hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
a121293dfbdfc6387178bb484e2ea480fca7d027
2,504
py
Python
config_args.py
wenting-zhao/cs6741_replication
fbd8275793c5d2b097458c68bc3bba00144665aa
[ "MIT" ]
null
null
null
config_args.py
wenting-zhao/cs6741_replication
fbd8275793c5d2b097458c68bc3bba00144665aa
[ "MIT" ]
null
null
null
config_args.py
wenting-zhao/cs6741_replication
fbd8275793c5d2b097458c68bc3bba00144665aa
[ "MIT" ]
null
null
null
import os.path as path import os def get_args(parser): parser.add_argument('--dataset', type=str, required=True) parser.add_argument("--data_dir", type=str, required=True) parser.add_argument("--output_dir", type=str) parser.add_argument('--encoder', type=str, choices=['lstm', 'average'], required=True) parser.add_argument('--attention', type=str, choices=['tanh', 'frozen', 'pre-loaded'], required=False) parser.add_argument('--epoch', type=int, required=False, default=8) parser.add_argument('--seed', type=int, default=10) parser.add_argument('--gold_label_dir', type=str, required=False) parser.add_argument('--hidden_size', type=int, default=128) parser.add_argument('--batch_size', type=int, default=32) parser.add_argument('--lmbda', type=float, required=False) parser.add_argument('--lr_decay', type=float, default=0.5, required=False) parser.add_argument('--lr', type=float, default=0.001, required=False) parser.add_argument('--lr_step_size', type=int, default=4, required=False) parser.add_argument('--adversarial', action='store_const', required=False, const=True) parser.add_argument('--use_attention', action='store_true') opt = parser.parse_args() return opt def config_args(args): # check that have provided a data directory to load attentions/predictions from if (args.attention == 'pre-loaded' or args.adversarial) and not args.gold_label_dir : raise Exception("You must specify a gold-label directory for attention distributions") #check that have provided the correct dir: if args.gold_label_dir and args.dataset.lower() not in args.gold_label_dir and args.dataset not in args.gold_label_dir : raise Exception("Gold-attention labels directory does not match specified dataset") # add check for lmbda value if adversarial model if args.adversarial and not args.lmbda : raise Exception("Must specify a lambda value for the adversarial model") if args.adversarial : args.frozen_attn = False args.pre_loaded_attn = False elif args.attention == 'frozen' : args.frozen_attn = True args.pre_loaded_attn = False elif args.attention == 'tanh' : args.frozen_attn = False args.pre_loaded_attn = False elif args.attention == 'pre-loaded': # not an adversarial model args.frozen_attn = False args.pre_loaded_attn = True else : raise LookupError("Attention not found ...")
45.527273
124
0.703674
b1abc9e7b1923d2e56f452c6891ddaa959d95b40
24,247
py
Python
src/main/python/apache/aurora/client/commands/core.py
wickman/incubator-aurora
9906d217093568ed4c9cfe620862818f15ce4150
[ "Apache-2.0" ]
null
null
null
src/main/python/apache/aurora/client/commands/core.py
wickman/incubator-aurora
9906d217093568ed4c9cfe620862818f15ce4150
[ "Apache-2.0" ]
null
null
null
src/main/python/apache/aurora/client/commands/core.py
wickman/incubator-aurora
9906d217093568ed4c9cfe620862818f15ce4150
[ "Apache-2.0" ]
null
null
null
# # Copyright 2013 Apache Software Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Command-line client for managing jobs with the Aurora scheduler. """ from __future__ import print_function import collections from datetime import datetime import json import os import pprint import subprocess import sys import time from tempfile import NamedTemporaryFile from apache.aurora.client.base import ( check_and_log_response, deprecation_warning, die, handle_open, requires, synthesize_url) from apache.aurora.client.api.disambiguator import LiveJobDisambiguator from apache.aurora.client.api.job_monitor import JobMonitor from apache.aurora.client.api.quota_check import print_quota from apache.aurora.client.api.updater_util import UpdaterConfig from apache.aurora.client.config import get_config, GlobalHookRegistry from apache.aurora.client.factory import make_client, make_client_factory from apache.aurora.client.options import ( CLUSTER_CONFIG_OPTION, CLUSTER_INVOKE_OPTION, CLUSTER_NAME_OPTION, DISABLE_HOOKS_OPTION, ENV_CONFIG_OPTION, ENVIRONMENT_BIND_OPTION, FROM_JOBKEY_OPTION, HEALTH_CHECK_INTERVAL_SECONDS_OPTION, JSON_OPTION, OPEN_BROWSER_OPTION, SHARDS_OPTION, WAIT_UNTIL_OPTION) from apache.aurora.common.aurora_job_key import AuroraJobKey from gen.apache.aurora.constants import ACTIVE_STATES, CURRENT_API_VERSION, AURORA_EXECUTOR_NAME from gen.apache.aurora.ttypes import ExecutorConfig, ResponseCode, ScheduleStatus from twitter.common import app, log from twitter.common.python.pex import PexInfo from twitter.common.python.dirwrapper import PythonDirectoryWrapper def get_job_config(job_spec, config_file, options): try: job_key = AuroraJobKey.from_path(job_spec) select_cluster = job_key.cluster select_env = job_key.env select_role = job_key.role jobname = job_key.name except AuroraJobKey.Error: deprecation_warning('Please refer to your job in CLUSTER/ROLE/ENV/NAME format.') select_cluster = options.cluster if options.cluster else None select_env = options.env select_role = None jobname = job_spec try: json_option = options.json except AttributeError: json_option = False try: bindings = options.bindings except AttributeError: bindings = () return get_config( jobname, config_file, json_option, bindings, select_cluster=select_cluster, select_role=select_role, select_env=select_env) @app.command def version(args): """usage: version Prints information about the version of the aurora client being run. """ try: pexpath = sys.argv[0] pex_info = PexInfo.from_pex(PythonDirectoryWrapper.get(pexpath)) print("Aurora client build info:") print("\tsha: %s" % pex_info.build_properties['sha']) print("\tdate: %s" % pex_info.build_properties['date']) except (IOError, PythonDirectoryWrapper.Error): print("Aurora client build info not available") print("Aurora API version: %s" % CURRENT_API_VERSION) def maybe_disable_hooks(options): """Checks the hooks disable option, and disables the hooks if required. This could be done with a callback in the option, but this is better for the way that we test clientv1. """ if options.disable_all_hooks_reason is not None: GlobalHookRegistry.disable_hooks() log.info('Client hooks disabled; reason given by user: %s' % options.disable_all_hooks_reason) @app.command @app.command_option(ENVIRONMENT_BIND_OPTION) @app.command_option(OPEN_BROWSER_OPTION) @app.command_option(CLUSTER_CONFIG_OPTION) @app.command_option(ENV_CONFIG_OPTION) @app.command_option(JSON_OPTION) @app.command_option(WAIT_UNTIL_OPTION) @app.command_option(DISABLE_HOOKS_OPTION) @requires.exactly('cluster/role/env/job', 'config') def create(job_spec, config_file): """usage: create cluster/role/env/job config Creates a job based on a configuration file. """ options = app.get_options() maybe_disable_hooks(options) try: config = get_job_config(job_spec, config_file, options) except ValueError as v: print("Error: %s" % v) sys.exit(1) api = make_client(config.cluster()) monitor = JobMonitor(api, config.role(), config.environment(), config.name()) resp = api.create_job(config) check_and_log_response(resp) handle_open(api.scheduler_proxy.scheduler_client().url, config.role(), config.environment(), config.name()) if options.wait_until == 'RUNNING': monitor.wait_until(monitor.running_or_finished) elif options.wait_until == 'FINISHED': monitor.wait_until(monitor.terminal) @app.command @app.command_option(ENVIRONMENT_BIND_OPTION) @app.command_option(CLUSTER_CONFIG_OPTION) @app.command_option(ENV_CONFIG_OPTION) @app.command_option(JSON_OPTION) @app.command_option(FROM_JOBKEY_OPTION) @requires.exactly('cluster/role/env/job', 'config') def diff(job_spec, config_file): """usage: diff cluster/role/env/job config Compares a job configuration against a running job. By default the diff will be displayed using 'diff', though you may choose an alternate diff program by specifying the DIFF_VIEWER environment variable.""" options = app.get_options() config = get_job_config(job_spec, config_file, options) if options.rename_from: cluster, role, env, name = options.rename_from else: cluster = config.cluster() role = config.role() env = config.environment() name = config.name() api = make_client(cluster) resp = api.query(api.build_query(role, name, statuses=ACTIVE_STATES, env=env)) if resp.responseCode != ResponseCode.OK: die('Request failed, server responded with "%s"' % resp.message) remote_tasks = [t.assignedTask.task for t in resp.result.scheduleStatusResult.tasks] resp = api.populate_job_config(config) if resp.responseCode != ResponseCode.OK: die('Request failed, server responded with "%s"' % resp.message) local_tasks = resp.result.populateJobResult.populated pp = pprint.PrettyPrinter(indent=2) def pretty_print_task(task): # The raw configuration is not interesting - we only care about what gets parsed. task.configuration = None task.executorConfig = ExecutorConfig( name=AURORA_EXECUTOR_NAME, data=json.loads(task.executorConfig.data)) return pp.pformat(vars(task)) def pretty_print_tasks(tasks): return ',\n'.join([pretty_print_task(t) for t in tasks]) def dump_tasks(tasks, out_file): out_file.write(pretty_print_tasks(tasks)) out_file.write('\n') out_file.flush() diff_program = os.environ.get('DIFF_VIEWER', 'diff') with NamedTemporaryFile() as local: dump_tasks(local_tasks, local) with NamedTemporaryFile() as remote: dump_tasks(remote_tasks, remote) result = subprocess.call([diff_program, remote.name, local.name]) # Unlike most commands, diff doesn't return zero on success; it returns # 1 when a successful diff is non-empty. if result != 0 and result != 1: return result else: return 0 @app.command(name='open') def do_open(args, _): """usage: open cluster[/role[/env/job]] Opens the scheduler page for a cluster, role or job in the default web browser. """ cluster_name = role = env = job = None args = args[0].split("/") if len(args) > 0: cluster_name = args[0] if len(args) > 1: role = args[1] if len(args) > 2: env = args[2] if len(args) > 3: job = args[3] else: # TODO(ksweeney): Remove this after MESOS-2945 is completed. die('env scheduler pages are not yet implemented, please specify job') if not cluster_name: die('cluster is required') api = make_client(cluster_name) import webbrowser webbrowser.open_new_tab( synthesize_url(api.scheduler_proxy.scheduler_client().url, role, env, job)) @app.command @app.command_option('--local', dest='local', default=False, action='store_true', help='Inspect the configuration as would be created by the "spawn" command.') @app.command_option('--raw', dest='raw', default=False, action='store_true', help='Show the raw configuration.') @app.command_option(ENVIRONMENT_BIND_OPTION) @app.command_option(CLUSTER_CONFIG_OPTION) @app.command_option(ENV_CONFIG_OPTION) @app.command_option(JSON_OPTION) @requires.exactly('cluster/role/env/job', 'config') def inspect(job_spec, config_file): """usage: inspect cluster/role/env/job config Verifies that a job can be parsed from a configuration file, and displays the parsed configuration. """ options = app.get_options() config = get_job_config(job_spec, config_file, options) if options.raw: print('Parsed job config: %s' % config.job()) return job_thrift = config.job() job = config.raw() job_thrift = config.job() print('Job level information') print(' name: %s' % job.name()) print(' role: %s' % job.role()) print(' contact: %s' % job.contact()) print(' cluster: %s' % job.cluster()) print(' instances: %s' % job.instances()) if job.has_cron_schedule(): print(' cron:') print(' schedule: %s' % job.cron_schedule()) print(' policy: %s' % job.cron_collision_policy()) if job.has_constraints(): print(' constraints:') for constraint, value in job.constraints().get().items(): print(' %s: %s' % (constraint, value)) print(' service: %s' % job_thrift.taskConfig.isService) print(' production: %s' % bool(job.production().get())) print() task = job.task() print('Task level information') print(' name: %s' % task.name()) if len(task.constraints().get()) > 0: print(' constraints:') for constraint in task.constraints(): print(' %s' % (' < '.join(st.get() for st in constraint.order()))) print() processes = task.processes() for process in processes: print('Process %s:' % process.name()) if process.daemon().get(): print(' daemon') if process.ephemeral().get(): print(' ephemeral') if process.final().get(): print(' final') print(' cmdline:') for line in process.cmdline().get().splitlines(): print(' ' + line) print() @app.command @app.command_option(CLUSTER_INVOKE_OPTION) @app.command_option(OPEN_BROWSER_OPTION) @app.command_option(DISABLE_HOOKS_OPTION) def start_cron(args, options): """usage: start_cron cluster/role/env/job Invokes a cron job immediately, out of its normal cron cycle. This does not affect the cron cycle in any way. """ maybe_disable_hooks(options) api, job_key, config_file = LiveJobDisambiguator.disambiguate_args_or_die( args, options, make_client_factory()) config = get_job_config(job_key.to_path(), config_file, options) if config_file else None resp = api.start_cronjob(job_key, config=config) check_and_log_response(resp) handle_open(api.scheduler_proxy.scheduler_client().url, job_key.role, job_key.env, job_key.name) @app.command @app.command_option( '--pretty', dest='pretty', default=False, action='store_true', help='Show job information in prettyprinted format') @app.command_option( '--show-cron', '-c', dest='show_cron_schedule', default=False, action='store_true', help='List jobs registered with the Aurora scheduler') @requires.exactly('cluster/role') def list_jobs(cluster_and_role): """usage: list_jobs [--show-cron] cluster/role/env/job Shows all jobs that match the job-spec known by the scheduler. If --show-cron is specified, then also shows the registered cron schedule. """ def show_job_simple(job): if options.show_cron_schedule: print(('{0}/{1.key.role}/{1.key.environment}/{1.key.name}' + '\t\'{1.cronSchedule}\'\t{1.cronCollisionPolicy}').format(cluster, job)) else: print('{0}/{1.key.role}/{1.key.environment}/{1.key.name}'.format(cluster, job)) def show_job_pretty(job): print("Job %s/%s/%s/%s:" % (cluster, job.key.role, job.key.environment, job.key.name)) print('\tcron schedule: %s' % job.cronSchedule) print('\tcron policy: %s' % job.cronCollisionPolicy) options = app.get_options() if options.show_cron_schedule and options.pretty: print_fn = show_job_pretty else: print_fn = show_job_simple # Take the cluster_and_role parameter, and split it into its two components. if cluster_and_role.count('/') != 1: die('list_jobs parameter must be in cluster/role format') (cluster,role) = cluster_and_role.split('/') api = make_client(cluster) resp = api.get_jobs(role) check_and_log_response(resp) for job in resp.result.getJobsResult.configs: print_fn(job) @app.command @app.command_option(CLUSTER_INVOKE_OPTION) @app.command_option(OPEN_BROWSER_OPTION) @app.command_option(SHARDS_OPTION) @app.command_option(DISABLE_HOOKS_OPTION) def kill(args, options): """usage: kill --shards=shardspec cluster/role/env/job Kills a group of tasks in a running job, blocking until all specified tasks have terminated. """ maybe_disable_hooks(options) if options.shards is None: print('Shards option is required for kill; use killall to kill all shards', file=sys.stderr) exit(1) api, job_key, config_file = LiveJobDisambiguator.disambiguate_args_or_die( args, options, make_client_factory()) options = app.get_options() config = get_job_config(job_key.to_path(), config_file, options) if config_file else None resp = api.kill_job(job_key, options.shards, config=config) check_and_log_response(resp) handle_open(api.scheduler_proxy.scheduler_client().url, job_key.role, job_key.env, job_key.name) @app.command @app.command_option(CLUSTER_INVOKE_OPTION) @app.command_option(OPEN_BROWSER_OPTION) @app.command_option(DISABLE_HOOKS_OPTION) def killall(args, options): """usage: killall cluster/role/env/job Kills all tasks in a running job, blocking until all specified tasks have been terminated. """ maybe_disable_hooks(options) job_key = AuroraJobKey.from_path(args[0]) config_file = args[1] if len(args) > 1 else None # the config for hooks config = get_job_config(job_key.to_path(), config_file, options) if config_file else None api = make_client(job_key.cluster) resp = api.kill_job(job_key, None, config=config) check_and_log_response(resp) handle_open(api.scheduler_proxy.scheduler_client().url, job_key.role, job_key.env, job_key.name) @app.command @app.command_option(CLUSTER_INVOKE_OPTION) def status(args, options): """usage: status cluster/role/env/job Fetches and prints information about the active tasks in a job. """ def is_active(task): return task.status in ACTIVE_STATES def print_task(scheduled_task): assigned_task = scheduled_task.assignedTask taskInfo = assigned_task.task taskString = '' if taskInfo: taskString += '''cpus: %s, ram: %s MB, disk: %s MB''' % (taskInfo.numCpus, taskInfo.ramMb, taskInfo.diskMb) if assigned_task.assignedPorts: taskString += '\n\tports: %s' % assigned_task.assignedPorts taskString += '\n\tfailure count: %s (max %s)' % (scheduled_task.failureCount, taskInfo.maxTaskFailures) taskString += '\n\tevents:' for event in scheduled_task.taskEvents: taskString += '\n\t\t %s %s: %s' % (datetime.fromtimestamp(event.timestamp / 1000), ScheduleStatus._VALUES_TO_NAMES[event.status], event.message) taskString += '\n\tmetadata:' if assigned_task.task.metadata is not None: for md in assigned_task.task.metadata: taskString += ('\n\t\t%s: %s' % (md.key, md.value)) return taskString def print_tasks(tasks): for task in tasks: taskString = print_task(task) log.info('role: %s, env: %s, name: %s, shard: %s, status: %s on %s\n%s' % (task.assignedTask.task.owner.role, task.assignedTask.task.environment, task.assignedTask.task.jobName, task.assignedTask.instanceId, ScheduleStatus._VALUES_TO_NAMES[task.status], task.assignedTask.slaveHost, taskString)) api, job_key, _ = LiveJobDisambiguator.disambiguate_args_or_die( args, options, make_client_factory()) resp = api.check_status(job_key) check_and_log_response(resp) tasks = resp.result.scheduleStatusResult.tasks if tasks: active_tasks = filter(is_active, tasks) log.info('Active Tasks (%s)' % len(active_tasks)) print_tasks(active_tasks) inactive_tasks = filter(lambda x: not is_active(x), tasks) log.info('Inactive Tasks (%s)' % len(inactive_tasks)) print_tasks(inactive_tasks) else: log.info('No tasks found.') @app.command @app.command_option(SHARDS_OPTION) @app.command_option(ENVIRONMENT_BIND_OPTION) @app.command_option(CLUSTER_CONFIG_OPTION) @app.command_option(ENV_CONFIG_OPTION) @app.command_option(JSON_OPTION) @app.command_option(HEALTH_CHECK_INTERVAL_SECONDS_OPTION) @app.command_option(DISABLE_HOOKS_OPTION) @app.command_option( '--force', dest='force', default=True, # TODO(maximk): Temporary bandaid for MESOS-4310 until a better fix is available. action='store_true', help='Turn off warning message that the update looks large enough to be disruptive.') @requires.exactly('cluster/role/env/job', 'config') def update(job_spec, config_file): """usage: update cluster/role/env/job config Performs a rolling upgrade on a running job, using the update configuration within the config file as a control for update velocity and failure tolerance. Updates are fully controlled client-side, so aborting an update halts the update and leaves the job in a 'locked' state on the scheduler. Subsequent update attempts will fail until the update is 'unlocked' using the 'cancel_update' command. The updater only takes action on shards in a job that have changed, meaning that changing a single shard will only induce a restart on the changed shard. You may want to consider using the 'diff' subcommand before updating, to preview what changes will take effect. """ def warn_if_dangerous_change(api, job_spec, config): # Get the current job status, so that we can check if there's anything # dangerous about this update. job_key = AuroraJobKey(config.cluster(), config.role(), config.environment(), config.name()) resp = api.query(api.build_query(config.role(), config.name(), statuses=ACTIVE_STATES, env=config.environment())) if resp.responseCode != ResponseCode.OK: die('Could not get job status from server for comparison: %s' % resp.message) remote_tasks = [t.assignedTask.task for t in resp.result.scheduleStatusResult.tasks] resp = api.populate_job_config(config) if resp.responseCode != ResponseCode.OK: die('Server could not populate job config for comparison: %s' % resp.message) local_task_count = len(resp.result.populateJobResult.populated) remote_task_count = len(remote_tasks) if (local_task_count >= 4 * remote_task_count or local_task_count <= 4 * remote_task_count or local_task_count == 0): print('Warning: this update is a large change. Press ^c within 5 seconds to abort') time.sleep(5) options = app.get_options() maybe_disable_hooks(options) config = get_job_config(job_spec, config_file, options) api = make_client(config.cluster()) if not options.force: warn_if_dangerous_change(api, job_spec, config) resp = api.update_job(config, options.health_check_interval_seconds, options.shards) check_and_log_response(resp) @app.command @app.command_option(CLUSTER_INVOKE_OPTION) @app.command_option(HEALTH_CHECK_INTERVAL_SECONDS_OPTION) @app.command_option(OPEN_BROWSER_OPTION) @app.command_option(SHARDS_OPTION) @app.command_option( '--batch_size', dest='batch_size', type=int, default=1, help='Number of shards to be restarted in one iteration.') @app.command_option( '--max_per_shard_failures', dest='max_per_shard_failures', type=int, default=0, help='Maximum number of restarts per shard during restart. Increments total failure count when ' 'this limit is exceeded.') @app.command_option( '--max_total_failures', dest='max_total_failures', type=int, default=0, help='Maximum number of shard failures to be tolerated in total during restart.') @app.command_option( '--restart_threshold', dest='restart_threshold', type=int, default=60, help='Maximum number of seconds before a shard must move into the RUNNING state before ' 'considered a failure.') @app.command_option( '--watch_secs', dest='watch_secs', type=int, default=30, help='Minimum number of seconds a shard must remain in RUNNING state before considered a ' 'success.') @app.command_option(DISABLE_HOOKS_OPTION) def restart(args, options): """usage: restart cluster/role/env/job [--shards=SHARDS] [--batch_size=INT] [--updater_health_check_interval_seconds=SECONDS] [--max_per_shard_failures=INT] [--max_total_failures=INT] [--restart_threshold=INT] [--watch_secs=SECONDS] Performs a rolling restart of shards within a job. Restarts are fully controlled client-side, so aborting halts the restart. """ maybe_disable_hooks(options) api, job_key, config_file = LiveJobDisambiguator.disambiguate_args_or_die( args, options, make_client_factory()) config = get_job_config(job_key.to_path(), config_file, options) if config_file else None updater_config = UpdaterConfig( options.batch_size, options.restart_threshold, options.watch_secs, options.max_per_shard_failures, options.max_total_failures) resp = api.restart(job_key, options.shards, updater_config, options.health_check_interval_seconds, config=config) check_and_log_response(resp) handle_open(api.scheduler_proxy.scheduler_client().url, job_key.role, job_key.env, job_key.name) @app.command @app.command_option(CLUSTER_INVOKE_OPTION) def cancel_update(args, options): """usage: cancel_update cluster/role/env/job Unlocks a job for updates. A job may be locked if a client's update session terminated abnormally, or if another user is actively updating the job. This command should only be used when the user is confident that they are not conflicting with another user. """ api, job_key, config_file = LiveJobDisambiguator.disambiguate_args_or_die( args, options, make_client_factory()) config = get_job_config(job_key.to_path(), config_file, options) if config_file else None resp = api.cancel_update(job_key, config=config) check_and_log_response(resp) @app.command @app.command_option(CLUSTER_NAME_OPTION) @requires.exactly('role') def get_quota(role): """usage: get_quota --cluster=CLUSTER role Prints the production quota that has been allocated to a user. """ options = app.get_options() resp = make_client(options.cluster).get_quota(role) quota_result = resp.result.getQuotaResult print_quota(quota_result.quota, 'Total allocated quota', role) if resp.result.getQuotaResult.prodConsumption: print_quota(quota_result.prodConsumption, 'Resources consumed by production jobs', role) if resp.result.getQuotaResult.nonProdConsumption: print_quota(quota_result.nonProdConsumption, 'Resources consumed by non-production jobs', role)
36.6823
100
0.717037
71bd1bdce05637c200f5ac627256ed7614659638
2,044
py
Python
fugue_analytics/metrics/sources/slack.py
kvnkho/fugue-analytics
7a8aee2cadd9d91291a71b78de3d367f936ea2ba
[ "Apache-2.0" ]
null
null
null
fugue_analytics/metrics/sources/slack.py
kvnkho/fugue-analytics
7a8aee2cadd9d91291a71b78de3d367f936ea2ba
[ "Apache-2.0" ]
null
null
null
fugue_analytics/metrics/sources/slack.py
kvnkho/fugue-analytics
7a8aee2cadd9d91291a71b78de3d367f936ea2ba
[ "Apache-2.0" ]
null
null
null
from prefect import get_run_logger, task import os import requests as re from fugue_analytics.utilities.postgres import execute_query import pandas as pd import json from datetime import date, datetime @task(retries = 3) def get_slack_member_count() -> pd.DataFrame: """ Slack doesn't seem to have an API to get workspace members so we need to use Orbit to get the join events and then add it to the previous total retrieves from the database This is the sole reason the metrics table needs datetime resolution """ token = os.environ["ORBIT_TOKEN"] current_datetime = datetime.now() current_date = date.today().strftime("%Y-%m-%d") url = f"https://app.orbit.love/api/v1/fugue/activities?activity_type=slack%3Achannel%3Ajoined&start_date={current_date}" headers = {"Accept": "application/json", "Authorization": f"Bearer {token}"} response = re.get(url, headers=headers) df = pd.json_normalize(json.loads(response.text)["data"]) print(df.head()) # Pull latest record from database query = """SELECT source, MAX(datetime), MAX(value) FROM metrics_over_time WHERE source = 'Slack Channel Joins' GROUP BY source """ latest = execute_query(query) print(latest) latest_time = latest[0][1] latest_val = latest[0][2] # Filtering records already counted # TO-DO: account for datetime if df.shape[0] > 0: # Orbit time comes in UTC filtered_df = df.loc[pd.to_datetime(df["attributes.created_at"]).dt.tz_convert('US/Eastern') >= current_datetime] if filtered_df.shape[0] > 1: res = pd.DataFrame({"datetime": pd.to_datetime([current_datetime]), "source": ["Slack Channel Joins"], "value": [latest_val + filtered_df.shape[0]]}) return res return pd.DataFrame() if __name__ == "__main__": @flow() def github_slack_count(): res = get_slack_member_count() github_slack_count()
36.5
124
0.655088
fdf2d3e57c7678254175e02eef8f7afa1e8a6946
6,971
py
Python
Lib/idlelib/idle_test/test_text.py
djaldave/laevad-python-2.7.18
df9aac191d554295db45d638e528880a9ab9a3ec
[ "bzip2-1.0.6" ]
42
2018-12-12T01:00:59.000Z
2022-03-27T07:32:29.000Z
Lib/idlelib/idle_test/test_text.py
djaldave/laevad-python-2.7.18
df9aac191d554295db45d638e528880a9ab9a3ec
[ "bzip2-1.0.6" ]
13
2020-11-06T13:50:45.000Z
2022-01-25T07:17:37.000Z
Lib/idlelib/idle_test/test_text.py
djaldave/laevad-python-2.7.18
df9aac191d554295db45d638e528880a9ab9a3ec
[ "bzip2-1.0.6" ]
8
2020-11-14T04:30:26.000Z
2021-01-16T17:55:19.000Z
# Test mock_tk.Text class against tkinter.Text class by running same tests with both. import unittest from test.test_support import requires from _tkinter import TclError class TextTest(object): hw = 'hello\nworld' # usual initial insert after initialization hwn = hw+'\n' # \n present at initialization, before insert Text = None def setUp(self): self.text = self.Text() def test_init(self): self.assertEqual(self.text.get('1.0'), '\n') self.assertEqual(self.text.get('end'), '') def test_index_empty(self): index = self.text.index for dex in (-1.0, 0.3, '1.-1', '1.0', '1.0 lineend', '1.end', '1.33', 'insert'): self.assertEqual(index(dex), '1.0') for dex in 'end', 2.0, '2.1', '33.44': self.assertEqual(index(dex), '2.0') def test_index_data(self): index = self.text.index self.text.insert('1.0', self.hw) for dex in -1.0, 0.3, '1.-1', '1.0': self.assertEqual(index(dex), '1.0') for dex in '1.0 lineend', '1.end', '1.33': self.assertEqual(index(dex), '1.5') for dex in 'end', '33.44': self.assertEqual(index(dex), '3.0') def test_get(self): get = self.text.get Equal = self.assertEqual self.text.insert('1.0', self.hw) Equal(get('end'), '') Equal(get('end', 'end'), '') Equal(get('1.0'), 'h') Equal(get('1.0', '1.1'), 'h') Equal(get('1.0', '1.3'), 'hel') Equal(get('1.1', '1.3'), 'el') Equal(get('1.0', '1.0 lineend'), 'hello') Equal(get('1.0', '1.10'), 'hello') Equal(get('1.0 lineend'), '\n') Equal(get('1.1', '2.3'), 'ello\nwor') Equal(get('1.0', '2.5'), self.hw) Equal(get('1.0', 'end'), self.hwn) Equal(get('0.0', '5.0'), self.hwn) def test_insert(self): insert = self.text.insert get = self.text.get Equal = self.assertEqual insert('1.0', self.hw) Equal(get('1.0', 'end'), self.hwn) insert('1.0', '') # nothing Equal(get('1.0', 'end'), self.hwn) insert('1.0', '*') Equal(get('1.0', 'end'), '*hello\nworld\n') insert('1.0 lineend', '*') Equal(get('1.0', 'end'), '*hello*\nworld\n') insert('2.3', '*') Equal(get('1.0', 'end'), '*hello*\nwor*ld\n') insert('end', 'x') Equal(get('1.0', 'end'), '*hello*\nwor*ldx\n') insert('1.4', 'x\n') Equal(get('1.0', 'end'), '*helx\nlo*\nwor*ldx\n') def test_no_delete(self): # if index1 == 'insert' or 'end' or >= end, there is no deletion delete = self.text.delete get = self.text.get Equal = self.assertEqual self.text.insert('1.0', self.hw) delete('insert') Equal(get('1.0', 'end'), self.hwn) delete('end') Equal(get('1.0', 'end'), self.hwn) delete('insert', 'end') Equal(get('1.0', 'end'), self.hwn) delete('insert', '5.5') Equal(get('1.0', 'end'), self.hwn) delete('1.4', '1.0') Equal(get('1.0', 'end'), self.hwn) delete('1.4', '1.4') Equal(get('1.0', 'end'), self.hwn) def test_delete_char(self): delete = self.text.delete get = self.text.get Equal = self.assertEqual self.text.insert('1.0', self.hw) delete('1.0') Equal(get('1.0', '1.end'), 'ello') delete('1.0', '1.1') Equal(get('1.0', '1.end'), 'llo') # delete \n and combine 2 lines into 1 delete('1.end') Equal(get('1.0', '1.end'), 'lloworld') self.text.insert('1.3', '\n') delete('1.10') Equal(get('1.0', '1.end'), 'lloworld') self.text.insert('1.3', '\n') delete('1.3', '2.0') Equal(get('1.0', '1.end'), 'lloworld') def test_delete_slice(self): delete = self.text.delete get = self.text.get Equal = self.assertEqual self.text.insert('1.0', self.hw) delete('1.0', '1.0 lineend') Equal(get('1.0', 'end'), '\nworld\n') delete('1.0', 'end') Equal(get('1.0', 'end'), '\n') self.text.insert('1.0', self.hw) delete('1.0', '2.0') Equal(get('1.0', 'end'), 'world\n') delete('1.0', 'end') Equal(get('1.0', 'end'), '\n') self.text.insert('1.0', self.hw) delete('1.2', '2.3') Equal(get('1.0', 'end'), 'held\n') def test_multiple_lines(self): # insert and delete self.text.insert('1.0', 'hello') self.text.insert('1.3', '1\n2\n3\n4\n5') self.assertEqual(self.text.get('1.0', 'end'), 'hel1\n2\n3\n4\n5lo\n') self.text.delete('1.3', '5.1') self.assertEqual(self.text.get('1.0', 'end'), 'hello\n') def test_compare(self): compare = self.text.compare Equal = self.assertEqual # need data so indexes not squished to 1,0 self.text.insert('1.0', 'First\nSecond\nThird\n') self.assertRaises(TclError, compare, '2.2', 'op', '2.2') for op, less1, less0, equal, greater0, greater1 in ( ('<', True, True, False, False, False), ('<=', True, True, True, False, False), ('>', False, False, False, True, True), ('>=', False, False, True, True, True), ('==', False, False, True, False, False), ('!=', True, True, False, True, True), ): Equal(compare('1.1', op, '2.2'), less1, op) Equal(compare('2.1', op, '2.2'), less0, op) Equal(compare('2.2', op, '2.2'), equal, op) Equal(compare('2.3', op, '2.2'), greater0, op) Equal(compare('3.3', op, '2.2'), greater1, op) class MockTextTest(TextTest, unittest.TestCase): @classmethod def setUpClass(cls): from idlelib.idle_test.mock_tk import Text cls.Text = Text def test_decode(self): # test endflags (-1, 0) not tested by test_index (which uses +1) decode = self.text._decode Equal = self.assertEqual self.text.insert('1.0', self.hw) Equal(decode('end', -1), (2, 5)) Equal(decode('3.1', -1), (2, 5)) Equal(decode('end', 0), (2, 6)) Equal(decode('3.1', 0), (2, 6)) class TkTextTest(TextTest, unittest.TestCase): @classmethod def setUpClass(cls): requires('gui') from Tkinter import Tk, Text cls.Text = Text cls.root = Tk() @classmethod def tearDownClass(cls): cls.root.destroy() del cls.root if __name__ == '__main__': unittest.main(verbosity=2, exit=False)
30.574561
86
0.491178
740b83b2de4a7ef2eabbb70f29acc28011adf3a7
1,902
py
Python
car_autohome/car_autohome/pipelines.py
aircov/Scrapy_ImagePipeline_Spider
d0bbf78ddda8031da836c0b9eb8a487f7151c1be
[ "MIT" ]
4
2018-12-15T01:51:25.000Z
2019-02-13T14:18:36.000Z
car_autohome/car_autohome/pipelines.py
aircov/Scrapy_ImagePipeline_Spider
d0bbf78ddda8031da836c0b9eb8a487f7151c1be
[ "MIT" ]
null
null
null
car_autohome/car_autohome/pipelines.py
aircov/Scrapy_ImagePipeline_Spider
d0bbf78ddda8031da836c0b9eb8a487f7151c1be
[ "MIT" ]
1
2019-09-07T17:49:45.000Z
2019-09-07T17:49:45.000Z
# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html import re from scrapy import Request from scrapy.exceptions import DropItem from scrapy.pipelines.images import ImagesPipeline import logging logger = logging.getLogger("CarAutohomeImagePipeline") class CarAutohomePipeline(object): def process_item(self, item, spider): return item # 重写ImagePipeline class CarAutohomeImagePipeline(ImagesPipeline): def get_media_requests(self, item, info): """ 这个方法是在发送下载请求之前调用 其实这个方法本身就是去发送下载请求的 :param item: spider.py中返回的item :param info: :return: """ for url in item["image_urls"]: # meta里面的数据是从spider获取,然后通过meta传递给下面方法:file_path yield Request(url, meta={"item": item}) def file_path(self, request, response=None, info=None): """ 分类保存 :param request: 每一个图片下载管道请求 :param response: :param info: :return: 每套图的分类目录 strip:清洗Windows系统的文件夹非法字符,避免无法创建目录 """ # 接收上面meta传递过来的图片名称 item = request.meta["item"] folder = item["category"] # 清洗掉Windows系统非法文件夹名字的字符串,不经过这么一个步骤,会有乱码或无法下载 folder_strip = re.sub(r"[?\\*|“<>:/]", "", str(folder)) # 提取url后面的名称作为图片名 image_guid = request.url.split("/")[-1] filename = u'{0}/{1}'.format(folder_strip, image_guid) return filename def item_completed(self, results, item, info): """ 文件下载完成之后,返回一个列表 results 列表中是一个元组,第一个值是布尔值,请求成功会失败,第二个值的下载到的资源 """ if not results[0][0]: # 如果下载失败,就抛出异常,并丢弃这个item # 被丢弃的item将不会被之后的pipeline组件所处理 raise DropItem('下载失败') # 打印日志 logger.debug('下载图片成功') return item
27.565217
65
0.625657
ba99479a817b83768bf349a92215c38680824b47
1,546
py
Python
src/models_trajGRU/utils.py
inoue0406/adversarial-nowcasting
431f6bc4b7d731e85ca52f1bf81638b31c4be17e
[ "MIT" ]
2
2021-03-09T06:15:07.000Z
2022-03-03T15:40:18.000Z
src/models_trajGRU/utils.py
inoue0406/regional-analysis-paper
672b16d3a3178e258a6057ebf2d89ed7cf4311c1
[ "MIT" ]
null
null
null
src/models_trajGRU/utils.py
inoue0406/regional-analysis-paper
672b16d3a3178e258a6057ebf2d89ed7cf4311c1
[ "MIT" ]
null
null
null
import numpy as np from torch import nn from collections import OrderedDict def make_layers(block): layers = [] for layer_name, v in block.items(): if 'pool' in layer_name: layer = nn.MaxPool2d(kernel_size=v[0], stride=v[1], padding=v[2]) layers.append((layer_name, layer)) elif 'deconv' in layer_name: transposeConv2d = nn.ConvTranspose2d(in_channels=v[0], out_channels=v[1], kernel_size=v[2], stride=v[3], padding=v[4]) layers.append((layer_name, transposeConv2d)) if 'relu' in layer_name: layers.append(('relu_' + layer_name, nn.ReLU(inplace=True))) elif 'leaky' in layer_name: layers.append(('leaky_' + layer_name, nn.LeakyReLU(negative_slope=0.2, inplace=True))) elif 'conv' in layer_name: conv2d = nn.Conv2d(in_channels=v[0], out_channels=v[1], kernel_size=v[2], stride=v[3], padding=v[4]) layers.append((layer_name, conv2d)) if 'relu' in layer_name: layers.append(('relu_' + layer_name, nn.ReLU(inplace=True))) elif 'leaky' in layer_name: layers.append(('leaky_' + layer_name, nn.LeakyReLU(negative_slope=0.2, inplace=True))) else: raise NotImplementedError return nn.Sequential(OrderedDict(layers))
44.171429
102
0.539457
dee048cc52e4d3b1b410257d880daf38902e105f
4,273
py
Python
azure-quantum/tests/unit/test_authentication.py
microsoft/qdk-python
d91a3a670174de5270f6ac11f9dc51af7270bb4e
[ "MIT" ]
53
2021-01-21T23:38:09.000Z
2022-03-29T16:34:42.000Z
azure-quantum/tests/unit/test_authentication.py
microsoft/qdk-python
d91a3a670174de5270f6ac11f9dc51af7270bb4e
[ "MIT" ]
152
2021-01-23T07:01:49.000Z
2022-03-31T19:43:21.000Z
azure-quantum/tests/unit/test_authentication.py
microsoft/qdk-python
d91a3a670174de5270f6ac11f9dc51af7270bb4e
[ "MIT" ]
47
2021-01-30T20:15:46.000Z
2022-03-25T23:35:28.000Z
#!/bin/env python # -*- coding: utf-8 -*- ## # test_authentication.py: Checks correctness of azure.quantum._authentication module. ## # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. ## import json import os from pathlib import Path import time import pytest from unittest.mock import patch from azure.identity import CredentialUnavailableError from azure.quantum._authentication import _TokenFileCredential from .common import QuantumTestBase _AZURE_QUANTUM_SCOPE = "https://quantum.microsoft.com/.default" class TestWorkspace(QuantumTestBase): def test_azure_quantum_token_credential_file_not_set(self): credential = _TokenFileCredential() with pytest.raises(CredentialUnavailableError) as exception: credential.get_token(_AZURE_QUANTUM_SCOPE) assert "Token file location not set." in str(exception.value) def test_azure_quantum_token_credential_file_not_exists(self): with patch.dict(os.environ, { "AZURE_QUANTUM_TOKEN_FILE": "fake_file_path" }, clear=True): with patch('os.path.isfile') as mock_isfile: mock_isfile.return_value = False credential = _TokenFileCredential() with pytest.raises(CredentialUnavailableError) as exception: credential.get_token(_AZURE_QUANTUM_SCOPE) assert "Token file at fake_file_path does not exist." in str(exception.value) def test_azure_quantum_token_credential_file_invalid_json(self): tmpdir = self.create_temp_dir() file = Path(tmpdir) / "token.json" file.write_text("not a json") with patch.dict(os.environ, { "AZURE_QUANTUM_TOKEN_FILE": str(file.resolve()) }, clear=True): credential = _TokenFileCredential() with pytest.raises(CredentialUnavailableError) as exception: credential.get_token(_AZURE_QUANTUM_SCOPE) assert "Failed to parse token file: Invalid JSON." in str(exception.value) def test_azure_quantum_token_credential_file_missing_expires_on(self): content = { "access_token": "fake_token", } tmpdir = self.create_temp_dir() file = Path(tmpdir) / "token.json" file.write_text(json.dumps(content)) with patch.dict(os.environ, { "AZURE_QUANTUM_TOKEN_FILE": str(file.resolve()) }, clear=True): credential = _TokenFileCredential() with pytest.raises(CredentialUnavailableError) as exception: credential.get_token(_AZURE_QUANTUM_SCOPE) assert "Failed to parse token file: Missing expected value: 'expires_on'" in str(exception.value) def test_azure_quantum_token_credential_file_token_expired(self): content = { "access_token": "fake_token", "expires_on": 1628543125086 # Matches timestamp in error message below } tmpdir = self.create_temp_dir() file = Path(tmpdir) / "token.json" file.write_text(json.dumps(content)) with patch.dict(os.environ, { "AZURE_QUANTUM_TOKEN_FILE": str(file.resolve()) }, clear=True): credential = _TokenFileCredential() with pytest.raises(CredentialUnavailableError) as exception: credential.get_token(_AZURE_QUANTUM_SCOPE) assert "Token already expired at Mon Aug 9 21:05:25 2021" in str(exception.value) def test_azure_quantum_token_credential_file_valid_token(self): one_hour_ahead = time.time() + 60*60 content = { "access_token": "fake_token", "expires_on": one_hour_ahead * 1000 # Convert to milliseconds } tmpdir = self.create_temp_dir() file = Path(tmpdir) / "token.json" file.write_text(json.dumps(content)) with patch.dict(os.environ, { "AZURE_QUANTUM_TOKEN_FILE": str(file.resolve()) }, clear=True): credential = _TokenFileCredential() token = credential.get_token(_AZURE_QUANTUM_SCOPE) assert token.token == "fake_token" assert token.expires_on == pytest.approx(one_hour_ahead)
43.161616
109
0.662766
39d9d5240a8bf8a65d9ee7421d6f9c740e4ce6c6
5,837
py
Python
torchkge/evaluation/triplet_classification.py
MacOS/torchkge
89ed724368f3a5279c0f79c6ba1f948ed2a5696f
[ "BSD-3-Clause" ]
248
2019-04-03T10:04:43.000Z
2022-03-30T13:01:51.000Z
torchkge/evaluation/triplet_classification.py
MacOS/torchkge
89ed724368f3a5279c0f79c6ba1f948ed2a5696f
[ "BSD-3-Clause" ]
52
2019-04-04T05:54:35.000Z
2022-03-02T17:18:15.000Z
torchkge/evaluation/triplet_classification.py
MacOS/torchkge
89ed724368f3a5279c0f79c6ba1f948ed2a5696f
[ "BSD-3-Clause" ]
41
2019-06-05T08:08:00.000Z
2022-03-26T09:18:05.000Z
# -*- coding: utf-8 -*- """ Copyright TorchKGE developers @author: Armand Boschin <aboschin@enst.fr> """ from torch import zeros, cat from ..data_structures import SmallKG from ..sampling import PositionalNegativeSampler from ..utils import DataLoader class TripletClassificationEvaluator(object): """Evaluate performance of given embedding using triplet classification method. References ---------- * Richard Socher, Danqi Chen, Christopher D Manning, and Andrew Ng. Reasoning With Neural Tensor Networks for Knowledge Base Completion. In Advances in Neural Information Processing Systems 26, pages 926–934. 2013. https://nlp.stanford.edu/pubs/SocherChenManningNg_NIPS2013.pdf Parameters ---------- model: torchkge.models.interfaces.Model Embedding model inheriting from the right interface. kg_val: torchkge.data_structures.KnowledgeGraph Knowledge graph on which the validation thresholds will be computed. kg_test: torchkge.data_structures.KnowledgeGraph Knowledge graph on which the testing evaluation will be done. Attributes ---------- model: torchkge.models.interfaces.Model Embedding model inheriting from the right interface. kg_val: torchkge.data_structures.KnowledgeGraph Knowledge graph on which the validation thresholds will be computed. kg_test: torchkge.data_structures.KnowledgeGraph Knowledge graph on which the evaluation will be done. evaluated: bool Indicate whether the `evaluate` function has been called. thresholds: float Float value of the thresholds for the scoring function to consider a triplet as true. It is defined by calling the `evaluate` method. sampler: torchkge.sampling.NegativeSampler Negative sampler. """ def __init__(self, model, kg_val, kg_test): self.model = model self.kg_val = kg_val self.kg_test = kg_test self.is_cuda = next(self.model.parameters()).is_cuda self.evaluated = False self.thresholds = None self.sampler = PositionalNegativeSampler(self.kg_val, kg_test=self.kg_test) def get_scores(self, heads, tails, relations, batch_size): """With head, tail and relation indexes, compute the value of the scoring function of the model. Parameters ---------- heads: torch.Tensor, dtype: torch.long, shape: n_facts List of heads indices. tails: torch.Tensor, dtype: torch.long, shape: n_facts List of tails indices. relations: torch.Tensor, dtype: torch.long, shape: n_facts List of relation indices. batch_size: int Returns ------- scores: torch.Tensor, dtype: torch.float, shape: n_facts List of scores of each triplet. """ scores = [] small_kg = SmallKG(heads, tails, relations) if self.is_cuda: dataloader = DataLoader(small_kg, batch_size=batch_size, use_cuda='batch') else: dataloader = DataLoader(small_kg, batch_size=batch_size) for i, batch in enumerate(dataloader): h_idx, t_idx, r_idx = batch[0], batch[1], batch[2] scores.append(self.model.scoring_function(h_idx, t_idx, r_idx)) return cat(scores, dim=0) def evaluate(self, b_size): """Find relation thresholds using the validation set. As described in the paper by Socher et al., for a relation, the threshold is a value t such that if the score of a triplet is larger than t, the fact is true. If a relation is not present in any fact of the validation set, then the largest value score of all negative samples is used as threshold. Parameters ---------- b_size: int Batch size. """ r_idx = self.kg_val.relations neg_heads, neg_tails = self.sampler.corrupt_kg(b_size, self.is_cuda, which='main') neg_scores = self.get_scores(neg_heads, neg_tails, r_idx, b_size) self.thresholds = zeros(self.kg_val.n_rel) for i in range(self.kg_val.n_rel): mask = (r_idx == i).bool() if mask.sum() > 0: self.thresholds[i] = neg_scores[mask].max() else: self.thresholds[i] = neg_scores.max() self.evaluated = True self.thresholds.detach_() def accuracy(self, b_size): """ Parameters ---------- b_size: int Batch size. Returns ------- acc: float Share of all triplets (true and negatively sampled ones) that where correctly classified using the thresholds learned from the validation set. """ if not self.evaluated: self.evaluate(b_size) r_idx = self.kg_test.relations neg_heads, neg_tails = self.sampler.corrupt_kg(b_size, self.is_cuda, which='test') scores = self.get_scores(self.kg_test.head_idx, self.kg_test.tail_idx, r_idx, b_size) neg_scores = self.get_scores(neg_heads, neg_tails, r_idx, b_size) if self.is_cuda: self.thresholds = self.thresholds.cuda() scores = (scores > self.thresholds[r_idx]) neg_scores = (neg_scores < self.thresholds[r_idx]) return (scores.sum().item() + neg_scores.sum().item()) / (2 * self.kg_test.n_facts)
34.952096
79
0.602707
429b64ec389521d82f48774d374dde223009d732
4,514
py
Python
docs/source/conf.py
harrywang/oauthenticator
ae4b260c9bbcc66040fd55ff1b14c8f2fc9346e4
[ "BSD-3-Clause" ]
1
2021-04-17T07:21:29.000Z
2021-04-17T07:21:29.000Z
docs/source/conf.py
harrywang/oauthenticator
ae4b260c9bbcc66040fd55ff1b14c8f2fc9346e4
[ "BSD-3-Clause" ]
1
2022-02-21T19:13:12.000Z
2022-02-21T19:13:12.000Z
docs/source/conf.py
harrywang/oauthenticator
ae4b260c9bbcc66040fd55ff1b14c8f2fc9346e4
[ "BSD-3-Clause" ]
2
2021-04-12T15:10:41.000Z
2021-04-23T13:42:41.000Z
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # http://www.sphinx-doc.org/en/master/config # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys from subprocess import check_call source = os.path.dirname(os.path.abspath(__file__)) sys.path.insert(0, os.path.abspath('..')) # -- Project information ----------------------------------------------------- project = 'OAuthenticator' copyright = 'Jupyter Contributors' author = 'Jupyter Contributors' master_doc = 'index' import oauthenticator # The short X.Y version. version = '%i.%i' % oauthenticator.version_info[:2] # The full version, including alpha/beta/rc tags. release = oauthenticator.__version__ # -- generate autodoc classes from entrypoints from collections import defaultdict import entrypoints import jinja2 def render_autodoc_modules(): authenticator_entrypoints = entrypoints.get_group_named( "jupyterhub.authenticators" ).values() api = os.path.join(source, "api") api_gen = os.path.join(api, "gen") # modules is a dict of dicts of lists # { '$module': { 'classes': [...], 'configurables': [...] } } modules = defaultdict(lambda : defaultdict(list)) # pre-load base classes modules['oauthenticator.oauth2'] = { 'classes': [ 'OAuthLoginHandler', 'OAuthCallbackHandler', ], 'configurables': [ 'OAuthenticator', ], } # load Authenticator classes from entrypoints for ep in authenticator_entrypoints: if ep.module_name and ep.module_name.startswith('oauthenticator.'): modules[ep.module_name]['configurables'].append(ep.object_name) with open(os.path.join(api, "authenticator.rst.tpl")) as f: tpl = jinja2.Template(f.read()) try: os.makedirs(os.path.join(api_gen)) except FileExistsError: pass for mod, mod_content in modules.items(): dest = os.path.join(api_gen, mod + ".rst") print( "Autogenerating module documentation in {} with classes: {}".format( dest, mod_content ) ) with open(dest, "w") as f: f.write(tpl.render(module=mod, **mod_content)) # render the module index with open(os.path.join(api, "index.rst.tpl")) as f: index_tpl = jinja2.Template(f.read()) with open(os.path.join(api, "index.rst"), "w") as f: f.write(index_tpl.render(modules=modules)) render_autodoc_modules() autodoc_mock_imports = ["tornado", "jwt", "mwoauth", "globus_sdk"] # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'sphinx.ext.intersphinx', 'sphinx.ext.napoleon', 'autodoc_traits', 'sphinx_copybutton', 'recommonmark', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = [] import recommonmark from recommonmark.transform import AutoStructify def setup(app): app.add_config_value('recommonmark_config', {'enable_eval_rst': True}, True) app.add_stylesheet('custom.css') app.add_transform(AutoStructify) # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'pydata_sphinx_theme' html_logo = '_static/images/logo/logo.png' html_favicon = '_static/images/logo/favicon.ico' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static']
29.89404
80
0.659947
d776ab07b30f03032fed349062c3c68dbb8fcf07
453,350
py
Python
test/onnx/test_pytorch_onnx_onnxruntime.py
xuhancn/pytorch
5c7d916c3d287f6c86f4d59ca1e2b8cc4cd9cd3e
[ "Intel" ]
null
null
null
test/onnx/test_pytorch_onnx_onnxruntime.py
xuhancn/pytorch
5c7d916c3d287f6c86f4d59ca1e2b8cc4cd9cd3e
[ "Intel" ]
null
null
null
test/onnx/test_pytorch_onnx_onnxruntime.py
xuhancn/pytorch
5c7d916c3d287f6c86f4d59ca1e2b8cc4cd9cd3e
[ "Intel" ]
null
null
null
# Owner(s): ["module: onnx"] import copy import io import itertools import os import random import unittest from collections import OrderedDict from typing import Dict, List, Optional, Tuple, Union import model_defs.word_language_model as word_language_model import numpy as np import onnx import onnxruntime import torchvision from model_defs.lstm_flattening_result import ( LstmFlatteningResultWithoutSeqLength, LstmFlatteningResultWithSeqLength, ) from model_defs.rnn_model_with_packed_sequence import ( RnnModelWithPackedSequence, RnnModelWithPackedSequenceWithoutState, RnnModelWithPackedSequenceWithState, ) from test_pytorch_common import ( BATCH_SIZE, RNN_BATCH_SIZE, RNN_HIDDEN_SIZE, RNN_INPUT_SIZE, RNN_SEQUENCE_LENGTH, skipIfNoLapack, skipIfUnsupportedMaxOpsetVersion, skipIfUnsupportedMinOpsetVersion, skipIfUnsupportedOpsetVersion, skipScriptTest, ) from torchvision import ops from torchvision.models.detection.faster_rcnn import FastRCNNPredictor, TwoMLPHead from torchvision.models.detection.image_list import ImageList from torchvision.models.detection.roi_heads import RoIHeads from torchvision.models.detection.rpn import ( AnchorGenerator, RegionProposalNetwork, RPNHead, ) from torchvision.models.detection.transform import GeneralizedRCNNTransform import torch import torch.nn.functional as F from torch import Tensor from torch.nn.utils import rnn as rnn_utils from torch.nn.utils.rnn import PackedSequence from torch.onnx import ( CheckerError, register_custom_op_symbolic, unregister_custom_op_symbolic, ) from torch.onnx.symbolic_helper import _unimplemented from torch.onnx.utils import unpack_quantized_tensor _ORT_PROVIDERS = ["CPUExecutionProvider"] def flatten_tuples(elem): flattened = [] for t in elem: if isinstance(t, tuple): flattened.extend(flatten_tuples(t)) else: flattened.append(t) return flattened def to_numpy(elem): if isinstance(elem, Tensor): if elem.requires_grad: return elem.detach().cpu().numpy() else: return elem.cpu().numpy() elif isinstance(elem, (list, tuple)): return [to_numpy(inp) for inp in elem] elif isinstance(elem, bool): return np.array(elem, dtype=bool) elif isinstance(elem, int): return np.array(elem, dtype=int) elif isinstance(elem, float): return np.array(elem, dtype=float) elif isinstance(elem, dict): flattened = [] for k in elem: flattened += [to_numpy(k)] + [to_numpy(elem[k])] return flattened return elem def convert_to_onnx( model, input=None, opset_version=9, do_constant_folding=True, keep_initializers_as_inputs=True, dynamic_axes=None, input_names=None, output_names=None, fixed_batch_size=False, training=None, verbose=False, ): f = io.BytesIO() input_copy = copy.deepcopy(input) torch.onnx._export( model, input_copy, f, opset_version=opset_version, do_constant_folding=do_constant_folding, keep_initializers_as_inputs=keep_initializers_as_inputs, dynamic_axes=dynamic_axes, input_names=input_names, output_names=output_names, fixed_batch_size=fixed_batch_size, training=training, verbose=verbose, ) # compute onnxruntime output prediction so = onnxruntime.SessionOptions() # suppress ort warnings. # 0:Verbose, 1:Info, 2:Warning. 3:Error, 4:Fatal. Default is 2. so.log_severity_level = 3 ort_sess = onnxruntime.InferenceSession(f.getvalue(), so, providers=_ORT_PROVIDERS) return ort_sess def inline_flatten_list(inputs, res_list): for i in inputs: res_list.append(i) if not isinstance(i, (list, tuple)) else inline_flatten_list( i, res_list ) return res_list def unpack_to_numpy(values): value_unpacked = [] for value in values: value_unpacked.extend(unpack_quantized_tensor(value)) return [to_numpy(v) for v in value_unpacked] def run_ort(ort_sess, inputs): kw_inputs = {} if inputs and isinstance(inputs[-1], dict): kw_inputs = inputs[-1] inputs = inputs[:-1] inputs = unpack_to_numpy(flatten_tuples(inputs)) ort_inputs = {} for input_name, input in kw_inputs.items(): ort_inputs[input_name] = to_numpy(input) inputs = to_numpy(inputs) ort_sess_inputs = ort_sess.get_inputs() for i, input in enumerate(inputs): if i == len(ort_sess_inputs) or ort_sess_inputs[i].name in ort_inputs: raise ValueError( f"got too many positional inputs. inputs: {inputs}. kw_inputs: {kw_inputs}" ) ort_inputs[ort_sess_inputs[i].name] = input ort_outs = ort_sess.run(None, ort_inputs) return inline_flatten_list(ort_outs, []) def ort_compare_with_pytorch(ort_outs, output, rtol, atol): output, _ = torch.jit._flatten(output) outputs = unpack_to_numpy(output) # compare onnxruntime and PyTorch results assert len(outputs) == len(ort_outs), "number of outputs differ" # compare onnxruntime and PyTorch results [ np.testing.assert_allclose(out, ort_out, rtol=rtol, atol=atol) for out, ort_out in zip(outputs, ort_outs) ] def run_model_test( self, model, batch_size=2, state_dict=None, input=None, use_gpu=True, rtol=0.001, atol=1e-7, do_constant_folding=True, dynamic_axes=None, test_with_inputs=None, input_names=None, output_names=None, fixed_batch_size=False, dict_check=True, training=None, remained_onnx_input_idx=None, flatten=True, verbose=False, ): if training is not None and training == torch.onnx.TrainingMode.TRAINING: model.train() elif training is None or training == torch.onnx.TrainingMode.EVAL: model.eval() if input is None: input = torch.randn(batch_size, 3, 224, 224, requires_grad=True) with torch.no_grad(): if isinstance(input, (Tensor, dict)): input = (input,) # In-place operators will update input tensor data as well. # Thus inputs are replicated before every forward call. input_args = copy.deepcopy(input) input_kwargs = {} if dict_check and isinstance(input_args[-1], dict): input_kwargs = input_args[-1] input_args = input_args[:-1] try: model_copy = copy.deepcopy(model) output = model_copy(*input_args, **input_kwargs) except Exception: output = model(*input_args, **input_kwargs) if isinstance(output, Tensor): output = (output,) if not dict_check and isinstance(input[-1], dict): input = input + ({},) ort_sess = convert_to_onnx( model, input=input, opset_version=self.opset_version, do_constant_folding=do_constant_folding, keep_initializers_as_inputs=self.keep_initializers_as_inputs, dynamic_axes=dynamic_axes, input_names=input_names, output_names=output_names, fixed_batch_size=fixed_batch_size, training=training, verbose=verbose, ) # compute onnxruntime output prediction if remained_onnx_input_idx is not None: input_onnx = [] for idx in remained_onnx_input_idx: input_onnx.append(input[idx]) input = input_onnx input_copy = copy.deepcopy(input) if flatten: input_copy, _ = torch.jit._flatten(input_copy) elif input_copy and input_copy[-1] == {}: # Handle empty kwargs (normally removed by flatten). input_copy = input_copy[:-1] ort_outs = run_ort(ort_sess, input_copy) ort_compare_with_pytorch(ort_outs, output, rtol, atol) # if additional test inputs are provided run the onnx # model with these inputs and check the outputs if test_with_inputs is not None: for test_input in test_with_inputs: if isinstance(test_input, Tensor): test_input = (test_input,) test_input_copy = copy.deepcopy(test_input) output = model(*test_input_copy) if isinstance(output, Tensor): output = (output,) if remained_onnx_input_idx is not None: test_input_onnx = [] for idx in remained_onnx_input_idx: test_input_onnx.append(test_input[idx]) test_input = test_input_onnx if flatten: test_input, _ = torch.jit._flatten(test_input) ort_outs = run_ort(ort_sess, test_input) ort_compare_with_pytorch(ort_outs, output, rtol, atol) def _init_test_generalized_rcnn_transform(): min_size = 100 max_size = 200 image_mean = [0.485, 0.456, 0.406] image_std = [0.229, 0.224, 0.225] transform = GeneralizedRCNNTransform(min_size, max_size, image_mean, image_std) return transform def _init_test_rpn(): anchor_sizes = ((32,), (64,), (128,), (256,), (512,)) aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes) rpn_anchor_generator = AnchorGenerator(anchor_sizes, aspect_ratios) out_channels = 256 rpn_head = RPNHead(out_channels, rpn_anchor_generator.num_anchors_per_location()[0]) rpn_fg_iou_thresh = 0.7 rpn_bg_iou_thresh = 0.3 rpn_batch_size_per_image = 256 rpn_positive_fraction = 0.5 rpn_pre_nms_top_n = dict(training=2000, testing=1000) rpn_post_nms_top_n = dict(training=2000, testing=1000) rpn_nms_thresh = 0.7 rpn_score_thresh = 0.0 rpn = RegionProposalNetwork( rpn_anchor_generator, rpn_head, rpn_fg_iou_thresh, rpn_bg_iou_thresh, rpn_batch_size_per_image, rpn_positive_fraction, rpn_pre_nms_top_n, rpn_post_nms_top_n, rpn_nms_thresh, score_thresh=rpn_score_thresh, ) return rpn def _init_test_roi_heads_faster_rcnn(): out_channels = 256 num_classes = 91 box_fg_iou_thresh = 0.5 box_bg_iou_thresh = 0.5 box_batch_size_per_image = 512 box_positive_fraction = 0.25 bbox_reg_weights = None box_score_thresh = 0.05 box_nms_thresh = 0.5 box_detections_per_img = 100 box_roi_pool = ops.MultiScaleRoIAlign( featmap_names=["0", "1", "2", "3"], output_size=7, sampling_ratio=2 ) resolution = box_roi_pool.output_size[0] representation_size = 1024 box_head = TwoMLPHead(out_channels * resolution**2, representation_size) representation_size = 1024 box_predictor = FastRCNNPredictor(representation_size, num_classes) roi_heads = RoIHeads( box_roi_pool, box_head, box_predictor, box_fg_iou_thresh, box_bg_iou_thresh, box_batch_size_per_image, box_positive_fraction, bbox_reg_weights, box_score_thresh, box_nms_thresh, box_detections_per_img, ) return roi_heads def _construct_tensor_for_quantization_test( shape: Tuple[int, ...], offset: Optional[Union[int, float]] = None, max_val: Optional[Union[int, float]] = None, ) -> torch.Tensor: """Helper function to generate weights and test inputs in a deterministic way. Due to difference in implementation details between PyTorch and ONNXRuntime, randomly generated test data for quantization tests can be flaky. To help stablize the test, this helper function is used to generate weights and test inputs in a deterministic way. Args: shape (Tuple[int]): Shape for tensor to construct. offset (Optional[Union[int, float]]): Offset to be added to the generated tensor. max_val (Optional[Union[int, float]]): If any element within tensor has a larger absolute value than max_val, the tensor will be scaled by max_val / tensor.abs().max(). This step is done after applying offset. """ tensor = torch.arange(np.prod(shape), dtype=torch.float).view(shape) if offset is not None: tensor = tensor + offset if max_val is not None and tensor.abs().max() > max_val: tensor = tensor * max_val / tensor.abs().max() return tensor def set_rng_seed(seed): torch.manual_seed(seed) random.seed(seed) np.random.seed(seed) class _TestONNXRuntime: """Abstract base class for test cases. Intentionally not a sub-class of unittest.TestCase so that unittest / pytest don't run it directly. unitest.TestCase is mixed in as another base class when creating concrete sub-types. See MakeTestCase(). """ opset_version = -1 # Sub-classes must override keep_initializers_as_inputs = True # For IR version 3 type export. def setUp(self): torch.manual_seed(0) onnxruntime.set_seed(0) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0) np.random.seed(seed=0) os.environ["ALLOW_RELEASED_ONNX_OPSET_ONLY"] = "0" self.is_script_test_enabled = True # The exported ONNX model may have less inputs than the pytorch model because of const folding. # This mostly happens in unit test, where we widely use torch.size or torch.shape. # So the output is only dependent on the input shape, not value. # remained_onnx_input_idx is used to indicate which pytorch model input idx is remained in ONNX model. def run_test( self, model, input, rtol=1e-3, atol=1e-7, do_constant_folding=True, batch_size=2, use_gpu=True, dynamic_axes=None, test_with_inputs=None, input_names=None, output_names=None, fixed_batch_size=False, dict_check=True, training=None, remained_onnx_input_idx=None, verbose=False, ): def _run_test(m, remained_onnx_input_idx, flatten=True): return run_model_test( self, m, batch_size=batch_size, input=input, use_gpu=use_gpu, rtol=rtol, atol=atol, do_constant_folding=do_constant_folding, dynamic_axes=dynamic_axes, test_with_inputs=test_with_inputs, input_names=input_names, output_names=output_names, fixed_batch_size=fixed_batch_size, dict_check=dict_check, training=training, remained_onnx_input_idx=remained_onnx_input_idx, flatten=flatten, verbose=verbose, ) if isinstance(remained_onnx_input_idx, dict): scripting_remained_onnx_input_idx = remained_onnx_input_idx["scripting"] tracing_remained_onnx_input_idx = remained_onnx_input_idx["tracing"] else: scripting_remained_onnx_input_idx = remained_onnx_input_idx tracing_remained_onnx_input_idx = remained_onnx_input_idx is_script = isinstance( model, (torch.jit.ScriptModule, torch.jit.ScriptFunction) ) if self.is_script_test_enabled: script_model = model if is_script else torch.jit.script(model) _run_test(script_model, scripting_remained_onnx_input_idx, flatten=False) if not is_script: _run_test(model, tracing_remained_onnx_input_idx) def run_model_test_with_external_data( self, model, input, rtol=0.001, atol=1e-7, do_constant_folding=True, dynamic_axes=None, input_names=None, output_names=None, ort_optim_on=True, training=None, ): import os import tempfile if training is not None and training == torch.onnx.TrainingMode.TRAINING: model.train() elif training is None or training == torch.onnx.TrainingMode.EVAL: model.eval() with torch.no_grad(): if isinstance(input, Tensor): input = (input,) # In-place operators will update input tensor data as well. # Thus inputs are replicated before every forward call. input_copy = copy.deepcopy(input) output = model(*input_copy) if isinstance(output, Tensor): output = (output,) # export the model to ONNX with tempfile.TemporaryDirectory() as tmpdirname: model_file_name = os.path.join(tmpdirname, "model.onnx") input_copy = copy.deepcopy(input) torch.onnx.export( model, input_copy, model_file_name, opset_version=self.opset_version, verbose=False, do_constant_folding=do_constant_folding, keep_initializers_as_inputs=self.keep_initializers_as_inputs, dynamic_axes=dynamic_axes, input_names=input_names, output_names=output_names, ) # compute onnxruntime output prediction ort_sess_opt = onnxruntime.SessionOptions() ort_sess_opt.graph_optimization_level = ( onnxruntime.GraphOptimizationLevel.ORT_ENABLE_EXTENDED if ort_optim_on else onnxruntime.GraphOptimizationLevel.ORT_DISABLE_ALL ) # suppress ort warnings. # 0:Verbose, 1:Info, 2:Warning. 3:Error, 4:Fatal. Default is 2. ort_sess_opt.log_severity_level = 3 ort_sess = onnxruntime.InferenceSession( model_file_name, sess_options=ort_sess_opt, providers=_ORT_PROVIDERS ) input_copy = copy.deepcopy(input) ort_outs = run_ort(ort_sess, input_copy) ort_compare_with_pytorch(ort_outs, output, rtol, atol) @skipIfUnsupportedMinOpsetVersion( 9 ) # Because external data format was released with Opset 9. def test_embedding_model_with_external_data(self): class LargeModel(torch.nn.Module): def __init__(self): super(LargeModel, self).__init__() dim = 15 n = 4 * 100 self.emb = torch.nn.Embedding(n, dim) self.lin1 = torch.nn.Linear(dim, 1) self.seq = torch.nn.Sequential( self.emb, self.lin1, ) def forward(self, input): return self.seq(input) model = LargeModel() x = torch.tensor([2], dtype=torch.long) self.run_model_test_with_external_data(model, x) @skipIfUnsupportedMinOpsetVersion( 9 ) # Because external data format was released with Opset 9. def test_large_model_with_external_data(self): class LargeModel(torch.nn.Module): def __init__(self): super(LargeModel, self).__init__() dim = 5 n = 40 * 4 * 10**6 self.emb = torch.nn.Embedding(n, dim) self.lin1 = torch.nn.Linear(dim, 1) self.seq = torch.nn.Sequential( self.emb, self.lin1, ) def forward(self, input): return self.seq(input) x = torch.tensor([2], dtype=torch.long) self.run_model_test_with_external_data(LargeModel(), x) @skipIfUnsupportedMinOpsetVersion( 9 ) # Because external data format was released with Opset 9. def test_large_model_with_non_str_file(self): class LargeModel(torch.nn.Module): def __init__(self): super(LargeModel, self).__init__() dim = 5 n = 40 * 4 * 10**6 self.emb = torch.nn.Embedding(n, dim) self.lin1 = torch.nn.Linear(dim, 1) self.seq = torch.nn.Sequential( self.emb, self.lin1, ) def forward(self, input): return self.seq(input) x = torch.tensor([2], dtype=torch.long) f = io.BytesIO() err_msg = ( "The serialized model is larger than the 2GiB limit imposed by the protobuf library. " "Therefore the output file must be a file path, so that the ONNX external data can be written to " "the same directory. Please specify the output file name." ) with self.assertRaisesRegex(RuntimeError, err_msg): torch.onnx.export(LargeModel(), x, f) def test_fuse_conv_bn1d(self): class Fuse(torch.nn.Module): def __init__(self): super(Fuse, self).__init__() self.conv = torch.nn.Conv1d(16, 33, 3, stride=2) self.bn = torch.nn.BatchNorm1d(33) def forward(self, x): out = self.conv(x) return self.bn(out) model = Fuse() x = torch.randn(20, 16, 50, requires_grad=True) self.run_test(model, (x,)) def test_fuse_conv_bn2d(self): class Fuse(torch.nn.Module): def __init__(self): super(Fuse, self).__init__() self.conv = torch.nn.Conv2d( 3, 2, kernel_size=1, stride=2, padding=3, bias=False ) self.bn = torch.nn.BatchNorm2d(2) def forward(self, x): out = self.conv(x) return self.bn(out) model = Fuse() x = torch.randn(2, 3, 2, 2, requires_grad=True) self.run_test(model, (x,)) def test_fuse_conv_bn3d(self): class Fuse(torch.nn.Module): def __init__(self): super(Fuse, self).__init__() self.conv = torch.nn.Conv3d( 3, 2, (3, 5, 2), stride=(2, 1, 1), padding=(3, 2, 0), bias=False ) self.bn = torch.nn.BatchNorm3d(2) def forward(self, x): out = self.conv(x) return self.bn(out) model = Fuse() x = torch.randn(2, 3, 10, 50, 100, requires_grad=True) self.run_test(model, (x,), rtol=1e-3, atol=1e-6) def test_fuse_conv_in_block(self): class Fuse(torch.nn.Module): def __init__(self): super(Fuse, self).__init__() self.conv = torch.nn.Conv1d( in_channels=5, out_channels=5, kernel_size=3, stride=1, padding=2, dilation=1, ) self.bn = torch.nn.BatchNorm1d(5) def forward(self, x): results_available = True if x.sum() > -1: results_available = False if results_available: x = self.conv(x) x = self.bn(x) return x model = Fuse() x = torch.randn(2, 5, 9, requires_grad=True) self.run_test( torch.jit.script(model), (x,), input_names=["x"], dynamic_axes={"x": [0, 2]}, rtol=1e-3, atol=1e-6, ) def test_conv_tbc(self): from torch.nn.modules.utils import _single class ConvTBC(torch.nn.Module): def __init__(self, in_channels, out_channels, kernel_size, padding=0): super(ConvTBC, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = _single(kernel_size) self.padding = _single(padding) self.weight = torch.nn.Parameter( Tensor(self.kernel_size[0], in_channels, out_channels) ) self.bias = torch.nn.Parameter(Tensor(out_channels)) self.reset_parameters() def reset_parameters(self): torch.nn.init.xavier_normal_(self.weight) torch.nn.init.zeros_(self.bias) def conv_tbc(self, input): return torch.conv_tbc( input.contiguous(), self.weight, self.bias, self.padding[0] ) def forward(self, input): return self.conv_tbc(input) in_channels = 3 out_channels = 5 kernel_size = 5 model = ConvTBC(in_channels, out_channels, kernel_size, padding=0) x = torch.randn(10, 7, in_channels, requires_grad=True) self.run_test(model, (x,), atol=1e-5) def test_reshape_constant_fold(self): class Reshape(torch.nn.Module): def __init__( self, ): super(Reshape, self).__init__() self.register_buffer("weight", torch.ones(5)) def forward(self, x): scale_1 = self.weight.reshape(1, -1, 1, 1) return x * scale_1 x = torch.randn(4, 5) self.run_test(Reshape(), (x,), rtol=1e-3, atol=1e-5) def run_word_language_model(self, model_name): ntokens = 50 emsize = 5 nhid = 5 nlayers = 5 dropout = 0.2 tied = False batchsize = 5 if model_name == "GRU": model = word_language_model.RNNModelWithTensorHidden( model_name, ntokens, emsize, nhid, nlayers, dropout, tied, batchsize ) elif model_name == "LSTM": model = word_language_model.RNNModelWithTupleHidden( model_name, ntokens, emsize, nhid, nlayers, dropout, tied, batchsize ) else: model = word_language_model.RNNModel( model_name, ntokens, emsize, nhid, nlayers, dropout, tied, batchsize ) x = torch.arange(0, ntokens).long().view(-1, batchsize) # Only support CPU version, since tracer is not working in GPU RNN. self.run_test(model, (x, model.hidden)) def get_image(self, rel_path: str, size: Tuple[int, int]) -> Tensor: import os from PIL import Image from torchvision import transforms data_dir = os.path.join(os.path.dirname(__file__), "assets") path = os.path.join(data_dir, *rel_path.split("/")) image = Image.open(path).convert("RGB").resize(size, Image.BILINEAR) return transforms.ToTensor()(image) def get_test_images(self) -> Tuple[List[Tensor], List[Tensor]]: return ( [self.get_image("grace_hopper_517x606.jpg", (100, 320))], [self.get_image("rgb_pytorch.png", (250, 380))], ) @skipIfUnsupportedMinOpsetVersion(11) @skipScriptTest() # Faster RCNN model is not scriptable def test_faster_rcnn(self): model = torchvision.models.detection.faster_rcnn.fasterrcnn_resnet50_fpn( pretrained=False, pretrained_backbone=True, min_size=200, max_size=300 ) model.eval() x1 = torch.randn(3, 200, 300, requires_grad=True) x2 = torch.randn(3, 200, 300, requires_grad=True) self.run_test(model, ([x1, x2],), rtol=1e-3, atol=1e-5) self.run_test( model, ([x1, x2],), input_names=["images_tensors"], output_names=["outputs"], dynamic_axes={"images_tensors": [0, 1, 2], "outputs": [0, 1, 2]}, rtol=1e-3, atol=1e-5, ) dummy_image = [torch.ones(3, 100, 100) * 0.3] images, test_images = self.get_test_images() self.run_test( model, (images,), test_with_inputs=[(images,), (test_images,), (dummy_image,)], input_names=["images_tensors"], output_names=["outputs"], dynamic_axes={"images_tensors": [0, 1, 2], "outputs": [0, 1, 2]}, rtol=1e-3, atol=1e-5, ) self.run_test( model, (dummy_image,), test_with_inputs=[(dummy_image,), (images,)], input_names=["images_tensors"], output_names=["outputs"], dynamic_axes={"images_tensors": [0, 1, 2], "outputs": [0, 1, 2]}, rtol=1e-3, atol=1e-5, ) def test_paste_mask_in_image(self): masks = torch.rand(10, 1, 26, 26) boxes = torch.rand(10, 4) boxes[:, 2:] += torch.rand(10, 2) boxes *= 50 o_im_s = (100, 100) from torchvision.models.detection.roi_heads import paste_masks_in_image out = paste_masks_in_image(masks, boxes, o_im_s) jit_trace = torch.jit.trace( paste_masks_in_image, (masks, boxes, [torch.tensor(o_im_s[0]), torch.tensor(o_im_s[1])]), ) out_trace = jit_trace( masks, boxes, [torch.tensor(o_im_s[0]), torch.tensor(o_im_s[1])] ) assert torch.all(out.eq(out_trace)) masks2 = torch.rand(20, 1, 26, 26) boxes2 = torch.rand(20, 4) boxes2[:, 2:] += torch.rand(20, 2) boxes2 *= 100 o_im_s2 = (200, 200) from torchvision.models.detection.roi_heads import paste_masks_in_image out2 = paste_masks_in_image(masks2, boxes2, o_im_s2) out_trace2 = jit_trace( masks2, boxes2, [torch.tensor(o_im_s2[0]), torch.tensor(o_im_s2[1])] ) assert torch.all(out2.eq(out_trace2)) @skipIfUnsupportedMinOpsetVersion(11) @skipScriptTest() def test_mask_rcnn(self): model = torchvision.models.detection.mask_rcnn.maskrcnn_resnet50_fpn( pretrained=False, pretrained_backbone=True, min_size=200, max_size=300 ) images, test_images = self.get_test_images() self.run_test(model, (images,), rtol=1e-3, atol=1e-5) self.run_test( model, (images,), input_names=["images_tensors"], output_names=["boxes", "labels", "scores", "masks"], dynamic_axes={ "images_tensors": [0, 1, 2], "boxes": [0, 1], "labels": [0], "scores": [0], "masks": [0, 1, 2], }, rtol=1e-3, atol=1e-5, ) dummy_image = [torch.ones(3, 100, 100) * 0.3] self.run_test( model, (images,), test_with_inputs=[(images,), (test_images,), (dummy_image,)], input_names=["images_tensors"], output_names=["boxes", "labels", "scores", "masks"], dynamic_axes={ "images_tensors": [0, 1, 2], "boxes": [0, 1], "labels": [0], "scores": [0], "masks": [0, 1, 2], }, rtol=1e-3, atol=1e-5, ) self.run_test( model, (dummy_image,), test_with_inputs=[(dummy_image,), (images,)], input_names=["images_tensors"], output_names=["boxes", "labels", "scores", "masks"], dynamic_axes={ "images_tensors": [0, 1, 2], "boxes": [0, 1], "labels": [0], "scores": [0], "masks": [0, 1, 2], }, rtol=1e-3, atol=1e-5, ) def test_heatmaps_to_keypoints(self): maps = torch.rand(10, 1, 26, 26) rois = torch.rand(10, 4) from torchvision.models.detection.roi_heads import heatmaps_to_keypoints out = heatmaps_to_keypoints(maps, rois) jit_trace = torch.jit.trace(heatmaps_to_keypoints, (maps, rois)) out_trace = jit_trace(maps, rois) assert torch.all(out[0].eq(out_trace[0])) assert torch.all(out[1].eq(out_trace[1])) maps2 = torch.rand(20, 2, 21, 21) rois2 = torch.rand(20, 4) from torchvision.models.detection.roi_heads import heatmaps_to_keypoints out2 = heatmaps_to_keypoints(maps2, rois2) out_trace2 = jit_trace(maps2, rois2) assert torch.all(out2[0].eq(out_trace2[0])) assert torch.all(out2[1].eq(out_trace2[1])) @unittest.skip("Failing, see https://github.com/pytorch/pytorch/issues/66528") @skipIfUnsupportedMinOpsetVersion(11) @skipScriptTest() def test_keypoint_rcnn(self): model = torchvision.models.detection.keypoint_rcnn.keypointrcnn_resnet50_fpn( pretrained=False, pretrained_backbone=False, min_size=200, max_size=300 ) images, test_images = self.get_test_images() self.run_test(model, (images,), rtol=1e-3, atol=1e-5) self.run_test( model, (images,), input_names=["images_tensors"], output_names=["outputs1", "outputs2", "outputs3", "outputs4"], dynamic_axes={"images_tensors": [0, 1, 2]}, rtol=1e-3, atol=1e-5, ) dummy_images = [torch.ones(3, 100, 100) * 0.3] self.run_test( model, (images,), test_with_inputs=[(images,), (test_images,), (dummy_images,)], input_names=["images_tensors"], output_names=["outputs1", "outputs2", "outputs3", "outputs4"], dynamic_axes={"images_tensors": [0, 1, 2]}, rtol=5e-3, atol=1e-5, ) self.run_test( model, (dummy_images,), test_with_inputs=[(dummy_images,), (test_images,)], input_names=["images_tensors"], output_names=["outputs1", "outputs2", "outputs3", "outputs4"], dynamic_axes={"images_tensors": [0, 1, 2]}, rtol=5e-3, atol=1e-5, ) @skipIfUnsupportedMinOpsetVersion(11) @skipScriptTest() def test_shufflenet_v2_dynamic_axes(self): model = torchvision.models.shufflenet_v2_x0_5(pretrained=False) dummy_input = torch.randn(1, 3, 224, 224, requires_grad=True) test_inputs = torch.randn(3, 3, 224, 224, requires_grad=True) self.run_test( model, (dummy_input,), test_with_inputs=[(dummy_input,), (test_inputs,)], input_names=["input_images"], output_names=["outputs"], dynamic_axes={ "input_images": {0: "batch_size"}, "output": {0: "batch_size"}, }, rtol=1e-3, atol=1e-5, ) @skipScriptTest() def test_mobilenet_v3(self): model = torchvision.models.quantization.mobilenet_v3_large(pretrained=False) dummy_input = torch.randn(1, 3, 224, 224) self.run_test(model, (dummy_input,)) @unittest.skip( "Unstable loading pretrained quantized mobilenet v3: https://github.com/pytorch/vision/issues/5303" ) @skipIfUnsupportedMinOpsetVersion(10) @skipScriptTest() def test_mobilenet_v3_quant(self): model = torchvision.models.quantization.mobilenet_v3_large( pretrained=True, quantize=True ) from PIL import Image from torchvision import transforms data_dir = os.path.join(os.path.dirname(__file__), "assets") path = os.path.join(data_dir, "grace_hopper_517x606.jpg") input_image = Image.open(path) # Based on example from https://pytorch.org/hub/pytorch_vision_resnet/ preprocess = transforms.Compose( [ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ), ] ) input_tensor = preprocess(input_image).unsqueeze(0) # Due to precision error from quantization, check only that the top prediction matches. class TopPredictor(torch.nn.Module): def __init__(self, mobilenet): super().__init__() self.mobilenet = mobilenet def forward(self, x): x = self.mobilenet(x) _, topk_catid = torch.topk(x[0], 1) return topk_catid # Currently, we need convert the model to ScriptModule before export. # The reason is that PackedParams contains int (not tensor). # Then it fails when the exporter calls _trace_and_get_graph_from_model(). # TODO: https://msdata.visualstudio.com/Vienna/_workitems/edit/1547858 model = torch.jit.trace(TopPredictor(model), input_tensor) self.run_test(model, (input_tensor,)) @skipScriptTest() def test_word_language_model_RNN_TANH(self): self.run_word_language_model("RNN_TANH") @skipScriptTest() def test_word_language_model_RNN_RELU(self): self.run_word_language_model("RNN_RELU") @skipScriptTest() # scripting prim::unchecked_cast prim::setattr def test_word_language_model_LSTM(self): self.run_word_language_model("LSTM") def test_word_language_model_GRU(self): self.run_word_language_model("GRU") def test_index_1d(self): class MyModel(torch.nn.Module): def forward(self, input): return input[0] m1 = torch.randn(3, 4, 5, 6, 7) self.run_test(MyModel(), m1) def test_index_2d_1dimslice(self): class MyModel(torch.nn.Module): def forward(self, input): return input[0:1, :] m1 = torch.randn(3, 4, 5, 6, 7) self.run_test(MyModel(), m1) def test_index_2d_sliceint(self): class MyModel(torch.nn.Module): def forward(self, input): return input[1, :] m1 = torch.randn(3, 4, 5, 6, 7) self.run_test(MyModel(), m1) def test_index_2d_neg_slice(self): class MyModel(torch.nn.Module): def forward(self, input): return input[0:-1, :] m1 = torch.randn(3, 4, 5, 6, 7) self.run_test(MyModel(), m1) @skipIfUnsupportedMinOpsetVersion(9) def test_index_mask(self): class MyModel(torch.nn.Module): def forward(self, input): return input[torch.tensor([0, 1, 0], dtype=torch.uint8)] m1 = torch.randn(3, 4, 5, 6, 7) self.run_test(MyModel(), m1) class MyModel(torch.nn.Module): def forward(self, input): return input[torch.tensor([0, 1, 0], dtype=torch.bool)] m1 = torch.randn(3, 4, 5, 6, 7) self.run_test(MyModel(), m1) @skipIfUnsupportedMinOpsetVersion(9) def test_data(self): class Data(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x): return x.new_zeros(x.data.size()) x = torch.randn(3, 4) self.run_test(Data(), x, input_names=["x"], dynamic_axes={"x": [0, 1]}) self.run_test(Data(), x, remained_onnx_input_idx=[]) @skipIfUnsupportedMinOpsetVersion(11) def test_index_mask_nd(self): class MyModel(torch.nn.Module): def forward(self, input): return input[input > 0] m1 = torch.randn(3, 4, 5, 6, 7) self.run_test(MyModel(), m1) @skipScriptTest() def test_dict(self): class MyModel(torch.nn.Module): def forward(self, x_in): x_out = {} x_out["test_key_out"] = torch.add( x_in[list(x_in.keys())[0]], list(x_in.keys())[0] ) return x_out x = {torch.tensor(1.0): torch.randn(1, 2, 3)} self.run_test(MyModel(), (x, {})) @skipScriptTest() def test_dict_str(self): class MyModel(torch.nn.Module): def forward(self, x_in): x_out = {} x_out["test_key_out"] = torch.add(x_in["test_key_in"], 2.0) return x_out x = {"test_key_in": torch.randn(1, 2, 3)} self.run_test(MyModel(), (x, {})) @skipScriptTest() # User-defined class not supported def test_dict_output(self): class DictModelOutput(OrderedDict): tensor_out: Tensor tuple_out: Optional[Tuple[Tensor]] = None list_out: Optional[List[Tensor]] = None class MyModel(torch.nn.Module): def forward(self, a, b, c, d): return DictModelOutput( tensor_out=a, tuple_out=(b, c), list_out=[d], ) a = torch.randn(2, 3) b = torch.randn(2, 3) c = torch.randn(2, 3) d = torch.randn(2, 3) self.run_test(MyModel(), (a, b, c, d)) def test_tuple_output(self): class MyModel(torch.nn.Module): def forward(self, a, b, c, d): return a, (b, c), d a = torch.randn(2, 3) b = torch.randn(2, 3) c = torch.randn(2, 3) d = torch.randn(2, 3) self.run_test(MyModel(), (a, b, c, d)) def test_nested_tuple_output(self): class MyModel(torch.nn.Module): def forward(self, a, b, c, d): return a, ((b,), (c, d)) a = torch.randn(2, 3) b = torch.randn(2, 3) c = torch.randn(2, 3) d = torch.randn(2, 3) self.run_test(MyModel(), (a, b, c, d)) def test_tuple_input(self): class TupleModel(torch.nn.Module): def forward(self, a: Tuple[Tensor, Tensor]): return a x = (torch.randn(3, 4), torch.randn(4, 3)) self.run_test(TupleModel(), input=(x,)) def test_tuple_primitive_input(self): class TupleModel(torch.nn.Module): def forward(self, a: Tuple[int, Tensor], b): return a[0], a[1] + b x = (3, torch.randn(4, 3)) y = torch.randn(4, 3) self.run_test(TupleModel(), input=(x, y)) def test_nested_tuple_input(self): class NestedTupleModel(torch.nn.Module): def forward(self, a, b: Tuple[Tensor, Tuple[Tensor, Tensor]]): return a + b[0] + b[1][0] + b[1][1] x = torch.randn(4, 5) y = (torch.randn(4, 5), (torch.randn(1, 5), torch.randn(4, 1))) self.run_test(NestedTupleModel(), input=(x, y)) def test_empty_kwargs(self): class IdentityModel(torch.nn.Module): def forward(self, input): return input self.run_test(IdentityModel(), (torch.randn(2, 3), {})) @skipScriptTest() # Needs https://github.com/pytorch/rfcs/pull/21 @skipIfUnsupportedMinOpsetVersion(15) def test_mixed_optional_default_none(self): class Model(torch.nn.Module): def forward( self, x, y: Optional[Tensor] = None, z: Optional[Tensor] = None ): if y is not None: return x + y if z is not None: return x + z return x x = torch.randn(2, 3) y = torch.randn(2, 3) z = torch.randn(2, 3) model = Model() # Without kwargs dict. self.run_test(model, (x, y, None)) self.run_test(model, (x, None, z)) # With kwargs dict. self.run_test(model, (x, {"y": y, "z": None})) self.run_test(model, (x, {"y": None, "z": z})) self.run_test(model, (x, {"z": z})) self.run_test(model, (x, {"y": y})) @skipScriptTest() # tracing eliminates None inputs so it works differently. See _script version below. @skipIfUnsupportedMinOpsetVersion(15) def test_mixed_optional_default_tensor(self): class Model(torch.nn.Module): def forward( self, x, y: Optional[Tensor] = torch.ones(2, 3), z: Optional[Tensor] = torch.zeros(2, 3), ): if y is not None: return x + y if z is not None: return x + z return x x = torch.randn(2, 3) y = torch.randn(2, 3) z = torch.randn(2, 3) model = Model() self.run_test(model, (x, y, None)) self.run_test(model, (x, None, z)) @skipIfUnsupportedMinOpsetVersion(15) def test_mixed_optional_default_tensor_script(self): class Model(torch.nn.Module): def forward( self, x, y: Optional[Tensor] = torch.ones(2, 3), z: Optional[Tensor] = torch.zeros(2, 3), ): if y is not None: return x + y if z is not None: return x + z return x x = torch.randn(2, 3) y = torch.randn(2, 3) z = torch.randn(2, 3) model = torch.jit.script(Model()) self.run_test(model, (x, y, z), input_names=("x", "y", "z")) self.run_test(model, (x, {"y": y, "z": z}), input_names=("x", "y", "z")) # Requires input_names to be set so that we can feed the inputs properly into ORT. # TODO: Export default values as ONNX initializers, then this should not raise. # https://msdata.visualstudio.com/Vienna/_workitems/edit/969268 # Default values are accessible via FunctionSchema. with self.assertRaisesRegex( ValueError, "Model requires 3 inputs. Input Feed contains 2" ): self.run_test(model, (x, {"y": y}), input_names=("x", "y")) for example_inputs in ( (x, y, None), (x, None, z), (x, {"y": y, "z": None}), (x, {"y": None, "z": z}), ): with self.assertRaisesRegex( ValueError, "args contained 1 None's after flattening." ): self.run_test(model, example_inputs, input_names=("x", "y", "z")) @skipScriptTest() # Needs https://github.com/pytorch/rfcs/pull/21 @skipIfUnsupportedMinOpsetVersion(15) def test_all_optional_default_none(self): class Model(torch.nn.Module): def forward(self, x: Optional[Tensor] = None, y: Optional[Tensor] = None): if x is not None: return x if y is not None: return y else: return torch.tensor(-1.0) x = torch.randn(2, 3) model = Model() self.run_test(model, (x, None)) self.run_test( model, ({"x": x, "y": None},), # y disappears in tracing. input_names=("x",), ) @skipScriptTest() # tracing eliminates None inputs so it works differently. See _script version below. @skipIfUnsupportedMinOpsetVersion(15) def test_all_optional_default_tensor(self): class Model(torch.nn.Module): def forward( self, x: Optional[Tensor] = torch.ones(2, 3), y: Optional[Tensor] = torch.zeros(2, 3), ): if x is not None: return x elif y is not None: return y else: return torch.tensor(-1.0) x = torch.randn(2, 3) y = torch.randn(2, 3) model = Model() self.run_test(model, (x, None)) self.run_test(model, (None, y)) # tracing means y is never used so it's removed from the exported model inputs, # and we fail when trying to run ORT. with self.assertRaisesRegex(ValueError, "got too many positional inputs"): self.run_test(model, (x, y)) @skipIfUnsupportedMinOpsetVersion(15) def test_all_optional_default_tensor_script(self): class Model(torch.nn.Module): def forward( self, x: Optional[Tensor] = torch.ones(2, 3), y: Optional[Tensor] = torch.zeros(2, 3), ): if x is not None: return x elif y is not None: return y else: return torch.tensor(-1.0) x = torch.randn(2, 3) y = torch.randn(2, 3) model = torch.jit.script(Model()) # TODO: Export default values as ONNX initializers, then this should not raise. # https://msdata.visualstudio.com/Vienna/_workitems/edit/969268 # Default values are accessible via FunctionSchema. with self.assertRaisesRegex( ValueError, "Model requires 2 inputs. Input Feed contains 1" ): self.run_test(model, (x,)) self.run_test(model, ({"y": y},)) self.run_test(model, (x, y)) self.run_test(model, ({"x": x, "y": y},), input_names=("x", "y")) @skipScriptTest() # Needs https://github.com/pytorch/rfcs/pull/21 @skipIfUnsupportedMinOpsetVersion(15) def test_mixed_optional(self): class Model(torch.nn.Module): def forward(self, x, y: Optional[Tensor]): if y is not None: return x + y return x x = torch.randn(2, 3) model = Model() self.run_test(model, (x, None)) self.run_test(model, (x, x)) @skipScriptTest() # Needs https://github.com/pytorch/rfcs/pull/21 @skipIfUnsupportedMinOpsetVersion(15) def test_tuple_of_optional(self): class Model(torch.nn.Module): def forward(self, x, y: Tuple[Optional[Tensor], Optional[Tensor]]): if y[0] is not None: return x + y[0] if y[1] is not None: return x + y[1] return x x = torch.randn(2, 3) y1 = torch.randn(2, 3) self.run_test(Model(), (x, (None, y1))) @skipScriptTest() # tracing eliminates None inputs so it works differently. See _script version below. @skipIfUnsupportedMinOpsetVersion(15) def test_tuple_of_optional_default_tensor(self): class Model(torch.nn.Module): def forward( self, x, y: Tuple[Optional[Tensor], Optional[Tensor]] = ( torch.zeros(2, 3), torch.zeros(2, 3), ), ): y0, y1 = y if y0 is not None: return x + y0 if y1 is not None: return x + y1 return x x = torch.randn(2, 3) y1 = torch.randn(2, 3) self.run_test(Model(), (x, (None, y1))) @skipIfUnsupportedMinOpsetVersion(15) def test_tuple_of_optional_default_tensor_script(self): class Model(torch.nn.Module): def forward( self, x, y: Tuple[Optional[Tensor], Optional[Tensor]] = ( torch.zeros(2, 3), torch.zeros(2, 3), ), ): y0, y1 = y if y0 is not None: return x + y0 if y1 is not None: return x + y1 return x x = torch.randn(2, 3) y0 = torch.randn(2, 3) y1 = torch.randn(2, 3) model = torch.jit.script(Model()) with self.assertRaisesRegex( ValueError, "args contained 1 None's after flattening." ): self.run_test(model, (x, (None, y1))) self.run_test(model, (x, (y0, y1))) # export succeeds, but running ORT through run_test would fail because the exported model # has the inputs flattened into 3 inputs. torch.onnx.export( model, (x, {"y": (y0, y1)}), io.BytesIO(), opset_version=self.opset_version ) def test_primitive_input_integer(self): class Model(torch.nn.Module): def forward(self, x: int, y): return x + y x = 3 y = torch.randint(10, (2, 3, 4)) self.run_test(Model(), (x, y)) def test_primitive_input_floating(self): class Model(torch.nn.Module): def __init__(self): super().__init__() def forward(self, x: float, y): return x + y x = 3.0 y = torch.randn(2, 3, 4) self.run_test(Model(), (x, y)) def test_primitive_input_bool(self): class Model(torch.nn.Module): def __init__(self): super().__init__() def forward(self, flag: bool, x, y): if flag: return x else: return y flag = True x = torch.randn(2, 3, 4) y = torch.randn(2, 3, 4) self.run_test(torch.jit.script(Model()), (flag, x, y)) @skipIfUnsupportedMinOpsetVersion(9) def test_cste_script(self): class MyModel(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x): return torch.zeros(x.size(0)), torch.ones( (x.size(1), x.size(0)), dtype=torch.int64 ) x = torch.randn(3, 4) self.run_test(MyModel(), x, input_names=["x"], dynamic_axes={"x": [0, 1]}) self.run_test(MyModel(), x, remained_onnx_input_idx=[]) def test_scalar_tensor(self): class test(torch.nn.Module): def forward(self, input): return torch.scalar_tensor(input.size(0)), torch.scalar_tensor( input.size(1), dtype=torch.int64 ) x = torch.randn(2, 3, 4) y = torch.randn(7, 8, 9) model = test() self.run_test( model, x, test_with_inputs=[y], input_names=["input_1"], dynamic_axes={"input_1": [0, 1, 2]}, ) def test_tensor(self): class ScalarInputModel(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, input): return torch.tensor(input.shape[1]) x = torch.randn(3, 4) self.run_test( ScalarInputModel(), x, input_names=["x"], dynamic_axes={"x": [0, 1]} ) self.run_test(ScalarInputModel(), x, remained_onnx_input_idx=[]) class TensorInputModel(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, input): return torch.tensor([input.shape[0], input.shape[1]]) x = torch.randn(3, 4) self.run_test( TensorInputModel(), x, input_names=["x"], dynamic_axes={"x": [0, 1]} ) self.run_test(TensorInputModel(), x, remained_onnx_input_idx=[]) class FloatInputModel(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, input): return torch.tensor([float(input)]) x = torch.randn(1) self.run_test(FloatInputModel(), x) class InputWithDtypeModel(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, input): return torch.tensor(input.shape[1], dtype=torch.long) x = torch.randn(3, 4) self.run_test( InputWithDtypeModel(), x, input_names=["x"], dynamic_axes={"x": [0, 1]} ) self.run_test(InputWithDtypeModel(), x, remained_onnx_input_idx=[]) class MixedInputModel(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, input): return torch.tensor([input.shape[0], int(input)]) x = torch.randn(1) self.run_test(MixedInputModel(), x) def test_hardtanh(self): model = torch.nn.Hardtanh(-1.5, 2.5) x = torch.arange(-5, 5).to(dtype=torch.float32) self.run_test(model, x) def test_hardtanh_script_with_default_values(self): class MyModel(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x): return torch.nn.functional.hardtanh(x) x = torch.arange(-5, 5).to(dtype=torch.float32) self.run_test(MyModel(), x) def test_hardswish(self): model = torch.nn.Hardswish() x = torch.rand(3, 3).to(dtype=torch.float32) self.run_test(model, x) # Testing edge cases x = torch.tensor(3).to(dtype=torch.float32) self.run_test(model, x) x = torch.tensor(-3).to(dtype=torch.float32) self.run_test(model, x) def test_hardswish_script(self): class MyModel(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x): return torch.nn.functional.hardswish(x) x = torch.rand(3, 3).to(dtype=torch.float32) self.run_test(MyModel(), x) def test_hardsigmoid(self): model = torch.nn.Hardsigmoid() x = torch.rand(3, 3).to(dtype=torch.float32) self.run_test(model, x) # corner cases x = torch.tensor(3).to(dtype=torch.float32) self.run_test(model, x) x = torch.tensor(-3).to(dtype=torch.float32) self.run_test(model, x) def test_tanhshrink(self): model = torch.nn.Tanhshrink() x = torch.rand(3, 3).to(dtype=torch.float32) self.run_test(model, x) @skipIfUnsupportedMinOpsetVersion(9) def test_hardshrink(self): model = torch.nn.Hardshrink() x = torch.rand(3, 3).to(dtype=torch.float32) self.run_test(model, x) # Testing edge cases x = torch.tensor(0.5).to(dtype=torch.float32) self.run_test(model, x) x = torch.tensor(-0.5).to(dtype=torch.float32) self.run_test(model, x) @skipIfUnsupportedMinOpsetVersion(9) def test_softshrink(self): model = torch.nn.Softshrink() x = torch.rand(3, 3).to(dtype=torch.float32) self.run_test(model, x) # Testing edge cases x = torch.tensor(0.5).to(dtype=torch.float32) self.run_test(model, x) x = torch.tensor(-0.5).to(dtype=torch.float32) self.run_test(model, x) def test_clamp(self): class ClampModel(torch.nn.Module): def forward(self, x): return x.clamp(-0.5, 0.5) x = torch.randn(3, 4) self.run_test(ClampModel(), x) class ClampMinModel(torch.nn.Module): def forward(self, x): return x.clamp(min=-0.5) x = torch.randn(3, 4) self.run_test(ClampMinModel(), x) class ClampMaxModel(torch.nn.Module): def forward(self, x): return x.clamp(max=0.5) x = torch.randn(3, 4) self.run_test(ClampMaxModel(), x) @skipIfUnsupportedMinOpsetVersion(8) def test_clamp_dyn(self): class ClampMaxModel(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x): return x.clamp(None, x.size(0)) x = torch.arange(16).view(4, 4).float() self.run_test(ClampMaxModel(), x) class ClampMinModel(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x): return x.clamp(x.size(0), None) x = torch.arange(16).view(4, 4).float() self.run_test(ClampMinModel(), x) class ClampMinMaxModel(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x): return x.clamp(x.size(0), x.size(1)) x = torch.arange(16).view(2, 8).float() self.run_test(ClampMinMaxModel(), x) class ClampTensorModel(torch.nn.Module): def forward(self, x, min, max): return x.clamp(min, max) x = torch.randn(3, 4) y = torch.randn(3, 4) z = torch.randn(3, 4) self.run_test(ClampTensorModel(), (x, y, z)) class ClampTensorMinModel(torch.nn.Module): def forward(self, x, min): return x.clamp(min=min) self.run_test(ClampTensorMinModel(), (x, y)) class ClampTensorMaxModel(torch.nn.Module): def forward(self, x, max): return x.clamp(max=max) self.run_test(ClampTensorMaxModel(), (x, z)) @skipIfUnsupportedMinOpsetVersion(9) def test_full_trace(self): class FullModel(torch.nn.Module): def forward(self, x): return torch.full((3, 4), x, dtype=torch.long) x = torch.tensor(12) self.run_test(FullModel(), x) @skipIfUnsupportedMinOpsetVersion(9) def test_full_script(self): class FullModelScripting(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x): return torch.full((3, 4), x, dtype=torch.long) x = torch.tensor(12) self.run_test(FullModelScripting(), x) def test_fuse_addmm(self): class AddmmModel(torch.nn.Module): def forward(self, x): return torch.mm(x, x) + x x = torch.ones(3, 3) self.run_test(AddmmModel(), x) def test_maxpool(self): model = torch.nn.MaxPool1d(2, stride=1) x = torch.randn(20, 16, 50) self.run_test(model, x) def test_conv(self): class TraceModel(torch.nn.Module): def __init__(self): super(TraceModel, self).__init__() self.conv1 = torch.nn.Conv1d(16, 33, 3, stride=2) self.conv2 = torch.nn.Conv2d( 16, 33, (3, 5), stride=(2, 1), padding=(4, 2), dilation=(3, 1) ) self.conv3 = torch.nn.Conv3d( 16, 33, (3, 5, 2), stride=(2, 1, 1), padding=(4, 2, 0) ) def forward(self, input1, input2, input3): return self.conv1(input1), self.conv2(input2), self.conv3(input3) x1 = torch.randn(20, 16, 50) x2 = torch.randn(20, 16, 50, 100) x3 = torch.randn(20, 16, 10, 50, 100) self.run_test(TraceModel(), (x1, x2, x3), atol=10e-5) def test_conv_shape_inference(self): class Model(torch.nn.Module): def __init__(self): super(Model, self).__init__() self.conv2 = torch.nn.Conv2d( 16, 33, (3, 5), stride=(2, 1), padding=(4, 2), dilation=(3, 1) ) def forward(self, input): return self.conv2(input) + 2 x = torch.randn(20, 16, 50, 100) self.run_test( Model(), x, atol=10e-5, input_names=["x"], dynamic_axes={"x": [0]} ) def test_conv_transpose(self): class TraceModel(torch.nn.Module): def __init__(self): super(TraceModel, self).__init__() self.conv1 = torch.nn.ConvTranspose1d(16, 33, 3, stride=2) self.conv2 = torch.nn.ConvTranspose2d( 16, 33, (3, 5), stride=(2, 1), padding=(4, 2), dilation=(3, 1) ) self.conv3 = torch.nn.ConvTranspose3d( 16, 33, (3, 5, 2), stride=(2, 1, 1), padding=(4, 2, 0) ) def forward(self, input1, input2, input3): return self.conv1(input1), self.conv2(input2), self.conv3(input3) x1 = torch.randn(20, 16, 50) x2 = torch.randn(20, 16, 50, 100) x3 = torch.randn(20, 16, 10, 50, 100) self.run_test(TraceModel(), (x1, x2, x3), atol=10e-5) # Conversion of Transpose depends on input shape to be known. # The following test only works when onnx shape inference is enabled. def test_transpose_infer_shape(self): class TransposeModule(torch.jit.ScriptModule): def __init__(self): super(TransposeModule, self).__init__() self.conv = torch.nn.Conv2d(3, 1, 3, stride=2) @torch.jit.script_method def forward(self, x): x = self.conv(x) return x.transpose(0, 1) x = torch.randn(32, 3, 64, 64) y = torch.randn(16, 3, 8, 64) self.run_test( TransposeModule(), x, input_names=["x"], dynamic_axes={"x": [0, 2]}, test_with_inputs=[y], ) def squeeze_model_tests(self, d, x1, x2): class Squeeze(torch.nn.Module): def __init__(self, d): super(Squeeze, self).__init__() self.d = d def forward(self, x): if self.d is not None: return torch.squeeze(x, dim=self.d) else: return torch.squeeze(x) x2 = [] if x2 is None else [x2] if len(x2) > 0: self.run_test( Squeeze(d), x1, input_names=["input"], dynamic_axes={"input": {0: "0", 1: "1", 2: "2"}}, test_with_inputs=x2, ) else: self.run_test(Squeeze(d), x1) def test_squeeze_without_no_op(self): x = torch.randn(2, 1, 4) self.squeeze_model_tests(1, x, None) @skipIfUnsupportedMinOpsetVersion(11) def test_squeeze_dynamic(self): x_squeeze = torch.randn(2, 1, 4) x_noop = torch.randn(2, 2, 3) self.squeeze_model_tests(1, x_squeeze, x_noop) def test_squeeze_neg_without_no_op(self): x = torch.randn(2, 1, 4) self.squeeze_model_tests(-2, x, None) @skipIfUnsupportedMinOpsetVersion(11) def test_squeeze_neg(self): x_squeeze = torch.randn(2, 1, 4) x_noop = torch.randn(2, 2, 3) self.squeeze_model_tests(-2, x_squeeze, x_noop) def test_squeeze_all_dims(self): x_squeeze = torch.randn(2, 1, 4) x_noop = torch.randn(2, 2, 3) self.squeeze_model_tests(None, x_squeeze, x_noop) @skipIfUnsupportedMinOpsetVersion(11) def test_squeeze_no_op(self): x_noop = torch.randn(2, 1, 4) x_squeeze = torch.randn(2, 2, 1) self.squeeze_model_tests(2, x_noop, x_squeeze) @skipIfUnsupportedMinOpsetVersion(11) def test_squeeze_runtime_dim(self): class Squeeze(torch.nn.Module): def forward(self, d1, d2): t = torch.zeros(d1[0], d2[0]) return t.squeeze(0) d1 = torch.tensor([1]) d3 = torch.tensor([3]) d4 = torch.tensor([4]) self.run_test(Squeeze(), (d1, d4), test_with_inputs=[(d3, d4)]) self.run_test(Squeeze(), (d3, d4), test_with_inputs=[(d1, d3)]) def test_squeeze(self): class Squeeze(torch.nn.Module): def forward(self, x): return torch.squeeze(x, dim=-2) x = torch.randn(2, 1, 4) self.run_test(Squeeze(), x) @skipIfUnsupportedMinOpsetVersion(13) def test_squeeze_dynamic_dim(self): class Squeeze(torch.nn.Module): def forward(self, x, dim: int): return torch.squeeze(x, dim) x = torch.randn(2, 1, 4) dim = 1 self.run_test(Squeeze(), (x, dim)) def test_unsqueeze(self): class Unsqueeze(torch.nn.Module): def forward(self, x): return torch.unsqueeze(x, dim=-2) x = torch.randn(2, 3, 4) self.run_test(Unsqueeze(), x) @skipIfUnsupportedMinOpsetVersion(13) def test_unsqueeze_dynamic_dim(self): class Unsqueeze(torch.nn.Module): def forward(self, x, dim: int): return torch.unsqueeze(x, dim) x = torch.randn(2, 1, 4) dim = -1 self.run_test(Unsqueeze(), (x, dim)) def test_maxpool_default_stride(self): class MaxPoolModel(torch.nn.Module): def forward(self, x): return torch.nn.functional.max_pool2d(x, 2) model = MaxPoolModel() x = torch.randn(10, 20, 16, 50) self.run_test(model, x) @skipIfUnsupportedMinOpsetVersion(8) def test_maxpool_adaptive(self): model = torch.nn.AdaptiveMaxPool1d((5), return_indices=False) x = torch.randn(20, 16, 50, requires_grad=True) y = torch.randn(32, 16, 50, requires_grad=True) self.run_test( model, x, input_names=["x"], dynamic_axes={"x": [0]}, test_with_inputs=[y] ) def test_maxpool_2d(self): model = torch.nn.MaxPool2d(5, padding=(1, 2)) x = torch.randn(1, 20, 16, 50, requires_grad=True) self.run_test(model, x) def test_maxpool_1d_ceil(self): model = torch.nn.MaxPool1d(3, 2, ceil_mode=True) x = torch.randn(20, 16, 50) self.run_test(model, x) def test_maxpool_2d_ceil(self): model = torch.nn.MaxPool2d(3, 2, ceil_mode=True) x = torch.randn(20, 16, 50, 32) self.run_test(model, x) def test_maxpool_3d_ceil(self): model = torch.nn.MaxPool3d(3, 2, ceil_mode=True) x = torch.randn(20, 16, 50, 44, 31) self.run_test(model, x) @skipIfUnsupportedMinOpsetVersion(8) def test_maxpool_with_indices(self): model = torch.nn.MaxPool1d(2, stride=1, return_indices=True) x = torch.randn(20, 16, 50) self.run_test(model, x) @skipIfUnsupportedMinOpsetVersion(10) def test_maxpool_dilation(self): model = torch.nn.MaxPool1d(2, stride=1, dilation=2) x = torch.randn(20, 16, 50) self.run_test(model, x) def test_avgpool_default_stride(self): class AvgPoolModel(torch.nn.Module): def forward(self, x): return torch.nn.functional.avg_pool2d(x, 2) model = AvgPoolModel() x = torch.randn(10, 20, 16, 50) self.run_test(model, x) def test_avgpool(self): model = torch.nn.AvgPool1d(2, stride=1) x = torch.randn(20, 16, 50) self.run_test(model, x) def test_avgpool_1d_ceil(self): model = torch.nn.AvgPool1d(3, 2, ceil_mode=True) x = torch.randn(1, 1, 7) self.run_test(model, x) def test_avgpool_2d_ceil(self): model = torch.nn.AvgPool2d(3, 2, ceil_mode=True) x = torch.randn(20, 16, 50, 32) self.run_test(model, x) def test_avgpool_3d_ceil(self): model = torch.nn.AvgPool3d(3, 2, ceil_mode=True) x = torch.randn(20, 16, 50, 44, 31) y = torch.randn(32, 8, 50, 44, 31) self.run_test( model, x, input_names=["x"], dynamic_axes={"x": [0, 1]}, test_with_inputs=[y], ) @skipIfUnsupportedMinOpsetVersion(9) def test_floating_point(self): class FloatingPoint(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x): if x.is_floating_point(): return x.new_zeros(x.shape) return x.new_zeros(x.shape) x = torch.randn(2, 3, 4) self.run_test( FloatingPoint(), x, input_names=["x"], dynamic_axes={"x": [0, 1, 2]} ) self.run_test(FloatingPoint(), x, remained_onnx_input_idx=[]) class FloatingPoint(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x): if x.size(0) > 1: a = x + 2 if a.is_floating_point(): return x + 1 return x + 1 return x x = torch.randn(2, 3, 4) self.run_test(FloatingPoint(), x) # Operator rank mismatch between outputs of two branches for opsets below 11. @skipIfUnsupportedMinOpsetVersion(11) def test_floating_point_infer_dtype(self): class FloatingPoint(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x): if x.size(0) > 1: a = x + 2 if a.is_floating_point(): return x.new_zeros(x.shape[1:]) return x.new_zeros(x.shape) return x x = torch.randn(2, 3, 4) self.run_test( FloatingPoint(), x, input_names=["x"], dynamic_axes={"x": [0, 1, 2]} ) self.run_test(FloatingPoint(), x, remained_onnx_input_idx=[]) class FloatingPoint(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x): if x.size(0) > 1: a = x + 2 if a.is_floating_point(): return x + 1 return x return x x = torch.randn(2, 3, 4).to(torch.int32) self.run_test(FloatingPoint(), x) @skipIfUnsupportedMinOpsetVersion(12) def test_prim_min(self): @torch.jit.script def list_append(boxes: List[Tensor]): temp = [] for i, b in enumerate( boxes ): # enumerate is creating a prim::min op in torch graph temp.append(torch.full_like(b[:, 1], i)) return temp[0] class Min(torch.nn.Module): def forward(self, x): boxes = [x for _ in range(3)] return list_append(boxes) x = torch.rand(5, 5) self.run_test(Min(), (x,)) class M(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x): i = 3 return min(x[i], i) x = torch.arange(6, dtype=torch.int64) self.run_test(M(), (x,)) def test_arithmetic(self): class ArithmeticModule(torch.nn.Module): def forward(self, x): x = x + 2 x = x - 4 x = x * 6 x = x / 8 return x x = torch.randn(2, 3, 4) self.run_test(ArithmeticModule(), x) def test_arithmetic_prim_long(self): class ArithmeticModule(torch.nn.Module): def forward(self, x, y: int): x = x + y x = x - y x = x * (y * 3) x = x / (y * 4) return x x = torch.randn(2, 3, 4) y = 2 self.run_test(ArithmeticModule(), (x, y)) class ArithmeticModule(torch.nn.Module): def forward(self, x): x = x + 2 x = x - 3 return x.shape[0] x = torch.randn(2, 3, 4) self.run_test(ArithmeticModule(), x, remained_onnx_input_idx=[]) def test_arithmetic_prim_float(self): class ArithmeticModule(torch.nn.Module): def forward(self, x, y: float): x = x + y x = x - y x = x * (y * 3) x = x / (y * 4) return x x = torch.randn(2, 3, 4) y = 2.5 self.run_test(ArithmeticModule(), (x, y)) class ArithmeticModule(torch.nn.Module): def forward(self, x): x = x + 2 x = x - 3 return x.shape[1] / 2 x = torch.randn(2, 3, 4) self.run_test(ArithmeticModule(), x, remained_onnx_input_idx=[]) def test_arithmetic_prim_bool(self): class ArithmeticModule(torch.nn.Module): def forward(self, x, y: int, z: bool, t: float): x = x + y x = x - y if z: x = x * (y * 3) x = x / (y * 4) return x / t, z x = torch.randn(2, 3, 4) y = 2 z = False t = 2.5 self.run_test(ArithmeticModule(), (x, y, z, t)) class ArithmeticModule(torch.nn.Module): def forward(self, x: int, y: int): return x == y x = 3 y = 2 self.run_test(ArithmeticModule(), (x, y)) # In tracing, None outputs are removed. In scripting they're kept but # we don't know Optional.elem_type, so we can't construct a valid Optional. # Tests for Optional outputs (control flow with None in one branch, # not-None in another) are in test_pytorch_onnx_no_runtime.py. @skipScriptTest() def test_tuple_with_none_outputs(self): class TupleModel(torch.nn.Module): def forward(self, x): return (x, (x, None, (x, None))) x = torch.randn(3, 4) self.run_test(TupleModel(), (x,)) # In scripting the first transpose node do not carry shape and dtype info. # The following test only works when onnx shape inference is enabled. def test_arithmetic_infer_dtype(self): class ArithmeticModule(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x): x = x.t() x = x + 2 x = x - 4 x = x * 6 x = x / 8 return x x = torch.randn(2, 3) self.run_test(ArithmeticModule(), x) def test_floor_div(self): class FloorDivModule(torch.nn.Module): def forward(self, x, y): return ( x // 3, x // 2.0, x.to(dtype=torch.float64) // 3, x.to(dtype=torch.float64) // 2.0, x.to(dtype=torch.int64) // 3, x.to(dtype=torch.int64) // 2.0, x // (y + 1.0).to(dtype=torch.int64), x // y, x.to(dtype=torch.float64) // y.to(dtype=torch.int64), x.to(dtype=torch.float64) // y.to(dtype=torch.float64), x.to(dtype=torch.int64) // y.to(dtype=torch.int64), x.to(dtype=torch.int64) // y, ) x = torch.arange(-2, 4).reshape(2, 3, 1) y = torch.arange(1, 2 * 3 * 4 + 1).reshape(2, 3, 4) self.run_test(FloorDivModule(), (x, y)) def test_floor_div_script(self): class FloorDivModule(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x, y): return x // 3, x // 2.0, x // y x = torch.arange(-2, 4).reshape(2, 3, 1) y = torch.randn(2, 3, 4) self.run_test(FloorDivModule(), (x, y)) @skipIfUnsupportedMinOpsetVersion(9) def test_floordiv(self): class FloordivModule(torch.nn.Module): def forward(self, x): return x.new_zeros(x.size(2) // x.size(1)) x = torch.randn(2, 3, 4) self.run_test( FloordivModule(), x, input_names=["x"], dynamic_axes={"x": [0, 1, 2]} ) self.run_test(FloordivModule(), (x,), remained_onnx_input_idx=[]) def test_div(self): class DivModule(torch.nn.Module): def forward(self, x, y): return x / y, torch.true_divide(x, y) x = torch.randn(2, 3, 4).to(torch.int) y = torch.arange(1, 2 * 3 * 4 + 1).reshape(2, 3, 4).to(torch.int) self.run_test(DivModule(), (x, y)) self.run_test(DivModule(), (x.float(), y.float())) # Note: div cannot (generally) be exported via scripting # since its type promotion logic is dependent on knowing the scalar types # of the input tensors. That is, the ONNX graph is dependent on the # data type of the inputs. This makes it appropriate for tracing only. def test_div_promotion_trace(self): class DivModule(torch.nn.Module): def forward(self, x, y): return x / y, torch.true_divide(x, y) x = torch.randn(2, 3, 4).to(torch.int) y = torch.arange(1, 2 * 3 * 4 + 1).reshape(2, 3, 4).to(torch.int) prev_default = torch.get_default_dtype() torch.set_default_dtype(torch.float) self.run_test(torch.jit.trace(DivModule(), (x, y)), (x, y)) torch.set_default_dtype(torch.double) self.run_test(torch.jit.trace(DivModule(), (x, y)), (x, y)) torch.set_default_dtype(prev_default) # In scripting x, y do not carry shape and dtype info. # The following test only works when onnx shape inference is enabled. def test_div_promotion_script(self): class DivModule(torch.nn.Module): def forward(self, x, y): # Add transpose to hide shape/type information # Otherwise shape and type are still avaiable from input. x = x.transpose(1, 2) y = y.transpose(1, 2) return x / y, torch.true_divide(x, y) x = torch.randn(2, 3, 4).to(torch.int) y = torch.arange(1, 2 * 3 * 4 + 1).reshape(2, 3, 4).to(torch.int) prev_default = torch.get_default_dtype() # 1. x,y are int, and output is float. # This can be handled by the default case, where both are cast to float. # It works even if type of x, y are unknown. torch.set_default_dtype(torch.float) self.run_test(torch.jit.script(DivModule()), (x, y)) # 2. x,y are int, and output is double. # This can be handled by the default case, where both are cast to double. # It works even if type of x, y are unknown. torch.set_default_dtype(torch.double) self.run_test(torch.jit.script(DivModule()), (x, y)) # 3. x is int, y is double, and output is double. # This can only be handled when both type of x and y are known. torch.set_default_dtype(prev_default) x = torch.randn(2, 3, 4).to(torch.int) y = torch.arange(1, 2 * 3 * 4 + 1).reshape(2, 3, 4).to(torch.double) self.run_test(torch.jit.script(DivModule()), (x, y)) def test_div_rounding_mode(self): class TrueDivModule(torch.nn.Module): def forward(self, x, y): return ( x.div(y, rounding_mode=None), torch.div(x, y, rounding_mode=None), ) class TruncDivModule(torch.nn.Module): def forward(self, x, y): return ( x.div(y, rounding_mode="trunc"), torch.div(x, y, rounding_mode="trunc"), ) class FloorDivModule(torch.nn.Module): def forward(self, x, y): return ( x.div(y, rounding_mode="floor"), torch.div(x, y, rounding_mode="floor"), ) modules = [TrueDivModule(), TruncDivModule(), FloorDivModule()] x = (torch.randn(2, 3, 4) * 100).to(torch.int) y = torch.arange(1, 2 * 3 * 4 + 1).reshape(2, 3, 4).to(torch.int) for module in modules: self.run_test(module, (x, y)) self.run_test(torch.jit.trace(module, (x, y)), (x, y)) self.run_test(torch.jit.script(module), (x, y)) x = torch.randn(2, 3, 4) y = torch.rand(2, 3, 4) * 10.0 + 0.1 for module in modules: self.run_test(module, (x, y)) self.run_test(torch.jit.trace(module, (x, y)), (x, y)) self.run_test(torch.jit.script(module), (x, y)) def test_slice_trace(self): class MyModule(torch.nn.Module): def forward(self, x): return x[0:1] x = torch.randn(3) self.run_test(MyModule(), x) def test_slice_neg(self): class NegSlice(torch.nn.Module): def forward(self, x): return x[-1:] x = torch.randn(3, 4, 5) self.run_test(NegSlice(), x) def test_slice_neg_large(self): class NegSlice(torch.nn.Module): def forward(self, x): return x[:, :, -3:-1, :, -1] x = torch.randn(3, 4, 5, 6, 7) self.run_test(NegSlice(), x) def test_slice_neg_large_negone(self): class NegSlice(torch.nn.Module): def forward(self, x): return x[:, :, :, :, -1] x = torch.randn(3, 4, 5, 6, 7) self.run_test(NegSlice(), x) @skipIfUnsupportedMinOpsetVersion(11) def test_slice_with_input_index(self): class InputIndexSlice(torch.nn.Module): def forward(self, x, y): x[: y.size(0), 0, :] = y return x x = torch.zeros((56, 6, 256)) y = torch.rand((22, 256)) self.run_test(InputIndexSlice(), (x, y)) @skipIfUnsupportedMinOpsetVersion(10) @skipScriptTest() # scripting tuple/list append def test_slice_dynamic(self): class DynamicSliceExportMod(torch.nn.Module): def forward(self, x): results = [] for i in range(4): results.append(x[: x.size(0) - i, i : x.size(2), i:3]) return tuple(results) x = torch.rand(5, 5, 5) y = torch.randn(6, 7, 8) self.run_test( DynamicSliceExportMod(), x, test_with_inputs=[y], input_names=["input_1"], output_names=["output_1"], dynamic_axes={"input_1": [0, 1, 2], "output_1": [0, 1, 2]}, ) @skipIfUnsupportedMinOpsetVersion(10) def test_slice_dynamic_script(self): class DynamicSliceModel(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x): return x[1 : x.size(1)] x = torch.rand(1, 2) self.run_test(DynamicSliceModel(), x) @skipIfUnsupportedMinOpsetVersion(10) def test_slice_dynamic_shape_script(self): class DynamicSliceModel(torch.nn.Module): def forward(self, x): return x.new_zeros(x.shape[1 : x.size(2)]) x = torch.rand(1, 2, 3, 4) self.run_test( DynamicSliceModel(), x, input_names=["x"], dynamic_axes={"x": [0, 1, 2, 3]} ) self.run_test(DynamicSliceModel(), x, remained_onnx_input_idx=[]) @skipIfUnsupportedMinOpsetVersion(10) @skipScriptTest() # scripting tuple/list append def test_slice_dynamic_to_end(self): class DynamicSliceExportMod(torch.nn.Module): def forward(self, x): results = [] for i in range(4): results.append(x[:, i:, x.size(2) - 5]) return tuple(results) x = torch.rand(5, 5, 5) self.run_test( DynamicSliceExportMod(), x, dynamic_axes={"input_1": [0, 1, 2], "output_1": [0, 1, 2]}, ) def test_square(self): class Square(torch.nn.Module): def forward(self, x): return torch.square(x) x = torch.randn(2, 3, 4) self.run_test(Square(), x) @skipIfUnsupportedMinOpsetVersion(9) def test_arange_dynamic(self): class ArangeModel(torch.nn.Module): def forward(self, input): return ( torch.arange(input.shape[0]), torch.arange(12), torch.arange(start=input.shape[0], end=input.shape[0] + 5), ) x = torch.randn(5, 3, 2) y = torch.randn(8, 3, 2) self.run_test( ArangeModel(), x, test_with_inputs=[y], input_names=["input_1"], output_names=["output_1", "output_2", "output_3"], dynamic_axes={"input_1": [0], "output_1": [0]}, ) self.run_test( torch.jit.script(ArangeModel()), x, test_with_inputs=[y], input_names=["input_1"], output_names=["output_1", "output_2", "output_3"], dynamic_axes={"input_1": [0], "output_1": [0]}, ) @skipIfUnsupportedMinOpsetVersion(9) def test_dynamic_arange_out(self): class ArangeOutModel(torch.nn.Module): def forward(self, end): out_t = torch.tensor([1], dtype=torch.int64) return torch.arange(end, out=out_t) x = torch.tensor(8) self.run_test(ArangeOutModel(), (x)) @skipIfUnsupportedMinOpsetVersion(9) def test_dynamic_arange_start_out(self): class ArangeStartOutModel(torch.nn.Module): def forward(self, start, end): out_t = torch.tensor([1], dtype=torch.int64) return torch.arange(start.size(0), end, out=out_t) x = torch.randn(2, 3, 4) y = torch.tensor(8) self.run_test( ArangeStartOutModel(), (x, y), input_names=["x", "y"], dynamic_axes={"x": [0, 1, 2]}, ) self.run_test(ArangeStartOutModel(), (x, y), remained_onnx_input_idx=[1]) @skipIfUnsupportedMinOpsetVersion(9) def test_linspace(self): class LinspaceModel(torch.nn.Module): def forward(self, start, end, steps): return torch.linspace(start, end, steps) x = torch.tensor(3, dtype=torch.float) y = torch.tensor(10, dtype=torch.float) z = torch.tensor(5, dtype=torch.int) self.run_test(LinspaceModel(), (x, y, z)) @skipIfUnsupportedMinOpsetVersion(9) def test_linspace_negative_start(self): class LinspaceModel(torch.nn.Module): def forward(self, start, end, steps): return torch.linspace(start, end, steps) x = torch.tensor(-1, dtype=torch.float) y = torch.tensor(1, dtype=torch.float) z = torch.tensor(6, dtype=torch.int) self.run_test(LinspaceModel(), (x, y, z)) @skipIfUnsupportedMinOpsetVersion(9) def test_arange_with_floats_out(self): class ArangeModelEnd(torch.nn.Module): def forward(self, end): out_t = torch.tensor([1], dtype=torch.float) return torch.arange(end, out=out_t) y = torch.tensor(8.5, dtype=torch.float) self.run_test(ArangeModelEnd(), (y)) class ArangeModelStep(torch.nn.Module): def forward(self, start, end): out_t = torch.tensor([1], dtype=torch.float) return torch.arange(start.size(0), end, 1.5, out=out_t) x = torch.randn(2, 3, 4) y = torch.tensor(8.5, dtype=torch.float) self.run_test( ArangeModelStep(), (x, y), input_names=["x", "y"], dynamic_axes={"x": [0, 1, 2]}, ) self.run_test(ArangeModelStep(), (x, y), remained_onnx_input_idx=[1]) @skipIfUnsupportedMinOpsetVersion(9) def test_arange_with_floats(self): class ArangeModelEnd(torch.nn.Module): def forward(self, end): return torch.arange(end) y = torch.tensor(8.5, dtype=torch.float) self.run_test(ArangeModelEnd(), (y)) class ArangeModelStep(torch.nn.Module): def forward(self, start, end): return torch.arange(start.size(0), end, 1.5) x = torch.randn(2, 3, 4) y = torch.tensor(8.5, dtype=torch.float) self.run_test( ArangeModelStep(), (x, y), input_names=["x", "y"], dynamic_axes={"x": [0, 1, 2]}, ) self.run_test(ArangeModelStep(), (x, y), remained_onnx_input_idx=[1]) class ArangeModelStepNeg(torch.nn.Module): def forward(self, start, end): return torch.arange(end, start.size(0), -1.5) x = torch.randn(2, 3, 4) y = torch.tensor(8.5, dtype=torch.float) self.run_test( ArangeModelStepNeg(), (x, y), input_names=["x", "y"], dynamic_axes={"x": [0, 1, 2]}, ) self.run_test(ArangeModelStepNeg(), (x, y), remained_onnx_input_idx=[1]) class ArangeModelStart(torch.nn.Module): def forward(self, start, end): return torch.arange(start.size(0), end) x = torch.randn(2, 3, 4) y = torch.tensor(8.5, dtype=torch.float) self.run_test( ArangeModelStart(), (x, y), input_names=["x", "y"], dynamic_axes={"x": [0, 1, 2]}, ) self.run_test(ArangeModelStart(), (x, y), remained_onnx_input_idx=[1]) @skipIfUnsupportedMinOpsetVersion(9) def test_arange_with_floats_override(self): class ArangeModelEnd(torch.nn.Module): def forward(self, end): return torch.arange(end, dtype=torch.int64) y = torch.tensor(8.5, dtype=torch.float) self.run_test(ArangeModelEnd(), (y)) class ArangeModelStep(torch.nn.Module): def forward(self, start, end): return torch.arange(start.size(0), end, 1.5, dtype=torch.int64) x = torch.randn(2, 3, 4) y = torch.tensor(8.5, dtype=torch.float) self.run_test( ArangeModelStep(), (x, y), input_names=["x", "y"], dynamic_axes={"x": [0, 1, 2]}, ) self.run_test(ArangeModelStep(), (x, y), remained_onnx_input_idx=[1]) @skipIfUnsupportedMinOpsetVersion(11) def test_arange_out(self): class ArangeOutModel(torch.nn.Module): def forward(self, end): out_t = torch.tensor([1], dtype=torch.float) return torch.arange(end, out=out_t) x = torch.tensor(8.5, dtype=torch.float) self.run_test(ArangeOutModel(), (x)) @skipIfUnsupportedMinOpsetVersion(11) def test_arange_start_out(self): class ArangeStartOutModel(torch.nn.Module): def forward(self, start, end): out_t = torch.tensor([1], dtype=torch.float) return torch.arange(start.size(0), end, out=out_t) x = torch.randn(2, 3, 4) y = torch.tensor(8.5, dtype=torch.float) self.run_test( ArangeStartOutModel(), (x, y), input_names=["x", "y"], dynamic_axes={"x": [0, 1, 2]}, ) self.run_test(ArangeStartOutModel(), (x, y), remained_onnx_input_idx=[1]) @skipIfUnsupportedMinOpsetVersion(11) def test_arange_no_type(self): class ArangeModel(torch.nn.Module): def forward(self, end): return torch.arange(end), torch.arange(0, end) x = torch.tensor(6.2, dtype=torch.float) self.run_test(ArangeModel(), x) @skipIfUnsupportedMinOpsetVersion(9) def test_size(self): class SizeModel(torch.nn.Module): def forward(self, input): return ( torch.arange(input.size(0)), torch.arange(input.size(-1)), torch.ones(input.shape), ) x = torch.randn(5, 3, 2) self.run_test(SizeModel(), x, input_names=["x"], dynamic_axes={"x": [0, 1, 2]}) self.run_test(SizeModel(), x, remained_onnx_input_idx=[]) @skipIfUnsupportedMinOpsetVersion(9) @skipScriptTest() # x.stride() not scriptable def test_as_strided(self): class Model(torch.nn.Module): def forward(self, x): chunk_size = list(x.size()) chunk_size[1] = chunk_size[1] * 2 - 1 chunk_stride = list(x.stride()) chunk_stride[1] = chunk_stride[1] // 2 return x.as_strided( (3, 3, 3), (1, 4, 2), storage_offset=2 ), x.as_strided(chunk_size, chunk_stride) x = torch.randn(5, 8, 7) self.run_test(Model(), x) @skipScriptTest() # Ellipses followed by tensor indexing not scriptable def test_tensor_index_advanced_indexing_ellipsis(self): class MyModel(torch.nn.Module): def forward(self, input): return input[..., torch.tensor([2, 1]), torch.tensor([0, 3])] m1 = torch.randn(3, 4, 5, 6, 7) self.run_test(MyModel(), (m1,)) def test_tensor_index_advanced_indexing(self): class MyModel(torch.nn.Module): def forward(self, input): return input[ :, torch.tensor([[0, 2], [1, 1]]), :, torch.tensor([2, 1]), torch.tensor([0, 3]), ] m1 = torch.randn(3, 4, 5, 6, 7) self.run_test(MyModel(), (m1,)) class MyModel(torch.nn.Module): def forward(self, input): return input[ :, torch.tensor([0, 2]), None, 2:4, torch.tensor([[1, 3], [4, 0]]) ] self.run_test(MyModel(), (m1,)) class MyModel(torch.nn.Module): def forward(self, input): return input[ :, torch.tensor([0, 2]), torch.tensor([1]), 2:4, torch.tensor([[1], [4]]), ] self.run_test(MyModel(), (m1,)) def test_tensor_index_advanced_indexing_consecutive(self): class MyModel(torch.nn.Module): def forward(self, input): return input[ :, torch.tensor([0, 2]), torch.tensor([[1, 3], [4, 0]]), None ] m1 = torch.randn(3, 4, 5, 6, 7) self.run_test(MyModel(), (m1,)) @skipIfUnsupportedMinOpsetVersion(11) def test_index_put(self): class IndexPutModel(torch.nn.Module): def forward(self, x, ind, update): x[ind] = update return x x = torch.randn(3, 4) ind = torch.tensor([1], dtype=torch.long) update = torch.ones(4) self.run_test(IndexPutModel(), (x, ind, update)) @skipIfUnsupportedMinOpsetVersion(11) def test_index_put_singular(self): class IndexPutBoolModel(torch.nn.Module): def forward(self, mask, indices): mask[indices] = True return mask mask = torch.zeros(100, dtype=torch.bool) indices = (torch.rand(25) * mask.shape[0]).to(torch.int64) self.run_test(IndexPutBoolModel(), (mask, indices)) class IndexPutFloatModel(torch.nn.Module): def forward(self, mask, indices): mask[indices] = torch.tensor(5.5) return mask mask = torch.rand(100, dtype=torch.float) indices = (torch.rand(50) * mask.shape[0]).to(torch.int64) self.run_test(IndexPutFloatModel(), (mask, indices)) @skipIfUnsupportedMinOpsetVersion(11) def test_index_put_accumulate(self): class IndexPutModel(torch.nn.Module): def forward(self, x, ind, update): return x.index_put((ind,), update, accumulate=True) x = torch.randn(3, 4) ind = torch.tensor([2], dtype=torch.long) update = torch.ones(4) self.run_test(IndexPutModel(), (x, ind, update)) @skipIfUnsupportedMinOpsetVersion(11) def test_index_put_slice_index(self): class IndexPutModel(torch.nn.Module): def forward(self, x, update): x[1:2, 1:3, torch.tensor([1])] += update return x x = torch.randn(3, 4, 5) update = torch.tensor([10, 15]).view(1, 2, 1) self.run_test(IndexPutModel(), (x, update)) class IndexPutModel2(torch.nn.Module): def forward(self, x, update): x[torch.tensor([0, 2]), torch.tensor([1, 2])] += update return x x = torch.randn(3, 4, 5) update = torch.randn(2, 5) self.run_test(IndexPutModel2(), (x, update)) class IndexPutModel3(torch.nn.Module): def forward(self, x, update): x[torch.tensor([0, 2]), 1:2] += update return x x = torch.randn(3, 4, 5) update = torch.tensor([10, 15]).view(2, 1, 1) self.run_test(IndexPutModel3(), (x, update)) class IndexPutModel4(torch.nn.Module): def forward(self, x, update): x[torch.tensor([0, 2]), 2] += update return x x = torch.randn(3, 4, 5) update = torch.tensor([10, 15]).view(2, 1) self.run_test(IndexPutModel4(), (x, update)) class IndexPutModel5(torch.nn.Module): def forward(self, x, update): x[1:3, torch.tensor([0, 2]), 2] += update return x x = torch.randn(3, 4, 5) update = torch.tensor([10, 15]).view(2, 1) self.run_test(IndexPutModel5(), (x, update)) class IndexPutModel6(torch.nn.Module): def forward(self, x, update): x[1:3, 0] = update return x x = torch.randn(3, 4, 5) update = torch.arange(2 * 5).to(torch.float).view(2, 5) self.run_test(IndexPutModel6(), (x, update)) class IndexPutModel7(torch.nn.Module): def forward(self, x, update): x[1:, 0] = update return x x = torch.randn(3, 4, 5) update = torch.arange(2 * 5).to(torch.float).view(2, 5) self.run_test(IndexPutModel7(), (x, update)) class IndexPutModel8(torch.nn.Module): def forward(self, x, update): x[:3, 0] = update return x x = torch.randn(3, 4, 5) update = torch.arange(3 * 5).to(torch.float).view(3, 5) self.run_test(IndexPutModel8(), (x, update)) class IndexPutModel9(torch.nn.Module): def forward(self, poses): w = 32 x = poses[:, :, 0] - (w - 1) // 2 boxes = torch.zeros([poses.shape[0], 17, 4]) boxes[:, :, 0] = x return boxes x = torch.zeros([2, 17, 3], dtype=torch.int64) self.run_test(IndexPutModel9(), (x,)) class IndexPutModel10(torch.nn.Module): def forward(self, x, ind, update): x[ind, 1:3] = update.view(1, 1, 1, 5).expand(2, 2, 2, 5) return x x = torch.randn(3, 4, 5) ind = torch.tensor([[0, 2], [1, 1]]) update = torch.randn(5) self.run_test(IndexPutModel10(), (x, ind, update)) @skipIfUnsupportedMinOpsetVersion(11) @skipScriptTest() # Ellipses followed by tensor indexing not scriptable def test_index_put_ellipsis(self): class IndexPutModel(torch.nn.Module): def forward(self, x, update): x[..., torch.tensor([2, 1, 3]), 2:4] += update return x x = torch.randn(3, 4, 5, 6, 7) update = torch.randn(3, 1, 1, 3, 2) self.run_test(IndexPutModel(), (x, update)) class IndexPutModel2(torch.nn.Module): def forward(self, x, update): x[2, ..., torch.tensor([2, 1, 3]), 2:4] += update return x x = torch.randn(3, 4, 5, 6, 7) update = torch.randn(4, 1, 3, 2) self.run_test(IndexPutModel2(), (x, update)) @skipIfUnsupportedMinOpsetVersion(11) def test_index_put_loop(self): @torch.jit.script def ngram_attention_bias( sequence_length: int, ngram: int, device: torch.device, dtype: torch.dtype ): bias = torch.ones( (ngram, sequence_length), device=device, dtype=dtype ) * float("-inf") for stream_idx in range(ngram): for i in range(sequence_length): bias = bias * 2 bias[stream_idx, i] = 5 bias = bias * 5 bias[0, 0] = 5 for stream_idx in range(ngram): for i in range(sequence_length): bias[stream_idx, i] = 5 bias[0, i] = 5 return bias class ScriptModel(torch.nn.Module): def __init__(self): super(ScriptModel, self).__init__() self.ngram = 2 self.max_target_positions = 512 def forward(self, hidden_states): seq_length, batch_size = hidden_states.shape[:2] predict_causal_mask = ngram_attention_bias( self.max_target_positions, self.ngram, hidden_states.device, hidden_states.dtype, ) predict_causal_mask = predict_causal_mask[:, :seq_length] return predict_causal_mask x = torch.randn(6, 2) y = torch.randn(4, 1) self.run_test( ScriptModel(), x, input_names=["x"], dynamic_axes={"x": {0: "seq_length", 1: "batch_size"}}, test_with_inputs=[y], ) @skipIfUnsupportedMinOpsetVersion(11) def test_copy_(self): class CopyModel(torch.nn.Module): def forward(self, x, data): x[1:3] = data return x x = torch.randn(3, 4) update = torch.randn(2, 4) self.run_test(CopyModel(), (x, update)) # mixed slice and select class CopyModel2(torch.nn.Module): def forward(self, x, data): x[1:3, 0] = data return x x = torch.randn(3, 4) update = torch.tensor([0], dtype=torch.float32) self.run_test(CopyModel2(), (x, update)) update = torch.tensor([2, 3], dtype=torch.float32) self.run_test(CopyModel2(), (x, update)) update = torch.randn(2) self.run_test(CopyModel2(), (x, update)) class CopyModel3(torch.nn.Module): def forward(self, x, data): x[1, 1:3] = data return x x = torch.randn(3, 4) update = torch.tensor([0], dtype=torch.float32) self.run_test(CopyModel3(), (x, update)) update = torch.tensor([2, 3], dtype=torch.float32) self.run_test(CopyModel3(), (x, update)) update = torch.randn(2) self.run_test(CopyModel3(), (x, update)) class CopyModel4(torch.nn.Module): def forward(self, x, ind, data): x[ind] = data return x x = torch.randn(3, 4) ind = torch.tensor(2) data = torch.randn(4) self.run_test(CopyModel4(), (x, ind, data)) class CopyModel5(torch.nn.Module): def forward(self, x, mask): if mask is not None: x.copy_(mask) return x x = torch.randn(3, 4) mask = torch.randn(3, 1) self.run_test(CopyModel5(), (x, mask)) @skipIfUnsupportedMinOpsetVersion(11) @skipScriptTest() # Model not scriptable (output with shape doesn't match the broadcast shape) def test_copy_tracing(self): class CopyModel(torch.nn.Module): def forward(self, x, data): x[1, 1:3] = data return x x = torch.randn(3, 4) update = torch.randn(1, 2) self.run_test(CopyModel(), (x, update)) @skipIfUnsupportedMinOpsetVersion(11) def test_copy_ellipsis(self): class CopyModel(torch.nn.Module): def forward(self, x, update): x[..., 1] = update return x x = torch.randn(2, 3, 4) update = torch.ones(1) self.run_test(CopyModel(), (x, update)) x = torch.randn(2, 3, 4, 5, 6) update = torch.ones(1) self.run_test(CopyModel(), (x, update)) @skipIfUnsupportedMinOpsetVersion(11) def test_copy_ellipsis_script(self): class CopyModel(torch.nn.Module): def forward(self, x, update): # Insert reshape node to ensure no shape/type info for # x in scripting, without onnx shape inference. x = x.reshape(4, 3, 5, 6) x[2, ..., 1:3] = update return x x = torch.randn(3, 4, 5, 6) update = torch.ones(1) self.run_test(CopyModel(), (x, update)) @skipIfUnsupportedMinOpsetVersion(10) def test_flip(self): class MyModule(torch.nn.Module): def forward(self, x): return torch.flip(x, dims=[0]) x = torch.tensor(np.arange(6.0).reshape(2, 3)) self.run_test(MyModule(), x) def test_random(self): class RandN(torch.nn.Module): def forward(self, x): return torch.mul(x, (torch.randn(2, 3, 4) + x).size(0)) x = torch.randn(2, 3, 4) self.run_test(RandN(), x) class Rand(torch.nn.Module): def forward(self, x): return torch.mul(x, (torch.rand(2, 3, 4) + x).size(0)) x = torch.randn(2, 3, 4) self.run_test(Rand(), x) @skipIfUnsupportedMinOpsetVersion(9) def test_random_dynamic_size(self): class RandN(torch.nn.Module): def forward(self, x): return torch.mul(x, torch.randn(x.size()).size(1)) x = torch.randn(2, 3, 4) self.run_test(RandN(), x) class Rand(torch.nn.Module): def forward(self, x): return torch.mul(x, torch.rand(x.size()).size(1)) x = torch.randn(2, 3, 4) self.run_test(Rand(), x) def test_random_like(self): class RandNLike(torch.nn.Module): def forward(self, x): return torch.mul(x, torch.randn_like(x).size(0)) x = torch.randn(2, 3, 4) self.run_test(RandNLike(), x) self.run_test(torch.jit.script(RandNLike()), x) class RandLike(torch.nn.Module): def forward(self, x): return torch.mul(x, torch.rand_like(x).size(0)) x = torch.randn(2, 3, 4) self.run_test(RandLike(), x) self.run_test(torch.jit.script(RandLike()), x) def test_random_like_dtype(self): class RandNLike(torch.nn.Module): def forward(self, x): return torch.mul( x.to(torch.double), torch.randn_like(x, dtype=torch.double).size(0) ) x = torch.randn(2, 3, 4) self.run_test(RandNLike(), x) class RandLike(torch.nn.Module): def forward(self, x): return torch.mul( x.to(torch.double), torch.rand_like(x, dtype=torch.double).size(0) ) x = torch.randn(2, 3, 4) self.run_test(RandLike(), x) def test_bernoulli(self): class Bernoulli(torch.nn.Module): def forward(self, x): return torch.mul(x, torch.bernoulli(x).size(0)) x = torch.empty(3, 3).uniform_(0, 1) self.run_test(Bernoulli(), x) x = torch.empty(2, 3, 3, dtype=torch.double).uniform_(0, 1) self.run_test(Bernoulli(), x) @unittest.skip("Bug in ORT, skip test until rel-1.11.") @skipIfUnsupportedMinOpsetVersion(14) def test_reshape_allowzero(self): class ReshapeModel(torch.nn.Module): def forward(self, x): x = x.reshape(3, 4, 0) return x x = torch.randn(0, 3, 4) self.run_test(ReshapeModel(), x) def test_reshape_different_rank(self): class ReshapeModel(torch.nn.Module): def forward(self, x): x = x.reshape(-1, 2, 4, 4, 5, 5) return x x = torch.randn(1, 32, 5, 5) self.run_test(ReshapeModel(), x) def _interpolate(self, x, mode, use_size, is_upsample, align_corners=False): class MyModel(torch.nn.Module): __constants__ = [ "mode", "use_size", "is_upsample", "size", "scale", "size_array", "scale_array", "align_corners", ] def __init__(self, mode, use_size, is_upsample, align_corners): super(MyModel, self).__init__() self.mode = mode self.use_size = use_size self.is_upsample = is_upsample self.align_corners = align_corners self.scale = 2.0 if self.is_upsample else 0.5 self.size = 24 if self.is_upsample else 2 if x.dim() == 3: self.scale_array = [2.3] self.size_array = [16] elif x.dim() == 4: self.scale_array = [2.3, 3.1] self.size_array = [16, 32] else: self.scale_array = [2.3, 3.1, 4.6] self.size_array = [16, 32, 64] def forward(self, x): if self.use_size: if self.align_corners: return torch.nn.functional.interpolate( x, mode=self.mode, size=self.size, align_corners=True ), torch.nn.functional.interpolate( x, mode=self.mode, size=self.size_array, align_corners=True ) return torch.nn.functional.interpolate( x, mode=self.mode, size=self.size ), torch.nn.functional.interpolate( x, mode=self.mode, size=self.size_array ) if self.align_corners: return torch.nn.functional.interpolate( x, mode=self.mode, scale_factor=self.scale, recompute_scale_factor=False, ), torch.nn.functional.interpolate( x, mode=self.mode, scale_factor=self.scale_array, recompute_scale_factor=False, ) return torch.nn.functional.interpolate( x, mode=self.mode, scale_factor=self.scale, recompute_scale_factor=False, ), torch.nn.functional.interpolate( x, mode=self.mode, scale_factor=self.scale_array, recompute_scale_factor=False, ) model = MyModel(mode, use_size, is_upsample, align_corners) self.run_test(model, x, atol=1e-6) def _interpolate_tests(self, is_upsample): # - cubic mode is not supported for opsets below 11; # - linear mode does not match for opsets below 11; modes = ["nearest", "linear", "bicubic"] if self.opset_version < 11: modes = ["nearest"] x = [ torch.randn(1, 2, 6, requires_grad=True), torch.randn(1, 2, 4, 6, requires_grad=True), torch.randn(1, 2, 4, 4, 6, requires_grad=True), ] for mode in modes: for xi in x: mode_i = mode # TODO: enable bicubic downsample when ORT precision loss fixed if mode == "bicubic" and xi.dim() != 4: continue elif mode == "linear": if xi.dim() == 3: # TODO : enable when linear mode is implemented for 1d inputs in ORT continue elif xi.dim() == 4: mode_i = "bilinear" elif xi.dim() == 5: # TODO : enable when linear mode is implemented for 3d inputs in ORT mode_i = "trilinear" continue self._interpolate(xi, mode_i, True, is_upsample) # test with align_corners if supported if mode != "nearest": self._interpolate(xi, mode_i, True, is_upsample, True) # the following cases, require dynamic sizes/scales, # which which is not supported for opset_version < 9 if self.opset_version >= 9: self._interpolate(xi, mode_i, True, is_upsample) # test with align_corners if supported if mode != "nearest": self._interpolate(xi, mode_i, False, is_upsample, True) self._interpolate(xi, mode_i, False, is_upsample) # ONNX export failed on interpolate scripting because dynamic size not supported for opsets below 9. @skipIfUnsupportedMinOpsetVersion(9) def test_interpolate_upsample(self): self._interpolate_tests(True) @skipIfUnsupportedMaxOpsetVersion(8) @skipScriptTest() # Scripting supported for opsets > 8. See test_interpolate_upsample def test_interpolate_upsample_trace(self): self._interpolate_tests(True) @skipIfUnsupportedMinOpsetVersion(9) def test_interpolate_function_substitution(self): class ScriptModel(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x): return torch.nn.functional.interpolate( x, mode="nearest", scale_factor=2.0 ) class ScriptModule(torch.jit.ScriptModule): def __init__(self): super(ScriptModule, self).__init__() self.submodule = ScriptModel() @torch.jit.script_method def forward(self, input): return self.submodule(input) x = torch.randn(1, 2, 4, 4, 6) self.run_test(ScriptModule(), (x,)) @torch.jit.script def script_method(x): return torch.nn.functional.interpolate(x, mode="nearest", scale_factor=2.0) class TracingModule(torch.nn.Module): def forward(self, x): return script_method(x) self.run_test(TracingModule(), (x,)) @skipIfUnsupportedMinOpsetVersion(10) def test_interpolate_downsample(self): self._interpolate_tests(False) @skipIfUnsupportedMinOpsetVersion(11) def test_interpolate_no_shape(self): class MyModel(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x, y): x = torch.add(x, x) out1 = torch.nn.functional.interpolate( x, mode="bilinear", size=(16, 16), align_corners=False ) out2 = torch.nn.functional.interpolate( x, mode="nearest", size=(int(y.size(0)), int(y.size(1))) ) return out1, out2 x = torch.randn(1, 2, 4, 4, requires_grad=True) y = torch.randn(16, 16, requires_grad=True) self.run_test( MyModel(), (x, y), input_names=["x", "y"], dynamic_axes={"x": [0, 1, 2, 3], "y": [0, 1]}, ) self.run_test(MyModel(), (x, y), remained_onnx_input_idx=[0]) @skipScriptTest() # scripting raises OnnxRuntimeError def test_interpolate_adaptive_pooling_error(self): x = torch.randn(1, 2, 6, requires_grad=True) with self.assertRaises(RuntimeError) as cm: self._interpolate(x, "area", True, True) with self.assertRaises(RuntimeError) as cm: self._interpolate(x, "area", False, True) def test_groupnorm(self): model = torch.nn.GroupNorm(3, 6, 0.002) x = torch.randn(4, 6, 180, 180, 180) self.run_test(model, x) model = torch.nn.GroupNorm(1, 6, 0.002) x = torch.randn(4, 6, 180, 180) self.run_test(model, x) model = torch.nn.GroupNorm(6, 6, 0.002) x = torch.randn(4, 6, 180, 180) self.run_test(model, x) def test_groupnorm_noaffine(self): model = torch.nn.GroupNorm(4, 8, 0.002, affine=False) x = torch.randn(3, 8, 224, 224) self.run_test(model, x) model = torch.nn.GroupNorm(1, 6, 0.002, affine=False) x = torch.randn(4, 6, 180, 180) self.run_test(model, x) model = torch.nn.GroupNorm(6, 6, 0.002, affine=False) x = torch.randn(4, 6, 180, 180) self.run_test(model, x) @skipIfUnsupportedMinOpsetVersion(9) def test_listunpack(self): class ListUnpack(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x): a, b = x.shape return x.new_zeros((a, b)) x = torch.randn(2, 3) self.run_test(ListUnpack(), x, input_names=["x"], dynamic_axes={"x": [0, 1]}) self.run_test(ListUnpack(), x, remained_onnx_input_idx=[]) class ListUnpackSlice(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x): a, b = x.shape[2:] return x.new_zeros((a, b)) x = torch.randn(2, 3, 4, 5) self.run_test( ListUnpackSlice(), x, input_names=["x"], dynamic_axes={"x": [0, 1, 2, 3]} ) self.run_test(ListUnpackSlice(), x, remained_onnx_input_idx=[]) def test_pow(self): class PowModule(torch.nn.Module): def forward(self, x, y): return x.pow(y) x = torch.randn(2, 3, 4) y = torch.randn(2, 3, 4) self.run_test(PowModule(), (x, y)) x = torch.randint(10, (2, 3, 4)) y = torch.randint(10, (2, 3, 4)).to(dtype=torch.int32) self.run_test(PowModule(), (x, y)) x = torch.randint(10, (2, 3, 4)) y = torch.randint(10, (2, 3, 4)) self.run_test(PowModule(), (x, y)) x = torch.randn(2, 3, 4).to(dtype=torch.float64) y = torch.randint(10, (2, 3, 4)) self.run_test(PowModule(), (x, y)) class PowModule2(torch.nn.Module): def forward(self, x): return torch.pow(2, x) x = torch.randn(1, 10) self.run_test(PowModule2(), (x,)) x = torch.randint(10, (2, 3, 4)) self.run_test(PowModule2(), (x,)) x = torch.randn(1, 10).to(dtype=torch.float64) self.run_test(PowModule2(), (x,)) class PowModule3(torch.nn.Module): def forward(self, x, y): return y[torch.pow(2, x)] x = torch.randint(5, (2, 3, 4)) y = torch.rand(100) self.run_test(PowModule3(), (x, y)) # the arithmeticOps(Add\Sub\Mul\Div\Gemm\Pow\Mod) with low precision include unit8 will be failed in ORT # add to(dtype=torch.long) to avoid ORT output type does not match expected type. # will be fixed in ONNX version 14. @skipIfUnsupportedMaxOpsetVersion(13) def test_arithmeticOps_with_low_precision(self): class AddModule(torch.nn.Module): def forward(self, x, y): return x + y class SubModule(torch.nn.Module): def forward(self, x, y): return x - y class MulModule(torch.nn.Module): def forward(self, x, y): return x * y class DivModule(torch.nn.Module): def forward(self, x, y): return x / y class PowModule(torch.nn.Module): def forward(self, x, y): return x.pow(y) x = torch.tensor([2, 3, 5], dtype=torch.uint8) y = torch.tensor([2, 3, 5], dtype=torch.uint8) z = torch.tensor([1], dtype=torch.uint8) self.run_test(AddModule(), (x, y)) self.run_test(SubModule(), (x, y)) self.run_test(MulModule(), (x, y)) self.run_test(DivModule(), (x, y)) self.run_test(PowModule(), (x, z)) x = torch.tensor([2, 3, 5], dtype=torch.int8) y = torch.tensor([2, 3, 5], dtype=torch.int8) z = torch.tensor([1], dtype=torch.int8) self.run_test(AddModule(), (x, y)) self.run_test(SubModule(), (x, y)) self.run_test(MulModule(), (x, y)) self.run_test(DivModule(), (x, y)) self.run_test(PowModule(), (x, z)) x = torch.tensor([2, 3, 5], dtype=torch.int16) y = torch.tensor([2, 3, 5], dtype=torch.int16) z = torch.tensor([1], dtype=torch.int16) self.run_test(AddModule(), (x, y)) self.run_test(SubModule(), (x, y)) self.run_test(MulModule(), (x, y)) self.run_test(DivModule(), (x, y)) self.run_test(PowModule(), (x, z)) x = torch.tensor([2, 3, 5], dtype=torch.uint8) y = torch.tensor([2, 3, 5], dtype=torch.float32) z = torch.tensor([1], dtype=torch.float64) self.run_test(AddModule(), (x, y)) self.run_test(SubModule(), (x, y)) self.run_test(MulModule(), (x, y)) self.run_test(DivModule(), (x, y)) self.run_test(PowModule(), (x, z)) x = torch.tensor([2, 3, 5], dtype=torch.uint8) y = torch.tensor([2, 3, 5], dtype=torch.int64) z = torch.tensor([1], dtype=torch.int32) self.run_test(AddModule(), (x, y)) self.run_test(SubModule(), (x, y)) self.run_test(MulModule(), (x, y)) self.run_test(DivModule(), (x, y)) self.run_test(PowModule(), (x, z)) # fmod was added in version 10 @skipIfUnsupportedMinOpsetVersion(10) @skipIfUnsupportedMaxOpsetVersion(13) def test_mod_with_low_precision(self): class ModModule(torch.nn.Module): def forward(self, x, y): return torch.fmod(x, y).to(dtype=torch.long) x = torch.tensor([2, 3, 5], dtype=torch.uint8) y = torch.tensor([2, 3, 5], dtype=torch.uint8) self.run_test(ModModule(), (x, y)) x = torch.tensor([2, 3, 5], dtype=torch.int8) y = torch.tensor([2, 3, 5], dtype=torch.int8) self.run_test(ModModule(), (x, y)) x = torch.tensor([2, 3, 5], dtype=torch.int16) y = torch.tensor([2, 3, 5], dtype=torch.int16) self.run_test(ModModule(), (x, y)) x = torch.tensor([2, 3, 5], dtype=torch.uint8) y = torch.tensor([2, 3, 5], dtype=torch.int32) self.run_test(ModModule(), (x, y)) x = torch.tensor([2, 3, 5], dtype=torch.uint8) y = torch.tensor([2, 3, 5], dtype=torch.float64) self.run_test(ModModule(), (x, y)) @skipIfUnsupportedMinOpsetVersion(9) def test_empty_constant_shape(self): class Zeros(torch.nn.Module): def forward(self, x): y = torch.zeros(()) y += x return y x = torch.tensor(42.0) self.run_test(Zeros(), x) class Ones(torch.nn.Module): def forward(self, x): y = torch.ones(()) y += x return y x = torch.tensor(42.0) self.run_test(Ones(), x) class Full(torch.nn.Module): def forward(self, x): y = torch.full((), 1.0) y += x return y x = torch.tensor(42.0) self.run_test(Full(), x) class Empty(torch.nn.Module): def forward(self, x): y = torch.empty(()).fill_(0) y += x return y x = torch.tensor(42.0) self.run_test(Empty(), x) def test_std(self): class StandardDeviation(torch.nn.Module): def forward(self, input): return torch.std(input, unbiased=False) x = torch.randn(2, 3, 4) model = StandardDeviation() self.run_test(model, x) class StandardDeviationUnbiased(torch.nn.Module): def forward(self, input): return torch.std(input, unbiased=True) model = StandardDeviationUnbiased() self.run_test(model, x) def test_std_along_dims(self): class StandardDeviation(torch.nn.Module): def forward(self, input): return torch.std(input, dim=(0, 1), unbiased=False) x = torch.randn(2, 3, 4) model = StandardDeviation() self.run_test(model, x) class StandardDeviationUnbiased(torch.nn.Module): def forward(self, input): return torch.std(input, dim=(0, 1), unbiased=True) x = torch.randn(2, 3, 4) model = StandardDeviationUnbiased() self.run_test(model, x) def test_std_keepdim(self): class StandardDeviation(torch.nn.Module): def forward(self, input): return torch.std(input, dim=(0, 1), unbiased=False, keepdim=True) x = torch.randn(2, 3, 4) model = StandardDeviation() self.run_test(model, x) class StandardDeviationUnbiased(torch.nn.Module): def forward(self, input): return torch.std(input, dim=(0, 1), unbiased=True, keepdim=True) x = torch.randn(2, 3, 4) model = StandardDeviationUnbiased() self.run_test(model, x) def test_std_correction(self): class StandardDeviation(torch.nn.Module): def forward(self, input): return torch.std(input, dim=(0, 1), correction=3, keepdim=True) x = torch.randn(2, 3, 4) model = StandardDeviation() self.run_test(model, x) def test_var(self): class Variance(torch.nn.Module): def forward(self, input): return torch.var(input, unbiased=False) x = torch.randn(2, 3, 4) model = Variance() self.run_test(model, x) class VarianceUnbiased(torch.nn.Module): def forward(self, input): return torch.var(input, unbiased=True) model = VarianceUnbiased() self.run_test(model, x) class VarianceSqrt(torch.nn.Module): def forward(self, input): y = torch.var(input, 1) return torch.sqrt(y + 1e-8) x = torch.randn(1, 2, 3, 300, 300) model = VarianceSqrt() self.run_test(model, x) def test_var_along_dims(self): class Variance(torch.nn.Module): def forward(self, input): return torch.var(input, dim=(0, 1), unbiased=False) x = torch.randn(2, 3, 4) model = Variance() self.run_test(model, x) class VarianceUnbiased(torch.nn.Module): def forward(self, input): return torch.var(input, dim=(0, 1), unbiased=True) x = torch.randn(2, 3, 4) model = VarianceUnbiased() self.run_test(model, x) def test_var_keepdim(self): class Variance(torch.nn.Module): def forward(self, input): return torch.var(input, dim=(0, 1), unbiased=False, keepdim=True) x = torch.randn(2, 3, 4) model = Variance() self.run_test(model, x) class VarianceUnbiased(torch.nn.Module): def forward(self, input): return torch.var(input, dim=(0, 1), unbiased=True, keepdim=True) x = torch.randn(2, 3, 4) model = VarianceUnbiased() self.run_test(model, x) def test_var_correction(self): class Variance(torch.nn.Module): def forward(self, input): return torch.var(input, dim=(0, 1), correction=3, keepdim=True) x = torch.randn(2, 3, 4) model = Variance() self.run_test(model, x) def test_var_mean(self): class Variance(torch.nn.Module): def forward(self, input): return torch.var_mean(input, unbiased=False) x = torch.randn(2, 3, 4) model = Variance() self.run_test(model, x) class VarianceUnbiased(torch.nn.Module): def forward(self, input): return torch.var_mean(input, unbiased=True) model = VarianceUnbiased() self.run_test(model, x) def test_var_mean_along_dims(self): class Variance(torch.nn.Module): def forward(self, input): return torch.var_mean(input, dim=(0, 1), unbiased=False) x = torch.randn(2, 3, 4) model = Variance() self.run_test(model, x) class VarianceUnbiased(torch.nn.Module): def forward(self, input): return torch.var_mean(input, dim=(0, 1), unbiased=True) x = torch.randn(2, 3, 4) model = VarianceUnbiased() self.run_test(model, x) def test_var_mean_mixed_dims(self): class ReverseDims(torch.nn.Module): def forward(self, input): return torch.var_mean(input, dim=(2, 1), unbiased=False) x = torch.randn(2, 3, 4) model = ReverseDims() self.run_test(model, x) class SkipDims(torch.nn.Module): def forward(self, input): return torch.var_mean(input, dim=(0, 2), unbiased=False) x = torch.randn(2, 3, 4) model = SkipDims() self.run_test(model, x) class NonZeroDims(torch.nn.Module): def forward(self, input): return torch.var_mean(input, dim=(1, 2), unbiased=False) x = torch.randn(2, 3, 4) model = NonZeroDims() self.run_test(model, x) def test_var_mean_keepdim(self): class Variance(torch.nn.Module): def forward(self, input): return torch.var_mean(input, dim=(0, 1), unbiased=False, keepdim=True) x = torch.randn(2, 3, 4) model = Variance() self.run_test(model, x) class VarianceUnbiased(torch.nn.Module): def forward(self, input): return torch.var_mean(input, dim=(0, 1), unbiased=True, keepdim=True) x = torch.randn(2, 3, 4) model = VarianceUnbiased() self.run_test(model, x) def test_var_mean_correction(self): class Variance(torch.nn.Module): def forward(self, input): return torch.var_mean(input, dim=(0, 1), correction=3, keepdim=True) x = torch.randn(2, 3, 4) model = Variance() self.run_test(model, x) def test_std_mean(self): class StandardDeviation(torch.nn.Module): def forward(self, input): return torch.std_mean(input, unbiased=False) x = torch.randn(2, 3, 4) model = StandardDeviation() self.run_test(model, x) class StandardDeviationUnbiased(torch.nn.Module): def forward(self, input): return torch.std_mean(input, unbiased=True) model = StandardDeviationUnbiased() self.run_test(model, x) def test_std_mean_along_dims(self): class StandardDeviation(torch.nn.Module): def forward(self, input): return torch.std_mean(input, dim=(0, 1), unbiased=False) x = torch.randn(2, 3, 4) model = StandardDeviation() self.run_test(model, x) class VarianceUnbiased(torch.nn.Module): def forward(self, input): return torch.std_mean(input, dim=(0, 1), unbiased=True) x = torch.randn(2, 3, 4) model = VarianceUnbiased() self.run_test(model, x) def test_std_mean_keepdim(self): class StandardDeviation(torch.nn.Module): def forward(self, input): return torch.std_mean(input, dim=(0, 1), unbiased=False, keepdim=True) x = torch.randn(2, 3, 4) model = StandardDeviation() self.run_test(model, x) class StandardDeviationUnbiased(torch.nn.Module): def forward(self, input): return torch.std_mean(input, dim=(0, 1), unbiased=True, keepdim=True) x = torch.randn(2, 3, 4) model = StandardDeviationUnbiased() self.run_test(model, x) def test_std_mean_correction(self): class StandardDeviation(torch.nn.Module): def forward(self, input): return torch.var_mean(input, dim=(0, 1), correction=3, keepdim=True) x = torch.randn(2, 3, 4) model = StandardDeviation() self.run_test(model, x) def test_bitshift(self): class BitshiftModel(torch.nn.Module): def forward(self, input): return ( input >> 1, input << 3, input >> torch.tensor([1, 2]), input << 4, ) input = torch.arange(24, dtype=torch.int64).reshape(3, 4, 2) self.run_test(BitshiftModel(), input) def test_bitshift_other_fp(self): class BitshiftModel(torch.nn.Module): def forward(self, input): return input << 2.4 input = torch.arange(24, dtype=torch.int64).reshape(3, 4, 2) self.run_test(BitshiftModel(), input) # uint8 not implemented in ORT for Mul used in # exporting bitshift for opset_version < 10 @skipIfUnsupportedMinOpsetVersion(11) def test_bitshift_uint8(self): class BitshiftModel(torch.nn.Module): def forward(self, input, input2): return ( input >> 1, input << 3.0, input2 >> torch.tensor([1, 2], dtype=torch.uint8), input2 << 4.0, ) input = torch.arange(24, dtype=torch.uint8).reshape(3, 4, 2) input2 = torch.arange(24, dtype=torch.uint8).reshape(3, 4, 2) self.run_test(BitshiftModel(), (input, input2)) def test_narrow(self): class NarrowModel(torch.nn.Module): def forward(self, input): return torch.narrow(input, 0, 0, 2) x = torch.randn(3, 3, requires_grad=True) self.run_test(NarrowModel(), x) @skipIfUnsupportedMinOpsetVersion(11) def test_narrow_dynamic(self): class NarrowModel(torch.nn.Module): def forward(self, input): return torch.narrow(input, 0, 0, input.shape[0] - 1) x = torch.randn(3, 3, requires_grad=True) self.run_test(NarrowModel(), x) @skipIfUnsupportedMinOpsetVersion(9) def test_index_fill(self): class IndexFillModel(torch.nn.Module): def forward(self, input): index = torch.tensor([2, 0]) return input.index_fill(2, index, -1) x = torch.randn(3, 4, 5, requires_grad=True) self.run_test(IndexFillModel(), x) @skipIfUnsupportedMinOpsetVersion(9) def test_index_copy(self): class IndexCopyModel(torch.nn.Module): def forward(self, input): index = torch.tensor([2, 0]) source = torch.ones(3, 2, 5) return input.index_copy(1, index, source) x = torch.randn(3, 4, 5, requires_grad=True) self.run_test(IndexCopyModel(), x) def test_select(self): class Select(torch.nn.Module): def forward(self, x): return x[:, 1] x = torch.randn(3, 4) self.run_test(Select(), x) def test_select_negative_index(self): class Select(torch.nn.Module): def forward(self, x): return x[:, -1] x = torch.randn(3, 4) self.run_test(Select(), x) def test_index_select_constant_scaler_index(self): class IndexSelectScalerIndexModel(torch.nn.Module): def forward(self, x): index = 2 return torch.index_select(x, 1, torch.tensor(index)) x = torch.randn(3, 4) self.run_test(IndexSelectScalerIndexModel(), x) def test_index_select_scaler_index(self): class IndexSelectScalerIndexModel(torch.nn.Module): def __init__(self, index_base): super(IndexSelectScalerIndexModel, self).__init__() self.index_base = torch.tensor(index_base) def forward(self, x, index_offset): index = self.index_base + index_offset return torch.index_select(x, 1, index) x = torch.randn(3, 4) offset = 2 index_offset = torch.tensor(offset) base = 1 self.run_test(IndexSelectScalerIndexModel(base), (x, index_offset)) def test_take(self): class TakeModel(torch.nn.Module): def forward(self, x, y): return torch.take(x, y) x = torch.randn(6, 4, 3, 3) y = torch.tensor([4, 1, 7, 15, 63]) self.run_test(TakeModel(), (x, y)) def test_topk(self): class MyModule(torch.nn.Module): def forward(self, x): return torch.topk(x, 3) x = torch.arange(1.0, 6.0, requires_grad=True) self.run_test(MyModule(), x) @skipIfUnsupportedMinOpsetVersion(10) def test_topk_int32_k(self): class Model(torch.nn.Module): def forward(self, x, k): return torch.topk(x, k) x = torch.arange(1.0, 6.0) k = torch.tensor(3, dtype=torch.int32) self.run_test(Model(), (x, k)) @skipIfUnsupportedMinOpsetVersion(11) def test_topk_smallest_unsorted(self): class MyModule(torch.nn.Module): def forward(self, x, k): # When sorted=False, order of elements in the outout tensors # are not expected to match between PyTorch and ORT topk_unsorted = torch.topk(x, k, largest=False, sorted=False) topk_sorted = torch.topk(x, k, largest=False, sorted=True) return topk_sorted, torch.sort(topk_unsorted.values).values x = torch.arange(1.0, 6.0, requires_grad=True) k = torch.tensor(3) self.run_test(MyModule(), (x, k)) @skipIfUnsupportedMinOpsetVersion(10) def test_topk_script(self): class MyModuleDynamic(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x, k): return torch.topk(x, k) x = torch.arange(1.0, 6.0, requires_grad=True) k = torch.tensor(3) self.run_test(MyModuleDynamic(), [x, k]) @skipScriptTest() # Python builtin apply of FunctionMeta object is currently not supported in Torchscript. @skipIfUnsupportedMinOpsetVersion(11) # Clip op min is an input since opset 11. def test_auto_grad(self): class MyClip(torch.autograd.Function): @staticmethod def forward(ctx, input, scalar): ctx.save_for_backward(input) return input.clamp(min=scalar) class MyRelu(torch.autograd.Function): @staticmethod def forward(ctx, input): ctx.save_for_backward(input) return input.clamp(min=0) def symbolic_python_op( ctx: torch.onnx.SymbolicContext, g: torch._C.Graph, *args, **kwargs ): n = ctx.cur_node name = kwargs["name"] if name == "MyClip": return g.op("Clip", args[0], args[1], outputs=n.outputsSize()) elif name == "MyRelu": return g.op("Relu", args[0], outputs=n.outputsSize()) else: return _unimplemented("prim::PythonOp", "unknown node kind: " + name) register_custom_op_symbolic("prim::PythonOp", symbolic_python_op, 1) self.addCleanup(unregister_custom_op_symbolic, "prim::PythonOp", 1) class MyClipModule(torch.nn.Module): def forward(self, x, min): return MyClip.apply(x, min) x = torch.randn(3, 3) min = torch.tensor([0.0]) self.run_test(MyClipModule(), (x, min)) class MyReluModule(torch.nn.Module): def forward(self, x): return MyRelu.apply(x) x = torch.randn(3, 3) self.run_test(MyReluModule(), x) def test_clip_int(self): class MyClipInt(torch.nn.Module): def forward(self, x): return torch.clamp(x, 0, 1) self.run_test(MyClipInt(), torch.randn(3, 3).to(torch.int64)) def test_relu_int(self): self.run_test(torch.nn.ReLU(), torch.randn(3, 3).to(torch.int32)) def test_pad_int(self): class MyPadInt(torch.nn.Module): def forward(self, x): return torch.nn.functional.pad(x, (1, 1)) self.run_test(MyPadInt(), torch.randn(3, 3).to(torch.int32)) def test_min_int(self): class MyMinInt(torch.nn.Module): def forward(self, x): return torch.min(x, x + 1) self.run_test(MyMinInt(), torch.randn(3, 3).to(torch.int32)) def test_max_int(self): class MyMaxnInt(torch.nn.Module): def forward(self, x): return torch.max(x, x + 1) self.run_test(MyMaxnInt(), torch.randn(3, 3).to(torch.int32)) @skipIfUnsupportedOpsetVersion([7]) def test_normalize(self): class Model(torch.nn.Module): def forward(self, x): return torch.nn.functional.normalize(x) x = torch.randn(3, 3) self.run_test(Model(), x) def test_layer_norm(self): model = torch.nn.LayerNorm([10, 10]) x = torch.randn(20, 5, 10, 10) self.run_test(model, x) def test_batchnorm1d(self): x = torch.randn(10, 10) model = torch.nn.BatchNorm1d(10, affine=True) self.run_test(model, x) x = torch.randn(10, 10, 128) self.run_test(model, x) def test_batchnorm1d_noaffine(self): x = torch.randn(10, 10) model = torch.nn.BatchNorm1d(10, affine=False) self.run_test(model, x) x = torch.randn(10, 10, 128) self.run_test(model, x) def test_batchnorm1d_norunningstats(self): x = torch.randn(10, 10) model = torch.nn.BatchNorm1d(10, track_running_stats=False) self.run_test(model, x) x = torch.randn(10, 10, 128) self.run_test(model, x) def test_batchnorm2d(self): x = torch.randn(10, 3, 128, 128) model = torch.nn.BatchNorm2d(3, affine=True) self.run_test(model, x) def test_batchnorm2d_noaffine(self): x = torch.randn(10, 3, 128, 128) model = torch.nn.BatchNorm2d(3, affine=False) self.run_test(model, x) def test_batchnorm2d_norunningstats(self): x = torch.randn(10, 3, 128, 128) model = torch.nn.BatchNorm2d(3, track_running_stats=False) self.run_test(model, x) def test_batchnorm3d(self): x = torch.randn(10, 3, 128, 128, 128) model = torch.nn.BatchNorm3d(3, affine=True) self.run_test(model, x) def test_batchnorm3d_noaffine(self): x = torch.randn(10, 3, 128, 128, 128) model = torch.nn.BatchNorm3d(3, affine=False) self.run_test(model, x) @skipIfUnsupportedMinOpsetVersion( 9 ) # Because ConstantOfShape op is not supported for opset < 9 def test_instancenorm1d_runningstats(self): x = torch.randn(10, 5, 128) model = torch.nn.InstanceNorm1d(5, affine=True, track_running_stats=True) self.run_test(model, x) model = torch.nn.InstanceNorm1d(5, affine=False, track_running_stats=True) self.run_test(model, x) def test_instancenorm1d_norunningstats(self): x = torch.randn(10, 5, 128) model = torch.nn.InstanceNorm1d(5, affine=True, track_running_stats=False) self.run_test(model, x) model = torch.nn.InstanceNorm1d(5, affine=False, track_running_stats=False) self.run_test(model, x) @skipIfUnsupportedMinOpsetVersion( 9 ) # Because ConstantOfShape op is not supported for opset < 9 def test_instancenorm2d_runningstats(self): x = torch.randn(10, 3, 128, 128) model = torch.nn.InstanceNorm2d(3, affine=True, track_running_stats=True) self.run_test(model, x) model = torch.nn.InstanceNorm2d(3, affine=False, track_running_stats=True) self.run_test(model, x) def test_instancenorm2d_norunningstats(self): x = torch.randn(10, 3, 128, 128) model = torch.nn.InstanceNorm2d(3, affine=True, track_running_stats=False) self.run_test(model, x) model = torch.nn.InstanceNorm2d(3, affine=False, track_running_stats=False) self.run_test(model, x) @skipIfUnsupportedMinOpsetVersion( 9 ) # Because ConstantOfShape op is not supported for opset < 9 def test_instancenorm3d_runningstats(self): x = torch.randn(10, 3, 128, 128, 128) model = torch.nn.InstanceNorm3d(3, affine=True, track_running_stats=True) self.run_test(model, x) model = torch.nn.InstanceNorm3d(3, affine=False, track_running_stats=True) self.run_test(model, x) def test_instancenorm3d_norunningstats(self): x = torch.randn(10, 3, 128, 128, 128) model = torch.nn.InstanceNorm3d(3, affine=True, track_running_stats=False) self.run_test(model, x) model = torch.nn.InstanceNorm3d(3, affine=False, track_running_stats=False) self.run_test(model, x) @skipIfUnsupportedMinOpsetVersion(9) def test_scatter_with_scalar(self): class ScatterModel(torch.nn.Module): def forward(self, input, indices): values = 1.0 return input.scatter(1, indices, values) input = torch.tensor( [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], dtype=torch.float64 ) indices = torch.tensor([[1, 0], [0, 1], [0, 1]], dtype=torch.int64) self.run_test(ScatterModel(), input=(input, indices)) @skipIfUnsupportedMinOpsetVersion(9) def test_scatter_with_scalar_different_types(self): # Tests the case when scalar src (updates values) type is different # from self type. Happens only with scalar src - PyTorch does not # allow this when src is a tensor. class ScatterModel(torch.nn.Module): def forward(self, input, indices): values = 1.0 return input.scatter(1, indices, values) input = torch.tensor( [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], dtype=torch.float32 ) indices = torch.tensor([[1, 0], [0, 1], [0, 1]], dtype=torch.int64) self.run_test(ScatterModel(), input=(input, indices)) @skipIfUnsupportedMinOpsetVersion(9) def test_scatter(self): class ScatterModel(torch.nn.Module): def forward(self, input, indices, values): return input.scatter(1, indices, values) input = torch.tensor([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]) indices = torch.tensor([[1, 0], [0, 1], [0, 1]], dtype=torch.int64) values = torch.tensor([[1.0, 1.1], [2.0, 2.1], [3.0, 3.1]]) self.run_test(ScatterModel(), input=(input, indices, values)) input = torch.tensor([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]) indices = torch.tensor([[1, 0], [0, 2], [0, 1]], dtype=torch.int64) values = torch.tensor([[1.0, 1.1], [2.0, 2.1], [3.0, 3.1]]) self.run_test(ScatterModel(), (input, indices, values)) input = torch.zeros(3, 4, 5, 6) indices = torch.tensor([[1, 0], [0, 2], [0, 1]], dtype=torch.int64) indices = indices.view(3, 2, 1, 1).expand(3, 2, 5, 6) values = torch.arange(3 * 2 * 5 * 6, dtype=torch.float32).view(3, 2, 5, 6) self.run_test(ScatterModel(), (input, indices, values)) input = torch.zeros(3, 4, 2) indices = torch.tensor([[[1, 0], [0, 2]], [[1, 1], [0, 1]], [[2, 1], [2, 2]]]) values = torch.arange(3 * 2 * 2, dtype=torch.float32).view(3, 2, 2) self.run_test(ScatterModel(), (input, indices, values)) @skipIfUnsupportedMinOpsetVersion(9) def test_scatter_add(self): class ScatterModel(torch.nn.Module): def forward(self, input, indices, values): return input.scatter_add(1, indices, values) input = torch.tensor([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]) indices = torch.tensor([[1, 0], [0, 1], [0, 1]], dtype=torch.int64) values = torch.tensor([[1.0, 1.1], [2.0, 2.1], [3.0, 3.1]]) self.run_test(ScatterModel(), input=(input, indices, values)) @torch.jit.script def scatter_sum(src: Tensor, index: Tensor): size = src.size() out = torch.zeros(size, dtype=src.dtype) return out.scatter_add_(1, index, src) class ScatterModel(torch.nn.Module): def forward(self, src, index): return scatter_sum(src, index) src = torch.rand(3, 2) index = torch.tensor([[0, 1], [0, 1], [0, 1]], dtype=torch.int64) self.run_test(ScatterModel(), (src, index)) @skipIfUnsupportedMinOpsetVersion(9) def test_bucketize(self): class BucketModel(torch.nn.Module): def forward(self, input, boundaries): return torch.bucketize(input, boundaries), torch.bucketize( input, boundaries, right=True ) input = torch.tensor([[2, 5, 10], [6, 8, 3]]) boundaries = torch.tensor([1, 5, 7, 8, 10]) self.run_test(BucketModel(), (input, boundaries)) @skipIfUnsupportedMinOpsetVersion(9) def test_one_hot(self): class OneHot(torch.nn.Module): def __init__(self, num_classes): super().__init__() self.num_classes = num_classes def forward(self, x): return torch.nn.functional.one_hot(x, self.num_classes) x = torch.arange(10) self.run_test(OneHot(15), (x)) class OneHot(torch.nn.Module): def forward(self, x, num_classes): num_classes = num_classes.to(torch.int32) return torch.nn.functional.one_hot(x, num_classes[0]) x = torch.arange(10) num_classes = 15 * torch.ones(1) self.run_test(OneHot(), (x, num_classes)) @skipIfUnsupportedMinOpsetVersion(9) def test_gather(self): class GatherModel(torch.nn.Module): def forward(self, input, indices): return input.gather(1, indices) input = torch.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]) indices = torch.tensor([[1, 0], [0, 1], [0, 1]], dtype=torch.int64) self.run_test(GatherModel(), input=(input, indices)) @skipScriptTest() # Scripting error: Cannot instantiate nn module def test_gather_constant_fold(self): class GatherModule(torch.nn.Module): def __init__(self): super(GatherModule, self).__init__() self.register_buffer("weight", torch.ones(5)) # torch.nn.Embedding is converted to ONNX::Gather. # Constant folding will be triggerred for constant inputs. # This pattern is common for constant mask inputs in transformer models. self.embed = torch.nn.Embedding(8, 3) def forward(self, x): # shape is of rank 0 shape = self.weight.shape[0] m = 5 - shape y = torch.ones(1, 4, dtype=torch.long) return x.clamp(min=m), self.embed(y) x = torch.randn(1) self.run_test(GatherModule(), (x,)) class GatherModule(torch.nn.Module): def __init__(self): super(GatherModule, self).__init__() self.register_buffer("weight", torch.ones(2)) def forward(self, x): # shape is of rank 0 shape = self.weight.shape[0] pad = [1, shape, shape, shape] zero_pad = torch.nn.ZeroPad2d(pad) return zero_pad(x) x = torch.randn(1, 3, 2) self.run_test(GatherModule(), (x,)) class GatherModule(torch.nn.Module): def __init__(self): super(GatherModule, self).__init__() self.register_buffer("rb", torch.randn(1, 1, 3, 1, 1)) def forward(self, x): x += self.rb[0] return x x = torch.randn(1, 3, 224, 224) self.run_test( GatherModule(), (x,), dynamic_axes={ "input": {0: "batch", 2: "height", 3: "width"}, "output": {0: "batch", 1: "class", 2: "height", 3: "width"}, }, input_names=["input"], output_names=["output"], ) @skipIfUnsupportedOpsetVersion([13]) @skipIfUnsupportedMinOpsetVersion(9) def test_expand(self): class ExpandModel(torch.nn.Module): def forward(self, input): return input.expand(2, 3, -1) input = torch.randn(2, 1, 4) self.run_test(ExpandModel(), input=(input)) class ExpandInferDimModel(torch.nn.Module): def forward(self, input): return input.expand(-1, input.size(0)) input = torch.randn(3, 1) self.run_test(ExpandInferDimModel(), input=(input)) class ExpandTensorSizeModel(torch.nn.Module): def forward(self, input, size): return input.expand(size) input = torch.randn( 3, ) size = torch.tensor(-1) self.run_test(ExpandTensorSizeModel(), input=(input, size)) @skipIfUnsupportedMinOpsetVersion(11) # index_put is supported in opsets >= 11 def test_dynamic_expand_as(self): class Model(torch.nn.Module): def forward(self, x): x[:, x.size(0) :] = 0 return x x = torch.ones(2, 5) x2 = torch.randn(3, 4) self.run_test( Model(), (x,), input_names=["x"], dynamic_axes={"x": [0, 1]}, test_with_inputs=[x2], ) class Model(torch.nn.Module): def forward(self, x): x[:, x.size(0) :] = torch.tensor([1, 2, 3]) return x x = torch.ones(2, 5, 3) x2 = torch.randn(3, 4, 3) self.run_test( Model(), (x,), input_names=["x"], dynamic_axes={"x": [0, 1, 2]}, test_with_inputs=[x2], ) def test_multinomial(self): class Multinomial(torch.nn.Module): def forward(self, weight): return torch.multinomial(weight, 3, replacement=True) class MultinomialNoReplacement(torch.nn.Module): def forward(self, weight): return torch.multinomial(weight, 1) weight = torch.tensor([[0, 10, 0, 0], [0, 0, 100, 0]], dtype=torch.float) self.run_test(Multinomial(), (weight,)) self.run_test(MultinomialNoReplacement(), (weight,)) def _test_reduced_ops(self, op): class ReducedOpModule(torch.nn.Module): def forward(self, input): return op(input, dim=-1) if op != torch.mean: # torch.mean only supports float types x = torch.randint(10, (4, 4), dtype=torch.uint8) self.run_test(ReducedOpModule(), x) x = torch.randint(10, (4, 4), dtype=torch.int8) self.run_test(ReducedOpModule(), x) x = torch.randint(10, (4, 4), dtype=torch.int16) self.run_test(ReducedOpModule(), x) x = torch.randint(10, (4, 4), dtype=torch.int32) self.run_test(ReducedOpModule(), x) x = torch.randint(10, (4, 4), dtype=torch.int64) self.run_test(ReducedOpModule(), x) # torch.mean only supports float types # ORT does not support double ReduceProd for double if op != torch.prod and op != torch.mean: x = torch.randn(4, 5, dtype=torch.double) self.run_test(ReducedOpModule(), x) if op != torch.prod: # torch.prod not implemented for Half x = torch.randn(4, 4, dtype=torch.half) self.run_test(ReducedOpModule(), x) x = torch.randn(4, 5, dtype=torch.float) self.run_test(ReducedOpModule(), x) def test_reduced_sum(self): return self._test_reduced_ops(op=torch.sum) def test_reduced_mean(self): return self._test_reduced_ops(op=torch.mean) def test_reduced_prod(self): return self._test_reduced_ops(op=torch.prod) def test_reduced_sum_dtypes(self): class NoDimModel(torch.nn.Module): def forward(self, input): return input.sum(dtype=torch.float) class DimModel(torch.nn.Module): def forward(self, input): return input.sum(dim=-1, dtype=torch.float) input = torch.randn((4, 4), dtype=torch.half) self.run_test(NoDimModel(), input) self.run_test(DimModel(), input) def test_reduced_min_max(self): class ReducedMinMaxModule(torch.nn.Module): def forward(self, input): return torch.min(input, dim=-1)[0], torch.max(input, dim=0)[0] x = torch.randint(10, (4, 4), dtype=torch.int32) self.run_test(ReducedMinMaxModule(), x) x = torch.randint(10, (4, 4), dtype=torch.int64) self.run_test(ReducedMinMaxModule(), x) x = torch.randn(4, 5, dtype=torch.float) self.run_test(ReducedMinMaxModule(), x) def test_reduce_log_sum_exp(self): class ReduceLogSumExpModel(torch.nn.Module): def forward(self, input): a = torch.logsumexp(input, dim=0) b = torch.logsumexp(input, dim=(0, 1)) return a + b x = torch.randn(4, 4, requires_grad=True) self.run_test(ReduceLogSumExpModel(), x) def test_softmax(self): for i in range(-4, 3): model = torch.nn.Softmax(dim=i) input = torch.randn(3, 4, 5, 6) self.run_test(model, input) class SoftmaxUnknownRank(torch.nn.Module): def __init__(self, i): super().__init__() self.softmax = torch.nn.Softmax(dim=i) def forward(self, x): return self.softmax(x.reshape(3, 4, 5, 6)) model = torch.jit.script(SoftmaxUnknownRank(i)) self.run_test(model, input) def test_softmax_large_values(self): input = torch.tensor( [[-1e12, -1e12, -1e12], [1e12, 0.0, -5.0], [3.0, 4.0, 5.0]] ) for i in range(-2, 1): model = torch.nn.Softmax(dim=i) self.run_test(model, input) class SoftmaxUnknownRank(torch.nn.Module): def __init__(self, i): super().__init__() self.softmax = torch.nn.Softmax(dim=i) def forward(self, x): return self.softmax(x.reshape(3, 3)) model = torch.jit.script(SoftmaxUnknownRank(i)) self.run_test(model, input) def test_logsoftmax(self): for i in range(7)[2:]: model = torch.nn.LogSoftmax(dim=i - 1) dims = [2] * (i - 2) + [3, 4] input = torch.ones(*dims, requires_grad=True) self.run_test(model, input) def test_logsoftmax_dim(self): for i in range(-4, 3): model = torch.nn.LogSoftmax(dim=i) input = torch.randn(3, 4, 5, 6) self.run_test(model, input) def test_logsoftmax_dtype(self): class Model(torch.nn.Module): def forward(self, x): return torch.nn.functional.log_softmax(x, dim=1, dtype=torch.float64) x = torch.randn(3, 4, 5, requires_grad=True) self.run_test(Model(), x) def test_softplus(self): class BetaOneModel(torch.nn.Module): def forward(self, x): return torch.nn.functional.softplus(x) x = torch.randn(3, 4, 5, requires_grad=True) self.run_test(BetaOneModel(), x) class BetaModel(torch.nn.Module): def forward(self, x): return torch.nn.functional.softplus(x, beta=2) x = torch.randn(3, 4, 5, requires_grad=True) self.run_test(BetaModel(), x) class BetaFloatModel(torch.nn.Module): def forward(self, x): return torch.nn.functional.softplus(x, beta=1.7) x = torch.randn(3, 4, 5, requires_grad=True) self.run_test(BetaFloatModel(), x) @skipIfUnsupportedMinOpsetVersion(9) def test_lstm_no_hidden(self): class LSTMModel(torch.nn.Module): def __init__(self): super().__init__() self.rnn = torch.nn.LSTM(input_size=16, hidden_size=16) def forward(self, x): return self.rnn(x) input = torch.randn((10, 16, 16)) self.run_test(LSTMModel(), (input,)) @skipIfUnsupportedMinOpsetVersion(9) def test_lstm_proj_no_hidden(self): class LSTMModel(torch.nn.Module): def __init__(self): super().__init__() self.rnn = torch.nn.LSTM(input_size=16, hidden_size=16, proj_size=8) def forward(self, x): return self.rnn(x) input = torch.randn((10, 16, 16)) with self.assertRaises(RuntimeError): self.run_test(LSTMModel(), (input,)) @skipIfUnsupportedMinOpsetVersion(9) def test_lstm(self): class LSTMModel(torch.nn.Module): def __init__(self): super().__init__() self.rnn = torch.nn.LSTM( RNN_INPUT_SIZE, RNN_HIDDEN_SIZE, 1, bidirectional=False ) def forward(self, x, h0, c0): return self.rnn(x, (h0, c0)) input = torch.randn(RNN_SEQUENCE_LENGTH, BATCH_SIZE, RNN_INPUT_SIZE) h0 = torch.randn(1, BATCH_SIZE, RNN_HIDDEN_SIZE) c0 = torch.randn(1, BATCH_SIZE, RNN_HIDDEN_SIZE) self.run_test(LSTMModel(), (input, h0, c0)) @skipIfUnsupportedMinOpsetVersion(9) def test_lstm_cell(self): class LSTMCellModel(torch.nn.Module): def __init__(self, bias): super().__init__() self.lstm_cell = torch.nn.LSTMCell( RNN_INPUT_SIZE, RNN_HIDDEN_SIZE, bias=bias ) def forward(self, x, h0, c0): return self.lstm_cell(x, (h0, c0)) input = torch.randn(BATCH_SIZE, RNN_INPUT_SIZE) h0 = torch.randn(BATCH_SIZE, RNN_HIDDEN_SIZE) c0 = torch.randn(BATCH_SIZE, RNN_HIDDEN_SIZE) for bias in [True, False]: self.run_test(LSTMCellModel(bias), (input, h0, c0)) @skipIfUnsupportedMinOpsetVersion(9) def test_lstm_default_init_state(self): class LSTMModel(torch.nn.Module): def __init__(self): super().__init__() self.rnn = torch.nn.LSTM( RNN_INPUT_SIZE, RNN_HIDDEN_SIZE, 1, bidirectional=False ) def forward(self, x): return self.rnn(x) input = torch.randn(RNN_SEQUENCE_LENGTH, BATCH_SIZE, RNN_INPUT_SIZE) self.run_test(LSTMModel(), input) @skipIfUnsupportedMinOpsetVersion(9) def test_lstm_fixed_batch_size(self): class LSTMModel(torch.nn.Module): def __init__(self): super(LSTMModel, self).__init__() self.lstm = torch.nn.LSTM( RNN_INPUT_SIZE, RNN_HIDDEN_SIZE, 1, bidirectional=False ) self.RNN_HIDDEN_SIZE = RNN_HIDDEN_SIZE def forward(self, input): batch_size = input.size()[1] h0 = torch.ones([1, batch_size, self.RNN_HIDDEN_SIZE]) c0 = torch.ones([1, batch_size, self.RNN_HIDDEN_SIZE]) return self.lstm(input, (h0, c0)) input = torch.randn(RNN_SEQUENCE_LENGTH, BATCH_SIZE, RNN_INPUT_SIZE) # verify with different input of same batch size input2 = torch.randn(RNN_SEQUENCE_LENGTH, BATCH_SIZE, RNN_INPUT_SIZE) self.run_test( LSTMModel(), input, fixed_batch_size=True, test_with_inputs=[input2] ) @skipIfUnsupportedMinOpsetVersion(9) def test_lstm_post_fix_init_state(self): class LSTMModel(torch.nn.Module): def __init__(self): super(LSTMModel, self).__init__() self.lstm = torch.nn.LSTM( RNN_INPUT_SIZE, RNN_HIDDEN_SIZE, 1, bidirectional=False ) self.RNN_HIDDEN_SIZE = RNN_HIDDEN_SIZE def forward(self, input): batch_size = input.size()[1] h0 = torch.ones([1, batch_size, self.RNN_HIDDEN_SIZE]) c0 = torch.ones([1, batch_size, self.RNN_HIDDEN_SIZE]) return self.lstm(input, (h0, c0)) model = LSTMModel() input = torch.randn(RNN_SEQUENCE_LENGTH, 1, RNN_INPUT_SIZE) # verify with different input of different batch size input2 = torch.randn(RNN_SEQUENCE_LENGTH, BATCH_SIZE, RNN_INPUT_SIZE) self.run_test( model, input, input_names=["input.1"], dynamic_axes={"input.1": {0: "seq", 1: "batch"}}, test_with_inputs=[input2], ) def test_lstm_constant_folding(self): class LstmNet(torch.nn.Module): def __init__(self, input_size, hidden_size, num_layers, bidirectional): super(LstmNet, self).__init__() self.lstm = torch.nn.LSTM( input_size, hidden_size, num_layers, bidirectional=bidirectional ) def forward(self, input, initial_state: Tuple[Tensor, Tensor]): return self.lstm(input, initial_state) def get_LstmNet_model_and_inputs( input_size, hidden_size, num_layers, batch_size, seq_len, bidirectional ): num_directions = 2 if bidirectional else 1 model = LstmNet(input_size, hidden_size, num_layers, bidirectional) input = torch.randn(seq_len, batch_size, input_size) h0 = torch.randn(num_layers * num_directions, batch_size, hidden_size) c0 = torch.randn(num_layers * num_directions, batch_size, hidden_size) return model, (input, (h0, c0)) batch_size1 = 3 model1, input1 = get_LstmNet_model_and_inputs(7, 3, 2, batch_size1, 5, True) self.run_test(model1, input1, do_constant_folding=True) batch_size2 = 4 model2, input2 = get_LstmNet_model_and_inputs(5, 4, 3, batch_size2, 7, False) self.run_test(model2, input2, do_constant_folding=True) @skipIfUnsupportedMinOpsetVersion(9) def test_lstm_no_bias(self): class LstmNet(torch.nn.Module): def __init__(self, num_layers, bidirectional): super(LstmNet, self).__init__() self.lstm = torch.nn.LSTM( RNN_INPUT_SIZE, RNN_HIDDEN_SIZE, num_layers, bias=False, bidirectional=bidirectional, ) def forward(self, input, initial_state: Tuple[Tensor, Tensor]): return self.lstm(input, initial_state) def get_LstmNet_model_and_inputs(num_layers, bidirectional): input = torch.randn(RNN_SEQUENCE_LENGTH, BATCH_SIZE, RNN_INPUT_SIZE) num_directions = 2 if bidirectional else 1 model = LstmNet(num_layers, bidirectional) h0 = torch.randn(num_layers * num_directions, BATCH_SIZE, RNN_HIDDEN_SIZE) c0 = torch.randn(num_layers * num_directions, BATCH_SIZE, RNN_HIDDEN_SIZE) return model, (input, (h0, c0)) num_layers = [1, 1, 2, 3] bidirectional = [True, False, True, False] models_and_inputs = [ get_LstmNet_model_and_inputs(n, b) for n, b in zip(num_layers, bidirectional) ] for model, input in models_and_inputs: self.run_test(model, input) @skipIfUnsupportedMinOpsetVersion(9) def test_lstm_sequence(self): class LstmNet(torch.nn.Module): def __init__(self): super().__init__() self.rnn1 = torch.nn.LSTM(8, 8, bidirectional=True, batch_first=True) self.linear1 = torch.nn.Linear(8 * 2, 8) self.rnn2 = torch.nn.LSTM(8, 8, bidirectional=True, batch_first=True) self.linear2 = torch.nn.Linear(8 * 2, 8) def forward(self, input): rnn_output1, _ = self.rnn1(input) linear_output1 = self.linear1(rnn_output1) rnn_output2, _ = self.rnn2(linear_output1) linear_output2 = self.linear2(rnn_output2) return linear_output2 input = torch.zeros((1, 100, 8), dtype=torch.float32) self.run_test( LstmNet(), input, input_names=["input"], output_names=["output"], dynamic_axes={ "input": {0: "batch_size", 1: "w", 2: "h"}, "output": {0: "batch_size", 1: "w", 2: "h"}, }, ) @skipScriptTest() def test_rnn_no_bias(self): def make_model(layers, packed_sequence): batch_first = True if packed_sequence == 2 else False model = torch.nn.RNN( RNN_INPUT_SIZE, RNN_HIDDEN_SIZE, layers, bidirectional=False, batch_first=batch_first, bias=False, ) if packed_sequence == 1: model = RnnModelWithPackedSequence(model, False) if packed_sequence == 2: model = RnnModelWithPackedSequence(model, True) return model def make_input(batch_size, layers, packed_sequence): batch_first = True if packed_sequence == 2 else False seq_lengths = np.random.randint(1, RNN_SEQUENCE_LENGTH + 1, size=batch_size) seq_lengths = list(reversed(sorted(map(int, seq_lengths)))) inputs = [torch.randn(l, RNN_INPUT_SIZE) for l in seq_lengths] inputs = rnn_utils.pad_sequence(inputs, batch_first=batch_first) inputs = [inputs] h0 = torch.randn(layers, batch_size, RNN_HIDDEN_SIZE) inputs.append(h0) if packed_sequence != 0: inputs.append(torch.IntTensor(seq_lengths)) if len(inputs) == 1: input = inputs[0] else: input = tuple(inputs) return input layers = [1, 3, 1, 3, 1, 3] packed_sequence = [0, 0, 1, 1, 2, 2] models = [make_model(l, p) for l, p in zip(layers, packed_sequence)] inputs = [ make_input(RNN_BATCH_SIZE, l, p) for l, p in zip(layers, packed_sequence) ] for model, input in zip(models, inputs): self.run_test(model, input, batch_size=RNN_BATCH_SIZE) def test_gru_no_bias(self): class GruNet(torch.nn.Module): def __init__(self, input_size, hidden_size, num_layers, bidirectional): super(GruNet, self).__init__() self.mygru = torch.nn.GRU( input_size, hidden_size, num_layers, bidirectional=bidirectional, bias=False, ) def forward(self, input, initial_state): out = self.mygru(input, initial_state) return out def get_GruNet_model_and_inputs( input_size, hidden_size, num_layers, batch_size, seq_len, bidirectional ): num_directions = 2 if bidirectional else 1 model = GruNet(input_size, hidden_size, num_layers, bidirectional) input = torch.randn(seq_len, batch_size, input_size) h0 = torch.randn(num_layers * num_directions, batch_size, hidden_size) return model, (input, h0) input_size = [7, 5] hidden_size = [3, 4] num_layers = [2, 3] batch_size = [3, 4] seq_len = [5, 7] bidirectional = [True, False] models_and_inputs = [ get_GruNet_model_and_inputs(i, h, n, b, s, bi) for i, h, n, b, s, bi in zip( input_size, hidden_size, num_layers, batch_size, seq_len, bidirectional ) ] for model, input in models_and_inputs: self.run_test(model, input, do_constant_folding=True) def test_gru_constant_folding(self): class GruNet(torch.nn.Module): def __init__(self, input_size, hidden_size, num_layers, bidirectional): super(GruNet, self).__init__() self.mygru = torch.nn.GRU( input_size, hidden_size, num_layers, bidirectional=bidirectional ) def forward(self, input, initial_state): out = self.mygru(input, initial_state) return out def get_GruNet_model_and_inputs( input_size, hidden_size, num_layers, batch_size, seq_len, bidirectional ): num_directions = 2 if bidirectional else 1 model = GruNet(input_size, hidden_size, num_layers, bidirectional) input = torch.randn(seq_len, batch_size, input_size) h0 = torch.randn(num_layers * num_directions, batch_size, hidden_size) return model, (input, h0) batch_size1 = 3 model1, input1 = get_GruNet_model_and_inputs(7, 3, 2, batch_size1, 5, True) self.run_test(model1, input1, do_constant_folding=True) batch_size2 = 4 model2, input2 = get_GruNet_model_and_inputs(5, 4, 3, batch_size2, 7, False) self.run_test(model2, input2, do_constant_folding=True) @skipIfUnsupportedMinOpsetVersion(8) def test_max_tensors(self): class MaxModel(torch.nn.Module): def forward(self, input, other): return torch.max(input, other) model = MaxModel() x = torch.randn(4, 4, requires_grad=True) y = torch.randn(4, 1, requires_grad=True) self.run_test(model, (x, y)) def test_amax_amin(self): class Model(torch.nn.Module): def forward(self, x): return torch.amax(x, dim=0, keepdim=True), torch.amin( x, dim=[0, 1], keepdim=False ) model = Model() x = torch.randn(4, 4) self.run_test(model, x) def test_aminmax(self): class Model(torch.nn.Module): def forward(self, x): return torch.aminmax(x, dim=1, keepdim=True), torch.aminmax( x, keepdim=False ) model = Model() x = torch.randn(3, 4) self.run_test(model, x) @skipIfUnsupportedMinOpsetVersion(9) def test_arange_end(self): class ArangeScript(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, a): return torch.arange(a.size(0), dtype=torch.float).view(-1, 1) + a x = torch.randn(3, 4, requires_grad=True) outputs = ArangeScript()(x) self.run_test(ArangeScript(), x) class ArangeModel(torch.nn.Module): def forward(self, a): return torch.arange(a.size(0), dtype=torch.float).view(-1, 1) + a self.run_test(ArangeModel(), x) @skipIfUnsupportedMinOpsetVersion(11) def test_arange_end_notype(self): class ArangeScript(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, a): return torch.arange(a.size(0)) x = torch.randn(3, 4, requires_grad=True) outputs = ArangeScript()(x) self.run_test(ArangeScript(), x, input_names=["x"], dynamic_axes={"x": [0, 1]}) self.run_test(ArangeScript(), x, remained_onnx_input_idx=[]) class ArangeModel(torch.nn.Module): def forward(self, a): return torch.arange(a.size(0)) self.run_test(ArangeModel(), x, input_names=["x"], dynamic_axes={"x": [0, 1]}) self.run_test(ArangeModel(), x, remained_onnx_input_idx=[]) @skipIfUnsupportedMinOpsetVersion(9) def test_arange_start_end(self): class ArangeScript(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, a): return torch.arange(2, a.size(0) + 2, dtype=torch.float).view(-1, 1) + a x = torch.randn(3, 4, requires_grad=True) self.run_test(ArangeScript(), x) class ArangeModel(torch.nn.Module): def forward(self, a): return torch.arange(2, a.size(0) + 2, dtype=torch.float).view(-1, 1) + a self.run_test(ArangeModel(), x) @skipIfUnsupportedMinOpsetVersion(11) def test_arange_start_end_notype(self): class ArangeScript(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, a): return torch.arange(2.7, a.size(0) + 2).view(-1, 1) + a x = torch.randn(3, 4, requires_grad=True) self.run_test(ArangeScript(), x) class ArangeModel(torch.nn.Module): def forward(self, a): return torch.arange(2.7, a.size(0) + 2).view(-1, 1) + a self.run_test(ArangeModel(), x) @skipIfUnsupportedMinOpsetVersion(9) def test_arange_start_end_step(self): class ArangeScript(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, a): return ( torch.arange( 2, a.size(0) * a.size(1) + 2, a.size(1), dtype=torch.float ).view(-1, 1) + a ) x = torch.randn(3, 4, requires_grad=True) self.run_test(ArangeScript(), x) class ArangeModel(torch.nn.Module): def forward(self, a): return ( torch.arange( 2, a.size(0) * a.size(1) + 2, a.size(1), dtype=torch.float ).view(-1, 1) + a ) self.run_test(ArangeModel(), x) @skipIfUnsupportedMinOpsetVersion(11) def test_arange_start_end_step_notype(self): class ArangeScript(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, a): return ( torch.arange(2.7, a.size(0) * a.size(1) + 2, a.size(1)).view(-1, 1) + a ) x = torch.randn(3, 4, requires_grad=True) self.run_test(ArangeScript(), x) class ArangeModel(torch.nn.Module): def forward(self, a): return ( torch.arange(2.7, a.size(0) * a.size(1) + 2, a.size(1)).view(-1, 1) + a ) self.run_test(ArangeModel(), x) @skipIfUnsupportedMinOpsetVersion(9) def test__dim_arange(self): class DimArange(torch.nn.Module): def forward(self, input): return torch._dim_arange(input, 1) x = torch.ones(5, 6) self.run_test(DimArange(), x, input_names=["x"], dynamic_axes={"x": [0, 1]}) remained_onnx_input_idx = None if self.opset_version < 11 else [] self.run_test(DimArange(), x, remained_onnx_input_idx=remained_onnx_input_idx) def _test_compare_ops(self, model, num_inputs): x_float = torch.randn(1, 2, 3, 4, requires_grad=True) x_int = torch.randint(10, (3, 4), dtype=torch.int32) if num_inputs > 1: y_float = torch.randn(1, 2, 3, 4, requires_grad=True) y_int = torch.randint(10, (3, 4), dtype=torch.int32) self.run_test(model, (x_float, y_float)) self.run_test(model, (x_float, y_int)) self.run_test(model, (x_int, y_float)) self.run_test(model, (x_int, y_int)) else: self.run_test(model, x_float) self.run_test(model, x_int) @skipIfUnsupportedMinOpsetVersion(9) def test_and_or_xor(self): class MyModel(torch.nn.Module): def forward(self, x, y): return x ^ y, x | y, x & y, ~x x = torch.randint(0, 2, (5, 5), dtype=torch.bool) y = torch.randint(0, 2, (5, 5), dtype=torch.bool) self.run_test(MyModel(), input=(x, y)) @skipIfUnsupportedMinOpsetVersion(9) def test_logical_and(self): class AndModel(torch.nn.Module): def forward(self, x, y): return torch.logical_and(x, y) x = torch.randint(0, 2, (5, 5), dtype=torch.bool) y = torch.randint(0, 2, (5, 5), dtype=torch.bool) self.run_test(AndModel(), input=(x, y)) x = torch.randint(10, (5, 5), dtype=torch.int32) y = torch.randint(10, (5, 5), dtype=torch.int32) self.run_test(AndModel(), input=(x, y)) x = torch.randint(10, (5, 5), dtype=torch.double) y = torch.randint(10, (5, 5), dtype=torch.double) self.run_test(AndModel(), input=(x, y)) x = torch.randint(10, (2, 3, 5), dtype=torch.float32) y = torch.randint(10, (2, 3, 5), dtype=torch.long) self.run_test(AndModel(), input=(x, y)) @skipIfUnsupportedMinOpsetVersion(9) def test_logical_or(self): class OrModel(torch.nn.Module): def forward(self, x, y): return torch.logical_or(x, y) x = torch.randint(0, 2, (5, 5), dtype=torch.bool) y = torch.randint(0, 2, (5, 5), dtype=torch.bool) self.run_test(OrModel(), input=(x, y)) x = torch.randint(10, (5, 5), dtype=torch.int32) y = torch.randint(10, (5, 5), dtype=torch.int32) self.run_test(OrModel(), input=(x, y)) x = torch.randint(10, (5, 5), dtype=torch.double) y = torch.randint(10, (5, 5), dtype=torch.double) self.run_test(OrModel(), input=(x, y)) x = torch.randint(10, (2, 3, 5), dtype=torch.float32) y = torch.randint(10, (2, 3, 5), dtype=torch.long) self.run_test(OrModel(), input=(x, y)) @skipIfUnsupportedMinOpsetVersion(9) def test_logical_xor(self): class XorModel(torch.nn.Module): def forward(self, x, y): return torch.logical_xor(x, y) x = torch.randint(0, 2, (5, 5), dtype=torch.bool) y = torch.randint(0, 2, (5, 5), dtype=torch.bool) self.run_test(XorModel(), input=(x, y)) x = torch.randint(10, (5, 5), dtype=torch.int32) y = torch.randint(10, (5, 5), dtype=torch.int32) self.run_test(XorModel(), input=(x, y)) x = torch.randint(10, (5, 5), dtype=torch.double) y = torch.randint(10, (5, 5), dtype=torch.double) self.run_test(XorModel(), input=(x, y)) x = torch.randint(10, (2, 3, 5), dtype=torch.float32) y = torch.randint(10, (2, 3, 5), dtype=torch.long) self.run_test(XorModel(), input=(x, y)) @skipIfUnsupportedMinOpsetVersion(11) # float equal added after opset 11 def test_eq(self): class EqualModel(torch.nn.Module): def forward(self, input, other): return input == other self._test_compare_ops(EqualModel(), 2) def test_gt(self): class GreaterModel(torch.nn.Module): def forward(self, input, other): return input > other self._test_compare_ops(GreaterModel(), 2) @skipIfUnsupportedMinOpsetVersion(9) def test_ge(self): class GreaterOrEqualModel(torch.nn.Module): def forward(self, input, other): return input >= other self._test_compare_ops(GreaterOrEqualModel(), 2) def test_gt_scalar(self): class GreaterModel(torch.nn.Module): def forward(self, input): return input > 1 self._test_compare_ops(GreaterModel(), 1) def test_gt_primitive(self): class GreaterModel(torch.nn.Module): def __init__(self): super().__init__() self.y: int = 2 def forward(self, x: int): return self.y > x x = 3 self.run_test(GreaterModel(), (x,)) @skipIfUnsupportedMinOpsetVersion(9) def test_ge_scalar(self): class GreaterOrEqualModel(torch.nn.Module): def forward(self, input): return input >= 1 self._test_compare_ops(GreaterOrEqualModel(), 1) def test_lt(self): class LessModel(torch.nn.Module): def forward(self, input, other): return input > other self._test_compare_ops(LessModel(), 2) @skipIfUnsupportedMinOpsetVersion(9) def test_le(self): class LessOrEqualModel(torch.nn.Module): def forward(self, input, other): return input <= other self._test_compare_ops(LessOrEqualModel(), 2) def test_lt_scalar(self): class LessModel(torch.nn.Module): def forward(self, input): return input < 1 self._test_compare_ops(LessModel(), 1) @skipIfUnsupportedMinOpsetVersion(9) def test_le_scalar(self): class LessOrEqualModel(torch.nn.Module): def forward(self, input): return input <= 1 self._test_compare_ops(LessOrEqualModel(), 1) def test_matmul(self): class MatmulModel(torch.nn.Module): def forward(self, input, other): return torch.matmul(input, other) x = torch.randn(3, 4, requires_grad=True) y = torch.randn(4, 5, requires_grad=True) self.run_test(MatmulModel(), (x, y)) x = torch.randint(10, (3, 4)) y = torch.randint(10, (4, 5)) self.run_test(MatmulModel(), (x, y)) def test_matmul_batch(self): class MatmulModel(torch.nn.Module): def forward(self, input, other): return torch.matmul(input, other) x = torch.randn(2, 3, 4, requires_grad=True) y = torch.randn(2, 4, 5, requires_grad=True) self.run_test(MatmulModel(), (x, y)) x = torch.randint(10, (2, 3, 4)) y = torch.randint(10, (2, 4, 5)) self.run_test(MatmulModel(), (x, y)) def _argmin_argmax_model(self, input): class ArgminArgmaxModel(torch.nn.Module): def forward(self, input): return ( torch.argmin(input), torch.argmax(input), torch.argmin(input, keepdim=True), torch.argmax(input, keepdim=True), ) self.run_test(ArgminArgmaxModel(), input) def test_argmin_argmax(self): input = torch.randn(7, 3, 5) self._argmin_argmax_model(input) # Argmin and Argmax with "select_last_index" is not supprted before opset 12 # "select_last_index" was added in opset 12 to deal with corner case where the # same value appears multiple times in the tensor @skipIfUnsupportedMinOpsetVersion(12) def test_argmin_argmax_select_last_index(self): input = torch.tensor([[1.0, 2.0, 3.0], [1.0, 1.0, 2.0]]) self._argmin_argmax_model(input) input = torch.ones(7, 3, 5) self._argmin_argmax_model(input) def test_repeat(self): class RepeatModel(torch.nn.Module): def forward(self, x, y): x2 = x.repeat(y.shape[0], 1) y1 = y.view(-1, 1) return x2 + y1 x = torch.tensor([1, 2, 3]) y = torch.tensor([4, 5, 8, 9]) self.run_test(RepeatModel(), (x, y)) @skipIfUnsupportedMinOpsetVersion(9) def test_repeat_interleave(self): class FlattenModel(torch.nn.Module): def forward(self, x): return x.repeat_interleave(2) x = torch.tensor([1, 2, 3]) self.run_test(FlattenModel(), (x,)) class DimsModel(torch.nn.Module): def forward(self, x): return x.repeat_interleave(4, dim=1) x = torch.tensor([[1, 2], [3, 4]]) self.run_test(DimsModel(), (x,)) class DimsModel2(torch.nn.Module): def forward(self, x): repeats = torch.tensor([4]) return torch.repeat_interleave(x, repeats, dim=1) x = torch.tensor([[1, 2], [3, 4]]) self.run_test(DimsModel2(), (x,)) class RepeatsDimsModel(torch.nn.Module): def forward(self, x): repeats = torch.tensor([1, 2]) return torch.repeat_interleave(x, repeats, dim=0) x = torch.tensor([[1, 2], [3, 4]]) self.run_test(RepeatsDimsModel(), (x,)) class RepeatsDimsModel2(torch.nn.Module): def forward(self, x): repeats = torch.tensor([1, 2]) return torch.repeat_interleave(x, repeats, dim=1) x = torch.tensor([[1, 2], [3, 4]]) self.run_test(RepeatsDimsModel2(), (x,)) @skipIfUnsupportedMinOpsetVersion(9) def test_repeat_interleave_noop(self): class Model(torch.nn.Module): def forward(self, x): return x.repeat_interleave(1, dim=1) x = torch.randn(4, 1, 8) self.run_test(Model(), (x,)) @skipIfUnsupportedMinOpsetVersion(13) def test_dynamic_repeat_interleave(self): class SingleDynamicModel(torch.nn.Module): def forward(self, x): repeats = torch.tensor(4) return torch.repeat_interleave(x, repeats, dim=1) x = torch.tensor([[1, 2, 4], [3, 4, 7]]) another_x = torch.tensor([[7, 8], [5, 6]]) self.run_test( SingleDynamicModel(), x, test_with_inputs=[another_x], input_names=["input_1"], dynamic_axes={"input_1": {1: "w"}}, ) class NegDynamicModel(torch.nn.Module): def forward(self, x): repeats = torch.tensor(4) return torch.repeat_interleave(x, repeats, dim=-1) x = torch.tensor([[1, 2, 4], [3, 4, 7]]) another_x = torch.tensor([[7, 8], [5, 6]]) self.run_test( NegDynamicModel(), x, test_with_inputs=[another_x], input_names=["input_1"], dynamic_axes={"input_1": {1: "w"}}, ) class SingleDynamicModelFloat(torch.nn.Module): def forward(self, x): repeats = torch.tensor([4]) return torch.repeat_interleave(x, repeats, dim=0) x = torch.tensor([[1.1, 2.1], [3.1, 4.1]]) another_x = torch.tensor([[7.1, 8.1], [5.1, 6.1]]) self.run_test( SingleDynamicModelFloat(), x, test_with_inputs=[another_x], input_names=["input_1"], dynamic_axes={"input_1": {0: "h"}}, ) class DynamicRepeatsModel(torch.nn.Module): def forward(self, x, repeats): return torch.repeat_interleave(x, repeats, dim=1) x = torch.tensor([[1, 2, 4], [3, 4, 7]]) another_x = torch.tensor([[7, 8], [5, 6]]) repeats = torch.tensor([2]) another_repeats = torch.tensor([4]) self.run_test( DynamicRepeatsModel(), (x, repeats), test_with_inputs=[(another_x, another_repeats)], input_names=["input_1", "repeats_1"], dynamic_axes={"input_1": {1: "w"}, "repeats_1": {0: "r"}}, ) class DynamicRepeatsModel2(torch.nn.Module): def forward(self, x, repeats): return torch.repeat_interleave(x, repeats, dim=1) x = torch.tensor([[1, 2, 4], [3, 4, 7]]) repeats = torch.tensor([2]) another_repeats = torch.tensor([4]) self.run_test( DynamicRepeatsModel2(), (x, repeats), test_with_inputs=[(x, another_repeats)], input_names=["input_1", "repeats_1"], dynamic_axes={"repeats_1": {0: "r"}}, ) @skipIfUnsupportedMinOpsetVersion(13) def test_multiple_dynamic_repeat_interleave(self): class DynamicRepeatsModel(torch.nn.Module): def forward(self, x, repeats): return torch.repeat_interleave(x, repeats, dim=1) x = torch.tensor([[1, 2, 4], [3, 4, 7]]) repeats = torch.tensor([2, 3, 4]) another_repeats = torch.tensor([4, 3, 2]) self.run_test( DynamicRepeatsModel(), (x, repeats), test_with_inputs=[(x, another_repeats)], input_names=["input_1", "repeats_1"], dynamic_axes={"repeats_1": {0: "r"}}, ) class DynamicRepeatsModel2(torch.nn.Module): def forward(self, x, repeats): return torch.repeat_interleave(x, repeats, dim=0) x = torch.tensor([[1, 2, 4], [3, 4, 7]]) repeats = torch.tensor([2, 3]) another_repeats = torch.tensor([4, 3]) self.run_test( DynamicRepeatsModel2(), (x, repeats), test_with_inputs=[(x, another_repeats)], input_names=["input_1", "repeats_1"], dynamic_axes={"repeats_1": {0: "r"}}, ) def test_view(self): class ViewModel(torch.nn.Module): def forward(self, input): return input.view(4, 24) x = torch.randint(10, (4, 2, 3, 4), dtype=torch.int32) self.run_test(ViewModel(), x) def test_view_dynamic(self): class ViewModel(torch.nn.Module): def forward(self, input, other): return input.view(other.shape) x = torch.randn(2, 3, 4) shape = torch.randn(6, 4) self.run_test( ViewModel(), (x, shape), input_names=["x", "shape"], dynamic_axes={"x": [0, 1, 2], "shape": [0, 1]}, ) self.run_test(ViewModel(), (x, shape), remained_onnx_input_idx=[0]) def test_view_dynamic_zero_dim(self): class ViewModel(torch.nn.Module): def forward(self, input): input = input.view(-1, 2) return input.view(1, -1) x = torch.ones(2) another_x = torch.empty((0,)) self.run_test( ViewModel(), x, test_with_inputs=[another_x], input_names=["input_1"], dynamic_axes={ "input_1": [ 0, ] }, ) def test_view_as(self): class ViewModel(torch.nn.Module): def forward(self, input, other): return input.view_as(other) x = torch.randn(2, 3, 4) y = torch.randn(6, 4) self.run_test(ViewModel(), (x, y)) def test_linear(self): class LinearModel(torch.nn.Module): def __init__(self): super(LinearModel, self).__init__() self.fc = torch.nn.Linear(16, 16) def forward(self, x): out = self.fc(x) out = self.fc(out) return out x = torch.randn(3, 16) self.run_test(LinearModel(), (x,)) class LinearModel(torch.nn.Module): def forward(self, input, weight, bias): return torch.nn.functional.linear(input, weight, bias) # input of rank 2 x = torch.randn(2, 2) y = torch.randn(2, 2) z = torch.randn(1) self.run_test(LinearModel(), (x, y, z)) # input of rank 3 x = torch.randn(3, 3, 3) y = torch.randn(3, 3) z = torch.randn(1) self.run_test(LinearModel(), (x, y, z)) @skipScriptTest() def test_weight_norm(self): # addmm for 3-d inputs converts to onnx::MatMul model = torch.nn.utils.weight_norm(torch.nn.Linear(5, 10), dim=1) x = torch.randn(3, 4, 5, requires_grad=True) self.run_test(model, x) # addmm for 2-d inputs converts to onnx::Gemm model = torch.nn.utils.weight_norm(torch.nn.Linear(5, 10), dim=1) x = torch.randn(4, 5, requires_grad=True) self.run_test(model, x) model = torch.nn.utils.weight_norm(torch.nn.Conv1d(1, 1, 3)) x = torch.randn(1, 1, 5, requires_grad=True) self.run_test(model, x) model = torch.nn.utils.weight_norm(torch.nn.Conv1d(1, 1, 3), dim=-2) x = torch.randn(1, 1, 5, requires_grad=True) self.run_test(model, x) model = torch.nn.utils.weight_norm(torch.nn.Conv1d(3, 6, 3), name="weight") x = torch.randn(3, 3, 5, requires_grad=True) self.run_test(model, x) @skipScriptTest() def test_weight_norm_nodim(self): # addmm for 3-d inputs converts to onnx::MatMul model = torch.nn.utils.weight_norm(torch.nn.Linear(5, 10), dim=None) x = torch.randn(3, 4, 5, requires_grad=True) self.run_test(model, x) # addmm for 2-d inputs converts to onnx::Gemm model = torch.nn.utils.weight_norm(torch.nn.Linear(5, 10), dim=None) x = torch.randn(4, 5, requires_grad=True) self.run_test(model, x) def test_flatten(self): class FlattenModel(torch.nn.Module): def forward(self, input): return torch.flatten(input) x = torch.randint(10, (1, 2, 3, 4)) self.run_test(FlattenModel(), x) x = torch.randn(4) self.run_test(FlattenModel(), x) def test_flatten2d(self): class FlattenModel(torch.nn.Module): def forward(self, input): return torch.flatten(input, 1) x = torch.randint(10, (1, 2, 3, 4)) self.run_test(FlattenModel(), x) def test_flatten2d_neg(self): class FlattenModel(torch.nn.Module): def forward(self, x): return ( torch.flatten(x, 1, -1), torch.flatten(x, 0, -2), torch.flatten(x, 1, -2), ) x = torch.randint(10, (1, 2, 3, 4)) self.run_test(FlattenModel(), x) @skipIfUnsupportedMinOpsetVersion(9) def test_flatten_dynamic_axes(self): class MyModule(torch.nn.Module): def forward(self, x): return torch.flatten(x, start_dim=2, end_dim=3) batch_size = 3 x = torch.randn(batch_size, 5, 4, 5) y = torch.randn(5, 5, 4, 5) model = MyModule() self.run_test( model, x, test_with_inputs=[y], input_names=["input"], output_names=["output"], dynamic_axes={"input": {0: "batch_size"}, "output": {0: "batch_size"}}, ) @skipIfUnsupportedMinOpsetVersion(11) def test_getitem(self): class GetItemModel(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x, y, z, ind): # this will create prim::ListConstruct(x, y, z) + aten::__getitem__ arr = [x, y, z] return arr[ind] x = torch.randn(3, 4, 5) y = torch.randn(1, 4, 5) z = torch.randn(2, 4, 5) ind = torch.tensor(1, dtype=torch.long) self.run_test(GetItemModel(), (x, y, z, ind)) ind = torch.tensor(-2, dtype=torch.long) self.run_test(GetItemModel(), (x, y, z, ind)) def test_item(self): class M(torch.nn.Module): def forward(self, x, y, i: int): return int(x[y[i]].item()) x = torch.arange(6, dtype=torch.float) y = torch.tensor([0, 1, 2, 3, 4], dtype=torch.long) i = 3 self.run_test(torch.jit.script(M()), (x, y, i)) @skipScriptTest() # torch.nonzero(x, as_tuple=True) is not scriptable. @skipIfUnsupportedMinOpsetVersion(9) def test_nonzero(self): class NonzeroModel(torch.nn.Module): def forward(self, x): return x.nonzero(), x.nonzero(as_tuple=True) x = torch.randn(60).index_fill_(0, torch.randint(0, 60, (20,)), 0).view(3, 4, 5) self.run_test(NonzeroModel(), (x,)) def test_unbind(self): class UnbindModel(torch.nn.Module): def forward(self, input): _, out, _ = input.unbind() return out x = torch.randn(3, 4, 5) self.run_test(UnbindModel(), x) class UnbindModel2(torch.nn.Module): def forward(self, input): _, out, _, _ = input.unbind(1) return out x = torch.randn(3, 4, 5) self.run_test(UnbindModel2(), x) class UnbindModel3(torch.nn.Module): def forward(self, input): _, out, _, _ = input.unbind(-2) return out x = torch.randn(3, 4, 5) self.run_test(UnbindModel3(), x) @skipIfUnsupportedMinOpsetVersion(11) def test_len(self): class LenModel(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, input): return len(input.unbind()) + input x = torch.randn(4, 5) self.run_test( LenModel(), x, input_names=["input"], dynamic_axes={"input": {0: "seq"}}, test_with_inputs=(torch.randn(5, 5),), ) @skipIfUnsupportedMinOpsetVersion(9) def test_len_list(self): class LenListModel(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, input): return torch.ones(len(input.shape)) x = torch.randn(4, 5) self.run_test(LenListModel(), x, remained_onnx_input_idx=[]) @skipIfUnsupportedMinOpsetVersion(11) def test_unbind_dynamic(self): class UnbindModel(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, input): return input.unbind()[1] x = torch.randn(3, 4, 5) self.run_test(UnbindModel(), x) class UnbindModel2(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, input): return input.unbind(-1)[1] x = torch.randn(3, 4, 5) self.run_test(UnbindModel2(), x) @skipScriptTest() # scripting tests run for opsets > 11. See: test_split_script def test_split(self): class SplitModel(torch.nn.Module): def forward(self, input): return input.split([2, 1, 2]), input.split([3, 2])[0] x = torch.randn(5, 4, 3) self.run_test(SplitModel(), x) class SplitModel2(torch.nn.Module): def forward(self, input): return input.split([2, 1, 1], -2), input.split([2, 2], -2)[-1] x = torch.randn(5, 4, 3) self.run_test(SplitModel2(), x) class SplitModel3(torch.nn.Module): def forward(self, input): return input.split([2, 1, 2]) x = torch.randn(5, 4, 3) self.run_test(SplitModel3(), x) @skipIfUnsupportedMinOpsetVersion(11) def test_split_script(self): class SplitModel(torch.nn.Module): def forward(self, input): return input.split([2, 1, 2]), input.split([3, 2])[0] x = torch.randn(5, 4, 3) self.run_test(SplitModel(), x) class SplitModel2(torch.nn.Module): def forward(self, input): return input.split([2, 1, 1], -2), input.split([2, 2], -2)[-1] x = torch.randn(5, 4, 3) self.run_test(SplitModel2(), x) class SplitModel3(torch.nn.Module): def forward(self, input): return input.split([2, 1, 2]) x = torch.randn(5, 4, 3) self.run_test(SplitModel3(), x) @skipIfUnsupportedMinOpsetVersion(11) @skipScriptTest() def test_split_size_as_list(self): class SplitModel(torch.nn.Module): def forward(self, input, split_sizes: List[int]): out = [] split_list: List[Tensor] = input.split(split_sizes) for ob in split_list: out.append(ob) return torch.cat(out, dim=0) x = torch.randn(6, 4, 3) split_sizes = [torch.tensor(2), torch.tensor(4)] self.run_test(SplitModel(), (x, split_sizes)) @skipIfUnsupportedMinOpsetVersion(11) def test_split_size_with_slice(self): class SplitModule(torch.nn.Module): def forward(self, x, y, t): splits = (x.size(1), y.size(1)) out, out2 = torch.split(t, splits, dim=1) return out, out2 x = torch.randn(2, 3) y = torch.randn(2, 4) t = torch.randn(2, 7) self.run_test( SplitModule(), (x, y, t), input_names=["x", "y", "t"], dynamic_axes={"x": [0, 1], "y": [0, 1], "t": [0, 1]}, ) self.run_test(SplitModule(), (x, y, t), remained_onnx_input_idx=[2]) @skipIfUnsupportedMinOpsetVersion(11) def test_split_dynamic(self): class SplitModel(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, input): return input.split(2)[1] x = torch.randn(5, 4, 3) self.run_test(SplitModel(), x) class SplitModel2(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, input): return input.split(2, -3)[1] x = torch.randn(5, 4, 3) self.run_test(SplitModel2(), x) @skipIfUnsupportedMinOpsetVersion(11) def test_split_dynamic_axes(self): class Split(torch.nn.Module): def forward(self, x): return x.split(1, dim=-1) x = torch.randn(4, 384, 2) input_names = ["logits"] self.run_test( Split(), x, input_names=input_names, dynamic_axes={input_names[0]: {0: "batch"}}, ) @skipIfUnsupportedMinOpsetVersion(11) def test_chunk(self): class ChunkModel(torch.nn.Module): def __init__(self, dim=1): super(ChunkModel, self).__init__() self.dim = dim def forward(self, x): return torch.chunk(x, 3, dim=self.dim) model = ChunkModel() model.eval() model_neg_dim = ChunkModel(-1) model_neg_dim.eval() x = torch.randn(1, 18) for dim_size_ in range(13, 16): y = torch.randn(1, dim_size_) self.run_test( model, x, test_with_inputs=[y], input_names=["x"], dynamic_axes={"x": {0: "batch_size", 1: "dims"}}, ) self.run_test( model_neg_dim, x, test_with_inputs=[y], input_names=["x"], dynamic_axes={"x": {0: "batch_size", 1: "dims"}}, ) @skipIfUnsupportedMinOpsetVersion(11) def test_dynamic_chunk(self): class ChunkModel(torch.nn.Module): def __init__(self, dim=1): super(ChunkModel, self).__init__() self.dim = dim def forward(self, x): return torch.chunk(x, x.size(0), dim=self.dim) model = ChunkModel() model.eval() model_neg_dim = ChunkModel(-1) model_neg_dim.eval() x = torch.randn(3, 18) for dim_size_ in range(13, 16): y = torch.randn(3, dim_size_) self.run_test( model, x, test_with_inputs=[y], input_names=["x"], dynamic_axes={"x": {0: "batch_size", 1: "dims"}}, ) self.run_test( model_neg_dim, x, test_with_inputs=[y], input_names=["x"], dynamic_axes={"x": {0: "batch_size", 1: "dims"}}, ) def test_concat(self): class ConcatModel(torch.nn.Module): def forward(self, x, y, z): return torch.cat((x, y, z)) x = torch.randn(3, 4, 5) y = torch.randn(1, 4, 5) z = torch.randn(2, 4, 5) self.run_test(ConcatModel(), (x, y, z)) @skipIfUnsupportedMinOpsetVersion(11) def test_concat_dynamic(self): class ConcatDynamicModel(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x): return torch.cat(x.unbind()) x = torch.randn(4, 5, 6) self.run_test(ConcatDynamicModel(), x) def test_stack(self): class StackModel(torch.nn.Module): def forward(self, x, y, z): return torch.stack((x, y, z), 1) x = torch.randn(3, 4, 5) y = torch.randn(3, 4, 5) z = torch.randn(3, 4, 5) self.run_test(StackModel(), (x, y, z)) @skipIfUnsupportedMinOpsetVersion(11) def test_stack_dynamic(self): class StackDynamicModel(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x): return torch.stack(x.unbind(), 1) x = torch.randn(4, 5, 6) self.run_test(StackDynamicModel(), x) def test_loop_dynamic(self): class LoopModel(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x): for i in range(x.size(2)): x = x + i return x model = LoopModel() inputs = torch.zeros(1, 2, 3, dtype=torch.long) self.run_test(model, inputs) @skipIfUnsupportedMinOpsetVersion(9) def test_loop_nested(self): class NestedLoopsModel(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x): for i in range(5): a = 0 while a < 4: a += 1 x = x + a return x model = NestedLoopsModel() inputs = torch.zeros(1, 2, 3, dtype=torch.long) self.run_test(model, inputs) @skipIfUnsupportedMinOpsetVersion(11) def test_loop_with_list(self): class ListLoopModel(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x): res = [] res1 = [] arr = x.split([3, 4, 1, 1, 2, 3, 2], 0) res2 = torch.zeros(3, 4, dtype=torch.long) res3 = [] res4 = [] for i in range(len(arr)): res.append(arr[i].sum(0, False)) res1.append(arr[-1 - i].sum(0, False)) res2 += 1 res3 = res3 + [arr[i].sum(0, False)] res4 += [arr[-1 - i].sum(0, False)] return res, res1, res2, torch.stack(res3), torch.stack(res4) model = ListLoopModel() inputs = torch.randn(16) self.run_test(model, inputs) @skipIfUnsupportedMinOpsetVersion(11) def test_loop_transpose(self): class LoopModel(torch.nn.Module): def forward(self, x): res = torch.zeros_like(x[0]) for i in range(x.size(0)): res += x[0].transpose(0, 1) return res model = torch.jit.script(LoopModel()) x = torch.randn(5, 3, 3) self.run_test(model, x) @skipIfUnsupportedMinOpsetVersion(11) def test_loop_multi_dim(self): class LoopMultiDimModel(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x, y): for x_ in torch.flip(x.narrow(0, 0, 7), [0]): y = x_[0][y] return y model = LoopMultiDimModel() x = torch.randint(0, 5, (8, 1, 17), dtype=torch.long) y = torch.ones(1, dtype=torch.long) self.run_test(model, (x, y)) @skipIfUnsupportedMinOpsetVersion(11) def test_list(self): class ListModel(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x): tensors = x.unbind() res = [] res.append(tensors[0]) res.append(tensors[1]) res.pop(1) res.insert(0, tensors[1]) res.append(tensors[2]) res += [tensors[3], tensors[4]] res = res + [tensors[5]] return torch.ones(len(res)) model = ListModel() inputs = torch.randn(16, 1) self.run_test(model, inputs) @skipIfUnsupportedMinOpsetVersion(11) def test_list_append(self): class ListModel(torch.nn.Module): def forward(self, x, y): res = [] for i in range(x.size(0)): res += [torch.matmul(x[i], y)] return res model = torch.jit.script(ListModel()) x = torch.randn(16, 3, 4) y = torch.randn(4, 5) self.run_test(model, (x, y)) @skipIfUnsupportedMinOpsetVersion(13) def test_list_append_nested(self): class ListModel(torch.nn.Module): def forward(self, x, y): res = [] for i in range(x.size(0)): for j in range(x.size(1)): res += [torch.matmul(x[i][j], y)] return res model = torch.jit.script(ListModel()) x = torch.randn(4, 4, 3, 4) y = torch.randn(4, 5) self.run_test(model, (x, y)) @skipIfUnsupportedMinOpsetVersion(14) # Need onnx::Identity of sequence in opset 14 def test_list_append_nested_2(self): class ListModel(torch.nn.Module): def forward(self, x): res = [] res_replicate = [] for i in range(x.size(0)): if len(res) > 2: for j in range(x.size(1)): res.append(x[i][j]) res_replicate.append(res[-1]) res.append(res_replicate[-1]) return res, res_replicate model = torch.jit.script(ListModel()) x = torch.randn(4, 4, 3, 4) self.run_test(model, (x,)) @skipIfUnsupportedMinOpsetVersion(13) def test_list_append_nested_mixed_dtype(self): class ListModel(torch.nn.Module): def forward(self, x, y): res = [] for i in range(x.size(0)): for j in range(x.size(1)): if i == j: res.append(x == y) else: res.append(x != y) return res model = torch.jit.script(ListModel()) x = torch.randn(4, 4, 3, 4) y = torch.randn(3, 4) self.run_test(model, (x, y)) @skipIfUnsupportedMinOpsetVersion(11) def test_list_pop(self): class ListModel(torch.nn.Module): def forward(self, x, y): res = [] for i in range(x.size(0)): res += [torch.matmul(x[i], y)] res.pop() return res model = torch.jit.script(ListModel()) x = torch.randn(16, 3, 4) y = torch.randn(4, 5) self.run_test(model, (x, y)) @skipIfUnsupportedMinOpsetVersion(13) def test_list_pop_nested(self): class ListModel(torch.nn.Module): def forward(self, x, y): res = [] for i in range(x.size(0)): for j in range(x.size(1)): res += [torch.matmul(x[i][j], y)] res.pop() res += [torch.matmul(x[i][0], y)] return res model = torch.jit.script(ListModel()) x = torch.randn(4, 4, 3, 4) y = torch.randn(4, 5) self.run_test(model, (x, y)) @skipIfUnsupportedMinOpsetVersion(11) def test_list_del(self): class ListModel(torch.nn.Module): def forward(self, x, y): res = [] for i in range(x.size(0)): res += [torch.matmul(x[i], y)] del res[2] return res model = torch.jit.script(ListModel()) x = torch.randn(16, 3, 4) y = torch.randn(4, 5) self.run_test(model, (x, y)) @skipIfUnsupportedMinOpsetVersion(13) def test_list_del_nested(self): class ListModel(torch.nn.Module): def forward(self, x, y): res = [] for i in range(x.size(0)): for j in range(x.size(1)): res += [torch.matmul(x[i][j], y)] del res[i] res += [torch.matmul(x[i][0], y)] return res model = torch.jit.script(ListModel()) x = torch.randn(4, 4, 3, 4) y = torch.randn(4, 5) self.run_test(model, (x, y)) @skipIfUnsupportedMinOpsetVersion(11) def test_list_set(self): class ListModel(torch.nn.Module): def forward(self, x, y): res = [] for i in range(x.size(0)): res.append(x[i]) res[y] = x[y] return res model = torch.jit.script(ListModel()) x = torch.randn(12, 4) y = torch.tensor(2, dtype=torch.long) self.run_test(model, (x, y)) @skipIfUnsupportedMinOpsetVersion(13) def test_list_idx_sum(self): class ListModel(torch.nn.Module): def forward(self, x, y): indices = torch.arange(x.size(0)) res = [] for i in range(x.size(0)): res.append(x[i]) return res[torch.sum(indices[:y])] model = torch.jit.script(ListModel()) x = torch.randn(12, 4) y = torch.tensor(2, dtype=torch.long) self.run_test(model, (x, y)) @skipIfUnsupportedMinOpsetVersion(9) def test_tensor_factories(self): class TensorFactory(torch.nn.Module): def forward(self, x): return torch.zeros(x.size()) + torch.ones(x.size()) x = torch.randn(2, 3, 4) self.run_test( TensorFactory(), x, input_names=["x"], dynamic_axes={"x": [0, 1, 2]} ) self.run_test(TensorFactory(), x, remained_onnx_input_idx=[]) @skipIfUnsupportedMinOpsetVersion(9) def test_tensor_factories_script(self): class TensorFactory(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x): return torch.zeros(x.shape, dtype=torch.float) + torch.ones( x.shape, dtype=torch.float ) x = torch.randn(2, 3, 4) self.run_test( TensorFactory(), x, input_names=["x"], dynamic_axes={"x": [0, 1, 2]} ) self.run_test(TensorFactory(), x, remained_onnx_input_idx=[]) @skipIfUnsupportedMinOpsetVersion(9) def test_tensor_like_factories_script(self): class TensorFactory(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x): zeros = torch.zeros_like( x, dtype=torch.float, layout=torch.strided, device=torch.device("cpu"), ) ones = torch.ones_like( x, dtype=torch.float, layout=torch.strided, device=torch.device("cpu"), ) return zeros + ones x = torch.randn(2, 3, 4) self.run_test( TensorFactory(), x, input_names=["x"], dynamic_axes={"x": [0, 1, 2]} ) self.run_test(TensorFactory(), x, remained_onnx_input_idx=[]) @skipIfUnsupportedMinOpsetVersion(9) def test_eye(self): class TensorFactory(torch.nn.Module): def forward(self, x): return ( torch.eye(x.size()[1], 3), torch.eye(4, 4, dtype=torch.long), torch.eye(x.size()[1], 2, dtype=torch.long), torch.eye(x.shape[0]), torch.eye(x.shape[0], dtype=torch.float64), ) x = torch.randn(2, 3, 4) another_x = torch.randn(5, 6, 7) self.run_test( TensorFactory(), x, test_with_inputs=[another_x], input_names=["input_1"], dynamic_axes={"input_1": [0, 1, 2]}, ) @skipIfUnsupportedMinOpsetVersion(13) def test_diagonal(self): class DiagonalModel(torch.nn.Module): def forward(self, x): return torch.diagonal(x) x = torch.randn(2, 4, 5, 2) # Other test inputs to test dynamic behavior another_x = torch.randn(5, 6, 7, 8) self.run_test( DiagonalModel(), x, test_with_inputs=[another_x], input_names=["input_1"], dynamic_axes={"input_1": [0, 1, 2, 3]}, ) class DiagonalModelNegOffset(torch.nn.Module): def forward(self, x): return torch.diagonal(x, offset=-1) x = torch.randn(2, 4, 5, 2) # Other test inputs to test dynamic behavior another_x = torch.randn(5, 6, 7, 8) self.run_test( DiagonalModelNegOffset(), x, test_with_inputs=[another_x], input_names=["input_1"], dynamic_axes={"input_1": [0, 1, 2, 3]}, ) class DiagonalModelPosOffset(torch.nn.Module): def forward(self, x): return torch.diagonal(x, offset=1) x = torch.randn(2, 4, 5, 2) # Other test inputs to test dynamic behavior another_x = torch.randn(5, 6, 7, 8) self.run_test( DiagonalModelPosOffset(), x, test_with_inputs=[another_x], input_names=["input_1"], dynamic_axes={"input_1": [0, 1, 2, 3]}, ) class DiagonalModelWithDims(torch.nn.Module): def forward(self, x): return torch.diagonal(x, offset=-1, dim1=1, dim2=2) x = torch.randn(2, 4, 5, 2) # Other test inputs to test dynamic behavior another_x = torch.randn(5, 6, 7, 8) self.run_test( DiagonalModelWithDims(), x, test_with_inputs=[another_x], input_names=["input_1"], dynamic_axes={"input_1": [0, 1, 2, 3]}, ) class DiagonalModelOffsetOverrun(torch.nn.Module): def forward(self, x): return torch.diagonal(x, offset=-2), torch.diagonal(x, offset=5) x = torch.randn(2, 4, 5, 2) # Other test inputs to test dynamic behavior another_x = torch.randn(5, 6, 7, 8) self.run_test( DiagonalModelOffsetOverrun(), x, test_with_inputs=[another_x], input_names=["input_1"], dynamic_axes={"input_1": [0, 1, 2, 3]}, ) @skipIfUnsupportedMinOpsetVersion(9) def test_inplace_zero(self): class Zero_(torch.nn.Module): def forward(self, x): return x.zero_(), x x = torch.randn(2, 3, 4) self.run_test(Zero_(), x, input_names=["x"], dynamic_axes={"x": [0, 1, 2]}) self.run_test(Zero_(), x, remained_onnx_input_idx=[]) @skipIfUnsupportedMinOpsetVersion(9) def test_new_zeros(self): class Zero_(torch.nn.Module): def forward(self, x): return x.new_zeros(x.shape[1:2]), x.new_zeros( x.shape[2:], dtype=torch.long ) x = torch.randn(2, 3, 4) self.run_test(Zero_(), x, input_names=["x"], dynamic_axes={"x": [0, 1, 2]}) self.run_test(Zero_(), x, remained_onnx_input_idx=[]) @skipIfUnsupportedMinOpsetVersion(9) def test_new_ones(self): class OnesModel(torch.nn.Module): def forward(self, x): return x.new_ones(x.shape[1:2]), x.new_ones( x.shape[2:], dtype=torch.long ) x = torch.randn(2, 3, 4) self.run_test(OnesModel(), x, input_names=["x"], dynamic_axes={"x": [0, 1, 2]}) self.run_test(OnesModel(), x, remained_onnx_input_idx=[]) @skipIfUnsupportedMinOpsetVersion(9) @skipScriptTest() # torch.zeros/torch.ones with size tensor of dim != 0 not scriptable. def test_zeros_ones_with_tensor_input(self): class ZeroAndOnes(torch.nn.Module): def forward(self, x): return torch.zeros(x, 1), torch.ones(x, 1) x = torch.tensor([2]) self.run_test(ZeroAndOnes(), (x,)) @skipIfUnsupportedMinOpsetVersion(9) def test_tolist(self): class List(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, input): res: List[int] = input.tolist() return res self.run_test(List(), (torch.randint(100, (1,)),)) @skipIfUnsupportedMinOpsetVersion(9) def test_list_pass(self): class Slice(torch.nn.Module): def forward(self, x, y): return x.new_zeros(x.shape[2:] + y.shape[1:]) x = torch.randn(2, 3, 4, 5) y = torch.randn(1, 2, 3, 4) self.run_test( Slice(), (x, y), input_names=["x", "y"], dynamic_axes={"x": [0, 1, 2, 3], "y": [0, 1, 2, 3]}, ) self.run_test(Slice(), (x, y), remained_onnx_input_idx=[]) class Size(torch.nn.Module): def forward(self, x, y): return x.new_zeros(x.shape + y.shape) x = torch.randn(2, 3, 4) y = torch.randn(1, 2, 3) self.run_test( Size(), (x, y), input_names=["x", "y"], dynamic_axes={"x": [0, 1, 2], "y": [0, 1, 2]}, ) self.run_test(Size(), (x, y), remained_onnx_input_idx=[]) class Array(torch.nn.Module): def forward(self, x, y): arr1 = [x.shape[0], x.shape[1], 2] arr2 = [y.shape[0], y.shape[1]] return x.new_zeros(arr1 + arr2) x = torch.randn(2, 3, 4) y = torch.randn(1, 2, 3) self.run_test( Array(), (x, y), input_names=["x", "y"], dynamic_axes={"x": [0, 1, 2], "y": [0, 1, 2]}, ) self.run_test(Array(), (x, y), remained_onnx_input_idx=[]) class List(torch.nn.Module): def forward(self, x, y): l1 = list(x.shape) l2 = list(y.shape) return x.new_zeros(l1 + l2) x = torch.randn(2, 3, 4) y = torch.randn(1, 2, 3) self.run_test( List(), (x, y), input_names=["x", "y"], dynamic_axes={"x": [0, 1, 2], "y": [0, 1, 2]}, ) self.run_test(List(), (x, y), remained_onnx_input_idx=[]) @skipIfUnsupportedMinOpsetVersion(9) def test_new_empty(self): class Emtpy(torch.nn.Module): def forward(self, x): return ( x.new_empty(x.shape[0]).fill_(0), x.new_empty(x.shape[0], dtype=torch.long) * 0, ) x = torch.randn(2, 3, 4) self.run_test(Emtpy(), x, input_names=["x"], dynamic_axes={"x": [0, 1, 2]}) self.run_test(Emtpy(), x, remained_onnx_input_idx=[]) @skipIfUnsupportedMinOpsetVersion(9) def test_new_full(self): class Full(torch.nn.Module): def forward(self, x): return x.new_full(x.shape[1:2], 5), x.new_full( x.shape[0:1], 1.3, dtype=torch.long ) x = torch.randn(2, 3, 4) self.run_test(Full(), x, input_names=["x"], dynamic_axes={"x": [0, 1, 2]}) self.run_test(Full(), x, remained_onnx_input_idx=[]) @skipIfUnsupportedMinOpsetVersion(9) def test_inplace_list(self): class Arithmetic(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x, y): return torch.cat([x.add_(3), y.fill_(0)]) x = torch.randn(2, 3) y = torch.randn(2, 3) self.run_test( Arithmetic(), (x, y), input_names=["x", "y"], dynamic_axes={"x": [0, 1], "y": [0, 1]}, ) self.run_test(Arithmetic(), (x, y), remained_onnx_input_idx=[0]) @skipIfUnsupportedMinOpsetVersion(9) def test_inplace_fill(self): class Fill_(torch.nn.Module): def forward(self, x): return x.fill_(3), x x = torch.randn(2, 3, 4) self.run_test(Fill_(), x, input_names=["x"], dynamic_axes={"x": [0, 1, 2]}) self.run_test(Fill_(), x, remained_onnx_input_idx=[]) def test_inplace_arithmetic(self): class Arithmetic(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x, y): x.add_(3) y.mul_(x) return x, y x = torch.randn(2, 3, 4) y = torch.randn(2, 3, 4) self.run_test(Arithmetic(), (x, y)) def test_inplace_arithmetic_half(self): class InplaceAddModel(torch.nn.Module): def forward(self, x, y): return x.add_(y) class InplaceMulModel(torch.nn.Module): def forward(self, x, y): return x.mul_(y) x = torch.randn(2, 2, dtype=torch.half) y = torch.randn(2, 2, dtype=torch.float) self.run_test(InplaceAddModel(), (x, y), rtol=1e-2, atol=1e-2) self.run_test(InplaceMulModel(), (x, y), rtol=1e-2, atol=1e-2) @skipIfUnsupportedMinOpsetVersion(9) def test_inplace_with_loop(self): class M(torch.nn.Module): def forward(self, x): a = torch.ones( 12, ) for i in range(10): a.add_( torch.ones( 12, ) ) return a + x m = M() x = torch.randn( 12, ) self.run_test(torch.jit.script(M()), (x)) @skipIfUnsupportedMinOpsetVersion(9) def test_inplace_with_loop_2(self): class M(torch.nn.Module): def forward(self, x): _bias = torch.ones( 12, ) a = torch.ones( 12, ) # used in loop, altered. a_ref = a # not used in loop, should be altered. b = x.clone() # used in loop, not be altered. b_ref = b # not used in loop, should not be altered. for i in range(10): if i == 3: for j in range(5): a += _bias _bias.add_( torch.ones( 12, ) ) b = b + torch.ones( 12, ) _bias.add_( torch.ones( 12, ) ) a += _bias # TODO: value for a_ref is incorrect. # a_ref += torch.ones(12,) b_ref += torch.ones( 12, ) return _bias + x, a, b, b_ref m = M() x = torch.zeros( 12, ) self.run_test(torch.jit.script(M()), (x)) @skipIfUnsupportedMinOpsetVersion(11) def test_inplace_attr_with_loop(self): class M(torch.nn.Module): def __init__(self): super().__init__() self._bias = torch.arange( 12, ) def forward(self, x): self._bias = torch.arange( 12, ) for i in range(10): if i == 3: for j in range(5): self._bias += torch.arange( 12, ) return self._bias + x m = M() x = torch.zeros( 12, ) self.run_test(torch.jit.script(M()), (x)) @skipIfUnsupportedMinOpsetVersion(11) def test_inplace_attr_copy_with_loop(self): class M(torch.nn.Module): def __init__(self): super().__init__() self._bias = torch.arange( 12, ) def forward(self, x): self._bias = torch.arange( 12, ) for i in range(10): if i == 3: for j in range(5): self._bias.copy_( torch.arange( 12, ) ) self._bias.copy_( self._bias + torch.arange( 12, ) ) self._bias.copy_( self._bias + torch.arange( 12, ) ) return self._bias + x m = M() x = torch.zeros( 12, ) self.run_test(torch.jit.script(M()), (x)) @skipIfUnsupportedMinOpsetVersion(14) # Need onnx::Identity of sequence in opset 14 def test_inplace_sequence_with_loop(self): class M(torch.nn.Module): def process(self, beam_hyps: List[Tensor], done: Tensor, x): batch_size = x.shape[0] for i in range(batch_size): if done[i]: continue beam_idx = 0 for _, token in enumerate(x[i]): beam_hyps.append(token) beam_idx += 1 if beam_idx == 6: break done[i] = len(beam_hyps) > 4 return beam_hyps, done def forward(self, x): beam_hyps: List[Tensor] = [] batch_size = x.shape[0] cur_len = 0 max_len = x.shape[1] done = torch.zeros(batch_size, dtype=torch.bool) while cur_len < max_len: beam_hyps, done = self.process(beam_hyps, done, x[:, 0, :]) cur_len = cur_len + 1 return beam_hyps m = torch.jit.script(M()) x = torch.randn(8, 4, 3) self.run_test(torch.jit.script(M()), (x)) @skipScriptTest() # Sort with dynamic dim not supported in ONNX def test_sort(self): class SortModel(torch.nn.Module): def forward(self, x): out = [] for i in range(-2, 2): out.append(torch.sort(x, dim=i, descending=True)) return out x = torch.randn(3, 4) self.run_test(SortModel(), x) @skipIfUnsupportedMinOpsetVersion(11) @skipScriptTest() # Sort with dynamic dim not supported in ONNX def test_sort_ascending(self): class SortModel(torch.nn.Module): def forward(self, x): out = [] for i in range(-2, 2): out.append(torch.sort(x, dim=i, descending=False)) return out x = torch.randn(3, 4) self.run_test(SortModel(), x) @skipIfUnsupportedMinOpsetVersion(9) def test_masked_fill(self): class MaskedFillModel(torch.nn.Module): def forward(self, x): mask = torch.tensor([[0, 0, 1], [1, 1, 0]], dtype=torch.uint8) return x.masked_fill(mask, 2) x = torch.zeros(4, 2, 3, requires_grad=True) self.run_test(MaskedFillModel(), x) class MaskedFillModel2(torch.nn.Module): def forward(self, x): return x.masked_fill(x > 3, -1) x = torch.arange(16).view(2, 2, 4).to(torch.float32) self.run_test(MaskedFillModel2(), x) @skipIfUnsupportedMinOpsetVersion(9) def test_masked_fill_inplace(self): class MaskedFillModel(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x): mask = torch.tensor([[0, 0, 1], [1, 1, 0]], dtype=torch.uint8) x.masked_fill_(mask, 2) return x x = torch.zeros(4, 2, 3, requires_grad=True) self.run_test(MaskedFillModel(), x) class MaskedFillModel2(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, x): x.masked_fill_(x > 3, -1) return x x = torch.arange(16).view(2, 2, 4).to(torch.float32) self.run_test(MaskedFillModel2(), x) @skipIfUnsupportedMinOpsetVersion(11) def test_masked_scatter(self): class MaskedScatterModel(torch.nn.Module): def forward(self, x): return torch.masked_scatter(x, x.ge(0.5), torch.ones(100, 100) * 5) x = torch.randn(3, 4, 5, requires_grad=True) self.run_test(MaskedScatterModel(), x) @skipIfUnsupportedMinOpsetVersion(11) def test_masked_select(self): class MaskedSelectModel(torch.nn.Module): def forward(self, x): return torch.masked_select(x, x.ge(0.5)) x = torch.randn(3, 4, 5, requires_grad=True) self.run_test(MaskedSelectModel(), x) @skipIfUnsupportedMinOpsetVersion(11) def test_index_put_to_masked_fill(self): class MaskedFillModel(torch.nn.Module): def forward(self, input_mask, some_const): mask = input_mask.clone() mask[mask != some_const] = 1 mask[mask == some_const] = 0 return mask mask = torch.randn(2, 2, 2, requires_grad=True) constant = torch.tensor(5, dtype=torch.float) self.run_test(MaskedFillModel(), (mask, constant)) @skipIfUnsupportedMinOpsetVersion(11) def test_index_put_to_masked_scatter(self): class MaskedScatterModel(torch.nn.Module): def forward(self, input_mask, some_const): mask = input_mask.clone() mask[mask != some_const] = torch.ones(8) return mask mask = torch.randn(2, 2, 2, requires_grad=True) constant = torch.tensor(5, dtype=torch.float) self.run_test(MaskedScatterModel(), (mask, constant)) @skipIfUnsupportedMinOpsetVersion(9) def test_pixel_shuffle(self): class PixelShuffle(torch.nn.Module): def forward(self, x): return torch.pixel_shuffle(x, upscale_factor=2) x = torch.randn(2, 16, 4, 3, requires_grad=True) y = torch.randn(4, 32, 8, 4, requires_grad=True) self.run_test(PixelShuffle(), x) self.run_test( PixelShuffle(), x, input_names=["x"], dynamic_axes={"x": [0, 1, 2, 3]}, test_with_inputs=[y], ) @skipIfUnsupportedMinOpsetVersion(9) def test_pixel_unshuffle(self): class PixelUnshuffle(torch.nn.Module): def forward(self, x): return torch.pixel_unshuffle(x, downscale_factor=2) x = torch.randn(2, 16, 4, 6, requires_grad=True) y = torch.randn(4, 32, 8, 4, requires_grad=True) self.run_test(PixelUnshuffle(), x) self.run_test( PixelUnshuffle(), x, input_names=["x"], dynamic_axes={"x": [0, 1, 2, 3]}, test_with_inputs=[y], ) @skipIfUnsupportedMinOpsetVersion(9) def test_reciprocal(self): class ReciprocalModel(torch.nn.Module): def forward(self, x): return torch.reciprocal(x) model = ReciprocalModel() x = torch.tensor([2, 4]) self.run_test(model, x.to(torch.long)) self.run_test(model, x.to(torch.float)) self.run_test(model, x.to(torch.double)) @skipIfUnsupportedMinOpsetVersion(9) def test_scalar_type(self): class ArithmeticModel(torch.nn.Module): def forward(self, x): return x.size(0) * 2 * x, 2 - x x = torch.ones(2, 3, dtype=torch.float32) self.run_test(ArithmeticModel(), x) class ComparisonModel(torch.nn.Module): def forward(self, x, y): a = torch.tensor([12.0]) return x.lt(1.5) & y.le(2) & x.le(1), x.gt(y), x.lt(y), a.ge(x.size(0)) x = torch.ones(2, 3, dtype=torch.int32) y = torch.ones(2, 3, dtype=torch.float32) self.run_test(ComparisonModel(), (x, y)) class MatMulModel(torch.nn.Module): def forward(self, x): return torch.mm(x, x) + x + torch.mm(x, x) + x x = torch.ones(3, 3) self.run_test(MatMulModel(), x) class AddMMModel(torch.nn.Module): def forward(self, x): return torch.mm(x, x) + x x = torch.ones(3, 3) self.run_test(AddMMModel(), x) class FullModel(torch.nn.Module): # add is used for exporting full def forward(self, x): return torch.full((3, 4), x) x = torch.tensor(12.0) self.run_test(FullModel(), x) class CatModel(torch.nn.Module): def forward(self, fp16, fp32): return torch.cat([fp16, fp32]) fp16 = Tensor([0.5]) fp16 = fp16.half() fp32 = Tensor([1.5]) self.run_test(CatModel(), (fp16, fp32)) @skipIfUnsupportedMinOpsetVersion(9) def test_full_like(self): class FullLikeModel(torch.nn.Module): def forward(self, x): return torch.full_like(x, 1.3, dtype=torch.int) x = torch.tensor(12) self.run_test(FullLikeModel(), x) @skipIfUnsupportedMinOpsetVersion(9) def test_full_like_value(self): class FullLikeModel(torch.nn.Module): def forward(self, x, y): out = y + 2 return torch.full_like(x, out) x = torch.tensor(12) y = torch.tensor(2) self.run_test(FullLikeModel(), (x, y)) def test_l1_norm(self): class NormModel(torch.nn.Module): def forward(self, x): return torch.norm(x, p=1, dim=-1, keepdim=False) x = torch.randn(4, 2, 3, requires_grad=True) self.run_test(NormModel(), x) def test_l2_norm(self): class NormModel(torch.nn.Module): def forward(self, x): return torch.norm(x, p=2, dim=-2, keepdim=False) x = torch.randn(4, 2, 3, requires_grad=True) self.run_test(NormModel(), x) def test_frobenius_norm(self): class NormModel(torch.nn.Module): def forward(self, x): return torch.norm(x, p="fro", dim=0, keepdim=False) x = torch.randn(4, 2, 3, requires_grad=True) self.run_test(NormModel(), x) def test_frobenius_norm_keepdim(self): class NormModel(torch.nn.Module): def forward(self, x): return torch.norm(x, p="fro", dim=(0, 1), keepdim=True) x = torch.randn(4, 2, 3, requires_grad=True) self.run_test(NormModel(), x) def test_unfold(self): class UnfoldModel(torch.nn.Module): def forward(self, x): return x.unfold(dimension=2, size=2, step=2) x = torch.randn(4, 2, 3, requires_grad=True) y = torch.randn(2, 1, 3, requires_grad=True) self.run_test( UnfoldModel(), x, dynamic_axes={"x": [0, 1]}, input_names=["x"], test_with_inputs=[y], ) def test_unfold_infer_shape(self): class UnfoldModule(torch.jit.ScriptModule): def __init__(self): super(UnfoldModule, self).__init__() self.conv = torch.nn.Conv1d(3, 1, 3, stride=2) @torch.jit.script_method def forward(self, x): x = self.conv(x) return x.unfold(dimension=2, size=2, step=2) x = torch.randn(32, 3, 64) self.run_test(UnfoldModule(), x) @skipIfUnsupportedMinOpsetVersion(12) def test_unfold_dynamic_inputs(self): class UnfoldModel(torch.nn.Module): def forward(self, x): return x.unfold(dimension=2, size=x.shape[1], step=x.shape[1] - 1) x = torch.randn(4, 2, 4, requires_grad=True) self.run_test(UnfoldModel(), x) class UnfoldModel(torch.nn.Module): def forward(self, x): return x.unfold(dimension=2, size=x.shape[1], step=1) x = torch.randn(4, 2, 4, requires_grad=True) self.run_test(UnfoldModel(), x) @skipIfUnsupportedMinOpsetVersion(9) # MatMul long inputs is added in ONNX opset 9. def test_mv(self): class MatmulModel(torch.nn.Module): def forward(self, input, other): return torch.mv(input, other) x = torch.randn(4, 5, requires_grad=True) y = torch.randn(5, requires_grad=True) self.run_test(MatmulModel(), (x, y)) x = torch.randint(10, (4, 5)) y = torch.randint(10, (5,)) self.run_test(MatmulModel(), (x, y)) @skipIfUnsupportedMinOpsetVersion(9) # MatMul long inputs is added in ONNX opset 9. def test_dot(self): class MatmulModel(torch.nn.Module): def forward(self, input, other): return torch.dot(input, other) x = torch.randn(5, requires_grad=True) y = torch.randn(5, requires_grad=True) self.run_test(MatmulModel(), (x, y)) x = torch.randint(10, (5,)) y = torch.randint(10, (5,)) self.run_test(MatmulModel(), (x, y)) @skipScriptTest() # SpectralNorm not TorchScript compatible. def test_spectral_norm(self): m = torch.nn.utils.spectral_norm(torch.nn.Linear(2, 4)) x = torch.randn(6, 2) self.run_test(m, (x,)) def test_prelu(self): class PReluModel(torch.nn.Module): def __init__(self): super(PReluModel, self).__init__() self.prelu = torch.nn.PReLU() def forward(self, x): return self.prelu(x) x = torch.randn(2, 3, 4) y = torch.randn(2, 4, 5) self.run_test( PReluModel(), x, input_names=["x"], dynamic_axes={"x": [1, 2]}, test_with_inputs=[y], ) def test_prelu_scalar(self): x = torch.scalar_tensor(1.0) self.run_test(torch.nn.PReLU(), x, input_names=["x"]) def test_relu6(self): class Relu6Model(torch.nn.Module): def __init__(self): super(Relu6Model, self).__init__() self.relu6 = torch.nn.ReLU6() def forward(self, x): return self.relu6(x) x = torch.randn(2, 3, 4) * 100.0 y = torch.randn(2, 4, 5) * 100.0 self.run_test( Relu6Model(), x, input_names=["x"], dynamic_axes={"x": [1, 2]}, test_with_inputs=[y], ) def test_silu(self): class SiLUModel(torch.nn.Module): def __init__(self): super(SiLUModel, self).__init__() self.silu = torch.nn.SiLU() def forward(self, x): return self.silu(x) x = torch.randn(2, 3, 4) self.run_test(SiLUModel(), (x)) @skipIfUnsupportedMinOpsetVersion(14) def test_tril(self): class trilModel(torch.nn.Module): def forward(self, x): return torch.tril(x) x = torch.randn(2, 3, 4) self.run_test(trilModel(), (x)) class trilModelwithDiagonal(torch.nn.Module): def forward(self, x): return torch.tril(x, diagonal=1) x = torch.randn(2, 3, 4) self.run_test(trilModelwithDiagonal(), (x)) class trilModelwithNegDiagonal(torch.nn.Module): def forward(self, x): return torch.tril(x, diagonal=-1) x = torch.randn(2, 3, 4) self.run_test(trilModelwithNegDiagonal(), (x)) @skipIfUnsupportedMinOpsetVersion(14) def test_triu(self): class triuModel(torch.nn.Module): def forward(self, x): return torch.triu(x) x = torch.randn(2, 3, 4) self.run_test(triuModel(), (x)) class triuModelwithDiagonal(torch.nn.Module): def forward(self, x): return torch.triu(x, diagonal=1) x = torch.randn(2, 3, 4) self.run_test(triuModelwithDiagonal(), (x)) class trilModelwithNegDiagonal(torch.nn.Module): def forward(self, x): return torch.tril(x, diagonal=-1) x = torch.randn(2, 3, 4) self.run_test(trilModelwithNegDiagonal(), (x)) def test_mish(self): class MishModel(torch.nn.Module): def __init__(self): super(MishModel, self).__init__() self.mish = torch.nn.Mish() def forward(self, x): return self.mish(x) x = torch.randn(2, 3, 4) self.run_test(MishModel(), (x)) def test_remainder(self): class RemainderModel(torch.nn.Module): def forward(self, input, other): return torch.remainder(input, other) x = torch.randn(4, 2, 3) y = torch.randn(1, 2, 1) self.run_test(RemainderModel(), (x, y)) x = torch.tensor([7, 6, -7, -6], dtype=torch.long) y = torch.tensor([2], dtype=torch.long) self.run_test(RemainderModel(), (x, y)) x = x.to(torch.float) self.run_test(RemainderModel(), (x, y)) y = y.to(torch.float) self.run_test(RemainderModel(), (x, y)) x = x.to(torch.int32) self.run_test(RemainderModel(), (x, y)) def test_remainder_scalar(self): class RemainderModel(torch.nn.Module): def __init__(self, scalar=2.55): super().__init__() self.scalar = scalar def forward(self, input): return torch.remainder(input, self.scalar) x = torch.randint(10, (2, 3)) self.run_test(RemainderModel(), x) x = torch.tensor([7, 6, -7, -6], dtype=torch.long) self.run_test(RemainderModel(2), x) @skipIfUnsupportedMinOpsetVersion(10) def test_fmod(self): class FModModel(torch.nn.Module): def forward(self, input, other): return torch.fmod(input, other) x = torch.randn(4, 2, 3) y = torch.randn(1, 2, 1) self.run_test(FModModel(), (x, y)) @skipIfUnsupportedMinOpsetVersion(10) def test_fmod_scalar(self): class FModModel(torch.nn.Module): def forward(self, input): return torch.fmod(input, 2.55) x = torch.randint(10, (2, 3)) self.run_test(FModModel(), x) @skipIfUnsupportedMinOpsetVersion(9) def test_glu(self): class GluModel(torch.nn.Module): def forward(self, x): return torch.nn.functional.glu(x) x = torch.randn(2, 4, 5, 6, requires_grad=True) self.run_test(GluModel(), x) @skipIfUnsupportedMinOpsetVersion(9) def test_gelu(self): class GeluModel(torch.nn.Module): def forward(self, x): return torch.nn.functional.gelu(x, approximate="none") x = torch.randn(2, 4, 5, 6, requires_grad=True) self.run_test(GeluModel(), x) @skipIfUnsupportedMinOpsetVersion(9) def test_tanh_gelu(self): class GeluModel(torch.nn.Module): def forward(self, x): return torch.nn.functional.gelu(x, approximate="tanh") x = torch.randn(2, 4, 5, 6, requires_grad=True) self.run_test(GeluModel(), x) def test_add_inplace(self): class InplaceAddModel(torch.nn.Module): def forward(self, x): x += 12 return x x = torch.randn(4, 2, 3, requires_grad=True) self.run_test(InplaceAddModel(), x) def test_addcmul(self): class AddcmulModel(torch.nn.Module): def forward(self, x, t1, t2): return torch.addcmul(x, t1, t2), torch.addcmul(x, t1, t2, value=2.2) x = torch.randn(1, 3) t1 = torch.randn(3, 1) t2 = torch.randn(1, 3) self.run_test(AddcmulModel(), (x, t1, t2)) def test_rsqrt(self): class RsqrtModel(torch.nn.Module): def forward(self, x): return x.rsqrt() x = torch.randn(4, 2, 3, requires_grad=True, dtype=torch.float64) self.run_test(RsqrtModel(), x) def test_rsqrt_zeros(self): class RsqrtModel(torch.nn.Module): def forward(self, x): return x.rsqrt() x = torch.zeros(4, 2, 3, requires_grad=True, dtype=torch.float64) self.run_test(RsqrtModel(), x) @skipIfUnsupportedMinOpsetVersion(11) def test_unique(self): class UniqueModel(torch.nn.Module): def forward(self, x): return torch.unique( x, sorted=True, return_inverse=False, return_counts=True ) x = torch.tensor([1, 3, 2, 3], dtype=torch.long) self.run_test(UniqueModel(), x) @skipIfUnsupportedMinOpsetVersion(11) def test_unique_along_dim(self): class UniqueModel(torch.nn.Module): def forward(self, x): return torch.unique( x, dim=0, sorted=True, return_inverse=True, return_counts=False ) x = torch.tensor([1, 3, 2, 3], dtype=torch.long) self.run_test(UniqueModel(), x) @skipIfUnsupportedMinOpsetVersion(11) def test_cumsum(self): class CumSum(torch.nn.Module): def forward(self, input): return torch.cumsum(input, dim=0) x = torch.randn(2, 3, 4) model = CumSum() self.run_test(model, x) @skipIfUnsupportedMinOpsetVersion(11) def test_cumsum_with_cast(self): class CumSum(torch.nn.Module): def forward(self, input): return torch.cumsum(input, dim=0, dtype=torch.float32) model = CumSum() x = torch.tensor([2, 3, 4], dtype=torch.int32) self.run_test(model, x) x = torch.tensor([False, True, True]) self.run_test(model, x) @skipScriptTest() # error in propagate as assign input shape @skipIfUnsupportedMinOpsetVersion(10) def test_embedding_bag(self): model = torch.nn.EmbeddingBag(10, 5, mode="sum", scale_grad_by_freq=True) input = torch.randint(10, (7,)) offset = torch.tensor([0, 2, 5, 6]) self.run_test(model, (input, offset)) model = torch.nn.EmbeddingBag(10, 5, mode="sum", include_last_offset=True) input = torch.randint(10, (7,)) offset = torch.tensor([0, 2, 5, 6]) self.run_test(model, (input, offset)) model = torch.nn.EmbeddingBag(10, 5, mode="max") input = torch.randint(10, (7, 5)) self.run_test(model, (input)) @skipIfUnsupportedMinOpsetVersion(11) def test_embedding_bag_1d_per_sample_weights(self): class EmbeddingModel(torch.nn.Module): def forward(self, embedding_matrix, input, offset, weights): return torch.nn.functional.embedding_bag( input, embedding_matrix, offsets=offset, mode="sum", per_sample_weights=weights, ) model = EmbeddingModel() x = torch.randint(7, (6,)) w = torch.randn( 6, ) offset = torch.tensor([0, 2, 5]) embedding_matrix = torch.rand(10, 15) self.run_test(model, (embedding_matrix, x, offset, w)) @skipIfUnsupportedMinOpsetVersion(11) def test_embedding_bag_2d_per_sample_weights(self): class EmbeddingModel(torch.nn.Module): def forward(self, embedding_matrix, input, weights): return torch.nn.functional.embedding_bag( input, embedding_matrix, mode="sum", per_sample_weights=weights ) embedding_matrix = torch.rand(10, 15) model = EmbeddingModel() x = torch.randint(7, (2, 3)) w = torch.randn(2, 3) x2 = torch.randint(7, (4, 3)) w2 = torch.randn(4, 3) self.run_test( model, (embedding_matrix, x, w), input_names=["embed", "x", "w"], dynamic_axes={"x": [0], "w": [0]}, test_with_inputs=[(embedding_matrix, x2, w2)], ) @skipScriptTest() # scripting prim::Uninitialized, prim::dtype, prim::unchecked_cast @skipIfUnsupportedMinOpsetVersion(11) @unittest.skip( "Due to ONNX Loop shape inference issue. " "https://msdata.visualstudio.com/Vienna/_workitems/edit/1352001" ) def test_embedding_bag_dynamic_input(self): class EmbeddingModel1D(torch.nn.Module): def forward(self, embedding_matrix, input, weights, offsets): return torch.nn.functional.embedding_bag( input, embedding_matrix, offsets=offsets, mode="sum", per_sample_weights=weights, ) model = EmbeddingModel1D() x = torch.randint(7, (6,)) w = torch.randn( 6, ) offsets = torch.tensor([0, 2, 5], dtype=torch.long) embedding_matrix = torch.rand(10, 15) x2 = torch.randint(7, (2,)) w2 = torch.randn( 2, ) embedding_matrix2 = torch.rand(12, 25) offsets2 = torch.tensor( [ 0, ], dtype=torch.long, ) self.run_test( model, (embedding_matrix, x, w, offsets), test_with_inputs=[(embedding_matrix2, x2, w2, offsets2)], input_names=["embedding_matrix", "x", "offsets", "w"], dynamic_axes={ "embedding_matrix": [0, 1], "x": [0], "offsets": [0], "w": [0], }, ) class EmbeddingModel2D(torch.nn.Module): def forward(self, embedding_matrix, input, weights): return torch.nn.functional.embedding_bag( input, embedding_matrix, mode="sum", per_sample_weights=weights ) model = EmbeddingModel2D() x = torch.randint(7, (2, 3)) w = torch.randn(2, 3) embedding_matrix = torch.rand(10, 15) x2 = torch.randint(7, (3, 5)) w2 = torch.randn(3, 5) embedding_matrix2 = torch.rand(12, 25) self.run_test( model, (embedding_matrix, x, w), test_with_inputs=[(embedding_matrix2, x2, w2)], input_names=["embedding_matrix", "x", "w"], dynamic_axes={"embedding_matrix": [0, 1], "x": [0, 1], "w": [0, 1]}, ) @skipIfUnsupportedMinOpsetVersion(8) def test_meshgrid(self): class Meshgrid(torch.nn.Module): def forward(self, x, y, z): output1, output2, output3 = torch.meshgrid(x, y, z) return output1, output2, output3 x = torch.randn(3, requires_grad=True) y = torch.zeros(4, requires_grad=True) z = torch.randn(5, requires_grad=True) self.run_test(Meshgrid(), (x, y, z)) @skipIfUnsupportedMinOpsetVersion(8) def test_meshgrid_scalar(self): class Meshgrid(torch.nn.Module): def forward(self, x, y, z): output1, output2, output3 = torch.meshgrid(x, y, z) return output1, output2, output3 x = torch.ones(3, requires_grad=True) y = torch.zeros(4, requires_grad=True) z = torch.tensor(2.0) self.run_test(Meshgrid(), (x, y, z)) def test_baddbmm(self): class MyModule(torch.nn.Module): def forward(self, input, batch1, batch2): return torch.baddbmm( input, batch1, batch2, alpha=torch.tensor(5), beta=3.5 ) x = torch.randn(10, 3, 5) batch1 = torch.randn(10, 3, 4) batch2 = torch.randn(10, 4, 5) model = MyModule() self.run_test(model, (x, batch1, batch2)) def test_baddbmm_dynamic(self): class MyModule(torch.nn.Module): def forward(self, input, batch1, batch2, alpha, beta): return torch.baddbmm(input, batch1, batch2, alpha=alpha, beta=beta) x = torch.randn(10, 3, 5) batch1 = torch.randn(10, 3, 4) batch2 = torch.randn(10, 4, 5) alpha = torch.tensor(5) beta = torch.tensor(3.5) model = MyModule() self.run_test(model, (x, batch1, batch2, alpha, beta)) def test_numel(self): class MyModule(torch.nn.Module): def forward(self, input): return input.numel() * input x = torch.randn(2, 3, 5) x2 = torch.randn(4, 5, 6) model = MyModule() self.run_test( model, (x,), input_names=["x"], dynamic_axes={"x": [0, 1, 2]}, test_with_inputs=[(x2,)], ) def test_numel_empty(self): class MyModule(torch.nn.Module): def forward(self, input): return input.numel() * input x = torch.randn(0) x2 = torch.randn(4) model = MyModule() self.run_test( model, (x,), input_names=["x"], dynamic_axes={"x": [0]}, test_with_inputs=[(x2,)], ) def test_dtype(self): class MyModel(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, input, other): return input.to(dtype=other.dtype) + other x = torch.randn(2, 3) y = torch.randn(2, 3) self.run_test(MyModel(), (x, y)) def test_dtype_eq(self): class MyModel(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, input, other): if input.dtype == other.dtype: return input + other return input x = torch.randn(2, 3) y = torch.randn(2, 3) self.run_test(MyModel(), (x, y)) def test_cast_to(self): class MyModule(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, input, other): return input.to(other) + other x = torch.randn(2, 3, 4) y = torch.tensor([1], dtype=torch.int64) model = MyModule() self.run_test(model, (x, y)) def test_cast_to_bool(self): class MyModule(torch.nn.Module): def forward(self, input, other): return torch.cat((input.to(other), other), 0) x = torch.randn(2, 3, 4) y = torch.zeros([2, 3, 4], dtype=torch.bool) model = MyModule() self.run_test(model, (x, y)) # ONNX supports bfloat16 for opsets >= 13 @skipIfUnsupportedMinOpsetVersion(13) def test_cast_type_as_with_bfloat16(self): class MyModule(torch.nn.Module): def forward(self, x): y = torch.ones((3, 4), dtype=torch.bfloat16) x = x.type_as(y) return x.to(dtype=torch.float16) x = torch.ones(3, 4, dtype=torch.float16) model = MyModule() self.run_test(model, x) @skipIfUnsupportedMinOpsetVersion(9) def test_type_as(self): class MyModule(torch.nn.Module): def forward(self, x): y = torch.tensor([1.0]) return x.type_as(y) a = torch.tensor([True, False], dtype=torch.bool) b = torch.randn(3, 4, dtype=torch.double) c = torch.ones((2, 2), dtype=torch.int64) model = MyModule() self.run_test(model, a) self.run_test(model, b) self.run_test(model, c) @skipIfUnsupportedMinOpsetVersion(9) def test_ones_bool(self): class MyModule(torch.nn.Module): def forward(self, input): true = torch.ones(input.shape, dtype=torch.bool) return input.to(true) & true x = torch.randn(2, 3, 4) model = MyModule() self.run_test(model, x) def test_log(self): class Log(torch.nn.Module): def forward(self, input): return torch.log(input) x = torch.rand(2, 3, 4) model = Log() self.run_test(model, x) def test_log1p(self): class Log1p(torch.nn.Module): def forward(self, input): return torch.log1p(input) x = torch.rand(2, 3, 4) model = Log1p() self.run_test(model, x) def test_log10(self): class Log10(torch.nn.Module): def forward(self, input): return torch.log10(input) x = torch.rand(2, 3, 4) model = Log10() self.run_test(model, x) @skipIfUnsupportedMinOpsetVersion(11) def test_round(self): class Round(torch.nn.Module): def forward(self, x): return torch.round(x) x = torch.tensor([0.9920, -1.0362, -1.5000, 3.5000], requires_grad=True) self.run_test(Round(), x) def test_constant_pad(self): model = torch.nn.ConstantPad1d(2, 3.5) x = torch.randn(2, 4, 4) self.run_test(model, x) model = torch.nn.ConstantPad2d((3, 0, 2, 1), 3.5) x = torch.randn(2, 2, 4, 4) self.run_test(model, x) # Dynamic padding is added in opset 11 @skipIfUnsupportedMinOpsetVersion(11) def test_pad_types(self): # Test for different pad integer types class Pad(torch.nn.Module): def forward(self, x, pad: List[int]): return torch.nn.functional.pad(x, pad) x = torch.randn(2, 2, 4, 4) y = pad = [2, 4] self.run_test(Pad(), (x, y)) y = pad = [ torch.tensor(2, dtype=torch.int64), torch.tensor(4, dtype=torch.int64), ] self.run_test(Pad(), (x, y)) @skipIfUnsupportedMaxOpsetVersion(10) @skipScriptTest() # TODO: the logic in symbolic_opset9 doesn't handle script def test_unsupported_pad(self): class Pad(torch.nn.Module): def forward(self, x, pad: List[int]): return torch.nn.functional.pad(x, pad) x = torch.randn(2, 2, 4, 4) y = [2, 4] with self.assertRaisesRegex( RuntimeError, ( "Unsupported: ONNX export of Pad.*" + "The sizes of the padding must be constant" ), ): self.run_test(Pad(), (x, y)) @skipIfUnsupportedMinOpsetVersion(9) def test_if_fold(self): class IfFoldModel(torch.nn.Module): def forward(self, y): if y.dim() == 2: y = y + 4 y = y + 2 else: y = y - 1 return y x = torch.ones((3, 4), dtype=torch.int) self.run_test(IfFoldModel(), x) class IfFoldModel(torch.nn.Module): def forward(self, y): if y.numel() > 1: y = y + 4 else: y = y + 2 return y x = torch.ones((3, 4), dtype=torch.int) self.run_test(IfFoldModel(), x) class IfFoldModel(torch.nn.Module): def forward(self, y): if y.dim() != 3: y = y + 4 y = y + 2 else: return y return y x = torch.ones((3, 4), dtype=torch.int) self.run_test(IfFoldModel(), x) class IfFoldModel(torch.nn.Module): def forward(self, y): if y.dim() >= 1: y = y + 4 else: y = y - 1 return y x = torch.ones((3, 4), dtype=torch.int) self.run_test(IfFoldModel(), x) class IfFoldModel(torch.nn.Module): def forward(self, y): if y.dim() <= 1: y = y + 4 else: y = y + 2 return y x = torch.ones((3, 4), dtype=torch.int) self.run_test(IfFoldModel(), x) class IfFoldModel(torch.nn.Module): def forward(self, y): if y.dim() < 3 and y.dtype == torch.int: y = y + 4 y = y + 2 else: return y return y x = torch.ones((3, 4), dtype=torch.int) self.run_test(IfFoldModel(), x) class IfFoldModel(torch.nn.Module): def forward(self, y): if y.dim() == 3 and y.dtype == torch.int: y = y + 4 y = y + 2 else: y = y + 1 return y x = torch.ones((3, 4), dtype=torch.int) self.run_test(IfFoldModel(), x) class IfFoldModel(torch.nn.Module): def forward(self, y): if y.numel() != 0 and y.dim() == 2: y = y + 4 y = y + 2 else: return y return y x = torch.ones((3, 4), dtype=torch.int) self.run_test(IfFoldModel(), x) class IfFoldModel(torch.nn.Module): def forward(self, x, y): if x.numel() == y.numel(): y = x + y else: y = y - x return y x = torch.ones((3, 4), dtype=torch.int) y = torch.ones((3, 4), dtype=torch.int) self.run_test(IfFoldModel(), (x, y)) class IfFoldModel(torch.nn.Module): def forward(self, x, y): if x.numel() != y.numel(): y = x + y else: y = y - x return y x = torch.ones((3, 4), dtype=torch.int) y = torch.ones((3, 4), dtype=torch.int) self.run_test(IfFoldModel(), (x, y)) @skipIfUnsupportedMinOpsetVersion(11) def test_uninitialized(self): class UninitializedModel(torch.nn.Module): def forward(self, y): if y.shape[1] < 5: if y.size(0) == 1: y = y + 4 else: return y return y x = torch.ones((3, 4), dtype=torch.int) self.run_test(UninitializedModel(), x) @skipIfUnsupportedMinOpsetVersion(11) def test_uninitialized_dynamic(self): class UninitializedModel(torch.nn.Module): def forward(self, y): if y.shape[1] < 5: if y.size(0) == 1: y = y + 4 else: return y return y x = torch.ones((3, 4), dtype=torch.int) y = torch.ones((6, 7), dtype=torch.int) self.run_test( UninitializedModel(), x, test_with_inputs=[y], input_names=["input_1"], dynamic_axes={"input_1": [0, 1]}, ) # onnx::Identity of sequence supported for ONNX opset >= 14 @skipIfUnsupportedMinOpsetVersion(14) def test_uninitialized_tensorList(self): class UninitializedTensorListModel(torch.nn.Module): def forward(self, x): if x[0].shape[0] < 5: if x.size(0) == 1: x = x + 4 else: return [x] return [x] x = torch.ones((3, 4), dtype=torch.int) self.run_test(torch.jit.script(UninitializedTensorListModel()), x) # onnx::Identity of sequence supported for ONNX opset >= 14 @skipIfUnsupportedMinOpsetVersion(14) def test_uninitialized_tensorList_dynamic(self): class UninitializedTensorListModel(torch.nn.Module): def forward(self, x): if x[0].shape[0] < 5: if x.size(0) == 1: x += x else: return list(x) return list(x) x = torch.ones((3, 4), dtype=torch.double) self.run_test( torch.jit.script(UninitializedTensorListModel()), x, input_names=["input_1"], dynamic_axes={"input_1": [0, 1]}, ) # onnx::Identity of sequence supported for ONNX opset >= 14 @skipIfUnsupportedMinOpsetVersion(14) def test_uninitialized_intList(self): class UninitializedListModel(torch.nn.Module): def forward(self, x): y = list(range(x.size(0))) if y[0] < 5: # if x.size(0) != 3, ORT will throw type error. if x.size(0) == 3: y.append(10) else: return y return y x = torch.ones((3, 4), dtype=torch.int) self.run_test( torch.jit.script(UninitializedListModel()), x, input_names=["input_1"], dynamic_axes={"input_1": [0, 1]}, ) # onnx::Identity of sequence supported for ONNX opset >= 14 @skipIfUnsupportedMinOpsetVersion(14) def test_uninitialized_tensorList_shape(self): class UninitializedModel(torch.nn.Module): def forward(self, x): if x.shape[1] < 5: if x.size(0) == 1: x = x + 4 else: x_list = list(x) x_list.append(x) return x_list return [x, x] x = torch.ones((3, 4), dtype=torch.int) y = torch.ones((4, 6), dtype=torch.int) self.run_test( torch.jit.script(UninitializedModel()), x, test_with_inputs=[y], input_names=["input_1"], dynamic_axes={"input_1": [0, 1]}, ) # Sequence type as loop-carried dependencies only supported for ONNX opset >= 13 @skipIfUnsupportedMinOpsetVersion(13) def test_sequance_loopcarried(self): class SequanceLoopModel(torch.nn.Module): def forward(self, x): outputs = [] for i in range(3): outputs += [x] return torch.stack(outputs).transpose(0, 1) x = torch.ones((3, 4), dtype=torch.int) self.run_test(torch.jit.script(SequanceLoopModel()), x) def test_reflection_pad(self): model = torch.nn.ReflectionPad1d(2) x = torch.randn(2, 4, 4) self.run_test(model, x) model = torch.nn.ReflectionPad2d((3, 0, 2, 1)) x = torch.randn(2, 2, 4, 4) self.run_test(model, x) def test_replication_pad(self): model = torch.nn.ReplicationPad1d(2) x = torch.randn(2, 4, 4) self.run_test(model, x) model = torch.nn.ReplicationPad2d((3, 0, 2, 1)) x = torch.randn(2, 2, 4, 4) self.run_test(model, x) @skipIfUnsupportedMinOpsetVersion(11) def test_im2col(self): class Unfold(torch.nn.Module): def forward(self, input): return ( torch.nn.functional.unfold( input, kernel_size=(10, 15), dilation=2, padding=5, stride=3 ), torch.nn.functional.unfold( input, kernel_size=(2, 2), dilation=1, padding=0, stride=3 ), torch.nn.functional.unfold( input, kernel_size=(1, 1), dilation=5, padding=2, stride=3 ), ) x = torch.rand(1, 1, 200, 100) self.run_test(Unfold(), x) @skipIfNoLapack @skipIfUnsupportedMinOpsetVersion(11) def test_det(self): class Det(torch.nn.Module): def forward(self, x): return torch.linalg.det(x) x = torch.randn(2, 3, 5, 5) self.run_test(Det(), x) def test_linalg_norm(self): class LinalgSingleDimModel(torch.nn.Module): def __init__(self, ord_val): super(LinalgSingleDimModel, self).__init__() self.ord = ord_val def forward(self, x): return torch.linalg.norm(x, ord=self.ord, dim=1) x = torch.randn(2, 3, 5, 5) self.run_test(LinalgSingleDimModel(None), x) self.run_test(LinalgSingleDimModel(2), x) self.run_test(LinalgSingleDimModel(float("inf")), x) self.run_test(LinalgSingleDimModel(-float("inf")), x) self.run_test(LinalgSingleDimModel(-4), x) self.run_test(LinalgSingleDimModel(1.5), x) class LinalgMultiDimModel(torch.nn.Module): def __init__(self, ord_val): super(LinalgMultiDimModel, self).__init__() self.ord = ord_val def forward(self, x): return torch.linalg.norm(x, ord=self.ord, dim=(0, 2)) x = torch.randn(2, 3, 5, 5) self.run_test(LinalgMultiDimModel("fro"), x) self.run_test(LinalgMultiDimModel(float("inf")), x) self.run_test(LinalgMultiDimModel(-float("inf")), x) self.run_test(LinalgMultiDimModel(1), x) self.run_test(LinalgMultiDimModel(-1), x) class LinalgNoDimNoOrdModel(torch.nn.Module): def forward(self, x): return torch.linalg.norm(x) x = torch.randn(2, 3, 5, 5) self.run_test(LinalgNoDimNoOrdModel(), x) y = torch.randn(2, 3) self.run_test(LinalgNoDimNoOrdModel(), y) z = torch.randn(2) self.run_test(LinalgNoDimNoOrdModel(), z) class LinalgNoDim1DModel(torch.nn.Module): def __init__(self, ord_val): super(LinalgNoDim1DModel, self).__init__() self.ord = ord_val def forward(self, x): return torch.linalg.norm(x, ord=self.ord) x = torch.randn(2) self.run_test(LinalgNoDim1DModel(None), x) self.run_test(LinalgNoDim1DModel(2), x) self.run_test(LinalgNoDim1DModel(float("inf")), x) self.run_test(LinalgNoDim1DModel(-float("inf")), x) self.run_test(LinalgNoDim1DModel(-4), x) self.run_test(LinalgNoDim1DModel(1.5), x) class LinalgNoDim2DModel(torch.nn.Module): def __init__(self, ord_val): super(LinalgNoDim2DModel, self).__init__() self.ord = ord_val def forward(self, x): return torch.linalg.norm(x, ord=self.ord) x = torch.randn(2, 3) self.run_test(LinalgNoDim2DModel("fro"), x) self.run_test(LinalgNoDim2DModel(float("inf")), x) self.run_test(LinalgNoDim2DModel(-float("inf")), x) self.run_test(LinalgNoDim2DModel(1), x) self.run_test(LinalgNoDim2DModel(-1), x) @skipIfUnsupportedMinOpsetVersion(11) def test_linalg_vector_norm_zero(self): class LinalgVectorNormModel(torch.nn.Module): def __init__(self, ord_val): super(LinalgVectorNormModel, self).__init__() self.ord = ord_val def forward(self, x): return torch.linalg.vector_norm(x, ord=self.ord) x = torch.randn(2, 3, 5, 5) self.run_test(LinalgVectorNormModel(0), x) def test_linalg_vector_norm(self): class LinalgVectorNormModel(torch.nn.Module): def __init__(self, ord_val, dim_info): super(LinalgVectorNormModel, self).__init__() self.ord = ord_val self.dim, self.keepdim = dim_info def forward(self, x): return torch.linalg.vector_norm( x, ord=self.ord, dim=self.dim, keepdim=self.keepdim ) x = torch.randn(2, 3, 5, 5) ord_options = [2, float("inf"), -float("inf"), -4, 1.5] dim_options = [(None, False), (1, False), ((1, 2), False), ((1, 2), True)] for ord_val in ord_options: for dim_info in dim_options: self.run_test(LinalgVectorNormModel(ord_val, dim_info), x) def test_linalg_matrix_norm(self): class LinalgMatrixNormModel(torch.nn.Module): def __init__(self, ord_val, dim_val=(-2, -1), keepdim_val=False): super(LinalgMatrixNormModel, self).__init__() self.ord = ord_val self.dim = dim_val self.keepdim = keepdim_val def forward(self, x): return torch.linalg.matrix_norm( x, ord=self.ord, dim=self.dim, keepdim=self.keepdim ) x = torch.randn(2, 3, 5, 5) ord_options = ["fro", float("inf"), -float("inf"), 1, -1] for ord_val in ord_options: self.run_test(LinalgMatrixNormModel(ord_val), x) self.run_test(LinalgMatrixNormModel(ord_val, (0, 2)), x) self.run_test(LinalgMatrixNormModel(ord_val, (0, 2), True), x) @skipIfUnsupportedMinOpsetVersion(9) def test_linalg_cross(self): class Cross(torch.nn.Module): def forward(self, x, y): return torch.linalg.cross(x, y, dim=1), torch.linalg.cross(x, y) x = torch.randn(5, 3, 2, 3) y = torch.randn(1, 3, 1, 3) self.run_test(Cross(), input=(x, y)) # This test checks output scalar type in the ONNX graph should not be null # https://github.com/pytorch/pytorch/issues/28607 @skipIfUnsupportedMinOpsetVersion(10) def test_trace_script(self): @torch.jit.script def center_slice_helper(input, h_offset): return input[:, h_offset:] class CenterCrop(torch.nn.Module): def forward(self, input): return center_slice_helper(input, torch.tensor(input.shape[1] - 1)) x = torch.randn(3, 4) self.run_test(CenterCrop(), x) @skipIfNoLapack @skipIfUnsupportedMinOpsetVersion(11) def test_logdet(self): class LogDet(torch.nn.Module): def forward(self, x): return torch.logdet(x) x = torch.randn(2, 3, 5, 5) self.run_test(LogDet(), x) def test_dim(self): class DimModel(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, input): out = input * 2 out *= out.dim() return out empty_input = torch.randn(0, requires_grad=True) multi_dim_input = torch.randn(1, 2, 3, requires_grad=True) self.run_test(DimModel(), empty_input) self.run_test(DimModel(), multi_dim_input) @skipIfUnsupportedMinOpsetVersion(11) def test_dim_1(self): class M(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, poses): boxes = torch.zeros([poses.shape[0], 2, 4]) batch_boxes = [] for kp_boxes in boxes: kp_boxes = torchvision.ops.clip_boxes_to_image(kp_boxes, (2, 3)) batch_boxes.append(kp_boxes) return batch_boxes dummy_inputs = torch.rand(2, 2, 3) self.run_test(M(), (dummy_inputs,), input_names=["x"], dynamic_axes={"x": [0]}) @skipIfUnsupportedMinOpsetVersion(12) def test_outer(self): class Outer(torch.nn.Module): def forward(self, x, y): return torch.outer(x, y) x = torch.arange(1, 5) y = torch.arange(1, 4) self.run_test(Outer(), input=(x, y)) x = torch.arange(1, 6).to(dtype=torch.float32) y = torch.arange(1, 4).to(dtype=torch.long) self.run_test(Outer(), input=(x, y)) x = torch.arange(2, 5).to(dtype=torch.float32) y = torch.arange(2, 4).to(dtype=torch.float64) self.run_test(Outer(), input=(x, y)) x = torch.arange(3, 6).to(dtype=torch.int32) y = torch.arange(4, 7).to(dtype=torch.long) self.run_test(Outer(), input=(x, y)) @skipIfUnsupportedMinOpsetVersion(12) def test_einsum(self): class EinsumModelBatchDiagonal(torch.nn.Module): def forward(self, x): eqn = "...ii ->...i" return torch.einsum(eqn, x) for x in [torch.randn(3, 5, 5), torch.randn(3, 5, 5).to(dtype=torch.bool)]: self.run_test(EinsumModelBatchDiagonal(), input=(x,)) class EinsumModelBatchMatmul(torch.nn.Module): def forward(self, x, y): eqn = "bij, bjk -> bik" return torch.einsum(eqn, x, y) x = torch.randn(5, 2, 3) y = torch.randn(5, 3, 4) self.run_test(EinsumModelBatchMatmul(), input=(x, y)) class EinsumModelInnerProd(torch.nn.Module): def forward(self, x, y): eqn = "i,i" return torch.einsum(eqn, x, y) x = torch.randn(5) y = torch.randn(5) self.run_test(EinsumModelInnerProd(), input=(x, y)) class EinsumModelTranspose(torch.nn.Module): def forward(self, x): eqn = "ij->ji" return torch.einsum(eqn, x) for x in [torch.randn(3, 4), torch.randn(3, 4).to(dtype=torch.bool)]: self.run_test(EinsumModelTranspose(), input=(x,)) @skipIfUnsupportedMinOpsetVersion(9) def test_cosine_similarity(self): x = torch.randn(5, 3, 2) y = torch.randn(5, 3, 2) self.run_test(torch.nn.CosineSimilarity(dim=2), input=(x, y)) @skipIfUnsupportedMinOpsetVersion(9) def test_pairwise_distance(self): x = torch.randn(5, 3, 2) y = torch.randn(5, 3, 2) self.run_test(torch.nn.PairwiseDistance(p=2.0), input=(x, y)) @skipIfUnsupportedMinOpsetVersion(9) def test_cross(self): class Cross(torch.nn.Module): def forward(self, x, y): return torch.cross(x, y, dim=3), torch.cross(x, y) x = torch.randn(5, 3, 2, 3) y = torch.randn(5, 3, 2, 3) self.run_test(Cross(), input=(x, y)) @skipIfUnsupportedMinOpsetVersion(9) def test_cdist(self): class Cdist(torch.nn.Module): def forward(self, x, y): return torch.cdist(x, y) x = torch.randn(5, 3, 3) y = torch.randn(5, 2, 3) self.run_test(Cdist(), input=(x, y)) @skipIfUnsupportedMinOpsetVersion(12) def test_crossentropyloss(self): for ignore_index in [-100, 1]: x = torch.randn(3, 5) y = torch.empty(3, dtype=torch.long).random_(5) y[y == 1] = ignore_index self._crossentropyloss(x, y, ignore_index) x = torch.randn(3, 5, 2) y = torch.empty(3, 2, dtype=torch.long).random_(5) y[y == 1] = ignore_index self._crossentropyloss(x, y, ignore_index) x = torch.randn(3, 5, 2, 7) y = torch.empty(3, 2, 7, dtype=torch.long).random_(5) y[y == 1] = ignore_index self._crossentropyloss(x, y, ignore_index) def _crossentropyloss(self, x, y, ignore_index): class CrossEntropyLossNone(torch.nn.Module): def __init__(self, ignore_index): super(CrossEntropyLossNone, self).__init__() if ignore_index == -100: self.loss = torch.nn.CrossEntropyLoss(reduction="none") else: self.loss = torch.nn.CrossEntropyLoss( reduction="none", ignore_index=ignore_index ) def forward(self, input, target): return self.loss(input, target) self.run_test(CrossEntropyLossNone(ignore_index), input=(x, y)) class CrossEntropyLossNoneWeight(torch.nn.Module): def __init__(self, ignore_index): super(CrossEntropyLossNoneWeight, self).__init__() if ignore_index == -100: self.loss = torch.nn.CrossEntropyLoss( reduction="none", weight=torch.randn(5) ) else: self.loss = torch.nn.CrossEntropyLoss( reduction="none", weight=torch.randn(5), ignore_index=ignore_index, ) def forward(self, input, target): return self.loss(input, target) self.run_test(CrossEntropyLossNoneWeight(ignore_index), input=(x, y)) class CrossEntropyLossSum(torch.nn.Module): def __init__(self, ignore_index): super(CrossEntropyLossSum, self).__init__() if ignore_index == -100: self.loss = torch.nn.CrossEntropyLoss(reduction="sum") else: self.loss = torch.nn.CrossEntropyLoss( reduction="sum", ignore_index=ignore_index ) def forward(self, input, target): return self.loss(input, target) self.run_test(CrossEntropyLossSum(ignore_index), input=(x, y)) class CrossEntropyLossSumWeight(torch.nn.Module): def __init__(self, ignore_index): super(CrossEntropyLossSumWeight, self).__init__() if ignore_index == -100: self.loss = torch.nn.CrossEntropyLoss( reduction="sum", weight=torch.randn(5) ) else: self.loss = torch.nn.CrossEntropyLoss( reduction="sum", weight=torch.randn(5), ignore_index=ignore_index, ) def forward(self, input, target): return self.loss(input, target) self.run_test(CrossEntropyLossSumWeight(ignore_index), input=(x, y)) class CrossEntropyLossMean(torch.nn.Module): def __init__(self, ignore_index): super(CrossEntropyLossMean, self).__init__() if ignore_index == -100: self.loss = torch.nn.CrossEntropyLoss() else: self.loss = torch.nn.CrossEntropyLoss(ignore_index=ignore_index) def forward(self, input, target): return self.loss(input, target) self.run_test(CrossEntropyLossMean(ignore_index), input=(x, y)) class CrossEntropyLossMeanWeight(torch.nn.Module): def __init__(self, ignore_index): super(CrossEntropyLossMeanWeight, self).__init__() if ignore_index == -100: self.loss = torch.nn.CrossEntropyLoss(weight=torch.randn(5)) else: self.loss = torch.nn.CrossEntropyLoss( weight=torch.randn(5), ignore_index=ignore_index ) def forward(self, input, target): return self.loss(input, target) self.run_test(CrossEntropyLossMeanWeight(ignore_index), input=(x, y)) @skipIfUnsupportedMinOpsetVersion(9) def test_kldiv_loss(self): x = torch.randn(5) y = torch.randn(5) self._kldiv_loss(x, y) x = torch.randn(2, 3, 5) y = torch.randn(2, 3, 5) self._kldiv_loss(x, y) x = torch.randn(2, 3, 5, 7) y = torch.randn(2, 3, 5, 7) self._kldiv_loss(x, y) def _kldiv_loss(self, x, y): class KLDivLossNone(torch.nn.Module): def __init__(self): super(KLDivLossNone, self).__init__() self.loss = torch.nn.KLDivLoss(reduction="none", log_target=True) def forward(self, input, target): return self.loss(input, target) self.run_test(KLDivLossNone(), input=(x, y)) class KLDivLossMean(torch.nn.Module): def __init__(self): super(KLDivLossMean, self).__init__() self.loss = torch.nn.KLDivLoss(reduction="mean", log_target=False) def forward(self, input, target): return self.loss(input, target) self.run_test(KLDivLossMean(), input=(x, y)) class KLDivLossSum(torch.nn.Module): def __init__(self): super(KLDivLossSum, self).__init__() self.loss = torch.nn.KLDivLoss(reduction="sum", log_target=True) def forward(self, input, target): return self.loss(input, target) self.run_test(KLDivLossSum(), input=(x, y)) class KLDivLossBatchMean(torch.nn.Module): def __init__(self): super(KLDivLossBatchMean, self).__init__() self.loss = torch.nn.KLDivLoss(reduction="batchmean", log_target=False) def forward(self, input, target): return self.loss(input, target) self.run_test(KLDivLossBatchMean(), input=(x, y)) class KLDivLossMiniBatchMean(torch.nn.Module): def __init__(self): super(KLDivLossMiniBatchMean, self).__init__() self.loss = torch.nn.KLDivLoss( reduction="batchmean", size_average=False, log_target=True ) def forward(self, input, target): return self.loss(input, target) self.run_test(KLDivLossMiniBatchMean(), input=(x, y)) @skipIfUnsupportedMinOpsetVersion(12) def test_nllloss(self): class NLLModel(torch.nn.Module): def __init__(self): super(NLLModel, self).__init__() self.loss = torch.nn.NLLLoss(reduction="none") self.m = torch.nn.LogSoftmax(dim=1) def forward(self, input, target): output = self.loss(self.m(2 * input), target) return output N, C = 5, 4 input = torch.randn(N, 16) target = torch.empty(N, dtype=torch.long).random_(0, C) # using test data containing default ignore_index=-100 target[target == 1] = -100 self.run_test(NLLModel(), (input, target)) @skipIfUnsupportedMinOpsetVersion(12) def test_nllloss_2d_none(self): class NLLModel(torch.nn.Module): def __init__(self): super(NLLModel, self).__init__() self.loss = torch.nn.NLLLoss(reduction="none") self.conv = torch.nn.Conv2d(16, C, (3, 3)) self.m = torch.nn.LogSoftmax(dim=1) def forward(self, input, target): output = self.loss(self.m(self.conv(input)), target) return output N, C = 5, 4 input = torch.randn(N, 16, 10, 10) target = torch.empty(N, 8, 8, dtype=torch.long).random_(0, C) # using test data containing default ignore_index=-100 target[target == 1] = -100 self.run_test(NLLModel(), (input, target)) @skipIfUnsupportedMinOpsetVersion(12) def test_nllloss_2d_mean(self): class NLLModel(torch.nn.Module): def __init__(self): super(NLLModel, self).__init__() self.loss = torch.nn.NLLLoss(reduction="mean") self.conv = torch.nn.Conv2d(16, C, (3, 3)) self.m = torch.nn.LogSoftmax(dim=1) def forward(self, input, target): output = self.loss(self.m(self.conv(input)), target) return output N, C = 5, 4 input = torch.randn(N, 16, 10, 10) target = torch.empty(N, 8, 8, dtype=torch.long).random_(0, C) # using test data containing default ignore_index=-100 target[target == 1] = -100 self.run_test(NLLModel(), (input, target)) @skipIfUnsupportedMinOpsetVersion(12) def test_nllloss_2d_sum(self): class NLLModel(torch.nn.Module): def __init__(self): super(NLLModel, self).__init__() self.loss = torch.nn.NLLLoss(reduction="sum") self.conv = torch.nn.Conv2d(16, C, (3, 3)) self.m = torch.nn.LogSoftmax(dim=1) def forward(self, input, target): output = self.loss(self.m(self.conv(input)), target) return output N, C = 5, 4 input = torch.randn(N, 16, 10, 10) target = torch.empty(N, 8, 8, dtype=torch.long).random_(0, C) # using test data containing default ignore_index=-100 target[target == 1] = -100 self.run_test(NLLModel(), (input, target)) @skipIfUnsupportedMinOpsetVersion(12) def test_nllloss_2d_mean_weights(self): class NLLModel(torch.nn.Module): def __init__(self): super(NLLModel, self).__init__() self.loss = torch.nn.NLLLoss(reduction="mean", weight=torch.randn(C)) self.conv = torch.nn.Conv2d(16, C, (3, 3)) self.m = torch.nn.LogSoftmax(dim=1) def forward(self, input, target): output = self.loss(self.m(self.conv(input)), target) return output N, C = 5, 4 input = torch.randn(N, 16, 10, 10) target = torch.empty(N, 8, 8, dtype=torch.long).random_(0, C) # using test data containing default ignore_index=-100 target[target == 1] = -100 self.run_test(NLLModel(), (input, target)) @skipIfUnsupportedMinOpsetVersion(12) def test_nllloss_2d_mean_ignore_index(self): class NLLModel(torch.nn.Module): def __init__(self): super(NLLModel, self).__init__() self.loss = torch.nn.NLLLoss(reduction="mean", ignore_index=1) self.conv = torch.nn.Conv2d(16, C, (3, 3)) self.m = torch.nn.LogSoftmax(dim=1) def forward(self, input, target): output = self.loss(self.m(self.conv(input)), target) return output N, C = 5, 4 input = torch.randn(N, 16, 10, 10) target = torch.empty(N, 8, 8, dtype=torch.long).random_(0, C) self.run_test(NLLModel(), (input, target)) @skipIfUnsupportedMinOpsetVersion(12) def test_nllloss_dynamic_ignore_index(self): import torch.nn.functional as F def linear_combination(x, y, epsilon): return epsilon * x + (1 - epsilon) * y def reduce_loss(loss, reduction="mean"): return ( loss.mean() if reduction == "mean" else loss.sum() if reduction == "sum" else loss ) class LabelSmoothingCrossEntropy(torch.nn.Module): def __init__(self, epsilon: float = 0.1, reduction="mean"): super().__init__() self.epsilon = epsilon self.reduction = reduction def forward(self, preds, target, start_position): n = preds.size()[-1] log_preds = F.log_softmax(preds, dim=-1) ignore_index = start_position.size(1) nll = F.nll_loss( log_preds, target, reduction=self.reduction, ignore_index=ignore_index, ) return nll + start_position.float() N = 5 preds = torch.randn(N, 16) target = torch.randint(5, (N,)) start_position = torch.randint(10, (N, N)) self.run_test(LabelSmoothingCrossEntropy(), (preds, target, start_position)) @skipIfUnsupportedMinOpsetVersion(12) def test_nllloss_2d_mean_ignore_index_weights(self): class NLLModel(torch.nn.Module): def __init__(self): super(NLLModel, self).__init__() self.loss = torch.nn.NLLLoss( reduction="mean", weight=torch.randn(C), ignore_index=1 ) self.conv = torch.nn.Conv2d(16, C, (3, 3)) self.m = torch.nn.LogSoftmax(dim=1) def forward(self, input, target): output = self.loss(self.m(self.conv(input)), target) return output N, C = 5, 4 input = torch.randn(N, 16, 10, 10) target = torch.empty(N, 8, 8, dtype=torch.long).random_(0, C) self.run_test(NLLModel(), (input, target)) @skipIfUnsupportedMinOpsetVersion(12) def test_binary_cross_entropy_with_logits(self): x = torch.randn(5) y = torch.empty(5).random_(2) self._bce_logits(x, y) x = torch.randn(3, 4) y = torch.empty(3, 4).random_(2) weight = torch.tensor([3]) self._bce_logits_wegiht(x, y, weight) x = torch.randn(3, 2, 4) y = torch.empty(3, 2, 4).random_(2) pos_weight = torch.empty([2, 4]).random_(2) self._bce_logits_posweight(x, y, pos_weight) x = torch.randn(3, 3, 4) y = torch.empty(3, 3, 4).random_(2) weight = torch.tensor([3]) pos_weight = torch.empty([3, 4]).random_(2) self._bce_logits_loss_weight_posweight(x, y, weight, pos_weight) def _bce_logits(self, x, y): class BCEWithLogitsLossNone(torch.nn.Module): def forward(self, input, target): return torch.nn.functional.binary_cross_entropy_with_logits( input, target, reduction="none" ) self.run_test(BCEWithLogitsLossNone(), input=(x, y)) class BCEWithLogitsLossMean(torch.nn.Module): def forward(self, input, target): return torch.nn.functional.binary_cross_entropy_with_logits( input, target, reduction="mean" ) self.run_test(BCEWithLogitsLossMean(), input=(x, y)) class BCEWithLogitsLossSum(torch.nn.Module): def forward(self, input, target): return torch.nn.functional.binary_cross_entropy_with_logits( input, target, reduction="sum" ) self.run_test(BCEWithLogitsLossSum(), input=(x, y)) def _bce_logits_wegiht(self, x, y, weight): class BCEWithLogitsLossWegihtNone(torch.nn.Module): def forward(self, input, target, weight): return torch.nn.functional.binary_cross_entropy_with_logits( input, target, weight=weight, reduction="none" ) self.run_test(BCEWithLogitsLossWegihtNone(), input=(x, y, weight)) class BCEWithLogitsLossWegihtMean(torch.nn.Module): def forward(self, input, target, weight): return torch.nn.functional.binary_cross_entropy_with_logits( input, target, weight=weight, reduction="mean" ) self.run_test(BCEWithLogitsLossWegihtMean(), input=(x, y, weight)) class BCEWithLogitsLossWegihtSum(torch.nn.Module): def forward(self, input, target, weight): return torch.nn.functional.binary_cross_entropy_with_logits( input, target, weight=weight, reduction="sum" ) self.run_test(BCEWithLogitsLossWegihtSum(), input=(x, y, weight)) def _bce_logits_posweight(self, x, y, pos_weight): class BCEWithLogitsLossPosWegihtNone(torch.nn.Module): def forward(self, input, target, pos_weight): return torch.nn.functional.binary_cross_entropy_with_logits( input, target, pos_weight=pos_weight, reduction="none" ) self.run_test(BCEWithLogitsLossPosWegihtNone(), input=(x, y, pos_weight)) class BCEWithLogitsLossPosWegihtMean(torch.nn.Module): def forward(self, input, target, pos_weight): return torch.nn.functional.binary_cross_entropy_with_logits( input, target, pos_weight=pos_weight, reduction="mean" ) self.run_test(BCEWithLogitsLossPosWegihtMean(), input=(x, y, pos_weight)) class BCEWithLogitsLossPosWegihtSum(torch.nn.Module): def forward(self, input, target, pos_weight): return torch.nn.functional.binary_cross_entropy_with_logits( input, target, pos_weight=pos_weight, reduction="sum" ) self.run_test(BCEWithLogitsLossPosWegihtSum(), input=(x, y, pos_weight)) def _bce_logits_loss_weight_posweight(self, x, y, weight, pos_weight): class BCEWithLogitsLossWeightPosweightNone(torch.nn.Module): def forward(self, input, target, weight, pos_weight): return torch.nn.functional.binary_cross_entropy_with_logits( input, target, weight=weight, pos_weight=pos_weight, reduction="none", ) self.run_test( BCEWithLogitsLossWeightPosweightNone(), input=(x, y, weight, pos_weight) ) class BCEWithLogitsLossWeightPosweightMean(torch.nn.Module): def forward(self, input, target, weight, pos_weight): return torch.nn.functional.binary_cross_entropy_with_logits( input, target, weight=weight, pos_weight=pos_weight, reduction="mean", ) self.run_test( BCEWithLogitsLossWeightPosweightMean(), input=(x, y, weight, pos_weight) ) class BCEWithLogitsLossWeightPosweightSum(torch.nn.Module): def forward(self, input, target, weight, pos_weight): return torch.nn.functional.binary_cross_entropy_with_logits( input, target, weight=weight, pos_weight=pos_weight, reduction="sum" ) self.run_test( BCEWithLogitsLossWeightPosweightSum(), input=(x, y, weight, pos_weight) ) def test_torch_mm(self): class M(torch.nn.Module): def forward(self, mat1, mat2): mm = torch.mm(mat1, mat2) return mm mat1 = torch.randn(2, 3) mat2 = torch.randn(3, 3) self.run_test(M(), input=(mat1, mat2)) @skipIfUnsupportedMinOpsetVersion( 9 ) # Because where op is not supported for opset < 9. def test_where_with_bool_tensor(self): class M(torch.nn.Module): def forward(self, mat1, mat2): out = torch.where(mat1 > 0, mat1, mat2) return out mat1 = torch.randn(2, 3) mat2 = torch.ones(2, 3) self.run_test(M(), input=(mat1, mat2)) @skipIfUnsupportedMinOpsetVersion( 9 ) # Because where op is not supported for opset < 9. def test_where_with_byte_tensor(self): class M(torch.nn.Module): def forward(self, cond, mat1, mat2): out = torch.where(cond, mat1, mat2) return out cond = torch.ones(2, 3, dtype=torch.uint8) cond[1, 2] = 0 mat1 = torch.randn(2, 3) mat2 = torch.ones(2, 3) self.run_test(M(), input=(cond, mat1, mat2)) @skipIfUnsupportedMinOpsetVersion(10) # ONNX IsInf op is added in opset 10. def test_isinf(self): class M(torch.nn.Module): def forward(self, x): return x.isinf() x = torch.tensor([[1, 2, float("inf")], [2, float("nan"), float("inf")]]) self.run_test(M(), (x,)) @skipIfUnsupportedMinOpsetVersion(10) def test_isfinite(self): class M(torch.nn.Module): def forward(self, x): return x.isfinite() x = torch.tensor([[1, 2, float("inf")], [2, float("nan"), -float("inf")]]) self.run_test(M(), (x,)) @skipIfUnsupportedMinOpsetVersion(9) # ONNX IsNaN op is added in opset 9. def test_isnan(self): class M(torch.nn.Module): def forward(self, x): return x.isnan() x = torch.tensor([[1, 2, float("inf")], [2, float("nan"), float("inf")]]) self.run_test(M(), (x,)) @skipIfUnsupportedMinOpsetVersion( 10 ) # ONNX IsNaN, IsInf op is added in opset 9, 10 respectively. def test_nan_to_num(self): class NoParams(torch.nn.Module): def forward(self, x): return x.nan_to_num() x = torch.tensor([[1, 2, float("inf")], [2, float("nan"), -float("inf")]]) xint = torch.ones((2, 4), dtype=torch.int) xhalf = torch.ones((2, 4), dtype=torch.half) self.run_test(NoParams(), (x,)) self.run_test(NoParams(), (xint,)) self.run_test(NoParams(), (xhalf,)) class WithParams(torch.nn.Module): def forward(self, x): return x.nan_to_num(nan=2.3, posinf=4.5, neginf=6.7) x = torch.tensor([[1, 2, float("inf")], [2, float("nan"), -float("inf")]]) self.run_test(WithParams(), (x,)) @skipIfUnsupportedMinOpsetVersion(9) def test_maximum_minimum(self): class ModelWithNan(torch.nn.Module): def forward(self, x, y): return torch.maximum(x, y), torch.minimum(x, y) x = torch.tensor([-2, -2, float("nan")]) y = torch.rand(1, 3) self.run_test(ModelWithNan(), (x, y)) @skipIfUnsupportedMinOpsetVersion(12) def test_minimum_dtypes(self): class MinimumModel(torch.nn.Module): def forward(self, x, y): return torch.minimum(x, y) x = torch.randn((5, 5), dtype=torch.float16) y = torch.randn((5, 5), dtype=torch.float) self.run_test(MinimumModel(), (x, y)) x = torch.randn((5, 5), dtype=torch.float16) y = torch.randint(10, (5, 5), dtype=torch.int16) self.run_test(MinimumModel(), (x, y)) x = torch.randint(10, (5, 5), dtype=torch.int16) y = torch.randint(10, (5, 5), dtype=torch.int32) self.run_test(MinimumModel(), (x, y)) x = torch.randint(10, (5, 5), dtype=torch.int) y = torch.full_like(x, True) self.run_test(MinimumModel(), (x, y)) @skipIfUnsupportedMinOpsetVersion(9) def test_any(self): class M(torch.nn.Module): def forward(self, x): return x.any() x = torch.tensor([[True, False], [False, False]]) self.run_test(M(), (x,)) class MDim(torch.nn.Module): def forward(self, x): return x.any(dim=1) x = torch.rand(3, 4).bool() self.run_test(MDim(), (x,)) class MKeepdim(torch.nn.Module): def forward(self, x): return x.any(dim=1, keepdim=True) x = torch.rand(3, 4).bool() self.run_test(MKeepdim(), (x,)) @skipIfUnsupportedMinOpsetVersion(9) def test_all(self): class M(torch.nn.Module): def forward(self, x): return x.all() x = torch.tensor([[True, False], [False, False]]) self.run_test(M(), (x,)) class MDim(torch.nn.Module): def forward(self, x): return x.all(dim=1) x = torch.rand(3, 4).bool() self.run_test(MDim(), (x,)) class MKeepdim(torch.nn.Module): def forward(self, x): return x.all(dim=1, keepdim=True) x = torch.rand(3, 4).bool() self.run_test(MKeepdim(), (x,)) def test_dropout(self): class M(torch.nn.Module): def __init__(self): super(M, self).__init__() self.dropout = torch.nn.Dropout(0.3) def forward(self, x): dropout = self.dropout(x) return dropout x = torch.randn(10, 3, 53) self.run_test(M(), (x)) def test_shape_constant_fold(self): class ShapeModule(torch.nn.Module): def __init__(self): super(ShapeModule, self).__init__() self.register_buffer("weight", torch.ones(5)) def forward(self, x): shape = self.weight.shape[0] return x + shape x = torch.randn(2, 5) self.run_test(ShapeModule(), (x,), rtol=1e-3, atol=1e-5) @skipIfUnsupportedMinOpsetVersion(12) def test_celu(self): class Celu(torch.nn.Module): def __init__(self): super(Celu, self).__init__() self.celu = torch.nn.CELU(alpha=1.0) def forward(self, input): return self.celu(input) input = torch.randn(2) self.run_test(Celu(), (input,)) @skipIfUnsupportedMinOpsetVersion(12) def test_celu_default(self): class Celu(torch.nn.Module): def __init__(self): super(Celu, self).__init__() self.celu = torch.nn.CELU() def forward(self, input): return self.celu(input) input = torch.randn(2) self.run_test(Celu(), (input,)) @skipIfUnsupportedMinOpsetVersion(12) def test_celu_alpha(self): class Celu(torch.nn.Module): def __init__(self): super(Celu, self).__init__() self.celu = torch.nn.CELU(alpha=2.0) def forward(self, input): return self.celu(input) input = torch.randn(2) self.run_test(Celu(), (input,)) @skipIfUnsupportedMinOpsetVersion(12) def test_celu_cast(self): class Celu(torch.nn.Module): def __init__(self): super(Celu, self).__init__() self.celu = torch.nn.CELU() def forward(self, input): return self.celu(input) input = torch.randn(2, 5, 7, dtype=torch.float64) self.run_test(Celu(), (input,)) def test_lower_tuple(self): class TupleModule(torch.nn.Module): def forward(self, input1: Tensor, input2: Tensor, input3: Tensor) -> Tensor: a = (input1, input2) b = a c = (input1, input2, input3) for i in range(5): d = a[0] for j in range(2): e, f = a a = (d, f) f = c[2] if f.size(0) != input1.size(-1): g = b[1] b = (g, f) else: k = c[1:] b = (f, k[0]) m, n = b c = (input1, n, m) p, q, r = c return p + q + r input1 = torch.randn(2) input2 = torch.randn(2) input3 = torch.randn(2) self.run_test(TupleModule(), (input1, input2, input3)) def test_lower_tuple_2(self): class TupleModule(torch.nn.Module): def forward(self, input1: Tensor, input2: Tensor) -> Tuple[Tensor, Tensor]: a = (input1, input2) for x in range(5): c, d = a a = (c, d) return a input1 = torch.randn(2) input2 = torch.randn(2) self.run_test(TupleModule(), (input1, input2)) def test_lower_tuple_3(self): class TupleModule(torch.nn.Module): def forward( self, input1: Tuple[Tensor, Tensor], input2: Tuple[Tensor, Tensor], ) -> Tuple[Tuple[Tensor, Tensor], Tuple[Tensor, Tensor]]: a = input1 b = input2 for x in range(5): c, d = a e, f = b if c.shape[0] == e.shape[0]: e = e + c else: f = f + d a = (e, f) b = (c, d) return a, b input1 = (torch.randn(2), torch.randn(2)) input2 = (torch.randn(2), torch.randn(2)) self.run_test(TupleModule(), (input1, input2)) @skipIfUnsupportedMinOpsetVersion(9) def test_where(self): class Model(torch.nn.Module): def forward(self, cond, input, other): return torch.where(cond, input, other) x = torch.randint(0, 1, (2, 3, 4), dtype=torch.bool) y = torch.randn(2, 1, 4) z = torch.ones(2, 3, 1) self.run_test(Model(), (x, y, z)) @skipIfUnsupportedMinOpsetVersion(9) @skipScriptTest() # scripting tests run for opsets > 11. See: test_where_condition_script def test_where_condition(self): class Model1(torch.nn.Module): def forward(self, input): return torch.stack(torch.where(input > 0.5), dim=1) x = torch.randint(0, 2, (2, 3, 4), dtype=bool) self.run_test(Model1(), (x)) class Model2(torch.nn.Module): def forward(self, input, other): return torch.stack(torch.where(input > other), dim=1) x = torch.randint(0, 1, (2, 3, 4), dtype=bool) y = torch.randint(1, 2, (2, 3, 4), dtype=bool) self.run_test(Model2(), (x, y)) @skipIfUnsupportedOpsetVersion([13]) @skipIfUnsupportedMinOpsetVersion(11) def test_where_condition_script(self): class Model1(torch.nn.Module): def forward(self, input): return torch.stack(torch.where(input > 0.5), dim=1) x = torch.randint(0, 2, (2, 3, 4), dtype=bool) self.run_test(Model1(), (x)) class Model2(torch.nn.Module): def forward(self, input, other): return torch.stack(torch.where(input > other), dim=1) x = torch.randint(0, 1, (2, 3, 4), dtype=bool) y = torch.randint(1, 2, (2, 3, 4), dtype=bool) self.run_test(Model2(), (x, y)) def test_empty_branch(self): class EmptyBranchModel(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, input): out = input + 1 if out.dim() > 2: if out.dim() > 3: out += 3 else: pass else: pass return out x = torch.randn(1, 2, 3, requires_grad=True) self.run_test(EmptyBranchModel(), x) @skipIfUnsupportedMinOpsetVersion(11) def test_derive_index_scripting(self): class MyModule(torch.nn.Module): def forward(self, x: Tensor): j = [] for idx in range(len(x) - 1, -len(x), -2): y = x[idx] j += [x * y] return j x = torch.randn(5, 13) self.run_test(MyModule(), x) class MyModule(torch.nn.Module): def forward(self, x: Tensor): j = [] for idx in range(-len(x), len(x) - 1, 2): y = x[idx] j += [x * y] return j x = torch.randn(5, 13) self.run_test(MyModule(), x) class MyModule(torch.nn.Module): def forward(self, x: Tensor): j = [] for idx in range(len(x) - 1, -len(x), -3): y = x[idx] j += [x * y] return j self.run_test(MyModule(), x) class MyModule(torch.nn.Module): def forward(self, x: Tensor): j = [] for idx in range(-len(x), len(x) - 1, 3): y = x[idx] j += [x * y] return j self.run_test(MyModule(), x) @skipScriptTest() # Scripting fails for add lists for opsets < 11. Chek test_derive_index_scripting def test_derive_index(self): class MyModule(torch.nn.Module): def forward(self, x: Tensor): j = [] for idx in range(len(x) - 1, -len(x), -2): y = x[idx] j += [x * y] return j x = torch.randn(5, 13) self.run_test(MyModule(), x) class MyModule(torch.nn.Module): def forward(self, x: Tensor): j = [] for idx in range(-len(x), len(x) - 1, 2): y = x[idx] j += [x * y] return j x = torch.randn(5, 13) self.run_test(MyModule(), x) class MyModule(torch.nn.Module): def forward(self, x: Tensor): j = [] for idx in range(len(x) - 1, -len(x), -3): y = x[idx] j += [x * y] return j self.run_test(MyModule(), x) class MyModule(torch.nn.Module): def forward(self, x: Tensor): j = [] for idx in range(-len(x), len(x) - 1, 3): y = x[idx] j += [x * y] return j self.run_test(MyModule(), x) @skipIfUnsupportedMinOpsetVersion(11) def test_if_transpose(self): class IfModel(torch.nn.Module): def forward(self, x): x = x.transpose(0, 1) if x.size(0) == 2: return x.transpose(0, 1) else: return x x = torch.randn(2, 3) self.run_test( torch.jit.script(IfModel()), x, output_names=["output_1"], dynamic_axes={"output_1": [0, 1]}, ) @skipIfUnsupportedMinOpsetVersion(13) def test_if_list(self): class IfModel(torch.nn.Module): def forward(self, x, y, cond): res = [] if cond: res = res + [x] else: res = res + [y] return res x = torch.randn(2, 3) y = torch.randn(3, 3) cond = torch.tensor(1, dtype=torch.bool) self.run_test(torch.jit.script(IfModel()), (x, y, cond)) @skipIfUnsupportedMinOpsetVersion(13) def test_if_view(self): class IfModel(torch.nn.Module): def forward(self, x, y, cond): bs, seq = y.shape[:2] if cond: res = x.view(bs, seq, -1) else: res = y return res.transpose(1, 2) x = torch.randn(2, 16, 2, 2) y = torch.randn(2, 16, 8) cond = torch.tensor(1, dtype=torch.bool) self.run_test( torch.jit.script(IfModel()), (x, y, cond), output_names=["output_1"], dynamic_axes={"output_1": [1]}, ) def test_onnx_proto_checker(self): class Model(torch.nn.Module): def __init__(self): super(Model, self).__init__() def forward(self, x): return 2 * x x = torch.randn(1, 2, 3, requires_grad=True) f = io.BytesIO() torch.onnx._export(Model(), x, f) model = onnx.load(f) model.ir_version = 0 def check_proto(): torch._C._check_onnx_proto(model.SerializeToString()) self.assertRaises(RuntimeError, check_proto) @skipScriptTest(min_opset_version=11) # dynamic split support addded in 11 def test_split_tensor_scalar(self): class SplitModel(torch.nn.Module): def forward(self, x): return torch.split(x, x.size(1)) x = torch.randn(1, 2, 3, requires_grad=True) self.run_test(SplitModel(), x) def test_split_tensor_multi(self): class SplitModel(torch.nn.Module): def forward(self, x): return torch.split(x, torch.ones(3)) x = torch.randn(1, 2, 3, requires_grad=True) def run_model(): SplitModel(x) self.assertRaises(TypeError, run_model) @skipIfUnsupportedMinOpsetVersion(9) def test_embedding(self): class EmbedModel(torch.nn.Module): def forward(self, input, emb): return torch.nn.functional.embedding(input, emb, padding_idx=1) model = EmbedModel() x = torch.randint(4, (4,)) x[2] = x[0] = 1 embedding_matrix = torch.rand(10, 3) self.run_test(model, (x, embedding_matrix)) x = torch.randint(4, (4, 3, 2)) x[2] = 1 x[0][1] = 1 self.run_test(model, (x, embedding_matrix)) self.run_test( model, (x, embedding_matrix), training=torch.onnx.TrainingMode.TRAINING ) class EmbedModelWithoutPaddingIdx(torch.nn.Module): def forward(self, input, emb): return torch.nn.functional.embedding(input, emb) model = EmbedModelWithoutPaddingIdx() x = torch.randint(4, (4, 3, 2)) self.run_test(model, (x, embedding_matrix)) @skipIfUnsupportedMinOpsetVersion(9) def test_embedding_module(self): class EmbedModel(torch.nn.Module): def __init__(self): super().__init__() self.emb = torch.nn.Embedding(4, 3, padding_idx=1) self.emb2 = torch.nn.Embedding(4, 3, padding_idx=1) with torch.no_grad(): self.emb2.weight[1] = torch.ones(3) def forward(self, input): return self.emb(input), self.emb2(input) model = EmbedModel() x = torch.randint(4, (4,)) x[2] = x[0] = 1 self.run_test(model, (x,)) x = torch.randint(4, (4, 3, 2)) x[2] = 1 x[0][1] = 1 self.run_test(model, (x,)) class EmbedModelWithoutPaddingIdx(torch.nn.Module): def __init__(self): super().__init__() self.emb = torch.nn.Embedding(4, 3) def forward(self, input): return self.emb(input) model = EmbedModelWithoutPaddingIdx() x = torch.randint(4, (4, 3, 2)) self.run_test(model, (x,)) @skipIfUnsupportedMinOpsetVersion(11) def test_embedding_renorm(self): n, d = 7, 5 embedding = torch.nn.Embedding(n, d, max_norm=0.2) idx = torch.tensor([2, 1]) self.run_test(embedding, idx) embedding = torch.nn.Embedding(n, d, max_norm=0.5, norm_type=1.0) idx = torch.tensor([4, 3, 4, 2]) self.run_test(embedding, idx) def _dispatch_rnn_test(self, name, *args, **kwargs): if name == "elman": self._elman_rnn_test(*args, **kwargs) if name == "lstm": self._lstm_test(*args, **kwargs) if name == "gru": self._gru_test(*args, **kwargs) def _elman_rnn_test( self, layers, nonlinearity, bidirectional, initial_state, packed_sequence, dropout, ): class ElmanWithStateModel(torch.nn.Module): def __init__(self, layers, nonlinearity, bidirect, dropout, batch_first): super(ElmanWithStateModel, self).__init__() self.batch_first = batch_first self.inner_model = torch.nn.RNN( RNN_INPUT_SIZE, RNN_HIDDEN_SIZE, layers, nonlinearity=nonlinearity, bidirectional=bidirectional, dropout=dropout, batch_first=batch_first, ) def forward(self, input: PackedSequence, hx=None): return self.inner_model(input, hx) class ElmanWithoutStateModel(torch.nn.Module): def __init__(self, layers, nonlinearity, bidirect, dropout, batch_first): super(ElmanWithoutStateModel, self).__init__() self.batch_first = batch_first self.inner_model = torch.nn.RNN( RNN_INPUT_SIZE, RNN_HIDDEN_SIZE, layers, nonlinearity=nonlinearity, bidirectional=bidirectional, dropout=dropout, batch_first=batch_first, ) def forward(self, input: PackedSequence): return self.inner_model(input) batch_first = packed_sequence == 2 if initial_state: model = ElmanWithStateModel( layers=layers, bidirect=bidirectional, nonlinearity=nonlinearity, dropout=dropout, batch_first=batch_first, ) if packed_sequence: model = RnnModelWithPackedSequenceWithState(model, batch_first) else: model = ElmanWithStateModel( layers=layers, bidirect=bidirectional, nonlinearity=nonlinearity, dropout=dropout, batch_first=batch_first, ) if packed_sequence: model = RnnModelWithPackedSequenceWithoutState(model, batch_first) def make_input(batch_size): seq_lengths = np.random.randint(1, RNN_SEQUENCE_LENGTH + 1, size=batch_size) seq_lengths = list(reversed(sorted(map(int, seq_lengths)))) inputs = [torch.randn(l, RNN_INPUT_SIZE) for l in seq_lengths] inputs = rnn_utils.pad_sequence(inputs, batch_first=batch_first) inputs = [inputs] directions = 2 if bidirectional else 1 if initial_state: h0 = torch.randn(directions * layers, batch_size, RNN_HIDDEN_SIZE) inputs.append(h0) if packed_sequence != 0: inputs.append(torch.IntTensor(seq_lengths)) if len(inputs) == 1: input = inputs[0] else: input = tuple(inputs) return input input = make_input(RNN_BATCH_SIZE) self.run_test(model, input, batch_size=RNN_BATCH_SIZE) # test that the model still runs with a different batch size other_input = make_input(RNN_BATCH_SIZE + 1) self.run_test(model, other_input, batch_size=RNN_BATCH_SIZE + 1) def _lstm_test( self, layers, bidirectional, initial_state, packed_sequence, dropout ): batch_first = packed_sequence == 2 if packed_sequence: model = LstmFlatteningResultWithSeqLength( RNN_INPUT_SIZE, RNN_HIDDEN_SIZE, layers, bidirectional, dropout, batch_first, ) if initial_state: model = RnnModelWithPackedSequenceWithState(model, batch_first) else: model = RnnModelWithPackedSequenceWithoutState(model, batch_first) else: model = LstmFlatteningResultWithoutSeqLength( RNN_INPUT_SIZE, RNN_HIDDEN_SIZE, layers, bidirectional, dropout, batch_first, ) def make_input(batch_size): seq_lengths = np.random.randint(1, RNN_SEQUENCE_LENGTH + 1, size=batch_size) seq_lengths = list(reversed(sorted(map(int, seq_lengths)))) inputs = [torch.randn(l, RNN_INPUT_SIZE) for l in seq_lengths] inputs = rnn_utils.pad_sequence(inputs, batch_first=batch_first) inputs = [inputs] directions = 2 if bidirectional else 1 if initial_state: h0 = torch.randn(directions * layers, batch_size, RNN_HIDDEN_SIZE) c0 = torch.randn(directions * layers, batch_size, RNN_HIDDEN_SIZE) inputs.append((h0, c0)) if packed_sequence != 0: inputs.append(torch.IntTensor(seq_lengths)) if len(inputs) == 1: input = inputs[0] else: input = tuple(inputs) return input input = make_input(RNN_BATCH_SIZE) self.run_test(model, input, batch_size=RNN_BATCH_SIZE) # test that the model still runs with a different batch size other_input = make_input(RNN_BATCH_SIZE + 1) self.run_test(model, other_input, batch_size=RNN_BATCH_SIZE + 1) def _gru_test(self, layers, bidirectional, initial_state, packed_sequence, dropout): class GRUWithStateModel(torch.nn.Module): def __init__(self, layers, bidirect, dropout, batch_first): super(GRUWithStateModel, self).__init__() self.batch_first = batch_first self.inner_model = torch.nn.GRU( RNN_INPUT_SIZE, RNN_HIDDEN_SIZE, num_layers=layers, bidirectional=bidirectional, dropout=dropout, batch_first=batch_first, ) def forward(self, input: PackedSequence, hx): return self.inner_model(input, hx) class GRUWithoutStateModel(torch.nn.Module): def __init__(self, layers, bidirect, dropout, batch_first): super(GRUWithoutStateModel, self).__init__() self.batch_first = batch_first self.inner_model = torch.nn.GRU( RNN_INPUT_SIZE, RNN_HIDDEN_SIZE, num_layers=layers, bidirectional=bidirectional, dropout=dropout, batch_first=batch_first, ) def forward(self, input: PackedSequence): return self.inner_model(input) class GRUNoSeqLengthWithoutStateModel(torch.nn.Module): def __init__(self, layers, bidirect, dropout, batch_first): super(GRUNoSeqLengthWithoutStateModel, self).__init__() self.batch_first = batch_first self.inner_model = torch.nn.GRU( RNN_INPUT_SIZE, RNN_HIDDEN_SIZE, num_layers=layers, bidirectional=bidirectional, dropout=dropout, batch_first=batch_first, ) def forward(self, input): return self.inner_model(input) class GRUNoSeqLengthWithStateModel(torch.nn.Module): def __init__(self, layers, bidirect, dropout, batch_first): super(GRUNoSeqLengthWithStateModel, self).__init__() self.batch_first = batch_first self.inner_model = torch.nn.GRU( RNN_INPUT_SIZE, RNN_HIDDEN_SIZE, num_layers=layers, bidirectional=bidirectional, dropout=dropout, batch_first=batch_first, ) def forward(self, input, hx): return self.inner_model(input, hx) batch_first = packed_sequence == 2 if packed_sequence: if initial_state: model = GRUWithStateModel( layers=layers, bidirect=bidirectional, dropout=dropout, batch_first=batch_first, ) model = RnnModelWithPackedSequenceWithState(model, batch_first) else: model = GRUWithoutStateModel( layers=layers, bidirect=bidirectional, dropout=dropout, batch_first=batch_first, ) model = RnnModelWithPackedSequenceWithoutState(model, batch_first) else: if initial_state: model = GRUNoSeqLengthWithStateModel( layers=layers, bidirect=bidirectional, dropout=dropout, batch_first=batch_first, ) else: model = GRUNoSeqLengthWithoutStateModel( layers=layers, bidirect=bidirectional, dropout=dropout, batch_first=batch_first, ) def make_input(batch_size): seq_lengths = np.random.randint(1, RNN_SEQUENCE_LENGTH + 1, size=batch_size) seq_lengths = list(reversed(sorted(map(int, seq_lengths)))) inputs = [torch.randn(l, RNN_INPUT_SIZE) for l in seq_lengths] inputs = rnn_utils.pad_sequence(inputs, batch_first=batch_first) inputs = [inputs] directions = 2 if bidirectional else 1 if initial_state: h0 = torch.randn(directions * layers, batch_size, RNN_HIDDEN_SIZE) inputs.append(h0) if packed_sequence != 0: inputs.append(torch.IntTensor(seq_lengths)) if len(inputs) == 1: input = inputs[0] else: input = tuple(inputs) return input input = make_input(RNN_BATCH_SIZE) self.run_test(model, input, batch_size=RNN_BATCH_SIZE) # test that the model still runs with a different batch size other_input = make_input(RNN_BATCH_SIZE + 1) self.run_test(model, other_input, batch_size=RNN_BATCH_SIZE + 1) @skipScriptTest() # TODO: https://msdata.visualstudio.com/Vienna/_workitems/edit/1253950 def test_transformer_encoder(self): from torch.nn import TransformerEncoder, TransformerEncoderLayer class MyModule(torch.nn.Module): def __init__(self, ninp, nhead, nhid, dropout, nlayers): super(MyModule, self).__init__() encoder_layers = TransformerEncoderLayer(ninp, nhead, nhid, dropout) self.transformer_encoder = TransformerEncoder(encoder_layers, nlayers) def forward(self, input): return self.transformer_encoder(input) x = torch.rand(10, 32, 512) self.run_test(MyModule(512, 8, 2048, 0.0, 3), (x,), atol=1e-6) @skipIfUnsupportedMinOpsetVersion(10) def test_fake_quantize_per_tensor(self): class FakeQuantizePerTensorModel(torch.nn.Module): def forward(self, input): scale = 1.0 / 127 zero_point = 0 quant_min = -128 quant_max = 127 return torch.fake_quantize_per_tensor_affine( input, scale, zero_point, quant_min, quant_max ) x = torch.randn(6, 4, 3, 3) self.run_test(FakeQuantizePerTensorModel(), (x)) @skipIfUnsupportedMinOpsetVersion(13) def test_fake_quantize_per_tensor_dynamic_scale_zeropoint(self): class FakeQuantizePerTensorModel(torch.nn.Module): def forward(self, input, scale, zero_point): quant_min = -128 quant_max = 127 return torch.fake_quantize_per_tensor_affine( input, scale, zero_point, quant_min, quant_max ) x = torch.randn(6, 4, 3, 3) scale = torch.tensor(1.0 / 127) zero_point = torch.tensor(0) self.run_test(FakeQuantizePerTensorModel(), (x, scale, zero_point)) @skipIfUnsupportedMinOpsetVersion(13) def test_fake_quantize_per_channel(self): class FakeQuantizePerChannelModel(torch.nn.Module): def forward(self, input): amax = torch.ones(4) scale = amax / 127.0 zero_point = torch.zeros_like(amax, dtype=torch.int) # Quantize twice to test differnet branches y = torch.fake_quantize_per_channel_affine( input, scale, zero_point, 1, 0, 255 ) return torch.fake_quantize_per_channel_affine( y, scale, zero_point, 1, -128, 127 ) x = torch.randn(6, 4, 3, 3) self.run_test(FakeQuantizePerChannelModel(), (x)) @skipIfUnsupportedMinOpsetVersion(13) @skipScriptTest() # RuntimeError: Can't redefine method: forward on class: __torch__.torch.nn.modules.linear.Linear def test_fake_quantize_activation(self): from torch import quantization m = torch.nn.Linear(1, 1) m.qconfig = quantization.QConfig( activation=quantization.default_fake_quant, weight=quantization.default_per_channel_weight_fake_quant, ) quantization.prepare_qat(m.train(), inplace=True) m.apply(quantization.enable_observer) m.apply(quantization.enable_fake_quant) for module in m.modules(): if isinstance(module, quantization.FakeQuantize): module.calculate_qparams() m.apply(quantization.disable_observer) m.eval() # Fake quantize activation is a special case, as it restricts quantized range to be (0, 127), # while standard 8bit quantization range is (-128, 127) or (0, 255). # Set fixed weight, bias and inputs to test if ONNX handles the overflow correctly. m.weight = torch.nn.Parameter(torch.tensor([[1.0], [1.0], [1.0]])) m.bias = torch.nn.Parameter(torch.tensor([0.0])) x = torch.tensor([[150.0], [127.0], [-5.0]]) self.run_test(m, x) def test_batchnorm_training(self): class MyModule(torch.nn.Module): def __init__(self): super(MyModule, self).__init__() self.bn1 = torch.nn.BatchNorm2d(3, affine=False) self.cv1 = torch.nn.Conv2d(3, 3, 10) self.bn2 = torch.nn.BatchNorm2d(3, affine=True) self.cv2 = torch.nn.Conv2d(3, 3, 10) self.bn3 = torch.nn.BatchNorm2d(3, affine=False) def forward(self, x): x = self.bn1(x) x = self.cv1(x) x = self.bn2(x) x = self.cv2(x) x = self.bn3(x) return x x = torch.randn(10, 3, 20, 20) * 2 model_export = MyModule() self.run_test( model_export, (x,), training=torch.onnx.TrainingMode.TRAINING, rtol=1e-3, atol=1e-5, ) model_export.train() self.run_test( model_export, (x,), training=torch.onnx.TrainingMode.PRESERVE, rtol=1e-3, atol=1e-5, ) def test_batchnorm_training_mode_fix_layer(self): class MyModule(torch.nn.Module): def __init__(self): super(MyModule, self).__init__() self.bn1 = torch.nn.BatchNorm2d(3, affine=True) self.cv1 = torch.nn.Conv2d(3, 3, 10) self.bn2 = torch.nn.BatchNorm2d(3, affine=False) self.cv2 = torch.nn.Conv2d(3, 3, 10) self.bn3 = torch.nn.BatchNorm2d(3, affine=True) self.bn3.eval() def forward(self, x): x = self.bn1(x) x = self.cv1(x) x = self.bn2(x) x = self.cv2(x) x = self.bn3(x) return x x = torch.randn(10, 3, 128, 128) model_export = MyModule() self.run_test( model_export, (x,), training=torch.onnx.TrainingMode.TRAINING, rtol=1e-3, atol=1e-5, ) model_export.train() self.run_test( model_export, (x,), training=torch.onnx.TrainingMode.PRESERVE, rtol=1e-3, atol=1e-5, ) def test_batchnorm_eval_mode_train_layer(self): class MyModule(torch.nn.Module): def __init__(self): super(MyModule, self).__init__() self.bn1 = torch.nn.BatchNorm2d(3, affine=True) self.cv1 = torch.nn.Conv2d(3, 3, 10) self.bn2 = torch.nn.BatchNorm2d(3, affine=False) self.cv2 = torch.nn.Conv2d(3, 3, 10) self.bn3 = torch.nn.BatchNorm2d(3, affine=True) self.bn3.train() def forward(self, x): x = self.bn1(x) x = self.cv1(x) x = self.bn2(x) x = self.cv2(x) x = self.bn3(x) return x x = torch.randn(10, 3, 128, 128) model_export = MyModule() self.run_test( model_export, (x,), training=torch.onnx.TrainingMode.EVAL, rtol=1e-3, atol=1e-5, ) model_export.eval() self.run_test( model_export, (x,), training=torch.onnx.TrainingMode.PRESERVE, rtol=1e-3, atol=1e-5, ) def test_instancenorm_training(self): class MyModule(torch.nn.Module): def __init__(self): super(MyModule, self).__init__() self.in1 = torch.nn.InstanceNorm2d(3, affine=True) self.cv1 = torch.nn.Conv2d(3, 3, 10) self.in2 = torch.nn.InstanceNorm2d(3, affine=False) self.cv2 = torch.nn.Conv2d(3, 3, 10) self.in3 = torch.nn.InstanceNorm2d(3, affine=True) def forward(self, x): x = self.in1(x) x = self.cv1(x) x = self.in2(x) x = self.cv2(x) x = self.in3(x) return x x = torch.randn(10, 3, 128, 128) model_export = MyModule() self.run_test( model_export, (x,), training=torch.onnx.TrainingMode.TRAINING, rtol=1e-3, atol=1e-5, ) model_export.train() self.run_test( model_export, (x,), training=torch.onnx.TrainingMode.PRESERVE, rtol=1e-3, atol=1e-5, ) def test_instancenorm_training_mode_fix_layer(self): class MyModule(torch.nn.Module): def __init__(self): super(MyModule, self).__init__() self.in1 = torch.nn.InstanceNorm2d(3, affine=True) self.cv1 = torch.nn.Conv2d(3, 3, 10) self.in2 = torch.nn.InstanceNorm2d(3, affine=False) self.cv2 = torch.nn.Conv2d(3, 3, 10) self.in3 = torch.nn.InstanceNorm2d(3, affine=True) self.in3.eval() def forward(self, x): x = self.in1(x) x = self.cv1(x) x = self.in2(x) x = self.cv2(x) x = self.in3(x) return x x = torch.randn(10, 3, 128, 128) model_export = MyModule() self.run_test( model_export, (x,), training=torch.onnx.TrainingMode.TRAINING, rtol=1e-3, atol=1e-5, ) model_export.train() self.run_test( model_export, (x,), training=torch.onnx.TrainingMode.PRESERVE, rtol=1e-3, atol=1e-5, ) def test_instancenorm_eval_mode_train_layer(self): class MyModule(torch.nn.Module): def __init__(self): super(MyModule, self).__init__() self.in1 = torch.nn.InstanceNorm2d(8, affine=True) self.cv1 = torch.nn.Conv2d(8, 8, 10) self.in2 = torch.nn.InstanceNorm2d(8, affine=False) self.cv2 = torch.nn.Conv2d(8, 8, 10) self.in3 = torch.nn.InstanceNorm2d(8, affine=True) self.in3.train() def forward(self, x): x = self.in1(x) x = self.cv1(x) x = self.in2(x) x = self.cv2(x) x = self.in3(x) return x x = torch.randn(10, 8, 128, 128) model_export = MyModule() self.run_test( model_export, (x,), training=torch.onnx.TrainingMode.EVAL, rtol=1e-3, atol=1e-5, ) model_export.eval() self.run_test( model_export, (x,), training=torch.onnx.TrainingMode.PRESERVE, rtol=1e-3, atol=1e-5, ) @skipIfUnsupportedMinOpsetVersion(12) def test_dropout_training(self): class MyModule(torch.nn.Module): def __init__(self): super(MyModule, self).__init__() self.dropout = torch.nn.Dropout(0.4) def forward(self, x): dropout = self.dropout(x) return dropout model = MyModule() x = torch.randn(10) model.train() ort_sess = convert_to_onnx( model, input=(x,), opset_version=self.opset_version, training=torch.onnx.TrainingMode.TRAINING, ) ort_outs = run_ort(ort_sess, (x,)) assert not torch.all(torch.eq(x, torch.from_numpy(ort_outs[0]))) script_model = torch.jit.script(model) output = model(x) ort_sess = convert_to_onnx( script_model, input=(x,), opset_version=self.opset_version, training=torch.onnx.TrainingMode.TRAINING, ) ort_outs = run_ort(ort_sess, (x,)) assert not torch.all(torch.eq(x, torch.from_numpy(ort_outs[0]))) @skipIfUnsupportedMinOpsetVersion(12) def test_dropout_training_zero(self): class MyModule(torch.nn.Module): def __init__(self): super(MyModule, self).__init__() self.dropout = torch.nn.Dropout(0.5) def forward(self, x): dropout = self.dropout(x) return dropout model = MyModule() # ensure there are no zeros in the input x = torch.randn(10, 3, 128, 128) y = x.numpy() y_mask = np.where(y == 0, 1, y) input = torch.from_numpy(y_mask) nb_elements = torch.numel(input) model.train() ort_sess = convert_to_onnx( model, input=(x,), opset_version=self.opset_version, training=torch.onnx.TrainingMode.TRAINING, ) ort_outs = run_ort(ort_sess, (x,)) y = model(input) output = y.cpu().numpy() ort_mask = np.where(ort_outs[0] != 0, 1, 0) pyt_mask = np.where(output != 0, 1, 0) ratio_pytorch = np.sum(pyt_mask) / nb_elements ratio_ort = np.sum(ort_mask) / nb_elements np.testing.assert_allclose(ratio_pytorch, ratio_ort, rtol=0.01, atol=0.01) script_model = torch.jit.script(model) y = model(input) output = y.cpu().numpy() ort_sess = convert_to_onnx( script_model, input=(x,), opset_version=self.opset_version, training=torch.onnx.TrainingMode.TRAINING, ) ort_outs = run_ort(ort_sess, (x,)) ort_mask = np.where(ort_outs[0] != 0, 1, 0) pyt_mask = np.where(output != 0, 1, 0) ratio_pytorch = np.sum(pyt_mask) / nb_elements ratio_ort = np.sum(ort_mask) / nb_elements np.testing.assert_allclose(ratio_pytorch, ratio_ort, rtol=0.01, atol=0.01) def test_conv_bn(self): class MyModule(torch.nn.Module): def __init__(self): super(MyModule, self).__init__() self.conv = torch.nn.Conv2d( 3, 16, kernel_size=1, stride=2, padding=3, bias=True ) self.bn = torch.nn.BatchNorm2d(16, affine=True) def forward(self, x): x = self.conv(x) bn = self.bn(x) return bn model_export = MyModule() x = torch.randn(10, 3, 128, 128) self.run_test(model_export, (x,), training=torch.onnx.TrainingMode.EVAL) self.run_test( model_export, (x,), training=torch.onnx.TrainingMode.TRAINING, rtol=1e-3, atol=1e-5, ) def test_multiple_conv_bn(self): class MyModule(torch.nn.Module): def __init__(self): super(MyModule, self).__init__() self.conv1 = torch.nn.Conv2d( 3, 64, kernel_size=7, stride=2, padding=3, bias=False ) self.conv2 = torch.nn.Conv2d( 64, 2, kernel_size=1, stride=1, padding=0, bias=False ) self.conv3 = torch.nn.Conv2d( 2, 2, kernel_size=3, stride=1, padding=1, bias=False ) self.bn = torch.nn.BatchNorm2d(64) self.bn2 = torch.nn.BatchNorm2d(2) self.relu = torch.nn.ReLU(inplace=True) self.maxpool = torch.nn.MaxPool2d(kernel_size=3, stride=2, padding=1) def forward(self, x): x = self.conv1(x) x = self.bn(x) x = self.relu(x) x = self.maxpool(x) x = self.conv2(x) x = self.bn2(x) x = self.relu(x) x = self.conv3(x) x = self.bn2(x) x = self.relu(x) return x model_export = MyModule() x = torch.randn(2, 3, 224, 224) self.run_test( model_export, (x,), training=torch.onnx.TrainingMode.TRAINING, rtol=1e-3, atol=1e-5, ) self.run_test(model_export, (x,), training=torch.onnx.TrainingMode.EVAL) def test_script_custom_class_error(self): class BoxCoder(object): def __init__(self, bbox_xform_clip: float) -> None: self.bbox_xform_clip = bbox_xform_clip def decode(self, rel_codes: Tensor, boxes: List[Tensor]) -> Tensor: boxes = torch.cat(boxes, dim=0) pred_ctr_x = ( torch.clamp(rel_codes[:, 0::4], max=self.bbox_xform_clip) * boxes[:, 2] ) return pred_ctr_x class MyModule(torch.nn.Module): __annotations__ = { "box_coder": BoxCoder, } def __init__(self): super(MyModule, self).__init__() self.box_coder = BoxCoder(1.4) def forward(self, box_regression: Tensor, proposals: List[Tensor]): return self.box_coder.decode(box_regression, proposals) model = torch.jit.script(MyModule()) box_regression = torch.randn([4, 4]) proposal = [torch.randn(2, 4), torch.randn(2, 4)] with self.assertRaises(RuntimeError) as cm: convert_to_onnx(model, input=(box_regression, proposal)) def test_initializer_sequence(self): class MyModule(torch.nn.Module): def __init__(self, input_size, hidden_size, num_classes): super(MyModule, self).__init__() self.fc1 = torch.nn.Linear(input_size, hidden_size) self.relu = torch.nn.ReLU() self.fc2 = torch.nn.Linear(hidden_size, num_classes) def forward(self, x): out = self.fc1(x) out = self.relu(out) out = self.fc2(out) return out test_model = MyModule(3, 4, 10) state_dict_list = [k for (k, v) in test_model.state_dict().items()] named_params_list = [k for (k, v) in test_model.named_parameters()] x = torch.randn(32, 3) f = io.BytesIO() torch.onnx._export(test_model, (x,), f, do_constant_folding=False) loaded_model = onnx.load_from_string(f.getvalue()) actual_list = [p.name for p in loaded_model.graph.initializer] assert actual_list == state_dict_list, ( "Initializers' sequence is not as same as state_dict(). Expected: (" + ", ".join(state_dict_list) + "). Actual:(" + ", ".join(actual_list) + ")." ) assert actual_list == named_params_list, ( "Initializers' sequence is not as same as named_parameters(). Expected: (" + ", ".join(named_params_list) + "). Actual:(" + ", ".join(actual_list) + ")." ) def test_initializer_sequence_script_model(self): def list_is_expected(short_list, long_list) -> bool: if len(short_list) > len(long_list): return False for i in range(len(short_list)): if short_list[i] not in long_list[i]: return False return True def loop(x, y): for i in range(int(y)): x = x + i return x class MyModule(torch.nn.Module): def __init__(self, input_size, hidden_size, num_classes): super(MyModule, self).__init__() self.fc1 = torch.nn.Linear(input_size, hidden_size) self.relu = torch.nn.ReLU() self.fc2 = torch.nn.Linear(hidden_size, num_classes) def forward(self, x, y): x = loop(x, y) out = self.fc1(x) out = self.relu(out) out = self.fc2(out) return out test_model = torch.jit.script(MyModule(3, 4, 10)) state_dict_list = [k for (k, v) in test_model.state_dict().items()] named_params_list = [k for (k, v) in test_model.named_parameters()] x = torch.ones(2, 3, dtype=torch.float) y = torch.tensor(5, dtype=torch.long) f = io.BytesIO() torch.onnx.export(test_model, (x, y), f, do_constant_folding=False) loaded_model = onnx.load_from_string(f.getvalue()) actual_list = [p.name for p in loaded_model.graph.initializer] assert list_is_expected(state_dict_list, actual_list), ( "ScriptModel - Initializers' sequence is not as same as state_dict(). Expected: (" + ", ".join(state_dict_list) + "). Actual:(" + ", ".join(actual_list) + ")." ) assert list_is_expected(named_params_list, actual_list), ( "ScriptModel - Initializers' sequence is not as same as named_parameters(). Expected: (" + ", ".join(named_params_list) + "). Actual:(" + ", ".join(actual_list) + ")." ) @skipIfUnsupportedMinOpsetVersion(11) def test_nms(self): num_boxes = 100 boxes = torch.rand(num_boxes, 4) boxes[:, 2:] += boxes[:, :2] scores = torch.randn(num_boxes) class Module(torch.nn.Module): def forward(self, boxes, scores): return ops.nms(boxes, scores, 0.5) self.run_test(Module(), (boxes, scores)) @skipIfUnsupportedMinOpsetVersion(11) def test_batched_nms(self): num_boxes = 100 boxes = torch.rand(num_boxes, 4) boxes[:, 2:] += boxes[:, :2] scores = torch.randn(num_boxes) idxs = torch.randint(0, 5, size=(num_boxes,)) class Module(torch.nn.Module): def forward(self, boxes, scores, idxs): return ops.batched_nms(boxes, scores, idxs, 0.5) self.run_test(Module(), (boxes, scores, idxs)) @skipIfUnsupportedMinOpsetVersion(11) @skipScriptTest() def test_clip_boxes_to_image(self): boxes = torch.randn(5, 4) * 500 boxes[:, 2:] += boxes[:, :2] size = torch.randn(200, 300) size_2 = torch.randn(300, 400) class Module(torch.nn.Module): def forward(self, boxes, size): shape = (size.shape[0], size.shape[1]) return ops.boxes.clip_boxes_to_image(boxes, shape) self.run_test( Module(), (boxes, size), input_names=["boxes", "size"], dynamic_axes={"size": [0, 1]}, test_with_inputs=[(boxes, size), (boxes, size_2)], ) @skipIfUnsupportedMaxOpsetVersion(15) # TODO: Opset 16 RoiAlign result mismatch @skipIfUnsupportedMinOpsetVersion(11) def test_roi_align(self): x = torch.rand(1, 1, 10, 10, dtype=torch.float32) single_roi = torch.tensor([[0, 0, 0, 4, 4]], dtype=torch.float32) model = ops.RoIAlign((5, 5), 1.0, 2) self.run_test(model, (x, single_roi)) @skipIfUnsupportedMaxOpsetVersion(15) # TODO: Opset 16 RoiAlign result mismatch @skipIfUnsupportedMinOpsetVersion(11) def test_roi_align_aligned(self): x = torch.rand(1, 1, 10, 10, dtype=torch.float32) single_roi = torch.tensor([[0, 1.5, 1.5, 3, 3]], dtype=torch.float32) model1 = ops.RoIAlign((5, 5), 1.0, 2, aligned=True) self.run_test(model1, (x, single_roi)) x = torch.rand(1, 1, 10, 10, dtype=torch.float32) single_roi = torch.tensor([[0, 0.2, 0.3, 4.5, 3.5]], dtype=torch.float32) model2 = ops.RoIAlign((5, 5), 0.5, 3, aligned=True) self.run_test(model2, (x, single_roi)) x = torch.rand(1, 1, 10, 10, dtype=torch.float32) single_roi = torch.tensor([[0, 0.2, 0.3, 4.5, 3.5]], dtype=torch.float32) model3 = ops.RoIAlign((5, 5), 1.8, 2, aligned=True) self.run_test(model3, (x, single_roi)) x = torch.rand(1, 1, 10, 10, dtype=torch.float32) single_roi = torch.tensor([[0, 0.2, 0.3, 4.5, 3.5]], dtype=torch.float32) model4 = ops.RoIAlign((2, 2), 2.5, 0, aligned=True) self.run_test(model4, (x, single_roi)) @skipIfUnsupportedMinOpsetVersion(11) def test_roi_pool(self): x = torch.rand(1, 1, 10, 10, dtype=torch.float32) rois = torch.tensor([[0, 0, 0, 4, 4]], dtype=torch.float32) pool_h = 5 pool_w = 5 model = ops.RoIPool((pool_h, pool_w), 2.0) self.run_test(model, (x, rois)) @skipIfUnsupportedMinOpsetVersion(11) def test_resize_images(self): class TransformModule(torch.nn.Module): def __init__(self): super(TransformModule, self).__init__() self.transform = _init_test_generalized_rcnn_transform() def forward(self, images): return self.transform.resize(images, None)[0] input = torch.rand(3, 10, 20) input_test = torch.rand(3, 100, 150) self.run_test( TransformModule(), (input,), input_names=["input1"], dynamic_axes={"input1": [0, 1, 2]}, test_with_inputs=[(input,), (input_test,)], ) @skipIfUnsupportedMinOpsetVersion(11) @skipScriptTest() def test_transform_images(self): class TransformModule(torch.nn.Module): def __init__(self): super(TransformModule, self).__init__() self.transform = _init_test_generalized_rcnn_transform() def forward(self, images: List[Tensor]): return self.transform(images)[0].tensors input = torch.rand(3, 100, 200), torch.rand(3, 200, 200) input_test = torch.rand(3, 100, 200), torch.rand(3, 200, 200) self.run_test( TransformModule(), (input,), test_with_inputs=[(input,), (input_test,)] ) def get_features(self, images): s0, s1 = images.shape[-2:] features = [ ("0", torch.rand(2, 256, s0 // 4, s1 // 4)), ("1", torch.rand(2, 256, s0 // 8, s1 // 8)), ("2", torch.rand(2, 256, s0 // 16, s1 // 16)), ("3", torch.rand(2, 256, s0 // 32, s1 // 32)), ("4", torch.rand(2, 256, s0 // 64, s1 // 64)), ] features = OrderedDict(features) return features @skipIfUnsupportedMinOpsetVersion(11) @skipScriptTest() def test_rpn(self): set_rng_seed(0) class RPNModule(torch.nn.Module): def __init__(self): super(RPNModule, self).__init__() self.rpn = _init_test_rpn() def forward(self, images, features: Dict[str, Tensor]): images_m = ImageList( images, [(i.shape[-1], i.shape[-2]) for i in images] ) return self.rpn(images_m, features) images = torch.rand(2, 3, 150, 150) features = self.get_features(images) images2 = torch.rand(2, 3, 80, 80) test_features = self.get_features(images2) model = RPNModule() model.eval() model(images, features) self.run_test( model, (images, features), input_names=["input1", "input2", "input3", "input4", "input5", "input6"], dynamic_axes={ "input1": [0, 1, 2, 3], "input2": [0, 1, 2, 3], "input3": [0, 1, 2, 3], "input4": [0, 1, 2, 3], "input5": [0, 1, 2, 3], "input6": [0, 1, 2, 3], }, test_with_inputs=[(images, features), (images2, test_features)], dict_check=False, ) @skipIfUnsupportedMaxOpsetVersion(15) # TODO: Opset 16 RoiAlign result mismatch @skipIfUnsupportedMinOpsetVersion(11) @skipScriptTest() def test_multi_scale_roi_align(self): class TransformModule(torch.nn.Module): def __init__(self): super(TransformModule, self).__init__() self.model = ops.MultiScaleRoIAlign(["feat1", "feat2"], 3, 2) self.image_sizes = [(512, 512)] def forward(self, input: Dict[str, Tensor], boxes: List[Tensor]) -> Tensor: return self.model(input, boxes, self.image_sizes) i = OrderedDict() i["feat1"] = torch.rand(1, 5, 64, 64) i["feat2"] = torch.rand(1, 5, 16, 16) boxes = torch.rand(6, 4) * 256 boxes[:, 2:] += boxes[:, :2] i1 = OrderedDict() i1["feat1"] = torch.rand(1, 5, 64, 64) i1["feat2"] = torch.rand(1, 5, 16, 16) boxes1 = torch.rand(6, 4) * 256 boxes1[:, 2:] += boxes1[:, :2] self.run_test( TransformModule(), ( i, [boxes], ), test_with_inputs=[ ( i, [boxes], ), ( i1, [boxes1], ), ], ) @skipIfUnsupportedMinOpsetVersion(11) @skipScriptTest() def test_roi_heads(self): class RoiHeadsModule(torch.nn.Module): def __init__(self): super(RoiHeadsModule, self).__init__() self.transform = _init_test_generalized_rcnn_transform() self.rpn = _init_test_rpn() self.roi_heads = _init_test_roi_heads_faster_rcnn() def forward(self, images, features: Dict[str, Tensor]): original_image_sizes = [ (img.shape[-1], img.shape[-2]) for img in images ] images_m = ImageList( images, [(i.shape[-1], i.shape[-2]) for i in images] ) proposals, _ = self.rpn(images_m, features) detections, _ = self.roi_heads( features, proposals, images_m.image_sizes ) detections = self.transform.postprocess( detections, images_m.image_sizes, original_image_sizes ) return detections images = torch.rand(2, 3, 100, 100) features = self.get_features(images) images2 = torch.rand(2, 3, 150, 150) test_features = self.get_features(images2) model = RoiHeadsModule() model.eval() model(images, features) self.run_test( model, (images, features), input_names=["input1", "input2", "input3", "input4", "input5", "input6"], dynamic_axes={ "input1": [0, 1, 2, 3], "input2": [0, 1, 2, 3], "input3": [0, 1, 2, 3], "input4": [0, 1, 2, 3], "input5": [0, 1, 2, 3], "input6": [0, 1, 2, 3], }, test_with_inputs=[(images, features), (images2, test_features)], dict_check=False, ) def test_set_(self): class M(torch.nn.Module): def forward(self, x, y): x.set_(y) return x x = torch.ones(2, 3) y = torch.randn(4, 6) self.run_test(M(), (x, y), remained_onnx_input_idx=[1]) y2 = torch.randn(5, 2) self.run_test( M(), (x, y), remained_onnx_input_idx=[1], input_names=["x", "y"], dynamic_axes={"x": [0, 1], "y": [0, 1]}, test_with_inputs=[(y, y2)], ) @skipIfUnsupportedMinOpsetVersion(9) def test_set_attr_modules(self): class InnerModule2(torch.nn.Module): def __init__(self, embedding_dim): super().__init__() self.weights = InnerModule2.get_embedding(embedding_dim) self.register_buffer("_float_tensor", torch.FloatTensor(1)) self.const = 2 @staticmethod def get_embedding(embedding_dim: int): emb = 4 / ((embedding_dim // 2) - 1) emb = torch.exp( torch.arange((embedding_dim // 2), dtype=torch.float) * -emb ) return emb def forward(self, input, incremental_state: Optional[Tensor] = None): bsz, seq_len = input.shape[0], input.shape[1] self.const = 3 if self.weights is None: self.weights = InnerModule.get_embedding(self.embedding_dim) self.weights = self.weights.to(self._float_tensor) self.weights = self.weights * self.const if incremental_state is not None: pos = seq_len return self.weights[1 + pos, :].expand(bsz, 1, -1) return self.weights.index_select( 0, torch.ones((bsz * seq_len), dtype=torch.int64) ).view(bsz, seq_len, -1) class InnerModule(torch.nn.Module): def __init__(self, embedding_dim): super().__init__() self.weights = InnerModule.get_embedding(embedding_dim) self.module = InnerModule2(embedding_dim=8) @staticmethod def get_embedding(embedding_dim: int): emb = 4 / ((embedding_dim // 2) - 1) emb = torch.exp( torch.arange((embedding_dim // 2), dtype=torch.float) * -emb ) return emb def forward(self, x): return self.module(x) + self.weights class Module(torch.nn.Module): def __init__(self): super(Module, self).__init__() self.module = InnerModule(embedding_dim=8) def forward(self, x): return self.module(x) x = torch.randn(3, 256) self.run_test(Module(), (x,), input_names=["x"], dynamic_axes={"x": [0, 1]}) self.run_test(Module(), (x,), remained_onnx_input_idx=[]) @skipIfUnsupportedMinOpsetVersion(9) def test_set_attr_modules_2(self): class InnerModule(torch.nn.Module): def __init__(self, embedding_dim): super().__init__() self.embedding_dim = embedding_dim self.const = 2.5 self.weights = InnerModule.get_embedding(self.embedding_dim) self.register_buffer("_float_tensor", torch.FloatTensor(1)) @staticmethod def get_embedding(embedding_dim: int): emb = 4 / ((embedding_dim // 2) - 1) emb = torch.exp( torch.arange((embedding_dim // 2), dtype=torch.float) * -emb ) return emb def forward(self, input, incremental_state: Optional[Tensor] = None): bsz, seq_len = input.shape[0], input.shape[1] self.const = 1.5 self.weights = InnerModule.get_embedding(self.embedding_dim) return ( self.weights.index_select( 0, torch.ones((bsz * seq_len), dtype=torch.int64) ).view(bsz, seq_len, -1) ) * self.const class Module(torch.nn.Module): def __init__(self): super(Module, self).__init__() self.module = InnerModule(embedding_dim=8) def forward(self, x): return self.module(x) x = torch.randn(3, 256) self.run_test(Module(), (x,), input_names=["x"], dynamic_axes={"x": [0, 1]}) self.run_test(Module(), (x,), remained_onnx_input_idx=[]) def test_set_attr(self): class MyModule(torch.nn.Module): def __init__(self): super(MyModule, self).__init__() self.conv = torch.nn.Conv1d(3, 10, 2) self.b = False def forward(self, box_regression, weight): self.b = True self.conv.weight = weight w = torch.softmax(self.conv.weight, dim=0) self.conv.weight = w + w if self.b: return box_regression + self.conv.weight else: return box_regression - self.conv.weight model = torch.jit.script(MyModule()) weight = torch.ones(3, 2) box_regression = torch.randn(3, 2) self.run_test(model, (box_regression, weight)) @skipIfUnsupportedMinOpsetVersion(11) def test_set_attr_2(self): class MyModule(torch.nn.Module): def __init__(self): super(MyModule, self).__init__() self.conv = torch.nn.Conv1d(10, 3, 3) self.conv.bias = torch.nn.Parameter(torch.zeros(3, 10, 3)) def set_cell_anchors(self, anchors): if self.conv.bias is not None: b = self.conv.bias assert b is not None self.conv.bias = anchors + b elif self.conv.weight is not None: self.conv.weight = torch.randn(3, 10) self.conv.bias = self.conv.weight[:] def forward(self, anchors) -> Optional[Tensor]: self.set_cell_anchors(anchors) return self.conv.bias model = torch.jit.script(MyModule()) anchors = torch.ones(3, 10, 3) self.run_test(model, (anchors)) @skipIfUnsupportedMinOpsetVersion(11) def test_set_attr_3(self): class MyModule(torch.nn.Module): def __init__(self): super(MyModule, self).__init__() self.conv = torch.nn.Conv1d(10, 3, 3) self.conv.weight = torch.nn.Parameter(torch.zeros(3, 10)) self.conv.bias = torch.nn.Parameter(torch.zeros(3, 10, 3)) def set_cell_anchors(self, anchors, boxes): self.conv.weight = torch.ones(3, 10) if self.conv.bias is not None: self.conv.bias = torch.randn(3, 10, 3) self.conv.weight = anchors + self.conv.weight boxes[:] = torch.zeros(2, 3) def forward(self, anchors) -> Tuple[Tensor, Tensor]: boxes = torch.ones(2, 2, 3) self.set_cell_anchors(anchors, boxes) if self.conv.bias is not None: return self.conv.weight, boxes return anchors, boxes model = torch.jit.script(MyModule()) anchors = torch.rand(3, 10) self.run_test(model, (anchors)) @skipIfUnsupportedMinOpsetVersion(11) def test_set_attr_4(self): class MyModule(torch.nn.Module): def __init__(self): super(MyModule, self).__init__() self.conv = torch.nn.Conv1d(10, 3, 3) self.conv.bias = torch.nn.Parameter(torch.zeros(3, 10, 3)) def set_cell_anchors(self, anchors): self.conv.weight = torch.zeros(10, 3) if self.conv.bias is not None: w = self.conv.bias assert w is not None self.conv.bias = anchors + w else: self.conv.bias = torch.ones(3, 10, 3) def forward(self, feature_maps, anchors) -> Tuple[Tensor, Tensor]: self.set_cell_anchors(anchors) result = [] if self.conv.bias is not None: a = self.conv.bias assert a is not None result += [a] result += [feature_maps] return result[0], result[1] model = torch.jit.script(MyModule()) x = torch.rand(5, 11, 30) anchors = torch.ones(3, 10, 3) self.run_test(model, (x, anchors)) @skipIfUnsupportedMinOpsetVersion(11) def test_set_attr_5(self): class MyModule(torch.nn.Module): def __init__(self): super(MyModule, self).__init__() self.conv = torch.nn.Conv1d(10, 3, 3) self.conv.bias = torch.nn.Parameter(torch.zeros(3, 10, 3)) def set_cell_anchors(self, anchors): self.conv.weight = torch.arange(10) for i in range(10): if i == 3: for j in range(10): w = self.conv.weight self.conv.weight = torch.arange(10) + w self.conv.weight = self.conv.weight + torch.arange(10) # NOTE: `is not None` and `assert` is for passing torchscript. if self.conv.bias is not None: a = self.conv.bias assert a is not None self.conv.bias = anchors + a def forward(self, anchors): self.set_cell_anchors(anchors) return self.conv.weight, self.conv.bias model = torch.jit.script(MyModule()) anchors = torch.ones(3, 10, 3) self.run_test(model, (anchors)) @skipIfUnsupportedMinOpsetVersion(11) def test_set_attr_in_loop(self): class MyModule(torch.nn.Module): def __init__(self): super(MyModule, self).__init__() self.conv = torch.nn.Conv1d(10, 3, 3) self.conv.weight = torch.nn.Parameter(torch.zeros(3, 10)) self.conv.bias = torch.nn.Parameter(torch.zeros(3, 10, 3)) def set_cell_anchors(self, anchors, boxes): self.conv.weight = torch.randn(3, 10) for i in range(self.conv.weight.size(0)): for j in range(10): self.conv.bias = torch.randn(3, 10, 3) self.conv.weight = anchors * i boxes[j] += torch.ones(3, 3) def forward(self, anchors) -> Tuple[Tensor, Tensor]: boxes = torch.ones(10, 3, 3) self.set_cell_anchors(anchors, boxes) if self.conv.bias is not None: return self.conv.weight, boxes return anchors, boxes model = torch.jit.script(MyModule()) anchors = torch.rand(10) self.run_test(model, anchors) @skipIfUnsupportedMinOpsetVersion(13) def test_set_attr_in_loop_with_list(self): class MyModule(torch.nn.Module): def __init__(self): super(MyModule, self).__init__() self.conv = torch.nn.Conv1d(10, 3, 3) self.conv.weight = torch.nn.Parameter(torch.zeros(3, 10)) self.conv.bias = torch.nn.Parameter(torch.zeros(3, 10, 3)) self.boxes: List[Tensor] = [ torch.ones(1) ] # Workaround placeholder for TorchScript def set_cell_anchors(self, anchors): self.conv.weight = torch.randn(3, 10) for i in range(self.conv.weight.size(0)): for j in range(10): self.conv.bias = torch.randn(3, 10, 3) self.conv.weight = anchors * i self.boxes.append(torch.ones(3, 3)) def forward(self, anchors) -> Tuple[Tensor, List[Tensor]]: self.boxes = [] self.set_cell_anchors(anchors) if self.conv.bias is not None: return self.conv.weight, self.boxes return anchors, self.boxes model = torch.jit.script(MyModule()) anchors = torch.rand(10) self.run_test(model, anchors) @skipIfUnsupportedMinOpsetVersion(11) def test_index_put_if(self): @torch.jit.script def check_init( input_data: Tensor, hidden_size: int, prev_state: Tensor ) -> Tuple[Tensor, Tensor]: batch_size = input_data.size(0) spatial_size_0 = input_data.size(2) spatial_size_1 = input_data.size(3) # generate empty prev_state, if None is provided state_size = (2, batch_size, hidden_size, spatial_size_0, spatial_size_1) state = torch.zeros(state_size, device=input_data.device) state_copy = torch.zeros(state_size, device=input_data.device) if prev_state.size(0) == 0: state[:] = ( torch.zeros(batch_size, hidden_size, spatial_size_0, spatial_size_1) + state[:] ) state_copy[:] = ( torch.ones(batch_size, hidden_size, spatial_size_0, spatial_size_1) * 2 ) state_copy[:] = ( torch.zeros(batch_size, hidden_size, spatial_size_0, spatial_size_1) * 2 ) else: state[:] = ( torch.ones(batch_size, hidden_size, spatial_size_0, spatial_size_1) * 4 ) return state, state_copy class Example(torch.nn.Module): def __init__(self, hidden_size): super().__init__() self.hidden_size = hidden_size def forward(self, input_data, prev_state): prev_state = check_init(input_data, self.hidden_size, prev_state) return prev_state[0], prev_state[1] model = Example(10) random_data = torch.rand((1, 5, 30, 30)) empty_tensor = torch.tensor([], dtype=torch.float).view(0, 0, 0, 0, 0) self.run_test( model, (random_data, empty_tensor), input_names=["random_data", "empty_tensor"], dynamic_axes={"random_data": [0, 1, 2, 3], "empty_tensor": [0, 1, 2, 3, 4]}, ) self.run_test(model, (random_data, empty_tensor), remained_onnx_input_idx=[]) @skipIfUnsupportedMinOpsetVersion(11) def test_index_put_if_2(self): @torch.jit.script def check_init( input_data: Tensor, hidden_size: int, prev_state: Tensor ) -> Tuple[Tensor, Tensor]: batch_size = input_data.size(0) spatial_size_0 = input_data.size(2) spatial_size_1 = input_data.size(3) # generate empty prev_state, if None is provided state_size = (2, batch_size, hidden_size, spatial_size_0, spatial_size_1) state = torch.zeros(state_size, device=input_data.device) state_copy = torch.zeros(state_size, device=input_data.device) if prev_state.size(0) == 0: for i in range(2): state[:] = ( torch.ones( batch_size, hidden_size, spatial_size_0, spatial_size_1 ) * i ) state_copy[:] = ( torch.ones( batch_size, hidden_size, spatial_size_0, spatial_size_1 ) * i ) elif prev_state.size(0) == 1: s = state[:] state[:] = prev_state + s elif prev_state.size(0) == 2: state[:] = ( torch.ones(batch_size, hidden_size, spatial_size_0, spatial_size_1) * 4 ) return state, state_copy class Example(torch.nn.Module): def __init__(self, hidden_size): super().__init__() self.hidden_size = hidden_size def forward(self, input_data, prev_state): prev_state = check_init(input_data, self.hidden_size, prev_state) return prev_state[0], prev_state[1] model = Example(10) random_data = torch.rand((1, 5, 30, 30)) empty_tensor = torch.tensor([], dtype=torch.float).view(0, 0, 0, 0, 0) random_state = torch.rand((1, 1, 10, 30, 30)) self.run_test( model, (random_data, empty_tensor), input_names=["data", "state"], dynamic_axes={"data": [0, 1, 2], "state": [0, 1, 2, 3, 4]}, test_with_inputs=[(random_data, random_state)], ) self.run_test( model, (random_data, empty_tensor), input_names=["data", "state"], dynamic_axes={"state": [0, 1, 2, 3, 4]}, test_with_inputs=[(random_data, random_state)], remained_onnx_input_idx=[1], ) self.run_test(model, (random_data, empty_tensor), remained_onnx_input_idx=[]) @skipIfUnsupportedMinOpsetVersion(11) def test_index_put_if_3(self): @torch.jit.script def check_init( input_data: Tensor, hidden_size: int, prev_state: Tensor ) -> Tensor: batch_size = input_data.size(0) spatial_size_0 = input_data.size(2) spatial_size_1 = input_data.size(3) # generate empty prev_state, if None is provided state_size = (2, batch_size, hidden_size, spatial_size_0, spatial_size_1) state = torch.zeros(state_size, device=input_data.device) if prev_state.size(0) < 2: state = state * 3 if prev_state.size(0) == 0: state[:] = ( torch.ones( batch_size, hidden_size, spatial_size_0, spatial_size_1 ) * 3 ) else: state = state + 2 return state class Example(torch.nn.Module): def __init__(self, hidden_size): super().__init__() self.hidden_size = hidden_size def forward(self, input_data, prev_state): prev_state = check_init(input_data, self.hidden_size, prev_state) return prev_state model = Example(4) random_data = torch.rand((1, 5, 4, 4)) empty_tensor = torch.tensor([], dtype=torch.float).view(0, 0, 0, 0, 0) self.run_test( model, (random_data, empty_tensor), input_names=["random_data", "empty_tensor"], dynamic_axes={"random_data": [0, 1, 2, 3], "empty_tensor": [0, 1, 2, 3, 4]}, ) self.run_test(model, (random_data, empty_tensor), remained_onnx_input_idx=[]) @skipIfUnsupportedMinOpsetVersion(11) def test_index_put_if_4(self): @torch.jit.script def check_init( input_data: Tensor, hidden_size: int, prev_state: Tensor ) -> Tensor: batch_size = input_data.size(0) spatial_size_0 = input_data.size(2) spatial_size_1 = input_data.size(3) # generate empty prev_state, if None is provided state_size = (2, batch_size, hidden_size, spatial_size_0, spatial_size_1) state = torch.zeros(state_size, device=input_data.device) if prev_state.size(0) == 0: state = state + 3 state[:] = ( torch.ones(batch_size, hidden_size, spatial_size_0, spatial_size_1) * 3 ) state = state + 3 state[:] = ( torch.ones(batch_size, hidden_size, spatial_size_0, spatial_size_1) * 4 ) else: state = state + 2 return state class Example(torch.nn.Module): def __init__(self, hidden_size): super().__init__() self.hidden_size = hidden_size def forward(self, input_data, prev_state): prev_state = check_init(input_data, self.hidden_size, prev_state) return prev_state model = Example(4) random_data = torch.rand((1, 5, 4, 4)) empty_tensor = torch.tensor([], dtype=torch.float).view(0, 0, 0, 0, 0) self.run_test( model, (random_data, empty_tensor), input_names=["random_data", "empty_tensor"], dynamic_axes={"random_data": [0, 1, 2, 3], "empty_tensor": [0, 1, 2, 3, 4]}, ) self.run_test(model, (random_data, empty_tensor), remained_onnx_input_idx=[]) @skipIfUnsupportedMinOpsetVersion(11) def test_index_put_if_5(self): @torch.jit.script def check_init( input_data: Tensor, hidden_size: int, prev_state: Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: batch_size = input_data.size(0) spatial_size_0 = input_data.size(2) spatial_size_1 = input_data.size(3) # generate empty prev_state, if None is provided state_size = (2, batch_size, hidden_size, spatial_size_0, spatial_size_1) state = torch.zeros(state_size, device=input_data.device) state_ref = state if prev_state.size(0) == 0: state[:] = ( torch.ones(batch_size, hidden_size, spatial_size_0, spatial_size_1) * 3 ) state = state + 3 state[:] = ( torch.ones(batch_size, hidden_size, spatial_size_0, spatial_size_1) * 4 ) else: state = state + 2 return state, state_ref class Example(torch.nn.Module): def __init__(self, hidden_size): super().__init__() self.hidden_size = hidden_size def forward(self, input_data, prev_state): prev_state, state_ref = check_init( input_data, self.hidden_size, prev_state ) return prev_state, state_ref model = Example(4) random_data = torch.rand((1, 5, 4, 4)) empty_tensor = torch.tensor([], dtype=torch.float).view(0, 0, 0, 0, 0) self.run_test( model, (random_data, empty_tensor), input_names=["random_data", "empty_tensor"], dynamic_axes={"random_data": [0, 1, 2, 3], "empty_tensor": [0, 1, 2, 3, 4]}, ) self.run_test(model, (random_data, empty_tensor), remained_onnx_input_idx=[]) @skipIfUnsupportedMinOpsetVersion(11) def test_list_append_in_block(self): class ListModel(torch.nn.Module): def forward(self, x, y): res = [] for i in range(x.size(0)): res.append(torch.matmul(x[i], y)) return res model = torch.jit.script(ListModel()) x = torch.randn(16, 3, 4) y = torch.randn(4, 5) self.run_test(model, (x, y)) @skipIfUnsupportedMinOpsetVersion(13) def test_list_append_in_nested_block(self): class ListModel(torch.nn.Module): def forward(self, x, y): res = [] for i in range(x.size(0)): for j in range(x.size(1)): res.append(torch.matmul(x[i][j], y)) return res model = torch.jit.script(ListModel()) x = torch.randn(4, 4, 3, 4) y = torch.randn(4, 5) self.run_test(model, (x, y)) @skipIfUnsupportedMinOpsetVersion(13) def test_list_pop_in_block(self): class ListModel(torch.nn.Module): def forward(self, x, y): res = [] elem = torch.matmul(x[0], y) for i in range(x.size(0)): res.append(torch.matmul(x[i], y)) for i in range(x.size(0)): elem = res.pop() for i in range(x.size(0)): res.append(torch.matmul(x[i], y)) elem = res.pop() return res.append(elem) model = torch.jit.script(ListModel()) x = torch.randn(16, 3, 4) y = torch.randn(4, 5) self.run_test(model, (x, y)) @skipIfUnsupportedMinOpsetVersion(13) def test_list_del_in_block(self): class ListModel(torch.nn.Module): def forward(self, x, y): res = [] elem = torch.matmul(x[0], y) for i in range(x.size(0)): res.append(torch.matmul(x[i], y)) for i in range(x.size(0)): del res[0] for i in range(x.size(0)): res.append(torch.matmul(x[i], y)) del res[0] return res.append(elem) model = torch.jit.script(ListModel()) x = torch.randn(16, 3, 4) y = torch.randn(4, 5) self.run_test(model, (x, y)) @skipIfUnsupportedMinOpsetVersion(11) def test_list_unpack(self): class ListModel(torch.nn.Module): def forward(self, x, y): res = [] elem = torch.matmul(x[0], y) for i in range(x.size(0)): res.append(torch.matmul(x[i], y)) a, b, c = res return a, b model = torch.jit.script(ListModel()) x = torch.randn(3, 3, 4) y = torch.randn(4, 5) self.run_test(model, (x, y)) @skipIfUnsupportedMinOpsetVersion(11) def test_index_put_inplace_ops(self): @torch.jit.script def check_init(input_data: Tensor, hidden_size: int) -> Tensor: batch_size = input_data.size(0) spatial_size_0 = input_data.size(2) spatial_size_1 = input_data.size(3) # generate empty prev_state, if None is provided state_size = (2, batch_size, hidden_size, spatial_size_0, spatial_size_1) state = torch.zeros(state_size, device=input_data.device) if input_data.size(0) == 1: state[1] += ( torch.ones(batch_size, hidden_size, spatial_size_0, spatial_size_1) * 2 ) state[1] /= ( torch.ones(batch_size, hidden_size, spatial_size_0, spatial_size_1) * 3 ) for i in range(input_data.size(0)): state[1] += torch.ones( batch_size, hidden_size, spatial_size_0, spatial_size_1 ) state[1] /= ( torch.ones(batch_size, hidden_size, spatial_size_0, spatial_size_1) * i ) return state class Example(torch.nn.Module): def __init__(self, hidden_size): super().__init__() self.hidden_size = hidden_size def forward(self, input_data): state = check_init(input_data, self.hidden_size) return state model = Example(10) random_data = torch.rand((1, 5, 30, 30)) self.run_test( model, (random_data), input_names=["random_data"], dynamic_axes={"random_data": [0, 1, 2, 3]}, ) self.run_test(model, (random_data), remained_onnx_input_idx=[]) @skipIfUnsupportedMinOpsetVersion(11) def test_input_mask_model(self): class InputMaskModel(torch.nn.Module): def __init__(self, output_size): super(InputMaskModel, self).__init__() self.bias = torch.nn.Parameter( torch.empty(output_size, dtype=torch.float) ) with torch.no_grad(): self.bias.zero_() def forward(self, model_input, y): input_mask = (model_input <= 0) | (model_input > 25) y[input_mask, :] = 0.0 output = y + self.bias return output output_size = 4 m = InputMaskModel(output_size) x = torch.tensor([0, 4, 24, 25], dtype=torch.int64) y = torch.tensor( [ [0.1, 0.2, 0.3, 0.4], [0.1, 0.2, 0.3, 0.4], [0.1, 0.2, 0.3, 0.4], [0.1, 0.2, 0.3, 0.4], ], dtype=torch.float, ) self.run_test(m, (x, y)) class InputMaskModel(torch.nn.Module): def __init__(self, output_size): super(InputMaskModel, self).__init__() def forward(self, model_input_1, model_input_2, y): input_mask_1 = (model_input_1 <= 0) | (model_input_1 > 25) input_mask_2 = (model_input_2 < 1) | (model_input_2 >= 12) y[input_mask_1, input_mask_2] = 0.0 return y output_size = 4 m = InputMaskModel(output_size) x1 = torch.tensor([0, 4, 24, 25], dtype=torch.int64) x2 = torch.tensor([0, 3, 12, 15], dtype=torch.int64) y = torch.tensor( [ [0.1, 0.2, 0.3, 0.4], [0.1, 0.2, 0.3, 0.4], [0.1, 0.2, 0.3, 0.4], [0.1, 0.2, 0.3, 0.4], ], dtype=torch.float, ) self.run_test(m, (x1, x2, y)) @skipScriptTest() def test_unsafe_chunk(self): class ChunkModel(torch.nn.Module): def forward(self, x): return torch.unsafe_chunk(x, 3, dim=1) model = ChunkModel() model.eval() x = torch.randn(1, 18) self.run_test(model, x, input_names=["x"]) def test_symbolic_shape_inference(self): # ConstantOfShape is tested in test_embedding_bag # Tile is tested in test_repeat # test Shape, Reshape, Transpose, Gather class ShapeModel(torch.nn.Module): def forward(self, x, y): shape = x.size()[:3] + (-1,) # shape [4], ("batch", 3, 4, -1) y = y.reshape(shape) # batch, 3, 4, 10/batch return y.transpose(1, 2) model = ShapeModel() model.eval() x = torch.ones(2, 3, 4, 5) y = torch.ones(3, 4, 5, 2) self.run_test( model, (x, y), input_names=["x", "y"], dynamic_axes={"x": [0, 1, 2, 3], "y": [0, 1, 2, 3]}, ) self.run_test(model, (x, y), remained_onnx_input_idx=[1]) class ViewModel(torch.nn.Module): def forward(self, x): return x.view(-1) model = ViewModel() model.eval() x = torch.tensor(2.0) self.run_test(model, (x,)) # test prim::ListConstruct for Reshape input 1 class ViewModel_2(torch.nn.Module): def forward(self, x): N, C, H, W = x.shape[0], x.shape[2], x.shape[3], x.shape[4] x1 = x.view(N, -1, C, H, W) x2 = x1.permute(0, 3, 4, 1, 2) return x2.reshape(N, -1, C) model = ViewModel_2() model.eval() x = torch.ones(2, 3, 4, 5, 6) self.run_test(model, x) @skipIfUnsupportedMinOpsetVersion(9) def test_symbolic_shape_inference_arange(self): # test Range class ArangeModel(torch.nn.Module): def forward(self, signal): frame_step = 2 outer_dimensions = signal.size()[:-2] frames, frame_length = signal.size()[-2:] subframe_length = signal.size()[0] subframe_step = frame_step // subframe_length subframes_per_frame = frame_length // subframe_length output_size = frame_step * (frames - 1) + frame_length output_subframes = output_size // subframe_length frame = torch.arange(0, output_subframes) return frame model = ArangeModel() model.eval() M, C, K, N = 1, 2, 3, 4 x = torch.randint(5, (M, C, K, N)) y = torch.randint(5, (M, C + 1, K + 1, N + 1)) self.run_test(model, x, input_names=["x"], dynamic_axes={"x": [0, 1, 2, 3]}) self.run_test(model, x, remained_onnx_input_idx=[]) self.run_test( model, x, input_names=["x"], dynamic_axes={"x": [0, 1, 2, 3]}, test_with_inputs=[(x,), (y,)], ) @skipIfUnsupportedMinOpsetVersion(11) def test_symbolic_shape_inference_box(self): # test NonZero class BoxModel(torch.nn.Module): def forward(self, boxes): min_size = 1e-2 ws, hs = boxes[:, 2] - boxes[:, 0], boxes[:, 3] - boxes[:, 1] keep = (ws >= min_size) & (hs >= min_size) keep = torch.where(keep)[0] return keep model = BoxModel() model.eval() x = torch.ones(2, 4) y = torch.ones(3, 5) self.run_test(model, x) self.run_test( model, x, input_names=["x"], dynamic_axes={"x": [0, 1]}, test_with_inputs=[(x,), (y,)], ) @skipIfUnsupportedMinOpsetVersion(11) def test_symbolic_shape_inference_box_if(self): # test If class BoxIfModel(torch.nn.Module): def forward(self, boxes, scores): score_thresh = 0.0 inds = torch.where(scores > score_thresh)[0] boxes_1 = boxes[inds] if boxes_1.numel() > 3: return boxes_1 else: return boxes_1 * 2 model = BoxIfModel() model.eval() boxes = torch.ones(2, 4) scores = torch.ones(1, 4) self.run_test(model, (boxes, scores)) @skipIfUnsupportedMinOpsetVersion(11) def test_symbolic_shape_inference_arange_2(self): # test Range class ArangeModel(torch.nn.Module): def forward(self, start): return torch.arange(start.size(0), 8.5, 1.5, dtype=torch.int64) x = torch.randn(2, 3, 4) self.run_test( ArangeModel(), (x,), input_names=["x"], dynamic_axes={"x": [0, 1, 2]} ) self.run_test(ArangeModel(), (x,), remained_onnx_input_idx=[]) class ArangeModel2(torch.nn.Module): def forward(self, start): return torch.arange(start.size(0), 8.5, 1.5, dtype=torch.double) x = torch.randn(2, 3, 4) self.run_test( ArangeModel2(), (x,), input_names=["x"], dynamic_axes={"x": [0, 1, 2]} ) self.run_test(ArangeModel2(), (x,), remained_onnx_input_idx=[]) @skipIfUnsupportedMinOpsetVersion(9) def test_symbolic_shape_inference_nonzero(self): class OneLikeModel(torch.nn.Module): def forward(self, x): ones = torch.ones_like( x, dtype=torch.float, layout=torch.strided, device=torch.device("cpu"), ) return torch.nonzero(ones) x = torch.randn(2) self.run_test(OneLikeModel(), x, input_names=["x"], dynamic_axes={"x": [0]}) self.run_test(OneLikeModel(), x, remained_onnx_input_idx=[]) x = torch.randn(2, 3, 4) self.run_test( OneLikeModel(), x, input_names=["x"], dynamic_axes={"x": [0, 1, 2]} ) self.run_test(OneLikeModel(), x, remained_onnx_input_idx=[]) class ZeroLikeModel(torch.nn.Module): def forward(self, x): zeros = torch.zeros_like( x, dtype=torch.float, layout=torch.strided, device=torch.device("cpu"), ) return torch.nonzero(zeros) x = torch.randn(2) self.run_test(ZeroLikeModel(), x, input_names=["x"], dynamic_axes={"x": [0]}) self.run_test(ZeroLikeModel(), x, remained_onnx_input_idx=[]) x = torch.randn(2, 3, 4) self.run_test( ZeroLikeModel(), x, input_names=["x"], dynamic_axes={"x": [0, 1, 2]} ) self.run_test(ZeroLikeModel(), x, remained_onnx_input_idx=[]) @skipIfUnsupportedMinOpsetVersion(9) def test_symbolic_shape_inference_expand_1(self): class ExpandModel(torch.nn.Module): def forward(self, x): return x.expand(4, 6, 2) x = torch.randn(6, 1, requires_grad=True) self.run_test(ExpandModel(), (x,)) @skipIfUnsupportedMinOpsetVersion(9) @skipScriptTest() # Test code not scriptable def test_symbolic_shape_inference_expand_2(self): class M(torch.nn.Module): def forward(self, x): input_shape = x.size() batch_size, seq_length = input_shape seq_ids = torch.arange(seq_length) causal_mask = ( seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None] ) return causal_mask.transpose(0, 1) x = torch.randn(3, 16) self.run_test(M(), (x,), input_names=["x"], dynamic_axes={"x": [0, 1]}) self.run_test(M(), (x,), remained_onnx_input_idx=[]) @skipIfUnsupportedMinOpsetVersion(10) @skipScriptTest() # Test code not scriptable def test_symbolic_shape_inference_slice(self): class M(torch.nn.Module): def forward(self, x, position_bias): input_shape = x.size() batch_size, seq_length = input_shape position_bias = position_bias[:, :, -seq_length:, :] return position_bias.transpose(0, 1) x = torch.randn(3, 16) position_bias = torch.randn(1, 3, 20, 8) self.run_test( M(), (x, position_bias), input_names=["x", "position_bias"], dynamic_axes={"x": [0, 1], "position_bias": [0, 1, 2, 3]}, ) self.run_test(M(), (x, position_bias), remained_onnx_input_idx=[1]) def test_symbolic_shape_inference_slice_2(self): class M(torch.nn.Module): def forward(self, position_bias): position_bias = position_bias[:, :, -2:, :] return position_bias.transpose(0, 1) position_bias = torch.randn(1, 3, 20, 8) self.run_test(M(), (position_bias,)) @skipIfUnsupportedMinOpsetVersion(9) @skipScriptTest() def test_symbolic_shape_inference_time(self): input = torch.randn(RNN_SEQUENCE_LENGTH, BATCH_SIZE, RNN_INPUT_SIZE) h0 = torch.randn(1, BATCH_SIZE, RNN_HIDDEN_SIZE) c0 = torch.randn(1, BATCH_SIZE, RNN_HIDDEN_SIZE) model_lstm = torch.nn.LSTM( RNN_INPUT_SIZE, RNN_HIDDEN_SIZE, 1, bidirectional=False ) self.run_test( model_lstm, (input, (h0, c0)), input_names=["x", "y"], dynamic_axes={"x": [0, 1]}, ) model_gru = torch.nn.GRU( RNN_INPUT_SIZE, RNN_HIDDEN_SIZE, 1, bidirectional=False, bias=False ) self.run_test( model_gru, (input, h0), input_names=["x", "y"], dynamic_axes={"x": [0, 1]} ) model_rnn = torch.nn.RNN( RNN_INPUT_SIZE, RNN_HIDDEN_SIZE, 1, bidirectional=False, bias=False ) self.run_test( model_rnn, (input, h0), input_names=["x", "y"], dynamic_axes={"x": [0, 1]} ) def test_symbolic_shape_inference_dynamic_axes(self): class M(torch.nn.Module): def forward(self, input_ids): input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) return input_ids.transpose(0, 1) x = torch.randn(3, 16) self.run_test( M(), (x,), input_names=["input_ids"], dynamic_axes={"input_ids": {0: "batch", 1: "sequence"}}, ) @skipIfUnsupportedMinOpsetVersion(9) def test_hann_window_periodic(self): class HannWindowModule_Periodic(torch.nn.Module): def __init__(self): super(HannWindowModule_Periodic, self).__init__() self.window_length = 0 def forward(self, x, window_length: int): self.window_length = window_length return torch.add( x, torch.hann_window( self.window_length, periodic=True, dtype=torch.float ), ) win_length = 100 x = torch.randn(win_length) module = HannWindowModule_Periodic() self.run_test(module, (x, win_length)) @skipIfUnsupportedMinOpsetVersion(9) def test_hann_window_not_periodic(self): class HannWindowModule_NotPeriodic(torch.nn.Module): def __init__(self): super(HannWindowModule_NotPeriodic, self).__init__() self.window_length = 0 def forward(self, x, window_length: int): self.window_length = window_length return torch.add( x, torch.hann_window( self.window_length, periodic=False, dtype=torch.float ), ) win_length = 100 x = torch.randn(win_length) module = HannWindowModule_NotPeriodic() self.run_test(module, (x, win_length)) @skipIfUnsupportedMinOpsetVersion(9) @skipScriptTest() def test_hann_window_default_values(self): class HannWindowModule(torch.nn.Module): def __init__(self): super(HannWindowModule, self).__init__() self.window_length = 0 def forward(self, x, window_length: int): import torch.nn.functional as F self.window_length = window_length return torch.add(x, F.relu(torch.hann_window(self.window_length))) win_length = 100 x = torch.randn(win_length, dtype=torch.float) module = HannWindowModule() output = module(x, win_length) self.run_test(module, (x, win_length)) @skipIfUnsupportedMinOpsetVersion(12) @skipScriptTest() def test_tensordot_dim_count(self): class M(torch.nn.Module): def forward(self, x, y): output = torch.tensordot(x, y, 2) return output x = torch.randint(6, (7, 5, 3, 4)) y = torch.randint(6, (3, 4, 9, 2)) self.run_test(M(), (x, y)) @skipIfUnsupportedMinOpsetVersion(12) def test_tensordot_dim_list(self): class M(torch.nn.Module): def forward(self, x, y): output = torch.tensordot(x, y, ([1, -2, -1], [1, 0, 3])) return output x = torch.randint(6, (7, 4, 3, 5, 2)) y = torch.randint(6, (5, 4, 4, 2, 6)) self.run_test(M(), (x, y)) @skipIfUnsupportedMinOpsetVersion(12) @skipScriptTest() def test_tensordot_dynamic_dim(self): class M(torch.nn.Module): def forward(self, x, y): output = torch.tensordot(x, y, 2) return output x = torch.randint(6, (7, 5, 3, 4)) y = torch.randint(6, (3, 4, 9, 2)) new_x = torch.randint(6, (8, 6, 2, 5)) new_y = torch.randint(6, (2, 5, 3, 4)) self.run_test( M(), (x, y), test_with_inputs=[(new_x, new_y)], input_names=["input_x", "input_y"], dynamic_axes={"input_x": [0, 1, 2, 3], "input_y": [0, 1, 2, 3]}, ) @skipIfUnsupportedMinOpsetVersion(9) def test_to_device(self): class M_ToDevice(torch.nn.Module): def forward(self, x, y): return x.to(y.device), y class M_ToDeviceDtype(torch.nn.Module): def forward(self, x, y): return x.to(y.device, dtype=torch.long), y x = torch.randn(6) y = torch.randn(6) self.run_test(M_ToDevice(), (x, y)) self.run_test(M_ToDeviceDtype(), (x, y)) @skipIfUnsupportedMinOpsetVersion(9) @skipScriptTest() def test_fill(self): class FillModule(torch.nn.Module): def forward(self, x, filled_value: int): return x.fill_(filled_value) x = torch.randn((4, 5, 6)) filled_value = 7 self.run_test(FillModule(), (x, filled_value)) class FillScalarModule(torch.nn.Module): def forward(self, x): res = x + 2 res.fill_(2.5) return res, x x = torch.ones(2, 3, 4, dtype=torch.long) self.run_test(FillScalarModule(), x) @skipIfUnsupportedMinOpsetVersion(9) def test_index_add_normal(self): class M(torch.nn.Module): def __init__(self, dim, index, updates): super(M, self).__init__() self.dim = dim self.index = index self.updates = updates def forward(self, x): x.index_add_(self.dim, self.index, self.updates) return x x = torch.ones(5, 4, 3) updates = torch.tensor([[1], [4], [7], [3], [2]], dtype=torch.float) index = torch.tensor([0, 2, 3, 1, 4]) self.run_test(M(0, index, updates), (x,)) updates = torch.tensor( [[[1, 5, 7], [2, 4, 5], [5, 5, 6], [2, 3, 4]]], dtype=torch.float ) index = torch.tensor([0, 2, 3, 1]) self.run_test(M(1, index, updates), (x,)) updates = torch.tensor( [[[1, 2, 3], [4, 5, 6], [7, 8, 9], [2, 3, 4]]], dtype=torch.float ) index = torch.tensor([0, 2, 1]) self.run_test(M(2, index, updates), (x,)) @skipIfUnsupportedMinOpsetVersion(9) def test_index_add_dim_size_differ(self): class M(torch.nn.Module): def __init__(self, dim, index, updates): super(M, self).__init__() self.dim = dim self.index = index self.updates = updates def forward(self, x): x.index_add_(self.dim, self.index, self.updates) return x x = torch.ones(5, 4, 3) updates = torch.tensor([[[1, 5, 7], [2, 4, 5], [5, 5, 6]]], dtype=torch.float) index = torch.tensor([0, 2, 1]) self.run_test(M(1, index, updates), (x,)) @skipIfUnsupportedMinOpsetVersion(9) def test_index_add_in_loop(self): class M(torch.nn.Module): def __init__(self, dim, index, updates, loop_count): super(M, self).__init__() self.dim = dim self.index = index self.updates = updates self.loop_count = loop_count def forward(self, x): for i in range(self.loop_count): x.index_add_(self.dim, self.index, self.updates) return x x = torch.ones(5, 4, 3) updates = torch.tensor( [[[1, 5, 7], [2, 4, 5], [5, 5, 6], [2, 3, 4]]], dtype=torch.float ) index = torch.tensor([0, 2, 3, 1]) loop_count = torch.randint(20, (1,))[0].item() self.run_test(M(1, index, updates, loop_count), (x,)) @skipIfUnsupportedMinOpsetVersion(9) def test_index_add_if(self): class M(torch.nn.Module): def __init__(self, dim, updates, index_true, index_false): super(M, self).__init__() self.dim = dim self.updates = updates self.index_true = index_true self.index_false = index_false def forward(self, x, cond): if cond: x.index_add_(self.dim, self.index_true, self.updates) else: x.index_add_(self.dim, self.index_false, self.updates) return x x = torch.ones(5, 4, 3) updates = torch.tensor( [[[1, 5, 7], [2, 4, 5], [5, 5, 6], [2, 3, 4]]], dtype=torch.float ) index_true = torch.tensor([0, 2, 3, 1]) index_false = torch.tensor([1, 0, 2, 3]) cond = torch.tensor(1, dtype=torch.bool) self.run_test( torch.jit.script(M(1, updates, index_true, index_false)), (x, cond) ) @skipIfUnsupportedMinOpsetVersion(9) def test_index_add_dynamic_axes(self): class M(torch.nn.Module): def __init__(self, dim, index, updates): super(M, self).__init__() self.dim = dim self.index = index self.updates = updates def forward(self, x): x.index_add_(self.dim, self.index, self.updates) return x x = torch.ones(5, 4, 3) y = torch.ones(7, 8, 3) updates = torch.tensor( [[[1, 5, 7], [2, 4, 5], [5, 5, 6], [2, 3, 4]]], dtype=torch.float ) index = torch.tensor([0, 2, 3, 1]) self.run_test( M(1, index, updates), (x,), test_with_inputs=[y], input_names=["input_1"], dynamic_axes={"input_1": [0, 1]}, ) def test_roll(self): class M(torch.nn.Module): def __init__(self, shifts, dims): super(M, self).__init__() self.shifts = shifts self.dims = dims def forward(self, x): return torch.roll(x, self.shifts, self.dims) x = torch.randn(2, 3, 4) self.run_test(M([1, 1], [1, 0]), (x,)) self.run_test(M([0, 1, 2], [1, 0, 2]), (x,)) self.run_test(M(2, 1), (x,)) self.run_test(M([-1, 3], [-2, -1]), (x,)) def test_sum(self): class M(torch.nn.Module): def forward(self, x): return torch.sum(x) x = torch.ones(12, 3) self.run_test(M(), (x,), input_names=["x"], dynamic_axes={"x": [0]}) def test_sum_empty_tensor(self): class M(torch.nn.Module): def forward(self, x): return x[0:0].sum(), x.sum() x = torch.ones(12) self.run_test(M(), (x,)) x = torch.ones(2, 0, 3) self.run_test(M(), (x,)) x = torch.ones(0) self.run_test(M(), (x,)) @skipIfUnsupportedMinOpsetVersion(11) def test_broad_cast_tensors(self): class M(torch.nn.Module): def forward(self, x, y): m = torch.broadcast_tensors(x, y) return m x = torch.randint(5, (1,)) y = torch.randint(5, (5,)) self.run_test(M(), (x, y)) x = torch.randint(5, (4, 2, 1, 4)) y = torch.randint(5, (2, 3, 1)) self.run_test(M(), (x, y)) x = torch.randn(2, 1, 4) y = torch.randn(5, 2, 3, 1) self.run_test(M(), (x, y)) @skipScriptTest() @skipIfUnsupportedMinOpsetVersion(11) def test_dist_normal(self): class M(torch.nn.Module): def forward(self, x, y): return torch.distributions.Normal(x, y).sample().size(0), x, y self.run_test(M(), (torch.tensor([0.0]), torch.tensor([[1.0], [2.0]]))) self.run_test(M(), (torch.tensor([0.0]), torch.tensor([1.0]))) self.run_test( M(), ( torch.tensor([[[0.0], [10.0]], [[2.0], [8.0]], [[2.0], [8.0]]]), torch.tensor([[1.0], [3.0]]), ), ) @skipScriptTest() @skipIfUnsupportedMinOpsetVersion(11) def test_dist_normal_correctness(self): class M(torch.nn.Module): def forward(self, x, y): return torch.distributions.Normal(x, y).sample([20000]) expected_mean = 5.0 expected_std = 10.0 model_export = M() dummy_input = (torch.tensor([expected_mean]), torch.tensor([expected_std])) ort_sess = convert_to_onnx( model_export, input=dummy_input, opset_version=self.opset_version, training=torch.onnx.TrainingMode.EVAL, ) ort_out = run_ort(ort_sess, inputs=dummy_input) actual_std = np.std(ort_out) actual_mean = np.mean(ort_out) assert ( abs(abs(actual_mean) - expected_mean) <= expected_mean * 0.1 ), "the gap of mean between ort outputs and expected one is unacceptable." assert ( abs(abs(actual_std) - expected_std) <= expected_std * 0.1 ), "the gap of variance between ort outputs and expected one is unacceptable." @skipScriptTest() @skipIfUnsupportedMinOpsetVersion(11) def test_dist_uniform(self): class M(torch.nn.Module): def forward(self, x, y): return torch.distributions.Uniform(x, y).sample().size(0), x, y self.run_test(M(), (torch.tensor([0.0]), torch.tensor([10.0]))) self.run_test(M(), (torch.tensor([[0.0], [6.0]]), torch.tensor([[1.0], [7.0]]))) self.run_test( M(), (torch.tensor([1.0]), torch.tensor([[10.0], [7.0], [9.0], [20.0]])) ) @skipScriptTest() @skipIfUnsupportedMinOpsetVersion(11) def test_dist_uniform_correctness(self): class M(torch.nn.Module): def forward(self, x, y): return torch.distributions.Uniform(x, y).sample([10000]) expected_min = 5.0 expected_max = 10.0 expected_mean = (expected_min + expected_max) / 2 model_export = M() dummy_input = (torch.tensor([expected_min]), torch.tensor([expected_max])) ort_sess = convert_to_onnx( model_export, input=dummy_input, opset_version=self.opset_version, training=torch.onnx.TrainingMode.EVAL, ) ort_out = run_ort(ort_sess, inputs=dummy_input) actual_min = np.min(ort_out) actual_max = np.max(ort_out) actual_mean = np.mean(ort_out) assert ( actual_min >= expected_min ), "the minimum value of ort outputs is out of scope." assert ( actual_max <= expected_max ), "the maximum value of ort outputs is out of scope." assert ( abs(actual_mean - expected_mean) <= expected_mean * 0.05 ), "the mean value of ort outputs is out of scope." @skipIfUnsupportedMinOpsetVersion(13) def test_sequence_to_int(self): class M(torch.nn.Module): def forward(self, x): result = torch.tensor([2 for i in range(x.size()[0])], dtype=torch.int) return x, result x = torch.randn(10, 5) self.run_test(M(), (x,)) @skipIfUnsupportedMinOpsetVersion(13) def test_sequence_to_float(self): class M(torch.nn.Module): def forward(self, x): result = torch.tensor( [1.1 for i in range(x.size()[0])], dtype=torch.float ) return x, result x = torch.randn(10, 5) self.run_test(M(), (x,)) @skipIfUnsupportedMinOpsetVersion(13) def test_sequence_to_bool(self): class M(torch.nn.Module): def forward(self, x): result = torch.tensor( [False for i in range(x.size()[0])], dtype=torch.bool ) return x, result x = torch.randn(10, 5) self.run_test(M(), (x,)) def test_onnx_checker_invalid_graph(self): class CustomAddModule(torch.nn.Module): def forward(self, x, y): return torch.add(x, y) def symbolic_custom_invalid_add(g, input, other, alpha=None): return g.op("Add", input, other, invalid_attr_i=1) register_custom_op_symbolic("::add", symbolic_custom_invalid_add, 1) x = torch.randn(2, 3, 4) y = torch.randn(2, 3, 4) test_model = CustomAddModule() f = io.BytesIO() try: with self.assertRaises(CheckerError) as cm: torch.onnx.export(test_model, (x, y), f) finally: unregister_custom_op_symbolic("::add", 1) self.assertTrue(f.getvalue(), "ONNX graph was not exported.") loaded_model = onnx.load_from_string(f.getvalue()) def test_tuple_output_from_if_with_raised_exception(self): class M(torch.nn.Module): def __init__(self): super(M, self).__init__() def forward(self, t: Tensor) -> Tuple[Tensor, Tensor]: if float(t) < 0: raise Exception("Negative input") else: return torch.zeros(5), torch.zeros(5) x = torch.zeros(1) self.run_test(torch.jit.script(M()), (x,)) def test_shape_value_map(self): class RSoftMax(torch.nn.Module): def __init__(self, radix, cardinality): super().__init__() self.radix = radix self.cardinality = cardinality def forward(self, x): batch = x.size(0) x = x.view(batch, self.cardinality, self.radix, -1).transpose(1, 2) x = F.softmax(x, dim=1) x = x.reshape(batch, -1) return x radix = 2 cardinality = 1 x = torch.randn(10, 1, 128, 1) f = io.BytesIO() torch.onnx.export( RSoftMax(radix, cardinality), (x,), f, input_names=["x"], dynamic_axes={"x": [0]}, ) loaded_model = onnx.load_from_string(f.getvalue()) self.assertEqual( loaded_model.graph.output[0].type.tensor_type.shape.dim[1].dim_value, 128 ) # NOTE: For quantization tests, choose scale and zero point carefully # such that inputs and outputs do not always overflow/underflow. # Otherwise test results could be inaccurate. @skipIfUnsupportedMinOpsetVersion(10) def test_quantized_linear(self): model = torch.nn.quantized.Linear(4, 8) # Set fixed weight to avoid flaky test. weight = torch.quantize_per_tensor( torch.arange(32, dtype=torch.float).view(8, 4), 0.5, 0, torch.qint8 ) # Set non-zero bias. bias = torch.arange(8, dtype=torch.float) model.set_weight_bias(weight, bias) # Set fixed input to avoid flaky test. input = torch.randn(4, 4) input = torch.arange(16, dtype=torch.float).view(4, 4) - 8 input_tensor = torch.quantize_per_tensor(input, 0.5, 128, torch.quint8) self.run_test(model, input_tensor) @skipIfUnsupportedMinOpsetVersion(10) def test_quantized_conv2d(self): model = torch.nn.quantized.Conv2d(16, 33, 3, stride=2) # Manually initialize model weight and bias to random numbers. # By default all zeros. q_weight = torch.quantize_per_tensor( torch.randn(33, 16, 3, 3), 0.5, 0, torch.qint8 ) bias = torch.arange(33).to(torch.float) - 16 model.set_weight_bias(q_weight, bias) input = torch.randn(3, 16, 32, 32) q_input = torch.quantize_per_tensor(input, 0.5, 128, torch.quint8) self.run_test(model, q_input) @skipIfUnsupportedMinOpsetVersion(10) def test_quantized_adaptive_avg_pool2d(self): model = torch.nn.AdaptiveAvgPool2d((5, 7)) input = torch.randn(4, 3, 10, 14) q_input = torch.quantize_per_tensor(input, 0.2, 128, torch.quint8) self.run_test(model, q_input) @skipIfUnsupportedMinOpsetVersion(10) def test_quantized_conv2d_relu(self): model = torch.nn.intrinsic.quantized.ConvReLU2d(16, 33, 3, stride=2) # Manually initialize model weight and bias to random numbers. # By default all zeros. q_weight = torch.quantize_per_tensor( torch.randn(33, 16, 3, 3), 0.5, 0, torch.qint8 ) bias = torch.arange(33).to(torch.float) - 16 model.set_weight_bias(q_weight, bias) input = torch.randn(3, 16, 32, 32) q_input = torch.quantize_per_tensor(input, 0.5, 128, torch.quint8) self.run_test(model, q_input) @skipIfUnsupportedMinOpsetVersion(10) def test_quantized_hardswish(self): model = torch.nn.quantized.Hardswish(1.0, 0) input = torch.randn(2, 6) q_input = torch.quantize_per_tensor(input, 0.26, 128, torch.quint8) self.run_test(model, q_input) @skipIfUnsupportedMinOpsetVersion(10) def test_quantized_hardsigmoid(self): model = torch.nn.Hardsigmoid() input = torch.randn(2, 6) q_input = torch.quantize_per_tensor(input, 0.26, 128, torch.quint8) self.run_test(model, q_input) @skipIfUnsupportedMinOpsetVersion(10) def test_quantized_flatten(self): class FlattenModel(torch.nn.Module): def forward(self, input): return torch.flatten(input) x = torch.quantize_per_tensor(torch.randn(1, 2, 3, 4), 1, 0, torch.quint8) self.run_test(FlattenModel(), x) @skipIfUnsupportedMinOpsetVersion(10) @skipScriptTest() # torch.jit.frontend.FrontendError: Cannot instantiate class 'QFunctional' in a script function: def test_quantized_arithmetic_qfunctional(self): x = torch.quantize_per_tensor(torch.randn(3, 4), 0.2, 128, torch.quint8) y = torch.quantize_per_tensor(torch.randn(3, 4), 0.2, 128, torch.quint8) class ArithmeticModel(torch.nn.Module): def forward(self, x, y): o = torch.nn.quantized.QFunctional().add(x, y) o = torch.nn.quantized.QFunctional().mul(o, x) return o self.run_test(ArithmeticModel(), (x, y)) @skipIfUnsupportedMinOpsetVersion(10) def test_quantized_arithmetic(self): x = torch.quantize_per_tensor(torch.randn(3, 4), 0.2, 128, torch.quint8) y = torch.quantize_per_tensor(torch.randn(3, 4), 0.2, 128, torch.quint8) class ArithmeticModel2(torch.nn.Module): def forward(self, x, y): o = torch.ops.quantized.add(x, y, 0.4, 100) o = torch.ops.quantized.mul(o, x, 0.4, 100) return o self.run_test(ArithmeticModel2(), (x, y)) @skipIfUnsupportedMinOpsetVersion(10) def test_quantize_per_tensor(self): class Module(torch.nn.Module): def forward(self, x): return ( torch.quantize_per_tensor(x, 0.2, 0, torch.qint8), torch.quantize_per_tensor(x, 0.2, 128, torch.quint8), ) x = torch.randn(4, 6) self.run_test(Module(), x) @skipIfUnsupportedMinOpsetVersion(10) def test_dequantize(self): class Module(torch.nn.Module): def forward(self, x): return torch.dequantize(x) x = torch.quantize_per_tensor(torch.randn(3, 4), 0.2, 0, torch.qint8) self.run_test(Module(), x) @skipIfUnsupportedMinOpsetVersion(13) def test_qat_linear_per_channel(self): class M(torch.nn.Module): def __init__(self): super().__init__() self.quant = torch.quantization.QuantStub() self.linear = torch.nn.Linear(4, 3) self.dequant = torch.quantization.DeQuantStub() def forward(self, x): x = self.quant(x) x = self.linear(x) x = self.dequant(x) return x model = M() model.qconfig = torch.quantization.get_default_qconfig("fbgemm") model = torch.quantization.prepare_qat(model) # Set fixed weight and bias to avoid flaky test. model.linear.weight = torch.nn.Parameter( _construct_tensor_for_quantization_test((3, 4)) ) model.linear.bias = torch.nn.Parameter(torch.arange(3, dtype=torch.float)) model = torch.quantization.convert(model) # Set fixed input to avoid flaky test. input = _construct_tensor_for_quantization_test((4, 4), offset=-8) self.run_test(model, input) @skipIfUnsupportedMinOpsetVersion(13) def test_qat_relu(self): class M(torch.nn.Module): def __init__(self): super().__init__() self.quant = torch.quantization.QuantStub() self.relu = torch.nn.ReLU() self.dequant = torch.quantization.DeQuantStub() def forward(self, x): x = self.quant(x) x = self.relu(x) x = self.dequant(x) return x model = M() model.qconfig = torch.quantization.get_default_qconfig("fbgemm") model = torch.quantization.prepare_qat(model) model = torch.quantization.convert(model) input = torch.randn(8, 4) self.run_test(model, input) @skipIfUnsupportedMinOpsetVersion(13) def test_qat_conv2d(self): class M(torch.nn.Module): def __init__(self): super().__init__() self.quant = torch.quantization.QuantStub() self.conv = torch.nn.Conv2d(2, 4, 3, stride=2) self.dequant = torch.quantization.DeQuantStub() def forward(self, x): x = self.quant(x) x = self.conv(x) x = self.dequant(x) return x model = M() model.qconfig = torch.quantization.get_default_qconfig("fbgemm") model = torch.quantization.prepare_qat(model) # Set fixed weight and bias to avoid flaky test. model.conv.weight = torch.nn.Parameter( _construct_tensor_for_quantization_test((2, 4, 3, 3), max_val=2) ) model.conv.bias = torch.nn.Parameter(torch.tensor([0.0, 1.0])) model = torch.quantization.convert(model) # Set fixed input to avoid flaky test. input = _construct_tensor_for_quantization_test( (3, 4, 8, 8), offset=-384, max_val=12 ) self.run_test(model, input) @skipIfUnsupportedMinOpsetVersion(13) def test_qat_conv2d_relu(self): class M(torch.nn.Module): def __init__(self): super().__init__() self.quant = torch.quantization.QuantStub() self.conv = torch.nn.Conv2d(2, 4, 3, stride=2) self.relu = torch.nn.ReLU() self.dequant = torch.quantization.DeQuantStub() def forward(self, x): x = self.quant(x) x = self.conv(x) x = self.relu(x) x = self.dequant(x) return x model = M() model.qconfig = torch.quantization.get_default_qconfig("fbgemm") model = torch.quantization.prepare_qat(model) # Set fixed weight and bias to avoid flaky test. model.conv.weight = torch.nn.Parameter( _construct_tensor_for_quantization_test((2, 4, 3, 3), max_val=2) ) model.conv.bias = torch.nn.Parameter(torch.tensor([0.0, 1.0])) model = torch.quantization.convert(model) # Set fixed input to avoid flaky test. input = _construct_tensor_for_quantization_test( (3, 4, 8, 8), offset=-384, max_val=12 ) self.run_test(model, input) @skipIfUnsupportedMinOpsetVersion(13) def test_qat_conv2d_relu_fused(self): class M(torch.nn.Module): def __init__(self): super().__init__() self.quant = torch.quantization.QuantStub() self.conv = torch.nn.Conv2d(2, 4, 3, stride=2) self.relu = torch.nn.ReLU() self.dequant = torch.quantization.DeQuantStub() def forward(self, x): x = self.quant(x) x = self.conv(x) x = self.relu(x) x = self.dequant(x) return x model = M() model.qconfig = torch.quantization.get_default_qconfig("fbgemm") model = torch.quantization.fuse_modules(model.eval(), [["conv", "relu"]]) model = torch.quantization.prepare_qat(model.train()) # Set fixed weight and bias to avoid flaky test. model.conv.weight = torch.nn.Parameter( _construct_tensor_for_quantization_test((2, 4, 3, 3), max_val=2) ) model.conv.bias = torch.nn.Parameter(torch.tensor([0.0, 1.0])) model = torch.quantization.convert(model) # Set fixed input to avoid flaky test. input = _construct_tensor_for_quantization_test( (3, 4, 8, 8), offset=-384, max_val=12 ) self.run_test(model, input) @skipIfUnsupportedMinOpsetVersion(10) def test_qat_maxpool2d(self): class M(torch.nn.Module): def __init__(self): super().__init__() self.quant = torch.quantization.QuantStub() self.pool = torch.nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.dequant = torch.quantization.DeQuantStub() def forward(self, x): x = self.quant(x) x = self.pool(x) x = self.dequant(x) return x model = M() model.qconfig = torch.quantization.get_default_qconfig("fbgemm") model = torch.quantization.prepare_qat(model.train()) model = torch.quantization.convert(model) # Set fixed input to avoid flaky test. input = _construct_tensor_for_quantization_test((4, 4, 3, 2)) self.run_test(model, input) @skipIfUnsupportedMinOpsetVersion(9) def test_convolution_allow_tf32(self): class Module(torch.nn.Module): def __init__(self, allow_tf32): super().__init__() self.allow_tf32 = allow_tf32 weight = torch.rand(32, 3, 3, 3) self.weight = torch.nn.Parameter(weight) def forward(self, x): if self.allow_tf32: return torch._convolution( x, self.weight, None, [2, 2], [0, 0], [1, 1], False, [0, 0], 1, False, False, True, True, ) else: return torch._convolution( x, self.weight, None, [2, 2], [0, 0], [1, 1], False, [0, 0], 1, False, False, True, ) x = torch.randn(1, 3, 224, 224) self.run_test(Module(False), x, rtol=1e-3, atol=1e-6) self.run_test(Module(True), x, rtol=1e-3, atol=1e-6) @skipIfUnsupportedMinOpsetVersion(16) def test_grid_sample(self): n, c, h_in, w_in, h_out, w_out = 1, 1, 3, 2, 2, 4 class GridSampleModule(torch.nn.Module): def __init__(self, mode, padding_mode, align_corners) -> None: super().__init__() self.mode, self.padding_mode, self.align_corners = ( mode, padding_mode, align_corners, ) def forward(self, input, grid): return torch.nn.functional.grid_sample( input, grid, self.mode, self.padding_mode, self.align_corners ) for mode, padding_mode, align_corners in itertools.product( ("bilinear", "nearest", "bicubic"), ("zeros", "border", "reflection"), (True, False), ): atol_rtol = {} if (mode, padding_mode) == ("bicubic", "border"): if align_corners: atol_rtol.update({"atol": 0.3, "rtol": 0.4}) else: atol_rtol.update({"atol": 0.02, "rtol": 0.02}) input, grid = torch.randn(n, c, h_in, w_in), torch.randn(n, h_out, w_out, 2) self.run_test( GridSampleModule(mode, padding_mode, align_corners), (input, grid), **atol_rtol, ) def make_test( name, base, layer, bidirectional, initial_state, variable_length, dropout, script_test_min_opset_version, **extra_kwargs, ): test_name = str( "_".join( [ "test", name, layer[1], bidirectional[1], initial_state[1], variable_length[1], dropout[1], ] ) ) # Cannot export with older opsets because of "ConstantFill" op # ConstantFill was a temp op removed at opset 8. This is no longer supported by onnxruntime # There are still some issues prevent us from enabling script test for these scenarios: # test_gru_*: # Operator aten::as_tensor is not supported by exporter yet. # - https://msdata.visualstudio.com/Vienna/_workitems/edit/1055382 # Operator aten::_pack_padded_sequence is not supported by exporter yet. # - https://msdata.visualstudio.com/Vienna/_workitems/edit/1055384 @skipScriptTest() @skipIfUnsupportedMinOpsetVersion(9) def f(self): self.is_script_test_enabled = ( self.opset_version >= script_test_min_opset_version ) self._dispatch_rnn_test( base, layers=layer[0], bidirectional=bidirectional[0], initial_state=initial_state[0], packed_sequence=variable_length[0], dropout=dropout[0], **extra_kwargs, ) f.__name__ = test_name setattr(_TestONNXRuntime, f.__name__, f) def setup_rnn_tests(): layers_opts = [(1, "unilayer"), (3, "trilayer")] bidirectional_opts = [(False, "forward"), (True, "bidirectional")] initial_state_opts = [(True, "with_initial_state"), (False, "no_initial_state")] variable_length_opts = [ (0, "without_sequence_lengths"), (1, "with_variable_length_sequences"), (2, "with_batch_first_sequence_lengths"), ] dropout_opts = [(0.2, "with_dropout"), (0.0, "without_dropout")] test_count = 0 for ( layer, bidirectional, initial_state, variable_length, dropout, ) in itertools.product( layers_opts, bidirectional_opts, initial_state_opts, variable_length_opts, dropout_opts, ): for base, name, extra_kwargs in ( ("elman", "elman_relu", {"nonlinearity": "relu"}), ("elman", "elman_tanh", {"nonlinearity": "tanh"}), ("lstm", "lstm", {}), ("gru", "gru", {}), ): # Need Add between list of tensors script_test_min_opset_version = 11 if ( # compiling in script mode fails with errors like: # torch.jit.frontend.UnsupportedNodeError: annotated assignments # without assigned value aren't supported # https://msdata.visualstudio.com/Vienna/_workitems/edit/1160723 base == "elman" or # compiling in script mode fails with errors like: # RuntimeError: Arguments for call are not valid. # https://msdata.visualstudio.com/Vienna/_workitems/edit/1160723 base == "lstm" ): script_test_min_opset_version = float("inf") make_test( name, base, layer, bidirectional, initial_state, variable_length, dropout, script_test_min_opset_version, **extra_kwargs, ) test_count += 1 # sanity check that a representative example does exist _TestONNXRuntime.test_gru_trilayer_forward_with_initial_state_without_sequence_lengths_with_dropout # make sure no one accidentally disables all the tests without # noticing if test_count != 192: raise ValueError("Expected 192 tests but found {}".format(test_count)) setup_rnn_tests() def MakeTestCase(opset_version: int, keep_initializers_as_inputs: bool = True) -> type: name = f"TestONNXRuntime_opset{opset_version}" if not keep_initializers_as_inputs: name += "_IRv4" return type( str(name), (unittest.TestCase,), dict( _TestONNXRuntime.__dict__, opset_version=opset_version, keep_initializers_as_inputs=keep_initializers_as_inputs, ), ) TestONNXRuntime_opset7 = MakeTestCase(7) TestONNXRuntime_opset8 = MakeTestCase(8) TestONNXRuntime_opset9 = MakeTestCase(9) TestONNXRuntime_opset9_IRv4 = MakeTestCase(9, keep_initializers_as_inputs=False) TestONNXRuntime_opset10 = MakeTestCase(10) TestONNXRuntime_opset10_IRv4 = MakeTestCase(10, keep_initializers_as_inputs=False) TestONNXRuntime_opset11 = MakeTestCase(11) TestONNXRuntime_opset11_IRv4 = MakeTestCase(11, keep_initializers_as_inputs=False) TestONNXRuntime_opset12 = MakeTestCase(12) TestONNXRuntime_opset12_IRv4 = MakeTestCase(12, keep_initializers_as_inputs=False) TestONNXRuntime_opset13 = MakeTestCase(13, keep_initializers_as_inputs=False) TestONNXRuntime_opset14 = MakeTestCase(14, keep_initializers_as_inputs=False) TestONNXRuntime_opset15 = MakeTestCase(15, keep_initializers_as_inputs=False) TestONNXRuntime_opset16 = MakeTestCase(16, keep_initializers_as_inputs=False) if __name__ == "__main__": unittest.main()
35.249981
120
0.540454
d391cc4647e3e439d312c3407ed3fdc964c5c6fd
3,481
py
Python
cli/plot1D_evolution.py
hannes-holey/hans
9604eedd70d54f3d4e2058fbc5b911e92e005e4f
[ "MIT" ]
1
2022-02-03T09:31:24.000Z
2022-02-03T09:31:24.000Z
cli/plot1D_evolution.py
hannes-holey/hans
9604eedd70d54f3d4e2058fbc5b911e92e005e4f
[ "MIT" ]
6
2022-02-03T09:24:24.000Z
2022-02-07T09:25:16.000Z
cli/plot1D_evolution.py
hannes-holey/hans
9604eedd70d54f3d4e2058fbc5b911e92e005e4f
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 """ MIT License Copyright 2021 Hannes Holey Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from argparse import ArgumentParser import matplotlib.pyplot as plt from hans.plottools import DatasetSelector def get_parser(): parser = ArgumentParser() parser.add_argument('-p', dest="path", default="data", help="path (default: data)") parser.add_argument('-v', dest="key", default=None, choices=[None, "rho", "p", "jx", "jy"], help="variable (default: None)") parser.add_argument('-d', dest="dir", default="x", choices=["x", "y"], help="cutting direction (default: x)") parser.add_argument('-f', dest="freq", type=int, default=1, help="plot frequency (default: 1)") return parser if __name__ == "__main__": ylabels = {"rho": r"Density $\rho$", "p": r"Pressure $p$", "jx": r"Momentum density $j_x$", "jy": r"Momentum denisty $j_y$"} cmap = plt.cm.coolwarm parser = get_parser() args = parser.parse_args() files = DatasetSelector(args.path, mode="single") if args.key is None: data = files.get_centerlines(freq=args.freq, dir=args.dir) fig, ax = plt.subplots(2, 2, sharex=True, figsize=(6.4, 4.8)) for fn, fdata in data.items(): ax[1, 0].set_xlabel(rf"Distance ${args.dir}$") ax[1, 1].set_xlabel(rf"Distance ${args.dir}$") maxT = max(fdata["rho"]) sm = plt.cm.ScalarMappable(cmap=cmap, norm=plt.Normalize(vmin=0, vmax=maxT)) for (key, tdict), axis in zip(fdata.items(), ax.flat): for time, (xdata, ydata) in tdict.items(): axis.plot(xdata, ydata, color=cmap(time/maxT)) axis.set_ylabel(ylabels[key]) fig.colorbar(sm, ax=ax.ravel().tolist(), label='time $t$', extend='max') else: data = files.get_centerlines(key=args.key, freq=args.freq, dir=args.dir) fig, ax = plt.subplots(1, figsize=(6.4, 4.8), tight_layout=True) for fn, fdata in data.items(): maxT = max(fdata[args.key]) sm = plt.cm.ScalarMappable(cmap=cmap, norm=plt.Normalize(vmin=0, vmax=maxT)) for time, (xdata, ydata) in fdata[args.key].items(): ax.plot(xdata, ydata, color=cmap(time/maxT)) ax.set_ylabel(ylabels[args.key]) ax.set_xlabel(rf"Distance ${args.dir}$") fig.colorbar(sm, ax=ax, label='time $t$', extend='max') plt.show()
38.252747
128
0.652399
eed46449f4612bdd29e734bb8244717c03115bf6
2,386
py
Python
autograd_optim_curve.py
shizuo-kaji/demo_autograd
ad3de6ec5c30780eef985f360c24005331642533
[ "MIT" ]
1
2020-03-08T23:53:30.000Z
2020-03-08T23:53:30.000Z
autograd_optim_curve.py
shizuo-kaji/demo_autograd
ad3de6ec5c30780eef985f360c24005331642533
[ "MIT" ]
null
null
null
autograd_optim_curve.py
shizuo-kaji/demo_autograd
ad3de6ec5c30780eef985f360c24005331642533
[ "MIT" ]
null
null
null
#!/usr/bin/env python ## autograd+scipy demo for optimising curves #%% import autograd.numpy as np from autograd import grad, jacobian, hessian from scipy.optimize import minimize,NonlinearConstraint,LinearConstraint import matplotlib.pyplot as plt #%% squared sum of the segment length def total_length(X): x=np.reshape(X,(-1,2)) t=x[1:]-x[:-1] return np.sum(t*t) # cos of adjacent tangents def curvature(X): x=np.reshape(X,(-1,2)) t=x[1:]-x[:-1] d2=np.sum(t*t, axis=1) K = 1-((t[1:,0]*t[:-1,0]+t[1:,1]*t[:-1,1])/np.sqrt(d2[1:]*d2[:-1])) return K def squared_variation(u): return np.sum( (u[1:]-u[:-1])**2 ) # fix coords of end points, and y[N//3] > 1 and y[2N//3] < -1 def constraints(X): x=np.reshape(X,(-1,2)) return np.array([x[0,0],x[0,1],x[N//3,1],x[2*N//3,1],x[N,0],x[N,1]]) def linear_combination_of_hessians(fun, argnum=0, *args, **kwargs): functionhessian = hessian(fun, argnum, *args, **kwargs) #not using wrap_nary_f because we need to do the docstring on our own def linear_combination_of_hessians(*funargs, **funkwargs): return np.tensordot(functionhessian(*funargs[:-1], **funkwargs), funargs[-1], axes=(0, 0)) return linear_combination_of_hessians #%% setup N=9 # number of segments weight = 0.1 # try setting = 0.0 # target is the weighted sum of total length and curvature target = lambda x: total_length(x) + weight*np.sum(curvature(x)**2) # initial point x0 = np.zeros((N+1,2)) x0[:,0] = np.linspace(0,1,N+1) x0[1:-1,1] = np.random.uniform(-0.5,0.5,N-1) X0 = x0.ravel() # jacobian and hessian by autograd jaco = jacobian(target) hess = hessian(target) constraints_hess = linear_combination_of_hessians(constraints) constraints_jac = jacobian(constraints) # non-linear inequality constraints hard_constraint = NonlinearConstraint(constraints, [0,0,1,-np.inf,1,0],[0,0,np.inf,-1,1,0], jac=constraints_jac, hess=constraints_hess) #%% optimise! res = minimize(target, X0, method = 'trust-constr', options={'xtol': 1e-10, 'gtol': 1e-8, 'disp': True, 'verbose': 1}, jac = jaco, hess=hess, constraints=[hard_constraint]) #%% plot result plt.plot(x0[:,0],x0[:,1]) print("initial (blue):", target(x0),total_length(x0),np.sum(curvature(x0)**2)) x=np.reshape(res.x,(-1,2)) plt.plot(x[:,0],x[:,1]) print("optimised (orange):", target(x),total_length(x),np.sum(curvature(x)**2)) # %%
32.243243
135
0.668483
f79ac1842e56dc34e7c1e23eef7124c614ccbc9a
17,586
py
Python
examples/pytorch/graphsage/experimental/train_dist_unsupervised.py
yzh119/dgl
6a7c1eb2323383739585259c70c8b9065ca95d1e
[ "Apache-2.0" ]
2
2020-07-24T19:26:51.000Z
2021-08-21T21:04:11.000Z
examples/pytorch/graphsage/experimental/train_dist_unsupervised.py
yzh119/dgl
6a7c1eb2323383739585259c70c8b9065ca95d1e
[ "Apache-2.0" ]
null
null
null
examples/pytorch/graphsage/experimental/train_dist_unsupervised.py
yzh119/dgl
6a7c1eb2323383739585259c70c8b9065ca95d1e
[ "Apache-2.0" ]
null
null
null
import os os.environ['DGLBACKEND']='pytorch' from multiprocessing import Process import argparse, time, math import numpy as np from functools import wraps import tqdm import sklearn.linear_model as lm import sklearn.metrics as skm import dgl from dgl import DGLGraph from dgl.data import register_data_args, load_data from dgl.data.utils import load_graphs import dgl.function as fn import dgl.nn.pytorch as dglnn import torch as th import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torch.multiprocessing as mp from torch.utils.data import DataLoader #from pyinstrument import Profiler from train_sampling import SAGE class NegativeSampler(object): def __init__(self, g, neg_nseeds): self.neg_nseeds = neg_nseeds def __call__(self, num_samples): # select local neg nodes as seeds return self.neg_nseeds[th.randint(self.neg_nseeds.shape[0], (num_samples,))] class NeighborSampler(object): def __init__(self, g, fanouts, neg_nseeds, sample_neighbors, num_negs, remove_edge): self.g = g self.fanouts = fanouts self.sample_neighbors = sample_neighbors self.neg_sampler = NegativeSampler(g, neg_nseeds) self.num_negs = num_negs self.remove_edge = remove_edge def sample_blocks(self, seed_edges): n_edges = len(seed_edges) seed_edges = th.LongTensor(np.asarray(seed_edges)) heads, tails = self.g.find_edges(seed_edges) neg_tails = self.neg_sampler(self.num_negs * n_edges) neg_heads = heads.view(-1, 1).expand(n_edges, self.num_negs).flatten() # Maintain the correspondence between heads, tails and negative tails as two # graphs. # pos_graph contains the correspondence between each head and its positive tail. # neg_graph contains the correspondence between each head and its negative tails. # Both pos_graph and neg_graph are first constructed with the same node space as # the original graph. Then they are compacted together with dgl.compact_graphs. pos_graph = dgl.graph((heads, tails), num_nodes=self.g.number_of_nodes()) neg_graph = dgl.graph((neg_heads, neg_tails), num_nodes=self.g.number_of_nodes()) pos_graph, neg_graph = dgl.compact_graphs([pos_graph, neg_graph]) seeds = pos_graph.ndata[dgl.NID] blocks = [] for fanout in self.fanouts: # For each seed node, sample ``fanout`` neighbors. frontier = self.sample_neighbors(self.g, seeds, fanout, replace=True) if self.remove_edge: # Remove all edges between heads and tails, as well as heads and neg_tails. _, _, edge_ids = frontier.edge_ids( th.cat([heads, tails, neg_heads, neg_tails]), th.cat([tails, heads, neg_tails, neg_heads]), return_uv=True) frontier = dgl.remove_edges(frontier, edge_ids) # Then we compact the frontier into a bipartite graph for message passing. block = dgl.to_block(frontier, seeds) # Obtain the seed nodes for next layer. seeds = block.srcdata[dgl.NID] blocks.insert(0, block) # Pre-generate CSR format that it can be used in training directly return pos_graph, neg_graph, blocks class PosNeighborSampler(object): def __init__(self, g, fanouts, sample_neighbors): self.g = g self.fanouts = fanouts self.sample_neighbors = sample_neighbors def sample_blocks(self, seeds): seeds = th.LongTensor(np.asarray(seeds)) blocks = [] for fanout in self.fanouts: # For each seed node, sample ``fanout`` neighbors. frontier = self.sample_neighbors(self.g, seeds, fanout, replace=True) # Then we compact the frontier into a bipartite graph for message passing. block = dgl.to_block(frontier, seeds) # Obtain the seed nodes for next layer. seeds = block.srcdata[dgl.NID] blocks.insert(0, block) return blocks class DistSAGE(SAGE): def __init__(self, in_feats, n_hidden, n_classes, n_layers, activation, dropout): super(DistSAGE, self).__init__(in_feats, n_hidden, n_classes, n_layers, activation, dropout) def inference(self, g, x, batch_size, device): """ Inference with the GraphSAGE model on full neighbors (i.e. without neighbor sampling). g : the entire graph. x : the input of entire node set. The inference code is written in a fashion that it could handle any number of nodes and layers. """ # During inference with sampling, multi-layer blocks are very inefficient because # lots of computations in the first few layers are repeated. # Therefore, we compute the representation of all nodes layer by layer. The nodes # on each layer are of course splitted in batches. # TODO: can we standardize this? nodes = dgl.distributed.node_split(np.arange(g.number_of_nodes()), g.get_partition_book(), force_even=True) y = dgl.distributed.DistTensor(g, (g.number_of_nodes(), self.n_hidden), th.float32, 'h', persistent=True) for l, layer in enumerate(self.layers): if l == len(self.layers) - 1: y = dgl.distributed.DistTensor(g, (g.number_of_nodes(), self.n_classes), th.float32, 'h_last', persistent=True) sampler = PosNeighborSampler(g, [-1], dgl.distributed.sample_neighbors) print('|V|={}, eval batch size: {}'.format(g.number_of_nodes(), batch_size)) # Create PyTorch DataLoader for constructing blocks dataloader = DataLoader( dataset=nodes, batch_size=batch_size, collate_fn=sampler.sample_blocks, shuffle=False, drop_last=False, num_workers=args.num_workers) for blocks in tqdm.tqdm(dataloader): block = blocks[0] input_nodes = block.srcdata[dgl.NID] output_nodes = block.dstdata[dgl.NID] h = x[input_nodes].to(device) h_dst = h[:block.number_of_dst_nodes()] h = layer(block, (h, h_dst)) if l != len(self.layers) - 1: h = self.activation(h) h = self.dropout(h) y[output_nodes] = h.cpu() x = y g.barrier() return y def load_subtensor(g, input_nodes, device): """ Copys features and labels of a set of nodes onto GPU. """ batch_inputs = g.ndata['features'][input_nodes].to(device) return batch_inputs class CrossEntropyLoss(nn.Module): def forward(self, block_outputs, pos_graph, neg_graph): with pos_graph.local_scope(): pos_graph.ndata['h'] = block_outputs pos_graph.apply_edges(fn.u_dot_v('h', 'h', 'score')) pos_score = pos_graph.edata['score'] with neg_graph.local_scope(): neg_graph.ndata['h'] = block_outputs neg_graph.apply_edges(fn.u_dot_v('h', 'h', 'score')) neg_score = neg_graph.edata['score'] score = th.cat([pos_score, neg_score]) label = th.cat([th.ones_like(pos_score), th.zeros_like(neg_score)]).long() loss = F.binary_cross_entropy_with_logits(score, label.float()) return loss def generate_emb(model, g, inputs, batch_size, device): """ Generate embeddings for each node g : The entire graph. inputs : The features of all the nodes. batch_size : Number of nodes to compute at the same time. device : The GPU device to evaluate on. """ model.eval() with th.no_grad(): pred = model.inference(g, inputs, batch_size, device) return pred def compute_acc(emb, labels, train_nids, val_nids, test_nids): """ Compute the accuracy of prediction given the labels. We will fist train a LogisticRegression model using the trained embeddings, the training set, validation set and test set is provided as the arguments. The final result is predicted by the lr model. emb: The pretrained embeddings labels: The ground truth train_nids: The training set node ids val_nids: The validation set node ids test_nids: The test set node ids """ emb = emb[np.arange(labels.shape[0])].cpu().numpy() train_nids = train_nids.cpu().numpy() val_nids = val_nids.cpu().numpy() test_nids = test_nids.cpu().numpy() labels = labels.cpu().numpy() emb = (emb - emb.mean(0, keepdims=True)) / emb.std(0, keepdims=True) lr = lm.LogisticRegression(multi_class='multinomial', max_iter=10000) lr.fit(emb[train_nids], labels[train_nids]) pred = lr.predict(emb) eval_acc = skm.accuracy_score(labels[val_nids], pred[val_nids]) test_acc = skm.accuracy_score(labels[test_nids], pred[test_nids]) return eval_acc, test_acc def run(args, device, data): # Unpack data train_eids, train_nids, in_feats, g, global_train_nid, global_valid_nid, global_test_nid, labels = data # Create sampler sampler = NeighborSampler(g, [int(fanout) for fanout in args.fan_out.split(',')], train_nids, dgl.distributed.sample_neighbors, args.num_negs, args.remove_edge) # Create PyTorch DataLoader for constructing blocks dataloader = DataLoader( dataset=train_eids.numpy(), batch_size=args.batch_size, collate_fn=sampler.sample_blocks, shuffle=True, drop_last=False, num_workers=args.num_workers) # Define model and optimizer model = DistSAGE(in_feats, args.num_hidden, args.num_hidden, args.num_layers, F.relu, args.dropout) model = model.to(device) if not args.standalone: model = th.nn.parallel.DistributedDataParallel(model) loss_fcn = CrossEntropyLoss() loss_fcn = loss_fcn.to(device) optimizer = optim.Adam(model.parameters(), lr=args.lr) # Training loop #profiler = Profiler() #profiler.start() epoch = 0 for epoch in range(args.num_epochs): sample_time = 0 copy_time = 0 forward_time = 0 backward_time = 0 update_time = 0 num_seeds = 0 num_inputs = 0 step_time = [] iter_t = [] sample_t = [] feat_copy_t = [] forward_t = [] backward_t = [] update_t = [] iter_tput = [] start = time.time() # Loop over the dataloader to sample the computation dependency graph as a list of # blocks. for step, (pos_graph, neg_graph, blocks) in enumerate(dataloader): tic_step = time.time() sample_t.append(tic_step - start) # The nodes for input lies at the LHS side of the first block. # The nodes for output lies at the RHS side of the last block. input_nodes = blocks[0].srcdata[dgl.NID] # Load the input features as well as output labels batch_inputs = load_subtensor(g, input_nodes, device) copy_time = time.time() feat_copy_t.append(copy_time - tic_step) # Compute loss and prediction batch_pred = model(blocks, batch_inputs) loss = loss_fcn(batch_pred, pos_graph, neg_graph) forward_end = time.time() optimizer.zero_grad() loss.backward() compute_end = time.time() forward_t.append(forward_end - copy_time) backward_t.append(compute_end - forward_end) # Aggregate gradients in multiple nodes. optimizer.step() update_t.append(time.time() - compute_end) pos_edges = pos_graph.number_of_edges() neg_edges = neg_graph.number_of_edges() step_t = time.time() - start step_time.append(step_t) iter_tput.append(pos_edges / step_t) num_seeds += pos_edges if step % args.log_every == 0: print('[{}] Epoch {:05d} | Step {:05d} | Loss {:.4f} | Speed (samples/sec) {:.4f} | time {:.3f} s' \ '| sample {:.3f} | copy {:.3f} | forward {:.3f} | backward {:.3f} | update {:.3f}'.format( g.rank(), epoch, step, loss.item(), np.mean(iter_tput[3:]), np.sum(step_time[-args.log_every:]), np.sum(sample_t[-args.log_every:]), np.sum(feat_copy_t[-args.log_every:]), np.sum(forward_t[-args.log_every:]), np.sum(backward_t[-args.log_every:]), np.sum(update_t[-args.log_every:]))) start = time.time() print('[{}]Epoch Time(s): {:.4f}, sample: {:.4f}, data copy: {:.4f}, forward: {:.4f}, backward: {:.4f}, update: {:.4f}, #seeds: {}, #inputs: {}'.format( g.rank(), np.sum(step_time), np.sum(sample_t), np.sum(feat_copy_t), np.sum(forward_t), np.sum(backward_t), np.sum(update_t), num_seeds, num_inputs)) epoch += 1 # evaluate the embedding using LogisticRegression if args.standalone: pred = generate_emb(model,g, g.ndata['features'], args.batch_size_eval, device) else: pred = generate_emb(model.module, g, g.ndata['features'], args.batch_size_eval, device) if g.rank() == 0: eval_acc, test_acc = compute_acc(pred, labels, global_train_nid, global_valid_nid, global_test_nid) print('eval acc {:.4f}; test acc {:.4f}'.format(eval_acc, test_acc)) # sync for eval and test if not args.standalone: th.distributed.barrier() if not args.standalone: g._client.barrier() # save features into file if g.rank() == 0: th.save(pred, 'emb.pt') else: feat = g.ndata['features'] th.save(pred, 'emb.pt') def main(args): if not args.standalone: th.distributed.init_process_group(backend='gloo') g = dgl.distributed.DistGraph(args.ip_config, args.graph_name, conf_file=args.conf_path) print('rank:', g.rank()) print('number of edges', g.number_of_edges()) train_eids = dgl.distributed.edge_split(th.ones((g.number_of_edges(),), dtype=th.bool), g.get_partition_book(), force_even=True) train_nids = dgl.distributed.node_split(th.ones((g.number_of_nodes(),), dtype=th.bool), g.get_partition_book()) global_train_nid = th.LongTensor(np.nonzero(g.ndata['train_mask'][np.arange(g.number_of_nodes())])) global_valid_nid = th.LongTensor(np.nonzero(g.ndata['val_mask'][np.arange(g.number_of_nodes())])) global_test_nid = th.LongTensor(np.nonzero(g.ndata['test_mask'][np.arange(g.number_of_nodes())])) labels = g.ndata['labels'][np.arange(g.number_of_nodes())] device = th.device('cpu') # Pack data in_feats = g.ndata['features'].shape[1] global_train_nid = global_train_nid.squeeze() global_valid_nid = global_valid_nid.squeeze() global_test_nid = global_test_nid.squeeze() print("number of train {}".format(global_train_nid.shape[0])) print("number of valid {}".format(global_valid_nid.shape[0])) print("number of test {}".format(global_test_nid.shape[0])) data = train_eids, train_nids, in_feats, g, global_train_nid, global_valid_nid, global_test_nid, labels run(args, device, data) print("parent ends") if __name__ == '__main__': parser = argparse.ArgumentParser(description='GCN') register_data_args(parser) parser.add_argument('--graph-name', type=str, help='graph name') parser.add_argument('--id', type=int, help='the partition id') parser.add_argument('--ip_config', type=str, help='The file for IP configuration') parser.add_argument('--conf_path', type=str, help='The path to the partition config file') parser.add_argument('--num-client', type=int, help='The number of clients') parser.add_argument('--n-classes', type=int, help='the number of classes') parser.add_argument('--gpu', type=int, default=0, help="GPU device ID. Use -1 for CPU training") parser.add_argument('--num-epochs', type=int, default=20) parser.add_argument('--num-hidden', type=int, default=16) parser.add_argument('--num-layers', type=int, default=2) parser.add_argument('--fan-out', type=str, default='10,25') parser.add_argument('--batch-size', type=int, default=1000) parser.add_argument('--batch-size-eval', type=int, default=100000) parser.add_argument('--log-every', type=int, default=20) parser.add_argument('--eval-every', type=int, default=5) parser.add_argument('--lr', type=float, default=0.003) parser.add_argument('--dropout', type=float, default=0.5) parser.add_argument('--num-workers', type=int, default=0, help="Number of sampling processes. Use 0 for no extra process.") parser.add_argument('--local_rank', type=int, help='get rank of the process') parser.add_argument('--standalone', action='store_true', help='run in the standalone mode') parser.add_argument('--num-negs', type=int, default=1) parser.add_argument('--neg-share', default=False, action='store_true', help="sharing neg nodes for positive nodes") parser.add_argument('--remove-edge', default=False, action='store_true', help="whether to remove edges during sampling") args = parser.parse_args() print(args) main(args)
42.892683
160
0.6396
a452e82334ec8afe9c77d97df93577f902af7935
63,692
py
Python
gpiozero/output_devices.py
MarcoGorelli/gpiozero
39b2eaccfb8283324f0188df7f2164ed9bd230ec
[ "BSD-3-Clause" ]
null
null
null
gpiozero/output_devices.py
MarcoGorelli/gpiozero
39b2eaccfb8283324f0188df7f2164ed9bd230ec
[ "BSD-3-Clause" ]
null
null
null
gpiozero/output_devices.py
MarcoGorelli/gpiozero
39b2eaccfb8283324f0188df7f2164ed9bd230ec
[ "BSD-3-Clause" ]
null
null
null
# GPIO Zero: a library for controlling the Raspberry Pi's GPIO pins # Copyright (c) 2016-2019 Andrew Scheller <github@loowis.durge.org> # Copyright (c) 2015-2019 Dave Jones <dave@waveform.org.uk> # Copyright (c) 2015-2019 Ben Nuttall <ben@bennuttall.com> # Copyright (c) 2019 tuftii <3215045+tuftii@users.noreply.github.com> # Copyright (c) 2019 tuftii <pi@raspberrypi> # Copyright (c) 2016 Ian Harcombe <ian.harcombe@gmail.com> # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. from __future__ import ( unicode_literals, print_function, absolute_import, division, ) str = type('') from threading import Lock from itertools import repeat, cycle, chain from colorzero import Color from collections import OrderedDict try: from math import log2 except ImportError: from .compat import log2 import warnings from .exc import OutputDeviceBadValue, GPIOPinMissing, PWMSoftwareFallback from .devices import GPIODevice, Device, CompositeDevice from .mixins import SourceMixin from .threads import GPIOThread from .tones import Tone try: from .pins.pigpio import PiGPIOFactory except ImportError: PiGPIOFactory = None class OutputDevice(SourceMixin, GPIODevice): """ Represents a generic GPIO output device. This class extends :class:`GPIODevice` to add facilities common to GPIO output devices: an :meth:`on` method to switch the device on, a corresponding :meth:`off` method, and a :meth:`toggle` method. :type pin: int or str :param pin: The GPIO pin that the device is connected to. See :ref:`pin-numbering` for valid pin numbers. If this is :data:`None` a :exc:`GPIODeviceError` will be raised. :param bool active_high: If :data:`True` (the default), the :meth:`on` method will set the GPIO to HIGH. If :data:`False`, the :meth:`on` method will set the GPIO to LOW (the :meth:`off` method always does the opposite). :type initial_value: bool or None :param initial_value: If :data:`False` (the default), the device will be off initially. If :data:`None`, the device will be left in whatever state the pin is found in when configured for output (warning: this can be on). If :data:`True`, the device will be switched on initially. :type pin_factory: Factory or None :param pin_factory: See :doc:`api_pins` for more information (this is an advanced feature which most users can ignore). """ def __init__( self, pin=None, active_high=True, initial_value=False, pin_factory=None): super(OutputDevice, self).__init__(pin, pin_factory=pin_factory) self._lock = Lock() self.active_high = active_high if initial_value is None: self.pin.function = 'output' else: self.pin.output_with_state(self._value_to_state(initial_value)) def _value_to_state(self, value): return bool(self._active_state if value else self._inactive_state) def _write(self, value): try: self.pin.state = self._value_to_state(value) except AttributeError: self._check_open() raise def on(self): """ Turns the device on. """ self._write(True) def off(self): """ Turns the device off. """ self._write(False) def toggle(self): """ Reverse the state of the device. If it's on, turn it off; if it's off, turn it on. """ with self._lock: if self.is_active: self.off() else: self.on() @property def value(self): """ Returns 1 if the device is currently active and 0 otherwise. Setting this property changes the state of the device. """ return super(OutputDevice, self).value @value.setter def value(self, value): self._write(value) @property def active_high(self): """ When :data:`True`, the :attr:`value` property is :data:`True` when the device's :attr:`~GPIODevice.pin` is high. When :data:`False` the :attr:`value` property is :data:`True` when the device's pin is low (i.e. the value is inverted). This property can be set after construction; be warned that changing it will invert :attr:`value` (i.e. changing this property doesn't change the device's pin state - it just changes how that state is interpreted). """ return self._active_state @active_high.setter def active_high(self, value): self._active_state = True if value else False self._inactive_state = False if value else True def __repr__(self): try: return '<gpiozero.%s object on pin %r, active_high=%s, is_active=%s>' % ( self.__class__.__name__, self.pin, self.active_high, self.is_active) except: return super(OutputDevice, self).__repr__() class DigitalOutputDevice(OutputDevice): """ Represents a generic output device with typical on/off behaviour. This class extends :class:`OutputDevice` with a :meth:`blink` method which uses an optional background thread to handle toggling the device state without further interaction. :type pin: int or str :param pin: The GPIO pin that the device is connected to. See :ref:`pin-numbering` for valid pin numbers. If this is :data:`None` a :exc:`GPIODeviceError` will be raised. :param bool active_high: If :data:`True` (the default), the :meth:`on` method will set the GPIO to HIGH. If :data:`False`, the :meth:`on` method will set the GPIO to LOW (the :meth:`off` method always does the opposite). :type initial_value: bool or None :param initial_value: If :data:`False` (the default), the device will be off initially. If :data:`None`, the device will be left in whatever state the pin is found in when configured for output (warning: this can be on). If :data:`True`, the device will be switched on initially. :type pin_factory: Factory or None :param pin_factory: See :doc:`api_pins` for more information (this is an advanced feature which most users can ignore). """ def __init__( self, pin=None, active_high=True, initial_value=False, pin_factory=None): self._blink_thread = None self._controller = None super(DigitalOutputDevice, self).__init__( pin, active_high, initial_value, pin_factory=pin_factory ) @property def value(self): return super(DigitalOutputDevice, self).value @value.setter def value(self, value): self._stop_blink() self._write(value) def close(self): self._stop_blink() super(DigitalOutputDevice, self).close() def on(self): self._stop_blink() self._write(True) def off(self): self._stop_blink() self._write(False) def blink(self, on_time=1, off_time=1, n=None, background=True): """ Make the device turn on and off repeatedly. :param float on_time: Number of seconds on. Defaults to 1 second. :param float off_time: Number of seconds off. Defaults to 1 second. :type n: int or None :param n: Number of times to blink; :data:`None` (the default) means forever. :param bool background: If :data:`True` (the default), start a background thread to continue blinking and return immediately. If :data:`False`, only return when the blink is finished (warning: the default value of *n* will result in this method never returning). """ self._stop_blink() self._blink_thread = GPIOThread( target=self._blink_device, args=(on_time, off_time, n) ) self._blink_thread.start() if not background: self._blink_thread.join() self._blink_thread = None def _stop_blink(self): if getattr(self, '_controller', None): self._controller._stop_blink(self) self._controller = None if getattr(self, '_blink_thread', None): self._blink_thread.stop() self._blink_thread = None def _blink_device(self, on_time, off_time, n): iterable = repeat(0) if n is None else repeat(0, n) for _ in iterable: self._write(True) if self._blink_thread.stopping.wait(on_time): break self._write(False) if self._blink_thread.stopping.wait(off_time): break class LED(DigitalOutputDevice): """ Extends :class:`DigitalOutputDevice` and represents a light emitting diode (LED). Connect the cathode (short leg, flat side) of the LED to a ground pin; connect the anode (longer leg) to a limiting resistor; connect the other side of the limiting resistor to a GPIO pin (the limiting resistor can be placed either side of the LED). The following example will light the LED:: from gpiozero import LED led = LED(17) led.on() :type pin: int or str :param pin: The GPIO pin which the LED is connected to. See :ref:`pin-numbering` for valid pin numbers. If this is :data:`None` a :exc:`GPIODeviceError` will be raised. :param bool active_high: If :data:`True` (the default), the LED will operate normally with the circuit described above. If :data:`False` you should wire the cathode to the GPIO pin, and the anode to a 3V3 pin (via a limiting resistor). :type initial_value: bool or None :param initial_value: If :data:`False` (the default), the LED will be off initially. If :data:`None`, the LED will be left in whatever state the pin is found in when configured for output (warning: this can be on). If :data:`True`, the LED will be switched on initially. :type pin_factory: Factory or None :param pin_factory: See :doc:`api_pins` for more information (this is an advanced feature which most users can ignore). """ pass LED.is_lit = LED.is_active class Buzzer(DigitalOutputDevice): """ Extends :class:`DigitalOutputDevice` and represents a digital buzzer component. .. note:: This interface is only capable of simple on/off commands, and is not capable of playing a variety of tones (see :class:`TonalBuzzer`). Connect the cathode (negative pin) of the buzzer to a ground pin; connect the other side to any GPIO pin. The following example will sound the buzzer:: from gpiozero import Buzzer bz = Buzzer(3) bz.on() :type pin: int or str :param pin: The GPIO pin which the buzzer is connected to. See :ref:`pin-numbering` for valid pin numbers. If this is :data:`None` a :exc:`GPIODeviceError` will be raised. :param bool active_high: If :data:`True` (the default), the buzzer will operate normally with the circuit described above. If :data:`False` you should wire the cathode to the GPIO pin, and the anode to a 3V3 pin. :type initial_value: bool or None :param initial_value: If :data:`False` (the default), the buzzer will be silent initially. If :data:`None`, the buzzer will be left in whatever state the pin is found in when configured for output (warning: this can be on). If :data:`True`, the buzzer will be switched on initially. :type pin_factory: Factory or None :param pin_factory: See :doc:`api_pins` for more information (this is an advanced feature which most users can ignore). """ pass Buzzer.beep = Buzzer.blink class PWMOutputDevice(OutputDevice): """ Generic output device configured for pulse-width modulation (PWM). :type pin: int or str :param pin: The GPIO pin that the device is connected to. See :ref:`pin-numbering` for valid pin numbers. If this is :data:`None` a :exc:`GPIODeviceError` will be raised. :param bool active_high: If :data:`True` (the default), the :meth:`on` method will set the GPIO to HIGH. If :data:`False`, the :meth:`on` method will set the GPIO to LOW (the :meth:`off` method always does the opposite). :param float initial_value: If 0 (the default), the device's duty cycle will be 0 initially. Other values between 0 and 1 can be specified as an initial duty cycle. Note that :data:`None` cannot be specified (unlike the parent class) as there is no way to tell PWM not to alter the state of the pin. :param int frequency: The frequency (in Hz) of pulses emitted to drive the device. Defaults to 100Hz. :type pin_factory: Factory or None :param pin_factory: See :doc:`api_pins` for more information (this is an advanced feature which most users can ignore). """ def __init__( self, pin=None, active_high=True, initial_value=0, frequency=100, pin_factory=None): self._blink_thread = None self._controller = None if not 0 <= initial_value <= 1: raise OutputDeviceBadValue("initial_value must be between 0 and 1") super(PWMOutputDevice, self).__init__( pin, active_high, initial_value=None, pin_factory=pin_factory ) try: # XXX need a way of setting these together self.pin.frequency = frequency self.value = initial_value except: self.close() raise def close(self): try: self._stop_blink() except AttributeError: pass try: self.pin.frequency = None except AttributeError: # If the pin's already None, ignore the exception pass super(PWMOutputDevice, self).close() def _state_to_value(self, state): return float(state if self.active_high else 1 - state) def _value_to_state(self, value): return float(value if self.active_high else 1 - value) def _write(self, value): if not 0 <= value <= 1: raise OutputDeviceBadValue("PWM value must be between 0 and 1") super(PWMOutputDevice, self)._write(value) @property def value(self): """ The duty cycle of the PWM device. 0.0 is off, 1.0 is fully on. Values in between may be specified for varying levels of power in the device. """ return super(PWMOutputDevice, self).value @value.setter def value(self, value): self._stop_blink() self._write(value) def on(self): self._stop_blink() self._write(1) def off(self): self._stop_blink() self._write(0) def toggle(self): """ Toggle the state of the device. If the device is currently off (:attr:`value` is 0.0), this changes it to "fully" on (:attr:`value` is 1.0). If the device has a duty cycle (:attr:`value`) of 0.1, this will toggle it to 0.9, and so on. """ self._stop_blink() self.value = 1 - self.value @property def is_active(self): """ Returns :data:`True` if the device is currently active (:attr:`value` is non-zero) and :data:`False` otherwise. """ return self.value != 0 @property def frequency(self): """ The frequency of the pulses used with the PWM device, in Hz. The default is 100Hz. """ return self.pin.frequency @frequency.setter def frequency(self, value): self.pin.frequency = value def blink( self, on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, n=None, background=True): """ Make the device turn on and off repeatedly. :param float on_time: Number of seconds on. Defaults to 1 second. :param float off_time: Number of seconds off. Defaults to 1 second. :param float fade_in_time: Number of seconds to spend fading in. Defaults to 0. :param float fade_out_time: Number of seconds to spend fading out. Defaults to 0. :type n: int or None :param n: Number of times to blink; :data:`None` (the default) means forever. :param bool background: If :data:`True` (the default), start a background thread to continue blinking and return immediately. If :data:`False`, only return when the blink is finished (warning: the default value of *n* will result in this method never returning). """ self._stop_blink() self._blink_thread = GPIOThread( target=self._blink_device, args=(on_time, off_time, fade_in_time, fade_out_time, n) ) self._blink_thread.start() if not background: self._blink_thread.join() self._blink_thread = None def pulse(self, fade_in_time=1, fade_out_time=1, n=None, background=True): """ Make the device fade in and out repeatedly. :param float fade_in_time: Number of seconds to spend fading in. Defaults to 1. :param float fade_out_time: Number of seconds to spend fading out. Defaults to 1. :type n: int or None :param n: Number of times to pulse; :data:`None` (the default) means forever. :param bool background: If :data:`True` (the default), start a background thread to continue pulsing and return immediately. If :data:`False`, only return when the pulse is finished (warning: the default value of *n* will result in this method never returning). """ on_time = off_time = 0 self.blink( on_time, off_time, fade_in_time, fade_out_time, n, background ) def _stop_blink(self): if self._controller: self._controller._stop_blink(self) self._controller = None if self._blink_thread: self._blink_thread.stop() self._blink_thread = None def _blink_device( self, on_time, off_time, fade_in_time, fade_out_time, n, fps=25): sequence = [] if fade_in_time > 0: sequence += [ (i * (1 / fps) / fade_in_time, 1 / fps) for i in range(int(fps * fade_in_time)) ] sequence.append((1, on_time)) if fade_out_time > 0: sequence += [ (1 - (i * (1 / fps) / fade_out_time), 1 / fps) for i in range(int(fps * fade_out_time)) ] sequence.append((0, off_time)) sequence = ( cycle(sequence) if n is None else chain.from_iterable(repeat(sequence, n)) ) for value, delay in sequence: self._write(value) if self._blink_thread.stopping.wait(delay): break class TonalBuzzer(SourceMixin, CompositeDevice): """ Extends :class:`CompositeDevice` and represents a tonal buzzer. :type pin: int or str :param pin: The GPIO pin which the buzzer is connected to. See :ref:`pin-numbering` for valid pin numbers. If this is :data:`None` a :exc:`GPIODeviceError` will be raised. :param float initial_value: If :data:`None` (the default), the buzzer will be off initially. Values between -1 and 1 can be specified as an initial value for the buzzer. :type mid_tone: int or str :param mid_tone: The tone which is represented the device's middle value (0). The default is "A4" (MIDI note 69). :param int octaves: The number of octaves to allow away from the base note. The default is 1, meaning a value of -1 goes one octave below the base note, and one above, i.e. from A3 to A5 with the default base note of A4. :type pin_factory: Factory or None :param pin_factory: See :doc:`api_pins` for more information (this is an advanced feature which most users can ignore). .. note:: Note that this class does not currently work with :class:`~gpiozero.pins.pigpio.PiGPIOFactory`. """ def __init__(self, pin=None, initial_value=None, mid_tone=Tone("A4"), octaves=1, pin_factory=None): self._mid_tone = None super(TonalBuzzer, self).__init__( pwm_device=PWMOutputDevice( pin=pin, pin_factory=pin_factory ), pin_factory=pin_factory) try: self._mid_tone = Tone(mid_tone) if not (0 < octaves <= 9): raise ValueError('octaves must be between 1 and 9') self._octaves = octaves try: self.min_tone.note except ValueError: raise ValueError( '%r is too low for %d octaves' % (self._mid_tone, self._octaves)) try: self.max_tone.note except ValueError: raise ValueError( '%r is too high for %d octaves' % (self._mid_tone, self._octaves)) self.value = initial_value except: self.close() raise def __repr__(self): try: if self.value is None: return '<gpiozero.TonalBuzzer object on pin %r, silent>' % ( self.pwm_device.pin,) else: return '<gpiozero.TonalBuzzer object on pin %r, playing %s>' % ( self.pwm_device.pin, self.tone.note) except: return super(TonalBuzzer, self).__repr__() def play(self, tone): """ Play the given *tone*. This can either be an instance of :class:`~gpiozero.tones.Tone` or can be anything that could be used to construct an instance of :class:`~gpiozero.tones.Tone`. For example:: >>> from gpiozero import TonalBuzzer >>> from gpiozero.tones import Tone >>> b = TonalBuzzer(17) >>> b.play(Tone("A4")) >>> b.play(Tone(220.0)) # Hz >>> b.play(Tone(60)) # middle C in MIDI notation >>> b.play("A4") >>> b.play(220.0) >>> b.play(60) """ if tone is None: self.value = None else: if not isinstance(tone, Tone): tone = Tone(tone) freq = tone.frequency if self.min_tone.frequency <= tone <= self.max_tone.frequency: self.pwm_device.pin.frequency = freq self.pwm_device.value = 0.5 else: raise ValueError("tone is out of the device's range") def stop(self): """ Turn the buzzer off. This is equivalent to setting :attr:`value` to :data:`None`. """ self.value = None @property def tone(self): """ Returns the :class:`~gpiozero.tones.Tone` that the buzzer is currently playing, or :data:`None` if the buzzer is silent. This property can also be set to play the specified tone. """ if self.pwm_device.pin.frequency is None: return None else: return Tone.from_frequency(self.pwm_device.pin.frequency) @tone.setter def tone(self, value): self.play(value) @property def value(self): """ Represents the state of the buzzer as a value between -1 (representing the minimum tone) and 1 (representing the maximum tone). This can also be the special value :data:`None` indicating that the buzzer is currently silent. """ if self.pwm_device.pin.frequency is None: return None else: try: return log2( self.pwm_device.pin.frequency / self.mid_tone.frequency ) / self.octaves except ZeroDivisionError: return 0.0 @value.setter def value(self, value): if value is None: self.pwm_device.pin.frequency = None elif -1 <= value <= 1: freq = self.mid_tone.frequency * 2 ** (self.octaves * value) self.pwm_device.pin.frequency = freq self.pwm_device.value = 0.5 else: raise OutputDeviceBadValue( 'TonalBuzzer value must be between -1 and 1, or None') @property def is_active(self): """ Returns :data:`True` if the buzzer is currently playing, otherwise :data:`False`. """ return self.value is not None @property def octaves(self): """ The number of octaves available (above and below mid_tone). """ return self._octaves @property def min_tone(self): """ The lowest tone that the buzzer can play, i.e. the tone played when :attr:`value` is -1. """ return self._mid_tone.down(12 * self.octaves) @property def mid_tone(self): """ The middle tone available, i.e. the tone played when :attr:`value` is 0. """ return self._mid_tone @property def max_tone(self): """ The highest tone that the buzzer can play, i.e. the tone played when :attr:`value` is 1. """ return self._mid_tone.up(12 * self.octaves) class PWMLED(PWMOutputDevice): """ Extends :class:`PWMOutputDevice` and represents a light emitting diode (LED) with variable brightness. A typical configuration of such a device is to connect a GPIO pin to the anode (long leg) of the LED, and the cathode (short leg) to ground, with an optional resistor to prevent the LED from burning out. :type pin: int or str :param pin: The GPIO pin which the LED is connected to. See :ref:`pin-numbering` for valid pin numbers. If this is :data:`None` a :exc:`GPIODeviceError` will be raised. :param bool active_high: If :data:`True` (the default), the :meth:`on` method will set the GPIO to HIGH. If :data:`False`, the :meth:`on` method will set the GPIO to LOW (the :meth:`off` method always does the opposite). :param float initial_value: If ``0`` (the default), the LED will be off initially. Other values between 0 and 1 can be specified as an initial brightness for the LED. Note that :data:`None` cannot be specified (unlike the parent class) as there is no way to tell PWM not to alter the state of the pin. :param int frequency: The frequency (in Hz) of pulses emitted to drive the LED. Defaults to 100Hz. :type pin_factory: Factory or None :param pin_factory: See :doc:`api_pins` for more information (this is an advanced feature which most users can ignore). """ pass PWMLED.is_lit = PWMLED.is_active class RGBLED(SourceMixin, Device): """ Extends :class:`Device` and represents a full color LED component (composed of red, green, and blue LEDs). Connect the common cathode (longest leg) to a ground pin; connect each of the other legs (representing the red, green, and blue anodes) to any GPIO pins. You should use three limiting resistors (one per anode). The following code will make the LED yellow:: from gpiozero import RGBLED led = RGBLED(2, 3, 4) led.color = (1, 1, 0) The `colorzero`_ library is also supported:: from gpiozero import RGBLED from colorzero import Color led = RGBLED(2, 3, 4) led.color = Color('yellow') :type red: int or str :param red: The GPIO pin that controls the red component of the RGB LED. See :ref:`pin-numbering` for valid pin numbers. If this is :data:`None` a :exc:`GPIODeviceError` will be raised. :type green: int or str :param green: The GPIO pin that controls the green component of the RGB LED. :type blue: int or str :param blue: The GPIO pin that controls the blue component of the RGB LED. :param bool active_high: Set to :data:`True` (the default) for common cathode RGB LEDs. If you are using a common anode RGB LED, set this to :data:`False`. :type initial_value: ~colorzero.Color or tuple :param initial_value: The initial color for the RGB LED. Defaults to black ``(0, 0, 0)``. :param bool pwm: If :data:`True` (the default), construct :class:`PWMLED` instances for each component of the RGBLED. If :data:`False`, construct regular :class:`LED` instances, which prevents smooth color graduations. :type pin_factory: Factory or None :param pin_factory: See :doc:`api_pins` for more information (this is an advanced feature which most users can ignore). .. _colorzero: https://colorzero.readthedocs.io/ """ def __init__( self, red=None, green=None, blue=None, active_high=True, initial_value=(0, 0, 0), pwm=True, pin_factory=None): self._leds = () self._blink_thread = None if not all(p is not None for p in [red, green, blue]): raise GPIOPinMissing('red, green, and blue pins must be provided') LEDClass = PWMLED if pwm else LED super(RGBLED, self).__init__(pin_factory=pin_factory) self._leds = tuple( LEDClass(pin, active_high, pin_factory=pin_factory) for pin in (red, green, blue) ) self.value = initial_value def close(self): if getattr(self, '_leds', None): self._stop_blink() for led in self._leds: led.close() self._leds = () super(RGBLED, self).close() @property def closed(self): return len(self._leds) == 0 @property def value(self): """ Represents the color of the LED as an RGB 3-tuple of ``(red, green, blue)`` where each value is between 0 and 1 if *pwm* was :data:`True` when the class was constructed (and only 0 or 1 if not). For example, red would be ``(1, 0, 0)`` and yellow would be ``(1, 1, 0)``, while orange would be ``(1, 0.5, 0)``. """ return tuple(led.value for led in self._leds) @value.setter def value(self, value): for component in value: if not 0 <= component <= 1: raise OutputDeviceBadValue( 'each RGB color component must be between 0 and 1') if isinstance(self._leds[0], LED): if component not in (0, 1): raise OutputDeviceBadValue( 'each RGB color component must be 0 or 1 with non-PWM ' 'RGBLEDs') self._stop_blink() for led, v in zip(self._leds, value): led.value = v @property def is_active(self): """ Returns :data:`True` if the LED is currently active (not black) and :data:`False` otherwise. """ return self.value != (0, 0, 0) is_lit = is_active @property def color(self): """ Represents the color of the LED as a :class:`~colorzero.Color` object. """ return Color(*self.value) @color.setter def color(self, value): self.value = value @property def red(self): """ Represents the red element of the LED as a :class:`~colorzero.Red` object. """ return self.color.red @red.setter def red(self, value): self._stop_blink() r, g, b = self.value self.value = value, g, b @property def green(self): """ Represents the green element of the LED as a :class:`~colorzero.Green` object. """ return self.color.green @green.setter def green(self, value): self._stop_blink() r, g, b = self.value self.value = r, value, b @property def blue(self): """ Represents the blue element of the LED as a :class:`~colorzero.Blue` object. """ return self.color.blue @blue.setter def blue(self, value): self._stop_blink() r, g, b = self.value self.value = r, g, value def on(self): """ Turn the LED on. This equivalent to setting the LED color to white ``(1, 1, 1)``. """ self.value = (1, 1, 1) def off(self): """ Turn the LED off. This is equivalent to setting the LED color to black ``(0, 0, 0)``. """ self.value = (0, 0, 0) def toggle(self): """ Toggle the state of the device. If the device is currently off (:attr:`value` is ``(0, 0, 0)``), this changes it to "fully" on (:attr:`value` is ``(1, 1, 1)``). If the device has a specific color, this method inverts the color. """ r, g, b = self.value self.value = (1 - r, 1 - g, 1 - b) def blink( self, on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, on_color=(1, 1, 1), off_color=(0, 0, 0), n=None, background=True): """ Make the device turn on and off repeatedly. :param float on_time: Number of seconds on. Defaults to 1 second. :param float off_time: Number of seconds off. Defaults to 1 second. :param float fade_in_time: Number of seconds to spend fading in. Defaults to 0. Must be 0 if *pwm* was :data:`False` when the class was constructed (:exc:`ValueError` will be raised if not). :param float fade_out_time: Number of seconds to spend fading out. Defaults to 0. Must be 0 if *pwm* was :data:`False` when the class was constructed (:exc:`ValueError` will be raised if not). :type on_color: ~colorzero.Color or tuple :param on_color: The color to use when the LED is "on". Defaults to white. :type off_color: ~colorzero.Color or tuple :param off_color: The color to use when the LED is "off". Defaults to black. :type n: int or None :param n: Number of times to blink; :data:`None` (the default) means forever. :param bool background: If :data:`True` (the default), start a background thread to continue blinking and return immediately. If :data:`False`, only return when the blink is finished (warning: the default value of *n* will result in this method never returning). """ if isinstance(self._leds[0], LED): if fade_in_time: raise ValueError('fade_in_time must be 0 with non-PWM RGBLEDs') if fade_out_time: raise ValueError('fade_out_time must be 0 with non-PWM RGBLEDs') self._stop_blink() self._blink_thread = GPIOThread( target=self._blink_device, args=( on_time, off_time, fade_in_time, fade_out_time, on_color, off_color, n ) ) self._blink_thread.start() if not background: self._blink_thread.join() self._blink_thread = None def pulse( self, fade_in_time=1, fade_out_time=1, on_color=(1, 1, 1), off_color=(0, 0, 0), n=None, background=True): """ Make the device fade in and out repeatedly. :param float fade_in_time: Number of seconds to spend fading in. Defaults to 1. :param float fade_out_time: Number of seconds to spend fading out. Defaults to 1. :type on_color: ~colorzero.Color or tuple :param on_color: The color to use when the LED is "on". Defaults to white. :type off_color: ~colorzero.Color or tuple :param off_color: The color to use when the LED is "off". Defaults to black. :type n: int or None :param n: Number of times to pulse; :data:`None` (the default) means forever. :param bool background: If :data:`True` (the default), start a background thread to continue pulsing and return immediately. If :data:`False`, only return when the pulse is finished (warning: the default value of *n* will result in this method never returning). """ on_time = off_time = 0 self.blink( on_time, off_time, fade_in_time, fade_out_time, on_color, off_color, n, background ) def _stop_blink(self, led=None): # If this is called with a single led, we stop all blinking anyway if self._blink_thread: self._blink_thread.stop() self._blink_thread = None def _blink_device( self, on_time, off_time, fade_in_time, fade_out_time, on_color, off_color, n, fps=25): # Define a simple lambda to perform linear interpolation between # off_color and on_color lerp = lambda t, fade_in: tuple( (1 - t) * off + t * on if fade_in else (1 - t) * on + t * off for off, on in zip(off_color, on_color) ) sequence = [] if fade_in_time > 0: sequence += [ (lerp(i * (1 / fps) / fade_in_time, True), 1 / fps) for i in range(int(fps * fade_in_time)) ] sequence.append((on_color, on_time)) if fade_out_time > 0: sequence += [ (lerp(i * (1 / fps) / fade_out_time, False), 1 / fps) for i in range(int(fps * fade_out_time)) ] sequence.append((off_color, off_time)) sequence = ( cycle(sequence) if n is None else chain.from_iterable(repeat(sequence, n)) ) for l in self._leds: l._controller = self for value, delay in sequence: for l, v in zip(self._leds, value): l._write(v) if self._blink_thread.stopping.wait(delay): break class Motor(SourceMixin, CompositeDevice): """ Extends :class:`CompositeDevice` and represents a generic motor connected to a bi-directional motor driver circuit (i.e. an `H-bridge`_). Attach an `H-bridge`_ motor controller to your Pi; connect a power source (e.g. a battery pack or the 5V pin) to the controller; connect the outputs of the controller board to the two terminals of the motor; connect the inputs of the controller board to two GPIO pins. .. _H-bridge: https://en.wikipedia.org/wiki/H_bridge The following code will make the motor turn "forwards":: from gpiozero import Motor motor = Motor(17, 18) motor.forward() :type forward: int or str :param forward: The GPIO pin that the forward input of the motor driver chip is connected to. See :ref:`pin-numbering` for valid pin numbers. If this is :data:`None` a :exc:`GPIODeviceError` will be raised. :type backward: int or str :param backward: The GPIO pin that the backward input of the motor driver chip is connected to. See :ref:`pin-numbering` for valid pin numbers. If this is :data:`None` a :exc:`GPIODeviceError` will be raised. :type enable: int or str or None :param enable: The GPIO pin that enables the motor. Required for *some* motor controller boards. See :ref:`pin-numbering` for valid pin numbers. :param bool pwm: If :data:`True` (the default), construct :class:`PWMOutputDevice` instances for the motor controller pins, allowing both direction and variable speed control. If :data:`False`, construct :class:`DigitalOutputDevice` instances, allowing only direction control. :type pin_factory: Factory or None :param pin_factory: See :doc:`api_pins` for more information (this is an advanced feature which most users can ignore). """ def __init__(self, forward=None, backward=None, enable=None, pwm=True, pin_factory=None): if not all(p is not None for p in [forward, backward]): raise GPIOPinMissing( 'forward and backward pins must be provided' ) PinClass = PWMOutputDevice if pwm else DigitalOutputDevice devices = OrderedDict(( ('forward_device', PinClass(forward)), ('backward_device', PinClass(backward)), )) if enable is not None: devices['enable_device'] = DigitalOutputDevice(enable, initial_value=True) super(Motor, self).__init__(_order=devices.keys(), **devices) @property def value(self): """ Represents the speed of the motor as a floating point value between -1 (full speed backward) and 1 (full speed forward), with 0 representing stopped. """ return self.forward_device.value - self.backward_device.value @value.setter def value(self, value): if not -1 <= value <= 1: raise OutputDeviceBadValue("Motor value must be between -1 and 1") if value > 0: try: self.forward(value) except ValueError as e: raise OutputDeviceBadValue(e) elif value < 0: try: self.backward(-value) except ValueError as e: raise OutputDeviceBadValue(e) else: self.stop() @property def is_active(self): """ Returns :data:`True` if the motor is currently running and :data:`False` otherwise. """ return self.value != 0 def forward(self, speed=1): """ Drive the motor forwards. :param float speed: The speed at which the motor should turn. Can be any value between 0 (stopped) and the default 1 (maximum speed) if *pwm* was :data:`True` when the class was constructed (and only 0 or 1 if not). """ if not 0 <= speed <= 1: raise ValueError('forward speed must be between 0 and 1') if isinstance(self.forward_device, DigitalOutputDevice): if speed not in (0, 1): raise ValueError( 'forward speed must be 0 or 1 with non-PWM Motors') self.backward_device.off() self.forward_device.value = speed def backward(self, speed=1): """ Drive the motor backwards. :param float speed: The speed at which the motor should turn. Can be any value between 0 (stopped) and the default 1 (maximum speed) if *pwm* was :data:`True` when the class was constructed (and only 0 or 1 if not). """ if not 0 <= speed <= 1: raise ValueError('backward speed must be between 0 and 1') if isinstance(self.backward_device, DigitalOutputDevice): if speed not in (0, 1): raise ValueError( 'backward speed must be 0 or 1 with non-PWM Motors') self.forward_device.off() self.backward_device.value = speed def reverse(self): """ Reverse the current direction of the motor. If the motor is currently idle this does nothing. Otherwise, the motor's direction will be reversed at the current speed. """ self.value = -self.value def stop(self): """ Stop the motor. """ self.forward_device.off() self.backward_device.off() class PhaseEnableMotor(SourceMixin, CompositeDevice): """ Extends :class:`CompositeDevice` and represents a generic motor connected to a Phase/Enable motor driver circuit; the phase of the driver controls whether the motor turns forwards or backwards, while enable controls the speed with PWM. The following code will make the motor turn "forwards":: from gpiozero import PhaseEnableMotor motor = PhaseEnableMotor(12, 5) motor.forward() :type phase: int or str :param phase: The GPIO pin that the phase (direction) input of the motor driver chip is connected to. See :ref:`pin-numbering` for valid pin numbers. If this is :data:`None` a :exc:`GPIODeviceError` will be raised. :type enable: int or str :param enable: The GPIO pin that the enable (speed) input of the motor driver chip is connected to. See :ref:`pin-numbering` for valid pin numbers. If this is :data:`None` a :exc:`GPIODeviceError` will be raised. :param bool pwm: If :data:`True` (the default), construct :class:`PWMOutputDevice` instances for the motor controller pins, allowing both direction and variable speed control. If :data:`False`, construct :class:`DigitalOutputDevice` instances, allowing only direction control. :type pin_factory: Factory or None :param pin_factory: See :doc:`api_pins` for more information (this is an advanced feature which most users can ignore). """ def __init__(self, phase=None, enable=None, pwm=True, pin_factory=None): if not all([phase, enable]): raise GPIOPinMissing('phase and enable pins must be provided') PinClass = PWMOutputDevice if pwm else DigitalOutputDevice super(PhaseEnableMotor, self).__init__( phase_device=DigitalOutputDevice(phase, pin_factory=pin_factory), enable_device=PinClass(enable, pin_factory=pin_factory), _order=('phase_device', 'enable_device'), pin_factory=pin_factory ) @property def value(self): """ Represents the speed of the motor as a floating point value between -1 (full speed backward) and 1 (full speed forward). """ return ( -self.enable_device.value if self.phase_device.is_active else self.enable_device.value ) @value.setter def value(self, value): if not -1 <= value <= 1: raise OutputDeviceBadValue("Motor value must be between -1 and 1") if value > 0: self.forward(value) elif value < 0: self.backward(-value) else: self.stop() @property def is_active(self): """ Returns :data:`True` if the motor is currently running and :data:`False` otherwise. """ return self.value != 0 def forward(self, speed=1): """ Drive the motor forwards. :param float speed: The speed at which the motor should turn. Can be any value between 0 (stopped) and the default 1 (maximum speed). """ if isinstance(self.enable_device, DigitalOutputDevice): if speed not in (0, 1): raise ValueError( 'forward speed must be 0 or 1 with non-PWM Motors') self.enable_device.off() self.phase_device.off() self.enable_device.value = speed def backward(self, speed=1): """ Drive the motor backwards. :param float speed: The speed at which the motor should turn. Can be any value between 0 (stopped) and the default 1 (maximum speed). """ if isinstance(self.enable_device, DigitalOutputDevice): if speed not in (0, 1): raise ValueError( 'backward speed must be 0 or 1 with non-PWM Motors') self.enable_device.off() self.phase_device.on() self.enable_device.value = speed def reverse(self): """ Reverse the current direction of the motor. If the motor is currently idle this does nothing. Otherwise, the motor's direction will be reversed at the current speed. """ self.value = -self.value def stop(self): """ Stop the motor. """ self.enable_device.off() class Servo(SourceMixin, CompositeDevice): """ Extends :class:`CompositeDevice` and represents a PWM-controlled servo motor connected to a GPIO pin. Connect a power source (e.g. a battery pack or the 5V pin) to the power cable of the servo (this is typically colored red); connect the ground cable of the servo (typically colored black or brown) to the negative of your battery pack, or a GND pin; connect the final cable (typically colored white or orange) to the GPIO pin you wish to use for controlling the servo. The following code will make the servo move between its minimum, maximum, and mid-point positions with a pause between each:: from gpiozero import Servo from time import sleep servo = Servo(17) while True: servo.min() sleep(1) servo.mid() sleep(1) servo.max() sleep(1) You can also use the :attr:`value` property to move the servo to a particular position, on a scale from -1 (min) to 1 (max) where 0 is the mid-point:: from gpiozero import Servo servo = Servo(17) servo.value = 0.5 .. note:: To reduce servo jitter, use the pigpio pin driver rather than the default RPi.GPIO driver (pigpio uses DMA sampling for much more precise edge timing). See :ref:`changing-pin-factory` for further information. :type pin: int or str :param pin: The GPIO pin that the servo is connected to. See :ref:`pin-numbering` for valid pin numbers. If this is :data:`None` a :exc:`GPIODeviceError` will be raised. :param float initial_value: If ``0`` (the default), the device's mid-point will be set initially. Other values between -1 and +1 can be specified as an initial position. :data:`None` means to start the servo un-controlled (see :attr:`value`). :param float min_pulse_width: The pulse width corresponding to the servo's minimum position. This defaults to 1ms. :param float max_pulse_width: The pulse width corresponding to the servo's maximum position. This defaults to 2ms. :param float frame_width: The length of time between servo control pulses measured in seconds. This defaults to 20ms which is a common value for servos. :type pin_factory: Factory or None :param pin_factory: See :doc:`api_pins` for more information (this is an advanced feature which most users can ignore). """ def __init__( self, pin=None, initial_value=0.0, min_pulse_width=1/1000, max_pulse_width=2/1000, frame_width=20/1000, pin_factory=None): if min_pulse_width >= max_pulse_width: raise ValueError('min_pulse_width must be less than max_pulse_width') if max_pulse_width >= frame_width: raise ValueError('max_pulse_width must be less than frame_width') self._frame_width = frame_width self._min_dc = min_pulse_width / frame_width self._dc_range = (max_pulse_width - min_pulse_width) / frame_width self._min_value = -1 self._value_range = 2 super(Servo, self).__init__( pwm_device=PWMOutputDevice( pin, frequency=int(1 / frame_width), pin_factory=pin_factory ), pin_factory=pin_factory ) if PiGPIOFactory is None or not isinstance(self.pin_factory, PiGPIOFactory): warnings.warn(PWMSoftwareFallback( 'To reduce servo jitter, use the pigpio pin factory.' 'See https://gpiozero.readthedocs.io/en/stable/api_output.html#servo for more info' )) try: self.value = initial_value except: self.close() raise @property def frame_width(self): """ The time between control pulses, measured in seconds. """ return self._frame_width @property def min_pulse_width(self): """ The control pulse width corresponding to the servo's minimum position, measured in seconds. """ return self._min_dc * self.frame_width @property def max_pulse_width(self): """ The control pulse width corresponding to the servo's maximum position, measured in seconds. """ return (self._dc_range * self.frame_width) + self.min_pulse_width @property def pulse_width(self): """ Returns the current pulse width controlling the servo. """ if self.pwm_device.pin.frequency is None: return None else: return self.pwm_device.pin.state * self.frame_width def min(self): """ Set the servo to its minimum position. """ self.value = -1 def mid(self): """ Set the servo to its mid-point position. """ self.value = 0 def max(self): """ Set the servo to its maximum position. """ self.value = 1 def detach(self): """ Temporarily disable control of the servo. This is equivalent to setting :attr:`value` to :data:`None`. """ self.value = None def _get_value(self): if self.pwm_device.pin.frequency is None: return None else: return ( ((self.pwm_device.pin.state - self._min_dc) / self._dc_range) * self._value_range + self._min_value) @property def value(self): """ Represents the position of the servo as a value between -1 (the minimum position) and +1 (the maximum position). This can also be the special value :data:`None` indicating that the servo is currently "uncontrolled", i.e. that no control signal is being sent. Typically this means the servo's position remains unchanged, but that it can be moved by hand. """ result = self._get_value() if result is None: return result else: # NOTE: This round() only exists to ensure we don't confuse people # by returning 2.220446049250313e-16 as the default initial value # instead of 0. The reason _get_value and _set_value are split # out is for descendents that require the un-rounded values for # accuracy return round(result, 14) @value.setter def value(self, value): if value is None: self.pwm_device.pin.frequency = None elif -1 <= value <= 1: self.pwm_device.pin.frequency = int(1 / self.frame_width) self.pwm_device.pin.state = ( self._min_dc + self._dc_range * ((value - self._min_value) / self._value_range) ) else: raise OutputDeviceBadValue( "Servo value must be between -1 and 1, or None") @property def is_active(self): return self.value is not None class AngularServo(Servo): """ Extends :class:`Servo` and represents a rotational PWM-controlled servo motor which can be set to particular angles (assuming valid minimum and maximum angles are provided to the constructor). Connect a power source (e.g. a battery pack or the 5V pin) to the power cable of the servo (this is typically colored red); connect the ground cable of the servo (typically colored black or brown) to the negative of your battery pack, or a GND pin; connect the final cable (typically colored white or orange) to the GPIO pin you wish to use for controlling the servo. Next, calibrate the angles that the servo can rotate to. In an interactive Python session, construct a :class:`Servo` instance. The servo should move to its mid-point by default. Set the servo to its minimum value, and measure the angle from the mid-point. Set the servo to its maximum value, and again measure the angle:: >>> from gpiozero import Servo >>> s = Servo(17) >>> s.min() # measure the angle >>> s.max() # measure the angle You should now be able to construct an :class:`AngularServo` instance with the correct bounds:: >>> from gpiozero import AngularServo >>> s = AngularServo(17, min_angle=-42, max_angle=44) >>> s.angle = 0.0 >>> s.angle 0.0 >>> s.angle = 15 >>> s.angle 15.0 .. note:: You can set *min_angle* greater than *max_angle* if you wish to reverse the sense of the angles (e.g. ``min_angle=45, max_angle=-45``). This can be useful with servos that rotate in the opposite direction to your expectations of minimum and maximum. :type pin: int or str :param pin: The GPIO pin that the servo is connected to. See :ref:`pin-numbering` for valid pin numbers. If this is :data:`None` a :exc:`GPIODeviceError` will be raised. :param float initial_angle: Sets the servo's initial angle to the specified value. The default is 0. The value specified must be between *min_angle* and *max_angle* inclusive. :data:`None` means to start the servo un-controlled (see :attr:`value`). :param float min_angle: Sets the minimum angle that the servo can rotate to. This defaults to -90, but should be set to whatever you measure from your servo during calibration. :param float max_angle: Sets the maximum angle that the servo can rotate to. This defaults to 90, but should be set to whatever you measure from your servo during calibration. :param float min_pulse_width: The pulse width corresponding to the servo's minimum position. This defaults to 1ms. :param float max_pulse_width: The pulse width corresponding to the servo's maximum position. This defaults to 2ms. :param float frame_width: The length of time between servo control pulses measured in seconds. This defaults to 20ms which is a common value for servos. :type pin_factory: Factory or None :param pin_factory: See :doc:`api_pins` for more information (this is an advanced feature which most users can ignore). """ def __init__( self, pin=None, initial_angle=0.0, min_angle=-90, max_angle=90, min_pulse_width=1/1000, max_pulse_width=2/1000, frame_width=20/1000, pin_factory=None): self._min_angle = min_angle self._angular_range = max_angle - min_angle if initial_angle is None: initial_value = None elif ((min_angle <= initial_angle <= max_angle) or (max_angle <= initial_angle <= min_angle)): initial_value = 2 * ((initial_angle - min_angle) / self._angular_range) - 1 else: raise OutputDeviceBadValue( "AngularServo angle must be between %s and %s, or None" % (min_angle, max_angle)) super(AngularServo, self).__init__( pin, initial_value, min_pulse_width, max_pulse_width, frame_width, pin_factory=pin_factory ) @property def min_angle(self): """ The minimum angle that the servo will rotate to when :meth:`min` is called. """ return self._min_angle @property def max_angle(self): """ The maximum angle that the servo will rotate to when :meth:`max` is called. """ return self._min_angle + self._angular_range @property def angle(self): """ The position of the servo as an angle measured in degrees. This will only be accurate if :attr:`min_angle` and :attr:`max_angle` have been set appropriately in the constructor. This can also be the special value :data:`None` indicating that the servo is currently "uncontrolled", i.e. that no control signal is being sent. Typically this means the servo's position remains unchanged, but that it can be moved by hand. """ result = self._get_value() if result is None: return None else: # NOTE: Why round(n, 12) here instead of 14? Angle ranges can be # much larger than -1..1 so we need a little more rounding to # smooth off the rough corners! return round( self._angular_range * ((result - self._min_value) / self._value_range) + self._min_angle, 12) @angle.setter def angle(self, angle): if angle is None: self.value = None elif ((self.min_angle <= angle <= self.max_angle) or (self.max_angle <= angle <= self.min_angle)): self.value = ( self._value_range * ((angle - self._min_angle) / self._angular_range) + self._min_value) else: raise OutputDeviceBadValue( "AngularServo angle must be between %s and %s, or None" % (self.min_angle, self.max_angle))
35.072687
99
0.605759
ac21fc5be5189a6cb91e747faf0560f9cb8a4def
303
py
Python
Beginner/Countdown Timer/countdown.py
kaar07/Python-Projects
5ab8211c69f7fc5dedf19862a4377b4182411a55
[ "Apache-2.0" ]
6
2021-04-20T06:15:41.000Z
2021-05-07T17:58:19.000Z
Beginner/Countdown Timer/countdown.py
kaar07/Python-Projects
5ab8211c69f7fc5dedf19862a4377b4182411a55
[ "Apache-2.0" ]
11
2021-05-15T12:09:09.000Z
2022-03-12T00:57:46.000Z
Beginner/Countdown Timer/countdown.py
kaar07/Python-Projects
5ab8211c69f7fc5dedf19862a4377b4182411a55
[ "Apache-2.0" ]
5
2021-05-19T07:40:18.000Z
2021-09-25T11:11:59.000Z
import time def countdown(_t): while _t: minutes, seconds = divmod(_t, 60) timer = '{:02d}:{:02d}'.format(minutes, seconds) print(timer, end="\r") time.sleep(1) _t -= 1 print('Time\'s Up!!') t = input("Enter the time in seconds: ") countdown(int(t))
17.823529
56
0.544554
8fd8a4d0343b547a8d02a845ccf624167ff3f0a5
409
py
Python
ferien/__init__.py
HazardDede/ferien-api
d4659790a9ccfa75cb117b629aac9380c6c6a0e5
[ "MIT" ]
4
2020-02-18T12:55:27.000Z
2021-07-30T14:29:07.000Z
ferien/__init__.py
HazardDede/ferien-api
d4659790a9ccfa75cb117b629aac9380c6c6a0e5
[ "MIT" ]
3
2020-06-22T15:11:50.000Z
2020-09-10T20:45:07.000Z
ferien/__init__.py
HazardDede/ferien-api
d4659790a9ccfa75cb117b629aac9380c6c6a0e5
[ "MIT" ]
2
2020-09-07T12:44:23.000Z
2021-04-15T07:59:49.000Z
"""ferien-api public members.""" from .sync_ import ( state_codes, all_vacations, state_vacations, current_vacation, next_vacation ) from .async_ import ( all_vacations_async, state_vacations_async ) __all__ = [ 'state_codes', 'all_vacations', 'all_vacations_async', 'current_vacation', 'next_vacation', 'state_vacations', 'state_vacations_async' ]
15.730769
32
0.674817
5031c27a053f2ff2483033162e9a829d517889d5
927
py
Python
tests/xml/test_userElement.py
plivo/plivo-python
81d1ec08bbdaad4eeec907bea2529d44af1e9f16
[ "MIT" ]
42
2015-01-16T07:56:16.000Z
2021-08-20T04:45:39.000Z
tests/xml/test_userElement.py
plivo/plivo-python
81d1ec08bbdaad4eeec907bea2529d44af1e9f16
[ "MIT" ]
70
2015-01-30T04:11:04.000Z
2022-03-29T21:04:55.000Z
tests/xml/test_userElement.py
plivo/plivo-python
81d1ec08bbdaad4eeec907bea2529d44af1e9f16
[ "MIT" ]
65
2015-04-10T22:17:57.000Z
2021-06-06T13:09:31.000Z
from unittest import TestCase from plivo import plivoxml from tests import PlivoXmlTestCase class UserElementTest(TestCase, PlivoXmlTestCase): def test_set_methods(self): expected_response = '<Response><Dial><User sendDigits="wwww2410" sendOnPreanswer="true" ' \ 'sipHeaders="head1=val1,head2=val2">This is Test</User></Dial></Response>' content = 'This is Test' send_digits = 'wwww2410' send_on_preanswer = True sip_headers = 'head1=val1,head2=val2' element = plivoxml.ResponseElement() response = element.add( plivoxml.DialElement().add( plivoxml.UserElement(content).set_send_digits(send_digits).set_send_on_preanswer( send_on_preanswer ).set_sip_headers(sip_headers) ) ).to_string(False) self.assertXmlEqual(response, expected_response)
34.333333
102
0.647249
35f221dfd2b7ac80521b69697ba55aba6619624d
1,175
py
Python
tensor2tensor/bin/translate_joint.py
cgebe/tensor2tensor
8e2389021643774f81a3af643e55a856896aef5c
[ "Apache-2.0" ]
null
null
null
tensor2tensor/bin/translate_joint.py
cgebe/tensor2tensor
8e2389021643774f81a3af643e55a856896aef5c
[ "Apache-2.0" ]
null
null
null
tensor2tensor/bin/translate_joint.py
cgebe/tensor2tensor
8e2389021643774f81a3af643e55a856896aef5c
[ "Apache-2.0" ]
1
2018-07-26T18:31:58.000Z
2018-07-26T18:31:58.000Z
import os TRANSLATE_PROBLEMS = [ "translate_csde_legal32k", #"translate_csen_legal32k", #"translate_cses_legal32k", #"translate_csfr_legal32k", #"translate_csit_legal32k", #"translate_cssv_legal32k", "translate_deen_legal32k", #"translate_dees_legal32k", #"translate_defr_legal32k", #"translate_deit_legal32k", #"translate_desv_legal32k", "translate_enes_legal32k", #"translate_enfr_legal32k", #"translate_enit_legal32k", #"translate_ensv_legal32k", "translate_esfr_legal32k", #"translate_esit_legal32k", #"translate_essv_legal32k", "translate_frit_legal32k", #"translate_frsv_legal32k", "translate_itsv_legal32k" ] def main(): joint = "" for problem in TRANSLATE_PROBLEMS: joint += problem+"-" joint = joint[:-1] successful = False while not successful: print(joint) cmd = "python ./t2t-trainer --data_dir=$DATA_DIR --output_dir=$TRAIN_DIR/translate/joint-diverse --worker_gpu=4 --train_steps=500000 --model=multi_model --hparams_set=multimodel_legal --problems="+joint if os.system(cmd) == 0: successful = True main()
26.704545
210
0.68766
928b5b45805b5ec3a984bcaeffb70b3f504c1d21
1,846
py
Python
graph/dijkstra2.py
TennielMiao/uab-contest-tools
675da96f8ad40533e2402cc2c19b00275fd33e4e
[ "MIT" ]
4
2018-01-29T21:35:06.000Z
2018-02-17T03:25:44.000Z
graph/dijkstra2.py
TennielMiao/uab-contest-tools
675da96f8ad40533e2402cc2c19b00275fd33e4e
[ "MIT" ]
null
null
null
graph/dijkstra2.py
TennielMiao/uab-contest-tools
675da96f8ad40533e2402cc2c19b00275fd33e4e
[ "MIT" ]
null
null
null
import math import heapq class Node: def __init__(self, name, distance=math.inf, prev=None): self.name = name self.distance = distance self.prev = prev def __gt__(self, other): return self.distance > other.distance def __lt__(self, other): return self.distance < other.distance def visit_node(node, conns): for conn in conns: if node in conn: source = conn.index(node) target = 1 - source if conn[target].distance > conn[source].distance + conn[2]: conn[target].distance = conn[source].distance + conn[2] conn[target].prev = conn[source] def dijkstra(target, nodes, connections): backup = [] for i in nodes: backup.append(i) while target in nodes: heapq.heapify(nodes) node = heapq.heappop(nodes) visit_node(node, connections) current = target.prev print("Go to", target.name) while current is not None: print("from", current.name) current = current.prev print("Total distance", target.distance) conns = [] s = Node("s", 0) a = Node("a") b = Node("b") c = Node("c") d = Node("d") e = Node("e") f = Node("f") g = Node("g") h = Node("h") i = Node("i") j = Node("j") k = Node("k") l = Node("l") nodes = [a, b, c, d, e, f, g, h, i, j, k, l, s] conns.append((s, a, 7)) conns.append((a, b, 3)) conns.append((s, b, 2)) conns.append((b, d, 4)) conns.append((d, f, 5)) conns.append((f, h, 3)) conns.append((b, h, 1)) conns.append((h, g, 2)) conns.append((g, e, 20)) conns.append((s, a, 7)) conns.append((s, c, 3)) conns.append((c, l, 2)) conns.append((l, i, 4)) conns.append((l, j, 4)) conns.append((j, i, 6)) conns.append((i, k, 5)) conns.append((j, k, 4)) conns.append((k, e, 5)) dijkstra(e, nodes, conns)
22.240964
71
0.567172
cc7ca89edbc80697a22c307a68cbf0c53e4d0a9e
62,760
py
Python
google-cloud-sdk/.install/.backup/lib/googlecloudsdk/third_party/appengine/datastore/datastore_pbs.py
KaranToor/MA450
c98b58aeb0994e011df960163541e9379ae7ea06
[ "Apache-2.0" ]
1
2017-11-29T18:52:27.000Z
2017-11-29T18:52:27.000Z
google-cloud-sdk/.install/.backup/lib/googlecloudsdk/third_party/appengine/datastore/datastore_pbs.py
KaranToor/MA450
c98b58aeb0994e011df960163541e9379ae7ea06
[ "Apache-2.0" ]
null
null
null
google-cloud-sdk/.install/.backup/lib/googlecloudsdk/third_party/appengine/datastore/datastore_pbs.py
KaranToor/MA450
c98b58aeb0994e011df960163541e9379ae7ea06
[ "Apache-2.0" ]
1
2020-07-25T12:09:01.000Z
2020-07-25T12:09:01.000Z
# !/usr/bin/python2.4 # pylint: disable=g-unknown-interpreter # # Copyright 2013 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities for converting between v3 and v1 datastore protocol buffers. This module is internal and should not be used by client applications. """ # WARNING: This file is externally viewable by our users. All comments from # this file will be stripped. The docstrings will NOT. Do not put sensitive # information in docstrings. If you must communicate internal information in # this source file, please place them in comments only. # NOTE: This module is heavily based on the Java classes in # c.g.apphosting.datastore.service. Changes made here are likely to be needed # there as well. # pylint: disable=g-bad-name from googlecloudsdk.third_party.appengine.googlestorage.onestore.v3 import entity_pb from googlecloudsdk.third_party.appengine.datastore import datastore_v4_pb from googlecloudsdk.third_party.appengine.datastore import entity_v4_pb _MIN_CLOUD_DATASTORE_VERSION = (4, 0, 0, 'b1') _CLOUD_DATASTORE_ENABLED = False # pylint: disable=g-import-not-at-top,unused-import try: from googledatastore import v1beta3 import googledatastore # We also need to ensure that this is the right version. if googledatastore.VERSION >= _MIN_CLOUD_DATASTORE_VERSION: _CLOUD_DATASTORE_ENABLED = True except ImportError: pass except AttributeError: # Earlier versions of googledatastore do not have a VERSION. pass MISSING_CLOUD_DATASTORE_MESSAGE = ( 'Could not import googledatastore. This library must be installed with ' 'version >= %s to use the Cloud Datastore API.' % '.'.join([str(v) for v in _MIN_CLOUD_DATASTORE_VERSION])) # Meanings. MEANING_ATOM_CATEGORY = 1 MEANING_URL = 2 MEANING_ATOM_TITLE = 3 MEANING_ATOM_CONTENT = 4 MEANING_ATOM_SUMMARY = 5 MEANING_ATOM_AUTHOR = 6 MEANING_NON_RFC_3339_TIMESTAMP = 7 MEANING_GD_EMAIL = 8 MEANING_GEORSS_POINT = 9 MEANING_GD_IM = 10 MEANING_GD_PHONENUMBER = 11 MEANING_GD_POSTALADDRESS = 12 MEANING_PERCENT = 13 MEANING_TEXT = 15 MEANING_BYTESTRING = 16 MEANING_BLOBKEY = 17 MEANING_INDEX_ONLY = 18 MEANING_PREDEFINED_ENTITY_USER = 20 MEANING_PREDEFINED_ENTITY_POINT = 21 MEANING_ZLIB = 22 MEANING_POINT_WITHOUT_V3_MEANING = 23 MEANING_EMPTY_LIST = 24 # URI meanings. URI_MEANING_ZLIB = 'ZLIB' # Limits. Must be kept in sync with # java/com/google/apphosting/datastore/service/common/DatastoreHelper.java. MAX_URL_CHARS = 2083 MAX_INDEXED_STRING_CHARS = 500 MAX_INDEXED_BLOB_BYTES = 500 MAX_PARTITION_ID_LENGTH = 100 MAX_DATASET_ID_SECTION_LENGTH = 100 # Each app id section can be 100 characters and are separated by a single # character. Note that this can only do preliminary validation, since each # partition must also be less than 100 characters. MAX_DATASET_ID_LENGTH = MAX_DATASET_ID_SECTION_LENGTH * 3 + 2 MAX_KEY_PATH_LENGTH = 100 # Property names for predefined point entities. PROPERTY_NAME_X = 'x' PROPERTY_NAME_Y = 'y' # Property names for predefined user entities. PROPERTY_NAME_EMAIL = 'email' PROPERTY_NAME_AUTH_DOMAIN = 'auth_domain' PROPERTY_NAME_USER_ID = 'user_id' PROPERTY_NAME_INTERNAL_ID = 'internal_id' PROPERTY_NAME_FEDERATED_IDENTITY = 'federated_identity' PROPERTY_NAME_FEDERATED_PROVIDER = 'federated_provider' # Other property names. PROPERTY_NAME_KEY = '__key__' DEFAULT_GAIA_ID = 0 # See com.google.apphosting.datastore.service.common.ValidationUtils. RFC_3339_MIN_MICROSECONDS_INCLUSIVE = -62135596800 * 1000 * 1000 RFC_3339_MAX_MICROSECONDS_INCLUSIVE = 253402300799 * 1000 * 1000 + 999999 def v4_key_to_string(v4_key): """Generates a string representing a key's path. The output makes no effort to qualify special characters in strings. The key need not be valid, but if any of the key path elements have both a name and an ID the name is ignored. Args: v4_key: an entity_v4_pb.Key Returns: a string representing the key's path """ path_element_strings = [] for path_element in v4_key.path_element_list(): if path_element.has_id(): id_or_name = str(path_element.id()) elif path_element.has_name(): id_or_name = path_element.name() else: id_or_name = '' path_element_strings.append('%s: %s' % (path_element.kind(), id_or_name)) return '[%s]' % ', '.join(path_element_strings) def is_complete_v4_key(v4_key): """Returns True if a key specifies an ID or name, False otherwise. Args: v4_key: an entity_v4_pb.Key Returns: True if the key specifies an ID or name, False otherwise. """ assert len(v4_key.path_element_list()) >= 1 last_element = v4_key.path_element(len(v4_key.path_element_list()) - 1) return last_element.has_id() or last_element.has_name() def v1_key_to_string(v1_key): """Generates a string representing a key's path. The output makes no effort to qualify special characters in strings. The key need not be valid, but if any of the key path elements have both a name and an ID the name is ignored. Args: v1_key: an googledatastore.Key Returns: a string representing the key's path """ path_element_strings = [] for path_element in v1_key.path: field = path_element.WhichOneof('id_type') if field == 'id': id_or_name = str(path_element.id) elif field == 'name': id_or_name = path_element.name else: id_or_name = '' path_element_strings.append('%s: %s' % (path_element.kind, id_or_name)) return '[%s]' % ', '.join(path_element_strings) def is_complete_v1_key(v1_key): """Returns True if a key specifies an ID or name, False otherwise. Args: v1_key: an googledatastore.Key Returns: True if the key specifies an ID or name, False otherwise. """ assert len(v1_key.path) >= 1 last_element = v1_key.path[len(v1_key.path) - 1] return last_element.WhichOneof('id_type') is not None def is_complete_v3_key(v3_key): """Returns True if a key specifies an ID or name, False otherwise. Args: v3_key: a datastore_pb.Reference Returns: True if the key specifies an ID or name, False otherwise. """ assert v3_key.path().element_size() >= 1 last_element = v3_key.path().element_list()[-1] return ((last_element.has_id() and last_element.id() != 0) or (last_element.has_name() and last_element.name() != '')) def get_v1_mutation_key_and_entity(v1_mutation): """Returns the v1 key and entity for a v1 mutation proto, if applicable. Args: v1_mutation: a googledatastore.Mutation Returns: a tuple (googledatastore.Key for this mutation, googledatastore.Entity or None if the mutation is a deletion) """ if v1_mutation.HasField('delete'): return v1_mutation.delete, None else: v1_entity = getattr(v1_mutation, v1_mutation.WhichOneof('operation')) return v1_entity.key, v1_entity def is_valid_utf8(s): if isinstance(s, unicode): return True try: s.decode('utf-8') return True except UnicodeDecodeError: return False def check_conversion(condition, message): """Asserts a conversion condition and raises an error if it's not met. Args: condition: (boolean) condition to enforce message: error message Raises: InvalidConversionError: if condition is not met """ if not condition: raise InvalidConversionError(message) def is_in_rfc_3339_bounds(microseconds): return (RFC_3339_MIN_MICROSECONDS_INCLUSIVE <= microseconds <= RFC_3339_MAX_MICROSECONDS_INCLUSIVE) # TODO(user): Move into datastore_errors? class InvalidConversionError(Exception): """Raised when conversion fails.""" pass class IdResolver(object): """A class that can handle project id <--> application id transformations.""" def __init__(self, app_ids=()): """Create a new IdResolver. Args: app_ids: A list of application ids with application id shard set. i.e. s~my_app or e~my_app. """ resolver_map = {} for app_id in app_ids: resolver_map[self.resolve_project_id(app_id)] = app_id self._resolver_map = resolver_map def resolve_project_id(self, app_id): """Converts an application id to a project id. Args: app_id: The application id. Returns: The project id. """ return app_id.rsplit('~')[-1] def resolve_app_id(self, project_id): """Converts a project id to an application id. Args: project_id: The project id. Returns: The application id. Raises: InvalidConversionError: if the application is unknown for the project id. """ check_conversion(project_id in self._resolver_map, 'Cannot determine application id for provided project id: ' '"%s".' % project_id) return self._resolver_map[project_id] class _IdentityIdResolver(IdResolver): """An IdResolver that resolve app_id == project_id.""" def resolve_project_id(self, app_id): return app_id def resolve_app_id(self, project_id): return project_id class _EntityConverter(object): """Converter for entities and keys.""" def __init__(self, id_resolver): """Creates a new EntityConverter. Args: id_resolver: an IdResolver object for converting project_id <--> application_id """ self._id_resolver = id_resolver def v4_to_v3_reference(self, v4_key, v3_ref): """Converts a v4 Key to a v3 Reference. Args: v4_key: an entity_v4_pb.Key v3_ref: an entity_pb.Reference to populate """ v3_ref.Clear() if v4_key.has_partition_id(): if v4_key.partition_id().has_dataset_id(): v3_ref.set_app(v4_key.partition_id().dataset_id()) if v4_key.partition_id().has_namespace(): v3_ref.set_name_space(v4_key.partition_id().namespace()) for v4_element in v4_key.path_element_list(): v3_element = v3_ref.mutable_path().add_element() v3_element.set_type(v4_element.kind()) if v4_element.has_id(): v3_element.set_id(v4_element.id()) if v4_element.has_name(): v3_element.set_name(v4_element.name()) def v4_to_v3_references(self, v4_keys): """Converts a list of v4 Keys to a list of v3 References. Args: v4_keys: a list of entity_v4_pb.Key objects Returns: a list of entity_pb.Reference objects """ v3_refs = [] for v4_key in v4_keys: v3_ref = entity_pb.Reference() self.v4_to_v3_reference(v4_key, v3_ref) v3_refs.append(v3_ref) return v3_refs def v3_to_v4_key(self, v3_ref, v4_key): """Converts a v3 Reference to a v4 Key. Args: v3_ref: an entity_pb.Reference v4_key: an entity_v4_pb.Key to populate """ v4_key.Clear() if not v3_ref.app(): return v4_key.mutable_partition_id().set_dataset_id(v3_ref.app()) if v3_ref.name_space(): v4_key.mutable_partition_id().set_namespace(v3_ref.name_space()) for v3_element in v3_ref.path().element_list(): v4_element = v4_key.add_path_element() v4_element.set_kind(v3_element.type()) if v3_element.has_id(): v4_element.set_id(v3_element.id()) if v3_element.has_name(): v4_element.set_name(v3_element.name()) def v3_to_v4_keys(self, v3_refs): """Converts a list of v3 References to a list of v4 Keys. Args: v3_refs: a list of entity_pb.Reference objects Returns: a list of entity_v4_pb.Key objects """ v4_keys = [] for v3_ref in v3_refs: v4_key = entity_v4_pb.Key() self.v3_to_v4_key(v3_ref, v4_key) v4_keys.append(v4_key) return v4_keys def v4_to_v3_entity(self, v4_entity, v3_entity, is_projection=False): """Converts a v4 Entity to a v3 EntityProto. Args: v4_entity: an entity_v4_pb.Entity v3_entity: an entity_pb.EntityProto to populate is_projection: True if the v4_entity is from a projection query. """ v3_entity.Clear() for v4_property in v4_entity.property_list(): property_name = v4_property.name() v4_value = v4_property.value() if v4_value.list_value_list(): for v4_sub_value in v4_value.list_value_list(): self.__add_v3_property_from_v4( property_name, True, is_projection, v4_sub_value, v3_entity) else: self.__add_v3_property_from_v4( property_name, False, is_projection, v4_value, v3_entity) if v4_entity.has_key(): v4_key = v4_entity.key() self.v4_to_v3_reference(v4_key, v3_entity.mutable_key()) v3_ref = v3_entity.key() self.v3_reference_to_group(v3_ref, v3_entity.mutable_entity_group()) else: # Do NOT set v3_entity.key or .entity_group, even though they # are required. pass def v3_to_v4_entity(self, v3_entity, v4_entity): """Converts a v3 EntityProto to a v4 Entity. Args: v3_entity: an entity_pb.EntityProto v4_entity: an entity_v4_pb.Proto to populate """ v4_entity.Clear() self.v3_to_v4_key(v3_entity.key(), v4_entity.mutable_key()) if not v3_entity.key().has_app(): # Irreversible: v3_entity.key will change from empty to unset. v4_entity.clear_key() # v3_entity.entity_group is redundant. # Ignore v3_entity.owner. # Ignore v3_entity.kind. # Ignore v3_entity.kind_url. v4_properties = {} for v3_property in v3_entity.property_list(): self.__add_v4_property_to_entity(v4_entity, v4_properties, v3_property, True) for v3_property in v3_entity.raw_property_list(): self.__add_v4_property_to_entity(v4_entity, v4_properties, v3_property, False) def v4_value_to_v3_property_value(self, v4_value, v3_value): """Converts a v4 Value to a v3 PropertyValue. Args: v4_value: an entity_v4_pb.Value v3_value: an entity_pb.PropertyValue to populate """ v3_value.Clear() if v4_value.has_boolean_value(): v3_value.set_booleanvalue(v4_value.boolean_value()) elif v4_value.has_integer_value(): v3_value.set_int64value(v4_value.integer_value()) elif v4_value.has_double_value(): v3_value.set_doublevalue(v4_value.double_value()) elif v4_value.has_timestamp_microseconds_value(): v3_value.set_int64value(v4_value.timestamp_microseconds_value()) elif v4_value.has_key_value(): v3_ref = entity_pb.Reference() self.v4_to_v3_reference(v4_value.key_value(), v3_ref) self.v3_reference_to_v3_property_value(v3_ref, v3_value) elif v4_value.has_blob_key_value(): v3_value.set_stringvalue(v4_value.blob_key_value()) elif v4_value.has_string_value(): v3_value.set_stringvalue(v4_value.string_value()) elif v4_value.has_blob_value(): v3_value.set_stringvalue(v4_value.blob_value()) elif v4_value.has_entity_value(): v4_entity_value = v4_value.entity_value() v4_meaning = v4_value.meaning() if (v4_meaning == MEANING_GEORSS_POINT or v4_meaning == MEANING_PREDEFINED_ENTITY_POINT): self.__v4_to_v3_point_value(v4_entity_value, v3_value.mutable_pointvalue()) elif v4_meaning == MEANING_PREDEFINED_ENTITY_USER: self.v4_entity_to_v3_user_value(v4_entity_value, v3_value.mutable_uservalue()) else: v3_entity_value = entity_pb.EntityProto() self.v4_to_v3_entity(v4_entity_value, v3_entity_value) v3_value.set_stringvalue(v3_entity_value.SerializePartialToString()) elif v4_value.has_geo_point_value(): point_value = v3_value.mutable_pointvalue() point_value.set_x(v4_value.geo_point_value().latitude()) point_value.set_y(v4_value.geo_point_value().longitude()) else: # Null value; do nothing. pass def v3_property_to_v4_value(self, v3_property, indexed, v4_value): """Converts a v3 Property to a v4 Value. Args: v3_property: an entity_pb.Property indexed: whether the v3 property is indexed v4_value: an entity_v4_pb.Value to populate """ v4_value.Clear() v3_property_value = v3_property.value() v3_meaning = v3_property.meaning() v3_uri_meaning = None if v3_property.meaning_uri(): v3_uri_meaning = v3_property.meaning_uri() if not self.__is_v3_property_value_union_valid(v3_property_value): # Irreversible: Value with 2+ types will reduce to 1 type and discard # meanings. v3_meaning = None v3_uri_meaning = None elif v3_meaning == entity_pb.Property.NO_MEANING: v3_meaning = None elif not self.__is_v3_property_value_meaning_valid(v3_property_value, v3_meaning): # Irreversible: Invalid meaning will be discarded. v3_meaning = None is_zlib_value = False if v3_uri_meaning: if v3_uri_meaning == URI_MEANING_ZLIB: if v3_property_value.has_stringvalue(): is_zlib_value = True if v3_meaning != entity_pb.Property.BLOB: # Irreversible: Meaning will be lost. v3_meaning = entity_pb.Property.BLOB else: pass # Irreversible: Zlib uri meaning will be lost. else: pass # Irreversible: Non-zlib uri meaning will be lost. # Copy the typed value, if present. if v3_property_value.has_booleanvalue(): v4_value.set_boolean_value(v3_property_value.booleanvalue()) elif v3_property_value.has_int64value(): if v3_meaning == entity_pb.Property.GD_WHEN: v4_value.set_timestamp_microseconds_value( v3_property_value.int64value()) v3_meaning = None else: v4_value.set_integer_value(v3_property_value.int64value()) elif v3_property_value.has_doublevalue(): v4_value.set_double_value(v3_property_value.doublevalue()) elif v3_property_value.has_referencevalue(): v3_ref = entity_pb.Reference() self.__v3_reference_value_to_v3_reference( v3_property_value.referencevalue(), v3_ref) self.v3_to_v4_key(v3_ref, v4_value.mutable_key_value()) elif v3_property_value.has_stringvalue(): if v3_meaning == entity_pb.Property.ENTITY_PROTO: serialized_entity_v3 = v3_property_value.stringvalue() v3_entity = entity_pb.EntityProto() # The v3 entity may have been serialized without a key, hence the # partial parse. v3_entity.ParsePartialFromString(serialized_entity_v3) self.v3_to_v4_entity(v3_entity, v4_value.mutable_entity_value()) v3_meaning = None elif (v3_meaning == entity_pb.Property.BLOB or v3_meaning == entity_pb.Property.BYTESTRING): v4_value.set_blob_value(v3_property_value.stringvalue()) # Only preserve meaning for unindexed BYTESTRING. if indexed or v3_meaning == entity_pb.Property.BLOB: v3_meaning = None else: string_value = v3_property_value.stringvalue() if is_valid_utf8(string_value): if v3_meaning == entity_pb.Property.BLOBKEY: v4_value.set_blob_key_value(string_value) v3_meaning = None else: v4_value.set_string_value(string_value) else: # The "string" is not a valid utf8 string. Convert it to a blob. v4_value.set_blob_value(string_value) # Discard the meaning with the conversion, except meaning index. if v3_meaning != entity_pb.Property.INDEX_VALUE: v3_meaning = None # Irreversible: Non-utf8 "string" will change to blob (and lose # meaning). elif v3_property_value.has_pointvalue(): if v3_meaning == MEANING_GEORSS_POINT: point_value = v3_property_value.pointvalue() v4_value.mutable_geo_point_value().set_latitude(point_value.x()) v4_value.mutable_geo_point_value().set_longitude(point_value.y()) else: self.__v3_to_v4_point_entity(v3_property_value.pointvalue(), v4_value.mutable_entity_value()) v4_value.set_meaning(MEANING_PREDEFINED_ENTITY_POINT) v3_meaning = None elif v3_property_value.has_uservalue(): self.v3_user_value_to_v4_entity(v3_property_value.uservalue(), v4_value.mutable_entity_value()) v4_value.set_meaning(MEANING_PREDEFINED_ENTITY_USER) v3_meaning = None else: pass # v3 value is null. Leave v4 value null. if is_zlib_value: v4_value.set_meaning(MEANING_ZLIB) elif v3_meaning: v4_value.set_meaning(v3_meaning) # Set v4 indexed only if the current (default) v4 value is unhelpful. if indexed != v4_value.indexed(): v4_value.set_indexed(indexed) def v4_to_v3_property(self, property_name, is_multi, is_projection, v4_value, v3_property): """Converts info from a v4 Property to a v3 Property. v4_value must not have a list_value. Args: property_name: the name of the property is_multi: whether the property contains multiple values is_projection: whether the property is projected v4_value: an entity_v4_pb.Value v3_property: an entity_pb.Property to populate """ assert not v4_value.list_value_list(), 'v4 list_value not convertable to v3' v3_property.Clear() v3_property.set_name(property_name) if v4_value.has_meaning() and v4_value.meaning() == MEANING_EMPTY_LIST: v3_property.set_meaning(MEANING_EMPTY_LIST) v3_property.set_multiple(False) v3_property.mutable_value() return v3_property.set_multiple(is_multi) self.v4_value_to_v3_property_value(v4_value, v3_property.mutable_value()) v4_meaning = None if v4_value.has_meaning(): v4_meaning = v4_value.meaning() if v4_value.has_timestamp_microseconds_value(): v3_property.set_meaning(entity_pb.Property.GD_WHEN) elif v4_value.has_blob_key_value(): v3_property.set_meaning(entity_pb.Property.BLOBKEY) elif v4_value.has_blob_value(): if v4_meaning == MEANING_ZLIB: v3_property.set_meaning_uri(URI_MEANING_ZLIB) if v4_meaning == entity_pb.Property.BYTESTRING: if v4_value.indexed(): pass # Irreversible: Blob with redundant byte string meaning will lose it # when converted back to v4. else: if v4_value.indexed(): v3_property.set_meaning(entity_pb.Property.BYTESTRING) else: v3_property.set_meaning(entity_pb.Property.BLOB) v4_meaning = None elif v4_value.has_entity_value(): if v4_meaning != MEANING_GEORSS_POINT: if (v4_meaning != MEANING_PREDEFINED_ENTITY_POINT and v4_meaning != MEANING_PREDEFINED_ENTITY_USER): v3_property.set_meaning(entity_pb.Property.ENTITY_PROTO) v4_meaning = None elif v4_value.has_geo_point_value(): v3_property.set_meaning(MEANING_GEORSS_POINT) else: # Null or primitive value; do nothing. pass if v4_meaning is not None: v3_property.set_meaning(v4_meaning) # If the value is in a projection, we should override the meaning. if is_projection: v3_property.set_meaning(entity_pb.Property.INDEX_VALUE) def __add_v3_property_from_v4(self, property_name, is_multi, is_projection, v4_value, v3_entity): """Adds a v3 Property to an Entity based on information from a v4 Property. Args: property_name: the name of the property is_multi: whether the property contains multiple values is_projection: whether the property is a projection v4_value: an entity_v4_pb.Value v3_entity: an entity_pb.EntityProto """ if v4_value.indexed(): self.v4_to_v3_property(property_name, is_multi, is_projection, v4_value, v3_entity.add_property()) else: self.v4_to_v3_property(property_name, is_multi, is_projection, v4_value, v3_entity.add_raw_property()) def __build_name_to_v4_property_map(self, v4_entity): property_map = {} for prop in v4_entity.property_list(): property_map[prop.name()] = prop return property_map def __add_v4_property_to_entity(self, v4_entity, property_map, v3_property, indexed): """Adds a v4 Property to an entity or modifies an existing one. property_map is used to track of properties that have already been added. The same dict should be used for all of an entity's properties. Args: v4_entity: an entity_v4_pb.Entity property_map: a dict of name -> v4_property v3_property: an entity_pb.Property to convert to v4 and add to the dict indexed: whether the property is indexed """ property_name = v3_property.name() if property_name in property_map: v4_property = property_map[property_name] else: v4_property = v4_entity.add_property() v4_property.set_name(property_name) property_map[property_name] = v4_property if v3_property.multiple(): self.v3_property_to_v4_value(v3_property, indexed, v4_property.mutable_value().add_list_value()) else: self.v3_property_to_v4_value(v3_property, indexed, v4_property.mutable_value()) def __get_v4_integer_value(self, v4_property): """Returns an integer value from a v4 Property. Args: v4_property: an entity_v4_pb.Property Returns: an integer Raises: InvalidConversionError: if the property doesn't contain an integer value """ check_conversion(v4_property.value().has_integer_value(), 'Property does not contain an integer value.') return v4_property.value().integer_value() def __get_v4_double_value(self, v4_property): """Returns a double value from a v4 Property. Args: v4_property: an entity_v4_pb.Property Returns: a double Raises: InvalidConversionError: if the property doesn't contain a double value """ check_conversion(v4_property.value().has_double_value(), 'Property does not contain a double value.') return v4_property.value().double_value() def __get_v4_string_value(self, v4_property): """Returns an string value from a v4 Property. Args: v4_property: an entity_v4_pb.Property Returns: a string Throws: InvalidConversionError: if the property doesn't contain a string value """ check_conversion(v4_property.value().has_string_value(), 'Property does not contain a string value.') return v4_property.value().string_value() def __v4_integer_property(self, name, value, indexed): """Creates a single-integer-valued v4 Property. Args: name: the property name value: the integer value of the property indexed: whether the value should be indexed Returns: an entity_v4_pb.Property """ v4_property = entity_v4_pb.Property() v4_property.set_name(name) v4_value = v4_property.mutable_value() v4_value.set_indexed(indexed) v4_value.set_integer_value(value) return v4_property def __v4_double_property(self, name, value, indexed): """Creates a single-double-valued v4 Property. Args: name: the property name value: the double value of the property indexed: whether the value should be indexed Returns: an entity_v4_pb.Property """ v4_property = entity_v4_pb.Property() v4_property.set_name(name) v4_value = v4_property.mutable_value() v4_value.set_indexed(indexed) v4_value.set_double_value(value) return v4_property def __v4_string_property(self, name, value, indexed): """Creates a single-string-valued v4 Property. Args: name: the property name value: the string value of the property indexed: whether the value should be indexed Returns: an entity_v4_pb.Property """ v4_property = entity_v4_pb.Property() v4_property.set_name(name) v4_value = v4_property.mutable_value() v4_value.set_indexed(indexed) v4_value.set_string_value(value) return v4_property def __v4_to_v3_point_value(self, v4_point_entity, v3_point_value): """Converts a v4 point Entity to a v3 PointValue. Args: v4_point_entity: an entity_v4_pb.Entity representing a point v3_point_value: an entity_pb.Property_PointValue to populate """ v3_point_value.Clear() name_to_v4_property = self.__build_name_to_v4_property_map(v4_point_entity) v3_point_value.set_x( self.__get_v4_double_value(name_to_v4_property['x'])) v3_point_value.set_y( self.__get_v4_double_value(name_to_v4_property['y'])) def __v3_to_v4_point_entity(self, v3_point_value, v4_entity): """Converts a v3 UserValue to a v4 user Entity. Args: v3_point_value: an entity_pb.Property_PointValue v4_entity: an entity_v4_pb.Entity to populate """ v4_entity.Clear() v4_entity.property_list().append( self.__v4_double_property(PROPERTY_NAME_X, v3_point_value.x(), False)) v4_entity.property_list().append( self.__v4_double_property(PROPERTY_NAME_Y, v3_point_value.y(), False)) def v4_entity_to_v3_user_value(self, v4_user_entity, v3_user_value): """Converts a v4 user Entity to a v3 UserValue. Args: v4_user_entity: an entity_v4_pb.Entity representing a user v3_user_value: an entity_pb.Property_UserValue to populate """ v3_user_value.Clear() name_to_v4_property = self.__build_name_to_v4_property_map(v4_user_entity) # Email and auth domain are required to be present in the v4 entity. v3_user_value.set_email(self.__get_v4_string_value( name_to_v4_property[PROPERTY_NAME_EMAIL])) v3_user_value.set_auth_domain(self.__get_v4_string_value( name_to_v4_property[PROPERTY_NAME_AUTH_DOMAIN])) if PROPERTY_NAME_USER_ID in name_to_v4_property: v3_user_value.set_obfuscated_gaiaid( self.__get_v4_string_value( name_to_v4_property[PROPERTY_NAME_USER_ID])) if PROPERTY_NAME_INTERNAL_ID in name_to_v4_property: v3_user_value.set_gaiaid(self.__get_v4_integer_value( name_to_v4_property[PROPERTY_NAME_INTERNAL_ID])) else: # Field gaiaid is required. Set it to a default value. v3_user_value.set_gaiaid(0) if PROPERTY_NAME_FEDERATED_IDENTITY in name_to_v4_property: v3_user_value.set_federated_identity( self.__get_v4_string_value(name_to_v4_property[ PROPERTY_NAME_FEDERATED_IDENTITY])) if PROPERTY_NAME_FEDERATED_PROVIDER in name_to_v4_property: v3_user_value.set_federated_provider( self.__get_v4_string_value(name_to_v4_property[ PROPERTY_NAME_FEDERATED_PROVIDER])) def v3_user_value_to_v4_entity(self, v3_user_value, v4_entity): """Converts a v3 UserValue to a v4 user Entity. Args: v3_user_value: an entity_pb.Property_UserValue v4_entity: an entity_v4_pb.Entity to populate """ v4_entity.Clear() v4_entity.property_list().append( self.__v4_string_property(PROPERTY_NAME_EMAIL, v3_user_value.email(), False)) v4_entity.property_list().append(self.__v4_string_property( PROPERTY_NAME_AUTH_DOMAIN, v3_user_value.auth_domain(), False)) # Ignore nickname. if v3_user_value.gaiaid() != 0: v4_entity.property_list().append(self.__v4_integer_property( PROPERTY_NAME_INTERNAL_ID, v3_user_value.gaiaid(), False)) if v3_user_value.has_obfuscated_gaiaid(): v4_entity.property_list().append(self.__v4_string_property( PROPERTY_NAME_USER_ID, v3_user_value.obfuscated_gaiaid(), False)) if v3_user_value.has_federated_identity(): v4_entity.property_list().append(self.__v4_string_property( PROPERTY_NAME_FEDERATED_IDENTITY, v3_user_value.federated_identity(), False)) if v3_user_value.has_federated_provider(): v4_entity.property_list().append(self.__v4_string_property( PROPERTY_NAME_FEDERATED_PROVIDER, v3_user_value.federated_provider(), False)) def v1_to_v3_reference(self, v1_key, v3_ref): """Converts a v1 Key to a v3 Reference. Args: v1_key: an googledatastore.Key v3_ref: an entity_pb.Reference to populate """ v3_ref.Clear() if v1_key.HasField('partition_id'): project_id = v1_key.partition_id.project_id if project_id: app_id = self._id_resolver.resolve_app_id(project_id) v3_ref.set_app(app_id) if v1_key.partition_id.namespace_id: v3_ref.set_name_space(v1_key.partition_id.namespace_id) for v1_element in v1_key.path: v3_element = v3_ref.mutable_path().add_element() v3_element.set_type(v1_element.kind.encode('utf-8')) id_type = v1_element.WhichOneof('id_type') if id_type == 'id': v3_element.set_id(v1_element.id) elif id_type == 'name': v3_element.set_name(v1_element.name.encode('utf-8')) def v1_to_v3_references(self, v1_keys): """Converts a list of v1 Keys to a list of v3 References. Args: v1_keys: a list of googledatastore.Key objects Returns: a list of entity_pb.Reference objects """ v3_refs = [] for v1_key in v1_keys: v3_ref = entity_pb.Reference() self.v1_to_v3_reference(v1_key, v3_ref) v3_refs.append(v3_ref) return v3_refs def v3_to_v1_key(self, v3_ref, v1_key): """Converts a v3 Reference to a v1 Key. Args: v3_ref: an entity_pb.Reference v1_key: an googledatastore.Key to populate """ v1_key.Clear() if not v3_ref.app(): return project_id = self._id_resolver.resolve_project_id(v3_ref.app()) v1_key.partition_id.project_id = project_id if v3_ref.name_space(): v1_key.partition_id.namespace_id = v3_ref.name_space() for v3_element in v3_ref.path().element_list(): v1_element = v1_key.path.add() v1_element.kind = v3_element.type() if v3_element.has_id(): v1_element.id = v3_element.id() if v3_element.has_name(): v1_element.name = v3_element.name() def v3_to_v1_keys(self, v3_refs): """Converts a list of v3 References to a list of v1 Keys. Args: v3_refs: a list of entity_pb.Reference objects Returns: a list of googledatastore.Key objects """ v1_keys = [] for v3_ref in v3_refs: v1_key = googledatastore.Key() self.v3_to_v1_key(v3_ref, v1_key) v1_keys.append(v1_key) return v1_keys def project_to_app_id(self, project_id): """Converts a string project id to a string app id.""" return self._id_resolver.resolve_app_id(project_id) def app_to_project_id(self, app_id): """Converts a string app id to a string project id.""" return self._id_resolver.resolve_project_id(app_id) def __new_v3_property(self, v3_entity, is_indexed): if is_indexed: return v3_entity.add_property() else: return v3_entity.add_raw_property() def v1_to_v3_entity(self, v1_entity, v3_entity, is_projection=False): """Converts a v1 Entity to a v3 EntityProto. Args: v1_entity: an googledatastore.Entity v3_entity: an entity_pb.EntityProto to populate is_projection: True if the v1_entity is from a projection query. """ v3_entity.Clear() for property_name, v1_value in v1_entity.properties.iteritems(): if v1_value.HasField('array_value'): if len(v1_value.array_value.values) == 0: empty_list = self.__new_v3_property(v3_entity, not v1_value.exclude_from_indexes) empty_list.set_name(property_name.encode('utf-8')) empty_list.set_multiple(False) empty_list.set_meaning(MEANING_EMPTY_LIST) empty_list.mutable_value() else: for v1_sub_value in v1_value.array_value.values: list_element = self.__new_v3_property( v3_entity, not v1_sub_value.exclude_from_indexes) self.v1_to_v3_property( property_name, True, is_projection, v1_sub_value, list_element) else: value_property = self.__new_v3_property( v3_entity, not v1_value.exclude_from_indexes) self.v1_to_v3_property( property_name, False, is_projection, v1_value, value_property) if v1_entity.HasField('key'): v1_key = v1_entity.key self.v1_to_v3_reference(v1_key, v3_entity.mutable_key()) v3_ref = v3_entity.key() self.v3_reference_to_group(v3_ref, v3_entity.mutable_entity_group()) else: # Do NOT set v3_entity.key or .entity_group, even though they # are required. pass def v3_to_v1_entity(self, v3_entity, v1_entity): """Converts a v3 EntityProto to a v1 Entity. Args: v3_entity: an entity_pb.EntityProto v1_entity: an googledatastore.Proto to populate """ v1_entity.Clear() self.v3_to_v1_key(v3_entity.key(), v1_entity.key) if not v3_entity.key().has_app(): # Irreversible: v3_entity.key will change from empty to unset. v1_entity.ClearField('key') # v3_entity.entity_group is redundant. # Ignore v3_entity.owner. # Ignore v3_entity.kind. # Ignore v3_entity.kind_url. for v3_property in v3_entity.property_list(): self.__add_v1_property_to_entity(v1_entity, v3_property, True) for v3_property in v3_entity.raw_property_list(): self.__add_v1_property_to_entity(v1_entity, v3_property, False) def v1_value_to_v3_property_value(self, v1_value, v3_value): """Converts a v1 Value to a v3 PropertyValue. Args: v1_value: an googledatastore.Value v3_value: an entity_pb.PropertyValue to populate """ v3_value.Clear() field = v1_value.WhichOneof('value_type') if field == 'boolean_value': v3_value.set_booleanvalue(v1_value.boolean_value) elif field == 'integer_value': v3_value.set_int64value(v1_value.integer_value) elif field == 'double_value': v3_value.set_doublevalue(v1_value.double_value) elif field == 'timestamp_value': v3_value.set_int64value( googledatastore.helper.micros_from_timestamp( v1_value.timestamp_value)) elif field == 'key_value': v3_ref = entity_pb.Reference() self.v1_to_v3_reference(v1_value.key_value, v3_ref) self.v3_reference_to_v3_property_value(v3_ref, v3_value) elif field == 'string_value': v3_value.set_stringvalue(v1_value.string_value.encode('utf-8')) elif field == 'blob_value': v3_value.set_stringvalue(v1_value.blob_value) elif field == 'entity_value': v1_entity_value = v1_value.entity_value v1_meaning = v1_value.meaning if v1_meaning == MEANING_PREDEFINED_ENTITY_USER: self.v1_entity_to_v3_user_value(v1_entity_value, v3_value.mutable_uservalue()) else: v3_entity_value = entity_pb.EntityProto() self.v1_to_v3_entity(v1_entity_value, v3_entity_value) v3_value.set_stringvalue(v3_entity_value.SerializePartialToString()) elif field == 'geo_point_value': point_value = v3_value.mutable_pointvalue() point_value.set_x(v1_value.geo_point_value.latitude) point_value.set_y(v1_value.geo_point_value.longitude) elif field == 'null_value': pass else: # No value set pass def v3_property_to_v1_value(self, v3_property, indexed, v1_value): """Converts a v3 Property to a v1 Value. Args: v3_property: an entity_pb.Property indexed: whether the v3 property is indexed v1_value: an googledatastore.Value to populate """ v1_value.Clear() v3_property_value = v3_property.value() v3_meaning = v3_property.meaning() v3_uri_meaning = None if v3_property.meaning_uri(): v3_uri_meaning = v3_property.meaning_uri() if not self.__is_v3_property_value_union_valid(v3_property_value): # Irreversible: Value with 2+ types will reduce to 1 type and discard # meanings. v3_meaning = None v3_uri_meaning = None elif v3_meaning == entity_pb.Property.NO_MEANING: v3_meaning = None elif not self.__is_v3_property_value_meaning_valid(v3_property_value, v3_meaning): # Irreversible: Invalid meaning will be discarded. v3_meaning = None is_zlib_value = False if v3_uri_meaning: if v3_uri_meaning == URI_MEANING_ZLIB: if v3_property_value.has_stringvalue(): is_zlib_value = True if v3_meaning != entity_pb.Property.BLOB: # Irreversible: Meaning will be lost. v3_meaning = entity_pb.Property.BLOB else: pass # Irreversible: Zlib uri meaning will be lost. else: pass # Irreversible: Non-zlib uri meaning will be lost. # Copy the typed value, if present. if v3_property.meaning() == entity_pb.Property.EMPTY_LIST: v1_value.array_value.values.extend([]) v3_meaning = None elif v3_property_value.has_booleanvalue(): v1_value.boolean_value = v3_property_value.booleanvalue() elif v3_property_value.has_int64value(): if (v3_meaning == entity_pb.Property.GD_WHEN and is_in_rfc_3339_bounds(v3_property_value.int64value())): googledatastore.helper.micros_to_timestamp( v3_property_value.int64value(), v1_value.timestamp_value) v3_meaning = None else: v1_value.integer_value = v3_property_value.int64value() elif v3_property_value.has_doublevalue(): v1_value.double_value = v3_property_value.doublevalue() elif v3_property_value.has_referencevalue(): v3_ref = entity_pb.Reference() self.__v3_reference_value_to_v3_reference( v3_property_value.referencevalue(), v3_ref) self.v3_to_v1_key(v3_ref, v1_value.key_value) elif v3_property_value.has_stringvalue(): if v3_meaning == entity_pb.Property.ENTITY_PROTO: serialized_entity_v3 = v3_property_value.stringvalue() v3_entity = entity_pb.EntityProto() # The v3 entity may have been serialized without a key, hence the # partial parse. v3_entity.ParsePartialFromString(serialized_entity_v3) self.v3_to_v1_entity(v3_entity, v1_value.entity_value) v3_meaning = None elif (v3_meaning == entity_pb.Property.BLOB or v3_meaning == entity_pb.Property.BYTESTRING): v1_value.blob_value = v3_property_value.stringvalue() # Only preserve meaning for unindexed BYTESTRING. if indexed or v3_meaning == entity_pb.Property.BLOB: v3_meaning = None else: string_value = v3_property_value.stringvalue() if is_valid_utf8(string_value): v1_value.string_value = string_value else: # The "string" is not a valid utf8 string. Convert it to a blob. v1_value.blob_value = string_value # Discard the meaning with the conversion, except meaning index. if v3_meaning != entity_pb.Property.INDEX_VALUE: v3_meaning = None # Irreversible: Non-utf8 "string" will change to blob (and lose # meaning). elif v3_property_value.has_pointvalue(): if v3_meaning != MEANING_GEORSS_POINT: v1_value.meaning = MEANING_POINT_WITHOUT_V3_MEANING point_value = v3_property_value.pointvalue() v1_value.geo_point_value.latitude = point_value.x() v1_value.geo_point_value.longitude = point_value.y() v3_meaning = None elif v3_property_value.has_uservalue(): self.v3_user_value_to_v1_entity(v3_property_value.uservalue(), v1_value.entity_value) v1_value.meaning = MEANING_PREDEFINED_ENTITY_USER v3_meaning = None else: # v3 value is null. v1_value.null_value = googledatastore.NULL_VALUE if is_zlib_value: v1_value.meaning = MEANING_ZLIB elif v3_meaning: v1_value.meaning = v3_meaning # Set v1 indexed only if the current (default) v1 value is unhelpful. if indexed == v1_value.exclude_from_indexes: v1_value.exclude_from_indexes = not indexed def v1_to_v3_property(self, property_name, is_multi, is_projection, v1_value, v3_property): """Converts info from a v1 Property to a v3 Property. v1_value must not have an array_value. Args: property_name: the name of the property, unicode is_multi: whether the property contains multiple values is_projection: whether the property is projected v1_value: an googledatastore.Value v3_property: an entity_pb.Property to populate """ v1_value_type = v1_value.WhichOneof('value_type') if v1_value_type == 'array_value': assert False, 'v1 array_value not convertable to v3' v3_property.Clear() v3_property.set_name(property_name.encode('utf-8')) v3_property.set_multiple(is_multi) self.v1_value_to_v3_property_value(v1_value, v3_property.mutable_value()) v1_meaning = None if v1_value.meaning: v1_meaning = v1_value.meaning if v1_value_type == 'timestamp_value': v3_property.set_meaning(entity_pb.Property.GD_WHEN) elif v1_value_type == 'blob_value': if v1_meaning == MEANING_ZLIB: v3_property.set_meaning_uri(URI_MEANING_ZLIB) if v1_meaning == entity_pb.Property.BYTESTRING: if not v1_value.exclude_from_indexes: pass # Irreversible: Blob with redundant byte string meaning will lose it # when converted back to v1. else: if not v1_value.exclude_from_indexes: v3_property.set_meaning(entity_pb.Property.BYTESTRING) else: v3_property.set_meaning(entity_pb.Property.BLOB) v1_meaning = None elif v1_value_type == 'entity_value': if v1_meaning != MEANING_PREDEFINED_ENTITY_USER: v3_property.set_meaning(entity_pb.Property.ENTITY_PROTO) v1_meaning = None elif v1_value_type == 'geo_point_value': if v1_meaning != MEANING_POINT_WITHOUT_V3_MEANING: v3_property.set_meaning(MEANING_GEORSS_POINT) v1_meaning = None elif v1_value_type == 'integer_value': if v1_meaning == MEANING_NON_RFC_3339_TIMESTAMP: v3_property.set_meaning(entity_pb.Property.GD_WHEN) v1_meaning = None else: # Null or primitive value; do nothing. pass if v1_meaning is not None: v3_property.set_meaning(v1_meaning) # If the value is in a projection, we should override the meaning. if is_projection: v3_property.set_meaning(entity_pb.Property.INDEX_VALUE) def __add_v1_property_to_entity(self, v1_entity, v3_property, indexed): """Adds a v1 Property to an entity or modifies an existing one. Args: v1_entity: an googledatastore.Entity v3_property: an entity_pb.Property to convert to v1 and add to the dict indexed: whether the property is indexed """ property_name = v3_property.name() v1_value = v1_entity.properties[property_name] if v3_property.multiple(): self.v3_property_to_v1_value(v3_property, indexed, v1_value.array_value.values.add()) else: self.v3_property_to_v1_value(v3_property, indexed, v1_value) def __get_v1_integer_value(self, v1_value): """Returns an integer value from a v1 Value. Args: v1_value: a googledatastore.Value Returns: an integer Raises: InvalidConversionError: if the value doesn't contain an integer value """ check_conversion(v1_value.HasField('integer_value'), 'Value does not contain an integer value.') return v1_value.integer_value def __get_v1_double_value(self, v1_value): """Returns a double value from a v1 Value. Args: v1_value: an googledatastore.Value Returns: a double Raises: InvalidConversionError: if the value doesn't contain a double value """ check_conversion(v1_value.HasField('double_value'), 'Value does not contain a double value.') return v1_value.double_value def __get_v1_string_value(self, v1_value): """Returns an string value from a v1 Value. Args: v1_value: an googledatastore.Value Returns: a string Throws: InvalidConversionError: if the value doesn't contain a string value """ check_conversion(v1_value.HasField('string_value'), 'Value does not contain a string value.') return v1_value.string_value.encode('utf-8') def __v1_integer_property(self, entity, name, value, indexed): """Populates a single-integer-valued v1 Property. Args: entity: the entity to populate name: the name of the property to populate value: the integer value of the property indexed: whether the value should be indexed """ v1_value = entity.properties[name] v1_value.exclude_from_indexes = not indexed v1_value.integer_value = value def __v1_double_property(self, entity, name, value, indexed): """Populates a single-double-valued v1 Property. Args: entity: the entity to populate name: the name of the property to populate value: the double value of the property indexed: whether the value should be indexed """ v1_value = entity.properties[name] v1_value.exclude_from_indexes = not indexed v1_value.double_value = value def __v1_string_property(self, entity, name, value, indexed): """Populates a single-string-valued v1 Property. Args: entity: the entity to populate name: the name of the property to populate value: the string value of the property indexed: whether the value should be indexed """ v1_value = entity.properties[name] v1_value.exclude_from_indexes = not indexed v1_value.string_value = value def v1_entity_to_v3_user_value(self, v1_user_entity, v3_user_value): """Converts a v1 user Entity to a v3 UserValue. Args: v1_user_entity: an googledatastore.Entity representing a user v3_user_value: an entity_pb.Property_UserValue to populate """ v3_user_value.Clear() properties = v1_user_entity.properties # Email and auth domain are required to be present in the v1 entity. v3_user_value.set_email(self.__get_v1_string_value( properties[PROPERTY_NAME_EMAIL])) v3_user_value.set_auth_domain(self.__get_v1_string_value( properties[PROPERTY_NAME_AUTH_DOMAIN])) if PROPERTY_NAME_USER_ID in properties: v3_user_value.set_obfuscated_gaiaid( self.__get_v1_string_value(properties[PROPERTY_NAME_USER_ID])) if PROPERTY_NAME_INTERNAL_ID in properties: v3_user_value.set_gaiaid(self.__get_v1_integer_value( properties[PROPERTY_NAME_INTERNAL_ID])) else: # Field gaiaid is required. Set it to a default value. v3_user_value.set_gaiaid(0) if PROPERTY_NAME_FEDERATED_IDENTITY in properties: v3_user_value.set_federated_identity( self.__get_v1_string_value(properties[ PROPERTY_NAME_FEDERATED_IDENTITY])) if PROPERTY_NAME_FEDERATED_PROVIDER in properties: v3_user_value.set_federated_provider( self.__get_v1_string_value(properties[ PROPERTY_NAME_FEDERATED_PROVIDER])) def v3_user_value_to_v1_entity(self, v3_user_value, v1_entity): """Converts a v3 UserValue to a v1 user Entity. Args: v3_user_value: an entity_pb.Property_UserValue v1_entity: an googledatastore.Entity to populate """ v1_entity.Clear() self.__v1_string_property(v1_entity, PROPERTY_NAME_EMAIL, v3_user_value.email(), False) self.__v1_string_property(v1_entity, PROPERTY_NAME_AUTH_DOMAIN, v3_user_value.auth_domain(), False) # Ignore nickname. if v3_user_value.gaiaid() != 0: self.__v1_integer_property( v1_entity, PROPERTY_NAME_INTERNAL_ID, v3_user_value.gaiaid(), False) if v3_user_value.has_obfuscated_gaiaid(): self.__v1_string_property( v1_entity, PROPERTY_NAME_USER_ID, v3_user_value.obfuscated_gaiaid(), False) if v3_user_value.has_federated_identity(): self.__v1_string_property( v1_entity, PROPERTY_NAME_FEDERATED_IDENTITY, v3_user_value.federated_identity(), False) if v3_user_value.has_federated_provider(): self.__v1_string_property( v1_entity, PROPERTY_NAME_FEDERATED_PROVIDER, v3_user_value.federated_provider(), False) def __is_v3_property_value_union_valid(self, v3_property_value): """Returns True if the v3 PropertyValue's union is valid.""" num_sub_values = (v3_property_value.has_booleanvalue() + v3_property_value.has_int64value() + v3_property_value.has_doublevalue() + v3_property_value.has_referencevalue() + v3_property_value.has_stringvalue() + v3_property_value.has_pointvalue() + v3_property_value.has_uservalue()) return num_sub_values <= 1 def __is_v3_property_value_meaning_valid(self, v3_property_value, v3_meaning): """Returns True if the v3 PropertyValue's type value matches its meaning.""" def ReturnTrue(): return True def HasStringValue(): return v3_property_value.has_stringvalue() def HasInt64Value(): return v3_property_value.has_int64value() def HasPointValue(): return v3_property_value.has_pointvalue() def ReturnFalse(): return False value_checkers = { entity_pb.Property.NO_MEANING: ReturnTrue, entity_pb.Property.INDEX_VALUE: ReturnTrue, entity_pb.Property.BLOB: HasStringValue, entity_pb.Property.TEXT: HasStringValue, entity_pb.Property.BYTESTRING: HasStringValue, entity_pb.Property.ATOM_CATEGORY: HasStringValue, entity_pb.Property.ATOM_LINK: HasStringValue, entity_pb.Property.ATOM_TITLE: HasStringValue, entity_pb.Property.ATOM_CONTENT: HasStringValue, entity_pb.Property.ATOM_SUMMARY: HasStringValue, entity_pb.Property.ATOM_AUTHOR: HasStringValue, entity_pb.Property.GD_EMAIL: HasStringValue, entity_pb.Property.GD_IM: HasStringValue, entity_pb.Property.GD_PHONENUMBER: HasStringValue, entity_pb.Property.GD_POSTALADDRESS: HasStringValue, entity_pb.Property.BLOBKEY: HasStringValue, entity_pb.Property.ENTITY_PROTO: HasStringValue, entity_pb.Property.GD_WHEN: HasInt64Value, entity_pb.Property.GD_RATING: HasInt64Value, entity_pb.Property.GEORSS_POINT: HasPointValue, entity_pb.Property.EMPTY_LIST: ReturnTrue, } default = ReturnFalse return value_checkers.get(v3_meaning, default)() def __v3_reference_has_id_or_name(self, v3_ref): """Determines if a v3 Reference specifies an ID or name. Args: v3_ref: an entity_pb.Reference Returns: boolean: True if the last path element specifies an ID or name. """ path = v3_ref.path() assert path.element_size() >= 1 last_element = path.element(path.element_size() - 1) return last_element.has_id() or last_element.has_name() def v3_reference_to_group(self, v3_ref, group): """Converts a v3 Reference to a v3 Path representing the entity group. The entity group is represented as an entity_pb.Path containing only the first element in the provided Reference. Args: v3_ref: an entity_pb.Reference group: an entity_pb.Path to populate """ group.Clear() path = v3_ref.path() assert path.element_size() >= 1 group.add_element().CopyFrom(path.element(0)) def v3_reference_to_v3_property_value(self, v3_ref, v3_property_value): """Converts a v3 Reference to a v3 PropertyValue. Args: v3_ref: an entity_pb.Reference v3_property_value: an entity_pb.PropertyValue to populate """ v3_property_value.Clear() reference_value = v3_property_value.mutable_referencevalue() if v3_ref.has_app(): reference_value.set_app(v3_ref.app()) if v3_ref.has_name_space(): reference_value.set_name_space(v3_ref.name_space()) for v3_path_element in v3_ref.path().element_list(): v3_ref_value_path_element = reference_value.add_pathelement() if v3_path_element.has_type(): v3_ref_value_path_element.set_type(v3_path_element.type()) if v3_path_element.has_id(): v3_ref_value_path_element.set_id(v3_path_element.id()) if v3_path_element.has_name(): v3_ref_value_path_element.set_name(v3_path_element.name()) def __v3_reference_value_to_v3_reference(self, v3_ref_value, v3_ref): """Converts a v3 ReferenceValue to a v3 Reference. Args: v3_ref_value: an entity_pb.PropertyValue_ReferenceValue v3_ref: an entity_pb.Reference to populate """ v3_ref.Clear() if v3_ref_value.has_app(): v3_ref.set_app(v3_ref_value.app()) if v3_ref_value.has_name_space(): v3_ref.set_name_space(v3_ref_value.name_space()) for v3_ref_value_path_element in v3_ref_value.pathelement_list(): v3_path_element = v3_ref.mutable_path().add_element() if v3_ref_value_path_element.has_type(): v3_path_element.set_type(v3_ref_value_path_element.type()) if v3_ref_value_path_element.has_id(): v3_path_element.set_id(v3_ref_value_path_element.id()) if v3_ref_value_path_element.has_name(): v3_path_element.set_name(v3_ref_value_path_element.name()) class _QueryConverter(object): """Base converter for v3 and v1 queries.""" def __init__(self, entity_converter): self._entity_converter = entity_converter def get_entity_converter(self): return self._entity_converter def _v3_filter_to_v1_property_filter(self, v3_filter, v1_property_filter): """Converts a v3 Filter to a v1 PropertyFilter. Args: v3_filter: a datastore_pb.Filter v1_property_filter: a googledatastore.PropertyFilter to populate Raises: InvalidConversionError if the filter cannot be converted """ check_conversion(v3_filter.property_size() == 1, 'invalid filter') check_conversion(v3_filter.op() <= 5, 'unsupported filter op: %d' % v3_filter.op()) v1_property_filter.Clear() v1_property_filter.op = v3_filter.op() v1_property_filter.property.name = v3_filter.property(0).name() self._entity_converter.v3_property_to_v1_value( v3_filter.property(0), True, v1_property_filter.value) def _v3_query_to_v1_ancestor_filter(self, v3_query, v1_property_filter): """Converts a v3 Query to a v1 ancestor PropertyFilter. Args: v3_query: a datastore_pb.Query v1_property_filter: a googledatastore.PropertyFilter to populate """ v1_property_filter.Clear() v1_property_filter.set_operator( v3_query.shallow() and googledatastore.PropertyFilter.HAS_PARENT or googledatastore.PropertyFilter.HAS_ANCESTOR) prop = v1_property_filter.property prop.set_name(PROPERTY_NAME_KEY) if v3_query.has_ancestor(): self._entity_converter.v3_to_v1_key( v3_query.ancestor(), v1_property_filter.value.mutable_key_value) else: v1_property_filter.value.null_value = googledatastore.NULL_VALUE def v3_order_to_v1_order(self, v3_order, v1_order): """Converts a v3 Query order to a v1 PropertyOrder. Args: v3_order: a datastore_pb.Query.Order v1_order: a googledatastore.PropertyOrder to populate """ v1_order.property.name = v3_order.property() if v3_order.has_direction(): v1_order.direction = v3_order.direction() def _v3_filter_to_v4_property_filter(self, v3_filter, v4_property_filter): """Converts a v3 Filter to a v4 PropertyFilter. Args: v3_filter: a datastore_pb.Filter v4_property_filter: a datastore_v4_pb.PropertyFilter to populate Raises: InvalidConversionError if the filter cannot be converted """ check_conversion(v3_filter.property_size() == 1, 'invalid filter') check_conversion(v3_filter.op() <= 5, 'unsupported filter op: %d' % v3_filter.op()) v4_property_filter.Clear() v4_property_filter.set_operator(v3_filter.op()) v4_property_filter.mutable_property().set_name(v3_filter.property(0).name()) self._entity_converter.v3_property_to_v4_value( v3_filter.property(0), True, v4_property_filter.mutable_value()) def _v3_query_to_v4_ancestor_filter(self, v3_query, v4_property_filter): """Converts a v3 Query to a v4 ancestor PropertyFilter. Args: v3_query: a datastore_pb.Query v4_property_filter: a datastore_v4_pb.PropertyFilter to populate """ v4_property_filter.Clear() v4_property_filter.set_operator( datastore_v4_pb.PropertyFilter.HAS_ANCESTOR) prop = v4_property_filter.mutable_property() prop.set_name(PROPERTY_NAME_KEY) self._entity_converter.v3_to_v4_key( v3_query.ancestor(), v4_property_filter.mutable_value().mutable_key_value()) def v3_order_to_v4_order(self, v3_order, v4_order): """Converts a v3 Query order to a v4 PropertyOrder. Args: v3_order: a datastore_pb.Query.Order v4_order: a datastore_v4_pb.PropertyOrder to populate """ v4_order.mutable_property().set_name(v3_order.property()) if v3_order.has_direction(): v4_order.set_direction(v3_order.direction()) def get_entity_converter(id_resolver=None): """Returns a converter for v3 and v1 entities and keys. Args: id_resolver: An IdResolver for project id resolution. """ id_resolver = id_resolver or _IdentityIdResolver() return _EntityConverter(id_resolver)
36.298438
84
0.704222
f368eebfe6bf29fe1dc0c0cefb40068da9bb8491
220
py
Python
_draft/x_7_5-c.py
ofl/kuku2
7247fb1862d917d23258ebe7a93dca5939433225
[ "MIT" ]
null
null
null
_draft/x_7_5-c.py
ofl/kuku2
7247fb1862d917d23258ebe7a93dca5939433225
[ "MIT" ]
1
2021-11-13T08:03:04.000Z
2021-11-13T08:03:04.000Z
_draft/x_7_5-c.py
ofl/kuku2
7247fb1862d917d23258ebe7a93dca5939433225
[ "MIT" ]
null
null
null
# x_7_5 # # import re text_1 = 'ももさん' text_2 = 'ももたろさん' a = r'もも.*さん' b = r'もも.+さん' print(bool(re.match(a, text_1))) print(bool(re.match(a, text_2))) print(bool(re.match(b, text_1))) print(bool(re.match(b, text_2)))
12.941176
32
0.631818
cf5684d859e38932f55c117bc86aa0a9f73d2f1e
356
py
Python
Exercises/Exercise2EspecialParameters.py
davidavg/OOP_Python
ca4e8376a50b9c81b5ac18c466bd8d147bdbe679
[ "MIT" ]
null
null
null
Exercises/Exercise2EspecialParameters.py
davidavg/OOP_Python
ca4e8376a50b9c81b5ac18c466bd8d147bdbe679
[ "MIT" ]
null
null
null
Exercises/Exercise2EspecialParameters.py
davidavg/OOP_Python
ca4e8376a50b9c81b5ac18c466bd8d147bdbe679
[ "MIT" ]
null
null
null
''' Created on Aug 13, 2018 @author: david avalos ''' class Calculator: def __init__(self, a, b): self.a = a self.b = b def addition(self): print(self.a+self.b) def subtraction(self): print(self.a-self.b) obj = Calculator(5,2) obj.addition() obj.subtraction()
14.833333
29
0.511236
b19d012e18327e9821be1dcb646b2e9193ec47f5
4,301
py
Python
functions/pairing.py
saulius-lipkevicius/Transformed_GA
599bbcd93f7e59417586606e04945d860447b2c3
[ "MIT" ]
null
null
null
functions/pairing.py
saulius-lipkevicius/Transformed_GA
599bbcd93f7e59417586606e04945d860447b2c3
[ "MIT" ]
null
null
null
functions/pairing.py
saulius-lipkevicius/Transformed_GA
599bbcd93f7e59417586606e04945d860447b2c3
[ "MIT" ]
null
null
null
import pandas as pd import numpy as np from sklearn.utils import shuffle import argparse import os pd.options.mode.chained_assignment = None # default='warn' parser = argparse.ArgumentParser(description='Breeder acquires new aptamers...') parser.add_argument("--p", "--path_initial_aptamers" , help="Path to evaluatedd aptamers with M.A.W.S" , type=str) parser.add_argument("--h", "--later" , help="Path to evaluatedd aptamers with M.A.W.S" , type=str) parser.add_argument("--o", "--output_path" , help="Path to save new generation of aptamers" , type=str) parser.add_argument("--i", "--iter" , help="The iteration number" , type=str) parser.add_argument("--l", "--labeled" , help="Is data labeled" , action="store_true") args = parser.parse_args() def pairWithLabel(df): apt1 = pd.DataFrame(columns=['Sequence1', 'Entropy1']) apt2 = pd.DataFrame(columns=['Sequence2', 'Entropy2']) for first in range(0,len(df)): x = pd.DataFrame({'Sequence1':df.loc[first,'Sequence'],'Entropy1':df.loc[first,'Entropy']},index = range(1)) apt1 = apt1.append([x]*(len(df) - first - 1), ignore_index=True) for second in range(1,len(df) + 1): y = pd.DataFrame({'Sequence2':df.loc[second:,'Sequence'],'Entropy2':df.loc[second:,'Entropy']}) apt2 = apt2.append(y, ignore_index=True) dataset = apt1.join(apt2) dataset["Label"] = np.where(dataset.eval("Entropy1 >= Entropy2"), 1, 0) dataset = shuffle(dataset) return dataset[['Sequence1', 'Sequence2', 'Label']] def pairWithoutLabel(): apt1 = pd.DataFrame(columns=['Sequence1']) apt2 = pd.DataFrame(columns=['Sequence2']) df = pd.read_csv(args.h) for first in range(0,len(df)): x = pd.DataFrame.from_records({'Sequence1':[df.loc[first, 'Sequence']]}) apt1 = apt1.append([x]*(len(df) - first - 1), ignore_index = True) y = pd.DataFrame({'Sequence2':df.loc[first+1:,'Sequence']}) apt2 = apt2.append(y, ignore_index=True) dataset = apt1.join(apt2) return dataset[['Sequence1', 'Sequence2']] def balanceData(dataset): counts = dataset['Label'].value_counts() if counts.loc[0] >= counts.loc[1]: change = int((counts.loc[0] - counts.loc[1])/2) value = 0 else: change = int((counts.loc[1] - counts.loc[0])/2) value = 1 zeros = dataset[(dataset['Label'] == value)] zerosIndexes = zeros.sample(change).index zeros.loc[zerosIndexes,'Label'] = int(abs(value - 1)) dataset.update(zeros) dataset['Label'] = dataset['Label'].astype(int) return dataset def main(): if args.l: df = pd.read_csv(args.p) path = './datasets/training/' # First of all we pair up every aptamer together, then balance number of accurancies of classes 1 and 0 to train those equally data = pairWithLabel(df) dataset = balanceData(data) # 80% training, 10% validating, 10% testing train, test, val = np.split(dataset, [int(.8*len(dataset)), int(.9*len(dataset))]) # Find the top N aptamers from the score_sequences.csv top = df.nlargest(200, 'Entropy') print("Migrating preprocessed training data to {}".format(path)) dataset.to_csv('./datasets/training/full_comparison.csv', encoding='utf-8', index=False) train.to_csv('./datasets/training/train.csv', encoding='utf-8', index=False) test.to_csv('./datasets/training/test.csv', encoding='utf-8', index=False) val.to_csv('./datasets/training/val.csv', encoding='utf-8', index=False) folder = './datasets/ga_interim_data/{}'.format(args.o) if not os.path.exists(folder): os.mkdir(folder) top.to_csv('{}/top_iter_0.csv'.format(folder), encoding='utf-8', index=False) else: dataset = pairWithoutLabel() print("Saving new generation {} to {}".format(args.i, args.o)) dataset.to_csv('{}/iteration_{}.csv'.format(args.o, args.i), encoding='utf-8', index=False) if __name__ == "__main__": main()
34.96748
135
0.601721
ee42d55efee551b7bc9cc93e9d51c60ffe056fc7
3,098
py
Python
arakat-core/examples/demo/SimpleExample.py
sopaoglu/arakat
efa32fcc93076801cad24ab850ecdf9048a824e8
[ "Apache-2.0" ]
23
2018-08-18T17:32:40.000Z
2021-10-05T22:57:06.000Z
arakat-core/examples/demo/SimpleExample.py
sopaoglu/arakat
efa32fcc93076801cad24ab850ecdf9048a824e8
[ "Apache-2.0" ]
23
2018-09-22T08:47:07.000Z
2021-08-04T07:08:34.000Z
arakat-core/examples/demo/SimpleExample.py
sopaoglu/arakat
efa32fcc93076801cad24ab850ecdf9048a824e8
[ "Apache-2.0" ]
22
2018-08-17T10:33:31.000Z
2021-10-05T22:57:07.000Z
from src.pipeline_generator.generators import PipelineGenerator data={ "graph":{ "nodes": { "node1": { "id": "node1", "parent": "task1", "name": "Batch Read from CSV", "category": 0, "node_id": 47, "node_type": 0, "family": 0, "compatible_with_stream": False, "compatible_stream_output_modes": [], "compatible_with_spark_pipeline": False, "is_splitter": False, "produces_model": False, "can_infer_schema": True, "file_type": "csv", "parameters": { "path": {"value": "hdfs://namenode:9000/Demo/SimpleExample/data/wine_data.csv", "type": "string"}, "header": {"value": False, "type": "boolean"}, "sep": {"value": ",", "type": "string"}, "quote": {"value": '\\\"', "type": "string"} } }, "node2": { "id": "node2", "parent": "task1", "node_id": 7, "name": "Descriptive Statistics", "category": 14, "node_type": 0, "family": 5, "compatible_with_stream": False, "compatible_stream_output_modes": [], "compatible_with_spark_pipeline": False, "is_splitter": False, "produces_model": False, "ddfo_name": "describe", "parameters": {} }, "node3": { "id": "node3", "parent": "task1", "node_id": 61, "name": "Batch Write to Parquet", "category": 1, "node_type": 0, "family": 2, "compatible_with_stream": False, "compatible_stream_output_modes": [], "compatible_with_spark_pipeline": False, "is_splitter": False, "produces_model": False, "file_type": "parquet", "parameters": { "path": {"value": "hdfs://namenode:9000/Demo/SimpleExample/results/wine_statistics.parquet", "type": "string"} } }, "task1": { "id": "task1", "parent": None, "node_type": 1 } }, "edges": { "node1-node2": {"type": "dataframe"}, "node2-node3": {"type": "dataframe"} } }, "dag_properties": { "app_id": "Demo_SimpleExample", "bash_command": "sh /usr/local/shell_scripts/run.sh", "schedule_interval": "@once", "default_args": { "owner": "airflow", "start_date": "01/01/2018" } } } code_info, success, errors, additional_info = PipelineGenerator.generate_pipeline(data["graph"], data["dag_properties"])
35.609195
130
0.428018
aa1d71029c68cc182a8dd3338a23085fa6c2514b
15,656
py
Python
buildozer/targets/ios.py
pavelsof/buildozer
4333b9c0480aa339f9eccfa82a5a02f4ebc81198
[ "MIT" ]
null
null
null
buildozer/targets/ios.py
pavelsof/buildozer
4333b9c0480aa339f9eccfa82a5a02f4ebc81198
[ "MIT" ]
null
null
null
buildozer/targets/ios.py
pavelsof/buildozer
4333b9c0480aa339f9eccfa82a5a02f4ebc81198
[ "MIT" ]
null
null
null
''' iOS target, based on kivy-ios project ''' import sys if sys.platform != 'darwin': raise NotImplementedError('Windows platform not yet working for Android') import plistlib from buildozer import BuildozerCommandException from buildozer.target import Target, no_config from os.path import join, basename, expanduser, realpath from getpass import getpass PHP_TEMPLATE = ''' <?php // credits goes to http://jeffreysambells.com/2010/06/22/ios-wireless-app-distribution $ipas = glob('*.ipa'); $provisioningProfiles = glob('*.mobileprovision'); $plists = glob('*.plist'); $sr = stristr( $_SERVER['SCRIPT_URI'], '.php' ) === false ? $_SERVER['SCRIPT_URI'] : dirname($_SERVER['SCRIPT_URI']) . '/'; $provisioningProfile = $sr . $provisioningProfiles[0]; $ipa = $sr . $ipas[0]; $itmsUrl = urlencode( $sr . 'index.php?plist=' . str_replace( '.plist', '', $plists[0] ) ); if ($_GET['plist']) { $plist = file_get_contents( dirname(__FILE__) . DIRECTORY_SEPARATOR . preg_replace( '/![A-Za-z0-9-_]/i', '', $_GET['plist']) . '.plist' ); $plist = str_replace('_URL_', $ipa, $plist); header('content-type: application/xml'); echo $plist; die(); } ?><!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <html> <head> <title>Install {appname}</title> <style type="text/css"> li { padding: 1em; } </style> </head> <body> <ul> <li><a href="<? echo $provisioningProfile; ?>">Install Team Provisioning File</a></li> <li><a href="itms-services://?action=download-manifest&url=<? echo $itmsUrl; ?>"> Install Application</a></li> </ul> </body> </html> ''' class TargetIos(Target): targetname = "ios" def check_requirements(self): checkbin = self.buildozer.checkbin cmd = self.buildozer.cmd checkbin('Xcode xcodebuild', 'xcodebuild') checkbin('Xcode xcode-select', 'xcode-select') checkbin('Git git', 'git') checkbin('Cython cython', 'cython') checkbin('pkg-config', 'pkg-config') checkbin('autoconf', 'autoconf') checkbin('automake', 'automake') checkbin('libtool', 'libtool') self.buildozer.debug('Check availability of a iPhone SDK') sdk = cmd('xcodebuild -showsdks | fgrep "iphoneos" |' 'tail -n 1 | awk \'{print $2}\'', get_stdout=True)[0] if not sdk: raise Exception( 'No iPhone SDK found. Please install at least one iOS SDK.') else: self.buildozer.debug(' -> found %r' % sdk) self.buildozer.debug('Check Xcode path') xcode = cmd('xcode-select -print-path', get_stdout=True)[0] if not xcode: raise Exception('Unable to get xcode path') self.buildozer.debug(' -> found {0}'.format(xcode)) def install_platform(self): self.ios_dir = self.install_or_update_repo('kivy-ios', platform='ios') self.ios_deploy_dir = self.install_or_update_repo('ios-deploy', platform='ios', branch='1.7.0', owner='phonegap') def get_available_packages(self): available_modules = self.buildozer.cmd( './toolchain.py recipes --compact', cwd=self.ios_dir, get_stdout=True)[0] return available_modules.splitlines()[0].split() def compile_platform(self): # for ios, the compilation depends really on the app requirements. # compile the distribution only if the requirements changed. last_requirements = self.buildozer.state.get('ios.requirements', '') app_requirements = self.buildozer.config.getlist('app', 'requirements', '') # we need to extract the requirements that kivy-ios knows about available_modules = self.get_available_packages() onlyname = lambda x: x.split('==')[0] ios_requirements = [x for x in app_requirements if onlyname(x) in available_modules] need_compile = 0 if last_requirements != ios_requirements: need_compile = 1 # len('requirements.source.') == 20, so use name[20:] source_dirs = {'{}_DIR'.format(name[20:].upper()): realpath(expanduser(value)) for name, value in self.buildozer.config.items('app') if name.startswith('requirements.source.')} if source_dirs: need_compile = 1 self.buildozer.environ.update(source_dirs) self.buildozer.info('Using custom source dirs:\n {}'.format( '\n '.join(['{} = {}'.format(k, v) for k, v in source_dirs.items()]))) if not need_compile: self.buildozer.info('Distribution already compiled, pass.') return modules_str = ' '.join(ios_requirements) self.buildozer.cmd('./toolchain.py build {}'.format(modules_str), cwd=self.ios_dir) if not self.buildozer.file_exists(self.ios_deploy_dir, 'ios-deploy'): self.buildozer.cmd('make ios-deploy', cwd=self.ios_deploy_dir) self.buildozer.state['ios.requirements'] = ios_requirements self.buildozer.state.sync() def _get_package(self): config = self.buildozer.config package_domain = config.getdefault('app', 'package.domain', '') package = config.get('app', 'package.name') if package_domain: package = package_domain + '.' + package return package.lower() def build_package(self): self._unlock_keychain() # create the project app_name = self.buildozer.namify(self.buildozer.config.get('app', 'package.name')) ios_frameworks = self.buildozer.config.getlist('app', 'ios.frameworks', '') frameworks_cmd = '' for framework in ios_frameworks: frameworks_cmd += '--add-framework={} '.format(framework) self.app_project_dir = join(self.ios_dir, '{0}-ios'.format(app_name.lower())) if not self.buildozer.file_exists(self.app_project_dir): create_cmd = './toolchain.py create {0}{1} {2}'.format(frameworks_cmd, app_name, self.buildozer.app_dir) self.buildozer.cmd(create_cmd, cwd=self.ios_dir) else: update_cmd = './toolchain.py update {0}{1}-ios'.format(frameworks_cmd, app_name) self.buildozer.cmd(update_cmd, cwd=self.ios_dir) # fix the plist plist_fn = '{}-Info.plist'.format(app_name.lower()) plist_rfn = join(self.app_project_dir, plist_fn) version = self.buildozer.get_version() self.buildozer.info('Update Plist {}'.format(plist_fn)) plist = plistlib.readPlist(plist_rfn) plist['CFBundleIdentifier'] = self._get_package() plist['CFBundleShortVersionString'] = version plist['CFBundleVersion'] = '{}.{}'.format(version, self.buildozer.build_id) # add icons self._create_icons() # ok, write the modified plist. plistlib.writePlist(plist, plist_rfn) mode = 'Debug' if self.build_mode == 'debug' else 'Release' self.buildozer.cmd('xcodebuild -configuration {} ENABLE_BITCODE=NO clean build'.format(mode), cwd=self.app_project_dir) ios_app_dir = '{app_lower}-ios/build/{mode}-iphoneos/{app_lower}.app'.format( app_lower=app_name.lower(), mode=mode) self.buildozer.state['ios:latestappdir'] = ios_app_dir key = 'ios.codesign.{}'.format(self.build_mode) ioscodesign = self.buildozer.config.getdefault('app', key, '') if not ioscodesign: self.buildozer.error('Cannot create the IPA package without' ' signature. You must fill the "{}" token.'.format(key)) return elif ioscodesign[0] not in ('"', "'"): ioscodesign = '"{}"'.format(ioscodesign) intermediate_dir = join(self.ios_dir, '{}-{}.intermediates'.format(app_name, version)) xcarchive = join(intermediate_dir, '{}-{}.xcarchive'.format( app_name, version)) ipa_name = '{}-{}.ipa'.format(app_name, version) ipa_tmp = join(intermediate_dir, ipa_name) ipa = join(self.buildozer.bin_dir, ipa_name) build_dir = join(self.ios_dir, '{}-ios'.format(app_name.lower())) self.buildozer.rmdir(intermediate_dir) self.buildozer.info('Creating archive...') self.buildozer.cmd(( '/usr/bin/xcodebuild' ' -alltargets' ' -configuration {mode}' ' -scheme {scheme}' ' -archivePath "{xcarchive}"' ' archive' ' ENABLE_BITCODE=NO' ).format(mode=mode, xcarchive=xcarchive, scheme=app_name.lower()), cwd=build_dir) self.buildozer.info('Creating IPA...') self.buildozer.cmd(( '/usr/bin/xcodebuild' ' -exportArchive' ' -exportFormat IPA' ' -archivePath "{xcarchive}"' ' -exportPath "{ipa}"' ' CODE_SIGN_IDENTITY={ioscodesign}' ' ENABLE_BITCODE=NO' ).format(xcarchive=xcarchive, ipa=ipa_tmp, ioscodesign=ioscodesign), cwd=build_dir) self.buildozer.info('Moving IPA to bin...') self.buildozer.file_rename(ipa_tmp, ipa) self.buildozer.info('iOS packaging done!') self.buildozer.info('IPA {0} available in the bin directory'.format( basename(ipa))) self.buildozer.state['ios:latestipa'] = ipa self.buildozer.state['ios:latestmode'] = self.build_mode def cmd_deploy(self, *args): super().cmd_deploy(*args) self._run_ios_deploy(lldb=False) def cmd_run(self, *args): super().cmd_run(*args) self._run_ios_deploy(lldb=True) def cmd_xcode(self, *args): '''Open the xcode project. ''' app_name = self.buildozer.namify(self.buildozer.config.get('app', 'package.name')) app_name = app_name.lower() ios_dir = ios_dir = join(self.buildozer.platform_dir, 'kivy-ios') self.buildozer.cmd('open {}.xcodeproj'.format( app_name), cwd=join(ios_dir, '{}-ios'.format(app_name))) def _run_ios_deploy(self, lldb=False): state = self.buildozer.state if 'ios:latestappdir' not in state: self.buildozer.error( 'App not built yet. Run "debug" or "release" first.') return ios_app_dir = state.get('ios:latestappdir') if lldb: debug_mode = '-d' self.buildozer.info('Deploy and start the application') else: debug_mode = '' self.buildozer.info('Deploy the application') self.buildozer.cmd('{iosdeploy} {debug_mode} -b {app_dir}'.format( iosdeploy=join(self.ios_deploy_dir, 'ios-deploy'), debug_mode=debug_mode, app_dir=ios_app_dir), cwd=self.ios_dir, show_output=True) def _create_icons(self): icon = self.buildozer.config.getdefault('app', 'icon.filename', '') if not icon: return icon_fn = join(self.buildozer.app_dir, icon) if not self.buildozer.file_exists(icon_fn): self.buildozer.error('Icon {} does not exists'.format(icon_fn)) return self.buildozer.cmd('./toolchain.py icon {} {}'.format( self.app_project_dir, icon_fn), cwd=self.ios_dir) def check_configuration_tokens(self): errors = [] config = self.buildozer.config identity_debug = config.getdefault('app', 'ios.codesign.debug', '') identity_release = config.getdefault('app', 'ios.codesign.release', identity_debug) available_identities = self._get_available_identities() if not identity_debug: errors.append('[app] "ios.codesign.debug" key missing, ' 'you must give a certificate name to use.') elif identity_debug not in available_identities: errors.append('[app] identity {} not found. ' 'Check with list_identities'.format(identity_debug)) if not identity_release: errors.append('[app] "ios.codesign.release" key missing, ' 'you must give a certificate name to use.') elif identity_release not in available_identities: errors.append('[app] identity "{}" not found. ' 'Check with list_identities'.format(identity_release)) super().check_configuration_tokens(errors) @no_config def cmd_list_identities(self, *args): '''List the available identities to use for signing. ''' identities = self._get_available_identities() print('Available identities:') for x in identities: print(' - {}'.format(x)) def _get_available_identities(self): output = self.buildozer.cmd('security find-identity -v -p codesigning', get_stdout=True)[0] lines = output.splitlines()[:-1] lines = [u'"{}"'.format(x.split('"')[1]) for x in lines] return lines def _unlock_keychain(self): password_file = join(self.buildozer.buildozer_dir, '.ioscodesign') password = None if self.buildozer.file_exists(password_file): with open(password_file) as fd: password = fd.read() if not password: # no password available, try to unlock anyway... error = self.buildozer.cmd('security unlock-keychain -u', break_on_error=False)[2] if not error: return else: # password available, try to unlock error = self.buildozer.cmd('security unlock-keychain -p {}'.format( password), break_on_error=False, sensible=True)[2] if not error: return # we need the password to unlock. correct = False attempt = 3 while attempt: attempt -= 1 password = getpass('Password to unlock the default keychain:') error = self.buildozer.cmd('security unlock-keychain -p "{}"'.format( password), break_on_error=False, sensible=True)[2] if not error: correct = True break self.error('Invalid keychain password') if not correct: self.error('Unable to unlock the keychain, exiting.') raise BuildozerCommandException() # maybe user want to save it for further reuse? print( 'The keychain password can be saved in the build directory\n' 'As soon as the build directory will be cleaned, ' 'the password will be erased.') save = None while save is None: q = input('Do you want to save the password (Y/n): ') if q in ('', 'Y'): save = True elif q == 'n': save = False else: print('Invalid answer!') if save: with open(password_file, 'wb') as fd: fd.write(password.encode()) def get_target(buildozer): return TargetIos(buildozer)
38.561576
101
0.584568
97e3697051b7427e68dbe6844f86b01cdbbba969
2,403
py
Python
algorithms/backtrack/find_words.py
liyang101010/algorithms_lee
5ef8260f99f66be4a015dafcc71110bb679b7769
[ "MIT" ]
1
2020-03-08T13:33:24.000Z
2020-03-08T13:33:24.000Z
algorithms/backtrack/find_words.py
osbreeno/algorithms_lee
5ef8260f99f66be4a015dafcc71110bb679b7769
[ "MIT" ]
null
null
null
algorithms/backtrack/find_words.py
osbreeno/algorithms_lee
5ef8260f99f66be4a015dafcc71110bb679b7769
[ "MIT" ]
null
null
null
""" Given a matrix of words and a list of words to search, return a list of words that exists in the board This is Word Search II on LeetCode board = [ ['o','a','a','n'], ['e','t','a','e'], ['i','h','k','r'], ['i','f','l','v'] ] words = ["oath","pea","eat","rain"] """ def find_words(board, words): def backtrack(board, i, j, trie, pre, used, result): """ backtrack tries to build each words from the board and return all words found @param: board, the passed in board of characters @param: i, the row index @param: j, the column index @param: trie, a trie of the passed in words @param: pre, a buffer of currently build string that differs by recursion stack @param: used, a replica of the board except in booleans to state whether a character has been used @param: result, the resulting set that contains all words found @return: list of words found """ if '#' in trie: result.add(pre) if i < 0 or i >= len(board) or j < 0 or j >= len(board[0]): return if not used[i][j] and board[i][j] in trie: used[i][j] = True backtrack(board, i+1, j, trie[board[i][j]], pre+board[i][j], used, result) backtrack(board, i, j+1, trie[board[i][j]], pre+board[i][j], used, result) backtrack(board, i-1, j, trie[board[i][j]], pre+board[i][j], used, result) backtrack(board, i, j-1, trie[board[i][j]], pre+board[i][j], used, result) used[i][j] = False # make a trie structure that is essentially dictionaries of dictionaries # that map each character to a potential next character trie = {} for word in words: curr_trie = trie for char in word: if char not in curr_trie: curr_trie[char] = {} curr_trie = curr_trie[char] curr_trie['#'] = '#' # result is a set of found words since we do not want repeats result = set() used = [[False]*len(board[0]) for _ in range(len(board))] for i in range(len(board)): for j in range(len(board[0])): backtrack(board, i, j, trie, '', used, result) return list(result)
32.472973
76
0.5335
273da9995de0498bd7579202c87581cb8528f48a
524
py
Python
api/posts/migrations/0002_post_activity.py
Juangr1803/Foro-AgrodatAI
a8f23afd32d2ec60d25a03c97f5f353fd0ef5e0b
[ "MIT" ]
1
2021-04-19T16:13:39.000Z
2021-04-19T16:13:39.000Z
api/posts/migrations/0002_post_activity.py
Juangr1803/Foro-AgrodatAI
a8f23afd32d2ec60d25a03c97f5f353fd0ef5e0b
[ "MIT" ]
null
null
null
api/posts/migrations/0002_post_activity.py
Juangr1803/Foro-AgrodatAI
a8f23afd32d2ec60d25a03c97f5f353fd0ef5e0b
[ "MIT" ]
null
null
null
# Generated by Django 3.1.3 on 2020-12-12 16:32 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('activities', '0001_initial'), ('posts', '0001_initial'), ] operations = [ migrations.AddField( model_name='post', name='activity', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='activities.activity'), ), ]
24.952381
130
0.629771
2a24bad68d43732959883e348e64378dd0ec9929
27,295
py
Python
tests/examples/minlplib/no7_ar25_1.py
ouyang-w-19/decogo
52546480e49776251d4d27856e18a46f40c824a1
[ "MIT" ]
2
2021-07-03T13:19:10.000Z
2022-02-06T10:48:13.000Z
tests/examples/minlplib/no7_ar25_1.py
ouyang-w-19/decogo
52546480e49776251d4d27856e18a46f40c824a1
[ "MIT" ]
1
2021-07-04T14:52:14.000Z
2021-07-15T10:17:11.000Z
tests/examples/minlplib/no7_ar25_1.py
ouyang-w-19/decogo
52546480e49776251d4d27856e18a46f40c824a1
[ "MIT" ]
null
null
null
# MINLP written by GAMS Convert at 04/21/18 13:52:38 # # Equation counts # Total E G L N X C B # 270 2 2 266 0 0 0 0 # # Variable counts # x b i s1s s2s sc si # Total cont binary integer sos1 sos2 scont sint # 113 71 0 42 0 0 0 0 # FX 0 0 0 0 0 0 0 0 # # Nonzero counts # Total const NL DLL # 1061 1047 14 0 # # Reformulation has removed 1 variable and 1 equation from pyomo.environ import * model = m = ConcreteModel() m.i1 = Var(within=Integers,bounds=(0,100),initialize=0) m.i2 = Var(within=Integers,bounds=(0,100),initialize=0) m.i3 = Var(within=Integers,bounds=(0,100),initialize=0) m.i4 = Var(within=Integers,bounds=(0,100),initialize=0) m.i5 = Var(within=Integers,bounds=(0,100),initialize=0) m.i6 = Var(within=Integers,bounds=(0,100),initialize=0) m.i7 = Var(within=Integers,bounds=(0,100),initialize=0) m.i8 = Var(within=Integers,bounds=(0,100),initialize=0) m.i9 = Var(within=Integers,bounds=(0,100),initialize=0) m.i10 = Var(within=Integers,bounds=(0,100),initialize=0) m.i11 = Var(within=Integers,bounds=(0,100),initialize=0) m.i12 = Var(within=Integers,bounds=(0,100),initialize=0) m.i13 = Var(within=Integers,bounds=(0,100),initialize=0) m.i14 = Var(within=Integers,bounds=(0,100),initialize=0) m.i15 = Var(within=Integers,bounds=(0,100),initialize=0) m.i16 = Var(within=Integers,bounds=(0,100),initialize=0) m.i17 = Var(within=Integers,bounds=(0,100),initialize=0) m.i18 = Var(within=Integers,bounds=(0,100),initialize=0) m.i19 = Var(within=Integers,bounds=(0,100),initialize=0) m.i20 = Var(within=Integers,bounds=(0,100),initialize=0) m.i21 = Var(within=Integers,bounds=(0,100),initialize=0) m.i22 = Var(within=Integers,bounds=(0,100),initialize=0) m.i23 = Var(within=Integers,bounds=(0,100),initialize=0) m.i24 = Var(within=Integers,bounds=(0,100),initialize=0) m.i25 = Var(within=Integers,bounds=(0,100),initialize=0) m.i26 = Var(within=Integers,bounds=(0,100),initialize=0) m.i27 = Var(within=Integers,bounds=(0,100),initialize=0) m.i28 = Var(within=Integers,bounds=(0,100),initialize=0) m.i29 = Var(within=Integers,bounds=(0,100),initialize=0) m.i30 = Var(within=Integers,bounds=(0,100),initialize=0) m.i31 = Var(within=Integers,bounds=(0,100),initialize=0) m.i32 = Var(within=Integers,bounds=(0,100),initialize=0) m.i33 = Var(within=Integers,bounds=(0,100),initialize=0) m.i34 = Var(within=Integers,bounds=(0,100),initialize=0) m.i35 = Var(within=Integers,bounds=(0,100),initialize=0) m.i36 = Var(within=Integers,bounds=(0,100),initialize=0) m.i37 = Var(within=Integers,bounds=(0,100),initialize=0) m.i38 = Var(within=Integers,bounds=(0,100),initialize=0) m.i39 = Var(within=Integers,bounds=(0,100),initialize=0) m.i40 = Var(within=Integers,bounds=(0,100),initialize=0) m.i41 = Var(within=Integers,bounds=(0,100),initialize=0) m.i42 = Var(within=Integers,bounds=(0,100),initialize=0) m.x44 = Var(within=Reals,bounds=(None,None),initialize=0) m.x45 = Var(within=Reals,bounds=(None,None),initialize=0) m.x46 = Var(within=Reals,bounds=(None,None),initialize=0) m.x47 = Var(within=Reals,bounds=(None,None),initialize=0) m.x48 = Var(within=Reals,bounds=(None,None),initialize=0) m.x49 = Var(within=Reals,bounds=(None,None),initialize=0) m.x50 = Var(within=Reals,bounds=(None,None),initialize=0) m.x51 = Var(within=Reals,bounds=(None,None),initialize=0) m.x52 = Var(within=Reals,bounds=(None,None),initialize=0) m.x53 = Var(within=Reals,bounds=(None,None),initialize=0) m.x54 = Var(within=Reals,bounds=(None,None),initialize=0) m.x55 = Var(within=Reals,bounds=(None,None),initialize=0) m.x56 = Var(within=Reals,bounds=(None,None),initialize=0) m.x57 = Var(within=Reals,bounds=(None,None),initialize=0) m.x58 = Var(within=Reals,bounds=(None,None),initialize=0) m.x59 = Var(within=Reals,bounds=(None,None),initialize=0) m.x60 = Var(within=Reals,bounds=(None,None),initialize=0) m.x61 = Var(within=Reals,bounds=(None,None),initialize=0) m.x62 = Var(within=Reals,bounds=(None,None),initialize=0) m.x63 = Var(within=Reals,bounds=(None,None),initialize=0) m.x64 = Var(within=Reals,bounds=(None,None),initialize=0) m.x65 = Var(within=Reals,bounds=(None,None),initialize=0) m.x66 = Var(within=Reals,bounds=(2.5298,6.3246),initialize=2.5298) m.x67 = Var(within=Reals,bounds=(2.5298,6.3246),initialize=2.5298) m.x68 = Var(within=Reals,bounds=(None,None),initialize=0) m.x69 = Var(within=Reals,bounds=(2.5298,6.3246),initialize=2.5298) m.x70 = Var(within=Reals,bounds=(2.5298,6.3246),initialize=2.5298) m.x71 = Var(within=Reals,bounds=(None,None),initialize=0) m.x72 = Var(within=Reals,bounds=(2.5298,6.3246),initialize=2.5298) m.x73 = Var(within=Reals,bounds=(None,None),initialize=0) m.x74 = Var(within=Reals,bounds=(2.5298,6.3246),initialize=2.5298) m.x75 = Var(within=Reals,bounds=(None,None),initialize=0) m.x76 = Var(within=Reals,bounds=(3.7947,8.54),initialize=3.7947) m.x77 = Var(within=Reals,bounds=(4.2155,9.4868),initialize=4.2155) m.x78 = Var(within=Reals,bounds=(1.8974,4.7434),initialize=1.8974) m.x79 = Var(within=Reals,bounds=(None,None),initialize=0) m.x80 = Var(within=Reals,bounds=(1.8974,4.7434),initialize=1.8974) m.x81 = Var(within=Reals,bounds=(None,None),initialize=0) m.x82 = Var(within=Reals,bounds=(1.8974,4.7434),initialize=1.8974) m.x83 = Var(within=Reals,bounds=(None,None),initialize=0) m.x84 = Var(within=Reals,bounds=(1.8974,4.7434),initialize=1.8974) m.x85 = Var(within=Reals,bounds=(None,None),initialize=0) m.x86 = Var(within=Reals,bounds=(1.8974,4.7434),initialize=1.8974) m.x87 = Var(within=Reals,bounds=(1.8974,4.7434),initialize=1.8974) m.x88 = Var(within=Reals,bounds=(None,None),initialize=0) m.x89 = Var(within=Reals,bounds=(None,None),initialize=0) m.x90 = Var(within=Reals,bounds=(None,None),initialize=0) m.x91 = Var(within=Reals,bounds=(None,None),initialize=0) m.x92 = Var(within=Reals,bounds=(None,None),initialize=0) m.x93 = Var(within=Reals,bounds=(None,None),initialize=0) m.x94 = Var(within=Reals,bounds=(None,None),initialize=0) m.x95 = Var(within=Reals,bounds=(None,None),initialize=0) m.x96 = Var(within=Reals,bounds=(None,None),initialize=0) m.x97 = Var(within=Reals,bounds=(None,None),initialize=0) m.x98 = Var(within=Reals,bounds=(None,None),initialize=0) m.x99 = Var(within=Reals,bounds=(None,None),initialize=0) m.x100 = Var(within=Reals,bounds=(None,None),initialize=0) m.x101 = Var(within=Reals,bounds=(None,None),initialize=0) m.x102 = Var(within=Reals,bounds=(None,None),initialize=0) m.x103 = Var(within=Reals,bounds=(None,None),initialize=0) m.x104 = Var(within=Reals,bounds=(None,None),initialize=0) m.x105 = Var(within=Reals,bounds=(None,None),initialize=0) m.x106 = Var(within=Reals,bounds=(None,None),initialize=0) m.x107 = Var(within=Reals,bounds=(None,None),initialize=0) m.x108 = Var(within=Reals,bounds=(None,None),initialize=0) m.x109 = Var(within=Reals,bounds=(None,None),initialize=0) m.x110 = Var(within=Reals,bounds=(None,None),initialize=0) m.x111 = Var(within=Reals,bounds=(None,None),initialize=0) m.x112 = Var(within=Reals,bounds=(None,None),initialize=0) m.x113 = Var(within=Reals,bounds=(None,None),initialize=0) m.obj = Objective(expr= 5*m.x44 + 5*m.x45 + m.x46 + m.x47 + 3*m.x48 + 3*m.x49 + m.x50 + m.x51 + 2*m.x52 + 2*m.x53 + m.x54 + m.x55 + 4*m.x56 + 4*m.x57 + 2*m.x58 + 2*m.x59 + m.x60 + m.x61, sense=minimize) m.c2 = Constraint(expr= m.x62 - m.x63 >= 0) m.c3 = Constraint(expr= m.x64 - m.x65 >= 0) m.c4 = Constraint(expr= m.i1 - m.i2 == 0) m.c5 = Constraint(expr= - 8.54*m.i1 + 0.5*m.x66 + 0.5*m.x67 - m.x68 <= 0) m.c6 = Constraint(expr= 13*m.i1 + 0.5*m.x69 + 0.5*m.x70 - m.x71 <= 13) m.c7 = Constraint(expr= - 8.54*m.i3 + 0.5*m.x66 + 0.5*m.x72 - m.x73 <= 0) m.c8 = Constraint(expr= 13*m.i3 + 0.5*m.x69 + 0.5*m.x74 - m.x75 <= 13) m.c9 = Constraint(expr= - 8.54*m.i5 - m.x44 + 0.5*m.x66 + 0.5*m.x76 <= 0) m.c10 = Constraint(expr= 13*m.i5 - m.x45 + 0.5*m.x69 + 0.5*m.x77 <= 13) m.c11 = Constraint(expr= - 8.54*m.i7 + 0.5*m.x66 + 0.5*m.x78 - m.x79 <= 0) m.c12 = Constraint(expr= 13*m.i7 + 0.5*m.x69 + 0.5*m.x80 - m.x81 <= 13) m.c13 = Constraint(expr= - 8.54*m.i9 + 0.5*m.x66 + 0.5*m.x82 - m.x83 <= 0) m.c14 = Constraint(expr= 13*m.i9 + 0.5*m.x69 + 0.5*m.x84 - m.x85 <= 13) m.c15 = Constraint(expr= - 8.54*m.i11 - m.x46 + 0.5*m.x66 + 0.5*m.x86 <= 0) m.c16 = Constraint(expr= 13*m.i11 - m.x47 + 0.5*m.x69 + 0.5*m.x87 <= 13) m.c17 = Constraint(expr= - 8.54*m.i13 + 0.5*m.x67 + 0.5*m.x72 - m.x88 <= 0) m.c18 = Constraint(expr= 13*m.i13 + 0.5*m.x70 + 0.5*m.x74 - m.x89 <= 13) m.c19 = Constraint(expr= - 8.54*m.i15 - m.x48 + 0.5*m.x67 + 0.5*m.x76 <= 0) m.c20 = Constraint(expr= 13*m.i15 - m.x49 + 0.5*m.x70 + 0.5*m.x77 <= 13) m.c21 = Constraint(expr= - 8.54*m.i17 + 0.5*m.x67 + 0.5*m.x78 - m.x90 <= 0) m.c22 = Constraint(expr= 13*m.i17 + 0.5*m.x70 + 0.5*m.x80 - m.x91 <= 13) m.c23 = Constraint(expr= - 8.54*m.i19 + 0.5*m.x67 + 0.5*m.x82 - m.x92 <= 0) m.c24 = Constraint(expr= 13*m.i19 + 0.5*m.x70 + 0.5*m.x84 - m.x93 <= 13) m.c25 = Constraint(expr= - 8.54*m.i21 - m.x50 + 0.5*m.x67 + 0.5*m.x86 <= 0) m.c26 = Constraint(expr= 13*m.i21 - m.x51 + 0.5*m.x70 + 0.5*m.x87 <= 13) m.c27 = Constraint(expr= - 8.54*m.i23 - m.x52 + 0.5*m.x72 + 0.5*m.x76 <= 0) m.c28 = Constraint(expr= 13*m.i23 - m.x53 + 0.5*m.x74 + 0.5*m.x77 <= 13) m.c29 = Constraint(expr= - 8.54*m.i25 + 0.5*m.x72 + 0.5*m.x78 - m.x94 <= 0) m.c30 = Constraint(expr= 13*m.i25 + 0.5*m.x74 + 0.5*m.x80 - m.x95 <= 13) m.c31 = Constraint(expr= - 8.54*m.i27 + 0.5*m.x72 + 0.5*m.x82 - m.x96 <= 0) m.c32 = Constraint(expr= 13*m.i27 + 0.5*m.x74 + 0.5*m.x84 - m.x97 <= 13) m.c33 = Constraint(expr= - 8.54*m.i29 - m.x54 + 0.5*m.x72 + 0.5*m.x86 <= 0) m.c34 = Constraint(expr= 13*m.i29 - m.x55 + 0.5*m.x74 + 0.5*m.x87 <= 13) m.c35 = Constraint(expr= - 8.54*m.i31 - m.x56 + 0.5*m.x76 + 0.5*m.x78 <= 0) m.c36 = Constraint(expr= 13*m.i31 - m.x57 + 0.5*m.x77 + 0.5*m.x80 <= 13) m.c37 = Constraint(expr= - 8.54*m.i33 + 0.5*m.x76 + 0.5*m.x82 - m.x98 <= 0) m.c38 = Constraint(expr= 13*m.i33 + 0.5*m.x77 + 0.5*m.x84 - m.x99 <= 13) m.c39 = Constraint(expr= - 8.54*m.i35 + 0.5*m.x76 + 0.5*m.x86 - m.x100 <= 0) m.c40 = Constraint(expr= 13*m.i35 + 0.5*m.x77 + 0.5*m.x87 - m.x101 <= 13) m.c41 = Constraint(expr= - 8.54*m.i37 + 0.5*m.x78 + 0.5*m.x82 - m.x102 <= 0) m.c42 = Constraint(expr= 13*m.i37 + 0.5*m.x80 + 0.5*m.x84 - m.x103 <= 13) m.c43 = Constraint(expr= - 8.54*m.i39 - m.x58 + 0.5*m.x78 + 0.5*m.x86 <= 0) m.c44 = Constraint(expr= 13*m.i39 - m.x59 + 0.5*m.x80 + 0.5*m.x87 <= 13) m.c45 = Constraint(expr= - 8.54*m.i41 - m.x60 + 0.5*m.x82 + 0.5*m.x86 <= 0) m.c46 = Constraint(expr= 13*m.i41 - m.x61 + 0.5*m.x84 + 0.5*m.x87 <= 13) m.c47 = Constraint(expr= - 0.395288*m.x66 - 0.158112*m.x69 <= -2) m.c48 = Constraint(expr= - 0.158113*m.x66 - 0.395288*m.x69 <= -2) m.c49 = Constraint(expr= - 0.395288*m.x67 - 0.158112*m.x70 <= -2) m.c50 = Constraint(expr= - 0.158113*m.x67 - 0.395288*m.x70 <= -2) m.c51 = Constraint(expr= - 0.395288*m.x72 - 0.158112*m.x74 <= -2) m.c52 = Constraint(expr= - 0.158113*m.x72 - 0.395288*m.x74 <= -2) m.c53 = Constraint(expr= - 0.263525*m.x76 - 0.105408*m.x77 <= -2) m.c54 = Constraint(expr= - 0.117096*m.x76 - 0.237222*m.x77 <= -2) m.c55 = Constraint(expr= - 0.527037*m.x78 - 0.210822*m.x80 <= -2) m.c56 = Constraint(expr= - 0.210819*m.x78 - 0.527044*m.x80 <= -2) m.c57 = Constraint(expr= - 0.527037*m.x82 - 0.210822*m.x84 <= -2) m.c58 = Constraint(expr= - 0.210819*m.x82 - 0.527044*m.x84 <= -2) m.c59 = Constraint(expr= - 0.527037*m.x86 - 0.210822*m.x87 <= -2) m.c60 = Constraint(expr= - 0.210819*m.x86 - 0.527044*m.x87 <= -2) m.c61 = Constraint(expr= m.x62 + 0.5*m.x66 <= 8.54) m.c62 = Constraint(expr= - m.x62 + 0.5*m.x66 <= 0) m.c63 = Constraint(expr= m.x65 + 0.5*m.x69 <= 13) m.c64 = Constraint(expr= - m.x65 + 0.5*m.x69 <= 0) m.c65 = Constraint(expr= m.x63 + 0.5*m.x67 <= 8.54) m.c66 = Constraint(expr= - m.x63 + 0.5*m.x67 <= 0) m.c67 = Constraint(expr= m.x64 + 0.5*m.x70 <= 13) m.c68 = Constraint(expr= - m.x64 + 0.5*m.x70 <= 0) m.c69 = Constraint(expr= 0.5*m.x72 + m.x104 <= 8.54) m.c70 = Constraint(expr= 0.5*m.x72 - m.x104 <= 0) m.c71 = Constraint(expr= 0.5*m.x74 + m.x105 <= 13) m.c72 = Constraint(expr= 0.5*m.x74 - m.x105 <= 0) m.c73 = Constraint(expr= 0.5*m.x76 + m.x106 <= 8.54) m.c74 = Constraint(expr= 0.5*m.x76 - m.x106 <= 0) m.c75 = Constraint(expr= 0.5*m.x77 + m.x107 <= 13) m.c76 = Constraint(expr= 0.5*m.x77 - m.x107 <= 0) m.c77 = Constraint(expr= 0.5*m.x78 + m.x108 <= 8.54) m.c78 = Constraint(expr= 0.5*m.x78 - m.x108 <= 0) m.c79 = Constraint(expr= 0.5*m.x80 + m.x109 <= 13) m.c80 = Constraint(expr= 0.5*m.x80 - m.x109 <= 0) m.c81 = Constraint(expr= 0.5*m.x82 + m.x110 <= 8.54) m.c82 = Constraint(expr= 0.5*m.x82 - m.x110 <= 0) m.c83 = Constraint(expr= 0.5*m.x84 + m.x111 <= 13) m.c84 = Constraint(expr= 0.5*m.x84 - m.x111 <= 0) m.c85 = Constraint(expr= 0.5*m.x86 + m.x112 <= 8.54) m.c86 = Constraint(expr= 0.5*m.x86 - m.x112 <= 0) m.c87 = Constraint(expr= 0.5*m.x87 + m.x113 <= 13) m.c88 = Constraint(expr= 0.5*m.x87 - m.x113 <= 0) m.c89 = Constraint(expr= m.x62 - m.x63 - m.x68 <= 0) m.c90 = Constraint(expr= - m.x62 + m.x63 - m.x68 <= 0) m.c91 = Constraint(expr= - m.x64 + m.x65 - m.x71 <= 0) m.c92 = Constraint(expr= m.x64 - m.x65 - m.x71 <= 0) m.c93 = Constraint(expr= - 8.54*m.i1 - 8.54*m.i2 - m.x62 + m.x63 + 0.5*m.x66 + 0.5*m.x67 <= 0) m.c94 = Constraint(expr= - 8.54*m.i1 + 8.54*m.i2 + m.x62 - m.x63 + 0.5*m.x66 + 0.5*m.x67 <= 8.54) m.c95 = Constraint(expr= 13*m.i1 - 13*m.i2 + m.x64 - m.x65 + 0.5*m.x69 + 0.5*m.x70 <= 13) m.c96 = Constraint(expr= 13*m.i1 + 13*m.i2 - m.x64 + m.x65 + 0.5*m.x69 + 0.5*m.x70 <= 26) m.c97 = Constraint(expr= m.x62 - m.x73 - m.x104 <= 0) m.c98 = Constraint(expr= - m.x62 - m.x73 + m.x104 <= 0) m.c99 = Constraint(expr= m.x65 - m.x75 - m.x105 <= 0) m.c100 = Constraint(expr= - m.x65 - m.x75 + m.x105 <= 0) m.c101 = Constraint(expr= - 8.54*m.i3 - 8.54*m.i4 - m.x62 + 0.5*m.x66 + 0.5*m.x72 + m.x104 <= 0) m.c102 = Constraint(expr= - 8.54*m.i3 + 8.54*m.i4 + m.x62 + 0.5*m.x66 + 0.5*m.x72 - m.x104 <= 8.54) m.c103 = Constraint(expr= 13*m.i3 - 13*m.i4 - m.x65 + 0.5*m.x69 + 0.5*m.x74 + m.x105 <= 13) m.c104 = Constraint(expr= 13*m.i3 + 13*m.i4 + m.x65 + 0.5*m.x69 + 0.5*m.x74 - m.x105 <= 26) m.c105 = Constraint(expr= - m.x44 + m.x62 - m.x106 <= 0) m.c106 = Constraint(expr= - m.x44 - m.x62 + m.x106 <= 0) m.c107 = Constraint(expr= - m.x45 + m.x65 - m.x107 <= 0) m.c108 = Constraint(expr= - m.x45 - m.x65 + m.x107 <= 0) m.c109 = Constraint(expr= - 8.54*m.i5 - 8.54*m.i6 - m.x62 + 0.5*m.x66 + 0.5*m.x76 + m.x106 <= 0) m.c110 = Constraint(expr= - 8.54*m.i5 + 8.54*m.i6 + m.x62 + 0.5*m.x66 + 0.5*m.x76 - m.x106 <= 8.54) m.c111 = Constraint(expr= 13*m.i5 - 13*m.i6 - m.x65 + 0.5*m.x69 + 0.5*m.x77 + m.x107 <= 13) m.c112 = Constraint(expr= 13*m.i5 + 13*m.i6 + m.x65 + 0.5*m.x69 + 0.5*m.x77 - m.x107 <= 26) m.c113 = Constraint(expr= m.x62 - m.x79 - m.x108 <= 0) m.c114 = Constraint(expr= - m.x62 - m.x79 + m.x108 <= 0) m.c115 = Constraint(expr= m.x65 - m.x81 - m.x109 <= 0) m.c116 = Constraint(expr= - m.x65 - m.x81 + m.x109 <= 0) m.c117 = Constraint(expr= - 8.54*m.i7 - 8.54*m.i8 - m.x62 + 0.5*m.x66 + 0.5*m.x78 + m.x108 <= 0) m.c118 = Constraint(expr= - 8.54*m.i7 + 8.54*m.i8 + m.x62 + 0.5*m.x66 + 0.5*m.x78 - m.x108 <= 8.54) m.c119 = Constraint(expr= 13*m.i7 - 13*m.i8 - m.x65 + 0.5*m.x69 + 0.5*m.x80 + m.x109 <= 13) m.c120 = Constraint(expr= 13*m.i7 + 13*m.i8 + m.x65 + 0.5*m.x69 + 0.5*m.x80 - m.x109 <= 26) m.c121 = Constraint(expr= m.x62 - m.x83 - m.x110 <= 0) m.c122 = Constraint(expr= - m.x62 - m.x83 + m.x110 <= 0) m.c123 = Constraint(expr= m.x65 - m.x85 - m.x111 <= 0) m.c124 = Constraint(expr= - m.x65 - m.x85 + m.x111 <= 0) m.c125 = Constraint(expr= - 8.54*m.i9 - 8.54*m.i10 - m.x62 + 0.5*m.x66 + 0.5*m.x82 + m.x110 <= 0) m.c126 = Constraint(expr= - 8.54*m.i9 + 8.54*m.i10 + m.x62 + 0.5*m.x66 + 0.5*m.x82 - m.x110 <= 8.54) m.c127 = Constraint(expr= 13*m.i9 - 13*m.i10 - m.x65 + 0.5*m.x69 + 0.5*m.x84 + m.x111 <= 13) m.c128 = Constraint(expr= 13*m.i9 + 13*m.i10 + m.x65 + 0.5*m.x69 + 0.5*m.x84 - m.x111 <= 26) m.c129 = Constraint(expr= - m.x46 + m.x62 - m.x112 <= 0) m.c130 = Constraint(expr= - m.x46 - m.x62 + m.x112 <= 0) m.c131 = Constraint(expr= - m.x47 + m.x65 - m.x113 <= 0) m.c132 = Constraint(expr= - m.x47 - m.x65 + m.x113 <= 0) m.c133 = Constraint(expr= - 8.54*m.i11 - 8.54*m.i12 - m.x62 + 0.5*m.x66 + 0.5*m.x86 + m.x112 <= 0) m.c134 = Constraint(expr= - 8.54*m.i11 + 8.54*m.i12 + m.x62 + 0.5*m.x66 + 0.5*m.x86 - m.x112 <= 8.54) m.c135 = Constraint(expr= 13*m.i11 - 13*m.i12 - m.x65 + 0.5*m.x69 + 0.5*m.x87 + m.x113 <= 13) m.c136 = Constraint(expr= 13*m.i11 + 13*m.i12 + m.x65 + 0.5*m.x69 + 0.5*m.x87 - m.x113 <= 26) m.c137 = Constraint(expr= m.x63 - m.x88 - m.x104 <= 0) m.c138 = Constraint(expr= - m.x63 - m.x88 + m.x104 <= 0) m.c139 = Constraint(expr= m.x64 - m.x89 - m.x105 <= 0) m.c140 = Constraint(expr= - m.x64 - m.x89 + m.x105 <= 0) m.c141 = Constraint(expr= - 8.54*m.i13 - 8.54*m.i14 - m.x63 + 0.5*m.x67 + 0.5*m.x72 + m.x104 <= 0) m.c142 = Constraint(expr= - 8.54*m.i13 + 8.54*m.i14 + m.x63 + 0.5*m.x67 + 0.5*m.x72 - m.x104 <= 8.54) m.c143 = Constraint(expr= 13*m.i13 - 13*m.i14 - m.x64 + 0.5*m.x70 + 0.5*m.x74 + m.x105 <= 13) m.c144 = Constraint(expr= 13*m.i13 + 13*m.i14 + m.x64 + 0.5*m.x70 + 0.5*m.x74 - m.x105 <= 26) m.c145 = Constraint(expr= - m.x48 + m.x63 - m.x106 <= 0) m.c146 = Constraint(expr= - m.x48 - m.x63 + m.x106 <= 0) m.c147 = Constraint(expr= - m.x49 + m.x64 - m.x107 <= 0) m.c148 = Constraint(expr= - m.x49 - m.x64 + m.x107 <= 0) m.c149 = Constraint(expr= - 8.54*m.i15 - 8.54*m.i16 - m.x63 + 0.5*m.x67 + 0.5*m.x76 + m.x106 <= 0) m.c150 = Constraint(expr= - 8.54*m.i15 + 8.54*m.i16 + m.x63 + 0.5*m.x67 + 0.5*m.x76 - m.x106 <= 8.54) m.c151 = Constraint(expr= 13*m.i15 - 13*m.i16 - m.x64 + 0.5*m.x70 + 0.5*m.x77 + m.x107 <= 13) m.c152 = Constraint(expr= 13*m.i15 + 13*m.i16 + m.x64 + 0.5*m.x70 + 0.5*m.x77 - m.x107 <= 26) m.c153 = Constraint(expr= m.x63 - m.x90 - m.x108 <= 0) m.c154 = Constraint(expr= - m.x63 - m.x90 + m.x108 <= 0) m.c155 = Constraint(expr= m.x64 - m.x91 - m.x109 <= 0) m.c156 = Constraint(expr= - m.x64 - m.x91 + m.x109 <= 0) m.c157 = Constraint(expr= - 8.54*m.i17 - 8.54*m.i18 - m.x63 + 0.5*m.x67 + 0.5*m.x78 + m.x108 <= 0) m.c158 = Constraint(expr= - 8.54*m.i17 + 8.54*m.i18 + m.x63 + 0.5*m.x67 + 0.5*m.x78 - m.x108 <= 8.54) m.c159 = Constraint(expr= 13*m.i17 - 13*m.i18 - m.x64 + 0.5*m.x70 + 0.5*m.x80 + m.x109 <= 13) m.c160 = Constraint(expr= 13*m.i17 + 13*m.i18 + m.x64 + 0.5*m.x70 + 0.5*m.x80 - m.x109 <= 26) m.c161 = Constraint(expr= m.x63 - m.x92 - m.x110 <= 0) m.c162 = Constraint(expr= - m.x63 - m.x92 + m.x110 <= 0) m.c163 = Constraint(expr= m.x64 - m.x93 - m.x111 <= 0) m.c164 = Constraint(expr= - m.x64 - m.x93 + m.x111 <= 0) m.c165 = Constraint(expr= - 8.54*m.i19 - 8.54*m.i20 - m.x63 + 0.5*m.x67 + 0.5*m.x82 + m.x110 <= 0) m.c166 = Constraint(expr= - 8.54*m.i19 + 8.54*m.i20 + m.x63 + 0.5*m.x67 + 0.5*m.x82 - m.x110 <= 8.54) m.c167 = Constraint(expr= 13*m.i19 - 13*m.i20 - m.x64 + 0.5*m.x70 + 0.5*m.x84 + m.x111 <= 13) m.c168 = Constraint(expr= 13*m.i19 + 13*m.i20 + m.x64 + 0.5*m.x70 + 0.5*m.x84 - m.x111 <= 26) m.c169 = Constraint(expr= - m.x50 + m.x63 - m.x112 <= 0) m.c170 = Constraint(expr= - m.x50 - m.x63 + m.x112 <= 0) m.c171 = Constraint(expr= - m.x51 + m.x64 - m.x113 <= 0) m.c172 = Constraint(expr= - m.x51 - m.x64 + m.x113 <= 0) m.c173 = Constraint(expr= - 8.54*m.i21 - 8.54*m.i22 - m.x63 + 0.5*m.x67 + 0.5*m.x86 + m.x112 <= 0) m.c174 = Constraint(expr= - 8.54*m.i21 + 8.54*m.i22 + m.x63 + 0.5*m.x67 + 0.5*m.x86 - m.x112 <= 8.54) m.c175 = Constraint(expr= 13*m.i21 - 13*m.i22 - m.x64 + 0.5*m.x70 + 0.5*m.x87 + m.x113 <= 13) m.c176 = Constraint(expr= 13*m.i21 + 13*m.i22 + m.x64 + 0.5*m.x70 + 0.5*m.x87 - m.x113 <= 26) m.c177 = Constraint(expr= - m.x52 + m.x104 - m.x106 <= 0) m.c178 = Constraint(expr= - m.x52 - m.x104 + m.x106 <= 0) m.c179 = Constraint(expr= - m.x53 + m.x105 - m.x107 <= 0) m.c180 = Constraint(expr= - m.x53 - m.x105 + m.x107 <= 0) m.c181 = Constraint(expr= - 8.54*m.i23 - 8.54*m.i24 + 0.5*m.x72 + 0.5*m.x76 - m.x104 + m.x106 <= 0) m.c182 = Constraint(expr= - 8.54*m.i23 + 8.54*m.i24 + 0.5*m.x72 + 0.5*m.x76 + m.x104 - m.x106 <= 8.54) m.c183 = Constraint(expr= 13*m.i23 - 13*m.i24 + 0.5*m.x74 + 0.5*m.x77 - m.x105 + m.x107 <= 13) m.c184 = Constraint(expr= 13*m.i23 + 13*m.i24 + 0.5*m.x74 + 0.5*m.x77 + m.x105 - m.x107 <= 26) m.c185 = Constraint(expr= - m.x94 + m.x104 - m.x108 <= 0) m.c186 = Constraint(expr= - m.x94 - m.x104 + m.x108 <= 0) m.c187 = Constraint(expr= - m.x95 + m.x105 - m.x109 <= 0) m.c188 = Constraint(expr= - m.x95 - m.x105 + m.x109 <= 0) m.c189 = Constraint(expr= - 8.54*m.i25 - 8.54*m.i26 + 0.5*m.x72 + 0.5*m.x78 - m.x104 + m.x108 <= 0) m.c190 = Constraint(expr= - 8.54*m.i25 + 8.54*m.i26 + 0.5*m.x72 + 0.5*m.x78 + m.x104 - m.x108 <= 8.54) m.c191 = Constraint(expr= 13*m.i25 - 13*m.i26 + 0.5*m.x74 + 0.5*m.x80 - m.x105 + m.x109 <= 13) m.c192 = Constraint(expr= 13*m.i25 + 13*m.i26 + 0.5*m.x74 + 0.5*m.x80 + m.x105 - m.x109 <= 26) m.c193 = Constraint(expr= - m.x96 + m.x104 - m.x110 <= 0) m.c194 = Constraint(expr= - m.x96 - m.x104 + m.x110 <= 0) m.c195 = Constraint(expr= - m.x97 + m.x105 - m.x111 <= 0) m.c196 = Constraint(expr= - m.x97 - m.x105 + m.x111 <= 0) m.c197 = Constraint(expr= - 8.54*m.i27 - 8.54*m.i28 + 0.5*m.x72 + 0.5*m.x82 - m.x104 + m.x110 <= 0) m.c198 = Constraint(expr= - 8.54*m.i27 + 8.54*m.i28 + 0.5*m.x72 + 0.5*m.x82 + m.x104 - m.x110 <= 8.54) m.c199 = Constraint(expr= 13*m.i27 - 13*m.i28 + 0.5*m.x74 + 0.5*m.x84 - m.x105 + m.x111 <= 13) m.c200 = Constraint(expr= 13*m.i27 + 13*m.i28 + 0.5*m.x74 + 0.5*m.x84 + m.x105 - m.x111 <= 26) m.c201 = Constraint(expr= - m.x54 + m.x104 - m.x112 <= 0) m.c202 = Constraint(expr= - m.x54 - m.x104 + m.x112 <= 0) m.c203 = Constraint(expr= - m.x55 + m.x105 - m.x113 <= 0) m.c204 = Constraint(expr= - m.x55 - m.x105 + m.x113 <= 0) m.c205 = Constraint(expr= - 8.54*m.i29 - 8.54*m.i30 + 0.5*m.x72 + 0.5*m.x86 - m.x104 + m.x112 <= 0) m.c206 = Constraint(expr= - 8.54*m.i29 + 8.54*m.i30 + 0.5*m.x72 + 0.5*m.x86 + m.x104 - m.x112 <= 8.54) m.c207 = Constraint(expr= 13*m.i29 - 13*m.i30 + 0.5*m.x74 + 0.5*m.x87 - m.x105 + m.x113 <= 13) m.c208 = Constraint(expr= 13*m.i29 + 13*m.i30 + 0.5*m.x74 + 0.5*m.x87 + m.x105 - m.x113 <= 26) m.c209 = Constraint(expr= - m.x56 + m.x106 - m.x108 <= 0) m.c210 = Constraint(expr= - m.x56 - m.x106 + m.x108 <= 0) m.c211 = Constraint(expr= - m.x57 + m.x107 - m.x109 <= 0) m.c212 = Constraint(expr= - m.x57 - m.x107 + m.x109 <= 0) m.c213 = Constraint(expr= - 8.54*m.i31 - 8.54*m.i32 + 0.5*m.x76 + 0.5*m.x78 - m.x106 + m.x108 <= 0) m.c214 = Constraint(expr= - 8.54*m.i31 + 8.54*m.i32 + 0.5*m.x76 + 0.5*m.x78 + m.x106 - m.x108 <= 8.54) m.c215 = Constraint(expr= 13*m.i31 - 13*m.i32 + 0.5*m.x77 + 0.5*m.x80 - m.x107 + m.x109 <= 13) m.c216 = Constraint(expr= 13*m.i31 + 13*m.i32 + 0.5*m.x77 + 0.5*m.x80 + m.x107 - m.x109 <= 26) m.c217 = Constraint(expr= - m.x98 + m.x106 - m.x110 <= 0) m.c218 = Constraint(expr= - m.x98 - m.x106 + m.x110 <= 0) m.c219 = Constraint(expr= - m.x99 + m.x107 - m.x111 <= 0) m.c220 = Constraint(expr= - m.x99 - m.x107 + m.x111 <= 0) m.c221 = Constraint(expr= - 8.54*m.i33 - 8.54*m.i34 + 0.5*m.x76 + 0.5*m.x82 - m.x106 + m.x110 <= 0) m.c222 = Constraint(expr= - 8.54*m.i33 + 8.54*m.i34 + 0.5*m.x76 + 0.5*m.x82 + m.x106 - m.x110 <= 8.54) m.c223 = Constraint(expr= 13*m.i33 - 13*m.i34 + 0.5*m.x77 + 0.5*m.x84 - m.x107 + m.x111 <= 13) m.c224 = Constraint(expr= 13*m.i33 + 13*m.i34 + 0.5*m.x77 + 0.5*m.x84 + m.x107 - m.x111 <= 26) m.c225 = Constraint(expr= - m.x100 + m.x106 - m.x112 <= 0) m.c226 = Constraint(expr= - m.x100 - m.x106 + m.x112 <= 0) m.c227 = Constraint(expr= - m.x101 + m.x107 - m.x113 <= 0) m.c228 = Constraint(expr= - m.x101 - m.x107 + m.x113 <= 0) m.c229 = Constraint(expr= - 8.54*m.i35 - 8.54*m.i36 + 0.5*m.x76 + 0.5*m.x86 - m.x106 + m.x112 <= 0) m.c230 = Constraint(expr= - 8.54*m.i35 + 8.54*m.i36 + 0.5*m.x76 + 0.5*m.x86 + m.x106 - m.x112 <= 8.54) m.c231 = Constraint(expr= 13*m.i35 - 13*m.i36 + 0.5*m.x77 + 0.5*m.x87 - m.x107 + m.x113 <= 13) m.c232 = Constraint(expr= 13*m.i35 + 13*m.i36 + 0.5*m.x77 + 0.5*m.x87 + m.x107 - m.x113 <= 26) m.c233 = Constraint(expr= - m.x102 + m.x108 - m.x110 <= 0) m.c234 = Constraint(expr= - m.x102 - m.x108 + m.x110 <= 0) m.c235 = Constraint(expr= - m.x103 + m.x109 - m.x111 <= 0) m.c236 = Constraint(expr= - m.x103 - m.x109 + m.x111 <= 0) m.c237 = Constraint(expr= - 8.54*m.i37 - 8.54*m.i38 + 0.5*m.x78 + 0.5*m.x82 - m.x108 + m.x110 <= 0) m.c238 = Constraint(expr= - 8.54*m.i37 + 8.54*m.i38 + 0.5*m.x78 + 0.5*m.x82 + m.x108 - m.x110 <= 8.54) m.c239 = Constraint(expr= 13*m.i37 - 13*m.i38 + 0.5*m.x80 + 0.5*m.x84 - m.x109 + m.x111 <= 13) m.c240 = Constraint(expr= 13*m.i37 + 13*m.i38 + 0.5*m.x80 + 0.5*m.x84 + m.x109 - m.x111 <= 26) m.c241 = Constraint(expr= - m.x58 + m.x108 - m.x112 <= 0) m.c242 = Constraint(expr= - m.x58 - m.x108 + m.x112 <= 0) m.c243 = Constraint(expr= - m.x59 + m.x109 - m.x113 <= 0) m.c244 = Constraint(expr= - m.x59 - m.x109 + m.x113 <= 0) m.c245 = Constraint(expr= - 8.54*m.i39 - 8.54*m.i40 + 0.5*m.x78 + 0.5*m.x86 - m.x108 + m.x112 <= 0) m.c246 = Constraint(expr= - 8.54*m.i39 + 8.54*m.i40 + 0.5*m.x78 + 0.5*m.x86 + m.x108 - m.x112 <= 8.54) m.c247 = Constraint(expr= 13*m.i39 - 13*m.i40 + 0.5*m.x80 + 0.5*m.x87 - m.x109 + m.x113 <= 13) m.c248 = Constraint(expr= 13*m.i39 + 13*m.i40 + 0.5*m.x80 + 0.5*m.x87 + m.x109 - m.x113 <= 26) m.c249 = Constraint(expr= - m.x60 + m.x110 - m.x112 <= 0) m.c250 = Constraint(expr= - m.x60 - m.x110 + m.x112 <= 0) m.c251 = Constraint(expr= - m.x61 + m.x111 - m.x113 <= 0) m.c252 = Constraint(expr= - m.x61 - m.x111 + m.x113 <= 0) m.c253 = Constraint(expr= - 8.54*m.i41 - 8.54*m.i42 + 0.5*m.x82 + 0.5*m.x86 - m.x110 + m.x112 <= 0) m.c254 = Constraint(expr= - 8.54*m.i41 + 8.54*m.i42 + 0.5*m.x82 + 0.5*m.x86 + m.x110 - m.x112 <= 8.54) m.c255 = Constraint(expr= 13*m.i41 - 13*m.i42 + 0.5*m.x84 + 0.5*m.x87 - m.x111 + m.x113 <= 13) m.c256 = Constraint(expr= 13*m.i41 + 13*m.i42 + 0.5*m.x84 + 0.5*m.x87 + m.x111 - m.x113 <= 26) m.c257 = Constraint(expr=16/m.x66 - m.x69 <= 0) m.c258 = Constraint(expr=16/m.x69 - m.x66 <= 0) m.c259 = Constraint(expr=16/m.x67 - m.x70 <= 0) m.c260 = Constraint(expr=16/m.x70 - m.x67 <= 0) m.c261 = Constraint(expr=16/m.x72 - m.x74 <= 0) m.c262 = Constraint(expr=16/m.x74 - m.x72 <= 0) m.c263 = Constraint(expr=36/m.x76 - m.x77 <= 0) m.c264 = Constraint(expr=36/m.x77 - m.x76 <= 0) m.c265 = Constraint(expr=9/m.x78 - m.x80 <= 0) m.c266 = Constraint(expr=9/m.x80 - m.x78 <= 0) m.c267 = Constraint(expr=9/m.x82 - m.x84 <= 0) m.c268 = Constraint(expr=9/m.x84 - m.x82 <= 0) m.c269 = Constraint(expr=9/m.x86 - m.x87 <= 0) m.c270 = Constraint(expr=9/m.x87 - m.x86 <= 0)
40.258112
115
0.599267
98c58b5f2ed33bad0c9f8f884e7cfaf461c99dab
1,278
py
Python
dashboard_queue.py
gnott/elife-bot
584c315d15d1289e0d2c27c28aaaae31174812e4
[ "MIT" ]
null
null
null
dashboard_queue.py
gnott/elife-bot
584c315d15d1289e0d2c27c28aaaae31174812e4
[ "MIT" ]
null
null
null
dashboard_queue.py
gnott/elife-bot
584c315d15d1289e0d2c27c28aaaae31174812e4
[ "MIT" ]
null
null
null
import boto.sqs from boto.sqs.message import Message import json import uuid def send_message(message, settings): conn = boto.sqs.connect_to_region(settings.sqs_region, aws_access_key_id=settings.aws_access_key_id, aws_secret_access_key=settings.aws_secret_access_key) queue = conn.get_queue(settings.event_monitor_queue) m = Message() m.set_body(json.dumps(message)) queue.write(m) def build_event_message(item_identifier, version, run, event_type, timestamp, status, message): message = { 'message_type': 'event', 'item_identifier': item_identifier, 'version': version, 'run': run, 'event_type': event_type, 'timestamp': timestamp.isoformat(), 'status': status, 'message': message, 'message_id': str(uuid.uuid4()) } return message def build_property_message(item_identifier, version, name, value, property_type): message = { 'message_type': 'property', 'item_identifier': item_identifier, 'version': version, 'name': name, 'value': value, 'property_type': property_type, 'message_id': str(uuid.uuid4()) } return message
28.4
95
0.626761
fbd781706eeb6c2365f86afed31d97868a4e54b2
821
py
Python
config.py
Duncanian/Book-A-Meal-1
d700b90a07f2412d5d93a381f9153b3f1ddc1838
[ "MIT" ]
1
2018-05-06T06:12:24.000Z
2018-05-06T06:12:24.000Z
config.py
Duncanian/Book-A-Meal-1
d700b90a07f2412d5d93a381f9153b3f1ddc1838
[ "MIT" ]
1
2018-06-13T05:19:13.000Z
2018-06-13T05:19:13.000Z
config.py
lennykioko/Book-A-Meal
d700b90a07f2412d5d93a381f9153b3f1ddc1838
[ "MIT" ]
2
2018-04-19T10:30:40.000Z
2018-07-27T07:04:19.000Z
"""Contains various settings for each process of development """ from os import getenv class Config(object): """Base class with all the fundamental config variables""" DEBUG = False TESTING = False SQLALCHEMY_TRACK_MODIFICATIONS = True SECRET_KEY = getenv('SECRET_KEY') class TestingConfig(Config): """Contains config variables required during testing""" DEBUG = True TESTING = True SQLALCHEMY_DATABASE_URI = getenv('TESTING_DATABASE_URI') class DevelopmentConfig(Config): """Contains config variables required during development""" DEBUG = True SQLALCHEMY_DATABASE_URI = getenv('DEVELOPMENT_DATABASE_URI') class ProductionConfig(Config): """Contains config variables for use during production""" SQLALCHEMY_DATABASE_URI = getenv('PRODUCTION_DATABASE_URI')
27.366667
64
0.744214
80fdf3b67b9656e459f310ffa7a0239a2726e958
5,979
py
Python
FMPasteBoxAppDelegate.py
karstenw/FMPasteBox
c84aa860401051ed369d8559afa83f572a2bd729
[ "BSD-2-Clause" ]
2
2021-07-14T10:07:13.000Z
2021-11-14T17:59:18.000Z
FMPasteBoxAppDelegate.py
karstenw/FMPasteBox
c84aa860401051ed369d8559afa83f572a2bd729
[ "BSD-2-Clause" ]
null
null
null
FMPasteBoxAppDelegate.py
karstenw/FMPasteBox
c84aa860401051ed369d8559afa83f572a2bd729
[ "BSD-2-Clause" ]
null
null
null
# # FMPasteBoxAppDelegate.py # FMPasteBox # import sys import os import pprint pp = pprint.pprint import pdb kwlog = True import objc import Foundation NSObject = Foundation.NSObject NSMutableDictionary = Foundation.NSMutableDictionary NSData = Foundation.NSData import AppKit NSWindowController = AppKit.NSWindowController NSApplication = AppKit.NSApplication NSUserDefaults = AppKit.NSUserDefaults NSMutableAttributedString = AppKit.NSMutableAttributedString NSBeep = AppKit.NSBeep NSPasteboard = AppKit.NSPasteboard import FMPasteBoxLayoutObjects import FMPasteBoxTools read_pb = FMPasteBoxTools.read_pb makeunicode = FMPasteBoxTools.makeunicode fmpPasteboardTypes = FMPasteBoxTools.fmpPasteboardTypes additionalFMPPasteboardTypes = FMPasteBoxTools.additionalFMPPasteboardTypes displaynameTypes = FMPasteBoxTools.displaynameTypes datetimestamp = FMPasteBoxTools.datetimestamp import FMPasteBoxVersion import FMPasteBoxPrefController PrefController = FMPasteBoxPrefController.FMPasteBoxPreferenceController class FMPasteBoxAppDelegate(NSObject): menClipboardtype = objc.IBOutlet() butGetClipboard = objc.IBOutlet() butPushClipboard = objc.IBOutlet() tfXMLEditor = objc.IBOutlet() appWindow = objc.IBOutlet() def initialize(self): if kwlog: print "FMPasteBoxAppDelegate.initialize()" userdefaults = NSMutableDictionary.dictionary() userdefaults.setObject_forKey_(u"", u'txtFileMakerAppPath') userdefaults.setObject_forKey_(u"", u'txtExportsPath') userdefaults.setObject_forKey_(False, u'cbDoExports') NSUserDefaults.standardUserDefaults().registerDefaults_(userdefaults) self.preferenceController = None def awakeFromNib(self): # for later defaults = NSUserDefaults.standardUserDefaults() # set up type menu self.menClipboardtype.removeAllItems() menuItems = [ u"" ] menuItems.extend( displaynameTypes.keys() ) menuItems.sort() for menuItem in menuItems: self.menClipboardtype.addItemWithTitle_( menuItem ) self.menClipboardtype.setTitle_( u"" ) # set up text view self.tfXMLEditor.setUsesFindPanel_(True) window = self.tfXMLEditor.window() window.makeFirstResponder_(self.tfXMLEditor) def applicationDidFinishLaunching_(self, notification): app = NSApplication.sharedApplication() app.activateIgnoringOtherApps_(True) window = self.tfXMLEditor.window() window.makeFirstResponder_(self.tfXMLEditor) @objc.IBAction def getClipboard_(self, sender): pasteboardContents = read_pb() if not pasteboardContents: # abort - nothing on pasteboard NSBeep() # we must return implicit None! Crashing otherwise. return defaults = NSUserDefaults.standardUserDefaults() exportClipboards = defaults.boolForKey_( u'cbDoExports' ) if exportClipboards: exportFolder = makeunicode(defaults.objectForKey_( u'txtExportsPath' )) if os.path.exists( exportFolder ): d,t = FMPasteBoxTools.datetimestamp() dayFolder = os.path.join( exportFolder, d ) mainType = "-" try: mainType = mainType + pasteboardContents.typ.name except: pass sessionFolder = os.path.join( dayFolder, t + mainType) try: exportItems = pasteboardContents.additionals[:] exportItems.append( pasteboardContents ) for item in exportItems: name = item.typ.name ext = item.typ.fileExt data = item.data path = os.path.join( sessionFolder, name + ext ) if ext == ".xml": data = makeunicode( data ) data = data.encode( "utf-8" ) if not os.path.exists( sessionFolder ): os.makedirs( sessionFolder ) f = open(path, 'w') f.write( data ) f.close() if ext == ".xml": FMPasteBoxLayoutObjects.exportAssets( path, sessionFolder ) except Exception, err: print print "ADDITIONALS FAILED" print err print pbType = pasteboardContents.typ pbTypeName = pbType.name self.menClipboardtype.setTitle_( pbTypeName ) self.tfXMLEditor.setString_( makeunicode( pasteboardContents.data ) ) window = self.tfXMLEditor.window() window.makeFirstResponder_(self.tfXMLEditor) def textView(self): # model return makeunicode( self.tfXMLEditor.string() ) @objc.IBAction def pushClipboard_(self, sender): # get text view data data = makeunicode(self.textView()) data = data.encode("utf-8") l = len(data) nsdata = NSData.dataWithBytes_length_(data, l) # get pasteboard type pasteboardType = displaynameTypes.get( self.menClipboardtype.title(), u"" ) if not pasteboardType: NSBeep() # we must return implicit None! Crashing otherwise. return # write to pasteboard pasteboard = NSPasteboard.generalPasteboard() pasteboard.clearContents() pasteboardTypeName = pasteboardType.pbname pasteboard.setData_forType_( nsdata, pasteboardTypeName) @objc.IBAction def showPreferencePanel_(self, sender): if self.preferenceController == None: self.preferenceController = PrefController.alloc().init() self.preferenceController.showWindow_( self.preferenceController )
33.589888
87
0.635223
f8bae8154f987f13f2eab78834d68219b33fd5f0
342
py
Python
socialcrawl/networks/tasks.py
enterstudio/socialcrawl
8ad0081db3eafe96132291e579984e504c48021f
[ "MIT" ]
13
2015-03-04T22:34:28.000Z
2021-12-26T06:27:21.000Z
socialcrawl/networks/tasks.py
MrMugiwara/socialcrawl
8ad0081db3eafe96132291e579984e504c48021f
[ "MIT" ]
2
2017-01-28T21:45:53.000Z
2018-08-05T10:58:15.000Z
socialcrawl/networks/tasks.py
enterstudio/socialcrawl
8ad0081db3eafe96132291e579984e504c48021f
[ "MIT" ]
4
2016-09-19T20:29:34.000Z
2020-07-24T18:04:00.000Z
from celery import task from socialcrawl.clients.crawler import CachedTwitterClient, CachedFacebookClient CLIENTS = { 'twitter': CachedTwitterClient(), 'facebook': CachedFacebookClient(), } @task() def fetch(username, network): data = CLIENTS[network].fetch_profile(username) CLIENTS[network].save_profile(username, data)
22.8
81
0.75731
9feea1c6fc05c33f505917effcd1dc38a9c176f5
1,358
py
Python
azure-mgmt-resource/azure/mgmt/resource/policy/v2017_06_01_preview/models/__init__.py
v-Ajnava/azure-sdk-for-python
a1f6f80eb5869c5b710e8bfb66146546697e2a6f
[ "MIT" ]
4
2016-06-17T23:25:29.000Z
2022-03-30T22:37:45.000Z
azure/mgmt/resource/policy/v2017_06_01_preview/models/__init__.py
EnjoyLifeFund/Debian_py36_packages
1985d4c73fabd5f08f54b922e73a9306e09c77a5
[ "BSD-3-Clause", "BSD-2-Clause", "MIT" ]
54
2016-03-25T17:25:01.000Z
2018-10-22T17:27:54.000Z
azure/mgmt/resource/policy/v2017_06_01_preview/models/__init__.py
EnjoyLifeFund/Debian_py36_packages
1985d4c73fabd5f08f54b922e73a9306e09c77a5
[ "BSD-3-Clause", "BSD-2-Clause", "MIT" ]
3
2016-05-03T20:49:46.000Z
2017-10-05T21:05:27.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from .policy_sku import PolicySku from .policy_assignment import PolicyAssignment from .error_response import ErrorResponse, ErrorResponseException from .policy_definition_reference import PolicyDefinitionReference from .policy_set_definition import PolicySetDefinition from .policy_definition import PolicyDefinition from .policy_assignment_paged import PolicyAssignmentPaged from .policy_set_definition_paged import PolicySetDefinitionPaged from .policy_definition_paged import PolicyDefinitionPaged from .policy_client_enums import ( PolicyType, PolicyMode, ) __all__ = [ 'PolicySku', 'PolicyAssignment', 'ErrorResponse', 'ErrorResponseException', 'PolicyDefinitionReference', 'PolicySetDefinition', 'PolicyDefinition', 'PolicyAssignmentPaged', 'PolicySetDefinitionPaged', 'PolicyDefinitionPaged', 'PolicyType', 'PolicyMode', ]
34.820513
76
0.709131
7dc854b7b709d8ffa6053f5b35d8c88b4341ff6d
422
py
Python
osf/migrations/0119_add_asset_perms.py
gaybro8777/osf.io
30408511510a40bc393565817b343ef5fd76ab14
[ "Apache-2.0" ]
628
2015-01-15T04:33:22.000Z
2022-03-30T06:40:10.000Z
osf/migrations/0119_add_asset_perms.py
gaybro8777/osf.io
30408511510a40bc393565817b343ef5fd76ab14
[ "Apache-2.0" ]
4,712
2015-01-02T01:41:53.000Z
2022-03-30T14:18:40.000Z
osf/migrations/0119_add_asset_perms.py
Johnetordoff/osf.io
de10bf249c46cede04c78f7e6f7e352c69e6e6b5
[ "Apache-2.0" ]
371
2015-01-12T16:14:08.000Z
2022-03-31T18:58:29.000Z
# -*- coding: utf-8 -*- # Generated by Django 1.11.13 on 2018-07-16 17:04 from django.db import migrations def noop(*args): # This migration used to update admin permissions # This is now handled by the post_migrate signal pass class Migration(migrations.Migration): dependencies = [ ('osf', '0118_auto_20180716_1216'), ] operations = [ migrations.RunPython(noop, noop), ]
21.1
53
0.656398
836abda861e50d7f700a2fa518ffc0f2a3086b4d
856
py
Python
handyman/transform.py
gfleetwood/handyman
c3d4a8d7fe87536bb8c9b8f8ba0fce7b1f7feade
[ "MIT" ]
3
2019-04-04T18:05:13.000Z
2020-12-13T14:55:32.000Z
handyman/transform.py
gfleetwood/handyman
c3d4a8d7fe87536bb8c9b8f8ba0fce7b1f7feade
[ "MIT" ]
null
null
null
handyman/transform.py
gfleetwood/handyman
c3d4a8d7fe87536bb8c9b8f8ba0fce7b1f7feade
[ "MIT" ]
1
2021-11-20T08:26:03.000Z
2021-11-20T08:26:03.000Z
def impute_scale_data(df): ''' Imputes missing values with the median for numeric features and the mode for categorical ones, and then scales the numeric features by subtracting the mean and dividing by the standard deviation. ''' imputer_num = sk_pp.Imputer(strategy = 'median') df.loc[:, df.select_dtypes(exclude = ['object']).columns] = \ imputer_num.fit_transform(df.select_dtypes(exclude = ['object'])) scaler = sk_pp.StandardScaler() df.loc[:, df.select_dtypes(exclude = ['object']).columns] = \ scaler.fit_transform(df.select_dtypes(exclude = ['object'])) for col in df.select_dtypes(include = ['object']).columns: df.loc[:, col] = df.loc[:, col].fillna(value = df.loc[:, col].value_counts().index[0]) df_imputed_scaled = df return(df_imputed_scaled)
38.909091
104
0.658879
17ff164013e36878e093dd45a4a852e6709e57d2
9,551
py
Python
src/bvcf.py
shtoneyan/Basset
b6c7f8995bb4f8fc37eccf3ee0f78478beef51d7
[ "MIT" ]
248
2015-10-06T12:30:53.000Z
2022-02-02T20:30:34.000Z
src/bvcf.py
Deepstatsanalysis/Basset
18753ad9ff5a46291021a0fa1abaad037b6f64f0
[ "MIT" ]
51
2015-10-08T04:57:41.000Z
2021-08-12T19:53:04.000Z
src/bvcf.py
Deepstatsanalysis/Basset
18753ad9ff5a46291021a0fa1abaad037b6f64f0
[ "MIT" ]
120
2015-10-15T00:49:44.000Z
2022-02-16T21:17:17.000Z
#!/usr/bin/env python from __future__ import print_function from optparse import OptionParser import sys import numpy as np import pandas as pd import pysam from dna_io import dna_one_hot ################################################################################ # bvcf.py # # Methods and classes to support .vcf SNP analysis. ################################################################################ def cap_allele(allele, cap=5): ''' Cap the length of an allele in the figures ''' if len(allele) > cap: allele = allele[:cap] + '*' return allele def snps_seq1(snps, seq_len, genome_fasta, return_seqs=False): ''' Produce an array of one hot coded sequences for a list of SNPs. Attrs: snps [SNP] : list of SNPs seq_len (int) : sequence length to code genome_fasta (str) : genome FASTA file Return: seq_vecs (array) : one hot coded sequences surrounding the SNPs seq_headers [str] : headers for sequences seq_snps [SNP] : list of used SNPs ''' left_len = seq_len//2 - 1 right_len = seq_len//2 # open genome FASTA genome = pysam.Fastafile(genome_fasta) # initialize one hot coded vector list seq_vecs_list = [] # save successful SNPs seq_snps = [] # save sequence strings, too seqs = [] # name sequences seq_headers = [] for snp in snps: # specify positions in GFF-style 1-based seq_start = snp.pos - left_len seq_end = snp.pos + right_len + len(snp.ref_allele) - snp.longest_alt() # extract sequence as BED style if seq_start < 0: seq = 'N'*(-seq_start) + genome.fetch(snp.chrom, 0, seq_end).upper() else: seq = genome.fetch(snp.chrom, seq_start-1, seq_end).upper() # extend to full length if len(seq) < seq_end - seq_start: seq += 'N'*(seq_end-seq_start-len(seq)) # verify that ref allele matches ref sequence seq_ref = seq[left_len:left_len+len(snp.ref_allele)] if seq_ref != snp.ref_allele: if seq_ref not in snp.alt_alleles: print('WARNING: Skipping %s - neither allele matches reference genome: %s vs %s' % (snp.rsid, snp.ref_allele, seq_ref), file=sys.stderr) continue else: print('WARNING: %s - alt (as opposed to ref) allele matches reference genome; changing reference genome to match.' % (snp.rsid), file=sys.stderr) # remove alt allele and include ref allele seq = seq[:left_len] + snp.ref_allele + seq[left_len+len(seq_ref):] # note that this won't work for indels, but they will be sent to the # skipping code above because seq_ref will be the wrong length as the # proper alternative allele seq_snps.append(snp) # one hot code ref allele seq_vecs_ref, seq_ref = dna_length_1hot(seq, seq_len) seq_vecs_list.append(seq_vecs_ref) if return_seqs: seqs.append(seq_ref) # name ref allele seq_headers.append('%s_%s' % (snp.rsid, cap_allele(snp.ref_allele))) for alt_al in snp.alt_alleles: # remove ref allele and include alt allele seq_alt = seq[:left_len] + alt_al + seq[left_len+len(snp.ref_allele):] # one hot code seq_vecs_alt, seq_alt = dna_length_1hot(seq_alt, seq_len) seq_vecs_list.append(seq_vecs_alt) if return_seqs: seqs.append(seq_alt) # name seq_headers.append('%s_%s' % (snp.rsid, cap_allele(alt_al))) # stack seq_vecs = np.vstack(seq_vecs_list) if return_seqs: return seq_vecs, seq_headers, seq_snps, seqs else: return seq_vecs, seq_headers, seq_snps def snps2_seq1(snps, seq_len, genome1_fasta, genome2_fasta, return_seqs=False): ''' Produce an array of one hot coded sequences for a list of SNPs. Attrs: snps [SNP] : list of SNPs seq_len (int) : sequence length to code genome_fasta (str) : major allele genome FASTA file genome2_fasta (str) : minor allele genome FASTA file Return: seq_vecs (array) : one hot coded sequences surrounding the SNPs seq_headers [str] : headers for sequences seq_snps [SNP] : list of used SNPs ''' left_len = seq_len/2 - 1 right_len = seq_len/2 # open genome FASTA genome1 = pysam.Fastafile(genome1_fasta) genome2 = pysam.Fastafile(genome2_fasta) # initialize one hot coded vector list seq_vecs_list = [] # save successful SNPs seq_snps = [] # save sequence strings, too seqs = [] # name sequences seq_headers = [] for snp in snps: if len(snp.alt_alleles) > 1: print('Major/minor genome mode requires only two alleles: %s' % snp.rsid, file=sys.stderr) exit(1) alt_al = snp.alt_alleles[0] # specify positions in GFF-style 1-based seq_start = snp.pos - left_len seq_end = snp.pos + right_len + len(snp.ref_allele) # extract sequence as BED style if seq_start < 0: seq_ref = 'N'*(-seq_start) + genome1.fetch(snp.chrom, 0, seq_end).upper() else: seq_ref = genome1.fetch(snp.chrom, seq_start-1, seq_end).upper() # extend to full length if len(seq_ref) < seq_end - seq_start: seq_ref += 'N'*(seq_end-seq_start-len(seq_ref)) # verify that ref allele matches ref sequence seq_ref_snp = seq_ref[left_len:left_len+len(snp.ref_allele)] if seq_ref_snp != snp.ref_allele: print('WARNING: Major allele SNP %s doesnt match reference genome: %s vs %s' % (snp.rsid, snp.ref_allele, seq_ref_snp), file=sys.stderr) exit(1) # specify positions in GFF-style 1-based seq_start = snp.pos2 - left_len seq_end = snp.pos2 + right_len + len(alt_al) # extract sequence as BED style if seq_start < 0: seq_alt = 'N'*(-seq_start) + genome2.fetch(snp.chrom, 0, seq_end).upper() else: seq_alt = genome2.fetch(snp.chrom, seq_start-1, seq_end).upper() # extend to full length if len(seq_alt) < seq_end - seq_start: seq_alt += 'N'*(seq_end-seq_start-len(seq_alt)) # verify that ref allele matches ref sequence seq_alt_snp = seq_alt[left_len:left_len+len(alt_al)] if seq_alt_snp != alt_al: print('WARNING: Minor allele SNP %s doesnt match reference genome: %s vs %s' % (snp.rsid, snp.alt_alleles[0], seq_alt_snp), file=sys.stderr) exit(1) seq_snps.append(snp) # one hot code ref allele seq_vecs_ref, seq_ref = dna_length_1hot(seq_ref, seq_len) seq_vecs_list.append(seq_vecs_ref) if return_seqs: seqs.append(seq_ref) # name ref allele seq_headers.append('%s_%s' % (snp.rsid, cap_allele(snp.ref_allele))) # one hot code alt allele seq_vecs_alt, seq_alt = dna_length_1hot(seq_alt, seq_len) seq_vecs_list.append(seq_vecs_alt) if return_seqs: seqs.append(seq_alt) # name seq_headers.append('%s_%s' % (snp.rsid, cap_allele(alt_al))) # stack seq_vecs = np.vstack(seq_vecs_list) if return_seqs: return seq_vecs, seq_headers, seq_snps, seqs else: return seq_vecs, seq_headers, seq_snps def dna_length_1hot(seq, length): ''' Adjust the sequence length and compute a 1hot coding. ''' if length < len(seq): # trim the sequence seq_trim = (len(seq)-length)//2 seq = seq[seq_trim:seq_trim+length] elif length > len(seq): # extend with N's nfront = (length-len(seq))//2 nback = length - len(seq) - nfront seq = 'N'*nfront + seq + 'N'*nback seq_1hot = dna_one_hot(seq) return seq_1hot, seq def vcf_snps(vcf_file, index_snp=False, score=False, pos2=False): ''' Load SNPs from a VCF file ''' vcf_in = open(vcf_file) # read through header line = vcf_in.readline() while line[0] == '#': line = vcf_in.readline() # read in SNPs snps = [] while line: snps.append(SNP(line, index_snp, score, pos2)) line = vcf_in.readline() return snps class SNP: ''' SNP Represent SNPs read in from a VCF file Attributes: vcf_line (str) ''' def __init__(self, vcf_line, index_snp=False, score=False, pos2=False): a = vcf_line.split() if a[0].startswith('chr'): self.chrom = a[0] else: self.chrom = 'chr%s' % a[0] self.pos = int(a[1]) self.rsid = a[2] self.ref_allele = a[3] self.alt_alleles = a[4].split(',') self.index_snp = '.' if index_snp: self.index_snp = a[5] self.score = None if score: self.score = float(a[6]) self.pos2 = None if pos2: self.pos2 = int(a[5]) def get_alleles(self): ''' Return a list of all alleles ''' alleles = [self.ref_allele] + self.alt_alleles return alleles def longest_alt(self): ''' Return the longest alt allele. ''' return max([len(al) for al in self.alt_alleles]) def __str__(self): return 'SNP(%s, %s:%d, %s/%s)' % (self.rsid, self.chrom, self.pos, self.ref_allele, ','.join(self.alt_alleles))
30.514377
161
0.594179
5fc391770926dd7ef11862edd1950309e8023dff
1,041
py
Python
tests/test_x509_parser.py
jcrowgey/x5092json
97dcc266d5db3b4b487613621121c69aa5714a74
[ "BSD-3-Clause" ]
15
2019-01-11T23:43:23.000Z
2022-01-04T07:19:23.000Z
tests/test_x509_parser.py
jcrowgey/x5092json
97dcc266d5db3b4b487613621121c69aa5714a74
[ "BSD-3-Clause" ]
10
2019-01-17T17:14:59.000Z
2021-04-26T11:38:14.000Z
tests/test_x509_parser.py
jcrowgey/x5092json
97dcc266d5db3b4b487613621121c69aa5714a74
[ "BSD-3-Clause" ]
8
2019-01-16T21:48:34.000Z
2021-09-03T10:59:42.000Z
import json import os from x5092json import x509parser from base64 import b64decode from collections import OrderedDict import pytest TEST_DIR = os.path.abspath(os.path.dirname(__file__)) test_data = json.load( open(os.path.join(TEST_DIR, "test_data.json")), object_pairs_hook=OrderedDict, ) @pytest.mark.parametrize("test_name", test_data.keys()) def test_run(test_name): test_item = test_data[test_name] certificate = x509parser.READERS["DER"](b64decode(test_item["raw"])) cert_data = x509parser.parse(certificate) assert cert_data == test_item["parsed"] def test_load_files(): pem_file = open(os.path.join(TEST_DIR, "test_cert.pem"), mode="rb") certificate = x509parser.load_certificate(pem_file) cert_data = x509parser.parse(certificate) assert cert_data der_file = open(os.path.join(TEST_DIR, "test_cert.der"), mode="rb") certificate = x509parser.load_certificate( der_file, x509parser.READERS["DER"] ) cert_data = x509parser.parse(certificate) assert cert_data
29.742857
72
0.738713
8fc7e49d2de8d461467153a60994f91c1e497b32
1,247
py
Python
google/ads/googleads/v9/services/types/language_constant_service.py
JakobSteixner/google-ads-python
df2b802cc7e78295a4ece21cc7ef3787cd35dab0
[ "Apache-2.0" ]
null
null
null
google/ads/googleads/v9/services/types/language_constant_service.py
JakobSteixner/google-ads-python
df2b802cc7e78295a4ece21cc7ef3787cd35dab0
[ "Apache-2.0" ]
null
null
null
google/ads/googleads/v9/services/types/language_constant_service.py
JakobSteixner/google-ads-python
df2b802cc7e78295a4ece21cc7ef3787cd35dab0
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import proto # type: ignore __protobuf__ = proto.module( package="google.ads.googleads.v9.services", marshal="google.ads.googleads.v9", manifest={"GetLanguageConstantRequest",}, ) class GetLanguageConstantRequest(proto.Message): r"""Request message for [LanguageConstantService.GetLanguageConstant][google.ads.googleads.v9.services.LanguageConstantService.GetLanguageConstant]. Attributes: resource_name (str): Required. Resource name of the language constant to fetch. """ resource_name = proto.Field(proto.STRING, number=1,) __all__ = tuple(sorted(__protobuf__.manifest))
31.175
128
0.732959
c55385e45c67b7c46504ddf3a77de7b04b43472d
298
py
Python
flask_monitoringdashboard/test/test_factory.py
jlane9/Flask-MonitoringDashboard
b989bcf8f870ccd9141210eb4b2b8f716873c4fe
[ "MIT" ]
null
null
null
flask_monitoringdashboard/test/test_factory.py
jlane9/Flask-MonitoringDashboard
b989bcf8f870ccd9141210eb4b2b8f716873c4fe
[ "MIT" ]
null
null
null
flask_monitoringdashboard/test/test_factory.py
jlane9/Flask-MonitoringDashboard
b989bcf8f870ccd9141210eb4b2b8f716873c4fe
[ "MIT" ]
null
null
null
import unittest from flask_monitoringdashboard.test.utils import get_test_app class TestFactory(unittest.TestCase): def test_factory(self): """ Create multiple applications and verify that the app doesn't break. """ get_test_app() get_test_app()
21.285714
79
0.674497
5e507193aa1ff19da31e7cb65a0df99aca3578b3
11,733
py
Python
mne/viz/tests/test_ica.py
fmamashli/mne-python
52f064415e7c9fa8fe243d22108dcdf3d86505b9
[ "BSD-3-Clause" ]
null
null
null
mne/viz/tests/test_ica.py
fmamashli/mne-python
52f064415e7c9fa8fe243d22108dcdf3d86505b9
[ "BSD-3-Clause" ]
null
null
null
mne/viz/tests/test_ica.py
fmamashli/mne-python
52f064415e7c9fa8fe243d22108dcdf3d86505b9
[ "BSD-3-Clause" ]
null
null
null
# Authors: Denis Engemann <denis.engemann@gmail.com> # Alexandre Gramfort <alexandre.gramfort@inria.fr> # # License: Simplified BSD import os.path as op import numpy as np from numpy.testing import assert_equal, assert_array_equal import pytest import matplotlib.pyplot as plt from mne import read_events, Epochs, read_cov, pick_types from mne.io import read_raw_fif from mne.preprocessing import ICA, create_ecg_epochs, create_eog_epochs from mne.utils import run_tests_if_main, requires_sklearn from mne.viz.ica import _create_properties_layout, plot_ica_properties from mne.viz.utils import _fake_click base_dir = op.join(op.dirname(__file__), '..', '..', 'io', 'tests', 'data') evoked_fname = op.join(base_dir, 'test-ave.fif') raw_fname = op.join(base_dir, 'test_raw.fif') cov_fname = op.join(base_dir, 'test-cov.fif') event_name = op.join(base_dir, 'test-eve.fif') event_id, tmin, tmax = 1, -0.1, 0.2 raw_ctf_fname = op.join(base_dir, 'test_ctf_raw.fif') def _get_raw(preload=False): """Get raw data.""" return read_raw_fif(raw_fname, preload=preload) def _get_events(): """Get events.""" return read_events(event_name) def _get_picks(raw): """Get picks.""" return [0, 1, 2, 6, 7, 8, 12, 13, 14] # take a only few channels def _get_epochs(): """Get epochs.""" raw = _get_raw() events = _get_events() picks = _get_picks(raw) with pytest.warns(RuntimeWarning, match='projection'): epochs = Epochs(raw, events[:10], event_id, tmin, tmax, picks=picks) return epochs @requires_sklearn def test_plot_ica_components(): """Test plotting of ICA solutions.""" res = 8 fast_test = {"res": res, "contours": 0, "sensors": False} raw = _get_raw() ica = ICA(noise_cov=read_cov(cov_fname), n_components=2, max_pca_components=3, n_pca_components=3) ica_picks = _get_picks(raw) with pytest.warns(RuntimeWarning, match='projection'): ica.fit(raw, picks=ica_picks) for components in [0, [0], [0, 1], [0, 1] * 2, None]: ica.plot_components(components, image_interp='bilinear', colorbar=True, **fast_test) plt.close('all') # test interactive mode (passing 'inst' arg) ica.plot_components([0, 1], image_interp='bilinear', inst=raw, res=16) fig = plt.gcf() # test title click # ---------------- lbl = fig.axes[1].get_label() ica_idx = int(lbl[-3:]) titles = [ax.title for ax in fig.axes] title_pos_midpoint = (titles[1].get_window_extent().extents .reshape((2, 2)).mean(axis=0)) # first click adds to exclude _fake_click(fig, fig.axes[1], title_pos_midpoint, xform='pix') assert ica_idx in ica.exclude # clicking again removes from exclude _fake_click(fig, fig.axes[1], title_pos_midpoint, xform='pix') assert ica_idx not in ica.exclude # test topo click # --------------- _fake_click(fig, fig.axes[1], (0., 0.), xform='data') c_fig = plt.gcf() labels = [ax.get_label() for ax in c_fig.axes] for l in ['topomap', 'image', 'erp', 'spectrum', 'variance']: assert (l in labels) topomap_ax = c_fig.axes[labels.index('topomap')] title = topomap_ax.get_title() assert (lbl == title) ica.info = None with pytest.raises(RuntimeError, match='fit the ICA'): ica.plot_components(1, ch_type='mag') plt.close('all') @requires_sklearn def test_plot_ica_properties(): """Test plotting of ICA properties.""" res = 8 raw = _get_raw(preload=True) raw.add_proj([], remove_existing=True) events = _get_events() picks = _get_picks(raw)[:6] pick_names = [raw.ch_names[k] for k in picks] raw.pick_channels(pick_names) reject = dict(grad=4000e-13, mag=4e-12) epochs = Epochs(raw, events[:10], event_id, tmin, tmax, baseline=(None, 0), preload=True) ica = ICA(noise_cov=read_cov(cov_fname), n_components=2, max_pca_components=2, n_pca_components=2) with pytest.warns(RuntimeWarning, match='projection'): ica.fit(raw) # test _create_properties_layout fig, ax = _create_properties_layout() assert_equal(len(ax), 5) topoargs = dict(topomap_args={'res': res, 'contours': 0, "sensors": False}) ica.plot_properties(raw, picks=0, **topoargs) ica.plot_properties(epochs, picks=1, dB=False, plot_std=1.5, **topoargs) ica.plot_properties(epochs, picks=1, image_args={'sigma': 1.5}, topomap_args={'res': 10, 'colorbar': True}, psd_args={'fmax': 65.}, plot_std=False, figsize=[4.5, 4.5], reject=reject) plt.close('all') pytest.raises(TypeError, ica.plot_properties, epochs, dB=list('abc')) pytest.raises(TypeError, ica.plot_properties, ica) pytest.raises(TypeError, ica.plot_properties, [0.2]) pytest.raises(TypeError, plot_ica_properties, epochs, epochs) pytest.raises(TypeError, ica.plot_properties, epochs, psd_args='not dict') pytest.raises(ValueError, ica.plot_properties, epochs, plot_std=[]) fig, ax = plt.subplots(2, 3) ax = ax.ravel()[:-1] ica.plot_properties(epochs, picks=1, axes=ax, **topoargs) fig = ica.plot_properties(raw, picks=[0, 1], **topoargs) assert_equal(len(fig), 2) pytest.raises(TypeError, plot_ica_properties, epochs, ica, picks=[0, 1], axes=ax) pytest.raises(ValueError, ica.plot_properties, epochs, axes='not axes') plt.close('all') # Test merging grads. raw = _get_raw(preload=True) picks = pick_types(raw.info, meg='grad')[:10] ica = ICA(n_components=2) ica.fit(raw, picks=picks) ica.plot_properties(raw) plt.close('all') @requires_sklearn def test_plot_ica_sources(): """Test plotting of ICA panel.""" raw = read_raw_fif(raw_fname).crop(0, 1).load_data() picks = _get_picks(raw) epochs = _get_epochs() raw.pick_channels([raw.ch_names[k] for k in picks]) ica_picks = pick_types(raw.info, meg=True, eeg=False, stim=False, ecg=False, eog=False, exclude='bads') ica = ICA(n_components=2, max_pca_components=3, n_pca_components=3) ica.fit(raw, picks=ica_picks) ica.exclude = [1] fig = ica.plot_sources(raw) fig.canvas.key_press_event('escape') # Sadly close_event isn't called on Agg backend and the test always passes. assert_array_equal(ica.exclude, [1]) plt.close('all') # dtype can change int->np.int after load, test it explicitly ica.n_components_ = np.int64(ica.n_components_) fig = ica.plot_sources(raw) # also test mouse clicks data_ax = fig.axes[0] _fake_click(fig, data_ax, [-0.1, 0.9]) # click on y-label # `exclude` parameter is deprecated with pytest.deprecated_call(): ica.plot_sources(raw, exclude=[1]) raw.info['bads'] = ['MEG 0113'] with pytest.raises(RuntimeError, match="Raw doesn't match fitted data"): ica.plot_sources(inst=raw) ica.plot_sources(epochs) epochs.info['bads'] = ['MEG 0113'] with pytest.raises(RuntimeError, match="Epochs don't match fitted data"): ica.plot_sources(inst=epochs) epochs.info['bads'] = [] ica.plot_sources(epochs.average()) evoked = epochs.average() fig = ica.plot_sources(evoked) # Test a click ax = fig.get_axes()[0] line = ax.lines[0] _fake_click(fig, ax, [line.get_xdata()[0], line.get_ydata()[0]], 'data') _fake_click(fig, ax, [ax.get_xlim()[0], ax.get_ylim()[1]], 'data') # plot with bad channels excluded ica.exclude = [0] ica.plot_sources(evoked) ica.labels_ = dict(eog=[0]) ica.labels_['eog/0/crazy-channel'] = [0] ica.plot_sources(evoked) # now with labels with pytest.raises(ValueError, match='must be of Raw or Epochs type'): ica.plot_sources('meeow') plt.close('all') @requires_sklearn def test_plot_ica_overlay(): """Test plotting of ICA cleaning.""" raw = _get_raw(preload=True) picks = _get_picks(raw) ica = ICA(noise_cov=read_cov(cov_fname), n_components=2, max_pca_components=3, n_pca_components=3) # can't use info.normalize_proj here because of how and when ICA and Epochs # objects do picking of Raw data with pytest.warns(RuntimeWarning, match='projection'): ica.fit(raw, picks=picks) # don't test raw, needs preload ... with pytest.warns(RuntimeWarning, match='projection'): ecg_epochs = create_ecg_epochs(raw, picks=picks) ica.plot_overlay(ecg_epochs.average()) with pytest.warns(RuntimeWarning, match='projection'): eog_epochs = create_eog_epochs(raw, picks=picks) ica.plot_overlay(eog_epochs.average()) pytest.raises(TypeError, ica.plot_overlay, raw[:2, :3][0]) pytest.raises(TypeError, ica.plot_overlay, raw, exclude=2) ica.plot_overlay(raw) plt.close('all') # smoke test for CTF raw = read_raw_fif(raw_ctf_fname) raw.apply_gradient_compensation(3) picks = pick_types(raw.info, meg=True, ref_meg=False) ica = ICA(n_components=2, max_pca_components=3, n_pca_components=3) ica.fit(raw, picks=picks) with pytest.warns(RuntimeWarning, match='longer than'): ecg_epochs = create_ecg_epochs(raw) ica.plot_overlay(ecg_epochs.average()) plt.close('all') @requires_sklearn def test_plot_ica_scores(): """Test plotting of ICA scores.""" raw = _get_raw() picks = _get_picks(raw) ica = ICA(noise_cov=read_cov(cov_fname), n_components=2, max_pca_components=3, n_pca_components=3) with pytest.warns(RuntimeWarning, match='projection'): ica.fit(raw, picks=picks) ica.labels_ = dict() ica.labels_['eog/0/foo'] = 0 ica.labels_['eog'] = 0 ica.labels_['ecg'] = 1 ica.plot_scores([0.3, 0.2], axhline=[0.1, -0.1]) ica.plot_scores([0.3, 0.2], axhline=[0.1, -0.1], labels='foo') ica.plot_scores([0.3, 0.2], axhline=[0.1, -0.1], labels='eog') ica.plot_scores([0.3, 0.2], axhline=[0.1, -0.1], labels='ecg') pytest.raises( ValueError, ica.plot_scores, [0.3, 0.2], axhline=[0.1, -0.1], labels=['one', 'one-too-many']) pytest.raises(ValueError, ica.plot_scores, [0.2]) plt.close('all') @requires_sklearn def test_plot_instance_components(): """Test plotting of components as instances of raw and epochs.""" raw = _get_raw() picks = _get_picks(raw) ica = ICA(noise_cov=read_cov(cov_fname), n_components=2, max_pca_components=3, n_pca_components=3) with pytest.warns(RuntimeWarning, match='projection'): ica.fit(raw, picks=picks) ica.exclude = [0] fig = ica.plot_sources(raw, title='Components') for key in ['down', 'up', 'right', 'left', 'o', '-', '+', '=', 'pageup', 'pagedown', 'home', 'end', 'f11', 'b']: fig.canvas.key_press_event(key) ax = fig.get_axes()[0] line = ax.lines[0] _fake_click(fig, ax, [line.get_xdata()[0], line.get_ydata()[0]], 'data') _fake_click(fig, ax, [-0.1, 0.9]) # click on y-label fig.canvas.key_press_event('escape') plt.close('all') epochs = _get_epochs() fig = ica.plot_sources(epochs, title='Components') for key in ['down', 'up', 'right', 'left', 'o', '-', '+', '=', 'pageup', 'pagedown', 'home', 'end', 'f11', 'b']: fig.canvas.key_press_event(key) # Test a click ax = fig.get_axes()[0] line = ax.lines[0] _fake_click(fig, ax, [line.get_xdata()[0], line.get_ydata()[0]], 'data') _fake_click(fig, ax, [-0.1, 0.9]) # click on y-label fig.canvas.key_press_event('escape') plt.close('all') run_tests_if_main()
36.437888
79
0.646212
7f71db1db8b1e52248516329621ba95d1fb384fc
9,968
py
Python
tests/quick.py
wfarah/frbpoppy
e575c49e6b4a69015a66d3f38a3459e0ffe4eb05
[ "MIT" ]
null
null
null
tests/quick.py
wfarah/frbpoppy
e575c49e6b4a69015a66d3f38a3459e0ffe4eb05
[ "MIT" ]
null
null
null
tests/quick.py
wfarah/frbpoppy
e575c49e6b4a69015a66d3f38a3459e0ffe4eb05
[ "MIT" ]
null
null
null
"""Use standard populations to speed up calculation times.""" import os from frbpoppy import CosmicPopulation, SurveyPopulation, paths, unpickle class StandardCosmicPops: """docstring for StandardCosmicPop.""" def __init__(self, sort, size, alpha, gamma): """Quickly get standard populations. Args: sort (str): Which type of population, standard, std_candle etc. size (str): Choice of 'small', 'medium' or 'large' Returns: pop: Desired population. """ self.sort = sort self.size = size self.alpha = alpha self.gamma = gamma self.name = f'{self.sort}_{self.size}' if alpha is not None: self.name += f'_{self.alpha}' if gamma is not None: self.name += f'_{self.gamma}' self.path = paths.populations() + self.name + '.p' if self.size == 'small': # For testing purposes self.n = int(1e5) elif self.size == 'medium': # For laptop purposes self.n = int(1e6) elif self.size == 'large': # For cluster purposes self.n = int(1e7) elif self.size == 'huge': # For cluster purposes self.n = int(1e8) def standard_pop(self): """Generate a standard population.""" pop = CosmicPopulation(self.n, days=1, name=self.name, H_0=67.74, W_m=0.3089, W_v=0.6911, dm_host_model='normal', dm_host_mu=100, dm_host_sigma=200, dm_igm_index=1000, dm_igm_sigma=None, dm_mw_model='ne2001', emission_range=[10e6, 10e9], lum_range=[1e40, 1e45], lum_index=0., n_model='vol_co', alpha=-1.5, pulse_model='lognormal', pulse_range=[1., 1.], pulse_mu=0.1, pulse_sigma=0.5, si_mu=-1.4, si_sigma=1., z_max=2.5) pop.save() return pop def standard_candle_pop(self): """Generate a standard candle population.""" pop = CosmicPopulation(self.n, days=1, name=self.name, H_0=67.74, W_m=0.3089, W_v=0.6911, dm_host_model='normal', dm_host_mu=100, dm_host_sigma=0, dm_igm_index=1000, dm_igm_sigma=None, dm_mw_model='ne2001', emission_range=[10e6, 10e9], lum_range=[1e36, 1e36], lum_index=0., n_model='sfr', alpha=-1.5, pulse_model='uniform', pulse_range=[1., 1.], pulse_mu=0.1, pulse_sigma=0., si_mu=0., si_sigma=0., z_max=2.5) pop.save() return pop def alpha_pop(self): """Generate a population varying with alpha.""" pop = CosmicPopulation(self.n, days=1, name=self.name, H_0=67.74, W_m=0.3089, W_v=0.6911, dm_host_model='normal', dm_host_mu=100, dm_host_sigma=200, dm_igm_index=1000, dm_igm_sigma=None, dm_mw_model='ne2001', emission_range=[10e6, 10e9], lum_range=[1e40, 1e45], lum_index=0., n_model='vol_co', alpha=self.alpha, pulse_model='lognormal', pulse_range=[1., 1.], pulse_mu=0.1, pulse_sigma=0.5, si_mu=-1.4, si_sigma=1., z_max=2.5) pop.save() return pop def alpha_simple_pop(self): """Generate a simple local population varying with alpha.""" pop = CosmicPopulation(self.n, days=1, name=self.name, H_0=67.74, W_m=0.3089, W_v=0.6911, dm_host_model='normal', dm_host_mu=0., dm_host_sigma=0., dm_igm_index=0., dm_igm_sigma=None, dm_mw_model='zero', emission_range=[10e6, 10e9], lum_range=[1e38, 1e38], lum_index=0., n_model='vol_co', alpha=self.alpha, pulse_model='uniform', pulse_range=[10, 10], pulse_mu=0.1, pulse_sigma=1., si_mu=0., si_sigma=0., z_max=0.01) pop.save() return pop def gamma_pop(self): """Generate a population varying with spectral index.""" pop = CosmicPopulation(self.n, days=1, name=self.name, H_0=67.74, W_m=0.3089, W_v=0.6911, dm_host_model='normal', dm_host_mu=0., dm_host_sigma=0., dm_igm_index=0., dm_igm_sigma=None, dm_mw_model='zero', emission_range=[10e6, 10e9], lum_range=[10**42.5, 10**42.5], lum_index=0., n_model='vol_co', alpha=-1.5, pulse_model='uniform', pulse_range=[10, 10], pulse_mu=0.1, pulse_sigma=1., si_mu=self.gamma, si_sigma=0., z_max=2.5) pop.save() return pop def get_cosmic_pop(sort, size, load=True, overwrite=False, alpha=None, gamma=None): """Quickly get standard populations. Args: sort (str): Which type of population, standard, std_candle etc. size (str): Choice of 'small', 'medium' or 'large' load (bool): Whether to load in a population overwrite (bool): Check whether a population has already been run. If overwrite is true, it will always make a new instance. Returns: pop: Desired population. """ pop = StandardCosmicPops(sort, size, alpha=alpha, gamma=gamma) # Skip loading a population if you don't have to if not load: return pop.name # Go for an earlier version if available if not overwrite: if os.path.isfile(pop.path): return unpickle(pop.path) # Else generate a standard population if pop.sort == 'standard': # Also known as a complex population return pop.standard_pop() if pop.sort == 'standard_candle': return pop.standard_candle_pop() if pop.sort == 'alpha': return pop.alpha_pop() if pop.sort == 'gamma': return pop.gamma_pop() if pop.sort == 'alpha_simple': return pop.alpha_simple_pop() def get_survey_pop(pop, survey, overwrite=False): """Quickly get survey populations. Args: pop (CosmicPopulation): Population to survey survey (Survey): Survey to use overwrite (bool): Check whether a population has already been run. If overwrite is true, it will always make a new instance. Returns: pop: Desired population. """ observe = True # Check where a possible population would be located path = '' if isinstance(pop, str): name = f'{pop}_{survey.name}' path = paths.populations() + name + '.p' # Check if the file exists if not overwrite: if os.path.isfile(path): observe = False return unpickle(path) # If all else fails observe again if observe: if isinstance(pop, str): m = f'No survey population at {path}, yet no surveying requested' raise ValueError(m) surv_pop = SurveyPopulation(pop, survey) surv_pop.name = f'{pop.name}_{survey.name}' surv_pop.save() return surv_pop
36.512821
77
0.408407
b3f7621a7c65d2b785c0656972d7e82720316b91
3,193
py
Python
tests/sinks/test_tcp_client.py
02strich/aws-embedded-metrics-python
4c5718e580dfb12529673a6b54810adfbfd54242
[ "Apache-2.0" ]
130
2019-11-18T19:39:55.000Z
2022-03-28T09:56:25.000Z
tests/sinks/test_tcp_client.py
02strich/aws-embedded-metrics-python
4c5718e580dfb12529673a6b54810adfbfd54242
[ "Apache-2.0" ]
50
2019-11-18T22:22:33.000Z
2022-02-06T11:03:31.000Z
tests/sinks/test_tcp_client.py
02strich/aws-embedded-metrics-python
4c5718e580dfb12529673a6b54810adfbfd54242
[ "Apache-2.0" ]
23
2019-11-19T00:06:41.000Z
2021-12-09T02:01:40.000Z
from aws_embedded_metrics.sinks.tcp_client import TcpClient from urllib.parse import urlparse import socket import threading import time import logging log = logging.getLogger(__name__) test_host = '0.0.0.0' test_port = 9999 endpoint = urlparse("tcp://0.0.0.0:9999") message = "_16-Byte-String_".encode('utf-8') def test_can_send_message(): # arrange agent = InProcessAgent().start() client = TcpClient(endpoint) # act client.connect() client.send_message(message) # assert time.sleep(1) messages = agent.messages assert 1 == len(messages) assert message == messages[0] agent.shutdown() def test_can_connect_concurrently_from_threads(): # arrange concurrency = 10 agent = InProcessAgent().start() client = TcpClient(endpoint) barrier = threading.Barrier(concurrency, timeout=5) def run(): barrier.wait() client.connect() client.send_message(message) def start_thread(): thread = threading.Thread(target=run, args=()) thread.daemon = True thread.start() # act for _ in range(concurrency): start_thread() # assert time.sleep(1) messages = agent.messages assert concurrency == len(messages) for i in range(concurrency): assert message == messages[i] agent.shutdown() def test_can_recover_from_agent_shutdown(): # arrange agent = InProcessAgent().start() client = TcpClient(endpoint) # act client.connect() client.send_message(message) agent.shutdown() time.sleep(5) client.send_message(message) agent = InProcessAgent().start() client.send_message(message) # assert time.sleep(1) messages = agent.messages assert 1 == len(messages) assert message == messages[0] agent.shutdown() class InProcessAgent(object): """ Agent that runs on a background thread and collects messages in memory. """ def __init__(self): self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) self.sock.bind((test_host, test_port)) self.sock.listen() self.is_shutdown = False self.messages = [] def start(self) -> "InProcessAgent": thread = threading.Thread(target=self.run, args=()) thread.daemon = True thread.start() return self def run(self): while not self.is_shutdown: connection, client_address = self.sock.accept() self.connection = connection try: while not self.is_shutdown: data = self.connection.recv(16) if data: self.messages.append(data) else: break finally: log.error("Exited the recv loop") def shutdown(self): try: self.is_shutdown = True self.connection.shutdown(socket.SHUT_RDWR) self.connection.close() self.sock.close() except Exception as e: log.error("Failed to shutdown %s" % (e,))
25.141732
71
0.614156
44d26f6e69f1d65abe3a51be089a256b96af1ec2
6,030
py
Python
research/audioset/vggish/vggish_inference_demo.py
vincentcheny/models
afb1a59fc1bc792ac72d1a3e22e2469020529788
[ "Apache-2.0" ]
1
2019-09-11T09:41:11.000Z
2019-09-11T09:41:11.000Z
research/audioset/vggish/vggish_inference_demo.py
vincentcheny/models
afb1a59fc1bc792ac72d1a3e22e2469020529788
[ "Apache-2.0" ]
null
null
null
research/audioset/vggish/vggish_inference_demo.py
vincentcheny/models
afb1a59fc1bc792ac72d1a3e22e2469020529788
[ "Apache-2.0" ]
null
null
null
# Copyright 2017 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== r"""A simple demonstration of running VGGish in inference mode. This is intended as a toy example that demonstrates how the various building blocks (feature extraction, model definition and loading, postprocessing) work together in an inference context. A WAV file (assumed to contain signed 16-bit PCM samples) is read in, converted into log mel spectrogram examples, fed into VGGish, the raw embedding output is whitened and quantized, and the postprocessed embeddings are optionally written in a SequenceExample to a TFRecord file (using the same format as the embedding features released in AudioSet). Usage: # Run a WAV file through the model and print the embeddings. The model # checkpoint is loaded from vggish_model.ckpt and the PCA parameters are # loaded from vggish_pca_params.npz in the current directory. $ python vggish_inference_demo.py --wav_file /path/to/a/wav/file # Run a WAV file through the model and also write the embeddings to # a TFRecord file. The model checkpoint and PCA parameters are explicitly # passed in as well. $ python vggish_inference_demo.py --wav_file /path/to/a/wav/file \ --tfrecord_file /path/to/tfrecord/file \ --checkpoint /path/to/model/checkpoint \ --pca_params /path/to/pca/params # Run a built-in input (a sine wav) through the model and print the # embeddings. Associated model files are read from the current directory. $ python vggish_inference_demo.py """ from __future__ import print_function import numpy as np from scipy.io import wavfile import six import tensorflow as tf import vggish_input import vggish_params import vggish_postprocess import vggish_slim flags = tf.app.flags flags.DEFINE_string( 'wav_file', None, 'Path to a wav file. Should contain signed 16-bit PCM samples. ' 'If none is provided, a synthetic sound is used.') flags.DEFINE_string( 'checkpoint', 'vggish_model.ckpt', 'Path to the VGGish checkpoint file.') flags.DEFINE_string( 'pca_params', 'vggish_pca_params.npz', 'Path to the VGGish PCA parameters file.') flags.DEFINE_string( 'tfrecord_file', None, 'Path to a TFRecord file where embeddings will be written.') FLAGS = flags.FLAGS def main(_): # In this simple example, we run the examples from a single audio file through # the model. If none is provided, we generate a synthetic input. if FLAGS.wav_file: wav_file = FLAGS.wav_file else: # Write a WAV of a sine wav into an in-memory file object. num_secs = 5 freq = 1000 sr = 44100 t = np.linspace(0, num_secs, int(num_secs * sr)) x = np.sin(2 * np.pi * freq * t) # Convert to signed 16-bit samples. samples = np.clip(x * 32768, -32768, 32767).astype(np.int16) wav_file = six.BytesIO() wavfile.write(wav_file, sr, samples) wav_file.seek(0) examples_batch = vggish_input.wavfile_to_examples(wav_file) print(examples_batch) # Prepare a postprocessor to munge the model embeddings. pproc = vggish_postprocess.Postprocessor(FLAGS.pca_params) # If needed, prepare a record writer to store the postprocessed embeddings. writer = tf.python_io.TFRecordWriter( FLAGS.tfrecord_file) if FLAGS.tfrecord_file else None with tf.Graph().as_default(), tf.Session() as sess: # Define the model in inference mode, load the checkpoint, and # locate input and output tensors. vggish_slim.define_vggish_slim(training=False) vggish_slim.load_vggish_slim_checkpoint(sess, FLAGS.checkpoint) features_tensor = sess.graph.get_tensor_by_name( vggish_params.INPUT_TENSOR_NAME) embedding_tensor = sess.graph.get_tensor_by_name( vggish_params.OUTPUT_TENSOR_NAME) # Run inference and postprocessing. [embedding_batch] = sess.run([embedding_tensor], feed_dict={features_tensor: examples_batch}) print(embedding_batch) postprocessed_batch = pproc.postprocess(embedding_batch) print(postprocessed_batch) # Write the postprocessed embeddings as a SequenceExample, in a similar # format as the features released in AudioSet. Each row of the batch of # embeddings corresponds to roughly a second of audio (96 10ms frames), and # the rows are written as a sequence of bytes-valued features, where each # feature value contains the 128 bytes of the whitened quantized embedding. seq_example = tf.train.SequenceExample( feature_lists=tf.train.FeatureLists( feature_list={ vggish_params.AUDIO_EMBEDDING_FEATURE_NAME: tf.train.FeatureList( feature=[ tf.train.Feature( bytes_list=tf.train.BytesList( value=[embedding.tobytes()])) for embedding in postprocessed_batch ] ) } ) ) print(seq_example) if writer: writer.write(seq_example.SerializeToString()) if writer: writer.close() if __name__ == '__main__': tf.app.run()
39.155844
81
0.672305
2cfc8eec823afc3bc34963aad8f715d2b0e9cbe8
25,605
py
Python
intersight/apis/storage_controller_api.py
sdnit-se/intersight-python
551f7685c0f76bb8af60ec83ffb6f9672d49a4ae
[ "Apache-2.0" ]
21
2018-03-29T14:20:35.000Z
2021-10-13T05:11:41.000Z
intersight/apis/storage_controller_api.py
sdnit-se/intersight-python
551f7685c0f76bb8af60ec83ffb6f9672d49a4ae
[ "Apache-2.0" ]
14
2018-01-30T15:45:46.000Z
2022-02-23T14:23:21.000Z
intersight/apis/storage_controller_api.py
sdnit-se/intersight-python
551f7685c0f76bb8af60ec83ffb6f9672d49a4ae
[ "Apache-2.0" ]
18
2018-01-03T15:09:56.000Z
2021-07-16T02:21:54.000Z
# coding: utf-8 """ Cisco Intersight OpenAPI specification. The Cisco Intersight OpenAPI specification. OpenAPI spec version: 1.0.9-1461 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import sys import os import re # python 2 and python 3 compatibility library from six import iteritems from ..configuration import Configuration from ..api_client import ApiClient class StorageControllerApi(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. Ref: https://github.com/swagger-api/swagger-codegen """ def __init__(self, api_client=None): config = Configuration() if api_client: self.api_client = api_client else: if not config.api_client: config.api_client = ApiClient() self.api_client = config.api_client def storage_controllers_get(self, **kwargs): """ Read a 'storage.Controller' resource. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.storage_controllers_get(callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param bool count: The $count query option allows clients to request a count of the matching resources. :param str inlinecount: The $inlinecount query option allows clients to request an inline count of the matching resources included with the resources in the response :param int top: The max number of documents to return. :param int skip: The number of documents to skip. :param str filter: Filter criteria for documents to return. A URI with a $filter System Query Option identifies a subset of the Entries from the Collection of Entries identified by the Resource Path section of the URI. The subset is determined by selecting only the Entries that satisfy the predicate expression specified by the query option. The expression language that is used in $filter operators supports references to properties and literals. The literal values can be strings enclosed in single quotes, numbers and boolean values (true or false) or any of the additional literal representations shown in the Abstract Type System section. Query examples: $filter=Name eq 'Bob' $filter=Tags/any(t: t/Key eq 'Site') $filter=Tags/any(t: t/Key eq 'Site' and t/Value eq 'London') :param str select: Specifies a subset of properties to return. :param str orderby: Determines what values are used to order a collection of documents. :param str expand: Specify additional attributes or related documents to return. Supports only 'DisplayNames' attribute now. Query examples: $expand=DisplayNames :param str apply: Specify one or more transformation operations to perform aggregation on documents. The transformations are processed in order with the output from a transformation being used as input for the subsequent transformation. Query examples: $apply=groupby((Model), aggregate($count as Total)) $apply=groupby((Model), aggregate(AvailableMemory with average as AverageAvailableMemory)) :param str at: Similar to \"$filter\", but \"at\" is specifically used to filter versioning information properties for documents to return. A URI with an \"at\" Query Option identifies a subset of the Entries from the Collection of Entries identified by the Resource Path section of the URI. The subset is determined by selecting only the Entries that satisfy the predicate expression specified by the query option. The expression language that is used in at operators supports references to properties and literals. The literal values can be strings enclosed in single quotes, numbers and boolean values (true or false) or any of the additional literal representations shown in the Abstract Type System section. Query examples: at=VersionType eq 'Configured' at=InterestedMos.Moid eq '5b5877e56c6730367acf46cd' :return: StorageControllerList If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.storage_controllers_get_with_http_info(**kwargs) else: (data) = self.storage_controllers_get_with_http_info(**kwargs) return data def storage_controllers_get_with_http_info(self, **kwargs): """ Read a 'storage.Controller' resource. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.storage_controllers_get_with_http_info(callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param bool count: The $count query option allows clients to request a count of the matching resources. :param str inlinecount: The $inlinecount query option allows clients to request an inline count of the matching resources included with the resources in the response :param int top: The max number of documents to return. :param int skip: The number of documents to skip. :param str filter: Filter criteria for documents to return. A URI with a $filter System Query Option identifies a subset of the Entries from the Collection of Entries identified by the Resource Path section of the URI. The subset is determined by selecting only the Entries that satisfy the predicate expression specified by the query option. The expression language that is used in $filter operators supports references to properties and literals. The literal values can be strings enclosed in single quotes, numbers and boolean values (true or false) or any of the additional literal representations shown in the Abstract Type System section. Query examples: $filter=Name eq 'Bob' $filter=Tags/any(t: t/Key eq 'Site') $filter=Tags/any(t: t/Key eq 'Site' and t/Value eq 'London') :param str select: Specifies a subset of properties to return. :param str orderby: Determines what values are used to order a collection of documents. :param str expand: Specify additional attributes or related documents to return. Supports only 'DisplayNames' attribute now. Query examples: $expand=DisplayNames :param str apply: Specify one or more transformation operations to perform aggregation on documents. The transformations are processed in order with the output from a transformation being used as input for the subsequent transformation. Query examples: $apply=groupby((Model), aggregate($count as Total)) $apply=groupby((Model), aggregate(AvailableMemory with average as AverageAvailableMemory)) :param str at: Similar to \"$filter\", but \"at\" is specifically used to filter versioning information properties for documents to return. A URI with an \"at\" Query Option identifies a subset of the Entries from the Collection of Entries identified by the Resource Path section of the URI. The subset is determined by selecting only the Entries that satisfy the predicate expression specified by the query option. The expression language that is used in at operators supports references to properties and literals. The literal values can be strings enclosed in single quotes, numbers and boolean values (true or false) or any of the additional literal representations shown in the Abstract Type System section. Query examples: at=VersionType eq 'Configured' at=InterestedMos.Moid eq '5b5877e56c6730367acf46cd' :return: StorageControllerList If the method is called asynchronously, returns the request thread. """ all_params = ['count', 'inlinecount', 'top', 'skip', 'filter', 'select', 'orderby', 'expand', 'apply', 'at'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method storage_controllers_get" % key ) params[key] = val del params['kwargs'] collection_formats = {} path_params = {} query_params = [] if 'count' in params: query_params.append(('$count', params['count'])) if 'inlinecount' in params: query_params.append(('$inlinecount', params['inlinecount'])) if 'top' in params: query_params.append(('$top', params['top'])) if 'skip' in params: query_params.append(('$skip', params['skip'])) if 'filter' in params: query_params.append(('$filter', params['filter'])) if 'select' in params: query_params.append(('$select', params['select'])) if 'orderby' in params: query_params.append(('$orderby', params['orderby'])) if 'expand' in params: query_params.append(('$expand', params['expand'])) if 'apply' in params: query_params.append(('$apply', params['apply'])) if 'at' in params: query_params.append(('at', params['at'])) header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['application/json']) # Authentication setting auth_settings = [] return self.api_client.call_api('/storage/Controllers', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='StorageControllerList', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def storage_controllers_moid_get(self, moid, **kwargs): """ Read a 'storage.Controller' resource. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.storage_controllers_moid_get(moid, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str moid: The Moid of the storageController instance. (required) :return: StorageController If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.storage_controllers_moid_get_with_http_info(moid, **kwargs) else: (data) = self.storage_controllers_moid_get_with_http_info(moid, **kwargs) return data def storage_controllers_moid_get_with_http_info(self, moid, **kwargs): """ Read a 'storage.Controller' resource. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.storage_controllers_moid_get_with_http_info(moid, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str moid: The Moid of the storageController instance. (required) :return: StorageController If the method is called asynchronously, returns the request thread. """ all_params = ['moid'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method storage_controllers_moid_get" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'moid' is set if ('moid' not in params) or (params['moid'] is None): raise ValueError("Missing the required parameter `moid` when calling `storage_controllers_moid_get`") collection_formats = {} path_params = {} if 'moid' in params: path_params['Moid'] = params['moid'] query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['application/json']) # Authentication setting auth_settings = [] return self.api_client.call_api('/storage/Controllers/{Moid}', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='StorageController', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def storage_controllers_moid_patch(self, moid, body, **kwargs): """ Update a 'storage.Controller' resource. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.storage_controllers_moid_patch(moid, body, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str moid: The Moid of the storageController instance. (required) :param StorageController body: storageController to update (required) :return: None If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.storage_controllers_moid_patch_with_http_info(moid, body, **kwargs) else: (data) = self.storage_controllers_moid_patch_with_http_info(moid, body, **kwargs) return data def storage_controllers_moid_patch_with_http_info(self, moid, body, **kwargs): """ Update a 'storage.Controller' resource. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.storage_controllers_moid_patch_with_http_info(moid, body, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str moid: The Moid of the storageController instance. (required) :param StorageController body: storageController to update (required) :return: None If the method is called asynchronously, returns the request thread. """ all_params = ['moid', 'body'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method storage_controllers_moid_patch" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'moid' is set if ('moid' not in params) or (params['moid'] is None): raise ValueError("Missing the required parameter `moid` when calling `storage_controllers_moid_patch`") # verify the required parameter 'body' is set if ('body' not in params) or (params['body'] is None): raise ValueError("Missing the required parameter `body` when calling `storage_controllers_moid_patch`") collection_formats = {} path_params = {} if 'moid' in params: path_params['Moid'] = params['moid'] query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None if 'body' in params: body_params = params['body'] # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['application/json']) # Authentication setting auth_settings = [] return self.api_client.call_api('/storage/Controllers/{Moid}', 'PATCH', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def storage_controllers_moid_post(self, moid, body, **kwargs): """ Update a 'storage.Controller' resource. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.storage_controllers_moid_post(moid, body, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str moid: The Moid of the storageController instance. (required) :param StorageController body: storageController to update (required) :return: None If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.storage_controllers_moid_post_with_http_info(moid, body, **kwargs) else: (data) = self.storage_controllers_moid_post_with_http_info(moid, body, **kwargs) return data def storage_controllers_moid_post_with_http_info(self, moid, body, **kwargs): """ Update a 'storage.Controller' resource. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.storage_controllers_moid_post_with_http_info(moid, body, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str moid: The Moid of the storageController instance. (required) :param StorageController body: storageController to update (required) :return: None If the method is called asynchronously, returns the request thread. """ all_params = ['moid', 'body'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method storage_controllers_moid_post" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'moid' is set if ('moid' not in params) or (params['moid'] is None): raise ValueError("Missing the required parameter `moid` when calling `storage_controllers_moid_post`") # verify the required parameter 'body' is set if ('body' not in params) or (params['body'] is None): raise ValueError("Missing the required parameter `body` when calling `storage_controllers_moid_post`") collection_formats = {} path_params = {} if 'moid' in params: path_params['Moid'] = params['moid'] query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None if 'body' in params: body_params = params['body'] # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['application/json']) # Authentication setting auth_settings = [] return self.api_client.call_api('/storage/Controllers/{Moid}', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats)
50.70297
819
0.618864
7f724e97aec13316f245dea848e69fd3bd7513af
1,620
py
Python
tenant_handler/datastore/__init__.py
turnbros/tbc-api
888fddd11c8a4a0af66b1a9823df924ace2ba37d
[ "Apache-2.0" ]
null
null
null
tenant_handler/datastore/__init__.py
turnbros/tbc-api
888fddd11c8a4a0af66b1a9823df924ace2ba37d
[ "Apache-2.0" ]
null
null
null
tenant_handler/datastore/__init__.py
turnbros/tbc-api
888fddd11c8a4a0af66b1a9823df924ace2ba37d
[ "Apache-2.0" ]
null
null
null
import json from tenant_handler.tenant import Tenant class TenantStore(object): def __init__(self): self._tenant_store = {} def get_tenant_names(self): return list(self._tenant_store.keys()) def get_tenant(self, tenant_name) -> Tenant: tenant = self._tenant_store.get(tenant_name) if tenant is None: tenant = self.create_tenant(tenant_name) return tenant def create_tenant(self, tenant_name) -> Tenant: tenant = Tenant(tenant_name) self._tenant_store[tenant_name] = tenant return tenant def lock_tenant_state(self, tenant_name, lock): state_lock = self.get_tenant(tenant_name).lock_state(lock) if state_lock["ID"] != lock["ID"]: return json.dumps(state_lock), 409 return "", 200 def unlock_tenant_state(self, tenant_name, lock_id): state_lock = self.get_tenant(tenant_name).unlock_state(lock_id) if state_lock is not None: return json.dumps(state_lock), 423 return "", 200 def get_tenant_state(self, tenant_name): return json.dumps(self.get_tenant(tenant_name).state), 200 def update_tenant_state(self, tenant_name, tenant_state, lock_id): tenant = self.get_tenant(tenant_name) if tenant.lock_id == lock_id: tenant.state = tenant_state return "", 200 return json.dumps(tenant.lock), 409 def purge_tenant_state(self, tenant_name): self.get_tenant(tenant_name).state = {"version": 4} return "", 200 def get_tenant_resources(self, tenant_name): return self.get_tenant(tenant_name).get_resources(), 200 tenant_store = TenantStore() def get_tenant_store(): return tenant_store
29.454545
68
0.72284
1dd2cbce0f6a861ffa740931b6023f60dc1a5e4e
6,591
py
Python
neutron/agent/firewall.py
hashsos/hashcloudos-neutron
76ec5ca105043be6bf7220b5c5684190ddf14952
[ "Apache-2.0" ]
null
null
null
neutron/agent/firewall.py
hashsos/hashcloudos-neutron
76ec5ca105043be6bf7220b5c5684190ddf14952
[ "Apache-2.0" ]
null
null
null
neutron/agent/firewall.py
hashsos/hashcloudos-neutron
76ec5ca105043be6bf7220b5c5684190ddf14952
[ "Apache-2.0" ]
null
null
null
# Copyright 2012, Nachi Ueno, NTT MCL, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import abc import contextlib import six from neutron_lib.api.definitions import port_security as psec from neutron_lib import constants as n_const from neutron_lib.utils import runtime INGRESS_DIRECTION = n_const.INGRESS_DIRECTION EGRESS_DIRECTION = n_const.EGRESS_DIRECTION DIRECTION_IP_PREFIX = {INGRESS_DIRECTION: 'source_ip_prefix', EGRESS_DIRECTION: 'dest_ip_prefix'} # List of ICMPv6 types that should be permitted (ingress) by default. This list # depends on iptables conntrack behavior of recognizing ICMP errors (types 1-4) # as related traffic. ICMPV6_ALLOWED_INGRESS_TYPES = (n_const.ICMPV6_TYPE_MLD_QUERY, n_const.ICMPV6_TYPE_NS, n_const.ICMPV6_TYPE_NA) # List of ICMPv6 types that should be permitted (egress) by default. ICMPV6_ALLOWED_EGRESS_TYPES = (n_const.ICMPV6_TYPE_MLD_QUERY, n_const.ICMPV6_TYPE_RS, n_const.ICMPV6_TYPE_NS, n_const.ICMPV6_TYPE_NA) def port_sec_enabled(port): return port.get(psec.PORTSECURITY, True) def load_firewall_driver_class(driver): return runtime.load_class_by_alias_or_classname( 'neutron.agent.firewall_drivers', driver) @six.add_metaclass(abc.ABCMeta) class FirewallDriver(object): """Firewall Driver base class. Defines methods that any driver providing security groups and provider firewall functionality should implement. Note port attribute should have information of security group ids and security group rules. the dict of port should have device : interface name fixed_ips: ips of the device mac_address: mac_address of the device security_groups: [sgid, sgid] security_group_rules : [ rule, rule ] the rule must contain ethertype and direction the rule may contain security_group_id, protocol, port_min, port_max source_ip_prefix, source_port_min, source_port_max, dest_ip_prefix, and remote_group_id Note: source_group_ip in REST API should be converted by this rule if direction is ingress: remote_group_ip will be a source_ip_prefix if direction is egress: remote_group_ip will be a dest_ip_prefix Note: remote_group_id in REST API should be converted by this rule if direction is ingress: remote_group_id will be a list of source_ip_prefix if direction is egress: remote_group_id will be a list of dest_ip_prefix remote_group_id will also remaining membership update management """ # OVS agent installs arp spoofing openflow rules. If firewall is capable # of handling that, ovs agent doesn't need to install the protection. provides_arp_spoofing_protection = False @abc.abstractmethod def prepare_port_filter(self, port): """Prepare filters for the port. This method should be called before the port is created. """ def apply_port_filter(self, port): """Apply port filter. Once this method returns, the port should be firewalled appropriately. This method should as far as possible be a no-op. It's vastly preferred to get everything set up in prepare_port_filter. """ raise NotImplementedError() @abc.abstractmethod def update_port_filter(self, port): """Refresh security group rules from data store Gets called when a port gets added to or removed from the security group the port is a member of or if the group gains or looses a rule. """ def remove_port_filter(self, port): """Stop filtering port.""" raise NotImplementedError() def filter_defer_apply_on(self): """Defer application of filtering rule.""" pass def filter_defer_apply_off(self): """Turn off deferral of rules and apply the rules now.""" pass @property def ports(self): """Returns filtered ports.""" pass @contextlib.contextmanager def defer_apply(self): """Defer apply context.""" self.filter_defer_apply_on() try: yield finally: self.filter_defer_apply_off() def update_security_group_members(self, sg_id, ips): """Update group members in a security group.""" raise NotImplementedError() def update_security_group_rules(self, sg_id, rules): """Update rules in a security group.""" raise NotImplementedError() def security_group_updated(self, action_type, sec_group_ids, device_id=None): """Called when a security group is updated. Note: This method needs to be implemented by the firewall drivers which use enhanced RPC for security_groups. """ raise NotImplementedError() def process_trusted_ports(self, port_ids): """Process ports that are trusted and shouldn't be filtered.""" pass def remove_trusted_ports(self, port_ids): pass class NoopFirewallDriver(FirewallDriver): """Noop Firewall Driver. Firewall driver which does nothing. This driver is for disabling the firewall functionality. """ def prepare_port_filter(self, port): pass def apply_port_filter(self, port): pass def update_port_filter(self, port): pass def remove_port_filter(self, port): pass def filter_defer_apply_on(self): pass def filter_defer_apply_off(self): pass @property def ports(self): return {} def update_security_group_members(self, sg_id, ips): pass def update_security_group_rules(self, sg_id, rules): pass def security_group_updated(self, action_type, sec_group_ids, device_id=None): pass
31.6875
79
0.676832
8af310b03d28d08eab13d96bf6f9dc6f83dce365
1,131
py
Python
lib/galaxy/model/migrate/versions/0110_add_dataset_uuid.py
yvanlebras/galaxy
6b8489ca866825bcdf033523120a8b24ea6e6342
[ "CC-BY-3.0" ]
null
null
null
lib/galaxy/model/migrate/versions/0110_add_dataset_uuid.py
yvanlebras/galaxy
6b8489ca866825bcdf033523120a8b24ea6e6342
[ "CC-BY-3.0" ]
2
2017-05-18T16:12:55.000Z
2022-03-08T12:08:43.000Z
lib/galaxy/model/migrate/versions/0110_add_dataset_uuid.py
yvanlebras/galaxy
6b8489ca866825bcdf033523120a8b24ea6e6342
[ "CC-BY-3.0" ]
null
null
null
""" Add UUID column to dataset table """ import logging from sqlalchemy import ( Column, MetaData, Table, ) from galaxy.model.custom_types import UUIDType log = logging.getLogger(__name__) dataset_uuid_column = Column("uuid", UUIDType, nullable=True) def upgrade(migrate_engine): print(__doc__) metadata = MetaData() metadata.bind = migrate_engine metadata.reflect() # Add the uuid colum to the dataset table try: dataset_table = Table("dataset", metadata, autoload=True) dataset_uuid_column.create(dataset_table) assert dataset_uuid_column is dataset_table.c.uuid except Exception: log.exception("Adding column 'uuid' to dataset table failed.") def downgrade(migrate_engine): metadata = MetaData() metadata.bind = migrate_engine metadata.reflect() # Drop the dataset table's uuid column. try: dataset_table = Table("dataset", metadata, autoload=True) dataset_uuid = dataset_table.c.uuid dataset_uuid.drop() except Exception: log.exception("Dropping 'uuid' column from dataset table failed.")
24.586957
74
0.697613
1a74ab65f85a89cc481c27d2090b18f637b8c75f
999
py
Python
norfair/utils.py
pdd-999/norfair
83ff3fdae973707d8fc569d270e15badbe4a4619
[ "BSD-3-Clause" ]
1
2021-12-30T09:02:44.000Z
2021-12-30T09:02:44.000Z
norfair/utils.py
pdd-999/norfair
83ff3fdae973707d8fc569d270e15badbe4a4619
[ "BSD-3-Clause" ]
null
null
null
norfair/utils.py
pdd-999/norfair
83ff3fdae973707d8fc569d270e15badbe4a4619
[ "BSD-3-Clause" ]
1
2022-03-29T03:07:54.000Z
2022-03-29T03:07:54.000Z
import numpy as np import time def validate_points(points: np.array) -> np.array: # If the user is tracking only a single point, reformat it slightly. if points.shape == (2,): points = points[np.newaxis, ...] elif len(points.shape) == 1: print("The point(s) need to be in (x, y) formats ", points) else: if points.shape[1] != 2 or len(points.shape) > 2: print("The point(s) need to be in (x, y) formats ", points) return points class Timer(): def __init__(self): pass def start(self, name: str = None): self._name = name self._startTime = time.perf_counter() def end(self, print: bool = True): self._timeElapsed = (time.perf_counter() - self._startTime)*1000 if print: self.print() return self._timeElapsed def print(self): print(f"{self._name} took {self._timeElapsed} ms") @property def time(self): return self._timeElapsed
29.382353
72
0.592593
d54d12efc859724baf0adb2fdda176133c3d225a
5,033
py
Python
loky/backend/popen_loky_win32.py
pierreglaser/loky
71d37c73e0013ce9008fe7356c677917f8800af1
[ "BSD-3-Clause" ]
null
null
null
loky/backend/popen_loky_win32.py
pierreglaser/loky
71d37c73e0013ce9008fe7356c677917f8800af1
[ "BSD-3-Clause" ]
null
null
null
loky/backend/popen_loky_win32.py
pierreglaser/loky
71d37c73e0013ce9008fe7356c677917f8800af1
[ "BSD-3-Clause" ]
null
null
null
import os import sys from pickle import load from multiprocessing import process, util from . import spawn from . import reduction from .context import get_spawning_popen, set_spawning_popen if sys.platform == "win32": # Avoid import error by code introspection tools such as test runners # trying to import this module while running on non-Windows systems. import msvcrt from .compat_win32 import _winapi from .compat_win32 import Popen as _Popen from .reduction import duplicate else: _Popen = object if sys.version_info[:2] < (3, 3): from os import fdopen as open __all__ = ['Popen'] # # # TERMINATE = 0x10000 WINEXE = (sys.platform == 'win32' and getattr(sys, 'frozen', False)) WINSERVICE = sys.executable.lower().endswith("pythonservice.exe") # # We define a Popen class similar to the one from subprocess, but # whose constructor takes a process object as its argument. # class Popen(_Popen): ''' Start a subprocess to run the code of a process object ''' method = 'loky' def __init__(self, process_obj): prep_data = spawn.get_preparation_data( process_obj._name, getattr(process_obj, "init_main_module", True)) # read end of pipe will be "stolen" by the child process # -- see spawn_main() in spawn.py. rfd, wfd = os.pipe() rhandle = duplicate(msvcrt.get_osfhandle(rfd), inheritable=True) os.close(rfd) cmd = get_command_line(parent_pid=os.getpid(), pipe_handle=rhandle) cmd = ' '.join('"%s"' % x for x in cmd) try: with open(wfd, 'wb') as to_child: # start process try: # This flag allows to pass inheritable handles from the # parent to the child process in a python2-3 compatible way # (see # https://github.com/tomMoral/loky/pull/204#discussion_r290719629 # for more detail). When support for Python 2 is dropped, # the cleaner multiprocessing.reduction.steal_handle should # be used instead. inherit = True hp, ht, pid, tid = _winapi.CreateProcess( spawn.get_executable(), cmd, None, None, inherit, 0, None, None, None) _winapi.CloseHandle(ht) except BaseException as e: _winapi.CloseHandle(rhandle) raise # set attributes of self self.pid = pid self.returncode = None self._handle = hp self.sentinel = int(hp) util.Finalize(self, _winapi.CloseHandle, (self.sentinel,)) # send information to child set_spawning_popen(self) if sys.version_info[:2] < (3, 4): Popen._tls.process_handle = int(hp) try: reduction.dump(prep_data, to_child) reduction.dump(process_obj, to_child) finally: set_spawning_popen(None) if sys.version_info[:2] < (3, 4): del Popen._tls.process_handle except IOError as exc: # IOError 22 happens when the launched subprocess terminated before # wfd.close is called. Thus we can safely ignore it. if exc.errno != 22: raise util.debug("While starting {}, ignored a IOError 22" .format(process_obj._name)) def duplicate_for_child(self, handle): assert self is get_spawning_popen() return duplicate(handle, self.sentinel) def get_command_line(pipe_handle, **kwds): ''' Returns prefix of command line used for spawning a child process ''' if getattr(sys, 'frozen', False): return ([sys.executable, '--multiprocessing-fork', pipe_handle]) else: prog = 'from loky.backend.popen_loky_win32 import main; main()' opts = util._args_from_interpreter_flags() return [spawn.get_executable()] + opts + [ '-c', prog, '--multiprocessing-fork', pipe_handle] def is_forking(argv): ''' Return whether commandline indicates we are forking ''' if len(argv) >= 2 and argv[1] == '--multiprocessing-fork': assert len(argv) == 3 return True else: return False def main(): ''' Run code specified by data received over pipe ''' assert is_forking(sys.argv) handle = int(sys.argv[-1]) fd = msvcrt.open_osfhandle(handle, os.O_RDONLY) from_parent = os.fdopen(fd, 'rb') process.current_process()._inheriting = True preparation_data = load(from_parent) spawn.prepare(preparation_data) self = load(from_parent) process.current_process()._inheriting = False from_parent.close() exitcode = self._bootstrap() exit(exitcode)
32.681818
85
0.591695
adbd97703dce2956265dc424cb1905e4b9ed2524
773
py
Python
cpoll_cppsp/setup.py
lightyeare/FrameworkBenchmarks
40489856a0480c85227993d91de7d66e9224f8b4
[ "BSD-3-Clause" ]
1
2015-01-28T07:11:03.000Z
2015-01-28T07:11:03.000Z
cpoll_cppsp/setup.py
lightyeare/FrameworkBenchmarks
40489856a0480c85227993d91de7d66e9224f8b4
[ "BSD-3-Clause" ]
null
null
null
cpoll_cppsp/setup.py
lightyeare/FrameworkBenchmarks
40489856a0480c85227993d91de7d66e9224f8b4
[ "BSD-3-Clause" ]
null
null
null
import subprocess import sys import os import setup_util def start(args, logfile, errfile): setup_util.replace_text("cpoll_cppsp/www/connectioninfo.H", "\\#define BENCHMARK_DB_HOST \".*\"", "#define BENCHMARK_DB_HOST \"" + args.database_host + "\"") subprocess.check_call("make", shell=True, cwd="cpoll_cppsp", stderr=errfile, stdout=logfile) subprocess.Popen("./run_application \"$(pwd)\"/www -g g++-4.8 -m /forcedynamic.cppsm", shell=True, cwd="cpoll_cppsp", stderr=errfile, stdout=logfile); return 0 def stop(logfile, errfile): p = subprocess.Popen(['ps', 'aux'], stdout=subprocess.PIPE) out, err = p.communicate() for line in out.splitlines(): if 'cppsp_standalone' in line: pid = int(line.split(None, 2)[1]) os.kill(pid, 9) return 0
38.65
159
0.698577
7d4dad6a92e46dcc6ca30dfd6a7d13cbb2bcd55c
312
py
Python
project/manage.py
riotkit-org/docker-django-wiki
e65cdb07b14a06e2fc690260b6553376630783ed
[ "MIT" ]
9
2019-08-23T04:32:21.000Z
2021-12-07T21:55:32.000Z
project/manage.py
riotkit-org/docker-django-wiki
e65cdb07b14a06e2fc690260b6553376630783ed
[ "MIT" ]
1
2020-04-21T13:55:17.000Z
2020-04-22T17:51:20.000Z
project/manage.py
riotkit-org/docker-django-wiki
e65cdb07b14a06e2fc690260b6553376630783ed
[ "MIT" ]
3
2020-03-18T00:19:37.000Z
2020-11-08T18:27:08.000Z
#!/usr/bin/env python from __future__ import absolute_import, unicode_literals import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "wikiproject.settings") from django.core.management import execute_from_command_line execute_from_command_line(sys.argv)
24
75
0.794872
2324d425115bc85e1395f91e28c338cfe7221c7e
644
py
Python
acme/agents/jax/__init__.py
novatig/acme
7774e4a22519d8b05951320864e5308974eaad2a
[ "Apache-2.0" ]
2,650
2020-06-01T16:31:25.000Z
2022-03-31T07:32:41.000Z
acme/agents/jax/__init__.py
novatig/acme
7774e4a22519d8b05951320864e5308974eaad2a
[ "Apache-2.0" ]
199
2020-06-02T01:09:09.000Z
2022-03-31T17:11:20.000Z
acme/agents/jax/__init__.py
novatig/acme
7774e4a22519d8b05951320864e5308974eaad2a
[ "Apache-2.0" ]
344
2020-06-01T16:45:21.000Z
2022-03-30T11:15:09.000Z
# python3 # Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """JAX agents."""
37.882353
74
0.759317
000d3cd418c131da1a9a532589c58eb6634db3cf
3,461
py
Python
bindings/python/ensmallen/datasets/string/microlunatussoli.py
AnacletoLAB/ensmallen_graph
b2c1b18fb1e5801712852bcc239f239e03076f09
[ "MIT" ]
5
2021-02-17T00:44:45.000Z
2021-08-09T16:41:47.000Z
bindings/python/ensmallen/datasets/string/microlunatussoli.py
AnacletoLAB/ensmallen_graph
b2c1b18fb1e5801712852bcc239f239e03076f09
[ "MIT" ]
18
2021-01-07T16:47:39.000Z
2021-08-12T21:51:32.000Z
bindings/python/ensmallen/datasets/string/microlunatussoli.py
AnacletoLAB/ensmallen
b2c1b18fb1e5801712852bcc239f239e03076f09
[ "MIT" ]
3
2021-01-14T02:20:59.000Z
2021-08-04T19:09:52.000Z
""" This file offers the methods to automatically retrieve the graph Microlunatus soli. The graph is automatically retrieved from the STRING repository. References --------------------- Please cite the following if you use the data: ```bib @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } ``` """ from typing import Dict from ..automatic_graph_retrieval import AutomaticallyRetrievedGraph from ...ensmallen import Graph # pylint: disable=import-error def MicrolunatusSoli( directed: bool = False, preprocess: bool = True, load_nodes: bool = True, verbose: int = 2, cache: bool = True, cache_path: str = "graphs/string", version: str = "links.v11.5", **additional_graph_kwargs: Dict ) -> Graph: """Return new instance of the Microlunatus soli graph. The graph is automatically retrieved from the STRING repository. Parameters ------------------- directed: bool = False Wether to load the graph as directed or undirected. By default false. preprocess: bool = True Whether to preprocess the graph to be loaded in optimal time and memory. load_nodes: bool = True, Whether to load the nodes vocabulary or treat the nodes simply as a numeric range. verbose: int = 2, Wether to show loading bars during the retrieval and building of the graph. cache: bool = True Whether to use cache, i.e. download files only once and preprocess them only once. cache_path: str = "graphs" Where to store the downloaded graphs. version: str = "links.v11.5" The version of the graph to retrieve. The available versions are: - homology.v11.5 - physical.links.v11.5 - links.v11.5 additional_graph_kwargs: Dict Additional graph kwargs. Returns ----------------------- Instace of Microlunatus soli graph. References --------------------- Please cite the following if you use the data: ```bib @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } ``` """ return AutomaticallyRetrievedGraph( graph_name="MicrolunatusSoli", repository="string", version=version, directed=directed, preprocess=preprocess, load_nodes=load_nodes, verbose=verbose, cache=cache, cache_path=cache_path, additional_graph_kwargs=additional_graph_kwargs )()
32.961905
223
0.676683
4661b58c6cbc7dbbf74da979b0580cb0412042ac
13,610
py
Python
tests/io/test_sql.py
ANA-POTJE/kedro
cba5f4577e17d51346c719da0fa12bb784acffc8
[ "Apache-2.0" ]
null
null
null
tests/io/test_sql.py
ANA-POTJE/kedro
cba5f4577e17d51346c719da0fa12bb784acffc8
[ "Apache-2.0" ]
null
null
null
tests/io/test_sql.py
ANA-POTJE/kedro
cba5f4577e17d51346c719da0fa12bb784acffc8
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 QuantumBlack Visual Analytics Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES # OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND # NONINFRINGEMENT. IN NO EVENT WILL THE LICENSOR OR OTHER CONTRIBUTORS # BE LIABLE FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF, OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # # The QuantumBlack Visual Analytics Limited ("QuantumBlack") name and logo # (either separately or in combination, "QuantumBlack Trademarks") are # trademarks of QuantumBlack. The License does not grant you any right or # license to the QuantumBlack Trademarks. You may not use the QuantumBlack # Trademarks or any confusingly similar mark as a trademark for your product, # or use the QuantumBlack Trademarks in any other manner that might cause # confusion in the marketplace, including but not limited to in advertising, # on websites, or on software. # # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=no-member from typing import Any import pandas as pd import pytest import sqlalchemy from kedro.io import DataSetError, SQLQueryDataSet, SQLTableDataSet TABLE_NAME = "table_a" CONNECTION = "sqlite:///kedro.db" SQL_QUERY = "SELECT * FROM table_a" FAKE_CONN_STR = "some_sql://scott:tiger@localhost/foo" ERROR_PREFIX = ( r"A module\/driver is missing when connecting to your " r"SQL server\.(.|\n)*" ) @pytest.fixture def dummy_dataframe(): return pd.DataFrame({"col1": [1, 2], "col2": [4, 5], "col3": [5, 6]}) @pytest.fixture(params=[dict()]) def table_data_set(request): kwargs = dict(table_name=TABLE_NAME, credentials=dict(con=CONNECTION)) kwargs.update(request.param) return SQLTableDataSet(**kwargs) @pytest.fixture(params=[dict()]) def query_data_set(request): kwargs = dict(sql=SQL_QUERY, credentials=dict(con=CONNECTION)) kwargs.update(request.param) return SQLQueryDataSet(**kwargs) class TestSQLTableDataSetLoad: @staticmethod def _assert_pd_called_once(): pd.read_sql_table.assert_called_once_with(table_name=TABLE_NAME, con=CONNECTION) def test_empty_table_name(self): """Check the error when instantiating with an empty table""" pattern = r"`table\_name` argument cannot be empty\." with pytest.raises(DataSetError, match=pattern): SQLTableDataSet(table_name="", credentials=dict(con=CONNECTION)) def test_empty_connection(self): """Check the error when instantiating with an empty connection string""" pattern = ( r"`con` argument cannot be empty\. " r"Please provide a SQLAlchemy connection string\." ) with pytest.raises(DataSetError, match=pattern): SQLTableDataSet(table_name=TABLE_NAME, credentials=dict(con="")) def test_load_sql_params(self, mocker, table_data_set): """Test `load` method invocation""" mocker.patch("pandas.read_sql_table") table_data_set.load() self._assert_pd_called_once() def test_load_driver_missing(self, mocker, table_data_set): """Check the error when the sql driver is missing""" mocker.patch( "pandas.read_sql_table", side_effect=ImportError("No module named 'mysqldb'"), ) with pytest.raises(DataSetError, match=ERROR_PREFIX + "mysqlclient"): table_data_set.load() self._assert_pd_called_once() def test_invalid_module(self, mocker, table_data_set): """Test that if an invalid module/driver is encountered by SQLAlchemy then the error should contain the original error message""" _err = ImportError("Invalid module some_module") mocker.patch("pandas.read_sql_table", side_effect=_err) pattern = ERROR_PREFIX + r"Invalid module some\_module" with pytest.raises(DataSetError, match=pattern): table_data_set.load() self._assert_pd_called_once() def test_load_unknown_module(self, mocker, table_data_set): """Test that if an unknown module/driver is encountered by SQLAlchemy then the error should contain the original error message""" mocker.patch( "pandas.read_sql_table", side_effect=ImportError("No module named 'unknown_module'"), ) pattern = ERROR_PREFIX + r"No module named \'unknown\_module\'" with pytest.raises(DataSetError, match=pattern): table_data_set.load() @pytest.mark.parametrize( "table_data_set", [{"credentials": dict(con=FAKE_CONN_STR)}], indirect=True ) def test_load_unknown_sql(self, table_data_set): """Check the error when unknown sql dialect is provided""" pattern = ( r"The SQL dialect in your connection is not supported " r"by SQLAlchemy" ) with pytest.raises(DataSetError, match=pattern): table_data_set.load() class TestSQLTableDataSetSave: _unknown_conn = "mysql+unknown_module://scott:tiger@localhost/foo" @staticmethod def _assert_to_sql_called_once(df: Any, index: bool = False): df.to_sql.assert_called_once_with(name=TABLE_NAME, con=CONNECTION, index=index) def test_save_default_index(self, mocker, table_data_set, dummy_dataframe): """Test `save` method invocation""" mocker.patch.object(dummy_dataframe, "to_sql") table_data_set.save(dummy_dataframe) self._assert_to_sql_called_once(dummy_dataframe) @pytest.mark.parametrize( "table_data_set", [{"save_args": dict(index=True)}], indirect=True ) def test_save_overwrite_index(self, mocker, table_data_set, dummy_dataframe): """Test writing DataFrame index as a column""" mocker.patch.object(dummy_dataframe, "to_sql") table_data_set.save(dummy_dataframe) self._assert_to_sql_called_once(dummy_dataframe, True) def test_save_driver_missing(self, mocker, table_data_set, dummy_dataframe): """Test that if an unknown module/driver is encountered by SQLAlchemy then the error should contain the original error message""" _err = ImportError("No module named 'mysqldb'") mocker.patch.object(dummy_dataframe, "to_sql", side_effect=_err) with pytest.raises(DataSetError, match=ERROR_PREFIX + "mysqlclient"): table_data_set.save(dummy_dataframe) @pytest.mark.parametrize( "table_data_set", [{"credentials": dict(con=FAKE_CONN_STR)}], indirect=True ) def test_save_unknown_sql(self, table_data_set, dummy_dataframe): """Check the error when unknown sql dialect is provided""" pattern = ( r"The SQL dialect in your connection is not supported " r"by SQLAlchemy" ) with pytest.raises(DataSetError, match=pattern): table_data_set.save(dummy_dataframe) @pytest.mark.parametrize( "table_data_set", [{"credentials": dict(con=_unknown_conn)}], indirect=True ) def test_save_unknown_module(self, mocker, table_data_set, dummy_dataframe): """Test that if an unknown module/driver is encountered by SQLAlchemy then the error should contain the original error message""" _err = ImportError("No module named 'unknown_module'") mocker.patch.object(dummy_dataframe, "to_sql", side_effect=_err) pattern = r"No module named \'unknown_module\'" with pytest.raises(DataSetError, match=pattern): table_data_set.save(dummy_dataframe) @pytest.mark.parametrize( "table_data_set", [{"save_args": dict(name="TABLE_B")}], indirect=True ) def test_save_ignore_table_name_override( self, mocker, table_data_set, dummy_dataframe ): """Test that putting the table name is `save_args` does not have any effect""" mocker.patch.object(dummy_dataframe, "to_sql") table_data_set.save(dummy_dataframe) self._assert_to_sql_called_once(dummy_dataframe) class TestSQLTableDataSet: @staticmethod def _assert_sqlalchemy_called_once(*args): _callable = sqlalchemy.engine.Engine.table_names if args: _callable.assert_called_once_with(*args) else: assert _callable.call_count == 1 def test_str_representation_table(self, table_data_set): """Test the data set instance string representation""" str_repr = str(table_data_set) assert ( "SQLTableDataSet(save_args={'index': False}, table_name=%s)" % TABLE_NAME in str_repr ) assert CONNECTION not in str(str_repr) def test_table_exists(self, mocker, table_data_set): """Test `exists` method invocation""" mocker.patch("sqlalchemy.engine.Engine.table_names") assert not table_data_set.exists() self._assert_sqlalchemy_called_once() @pytest.mark.parametrize( "table_data_set", [{"load_args": dict(schema="ingested")}], indirect=True ) def test_able_exists_schema(self, mocker, table_data_set): """Test `exists` method invocation with DB schema provided""" mocker.patch("sqlalchemy.engine.Engine.table_names") assert not table_data_set.exists() self._assert_sqlalchemy_called_once("ingested") def test_table_exists_mocked(self, mocker, table_data_set): """Test `exists` method invocation with mocked list of tables""" mocker.patch("sqlalchemy.engine.Engine.table_names", return_value=[TABLE_NAME]) assert table_data_set.exists() self._assert_sqlalchemy_called_once() class TestSQLQueryDataSet: @staticmethod def _assert_pd_called_once(): _callable = pd.read_sql_query _callable.assert_called_once_with(sql=SQL_QUERY, con=CONNECTION) def test_empty_query_error(self): """Check the error when instantiating with empty query""" pattern = r"`sql` argument cannot be empty\. " r"Please provide a sql query" with pytest.raises(DataSetError, match=pattern): SQLQueryDataSet(sql="", credentials=dict(con=CONNECTION)) def test_empty_con_error(self): """Check the error when instantiating with empty connection string""" pattern = ( r"`con` argument cannot be empty\. Please provide " r"a SQLAlchemy connection string" ) with pytest.raises(DataSetError, match=pattern): SQLQueryDataSet(sql=SQL_QUERY, credentials=dict(con="")) def test_load(self, mocker, query_data_set): """Test `load` method invocation""" mocker.patch("pandas.read_sql_query") query_data_set.load() self._assert_pd_called_once() def test_load_driver_missing(self, mocker, query_data_set): """Test that if an unknown module/driver is encountered by SQLAlchemy then the error should contain the original error message""" _err = ImportError("No module named 'mysqldb'") mocker.patch("pandas.read_sql_query", side_effect=_err) with pytest.raises(DataSetError, match=ERROR_PREFIX + "mysqlclient"): query_data_set.load() def test_invalid_module(self, mocker, query_data_set): """Test that if an unknown module/driver is encountered by SQLAlchemy then the error should contain the original error message""" _err = ImportError("Invalid module some_module") mocker.patch("pandas.read_sql_query", side_effect=_err) pattern = ERROR_PREFIX + r"Invalid module some\_module" with pytest.raises(DataSetError, match=pattern): query_data_set.load() def test_load_unknown_module(self, mocker, query_data_set): """Test that if an unknown module/driver is encountered by SQLAlchemy then the error should contain the original error message""" _err = ImportError("No module named 'unknown_module'") mocker.patch("pandas.read_sql_query", side_effect=_err) pattern = ERROR_PREFIX + r"No module named \'unknown\_module\'" with pytest.raises(DataSetError, match=pattern): query_data_set.load() @pytest.mark.parametrize( "query_data_set", [{"credentials": dict(con=FAKE_CONN_STR)}], indirect=True ) def test_load_unknown_sql(self, query_data_set): """Check the error when unknown SQL dialect is provided in the connection string""" pattern = ( r"The SQL dialect in your connection is not supported " r"by SQLAlchemy" ) with pytest.raises(DataSetError, match=pattern): query_data_set.load() def test_save_error(self, query_data_set, dummy_dataframe): """Check the error when trying to save to the data set""" pattern = r"`save` is not supported on SQLQueryDataSet" with pytest.raises(DataSetError, match=pattern): query_data_set.save(dummy_dataframe) def test_str_representation_sql(self, query_data_set): """Test the data set instance string representation""" str_repr = str(query_data_set) assert "SQLQueryDataSet(sql={})".format(SQL_QUERY) in str_repr assert CONNECTION not in str_repr
42.664577
88
0.695151
d4e1aa888f4ef91750786901fa793520229ccba0
25,567
py
Python
pook/mock.py
qiao-meng-zefr/pook
0637f22ed90bc865f2793a49fa51d44b0689a4b5
[ "MIT" ]
null
null
null
pook/mock.py
qiao-meng-zefr/pook
0637f22ed90bc865f2793a49fa51d44b0689a4b5
[ "MIT" ]
null
null
null
pook/mock.py
qiao-meng-zefr/pook
0637f22ed90bc865f2793a49fa51d44b0689a4b5
[ "MIT" ]
null
null
null
import re import functools from furl import furl from inspect import isfunction, ismethod from .decorators import fluent from .response import Response from .constants import TYPES from .request import Request from .matcher import MatcherEngine from .helpers import trigger_methods from .exceptions import PookExpiredMock from .matchers import init as matcher def _append_funcs(target, items): """ Helper function to append functions into a given list. Arguments: target (list): receptor list to append functions. items (iterable): iterable that yields elements to append. """ [target.append(item) for item in items if isfunction(item) or ismethod(item)] def _trigger_request(instance, request): """ Triggers request mock definition methods dynamically based on input keyword arguments passed to `pook.Mock` constructor. This is used to provide a more Pythonic interface vs chainable API approach. """ if not isinstance(request, Request): raise TypeError('request must be instance of pook.Request') # Register request matchers for key in request.keys: if hasattr(instance, key): getattr(instance, key)(getattr(request, key)) class Mock(object): """ Mock is used to declare and compose the HTTP request/response mock definition and matching expectations, which provides fluent API DSL. Arguments: url (str): URL to match. E.g: ``server.com/api?foo=bar``. method (str): HTTP method name to match. E.g: ``GET``. path (str): URL path to match. E.g: ``/api/users``. headers (dict): Header values to match. E.g: ``{'server': 'nginx'}``. header_present (str): Matches is a header is present. headers_present (list|tuple): Matches if multiple headers are present. type (str): Matches MIME ``Content-Type`` header. E.g: ``json``, ``xml``, ``html``, ``text/plain`` content (str): Same as ``type`` argument. params (dict): Matches the given URL params. param_exists (str): Matches if a given URL param exists. params_exists (list|tuple): Matches if a given URL params exists. body (str|regex): Matches the payload body by regex or strict comparison. json (dict|list|str|regex): Matches the payload body against the given JSON or regular expression. jsonschema (dict|str): Matches the payload body against the given JSONSchema. xml (str|regex): matches the payload body against the given XML string or regular expression. file (str): Disk file path to load body from. Analog to ``body`` param. times (int): Mock TTL or maximum number of times that the mock can be matched. persist (bool): Enable persistent mode. Mock won't be flushed even if it matched one or multiple times. delay (int): Optional network delay simulation (only applicable when using ``aiohttp`` HTTP client). callback (function): optional callback function called every time the mock is matched. reply (int): Mock response status. Defaults to ``200``. response_status (int): Mock response status. Alias to ``reply`` param. response_headers (dict): Response headers to use. response_type (str): Response MIME type expression or alias. Analog to ``type`` param. E.g: ``json``, ``xml``, ``text/plain``. response_body (str): Response body to use. response_json (dict|list|str): Response JSON to use. If Python is passed, it will be serialized as JSON transparently. response_xml (str): XML body string to use. request (pook.Request): Optional. Request mock definition object. response (pook.Response): Optional. Response mock definition object. Returns: pook.Mock """ def __init__(self, request=None, response=None, **kw): # Stores the number of times the mock should live self._times = 1 # Stores the number of times the mock has been matched self._matches = 0 # Stores the simulated error exception self._error = None # Stores the optional network delay in milliseconds self._delay = 0 # Stores the mock persistance mode. `True` means it will live forever self._persist = False # Optional binded engine where the mock belongs to self._engine = None # Store request-response mock matched calls self._calls = [] # Stores the input request instance self._request = request or Request() # Stores the response mock instance self._response = response or Response() # Stores the mock matcher engine used for outgoing traffic matching self.matchers = MatcherEngine() # Stores filters used to filter outgoing HTTP requests. self.filters = [] # Stores HTTP request mappers used by the mock. self.mappers = [] # Stores callback functions that will be triggered if the mock # matches outgoing traffic. self.callbacks = [] # Triggers instance methods based on argument names trigger_methods(self, kw) # Trigger matchers based on predefined request object, if needed if request: _trigger_request(self, request) @fluent def url(self, url): """ Defines the mock URL to match. It can be a full URL with path and query params. Protocol schema is optional, defaults to ``http://``. Arguments: url (str): mock URL to match. E.g: ``server.com/api``. Returns: self: current Mock instance. """ self._request.url = url self.add_matcher(matcher('URLMatcher', url)) @fluent def method(self, method): """ Defines the HTTP method to match. Use ``*`` to match any method. Arguments: method (str): method value to match. E.g: ``GET``. Returns: self: current Mock instance. """ self._request.method = method self.add_matcher(matcher('MethodMatcher', method)) @fluent def path(self, path): """ Defines a URL path to match. Only call this method if the URL has no path already defined. Arguments: path (str): URL path value to match. E.g: ``/api/users``. Returns: self: current Mock instance. """ url = furl(self._request.rawurl) url.path = path self._request.url = url.url self.add_matcher(matcher('PathMatcher', path)) @fluent def header(self, name, value): """ Defines a URL path to match. Only call this method if the URL has no path already defined. Arguments: path (str): URL path value to match. E.g: ``/api/users``. Returns: self: current Mock instance. """ headers = {name: value} self._request.headers = headers self.add_matcher(matcher('HeadersMatcher', headers)) @fluent def headers(self, headers=None, **kw): """ Defines a dictionary of arguments. Header keys are case insensitive. Arguments: headers (dict): headers to match. **headers (dict): headers to match as variadic keyword arguments. Returns: self: current Mock instance. """ headers = kw if kw else headers self._request.headers = headers self.add_matcher(matcher('HeadersMatcher', headers)) @fluent def header_present(self, *names): """ Defines a new header matcher expectation that must be present in the outgoing request in order to be satisfied, no matter what value it hosts. Header keys are case insensitive. Arguments: *names (str): header or headers names to match. Returns: self: current Mock instance. Example:: (pook.get('server.com/api') .header_present('content-type')) """ for name in names: headers = {name: re.compile('(.*)')} self.add_matcher(matcher('HeadersMatcher', headers)) @fluent def headers_present(self, headers): """ Defines a list of headers that must be present in the outgoing request in order to satisfy the matcher, no matter what value the headers hosts. Header keys are case insensitive. Arguments: headers (list|tuple): header keys to match. Returns: self: current Mock instance. Example:: (pook.get('server.com/api') .headers_present(['content-type', 'Authorization'])) """ headers = {name: re.compile('(.*)') for name in headers} self.add_matcher(matcher('HeadersMatcher', headers)) @fluent def type(self, value): """ Defines the request ``Content-Type`` header to match. You can pass one of the following aliases instead of the full MIME type representation: - ``json`` = ``application/json`` - ``xml`` = ``application/xml`` - ``html`` = ``text/html`` - ``text`` = ``text/plain`` - ``urlencoded`` = ``application/x-www-form-urlencoded`` - ``form`` = ``application/x-www-form-urlencoded`` - ``form-data`` = ``application/x-www-form-urlencoded`` Arguments: value (str): type alias or header value to match. Returns: self: current Mock instance. """ self.content(value) @fluent def content(self, value): """ Defines the ``Content-Type`` outgoing header value to match. You can pass one of the following type aliases instead of the full MIME type representation: - ``json`` = ``application/json`` - ``xml`` = ``application/xml`` - ``html`` = ``text/html`` - ``text`` = ``text/plain`` - ``urlencoded`` = ``application/x-www-form-urlencoded`` - ``form`` = ``application/x-www-form-urlencoded`` - ``form-data`` = ``application/x-www-form-urlencoded`` Arguments: value (str): type alias or header value to match. Returns: self: current Mock instance. """ header = {'Content-Type': TYPES.get(value, value)} self._request.headers = header self.add_matcher(matcher('HeadersMatcher', header)) @fluent def param(self, name, value): """ Defines an URL param key and value to match. Arguments: name (str): param name value to match. value (str): param name value to match. Returns: self: current Mock instance. """ self.params({name: value}) @fluent def param_exists(self, name): """ Checks if a given URL param name is present in the URL. Arguments: name (str): param name to check existence. Returns: self: current Mock instance. """ self.params({name: re.compile('(.*)')}) @fluent def params(self, params): """ Defines a set of URL query params to match. Arguments: params (dict): set of params to match. Returns: self: current Mock instance. """ url = furl(self._request.rawurl) url = url.add(params) self._request.url = url.url self.add_matcher(matcher('QueryMatcher', params)) @fluent def body(self, body): """ Defines the body data to match. ``body`` argument can be a ``str``, ``binary`` or a regular expression. Arguments: body (str|binary|regex): body data to match. Returns: self: current Mock instance. """ self._request.body = body self.add_matcher(matcher('BodyMatcher', body)) @fluent def json(self, json): """ Defines the JSON body to match. ``json`` argument can be an JSON string, a JSON serializable Python structure, such as a ``dict`` or ``list`` or it can be a regular expression used to match the body. Arguments: json (str|dict|list|regex): body JSON to match. Returns: self: current Mock instance. """ self._request.json = json self.add_matcher(matcher('JSONMatcher', json)) @fluent def jsonschema(self, schema): """ Defines a JSONSchema representation to be used for body matching. Arguments: schema (str|dict): dict or JSONSchema string to use. Returns: self: current Mock instance. """ self.add_matcher(matcher('JSONSchemaMatcher', schema)) @fluent def xml(self, xml): """ Defines a XML body value to match. Arguments: xml (str|regex): body XML to match. Returns: self: current Mock instance. """ self._request.xml = xml self.add_matcher(matcher('XMLMatcher', xml)) @fluent def file(self, path): """ Reads the body to match from a disk file. Arguments: path (str): relative or absolute path to file to read from. Returns: self: current Mock instance. """ with open(path, 'r') as f: self.body(str(f.read())) @fluent def add_matcher(self, matcher): """ Adds one or multiple custom matchers instances. Matchers must implement the following interface: - ``.__init__(expectation)`` - ``.match(request)`` - ``.name = str`` Matchers can optionally inherit from ``pook.matchers.BaseMatcher``. Arguments: *matchers (pook.matchers.BaseMatcher): matchers to add. Returns: self: current Mock instance. """ self.matchers.add(matcher) @fluent def use(self, *matchers): """ Adds one or multiple custom matchers instances. Matchers must implement the following interface: - ``.__init__(expectation)`` - ``.match(request)`` - ``.name = str`` Matchers can optionally inherit from ``pook.matchers.BaseMatcher``. Arguments: *matchers (pook.matchers.BaseMatcher): matchers to add. Returns: self: current Mock instance. """ [self.add_matcher(matcher) for matcher in matchers] @fluent def times(self, times=1): """ Defines the TTL limit for the current mock. The TTL number will determine the maximum number of times that the current mock can be matched and therefore consumed. Arguments: times (int): TTL number. Defaults to ``1``. Returns: self: current Mock instance. """ self._times = times @fluent def persist(self, status=None): """ Enables persistent mode for the current mock. Returns: self: current Mock instance. """ self._persist = status if type(status) is bool else True @fluent def filter(self, *filters): """ Registers one o multiple request filters used during the matching phase. Arguments: *mappers (function): variadic mapper functions. Returns: self: current Mock instance. """ _append_funcs(self.filters, filters) @fluent def map(self, *mappers): """ Registers one o multiple request mappers used during the mapping phase. Arguments: *mappers (function): variadic mapper functions. Returns: self: current Mock instance. """ _append_funcs(self.mappers, mappers) @fluent def callback(self, *callbacks): """ Registers one or multiple callback that will be called every time the current mock matches an outgoing HTTP request. Arguments: *callbacks (function): callback functions to call. Returns: self: current Mock instance. """ _append_funcs(self.callbacks, callbacks) @fluent def delay(self, delay=1000): """ Delay network response with certain milliseconds. Only supported by asynchronous HTTP clients, such as ``aiohttp``. Arguments: delay (int): milliseconds to delay response. Returns: self: current Mock instance. """ self._delay = int(delay) @fluent def error(self, error): """ Defines a simulated exception error that will be raised. Arguments: error (str|Exception): error to raise. Returns: self: current Mock instance. """ self._error = RuntimeError(error) if isinstance(error, str) else error def reply(self, status=200, **kw): """ Defines the mock response. Arguments: status (int, optional): response status code. Defaults to ``200``. **kw (dict): optional keyword arguments passed to ``pook.Response`` constructor. Returns: pook.Response: mock response definition instance. """ # Use or create a Response mock instance res = self._response or Response(**kw) # Define HTTP mandatory response status res.status(status or res._status) # Expose current mock instance in response for self-reference res.mock = self # Define mock response self._response = res # Return response return res def status(self, code=200): """ Defines the response status code. Equivalent to ``self.reply(code)``. Arguments: code (int): response status code. Defaults to ``200``. Returns: pook.Response: mock response definition instance. """ return self.reply(status=code) def response(self, status=200, **kw): """ Defines the mock response. Alias to ``.reply()`` Arguments: status (int): response status code. Defaults to ``200``. **kw (dict): optional keyword arguments passed to ``pook.Response`` constructor. Returns: pook.Response: mock response definition instance. """ return self.reply(status=status, **kw) def isdone(self): """ Returns ``True`` if the mock has been matched by outgoing HTTP traffic. Returns: bool: ``True`` if the mock was matched succesfully. """ return (self._persist and self._matches > 0) or self._times <= 0 def ismatched(self): """ Returns ``True`` if the mock has been matched at least once time. Returns: bool """ return self._matches > 0 @property def done(self): """ Attribute accessor that would be ``True`` if the current mock is done, and therefore have been matched multiple times. Returns: bool """ return self.isdone() @property def matched(self): """ Accessor property that would be ``True`` if the current mock have been matched at least once. See ``Mock.total_matches`` for more information. Returns: bool """ return self._matches > 0 @property def total_matches(self): """ Accessor property to retrieve the total number of times that the current mock has been matched. Returns: int """ return self._matches @property def matches(self): """ Accessor to retrieve the mock match calls registry. Returns: list[MockCall] """ return self._calls @property def calls(self): """ Accessor to retrieve the amount of mock matched calls. Returns: int """ return len(self.matches) def match(self, request): """ Matches an outgoing HTTP request against the current mock matchers. This method acts like a delegator to `pook.MatcherEngine`. Arguments: request (pook.Request): request instance to match. Raises: Exception: if the mock has an exception defined. Returns: tuple(bool, list[Exception]): ``True`` if the mock matches the outgoing HTTP request, otherwise ``False``. Also returns an optional list of error exceptions. """ # If mock already expired, fail it if self._times <= 0: raise PookExpiredMock('Mock expired') # Trigger mock filters for test in self.filters: if not test(request, self): return False, [] # Trigger mock mappers for mapper in self.mappers: request = mapper(request, self) if not request: raise ValueError('map function must return a request object') # Match incoming request against registered mock matchers matches, errors = self.matchers.match(request) # If not matched, return False if not matches: return False, errors # Register matched request for further inspecion and reference self._calls.append(request) # Increase mock call counter self._matches += 1 if not self._persist: self._times -= 1 # Raise simulated error if self._error: raise self._error # Trigger callback when matched for callback in self.callbacks: callback(request, self) return True, [] def __call__(self, fn): """ Overload Mock instance as callable object in order to be used as decorator definition syntax. Arguments: fn (function): function to decorate. Returns: function or pook.Mock """ # Support chain sequences of mock definitions if isinstance(fn, Response): return fn.mock if isinstance(fn, Mock): return fn # Force type assertion and raise an error if it is not a function if not isfunction(fn) and not ismethod(fn): raise TypeError('first argument must be a method or function') # Remove mock to prevent decorator definition scope collision self._engine.remove_mock(self) @functools.wraps(fn) def decorator(*args, **kw): # Re-register mock on decorator call self._engine.add_mock(self) # Force engine activation, if available # This prevents state issue while declaring mocks as decorators. # This might be removed in the future. engine_active = self._engine.active if not engine_active: self._engine.activate() # Call decorated target function try: return fn(*args, **kw) finally: # Finally remove mock after function execution # to prevent shared state self._engine.remove_mock(self) # If the engine was not previously active, disable it if not engine_active: self._engine.disable() return decorator def __repr__(self): """ Returns an human friendly readable instance data representation. Returns: str """ keys = ('matches', 'times', 'persist', 'matchers', 'response') args = [] for key in keys: if key == 'matchers': value = repr(self.matchers).replace('\n ', '\n ') value = value[:-2] + ' ])' elif key == 'response': value = repr(self._response) value = value[:-1] + ' )' else: value = repr(getattr(self, '_' + key)) args.append('{}={}'.format(key, value)) args = '(\n {}\n)'.format(',\n '.join(args)) return type(self).__name__ + args def __enter__(self): """ Implements context manager enter interface. """ # Make mock persistent if using default times if self._times == 1: self._persist = True # Automatically enable the mock engine, if needed if not self._engine.active: self._engine.activate() self._disable_engine = True return self def __exit__(self, etype, value, traceback): """ Implements context manager exit interface. """ # Force disable mock self._times = 0 # Automatically disable the mock engine, if needed if getattr(self, '_disable_engine', False): self._disable_engine = False self._engine.disable() if etype is not None: raise value
29.798368
79
0.577385
2a129fa5630ad5e214432273c36f2e8d6d386c57
30,944
py
Python
tests/unit/compile/test_serialization.py
ethan-asapp/flambe
70257167058c7b82ee39f74167a6161bd264ad18
[ "MIT" ]
null
null
null
tests/unit/compile/test_serialization.py
ethan-asapp/flambe
70257167058c7b82ee39f74167a6161bd264ad18
[ "MIT" ]
null
null
null
tests/unit/compile/test_serialization.py
ethan-asapp/flambe
70257167058c7b82ee39f74167a6161bd264ad18
[ "MIT" ]
null
null
null
import pytest import tempfile from collections import abc, OrderedDict import os import torch import dill import mock from ruamel.yaml.compat import StringIO from ruamel.yaml import YAML from typing import Mapping, Any, Optional # from flambe.compile import yaml from flambe import Component, save_state_to_file, load_state_from_file, load, save from flambe.compile import Registrable, yaml, make_component, Schema from flambe.compile.serialization import _extract_prefix FLAMBE_SOURCE_KEY = '_flambe_source' FLAMBE_CLASS_KEY = '_flambe_class' FLAMBE_CONFIG_KEY = '_flambe_config' FLAMBE_DIRECTORIES_KEY = '_flambe_directories' KEEP_VARS_KEY = 'keep_vars' VERSION_KEY = '_flambe_version' def list_files(startpath): for root, dirs, files in os.walk(startpath): level = root.replace(startpath, '').count(os.sep) indent = ' ' * 4 * (level) print('{}{}/'.format(indent, os.path.basename(root))) subindent = ' ' * 4 * (level + 1) for f in files: print('{}{}'.format(subindent, f)) def check_mapping_equivalence(x, y, exclude_config=False): for key in x.keys(): if key == KEEP_VARS_KEY or key == 'version': continue if key == FLAMBE_CONFIG_KEY and exclude_config: continue assert key in y if isinstance(x[key], abc.Mapping): check_mapping_equivalence(x[key], y[key], exclude_config=exclude_config) elif isinstance(x[key], torch.Tensor): assert isinstance(y[key], torch.Tensor) torch.equal(x[key], y[key]) else: assert x[key] == y[key] EXAMPLE_TRAINER_CONFIG = """ !Trainer train_sampler: !BaseSampler val_sampler: !BaseSampler dataset: !TabularDataset train: [['']] model: !RNNEncoder input_size: 300 rnn_type: lstm n_layers: 2 hidden_size: 256 loss_fn: !torch.NLLLoss metric_fn: !Accuracy optimizer: !torch.Adam params: [] max_steps: 2 iter_per_step: 2 """ @pytest.fixture def make_classes_2(): class A(Component): def __init__(self, akw1=0, akw2=None): self.akw1 = akw1 self.akw2 = akw2 class B(Component): def __init__(self, bkw1=0, bkw2='', bkw3=99): self.bkw1 = bkw1 self.bkw2 = bkw2 self.bkw3 = bkw3 class C(Component): def __init__(self, one, two): self.one = one self.two = two return A, B class Basic(Component): pass class Composite(Component): def __init__(self): self.leaf = Basic() class BasicStateful(Component): def __init__(self, x): self.x = x self.register_attrs('x') # self.b = Basic() class BasicStatefulTwo(Component, torch.nn.Module): def __init__(self, y): super().__init__() self.y = y self.register_attrs('y') class IntermediateTorch(Component, torch.nn.Module): def __init__(self): super().__init__() self.leaf = Basic() # TODO fix usage for x class IntermediateStatefulTorch(Component, torch.nn.Module): def __init__(self, x): super().__init__() self.leaf = BasicStateful(x=x) self.linear = torch.nn.Linear(2, 2) class IntermediateTorchOnly(torch.nn.Module): def __init__(self, component): super().__init__() self.child = component self.linear = torch.nn.Linear(2, 2) class RootTorch(Component): def __init__(self, x): super().__init__() self.model = IntermediateStatefulTorch(x=x) # self.linear = torch.nn.Linear(2, 2) self.optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, self.model.parameters())) self.lr_scheduler = torch.optim.lr_scheduler.StepLR(self.optimizer, 0.01) class ComposableTorchStateful(Component, torch.nn.Module): def __init__(self, a: Component, b: int, c: torch.nn.Module): super().__init__() self.child = a self.other_data = b self.linear = c self.register_attrs('other_data') class ComposableTorchStatefulPrime(Component, torch.nn.Module): def __init__(self, a: Component, b: int, c: torch.nn.Linear): super().__init__() self.child = a self.other_data = b self.linear = c def _state(self, state_dict, prefix, local_metadata): state_dict[prefix + 'other_data'] = self.other_data return state_dict def _load_state(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): assert prefix + 'other_data' in state_dict self.other_data = state_dict[prefix + 'other_data'] class ComposableTorchStatefulTorchOnlyChild(Component, torch.nn.Module): def __init__(self, a: Component, b: int, c: Component): super().__init__() self.child = a self.other_data = b self.torch_only = IntermediateTorchOnly(c) self.register_attrs('other_data') class ComposableContainer(Component): def __init__(self, item: Any): self.item = item class Org(Component): def __init__(self, item: Any, extra): self.item = item self.torch_only_extra = extra def create_factory(class_): def _factory(from_config): if from_config: config = f"!{class_.__name__} {{}}\n" obj = yaml.load(config)() return obj else: obj = class_() return obj return _factory @pytest.fixture def basic_object(): return create_factory(Basic) @pytest.fixture def nested_object(): return create_factory(Composite) @pytest.fixture def basic_object_with_state(): def _factory(from_config, x=-1): if from_config: config = f"!BasicStateful\nx: {x}\n" obj = yaml.load(config)() return obj else: obj = BasicStateful(x=x) return obj return _factory @pytest.fixture def alternating_nn_module_with_state(): def _factory(from_config, x=-1): if from_config: config = f"!RootTorch\nx: {x}\n" obj = yaml.load(config)() return obj else: obj = RootTorch(x=x) return obj return _factory def schema_builder(): config = """ !Basic """ obj = yaml.load(config) return obj def complex_builder(from_config, schema=False, x=-1): if from_config: config = """ !ComposableTorchStateful a: !ComposableTorchStateful a: !ComposableTorchStateful a: !BasicStateful x: {} b: 2021 c: !torch.Linear in_features: 2 out_features: 2 b: 2022 c: !torch.Linear in_features: 2 out_features: 2 b: 2023 c: !torch.Linear in_features: 2 out_features: 2 """ config.format(x) obj = yaml.load(config) if not schema: obj = obj() return obj else: a1 = BasicStateful(x=x) b1 = 2021 c1 = torch.nn.Linear(2, 2) a2 = ComposableTorchStateful(a1, b1, c1) b2 = 2022 c2 = torch.nn.Linear(2, 2) a3 = ComposableTorchStateful(a2, b2, c2) b3 = 2023 c3 = torch.nn.Linear(2, 2) obj = ComposableTorchStateful(a3, b3, c3) return obj def complex_builder_nontorch_root(from_config, schema=False, x=-1): if from_config: config = """ !ComposableContainer item: !ComposableTorchStatefulPrime a: !ComposableTorchStateful a: !ComposableTorchStateful a: !BasicStateful x: {} b: 2021 c: !torch.Linear in_features: 2 out_features: 2 b: 2022 c: !torch.Linear in_features: 2 out_features: 2 b: 2023 c: !torch.Linear in_features: 2 out_features: 2 """ config.format(x) obj = yaml.load(config) if not schema: obj = obj() return obj else: a1 = BasicStateful(x=x) b1 = 2021 c1 = torch.nn.Linear(2, 2) a2 = ComposableTorchStateful(a1, b1, c1) b2 = 2022 c2 = torch.nn.Linear(2, 2) a3 = ComposableTorchStateful(a2, b2, c2) b3 = 2023 c3 = torch.nn.Linear(2, 2) item = ComposableTorchStateful(a3, b3, c3) obj = ComposableContainer(item) return obj @pytest.fixture def complex_multi_layered(): return complex_builder @pytest.fixture def complex_multi_layered_nontorch_root(): return complex_builder_nontorch_root @pytest.fixture def schema(): return schema_builder class TestHelpers: def test_extract_prefix(self): _extract_prefix class TestState: def test_state_returns_not_None(self, basic_object): obj = basic_object(from_config=True) assert obj.get_state() is not None def test_state_metadata(self, basic_object): state = basic_object(from_config=True).get_state() assert hasattr(state, '_metadata') assert '' in state._metadata assert FLAMBE_DIRECTORIES_KEY in state._metadata assert FLAMBE_SOURCE_KEY in state._metadata[''] assert VERSION_KEY in state._metadata[''] assert state._metadata[''][FLAMBE_SOURCE_KEY] == "class Basic(Component):\n pass\n" # assert state[FLAMBE_CONFIG_KEY] == '' assert '' in state._metadata[FLAMBE_DIRECTORIES_KEY] and len(state._metadata[FLAMBE_DIRECTORIES_KEY]) == 1 assert state._metadata[''][VERSION_KEY] == '0.0.0' def test_state_config(self, basic_object): assert FLAMBE_CONFIG_KEY not in basic_object(from_config=False).get_state()._metadata[''] obj = basic_object(from_config=True) state = obj.get_state() assert FLAMBE_CONFIG_KEY in state._metadata[''] assert state._metadata[''][FLAMBE_CONFIG_KEY] == "!Basic {}\n" def test_state_nested_but_empty(self, nested_object): expected_state = {} expected_metadata = {'': {FLAMBE_SOURCE_KEY: "class Composite(Component):\n def __init__(self):\n self.leaf = Basic()\n", VERSION_KEY: "0.0.0", FLAMBE_CLASS_KEY: 'Composite'}, 'leaf': {FLAMBE_SOURCE_KEY: 'class Basic(Component):\n pass\n', VERSION_KEY: '0.0.0', FLAMBE_CLASS_KEY: 'Basic'}, FLAMBE_DIRECTORIES_KEY: {'', 'leaf'}, KEEP_VARS_KEY: False} obj = nested_object(from_config=False) state = obj.get_state() assert state == expected_state check_mapping_equivalence(expected_metadata, state._metadata) check_mapping_equivalence(state._metadata, expected_metadata) def test_state_custom(self, basic_object_with_state): obj = basic_object_with_state(from_config=True) x = obj.x expected_state = {'x': x} assert obj.get_state() == expected_state # def test_state_custom_nested(nested_object_with_state): # obj = nested_object_with_state() # expected_state = {} # assert obj.get_state() == expected_state # # def test_state_pytorch_empty(nn_modules): # cls, cls_torch_first = nn_modules # obj, obj_torch_first = cls(), cls_torch_first() # expected_state = {} # assert obj.get_state() == expected_state # assert obj_torch_first.get_state() == expected_state # # def test_state_pytorch_nested_no_modules_no_parameters(nested_nn_module): # obj = nested_nn_module() # expected_state = {} # assert obj.get_state() == expected_state # # def test_state_pytorch_alternating_nesting(alternating_nn_module): # obj = alternating_nn_module() # expected_state = {} # assert obj.get_state() == expected_state def test_state_pytorch_alternating_nested_with_modules(self, alternating_nn_module_with_state): obj = alternating_nn_module_with_state(from_config=True, x=1) t1 = obj.model.linear.weight t2 = obj.model.linear.bias x = obj.model.leaf.x expected_state = {'model.leaf.x': x, 'model.linear.weight': t1, 'model.linear.bias': t2} root_source_code = dill.source.getsource(RootTorch) intermediate_source_code = dill.source.getsource(IntermediateStatefulTorch) leaf_source_code = dill.source.getsource(BasicStateful) expected_metadata = OrderedDict({FLAMBE_DIRECTORIES_KEY: set(['', 'model', 'model.leaf']), 'keep_vars': False, '': {VERSION_KEY: '0.0.0', FLAMBE_CLASS_KEY: 'RootTorch', FLAMBE_SOURCE_KEY: root_source_code, FLAMBE_CONFIG_KEY: "!RootTorch\nx: 1\n"}, 'model': {VERSION_KEY: '0.0.0', FLAMBE_CLASS_KEY: 'IntermediateStatefulTorch', FLAMBE_SOURCE_KEY: intermediate_source_code, 'version': 1}, # TODO add config back: FLAMBE_CONFIG_KEY: "!IntermediateStatefulTorch {}\n" 'model.leaf': {VERSION_KEY: '0.0.0', FLAMBE_CLASS_KEY: 'BasicStateful', FLAMBE_SOURCE_KEY: leaf_source_code}, # TODO add config back: FLAMBE_CONFIG_KEY: "!BasicStateful {}\n" 'model.linear': {'version': 1}}) state = obj.get_state() check_mapping_equivalence(state._metadata, expected_metadata) check_mapping_equivalence(expected_metadata, state._metadata) check_mapping_equivalence(state, expected_state) check_mapping_equivalence(expected_state, state) class TestLoadState: def test_load_state_empty(self): pass def test_load_state_nested_empty(self): pass def test_load_state_custom_nested(self): pass def test_load_state_pytorch(self): pass def test_load_state_pytorch_alternating_nested(self): pass def test_state_complex_multilayered_nontorch_root(self, complex_multi_layered_nontorch_root): TORCH_TAG_PREFIX = "torch" exclude = ['torch.nn.quantized', 'torch.nn.qat'] make_component( torch.nn.Module, TORCH_TAG_PREFIX, only_module='torch.nn', exclude=exclude ) obj = complex_multi_layered_nontorch_root(from_config=True, x=1) t1 = obj.item.child.linear.weight.data state = obj.get_state() new_obj = complex_multi_layered_nontorch_root(from_config=True, x=2) new_obj.load_state(state) t2 = new_obj.item.child.linear.weight.data assert t1.equal(t2) check_mapping_equivalence(new_obj.get_state(), obj.get_state()) check_mapping_equivalence(obj.get_state(), new_obj.get_state()) def test_custom_attrs_load(self, complex_multi_layered): obj = complex_multi_layered(False) state = obj.state_dict() with pytest.raises(RuntimeError) as excinfo: obj.load_state_dict(state, strict=True) assert "Unexpected key(s)" in str(excinfo.value) obj.load_state_dict(state, strict=False) class TestClassSave: def test_class_save(self): pass class TestClassLoad: def test_class_load(self): pass class TestModuleSave: def test_save_single_object(self, basic_object): pass def test_save_nested_object(self, nested_object): pass def test_save_pytorch_nested_alternating(self, alternating_nn_module_with_state): pass class TestModuleLoad: def test_load_directory_single_file(self, basic_object): pass def test_load_nested_directory(self, nested_object): pass def test_load_pytorch_alternating(self, alternating_nn_module_with_state): pass class TestSerializationIntegration: def test_state_and_load_roundtrip_single_object(self, basic_object): old_obj = basic_object(from_config=True) state = old_obj.get_state() new_obj = basic_object(from_config=False) new_obj.load_state(state, strict=False) assert old_obj.get_state() == new_obj.get_state() # def test_state_and_load_roundtrip_nested_object(self): # pass def test_state_and_load_roundtrip_pytorch_alternating(self, alternating_nn_module_with_state): old_obj = alternating_nn_module_with_state(from_config=True, x=1) state = old_obj.get_state() new_obj = alternating_nn_module_with_state(from_config=False, x=2) new_obj.load_state(state, strict=False) old_state = old_obj.get_state() new_state = new_obj.get_state() check_mapping_equivalence(new_state, old_state) check_mapping_equivalence(old_state._metadata, new_state._metadata, exclude_config=True) # def test_class_save_and_load_roundtrip(): # pass # # def test_class_save_and_load_roundtrip_nested(): # pass # # def test_class_save_and_load_roundtrip_pytorch(): # pass def test_save_to_file_and_load_from_file_roundtrip(self, basic_object): old_obj = basic_object(from_config=True) state = old_obj.get_state() with tempfile.TemporaryDirectory() as path: save_state_to_file(state, path) state = load_state_from_file(path) new_obj = basic_object(from_config=False) new_obj.load_state(state, strict=False) old_state = old_obj.get_state() new_state = new_obj.get_state() check_mapping_equivalence(new_state, old_state) check_mapping_equivalence(old_state._metadata, new_state._metadata, exclude_config=True) def test_save_to_file_and_load_from_file_roundtrip_pytorch(self, alternating_nn_module_with_state): old_obj = alternating_nn_module_with_state(from_config=False, x=1) state = old_obj.get_state() with tempfile.TemporaryDirectory() as path: save_state_to_file(state, path) state = load_state_from_file(path) new_obj = alternating_nn_module_with_state(from_config=False, x=2) new_obj.load_state(state, strict=False) old_state = old_obj.get_state() new_state = new_obj.get_state() check_mapping_equivalence(new_state, old_state) check_mapping_equivalence(old_state._metadata, new_state._metadata, exclude_config=False) def test_save_to_file_and_load_from_file_roundtrip_complex(self, complex_multi_layered): TORCH_TAG_PREFIX = "torch" exclude = ['torch.nn.quantized', 'torch.nn.qat'] make_component( torch.nn.Module, TORCH_TAG_PREFIX, only_module='torch.nn', exclude=exclude ) old_obj = complex_multi_layered(from_config=True, x=1) # Test that the current state is actually saved, for a # Component-only child of torch objects old_obj.child.child.child.x = 24 state = old_obj.get_state() with tempfile.TemporaryDirectory() as path: save_state_to_file(state, path) list_files(path) state_loaded = load_state_from_file(path) check_mapping_equivalence(state, state_loaded) # assert False new_obj = complex_multi_layered(from_config=True, x=2) new_obj.load_state(state_loaded, strict=False) old_state = old_obj.get_state() new_state = new_obj.get_state() check_mapping_equivalence(new_state, old_state) check_mapping_equivalence(old_state._metadata, new_state._metadata, exclude_config=False) @pytest.mark.parametrize("pickle_only", [True, False]) @pytest.mark.parametrize("compress_save_file", [True, False]) def test_save_to_file_and_load_from_file_roundtrip_complex_nontorch_root(self, complex_multi_layered_nontorch_root, pickle_only, compress_save_file): TORCH_TAG_PREFIX = "torch" exclude = ['torch.nn.quantized', 'torch.nn.qat'] make_component( torch.nn.Module, TORCH_TAG_PREFIX, only_module='torch.nn', exclude=exclude ) old_obj = complex_multi_layered_nontorch_root(from_config=True, x=1) state = old_obj.get_state() with tempfile.TemporaryDirectory() as root_path: path = os.path.join(root_path, 'savefile.flambe') save_state_to_file(state, path, compress_save_file, pickle_only) list_files(path) if pickle_only: path += '.pkl' if compress_save_file: path += '.tar.gz' state_loaded = load_state_from_file(path) check_mapping_equivalence(state, state_loaded) check_mapping_equivalence(state._metadata, state_loaded._metadata) new_obj = complex_multi_layered_nontorch_root(from_config=True, x=2) int_state = new_obj.get_state() new_obj.load_state(state_loaded, strict=False) old_state = old_obj.get_state() new_state = new_obj.get_state() check_mapping_equivalence(new_state, old_state) check_mapping_equivalence(old_state._metadata, new_state._metadata) check_mapping_equivalence(int_state._metadata, state_loaded._metadata) @pytest.mark.parametrize("pickle_only", [True, False]) @pytest.mark.parametrize("compress_save_file", [True, False]) def test_module_save_and_load_roundtrip(self, basic_object, pickle_only, compress_save_file): old_obj = basic_object(from_config=True) with tempfile.TemporaryDirectory() as root_path: path = os.path.join(root_path, 'savefile.flambe') save(old_obj, path, compress_save_file, pickle_only) if pickle_only: path += '.pkl' if compress_save_file: path += '.tar.gz' new_obj = load(path) old_state = old_obj.get_state() new_state = new_obj.get_state() check_mapping_equivalence(new_state, old_state) check_mapping_equivalence(old_state._metadata, new_state._metadata, exclude_config=False) @pytest.mark.parametrize("pickle_only", [True, False]) @pytest.mark.parametrize("compress_save_file", [True, False]) def test_module_save_and_load_roundtrip_pytorch(self, alternating_nn_module_with_state, pickle_only, compress_save_file): old_obj = alternating_nn_module_with_state(from_config=True, x=1) with tempfile.TemporaryDirectory() as root_path: path = os.path.join(root_path, 'savefile.flambe') save(old_obj, path, compress_save_file, pickle_only) if pickle_only: path += '.pkl' if compress_save_file: path += '.tar.gz' new_obj = load(path) old_state = old_obj.get_state() new_state = new_obj.get_state() check_mapping_equivalence(new_state, old_state) check_mapping_equivalence(old_state._metadata, new_state._metadata, exclude_config=False) def test_module_save_and_load_roundtrip_pytorch_only_bridge(self): a = BasicStateful.compile(x=3) b = 100 c = BasicStatefulTwo.compile(y=0) item = ComposableTorchStatefulTorchOnlyChild.compile(a=a, b=b, c=c) extra = torch.nn.Linear(2, 2) old_obj = Org.compile(item=item, extra=None) # x for a2 should be different from instance a a2 = BasicStateful.compile(x=4) b2 = 101 # y for c2 should be different from instance c c2 = BasicStatefulTwo.compile(y=1) item2 = ComposableTorchStatefulTorchOnlyChild.compile(a=a2, b=b2, c=c2) extra2 = torch.nn.Linear(2, 2) new_obj = Org.compile(item=item2, extra=None) with tempfile.TemporaryDirectory() as root_path: path = os.path.join(root_path, 'asavefile2.flambe') old_state = old_obj.get_state() save_state_to_file(old_state, path) new_state = load_state_from_file(path) new_obj.load_state(new_state) # save(old_obj, path) # new_obj = load(path) old_state_get = old_obj.get_state() new_state_get = new_obj.get_state() check_mapping_equivalence(new_state, old_state) check_mapping_equivalence(old_state._metadata, new_state._metadata, exclude_config=False) check_mapping_equivalence(new_state_get, old_state_get) check_mapping_equivalence(old_state_get._metadata, new_state_get._metadata, exclude_config=True) # def test_module_save_and_load_example_encoder(self): # TORCH_TAG_PREFIX = "torch" # make_component(torch.nn.Module, TORCH_TAG_PREFIX, only_module='torch.nn') # make_component(torch.optim.Optimizer, TORCH_TAG_PREFIX, only_module='torch.optim') # trainer = yaml.load(EXAMPLE_TRAINER_CONFIG)() # with tempfile.TemporaryDirectory() as path: # save(trainer, path) # loaded_trainer = load(path) # old_state = trainer.get_state() # new_state = loaded_trainer.get_state() # check_mapping_equivalence(new_state, old_state) # check_mapping_equivalence(old_state._metadata, new_state._metadata, exclude_config=False) def test_module_save_and_load_single_instance_appears_twice(self, make_classes_2): txt = """ !C one: !A akw2: &theb !B bkw2: test bkw1: 1 akw1: 8 two: !A akw1: 8 # Comment Here akw2: *theb """ c = yaml.load(txt)() c.one.akw2.bkw1 = 6 assert c.one.akw2 is c.two.akw2 assert c.one.akw2.bkw1 == c.two.akw2.bkw1 with tempfile.TemporaryDirectory() as path: save(c, path) state = load_state_from_file(path) loaded_c = load(path) assert loaded_c.one.akw2 is loaded_c.two.akw2 assert loaded_c.one.akw2.bkw1 == loaded_c.two.akw2.bkw1 class TestSerializationExtensions: EXTENSIONS = { "ext1": "my_extension_1", "ext2": "my_extension_2", "ext3": "my_extension_3", } @pytest.mark.parametrize("pickle_only", [True, False]) @pytest.mark.parametrize("compress_save_file", [True, False]) @mock.patch('flambe.compile.serialization.is_installed_module') @mock.patch('flambe.compile.serialization.import_modules') @mock.patch('flambe.compile.component.Schema.add_extensions_metadata') def test_save_to_file_and_load_from_file_with_extensions( self, mock_add_extensions, mock_import_module, mock_installed_module, compress_save_file, pickle_only, schema): """Test that extensions are saved to the output config.yaml and they are also added when loading back the object.""" mock_installed_module.return_value = True schema_obj = schema() # Add extensions manually because if we use add_extensions_metadata # then no extensions will be added as the schema doesn't container_folder # any prefix. schema_obj._extensions = TestSerializationExtensions.EXTENSIONS obj = schema_obj() state = obj.get_state() with tempfile.TemporaryDirectory() as root_path: path = os.path.join(root_path, 'savefile.flambe') save_state_to_file(state, path, compress_save_file, pickle_only) list_files(path) if pickle_only: path += '.pkl' if compress_save_file: path += '.tar.gz' state_loaded = load_state_from_file(path) check_mapping_equivalence(state, state_loaded) check_mapping_equivalence(state._metadata, state_loaded._metadata) _ = Basic.load_from_path(path) mock_add_extensions.assert_called_once_with(TestSerializationExtensions.EXTENSIONS) def test_add_extensions_metadata(self, schema): """Test that add_extensions_metadata doesn't add extensions that are not used""" schema_obj = schema() assert schema_obj._extensions == {} schema_obj.add_extensions_metadata(TestSerializationExtensions.EXTENSIONS) assert schema_obj._extensions == {} def test_add_extensions_metadata_2(self): """Test that add_extensions_metadata doesn't add extensions that are not used. In this case we will use a config containing torch, but we will make_component on torch so that it can be compiled. After that, we add_extensions_metadata with torch, which is a valid extensions for the config (redundant, but valid). """ TORCH_TAG_PREFIX = "torch" exclude = ['torch.nn.quantized', 'torch.nn.qat'] make_component( torch.nn.Module, TORCH_TAG_PREFIX, only_module='torch.nn', exclude=exclude ) config = """ !torch.Linear in_features: 2 out_features: 2 """ schema = yaml.load(config) schema.add_extensions_metadata({"torch": "torch"}) assert schema._extensions == {"torch": "torch"} mixed_ext = TestSerializationExtensions.EXTENSIONS.copy() mixed_ext.update({"torch": "torch"}) schema.add_extensions_metadata(mixed_ext) assert schema._extensions == {"torch": "torch"} def test_add_extensions_metadata_3(self, complex_multi_layered_nontorch_root): """Test that add_extensions_metadata doesn't add extensions that are not used In this case we will use a config containing torch, but we will make_component on torch so that it can be compiled. After that, we add_extensions_metadata with torch, which is a valid extensions for the config (redundant, but valid). """ TORCH_TAG_PREFIX = "torch" exclude = ['torch.nn.quantized', 'torch.nn.qat'] make_component( torch.nn.Module, TORCH_TAG_PREFIX, only_module='torch.nn', exclude=exclude ) schema = complex_multi_layered_nontorch_root(from_config=True, schema=True) schema.add_extensions_metadata({"torch": "torch"}) # This method asserts recursively that torch is added to extensions when # there is a subcomponent that uses torch. # It returns if at least one component with torch was found, that should # always happen based on the complex_multi_layered_nontorch_root. def helper(data): found = False if isinstance(data, Schema): if data.component_subclass.__module__.startswith("torch."): found = True assert data._extensions == {"torch": "torch"} for val in data.keywords.values(): f = helper(val) if f: found = f elif isinstance(data, Mapping): for val in data.values(): f = helper(val) if f: found = f return found assert helper(schema)
35.163636
370
0.650885
ffc6f683fcf9781b23e01bc925af097eac266215
546
py
Python
dataset.py
aurelienserre/samestats
91a4471e8e85cff198b206ec9a36883811215596
[ "BSD-3-Clause" ]
null
null
null
dataset.py
aurelienserre/samestats
91a4471e8e85cff198b206ec9a36883811215596
[ "BSD-3-Clause" ]
null
null
null
dataset.py
aurelienserre/samestats
91a4471e8e85cff198b206ec9a36883811215596
[ "BSD-3-Clause" ]
null
null
null
import torch import torch.nn as nn from torch.nn.parameter import Parameter class Dataset(nn.Module): """Module for representing the points of the data set.""" def __init__(self, points): """Initializes the Dataset module with the given points :points: (np.array or torch.Tensor) points of the dataset dimensions: (n_samples, n_coords_of_points) """ super(Dataset, self).__init__() self.points = Parameter(torch.Tensor(points)) def forward(self): return self.points
23.73913
65
0.663004
6b94dc083177a8a7307dfad8df32da9d04c2150d
4,610
py
Python
02_model_training.py
tum-fml/dofos
85556764353c15c5b7ae3088a135de8e96d1021e
[ "CC0-1.0" ]
null
null
null
02_model_training.py
tum-fml/dofos
85556764353c15c5b7ae3088a135de8e96d1021e
[ "CC0-1.0" ]
null
null
null
02_model_training.py
tum-fml/dofos
85556764353c15c5b7ae3088a135de8e96d1021e
[ "CC0-1.0" ]
null
null
null
# ###################################################################################################################### # # Skript zum antrainieren von Mustererkennungsmodellen. # # Datenbank mit Mustern zu den einzelnen Betriebsvorgängen muss vorhanden sein. # # ###################################################################################################################### import os from collections import Counter import classes as c import numpy as np import pandas as pd import matplotlib.pyplot as plt import joblib # ###################################################################################################################### condition = {1: 'aufschlagen_zinke', 2: 'schleifen', 3: 'heben', 4: 'senken', 5: 'aufschlagen_hubgeruest', 6: 'fahren', 7: 'stehen', 0: 'andere'} # ###################################################################################################################### # # Set up Data # # Get all Data together and attache label # # Filter (median) and clean data from NaN and Inf # # Scale (min-max) for later training of knn etc. # Get folder names in database folder = [name for name in os.listdir("Datenbank_Betriebszustände")] dataframe_list = [] # All pattern in one list. Every list object is an pandas dataframe. labels = [] # List of labels for every pattern. Predefined. # Set up given data with labels for i in range(len(folder)): label = folder[i][0:2] operating_condition = folder[i][3:] path = "Datenbank_Betriebszustände/" + folder[i] list_dataframes = c.data(path=path, label=label, operating_condition=operating_condition) list_dataframes.list(dataframe_list=dataframe_list, labels=labels) # median_window_size = 9 # Window size for median filter. # Median filter and cleaning data (Nan, Inf, etc.) for i in range(len(dataframe_list)): # dataframe_list[i] = c.med_filter(dataframe_list[i], median_window_size) dataframe_list[i] = c.clean_data(dataframe_list[i]) # print(dataframe_list[i][~dataframe_list[i].applymap(np.isreal).all(1)]) # print(i) for i in range(len(dataframe_list)): dataframe_list[i] = c.normalize(dataframe_list[i]) print() print("Dataframes in List: " + str(len(dataframe_list))) print("Labels in List: " + str(len(labels))) # Comment out if models to differentiate all states is desired labels = [x if x == 1 or x == 2 else 0.0 for x in labels ] # ###################################################################################################################### # # Features Extraktion for each pattern # 0: Peak-to-Peak, 1: euclidean, 2: FFT, 3: Min, 4: Max, 5: Varianz, 6: Standard Deviation, 7: Skewness, 8: Kurtosis # Select the desired Features from the top selection and put the numbers into the array. features = [0,4, 5] feature_matrix = np.zeros((len(dataframe_list), 3*(len(features)))) extraction = c.features(len(features), feature_matrix, 2) l = 0 if 0 in features: for n in range(len(dataframe_list)): extraction.peak_to_peak(dataframe_list[n], n, l) l += 3 if 1 in features: for n in range(len(dataframe_list)): extraction.euclidean_Dist(dataframe_list[n], n, l) l += 3 if 2 in features: for n in range(len(dataframe_list)): extraction.fft(dataframe_list[n], n, l) l += 3 if 3 in features: for n in range(len(dataframe_list)): extraction.min(dataframe_list[n], n, l) l += 3 if 4 in features: for n in range(len(dataframe_list)): extraction.max(dataframe_list[n], n, l) l += 3 if 5 in features: for n in range(len(dataframe_list)): extraction.var(dataframe_list[n], n, l) l += 3 if 6 in features: for n in range(len(dataframe_list)): extraction.std(dataframe_list[n], n, l) l += 3 if 7 in features: for n in range(len(dataframe_list)): extraction.skewness(dataframe_list[n], n, l) l += 3 if 8 in features: for n in range(len(dataframe_list)): extraction.kurtosis(dataframe_list[n], n, l) l += 3 # ###################################################################################################################### # Model Training model = c.training(features=feature_matrix, labels=labels) knn = model.knn(10) svm = model.svm() dt = model.dt() rf = model.rf() # ###################################################################################################################### # # Model Saving # # Comment out to save models # save_model = c.save_model(knn, svm, dt, rf) # save_model.save()
33.405797
120
0.55141
5d535200e7549ca3e8a85332ceb9b4a4f83e874e
2,777
py
Python
projects/PartialReID/partialreid/dsr_evaluation.py
lb-y/fast-reid
ec500abc94bf69774f3f6c2e4848edacb0d6761b
[ "Apache-2.0" ]
1
2021-05-31T01:34:36.000Z
2021-05-31T01:34:36.000Z
projects/PartialReID/partialreid/dsr_evaluation.py
lb-y/fast-reid
ec500abc94bf69774f3f6c2e4848edacb0d6761b
[ "Apache-2.0" ]
null
null
null
projects/PartialReID/partialreid/dsr_evaluation.py
lb-y/fast-reid
ec500abc94bf69774f3f6c2e4848edacb0d6761b
[ "Apache-2.0" ]
null
null
null
# encoding: utf-8 """ @author: liaoxingyu @contact: sherlockliao01@gmail.com """ import copy import logging from collections import OrderedDict import numpy as np import torch import torch.nn.functional as F from fastreid.evaluation.evaluator import DatasetEvaluator from fastreid.evaluation.rank import evaluate_rank from fastreid.evaluation.roc import evaluate_roc from .dsr_distance import compute_dsr_dist logger = logging.getLogger('fastreid.partialreid.dsr_evaluation') class DsrEvaluator(DatasetEvaluator): def __init__(self, cfg, num_query, output_dir=None): self.cfg = cfg self._num_query = num_query self._output_dir = output_dir self.features = [] self.spatial_features = [] self.scores = [] self.pids = [] self.camids = [] def reset(self): self.features = [] self.spatial_features = [] self.scores = [] self.pids = [] self.camids = [] def process(self, outputs): self.features.append(F.normalize(outputs[0][0]).cpu()) outputs1 = F.normalize(outputs[0][1].data).cpu().numpy() self.spatial_features.append(outputs1) self.scores.append(outputs[0][2]) self.pids.extend(outputs[1].cpu().numpy()) self.camids.extend(outputs[2].cpu().numpy()) def evaluate(self): features = torch.cat(self.features, dim=0) spatial_features = np.vstack(self.spatial_features) scores = torch.cat(self.scores, dim=0) # query feature, person ids and camera ids query_features = features[:self._num_query] query_pids = np.asarray(self.pids[:self._num_query]) query_camids = np.asarray(self.camids[:self._num_query]) # gallery features, person ids and camera ids gallery_features = features[self._num_query:] gallery_pids = np.asarray(self.pids[self._num_query:]) gallery_camids = np.asarray(self.camids[self._num_query:]) dist = 1 - torch.mm(query_features, gallery_features.t()).numpy() logger.info("Testing without DSR setting") self._results = OrderedDict() if self.cfg.TEST.DSR.ENABLED: topk = self.cfg.TEST.DSR.TOPK dist = compute_dsr_dist(spatial_features[:self._num_query], spatial_features[self._num_query:], dist, scores[:self._num_query], topk) logger.info("Testing with DSR setting") cmc, all_AP, all_INP = evaluate_rank(dist, query_pids, gallery_pids, query_camids, gallery_camids) mAP = np.mean(all_AP) mINP = np.mean(all_INP) self._results['R-1'] = cmc[0] self._results['mAP'] = mAP self._results['mINP'] = mINP return copy.deepcopy(self._results)
33.865854
113
0.651422
1e63db39ad3c237fb1d06e7c50e04023a8e528a3
2,386
py
Python
contracts/tests/test_fee_bank_contract.py
agatsoh/shutter
d8b99f8c3e9863838eeef935ffdd90dc8e9b1d5b
[ "MIT" ]
13
2021-07-23T21:03:57.000Z
2022-03-29T19:38:07.000Z
contracts/tests/test_fee_bank_contract.py
derekbar90/shutter
27ff92ca3e7d80213d01821886f6bc8a10f81239
[ "MIT" ]
22
2021-04-12T09:02:12.000Z
2021-06-16T06:26:37.000Z
contracts/tests/test_fee_bank_contract.py
derekbar90/shutter
27ff92ca3e7d80213d01821886f6bc8a10f81239
[ "MIT" ]
3
2021-08-06T20:17:59.000Z
2021-12-08T20:04:13.000Z
from typing import Any from typing import Sequence import brownie import pytest from brownie.network.account import Account @pytest.fixture def depositor(accounts: Sequence[Account]) -> Account: return accounts[1] @pytest.fixture def receiver(accounts: Sequence[Account]) -> Account: return accounts[2] def test_deposit(fee_bank_contract: Any, depositor: Account, receiver: Account) -> None: assert fee_bank_contract.deposits(receiver) == 0 amounts = [100, 200, 1, 500] for i, amount in enumerate(amounts): tx = fee_bank_contract.deposit(receiver, {"from": depositor, "value": amount}) assert fee_bank_contract.deposits(receiver) == sum(amounts[: i + 1]) assert len(tx.events) == 1 assert tx.events[0] == { "depositor": depositor, "receiver": receiver, "amount": amount, "totalAmount": sum(amounts[: i + 1]), } def test_withdraw( fee_bank_contract: Any, depositor: Account, receiver: Account, accounts: Sequence[Account] ) -> None: fee_bank_contract.deposit(receiver, {"from": depositor, "value": 1000}) with brownie.reverts(): fee_bank_contract.withdraw({"from": depositor}) with brownie.reverts(): fee_bank_contract.withdraw(receiver, 1001, {"from": receiver}) different_receiver = accounts[-1] assert different_receiver != receiver receiver_pre_balance = receiver.balance() different_receiver_pre_balance = different_receiver.balance() tx = fee_bank_contract.withdraw(different_receiver, 100, {"from": receiver}) assert fee_bank_contract.deposits(receiver) == 900 assert different_receiver.balance() == different_receiver_pre_balance + 100 assert receiver.balance() == receiver_pre_balance assert len(tx.events) == 1 assert tx.events[0] == { "sender": receiver, "receiver": different_receiver, "amount": 100, "totalAmount": 900, } tx = fee_bank_contract.withdraw({"from": receiver}) assert fee_bank_contract.deposits(receiver) == 0 assert receiver.balance() == receiver_pre_balance + 900 assert different_receiver.balance() == different_receiver_pre_balance + 100 assert len(tx.events) == 1 assert tx.events[0] == { "sender": receiver, "receiver": receiver, "amount": 900, "totalAmount": 0, }
32.684932
94
0.672674
611517a6170b22927e5da06a3c9453942c17621b
545
py
Python
filekeep/xml.py
goncalomb/filekeep
653de1b8c859cb3ec2e7203259125989f3618f56
[ "MIT" ]
null
null
null
filekeep/xml.py
goncalomb/filekeep
653de1b8c859cb3ec2e7203259125989f3618f56
[ "MIT" ]
null
null
null
filekeep/xml.py
goncalomb/filekeep
653de1b8c859cb3ec2e7203259125989f3618f56
[ "MIT" ]
null
null
null
import xml.etree.ElementTree as ET import xml.dom.minidom as minidom def read(path): root = ET.parse(path).getroot() for elem in root.iter('*'): if elem.text != None and elem.text.strip() == "": elem.text = None if elem.tail != None and elem.tail.strip() == "": elem.tail = None return root def write(path, root): xml = ET.tostring(root, encoding="UTF-8") xml = minidom.parseString(xml).toprettyxml(indent=" ", encoding="UTF-8") with open(path, "wb") as f: f.write(xml)
30.277778
77
0.59633
f3d9a9ad120b2fd74a5172a6279ac0c9ac56bea9
5,230
py
Python
python/100daysofpython/r1d8_data_structures.py
juancarlosqr/datascience
2e4d78365b059a3e501e988bee53970ac0d718fc
[ "MIT" ]
null
null
null
python/100daysofpython/r1d8_data_structures.py
juancarlosqr/datascience
2e4d78365b059a3e501e988bee53970ac0d718fc
[ "MIT" ]
null
null
null
python/100daysofpython/r1d8_data_structures.py
juancarlosqr/datascience
2e4d78365b059a3e501e988bee53970ac0d718fc
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 def run_list(): '''''' print('\nlists') # shopping list shop = ['apple', 'mango', 'carrot', 'banana'] print(1, 'i have', len(shop), 'items') print(2, 'the items are', end=' ') for item in shop: print(item, end=' ') print() print(3, 'adding rice') shop.append('rice') print(4, 'shop list', shop) shop.sort() print(5, 'sort', shop) print(6, 'first item is', shop[0]) olditem = shop[0] del shop[0] print(7, 'i bought', olditem) print(8, 'shop list now', shop) print(9, shop[::2]) # third argument on slicing is the step def run_tuple(): '''''' zoo = ('python', 'elephant', 'penguin') print('\ntuples') print(1, 'numbers of animals', len(zoo)) print(2, 'zoo', zoo) # parentheses not required but are a good idea new_zoo = 'monkey', 'camel', zoo print(3, 'cages in the new zoo', len(new_zoo)) print(4, 'new zoo', new_zoo) print(5, 'animals from old zoo', new_zoo[2]) print(6, 'last animal from old zoo is', new_zoo[2][2]) print(7, 'number of animals in new zoo', len(new_zoo)-1+len(new_zoo[2])) not_a_tuple = (2) print(8, type(not_a_tuple)) a_tuple = (2,) print(9, type(a_tuple), len(a_tuple)) def run_dict(): '''''' print('\ndictionaries') # ab is short for address book ab = { 'swaroop': 'swaroop@swaroop.com', 'larry': 'larry@swaroop.com', 'matsumoto': 'matsumoto@swaroop.com', 'spammer': 'spammer@swaroop.com', } print(1, 'address book', ab) print(2, 'swaroop email is', ab['swaroop']) del ab['spammer'] print(3, 'address book', ab) print(4, f'there are {len(ab)} contacts in the address book') for name, email in ab.items(): print(f'{name}\'s email is {email}') ab['guido'] = 'guido@python.org' if 'guido' in ab: print(5, 'we have guido!') def run_set(): '''''' print('\nsets') bri = set(['brazil', 'russia', 'india']) print(1, 'bri', bri) print(2, 'us in bri:', 'us' in bri) print(3, 'india in bri:', 'india' in bri) bric = bri.copy() bric.add('china') print(4, 'bric', bric) print(5, 'bric is superset of bri?', bric.issuperset(bri)) print(6, 'bri is subset of bric', bri.issubset(bric)) bri.remove('russia') print(7, bri & bric) # or bri.intersect def run_reference(): '''''' print('\nreferences') print(1, 'assignment') shop1 = ['apple', 'mango', 'carrot'] # shop2 is just another name pointing to the same object shop2 = shop1 print(2, 'shop1', id(shop1), shop1) print(3, 'shop2', id(shop2), shop2) del shop1[0] print(4, 'first item removed') print(5, 'shop1', id(shop1), shop1) print(6, 'shop2', id(shop2), shop2) # make a copy by doing a full slice shop3 = shop1[:] print(7, 'shop1', id(shop1), shop1) print(8, 'shop3', id(shop3), shop3) del shop1[0] print(9, 'first item removed') print(10, 'shop1', id(shop1), shop1) print(11, 'shop3', id(shop3), shop3) def run_string(): '''''' print('\nstrings') name = 'swaroop' print(1, 'find', name.find('oop')) # index 4 delimiter = '_*_' bric = ['brazil', 'russia', 'india', 'china'] print(2, delimiter.join(bric)) if __name__ == '__main__': run_list() run_tuple() run_dict() run_set() run_reference() run_string() ''' output: lists 1 i have 4 items 2 the items are apple mango carrot banana 3 adding rice 4 shop list ['apple', 'mango', 'carrot', 'banana', 'rice'] 5 sort ['apple', 'banana', 'carrot', 'mango', 'rice'] 6 first item is apple 7 i bought apple 8 shop list now ['banana', 'carrot', 'mango', 'rice'] 9 ['banana', 'mango'] tuples 1 numbers of animals 3 2 zoo ('python', 'elephant', 'penguin') 3 cages in the new zoo 3 4 new zoo ('monkey', 'camel', ('python', 'elephant', 'penguin')) 5 animals from old zoo ('python', 'elephant', 'penguin') 6 last animal from old zoo is penguin 7 number of animals in new zoo 5 8 <class 'int'> 9 <class 'tuple'> 1 dictionaries 1 address book {'swaroop': 'swaroop@swaroop.com', 'larry': 'larry@swaroop.com', 'matsumoto': 'matsumoto@swaroop.com', 'spammer': 'spammer@swaroop.com'} 2 swaroop email is swaroop@swaroop.com 3 address book {'swaroop': 'swaroop@swaroop.com', 'larry': 'larry@swaroop.com', 'matsumoto': 'matsumoto@swaroop.com'} 4 there are 3 contacts in the address book swaroop's email is swaroop@swaroop.com larry's email is larry@swaroop.com matsumoto's email is matsumoto@swaroop.com 5 we have guido! sets 1 bri {'india', 'russia', 'brazil'} 2 us in bri: False 3 india in bri: True 4 bric {'china', 'india', 'russia', 'brazil'} 5 bric is superset of bri? True 6 bri is subset of bric True 7 {'india', 'brazil'} references 1 assignment 2 shop1 4392613192 ['apple', 'mango', 'carrot'] 3 shop2 4392613192 ['apple', 'mango', 'carrot'] 4 first item removed 5 shop1 4392613192 ['mango', 'carrot'] 6 shop2 4392613192 ['mango', 'carrot'] 7 shop1 4392613192 ['mango', 'carrot'] 8 shop3 4392837192 ['mango', 'carrot'] 9 first item removed 10 shop1 4392613192 ['carrot'] 11 shop3 4392837192 ['mango', 'carrot'] strings 1 find 4 2 brazil_*_russia_*_india_*_china '''
29.217877
151
0.616635
d9c59d46731da16d7c7e03fb2e55c5a23c3cc848
1,929
py
Python
test/test_cnnf_host_audit.py
hi-artem/twistlock-py
9888e905f5b9d3cc00f9b84244588c0992f8e4f4
[ "RSA-MD" ]
null
null
null
test/test_cnnf_host_audit.py
hi-artem/twistlock-py
9888e905f5b9d3cc00f9b84244588c0992f8e4f4
[ "RSA-MD" ]
null
null
null
test/test_cnnf_host_audit.py
hi-artem/twistlock-py
9888e905f5b9d3cc00f9b84244588c0992f8e4f4
[ "RSA-MD" ]
null
null
null
# coding: utf-8 """ Prisma Cloud Compute API No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 The version of the OpenAPI document: 21.04.439 Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import unittest import datetime import openapi_client from openapi_client.models.cnnf_host_audit import CnnfHostAudit # noqa: E501 from openapi_client.rest import ApiException class TestCnnfHostAudit(unittest.TestCase): """CnnfHostAudit unit test stubs""" def setUp(self): pass def tearDown(self): pass def make_instance(self, include_optional): """Test CnnfHostAudit include_option is a boolean, when False only required params are included, when True both required and optional params are included """ # model = openapi_client.models.cnnf_host_audit.CnnfHostAudit() # noqa: E501 if include_optional : return CnnfHostAudit( account_id = '', block = True, cluster = '', count = 56, dst_hostname = '', dst_port = 56, dst_subnet = '', msg = '', rule_id = 56, src_hash = 56, src_hostname = '', src_subnet = '', time = datetime.datetime.strptime('2013-10-20 19:20:30.00', '%Y-%m-%d %H:%M:%S.%f'), type = '[\"unexpectedConnection\"]' ) else : return CnnfHostAudit( ) def testCnnfHostAudit(self): """Test CnnfHostAudit""" inst_req_only = self.make_instance(include_optional=False) inst_req_and_optional = self.make_instance(include_optional=True) if __name__ == '__main__': unittest.main()
29.676923
124
0.589943
24e942bfac7339e544024cdb7a182f18b91ff4b0
4,133
py
Python
configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/crowdpose/res101_crowdpose_320x256.py
nightfuryyy/mmpose
910d9e31dd9d46e3329be1b7567e6309d70ab64c
[ "Apache-2.0" ]
1,775
2020-07-10T01:20:01.000Z
2022-03-31T16:31:50.000Z
configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/crowdpose/res101_crowdpose_320x256.py
KHB1698/mmpose
93c3a742c540dfb4ca515ad545cef705a07d90b4
[ "Apache-2.0" ]
1,021
2020-07-11T11:40:24.000Z
2022-03-31T14:32:26.000Z
configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/crowdpose/res101_crowdpose_320x256.py
KHB1698/mmpose
93c3a742c540dfb4ca515ad545cef705a07d90b4
[ "Apache-2.0" ]
477
2020-07-11T11:27:51.000Z
2022-03-31T09:42:25.000Z
_base_ = ['../../../../_base_/datasets/crowdpose.py'] log_level = 'INFO' load_from = None resume_from = None dist_params = dict(backend='nccl') workflow = [('train', 1)] checkpoint_config = dict(interval=10) evaluation = dict(interval=10, metric='mAP') optimizer = dict( type='Adam', lr=5e-4, ) optimizer_config = dict(grad_clip=None) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.001, step=[170, 200]) total_epochs = 210 log_config = dict( interval=50, hooks=[ dict(type='TextLoggerHook'), # dict(type='TensorboardLoggerHook') ]) channel_cfg = dict( num_output_channels=14, dataset_joints=14, dataset_channel=[ [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], ], inference_channel=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]) # model settings model = dict( type='TopDown', pretrained='torchvision://resnet101', backbone=dict(type='ResNet', depth=101), keypoint_head=dict( type='TopdownHeatmapSimpleHead', in_channels=2048, out_channels=channel_cfg['num_output_channels'], loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)), train_cfg=dict(), test_cfg=dict( flip_test=True, post_process='default', shift_heatmap=True, modulate_kernel=11)) data_cfg = dict( image_size=[256, 320], heatmap_size=[64, 80], num_output_channels=channel_cfg['num_output_channels'], num_joints=channel_cfg['dataset_joints'], dataset_channel=channel_cfg['dataset_channel'], inference_channel=channel_cfg['inference_channel'], crowd_matching=False, soft_nms=False, nms_thr=1.0, oks_thr=0.9, vis_thr=0.2, use_gt_bbox=False, det_bbox_thr=0.0, bbox_file='data/crowdpose/annotations/' 'det_for_crowd_test_0.1_0.5.json', ) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='TopDownRandomFlip', flip_prob=0.5), dict( type='TopDownHalfBodyTransform', num_joints_half_body=6, prob_half_body=0.3), dict( type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict(type='TopDownGenerateTarget', sigma=2), dict( type='Collect', keys=['img', 'target', 'target_weight'], meta_keys=[ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]), ] val_pipeline = [ dict(type='LoadImageFromFile'), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict( type='Collect', keys=['img'], meta_keys=[ 'image_file', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]), ] test_pipeline = val_pipeline data_root = 'data/crowdpose' data = dict( samples_per_gpu=64, workers_per_gpu=2, val_dataloader=dict(samples_per_gpu=32), test_dataloader=dict(samples_per_gpu=32), train=dict( type='TopDownCrowdPoseDataset', ann_file=f'{data_root}/annotations/mmpose_crowdpose_trainval.json', img_prefix=f'{data_root}/images/', data_cfg=data_cfg, pipeline=train_pipeline, dataset_info={{_base_.dataset_info}}), val=dict( type='TopDownCrowdPoseDataset', ann_file=f'{data_root}/annotations/mmpose_crowdpose_test.json', img_prefix=f'{data_root}/images/', data_cfg=data_cfg, pipeline=val_pipeline, dataset_info={{_base_.dataset_info}}), test=dict( type='TopDownCrowdPoseDataset', ann_file=f'{data_root}/annotations/mmpose_crowdpose_test.json', img_prefix=f'{data_root}/images/', data_cfg=data_cfg, pipeline=test_pipeline, dataset_info={{_base_.dataset_info}}))
28.701389
79
0.633922
19860ba37fc7699d145a2fc92d3a627b018c790e
397
py
Python
disposable_emails/contrib/django/__init__.py
maxmalysh/disposable-emails
f4772ec3badb8d6df2d64d265fa9c3b2d982bb09
[ "MIT" ]
3
2017-05-05T02:00:13.000Z
2019-12-06T15:22:58.000Z
disposable_emails/contrib/django/__init__.py
maxmalysh/disposable-emails
f4772ec3badb8d6df2d64d265fa9c3b2d982bb09
[ "MIT" ]
null
null
null
disposable_emails/contrib/django/__init__.py
maxmalysh/disposable-emails
f4772ec3badb8d6df2d64d265fa9c3b2d982bb09
[ "MIT" ]
null
null
null
from django.core.exceptions import ValidationError from django.utils.translation import ugettext_lazy as _ from disposable_emails import is_disposable_email, extract_domain def disposable_validator(value): if is_disposable_email(value): raise ValidationError( _('%(value)s is a blacklisted email provider'), params={'value': extract_domain(value)}, )
33.083333
65
0.732997
23c9f09cdde78e48b1c8bd19b4d107ee1574c800
31
py
Python
src/__init__.py
mancaf/planetarium
507fe252778d3c5143b522193cf25c7fdb2412aa
[ "MIT" ]
null
null
null
src/__init__.py
mancaf/planetarium
507fe252778d3c5143b522193cf25c7fdb2412aa
[ "MIT" ]
null
null
null
src/__init__.py
mancaf/planetarium
507fe252778d3c5143b522193cf25c7fdb2412aa
[ "MIT" ]
null
null
null
from . import core, gui, parse
15.5
30
0.709677
b22a10d1d99899bbb8ec94d5103377a392c7849a
1,824
py
Python
core/gui/elements.py
ranjian0/triggered_python
bcd95da3e82b384f9e1274c90af000986d2bad18
[ "MIT" ]
null
null
null
core/gui/elements.py
ranjian0/triggered_python
bcd95da3e82b384f9e1274c90af000986d2bad18
[ "MIT" ]
null
null
null
core/gui/elements.py
ranjian0/triggered_python
bcd95da3e82b384f9e1274c90af000986d2bad18
[ "MIT" ]
null
null
null
import pyglet as pg class LabelElement(pg.text.Label): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.anchor_y = "top" self.anchor_x = "left" def update_batch(self, batch, group): self.batch = batch layout = pg.text.layout self.top_group = layout.TextLayoutGroup(group) self.background_group = pg.graphics.OrderedGroup(0, self.top_group) self.foreground_group = layout.TextLayoutForegroundGroup( 1, self.top_group ) self.foreground_decoration_group = layout.TextLayoutForegroundDecorationGroup( 2, self.top_group ) self._update() class InputElement(object): def __init__(self, text): self.document = pg.text.document.UnformattedDocument(text) self.layout = pg.text.layout.IncrementalTextLayout( self.document, 1, 1, multiline=False ) self.caret = pg.text.caret.Caret(self.layout) def _get_text(self): return self.document.text def _set_text(self, text): self.document.text = text text = property(_get_text, _set_text) def update_batch(self, batch, group): self.caret.delete() self.layout.delete() # workaround for pyglet issue 408 self.layout.batch = None if self.layout._document: self.layout._document.remove_handlers(self.layout) self.layout._document = None # end workaround self.layout = pg.text.layout.IncrementalTextLayout( self.document, self.layout.width, self.layout.height, multiline=False, batch=batch, group=group, ) self.caret = pg.text.caret.Caret(self.layout) self.caret.visible = False
29.419355
86
0.618969
4af8331f007e6be5a1475039f2fc2f615a90df90
5,527
py
Python
tempest/services/compute/json/images_client.py
queria/my-tempest
a9cdee0201bb956c7502fd372dab467b056ba67f
[ "Apache-2.0" ]
null
null
null
tempest/services/compute/json/images_client.py
queria/my-tempest
a9cdee0201bb956c7502fd372dab467b056ba67f
[ "Apache-2.0" ]
null
null
null
tempest/services/compute/json/images_client.py
queria/my-tempest
a9cdee0201bb956c7502fd372dab467b056ba67f
[ "Apache-2.0" ]
null
null
null
# Copyright 2012 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import json import urllib from tempest.api_schema.response.compute.v2 import images as schema from tempest.common import rest_client from tempest.common import waiters from tempest import config from tempest import exceptions CONF = config.CONF class ImagesClientJSON(rest_client.RestClient): def __init__(self, auth_provider): super(ImagesClientJSON, self).__init__(auth_provider) self.service = CONF.compute.catalog_type self.build_interval = CONF.compute.build_interval self.build_timeout = CONF.compute.build_timeout def create_image(self, server_id, name, meta=None): """Creates an image of the original server.""" post_body = { 'createImage': { 'name': name, } } if meta is not None: post_body['createImage']['metadata'] = meta post_body = json.dumps(post_body) resp, body = self.post('servers/%s/action' % str(server_id), post_body) self.validate_response(schema.create_image, resp, body) return resp, body def list_images(self, params=None): """Returns a list of all images filtered by any parameters.""" url = 'images' if params: url += '?%s' % urllib.urlencode(params) resp, body = self.get(url) body = json.loads(body) self.validate_response(schema.list_images, resp, body) return resp, body['images'] def list_images_with_detail(self, params=None): """Returns a detailed list of images filtered by any parameters.""" url = 'images/detail' if params: url += '?%s' % urllib.urlencode(params) resp, body = self.get(url) body = json.loads(body) self.validate_response(schema.list_images_details, resp, body) return resp, body['images'] def get_image(self, image_id): """Returns the details of a single image.""" resp, body = self.get("images/%s" % str(image_id)) self.expected_success(200, resp.status) body = json.loads(body) self.validate_response(schema.get_image, resp, body) return resp, body['image'] def delete_image(self, image_id): """Deletes the provided image.""" resp, body = self.delete("images/%s" % str(image_id)) self.validate_response(schema.delete, resp, body) return resp, body def wait_for_image_status(self, image_id, status): """Waits for an image to reach a given status.""" waiters.wait_for_image_status(self, image_id, status) def list_image_metadata(self, image_id): """Lists all metadata items for an image.""" resp, body = self.get("images/%s/metadata" % str(image_id)) body = json.loads(body) self.validate_response(schema.image_metadata, resp, body) return resp, body['metadata'] def set_image_metadata(self, image_id, meta): """Sets the metadata for an image.""" post_body = json.dumps({'metadata': meta}) resp, body = self.put('images/%s/metadata' % str(image_id), post_body) body = json.loads(body) self.validate_response(schema.image_metadata, resp, body) return resp, body['metadata'] def update_image_metadata(self, image_id, meta): """Updates the metadata for an image.""" post_body = json.dumps({'metadata': meta}) resp, body = self.post('images/%s/metadata' % str(image_id), post_body) body = json.loads(body) self.validate_response(schema.image_metadata, resp, body) return resp, body['metadata'] def get_image_metadata_item(self, image_id, key): """Returns the value for a specific image metadata key.""" resp, body = self.get("images/%s/metadata/%s" % (str(image_id), key)) body = json.loads(body) self.validate_response(schema.image_meta_item, resp, body) return resp, body['meta'] def set_image_metadata_item(self, image_id, key, meta): """Sets the value for a specific image metadata key.""" post_body = json.dumps({'meta': meta}) resp, body = self.put('images/%s/metadata/%s' % (str(image_id), key), post_body) body = json.loads(body) self.validate_response(schema.image_meta_item, resp, body) return resp, body['meta'] def delete_image_metadata_item(self, image_id, key): """Deletes a single image metadata key/value pair.""" resp, body = self.delete("images/%s/metadata/%s" % (str(image_id), key)) self.validate_response(schema.delete, resp, body) return resp, body def is_resource_deleted(self, id): try: self.get_image(id) except exceptions.NotFound: return True return False
37.856164
79
0.637778
7a017ef2a6640c77f846412cef08139ee5f1db44
672
py
Python
examples/cursor_v1_1.py
haleelsada/tweepy
22d47d9ae0e06a0c7d34a3871c2ea89ef71ac45c
[ "MIT" ]
null
null
null
examples/cursor_v1_1.py
haleelsada/tweepy
22d47d9ae0e06a0c7d34a3871c2ea89ef71ac45c
[ "MIT" ]
null
null
null
examples/cursor_v1_1.py
haleelsada/tweepy
22d47d9ae0e06a0c7d34a3871c2ea89ef71ac45c
[ "MIT" ]
null
null
null
import tweepy consumer_key = "" consumer_secret = "" access_token = "" access_token_secret = "" auth = tweepy.OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_token_secret) api = tweepy.API(auth) # The app can only retrieve fixed number of objects per # request, with pagination it could be solved and more than # that amount can be gathered for status in tweepy.Cursor(api.search_tweets, "search query here", count=100).items(200): print(status.text) for page in tweepy.Cursor(api.get_followers, screen_name="user name here", count=100).pages(3): print(len(page))
28
74
0.700893
dca200ab30789415540e9a485f0749fcce23cfbe
1,353
py
Python
briskGenerator/brisk.py
itssmutnuri/AugPy
2bf5639700ae60efbf375017a70400fa486f862f
[ "MIT" ]
6
2019-10-12T06:58:32.000Z
2021-04-01T17:38:17.000Z
briskGenerator/brisk.py
muralikrishnarar/AugPy
2bf5639700ae60efbf375017a70400fa486f862f
[ "MIT" ]
1
2020-10-27T15:09:08.000Z
2020-10-27T18:49:09.000Z
briskGenerator/brisk.py
muralikrishnarar/AugPy
2bf5639700ae60efbf375017a70400fa486f862f
[ "MIT" ]
3
2019-10-12T07:00:21.000Z
2021-02-14T01:25:23.000Z
#source: https://www.andreasjakl.com/basics-of-ar-anchors-keypoints-feature-detection/ import cv2 # 1. Load the original image img = cv2.imread('reference/cover.jpg') # 2. Create BRISK algorithm # OpenCV default threshold = 30, octaves = 3 # Using 4 octaves as cited as typical value by the original paper by Leutenegger et al. # Using 70 as detection threshold similar to real-world example of this paper brisk = cv2.BRISK_create(70,4) # 3. Combined call to let the BRISK implementation detect keypoints # as well as calculate the descriptors, based on the image. # These are returned in two arrays. (kps, descs) = brisk.detectAndCompute(img, None) # 4. Print the number of keypoints and descriptors found print("# keypoints: {}, descriptors: {}".format(len(kps), descs.shape)) # To verify: how many bits are contained in a feature descriptor? # Should be 64 * 8 = 512 bits according to the algorithm paper. print(len(descs[1]) * 8) # 5. Use the generic drawKeypoints method from OpenCV to draw the # calculated keypoints into the original image. # The flag for rich keypoints also draws circles to indicate # direction and scale of the keypoints. imgBrisk = cv2.drawKeypoints(img, kps, img, flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS) # 6. Finally, write the resulting image to the disk cv2.imwrite('brisk_keypoints.jpg', imgBrisk)
41
93
0.761271
04b4a8c2449b6d0b5abd8fb47fd50c4c396aeebf
7,409
py
Python
libcloud/dns/drivers/softlayer.py
carletes/libcloud
6be31b9d57b4a94d91320d4c33e94071759fa876
[ "Apache-2.0" ]
3
2015-09-11T15:42:16.000Z
2021-05-12T01:10:05.000Z
libcloud/dns/drivers/softlayer.py
carletes/libcloud
6be31b9d57b4a94d91320d4c33e94071759fa876
[ "Apache-2.0" ]
null
null
null
libcloud/dns/drivers/softlayer.py
carletes/libcloud
6be31b9d57b4a94d91320d4c33e94071759fa876
[ "Apache-2.0" ]
3
2016-02-08T23:38:18.000Z
2019-11-05T00:31:34.000Z
# Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License.You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __all__ = [ 'SoftLayerDNSDriver' ] from libcloud.common.softlayer import SoftLayerConnection from libcloud.common.softlayer import SoftLayerObjectDoesntExist from libcloud.dns.types import Provider, RecordType from libcloud.dns.types import ZoneDoesNotExistError, RecordDoesNotExistError from libcloud.dns.base import DNSDriver, Zone, Record VALID_RECORD_EXTRA_PARAMS = ['priority', 'ttl'] class SoftLayerDNSDriver(DNSDriver): type = Provider.SOFTLAYER name = 'Softlayer DNS' website = 'https://www.softlayer.com' connectionCls = SoftLayerConnection RECORD_TYPE_MAP = { RecordType.A: 'a', RecordType.AAAA: 'aaaa', RecordType.CNAME: 'cname', RecordType.MX: 'mx', RecordType.NS: 'ns', RecordType.PTR: 'ptr', RecordType.SOA: 'soa', RecordType.SPF: 'spf', RecordType.SRV: 'srv', RecordType.TXT: 'txt', } def create_zone(self, domain, ttl=None, extra=None): self.connection.set_context({'resource': 'zone', 'id': domain}) data = { 'name': domain, 'resourceRecords': [] } response = self.connection.request( 'SoftLayer_Dns_Domain', 'createObject', data ).object zone = Zone(id=response['id'], domain=domain, type='master', ttl=3600, driver=self) return zone def get_zone(self, zone_id): self.connection.set_context({'resource': 'zone', 'id': zone_id}) try: response = self.connection.request( 'SoftLayer_Dns_Domain', 'getObject', id=zone_id ).object except SoftLayerObjectDoesntExist: raise ZoneDoesNotExistError(value='', driver=self, zone_id=zone_id) return self._to_zone(response) def delete_zone(self, zone): self.connection.set_context({'resource': 'zone', 'id': zone.id}) try: self.connection.request( 'SoftLayer_Dns_Domain', 'deleteObject', id=zone.id ).object except SoftLayerObjectDoesntExist: raise ZoneDoesNotExistError(value='', driver=self, zone_id=zone.id) else: return True def iterate_zones(self): zones_list = self.connection.request( 'SoftLayer_Dns_Domain', 'getByDomainName', '.' ).object for item in zones_list: yield self._to_zone(item) def iterate_records(self, zone): self.connection.set_context({'resource': 'zone', 'id': zone.id}) records_list = self.connection.request( 'SoftLayer_Dns_Domain', 'getResourceRecords', id=zone.id ).object for item in records_list: yield self._to_record(item, zone=zone) def get_record(self, zone_id, record_id): try: record = self.connection.request( 'SoftLayer_Dns_Domain_ResourceRecord', 'getObject', id=record_id ).object return self._to_record(record, zone=self.get_zone(zone_id)) except SoftLayerObjectDoesntExist: raise RecordDoesNotExistError(value='', driver=self, record_id=record_id) def delete_record(self, record): try: self.connection.request( 'SoftLayer_Dns_Domain_ResourceRecord', 'deleteObject', id=record.id ).object except SoftLayerObjectDoesntExist: raise RecordDoesNotExistError(value='', driver=self, record_id=record.id) else: return True def create_record(self, name, zone, type, data, extra=None): params = { 'domainId': zone.id, 'type': self.RECORD_TYPE_MAP[type], 'host': name, 'data': data } if extra: if extra.get('ttl'): params['ttl'] = extra['ttl'] if extra.get('refresh'): params['refresh'] = extra['refresh'] if extra.get('retry'): params['retry'] = extra['retry'] if extra.get('expire'): params['expire'] = extra['expire'] if extra.get('priority'): params['mxPriority'] = extra['priority'] response = self.connection.request( 'SoftLayer_Dns_Domain_ResourceRecord', 'createObject', params ).object return self._to_record(response, zone=zone) def update_record( self, record, name=None, type=None, data=None, extra=None): params = {} if type: params['type'] = self.RECORD_TYPE_MAP[type] if name: params['host'] = name if data: params['data'] = data if extra: if extra.get('ttl'): params['ttl'] = extra['ttl'] if extra.get('refresh'): params['refresh'] = extra['refresh'] if extra.get('retry'): params['retry'] = extra['retry'] if extra.get('expire'): params['expire'] = extra['expire'] if extra.get('priority'): params['mxPriority'] = extra['priority'] response = self.connection.request( 'SoftLayer_Dns_Domain_ResourceRecord', 'editObject', params, id=record.id, ).object if response: changed_record = self.connection.request( 'SoftLayer_Dns_Domain_ResourceRecord', 'getObject', id=record.id, ).object return self._to_record(changed_record, zone=record.zone) else: return False def _to_zone(self, item): ttl = item.get('ttl', 3600) zone = Zone(id=item['id'], domain=item['name'], type='master', ttl=ttl, driver=self) return zone def _to_record(self, item, zone=None): extra = { 'ttl': item['ttl'], 'expire': item['expire'], 'mxPriority': item['mxPriority'], 'refresh': item['refresh'], 'retry': item['retry'], } record = Record( id=item['id'], name=item['host'], type=self._string_to_record_type(item['type']), data=item['data'], zone=zone, driver=self, extra=extra ) return record
34.621495
77
0.565933
f36288f4f4fb0c31d4e9725f56bf1190a29aa98f
19,050
py
Python
kivy/clock.py
sirpercival/kivy
29ef854a200e6764aae60ea29324379c69d271a3
[ "MIT" ]
1
2020-02-24T19:03:54.000Z
2020-02-24T19:03:54.000Z
kivy/clock.py
sirpercival/kivy
29ef854a200e6764aae60ea29324379c69d271a3
[ "MIT" ]
null
null
null
kivy/clock.py
sirpercival/kivy
29ef854a200e6764aae60ea29324379c69d271a3
[ "MIT" ]
null
null
null
''' Clock object ============ The :class:`Clock` object allows you to schedule a function call in the future; once or repeatedly at specified intervals:: def my_callback(dt): pass # call my_callback every 0.5 seconds Clock.schedule_interval(my_callback, 0.5) # call my_callback in 5 seconds Clock.schedule_once(my_callback, 5) # call my_callback as soon as possible (usually next frame.) Clock.schedule_once(my_callback) .. note:: If the callback returns False, the schedule will be removed. If you want to schedule a function to call with default arguments, you can use the `functools.partial <http://docs.python.org/library/functools.html#functools.partial>`_ python module:: from functools import partial def my_callback(value, key, *largs): pass Clock.schedule_interval(partial(my_callback, 'my value', 'my key'), 0.5) Conversely, if you want to schedule a function that doesn't accept the dt argument, you can use a `lambda <http://docs.python.org/2/reference/expressions.html#lambda>`_ expression to write a short function that does accept dt. For Example:: def no_args_func(): print("I accept no arguments, so don't schedule me in the clock") Clock.schedule_once(lambda dt: no_args_func(), 0.5) .. note:: You cannot unschedule an anonymous function unless you keep a reference to it. It's better to add \*args to your function definition so that it can be called with an arbitrary number of parameters. .. important:: The callback is weak-referenced: you are responsible for keeping a reference to your original object/callback. If you don't keep a reference, the ClockBase will never execute your callback. For example:: class Foo(object): def start(self): Clock.schedule_interval(self.callback, 0.5) def callback(self, dt): print('In callback') # A Foo object is created and the method start is called. # Because no reference is kept to the instance returned from Foo(), # the object will be collected by the Python Garbage Collector and # your callback will be never called. Foo().start() # So you should do the following and keep a reference to the instance # of foo until you don't need it anymore! foo = Foo() foo.start() .. _schedule-before-frame: Schedule before frame --------------------- .. versionadded:: 1.0.5 Sometimes you need to schedule a callback BEFORE the next frame. Starting from 1.0.5, you can use a timeout of -1:: Clock.schedule_once(my_callback, 0) # call after the next frame Clock.schedule_once(my_callback, -1) # call before the next frame The Clock will execute all the callbacks with a timeout of -1 before the next frame even if you add a new callback with -1 from a running callback. However, :class:`Clock` has an iteration limit for these callbacks: it defaults to 10. If you schedule a callback that schedules a callback that schedules a .. etc more than 10 times, it will leave the loop and send a warning to the console, then continue after the next frame. This is implemented to prevent bugs from hanging or crashing the application. If you need to increase the limit, set the :attr:`max_iteration` property:: from kivy.clock import Clock Clock.max_iteration = 20 .. _triggered-events: Triggered Events ---------------- .. versionadded:: 1.0.5 A triggered event is a way to defer a callback exactly like schedule_once(), but with some added convenience. The callback will only be scheduled once per frame even if you call the trigger twice (or more). This is not the case with :meth:`Clock.schedule_once`:: # will run the callback twice before the next frame Clock.schedule_once(my_callback) Clock.schedule_once(my_callback) # will run the callback once before the next frame t = Clock.create_trigger(my_callback) t() t() Before triggered events, you may have used this approach in a widget:: def trigger_callback(self, *largs): Clock.unschedule(self.callback) Clock.schedule_once(self.callback) As soon as you call `trigger_callback()`, it will correctly schedule the callback once in the next frame. It is more convenient to create and bind to the triggered event than using :meth:`Clock.schedule_once` in a function:: from kivy.clock import Clock from kivy.uix.widget import Widget class Sample(Widget): def __init__(self, **kwargs): self._trigger = Clock.create_trigger(self.cb) super(Sample, self).__init__(**kwargs) self.bind(x=self._trigger, y=self._trigger) def cb(self, *largs): pass Even if x and y changes within one frame, the callback is only run once. .. note:: :meth:`ClockBase.create_trigger` also has a timeout parameter that behaves exactly like :meth:`ClockBase.schedule_once`. ''' __all__ = ('Clock', 'ClockBase', 'ClockEvent', 'mainthread') from sys import platform from os import environ from kivy.context import register_context from kivy.weakmethod import WeakMethod from kivy.config import Config from kivy.logger import Logger import time try: import ctypes if platform in ('win32', 'cygwin'): # Win32 Sleep function is only 10-millisecond resolution, so # instead use a waitable timer object, which has up to # 100-nanosecond resolution (hardware and implementation # dependent, of course). _kernel32 = ctypes.windll.kernel32 class _ClockBase(object): def __init__(self): self._timer = _kernel32.CreateWaitableTimerA(None, True, None) def usleep(self, microseconds): delay = ctypes.c_longlong(int(-microseconds * 10)) _kernel32.SetWaitableTimer( self._timer, ctypes.byref(delay), 0, ctypes.c_void_p(), ctypes.c_void_p(), False) _kernel32.WaitForSingleObject(self._timer, 0xffffffff) _default_time = time.clock else: if platform == 'darwin': _libc = ctypes.CDLL('libc.dylib') else: _libc = ctypes.CDLL('libc.so') _libc.usleep.argtypes = [ctypes.c_ulong] _libc_usleep = _libc.usleep class _ClockBase(object): def usleep(self, microseconds): _libc_usleep(int(microseconds)) _default_time = time.time except (OSError, ImportError): # ImportError: ctypes is not available on python-for-android. # OSError: if the libc cannot be readed (like with buildbot: invalid ELF # header) _default_time = time.time _default_sleep = time.sleep class _ClockBase(object): def usleep(self, microseconds): _default_sleep(microseconds / 1000000.) def _hash(cb): try: return cb.__name__ except: # if a callback with partial is used... use func try: return cb.func.__name__ except: # nothing work, use default hash. return 'default' class ClockEvent(object): def __init__(self, clock, loop, callback, timeout, starttime, cid): self.clock = clock self.cid = cid self.loop = loop self.weak_callback = None self.callback = callback self.timeout = timeout self._is_triggered = False self._last_dt = starttime self._dt = 0. def __call__(self, *largs): # if the event is not yet triggered, do it ! if self._is_triggered is False: self._is_triggered = True events = self.clock._events cid = self.cid if cid not in events: events[cid] = [] events[cid].append(self) # update starttime self._last_dt = self.clock._last_tick return True def get_callback(self): callback = self.callback if callback is not None: return callback callback = self.weak_callback if callback.is_dead(): return None return callback() @property def is_triggered(self): return self._is_triggered def cancel(self): if self._is_triggered: events = self.clock._events cid = self.cid if cid in events and self in events[cid]: events[cid].remove(self) self._is_triggered = False def do(self, dt): callback = self.get_callback() if callback is None: return False callback(dt) def release(self): self.weak_callback = WeakMethod(self.callback) self.callback = None def tick(self, curtime): # timeout happened ? (check also if we would miss from 5ms) this # 5ms increase the accuracy if the timing of animation for # example. if curtime - self._last_dt < self.timeout - 0.005: return True # calculate current timediff for this event self._dt = curtime - self._last_dt self._last_dt = curtime # get the callback callback = self.get_callback() if callback is None: self._is_triggered = False return False # if it's a trigger, allow to retrigger inside the callback if not self.loop: self._is_triggered = False # call the callback ret = callback(self._dt) # if it's a once event, don't care about the result # just remove the event if not self.loop: return False # if the user returns False explicitly, # remove the event if ret is False: return False return True def __repr__(self): return '<ClockEvent callback=%r>' % self.get_callback() class ClockBase(_ClockBase): '''A clock object with event support. ''' __slots__ = ('_dt', '_last_fps_tick', '_last_tick', '_fps', '_rfps', '_start_tick', '_fps_counter', '_rfps_counter', '_events', '_frames', '_frames_displayed', '_max_fps', 'max_iteration') MIN_SLEEP = 0.005 SLEEP_UNDERSHOOT = MIN_SLEEP - 0.001 def __init__(self): super(ClockBase, self).__init__() self._dt = 0.0001 self._start_tick = self._last_tick = _default_time() self._fps = 0 self._rfps = 0 self._fps_counter = 0 self._rfps_counter = 0 self._last_fps_tick = None self._frames = 0 self._frames_displayed = 0 self._events = {} self._max_fps = float(Config.getint('graphics', 'maxfps')) #: .. versionadded:: 1.0.5 #: When a schedule_once is used with -1, you can add a limit on #: how iteration will be allowed. That is here to prevent too much #: relayout. self.max_iteration = 10 @property def frametime(self): '''Time spent between the last frame and the current frame (in seconds). .. versionadded:: 1.8.0 ''' return self._dt @property def frames(self): '''Number of internal frames (not necesseraly drawed) from the start of the clock. .. versionadded:: 1.8.0 ''' return self._frames @property def frames_displayed(self): '''Number of displayed frames from the start of the clock. ''' return self._frames_displayed def tick(self): '''Advance the clock to the next step. Must be called every frame. The default clock has a tick() function called by the core Kivy framework.''' self._release_references() if self._fps_counter % 100 == 0: self._remove_empty() # do we need to sleep ? if self._max_fps > 0: min_sleep = self.MIN_SLEEP sleep_undershoot = self.SLEEP_UNDERSHOOT fps = self._max_fps usleep = self.usleep sleeptime = 1 / fps - (_default_time() - self._last_tick) while sleeptime - sleep_undershoot > min_sleep: usleep(1000000 * (sleeptime - sleep_undershoot)) sleeptime = 1 / fps - (_default_time() - self._last_tick) # tick the current time current = _default_time() self._dt = current - self._last_tick self._frames += 1 self._fps_counter += 1 self._last_tick = current # calculate fps things if self._last_fps_tick is None: self._last_fps_tick = current elif current - self._last_fps_tick > 1: d = float(current - self._last_fps_tick) self._fps = self._fps_counter / d self._rfps = self._rfps_counter self._last_fps_tick = current self._fps_counter = 0 self._rfps_counter = 0 # process event self._process_events() return self._dt def tick_draw(self): '''Tick the drawing counter. ''' self._process_events_before_frame() self._rfps_counter += 1 self._frames_displayed += 1 def get_fps(self): '''Get the current average FPS calculated by the clock. ''' return self._fps def get_rfps(self): '''Get the current "real" FPS calculated by the clock. This counter reflects the real framerate displayed on the screen. In contrast to get_fps(), this function returns a counter of the number of frames, not the average of frames per second. ''' return self._rfps def get_time(self): '''Get the last tick made by the clock.''' return self._last_tick def get_boottime(self): '''Get the time in seconds from the application start.''' return self._last_tick - self._start_tick def create_trigger(self, callback, timeout=0): '''Create a Trigger event. Check module documentation for more information. .. versionadded:: 1.0.5 ''' cid = _hash(callback) ev = ClockEvent(self, False, callback, timeout, 0, cid) ev.release() return ev def schedule_once(self, callback, timeout=0): '''Schedule an event in <timeout> seconds. If <timeout> is unspecified or 0, the callback will be called after the next frame is rendered. .. versionchanged:: 1.0.5 If the timeout is -1, the callback will be called before the next frame (at :meth:`tick_draw`). ''' if not callable(callback): raise ValueError('callback must be a callable, got %s' % callback) cid = _hash(callback) event = ClockEvent( self, False, callback, timeout, self._last_tick, cid) events = self._events if not cid in events: events[cid] = [] events[cid].append(event) return event def schedule_interval(self, callback, timeout): '''Schedule an event to be called every <timeout> seconds.''' if not callable(callback): raise ValueError('callback must be a callable, got %s' % callback) cid = _hash(callback) event = ClockEvent( self, True, callback, timeout, self._last_tick, cid) events = self._events if not cid in events: events[cid] = [] events[cid].append(event) return event def unschedule(self, callback): '''Remove a previously scheduled event. ''' events = self._events if isinstance(callback, ClockEvent): # already done, nothing to schedule if callback.is_done: return cid = callback.cid if cid in events: for event in events[cid][:]: if event is callback: events[cid].remove(event) else: cid = _hash(callback) if cid in events: for event in events[cid][:]: if event.get_callback() == callback: events[cid].remove(event) def _release_references(self): # call that function to release all the direct reference to any # callback and replace it with a weakref events = self._events for cid in list(events.keys())[:]: [x.release() for x in events[cid] if x.callback is not None] def _remove_empty(self): # remove empty entry in the event list events = self._events for cid in list(events.keys())[:]: if not events[cid]: del events[cid] def _process_events(self): events = self._events for cid in list(events.keys())[:]: for event in events[cid][:]: if event.tick(self._last_tick) is False: # event may be already removed by the callback if event in events[cid]: events[cid].remove(event) def _process_events_before_frame(self): found = True count = self.max_iteration events = self._events while found: count -= 1 if count == -1: Logger.critical( 'Clock: Warning, too much iteration done before' ' the next frame. Check your code, or increase' ' the Clock.max_iteration attribute') break # search event that have timeout = -1 found = False for cid in list(events.keys())[:]: for event in events[cid][:]: if event.timeout != -1: continue found = True if event.tick(self._last_tick) is False: # event may be already removed by the callback if event in events[cid]: events[cid].remove(event) def mainthread(func): '''Decorator that will schedule the call of the function in the mainthread. It can be useful when you use :class:`~kivy.network.urlrequest.UrlRequest` or when you do Thread programming: you cannot do any OpenGL-related work in a thread. Please note that this method will return directly and no result can be returned:: @mainthread def callback(self, *args): print('The request succedded!' 'This callback is call in the main thread') self.req = UrlRequest(url='http://...', on_success=callback) .. versionadded:: 1.8.0 ''' def delayed_func(*args, **kwargs): def callback_func(dt): func(*args, **kwargs) Clock.schedule_once(callback_func, 0) return delayed_func if 'KIVY_DOC_INCLUDE' in environ: #: Instance of :class:`ClockBase`. Clock = None else: Clock = register_context('Clock', ClockBase)
31.909548
79
0.610184
ed0b5145ce3b1b1c4056e823032565f1afe8b0a7
6,151
py
Python
ocellaris/solver_parts/boundary_conditions/neumann.py
TormodLandet/Ocellaris
6b4b2515fb881b1ed8d8fd8d8c23a8e1990ada58
[ "Apache-2.0" ]
1
2017-11-07T12:19:44.000Z
2017-11-07T12:19:44.000Z
ocellaris/solver_parts/boundary_conditions/neumann.py
TormodLandet/Ocellaris
6b4b2515fb881b1ed8d8fd8d8c23a8e1990ada58
[ "Apache-2.0" ]
null
null
null
ocellaris/solver_parts/boundary_conditions/neumann.py
TormodLandet/Ocellaris
6b4b2515fb881b1ed8d8fd8d8c23a8e1990ada58
[ "Apache-2.0" ]
2
2018-05-02T17:17:01.000Z
2019-03-11T13:09:40.000Z
# Copyright (C) 2015-2019 Tormod Landet # SPDX-License-Identifier: Apache-2.0 import dolfin from . import register_boundary_condition, BoundaryConditionCreator from ocellaris.utils import CodedExpression, OcellarisCppExpression DEFAULT_ENFORCE_ZERO_FLUX = False class OcellarisNeumannBC(object): def __init__( self, simulation, value, subdomain_id, enforce_zero_flux=DEFAULT_ENFORCE_ZERO_FLUX ): """ A simple storage class for Neumann boundary conditions """ self.simulation = simulation self._value = value self.subdomain_id = subdomain_id self.enforce_zero_flux = enforce_zero_flux def func(self): """ The boundary value derivative function """ return self._value def ds(self): """ Returns the ds measure of the subdomain """ return self.simulation.data['ds'](self.subdomain_id) def __repr__(self): return '<OcellarisNeumannBC on subdomain %d>' % self.subdomain_id @register_boundary_condition('ConstantGradient') class NeumannBoundary(BoundaryConditionCreator): description = 'A prescribed constant value Neumann condition' def __init__(self, simulation, var_name, inp_dict, subdomains, subdomain_id): """ Neumann condition """ self.simulation = simulation value = inp_dict.get_value('value', required_type='any') enforce_zero_flux = inp_dict.get_value( 'enforce_zero_flux', DEFAULT_ENFORCE_ZERO_FLUX, 'bool' ) if isinstance(value, list): assert len(value) == simulation.ndim for d in range(simulation.ndim): name = '%s%d' % (var_name, d) self.register_neumann_condition(name, value[d], subdomain_id) else: self.register_neumann_condition(var_name, value, subdomain_id, enforce_zero_flux) def register_neumann_condition(self, var_name, value, subdomain_id, enforce_zero_flux): """ Add a Neumann condition to this variable """ assert isinstance(value, (float, int)) df_value = dolfin.Constant(value) # Store the boundary condition for use in the solver bc = OcellarisNeumannBC(self.simulation, df_value, subdomain_id, enforce_zero_flux) bcs = self.simulation.data['neumann_bcs'] bcs.setdefault(var_name, []).append(bc) self.simulation.log.info(' ConstantGradient %r for %s' % (value, var_name)) @register_boundary_condition('CodedGradient') class CodedNeumannBoundary(BoundaryConditionCreator): description = 'A coded Neumann condition' def __init__(self, simulation, var_name, inp_dict, subdomains, subdomain_id): """ Neumann condition with coded value """ self.simulation = simulation # Make a dolfin Expression object that runs the code string code = inp_dict.get_value('code', required_type='any') enforce_zero_flux = inp_dict.get_value( 'enforce_zero_flux', DEFAULT_ENFORCE_ZERO_FLUX, 'bool' ) if isinstance(code, list): assert len(code) == simulation.ndim for d in range(simulation.ndim): name = '%s%d' % (var_name, d) description = 'coded gradient boundary condition for %s' % name sub_code = inp_dict.get_value('code/%d' % d, required_type='string') expr = CodedExpression(simulation, sub_code, description) self.register_neumann_condition( name, expr, subdomains, subdomain_id, enforce_zero_flux ) else: description = 'coded gradient boundary condition for %s' % var_name expr = CodedExpression(simulation, code, description) self.register_neumann_condition( var_name, expr, subdomains, subdomain_id, enforce_zero_flux ) def register_neumann_condition( self, var_name, expr, subdomains, subdomain_id, enforce_zero_flux ): """ Store the boundary condition for use in the solver """ bc = OcellarisNeumannBC(self.simulation, expr, subdomain_id, enforce_zero_flux) bcs = self.simulation.data['neumann_bcs'] bcs.setdefault(var_name, []).append(bc) self.simulation.log.info(' Coded gradient for %s' % var_name) @register_boundary_condition('CppCodedGradient') class CppCodedNeumannBoundary(BoundaryConditionCreator): description = 'A C++ coded Neumann boundary condition' def __init__(self, simulation, var_name, inp_dict, subdomains, subdomain_id): """ C++ coded Neumann condition """ self.simulation = simulation self.func_space = simulation.data['V%s' % var_name] cpp_code = inp_dict.get_value('cpp_code', required_type='any') enforce_zero_flux = inp_dict.get_value( 'enforce_zero_flux', DEFAULT_ENFORCE_ZERO_FLUX, 'bool' ) if isinstance(cpp_code, list): assert len(cpp_code) == simulation.ndim for d in range(simulation.ndim): name = '%s%d' % (var_name, d) sub_code = inp_dict.get_value('cpp_code/%d' % d, required_type='string') self.register_neumann_condition(name, sub_code, subdomain_id, enforce_zero_flux) else: self.register_neumann_condition(var_name, cpp_code, subdomain_id, enforce_zero_flux) def register_neumann_condition(self, var_name, cpp_code, subdomain_id, enforce_zero_flux): """ Add a C++ coded Neumann condition to this variable """ description = 'boundary condititon for %s' % var_name P = self.func_space.ufl_element().degree() expr = OcellarisCppExpression(self.simulation, cpp_code, description, P, update=True) bc = OcellarisNeumannBC(self.simulation, expr, subdomain_id, enforce_zero_flux) bcs = self.simulation.data['neumann_bcs'] bcs.setdefault(var_name, []).append(bc) self.simulation.log.info(' C++ coded gradient for %s' % var_name)
39.178344
96
0.654203
cb6faaf5785cc042e204cb50723f7b675fc18e21
4,785
py
Python
tools/j2objc/j2objc_header_map.py
Dyryamo/bazel
c60eb5d324da4d81f6be93f442ac6d7576741e8e
[ "Apache-2.0" ]
null
null
null
tools/j2objc/j2objc_header_map.py
Dyryamo/bazel
c60eb5d324da4d81f6be93f442ac6d7576741e8e
[ "Apache-2.0" ]
3
2017-07-10T13:18:04.000Z
2018-08-30T19:29:46.000Z
tools/j2objc/j2objc_header_map.py
Dyryamo/bazel
c60eb5d324da4d81f6be93f442ac6d7576741e8e
[ "Apache-2.0" ]
1
2022-01-12T18:08:14.000Z
2022-01-12T18:08:14.000Z
#!/usr/bin/python2.7 # Copyright 2017 The Bazel Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A script to generate Java class to ObjC header mapping for J2ObjC. This script generates a text file containing mapping between top-level Java classes to associated ObjC headers, generated by J2ObjC. The mapping file is used by dependent J2ObjC transpilation actions to locate the correct header import paths for dependent Java classes. Inside the script, we read the Java source files and source jars of a single Java rule, and parse out the package names from the package statements, using regular expression matching. Note that we cannot guarantee 100% correctness by using just regular expression, but it should be good enough. This allows us to avoid doing any further complex parsing of the source files and keep the script light-weight without other dependencies. In the future, we can consider implementing a simple Java lexer here that correctly parses the package statements out of Java files. """ import argparse import os import re import zipfile _PACKAGE_RE = re.compile(r'(package)\s+([\w\.]+);') def _get_file_map_entry(java_file_path, java_file): """Returns the top-level Java class and header file path tuple. Args: java_file_path: The file path of the source Java file. java_file: The actual file of the source java file. Returns: A tuple containing top-level Java class and associated header file path. Or None if no package statement exists in the source file. """ for line in java_file: stripped_line = line.strip() package_statement = _PACKAGE_RE.search(stripped_line) # We identified a potential package statement. if package_statement: preceding_characters = stripped_line[0:package_statement.start(1)] # We have preceding characters before the package statement. We need to # look further into them. if preceding_characters: # Skip comment line. if preceding_characters.startswith('//'): continue # Preceding characters also must end with a space, represent an end # of comment, or end of a statement. # Otherwise, we skip the current line. if not (preceding_characters[len(preceding_characters) - 1].isspace() or preceding_characters.endswith(';') or preceding_characters.endswith('*/')): continue package_name = package_statement.group(2) class_name = os.path.splitext(os.path.basename(java_file_path))[0] header_file = os.path.splitext(java_file_path)[0] + '.h' return (package_name + '.' + class_name, header_file) return None def main(): parser = argparse.ArgumentParser(fromfile_prefix_chars='@') parser.add_argument( '--source_files', required=False, help='The source files') parser.add_argument( '--source_jars', required=False, help='The source jars.') parser.add_argument( '--output_mapping_file', required=False, help='The output mapping file') args, _ = parser.parse_known_args() class_to_header_map = dict() # Process the source files. if args.source_files: source_files = args.source_files.split(',') for source_file in source_files: with open(source_file, 'r') as f: entry = _get_file_map_entry(source_file, f) if entry: class_to_header_map[entry[0]] = entry[1] # Process the source jars. if args.source_jars: source_jars = args.source_jars.split(',') for source_jar in source_jars: with zipfile.ZipFile(source_jar, 'r') as jar: for jar_entry in jar.namelist(): if jar_entry.endswith('.java'): with jar.open(jar_entry) as jar_entry_file: entry = _get_file_map_entry(jar_entry, jar_entry_file) if entry: class_to_header_map[entry[0]] = entry[1] # Generate the output header mapping file. if args.output_mapping_file: with open(args.output_mapping_file, 'w') as output_mapping_file: for class_name in sorted(class_to_header_map): header_path = class_to_header_map[class_name] output_mapping_file.write(class_name + '=' + header_path + '\n') if __name__ == '__main__': main()
36.807692
80
0.712226
066b46d94e4cf92724f0a51ad876ed84f6d0cbe2
176
py
Python
Exercicio_12.py
Matheus2037/Exercicio_LP_1B
7fab8246e999d7dde0ddb96f2a4ca45216c229d0
[ "MIT" ]
null
null
null
Exercicio_12.py
Matheus2037/Exercicio_LP_1B
7fab8246e999d7dde0ddb96f2a4ca45216c229d0
[ "MIT" ]
null
null
null
Exercicio_12.py
Matheus2037/Exercicio_LP_1B
7fab8246e999d7dde0ddb96f2a4ca45216c229d0
[ "MIT" ]
null
null
null
salario = float(input("Digite o seu salário: ")) nsalario = (salario * 1.15) print("O seu salario antigo era de {}, após o aumento será de {:.2f}" .format(salario, nsalario))
35.2
97
0.681818
fbb68af7bb9122ad2f7f51ff0b09e6093590353d
36
py
Python
venv/Lib/site-packages/PyQt4Enhanced/__init__.py
TEDxVienna/continuum
85cefbc274fc59e2059c313bc0d3b9b93a34ba6d
[ "MIT" ]
null
null
null
venv/Lib/site-packages/PyQt4Enhanced/__init__.py
TEDxVienna/continuum
85cefbc274fc59e2059c313bc0d3b9b93a34ba6d
[ "MIT" ]
null
null
null
venv/Lib/site-packages/PyQt4Enhanced/__init__.py
TEDxVienna/continuum
85cefbc274fc59e2059c313bc0d3b9b93a34ba6d
[ "MIT" ]
null
null
null
from .main import QEMatplotlibWidget
36
36
0.888889
682fe23c493bdf681d92d2b130c8c9057915bd85
379
py
Python
hatter_orm/config.py
ndrwpvlv/hatter_orm
b358c8858a93eaf60b41e8b81940b6348d78bf68
[ "MIT" ]
2
2020-01-08T13:03:26.000Z
2021-07-15T12:33:45.000Z
hatter_orm/config.py
ndrwpvlv/hatter_orm
b358c8858a93eaf60b41e8b81940b6348d78bf68
[ "MIT" ]
null
null
null
hatter_orm/config.py
ndrwpvlv/hatter_orm
b358c8858a93eaf60b41e8b81940b6348d78bf68
[ "MIT" ]
null
null
null
import sys class Config: PYTHON_MAJOR_VERSION = sys.version_info[0] PYTHON_MINOR_VERSION = sys.version_info[1] SQL_RESPONSE_LIMIT = 1844674407370955161 PRAGMA_SCRIPT = { 'foreign_key': 'PRAGMA foreign_keys = "1";\n', 'auto_vacuum': 'PRAGMA auto_vacuum = 0;', } JOIN_TYPES = ['LEFT', 'INNER', 'RIGHT', 'FULL', ] DEFAULT_JOIN = 'LEFT'
27.071429
54
0.649077
f8376dc891d30308ea62637ba33cdbb54ce84f2e
297
py
Python
Interview Based/Leader_in_array.py
nane121/HacktoberFest2020
29eb99754ee93f643d4b0bd7e18570079e718d59
[ "MIT" ]
25
2020-10-01T05:44:04.000Z
2020-10-30T17:30:26.000Z
Interview Based/Leader_in_array.py
nane121/HacktoberFest2020
29eb99754ee93f643d4b0bd7e18570079e718d59
[ "MIT" ]
14
2020-10-01T09:32:47.000Z
2020-11-05T16:17:12.000Z
Interview Based/Leader_in_array.py
nane121/HacktoberFest2020
29eb99754ee93f643d4b0bd7e18570079e718d59
[ "MIT" ]
143
2020-10-01T05:47:04.000Z
2021-10-03T04:25:42.000Z
# -*- coding: utf-8 -*- #7 #63 70 80 33 33 47 20 # #Its Correct output is: #80 47 20 # #And Your Code's output is: #70 80 47 20 N=int(input()) l=[] A=[] for i in range(0,N): l.append((input())) for i in range(0,N-1): if(l[i]<l[i+1]): A.append(l[i+1]) A.append(l[N-1]) print(A)
11
27
0.538721
095bdc779f385acbc4c0731cfd0a357c6253a003
6,351
py
Python
trio/_path.py
guilledk/trio
d09c21df3ffe401ee4314d869d82a886bd776e3c
[ "Apache-2.0", "MIT" ]
null
null
null
trio/_path.py
guilledk/trio
d09c21df3ffe401ee4314d869d82a886bd776e3c
[ "Apache-2.0", "MIT" ]
null
null
null
trio/_path.py
guilledk/trio
d09c21df3ffe401ee4314d869d82a886bd776e3c
[ "Apache-2.0", "MIT" ]
null
null
null
from functools import wraps, partial import os import types import pathlib import trio from trio._util import async_wraps, SubclassingDeprecatedIn_v0_15_0 # re-wrap return value from methods that return new instances of pathlib.Path def rewrap_path(value): if isinstance(value, pathlib.Path): value = Path(value) return value def _forward_factory(cls, attr_name, attr): @wraps(attr) def wrapper(self, *args, **kwargs): attr = getattr(self._wrapped, attr_name) value = attr(*args, **kwargs) return rewrap_path(value) return wrapper def _forward_magic(cls, attr): sentinel = object() @wraps(attr) def wrapper(self, other=sentinel): if other is sentinel: return attr(self._wrapped) if isinstance(other, cls): other = other._wrapped value = attr(self._wrapped, other) return rewrap_path(value) return wrapper def iter_wrapper_factory(cls, meth_name): @async_wraps(cls, cls._wraps, meth_name) async def wrapper(self, *args, **kwargs): meth = getattr(self._wrapped, meth_name) func = partial(meth, *args, **kwargs) # Make sure that the full iteration is performed in the thread # by converting the generator produced by pathlib into a list items = await trio.to_thread.run_sync(lambda: list(func())) return (rewrap_path(item) for item in items) return wrapper def thread_wrapper_factory(cls, meth_name): @async_wraps(cls, cls._wraps, meth_name) async def wrapper(self, *args, **kwargs): meth = getattr(self._wrapped, meth_name) func = partial(meth, *args, **kwargs) value = await trio.to_thread.run_sync(func) return rewrap_path(value) return wrapper def classmethod_wrapper_factory(cls, meth_name): @classmethod @async_wraps(cls, cls._wraps, meth_name) async def wrapper(cls, *args, **kwargs): meth = getattr(cls._wraps, meth_name) func = partial(meth, *args, **kwargs) value = await trio.to_thread.run_sync(func) return rewrap_path(value) return wrapper class AsyncAutoWrapperType(SubclassingDeprecatedIn_v0_15_0): def __init__(cls, name, bases, attrs): super().__init__(name, bases, attrs) cls._forward = [] type(cls).generate_forwards(cls, attrs) type(cls).generate_wraps(cls, attrs) type(cls).generate_magic(cls, attrs) type(cls).generate_iter(cls, attrs) def generate_forwards(cls, attrs): # forward functions of _forwards for attr_name, attr in cls._forwards.__dict__.items(): if attr_name.startswith("_") or attr_name in attrs: continue if isinstance(attr, property): cls._forward.append(attr_name) elif isinstance(attr, types.FunctionType): wrapper = _forward_factory(cls, attr_name, attr) setattr(cls, attr_name, wrapper) else: raise TypeError(attr_name, type(attr)) def generate_wraps(cls, attrs): # generate wrappers for functions of _wraps for attr_name, attr in cls._wraps.__dict__.items(): # .z. exclude cls._wrap_iter if attr_name.startswith("_") or attr_name in attrs: continue if isinstance(attr, classmethod): wrapper = classmethod_wrapper_factory(cls, attr_name) setattr(cls, attr_name, wrapper) elif isinstance(attr, types.FunctionType): wrapper = thread_wrapper_factory(cls, attr_name) setattr(cls, attr_name, wrapper) else: raise TypeError(attr_name, type(attr)) def generate_magic(cls, attrs): # generate wrappers for magic for attr_name in cls._forward_magic: attr = getattr(cls._forwards, attr_name) wrapper = _forward_magic(cls, attr) setattr(cls, attr_name, wrapper) def generate_iter(cls, attrs): # generate wrappers for methods that return iterators for attr_name, attr in cls._wraps.__dict__.items(): if attr_name in cls._wrap_iter: wrapper = iter_wrapper_factory(cls, attr_name) setattr(cls, attr_name, wrapper) class Path(metaclass=AsyncAutoWrapperType): """A :class:`pathlib.Path` wrapper that executes blocking methods in :meth:`trio.to_thread.run_sync`. """ _wraps = pathlib.Path _forwards = pathlib.PurePath _forward_magic = [ "__str__", "__bytes__", "__truediv__", "__rtruediv__", "__eq__", "__lt__", "__le__", "__gt__", "__ge__", "__hash__", ] _wrap_iter = ["glob", "rglob", "iterdir"] def __init__(self, *args): self._wrapped = pathlib.Path(*args) def __getattr__(self, name): if name in self._forward: value = getattr(self._wrapped, name) return rewrap_path(value) raise AttributeError(name) def __dir__(self): return super().__dir__() + self._forward def __repr__(self): return "trio.Path({})".format(repr(str(self))) def __fspath__(self): return os.fspath(self._wrapped) @wraps(pathlib.Path.open) async def open(self, *args, **kwargs): """Open the file pointed to by the path, like the :func:`trio.open_file` function does. """ func = partial(self._wrapped.open, *args, **kwargs) value = await trio.to_thread.run_sync(func) return trio.wrap_file(value) Path.iterdir.__doc__ = """ Like :meth:`pathlib.Path.iterdir`, but async. This is an async method that returns a synchronous iterator, so you use it like:: for subpath in await mypath.iterdir(): ... Note that it actually loads the whole directory list into memory immediately, during the initial call. (See `issue #501 <https://github.com/python-trio/trio/issues/501>`__ for discussion.) """ # The value of Path.absolute.__doc__ makes a reference to # :meth:~pathlib.Path.absolute, which does not exist. Removing this makes more # sense than inventing our own special docstring for this. del Path.absolute.__doc__ os.PathLike.register(Path)
30.980488
80
0.638167
3e8caec344f79e03010c4a44621e89341ecbeb97
3,750
py
Python
src/model/MIM/MIM.py
dreaming-coder/DeepLab
3020544e2f9e139dde7bd04f6ff59e6f44d49c6e
[ "Apache-2.0" ]
3
2021-05-31T09:25:59.000Z
2022-03-10T08:09:51.000Z
src/model/MIM/MIM.py
dreaming-coder/DeepLab
3020544e2f9e139dde7bd04f6ff59e6f44d49c6e
[ "Apache-2.0" ]
1
2021-09-26T16:37:39.000Z
2021-09-28T00:43:05.000Z
src/model/MIM/MIM.py
dreaming-coder/DeepLab
3020544e2f9e139dde7bd04f6ff59e6f44d49c6e
[ "Apache-2.0" ]
null
null
null
r""" Memory In Memory 的实现,出自论文《Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spatiotemporal Dynamics》 """ from typing import List from torch import nn, Tensor import torch from MIMBlock import MIMBlock from SpatiotemporalLSTM import SpatiotemporalLSTM __all__ = ["MIM"] class MIM(nn.Module): def __init__(self, in_channels: int, hidden_channels_list: List[int], kernel_size_list: List[int], forget_bias: float = 0.01): r""" :param in_channels: 输入通道数 :param hidden_channels_list: 每一堆叠层的隐藏层通道数 :param kernel_size_list: 每一堆叠层的卷积核尺寸 :param forget_bias: 偏移量 """ super().__init__() self.in_channels = in_channels self.hidden_channels_list = hidden_channels_list self.layers = len(hidden_channels_list) cell_list = nn.ModuleList([]) cell_list.append( SpatiotemporalLSTM( in_channels=in_channels, hidden_channels=hidden_channels_list[0], kernel_size=kernel_size_list[0], forget_bias=forget_bias ) ) for i in range(1, self.layers): cell_list.append( MIMBlock( in_channels=hidden_channels_list[i - 1], hidden_channels=hidden_channels_list[i], kernel_size=kernel_size_list[i], forget_bias=forget_bias ) ) self.cell_list = cell_list self.conv_last = nn.Conv2d( in_channels=hidden_channels_list[-1], out_channels=in_channels, kernel_size=1, stride=1, padding=0, bias=False ) # noinspection PyUnboundLocalVariable def forward(self, inputs: Tensor, out_len: int = 10) -> Tensor: device = inputs.device batch, sequence, _, height, width = inputs.shape h = [] h_ = [] c = [] # n和s第二层开始才有,故列表第一个元素置为None n = [] s = [] pred = [] # 初始化最开始的隐藏状态 for i in range(self.layers): zero_tensor_h = torch.zeros(batch, self.hidden_channels_list[i], height, width).to(device) zero_tensor_c = torch.zeros(batch, self.hidden_channels_list[i], height, width).to(device) zero_tensor_h_ = torch.zeros(batch, self.hidden_channels_list[i], height, width).to(device) h.append(zero_tensor_h) c.append(zero_tensor_c) h_.append(zero_tensor_h_) if i > 0: zero_tensor_n = torch.zeros(batch, self.hidden_channels_list[i], height, width).to(device) zero_tensor_s = torch.zeros(batch, self.hidden_channels_list[i], height, width).to(device) n.append(zero_tensor_n) s.append(zero_tensor_s) else: n.append(None) s.append(None) m = torch.zeros(batch, self.hidden_channels_list[0], height, width).to(device) for seq in range(sequence + out_len): if seq < sequence: x = inputs[:, seq] else: x = x_pred h[0], c[0], m = self.cell_list[0](x, h[0], c[0], m) h_[0] = h[0] for i in range(1, self.layers): c[i], h[i], m, n[i], s[i] = self.cell_list[i](h_[i - 1], h[i - 1], c[i], h[i], m, n[i], s[i]) h_[i] = h[i] x_pred = self.conv_last(h[self.layers - 1]) if seq >= sequence: pred.append(x_pred) # [length, batch, channel, height, width] -> [batch, length, channel, height, width] prediction = torch.stack(pred, dim=0).permute(1, 0, 2, 3, 4) return prediction
34.40367
109
0.5712
7ca64f8bd25f6eee29ceb284774bae2e59c2abd2
1,225
py
Python
ciphey/basemods/Resources/cipheydists.py
blackcat-917/Ciphey
d24deea87cec2dea2e04ec3859b9e77e121d192a
[ "MIT" ]
1
2021-11-28T17:55:04.000Z
2021-11-28T17:55:04.000Z
ciphey/basemods/Resources/cipheydists.py
ScarlettHoefler/Ciphey
f7d21ce0993eeff0b53cec8717dfbd8f8419f8f5
[ "MIT" ]
10
2021-06-14T08:22:45.000Z
2022-03-18T04:17:05.000Z
ciphey/basemods/Resources/cipheydists.py
ScarlettHoefler/Ciphey
f7d21ce0993eeff0b53cec8717dfbd8f8419f8f5
[ "MIT" ]
1
2020-10-05T17:35:00.000Z
2020-10-05T17:35:00.000Z
from functools import lru_cache from typing import Any, Dict, Optional, Set import cipheydists import loguru from ciphey.iface import ( Config, Distribution, ParamSpec, ResourceLoader, Translation, WordList, registry, ) @registry.register_multi(WordList, Distribution, Translation) class CipheyDists(ResourceLoader): # _wordlists: Set[str] = frozenset({"english", "english1000", "englishStopWords"}) # _brandons: Set[str] = frozenset({"english"}) # _dists: Set[str] = frozenset({"twist"}) # _translates: Set[str] = frozenset({"morse"}) _getters = { "list": cipheydists.get_list, "dist": cipheydists.get_dist, "brandon": cipheydists.get_brandon, "translate": cipheydists.get_translate, } def whatResources(self) -> Optional[Set[str]]: pass @lru_cache() def getResource(self, name: str) -> Any: loguru.logger.trace(f"Loading cipheydists resource {name}") prefix, name = name.split("::", 1) return self._getters[prefix](name) def __init__(self, config: Config): super().__init__(config) @staticmethod def getParams() -> Optional[Dict[str, ParamSpec]]: return None
26.630435
86
0.653878
e53c69c4c869faf44d91c6dda380d2c56fcd4237
11,367
py
Python
familydoctor/DUrlConsumer.py
i2it/XYWYCrawler
01d848f77690bfafff1fdc28efb09b6c0e9e11bc
[ "MIT" ]
1
2020-04-11T04:20:33.000Z
2020-04-11T04:20:33.000Z
familydoctor/DUrlConsumer.py
i2it/XYWYCrawler
01d848f77690bfafff1fdc28efb09b6c0e9e11bc
[ "MIT" ]
null
null
null
familydoctor/DUrlConsumer.py
i2it/XYWYCrawler
01d848f77690bfafff1fdc28efb09b6c0e9e11bc
[ "MIT" ]
1
2020-04-11T03:55:01.000Z
2020-04-11T03:55:01.000Z
#! /usr/bin/python import traceback from datetime import datetime import gevent from gevent import monkey from common.DBHandler import MySQL from common.DBHandler import Redis from common.IOHandler import FileIO from common.IOHandler import NetworkIO monkey.patch_all() def getAllInfo(dbkey): urlPool = Redis().listUrls(dbkey, 1) # urlPool = ['http://club.xywy.com/familyDoctor/pay/86054846', 'http://club.xywy.com/familyDoctor/pay/43983196', # 'http://club.xywy.com/familyDoctor/pay/28476935'] while 1: if len(urlPool) > 0: for url in urlPool: getInfo(url) getInfo2(url + '?info=1&page=1#name2') getInfo3(url + '?info=1&page=1#name2') getInfo4(url + '?info=2&page=1#name3') urlPool = Redis().listUrls(dbkey, 1) else: break def getInfo(url): # http://club.xywy.com/familyDoctor/pay/43983196 对应的页面信息 try: html = NetworkIO().requestHtml(url) if html is not None: # 医生姓名 doctorName = html.findtext('.//i[@class="fwei fl"]') doctorName = doctorName[:-6] if doctorName is not None and len(doctorName) > 6 else None # 医生职称和医院科室 doctorRankAndHosp = html.find('.//div[@class=" lh200 pt10 f14"]') doctorRank = doctorRankAndHosp.text doctorHosp = doctorRankAndHosp.find('./br') # 获取医生的勋章 medalsBlock = html.findall('.//div[@class="HomePth"]/span') medals = '' for medal in medalsBlock: medals += medal.get('data-th') + ',' # 医生的寄语 sendWord = html.find('.//div[@class="f12 graydeep club_home_icon HomePj"]/span').tail # 医生的服务类型 serviceTypeBlock = {0: html.find('.//div[@class="fl pr"]'), 1: None} if serviceTypeBlock[0] is None: serviceTypeBlock[1] = html.find('.//div[@class="fl f14"]') serviceTypes = {0: '', 1: ''} oldServiceTypes = {0: '', 1: ''} if serviceTypeBlock[0] is not None: serviceTypeBlock2 = serviceTypeBlock[0].findall('.//a[@cate]') for index, item in enumerate(serviceTypeBlock2): for text in item.itertext(): serviceTypes[index] += text.strip() elif serviceTypeBlock[1] is not None: # 各服务原始价格 serviceTypeBlock2 = serviceTypeBlock[1].findall('.//a[@cate]') for index, item in enumerate(serviceTypeBlock2): for text in item.itertext(): serviceTypes[index] += text.strip() serviceTypeBlock2 = serviceTypeBlock[1].findall('.//span[@class="f14 col99 ml10"]') for index, item in enumerate(serviceTypeBlock2): for text in item.itertext(): oldServiceTypes[index] += text.strip() # 用户评分(放到用户评价界面抓取) # evaluateScore = html.findtext('.//span[@class="fl colClass01 fwei"]') # 签约家庭和帮助用户 helpedInfo = {0: None, 1: None} helpedInfoBlock = html.findall('.//span[@class="fb f16 ml5"]') for index, item in enumerate(helpedInfoBlock): helpedInfo[index] = item.text # 擅长、简介以及荣誉 infos = {0: '', 1: '', 2: ''} infoBlock = html.findall('.//div[@class="HomeJie f14 fwei pt20"]') for item in infoBlock: tmp = item.findtext('./h4') textblock = item.find('./div') tmptext = '' for text in textblock.itertext(): tmptext += text.strip() if '擅长' in tmp: infos[0] = tmptext elif '简介' in tmp: infos[1] = tmptext elif '荣誉' in tmp: infos[2] = tmptext dbInfo = (url, doctorName, doctorRank, doctorHosp.tail, medals, sendWord, serviceTypes[0], serviceTypes[1], oldServiceTypes[0], oldServiceTypes[1], helpedInfo[0], helpedInfo[1], infos[0], infos[1], infos[2]) MySQL().saveDoctorInfo(dbInfo) except: doExpt('url1', url, 'url1') def getInfo2(url): # http://club.xywy.com/familyDoctor/pay/43983196?info=1&page=2#name2 对应页面总的用户评价相关信息 try: html = NetworkIO().requestHtml(url) if html is not None: evaluateScore = html.findtext('.//h4[@class="f30 colClass01 fWei tc"]').strip() evaluateStat = {0: 0, 1: 0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0, 7: 0} evaluateStatBlock = html.findall('.//div[@class="HomSptop_Ri fWei f14 mt20 fl"]/span') for index, item in enumerate(evaluateStatBlock): tmptext = item.text evaluateStat[index] = 0 if len(tmptext) == 0 else int(tmptext[tmptext.find('(') + 1:tmptext.find(')')]) dbInfo = (url, evaluateScore, evaluateStat[0], evaluateStat[1], evaluateStat[2], evaluateStat[3], evaluateStat[4], evaluateStat[5], evaluateStat[6], evaluateStat[7]) MySQL().saveDoctorEvaluation(dbInfo) except: doExpt('url2', url, 'url2') def getInfo3(url): # http://club.xywy.com/familyDoctor/pay/43983196?info=1&page=2#name2 对应的用户评价具体内容 try: # 当第一次访问页面时,除了获取评论信息,也要获取全部的评论页的总数 html = NetworkIO().requestHtml(url) if html is not None: evaluateBlock = html.findall('.//div[@class="User_eval lh180 btn-a f14 fwei mt10"]') for index, block in enumerate(evaluateBlock): uName = block.findtext('.//span[@class="mr10 fl"]').strip() evalAtti = block.findtext('.//span[@class="fl colbd mr10"]').strip() evalScore = block.findtext('.//span[@class="colClass01 fl"]').strip() evalText = block.findtext('.//div[@class="pt5"]').strip() evalTime = block.findtext('.//span[@class="colbd f12 db pt10"]').strip() dbInfo = (url + '#' + str(index), uName, evalAtti, evalScore, evalText, datetime.strptime(evalTime, '%Y-%m-%d %H:%M:%S')) MySQL().saveDoctorEvaluationText(dbInfo) # 评价共有多少页 totalPageInfo = html.find('.//div[@class="mt20 HomeFen f14"]/span[@class="mr5"]') totalPageInfo = 1 if totalPageInfo is None else totalPageInfo.text.strip()[1:-3] # 目前评价页的索引值 tmpIndex = url.find('page=') + 5 currentPageIndex = url[tmpIndex:-6] # 获取当前页以后的评论页的评论信息 if int(currentPageIndex) < int(totalPageInfo): for pageIndex in range(int(currentPageIndex) + 1, int(totalPageInfo) + 1): url = url[:int(tmpIndex)] + str(pageIndex) + '#name2' html = NetworkIO().requestHtml(url) if html is not None: evaluateBlock = html.findall('.//div[@class="User_eval lh180 btn-a f14 fwei mt10"]') for index, block in enumerate(evaluateBlock): uName = block.findtext('.//span[@class="mr10 fl"]').strip() evalAtti = block.findtext('.//span[@class="fl colbd mr10"]').strip() evalScore = block.findtext('.//span[@class="colClass01 fl"]').strip() evalText = block.findtext('.//div[@class="pt5"]').strip() evalTime = block.findtext('.//span[@class="colbd f12 db pt10"]').strip() dbInfo = (url + '#' + str(index), uName, evalAtti, evalScore, evalText, datetime.strptime(evalTime, '%Y-%m-%d %H:%M:%S')) MySQL().saveDoctorEvaluationText(dbInfo) except: doExpt('url3', url, 'url3') def getInfo4(url): # http://club.xywy.com/familyDoctor/pay/43983196?info=2&page=2#name3 对应的服务购买信息 try: html = NetworkIO().requestHtml(url) if html is not None: serviceBuyBlock = html.findall('.//div[@class="HomBone fwei f14"]') for index, block in enumerate(serviceBuyBlock): uName = block.findtext('.//span[@class="w100"]').strip() serviceType = 1 if '包月' in block.findtext('.//span[@class="w200 tl"]').strip() else 0 serviceCount = block.findtext('.//span[@class="w60 tc"]').strip() servicePrice = block.findtext('.//span[@class="colClass01 fb w80 tc"]').strip() serviceStatus = block.findtext('.//span[@class="club_home_icon HomBsuc"]').strip() serviceTime = block.findtext('.//span[@class="col99 ml20 tc"]').strip() dbInfo = (url + '#' + str(index), uName, serviceType, serviceCount, servicePrice, serviceStatus, serviceTime) MySQL().saveServiceInfo(dbInfo) # 评价共有多少页 totalPageInfo = html.find('.//div[@class="mt20 HomeFen f14"]/span[@class="mr5"]') totalPageInfo = 1 if totalPageInfo is None else totalPageInfo.text.strip()[1:-3] # 目前评价页的索引值 tmpIndex = url.find('page=') + 5 currentPageIndex = url[tmpIndex:-6] # 获取当前页以后的评论页的评论信息 if int(currentPageIndex) < int(totalPageInfo): for pageIndex in range(int(currentPageIndex) + 1, int(totalPageInfo) + 1): url = url[:int(tmpIndex)] + str(pageIndex) + '#name3' html = NetworkIO().requestHtml(url) if html is not None: serviceBuyBlock = html.findall('.//div[@class="HomBone fwei f14"]') for index, block in enumerate(serviceBuyBlock): uName = block.findtext('.//span[@class="w100"]').strip() serviceType = 1 if '包月' in block.findtext('.//span[@class="w200 tl"]').strip() else 0 serviceCount = block.findtext('.//span[@class="w60 tc"]').strip() servicePrice = block.findtext('.//span[@class="colClass01 fb w80 tc"]').strip() serviceStatus = block.findtext('.//span[@class="club_home_icon HomBsuc"]').strip() serviceTime = block.findtext('.//span[@class="col99 ml20 tc"]').strip() dbInfo = (url + '#' + str(index), uName, serviceType, serviceCount, servicePrice, serviceStatus, serviceTime) MySQL().saveServiceInfo(dbInfo) except: doExpt('url4', url, 'url4') def doExpt(key, url, logIdentifier): Redis().saveUrl(key, url) FileIO.handleExpt(traceback.format_exc(), url, logIdentifier) if __name__ == '__main__': dbkey = input('请输入医生url列表名称:') # threadList = [] # for i in range(5): # tmpThread = threading.Thread(target=getQPageInfo, args=(tmpYear, None if tmpPwd == '' else tmpPwd)) # threadList.append(tmpThread) # for tmpThread in threadList: # tmpThread.start() # for tmpThread in threadList: # tmpThread.join() jobs = [] for i in range(5): jobs.append(gevent.spawn(getAllInfo, dbkey.strip())) gevent.joinall(jobs)
50.52
119
0.544295
5960088035b5df4aefdc1abf2b6dd9894a0c53be
5,978
py
Python
estimators.py
RakitinDen/pytorch-recursive-gumbel-max-trick
44f9854020e727946a074a6e53b20dd593f96cc1
[ "Apache-2.0" ]
20
2021-12-03T13:20:17.000Z
2022-03-20T18:58:06.000Z
estimators.py
RakitinDen/pytorch-recursive-gumbel-max-trick
44f9854020e727946a074a6e53b20dd593f96cc1
[ "Apache-2.0" ]
null
null
null
estimators.py
RakitinDen/pytorch-recursive-gumbel-max-trick
44f9854020e727946a074a6e53b20dd593f96cc1
[ "Apache-2.0" ]
null
null
null
# Estimators are partially based on the "estimators.py" from the following repositories: # https://github.com/agadetsky/pytorch-pl-variance-reduction # https://github.com/sdrobert/pydrobert-pytorch import torch def uniform_to_exp(logits, uniform=None, enable_grad=False): ''' Converts a tensor of independent uniform samples into a tensor of independent exponential samples Tensor 'logits' contains log-means of the exponential distributions Parameters of the exponentials can be represented as lambda = exp(-logit), since expected value is equal to 1/lambda ''' if uniform is not None: assert uniform.size() == logits.size() else: uniform = torch.distributions.utils.clamp_probs(torch.rand_like(logits)) exp = torch.exp(logits + torch.log(-torch.log(uniform))) if enable_grad: exp.requires_grad_(True) return exp def reattach_exp_to_new_logits(logits, exp): ''' Creates a new tensor of exponential variables that depends on logits in the same way as if it was obtained by transforming uniform samples via 'uniform_to_exp' Used in 'relax' to obtain gradient for the detached version of the logits ''' exp = torch.exp(torch.log(exp.detach()) + logits - logits.detach()) return exp def E_reinforce(loss_value, logits, exp, plus_samples=1, mask_unused_values=None, **kwargs): ''' Returns the REINFORCE [williams1992] gradient estimate with respect to the exponential score grad = loss(X) * (d / d logits) log p(E ; logits) If plus_samples > 1, the estimate is E-REINFORCE+ / E-REINFORCE with LOO baseline [kool2019buy, richter2020vargrad] ''' batch_size = logits.shape[0] // plus_samples loss_value = loss_value.detach() exp = exp.detach() log_prob = -logits - torch.exp(torch.log(exp) - logits) if mask_unused_values is not None: log_prob = mask_unused_values(log_prob, **kwargs) dims_except_batch = tuple(-i for i in range(1, logits.ndimension())) log_prob = log_prob.sum(dim=dims_except_batch) score = torch.autograd.grad([log_prob], [logits], grad_outputs=torch.ones_like(log_prob))[0] if plus_samples > 1: score_shape = (batch_size, plus_samples) + logits.shape[1:] score = score.view(score_shape) loss_value = loss_value.view(batch_size, plus_samples) loss_value = loss_value - loss_value.mean(dim=-1)[:, None] for i in range(logits.ndimension() - 1): loss_value = loss_value.unsqueeze(-1) grad = (loss_value * score).sum(dim=1) / (plus_samples - 1) else: for i in range(logits.ndimension() - 1): loss_value = loss_value.unsqueeze(-1) grad = loss_value * score return grad def T_reinforce(loss_value, struct_var, logits, f_log_prob, plus_samples=1, **kwargs): ''' Returns the REINFORCE [williams1992] gradient estimate with respect to the score function of the execution trace grad = loss(X) * (d / d logits) log p(T ; logits) If plus_samples > 1, the estimate is T-REINFORCE+ / T-REINFORCE with LOO baseline [kool2019buy, richter2020vargrad] ''' batch_size = logits.shape[0] // plus_samples loss_value = loss_value.detach() struct_var = struct_var.detach() log_prob = f_log_prob(struct_var, logits, **kwargs) score = torch.autograd.grad([log_prob], [logits], grad_outputs=torch.ones_like(log_prob))[0] if plus_samples > 1: score_shape = (batch_size, plus_samples) + logits.shape[1:] score = score.view(score_shape) loss_value = loss_value.view(batch_size, plus_samples) loss_value = loss_value - loss_value.mean(dim=-1)[:, None] for i in range(logits.ndimension() - 1): loss_value = loss_value.unsqueeze(-1) grad = (loss_value * score).sum(dim=1) / (plus_samples - 1) else: for i in range(logits.ndimension() - 1): loss_value = loss_value.unsqueeze(-1) grad = loss_value * score return grad def relax(loss_value, struct_var, logits, exp, critic, f_log_prob, f_cond, uniform=None, **kwargs): ''' Returns the RELAX [grathwohl2017backpropagation] gradient estimate grad = (loss(X(T)) - c(e_2)) * (d / d logits) log p(T ; logits) - (d / d logits) c(e_2) + (d / d logits) c(e_1) e_1 ~ p(E ; logits) - exponential sample T = T(e_1) - execution trace of the algorithm X = X(T) - structured variable, obtained as the output of the algorithm e_2 ~ p(E | T ; logits) - conditional exponential sample c(.) - critic (typically, a neural network) e_1 and e_2 are sampled using the reparameterization trick (d / d logits) c(e_1) and (d / d logits) c(e_2) are the reparameterization gradients In code, exp := e_1, cond_exp := e_2 ''' loss_value = loss_value.detach() struct_var = struct_var.detach() logits = logits.detach().requires_grad_(True) exp = reattach_exp_to_new_logits(logits, exp) cond_exp = f_cond(struct_var, logits, uniform, **kwargs) baseline_exp = critic(exp) baseline_cond = critic(cond_exp).squeeze() diff = loss_value - baseline_cond log_prob = f_log_prob(struct_var, logits, **kwargs) score, = torch.autograd.grad( [log_prob], [logits], grad_outputs = torch.ones_like(log_prob) ) d_baseline_exp, = torch.autograd.grad( [baseline_exp], [logits], create_graph=True, retain_graph=True, grad_outputs=torch.ones_like(baseline_exp) ) d_baseline_cond, = torch.autograd.grad( [baseline_cond], [logits], create_graph=True, retain_graph=True, grad_outputs=torch.ones_like(baseline_cond) ) for i in range(logits.ndimension() - 1): diff = diff.unsqueeze(-1) grad = diff * score + d_baseline_exp - d_baseline_cond assert grad.size() == logits.size() return grad
36.674847
119
0.666109
876ea23897293976ed6d4c89dc0ac3f3913fd93a
1,155
py
Python
medium/python/c0090_173_binary-search-tree-iterator/00_leetcode_0090.py
drunkwater/leetcode
8cc4a07763e71efbaedb523015f0c1eff2927f60
[ "Ruby" ]
null
null
null
medium/python/c0090_173_binary-search-tree-iterator/00_leetcode_0090.py
drunkwater/leetcode
8cc4a07763e71efbaedb523015f0c1eff2927f60
[ "Ruby" ]
null
null
null
medium/python/c0090_173_binary-search-tree-iterator/00_leetcode_0090.py
drunkwater/leetcode
8cc4a07763e71efbaedb523015f0c1eff2927f60
[ "Ruby" ]
3
2018-02-09T02:46:48.000Z
2021-02-20T08:32:03.000Z
# DRUNKWATER TEMPLATE(add description and prototypes) # Question Title and Description on leetcode.com # Function Declaration and Function Prototypes on leetcode.com #173. Binary Search Tree Iterator #Implement an iterator over a binary search tree (BST). Your iterator will be initialized with the root node of a BST. #Calling next() will return the next smallest number in the BST. #Note: next() and hasNext() should run in average O(1) time and uses O(h) memory, where h is the height of the tree. #Credits: #Special thanks to @ts for adding this problem and creating all test cases. ## Definition for a binary tree node ## class TreeNode(object): ## def __init__(self, x): ## self.val = x ## self.left = None ## self.right = None #class BSTIterator(object): # def __init__(self, root): # """ # :type root: TreeNode # """ # def hasNext(self): # """ # :rtype: bool # """ # def next(self): # """ # :rtype: int # """ ## Your BSTIterator will be called like this: ## i, v = BSTIterator(root), [] ## while i.hasNext(): v.append(i.next()) # Time Is Money
33
118
0.641558
b0bff1143e8fc07382e4e4d809b36b296a3f453c
240
py
Python
Python/flipping-an-image.py
kuanhungchen/leetcode-practice
b75e773ada60b685da1576ae5f2234b70bc27842
[ "CNRI-Python" ]
1
2020-04-29T06:19:44.000Z
2020-04-29T06:19:44.000Z
Python/flipping-an-image.py
kuanhungchen/leetcode-practice
b75e773ada60b685da1576ae5f2234b70bc27842
[ "CNRI-Python" ]
null
null
null
Python/flipping-an-image.py
kuanhungchen/leetcode-practice
b75e773ada60b685da1576ae5f2234b70bc27842
[ "CNRI-Python" ]
null
null
null
class Solution: def flipAndInvertImage(self, A): A = [A[i][::-1] for i in range(len(A))] for i in range(len(A)): for j in range(len(A[0])): A[i][j] = 1 if A[i][j] == 0 else 0 return A
30
50
0.4625
1cb593459c122137ee104ce6867fdfaa0bba92a1
9,448
py
Python
baseStation/src/context/remote.py
olgam4/design3
6e05d123a24deae7dda646df535844a158ef5cc0
[ "WTFPL" ]
null
null
null
baseStation/src/context/remote.py
olgam4/design3
6e05d123a24deae7dda646df535844a158ef5cc0
[ "WTFPL" ]
null
null
null
baseStation/src/context/remote.py
olgam4/design3
6e05d123a24deae7dda646df535844a158ef5cc0
[ "WTFPL" ]
null
null
null
import tkinter as tk from tkinter import ttk from application.domain.application import Application from application.infrastructure.applicationWorker import ApplicationWorker from application.infrastructure.chargeStationWatcher import ChargeStationWatcher from application.infrastructure.robotWatcher import RobotWatcher from application.infrastructure.tkinterUi import TkinterUi from communication.infrastructure.socketRobotConnector import SocketRobotConnector from communication.service.communicationService import CommunicationService from light.service.lightService import LightService from objective.service.objectiveService import ObjectiveService from pathDrawing.infrastructure.openCvDrawer import OpenCvDrawer from pathDrawing.service.pathDrawingService import PathDrawingService from pathfinding.domain.angle import Angle from pathfinding.domain.table import Table from pathfinding.infrastructure.adaptivePathableCatalog import AdaptivePathableCatalog from pathfinding.infrastructure.approachPositionFinder import ApproachPositionFinder from pathfinding.infrastructure.grassfirePathfinderFactory import GrassfirePathfinderFactory from pathfinding.infrastructure.pathableCatalog import PathableCatalog from pathfinding.service.pathService import PathService from pathfinding.service.pathfindingService import PathfindingService from pathfinding.service.positionService import PositionService from prehensor.infrastructure.chargeStation import ChargeStation from prehensor.service.prehensorService import PrehensorService from remote.infrastructure.remoteControl import RemoteControl from remote.service.remoteService import RemoteService from timer.infrastructure.pythonChronometer import PythonChronometer from timer.service.timeService import TimeService from ui.domain.directionalControl import DirectionalControl from ui.domain.indicator.charge import Charge from ui.domain.indicator.indicators import Indicators from ui.domain.indicator.light import Light from ui.domain.indicator.objective import Objective from ui.domain.indicator.timer import Timer from ui.domain.onBoardCamera import OnBoardCamera from ui.domain.subroutine.championshipSubroutine import ChampionshipSubroutine from ui.domain.subroutine.chargeSubroutine import ChargeSubroutine from ui.domain.subroutine.dropSubroutine import DropSubroutine from ui.domain.subroutine.goHomeSubroutine import GoHomeSubroutine from ui.domain.subroutine.grabSubroutine import GrabSubroutine from ui.domain.subroutine.magnetSubroutine import MagnetSubroutine from ui.domain.subroutine.readQrSubroutine import ReadQrSubroutine from ui.domain.subroutine.sightSubroutine import SightSubroutine from ui.domain.subroutine.subroutines import Subroutines from ui.domain.subroutine.updateDirectionsSubroutine import UpdateDirectionsSubroutine from ui.domain.subroutine.winSubroutine import WinSubroutine from ui.domain.worldCameraSelector import WorldCameraSelector from ui.infrastructure.remoteMainView import RemoteMainView from ui.infrastructure.remoteSubroutineRunner import RemoteSubroutineRunner from vision.infrastructure.cvCameraCalibrationFactory import CvCameraCalibrationFactory from vision.infrastructure.cvCameraFactory import CvCameraFactory from vision.infrastructure.cvGoalFinder import CvGoalFinder from vision.infrastructure.cvImageDrawer import CvImageDrawer from vision.infrastructure.cvObstacleFinder import CvObstacleFinder from vision.infrastructure.cvPlayAreaFinder import CvPlayAreaFinder from vision.infrastructure.cvRobotFinder import CvRobotFinder from vision.infrastructure.cvSourceFinder import CvSourceFinder from vision.service.robotCameraService import RobotCameraService from vision.service.visionService import VisionService class Remote: def __init__(self, port: int, address: str, timeout: float) -> None: self._play_area_finder = CvPlayAreaFinder() self._vision_service = VisionService(CvCameraFactory(), CvCameraCalibrationFactory(self._play_area_finder), CvImageDrawer(), self._play_area_finder, CvGoalFinder(), CvSourceFinder(), CvObstacleFinder(), CvRobotFinder()) self._time_service = TimeService(PythonChronometer()) self._robot_camera_service = RobotCameraService() self._robot_connector = SocketRobotConnector(port, address, timeout) self._communication_service = CommunicationService(self._robot_connector) self._position_service = PositionService(self._vision_service, self._communication_service) self._light_service = LightService() self._objective_service = ObjectiveService() self._remote_control = RemoteControl(self._communication_service) self._remote_service = RemoteService(self._remote_control) self._subroutine_runner = RemoteSubroutineRunner(self._remote_service) pathfinder_factory = GrassfirePathfinderFactory(Table(111, 231, -1, 27, Angle(0), 15)) self._pathable_catalog = PathableCatalog(self._vision_service, pathfinder_factory, ApproachPositionFinder()) self._pathfinding_service = PathfindingService(self._pathable_catalog) self._path_service = PathService() self._path_drawing_service = PathDrawingService(OpenCvDrawer(), self._vision_service, self._path_service) self._prehensor_service = PrehensorService() def application(self) -> Application: tkinter_ui = self._make_tkinter_ui() robot_watcher = self._make_robot_watcher() application_worker = self._make_application_worker() charge_station = ChargeStation() charge_station_watcher = ChargeStationWatcher(self._communication_service, charge_station) return Application(tkinter_ui, robot_watcher, application_worker, charge_station_watcher) def _make_tkinter_ui(self) -> TkinterUi: return TkinterUi(RemoteMainView(None, self._make_subroutines, self._make_world_camera_selector, self._make_on_board_camera, self._make_directional_control, self._make_indicators)) def _make_robot_watcher(self) -> RobotWatcher: return RobotWatcher(self._communication_service, self._light_service, self._remote_control, self._robot_camera_service, self._pathfinding_service, self._position_service, self._path_service, self._prehensor_service, self._objective_service) def _make_application_worker(self) -> ApplicationWorker: return ApplicationWorker(self._vision_service, self._time_service) def _make_subroutines(self, parent: ttk.Frame) -> Subroutines: subroutines = Subroutines(parent) subroutines.add(ChargeSubroutine(subroutines, self._subroutine_runner), text="charge", sticky=tk.N + tk.W + tk.E + tk.S) subroutines.add(ReadQrSubroutine(subroutines, self._subroutine_runner, self._make_objective), text="qrCode", sticky=tk.N + tk.W + tk.E + tk.S) subroutines.add(GrabSubroutine(subroutines, self._subroutine_runner), text="grab", sticky=tk.N + tk.W + tk.E + tk.S) subroutines.add(DropSubroutine(subroutines, self._subroutine_runner), text="drop", sticky=tk.N + tk.W + tk.E + tk.S) subroutines.add(GoHomeSubroutine(subroutines, self._subroutine_runner), text="goHome", sticky=tk.N + tk.W + tk.E + tk.S) subroutines.add(WinSubroutine(subroutines, self._subroutine_runner, self._make_light), text="win!", sticky=tk.N + tk.W + tk.E + tk.S) subroutines.add(MagnetSubroutine(subroutines, self._subroutine_runner), text="magnet", sticky=tk.N + tk.W + tk.E + tk.S) subroutines.add(UpdateDirectionsSubroutine(subroutines, self._subroutine_runner), text="direction", sticky=tk.N + tk.W + tk.E + tk.S) subroutines.add(SightSubroutine(subroutines, self._subroutine_runner), text="sight", sticky=tk.N + tk.W + tk.E + tk.S) subroutines.add(ChampionshipSubroutine(subroutines, self._subroutine_runner, self._time_service), text="championship", sticky=tk.N + tk.W + tk.E + tk.S) return subroutines def _make_indicators(self, parent: ttk.Frame) -> Indicators: return Indicators(parent, self._make_objective, self._make_light, self._make_charge, self._make_timer) def _make_directional_control(self, parent: ttk.Frame) -> DirectionalControl: return DirectionalControl(parent, self._subroutine_runner) def _make_on_board_camera(self, parent: ttk.Frame) -> OnBoardCamera: return OnBoardCamera(parent, self._robot_camera_service) def _make_objective(self, parent: ttk.Frame) -> Objective: return Objective(parent, self._objective_service) def _make_light(self, parent: ttk.Frame) -> Light: return Light(parent, self._light_service) def _make_charge(self, parent: ttk.Frame) -> Charge: return Charge(parent, self._prehensor_service) def _make_timer(self, parent: ttk.Frame) -> Timer: return Timer(parent, self._time_service) def _make_world_camera_selector(self, parent: ttk.Frame) -> WorldCameraSelector: return WorldCameraSelector(parent, self._vision_service, self._path_drawing_service)
61.350649
116
0.771804
7ad76b4f807d84cf8f6796168fc87a7ecbe4fd01
2,890
py
Python
src/function_approx.py
AI-Gio/LunarLander
867425223a186bc0dd3378e3bd2888cd525d2834
[ "MIT" ]
null
null
null
src/function_approx.py
AI-Gio/LunarLander
867425223a186bc0dd3378e3bd2888cd525d2834
[ "MIT" ]
null
null
null
src/function_approx.py
AI-Gio/LunarLander
867425223a186bc0dd3378e3bd2888cd525d2834
[ "MIT" ]
null
null
null
import tensorflow.compat.v1 as tf from keras.models import Sequential from keras.layers import Dense import numpy as np import warnings tf.disable_v2_behavior() warnings.filterwarnings("ignore", category=UserWarning) class FunctionApprox: """ The network class of the simulation. Used as to create a policy network instance and a target network instance. Contains an artificial neural network from the keras library. The output of the neural network is a list of q-values representative of each possible action. """ def __init__(self, learning_rate: float): # Create model self.model = Sequential() # Add layers self.model.add(Dense(input_dim=8, units=1)) self.model.add(Dense(32, name="1")) self.model.add(Dense(64, name="2")) self.model.add(Dense(4, name="Output")) # Make Adam Optimizer adam = tf.keras.optimizers.Adam(learning_rate=learning_rate, name="Adam") loss = tf.keras.losses.MeanSquaredError(name="mean_squared_error") # Compile model self.model.compile(optimizer=adam, loss=loss) def q_values(self, states: list) -> np.array: """ Feeds list of states in model to predict and gives a list of Q-values, one for each action, in return. :param states: :return: np.array() of predictions """ predictions = self.model.predict(np.array(states)) return predictions def save_network(self, filename): """ Save the model at [filename] """ self.model.save(f"{filename}.h5") def load_network(self, filename): """ Load model by overwriting current model with keras.model object """ self.model = tf.keras.models.load_model(f"{filename}.h5") def train(self, x, y, batch_size, epochs: int, verbose: bool): """ Train the model with the given params :param x: set with train data :param y: set with labels :param batch_size: how much of the data should be used to train on :param epochs: how many epochs the model runs :param verbose: show training progress bar or not """ self.model.fit(x=x, y=y, batch_size=batch_size, epochs=epochs, verbose=verbose) def set_weights(self, weights: np.array): """ Set the weights of the model layer by layer :param weights: all weights of model """ layers = self.model.layers for i, lw in enumerate(layers): lw.set_weights(weights[i]) def get_weights(self): """ Get all weights from each layers in model :return: 2d numpy matrix containing all the weights """ layers = [] for layer in self.model.layers: layers.append(layer.get_weights()) return np.array(layers, dtype=object)
34
98
0.634602
1fe662bc730b692cd872c696bb2f433c2dc69d6a
1,791
py
Python
CondTools/Ecal/python/copyFgrGroup_cfg.py
NTrevisani/cmssw
a212a27526f34eb9507cf8b875c93896e6544781
[ "Apache-2.0" ]
3
2018-08-24T19:10:26.000Z
2019-02-19T11:45:32.000Z
CondTools/Ecal/python/copyFgrGroup_cfg.py
NTrevisani/cmssw
a212a27526f34eb9507cf8b875c93896e6544781
[ "Apache-2.0" ]
7
2016-07-17T02:34:54.000Z
2019-08-13T07:58:37.000Z
CondTools/Ecal/python/copyFgrGroup_cfg.py
NTrevisani/cmssw
a212a27526f34eb9507cf8b875c93896e6544781
[ "Apache-2.0" ]
5
2018-08-21T16:37:52.000Z
2020-01-09T13:33:17.000Z
import FWCore.ParameterSet.Config as cms import CondTools.Ecal.conddb_init as conddb_init import CondTools.Ecal.db_credentials as auth process = cms.Process("ProcessOne") process.MessageLogger = cms.Service("MessageLogger", debugModules = cms.untracked.vstring('*'), cout = cms.untracked.PSet( threshold = cms.untracked.string('DEBUG') ), destinations = cms.untracked.vstring('cout') ) process.source = cms.Source("EmptyIOVSource", lastValue = cms.uint64(2000000), timetype = cms.string('runnumber'), firstValue = cms.uint64(2000000), interval = cms.uint64(1) ) process.load("CondCore.CondDB.CondDB_cfi") process.CondDB.connect = conddb_init.options.destinationDatabase process.CondDB.DBParameters.authenticationPath = '' process.PoolDBOutputService = cms.Service("PoolDBOutputService", process.CondDB, toPut = cms.VPSet(cms.PSet( record = cms.string('EcalTPGFineGrainEBGroupRcd'), tag = cms.string(conddb_init.options.destinationTag) )) ) db_service,db_user,db_pwd = auth.get_readOnly_db_credentials() process.Test1 = cms.EDAnalyzer("ExTestEcalTPGFineGrainEBGroupAnalyzer", record = cms.string('EcalTPGFineGrainEBGroupRcd'), loggingOn= cms.untracked.bool(True), IsDestDbCheckedInQueryLog=cms.untracked.bool(True), SinceAppendMode=cms.bool(True), Source=cms.PSet( firstRun = cms.string('200000'), lastRun = cms.string('10000000'), OnlineDBSID = cms.string(db_service), OnlineDBUser = cms.string(db_user), OnlineDBPassword = cms.string( db_pwd ), LocationSource = cms.string('P5'), Location = cms.string('P5_Co'), GenTag = cms.string('GLOBAL'), RunType = cms.string('PHYSICS') ) ) process.p = cms.Path(process.Test1)
31.982143
71
0.707984
819ebcfae70128c9cf852d04ce102d22fb6d1b7a
473
py
Python
Lib/site-packages/plotly/validators/scatter/_uid.py
tytanya/my-first-blog
2b40adb0816c3546e90ad6ca1e7fb50d924c1536
[ "bzip2-1.0.6" ]
12
2020-04-18T18:10:22.000Z
2021-12-06T10:11:15.000Z
plotly/validators/scatter/_uid.py
Vesauza/plotly.py
e53e626d59495d440341751f60aeff73ff365c28
[ "MIT" ]
6
2021-03-18T22:27:08.000Z
2022-03-11T23:40:50.000Z
plotly/validators/scatter/_uid.py
Vesauza/plotly.py
e53e626d59495d440341751f60aeff73ff365c28
[ "MIT" ]
6
2020-04-18T23:07:08.000Z
2021-11-18T07:53:06.000Z
import _plotly_utils.basevalidators class UidValidator(_plotly_utils.basevalidators.StringValidator): def __init__(self, plotly_name='uid', parent_name='scatter', **kwargs): super(UidValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, anim=kwargs.pop('anim', True), edit_type=kwargs.pop('edit_type', 'plot'), role=kwargs.pop('role', 'info'), **kwargs )
31.533333
75
0.627907
fa2b9bceb9806774fde46881674df156f4a7885c
587
py
Python
rowingdata/painsled_desktop_plot.py
sanderroosendaal/rowingdata
efd8aa1566a926f11fb3f6b5b340665bc26028c4
[ "MIT" ]
4
2017-04-24T15:20:46.000Z
2021-02-12T23:03:29.000Z
build/lib/rowingdata/painsled_desktop_plot.py
sanderroosendaal/rowingdata
efd8aa1566a926f11fb3f6b5b340665bc26028c4
[ "MIT" ]
38
2016-11-02T07:57:50.000Z
2022-01-22T13:25:14.000Z
build/lib/rowingdata/painsled_desktop_plot.py
sanderroosendaal/rowingdata
efd8aa1566a926f11fb3f6b5b340665bc26028c4
[ "MIT" ]
6
2017-01-19T21:39:46.000Z
2021-11-16T14:48:58.000Z
#! /usr/bin/python from __future__ import absolute_import from __future__ import print_function from . import rowingdata from sys import argv def main(): readFile=argv[1] try: rowerFile=argv[2] except IndexError: rowerFile="defaultrower.txt" rower=rowingdata.getrower(rowerFile) outfile=readFile+"_o.csv" res=rowingdata.painsledDesktopParser(readFile) res.write_csv(outfile) row=rowingdata.rowingdata(outfile,rowtype="Indoor Rower",rower=rower) row.plotmeters_erg() print((row.allstats())) print(("done "+readFile))
18.935484
73
0.708688
89289ced29c3cba555d674e90d5616a41995d742
24,861
py
Python
lib/galaxy/datatypes/text.py
uio-bmi/galaxy-graph-peak-caller
0e0e8e9bd6d461a4e25b49cea2e6753043f747e0
[ "CC-BY-3.0" ]
2
2017-10-23T14:44:12.000Z
2018-01-14T10:37:28.000Z
lib/galaxy/datatypes/text.py
uio-bmi/galaxy-graph-peak-caller
0e0e8e9bd6d461a4e25b49cea2e6753043f747e0
[ "CC-BY-3.0" ]
30
2016-10-20T15:35:12.000Z
2018-10-02T15:59:54.000Z
lib/galaxy/datatypes/text.py
uio-bmi/galaxy-graph-peak-caller
0e0e8e9bd6d461a4e25b49cea2e6753043f747e0
[ "CC-BY-3.0" ]
4
2017-06-12T09:54:31.000Z
2019-03-15T12:02:39.000Z
# -*- coding: utf-8 -*- """ Clearing house for generic text datatypes that are not XML or tabular. """ import gzip import json import logging import os import re import subprocess import tempfile from six.moves import shlex_quote from galaxy.datatypes.data import get_file_peek, Text from galaxy.datatypes.metadata import MetadataElement, MetadataParameter from galaxy.datatypes.sniff import iter_headers from galaxy.util import nice_size, string_as_bool log = logging.getLogger(__name__) class Html(Text): """Class describing an html file""" edam_format = "format_2331" file_ext = "html" def set_peek(self, dataset, is_multi_byte=False): if not dataset.dataset.purged: dataset.peek = "HTML file" dataset.blurb = nice_size(dataset.get_size()) else: dataset.peek = 'file does not exist' dataset.blurb = 'file purged from disk' def get_mime(self): """Returns the mime type of the datatype""" return 'text/html' def sniff(self, filename): """ Determines whether the file is in html format >>> from galaxy.datatypes.sniff import get_test_fname >>> fname = get_test_fname( 'complete.bed' ) >>> Html().sniff( fname ) False >>> fname = get_test_fname( 'file.html' ) >>> Html().sniff( fname ) True """ headers = iter_headers(filename, None) for i, hdr in enumerate(headers): if hdr and hdr[0].lower().find('<html>') >= 0: return True return False class Json(Text): edam_format = "format_3464" file_ext = "json" def set_peek(self, dataset, is_multi_byte=False): if not dataset.dataset.purged: dataset.peek = get_file_peek(dataset.file_name) dataset.blurb = "JavaScript Object Notation (JSON)" else: dataset.peek = 'file does not exist' dataset.blurb = 'file purged from disc' def get_mime(self): """Returns the mime type of the datatype""" return 'application/json' def sniff(self, filename): """ Try to load the string with the json module. If successful it's a json file. """ return self._looks_like_json(filename) def _looks_like_json(self, filename): # Pattern used by SequenceSplitLocations if os.path.getsize(filename) < 50000: # If the file is small enough - don't guess just check. try: json.load(open(filename, "r")) return True except Exception: return False else: with open(filename, "r") as fh: while True: # Grab first chunk of file and see if it looks like json. start = fh.read(100).strip() if start: # simple types are valid JSON as well - but would such a file # be interesting as JSON in Galaxy? return start.startswith("[") or start.startswith("{") return False def display_peek(self, dataset): try: return dataset.peek except Exception: return "JSON file (%s)" % (nice_size(dataset.get_size())) class Ipynb(Json): file_ext = "ipynb" def set_peek(self, dataset, is_multi_byte=False): if not dataset.dataset.purged: dataset.peek = get_file_peek(dataset.file_name) dataset.blurb = "Jupyter Notebook" else: dataset.peek = 'file does not exist' dataset.blurb = 'file purged from disc' def sniff(self, filename): """ Try to load the string with the json module. If successful it's a json file. """ if self._looks_like_json(filename): try: ipynb = json.load(open(filename)) if ipynb.get('nbformat', False) is not False and ipynb.get('metadata', False): return True else: return False except Exception: return False def display_data(self, trans, dataset, preview=False, filename=None, to_ext=None, **kwd): config = trans.app.config trust = getattr(config, 'trust_jupyter_notebook_conversion', False) if trust: return self._display_data_trusted(trans, dataset, preview=preview, filename=filename, to_ext=to_ext, **kwd) else: return super(Ipynb, self).display_data(trans, dataset, preview=preview, filename=filename, to_ext=to_ext, **kwd) def _display_data_trusted(self, trans, dataset, preview=False, filename=None, to_ext=None, **kwd): preview = string_as_bool(preview) if to_ext or not preview: return self._serve_raw(trans, dataset, to_ext, **kwd) else: with tempfile.NamedTemporaryFile(delete=False) as ofile_handle: ofilename = ofile_handle.name try: cmd = ['jupyter', 'nbconvert', '--to', 'html', '--template', 'full', dataset.file_name, '--output', ofilename] subprocess.check_call(cmd) ofilename = '%s.html' % ofilename except subprocess.CalledProcessError: ofilename = dataset.file_name log.exception('Command "%s" failed. Could not convert the Jupyter Notebook to HTML, defaulting to plain text.', ' '.join(map(shlex_quote, cmd))) return open(ofilename) def set_meta(self, dataset, **kwd): """ Set the number of models in dataset. """ pass class Biom1(Json): """ BIOM version 1.0 file format description http://biom-format.org/documentation/format_versions/biom-1.0.html """ file_ext = "biom1" edam_format = "format_3746" MetadataElement(name="table_rows", default=[], desc="table_rows", param=MetadataParameter, readonly=True, visible=False, optional=True, no_value=[]) MetadataElement(name="table_matrix_element_type", default="", desc="table_matrix_element_type", param=MetadataParameter, readonly=True, visible=False, optional=True, no_value="") MetadataElement(name="table_format", default="", desc="table_format", param=MetadataParameter, readonly=True, visible=False, optional=True, no_value="") MetadataElement(name="table_generated_by", default="", desc="table_generated_by", param=MetadataParameter, readonly=True, visible=True, optional=True, no_value="") MetadataElement(name="table_matrix_type", default="", desc="table_matrix_type", param=MetadataParameter, readonly=True, visible=False, optional=True, no_value="") MetadataElement(name="table_shape", default=[], desc="table_shape", param=MetadataParameter, readonly=True, visible=False, optional=True, no_value=[]) MetadataElement(name="table_format_url", default="", desc="table_format_url", param=MetadataParameter, readonly=True, visible=False, optional=True, no_value="") MetadataElement(name="table_date", default="", desc="table_date", param=MetadataParameter, readonly=True, visible=True, optional=True, no_value="") MetadataElement(name="table_type", default="", desc="table_type", param=MetadataParameter, readonly=True, visible=True, optional=True, no_value="") MetadataElement(name="table_id", default=None, desc="table_id", param=MetadataParameter, readonly=True, visible=True, optional=True, no_value=None) MetadataElement(name="table_columns", default=[], desc="table_columns", param=MetadataParameter, readonly=True, visible=False, optional=True, no_value=[]) def set_peek(self, dataset, is_multi_byte=False): super(Biom1, self).set_peek(dataset) if not dataset.dataset.purged: dataset.blurb = "Biological Observation Matrix v1" def sniff(self, filename): is_biom = False if self._looks_like_json(filename): is_biom = self._looks_like_biom(filename) return is_biom def _looks_like_biom(self, filepath, load_size=50000): """ @param filepath: [str] The path to the evaluated file. @param load_size: [int] The size of the file block load in RAM (in bytes). """ is_biom = False segment_size = int(load_size / 2) try: with open(filepath, "r") as fh: prev_str = "" segment_str = fh.read(segment_size) if segment_str.strip().startswith('{'): while segment_str: current_str = prev_str + segment_str if '"format"' in current_str: current_str = re.sub(r'\s', '', current_str) if '"format":"BiologicalObservationMatrix' in current_str: is_biom = True break prev_str = segment_str segment_str = fh.read(segment_size) except Exception: pass return is_biom def set_meta(self, dataset, **kwd): """ Store metadata information from the BIOM file. """ if dataset.has_data(): with open(dataset.file_name) as fh: try: json_dict = json.load(fh) except Exception: return def _transform_dict_list_ids(dict_list): if dict_list: return [x.get('id', None) for x in dict_list] return [] b_transform = {'rows': _transform_dict_list_ids, 'columns': _transform_dict_list_ids} for (m_name, b_name) in [('table_rows', 'rows'), ('table_matrix_element_type', 'matrix_element_type'), ('table_format', 'format'), ('table_generated_by', 'generated_by'), ('table_matrix_type', 'matrix_type'), ('table_shape', 'shape'), ('table_format_url', 'format_url'), ('table_date', 'date'), ('table_type', 'type'), ('table_id', 'id'), ('table_columns', 'columns')]: try: metadata_value = json_dict.get(b_name, None) if b_name in b_transform: metadata_value = b_transform[b_name](metadata_value) setattr(dataset.metadata, m_name, metadata_value) except Exception: pass class Obo(Text): """ OBO file format description https://owlcollab.github.io/oboformat/doc/GO.format.obo-1_2.html """ edam_data = "data_0582" edam_format = "format_2549" file_ext = "obo" def set_peek(self, dataset, is_multi_byte=False): if not dataset.dataset.purged: dataset.peek = get_file_peek(dataset.file_name) dataset.blurb = "Open Biomedical Ontology (OBO)" else: dataset.peek = 'file does not exist' dataset.blurb = 'file purged from disc' def sniff(self, filename): """ Try to guess the Obo filetype. It usually starts with a "format-version:" string and has several stanzas which starts with "id:". """ stanza = re.compile(r'^\[.*\]$') with open(filename) as handle: first_line = handle.readline() if not first_line.startswith('format-version:'): return False for line in handle: if stanza.match(line.strip()): # a stanza needs to begin with an ID tag if handle.next().startswith('id:'): return True return False class Arff(Text): """ An ARFF (Attribute-Relation File Format) file is an ASCII text file that describes a list of instances sharing a set of attributes. http://weka.wikispaces.com/ARFF """ edam_format = "format_3581" file_ext = "arff" """Add metadata elements""" MetadataElement(name="comment_lines", default=0, desc="Number of comment lines", readonly=True, optional=True, no_value=0) MetadataElement(name="columns", default=0, desc="Number of columns", readonly=True, visible=True, no_value=0) def set_peek(self, dataset, is_multi_byte=False): if not dataset.dataset.purged: dataset.peek = get_file_peek(dataset.file_name) dataset.blurb = "Attribute-Relation File Format (ARFF)" dataset.blurb += ", %s comments, %s attributes" % (dataset.metadata.comment_lines, dataset.metadata.columns) else: dataset.peek = 'file does not exist' dataset.blurb = 'file purged from disc' def sniff(self, filename): """ Try to guess the Arff filetype. It usually starts with a "format-version:" string and has several stanzas which starts with "id:". """ with open(filename) as handle: relation_found = False attribute_found = False for line_count, line in enumerate(handle): if line_count > 1000: # only investigate the first 1000 lines return False line = line.strip() if not line: continue start_string = line[:20].upper() if start_string.startswith("@RELATION"): relation_found = True elif start_string.startswith("@ATTRIBUTE"): attribute_found = True elif start_string.startswith("@DATA"): # @DATA should be the last data block if relation_found and attribute_found: return True return False def set_meta(self, dataset, **kwd): """ Trying to count the comment lines and the number of columns included. A typical ARFF data block looks like this: @DATA 5.1,3.5,1.4,0.2,Iris-setosa 4.9,3.0,1.4,0.2,Iris-setosa """ comment_lines = column_count = 0 if dataset.has_data(): first_real_line = False data_block = False with open(dataset.file_name) as handle: for line in handle: line = line.strip() if not line: continue if line.startswith('%') and not first_real_line: comment_lines += 1 else: first_real_line = True if data_block: if line.startswith('{'): # Sparse representation """ @data 0, X, 0, Y, "class A", {5} or @data {1 X, 3 Y, 4 "class A"}, {5} """ token = line.split('}', 1) first_part = token[0] last_column = first_part.split(',')[-1].strip() numeric_value = last_column.split()[0] column_count = int(numeric_value) if len(token) > 1: # we have an additional weight column_count -= 1 else: columns = line.strip().split(',') column_count = len(columns) if columns[-1].strip().startswith('{'): # we have an additional weight at the end column_count -= 1 # We have now the column_count and we know the initial comment lines. So we can terminate here. break if line[:5].upper() == "@DATA": data_block = True dataset.metadata.comment_lines = comment_lines dataset.metadata.columns = column_count class SnpEffDb(Text): """Class describing a SnpEff genome build""" edam_format = "format_3624" file_ext = "snpeffdb" MetadataElement(name="genome_version", default=None, desc="Genome Version", readonly=True, visible=True, no_value=None) MetadataElement(name="snpeff_version", default="SnpEff4.0", desc="SnpEff Version", readonly=True, visible=True, no_value=None) MetadataElement(name="regulation", default=[], desc="Regulation Names", readonly=True, visible=True, no_value=[], optional=True) MetadataElement(name="annotation", default=[], desc="Annotation Names", readonly=True, visible=True, no_value=[], optional=True) def __init__(self, **kwd): Text.__init__(self, **kwd) # The SnpEff version line was added in SnpEff version 4.1 def getSnpeffVersionFromFile(self, path): snpeff_version = None try: with gzip.open(path, 'rb') as fh: buf = fh.read(100) lines = buf.splitlines() m = re.match('^(SnpEff)\s+(\d+\.\d+).*$', lines[0].strip()) if m: snpeff_version = m.groups()[0] + m.groups()[1] except Exception: pass return snpeff_version def set_meta(self, dataset, **kwd): Text.set_meta(self, dataset, **kwd) data_dir = dataset.extra_files_path # search data_dir/genome_version for files regulation_pattern = 'regulation_(.+).bin' # annotation files that are included in snpEff by a flag annotations_dict = {'nextProt.bin': '-nextprot', 'motif.bin': '-motif', 'interactions.bin': '-interaction'} regulations = [] annotations = [] genome_version = None snpeff_version = None if data_dir and os.path.isdir(data_dir): for root, dirs, files in os.walk(data_dir): for fname in files: if fname.startswith('snpEffectPredictor'): # if snpEffectPredictor.bin download succeeded genome_version = os.path.basename(root) dataset.metadata.genome_version = genome_version # read the first line of the gzipped snpEffectPredictor.bin file to get the SnpEff version snpeff_version = self.getSnpeffVersionFromFile(os.path.join(root, fname)) if snpeff_version: dataset.metadata.snpeff_version = snpeff_version else: m = re.match(regulation_pattern, fname) if m: name = m.groups()[0] regulations.append(name) elif fname in annotations_dict: value = annotations_dict[fname] name = value.lstrip('-') annotations.append(name) dataset.metadata.regulation = regulations dataset.metadata.annotation = annotations try: with open(dataset.file_name, 'w') as fh: fh.write("%s\n" % genome_version if genome_version else 'Genome unknown') fh.write("%s\n" % snpeff_version if snpeff_version else 'SnpEff version unknown') if annotations: fh.write("annotations: %s\n" % ','.join(annotations)) if regulations: fh.write("regulations: %s\n" % ','.join(regulations)) except Exception: pass class SnpSiftDbNSFP(Text): """Class describing a dbNSFP database prepared fpr use by SnpSift dbnsfp """ MetadataElement(name='reference_name', default='dbSNFP', desc='Reference Name', readonly=True, visible=True, set_in_upload=True, no_value='dbSNFP') MetadataElement(name="bgzip", default=None, desc="dbNSFP bgzip", readonly=True, visible=True, no_value=None) MetadataElement(name="index", default=None, desc="Tabix Index File", readonly=True, visible=True, no_value=None) MetadataElement(name="annotation", default=[], desc="Annotation Names", readonly=True, visible=True, no_value=[]) file_ext = "snpsiftdbnsfp" composite_type = 'auto_primary_file' allow_datatype_change = False """ ## The dbNSFP file is a tabular file with 1 header line ## The first 4 columns are required to be: chrom pos ref alt ## These match columns 1,2,4,5 of the VCF file ## SnpSift requires the file to be block-gzipped and the indexed with samtools tabix ## Example: ## Compress using block-gzip algorithm bgzip dbNSFP2.3.txt ## Create tabix index tabix -s 1 -b 2 -e 2 dbNSFP2.3.txt.gz """ def __init__(self, **kwd): Text.__init__(self, **kwd) self.add_composite_file('%s.gz', description='dbNSFP bgzip', substitute_name_with_metadata='reference_name', is_binary=True) self.add_composite_file('%s.gz.tbi', description='Tabix Index File', substitute_name_with_metadata='reference_name', is_binary=True) def init_meta(self, dataset, copy_from=None): Text.init_meta(self, dataset, copy_from=copy_from) def generate_primary_file(self, dataset=None): """ This is called only at upload to write the html file cannot rename the datasets here - they come with the default unfortunately """ return '<html><head><title>SnpSiftDbNSFP Composite Dataset</title></head></html>' def regenerate_primary_file(self, dataset): """ cannot do this until we are setting metadata """ annotations = "dbNSFP Annotations: %s\n" % ','.join(dataset.metadata.annotation) with open(dataset.file_name, 'a') as f: if dataset.metadata.bgzip: bn = dataset.metadata.bgzip f.write(bn) f.write('\n') f.write(annotations) def set_meta(self, dataset, overwrite=True, **kwd): try: efp = dataset.extra_files_path if os.path.exists(efp): flist = os.listdir(efp) for i, fname in enumerate(flist): if fname.endswith('.gz'): dataset.metadata.bgzip = fname try: with gzip.open(os.path.join(efp, fname), 'r') as fh: buf = fh.read(5000) lines = buf.splitlines() headers = lines[0].split('\t') dataset.metadata.annotation = headers[4:] except Exception as e: log.warning("set_meta fname: %s %s" % (fname, str(e))) if fname.endswith('.tbi'): dataset.metadata.index = fname self.regenerate_primary_file(dataset) except Exception as e: log.warning("set_meta fname: %s %s" % (dataset.file_name if dataset and dataset.file_name else 'Unkwown', str(e))) def set_peek(self, dataset, is_multi_byte=False): if not dataset.dataset.purged: dataset.peek = '%s : %s' % (dataset.metadata.reference_name, ','.join(dataset.metadata.annotation)) dataset.blurb = '%s' % dataset.metadata.reference_name else: dataset.peek = 'file does not exist' dataset.blurb = 'file purged from disc' class IQTree(Text): """IQ-TREE format""" file_ext = 'iqtree' def sniff(self, filename): """ Detect the IQTree file Scattered text file containing various headers and data types. >>> from galaxy.datatypes.sniff import get_test_fname >>> fname = get_test_fname('example.iqtree') >>> IQTree().sniff(fname) True >>> fname = get_test_fname('temp.txt') >>> IQTree().sniff(fname) False >>> fname = get_test_fname('test_tab1.tabular') >>> IQTree().sniff(fname) False """ with open(filename, 'r') as fio: return fio.read(7) == "IQ-TREE" return False
43.311847
182
0.560315
64dbb6604ce1a311b1b8d1d483df704678a0a6fe
695
py
Python
django_pages/site/__init__.py
lunemec/django-pages
caed40f9275919b81417924550e7bcfdc7c5ffbf
[ "BSD-3-Clause" ]
3
2015-11-24T02:30:48.000Z
2018-11-01T10:10:24.000Z
django_pages/site/__init__.py
lunemec/django-pages
caed40f9275919b81417924550e7bcfdc7c5ffbf
[ "BSD-3-Clause" ]
1
2015-04-18T16:37:36.000Z
2015-04-18T16:37:36.000Z
django_pages/site/__init__.py
lunemec/django-pages
caed40f9275919b81417924550e7bcfdc7c5ffbf
[ "BSD-3-Clause" ]
2
2015-11-24T02:01:00.000Z
2019-04-09T15:33:56.000Z
# -*- encoding: utf-8 -*- from ..common.errors import ConfigurationError from .models import Site, Script def get_site(): """ checks for site with pk=1 @return Site object @raises ConfigurationError """ try: site = Site.objects.get(pk=1) return site except Site.DoesNotExist: raise ConfigurationError('There are no Site\'s, please create one in admin') except Site.MultipleObjectsReturned: raise ConfigurationError('There is more than one site, please make sure there is exactly one, this feature may be changed in future') def get_scripts(): """ Returns all scripts from DB """ return Script.objects.all()
23.166667
141
0.667626
dd61b51e35060ad9721104c25ccb8cb5c9280e12
803
py
Python
pony_barn/settings/base_settings.py
ericholscher/pony_barn
8294a816c1db81582b135e71d670d18295718f4e
[ "MIT" ]
3
2015-05-19T02:50:05.000Z
2015-11-08T11:35:27.000Z
pony_barn/settings/base_settings.py
ericholscher/pony_barn
8294a816c1db81582b135e71d670d18295718f4e
[ "MIT" ]
null
null
null
pony_barn/settings/base_settings.py
ericholscher/pony_barn
8294a816c1db81582b135e71d670d18295718f4e
[ "MIT" ]
null
null
null
import os DEBUG = False TEMPLATE_DEBUG = DEBUG ADMINS = ( ) CUR_DIR = os.path.dirname(os.path.abspath(__file__)) {% if db_engine %} DATABASE_ENGINE = '{{ db_engine }}' {% endif %} {% if db_name %} DATABASE_NAME = '{{ db_name }}' {% endif %} {% if db_pass %} DATABASE_PASSWORD = '{{ db_pass }}' {% endif %} {% if db_user %} DATABASE_USER = '{{ db_user }}' {% endif %} TIME_ZONE = 'America/Chicago' LANGUAGE_CODE = 'en-us' SITE_ID = 1 USE_I18N = True INSTALLED_APPS = ( 'django.contrib.auth', 'django.contrib.admin', 'django.contrib.admindocs', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.sites', ) ROOT_URLCONF = 'urls' {% if more_installed %} INSTALLED_APPS += ( {% for app in more_installed %} '{{ app }}', {% endfor %} ) {% endif %}
18.25
52
0.631382
74cc99dea2d3271134e39e2621b8183df99be6f9
1,820
py
Python
azure-graphrbac/azure/graphrbac/models/password_credential.py
HydAu/AzureSDKForPython
5cbe34e9e0b8ea1faacc9f205633ccc0b885c0f3
[ "Apache-2.0" ]
null
null
null
azure-graphrbac/azure/graphrbac/models/password_credential.py
HydAu/AzureSDKForPython
5cbe34e9e0b8ea1faacc9f205633ccc0b885c0f3
[ "Apache-2.0" ]
null
null
null
azure-graphrbac/azure/graphrbac/models/password_credential.py
HydAu/AzureSDKForPython
5cbe34e9e0b8ea1faacc9f205633ccc0b885c0f3
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft and contributors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # limitations under the License. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class PasswordCredential(Model): """ Active Directory service principal Password Credential information :param start_date: Gets or sets start date :type start_date: datetime :param end_date: Gets or sets end date :type end_date: datetime :param key_id: Gets or sets key Id :type key_id: str :param value: Gets or sets value :type value: str """ _attribute_map = { 'start_date': {'key': 'startDate', 'type': 'iso-8601'}, 'end_date': {'key': 'endDate', 'type': 'iso-8601'}, 'key_id': {'key': 'keyId', 'type': 'str'}, 'value': {'key': 'value', 'type': 'str'}, } def __init__(self, start_date=None, end_date=None, key_id=None, value=None): self.start_date = start_date self.end_date = end_date self.key_id = key_id self.value = value
35.686275
80
0.629121
d7b59866b224a4818f90369f22b4c9758bf1f069
9,669
py
Python
lib/model/rpn/tracking_proposal_target_layer.py
Feynman27/pytorch-detect-rfcn
33cc264306be841ffaf997c4c458ca9ac2329378
[ "MIT" ]
32
2018-10-10T10:17:06.000Z
2021-08-18T11:07:51.000Z
lib/model/rpn/tracking_proposal_target_layer.py
Feynman27/pytorch-detect-rfcn
33cc264306be841ffaf997c4c458ca9ac2329378
[ "MIT" ]
9
2018-10-12T01:54:51.000Z
2020-11-22T07:36:19.000Z
lib/model/rpn/tracking_proposal_target_layer.py
Feynman27/pytorch-detect-rfcn
33cc264306be841ffaf997c4c458ca9ac2329378
[ "MIT" ]
4
2019-03-08T15:55:08.000Z
2019-08-28T10:36:15.000Z
from __future__ import absolute_import # -------------------------------------------------------- # Faster R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ross Girshick and Sean Bell # -------------------------------------------------------- # -------------------------------------------------------- # Reorganized and modified by Jianwei Yang and Jiasen Lu # -------------------------------------------------------- import torch import torch.nn as nn import numpy as np import numpy.random as npr from ..utils.config import cfg from .bbox_transform import bbox_overlaps_batch, bbox_transform_batch import pdb class _TrackingProposalTargetLayer(nn.Module): """ Assign object detection proposals to ground-truth targets. Produces proposal classification labels and bounding-box regression targets. """ def __init__(self, nclasses): super(_TrackingProposalTargetLayer, self).__init__() self._num_classes = nclasses self.BBOX_NORMALIZE_MEANS = torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_MEANS) self.BBOX_NORMALIZE_STDS = torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_STDS) self.BBOX_INSIDE_WEIGHTS = torch.FloatTensor(cfg.TRAIN.BBOX_INSIDE_WEIGHTS) def forward(self, gt_boxes, num_boxes): self.BBOX_NORMALIZE_MEANS = self.BBOX_NORMALIZE_MEANS.type_as(gt_boxes) self.BBOX_NORMALIZE_STDS = self.BBOX_NORMALIZE_STDS.type_as(gt_boxes) self.BBOX_INSIDE_WEIGHTS = self.BBOX_INSIDE_WEIGHTS.type_as(gt_boxes) # Use ground-truth boxes with frame correspondence as the set of candidate rois gt_rois = gt_boxes.new(gt_boxes.size()).zero_() gt_rois[:,:,:,1:5] = gt_boxes[:,:,:,:4] gt_trk_ids = gt_boxes[:,:,:,5] num_images = 1 rois_per_image = int(cfg.TRAIN.BATCH_SIZE / num_images) fg_rois_per_image = int(np.round(cfg.TRAIN.FG_FRACTION * rois_per_image)) fg_rois_per_image = 1 if fg_rois_per_image == 0 else fg_rois_per_image labels, rois, bbox_targets, bbox_inside_weights = self._sample_gt_rois_pytorch( gt_boxes, fg_rois_per_image, rois_per_image, self._num_classes, num_boxes) bbox_outside_weights = (bbox_inside_weights > 0).float() return rois, labels, bbox_targets, bbox_inside_weights, bbox_outside_weights def backward(self, top, propagate_down, bottom): """This layer does not propagate gradients.""" pass def reshape(self, bottom, top): """Reshaping happens during the call to forward.""" pass def _get_tracking_regression_labels_pytorch(self, bbox_target_data, labels_batch, num_classes): """Tracking Bounding-box regression targets (bbox_target_data) are stored in a compact form b x N x (class, tx, ty, tw, th) This function expands those targets into the 4-of-4*K representation used by the network (i.e. only one class has non-zero targets). Returns: bbox_target (ndarray): b x N x 4K blob of tracking regression targets bbox_inside_weights (ndarray): b x N x 4K blob of loss weights """ batch_size = labels_batch.size(0) rois_per_image = labels_batch.size(1) clss = labels_batch bbox_targets = bbox_target_data.new(batch_size, rois_per_image, 4).zero_() bbox_inside_weights = bbox_target_data.new(bbox_targets.size()).zero_() for b in range(batch_size): # assert clss[b].sum() > 0 if clss[b].sum() == 0: continue inds = torch.nonzero(clss[b] > 0).view(-1) for i in range(inds.numel()): ind = inds[i] bbox_targets[b, ind, :] = bbox_target_data[b, ind, :] bbox_inside_weights[b, ind, :] = self.BBOX_INSIDE_WEIGHTS return bbox_targets, bbox_inside_weights def _compute_targets_pytorch(self, gt_rois_t0, gt_rois_t1): """Compute tracking regression targets for an image.""" assert gt_rois_t0.size(1) == gt_rois_t1.size(1) assert gt_rois_t0.size(2) == 4 assert gt_rois_t1.size(2) == 4 batch_size = gt_rois_t0.size(0) rois_per_image = gt_rois_t0.size(1) targets = bbox_transform_batch(gt_rois_t0, gt_rois_t1) # TODO Check if we need this step if cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED: # Optionally normalize targets by a precomputed mean and stdev targets = ((targets - self.BBOX_NORMALIZE_MEANS.expand_as(targets)) / self.BBOX_NORMALIZE_STDS.expand_as(targets)) return targets def _get_track_correspondence(self, gt_boxes, num_boxes): """Check whether gt track in frame t has correspondence in frame t+tau """ n_twins = gt_boxes.size(0) batch_size = gt_boxes.size(1) correspondence_matrices = [] for i_leg in range(n_twins-1): for j_leg in range(i_leg+1, n_twins): for i_batch in range(batch_size): i_num_boxes = num_boxes[i_leg][i_batch][0] j_num_boxes = num_boxes[j_leg][i_batch][0] if j_num_boxes==0 or i_num_boxes==0: padded_corr_matrix = torch.zeros( gt_boxes[i_leg][i_batch].size(0),gt_boxes[i_leg][i_batch].size(0)).type_as(gt_boxes) padded_corr_matrix = padded_corr_matrix.long() else: twin2_trk_id_set = gt_boxes[j_leg][i_batch][:j_num_boxes, 5] twin1_trk_id_set = gt_boxes[i_leg][i_batch][:i_num_boxes, 5] # Create N_t+tau by N_t correspondence matrix X = twin2_trk_id_set.expand(twin1_trk_id_set.size(0), twin2_trk_id_set.size(0)).t() # transpose to N_t by N_t+tau matrix corr_matrix = (twin1_trk_id_set==X).t() # fatten up with zeros again padding = gt_boxes.size(2)-i_num_boxes padded_corr_matrix = torch.zeros( gt_boxes[i_leg][i_batch].size(0), gt_boxes[i_leg][i_batch].size(0)).type_as(corr_matrix) padded_corr_matrix[:i_num_boxes, :j_num_boxes] = corr_matrix padded_corr_matrix = padded_corr_matrix.long() correspondence_matrices.append(padded_corr_matrix.unsqueeze(0)) batch_corr_matrices = torch.cat(correspondence_matrices, dim=0) return batch_corr_matrices def _sample_gt_rois_pytorch(self, gt_boxes, fg_rois_per_image, rois_per_image, num_classes, num_boxes): """Generate sample of RoIs comprised of ground-truth rois. """ n_twins = gt_boxes.size(0) batch_size = gt_boxes.size(1) num_boxes_per_img = gt_boxes.size(2) # N_t by N_t+tau correspondence matrix trk_correspondences = self._get_track_correspondence(gt_boxes, num_boxes) batch_gt_rois_t0 = gt_boxes.new(batch_size, num_boxes_per_img, 6).zero_() batch_gt_rois_t1 = batch_gt_rois_t0.clone() labels = gt_boxes[:,:,:,4] tracking_labels_batch = labels.new(batch_size, num_boxes_per_img).zero_() tracking_rois_batch = gt_boxes.new(batch_size, num_boxes_per_img, 5).zero_() #batch_gt_rois_t0=[] #batch_gt_rois_t1=[] for i_bch in range(batch_size): row_inds = torch.nonzero(trk_correspondences[i_bch].sum(dim=1)).long().view(-1) col_inds = torch.nonzero(trk_correspondences[i_bch].sum(dim=0)).long().view(-1) gt_boxes_t0 = gt_boxes[0][i_bch] gt_boxes_t1 = gt_boxes[1][i_bch] if row_inds.numel()>0 and col_inds.numel()>0: # gt rois with correspondence across frames # TODO handle case where row_inds and/or col_inds are empty # Probably easiest just to filter from roidb gt_rois_t0 = torch.index_select(gt_boxes_t0, 0, row_inds) gt_rois_t1 = torch.index_select(gt_boxes_t1, 0, col_inds) # align tracks across time frames _, sorted_gt_inds = torch.sort(gt_rois_t0[:, 5], descending=False) gt_rois_t0 = gt_rois_t0[sorted_gt_inds] _, sorted_gt_inds = torch.sort(gt_rois_t1[:, 5], descending=False) gt_rois_t1 = gt_rois_t1[sorted_gt_inds] assert gt_rois_t0.size(0)==gt_rois_t1.size(0), "gt rois dim are not equal." temp_num_rois_t0 = gt_rois_t0.size(0) temp_num_rois_t1 = gt_rois_t1.size(0) batch_gt_rois_t0[i_bch][:temp_num_rois_t0] = gt_rois_t0 batch_gt_rois_t1[i_bch][:temp_num_rois_t1] = gt_rois_t1 tracking_labels_batch[i_bch] = batch_gt_rois_t0[i_bch][:, 4] # uncomment this line! tracking_rois_batch[i_bch][:,0] = i_bch tracking_rois_batch[i_bch][:,1:] = gt_boxes[0][i_bch][:,:4] tracking_target_data = self._compute_targets_pytorch(batch_gt_rois_t0[:,:,:4], batch_gt_rois_t1[:,:,:4]) tracking_targets, tracking_inside_weights = \ self._get_tracking_regression_labels_pytorch(tracking_target_data, tracking_labels_batch, num_classes) # set tracking rois to gt rois in frame t0 #tracking_rois_batch = gt_boxes[0][:,:,:5] return tracking_labels_batch, tracking_rois_batch, tracking_targets, tracking_inside_weights
49.331633
112
0.626952
7052e92e02cf6fe3cc4f48c66958e958f28dd0b7
2,338
py
Python
eclcli/bare/v2/port.py
shimisho/eclcli
a1f55ec9c6a0849c8b2100ddb8938a3bee141100
[ "Apache-2.0" ]
null
null
null
eclcli/bare/v2/port.py
shimisho/eclcli
a1f55ec9c6a0849c8b2100ddb8938a3bee141100
[ "Apache-2.0" ]
null
null
null
eclcli/bare/v2/port.py
shimisho/eclcli
a1f55ec9c6a0849c8b2100ddb8938a3bee141100
[ "Apache-2.0" ]
null
null
null
from eclcli.common import command from eclcli.bare import bare_utils from eclcli.common import utils class ListPort(command.Lister): """List all nic physical ports for a server""" def get_parser(self, prog_name): parser = super(ListPort, self).get_parser(prog_name) parser.add_argument( "server", metavar="<server>", help="Name or ID of server", ) return parser def take_action(self, parsed_args): bare_client = self.app.client_manager.bare identity_client = self.app.client_manager.identity search_opts = {} self.log.debug('search options: %s', search_opts) columns = ( 'ID', 'Mac Addr', 'Network Physical Port ID', 'Plane', 'Hardware ID', ) server_obj = utils.find_resource(bare_client.servers,parsed_args.server) data = bare_client.ports.list(server_obj.id) return (columns, (utils.get_item_properties(s,columns) for s in data)) class ShowPort(command.ShowOne): """Show nic physical port's detail for a server""" def get_parser(self, prog_name): parser = super(ShowPort, self).get_parser(prog_name) parser.add_argument( "server", metavar="<server>", help="Name or ID of server", ) parser.add_argument( "port", metavar="<port>", help="Port ID", ) return parser def take_action(self, parsed_args): bare_client = self.app.client_manager.bare identity_client = self.app.client_manager.identity server_obj = utils.find_resource(bare_client.servers,parsed_args.server) data = bare_client.ports.get(server_obj.id,parsed_args.port) columns = ( 'ID', 'Mac Addr', 'Network Physical Port ID', 'Plane', 'Attached Ports', 'Hardware ID', ) return columns, (utils.get_item_properties( data, columns, mixed_case_fields=[], formatters={ 'Attached Ports':bare_utils._format_dicts_list_generic } ))
30.763158
82
0.555603
8255933e2a61a376235c2de08e90c66a11149a02
3,670
py
Python
huaweicloud-sdk-apig/huaweicloudsdkapig/v2/model/delete_environment_v2_request.py
huaweicloud/huaweicloud-sdk-python-v3
7a6270390fcbf192b3882bf763e7016e6026ef78
[ "Apache-2.0" ]
64
2020-06-12T07:05:07.000Z
2022-03-30T03:32:50.000Z
huaweicloud-sdk-apig/huaweicloudsdkapig/v2/model/delete_environment_v2_request.py
huaweicloud/huaweicloud-sdk-python-v3
7a6270390fcbf192b3882bf763e7016e6026ef78
[ "Apache-2.0" ]
11
2020-07-06T07:56:54.000Z
2022-01-11T11:14:40.000Z
huaweicloud-sdk-apig/huaweicloudsdkapig/v2/model/delete_environment_v2_request.py
huaweicloud/huaweicloud-sdk-python-v3
7a6270390fcbf192b3882bf763e7016e6026ef78
[ "Apache-2.0" ]
24
2020-06-08T11:42:13.000Z
2022-03-04T06:44:08.000Z
# coding: utf-8 import re import six from huaweicloudsdkcore.utils.http_utils import sanitize_for_serialization class DeleteEnvironmentV2Request: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'instance_id': 'str', 'env_id': 'str' } attribute_map = { 'instance_id': 'instance_id', 'env_id': 'env_id' } def __init__(self, instance_id=None, env_id=None): """DeleteEnvironmentV2Request - a model defined in huaweicloud sdk""" self._instance_id = None self._env_id = None self.discriminator = None self.instance_id = instance_id self.env_id = env_id @property def instance_id(self): """Gets the instance_id of this DeleteEnvironmentV2Request. 实例编号 :return: The instance_id of this DeleteEnvironmentV2Request. :rtype: str """ return self._instance_id @instance_id.setter def instance_id(self, instance_id): """Sets the instance_id of this DeleteEnvironmentV2Request. 实例编号 :param instance_id: The instance_id of this DeleteEnvironmentV2Request. :type: str """ self._instance_id = instance_id @property def env_id(self): """Gets the env_id of this DeleteEnvironmentV2Request. 环境的ID :return: The env_id of this DeleteEnvironmentV2Request. :rtype: str """ return self._env_id @env_id.setter def env_id(self, env_id): """Sets the env_id of this DeleteEnvironmentV2Request. 环境的ID :param env_id: The env_id of this DeleteEnvironmentV2Request. :type: str """ self._env_id = env_id def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding("utf-8") return json.dumps(sanitize_for_serialization(self), ensure_ascii=False) def __repr__(self): """For `print`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, DeleteEnvironmentV2Request): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
26.214286
79
0.563488
8e168f00b63a1e58442e6d98826a4f1f40e206dc
1,883
py
Python
functions_legacy/BackwardSelection.py
dpopadic/arpmRes
ddcc4de713b46e3e9dcb77cc08c502ce4df54f76
[ "MIT" ]
6
2021-04-10T13:24:30.000Z
2022-03-26T08:20:42.000Z
functions_legacy/BackwardSelection.py
dpopadic/arpmRes
ddcc4de713b46e3e9dcb77cc08c502ce4df54f76
[ "MIT" ]
null
null
null
functions_legacy/BackwardSelection.py
dpopadic/arpmRes
ddcc4de713b46e3e9dcb77cc08c502ce4df54f76
[ "MIT" ]
6
2019-08-13T22:02:17.000Z
2022-02-09T17:49:12.000Z
import matplotlib.pyplot as plt import numpy as np from numpy import max as npmax from numpy import zeros, where, mod, ceil from scipy.misc import comb plt.style.use('seaborn') def BackwardSelection(v,data,objective,step=1,k_min=1): # Backward stepwise routine for n_-choose-k selection problems # INPUTS # v :[vector](1 x n_) vector of indices # data :[struct] struct with data needed by the objective function # objective :[handle] handle of the objective function # step :[scalar] number of indices to be added at each iteration # k_min :[scalar] minimum number of indices to be chosen (optional default = 1) # OPS # O_ :[vector](k_ x 1) objective value for each set v_{k} # v_ :[cell](k_ x 1) each row contains a set of indices in ascending order of length # v_num :[vector](k_ x 1) cardinality of each set of indices v_[k] # For details on the exercise, see here . ## Code n_ = len(v) # step 0 k_ = int(ceil(n_/step)) k = k_-1 k_stop=int(ceil(k_min/step)-mod(k_min,step))-1 O_ = zeros((k_,1)) O_[k] = objective(data,v) v_ = {} v_[k] = v v_num = zeros((k_,1)) v_num[k] = n_ while k > k_stop: n = comb(v,step) if n.size==0: n = v h_ = n.shape[0] O_k = zeros((1,h_)) for h in range(h_): # step 1 v_h = np.setdiff1d(v,n[h]) # step 2 O_k[0,h] = objective(data,v_h) # step 3 O_star, h_star = npmax(O_k[0]), np.argmax(O_k[0]) O_[k-1] = O_star # step 4 v = np.setdiff1d(v,n[h_star]) v_[k-1] = v v_num[k-1] = len(v) # step 5 k = k-1 O_ = where(v_num==0,0,O_) v_ = where(v_num==0,0,v_) v_num = where(v_num==0,0,v_num) return O_, v_, v_num
28.104478
96
0.560276
833f6930f7f410f1483d4f3df7a2da55725149d7
4,942
py
Python
services/web/server/src/simcore_service_webserver/studies_dispatcher/_users.py
colinRawlings/osparc-simcore
bf2f18d5bc1e574d5f4c238d08ad15156184c310
[ "MIT" ]
25
2018-04-13T12:44:12.000Z
2022-03-12T15:01:17.000Z
services/web/server/src/simcore_service_webserver/studies_dispatcher/_users.py
colinRawlings/osparc-simcore
bf2f18d5bc1e574d5f4c238d08ad15156184c310
[ "MIT" ]
2,553
2018-01-18T17:11:55.000Z
2022-03-31T16:26:40.000Z
services/web/server/src/simcore_service_webserver/studies_dispatcher/_users.py
odeimaiz/osparc-simcore
71c2fc58dcfe067487dcd75cb70298a4d6237e97
[ "MIT" ]
20
2018-01-18T19:45:33.000Z
2022-03-29T07:08:47.000Z
""" Users management Keeps functionality that couples with the following app modules - users, - login - security - resource_manager """ import logging from typing import Dict, Optional from aiohttp import web from aioredlock import Aioredlock from pydantic import BaseModel from ..login.cfg import get_storage from ..login.handlers import ACTIVE, GUEST from ..login.utils import get_client_ip, get_random_string from ..resource_manager.config import GUEST_USER_RC_LOCK_FORMAT from ..resource_manager.redis import get_redis_lock_manager from ..security_api import authorized_userid, encrypt_password, is_anonymous, remember from ..users_api import get_user from ..users_exceptions import UserNotFoundError log = logging.getLogger(__name__) class UserInfo(BaseModel): id: int name: str email: str primary_gid: int needs_login: bool = False is_guest: bool = True async def _get_authorized_user(request: web.Request) -> Optional[Dict]: # Returns valid user if it is identified (cookie) and logged in (valid cookie)? user_id = await authorized_userid(request) if user_id is not None: try: user = await get_user(request.app, user_id) return user except UserNotFoundError: return None return None async def _create_temporary_user(request: web.Request): db = get_storage(request.app) lock_manager: Aioredlock = get_redis_lock_manager(request.app) # TODO: avatar is an icon of the hero! random_user_name = get_random_string(min_len=5) email = random_user_name + "@guest-at-osparc.io" password = get_random_string(min_len=12) # GUEST_USER_RC_LOCK: # # These locks prevents the GC from deleting a GUEST user in to stages of its lifefime: # # 1. During construction: # - Prevents GC from deleting this GUEST user while it is being created # - Since the user still does not have an ID assigned, the lock is named with his random_user_name # MAX_DELAY_TO_CREATE_USER = 3 # secs # # 2. During initialization # - Prevents the GC from deleting this GUEST user, with ID assigned, while it gets initialized and acquires it's first resource # - Uses the ID assigned to name the lock # MAX_DELAY_TO_GUEST_FIRST_CONNECTION = 15 # secs # # # NOTES: # - In case of failure or excessive delay the lock has a timeout that automatically unlocks it # and the GC can clean up what remains # - Notice that the ids to name the locks are unique, therefore the lock can be acquired w/o errors # - These locks are very specific to resources and have timeout so the risk of blocking from GC is small # # (1) read details above async with await lock_manager.lock( GUEST_USER_RC_LOCK_FORMAT.format(user_id=random_user_name), lock_timeout=MAX_DELAY_TO_CREATE_USER, ): # NOTE: usr Dict is incomplete, e.g. does not contain primary_gid usr = await db.create_user( { "name": random_user_name, "email": email, "password_hash": encrypt_password(password), "status": ACTIVE, "role": GUEST, "created_ip": get_client_ip(request), } ) user: Dict = await get_user(request.app, usr["id"]) # (2) read details above await lock_manager.lock( GUEST_USER_RC_LOCK_FORMAT.format(user_id=user["id"]), lock_timeout=MAX_DELAY_TO_GUEST_FIRST_CONNECTION, ) return user async def acquire_user(request: web.Request, *, is_guest_allowed: bool) -> UserInfo: """ Identifies request's user and if anonymous, it creates a temporary guest user that is authorized. """ user = None # anonymous = no identity in request is_anonymous_user = await is_anonymous(request) if not is_anonymous_user: # NOTE: covers valid cookie with unauthorized user (e.g. expired guest/banned) user = await _get_authorized_user(request) if not user and is_guest_allowed: log.debug("Creating temporary GUEST user ...") user = await _create_temporary_user(request) is_anonymous_user = True if not is_guest_allowed and (not user or user.get("role") == GUEST): raise web.HTTPUnauthorized(reason="Only available for registered users") return UserInfo( id=user["id"], name=user["name"], email=user["email"], primary_gid=user["primary_gid"], needs_login=is_anonymous_user, is_guest=user.get("role") == GUEST, ) async def ensure_authentication( user: UserInfo, request: web.Request, response: web.Response ): if user.needs_login: log.debug("Auto login for anonymous user %s", user.name) identity = user.email await remember(request, response, identity)
33.167785
135
0.677256
336980b47a33312c08a6f9a32e6002d76f3f15e7
800
py
Python
tests/test_GitHubUtils.py
Prodigysov/pyutil
d8faa7196ce3f9f156b49d088c97d93d25c2ec20
[ "Apache-2.0" ]
null
null
null
tests/test_GitHubUtils.py
Prodigysov/pyutil
d8faa7196ce3f9f156b49d088c97d93d25c2ec20
[ "Apache-2.0" ]
null
null
null
tests/test_GitHubUtils.py
Prodigysov/pyutil
d8faa7196ce3f9f156b49d088c97d93d25c2ec20
[ "Apache-2.0" ]
null
null
null
import os import unittest from github.GithubException import GithubException from pyutil import GitHubUtils from .TestSupport import TestSupport class test_GitHubUtils(unittest.TestCase): def test_search_repos_with_username(self): test_user = "google" test_repos_1 = GitHubUtils.search_repos("user:{}".format(test_user), language="Java") self.assertTrue(len(test_repos_1) > 0) test_repos_2 = GitHubUtils.search_repos("user:{} language:Java".format(test_user)) self.assertTrue(len(test_repos_2) > 0) # Query separator "+" will not work test_repos_3 = GitHubUtils.search_repos("user:{}+language:Java".format(test_user), max_retry_times=0) self.assertTrue(len(test_repos_3) == 0) if __name__ == '__main__': unittest.main()
30.769231
109
0.72