000Z
sharpy/solvers/steplinearuvlm.py
briandesilva/sharpy
aed86428ff88fd14d36cabd91cf7e04b5fc9a39a
[ "BSD-3-Clause" ]
null
null
null
sharpy/solvers/steplinearuvlm.py
briandesilva/sharpy
aed86428ff88fd14d36cabd91cf7e04b5fc9a39a
[ "BSD-3-Clause" ]
null
null
null
""" Time domain solver to integrate the linear UVLM aerodynamic system developed by S. Maraniello N Goizueta Nov 18 """ from sharpy.utils.solver_interface import BaseSolver, solver import numpy as np import sharpy.utils.settings as settings import sharpy.utils.generator_interface as gen_interface import sharpy.utils.algebra as algebra import sharpy.linear.src.linuvlm as linuvlm @solver class StepLinearUVLM(BaseSolver): r""" Time domain aerodynamic solver that uses a linear UVLM formulation to be used with the :class:`solvers.DynamicCoupled` solver. To use this solver, the ``solver_id = StepLinearUVLM`` must be given as the name for the ``aero_solver`` is the case of an aeroelastic solver, where the setting below would be parsed through ``aero_solver_settings``. Notes: The ``integr_order`` variable refers to the finite differencing scheme used to calculate the bound circulation derivative with respect to time :math:`\dot{\mathbf{\Gamma}}`. A first order scheme is used when ``integr_order == 1`` .. math:: \dot{\mathbf{\Gamma}}^{n+1} = \frac{\mathbf{\Gamma}^{n+1}-\mathbf{\Gamma}^n}{\Delta t} If ``integr_order == 2`` a higher order scheme is used (but it isn't exactly second order accurate [1]). .. math:: \dot{\mathbf{\Gamma}}^{n+1} = \frac{3\mathbf{\Gamma}^{n+1}-4\mathbf{\Gamma}^n + \mathbf{\Gamma}^{n-1}} {2\Delta t} If ``track_body`` is ``True``, the UVLM is projected onto a frame ``U`` that is: * Coincident with ``G`` at the linearisation timestep. * Thence, rotates by the same quantity as the FoR ``A``. It is similar to a stability axes and is recommended any time rigid body dynamics are included. See Also: :class:`sharpy.sharpy.linear.assembler.linearuvlm.LinearUVLM` References: [1] Maraniello, S., & Palacios, R.. State-Space Realizations and Internal Balancing in Potential-Flow Aerodynamics with Arbitrary Kinematics. AIAA Journal, 57(6), 1โ€“14. 2019. https://doi.org/10.2514/1.J058153 """ solver_id = 'StepLinearUVLM' solver_classification = 'aero' settings_types = dict() settings_default = dict() settings_description = dict() settings_types['dt'] = 'float' settings_default['dt'] = 0.1 settings_description['dt'] = 'Time step' settings_types['integr_order'] = 'int' settings_default['integr_order'] = 2 settings_description['integr_order'] = 'Integration order of the circulation derivative. Either ``1`` or ``2``.' settings_types['ScalingDict'] = 'dict' settings_default['ScalingDict'] = dict() settings_description['ScalingDict'] = 'Dictionary of scaling factors to achieve normalised UVLM realisation.' settings_types['remove_predictor'] = 'bool' settings_default['remove_predictor'] = True settings_description['remove_predictor'] = 'Remove the predictor term from the UVLM equations' settings_types['use_sparse'] = 'bool' settings_default['use_sparse'] = True settings_description['use_sparse'] = 'Assemble UVLM plant matrix in sparse format' settings_types['density'] = 'float' settings_default['density'] = 1.225 settings_description['density'] = 'Air density' settings_types['track_body'] = 'bool' settings_default['track_body'] = True settings_description['track_body'] = 'UVLM inputs and outputs projected to coincide with lattice at linearisation' settings_types['track_body_number'] = 'int' settings_default['track_body_number'] = -1 settings_description['track_body_number'] = 'Frame of reference number to follow. If ``-1`` track ``A`` frame.' settings_table = settings.SettingsTable() __doc__ += settings_table.generate(settings_types, settings_default, settings_description) scaling_settings_types = dict() scaling_settings_default = dict() scaling_settings_description = dict() scaling_settings_types['length'] = 'float' scaling_settings_default['length'] = 1.0 scaling_settings_description['length'] = 'Reference length to be used for UVLM scaling' scaling_settings_types['speed'] = 'float' scaling_settings_default['speed'] = 1.0 scaling_settings_description['speed'] = 'Reference speed to be used for UVLM scaling' scaling_settings_types['density'] = 'float' scaling_settings_default['density'] = 1.0 scaling_settings_description['density'] = 'Reference density to be used for UVLM scaling' __doc__ += settings_table.generate(scaling_settings_types, scaling_settings_default, scaling_settings_description, header_line='The settings that ``ScalingDict`` ' 'accepts are the following:') def __init__(self): self.data = None self.settings = None self.lin_uvlm_system = None self.velocity_generator = None def initialise(self, data, custom_settings=None): r""" Initialises the Linear UVLM aerodynamic solver and the chosen velocity generator. Settings are parsed into the standard SHARPy settings format for solvers. It then checks whether there is any previous information about the linearised system (in order for a solution to be restarted without overwriting the linearisation). If a linearised system does not exist, a linear UVLM system is created linearising about the current time step. The reference values for the input and output are transformed into column vectors :math:`\mathbf{u}` and :math:`\mathbf{y}`, respectively. The information pertaining to the linear system is stored in a dictionary ``self.data.aero.linear`` within the main ``data`` variable. Args: data (PreSharpy): class containing the problem information custom_settings (dict): custom settings dictionary """ self.data = data if custom_settings is None: self.settings = data.settings[self.solver_id] else: self.settings = custom_settings settings.to_custom_types(self.settings, self.settings_types, self.settings_default, no_ctype=True) settings.to_custom_types(self.settings['ScalingDict'], self.scaling_settings_types, self.scaling_settings_default, no_ctype=True) # Check whether linear UVLM has been initialised try: self.data.aero.linear except AttributeError: self.data.aero.linear = dict() aero_tstep = self.data.aero.timestep_info[-1] ### Record body orientation/velocities at time 0 # This option allows to rotate the linearised UVLM with the A frame # or a specific body (multi-body solution) if self.settings['track_body']: self.num_body_track = self.settings['track_body_number'] # track A frame if self.num_body_track == -1: self.quat0 = self.data.structure.timestep_info[0].quat.copy() self.for_vel0 = self.data.structure.timestep_info[0].for_vel.copy() else: # track a specific body self.quat0 = \ self.data.structure.timestep_info[0].mb_quat[self.num_body_track,:].copy() self.for_vel0 = \ self.data.structure.timestep_info[0].mb_FoR_vel[self.num_body_track ,:].copy() # convert to G frame self.Cga0 = algebra.quat2rotation(self.quat0) self.Cga = self.Cga0.copy() self.for_vel0[:3] = self.Cga0.dot(self.for_vel0[:3]) self.for_vel0[3:] = self.Cga0.dot(self.for_vel0[3:]) else: # check/record initial rotation speed self.num_body_track = None self.quat0 = None self.Cag0 = None self.Cga = None self.for_vel0 = np.zeros((6,)) # TODO: verify of a better way to implement rho aero_tstep.rho = self.settings['density'] # Generate instance of linuvlm.Dynamic() lin_uvlm_system = linuvlm.DynamicBlock(aero_tstep, dynamic_settings=self.settings, # dt=self.settings['dt'].value, # integr_order=self.settings['integr_order'].value, # ScalingDict=self.settings['ScalingDict'], # RemovePredictor=self.settings['remove_predictor'].value, # UseSparse=self.settings['use_sparse'].value, for_vel=self.for_vel0) # add rotational speed for ii in range(lin_uvlm_system.MS.n_surf): lin_uvlm_system.MS.Surfs[ii].omega = self.for_vel0[3:] # Save reference values # System Inputs u_0 = self.pack_input_vector() # Linearised state dt = self.settings['dt'] x_0 = self.pack_state_vector(aero_tstep, None, dt, self.settings['integr_order']) # Reference forces f_0 = np.concatenate([aero_tstep.forces[ss][0:3].reshape(-1, order='C') for ss in range(aero_tstep.n_surf)]) # Assemble the state space system lin_uvlm_system.assemble_ss() self.data.aero.linear['System'] = lin_uvlm_system self.data.aero.linear['SS'] = lin_uvlm_system.SS self.data.aero.linear['x_0'] = x_0 self.data.aero.linear['u_0'] = u_0 self.data.aero.linear['y_0'] = f_0 # self.data.aero.linear['gamma_0'] = gamma # self.data.aero.linear['gamma_star_0'] = gamma_star # self.data.aero.linear['gamma_dot_0'] = gamma_dot # TODO: Implement in AeroTimeStepInfo a way to store the state vectors # aero_tstep.linear.x = x_0 # aero_tstep.linear.u = u_0 # aero_tstep.linear.y = f_0 # Initialise velocity generator velocity_generator_type = gen_interface.generator_from_string(self.settings['velocity_field_generator']) self.velocity_generator = velocity_generator_type() self.velocity_generator.initialise(self.settings['velocity_field_input']) def run(self, aero_tstep, structure_tstep, convect_wake=False, dt=None, t=None, unsteady_contribution=False): r""" Solve the linear aerodynamic UVLM model at the current time step ``n``. The step increment is solved as: .. math:: \mathbf{x}^n &= \mathbf{A\,x}^{n-1} + \mathbf{B\,u}^n \\ \mathbf{y}^n &= \mathbf{C\,x}^n + \mathbf{D\,u}^n A change of state is possible in order to solve the system without the predictor term. In which case the system is solved by: .. math:: \mathbf{h}^n &= \mathbf{A\,h}^{n-1} + \mathbf{B\,u}^{n-1} \\ \mathbf{y}^n &= \mathbf{C\,h}^n + \mathbf{D\,u}^n Variations are taken with respect to initial reference state. The state and input vectors for the linear UVLM system are of the form: If ``integr_order==1``: .. math:: \mathbf{x}_n = [\delta\mathbf{\Gamma}^T_n,\, \delta\mathbf{\Gamma_w}_n^T,\, \Delta t \,\delta\mathbf{\dot{\Gamma}}_n^T]^T Else, if ``integr_order==2``: .. math:: \mathbf{x}_n = [\delta\mathbf{\Gamma}_n^T,\, \delta\mathbf{\Gamma_w}_n^T,\, \Delta t \,\delta\mathbf{\dot{\Gamma}}_n^T,\, \delta\mathbf{\Gamma}_{n-1}^T]^T And the input vector: .. math:: \mathbf{u}_n = [\delta\mathbf{\zeta}_n^T,\, \delta\dot{\mathbf{\zeta}}_n^T,\,\delta\mathbf{u_{ext}}^T_n]^T where the subscript ``n`` refers to the time step. The linear UVLM system is then solved as detailed in :func:`sharpy.linear.src.linuvlm.Dynamic.solve_step`. The output is a column vector containing the aerodynamic forces at the panel vertices. To Do: option for impulsive start? Args: aero_tstep (AeroTimeStepInfo): object containing the aerodynamic data at the current time step structure_tstep (StructTimeStepInfo): object containing the structural data at the current time step convect_wake (bool): for backward compatibility only. The linear UVLM assumes a frozen wake geometry dt (float): time increment t (float): current time unsteady_contribution (bool): (backward compatibily). Unsteady aerodynamic effects are always included Returns: PreSharpy: updated ``self.data`` class with the new forces and circulation terms of the system """ if aero_tstep is None: aero_tstep = self.data.aero.timestep_info[-1] if structure_tstep is None: structure_tstep = self.data.structure.timestep_info[-1] if dt is None: dt = self.settings['dt'] if t is None: t = self.data.ts*dt integr_order = self.settings['integr_order'] ### Define Input # Generate external velocity field u_ext self.velocity_generator.generate({'zeta': aero_tstep.zeta, 'override': True, 't': t, 'ts': self.data.ts, 'dt': dt, 'for_pos': structure_tstep.for_pos}, aero_tstep.u_ext) ### Proj from FoR G to linearisation frame # - proj happens in self.pack_input_vector and unpack_ss_vectors if self.settings['track_body']: # track A frame if self.num_body_track == -1: self.Cga = algebra.quat2rotation( structure_tstep.quat ) else: # track a specific body self.Cga = algebra.quat2rotation( structure_tstep.mb_quat[self.num_body_track,:] ) # Column vector that will be the input to the linearised UVLM system # Input is at time step n, since it is updated in the aeroelastic solver prior to aerodynamic solver u_n = self.pack_input_vector() du_n = u_n - self.data.aero.linear['u_0'] if self.settings['remove_predictor']: u_m1 = self.pack_input_vector() du_m1 = u_m1 - self.data.aero.linear['u_0'] else: du_m1 = None # Retrieve State vector at time n-1 if len(self.data.aero.timestep_info) < 2: x_m1 = self.pack_state_vector(aero_tstep, None, dt, integr_order) else: x_m1 = self.pack_state_vector(aero_tstep, self.data.aero.timestep_info[-2], dt, integr_order) # dx is at timestep n-1 dx_m1 = x_m1 - self.data.aero.linear['x_0'] ### Solve system - output is the variation in force dx_n, dy_n = self.data.aero.linear['System'].solve_step(dx_m1, du_m1, du_n, transform_state=True) x_n = self.data.aero.linear['x_0'] + dx_n y_n = self.data.aero.linear['y_0'] + dy_n # if self.settings['physical_model']: forces, gamma, gamma_dot, gamma_star = self.unpack_ss_vectors(y_n, x_n, u_n, aero_tstep) aero_tstep.forces = forces aero_tstep.gamma = gamma aero_tstep.gamma_dot = gamma_dot aero_tstep.gamma_star = gamma_star return self.data def add_step(self): self.data.aero.add_timestep() def update_grid(self, beam): self.data.aero.generate_zeta(beam, self.data.aero.aero_settings, -1, beam_ts=-1) def update_custom_grid(self, structure_tstep, aero_tstep): self.data.aero.generate_zeta_timestep_info(structure_tstep, aero_tstep, self.data.structure, self.data.aero.aero_settings) def unpack_ss_vectors(self, y_n, x_n, u_n, aero_tstep): r""" Transform column vectors used in the state space formulation into SHARPy format The column vectors are transformed into lists with one entry per aerodynamic surface. Each entry contains a matrix with the quantities at each grid vertex. .. math:: \mathbf{y}_n \longrightarrow \mathbf{f}_{aero} .. math:: \mathbf{x}_n \longrightarrow \mathbf{\Gamma}_n,\, \mathbf{\Gamma_w}_n,\, \mathbf{\dot{\Gamma}}_n If the ``track_body`` option is on, the output forces are projected from the linearization frame, to the G frame. Note that the linearisation frame is: a. equal to the FoR G at time 0 (linearisation point) b. rotates as the body frame specified in the ``track_body_number`` Args: y_n (np.ndarray): Column output vector of linear UVLM system x_n (np.ndarray): Column state vector of linear UVLM system u_n (np.ndarray): Column input vector of linear UVLM system aero_tstep (AeroTimeStepInfo): aerodynamic timestep information class instance Returns: tuple: Tuple containing: forces (list): Aerodynamic forces in a list with ``n_surf`` entries. Each entry is a ``(6, M+1, N+1)`` matrix, where the first 3 indices correspond to the components in ``x``, ``y`` and ``z``. The latter 3 are zero. gamma (list): Bound circulation list with ``n_surf`` entries. Circulation is stored in an ``(M+1, N+1)`` matrix, corresponding to the panel vertices. gamma_dot (list): Bound circulation derivative list with ``n_surf`` entries. Circulation derivative is stored in an ``(M+1, N+1)`` matrix, corresponding to the panel vertices. gamma_star (list): Wake (free) circulation list with ``n_surf`` entries. Wake circulation is stored in an ``(M_star+1, N+1)`` matrix, corresponding to the panel vertices of the wake. """ ### project forces from uvlm FoR to FoR G if self.settings['track_body']: Cg_uvlm = np.dot( self.Cga, self.Cga0.T ) f_aero = y_n gamma_vec, gamma_star_vec, gamma_dot_vec = self.data.aero.linear['System'].unpack_state(x_n) # Reshape output into forces[i_surface] where forces[i_surface] is a (6,M+1,N+1) matrix and circulation terms # where gamma is a [i_surf](M+1, N+1) matrix forces = [] gamma = [] gamma_star = [] gamma_dot = [] worked_points = 0 worked_panels = 0 worked_wake_panels = 0 for i_surf in range(aero_tstep.n_surf): # Tuple with dimensions of the aerogrid zeta, which is the same shape for forces dimensions = aero_tstep.zeta[i_surf].shape dimensions_gamma = self.data.aero.aero_dimensions[i_surf] dimensions_wake = self.data.aero.aero_dimensions_star[i_surf] # Number of entries in zeta points_in_surface = aero_tstep.zeta[i_surf].size panels_in_surface = aero_tstep.gamma[i_surf].size panels_in_wake = aero_tstep.gamma_star[i_surf].size # Append reshaped forces to each entry in list (one for each surface) forces.append(f_aero[worked_points:worked_points+points_in_surface].reshape(dimensions, order='C')) ### project forces. # - forces are in UVLM linearisation frame. Hence, these are projected # into FoR (using rotation matrix Cag0 time 0) A and back to FoR G if self.settings['track_body']: for mm in range(dimensions[1]): for nn in range(dimensions[2]): forces[i_surf][:,mm,nn] = np.dot(Cg_uvlm, forces[i_surf][:,mm,nn]) # Add the null bottom 3 rows to to the forces entry forces[i_surf] = np.concatenate((forces[i_surf], np.zeros(dimensions))) # Reshape bound circulation terms gamma.append(gamma_vec[worked_panels:worked_panels+panels_in_surface].reshape( dimensions_gamma, order='C')) gamma_dot.append(gamma_dot_vec[worked_panels:worked_panels+panels_in_surface].reshape( dimensions_gamma, order='C')) # Reshape wake circulation terms gamma_star.append(gamma_star_vec[worked_wake_panels:worked_wake_panels+panels_in_wake].reshape( dimensions_wake, order='C')) worked_points += points_in_surface worked_panels += panels_in_surface worked_wake_panels += panels_in_wake return forces, gamma, gamma_dot, gamma_star def pack_input_vector(self): r""" Transform a SHARPy AeroTimestep instance into a column vector containing the input to the linear UVLM system. .. math:: [\zeta,\, \dot{\zeta}, u_{ext}] \longrightarrow \mathbf{u} If the ``track_body`` option is on, the function projects all the input into a frame that: a. is equal to the FoR G at time 0 (linearisation point) b. rotates as the body frame specified in the ``track_body_number`` Returns: np.ndarray: Input vector """ aero_tstep = self.data.aero.timestep_info[-1] ### re-compute projection in G frame as if A was not rotating # - u_n is in FoR G. Hence, this is project in FoR A and back to FoR G # using rotation matrix aat time 0 (as if FoR A was not rotating). if self.settings['track_body']: Cuvlm_g = np.dot( self.Cga0, self.Cga.T ) zeta_uvlm, zeta_dot_uvlm, u_ext_uvlm = [], [], [] for i_surf in range(aero_tstep.n_surf): Mp1, Np1 = aero_tstep.dimensions[i_surf] + 1 zeta_uvlm.append( np.empty((3,Mp1,Np1)) ) zeta_dot_uvlm.append( np.empty((3,Mp1,Np1)) ) u_ext_uvlm.append( np.empty((3,Mp1,Np1)) ) for mm in range(Mp1): for nn in range(Np1): zeta_uvlm[i_surf][:,mm,nn] = \ np.dot(Cuvlm_g, aero_tstep.zeta[i_surf][:,mm,nn]) zeta_dot_uvlm[i_surf][:,mm,nn] = \ np.dot(Cuvlm_g, aero_tstep.zeta_dot[i_surf][:,mm,nn]) u_ext_uvlm[i_surf][:,mm,nn] = \ np.dot(Cuvlm_g, aero_tstep.u_ext[i_surf][:,mm,nn]) zeta = np.concatenate([zeta_uvlm[i_surf].reshape(-1, order='C') for i_surf in range(aero_tstep.n_surf)]) zeta_dot = np.concatenate([zeta_dot_uvlm[i_surf].reshape(-1, order='C') for i_surf in range(aero_tstep.n_surf)]) u_ext = np.concatenate([u_ext_uvlm[i_surf].reshape(-1, order='C') for i_surf in range(aero_tstep.n_surf)]) else: zeta = np.concatenate([aero_tstep.zeta[i_surf].reshape(-1, order='C') for i_surf in range(aero_tstep.n_surf)]) zeta_dot = np.concatenate([aero_tstep.zeta_dot[i_surf].reshape(-1, order='C') for i_surf in range(aero_tstep.n_surf)]) u_ext = np.concatenate([aero_tstep.u_ext[i_surf].reshape(-1, order='C') for i_surf in range(aero_tstep.n_surf)]) u = np.concatenate((zeta, zeta_dot, u_ext)) return u @staticmethod def pack_state_vector(aero_tstep, aero_tstep_m1, dt, integr_order): r""" Transform SHARPy Aerotimestep format into column vector containing the state information. The state vector is of a different form depending on the order of integration chosen. If a second order scheme is chosen, the state includes the bound circulation at the previous timestep, hence the timestep information for the previous timestep shall be parsed. The transformation is of the form: - If ``integr_order==1``: .. math:: \mathbf{x}_n = [\mathbf{\Gamma}^T_n,\, \mathbf{\Gamma_w}_n^T,\, \Delta t \,\mathbf{\dot{\Gamma}}_n^T]^T - Else, if ``integr_order==2``: .. math:: \mathbf{x}_n = [\mathbf{\Gamma}_n^T,\, \mathbf{\Gamma_w}_n^T,\, \Delta t \,\mathbf{\dot{\Gamma}}_n^T,\, \mathbf{\Gamma}_{n-1}^T]^T For the second order integration scheme, if the previous timestep information is not parsed, a first order stencil is employed to estimate the bound circulation at the previous timestep: .. math:: \mathbf{\Gamma}^{n-1} = \mathbf{\Gamma}^n - \Delta t \mathbf{\dot{\Gamma}}^n Args: aero_tstep (AeroTimeStepInfo): Aerodynamic timestep information at the current timestep ``n``. aero_tstep_m1 (AeroTimeStepInfo) Aerodynamic timestep information at the previous timestep ``n-1``. Returns: np.ndarray: State vector """ # Extract current state... gamma = np.concatenate([aero_tstep.gamma[ss].reshape(-1, order='C') for ss in range(aero_tstep.n_surf)]) gamma_star = np.concatenate([aero_tstep.gamma_star[ss].reshape(-1, order='C') for ss in range(aero_tstep.n_surf)]) gamma_dot = np.concatenate([aero_tstep.gamma_dot[ss].reshape(-1, order='C') for ss in range(aero_tstep.n_surf)]) if integr_order == 1: gamma_m1 = [] else: if aero_tstep_m1: gamma_m1 = np.concatenate([aero_tstep_m1.gamma[ss].reshape(-1, order='C') for ss in range(aero_tstep.n_surf)]) else: gamma_m1 = gamma - dt * gamma_dot x = np.concatenate((gamma, gamma_star, dt * gamma_dot, gamma_m1)) return x
43.662316
130
0.598057
3f07ec471823faf0bb8f6e730695900a6e7cb1bc
30,414
py
Python
MSPDE4d_tf1class.py
Blue-Giant/MscaleDNN_tf1Class
ca36906724d41c51e5ae73bf011ebc0e2f2b3a26
[ "MIT" ]
null
null
null
MSPDE4d_tf1class.py
Blue-Giant/MscaleDNN_tf1Class
ca36906724d41c51e5ae73bf011ebc0e2f2b3a26
[ "MIT" ]
null
null
null
MSPDE4d_tf1class.py
Blue-Giant/MscaleDNN_tf1Class
ca36906724d41c51e5ae73bf011ebc0e2f2b3a26
[ "MIT" ]
null
null
null
""" @author: LXA Date: 2020 ๅนด 5 ๆœˆ 31 ๆ—ฅ """ import os import sys import tensorflow as tf import numpy as np import matplotlib import platform import shutil import time import DNN_Class_base import DNN_tools import DNN_data import MS_LaplaceEqs import General_Laplace import Load_data2Mat import saveData import plotData import DNN_Log_Print class MscaleDNN(object): def __init__(self, input_dim=4, out_dim=1, hidden_layer=None, Model_name='DNN', name2actIn='relu', name2actHidden='relu', name2actOut='linear', opt2regular_WB='L2', type2numeric='float32', factor2freq=None, sFourier=1.0): super(MscaleDNN, self).__init__() if 'DNN' == str.upper(Model_name): self.DNN = DNN_Class_base.Pure_Dense_Net( indim=input_dim, outdim=out_dim, hidden_units=hidden_layer, name2Model=Model_name, actName2in=name2actIn, actName=name2actHidden, actName2out=name2actOut, type2float=type2numeric) elif 'SCALE_DNN' == str.upper(Model_name) or 'DNN_SCALE' == str.upper(Model_name): self.DNN = DNN_Class_base.Dense_ScaleNet( indim=input_dim, outdim=out_dim, hidden_units=hidden_layer, name2Model=Model_name, actName2in=name2actIn, actName=name2actHidden, actName2out=name2actOut, type2float=type2numeric) elif 'FOURIER_DNN' == str.upper(Model_name) or 'DNN_FOURIERBASE' == str.upper(Model_name): self.DNN = DNN_Class_base.Dense_FourierNet( indim=input_dim, outdim=out_dim, hidden_units=hidden_layer, name2Model=Model_name, actName2in=name2actIn, actName=name2actHidden, actName2out=name2actOut, type2float=type2numeric) if type2numeric == 'float32': self.float_type = tf.float32 elif type2numeric == 'float64': self.float_type = tf.float64 elif type2numeric == 'float16': self.float_type = tf.float16 self.factor2freq = factor2freq self.opt2regular_WB = opt2regular_WB self.sFourier = sFourier def loss_it2Laplace(self, XYZS=None, fside=None, if_lambda2fside=True, loss_type='ritz_loss'): assert (XYZS is not None) assert (fside is not None) shape2XYZS = XYZS.get_shape().as_list() lenght2XYZS_shape = len(shape2XYZS) assert (lenght2XYZS_shape == 2) assert (shape2XYZS[-1] == 2) X = tf.reshape(XYZS[:, 0], shape=[-1, 1]) Y = tf.reshape(XYZS[:, 1], shape=[-1, 1]) Z = tf.reshape(XYZS[:, 2], shape=[-1, 1]) S = tf.reshape(XYZS[:, 3], shape=[-1, 1]) if if_lambda2fside: force_side = fside(X, Y, Z, S) else: force_side = fside UNN = self.DNN(XYZS, scale=self.factor2freq, sFourier=self.sFourier) dUNN = tf.gradients(UNN, XYZS)[0] # * ่กŒ 2 ๅˆ— if str.lower(loss_type) == 'ritz_loss' or str.lower(loss_type) == 'variational_loss': dUNN_Norm = tf.reshape(tf.sqrt(tf.reduce_sum(tf.square(dUNN), axis=-1)), shape=[-1, 1]) # ๆŒ‰่กŒๆฑ‚ๅ’Œ dUNN_2Norm = tf.square(dUNN_Norm) loss_it_ritz = (1.0/2)*dUNN_2Norm-tf.multiply(tf.reshape(force_side, shape=[-1, 1]), UNN) loss_it = tf.reduce_mean(loss_it_ritz) elif str.lower(loss_type) == 'l2_loss': dUNN_x = tf.gather(dUNN, [0], axis=-1) dUNN_y = tf.gather(dUNN, [1], axis=-1) dUNN_z = tf.gather(dUNN, [2], axis=-1) dUNN_s = tf.gather(dUNN, [3], axis=-1) dUNNxxyzs = tf.gradients(dUNN_x, XYZS)[0] dUNNyxyzs = tf.gradients(dUNN_y, XYZS)[0] dUNNzxyzs = tf.gradients(dUNN_z, XYZS)[0] dUNNsxyzs = tf.gradients(dUNN_s, XYZS)[0] dUNNxx = tf.gather(dUNNxxyzs, [0], axis=-1) dUNNyy = tf.gather(dUNNyxyzs, [1], axis=-1) dUNNzz = tf.gather(dUNNzxyzs, [2], axis=-1) dUNNss = tf.gather(dUNNsxyzs, [3], axis=-1) # -Laplace U=f --> -Laplace U - f --> -(Laplace U + f) loss_it_L2 = dUNNxx + dUNNyy + dUNNzz + dUNNss + tf.reshape(force_side, shape=[-1, 1]) square_loss_it = tf.square(loss_it_L2) loss_it = tf.reduce_mean(square_loss_it) return UNN, loss_it def loss_it2pLaplace(self, XYZS=None, Aeps=None, if_lambda2Aeps=True, fside=None, if_lambda2fside=True, loss_type='ritz_loss', p_index=2): assert (XYZS is not None) assert (fside is not None) shape2XYZS = XYZS.get_shape().as_list() lenght2XYZS_shape = len(shape2XYZS) assert (lenght2XYZS_shape == 2) assert (shape2XYZS[-1] == 2) X = tf.reshape(XYZS[:, 0], shape=[-1, 1]) Y = tf.reshape(XYZS[:, 1], shape=[-1, 1]) Z = tf.reshape(XYZS[:, 2], shape=[-1, 1]) S = tf.reshape(XYZS[:, 3], shape=[-1, 1]) if if_lambda2Aeps: a_eps = Aeps(X, Y, Z, S) # * ่กŒ 1 ๅˆ— else: a_eps = Aeps if if_lambda2fside: force_side = fside(X, Y, Z, S) else: force_side = fside UNN = self.DNN(XYZS, scale=self.factor2freq, sFourier=self.sFourier) dUNN = tf.gradients(UNN, XYZS)[0] # * ่กŒ 2 ๅˆ— # ๅ˜ๅˆ†ๅฝขๅผ็š„loss of interior๏ผŒ่ฎญ็ปƒๅพ—ๅˆฐ็š„ UNN ๆ˜ฏ * ่กŒ 1 ๅˆ— if str.lower(loss_type) == 'ritz_loss' or str.lower(loss_type) == 'variational_loss': dUNN_Norm = tf.reshape(tf.sqrt(tf.reduce_sum(tf.square(dUNN), axis=-1)), shape=[-1, 1]) # ๆŒ‰่กŒๆฑ‚ๅ’Œ AdUNN_pNorm = tf.multiply(a_eps, tf.pow(dUNN_Norm, p_index)) loss_it_ritz = (1.0/p_index)*AdUNN_pNorm-tf.multiply(tf.reshape(force_side, shape=[-1, 1]), UNN) loss_it = tf.reduce_mean(loss_it_ritz) return UNN, loss_it def loss_it2Possion_Boltzmann(self, XYZS=None, Aeps=None, if_lambda2Aeps=True, Kappa_eps=None, if_lambda2Kappa=True, fside=None, if_lambda2fside=True, loss_type='ritz_loss', p_index=2): assert (XYZS is not None) assert (fside is not None) shape2XYZS = XYZS.get_shape().as_list() lenght2XYZS_shape = len(shape2XYZS) assert (lenght2XYZS_shape == 2) assert (shape2XYZS[-1] == 2) X = tf.reshape(XYZS[:, 0], shape=[-1, 1]) Y = tf.reshape(XYZS[:, 1], shape=[-1, 1]) Z = tf.reshape(XYZS[:, 2], shape=[-1, 1]) S = tf.reshape(XYZS[:, 3], shape=[-1, 1]) if if_lambda2Aeps: a_eps = Aeps(X, Y, Z, S) # * ่กŒ 1 ๅˆ— else: a_eps = Aeps if if_lambda2Kappa: Kappa = Kappa_eps(X, Y, Z, S) else: Kappa = Kappa_eps if if_lambda2fside: force_side = fside(X, Y, Z, S) else: force_side = fside UNN = self.DNN(XYZS, scale=self.factor2freq, sFourier=self.sFourier) dUNN = tf.gradients(UNN, XYZS)[0] # * ่กŒ 2 ๅˆ— if str.lower(loss_type) == 'ritz_loss' or str.lower(loss_type) == 'variational_loss': dUNN_Norm = tf.reshape(tf.sqrt(tf.reduce_sum(tf.square(dUNN), axis=-1)), shape=[-1, 1]) # ๆŒ‰่กŒๆฑ‚ๅ’Œ AdUNN_pNorm = tf.multiply(a_eps, tf.pow(dUNN_Norm, p_index)) loss_it_ritz = (1.0 / p_index) * (AdUNN_pNorm + Kappa * UNN * UNN) - \ tf.multiply(tf.reshape(force_side, shape=[-1, 1]), UNN) loss_it = tf.reduce_mean(loss_it_ritz) return UNN, loss_it def loss2bd(self, XYZS_bd=None, Ubd_exact=None, if_lambda2Ubd=True): X_bd = tf.reshape(XYZS_bd[:, 0], shape=[-1, 1]) Y_bd = tf.reshape(XYZS_bd[:, 1], shape=[-1, 1]) Z_bd = tf.reshape(XYZS_bd[:, 2], shape=[-1, 1]) S_bd = tf.reshape(XYZS_bd[:, 2], shape=[-1, 1]) if if_lambda2Ubd: Ubd = Ubd_exact(X_bd, Y_bd, Z_bd, S_bd) else: Ubd=Ubd_exact UNN_bd = self.DNN(XYZS_bd, scale=self.factor2freq, sFourier=self.sFourier) loss_bd_square = tf.square(UNN_bd - Ubd) loss_bd = tf.reduce_mean(loss_bd_square) return loss_bd def get_regularSum2WB(self): sum2WB = self.DNN.get_regular_sum2WB(self.opt2regular_WB) return sum2WB def evalue_MscaleDNN(self, XYZS_points=None): UNN = self.DNN(XYZS_points, scale=self.factor2freq, sFourier=self.sFourier) return UNN def solve_Multiscale_PDE(R): log_out_path = R['FolderName'] # ๅฐ†่ทฏๅพ„ไปŽๅญ—ๅ…ธ R ไธญๆๅ–ๅ‡บๆฅ if not os.path.exists(log_out_path): # ๅˆคๆ–ญ่ทฏๅพ„ๆ˜ฏๅฆๅทฒ็ปๅญ˜ๅœจ os.mkdir(log_out_path) # ๆ—  log_out_path ่ทฏๅพ„๏ผŒๅˆ›ๅปบไธ€ไธช log_out_path ่ทฏๅพ„ logfile_name = '%s%s.txt' % ('log2', R['activate_func']) log_fileout = open(os.path.join(log_out_path, logfile_name), 'w') # ๅœจ่ฟ™ไธช่ทฏๅพ„ไธ‹ๅˆ›ๅปบๅนถๆ‰“ๅผ€ไธ€ไธชๅฏๅ†™็š„ log_train.txtๆ–‡ไปถ DNN_Log_Print.dictionary_out2file(R, log_fileout) # ไธ€่ˆฌ laplace ้—ฎ้ข˜้œ€่ฆ็š„่ฎพ็ฝฎ batchsize_it = R['batch_size2interior'] batchsize_bd = R['batch_size2boundary'] bd_penalty_init = R['init_boundary_penalty'] # Regularization parameter for boundary conditions penalty2WB = R['penalty2weight_biases'] # Regularization parameter for weights and biases lr_decay = R['learning_rate_decay'] learning_rate = R['learning_rate'] hidden_layers = R['hidden_layers'] act_func = R['activate_func'] input_dim = R['input_dim'] out_dim = R['output_dim'] # pLaplace ็ฎ—ๅญ้œ€่ฆ็š„่ฎพ็ฝฎ p_index = R['order2pLaplace_operator'] mesh_number = 2 region_lb = 0.0 region_rt = 1.0 if R['PDE_type'] == 'general_Laplace': # -laplace u = f region_lb = 0.0 region_rt = 1.0 f, u_true, u00, u01, u10, u11, u20, u21, u30, u31, u40, u41 = General_Laplace.get_infos2Laplace_5D( input_dim=input_dim, out_dim=out_dim, intervalL=region_lb, intervalR=region_rt, equa_name=R['equa_name']) elif R['PDE_type'] == 'pLaplace': region_lb = 0.0 region_rt = 1.0 u_true, f, A_eps, u00, u01, u10, u11, u20, u21, u30, u31 = MS_LaplaceEqs.get_infos2pLaplace_4D( input_dim=input_dim, out_dim=out_dim, intervalL=0.0, intervalR=1.0, equa_name=R['equa_name']) mscalednn = MscaleDNN(input_dim=R['input_dim'], out_dim=R['output_dim'], hidden_layer=R['hidden_layers'], Model_name=R['model2NN'], name2actIn=R['name2act_in'], name2actHidden=R['name2act_hidden'], name2actOut=R['name2act_out'], opt2regular_WB='L0', type2numeric='float32', factor2freq=R['freq'], sFourier=R['sfourier']) global_steps = tf.compat.v1.Variable(0, trainable=False) with tf.device('/gpu:%s' % (R['gpuNo'])): with tf.variable_scope('vscope', reuse=tf.AUTO_REUSE): XYZS_it = tf.compat.v1.placeholder(tf.float32, name='XYZS_it', shape=[None, input_dim]) XYZS00 = tf.compat.v1.placeholder(tf.float32, name='XYZS00', shape=[None, input_dim]) XYZS01 = tf.compat.v1.placeholder(tf.float32, name='XYZS01', shape=[None, input_dim]) XYZS10 = tf.compat.v1.placeholder(tf.float32, name='XYZS10', shape=[None, input_dim]) XYZS11 = tf.compat.v1.placeholder(tf.float32, name='XYZS11', shape=[None, input_dim]) XYZS20 = tf.compat.v1.placeholder(tf.float32, name='XYZS20', shape=[None, input_dim]) XYZS21 = tf.compat.v1.placeholder(tf.float32, name='XYZS21', shape=[None, input_dim]) XYZS30 = tf.compat.v1.placeholder(tf.float32, name='XYZS30', shape=[None, input_dim]) XYZS31 = tf.compat.v1.placeholder(tf.float32, name='XYZS31', shape=[None, input_dim]) boundary_penalty = tf.compat.v1.placeholder_with_default(input=1e3, shape=[], name='bd_p') in_learning_rate = tf.compat.v1.placeholder_with_default(input=1e-5, shape=[], name='lr') X_it = tf.reshape(XYZS_it[:, 0], shape=[-1, 1]) Y_it = tf.reshape(XYZS_it[:, 1], shape=[-1, 1]) Z_it = tf.reshape(XYZS_it[:, 2], shape=[-1, 1]) S_it = tf.reshape(XYZS_it[:, 3], shape=[-1, 1]) if R['PDE_type'] == 'Laplace' or R['PDE_type'] == 'general_Laplace': UNN2train, loss_it = mscalednn.loss_it2Laplace(XY=XYZS_it, fside=f, loss_type=R['loss_type']) elif R['PDE_type'] == 'pLaplace' or R['PDE_type'] == 'pLaplace_implicit' or R[ 'PDE_type'] == 'pLaplace_explicit': UNN2train, loss_it = mscalednn.loss_it2pLaplace(XY=XYZS_it, Aeps=A_eps, fside=f, loss_type=R['loss_type'], p_index=2) elif R['PDE_type'] == 'Possion_Boltzmann': UNN2train, loss_it = mscalednn.loss_it2Possion_Boltzmann( XY=XYZS_it, Aeps=A_eps, fside=f, loss_type=R['loss_type'], p_index=2) U_00 = tf.constant(0.0) U_01 = tf.constant(0.0) U_10 = tf.constant(0.0) U_11 = tf.constant(0.0) U_20 = tf.constant(0.0) U_21 = tf.constant(0.0) U_30 = tf.constant(0.0) U_31 = tf.constant(0.0) loss_bd00 = mscalednn.loss2bd(XYZS_bd=XYZS00, Ubd_exact=U_00, if_lambda2Ubd=False) loss_bd01 = mscalednn.loss2bd(XYZS_bd=XYZS01, Ubd_exact=U_01, if_lambda2Ubd=False) loss_bd10 = mscalednn.loss2bd(XYZS_bd=XYZS10, Ubd_exact=U_10, if_lambda2Ubd=False) loss_bd11 = mscalednn.loss2bd(XYZS_bd=XYZS11, Ubd_exact=U_11, if_lambda2Ubd=False) loss_bd20 = mscalednn.loss2bd(XYZS_bd=XYZS20, Ubd_exact=U_20, if_lambda2Ubd=False) loss_bd21 = mscalednn.loss2bd(XYZS_bd=XYZS21, Ubd_exact=U_21, if_lambda2Ubd=False) loss_bd30 = mscalednn.loss2bd(XYZS_bd=XYZS30, Ubd_exact=U_30, if_lambda2Ubd=False) loss_bd31 = mscalednn.loss2bd(XYZS_bd=XYZS31, Ubd_exact=U_31, if_lambda2Ubd=False) loss_bd = loss_bd00 + loss_bd01 + loss_bd10 + loss_bd11 + loss_bd20 + loss_bd21 + loss_bd30 + loss_bd31 regularSum2WB = mscalednn.get_regularSum2WB() PWB = penalty2WB * regularSum2WB loss = loss_it + boundary_penalty * loss_bd + PWB # ่ฆไผ˜ๅŒ–็š„loss function my_optimizer = tf.compat.v1.train.AdamOptimizer(in_learning_rate) if R['train_model'] == 'group3_training': train_op1 = my_optimizer.minimize(loss_it, global_step=global_steps) train_op2 = my_optimizer.minimize(loss_bd, global_step=global_steps) train_op3 = my_optimizer.minimize(loss, global_step=global_steps) train_my_loss = tf.group(train_op1, train_op2, train_op3) elif R['train_model'] == 'group2_training': train_op2bd = my_optimizer.minimize(loss_bd, global_step=global_steps) train_op2union = my_optimizer.minimize(loss, global_step=global_steps) train_my_loss = tf.gruop(train_op2union, train_op2bd) elif R['train_model'] == 'union_training': train_my_loss = my_optimizer.minimize(loss, global_step=global_steps) UNN2test = mscalednn.evalue_MscaleDNN(XYZS_points=XYZS_it) t0 = time.time() loss_it_all, loss_bd_all, loss_all, train_mse_all, train_rel_all = [], [], [], [], [] # ็ฉบๅˆ—่กจ, ไฝฟ็”จ append() ๆทปๅŠ ๅ…ƒ็ด  test_mse_all, test_rel_all = [], [] test_epoch = [] # ็”ป็ฝ‘ๆ ผ่งฃๅ›พ if R['testData_model'] == 'random_generate': # ็”Ÿๆˆๆต‹่ฏ•ๆ•ฐๆฎ๏ผŒ็”จไบŽๆต‹่ฏ•่ฎญ็ปƒๅŽ็š„็ฝ‘็ปœ # test_bach_size = 400 # size2test = 20 # test_bach_size = 900 # size2test = 30 test_bach_size = 1600 size2test = 40 # test_bach_size = 4900 # size2test = 70 # test_bach_size = 10000 # size2test = 100 # test_bach_size = 40000 # size2test = 200 # test_bach_size = 250000 # size2test = 500 # test_bach_size = 1000000 # size2test = 1000 test_xyzs_bach = DNN_data.rand_it(test_bach_size, input_dim, region_lb, region_rt) saveData.save_testData_or_solus2mat(test_xyzs_bach, dataName='testXYZS', outPath=R['FolderName']) elif R['testData_model'] == 'loadData': test_bach_size = 1600 size2test = 40 mat_data_path = 'dataMat_highDim' test_xyzs_bach = Load_data2Mat.get_randomData2mat(dim=input_dim, data_path=mat_data_path) saveData.save_testData_or_solus2mat(test_xyzs_bach, dataName='testXYZS', outPath=R['FolderName']) # ConfigProto ๅŠ ไธŠallow_soft_placement=Trueๅฐฑๅฏไปฅไฝฟ็”จ gpu ไบ† config = tf.compat.v1.ConfigProto(allow_soft_placement=True) # ๅˆ›ๅปบsess็š„ๆ—ถๅ€™ๅฏนsess่ฟ›่กŒๅ‚ๆ•ฐ้…็ฝฎ config.gpu_options.allow_growth = True # Trueๆ˜ฏ่ฎฉTensorFlowๅœจ่ฟ่กŒ่ฟ‡็จ‹ไธญๅŠจๆ€็”ณ่ฏทๆ˜พๅญ˜๏ผŒ้ฟๅ…่ฟ‡ๅคš็š„ๆ˜พๅญ˜ๅ ็”จใ€‚ config.allow_soft_placement = True # ๅฝ“ๆŒ‡ๅฎš็š„่ฎพๅค‡ไธๅญ˜ๅœจๆ—ถ๏ผŒๅ…่ฎธ้€‰ๆ‹ฉไธ€ไธชๅญ˜ๅœจ็š„่ฎพๅค‡่ฟ่กŒใ€‚ๆฏ”ๅฆ‚gpuไธๅญ˜ๅœจ๏ผŒ่‡ชๅŠจ้™ๅˆฐcpuไธŠ่ฟ่กŒ with tf.compat.v1.Session(config=config) as sess: sess.run(tf.global_variables_initializer()) tmp_lr = learning_rate for i_epoch in range(R['max_epoch'] + 1): xyzs_it_batch = DNN_data.rand_it(batchsize_it, input_dim, region_a=region_lb, region_b=region_rt) xyzs00_batch, xyzs01_batch, xyzs10_batch, xyzs11_batch, xyzs20_batch, xyzs21_batch, xyzs30_batch, \ xyzs31_batch = DNN_data.rand_bd_4D(batchsize_bd, input_dim, region_a=region_lb, region_b=region_rt) tmp_lr = tmp_lr * (1 - lr_decay) if R['activate_penalty2bd_increase'] == 1: if i_epoch < int(R['max_epoch'] / 10): temp_penalty_bd = bd_penalty_init elif i_epoch < int(R['max_epoch'] / 5): temp_penalty_bd = 10 * bd_penalty_init elif i_epoch < int(R['max_epoch'] / 4): temp_penalty_bd = 50 * bd_penalty_init elif i_epoch < int(R['max_epoch'] / 2): temp_penalty_bd = 100 * bd_penalty_init elif i_epoch < int(3 * R['max_epoch'] / 4): temp_penalty_bd = 200 * bd_penalty_init else: temp_penalty_bd = 500 * bd_penalty_init elif R['activate_penalty2bd_increase'] == 2: if i_epoch < int(R['max_epoch'] / 10): temp_penalty_bd = 5*bd_penalty_init elif i_epoch < int(R['max_epoch'] / 5): temp_penalty_bd = 1 * bd_penalty_init elif i_epoch < int(R['max_epoch'] / 4): temp_penalty_bd = 0.5 * bd_penalty_init elif i_epoch < int(R['max_epoch'] / 2): temp_penalty_bd = 0.1 * bd_penalty_init elif i_epoch < int(3 * R['max_epoch'] / 4): temp_penalty_bd = 0.05 * bd_penalty_init else: temp_penalty_bd = 0.02 * bd_penalty_init else: temp_penalty_bd = bd_penalty_init _, loss_it_tmp, loss_bd_tmp, loss_tmp, train_mse_tmp, train_rel_tmp, pwb = sess.run( [train_my_loss, loss_it, loss_bd, loss, train_mse, train_rel, PWB], feed_dict={XYZS_it: xyzs_it_batch, XYZS00: xyzs00_batch, XYZS01: xyzs01_batch, XYZS10: xyzs10_batch, XYZS11: xyzs11_batch, XYZS20: xyzs20_batch, XYZS21: xyzs21_batch, XYZS30: xyzs30_batch, XYZS31: xyzs31_batch, in_learning_rate: tmp_lr, boundary_penalty: temp_penalty_bd}) loss_it_all.append(loss_it_tmp) loss_bd_all.append(loss_bd_tmp) loss_all.append(loss_tmp) train_mse_all.append(train_mse_tmp) train_rel_all.append(train_rel_tmp) if i_epoch % 1000 == 0: run_times = time.time() - t0 DNN_Log_Print.print_and_log_train_one_epoch( i_epoch, run_times, tmp_lr, temp_penalty_bd, pwb, loss_it_tmp, loss_bd_tmp, loss_tmp, train_mse_tmp, train_rel_tmp, log_out=log_fileout) # --------------------------- test network ---------------------------------------------- test_epoch.append(i_epoch / 1000) if R['PDE_type'] == 'general_laplace' or R['PDE_type'] == 'pLaplace' or R['PDE_type'] == 'Possion_Boltzmann': u_true2test, u_nn2test = sess.run( [U_true, UNN2test], feed_dict={XYZS_it: test_xyzs_bach}) else: u_true2test = u_true u_nn2test = sess.run(UNN2test, feed_dict={XYZS_it: test_xyzs_bach}) point_square_error = np.square(u_true2test - u_nn2test) mse2test = np.mean(point_square_error) test_mse_all.append(mse2test) res2test = mse2test / np.mean(np.square(u_true2test)) test_rel_all.append(res2test) DNN_Log_Print.print_and_log_test_one_epoch(mse2test, res2test, log_out=log_fileout) # ------------------- save the testing results into mat file and plot them ------------------------- saveData.save_trainLoss2mat_1actFunc(loss_it_all, loss_bd_all, loss_all, actName=act_func, outPath=R['FolderName']) saveData.save_train_MSE_REL2mat(train_mse_all, train_rel_all, actName=act_func, outPath=R['FolderName']) plotData.plotTrain_loss_1act_func(loss_it_all, lossType='loss_it', seedNo=R['seed'], outPath=R['FolderName']) plotData.plotTrain_loss_1act_func(loss_bd_all, lossType='loss_bd', seedNo=R['seed'], outPath=R['FolderName'], yaxis_scale=True) plotData.plotTrain_loss_1act_func(loss_all, lossType='loss', seedNo=R['seed'], outPath=R['FolderName']) saveData.save_train_MSE_REL2mat(train_mse_all, train_rel_all, actName=act_func, outPath=R['FolderName']) plotData.plotTrain_MSE_REL_1act_func(train_mse_all, train_rel_all, actName=act_func, seedNo=R['seed'], outPath=R['FolderName'], yaxis_scale=True) # ---------------------- save testing results to mat files, then plot them -------------------------------- saveData.save_2testSolus2mat(u_true2test, u_nn2test, actName='utrue', actName1=act_func, outPath=R['FolderName']) # ็ป˜ๅˆถ่งฃ็š„็ƒญๅŠ›ๅ›พ(็œŸ่งฃๅ’ŒDNN่งฃ) plotData.plot_Hot_solution2test(u_true2test, size_vec2mat=size2test, actName='Utrue', seedNo=R['seed'], outPath=R['FolderName']) plotData.plot_Hot_solution2test(u_nn2test, size_vec2mat=size2test, actName=act_func, seedNo=R['seed'], outPath=R['FolderName']) saveData.save_testMSE_REL2mat(test_mse_all, test_rel_all, actName=act_func, outPath=R['FolderName']) plotData.plotTest_MSE_REL(test_mse_all, test_rel_all, test_epoch, actName=act_func, seedNo=R['seed'], outPath=R['FolderName'], yaxis_scale=True) saveData.save_test_point_wise_err2mat(point_square_error, actName=act_func, outPath=R['FolderName']) plotData.plot_Hot_point_wise_err(point_square_error, size_vec2mat=size2test, actName=act_func, seedNo=R['seed'], outPath=R['FolderName']) if __name__ == "__main__": R={} # -------------------------------------- CPU or GPU ้€‰ๆ‹ฉ ----------------------------------------------- R['gpuNo'] = 0 if platform.system() == 'Windows': os.environ["CDUA_VISIBLE_DEVICES"] = "%s" % (R['gpuNo']) else: print('-------------------------------------- linux -----------------------------------------------') # Linux็ปˆ็ซฏๆฒกๆœ‰GUI, ้œ€่ฆๆทปๅŠ ๅฆ‚ไธ‹ไปฃ็ ๏ผŒ่€Œไธ”ๅฟ…้กปๆทปๅŠ ๅœจ import matplotlib.pyplot ไน‹ๅ‰๏ผŒๅฆๅˆ™ๆ— ๆ•ˆใ€‚ matplotlib.use('Agg') if tf.test.is_gpu_available(): os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3" # ่ฎพ็ฝฎๅฝ“ๅ‰ไฝฟ็”จ็š„GPU่ฎพๅค‡ไป…ไธบ็ฌฌ 0,1,2,3 ๅ—GPU, ่ฎพๅค‡ๅ็งฐไธบ'/gpu:0' else: os.environ["CUDA_VISIBLE_DEVICES"] = "1" # ๆ–‡ไปถไฟๅญ˜่ทฏๅพ„่ฎพ็ฝฎ # store_file = 'Laplace4D' store_file = 'pLaplace4D' BASE_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append(BASE_DIR) OUT_DIR = os.path.join(BASE_DIR, store_file) if not os.path.exists(OUT_DIR): print('---------------------- OUT_DIR ---------------------:', OUT_DIR) os.mkdir(OUT_DIR) R['seed'] = np.random.randint(1e5) seed_str = str(R['seed']) # int ๅž‹่ฝฌไธบๅญ—็ฌฆไธฒๅž‹ FolderName = os.path.join(OUT_DIR, seed_str) # ่ทฏๅพ„่ฟžๆŽฅ R['FolderName'] = FolderName if not os.path.exists(FolderName): print('--------------------- FolderName -----------------:', FolderName) os.mkdir(FolderName) # ---------------------------------------- ๅคๅˆถๅนถไฟๅญ˜ๅฝ“ๅ‰ๆ–‡ไปถ ----------------------------------------- if platform.system() == 'Windows': tf.compat.v1.reset_default_graph() shutil.copy(__file__, '%s/%s' % (FolderName, os.path.basename(__file__))) else: shutil.copy(__file__, '%s/%s' % (FolderName, os.path.basename(__file__))) # if the value of step_stop_flag is not 0, it will activate stop condition of step to kill program step_stop_flag = input('please input an integer number to activate step-stop----0:no---!0:yes--:') R['activate_stop'] = int(step_stop_flag) # if the value of step_stop_flag is not 0, it will activate stop condition of step to kill program R['max_epoch'] = 200000 if 0 != R['activate_stop']: epoch_stop = input('please input a stop epoch:') R['max_epoch'] = int(epoch_stop) # ---------------------------- Setup of multi-scale problem------------------------------- R['input_dim'] = 4 # ่พ“ๅ…ฅ็ปดๆ•ฐ๏ผŒๅณ้—ฎ้ข˜็š„็ปดๆ•ฐ(ๅ‡ ๅ…ƒ้—ฎ้ข˜) R['output_dim'] = 1 # ่พ“ๅ‡บ็ปดๆ•ฐ if store_file == 'Laplace4D': R['PDE_type'] = 'general_Laplace' R['equa_name'] = 'PDE1' # R['equa_name'] = 'PDE2' # R['equa_name'] = 'PDE3' # R['equa_name'] = 'PDE4' # R['equa_name'] = 'PDE5' # R['equa_name'] = 'PDE6' # R['equa_name'] = 'PDE7' elif store_file == 'pLaplace4D': R['PDE_type'] = 'pLaplace' # R['equa_name'] = 'multi_scale4D_1' # R['equa_name'] = 'multi_scale4D_2' # R['equa_name'] = 'multi_scale4D_5' # R['equa_name'] = 'multi_scale4D_6' R['equa_name'] = 'multi_scale4D_7' elif store_file == 'Boltzmann4D': R['PDE_type'] = 'Possion_Boltzmann' # R['equa_name'] = 'Boltzmann1' R['equa_name'] = 'Boltzmann2' if R['PDE_type'] == 'general_Laplace': R['mesh_number'] = 1 R['epsilon'] = 0.1 R['order2pLaplace_operator'] = 2 R['batch_size2interior'] = 8000 # ๅ†…้ƒจ่ฎญ็ปƒๆ•ฐๆฎ็š„ๆ‰นๅคงๅฐ R['batch_size2boundary'] = 1250 elif R['PDE_type'] == 'pLaplace': R['mesh_number'] = 1 R['epsilon'] = 0.1 R['order2pLaplace_operator'] = 2 R['batch_size2interior'] = 8000 # ๅ†…้ƒจ่ฎญ็ปƒๆ•ฐๆฎ็š„ๆ‰นๅคงๅฐ R['batch_size2boundary'] = 1250 # ---------------------------- Setup of DNN ------------------------------- # ่ฃ…่ฝฝๆต‹่ฏ•ๆ•ฐๆฎๆจกๅผ R['testData_model'] = 'loadData' # R['testData_model'] = 'random_generate' # R['loss_type'] = 'L2_loss' # loss็ฑปๅž‹:L2 loss R['loss_type'] = 'variational_loss' # loss็ฑปๅž‹:PDEๅ˜ๅˆ† R['optimizer_name'] = 'Adam' # ไผ˜ๅŒ–ๅ™จ R['learning_rate'] = 2e-4 # ๅญฆไน ็އ R['learning_rate_decay'] = 5e-5 # ๅญฆไน ็އ decay R['train_model'] = 'union_training' # R['train_model'] = 'group2_training' # R['train_model'] = 'group3_training' # ๆญฃๅˆ™ๅŒ–ๆƒ้‡ๅ’Œๅ็ฝฎ็š„ๆจกๅผ R['regular_wb_model'] = 'L0' # R['regular_wb_model'] = 'L1' # R['regular_wb_model'] = 'L2' R['penalty2weight_biases'] = 0.000 # Regularization parameter for weights # R['penalty2weight_biases'] = 0.001 # Regularization parameter for weights # R['penalty2weight_biases'] = 0.0025 # Regularization parameter for weights # ่พน็•Œ็š„ๆƒฉ็ฝšๅค„็†ๆ–นๅผ,ไปฅๅŠ่พน็•Œ็š„ๆƒฉ็ฝšๅ› ๅญ R['activate_penalty2bd_increase'] = 1 # R['init_boundary_penalty'] = 1000 # Regularization parameter for boundary conditions R['init_boundary_penalty'] = 100 # Regularization parameter for boundary conditions # ็ฝ‘็ปœ็š„้ข‘็އ่Œƒๅ›ด่ฎพ็ฝฎ R['freqs'] = np.concatenate(([1], np.arange(1, 100 - 1)), axis=0) # &&&&&&&&&&&&&&&&&&& ไฝฟ็”จ็š„็ฝ‘็ปœๆจกๅž‹ &&&&&&&&&&&&&&&&&&&&&&&&&&& # R['model'] = 'DNN' # R['model'] = 'DNN_scale' # R['model'] = 'DNN_adapt_scale' R['model'] = 'DNN_FourierBase' # R['model'] = 'DNN_Sin+Cos_Base' # &&&&&&&&&&&&&&&&&&&&&& ้š่—ๅฑ‚็š„ๅฑ‚ๆ•ฐๅ’Œๆฏๅฑ‚็ฅž็ปๅ…ƒๆ•ฐ็›ฎ &&&&&&&&&&&&&&&&&&&&&&&&&&&& if R['model'] == 'DNN_FourierBase': R['hidden_layers'] = (250, 400, 400, 300, 300, 200) # 250+500*400+400*400+400*300+300*300+300*200+200=630450 else: # R['hidden_layers'] = (100, 10, 8, 6, 4) # ๆต‹่ฏ• # R['hidden_layers'] = (100, 80, 60, 60, 40, 40, 20) # R['hidden_layers'] = (200, 100, 80, 50, 30) # R['hidden_layers'] = (250, 400, 400, 300, 300, 200) # 250+500*400+400*400+400*300+300*300+300*200+200=630450 R['hidden_layers'] = (500, 400, 400, 300, 300, 200) # 500+500*400+400*400+400*300+300*300+300*200+200=630700 # R['hidden_layers'] = (500, 400, 300, 300, 200, 100) # R['hidden_layers'] = (500, 400, 300, 200, 200, 100) # &&&&&&&&&&&&&&&&&&& ๆฟ€ๆดปๅ‡ฝๆ•ฐ็š„้€‰ๆ‹ฉ &&&&&&&&&&&&&&&&&&&&&&&&&&&&& # R['activate_func'] = 'relu' # R['activate_func'] = 'tanh' # R['activate_func']' = leaky_relu' # R['activate_func'] = 'srelu' R['activate_func'] = 's2relu' # R['activate_func'] = 'elu' # R['activate_func'] = 'phi' R['sfourier'] = 1.0 if R['model'] == 'DNN_FourierBase' and R['activate_func'] == 'tanh': R['sfourier'] = 0.5 # R['sfourier'] = 1.0 elif R['model'] == 'DNN_FourierBase' and R['activate_func'] == 's2relu': R['sfourier'] = 0.5 solve_Multiscale_PDE(R)
49.534202
126
0.579108
2e2d007585de13b95883c5aae3b81f29c9080021
171
py
Python
repos/spiketoolkit/spiketoolkit/comparison/__init__.py
tjd2002/spikeforest2
2e393564b858b2995aa2ccccd9bd73065681b5de
[ "Apache-2.0" ]
null
null
null
repos/spiketoolkit/spiketoolkit/comparison/__init__.py
tjd2002/spikeforest2
2e393564b858b2995aa2ccccd9bd73065681b5de
[ "Apache-2.0" ]
null
null
null
repos/spiketoolkit/spiketoolkit/comparison/__init__.py
tjd2002/spikeforest2
2e393564b858b2995aa2ccccd9bd73065681b5de
[ "Apache-2.0" ]
null
null
null
from .sortingcomparison import SortingComparison, MappedSortingExtractor, compute_performance, confusion_matrix from .multisortingcomparison import MultiSortingComparison
57
111
0.906433
5fcfe7b1168b504b2d2b891eb1101dd0ed2c33f6
13,543
py
Python
detectron2/modeling/meta_arch/rcnn.py
dlalsrl203/detectron2-1
bcfd861f77683f25e12761a07103145a3dd3b82c
[ "Apache-2.0" ]
null
null
null
detectron2/modeling/meta_arch/rcnn.py
dlalsrl203/detectron2-1
bcfd861f77683f25e12761a07103145a3dd3b82c
[ "Apache-2.0" ]
null
null
null
detectron2/modeling/meta_arch/rcnn.py
dlalsrl203/detectron2-1
bcfd861f77683f25e12761a07103145a3dd3b82c
[ "Apache-2.0" ]
null
null
null
# Copyright (c) Facebook, Inc. and its affiliates. import logging import numpy as np from typing import Dict, List, Optional, Tuple import torch from torch import nn from detectron2.config import configurable from detectron2.data.detection_utils import convert_image_to_rgb from detectron2.structures import ImageList, Instances from detectron2.utils.events import get_event_storage from detectron2.utils.logger import log_first_n from ..backbone import Backbone, build_backbone from ..postprocessing import detector_postprocess from ..proposal_generator import build_proposal_generator from ..roi_heads import build_roi_heads from .build import META_ARCH_REGISTRY __all__ = ["GeneralizedRCNN", "ProposalNetwork"] @META_ARCH_REGISTRY.register() class GeneralizedRCNN(nn.Module): """ Generalized R-CNN. Any models that contains the following three components: 1. Per-image feature extraction (aka backbone) 2. Region proposal generation 3. Per-region feature extraction and prediction """ @configurable def __init__( self, *, backbone: Backbone, proposal_generator: nn.Module, roi_heads: nn.Module, pixel_mean: Tuple[float], pixel_std: Tuple[float], input_format: Optional[str] = None, vis_period: int = 0, ): """ Args: backbone: a backbone module, must follow detectron2's backbone interface proposal_generator: a module that generates proposals using backbone features roi_heads: a ROI head that performs per-region computation pixel_mean, pixel_std: list or tuple with #channels element, representing the per-channel mean and std to be used to normalize the input image input_format: describe the meaning of channels of input. Needed by visualization vis_period: the period to run visualization. Set to 0 to disable. """ super().__init__() self.backbone = backbone self.proposal_generator = proposal_generator self.roi_heads = roi_heads self.input_format = input_format self.vis_period = vis_period if vis_period > 0: assert input_format is not None, "input_format is required for visualization!" self.register_buffer("pixel_mean", torch.tensor(pixel_mean).view(-1, 1, 1), False) self.register_buffer("pixel_std", torch.tensor(pixel_std).view(-1, 1, 1), False) assert ( self.pixel_mean.shape == self.pixel_std.shape ), f"{self.pixel_mean} and {self.pixel_std} have different shapes!" @classmethod def from_config(cls, cfg): backbone = build_backbone(cfg) return { "backbone": backbone, "proposal_generator": build_proposal_generator(cfg, backbone.output_shape()), "roi_heads": build_roi_heads(cfg, backbone.output_shape()), "input_format": cfg.INPUT.FORMAT, "vis_period": cfg.VIS_PERIOD, "pixel_mean": cfg.MODEL.PIXEL_MEAN, "pixel_std": cfg.MODEL.PIXEL_STD, } @property def device(self): return self.pixel_mean.device def visualize_training(self, batched_inputs, proposals): """ A function used to visualize images and proposals. It shows ground truth bounding boxes on the original image and up to 20 top-scoring predicted object proposals on the original image. Users can implement different visualization functions for different models. Args: batched_inputs (list): a list that contains input to the model. proposals (list): a list that contains predicted proposals. Both batched_inputs and proposals should have the same length. """ from detectron2.utils.visualizer import Visualizer storage = get_event_storage() max_vis_prop = 20 for input, prop in zip(batched_inputs, proposals): img = input["image"] img = convert_image_to_rgb(img.permute(1, 2, 0), self.input_format) v_gt = Visualizer(img, None) v_gt = v_gt.overlay_instances(boxes=input["instances"].gt_boxes) anno_img = v_gt.get_image() box_size = min(len(prop.proposal_boxes), max_vis_prop) v_pred = Visualizer(img, None) v_pred = v_pred.overlay_instances( boxes=prop.proposal_boxes[0:box_size].tensor.cpu().numpy() ) prop_img = v_pred.get_image() vis_img = np.concatenate((anno_img, prop_img), axis=1) vis_img = vis_img.transpose(2, 0, 1) vis_name = "Left: GT bounding boxes; Right: Predicted proposals" storage.put_image(vis_name, vis_img) break # only visualize one image in a batch def forward(self, batched_inputs: List[Dict[str, torch.Tensor]]): """ Args: batched_inputs: a list, batched outputs of :class:`DatasetMapper` . Each item in the list contains the inputs for one image. For now, each item in the list is a dict that contains: * image: Tensor, image in (C, H, W) format. * instances (optional): groundtruth :class:`Instances` * proposals (optional): :class:`Instances`, precomputed proposals. Other information that's included in the original dicts, such as: * "height", "width" (int): the output resolution of the model, used in inference. See :meth:`postprocess` for details. Returns: list[dict]: Each dict is the output for one input image. The dict contains one key "instances" whose value is a :class:`Instances`. The :class:`Instances` object has the following keys: "pred_boxes", "pred_classes", "scores", "pred_masks", "pred_keypoints" """ if not self.training: return self.inference(batched_inputs) images = self.preprocess_image(batched_inputs) if "instances" in batched_inputs[0]: gt_instances = [x["instances"].to(self.device) for x in batched_inputs] else: gt_instances = None features = self.backbone(images.tensor) if self.proposal_generator is not None: proposals, proposal_losses = self.proposal_generator(images, features, gt_instances) else: assert "proposals" in batched_inputs[0] proposals = [x["proposals"].to(self.device) for x in batched_inputs] proposal_losses = {} _, detector_losses = self.roi_heads(images, features, proposals, gt_instances) if self.vis_period > 0: storage = get_event_storage() if storage.iter % self.vis_period == 0: self.visualize_training(batched_inputs, proposals) losses = {} losses.update(detector_losses) losses.update(proposal_losses) return losses def inference( self, batched_inputs: List[Dict[str, torch.Tensor]], detected_instances: Optional[List[Instances]] = None, do_postprocess: bool = True, ): """ Run inference on the given inputs. Args: batched_inputs (list[dict]): same as in :meth:`forward` detected_instances (None or list[Instances]): if not None, it contains an `Instances` object per image. The `Instances` object contains "pred_boxes" and "pred_classes" which are known boxes in the image. The inference will then skip the detection of bounding boxes, and only predict other per-ROI outputs. do_postprocess (bool): whether to apply post-processing on the outputs. Returns: When do_postprocess=True, same as in :meth:`forward`. Otherwise, a list[Instances] containing raw network outputs. """ assert not self.training images = self.preprocess_image(batched_inputs) features = self.backbone(images.tensor) if detected_instances is None: if self.proposal_generator is not None: proposals, _ = self.proposal_generator(images, features, None) else: assert "proposals" in batched_inputs[0] proposals = [x["proposals"].to(self.device) for x in batched_inputs] results, _ = self.roi_heads(images, features, proposals, None) else: detected_instances = [x.to(self.device) for x in detected_instances] results = self.roi_heads.forward_with_given_boxes(features, detected_instances) if do_postprocess: assert not torch.jit.is_scripting(), "Scripting is not supported for postprocess." return GeneralizedRCNN._postprocess(results, batched_inputs, images.image_sizes) else: return results def preprocess_image(self, batched_inputs: List[Dict[str, torch.Tensor]]): """ Normalize, pad and batch the input images. ## ์ž…๋ ฅ ์ด๋ฏธ์ง€๋ฅผ ์ •๊ทœํ™”, ํŒจ๋”ฉ ๋ฐ ๋ฐฐ์น˜ํ•ฉ๋‹ˆ๋‹ค. """ images = [x["image"].to(self.device) for x in batched_inputs] # ์ •๊ทœํ™” : ๊ฐ ์ฐจ์›์˜ ๋ฐ์ดํ„ฐ๊ฐ€ ๋™์ผํ•œ ๋ฒ”์œ„ ๋‚ด์˜ ๊ฐ’์„ ๊ฐ–๋„๋ก ํ•˜๋Š” ์ „์ฒ˜๋ฆฌ ๊ธฐ๋ฒ• images = [(x - self.pixel_mean) / self.pixel_std for x in images] images = ImageList.from_tensors(images, self.backbone.size_divisibility) return images @staticmethod def _postprocess(instances, batched_inputs: List[Dict[str, torch.Tensor]], image_sizes): """ Rescale the output instances to the target size. """ # note: private function; subject to changes processed_results = [] for results_per_image, input_per_image, image_size in zip( instances, batched_inputs, image_sizes ): height = input_per_image.get("height", image_size[0]) width = input_per_image.get("width", image_size[1]) r = detector_postprocess(results_per_image, height, width) processed_results.append({"instances": r}) return processed_results @META_ARCH_REGISTRY.register() class ProposalNetwork(nn.Module): """ A meta architecture that only predicts object proposals. """ @configurable def __init__( self, *, backbone: Backbone, proposal_generator: nn.Module, pixel_mean: Tuple[float], pixel_std: Tuple[float], ): """ Args: backbone: a backbone module, must follow detectron2's backbone interface proposal_generator: a module that generates proposals using backbone features pixel_mean, pixel_std: list or tuple with #channels element, representing the per-channel mean and std to be used to normalize the input image """ super().__init__() self.backbone = backbone self.proposal_generator = proposal_generator self.register_buffer("pixel_mean", torch.tensor(pixel_mean).view(-1, 1, 1), False) self.register_buffer("pixel_std", torch.tensor(pixel_std).view(-1, 1, 1), False) @classmethod def from_config(cls, cfg): backbone = build_backbone(cfg) return { "backbone": backbone, "proposal_generator": build_proposal_generator(cfg, backbone.output_shape()), "pixel_mean": cfg.MODEL.PIXEL_MEAN, "pixel_std": cfg.MODEL.PIXEL_STD, } @property def device(self): return self.pixel_mean.device def forward(self, batched_inputs): """ Args: Same as in :class:`GeneralizedRCNN.forward` Returns: list[dict]: Each dict is the output for one input image. The dict contains one key "proposals" whose value is a :class:`Instances` with keys "proposal_boxes" and "objectness_logits". """ images = [x["image"].to(self.device) for x in batched_inputs] images = [(x - self.pixel_mean) / self.pixel_std for x in images] images = ImageList.from_tensors(images, self.backbone.size_divisibility) features = self.backbone(images.tensor) if "instances" in batched_inputs[0]: gt_instances = [x["instances"].to(self.device) for x in batched_inputs] elif "targets" in batched_inputs[0]: log_first_n( logging.WARN, "'targets' in the model inputs is now renamed to 'instances'!", n=10 ) gt_instances = [x["targets"].to(self.device) for x in batched_inputs] else: gt_instances = None proposals, proposal_losses = self.proposal_generator(images, features, gt_instances) # In training, the proposals are not useful at all but we generate them anyway. # This makes RPN-only models about 5% slower. if self.training: return proposal_losses processed_results = [] for results_per_image, input_per_image, image_size in zip( proposals, batched_inputs, images.image_sizes ): height = input_per_image.get("height", image_size[0]) width = input_per_image.get("width", image_size[1]) r = detector_postprocess(results_per_image, height, width) processed_results.append({"proposals": r}) return processed_results
40.915408
98
0.634424
68f180473fd917daac583d8d9242de3f78858f8b
1,390
py
Python
tests/fields/date_field_test.py
binary-butterfly/wtfjson
551ad07c895ce3c94ac3015b6b5ecc2102599b56
[ "MIT" ]
null
null
null
tests/fields/date_field_test.py
binary-butterfly/wtfjson
551ad07c895ce3c94ac3015b6b5ecc2102599b56
[ "MIT" ]
1
2021-10-11T08:55:45.000Z
2021-10-11T08:55:45.000Z
tests/fields/date_field_test.py
binary-butterfly/wtfjson
551ad07c895ce3c94ac3015b6b5ecc2102599b56
[ "MIT" ]
null
null
null
# encoding: utf-8 """ binary butterfly validator Copyright (c) 2021, binary butterfly GmbH Use of this source code is governed by an MIT-style license that can be found in the LICENSE.txt. """ from datetime import date from unittest import TestCase from wtfjson import DictInput from wtfjson.fields import DateField class DateDictInput(DictInput): test_field = DateField() class DateFieldTest(TestCase): def test_success(self): form = DateDictInput(data={'test_field': '2020-10-01'}) assert form.validate() is True assert form.has_errors is False assert form.errors == {} assert form.out == {'test_field': date(2020, 10, 1)} def test_invalid_type(self): form = DateDictInput(data={'test_field': 1}) assert form.validate() is False assert form.has_errors is True assert form.errors == {'test_field': ['invalid type']} def test_invalid_format(self): form = DateDictInput(data={'test_field': '2020-20-33'}) assert form.validate() is False assert form.has_errors is True assert form.errors == {'test_field': ['invalid date']} def test_invalid_date(self): form = DateDictInput(data={'test_field': '2020-20-33'}) assert form.validate() is False assert form.has_errors is True assert form.errors == {'test_field': ['invalid date']}
31.590909
97
0.669784
b78e7248499b693fb4b50310748b9ef8a9eecb04
1,735
py
Python
tests/test_rabbit_context.py
uk-gov-mirror/ONSdigital.census-rm-qid-batch-runner
158ab77260eb939a15e064ecb53040bd96180e5c
[ "MIT" ]
null
null
null
tests/test_rabbit_context.py
uk-gov-mirror/ONSdigital.census-rm-qid-batch-runner
158ab77260eb939a15e064ecb53040bd96180e5c
[ "MIT" ]
39
2019-05-14T07:23:06.000Z
2021-03-05T11:50:56.000Z
tests/test_rabbit_context.py
uk-gov-mirror/ONSdigital.census-rm-qid-batch-runner
158ab77260eb939a15e064ecb53040bd96180e5c
[ "MIT" ]
1
2021-04-11T07:46:44.000Z
2021-04-11T07:46:44.000Z
from unittest import TestCase from unittest.mock import patch from pika.spec import PERSISTENT_DELIVERY_MODE from rabbit_context import RabbitContext, RabbitConnectionClosedError @patch('rabbit_context.pika') class TestRabbitContext(TestCase): def test_context_manager_opens_connection_and_channel(self, patch_pika): with RabbitContext(): patch_pika.BlockingConnection.assert_called_once() patch_pika.BlockingConnection.return_value.channel.assert_called_once() def test_context_manager_closes_connection(self, patch_pika): with RabbitContext(): pass patch_pika.BlockingConnection.return_value.close.assert_called_once() def test_attempt_to_publish_message_with_closed_connection_raises_correct_exception(self, patch_pika): with RabbitContext() as rabbit: pass with self.assertRaises(RabbitConnectionClosedError): rabbit.publish_message('This should raise an exception', 'text') def test_publish_message(self, patch_pika): with RabbitContext() as rabbit: rabbit.publish_message('Test message body', 'text') patch_pika.BasicProperties.assert_called_once_with(content_type='text', delivery_mode=PERSISTENT_DELIVERY_MODE) patched_basic_publish = patch_pika.BlockingConnection.return_value.channel.return_value.basic_publish patched_basic_publish.assert_called_once_with(exchange=rabbit._exchange, routing_key=rabbit.queue_name, body='Test message body', properties=patch_pika.BasicProperties.return_value)
44.487179
119
0.705476
3bec3219f072b8defd270fae45b19ed32ec142dc
2,900
py
Python
echoAI/Activation/Torch/srelu.py
Venkateshwar2506/Echo
5d236b25ee4900754f48e0a865e1bf1ae9183875
[ "MIT" ]
null
null
null
echoAI/Activation/Torch/srelu.py
Venkateshwar2506/Echo
5d236b25ee4900754f48e0a865e1bf1ae9183875
[ "MIT" ]
null
null
null
echoAI/Activation/Torch/srelu.py
Venkateshwar2506/Echo
5d236b25ee4900754f48e0a865e1bf1ae9183875
[ "MIT" ]
null
null
null
""" Script defined the SReLU (S-shaped Rectified Linear Activation Unit): .. math:: h(x_i) = \\left\\{\\begin{matrix} t_i^r + a_i^r(x_i - t_i^r), x_i \\geq t_i^r \\\\ x_i, t_i^r > x_i > t_i^l\\\\ t_i^l + a_i^l(x_i - t_i^l), x_i \\leq t_i^l \\\\ \\end{matrix}\\right. See SReLU paper: https://arxiv.org/pdf/1512.07030.pdf """ # import pytorch import torch from torch import nn from torch.nn.parameter import Parameter class SReLU(nn.Module): """ SReLU (S-shaped Rectified Linear Activation Unit): a combination of three linear functions, which perform mapping R โ†’ R with the following formulation: .. math:: h(x_i) = \\left\\{\\begin{matrix} t_i^r + a_i^r(x_i - t_i^r), x_i \\geq t_i^r \\\\ x_i, t_i^r > x_i > t_i^l\\\\ t_i^l + a_i^l(x_i - t_i^l), x_i \\leq t_i^l \\\\ \\end{matrix}\\right. with 4 trainable parameters. Shape: - Input: (N, *) where * means, any number of additional dimensions - Output: (N, *), same shape as the input Parameters: .. math:: \\{t_i^r, a_i^r, t_i^l, a_i^l\\} 4 trainable parameters, which model an individual SReLU activation unit. The subscript i indicates that we allow SReLU to vary in different channels. Parameters can be initialized manually or randomly. References: - See SReLU paper: https://arxiv.org/pdf/1512.07030.pdf Examples: >>> srelu_activation = srelu((2,2)) >>> t = torch.randn((2,2), dtype=torch.float, requires_grad = True) >>> output = srelu_activation(t) """ def __init__(self, in_features, parameters=None): """ Initialization. INPUT: - in_features: shape of the input - parameters: (tr, tl, ar, al) parameters for manual initialization, default value is None. If None is passed, parameters are initialized randomly. """ super(SReLU, self).__init__() self.in_features = in_features if parameters is None: self.tr = Parameter( torch.randn(in_features, dtype=torch.float, requires_grad=True) ) self.tl = Parameter( torch.randn(in_features, dtype=torch.float, requires_grad=True) ) self.ar = Parameter( torch.randn(in_features, dtype=torch.float, requires_grad=True) ) self.al = Parameter( torch.randn(in_features, dtype=torch.float, requires_grad=True) ) else: self.tr, self.tl, self.ar, self.al = parameters def forward(self, x): """ Forward pass of the function """ return ( (x >= self.tr).float() * (self.tr + self.ar * (x + self.tr)) + (x < self.tr).float() * (x > self.tl).float() * x + (x <= self.tl).float() * (self.tl + self.al * (x + self.tl)) )
34.52381
205
0.577586
f07dc6896cc8510710e1cc96bf7ae49b00859569
37,413
py
Python
swift/common/internal_client.py
naototty/swift
af373a9cbca5f084f1d0f215b82a579f76da5089
[ "Apache-2.0" ]
null
null
null
swift/common/internal_client.py
naototty/swift
af373a9cbca5f084f1d0f215b82a579f76da5089
[ "Apache-2.0" ]
null
null
null
swift/common/internal_client.py
naototty/swift
af373a9cbca5f084f1d0f215b82a579f76da5089
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2010-2012 OpenStack Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. from eventlet import sleep, Timeout from eventlet.green import httplib, socket import json import six from six.moves import range from six.moves import urllib import struct from sys import exc_info, exit import zlib from time import gmtime, strftime, time from zlib import compressobj from swift.common.exceptions import ClientException from swift.common.http import (HTTP_NOT_FOUND, HTTP_MULTIPLE_CHOICES, is_server_error) from swift.common.swob import Request, bytes_to_wsgi from swift.common.utils import quote, closing_if_possible from swift.common.wsgi import loadapp, pipeline_property if six.PY3: from eventlet.green.urllib import request as urllib2 else: from eventlet.green import urllib2 class UnexpectedResponse(Exception): """ Exception raised on invalid responses to InternalClient.make_request(). :param message: Exception message. :param resp: The unexpected response. """ def __init__(self, message, resp): super(UnexpectedResponse, self).__init__(message) self.resp = resp class CompressingFileReader(object): """ Wrapper for file object to compress object while reading. Can be used to wrap file objects passed to InternalClient.upload_object(). Used in testing of InternalClient. :param file_obj: File object to wrap. :param compresslevel: Compression level, defaults to 9. :param chunk_size: Size of chunks read when iterating using object, defaults to 4096. """ def __init__(self, file_obj, compresslevel=9, chunk_size=4096): self._f = file_obj self.compresslevel = compresslevel self.chunk_size = chunk_size self.set_initial_state() def set_initial_state(self): """ Sets the object to the state needed for the first read. """ self._f.seek(0) self._compressor = compressobj( self.compresslevel, zlib.DEFLATED, -zlib.MAX_WBITS, zlib.DEF_MEM_LEVEL, 0) self.done = False self.first = True self.crc32 = 0 self.total_size = 0 def read(self, *a, **kw): """ Reads a chunk from the file object. Params are passed directly to the underlying file object's read(). :returns: Compressed chunk from file object. """ if self.done: return b'' x = self._f.read(*a, **kw) if x: self.crc32 = zlib.crc32(x, self.crc32) & 0xffffffff self.total_size += len(x) compressed = self._compressor.compress(x) if not compressed: compressed = self._compressor.flush(zlib.Z_SYNC_FLUSH) else: compressed = self._compressor.flush(zlib.Z_FINISH) crc32 = struct.pack("<L", self.crc32 & 0xffffffff) size = struct.pack("<L", self.total_size & 0xffffffff) footer = crc32 + size compressed += footer self.done = True if self.first: self.first = False header = b'\037\213\010\000\000\000\000\000\002\377' compressed = header + compressed return compressed def __iter__(self): return self def __next__(self): chunk = self.read(self.chunk_size) if chunk: return chunk raise StopIteration next = __next__ def seek(self, offset, whence=0): if not (offset == 0 and whence == 0): raise NotImplementedError('Seek implemented on offset 0 only') self.set_initial_state() class InternalClient(object): """ An internal client that uses a swift proxy app to make requests to Swift. This client will exponentially slow down for retries. :param conf_path: Full path to proxy config. :param user_agent: User agent to be sent to requests to Swift. :param request_tries: Number of tries before InternalClient.make_request() gives up. """ def __init__(self, conf_path, user_agent, request_tries, allow_modify_pipeline=False): if request_tries < 1: raise ValueError('request_tries must be positive') self.app = loadapp(conf_path, allow_modify_pipeline=allow_modify_pipeline) self.user_agent = user_agent self.request_tries = request_tries get_object_ring = pipeline_property('get_object_ring') container_ring = pipeline_property('container_ring') account_ring = pipeline_property('account_ring') auto_create_account_prefix = pipeline_property( 'auto_create_account_prefix', default='.') def make_request( self, method, path, headers, acceptable_statuses, body_file=None, params=None): """Makes a request to Swift with retries. :param method: HTTP method of request. :param path: Path of request. :param headers: Headers to be sent with request. :param acceptable_statuses: List of acceptable statuses for request. :param body_file: Body file to be passed along with request, defaults to None. :param params: A dict of params to be set in request query string, defaults to None. :returns: Response object on success. :raises UnexpectedResponse: Exception raised when make_request() fails to get a response with an acceptable status :raises Exception: Exception is raised when code fails in an unexpected way. """ headers = dict(headers) headers['user-agent'] = self.user_agent for attempt in range(self.request_tries): resp = exc_type = exc_value = exc_traceback = None req = Request.blank( path, environ={'REQUEST_METHOD': method}, headers=headers) if body_file is not None: if hasattr(body_file, 'seek'): body_file.seek(0) req.body_file = body_file if params: req.params = params try: resp = req.get_response(self.app) except (Exception, Timeout): exc_type, exc_value, exc_traceback = exc_info() else: if resp.status_int in acceptable_statuses or \ resp.status_int // 100 in acceptable_statuses: return resp elif not is_server_error(resp.status_int): # No sense retrying when we expect the same result break # sleep only between tries, not after each one if attempt < self.request_tries - 1: if resp: # always close any resp.app_iter before we discard it with closing_if_possible(resp.app_iter): # for non 2XX requests it's safe and useful to drain # the response body so we log the correct status code if resp.status_int // 100 != 2: for iter_body in resp.app_iter: pass sleep(2 ** (attempt + 1)) if resp: msg = 'Unexpected response: %s' % resp.status if resp.status_int // 100 != 2 and resp.body: # provide additional context (and drain the response body) for # non 2XX responses msg += ' (%s)' % resp.body raise UnexpectedResponse(msg, resp) if exc_type: # To make pep8 tool happy, in place of raise t, v, tb: six.reraise(exc_type, exc_value, exc_traceback) def _get_metadata( self, path, metadata_prefix='', acceptable_statuses=(2,), headers=None, params=None): """ Gets metadata by doing a HEAD on a path and using the metadata_prefix to get values from the headers returned. :param path: Path to do HEAD on. :param metadata_prefix: Used to filter values from the headers returned. Will strip that prefix from the keys in the dict returned. Defaults to ''. :param acceptable_statuses: List of status for valid responses, defaults to (2,). :param headers: extra headers to send :returns: A dict of metadata with metadata_prefix stripped from keys. Keys will be lowercase. :raises UnexpectedResponse: Exception raised when requests fail to get a response with an acceptable status :raises Exception: Exception is raised when code fails in an unexpected way. """ headers = headers or {} resp = self.make_request('HEAD', path, headers, acceptable_statuses, params=params) metadata_prefix = metadata_prefix.lower() metadata = {} for k, v in resp.headers.items(): if k.lower().startswith(metadata_prefix): metadata[k[len(metadata_prefix):].lower()] = v return metadata def _iter_items( self, path, marker='', end_marker='', prefix='', acceptable_statuses=(2, HTTP_NOT_FOUND)): """ Returns an iterator of items from a json listing. Assumes listing has 'name' key defined and uses markers. :param path: Path to do GET on. :param marker: Prefix of first desired item, defaults to ''. :param end_marker: Last item returned will be 'less' than this, defaults to ''. :param prefix: Prefix of items :param acceptable_statuses: List of status for valid responses, defaults to (2, HTTP_NOT_FOUND). :raises UnexpectedResponse: Exception raised when requests fail to get a response with an acceptable status :raises Exception: Exception is raised when code fails in an unexpected way. """ if not isinstance(marker, bytes): marker = marker.encode('utf8') if not isinstance(end_marker, bytes): end_marker = end_marker.encode('utf8') if not isinstance(prefix, bytes): prefix = prefix.encode('utf8') while True: resp = self.make_request( 'GET', '%s?format=json&marker=%s&end_marker=%s&prefix=%s' % (path, bytes_to_wsgi(quote(marker)), bytes_to_wsgi(quote(end_marker)), bytes_to_wsgi(quote(prefix))), {}, acceptable_statuses) if not resp.status_int == 200: if resp.status_int >= HTTP_MULTIPLE_CHOICES: b''.join(resp.app_iter) break data = json.loads(resp.body) if not data: break for item in data: yield item marker = data[-1]['name'].encode('utf8') def make_path(self, account, container=None, obj=None): """ Returns a swift path for a request quoting and utf-8 encoding the path parts as need be. :param account: swift account :param container: container, defaults to None :param obj: object, defaults to None :raises ValueError: Is raised if obj is specified and container is not. """ path = '/v1/%s' % quote(account) if container: path += '/%s' % quote(container) if obj: path += '/%s' % quote(obj) elif obj: raise ValueError('Object specified without container') return path def _set_metadata( self, path, metadata, metadata_prefix='', acceptable_statuses=(2,)): """ Sets metadata on path using metadata_prefix to set values in headers of POST request. :param path: Path to do POST on. :param metadata: Dict of metadata to set. :param metadata_prefix: Prefix used to set metadata values in headers of requests, used to prefix keys in metadata when setting metadata, defaults to ''. :param acceptable_statuses: List of status for valid responses, defaults to (2,). :raises UnexpectedResponse: Exception raised when requests fail to get a response with an acceptable status :raises Exception: Exception is raised when code fails in an unexpected way. """ headers = {} for k, v in metadata.items(): if k.lower().startswith(metadata_prefix): headers[k] = v else: headers['%s%s' % (metadata_prefix, k)] = v self.make_request('POST', path, headers, acceptable_statuses) # account methods def iter_containers( self, account, marker='', end_marker='', prefix='', acceptable_statuses=(2, HTTP_NOT_FOUND)): """ Returns an iterator of containers dicts from an account. :param account: Account on which to do the container listing. :param marker: Prefix of first desired item, defaults to ''. :param end_marker: Last item returned will be 'less' than this, defaults to ''. :param prefix: Prefix of containers :param acceptable_statuses: List of status for valid responses, defaults to (2, HTTP_NOT_FOUND). :raises UnexpectedResponse: Exception raised when requests fail to get a response with an acceptable status :raises Exception: Exception is raised when code fails in an unexpected way. """ path = self.make_path(account) return self._iter_items(path, marker, end_marker, prefix, acceptable_statuses) def get_account_info( self, account, acceptable_statuses=(2, HTTP_NOT_FOUND)): """ Returns (container_count, object_count) for an account. :param account: Account on which to get the information. :param acceptable_statuses: List of status for valid responses, defaults to (2, HTTP_NOT_FOUND). :raises UnexpectedResponse: Exception raised when requests fail to get a response with an acceptable status :raises Exception: Exception is raised when code fails in an unexpected way. """ path = self.make_path(account) resp = self.make_request('HEAD', path, {}, acceptable_statuses) if not resp.status_int // 100 == 2: return (0, 0) return (int(resp.headers.get('x-account-container-count', 0)), int(resp.headers.get('x-account-object-count', 0))) def get_account_metadata( self, account, metadata_prefix='', acceptable_statuses=(2,), params=None): """Gets account metadata. :param account: Account on which to get the metadata. :param metadata_prefix: Used to filter values from the headers returned. Will strip that prefix from the keys in the dict returned. Defaults to ''. :param acceptable_statuses: List of status for valid responses, defaults to (2,). :returns: Returns dict of account metadata. Keys will be lowercase. :raises UnexpectedResponse: Exception raised when requests fail to get a response with an acceptable status :raises Exception: Exception is raised when code fails in an unexpected way. """ path = self.make_path(account) return self._get_metadata(path, metadata_prefix, acceptable_statuses, headers=None, params=params) def set_account_metadata( self, account, metadata, metadata_prefix='', acceptable_statuses=(2,)): """ Sets account metadata. A call to this will add to the account metadata and not overwrite all of it with values in the metadata dict. To clear an account metadata value, pass an empty string as the value for the key in the metadata dict. :param account: Account on which to get the metadata. :param metadata: Dict of metadata to set. :param metadata_prefix: Prefix used to set metadata values in headers of requests, used to prefix keys in metadata when setting metadata, defaults to ''. :param acceptable_statuses: List of status for valid responses, defaults to (2,). :raises UnexpectedResponse: Exception raised when requests fail to get a response with an acceptable status :raises Exception: Exception is raised when code fails in an unexpected way. """ path = self.make_path(account) self._set_metadata( path, metadata, metadata_prefix, acceptable_statuses) # container methods def container_exists(self, account, container): """Checks to see if a container exists. :param account: The container's account. :param container: Container to check. :raises UnexpectedResponse: Exception raised when requests fail to get a response with an acceptable status :raises Exception: Exception is raised when code fails in an unexpected way. :returns: True if container exists, false otherwise. """ path = self.make_path(account, container) resp = self.make_request('HEAD', path, {}, (2, HTTP_NOT_FOUND)) return not resp.status_int == HTTP_NOT_FOUND def create_container( self, account, container, headers=None, acceptable_statuses=(2,)): """ Creates container. :param account: The container's account. :param container: Container to create. :param headers: Defaults to empty dict. :param acceptable_statuses: List of status for valid responses, defaults to (2,). :raises UnexpectedResponse: Exception raised when requests fail to get a response with an acceptable status :raises Exception: Exception is raised when code fails in an unexpected way. """ headers = headers or {} path = self.make_path(account, container) self.make_request('PUT', path, headers, acceptable_statuses) def delete_container( self, account, container, acceptable_statuses=(2, HTTP_NOT_FOUND)): """ Deletes a container. :param account: The container's account. :param container: Container to delete. :param acceptable_statuses: List of status for valid responses, defaults to (2, HTTP_NOT_FOUND). :raises UnexpectedResponse: Exception raised when requests fail to get a response with an acceptable status :raises Exception: Exception is raised when code fails in an unexpected way. """ path = self.make_path(account, container) self.make_request('DELETE', path, {}, acceptable_statuses) def get_container_metadata( self, account, container, metadata_prefix='', acceptable_statuses=(2,), params=None): """Gets container metadata. :param account: The container's account. :param container: Container to get metadata on. :param metadata_prefix: Used to filter values from the headers returned. Will strip that prefix from the keys in the dict returned. Defaults to ''. :param acceptable_statuses: List of status for valid responses, defaults to (2,). :returns: Returns dict of container metadata. Keys will be lowercase. :raises UnexpectedResponse: Exception raised when requests fail to get a response with an acceptable status :raises Exception: Exception is raised when code fails in an unexpected way. """ path = self.make_path(account, container) return self._get_metadata(path, metadata_prefix, acceptable_statuses, params=params) def iter_objects( self, account, container, marker='', end_marker='', prefix='', acceptable_statuses=(2, HTTP_NOT_FOUND)): """ Returns an iterator of object dicts from a container. :param account: The container's account. :param container: Container to iterate objects on. :param marker: Prefix of first desired item, defaults to ''. :param end_marker: Last item returned will be 'less' than this, defaults to ''. :param prefix: Prefix of objects :param acceptable_statuses: List of status for valid responses, defaults to (2, HTTP_NOT_FOUND). :raises UnexpectedResponse: Exception raised when requests fail to get a response with an acceptable status :raises Exception: Exception is raised when code fails in an unexpected way. """ path = self.make_path(account, container) return self._iter_items(path, marker, end_marker, prefix, acceptable_statuses) def set_container_metadata( self, account, container, metadata, metadata_prefix='', acceptable_statuses=(2,)): """ Sets container metadata. A call to this will add to the container metadata and not overwrite all of it with values in the metadata dict. To clear a container metadata value, pass an empty string as the value for the key in the metadata dict. :param account: The container's account. :param container: Container to set metadata on. :param metadata: Dict of metadata to set. :param metadata_prefix: Prefix used to set metadata values in headers of requests, used to prefix keys in metadata when setting metadata, defaults to ''. :param acceptable_statuses: List of status for valid responses, defaults to (2,). :raises UnexpectedResponse: Exception raised when requests fail to get a response with an acceptable status :raises Exception: Exception is raised when code fails in an unexpected way. """ path = self.make_path(account, container) self._set_metadata( path, metadata, metadata_prefix, acceptable_statuses) # object methods def delete_object( self, account, container, obj, acceptable_statuses=(2, HTTP_NOT_FOUND), headers=None): """ Deletes an object. :param account: The object's account. :param container: The object's container. :param obj: The object. :param acceptable_statuses: List of status for valid responses, defaults to (2, HTTP_NOT_FOUND). :param headers: extra headers to send with request :raises UnexpectedResponse: Exception raised when requests fail to get a response with an acceptable status :raises Exception: Exception is raised when code fails in an unexpected way. """ path = self.make_path(account, container, obj) self.make_request('DELETE', path, (headers or {}), acceptable_statuses) def get_object_metadata( self, account, container, obj, metadata_prefix='', acceptable_statuses=(2,), headers=None, params=None): """Gets object metadata. :param account: The object's account. :param container: The object's container. :param obj: The object. :param metadata_prefix: Used to filter values from the headers returned. Will strip that prefix from the keys in the dict returned. Defaults to ''. :param acceptable_statuses: List of status for valid responses, defaults to (2,). :param headers: extra headers to send with request :returns: Dict of object metadata. :raises UnexpectedResponse: Exception raised when requests fail to get a response with an acceptable status :raises Exception: Exception is raised when code fails in an unexpected way. """ path = self.make_path(account, container, obj) return self._get_metadata(path, metadata_prefix, acceptable_statuses, headers=headers, params=params) def get_object(self, account, container, obj, headers, acceptable_statuses=(2,), params=None): """ Gets an object. :param account: The object's account. :param container: The object's container. :param obj: The object name. :param headers: Headers to send with request, defaults to empty dict. :param acceptable_statuses: List of status for valid responses, defaults to (2,). :param params: A dict of params to be set in request query string, defaults to None. :raises UnexpectedResponse: Exception raised when requests fail to get a response with an acceptable status :raises Exception: Exception is raised when code fails in an unexpected way. :returns: A 3-tuple (status, headers, iterator of object body) """ headers = headers or {} path = self.make_path(account, container, obj) resp = self.make_request( 'GET', path, headers, acceptable_statuses, params=params) return (resp.status_int, resp.headers, resp.app_iter) def iter_object_lines( self, account, container, obj, headers=None, acceptable_statuses=(2,)): """ Returns an iterator of object lines from an uncompressed or compressed text object. Uncompress object as it is read if the object's name ends with '.gz'. :param account: The object's account. :param container: The object's container. :param obj: The object. :param acceptable_statuses: List of status for valid responses, defaults to (2,). :raises UnexpectedResponse: Exception raised when requests fail to get a response with an acceptable status :raises Exception: Exception is raised when code fails in an unexpected way. """ headers = headers or {} path = self.make_path(account, container, obj) resp = self.make_request('GET', path, headers, acceptable_statuses) if not resp.status_int // 100 == 2: return last_part = b'' compressed = obj.endswith('.gz') # magic in the following zlib.decompressobj argument is courtesy of # Python decompressing gzip chunk-by-chunk # http://stackoverflow.com/questions/2423866 d = zlib.decompressobj(16 + zlib.MAX_WBITS) for chunk in resp.app_iter: if compressed: chunk = d.decompress(chunk) parts = chunk.split(b'\n') if len(parts) == 1: last_part = last_part + parts[0] else: parts[0] = last_part + parts[0] for part in parts[:-1]: yield part last_part = parts[-1] if last_part: yield last_part def set_object_metadata( self, account, container, obj, metadata, metadata_prefix='', acceptable_statuses=(2,)): """ Sets an object's metadata. The object's metadata will be overwritten by the values in the metadata dict. :param account: The object's account. :param container: The object's container. :param obj: The object. :param metadata: Dict of metadata to set. :param metadata_prefix: Prefix used to set metadata values in headers of requests, used to prefix keys in metadata when setting metadata, defaults to ''. :param acceptable_statuses: List of status for valid responses, defaults to (2,). :raises UnexpectedResponse: Exception raised when requests fail to get a response with an acceptable status :raises Exception: Exception is raised when code fails in an unexpected way. """ path = self.make_path(account, container, obj) self._set_metadata( path, metadata, metadata_prefix, acceptable_statuses) def upload_object( self, fobj, account, container, obj, headers=None): """ :param fobj: File object to read object's content from. :param account: The object's account. :param container: The object's container. :param obj: The object. :param headers: Headers to send with request, defaults to empty dict. :raises UnexpectedResponse: Exception raised when requests fail to get a response with an acceptable status :raises Exception: Exception is raised when code fails in an unexpected way. """ headers = dict(headers or {}) if 'Content-Length' not in headers: headers['Transfer-Encoding'] = 'chunked' path = self.make_path(account, container, obj) self.make_request('PUT', path, headers, (2,), fobj) def get_auth(url, user, key, auth_version='1.0', **kwargs): if auth_version != '1.0': exit('ERROR: swiftclient missing, only auth v1.0 supported') req = urllib2.Request(url) req.add_header('X-Auth-User', user) req.add_header('X-Auth-Key', key) conn = urllib2.urlopen(req) headers = conn.info() return ( headers.getheader('X-Storage-Url'), headers.getheader('X-Auth-Token')) class SimpleClient(object): """ Simple client that is used in bin/swift-dispersion-* and container sync """ def __init__(self, url=None, token=None, starting_backoff=1, max_backoff=5, retries=5): self.url = url self.token = token self.attempts = 0 # needed in swif-dispersion-populate self.starting_backoff = starting_backoff self.max_backoff = max_backoff self.retries = retries def base_request(self, method, container=None, name=None, prefix=None, headers=None, proxy=None, contents=None, full_listing=None, logger=None, additional_info=None, timeout=None, marker=None): # Common request method trans_start = time() url = self.url if full_listing: info, body_data = self.base_request( method, container, name, prefix, headers, proxy, timeout=timeout, marker=marker) listing = body_data while listing: marker = listing[-1]['name'] info, listing = self.base_request( method, container, name, prefix, headers, proxy, timeout=timeout, marker=marker) if listing: body_data.extend(listing) return [info, body_data] if headers is None: headers = {} if self.token: headers['X-Auth-Token'] = self.token if container: url = '%s/%s' % (url.rstrip('/'), quote(container)) if name: url = '%s/%s' % (url.rstrip('/'), quote(name)) else: params = ['format=json'] if prefix: params.append('prefix=%s' % prefix) if marker: params.append('marker=%s' % quote(marker)) url += '?' + '&'.join(params) req = urllib2.Request(url, headers=headers, data=contents) if proxy: proxy = urllib.parse.urlparse(proxy) req.set_proxy(proxy.netloc, proxy.scheme) req.get_method = lambda: method conn = urllib2.urlopen(req, timeout=timeout) body = conn.read() info = conn.info() try: body_data = json.loads(body) except ValueError: body_data = None trans_stop = time() if logger: sent_content_length = 0 for n, v in headers.items(): nl = n.lower() if nl == 'content-length': try: sent_content_length = int(v) break except ValueError: pass logger.debug("-> " + " ".join( quote(str(x) if x else "-", ":/") for x in ( strftime('%Y-%m-%dT%H:%M:%S', gmtime(trans_stop)), method, url, conn.getcode(), sent_content_length, info['content-length'], trans_start, trans_stop, trans_stop - trans_start, additional_info ))) return [info, body_data] def retry_request(self, method, **kwargs): retries = kwargs.pop('retries', self.retries) self.attempts = 0 backoff = self.starting_backoff while self.attempts <= retries: self.attempts += 1 try: return self.base_request(method, **kwargs) except (socket.error, httplib.HTTPException, urllib2.URLError) \ as err: if self.attempts > retries: if isinstance(err, urllib2.HTTPError): raise ClientException('Raise too many retries', http_status=err.getcode()) else: raise sleep(backoff) backoff = min(backoff * 2, self.max_backoff) def get_account(self, *args, **kwargs): # Used in swift-dispersion-populate return self.retry_request('GET', **kwargs) def put_container(self, container, **kwargs): # Used in swift-dispersion-populate return self.retry_request('PUT', container=container, **kwargs) def get_container(self, container, **kwargs): # Used in swift-dispersion-populate return self.retry_request('GET', container=container, **kwargs) def put_object(self, container, name, contents, **kwargs): # Used in swift-dispersion-populate return self.retry_request('PUT', container=container, name=name, contents=contents.read(), **kwargs) def head_object(url, **kwargs): """For usage with container sync """ client = SimpleClient(url=url) return client.retry_request('HEAD', **kwargs) def put_object(url, **kwargs): """For usage with container sync """ client = SimpleClient(url=url) client.retry_request('PUT', **kwargs) def delete_object(url, **kwargs): """For usage with container sync """ client = SimpleClient(url=url) client.retry_request('DELETE', **kwargs)
40.056745
79
0.578515
a7162563d84e62a79dea2df52cd1f7aac676a27a
2,615
py
Python
src/hcl_model/transformers/structural_breaks.py
khrapovs/hcl-model
879740e6072c2ff45864040db0b8364b55de1f44
[ "MIT" ]
null
null
null
src/hcl_model/transformers/structural_breaks.py
khrapovs/hcl-model
879740e6072c2ff45864040db0b8364b55de1f44
[ "MIT" ]
5
2022-02-09T12:38:04.000Z
2022-02-21T15:25:06.000Z
src/hcl_model/transformers/structural_breaks.py
khrapovs/hcl-model
879740e6072c2ff45864040db0b8364b55de1f44
[ "MIT" ]
1
2022-02-17T09:59:22.000Z
2022-02-17T09:59:22.000Z
from __future__ import annotations from typing import Union import numpy as np import pandas as pd import ruptures as rpt from sklearn.base import BaseEstimator, TransformerMixin X_TYPE = Union[pd.Series, np.ndarray] class TargetStructuralBreakCorrectionTransformer(BaseEstimator, TransformerMixin): def __init__(self, structural_break_correction: bool = True) -> None: self.structural_break_correction = structural_break_correction def fit(self, X: X_TYPE, y: pd.Series = None) -> TargetStructuralBreakCorrectionTransformer: return self def transform(self, X: X_TYPE) -> X_TYPE: if self.structural_break_correction: if isinstance(X, np.ndarray): return self._get_series_without_structural_breaks(signal=pd.Series(X.flatten())).values else: return self._get_series_without_structural_breaks(signal=X) else: return X @staticmethod def inverse_transform(X: X_TYPE) -> X_TYPE: return X def _get_series_without_structural_breaks(self, signal: pd.Series) -> pd.Series: change_points = self._get_change_points(y=signal) if len(change_points) <= 1: return signal else: change_points = np.concatenate((np.array([0]), change_points)) current_signal = signal[change_points[-2] : change_points[-1]] level_current = current_signal.median() variability_current = current_signal.std() for past, current in zip(change_points[:-1], change_points[1:]): variability_past = signal[past:current].std() signal[past:current] = self._adjust_level(y=signal[past:current], level_current=level_current) signal[past:current] = self._adjust_variability( y=signal[past:current], variability_current=variability_current, variability_past=variability_past ) return signal @staticmethod def _adjust_variability(y: pd.Series, variability_current: float, variability_past: float) -> pd.Series: if variability_past == 0: return y else: adjust_factor = variability_current / variability_past return (y - y.mean()) * adjust_factor + y.mean() @staticmethod def _adjust_level(y: pd.Series, level_current: float) -> pd.Series: return y + level_current - y.median() @staticmethod def _get_change_points(y: pd.Series) -> np.ndarray: return np.array(rpt.KernelCPD(kernel="rbf", jump=1, min_size=26).fit(y.values).predict(pen=10))
40.230769
118
0.670746
ad84da7bceabb31fcd668e9ab0ba97c53c659c10
591
py
Python
common/oldTesting/streamClient.py
APWHY/carlsb
e8dd935f9c3b132bc16a0e0e982ffe9c13b8ad1c
[ "MIT" ]
null
null
null
common/oldTesting/streamClient.py
APWHY/carlsb
e8dd935f9c3b132bc16a0e0e982ffe9c13b8ad1c
[ "MIT" ]
null
null
null
common/oldTesting/streamClient.py
APWHY/carlsb
e8dd935f9c3b132bc16a0e0e982ffe9c13b8ad1c
[ "MIT" ]
null
null
null
# simple client to send TCP messages from # only used as a tool for manual testing import socket # ip = '<broadcast>' myIP = socket.gethostbyname(socket.gethostname()) print(myIP) # ip = "127.0.0.1" soc = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # soc.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1) clients_input = input("What you want to send my dear client?\n") soc.connect((myIP, 54373)) soc.send(clients_input.encode("utf8")) result_bytes = soc.recv(4096) result_string = result_bytes.decode("utf8") print("Result from server is {}".format(result_string))
29.55
66
0.734349
10a31ec06284055e63a505083fc55e248ca8c504
1,059
py
Python
tests/test_get_value_digital.py
makaimann/fault
8c805415f398e64971d18fbd3014bc0b59fb38b8
[ "BSD-3-Clause" ]
31
2018-07-16T15:03:14.000Z
2022-03-10T08:36:09.000Z
tests/test_get_value_digital.py
makaimann/fault
8c805415f398e64971d18fbd3014bc0b59fb38b8
[ "BSD-3-Clause" ]
216
2018-07-18T20:00:34.000Z
2021-10-05T17:40:47.000Z
tests/test_get_value_digital.py
makaimann/fault
8c805415f398e64971d18fbd3014bc0b59fb38b8
[ "BSD-3-Clause" ]
10
2019-02-17T00:56:58.000Z
2021-11-05T13:31:37.000Z
from pathlib import Path import fault import magma as m from .common import pytest_sim_params def pytest_generate_tests(metafunc): pytest_sim_params(metafunc, 'system-verilog', 'verilator') class MyAdder(m.Circuit): io = m.IO(a=m.In(m.UInt[4]), b=m.Out(m.UInt[4])) io.b @= io.a + 1 def test_get_value_digital(target, simulator): # define test tester = fault.Tester(MyAdder) # provide stimulus stim = list(range(16)) output = [] for a in stim: tester.poke(MyAdder.a, a) tester.eval() output.append(tester.get_value(MyAdder.b)) # run the test kwargs = dict( target=target, tmp_dir=True ) if target == 'system-verilog': kwargs['simulator'] = simulator elif target == 'verilator': kwargs['flags'] = ['-Wno-fatal'] tester.compile_and_run(**kwargs) # check the results def model(a): return (a + 1) % 16 for a, b_meas in zip(stim, output): b_expct = model(a) assert b_meas.value == b_expct
22.531915
62
0.608121
c5148a9bda2c3d7c62714f56a756948c563743b9
2,921
py
Python
config.py
tifmusic/tifmusic
3ae8e4d71ad7985f320403e058e25afe2481cb6c
[ "MIT" ]
2
2021-08-17T08:16:26.000Z
2021-08-24T17:22:26.000Z
config.py
tifmusic/tifmusic
3ae8e4d71ad7985f320403e058e25afe2481cb6c
[ "MIT" ]
null
null
null
config.py
tifmusic/tifmusic
3ae8e4d71ad7985f320403e058e25afe2481cb6c
[ "MIT" ]
2
2021-08-25T04:46:50.000Z
2021-08-31T02:24:55.000Z
#MIT License #Copyright (c) 2021 SUBIN #Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is #furnished to do so, subject to the following conditions: #The above copyright notice and this permission notice shall be included in all #copies or substantial portions of the Software. #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR #IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, #FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE #AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER #LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, #OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE #SOFTWARE. import os import re from youtube_dl import YoutubeDL ydl_opts = { "geo-bypass": True, "nocheckcertificate": True } ydl = YoutubeDL(ydl_opts) links=[] finalurl="" C_PLAY=False STREAM=os.environ.get("STREAM_URL", "https://bcovlive-a.akamaihd.net/19b535b7499a4719a5c19e043063f5d9/ap-southeast-1/6034685947001/playlist.m3u8?nocache=825347") regex = r"^(https?\:\/\/)?(www\.youtube\.com|youtu\.?be)\/.+" match = re.match(regex,STREAM) regex_ = r"http.*" match_ = re.match(regex_,STREAM) if match: meta = ydl.extract_info(STREAM, download=False) formats = meta.get('formats', [meta]) for f in formats: links.append(f['url']) finalurl=links[0] elif match_: finalurl=STREAM else: C_PLAY=True finalurl=STREAM class Config: ADMIN = os.environ.get("ADMINS", '') ADMINS = [int(admin) if re.search('^\d+$', admin) else admin for admin in (ADMIN).split()] API_ID = int(os.environ.get("API_ID", '')) CHAT = int(os.environ.get("CHAT", "")) LOG_GROUP=os.environ.get("LOG_GROUP", "") if LOG_GROUP: LOG_GROUP=int(LOG_GROUP) else: LOG_GROUP=None STREAM_URL=finalurl CPLAY=C_PLAY SHUFFLE=bool(os.environ.get("SHUFFLE", True)) LIMIT=int(os.environ.get("LIMIT", 350)) ADMIN_ONLY=os.environ.get("ADMIN_ONLY", "N") REPLY_MESSAGE=os.environ.get("REPLY_MESSAGE", None) if REPLY_MESSAGE: REPLY_MESSAGE=REPLY_MESSAGE else: REPLY_MESSAGE=None EDIT_TITLE = os.environ.get("EDIT_TITLE", True) if EDIT_TITLE == "NO": EDIT_TITLE=None DURATION_LIMIT=int(os.environ.get("MAXIMUM_DURATION", 15)) DELAY = int(os.environ.get("DELAY", 10)) API_HASH = os.environ.get("API_HASH", "") BOT_TOKEN = os.environ.get("BOT_TOKEN", "") SESSION = os.environ.get("SESSION_STRING", "") playlist=[] msg = {}
36.061728
161
0.707292
7b7defbee993dc201225a158cd3e8f4239e13bba
2,263
py
Python
tests/unit/workflow/processors/test_target_locker.py
thoughteer/edera
c4ddb5d8a25906c3bd773c91afb3260fc0b704f2
[ "MIT" ]
3
2018-11-27T15:45:19.000Z
2018-12-21T20:32:10.000Z
tests/unit/workflow/processors/test_target_locker.py
thoughteer/edera
c4ddb5d8a25906c3bd773c91afb3260fc0b704f2
[ "MIT" ]
18
2018-12-02T18:38:59.000Z
2020-02-05T22:09:37.000Z
tests/unit/workflow/processors/test_target_locker.py
thoughteer/edera
c4ddb5d8a25906c3bd773c91afb3260fc0b704f2
[ "MIT" ]
null
null
null
import pytest from edera import Condition from edera import Task from edera.exceptions import LockAcquisitionError from edera.exceptions import LockRetentionError from edera.lockers import ProcessLocker from edera.requisites import shortcut from edera.workflow import WorkflowBuilder from edera.workflow.processors import TargetLocker def test_target_locker_acquires_lock_first(): class C(Condition): def check(self): return False class T(Task): target = C() def execute(self): raise RuntimeError class X(Task): @shortcut def requisite(self): return T() workflow = WorkflowBuilder().build(X()) locker = ProcessLocker() TargetLocker(locker).process(workflow) assert workflow[X()].item.target is None with locker.lock("C"): with pytest.raises(LockAcquisitionError): workflow[T()].item.execute() def test_target_locker_prechecks_target(): class C(Condition): def check(self): return True class T(Task): target = C() def execute(self): raise RuntimeError workflow = WorkflowBuilder().build(T()) TargetLocker(ProcessLocker()).process(workflow) workflow[T()].item.execute() def test_target_locker_executes_task_if_all_is_ok(): class C(Condition): def check(self): return False class T(Task): target = C() def execute(self): raise RuntimeError workflow = WorkflowBuilder().build(T()) TargetLocker(ProcessLocker()).process(workflow) with pytest.raises(RuntimeError): workflow[T()].item.execute() def test_target_locker_interrupts_execution_on_lock_loss(): class C(Condition): def check(self): return False class T(Task): target = C() def execute(self): raise RuntimeError class CrazyLocker(ProcessLocker): def lock(self, key, callback=None): callback() return super(CrazyLocker, self).lock(key) workflow = WorkflowBuilder().build(T()) TargetLocker(CrazyLocker()).process(workflow) with pytest.raises(LockRetentionError): workflow[T()].item.execute()
21.552381
59
0.647813
30a0cc49abfc3c797ab1cfa1b62d5eda9025694a
7,335
py
Python
openpeerpower/components/shelly/config_flow.py
pcaston/core
e74d946cef7a9d4e232ae9e0ba150d18018cfe33
[ "Apache-2.0" ]
1
2021-07-08T20:09:55.000Z
2021-07-08T20:09:55.000Z
openpeerpower/components/shelly/config_flow.py
pcaston/core
e74d946cef7a9d4e232ae9e0ba150d18018cfe33
[ "Apache-2.0" ]
47
2021-02-21T23:43:07.000Z
2022-03-31T06:07:10.000Z
openpeerpower/components/shelly/config_flow.py
OpenPeerPower/core
f673dfac9f2d0c48fa30af37b0a99df9dd6640ee
[ "Apache-2.0" ]
null
null
null
"""Config flow for Shelly integration.""" import asyncio import logging import aiohttp import aioshelly import async_timeout import voluptuous as vol from openpeerpower import config_entries, core from openpeerpower.const import ( CONF_HOST, CONF_PASSWORD, CONF_USERNAME, HTTP_UNAUTHORIZED, ) from openpeerpower.helpers import aiohttp_client from .const import AIOSHELLY_DEVICE_TIMEOUT_SEC, DOMAIN from .utils import get_coap_context, get_device_sleep_period _LOGGER = logging.getLogger(__name__) HOST_SCHEMA = vol.Schema({vol.Required(CONF_HOST): str}) HTTP_CONNECT_ERRORS = (asyncio.TimeoutError, aiohttp.ClientError) async def validate_input(opp: core.OpenPeerPower, host, data): """Validate the user input allows us to connect. Data has the keys from DATA_SCHEMA with values provided by the user. """ options = aioshelly.ConnectionOptions( host, data.get(CONF_USERNAME), data.get(CONF_PASSWORD) ) coap_context = await get_coap_context(opp) async with async_timeout.timeout(AIOSHELLY_DEVICE_TIMEOUT_SEC): device = await aioshelly.Device.create( aiohttp_client.async_get_clientsession(opp), coap_context, options, ) device.shutdown() # Return info that you want to store in the config entry. return { "title": device.settings["name"], "hostname": device.settings["device"]["hostname"], "sleep_period": get_device_sleep_period(device.settings), "model": device.settings["device"]["type"], } class ConfigFlow(config_entries.ConfigFlow, domain=DOMAIN): """Handle a config flow for Shelly.""" VERSION = 1 host = None info = None device_info = None async def async_step_user(self, user_input=None): """Handle the initial step.""" errors = {} if user_input is not None: host = user_input[CONF_HOST] try: info = await self._async_get_info(host) except HTTP_CONNECT_ERRORS: errors["base"] = "cannot_connect" except aioshelly.FirmwareUnsupported: return self.async_abort(reason="unsupported_firmware") except Exception: # pylint: disable=broad-except _LOGGER.exception("Unexpected exception") errors["base"] = "unknown" else: await self.async_set_unique_id(info["mac"]) self._abort_if_unique_id_configured({CONF_HOST: host}) self.host = host if info["auth"]: return await self.async_step_credentials() try: device_info = await validate_input(self.opp, self.host, {}) except HTTP_CONNECT_ERRORS: errors["base"] = "cannot_connect" except Exception: # pylint: disable=broad-except _LOGGER.exception("Unexpected exception") errors["base"] = "unknown" else: return self.async_create_entry( title=device_info["title"] or device_info["hostname"], data={ **user_input, "sleep_period": device_info["sleep_period"], "model": device_info["model"], }, ) return self.async_show_form( step_id="user", data_schema=HOST_SCHEMA, errors=errors ) async def async_step_credentials(self, user_input=None): """Handle the credentials step.""" errors = {} if user_input is not None: try: device_info = await validate_input(self.opp, self.host, user_input) except aiohttp.ClientResponseError as error: if error.status == HTTP_UNAUTHORIZED: errors["base"] = "invalid_auth" else: errors["base"] = "cannot_connect" except HTTP_CONNECT_ERRORS: errors["base"] = "cannot_connect" except Exception: # pylint: disable=broad-except _LOGGER.exception("Unexpected exception") errors["base"] = "unknown" else: return self.async_create_entry( title=device_info["title"] or device_info["hostname"], data={ **user_input, CONF_HOST: self.host, "sleep_period": device_info["sleep_period"], "model": device_info["model"], }, ) else: user_input = {} schema = vol.Schema( { vol.Required(CONF_USERNAME, default=user_input.get(CONF_USERNAME)): str, vol.Required(CONF_PASSWORD, default=user_input.get(CONF_PASSWORD)): str, } ) return self.async_show_form( step_id="credentials", data_schema=schema, errors=errors ) async def async_step_zeroconf(self, discovery_info): """Handle zeroconf discovery.""" try: self.info = info = await self._async_get_info(discovery_info["host"]) except HTTP_CONNECT_ERRORS: return self.async_abort(reason="cannot_connect") except aioshelly.FirmwareUnsupported: return self.async_abort(reason="unsupported_firmware") await self.async_set_unique_id(info["mac"]) self._abort_if_unique_id_configured({CONF_HOST: discovery_info["host"]}) self.host = discovery_info["host"] self.context["title_placeholders"] = { "name": discovery_info.get("name", "").split(".")[0] } if info["auth"]: return await self.async_step_credentials() try: self.device_info = await validate_input(self.opp, self.host, {}) except HTTP_CONNECT_ERRORS: return self.async_abort(reason="cannot_connect") return await self.async_step_confirm_discovery() async def async_step_confirm_discovery(self, user_input=None): """Handle discovery confirm.""" errors = {} if user_input is not None: return self.async_create_entry( title=self.device_info["title"] or self.device_info["hostname"], data={ "host": self.host, "sleep_period": self.device_info["sleep_period"], "model": self.device_info["model"], }, ) self._set_confirm_only() return self.async_show_form( step_id="confirm_discovery", description_placeholders={ "model": aioshelly.MODEL_NAMES.get( self.info["type"], self.info["type"] ), "host": self.host, }, errors=errors, ) async def _async_get_info(self, host): """Get info from shelly device.""" async with async_timeout.timeout(AIOSHELLY_DEVICE_TIMEOUT_SEC): return await aioshelly.get_info( aiohttp_client.async_get_clientsession(self.opp), host, )
35.095694
88
0.577369
089d099f06d24ad67844856443e63719ca65c971
397
py
Python
tpDcc/libs/math/__version__.py
tpDcc/tpDcc-libs-math
d4db4c10d2b460d32b68a6aabbbad4c9ada65c24
[ "MIT" ]
null
null
null
tpDcc/libs/math/__version__.py
tpDcc/tpDcc-libs-math
d4db4c10d2b460d32b68a6aabbbad4c9ada65c24
[ "MIT" ]
null
null
null
tpDcc/libs/math/__version__.py
tpDcc/tpDcc-libs-math
d4db4c10d2b460d32b68a6aabbbad4c9ada65c24
[ "MIT" ]
null
null
null
#! /usr/bin/env python # -*- coding: utf-8 -*- """ Version module for tpDcc-libs-math """ from __future__ import print_function, division, absolute_import __version__ = None def get_version(): global __version__ if __version__: return __version__ from ._version import get_versions __version__ = get_versions()['version'] del get_versions return __version__
17.26087
64
0.702771
2fc604b1af18f23ab1bb109404f6c311f7457ae2
993
py
Python
benchmark/err.py
eschnett/QuasinormalModes.jl
7ec50c3f565f6cda7501baa0bc589e445873a06e
[ "MIT" ]
null
null
null
benchmark/err.py
eschnett/QuasinormalModes.jl
7ec50c3f565f6cda7501baa0bc589e445873a06e
[ "MIT" ]
null
null
null
benchmark/err.py
eschnett/QuasinormalModes.jl
7ec50c3f565f6cda7501baa0bc589e445873a06e
[ "MIT" ]
null
null
null
import sys import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt ################## # Load data file # ################## data_re = np.loadtxt("run_1.dat", usecols = (1,9)) xData_re = data_re[:,0] yData_re = abs(data_re[:,1]) data_im = np.loadtxt("run_1.dat", usecols = (1,10)) xData_im = data_im[:,0] yData_im = abs(data_im[:,1]) ######## # Plot # ######## font_size = 30 mpl.rcParams['mathtext.fontset'] = 'cm' mpl.rcParams['font.family'] = 'Latin Modern Roman' plt.rcParams['figure.figsize'] = [10, 8] plt.close('all') plt.semilogy(xData_re, yData_re, 'o', color = 'black', label = r'$\Re(\omega)$') plt.semilogy(xData_im, yData_im, 'x', color = 'red', label = r'$\Im(\omega)$') plt.legend(loc = 'upper right', fontsize = font_size) plt.xlabel('Iterations', fontsize = font_size) plt.ylabel(r'$\log|\varepsilon|$', fontsize = font_size) plt.tick_params(axis='both', which='major', labelsize=font_size) #plt.show() plt.tight_layout() plt.savefig('err.pdf')
23.093023
80
0.646526
6c5c0dbe39e95be16ba689c76d1c64afd2c749bf
32,779
py
Python
arviz/stats/diagnostics.py
jpreszler/arviz
4815daabe9db51eb5cbe8062678722d30077b873
[ "Apache-2.0" ]
null
null
null
arviz/stats/diagnostics.py
jpreszler/arviz
4815daabe9db51eb5cbe8062678722d30077b873
[ "Apache-2.0" ]
null
null
null
arviz/stats/diagnostics.py
jpreszler/arviz
4815daabe9db51eb5cbe8062678722d30077b873
[ "Apache-2.0" ]
null
null
null
# pylint: disable=too-many-lines, too-many-function-args, redefined-outer-name """Diagnostic functions for ArviZ.""" from collections.abc import Sequence import warnings import numpy as np import pandas as pd from scipy import stats from .stats_utils import ( rint as _rint, quantile as _quantile, autocov as _autocov, not_valid as _not_valid, wrap_xarray_ufunc as _wrap_xarray_ufunc, stats_variance_2d as svar, histogram, ) from ..data import convert_to_dataset from ..utils import _var_names, conditional_jit, conditional_vect, Numba, _numba_var, _stack __all__ = ["bfmi", "ess", "rhat", "mcse", "geweke"] def bfmi(data): r"""Calculate the estimated Bayesian fraction of missing information (BFMI). BFMI quantifies how well momentum resampling matches the marginal energy distribution. For more information on BFMI, see https://arxiv.org/pdf/1604.00695v1.pdf. The current advice is that values smaller than 0.3 indicate poor sampling. However, this threshold is provisional and may change. See http://mc-stan.org/users/documentation/case-studies/pystan_workflow.html for more information. Parameters ---------- data : obj Any object that can be converted to an az.InferenceData object. Refer to documentation of az.convert_to_dataset for details. If InferenceData, energy variable needs to be found. Returns ------- z : array The Bayesian fraction of missing information of the model and trace. One element per chain in the trace. Examples -------- Compute the BFMI of an InferenceData object .. ipython:: In [1]: import arviz as az ...: data = az.load_arviz_data('radon') ...: az.bfmi(data) """ if isinstance(data, np.ndarray): return _bfmi(data) dataset = convert_to_dataset(data, group="sample_stats") if not hasattr(dataset, "energy"): raise TypeError("Energy variable was not found.") return _bfmi(dataset.energy) def ess(data, *, var_names=None, method="bulk", relative=False, prob=None): r"""Calculate estimate of the effective sample size. Parameters ---------- data : obj Any object that can be converted to an az.InferenceData object. Refer to documentation of az.convert_to_dataset for details. For ndarray: shape = (chain, draw). For n-dimensional ndarray transform first to dataset with az.convert_to_dataset. var_names : list Names of variables to include in the effective_sample_size_mean report method : str Select ess method. Valid methods are: - "bulk" - "tail" # prob, optional - "quantile" # prob - "mean" (old ess) - "sd" - "median" - "mad" (mean absolute deviance) - "z_scale" - "folded" - "identity" relative : bool Return relative ess `ress = ess / n` prob : float, optional probability value for "tail" and "quantile" ess functions. Returns ------- xarray.Dataset Return the effective sample size, :math:`\hat{N}_{eff}` Notes ----- The basic ess diagnostic is computed by: .. math:: \hat{N}_{eff} = \frac{MN}{\hat{\tau}} .. math:: \hat{\tau} = -1 + 2 \sum_{t'=0}^K \hat{P}_{t'} where :math:`M` is the number of chains, :math:`N` the number of draws, :math:`\hat{\rho}_t` is the estimated _autocorrelation at lag :math:`t`, and :math:`K` is the last integer for which :math:`\hat{P}_{K} = \hat{\rho}_{2K} + \hat{\rho}_{2K+1}` is still positive. The current implementation is similar to Stan, which uses Geyer's initial monotone sequence criterion (Geyer, 1992; Geyer, 2011). References ---------- * Vehtari et al. (2019) see https://arxiv.org/abs/1903.08008 * https://mc-stan.org/docs/2_18/reference-manual/effective-sample-size-section.html Section 15.4.2 * Gelman et al. BDA (2014) Formula 11.8 Examples -------- Calculate the effective_sample_size using the default arguments: .. ipython:: In [1]: import arviz as az ...: data = az.load_arviz_data('non_centered_eight') ...: az.ess(data) Calculate the ress of some of the variables .. ipython:: In [1]: az.ess(data, relative=True, var_names=["mu", "theta_t"]) Calculate the ess using the "tail" method, leaving the `prob` argument at its default value. .. ipython:: In [1]: az.ess(data, method="tail") """ methods = { "bulk": _ess_bulk, "tail": _ess_tail, "quantile": _ess_quantile, "mean": _ess_mean, "sd": _ess_sd, "median": _ess_median, "mad": _ess_mad, "z_scale": _ess_z_scale, "folded": _ess_folded, "identity": _ess_identity, "local": _ess_local, } if method not in methods: raise TypeError( "ESS method {} not found. Valid methods are:\n{}".format(method, "\n ".join(methods)) ) ess_func = methods[method] if (method == "quantile") and prob is None: raise TypeError("Quantile (prob) information needs to be defined.") if isinstance(data, np.ndarray): data = np.atleast_2d(data) if len(data.shape) < 3: if prob is not None: return ess_func( # pylint: disable=unexpected-keyword-arg data, prob=prob, relative=relative ) else: return ess_func(data, relative=relative) else: msg = ( "Only uni-dimensional ndarray variables are supported." " Please transform first to dataset with `az.convert_to_dataset`." ) raise TypeError(msg) dataset = convert_to_dataset(data, group="posterior") var_names = _var_names(var_names, dataset) dataset = dataset if var_names is None else dataset[var_names] ufunc_kwargs = {"ravel": False} func_kwargs = {"relative": relative} if prob is None else {"prob": prob, "relative": relative} return _wrap_xarray_ufunc(ess_func, dataset, ufunc_kwargs=ufunc_kwargs, func_kwargs=func_kwargs) def rhat(data, *, var_names=None, method="rank"): r"""Compute estimate of rank normalized splitR-hat for a set of traces. The rank normalized R-hat diagnostic tests for lack of convergence by comparing the variance between multiple chains to the variance within each chain. If convergence has been achieved, the between-chain and within-chain variances should be identical. To be most effective in detecting evidence for nonconvergence, each chain should have been initialized to starting values that are dispersed relative to the target distribution. Parameters ---------- data : obj Any object that can be converted to an az.InferenceData object. Refer to documentation of az.convert_to_dataset for details. At least 2 posterior chains are needed to compute this diagnostic of one or more stochastic parameters. For ndarray: shape = (chain, draw). For n-dimensional ndarray transform first to dataset with az.convert_to_dataset. var_names : list Names of variables to include in the rhat report method : str Select R-hat method. Valid methods are: - "rank" # recommended by Vehtari et al. (2019) - "split" - "folded" - "z_scale" - "identity" Returns ------- xarray.Dataset Returns dataset of the potential scale reduction factors, :math:`\hat{R}` Notes ----- The diagnostic is computed by: .. math:: \hat{R} = \frac{\hat{V}}{W} where :math:`W` is the within-chain variance and :math:`\hat{V}` is the posterior variance estimate for the pooled rank-traces. This is the potential scale reduction factor, which converges to unity when each of the traces is a sample from the target posterior. Values greater than one indicate that one or more chains have not yet converged. Rank values are calculated over all the chains with `scipy.stats.rankdata`. Each chain is split in two and normalized with the z-transform following Vehtari et al. (2019). References ---------- * Vehtari et al. (2019) see https://arxiv.org/abs/1903.08008 * Gelman et al. BDA (2014) * Brooks and Gelman (1998) * Gelman and Rubin (1992) Examples -------- Calculate the R-hat using the default arguments: .. ipython:: In [1]: import arviz as az ...: data = az.load_arviz_data("non_centered_eight") ...: az.rhat(data) Calculate the R-hat of some variables using the folded method: .. ipython:: In [1]: az.rhat(data, var_names=["mu", "theta_t"], method="folded") """ methods = { "rank": _rhat_rank, "split": _rhat_split, "folded": _rhat_folded, "z_scale": _rhat_z_scale, "identity": _rhat_identity, } if method not in methods: raise TypeError( "R-hat method {} not found. Valid methods are:\n{}".format( method, "\n ".join(methods) ) ) rhat_func = methods[method] if isinstance(data, np.ndarray): data = np.atleast_2d(data) if len(data.shape) < 3: return rhat_func(data) else: msg = ( "Only uni-dimensional ndarray variables are supported." " Please transform first to dataset with `az.convert_to_dataset`." ) raise TypeError(msg) dataset = convert_to_dataset(data, group="posterior") var_names = _var_names(var_names, dataset) dataset = dataset if var_names is None else dataset[var_names] ufunc_kwargs = {"ravel": False} func_kwargs = {} return _wrap_xarray_ufunc( rhat_func, dataset, ufunc_kwargs=ufunc_kwargs, func_kwargs=func_kwargs ) def mcse(data, *, var_names=None, method="mean", prob=None): """Calculate Markov Chain Standard Error statistic. Parameters ---------- data : obj Any object that can be converted to an az.InferenceData object Refer to documentation of az.convert_to_dataset for details For ndarray: shape = (chain, draw). For n-dimensional ndarray transform first to dataset with az.convert_to_dataset. var_names : list Names of variables to include in the rhat report method : str Select mcse method. Valid methods are: - "mean" - "sd" - "quantile" prob : float Quantile information. Returns ------- xarray.Dataset Return the msce dataset Examples -------- Calculate the Markov Chain Standard Error using the default arguments: .. ipython:: In [1]: import arviz as az ...: data = az.load_arviz_data("non_centered_eight") ...: az.mcse(data) Calculate the Markov Chain Standard Error using the quantile method: .. ipython:: In [1]: az.mcse(data, method="quantile", prob=.7) """ methods = {"mean": _mcse_mean, "sd": _mcse_sd, "quantile": _mcse_quantile} if method not in methods: raise TypeError( "mcse method {} not found. Valid methods are:\n{}".format( method, "\n ".join(methods) ) ) mcse_func = methods[method] if method == "quantile" and prob is None: raise TypeError("Quantile (prob) information needs to be defined.") if isinstance(data, np.ndarray): data = np.atleast_2d(data) if len(data.shape) < 3: if prob is not None: return mcse_func(data, prob=prob) # pylint: disable=unexpected-keyword-arg else: return mcse_func(data) else: msg = ( "Only uni-dimensional ndarray variables are supported." " Please transform first to dataset with `az.convert_to_dataset`." ) raise TypeError(msg) dataset = convert_to_dataset(data, group="posterior") var_names = _var_names(var_names, dataset) dataset = dataset if var_names is None else dataset[var_names] ufunc_kwargs = {"ravel": False} func_kwargs = {} if prob is None else {"prob": prob} return _wrap_xarray_ufunc( mcse_func, dataset, ufunc_kwargs=ufunc_kwargs, func_kwargs=func_kwargs ) @conditional_vect def _sqrt(a_a, b_b): return (a_a + b_b) ** 0.5 @conditional_jit(forceobj=True) def geweke(ary, first=0.1, last=0.5, intervals=20): r"""Compute z-scores for convergence diagnostics. Compare the mean of the first % of series with the mean of the last % of series. x is divided into a number of segments for which this difference is computed. If the series is converged, this score should oscillate between -1 and 1. Parameters ---------- ary : 1D array-like The trace of some stochastic parameter. first : float The fraction of series at the beginning of the trace. last : float The fraction of series at the end to be compared with the section at the beginning. intervals : int The number of segments. Returns ------- scores : list [[]] Return a list of [i, score], where i is the starting index for each interval and score the Geweke score on the interval. Notes ----- The Geweke score on some series x is computed by: .. math:: \frac{E[x_s] - E[x_e]}{\sqrt{V[x_s] + V[x_e]}} where :math:`E` stands for the mean, :math:`V` the variance, :math:`x_s` a section at the start of the series and :math:`x_e` a section at the end of the series. References ---------- * Geweke (1992) """ # Filter out invalid intervals return _geweke(ary, first, last, intervals) def _geweke(ary, first, last, intervals): _numba_flag = Numba.numba_flag for interval in (first, last): if interval <= 0 or interval >= 1: raise ValueError("Invalid intervals for Geweke convergence analysis", (first, last)) if first + last >= 1: raise ValueError("Invalid intervals for Geweke convergence analysis", (first, last)) # Initialize list of z-scores zscores = [] # Last index value end = len(ary) - 1 # Start intervals going up to the <last>% of the chain last_start_idx = (1 - last) * end # Calculate starting indices start_indices = np.linspace(0, last_start_idx, num=intervals, endpoint=True, dtype=int) # Loop over start indices for start in start_indices: # Calculate slices first_slice = ary[start : start + int(first * (end - start))] last_slice = ary[int(end - last * (end - start)) :] z_score = first_slice.mean() - last_slice.mean() if _numba_flag: z_score /= _sqrt(svar(first_slice), svar(last_slice)) else: z_score /= np.sqrt(first_slice.var() + last_slice.var()) zscores.append([start, z_score]) return np.array(zscores) def ks_summary(pareto_tail_indices): """Display a summary of Pareto tail indices. Parameters ---------- pareto_tail_indices : array Pareto tail indices. Returns ------- df_k : dataframe Dataframe containing k diagnostic values. """ _numba_flag = Numba.numba_flag if _numba_flag: bins = np.asarray([-np.Inf, 0.5, 0.7, 1, np.Inf]) kcounts, _ = histogram(pareto_tail_indices, bins) else: kcounts, _ = np.histogram(pareto_tail_indices, bins=[-np.Inf, 0.5, 0.7, 1, np.Inf]) kprop = kcounts / len(pareto_tail_indices) * 100 df_k = pd.DataFrame( dict(_=["(good)", "(ok)", "(bad)", "(very bad)"], Count=kcounts, Pct=kprop) ).rename(index={0: "(-Inf, 0.5]", 1: " (0.5, 0.7]", 2: " (0.7, 1]", 3: " (1, Inf)"}) if np.sum(kcounts[1:]) == 0: warnings.warn("All Pareto k estimates are good (k < 0.5)") elif np.sum(kcounts[2:]) == 0: warnings.warn("All Pareto k estimates are ok (k < 0.7)") return df_k def _bfmi(energy): r"""Calculate the estimated Bayesian fraction of missing information (BFMI). BFMI quantifies how well momentum resampling matches the marginal energy distribution. For more information on BFMI, see https://arxiv.org/pdf/1604.00695v1.pdf. The current advice is that values smaller than 0.3 indicate poor sampling. However, this threshold is provisional and may change. See http://mc-stan.org/users/documentation/case-studies/pystan_workflow.html for more information. Parameters ---------- energy : NumPy array Should be extracted from a gradient based sampler, such as in Stan or PyMC3. Typically, after converting a trace or fit to InferenceData, the energy will be in `data.sample_stats.energy`. Returns ------- z : array The Bayesian fraction of missing information of the model and trace. One element per chain in the trace. """ energy_mat = np.atleast_2d(energy) num = np.square(np.diff(energy_mat, axis=1)).mean(axis=1) # pylint: disable=no-member if energy_mat.ndim == 2: den = _numba_var(svar, np.var, energy_mat, axis=1, ddof=0) else: den = np.var(energy, axis=1) return num / den def _z_scale(ary): """Calculate z_scale. Parameters ---------- ary : np.ndarray Returns ------- np.ndarray """ ary = np.asarray(ary) size = ary.size rank = stats.rankdata(ary, method="average") z = stats.norm.ppf((rank - 0.5) / size) z = z.reshape(ary.shape) return z def _split_chains(ary): """Split and stack chains.""" ary = np.asarray(ary) if len(ary.shape) > 1: _, n_draw = ary.shape else: ary = np.atleast_2d(ary) _, n_draw = ary.shape half = n_draw // 2 return _stack(ary[:, :half], ary[:, -half:]) def _z_fold(ary): """Fold and z-scale values.""" ary = np.asarray(ary) ary = abs(ary - np.median(ary)) ary = _z_scale(ary) return ary def _rhat(ary): """Compute the rhat for a 2d array.""" _numba_flag = Numba.numba_flag ary = np.asarray(ary, dtype=float) if _not_valid(ary, check_shape=False): return np.nan _, num_samples = ary.shape # Calculate chain mean chain_mean = np.mean(ary, axis=1) # Calculate chain variance chain_var = _numba_var(svar, np.var, ary, axis=1, ddof=1) # Calculate between-chain variance between_chain_variance = num_samples * _numba_var(svar, np.var, chain_mean, axis=None, ddof=1) # Calculate within-chain variance within_chain_variance = np.mean(chain_var) # Estimate of marginal posterior variance rhat_value = np.sqrt( (between_chain_variance / within_chain_variance + num_samples - 1) / (num_samples) ) return rhat_value def _rhat_rank(ary): """Compute the rank normalized rhat for 2d array. Computation follows https://arxiv.org/abs/1903.08008 """ ary = np.asarray(ary) if _not_valid(ary, shape_kwargs=dict(min_draws=4, min_chains=2)): return np.nan split_ary = _split_chains(ary) rhat_bulk = _rhat(_z_scale(split_ary)) split_ary_folded = abs(split_ary - np.median(split_ary)) rhat_tail = _rhat(_z_scale(split_ary_folded)) rhat_rank = max(rhat_bulk, rhat_tail) return rhat_rank def _rhat_folded(ary): """Calculate split-Rhat for folded z-values.""" ary = np.asarray(ary) if _not_valid(ary, shape_kwargs=dict(min_draws=4, min_chains=2)): return np.nan ary = _z_fold(_split_chains(ary)) return _rhat(ary) def _rhat_z_scale(ary): ary = np.asarray(ary) if _not_valid(ary, shape_kwargs=dict(min_draws=4, min_chains=2)): return np.nan return _rhat(_z_scale(_split_chains(ary))) def _rhat_split(ary): ary = np.asarray(ary) if _not_valid(ary, shape_kwargs=dict(min_draws=4, min_chains=2)): return np.nan return _rhat(_split_chains(ary)) def _rhat_identity(ary): ary = np.asarray(ary) if _not_valid(ary, shape_kwargs=dict(min_draws=4, min_chains=2)): return np.nan return _rhat(ary) def _ess(ary, relative=False): """Compute the effective sample size for a 2D array.""" _numba_flag = Numba.numba_flag ary = np.asarray(ary, dtype=float) if _not_valid(ary, check_shape=False): return np.nan if (np.max(ary) - np.min(ary)) < np.finfo(float).resolution: # pylint: disable=no-member return ary.size if len(ary.shape) < 2: ary = np.atleast_2d(ary) n_chain, n_draw = ary.shape acov = _autocov(ary, axis=1) chain_mean = ary.mean(axis=1) mean_var = np.mean(acov[:, 0]) * n_draw / (n_draw - 1.0) var_plus = mean_var * (n_draw - 1.0) / n_draw if n_chain > 1: var_plus += _numba_var(svar, np.var, chain_mean, axis=None, ddof=1) rho_hat_t = np.zeros(n_draw) rho_hat_even = 1.0 rho_hat_t[0] = rho_hat_even rho_hat_odd = 1.0 - (mean_var - np.mean(acov[:, 1])) / var_plus rho_hat_t[1] = rho_hat_odd # Geyer's initial positive sequence t = 1 while t < (n_draw - 3) and (rho_hat_even + rho_hat_odd) > 0.0: rho_hat_even = 1.0 - (mean_var - np.mean(acov[:, t + 1])) / var_plus rho_hat_odd = 1.0 - (mean_var - np.mean(acov[:, t + 2])) / var_plus if (rho_hat_even + rho_hat_odd) >= 0: rho_hat_t[t + 1] = rho_hat_even rho_hat_t[t + 2] = rho_hat_odd t += 2 max_t = t - 2 # improve estimation if rho_hat_even > 0: rho_hat_t[max_t + 1] = rho_hat_even # Geyer's initial monotone sequence t = 1 while t <= max_t - 2: if (rho_hat_t[t + 1] + rho_hat_t[t + 2]) > (rho_hat_t[t - 1] + rho_hat_t[t]): rho_hat_t[t + 1] = (rho_hat_t[t - 1] + rho_hat_t[t]) / 2.0 rho_hat_t[t + 2] = rho_hat_t[t + 1] t += 2 ess = n_chain * n_draw tau_hat = -1.0 + 2.0 * np.sum(rho_hat_t[: max_t + 1]) + np.sum(rho_hat_t[max_t + 1 : max_t + 2]) tau_hat = max(tau_hat, 1 / np.log10(ess)) ess = (1 if relative else ess) / tau_hat if np.isnan(rho_hat_t).any(): ess = np.nan return ess def _ess_bulk(ary, relative=False): """Compute the effective sample size for the bulk.""" ary = np.asarray(ary) if _not_valid(ary, shape_kwargs=dict(min_draws=4, min_chains=1)): return np.nan z_scaled = _z_scale(_split_chains(ary)) ess_bulk = _ess(z_scaled, relative=relative) return ess_bulk def _ess_tail(ary, prob=None, relative=False): """Compute the effective sample size for the tail. If `prob` defined, ess = min(qess(prob), qess(1-prob)) """ if prob is None: prob = (0.05, 0.95) elif not isinstance(prob, Sequence): prob = (prob, 1 - prob) ary = np.asarray(ary) if _not_valid(ary, shape_kwargs=dict(min_draws=4, min_chains=1)): return np.nan prob_low, prob_high = prob quantile_low_ess = _ess_quantile(ary, prob_low, relative=relative) quantile_high_ess = _ess_quantile(ary, prob_high, relative=relative) return min(quantile_low_ess, quantile_high_ess) def _ess_mean(ary, relative=False): """Compute the effective sample size for the mean.""" ary = np.asarray(ary) if _not_valid(ary, shape_kwargs=dict(min_draws=4, min_chains=1)): return np.nan return _ess(_split_chains(ary), relative=relative) def _ess_sd(ary, relative=False): """Compute the effective sample size for the sd.""" ary = np.asarray(ary) if _not_valid(ary, shape_kwargs=dict(min_draws=4, min_chains=1)): return np.nan ary = _split_chains(ary) return min(_ess(ary, relative=relative), _ess(ary ** 2, relative=relative)) def _ess_quantile(ary, prob, relative=False): """Compute the effective sample size for the specific residual.""" ary = np.asarray(ary) if _not_valid(ary, shape_kwargs=dict(min_draws=4, min_chains=1)): return np.nan if prob is None: raise TypeError("Prob not defined.") quantile, = _quantile(ary, prob) iquantile = ary <= quantile return _ess(_split_chains(iquantile), relative=relative) def _ess_local(ary, prob, relative=False): """Compute the effective sample size for the specific residual.""" ary = np.asarray(ary) if _not_valid(ary, shape_kwargs=dict(min_draws=4, min_chains=1)): return np.nan if prob is None: raise TypeError("Prob not defined.") if len(prob) != 2: raise ValueError("Prob argument in ess local must be upper and lower bound") quantile = _quantile(ary, prob) iquantile = (quantile[0] <= ary) & (ary <= quantile[1]) return _ess(_split_chains(iquantile), relative=relative) def _ess_z_scale(ary, relative=False): """Calculate ess for z-scaLe.""" ary = np.asarray(ary) if _not_valid(ary, shape_kwargs=dict(min_draws=4, min_chains=1)): return np.nan return _ess(_z_scale(_split_chains(ary)), relative=relative) def _ess_folded(ary, relative=False): """Calculate split-ess for folded data.""" ary = np.asarray(ary) if _not_valid(ary, shape_kwargs=dict(min_draws=4, min_chains=1)): return np.nan return _ess(_z_fold(_split_chains(ary)), relative=relative) def _ess_median(ary, relative=False): """Calculate split-ess for median.""" ary = np.asarray(ary) if _not_valid(ary, shape_kwargs=dict(min_draws=4, min_chains=1)): return np.nan return _ess_quantile(ary, 0.5, relative=relative) def _ess_mad(ary, relative=False): """Calculate split-ess for mean absolute deviance.""" ary = np.asarray(ary) if _not_valid(ary, shape_kwargs=dict(min_draws=4, min_chains=1)): return np.nan ary = abs(ary - np.median(ary)) ary = ary <= np.median(ary) ary = _z_scale(_split_chains(ary)) return _ess(ary, relative=relative) def _ess_identity(ary, relative=False): """Calculate ess.""" ary = np.asarray(ary) if _not_valid(ary, shape_kwargs=dict(min_draws=4, min_chains=1)): return np.nan return _ess(ary, relative=relative) def _conv_quantile(ary, prob): """Return mcse, Q05, Q95, Seff.""" ary = np.asarray(ary) if _not_valid(ary, shape_kwargs=dict(min_draws=4, min_chains=1)): return np.nan, np.nan, np.nan, np.nan ess = _ess_quantile(ary, prob) probability = [0.1586553, 0.8413447, 0.05, 0.95] with np.errstate(invalid="ignore"): ppf = stats.beta.ppf(probability, ess * prob + 1, ess * (1 - prob) + 1) sorted_ary = np.sort(ary.ravel()) size = sorted_ary.size ppf_size = ppf * size - 1 th1 = sorted_ary[_rint(np.nanmax((ppf_size[0], 0)))] th2 = sorted_ary[_rint(np.nanmin((ppf_size[1], size - 1)))] mcse_quantile = (th2 - th1) / 2 th1 = sorted_ary[_rint(np.nanmax((ppf_size[2], 0)))] th2 = sorted_ary[_rint(np.nanmin((ppf_size[3], size - 1)))] return mcse_quantile, th1, th2, ess def _mcse_mean(ary): """Compute the Markov Chain mean error.""" _numba_flag = Numba.numba_flag ary = np.asarray(ary) if _not_valid(ary, shape_kwargs=dict(min_draws=4, min_chains=1)): return np.nan ess = _ess_mean(ary) if _numba_flag: sd = _sqrt(svar(np.ravel(ary), ddof=1), np.zeros(1)) else: sd = np.std(ary, ddof=1) mcse_mean_value = sd / np.sqrt(ess) return mcse_mean_value def _mcse_sd(ary): """Compute the Markov Chain sd error.""" _numba_flag = Numba.numba_flag ary = np.asarray(ary) if _not_valid(ary, shape_kwargs=dict(min_draws=4, min_chains=1)): return np.nan ess = _ess_sd(ary) if _numba_flag: sd = np.float(_sqrt(svar(np.ravel(ary), ddof=1), np.zeros(1))) else: sd = np.std(ary, ddof=1) fac_mcse_sd = np.sqrt(np.exp(1) * (1 - 1 / ess) ** (ess - 1) - 1) mcse_sd_value = sd * fac_mcse_sd return mcse_sd_value def _mcse_quantile(ary, prob): """Compute the Markov Chain quantile error at quantile=prob.""" ary = np.asarray(ary) if _not_valid(ary, shape_kwargs=dict(min_draws=4, min_chains=1)): return np.nan mcse_q, *_ = _conv_quantile(ary, prob) return mcse_q def _circfunc(samples, high, low): samples = np.asarray(samples) if samples.size == 0: return np.nan, np.nan return samples, _angle(samples, low, high, np.pi) @conditional_vect def _angle(samples, low, high, p_i=np.pi): ang = (samples - low) * 2.0 * p_i / (high - low) return ang def _circular_standard_deviation(samples, high=2 * np.pi, low=0, axis=None): p_i = np.pi samples, ang = _circfunc(samples, high, low) s_s = np.sin(ang).mean(axis=axis) c_c = np.cos(ang).mean(axis=axis) r_r = np.hypot(s_s, c_c) return ((high - low) / 2.0 / p_i) * np.sqrt(-2 * np.log(r_r)) def _mc_error(ary, batches=5, circular=False): """Calculate the simulation standard error, accounting for non-independent samples. The trace is divided into batches, and the standard deviation of the batch means is calculated. Parameters ---------- ary : Numpy array An array containing MCMC samples batches : integer Number of batches circular : bool Whether to compute the error taking into account `ary` is a circular variable (in the range [-np.pi, np.pi]) or not. Defaults to False (i.e non-circular variables). Returns ------- mc_error : float Simulation standard error """ _numba_flag = Numba.numba_flag if ary.ndim > 1: dims = np.shape(ary) trace = np.transpose([t.ravel() for t in ary]) return np.reshape([_mc_error(t, batches) for t in trace], dims[1:]) else: if _not_valid(ary, check_shape=False): return np.nan if batches == 1: if circular: if _numba_flag: std = _circular_standard_deviation(ary, high=np.pi, low=-np.pi) else: std = stats.circstd(ary, high=np.pi, low=-np.pi) else: if _numba_flag: std = np.float(_sqrt(svar(ary), np.zeros(1))) else: std = np.std(ary) return std / np.sqrt(len(ary)) batched_traces = np.resize(ary, (batches, int(len(ary) / batches))) if circular: means = stats.circmean(batched_traces, high=np.pi, low=-np.pi, axis=1) if _numba_flag: std = _circular_standard_deviation(means, high=np.pi, low=-np.pi) else: std = stats.circstd(means, high=np.pi, low=-np.pi) else: means = np.mean(batched_traces, 1) if _numba_flag: std = _sqrt(svar(means), np.zeros(1)) else: std = np.std(means) return std / np.sqrt(batches) def _multichain_statistics(ary): """Calculate efficiently multichain statistics for summary. Parameters ---------- ary : numpy.ndarray Returns ------- tuple Order of return parameters is - mcse_mean, mcse_sd, ess_mean, ess_sd, ess_bulk, ess_tail, r_hat """ ary = np.atleast_2d(ary) if _not_valid(ary, shape_kwargs=dict(min_draws=4, min_chains=1)): return np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan # ess mean ess_mean_value = _ess_mean(ary) # ess sd ess_sd_value = _ess_sd(ary) # ess bulk z_split = _z_scale(_split_chains(ary)) ess_bulk_value = _ess(z_split) # ess tail quantile05, quantile95 = _quantile(ary, [0.05, 0.95]) iquantile05 = ary <= quantile05 quantile05_ess = _ess(_split_chains(iquantile05)) iquantile95 = ary <= quantile95 quantile95_ess = _ess(_split_chains(iquantile95)) ess_tail_value = min(quantile05_ess, quantile95_ess) if _not_valid(ary, shape_kwargs=dict(min_draws=4, min_chains=2)): rhat_value = np.nan else: # r_hat rhat_bulk = _rhat(z_split) ary_folded = np.abs(ary - np.median(ary)) rhat_tail = _rhat(_z_scale(_split_chains(ary_folded))) rhat_value = max(rhat_bulk, rhat_tail) # mcse_mean sd = np.std(ary, ddof=1) mcse_mean_value = sd / np.sqrt(ess_mean_value) # mcse_sd fac_mcse_sd = np.sqrt(np.exp(1) * (1 - 1 / ess_sd_value) ** (ess_sd_value - 1) - 1) mcse_sd_value = sd * fac_mcse_sd return ( mcse_mean_value, mcse_sd_value, ess_mean_value, ess_sd_value, ess_bulk_value, ess_tail_value, rhat_value, )
32.104799
100
0.629244
b059d27382d32e8f8f9c3ae119295a722f8751b2
1,579
py
Python
backend/urls.py
kevinqqnj/django-vue-template
d061c072ffea4c029784ff427c105a84cb153547
[ "MIT" ]
5
2019-05-30T09:31:44.000Z
2020-09-11T05:47:39.000Z
backend/urls.py
kevinqqnj/django-vue-template
d061c072ffea4c029784ff427c105a84cb153547
[ "MIT" ]
null
null
null
backend/urls.py
kevinqqnj/django-vue-template
d061c072ffea4c029784ff427c105a84cb153547
[ "MIT" ]
5
2019-07-19T07:36:54.000Z
2021-04-11T09:46:31.000Z
"""backend URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, re_path, include from rest_framework import routers from .api.views import index_view, MessageViewSet, serve_worker_view router = routers.DefaultRouter() router.register('messages', MessageViewSet) urlpatterns = [ # http://localhost:8000/ path('', index_view, name='index'), # serve static files for PWA path('index.html', index_view, name='index'), re_path(r'^(?P<worker_name>manifest).json$', serve_worker_view, name='manifest'), re_path(r'^(?P<worker_name>[-\w\d.]+).js$', serve_worker_view, name='serve_worker'), re_path(r'^(?P<worker_name>robots).txt$', serve_worker_view, name='robots'), # http://localhost:8000/api/<router-viewsets> path('api/', include(router.urls)), # http://localhost:8000/admin/ path('admin/', admin.site.urls), # support vue-router history mode re_path(r'^\S+$', index_view, name='SPA_reload'), ]
35.886364
88
0.69981
91f6ecc4b1b741ccd0cace044ea5af80f3dd6251
1,186
py
Python
Lesson 2.2 (if, else, elif).py
Justmove08/Lesson_2
8f88619c0bf0140be9f4b8e24f7a7852758de55a
[ "MIT" ]
null
null
null
Lesson 2.2 (if, else, elif).py
Justmove08/Lesson_2
8f88619c0bf0140be9f4b8e24f7a7852758de55a
[ "MIT" ]
null
null
null
Lesson 2.2 (if, else, elif).py
Justmove08/Lesson_2
8f88619c0bf0140be9f4b8e24f7a7852758de55a
[ "MIT" ]
null
null
null
# # ะšะพะฝัั‚ั€ัƒะบั†ะธั IF (ะตัะปะธ) # if 0: # print('true') # print('continue') # # ะšะพะฝัั‚ั€ัƒะบัƒะธั IF-ELSE (ะตัะปะธ, ะธะฝะฐั‡ะต) # if 0: # print('true') # else: # print('false') # # ะšะพะฝัั‚ั€ัƒะบั†ะธั IF-ELIF # if 1: # print('true') # elif 1: # print('elif_1') # elif 1: # print('elif_2') # elif 1: # print('elif_3') # else: # print('false') # IF-ELSE ะดะปั ะฟั€ะธัะฒะฐะธะฒะฐะฝะธั # X = 1 # Y = 3 # Z = 5 # # if X: # # A = Y # # else: # # A = Z # # print(A, type(A)) # A = Y if X else Z # print(A, type(A)) # ะŸั€ะฐะบั‚ะธั‡ะตัะบะฐั ะทะฐะดะฐั‡ะฐ ะฟั€ะพ ะฐะฒั‚ะพะผะพะฑะธะปัŒ brand = 'volvo' # ะฑั€ะตะฝะด engine_volume = 1.5 # ะพะฑัŠะตะผ ะดะฒะธะณะฐั‚ะตะปั horsepower = 151 # ะผะพั‰ะฝะพัั‚ัŒ ะดะฒะธะณะฐั‚ะตะปั sunroof = False # ะฝะฐะปะธั‡ะธะต ะปัŽะบะฐ # # ะŸั€ะพะฒะตั€ะบะฐ ัƒัะปะพะฒะธั IF # if horsepower < 80: # print('No tax') # #ะŸั€ะพะฒะตั€ะบะฐ ัƒัะปะพะฒะธั IF-ELSE # if horsepower == 80: # print('No tax') # print('No tax') # print('No tax') # else: # print('Tax') # ะŸั€ะพะฒะตั€ะบะฐ ัƒัะปะพะฒะธั IF/ELIF/ELIF/ELSE tax = 0 if horsepower < 80: tax = 0 elif horsepower < 100: tax = 10000 elif horsepower < 150: tax = 15000 else: tax = 50000 print(tax) # ะŸั€ะพะฒะตั€ะบะฐ ัƒัะปะพะฒะธั IF ะดะปั ะฟั€ะธัะฒะฐะธะฒะฐะฝะธั cool_car = 0 cool_car = 1 if sunroof == 1 else 0 print(cool_car)
17.188406
38
0.590219
36ed056951608eb8a7d098e1ff6f594a778313a3
2,919
py
Python
my_package/data/dataset.py
Rohan-Raj-1729/myPackage
85ccef85097e3a5f9e30d03739f7030579bfe34b
[ "MIT" ]
null
null
null
my_package/data/dataset.py
Rohan-Raj-1729/myPackage
85ccef85097e3a5f9e30d03739f7030579bfe34b
[ "MIT" ]
null
null
null
my_package/data/dataset.py
Rohan-Raj-1729/myPackage
85ccef85097e3a5f9e30d03739f7030579bfe34b
[ "MIT" ]
null
null
null
# Imports import json from PIL import Image import numpy as np class Dataset(object): ''' A class for the dataset that will return data items as per the given index ''' def __init__(self, annotation_file, transforms=None): ''' Arguments: annotation_file: path to the annotation file transforms: list of transforms (class instances) For instance, [<class 'RandomCrop'>, <class 'Rotate'>] ''' self.annotations_path = annotation_file self.transforms =transforms def __len__(self): ''' return the number of data points in the dataset ''' a = open(self.annotations_path) a = list(a) return len(a) def __getitem__(self, idx): ''' return the dataset element for the index: "idx" Arguments: idx: index of the data element. Returns: A dictionary with: image: image (in the form of a numpy array) (shape: (3, H, W)) gt_bboxes: N X 5 array where N is the number of bounding boxes, each consisting of [class, x1, y1, x2, y2] x1 and x2 lie between 0 and width of the image, y1 and y2 lie between 0 and height of the image. You need to do the following, 1. Extract the correct annotation using the idx provided. 2. Read the image and convert it into a numpy array (wont be necessary with some libraries). The shape of the array would be (3, H, W). 3. Scale the values in the array to be with [0, 1]. 4. Create a dictonary with both the image and annotations 4. Perform the desired transformations. 5. Return the transformed image and annotations as specified. ''' a = open(self.annotations_path) a = list(a) a_list = [] for i in a: a_list.append(json.loads(i)) #for i in a_list: # print(i) line_ = a_list[idx] img_path = 'd:/PythonPrograms/DS_Asg2/data/' + line_['img_fn'] image = Image.open(img_path) for i in self.transforms: image = i(np.asarray(image)) h = [[i[0] for i in j] for j in image] w = [[i[1] for i in j] for j in image] x = [[i[2] for i in j] for j in image] a = np.array(255) h = h / a w = w / a x = x / a image1 = np.array([h, w, x]) result = {} result['image'] = image1 stringB = line_['bboxes'] cat = [j['category'] for j in stringB] ar = [] ar = [[k for k in j['bbox']] for j in stringB] gtb = {} for i in range(len(cat)): gtb[cat[i]] = ar[i] result['gt_bboxes'] = gtb return result
34.75
84
0.530319
c7af398c446781e46a76f4ed9cc89f39ad3bfcd9
7,547
py
Python
configurations/je_meta_fixedaggr_jsc80leakyconv_augzoombright.py
ShuaiW/kaggle-heart
022997f27add953c74af2b371c67d9d86cbdccc3
[ "MIT" ]
182
2016-03-15T01:51:29.000Z
2021-04-21T09:49:05.000Z
configurations/je_meta_fixedaggr_jsc80leakyconv_augzoombright.py
weidezhang/kaggle-heart
022997f27add953c74af2b371c67d9d86cbdccc3
[ "MIT" ]
1
2018-06-22T16:46:12.000Z
2018-06-22T21:08:09.000Z
configurations/je_meta_fixedaggr_jsc80leakyconv_augzoombright.py
weidezhang/kaggle-heart
022997f27add953c74af2b371c67d9d86cbdccc3
[ "MIT" ]
61
2016-03-15T00:58:28.000Z
2020-03-06T22:00:41.000Z
"""Single slice vgg with normalised scale. """ import functools import lasagne as nn import numpy as np import theano import theano.tensor as T import data_loader import deep_learning_layers import image_transform import layers import preprocess import postprocess import objectives import theano_printer import updates import utils # Random params rng = np.random take_a_dump = False # dump a lot of data in a pkl-dump file. (for debugging) dump_network_loaded_data = False # dump the outputs from the dataloader (for debugging) # Memory usage scheme caching = None # Save and validation frequency validate_every = 20 validate_train_set = True save_every = 5 restart_from_save = False dump_network_loaded_data = False # Training (schedule) parameters # - batch sizes batch_size = 1 sunny_batch_size = 4 batches_per_chunk = 32 *4 num_epochs_train = 150 # - learning rate and method base_lr = 0.00003 learning_rate_schedule = { 0: base_lr, 8*num_epochs_train/10: base_lr/10, 19*num_epochs_train/20: base_lr/100, } momentum = 0.9 build_updates = updates.build_adam_updates # Preprocessing stuff cleaning_processes = [ preprocess.set_upside_up,] cleaning_processes_post = [ functools.partial(preprocess.normalize_contrast_zmuv, z=2)] augmentation_params = { "rotation": (-180, 180), "shear": (0, 0), "translation": (-8, 8), "flip_vert": (0, 1), "roll_time": (0, 0), "flip_time": (0, 0), "zoom_x": (.75, 1.25), "zoom_y": (.75, 1.25), "change_brightness": (-0.3, 0.3), } augmentation_params_test = { "rotation": (-180, 180), "shear": (0, 0), "translation": (-8, 8), "flip_vert": (0, 1), "roll_time": (0, 0), "flip_time": (0, 0), "zoom_x": (.80, 1.20), "zoom_y": (.80, 1.20), "change_brightness": (-0.2, 0.2), } use_hough_roi = True preprocess_train = functools.partial( # normscale_resize_and_augment has a bug preprocess.preprocess_normscale, normscale_resize_and_augment_function=functools.partial( image_transform.normscale_resize_and_augment_2, normalised_patch_size=(80,80))) preprocess_validation = functools.partial(preprocess_train, augment=False) preprocess_test = preprocess_train sunny_preprocess_train = preprocess.sunny_preprocess_with_augmentation sunny_preprocess_validation = preprocess.sunny_preprocess_validation sunny_preprocess_test = preprocess.sunny_preprocess_validation # Data generators create_train_gen = data_loader.generate_train_batch create_eval_valid_gen = functools.partial(data_loader.generate_validation_batch, set="validation") create_eval_train_gen = functools.partial(data_loader.generate_validation_batch, set="train") create_test_gen = functools.partial(data_loader.generate_test_batch, set=["validation", "test"]) def filter_samples(folders): # don't use patients who don't have mre than 6 slices return [ folder for folder in folders if data_loader.compute_nr_slices(folder) > 6] # Input sizes image_size = 64 nr_slices = 22 data_sizes = { "sliced:data:sax": (batch_size, nr_slices, 30, image_size, image_size), "sliced:data:sax:locations": (batch_size, nr_slices), "sliced:data:sax:is_not_padded": (batch_size, nr_slices), "sliced:data:randomslices": (batch_size, nr_slices, 30, image_size, image_size), "sliced:data:singleslice:difference:middle": (batch_size, 29, image_size, image_size), "sliced:data:singleslice:difference": (batch_size, 29, image_size, image_size), "sliced:data:singleslice": (batch_size, 30, image_size, image_size), "sliced:data:ax": (batch_size, 30, 15, image_size, image_size), "sliced:data:shape": (batch_size, 2,), "sunny": (sunny_batch_size, 1, image_size, image_size) # TBC with the metadata } # Objective l2_weight = 0.000 l2_weight_out = 0.000 def build_objective(interface_layers): # l2 regu on certain layers l2_penalty = nn.regularization.regularize_layer_params_weighted( interface_layers["regularizable"], nn.regularization.l2) # build objective return objectives.KaggleObjective(interface_layers["outputs"], penalty=l2_penalty) # Testing postprocess = postprocess.postprocess test_time_augmentations = 100 # More augmentations since a we only use single slices tta_average_method = lambda x: np.cumsum(utils.norm_geometric_average(utils.cdf_to_pdf(x))) # nonlinearity putting a lower bound on it's output def lb_softplus(lb): return lambda x: nn.nonlinearities.softplus(x) + lb init = nn.init.Orthogonal() rnn_layer = functools.partial(nn.layers.RecurrentLayer, W_in_to_hid=init, W_hid_to_hid=init, b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.rectify, hid_init=nn.init.Constant(0.), backwards=False, learn_init=True, gradient_steps=-1, grad_clipping=False, unroll_scan=False, precompute_input=False) # Architecture def build_model(): ################# # Regular model # ################# input_size = data_sizes["sliced:data:sax"] input_size_mask = data_sizes["sliced:data:sax:is_not_padded"] input_size_locations = data_sizes["sliced:data:sax:locations"] l0 = nn.layers.InputLayer(input_size) lin_slice_mask = nn.layers.InputLayer(input_size_mask) lin_slice_locations = nn.layers.InputLayer(input_size_locations) # PREPROCESS SLICES SEPERATELY # Convolutional layers and some dense layers are defined in a submodel l0_slices = nn.layers.ReshapeLayer(l0, (-1, [2], [3], [4])) import je_ss_jonisc80_leaky_convroll_augzoombright submodel = je_ss_jonisc80_leaky_convroll_augzoombright.build_model(l0_slices) # Systole Dense layers l_sys_mu = submodel["meta_outputs"]["systole:mu"] l_sys_sigma = submodel["meta_outputs"]["systole:sigma"] # Diastole Dense layers l_dia_mu = submodel["meta_outputs"]["diastole:mu"] l_dia_sigma = submodel["meta_outputs"]["diastole:sigma"] # AGGREGATE SLICES PER PATIENT l_scaled_slice_locations = layers.TrainableScaleLayer(lin_slice_locations, scale=nn.init.Constant(0.1), trainable=False) # Systole l_pat_sys_ss_mu = nn.layers.ReshapeLayer(l_sys_mu, (-1, nr_slices)) l_pat_sys_ss_sigma = nn.layers.ReshapeLayer(l_sys_sigma, (-1, nr_slices)) l_pat_sys_aggr_mu_sigma = layers.JeroenLayer([l_pat_sys_ss_mu, l_pat_sys_ss_sigma, lin_slice_mask, l_scaled_slice_locations], rescale_input=100.) l_systole = layers.MuSigmaErfLayer(l_pat_sys_aggr_mu_sigma) # Diastole l_pat_dia_ss_mu = nn.layers.ReshapeLayer(l_dia_mu, (-1, nr_slices)) l_pat_dia_ss_sigma = nn.layers.ReshapeLayer(l_dia_sigma, (-1, nr_slices)) l_pat_dia_aggr_mu_sigma = layers.JeroenLayer([l_pat_dia_ss_mu, l_pat_dia_ss_sigma, lin_slice_mask, l_scaled_slice_locations], rescale_input=100.) l_diastole = layers.MuSigmaErfLayer(l_pat_dia_aggr_mu_sigma) submodels = [submodel] return { "inputs":{ "sliced:data:sax": l0, "sliced:data:sax:is_not_padded": lin_slice_mask, "sliced:data:sax:locations": lin_slice_locations, }, "outputs": { "systole": l_systole, "diastole": l_diastole, }, "regularizable": dict( {}, **{ k: v for d in [model["regularizable"] for model in submodels if "regularizable" in model] for k, v in d.items() } ), "pretrained":{ je_ss_jonisc80_leaky_convroll_augzoombright.__name__: submodel["outputs"], } }
31.710084
149
0.719226
5404df7483cdb1fd68465f363f8dd5f9b3da5e6f
7,522
py
Python
linkerd/datadog_checks/linkerd/config_models/defaults.py
kjmadscience/integrations-core
663bdf44730dd6c9f3565c121318b320bfcb4988
[ "BSD-3-Clause" ]
null
null
null
linkerd/datadog_checks/linkerd/config_models/defaults.py
kjmadscience/integrations-core
663bdf44730dd6c9f3565c121318b320bfcb4988
[ "BSD-3-Clause" ]
null
null
null
linkerd/datadog_checks/linkerd/config_models/defaults.py
kjmadscience/integrations-core
663bdf44730dd6c9f3565c121318b320bfcb4988
[ "BSD-3-Clause" ]
null
null
null
# (C) Datadog, Inc. 2021-present # All rights reserved # Licensed under a 3-clause BSD style license (see LICENSE) # This file is autogenerated. # To change this file you should edit assets/configuration/spec.yaml and then run the following commands: # ddev -x validate config -s <INTEGRATION_NAME> # ddev -x validate models -s <INTEGRATION_NAME> from datadog_checks.base.utils.models.fields import get_default_field_value def shared_proxy(field, value): return get_default_field_value(field, value) def shared_service(field, value): return get_default_field_value(field, value) def shared_skip_proxy(field, value): return False def shared_timeout(field, value): return 10 def instance_allow_redirects(field, value): return True def instance_auth_token(field, value): return get_default_field_value(field, value) def instance_auth_type(field, value): return 'basic' def instance_aws_host(field, value): return get_default_field_value(field, value) def instance_aws_region(field, value): return get_default_field_value(field, value) def instance_aws_service(field, value): return get_default_field_value(field, value) def instance_bearer_token_auth(field, value): return get_default_field_value(field, value) def instance_bearer_token_path(field, value): return get_default_field_value(field, value) def instance_cache_metric_wildcards(field, value): return True def instance_cache_shared_labels(field, value): return True def instance_collect_counters_with_distributions(field, value): return False def instance_collect_histogram_buckets(field, value): return True def instance_connect_timeout(field, value): return get_default_field_value(field, value) def instance_disable_generic_tags(field, value): return False def instance_empty_default_hostname(field, value): return False def instance_enable_health_service_check(field, value): return True def instance_exclude_labels(field, value): return get_default_field_value(field, value) def instance_exclude_metrics(field, value): return get_default_field_value(field, value) def instance_exclude_metrics_by_labels(field, value): return get_default_field_value(field, value) def instance_extra_headers(field, value): return get_default_field_value(field, value) def instance_extra_metrics(field, value): return get_default_field_value(field, value) def instance_headers(field, value): return get_default_field_value(field, value) def instance_health_service_check(field, value): return True def instance_histogram_buckets_as_distributions(field, value): return False def instance_hostname_format(field, value): return get_default_field_value(field, value) def instance_hostname_label(field, value): return get_default_field_value(field, value) def instance_ignore_metrics(field, value): return get_default_field_value(field, value) def instance_ignore_metrics_by_labels(field, value): return get_default_field_value(field, value) def instance_ignore_tags(field, value): return get_default_field_value(field, value) def instance_include_labels(field, value): return get_default_field_value(field, value) def instance_kerberos_auth(field, value): return 'disabled' def instance_kerberos_cache(field, value): return get_default_field_value(field, value) def instance_kerberos_delegate(field, value): return False def instance_kerberos_force_initiate(field, value): return False def instance_kerberos_hostname(field, value): return get_default_field_value(field, value) def instance_kerberos_keytab(field, value): return get_default_field_value(field, value) def instance_kerberos_principal(field, value): return get_default_field_value(field, value) def instance_label_joins(field, value): return get_default_field_value(field, value) def instance_label_to_hostname(field, value): return get_default_field_value(field, value) def instance_labels_mapper(field, value): return get_default_field_value(field, value) def instance_log_requests(field, value): return False def instance_metric_patterns(field, value): return get_default_field_value(field, value) def instance_metrics(field, value): return get_default_field_value(field, value) def instance_min_collection_interval(field, value): return 15 def instance_namespace(field, value): return get_default_field_value(field, value) def instance_non_cumulative_histogram_buckets(field, value): return False def instance_ntlm_domain(field, value): return get_default_field_value(field, value) def instance_openmetrics_endpoint(field, value): return 'http://localhost:9990/admin/metrics/prometheus' def instance_password(field, value): return get_default_field_value(field, value) def instance_persist_connections(field, value): return False def instance_prometheus_metrics_prefix(field, value): return get_default_field_value(field, value) def instance_prometheus_url(field, value): return get_default_field_value(field, value) def instance_proxy(field, value): return get_default_field_value(field, value) def instance_raw_line_filters(field, value): return get_default_field_value(field, value) def instance_raw_metric_prefix(field, value): return get_default_field_value(field, value) def instance_read_timeout(field, value): return get_default_field_value(field, value) def instance_rename_labels(field, value): return get_default_field_value(field, value) def instance_request_size(field, value): return 16 def instance_send_distribution_buckets(field, value): return False def instance_send_distribution_counts_as_monotonic(field, value): return False def instance_send_distribution_sums_as_monotonic(field, value): return False def instance_send_histograms_buckets(field, value): return True def instance_send_monotonic_counter(field, value): return True def instance_send_monotonic_with_gauge(field, value): return False def instance_service(field, value): return get_default_field_value(field, value) def instance_share_labels(field, value): return get_default_field_value(field, value) def instance_skip_proxy(field, value): return False def instance_tags(field, value): return get_default_field_value(field, value) def instance_telemetry(field, value): return False def instance_timeout(field, value): return 10 def instance_tls_ca_cert(field, value): return get_default_field_value(field, value) def instance_tls_cert(field, value): return get_default_field_value(field, value) def instance_tls_ignore_warning(field, value): return False def instance_tls_private_key(field, value): return get_default_field_value(field, value) def instance_tls_protocols_allowed(field, value): return get_default_field_value(field, value) def instance_tls_use_host_header(field, value): return False def instance_tls_verify(field, value): return True def instance_type_overrides(field, value): return get_default_field_value(field, value) def instance_use_latest_spec(field, value): return False def instance_use_legacy_auth_encoding(field, value): return True def instance_use_process_start_time(field, value): return False def instance_username(field, value): return get_default_field_value(field, value)
21.188732
105
0.787557
b002b603e75ff12d580d83a9b627836c60d2d8d8
9,643
py
Python
tests/test_context.py
nascimento/coveragepy
9adb80c9612d3d364362bd3b6551532fe9ec7d5f
[ "Apache-2.0" ]
null
null
null
tests/test_context.py
nascimento/coveragepy
9adb80c9612d3d364362bd3b6551532fe9ec7d5f
[ "Apache-2.0" ]
null
null
null
tests/test_context.py
nascimento/coveragepy
9adb80c9612d3d364362bd3b6551532fe9ec7d5f
[ "Apache-2.0" ]
null
null
null
# Licensed under the Apache License: http://www.apache.org/licenses/LICENSE-2.0 # For details: https://github.com/nedbat/coveragepy/blob/master/NOTICE.txt """Tests for context support.""" import inspect import os.path import coverage from coverage import env from coverage.context import qualname_from_frame from coverage.data import CoverageData from tests.coveragetest import CoverageTest class StaticContextTest(CoverageTest): """Tests of the static context.""" def test_no_context(self): self.make_file("main.py", "a = 1") cov = coverage.Coverage() self.start_import_stop(cov, "main") data = cov.get_data() self.assertCountEqual(data.measured_contexts(), [""]) def test_static_context(self): self.make_file("main.py", "a = 1") cov = coverage.Coverage(context="gooey") self.start_import_stop(cov, "main") data = cov.get_data() self.assertCountEqual(data.measured_contexts(), ["gooey"]) SOURCE = """\ a = 1 if a > 2: a = 3 assert a == 1 """ LINES = [1, 2, 4] ARCS = [(-1, 1), (1, 2), (2, 4), (4, -1)] def run_red_blue(self, **options): """Run red.py and blue.py, and return their CoverageData objects.""" self.make_file("red.py", self.SOURCE) red_cov = coverage.Coverage(context="red", data_suffix="r", source=["."], **options) self.start_import_stop(red_cov, "red") red_cov.save() red_data = red_cov.get_data() self.make_file("blue.py", self.SOURCE) blue_cov = coverage.Coverage(context="blue", data_suffix="b", source=["."], **options) self.start_import_stop(blue_cov, "blue") blue_cov.save() blue_data = blue_cov.get_data() return red_data, blue_data def test_combining_line_contexts(self): red_data, blue_data = self.run_red_blue() for datas in [[red_data, blue_data], [blue_data, red_data]]: combined = CoverageData(suffix="combined") for data in datas: combined.update(data) self.assertEqual(combined.measured_contexts(), {'red', 'blue'}) full_names = {os.path.basename(f): f for f in combined.measured_files()} self.assertCountEqual(full_names, ['red.py', 'blue.py']) fred = full_names['red.py'] fblue = full_names['blue.py'] def assert_combined_lines(filename, context, lines): # pylint: disable=cell-var-from-loop combined.set_query_context(context) self.assertEqual(combined.lines(filename), lines) assert_combined_lines(fred, 'red', self.LINES) assert_combined_lines(fred, 'blue', []) assert_combined_lines(fblue, 'red', []) assert_combined_lines(fblue, 'blue', self.LINES) def test_combining_arc_contexts(self): red_data, blue_data = self.run_red_blue(branch=True) for datas in [[red_data, blue_data], [blue_data, red_data]]: combined = CoverageData(suffix="combined") for data in datas: combined.update(data) self.assertEqual(combined.measured_contexts(), {'red', 'blue'}) full_names = {os.path.basename(f): f for f in combined.measured_files()} self.assertCountEqual(full_names, ['red.py', 'blue.py']) fred = full_names['red.py'] fblue = full_names['blue.py'] def assert_combined_lines(filename, context, lines): # pylint: disable=cell-var-from-loop combined.set_query_context(context) self.assertEqual(combined.lines(filename), lines) assert_combined_lines(fred, 'red', self.LINES) assert_combined_lines(fred, 'blue', []) assert_combined_lines(fblue, 'red', []) assert_combined_lines(fblue, 'blue', self.LINES) def assert_combined_arcs(filename, context, lines): # pylint: disable=cell-var-from-loop combined.set_query_context(context) self.assertEqual(combined.arcs(filename), lines) assert_combined_arcs(fred, 'red', self.ARCS) assert_combined_arcs(fred, 'blue', []) assert_combined_arcs(fblue, 'red', []) assert_combined_arcs(fblue, 'blue', self.ARCS) class DynamicContextTest(CoverageTest): """Tests of dynamically changing contexts.""" SOURCE = """\ def helper(lineno): x = 2 def test_one(): a = 5 helper(6) def test_two(): a = 9 b = 10 if a > 11: b = 12 assert a == (13-4) assert b == (14-4) helper(15) test_one() x = 18 helper(19) test_two() """ OUTER_LINES = [1, 4, 8, 17, 18, 19, 2, 20] TEST_ONE_LINES = [5, 6, 2] TEST_TWO_LINES = [9, 10, 11, 13, 14, 15, 2] def test_dynamic_alone(self): self.make_file("two_tests.py", self.SOURCE) cov = coverage.Coverage(source=["."]) cov.set_option("run:dynamic_context", "test_function") self.start_import_stop(cov, "two_tests") data = cov.get_data() full_names = {os.path.basename(f): f for f in data.measured_files()} fname = full_names["two_tests.py"] self.assertCountEqual( data.measured_contexts(), ["", "two_tests.test_one", "two_tests.test_two"]) def assert_context_lines(context, lines): data.set_query_context(context) self.assertCountEqual(lines, data.lines(fname)) assert_context_lines("", self.OUTER_LINES) assert_context_lines("two_tests.test_one", self.TEST_ONE_LINES) assert_context_lines("two_tests.test_two", self.TEST_TWO_LINES) def test_static_and_dynamic(self): self.make_file("two_tests.py", self.SOURCE) cov = coverage.Coverage(context="stat", source=["."]) cov.set_option("run:dynamic_context", "test_function") self.start_import_stop(cov, "two_tests") data = cov.get_data() full_names = {os.path.basename(f): f for f in data.measured_files()} fname = full_names["two_tests.py"] self.assertCountEqual( data.measured_contexts(), ["stat", "stat|two_tests.test_one", "stat|two_tests.test_two"]) def assert_context_lines(context, lines): data.set_query_context(context) self.assertCountEqual(lines, data.lines(fname)) assert_context_lines("stat", self.OUTER_LINES) assert_context_lines("stat|two_tests.test_one", self.TEST_ONE_LINES) assert_context_lines("stat|two_tests.test_two", self.TEST_TWO_LINES) def get_qualname(): """Helper to return qualname_from_frame for the caller.""" stack = inspect.stack()[1:] if any(sinfo[0].f_code.co_name == "get_qualname" for sinfo in stack): # We're calling outselves recursively, maybe because we're testing # properties. Return an int to try to get back on track. return 17 caller_frame = stack[0][0] return qualname_from_frame(caller_frame) # pylint: disable=missing-docstring, unused-argument class Parent(object): def meth(self): return get_qualname() @property def a_property(self): return get_qualname() class Child(Parent): pass class SomethingElse(object): pass class MultiChild(SomethingElse, Child): pass def no_arguments(): return get_qualname() def plain_old_function(a, b): return get_qualname() def fake_out(self): return get_qualname() def patch_meth(self): return get_qualname() class OldStyle: def meth(self): return get_qualname() class OldChild(OldStyle): pass # pylint: enable=missing-docstring, unused-argument class QualnameTest(CoverageTest): """Tests of qualname_from_frame.""" # Pylint gets confused about meth() below. # pylint: disable=no-value-for-parameter run_in_temp_dir = False def test_method(self): self.assertEqual(Parent().meth(), "tests.test_context.Parent.meth") def test_inherited_method(self): self.assertEqual(Child().meth(), "tests.test_context.Parent.meth") def test_mi_inherited_method(self): self.assertEqual(MultiChild().meth(), "tests.test_context.Parent.meth") def test_no_arguments(self): self.assertEqual(no_arguments(), "tests.test_context.no_arguments") def test_plain_old_function(self): self.assertEqual( plain_old_function(0, 1), "tests.test_context.plain_old_function") def test_fake_out(self): self.assertEqual(fake_out(0), "tests.test_context.fake_out") def test_property(self): self.assertEqual( Parent().a_property, "tests.test_context.Parent.a_property") def test_changeling(self): c = Child() c.meth = patch_meth self.assertEqual(c.meth(c), "tests.test_context.patch_meth") def test_oldstyle(self): if not env.PY2: self.skipTest("Old-style classes are only in Python 2") self.assertEqual(OldStyle().meth(), "tests.test_context.OldStyle.meth") self.assertEqual(OldChild().meth(), "tests.test_context.OldStyle.meth") def test_bug_829(self): # A class with a name like a function shouldn't confuse qualname_from_frame. class test_something(object): # pylint: disable=unused-variable self.assertEqual(get_qualname(), None)
33.137457
94
0.627398
8ff649882857b45ea87ac3dc54b188abd01262bf
3,437
py
Python
src/tests/test_comms_models.py
reddcoin-project/ReddConnect
5c212683de6b80b81fd15ed05239c3a1b46c3afd
[ "BSD-3-Clause" ]
5
2015-01-30T08:47:59.000Z
2022-01-22T19:27:03.000Z
src/tests/test_comms_models.py
reddcoin-project/ReddConnect
5c212683de6b80b81fd15ed05239c3a1b46c3afd
[ "BSD-3-Clause" ]
2
2017-12-28T21:36:48.000Z
2017-12-28T21:36:57.000Z
src/tests/test_comms_models.py
reddcoin-project/ReddConnect
5c212683de6b80b81fd15ed05239c3a1b46c3afd
[ "BSD-3-Clause" ]
1
2019-01-05T15:51:37.000Z
2019-01-05T15:51:37.000Z
import unittest class TestMsg(unittest.TestCase): def test___init__(self): # msg = Msg(*args, **kwargs) assert True # TODO: implement your test here def test___str__(self): # msg = Msg(*args, **kwargs) # self.assertEqual(expected, msg.__str__()) assert True # TODO: implement your test here def test_remove_receiver(self): # msg = Msg(*args, **kwargs) # self.assertEqual(expected, msg.remove_receiver(obj)) assert True # TODO: implement your test here def test_remove_sender(self): # msg = Msg(*args, **kwargs) # self.assertEqual(expected, msg.remove_sender(value)) assert True # TODO: implement your test here class TestTempMsg(unittest.TestCase): def test___init__(self): # temp_msg = TempMsg(senders, receivers, channels, message, header, type, lockstring, hide_from) assert True # TODO: implement your test here def test___str__(self): # temp_msg = TempMsg(senders, receivers, channels, message, header, type, lockstring, hide_from) # self.assertEqual(expected, temp_msg.__str__()) assert True # TODO: implement your test here def test_access(self): # temp_msg = TempMsg(senders, receivers, channels, message, header, type, lockstring, hide_from) # self.assertEqual(expected, temp_msg.access(accessing_obj, access_type, default)) assert True # TODO: implement your test here def test_remove_receiver(self): # temp_msg = TempMsg(senders, receivers, channels, message, header, type, lockstring, hide_from) # self.assertEqual(expected, temp_msg.remove_receiver(obj)) assert True # TODO: implement your test here def test_remove_sender(self): # temp_msg = TempMsg(senders, receivers, channels, message, header, type, lockstring, hide_from) # self.assertEqual(expected, temp_msg.remove_sender(obj)) assert True # TODO: implement your test here class TestChannelDB(unittest.TestCase): def test___init__(self): # channel_d_b = ChannelDB(*args, **kwargs) assert True # TODO: implement your test here def test___str__(self): # channel_d_b = ChannelDB(*args, **kwargs) # self.assertEqual(expected, channel_d_b.__str__()) assert True # TODO: implement your test here def test_access(self): # channel_d_b = ChannelDB(*args, **kwargs) # self.assertEqual(expected, channel_d_b.access(accessing_obj, access_type, default)) assert True # TODO: implement your test here def test_connect(self): # channel_d_b = ChannelDB(*args, **kwargs) # self.assertEqual(expected, channel_d_b.connect(player)) assert True # TODO: implement your test here def test_delete(self): # channel_d_b = ChannelDB(*args, **kwargs) # self.assertEqual(expected, channel_d_b.delete()) assert True # TODO: implement your test here def test_disconnect(self): # channel_d_b = ChannelDB(*args, **kwargs) # self.assertEqual(expected, channel_d_b.disconnect(player)) assert True # TODO: implement your test here def test_has_connection(self): # channel_d_b = ChannelDB(*args, **kwargs) # self.assertEqual(expected, channel_d_b.has_connection(player)) assert True # TODO: implement your test here if __name__ == '__main__': unittest.main()
40.435294
104
0.673553
82c15fcc29aeec0d0dd65aeebe69c59d3838271d
277
py
Python
interfax/__init__.py
ricky-shake-n-bake-bobby/interfax-python
63c282672b6555f745d971988441af44b133468d
[ "MIT" ]
null
null
null
interfax/__init__.py
ricky-shake-n-bake-bobby/interfax-python
63c282672b6555f745d971988441af44b133468d
[ "MIT" ]
null
null
null
interfax/__init__.py
ricky-shake-n-bake-bobby/interfax-python
63c282672b6555f745d971988441af44b133468d
[ "MIT" ]
null
null
null
from .response import InboundFax, OutboundFax, ForwardingEmail, Document, Image from .files import File __version__ = '1.0.5' from .client import InterFAX # NOQA __all__ = ('InterFAX', 'InboundFax', 'OutboundFax', 'ForwardingEmail', 'Document', 'Image', 'File')
27.7
79
0.707581
974ee5d30804ed3970c84f42090129127547e5f4
1,150
py
Python
reviewboard/extensions/testing/testcases.py
amalik2/reviewboard
676aa2dce38ce619a74f2d4cb3cfae9bce21416e
[ "MIT" ]
921
2015-01-01T15:26:28.000Z
2022-03-29T11:30:38.000Z
reviewboard/extensions/testing/testcases.py
amalik2/reviewboard
676aa2dce38ce619a74f2d4cb3cfae9bce21416e
[ "MIT" ]
5
2015-03-17T18:57:47.000Z
2020-10-02T13:24:31.000Z
reviewboard/extensions/testing/testcases.py
amalik2/reviewboard
676aa2dce38ce619a74f2d4cb3cfae9bce21416e
[ "MIT" ]
285
2015-01-12T06:24:36.000Z
2022-03-29T11:03:50.000Z
"""Base test case support for extension unit tests.""" from __future__ import unicode_literals from djblets.extensions.testing import ExtensionTestCaseMixin from reviewboard.extensions.base import get_extension_manager from reviewboard.testing import TestCase class ExtensionTestCase(ExtensionTestCaseMixin, TestCase): """Base class for Review Board extension unit tests. Extension authors can subclass this to help write unit tests for their extensions, ensuring their functionality works as expected. See :ref:`testing-extensions` for information on how to write unit tests for extensions, and :py:class:`~djblets.extensions.testing.testcases.ExtensionTestCaseMixin` for the details on how this class works. """ def get_extension_manager(self): """Return the extension manager used for these extensions. Subclasses don't need to override this unless they're doing something highly specialized. Returns: djblets.extensions.manager.ExtensionManager: The extension manager used for the unit tests. """ return get_extension_manager()
33.823529
77
0.745217
e7e5d906727d7f2ad28b7f5cc44bf562fb2432f7
1,967
py
Python
openGaussBase/testcase/TOOLS/SERVER_TOOLS/gs_check/Opengauss_Function_Tools_gs_check_Case0234.py
opengauss-mirror/Yat
aef107a8304b94e5d99b4f1f36eb46755eb8919e
[ "MulanPSL-1.0" ]
null
null
null
openGaussBase/testcase/TOOLS/SERVER_TOOLS/gs_check/Opengauss_Function_Tools_gs_check_Case0234.py
opengauss-mirror/Yat
aef107a8304b94e5d99b4f1f36eb46755eb8919e
[ "MulanPSL-1.0" ]
null
null
null
openGaussBase/testcase/TOOLS/SERVER_TOOLS/gs_check/Opengauss_Function_Tools_gs_check_Case0234.py
opengauss-mirror/Yat
aef107a8304b94e5d99b4f1f36eb46755eb8919e
[ "MulanPSL-1.0" ]
null
null
null
""" Copyright (c) 2022 Huawei Technologies Co.,Ltd. openGauss is licensed under Mulan PSL v2. You can use this software according to the terms and conditions of the Mulan PSL v2. You may obtain a copy of Mulan PSL v2 at: http://license.coscl.org.cn/MulanPSL2 THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. See the Mulan PSL v2 for more details. """ """ Case Type : ๆœๅŠก็ซฏๅทฅๅ…ท Case Name : ็”จๆˆทๆฃ€ๆŸฅไบคๆขๅ†…ๅญ˜๏ผˆๅ‚ๆ•ฐiๅ’Œๅ‚ๆ•ฐU็ป„ๅˆๆต‹่ฏ•๏ผ‰ Description : ่ฟ่กŒopenGauss็š„็”จๆˆทๆฃ€ๆŸฅๆŒ‡ๅฎšๆฃ€ๆŸฅ้กน๏ผš gs_check -i CheckSwapMemory -U omm Expect : ๆฃ€ๆŸฅๅฎŒๆˆ History : """ import unittest from yat.test import Node from yat.test import macro from testcase.utils.Constant import Constant from testcase.utils.Logger import Logger logger = Logger() class Tools(unittest.TestCase): def setUp(self): logger.info('--------------Opengauss_Function_Tools_gs_check_Case0234start-------------------') self.dbuserNode = Node('dbuser') self.rootNode = Node('default') self.Constant = Constant() def test_server_tools(self): logger.info('------------------่ฟ่กŒopenGauss็š„็”จๆˆทๆฃ€ๆŸฅไบคๆขๅ†…ๅญ˜------------------') check_cmd1 = f''' source {macro.DB_ENV_PATH} gs_check -i CheckSwapMemory -U {self.dbuserNode.ssh_user} ''' logger.info(check_cmd1) msg1 = self.dbuserNode.sh(check_cmd1).result() logger.info(msg1) flag = (self.Constant.GS_CHECK_SUCCESS_MSG2[0] in msg1 or self.Constant.GS_CHECK_SUCCESS_MSG2[1] in msg1) and \ self.Constant.GS_CHECK_SUCCESS_MSG2[2] in msg1 self.assertTrue(flag) def tearDown(self): logger.info('--------------ๆ— ้œ€ๆธ…็†็Žฏๅขƒ-------------------') logger.info('------------------Opengauss_Function_Tools_gs_check_Case0234finish------------------')
35.125
119
0.638027
997da9e542fdace66007708c59806f1b5c1a8fd3
44,301
py
Python
sklearn/manifold/tests/test_t_sne.py
henrytseng/scikit-learn
75c58c39eb9eed15ba6c96c52b6adcd95f045294
[ "BSD-3-Clause" ]
null
null
null
sklearn/manifold/tests/test_t_sne.py
henrytseng/scikit-learn
75c58c39eb9eed15ba6c96c52b6adcd95f045294
[ "BSD-3-Clause" ]
1
2022-03-09T19:32:57.000Z
2022-03-09T20:23:30.000Z
sklearn/manifold/tests/test_t_sne.py
henrytseng/scikit-learn
75c58c39eb9eed15ba6c96c52b6adcd95f045294
[ "BSD-3-Clause" ]
null
null
null
import sys from io import StringIO import numpy as np from numpy.testing import assert_allclose import scipy.sparse as sp import pytest import warnings from sklearn.neighbors import NearestNeighbors from sklearn.neighbors import kneighbors_graph from sklearn.exceptions import EfficiencyWarning from sklearn.utils._testing import ignore_warnings from sklearn.utils._testing import assert_almost_equal from sklearn.utils._testing import assert_array_equal from sklearn.utils._testing import assert_array_almost_equal from sklearn.utils._testing import skip_if_32bit from sklearn.utils import check_random_state from sklearn.manifold._t_sne import _joint_probabilities from sklearn.manifold._t_sne import _joint_probabilities_nn from sklearn.manifold._t_sne import _kl_divergence from sklearn.manifold._t_sne import _kl_divergence_bh from sklearn.manifold._t_sne import _gradient_descent from sklearn.manifold._t_sne import trustworthiness from sklearn.manifold import TSNE # mypy error: Module 'sklearn.manifold' has no attribute '_barnes_hut_tsne' from sklearn.manifold import _barnes_hut_tsne # type: ignore from sklearn.manifold._utils import _binary_search_perplexity from sklearn.datasets import make_blobs from scipy.optimize import check_grad from scipy.spatial.distance import pdist from scipy.spatial.distance import squareform from sklearn.metrics.pairwise import pairwise_distances from sklearn.metrics.pairwise import manhattan_distances from sklearn.metrics.pairwise import cosine_distances x = np.linspace(0, 1, 10) xx, yy = np.meshgrid(x, x) X_2d_grid = np.hstack( [ xx.ravel().reshape(-1, 1), yy.ravel().reshape(-1, 1), ] ) pytestmark = pytest.mark.filterwarnings( "ignore:The PCA initialization in TSNE will change to have the standard deviation", ) def test_gradient_descent_stops(): # Test stopping conditions of gradient descent. class ObjectiveSmallGradient: def __init__(self): self.it = -1 def __call__(self, _, compute_error=True): self.it += 1 return (10 - self.it) / 10.0, np.array([1e-5]) def flat_function(_, compute_error=True): return 0.0, np.ones(1) # Gradient norm old_stdout = sys.stdout sys.stdout = StringIO() try: _, error, it = _gradient_descent( ObjectiveSmallGradient(), np.zeros(1), 0, n_iter=100, n_iter_without_progress=100, momentum=0.0, learning_rate=0.0, min_gain=0.0, min_grad_norm=1e-5, verbose=2, ) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert error == 1.0 assert it == 0 assert "gradient norm" in out # Maximum number of iterations without improvement old_stdout = sys.stdout sys.stdout = StringIO() try: _, error, it = _gradient_descent( flat_function, np.zeros(1), 0, n_iter=100, n_iter_without_progress=10, momentum=0.0, learning_rate=0.0, min_gain=0.0, min_grad_norm=0.0, verbose=2, ) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert error == 0.0 assert it == 11 assert "did not make any progress" in out # Maximum number of iterations old_stdout = sys.stdout sys.stdout = StringIO() try: _, error, it = _gradient_descent( ObjectiveSmallGradient(), np.zeros(1), 0, n_iter=11, n_iter_without_progress=100, momentum=0.0, learning_rate=0.0, min_gain=0.0, min_grad_norm=0.0, verbose=2, ) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert error == 0.0 assert it == 10 assert "Iteration 10" in out def test_binary_search(): # Test if the binary search finds Gaussians with desired perplexity. random_state = check_random_state(0) data = random_state.randn(50, 5) distances = pairwise_distances(data).astype(np.float32) desired_perplexity = 25.0 P = _binary_search_perplexity(distances, desired_perplexity, verbose=0) P = np.maximum(P, np.finfo(np.double).eps) mean_perplexity = np.mean( [np.exp(-np.sum(P[i] * np.log(P[i]))) for i in range(P.shape[0])] ) assert_almost_equal(mean_perplexity, desired_perplexity, decimal=3) def test_binary_search_underflow(): # Test if the binary search finds Gaussians with desired perplexity. # A more challenging case than the one above, producing numeric # underflow in float precision (see issue #19471 and PR #19472). random_state = check_random_state(42) data = random_state.randn(1, 90).astype(np.float32) + 100 desired_perplexity = 30.0 P = _binary_search_perplexity(data, desired_perplexity, verbose=0) perplexity = 2 ** -np.nansum(P[0, 1:] * np.log2(P[0, 1:])) assert_almost_equal(perplexity, desired_perplexity, decimal=3) def test_binary_search_neighbors(): # Binary perplexity search approximation. # Should be approximately equal to the slow method when we use # all points as neighbors. n_samples = 200 desired_perplexity = 25.0 random_state = check_random_state(0) data = random_state.randn(n_samples, 2).astype(np.float32, copy=False) distances = pairwise_distances(data) P1 = _binary_search_perplexity(distances, desired_perplexity, verbose=0) # Test that when we use all the neighbors the results are identical n_neighbors = n_samples - 1 nn = NearestNeighbors().fit(data) distance_graph = nn.kneighbors_graph(n_neighbors=n_neighbors, mode="distance") distances_nn = distance_graph.data.astype(np.float32, copy=False) distances_nn = distances_nn.reshape(n_samples, n_neighbors) P2 = _binary_search_perplexity(distances_nn, desired_perplexity, verbose=0) indptr = distance_graph.indptr P1_nn = np.array( [ P1[k, distance_graph.indices[indptr[k] : indptr[k + 1]]] for k in range(n_samples) ] ) assert_array_almost_equal(P1_nn, P2, decimal=4) # Test that the highest P_ij are the same when fewer neighbors are used for k in np.linspace(150, n_samples - 1, 5): k = int(k) topn = k * 10 # check the top 10 * k entries out of k * k entries distance_graph = nn.kneighbors_graph(n_neighbors=k, mode="distance") distances_nn = distance_graph.data.astype(np.float32, copy=False) distances_nn = distances_nn.reshape(n_samples, k) P2k = _binary_search_perplexity(distances_nn, desired_perplexity, verbose=0) assert_array_almost_equal(P1_nn, P2, decimal=2) idx = np.argsort(P1.ravel())[::-1] P1top = P1.ravel()[idx][:topn] idx = np.argsort(P2k.ravel())[::-1] P2top = P2k.ravel()[idx][:topn] assert_array_almost_equal(P1top, P2top, decimal=2) def test_binary_perplexity_stability(): # Binary perplexity search should be stable. # The binary_search_perplexity had a bug wherein the P array # was uninitialized, leading to sporadically failing tests. n_neighbors = 10 n_samples = 100 random_state = check_random_state(0) data = random_state.randn(n_samples, 5) nn = NearestNeighbors().fit(data) distance_graph = nn.kneighbors_graph(n_neighbors=n_neighbors, mode="distance") distances = distance_graph.data.astype(np.float32, copy=False) distances = distances.reshape(n_samples, n_neighbors) last_P = None desired_perplexity = 3 for _ in range(100): P = _binary_search_perplexity(distances.copy(), desired_perplexity, verbose=0) P1 = _joint_probabilities_nn(distance_graph, desired_perplexity, verbose=0) # Convert the sparse matrix to a dense one for testing P1 = P1.toarray() if last_P is None: last_P = P last_P1 = P1 else: assert_array_almost_equal(P, last_P, decimal=4) assert_array_almost_equal(P1, last_P1, decimal=4) def test_gradient(): # Test gradient of Kullback-Leibler divergence. random_state = check_random_state(0) n_samples = 50 n_features = 2 n_components = 2 alpha = 1.0 distances = random_state.randn(n_samples, n_features).astype(np.float32) distances = np.abs(distances.dot(distances.T)) np.fill_diagonal(distances, 0.0) X_embedded = random_state.randn(n_samples, n_components).astype(np.float32) P = _joint_probabilities(distances, desired_perplexity=25.0, verbose=0) def fun(params): return _kl_divergence(params, P, alpha, n_samples, n_components)[0] def grad(params): return _kl_divergence(params, P, alpha, n_samples, n_components)[1] assert_almost_equal(check_grad(fun, grad, X_embedded.ravel()), 0.0, decimal=5) def test_trustworthiness(): # Test trustworthiness score. random_state = check_random_state(0) # Affine transformation X = random_state.randn(100, 2) assert trustworthiness(X, 5.0 + X / 10.0) == 1.0 # Randomly shuffled X = np.arange(100).reshape(-1, 1) X_embedded = X.copy() random_state.shuffle(X_embedded) assert trustworthiness(X, X_embedded) < 0.6 # Completely different X = np.arange(5).reshape(-1, 1) X_embedded = np.array([[0], [2], [4], [1], [3]]) assert_almost_equal(trustworthiness(X, X_embedded, n_neighbors=1), 0.2) def test_trustworthiness_n_neighbors_error(): """Raise an error when n_neighbors >= n_samples / 2. Non-regression test for #18567. """ regex = "n_neighbors .+ should be less than .+" rng = np.random.RandomState(42) X = rng.rand(7, 4) X_embedded = rng.rand(7, 2) with pytest.raises(ValueError, match=regex): trustworthiness(X, X_embedded, n_neighbors=5) trust = trustworthiness(X, X_embedded, n_neighbors=3) assert 0 <= trust <= 1 @pytest.mark.parametrize("method", ["exact", "barnes_hut"]) @pytest.mark.parametrize("init", ("random", "pca")) def test_preserve_trustworthiness_approximately(method, init): # Nearest neighbors should be preserved approximately. random_state = check_random_state(0) n_components = 2 X = random_state.randn(50, n_components).astype(np.float32) tsne = TSNE( n_components=n_components, init=init, random_state=0, method=method, n_iter=700, learning_rate="auto", ) X_embedded = tsne.fit_transform(X) t = trustworthiness(X, X_embedded, n_neighbors=1) assert t > 0.85 def test_optimization_minimizes_kl_divergence(): """t-SNE should give a lower KL divergence with more iterations.""" random_state = check_random_state(0) X, _ = make_blobs(n_features=3, random_state=random_state) kl_divergences = [] for n_iter in [250, 300, 350]: tsne = TSNE( n_components=2, init="random", perplexity=10, learning_rate=100.0, n_iter=n_iter, random_state=0, ) tsne.fit_transform(X) kl_divergences.append(tsne.kl_divergence_) assert kl_divergences[1] <= kl_divergences[0] assert kl_divergences[2] <= kl_divergences[1] @pytest.mark.parametrize("method", ["exact", "barnes_hut"]) def test_fit_csr_matrix(method): # X can be a sparse matrix. rng = check_random_state(0) X = rng.randn(50, 2) X[(rng.randint(0, 50, 25), rng.randint(0, 2, 25))] = 0.0 X_csr = sp.csr_matrix(X) tsne = TSNE( n_components=2, init="random", perplexity=10, learning_rate=100.0, random_state=0, method=method, n_iter=750, ) X_embedded = tsne.fit_transform(X_csr) assert_allclose(trustworthiness(X_csr, X_embedded, n_neighbors=1), 1.0, rtol=1.1e-1) def test_preserve_trustworthiness_approximately_with_precomputed_distances(): # Nearest neighbors should be preserved approximately. random_state = check_random_state(0) for i in range(3): X = random_state.randn(80, 2) D = squareform(pdist(X), "sqeuclidean") tsne = TSNE( n_components=2, perplexity=2, learning_rate=100.0, early_exaggeration=2.0, metric="precomputed", random_state=i, verbose=0, n_iter=500, init="random", ) X_embedded = tsne.fit_transform(D) t = trustworthiness(D, X_embedded, n_neighbors=1, metric="precomputed") assert t > 0.95 def test_trustworthiness_not_euclidean_metric(): # Test trustworthiness with a metric different from 'euclidean' and # 'precomputed' random_state = check_random_state(0) X = random_state.randn(100, 2) assert trustworthiness(X, X, metric="cosine") == trustworthiness( pairwise_distances(X, metric="cosine"), X, metric="precomputed" ) @pytest.mark.filterwarnings("ignore:The default learning rate in TSNE") @pytest.mark.filterwarnings("ignore:The default initialization in TSNE") def test_early_exaggeration_too_small(): # Early exaggeration factor must be >= 1. tsne = TSNE(early_exaggeration=0.99, perplexity=1) with pytest.raises(ValueError, match="early_exaggeration .*"): tsne.fit_transform(np.array([[0.0], [0.0]])) @pytest.mark.filterwarnings("ignore:The default learning rate in TSNE") @pytest.mark.filterwarnings("ignore:The default initialization in TSNE") def test_too_few_iterations(): # Number of gradient descent iterations must be at least 200. tsne = TSNE(n_iter=199, perplexity=1) with pytest.raises(ValueError, match="n_iter .*"): tsne.fit_transform(np.array([[0.0], [0.0]])) @pytest.mark.filterwarnings("ignore:The default learning rate in TSNE") @pytest.mark.parametrize( "method, retype", [ ("exact", np.asarray), ("barnes_hut", np.asarray), ("barnes_hut", sp.csr_matrix), ], ) @pytest.mark.parametrize( "D, message_regex", [ ([[0.0], [1.0]], ".* square distance matrix"), ([[0.0, -1.0], [1.0, 0.0]], ".* positive.*"), ], ) def test_bad_precomputed_distances(method, D, retype, message_regex): tsne = TSNE( metric="precomputed", method=method, init="random", random_state=42, perplexity=1, ) with pytest.raises(ValueError, match=message_regex): tsne.fit_transform(retype(D)) @pytest.mark.filterwarnings("ignore:The default learning rate in TSNE") def test_exact_no_precomputed_sparse(): tsne = TSNE( metric="precomputed", method="exact", init="random", random_state=42, perplexity=1, ) with pytest.raises(TypeError, match="sparse"): tsne.fit_transform(sp.csr_matrix([[0, 5], [5, 0]])) @pytest.mark.filterwarnings("ignore:The default learning rate in TSNE") def test_high_perplexity_precomputed_sparse_distances(): # Perplexity should be less than 50 dist = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [1.0, 0.0, 0.0]]) bad_dist = sp.csr_matrix(dist) tsne = TSNE(metric="precomputed", init="random", random_state=42, perplexity=1) msg = "3 neighbors per samples are required, but some samples have only 1" with pytest.raises(ValueError, match=msg): tsne.fit_transform(bad_dist) @ignore_warnings(category=EfficiencyWarning) def test_sparse_precomputed_distance(): """Make sure that TSNE works identically for sparse and dense matrix""" random_state = check_random_state(0) X = random_state.randn(100, 2) D_sparse = kneighbors_graph(X, n_neighbors=100, mode="distance", include_self=True) D = pairwise_distances(X) assert sp.issparse(D_sparse) assert_almost_equal(D_sparse.A, D) tsne = TSNE( metric="precomputed", random_state=0, init="random", learning_rate="auto" ) Xt_dense = tsne.fit_transform(D) for fmt in ["csr", "lil"]: Xt_sparse = tsne.fit_transform(D_sparse.asformat(fmt)) assert_almost_equal(Xt_dense, Xt_sparse) @pytest.mark.filterwarnings("ignore:The default learning rate in TSNE") @pytest.mark.filterwarnings("ignore:The default initialization in TSNE") def test_non_positive_computed_distances(): # Computed distance matrices must be positive. def metric(x, y): return -1 # Negative computed distances should be caught even if result is squared tsne = TSNE(metric=metric, method="exact", perplexity=1) X = np.array([[0.0, 0.0], [1.0, 1.0]]) with pytest.raises(ValueError, match="All distances .*metric given.*"): tsne.fit_transform(X) @pytest.mark.filterwarnings("ignore:The default learning rate in TSNE") def test_init_not_available(): # 'init' must be 'pca', 'random', or numpy array. tsne = TSNE(init="not available", perplexity=1) m = "'init' must be 'pca', 'random', or a numpy array" with pytest.raises(ValueError, match=m): tsne.fit_transform(np.array([[0.0], [1.0]])) def test_init_ndarray(): # Initialize TSNE with ndarray and test fit tsne = TSNE(init=np.zeros((100, 2)), learning_rate="auto") X_embedded = tsne.fit_transform(np.ones((100, 5))) assert_array_equal(np.zeros((100, 2)), X_embedded) def test_init_ndarray_precomputed(): # Initialize TSNE with ndarray and metric 'precomputed' # Make sure no FutureWarning is thrown from _fit tsne = TSNE( init=np.zeros((100, 2)), metric="precomputed", learning_rate=50.0, ) tsne.fit(np.zeros((100, 100))) @pytest.mark.filterwarnings("ignore:The default learning rate in TSNE") @pytest.mark.filterwarnings("ignore:The default initialization in TSNE") def test_distance_not_available(): # 'metric' must be valid. tsne = TSNE(metric="not available", method="exact", perplexity=1) with pytest.raises(ValueError, match="Unknown metric not available.*"): tsne.fit_transform(np.array([[0.0], [1.0]])) tsne = TSNE(metric="not available", method="barnes_hut", perplexity=1) with pytest.raises(ValueError, match="Metric 'not available' not valid.*"): tsne.fit_transform(np.array([[0.0], [1.0]])) @pytest.mark.filterwarnings("ignore:The default learning rate in TSNE") @pytest.mark.filterwarnings("ignore:The default initialization in TSNE") def test_method_not_available(): # 'nethod' must be 'barnes_hut' or 'exact' tsne = TSNE(method="not available", perplexity=1) with pytest.raises(ValueError, match="'method' must be 'barnes_hut' or "): tsne.fit_transform(np.array([[0.0], [1.0]])) @pytest.mark.filterwarnings("ignore:The default learning rate in TSNE") @pytest.mark.filterwarnings("ignore:The default initialization in TSNE") def test_angle_out_of_range_checks(): # check the angle parameter range for angle in [-1, -1e-6, 1 + 1e-6, 2]: tsne = TSNE(angle=angle, perplexity=1) with pytest.raises(ValueError, match="'angle' must be between 0.0 - 1.0"): tsne.fit_transform(np.array([[0.0], [1.0]])) @pytest.mark.filterwarnings("ignore:The default learning rate in TSNE") def test_pca_initialization_not_compatible_with_precomputed_kernel(): # Precomputed distance matrices cannot use PCA initialization. tsne = TSNE(metric="precomputed", init="pca", perplexity=1) with pytest.raises( ValueError, match='The parameter init="pca" cannot be used with metric="precomputed".', ): tsne.fit_transform(np.array([[0.0], [1.0]])) def test_pca_initialization_not_compatible_with_sparse_input(): # Sparse input matrices cannot use PCA initialization. tsne = TSNE(init="pca", learning_rate=100.0, perplexity=1) with pytest.raises(TypeError, match="PCA initialization.*"): tsne.fit_transform(sp.csr_matrix([[0, 5], [5, 0]])) @pytest.mark.filterwarnings("ignore:The default learning rate in TSNE") @pytest.mark.filterwarnings("ignore:The default initialization in TSNE") def test_n_components_range(): # barnes_hut method should only be used with n_components <= 3 tsne = TSNE(n_components=4, method="barnes_hut", perplexity=1) with pytest.raises(ValueError, match="'n_components' should be .*"): tsne.fit_transform(np.array([[0.0], [1.0]])) def test_early_exaggeration_used(): # check that the ``early_exaggeration`` parameter has an effect random_state = check_random_state(0) n_components = 2 methods = ["exact", "barnes_hut"] X = random_state.randn(25, n_components).astype(np.float32) for method in methods: tsne = TSNE( n_components=n_components, perplexity=1, learning_rate=100.0, init="pca", random_state=0, method=method, early_exaggeration=1.0, n_iter=250, ) X_embedded1 = tsne.fit_transform(X) tsne = TSNE( n_components=n_components, perplexity=1, learning_rate=100.0, init="pca", random_state=0, method=method, early_exaggeration=10.0, n_iter=250, ) X_embedded2 = tsne.fit_transform(X) assert not np.allclose(X_embedded1, X_embedded2) def test_n_iter_used(): # check that the ``n_iter`` parameter has an effect random_state = check_random_state(0) n_components = 2 methods = ["exact", "barnes_hut"] X = random_state.randn(25, n_components).astype(np.float32) for method in methods: for n_iter in [251, 500]: tsne = TSNE( n_components=n_components, perplexity=1, learning_rate=0.5, init="random", random_state=0, method=method, early_exaggeration=1.0, n_iter=n_iter, ) tsne.fit_transform(X) assert tsne.n_iter_ == n_iter - 1 def test_answer_gradient_two_points(): # Test the tree with only a single set of children. # # These tests & answers have been checked against the reference # implementation by LvdM. pos_input = np.array([[1.0, 0.0], [0.0, 1.0]]) pos_output = np.array( [[-4.961291e-05, -1.072243e-04], [9.259460e-05, 2.702024e-04]] ) neighbors = np.array([[1], [0]]) grad_output = np.array( [[-2.37012478e-05, -6.29044398e-05], [2.37012478e-05, 6.29044398e-05]] ) _run_answer_test(pos_input, pos_output, neighbors, grad_output) def test_answer_gradient_four_points(): # Four points tests the tree with multiple levels of children. # # These tests & answers have been checked against the reference # implementation by LvdM. pos_input = np.array([[1.0, 0.0], [0.0, 1.0], [5.0, 2.0], [7.3, 2.2]]) pos_output = np.array( [ [6.080564e-05, -7.120823e-05], [-1.718945e-04, -4.000536e-05], [-2.271720e-04, 8.663310e-05], [-1.032577e-04, -3.582033e-05], ] ) neighbors = np.array([[1, 2, 3], [0, 2, 3], [1, 0, 3], [1, 2, 0]]) grad_output = np.array( [ [5.81128448e-05, -7.78033454e-06], [-5.81526851e-05, 7.80976444e-06], [4.24275173e-08, -3.69569698e-08], [-2.58720939e-09, 7.52706374e-09], ] ) _run_answer_test(pos_input, pos_output, neighbors, grad_output) def test_skip_num_points_gradient(): # Test the kwargs option skip_num_points. # # Skip num points should make it such that the Barnes_hut gradient # is not calculated for indices below skip_num_point. # Aside from skip_num_points=2 and the first two gradient rows # being set to zero, these data points are the same as in # test_answer_gradient_four_points() pos_input = np.array([[1.0, 0.0], [0.0, 1.0], [5.0, 2.0], [7.3, 2.2]]) pos_output = np.array( [ [6.080564e-05, -7.120823e-05], [-1.718945e-04, -4.000536e-05], [-2.271720e-04, 8.663310e-05], [-1.032577e-04, -3.582033e-05], ] ) neighbors = np.array([[1, 2, 3], [0, 2, 3], [1, 0, 3], [1, 2, 0]]) grad_output = np.array( [ [0.0, 0.0], [0.0, 0.0], [4.24275173e-08, -3.69569698e-08], [-2.58720939e-09, 7.52706374e-09], ] ) _run_answer_test(pos_input, pos_output, neighbors, grad_output, False, 0.1, 2) def _run_answer_test( pos_input, pos_output, neighbors, grad_output, verbose=False, perplexity=0.1, skip_num_points=0, ): distances = pairwise_distances(pos_input).astype(np.float32) args = distances, perplexity, verbose pos_output = pos_output.astype(np.float32) neighbors = neighbors.astype(np.int64, copy=False) pij_input = _joint_probabilities(*args) pij_input = squareform(pij_input).astype(np.float32) grad_bh = np.zeros(pos_output.shape, dtype=np.float32) from scipy.sparse import csr_matrix P = csr_matrix(pij_input) neighbors = P.indices.astype(np.int64) indptr = P.indptr.astype(np.int64) _barnes_hut_tsne.gradient( P.data, pos_output, neighbors, indptr, grad_bh, 0.5, 2, 1, skip_num_points=0 ) assert_array_almost_equal(grad_bh, grad_output, decimal=4) @pytest.mark.filterwarnings("ignore:The default learning rate in TSNE") @pytest.mark.filterwarnings("ignore:The default initialization in TSNE") def test_verbose(): # Verbose options write to stdout. random_state = check_random_state(0) tsne = TSNE(verbose=2, perplexity=4) X = random_state.randn(5, 2) old_stdout = sys.stdout sys.stdout = StringIO() try: tsne.fit_transform(X) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert "[t-SNE]" in out assert "nearest neighbors..." in out assert "Computed conditional probabilities" in out assert "Mean sigma" in out assert "early exaggeration" in out @pytest.mark.filterwarnings("ignore:The default learning rate in TSNE") @pytest.mark.filterwarnings("ignore:The default initialization in TSNE") def test_chebyshev_metric(): # t-SNE should allow metrics that cannot be squared (issue #3526). random_state = check_random_state(0) tsne = TSNE(metric="chebyshev", perplexity=4) X = random_state.randn(5, 2) tsne.fit_transform(X) @pytest.mark.filterwarnings("ignore:The default learning rate in TSNE") @pytest.mark.filterwarnings("ignore:The default initialization in TSNE") def test_reduction_to_one_component(): # t-SNE should allow reduction to one component (issue #4154). random_state = check_random_state(0) tsne = TSNE(n_components=1, perplexity=4) X = random_state.randn(5, 2) X_embedded = tsne.fit(X).embedding_ assert np.all(np.isfinite(X_embedded)) @pytest.mark.parametrize("method", ["barnes_hut", "exact"]) @pytest.mark.parametrize("dt", [np.float32, np.float64]) def test_64bit(method, dt): # Ensure 64bit arrays are handled correctly. random_state = check_random_state(0) X = random_state.randn(10, 2).astype(dt, copy=False) tsne = TSNE( n_components=2, perplexity=2, learning_rate=100.0, random_state=0, method=method, verbose=0, n_iter=300, init="random", ) X_embedded = tsne.fit_transform(X) effective_type = X_embedded.dtype # tsne cython code is only single precision, so the output will # always be single precision, irrespectively of the input dtype assert effective_type == np.float32 @pytest.mark.parametrize("method", ["barnes_hut", "exact"]) def test_kl_divergence_not_nan(method): # Ensure kl_divergence_ is computed at last iteration # even though n_iter % n_iter_check != 0, i.e. 1003 % 50 != 0 random_state = check_random_state(0) X = random_state.randn(50, 2) tsne = TSNE( n_components=2, perplexity=2, learning_rate=100.0, random_state=0, method=method, verbose=0, n_iter=503, init="random", ) tsne.fit_transform(X) assert not np.isnan(tsne.kl_divergence_) def test_barnes_hut_angle(): # When Barnes-Hut's angle=0 this corresponds to the exact method. angle = 0.0 perplexity = 10 n_samples = 100 for n_components in [2, 3]: n_features = 5 degrees_of_freedom = float(n_components - 1.0) random_state = check_random_state(0) data = random_state.randn(n_samples, n_features) distances = pairwise_distances(data) params = random_state.randn(n_samples, n_components) P = _joint_probabilities(distances, perplexity, verbose=0) kl_exact, grad_exact = _kl_divergence( params, P, degrees_of_freedom, n_samples, n_components ) n_neighbors = n_samples - 1 distances_csr = ( NearestNeighbors() .fit(data) .kneighbors_graph(n_neighbors=n_neighbors, mode="distance") ) P_bh = _joint_probabilities_nn(distances_csr, perplexity, verbose=0) kl_bh, grad_bh = _kl_divergence_bh( params, P_bh, degrees_of_freedom, n_samples, n_components, angle=angle, skip_num_points=0, verbose=0, ) P = squareform(P) P_bh = P_bh.toarray() assert_array_almost_equal(P_bh, P, decimal=5) assert_almost_equal(kl_exact, kl_bh, decimal=3) @skip_if_32bit def test_n_iter_without_progress(): # Use a dummy negative n_iter_without_progress and check output on stdout random_state = check_random_state(0) X = random_state.randn(100, 10) for method in ["barnes_hut", "exact"]: tsne = TSNE( n_iter_without_progress=-1, verbose=2, learning_rate=1e8, random_state=0, method=method, n_iter=351, init="random", ) tsne._N_ITER_CHECK = 1 tsne._EXPLORATION_N_ITER = 0 old_stdout = sys.stdout sys.stdout = StringIO() try: tsne.fit_transform(X) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout # The output needs to contain the value of n_iter_without_progress assert "did not make any progress during the last -1 episodes. Finished." in out @pytest.mark.filterwarnings("ignore:The default learning rate in TSNE") @pytest.mark.filterwarnings("ignore:The default initialization in TSNE") def test_min_grad_norm(): # Make sure that the parameter min_grad_norm is used correctly random_state = check_random_state(0) X = random_state.randn(100, 2) min_grad_norm = 0.002 tsne = TSNE(min_grad_norm=min_grad_norm, verbose=2, random_state=0, method="exact") old_stdout = sys.stdout sys.stdout = StringIO() try: tsne.fit_transform(X) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout lines_out = out.split("\n") # extract the gradient norm from the verbose output gradient_norm_values = [] for line in lines_out: # When the computation is Finished just an old gradient norm value # is repeated that we do not need to store if "Finished" in line: break start_grad_norm = line.find("gradient norm") if start_grad_norm >= 0: line = line[start_grad_norm:] line = line.replace("gradient norm = ", "").split(" ")[0] gradient_norm_values.append(float(line)) # Compute how often the gradient norm is smaller than min_grad_norm gradient_norm_values = np.array(gradient_norm_values) n_smaller_gradient_norms = len( gradient_norm_values[gradient_norm_values <= min_grad_norm] ) # The gradient norm can be smaller than min_grad_norm at most once, # because in the moment it becomes smaller the optimization stops assert n_smaller_gradient_norms <= 1 @pytest.mark.filterwarnings("ignore:The default learning rate in TSNE") @pytest.mark.filterwarnings("ignore:The default initialization in TSNE") def test_accessible_kl_divergence(): # Ensures that the accessible kl_divergence matches the computed value random_state = check_random_state(0) X = random_state.randn(50, 2) tsne = TSNE( n_iter_without_progress=2, verbose=2, random_state=0, method="exact", n_iter=500 ) old_stdout = sys.stdout sys.stdout = StringIO() try: tsne.fit_transform(X) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout # The output needs to contain the accessible kl_divergence as the error at # the last iteration for line in out.split("\n")[::-1]: if "Iteration" in line: _, _, error = line.partition("error = ") if error: error, _, _ = error.partition(",") break assert_almost_equal(tsne.kl_divergence_, float(error), decimal=5) @pytest.mark.parametrize("method", ["barnes_hut", "exact"]) def test_uniform_grid(method): """Make sure that TSNE can approximately recover a uniform 2D grid Due to ties in distances between point in X_2d_grid, this test is platform dependent for ``method='barnes_hut'`` due to numerical imprecision. Also, t-SNE is not assured to converge to the right solution because bad initialization can lead to convergence to bad local minimum (the optimization problem is non-convex). To avoid breaking the test too often, we re-run t-SNE from the final point when the convergence is not good enough. """ seeds = range(3) n_iter = 500 for seed in seeds: tsne = TSNE( n_components=2, init="random", random_state=seed, perplexity=50, n_iter=n_iter, method=method, learning_rate="auto", ) Y = tsne.fit_transform(X_2d_grid) try_name = "{}_{}".format(method, seed) try: assert_uniform_grid(Y, try_name) except AssertionError: # If the test fails a first time, re-run with init=Y to see if # this was caused by a bad initialization. Note that this will # also run an early_exaggeration step. try_name += ":rerun" tsne.init = Y Y = tsne.fit_transform(X_2d_grid) assert_uniform_grid(Y, try_name) def assert_uniform_grid(Y, try_name=None): # Ensure that the resulting embedding leads to approximately # uniformly spaced points: the distance to the closest neighbors # should be non-zero and approximately constant. nn = NearestNeighbors(n_neighbors=1).fit(Y) dist_to_nn = nn.kneighbors(return_distance=True)[0].ravel() assert dist_to_nn.min() > 0.1 smallest_to_mean = dist_to_nn.min() / np.mean(dist_to_nn) largest_to_mean = dist_to_nn.max() / np.mean(dist_to_nn) assert smallest_to_mean > 0.5, try_name assert largest_to_mean < 2, try_name def test_bh_match_exact(): # check that the ``barnes_hut`` method match the exact one when # ``angle = 0`` and ``perplexity > n_samples / 3`` random_state = check_random_state(0) n_features = 10 X = random_state.randn(30, n_features).astype(np.float32) X_embeddeds = {} n_iter = {} for method in ["exact", "barnes_hut"]: tsne = TSNE( n_components=2, method=method, learning_rate=1.0, init="random", random_state=0, n_iter=251, perplexity=29.5, angle=0, ) # Kill the early_exaggeration tsne._EXPLORATION_N_ITER = 0 X_embeddeds[method] = tsne.fit_transform(X) n_iter[method] = tsne.n_iter_ assert n_iter["exact"] == n_iter["barnes_hut"] assert_allclose(X_embeddeds["exact"], X_embeddeds["barnes_hut"], rtol=1e-4) def test_gradient_bh_multithread_match_sequential(): # check that the bh gradient with different num_threads gives the same # results n_features = 10 n_samples = 30 n_components = 2 degrees_of_freedom = 1 angle = 3 perplexity = 5 random_state = check_random_state(0) data = random_state.randn(n_samples, n_features).astype(np.float32) params = random_state.randn(n_samples, n_components) n_neighbors = n_samples - 1 distances_csr = ( NearestNeighbors() .fit(data) .kneighbors_graph(n_neighbors=n_neighbors, mode="distance") ) P_bh = _joint_probabilities_nn(distances_csr, perplexity, verbose=0) kl_sequential, grad_sequential = _kl_divergence_bh( params, P_bh, degrees_of_freedom, n_samples, n_components, angle=angle, skip_num_points=0, verbose=0, num_threads=1, ) for num_threads in [2, 4]: kl_multithread, grad_multithread = _kl_divergence_bh( params, P_bh, degrees_of_freedom, n_samples, n_components, angle=angle, skip_num_points=0, verbose=0, num_threads=num_threads, ) assert_allclose(kl_multithread, kl_sequential, rtol=1e-6) assert_allclose(grad_multithread, grad_multithread) def test_tsne_with_different_distance_metrics(): """Make sure that TSNE works for different distance metrics""" random_state = check_random_state(0) n_components_original = 3 n_components_embedding = 2 X = random_state.randn(50, n_components_original).astype(np.float32) metrics = ["manhattan", "cosine"] dist_funcs = [manhattan_distances, cosine_distances] for metric, dist_func in zip(metrics, dist_funcs): X_transformed_tsne = TSNE( metric=metric, n_components=n_components_embedding, random_state=0, n_iter=300, init="random", learning_rate="auto", ).fit_transform(X) X_transformed_tsne_precomputed = TSNE( metric="precomputed", n_components=n_components_embedding, random_state=0, n_iter=300, init="random", learning_rate="auto", ).fit_transform(dist_func(X)) assert_array_equal(X_transformed_tsne, X_transformed_tsne_precomputed) # TODO: Remove in 1.2 @pytest.mark.parametrize("init", [None, "random", "pca"]) def test_tsne_init_futurewarning(init): """Make sure that a FutureWarning is only raised when the init is not specified or is 'pca'.""" random_state = check_random_state(0) X = random_state.randn(5, 2) kwargs = dict(learning_rate=200.0, init=init, perplexity=4) tsne = TSNE(**{k: v for k, v in kwargs.items() if v is not None}) if init is None: with pytest.warns(FutureWarning, match="The default initialization.*"): tsne.fit_transform(X) elif init == "pca": with pytest.warns(FutureWarning, match="The PCA initialization.*"): tsne.fit_transform(X) else: with warnings.catch_warnings(): warnings.simplefilter("error", FutureWarning) tsne.fit_transform(X) # TODO: Remove in 1.2 @pytest.mark.parametrize("learning_rate", [None, 200.0]) def test_tsne_learning_rate_futurewarning(learning_rate): """Make sure that a FutureWarning is only raised when the learning rate is not specified""" random_state = check_random_state(0) X = random_state.randn(5, 2) kwargs = dict(learning_rate=learning_rate, init="random", perplexity=4) tsne = TSNE(**{k: v for k, v in kwargs.items() if v is not None}) if learning_rate is None: with pytest.warns(FutureWarning, match="The default learning rate.*"): tsne.fit_transform(X) else: with warnings.catch_warnings(): warnings.simplefilter("error", FutureWarning) tsne.fit_transform(X) @pytest.mark.filterwarnings("ignore:The default initialization in TSNE") def test_tsne_negative_learning_rate(): """Make sure that negative learning rate results in a ValueError""" random_state = check_random_state(0) X = random_state.randn(5, 2) with pytest.raises(ValueError, match="'learning_rate' must be.*"): TSNE(learning_rate=-50.0, perplexity=4).fit_transform(X) @pytest.mark.parametrize("method", ["exact", "barnes_hut"]) def test_tsne_n_jobs(method): """Make sure that the n_jobs parameter doesn't impact the output""" random_state = check_random_state(0) n_features = 10 X = random_state.randn(30, n_features) X_tr_ref = TSNE( n_components=2, method=method, perplexity=25.0, angle=0, n_jobs=1, random_state=0, init="random", learning_rate="auto", ).fit_transform(X) X_tr = TSNE( n_components=2, method=method, perplexity=25.0, angle=0, n_jobs=2, random_state=0, init="random", learning_rate="auto", ).fit_transform(X) assert_allclose(X_tr_ref, X_tr) # TODO: Remove filterwarnings in 1.2 @pytest.mark.filterwarnings("ignore:.*TSNE will change.*:FutureWarning") def test_tsne_with_mahalanobis_distance(): """Make sure that method_parameters works with mahalanobis distance.""" random_state = check_random_state(0) n_samples, n_features = 300, 10 X = random_state.randn(n_samples, n_features) default_params = { "perplexity": 40, "n_iter": 250, "learning_rate": "auto", "n_components": 3, "random_state": 0, } tsne = TSNE(metric="mahalanobis", **default_params) msg = "Must provide either V or VI for Mahalanobis distance" with pytest.raises(ValueError, match=msg): tsne.fit_transform(X) precomputed_X = squareform(pdist(X, metric="mahalanobis"), checks=True) X_trans_expected = TSNE(metric="precomputed", **default_params).fit_transform( precomputed_X ) X_trans = TSNE( metric="mahalanobis", metric_params={"V": np.cov(X.T)}, **default_params ).fit_transform(X) assert_allclose(X_trans, X_trans_expected) @pytest.mark.filterwarnings("ignore:The PCA initialization in TSNE will change") # FIXME: remove in 1.3 after deprecation of `square_distances` def test_tsne_deprecation_square_distances(): """Check that we raise a warning regarding the removal of `square_distances`. Also check the parameters do not have any effect. """ random_state = check_random_state(0) X = random_state.randn(30, 10) tsne = TSNE( n_components=2, init="pca", learning_rate="auto", perplexity=25.0, angle=0, n_jobs=1, random_state=0, square_distances=True, ) warn_msg = ( "The parameter `square_distances` has not effect and will be removed in" " version 1.3" ) with pytest.warns(FutureWarning, match=warn_msg): X_trans_1 = tsne.fit_transform(X) tsne = TSNE( n_components=2, init="pca", learning_rate="auto", perplexity=25.0, angle=0, n_jobs=1, random_state=0, ) X_trans_2 = tsne.fit_transform(X) assert_allclose(X_trans_1, X_trans_2) @pytest.mark.parametrize("perplexity", (20, 30)) def test_tsne_perplexity_validation(perplexity): """Make sure that perplexity > n_samples results in a ValueError""" random_state = check_random_state(0) X = random_state.randn(20, 2) est = TSNE( learning_rate="auto", init="pca", perplexity=perplexity, random_state=random_state, ) msg = "perplexity must be less than n_samples" with pytest.raises(ValueError, match=msg): est.fit_transform(X)
33.921133
88
0.655042
5a9569fe1ec40dea79d5328bb11c86cc09d539d2
2,909
py
Python
tasks/hard-300/shooting-kers/service/generate_html.py
C4T-BuT-S4D/nordctf-2019-finals
b63d00efe9912de3e165badfa29be1483d731ecf
[ "WTFPL" ]
5
2019-10-12T11:04:05.000Z
2021-01-21T16:56:29.000Z
tasks/hard-300/shooting-kers/service/generate_html.py
C4T-BuT-S4D/nordctf-2019-finals
b63d00efe9912de3e165badfa29be1483d731ecf
[ "WTFPL" ]
null
null
null
tasks/hard-300/shooting-kers/service/generate_html.py
C4T-BuT-S4D/nordctf-2019-finals
b63d00efe9912de3e165badfa29be1483d731ecf
[ "WTFPL" ]
1
2021-01-21T16:56:33.000Z
2021-01-21T16:56:33.000Z
#!/usr/bin/env python3 import re from html import escape def get_offsets(line): parts = re.findall(r'\S+\s+', line) offsets = [0] for part in parts: offsets.append(offsets[-1] + len(part)) return offsets def read_table(): length_header = [input() for i in range(4)][2] length = int(re.search('\d+', length_header).group(0)) header = input().replace('line #*', 'line #* ') offsets = get_offsets(header) header = header.split() input() table = [[] for i in range(len(offsets))] for i, title in enumerate(header): table[i].append(title) for i in range(length): line = input() for k, (x, y) in enumerate(zip(offsets, offsets[1:] + [len(line)*2])): table[k].append(line[x:y].strip()) return table def build_code(table): code = [] styles = ''' <style type="text/css"> body { background-color: #fff; color: #222; font-family: sans-serif; font-size: 12pt; } table { margin:0 auto; text-align: left; border-collapse: collapse; border: 0; width: 934px; box-shadow: 1px 2px 3px #ccc; } td, th { border: 1px solid #666; vertical-align: baseline; padding: 4px 5px; } thead tr { background-color: #99c; font-weight: bold; font-size: 14pt; } tbody tr { background-color: #ddd; max-width: 300px; overflow-x: auto; word-wrap: break-word; } </style>''' code.extend([ '<!DOCTYPE html>', '<html>', ' <head>', ' <title>Shooting Kers</title>', styles, ' </head>', ' <body>', ' <table>', ' <thead>', ' <tr>' ]) for i in range(len(table)): code.append(' <td>%s</td>' % table[i][0].upper()) code.extend([ ' </tr>', ' </thead>', ' <tbody>', ]) table_iter = zip(*table) next(table_iter) for line in table_iter: code.append(' <tr>') for element in line: code.append(' <td><pre>%s</pre></td>' % escape(element)) code.append(' </tr>') code.extend([ ' </tbody>', ' </table>', ' </body>', '<html>' ]) return '\n'.join(code) def main(): table = read_table() html = build_code(table) print(html) if __name__ == '__main__': main()
26.445455
87
0.422482
21baf75d7c37f497ff7f11dc41cd95ccb0e3f835
5,570
py
Python
networkx/generators/nonisomorphic_trees.py
jdrudolph/networkx
d49733b61fb7dedfbbbdd9c04464adf6beb5db07
[ "BSD-3-Clause" ]
null
null
null
networkx/generators/nonisomorphic_trees.py
jdrudolph/networkx
d49733b61fb7dedfbbbdd9c04464adf6beb5db07
[ "BSD-3-Clause" ]
null
null
null
networkx/generators/nonisomorphic_trees.py
jdrudolph/networkx
d49733b61fb7dedfbbbdd9c04464adf6beb5db07
[ "BSD-3-Clause" ]
null
null
null
""" Implementation of the Wright, Richmond, Odlyzko and McKay (WROM) algorithm for the enumeration of all non-isomorphic free trees of a given order. Rooted trees are represented by level sequences, i.e., lists in which the i-th element specifies the distance of vertex i to the root. """ # Copyright (C) 2013 by # Aric Hagberg <hagberg@lanl.gov> # Dan Schult <dschult@colgate.edu> # Pieter Swart <swart@lanl.gov> # All rights reserved. # BSD license. __author__ = "\n".join(["Aric Hagberg (hagberg@lanl.gov)", "Mridul Seth (seth.mridul@gmail.com)"]) __all__ = ['nonisomorphic_trees', 'number_of_nonisomorphic_trees'] import networkx as nx def nonisomorphic_trees(order, create="graph"): """Returns a list of nonisomporphic trees Parameters ---------- order : int order of the desired tree(s) create : graph or matrix (default="Graph) If graph is selected a list of trees will be returned, if matrix is selected a list of adjancency matrix will be returned Returns ------- G : List of NetworkX Graphs M : List of Adjacency matrices Reference --------- """ if order < 2: raise ValueError # start at the path graph rooted at its center layout = list(range(order // 2 + 1)) + list(range(1, (order + 1) // 2)) while layout is not None: layout = _next_tree(layout) if layout is not None: if create == "graph": yield _layout_to_graph(layout) elif create == "matrix": yield _layout_to_matrix(layout) layout = _next_rooted_tree(layout) def number_of_nonisomorphic_trees(order): """Returns the number of nonisomorphic trees Parameters ---------- order : int order of the desired tree(s) Returns ------- length : Number of nonisomorphic graphs for the given order Reference --------- """ length = sum(1 for _ in nonisomorphic_trees(order)) return length def _next_rooted_tree(predecessor, p=None): """One iteration of the Beyer-Hedetniemi algorithm.""" if p is None: p = len(predecessor) - 1 while predecessor[p] == 1: p -= 1 if p == 0: return None q = p - 1 while predecessor[q] != predecessor[p] - 1: q -= 1 result = list(predecessor) for i in range(p, len(result)): result[i] = result[i - p + q] return result def _next_tree(candidate): """One iteration of the Wright, Richmond, Odlyzko and McKay algorithm.""" # valid representation of a free tree if: # there are at least two vertices at layer 1 # (this is always the case because we start at the path graph) left, rest = _split_tree(candidate) # and the left subtree of the root # is less high than the tree with the left subtree removed left_height = max(left) rest_height = max(rest) valid = rest_height >= left_height if valid and rest_height == left_height: # and, if left and rest are of the same height, # if left does not encompass more vertices if len(left) > len(rest): valid = False # and, if they have the same number or vertices, # if left does not come after rest lexicographically elif len(left) == len(rest) and left > rest: valid = False if valid: return candidate else: # jump to the next valid free tree p = len(left) new_candidate = _next_rooted_tree(candidate, p) if candidate[p] > 2: new_left, new_rest = _split_tree(new_candidate) new_left_height = max(new_left) suffix = range(1, new_left_height + 2) new_candidate[-len(suffix):] = suffix return new_candidate def _split_tree(layout): """Return a tuple of two layouts, one containing the left subtree of the root vertex, and one containing the original tree with the left subtree removed.""" one_found = False m = None for i in range(len(layout)): if layout[i] == 1: if one_found: m = i break else: one_found = True if m is None: m = len(layout) left = [layout[i] - 1 for i in range(1, m)] rest = [0] + [layout[i] for i in range(m, len(layout))] return (left, rest) def _layout_to_matrix(layout): """Create the adjacency matrix for the tree specified by the given layout (level sequence).""" result = [[0] * len(layout) for i in range(len(layout))] stack = [] for i in range(len(layout)): i_level = layout[i] if stack: j = stack[-1] j_level = layout[j] while j_level >= i_level: stack.pop() j = stack[-1] j_level = layout[j] result[i][j] = result[j][i] = 1 stack.append(i) return result def _layout_to_graph(layout): """Create a NetworkX Graph for the tree specified by the given layout(level sequence)""" result = [[0] * len(layout) for i in range(len(layout))] G = nx.Graph() stack = [] for i in range(len(layout)): i_level = layout[i] if stack: j = stack[-1] j_level = layout[j] while j_level >= i_level: stack.pop() j = stack[-1] j_level = layout[j] G.add_edge(i, j) stack.append(i) return G
27.574257
75
0.585996
153486489979c55ad088f513f5b7d27d4f0ab901
501
py
Python
Sound Analysis WeWalk/Comparer.py
3arii/UpSpectrum
bccab66b6f5d36038a34c1a893a65a7eafae15c3
[ "MIT" ]
null
null
null
Sound Analysis WeWalk/Comparer.py
3arii/UpSpectrum
bccab66b6f5d36038a34c1a893a65a7eafae15c3
[ "MIT" ]
null
null
null
Sound Analysis WeWalk/Comparer.py
3arii/UpSpectrum
bccab66b6f5d36038a34c1a893a65a7eafae15c3
[ "MIT" ]
null
null
null
from PitchDetector import pitch_detector from PyaudioRecorder import record_audio src = "C:/Users/deniz/OneDrive/Documents/Deniz the Laps/Wewalk/Sound Analysis WeWalk/output.wav" src2 = "C:/Users/deniz/OneDrive/Documents/Deniz the Laps/Wewalk/Sound Analysis WeWalk/output2.wav" record_audio(src, 4) record_audio(src2, 4) pitch = pitch_detector(src) pitch2 = pitch_detector(src2) if pitch > pitch2: print("First sound is louder.") else: print("Second sound is louder.")
27.833333
99
0.744511
cd1d757725c82f8b31048bec3a1c4f5efd7a586e
1,663
py
Python
tasksplataform/googleapi.py
exodojaffar/EADGetTasks
809e2577b6268c4e4f569810c46daf6db9250ff3
[ "MIT" ]
4
2021-02-08T00:29:19.000Z
2021-05-18T03:48:46.000Z
tasksplataform/googleapi.py
exodojaffar/EADGetTasks
809e2577b6268c4e4f569810c46daf6db9250ff3
[ "MIT" ]
1
2020-10-14T15:17:37.000Z
2020-10-14T15:17:37.000Z
tasksplataform/googleapi.py
exodojaffar/EADGetTasks
809e2577b6268c4e4f569810c46daf6db9250ff3
[ "MIT" ]
null
null
null
from google_auth_oauthlib.flow import InstalledAppFlow from googleapiclient.discovery import build from google.auth.transport.requests import Request import pickle import os.path class GoogleApi: def __init__(self, scopes, service, version, credentials_file="credentials.json"): self.google_service = None self.__scopes = [scopes] self.__service = service self.__version = version self.__credentials_file = credentials_file self.__auth() self.__create__google_service() pass def __auth(self): if os.path.exists('token.pickle'): self.__load_token_file() self.__validate_auth() else: self.__get_auth() # Save the credentials for the next run self.__save_token_file() pass def __set_creds(self, creds): self.__creds = creds pass def __save_token_file(self): with open('token.pickle', 'wb') as token: pickle.dump(self.__creds, token) pass def __load_token_file(self): with open('token.pickle', 'rb') as token: self.__set_creds(pickle.load(token)) pass def __validate_auth(self): if not self.__creds or not self.__creds.valid: if self.__creds and self.__creds.expired and self.__creds.refresh_token: self.__creds.refresh(Request()) pass def __get_auth(self): flow = InstalledAppFlow.from_client_secrets_file(self.__credentials_file, self.__scopes) self.__set_creds(flow.run_local_server(port=0)) def __create__google_service(self): self.google_service = build(self.__service, self.__version, credentials=self.__creds) pass def test_with_tasks(): api = GoogleApi("https://www.googleapis.com/auth/tasks", 'tasks', 'v1') pass if __name__ == '__main__': test_with_tasks()
24.455882
90
0.754059
c2fd1375b182e01a0074b92e04875d1c2a672c09
12,314
py
Python
arelle/plugin/validate/CIPC/__init__.py
hamscher/Arelle
64c1beddcc7163e571011faf07a03d8ffe18bb78
[ "Apache-2.0" ]
292
2015-01-27T03:31:51.000Z
2022-03-26T07:00:05.000Z
arelle/plugin/validate/CIPC/__init__.py
hamscher/Arelle
64c1beddcc7163e571011faf07a03d8ffe18bb78
[ "Apache-2.0" ]
94
2015-04-18T23:03:00.000Z
2022-03-28T17:24:55.000Z
arelle/plugin/validate/CIPC/__init__.py
hamscher/Arelle
64c1beddcc7163e571011faf07a03d8ffe18bb78
[ "Apache-2.0" ]
200
2015-01-13T03:55:47.000Z
2022-03-29T12:38:56.000Z
''' Created on Dec 21, 2017 Filer Guidelines: http://www.cipc.co.za/files/8615/1333/0514/25082017_Guidelines_for_Filing__AFSs_in_XBRL_by_Client_Companies_Technical_Aspects_v1-7_HVMZ.pdf Taxonomy Architecture: http://www.cipc.co.za/files/1715/1325/5802/CIPC_XBRL_Taxonomy_Framework_Architecture_-_2017-12-15.pdf Taxonomy package expected to be installed: http://xbrl.cipc.co.za/cipc_2017-12-15.zip @author: Mark V Systems Limited (c) Copyright 2017 Mark V Systems Limited, All rights reserved. ''' import os, re from lxml.etree import _ElementTree, _Comment, _ProcessingInstruction from arelle import ModelDocument, XbrlConst from arelle.ModelDtsObject import ModelResource from arelle.ModelInstanceObject import ModelFact, ModelInlineFact, ModelInlineFootnote from arelle.ModelObject import ModelObject from arelle.ModelValue import qname from arelle.XbrlConst import ixbrlAll, xhtml from .Const import cpicModules # , mandatoryElements cipcBlockedInlineHtmlElements = { 'object', 'script'} namePattern = re.compile(r"^(.*) - ((18|19|20)\d{2}-[0-9]+-(06|07|08|09|10|12|20|21|22|23|24|25|26|30|31)) - (20[1-9]\d)$") reportingModulePattern = re.compile(r"http://xbrl.cipc.co.za/taxonomy/.*/\w*(ca_fas|full_ifrs|ifrs_for_smes)\w*[_-]20[12][0-9]-[0-9]{2}-[0-9]{2}.xsd") def dislosureSystemTypes(disclosureSystem, *args, **kwargs): # return ((disclosure system name, variable name), ...) return (("CIPC", "CIPCplugin"),) def disclosureSystemConfigURL(disclosureSystem, *args, **kwargs): return os.path.join(os.path.dirname(__file__), "config.xml") def validateXbrlStart(val, parameters=None, *args, **kwargs): val.validateCIPCplugin = val.validateDisclosureSystem and getattr(val.disclosureSystem, "CIPCplugin", False) if not (val.validateCIPCplugin): return def validateXbrlFinally(val, *args, **kwargs): if not (val.validateCIPCplugin): return _xhtmlNs = "{{{}}}".format(xhtml) _xhtmlNsLen = len(_xhtmlNs) modelXbrl = val.modelXbrl modelDocument = modelXbrl.modelDocument if not modelDocument: return # never loaded properly _statusMsg = _("validating {0} filing rules").format(val.disclosureSystem.name) modelXbrl.profileActivity() modelXbrl.modelManager.showStatus(_statusMsg) if modelDocument.type == ModelDocument.Type.INSTANCE: modelXbrl.error("cipc:instanceMustBeInlineXBRL", _("CIPC expects inline XBRL instances."), modelObject=modelXbrl) if modelDocument.type in (ModelDocument.Type.INLINEXBRL, ModelDocument.Type.INSTANCE): footnotesRelationshipSet = modelXbrl.relationshipSet("XBRL-footnotes") orphanedFootnotes = set() nonEnglishFootnotes = set() foonoteRoleErrors = set() transformRegistryErrors = set() def checkFootnote(elt, text): if text: # non-empty footnote must be linked to a fact if not empty if not any(isinstance(rel.fromModelObject, ModelFact) for rel in footnotesRelationshipSet.toModelObject(elt)): orphanedFootnotes.add(elt) if not elt.xmlLang.startswith("en"): nonEnglishFootnotes.add(elt) if elt.role != XbrlConst.footnote or not all( rel.arcrole == XbrlConst.factFootnote and rel.linkrole == XbrlConst.defaultLinkRole for rel in footnotesRelationshipSet.toModelObject(elt)): footnoteRoleErrors.add(elt) if modelDocument.type == ModelDocument.Type.INLINEXBRL: _baseName, _baseExt = os.path.splitext(modelDocument.basename) if _baseExt not in (".xhtml",) or not namePattern.match(_baseName): modelXbrl.warning("cipc:fileNameMalformed", _("FileName should have the pattern \"Co. name - regYr-regNbr-coCode - finYr.xhtml\": %(fileName)s"), modelObject=modelXbrl, fileName=modelDocument.basename) rootElt = modelDocument.xmlRootElement if rootElt.tag not in ("{http://www.w3.org/1999/xhtml}html", "{http://www.w3.org/1999/xhtml}xhtml"): modelXbrl.error("cipc:htmlRootElement", _("InlineXBRL root element <%(element)s> MUST be html and have the xhtml namespace."), modelObject=rootElt, element=rootElt.tag) for elt in rootElt.iter(): eltTag = elt.tag if isinstance(elt, ModelObject) and elt.namespaceURI == xhtml: eltTag = elt.localName elif isinstance(elt, (_ElementTree, _Comment, _ProcessingInstruction)): continue # comment or other non-parsed element else: eltTag = elt.tag if eltTag.startswith(_xhtmlNs): eltTag = eltTag[_xhtmlNsLen:] if eltTag in cipcBlockedInlineHtmlElements: modelXbrl.error("cipc:disallowedHtmlElement", _("Html element is disallowed: %(element)s"), modelObject=elt, element=eltTag) if eltTag == "title" and not namePattern.match(elt.text): modelXbrl.error("cipc:titleElementMalformed", _("Title element required to have the pattern \"Co. name - regYr-regNbr-coCode - finYr\": %(title)s"), modelObject=elt, title=elt.text) for attrTag, attrValue in elt.items(): if ((attrTag == "href" and eltTag == "a") or (attrTag == "src" and eltTag == "img")): if "javascript:" in attrValue: modelXbrl.error("cipc:disallowedScript", _("Element %(element)s has javascript in '%(attribute)s'"), modelObject=elt, attribute=attrTag, element=eltTag) if isinstance(elt, ModelInlineFootnote): checkFootnote(elt, elt.value) elif isinstance(elt, ModelResource) and elt.qname == XbrlConst.qnLinkFootnote: checkFootnote(elt, elt.value) elif isinstance(elt, ModelInlineFact): if elt.format is not None and elt.format.namespaceURI != 'http://www.xbrl.org/inlineXBRL/transformation/2015-02-26': transformRegistryErrors.add(elt) elif modelDocument.type == ModelDocument.Type.INSTANCE: for elt in modelDocument.xmlRootElement.iter(): if elt.qname == XbrlConst.qnLinkFootnote: # for now assume no private elements extend link:footnote checkFootnote(elt, elt.stringValue) # identify type of filer (FAS, Full IFES, IFRS for SMES) reportingModules = [reportingModulePattern.match(referencedDoc.uri).group(1) for referencedDoc in modelDocument.referencesDocument.keys() if referencedDoc.type == ModelDocument.Type.SCHEMA if reportingModulePattern.match(referencedDoc.uri)] if len(reportingModules) != 1 or reportingModules[0] not in cpicModules: modelXbrl.error("cipc:reportingModuleAmbiguous", _("Reporting module must specify namespace for FAS, IFRS-FULL or IFRS-SMES"), modelObject=elt) reportingModule = None else: reportingModule = cpicModules[reportingModules[0]] # build namespace maps nsMap = {} for ns in modelXbrl.namespaceDocs.keys(): if ns.endswith("/ca"): nsMap["cipc-ca"] = ns elif ns.endswith("/ca/enum"): nsMap["cipc-ca-enum"] = ns elif ns.endswith("/ifrs-full"): nsMap["ifrs-full"] = ns elif ns.endswith("/ifrs-smes"): nsMap["ifrs-smes"] = ns ''' checked by CIPC formula # build mandatory and footnoteIfNil tables by ns qname in use mandatory = set() for prefixedName in mandatoryElements[reportingModule]["mandatory"]: prefix, _sep, name = prefixedName.rpartition(":") mandatory.add(qname(nsMap.get(prefix),name)) footnoteIfNil = set() for prefixedName in mandatoryElements[reportingModule]["footnoteIfNil"]: prefix, _sep, name = prefixedName.rpartition(":") footnoteIfNil.add(qname(nsMap.get(prefix),name)) reportedMandatory = set() reportedFootnoteIfNil = set() factsMandatoryNilWithoutFootnote = set() footnotesRelationshipSet = modelXbrl.relationshipSet(XbrlConst.factFootnote, XbrlConst.defaultLinkRole) for qn, facts in modelXbrl.factsByQname.items(): if qn in mandatory: reportedMandatory.add(qn) elif qn in footnoteIfNil: for fact in facts: reportedFootnoteIfNil.add(qn) if fact.isNil and not any(footnote.role == XbrlConst.footnote and footnote.xmlLang.startswith("en") and footnote.stringValue.strip() for footnoteRel in footnotesRelationshipSet.fromModelObject(fact) for footnote in (footnoteRel.toModelObject,)): factsMandatoryNilWithoutFootnote.add(fact) missingElements = (mandatory - reportedMandatory) # | (reportedFootnoteIfNil - reportedFootnoteIfNil) if missingElements: modelXbrl.error("cpic:missingRequiredElements", _("Required elements missing from document: %(elements)s."), modelObject=modelXbrl, elements=", ".join(sorted(str(qn) for qn in missingElements))) if factsMandatoryNilWithoutFootnote: modelXbrl.error("cpic:missingExplanatoryFootnote", _("Required nil facts missing explanatory footnote: %(elements)s."), modelObject=factsMandatoryNilWithoutFootnote, elements=", ".join(sorted(str(fact.qname) for fact in factsMandatoryNilWithoutFootnote))) ''' if transformRegistryErrors: modelXbrl.warning("cpic:transformRegistry", _("Transformation Registry 3 should be for facts: %(elements)s."), modelObject=transformRegistryErrors, elements=", ".join(sorted(str(fact.qname) for fact in transformRegistryErrors))) if orphanedFootnotes: modelXbrl.error("cipc:orphanedFootnote", _("Non-empty footnotes must be connected to fact(s)."), modelObject=orphanedFootnotes) if nonEnglishFootnotes: modelXbrl.error("cipc:nonEnglishFootnote", _("Footnotes must use English language."), modelObject=nonEnglishFootnotes) if foonoteRoleErrors: modelXbrl.error("cipc:footnoteRoleErrors", _("Footnotes must the default link, resource and arc roles."), modelObject=foonoteRoleErrors) modelXbrl.profileActivity(_statusMsg, minTimeToShow=0.0) modelXbrl.modelManager.showStatus(None) __pluginInfo__ = { # Do not use _( ) in pluginInfo itself (it is applied later, after loading 'name': 'Validate CIPC', 'version': '1.0', 'description': '''CIPC (South Africa) Validation.''', 'license': 'Apache-2', 'author': 'Mark V Systems', 'copyright': '(c) Copyright 2017 Mark V Systems Limited, All rights reserved.', # classes of mount points (required) 'DisclosureSystem.Types': dislosureSystemTypes, 'DisclosureSystem.ConfigURL': disclosureSystemConfigURL, 'Validate.XBRL.Start': validateXbrlStart, 'Validate.XBRL.Finally': validateXbrlFinally, }
52.177966
157
0.606464
4011cdcb6bd3089a0dd7b9fbad8d461d361ec726
7,961
py
Python
nodes/ImageServer.py
anqixu/sightedturtlesim
35712504679a477d0021a8cec3d22cb087ebc545
[ "BSD-2-Clause" ]
1
2017-06-16T22:31:24.000Z
2017-06-16T22:31:24.000Z
nodes/ImageServer.py
anqixu/sightedturtlesim
35712504679a477d0021a8cec3d22cb087ebc545
[ "BSD-2-Clause" ]
null
null
null
nodes/ImageServer.py
anqixu/sightedturtlesim
35712504679a477d0021a8cec3d22cb087ebc545
[ "BSD-2-Clause" ]
null
null
null
#!/usr/bin/env python3 # Python port of AbstractImageServer and SingleImageServer in sightedturtlesim import numpy as np import cv2 class SingleImageServer: # If the desired camera dimensions (with respect to the canvas dimensions) # exceeds DOWNSIZE_SCALE_RATIO times the dimensions of the desired image, # then the bounding box should be downsized prior to rotation, to ensure # that the downsized camera dimensions will be exactly DOWNSIZE_SCALE_RATIO # times the size of the desired image DOWNSIZE_SCALE_RATIO = 1.5 def __init__(self, imageFilename, ppm=1.0): self._pixelsPerMeter = ppm self._imageFilename = imageFilename self._canvas = cv2.imread(imageFilename, flags=1) # flags=1 means return 3-channel color image self._height, self._width = self._canvas.shape[:2] """ - headingDeg: 0=+x, 90=+y - output_shape: rows, columns """ def getImage(self, eastingM, northingM, altitudeM, headingDeg, hfovDeg, aspectRatio, output_shape): # Convert inputs into pixel space xPx, yPx, zPx = eastingM*self._pixelsPerMeter, self._height-northingM*self._pixelsPerMeter, altitudeM*self._pixelsPerMeter thetaRad = headingDeg/180.0*np.pi camW = zPx*2. * np.tan(hfovDeg / 2.0 / 180.0 * np.pi) camH = camW / aspectRatio outputH, outputW = output_shape # Compute the bounding box width and height of the (rotated) camera frame # - order of corners: top-left (-x & -y), bottom-left, bottom-right, top-right camTransform = np.array( [[np.cos(thetaRad), np.sin(thetaRad)], [-np.sin(thetaRad), np.cos(thetaRad)]]) camCorners = np.array( [[-camW/2, -camW/2, +camW/2, +camW/2], [-camH/2, +camH/2, +camH/2, -camH/2]]) camTransformedCorners = np.dot(camTransform, camCorners) camTXMax, camTXMin = np.max(camTransformedCorners[0,:])+xPx, np.min(camTransformedCorners[0,:])+xPx camTYMax, camTYMin = np.max(camTransformedCorners[1,:])+yPx, np.min(camTransformedCorners[1,:])+yPx # Decide to slightly over-sample the bounding box if rotation angle is not exact headingMod90 = (headingDeg % 90.) if headingMod90 > 45.: headingMod90 -= 90. if abs(headingMod90) > 5.0: # If headingDeg is not within +/- 5' away from 0', 90', 180', or 270' camTXMax += 1 camTXMin -= 1 camTYMax += 1 camTYMin -= 1 # Extract the sub-window corresponding to the bounding box camTXMax, camTXMin = int(round(camTXMax)), int(round(camTXMin)) camTYMax, camTYMin = int(round(camTYMax)), int(round(camTYMin)) if camTXMin >= 0 and camTXMax < self._width and camTYMin >= 0 and camTYMax < self._height: bbImage = self._canvas[camTYMin:camTYMax+1, camTXMin:camTXMax+1, :] else: bbImage = np.zeros(shape=(camTYMax-camTYMin+1, camTXMax-camTXMin+1, self._canvas.shape[2]), dtype=self._canvas.dtype) currCamTY = camTYMin bbY = 0 while currCamTY <= camTYMax: currCamTYMod = currCamTY % self._height patchHeight = min(camTYMax-currCamTY+1, self._height-currCamTYMod) currCamTX = camTXMin bbX = 0 while currCamTX <= camTXMax: currCamTXMod = currCamTX % self._width patchWidth = min(camTXMax-currCamTX+1, self._width - currCamTXMod) bbPatch = bbImage[bbY:bbY+patchHeight, bbX:bbX+patchWidth] np.copyto(bbPatch, self._canvas[currCamTYMod:currCamTYMod+patchHeight, currCamTXMod:currCamTXMod+patchWidth]) currCamTX += patchWidth bbX += patchWidth currCamTY += patchHeight bbY += patchHeight # Decide to downsize image if necessary if camW > SingleImageServer.DOWNSIZE_SCALE_RATIO*outputW and camH > SingleImageServer.DOWNSIZE_SCALE_RATIO*outputH: downsizeFactor = max(SingleImageServer.DOWNSIZE_SCALE_RATIO*outputW/camW, SingleImageServer.DOWNSIZE_SCALE_RATIO*outputH/camH) bbImage = cv2.resize(bbImage, dsize=None, fx=downsizeFactor, fy=downsizeFactor, interpolation=cv2.INTER_AREA) camW *= downsizeFactor camH *= downsizeFactor # Compute the width and height of the rotated bounding box # and adjust the centers of the transformation matrix bbImage_rows, bbImage_cols = bbImage.shape[:2] bbTransform = cv2.getRotationMatrix2D((bbImage_cols/2., bbImage_rows/2.), -headingDeg, 1.0) bbCorners = np.array( [[0, 0, bbImage_cols, bbImage_cols], [0, bbImage_rows, bbImage_rows, 0 ], [1, 1, 1, 1 ]]) bbTransformedCorners = np.dot(bbTransform, bbCorners) bbTWidth = int(round(np.max(bbTransformedCorners[0,:]) - np.min(bbTransformedCorners[0,:]))) bbTHeight = int(round(np.max(bbTransformedCorners[1,:]) - np.min(bbTransformedCorners[1,:]))) bbTransform[0,2] += bbTWidth/2.0 - bbImage_cols/2.0 bbTransform[1,2] += bbTHeight/2.0 - bbImage_rows/2.0 bbRotatedImage = cv2.warpAffine(bbImage, bbTransform, (bbTWidth, bbTHeight), flags=cv2.INTER_NEAREST) bbRTopLeftX = max(int(bbRotatedImage.shape[1]/2. - camW/2.), 0) bbRTopLeftY = max(int(bbRotatedImage.shape[0]/2. - camH/2.), 0) bbRBottomRightX = bbRTopLeftX + max(int(camW), 1) if bbRBottomRightX > bbRotatedImage.shape[1]: bbRotatedImage = bbRotatedImage.shape[1] bbRBottomRightY = bbRTopLeftY + max(int(camH), 1) if bbRBottomRightY > bbRotatedImage.shape[0]: bbRBottomRightY = bbRotatedImage.shape[0] camImage = bbRotatedImage[bbRTopLeftY:bbRBottomRightY, bbRTopLeftX:bbRBottomRightX] if camImage.shape[:2] != output_shape: buffer = cv2.resize(camImage, dsize=(outputW, outputH), interpolation=cv2.INTER_LINEAR) else: buffer = camImage.copy() # In rare case camImage is a slice from underlying map # Visualize results if False: from matplotlib import pyplot as plt from matplotlib.path import Path import matplotlib.patches as patches XYs = camTransformedCorners.transpose() XYs[:,0] += xPx XYs[:,1] += yPx path = Path(XYs, [Path.MOVETO]+[Path.LINETO]*3) patch = patches.PathPatch(path, lw=2) plt.figure() ax = plt.subplot(221) ax.add_patch(patch) plt.xlabel('Eastings (m)') plt.ylabel('Northings (m)') plt.axis('equal') plt.axis([0, self._width, 0, self._height]) ax.invert_yaxis() plt.title('patch') plt.subplot(222) plt.imshow(bbImage) plt.title('bbImage') plt.subplot(223) plt.imshow(bbRotatedImage) plt.title('bbRotatedImage') plt.subplot(224) plt.imshow(camImage) plt.title('camImage') plt.show() plt.figure() plt.imshow(camImage) plt.title('camImage') plt.show() return buffer """ Returns cornersXY = [topLeftX, topLeftY, topRightX, topRightY, bottomRightX, bottomRightY, bottomLeftX, bottomLeftY] """ @staticmethod def toCornersXY(eastingM, northingM, altitudeM, headingDeg, hfovDeg, aspectRatio): # Convert inputs into pixel space xPx, yPx, zPx = eastingM*self._pixelsPerMeter, self._height-northingM*self._pixelsPerMeter, altitudeM*self._pixelsPerMeter thetaRad = headingDeg/180.0*np.pi camW = zPx*2. * np.tan(hfovDeg / 2.0 / 180.0 * np.pi) camH = camW / aspectRatio # Compute the bounding box width and height of the (rotated) camera frame # - order of corners: top-left (-x & -y), bottom-left, bottom-right, top-right camTransform = np.array( [[np.cos(thetaRad), np.sin(thetaRad)], [-np.sin(thetaRad), np.cos(thetaRad)]]) camCorners = np.array( [[-camW/2, -camW/2, +camW/2, +camW/2], [-camH/2, +camH/2, +camH/2, -camH/2]]) camTransformedCorners = np.dot(camTransform, camCorners) camTransformedCorners[0,:] += xPx camTransformedCorners[1,:] += yPx cornersXY = np.ndarray.flatten(camTransformedCorners.transpose()) return cornersXY
41.680628
126
0.671649
1dc6d4978fcfae9b6671a61ee5ad33190687d731
3,211
py
Python
bin/sa_haveibeenpwned/aob_py3/future/types/newdict.py
hRun/SA-haveibeenpwned
2a8ae3dedc405dc3c8dac1cb6a705a70f574afdb
[ "Apache-2.0" ]
2
2020-08-17T07:52:48.000Z
2020-12-18T16:39:32.000Z
bin/sa_haveibeenpwned/aob_py3/future/types/newdict.py
hRun/SA-haveibeenpwned
2a8ae3dedc405dc3c8dac1cb6a705a70f574afdb
[ "Apache-2.0" ]
5
2020-12-15T23:40:14.000Z
2022-02-23T15:43:18.000Z
bin/sa_haveibeenpwned/aob_py2/future/types/newdict.py
hRun/SA-haveibeenpwned
2a8ae3dedc405dc3c8dac1cb6a705a70f574afdb
[ "Apache-2.0" ]
4
2019-05-16T09:57:33.000Z
2021-07-14T12:31:21.000Z
""" A dict subclass for Python 2 that behaves like Python 3's dict Example use: >>> from builtins import dict >>> d1 = dict() # instead of {} for an empty dict >>> d2 = dict(key1='value1', key2='value2') The keys, values and items methods now return iterators on Python 2.x (with set-like behaviour on Python 2.7). >>> for d in (d1, d2): ... assert not isinstance(d.keys(), list) ... assert not isinstance(d.values(), list) ... assert not isinstance(d.items(), list) """ import sys from future.utils import with_metaclass from future.types.newobject import newobject _builtin_dict = dict ver = sys.version_info[:2] class BaseNewDict(type): def __instancecheck__(cls, instance): if cls == newdict: return isinstance(instance, _builtin_dict) else: return issubclass(instance.__class__, cls) class newdict(with_metaclass(BaseNewDict, _builtin_dict)): """ A backport of the Python 3 dict object to Py2 """ def items(self): """ On Python 2.7+: D.items() -> a set-like object providing a view on D's items On Python 2.6: D.items() -> an iterator over D's items """ if ver == (2, 7): return self.viewitems() elif ver == (2, 6): return self.iteritems() elif ver >= (3, 0): return self.items() def keys(self): """ On Python 2.7+: D.keys() -> a set-like object providing a view on D's keys On Python 2.6: D.keys() -> an iterator over D's keys """ if ver == (2, 7): return self.viewkeys() elif ver == (2, 6): return self.iterkeys() elif ver >= (3, 0): return self.keys() def values(self): """ On Python 2.7+: D.values() -> a set-like object providing a view on D's values On Python 2.6: D.values() -> an iterator over D's values """ if ver == (2, 7): return self.viewvalues() elif ver == (2, 6): return self.itervalues() elif ver >= (3, 0): return self.values() def __new__(cls, *args, **kwargs): """ dict() -> new empty dictionary dict(mapping) -> new dictionary initialized from a mapping object's (key, value) pairs dict(iterable) -> new dictionary initialized as if via: d = {} for k, v in iterable: d[k] = v dict(**kwargs) -> new dictionary initialized with the name=value pairs in the keyword argument list. For example: dict(one=1, two=2) """ if len(args) == 0: return super(newdict, cls).__new__(cls) elif type(args[0]) == newdict: value = args[0] else: value = args[0] return super(newdict, cls).__new__(cls, value) def __native__(self): """ Hook for the future.utils.native() function """ return dict(self) __all__ = ['newdict']
28.669643
79
0.523513
46f4176d0e8e88a06a719e1b187269a97adba18b
12,171
py
Python
tests/test_integration.py
najamansari/django-elasticsearch-dsl
7b6dab35313d0512ed86497ba407752ae82294c0
[ "Apache-2.0" ]
null
null
null
tests/test_integration.py
najamansari/django-elasticsearch-dsl
7b6dab35313d0512ed86497ba407752ae82294c0
[ "Apache-2.0" ]
null
null
null
tests/test_integration.py
najamansari/django-elasticsearch-dsl
7b6dab35313d0512ed86497ba407752ae82294c0
[ "Apache-2.0" ]
null
null
null
from datetime import datetime import os import unittest from django.core.management import call_command from django.test import TestCase from django.utils.six import StringIO from django.utils.translation import ugettext_lazy as _ from django_elasticsearch_dsl.test import ESTestCase from .documents import ( ad_index, AdDocument, car_index, CarDocument, PaginatedAdDocument ) from .models import Car, Manufacturer, Ad, Category, COUNTRIES @unittest.skipUnless( os.environ.get('ELASTICSEARCH_URL', False), "--elasticsearch not set" ) class IntegrationTestCase(ESTestCase, TestCase): def setUp(self): super(IntegrationTestCase, self).setUp() self.manufacturer = Manufacturer( name="Peugeot", created=datetime(1900, 10, 9, 0, 0), country_code="FR", logo='logo.jpg' ) self.manufacturer.save() self.car1 = Car( name="508", launched=datetime(2010, 9, 9, 0, 0), manufacturer=self.manufacturer ) self.car1.save() self.car2 = Car( name="208", launched=datetime(2010, 10, 9, 0, 0), manufacturer=self.manufacturer ) self.car2.save() self.category1 = Category( title="Category 1", slug="category-1", icon="icon.jpeg" ) self.category1.save() self.car2.categories.add(self.category1) self.car2.save() self.car3 = Car(name="308", launched=datetime(2010, 11, 9, 0, 0)) self.car3.save() self.category2 = Category(title="Category 2", slug="category-2") self.category2.save() self.car3.categories.add(self.category1, self.category2) self.car3.save() self.ad1 = Ad( title=_("Ad number 1"), url="www.ad1.com", description="My super ad description 1", car=self.car1 ) self.ad1.save() self.ad2 = Ad( title="Ad number 2", url="www.ad2.com", description="My super ad descriptio 2", car=self.car1 ) self.ad2.save() self.car1.save() def test_get_doc_with_relationships(self): s = CarDocument.search().query("match", name=self.car2.name) result = s.execute() self.assertEqual(len(result), 1) car2_doc = result[0] self.assertEqual(car2_doc.ads, []) self.assertEqual(car2_doc.name, self.car2.name) self.assertEqual(int(car2_doc.meta.id), self.car2.pk) self.assertEqual(car2_doc.launched, self.car2.launched) self.assertEqual(car2_doc.manufacturer.name, self.car2.manufacturer.name) self.assertEqual(car2_doc.manufacturer.country, COUNTRIES[self.manufacturer.country_code]) s = CarDocument.search().query("match", name=self.car3.name) result = s.execute() car3_doc = result[0] self.assertEqual(car3_doc.manufacturer, {}) self.assertEqual(car3_doc.name, self.car3.name) self.assertEqual(int(car3_doc.meta.id), self.car3.pk) def test_get_doc_with_reverse_relationships(self): s = CarDocument.search().query("match", name=self.car1.name) result = s.execute() self.assertEqual(len(result), 1) car1_doc = result[0] self.assertEqual(car1_doc.ads, [ { 'title': self.ad1.title, 'description': self.ad1.description, 'pk': self.ad1.pk, }, { 'title': self.ad2.title, 'description': self.ad2.description, 'pk': self.ad2.pk, }, ]) self.assertEqual(car1_doc.name, self.car1.name) self.assertEqual(int(car1_doc.meta.id), self.car1.pk) def test_get_doc_with_many_to_many_relationships(self): s = CarDocument.search().query("match", name=self.car3.name) result = s.execute() self.assertEqual(len(result), 1) car1_doc = result[0] self.assertEqual(car1_doc.categories, [ { 'title': self.category1.title, 'slug': self.category1.slug, 'icon': self.category1.icon, }, { 'title': self.category2.title, 'slug': self.category2.slug, 'icon': '', } ]) def test_doc_to_dict(self): s = CarDocument.search().query("match", name=self.car2.name) result = s.execute() self.assertEqual(len(result), 1) car2_doc = result[0] self.assertEqual(car2_doc.to_dict(), { 'type': self.car2.type, 'launched': self.car2.launched, 'name': self.car2.name, 'manufacturer': { 'name': self.manufacturer.name, 'country': COUNTRIES[self.manufacturer.country_code], }, 'categories': [{ 'title': self.category1.title, 'slug': self.category1.slug, 'icon': self.category1.icon, }] }) s = CarDocument.search().query("match", name=self.car3.name) result = s.execute() self.assertEqual(len(result), 1) car3_doc = result[0] self.assertEqual(car3_doc.to_dict(), { 'type': self.car3.type, 'launched': self.car3.launched, 'name': self.car3.name, 'categories': [ { 'title': self.category1.title, 'slug': self.category1.slug, 'icon': self.category1.icon, }, { 'title': self.category2.title, 'slug': self.category2.slug, 'icon': '', } ] }) def test_index_to_dict(self): index_dict = car_index.to_dict() self.assertEqual(index_dict['settings'], { 'number_of_shards': 1, 'number_of_replicas': 0, 'analysis': { 'analyzer': { 'html_strip': { 'tokenizer': 'standard', 'filter': ['standard', 'lowercase', 'stop', 'snowball'], 'type': 'custom', 'char_filter': ['html_strip'] } } } }) self.assertEqual(index_dict['mappings'], { 'manufacturer_document': { 'properties': { 'created': {'type': 'date'}, 'name': {'type': 'string'}, 'country': {'type': 'string'}, 'country_code': {'type': 'string'}, 'logo': {'type': 'string'}, } }, 'car_document': { 'properties': { 'ads': { 'type': 'nested', 'properties': { 'description': { 'type': 'string', 'analyzer': 'html_strip' }, 'pk': {'type': 'integer'}, 'title': {'type': 'string'}, }, }, 'categories': { 'type': 'nested', 'properties': { 'title': {'type': 'string'}, 'slug': {'type': 'string'}, 'icon': {'type': 'string'}, }, }, 'manufacturer': { 'type': 'object', 'properties': { 'country': {'type': 'string'}, 'name': {'type': 'string'}, }, }, 'name': {'type': 'string'}, 'launched': {'type': 'date'}, 'type': {'type': 'string'}, } } }) def test_related_docs_are_updated(self): # test foreignkey relation self.manufacturer.name = 'Citroen' self.manufacturer.save() s = CarDocument.search().query("match", name=self.car2.name) car2_doc = s.execute()[0] self.assertEqual(car2_doc.manufacturer.name, 'Citroen') self.assertEqual(len(car2_doc.ads), 0) ad3 = Ad.objects.create( title=_("Ad number 3"), url="www.ad3.com", description="My super ad description 3", car=self.car2 ) s = CarDocument.search().query("match", name=self.car2.name) car2_doc = s.execute()[0] self.assertEqual(len(car2_doc.ads), 1) ad3.delete() s = CarDocument.search().query("match", name=self.car2.name) car2_doc = s.execute()[0] self.assertEqual(len(car2_doc.ads), 0) self.manufacturer.delete() s = CarDocument.search().query("match", name=self.car2.name) car2_doc = s.execute()[0] self.assertEqual(car2_doc.manufacturer, {}) def test_m2m_related_docs_are_updated(self): # test m2m add category = Category( title="Category", slug="category", icon="icon.jpeg" ) category.save() self.car2.categories.add(category) s = CarDocument.search().query("match", name=self.car2.name) car2_doc = s.execute()[0] self.assertEqual(len(car2_doc.categories), 2) # test m2m deletion self.car2.categories.remove(category) s = CarDocument.search().query("match", name=self.car2.name) car2_doc = s.execute()[0] self.assertEqual(len(car2_doc.categories), 1) self.category1.car_set.clear() s = CarDocument.search().query("match", name=self.car2.name) car2_doc = s.execute()[0] self.assertEqual(len(car2_doc.categories), 0) def test_delete_create_populate_commands(self): out = StringIO() self.assertTrue(ad_index.exists()) self.assertTrue(car_index.exists()) call_command('search_index', action='delete', force=True, stdout=out, models=['tests.ad']) self.assertFalse(ad_index.exists()) self.assertTrue(car_index.exists()) call_command('search_index', action='create', models=['tests.ad'], stdout=out) self.assertTrue(ad_index.exists()) result = AdDocument().search().execute() self.assertEqual(len(result), 0) call_command('search_index', action='populate', models=['tests.ad'], stdout=out) result = AdDocument().search().execute() self.assertEqual(len(result), 2) def test_rebuild_command(self): out = StringIO() result = AdDocument().search().execute() self.assertEqual(len(result), 2) Ad(title="Ad title 3").save() call_command('search_index', action='populate', force=True, stdout=out, models=['tests.ad']) result = AdDocument().search().execute() self.assertEqual(len(result), 3) def test_to_queryset(self): Ad(title="Nothing that match", car=self.car1).save() qs = AdDocument().search().query( 'match', title="Ad number 2").to_queryset() self.assertEqual(qs.count(), 2) self.assertEqual(list(qs), [self.ad2, self.ad1]) def test_queryset_pagination(self): ad3 = Ad(title="Ad 3", car=self.car1) ad3.save() with self.assertNumQueries(1): AdDocument().update(Ad.objects.all()) doc = PaginatedAdDocument() with self.assertNumQueries(3): doc.update(Ad.objects.all().order_by('-id')) self.assertEqual( set(int(instance.meta.id) for instance in doc.search().query('match', title="Ad")), set([ad3.pk, self.ad1.pk, self.ad2.pk]) )
35.797059
73
0.513516
16be308adebf34b3a62305e50d8bd715f5e92f0f
251
py
Python
Practica3_Matias.py
mbermejo1/PracticasSF2
0dd57b24c658cb75f0783776d9178f13180563fe
[ "MIT" ]
null
null
null
Practica3_Matias.py
mbermejo1/PracticasSF2
0dd57b24c658cb75f0783776d9178f13180563fe
[ "MIT" ]
null
null
null
Practica3_Matias.py
mbermejo1/PracticasSF2
0dd57b24c658cb75f0783776d9178f13180563fe
[ "MIT" ]
null
null
null
print("\n\t\t-----> Welcome to Matias list changer <-----\t\t\n") listn = [1,2,3,4,5,6,7,8,9,10] print(f"\nThis is the list without changes ===> {listn}\n") listn[4] *= 2 listn[7] *= 2 listn[9] *= 2 print(f"\nThis is the modified list ===> {listn}\n")
35.857143
65
0.589641
f716de749187532c276040a0b1e00777b44337ce
592
py
Python
api_logic_server_cli/project_prototype/util.py
valhuber/ApiLogicServer
a4acd8d886a18d4d500e0fffffcaa2f1c0765040
[ "BSD-3-Clause" ]
71
2021-01-23T17:34:33.000Z
2022-03-29T13:11:29.000Z
api_logic_server_cli/project_prototype/util.py
valhuber/ApiLogicServer
a4acd8d886a18d4d500e0fffffcaa2f1c0765040
[ "BSD-3-Clause" ]
38
2021-01-24T21:56:30.000Z
2022-03-08T18:49:00.000Z
api_logic_server_cli/project_prototype/util.py
valhuber/ApiLogicServer
a4acd8d886a18d4d500e0fffffcaa2f1c0765040
[ "BSD-3-Clause" ]
14
2021-01-23T16:20:44.000Z
2022-03-24T10:48:28.000Z
import sqlite3 from os import path import sys import logging app_logger = logging.getLogger("api_logic_server_app") def log(msg: any) -> None: app_logger.info(msg) # print("TIL==> " + msg) def connection() -> sqlite3.Connection: ROOT: str = path.dirname(path.realpath(__file__)) log(ROOT) _connection = sqlite3.connect(path.join(ROOT, "sqlitedata.db")) return _connection def dbpath(dbname: str) -> str: ROOT: str = path.dirname(path.realpath(__file__)) log('ROOT: '+ROOT) PATH: str = path.join(ROOT, dbname) log('DBPATH: '+PATH) return PATH
22.769231
67
0.675676
77502af18bf5c8e08f138efacb1134a2917a190e
4,056
py
Python
app/tests/v1/test_meets.py
exdus/Questioner-api
22be46ef17b25c73949b105dca43dd9ea2b930ca
[ "MIT" ]
null
null
null
app/tests/v1/test_meets.py
exdus/Questioner-api
22be46ef17b25c73949b105dca43dd9ea2b930ca
[ "MIT" ]
null
null
null
app/tests/v1/test_meets.py
exdus/Questioner-api
22be46ef17b25c73949b105dca43dd9ea2b930ca
[ "MIT" ]
null
null
null
import unittest from app import create_app import os import json import pytest import datetime from app.api.v1.models.models import MEETUP_LIST KEY = os.getenv("SECRET") class BaseTest(unittest.TestCase): def setUp(self): self.app = create_app("testing") self.client = self.app.test_client() target_time = datetime.datetime.now() + datetime.timedelta(days=7) target_time = target_time.replace(microsecond=0) today_now = datetime.datetime.now() self.meetup1 = { "topic": "My first meetup", "images": ["/home/zonecc/pictures/img1.png", "/home/zonecc/picturesimg2/png"], "location": "Home", "happenOn": target_time.strftime("%D %H:%M %p"), "tags": ["#At home", "#coding", "#enjoy"] } self.meetup11 = { "topic": "", "images": ["/home/zonecc/pictures/img1.png", "/home/zonecc/picturesimg2/png"], "location": "Home", "happenOn": target_time.strftime("%D %H:%M %p"), "tags": ["#At home", "#coding", "#enjoy"] } self.meetup1created = { "id": 1, "createOn": today_now.strftime("%d %h %Y"), "topic": "My first meetup", "images": ["/home/zonecc/pictures/img1.png", "/home/zonecc/picturesimg2/png"], "location": "Home", "happenOn": target_time.strftime("%D %H:%M %p"), "tags": ["#At home", "#coding", "#enjoy"] } self.meetup2 = { "images": ["/home/zonecc/pictures/img1.png", "/home/zonecc/picturesimg2/png"], "location": "Home", "happenOn": target_time.strftime("%D %H:%M %p"), "tags": ["#At home", "#coding", "#enjoy"] } self.nodata = {} def tearDown(self): pass class TestMeetup(BaseTest): def test_created_meetup_success(self): response = self.client.post( '/api/v1/meetups', data=json.dumps(self.meetup1), content_type="application/json") #meet_resp = json.loads(response.data.decode('utf-8', KEY)) #self.assertEqual(response.status_code, 201) #self.assertEqual(meet_resp["data"], self.meetup1created) def test_create_meetup_fail_no_data(self): response = self.client.post( '/api/v1/meetups', data=json.dumps(self.nodata), content_type="application/json") #self.assertEqual(response.status_code, 404) def test_get_all_meetups_success(self): MEETUP_LIST.append(self.meetup1created) response = self.client.get( '/api/v1/meetups', data=json.dumps(self.meetup1), content_type="application/json") #self.assertEqual(response.status_code, 200) def test_get_all_upcoming_success(self): MEETUP_LIST.append(self.meetup1created) response = self.client.get( '/api/v1/meetups/upcoming', data=json.dumps(self.meetup1), content_type="application/json") #self.assertEqual(response.status_code, 200) def test_get_single_meetup_success(self): MEETUP_LIST.append(self.meetup1created) response = self.client.get( '/api/v1/meetups/1', data=json.dumps(self.meetup1), content_type="application/json") #self.assertEqual(response.status_code, 200) def test_get_single_meetup_fail(self): MEETUP_LIST.append(self.meetup1created) response = self.client.get( '/api/v1/meetups/1000', data=json.dumps(self.meetup1), content_type="application/json") #self.assertEqual(response.status_code, 404) def test_delete_meetup_fail(self): response = self.client.delete( '/api/v1/meetups/1000', data=json.dumps(self.meetup1), content_type="application/json") #self.assertEqual(response.status_code, 404) def test_delete_meetup_success(self): response = self.client.delete( '/api/v1/meetups/1', data=json.dumps(self.meetup1), content_type="application/json") #self.assertEqual(response.status_code, 200)
38.264151
103
0.618343
49bd82a86d63d362216011c9e2162e0037e7c6bd
3,036
py
Python
tests/sources/test_textures.py
awesome-archive/webots
8e74fb8393d1e3a6540749afc492635c43f1b30f
[ "Apache-2.0" ]
2
2019-07-12T13:47:44.000Z
2019-08-17T02:53:54.000Z
tests/sources/test_textures.py
golbh/webots
8e74fb8393d1e3a6540749afc492635c43f1b30f
[ "Apache-2.0" ]
null
null
null
tests/sources/test_textures.py
golbh/webots
8e74fb8393d1e3a6540749afc492635c43f1b30f
[ "Apache-2.0" ]
1
2019-07-13T17:58:04.000Z
2019-07-13T17:58:04.000Z
# Copyright 1996-2018 Cyberbotics Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test textures.""" import unittest import os import fnmatch from PIL import Image class TestTextures(unittest.TestCase): """Unit test of the textures.""" def setUp(self): """Get all the textures to be tested.""" # 1. Get all the images from projects and resources images = [] for directory in ['projects', 'resources']: for rootPath, dirNames, fileNames in os.walk(os.environ['WEBOTS_HOME'] + os.sep + directory): for fileName in fnmatch.filter(fileNames, '*.png'): image = os.path.join(rootPath, fileName) images.append(image) for fileName in fnmatch.filter(fileNames, '*.jpg'): image = os.path.join(rootPath, fileName) images.append(image) # 2. filter-out the images which are not textures self.textures = [] for image in images: if not ( 'controllers' in image or 'icons' in image or 'libraries' in image or 'plugins' in image or 'simulator-sdk' in image or 'resources' + os.sep + 'images' in image or 'resources' + os.sep + 'web' in image or 'resources' + os.sep + 'wren' in image ): self.textures.append(image) def test_textures_dimensions_are_power_of_two(self): """Test that the released textures dimensions are power of two.""" def is_perfect_power_of_two(a): assert isinstance(a, int) while a % 2 == 0: a = a / 2 if a == 1: return True return False for texture in self.textures: im = Image.open(texture) self.assertTrue( is_perfect_power_of_two(im.size[0]) and is_perfect_power_of_two(im.size[1]), msg='texture "%s": dimension is not a power of two: (%d, %d)' % (texture, im.size[0], im.size[1]) ) def test_textures_profile(self): """Test that the released textures don't contain an ICC profile.""" for texture in self.textures: im = Image.open(texture) self.assertTrue( im.info.get("icc_profile") is None, msg='texture "%s" contains an ICC profile' % (texture) ) if __name__ == '__main__': unittest.main()
37.481481
113
0.584321
5cd5c7416f796784e724f794ec1830134bc41fd3
28,094
py
Python
graphicsDisplay.py
chaobiubiu/contest_pacman
f8381af6e6be09a894dc301c94803ca33af5271b
[ "BSD-4-Clause-UC" ]
1
2021-11-30T06:44:08.000Z
2021-11-30T06:44:08.000Z
graphicsDisplay.py
chaobiubiu/contest_pacman
f8381af6e6be09a894dc301c94803ca33af5271b
[ "BSD-4-Clause-UC" ]
4
2021-09-30T21:21:02.000Z
2021-10-11T22:02:26.000Z
graphicsDisplay.py
chaobiubiu/contest_pacman
f8381af6e6be09a894dc301c94803ca33af5271b
[ "BSD-4-Clause-UC" ]
null
null
null
# graphicsDisplay.py # ------------------ # Licensing Information: You are free to use or extend these projects for # educational purposes provided that (1) you do not distribute or publish # solutions, (2) you retain this notice, and (3) you provide clear # attribution to UC Berkeley, including a link to http://ai.berkeley.edu. # # Attribution Information: The Pacman AI projects were developed at UC Berkeley. # The core projects and autograders were primarily created by John DeNero # (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu). # Student side autograding was added by Brad Miller, Nick Hay, and # Pieter Abbeel (pabbeel@cs.berkeley.edu). from graphicsUtils import * import math, time from game import Directions ########################### # GRAPHICS DISPLAY CODE # ########################### # Most code by Dan Klein and John Denero written or rewritten for cs188, UC Berkeley. # Some code from a Pacman implementation by LiveWires, and used / modified with permission. DEFAULT_GRID_SIZE = 30.0 INFO_PANE_HEIGHT = 35 BACKGROUND_COLOR = formatColor(0,0,0) WALL_COLOR = formatColor(0.0/255.0, 51.0/255.0, 255.0/255.0) INFO_PANE_COLOR = formatColor(.4,.4,0) SCORE_COLOR = formatColor(.9, .9, .9) PACMAN_OUTLINE_WIDTH = 2 PACMAN_CAPTURE_OUTLINE_WIDTH = 4 GHOST_COLORS = [] GHOST_COLORS.append(formatColor(.9,0,0)) # Red GHOST_COLORS.append(formatColor(0,.3,.9)) # Blue GHOST_COLORS.append(formatColor(.98,.41,.07)) # Orange GHOST_COLORS.append(formatColor(.1,.75,.7)) # Green GHOST_COLORS.append(formatColor(1.0,0.6,0.0)) # Yellow GHOST_COLORS.append(formatColor(.4,0.13,0.91)) # Purple TEAM_COLORS = GHOST_COLORS[:2] GHOST_SHAPE = [ ( 0, 0.3 ), ( 0.25, 0.75 ), ( 0.5, 0.3 ), ( 0.75, 0.75 ), ( 0.75, -0.5 ), ( 0.5, -0.75 ), (-0.5, -0.75 ), (-0.75, -0.5 ), (-0.75, 0.75 ), (-0.5, 0.3 ), (-0.25, 0.75 ) ] GHOST_SIZE = 0.65 SCARED_COLOR = formatColor(1,1,1) #GHOST_VEC_COLORS = map(colorToVector, GHOST_COLORS) GHOST_VEC_COLORS = [colorToVector(c) for c in GHOST_COLORS] PACMAN_COLOR = formatColor(255.0/255.0,255.0/255.0,61.0/255) PACMAN_SCALE = 0.5 #pacman_speed = 0.25 # Food FOOD_COLOR = formatColor(1,1,1) FOOD_SIZE = 0.1 # Laser LASER_COLOR = formatColor(1,0,0) LASER_SIZE = 0.02 # Capsule graphics CAPSULE_COLOR = formatColor(1,1,1) CAPSULE_SIZE = 0.25 # Drawing walls WALL_RADIUS = 0.15 class InfoPane: def __init__(self, layout, gridSize): self.gridSize = gridSize self.width = (layout.width) * gridSize self.base = (layout.height + 1) * gridSize self.height = INFO_PANE_HEIGHT self.fontSize = 24 self.textColor = PACMAN_COLOR self.drawPane() def toScreen(self, pos, y = None): """ Translates a point relative from the bottom left of the info pane. """ if y == None: x,y = pos else: x = pos x = self.gridSize + x # Margin y = self.base + y return x,y def drawPane(self): self.scoreText = text( self.toScreen(0, 0 ), self.textColor, "SCORE: 0", "Times", self.fontSize, "bold") def initializeGhostDistances(self, distances): self.ghostDistanceText = [] size = 20 if self.width < 240: size = 12 if self.width < 160: size = 10 for i, d in enumerate(distances): t = text( self.toScreen(self.width/2 + self.width/8 * i, 0), GHOST_COLORS[i+1], d, "Times", size, "bold") self.ghostDistanceText.append(t) def updateScore(self, score): changeText(self.scoreText, "SCORE: % 4d" % score) def setTeam(self, isBlue): text = "RED TEAM" if isBlue: text = "BLUE TEAM" self.teamText = text( self.toScreen(300, 0 ), self.textColor, text, "Times", self.fontSize, "bold") def updateGhostDistances(self, distances): if len(distances) == 0: return if 'ghostDistanceText' not in dir(self): self.initializeGhostDistances(distances) else: for i, d in enumerate(distances): changeText(self.ghostDistanceText[i], d) def drawGhost(self): pass def drawPacman(self): pass def drawWarning(self): pass def clearIcon(self): pass def updateMessage(self, message): pass def clearMessage(self): pass class PacmanGraphics: def __init__(self, zoom=1.0, frameTime=0.0, capture=False): self.have_window = 0 self.currentGhostImages = {} self.pacmanImage = None self.zoom = zoom self.gridSize = DEFAULT_GRID_SIZE * zoom self.capture = capture self.frameTime = frameTime def checkNullDisplay(self): return False def initialize(self, state, isBlue = False): self.isBlue = isBlue self.startGraphics(state) # self.drawDistributions(state) self.distributionImages = None # Initialized lazily self.drawStaticObjects(state) self.drawAgentObjects(state) # Information self.previousState = state def startGraphics(self, state): self.layout = state.layout layout = self.layout self.width = layout.width self.height = layout.height self.make_window(self.width, self.height) self.infoPane = InfoPane(layout, self.gridSize) self.currentState = layout def drawDistributions(self, state): walls = state.layout.walls dist = [] for x in range(walls.width): distx = [] dist.append(distx) for y in range(walls.height): ( screen_x, screen_y ) = self.to_screen( (x, y) ) block = square( (screen_x, screen_y), 0.5 * self.gridSize, color = BACKGROUND_COLOR, filled = 1, behind=2) distx.append(block) self.distributionImages = dist def drawStaticObjects(self, state): layout = self.layout self.drawWalls(layout.walls) self.food = self.drawFood(layout.food) self.capsules = self.drawCapsules(layout.capsules) refresh() def drawAgentObjects(self, state): self.agentImages = [] # (agentState, image) for index, agent in enumerate(state.agentStates): if agent.isPacman: image = self.drawPacman(agent, index) self.agentImages.append( (agent, image) ) else: image = self.drawGhost(agent, index) self.agentImages.append( (agent, image) ) refresh() def swapImages(self, agentIndex, newState): """ Changes an image from a ghost to a pacman or vis versa (for capture) """ prevState, prevImage = self.agentImages[agentIndex] for item in prevImage: remove_from_screen(item) if newState.isPacman: image = self.drawPacman(newState, agentIndex) self.agentImages[agentIndex] = (newState, image ) else: image = self.drawGhost(newState, agentIndex) self.agentImages[agentIndex] = (newState, image ) refresh() def update(self, newState): agentIndex = newState._agentMoved agentState = newState.agentStates[agentIndex] if self.agentImages[agentIndex][0].isPacman != agentState.isPacman: self.swapImages(agentIndex, agentState) prevState, prevImage = self.agentImages[agentIndex] if agentState.isPacman: self.animatePacman(agentState, prevState, prevImage) else: self.moveGhost(agentState, agentIndex, prevState, prevImage) self.agentImages[agentIndex] = (agentState, prevImage) if newState._foodEaten != None: self.removeFood(newState._foodEaten, self.food) if newState._capsuleEaten != None: self.removeCapsule(newState._capsuleEaten, self.capsules) self.infoPane.updateScore(newState.score) if 'ghostDistances' in dir(newState): self.infoPane.updateGhostDistances(newState.ghostDistances) def make_window(self, width, height): grid_width = (width-1) * self.gridSize grid_height = (height-1) * self.gridSize screen_width = 2*self.gridSize + grid_width screen_height = 2*self.gridSize + grid_height + INFO_PANE_HEIGHT begin_graphics(screen_width, screen_height, BACKGROUND_COLOR, "CS188 Pacman") def drawPacman(self, pacman, index): position = self.getPosition(pacman) screen_point = self.to_screen(position) endpoints = self.getEndpoints(self.getDirection(pacman)) width = PACMAN_OUTLINE_WIDTH outlineColor = PACMAN_COLOR fillColor = PACMAN_COLOR if self.capture: outlineColor = TEAM_COLORS[index % 2] fillColor = GHOST_COLORS[index] width = PACMAN_CAPTURE_OUTLINE_WIDTH return [circle(screen_point, PACMAN_SCALE * self.gridSize, fillColor = fillColor, outlineColor = outlineColor, endpoints = endpoints, width = width)] def getEndpoints(self, direction, position=(0,0)): x, y = position pos = x - int(x) + y - int(y) width = 30 + 80 * math.sin(math.pi* pos) delta = width / 2 if (direction == 'West'): endpoints = (180+delta, 180-delta) elif (direction == 'North'): endpoints = (90+delta, 90-delta) elif (direction == 'South'): endpoints = (270+delta, 270-delta) else: endpoints = (0+delta, 0-delta) return endpoints def movePacman(self, position, direction, image): screenPosition = self.to_screen(position) endpoints = self.getEndpoints( direction, position ) r = PACMAN_SCALE * self.gridSize moveCircle(image[0], screenPosition, r, endpoints) refresh() def animatePacman(self, pacman, prevPacman, image): if self.frameTime < 0: print('Press any key to step forward, "q" to play') keys = wait_for_keys() if 'q' in keys: self.frameTime = 0.1 if self.frameTime > 0.01 or self.frameTime < 0: start = time.time() fx, fy = self.getPosition(prevPacman) px, py = self.getPosition(pacman) frames = 4.0 for i in range(1,int(frames) + 1): pos = px*i/frames + fx*(frames-i)/frames, py*i/frames + fy*(frames-i)/frames self.movePacman(pos, self.getDirection(pacman), image) refresh() sleep(abs(self.frameTime) / frames) else: self.movePacman(self.getPosition(pacman), self.getDirection(pacman), image) refresh() def getGhostColor(self, ghost, ghostIndex): if ghost.scaredTimer > 0: return SCARED_COLOR else: return GHOST_COLORS[ghostIndex] def drawGhost(self, ghost, agentIndex): pos = self.getPosition(ghost) dir = self.getDirection(ghost) (screen_x, screen_y) = (self.to_screen(pos) ) coords = [] for (x, y) in GHOST_SHAPE: coords.append((x*self.gridSize*GHOST_SIZE + screen_x, y*self.gridSize*GHOST_SIZE + screen_y)) colour = self.getGhostColor(ghost, agentIndex) body = polygon(coords, colour, filled = 1) WHITE = formatColor(1.0, 1.0, 1.0) BLACK = formatColor(0.0, 0.0, 0.0) dx = 0 dy = 0 if dir == 'North': dy = -0.2 if dir == 'South': dy = 0.2 if dir == 'East': dx = 0.2 if dir == 'West': dx = -0.2 leftEye = circle((screen_x+self.gridSize*GHOST_SIZE*(-0.3+dx/1.5), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy/1.5)), self.gridSize*GHOST_SIZE*0.2, WHITE, WHITE) rightEye = circle((screen_x+self.gridSize*GHOST_SIZE*(0.3+dx/1.5), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy/1.5)), self.gridSize*GHOST_SIZE*0.2, WHITE, WHITE) leftPupil = circle((screen_x+self.gridSize*GHOST_SIZE*(-0.3+dx), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy)), self.gridSize*GHOST_SIZE*0.08, BLACK, BLACK) rightPupil = circle((screen_x+self.gridSize*GHOST_SIZE*(0.3+dx), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy)), self.gridSize*GHOST_SIZE*0.08, BLACK, BLACK) ghostImageParts = [] ghostImageParts.append(body) ghostImageParts.append(leftEye) ghostImageParts.append(rightEye) ghostImageParts.append(leftPupil) ghostImageParts.append(rightPupil) return ghostImageParts def moveEyes(self, pos, dir, eyes): (screen_x, screen_y) = (self.to_screen(pos) ) dx = 0 dy = 0 if dir == 'North': dy = -0.2 if dir == 'South': dy = 0.2 if dir == 'East': dx = 0.2 if dir == 'West': dx = -0.2 moveCircle(eyes[0],(screen_x+self.gridSize*GHOST_SIZE*(-0.3+dx/1.5), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy/1.5)), self.gridSize*GHOST_SIZE*0.2) moveCircle(eyes[1],(screen_x+self.gridSize*GHOST_SIZE*(0.3+dx/1.5), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy/1.5)), self.gridSize*GHOST_SIZE*0.2) moveCircle(eyes[2],(screen_x+self.gridSize*GHOST_SIZE*(-0.3+dx), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy)), self.gridSize*GHOST_SIZE*0.08) moveCircle(eyes[3],(screen_x+self.gridSize*GHOST_SIZE*(0.3+dx), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy)), self.gridSize*GHOST_SIZE*0.08) def moveGhost(self, ghost, ghostIndex, prevGhost, ghostImageParts): old_x, old_y = self.to_screen(self.getPosition(prevGhost)) new_x, new_y = self.to_screen(self.getPosition(ghost)) delta = new_x - old_x, new_y - old_y for ghostImagePart in ghostImageParts: move_by(ghostImagePart, delta) refresh() if ghost.scaredTimer > 0: color = SCARED_COLOR else: color = GHOST_COLORS[ghostIndex] edit(ghostImageParts[0], ('fill', color), ('outline', color)) self.moveEyes(self.getPosition(ghost), self.getDirection(ghost), ghostImageParts[-4:]) refresh() def getPosition(self, agentState): if agentState.configuration == None: return (-1000, -1000) return agentState.getPosition() def getDirection(self, agentState): if agentState.configuration == None: return Directions.STOP return agentState.configuration.getDirection() def finish(self): end_graphics() def to_screen(self, point): ( x, y ) = point #y = self.height - y x = (x + 1)*self.gridSize y = (self.height - y)*self.gridSize return ( x, y ) # Fixes some TK issue with off-center circles def to_screen2(self, point): ( x, y ) = point #y = self.height - y x = (x + 1)*self.gridSize y = (self.height - y)*self.gridSize return ( x, y ) def drawWalls(self, wallMatrix): wallColor = WALL_COLOR for xNum, x in enumerate(wallMatrix): if self.capture and (xNum * 2) < wallMatrix.width: wallColor = TEAM_COLORS[0] if self.capture and (xNum * 2) >= wallMatrix.width: wallColor = TEAM_COLORS[1] for yNum, cell in enumerate(x): if cell: # There's a wall here pos = (xNum, yNum) screen = self.to_screen(pos) screen2 = self.to_screen2(pos) # draw each quadrant of the square based on adjacent walls wIsWall = self.isWall(xNum-1, yNum, wallMatrix) eIsWall = self.isWall(xNum+1, yNum, wallMatrix) nIsWall = self.isWall(xNum, yNum+1, wallMatrix) sIsWall = self.isWall(xNum, yNum-1, wallMatrix) nwIsWall = self.isWall(xNum-1, yNum+1, wallMatrix) swIsWall = self.isWall(xNum-1, yNum-1, wallMatrix) neIsWall = self.isWall(xNum+1, yNum+1, wallMatrix) seIsWall = self.isWall(xNum+1, yNum-1, wallMatrix) # NE quadrant if (not nIsWall) and (not eIsWall): # inner circle circle(screen2, WALL_RADIUS * self.gridSize, wallColor, wallColor, (0,91), 'arc') if (nIsWall) and (not eIsWall): # vertical line line(add(screen, (self.gridSize*WALL_RADIUS, 0)), add(screen, (self.gridSize*WALL_RADIUS, self.gridSize*(-0.5)-1)), wallColor) if (not nIsWall) and (eIsWall): # horizontal line line(add(screen, (0, self.gridSize*(-1)*WALL_RADIUS)), add(screen, (self.gridSize*0.5+1, self.gridSize*(-1)*WALL_RADIUS)), wallColor) if (nIsWall) and (eIsWall) and (not neIsWall): # outer circle circle(add(screen2, (self.gridSize*2*WALL_RADIUS, self.gridSize*(-2)*WALL_RADIUS)), WALL_RADIUS * self.gridSize-1, wallColor, wallColor, (180,271), 'arc') line(add(screen, (self.gridSize*2*WALL_RADIUS-1, self.gridSize*(-1)*WALL_RADIUS)), add(screen, (self.gridSize*0.5+1, self.gridSize*(-1)*WALL_RADIUS)), wallColor) line(add(screen, (self.gridSize*WALL_RADIUS, self.gridSize*(-2)*WALL_RADIUS+1)), add(screen, (self.gridSize*WALL_RADIUS, self.gridSize*(-0.5))), wallColor) # NW quadrant if (not nIsWall) and (not wIsWall): # inner circle circle(screen2, WALL_RADIUS * self.gridSize, wallColor, wallColor, (90,181), 'arc') if (nIsWall) and (not wIsWall): # vertical line line(add(screen, (self.gridSize*(-1)*WALL_RADIUS, 0)), add(screen, (self.gridSize*(-1)*WALL_RADIUS, self.gridSize*(-0.5)-1)), wallColor) if (not nIsWall) and (wIsWall): # horizontal line line(add(screen, (0, self.gridSize*(-1)*WALL_RADIUS)), add(screen, (self.gridSize*(-0.5)-1, self.gridSize*(-1)*WALL_RADIUS)), wallColor) if (nIsWall) and (wIsWall) and (not nwIsWall): # outer circle circle(add(screen2, (self.gridSize*(-2)*WALL_RADIUS, self.gridSize*(-2)*WALL_RADIUS)), WALL_RADIUS * self.gridSize-1, wallColor, wallColor, (270,361), 'arc') line(add(screen, (self.gridSize*(-2)*WALL_RADIUS+1, self.gridSize*(-1)*WALL_RADIUS)), add(screen, (self.gridSize*(-0.5), self.gridSize*(-1)*WALL_RADIUS)), wallColor) line(add(screen, (self.gridSize*(-1)*WALL_RADIUS, self.gridSize*(-2)*WALL_RADIUS+1)), add(screen, (self.gridSize*(-1)*WALL_RADIUS, self.gridSize*(-0.5))), wallColor) # SE quadrant if (not sIsWall) and (not eIsWall): # inner circle circle(screen2, WALL_RADIUS * self.gridSize, wallColor, wallColor, (270,361), 'arc') if (sIsWall) and (not eIsWall): # vertical line line(add(screen, (self.gridSize*WALL_RADIUS, 0)), add(screen, (self.gridSize*WALL_RADIUS, self.gridSize*(0.5)+1)), wallColor) if (not sIsWall) and (eIsWall): # horizontal line line(add(screen, (0, self.gridSize*(1)*WALL_RADIUS)), add(screen, (self.gridSize*0.5+1, self.gridSize*(1)*WALL_RADIUS)), wallColor) if (sIsWall) and (eIsWall) and (not seIsWall): # outer circle circle(add(screen2, (self.gridSize*2*WALL_RADIUS, self.gridSize*(2)*WALL_RADIUS)), WALL_RADIUS * self.gridSize-1, wallColor, wallColor, (90,181), 'arc') line(add(screen, (self.gridSize*2*WALL_RADIUS-1, self.gridSize*(1)*WALL_RADIUS)), add(screen, (self.gridSize*0.5, self.gridSize*(1)*WALL_RADIUS)), wallColor) line(add(screen, (self.gridSize*WALL_RADIUS, self.gridSize*(2)*WALL_RADIUS-1)), add(screen, (self.gridSize*WALL_RADIUS, self.gridSize*(0.5))), wallColor) # SW quadrant if (not sIsWall) and (not wIsWall): # inner circle circle(screen2, WALL_RADIUS * self.gridSize, wallColor, wallColor, (180,271), 'arc') if (sIsWall) and (not wIsWall): # vertical line line(add(screen, (self.gridSize*(-1)*WALL_RADIUS, 0)), add(screen, (self.gridSize*(-1)*WALL_RADIUS, self.gridSize*(0.5)+1)), wallColor) if (not sIsWall) and (wIsWall): # horizontal line line(add(screen, (0, self.gridSize*(1)*WALL_RADIUS)), add(screen, (self.gridSize*(-0.5)-1, self.gridSize*(1)*WALL_RADIUS)), wallColor) if (sIsWall) and (wIsWall) and (not swIsWall): # outer circle circle(add(screen2, (self.gridSize*(-2)*WALL_RADIUS, self.gridSize*(2)*WALL_RADIUS)), WALL_RADIUS * self.gridSize-1, wallColor, wallColor, (0,91), 'arc') line(add(screen, (self.gridSize*(-2)*WALL_RADIUS+1, self.gridSize*(1)*WALL_RADIUS)), add(screen, (self.gridSize*(-0.5), self.gridSize*(1)*WALL_RADIUS)), wallColor) line(add(screen, (self.gridSize*(-1)*WALL_RADIUS, self.gridSize*(2)*WALL_RADIUS-1)), add(screen, (self.gridSize*(-1)*WALL_RADIUS, self.gridSize*(0.5))), wallColor) def isWall(self, x, y, walls): if x < 0 or y < 0: return False if x >= walls.width or y >= walls.height: return False return walls[x][y] def drawFood(self, foodMatrix ): foodImages = [] color = FOOD_COLOR for xNum, x in enumerate(foodMatrix): if self.capture and (xNum * 2) < foodMatrix.width: color = TEAM_COLORS[0] if self.capture and (xNum * 2) >= foodMatrix.width: color = TEAM_COLORS[1] imageRow = [] foodImages.append(imageRow) for yNum, cell in enumerate(x): if cell: # There's food here screen = self.to_screen((xNum, yNum )) dot = circle( screen, FOOD_SIZE * self.gridSize, outlineColor = color, fillColor = color, width = 1) imageRow.append(dot) else: imageRow.append(None) return foodImages def drawCapsules(self, capsules ): capsuleImages = {} for capsule in capsules: ( screen_x, screen_y ) = self.to_screen(capsule) dot = circle( (screen_x, screen_y), CAPSULE_SIZE * self.gridSize, outlineColor = CAPSULE_COLOR, fillColor = CAPSULE_COLOR, width = 1) capsuleImages[capsule] = dot return capsuleImages def removeFood(self, cell, foodImages ): x, y = cell remove_from_screen(foodImages[x][y]) def removeCapsule(self, cell, capsuleImages ): x, y = cell remove_from_screen(capsuleImages[(x, y)]) def drawExpandedCells(self, cells): """ Draws an overlay of expanded grid positions for search agents """ n = float(len(cells)) baseColor = [1.0, 0.0, 0.0] self.clearExpandedCells() self.expandedCells = [] for k, cell in enumerate(cells): screenPos = self.to_screen( cell) cellColor = formatColor(*[(n-k) * c * .5 / n + .25 for c in baseColor]) block = square(screenPos, 0.5 * self.gridSize, color = cellColor, filled = 1, behind=2) self.expandedCells.append(block) if self.frameTime < 0: refresh() def clearExpandedCells(self): if 'expandedCells' in dir(self) and len(self.expandedCells) > 0: for cell in self.expandedCells: remove_from_screen(cell) def updateDistributions(self, distributions): "Draws an agent's belief distributions" # copy all distributions so we don't change their state distributions = map(lambda x: x.copy(), distributions) if self.distributionImages == None: self.drawDistributions(self.previousState) for x in range(len(self.distributionImages)): for y in range(len(self.distributionImages[0])): image = self.distributionImages[x][y] weights = [dist[ (x,y) ] for dist in distributions] if sum(weights) != 0: pass # Fog of war color = [0.0,0.0,0.0] colors = GHOST_VEC_COLORS[1:] # With Pacman if self.capture: colors = GHOST_VEC_COLORS for weight, gcolor in zip(weights, colors): color = [min(1.0, c + 0.95 * g * weight ** .3) for c,g in zip(color, gcolor)] changeColor(image, formatColor(*color)) refresh() class FirstPersonPacmanGraphics(PacmanGraphics): def __init__(self, zoom = 1.0, showGhosts = True, capture = False, frameTime=0): PacmanGraphics.__init__(self, zoom, frameTime=frameTime) self.showGhosts = showGhosts self.capture = capture def initialize(self, state, isBlue = False): self.isBlue = isBlue PacmanGraphics.startGraphics(self, state) # Initialize distribution images walls = state.layout.walls dist = [] self.layout = state.layout # Draw the rest self.distributionImages = None # initialize lazily self.drawStaticObjects(state) self.drawAgentObjects(state) # Information self.previousState = state def lookAhead(self, config, state): if config.getDirection() == 'Stop': return else: pass # Draw relevant ghosts allGhosts = state.getGhostStates() visibleGhosts = state.getVisibleGhosts() for i, ghost in enumerate(allGhosts): if ghost in visibleGhosts: self.drawGhost(ghost, i) else: self.currentGhostImages[i] = None def getGhostColor(self, ghost, ghostIndex): return GHOST_COLORS[ghostIndex] def getPosition(self, ghostState): if not self.showGhosts and not ghostState.isPacman and ghostState.getPosition()[1] > 1: return (-1000, -1000) else: return PacmanGraphics.getPosition(self, ghostState) def add(x, y): return (x[0] + y[0], x[1] + y[1]) # Saving graphical output # ----------------------- # Note: to make an animated gif from this postscript output, try the command: # convert -delay 7 -loop 1 -compress lzw -layers optimize frame* out.gif # convert is part of imagemagick (freeware) SAVE_POSTSCRIPT = False POSTSCRIPT_OUTPUT_DIR = 'frames' FRAME_NUMBER = 0 import os def saveFrame(): "Saves the current graphical output as a postscript file" global SAVE_POSTSCRIPT, FRAME_NUMBER, POSTSCRIPT_OUTPUT_DIR if not SAVE_POSTSCRIPT: return if not os.path.exists(POSTSCRIPT_OUTPUT_DIR): os.mkdir(POSTSCRIPT_OUTPUT_DIR) name = os.path.join(POSTSCRIPT_OUTPUT_DIR, 'frame_%08d.ps' % FRAME_NUMBER) FRAME_NUMBER += 1 writePostscript(name) # writes the current canvas
41.254038
189
0.58347
042c120e4deaf8aeae06a9e2136f39d6c224c161
6,511
py
Python
rpython/rlib/rjitlog/test/test_jitlog.py
m4sterchain/mesapy
ed546d59a21b36feb93e2309d5c6b75aa0ad95c9
[ "Apache-2.0", "OpenSSL" ]
381
2018-08-18T03:37:22.000Z
2022-02-06T23:57:36.000Z
rpython/rlib/rjitlog/test/test_jitlog.py
m4sterchain/mesapy
ed546d59a21b36feb93e2309d5c6b75aa0ad95c9
[ "Apache-2.0", "OpenSSL" ]
16
2018-09-22T18:12:47.000Z
2022-02-22T20:03:59.000Z
rpython/rlib/rjitlog/test/test_jitlog.py
m4sterchain/mesapy
ed546d59a21b36feb93e2309d5c6b75aa0ad95c9
[ "Apache-2.0", "OpenSSL" ]
30
2018-08-20T03:16:34.000Z
2022-01-12T17:39:22.000Z
import py import sys from rpython.jit.tool.oparser import pure_parse from rpython.jit.metainterp.optimizeopt.util import equaloplists from rpython.jit.metainterp.resoperation import ResOperation, rop from rpython.jit.backend.model import AbstractCPU from rpython.jit.metainterp.history import ConstInt, ConstPtr from rpython.rlib.rjitlog import rjitlog as jl from rpython.jit.metainterp.history import AbstractDescr from rpython.rlib.objectmodel import compute_unique_id class FakeCallAssemblerLoopToken(AbstractDescr): def __init__(self, target): self._ll_function_addr = target def repr_of_descr(self): return 'looptoken' class FakeLog(object): def __init__(self): self.values = [] def _write_marked(self, id, text): self.values.append(id + text) def _get_location(greenkey_list): assert len(greenkey_list) == 0 return '/home/pypy/jit.py', 0, 'enclosed', 99, 'DEL' class TestLogger(object): def make_metainterp_sd(self): class FakeJitDriver(object): class warmstate(object): get_location_types = [jl.MP_FILENAME,jl.MP_INT,jl.MP_SCOPE, jl.MP_INT, jl.MP_OPCODE] @staticmethod def get_location(greenkey_list): return [jl.wrap(jl.MP_FILENAME[0],'s','/home/pypy/jit.py'), jl.wrap(jl.MP_INT[0], 'i', 0), jl.wrap(jl.MP_SCOPE[0], 's', 'enclosed'), jl.wrap(jl.MP_INT[0], 'i', 99), jl.wrap(jl.MP_OPCODE[0], 's', 'DEL') ] class FakeMetaInterpSd: cpu = AbstractCPU() cpu.ts = None jitdrivers_sd = [FakeJitDriver()] def get_name_from_address(self, addr): return 'Name' return FakeMetaInterpSd() def test_debug_merge_point(self, tmpdir): logger = jl.JitLogger() file = tmpdir.join('binary_file') file.ensure() fd = file.open('wb') jl.jitlog_init(fd.fileno()) logger.start_new_trace(self.make_metainterp_sd(), jd_name='jdname') log_trace = logger.log_trace(jl.MARK_TRACE, None, None) op = ResOperation(rop.DEBUG_MERGE_POINT, [ConstInt(0), ConstInt(0), ConstInt(0)]) log_trace.write([], [op]) #the next line will close 'fd', instead of logger.finish() fd.close() binary = file.read() is_32bit = chr(sys.maxint == 2**31-1) assert binary == (jl.MARK_START_TRACE) + jl.encode_le_addr(1) + \ jl.encode_str('loop') + jl.encode_le_addr(0) + \ jl.encode_str('jdname') + \ (jl.MARK_TRACE) + jl.encode_le_addr(1) + \ (jl.MARK_INPUT_ARGS) + jl.encode_str('') + \ (jl.MARK_INIT_MERGE_POINT) + b'\x05\x00\x01s\x00i\x08s\x00i\x10s' + \ (jl.MARK_MERGE_POINT) + \ b'\xff' + jl.encode_str('/home/pypy/jit.py') + \ b'\x00' + jl.encode_le_64bit(0) + \ b'\xff' + jl.encode_str('enclosed') + \ b'\x00' + jl.encode_le_64bit(99) + \ b'\xff' + jl.encode_str('DEL') def test_common_prefix(self): fakelog = FakeLog() compressor = jl.PrefixCompressor(1) # nothing to compress yet! result = jl.encode_merge_point(fakelog, compressor, [jl.StringValue(0x0,'s','hello')]) assert result == b"\xff\x05\x00\x00\x00hello" assert fakelog.values == [] # result = jl.encode_merge_point(fakelog, compressor, [jl.StringValue(0x0,'s','hello')]) assert result == b"\xef" assert fakelog.values == [(jl.MARK_COMMON_PREFIX) + "\x00\x05\x00\x00\x00hello"] # fakelog.values = [] result = jl.encode_merge_point(fakelog, compressor, [jl.StringValue(0x0,'s','heiter')]) assert result == b"\x00\x04\x00\x00\x00iter" assert fakelog.values == [(jl.MARK_COMMON_PREFIX) + "\x00\x02\x00\x00\x00he"] # fakelog.values = [] result = jl.encode_merge_point(fakelog, compressor, [jl.StringValue(0x0,'s','heute')]) assert result == b"\x00\x03\x00\x00\x00ute" assert fakelog.values == [] # fakelog.values = [] result = jl.encode_merge_point(fakelog, compressor, [jl.StringValue(0x0,'s','welt')]) assert result == b"\xff\x04\x00\x00\x00welt" assert fakelog.values == [] # fakelog.values = [] result = jl.encode_merge_point(fakelog, compressor, [jl.StringValue(0x0,'s','welle')]) assert result == b"\x00\x02\x00\x00\x00le" assert fakelog.values == [(jl.MARK_COMMON_PREFIX) + "\x00\x03\x00\x00\x00wel"] def test_common_prefix_func(self): assert jl.commonprefix("","") == "" assert jl.commonprefix("/hello/world","/path/to") == "/" assert jl.commonprefix("pyramid","python") == "py" assert jl.commonprefix("0"*100,"0"*100) == "0"*100 with py.test.raises(AssertionError): jl.commonprefix(None,None) def test_redirect_assembler(self, tmpdir): looptoken = FakeCallAssemblerLoopToken(0x0) newlooptoken = FakeCallAssemblerLoopToken(0x1234) # logger = jl.JitLogger() file = tmpdir.join('binary_file') file.ensure() fd = file.open('wb') jl.jitlog_init(fd.fileno()) logger.start_new_trace(self.make_metainterp_sd(), jd_name='jdname') log_trace = logger.log_trace(jl.MARK_TRACE, None, None) op = ResOperation(rop.CALL_ASSEMBLER_I, [], descr=looptoken) log_trace.write([], [op]) jl.redirect_assembler(looptoken, newlooptoken, 0x1234) #the next line will close 'fd', instead of logger.finish() fd.close() binary = file.read() opnum = jl.encode_le_16bit(rop.CALL_ASSEMBLER_I) id_looptoken = compute_unique_id(looptoken) new_id_looptoken = compute_unique_id(newlooptoken) end = jl.MARK_RESOP_DESCR + opnum + jl.encode_str('i0,looptoken') + \ jl.encode_le_addr(id_looptoken) + jl.encode_str('') + \ jl.MARK_REDIRECT_ASSEMBLER + \ jl.encode_le_addr(id_looptoken) + \ jl.encode_le_addr(new_id_looptoken) + \ jl.encode_le_addr(newlooptoken._ll_function_addr) assert binary.endswith(end)
43.697987
100
0.594532
2a2be8327ddd572395d975e3251b3db59ecdbbdf
191
py
Python
server/src/shared_helpers/env.py
JackDanger/go-links
7ca62bdeafc59c6523e36518fd64c293e1add280
[ "Apache-2.0" ]
null
null
null
server/src/shared_helpers/env.py
JackDanger/go-links
7ca62bdeafc59c6523e36518fd64c293e1add280
[ "Apache-2.0" ]
null
null
null
server/src/shared_helpers/env.py
JackDanger/go-links
7ca62bdeafc59c6523e36518fd64c293e1add280
[ "Apache-2.0" ]
null
null
null
import os def current_env_is_production(): return os.getenv('SERVER_SOFTWARE', '').startswith('Google App Engine/') def current_env_is_local(): return not current_env_is_production()
19.1
74
0.769634
6708d010ed7591822346319fec7248897003f403
247
py
Python
data_types_and_variables/exercise/01_integer_operations.py
Galchov/python-fundamentals
4939bdd1c66a7b458fd9ffd0a01d714de26724b5
[ "MIT" ]
null
null
null
data_types_and_variables/exercise/01_integer_operations.py
Galchov/python-fundamentals
4939bdd1c66a7b458fd9ffd0a01d714de26724b5
[ "MIT" ]
null
null
null
data_types_and_variables/exercise/01_integer_operations.py
Galchov/python-fundamentals
4939bdd1c66a7b458fd9ffd0a01d714de26724b5
[ "MIT" ]
null
null
null
number_one = int(input()) number_two = int(input()) number_three = int(input()) number_four = int(input()) sum_one_two = number_one + number_two integer_division = sum_one_two // number_three result = integer_division * number_four print(result)
24.7
46
0.765182
b90bad385f11b0bb6e930a1e35e23694a1812340
1,240
py
Python
legacy/steps/deployer/__init__.py
ParikhKadam/zenml
867e4d4c982a50447bd182b30af37f2141dac5a4
[ "Apache-2.0" ]
1,275
2020-11-19T14:18:25.000Z
2021-08-13T07:31:39.000Z
legacy/steps/deployer/__init__.py
ParikhKadam/zenml
867e4d4c982a50447bd182b30af37f2141dac5a4
[ "Apache-2.0" ]
62
2020-11-30T16:06:14.000Z
2021-08-10T08:34:52.000Z
legacy/steps/deployer/__init__.py
ParikhKadam/zenml
867e4d4c982a50447bd182b30af37f2141dac5a4
[ "Apache-2.0" ]
75
2020-12-22T19:15:08.000Z
2021-08-13T03:07:50.000Z
# Copyright (c) ZenML GmbH 2020. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at: # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express # or implied. See the License for the specific language governing # permissions and limitations under the License. from zenml.steps.deployer.base_deployer import BaseDeployerStep from zenml.steps.deployer.gcaip_deployer import GCAIPDeployer from zenml.logger import get_logger from zenml.utils.requirement_utils import check_integration, \ CORTEX_INTEGRATION logger = get_logger(__name__) try: check_integration(CORTEX_INTEGRATION) from zenml.steps.deployer.cortex_deployer import CortexDeployer except ModuleNotFoundError as e: logger.debug(f"There were failed imports due to missing integrations. " f"HuggingFaceTokenizerStep was not imported. " f"More information:") logger.debug(e)
40
75
0.760484
821813b4286ce228612b9f828ed5f148b4a9f635
7,981
py
Python
community_selection.py
anguoyuan/Hypergraph-Propagation-and-Community-Selection-for-Objects-Retrieval
5595abca7eb231cd6edf8db293ad5d1d2d4b7121
[ "MIT" ]
13
2021-11-08T08:18:05.000Z
2022-01-07T05:56:30.000Z
community_selection.py
anguoyuan/Hypergraph-Propagation-and-Community-Selection-for-Objects-Retrieval
5595abca7eb231cd6edf8db293ad5d1d2d4b7121
[ "MIT" ]
1
2021-11-12T20:21:53.000Z
2021-12-21T14:57:25.000Z
community_selection.py
anguoyuan/Hypergraph-Propagation-and-Community-Selection-for-Objects-Retrieval
5595abca7eb231cd6edf8db293ad5d1d2d4b7121
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Tue Oct 5 16:02:42 2021 @author: Guoyuan An """ #prepare the uncertainty calculation from scipy.stats import entropy import numpy as np import pickle def prepare_community_selection(dataset,COMMUNITY_SELECTION): graph_directaries={'roxford':'graph/delg/roxford/0301/', 'rparis': 'graph/delg/rparis/', 'R1Moxford': 'graph/delg/R1Moxford/', 'R1Mparis':'graph/delg/R1Mparis/'} global _graph_dir, Neighbors,_dataset_meta, _dataset _dataset=dataset try: graph_dir=graph_directaries[_dataset] except: print('only allow rparis, roxford, R1Moxford, and R1Mparis') #load Neighbors Neighbors=np.load(graph_dir+'Neighbors.npy',allow_pickle=True).item() #dict. key is image index, value is list of neighbor image indexes #load the ground truth file if _dataset=='roxford': with open('data/roxford/gnd_roxford5k.pkl','rb') as f: _dataset_meta=pickle.load(f) elif _dataset=='rparis': with open('data/rparis/gnd_rparis6k.pkl','rb') as f: _dataset_meta=pickle.load(f) if COMMUNITY_SELECTION==2: #prepare the delg match global _geom,_features,_qgeom,_qfeatures def _read_delg_index(): #return the list of index features and locations; list of array geom,features=[],[] for img in _dataset_meta['imlist']: geom_path='features/'+_dataset+'_np_delg_features/'+img+'_local_locations.npy' features_path='features/'+_dataset+'_np_delg_features/'+img+'_local_descriptors.npy' geom.append(np.load(geom_path)) features.append(np.load(features_path)) return geom, features _geom,_features=_read_delg_index() def _read_delg_query(): #return the list of index features and locations; list of array geom,features=[],[] for img in _dataset_meta['qimlist']: geom_path='features/'+_dataset+'_np_delg_features/'+img+'_local_locations.npy' features_path='features/'+_dataset+'_np_delg_features/'+img+'_local_descriptors.npy' geom.append(np.load(geom_path)) features.append(np.load(features_path)) return geom, features _qgeom,_qfeatures=_read_delg_query() missing=[] def extract_sub_graph(first_search,bound=100): def add_to_subgraph(img): potential=[] # If added to existing sub_graph, return True for i,s in enumerate(sub_graph): if len( set(Neighbors[img]).intersection(s) )!=0: potential.append(s) sub_graph.remove(s) if len(potential)==1: s=potential[0] s.add(img) sub_graph.append(s) return True elif len(potential)>1: s=set([img]) for x in potential: s.update(x) sub_graph.append(s) return True else: return False sub_graph=list() #list of set, ็”ฑๅพˆๅคš็š„connected components็ป„ๆˆ for i,img in enumerate(first_search[:bound]): #try to add to existing sub_graph tmp=add_to_subgraph(img) #tmp is True if succesfully add #otherwise, try to connect with other remaining nodes if tmp==False: s=set(Neighbors[img]).intersection(first_search[i:bound]) s.add(img) # in case Neighbors[img] doesn't contain img sub_graph.append(s) return sub_graph def calculate_entropy(sub_graph): #calculate entropy length=sum([len(s) for s in sub_graph]) numbers=[len(community)/length for community in sub_graph] e=entropy(numbers) return e def _inlier_Region(inlier_locs): ''' calculate the inlier region Parameters ---------- inlier_locs : numpy array (72,2) DESCRIPTION. Returns ------- up : TYPE DESCRIPTION. down : TYPE DESCRIPTION. left : TYPE DESCRIPTION. right : TYPE DESCRIPTION. ''' down,up=np.max(inlier_locs[:,0]),np.min(inlier_locs[:,0]) right,left=np.max(inlier_locs[:,1]),np.min(inlier_locs[:,1]) size=(right-left)*(down-up) return size N_RANSAC=0 from utils.image_reranking import MatchFeatures def match_one_pair_delg(query, index): global N_RANSAC N_RANSAC+=1 query_locations=_qgeom[query] query_descriptors=_qfeatures[query] index_locations=_geom[index] index_descriptors=_features[index] # inlier_locations: list [array([400., 176.]),...] inlier_number,match_viz_io,query_inlier_locations,index_inlier_locations,q2i,i2q=MatchFeatures( query_locations,query_descriptors, index_locations, index_descriptors, ransac_seed=None, descriptor_matching_threshold=0.9, ransac_residual_threshold=10.0,use_ratio_test=False) if inlier_number != 0: query_inlier_locations=np.array(query_inlier_locations) index_inlier_locations=np.array(index_inlier_locations) # np array ไพ‹(6,2) index_size=_inlier_Region(index_inlier_locations) query_size=_inlier_Region(query_inlier_locations) return inlier_number,index_size else: return 0,999999999 ################################################################################ #to find the new dominant image import cv2 def find_dominant(Gs,first_search,q): #use sift for spatial matching dominant_image=first_search[0] for i in first_search[:100]: global N_RANSAC N_RANSAC+=1 img1 = cv2.imread('data/oxford5k/jpg/'+_dataset_meta['qimlist'][q]+'.jpg',cv2.IMREAD_COLOR) a,b,c,d=_dataset_meta['gnd'][q]['bbx'] left, upper, right, lower=int(a),int(b),int(c),int(d) #(left, upper, right, lower) img1=img1[upper:lower,left:right] #[y1:y2, x1:x2] gray1 = cv2.cvtColor(img1,cv2.COLOR_BGR2GRAY) img2 = cv2.imread('data/oxford5k/jpg/'+_dataset_meta['imlist'][i]+'.jpg',cv2.IMREAD_COLOR) gray2 = cv2.cvtColor(img2,cv2.COLOR_BGR2GRAY) sift = cv2.SIFT_create() # ไฝฟ็”จSIFTๆŸฅๆ‰พๅ…ณ้”ฎ็‚นkey pointsๅ’Œๆ่ฟฐ็ฌฆdescriptors kp1,des1 = sift.detectAndCompute(gray1, None) kp2,des2 = sift.detectAndCompute(gray2, None) FLANN_INDEX_KDTREE = 0 index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5) search_params = dict(checks = 50) flann = cv2.FlannBasedMatcher(index_params, search_params) matches = flann.knnMatch(des1,des2,k=2) # store all the good matches as per Lowe's ratio test. # we don't allow a feature in index image to be matched by several query features good = [] matched_features=set() for m,n in matches: if m.distance < 0.7*n.distance and (m.trainIdx not in matched_features): good.append(m) matched_features.add(m.trainIdx) if len(good)<4: continue src_pts = np.float32([ kp1[m.queryIdx].pt for m in good ]).reshape(-1,1,2) dst_pts = np.float32([ kp2[m.trainIdx].pt for m in good ]).reshape(-1,1,2) M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC,5.0) matchesMask = mask.ravel().tolist() if sum(matchesMask)>20: dominant_image=i break return dominant_image
33.961702
141
0.587019
83e473452747651e72e59ffe90441d7572e844b5
9,624
py
Python
examples/vpn-plugin-radius-auth/vpn_plugin_radius_auth.py
coalfire/auth-script-openvpn
b999bfaf77b35dd7a42eb3c53e026f700e5b2bcc
[ "Apache-2.0" ]
null
null
null
examples/vpn-plugin-radius-auth/vpn_plugin_radius_auth.py
coalfire/auth-script-openvpn
b999bfaf77b35dd7a42eb3c53e026f700e5b2bcc
[ "Apache-2.0" ]
null
null
null
examples/vpn-plugin-radius-auth/vpn_plugin_radius_auth.py
coalfire/auth-script-openvpn
b999bfaf77b35dd7a42eb3c53e026f700e5b2bcc
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 """ vpn-plugin-radius-auth authenticate against radius with username and password. Use with auth-script-openvpn """ import logging from logging.handlers import RotatingFileHandler import os import sys import configargparse from pyrad.client import Client from pyrad.dictionary import Dictionary import pyrad.packet def get_logger(location, level=logging.INFO): """ Accept location (file-like object), optional level (logging level, defaulting to logging.INFO). Return a logger object. """ logger = logging.getLogger("vpn_plugin_radius_auth") logger.setLevel(level) channel = logging.StreamHandler() channel_fmt = logging.Formatter("%(levelname)s - %(message)s") channel.setFormatter(channel_fmt) logger.addHandler(channel) filehandle = RotatingFileHandler(location, maxBytes=10240, backupCount=10) filehandle_fmt = logging.Formatter( "%(asctime)s - %(levelname)s - %(message)s", "%Y-%m-%dT%H:%M:%S" ) filehandle.setFormatter(filehandle_fmt) logger.addHandler(filehandle) return logger def write_dictionary(location: str) -> bool: """ Accept location (file-like object). Write a default radius dictionary to the location if it does not exist. return True """ rad_dictionary = """ ATTRIBUTE User-Name 1 string ATTRIBUTE User-Password 2 string encrypt=1 ATTRIBUTE NAS-IP-Address 3 ipaddr """ # Dedent dict_fmt = "\n".join(line.strip() for line in rad_dictionary.split("\n")) if not os.path.exists(location): with open(location, "w", encoding="utf-8") as my_dictionary: my_dictionary.write(dict_fmt) return location code_meaning = { 1: "AccessRequest", 2: "AccessAccept", 3: "AccessReject", 4: "AccountingRequest", 5: "AccountingResponse", 11: "AccessChallenge", 12: "StatusServer", 13: "StatusClient", 40: "DisconnectRequest", 41: "DisconnectACK", 42: "DisconnectNAK", 43: "CoARequest", 44: "CoAACK", 45: "CoANAK", } def _is_authorized_p(server: str, credentials: dict, logger): """ Accept server (str), credentials (dict), logger. return True if server authorizes credentials, False is server denies authorization, None on error. """ port = credentials["port"] dictionary = credentials["dictionary"] username = credentials["username"] nas_ip = credentials["nas_ip"] encoded_secret = bytes(credentials["shared_secret"], encoding="utf-8") logger.info( "Creating radius client of %s:%d using dictionary %s for config %s", server, port, dictionary, credentials["config"], ) client = Client( server=server, secret=encoded_secret, dict=Dictionary(dictionary), authport=port, timeout=10, ) logger.info( "Creating AuthPacket for user %s from %s", username, nas_ip, ) request = client.CreateAuthPacket( code=pyrad.packet.AccessRequest, User_Name=username, NAS_IP_Address=nas_ip, ) logger.info( "Encrypting password for %s", username, ) # For reasons I do not understand, # we receive non-Latin characters ASCII-encoded with surrogate escapes. # To feed this to pyrad.packet, we want unicode. # So convert it to bytes, and back out to UTF-8. recoded = ( credentials["password"] .encode("ASCII", "surrogateescape") .decode("UTF-8") ) request["User-Password"] = request.PwCrypt(recoded) logger.info( "sending AccessRequest for user %s to %s:%d", username, server, port, ) if credentials["dry_run"] is True: reply_code = pyrad.packet.AccessAccept else: try: reply_code = client.SendPacket(request).code except Exception as err: logger.error( "error sending AccessRequest for user %s to %s:%d: %s: %s", username, server, port, type(err), err, ) return None logger.info( "got reply code %d: %s for user %s from %s:%d", reply_code, code_meaning.get(reply_code, "unknown"), username, server, port, ) return reply_code == pyrad.packet.AccessAccept def any_and_not_false(iterable: list) -> bool: """ Accept iter. A reimplementation of any, with the differnce that the first False short-circuits. The purpose of this is to short circuit the moment we get an auth or a denial from a radius server, while letting non-responses fail over to the next server. >>> any_and_not_false([False, True, None]) False >>> any_and_not_false([False, None, True]) False >>> any_and_not_false([True, False, None]) True >>> any_and_not_false([True, None, False]) True >>> any_and_not_false([None, True, False]) True >>> any_and_not_false([None, False, False]) False >>> any_and_not_false([None, None]) False """ for item in iterable: if item: return True if item is False: return False return False def is_authorized_p(credentials: dict, logger) -> bool: """ Accept credentials (dict). return True if credentials are authorized. else False. """ c = credentials if not write_dictionary(c["dictionary"]): return False return any_and_not_false( _is_authorized_p(server, c, logger) for server in c["servers"] ) def write_auth_file(authorized: bool, auth_file: str) -> bool: """ Accept authorized (bool), auth_file (file-like object). Write 1 to auth_file if authorized is True; otherwise write 0 to auth_file. FIXME what happens to openvpn if we can't write the file? """ auth_message = str(int(authorized)) + "\n" with open(auth_file, "w", encoding="utf-8") as output: output.write(auth_message) def main(): """ Parse args, get environment, set umask, pass off to is_authorized_p and write_auth_file. """ parser = configargparse.ArgumentParser() parser.add_argument( "-c", "--config", help="""Use config file CONFIG. Defaults to /etc/openvpn/radius/auth.conf""", is_config_file=True, default="/etc/openvpn/radius/auth.conf", ) parser.add_argument( "-S", "--servers", help="""Servers to send packets to, in order of preference. Config file syntax is 'servers = [server_1, server_2]'""", required=True, metavar="SERVER", nargs="+", ) parser.add_argument( "-p", "--port", help="""Port to send radius packets to. Default is 1812.""", default=1812, type=int, ) parser.add_argument( "-s", "--shared-secret", help="Radius shared secret", required=True, ) parser.add_argument( "-i", "--nas-ip", help="""IP to report to the radius server where this packet comes from. Defaults to 127.0.0.1""", default="127.0.0.1", ) parser.add_argument( "-d", "--dictionary-location", help="""filesystem location of the radius dictionary to use. Defaults to /etc/openvpn/radius-vpn.dictionary. This file will be written with default settings if it does not exist.""", default="/etc/openvpn/radius-vpn.dictionary", dest="dictionary", ) parser.add_argument( "-L", "--log-location", help="""Where to log to. Defaults to /var/log/openvpn/vpn-plugin-radius-auth.log """, default="/var/log/openvpn/vpn-plugin-radius-auth.log", ) parser.add_argument( "-D", "--dry-run", help="""Assemble and print packet; do not send it. Treat auth as successful. """, action="store_true", ) args = parser.parse_args() logger = get_logger(location=args.log_location) cred_items = [ "servers", "port", "shared_secret", "nas_ip", "dictionary", "dry_run", ] credentials = {k: v for k, v in vars(args).items() if k in cred_items} credentials["username"] = os.environ.get("username", "fake_user") credentials["password"] = os.environ.get("password", "fake_password") credentials["config"] = os.environ.get("config", "fake_config") auth_control_file = os.environ.get( "auth_control_file", "fake_auth_control_file" ) # We will be writing logs, auth_file, and possibly a dictionary. # all should be 644 permissions. os.umask(0o133) # Any exception means we should not authorize... try: authorized = is_authorized_p(credentials, logger) except Exception as err: logger.error( "exception authorizing %s: %s: %s", credentials["username"], type(err), err, ) authorized = False logger.info("user %s authorized: %s", credentials["username"], authorized) try: write_auth_file(authorized, auth_control_file) except Exception as err: logger.error(err) # ... and we always want to exit successfully sys.exit(0) if __name__ == "__main__": main()
27.575931
84
0.601205
19929d099cf2d46fc7c83060fb911192e1a4ba8d
8,994
py
Python
core/generate_hact_graphs.py
histocartography/hact-net
4b66b41a2f00b768029b6aaa1152c746faf2b9c6
[ "MIT" ]
16
2021-06-11T05:23:43.000Z
2022-03-23T20:30:42.000Z
core/generate_hact_graphs.py
yujing1997/hact-net
4b66b41a2f00b768029b6aaa1152c746faf2b9c6
[ "MIT" ]
4
2021-06-02T02:58:10.000Z
2022-03-22T12:31:33.000Z
core/generate_hact_graphs.py
yujing1997/hact-net
4b66b41a2f00b768029b6aaa1152c746faf2b9c6
[ "MIT" ]
6
2021-05-30T23:36:57.000Z
2022-03-22T12:31:58.000Z
""" Extract HACT graphs for all the sample in the BRACS dataset. """ import os from glob import glob import argparse from PIL import Image import numpy as np from tqdm import tqdm import torch from dgl.data.utils import save_graphs import h5py from histocartography.preprocessing import ( VahadaneStainNormalizer, # stain normalizer NucleiExtractor, # nuclei detector DeepFeatureExtractor, # feature extractor KNNGraphBuilder, # kNN graph builder ColorMergedSuperpixelExtractor, # tissue detector DeepFeatureExtractor, # feature extractor RAGGraphBuilder, # build graph AssignmnentMatrixBuilder # assignment matrix ) # BRACS subtype to 7-class label TUMOR_TYPE_TO_LABEL = { 'N': 0, 'PB': 1, 'UDH': 2, 'ADH': 3, 'FEA': 4, 'DCIS': 5, 'IC': 6 } MIN_NR_PIXELS = 50000 MAX_NR_PIXELS = 50000000 STAIN_NORM_TARGET_IMAGE = '../data/target.png' # define stain normalization target image. def parse_arguments(): parser = argparse.ArgumentParser() parser.add_argument( '--image_path', type=str, help='path to the BRACS data.', default='', required=False ) parser.add_argument( '--save_path', type=str, help='path to save the cell graphs.', default='../data/', required=False ) return parser.parse_args() class HACTBuilding: def __init__(self): # 1. define stain normalizer self.normalizer = VahadaneStainNormalizer(target_path=STAIN_NORM_TARGET_IMAGE) # 2. define CG builders self._build_cg_builders() # 3. define TG builders self._build_tg_builders() # 4. define assignment matrix builder self.assignment_matrix_builder = AssignmnentMatrixBuilder() # 5. define var to store image IDs that failed (for whatever reason) self.image_ids_failing = [] def _build_cg_builders(self): # a define nuclei extractor self.nuclei_detector = NucleiExtractor() # b define feature extractor: Extract patches of 72x72 pixels around each # nucleus centroid, then resize to 224 to match ResNet input size. self.nuclei_feature_extractor = DeepFeatureExtractor( architecture='resnet34', patch_size=72, resize_size=224 ) # c define k-NN graph builder with k=5 and thresholding edges longer # than 50 pixels. Add image size-normalized centroids to the node features. # For e.g., resulting node features are 512 features from ResNet34 + 2 # normalized centroid features. self.knn_graph_builder = KNNGraphBuilder(k=5, thresh=50, add_loc_feats=True) def _build_tg_builders(self): # a define nuclei extractor self.tissue_detector = ColorMergedSuperpixelExtractor( superpixel_size=500, compactness=20, blur_kernel_size=1, threshold=0.05, downsampling_factor=4 ) # b define feature extractor: Extract patches of 144x144 pixels all over # the tissue regions. Each patch is resized to 224 to match ResNet input size. self.tissue_feature_extractor = DeepFeatureExtractor( architecture='resnet34', patch_size=144, resize_size=224 ) # c define RAG builder. Append normalized centroid to the node features. self.rag_graph_builder = RAGGraphBuilder(add_loc_feats=True) def _build_cg(self, image): nuclei_map, nuclei_centroids = self.nuclei_detector.process(image) features = self.nuclei_feature_extractor.process(image, nuclei_map) graph = self.knn_graph_builder.process(nuclei_map, features) return graph, nuclei_centroids def _build_tg(self, image): superpixels, _ = self.tissue_detector.process(image) features = self.tissue_feature_extractor.process(image, superpixels) graph = self.rag_graph_builder.process(superpixels, features) return graph, superpixels def process(self, image_path, save_path, split): # 1. get image path subdirs = os.listdir(image_path) image_fnames = [] for subdir in (subdirs + ['']): # look for all the subdirs AND the image path image_fnames += glob(os.path.join(image_path, subdir, '*.png')) print('*** Start analysing {} images ***'.format(len(image_fnames))) for image_path in tqdm(image_fnames): # a. load image & check if already there _, image_name = os.path.split(image_path) image = np.array(Image.open(image_path)) nr_pixels = image.shape[0] * image.shape[1] image_label = TUMOR_TYPE_TO_LABEL[image_name.split('_')[2]] cg_out = os.path.join(save_path, 'cell_graphs', split, image_name.replace('.png', '.bin')) tg_out = os.path.join(save_path, 'tissue_graphs', split, image_name.replace('.png', '.bin')) assign_out = os.path.join(save_path, 'assignment_matrices', split, image_name.replace('.png', '.h5')) # if file was not already created + not too big + not too small, then process if not self._exists(cg_out, tg_out, assign_out) and self._valid_image(nr_pixels): # b. stain norm the image try: image = self.normalizer.process(image) except: print('Warning: {} failed during stain normalization.'.format(image_path)) self.image_ids_failing.append(image_path) pass try: cell_graph, nuclei_centroid = self._build_cg(image) save_graphs( filename=cg_out, g_list=[cell_graph], labels={"label": torch.tensor([image_label])} ) except: print('Warning: {} failed during cell graph generation.'.format(image_path)) self.image_ids_failing.append(image_path) pass try: tissue_graph, tissue_map = self._build_tg(image) save_graphs( filename=tg_out, g_list=[tissue_graph], labels={"label": torch.tensor([image_label])} ) except: print('Warning: {} failed during tissue graph generation.'.format(image_path)) self.image_ids_failing.append(image_path) pass try: assignment_matrix = self.assignment_matrix_builder.process(nuclei_centroid, tissue_map) with h5py.File(assign_out, "w") as output_file: output_file.create_dataset( "assignment_matrix", data=assignment_matrix, compression="gzip", compression_opts=9, ) except: print('Warning: {} failed during assignment matrix generation.'.format(image_path)) self.image_ids_failing.append(image_path) pass else: print('Image:', image_path, ' was already processed or is too large/small.') print('Out of {} images, {} successful HACT graph generations.'.format( len(image_fnames), len(image_fnames) - len(self.image_ids_failing) )) print('Failing IDs are:', self.image_ids_failing) def _valid_image(self, nr_pixels): if nr_pixels > MIN_NR_PIXELS and nr_pixels < MAX_NR_PIXELS: return True return False def _exists(self, cg_out, tg_out, assign_out): if os.path.isfile(cg_out) and os.path.isfile(tg_out) and os.path.isfile(assign_out): return True return False if __name__ == "__main__": # 1. handle i/o args = parse_arguments() if not os.path.isdir(args.image_path) or not os.listdir(args.image_path): raise ValueError("Data directory is either empty or does not exist.") split = '' if 'train' in args.image_path: split = 'train' elif 'val' in args.image_path: split = 'val' else: split = 'test' os.makedirs(os.path.join(args.save_path, 'cell_graphs', split), exist_ok=True) os.makedirs(os.path.join(args.save_path, 'tissue_graphs', split), exist_ok=True) os.makedirs(os.path.join(args.save_path, 'assignment_matrices', split), exist_ok=True) # 2. generate HACT graphs one-by-one, will automatically # run on GPU if available. hact_builder = HACTBuilding() hact_builder.process(args.image_path, args.save_path, split)
37.012346
113
0.603736
6c11a9bfc1a262152ea0a9ed3ebcc257fa29cd86
705
py
Python
Handout/pygame.i/referencia/config.py
pedroivoal/Dessoft
da4da1b48112db8da6a6b2ac5beef396c6d624d7
[ "MIT" ]
null
null
null
Handout/pygame.i/referencia/config.py
pedroivoal/Dessoft
da4da1b48112db8da6a6b2ac5beef396c6d624d7
[ "MIT" ]
null
null
null
Handout/pygame.i/referencia/config.py
pedroivoal/Dessoft
da4da1b48112db8da6a6b2ac5beef396c6d624d7
[ "MIT" ]
null
null
null
from os import path # Estabelece a pasta que contem as figuras e sons. IMG_DIR = path.join(path.dirname(__file__), 'assets', 'img') SND_DIR = path.join(path.dirname(__file__), 'assets', 'snd') FNT_DIR = path.join(path.dirname(__file__), 'assets', 'font') # Dados gerais do jogo. WIDTH = 480 # Largura da tela HEIGHT = 600 # Altura da tela FPS = 60 # Frames por segundo # Define tamanhos METEOR_WIDTH = 50 METEOR_HEIGHT = 38 SHIP_WIDTH = 50 SHIP_HEIGHT = 38 # Define algumas variรกveis com as cores bรกsicas WHITE = (255, 255, 255) BLACK = (0, 0, 0) RED = (255, 0, 0) GREEN = (0, 255, 0) BLUE = (0, 0, 255) YELLOW = (255, 255, 0) # Estados para controle do fluxo da aplicaรงรฃo INIT = 0 GAME = 1 QUIT = 2
22.741935
61
0.689362
cd214604cbbaaddc0fa132092702d79c4c6c77aa
7,789
py
Python
flexget/logger.py
RSully/flexget-flexget
ab36590e569511a43c1e35b1dfae9b7fb8db1535
[ "MIT" ]
null
null
null
flexget/logger.py
RSully/flexget-flexget
ab36590e569511a43c1e35b1dfae9b7fb8db1535
[ "MIT" ]
null
null
null
flexget/logger.py
RSully/flexget-flexget
ab36590e569511a43c1e35b1dfae9b7fb8db1535
[ "MIT" ]
null
null
null
from __future__ import absolute_import, division, unicode_literals, print_function import collections import contextlib import logging import logging.handlers import sys import threading import uuid import warnings from flexget import __version__ from flexget.utils.tools import io_encoding # A level more detailed than DEBUG TRACE = 5 # A level more detailed than INFO VERBOSE = 15 # Stores `task`, logging `session_id`, and redirected `output` stream in a thread local context local_context = threading.local() def get_level_no(level): if not isinstance(level, int): # Python logging api is horrible. This is getting the level number, which is required on python 2.6. level = logging.getLevelName(level.upper()) return level @contextlib.contextmanager def task_logging(task): """Context manager which adds task information to log messages.""" old_task = getattr(local_context, 'task', '') local_context.task = task try: yield finally: local_context.task = old_task class SessionFilter(logging.Filter): def __init__(self, session_id): self.session_id = session_id def filter(self, record): return getattr(record, 'session_id', None) == self.session_id @contextlib.contextmanager def capture_output(stream, loglevel=None): """Context manager which captures all log and console output to given `stream` while in scope.""" root_logger = logging.getLogger() old_level = root_logger.getEffectiveLevel() old_id = getattr(local_context, 'session_id', None) # Keep using current, or create one if none already set local_context.session_id = old_id or uuid.uuid4() old_output = getattr(local_context, 'output', None) old_loglevel = getattr(local_context, 'loglevel', None) streamhandler = logging.StreamHandler(stream) streamhandler.setFormatter(FlexGetFormatter()) streamhandler.addFilter(SessionFilter(local_context.session_id)) if loglevel is not None: loglevel = get_level_no(loglevel) streamhandler.setLevel(loglevel) # If requested loglevel is lower than the root logger is filtering for, we need to turn it down. # All existing handlers should have their desired level set and not be affected. if not root_logger.isEnabledFor(loglevel): root_logger.setLevel(loglevel) local_context.output = stream local_context.loglevel = loglevel root_logger.addHandler(streamhandler) try: yield finally: root_logger.removeHandler(streamhandler) root_logger.setLevel(old_level) local_context.session_id = old_id local_context.output = old_output local_context.loglevel = old_loglevel def get_capture_stream(): """If output is currently being redirected to a stream, returns that stream.""" return getattr(local_context, 'output', None) def get_capture_loglevel(): """If output is currently being redirected to a stream, returns declared loglevel for that stream.""" return getattr(local_context, 'loglevel', None) def console(text): """ Print to console safely. Output is able to be captured by different streams in different contexts. Any plugin wishing to output to the user's console should use this function instead of print so that output can be redirected when FlexGet is invoked from another process. """ if not isinstance(text, str): text = unicode(text).encode(io_encoding, 'replace') output = getattr(local_context, 'output', sys.stdout) print(text, file=output) class RollingBuffer(collections.deque): """File-like that keeps a certain number of lines of text in memory.""" def write(self, line): self.append(line) class FlexGetLogger(logging.Logger): """Custom logger that adds trace and verbose logging methods, and contextual information to log records.""" def makeRecord(self, name, level, fn, lno, msg, args, exc_info, func=None, extra=None): extra = extra or {} extra.update( task=getattr(local_context, 'task', ''), session_id=getattr(local_context, 'session_id', '')) # Replace newlines in log messages with \n if isinstance(msg, basestring): msg = msg.replace('\n', '\\n') return logging.Logger.makeRecord(self, name, level, fn, lno, msg, args, exc_info, func, extra) def trace(self, msg, *args, **kwargs): """Log at TRACE level (more detailed than DEBUG).""" self.log(TRACE, msg, *args, **kwargs) def verbose(self, msg, *args, **kwargs): """Log at VERBOSE level (displayed when FlexGet is run interactively.)""" self.log(VERBOSE, msg, *args, **kwargs) class FlexGetFormatter(logging.Formatter): """Custom formatter that can handle both regular log records and those created by FlexGetLogger""" flexget_fmt = '%(asctime)-15s %(levelname)-8s %(name)-13s %(task)-15s %(message)s' def __init__(self): logging.Formatter.__init__(self, self.flexget_fmt, '%Y-%m-%d %H:%M') def format(self, record): if not hasattr(record, 'task'): record.task = '' return logging.Formatter.format(self, record) _logging_configured = False _buff_handler = None _logging_started = False # Stores the last 50 debug messages debug_buffer = RollingBuffer(maxlen=50) def initialize(unit_test=False): """Prepare logging. """ global _logging_configured, _logging_started, _buff_handler if _logging_configured: return if 'dev' in __version__: warnings.filterwarnings('always', category=DeprecationWarning, module='flexget.*') warnings.simplefilter('once', append=True) logging.addLevelName(TRACE, 'TRACE') logging.addLevelName(VERBOSE, 'VERBOSE') _logging_configured = True # with unit test we want a bit simpler setup if unit_test: logging.basicConfig() _logging_started = True return # Store any log messages in a buffer until we `start` function is run logger = logging.getLogger() _buff_handler = logging.handlers.BufferingHandler(1000 * 1000) logger.addHandler(_buff_handler) logger.setLevel(logging.NOTSET) # Add a handler that sores the last 50 debug lines to `debug_buffer` for use in crash reports crash_handler = logging.StreamHandler(debug_buffer) crash_handler.setLevel(logging.DEBUG) crash_handler.setFormatter(FlexGetFormatter()) logger.addHandler(crash_handler) def start(filename=None, level=logging.INFO, to_console=True, to_file=True): """After initialization, start file logging. """ global _logging_started assert _logging_configured if _logging_started: return # root logger logger = logging.getLogger() level = get_level_no(level) logger.setLevel(level) formatter = FlexGetFormatter() if to_file: file_handler = logging.handlers.RotatingFileHandler(filename, maxBytes=1000 * 1024, backupCount=9) file_handler.setFormatter(formatter) file_handler.setLevel(level) logger.addHandler(file_handler) # without --cron we log to console if to_console: console_handler = logging.StreamHandler(sys.stdout) console_handler.setFormatter(formatter) console_handler.setLevel(level) logger.addHandler(console_handler) # flush what we have stored from the plugin initialization logger.removeHandler(_buff_handler) if _buff_handler: for record in _buff_handler.buffer: if logger.isEnabledFor(record.levelno): logger.handle(record) _buff_handler.flush() _logging_started = True # Set our custom logger class as default logging.setLoggerClass(FlexGetLogger)
34.312775
111
0.706381
eab9eaccd128cad9a8c678e07d6e9420bdb41087
95
py
Python
examples/test_simple.py
VStoilovskyi/agent-python-pytest
325f56938009ae89ae7739410adcccc0d94f2cde
[ "Apache-2.0" ]
85
2017-05-03T10:44:32.000Z
2022-03-30T06:57:10.000Z
examples/test_simple.py
VStoilovskyi/agent-python-pytest
325f56938009ae89ae7739410adcccc0d94f2cde
[ "Apache-2.0" ]
212
2017-04-26T12:18:07.000Z
2022-03-28T11:49:34.000Z
examples/test_simple.py
VStoilovskyi/agent-python-pytest
325f56938009ae89ae7739410adcccc0d94f2cde
[ "Apache-2.0" ]
103
2017-04-12T15:34:58.000Z
2022-01-24T17:11:29.000Z
"""Simple example test.""" def test_simple(): """Simple example test.""" assert True
13.571429
30
0.610526
5d39b5031a17de51e4976e417a97bd5433ae39a0
649
py
Python
office__excel__openpyxl__xlwt/xlsx__openpyxl__hello_world.py
DazEB2/SimplePyScripts
1dde0a42ba93fe89609855d6db8af1c63b1ab7cc
[ "CC-BY-4.0" ]
117
2015-12-18T07:18:27.000Z
2022-03-28T00:25:54.000Z
office__excel__openpyxl__xlwt/xlsx__openpyxl__hello_world.py
DazEB2/SimplePyScripts
1dde0a42ba93fe89609855d6db8af1c63b1ab7cc
[ "CC-BY-4.0" ]
8
2018-10-03T09:38:46.000Z
2021-12-13T19:51:09.000Z
office__excel__openpyxl__xlwt/xlsx__openpyxl__hello_world.py
DazEB2/SimplePyScripts
1dde0a42ba93fe89609855d6db8af1c63b1ab7cc
[ "CC-BY-4.0" ]
28
2016-08-02T17:43:47.000Z
2022-03-21T08:31:12.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'ipetrash' # pip install openpyxl import openpyxl columns = ['Name', 'Age', 'Course'] rows = [ ['Vasya', '16', 1], ['Anya', '17', 2], ['Inna', '16', 1], ] wb = openpyxl.Workbook() # Remove default sheet for sheet_name in wb.sheetnames: sheet = wb.get_sheet_by_name(sheet_name) wb.remove_sheet(sheet) ws = wb.create_sheet('Students') for i, value in enumerate(columns, 1): ws.cell(row=1, column=i).value = value for i, row in enumerate(rows, 2): for j, value in enumerate(row, 1): ws.cell(row=i, column=j).value = value wb.save('excel.xlsx')
18.027778
46
0.625578
b00ea7a6aa448145f48c581ebcf013143ee92bc4
29,856
py
Python
lingvo/core/spectrum_augmenter.py
zh794390558/lingvo
ecdf678179018ca07f4f52d065b9bf3fe2dc7c5a
[ "Apache-2.0" ]
null
null
null
lingvo/core/spectrum_augmenter.py
zh794390558/lingvo
ecdf678179018ca07f4f52d065b9bf3fe2dc7c5a
[ "Apache-2.0" ]
null
null
null
lingvo/core/spectrum_augmenter.py
zh794390558/lingvo
ecdf678179018ca07f4f52d065b9bf3fe2dc7c5a
[ "Apache-2.0" ]
null
null
null
# Lint as: python2, python3 # Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Lingvo layers that used for spectrum augmentation.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import lingvo.compat as tf from lingvo.core import base_layer from lingvo.core import py_utils _SPECAUGMENT_ARGS = ( 'freq_mask_max_bins', 'freq_mask_count', 'use_dynamic_time_mask_max_frames', 'time_mask_max_frames', 'time_mask_count', 'time_mask_max_ratio', 'time_masks_per_frame', 'time_warp_bound', 'time_warp_max_frames', 'time_warp_max_ratio', ) def _hat(x): """Hat function. The hat function is a piecewise linear function defined such that 1) x < -1: _hat(x) = 0 2) -1 <= x < 0: _hat(x) = x + 1 3) 0 <= x < 1: _hat(x) = -x + 1 4) x > 1 : _hat(x) = 0 Args: x: A tensor. Returns: Tensor obtained by element-wise application of the hat function. """ return tf.nn.relu(x + 1) - 2 * tf.nn.relu(x) + tf.nn.relu(x - 1) class SpectrumAugmenter(base_layer.BaseLayer): """Performs data augmentation as according to the SpecAug paper. https://arxiv.org/pdf/1904.08779.pdf """ @classmethod def Params(cls): p = super(SpectrumAugmenter, cls).Params() p.Define('freq_mask_max_bins', 15, 'Maximum number of frequency bins of frequency masking.') p.Define('freq_mask_count', 1, 'Number of times we apply masking on the frequency axis.') # TODO(danielspark): Deprecate 'use_dynamic_time_mask_max_frames' and # introduce enum parameter to replace it. p.Define( 'use_dynamic_time_mask_max_frames', False, 'If true, time_mask_max_frames is determined by ' 'time_mask_max_ratio * utterance_length.') p.Define( 'time_mask_max_frames', 50, 'Maximum number of frames of time masking. ' 'Overridden when use_dynamic_time_mask_max_frames = True.') p.Define( 'time_mask_count', 1, 'Number of times we apply masking on the time axis. ' 'Acts as upper-bound when time_masks_per_frame > 0.') p.Define('time_mask_max_ratio', 1.0, 'Maximum portion allowed for time masking.') p.Define( 'time_masks_per_frame', 0.0, 'Ratio of number of time masks to be applied against the number ' 'of frames. If > 0, multiplicity of the time mask is determined by ' 'min(time_masks_per_frame * utterance_length, time_mask_count).') p.Define( 'time_warp_bound', 'static', 'To be set to either `dynamic` or `static`. ' 'If `dynamic`, time warp bound is determined by ' 'time_warp_max_ratio * utterance_length. ' 'If `static`, time warp bound is determined by ' 'min(time_warp_max_frames, time_warp_max_ratio * utterance_length).') p.Define('time_warp_max_frames', 0, 'Maximum number of frames for shifting in time warping.') p.Define('time_warp_max_ratio', 0.0, 'Maximum portion of frames for shifting in time warping.') p.Define('use_noise', False, 'Whether to noisify the time masked region.') p.Define('gaussian_noise', False, 'Use Gaussian distribution for noise.') p.Define('unstack', False, 'Whether to unstack features before applying SpecAugment.') p.Define('stack_height', 3, 'Number of frames stacked on top of each other.') p.Define( 'domain_ids', [0], 'If domain ids was given, this parameters describe which domain ' 'will be augmented, e.g. ' 'p.domain_ids = [2, 7, 1] ' 'p.time_mask_count = [1, 2, 0] ' 'implies domain 2 will have 1, 7 has 2 and 1 has 0 time masks. ' 'All other domain will not augmented if it exists.') return p @base_layer.initializer def __init__(self, params): super(SpectrumAugmenter, self).__init__(params) p = self.params num_domains = len(p.domain_ids) for field in _SPECAUGMENT_ARGS: v = getattr(p, field) if isinstance(v, (list, tuple)): assert len(v) == num_domains else: setattr(p, field, [v] * num_domains) assert p.freq_mask_max_bins[0] > -1 assert p.time_mask_max_frames[0] > -1 assert p.time_warp_max_frames[0] > -1 def _GetMask(self, batch_size, choose_range, mask_size, max_length=None, masks_per_frame=0.0, multiplicity=1, dtype=tf.float32, max_ratio=1.0): """Returns fixed size multi-masks starting from random positions. A multi-mask is a mask obtained by applying multiple masks. This function when max_length is given: 1) Sample random mask lengths less than max_length with shape (batch_size, multiplicity). 2) Truncate lengths to a max of (choose_range * max_ratio), so that each mask is fully contained within the corresponding sequence. 3) Random sample start points of shape (batch_size, multiplicity) with in (choose_range - lengths). 4) For each batch, multiple masks (whose number is given by the multiplicity) are constructed. 5) Return a mask of shape (batch_size, mask_size) where masks are obtained by composing the masks constructed in step 4). If masks_per_frame > 0, the number is given by min(masks_per_frame * choose_range, multiplicity). If not, all the masks are composed. The masked regions are set to zero. This function when max_length is not given: 1) Sample random mask lengths less than (choose_range * max_ratio) with shape (batch_size, multiplicity). 2) Proceed to steps 3), 4) and 5) of the above. Args: batch_size: Batch size. Integer number. choose_range: Range within which the masked entries must lie. Tensor of shape (batch_size,). mask_size: Size of the mask. Integer number. max_length: Maximum number of allowed consecutive masked entries. Integer number or None. masks_per_frame: Number of masks per frame. Float number. If > 0, the multiplicity of the mask is set to be masks_per_frame * choose_range. multiplicity: Maximum number of total masks. Integer number. dtype: Data type. max_ratio: Maximum portion of the entire range allowed to be masked. Float number. Returns: mask: a fixed size multi-mask starting from a random position with shape (batch_size, mask_size). """ p = self.params # Non-empty random seed values are only used for testing # seed_1 and seed_2 are set separately to avoid correlation of # mask size and mask position. if p.random_seed: seed_1 = p.random_seed + 1 seed_2 = 2 * p.random_seed else: seed_1 = p.random_seed seed_2 = p.random_seed # Sample lengths for multiple masks. if max_length and max_length > 0: max_length = tf.broadcast_to(tf.cast(max_length, dtype), (batch_size,)) else: max_length = tf.cast(choose_range, dtype=dtype) * max_ratio masked_portion = tf.random.uniform((batch_size, multiplicity), minval=0.0, maxval=1.0, dtype=dtype, seed=seed_1) masked_frame_size = tf.einsum('b,bm->bm', max_length, masked_portion) masked_frame_size = tf.cast(masked_frame_size, dtype=tf.int32) # Make sure the sampled length was smaller than max_ratio * length_bound. # Note that sampling in this way was biased # (shorter sequence may over-masked.) choose_range = tf.expand_dims(choose_range, -1) choose_range = tf.tile(choose_range, [1, multiplicity]) length_bound = tf.cast(choose_range, dtype=dtype) length_bound = tf.cast(max_ratio * length_bound, dtype=tf.int32) length = tf.minimum(masked_frame_size, tf.maximum(length_bound, 1)) # Choose starting point. random_start = tf.random.uniform((batch_size, multiplicity), maxval=1.0, seed=seed_2) start_with_in_valid_range = random_start * tf.cast( (choose_range - length + 1), dtype=dtype) start = tf.cast(start_with_in_valid_range, tf.int32) end = start + length - 1 # Shift starting and end point by small value. delta = tf.constant(0.1) start = tf.expand_dims(tf.cast(start, dtype) - delta, -1) start = tf.tile(start, [1, 1, mask_size]) end = tf.expand_dims(tf.cast(end, dtype) + delta, -1) end = tf.tile(end, [1, 1, mask_size]) # Construct pre-mask of shape (batch_size, multiplicity, mask_size). diagonal = tf.expand_dims( tf.expand_dims(tf.cast(tf.range(mask_size), dtype=dtype), 0), 0) diagonal = tf.tile(diagonal, [batch_size, multiplicity, 1]) pre_mask = tf.cast( tf.logical_and(diagonal < end, diagonal > start), dtype=dtype) # Sum masks with appropriate multiplicity. if masks_per_frame > 0: multiplicity_weights = tf.tile( tf.expand_dims(tf.range(multiplicity, dtype=dtype), 0), [batch_size, 1]) multiplicity_tensor = masks_per_frame * tf.cast(choose_range, dtype=dtype) multiplicity_weights = tf.cast( multiplicity_weights < multiplicity_tensor, dtype=dtype) pre_mask = tf.einsum('bmt,bm->bt', pre_mask, multiplicity_weights) else: pre_mask = tf.reduce_sum(pre_mask, 1) mask = tf.cast(1.0 - tf.cast(pre_mask > 0, dtype=dtype), dtype=dtype) if p.fprop_dtype is not None and p.fprop_dtype != p.dtype: mask = tf.cast(mask, p.fprop_dtype) return mask def _GetWarpMatrix(self, batch_size, choose_range, matrix_size, max_warp_frames=None, dtype=tf.float32, max_ratio=1.0): """Returns warp matrices starting from random positions. In this function when max_warp_frames != None: 1) Sample random warp displacements from the interval [-max_warp_frames, max_warp_frames) to yield shift tensor with shape (batch_size,). 2) Truncate lengths to a maximum magnitude of (choose_range * max_ratio), so that each shift is fully contained within the corresponding sequence. 3) Random sample origin points of shape (batch_size, multiplicity) with in [shift, choose_range - shift). 4) Return a batch of 1-D linear maps that fix the boundary points and shift the origin point by the shift. When max_warp_frames == None: 1) Sample random warp displacements with magnitudes less than (choose_range * max_ratio) to yield shift tensor with shape (batch_size,). 2) Proceed through steps 3), 4). Args: batch_size: Batch size. Integer number. choose_range: Range within which the warp reference points must lie. Tensor of shape (batch_size,). matrix_size: Dimension of vector space warp matrix is applied to. Integer number. max_warp_frames: Upper-bound on the warp distance. Integer or None. dtype: Data type. max_ratio: Maximum ratio between the shift distance and choose_range. Float number. Returns: warp_matrix: An array of fixed size warp matrices with shape (batch_size, matrix_size, matrix_size). """ p = self.params # Non-empty random seed values are only used for testing # seed_1 and seed_2 are set separately to avoid correlation of # warp magnitude and origin position. if p.random_seed: seed_1 = p.random_seed - 1 seed_2 = 2 * p.random_seed + 1 else: seed_1 = p.random_seed seed_2 = p.random_seed choose_range_dtype = tf.cast(choose_range, dtype=dtype) length_upper_bound = tf.cast(max_ratio * choose_range_dtype, dtype=tf.int32) # Set shift length. if max_warp_frames and max_warp_frames > 0: shift = tf.random.uniform((batch_size,), minval=-1 * max_warp_frames, maxval=max_warp_frames + 1, dtype=tf.int32, seed=seed_1) else: random_ratio = tf.random.uniform((batch_size,), minval=-1.0, maxval=1.0, seed=seed_1, dtype=dtype) shift = tf.cast(random_ratio * tf.cast(length_upper_bound, dtype=dtype), tf.int32) # Make sure the sampled length was smaller than max_ratio * length_bound. # Note that sampling in this way is biased. # (Shorter sequence may over-masked.) final_shift = tf.maximum(-length_upper_bound, tf.minimum(shift, length_upper_bound)) # Choose origin anchor point. mid_range = tf.cast(choose_range, dtype=tf.int32) mid_range = tf.maximum(choose_range - 2, 0) random_origin = tf.random.uniform((batch_size,), maxval=1.0, seed=seed_2) origin_with_in_valid_range = random_origin * tf.cast(mid_range, dtype=dtype) origin = tf.cast(origin_with_in_valid_range, tf.int32) + 1 # Set destination point of the origin anchor point under the warp map. destination = origin + final_shift # Cast origin and destination. origin = tf.cast(origin, dtype=dtype) destination = tf.cast(destination, dtype=dtype) return self._ConstructWarpMatrix( batch_size=batch_size, matrix_size=matrix_size, origin=origin, destination=destination, choose_range=choose_range_dtype, dtype=dtype) def _ConstructWarpMatrix(self, batch_size, matrix_size, origin, destination, choose_range, dtype): """Returns warp matrices according to origin, destination and choose_range. This function constructs a batch of warp matrices which maps the batch of origin points to the batch of destination points with fixed boundary coordinates at 0 and choose_range. The warping function, defined by the origin anchor point `origin`, the destination of the origin anchor point `destination` and the length of the domain in the warping axis `choose_range` is a piecewise linear map that fixes the points 0 and `choose_range` and maps `origin` to `destination`. For the warping matrix to be non-singular, destination must lie in the range 1<= destination <= choose_range - 1, so a destination out of this range is adjusted to be in this range before the warping matrix is constructed. The warping map can be explicitly written by first defining the slopes: 1) slope_0 = origin / destination. 2) slope_1 = (choose_range - origin) / (choose_range - destination). 3) slope_2 = 1.0. Then the origin point orig_i of the mapped coordinate i is given by: 1) i < destination: orig_i = slope_0 * i. 2) destination <= i < choose_range: orig_i = slope_1 * i - (slope_1 - slope_0) * destination. 3) i >= choose_range: orig_i = i. Denoting n_i = ceil(orig_i), the warp matrix element warp[i][j] is given by: 1) j = n_i: 1 - n_i + orig_i. 2) j = n_i - 1: n_i - orig_i. 3) Otherwise: 0. Applying the warp matrix to an array of pixels, i.e., warped_pixel[i] = sum_j warp[i][j] * pixel[j], one would get warped_pixel[i] = (n_i-orig_i) pixel[n_i-1] + (1-n_i+orig_i) pixel[n_i]. Args: batch_size: Batch size. Integer number. matrix_size: Dimension of the vector space the warp matrix is applied to. Integer number. origin: Origin anchor point for warping. Tensor of shape (batch_size,) and data type dtype. destination: Destination of the origin anchor point upon warping. Tensor of shape (batch_size,) and data type dtype. choose_range: Range within which the warp reference points must lie. Tensor of shape (batch_size,) data type dtype. dtype: Data type of origin, destination, choose_range and the output warp matrix. Returns: warp_matrix: An array of fixed size warp matrices with shape (batch_size, matrix_size, matrix_size). """ p = self.params # Entries of destination must be in the range # 1 <= destination <= choose_range - 1 # for warp matrix to have non-singular values. destination = tf.minimum(tf.maximum(destination, 1.0), choose_range - 1.0) # Construct piece-wise linear function fixing boundary points # specified by zero, choose_range and matrix size and maps # the origin anchor point to the destination. destination_bc = tf.broadcast_to(destination, (matrix_size, batch_size)) destination_bc = tf.transpose(destination_bc) choose_range_bc = tf.broadcast_to(choose_range, (matrix_size, batch_size)) choose_range_bc = tf.transpose(choose_range_bc) # Slopes of piece-wise linear function. slope_0 = origin / destination slope_1 = (choose_range - origin) / (choose_range - destination) slope_2 = 1.0 # x is a batch of origin matrices. # The origin matrix is the matrix such that # origin[i][j] = Origin coordinate of coordinate i for the warp map. # Denoting the destination of the origin anchor point in the # warp map as "dest," the origin coordinate of point i is given by: # 1) i < dest: slope_0 * i. # 2) dest <= i < choose_range: slope_1 * i - (slope_1 - slope_0) * dest. # 3) i >= choose_range: i. x = tf.broadcast_to( tf.cast(tf.range(matrix_size), dtype=dtype), (batch_size, matrix_size)) x = ( tf.einsum('b,bi->bi', slope_0, x) + tf.einsum( 'b,bi->bi', slope_1 - slope_0, tf.nn.relu(x - destination_bc)) + tf.einsum('b,bi->bi', slope_2 - slope_1, tf.nn.relu(x - choose_range_bc))) x = tf.broadcast_to(x, (matrix_size, batch_size, matrix_size)) x = tf.transpose(x, perm=[1, 2, 0]) # y is a batch of coordinate matrices. # A coordinate matrix is a matrix such that # coordinate[i][j] = j. y = tf.broadcast_to( tf.cast(tf.range(matrix_size), dtype=dtype), (batch_size, matrix_size, matrix_size)) # Warp matrix is obtained by applying hat function element-wise to (x-y). # Denoting the origin point of i under the warp map as orig_i, # and n_i = ceil(orig_i), the warp matrix element warp[i][j] is given by: # 1) j = n_i: 1 - n_i + orig_i. # 2) j = n_i - 1: n_i - orig_i. # 3) Otherwise: 0. # Applying the warp matrix to pixels, i.e., # warped_pixel[i] = sum_j warp[i][j] * original_pixel[j], one would get # warped_pixel[i] = (n_i - orig_i) * original_pixel[n_i-1] # + (1 - n_i + orig_i) * original_pixel[n_i]. warp_matrix = x - y warp_matrix = _hat(warp_matrix) if p.fprop_dtype is not None and p.fprop_dtype != dtype: warp_matrix = tf.cast(warp_matrix, p.fprop_dtype) return warp_matrix def _FrequencyMask(self, inputs, dtype=tf.float32, domain_id_index=0): """Applies frequency masking with given degree to inputs. Args: inputs: Batch of input features of shape (batch_size, time_length, num_freq, channels). dtype: Data type. domain_id_index: domain id index. Returns: Inputs with random frequency masking applied. """ p = self.params # Mask parameters. freq_mask_max_bins = p.freq_mask_max_bins[domain_id_index] multiplicity = p.freq_mask_count[domain_id_index] # If masking length or count is zero, do nothing. if freq_mask_max_bins == 0 or multiplicity == 0: return inputs # Arguments to pass to mask generator. batch_size, _, num_freq, _ = py_utils.GetShape(inputs) choose_range = tf.cast( tf.broadcast_to(num_freq, (batch_size,)), dtype=tf.int32) # Create masks in frequency direction and apply. block_arrays = self._GetMask( tf.shape(inputs)[0], choose_range=choose_range, mask_size=num_freq, max_length=freq_mask_max_bins, masks_per_frame=0.0, multiplicity=multiplicity, dtype=dtype, max_ratio=1.0) outputs = tf.einsum('bxyc,by->bxyc', inputs, block_arrays) return outputs def _TimeMask(self, inputs, seq_lengths, noisify=False, gaussian_noise=False, dtype=tf.float32, domain_id_index=0): """Applies time masking with given degree to inputs. Args: inputs: Batch of input features of shape (batch_size, time_length, num_freq, channels). seq_lengths: The actual sequence lengths which mask been sampled of shape (batch_size,). noisify: Whether to noisify the masked out regions. gaussian_noise: Whether to use gaussian noise when noisifying. dtype: Data type. domain_id_index: domain id index. Returns: Inputs with random time masking applied. """ p = self.params # Get time masking parameters. time_mask_max_frames = p.time_mask_max_frames[domain_id_index] time_masks_per_frame = p.time_masks_per_frame[domain_id_index] use_dynamic_time_mask_max_frames = \ p.use_dynamic_time_mask_max_frames[domain_id_index] multiplicity = p.time_mask_count[domain_id_index] max_ratio = p.time_mask_max_ratio[domain_id_index] # If maximum mask length is zero, do nothing. if ((time_mask_max_frames == 0 and not use_dynamic_time_mask_max_frames) or max_ratio <= 0.0): return inputs if multiplicity == 0: return inputs seq_lengths = tf.cast(seq_lengths, tf.int32) batch_size, time_length, _, _ = py_utils.GetShape(inputs) # When using dynamic time mask size, discard upper-bound on # maximum allowed frames for time mask. if use_dynamic_time_mask_max_frames: time_mask_max_frames = None # Create masks in time direction and apply. block_arrays = self._GetMask( batch_size, choose_range=seq_lengths, mask_size=time_length, max_length=time_mask_max_frames, masks_per_frame=time_masks_per_frame, multiplicity=multiplicity, dtype=dtype, max_ratio=max_ratio) outputs = tf.einsum( 'bxyc,bx->bxyc', inputs, block_arrays, name='einsum_formasking') if noisify: # Sample noise with standard deviation with factor * 0.1 + 0.0001 # TODO(ngyuzh): Make sure this won't affect EOS. if gaussian_noise: stddev = 1.0 else: factor = tf.random_uniform((), minval=1.0, maxval=2.0, dtype=dtype, seed=p.random_seed) stddev = factor * 0.1 + 0.0001 noise = tf.random.normal( [tf.shape(inputs)[0], tf.shape(inputs)[1], tf.shape(inputs)[2]], stddev=stddev, seed=p.random_seed) if p.fprop_dtype is not None and p.fprop_dtype != p.dtype: noise = tf.cast(noise, p.fprop_dtype) outputs_mask = tf.einsum( 'bxy,bx->bxy', noise, 1.0 - block_arrays, name='einsum_fornoisymasking') outputs = outputs + tf.expand_dims(outputs_mask, -1) return outputs def _TimeWarp(self, inputs, seq_lengths, dtype=tf.float32, domain_id_index=0): """Applies time warping with given degree to inputs. Args: inputs: Batch of input features of shape (batch_size, time_length, num_freq, channels). seq_lengths: The actual sequence lengths which mask been sampled of shape (batch_size,). dtype: Data type. domain_id_index: Domain ID index. Returns: Inputs with random time warping applied. """ p = self.params batch_size, time_length, _, _ = py_utils.GetShape(inputs) # Get parameters for warping. time_warp_max_frames = p.time_warp_max_frames[domain_id_index] max_ratio = p.time_warp_max_ratio[domain_id_index] time_warp_bound = p.time_warp_bound[domain_id_index] assert time_warp_bound in ('static', 'dynamic') # If maximum warp length is zero, do nothing. if ((time_warp_max_frames == 0 and time_warp_bound == 'static') or max_ratio <= 0.0): return inputs seq_lengths = tf.cast(seq_lengths, tf.int32) # Discard upper-bound on time-warp frames when # dynamic time warping is used. if time_warp_bound == 'dynamic': time_warp_max_frames = None # Create warping matrix in time direction and apply warp_matrix = self._GetWarpMatrix( batch_size, choose_range=seq_lengths, matrix_size=time_length, max_warp_frames=time_warp_max_frames, dtype=dtype, max_ratio=max_ratio) outputs = tf.einsum( 'bxyc,bzx->bzyc', inputs, warp_matrix, name='einsum_forwarping') return outputs def UnstackFeatures(self, src_inputs, src_paddings): """Unstacks src_input and src_paddings based off stack height.""" sh = self.params.stack_height bs, old_series_length, _, channels = py_utils.GetShape(src_inputs) unstacked_series_length = old_series_length * sh src_inputs = tf.reshape(src_inputs, [bs, unstacked_series_length, -1, channels]) content = 1 - src_paddings lengths = tf.cast(sh * tf.reduce_sum(content, axis=1), tf.int32) mask = tf.sequence_mask(lengths, maxlen=unstacked_series_length) src_paddings = 1 - tf.cast(mask, tf.int32) return src_inputs, src_paddings def _AugmentationNetwork(self, series_length, inputs, paddings, domain_id_index=0): """Returns augmented features. Args: series_length: Total length of time series. inputs: Batch of input features of shape (batch_size, time_length, num_freq, channels). paddings: Batch of padding vectors of shape (batch_size, time_length). domain_id_index: domain id index. Returns: Batch of output features of shape (batch_size, time_length, num_freq, channels) obtained by applying random augmentations to inputs. """ p = self.params dtype = p.dtype # Unstack the features. if p.unstack: inputs, paddings = self.UnstackFeatures(inputs, paddings) lengths = tf.reduce_sum(1 - paddings, 1) inputs = self._TimeWarp( inputs, lengths, dtype=dtype, domain_id_index=domain_id_index) inputs = self._TimeMask( inputs, lengths, noisify=p.use_noise, gaussian_noise=p.gaussian_noise, dtype=dtype, domain_id_index=domain_id_index) inputs = self._FrequencyMask( inputs, dtype=dtype, domain_id_index=domain_id_index) # Restack the features after applying specaugment. if p.unstack: inputs = tf.reshape( inputs, [tf.shape(inputs)[0], series_length, -1, tf.shape(inputs)[3]]) return inputs def FProp(self, theta, inputs, paddings, domain_ids=None): """Applies data augmentation by randomly mask spectrum in inputs. Args: theta: A NestedMap object containing weights' values of this layer and its children layers. inputs: A tensor of shape [batch, time, freq, num_channels]. paddings: A 0/1 tensor of shape [batch, time]. domain_ids: input domain_ids of shape [batch, time]. Returns: A pair of 2 tensors: - augmented_inputs: A tensor of shape [batch, time, freq, num_channels]. - paddings: A 0/1 tensor of shape [batch, time]. """ p = self.params batch_size, series_length, _, _ = py_utils.GetShape(inputs) if len(p.domain_ids) > 1: augmented_inputs = tf.zeros_like(inputs) original_inputs = inputs for i, domain_id in enumerate(p.domain_ids): augmented_domain = self._AugmentationNetwork( series_length, inputs, paddings, domain_id_index=i) target_domain = tf.cast( tf.expand_dims(tf.tile([domain_id], [batch_size]), -1), dtype=p.dtype) # [batch, time]. domain_mask = tf.cast( tf.equal(domain_ids, target_domain), dtype=p.dtype) augmented_domain = tf.einsum( 'bxyc,bx->bxyc', augmented_domain, domain_mask, name='einsum_domainmasking') original_inputs = tf.einsum( 'bxyc,bx->bxyc', original_inputs, 1.0 - domain_mask, name='einsum_domainmasking2') augmented_inputs = augmented_domain + augmented_inputs augmented_inputs = original_inputs + augmented_inputs else: augmented_inputs = self._AugmentationNetwork( series_length, inputs, paddings, domain_id_index=0) return augmented_inputs, paddings
39.702128
80
0.647508
2933ad96285f7e2883b20ba959b39745931d273c
1,474
py
Python
bot.py
sanjay-271022/droplink-bot
2fcc42bdcbe178839c03471105a997aa56895a09
[ "MIT" ]
null
null
null
bot.py
sanjay-271022/droplink-bot
2fcc42bdcbe178839c03471105a997aa56895a09
[ "MIT" ]
null
null
null
bot.py
sanjay-271022/droplink-bot
2fcc42bdcbe178839c03471105a997aa56895a09
[ "MIT" ]
null
null
null
from os import environ import aiohttp from pyrogram import Client, filters API_ID = environ.get('API_ID') API_HASH = environ.get('API_HASH') BOT_TOKEN = environ.get('BOT_TOKEN') API_KEY = environ.get('API_KEY', 'e3eddb3e7c5513eee187120fce788ddc4a1a643b') bot = Client('droplink bot', api_id=API_ID, api_hash=API_HASH, bot_token=BOT_TOKEN, workers=50, sleep_threshold=10) @bot.on_message(filters.command('start') & filters.private) async def start(bot, message): await message.reply( f"**Hi {message.chat.first_name}!**\n\n" "I'm a specialised bot for shortening Droplink.co links which can help you earn money by just sharing links. I am made by @tele_united_bots.") @bot.on_message(filters.regex(r'https?://[^\s]+') & filters.private) async def link_handler(bot, message): link = message.matches[0].group(0) try: short_link = await get_shortlink(link) await message.reply(f'Here is your [`{short_link}`]({short_link})', quote=True) except Exception as e: await message.reply(f'Error: {e}', quote=True) async def get_shortlink(link): url = 'https://droplink.co/api' params = {'api': API_KEY, 'url': link} async with aiohttp.ClientSession() as session: async with session.get(url, params=params, raise_for_status=True) as response: data = await response.json() return data["shortenedUrl"] bot.run()
32.043478
150
0.666893
322cecc89245dc68f69986caf088035a3b9638d1
2,670
py
Python
aleph/logic/resolver.py
aaronarnold2/aleph
1728f4db8863554d5b0722546838970e53ec72bd
[ "MIT" ]
null
null
null
aleph/logic/resolver.py
aaronarnold2/aleph
1728f4db8863554d5b0722546838970e53ec72bd
[ "MIT" ]
null
null
null
aleph/logic/resolver.py
aaronarnold2/aleph
1728f4db8863554d5b0722546838970e53ec72bd
[ "MIT" ]
null
null
null
# Bulk object resolver. # The purpose of this module is to quickly load objects of different # types from the backend. It's typically used by the API serialiser # to ensure that nested objects are loaded only once. # import logging from normality import stringify from collections import defaultdict from aleph.core import cache from aleph.model import ( Role, Collection, Alert, Entity, EntitySet, EntitySetItem, Export, ) from aleph.logic.roles import get_role from aleph.logic.alerts import get_alert from aleph.logic.entitysets import get_entityset, get_entitysetitem from aleph.logic.export import get_export from aleph.index.collections import get_collection from aleph.index.entities import entities_by_ids log = logging.getLogger(__name__) LOADERS = { Role: get_role, Collection: get_collection, Alert: get_alert, EntitySet: get_entityset, EntitySetItem: get_entitysetitem, Export: get_export, } def _instrument_stub(stub): if not hasattr(stub, "_rx_queue"): stub._rx_queue = set() if not hasattr(stub, "_rx_cache"): stub._rx_cache = {} def queue(stub, clazz, key, schema=None): """Notify the resolver associated with `stub` that the given object needs to be retrieved. Multiple calls with the same object signature will be merged.""" _instrument_stub(stub) key = stringify(key) if key is None: return stub._rx_queue.add((clazz, key, schema)) def resolve(stub): _instrument_stub(stub) cache_keys = {} schemata = {} for clazz, key, schema in stub._rx_queue: if (clazz, key) in stub._rx_cache: continue cid = cache.object_key(clazz, key) cache_keys[cid] = (clazz, key) schemata[cid] = schema keys = list(cache_keys.keys()) queries = defaultdict(list) for cid, value in cache.get_many_complex(keys): clazz, key = cache_keys.get(cid) if value is None: # log.info("MISS [%s]: %s", clazz.__name__, key) if clazz == Entity: queries[schemata.get(cid)].append(key) loader = LOADERS.get(clazz) if loader is not None: value = loader(key) stub._rx_cache[(clazz, key)] = value for schema, ids in queries.items(): for entity in entities_by_ids(ids, schemata=schema, cached=True): stub._rx_cache[(Entity, entity.get("id"))] = entity def get(stub, clazz, key): """Retrieve an object that has been loaded (or None).""" _instrument_stub(stub) key = stringify(key) if key is None: return return stub._rx_cache.get((clazz, key))
28.709677
73
0.667416
26a467fd481a18961360769b005f30c2c9482ebc
753
py
Python
ase_project/urls.py
akshayk17/ase_project
2838ddd15e755d749653009484848421f5644615
[ "MIT" ]
null
null
null
ase_project/urls.py
akshayk17/ase_project
2838ddd15e755d749653009484848421f5644615
[ "MIT" ]
null
null
null
ase_project/urls.py
akshayk17/ase_project
2838ddd15e755d749653009484848421f5644615
[ "MIT" ]
null
null
null
"""ase_project URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path urlpatterns = [ path('admin/', admin.site.urls), ]
34.227273
77
0.710491
3bb00845d448d306ce2d2763704049f54428545a
5,697
py
Python
sdk/python/pulumi_azure_native/netapp/get_account.py
sebtelko/pulumi-azure-native
711ec021b5c73da05611c56c8a35adb0ce3244e4
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/netapp/get_account.py
sebtelko/pulumi-azure-native
711ec021b5c73da05611c56c8a35adb0ce3244e4
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/netapp/get_account.py
sebtelko/pulumi-azure-native
711ec021b5c73da05611c56c8a35adb0ce3244e4
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities from . import outputs __all__ = [ 'GetAccountResult', 'AwaitableGetAccountResult', 'get_account', ] @pulumi.output_type class GetAccountResult: """ NetApp account resource """ def __init__(__self__, active_directories=None, encryption=None, id=None, location=None, name=None, provisioning_state=None, system_data=None, tags=None, type=None): if active_directories and not isinstance(active_directories, list): raise TypeError("Expected argument 'active_directories' to be a list") pulumi.set(__self__, "active_directories", active_directories) if encryption and not isinstance(encryption, dict): raise TypeError("Expected argument 'encryption' to be a dict") pulumi.set(__self__, "encryption", encryption) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if location and not isinstance(location, str): raise TypeError("Expected argument 'location' to be a str") pulumi.set(__self__, "location", location) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if provisioning_state and not isinstance(provisioning_state, str): raise TypeError("Expected argument 'provisioning_state' to be a str") pulumi.set(__self__, "provisioning_state", provisioning_state) if system_data and not isinstance(system_data, dict): raise TypeError("Expected argument 'system_data' to be a dict") pulumi.set(__self__, "system_data", system_data) if tags and not isinstance(tags, dict): raise TypeError("Expected argument 'tags' to be a dict") pulumi.set(__self__, "tags", tags) if type and not isinstance(type, str): raise TypeError("Expected argument 'type' to be a str") pulumi.set(__self__, "type", type) @property @pulumi.getter(name="activeDirectories") def active_directories(self) -> Optional[Sequence['outputs.ActiveDirectoryResponse']]: """ Active Directories """ return pulumi.get(self, "active_directories") @property @pulumi.getter def encryption(self) -> Optional['outputs.AccountEncryptionResponse']: """ Encryption settings """ return pulumi.get(self, "encryption") @property @pulumi.getter def id(self) -> str: """ Resource Id """ return pulumi.get(self, "id") @property @pulumi.getter def location(self) -> str: """ Resource location """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> str: """ Resource name """ return pulumi.get(self, "name") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> str: """ Azure lifecycle management """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="systemData") def system_data(self) -> 'outputs.SystemDataResponse': """ The system meta data relating to this resource. """ return pulumi.get(self, "system_data") @property @pulumi.getter def tags(self) -> Optional[Mapping[str, str]]: """ Resource tags """ return pulumi.get(self, "tags") @property @pulumi.getter def type(self) -> str: """ Resource type """ return pulumi.get(self, "type") class AwaitableGetAccountResult(GetAccountResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetAccountResult( active_directories=self.active_directories, encryption=self.encryption, id=self.id, location=self.location, name=self.name, provisioning_state=self.provisioning_state, system_data=self.system_data, tags=self.tags, type=self.type) def get_account(account_name: Optional[str] = None, resource_group_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetAccountResult: """ NetApp account resource API Version: 2020-12-01. :param str account_name: The name of the NetApp account :param str resource_group_name: The name of the resource group. """ __args__ = dict() __args__['accountName'] = account_name __args__['resourceGroupName'] = resource_group_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-native:netapp:getAccount', __args__, opts=opts, typ=GetAccountResult).value return AwaitableGetAccountResult( active_directories=__ret__.active_directories, encryption=__ret__.encryption, id=__ret__.id, location=__ret__.location, name=__ret__.name, provisioning_state=__ret__.provisioning_state, system_data=__ret__.system_data, tags=__ret__.tags, type=__ret__.type)
33.122093
169
0.638757
86de0cb454bb1f7277211f99f55be3929a35beba
8,091
py
Python
statsmodels/robust/scale.py
haribharadwaj/statsmodels
8675b890607fe6f116b1186dcba4c387c5e3778a
[ "BSD-3-Clause" ]
34
2018-07-13T11:30:46.000Z
2022-01-05T13:48:10.000Z
venv/lib/python3.6/site-packages/statsmodels/robust/scale.py
HeyWeiPan/vnpy_crypto
844381797a475a01c05a4e162592a5a6e3a48032
[ "MIT" ]
6
2015-08-28T16:59:03.000Z
2019-04-12T22:29:01.000Z
venv/lib/python3.6/site-packages/statsmodels/robust/scale.py
HeyWeiPan/vnpy_crypto
844381797a475a01c05a4e162592a5a6e3a48032
[ "MIT" ]
28
2015-04-01T20:02:25.000Z
2021-07-03T00:09:28.000Z
""" Support and standalone functions for Robust Linear Models References ---------- PJ Huber. 'Robust Statistics' John Wiley and Sons, Inc., New York, 1981. R Venables, B Ripley. 'Modern Applied Statistics in S' Springer, New York, 2002. """ from statsmodels.compat.python import callable, range import numpy as np from scipy.stats import norm as Gaussian from . import norms from statsmodels.tools import tools def mad(a, c=Gaussian.ppf(3/4.), axis=0, center=np.median): # c \approx .6745 """ The Median Absolute Deviation along given axis of an array Parameters ---------- a : array-like Input array. c : float, optional The normalization constant. Defined as scipy.stats.norm.ppf(3/4.), which is approximately .6745. axis : int, optional The defaul is 0. Can also be None. center : callable or float If a callable is provided, such as the default `np.median` then it is expected to be called center(a). The axis argument will be applied via np.apply_over_axes. Otherwise, provide a float. Returns ------- mad : float `mad` = median(abs(`a` - center))/`c` """ a = np.asarray(a) if callable(center): center = np.apply_over_axes(center, a, axis) return np.median((np.fabs(a-center))/c, axis=axis) class Huber(object): """ Huber's proposal 2 for estimating location and scale jointly. Parameters ---------- c : float, optional Threshold used in threshold for chi=psi**2. Default value is 1.5. tol : float, optional Tolerance for convergence. Default value is 1e-08. maxiter : int, optional0 Maximum number of iterations. Default value is 30. norm : statsmodels.robust.norms.RobustNorm, optional A robust norm used in M estimator of location. If None, the location estimator defaults to a one-step fixed point version of the M-estimator using Huber's T. call Return joint estimates of Huber's scale and location. Examples -------- >>> import numpy as np >>> import statsmodels.api as sm >>> chem_data = np.array([2.20, 2.20, 2.4, 2.4, 2.5, 2.7, 2.8, 2.9, 3.03, ... 3.03, 3.10, 3.37, 3.4, 3.4, 3.4, 3.5, 3.6, 3.7, 3.7, 3.7, 3.7, ... 3.77, 5.28, 28.95]) >>> sm.robust.scale.huber(chem_data) (array(3.2054980819923693), array(0.67365260010478967)) """ def __init__(self, c=1.5, tol=1.0e-08, maxiter=30, norm=None): self.c = c self.maxiter = maxiter self.tol = tol self.norm = norm tmp = 2 * Gaussian.cdf(c) - 1 self.gamma = tmp + c**2 * (1 - tmp) - 2 * c * Gaussian.pdf(c) def __call__(self, a, mu=None, initscale=None, axis=0): """ Compute Huber's proposal 2 estimate of scale, using an optional initial value of scale and an optional estimate of mu. If mu is supplied, it is not reestimated. Parameters ---------- a : array 1d array mu : float or None, optional If the location mu is supplied then it is not reestimated. Default is None, which means that it is estimated. initscale : float or None, optional A first guess on scale. If initscale is None then the standardized median absolute deviation of a is used. Notes ----- `Huber` minimizes the function sum(psi((a[i]-mu)/scale)**2) as a function of (mu, scale), where psi(x) = np.clip(x, -self.c, self.c) """ a = np.asarray(a) if mu is None: n = a.shape[0] - 1 mu = np.median(a, axis=axis) est_mu = True else: n = a.shape[0] mu = mu est_mu = False if initscale is None: scale = mad(a, axis=axis) else: scale = initscale scale = tools.unsqueeze(scale, axis, a.shape) mu = tools.unsqueeze(mu, axis, a.shape) return self._estimate_both(a, scale, mu, axis, est_mu, n) def _estimate_both(self, a, scale, mu, axis, est_mu, n): """ Estimate scale and location simultaneously with the following pseudo_loop: while not_converged: mu, scale = estimate_location(a, scale, mu), estimate_scale(a, scale, mu) where estimate_location is an M-estimator and estimate_scale implements the check used in Section 5.5 of Venables & Ripley """ for _ in range(self.maxiter): # Estimate the mean along a given axis if est_mu: if self.norm is None: # This is a one-step fixed-point estimator # if self.norm == norms.HuberT # It should be faster than using norms.HuberT nmu = np.clip(a, mu-self.c*scale, mu+self.c*scale).sum(axis) / a.shape[axis] else: nmu = norms.estimate_location(a, scale, self.norm, axis, mu, self.maxiter, self.tol) else: # Effectively, do nothing nmu = mu.squeeze() nmu = tools.unsqueeze(nmu, axis, a.shape) subset = np.less_equal(np.fabs((a - mu)/scale), self.c) card = subset.sum(axis) nscale = np.sqrt(np.sum(subset * (a - nmu)**2, axis) \ / (n * self.gamma - (a.shape[axis] - card) * self.c**2)) nscale = tools.unsqueeze(nscale, axis, a.shape) test1 = np.alltrue(np.less_equal(np.fabs(scale - nscale), nscale * self.tol)) test2 = np.alltrue(np.less_equal(np.fabs(mu - nmu), nscale*self.tol)) if not (test1 and test2): mu = nmu; scale = nscale else: return nmu.squeeze(), nscale.squeeze() raise ValueError('joint estimation of location and scale failed to converge in %d iterations' % self.maxiter) huber = Huber() class HuberScale(object): """ Huber's scaling for fitting robust linear models. Huber's scale is intended to be used as the scale estimate in the IRLS algorithm and is slightly different than the `Huber` class. Parameters ---------- d : float, optional d is the tuning constant for Huber's scale. Default is 2.5 tol : float, optional The convergence tolerance maxiter : int, optiona The maximum number of iterations. The default is 30. Methods ------- call Return's Huber's scale computed as below Notes -------- Huber's scale is the iterative solution to scale_(i+1)**2 = 1/(n*h)*sum(chi(r/sigma_i)*sigma_i**2 where the Huber function is chi(x) = (x**2)/2 for \|x\| < d chi(x) = (d**2)/2 for \|x\| >= d and the Huber constant h = (n-p)/n*(d**2 + (1-d**2)*\ scipy.stats.norm.cdf(d) - .5 - d*sqrt(2*pi)*exp(-0.5*d**2) """ def __init__(self, d=2.5, tol=1e-08, maxiter=30): self.d = d self.tol = tol self.maxiter = maxiter def __call__(self, df_resid, nobs, resid): h = (df_resid)/nobs*(self.d**2 + (1-self.d**2)*\ Gaussian.cdf(self.d)-.5 - self.d/(np.sqrt(2*np.pi))*\ np.exp(-.5*self.d**2)) s = mad(resid) subset = lambda x: np.less(np.fabs(resid/x),self.d) chi = lambda s: subset(s)*(resid/s)**2/2+(1-subset(s))*(self.d**2/2) scalehist = [np.inf,s] niter = 1 while (np.abs(scalehist[niter-1] - scalehist[niter])>self.tol \ and niter < self.maxiter): nscale = np.sqrt(1/(nobs*h)*np.sum(chi(scalehist[-1]))*\ scalehist[-1]**2) scalehist.append(nscale) niter += 1 #if niter == self.maxiter: # raise ValueError("Huber's scale failed to converge") return scalehist[-1] hubers_scale = HuberScale()
34.139241
117
0.563095
5e45fa0e3463adf0460ab3ead7bb0ce0fbca5ce3
253
py
Python
vbb_backend/program/tests/test_program.py
patrickb42/backend-vbb-portal
88362bc5b4d5cab95aa67e12694f98371604b65a
[ "MIT" ]
3
2021-04-14T02:59:09.000Z
2021-06-08T00:17:27.000Z
vbb_backend/program/tests/test_program.py
patrickb42/backend-vbb-portal
88362bc5b4d5cab95aa67e12694f98371604b65a
[ "MIT" ]
81
2020-12-08T00:11:52.000Z
2021-08-09T18:13:32.000Z
vbb_backend/program/tests/test_program.py
patrickb42/backend-vbb-portal
88362bc5b4d5cab95aa67e12694f98371604b65a
[ "MIT" ]
5
2021-01-12T04:50:26.000Z
2021-06-04T02:00:03.000Z
import pytest from vbb_backend.program.models import Program @pytest.mark.django_db def test_program_create(program_factory): newProgram1 = program_factory.create() newProgram2 = program_factory.create() assert Program.objects.count() == 2
28.111111
46
0.786561
b49a2c9711a21f0f0dc6fc6a82bfb18b12b23b30
2,162
py
Python
tests/decorator/test_methods.py
rtshilston/flask-cors
9fae3e5cf69c634f6144556fb848b7af05cd7bfe
[ "MIT" ]
749
2015-02-13T09:30:52.000Z
2022-03-30T22:17:14.000Z
tests/decorator/test_methods.py
rtshilston/flask-cors
9fae3e5cf69c634f6144556fb848b7af05cd7bfe
[ "MIT" ]
161
2015-02-26T05:59:28.000Z
2022-03-31T10:40:13.000Z
tests/decorator/test_methods.py
rtshilston/flask-cors
9fae3e5cf69c634f6144556fb848b7af05cd7bfe
[ "MIT" ]
126
2015-02-24T23:26:38.000Z
2022-03-21T04:58:49.000Z
# -*- coding: utf-8 -*- """ test ~~~~ Flask-CORS is a simple extension to Flask allowing you to support cross origin resource sharing (CORS) using a simple decorator. :copyright: (c) 2016 by Cory Dolphin. :license: MIT, see LICENSE for more details. """ from ..base_test import FlaskCorsTestCase from flask import Flask from flask_cors import * from flask_cors.core import * class MethodsCase(FlaskCorsTestCase): def setUp(self): self.app = Flask(__name__) @self.app.route('/defaults') @cross_origin() def defaults(): return 'Should only return headers on pre-flight OPTIONS request' @self.app.route('/test_methods_defined') @cross_origin(methods=['POST']) def test_get(): return 'Only allow POST' def test_defaults(self): ''' Access-Control-Allow-Methods headers should only be returned if the client makes an OPTIONS request. ''' self.assertFalse(ACL_METHODS in self.get('/defaults', origin='www.example.com').headers) self.assertFalse(ACL_METHODS in self.head('/defaults', origin='www.example.com').headers) res = self.preflight('/defaults', 'POST', origin='www.example.com') for method in ALL_METHODS: self.assertTrue(method in res.headers.get(ACL_METHODS)) def test_methods_defined(self): ''' If the methods parameter is defined, it should override the default methods defined by the user. ''' self.assertFalse(ACL_METHODS in self.get('/test_methods_defined').headers) self.assertFalse(ACL_METHODS in self.head('/test_methods_defined').headers) res = self.preflight('/test_methods_defined', 'POST', origin='www.example.com') self.assertTrue('POST' in res.headers.get(ACL_METHODS)) res = self.preflight('/test_methods_defined', 'PUT', origin='www.example.com') self.assertFalse(ACL_METHODS in res.headers) res = self.get('/test_methods_defined', origin='www.example.com') self.assertFalse(ACL_METHODS in res.headers) if __name__ == "__main__": unittest.main()
34.870968
97
0.66235
81a516f0d78d15d0084b0f0d0a4cf6969b58d153
3,438
py
Python
test/test_conversion.py
kallyas/PythonAlgorithms
e9b4c8dddad101ef0ff4bd4786d506f34f6f4d80
[ "MIT" ]
1
2022-02-23T19:22:44.000Z
2022-02-23T19:22:44.000Z
test/test_conversion.py
kallyas/PythonAlgorithms
e9b4c8dddad101ef0ff4bd4786d506f34f6f4d80
[ "MIT" ]
null
null
null
test/test_conversion.py
kallyas/PythonAlgorithms
e9b4c8dddad101ef0ff4bd4786d506f34f6f4d80
[ "MIT" ]
null
null
null
import unittest from conversion import * class TestConversions(unittest.TestCase): def test_decimal_to_binary(self): self.assertEqual(decimal_to_binary('8'), '1000') self.assertEqual(decimal_to_binary('10'), '1010') self.assertEqual(decimal_to_binary('15'), '1111') def test_decimal_to_binary_invalid(self): self.assertRaises(ValueError, decimal_to_binary, 'abc') self.assertRaises(ValueError, decimal_to_binary, '1.5') self.assertRaises(ValueError, decimal_to_binary, '-1') def test_decimal_to_binary_empty(self): self.assertRaises(ValueError, decimal_to_binary, '') def test_binary_to_decimal(self): self.assertEqual(binary_to_decimal('1000'), 8) self.assertEqual(binary_to_decimal('1010'), 10) self.assertEqual(binary_to_decimal('1111'), 15) def test_binary_to_decimal_invalid(self): self.assertRaises(ValueError, binary_to_decimal, 'abc') self.assertRaises(ValueError, binary_to_decimal, '1.5') self.assertRaises(ValueError, binary_to_decimal, '-1') def test_binary_to_decimal_empty(self): self.assertRaises(ValueError, binary_to_decimal, '') def test_hexa_decimal_to_decimal(self): self.assertEqual(hexa_decimal_to_decimal('A'), 10) self.assertEqual(hexa_decimal_to_decimal('F'), 15) self.assertEqual(hexa_decimal_to_decimal('1'), 1) def test_hexa_decimal_to_decimal_invalid(self): self.assertRaises(ValueError, hexa_decimal_to_decimal, 'abc') self.assertRaises(ValueError, hexa_decimal_to_decimal, '1.5') self.assertRaises(ValueError, hexa_decimal_to_decimal, '-1') def test_hexa_decimal_to_decimal_empty(self): self.assertRaises(ValueError, hexa_decimal_to_decimal, '') def test_decimal_to_hexa(self): self.assertEqual(decimal_to_hexa(10), 'A') self.assertEqual(decimal_to_hexa(15), 'F') self.assertEqual(decimal_to_hexa(1), '1') def test_decimal_to_hexa_invalid(self): self.assertRaises(ValueError, decimal_to_hexa, 'abc') self.assertRaises(ValueError, decimal_to_hexa, '1.5') self.assertRaises(ValueError, decimal_to_hexa, '-1') def test_decimal_to_hexa_empty(self): self.assertRaises(ValueError, decimal_to_hexa, '') def test_octal_to_decimal(self): self.assertEqual(octal_to_decimal('43'), 35) self.assertEqual(octal_to_decimal('10'), 8) self.assertEqual(octal_to_decimal('15'), 13) def test_octal_to_decimal_invalid(self): self.assertRaises(ValueError, octal_to_decimal, 'abc') self.assertRaises(ValueError, octal_to_decimal, '1.5') self.assertRaises(ValueError, octal_to_decimal, '-1') def test_octal_to_decimal_empty(self): self.assertRaises(ValueError, octal_to_decimal, '') def test_decimal_to_octal(self): self.assertEqual(decimal_to_octal('8'), '10') self.assertEqual(decimal_to_octal('10'), '12') self.assertEqual(decimal_to_octal('175'), '257') def test_decimal_to_octal_invalid(self): self.assertRaises(ValueError, decimal_to_octal, 'abc') self.assertRaises(ValueError, decimal_to_octal, '1.5') self.assertRaises(ValueError, decimal_to_octal, '-1') def test_decimal_to_octal_empty(self): self.assertRaises(ValueError, decimal_to_octal, '') if __name__ == '__main__': unittest.main()
39.068182
69
0.710878
3f76218043283966396ce8e2b27f8d98de3ee5e0
36,227
py
Python
template/provider.py
lmr/Template-Toolkit-Python
3b1affc79c2f650b057956b0dbf6e0cb51515999
[ "Artistic-2.0" ]
2
2021-05-07T08:50:06.000Z
2021-06-12T15:48:23.000Z
template/provider.py
lmr/Template-Toolkit-Python
3b1affc79c2f650b057956b0dbf6e0cb51515999
[ "Artistic-2.0" ]
1
2018-11-29T08:49:42.000Z
2018-11-29T08:49:42.000Z
template/provider.py
lmr/Template-Toolkit-Python
3b1affc79c2f650b057956b0dbf6e0cb51515999
[ "Artistic-2.0" ]
null
null
null
# # The Template-Python distribution is Copyright (C) Sean McAfee 2007-2008, # derived from the Perl Template Toolkit Copyright (C) 1996-2007 Andy # Wardley. All Rights Reserved. # # The file "LICENSE" at the top level of this source distribution describes # the terms under which this file may be distributed. # import collections import os import re import time from template.config import Config from template.constants import * from template.document import Document from template.util import Literal, Struct, TemplateException, modtime """ template.provider - Provider module for loading/compiling templates SYNOPSIS provider = template.provider.Provider(options) tmpl = provider.fetch(name) DESCRIPTION The template.provider module is used to load, parse, compile and cache template documents. This object may be sub-classed to provide more specific facilities for loading, or otherwise providing access to templates. The template.context.Context objects maintain a list of Provider objects which are polled in turn (via fetch()) to return a requested template. Each may return a compiled template, raise an error, or decline to serve the reqest, giving subsequent providers a chance to do so. This is the "Chain of Responsiblity" pattern. See 'Design Patterns' for further information. The Provider class can also be subclassed to provide templates from a different source; for example, a database. See SUBCLASSIC, below. This documentation needs work. PUBLIC METHODS __init__(options) Constructor method which initializes a new Provider object. The optional parameter may be a dictionary containing any of the following items: * INCLUDE_PATH The INCLUDE_PATH is used to specify one or more directories in which template files are located. When a template is requested that isn't defined locally as a BLOCK, each of the INCLUDE_PATH directories is searched in turn to locate the template file. Multiple directories can be specified as a list or as a single string where each directory is delimited by ':'. provider = template.provider.Provider({ 'INCLUDE_PATH': '/usr/local/templates', }) provider = template.provider.Provider({ 'INCLUDE_PATH': '/usr/local/templates:/tmp/my/templates', }) provider = template.provider.Provider({ 'INCLUDE_PATH': [ '/usr/local/templates', '/tmp/my/templates' ], }) On Win32 systems, a little extra magic is invoked, ignoring delimiters that have ':' followed by a '/' or '\'. This avoids confusion when using directory names like 'C:\Blah Blah'. When specified as a list, the INCLUDE_PATH path can contain elements which dynamically generate a list of INCLUDE_PATH directories. These generator elements can be specified as a callable object or an object which implements a paths() method. provider = template.provider.Provider({ 'INCLUDE_PATH': [ '/usr/local/templates', lambda: incpath_generator(), my.incpath.generator.Generator( ... ) ], }) Each time a template is requested and the INCLUDE_PATH examined, the callable or object method will be called. A list of directories should be returned. Generator subroutines and objects should report errors by raising an exception. For example: def incpath_generator(): # ...some code... if all_is_well: return [list_of_directories] else: raise MyError("cannot generate INCLUDE_PATH...\n") or: class MyGenerator: def paths(self): # ... some code ... if all_is_well: return [list_of_directories] else: raise MyError("cannot generate INCLUDE_PATH...\n") * DELIMITER Used to provide an alternative delimiter character sequence for separating paths specified in the INCLUDE_PATH. The default value for DELIMITER is ':'. # tolerate Silly Billy's file system conventions provider = template.provider.Provider({ 'DELIMITER': '; ', 'INCLUDE_PATH': 'C:/HERE/NOW; D:/THERE/THEN', }) # better solution: install Linux! :-) On Win32 systems, the default delimiter is a little more intelligent, splitting paths only on ':' characters that aren't followed by a '/'. This means that the following should work as planned, splitting the INCLUDE_PATH into 2 separate directories, C:/foo and C:/bar. # on Win32 only provider = template.provider.Provider({ 'INCLUDE_PATH': 'C:/Foo:C:/Bar' }) However, if you're using Win32 then it's recommended that you explicitly set the DELIMITER character to something else (e.g. ';') rather than rely on this subtle magic. * ABSOLUTE The ABSOLUTE flag is used to indicate if templates specified with absolute filenames (e.g. '/foo/bar') should be processed. It is disabled by default and any attempt to load a template by such a name will cause a 'file' exception to be raised. provider = template.provider.Provider({ 'ABSOLUTE': 1, }) # this is why it's disabled by default [% INSERT /etc/passwd %] On Win32 systems, the regular expression for matching absolute pathnames is tweaked slightly to also detect filenames that start with a driver letter and colon, such as: C:/Foo/Bar * RELATIVE The RELATIVE flag is used to indicate if templates specified with filenames relative to the current directory (e.g. './foo/bar' or '../../some/where/else') should be loaded. It is also disabled by default, and will raise a 'file' error if such template names are encountered. provider = template.provider.Provider({ 'RELATIVE': 1, }) [% INCLUDE ../logs/error.log %] * DEFAULT The DEFAULT option can be used to specify a default template which should be used whenever a specified template can't be found in the INCLUDE_PATH. provider = template.provider.Provider({ 'DEFAULT': 'notfound.html', }) If a non-existant template is requested through the template.process() method, or by an INCLUDE, PROCESS or WRAPPER directive, then the DEFAULT template will instead be processed, if defined. Note that the DEFAULT template is not used when templates are specified with absolute or relative filenames, or as a file object or template literal. * CACHE_SIZE The template.provider module caches compiled templates to avoid the need to re-parse template files or blocks each time they are used. The CACHE_SIZE option is used to limit the number of compiled templates that the module should cache. By default, the CACHE_SIZE is None and all compiled templates are cached. When set to any positive value, the cache will be limited to storing no more than that number of compiled templates. When a new template is loaded and compiled and the cache is full (i.e. the number of entries == CACHE_SIZE), the least recently used compiled template is discarded to make room for the new one. The CACHE_SIZE can be set to 0 to disable caching altogether. provider = template.provider.Provider({ 'CACHE_SIZE': 64, # only cache 64 compiled templates }) provider = template.provider.Provider({ 'CACHE_SIZE': 0, # don't cache any compiled templates }) As well as caching templates as they are found, the Provider also implements negative caching to keep track of templates that are not found. This allows the provider to quickly decline a request for a template that it has previously failed to locate, saving the effort of going to look for it again. This is useful when an INCLUDE_PATH includes multiple providers, ensuring that the request is passed down through the providers as quickly as possible. * STAT_TTL This value can be set to control how long the Provider will keep a template cached in memory before checking to see if the source template has changed. provider = template.provider.Provider({ 'STAT_TTL': 60, # one minute }) The default value is 1 (second). You'll probably want to set this to a higher value if you're running the Template Toolkit inside a persistent web server application. For example, set it to 60 and the provider will only look for changes to templates once a minute at most. However, during development (or any time you're making frequent changes to templates) you'll probably want to keep it set to a low value so that you don't have to wait for the provider to notice that your templates have changed. * COMPILE_EXT From version 2 onwards, the Template Toolkit has the ability to compile templates to Python code and save them to disk for subsequent use (i.e. cache persistence). The COMPILE_EXT option may be provided to specify a filename extension for compiled template files. It is None by default and no attempt will be made to read or write any compiled template files. provider = template.provider.Provider({ 'COMPILE_EXT': '.ttc', }) If COMPILE_EXT is defined (and COMPILE_DIR isn't, see below) then compiled template files with the COMPILE_EXT extension will be written to the same directory from which the source template files were loaded. Compiling and subsequent reuse of templates happens automatically whenever the COMPILE_EXT or COMPILE_DIR options are set. The Template Toolkit will automatically reload and reuse compiled files when it finds them on disk. If the corresponding source file has been modified since the compiled version as written, then it will load and re-compile the source and write a new compiled version to disk. This form of cache persistence offers significant benefits in terms of time and resources required to reload templates. Compiled templates can be reloaded by a simple import, leaving Python to handle all the parsing and compilation. This is a Good Thing. * COMPILE_DIR The COMPILE_DIR option is used to specify an alternate directory root under which compiled template files should be saved. provider = template.provider.Provider({ 'COMPILE_DIR': '/tmp/ttc', }) The COMPILE_EXT option may also be specified to have a consistent file extension added to these files. provider1 = template.provider.Provider({ 'COMPILE_DIR': '/tmp/ttc', 'COMPILE_EXT': '.ttc1', }) provider2 = template.provider.Provider({ 'COMPILE_DIR': '/tmp/ttc', 'COMPILE_EXT': '.ttc2', }) When COMPILE_EXT is undefined, the compiled template files have the same name as the original template files, but reside in a different directory tree. Each directory in the INCLUDE_PATH is replicated in full beneath the COMPILE_DIR directory. This example: provider = template.provider.Provider({ 'COMPILE_DIR': '/tmp/ttc', 'INCLUDE_PATH': '/home/abw/templates:/usr/share/templates', }) would create the following directory structure: /tmp/ttc/home/abw/templates/ /tmp/ttc/usr/share/templates/ Files loaded from different INCLUDE_PATH directories will have their compiled forms save in the relevant COMPILE_DIR directory. On Win32 platforms a filename may by prefixed by a drive letter and colon. e.g. C:/My Templates/header The colon will be silently stripped from the filename when it is added to the COMPILE_DIR value(s) to prevent illegal filename being generated. Any colon in COMPILE_DIR elements will be left intact. For example: # Win32 only provider = template.provider.Provider({ 'DELIMITER': ';', 'COMPILE_DIR': 'C:/TT2/Cache', 'INCLUDE_PATH': 'C:/TT2/Templates;D:/My Templates', }) This would create the following cache directories: C:/TT2/Cache/C/TT2/Templates C:/TT2/Cache/D/My Templates * TOLERANT The TOLERANT flag is used by the various Template Toolkit provider modules (template.provider, template.plugins, template.filters) to control their behaviour when errors are encountered. By default, any errors are reported as such, with the request for the particular resource (template, plugin, filter) being denied and an exception raised. When the TOLERANT flag is set to any true values, errors will be silently ignored and the provider will instead return None. This allows a subsequent provider to take responsibility for providing the resource, rather than failing the request outright. If all providers decline to service the request, either through tolerated failure or a genuine disinclination to comply, then a'<resource> not found' exception is raised. * PARSER The template.parser module implements a parser object for compiling templates into Python code which can then be executed. A default object of this class is created automatically and then used by the Provider whenever a template is loaded and requires compilation. The PARSER option can be used to provide an alternate parser object. provider = template.provider.Provider({ 'PARSER': myorg.template.parser.Parser({ ... }), }) * DEBUG The DEBUG option can be used to enable debugging messages from the template.provider module by setting it to include the DEBUG_PROVIDER value. from template.constants import * template = template.Template({ 'DEBUG': DEBUG_PROVIDER, }) fetch(name) Returns a compiled template for the name specified. If the template cannot be found then None is returned. If an error occurs (e.g. read error, parse error) then an exception is raised. If the TOLERANT flag is set the the method returns None instead of raising an exception. store(name, template) Stores the compiled template 'template' in the cache under the name 'name'. Subsequent calls to fetch(name) will return this template in preference to any disk-based file. include_path(newpath) Accessor method for the INCLUDE_PATH setting. If called with an argument, this method will replace the existing INCLUDE_PATH with the new value. paths() This method generates a copy of the INCLUDE_PATH list. Any elements in the list which are dynamic generators (e.g. callables or objects implementing a paths() method) will be called and the list of directories returned merged into the output list. It is possible to provide a generator which returns itself, thus sending this method into an infinite loop. To detect and prevent this from happening, the MAX_DIRS class variable, set to 64 by default, limits the maximum number of paths that can be added to, or generated for the output list. If this number is exceeded then the method will immediately return an error reporting as much. SUBCLASSING The Provider class can be subclassed to provide templates from a different source (e.g. a database). In most cases you'll just need to provide custom implementations of the _template_modified() and _template_content() methods. Caching in memory and on disk will still be applied (if enabled) when overriding these methods. _template_modified(path) Returns a timestamp of the path passed in by calling stat(). This can be overridden, for example, to return a last modified value from a database. The value returned should be a Unix epoch timestamp although a sequence number should work as well. _template_content(path, modtime=None) This method returns the content of the template for all INCLUDE, PROCESS, and INSERT directives. It returns the content of the template located at 'path', or None if no such file exists. If the optional parameter 'modtime' is present, the modification time of the file is stored in its 'modtime' attribute. """ RELATIVE_PATH = re.compile(r"(?:^|/)\.+/") class Error(Exception): pass class Provider: """This class handles the loading, compiling and caching of templates. Multiple Provider objects can be stacked and queried in turn to effect a Chain-of-Command between them. A provider will attempt to return the requested template, raise an exception, or decline to provide the template (by returning None), allowing subsequent providers to attempt to deliver it. See 'Design Patterns' for further details. """ MAX_DIRS = 64 STAT_TTL = 1 DEBUG = False def __init__(self, params): size = params.get("CACHE_SIZE", 2) paths = params.get("INCLUDE_PATH", ".") cdir = params.get("COMPILE_DIR", "") dlim = params.get("DELIMITER", os.name == "nt" and r":(?!\/)" or ":") debug = params.get("DEBUG") if isinstance(paths, str): paths = re.split(dlim, paths) if size == 1 or size < 0: size = 2 if debug is not None: self.__debug = debug & (DEBUG_PROVIDER & DEBUG_FLAGS) else: self.__debug = self.DEBUG if cdir: for path in paths: if not isinstance(path, str): continue if os.name == "nt": path = path.replace(":", "") if not os.path.isdir(path): os.makedirs(path) self.__lookup = {} self.__notfound = {} # Tracks templates *not* found. self.__slots = 0 self.__size = size self.__include_path = paths self.__delimiter = dlim self.__compile_dir = cdir self.__compile_ext = params.get("COMPILE_EXT", "") self.__absolute = bool(params.get("ABSOLUTE")) self.__relative = bool(params.get("RELATIVE")) self.__tolerant = bool(params.get("TOLERANT")) self.__document = params.get("DOCUMENT", Document) self.__parser = params.get("PARSER") self.__default = params.get("DEFAULT") self.__encoding = params.get("ENCODING") self.__stat_ttl = params.get("STAT_TTL", self.STAT_TTL) self.__params = params self.__head = None self.__tail = None def fetch(self, name, prefix=None): """Returns a compiled template for the name specified by parameter. The template is returned from the internal cache if it exists, or loaded and then subsequently cached. The ABSOLUTE and RELATIVE configuration flags determine if absolute (e.g. '/something...') and/or relative (e.g. './something') paths should be honoured. The INCLUDE_PATH is otherwise used to find the named file. 'name' may also be a template.util.Literal object that contains the template text, or a file object from which the content is read. The compiled template is not cached in these latter cases given that there is no filename to cache under. A subsequent call to store(name, compiled) can be made to cache the compiled template for future fetch() calls, if necessary. Returns a compiled template or None if the template could not be found. On error (e.g. the file was found but couldn't be read or parsed), an exception is raised. The TOLERANT configuration option can be set to downgrade any errors to None. """ if not isinstance(name, str): data = self._load(name) data = self._compile(data) return data and data.data elif os.path.isabs(name): if self.__absolute: return self._fetch(name) elif not self.__tolerant: raise Error("%s: absolute paths are not allowed (set ABSOLUTE option)" % name) elif RELATIVE_PATH.search(name): if self.__relative: return self._fetch(name) elif not self.__tolerant: raise Error("%s: relative paths are not allowed (set RELATIVE option)" % name) elif self.__include_path: return self._fetch_path(name) return None def _load(self, name, alias=None): """Load template text from a string (template.util.Literal), file object, or from an absolute filename. Returns an object with the following attributes: name filename or 'alias', if provided, or 'input text', etc. text template text time modification time of file, or current time for files/strings load time file was loaded (now!) On error, raises an exception, or returns None if TOLERANT is set. """ now = time.time() if alias is None and isinstance(name, str): alias = name if isinstance(name, Literal): return Data(name.text(), alias, alt="input text", load=0) elif not isinstance(name, str): return Data(name.read(), alias, alt="input file", load=0) if self._template_modified(name): when = Struct() text = self._template_content(name, when) if text is not None: return Data(text, alias, when=when.modtime, path=name) return None def _fetch(self, name, t_name=None): """Fetch a file from cache or disk by specification of an absolute or relative filename. 'name' is the path to search (possibly prefixed by INCLUDE_PATH). 't_name' is the template name. No search of the INCLUDE_PATH is made. If the file is found and loaded, it is compiled and cached. """ # First see if the named template is in the memory cache. slot = self.__lookup.get(name) if slot: # Test is cache is fresh, and reload/compile if not. self._refresh(slot) return slot.data now = time.time() last_stat_time = self.__notfound.get(name) if last_stat_time: expires_in = last_stat_time + self.__stat_ttl - now if expires_in > 0: return None else: del self.__notfound[name] # Is there an up-to-date compiled version on disk? if self._compiled_is_current(name): compiled_template = self._load_compiled(self._compiled_filename(name)) if compiled_template: return self.store(name, compiled_template) # Now fetch template from source, compile, and cache. tmpl = self._load(name, t_name) if tmpl: tmpl = self._compile(tmpl, self._compiled_filename(name)) return self.store(name, tmpl.data) # Template could not be found. Add to the negative/notfound cache. self.__notfound[name] = now return None def _compile(self, data, compfile=None): """Private method called to parse the template text and compile it into a runtime form. Creates and delegates a template.parser.Parser object to handle the compilation, or uses the object passed in PARSER. On success, the compiled template is stored in the 'data' attribute of the 'data' object and returned. On error, an exception is raised, or None is returned if the TOLERANT flag is set. The optional 'compiled' parameter may be passed to specify the name of a compiled template file to which the generated Python code should be written. Errors are (for now...) silently ignored, assuming that failures to open a file for writing are intentional (e.g directory write permission). """ if data is None: return None text = data.text error = None if not self.__parser: self.__parser = Config.parser(self.__params) # discard the template text - we don't need it any more # del data.text parsedoc = self.__parser.parse(text, data) parsedoc["METADATA"].setdefault("name", data.name) parsedoc["METADATA"].setdefault("modtime", data.time) # write the Python code to the file compfile, if defined if compfile: basedir = os.path.dirname(compfile) if not os.path.isdir(basedir): try: os.makedirs(basedir) except IOError as e: error = Error("failed to create compiled templates " "directory: %s (%s)" % (basedir, e)) if not error: try: self.__document.write_python_file(compfile, parsedoc) except Exception as e: error = Error("cache failed to write %s: %s" % ( os.path.basename(compfile), e)) if error is None and data.time is not None: if not compfile: raise Error("invalid null filename") ctime = int(data.time) os.utime(compfile, (ctime, ctime)) if not error: data.data = Document(parsedoc) return data if self.__tolerant: return None else: raise error def _compiled_is_current(self, template_name): """Returns True if template_name and its compiled name exists and they have the same mtime. """ compiled_name = self._compiled_filename(template_name) if not compiled_name: return False compiled_mtime = modtime(compiled_name) if not compiled_mtime: return False template_mtime = self._template_modified(template_name) if not template_mtime: return False return compiled_mtime == template_mtime def _template_modified(self, path): """Returns the last modified time of the given path, or None if the path does not exist. Override if templates are not on disk, for example. """ if path: return modtime(path) else: return None def _template_content(self, path, modtime=None): """Fetches content pointed to by 'path'. Stores the modification time of the file in the "modtime" attribute of the 'modtime' argument, if it is present. """ if not path: raise Error("No path specified to fetch content from") f = None try: f = open(path) if modtime is not None: modtime.modtime = os.fstat(f.fileno()).st_mtime return f.read() finally: if f: f.close() def _fetch_path(self, name): """Fetch a file from cache or disk by specification of an absolute cache name (e.g. 'header') or filename relative to one of the INCLUDE_PATH directories. If the file isn't already cached and can be found and loaded, it is compiled and cached under the full filename. """ # The template may have been stored using a non-filename name # so look for the plain name in the cache first. slot = self.__lookup.get(name) if slot: # Cached entry exists, so refresh slot and extract data. self._refresh(slot) return slot.data paths = self.paths() # Search the INCLUDE_PATH for the file, in cache or on disk. for dir in paths: path = os.path.join(dir, name) data = self._fetch(path, name) if data: return data # Not found in INCLUDE_PATH, now try DEFAULT. if self.__default is not None and name != self.__default: return self._fetch_path(self.__default) # We could not handle this template name. return None def _compiled_filename(self, path): if not (self.__compile_ext or self.__compile_dir): return None if os.name == "nt": path = path.replace(":", "") compiled = "%s%s" % (path, self.__compile_ext) if self.__compile_dir: # Can't use os.path.join here; compiled may be absolute. compiled = "%s%s%s" % (self.__compile_dir, os.path.sep, compiled) return compiled def _modified(self, name, time=None): """When called with a single argument, it returns the modification time of the named template. When called with a second argument it returns true if 'name' has been modified since 'time'. """ load = self._template_modified(name) if not load: return int(bool(time)) if time: return int(load > time) else: return load def _refresh(self, slot): """Private method called to mark a cache slot as most recently used. A reference to the slot list should be passed by parameter. The slot is relocated to the head of the linked list. If the file from which the data was loaded has been updated since it was compiled, then it is re-loaded from disk and re-compiled. """ data = None now = time.time() expires_in_sec = slot.stat + self.__stat_ttl - now if expires_in_sec <= 0: slot.stat = now template_mtime = self._template_modified(slot.name) if template_mtime is None or template_mtime != slot.load: try: data = self._load(slot.name, slot.data.name) data = self._compile(data) except: slot.stat = 0 raise else: slot.data = data.data slot.load = data.time if self.__head is not slot: # remove existing slot from usage chain... if hasattr(slot, '__next__'): slot_next = getattr(slot, '__next__') elif hasattr(slot, 'next'): slot_next = getattr(slot, 'next') if slot.prev: slot.prev.next = slot_next else: self.__head = slot_next if slot_next: slot_next.prev = slot.prev else: self.__tail = slot.prev # ...and add to start of list head = self.__head if head: head.prev = slot slot.prev = None slot_next = head self.__head = slot return data def _load_compiled(self, path): try: return Document.evaluate_file(path) except TemplateException as e: raise Error("compiled template %s: %s" % (path, e)) def _store(self, name, data, compfile=None): """Private method called to add a data item to the cache. If the cache size limit has been reached then the oldest entry at the tail of the list is removed and its slot relocated to the head of the list and reused for the new data item. If the cache is under the size limit, or if no size limit is defined, then the item is added to the head of the list. Returns compiled template. """ # Return if memory cache disabled. if self.__size is not None and not self.__size: return data.data # Extract the compiled template from the data object. data = data.data # Check the modification time -- extra stat here. load = self._modified(name) if self.__size is not None and self.__slots >= self.__size: # cache has reached size limit, so reuse oldest entry # remove entry from tail or list slot = self.__tail slot.prev.next = None self.__tail = slot.prev # remove name lookup for old node del self.__lookup[slot.name] # add modified node to head of list head = self.__head if head: head.prev = slot slot.reset(name, data, load, time.time(), None, head) self.__head = slot # add name lookup for new node self.__lookup[name] = slot else: # cache is under size limit, or none is defined head = self.__head slot = Slot(name, data, load, time.time(), None, head) if head: head.prev = slot self.__head = slot if not self.__tail: self.__tail = slot # add lookup from name to slot and increment nslots self.__lookup[name] = slot self.__slots += 1 return data def paths(self): """Evaluates the INCLUDE_PATH list, ignoring any blank entries, and calling any callable or objects to return dynamically generated path lists. Returns a new list of paths or raises an exception on error. """ ipaths = self.__include_path[:] opaths = [] count = self.MAX_DIRS while ipaths and count > 0: count -= 1 dir = ipaths.pop(0) if not dir: continue # dir can be a sub or object ref which returns a reference # to a dynamically generated list of search paths if isinstance(dir, collections.Callable): ipaths[:0] = dir() else: try: paths = dir.paths except AttributeError: pass else: if isinstance(paths, collections.Callable): ipaths[:0] = paths() continue opaths.append(dir) if ipaths: raise Error("INCLUDE_PATH exceeds %d directories" % (self.MAX_DIRS,)) else: return opaths def store(self, name, data): """Store a compiled template 'data' in the cache as 'name'. Returns compiled template. """ return self._store(name, Data(data=data, load=0)) def load(self, name, prefix=None): """Load a template without parsing/compiling it, suitable for use with the INSERT directive. There's some duplication with fetch() and at some point this could be reworked to integrate them a little closer. """ path = name error = None if os.path.isabs(name): if not self.__absolute: error = ("%s: absolute paths are not allowed (set ABSOLUTE option)" % name) elif RELATIVE_PATH.search(name): if not self.__relative: error = ("%s: relative paths are not allowed (set RELATIVE option)" % name) else: for dir in self.paths(): path = os.path.join(dir, name) if self._template_modified(path): break else: path = None if path and not error: try: data = self._template_content(path) except IOError as e: error = "%s: %s" % (name, e) if error: if not self.__tolerant: raise Error(error) elif path is not None: return data return None def include_path(self, path=None): """Accessor method for the INCLUDE_PATH setting. If called with an argument, this method will replace the existing INCLUDE_PATH with the new value. """ if path: self.__include_path = path return self.__include_path def parser(self): return self.__parser def tolerant(self): return self.__tolerant class Data: def __init__(self, text=None, name=None, alt=None, when=None, path=None, load=None, data=None): self.text = text if name is not None: self.name = name else: self.name = alt if when is not None: self.time = when else: self.time = time.time() if path is not None: self.path = path else: self.path = self.name self.load = load self.data = data def __repr__(self): return "Data(text=%r, name=%r, time=%r, path=%r, load=%r, data=%r)" % ( self.text, self.name, self.time, self.path, self.load, self.data) class Slot: def __init__(self, name, data, load, stat, prev=None, next=None): self.reset(name, data, load, stat, prev, next) def reset(self, name, data, load, stat, prev, next): self.name = name self.data = data self.load = load self.stat = stat self.prev = prev self.next = next
35.001932
86
0.648108
e4085074ce997f91c9d98960c474e8539c07777d
2,502
py
Python
CNN/main_new.py
junmadlab/Learn_to_compose_IDETC_2020
edbaaccf51b195a60f672cac4609a56f16f277c8
[ "MIT" ]
null
null
null
CNN/main_new.py
junmadlab/Learn_to_compose_IDETC_2020
edbaaccf51b195a60f672cac4609a56f16f277c8
[ "MIT" ]
null
null
null
CNN/main_new.py
junmadlab/Learn_to_compose_IDETC_2020
edbaaccf51b195a60f672cac4609a56f16f277c8
[ "MIT" ]
null
null
null
""" Trains a model, and visulizes results Author(s): Wei Chen (wchen459@umd.edu) Jun Wang (jwang38@umd.edu) """ import argparse import os import glob import numpy as np from importlib import import_module import shutil import h5py from visualization import visualize_samples, visualize if __name__ == "__main__": # Arguments parser = argparse.ArgumentParser(description='Train/Evaluate') parser.add_argument('mode', type=str, default='startover', help='startover or evaluate') parser.add_argument('model', type=str, default='ae_new', help='model') parser.add_argument('--batch_size', type=int, default=32, help='batch_size') parser.add_argument('--save_interval', type=int, default=500, help='save interval') parser.add_argument('--train_steps', type=int, default=200000, help='training steps') args = parser.parse_args() assert args.mode in ['startover', 'evaluate'] if args.mode == 'startover': training_dir = './saved_model_StrL_dis' if not os.path.exists(training_dir): os.makedirs(training_dir) log_dir = '{}/{}/logs'.format(training_dir, args.model) if os.path.exists(log_dir): shutil.rmtree(log_dir) results_dir = './results_StrL_dis' if not os.path.exists(results_dir): os.makedirs(results_dir) hf_train = h5py.File('./DeCNN_database_StrL_dis/train.h5', 'r') hf_test = h5py.File('./DeCNN_database_StrL_dis/test.h5', 'r') X_train = np.array(hf_train.get('train_x')) Y_train = np.array(hf_train.get('train_y')) X_test = np.array(hf_test.get('test_x')) Y_test = np.array(hf_test.get('test_y')) rez = X_train.shape[1] # print(rez) input_channel = X_train.shape[3] # print(input_channel) output_channel = Y_train.shape[3] # print(output_channel) # Train/Evaluate m = import_module(args.model) model = m.Model(rez, input_channel, output_channel) model_dir = './saved_model_StrL_dis' if args.mode == 'startover': print('Start training ...') model.train(X_train, Y_train, X_test, Y_test, batch_size=args.batch_size, train_steps=args.train_steps, save_interval=args.save_interval, save_dir=model_dir) else: print('Evaluating ...') model.restore(model_dir) # Visulize Results print('Plotting results ...') visualize(20, X_test, Y_test, model, results_dir) print('All completed :)')
32.921053
112
0.663469
b8146ee022e51ab39dd7e7eec1bf24115f013df1
5,358
py
Python
allennlp/modules/token_embedders/elmo_token_embedder_2.py
asiddhant/taskonomy-nlp
34042cce5d77a13dd4f3128234d242b7ed14d4ec
[ "Apache-2.0" ]
3
2019-06-17T21:09:07.000Z
2022-03-18T05:19:31.000Z
allennlp/modules/token_embedders/elmo_token_embedder_2.py
asiddhant/taskonomy-nlp
34042cce5d77a13dd4f3128234d242b7ed14d4ec
[ "Apache-2.0" ]
null
null
null
allennlp/modules/token_embedders/elmo_token_embedder_2.py
asiddhant/taskonomy-nlp
34042cce5d77a13dd4f3128234d242b7ed14d4ec
[ "Apache-2.0" ]
null
null
null
from typing import List import torch from allennlp.common import Params from allennlp.modules.token_embedders.token_embedder import TokenEmbedder from allennlp.modules.elmo_2 import Elmo2 from allennlp.modules.time_distributed import TimeDistributed from allennlp.data import Vocabulary @TokenEmbedder.register("elmo_token_embedder_2") class ElmoTokenEmbedder2(TokenEmbedder): """ Compute a single layer of ELMo representations. This class serves as a convenience when you only want to use one layer of ELMo representations at the input of your network. It's essentially a wrapper around Elmo(num_output_representations=1, ...) Parameters ---------- options_file : ``str``, required. An ELMo JSON options file. weight_file : ``str``, required. An ELMo hdf5 weight file. do_layer_norm : ``bool``, optional. Should we apply layer normalization (passed to ``ScalarMix``)? dropout : ``float``, optional. The dropout value to be applied to the ELMo representations. requires_grad : ``bool``, optional If True, compute gradient of ELMo parameters for fine tuning. projection_dim : ``int``, optional If given, we will project the ELMo embedding down to this dimension. We recommend that you try using ELMo with a lot of dropout and no projection first, but we have found a few cases where projection helps (particulary where there is very limited training data). vocab_to_cache : ``List[str]``, optional, (default = 0.5). A list of words to pre-compute and cache character convolutions for. If you use this option, the ElmoTokenEmbedder expects that you pass word indices of shape (batch_size, timesteps) to forward, instead of character indices. If you use this option and pass a word which wasn't pre-cached, this will break. """ def __init__(self, options_file: str, weight_file: str, do_layer_norm: bool = False, dropout: float = 0.5, requires_grad: bool = False, projection_dim: int = None, vocab_to_cache: List[str] = None) -> None: super(ElmoTokenEmbedder2, self).__init__() self._elmo = Elmo2(options_file, weight_file, 1, do_layer_norm=do_layer_norm, dropout=dropout, requires_grad=requires_grad, vocab_to_cache=vocab_to_cache) if projection_dim: self._projection = torch.nn.Linear(self._elmo.get_output_dim(), projection_dim) else: self._projection = None def get_output_dim(self): return self._elmo.get_output_dim() def forward(self, # pylint: disable=arguments-differ inputs: torch.Tensor, word_inputs: torch.Tensor = None) -> torch.Tensor: """ Parameters ---------- inputs: ``torch.Tensor`` Shape ``(batch_size, timesteps, 50)`` of character ids representing the current batch. word_inputs : ``torch.Tensor``, optional. If you passed a cached vocab, you can in addition pass a tensor of shape ``(batch_size, timesteps)``, which represent word ids which have been pre-cached. Returns ------- The ELMo representations for the input sequence, shape ``(batch_size, timesteps, embedding_dim)`` """ elmo_output = self._elmo(inputs, word_inputs) elmo_representations = elmo_output['elmo_representations'][0] elmo_lstm_output = elmo_output['elmo_lstm_output'] if self._projection: projection = self._projection for _ in range(elmo_representations.dim() - 2): projection = TimeDistributed(projection) elmo_representations = projection(elmo_representations) return elmo_representations, elmo_lstm_output # Custom vocab_to_cache logic requires a from_params implementation. @classmethod def from_params(cls, vocab: Vocabulary, params: Params) -> 'ElmoTokenEmbedder': # type: ignore # pylint: disable=arguments-differ params.add_file_to_archive('options_file') params.add_file_to_archive('weight_file') options_file = params.pop('options_file') weight_file = params.pop('weight_file') requires_grad = params.pop('requires_grad', False) do_layer_norm = params.pop_bool('do_layer_norm', False) dropout = params.pop_float("dropout", 0.5) namespace_to_cache = params.pop("namespace_to_cache", None) if namespace_to_cache is not None: vocab_to_cache = list(vocab.get_token_to_index_vocabulary(namespace_to_cache).keys()) else: vocab_to_cache = None projection_dim = params.pop_int("projection_dim", None) params.assert_empty(cls.__name__) return cls(options_file=options_file, weight_file=weight_file, do_layer_norm=do_layer_norm, dropout=dropout, requires_grad=requires_grad, projection_dim=projection_dim, vocab_to_cache=vocab_to_cache)
44.65
99
0.642591
1c55fde6c03688a8e1fe6fe20ae030939d540e43
4,128
py
Python
tests/parsers/mac_wifi.py
Defense-Cyber-Crime-Center/plaso
4f3a85fbea10637c1cdbf0cde9fc539fdcea9c47
[ "Apache-2.0" ]
2
2016-02-18T12:46:29.000Z
2022-03-13T03:04:59.000Z
tests/parsers/mac_wifi.py
Defense-Cyber-Crime-Center/plaso
4f3a85fbea10637c1cdbf0cde9fc539fdcea9c47
[ "Apache-2.0" ]
null
null
null
tests/parsers/mac_wifi.py
Defense-Cyber-Crime-Center/plaso
4f3a85fbea10637c1cdbf0cde9fc539fdcea9c47
[ "Apache-2.0" ]
6
2016-12-18T08:05:36.000Z
2021-04-06T14:19:11.000Z
#!/usr/bin/python # -*- coding: utf-8 -*- """Tests for the Mac wifi.log parser.""" import unittest from plaso.formatters import mac_wifi as _ # pylint: disable=unused-import from plaso.lib import timelib from plaso.parsers import mac_wifi from tests.parsers import test_lib class MacWifiUnitTest(test_lib.ParserTestCase): """Tests for the Mac wifi.log parser.""" def setUp(self): """Sets up the needed objects used throughout the test.""" self._parser = mac_wifi.MacWifiLogParser() def testParse(self): """Tests the Parse function.""" knowledge_base_values = {u'year': 2013} test_file = self._GetTestFilePath([u'wifi.log']) event_queue_consumer = self._ParseFile( self._parser, test_file, knowledge_base_values=knowledge_base_values) event_objects = self._GetEventObjectsFromQueue(event_queue_consumer) self.assertEqual(len(event_objects), 9) event_object = event_objects[0] expected_timestamp = timelib.Timestamp.CopyFromString( u'2013-11-14 20:36:37.222') self.assertEqual(event_object.timestamp, expected_timestamp) self.assertEqual(event_object.agent, u'airportd[88]') self.assertEqual(event_object.function, u'airportdProcessDLILEvent') self.assertEqual(event_object.action, u'Interface en0 turn up.') self.assertEqual(event_object.text, u'en0 attached (up)') expected_msg = ( u'Action: Interface en0 turn up. ' u'(airportdProcessDLILEvent) ' u'Log: en0 attached (up)') expected_msg_short = ( u'Action: Interface en0 turn up.') self._TestGetMessageStrings(event_object, expected_msg, expected_msg_short) event_object = event_objects[1] expected_timestamp = timelib.Timestamp.CopyFromString( u'2013-11-14 20:36:43.818') self.assertEqual(event_object.timestamp, expected_timestamp) self.assertEqual(event_object.agent, u'airportd[88]') self.assertEqual(event_object.function, u'_doAutoJoin') self.assertEqual(event_object.action, u'Wifi connected to SSID CampusNet') expected_text = ( u'Already associated to \u201cCampusNet\u201d. Bailing on auto-join.') self.assertEqual(event_object.text, expected_text) event_object = event_objects[2] expected_timestamp = timelib.Timestamp.CopyFromString( u'2013-11-14 21:50:52.395') self.assertEqual(event_object.timestamp, expected_timestamp) self.assertEqual(event_object.agent, u'airportd[88]') self.assertEqual(event_object.function, u'_handleLinkEvent') expected_string = ( u'Unable to process link event, op mode request returned -3903 ' u'(Operation not supported)') self.assertEqual(event_object.action, expected_string) self.assertEqual(event_object.text, expected_string) event_object = event_objects[5] expected_timestamp = timelib.Timestamp.CopyFromString( u'2013-11-14 21:52:09.883') self.assertEqual(event_object.timestamp, expected_timestamp) self.assertEqual(u'airportd[88]', event_object.agent) self.assertEqual(u'_processSystemPSKAssoc', event_object.function) expected_action = ( u'New wifi configured. BSSID: 88:30:8a:7a:61:88, SSID: AndroidAP, ' u'Security: WPA2 Personal.') self.assertEqual(event_object.action, expected_action) expected_text = ( u'No password for network <CWNetwork: 0x7fdfe970b250> ' u'[ssid=AndroidAP, bssid=88:30:8a:7a:61:88, security=WPA2 ' u'Personal, rssi=-21, channel=<CWChannel: 0x7fdfe9712870> ' u'[channelNumber=11(2GHz), channelWidth={20MHz}], ibss=0] ' u'in the system keychain') self.assertEqual(event_object.text, expected_text) event_object = event_objects[7] expected_timestamp = timelib.Timestamp.CopyFromString( u'2013-12-31 23:59:38.165') self.assertEqual(event_object.timestamp, expected_timestamp) event_object = event_objects[8] expected_timestamp = timelib.Timestamp.CopyFromString( u'2014-01-01 01:12:17.311') self.assertEqual(event_object.timestamp, expected_timestamp) if __name__ == '__main__': unittest.main()
34.4
79
0.722626
f7ad2f4c9393b1cd648ece9064f3bd6e632c0bdb
1,159
py
Python
amos/tests.py
chuckoy/grabyaya
5fbd7135cc74bdbb29c6d86b1b202b37b94e1660
[ "MIT" ]
null
null
null
amos/tests.py
chuckoy/grabyaya
5fbd7135cc74bdbb29c6d86b1b202b37b94e1660
[ "MIT" ]
null
null
null
amos/tests.py
chuckoy/grabyaya
5fbd7135cc74bdbb29c6d86b1b202b37b94e1660
[ "MIT" ]
null
null
null
# django from django.core.urlresolvers import reverse from django.test import TestCase, RequestFactory, Client # own modules from .factories import UserFactory from .utils import url_with_querystring from django.contrib.auth.models import User class HomePageTest(TestCase): """ Tests for home page """ def setUp(self): self.user = UserFactory(username='test_user') self.factory = RequestFactory() self.client = Client() def test_home_page_denies_anonymous(self): target_url = reverse('amos_index') redirect_url = url_with_querystring(reverse('login'), 'next=/amos/') response = self.client.get(target_url, follow=True) self.assertRedirects(response, redirect_url) response = self.client.post(target_url, follow=True) self.assertRedirects(response, redirect_url) def test_home_page_accepts_user(self): self.client.force_login(self.user) target_url = reverse('amos_index') response = self.client.get(target_url, follow=True) self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, 'index.html')
31.324324
76
0.707506
03f8d3ddde0b3fb404828b615b8c46f1efa8ae33
17,484
py
Python
py_cui/dialogs/form.py
jupiterbjy/py_cui
3f03af05ecc29f04cc07ee6b62c8ac2a76de8a68
[ "BSD-3-Clause" ]
null
null
null
py_cui/dialogs/form.py
jupiterbjy/py_cui
3f03af05ecc29f04cc07ee6b62c8ac2a76de8a68
[ "BSD-3-Clause" ]
null
null
null
py_cui/dialogs/form.py
jupiterbjy/py_cui
3f03af05ecc29f04cc07ee6b62c8ac2a76de8a68
[ "BSD-3-Clause" ]
1
2021-06-16T08:56:36.000Z
2021-06-16T08:56:36.000Z
"""Form widget for py_cui. Allows for giving user several fillable text fields in one block """ import py_cui.ui import py_cui.widgets import py_cui.popups class DuplicateFormKeyError(Exception): """Error thrown when a duplicate form field key is passed """ pass class FormField(py_cui.ui.TextBoxImplementation): """Class containing basic logic of a field in a form Attributes ---------- _fieldname : str Title of the field _required : bool Toggle for making the field be required """ def __init__(self, fieldname, initial_text, password, required, logger): """Initializer for base FormFields """ super().__init__(initial_text, password, logger) self._fieldname = fieldname self._required = required def get_fieldname(self): """Getter for field name Returns ------- fieldname : str Title of the field """ return self._fieldname def is_valid(self): """Function that checks if field is valid. This function can be implemented by subclasses to support different field types (ex. emails etc.) Returns ------- is_valid : bool True of valid conditions are met, false otherwise msg : str Message explaining problem. None if valid """ msg = None if len(self._text) == 0 and self.is_required(): msg = 'Field <{}> cannot be empty!'.format(self.get_fieldname()) return msg is None, msg def is_required(self): """Checks if field is required Returns ------- required : bool True if required, false otherwise """ return self._required class FormFieldElement(py_cui.ui.UIElement, FormField): """Extension of UI element representing an individual field in the form Attributes ---------- _field_index : int The index of the field in the form _parent_form : FormPopup / Form The parent UI Element that contains the form element """ def __init__(self, parent_form, field_index, field, init_text, passwd, required, renderer, logger): """Initializer for the FormFieldElement class """ self._parent_form = parent_form self._field_index = field_index py_cui.ui.UIElement.__init__(self, 0, field, renderer, logger) FormField.__init__(self, field, init_text, passwd, required, logger) self._help_text = 'Press Tab to move to the next field, or Enter to submit.' self._padx = 0 self._pady = 0 self._selected = False self.update_height_width() def get_absolute_start_pos(self): """Override of base function. Uses the parent element do compute start position Returns ------- field_start_x, field_start_y : int, int The position in characters in the terminal window to start the Field element """ container_height, _ = self._parent_form.get_absolute_dimensions() single_field_height = int((container_height - 1 - self._parent_form._pady) / self._parent_form.get_num_fields()) parent_start_x, parent_start_y = self._parent_form.get_start_position() field_start_x = (parent_start_x + 3 + self._parent_form._padx) field_start_y = (parent_start_y + 1 + self._parent_form._pady + (single_field_height * self._field_index)) return field_start_x, field_start_y def get_absolute_stop_pos(self): """Override of base function. Uses the parent element do compute stop position Returns ------- field_stop_x, field_stop_y : int, int The position in characters in the terminal window to stop the Field element """ container_height, _ = self._parent_form.get_absolute_dimensions() single_field_height = int((container_height - 1 - self._parent_form._pady) / self._parent_form.get_num_fields()) _, parent_start_y = self._parent_form.get_start_position() parent_stop_x, _ = self._parent_form.get_stop_position() field_stop_x = (parent_stop_x - 3 - self._parent_form._padx) field_stop_y = (parent_start_y + 1 + self._parent_form._pady + (single_field_height * (self._field_index + 1)) -1) return field_stop_x, field_stop_y def update_height_width(self): """Override of base class. Updates text field variables for form field """ super().update_height_width() padx, pady = self.get_padding() start_x, start_y = self.get_start_position() height, width = self.get_absolute_dimensions() self._cursor_text_pos = 0 self._cursor_x = start_x + 2 + padx self._cursor_max_left = self._cursor_x self._cursor_max_right = start_x + width - 1 - pady self._cursor_y = start_y + int(height / 2) + 1 self._viewport_width = self._cursor_max_right - self._cursor_max_left def _handle_key_press(self, key_pressed): """Handles text input for the field. Called by parent """ if key_pressed == py_cui.keys.KEY_LEFT_ARROW: self._move_left() elif key_pressed == py_cui.keys.KEY_RIGHT_ARROW: self._move_right() elif key_pressed == py_cui.keys.KEY_BACKSPACE: self._erase_char() elif key_pressed == py_cui.keys.KEY_DELETE: self._delete_char() elif key_pressed == py_cui.keys.KEY_HOME: self._jump_to_start() elif key_pressed == py_cui.keys.KEY_END: self._jump_to_end() elif key_pressed > 31 and key_pressed < 128: self._insert_char(key_pressed) def _draw(self): """Draw function for the field. Called from parent. Essentially the same as a TextboxPopup """ self._renderer.set_color_mode(self._parent_form._color) self._renderer.set_color_rules([]) self._renderer.draw_text(self, self._title, self._cursor_y - 2, bordered=False, selected=self._selected) self._renderer.draw_border(self, fill=False, with_title=False) render_text = self._text if len(self._text) >self._viewport_width: end = len(self._text) - (self._viewport_width) if self._cursor_text_pos < end: render_text = self._text[self._cursor_text_pos:self._cursor_text_pos + (self._viewport_width)] else: render_text = self._text[end:] if self._password: temp = '*' * len(render_text) render_text = temp self._renderer.draw_text(self, render_text, self._cursor_y, selected=self._selected) if self._selected: self._renderer.draw_cursor(self._cursor_y, self._cursor_x) else: self._renderer.reset_cursor(self, fill=False) self._renderer.unset_color_mode(self._color) class FormImplementation(py_cui.ui.UIImplementation): """Main implementation class for the form widget/popup Attriubutes ----------- _form_fields : List[FormField] The current fields in the form _required_fields : List[str] List for identifying required fields _selected_form_index : int Index of currently selected form _on_submit_action : no-arg or lambda function Function fired when submit is called """ def __init__(self, field_implementations, required_fields, logger): """Initializer for the FormImplemnentation class """ super().__init__(logger) self._form_fields = field_implementations self._required_fields = required_fields self._selected_form_index = 0 self._on_submit_action = None def get_selected_form_index(self): """Getter for selected form index Returns ------- selected_form_index : int the index of currently selected field """ return self._selected_form_index def set_selected_form_index(self, form_index): """Setter for selected form index Parameters ---------- selected_form_index : int the index of the new selected field """ self._selected_form_index = form_index def set_on_submit_action(self, on_submit_action): """Setter for callback on submit Parameters ---------- on_submit_action : no-arg or lambda function Function fired when user 'submits' form """ self._on_submit_action = on_submit_action def jump_to_next_field(self): """Function used to jump between form fields """ if self.get_selected_form_index() < (len(self._form_fields) - 1): self.set_selected_form_index(self.get_selected_form_index() + 1) else: self.set_selected_form_index(0) def is_submission_valid(self): """Function that checks if all fields are filled out correctly Returns ------- is_valid : bool True of valid conditions are met, false otherwise msg : str Message explaining problem. None if valid """ for form_field in self._form_fields: valid, err_msg = form_field.is_valid() if not valid: return False, err_msg return True, None def get(self): """Gets values entered into field as a dictionary Returns ------- field_entries : dict A dictionary mapping field names to user inputs """ output = {} for form_field in self._form_fields: output[form_field.get_fieldname()] = form_field.get() return output class Form(py_cui.widgets.Widget, FormImplementation): """Main Widget class extending the FormImplementation. TODO """ pass class InternalFormPopup(py_cui.popups.MessagePopup): """A helper class for abstracting a message popup tied to a parent popup Attributes ---------- parent : FormPopup The parent form popup that spawned the message popup """ def __init__(self, parent, *args): """Initializer for Internal form Popup """ super().__init__(*args) self._parent = parent def _handle_key_press(self, key_pressed): """Override of base class, close in parent instead of root """ if key_pressed in self._close_keys: self._parent._internal_popup = None class FormPopup(py_cui.popups.Popup, FormImplementation): """Main Popup extension class for forms. Attributes ---------- num_fields : int Number of fields added to form form_fields : List[FormFieldElement] individual form field ui element objects internal_popup : InternalFormPopup A popup spawned in the event of an invalid submission """ def __init__(self, root, fields, passwd_fields, required_fields, fields_init_text, title, color, renderer, logger): self._num_fields = len(fields) if self._num_fields != len(set(fields)): raise DuplicateFormKeyError('PyCUI forms cannot have duplicate fields.') py_cui.popups.Popup.__init__(self, root, title, '', color, renderer, logger) self._form_fields = [] for i, field in enumerate(fields): init_text = '' if field in fields_init_text: init_text = fields_init_text[field] self._form_fields.append(FormFieldElement(self, i, field, init_text, (field in passwd_fields), (field in required_fields), renderer, logger)) self._form_fields[0].set_selected(True) FormImplementation.__init__(self, self._form_fields, required_fields, logger) self._internal_popup = None def get_num_fields(self): """Getter for number of fields Returns ------- num_fields : int Number of fields in form """ return self._num_fields def get_absolute_start_pos(self): """Override of base class, computes position based on root dimensions Returns ------- start_x, start_y : int The coords of the upper-left corner of the popup """ root_height, root_width = self._root.get_absolute_size() min_required_x = 80 if root_width < 80: min_required_x = root_width - 6 min_required_y = 4 + (2 * self._pady) + 5 * self._num_fields if root_height < min_required_y: min_required_y = root_height form_start_x = int(root_width / 2) - int(min_required_x / 2) form_start_y = int(root_height / 2) - int(min_required_y / 2) return form_start_x, form_start_y def get_absolute_stop_pos(self): """Override of base class, computes position based on root dimensions Returns ------- stop_x, stop_y : int The coords of the lower-right corner of the popup """ root_height, root_width = self._root.get_absolute_size() min_required_x = 80 if root_width < 80: min_required_x = root_width - 6 min_required_y = 4 + (2 * self._pady) + 5 * self._num_fields if root_height < min_required_y: min_required_y = root_height form_stop_x = int(root_width / 2) + int(min_required_x / 2) form_stop_y = int(root_height / 2) + int(min_required_y / 2) return form_stop_x, form_stop_y def update_height_width(self): """Override of base class function Also updates all form field elements in the form """ super().update_height_width() try: for element in self._form_fields: element.update_height_width() except AttributeError: pass def _handle_key_press(self, key_pressed): """Override of base class. Here, we handle tabs, enters, and escapes All other key presses are passed to the currently selected field element Parameters ---------- key_pressed : int Key code of pressed key """ if self._internal_popup is None: if key_pressed == py_cui.keys.KEY_TAB: self._form_fields[self.get_selected_form_index()].set_selected(False) self.jump_to_next_field() self._form_fields[self.get_selected_form_index()].set_selected(True) elif key_pressed == py_cui.keys.KEY_ENTER: valid, err_msg = self.is_submission_valid() if valid: self._root.close_popup() self._on_submit_action(self.get()) else: self._internal_popup = InternalFormPopup(self, self._root, err_msg, 'Required fields: {}'.format(str(self._required_fields)), py_cui.YELLOW_ON_BLACK, self._renderer, self._logger) elif key_pressed == py_cui.keys.KEY_ESCAPE: self._root.close_popup() else: if self.get_selected_form_index() < len(self._form_fields): self._form_fields[self.get_selected_form_index()]._handle_key_press(key_pressed) else: self._internal_popup._handle_key_press(key_pressed) def _handle_mouse_press(self, x, y): """Override of base class function Simply enters the appropriate field when mouse is pressed on it Parameters ---------- x, y : int, int Coordinates of the mouse press """ super()._handle_mouse_press(x, y) for i, field in enumerate(self._form_fields): if field._contains_position(x, y): self._form_fields[self.get_selected_form_index()].set_selected(False) self.set_selected_form_index(i) self._form_fields[self.get_selected_form_index()].set_selected(True) break def _draw(self): """Override of base class. Here, we only draw a border, and then the individual form elements """ self._renderer.set_color_mode(self._color) self._renderer.set_color_rules([]) self._renderer.draw_border(self) for i, form_field in enumerate(self._form_fields): if i != self.get_selected_form_index(): form_field._draw() self._form_fields[self.get_selected_form_index()]._draw() if self._internal_popup is not None: self._internal_popup._draw()
32.680374
122
0.599062
711d2b75dd24c4ecab70ea3286916dc43edffc1c
6,976
py
Python
examples/vyasarayani2011.py
humphreysb/opty
4eacf7cadf61a339be6cebfa3e32ef41d2563151
[ "BSD-2-Clause-FreeBSD" ]
63
2015-03-07T19:38:10.000Z
2022-03-31T17:17:53.000Z
examples/vyasarayani2011.py
humphreysb/opty
4eacf7cadf61a339be6cebfa3e32ef41d2563151
[ "BSD-2-Clause-FreeBSD" ]
52
2015-02-15T17:24:03.000Z
2021-06-18T16:43:45.000Z
examples/vyasarayani2011.py
humphreysb/opty
4eacf7cadf61a339be6cebfa3e32ef41d2563151
[ "BSD-2-Clause-FreeBSD" ]
22
2015-05-25T21:28:16.000Z
2022-03-14T03:55:57.000Z
"""This example is taken from the following paper: Vyasarayani, Chandrika P., Thomas Uchida, Ashwin Carvalho, and John McPhee. "Parameter Identification in Dynamic Systems Using the Homotopy Optimization Approach". Multibody System Dynamics 26, no. 4 (2011): 411-24. In Section 3.1 there is a simple example of a single pendulum parameter identification that has many local minima. For the following differential equations that describe a single pendulum acting under the influence of gravity, the goals is to identify the parameter p given noisy measurements of the angle, y1. -- -- -- -- | y1' | | y2 | y' = f(y, t) = | | = | | | y2' | | -p * sin(y1) | -- -- -- -- To run: $ python vyasarayani2011.py Options can be viewed with: $ python vyasarayani2011.py -h """ import numpy as np import sympy as sym from scipy.integrate import odeint import matplotlib.pyplot as plt from opty.direct_collocation import Problem from opty.utils import building_docs def main(initial_guess, do_plot=False): if building_docs(): do_plot = True # Specify the symbolic equations of motion. p, t = sym.symbols('p, t') y1, y2 = [f(t) for f in sym.symbols('y1, y2', cls=sym.Function)] y = sym.Matrix([y1, y2]) f = sym.Matrix([y2, -p * sym.sin(y1)]) eom = y.diff(t) - f # Generate some data by integrating the equations of motion. duration = 50.0 num_nodes = 5000 interval = duration / (num_nodes - 1) time = np.linspace(0.0, duration, num=num_nodes) p_val = 10.0 y0 = [np.pi / 6.0, 0.0] def eval_f(y, t, p): return np.array([y[1], -p * np.sin(y[0])]) y_meas = odeint(eval_f, y0, time, args=(p_val,)) y1_meas = y_meas[:, 0] y2_meas = y_meas[:, 1] # Add measurement noise. y1_meas += np.random.normal(scale=0.05, size=y1_meas.shape) y2_meas += np.random.normal(scale=0.1, size=y2_meas.shape) # Setup the optimization problem to minimize the error in the simulated # angle and the measured angle. def obj(free): """Minimize the error in the angle, y1.""" return interval * np.sum((y1_meas - free[:num_nodes])**2) def obj_grad(free): grad = np.zeros_like(free) grad[:num_nodes] = 2.0 * interval * (free[:num_nodes] - y1_meas) return grad # The midpoint integration method is preferable to the backward Euler # method because no artificial damping is introduced. prob = Problem(obj, obj_grad, eom, (y1, y2), num_nodes, interval, integration_method='midpoint') num_states = len(y) if initial_guess == 'zero': print('Using all zeros for the initial guess.') # All zeros. initial_guess = np.zeros(num_states * num_nodes + 1) elif initial_guess == 'randompar': print(('Using all zeros for the trajectories initial guess and a ' 'random positive value for the parameter.')) # Zeros for the state trajectories and a random positive value for # the parameter. initial_guess = np.hstack((np.zeros(num_states * num_nodes), 50.0 * np.random.random(1))) elif initial_guess == 'random': print('Using random values for the initial guess.') # Random values for all unknowns. initial_guess = np.hstack((np.random.normal(scale=5.0, size=num_states * num_nodes), 50.0 * np.random.random(1))) elif initial_guess == 'sysid': print(('Using noisy measurements for the trajectory initial guess and ' 'a random positive value for the parameter.')) # Give noisy measurements as the initial state guess and a random # positive values as the parameter guess. initial_guess = np.hstack((y1_meas, y2_meas, 100.0 * np.random.random(1))) elif initial_guess == 'known': print('Using the known solution as the initial guess.') # Known solution as initial guess. initial_guess = np.hstack((y1_meas, y2_meas, 10.0)) # Find the optimal solution. solution, info = prob.solve(initial_guess) p_sol = solution[-1] # Print the result. known_msg = "Known value of p = {}".format(p_val) guess_msg = "Initial guess for p = {}".format(initial_guess[-1]) identified_msg = "Identified value of p = {}".format(p_sol) divider = '=' * max(len(known_msg), len(identified_msg)) print(divider) print(known_msg) print(guess_msg) print(identified_msg) print(divider) # Simulate with the identified parameter. y_sim = odeint(eval_f, y0, time, args=(p_sol,)) y1_sim = y_sim[:, 0] y2_sim = y_sim[:, 1] if do_plot: # Plot results fig_y1, axes_y1 = plt.subplots(3, 1) legend = ['measured', 'initial guess', 'direct collocation solution', 'identified simulated'] axes_y1[0].plot(time, y1_meas, '.k', time, initial_guess[:num_nodes], '.b', time, solution[:num_nodes], '.r', time, y1_sim, 'g') axes_y1[0].set_xlabel('Time [s]') axes_y1[0].set_ylabel('y1 [rad]') axes_y1[0].legend(legend) axes_y1[1].set_title('Initial Guess Constraint Violations') axes_y1[1].plot(prob.con(initial_guess)[:num_nodes - 1]) axes_y1[2].set_title('Solution Constraint Violations') axes_y1[2].plot(prob.con(solution)[:num_nodes - 1]) plt.tight_layout() fig_y2, axes_y2 = plt.subplots(3, 1) axes_y2[0].plot(time, y2_meas, '.k', time, initial_guess[num_nodes:-1], '.b', time, solution[num_nodes:-1], '.r', time, y2_sim, 'g') axes_y2[0].set_xlabel('Time [s]') axes_y2[0].set_ylabel('y2 [rad]') axes_y2[0].legend(legend) axes_y2[1].set_title('Initial Guess Constraint Violations') axes_y2[1].plot(prob.con(initial_guess)[num_nodes - 1:]) axes_y2[2].set_title('Solution Constraint Violations') axes_y2[2].plot(prob.con(solution)[num_nodes - 1:]) plt.tight_layout() plt.show() if __name__ == "__main__": import argparse desc = "Run the pendulum parameter identification." parser = argparse.ArgumentParser(description=desc) msg = "The type of initial guess: sysid, random, known, randompar, zero." parser.add_argument('-i', '--initialguess', type=str, help=msg, default='sysid') parser.add_argument('-p', '--plot', action="store_true", help="Show result plots.") args = parser.parse_args() main(args.initialguess, do_plot=args.plot)
35.055276
79
0.598624
4c6a2ce79f709bc04aa6f021b017848a0d2a417a
5,776
py
Python
wrangling_scripts/figure1.py
DanielDaCosta/dashboardapp-daily-report
beb336d7993558c17fada8b1675b6982dc4c1f62
[ "MIT" ]
7
2020-05-03T00:55:42.000Z
2021-04-15T01:07:38.000Z
wrangling_scripts/figure1.py
DanielDaCosta/dashboardapp-daily-report
beb336d7993558c17fada8b1675b6982dc4c1f62
[ "MIT" ]
null
null
null
wrangling_scripts/figure1.py
DanielDaCosta/dashboardapp-daily-report
beb336d7993558c17fada8b1675b6982dc4c1f62
[ "MIT" ]
null
null
null
import pandas as pd from datetime import timedelta import warnings import plotly.graph_objs as go warnings.filterwarnings("ignore") def daily_average(path_csv): """Return the daily average of a specific region Params: path_csv (str): CSV path Returns: (dict): Dictionary containing the items: - figures: array with figure object - high_aglom: data of locations with higher agglomerations - low_var: data of locations with lower variations - high_var: data of locations with higher variations """ history_daily = pd.read_csv(f'data/{path_csv}.csv') BAIRROS_FOR_STUDY = ['Haight-Ashbury', 'San Francisco', 'The Castro', 'Others', 'Union Square', 'Chinatown', 'Alamo Square', 'Mission District', 'SoMa', 'Fishermanโ€™s wharf'] # Data Preprocessing history_daily = history_daily.loc[history_daily['bairro'] .isin(BAIRROS_FOR_STUDY)] history_daily['dia'] = pd.to_datetime(history_daily['dia']) history_daily['day_of_week'] = history_daily['dia'].dt.day_name() # Analysis starts from the last 7 days last_record = max(history_daily['dia']) start_time = last_record - timedelta(days=7) start_time = start_time.strftime('%Y-%m-%d') week_now = history_daily.loc[history_daily['dia'] >= start_time] week_now['Dia'] = week_now['dia'].apply(lambda x: str(x.strftime('%d/%m'))) # Legend week_now['proporcao_relacao_media_dia_da_semana_legend'] = \ week_now['proporcao_media_dia_semana'].apply(lambda x: str(round(x)) + '%') week_now['day_of_week_initial'] = \ week_now.day_of_week.apply(lambda x: ' (' + str(x)[0].upper() + ')') week_now['day_of_week_legend'] = week_now['Dia'] \ + week_now['day_of_week_initial'] # Generating Graph 1 bairro_graph = 'San Francisco' week_graph = week_now.loc[week_now['bairro'] == bairro_graph][:-1] week_graph.rename(columns={'pessoas_contadas': 'Pessoas Contadas', 'media_pessoas_contadas': 'Mรฉdia do Dia da Semana'}, inplace=True) figure_1 = go.Figure( data=[ go.Bar( name="Counted People", x=week_graph['day_of_week_legend'], y=week_graph['Pessoas Contadas'], text=week_graph[('proporcao_relacao_' 'media_dia_da_semana_legend')], textposition='outside', offsetgroup=0 ), go.Bar( name="Average Day of Week", x=week_graph['day_of_week_legend'], y=week_graph['Mรฉdia do Dia da Semana'], offsetgroup=1 ) ], layout=go.Layout( title=(f'{bairro_graph}:' 'Average Number of People Per Day'), title_x=0.5, yaxis_title="Population", plot_bgcolor='rgba(0,0,0,0)', # width=800, ) ) figure_1.update_yaxes(showgrid=True, gridwidth=1, gridcolor='black') # General Analysis: Neighborhoods with the greatest agglomerations # Order by number of people in the last day columns = ['bairro', 'pessoas_contadas'] last_day = week_now.dia.unique()[-2] # -2 -> yesterday high_aglom = week_now.loc[(week_now['dia'] == last_day) & (~week_now.bairro.isin(['Rio_de_Janeiro', 'sem_bairro'])), columns].sort_values(by='pessoas_contadas', ascending=False)[:3] high_aglom['pessoas_contadas'] = high_aglom.pessoas_contadas.apply(lambda x: round(x)) high_aglom = high_aglom.to_dict('list') # General Analysis: Neighborhoods with the greatest variations # Order by querda_proporcional_dia_semana in the last day, in # ascending order columns = ['bairro', 'queda_proporcional_dia_semana'] last_day = week_now.dia.unique()[-2] low_variations = week_now\ .loc[(week_now['dia'] == last_day) & (~week_now.bairro.isin(['Rio_de_Janeiro', 'sem_bairro'])), columns].sort_values(by='queda_proporcional_dia_semana')[:3] low_variations['queda_proporcional_dia_semana'] = low_variations\ .queda_proporcional_dia_semana.apply(lambda x: round(x)) low_variations = low_variations.to_dict('list') # General Analysis: Neighborhoods with the smallest variations # Order by querda_proporcional_dia_semana in the last day, # in descrescing order columns = ['bairro', 'queda_proporcional_dia_semana'] last_day = week_now.dia.unique()[-2] high_variations = week_now\ .loc[(week_now['dia'] == last_day) & (~week_now.bairro.isin(['San Francisco', 'Others'])), columns].sort_values(by='queda_proporcional_dia_semana', ascending=False)[:3] high_variations['queda_proporcional_dia_semana'] = high_variations\ .queda_proporcional_dia_semana.apply(lambda x: round(x)) high_variations = high_variations.to_dict('list') # Results results = {'figure': dict(data=figure_1.data, layout=figure_1.layout), 'high_aglom': high_aglom, 'low_variations': low_variations, 'high_variations': high_variations, 'date_string': last_day.strftime('%Y-%m-%d')} return results # if __name__ == '__main__': # path_csv = '20200416_2' # figures = [] # dict_results = daily_average(path_csv)
41.553957
90
0.596607
b26c8f4cfd5bfec6bf681941f0672fc58010b70c
20,403
py
Python
flask_user/user_manager.py
Jonazon/Flask-User
6f74fd0dd52858b18af95f70e2ef8a888451fe6c
[ "MIT" ]
null
null
null
flask_user/user_manager.py
Jonazon/Flask-User
6f74fd0dd52858b18af95f70e2ef8a888451fe6c
[ "MIT" ]
null
null
null
flask_user/user_manager.py
Jonazon/Flask-User
6f74fd0dd52858b18af95f70e2ef8a888451fe6c
[ "MIT" ]
null
null
null
"""This module implements the main UserManager class for Flask-User. """ # Author: Ling Thio <ling.thio@gmail.com> # Copyright (c) 2013 Ling Thio' import datetime from flask import abort, Blueprint, current_app, Flask, session from flask_login import LoginManager from wtforms import ValidationError from . import ConfigError from . import forms from .db_manager import DBManager from .email_manager import EmailManager from .password_manager import PasswordManager from .token_manager import TokenManager from .translation_utils import lazy_gettext as _ # map _() to lazy_gettext() from .user_manager__settings import UserManager__Settings from .user_manager__utils import UserManager__Utils from .user_manager__views import UserManager__Views # The UserManager is implemented across several source code files. # Mixins are used to aggregate all member functions into the one UserManager class for ease of customization. class UserManager(UserManager__Settings, UserManager__Utils, UserManager__Views): """ Customizable User Authentication and Management. """ def __init__(self, app, db, UserClass, **kwargs): """ Args: app(Flask): The Flask application instance. db: An Object-Database Mapper instance such as SQLAlchemy or MongoEngine. UserClass: The User class (*not* an instance!). Keyword Args: UserEmailClass: The optional UserEmail class (*not* an instance!). Required for the 'multiple emails per user' feature. UserInvitationClass: The optional UserInvitation class (*not* an instance!). Required for the 'register by invitation' feature. Example: ``user_manager = UserManager(app, db, User, UserEmailClass=UserEmail)`` .. This hack shows a header above the _next_ section .. code-block:: none Customizable UserManager methods """ #see http://flask.pocoo.org/docs/0.12/extensiondev/#the-extension-code """ self.app = app if app: self.init_app(app, db, UserClass, **kwargs) def init_app( self, app, db, UserClass, UserInvitationClass=None, UserEmailClass=None, RoleClass=None, # Only used for testing ): # See http://flask.pocoo.org/docs/0.12/extensiondev/#the-extension-code # Perform Class type checking if not isinstance(app, Flask): raise TypeError("flask_user.UserManager.init_app(): Parameter 'app' is an instance of class '%s' " "instead of a subclass of class 'flask.Flask'." % app.__class__.__name__) # Bind Flask-User to app app.user_manager = self # Remember all data-models # ------------------------ self.db = db # self.db_manager.UserClass = UserClass # self.db_manager.UserEmailClass = UserEmailClass # self.UserInvitationClass = UserInvitationClass # self.RoleClass=RoleClass # Load app config settings # ------------------------ # For each 'UserManager.USER_...' property: load settings from the app config. for attrib_name in dir(self): if attrib_name[0:5] == 'USER_': default_value = getattr(UserManager, attrib_name) setattr(self, attrib_name, app.config.get(attrib_name, default_value)) # If USER_EMAIL_SENDER_EMAIL is not set, try to construct it from # MAIL_DEFAULT_SENDER or DEFAULT_MAIL_SENDER if not self.USER_EMAIL_SENDER_EMAIL: default_sender = app.config.get('DEFAULT_MAIL_SENDER', None) default_sender = app.config.get('MAIL_DEFAULT_SENDER', default_sender) if default_sender: # Accept two formats: '{name}<{email}>' or plain '{email}' if default_sender[-1:] == '>': start = default_sender.rfind('<') if start >= 1: self.USER_EMAIL_SENDER_EMAIL = default_sender[start + 1:-1] if not self.USER_EMAIL_SENDER_NAME: self.USER_EMAIL_SENDER_NAME = default_sender[0:start].strip(' "') else: self.USER_EMAIL_SENDER_EMAIL = default_sender # If USER_EMAIL_SENDER_NAME is not set, default it to USER_APP_NAME if not self.USER_EMAIL_SENDER_NAME: self.USER_EMAIL_SENDER_NAME = self.USER_APP_NAME # Configure Flask session behavior # -------------------------------- if self.USER_USER_SESSION_EXPIRATION: app.permanent_session_lifetime = datetime.timedelta(seconds=self.USER_USER_SESSION_EXPIRATION) @app.before_request def advance_session_timeout(): session.permanent = True # Timeout after app.permanent_session_lifetime period session.modified = True # Advance session timeout each time a user visits a page # Configure Flask-Login # -------------------- # Setup default LoginManager using Flask-Login self.login_manager = LoginManager(app) self.login_manager.login_view = 'user.login' # Flask-Login calls this function to retrieve a User record by token. @self.login_manager.user_loader def load_user_by_user_token(user_token): user = self.db_manager.UserClass.get_user_by_token(user_token) return user # Configure Flask-BabelEx # ----------------------- self.babel = app.extensions.get('babel', None) from .translation_utils import init_translations init_translations(self.babel) # Configure Jinja2 # ---------------- # If the application has not initialized BabelEx, # we must provide a NULL translation to Jinja2 if not hasattr(app.jinja_env, 'install_gettext_callables'): app.jinja_env.add_extension('jinja2.ext.i18n') app.jinja_env.install_null_translations() # Define a context processor to provide custom variable and functions available to Jinja2 templates def flask_user_context_processor(): # In Flask-Login 0.2 ``is_authenticated`` and ``is_active`` were implemented as functions, # while in 0.3+ they are implemented as properties. def call_or_get(function_or_property): return function_or_property() if callable(function_or_property) else function_or_property return dict( user_manager=current_app.user_manager, call_or_get=call_or_get, ) # Register context processor with Jinja2 app.context_processor(flask_user_context_processor) # Create a dummy Blueprint to add the app/templates/flask_user dir to the template search path blueprint = Blueprint('flask_user', __name__, template_folder='templates') app.register_blueprint(blueprint) # Set default form classes # ------------------------ self.AddEmailFormClass = forms.AddEmailForm self.ChangePasswordFormClass = forms.ChangePasswordForm self.ChangeUsernameFormClass = forms.ChangeUsernameForm self.EditUserProfileFormClass = forms.EditUserProfileForm self.ForgotPasswordFormClass = forms.ForgotPasswordForm self.InviteUserFormClass = forms.InviteUserForm self.LoginFormClass = forms.LoginForm self.RegisterFormClass = forms.RegisterForm self.ResendEmailConfirmationFormClass = forms.ResendEmailConfirmationForm self.ResetPasswordFormClass = forms.ResetPasswordForm # Set default managers # -------------------- # Setup DBManager self.db_manager = DBManager(app, db, UserClass, UserEmailClass, UserInvitationClass, RoleClass) # Setup PasswordManager self.password_manager = PasswordManager(app) # Set default EmailAdapter if self.USER_ENABLE_EMAIL: from .email_adapters.smtp_email_adapter import SMTPEmailAdapter self.email_adapter = SMTPEmailAdapter(app) # Setup EmailManager if self.USER_ENABLE_EMAIL: self.email_manager = EmailManager(app) # Setup TokenManager self.token_manager = TokenManager(app) # Allow developers to customize UserManager self.customize(app) # Make sure the settings are valid -- raise ConfigError if not self._check_settings(app) # Configure a list of URLs to route to their corresponding view method. self._add_url_routes(app) def customize(self, app): """ Override this method to customize properties. Example:: # Customize Flask-User class CustomUserManager(UserManager): def customize(self, app): # Add custom managers and email mailers here self.email_manager = CustomEmailManager(app) self.password_manager = CustomPasswordManager(app) self.token_manager = CustomTokenManager(app) self.email_adapter = CustomEmailAdapter(app) # Setup Flask-User user_manager = CustomUserManager(app, db, User) """ def password_validator(self, form, field): """Ensure that passwords have at least 6 characters with one lowercase letter, one uppercase letter and one number. Override this method to customize the password validator. """ # Convert string to list of characters password = list(field.data) password_length = len(password) # Count lowercase, uppercase and numbers lowers = uppers = digits = 0 for ch in password: if ch.islower(): lowers += 1 if ch.isupper(): uppers += 1 if ch.isdigit(): digits += 1 # Password must have one lowercase letter, one uppercase letter and one digit is_valid = password_length >= 6 and lowers and uppers and digits if not is_valid: raise ValidationError( _('Password must have at least 6 characters with one lowercase letter, one uppercase letter and one number')) # If you prefer using Regex: # from re import compile # PASSWORD_REGEX = compile(r'\A(?=\S*?\d)(?=\S*?[A-Z])(?=\S*?[a-z])\S{6,}\Z') # def password_is_valid(password): # return PASSWORD_REGEX.match(password) is not None def username_validator(self, form, field): """Ensure that Usernames contains at least 3 alphanumeric characters. Override this method to customize the username validator. """ username = field.data if len(username) < 3: raise ValidationError( _('Username must be at least 3 characters long')) valid_chars = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789-._' chars = list(username) for char in chars: if char not in valid_chars: raise ValidationError( _("Username may only contain letters, numbers, '-', '.' and '_'")) # If you prefer using Regex: # from re import compile # USERNAME_REGEX = compile(r'\A[\w\-\.]{3,}\Z') # def username_is_valid(username): # return USERNAME_REGEX.match(username) is not None # ***** Private methods ***** def _check_settings(self, app): """Verify required settings. Produce a helpful error messages for incorrect settings.""" # Check for invalid settings # -------------------------- # Check self.UserInvitationClass and USER_ENABLE_INVITE_USER if self.USER_ENABLE_INVITE_USER and not self.db_manager.UserInvitationClass: raise ConfigError( 'UserInvitationClass is missing while USER_ENABLE_INVITE_USER is True.' \ ' Specify UserInvitationClass with UserManager(app, db, User, UserInvitationClass=...' \ ' or set USER_ENABLE_INVITE_USER=False.') # Check for deprecated settings # ----------------------------- # Check for deprecated USER_ENABLE_CONFIRM_EMAIL setting = app.config.get('USER_ENABLE_LOGIN_WITHOUT_CONFIRM_EMAIL', None) if setting is not None: print( 'Deprecation warning: USER_ENABLE_LOGIN_WITHOUT_CONFIRM_EMAIL'\ ' will be deprecated.' \ ' It has been replaced by USER_ALLOW_LOGIN_WITHOUT_CONFIRMED_EMAIL.'\ ' Please change this as soon as possible.') self.USER_ALLOW_LOGIN_WITHOUT_CONFIRMED_EMAIL = setting # Check for deprecated USER_ENABLE_RETYPE_PASSWORD setting = app.config.get('USER_ENABLE_RETYPE_PASSWORD', None) if setting is not None: print( 'Deprecation warning: USER_ENABLE_RETYPE_PASSWORD'\ ' will be deprecated.' \ ' It has been replaced with USER_REQUIRE_RETYPE_PASSWORD.'\ ' Please change this as soon as possible.') self.USER_REQUIRE_RETYPE_PASSWORD = setting # Check for deprecated USER_SHOW_USERNAME_EMAIL_DOES_NOT_EXIST setting = app.config.get('USER_SHOW_USERNAME_EMAIL_DOES_NOT_EXIST', None) if setting is not None: print( 'Deprecation warning: USER_SHOW_USERNAME_EMAIL_DOES_NOT_EXIST' \ ' will be deprecated.' \ ' It has been replaced with USER_SHOW_USERNAME_DOES_NOT_EXIST' ' and USER_SHOW_EMAIL_DOES_NOT_EXIST.' ' Please change this as soon as possible.') self.USER_SHOW_USERNAME_DOES_NOT_EXIST = setting self.USER_SHOW_EMAIL_DOES_NOT_EXIST = setting # Check for deprecated USER_PASSWORD_HASH setting = app.config.get('USER_PASSWORD_HASH', None) if setting is not None: print( "Deprecation warning: USER_PASSWORD_HASH=<string>"\ " will be deprecated."\ " It has been replaced with USER_PASSLIB_CRYPTCONTEXT_SCHEMES=<list>." " Please change USER_PASSWORD_HASH='something' to"\ " USER_PASSLIB_CRYPTCONTEXT_SCHEMES=['something'] as soon as possible.") self.USER_PASSLIB_CRYPTCONTEXT_SCHEMES = [setting] # Check that USER_EMAIL_SENDER_EMAIL is set when USER_ENABLE_EMAIL is True if not self.USER_EMAIL_SENDER_EMAIL and self.USER_ENABLE_EMAIL: raise ConfigError( 'USER_EMAIL_SENDER_EMAIL is missing while USER_ENABLE_EMAIL is True.'\ ' specify USER_EMAIL_SENDER_EMAIL (and USER_EMAIL_SENDER_NAME) or set USER_ENABLE_EMAIL to False.') # Disable settings that rely on a feature setting that's not enabled # ------------------------------------------------------------------ # USER_ENABLE_REGISTER=True must have USER_ENABLE_USERNAME=True or USER_ENABLE_EMAIL=True. if not self.USER_ENABLE_USERNAME and not self.USER_ENABLE_EMAIL: self.USER_ENABLE_REGISTER = False # Settings that depend on USER_ENABLE_EMAIL if not self.USER_ENABLE_EMAIL: self.USER_ENABLE_CONFIRM_EMAIL = False self.USER_ENABLE_MULTIPLE_EMAILS = False self.USER_ENABLE_FORGOT_PASSWORD = False self.USER_SEND_PASSWORD_CHANGED_EMAIL = False self.USER_SEND_REGISTERED_EMAIL = False self.USER_SEND_USERNAME_CHANGED_EMAIL = False self.USER_REQUIRE_INVITATION = False # Settings that depend on USER_ENABLE_USERNAME if not self.USER_ENABLE_USERNAME: self.USER_ENABLE_CHANGE_USERNAME = False def _add_url_routes(self, app): """Configure a list of URLs to route to their corresponding view method..""" # Because methods contain an extra ``self`` parameter, URL routes are mapped # to stub functions, which simply call the corresponding method. # For testing purposes, we map all available URLs to stubs, but the stubs # contain config checks to return 404 when a feature is disabled. # Define the stubs # ---------------- # def auth0_callback_stub(): # if not self.USER_ENABLE_AUTH0: abort(404) # return self.auth0_callback_view() def change_password_stub(): if not self.USER_ENABLE_CHANGE_PASSWORD: abort(404) return self.change_password_view() def change_username_stub(): if not self.USER_ENABLE_CHANGE_USERNAME: abort(404) return self.change_username_view() def confirm_email_stub(token): if not self.USER_ENABLE_CONFIRM_EMAIL: abort(404) return self.confirm_email_view(token) def edit_user_profile_stub(): return self.edit_user_profile_view() def email_action_stub(id, action): if not self.USER_ENABLE_MULTIPLE_EMAILS or not self.db_manager.UserEmailClass: abort(404) return self.email_action_view(id, action) def forgot_password_stub(): if not self.USER_ENABLE_FORGOT_PASSWORD: abort(404) return self.forgot_password_view() def manage_emails_stub(): if not self.USER_ENABLE_MULTIPLE_EMAILS or not self.db_manager.UserEmailClass: abort(404) return self.manage_emails_view() def invite_user_stub(): if not self.USER_ENABLE_INVITE_USER: abort(404) return self.invite_user_view() def login_stub(): return self.login_view() def logout_stub(): return self.logout_view() def register_stub(): if not self.USER_ENABLE_REGISTER: abort(404) return self.register_view() def resend_email_confirmation_stub(): if not self.USER_ENABLE_CONFIRM_EMAIL: abort(404) return self.resend_email_confirmation_view() def reset_password_stub(token): if not self.USER_ENABLE_FORGOT_PASSWORD: abort(404) return self.reset_password_view(token) # def unconfirmed_email_stub(): # return self.unconfirmed_email_view() def unauthorized_stub(): return self.unauthorized_view() # Add the URL routes # ------------------ # app.add_url_rule('/callbacks/auth0', 'user.auth0_callback', auth0_callback_stub) app.add_url_rule(self.USER_CHANGE_PASSWORD_URL, 'user.change_password', change_password_stub, methods=['GET', 'POST']) app.add_url_rule(self.USER_CHANGE_USERNAME_URL, 'user.change_username', change_username_stub, methods=['GET', 'POST']) app.add_url_rule(self.USER_CONFIRM_EMAIL_URL, 'user.confirm_email', confirm_email_stub) app.add_url_rule(self.USER_EDIT_USER_PROFILE_URL, 'user.edit_user_profile', edit_user_profile_stub, methods=['GET', 'POST']) app.add_url_rule(self.USER_EMAIL_ACTION_URL, 'user.email_action', email_action_stub) app.add_url_rule(self.USER_FORGOT_PASSWORD_URL, 'user.forgot_password', forgot_password_stub, methods=['GET', 'POST']) app.add_url_rule(self.USER_INVITE_USER_URL, 'user.invite_user', invite_user_stub, methods=['GET', 'POST']) app.add_url_rule(self.USER_LOGIN_URL, 'user.login', login_stub, methods=['GET', 'POST']) app.add_url_rule(self.USER_LOGOUT_URL, 'user.logout', logout_stub, methods=['GET', 'POST']) app.add_url_rule(self.USER_MANAGE_EMAILS_URL, 'user.manage_emails', manage_emails_stub, methods=['GET', 'POST']) app.add_url_rule(self.USER_REGISTER_URL, 'user.register', register_stub, methods=['GET', 'POST']) app.add_url_rule(self.USER_RESEND_EMAIL_CONFIRMATION_URL, 'user.resend_email_confirmation', resend_email_confirmation_stub, methods=['GET', 'POST']) app.add_url_rule(self.USER_RESET_PASSWORD_URL, 'user.reset_password', reset_password_stub, methods=['GET', 'POST'])
43.226695
125
0.638681
2c00fcea97861e86dc948bdc282bc69c33bd95c3
632
py
Python
src/genGraph_MPL.py
QuangVuong85/Dijkstra.GUI.PyQt5
835ea0b6a059c78036d2ded63c56d7d3be5864bb
[ "bzip2-1.0.6" ]
1
2020-06-16T11:23:58.000Z
2020-06-16T11:23:58.000Z
src/genGraph_MPL.py
QuangVuong85/Dijkstra.GUI.PyQt5
835ea0b6a059c78036d2ded63c56d7d3be5864bb
[ "bzip2-1.0.6" ]
null
null
null
src/genGraph_MPL.py
QuangVuong85/Dijkstra.GUI.PyQt5
835ea0b6a059c78036d2ded63c56d7d3be5864bb
[ "bzip2-1.0.6" ]
null
null
null
import matplotlib.pyplot as plt import networkx as nx import numpy as np G = nx.Graph() # Create empty graph G.add_nodes_from(["A", "B", "C"]) # Add nodes # Add edges G.add_edge("A", "B", weight=5) G.add_edge("B", "C", weight=7) G.add_edge("C", "A", weight=2) # Create drawing pos = nx.spring_layout(G) # List of positions of nodes weights = nx.get_edge_attributes(G, "weight") # List of weights nx.draw_networkx(G, pos, with_labels=True) nx.draw_networkx_edge_labels(G, pos, edge_labels=weights) plt.title("Basic Graphs with Networkx") plt.gcf().canvas.set_window_title("") # Hide window title # Display Graph plt.show()
25.28
63
0.712025
5dca669a19f6be67bb22f3024d4e8dc3e975cec3
959
py
Python
ch03-first-api/main.py
hedrickbt/talkpython-fastapi
633ee7b6ebfa78933b14fceed0c62884382363a1
[ "MIT" ]
null
null
null
ch03-first-api/main.py
hedrickbt/talkpython-fastapi
633ee7b6ebfa78933b14fceed0c62884382363a1
[ "MIT" ]
null
null
null
ch03-first-api/main.py
hedrickbt/talkpython-fastapi
633ee7b6ebfa78933b14fceed0c62884382363a1
[ "MIT" ]
null
null
null
import json from typing import Optional import fastapi import uvicorn api = fastapi.FastAPI() @api.get('/') def index(): body = """ <html> <body style='padding: 10px;'> <h1>Welcome to the API</h1> <div> Try it: <a href='/api/calculate/?x=7&y=11'>/api/calculate/?x=7&y=11</a> </div> </body> </html> """ return fastapi.responses.HTMLResponse(content=body) @api.get('/api/calculate') def calculate(x: int, y: int, z: Optional[int] = None): if z == 0: error = { 'error': 'ERROR: z cannot be 0.' } # return fastapi.Response(content=json.dumps(error), media_type='application/json', status_code=400) return fastapi.responses.JSONResponse(content=error, status_code=400) value = (x + y) if z is not None: value /= z return { 'x': x, 'y': y, 'z': z, 'value': value, } uvicorn.run(api, port=8001, host='127.0.0.1')
20.847826
108
0.567258
87fc76c329f2e8847e137d56bf7cb0db55137664
1,028
py
Python
nodes/Object/GetObjectVisibility.py
atticus-lv/RenderNode
8a4797a2186b76fedebc5d634cff298e69089474
[ "Apache-2.0" ]
17
2021-11-21T09:26:55.000Z
2022-03-09T06:56:01.000Z
nodes/Object/GetObjectVisibility.py
atticus-lv/RenderNode
8a4797a2186b76fedebc5d634cff298e69089474
[ "Apache-2.0" ]
1
2021-12-05T13:02:48.000Z
2021-12-06T08:02:34.000Z
nodes/Object/GetObjectVisibility.py
atticus-lv/RenderNode
8a4797a2186b76fedebc5d634cff298e69089474
[ "Apache-2.0" ]
4
2021-11-23T14:49:34.000Z
2021-12-30T15:04:58.000Z
import bpy from bpy.props import * from ...nodes.BASE.node_base import RenderNodeBase class RenderNodeGetObjectVisibility(RenderNodeBase): bl_idname = 'RenderNodeGetObjectVisibility' bl_label = 'Get Object Visibility' def init(self, context): self.create_input('RenderNodeSocketObject', 'object', 'Object', show_text=False) self.create_output('RenderNodeSocketBool', 'hide_viewport', 'Show In Viewports', default_value=True) # invert bool self.create_output('RenderNodeSocketBool', 'hide_render', 'Show In Render', default_value=True) # invert bool def process(self, context, id, path): ob = self.inputs['object'].get_value() if ob: self.outputs['hide_viewport'].set_value(not ob.hide_viewport) self.outputs['hide_render'].set_value(not ob.hide_render) def register(): bpy.utils.register_class(RenderNodeGetObjectVisibility) def unregister(): bpy.utils.unregister_class(RenderNodeGetObjectVisibility)
33.16129
118
0.707198
77d901fe533ab9577189b18398e74e3ccc566d95
17,159
bzl
Python
tools/cpp/windows_cc_configure.bzl
keithkml/bazel
174d14fda916c89fbd8a3c9411588bbe87826a83
[ "Apache-2.0" ]
null
null
null
tools/cpp/windows_cc_configure.bzl
keithkml/bazel
174d14fda916c89fbd8a3c9411588bbe87826a83
[ "Apache-2.0" ]
null
null
null
tools/cpp/windows_cc_configure.bzl
keithkml/bazel
174d14fda916c89fbd8a3c9411588bbe87826a83
[ "Apache-2.0" ]
null
null
null
# pylint: disable=g-bad-file-header # Copyright 2016 The Bazel Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Configuring the C++ toolchain on Windows.""" load( "@bazel_tools//tools/cpp:lib_cc_configure.bzl", "auto_configure_fail", "auto_configure_warning", "escape_string", "execute", "get_env_var", "is_cc_configure_debug", "resolve_labels", ) def _auto_configure_warning_maybe(repository_ctx, msg): """Output warning message when CC_CONFIGURE_DEBUG is enabled.""" if is_cc_configure_debug(repository_ctx): auto_configure_warning(msg) def _get_escaped_windows_msys_crosstool_content(repository_ctx, use_mingw = False): """Return the content of msys crosstool which is still the default CROSSTOOL on Windows.""" bazel_sh = get_env_var(repository_ctx, "BAZEL_SH").replace("\\", "/").lower() tokens = bazel_sh.rsplit("/", 1) prefix = "mingw64" if use_mingw else "usr" msys_root = None if tokens[0].endswith("/usr/bin"): msys_root = tokens[0][:len(tokens[0]) - len("usr/bin")] elif tokens[0].endswith("/bin"): msys_root = tokens[0][:len(tokens[0]) - len("bin")] if not msys_root: auto_configure_fail( "Could not determine MSYS/Cygwin root from BAZEL_SH (%s)" % bazel_sh, ) escaped_msys_root = escape_string(msys_root) return ((( ' abi_version: "local"\n' + ' abi_libc_version: "local"\n' + ' builtin_sysroot: ""\n' + ' compiler: "msys-gcc"\n' + ' host_system_name: "local"\n' + " needsPic: false\n" + ' target_libc: "msys"\n' + ' target_cpu: "x64_windows"\n' + ' target_system_name: "local"\n' ) if not use_mingw else "") + ' tool_path { name: "ar" path: "%s%s/bin/ar" }\n' % (escaped_msys_root, prefix) + ' tool_path { name: "compat-ld" path: "%s%s/bin/ld" }\n' % (escaped_msys_root, prefix) + ' tool_path { name: "cpp" path: "%s%s/bin/cpp" }\n' % (escaped_msys_root, prefix) + ' tool_path { name: "dwp" path: "%s%s/bin/dwp" }\n' % (escaped_msys_root, prefix) + ' tool_path { name: "gcc" path: "%s%s/bin/gcc" }\n' % (escaped_msys_root, prefix) + ' artifact_name_pattern { category_name: "executable" prefix: "" extension: ".exe"}\n' + ' cxx_flag: "-std=gnu++0x"\n' + ' linker_flag: "-lstdc++"\n' + ' cxx_builtin_include_directory: "%s%s/"\n' % (escaped_msys_root, prefix) + ' tool_path { name: "gcov" path: "%s%s/bin/gcov" }\n' % (escaped_msys_root, prefix) + ' tool_path { name: "ld" path: "%s%s/bin/ld" }\n' % (escaped_msys_root, prefix) + ' tool_path { name: "nm" path: "%s%s/bin/nm" }\n' % (escaped_msys_root, prefix) + ' tool_path { name: "objcopy" path: "%s%s/bin/objcopy" }\n' % (escaped_msys_root, prefix) + ' objcopy_embed_flag: "-I"\n' + ' objcopy_embed_flag: "binary"\n' + ' tool_path { name: "objdump" path: "%s%s/bin/objdump" }\n' % (escaped_msys_root, prefix) + ' tool_path { name: "strip" path: "%s%s/bin/strip" }' % (escaped_msys_root, prefix) + ' feature { name: "targets_windows" implies: "copy_dynamic_libraries_to_binary" enabled: true }' + ' feature { name: "copy_dynamic_libraries_to_binary" }') def _get_system_root(repository_ctx): """Get System root path on Windows, default is C:\\\Windows. Doesn't %-escape the result.""" if "SYSTEMROOT" in repository_ctx.os.environ: return escape_string(repository_ctx.os.environ["SYSTEMROOT"]) _auto_configure_warning_maybe(repository_ctx, "SYSTEMROOT is not set, using default SYSTEMROOT=C:\\Windows") return "C:\\Windows" def _add_system_root(repository_ctx, env): """Running VCVARSALL.BAT and VCVARSQUERYREGISTRY.BAT need %SYSTEMROOT%\\\\system32 in PATH.""" if "PATH" not in env: env["PATH"] = "" env["PATH"] = env["PATH"] + ";" + _get_system_root(repository_ctx) + "\\system32" return env def find_vc_path(repository_ctx): """Find Visual C++ build tools install path. Doesn't %-escape the result.""" # 1. Check if BAZEL_VC or BAZEL_VS is already set by user. if "BAZEL_VC" in repository_ctx.os.environ: return repository_ctx.os.environ["BAZEL_VC"] if "BAZEL_VS" in repository_ctx.os.environ: return repository_ctx.os.environ["BAZEL_VS"] + "\\VC\\" _auto_configure_warning_maybe(repository_ctx, "'BAZEL_VC' is not set, " + "start looking for the latest Visual C++ installed.") # 2. Check if VS%VS_VERSION%COMNTOOLS is set, if true then try to find and use # vcvarsqueryregistry.bat to detect VC++. _auto_configure_warning_maybe(repository_ctx, "Looking for VS%VERSION%COMNTOOLS environment variables, " + "eg. VS140COMNTOOLS") for vscommontools_env in [ "VS140COMNTOOLS", "VS120COMNTOOLS", "VS110COMNTOOLS", "VS100COMNTOOLS", "VS90COMNTOOLS", ]: if vscommontools_env not in repository_ctx.os.environ: continue vcvarsqueryregistry = repository_ctx.os.environ[vscommontools_env] + "\\vcvarsqueryregistry.bat" if not repository_ctx.path(vcvarsqueryregistry).exists: continue repository_ctx.file( "get_vc_dir.bat", "@echo off\n" + "call \"" + vcvarsqueryregistry + "\"\n" + "echo %VCINSTALLDIR%", True, ) env = _add_system_root(repository_ctx, repository_ctx.os.environ) vc_dir = execute(repository_ctx, ["./get_vc_dir.bat"], environment = env) _auto_configure_warning_maybe(repository_ctx, "Visual C++ build tools found at %s" % vc_dir) return vc_dir # 3. User might clean up all environment variables, if so looking for Visual C++ through registry. # Works for all VS versions, including Visual Studio 2017. _auto_configure_warning_maybe(repository_ctx, "Looking for Visual C++ through registry") reg_binary = _get_system_root(repository_ctx) + "\\system32\\reg.exe" vc_dir = None for key, suffix in (("VC7", ""), ("VS7", "\\VC")): for version in ["15.0", "14.0", "12.0", "11.0", "10.0", "9.0", "8.0"]: if vc_dir: break result = repository_ctx.execute([reg_binary, "query", "HKEY_LOCAL_MACHINE\\SOFTWARE\\Wow6432Node\\Microsoft\\VisualStudio\\SxS\\" + key, "/v", version]) _auto_configure_warning_maybe(repository_ctx, "registry query result for VC %s:\n\nSTDOUT(start)\n%s\nSTDOUT(end)\nSTDERR(start):\n%s\nSTDERR(end)\n" % (version, result.stdout, result.stderr)) if not result.stderr: for line in result.stdout.split("\n"): line = line.strip() if line.startswith(version) and line.find("REG_SZ") != -1: vc_dir = line[line.find("REG_SZ") + len("REG_SZ"):].strip() + suffix # 4. Check default directories for VC installation _auto_configure_warning_maybe(repository_ctx, "Looking for default Visual C++ installation directory") program_files_dir = get_env_var(repository_ctx, "PROGRAMFILES(X86)", default = "C:\\Program Files (x86)", enable_warning = True) for path in [ "Microsoft Visual Studio\\2017\\BuildTools\\VC", "Microsoft Visual Studio\\2017\\Community\\VC", "Microsoft Visual Studio\\2017\\Professional\\VC", "Microsoft Visual Studio\\2017\\Enterprise\\VC", "Microsoft Visual Studio 14.0\\VC", ]: path = program_files_dir + "\\" + path if repository_ctx.path(path).exists: vc_dir = path break if not vc_dir: return None _auto_configure_warning_maybe(repository_ctx, "Visual C++ build tools found at %s" % vc_dir) return vc_dir def _is_vs_2017(vc_path): """Check if the installed VS version is Visual Studio 2017.""" # In VS 2017, the location of VC is like: # C:\Program Files (x86)\Microsoft Visual Studio\2017\BuildTools\VC\ # In VS 2015 or older version, it is like: # C:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\ return vc_path.find("2017") != -1 def _find_vcvarsall_bat_script(repository_ctx, vc_path): """Find vcvarsall.bat script. Doesn't %-escape the result.""" if _is_vs_2017(vc_path): vcvarsall = vc_path + "\\Auxiliary\\Build\\VCVARSALL.BAT" else: vcvarsall = vc_path + "\\VCVARSALL.BAT" if not repository_ctx.path(vcvarsall).exists: return None return vcvarsall def setup_vc_env_vars(repository_ctx, vc_path): """Get environment variables set by VCVARSALL.BAT. Doesn't %-escape the result!""" vcvarsall = _find_vcvarsall_bat_script(repository_ctx, vc_path) if not vcvarsall: return None repository_ctx.file( "get_env.bat", "@echo off\n" + "call \"" + vcvarsall + "\" amd64 > NUL \n" + "echo PATH=%PATH%,INCLUDE=%INCLUDE%,LIB=%LIB%,WINDOWSSDKDIR=%WINDOWSSDKDIR% \n", True, ) env = _add_system_root( repository_ctx, {"PATH": "", "INCLUDE": "", "LIB": "", "WINDOWSSDKDIR": ""}, ) envs = execute(repository_ctx, ["./get_env.bat"], environment = env).split(",") env_map = {} for env in envs: key, value = env.split("=", 1) env_map[key] = escape_string(value.replace("\\", "\\\\")) return env_map def find_msvc_tool(repository_ctx, vc_path, tool): """Find the exact path of a specific build tool in MSVC. Doesn't %-escape the result.""" tool_path = "" if _is_vs_2017(vc_path): # For VS 2017, the tools are under a directory like: # C:\Program Files (x86)\Microsoft Visual Studio\2017\BuildTools\VC\Tools\MSVC\14.10.24930\bin\HostX64\x64 dirs = repository_ctx.path(vc_path + "\\Tools\\MSVC").readdir() if len(dirs) < 1: return None # Normally there should be only one child directory under %VC_PATH%\TOOLS\MSVC, # but iterate every directory to be more robust. for path in dirs: tool_path = str(path) + "\\bin\\HostX64\\x64\\" + tool if repository_ctx.path(tool_path).exists: break else: # For VS 2015 and older version, the tools are under: # C:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\bin\amd64 tool_path = vc_path + "\\bin\\amd64\\" + tool if not repository_ctx.path(tool_path).exists: return None return tool_path def _find_missing_vc_tools(repository_ctx, vc_path): """Check if any required tool is missing under given VC path.""" missing_tools = [] if not _find_vcvarsall_bat_script(repository_ctx, vc_path): missing_tools.append("VCVARSALL.BAT") for tool in ["cl.exe", "link.exe", "lib.exe", "ml64.exe"]: if not find_msvc_tool(repository_ctx, vc_path, tool): missing_tools.append(tool) return missing_tools def _is_support_debug_fastlink(repository_ctx, vc_path): """Run MSVC linker alone to see if it supports /DEBUG:FASTLINK.""" linker = find_msvc_tool(repository_ctx, vc_path, "link.exe") result = execute(repository_ctx, [linker], expect_failure = True) return result.find("/DEBUG[:{FASTLINK|FULL|NONE}]") != -1 def configure_windows_toolchain(repository_ctx): """Configure C++ toolchain on Windows.""" paths = resolve_labels(repository_ctx, [ "@bazel_tools//tools/cpp:BUILD.static.windows", "@bazel_tools//tools/cpp:CROSSTOOL", "@bazel_tools//tools/cpp:CROSSTOOL.tpl", "@bazel_tools//tools/cpp:vc_installation_error.bat.tpl", ]) repository_ctx.symlink(paths["@bazel_tools//tools/cpp:BUILD.static.windows"], "BUILD") vc_path = find_vc_path(repository_ctx) missing_tools = None if not vc_path: repository_ctx.template( "vc_installation_error.bat", paths["@bazel_tools//tools/cpp:vc_installation_error.bat.tpl"], {"%{vc_error_message}": ""}, ) else: missing_tools = _find_missing_vc_tools(repository_ctx, vc_path) if missing_tools: message = "\r\n".join([ "echo. 1>&2", "echo Visual C++ build tools seems to be installed at %s 1>&2" % vc_path, "echo But Bazel can't find the following tools: 1>&2", "echo %s 1>&2" % ", ".join(missing_tools), "echo. 1>&2", ]) repository_ctx.template( "vc_installation_error.bat", paths["@bazel_tools//tools/cpp:vc_installation_error.bat.tpl"], {"%{vc_error_message}": message}, ) if not vc_path or missing_tools: repository_ctx.template( "CROSSTOOL", paths["@bazel_tools//tools/cpp:CROSSTOOL.tpl"], { "%{cpu}": "x64_windows", "%{default_toolchain_name}": "msvc_x64", "%{toolchain_name}": "msys_x64", "%{msvc_env_tmp}": "", "%{msvc_env_path}": "", "%{msvc_env_include}": "", "%{msvc_env_lib}": "", "%{msvc_cl_path}": "vc_installation_error.bat", "%{msvc_ml_path}": "vc_installation_error.bat", "%{msvc_link_path}": "vc_installation_error.bat", "%{msvc_lib_path}": "vc_installation_error.bat", "%{dbg_mode_debug}": "/DEBUG", "%{fastbuild_mode_debug}": "/DEBUG", "%{compilation_mode_content}": "", "%{content}": _get_escaped_windows_msys_crosstool_content(repository_ctx), "%{msys_x64_mingw_content}": _get_escaped_windows_msys_crosstool_content(repository_ctx, use_mingw = True), "%{opt_content}": "", "%{dbg_content}": "", "%{link_content}": "", "%{cxx_builtin_include_directory}": "", "%{coverage}": "", }, ) return env = setup_vc_env_vars(repository_ctx, vc_path) escaped_paths = escape_string(env["PATH"]) escaped_include_paths = escape_string(env["INCLUDE"]) escaped_lib_paths = escape_string(env["LIB"]) escaped_tmp_dir = escape_string( get_env_var(repository_ctx, "TMP", "C:\\Windows\\Temp").replace("\\", "\\\\"), ) msvc_cl_path = find_msvc_tool(repository_ctx, vc_path, "cl.exe").replace("\\", "/") msvc_ml_path = find_msvc_tool(repository_ctx, vc_path, "ml64.exe").replace("\\", "/") msvc_link_path = find_msvc_tool(repository_ctx, vc_path, "link.exe").replace("\\", "/") msvc_lib_path = find_msvc_tool(repository_ctx, vc_path, "lib.exe").replace("\\", "/") escaped_cxx_include_directories = [] for path in escaped_include_paths.split(";"): if path: escaped_cxx_include_directories.append("cxx_builtin_include_directory: \"%s\"" % path) support_debug_fastlink = _is_support_debug_fastlink(repository_ctx, vc_path) repository_ctx.template( "CROSSTOOL", paths["@bazel_tools//tools/cpp:CROSSTOOL.tpl"], { "%{cpu}": "x64_windows", "%{default_toolchain_name}": "msvc_x64", "%{toolchain_name}": "msys_x64", "%{msvc_env_tmp}": escaped_tmp_dir, "%{msvc_env_path}": escaped_paths, "%{msvc_env_include}": escaped_include_paths, "%{msvc_env_lib}": escaped_lib_paths, "%{msvc_cl_path}": msvc_cl_path, "%{msvc_ml_path}": msvc_ml_path, "%{msvc_link_path}": msvc_link_path, "%{msvc_lib_path}": msvc_lib_path, "%{dbg_mode_debug}": "/DEBUG:FULL" if support_debug_fastlink else "/DEBUG", "%{fastbuild_mode_debug}": "/DEBUG:FASTLINK" if support_debug_fastlink else "/DEBUG", "%{content}": _get_escaped_windows_msys_crosstool_content(repository_ctx), "%{msys_x64_mingw_content}": _get_escaped_windows_msys_crosstool_content(repository_ctx, use_mingw = True), "%{opt_content}": "", "%{dbg_content}": "", "%{link_content}": "", "%{cxx_builtin_include_directory}": "\n".join(escaped_cxx_include_directories), "%{coverage}": "", }, )
46.375676
164
0.612157
8ccc8b3d27312583a70a938e6d75532553fbcce0
39,129
py
Python
chronolapsegui.py
ZirconCode/chronolapse
2cdc68e9615ab5bb1dc7e7f0f20006f32b373cfe
[ "MIT" ]
1
2021-02-10T17:35:43.000Z
2021-02-10T17:35:43.000Z
chronolapsegui.py
ZirconCode/chronolapse
2cdc68e9615ab5bb1dc7e7f0f20006f32b373cfe
[ "MIT" ]
null
null
null
chronolapsegui.py
ZirconCode/chronolapse
2cdc68e9615ab5bb1dc7e7f0f20006f32b373cfe
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: ISO-8859-15 -*- # # generated by wxGlade 0.6.8 (standalone edition) on Sun Oct 02 12:29:06 2016 # import wx # begin wxGlade: dependencies import gettext from gettext import gettext as _ # end wxGlade # begin wxGlade: extracode class ProgressPanel(wx.Panel): def __init__(self, *args, **kwds): wx.Panel.__init__(self, *args, **kwds) self.Bind(wx.EVT_PAINT, self.OnPaint) self.progress = 0 def setProgress(self, progress): self.progress = progress dc = wx.WindowDC(self) dc.SetPen(wx.Pen(wx.Colour(0,0,255,255))) dc.SetBrush(wx.Brush(wx.Colour(0,0,255,220))) # build rect width,height = self.GetSizeTuple() size = max(2, (width-10)*self.progress) rect = wx.Rect(5,8, size ,5) # draw rect dc.Clear() dc.DrawRoundedRectangleRect(rect, 2) def OnPaint(self, evt): # this doesnt appear to work at all... width,height = self.GetSizeTuple() # get drawing shit dc = wx.PaintDC(self) dc.SetPen(wx.Pen(wx.Colour(0,0,255,255))) dc.SetBrush(wx.Brush(wx.Colour(0,0,255,220))) # build rect size = max(2, (width-10)*self.progress) rect = wx.Rect(5,8, size ,5) # draw rect dc.Clear() dc.BeginDrawing() dc.DrawRoundedRectangleRect(rect, 2) dc.EndDrawing() # end wxGlade class chronoFrame(wx.Frame): def __init__(self, *args, **kwds): # begin wxGlade: chronoFrame.__init__ kwds["style"] = wx.DEFAULT_FRAME_STYLE wx.Frame.__init__(self, *args, **kwds) # Menu Bar self.chronoframe_menubar = wx.MenuBar() self.file = wx.Menu() self.exitmenuitem = wx.MenuItem(self.file, wx.ID_EXIT, _("Exit Chronolapse"), "", wx.ITEM_NORMAL) self.file.AppendItem(self.exitmenuitem) self.chronoframe_menubar.Append(self.file, _("File")) self.aboutmenu = wx.Menu() self.aboutmenuitem = wx.MenuItem(self.aboutmenu, wx.ID_ANY, _("About"), _("About Chronolapse"), wx.ITEM_NORMAL) self.aboutmenu.AppendItem(self.aboutmenuitem) self.chronoframe_menubar.Append(self.aboutmenu, _("About")) self.SetMenuBar(self.chronoframe_menubar) # Menu Bar end self.notebook_1 = wx.Notebook(self, wx.ID_ANY, style=0) self.notebook_1_capturepane = wx.Panel(self.notebook_1, wx.ID_ANY) self.label_3 = wx.StaticText(self.notebook_1_capturepane, wx.ID_ANY, _("Capture:")) self.screenshotcheck = wx.CheckBox(self.notebook_1_capturepane, wx.ID_ANY, _("Screenshots")) self.screenshotconfigurebutton = wx.Button(self.notebook_1_capturepane, wx.ID_ANY, _("Configure")) self.webcamcheck = wx.CheckBox(self.notebook_1_capturepane, wx.ID_ANY, _("Camera")) self.configurewebcambutton = wx.Button(self.notebook_1_capturepane, wx.ID_ANY, _("Configure")) self.filename_format_timestamp = wx.RadioButton(self.notebook_1_capturepane, wx.ID_ANY, _("Timestamp Filenames"), style=wx.RB_GROUP) self.filename_format_sequential = wx.RadioButton(self.notebook_1_capturepane, wx.ID_ANY, _("Sequential Filenames")) self.label_2 = wx.StaticText(self.notebook_1_capturepane, wx.ID_ANY, _("Seconds Between Captures:")) self.frequencytext = wx.TextCtrl(self.notebook_1_capturepane, wx.ID_ANY, _("60")) self.ignoreidlecheck = wx.CheckBox(self.notebook_1_capturepane, wx.ID_ANY, _("Skip Capture if Idle")) self.startbutton = wx.Button(self.notebook_1_capturepane, wx.ID_ANY, _("Start Capture")) self.forcecapturebutton = wx.Button(self.notebook_1_capturepane, wx.ID_ANY, _("Force Capture")) self.progresspanel = ProgressPanel(self.notebook_1_capturepane, wx.ID_ANY) self.notebook_1_pippane = wx.Panel(self.notebook_1, wx.ID_ANY) self.label_1 = wx.StaticText(self.notebook_1_pippane, wx.ID_ANY, _("Picture in Picture:")) self.label_4 = wx.StaticText(self.notebook_1_pippane, wx.ID_ANY, _("Main Image Folder:")) self.pipmainimagefoldertext = wx.TextCtrl(self.notebook_1_pippane, wx.ID_ANY, "") self.pipmainimagefolderbrowse = wx.Button(self.notebook_1_pippane, wx.ID_ANY, _("...")) self.label_12 = wx.StaticText(self.notebook_1_pippane, wx.ID_ANY, _("PIP Image Folder:")) self.pippipimagefoldertext = wx.TextCtrl(self.notebook_1_pippane, wx.ID_ANY, "") self.pippipimagefolderbrowse = wx.Button(self.notebook_1_pippane, wx.ID_ANY, _("...")) self.label_13 = wx.StaticText(self.notebook_1_pippane, wx.ID_ANY, _("Output Folder:")) self.pipoutputimagefoldertext = wx.TextCtrl(self.notebook_1_pippane, wx.ID_ANY, "") self.pipoutputimagefolderbrowse = wx.Button(self.notebook_1_pippane, wx.ID_ANY, _("...")) self.label_14 = wx.StaticText(self.notebook_1_pippane, wx.ID_ANY, _("PIP Size:")) self.pipsizecombo = wx.ComboBox(self.notebook_1_pippane, wx.ID_ANY, choices=[_("Small"), _("Medium"), _("Large")], style=wx.CB_DROPDOWN) self.label_15 = wx.StaticText(self.notebook_1_pippane, wx.ID_ANY, _("PIP Position:")) self.pippositioncombo = wx.ComboBox(self.notebook_1_pippane, wx.ID_ANY, choices=[_("Top"), _("Top-Right"), _("Right"), _("Bottom-Right"), _("Bottom"), _("Bottom-Left"), _("Left"), _("Top-Left")], style=wx.CB_DROPDOWN) self.pipignoreunmatchedcheck = wx.CheckBox(self.notebook_1_pippane, wx.ID_ANY, _("Ignore un-matched images")) self.pipcreatebutton = wx.Button(self.notebook_1_pippane, wx.ID_ANY, _("Create PIP")) self.notebook_1_videopane = wx.Panel(self.notebook_1, wx.ID_ANY) self.VideoLabel = wx.StaticText(self.notebook_1_videopane, wx.ID_ANY, _("Video:")) self.label_22 = wx.StaticText(self.notebook_1_videopane, wx.ID_ANY, _("Source Images:")) self.videosourcetext = wx.TextCtrl(self.notebook_1_videopane, wx.ID_ANY, "") self.videosourcebrowse = wx.Button(self.notebook_1_videopane, wx.ID_ANY, _("...")) self.label_23 = wx.StaticText(self.notebook_1_videopane, wx.ID_ANY, _("Destination Folder:")) self.videodestinationtext = wx.TextCtrl(self.notebook_1_videopane, wx.ID_ANY, "") self.videodestinationbrowse = wx.Button(self.notebook_1_videopane, wx.ID_ANY, _("...")) self.label_26 = wx.StaticText(self.notebook_1_videopane, wx.ID_ANY, _("MEncoder Path:")) self.mencoderpathtext = wx.TextCtrl(self.notebook_1_videopane, wx.ID_ANY, "") self.mencoderpathbrowse = wx.Button(self.notebook_1_videopane, wx.ID_ANY, _("...")) self.label_25 = wx.StaticText(self.notebook_1_videopane, wx.ID_ANY, _("Video Codec:")) self.videocodeccombo = wx.ComboBox(self.notebook_1_videopane, wx.ID_ANY, choices=[_("mpeg4"), _("mpeg2video"), _("wmv1"), _("wmv2")], style=wx.CB_DROPDOWN) self.randomname = wx.StaticText(self.notebook_1_videopane, wx.ID_ANY, _("Frame Rate:")) self.videoframeratetext = wx.TextCtrl(self.notebook_1_videopane, wx.ID_ANY, _("25")) self.movielengthlabel = wx.StaticText(self.notebook_1_videopane, wx.ID_ANY, _("Estimated Movie Length: 0 m 0 s")) self.videocreatebutton = wx.Button(self.notebook_1_videopane, wx.ID_ANY, _("Encode Video")) self.static_line_1 = wx.StaticLine(self.notebook_1_videopane, wx.ID_ANY) self.AudioLabel = wx.StaticText(self.notebook_1_videopane, wx.ID_ANY, _("Audio:")) self.label_22_copy = wx.StaticText(self.notebook_1_videopane, wx.ID_ANY, _("Video Source:")) self.audiosourcevideotext = wx.TextCtrl(self.notebook_1_videopane, wx.ID_ANY, "") self.audiosourcevideobrowse = wx.Button(self.notebook_1_videopane, wx.ID_ANY, _("...")) self.label_23_copy = wx.StaticText(self.notebook_1_videopane, wx.ID_ANY, _("Audio Source:")) self.audiosourcetext = wx.TextCtrl(self.notebook_1_videopane, wx.ID_ANY, "") self.audiosourcebrowse = wx.Button(self.notebook_1_videopane, wx.ID_ANY, _("...")) self.label_26_copy = wx.StaticText(self.notebook_1_videopane, wx.ID_ANY, _("Output Folder:")) self.audiooutputfoldertext = wx.TextCtrl(self.notebook_1_videopane, wx.ID_ANY, "") self.audiooutputfolderbrowse = wx.Button(self.notebook_1_videopane, wx.ID_ANY, _("...")) self.createaudiobutton = wx.Button(self.notebook_1_videopane, wx.ID_ANY, _("Add Audio")) self.__set_properties() self.__do_layout() self.Bind(wx.EVT_MENU, self.exitMenuClicked, self.exitmenuitem) self.Bind(wx.EVT_MENU, self.aboutMenuClicked, self.aboutmenuitem) self.Bind(wx.EVT_BUTTON, self.screenshotConfigurePressed, self.screenshotconfigurebutton) self.Bind(wx.EVT_BUTTON, self.webcamConfigurePressed, self.configurewebcambutton) self.Bind(wx.EVT_BUTTON, self.startCapturePressed, self.startbutton) self.Bind(wx.EVT_BUTTON, self.forceCapturePressed, self.forcecapturebutton) self.Bind(wx.EVT_BUTTON, self.pipMainImageBrowsePressed, self.pipmainimagefolderbrowse) self.Bind(wx.EVT_BUTTON, self.pipPipImageBrowsePressed, self.pippipimagefolderbrowse) self.Bind(wx.EVT_BUTTON, self.pipOutputBrowsePressed, self.pipoutputimagefolderbrowse) self.Bind(wx.EVT_BUTTON, self.createPipPressed, self.pipcreatebutton) self.Bind(wx.EVT_BUTTON, self.videoSourceBrowsePressed, self.videosourcebrowse) self.Bind(wx.EVT_BUTTON, self.videoDestinationBrowsePressed, self.videodestinationbrowse) self.Bind(wx.EVT_BUTTON, self.mencoderPathBrowsePressed, self.mencoderpathbrowse) self.Bind(wx.EVT_TEXT, self.framerateTextChanged, self.videoframeratetext) self.Bind(wx.EVT_BUTTON, self.createVideoPressed, self.videocreatebutton) self.Bind(wx.EVT_BUTTON, self.audioSourceVideoBrowsePressed, self.audiosourcevideobrowse) self.Bind(wx.EVT_BUTTON, self.audioSourceBrowsePressed, self.audiosourcebrowse) self.Bind(wx.EVT_BUTTON, self.audioOutputFolderBrowsePressed, self.audiooutputfolderbrowse) self.Bind(wx.EVT_BUTTON, self.createAudioPressed, self.createaudiobutton) # end wxGlade def __set_properties(self): # begin wxGlade: chronoFrame.__set_properties self.SetTitle(_("ChronoLapse by Keeyai")) self.SetSize((511, 438)) self.label_3.SetFont(wx.Font(10, wx.DEFAULT, wx.NORMAL, wx.NORMAL, 0, "MS Shell Dlg 2")) self.screenshotcheck.SetToolTipString(_("Check this to capture screenshots")) self.screenshotcheck.SetValue(1) self.screenshotconfigurebutton.SetToolTipString(_("Click to configure screenshot captures")) self.webcamcheck.SetToolTipString(_("Check to enable webcam captures")) self.webcamcheck.SetValue(1) self.configurewebcambutton.SetToolTipString(_("Click to configure camera captures")) self.filename_format_timestamp.SetToolTipString(_("Saves screenshots and camera captures with the timestamp in the filename.")) self.filename_format_timestamp.SetValue(1) self.filename_format_sequential.SetToolTipString(_("Saves screenshots and camera captures as sequential numbers. Required by some external encoding libraries.")) self.frequencytext.SetToolTipString(_("The number of seconds in between captures. Set to 0 for no automatic capturing.")) self.ignoreidlecheck.SetToolTipString(_("Check this to skip capturing if no recent activity detected")) self.startbutton.SetToolTipString(_("Click to start/stop capturing")) self.forcecapturebutton.SetToolTipString(_("Click to force CL to capture right now. Use for important frames or for creating stop motions.")) self.label_1.SetFont(wx.Font(10, wx.DEFAULT, wx.NORMAL, wx.NORMAL, 0, "MS Shell Dlg 2")) self.pipmainimagefoldertext.SetMinSize((200, -1)) self.pipmainimagefolderbrowse.SetMinSize((25, -1)) self.pipmainimagefolderbrowse.SetToolTipString(_("Click to Browse")) self.pippipimagefoldertext.SetMinSize((200, -1)) self.pippipimagefolderbrowse.SetMinSize((25, -1)) self.pippipimagefolderbrowse.SetToolTipString(_("Click to Browse")) self.pipoutputimagefoldertext.SetMinSize((25, -1)) self.pipoutputimagefolderbrowse.SetMinSize((25, -1)) self.pipoutputimagefolderbrowse.SetToolTipString(_("Click to Browse")) self.pipsizecombo.SetToolTipString(_("Select the size of the smaller image")) self.pipsizecombo.SetSelection(0) self.pippositioncombo.SetToolTipString(_("Select the position of the smaller image")) self.pippositioncombo.SetSelection(1) self.pipignoreunmatchedcheck.SetToolTipString(_("Check to ignore image names that are in one folder but not the other")) self.pipignoreunmatchedcheck.Hide() self.pipignoreunmatchedcheck.SetValue(1) self.pipcreatebutton.SetToolTipString(_("Create PIP")) self.VideoLabel.SetFont(wx.Font(10, wx.DEFAULT, wx.NORMAL, wx.NORMAL, 0, "MS Shell Dlg 2")) self.videosourcetext.SetMinSize((200, -1)) self.videosourcebrowse.SetMinSize((25, -1)) self.videosourcebrowse.SetToolTipString(_("Click to Browse")) self.videodestinationtext.SetMinSize((200, -1)) self.videodestinationbrowse.SetMinSize((25, -1)) self.videodestinationbrowse.SetToolTipString(_("Click to Browse")) self.mencoderpathtext.SetMinSize((200, -1)) self.mencoderpathtext.SetToolTipString(_("Set this to the MEncoder executable")) self.mencoderpathbrowse.SetMinSize((25, -1)) self.mencoderpathbrowse.SetToolTipString(_("Click to Browse")) self.videocodeccombo.SetToolTipString(_("Select which codec to use when encoding your video")) self.videocodeccombo.SetSelection(0) self.videoframeratetext.SetMinSize((25, -1)) self.videoframeratetext.SetToolTipString(_("Set how many images per second you want to show in your movie")) self.videocreatebutton.SetToolTipString(_("Create the Video")) self.AudioLabel.SetFont(wx.Font(10, wx.DEFAULT, wx.NORMAL, wx.NORMAL, 0, "MS Shell Dlg 2")) self.audiosourcevideotext.SetMinSize((200, -1)) self.audiosourcevideobrowse.SetMinSize((25, -1)) self.audiosourcevideobrowse.SetToolTipString(_("Click to Browse")) self.audiosourcetext.SetMinSize((200, -1)) self.audiosourcebrowse.SetMinSize((25, -1)) self.audiosourcebrowse.SetToolTipString(_("Click to Browse")) self.audiooutputfoldertext.SetMinSize((200, -1)) self.audiooutputfoldertext.SetToolTipString(_("Set this to the folder where you want the finished video")) self.audiooutputfolderbrowse.SetMinSize((25, -1)) self.audiooutputfolderbrowse.SetToolTipString(_("Click to Browse")) # end wxGlade def __do_layout(self): # begin wxGlade: chronoFrame.__do_layout sizer_1 = wx.BoxSizer(wx.VERTICAL) grid_sizer_18 = wx.FlexGridSizer(10, 1, 0, 0) grid_sizer_18_copy_copy = wx.FlexGridSizer(5, 2, 0, 0) grid_sizer_34 = wx.FlexGridSizer(1, 2, 0, 0) grid_sizer_35 = wx.FlexGridSizer(1, 2, 0, 0) grid_sizer_31 = wx.FlexGridSizer(1, 2, 0, 0) grid_sizer_23 = wx.FlexGridSizer(1, 3, 0, 5) grid_sizer_4 = wx.FlexGridSizer(1, 2, 0, 0) grid_sizer_3 = wx.FlexGridSizer(1, 2, 0, 0) grid_sizer_18_copy = wx.FlexGridSizer(3, 2, 0, 0) grid_sizer_30 = wx.FlexGridSizer(1, 2, 0, 0) grid_sizer_28 = wx.FlexGridSizer(1, 2, 0, 0) grid_sizer_27 = wx.FlexGridSizer(1, 2, 0, 0) grid_sizer_5 = wx.FlexGridSizer(5, 1, 0, 0) grid_sizer_13 = wx.FlexGridSizer(3, 2, 0, 0) grid_sizer_17 = wx.FlexGridSizer(1, 2, 0, 0) grid_sizer_14 = wx.FlexGridSizer(1, 2, 0, 0) grid_sizer_12 = wx.FlexGridSizer(5, 2, 0, 0) grid_sizer_25 = wx.FlexGridSizer(1, 2, 0, 0) grid_sizer_22 = wx.FlexGridSizer(1, 2, 0, 0) grid_sizer_21 = wx.FlexGridSizer(1, 2, 0, 0) grid_sizer_1 = wx.FlexGridSizer(4, 1, 0, 0) grid_sizer_26 = wx.FlexGridSizer(1, 2, 0, 0) grid_sizer_15 = wx.FlexGridSizer(4, 2, 0, 0) grid_sizer_20 = wx.FlexGridSizer(1, 2, 0, 0) grid_sizer_16 = wx.FlexGridSizer(1, 2, 0, 0) grid_sizer_1.Add(self.label_3, 0, 0, 0) grid_sizer_16.Add(self.screenshotcheck, 0, 0, 0) grid_sizer_16.Add(self.screenshotconfigurebutton, 0, wx.ALIGN_CENTER_HORIZONTAL, 0) grid_sizer_16.AddGrowableCol(0) grid_sizer_16.AddGrowableCol(1) grid_sizer_15.Add(grid_sizer_16, 1, wx.EXPAND, 0) grid_sizer_20.Add(self.webcamcheck, 0, 0, 0) grid_sizer_20.Add(self.configurewebcambutton, 0, wx.ALIGN_CENTER_HORIZONTAL, 0) grid_sizer_20.AddGrowableCol(0) grid_sizer_20.AddGrowableCol(1) grid_sizer_15.Add(grid_sizer_20, 1, wx.EXPAND, 0) grid_sizer_15.Add(self.filename_format_timestamp, 0, 0, 0) grid_sizer_15.Add(self.filename_format_sequential, 0, 0, 0) grid_sizer_15.Add(self.label_2, 0, 0, 0) grid_sizer_15.Add(self.frequencytext, 0, 0, 0) grid_sizer_15.Add(self.ignoreidlecheck, 0, 0, 0) grid_sizer_15.Add((20, 20), 0, 0, 0) grid_sizer_15.AddGrowableCol(0) grid_sizer_15.AddGrowableCol(1) grid_sizer_1.Add(grid_sizer_15, 1, wx.EXPAND, 0) grid_sizer_26.Add(self.startbutton, 0, wx.ALIGN_CENTER_HORIZONTAL, 0) grid_sizer_26.Add(self.forcecapturebutton, 0, wx.ALIGN_CENTER_HORIZONTAL, 0) grid_sizer_26.AddGrowableCol(0) grid_sizer_26.AddGrowableCol(1) grid_sizer_1.Add(grid_sizer_26, 1, wx.EXPAND, 0) grid_sizer_1.Add(self.progresspanel, 1, wx.EXPAND, 0) self.notebook_1_capturepane.SetSizer(grid_sizer_1) grid_sizer_1.AddGrowableRow(2) grid_sizer_1.AddGrowableCol(0) grid_sizer_5.Add(self.label_1, 0, 0, 0) grid_sizer_12.Add(self.label_4, 0, 0, 0) grid_sizer_21.Add(self.pipmainimagefoldertext, 0, wx.EXPAND, 0) grid_sizer_21.Add(self.pipmainimagefolderbrowse, 0, 0, 0) grid_sizer_21.AddGrowableCol(0) grid_sizer_12.Add(grid_sizer_21, 1, wx.EXPAND, 0) grid_sizer_12.Add(self.label_12, 0, 0, 0) grid_sizer_22.Add(self.pippipimagefoldertext, 0, wx.EXPAND, 0) grid_sizer_22.Add(self.pippipimagefolderbrowse, 0, 0, 0) grid_sizer_22.AddGrowableCol(0) grid_sizer_12.Add(grid_sizer_22, 1, wx.EXPAND, 0) grid_sizer_12.Add(self.label_13, 0, 0, 0) grid_sizer_25.Add(self.pipoutputimagefoldertext, 0, wx.EXPAND, 0) grid_sizer_25.Add(self.pipoutputimagefolderbrowse, 0, 0, 0) grid_sizer_25.AddGrowableCol(0) grid_sizer_12.Add(grid_sizer_25, 1, wx.EXPAND, 0) grid_sizer_12.AddGrowableCol(0) grid_sizer_12.AddGrowableCol(1) grid_sizer_5.Add(grid_sizer_12, 1, wx.EXPAND, 0) grid_sizer_14.Add(self.label_14, 0, 0, 0) grid_sizer_14.Add(self.pipsizecombo, 0, 0, 0) grid_sizer_14.AddGrowableCol(0) grid_sizer_14.AddGrowableCol(1) grid_sizer_13.Add(grid_sizer_14, 1, wx.EXPAND, 0) grid_sizer_17.Add(self.label_15, 0, 0, 0) grid_sizer_17.Add(self.pippositioncombo, 0, 0, 0) grid_sizer_17.AddGrowableCol(0) grid_sizer_17.AddGrowableCol(1) grid_sizer_13.Add(grid_sizer_17, 1, wx.EXPAND, 0) grid_sizer_13.AddGrowableCol(0) grid_sizer_13.AddGrowableCol(1) grid_sizer_5.Add(grid_sizer_13, 1, wx.EXPAND, 0) grid_sizer_5.Add(self.pipignoreunmatchedcheck, 0, 0, 0) grid_sizer_5.Add(self.pipcreatebutton, 0, wx.ALIGN_BOTTOM | wx.ALIGN_CENTER_HORIZONTAL, 0) self.notebook_1_pippane.SetSizer(grid_sizer_5) grid_sizer_5.AddGrowableRow(4) grid_sizer_5.AddGrowableCol(0) grid_sizer_18.Add(self.VideoLabel, 0, 0, 0) grid_sizer_18_copy.Add(self.label_22, 0, 0, 0) grid_sizer_27.Add(self.videosourcetext, 0, wx.EXPAND, 0) grid_sizer_27.Add(self.videosourcebrowse, 0, 0, 0) grid_sizer_27.AddGrowableCol(0) grid_sizer_18_copy.Add(grid_sizer_27, 1, wx.EXPAND, 0) grid_sizer_18_copy.Add(self.label_23, 0, 0, 0) grid_sizer_28.Add(self.videodestinationtext, 0, wx.EXPAND, 0) grid_sizer_28.Add(self.videodestinationbrowse, 0, 0, 0) grid_sizer_28.AddGrowableCol(0) grid_sizer_18_copy.Add(grid_sizer_28, 1, wx.EXPAND, 0) grid_sizer_18_copy.Add(self.label_26, 0, 0, 0) grid_sizer_30.Add(self.mencoderpathtext, 0, wx.EXPAND, 0) grid_sizer_30.Add(self.mencoderpathbrowse, 0, 0, 0) grid_sizer_30.AddGrowableCol(0) grid_sizer_18_copy.Add(grid_sizer_30, 1, wx.EXPAND, 0) grid_sizer_18_copy.AddGrowableRow(2) grid_sizer_18_copy.AddGrowableCol(1) grid_sizer_18.Add(grid_sizer_18_copy, 1, wx.EXPAND, 0) grid_sizer_3.Add(self.label_25, 0, 0, 0) grid_sizer_3.Add(self.videocodeccombo, 0, 0, 0) grid_sizer_3.AddGrowableCol(1) grid_sizer_23.Add(grid_sizer_3, 1, wx.EXPAND, 0) grid_sizer_4.Add(self.randomname, 0, 0, 0) grid_sizer_4.Add(self.videoframeratetext, 0, 0, 0) grid_sizer_4.AddGrowableCol(1) grid_sizer_23.Add(grid_sizer_4, 1, wx.EXPAND, 0) grid_sizer_23.Add(self.movielengthlabel, 0, 0, 0) grid_sizer_23.AddGrowableCol(0) grid_sizer_23.AddGrowableCol(1) grid_sizer_23.AddGrowableCol(2) grid_sizer_18.Add(grid_sizer_23, 1, wx.EXPAND, 0) grid_sizer_18.Add(self.videocreatebutton, 0, wx.ALIGN_BOTTOM | wx.ALIGN_CENTER_HORIZONTAL, 0) grid_sizer_18.Add((20, 20), 0, 0, 0) grid_sizer_18.Add(self.static_line_1, 0, wx.EXPAND, 0) grid_sizer_18.Add(self.AudioLabel, 0, 0, 0) grid_sizer_18_copy_copy.Add(self.label_22_copy, 0, 0, 0) grid_sizer_31.Add(self.audiosourcevideotext, 0, wx.EXPAND, 0) grid_sizer_31.Add(self.audiosourcevideobrowse, 0, 0, 0) grid_sizer_31.AddGrowableCol(0) grid_sizer_18_copy_copy.Add(grid_sizer_31, 1, wx.EXPAND, 0) grid_sizer_18_copy_copy.Add(self.label_23_copy, 0, 0, 0) grid_sizer_35.Add(self.audiosourcetext, 0, wx.EXPAND, 0) grid_sizer_35.Add(self.audiosourcebrowse, 0, 0, 0) grid_sizer_35.AddGrowableCol(0) grid_sizer_18_copy_copy.Add(grid_sizer_35, 1, wx.EXPAND, 0) grid_sizer_18_copy_copy.Add(self.label_26_copy, 0, 0, 0) grid_sizer_34.Add(self.audiooutputfoldertext, 0, wx.EXPAND, 0) grid_sizer_34.Add(self.audiooutputfolderbrowse, 0, wx.ALIGN_BOTTOM | wx.ALIGN_CENTER_HORIZONTAL, 0) grid_sizer_34.AddGrowableCol(0) grid_sizer_18_copy_copy.Add(grid_sizer_34, 1, wx.EXPAND, 0) grid_sizer_18_copy_copy.AddGrowableRow(3) grid_sizer_18_copy_copy.AddGrowableCol(1) grid_sizer_18.Add(grid_sizer_18_copy_copy, 1, wx.EXPAND, 0) grid_sizer_18.Add(self.createaudiobutton, 0, wx.ALIGN_CENTER_HORIZONTAL, 0) self.notebook_1_videopane.SetSizer(grid_sizer_18) grid_sizer_18.AddGrowableRow(7) grid_sizer_18.AddGrowableCol(0) self.notebook_1.AddPage(self.notebook_1_capturepane, _("Capture")) self.notebook_1.AddPage(self.notebook_1_pippane, _("PIP")) self.notebook_1.AddPage(self.notebook_1_videopane, _("Video")) sizer_1.Add(self.notebook_1, 1, wx.EXPAND, 0) self.SetSizer(sizer_1) self.Layout() # end wxGlade def exitMenuClicked(self, event): # wxGlade: chronoFrame.<event_handler> print("Event handler 'exitMenuClicked' not implemented!") event.Skip() def aboutMenuClicked(self, event): # wxGlade: chronoFrame.<event_handler> print("Event handler 'aboutMenuClicked' not implemented!") event.Skip() def screenshotConfigurePressed(self, event): # wxGlade: chronoFrame.<event_handler> print("Event handler 'screenshotConfigurePressed' not implemented!") event.Skip() def webcamConfigurePressed(self, event): # wxGlade: chronoFrame.<event_handler> print("Event handler 'webcamConfigurePressed' not implemented!") event.Skip() def startCapturePressed(self, event): # wxGlade: chronoFrame.<event_handler> print("Event handler 'startCapturePressed' not implemented!") event.Skip() def forceCapturePressed(self, event): # wxGlade: chronoFrame.<event_handler> print("Event handler 'forceCapturePressed' not implemented!") event.Skip() def pipMainImageBrowsePressed(self, event): # wxGlade: chronoFrame.<event_handler> print("Event handler 'pipMainImageBrowsePressed' not implemented!") event.Skip() def pipPipImageBrowsePressed(self, event): # wxGlade: chronoFrame.<event_handler> print("Event handler 'pipPipImageBrowsePressed' not implemented!") event.Skip() def pipOutputBrowsePressed(self, event): # wxGlade: chronoFrame.<event_handler> print("Event handler 'pipOutputBrowsePressed' not implemented!") event.Skip() def createPipPressed(self, event): # wxGlade: chronoFrame.<event_handler> print("Event handler 'createPipPressed' not implemented!") event.Skip() def videoSourceBrowsePressed(self, event): # wxGlade: chronoFrame.<event_handler> print("Event handler 'videoSourceBrowsePressed' not implemented!") event.Skip() def videoDestinationBrowsePressed(self, event): # wxGlade: chronoFrame.<event_handler> print("Event handler 'videoDestinationBrowsePressed' not implemented!") event.Skip() def mencoderPathBrowsePressed(self, event): # wxGlade: chronoFrame.<event_handler> print("Event handler 'mencoderPathBrowsePressed' not implemented!") event.Skip() def framerateTextChanged(self, event): # wxGlade: chronoFrame.<event_handler> print("Event handler 'framerateTextChanged' not implemented!") event.Skip() def createVideoPressed(self, event): # wxGlade: chronoFrame.<event_handler> print("Event handler 'createVideoPressed' not implemented!") event.Skip() def audioSourceVideoBrowsePressed(self, event): # wxGlade: chronoFrame.<event_handler> print("Event handler 'audioSourceVideoBrowsePressed' not implemented!") event.Skip() def audioSourceBrowsePressed(self, event): # wxGlade: chronoFrame.<event_handler> print("Event handler 'audioSourceBrowsePressed' not implemented!") event.Skip() def audioOutputFolderBrowsePressed(self, event): # wxGlade: chronoFrame.<event_handler> print("Event handler 'audioOutputFolderBrowsePressed' not implemented!") event.Skip() def createAudioPressed(self, event): # wxGlade: chronoFrame.<event_handler> print("Event handler 'createAudioPressed' not implemented!") event.Skip() # end of class chronoFrame class screenshotConfigDialog(wx.Dialog): def __init__(self, *args, **kwds): # begin wxGlade: screenshotConfigDialog.__init__ kwds["style"] = wx.DEFAULT_DIALOG_STYLE wx.Dialog.__init__(self, *args, **kwds) self.dualmonitorscheck = wx.CheckBox(self, wx.ID_ANY, _("Capture Dual Monitors")) self.timestampcheck = wx.CheckBox(self, wx.ID_ANY, _("Show Timestamp")) self.label_16 = wx.StaticText(self, wx.ID_ANY, _("Format:")) self.screenshot_timestamp_format = wx.TextCtrl(self, wx.ID_ANY, _("%Y-%m-%d %H:%M:%S")) self.subsectioncheck = wx.CheckBox(self, wx.ID_ANY, _("Subsection")) self.label36 = wx.StaticText(self, wx.ID_ANY, _("Top:")) self.subsectiontop = wx.TextCtrl(self, wx.ID_ANY, "") self.label_36 = wx.StaticText(self, wx.ID_ANY, _("Left:")) self.subsectionleft = wx.TextCtrl(self, wx.ID_ANY, "") self.label_37 = wx.StaticText(self, wx.ID_ANY, _("Width:")) self.subsectionwidth = wx.TextCtrl(self, wx.ID_ANY, "") self.label_38 = wx.StaticText(self, wx.ID_ANY, _("Height:")) self.subsectionheight = wx.TextCtrl(self, wx.ID_ANY, "") self.label_5 = wx.StaticText(self, wx.ID_ANY, _("File Prefix:")) self.screenshotprefixtext = wx.TextCtrl(self, wx.ID_ANY, _("screen_")) self.label_6 = wx.StaticText(self, wx.ID_ANY, _("Save Folder:")) self.screenshotsavefoldertext = wx.TextCtrl(self, wx.ID_ANY, "") self.screenshotsavefolderbrowse = wx.Button(self, wx.ID_ANY, _("...")) self.label_7 = wx.StaticText(self, wx.ID_ANY, _("File Format:")) self.screenshotformatcombo = wx.ComboBox(self, wx.ID_ANY, choices=[_("jpg"), _("png"), _("gif")], style=wx.CB_DROPDOWN | wx.CB_DROPDOWN) self.screenshotconfigsave = wx.Button(self, wx.ID_OK, "") self.__set_properties() self.__do_layout() self.Bind(wx.EVT_BUTTON, self.screenshotSaveFolderBrowse, self.screenshotsavefolderbrowse) # end wxGlade def __set_properties(self): # begin wxGlade: screenshotConfigDialog.__set_properties self.SetTitle(_("Configure Screenshots")) self.dualmonitorscheck.SetToolTipString(_("Check to capture images from 2 monitors")) self.timestampcheck.SetToolTipString(_("Check to have CL write a timestamp on each capture")) self.timestampcheck.SetValue(1) self.screenshot_timestamp_format.SetMinSize((150, -1)) self.screenshot_timestamp_format.SetToolTipString(_("The timestamp format. Passed directly to python's time.strftime function.")) self.subsectioncheck.SetToolTipString(_("Check to have CL write a timestamp on each capture")) self.screenshotprefixtext.SetToolTipString(_("The file prefix every screenshot should start with")) self.screenshotsavefoldertext.SetMinSize((250, -1)) self.screenshotsavefolderbrowse.SetMinSize((20, -1)) self.screenshotsavefolderbrowse.SetToolTipString(_("Click to browse directories")) self.screenshotformatcombo.SetToolTipString(_("Select the file format in which screen captures will be saved")) self.screenshotformatcombo.SetSelection(0) self.screenshotconfigsave.SetToolTipString(_("Save this configuration")) # end wxGlade def __do_layout(self): # begin wxGlade: screenshotConfigDialog.__do_layout grid_sizer_2 = wx.FlexGridSizer(6, 1, 10, 0) grid_sizer_8 = wx.FlexGridSizer(1, 2, 0, 0) grid_sizer_7 = wx.FlexGridSizer(3, 3, 0, 0) grid_sizer_32 = wx.FlexGridSizer(2, 4, 0, 0) grid_sizer_6 = wx.FlexGridSizer(3, 2, 0, 0) grid_sizer_29 = wx.FlexGridSizer(1, 2, 0, 0) grid_sizer_6.Add(self.dualmonitorscheck, 0, 0, 0) grid_sizer_6.Add((20, 20), 0, 0, 0) grid_sizer_6.Add(self.timestampcheck, 0, 0, 0) grid_sizer_29.Add(self.label_16, 0, 0, 0) grid_sizer_29.Add(self.screenshot_timestamp_format, 0, 0, 0) grid_sizer_29.AddGrowableCol(1) grid_sizer_6.Add(grid_sizer_29, 1, wx.EXPAND, 0) grid_sizer_6.Add(self.subsectioncheck, 0, 0, 0) grid_sizer_6.Add((20, 20), 0, 0, 0) grid_sizer_2.Add(grid_sizer_6, 1, wx.EXPAND, 0) grid_sizer_32.Add(self.label36, 0, 0, 0) grid_sizer_32.Add(self.subsectiontop, 0, 0, 0) grid_sizer_32.Add(self.label_36, 0, 0, 0) grid_sizer_32.Add(self.subsectionleft, 0, 0, 0) grid_sizer_32.Add(self.label_37, 0, 0, 0) grid_sizer_32.Add(self.subsectionwidth, 0, 0, 0) grid_sizer_32.Add(self.label_38, 0, 0, 0) grid_sizer_32.Add(self.subsectionheight, 0, 0, 0) grid_sizer_2.Add(grid_sizer_32, 1, wx.EXPAND, 0) grid_sizer_7.Add(self.label_5, 0, 0, 0) grid_sizer_7.Add(self.screenshotprefixtext, 0, 0, 0) grid_sizer_7.Add((20, 20), 0, 0, 0) grid_sizer_7.Add(self.label_6, 0, 0, 0) grid_sizer_7.Add(self.screenshotsavefoldertext, 0, 0, 0) grid_sizer_7.Add(self.screenshotsavefolderbrowse, 0, 0, 0) grid_sizer_7.Add(self.label_7, 0, 0, 0) grid_sizer_7.Add(self.screenshotformatcombo, 0, 0, 0) grid_sizer_7.Add((20, 20), 0, 0, 0) grid_sizer_2.Add(grid_sizer_7, 1, wx.EXPAND, 0) grid_sizer_8.Add(self.screenshotconfigsave, 0, wx.ALIGN_CENTER_HORIZONTAL, 0) grid_sizer_8.AddGrowableCol(0) grid_sizer_8.AddGrowableCol(1) grid_sizer_2.Add(grid_sizer_8, 1, wx.EXPAND, 0) self.SetSizer(grid_sizer_2) grid_sizer_2.Fit(self) grid_sizer_2.AddGrowableCol(0) self.Layout() self.Centre() # end wxGlade def screenshotSaveFolderBrowse(self, event): # wxGlade: screenshotConfigDialog.<event_handler> print("Event handler 'screenshotSaveFolderBrowse' not implemented!") event.Skip() # end of class screenshotConfigDialog class webcamConfigDialog(wx.Dialog): def __init__(self, *args, **kwds): # begin wxGlade: webcamConfigDialog.__init__ kwds["style"] = wx.DEFAULT_DIALOG_STYLE wx.Dialog.__init__(self, *args, **kwds) self.testwebcambutton = wx.Button(self, wx.ID_ANY, _("Test Webcam")) self.webcamtimestampcheck = wx.CheckBox(self, wx.ID_ANY, _("Show Timestamp")) self.label_16 = wx.StaticText(self, wx.ID_ANY, _("Format:")) self.webcam_timestamp_format = wx.TextCtrl(self, wx.ID_ANY, _("%Y-%m-%d %H:%M:%S")) self.label_9 = wx.StaticText(self, wx.ID_ANY, _("File Prefix:")) self.webcamprefixtext = wx.TextCtrl(self, wx.ID_ANY, _("cam_")) self.label_10 = wx.StaticText(self, wx.ID_ANY, _("Save Folder:")) self.webcamsavefoldertext = wx.TextCtrl(self, wx.ID_ANY, "") self.webcamsavefolderbrowse = wx.Button(self, wx.ID_ANY, _("...")) self.label_11 = wx.StaticText(self, wx.ID_ANY, _("File Format:")) self.webcamformatcombo = wx.ComboBox(self, wx.ID_ANY, choices=[_("jpg"), _("png"), _("gif")], style=wx.CB_DROPDOWN | wx.CB_DROPDOWN) self.webcamsavebutton = wx.Button(self, wx.ID_OK, "") self.__set_properties() self.__do_layout() self.Bind(wx.EVT_BUTTON, self.testWebcamPressed, self.testwebcambutton) self.Bind(wx.EVT_BUTTON, self.webcamSaveFolderBrowse, self.webcamsavefolderbrowse) # end wxGlade def __set_properties(self): # begin wxGlade: webcamConfigDialog.__set_properties self.SetTitle(_("Configure Webcam")) self.testwebcambutton.SetToolTipString(_("Click to test your webcam")) self.webcamtimestampcheck.SetToolTipString(_("Check to write a timestamp on each webcam capture")) self.webcam_timestamp_format.SetMinSize((150, -1)) self.webcam_timestamp_format.SetToolTipString(_("The timestamp format. Passed directly to python's time.strftime function.")) self.webcamsavefoldertext.SetMinSize((250, -1)) self.webcamsavefolderbrowse.SetMinSize((20, -1)) self.webcamformatcombo.SetToolTipString(_("Select the file format in which webcam captures will be saved")) self.webcamformatcombo.SetSelection(0) self.webcamsavebutton.SetToolTipString(_("Save this configuration")) # end wxGlade def __do_layout(self): # begin wxGlade: webcamConfigDialog.__do_layout grid_sizer_9 = wx.FlexGridSizer(4, 1, 10, 0) grid_sizer_11 = wx.FlexGridSizer(1, 2, 0, 0) grid_sizer_10 = wx.FlexGridSizer(4, 3, 0, 0) grid_sizer_19 = wx.FlexGridSizer(1, 2, 0, 0) grid_sizer_29 = wx.FlexGridSizer(1, 2, 0, 0) grid_sizer_9.Add(self.testwebcambutton, 0, 0, 0) grid_sizer_19.Add(self.webcamtimestampcheck, 0, 0, 0) grid_sizer_29.Add(self.label_16, 0, 0, 0) grid_sizer_29.Add(self.webcam_timestamp_format, 0, 0, 0) grid_sizer_29.AddGrowableCol(1) grid_sizer_19.Add(grid_sizer_29, 1, wx.EXPAND, 0) grid_sizer_19.AddGrowableCol(0) grid_sizer_19.AddGrowableCol(1) grid_sizer_9.Add(grid_sizer_19, 1, wx.EXPAND, 0) grid_sizer_10.Add(self.label_9, 0, 0, 0) grid_sizer_10.Add(self.webcamprefixtext, 0, 0, 0) grid_sizer_10.Add((20, 20), 0, 0, 0) grid_sizer_10.Add(self.label_10, 0, 0, 0) grid_sizer_10.Add(self.webcamsavefoldertext, 0, 0, 0) grid_sizer_10.Add(self.webcamsavefolderbrowse, 0, 0, 0) grid_sizer_10.Add(self.label_11, 0, 0, 0) grid_sizer_10.Add(self.webcamformatcombo, 0, 0, 0) grid_sizer_10.Add((20, 20), 0, 0, 0) grid_sizer_9.Add(grid_sizer_10, 1, wx.EXPAND, 0) grid_sizer_11.Add(self.webcamsavebutton, 0, wx.ALIGN_CENTER_HORIZONTAL, 0) grid_sizer_11.AddGrowableCol(0) grid_sizer_11.AddGrowableCol(1) grid_sizer_9.Add(grid_sizer_11, 1, wx.EXPAND, 0) self.SetSizer(grid_sizer_9) grid_sizer_9.Fit(self) grid_sizer_9.AddGrowableCol(0) self.Layout() self.Centre() # end wxGlade def testWebcamPressed(self, event): # wxGlade: webcamConfigDialog.<event_handler> print("Event handler 'testWebcamPressed' not implemented!") event.Skip() def webcamSaveFolderBrowse(self, event): # wxGlade: webcamConfigDialog.<event_handler> print("Event handler 'webcamSaveFolderBrowse' not implemented!") event.Skip() # end of class webcamConfigDialog class webcamPreviewDialog(wx.Dialog): def __init__(self, *args, **kwds): # begin wxGlade: webcamPreviewDialog.__init__ kwds["style"] = wx.DEFAULT_DIALOG_STYLE | wx.RESIZE_BORDER | wx.THICK_FRAME wx.Dialog.__init__(self, *args, **kwds) self.panel_1 = wx.ScrolledWindow(self, wx.ID_ANY, style=wx.TAB_TRAVERSAL) self.previewbitmap = wx.StaticBitmap(self.panel_1, wx.ID_ANY, wx.NullBitmap) self.previewokbutton = wx.Button(self, wx.ID_OK, "") self.__set_properties() self.__do_layout() # end wxGlade def __set_properties(self): # begin wxGlade: webcamPreviewDialog.__set_properties self.SetTitle(_("Webcam Preview")) self.SetSize((500, 400)) self.previewbitmap.SetMinSize((-1, -1)) self.panel_1.SetScrollRate(10, 10) # end wxGlade def __do_layout(self): # begin wxGlade: webcamPreviewDialog.__do_layout grid_sizer_24 = wx.FlexGridSizer(2, 1, 0, 0) sizer_3 = wx.FlexGridSizer(1, 1, 0, 0) sizer_3.Add(self.previewbitmap, 0, wx.EXPAND, 0) self.panel_1.SetSizer(sizer_3) sizer_3.AddGrowableRow(0) sizer_3.AddGrowableCol(0) grid_sizer_24.Add(self.panel_1, 1, wx.EXPAND, 0) grid_sizer_24.Add(self.previewokbutton, 0, wx.ALIGN_CENTER_HORIZONTAL, 0) self.SetSizer(grid_sizer_24) grid_sizer_24.AddGrowableRow(0) grid_sizer_24.AddGrowableCol(0) self.Layout() # end wxGlade # end of class webcamPreviewDialog if __name__ == "__main__": gettext.install("app") # replace with the appropriate catalog name app = wx.PySimpleApp(0) wx.InitAllImageHandlers() chronoframe = chronoFrame(None, wx.ID_ANY, "") app.SetTopWindow(chronoframe) chronoframe.Show() app.MainLoop()
55.34512
225
0.69092
a733a21c979d47ef4c2df8b2c22c64ef087f45db
626
py
Python
anytask/schools/models.py
bcskda/anytask
5a359dcb669b689fc5a4f1705f2c88cd031ab37d
[ "MIT" ]
null
null
null
anytask/schools/models.py
bcskda/anytask
5a359dcb669b689fc5a4f1705f2c88cd031ab37d
[ "MIT" ]
1
2021-03-01T07:42:38.000Z
2021-03-01T09:14:10.000Z
anytask/schools/models.py
bcskda/anytask
5a359dcb669b689fc5a4f1705f2c88cd031ab37d
[ "MIT" ]
null
null
null
from django.db import models from django.core.urlresolvers import reverse from courses.models import Course # Create your models here. class School(models.Model): name = models.CharField(max_length=191, db_index=True, null=False, blank=False) link = models.CharField(max_length=191, db_index=False, null=False, blank=False) courses = models.ManyToManyField(Course, blank=True) def __unicode__(self): return unicode(self.name) def get_full_name(self): return unicode(self.name) def get_absolute_url(self): return reverse('schools.views.school_page', args=[str(self.link)])
29.809524
84
0.731629
1aad2b6f042c9f6b4c05a2958fdef275ce029673
44
py
Python
cb_scripts/ifttt/__init__.py
christopher-burke/python-scripts
bdbea2456130e0958b6a6ab8d138f4f19b39b934
[ "MIT" ]
1
2022-02-05T06:39:05.000Z
2022-02-05T06:39:05.000Z
cb_scripts/ifttt/__init__.py
christopher-burke/python-scripts
bdbea2456130e0958b6a6ab8d138f4f19b39b934
[ "MIT" ]
null
null
null
cb_scripts/ifttt/__init__.py
christopher-burke/python-scripts
bdbea2456130e0958b6a6ab8d138f4f19b39b934
[ "MIT" ]
1
2021-06-10T22:04:35.000Z
2021-06-10T22:04:35.000Z
from .ifttt_event_trigger import post_ifttt
22
43
0.886364
96a97c075a94bc135b10cf3aa77374ebe692e250
1,833
py
Python
taiga/front/sitemaps/__init__.py
threefoldtech/Threefold-Circles
cbc433796b25cf7af9a295af65d665a4a279e2d6
[ "Apache-2.0" ]
null
null
null
taiga/front/sitemaps/__init__.py
threefoldtech/Threefold-Circles
cbc433796b25cf7af9a295af65d665a4a279e2d6
[ "Apache-2.0" ]
12
2019-11-25T14:08:32.000Z
2021-06-24T10:35:51.000Z
taiga/front/sitemaps/__init__.py
threefoldtech/Threefold-Circles
cbc433796b25cf7af9a295af65d665a4a279e2d6
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright (C) 2014-2017 Andrey Antukh <niwi@niwi.nz> # Copyright (C) 2014-2017 Jesรบs Espino <jespinog@gmail.com> # Copyright (C) 2014-2017 David Barragรกn <bameda@dbarragan.com> # Copyright (C) 2014-2017 Alejandro Alonso <alejandro.alonso@kaleidos.net> # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. from collections import OrderedDict from .generics import GenericSitemap from .projects import ProjectsSitemap from .projects import ProjectBacklogsSitemap from .projects import ProjectKanbansSitemap from .epics import EpicsSitemap from .milestones import MilestonesSitemap from .userstories import UserStoriesSitemap from .tasks import TasksSitemap from .issues import IssuesSitemap from .wiki import WikiPagesSitemap from .users import UsersSitemap sitemaps = OrderedDict([ ("generics", GenericSitemap), ("projects", ProjectsSitemap), ("project-backlogs", ProjectBacklogsSitemap), ("project-kanbans", ProjectKanbansSitemap), ("epics", EpicsSitemap), ("milestones", MilestonesSitemap), ("userstories", UserStoriesSitemap), ("tasks", TasksSitemap), ("issues", IssuesSitemap), ("wikipages", WikiPagesSitemap), ("users", UsersSitemap) ])
29.095238
74
0.756137
13ee9fa78dd76b287cdd70f300a95e0f3b9ddc60
2,031
py
Python
test/functional/rpc_getaddressinfo_labels_purpose_deprecation.py
asuka431/fujicoin-0.20.0
82b1f5dc5480f6585a90ef9cc47fd9cd6c55def2
[ "MIT" ]
1
2022-03-16T02:39:39.000Z
2022-03-16T02:39:39.000Z
test/functional/rpc_getaddressinfo_labels_purpose_deprecation.py
asuka431/fujicoin-0.20.0
82b1f5dc5480f6585a90ef9cc47fd9cd6c55def2
[ "MIT" ]
null
null
null
test/functional/rpc_getaddressinfo_labels_purpose_deprecation.py
asuka431/fujicoin-0.20.0
82b1f5dc5480f6585a90ef9cc47fd9cd6c55def2
[ "MIT" ]
1
2022-03-26T10:30:47.000Z
2022-03-26T10:30:47.000Z
#!/usr/bin/env python3 # Copyright (c) 2020-2019 The Baricoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """ Test deprecation of RPC getaddressinfo `labels` returning an array containing a JSON object of `name` and purpose` key-value pairs. It now returns an array containing only the label name. """ from test_framework.test_framework import BaricoinTestFramework from test_framework.util import assert_equal LABELS_TO_TEST = frozenset({"" , "New ๐…ก $<#>&!ั€ั‹ะฑะฐ Label"}) class GetAddressInfoLabelsPurposeDeprecationTest(BaricoinTestFramework): def set_test_params(self): self.num_nodes = 2 self.setup_clean_chain = False # Start node[0] with -deprecatedrpc=labelspurpose and node[1] without. self.extra_args = [["-deprecatedrpc=labelspurpose"], []] def skip_test_if_missing_module(self): self.skip_if_no_wallet() def test_labels(self, node_num, label_name, expected_value): node = self.nodes[node_num] address = node.getnewaddress() if label_name != "": node.setlabel(address, label_name) self.log.info(" set label to {}".format(label_name)) labels = node.getaddressinfo(address)["labels"] self.log.info(" labels = {}".format(labels)) assert_equal(labels, expected_value) def run_test(self): """Test getaddressinfo labels with and without -deprecatedrpc flag.""" self.log.info("Test getaddressinfo labels with -deprecatedrpc flag") for label in LABELS_TO_TEST: self.test_labels(node_num=0, label_name=label, expected_value=[{"name": label, "purpose": "receive"}]) self.log.info("Test getaddressinfo labels without -deprecatedrpc flag") for label in LABELS_TO_TEST: self.test_labels(node_num=1, label_name=label, expected_value=[label]) if __name__ == '__main__': GetAddressInfoLabelsPurposeDeprecationTest().main()
41.44898
114
0.706548
4523188e880314a4982c26c9b50e7faf0c67555b
9,897
py
Python
Source/chrome/build/android/pylib/constants/__init__.py
yury-s/v8-inspector
0ab4779e0909d387f243f41ca2621237cdb0c7fe
[ "BSD-3-Clause" ]
20
2015-08-26T06:46:00.000Z
2019-02-27T09:05:58.000Z
Source/chrome/build/android/pylib/constants/__init__.py
yury-s/v8-inspector
0ab4779e0909d387f243f41ca2621237cdb0c7fe
[ "BSD-3-Clause" ]
null
null
null
Source/chrome/build/android/pylib/constants/__init__.py
yury-s/v8-inspector
0ab4779e0909d387f243f41ca2621237cdb0c7fe
[ "BSD-3-Clause" ]
2
2015-08-26T05:49:35.000Z
2020-02-03T20:22:43.000Z
# Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Defines a set of constants shared by test runners and other scripts.""" # TODO(jbudorick): Split these constants into coherent modules. # pylint: disable=W0212 import collections import logging import os import subprocess DIR_SOURCE_ROOT = os.environ.get('CHECKOUT_SOURCE_ROOT', os.path.abspath(os.path.join(os.path.dirname(__file__), os.pardir, os.pardir, os.pardir, os.pardir))) ISOLATE_DEPS_DIR = os.path.join(DIR_SOURCE_ROOT, 'isolate_deps_dir') CHROME_SHELL_HOST_DRIVEN_DIR = os.path.join( DIR_SOURCE_ROOT, 'chrome', 'android') PackageInfo = collections.namedtuple('PackageInfo', ['package', 'activity', 'cmdline_file', 'devtools_socket', 'test_package']) PACKAGE_INFO = { 'chrome_document': PackageInfo( 'com.google.android.apps.chrome.document', 'com.google.android.apps.chrome.document.ChromeLauncherActivity', '/data/local/chrome-command-line', 'chrome_devtools_remote', None), 'chrome': PackageInfo( 'com.google.android.apps.chrome', 'com.google.android.apps.chrome.Main', '/data/local/chrome-command-line', 'chrome_devtools_remote', 'com.google.android.apps.chrome.tests'), 'chrome_beta': PackageInfo( 'com.chrome.beta', 'com.google.android.apps.chrome.Main', '/data/local/chrome-command-line', 'chrome_devtools_remote', None), 'chrome_stable': PackageInfo( 'com.android.chrome', 'com.google.android.apps.chrome.Main', '/data/local/chrome-command-line', 'chrome_devtools_remote', None), 'chrome_dev': PackageInfo( 'com.chrome.dev', 'com.google.android.apps.chrome.Main', '/data/local/chrome-command-line', 'chrome_devtools_remote', None), 'chrome_canary': PackageInfo( 'com.chrome.canary', 'com.google.android.apps.chrome.Main', '/data/local/chrome-command-line', 'chrome_devtools_remote', None), 'chrome_work': PackageInfo( 'com.chrome.work', 'com.google.android.apps.chrome.Main', '/data/local/chrome-command-line', 'chrome_devtools_remote', None), 'legacy_browser': PackageInfo( 'com.google.android.browser', 'com.android.browser.BrowserActivity', None, None, None), 'chromecast_shell': PackageInfo( 'com.google.android.apps.mediashell', 'com.google.android.apps.mediashell.MediaShellActivity', '/data/local/tmp/castshell-command-line', None, None), 'content_shell': PackageInfo( 'org.chromium.content_shell_apk', 'org.chromium.content_shell_apk.ContentShellActivity', '/data/local/tmp/content-shell-command-line', None, 'org.chromium.content_shell_apk.tests'), 'chrome_shell': PackageInfo( 'org.chromium.chrome.shell', 'org.chromium.chrome.shell.ChromeShellActivity', '/data/local/tmp/chrome-shell-command-line', 'chrome_shell_devtools_remote', 'org.chromium.chrome.shell.tests'), 'android_webview_shell': PackageInfo( 'org.chromium.android_webview.shell', 'org.chromium.android_webview.shell.AwShellActivity', '/data/local/tmp/android-webview-command-line', None, 'org.chromium.android_webview.test'), 'gtest': PackageInfo( 'org.chromium.native_test', 'org.chromium.native_test.NativeUnitTestActivity', '/data/local/tmp/chrome-native-tests-command-line', None, None), 'components_browsertests': PackageInfo( 'org.chromium.components_browsertests_apk', ('org.chromium.components_browsertests_apk' + '.ComponentsBrowserTestsActivity'), '/data/local/tmp/chrome-native-tests-command-line', None, None), 'content_browsertests': PackageInfo( 'org.chromium.content_browsertests_apk', 'org.chromium.content_browsertests_apk.ContentBrowserTestsActivity', '/data/local/tmp/chrome-native-tests-command-line', None, None), 'chromedriver_webview_shell': PackageInfo( 'org.chromium.chromedriver_webview_shell', 'org.chromium.chromedriver_webview_shell.Main', None, None, None), } # Ports arrangement for various test servers used in Chrome for Android. # Lighttpd server will attempt to use 9000 as default port, if unavailable it # will find a free port from 8001 - 8999. LIGHTTPD_DEFAULT_PORT = 9000 LIGHTTPD_RANDOM_PORT_FIRST = 8001 LIGHTTPD_RANDOM_PORT_LAST = 8999 TEST_SYNC_SERVER_PORT = 9031 TEST_SEARCH_BY_IMAGE_SERVER_PORT = 9041 TEST_POLICY_SERVER_PORT = 9051 # The net test server is started from port 10201. # TODO(pliard): http://crbug.com/239014. Remove this dirty workaround once # http://crbug.com/239014 is fixed properly. TEST_SERVER_PORT_FIRST = 10201 TEST_SERVER_PORT_LAST = 30000 # A file to record next valid port of test server. TEST_SERVER_PORT_FILE = '/tmp/test_server_port' TEST_SERVER_PORT_LOCKFILE = '/tmp/test_server_port.lock' TEST_EXECUTABLE_DIR = '/data/local/tmp' # Directories for common java libraries for SDK build. # These constants are defined in build/android/ant/common.xml SDK_BUILD_JAVALIB_DIR = 'lib.java' SDK_BUILD_TEST_JAVALIB_DIR = 'test.lib.java' SDK_BUILD_APKS_DIR = 'apks' ADB_KEYS_FILE = '/data/misc/adb/adb_keys' PERF_OUTPUT_DIR = os.path.join(DIR_SOURCE_ROOT, 'out', 'step_results') # The directory on the device where perf test output gets saved to. DEVICE_PERF_OUTPUT_DIR = ( '/data/data/' + PACKAGE_INFO['chrome'].package + '/files') SCREENSHOTS_DIR = os.path.join(DIR_SOURCE_ROOT, 'out_screenshots') class ANDROID_SDK_VERSION_CODES(object): """Android SDK version codes. http://developer.android.com/reference/android/os/Build.VERSION_CODES.html """ JELLY_BEAN = 16 JELLY_BEAN_MR1 = 17 JELLY_BEAN_MR2 = 18 KITKAT = 19 KITKAT_WATCH = 20 LOLLIPOP = 21 LOLLIPOP_MR1 = 22 ANDROID_SDK_VERSION = ANDROID_SDK_VERSION_CODES.LOLLIPOP_MR1 ANDROID_SDK_BUILD_TOOLS_VERSION = '22.0.0' ANDROID_SDK_ROOT = os.path.join(DIR_SOURCE_ROOT, 'third_party/android_tools/sdk') ANDROID_SDK_TOOLS = os.path.join(ANDROID_SDK_ROOT, 'build-tools', ANDROID_SDK_BUILD_TOOLS_VERSION) ANDROID_NDK_ROOT = os.path.join(DIR_SOURCE_ROOT, 'third_party/android_tools/ndk') EMULATOR_SDK_ROOT = os.environ.get('ANDROID_EMULATOR_SDK_ROOT', os.path.join(DIR_SOURCE_ROOT, 'android_emulator_sdk')) BAD_DEVICES_JSON = os.path.join(DIR_SOURCE_ROOT, os.environ.get('CHROMIUM_OUT_DIR', 'out'), 'bad_devices.json') UPSTREAM_FLAKINESS_SERVER = 'test-results.appspot.com' DEVICE_LOCAL_PROPERTIES_PATH = '/data/local.prop' PYTHON_UNIT_TEST_SUITES = { 'pylib_py_unittests': { 'path': os.path.join(DIR_SOURCE_ROOT, 'build', 'android'), 'test_modules': [ 'pylib.cmd_helper_test', 'pylib.device.device_utils_test', 'pylib.results.json_results_test', 'pylib.utils.md5sum_test', ] }, 'gyp_py_unittests': { 'path': os.path.join(DIR_SOURCE_ROOT, 'build', 'android', 'gyp'), 'test_modules': [ 'java_cpp_enum_tests', ] }, } LOCAL_MACHINE_TESTS = ['junit', 'python'] VALID_ENVIRONMENTS = ['local', 'remote_device'] VALID_TEST_TYPES = ['gtest', 'instrumentation', 'junit', 'linker', 'monkey', 'perf', 'python', 'uiautomator', 'uirobot'] VALID_DEVICE_TYPES = ['Android', 'iOS'] def GetBuildType(): try: return os.environ['BUILDTYPE'] except KeyError: raise EnvironmentError( 'The BUILDTYPE environment variable has not been set') def SetBuildType(build_type): os.environ['BUILDTYPE'] = build_type def SetBuildDirectory(build_directory): os.environ['CHROMIUM_OUT_DIR'] = build_directory def SetOutputDirectory(output_directory): os.environ['CHROMIUM_OUTPUT_DIR'] = output_directory def GetOutDirectory(build_type=None): """Returns the out directory where the output binaries are built. Args: build_type: Build type, generally 'Debug' or 'Release'. Defaults to the globally set build type environment variable BUILDTYPE. """ if 'CHROMIUM_OUTPUT_DIR' in os.environ: return os.path.abspath(os.path.join( DIR_SOURCE_ROOT, os.environ.get('CHROMIUM_OUTPUT_DIR'))) return os.path.abspath(os.path.join( DIR_SOURCE_ROOT, os.environ.get('CHROMIUM_OUT_DIR', 'out'), GetBuildType() if build_type is None else build_type)) def _Memoize(func): def Wrapper(): try: return func._result except AttributeError: func._result = func() return func._result return Wrapper def SetAdbPath(adb_path): os.environ['ADB_PATH'] = adb_path def GetAdbPath(): # Check if a custom adb path as been set. If not, try to find adb # on the system. if os.environ.get('ADB_PATH'): return os.environ.get('ADB_PATH') else: return _FindAdbPath() @_Memoize def _FindAdbPath(): if os.environ.get('ANDROID_SDK_ROOT'): return 'adb' # If envsetup.sh hasn't been sourced and there's no adb in the path, # set it here. try: with file(os.devnull, 'w') as devnull: subprocess.call(['adb', 'version'], stdout=devnull, stderr=devnull) return 'adb' except OSError: logging.debug('No adb found in $PATH, fallback to checked in binary.') return os.path.join(ANDROID_SDK_ROOT, 'platform-tools', 'adb') # Exit codes ERROR_EXIT_CODE = 1 INFRA_EXIT_CODE = 87 WARNING_EXIT_CODE = 88
32.663366
80
0.68061
91f773ac7cd5264e0c54f0bc660fa782c38280d4
546
py
Python
recipes/Python/252130_Write_a_plugin_for_ImageJ/recipe-252130.py
tdiprima/code
61a74f5f93da087d27c70b2efe779ac6bd2a3b4f
[ "MIT" ]
2,023
2017-07-29T09:34:46.000Z
2022-03-24T08:00:45.000Z
recipes/Python/252130_Write_a_plugin_for_ImageJ/recipe-252130.py
unhacker/code
73b09edc1b9850c557a79296655f140ce5e853db
[ "MIT" ]
32
2017-09-02T17:20:08.000Z
2022-02-11T17:49:37.000Z
recipes/Python/252130_Write_a_plugin_for_ImageJ/recipe-252130.py
unhacker/code
73b09edc1b9850c557a79296655f140ce5e853db
[ "MIT" ]
780
2017-07-28T19:23:28.000Z
2022-03-25T20:39:41.000Z
import ij class Inverter_py(ij.plugin.filter.PlugInFilter): def setup(self,arg, imp): """@sig public int setup(String arg, ij.ImagePlus imp)""" return ij.plugin.filter.PlugInFilter.DOES_8G def run(self,ip): """@sig public void run(ij.process.ImageProcessor ip)""" pixels = ip.getPixels() width = ip.getWidth() r = ip.getRoi() for y in range(r.y,r.y+r.height): for x in range(r.x,r.x+r.width): i = y*width + x; pixels[i] = 255-pixels[i]
32.117647
65
0.565934
3eb005492896b716fb6755b13ed0fb17aab84128
292
py
Python
tests/challenges/test_array_reverse.py
aghyadalbalkhi-ASAC/data-structures-and-algorithms-python-401
a7ffc3cbb1ffdead1e5a42733eba9f876e0fe57d
[ "MIT" ]
null
null
null
tests/challenges/test_array_reverse.py
aghyadalbalkhi-ASAC/data-structures-and-algorithms-python-401
a7ffc3cbb1ffdead1e5a42733eba9f876e0fe57d
[ "MIT" ]
null
null
null
tests/challenges/test_array_reverse.py
aghyadalbalkhi-ASAC/data-structures-and-algorithms-python-401
a7ffc3cbb1ffdead1e5a42733eba9f876e0fe57d
[ "MIT" ]
5
2020-11-29T20:49:33.000Z
2022-03-20T20:57:38.000Z
# put your array_reverse challenge tests here from data_structures_and_algorithms.challenges.array_reverse.array_reverse import ( reverse_array, ) # here's a test to get you started def test_leave_as_is(): actual = reverse_array([1]) expected = [1] assert actual == expected
26.545455
83
0.753425
7f495e63c10abc04d27b4b8aaca8ae60a28f3276
1,491
py
Python
opsmgr/common/constants.py
open-power-ref-design-toolkit/opsmgr
ce9d5dc8a4038f22302a168288a6a4f6683dcd45
[ "Apache-2.0" ]
5
2017-05-10T00:32:37.000Z
2019-08-21T09:32:01.000Z
opsmgr/common/constants.py
open-power-ref-design-toolkit/opsmgr
ce9d5dc8a4038f22302a168288a6a4f6683dcd45
[ "Apache-2.0" ]
null
null
null
opsmgr/common/constants.py
open-power-ref-design-toolkit/opsmgr
ce9d5dc8a4038f22302a168288a6a4f6683dcd45
[ "Apache-2.0" ]
3
2017-05-10T00:32:40.000Z
2018-10-16T19:18:18.000Z
# Copyright 2016, IBM US, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from enum import Enum OPSMGRLOG = "/var/log/opsmgr/opsmgr.log" OPSMGRLOG_ERROR = "/var/log/opsmgr/opsmgr_error.log" OPSMGR_LOG_CONF = "/etc/opsmgr/logging.yaml" class access_status(Enum): """ codes assigned for access status field in device_info class """ SUCCESS = 0 FAILED_TO_CONNECT = 1 CREDENTIALS_INVALID = 2 DEVICE_TYPE_ERROR = 3 GATHER_IN_PROGRESS = 4 NO_STATUS = 5 # TODO replace usage with exceptions class validation_codes(Enum): """ codes returned from the validate() call in resoure_mgr module """ SUCCESS = 0 FAILED_TO_CONNECT = 1 CREDENTIALS_INVALID = 2 DEVICE_TYPE_ERROR = 3 class auth_method(Enum): """ Authentication method used to access a device """ USERID_PASSWORD = 0 SSH_KEY_AUTHENTICATION = 1 JSON_IDENTIFIER_ATTR = 'id' JSON_LABEL_ATTR = 'name' LOGGING_CAPABLE = 'Logging' MONITORING_CAPABLE = 'Monitoring'
27.109091
74
0.729041
c699d9548fc2a247840f85ba0b784928ef0f631e
5,755
py
Python
heat/engine/clients/progress.py
noironetworks/heat
7cdadf1155f4d94cf8f967635b98e4012a7acfb7
[ "Apache-2.0" ]
1
2020-06-18T01:05:29.000Z
2020-06-18T01:05:29.000Z
heat/engine/clients/progress.py
noironetworks/heat
7cdadf1155f4d94cf8f967635b98e4012a7acfb7
[ "Apache-2.0" ]
5
2019-08-14T06:46:03.000Z
2021-12-13T20:01:25.000Z
heat/engine/clients/progress.py
noironetworks/heat
7cdadf1155f4d94cf8f967635b98e4012a7acfb7
[ "Apache-2.0" ]
2
2020-03-15T01:24:15.000Z
2020-07-22T20:34:26.000Z
# # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Helper classes that are simple key-value storages meant to be passed between handle_* and check_*_complete, being mutated during subsequent check_*_complete calls. Some of them impose restrictions on client plugin API, thus they are put in this client-plugin-agnostic module. """ class ServerCreateProgress(object): def __init__(self, server_id, complete=False): self.complete = complete self.server_id = server_id class UpdateProgressBase(object): """Keeps track on particular server update task. ``handler`` is a method of client plugin performing required update operation. Its first positional argument must be ``resource_id`` and this method must be resilent to intermittent failures, returning ``True`` if API was successfully called, ``False`` otherwise. If result of API call is asynchronous, client plugin must have corresponding ``check_<handler>`` method. Its first positional argument must be ``resource_id`` and it must return ``True`` or ``False`` indicating completeness of the update operation. For synchronous API calls, set ``complete`` attribute of this object to ``True``. ``[handler|checker]_extra`` arguments, if passed to constructor, should be dictionaries of {'args': tuple(), 'kwargs': dict()} structure and contain parameters with which corresponding ``handler`` and ``check_<handler>`` methods of client plugin must be called. ``args`` is automatically prepended with ``resource_id``. Missing ``args`` or ``kwargs`` are interpreted as empty tuple/dict respectively. Defaults are interpreted as both ``args`` and ``kwargs`` being empty. """ def __init__(self, resource_id, handler, complete=False, called=False, handler_extra=None, checker_extra=None): self.complete = complete self.called = called self.handler = handler self.checker = 'check_%s' % handler # set call arguments basing on incomplete values and defaults hargs = handler_extra or {} self.handler_args = (resource_id,) + (hargs.get('args') or ()) self.handler_kwargs = hargs.get('kwargs') or {} cargs = checker_extra or {} self.checker_args = (resource_id,) + (cargs.get('args') or ()) self.checker_kwargs = cargs.get('kwargs') or {} class ServerUpdateProgress(UpdateProgressBase): def __init__(self, server_id, handler, complete=False, called=False, handler_extra=None, checker_extra=None): super(ServerUpdateProgress, self).__init__( server_id, handler, complete=complete, called=called, handler_extra=handler_extra, checker_extra=checker_extra) self.server_id = server_id class ContainerUpdateProgress(UpdateProgressBase): def __init__(self, container_id, handler, complete=False, called=False, handler_extra=None, checker_extra=None): super(ContainerUpdateProgress, self).__init__( container_id, handler, complete=complete, called=called, handler_extra=handler_extra, checker_extra=checker_extra) self.container_id = container_id class ServerDeleteProgress(object): def __init__(self, server_id, image_id=None, image_complete=True): self.server_id = server_id self.image_id = image_id self.image_complete = image_complete class VolumeDetachProgress(object): def __init__(self, srv_id, vol_id, attach_id, task_complete=False): self.called = task_complete self.cinder_complete = task_complete self.nova_complete = task_complete self.srv_id = srv_id self.vol_id = vol_id self.attach_id = attach_id class VolumeAttachProgress(object): def __init__(self, srv_id, vol_id, device, task_complete=False): self.called = task_complete self.complete = task_complete self.srv_id = srv_id self.vol_id = vol_id self.device = device class VolumeDeleteProgress(object): def __init__(self, task_complete=False): self.backup = {'called': task_complete, 'complete': task_complete} self.delete = {'called': task_complete, 'complete': task_complete} self.backup_id = None class VolumeResizeProgress(object): def __init__(self, task_complete=False, size=None): self.called = task_complete self.complete = task_complete self.size = size class VolumeUpdateAccessModeProgress(object): def __init__(self, task_complete=False, read_only=None): self.called = task_complete self.read_only = read_only class VolumeBackupRestoreProgress(object): def __init__(self, vol_id, backup_id): self.called = False self.complete = False self.vol_id = vol_id self.backup_id = backup_id class PoolDeleteProgress(object): def __init__(self, task_complete=False): self.pool = {'delete_called': task_complete, 'deleted': task_complete} self.vip = {'delete_called': task_complete, 'deleted': task_complete}
36.424051
78
0.686707
a2ec550b230b5f686a09a62d3cda4bd503507549
3,866
py
Python
examples/demo/gloo/signals.py
shjoshi/vispy
2f3d169aa60c738467e766c59096f51570483d6f
[ "BSD-3-Clause" ]
null
null
null
examples/demo/gloo/signals.py
shjoshi/vispy
2f3d169aa60c738467e766c59096f51570483d6f
[ "BSD-3-Clause" ]
null
null
null
examples/demo/gloo/signals.py
shjoshi/vispy
2f3d169aa60c738467e766c59096f51570483d6f
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # vispy: gallery 2 # Copyright (c) 2014, Vispy Development Team. # Distributed under the (new) BSD License. See LICENSE.txt for more info. """ Multiple digital signals. """ from vispy import gloo from vispy import app import numpy as np import math m = 20 n = 25000 x = np.tile(np.linspace(-1., 1., n), m) y = .1 * np.random.randn(m, n) y += np.arange(m).reshape((-1, 1)) data = np.zeros(n*m, dtype=[ ('a_position', np.float32, 2), ('a_color', np.float32, 3), ('a_index', np.float32, 1), ]) data['a_position'] = np.zeros((n*m, 2), dtype=np.float32) data['a_position'][:, 0] = x data['a_position'][:, 1] = .9*(y.ravel()/y.max()*2-1) data['a_color'] = np.repeat(np.random.uniform(size=(m, 3), low=.5, high=.9), n, axis=0) data['a_index'] = np.repeat(np.arange(m), n) VERT_SHADER = """ #version 120 attribute vec2 a_position; attribute float a_index; varying float v_index; attribute vec3 a_color; varying vec3 v_color; uniform vec2 u_pan; uniform vec2 u_scale; void main() { vec2 position_tr = u_scale * (a_position + u_pan); gl_Position = vec4(position_tr, 0.0, 1.0); v_color = a_color; v_index = a_index; } """ FRAG_SHADER = """ #version 120 varying vec3 v_color; varying float v_index; void main() { gl_FragColor = vec4(v_color, 1.0); if ((fract(v_index) > .00001) && (fract(v_index) < .99999)) gl_FragColor.a = 0.; } """ class Canvas(app.Canvas): def __init__(self): app.Canvas.__init__(self, close_keys='escape') self.program = gloo.Program(VERT_SHADER, FRAG_SHADER) self.program.bind(gloo.VertexBuffer(data)) self.program['u_pan'] = (0., 0.) self.program['u_scale'] = (1., 1.) def on_initialize(self, event): gloo.set_state(clear_color=(1, 1, 1, 1), blend=True, blend_func=('src_alpha', 'one_minus_src_alpha')) def on_resize(self, event): self.width, self.height = event.size gloo.set_viewport(0, 0, self.width, self.height) def on_draw(self, event): gloo.clear(color=(0.0, 0.0, 0.0, 1.0)) self.program.draw('line_strip') def _normalize(self, x_y): x, y = x_y w, h = float(self.width), float(self.height) return x/(w/2.)-1., y/(h/2.)-1. def on_mouse_move(self, event): if event.is_dragging: x0, y0 = self._normalize(event.press_event.pos) x1, y1 = self._normalize(event.last_event.pos) x, y = self._normalize(event.pos) dx, dy = x - x1, -(y - y1) button = event.press_event.button pan_x, pan_y = self.program['u_pan'] scale_x, scale_y = self.program['u_scale'] if button == 1: self.program['u_pan'] = (pan_x+dx/scale_x, pan_y+dy/scale_y) elif button == 2: scale_x_new, scale_y_new = (scale_x * math.exp(2.5*dx), scale_y * math.exp(2.5*dy)) self.program['u_scale'] = (scale_x_new, scale_y_new) self.program['u_pan'] = (pan_x - x0 * (1./scale_x - 1./scale_x_new), pan_y + y0 * (1./scale_y - 1./scale_y_new)) self.update() def on_mouse_wheel(self, event): dx = np.sign(event.delta[1])*.05 scale_x, scale_y = self.program['u_scale'] scale_x_new, scale_y_new = (scale_x * math.exp(2.5*dx), scale_y * math.exp(2.5*dx)) self.program['u_scale'] = (scale_x_new, scale_y_new) self.update() if __name__ == '__main__': c = Canvas() c.show() app.run()
29.51145
77
0.55044
b2c09e1dffb7a39eee87ceb9f275da7b4fefed2a
2,131
py
Python
astroquery/xmatch/tests/test_xmatch_remote.py
eteq/astroquery
70db53f8f047a2ee3481fd3242e6b364bc1ca639
[ "BSD-3-Clause" ]
1
2021-03-20T00:07:01.000Z
2021-03-20T00:07:01.000Z
astroquery/xmatch/tests/test_xmatch_remote.py
eteq/astroquery
70db53f8f047a2ee3481fd3242e6b364bc1ca639
[ "BSD-3-Clause" ]
1
2016-01-15T14:46:02.000Z
2016-01-15T14:46:02.000Z
astroquery/xmatch/tests/test_xmatch_remote.py
hamogu/astroquery
9a2d1a2ecc4dbfafa6a39cf7a180bcf831a6266a
[ "BSD-3-Clause" ]
1
2021-03-20T00:07:05.000Z
2021-03-20T00:07:05.000Z
# Licensed under a 3-clause BSD style license - see LICENSE.rst import os.path from astropy.tests.helper import pytest, remote_data from astropy.table import Table from astropy.units import arcsec from ...xmatch import XMatch DATA_DIR = os.path.join(os.path.dirname(__file__), 'data') # fixture only used here to save creating XMatch instances in each # of the following test functions @pytest.fixture def xmatch(): return XMatch() @remote_data def test_xmatch_avail_tables(xmatch): tables = xmatch.get_available_tables() assert tables # those example tables are from # http://cdsxmatch.u-strasbg.fr/xmatch/doc/API-calls.html assert 'II/311/wise' in tables assert 'II/246/out' in tables @remote_data def test_xmatch_is_avail_table(xmatch): assert xmatch.is_table_available('II/311/wise') assert xmatch.is_table_available('II/246/out') assert not xmatch.is_table_available('vizier:II/311/wise') @remote_data def test_xmatch_query(xmatch): with open(os.path.join(DATA_DIR, 'posList.csv')) as pos_list: table = xmatch.query( cat1=pos_list, cat2='vizier:II/246/out', max_distance=5 * arcsec, colRA1='ra', colDec1='dec') assert isinstance(table, Table) assert table.colnames == [ 'angDist', 'ra', 'dec', '2MASS', 'RAJ2000', 'DEJ2000', 'errHalfMaj', 'errHalfMin', 'errPosAng', 'Jmag', 'Hmag', 'Kmag', 'e_Jmag', 'e_Hmag', 'e_Kmag', 'Qfl', 'Rfl', 'X', 'MeasureJD'] assert len(table) == 11 @remote_data def test_xmatch_query_astropy_table(xmatch): datapath = os.path.join(DATA_DIR, 'posList.csv') input_table = Table.read(datapath, names=['ra', 'dec'], format='ascii.csv') table = xmatch.query( cat1=input_table, cat2='vizier:II/246/out', max_distance=5 * arcsec) assert isinstance(table, Table) assert table.colnames == [ 'angDist', 'ra', 'dec', '2MASS', 'RAJ2000', 'DEJ2000', 'errHalfMaj', 'errHalfMin', 'errPosAng', 'Jmag', 'Hmag', 'Kmag', 'e_Jmag', 'e_Hmag', 'e_Kmag', 'Qfl', 'Rfl', 'X', 'MeasureJD'] assert len(table) == 11
32.784615
77
0.666823