hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
ccea48827abba3f8528cfac40c37658cee303eb7
3,422
py
Python
tests/web.adblockplus.org/tests/test_CookiesSettings.py
adblockplus/web.adblockplus.org
c2c570ce4f4296afc3577afe233c6b23b128f206
[ "MIT" ]
9
2016-01-29T18:05:29.000Z
2021-10-06T04:21:55.000Z
tests/web.adblockplus.org/tests/test_CookiesSettings.py
adblockplus/web.adblockplus.org
c2c570ce4f4296afc3577afe233c6b23b128f206
[ "MIT" ]
9
2015-04-06T19:03:32.000Z
2019-05-28T13:34:55.000Z
tests/web.adblockplus.org/tests/test_CookiesSettings.py
adblockplus/web.adblockplus.org
c2c570ce4f4296afc3577afe233c6b23b128f206
[ "MIT" ]
18
2015-04-06T17:42:31.000Z
2021-10-06T04:26:29.000Z
import pytest from selenium import webdriver from selenium.webdriver.chrome.options import Options from pages.landingPage import LandingPage from chunks.topMenu import TopMenu from chunks.cookiesPrompt import CookiesPrompt import utils.global_functions as gf @pytest.fixture(scope="function") def driver(): options = Options() gf.setup(options) driver = webdriver.Chrome(options=options) yield driver driver.close() def test_verify_prompt_displayed_when_not_agreeing(driver): landing_page = LandingPage(driver) landing_page.go_home() top_menu = TopMenu(driver) top_menu.click_about_menu_item() cookies_prompt = CookiesPrompt(driver) assert cookies_prompt.is_prompt_visible() def test_verify_prompt_not_displayed_when_agreeing(driver): landing_page = LandingPage(driver) landing_page.go_home() cookies_prompt = CookiesPrompt(driver) cookies_prompt.click_ok_got_it_button() top_menu = TopMenu(driver) top_menu.click_about_menu_item() assert not cookies_prompt.is_prompt_visible() def test_verify_all_options_selected_by_default(driver): landing_page = LandingPage(driver) landing_page.go_home() cookies_prompt = CookiesPrompt(driver) cookie_settings_form = cookies_prompt.click_edit_cookie_settings_button() assert cookie_settings_form.is_necessary_cookies_toggle_enabled() assert cookie_settings_form.is_tracking_cookies_toggle_enabled() assert cookie_settings_form.is_ab_testing_cookies_toggle_enabled() def test_disable_tracking_save(driver): landing_page = LandingPage(driver) landing_page.go_home() cookies_prompt = CookiesPrompt(driver) cookie_settings_form = cookies_prompt.click_edit_cookie_settings_button() cookie_settings_form.click_tracking_cookies_toggle() cookie_settings_form.click_save_preferences_button() assert not cookies_prompt.is_prompt_visible() def test_disable_ab_testing_save(driver): landing_page = LandingPage(driver) landing_page.go_home() cookies_prompt = CookiesPrompt(driver) cookie_settings_form = cookies_prompt.click_edit_cookie_settings_button() cookie_settings_form.click_ab_testing_cookies_toggle() cookie_settings_form.click_save_preferences_button() assert not cookies_prompt.is_prompt_visible() def test_verify_tracking_toggle_affects_ab_when_ab_enabled(driver): landing_page = LandingPage(driver) landing_page.go_home() cookies_prompt = CookiesPrompt(driver) cookie_settings_form = cookies_prompt.click_edit_cookie_settings_button() cookie_settings_form.click_tracking_cookies_toggle() assert not cookie_settings_form.is_ab_testing_cookies_toggle_enabled() cookie_settings_form.click_tracking_cookies_toggle() assert cookie_settings_form.is_ab_testing_cookies_toggle_enabled() def test_verify_tracking_toggle_does_not_affect_ab_when_ab_disabled(driver): landing_page = LandingPage(driver) landing_page.go_home() cookies_prompt = CookiesPrompt(driver) cookie_settings_form = cookies_prompt.click_edit_cookie_settings_button() cookie_settings_form.click_ab_testing_cookies_toggle() cookie_settings_form.click_tracking_cookies_toggle() assert not cookie_settings_form.is_ab_testing_cookies_toggle_enabled() cookie_settings_form.click_tracking_cookies_toggle() assert not cookie_settings_form.is_ab_testing_cookies_toggle_enabled()
33.223301
77
0.816774
fa9d45779528f1a76524617b3948ba2e1195dfe7
13,616
py
Python
tests/unit/test_configs.py
nickmelnikov82/dash
e774908da770bee83f3213e0307c27ed8a40500e
[ "MIT" ]
4
2015-04-10T02:52:35.000Z
2015-04-12T19:33:48.000Z
tests/unit/test_configs.py
nickmelnikov82/dash
e774908da770bee83f3213e0307c27ed8a40500e
[ "MIT" ]
null
null
null
tests/unit/test_configs.py
nickmelnikov82/dash
e774908da770bee83f3213e0307c27ed8a40500e
[ "MIT" ]
null
null
null
import os import logging import pytest from flask import Flask from dash import Dash, exceptions as _exc # noinspection PyProtectedMember from dash._configs import ( pathname_configs, DASH_ENV_VARS, get_combined_config, load_dash_env_vars, ) from dash._utils import AttributeDict from dash._get_paths import ( app_get_asset_url, app_get_relative_path, app_strip_relative_path, get_asset_url, get_relative_path, strip_relative_path, ) @pytest.fixture def empty_environ(): for k in DASH_ENV_VARS.keys(): if k in os.environ: os.environ.pop(k) def test_dash_env_vars(empty_environ): assert {None} == { val for _, val in DASH_ENV_VARS.items() }, "initial var values are None without extra OS environ setting" @pytest.mark.parametrize( "route_prefix, req_prefix, expected_route, expected_req", [ (None, None, "/", "/"), ("/dash/", None, None, "/dash/"), (None, "/my-dash-app/", "/", "/my-dash-app/"), ("/dash/", "/my-dash-app/dash/", "/dash/", "/my-dash-app/dash/"), ], ) def test_valid_pathname_prefix_init( empty_environ, route_prefix, req_prefix, expected_route, expected_req ): _, routes, req = pathname_configs( routes_pathname_prefix=route_prefix, requests_pathname_prefix=req_prefix ) if expected_route is not None: assert routes == expected_route assert req == expected_req def test_invalid_pathname_prefix(empty_environ): with pytest.raises(_exc.InvalidConfig, match="url_base_pathname"): _, _, _ = pathname_configs("/my-path", "/another-path") with pytest.raises(_exc.InvalidConfig) as excinfo: _, _, _ = pathname_configs( url_base_pathname="/invalid", routes_pathname_prefix="/invalid" ) assert str(excinfo.value).split(".")[0].endswith("`routes_pathname_prefix`") with pytest.raises(_exc.InvalidConfig) as excinfo: _, _, _ = pathname_configs( url_base_pathname="/my-path", requests_pathname_prefix="/another-path" ) assert str(excinfo.value).split(".")[0].endswith("`requests_pathname_prefix`") with pytest.raises(_exc.InvalidConfig, match="start with `/`"): _, _, _ = pathname_configs("my-path") with pytest.raises(_exc.InvalidConfig, match="end with `/`"): _, _, _ = pathname_configs("/my-path") def test_pathname_prefix_from_environ_app_name(empty_environ): os.environ["DASH_APP_NAME"] = "my-dash-app" _, routes, req = pathname_configs() assert req == "/my-dash-app/" assert routes == "/" def test_pathname_prefix_environ_routes(empty_environ): os.environ["DASH_ROUTES_PATHNAME_PREFIX"] = "/routes/" _, routes, _ = pathname_configs() assert routes == "/routes/" def test_pathname_prefix_environ_requests(empty_environ): os.environ["DASH_REQUESTS_PATHNAME_PREFIX"] = "/requests/" _, _, req = pathname_configs() assert req == "/requests/" @pytest.mark.parametrize( "req, expected", [ ("/", "/assets/reset.css"), ("/requests/", "/requests/assets/reset.css"), ("/requests/routes/", "/requests/routes/assets/reset.css"), ], ) def test_pathname_prefix_assets(empty_environ, req, expected): config = AttributeDict(assets_external_path=req, assets_url_path="assets") path = app_get_asset_url(config, "reset.css") assert path == expected @pytest.mark.parametrize( "requests_pathname_prefix, assets_external_path, assets_url_path, expected", [ (None, None, "assets", "/assets/reset.css"), ("/app/", None, "assets", "/app/assets/reset.css"), (None, None, "css", "/css/reset.css"), ("/app/", None, "css", "/app/css/reset.css"), ( None, "http://external.com/", "assets", "http://external.com/assets/reset.css", ), ("/app/", "http://external.com/", "css", "http://external.com/css/reset.css"), ], ) def test_asset_url( empty_environ, requests_pathname_prefix, assets_external_path, assets_url_path, expected, ): app = Dash( "Dash", requests_pathname_prefix=requests_pathname_prefix, assets_external_path=assets_external_path, assets_url_path=assets_url_path, ) app_path = app.get_asset_url("reset.css") dash_path = get_asset_url("reset.css") assert app_path == dash_path == expected @pytest.mark.parametrize( "requests_pathname_prefix, expected", [ (None, "/page2"), ("/app/", "/app/page2"), ], ) def test_get_relative_path( empty_environ, requests_pathname_prefix, expected, ): app = Dash( "Dash", requests_pathname_prefix=requests_pathname_prefix, ) app_path = app.get_relative_path("/page2") dash_path = get_relative_path("/page2") assert app_path == dash_path == expected @pytest.mark.parametrize( "requests_pathname_prefix, expected", [ (None, "/app/page2"), ("/app/", "/page2"), ], ) def test_strip_relative_path( empty_environ, requests_pathname_prefix, expected, ): app = Dash( "Dash", requests_pathname_prefix=requests_pathname_prefix, ) app_path = app.strip_relative_path("/app/page2") dash_path = strip_relative_path("/app/page2") assert app_path == dash_path == expected def test_get_combined_config_dev_tools_ui(empty_environ): val1 = get_combined_config("ui", None, default=False) assert ( not val1 ), "should return the default value if None is provided for init and environment" os.environ["DASH_UI"] = "true" val2 = get_combined_config("ui", None, default=False) assert val2, "should return the set environment value as True" val3 = get_combined_config("ui", False, default=True) assert not val3, "init value overrides the environment value" def test_get_combined_config_props_check(empty_environ): val1 = get_combined_config("props_check", None, default=False) assert ( not val1 ), "should return the default value if None is provided for init and environment" os.environ["DASH_PROPS_CHECK"] = "true" val2 = get_combined_config("props_check", None, default=False) assert val2, "should return the set environment value as True" val3 = get_combined_config("props_check", False, default=True) assert not val3, "init value overrides the environment value" def test_load_dash_env_vars_refects_to_os_environ(empty_environ): for var in DASH_ENV_VARS.keys(): os.environ[var] = "true" vars = load_dash_env_vars() assert vars[var] == "true" os.environ[var] = "false" vars = load_dash_env_vars() assert vars[var] == "false" @pytest.mark.parametrize( "name, server, expected", [ (None, True, "__main__"), ("test", True, "test"), ("test", False, "test"), (None, Flask("test"), "test"), ("test", Flask("other"), "test"), ], ) def test_app_name_server(empty_environ, name, server, expected): app = Dash(name=name, server=server) assert app.config.name == expected @pytest.mark.parametrize( "prefix, partial_path, expected", [ ("/", "", "/"), ("/my-dash-app/", "", "/my-dash-app/"), ("/", "/", "/"), ("/my-dash-app/", "/", "/my-dash-app/"), ("/", "/page-1", "/page-1"), ("/my-dash-app/", "/page-1", "/my-dash-app/page-1"), ("/", "/page-1/", "/page-1/"), ("/my-dash-app/", "/page-1/", "/my-dash-app/page-1/"), ("/", "/page-1/sub-page-1", "/page-1/sub-page-1"), ("/my-dash-app/", "/page-1/sub-page-1", "/my-dash-app/page-1/sub-page-1"), ], ) def test_pathname_prefix_relative_url(prefix, partial_path, expected): path = app_get_relative_path(prefix, partial_path) assert path == expected @pytest.mark.parametrize( "prefix, partial_path", [("/", "relative-page-1"), ("/my-dash-app/", "relative-page-1")], ) def test_invalid_get_relative_path(prefix, partial_path): with pytest.raises(_exc.UnsupportedRelativePath): app_get_relative_path(prefix, partial_path) @pytest.mark.parametrize( "prefix, partial_path, expected", [ ("/", None, None), ("/my-dash-app/", None, None), ("/", "/", ""), ("/my-dash-app/", "/my-dash-app", ""), ("/my-dash-app/", "/my-dash-app/", ""), ("/", "/page-1", "page-1"), ("/my-dash-app/", "/my-dash-app/page-1", "page-1"), ("/", "/page-1/", "page-1"), ("/my-dash-app/", "/my-dash-app/page-1/", "page-1"), ("/", "/page-1/sub-page-1", "page-1/sub-page-1"), ("/my-dash-app/", "/my-dash-app/page-1/sub-page-1", "page-1/sub-page-1"), ("/", "/page-1/sub-page-1/", "page-1/sub-page-1"), ("/my-dash-app/", "/my-dash-app/page-1/sub-page-1/", "page-1/sub-page-1"), ("/my-dash-app/", "/my-dash-app/my-dash-app/", "my-dash-app"), ( "/my-dash-app/", "/my-dash-app/something-else/my-dash-app/", "something-else/my-dash-app", ), ], ) def test_strip_relative_path(prefix, partial_path, expected): path = app_strip_relative_path(prefix, partial_path) assert path == expected @pytest.mark.parametrize( "prefix, partial_path", [ ("/", "relative-page-1"), ("/my-dash-app", "relative-page-1"), ("/my-dash-app", "/some-other-path"), ], ) def test_invalid_strip_relative_path(prefix, partial_path): with pytest.raises(_exc.UnsupportedRelativePath): app_strip_relative_path(prefix, partial_path) def test_port_env_fail_str(empty_environ): app = Dash() with pytest.raises(Exception) as excinfo: app.run(port="garbage") assert ( excinfo.exconly() == "ValueError: Expecting an integer from 1 to 65535, found port='garbage'" ) def test_port_env_fail_range(empty_environ): app = Dash() with pytest.raises(Exception) as excinfo: app.run(port="0") assert ( excinfo.exconly() == "AssertionError: Expecting an integer from 1 to 65535, found port=0" ) with pytest.raises(Exception) as excinfo: app.run(port="65536") assert ( excinfo.exconly() == "AssertionError: Expecting an integer from 1 to 65535, found port=65536" ) @pytest.mark.parametrize( "setlevel_warning", [False, True], ) def test_no_proxy_success(mocker, caplog, empty_environ, setlevel_warning): app = Dash() if setlevel_warning: app.logger.setLevel(logging.WARNING) # mock out the run method so we don't actually start listening forever mocker.patch.object(app.server, "run") app.run(port=8787) STARTUP_MESSAGE = "Dash is running on http://127.0.0.1:8787/\n" if setlevel_warning: assert caplog.text is None or STARTUP_MESSAGE not in caplog.text else: assert STARTUP_MESSAGE in caplog.text @pytest.mark.parametrize( "proxy, host, port, path", [ ("https://daash.plot.ly", "127.0.0.1", 8050, "/"), ("https://daaash.plot.ly", "0.0.0.0", 8050, "/a/b/c/"), ("https://daaaash.plot.ly", "127.0.0.1", 1234, "/"), ("http://go.away", "127.0.0.1", 8050, "/now/"), ("http://my.server.tv:8765", "0.0.0.0", 80, "/"), ], ) def test_proxy_success(mocker, caplog, empty_environ, proxy, host, port, path): proxystr = "http://{}:{}::{}".format(host, port, proxy) app = Dash(url_base_pathname=path) mocker.patch.object(app.server, "run") app.run(proxy=proxystr, host=host, port=port) assert "Dash is running on {}{}\n".format(proxy, path) in caplog.text def test_proxy_failure(mocker, empty_environ): app = Dash() # if the tests work we'll never get to server.run, but keep the mock # in case something is amiss and we don't get an exception. mocker.patch.object(app.server, "run") with pytest.raises(_exc.ProxyError) as excinfo: app.run( proxy="https://127.0.0.1:8055::http://plot.ly", host="127.0.0.1", port=8055 ) assert "protocol: http is incompatible with the proxy" in excinfo.exconly() assert "you must use protocol: https" in excinfo.exconly() with pytest.raises(_exc.ProxyError) as excinfo: app.run( proxy="http://0.0.0.0:8055::http://plot.ly", host="127.0.0.1", port=8055 ) assert "host: 127.0.0.1 is incompatible with the proxy" in excinfo.exconly() assert "you must use host: 0.0.0.0" in excinfo.exconly() with pytest.raises(_exc.ProxyError) as excinfo: app.run(proxy="http://0.0.0.0:8155::http://plot.ly", host="0.0.0.0", port=8055) assert "port: 8055 is incompatible with the proxy" in excinfo.exconly() assert "you must use port: 8155" in excinfo.exconly() def test_title(): app = Dash() assert "<title>Dash</title>" in app.index() app = Dash() app.title = "Hello World" assert "<title>Hello World</title>" in app.index() app = Dash(title="Custom Title") assert "<title>Custom Title</title>" in app.index() def test_app_delayed_config(): app = Dash(server=False) app.init_app(app=Flask("test"), requests_pathname_prefix="/dash/") assert app.config.requests_pathname_prefix == "/dash/" with pytest.raises(AttributeError): app.config.name = "cannot update me" def test_app_invalid_delayed_config(): app = Dash(server=False) with pytest.raises(AttributeError): app.init_app(app=Flask("test"), name="too late 2 update")
30.945455
87
0.630435
7f172f17224685d423a8a5b019e874add16aeccc
22,927
py
Python
sdk/network/azure-mgmt-network/azure/mgmt/network/v2020_11_01/aio/operations/_application_gateway_private_endpoint_connections_operations.py
rsdoherty/azure-sdk-for-python
6bba5326677468e6660845a703686327178bb7b1
[ "MIT" ]
3
2020-06-23T02:25:27.000Z
2021-09-07T18:48:11.000Z
sdk/network/azure-mgmt-network/azure/mgmt/network/v2020_11_01/aio/operations/_application_gateway_private_endpoint_connections_operations.py
rsdoherty/azure-sdk-for-python
6bba5326677468e6660845a703686327178bb7b1
[ "MIT" ]
510
2019-07-17T16:11:19.000Z
2021-08-02T08:38:32.000Z
sdk/network/azure-mgmt-network/azure/mgmt/network/v2020_11_01/aio/operations/_application_gateway_private_endpoint_connections_operations.py
rsdoherty/azure-sdk-for-python
6bba5326677468e6660845a703686327178bb7b1
[ "MIT" ]
5
2019-09-04T12:51:37.000Z
2020-09-16T07:28:40.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar, Union import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling from ... import models as _models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class ApplicationGatewayPrivateEndpointConnectionsOperations: """ApplicationGatewayPrivateEndpointConnectionsOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2020_11_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config async def _delete_initial( self, resource_group_name: str, application_gateway_name: str, connection_name: str, **kwargs ) -> None: cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-11-01" accept = "application/json" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'applicationGatewayName': self._serialize.url("application_gateway_name", application_gateway_name, 'str'), 'connectionName': self._serialize.url("connection_name", connection_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/applicationGateways/{applicationGatewayName}/privateEndpointConnections/{connectionName}'} # type: ignore async def begin_delete( self, resource_group_name: str, application_gateway_name: str, connection_name: str, **kwargs ) -> AsyncLROPoller[None]: """Deletes the specified private endpoint connection on application gateway. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param application_gateway_name: The name of the application gateway. :type application_gateway_name: str :param connection_name: The name of the application gateway private endpoint connection. :type connection_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: Pass in True if you'd like the AsyncARMPolling polling method, False for no polling, or your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._delete_initial( resource_group_name=resource_group_name, application_gateway_name=application_gateway_name, connection_name=connection_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'applicationGatewayName': self._serialize.url("application_gateway_name", application_gateway_name, 'str'), 'connectionName': self._serialize.url("connection_name", connection_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/applicationGateways/{applicationGatewayName}/privateEndpointConnections/{connectionName}'} # type: ignore async def _update_initial( self, resource_group_name: str, application_gateway_name: str, connection_name: str, parameters: "_models.ApplicationGatewayPrivateEndpointConnection", **kwargs ) -> Optional["_models.ApplicationGatewayPrivateEndpointConnection"]: cls = kwargs.pop('cls', None) # type: ClsType[Optional["_models.ApplicationGatewayPrivateEndpointConnection"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-11-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._update_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'applicationGatewayName': self._serialize.url("application_gateway_name", application_gateway_name, 'str'), 'connectionName': self._serialize.url("connection_name", connection_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'ApplicationGatewayPrivateEndpointConnection') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = None if response.status_code == 200: deserialized = self._deserialize('ApplicationGatewayPrivateEndpointConnection', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/applicationGateways/{applicationGatewayName}/privateEndpointConnections/{connectionName}'} # type: ignore async def begin_update( self, resource_group_name: str, application_gateway_name: str, connection_name: str, parameters: "_models.ApplicationGatewayPrivateEndpointConnection", **kwargs ) -> AsyncLROPoller["_models.ApplicationGatewayPrivateEndpointConnection"]: """Updates the specified private endpoint connection on application gateway. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param application_gateway_name: The name of the application gateway. :type application_gateway_name: str :param connection_name: The name of the application gateway private endpoint connection. :type connection_name: str :param parameters: Parameters supplied to update application gateway private endpoint connection operation. :type parameters: ~azure.mgmt.network.v2020_11_01.models.ApplicationGatewayPrivateEndpointConnection :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: Pass in True if you'd like the AsyncARMPolling polling method, False for no polling, or your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either ApplicationGatewayPrivateEndpointConnection or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.network.v2020_11_01.models.ApplicationGatewayPrivateEndpointConnection] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.ApplicationGatewayPrivateEndpointConnection"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._update_initial( resource_group_name=resource_group_name, application_gateway_name=application_gateway_name, connection_name=connection_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('ApplicationGatewayPrivateEndpointConnection', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'applicationGatewayName': self._serialize.url("application_gateway_name", application_gateway_name, 'str'), 'connectionName': self._serialize.url("connection_name", connection_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'azure-async-operation'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/applicationGateways/{applicationGatewayName}/privateEndpointConnections/{connectionName}'} # type: ignore async def get( self, resource_group_name: str, application_gateway_name: str, connection_name: str, **kwargs ) -> "_models.ApplicationGatewayPrivateEndpointConnection": """Gets the specified private endpoint connection on application gateway. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param application_gateway_name: The name of the application gateway. :type application_gateway_name: str :param connection_name: The name of the application gateway private endpoint connection. :type connection_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ApplicationGatewayPrivateEndpointConnection, or the result of cls(response) :rtype: ~azure.mgmt.network.v2020_11_01.models.ApplicationGatewayPrivateEndpointConnection :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ApplicationGatewayPrivateEndpointConnection"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-11-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'applicationGatewayName': self._serialize.url("application_gateway_name", application_gateway_name, 'str'), 'connectionName': self._serialize.url("connection_name", connection_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('ApplicationGatewayPrivateEndpointConnection', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/applicationGateways/{applicationGatewayName}/privateEndpointConnections/{connectionName}'} # type: ignore def list( self, resource_group_name: str, application_gateway_name: str, **kwargs ) -> AsyncIterable["_models.ApplicationGatewayPrivateEndpointConnectionListResult"]: """Lists all private endpoint connections on an application gateway. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param application_gateway_name: The name of the application gateway. :type application_gateway_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either ApplicationGatewayPrivateEndpointConnectionListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2020_11_01.models.ApplicationGatewayPrivateEndpointConnectionListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ApplicationGatewayPrivateEndpointConnectionListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-11-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'applicationGatewayName': self._serialize.url("application_gateway_name", application_gateway_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('ApplicationGatewayPrivateEndpointConnectionListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/applicationGateways/{applicationGatewayName}/privateEndpointConnections'} # type: ignore
53.318605
241
0.690409
69fd8b4cdd24fc52e973eea89fb0c9cdf48f3818
502
py
Python
modules/test/multiply.py
JimScope/PowerM
b1c7b8926b728c05c36d518a3a1a9904e5b98418
[ "MIT" ]
2
2020-01-09T22:56:32.000Z
2021-04-24T05:13:52.000Z
modules/test/multiply.py
JimScope/PowerM
b1c7b8926b728c05c36d518a3a1a9904e5b98418
[ "MIT" ]
null
null
null
modules/test/multiply.py
JimScope/PowerM
b1c7b8926b728c05c36d518a3a1a9904e5b98418
[ "MIT" ]
1
2019-03-27T19:10:07.000Z
2019-03-27T19:10:07.000Z
import sys from threading import Thread sys.path.append('..') import emailer class MyThread(Thread): def __init__(self,user,z): Thread.__init__(self) self.z = int(z) self.user = user self.tab_list = [] def run(self): for i in range(1,11): self.tab_list.append((self.z,"x",i,"=",self.z*int(i))) x = self.tab_list emailer.send(self.user, "Tabla del " + str(self.z), str(x)) __version__ = '0.1'
17.310345
66
0.543825
03f1ce50fc4486c90ee439e0cd53753ff6157874
6,346
py
Python
regym/tests/rl_algorithms/agent_hook_test.py
KnwSondess/Regym
825c7dacf955a3e2f6c658c0ecb879a0ca036c1a
[ "MIT" ]
6
2019-12-03T21:07:12.000Z
2021-03-25T13:09:39.000Z
regym/tests/rl_algorithms/agent_hook_test.py
KnwSondess/Regym
825c7dacf955a3e2f6c658c0ecb879a0ca036c1a
[ "MIT" ]
1
2019-01-29T18:43:32.000Z
2019-01-31T17:31:39.000Z
regym/tests/rl_algorithms/agent_hook_test.py
KnwSondess/Regym
825c7dacf955a3e2f6c658c0ecb879a0ca036c1a
[ "MIT" ]
4
2019-08-01T10:29:41.000Z
2021-12-06T21:44:30.000Z
import os import numpy as np from regym.rl_algorithms.agents import build_PPO_Agent from regym.rl_algorithms.agents import build_DQN_Agent from regym.rl_algorithms.agents import build_TabularQ_Agent from regym.rl_algorithms.agent_hook import AgentHook, AgentType from test_fixtures import RPSTask from test_fixtures import ppo_config_dict, dqn_config_dict, tabular_q_learning_config_dict def test_can_hook_tql_agent(RPSTask, tabular_q_learning_config_dict): agent = build_TabularQ_Agent(RPSTask, tabular_q_learning_config_dict, 'TQL') hook = AgentHook(agent) compare_against_expected_agenthook(agent, hook, AgentType.TQL, []) def test_can_hook_dqn_agent_using_cuda(RPSTask, dqn_config_dict): dqn_config_dict['use_cuda'] = True agent = build_DQN_Agent(RPSTask, dqn_config_dict, 'DQN') assert all(map(lambda param: param.is_cuda, agent.algorithm.model.parameters())) assert all(map(lambda param: param.is_cuda, agent.algorithm.target_model.parameters())) hook = AgentHook(agent) compare_against_expected_agenthook(agent, hook, AgentType.DQN, [hook.agent.algorithm.model, hook.agent.algorithm.target_model]) def test_can_hook_ppo_agent_using_cuda(RPSTask, ppo_config_dict): ppo_config_dict['use_cuda'] = True agent = build_PPO_Agent(RPSTask, ppo_config_dict, 'PPO') assert all(map(lambda param: param.is_cuda, agent.algorithm.model.parameters())) hook = AgentHook(agent) compare_against_expected_agenthook(agent, hook, AgentType.PPO, [hook.agent.algorithm.model]) def compare_against_expected_agenthook(agent, hooked_agent, expected_hook_type, model_list): assert hooked_agent.type == expected_hook_type assert hooked_agent.agent == agent for model in model_list: assert all(map(lambda param: not param.is_cuda, hooked_agent.agent.algorithm.model.parameters())) def test_can_unhook_tql_agenthook(RPSTask, tabular_q_learning_config_dict): agent = build_TabularQ_Agent(RPSTask, tabular_q_learning_config_dict, 'TQL') hook = AgentHook(agent) retrieved_agent = AgentHook.unhook(hook) compare_against_expected_retrieved_agent(agent, retrieved_agent, []) def test_can_unhook_dqn_agenthook_cuda(RPSTask, dqn_config_dict): dqn_config_dict['use_cuda'] = True agent = build_DQN_Agent(RPSTask, dqn_config_dict, 'DQN') assert all(map(lambda param: param.is_cuda, agent.algorithm.model.parameters())) assert all(map(lambda param: param.is_cuda, agent.algorithm.target_model.parameters())) hook = AgentHook(agent) retrieved_agent = AgentHook.unhook(hook) compare_against_expected_retrieved_agent(agent, retrieved_agent, [retrieved_agent.algorithm.model, retrieved_agent.algorithm.target_model]) def test_can_unhook_ppo_agenthook_with_cuda(RPSTask, ppo_config_dict): ppo_config_dict['use_cuda'] = True agent = build_PPO_Agent(RPSTask, ppo_config_dict, 'PPO') assert all(map(lambda param: param.is_cuda, agent.algorithm.model.parameters())) hook = AgentHook(agent) retrieved_agent = AgentHook.unhook(hook) compare_against_expected_retrieved_agent(agent, retrieved_agent, [retrieved_agent.algorithm.model]) def compare_against_expected_retrieved_agent(agent, retrieved_agent, model_list): assert agent == retrieved_agent assert_model_parameters_are_cuda_tensors(model_list) def test_can_save_tql_to_memory(RPSTask, tabular_q_learning_config_dict): agent = build_TabularQ_Agent(RPSTask, tabular_q_learning_config_dict, 'TQL') save_path = '/tmp/test_save.agent' hook = AgentHook(agent, save_path) assess_file_has_been_saved_on_disk_and_not_on_ram(hook, save_path) os.remove(save_path) def test_can_save_dqn_to_memory(RPSTask, dqn_config_dict): agent = build_DQN_Agent(RPSTask, dqn_config_dict, 'DQN') save_path = '/tmp/test_save.agent' hook = AgentHook(agent, save_path) assess_file_has_been_saved_on_disk_and_not_on_ram(hook, save_path) os.remove(save_path) def test_can_save_ppo_to_memory(RPSTask, ppo_config_dict): agent = build_PPO_Agent(RPSTask, ppo_config_dict, 'PPO') save_path = '/tmp/test_save.agent' hook = AgentHook(agent, save_path=save_path) assess_file_has_been_saved_on_disk_and_not_on_ram(hook, save_path) os.remove(save_path) def test_can_load_tql_from_agenthook(RPSTask, tabular_q_learning_config_dict): agent = build_TabularQ_Agent(RPSTask, tabular_q_learning_config_dict, 'TQL') save_path = '/tmp/test_save.agent' hook = AgentHook(agent, save_path=save_path) retrieved_agent = AgentHook.unhook(hook) assert np.array_equal(agent.algorithm.Q_table, retrieved_agent.algorithm.Q_table) def test_can_load_dqn_from_agenthook_with_cuda(RPSTask, dqn_config_dict): dqn_config_dict['use_cuda'] = True agent = build_DQN_Agent(RPSTask, dqn_config_dict, 'DQN') save_path = '/tmp/test_save.agent' hook = AgentHook(agent, save_path=save_path) retrieved_agent = AgentHook.unhook(hook) model_list = [retrieved_agent.algorithm.model, retrieved_agent.algorithm.target_model] assert_model_parameters_are_cuda_tensors(model_list) def test_can_load_ppo_from_agenthook_with_cuda(RPSTask, ppo_config_dict): ppo_config_dict['use_cuda'] = True agent = build_PPO_Agent(RPSTask, ppo_config_dict, 'PPO') save_path = '/tmp/test_save.agent' hook = AgentHook(agent, save_path=save_path) assert not hasattr(hook, 'agent') retrieved_agent = AgentHook.unhook(hook) model_list = [retrieved_agent.algorithm.model] assert_model_parameters_are_cuda_tensors(model_list) def test_can_load_ppo_from_agenthook_disabling_cuda(RPSTask, ppo_config_dict): ppo_config_dict['use_cuda'] = True agent = build_PPO_Agent(RPSTask, ppo_config_dict, 'PPO') save_path = '/tmp/test_save.agent' hook = AgentHook(agent, save_path=save_path) retrieved_agent = AgentHook.unhook(hook, use_cuda=False) model = retrieved_agent.algorithm.model assert all(map(lambda param: not param.is_cuda, model.parameters())) def assert_model_parameters_are_cuda_tensors(model_list): for model in model_list: assert all(map(lambda param: param.is_cuda, model.parameters())) def assess_file_has_been_saved_on_disk_and_not_on_ram(hook, save_path): assert not hasattr(hook, 'agent') assert hook.save_path is save_path assert os.path.exists(save_path)
39.91195
143
0.789474
5c0cd66c09b9f7f1958aad4f7490212c2d4070e7
1,704
py
Python
scaffoldgraph/utils/subset.py
UCLCheminformatics/ScaffoldGraph
0443ce118110290a99601d65b2d000ac8bc7a1e9
[ "MIT" ]
121
2019-12-12T15:30:16.000Z
2022-02-28T02:00:54.000Z
scaffoldgraph/utils/subset.py
UCLCheminformatics/ScaffoldGraph
0443ce118110290a99601d65b2d000ac8bc7a1e9
[ "MIT" ]
8
2020-04-04T15:37:26.000Z
2021-11-17T07:30:31.000Z
scaffoldgraph/utils/subset.py
UCLCheminformatics/ScaffoldGraph
0443ce118110290a99601d65b2d000ac8bc7a1e9
[ "MIT" ]
28
2019-12-16T11:58:53.000Z
2021-11-19T09:57:46.000Z
""" scaffoldgraph.utils.subset """ from networkx.algorithms.traversal import bfs_tree from collections import defaultdict def split_graph_by_molecule_attribute(graph, key, default=None): """Split a scaffold graph into subgraphs based on unique molecule attributes. This function first groups molecule nodes sharing a unique attribute value, and then proceeds to build subgraphs from each node subset using a breadth-first search. The returned subgraphs are graph views and thus changes to the graph are nruled out by the view, but changes to node attributes are reflected in the original graph. To prevent this behaviour use: subgraph.copy() Parameters ---------- graph : sg.core.ScaffoldGraph A scaffold graph to split. key : str The key for the molecule node attribute used to split the graph into subgraphs. default : value, bool, optional Value used for nodes that don't have the requested attribute. Returns ------- splits : dict A dictionary with keys representing unique node attributes and values representing the constructed subgraphs. """ if isinstance(key, bool): raise ValueError('Attribute key cannot be a boolean type') splits = defaultdict(list) for node, attr in graph.get_molecule_nodes(key, default): splits[attr].append(node) splits.default_factory = None # Not really required for attr, nodes in splits.items(): bfs_subset = set() for node in nodes: bfs = bfs_tree(graph, node, reverse=True) bfs_subset.update(bfs) splits[attr] = graph.subgraph(bfs_subset) return splits
33.411765
81
0.693075
5fff15ef42c52b35865883411a333adbabee035c
4,777
py
Python
packages/open_aea/protocols/signing/dialogues.py
valory-xyz/agents-aea
8f38efa96041b0156ed1ae328178e395dbabf2fc
[ "Apache-2.0" ]
28
2021-10-31T18:54:14.000Z
2022-03-17T13:10:43.000Z
packages/open_aea/protocols/signing/dialogues.py
valory-xyz/agents-aea
8f38efa96041b0156ed1ae328178e395dbabf2fc
[ "Apache-2.0" ]
66
2021-10-31T11:55:48.000Z
2022-03-31T06:26:23.000Z
packages/open_aea/protocols/signing/dialogues.py
valory-xyz/agents-aea
8f38efa96041b0156ed1ae328178e395dbabf2fc
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # ------------------------------------------------------------------------------ # # Copyright 2022 open_aea # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ------------------------------------------------------------------------------ """ This module contains the classes required for signing dialogue management. - SigningDialogue: The dialogue class maintains state of a dialogue and manages it. - SigningDialogues: The dialogues class keeps track of all dialogues. """ from abc import ABC from typing import Callable, Dict, FrozenSet, Type, cast from aea.common import Address from aea.protocols.base import Message from aea.protocols.dialogue.base import Dialogue, DialogueLabel, Dialogues from packages.open_aea.protocols.signing.message import SigningMessage class SigningDialogue(Dialogue): """The signing dialogue class maintains state of a dialogue and manages it.""" INITIAL_PERFORMATIVES: FrozenSet[Message.Performative] = frozenset( { SigningMessage.Performative.SIGN_TRANSACTION, SigningMessage.Performative.SIGN_MESSAGE, } ) TERMINAL_PERFORMATIVES: FrozenSet[Message.Performative] = frozenset( { SigningMessage.Performative.SIGNED_TRANSACTION, SigningMessage.Performative.SIGNED_MESSAGE, SigningMessage.Performative.ERROR, } ) VALID_REPLIES: Dict[Message.Performative, FrozenSet[Message.Performative]] = { SigningMessage.Performative.ERROR: frozenset(), SigningMessage.Performative.SIGN_MESSAGE: frozenset( { SigningMessage.Performative.SIGNED_MESSAGE, SigningMessage.Performative.ERROR, } ), SigningMessage.Performative.SIGN_TRANSACTION: frozenset( { SigningMessage.Performative.SIGNED_TRANSACTION, SigningMessage.Performative.ERROR, } ), SigningMessage.Performative.SIGNED_MESSAGE: frozenset(), SigningMessage.Performative.SIGNED_TRANSACTION: frozenset(), } class Role(Dialogue.Role): """This class defines the agent's role in a signing dialogue.""" DECISION_MAKER = "decision_maker" SKILL = "skill" class EndState(Dialogue.EndState): """This class defines the end states of a signing dialogue.""" SUCCESSFUL = 0 FAILED = 1 def __init__( self, dialogue_label: DialogueLabel, self_address: Address, role: Dialogue.Role, message_class: Type[SigningMessage] = SigningMessage, ) -> None: """ Initialize a dialogue. :param dialogue_label: the identifier of the dialogue :param self_address: the address of the entity for whom this dialogue is maintained :param role: the role of the agent this dialogue is maintained for :param message_class: the message class used """ Dialogue.__init__( self, dialogue_label=dialogue_label, message_class=message_class, self_address=self_address, role=role, ) class SigningDialogues(Dialogues, ABC): """This class keeps track of all signing dialogues.""" END_STATES = frozenset( {SigningDialogue.EndState.SUCCESSFUL, SigningDialogue.EndState.FAILED} ) _keep_terminal_state_dialogues = False def __init__( self, self_address: Address, role_from_first_message: Callable[[Message, Address], Dialogue.Role], dialogue_class: Type[SigningDialogue] = SigningDialogue, ) -> None: """ Initialize dialogues. :param self_address: the address of the entity for whom dialogues are maintained :param dialogue_class: the dialogue class used :param role_from_first_message: the callable determining role from first message """ Dialogues.__init__( self, self_address=self_address, end_states=cast(FrozenSet[Dialogue.EndState], self.END_STATES), message_class=SigningMessage, dialogue_class=dialogue_class, role_from_first_message=role_from_first_message, )
34.868613
91
0.651664
85916d09a8b17d9f7cc7d310dec0b8c076020cdd
11,785
py
Python
cookbooks/aws-parallelcluster-config/files/default/head_node_slurm/slurm/pcluster_slurm_config_generator.py
pinak-p/aws-parallelcluster-cookbook
6a7cdbee9a9e79e00ffa96e7ab2f0781f5542883
[ "Apache-2.0" ]
1
2021-12-15T08:01:13.000Z
2021-12-15T08:01:13.000Z
cookbooks/aws-parallelcluster-config/files/default/head_node_slurm/slurm/pcluster_slurm_config_generator.py
pinak-p/aws-parallelcluster-cookbook
6a7cdbee9a9e79e00ffa96e7ab2f0781f5542883
[ "Apache-2.0" ]
30
2021-05-05T08:05:22.000Z
2022-03-23T00:17:18.000Z
cookbooks/aws-parallelcluster-config/files/default/head_node_slurm/slurm/pcluster_slurm_config_generator.py
lukeseawalker/aws-parallelcluster-cookbook
f881254a065ef77b6abd11ee0ac90bbbc39e5687
[ "Apache-2.0" ]
null
null
null
# Copyright 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "LICENSE.txt" file accompanying this file. # This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, express or implied. # See the License for the specific language governing permissions and limitations under the License. import argparse import json import logging import re from os import makedirs, path from socket import gethostname import requests import yaml from jinja2 import Environment, FileSystemLoader log = logging.getLogger() instance_types_data = {} class CriticalError(Exception): """Critical error for the daemon.""" pass def generate_slurm_config_files( output_directory, template_directory, input_file, instance_types_data_path, dryrun, no_gpu ): """ Generate Slurm configuration files. For each queue, generate slurm_parallelcluster_{QueueName}_partitions.conf and slurm_parallelcluster_{QueueName}_gres.conf, which contain node info. Generate slurm_parallelcluster.conf and slurm_parallelcluster_gres.conf, which includes queue specifc configuration files. slurm_parallelcluster.conf is included in main slurm.conf and slurm_parallelcluster_gres.conf is included in gres.conf. """ # Make output directories output_directory = path.abspath(output_directory) pcluster_subdirectory = path.join(output_directory, "pcluster") makedirs(pcluster_subdirectory, exist_ok=True) env = _get_jinja_env(template_directory) cluster_config = _load_cluster_config(input_file) head_node_config = _get_head_node_config() queues = cluster_config["Scheduling"]["SlurmQueues"] global instance_types_data with open(instance_types_data_path) as input_file: instance_types_data = json.load(input_file) # Generate slurm_parallelcluster_{QueueName}_partitions.conf and slurm_parallelcluster_{QueueName}_gres.conf is_default_queue = True # The first queue in the queues list is the default queue for queue in queues: for file_type in ["partition", "gres"]: _generate_queue_config( queue["Name"], queue, is_default_queue, file_type, env, pcluster_subdirectory, dryrun, no_gpu=no_gpu ) is_default_queue = False # Generate slurm_parallelcluster.conf and slurm_parallelcluster_gres.conf for template_name in ["slurm_parallelcluster.conf", "slurm_parallelcluster_gres.conf"]: _generate_slurm_parallelcluster_configs( queues, head_node_config, cluster_config["Scheduling"]["SlurmSettings"], template_name, env, output_directory, dryrun, ) generate_instance_type_mapping_file(pcluster_subdirectory, queues) log.info("Finished.") def _load_cluster_config(input_file_path): """ Load queues_info and add information used to render templates. :return: queues_info containing id for first queue, head_node_hostname and queue_name """ with open(input_file_path) as input_file: return yaml.load(input_file, Loader=yaml.SafeLoader) def _get_head_node_config(): return { "head_node_hostname": gethostname(), "head_node_ip": _get_head_node_private_ip(), } def _get_head_node_private_ip(): """Get head node private ip from EC2 metadata.""" return _get_metadata("local-ipv4") def _generate_queue_config( queue_name, queue_config, is_default_queue, file_type, jinja_env, output_dir, dryrun, no_gpu=False ): log.info("Generating slurm_parallelcluster_%s_%s.conf", queue_name, file_type) rendered_template = jinja_env.get_template(f"slurm_parallelcluster_queue_{file_type}.conf").render( queue_name=queue_name, queue_config=queue_config, is_default_queue=is_default_queue, no_gpu=no_gpu ) if not dryrun: filename = path.join(output_dir, f"slurm_parallelcluster_{queue_name}_{file_type}.conf") if file_type == "gres" and no_gpu: _write_rendered_template_to_file( "# This file is automatically generated by pcluster\n" "# Skipping GPUs configuration because Nvidia driver is not installed", filename, ) else: _write_rendered_template_to_file(rendered_template, filename) def _generate_slurm_parallelcluster_configs( queues, head_node_config, scaling_config, template_name, jinja_env, output_dir, dryrun ): log.info("Generating %s", template_name) rendered_template = jinja_env.get_template(f"{template_name}").render( queues=queues, head_node_config=head_node_config, scaling_config=scaling_config, output_dir=output_dir, ) if not dryrun: filename = f"{output_dir}/{template_name}" _write_rendered_template_to_file(rendered_template, filename) def _get_jinja_env(template_directory): """Return jinja environment with trim_blocks/lstrip_blocks set to True.""" file_loader = FileSystemLoader(template_directory) # A nosec comment is appended to the following line in order to disable the B701 check. # The contents of the default templates are known and the input configuration data is # validated by the CLI. env = Environment(loader=file_loader, trim_blocks=True, lstrip_blocks=True) # nosec nosemgrep env.filters["sanify_name"] = lambda value: re.sub(r"[^A-Za-z0-9]", "", value) env.filters["gpus"] = _gpu_count env.filters["gpu_type"] = _gpu_type env.filters["vcpus"] = _vcpus return env def _gpu_count(instance_type): """Return the number of GPUs for the instance.""" gpu_info = instance_types_data[instance_type].get("GpuInfo", None) gpu_count = 0 if gpu_info: for gpus in gpu_info.get("Gpus", []): gpu_manufacturer = gpus.get("Manufacturer", "") if gpu_manufacturer.upper() == "NVIDIA": gpu_count += gpus.get("Count", 0) else: log.info( f"ParallelCluster currently does not offer native support for '{gpu_manufacturer}' GPUs. " "Please make sure to use a custom AMI with the appropriate drivers in order to leverage " "GPUs functionalities" ) return gpu_count def _gpu_type(instance_type): """Return name or type of the GPU for the instance.""" gpu_info = instance_types_data[instance_type].get("GpuInfo", None) # Remove space and change to all lowercase for name return "no_gpu_type" if not gpu_info else gpu_info.get("Gpus")[0].get("Name").replace(" ", "").lower() def _vcpus(compute_resource) -> int: """Get the number of vcpus for the instance according to disable_hyperthreading and instance features.""" instance_type = compute_resource["InstanceType"] disable_simultaneous_multithreading = compute_resource["DisableSimultaneousMultithreading"] instance_type_info = instance_types_data[instance_type] vcpus_info = instance_type_info.get("VCpuInfo", {}) vcpus_count = vcpus_info.get("DefaultVCpus") threads_per_core = vcpus_info.get("DefaultThreadsPerCore") if threads_per_core is None: supported_architectures = instance_type_info.get("ProcessorInfo", {}).get("SupportedArchitectures", []) threads_per_core = 2 if "x86_64" in supported_architectures else 1 return vcpus_count if not disable_simultaneous_multithreading else (vcpus_count // threads_per_core) def _write_rendered_template_to_file(rendered_template, filename): log.info("Writing contents of %s", filename) with open(filename, "w") as output_file: output_file.write(rendered_template) def _setup_logger(): logging.basicConfig( level=logging.INFO, format="%(asctime)s - [%(name)s:%(funcName)s] - %(levelname)s - %(message)s" ) def generate_instance_type_mapping_file(output_dir, queues): """Generate a mapping file to retrieve the Instance Type related to the instance key used in the slurm nodename.""" instance_name_type_mapping = {} for queue in queues: instance_name_type_mapping[queue["Name"]] = {} compute_resources = queue["ComputeResources"] hostname_regex = re.compile("[^A-Za-z0-9]") for compute_resource in compute_resources: instance_type = compute_resource.get("InstanceType") # Remove all characters excepts letters and numbers sanitized_compute_name = re.sub(hostname_regex, "", compute_resource.get("Name")) instance_name_type_mapping[queue["Name"]][sanitized_compute_name] = instance_type filename = f"{output_dir}/instance_name_type_mappings.json" log.info("Generating %s", filename) with open(filename, "w") as output_file: output_file.write(json.dumps(instance_name_type_mapping, indent=4)) def _get_metadata(metadata_path): """ Get EC2 instance metadata. :param metadata_path: the metadata relative path :return the metadata value. """ try: token = requests.put( "http://169.254.169.254/latest/api/token", headers={"X-aws-ec2-metadata-token-ttl-seconds": "300"} ) headers = {} if token.status_code == requests.codes.ok: headers["X-aws-ec2-metadata-token"] = token.content metadata_url = "http://169.254.169.254/latest/meta-data/{0}".format(metadata_path) metadata_value = requests.get(metadata_url, headers=headers).text except Exception as e: error_msg = "Unable to get {0} metadata. Failed with exception: {1}".format(metadata_path, e) log.critical(error_msg) raise CriticalError(error_msg) log.debug("%s=%s", metadata_path, metadata_value) return metadata_value def main(): try: _setup_logger() log.info("Running ParallelCluster Slurm Config Generator") parser = argparse.ArgumentParser(description="Take in slurm configuration generator related parameters") parser.add_argument( "--output-directory", type=str, help="The output directory for generated slurm configs", required=True ) parser.add_argument( "--template-directory", type=str, help="The directory storing slurm config templates", required=True ) parser.add_argument( "--input-file", type=str, # Todo: is the default necessary? default="/opt/parallelcluster/slurm_config.json", help="Yaml file containing pcluster configuration file", ) parser.add_argument( "--instance-types-data", type=str, help="JSON file containing info about instance types", ) parser.add_argument( "--dryrun", action="store_true", help="dryrun", required=False, default=False, ) parser.add_argument( "--no-gpu", action="store_true", help="no gpu configuration", required=False, default=False, ) args = parser.parse_args() generate_slurm_config_files( args.output_directory, args.template_directory, args.input_file, args.instance_types_data, args.dryrun, args.no_gpu, ) except Exception as e: log.exception("Failed to generate slurm configurations, exception: %s", e) raise if __name__ == "__main__": main()
38.139159
119
0.689351
b8c10fa82b2bcd9880c0dfe1e9cc8477b5c4029f
204
py
Python
api/serilizers.py
soltanoff/drf_vue_template
2269f045fc5557bbca168a806d7ca37a7298837a
[ "MIT" ]
null
null
null
api/serilizers.py
soltanoff/drf_vue_template
2269f045fc5557bbca168a806d7ca37a7298837a
[ "MIT" ]
1
2021-10-04T05:38:08.000Z
2021-10-05T07:20:59.000Z
api/serilizers.py
soltanoff/drf_vue_template
2269f045fc5557bbca168a806d7ca37a7298837a
[ "MIT" ]
2
2019-09-25T10:22:26.000Z
2020-07-29T16:34:20.000Z
from rest_framework import serializers from api.models import ArticleModel class ArticleSerializer(serializers.ModelSerializer): class Meta: model = ArticleModel fields = '__all__'
20.4
53
0.75
4ddde28f02d21a187208057945ae8da88f977b36
81,111
py
Python
mesonbuild/modules/gnome.py
hwti/meson
9e5c881b06bfb79ee9ee40cdd8dca3a78f268a40
[ "Apache-2.0" ]
1
2021-09-14T00:19:25.000Z
2021-09-14T00:19:25.000Z
mesonbuild/modules/gnome.py
hwti/meson
9e5c881b06bfb79ee9ee40cdd8dca3a78f268a40
[ "Apache-2.0" ]
null
null
null
mesonbuild/modules/gnome.py
hwti/meson
9e5c881b06bfb79ee9ee40cdd8dca3a78f268a40
[ "Apache-2.0" ]
1
2021-06-12T19:07:19.000Z
2021-06-12T19:07:19.000Z
# Copyright 2015-2016 The Meson development team # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. '''This module provides helper functions for Gnome/GLib related functionality such as gobject-introspection, gresources and gtk-doc''' import os import copy import subprocess import functools from .. import build from .. import mlog from .. import mesonlib from .. import interpreter from . import GResourceTarget, GResourceHeaderTarget, GirTarget, TypelibTarget, VapiTarget from . import get_include_args from . import ExtensionModule from . import ModuleReturnValue from ..mesonlib import ( MachineChoice, MesonException, OrderedSet, Popen_safe, extract_as_list, join_args, unholder, ) from ..dependencies import Dependency, PkgConfigDependency, InternalDependency from ..interpreterbase import noKwargs, permittedKwargs, FeatureNew, FeatureNewKwargs # gresource compilation is broken due to the way # the resource compiler and Ninja clash about it # # https://github.com/ninja-build/ninja/issues/1184 # https://bugzilla.gnome.org/show_bug.cgi?id=774368 gresource_dep_needed_version = '>= 2.51.1' native_glib_version = None @functools.lru_cache(maxsize=None) def gir_has_option(intr_obj, option): try: g_ir_scanner = intr_obj.find_program_impl('g-ir-scanner') # Handle overridden g-ir-scanner if isinstance(getattr(g_ir_scanner, "held_object", g_ir_scanner), interpreter.OverrideProgram): assert option in ['--extra-library', '--sources-top-dirs'] return True opts = Popen_safe(g_ir_scanner.get_command() + ['--help'], stderr=subprocess.STDOUT)[1] return option in opts except (MesonException, FileNotFoundError, subprocess.CalledProcessError): return False class GnomeModule(ExtensionModule): gir_dep = None @staticmethod def _get_native_glib_version(state): global native_glib_version if native_glib_version is None: glib_dep = PkgConfigDependency('glib-2.0', state.environment, {'native': True, 'required': False}) if glib_dep.found(): native_glib_version = glib_dep.get_version() else: mlog.warning('Could not detect glib version, assuming 2.54. ' 'You may get build errors if your glib is older.') native_glib_version = '2.54' return native_glib_version @mesonlib.run_once def __print_gresources_warning(self, state): if not mesonlib.version_compare(self._get_native_glib_version(state), gresource_dep_needed_version): mlog.warning('GLib compiled dependencies do not work reliably with \n' 'the current version of GLib. See the following upstream issue:', mlog.bold('https://bugzilla.gnome.org/show_bug.cgi?id=774368')) @staticmethod def _print_gdbus_warning(): mlog.warning('Code generated with gdbus_codegen() requires the root directory be added to\n' ' include_directories of targets with GLib < 2.51.3:', mlog.bold('https://github.com/mesonbuild/meson/issues/1387'), once=True) @FeatureNewKwargs('gnome.compile_resources', '0.37.0', ['gresource_bundle', 'export', 'install_header']) @permittedKwargs({'source_dir', 'c_name', 'dependencies', 'export', 'gresource_bundle', 'install_header', 'install', 'install_dir', 'extra_args', 'build_by_default'}) def compile_resources(self, state, args, kwargs): self.__print_gresources_warning(state) glib_version = self._get_native_glib_version(state) cmd = ['glib-compile-resources', '@INPUT@'] source_dirs, dependencies = [mesonlib.extract_as_list(kwargs, c, pop=True) for c in ['source_dir', 'dependencies']] if len(args) < 2: raise MesonException('Not enough arguments; the name of the resource ' 'and the path to the XML file are required') # Validate dependencies for (ii, dep) in enumerate(dependencies): if hasattr(dep, 'held_object'): dependencies[ii] = dep = dep.held_object if not isinstance(dep, (mesonlib.File, build.CustomTarget, build.CustomTargetIndex)): m = 'Unexpected dependency type {!r} for gnome.compile_resources() ' \ '"dependencies" argument.\nPlease pass the return value of ' \ 'custom_target() or configure_file()' raise MesonException(m.format(dep)) if isinstance(dep, (build.CustomTarget, build.CustomTargetIndex)): if not mesonlib.version_compare(glib_version, gresource_dep_needed_version): m = 'The "dependencies" argument of gnome.compile_resources() can not\n' \ 'be used with the current version of glib-compile-resources due to\n' \ '<https://bugzilla.gnome.org/show_bug.cgi?id=774368>' raise MesonException(m) ifile = args[1] if isinstance(ifile, mesonlib.File): # glib-compile-resources will be run inside the source dir, # so we need either 'src_to_build' or the absolute path. # Absolute path is the easiest choice. if ifile.is_built: ifile = os.path.join(state.environment.get_build_dir(), ifile.subdir, ifile.fname) else: ifile = os.path.join(ifile.subdir, ifile.fname) elif isinstance(ifile, str): ifile = os.path.join(state.subdir, ifile) elif isinstance(ifile, (interpreter.CustomTargetHolder, interpreter.CustomTargetIndexHolder, interpreter.GeneratedObjectsHolder)): m = 'Resource xml files generated at build-time cannot be used ' \ 'with gnome.compile_resources() because we need to scan ' \ 'the xml for dependencies. Use configure_file() instead ' \ 'to generate it at configure-time.' raise MesonException(m) else: raise MesonException('Invalid file argument: {!r}'.format(ifile)) depend_files, depends, subdirs = self._get_gresource_dependencies( state, ifile, source_dirs, dependencies) # Make source dirs relative to build dir now source_dirs = [os.path.join(state.build_to_src, state.subdir, d) for d in source_dirs] # Ensure build directories of generated deps are included source_dirs += subdirs # Always include current directory, but after paths set by user source_dirs.append(os.path.join(state.build_to_src, state.subdir)) for source_dir in OrderedSet(source_dirs): cmd += ['--sourcedir', source_dir] if 'c_name' in kwargs: cmd += ['--c-name', kwargs.pop('c_name')] export = kwargs.pop('export', False) if not export: cmd += ['--internal'] cmd += ['--generate', '--target', '@OUTPUT@'] cmd += mesonlib.stringlistify(kwargs.pop('extra_args', [])) gresource = kwargs.pop('gresource_bundle', False) if gresource: output = args[0] + '.gresource' name = args[0] + '_gresource' else: output = args[0] + '.c' name = args[0] + '_c' if kwargs.get('install', False) and not gresource: raise MesonException('The install kwarg only applies to gresource bundles, see install_header') install_header = kwargs.pop('install_header', False) if install_header and gresource: raise MesonException('The install_header kwarg does not apply to gresource bundles') if install_header and not export: raise MesonException('GResource header is installed yet export is not enabled') kwargs['input'] = args[1] kwargs['output'] = output kwargs['depends'] = depends if not mesonlib.version_compare(glib_version, gresource_dep_needed_version): # This will eventually go out of sync if dependencies are added kwargs['depend_files'] = depend_files kwargs['command'] = cmd else: depfile = kwargs['output'] + '.d' kwargs['depfile'] = depfile kwargs['command'] = copy.copy(cmd) + ['--dependency-file', '@DEPFILE@'] target_c = GResourceTarget(name, state.subdir, state.subproject, kwargs) if gresource: # Only one target for .gresource files return ModuleReturnValue(target_c, [target_c]) h_kwargs = { 'command': cmd, 'input': args[1], 'output': args[0] + '.h', # The header doesn't actually care about the files yet it errors if missing 'depends': depends } if 'build_by_default' in kwargs: h_kwargs['build_by_default'] = kwargs['build_by_default'] if install_header: h_kwargs['install'] = install_header h_kwargs['install_dir'] = kwargs.get('install_dir', state.environment.coredata.get_builtin_option('includedir')) target_h = GResourceHeaderTarget(args[0] + '_h', state.subdir, state.subproject, h_kwargs) rv = [target_c, target_h] return ModuleReturnValue(rv, rv) def _get_gresource_dependencies(self, state, input_file, source_dirs, dependencies): cmd = ['glib-compile-resources', input_file, '--generate-dependencies'] # Prefer generated files over source files cmd += ['--sourcedir', state.subdir] # Current build dir for source_dir in source_dirs: cmd += ['--sourcedir', os.path.join(state.subdir, source_dir)] pc, stdout, stderr = Popen_safe(cmd, cwd=state.environment.get_source_dir()) if pc.returncode != 0: m = 'glib-compile-resources failed to get dependencies for {}:\n{}' mlog.warning(m.format(cmd[1], stderr)) raise subprocess.CalledProcessError(pc.returncode, cmd) dep_files = stdout.split('\n')[:-1] depends = [] subdirs = [] for resfile in dep_files[:]: resbasename = os.path.basename(resfile) for dep in unholder(dependencies): if isinstance(dep, mesonlib.File): if dep.fname != resbasename: continue dep_files.remove(resfile) dep_files.append(dep) subdirs.append(dep.subdir) break elif isinstance(dep, (build.CustomTarget, build.CustomTargetIndex)): fname = None outputs = {(o, os.path.basename(o)) for o in dep.get_outputs()} for o, baseo in outputs: if baseo == resbasename: fname = o break if fname is not None: dep_files.remove(resfile) depends.append(dep) subdirs.append(dep.get_subdir()) break else: # In generate-dependencies mode, glib-compile-resources doesn't raise # an error for missing resources but instead prints whatever filename # was listed in the input file. That's good because it means we can # handle resource files that get generated as part of the build, as # follows. # # If there are multiple generated resource files with the same basename # then this code will get confused. try: f = mesonlib.File.from_source_file(state.environment.get_source_dir(), ".", resfile) except MesonException: raise MesonException( 'Resource "%s" listed in "%s" was not found. If this is a ' 'generated file, pass the target that generates it to ' 'gnome.compile_resources() using the "dependencies" ' 'keyword argument.' % (resfile, input_file)) dep_files.remove(resfile) dep_files.append(f) return dep_files, depends, subdirs def _get_link_args(self, state, lib, depends, include_rpath=False, use_gir_args=False): link_command = [] # Construct link args if isinstance(lib, build.SharedLibrary): libdir = os.path.join(state.environment.get_build_dir(), state.backend.get_target_dir(lib)) link_command.append('-L' + libdir) if include_rpath: link_command.append('-Wl,-rpath,' + libdir) depends.append(lib) # Needed for the following binutils bug: # https://github.com/mesonbuild/meson/issues/1911 # However, g-ir-scanner does not understand -Wl,-rpath # so we need to use -L instead for d in state.backend.determine_rpath_dirs(lib): d = os.path.join(state.environment.get_build_dir(), d) link_command.append('-L' + d) if include_rpath: link_command.append('-Wl,-rpath,' + d) if gir_has_option(self.interpreter, '--extra-library') and use_gir_args: link_command.append('--extra-library=' + lib.name) else: link_command.append('-l' + lib.name) return link_command def _get_dependencies_flags(self, deps, state, depends, include_rpath=False, use_gir_args=False, separate_nodedup=False): cflags = OrderedSet() internal_ldflags = OrderedSet() external_ldflags = OrderedSet() # External linker flags that can't be de-duped reliably because they # require two args in order, such as -framework AVFoundation external_ldflags_nodedup = [] gi_includes = OrderedSet() deps = mesonlib.unholder(mesonlib.listify(deps)) for dep in deps: if isinstance(dep, InternalDependency): cflags.update(dep.get_compile_args()) cflags.update(get_include_args(dep.include_directories)) for lib in unholder(dep.libraries): if isinstance(lib, build.SharedLibrary): internal_ldflags.update(self._get_link_args(state, lib, depends, include_rpath)) libdepflags = self._get_dependencies_flags(lib.get_external_deps(), state, depends, include_rpath, use_gir_args, True) cflags.update(libdepflags[0]) internal_ldflags.update(libdepflags[1]) external_ldflags.update(libdepflags[2]) external_ldflags_nodedup += libdepflags[3] gi_includes.update(libdepflags[4]) extdepflags = self._get_dependencies_flags(dep.ext_deps, state, depends, include_rpath, use_gir_args, True) cflags.update(extdepflags[0]) internal_ldflags.update(extdepflags[1]) external_ldflags.update(extdepflags[2]) external_ldflags_nodedup += extdepflags[3] gi_includes.update(extdepflags[4]) for source in unholder(dep.sources): if isinstance(source, GirTarget): gi_includes.update([os.path.join(state.environment.get_build_dir(), source.get_subdir())]) # This should be any dependency other than an internal one. elif isinstance(dep, Dependency): cflags.update(dep.get_compile_args()) ldflags = iter(dep.get_link_args(raw=True)) for lib in ldflags: if (os.path.isabs(lib) and # For PkgConfigDependency only: getattr(dep, 'is_libtool', False)): lib_dir = os.path.dirname(lib) external_ldflags.update(["-L%s" % lib_dir]) if include_rpath: external_ldflags.update(['-Wl,-rpath {}'.format(lib_dir)]) libname = os.path.basename(lib) if libname.startswith("lib"): libname = libname[3:] libname = libname.split(".so")[0] lib = "-l%s" % libname # FIXME: Hack to avoid passing some compiler options in if lib.startswith("-W"): continue # If it's a framework arg, slurp the framework name too # to preserve the order of arguments if lib == '-framework': external_ldflags_nodedup += [lib, next(ldflags)] else: external_ldflags.update([lib]) if isinstance(dep, PkgConfigDependency): girdir = dep.get_pkgconfig_variable("girdir", {'default': ''}) if girdir: gi_includes.update([girdir]) elif isinstance(dep, (build.StaticLibrary, build.SharedLibrary)): cflags.update(get_include_args(dep.get_include_dirs())) depends.append(dep) else: mlog.log('dependency {!r} not handled to build gir files'.format(dep)) continue if gir_has_option(self.interpreter, '--extra-library') and use_gir_args: def fix_ldflags(ldflags): fixed_ldflags = OrderedSet() for ldflag in ldflags: if ldflag.startswith("-l"): ldflag = ldflag.replace('-l', '--extra-library=', 1) fixed_ldflags.add(ldflag) return fixed_ldflags internal_ldflags = fix_ldflags(internal_ldflags) external_ldflags = fix_ldflags(external_ldflags) if not separate_nodedup: external_ldflags.update(external_ldflags_nodedup) return cflags, internal_ldflags, external_ldflags, gi_includes else: return cflags, internal_ldflags, external_ldflags, external_ldflags_nodedup, gi_includes def _unwrap_gir_target(self, girtarget, state): while hasattr(girtarget, 'held_object'): girtarget = girtarget.held_object if not isinstance(girtarget, (build.Executable, build.SharedLibrary, build.StaticLibrary)): raise MesonException('Gir target must be an executable or library') STATIC_BUILD_REQUIRED_VERSION = ">=1.58.1" if isinstance(girtarget, (build.StaticLibrary)) and \ not mesonlib.version_compare( self._get_gir_dep(state)[0].get_version(), STATIC_BUILD_REQUIRED_VERSION): raise MesonException('Static libraries can only be introspected with GObject-Introspection ' + STATIC_BUILD_REQUIRED_VERSION) return girtarget def _get_gir_dep(self, state): try: gir_dep = self.gir_dep or PkgConfigDependency('gobject-introspection-1.0', state.environment, {'native': True}) pkgargs = gir_dep.get_compile_args() except Exception: raise MesonException('gobject-introspection dependency was not found, gir cannot be generated.') return gir_dep, pkgargs def _scan_header(self, kwargs): ret = [] header = kwargs.pop('header', None) if header: if not isinstance(header, str): raise MesonException('header must be a string') ret = ['--c-include=' + header] return ret def _scan_extra_args(self, kwargs): return mesonlib.stringlistify(kwargs.pop('extra_args', [])) def _scan_link_withs(self, state, depends, kwargs): ret = [] if 'link_with' in kwargs: link_with = mesonlib.extract_as_list(kwargs, 'link_with', pop = True) for link in link_with: ret += self._get_link_args(state, link.held_object, depends, use_gir_args=True) return ret # May mutate depends and gir_inc_dirs def _scan_include(self, state, depends, gir_inc_dirs, kwargs): ret = [] if 'includes' in kwargs: includes = mesonlib.extract_as_list(kwargs, 'includes', pop = True) for inc in unholder(includes): if isinstance(inc, str): ret += ['--include=%s' % (inc, )] elif isinstance(inc, GirTarget): gir_inc_dirs += [ os.path.join(state.environment.get_build_dir(), inc.get_subdir()), ] ret += [ "--include-uninstalled=%s" % (os.path.join(inc.get_subdir(), inc.get_basename()), ) ] depends += [inc] else: raise MesonException( 'Gir includes must be str, GirTarget, or list of them') return ret def _scan_symbol_prefix(self, kwargs): ret = [] if 'symbol_prefix' in kwargs: sym_prefixes = mesonlib.stringlistify(kwargs.pop('symbol_prefix', [])) ret += ['--symbol-prefix=%s' % sym_prefix for sym_prefix in sym_prefixes] return ret def _scan_identifier_prefix(self, kwargs): ret = [] if 'identifier_prefix' in kwargs: identifier_prefix = kwargs.pop('identifier_prefix') if not isinstance(identifier_prefix, str): raise MesonException('Gir identifier prefix must be str') ret += ['--identifier-prefix=%s' % identifier_prefix] return ret def _scan_export_packages(self, kwargs): ret = [] if 'export_packages' in kwargs: pkgs = kwargs.pop('export_packages') if isinstance(pkgs, str): ret += ['--pkg-export=%s' % pkgs] elif isinstance(pkgs, list): ret += ['--pkg-export=%s' % pkg for pkg in pkgs] else: raise MesonException('Gir export packages must be str or list') return ret def _scan_inc_dirs(self, kwargs): ret = mesonlib.extract_as_list(kwargs, 'include_directories', pop = True) for incd in ret: if not isinstance(incd.held_object, (str, build.IncludeDirs)): raise MesonException( 'Gir include dirs should be include_directories().') return ret def _scan_langs(self, state, langs): ret = [] for lang in langs: link_args = state.environment.coredata.get_external_link_args(MachineChoice.HOST, lang) for link_arg in link_args: if link_arg.startswith('-L'): ret.append(link_arg) return ret def _scan_gir_targets(self, state, girtargets): ret = [] for girtarget in girtargets: if isinstance(girtarget, build.Executable): ret += ['--program', girtarget] else: # Because of https://gitlab.gnome.org/GNOME/gobject-introspection/merge_requests/72 # we can't use the full path until this is merged. if isinstance(girtarget, build.SharedLibrary): libname = girtarget.get_basename() else: libname = os.path.join("@PRIVATE_OUTDIR_ABS_%s@" % girtarget.get_id(), girtarget.get_filename()) ret += ['--library', libname] # need to put our output directory first as we need to use the # generated libraries instead of any possibly installed system/prefix # ones. ret += ["-L@PRIVATE_OUTDIR_ABS_%s@" % girtarget.get_id()] # Needed for the following binutils bug: # https://github.com/mesonbuild/meson/issues/1911 # However, g-ir-scanner does not understand -Wl,-rpath # so we need to use -L instead for d in state.backend.determine_rpath_dirs(girtarget): d = os.path.join(state.environment.get_build_dir(), d) ret.append('-L' + d) return ret def _get_girtargets_langs_compilers(self, girtargets): ret = [] for girtarget in girtargets: for lang, compiler in girtarget.compilers.items(): # XXX: Can you use g-i with any other language? if lang in ('c', 'cpp', 'objc', 'objcpp', 'd'): ret.append((lang, compiler)) break return ret def _get_gir_targets_deps(self, girtargets): ret = [] for girtarget in girtargets: ret += girtarget.get_all_link_deps() ret += girtarget.get_external_deps() return ret def _get_gir_targets_inc_dirs(self, girtargets): ret = [] for girtarget in girtargets: ret += girtarget.get_include_dirs() return ret def _get_langs_compilers_flags(self, state, langs_compilers): cflags = [] internal_ldflags = [] external_ldflags = [] for lang, compiler in langs_compilers: if state.global_args.get(lang): cflags += state.global_args[lang] if state.project_args.get(lang): cflags += state.project_args[lang] if 'b_sanitize' in compiler.base_options: sanitize = state.environment.coredata.base_options['b_sanitize'].value cflags += compiler.sanitizer_compile_args(sanitize) sanitize = sanitize.split(',') # These must be first in ldflags if 'address' in sanitize: internal_ldflags += ['-lasan'] if 'thread' in sanitize: internal_ldflags += ['-ltsan'] if 'undefined' in sanitize: internal_ldflags += ['-lubsan'] # FIXME: Linking directly to lib*san is not recommended but g-ir-scanner # does not understand -f LDFLAGS. https://bugzilla.gnome.org/show_bug.cgi?id=783892 # ldflags += compiler.sanitizer_link_args(sanitize) return cflags, internal_ldflags, external_ldflags def _make_gir_filelist(self, state, srcdir, ns, nsversion, girtargets, libsources): gir_filelist_dir = state.backend.get_target_private_dir_abs(girtargets[0]) if not os.path.isdir(gir_filelist_dir): os.mkdir(gir_filelist_dir) gir_filelist_filename = os.path.join(gir_filelist_dir, '%s_%s_gir_filelist' % (ns, nsversion)) with open(gir_filelist_filename, 'w', encoding='utf-8') as gir_filelist: for s in unholder(libsources): if isinstance(s, (build.CustomTarget, build.CustomTargetIndex)): for custom_output in s.get_outputs(): gir_filelist.write(os.path.join(state.environment.get_build_dir(), state.backend.get_target_dir(s), custom_output) + '\n') elif isinstance(s, mesonlib.File): gir_filelist.write(s.rel_to_builddir(state.build_to_src) + '\n') elif isinstance(s, build.GeneratedList): for gen_src in s.get_outputs(): gir_filelist.write(os.path.join(srcdir, gen_src) + '\n') else: gir_filelist.write(os.path.join(srcdir, s) + '\n') return gir_filelist_filename def _make_gir_target(self, state, girfile, scan_command, depends, kwargs): scankwargs = {'output': girfile, 'command': scan_command, 'depends': depends} if 'install' in kwargs: scankwargs['install'] = kwargs['install'] scankwargs['install_dir'] = kwargs.get('install_dir_gir', os.path.join(state.environment.get_datadir(), 'gir-1.0')) if 'build_by_default' in kwargs: scankwargs['build_by_default'] = kwargs['build_by_default'] return GirTarget(girfile, state.subdir, state.subproject, scankwargs) def _make_typelib_target(self, state, typelib_output, typelib_cmd, kwargs): typelib_kwargs = { 'output': typelib_output, 'command': typelib_cmd, } if 'install' in kwargs: typelib_kwargs['install'] = kwargs['install'] typelib_kwargs['install_dir'] = kwargs.get('install_dir_typelib', os.path.join(state.environment.get_libdir(), 'girepository-1.0')) if 'build_by_default' in kwargs: typelib_kwargs['build_by_default'] = kwargs['build_by_default'] return TypelibTarget(typelib_output, state.subdir, state.subproject, typelib_kwargs) # May mutate depends def _gather_typelib_includes_and_update_depends(self, state, deps, depends): # Need to recursively add deps on GirTarget sources from our # dependencies and also find the include directories needed for the # typelib generation custom target below. typelib_includes = [] for dep in unholder(deps): # Add a dependency on each GirTarget listed in dependencies and add # the directory where it will be generated to the typelib includes if isinstance(dep, InternalDependency): for source in unholder(dep.sources): if isinstance(source, GirTarget) and source not in depends: depends.append(source) subdir = os.path.join(state.environment.get_build_dir(), source.get_subdir()) if subdir not in typelib_includes: typelib_includes.append(subdir) # Do the same, but for dependencies of dependencies. These are # stored in the list of generated sources for each link dep (from # girtarget.get_all_link_deps() above). # FIXME: Store this in the original form from declare_dependency() # so it can be used here directly. elif isinstance(dep, build.SharedLibrary): for source in dep.generated: if isinstance(source, GirTarget): subdir = os.path.join(state.environment.get_build_dir(), source.get_subdir()) if subdir not in typelib_includes: typelib_includes.append(subdir) elif isinstance(dep, PkgConfigDependency): girdir = dep.get_pkgconfig_variable("girdir", {'default': ''}) if girdir and girdir not in typelib_includes: typelib_includes.append(girdir) return typelib_includes def _get_external_args_for_langs(self, state, langs): ret = [] for lang in langs: ret += state.environment.coredata.get_external_args(MachineChoice.HOST, lang) return ret @staticmethod def _get_scanner_cflags(cflags): 'g-ir-scanner only accepts -I/-D/-U; must ignore all other flags' for f in cflags: if f.startswith(('-D', '-U', '-I')): yield f @staticmethod def _get_scanner_ldflags(ldflags): 'g-ir-scanner only accepts -L/-l; must ignore -F and other linker flags' for f in ldflags: if f.startswith(('-L', '-l', '--extra-library')): yield f @FeatureNewKwargs('build target', '0.40.0', ['build_by_default']) @permittedKwargs({'sources', 'nsversion', 'namespace', 'symbol_prefix', 'identifier_prefix', 'export_packages', 'includes', 'dependencies', 'link_with', 'include_directories', 'install', 'install_dir_gir', 'install_dir_typelib', 'extra_args', 'packages', 'header', 'build_by_default'}) def generate_gir(self, state, args, kwargs): if not args: raise MesonException('generate_gir takes at least one argument') if kwargs.get('install_dir'): raise MesonException('install_dir is not supported with generate_gir(), see "install_dir_gir" and "install_dir_typelib"') girtargets = [self._unwrap_gir_target(arg, state) for arg in args] if len(girtargets) > 1 and any([isinstance(el, build.Executable) for el in girtargets]): raise MesonException('generate_gir only accepts a single argument when one of the arguments is an executable') self.gir_dep, pkgargs = self._get_gir_dep(state) # find_program is needed in the case g-i is built as subproject. # In that case it uses override_find_program so the gobject utilities # can be used from the build dir instead of from the system. # However, GObject-introspection provides the appropriate paths to # these utilities via pkg-config, so it would be best to use the # results from pkg-config when possible. gi_util_dirs_check = [state.environment.get_build_dir(), state.environment.get_source_dir()] giscanner = self.interpreter.find_program_impl('g-ir-scanner') if giscanner.found(): giscanner_path = giscanner.get_command()[0] if not any(x in giscanner_path for x in gi_util_dirs_check): giscanner = self.gir_dep.get_pkgconfig_variable('g_ir_scanner', {}) else: giscanner = self.gir_dep.get_pkgconfig_variable('g_ir_scanner', {}) gicompiler = self.interpreter.find_program_impl('g-ir-compiler') if gicompiler.found(): gicompiler_path = gicompiler.get_command()[0] if not any(x in gicompiler_path for x in gi_util_dirs_check): gicompiler = self.gir_dep.get_pkgconfig_variable('g_ir_compiler', {}) else: gicompiler = self.gir_dep.get_pkgconfig_variable('g_ir_compiler', {}) ns = kwargs.pop('namespace') nsversion = kwargs.pop('nsversion') libsources = mesonlib.extract_as_list(kwargs, 'sources', pop=True) girfile = '%s-%s.gir' % (ns, nsversion) srcdir = os.path.join(state.environment.get_source_dir(), state.subdir) builddir = os.path.join(state.environment.get_build_dir(), state.subdir) depends = [] + girtargets gir_inc_dirs = [] langs_compilers = self._get_girtargets_langs_compilers(girtargets) cflags, internal_ldflags, external_ldflags = self._get_langs_compilers_flags(state, langs_compilers) deps = self._get_gir_targets_deps(girtargets) deps += mesonlib.unholder(extract_as_list(kwargs, 'dependencies', pop=True)) typelib_includes = self._gather_typelib_includes_and_update_depends(state, deps, depends) # ldflags will be misinterpreted by gir scanner (showing # spurious dependencies) but building GStreamer fails if they # are not used here. dep_cflags, dep_internal_ldflags, dep_external_ldflags, gi_includes = \ self._get_dependencies_flags(deps, state, depends, use_gir_args=True) cflags += list(self._get_scanner_cflags(dep_cflags)) cflags += list(self._get_scanner_cflags(self._get_external_args_for_langs(state, [lc[0] for lc in langs_compilers]))) internal_ldflags += list(self._get_scanner_ldflags(dep_internal_ldflags)) external_ldflags += list(self._get_scanner_ldflags(dep_external_ldflags)) girtargets_inc_dirs = self._get_gir_targets_inc_dirs(girtargets) inc_dirs = self._scan_inc_dirs(kwargs) scan_command = [giscanner] scan_command += pkgargs scan_command += ['--no-libtool'] scan_command += ['--namespace=' + ns, '--nsversion=' + nsversion] scan_command += ['--warn-all'] scan_command += ['--output', '@OUTPUT@'] scan_command += self._scan_header(kwargs) scan_command += self._scan_extra_args(kwargs) scan_command += ['-I' + srcdir, '-I' + builddir] scan_command += get_include_args(girtargets_inc_dirs) scan_command += ['--filelist=' + self._make_gir_filelist(state, srcdir, ns, nsversion, girtargets, libsources)] scan_command += self._scan_link_withs(state, depends, kwargs) scan_command += self._scan_include(state, depends, gir_inc_dirs, kwargs) scan_command += self._scan_symbol_prefix(kwargs) scan_command += self._scan_identifier_prefix(kwargs) scan_command += self._scan_export_packages(kwargs) scan_command += ['--cflags-begin'] scan_command += cflags scan_command += ['--cflags-end'] scan_command += get_include_args(inc_dirs) scan_command += get_include_args(list(gi_includes) + gir_inc_dirs + inc_dirs, prefix='--add-include-path=') scan_command += list(internal_ldflags) scan_command += self._scan_gir_targets(state, girtargets) scan_command += self._scan_langs(state, [lc[0] for lc in langs_compilers]) scan_command += list(external_ldflags) if gir_has_option(self.interpreter, '--sources-top-dirs'): scan_command += ['--sources-top-dirs', os.path.join(state.environment.get_source_dir(), self.interpreter.subproject_dir, state.subproject)] scan_command += ['--sources-top-dirs', os.path.join(state.environment.get_build_dir(), self.interpreter.subproject_dir, state.subproject)] scan_target = self._make_gir_target(state, girfile, scan_command, depends, kwargs) typelib_output = '%s-%s.typelib' % (ns, nsversion) typelib_cmd = [gicompiler, scan_target, '--output', '@OUTPUT@'] typelib_cmd += get_include_args(gir_inc_dirs, prefix='--includedir=') for incdir in typelib_includes: typelib_cmd += ["--includedir=" + incdir] typelib_target = self._make_typelib_target(state, typelib_output, typelib_cmd, kwargs) rv = [scan_target, typelib_target] return ModuleReturnValue(rv, rv) @FeatureNewKwargs('build target', '0.40.0', ['build_by_default']) @permittedKwargs({'build_by_default', 'depend_files'}) def compile_schemas(self, state, args, kwargs): if args: raise MesonException('Compile_schemas does not take positional arguments.') srcdir = os.path.join(state.build_to_src, state.subdir) outdir = state.subdir cmd = [self.interpreter.find_program_impl('glib-compile-schemas')] cmd += ['--targetdir', outdir, srcdir] kwargs['command'] = cmd kwargs['input'] = [] kwargs['output'] = 'gschemas.compiled' if state.subdir == '': targetname = 'gsettings-compile' else: targetname = 'gsettings-compile-' + state.subdir.replace('/', '_') target_g = build.CustomTarget(targetname, state.subdir, state.subproject, kwargs) return ModuleReturnValue(target_g, [target_g]) @permittedKwargs({'sources', 'media', 'symlink_media', 'languages'}) def yelp(self, state, args, kwargs): if len(args) < 1: raise MesonException('Yelp requires a project id') project_id = args[0] sources = mesonlib.stringlistify(kwargs.pop('sources', [])) if not sources: if len(args) > 1: sources = mesonlib.stringlistify(args[1:]) if not sources: raise MesonException('Yelp requires a list of sources') source_str = '@@'.join(sources) langs = mesonlib.stringlistify(kwargs.pop('languages', [])) if langs: mlog.deprecation('''The "languages" argument of gnome.yelp() is deprecated. Use a LINGUAS file in the sources directory instead. This will become a hard error in the future.''') media = mesonlib.stringlistify(kwargs.pop('media', [])) symlinks = kwargs.pop('symlink_media', True) if not isinstance(symlinks, bool): raise MesonException('symlink_media must be a boolean') if kwargs: raise MesonException('Unknown arguments passed: {}'.format(', '.join(kwargs.keys()))) script = state.environment.get_build_command() args = ['--internal', 'yelphelper', 'install', '--subdir=' + state.subdir, '--id=' + project_id, '--installdir=' + os.path.join(state.environment.get_datadir(), 'help'), '--sources=' + source_str] if symlinks: args.append('--symlinks=true') if media: args.append('--media=' + '@@'.join(media)) if langs: args.append('--langs=' + '@@'.join(langs)) inscript = build.RunScript(script, args) potargs = state.environment.get_build_command() + [ '--internal', 'yelphelper', 'pot', '--subdir=' + state.subdir, '--id=' + project_id, '--sources=' + source_str, ] pottarget = build.RunTarget('help-' + project_id + '-pot', potargs[0], potargs[1:], [], state.subdir, state.subproject) poargs = state.environment.get_build_command() + [ '--internal', 'yelphelper', 'update-po', '--subdir=' + state.subdir, '--id=' + project_id, '--sources=' + source_str, '--langs=' + '@@'.join(langs), ] potarget = build.RunTarget('help-' + project_id + '-update-po', poargs[0], poargs[1:], [], state.subdir, state.subproject) rv = [inscript, pottarget, potarget] return ModuleReturnValue(None, rv) @FeatureNewKwargs('gnome.gtkdoc', '0.52.0', ['check']) @FeatureNewKwargs('gnome.gtkdoc', '0.48.0', ['c_args']) @FeatureNewKwargs('gnome.gtkdoc', '0.48.0', ['module_version']) @FeatureNewKwargs('gnome.gtkdoc', '0.37.0', ['namespace', 'mode']) @permittedKwargs({'main_xml', 'main_sgml', 'src_dir', 'dependencies', 'install', 'install_dir', 'scan_args', 'scanobjs_args', 'gobject_typesfile', 'fixxref_args', 'html_args', 'html_assets', 'content_files', 'mkdb_args', 'ignore_headers', 'include_directories', 'namespace', 'mode', 'expand_content_files', 'module_version', 'c_args'}) def gtkdoc(self, state, args, kwargs): if len(args) != 1: raise MesonException('Gtkdoc must have one positional argument.') modulename = args[0] if not isinstance(modulename, str): raise MesonException('Gtkdoc arg must be string.') if 'src_dir' not in kwargs: raise MesonException('Keyword argument src_dir missing.') main_file = kwargs.get('main_sgml', '') if not isinstance(main_file, str): raise MesonException('Main sgml keyword argument must be a string.') main_xml = kwargs.get('main_xml', '') if not isinstance(main_xml, str): raise MesonException('Main xml keyword argument must be a string.') moduleversion = kwargs.get('module_version', '') if not isinstance(moduleversion, str): raise MesonException('Module version keyword argument must be a string.') if main_xml != '': if main_file != '': raise MesonException('You can only specify main_xml or main_sgml, not both.') main_file = main_xml targetname = modulename + ('-' + moduleversion if moduleversion else '') + '-doc' command = state.environment.get_build_command() namespace = kwargs.get('namespace', '') mode = kwargs.get('mode', 'auto') VALID_MODES = ('xml', 'sgml', 'none', 'auto') if mode not in VALID_MODES: raise MesonException('gtkdoc: Mode {} is not a valid mode: {}'.format(mode, VALID_MODES)) src_dirs = mesonlib.extract_as_list(kwargs, 'src_dir') header_dirs = [] for src_dir in src_dirs: if hasattr(src_dir, 'held_object'): src_dir = src_dir.held_object if not isinstance(src_dir, build.IncludeDirs): raise MesonException('Invalid keyword argument for src_dir.') for inc_dir in src_dir.get_incdirs(): header_dirs.append(os.path.join(state.environment.get_source_dir(), src_dir.get_curdir(), inc_dir)) header_dirs.append(os.path.join(state.environment.get_build_dir(), src_dir.get_curdir(), inc_dir)) else: header_dirs.append(src_dir) args = ['--internal', 'gtkdoc', '--sourcedir=' + state.environment.get_source_dir(), '--builddir=' + state.environment.get_build_dir(), '--subdir=' + state.subdir, '--headerdirs=' + '@@'.join(header_dirs), '--mainfile=' + main_file, '--modulename=' + modulename, '--moduleversion=' + moduleversion, '--mode=' + mode] for tool in ['scan', 'scangobj', 'mkdb', 'mkhtml', 'fixxref']: program_name = 'gtkdoc-' + tool program = self.interpreter.find_program_impl(program_name) path = program.held_object.get_path() args.append('--{}={}'.format(program_name, path)) if namespace: args.append('--namespace=' + namespace) args += self._unpack_args('--htmlargs=', 'html_args', kwargs) args += self._unpack_args('--scanargs=', 'scan_args', kwargs) args += self._unpack_args('--scanobjsargs=', 'scanobjs_args', kwargs) args += self._unpack_args('--gobjects-types-file=', 'gobject_typesfile', kwargs, state) args += self._unpack_args('--fixxrefargs=', 'fixxref_args', kwargs) args += self._unpack_args('--mkdbargs=', 'mkdb_args', kwargs) args += self._unpack_args('--html-assets=', 'html_assets', kwargs, state) depends = [] content_files = [] for s in unholder(mesonlib.extract_as_list(kwargs, 'content_files')): if isinstance(s, (build.CustomTarget, build.CustomTargetIndex)): depends.append(s) for o in s.get_outputs(): content_files.append(os.path.join(state.environment.get_build_dir(), state.backend.get_target_dir(s), o)) elif isinstance(s, mesonlib.File): content_files.append(s.absolute_path(state.environment.get_source_dir(), state.environment.get_build_dir())) elif isinstance(s, build.GeneratedList): depends.append(s) for gen_src in s.get_outputs(): content_files.append(os.path.join(state.environment.get_source_dir(), state.subdir, gen_src)) elif isinstance(s, str): content_files.append(os.path.join(state.environment.get_source_dir(), state.subdir, s)) else: raise MesonException( 'Invalid object type: {!r}'.format(s.__class__.__name__)) args += ['--content-files=' + '@@'.join(content_files)] args += self._unpack_args('--expand-content-files=', 'expand_content_files', kwargs, state) args += self._unpack_args('--ignore-headers=', 'ignore_headers', kwargs) args += self._unpack_args('--installdir=', 'install_dir', kwargs) args += self._get_build_args(kwargs, state, depends) custom_kwargs = {'output': modulename + '-decl.txt', 'command': command + args, 'depends': depends, 'build_always_stale': True, } custom_target = build.CustomTarget(targetname, state.subdir, state.subproject, custom_kwargs) alias_target = build.AliasTarget(targetname, [custom_target], state.subdir, state.subproject) if kwargs.get('check', False): check_cmd = self.interpreter.find_program_impl('gtkdoc-check') check_env = ['DOC_MODULE=' + modulename, 'DOC_MAIN_SGML_FILE=' + main_file] check_args = [targetname + '-check', check_cmd] check_kwargs = {'env': check_env, 'workdir': os.path.join(state.environment.get_build_dir(), state.subdir), 'depends': custom_target} self.interpreter.add_test(state.current_node, check_args, check_kwargs, True) res = [custom_target, alias_target] if kwargs.get('install', True): res.append(build.RunScript(command, args)) return ModuleReturnValue(custom_target, res) def _get_build_args(self, kwargs, state, depends): args = [] deps = mesonlib.unholder(extract_as_list(kwargs, 'dependencies')) cflags = [] cflags.extend(mesonlib.stringlistify(kwargs.pop('c_args', []))) deps_cflags, internal_ldflags, external_ldflags, gi_includes = \ self._get_dependencies_flags(deps, state, depends, include_rpath=True) inc_dirs = mesonlib.extract_as_list(kwargs, 'include_directories') for incd in inc_dirs: if not isinstance(incd.held_object, (str, build.IncludeDirs)): raise MesonException( 'Gir include dirs should be include_directories().') cflags.extend(deps_cflags) cflags.extend(get_include_args(inc_dirs)) ldflags = [] ldflags.extend(internal_ldflags) ldflags.extend(external_ldflags) cflags.extend(state.environment.coredata.get_external_args(MachineChoice.HOST, 'c')) ldflags.extend(state.environment.coredata.get_external_link_args(MachineChoice.HOST, 'c')) compiler = state.environment.coredata.compilers[MachineChoice.HOST]['c'] compiler_flags = self._get_langs_compilers_flags(state, [('c', compiler)]) cflags.extend(compiler_flags[0]) ldflags.extend(compiler_flags[1]) ldflags.extend(compiler_flags[2]) if compiler: args += ['--cc=%s' % join_args(compiler.get_exelist())] args += ['--ld=%s' % join_args(compiler.get_linker_exelist())] if cflags: args += ['--cflags=%s' % join_args(cflags)] if ldflags: args += ['--ldflags=%s' % join_args(ldflags)] return args @noKwargs def gtkdoc_html_dir(self, state, args, kwargs): if len(args) != 1: raise MesonException('Must have exactly one argument.') modulename = args[0] if not isinstance(modulename, str): raise MesonException('Argument must be a string') return ModuleReturnValue(os.path.join('share/gtk-doc/html', modulename), []) @staticmethod def _unpack_args(arg, kwarg_name, kwargs, expend_file_state=None): if kwarg_name not in kwargs: return [] new_args = mesonlib.extract_as_list(kwargs, kwarg_name) args = [] for i in new_args: if expend_file_state and isinstance(i, mesonlib.File): i = i.absolute_path(expend_file_state.environment.get_source_dir(), expend_file_state.environment.get_build_dir()) elif expend_file_state and isinstance(i, str): i = os.path.join(expend_file_state.environment.get_source_dir(), expend_file_state.subdir, i) elif not isinstance(i, str): raise MesonException(kwarg_name + ' values must be strings.') args.append(i) if args: return [arg + '@@'.join(args)] return [] def _get_autocleanup_args(self, kwargs, glib_version): if not mesonlib.version_compare(glib_version, '>= 2.49.1'): # Warn if requested, silently disable if not if 'autocleanup' in kwargs: mlog.warning('Glib version ({}) is too old to support the \'autocleanup\' ' 'kwarg, need 2.49.1 or newer'.format(glib_version)) return [] autocleanup = kwargs.pop('autocleanup', 'all') values = ('none', 'objects', 'all') if autocleanup not in values: raise MesonException('gdbus_codegen does not support {!r} as an autocleanup value, ' 'must be one of: {!r}'.format(autocleanup, ', '.join(values))) return ['--c-generate-autocleanup', autocleanup] @FeatureNewKwargs('build target', '0.46.0', ['install_header', 'install_dir', 'sources']) @FeatureNewKwargs('build target', '0.40.0', ['build_by_default']) @FeatureNewKwargs('build target', '0.47.0', ['extra_args', 'autocleanup']) @permittedKwargs({'interface_prefix', 'namespace', 'extra_args', 'autocleanup', 'object_manager', 'build_by_default', 'annotations', 'docbook', 'install_header', 'install_dir', 'sources'}) def gdbus_codegen(self, state, args, kwargs): if len(args) not in (1, 2): raise MesonException('gdbus_codegen takes at most two arguments, name and xml file.') namebase = args[0] xml_files = args[1:] cmd = [self.interpreter.find_program_impl('gdbus-codegen')] extra_args = mesonlib.stringlistify(kwargs.pop('extra_args', [])) cmd += extra_args # Autocleanup supported? glib_version = self._get_native_glib_version(state) cmd += self._get_autocleanup_args(kwargs, glib_version) if 'interface_prefix' in kwargs: cmd += ['--interface-prefix', kwargs.pop('interface_prefix')] if 'namespace' in kwargs: cmd += ['--c-namespace', kwargs.pop('namespace')] if kwargs.get('object_manager', False): cmd += ['--c-generate-object-manager'] if 'sources' in kwargs: xml_files += mesonlib.listify(kwargs.pop('sources')) build_by_default = kwargs.get('build_by_default', False) # Annotations are a bit ugly in that they are a list of lists of strings... annotations = kwargs.pop('annotations', []) if not isinstance(annotations, list): raise MesonException('annotations takes a list') if annotations and isinstance(annotations, list) and not isinstance(annotations[0], list): annotations = [annotations] for annotation in annotations: if len(annotation) != 3 or not all(isinstance(i, str) for i in annotation): raise MesonException('Annotations must be made up of 3 strings for ELEMENT, KEY, and VALUE') cmd += ['--annotate'] + annotation targets = [] install_header = kwargs.get('install_header', False) install_dir = kwargs.get('install_dir', state.environment.coredata.get_builtin_option('includedir')) output = namebase + '.c' # Added in https://gitlab.gnome.org/GNOME/glib/commit/e4d68c7b3e8b01ab1a4231bf6da21d045cb5a816 (2.55.2) # Fixed in https://gitlab.gnome.org/GNOME/glib/commit/cd1f82d8fc741a2203582c12cc21b4dacf7e1872 (2.56.2) if mesonlib.version_compare(glib_version, '>= 2.56.2'): custom_kwargs = {'input': xml_files, 'output': output, 'command': cmd + ['--body', '--output', '@OUTPUT@', '@INPUT@'], 'build_by_default': build_by_default } else: if 'docbook' in kwargs: docbook = kwargs['docbook'] if not isinstance(docbook, str): raise MesonException('docbook value must be a string.') cmd += ['--generate-docbook', docbook] # https://git.gnome.org/browse/glib/commit/?id=ee09bb704fe9ccb24d92dd86696a0e6bb8f0dc1a if mesonlib.version_compare(glib_version, '>= 2.51.3'): cmd += ['--output-directory', '@OUTDIR@', '--generate-c-code', namebase, '@INPUT@'] else: self._print_gdbus_warning() cmd += ['--generate-c-code', '@OUTDIR@/' + namebase, '@INPUT@'] custom_kwargs = {'input': xml_files, 'output': output, 'command': cmd, 'build_by_default': build_by_default } cfile_custom_target = build.CustomTarget(output, state.subdir, state.subproject, custom_kwargs) targets.append(cfile_custom_target) output = namebase + '.h' if mesonlib.version_compare(glib_version, '>= 2.56.2'): custom_kwargs = {'input': xml_files, 'output': output, 'command': cmd + ['--header', '--output', '@OUTPUT@', '@INPUT@'], 'build_by_default': build_by_default, 'install': install_header, 'install_dir': install_dir } else: custom_kwargs = {'input': xml_files, 'output': output, 'command': cmd, 'build_by_default': build_by_default, 'install': install_header, 'install_dir': install_dir, 'depends': cfile_custom_target } hfile_custom_target = build.CustomTarget(output, state.subdir, state.subproject, custom_kwargs) targets.append(hfile_custom_target) if 'docbook' in kwargs: docbook = kwargs['docbook'] if not isinstance(docbook, str): raise MesonException('docbook value must be a string.') docbook_cmd = cmd + ['--output-directory', '@OUTDIR@', '--generate-docbook', docbook, '@INPUT@'] # The docbook output is always ${docbook}-${name_of_xml_file} output = namebase + '-docbook' outputs = [] for f in xml_files: outputs.append('{}-{}'.format(docbook, os.path.basename(str(f)))) if mesonlib.version_compare(glib_version, '>= 2.56.2'): custom_kwargs = {'input': xml_files, 'output': outputs, 'command': docbook_cmd, 'build_by_default': build_by_default } else: custom_kwargs = {'input': xml_files, 'output': outputs, 'command': cmd, 'build_by_default': build_by_default, 'depends': cfile_custom_target } docbook_custom_target = build.CustomTarget(output, state.subdir, state.subproject, custom_kwargs) targets.append(docbook_custom_target) return ModuleReturnValue(targets, targets) @permittedKwargs({'sources', 'c_template', 'h_template', 'install_header', 'install_dir', 'comments', 'identifier_prefix', 'symbol_prefix', 'eprod', 'vprod', 'fhead', 'fprod', 'ftail', 'vhead', 'vtail', 'depends'}) def mkenums(self, state, args, kwargs): if len(args) != 1: raise MesonException('Mkenums requires one positional argument.') basename = args[0] if 'sources' not in kwargs: raise MesonException('Missing keyword argument "sources".') sources = kwargs.pop('sources') if isinstance(sources, str): sources = [sources] elif not isinstance(sources, list): raise MesonException( 'Sources keyword argument must be a string or array.') cmd = [] known_kwargs = ['comments', 'eprod', 'fhead', 'fprod', 'ftail', 'identifier_prefix', 'symbol_prefix', 'template', 'vhead', 'vprod', 'vtail'] known_custom_target_kwargs = ['install_dir', 'build_always', 'depends', 'depend_files'] c_template = h_template = None install_header = False for arg, value in kwargs.items(): if arg == 'sources': raise AssertionError("sources should've already been handled") elif arg == 'c_template': c_template = value if isinstance(c_template, mesonlib.File): c_template = c_template.absolute_path(state.environment.source_dir, state.environment.build_dir) if 'template' in kwargs: raise MesonException('Mkenums does not accept both ' 'c_template and template keyword ' 'arguments at the same time.') elif arg == 'h_template': h_template = value if isinstance(h_template, mesonlib.File): h_template = h_template.absolute_path(state.environment.source_dir, state.environment.build_dir) if 'template' in kwargs: raise MesonException('Mkenums does not accept both ' 'h_template and template keyword ' 'arguments at the same time.') elif arg == 'install_header': install_header = value elif arg in known_kwargs: cmd += ['--' + arg.replace('_', '-'), value] elif arg not in known_custom_target_kwargs: raise MesonException( 'Mkenums does not take a %s keyword argument.' % (arg, )) cmd = [self.interpreter.find_program_impl(['glib-mkenums', 'mkenums'])] + cmd custom_kwargs = {} for arg in known_custom_target_kwargs: if arg in kwargs: custom_kwargs[arg] = kwargs[arg] targets = [] if h_template is not None: h_output = os.path.basename(os.path.splitext(h_template)[0]) # We always set template as the first element in the source array # so --template consumes it. h_cmd = cmd + ['--template', '@INPUT@'] h_sources = [h_template] + sources custom_kwargs['install'] = install_header if 'install_dir' not in custom_kwargs: custom_kwargs['install_dir'] = \ state.environment.coredata.get_builtin_option('includedir') h_target = self._make_mkenum_custom_target(state, h_sources, h_output, h_cmd, custom_kwargs) targets.append(h_target) if c_template is not None: c_output = os.path.basename(os.path.splitext(c_template)[0]) # We always set template as the first element in the source array # so --template consumes it. c_cmd = cmd + ['--template', '@INPUT@'] c_sources = [c_template] + sources # Never install the C file. Complain on bug tracker if you need it. custom_kwargs['install'] = False if h_template is not None: if 'depends' in custom_kwargs: custom_kwargs['depends'] += [h_target] else: custom_kwargs['depends'] = h_target c_target = self._make_mkenum_custom_target(state, c_sources, c_output, c_cmd, custom_kwargs) targets.insert(0, c_target) if c_template is None and h_template is None: generic_cmd = cmd + ['@INPUT@'] custom_kwargs['install'] = install_header if 'install_dir' not in custom_kwargs: custom_kwargs['install_dir'] = \ state.environment.coredata.get_builtin_option('includedir') target = self._make_mkenum_custom_target(state, sources, basename, generic_cmd, custom_kwargs) return ModuleReturnValue(target, [target]) elif len(targets) == 1: return ModuleReturnValue(targets[0], [targets[0]]) else: return ModuleReturnValue(targets, targets) @FeatureNew('gnome.mkenums_simple', '0.42.0') def mkenums_simple(self, state, args, kwargs): hdr_filename = args[0] + '.h' body_filename = args[0] + '.c' # not really needed, just for sanity checking forbidden_kwargs = ['c_template', 'h_template', 'eprod', 'fhead', 'fprod', 'ftail', 'vhead', 'vtail', 'comments'] for arg in forbidden_kwargs: if arg in kwargs: raise MesonException('mkenums_simple() does not take a %s keyword argument' % (arg, )) # kwargs to pass as-is from mkenums_simple() to mkenums() shared_kwargs = ['sources', 'install_header', 'install_dir', 'identifier_prefix', 'symbol_prefix'] mkenums_kwargs = {} for arg in shared_kwargs: if arg in kwargs: mkenums_kwargs[arg] = kwargs[arg] # .c file generation c_file_kwargs = copy.deepcopy(mkenums_kwargs) if 'sources' not in kwargs: raise MesonException('Missing keyword argument "sources".') sources = kwargs['sources'] if isinstance(sources, str): sources = [sources] elif not isinstance(sources, list): raise MesonException( 'Sources keyword argument must be a string or array.') # The `install_header` argument will be used by mkenums() when # not using template files, so we need to forcibly unset it # when generating the C source file, otherwise we will end up # installing it c_file_kwargs['install_header'] = False header_prefix = kwargs.get('header_prefix', '') decl_decorator = kwargs.get('decorator', '') func_prefix = kwargs.get('function_prefix', '') body_prefix = kwargs.get('body_prefix', '') # Maybe we should write our own template files into the build dir # instead, but that seems like much more work, nice as it would be. fhead = '' if body_prefix != '': fhead += '%s\n' % body_prefix fhead += '#include "%s"\n' % hdr_filename for hdr in sources: fhead += '#include "%s"\n' % os.path.basename(str(hdr)) fhead += ''' #define C_ENUM(v) ((gint) v) #define C_FLAGS(v) ((guint) v) ''' c_file_kwargs['fhead'] = fhead c_file_kwargs['fprod'] = ''' /* enumerations from "@basename@" */ ''' c_file_kwargs['vhead'] = ''' GType %s@enum_name@_get_type (void) { static volatile gsize gtype_id = 0; static const G@Type@Value values[] = {''' % func_prefix c_file_kwargs['vprod'] = ' { C_@TYPE@(@VALUENAME@), "@VALUENAME@", "@valuenick@" },' c_file_kwargs['vtail'] = ''' { 0, NULL, NULL } }; if (g_once_init_enter (&gtype_id)) { GType new_type = g_@type@_register_static (g_intern_static_string ("@EnumName@"), values); g_once_init_leave (&gtype_id, new_type); } return (GType) gtype_id; }''' rv = self.mkenums(state, [body_filename], c_file_kwargs) c_file = rv.return_value # .h file generation h_file_kwargs = copy.deepcopy(mkenums_kwargs) h_file_kwargs['fhead'] = '''#pragma once #include <glib-object.h> {} G_BEGIN_DECLS '''.format(header_prefix) h_file_kwargs['fprod'] = ''' /* enumerations from "@basename@" */ ''' h_file_kwargs['vhead'] = ''' {} GType {}@enum_name@_get_type (void); #define @ENUMPREFIX@_TYPE_@ENUMSHORT@ ({}@enum_name@_get_type())'''.format(decl_decorator, func_prefix, func_prefix) h_file_kwargs['ftail'] = ''' G_END_DECLS''' rv = self.mkenums(state, [hdr_filename], h_file_kwargs) h_file = rv.return_value return ModuleReturnValue([c_file, h_file], [c_file, h_file]) @staticmethod def _make_mkenum_custom_target(state, sources, output, cmd, kwargs): custom_kwargs = { 'input': sources, 'output': output, 'capture': True, 'command': cmd } custom_kwargs.update(kwargs) return build.CustomTarget(output, state.subdir, state.subproject, custom_kwargs, # https://github.com/mesonbuild/meson/issues/973 absolute_paths=True) @permittedKwargs({'sources', 'prefix', 'install_header', 'install_dir', 'stdinc', 'nostdinc', 'internal', 'skip_source', 'valist_marshallers', 'extra_args'}) def genmarshal(self, state, args, kwargs): if len(args) != 1: raise MesonException( 'Genmarshal requires one positional argument.') output = args[0] if 'sources' not in kwargs: raise MesonException('Missing keyword argument "sources".') sources = kwargs.pop('sources') if isinstance(sources, str): sources = [sources] elif not isinstance(sources, list): raise MesonException( 'Sources keyword argument must be a string or array.') new_genmarshal = mesonlib.version_compare(self._get_native_glib_version(state), '>= 2.53.3') cmd = [self.interpreter.find_program_impl('glib-genmarshal')] known_kwargs = ['internal', 'nostdinc', 'skip_source', 'stdinc', 'valist_marshallers', 'extra_args'] known_custom_target_kwargs = ['build_always', 'depends', 'depend_files', 'install_dir', 'install_header'] for arg, value in kwargs.items(): if arg == 'prefix': cmd += ['--prefix', value] elif arg == 'extra_args': if new_genmarshal: cmd += mesonlib.stringlistify(value) else: mlog.warning('The current version of GLib does not support extra arguments \n' 'for glib-genmarshal. You need at least GLib 2.53.3. See ', mlog.bold('https://github.com/mesonbuild/meson/pull/2049')) elif arg in known_kwargs and value: cmd += ['--' + arg.replace('_', '-')] elif arg not in known_custom_target_kwargs: raise MesonException( 'Genmarshal does not take a %s keyword argument.' % ( arg, )) install_header = kwargs.pop('install_header', False) install_dir = kwargs.pop('install_dir', None) custom_kwargs = { 'input': sources, } # https://github.com/GNOME/glib/commit/0fbc98097fac4d3e647684f344e508abae109fdf if mesonlib.version_compare(self._get_native_glib_version(state), '>= 2.51.0'): cmd += ['--output', '@OUTPUT@'] else: custom_kwargs['capture'] = True for arg in known_custom_target_kwargs: if arg in kwargs: custom_kwargs[arg] = kwargs[arg] header_file = output + '.h' custom_kwargs['command'] = cmd + ['--body', '@INPUT@'] if mesonlib.version_compare(self._get_native_glib_version(state), '>= 2.53.4'): # Silence any warnings about missing prototypes custom_kwargs['command'] += ['--include-header', header_file] custom_kwargs['output'] = output + '.c' body = build.CustomTarget(output + '_c', state.subdir, state.subproject, custom_kwargs) custom_kwargs['install'] = install_header if install_dir is not None: custom_kwargs['install_dir'] = install_dir if new_genmarshal: cmd += ['--pragma-once'] custom_kwargs['command'] = cmd + ['--header', '@INPUT@'] custom_kwargs['output'] = header_file header = build.CustomTarget(output + '_h', state.subdir, state.subproject, custom_kwargs) rv = [body, header] return ModuleReturnValue(rv, rv) @staticmethod def _vapi_args_to_command(prefix, variable, kwargs, accept_vapi=False): arg_list = mesonlib.extract_as_list(kwargs, variable) ret = [] for arg in arg_list: if not isinstance(arg, str): types = 'strings' + ' or InternalDependencys' if accept_vapi else '' raise MesonException('All {} must be {}'.format(variable, types)) ret.append(prefix + arg) return ret def _extract_vapi_packages(self, state, kwargs): ''' Packages are special because we need to: - Get a list of packages for the .deps file - Get a list of depends for any VapiTargets - Get package name from VapiTargets - Add include dirs for any VapiTargets ''' arg_list = kwargs.get('packages') if not arg_list: return [], [], [], [] arg_list = mesonlib.listify(arg_list) vapi_depends = [] vapi_packages = [] vapi_includes = [] ret = [] remaining_args = [] for arg in unholder(arg_list): if isinstance(arg, InternalDependency): targets = [t for t in arg.sources if isinstance(t, VapiTarget)] for target in targets: srcdir = os.path.join(state.environment.get_source_dir(), target.get_subdir()) outdir = os.path.join(state.environment.get_build_dir(), target.get_subdir()) outfile = target.get_outputs()[0][:-5] # Strip .vapi ret.append('--vapidir=' + outdir) ret.append('--girdir=' + outdir) ret.append('--pkg=' + outfile) vapi_depends.append(target) vapi_packages.append(outfile) vapi_includes.append(srcdir) else: vapi_packages.append(arg) remaining_args.append(arg) kwargs['packages'] = remaining_args vapi_args = ret + self._vapi_args_to_command('--pkg=', 'packages', kwargs, accept_vapi=True) return vapi_args, vapi_depends, vapi_packages, vapi_includes def _generate_deps(self, state, library, packages, install_dir): outdir = state.environment.scratch_dir fname = os.path.join(outdir, library + '.deps') with open(fname, 'w') as ofile: for package in packages: ofile.write(package + '\n') return build.Data(mesonlib.File(True, outdir, fname), install_dir) def _get_vapi_link_with(self, target): link_with = [] for dep in target.get_target_dependencies(): if isinstance(dep, build.SharedLibrary): link_with.append(dep) elif isinstance(dep, GirTarget): link_with += self._get_vapi_link_with(dep) return link_with @permittedKwargs({'sources', 'packages', 'metadata_dirs', 'gir_dirs', 'vapi_dirs', 'install', 'install_dir'}) def generate_vapi(self, state, args, kwargs): if len(args) != 1: raise MesonException('The library name is required') if not isinstance(args[0], str): raise MesonException('The first argument must be the name of the library') created_values = [] library = args[0] build_dir = os.path.join(state.environment.get_build_dir(), state.subdir) source_dir = os.path.join(state.environment.get_source_dir(), state.subdir) pkg_cmd, vapi_depends, vapi_packages, vapi_includes = self._extract_vapi_packages(state, kwargs) if 'VAPIGEN' in os.environ: cmd = [self.interpreter.find_program_impl(os.environ['VAPIGEN'])] else: cmd = [self.interpreter.find_program_impl('vapigen')] cmd += ['--quiet', '--library=' + library, '--directory=' + build_dir] cmd += self._vapi_args_to_command('--vapidir=', 'vapi_dirs', kwargs) cmd += self._vapi_args_to_command('--metadatadir=', 'metadata_dirs', kwargs) cmd += self._vapi_args_to_command('--girdir=', 'gir_dirs', kwargs) cmd += pkg_cmd cmd += ['--metadatadir=' + source_dir] if 'sources' not in kwargs: raise MesonException('sources are required to generate the vapi file') inputs = mesonlib.extract_as_list(kwargs, 'sources') link_with = [] for i in inputs: if isinstance(i, str): cmd.append(os.path.join(source_dir, i)) elif hasattr(i, 'held_object') and isinstance(i.held_object, GirTarget): link_with += self._get_vapi_link_with(i.held_object) subdir = os.path.join(state.environment.get_build_dir(), i.held_object.get_subdir()) gir_file = os.path.join(subdir, i.held_object.get_outputs()[0]) cmd.append(gir_file) else: raise MesonException('Input must be a str or GirTarget') vapi_output = library + '.vapi' custom_kwargs = { 'command': cmd, 'input': inputs, 'output': vapi_output, 'depends': vapi_depends, } install_dir = kwargs.get('install_dir', os.path.join(state.environment.coredata.get_builtin_option('datadir'), 'vala', 'vapi')) if kwargs.get('install'): custom_kwargs['install'] = kwargs['install'] custom_kwargs['install_dir'] = install_dir # We shouldn't need this locally but we install it deps_target = self._generate_deps(state, library, vapi_packages, install_dir) created_values.append(deps_target) vapi_target = VapiTarget(vapi_output, state.subdir, state.subproject, custom_kwargs) # So to try our best to get this to just work we need: # - link with with the correct library # - include the vapi and dependent vapi files in sources # - add relevant directories to include dirs incs = [build.IncludeDirs(state.subdir, ['.'] + vapi_includes, False)] sources = [vapi_target] + vapi_depends rv = InternalDependency(None, incs, [], [], link_with, [], sources, [], {}) created_values.append(rv) return ModuleReturnValue(rv, created_values) def initialize(*args, **kwargs): return GnomeModule(*args, **kwargs)
47.628303
151
0.580094
e25d7bdf7c046f395bb6c02351a322572b9dd82c
5,103
py
Python
bot/networth/networth.py
UP929312/CommunityBot
c16294e8ff4f47d9a1e8c18c9cd4011e7ebbd67a
[ "Apache-2.0" ]
1
2021-06-15T07:31:13.000Z
2021-06-15T07:31:13.000Z
bot/networth/networth.py
UP929312/CommunityBot
c16294e8ff4f47d9a1e8c18c9cd4011e7ebbd67a
[ "Apache-2.0" ]
1
2021-06-01T10:14:32.000Z
2021-06-02T10:54:12.000Z
bot/networth/networth.py
UP929312/CommunityBot
c16294e8ff4f47d9a1e8c18c9cd4011e7ebbd67a
[ "Apache-2.0" ]
2
2021-06-01T10:59:15.000Z
2021-06-03T18:29:36.000Z
import discord # type: ignore from discord.ext import commands # type: ignore from discord.commands import Option # type: ignore from typing import Optional import requests from utils import error, PROFILE_NAMES, API_KEY, guild_ids from menus import generate_static_preset_menu from database_manager import insert_profile from parse_profile import get_profile_data from networth.generate_page import generate_page from networth.constants import PAGES, EMOJI_LIST class networth_cog(commands.Cog): def __init__(self, bot) -> None: self.client = bot @commands.command(name="networth", aliases=["nw", "n", "net", "worth", "now", "new"]) async def networth_command(self, ctx: commands.Context, provided_username: Optional[str] = None, provided_profile_name: Optional[str] = None) -> None: await self.get_networth(ctx, provided_username, provided_profile_name, is_response=False) @commands.slash_command(name="networth", description="Gets networth data about someone", guild_ids=guild_ids) async def networth_slash(self, ctx, username: Option(str, "username:", required=False), profile: Option(str, "profile", choices=PROFILE_NAMES, required=False)): if not (ctx.channel.permissions_for(ctx.guild.me)).send_messages: return await ctx.respond("You're not allowed to do that here.", ephemeral=True) await self.get_networth(ctx, username, profile, is_response=True) @commands.slash_command(name="nw", description="Alias of /networth", guild_ids=guild_ids) async def alias_networth_slash(self, ctx, username: Option(str, "username:", required=False), profile: Option(str, "profile", choices=PROFILE_NAMES, required=False)): if not (ctx.channel.permissions_for(ctx.guild.me)).send_messages: return await ctx.respond("You're not allowed to do that here.", ephemeral=True) await self.get_networth(ctx, username, profile, is_response=True) @commands.user_command(name="Get networth", guild_ids=guild_ids) async def networth_context_menu(self, ctx, member: discord.Member): if not (ctx.channel.permissions_for(ctx.guild.me)).send_messages: return await ctx.respond("You're not allowed to do that here.", ephemeral=True) await self.get_networth(ctx, member.display_name, None, is_response=True) #================================================================================================================================ async def get_networth(self, ctx, provided_username: Optional[str] = None, provided_profile_name: Optional[str] = None, is_response: bool = False) -> None: # Convert username/linked_account/nick to profile and more player_data = await get_profile_data(ctx, provided_username, provided_profile_name, return_profile_list=True, is_response=is_response) if player_data is None: return None username, uuid, profile_data, profile_name = player_data["data"] #======================= # Make the API request try: request = requests.post(f"http://{self.client.ip_address}:8000/pages/{uuid}?profile_name={profile_name}", json=profile_data) except Exception as e: print(e) return await error(ctx, "Error, the bot could not connect to the API", "This could be because the API is down for maintenance, because it's restarting, or because there are issues. Try again later.", is_response) #======================= # Deal with exceptions if request.status_code == 500: return await error(ctx, "Error, an exception has occured", "This happened internally. If it's continues, let the lead dev know (Skezza#1139)", is_response) elif request.status_code == 401: return await error(ctx, "Error, invalid profile given!", "Make sure it's one of their active profiles and try again.", is_response) elif request.status_code == 423: return await error(ctx, "Error, rate limit hit", "Your request has not been fufiled, please slow down and try again later.", is_response) elif request.status_code == 404: return await error(ctx, "Error, that person could not be found", "Perhaps you input the incorrect name?", is_response) #======================= data = request.json() # Generate all the pages and initiate the menu handler list_of_embeds = [generate_page(ctx.author, data, username, page) for page in PAGES] await generate_static_preset_menu(ctx=ctx, list_of_embeds=list_of_embeds, emoji_list=EMOJI_LIST, alternate_colours=True, is_response=is_response) # Add the data to the database (for the leaderboard command) data_totals: list[int] = [data[page]['total'] for page in ("purse", "banking", "inventory", "accessories", "ender_chest", "armor", "vault", "wardrobe", "storage", "pets")] insert_profile(uuid, data["profile_data"]["profile_name"], data["profile_data"]["profile_type"], *data_totals)
64.594937
224
0.673721
3e164cd12e904954a2b7feabb24e61cb7e92911a
2,777
py
Python
parchment/tests/test_views.py
jbittel/django-parchment
bd7c40902c6fa66740ec76eeac15e274b7e7bc5a
[ "BSD-3-Clause" ]
1
2015-10-03T20:19:34.000Z
2015-10-03T20:19:34.000Z
parchment/tests/test_views.py
jbittel/django-parchment
bd7c40902c6fa66740ec76eeac15e274b7e7bc5a
[ "BSD-3-Clause" ]
null
null
null
parchment/tests/test_views.py
jbittel/django-parchment
bd7c40902c6fa66740ec76eeac15e274b7e7bc5a
[ "BSD-3-Clause" ]
null
null
null
from __future__ import unicode_literals from django.core.urlresolvers import reverse from django.test import TestCase from django.test.client import RequestFactory from django.test.utils import override_settings from parchment.views import ParchmentView class ParchmentViewTests(TestCase): valid_login = reverse('parchment_login') + '?student_id=12345678987654321&customers_dob=01/12/1980&customers_firstname=Joe&customers_lastname=Alumni&customers_email_address=joealumni@school.edu' invalid_login = reverse('parchment_login') def setUp(self): self.rf = RequestFactory() def test_view_template(self): """ When a request is made to the login view, the correct template should be utilized. """ request = self.rf.get(self.valid_login) response = ParchmentView.as_view()(request) self.assertTemplateUsed(response, 'parchment/login.html') def test_bad_response(self): """ When an invalid request is made to the login view, it should return a 400 Bad Response. """ request = self.rf.get(self.invalid_login) response = ParchmentView.as_view()(request) self.assertEquals(response.status_code, 400) def test_parch5_field(self): """ When a valid request is made to the login view, it should contain a hidden ``parch5`` field. """ request = self.rf.get(self.valid_login) response = ParchmentView.as_view()(request) self.assertContains(response, '<input id="id_parch5" name="parch5" type="hidden" value="') def test_parchiv_field(self): """ When a valid request is made to the login view, it should contain a hidden ``parchiv`` field. """ request = self.rf.get(self.valid_login) response = ParchmentView.as_view()(request) self.assertContains(response, '<input id="id_parchiv" name="parchiv" type="hidden" value="') @override_settings(PARCHMENT_DEBUG_MODE=True) def test_debug_field(self): """ When a valid request is made to the login view and debug mode is enabled, it should contain a hidden ``debug`` field. """ request = self.rf.get(self.valid_login) response = ParchmentView.as_view()(request) self.assertContains(response, '<input id="id_debug" name="debug" type="hidden" value="') def test_action_url_s_id(self): """ When a valid request is made to the login view, the form action URL should contain the configured school ID query parameter. """ request = self.rf.get(self.valid_login) response = ParchmentView.as_view()(request) self.assertContains(response, 's_id=1234567890abcdef')
38.569444
198
0.675189
02b1f0f536f63089099ab75904c0ce7752e3f020
2,152
py
Python
repeats.py
Ginfung/FSSE
c54510b78dfceec76c74893e8514ed5177b504e5
[ "MIT" ]
3
2018-08-07T13:54:57.000Z
2020-02-24T11:46:05.000Z
repeats.py
Ginfung/FSSE
c54510b78dfceec76c74893e8514ed5177b504e5
[ "MIT" ]
1
2019-01-15T23:22:19.000Z
2019-01-15T23:22:19.000Z
repeats.py
Ginfung/FSSE
c54510b78dfceec76c74893e8514ed5177b504e5
[ "MIT" ]
1
2019-01-09T15:50:47.000Z
2019-01-09T15:50:47.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (C) 2016, Jianfeng Chen <jchen37@ncsu.edu> # vim: set ts=4 sts=4 sw=4 expandtab smartindent: # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from __future__ import division from os.path import isfile, join import os import pdb def request_new_file(folder, model_name): if folder[-1] == '/': folder = folder[:-1] files = [f for f in os.listdir(folder) if isfile(join(folder, f))] existed = [f for f in files if '_'+model_name+'_' in f] if len(existed) == 0: return folder+'/_'+model_name+'_1.txt' else: i = [int(e.split('_')[2].split('.')[0]) for e in existed] i = max(i) + 1 return folder+'/_'+model_name+'_' + str(i) + '.txt' def fetch_all_files(folder, model_name): if folder[-1] == '/': folder = folder[:-1] files = [join(folder, f) for f in os.listdir(folder) if isfile(join(folder, f)) and '_'+model_name+'_' in f] return files if __name__ == '__main__': print(request_new_file('./tse_rs/paper_material', 'osp')) print(fetch_all_files('./tse_rs/paper_material', 'osp'))
38.428571
112
0.695167
819c4d7d73b4cad8b25468d7effa915671a30e09
3,601
py
Python
aliyun-python-sdk-cdn/aliyunsdkcdn/request/v20141111/AddCdnDomainRequest.py
liumihust/aliyun-openapi-python-sdk
c7b5dd4befae4b9c59181654289f9272531207ef
[ "Apache-2.0" ]
null
null
null
aliyun-python-sdk-cdn/aliyunsdkcdn/request/v20141111/AddCdnDomainRequest.py
liumihust/aliyun-openapi-python-sdk
c7b5dd4befae4b9c59181654289f9272531207ef
[ "Apache-2.0" ]
null
null
null
aliyun-python-sdk-cdn/aliyunsdkcdn/request/v20141111/AddCdnDomainRequest.py
liumihust/aliyun-openapi-python-sdk
c7b5dd4befae4b9c59181654289f9272531207ef
[ "Apache-2.0" ]
null
null
null
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest from aliyunsdkcdn.endpoint import endpoint_data class AddCdnDomainRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'Cdn', '2014-11-11', 'AddCdnDomain') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_Sources(self): return self.get_query_params().get('Sources') def set_Sources(self,Sources): self.add_query_param('Sources',Sources) def get_ResourceGroupId(self): return self.get_query_params().get('ResourceGroupId') def set_ResourceGroupId(self,ResourceGroupId): self.add_query_param('ResourceGroupId',ResourceGroupId) def get_SourcePort(self): return self.get_query_params().get('SourcePort') def set_SourcePort(self,SourcePort): self.add_query_param('SourcePort',SourcePort) def get_Priorities(self): return self.get_query_params().get('Priorities') def set_Priorities(self,Priorities): self.add_query_param('Priorities',Priorities) def get_SecurityToken(self): return self.get_query_params().get('SecurityToken') def set_SecurityToken(self,SecurityToken): self.add_query_param('SecurityToken',SecurityToken) def get_CdnType(self): return self.get_query_params().get('CdnType') def set_CdnType(self,CdnType): self.add_query_param('CdnType',CdnType) def get_Scope(self): return self.get_query_params().get('Scope') def set_Scope(self,Scope): self.add_query_param('Scope',Scope) def get_SourceType(self): return self.get_query_params().get('SourceType') def set_SourceType(self,SourceType): self.add_query_param('SourceType',SourceType) def get_TopLevelDomain(self): return self.get_query_params().get('TopLevelDomain') def set_TopLevelDomain(self,TopLevelDomain): self.add_query_param('TopLevelDomain',TopLevelDomain) def get_OwnerAccount(self): return self.get_query_params().get('OwnerAccount') def set_OwnerAccount(self,OwnerAccount): self.add_query_param('OwnerAccount',OwnerAccount) def get_DomainName(self): return self.get_query_params().get('DomainName') def set_DomainName(self,DomainName): self.add_query_param('DomainName',DomainName) def get_OwnerId(self): return self.get_query_params().get('OwnerId') def set_OwnerId(self,OwnerId): self.add_query_param('OwnerId',OwnerId) def get_CheckUrl(self): return self.get_query_params().get('CheckUrl') def set_CheckUrl(self,CheckUrl): self.add_query_param('CheckUrl',CheckUrl) def get_Region(self): return self.get_query_params().get('Region') def set_Region(self,Region): self.add_query_param('Region',Region)
31.313043
74
0.758956
6df8527b17140315f65ab330a8583ac873a4da19
5,500
py
Python
baseline/baseline_config.py
Leon-Francis/DefenceForNamedEntityAttack
59f95171453becc303801aa64788817edfeb6b5c
[ "Apache-2.0" ]
null
null
null
baseline/baseline_config.py
Leon-Francis/DefenceForNamedEntityAttack
59f95171453becc303801aa64788817edfeb6b5c
[ "Apache-2.0" ]
null
null
null
baseline/baseline_config.py
Leon-Francis/DefenceForNamedEntityAttack
59f95171453becc303801aa64788817edfeb6b5c
[ "Apache-2.0" ]
null
null
null
import torch config_path = './baseline/baseline_config.py' bert_vocab_size = 30522 class Baseline_Config(): output_dir = 'output' cuda_idx = 0 train_device = torch.device('cuda:' + str(cuda_idx)) batch_size = 64 dataset = 'AGNEWS' baseline = 'TextCNN' epoch = 100 save_acc_limit = 0.80 debug_mode = False if_mask_NE = False if_replace_NE = False if_attach_NE = True if_adversial_training = False linear_layer_num = 1 dropout_rate = 0.5 is_fine_tuning = True Bert_lr = 1e-5 lr = 3e-4 skip_loss = 0 class IMDBConfig(): train_data_path = r'./dataset/IMDB/aclImdb/train.std' test_data_path = r'./dataset/IMDB/aclImdb/test.std' labels_num = 2 tokenizer_type = 'Bert' remove_stop_words = False sen_len = 230 vocab_size = bert_vocab_size adversarial_data_path = r'dataset/IMDB/aclImdb/adversial_instance.std' class SST2Config(): train_data_path = r'./dataset/SST2/train.std' test_data_path = r'./dataset/SST2/test.std' labels_num = 2 tokenizer_type = 'Bert' remove_stop_words = False sen_len = 20 vocab_size = bert_vocab_size class AGNEWSConfig(): train_data_path = r'./dataset/AGNEWS/train.std' test_data_path = r'./dataset/AGNEWS/test.std' labels_num = 4 tokenizer_type = 'Bert' remove_stop_words = False sen_len = 50 vocab_size = bert_vocab_size dataset_config = {'IMDB': IMDBConfig, 'SST2': SST2Config, 'AGNEWS': AGNEWSConfig} model_path = {'IMDB_Bert_MNE': 'output/train_baseline_model/2021-05-12_12:57:41/models/IMDB_Bert_0.91328_05-12-14-47.pt', 'IMDB_Bert_replace_NE': 'output/train_baseline_model/2021-05-13_21:20:48/models/IMDB_Bert_0.91096_05-13-22-37.pt', 'IMDB_Bert_attach_NE': 'output/train_baseline_model/2021-05-14_21:39:33/models/IMDB_Bert_0.91680_05-15-04-01.pt', 'IMDB_Bert_attach_NE_inhance': 'output/train_baseline_model/2021-05-18_19:47:01/models/IMDB_Bert_0.91008_05-19-05-14.pt', 'IMDB_Bert_attack_NE_weak': 'output/train_baseline_model/2021-05-19_18:03:20/models/IMDB_Bert_0.91120_05-19-23-35.pt', 'IMDB_Bert': 'output/train_baseline_model/2021-05-11_21:36:13/models/IMDB_Bert_0.91564_05-11-22-58.pt', 'IMDB_Bert_adversial_training': 'output/train_baseline_model/2021-06-16_22:56:38/models/IMDB_Bert_0.91304_06-17-02-34.pt', 'SST2_Bert_attach_NE': 'output/train_baseline_model/2021-05-25_11:01:06/models/SST2_Bert_0.85592_05-25-11-08.pt', 'SST2_Bert': 'output/train_baseline_model/2021-05-24_22:50:17/models/SST2_Bert_0.87078_05-24-22-59.pt', 'AGNEWS_Bert': 'output/train_baseline_model/2021-05-25_12:16:00/models/AGNEWS_Bert_0.94250_05-25-14-51.pt', 'AGNEWS_Bert_attach_NE': 'output/train_baseline_model/2021-05-25_17:30:41/models/AGNEWS_Bert_0.92803_05-26-05-35.pt', 'AGNEWS_TextCNN_limit_vocab': 'output/train_baseline_model/2021-06-23_16:53:25/models/AGNEWS_TextCNN_0.91671_06-23-16-57.pt', 'IMDB_LSTM': 'output/train_baseline_model/2021-06-09_21:19:25/models/IMDB_LSTM_0.85636_06-09-21-54.pt', 'IMDB_LSTM_MNE': 'output/train_baseline_model/2021-06-10_21:42:54/models/IMDB_LSTM_0.86404_06-10-22-31.pt', 'IMDB_LSTM_replace_NE': 'output/train_baseline_model/2021-06-16_18:37:22/models/IMDB_LSTM_0.87340_06-16-19-14.pt', 'IMDB_LSTM_attach_NE': 'output/train_baseline_model/2021-06-09_22:43:59/models/IMDB_LSTM_0.83464_06-10-04-24.pt', 'IMDB_LSTM_limit_vocab': 'output/train_baseline_model/2021-06-10_22:03:23/models/IMDB_LSTM_0.85852_06-10-23-12.pt', 'IMDB_LSTM_limit_vocab_MNE': 'output/train_baseline_model/2021-06-16_17:20:06/models/IMDB_LSTM_0.87360_06-16-18-17.pt', 'IMDB_LSTM_limit_vocab_replace_NE': 'output/train_baseline_model/2021-06-16_17:18:12/models/IMDB_LSTM_0.87532_06-16-18-14.pt', 'IMDB_LSTM_limit_vocab_attach_NE': 'output/train_baseline_model/2021-06-11_11:24:58/models/IMDB_LSTM_0.83784_06-11-17-53.pt', 'IMDB_LSTM_limit_vocab_adversial_training': 'output/train_baseline_model/2021-06-18_11:36:09/models/IMDB_LSTM_0.86500_06-18-11-54.pt', 'IMDB_TextCNN': 'output/train_baseline_model/2021-06-14_22:48:20/models/IMDB_TextCNN_0.86168_06-14-22-53.pt', 'IMDB_TextCNN_MNE': 'output/train_baseline_model/2021-06-16_17:25:26/models/IMDB_TextCNN_0.84924_06-16-18-03.pt', 'IMDB_TextCNN_replace_NE': 'output/train_baseline_model/2021-06-16_17:26:22/models/IMDB_TextCNN_0.86164_06-16-18-06.pt', 'IMDB_TextCNN_attach_NE': 'output/train_baseline_model/2021-06-16_17:27:02/models/IMDB_TextCNN_0.83480_06-16-18-24.pt', 'IMDB_TextCNN_limit_vocab': 'output/train_baseline_model/2021-06-17_17:18:02/models/IMDB_TextCNN_0.86648_06-17-17-26.pt', 'IMDB_TextCNN_limit_vocab_MNE': 'output/train_baseline_model/2021-06-17_17:19:27/models/IMDB_TextCNN_0.86388_06-17-17-56.pt', 'IMDB_TextCNN_limit_vocab_replace_NE': 'output/train_baseline_model/2021-06-17_17:19:45/models/IMDB_TextCNN_0.86400_06-17-17-52.pt', 'IMDB_TextCNN_limit_vocab_attach_NE': 'output/train_baseline_model/2021-06-17_17:20:09/models/IMDB_TextCNN_0.83636_06-17-18-54.pt', 'IMDB_TextCNN_limit_vocab_adversial_training': 'output/train_baseline_model/2021-06-18_11:37:55/models/IMDB_TextCNN_0.85640_06-18-11-49.pt'}
57.291667
154
0.720727
514a94b0bd895afdd11e4667f445fe6d68b83ace
913
py
Python
build/lib/bandwidth/http/auth/voice_basic_auth.py
Spaced-Out/python-bandwidth-sdk
5332f29d1c093003444384f63a9d4a00843c954f
[ "MIT" ]
null
null
null
build/lib/bandwidth/http/auth/voice_basic_auth.py
Spaced-Out/python-bandwidth-sdk
5332f29d1c093003444384f63a9d4a00843c954f
[ "MIT" ]
null
null
null
build/lib/bandwidth/http/auth/voice_basic_auth.py
Spaced-Out/python-bandwidth-sdk
5332f29d1c093003444384f63a9d4a00843c954f
[ "MIT" ]
1
2020-12-01T15:25:51.000Z
2020-12-01T15:25:51.000Z
# -*- coding: utf-8 -*- """ bandwidth This file was automatically generated by APIMATIC v2.0 ( https://apimatic.io ). """ import base64 class VoiceBasicAuth: @staticmethod def apply(config, http_request): """ Add basic authentication to the request. Args: config (Configuration): The Configuration object which holds the authentication information. http_request (HttpRequest): The HttpRequest object to which authentication will be added. """ username = config.voice_basic_auth_user_name password = config.voice_basic_auth_password joined = "{}:{}".format(username, password) encoded = base64.b64encode(str.encode(joined)).decode('iso-8859-1') header_value = "Basic {}".format(encoded) http_request.headers["Authorization"] = header_value
29.451613
80
0.627601
7626f54ed9f9526acf20438d3ec49e5b1622ed74
17,719
py
Python
coverage/html.py
janaknat/coveragepy
0e41eb8b24adc2c72a555c370432ed1689aabcf7
[ "Apache-2.0" ]
null
null
null
coverage/html.py
janaknat/coveragepy
0e41eb8b24adc2c72a555c370432ed1689aabcf7
[ "Apache-2.0" ]
null
null
null
coverage/html.py
janaknat/coveragepy
0e41eb8b24adc2c72a555c370432ed1689aabcf7
[ "Apache-2.0" ]
null
null
null
# Licensed under the Apache License: http://www.apache.org/licenses/LICENSE-2.0 # For details: https://github.com/nedbat/coveragepy/blob/master/NOTICE.txt """HTML reporting for coverage.py.""" import datetime import json import os import re import shutil import types import coverage from coverage.data import add_data_to_hash from coverage.exceptions import CoverageException from coverage.files import flat_rootname from coverage.misc import ensure_dir, file_be_gone, Hasher, isolate_module, format_local_datetime from coverage.report import get_analysis_to_report from coverage.results import Numbers from coverage.templite import Templite os = isolate_module(os) # Static files are looked for in a list of places. STATIC_PATH = [ # The place Debian puts system Javascript libraries. "/usr/share/javascript", # Our htmlfiles directory. os.path.join(os.path.dirname(__file__), "htmlfiles"), ] def data_filename(fname, pkgdir=""): """Return the path to a data file of ours. The file is searched for on `STATIC_PATH`, and the first place it's found, is returned. Each directory in `STATIC_PATH` is searched as-is, and also, if `pkgdir` is provided, at that sub-directory. """ tried = [] for static_dir in STATIC_PATH: static_filename = os.path.join(static_dir, fname) if os.path.exists(static_filename): return static_filename else: tried.append(static_filename) if pkgdir: static_filename = os.path.join(static_dir, pkgdir, fname) if os.path.exists(static_filename): return static_filename else: tried.append(static_filename) raise CoverageException( f"Couldn't find static file {fname!r} from {os.getcwd()!r}, tried: {tried!r}" ) def read_data(fname): """Return the contents of a data file of ours.""" with open(data_filename(fname)) as data_file: return data_file.read() def write_html(fname, html): """Write `html` to `fname`, properly encoded.""" html = re.sub(r"(\A\s+)|(\s+$)", "", html, flags=re.MULTILINE) + "\n" with open(fname, "wb") as fout: fout.write(html.encode('ascii', 'xmlcharrefreplace')) class HtmlDataGeneration: """Generate structured data to be turned into HTML reports.""" EMPTY = "(empty)" def __init__(self, cov): self.coverage = cov self.config = self.coverage.config data = self.coverage.get_data() self.has_arcs = data.has_arcs() if self.config.show_contexts: if data.measured_contexts() == {""}: self.coverage._warn("No contexts were measured") data.set_query_contexts(self.config.report_contexts) def data_for_file(self, fr, analysis): """Produce the data needed for one file's report.""" if self.has_arcs: missing_branch_arcs = analysis.missing_branch_arcs() arcs_executed = analysis.arcs_executed() if self.config.show_contexts: contexts_by_lineno = analysis.data.contexts_by_lineno(analysis.filename) lines = [] for lineno, tokens in enumerate(fr.source_token_lines(), start=1): # Figure out how to mark this line. category = None short_annotations = [] long_annotations = [] if lineno in analysis.excluded: category = 'exc' elif lineno in analysis.missing: category = 'mis' elif self.has_arcs and lineno in missing_branch_arcs: category = 'par' for b in missing_branch_arcs[lineno]: if b < 0: short_annotations.append("exit") else: short_annotations.append(b) long_annotations.append(fr.missing_arc_description(lineno, b, arcs_executed)) elif lineno in analysis.statements: category = 'run' contexts = contexts_label = None context_list = None if category and self.config.show_contexts: contexts = sorted(c or self.EMPTY for c in contexts_by_lineno[lineno]) if contexts == [self.EMPTY]: contexts_label = self.EMPTY else: contexts_label = f"{len(contexts)} ctx" context_list = contexts lines.append(types.SimpleNamespace( tokens=tokens, number=lineno, category=category, statement=(lineno in analysis.statements), contexts=contexts, contexts_label=contexts_label, context_list=context_list, short_annotations=short_annotations, long_annotations=long_annotations, )) file_data = types.SimpleNamespace( relative_filename=fr.relative_filename(), nums=analysis.numbers, lines=lines, ) return file_data class HtmlReporter: """HTML reporting.""" # These files will be copied from the htmlfiles directory to the output # directory. STATIC_FILES = [ ("style.css", ""), ("jquery.min.js", "jquery"), ("jquery.ba-throttle-debounce.min.js", "jquery-throttle-debounce"), ("jquery.hotkeys.js", "jquery-hotkeys"), ("jquery.isonscreen.js", "jquery-isonscreen"), ("jquery.tablesorter.min.js", "jquery-tablesorter"), ("coverage_html.js", ""), ("keybd_closed.png", ""), ("keybd_open.png", ""), ("favicon_32.png", ""), ] def __init__(self, cov): self.coverage = cov self.config = self.coverage.config self.directory = self.config.html_dir self.skip_covered = self.config.html_skip_covered if self.skip_covered is None: self.skip_covered = self.config.skip_covered self.skip_empty = self.config.html_skip_empty if self.skip_empty is None: self.skip_empty= self.config.skip_empty title = self.config.html_title if self.config.extra_css: self.extra_css = os.path.basename(self.config.extra_css) else: self.extra_css = None self.data = self.coverage.get_data() self.has_arcs = self.data.has_arcs() self.file_summaries = [] self.all_files_nums = [] self.incr = IncrementalChecker(self.directory) self.datagen = HtmlDataGeneration(self.coverage) self.totals = Numbers() self.template_globals = { # Functions available in the templates. 'escape': escape, 'pair': pair, 'len': len, # Constants for this report. '__url__': coverage.__url__, '__version__': coverage.__version__, 'title': title, 'time_stamp': format_local_datetime(datetime.datetime.now()), 'extra_css': self.extra_css, 'has_arcs': self.has_arcs, 'show_contexts': self.config.show_contexts, # Constants for all reports. # These css classes determine which lines are highlighted by default. 'category': { 'exc': 'exc show_exc', 'mis': 'mis show_mis', 'par': 'par run show_par', 'run': 'run', } } self.pyfile_html_source = read_data("pyfile.html") self.source_tmpl = Templite(self.pyfile_html_source, self.template_globals) def report(self, morfs): """Generate an HTML report for `morfs`. `morfs` is a list of modules or file names. """ # Read the status data and check that this run used the same # global data as the last run. self.incr.read() self.incr.check_global_data(self.config, self.pyfile_html_source) # Process all the files. for fr, analysis in get_analysis_to_report(self.coverage, morfs): self.html_file(fr, analysis) if not self.all_files_nums: raise CoverageException("No data to report.") self.totals = sum(self.all_files_nums) # Write the index file. self.index_file() self.make_local_static_report_files() return self.totals.n_statements and self.totals.pc_covered def make_local_static_report_files(self): """Make local instances of static files for HTML report.""" # The files we provide must always be copied. for static, pkgdir in self.STATIC_FILES: shutil.copyfile( data_filename(static, pkgdir), os.path.join(self.directory, static) ) # The user may have extra CSS they want copied. if self.extra_css: shutil.copyfile( self.config.extra_css, os.path.join(self.directory, self.extra_css) ) def html_file(self, fr, analysis): """Generate an HTML file for one source file.""" rootname = flat_rootname(fr.relative_filename()) html_filename = rootname + ".html" ensure_dir(self.directory) html_path = os.path.join(self.directory, html_filename) # Get the numbers for this file. nums = analysis.numbers self.all_files_nums.append(nums) if self.skip_covered: # Don't report on 100% files. no_missing_lines = (nums.n_missing == 0) no_missing_branches = (nums.n_partial_branches == 0) if no_missing_lines and no_missing_branches: # If there's an existing file, remove it. file_be_gone(html_path) return if self.skip_empty: # Don't report on empty files. if nums.n_statements == 0: file_be_gone(html_path) return # Find out if the file on disk is already correct. if self.incr.can_skip_file(self.data, fr, rootname): self.file_summaries.append(self.incr.index_info(rootname)) return # Write the HTML page for this file. file_data = self.datagen.data_for_file(fr, analysis) for ldata in file_data.lines: # Build the HTML for the line. html = [] for tok_type, tok_text in ldata.tokens: if tok_type == "ws": html.append(escape(tok_text)) else: tok_html = escape(tok_text) or '&nbsp;' html.append( f'<span class="{tok_type}">{tok_html}</span>' ) ldata.html = ''.join(html) if ldata.short_annotations: # 202F is NARROW NO-BREAK SPACE. # 219B is RIGHTWARDS ARROW WITH STROKE. ldata.annotate = ",&nbsp;&nbsp; ".join( f"{ldata.number}&#x202F;&#x219B;&#x202F;{d}" for d in ldata.short_annotations ) else: ldata.annotate = None if ldata.long_annotations: longs = ldata.long_annotations if len(longs) == 1: ldata.annotate_long = longs[0] else: ldata.annotate_long = "{:d} missed branches: {}".format( len(longs), ", ".join( f"{num:d}) {ann_long}" for num, ann_long in enumerate(longs, start=1) ), ) else: ldata.annotate_long = None css_classes = [] if ldata.category: css_classes.append(self.template_globals['category'][ldata.category]) ldata.css_class = ' '.join(css_classes) or "pln" html = self.source_tmpl.render(file_data.__dict__) write_html(html_path, html) # Save this file's information for the index file. index_info = { 'nums': nums, 'html_filename': html_filename, 'relative_filename': fr.relative_filename(), } self.file_summaries.append(index_info) self.incr.set_index_info(rootname, index_info) def index_file(self): """Write the index.html file for this report.""" index_tmpl = Templite(read_data("index.html"), self.template_globals) html = index_tmpl.render({ 'files': self.file_summaries, 'totals': self.totals, }) write_html(os.path.join(self.directory, "index.html"), html) # Write the latest hashes for next time. self.incr.write() class IncrementalChecker: """Logic and data to support incremental reporting.""" STATUS_FILE = "status.json" STATUS_FORMAT = 2 # pylint: disable=wrong-spelling-in-comment,useless-suppression # The data looks like: # # { # "format": 2, # "globals": "540ee119c15d52a68a53fe6f0897346d", # "version": "4.0a1", # "files": { # "cogapp___init__": { # "hash": "e45581a5b48f879f301c0f30bf77a50c", # "index": { # "html_filename": "cogapp___init__.html", # "relative_filename": "cogapp/__init__", # "nums": [ 1, 14, 0, 0, 0, 0, 0 ] # } # }, # ... # "cogapp_whiteutils": { # "hash": "8504bb427fc488c4176809ded0277d51", # "index": { # "html_filename": "cogapp_whiteutils.html", # "relative_filename": "cogapp/whiteutils", # "nums": [ 1, 59, 0, 1, 28, 2, 2 ] # } # } # } # } def __init__(self, directory): self.directory = directory self.reset() def reset(self): """Initialize to empty. Causes all files to be reported.""" self.globals = '' self.files = {} def read(self): """Read the information we stored last time.""" usable = False try: status_file = os.path.join(self.directory, self.STATUS_FILE) with open(status_file) as fstatus: status = json.load(fstatus) except (OSError, ValueError): usable = False else: usable = True if status['format'] != self.STATUS_FORMAT: usable = False elif status['version'] != coverage.__version__: usable = False if usable: self.files = {} for filename, fileinfo in status['files'].items(): fileinfo['index']['nums'] = Numbers(*fileinfo['index']['nums']) self.files[filename] = fileinfo self.globals = status['globals'] else: self.reset() def write(self): """Write the current status.""" status_file = os.path.join(self.directory, self.STATUS_FILE) files = {} for filename, fileinfo in self.files.items(): fileinfo['index']['nums'] = fileinfo['index']['nums'].init_args() files[filename] = fileinfo status = { 'format': self.STATUS_FORMAT, 'version': coverage.__version__, 'globals': self.globals, 'files': files, } with open(status_file, "w") as fout: json.dump(status, fout, separators=(',', ':')) def check_global_data(self, *data): """Check the global data that can affect incremental reporting.""" m = Hasher() for d in data: m.update(d) these_globals = m.hexdigest() if self.globals != these_globals: self.reset() self.globals = these_globals def can_skip_file(self, data, fr, rootname): """Can we skip reporting this file? `data` is a CoverageData object, `fr` is a `FileReporter`, and `rootname` is the name being used for the file. """ m = Hasher() m.update(fr.source().encode('utf-8')) add_data_to_hash(data, fr.filename, m) this_hash = m.hexdigest() that_hash = self.file_hash(rootname) if this_hash == that_hash: # Nothing has changed to require the file to be reported again. return True else: self.set_file_hash(rootname, this_hash) return False def file_hash(self, fname): """Get the hash of `fname`'s contents.""" return self.files.get(fname, {}).get('hash', '') def set_file_hash(self, fname, val): """Set the hash of `fname`'s contents.""" self.files.setdefault(fname, {})['hash'] = val def index_info(self, fname): """Get the information for index.html for `fname`.""" return self.files.get(fname, {}).get('index', {}) def set_index_info(self, fname, info): """Set the information for index.html for `fname`.""" self.files.setdefault(fname, {})['index'] = info # Helpers for templates and generating HTML def escape(t): """HTML-escape the text in `t`. This is only suitable for HTML text, not attributes. """ # Convert HTML special chars into HTML entities. return t.replace("&", "&amp;").replace("<", "&lt;") def pair(ratio): """Format a pair of numbers so JavaScript can read them in an attribute.""" return "%s %s" % ratio
34.140655
97
0.56747
42921513bdb948f712182d49e4e865863c87cb07
13,645
py
Python
metadata-ingestion/setup.py
pramodbiligiri/datahub
892adbcf330a9c7c687a293dd3edeca9fa0e2fd8
[ "Apache-2.0" ]
2
2021-09-10T06:11:53.000Z
2021-12-13T05:45:51.000Z
metadata-ingestion/setup.py
pramodbiligiri/datahub
892adbcf330a9c7c687a293dd3edeca9fa0e2fd8
[ "Apache-2.0" ]
1
2021-12-19T16:16:48.000Z
2021-12-19T16:16:48.000Z
metadata-ingestion/setup.py
pramodbiligiri/datahub
892adbcf330a9c7c687a293dd3edeca9fa0e2fd8
[ "Apache-2.0" ]
2
2021-12-06T04:17:26.000Z
2021-12-06T06:08:13.000Z
import os import sys from typing import Dict, Set import setuptools is_py37_or_newer = sys.version_info >= (3, 7) package_metadata: dict = {} with open("./src/datahub/__init__.py") as fp: exec(fp.read(), package_metadata) def get_long_description(): root = os.path.dirname(__file__) with open(os.path.join(root, "README.md")) as f: description = f.read() return description base_requirements = { # Compatability. "dataclasses>=0.6; python_version < '3.7'", "typing_extensions>=3.10.0.2", "mypy_extensions>=0.4.3", # Actual dependencies. "typing-inspect", "pydantic>=1.5.1", } framework_common = { "click>=6.0.0", "click-default-group", "PyYAML", "toml>=0.10.0", "entrypoints", "docker", "expandvars>=0.6.5", "avro-gen3==0.7.1", "avro>=1.10.2", "python-dateutil>=2.8.0", "stackprinter", "tabulate", "progressbar2", } kafka_common = { # We currently require both Avro libraries. The codegen uses avro-python3 (above) # schema parsers at runtime for generating and reading JSON into Python objects. # At the same time, we use Kafka's AvroSerializer, which internally relies on # fastavro for serialization. We do not use confluent_kafka[avro], since it # is incompatible with its own dep on avro-python3. "confluent_kafka>=1.5.0", "fastavro>=1.2.0", } sql_common = { # Required for all SQL sources. "sqlalchemy==1.3.24", # Required for SQL profiling. "great-expectations>=0.13.40", "greenlet", } aws_common = { # AWS Python SDK "boto3", # Deal with a version incompatibility between botocore (used by boto3) and urllib3. # See https://github.com/boto/botocore/pull/2563. "botocore!=1.23.0", } looker_common = { # Looker Python SDK "looker-sdk==21.6.0" } bigquery_common = { # Google cloud logging library "google-cloud-logging" } # Note: for all of these, framework_common will be added. plugins: Dict[str, Set[str]] = { # Sink plugins. "datahub-kafka": kafka_common, "datahub-rest": {"requests"}, # Integrations. "airflow": { "apache-airflow >= 1.10.2", }, # Source plugins "athena": sql_common | {"PyAthena[SQLAlchemy]"}, "azure-ad": set(), "bigquery": sql_common | bigquery_common | {"pybigquery >= 0.6.0"}, "bigquery-usage": bigquery_common | {"cachetools"}, "datahub-business-glossary": set(), "dbt": {"requests"}, "druid": sql_common | {"pydruid>=0.6.2"}, "feast": {"docker"}, "glue": aws_common, "hive": sql_common | { # Acryl Data maintains a fork of PyHive, which adds support for table comments # and column comments, and also releases HTTP and HTTPS transport schemes. "acryl-pyhive[hive]>=0.6.11" }, "kafka": kafka_common, "kafka-connect": sql_common | {"requests", "JPype1"}, "ldap": {"python-ldap>=2.4"}, "looker": looker_common, "lookml": looker_common | {"lkml>=1.1.0", "sql-metadata==2.2.2"}, "metabase": {"requests"}, "mode": {"requests", "sqllineage"}, "mongodb": {"pymongo>=3.11"}, "mssql": sql_common | {"sqlalchemy-pytds>=0.3"}, "mssql-odbc": sql_common | {"pyodbc"}, "mysql": sql_common | {"pymysql>=1.0.2"}, # mariadb should have same dependency as mysql "mariadb": sql_common | {"pymysql>=1.0.2"}, "okta": {"okta~=1.7.0"}, "oracle": sql_common | {"cx_Oracle"}, "postgres": sql_common | {"psycopg2-binary", "GeoAlchemy2"}, "redash": {"redash-toolbelt", "sql-metadata"}, "redshift": sql_common | {"sqlalchemy-redshift", "psycopg2-binary", "GeoAlchemy2", "sqllineage"}, "redshift-usage": sql_common | {"sqlalchemy-redshift", "psycopg2-binary", "GeoAlchemy2"}, "sagemaker": aws_common, "snowflake": sql_common | {"snowflake-sqlalchemy<=1.2.4"}, "snowflake-usage": sql_common | {"snowflake-sqlalchemy<=1.2.4"}, "sqlalchemy": sql_common, "superset": {"requests"}, "trino": sql_common | { # SQLAlchemy support is coming up in trino python client # subject to PR merging - https://github.com/trinodb/trino-python-client/pull/81. # PR is from same author as that of sqlalchemy-trino library below. "sqlalchemy-trino" }, "starburst-trino-usage": sql_common | { # SQLAlchemy support is coming up in trino python client # subject to PR merging - https://github.com/trinodb/trino-python-client/pull/81. # PR is from same author as that of sqlalchemy-trino library below. "sqlalchemy-trino" }, "nifi": {"requests"}, } all_exclude_plugins: Set[str] = { # SQL Server ODBC requires additional drivers, and so we don't want to keep # it included in the default "all" installation. "mssql-odbc", } mypy_stubs = { "types-dataclasses", "sqlalchemy-stubs", "types-pkg_resources", "types-six", "types-python-dateutil", "types-requests", "types-toml", "types-PyMySQL", "types-PyYAML", "types-freezegun", "types-cachetools", # versions 0.1.13 and 0.1.14 seem to have issues "types-click==0.1.12", "boto3-stubs[s3,glue,sagemaker]", "types-tabulate", } base_dev_requirements = { *base_requirements, *framework_common, *mypy_stubs, "black>=19.10b0", "coverage>=5.1", "flake8>=3.8.3", "flake8-tidy-imports>=4.3.0", "isort>=5.7.0", # Waiting for https://github.com/samuelcolvin/pydantic/pull/3175 before allowing mypy 0.920. "mypy>=0.901,<0.920", "pytest>=6.2.2", "pytest-cov>=2.8.1", "pytest-docker>=0.10.3", "tox", "deepdiff", "requests-mock", "freezegun", "jsonpickle", "build", "twine", "pydot", *list( dependency for plugin in [ "bigquery", "bigquery-usage", "looker", "glue", "mariadb", "okta", "oracle", "postgres", "sagemaker", "datahub-kafka", "datahub-rest", "redash", "redshift", "redshift-usage" # airflow is added below ] for dependency in plugins[plugin] ), } if is_py37_or_newer: # The lookml plugin only works on Python 3.7 or newer. # The trino plugin only works on Python 3.7 or newer. # The trino plugin can be supported on Python 3.6 with minimal changes to opensource sqlalchemy-trino sourcecode. base_dev_requirements = base_dev_requirements.union( { dependency for plugin in ["lookml", "trino", "starburst-trino-usage"] for dependency in plugins[plugin] } ) dev_requirements = { *base_dev_requirements, "apache-airflow[snowflake]>=2.0.2", # snowflake is used in example dags "snowflake-sqlalchemy<=1.2.4", # make constraint consistent with extras } dev_requirements_airflow_1 = { *base_dev_requirements, "apache-airflow==1.10.15", "apache-airflow-backport-providers-snowflake", "snowflake-sqlalchemy<=1.2.4", # make constraint consistent with extras "WTForms==2.3.3", # make constraint consistent with extras } full_test_dev_requirements = { *list( dependency for plugin in [ "druid", "feast", "hive", "ldap", "mongodb", "mssql", "mysql", "mariadb", "snowflake", "redash", "kafka-connect", ] for dependency in plugins[plugin] ), } entry_points = { "console_scripts": ["datahub = datahub.entrypoints:main"], "datahub.ingestion.source.plugins": [ "file = datahub.ingestion.source.file:GenericFileSource", "sqlalchemy = datahub.ingestion.source.sql.sql_generic:SQLAlchemyGenericSource", "athena = datahub.ingestion.source.sql.athena:AthenaSource", "azure-ad = datahub.ingestion.source.identity.azure_ad:AzureADSource", "bigquery = datahub.ingestion.source.sql.bigquery:BigQuerySource", "bigquery-usage = datahub.ingestion.source.usage.bigquery_usage:BigQueryUsageSource", "dbt = datahub.ingestion.source.dbt:DBTSource", "druid = datahub.ingestion.source.sql.druid:DruidSource", "feast = datahub.ingestion.source.feast:FeastSource", "glue = datahub.ingestion.source.aws.glue:GlueSource", "sagemaker = datahub.ingestion.source.aws.sagemaker:SagemakerSource", "hive = datahub.ingestion.source.sql.hive:HiveSource", "kafka = datahub.ingestion.source.kafka:KafkaSource", "kafka-connect = datahub.ingestion.source.kafka_connect:KafkaConnectSource", "ldap = datahub.ingestion.source.ldap:LDAPSource", "looker = datahub.ingestion.source.looker:LookerDashboardSource", "lookml = datahub.ingestion.source.lookml:LookMLSource", "datahub-business-glossary = datahub.ingestion.source.metadata.business_glossary:BusinessGlossaryFileSource", "mode = datahub.ingestion.source.mode:ModeSource", "mongodb = datahub.ingestion.source.mongodb:MongoDBSource", "mssql = datahub.ingestion.source.sql.mssql:SQLServerSource", "mysql = datahub.ingestion.source.sql.mysql:MySQLSource", "mariadb = datahub.ingestion.source.sql.mariadb.MariaDBSource", "okta = datahub.ingestion.source.identity.okta:OktaSource", "oracle = datahub.ingestion.source.sql.oracle:OracleSource", "postgres = datahub.ingestion.source.sql.postgres:PostgresSource", "redash = datahub.ingestion.source.redash:RedashSource", "redshift = datahub.ingestion.source.sql.redshift:RedshiftSource", "redshift-usage = datahub.ingestion.source.usage.redshift_usage:RedshiftUsageSource", "snowflake = datahub.ingestion.source.sql.snowflake:SnowflakeSource", "snowflake-usage = datahub.ingestion.source.usage.snowflake_usage:SnowflakeUsageSource", "superset = datahub.ingestion.source.superset:SupersetSource", "openapi = datahub.ingestion.source.openapi:OpenApiSource", "metabase = datahub.ingestion.source.metabase:MetabaseSource", "trino = datahub.ingestion.source.sql.trino:TrinoSource", "starburst-trino-usage = datahub.ingestion.source.usage.starburst_trino_usage:TrinoUsageSource", "nifi = datahub.ingestion.source.nifi:NifiSource", ], "datahub.ingestion.sink.plugins": [ "file = datahub.ingestion.sink.file:FileSink", "console = datahub.ingestion.sink.console:ConsoleSink", "datahub-kafka = datahub.ingestion.sink.datahub_kafka:DatahubKafkaSink", "datahub-rest = datahub.ingestion.sink.datahub_rest:DatahubRestSink", ], "datahub.ingestion.state_provider.plugins": [ "datahub = datahub.ingestion.source.state_provider.datahub_ingestion_state_provider:DatahubIngestionStateProvider", ], "apache_airflow_provider": ["provider_info=datahub_provider:get_provider_info"], } setuptools.setup( # Package metadata. name=package_metadata["__package_name__"], version=package_metadata["__version__"], url="https://datahubproject.io/", project_urls={ "Documentation": "https://datahubproject.io/docs/", "Source": "https://github.com/linkedin/datahub", "Changelog": "https://github.com/linkedin/datahub/releases", }, license="Apache License 2.0", description="A CLI to work with DataHub metadata", long_description=get_long_description(), long_description_content_type="text/markdown", classifiers=[ "Development Status :: 5 - Production/Stable", "Programming Language :: Python", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3 :: Only", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Intended Audience :: Developers", "Intended Audience :: Information Technology", "Intended Audience :: System Administrators", "License :: OSI Approved", "License :: OSI Approved :: Apache Software License", "Operating System :: Unix", "Operating System :: POSIX :: Linux", "Environment :: Console", "Environment :: MacOS X", "Topic :: Software Development", ], # Package info. zip_safe=False, python_requires=">=3.6", package_dir={"": "src"}, packages=setuptools.find_namespace_packages(where="./src"), package_data={ "datahub": ["py.typed"], "datahub.metadata": ["schema.avsc"], "datahub.metadata.schemas": ["*.avsc"], "datahub.ingestion.source.feast_image": ["Dockerfile", "requirements.txt"], }, entry_points=entry_points, # Dependencies. install_requires=list(base_requirements | framework_common), extras_require={ "base": list(framework_common), **{ plugin: list(framework_common | dependencies) for (plugin, dependencies) in plugins.items() }, "all": list( framework_common.union( *[ requirements for plugin, requirements in plugins.items() if plugin not in all_exclude_plugins ] ) ), "dev": list(dev_requirements), "dev-airflow1": list(dev_requirements_airflow_1), "integration-tests": list(full_test_dev_requirements), }, )
35.077121
123
0.633785
9489d89bf2658d4f65cf18c3e51acc73db2a3df7
3,103
py
Python
BoostYourOwnDepth-main/pix2pix/util/util.py
qihao-huang/AD-Depth-Estimation
4c93a50efc30fc5b44e2b43412d78bc5f98fa430
[ "MIT" ]
9
2022-01-04T02:47:12.000Z
2022-03-10T10:46:04.000Z
BoostYourOwnDepth-main/pix2pix/util/util.py
qihao-huang/AD-Depth-Estimation
4c93a50efc30fc5b44e2b43412d78bc5f98fa430
[ "MIT" ]
null
null
null
BoostYourOwnDepth-main/pix2pix/util/util.py
qihao-huang/AD-Depth-Estimation
4c93a50efc30fc5b44e2b43412d78bc5f98fa430
[ "MIT" ]
10
2021-12-25T06:36:18.000Z
2022-03-15T11:25:00.000Z
"""This module contains simple helper functions """ from __future__ import print_function import torch import numpy as np from PIL import Image import os def tensor2im(input_image, imtype=np.uint16): """"Converts a Tensor array into a numpy image array. Parameters: input_image (tensor) -- the input image tensor array imtype (type) -- the desired type of the converted numpy array """ if not isinstance(input_image, np.ndarray): if isinstance(input_image, torch.Tensor): # get the data from a variable image_tensor = input_image.data else: return input_image image_numpy = torch.squeeze(image_tensor).cpu().numpy() # convert it into a numpy array image_numpy = (image_numpy + 1) / 2.0 * (2**16-1) # else: # if it is a numpy array, do nothing image_numpy = input_image return image_numpy.astype(imtype) def diagnose_network(net, name='network'): """Calculate and print the mean of average absolute(gradients) Parameters: net (torch network) -- Torch network name (str) -- the name of the network """ mean = 0.0 count = 0 for param in net.parameters(): if param.grad is not None: mean += torch.mean(torch.abs(param.grad.data)) count += 1 if count > 0: mean = mean / count print(name) print(mean) def save_image(image_numpy, image_path, aspect_ratio=1.0): """Save a numpy image to the disk Parameters: image_numpy (numpy array) -- input numpy array image_path (str) -- the path of the image """ image_pil = Image.fromarray(image_numpy) image_pil = image_pil.convert('I;16') # image_pil = Image.fromarray(image_numpy) # h, w, _ = image_numpy.shape # # if aspect_ratio > 1.0: # image_pil = image_pil.resize((h, int(w * aspect_ratio)), Image.BICUBIC) # if aspect_ratio < 1.0: # image_pil = image_pil.resize((int(h / aspect_ratio), w), Image.BICUBIC) image_pil.save(image_path) def print_numpy(x, val=True, shp=False): """Print the mean, min, max, median, std, and size of a numpy array Parameters: val (bool) -- if print the values of the numpy array shp (bool) -- if print the shape of the numpy array """ x = x.astype(np.float64) if shp: print('shape,', x.shape) if val: x = x.flatten() print('mean = %3.3f, min = %3.3f, max = %3.3f, median = %3.3f, std=%3.3f' % ( np.mean(x), np.min(x), np.max(x), np.median(x), np.std(x))) def mkdirs(paths): """create empty directories if they don't exist Parameters: paths (str list) -- a list of directory paths """ if isinstance(paths, list) and not isinstance(paths, str): for path in paths: mkdir(path) else: mkdir(paths) def mkdir(path): """create a single empty directory if it didn't exist Parameters: path (str) -- a single directory path """ if not os.path.exists(path): os.makedirs(path)
31.343434
96
0.615533
97768bcd1be7e70c44bd05eba3cccea864ba320e
39,755
py
Python
metadata-ingestion/src/datahub/ingestion/source/kafka_connect.py
pedro-iatzky/datahub
53d1379a85b237700fa817d4aa8c95abe7805f7c
[ "Apache-2.0" ]
1
2022-03-04T00:42:50.000Z
2022-03-04T00:42:50.000Z
metadata-ingestion/src/datahub/ingestion/source/kafka_connect.py
pedro-iatzky/datahub
53d1379a85b237700fa817d4aa8c95abe7805f7c
[ "Apache-2.0" ]
null
null
null
metadata-ingestion/src/datahub/ingestion/source/kafka_connect.py
pedro-iatzky/datahub
53d1379a85b237700fa817d4aa8c95abe7805f7c
[ "Apache-2.0" ]
null
null
null
import logging import re from dataclasses import dataclass, field from typing import Dict, Iterable, List, Optional, Tuple import jpype import jpype.imports import requests from sqlalchemy.engine.url import make_url import datahub.emitter.mce_builder as builder import datahub.metadata.schema_classes as models from datahub.configuration.common import AllowDenyPattern, ConfigModel from datahub.configuration.source_common import DatasetLineageProviderConfigBase from datahub.emitter.mcp import MetadataChangeProposalWrapper from datahub.ingestion.api.common import PipelineContext from datahub.ingestion.api.source import Source, SourceReport from datahub.ingestion.api.workunit import MetadataWorkUnit logger = logging.getLogger(__name__) class ProvidedConfig(ConfigModel): provider: str path_key: str value: str class KafkaConnectSourceConfig(DatasetLineageProviderConfigBase): # See the Connect REST Interface for details # https://docs.confluent.io/platform/current/connect/references/restapi.html# connect_uri: str = "http://localhost:8083/" username: Optional[str] = None password: Optional[str] = None cluster_name: Optional[str] = "connect-cluster" construct_lineage_workunits: bool = True connector_patterns: AllowDenyPattern = AllowDenyPattern.allow_all() provided_configs: Optional[List[ProvidedConfig]] = None @dataclass class KafkaConnectSourceReport(SourceReport): connectors_scanned: int = 0 filtered: List[str] = field(default_factory=list) def report_connector_scanned(self, connector: str) -> None: self.connectors_scanned += 1 def report_dropped(self, connector: str) -> None: self.filtered.append(connector) @dataclass class KafkaConnectLineage: """Class to store Kafka Connect lineage mapping, Each instance is potential DataJob""" source_platform: str target_dataset: str target_platform: str job_property_bag: Optional[Dict[str, str]] = None source_dataset: Optional[str] = None @dataclass class ConnectorManifest: """Each instance is potential DataFlow""" name: str type: str config: Dict tasks: Dict url: Optional[str] = None flow_property_bag: Optional[Dict[str, str]] = None lineages: List[KafkaConnectLineage] = field(default_factory=list) topic_names: Iterable[str] = field(default_factory=list) def remove_prefix(text: str, prefix: str) -> str: if text.startswith(prefix): index = len(prefix) return text[index:] return text def unquote(string: str, leading_quote: str = '"', trailing_quote: str = None) -> str: """ If string starts and ends with a quote, unquote it """ trailing_quote = trailing_quote if trailing_quote else leading_quote if string.startswith(leading_quote) and string.endswith(trailing_quote): string = string[1:-1] return string @dataclass class ConfluentJDBCSourceConnector: connector_manifest: ConnectorManifest report: KafkaConnectSourceReport def __init__( self, connector_manifest: ConnectorManifest, report: KafkaConnectSourceReport ) -> None: self.connector_manifest = connector_manifest self.report = report self._extract_lineages() REGEXROUTER = "org.apache.kafka.connect.transforms.RegexRouter" KNOWN_TOPICROUTING_TRANSFORMS = [REGEXROUTER] # https://kafka.apache.org/documentation/#connect_included_transformation KAFKA_NONTOPICROUTING_TRANSFORMS = [ "InsertField", "InsertField$Key", "InsertField$Value", "ReplaceField", "ReplaceField$Key", "ReplaceField$Value", "MaskField", "MaskField$Key", "MaskField$Value", "ValueToKey", "ValueToKey$Key", "ValueToKey$Value", "HoistField", "HoistField$Key", "HoistField$Value", "ExtractField", "ExtractField$Key", "ExtractField$Value", "SetSchemaMetadata", "SetSchemaMetadata$Key", "SetSchemaMetadata$Value", "Flatten", "Flatten$Key", "Flatten$Value", "Cast", "Cast$Key", "Cast$Value", "HeadersFrom", "HeadersFrom$Key", "HeadersFrom$Value", "TimestampConverter", "Filter", "InsertHeader", "DropHeaders", ] # https://docs.confluent.io/platform/current/connect/transforms/overview.html CONFLUENT_NONTOPICROUTING_TRANSFORMS = [ "Drop", "Drop$Key", "Drop$Value", "Filter", "Filter$Key", "Filter$Value", "TombstoneHandler", ] KNOWN_NONTOPICROUTING_TRANSFORMS = ( KAFKA_NONTOPICROUTING_TRANSFORMS + [ "org.apache.kafka.connect.transforms.{}".format(t) for t in KAFKA_NONTOPICROUTING_TRANSFORMS ] + CONFLUENT_NONTOPICROUTING_TRANSFORMS + [ "io.confluent.connect.transforms.{}".format(t) for t in CONFLUENT_NONTOPICROUTING_TRANSFORMS ] ) @dataclass class JdbcParser: db_connection_url: str source_platform: str database_name: str topic_prefix: str query: str transforms: list def report_warning(self, key: str, reason: str) -> None: logger.warning(f"{key}: {reason}") self.report.report_warning(key, reason) def get_parser( self, connector_manifest: ConnectorManifest, ) -> JdbcParser: url = remove_prefix( str(connector_manifest.config.get("connection.url")), "jdbc:" ) url_instance = make_url(url) source_platform = url_instance.drivername database_name = url_instance.database db_connection_url = f"{url_instance.drivername}://{url_instance.host}:{url_instance.port}/{url_instance.database}" topic_prefix = self.connector_manifest.config.get("topic.prefix", None) query = self.connector_manifest.config.get("query", None) transform_names = ( self.connector_manifest.config.get("transforms", "").split(",") if self.connector_manifest.config.get("transforms") else [] ) transforms = [] for name in transform_names: transform = {"name": name} transforms.append(transform) for key in self.connector_manifest.config.keys(): if key.startswith("transforms.{}.".format(name)): transform[ key.replace("transforms.{}.".format(name), "") ] = self.connector_manifest.config[key] return self.JdbcParser( db_connection_url, source_platform, database_name, topic_prefix, query, transforms, ) def default_get_lineages( self, topic_prefix, database_name, source_platform, topic_names=None, include_source_dataset=True, ): lineages: List[KafkaConnectLineage] = list() if not topic_names: topic_names = self.connector_manifest.topic_names for topic in topic_names: # All good for NO_TRANSFORM or (SINGLE_TRANSFORM and KNOWN_NONTOPICROUTING_TRANSFORM) or (not SINGLE_TRANSFORM and all(KNOWN_NONTOPICROUTING_TRANSFORM)) # default method - as per earlier implementation if topic_prefix: source_table = remove_prefix(topic, topic_prefix) else: source_table = topic dataset_name = ( database_name + "." + source_table if database_name else source_table ) lineage = KafkaConnectLineage( source_dataset=dataset_name if include_source_dataset else None, source_platform=source_platform, target_dataset=topic, target_platform="kafka", ) lineages.append(lineage) return lineages def get_table_names(self): if self.connector_manifest.config.get("table.whitelist"): return self.connector_manifest.config.get("table.whitelist").split(",") # type: ignore if self.connector_manifest.tasks: sep = "." leading_quote_char = trailing_quote_char = '"' quote_method = self.connector_manifest.config.get( "quote.sql.identifiers", "always" ) tableIds = ",".join( [task["config"].get("tables") for task in self.connector_manifest.tasks] ) if quote_method == "always": leading_quote_char = tableIds[0] trailing_quote_char = tableIds[-1] # This will only work for single character quotes tables = [ unquote(tableId.split(sep)[-1], leading_quote_char, trailing_quote_char) for tableId in tableIds.split(",") ] return tables return [] def _extract_lineages(self): lineages: List[KafkaConnectLineage] = list() parser = self.get_parser(self.connector_manifest) source_platform = parser.source_platform database_name = parser.database_name query = parser.query topic_prefix = parser.topic_prefix transforms = parser.transforms self.connector_manifest.flow_property_bag = self.connector_manifest.config # Mask/Remove properties that may reveal credentials self.connector_manifest.flow_property_bag[ "connection.url" ] = parser.db_connection_url if "connection.password" in self.connector_manifest.flow_property_bag: del self.connector_manifest.flow_property_bag["connection.password"] if "connection.user" in self.connector_manifest.flow_property_bag: del self.connector_manifest.flow_property_bag["connection.user"] logging.debug( f"Extracting source platform: {source_platform} and database name: {database_name} from connection url " ) if not self.connector_manifest.topic_names: self.connector_manifest.lineages = lineages return if query: # Lineage source_table can be extracted by parsing query # For now, we use source table as topic (expected to be same as topic prefix) for topic in self.connector_manifest.topic_names: # default method - as per earlier implementation source_table = topic dataset_name = ( database_name + "." + source_table if database_name else source_table ) lineage = KafkaConnectLineage( source_platform=source_platform, target_dataset=topic, target_platform="kafka", ) lineages.append(lineage) self.report_warning( self.connector_manifest.name, "could not find input dataset, the connector has query configuration set", ) self.connector_manifest.lineages = lineages return SINGLE_TRANSFORM = len(transforms) == 1 NO_TRANSFORM = len(transforms) == 0 UNKNOWN_TRANSFORM = any( [ transform["type"] not in self.KNOWN_TOPICROUTING_TRANSFORMS + self.KNOWN_NONTOPICROUTING_TRANSFORMS for transform in transforms ] ) ALL_TRANSFORMS_NON_TOPICROUTING = all( [ transform["type"] in self.KNOWN_NONTOPICROUTING_TRANSFORMS for transform in transforms ] ) if NO_TRANSFORM or ALL_TRANSFORMS_NON_TOPICROUTING: self.connector_manifest.lineages = self.default_get_lineages( database_name=database_name, source_platform=source_platform, topic_prefix=topic_prefix, ) return if SINGLE_TRANSFORM and transforms[0]["type"] == self.REGEXROUTER: tables = self.get_table_names() topic_names = list(self.connector_manifest.topic_names) from java.util.regex import Pattern for source_table in tables: topic = topic_prefix + source_table if topic_prefix else source_table transform_regex = Pattern.compile(transforms[0]["regex"]) transform_replacement = transforms[0]["replacement"] matcher = transform_regex.matcher(topic) if matcher.matches(): topic = matcher.replaceFirst(transform_replacement) # Additional check to confirm that the topic present # in connector topics if topic in self.connector_manifest.topic_names: dataset_name = ( database_name + "." + source_table if database_name else source_table ) lineage = KafkaConnectLineage( source_dataset=dataset_name, source_platform=source_platform, target_dataset=topic, target_platform="kafka", ) topic_names.remove(topic) lineages.append(lineage) if topic_names: lineages.extend( self.default_get_lineages( database_name=database_name, source_platform=source_platform, topic_prefix=topic_prefix, topic_names=topic_names, include_source_dataset=False, ) ) self.report_warning( self.connector_manifest.name, f"could not find input dataset, for connector topics {topic_names}", ) self.connector_manifest.lineages = lineages return else: include_source_dataset = True if SINGLE_TRANSFORM and UNKNOWN_TRANSFORM: self.report_warning( self.connector_manifest.name, f"could not find input dataset, connector has unknown transform - {transforms[0]['type']}", ) include_source_dataset = False if not SINGLE_TRANSFORM and UNKNOWN_TRANSFORM: self.report_warning( self.connector_manifest.name, "could not find input dataset, connector has one or more unknown transforms", ) include_source_dataset = False lineages = self.default_get_lineages( database_name=database_name, source_platform=source_platform, topic_prefix=topic_prefix, include_source_dataset=include_source_dataset, ) self.connector_manifest.lineages = lineages return @dataclass class DebeziumSourceConnector: connector_manifest: ConnectorManifest def __init__(self, connector_manifest: ConnectorManifest) -> None: self.connector_manifest = connector_manifest self._extract_lineages() @dataclass class DebeziumParser: source_platform: str server_name: Optional[str] database_name: Optional[str] def get_parser( self, connector_manifest: ConnectorManifest, ) -> DebeziumParser: connector_class = connector_manifest.config.get("connector.class", "") if connector_class == "io.debezium.connector.mysql.MySqlConnector": # https://debezium.io/documentation/reference/connectors/mysql.html#mysql-topic-names parser = self.DebeziumParser( source_platform="mysql", server_name=connector_manifest.config.get("database.server.name"), database_name=None, ) elif connector_class == "MySqlConnector": parser = self.DebeziumParser( source_platform="mysql", server_name=connector_manifest.config.get("database.server.name"), database_name=None, ) elif connector_class == "io.debezium.connector.mongodb.MongoDbConnector": # https://debezium.io/documentation/reference/connectors/mongodb.html#mongodb-topic-names parser = self.DebeziumParser( source_platform="mongodb", server_name=connector_manifest.config.get("database.server.name"), database_name=None, ) elif connector_class == "io.debezium.connector.postgresql.PostgresConnector": # https://debezium.io/documentation/reference/connectors/postgresql.html#postgresql-topic-names parser = self.DebeziumParser( source_platform="postgres", server_name=connector_manifest.config.get("database.server.name"), database_name=connector_manifest.config.get("database.dbname"), ) elif connector_class == "io.debezium.connector.oracle.OracleConnector": # https://debezium.io/documentation/reference/connectors/oracle.html#oracle-topic-names parser = self.DebeziumParser( source_platform="oracle", server_name=connector_manifest.config.get("database.server.name"), database_name=connector_manifest.config.get("database.dbname"), ) elif connector_class == "io.debezium.connector.sqlserver.SqlServerConnector": # https://debezium.io/documentation/reference/connectors/sqlserver.html#sqlserver-topic-names parser = self.DebeziumParser( source_platform="mssql", server_name=connector_manifest.config.get("database.server.name"), database_name=connector_manifest.config.get("database.dbname"), ) elif connector_class == "io.debezium.connector.db2.Db2Connector": # https://debezium.io/documentation/reference/connectors/db2.html#db2-topic-names parser = self.DebeziumParser( source_platform="db2", server_name=connector_manifest.config.get("database.server.name"), database_name=connector_manifest.config.get("database.dbname"), ) elif connector_class == "io.debezium.connector.vitess.VitessConnector": # https://debezium.io/documentation/reference/connectors/vitess.html#vitess-topic-names parser = self.DebeziumParser( source_platform="vitess", server_name=connector_manifest.config.get("database.server.name"), database_name=connector_manifest.config.get("vitess.keyspace"), ) else: raise ValueError(f"Connector class '{connector_class}' is unknown.") return parser def _extract_lineages(self): lineages: List[KafkaConnectLineage] = list() parser = self.get_parser(self.connector_manifest) source_platform = parser.source_platform server_name = parser.server_name database_name = parser.database_name topic_naming_pattern = r"({0})\.(\w+\.\w+)".format(server_name) if not self.connector_manifest.topic_names: return lineages for topic in self.connector_manifest.topic_names: found = re.search(re.compile(topic_naming_pattern), topic) if found: table_name = ( database_name + "." + found.group(2) if database_name else found.group(2) ) lineage = KafkaConnectLineage( source_dataset=table_name, source_platform=source_platform, target_dataset=topic, target_platform="kafka", ) lineages.append(lineage) self.connector_manifest.lineages = lineages @dataclass class BigQuerySinkConnector: connector_manifest: ConnectorManifest report: KafkaConnectSourceReport def __init__( self, connector_manifest: ConnectorManifest, report: KafkaConnectSourceReport ) -> None: self.connector_manifest = connector_manifest self.report = report self._extract_lineages() @dataclass class BQParser: project: str target_platform: str sanitizeTopics: str topicsToTables: Optional[str] = None datasets: Optional[str] = None defaultDataset: Optional[str] = None version: str = "v1" def report_warning(self, key: str, reason: str) -> None: logger.warning(f"{key}: {reason}") self.report.report_warning(key, reason) def get_parser( self, connector_manifest: ConnectorManifest, ) -> BQParser: project = connector_manifest.config["project"] sanitizeTopics = connector_manifest.config.get("sanitizeTopics", "false") if "defaultDataset" in connector_manifest.config: defaultDataset = connector_manifest.config["defaultDataset"] return self.BQParser( project=project, defaultDataset=defaultDataset, target_platform="bigquery", sanitizeTopics=sanitizeTopics.lower() == "true", version="v2", ) else: # version 1.6.x and similar configs supported datasets = connector_manifest.config["datasets"] topicsToTables = connector_manifest.config.get("topicsToTables") return self.BQParser( project=project, topicsToTables=topicsToTables, datasets=datasets, target_platform="bigquery", sanitizeTopics=sanitizeTopics.lower() == "true", ) def get_list(self, property: str) -> Iterable[Tuple[str, str]]: entries = property.split(",") for entry in entries: key, val = entry.rsplit("=") yield (key.strip(), val.strip()) def get_dataset_for_topic_v1(self, topic: str, parser: BQParser) -> Optional[str]: topicregex_dataset_map: Dict[str, str] = dict(self.get_list(parser.datasets)) # type: ignore from java.util.regex import Pattern for pattern, dataset in topicregex_dataset_map.items(): patternMatcher = Pattern.compile(pattern).matcher(topic) if patternMatcher.matches(): return dataset return None def sanitize_table_name(self, table_name): table_name = re.sub("[^a-zA-Z0-9_]", "_", table_name) if re.match("^[^a-zA-Z_].*", table_name): table_name = "_" + table_name return table_name def get_dataset_table_for_topic( self, topic: str, parser: BQParser ) -> Optional[str]: if parser.version == "v2": dataset = parser.defaultDataset parts = topic.split(":") if len(parts) == 2: dataset = parts[0] table = parts[1] else: table = parts[0] else: dataset = self.get_dataset_for_topic_v1(topic, parser) if dataset is None: return None table = topic if parser.topicsToTables: topicregex_table_map: Dict[str, str] = dict( self.get_list(parser.topicsToTables) # type: ignore ) from java.util.regex import Pattern for pattern, tbl in topicregex_table_map.items(): patternMatcher = Pattern.compile(pattern).matcher(topic) if patternMatcher.matches(): table = tbl break if parser.sanitizeTopics: table = self.sanitize_table_name(table) return f"{dataset}.{table}" def _extract_lineages(self): lineages: List[KafkaConnectLineage] = list() parser = self.get_parser(self.connector_manifest) if not parser: return lineages target_platform = parser.target_platform project = parser.project self.connector_manifest.flow_property_bag = self.connector_manifest.config # Mask/Remove properties that may reveal credentials if "keyfile" in self.connector_manifest.flow_property_bag: del self.connector_manifest.flow_property_bag["keyfile"] for topic in self.connector_manifest.topic_names: dataset_table = self.get_dataset_table_for_topic(topic, parser) if dataset_table is None: self.report_warning( self.connector_manifest.name, f"could not find target dataset for topic {topic}, please check your connector configuration", ) continue target_dataset = f"{project}.{dataset_table}" lineages.append( KafkaConnectLineage( source_dataset=topic, source_platform="kafka", target_dataset=target_dataset, target_platform=target_platform, ) ) self.connector_manifest.lineages = lineages return def transform_connector_config( connector_config: Dict, provided_configs: List[ProvidedConfig] ) -> None: """This method will update provided configs in connector config values, if any""" lookupsByProvider = {} for pconfig in provided_configs: lookupsByProvider[f"${{{pconfig.provider}:{pconfig.path_key}}}"] = pconfig.value for k, v in connector_config.items(): for key, value in lookupsByProvider.items(): if key in v: connector_config[k] = v.replace(key, value) class KafkaConnectSource(Source): """The class for Kafka Connect source. Attributes: config (KafkaConnectSourceConfig): Kafka Connect cluster REST API configurations. report (KafkaConnectSourceReport): Kafka Connect source ingestion report. """ config: KafkaConnectSourceConfig report: KafkaConnectSourceReport def __init__(self, config: KafkaConnectSourceConfig, ctx: PipelineContext): super().__init__(ctx) self.config = config self.report = KafkaConnectSourceReport() self.session = requests.Session() self.session.headers.update( { "Accept": "application/json", "Content-Type": "application/json", } ) # Test the connection test_response = self.session.get(f"{self.config.connect_uri}") test_response.raise_for_status() logger.info(f"Connection to {self.config.connect_uri} is ok") if not jpype.isJVMStarted(): jpype.startJVM() @classmethod def create(cls, config_dict: dict, ctx: PipelineContext) -> Source: config = KafkaConnectSourceConfig.parse_obj(config_dict) return cls(config, ctx) def get_connectors_manifest(self) -> List[ConnectorManifest]: """Get Kafka Connect connectors manifest using REST API. Enrich with lineages metadata. """ connectors_manifest = list() connector_response = self.session.get( f"{self.config.connect_uri}/connectors", ) payload = connector_response.json() for c in payload: connector_url = f"{self.config.connect_uri}/connectors/{c}" connector_response = self.session.get(connector_url) manifest = connector_response.json() connector_manifest = ConnectorManifest(**manifest) if self.config.provided_configs: transform_connector_config( connector_manifest.config, self.config.provided_configs ) # Initialize connector lineages connector_manifest.lineages = list() connector_manifest.url = connector_url topics = self.session.get( f"{self.config.connect_uri}/connectors/{c}/topics", ).json() connector_manifest.topic_names = topics[c]["topics"] # Populate Source Connector metadata if connector_manifest.type == "source": tasks = self.session.get( f"{self.config.connect_uri}/connectors/{c}/tasks", ).json() connector_manifest.tasks = tasks # JDBC source connector lineages if connector_manifest.config.get("connector.class").__eq__( "io.confluent.connect.jdbc.JdbcSourceConnector" ): connector_manifest = ConfluentJDBCSourceConnector( connector_manifest=connector_manifest, report=self.report ).connector_manifest else: # Debezium Source Connector lineages try: connector_manifest = DebeziumSourceConnector( connector_manifest=connector_manifest ).connector_manifest except ValueError as err: logger.warning( f"Skipping connector {connector_manifest.name} due to error: {err}" ) self.report.report_failure(connector_manifest.name, str(err)) continue if connector_manifest.type == "sink": if connector_manifest.config.get("connector.class").__eq__( "com.wepay.kafka.connect.bigquery.BigQuerySinkConnector" ): connector_manifest = BigQuerySinkConnector( connector_manifest=connector_manifest, report=self.report ).connector_manifest else: self.report.report_dropped(connector_manifest.name) logger.warning( f"Skipping connector {connector_manifest.name}. Lineage for Connector not yet implemented" ) pass connectors_manifest.append(connector_manifest) return connectors_manifest def construct_flow_workunit( self, connector: ConnectorManifest ) -> Iterable[MetadataWorkUnit]: connector_name = connector.name connector_type = connector.type connector_class = connector.config.get("connector.class") flow_property_bag = connector.flow_property_bag # connector_url = connector.url # NOTE: this will expose connector credential when used flow_urn = builder.make_data_flow_urn( "kafka-connect", connector_name, self.config.env ) mcp = MetadataChangeProposalWrapper( entityType="dataFlow", entityUrn=flow_urn, changeType=models.ChangeTypeClass.UPSERT, aspectName="dataFlowInfo", aspect=models.DataFlowInfoClass( name=connector_name, description=f"{connector_type.capitalize()} connector using `{connector_class}` plugin.", customProperties=flow_property_bag, # externalUrl=connector_url, # NOTE: this will expose connector credential when used ), ) for proposal in [mcp]: wu = MetadataWorkUnit( id=f"kafka-connect.{connector_name}.{proposal.aspectName}", mcp=proposal ) self.report.report_workunit(wu) yield wu def construct_job_workunits( self, connector: ConnectorManifest ) -> Iterable[MetadataWorkUnit]: connector_name = connector.name flow_urn = builder.make_data_flow_urn( "kafka-connect", connector_name, self.config.env ) lineages = connector.lineages if lineages: for lineage in lineages: source_dataset = lineage.source_dataset source_platform = lineage.source_platform source_platform_instance = ( self.config.platform_instance_map.get(source_platform) if self.config.platform_instance_map else None ) target_dataset = lineage.target_dataset target_platform = lineage.target_platform target_platform_instance = ( self.config.platform_instance_map.get(target_platform) if self.config.platform_instance_map else None ) job_property_bag = lineage.job_property_bag job_id = ( source_dataset if source_dataset else f"unknown_source.{target_dataset}" ) job_urn = builder.make_data_job_urn_with_flow(flow_urn, job_id) inlets = ( [ builder.make_dataset_urn_with_platform_instance( source_platform, source_dataset, platform_instance=source_platform_instance, env=self.config.env, ) ] if source_dataset else [] ) outlets = [ builder.make_dataset_urn_with_platform_instance( target_platform, target_dataset, platform_instance=target_platform_instance, env=self.config.env, ) ] mcp = MetadataChangeProposalWrapper( entityType="dataJob", entityUrn=job_urn, changeType=models.ChangeTypeClass.UPSERT, aspectName="dataJobInfo", aspect=models.DataJobInfoClass( name=f"{connector_name}:{job_id}", type="COMMAND", description=None, customProperties=job_property_bag # externalUrl=job_url, ), ) wu = MetadataWorkUnit( id=f"kafka-connect.{connector_name}.{job_id}.{mcp.aspectName}", mcp=mcp, ) self.report.report_workunit(wu) yield wu mcp = MetadataChangeProposalWrapper( entityType="dataJob", entityUrn=job_urn, changeType=models.ChangeTypeClass.UPSERT, aspectName="dataJobInputOutput", aspect=models.DataJobInputOutputClass( inputDatasets=inlets, outputDatasets=outlets, ), ) wu = MetadataWorkUnit( id=f"kafka-connect.{connector_name}.{job_id}.{mcp.aspectName}", mcp=mcp, ) self.report.report_workunit(wu) yield wu def construct_lineage_workunits( self, connector: ConnectorManifest ) -> Iterable[MetadataWorkUnit]: lineages = connector.lineages if lineages: for lineage in lineages: source_dataset = lineage.source_dataset source_platform = lineage.source_platform source_platform_instance = ( self.config.platform_instance_map.get(source_platform) if self.config.platform_instance_map else None ) target_dataset = lineage.target_dataset target_platform = lineage.target_platform target_platform_instance = ( self.config.platform_instance_map.get(target_platform) if self.config.platform_instance_map else None ) mcp = MetadataChangeProposalWrapper( entityType="dataset", entityUrn=builder.make_dataset_urn_with_platform_instance( target_platform, target_dataset, platform_instance=target_platform_instance, env=self.config.env, ), changeType=models.ChangeTypeClass.UPSERT, aspectName="dataPlatformInstance", aspect=models.DataPlatformInstanceClass( platform=builder.make_data_platform_urn(target_platform), instance=builder.make_dataplatform_instance_urn( target_platform, target_platform_instance ) if target_platform_instance else None, ), ) wu = MetadataWorkUnit(id=target_dataset, mcp=mcp) self.report.report_workunit(wu) yield wu if source_dataset: mcp = MetadataChangeProposalWrapper( entityType="dataset", entityUrn=builder.make_dataset_urn_with_platform_instance( source_platform, source_dataset, platform_instance=source_platform_instance, env=self.config.env, ), changeType=models.ChangeTypeClass.UPSERT, aspectName="dataPlatformInstance", aspect=models.DataPlatformInstanceClass( platform=builder.make_data_platform_urn(source_platform), instance=builder.make_dataplatform_instance_urn( source_platform, source_platform_instance ) if source_platform_instance else None, ), ) wu = MetadataWorkUnit(id=source_dataset, mcp=mcp) self.report.report_workunit(wu) yield wu def get_workunits(self) -> Iterable[MetadataWorkUnit]: connectors_manifest = self.get_connectors_manifest() for connector in connectors_manifest: name = connector.name if self.config.connector_patterns.allowed(name): yield from self.construct_flow_workunit(connector) yield from self.construct_job_workunits(connector) if self.config.construct_lineage_workunits: yield from self.construct_lineage_workunits(connector) self.report.report_connector_scanned(name) else: self.report.report_dropped(name) def get_report(self) -> KafkaConnectSourceReport: return self.report
38.410628
164
0.587071
3b599299e908f808a9856f274064fbe68b5f255c
2,689
py
Python
sdk/python/pulumi_azure_nextgen/apimanagement/v20200601preview/list_open_id_connect_provider_secrets.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
31
2020-09-21T09:41:01.000Z
2021-02-26T13:21:59.000Z
sdk/python/pulumi_azure_nextgen/apimanagement/v20200601preview/list_open_id_connect_provider_secrets.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
231
2020-09-21T09:38:45.000Z
2021-03-01T11:16:03.000Z
sdk/python/pulumi_azure_nextgen/apimanagement/v20200601preview/list_open_id_connect_provider_secrets.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
4
2020-09-29T14:14:59.000Z
2021-02-10T20:38:16.000Z
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables __all__ = [ 'ListOpenIdConnectProviderSecretsResult', 'AwaitableListOpenIdConnectProviderSecretsResult', 'list_open_id_connect_provider_secrets', ] @pulumi.output_type class ListOpenIdConnectProviderSecretsResult: """ Client or app secret used in IdentityProviders, Aad, OpenID or OAuth. """ def __init__(__self__, client_secret=None): if client_secret and not isinstance(client_secret, str): raise TypeError("Expected argument 'client_secret' to be a str") pulumi.set(__self__, "client_secret", client_secret) @property @pulumi.getter(name="clientSecret") def client_secret(self) -> Optional[str]: """ Client or app secret used in IdentityProviders, Aad, OpenID or OAuth. """ return pulumi.get(self, "client_secret") class AwaitableListOpenIdConnectProviderSecretsResult(ListOpenIdConnectProviderSecretsResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return ListOpenIdConnectProviderSecretsResult( client_secret=self.client_secret) def list_open_id_connect_provider_secrets(opid: Optional[str] = None, resource_group_name: Optional[str] = None, service_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableListOpenIdConnectProviderSecretsResult: """ Client or app secret used in IdentityProviders, Aad, OpenID or OAuth. :param str opid: Identifier of the OpenID Connect Provider. :param str resource_group_name: The name of the resource group. :param str service_name: The name of the API Management service. """ __args__ = dict() __args__['opid'] = opid __args__['resourceGroupName'] = resource_group_name __args__['serviceName'] = service_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-nextgen:apimanagement/v20200601preview:listOpenIdConnectProviderSecrets', __args__, opts=opts, typ=ListOpenIdConnectProviderSecretsResult).value return AwaitableListOpenIdConnectProviderSecretsResult( client_secret=__ret__.client_secret)
38.971014
187
0.70026
4221e48cc76350d596890ca71b5e54ce2a12603f
729
py
Python
analytics/views.py
praekelt/nurseconnect
41d46d32d7f0f498903ea6c28eed02847af2a1d0
[ "BSD-2-Clause" ]
null
null
null
analytics/views.py
praekelt/nurseconnect
41d46d32d7f0f498903ea6c28eed02847af2a1d0
[ "BSD-2-Clause" ]
82
2016-08-19T13:33:21.000Z
2018-07-02T13:54:38.000Z
analytics/views.py
praekeltfoundation/nurseconnect
41d46d32d7f0f498903ea6c28eed02847af2a1d0
[ "BSD-2-Clause" ]
2
2016-08-19T14:11:32.000Z
2016-09-21T12:18:34.000Z
from django.utils.http import is_safe_url from django.views.generic import View from django.http import ( HttpResponse, HttpResponseRedirect, HttpResponseBadRequest ) class AnalyticsRedirectView(View): def get(self, request, investigation_uuid, redirect_path, *args, **kwargs): destination = request.build_absolute_uri('/{0}'.format(redirect_path)) allowed_hosts = [request.get_host()] if is_safe_url(destination, allowed_hosts=allowed_hosts): response = HttpResponseRedirect(destination) response.set_cookie('investigation_uuid', investigation_uuid) else: response = HttpResponseBadRequest('Redirect URL is unsafe') return response
33.136364
79
0.718793
44c5e1fc378efca87c5a3b022dd0ad545d0d3244
578
py
Python
solutions/codeforces/189A.py
forxhunter/ComputingIntro
50fa2ac030748626c694ec5c884c5ac32f0b42a8
[ "Apache-2.0" ]
1
2021-01-02T04:31:34.000Z
2021-01-02T04:31:34.000Z
solutions/codeforces/189A.py
forxhunter/ComputingIntro
50fa2ac030748626c694ec5c884c5ac32f0b42a8
[ "Apache-2.0" ]
null
null
null
solutions/codeforces/189A.py
forxhunter/ComputingIntro
50fa2ac030748626c694ec5c884c5ac32f0b42a8
[ "Apache-2.0" ]
null
null
null
''' cut ribbon After the cutting each ribbon piece should have length a, b or c. After the cutting the number of ribbon pieces should be maximum. !!!solve the optimization problem ax+by+cz = n max. x+y+z c·max= n +(c-a)x+(c-b)y #Note: PyPi accepted ''' n, a, b, c = list(map(int, input().split(' '))) count = 0 xmax = n // a ymax = n // b for x in range(xmax+1): for y in range(ymax+1): z = (n-a*x-b*y)/c if z < 0: break result = x + y + z if result > count and result % 1 == 0: count = result print(int(count))
18.645161
65
0.565744
bbd42d5e0f3c2c4d4a6a11b424c831974ad1bda2
1,821
py
Python
setup.py
emaballarin/stockroom
e2e098c4731a4ad0d4952a99c972cb4816bb1abe
[ "Apache-2.0" ]
null
null
null
setup.py
emaballarin/stockroom
e2e098c4731a4ad0d4952a99c972cb4816bb1abe
[ "Apache-2.0" ]
null
null
null
setup.py
emaballarin/stockroom
e2e098c4731a4ad0d4952a99c972cb4816bb1abe
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python from setuptools import find_packages, setup with open('README.md') as readme_file: readme = readme_file.read().split('<!--- marker-for-pypi-to-trim --->')[0] requirements = ['Click>=7.0', 'click_didyoumean', 'hangar @ git+https://github.com/tensorwerk/hangar-py', 'rich'] setup( author="Sherin Thomas", author_email='sherin@tensorwerk.com', python_requires='>=3.6', classifiers=[ # complete classifier list: http://pypi.python.org/pypi?%3Aaction=list_classifiers 'Development Status :: 3 - Alpha', 'Intended Audience :: Developers', 'License :: OSI Approved :: Apache Software License', 'Natural Language :: English', 'Operating System :: Microsoft :: Windows', 'Operating System :: POSIX', 'Operating System :: Unix', 'Programming Language :: Python :: 3 :: Only', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Topic :: Database', 'Topic :: Scientific/Engineering', 'Topic :: Utilities', ], description="Version control for software 2.0", project_urls={ 'Documentation': 'https://stockroom.readthedocs.io', 'Issue Tracker': 'https://github.com/tensorwerk/stockroom/issues'}, entry_points={'console_scripts': ['stock=stockroom.cli:stock']}, install_requires=requirements, license="Apache Software License 2.0", long_description=readme + '\n\n', long_description_content_type='text/markdown', include_package_data=True, keywords='stockroom', name='stockroom', packages=find_packages(include=['stockroom', 'stockroom.*']), url='https://github.com/tensorwerk/stockroom', version='0.3.0', zip_safe=False, )
37.9375
113
0.643602
2a6f797ee669ca3609d4c2285811f75c97f0fc80
660
py
Python
ExerciciosPython/ex020.py
MecaFlavio/Exercicios-Python-3-Curso-em-Video
b93272c15b19b04deff73f1b0a684a0b49313edf
[ "MIT" ]
null
null
null
ExerciciosPython/ex020.py
MecaFlavio/Exercicios-Python-3-Curso-em-Video
b93272c15b19b04deff73f1b0a684a0b49313edf
[ "MIT" ]
null
null
null
ExerciciosPython/ex020.py
MecaFlavio/Exercicios-Python-3-Curso-em-Video
b93272c15b19b04deff73f1b0a684a0b49313edf
[ "MIT" ]
null
null
null
# O mesmo professor quer sortear a ordem de apresentação de trabalhos do alunos. Faça um programa # que leia o nome dos quatro alunos e mostre a ordem sorteada. import random n1 = str(input('Escreva nome 1: ')) n2 = str(input('Escreva nome 2: ')) n3 = str(input('Escreva nome 3: ')) n4 = str(input('Escreva nome 4: ')) nomes = n1,n2,n3,n4 # também não serve pra nada print('A ordem será', random.sample([n1,n2,n3,n4], k=4)) ## Resolução do professor n1 = str(input('Escreva nome 1: ')) n2 = str(input('Escreva nome 2: ')) n3 = str(input('Escreva nome 3: ')) n4 = str(input('Escreva nome 4: ')) lista = [n1, n2, n3, n4] random.shuffle(lista) print(lista)
27.5
97
0.677273
fbb1370806b5bc653b4f26c3b4416181efd21daa
19,087
py
Python
spconv/pytorch/functional.py
djiajunustc/spconv
647927ce6b64dc51fbec4eb50c7194f8ca5007e5
[ "Apache-2.0" ]
null
null
null
spconv/pytorch/functional.py
djiajunustc/spconv
647927ce6b64dc51fbec4eb50c7194f8ca5007e5
[ "Apache-2.0" ]
null
null
null
spconv/pytorch/functional.py
djiajunustc/spconv
647927ce6b64dc51fbec4eb50c7194f8ca5007e5
[ "Apache-2.0" ]
null
null
null
# Copyright 2021 Yan Yan # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import pickle import torch from torch import nn from torch.autograd import Function from typing import Optional, TypeVar from spconv.tools import CUDAKernelTimer from spconv.pytorch import ops, SparseConvTensor from spconv.pytorch.constants import PYTORCH_VERSION from spconv.debug_utils import spconv_save_debug_data from torch.autograd.function import once_differentiable import numpy as np from pathlib import Path from spconv.pytorch.hash import HashTable from cumm.gemm.layout import to_stride from typing import List from functools import reduce _MAX_INT32 = 2147483647 _T = TypeVar("_T") def identity_decorator(func: _T) -> _T: return func if PYTORCH_VERSION >= [1, 6, 0]: import torch.cuda.amp as amp _TORCH_CUSTOM_FWD = amp.custom_fwd(cast_inputs=torch.float16) _TORCH_CUSTOM_BWD = amp.custom_bwd else: _TORCH_CUSTOM_FWD = identity_decorator _TORCH_CUSTOM_BWD = identity_decorator class SparseConvFunction(Function): @staticmethod @_TORCH_CUSTOM_FWD def forward(ctx, features, filters, indice_pairs, indice_pair_num, num_activate_out, algo, timer: CUDAKernelTimer = CUDAKernelTimer(False)): ctx.save_for_backward(indice_pairs, indice_pair_num, features, filters) ctx.algo = algo ctx.timer = timer try: return ops.indice_conv(features, filters, indice_pairs, indice_pair_num, num_activate_out, False, algo=algo, timer=timer) except Exception as e: msg = "[Exception|indice_conv]" msg += f"feat={features.shape},w={filters.shape},pair={indice_pairs.shape}," msg += f"pairnum={indice_pair_num},act={num_activate_out},algo={algo}" print(msg, file=sys.stderr) spconv_save_debug_data((indice_pairs, indice_pair_num)) raise e @staticmethod @once_differentiable @_TORCH_CUSTOM_BWD def backward(ctx, grad_output): indice_pairs, indice_pair_num, features, filters = ctx.saved_tensors timer = ctx.timer try: input_bp, filters_bp = ops.indice_conv_backward(features, filters, grad_output, indice_pairs, indice_pair_num, False, algo=ctx.algo, timer=timer) except Exception as e: msg = "[Exception|indice_conv_backward]" msg += f"feat={features.shape},w={filters.shape},pair={indice_pairs.shape}," msg += f"pairnum={indice_pair_num},do={grad_output.shape}" print(msg, file=sys.stderr) spconv_save_debug_data((indice_pairs, indice_pair_num)) raise e return input_bp, filters_bp, None, None, None, None, None class SparseInverseConvFunction(Function): @staticmethod @_TORCH_CUSTOM_FWD def forward(ctx, features, filters, indice_pairs, indice_pair_num, num_activate_out, algo, timer: CUDAKernelTimer = CUDAKernelTimer(False)): ctx.save_for_backward(indice_pairs, indice_pair_num, features, filters) ctx.algo = algo ctx.timer = timer try: return ops.indice_conv(features, filters, indice_pairs, indice_pair_num, num_activate_out, True, False, algo=algo, timer=timer) except Exception as e: msg = "[Exception|indice_conv|inverse]" msg += f"feat={features.shape},w={filters.shape},pair={indice_pairs.shape}," msg += f"pairnum={indice_pair_num},act={num_activate_out},algo={algo}" print(msg, file=sys.stderr) spconv_save_debug_data((indice_pairs, indice_pair_num)) raise e @staticmethod @once_differentiable @_TORCH_CUSTOM_BWD def backward(ctx, grad_output): indice_pairs, indice_pair_num, features, filters = ctx.saved_tensors timer = ctx.timer try: input_bp, filters_bp = ops.indice_conv_backward(features, filters, grad_output, indice_pairs, indice_pair_num, True, False, algo=ctx.algo, timer=timer) except Exception as e: msg = "[Exception|indice_conv_backward|inverse]" msg += f"feat={features.shape},w={filters.shape},pair={indice_pairs.shape}," msg += f"pairnum={indice_pair_num},do={grad_output.shape}" print(msg, file=sys.stderr) spconv_save_debug_data((indice_pairs, indice_pair_num)) raise e return input_bp, filters_bp, None, None, None, None, None class SparseImplicitGemmFunction(Function): @staticmethod @_TORCH_CUSTOM_FWD def forward(ctx, features: torch.Tensor, filters: torch.Tensor, pair_fwd: torch.Tensor, pair_bwd: torch.Tensor, pair_mask_fwd_splits: List[torch.Tensor], pair_mask_bwd_splits: List[torch.Tensor], mask_argsort_fwd_splits: List[torch.Tensor], mask_argsort_bwd_splits: List[torch.Tensor], num_activate_out: int, masks: List[np.ndarray], is_train: bool, is_subm: bool, timer: CUDAKernelTimer = CUDAKernelTimer(False), fp32_accum: Optional[bool] = None): try: out, mask_out, mask_width = ops.implicit_gemm(features, filters, pair_fwd, pair_mask_fwd_splits, mask_argsort_fwd_splits, num_activate_out, masks, is_train, is_subm, timer, fp32_accum) except Exception as e: msg = "[Exception|implicit_gemm]" msg += f"feat={features.shape},w={filters.shape},pair={pair_fwd.shape}," msg += f"act={num_activate_out},issubm={is_subm},istrain={is_train}" print(msg, file=sys.stderr) spconv_save_debug_data((pair_fwd, pair_bwd, pair_mask_fwd_splits, pair_mask_bwd_splits, mask_argsort_fwd_splits, mask_argsort_bwd_splits, masks)) raise e ctx.save_for_backward(features, filters, pair_fwd, pair_bwd) ctx.mask_width = mask_width ctx.mask_out = mask_out ctx.timer = timer ctx.pair_mask_fwd_splits = pair_mask_fwd_splits ctx.mask_argsort_fwd_splits = mask_argsort_fwd_splits ctx.pair_mask_bwd_splits = pair_mask_bwd_splits ctx.mask_argsort_bwd_splits = mask_argsort_bwd_splits # ctx.num_activate_out = num_activate_out ctx.masks = masks ctx.is_subm = is_subm ctx.fp32_accum = fp32_accum return out @staticmethod @once_differentiable @_TORCH_CUSTOM_BWD def backward(ctx, grad_output): features, filters, pair_fwd, pair_bwd = ctx.saved_tensors mask_width = ctx.mask_width mask_out = ctx.mask_out pair_mask_fwd_splits = ctx.pair_mask_fwd_splits mask_argsort_fwd_splits = ctx.mask_argsort_fwd_splits pair_mask_bwd_splits = ctx.pair_mask_bwd_splits mask_argsort_bwd_splits = ctx.mask_argsort_bwd_splits # num_activate_out = ctx.num_activate_out masks = ctx.masks is_subm = ctx.is_subm timer = ctx.timer fp32_accum = ctx.fp32_accum try: input_bp, filters_bp = ops.implicit_gemm_backward( features, filters, grad_output, pair_fwd, pair_bwd, pair_mask_fwd_splits, pair_mask_bwd_splits, mask_argsort_fwd_splits, mask_argsort_bwd_splits, mask_output_fwd=mask_out, masks=masks, mask_width=mask_width, is_subm=is_subm, timer=timer, fp32_accum=fp32_accum) except Exception as e: msg = "[Exception|implicit_gemm_backward]" msg += f"feat={features.shape},w={filters.shape},pair={pair_fwd.shape}," msg += f"issubm={is_subm},do={grad_output.shape}" print(msg, file=sys.stderr) spconv_save_debug_data((pair_fwd, pair_bwd, pair_mask_fwd_splits, pair_mask_bwd_splits, mask_argsort_fwd_splits, mask_argsort_bwd_splits, masks)) raise e None_9 = [None] * 12 return (input_bp, filters_bp, *None_9) class SubMConvFunction(Function): @staticmethod @_TORCH_CUSTOM_FWD def forward(ctx, features, filters, indice_pairs, indice_pair_num, num_activate_out, algo, timer: CUDAKernelTimer = CUDAKernelTimer(False)): ctx.save_for_backward(indice_pairs, indice_pair_num, features, filters) ctx.algo = algo ctx.timer = timer try: return ops.indice_conv(features, filters, indice_pairs, indice_pair_num, num_activate_out, False, True, algo=algo, timer=timer) except Exception as e: msg = "[Exception|indice_conv|subm]" msg += f"feat={features.shape},w={filters.shape},pair={indice_pairs.shape}," msg += f"pairnum={indice_pair_num},act={num_activate_out},algo={algo}" print(msg, file=sys.stderr) spconv_save_debug_data((indice_pairs, indice_pair_num)) raise e @staticmethod @once_differentiable @_TORCH_CUSTOM_BWD def backward(ctx, grad_output): indice_pairs, indice_pair_num, features, filters = ctx.saved_tensors timer = ctx.timer try: input_bp, filters_bp = ops.indice_conv_backward(features, filters, grad_output, indice_pairs, indice_pair_num, False, True, algo=ctx.algo, timer=timer) except Exception as e: msg = "[Exception|indice_conv_backward|subm]" msg += f"feat={features.shape},w={filters.shape},pair={indice_pairs.shape}," msg += f"pairnum={indice_pair_num},do={grad_output.shape}" print(msg, file=sys.stderr) spconv_save_debug_data((indice_pairs, indice_pair_num)) raise e return input_bp, filters_bp, None, None, None, None, None class SparseMaxPoolFunction(Function): @staticmethod @_TORCH_CUSTOM_FWD def forward(ctx, features, indice_pairs, indice_pair_num, num_activate_out): out = ops.indice_maxpool(features, indice_pairs, indice_pair_num, num_activate_out) ctx.save_for_backward(indice_pairs, indice_pair_num, features, out) return out @staticmethod @once_differentiable @_TORCH_CUSTOM_BWD def backward(ctx, grad_output): indice_pairs, indice_pair_num, features, out = ctx.saved_tensors input_bp = ops.indice_maxpool_backward(features, out, grad_output, indice_pairs, indice_pair_num) return input_bp, None, None, None class SparseMaxPoolImplicitGemmFunction(Function): @staticmethod @_TORCH_CUSTOM_FWD def forward(ctx, features: torch.Tensor, indice_pairs_fwd: torch.Tensor, indice_pairs_bwd: torch.Tensor, num_activate_out: int): out = ops.indice_maxpool_implicit_gemm(features, indice_pairs_fwd, num_activate_out) ctx.save_for_backward(indice_pairs_bwd, features, out) return out @staticmethod @once_differentiable @_TORCH_CUSTOM_BWD def backward(ctx, grad_output): indice_pairs_bwd, features, out = ctx.saved_tensors input_bp = ops.indice_maxpool_implicit_gemm_backward( features, out, grad_output, indice_pairs_bwd) return input_bp, None, None, None indice_conv = SparseConvFunction.apply implicit_gemm = SparseImplicitGemmFunction.apply indice_inverse_conv = SparseInverseConvFunction.apply indice_subm_conv = SubMConvFunction.apply indice_maxpool = SparseMaxPoolFunction.apply indice_maxpool_implicit_gemm = SparseMaxPoolImplicitGemmFunction.apply def _indice_to_scalar(indices: torch.Tensor, shape: List[int]): assert indices.shape[1] == len(shape) stride = to_stride(np.array(shape, dtype=np.int64)) scalar_inds = indices[:, -1].clone() for i in range(len(shape) - 1): scalar_inds += stride[i] * indices[:, i] return scalar_inds.contiguous() def sparse_add_hash_based(*tens: SparseConvTensor): """ sparse add with misaligned indices. if you use sparse add, the indice_dict will be dropped and impossible to use inverse. There is only one situation that keep indices: there is one operand that its indices is output indices. """ table_size = 0 max_num_indices = 0 max_num_indices_idx = 0 for i, ten in enumerate(tens): assert ten.spatial_shape == tens[0].spatial_shape assert ten.batch_size == tens[0].batch_size assert ten.features.shape[1] == tens[0].features.shape[1] table_size += ten.features.shape[0] if max_num_indices < ten.features.shape[0]: max_num_indices_idx = i max_num_indices = ten.features.shape[0] first = tens[0] feat = first.features shape = [first.batch_size, *first.spatial_shape] whole_shape = int(np.prod(shape)) table_size *= 2 k_type = torch.int32 if whole_shape >= _MAX_INT32: k_type = torch.int64 table = HashTable(first.features.device, k_type, torch.int32, table_size) scalars: List[torch.Tensor] = [] for ten in tens: indices = ten.indices if whole_shape >= _MAX_INT32: indices = indices.long() scalar = _indice_to_scalar(indices, shape) scalars.append(scalar) table.insert(scalar) # assign arange to values of hash table count = table.assign_arange_() count_val = count.item() out_features = torch.zeros([int(count_val), feat.shape[1]], dtype=feat.dtype, device=feat.device) out_indices = torch.zeros([int(count_val), first.indices.shape[1]], dtype=first.indices.dtype, device=first.indices.device) for ten, scalar in zip(tens, scalars): out_inds, _ = table.query(scalar) out_inds = out_inds.long() out_features[out_inds] += ten.features out_indices[out_inds] = ten.indices res = SparseConvTensor(out_features, out_indices, first.spatial_shape, first.batch_size, benchmark=first.benchmark) if count_val == max_num_indices: res.indice_dict = tens[max_num_indices_idx].indice_dict res.benchmark_record = first.benchmark_record res._timer = first._timer res.thrust_allocator = first.thrust_allocator return res def sparse_add(*tens: SparseConvTensor): """reuse torch.sparse. the internal is sort + unique """ max_num_indices = 0 max_num_indices_idx = 0 ten_ths: List[torch.Tensor] = [] first = tens[0] res_shape = [first.batch_size, *first.spatial_shape, first.features.shape[1]] for i, ten in enumerate(tens): assert ten.spatial_shape == tens[0].spatial_shape assert ten.batch_size == tens[0].batch_size assert ten.features.shape[1] == tens[0].features.shape[1] if max_num_indices < ten.features.shape[0]: max_num_indices_idx = i max_num_indices = ten.features.shape[0] ten_ths.append(torch.sparse_coo_tensor(ten.indices.T, ten.features, res_shape, requires_grad=True)) c_th = reduce(lambda x, y: x + y, ten_ths).coalesce() c_th_inds = c_th.indices().T.contiguous().int() c_th_values = c_th.values() assert c_th_values.is_contiguous() res = SparseConvTensor(c_th_values, c_th_inds, first.spatial_shape, first.batch_size, benchmark=first.benchmark) if c_th_values.shape[0] == max_num_indices: res.indice_dict = tens[max_num_indices_idx].indice_dict res.benchmark_record = first.benchmark_record res._timer = first._timer res.thrust_allocator = first.thrust_allocator return res
40.87152
127
0.572903
5d6b92ce91275e790ea67190a3c78c88703213aa
4,830
py
Python
pypureclient/flashblade/FB_2_3/models/nfs.py
Flav-STOR-WL/py-pure-client
03b889c997d90380ac5d6380ca5d5432792d3e89
[ "BSD-2-Clause" ]
14
2018-12-07T18:30:27.000Z
2022-02-22T09:12:33.000Z
pypureclient/flashblade/FB_2_3/models/nfs.py
Flav-STOR-WL/py-pure-client
03b889c997d90380ac5d6380ca5d5432792d3e89
[ "BSD-2-Clause" ]
28
2019-09-17T21:03:52.000Z
2022-03-29T22:07:35.000Z
pypureclient/flashblade/FB_2_3/models/nfs.py
Flav-STOR-WL/py-pure-client
03b889c997d90380ac5d6380ca5d5432792d3e89
[ "BSD-2-Clause" ]
15
2020-06-11T15:50:08.000Z
2022-03-21T09:27:25.000Z
# coding: utf-8 """ FlashBlade REST API A lightweight client for FlashBlade REST API 2.3, developed by Pure Storage, Inc. (http://www.purestorage.com/). OpenAPI spec version: 2.3 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re import six import typing from ....properties import Property if typing.TYPE_CHECKING: from pypureclient.flashblade.FB_2_3 import models class Nfs(object): """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'v3_enabled': 'bool', 'v4_1_enabled': 'bool', 'rules': 'str', 'export_policy': 'Reference' } attribute_map = { 'v3_enabled': 'v3_enabled', 'v4_1_enabled': 'v4_1_enabled', 'rules': 'rules', 'export_policy': 'export_policy' } required_args = { } def __init__( self, v3_enabled=None, # type: bool v4_1_enabled=None, # type: bool rules=None, # type: str export_policy=None, # type: models.Reference ): """ Keyword args: v3_enabled (bool): If set to `true`, the NFSv3 protocol will be enabled. v4_1_enabled (bool): If set to `true`, the NFSv4.1 protocol will be enabled. rules (str): The NFS export rules for the system. Either the `export_policy` or `rules` will control the NFS export functionality for the file system. If this is set, then the `policy` field will be cleared. Both `export_policy` and `rules` can not be set in the same request. Rules can be applied to an individual client or a range of clients specified by IP address (`ip_address(options)`), netmask (`ip_address/length(options)`), or netgroup (`@groupname(options)`). Possible export options include `rw`, `ro`, `fileid_32bit`, `no_fileid_32bit`, `anonuid`, `anongid`, `root_squash`, `no_root_squash`, `all_squash`, `no_all_squash`, `secure`, `insecure`, `atime`, `noatime`, and `sec`. If not specified, defaults to `*(rw,no_root_squash)`. export_policy (Reference): The NFS export policy for the system. Either the `export_policy` or `rules` will control the NFS export functionality for the file system. If this is set, then the `rules` field will be cleared. Both `export_policy` and `rules` can not be set in the same request. """ if v3_enabled is not None: self.v3_enabled = v3_enabled if v4_1_enabled is not None: self.v4_1_enabled = v4_1_enabled if rules is not None: self.rules = rules if export_policy is not None: self.export_policy = export_policy def __setattr__(self, key, value): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `Nfs`".format(key)) self.__dict__[key] = value def __getattribute__(self, item): value = object.__getattribute__(self, item) if isinstance(value, Property): return None else: return value def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): if hasattr(self, attr): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(Nfs, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, Nfs): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
37.153846
755
0.586749
79bbec66e32c7742047b535b32eb513b27ff0c36
39,395
py
Python
tests/unit/config_test.py
styro/salt
d087d94dca02ca8bf53a6c21b94944bc7957522c
[ "Apache-2.0" ]
1
2015-05-20T16:55:50.000Z
2015-05-20T16:55:50.000Z
tests/unit/config_test.py
styro/salt
d087d94dca02ca8bf53a6c21b94944bc7957522c
[ "Apache-2.0" ]
null
null
null
tests/unit/config_test.py
styro/salt
d087d94dca02ca8bf53a6c21b94944bc7957522c
[ "Apache-2.0" ]
1
2021-12-02T15:30:00.000Z
2021-12-02T15:30:00.000Z
# -*- coding: utf-8 -*- ''' :codeauthor: :email:`Pedro Algarvio (pedro@algarvio.me)` tests.unit.config_test ~~~~~~~~~~~~~~~~~~~~~~ ''' # Import python libs import logging import os import shutil import tempfile from contextlib import contextmanager # Import Salt Testing libs from salttesting import TestCase from salttesting.mock import MagicMock, patch from salttesting.helpers import ensure_in_syspath, TestsLoggingHandler from salt.exceptions import CommandExecutionError ensure_in_syspath('../') # Import salt libs import salt.minion import salt.utils import salt.utils.network import integration from salt import config as sconfig from salt.exceptions import SaltCloudConfigError # Import Third-Party Libs import yaml log = logging.getLogger(__name__) # mock hostname should be more complex than the systems FQDN MOCK_HOSTNAME = 'very.long.complex.fqdn.that.is.crazy.extra.long.example.com' MOCK_ETC_HOSTS = ( '##\n' '# Host Database\n' '#\n' '# localhost is used to configure the loopback interface\n' '# when the system is booting. Do not change this entry.\n' '##\n' '\n' # This empty line MUST STAY HERE, it factors into the tests '127.0.0.1 localhost ' + MOCK_HOSTNAME + '\n' '10.0.0.100 ' + MOCK_HOSTNAME + '\n' '200.200.200.2 other.host.alias.com\n' '::1 ip6-localhost ip6-loopback\n' 'fe00::0 ip6-localnet\n' 'ff00::0 ip6-mcastprefix\n' ) MOCK_ETC_HOSTNAME = '{0}\n'.format(MOCK_HOSTNAME) PATH = 'path/to/some/cloud/conf/file' DEFAULT = {'default_include': PATH} def _unhandled_mock_read(filename): ''' Raise an error because we should not be calling salt.utils.fopen() ''' raise CommandExecutionError('Unhandled mock read for {0}'.format(filename)) @contextmanager def _fopen_side_effect_etc_hostname(filename): ''' Mock reading from /etc/hostname ''' log.debug('Mock-reading {0}'.format(filename)) if filename == '/etc/hostname': mock_open = MagicMock() mock_open.read.return_value = MOCK_ETC_HOSTNAME yield mock_open elif filename == '/etc/hosts': raise IOError(2, "No such file or directory: '{0}'".format(filename)) else: _unhandled_mock_read(filename) @contextmanager def _fopen_side_effect_etc_hosts(filename): ''' Mock /etc/hostname not existing, and falling back to reading /etc/hosts ''' log.debug('Mock-reading {0}'.format(filename)) if filename == '/etc/hostname': raise IOError(2, "No such file or directory: '{0}'".format(filename)) elif filename == '/etc/hosts': mock_open = MagicMock() mock_open.__iter__.return_value = MOCK_ETC_HOSTS.splitlines() yield mock_open else: _unhandled_mock_read(filename) class ConfigTestCase(TestCase, integration.AdaptedConfigurationTestCaseMixIn): def test_proper_path_joining(self): fpath = tempfile.mktemp() try: salt.utils.fopen(fpath, 'w').write( "root_dir: /\n" "key_logfile: key\n" ) config = sconfig.master_config(fpath) # os.path.join behavior self.assertEqual(config['key_logfile'], os.path.join('/', 'key')) # os.sep.join behavior self.assertNotEqual(config['key_logfile'], '//key') finally: if os.path.isfile(fpath): os.unlink(fpath) def test_common_prefix_stripping(self): tempdir = tempfile.mkdtemp(dir=integration.SYS_TMP_DIR) try: root_dir = os.path.join(tempdir, 'foo', 'bar') os.makedirs(root_dir) fpath = os.path.join(root_dir, 'config') salt.utils.fopen(fpath, 'w').write( 'root_dir: {0}\n' 'log_file: {1}\n'.format(root_dir, fpath) ) config = sconfig.master_config(fpath) self.assertEqual(config['log_file'], fpath) finally: if os.path.isdir(tempdir): shutil.rmtree(tempdir) def test_load_master_config_from_environ_var(self): original_environ = os.environ.copy() tempdir = tempfile.mkdtemp(dir=integration.SYS_TMP_DIR) try: env_root_dir = os.path.join(tempdir, 'foo', 'env') os.makedirs(env_root_dir) env_fpath = os.path.join(env_root_dir, 'config-env') salt.utils.fopen(env_fpath, 'w').write( 'root_dir: {0}\n' 'log_file: {1}\n'.format(env_root_dir, env_fpath) ) os.environ['SALT_MASTER_CONFIG'] = env_fpath # Should load from env variable, not the default configuration file. config = sconfig.master_config('/etc/salt/master') self.assertEqual(config['log_file'], env_fpath) os.environ.clear() os.environ.update(original_environ) root_dir = os.path.join(tempdir, 'foo', 'bar') os.makedirs(root_dir) fpath = os.path.join(root_dir, 'config') salt.utils.fopen(fpath, 'w').write( 'root_dir: {0}\n' 'log_file: {1}\n'.format(root_dir, fpath) ) # Let's set the environment variable, yet, since the configuration # file path is not the default one, i.e., the user has passed an # alternative configuration file form the CLI parser, the # environment variable will be ignored. os.environ['SALT_MASTER_CONFIG'] = env_fpath config = sconfig.master_config(fpath) self.assertEqual(config['log_file'], fpath) os.environ.clear() os.environ.update(original_environ) finally: if os.path.isdir(tempdir): shutil.rmtree(tempdir) def test_load_minion_config_from_environ_var(self): original_environ = os.environ.copy() tempdir = tempfile.mkdtemp(dir=integration.SYS_TMP_DIR) try: env_root_dir = os.path.join(tempdir, 'foo', 'env') os.makedirs(env_root_dir) env_fpath = os.path.join(env_root_dir, 'config-env') salt.utils.fopen(env_fpath, 'w').write( 'root_dir: {0}\n' 'log_file: {1}\n'.format(env_root_dir, env_fpath) ) os.environ['SALT_MINION_CONFIG'] = env_fpath # Should load from env variable, not the default configuration file config = sconfig.minion_config('/etc/salt/minion') self.assertEqual(config['log_file'], env_fpath) os.environ.clear() os.environ.update(original_environ) root_dir = os.path.join(tempdir, 'foo', 'bar') os.makedirs(root_dir) fpath = os.path.join(root_dir, 'config') salt.utils.fopen(fpath, 'w').write( 'root_dir: {0}\n' 'log_file: {1}\n'.format(root_dir, fpath) ) # Let's set the environment variable, yet, since the configuration # file path is not the default one, i.e., the user has passed an # alternative configuration file form the CLI parser, the # environment variable will be ignored. os.environ['SALT_MINION_CONFIG'] = env_fpath config = sconfig.minion_config(fpath) self.assertEqual(config['log_file'], fpath) os.environ.clear() os.environ.update(original_environ) finally: if os.path.isdir(tempdir): shutil.rmtree(tempdir) def test_load_client_config_from_environ_var(self): original_environ = os.environ.copy() try: tempdir = tempfile.mkdtemp(dir=integration.SYS_TMP_DIR) env_root_dir = os.path.join(tempdir, 'foo', 'env') os.makedirs(env_root_dir) # Let's populate a master configuration file which should not get # picked up since the client configuration tries to load the master # configuration settings using the provided client configuration # file master_config = os.path.join(env_root_dir, 'master') salt.utils.fopen(master_config, 'w').write( 'blah: true\n' 'root_dir: {0}\n' 'log_file: {1}\n'.format(env_root_dir, master_config) ) os.environ['SALT_MASTER_CONFIG'] = master_config # Now the client configuration file env_fpath = os.path.join(env_root_dir, 'config-env') salt.utils.fopen(env_fpath, 'w').write( 'root_dir: {0}\n' 'log_file: {1}\n'.format(env_root_dir, env_fpath) ) os.environ['SALT_CLIENT_CONFIG'] = env_fpath # Should load from env variable, not the default configuration file config = sconfig.client_config(os.path.expanduser('~/.salt')) self.assertEqual(config['log_file'], env_fpath) self.assertTrue('blah' not in config) os.environ.clear() os.environ.update(original_environ) root_dir = os.path.join(tempdir, 'foo', 'bar') os.makedirs(root_dir) fpath = os.path.join(root_dir, 'config') salt.utils.fopen(fpath, 'w').write( 'root_dir: {0}\n' 'log_file: {1}\n'.format(root_dir, fpath) ) # Let's set the environment variable, yet, since the configuration # file path is not the default one, i.e., the user has passed an # alternative configuration file form the CLI parser, the # environment variable will be ignored. os.environ['SALT_MASTER_CONFIG'] = env_fpath config = sconfig.master_config(fpath) self.assertEqual(config['log_file'], fpath) os.environ.clear() os.environ.update(original_environ) finally: if os.path.isdir(tempdir): shutil.rmtree(tempdir) def test_issue_5970_minion_confd_inclusion(self): try: tempdir = tempfile.mkdtemp(dir=integration.SYS_TMP_DIR) minion_config = os.path.join(tempdir, 'minion') minion_confd = os.path.join(tempdir, 'minion.d') os.makedirs(minion_confd) # Let's populate a minion configuration file with some basic # settings salt.utils.fopen(minion_config, 'w').write( 'blah: false\n' 'root_dir: {0}\n' 'log_file: {1}\n'.format(tempdir, minion_config) ) # Now, let's populate an extra configuration file under minion.d # Notice that above we've set blah as False and bellow as True. # Since the minion.d files are loaded after the main configuration # file so overrides can happen, the final value of blah should be # True. extra_config = os.path.join(minion_confd, 'extra.conf') salt.utils.fopen(extra_config, 'w').write( 'blah: true\n' ) # Let's load the configuration config = sconfig.minion_config(minion_config) self.assertEqual(config['log_file'], minion_config) # As proven by the assertion below, blah is True self.assertTrue(config['blah']) finally: if os.path.isdir(tempdir): shutil.rmtree(tempdir) def test_master_confd_inclusion(self): try: tempdir = tempfile.mkdtemp(dir=integration.SYS_TMP_DIR) master_config = os.path.join(tempdir, 'master') master_confd = os.path.join(tempdir, 'master.d') os.makedirs(master_confd) # Let's populate a master configuration file with some basic # settings salt.utils.fopen(master_config, 'w').write( 'blah: false\n' 'root_dir: {0}\n' 'log_file: {1}\n'.format(tempdir, master_config) ) # Now, let's populate an extra configuration file under master.d # Notice that above we've set blah as False and bellow as True. # Since the master.d files are loaded after the main configuration # file so overrides can happen, the final value of blah should be # True. extra_config = os.path.join(master_confd, 'extra.conf') salt.utils.fopen(extra_config, 'w').write( 'blah: true\n' ) # Let's load the configuration config = sconfig.master_config(master_config) self.assertEqual(config['log_file'], master_config) # As proven by the assertion below, blah is True self.assertTrue(config['blah']) finally: if os.path.isdir(tempdir): shutil.rmtree(tempdir) def test_syndic_config(self): syndic_conf_path = self.get_config_file_path('syndic') minion_conf_path = self.get_config_file_path('minion') syndic_opts = sconfig.syndic_config( syndic_conf_path, minion_conf_path ) syndic_opts.update(salt.minion.resolve_dns(syndic_opts)) root_dir = syndic_opts['root_dir'] # id & pki dir are shared & so configured on the minion side self.assertEqual(syndic_opts['id'], 'minion') self.assertEqual(syndic_opts['pki_dir'], os.path.join(root_dir, 'pki')) # the rest is configured master side self.assertEqual(syndic_opts['master_uri'], 'tcp://127.0.0.1:54506') self.assertEqual(syndic_opts['master_port'], 54506) self.assertEqual(syndic_opts['master_ip'], '127.0.0.1') self.assertEqual(syndic_opts['master'], 'localhost') self.assertEqual(syndic_opts['sock_dir'], os.path.join(root_dir, 'minion_sock')) self.assertEqual(syndic_opts['cachedir'], os.path.join(root_dir, 'cachedir')) self.assertEqual(syndic_opts['log_file'], os.path.join(root_dir, 'osyndic.log')) self.assertEqual(syndic_opts['pidfile'], os.path.join(root_dir, 'osyndic.pid')) # Show that the options of localclient that repub to local master # are not merged with syndic ones self.assertEqual(syndic_opts['_master_conf_file'], minion_conf_path) self.assertEqual(syndic_opts['_minion_conf_file'], syndic_conf_path) def test_issue_6714_parsing_errors_logged(self): try: tempdir = tempfile.mkdtemp(dir=integration.SYS_TMP_DIR) test_config = os.path.join(tempdir, 'config') # Let's populate a master configuration file with some basic # settings salt.utils.fopen(test_config, 'w').write( 'root_dir: {0}\n' 'log_file: {0}/foo.log\n'.format(tempdir) + '\n\n\n' 'blah:false\n' ) with TestsLoggingHandler() as handler: # Let's load the configuration config = sconfig.master_config(test_config) for message in handler.messages: if message.startswith('ERROR:Error parsing configuration'): break else: raise AssertionError( 'No parsing error message was logged' ) finally: if os.path.isdir(tempdir): shutil.rmtree(tempdir) @patch('salt.utils.network.get_fqhostname', MagicMock(return_value='localhost')) def test_get_id_etc_hostname(self): ''' Test calling salt.config.get_id() and falling back to looking at /etc/hostname. ''' with patch('salt.utils.fopen', _fopen_side_effect_etc_hostname): self.assertEqual( sconfig.get_id({'root_dir': None, 'minion_id_caching': False}), (MOCK_HOSTNAME, False) ) @patch('salt.utils.network.get_fqhostname', MagicMock(return_value='localhost')) def test_get_id_etc_hosts(self): ''' Test calling salt.config.get_id() and falling back all the way to looking up data from /etc/hosts. ''' with patch('salt.utils.fopen', _fopen_side_effect_etc_hosts): self.assertEqual( sconfig.get_id({'root_dir': None, 'minion_id_caching': False}), (MOCK_HOSTNAME, False) ) # <---- Salt Cloud Configuration Tests --------------------------------------------- # cloud_config tests @patch('salt.config.load_config', MagicMock(return_value={})) def test_cloud_config_double_master_path(self): ''' Tests passing in master_config_path and master_config kwargs. ''' self.assertRaises(SaltCloudConfigError, sconfig.cloud_config, PATH, master_config_path='foo', master_config='bar') @patch('salt.config.load_config', MagicMock(return_value={})) def test_cloud_config_double_providers_path(self): ''' Tests passing in providers_config_path and providers_config kwargs. ''' self.assertRaises(SaltCloudConfigError, sconfig.cloud_config, PATH, providers_config_path='foo', providers_config='bar') @patch('salt.config.load_config', MagicMock(return_value={})) def test_cloud_config_double_profiles_path(self): ''' Tests passing in profiles_config_path and profiles_config kwargs. ''' self.assertRaises(SaltCloudConfigError, sconfig.cloud_config, PATH, profiles_config_path='foo', profiles_config='bar') @patch('salt.config.load_config', MagicMock(return_value={})) @patch('salt.config.apply_cloud_config', MagicMock(return_value={'providers': 'foo'})) def test_cloud_config_providers_in_opts(self): ''' Tests mixing old cloud providers with pre-configured providers configurations using the providers_config kwarg ''' self.assertRaises(SaltCloudConfigError, sconfig.cloud_config, PATH, providers_config='bar') @patch('salt.config.load_config', MagicMock(return_value={})) @patch('salt.config.apply_cloud_config', MagicMock(return_value={'providers': 'foo'})) @patch('os.path.isfile', MagicMock(return_value=True)) def test_cloud_config_providers_in_opts_path(self): ''' Tests mixing old cloud providers with pre-configured providers configurations using the providers_config_path kwarg ''' self.assertRaises(SaltCloudConfigError, sconfig.cloud_config, PATH, providers_config_path='bar') # apply_cloud_config tests def test_apply_cloud_config_no_provider_detail_list(self): ''' Tests when the provider is not contained in a list of details ''' overrides = {'providers': {'foo': [{'bar': 'baz'}]}} self.assertRaises(SaltCloudConfigError, sconfig.apply_cloud_config, overrides, defaults=DEFAULT) def test_apply_cloud_config_no_provider_detail_dict(self): ''' Tests when the provider is not contained in the details dictionary ''' overrides = {'providers': {'foo': {'bar': 'baz'}}} self.assertRaises(SaltCloudConfigError, sconfig.apply_cloud_config, overrides, defaults=DEFAULT) @patch('salt.config.old_to_new', MagicMock(return_value={'default_include': 'path/to/some/cloud/conf/file', 'providers': {'foo': {'bar': { 'provider': 'foo:bar'}}}})) def test_apply_cloud_config_success_list(self): ''' Tests success when valid data is passed into the function as a list ''' overrides = {'providers': {'foo': [{'provider': 'bar'}]}} ret = {'default_include': 'path/to/some/cloud/conf/file', 'providers': {'foo': {'bar': {'provider': 'foo:bar'}}}} self.assertEqual(sconfig.apply_cloud_config(overrides, defaults=DEFAULT), ret) @patch('salt.config.old_to_new', MagicMock(return_value={'default_include': 'path/to/some/cloud/conf/file', 'providers': {'foo': {'bar': { 'provider': 'foo:bar'}}}})) def test_apply_cloud_config_success_dict(self): ''' Tests success when valid data is passed into function as a dictionary ''' overrides = {'providers': {'foo': {'provider': 'bar'}}} ret = {'default_include': 'path/to/some/cloud/conf/file', 'providers': {'foo': {'bar': {'provider': 'foo:bar'}}}} self.assertEqual(sconfig.apply_cloud_config(overrides, defaults=DEFAULT), ret) # apply_vm_profiles_config tests def test_apply_vm_profiles_config_bad_profile_format(self): ''' Tests passing in a bad profile format in overrides ''' overrides = {'foo': 'bar', 'conf_file': PATH} self.assertRaises(SaltCloudConfigError, sconfig.apply_vm_profiles_config, PATH, overrides, defaults=DEFAULT) def test_apply_vm_profiles_config_success(self): ''' Tests passing in valid provider and profile config files successfully ''' providers = {'test-provider': {'digital_ocean': {'provider': 'digital_ocean', 'profiles': {}}}} overrides = {'test-profile': {'provider': 'test-provider', 'image': 'Ubuntu 12.10 x64', 'size': '512MB'}, 'conf_file': PATH} ret = {'test-profile': {'profile': 'test-profile', 'provider': 'test-provider:digital_ocean', 'image': 'Ubuntu 12.10 x64', 'size': '512MB'}} self.assertEqual(sconfig.apply_vm_profiles_config(providers, overrides, defaults=DEFAULT), ret) def test_apply_vm_profiles_config_extend_success(self): ''' Tests profile extends functionality with valid provider and profile configs ''' providers = {'test-config': {'ec2': {'profiles': {}, 'provider': 'ec2'}}} overrides = {'Amazon': {'image': 'test-image-1', 'extends': 'dev-instances'}, 'Fedora': {'image': 'test-image-2', 'extends': 'dev-instances'}, 'conf_file': PATH, 'dev-instances': {'ssh_username': 'test_user', 'provider': 'test-config'}} ret = {'Amazon': {'profile': 'Amazon', 'ssh_username': 'test_user', 'image': 'test-image-1', 'provider': 'test-config:ec2'}, 'Fedora': {'profile': 'Fedora', 'ssh_username': 'test_user', 'image': 'test-image-2', 'provider': 'test-config:ec2'}, 'dev-instances': {'profile': 'dev-instances', 'ssh_username': 'test_user', 'provider': 'test-config:ec2'}} self.assertEqual(sconfig.apply_vm_profiles_config(providers, overrides, defaults=DEFAULT), ret) # apply_cloud_providers_config tests def test_apply_cloud_providers_config_same_providers(self): ''' Tests when two providers are given with the same provider name ''' overrides = {'my-dev-envs': [{'id': 'ABCDEFGHIJKLMNOP', 'key': 'supersecretkeysupersecretkey', 'provider': 'ec2'}, {'apikey': 'abcdefghijklmnopqrstuvwxyz', 'password': 'supersecret', 'provider': 'ec2'}], 'conf_file': PATH} self.assertRaises(SaltCloudConfigError, sconfig.apply_cloud_providers_config, overrides, DEFAULT) def test_apply_cloud_providers_config_extend(self): ''' Tests the successful extension of a cloud provider ''' overrides = {'my-production-envs': [{'extends': 'my-dev-envs:ec2', 'location': 'us-east-1', 'user': 'ec2-user@mycorp.com' }], 'my-dev-envs': [{'id': 'ABCDEFGHIJKLMNOP', 'user': 'user@mycorp.com', 'location': 'ap-southeast-1', 'key': 'supersecretkeysupersecretkey', 'provider': 'ec2' }, {'apikey': 'abcdefghijklmnopqrstuvwxyz', 'password': 'supersecret', 'provider': 'linode' }], 'conf_file': PATH} ret = {'my-production-envs': {'ec2': {'profiles': {}, 'location': 'us-east-1', 'key': 'supersecretkeysupersecretkey', 'provider': 'ec2', 'id': 'ABCDEFGHIJKLMNOP', 'user': 'ec2-user@mycorp.com'}}, 'my-dev-envs': {'linode': {'apikey': 'abcdefghijklmnopqrstuvwxyz', 'password': 'supersecret', 'profiles': {}, 'provider': 'linode'}, 'ec2': {'profiles': {}, 'location': 'ap-southeast-1', 'key': 'supersecretkeysupersecretkey', 'provider': 'ec2', 'id': 'ABCDEFGHIJKLMNOP', 'user': 'user@mycorp.com'}}} self.assertEqual(ret, sconfig.apply_cloud_providers_config( overrides, defaults=DEFAULT)) def test_apply_cloud_providers_config_extend_multiple(self): ''' Tests the successful extension of two cloud providers ''' overrides = {'my-production-envs': [{'extends': 'my-dev-envs:ec2', 'location': 'us-east-1', 'user': 'ec2-user@mycorp.com'}, {'password': 'new-password', 'extends': 'my-dev-envs:linode', 'location': 'Salt Lake City' }], 'my-dev-envs': [{'id': 'ABCDEFGHIJKLMNOP', 'user': 'user@mycorp.com', 'location': 'ap-southeast-1', 'key': 'supersecretkeysupersecretkey', 'provider': 'ec2'}, {'apikey': 'abcdefghijklmnopqrstuvwxyz', 'password': 'supersecret', 'provider': 'linode'}], 'conf_file': PATH} ret = {'my-production-envs': {'linode': {'apikey': 'abcdefghijklmnopqrstuvwxyz', 'profiles': {}, 'location': 'Salt Lake City', 'provider': 'linode', 'password': 'new-password'}, 'ec2': {'user': 'ec2-user@mycorp.com', 'key': 'supersecretkeysupersecretkey', 'provider': 'ec2', 'id': 'ABCDEFGHIJKLMNOP', 'profiles': {}, 'location': 'us-east-1'}}, 'my-dev-envs': {'linode': {'apikey': 'abcdefghijklmnopqrstuvwxyz', 'password': 'supersecret', 'profiles': {}, 'provider': 'linode'}, 'ec2': {'profiles': {}, 'user': 'user@mycorp.com', 'key': 'supersecretkeysupersecretkey', 'provider': 'ec2', 'id': 'ABCDEFGHIJKLMNOP', 'location': 'ap-southeast-1'}}} self.assertEqual(ret, sconfig.apply_cloud_providers_config( overrides, defaults=DEFAULT)) def test_apply_cloud_providers_config_extends_bad_alias(self): ''' Tests when the extension contains an alias not found in providers list ''' overrides = {'my-production-envs': [{'extends': 'test-alias:ec2', 'location': 'us-east-1', 'user': 'ec2-user@mycorp.com'}], 'my-dev-envs': [{'id': 'ABCDEFGHIJKLMNOP', 'user': 'user@mycorp.com', 'location': 'ap-southeast-1', 'key': 'supersecretkeysupersecretkey', 'provider': 'ec2'}], 'conf_file': PATH} self.assertRaises(SaltCloudConfigError, sconfig.apply_cloud_providers_config, overrides, DEFAULT) def test_apply_cloud_providers_config_extends_bad_provider(self): ''' Tests when the extension contains a provider not found in providers list ''' overrides = {'my-production-envs': [{'extends': 'my-dev-envs:linode', 'location': 'us-east-1', 'user': 'ec2-user@mycorp.com'}], 'my-dev-envs': [{'id': 'ABCDEFGHIJKLMNOP', 'user': 'user@mycorp.com', 'location': 'ap-southeast-1', 'key': 'supersecretkeysupersecretkey', 'provider': 'ec2'}], 'conf_file': PATH} self.assertRaises(SaltCloudConfigError, sconfig.apply_cloud_providers_config, overrides, DEFAULT) def test_apply_cloud_providers_config_extends_no_provider(self): ''' Tests when no provider is supplied in the extends statement ''' overrides = {'my-production-envs': [{'extends': 'my-dev-envs', 'location': 'us-east-1', 'user': 'ec2-user@mycorp.com'}], 'my-dev-envs': [{'id': 'ABCDEFGHIJKLMNOP', 'user': 'user@mycorp.com', 'location': 'ap-southeast-1', 'key': 'supersecretkeysupersecretkey', 'provider': 'linode'}], 'conf_file': PATH} self.assertRaises(SaltCloudConfigError, sconfig.apply_cloud_providers_config, overrides, DEFAULT) def test_apply_cloud_providers_extends_not_in_providers(self): ''' Tests when extends is not in the list of providers ''' overrides = {'my-production-envs': [{'extends': 'my-dev-envs ec2', 'location': 'us-east-1', 'user': 'ec2-user@mycorp.com'}], 'my-dev-envs': [{'id': 'ABCDEFGHIJKLMNOP', 'user': 'user@mycorp.com', 'location': 'ap-southeast-1', 'key': 'supersecretkeysupersecretkey', 'provider': 'linode'}], 'conf_file': PATH} self.assertRaises(SaltCloudConfigError, sconfig.apply_cloud_providers_config, overrides, DEFAULT) # is_provider_configured tests def test_is_provider_configured_no_alias(self): ''' Tests when provider alias is not in opts ''' opts = {'providers': 'test'} provider = 'foo:bar' self.assertFalse(sconfig.is_provider_configured(opts, provider)) def test_is_provider_configured_no_driver(self): ''' Tests when provider driver is not in opts ''' opts = {'providers': {'foo': 'baz'}} provider = 'foo:bar' self.assertFalse(sconfig.is_provider_configured(opts, provider)) def test_is_provider_configured_key_is_none(self): ''' Tests when a required configuration key is not set ''' opts = {'providers': {'foo': {'bar': {'api_key': None}}}} provider = 'foo:bar' self.assertFalse( sconfig.is_provider_configured(opts, provider, required_keys=('api_key',))) def test_is_provider_configured_success(self): ''' Tests successful cloud provider configuration ''' opts = {'providers': {'foo': {'bar': {'api_key': 'baz'}}}} provider = 'foo:bar' ret = {'api_key': 'baz'} self.assertEqual( sconfig.is_provider_configured(opts, provider, required_keys=('api_key',)), ret) def test_is_provider_configured_multiple_driver_not_provider(self): ''' Tests when the drive is not the same as the provider when searching through multiple providers ''' opts = {'providers': {'foo': {'bar': {'api_key': 'baz'}}}} provider = 'foo' self.assertFalse(sconfig.is_provider_configured(opts, provider)) def test_is_provider_configured_multiple_key_is_none(self): ''' Tests when a required configuration key is not set when searching through multiple providers ''' opts = {'providers': {'foo': {'bar': {'api_key': None}}}} provider = 'bar' self.assertFalse( sconfig.is_provider_configured(opts, provider, required_keys=('api_key',))) def test_is_provider_configured_multiple_success(self): ''' Tests successful cloud provider configuration when searching through multiple providers ''' opts = {'providers': {'foo': {'bar': {'api_key': 'baz'}}}} provider = 'bar' ret = {'api_key': 'baz'} self.assertEqual( sconfig.is_provider_configured(opts, provider, required_keys=('api_key',)), ret) # other cloud configuration tests def test_load_cloud_config_from_environ_var(self): original_environ = os.environ.copy() tempdir = tempfile.mkdtemp(dir=integration.SYS_TMP_DIR) try: env_root_dir = os.path.join(tempdir, 'foo', 'env') os.makedirs(env_root_dir) env_fpath = os.path.join(env_root_dir, 'config-env') salt.utils.fopen(env_fpath, 'w').write( 'root_dir: {0}\n' 'log_file: {1}\n'.format(env_root_dir, env_fpath) ) os.environ['SALT_CLOUD_CONFIG'] = env_fpath # Should load from env variable, not the default configuration file config = sconfig.cloud_config('/etc/salt/cloud') self.assertEqual(config['log_file'], env_fpath) os.environ.clear() os.environ.update(original_environ) root_dir = os.path.join(tempdir, 'foo', 'bar') os.makedirs(root_dir) fpath = os.path.join(root_dir, 'config') salt.utils.fopen(fpath, 'w').write( 'root_dir: {0}\n' 'log_file: {1}\n'.format(root_dir, fpath) ) # Let's set the environment variable, yet, since the configuration # file path is not the default one, i.e., the user has passed an # alternative configuration file form the CLI parser, the # environment variable will be ignored. os.environ['SALT_CLOUD_CONFIG'] = env_fpath config = sconfig.cloud_config(fpath) self.assertEqual(config['log_file'], fpath) finally: # Reset the environ os.environ.clear() os.environ.update(original_environ) if os.path.isdir(tempdir): shutil.rmtree(tempdir) def test_deploy_search_path_as_string(self): temp_conf_dir = os.path.join(integration.TMP, 'issue-8863') config_file_path = os.path.join(temp_conf_dir, 'cloud') deploy_dir_path = os.path.join(temp_conf_dir, 'test-deploy.d') try: for directory in (temp_conf_dir, deploy_dir_path): if not os.path.isdir(directory): os.makedirs(directory) default_config = sconfig.cloud_config(config_file_path) default_config['deploy_scripts_search_path'] = deploy_dir_path with salt.utils.fopen(config_file_path, 'w') as cfd: cfd.write(yaml.dump(default_config)) default_config = sconfig.cloud_config(config_file_path) # Our custom deploy scripts path was correctly added to the list self.assertIn( deploy_dir_path, default_config['deploy_scripts_search_path'] ) # And it's even the first occurrence as it should self.assertEqual( deploy_dir_path, default_config['deploy_scripts_search_path'][0] ) finally: if os.path.isdir(temp_conf_dir): shutil.rmtree(temp_conf_dir) def test_includes_load(self): ''' Tests that cloud.{providers,profiles}.d directories are loaded, even if not directly passed in through path ''' config = sconfig.cloud_config(self.get_config_file_path('cloud')) self.assertIn('ec2-config', config['providers']) self.assertIn('ec2-test', config['profiles']) # <---- Salt Cloud Configuration Tests --------------------------------------------- if __name__ == '__main__': from integration import run_tests run_tests(ConfigTestCase, needs_daemon=False)
42.224009
106
0.541211
69ab7aac19ef283e295473991d6939c156b87378
7,875
py
Python
dynamics/linkage.py
udayansarin/SPIKM
01a6363056c77cdd497dca1ce01f192722210ec6
[ "MIT" ]
null
null
null
dynamics/linkage.py
udayansarin/SPIKM
01a6363056c77cdd497dca1ce01f192722210ec6
[ "MIT" ]
null
null
null
dynamics/linkage.py
udayansarin/SPIKM
01a6363056c77cdd497dca1ce01f192722210ec6
[ "MIT" ]
null
null
null
import math import numpy as np from numpy.polynomial import Polynomial as Poly from dynamics.spikm_trig import Toolkit as STrig class CrankShaft: def __init__(self, node, shaft, crank_length, crank_start_angle, link_length, crank_plane): """ initialize the crankshaft assembly between the motor and the corresponding connection on the platform :param node: dict{'x', 'y', 'z'}, location of the platform connection in the global x, y, z coordinate system :param shaft: dict{'x', 'y', 'z'}, location of the motor shaft in the global x, y, z coordinate system :param crank_length: float or int length of crankshaft :param crank_start_angle: float or int, starting angle of crankshaft, 90 is horizontal :param link_length: float or int length of linkage :param crank_plane: angle that the plane of rotation of the motor shaft subtends to the global x axis """ self.init = False self.incompatible = False try: for connection, coordinates in {'platform': node, 'motor': shaft}.items(): for coordinate, val in coordinates.items(): assert ((type(val) is int) or (type(val) is float) or isinstance(val, np.float)) except AssertionError: print(f"Error in coordinate for {connection}[{coordinate}]\nvalue:{val}, {type(val)}") return try: assert( ((type(crank_plane) is int) or (type(crank_plane) is float) or isinstance(val, np.float)) and -360 <= crank_plane <= 360 ) except AssertionError: print(f"Error in initializing crank orientation: angle: {crank_plane}") return self._crank = self._Crank(length=crank_length, start_angle=crank_start_angle) self._link = self._Linkage(length=link_length) if not(self._crank.init and self._link.init): print("Terminating linkage initialization due to setup error!") return self.init = True self._crank_plane = crank_plane self._node = node self._shaft = shaft self._connector = self._con_loc_global() def _con_loc_global(self): """ calculate the coordinate of the crank-linkage connection in global coordinates :return: dict, {'x', 'y', 'z'} crank-linkage connection in global coordinates """ _alpha = 0 _beta = 0 _gamma = self._crank_plane # global coordinate of the motor shaft + the local crank vector rotated to the global coordinate system _delta_coordinates = STrig.apply_rotation(_alpha, _beta, _gamma, self._crank.connector) return {'x': self._shaft['x'] + _delta_coordinates[0], 'y': self._shaft['y'] + _delta_coordinates[1], 'z': self._shaft['z'] + _delta_coordinates[2]} def _node_loc_local(self): """ calculate the local coordinate of the linkage-platform connection for computational simplicity :return: dict, {'x', 'y'} coordinates of the linkage-platform connection """ _alpha = 0 _beta = 0 _gamma = -self._crank_plane _vector = np.array([self._node['x'], self._node['y'], self._node['z']]) - \ np.array([self._shaft['x'], self._shaft['y'], self._shaft['z']]) _loc_vector = STrig.apply_rotation(_alpha, _beta, _gamma, _vector) return {'x': _loc_vector[0], 'y': _loc_vector[1], 'z': _loc_vector[2]} def move(self, x_new, y_new, z_new): """ move the crankshaft into the commanded node orientation :param x_new: float, new x coordinate of the crankshaft node :param y_new: float, new y coordinate of the crankshaft node :param z_new: float, new z coordinate of the crankshaft node :return: """ self._node['x'] = x_new self._node['y'] = y_new self._node['z'] = z_new node_local = self._node_loc_local() # local x, y and z for the platform x = node_local['x'] y = node_local['y'] z = node_local['z'] k_sq = self._crank.length**2 - self._link.length**2 + x**2 + y**2 + z**2 a = 1 + (x/z)**2 # x^2 term b = -(k_sq*x)/(z**2) # x term c = (k_sq/(2*z))**2 - self._crank.length**2 # constant term c_local_x = Poly([c, b, a]).roots()[1] # ax^2 + bx + c = 0 if np.iscomplex(c_local_x): print("You cannot complete this move!") self.incompatible = True else: self.incompatible = False c_local_z = k_sq/(2*z) - (c_local_x*x/z) self._crank.move({'x': c_local_x, 'z': c_local_z}) self._connector = self._con_loc_global() return def get_linkage(self): """ develop critical parameters for the orientation of the link in space and its motor :return: dict, {'feasible': bool, move feasible, 'x', 'y', 'z': list of link coordinates, 'angle': float, motor} """ x = [] y = [] z = [] if not self.incompatible: x = [self._shaft['x'], self._connector['x'], self._node['x']] y = [self._shaft['y'], self._connector['y'], self._node['y']] z = [self._shaft['z'], self._connector['z'], self._node['z']] return { 'feasible': (not self.incompatible), 'x': x, 'y': y, 'z': z, 'angle': math.degrees(self._crank.angle) } class _Crank: """ Instances of this class show behaviour of the crank portion of a crankshaft """ def __init__(self, length, start_angle): """ define a crank connected to a motor with the motor shaft at (0, 0, 0) in local coordinates :param length: length of the crank shaft :param start_angle: starting angle of the crank shaft, between (-90, 90) with 0 being horizontal """ self.init = False try: assert ( ((type(length) is int) or (type(length) is float)) and length > 0 and ((type(start_angle) is float) or type(start_angle) is int) and -90 <= start_angle <= 90 ) except AssertionError: print("Error in initializing crank!") return self.init = True self.length = length self.angle = math.radians(start_angle) _connector = STrig.get_xz(length=self.length, theta=self.angle) self.connector = [_connector['x'], 0, _connector['z']] def move(self, new_connector): """ update the crank angle based on the movement of the linkage :param new_connector: new position of the crank as dict {'x': _, 'z': _} :return: """ self.connector = [new_connector['x'], 0, new_connector['z']] self.angle = STrig.get_theta(x=new_connector['x'], z=new_connector['z']) return @property def position(self): return self.angle class _Linkage: """ Instances of this class show behaviour of the linkage part of a crankshaft """ def __init__(self, length): """ define the linkage connecting a crank to the corresponding stewart platform connection """ self.init = False try: assert ( ((type(length) is int) or type(length) is float) and length > 0 ) except AssertionError: print("Error in initializing linkage") return self.init = True self.length = length
42.112299
120
0.569143
f94ff00734d4a3123230507d6ed1af45da983388
38,694
py
Python
pedal/tifa/tifa_visitor.py
acbart/python-analysis
3cd2cc22d50a414ae6b62c74d2643be4742238d4
[ "MIT" ]
14
2019-08-22T03:40:23.000Z
2022-03-13T00:30:53.000Z
pedal/tifa/tifa_visitor.py
pedal-edu/pedal
3cd2cc22d50a414ae6b62c74d2643be4742238d4
[ "MIT" ]
74
2019-09-12T04:35:56.000Z
2022-01-26T19:21:32.000Z
pedal/tifa/tifa_visitor.py
acbart/python-analysis
3cd2cc22d50a414ae6b62c74d2643be4742238d4
[ "MIT" ]
2
2018-09-16T22:39:15.000Z
2018-09-17T12:53:28.000Z
""" Main TIFA visitor-based algorithm here. TODO: JoinedStr """ import ast # TODO: FileType, DayType, TimeType, from pedal.core.commands import system_error from pedal.tifa.tifa_core import TifaCore, TifaAnalysis from pedal.types.definitions import (UnknownType, FunctionType, ClassType, InstanceType, NumType, NoneType, BoolType, TupleType, ListType, StrType, GeneratorType, DictType, ModuleType, SetType, LiteralNum, LiteralBool, LiteralNone, LiteralStr, LiteralTuple, Type) from pedal.types.normalize import (get_pedal_type_from_json, get_pedal_literal_from_pedal_type, get_pedal_type_from_annotation, get_pedal_type_from_value) from pedal.types.builtin import (get_builtin_module, get_builtin_function) from pedal.types.operations import (are_types_equal, VALID_UNARYOP_TYPES, VALID_BINOP_TYPES, ORDERABLE_TYPES, INDEXABLE_TYPES) from pedal.tifa.constants import TOOL_NAME from pedal.tifa.contexts import NewPath, NewScope from pedal.tifa.identifier import Identifier from pedal.tifa.state import State from pedal.tifa.feedbacks import (action_after_return, return_outside_function, write_out_of_scope, unconnected_blocks, iteration_problem, not_a_function, initialization_problem, unused_variable, overwritten_variable, iterating_over_non_list, iterating_over_empty_list, incompatible_types, parameter_type_mismatch, read_out_of_scope, type_changes, unnecessary_second_branch, recursive_call, multiple_return_types, possible_initialization_problem, incorrect_arity, else_on_loop_body, module_not_found, nested_function_definition, unused_returned_value, invalid_indexing) from pedal.utilities.system import IS_PYTHON_39 class Tifa(TifaCore, ast.NodeVisitor): """ TIFA subclass for traversing an AST and finding common issues. You can instantiate this class, manipulate settings, and then process some code or AST. """ def process_code(self, code, filename=None, reset=True): """ Processes the AST of the given source code to generate a report. Args: code (str): The Python source code filename (str): The filename of the source code (defaults to the submissions' main file). reset (bool): Whether or not to reset the results from the previous analysis before running this one. Returns: Report: The successful or successful report object """ if reset or self.analysis is None: self.analysis = TifaAnalysis() filename = filename or self.report.submission.main_file self.line_offset = self.report.submission.line_offsets.get(filename, 0) # Attempt parsing - might fail! try: ast_tree = ast.parse(code, filename) except Exception as error: self.analysis.fail(error) system_error(TOOL_NAME, "Could not parse code: " + str(error), report=self.report) return self.analysis # Attempt processing code - might fail! try: self.process_ast(ast_tree) except Exception as error: self.analysis.fail(error) system_error(TOOL_NAME, "Successfully parsed but could not " "process AST: " + str(error), report=self.report) # Return whatever we got return self.analysis def process_ast(self, ast_tree): """ Given an AST, actually performs the type and flow analyses to return a report. Args: ast_tree (AST): The AST object """ self.reset() # Traverse every node self.visit(ast_tree) # Update analysis, finish out the current scope. self.analysis.variables = self.name_map self._finish_scope() # Collect top level variables self._collect_top_level_variables() return self.analysis def visit(self, node): """ Process this node by calling its appropriate visit_* Args: node (AST): The node to visit Returns: Type: The type calculated during the visit. """ # Start processing the node self.node_chain.append(node) self.ast_id += 1 # Actions after return? if len(self.scope_chain) > 1: return_state = self.find_variable_scope("*return") if return_state.exists and return_state.in_scope: if return_state.state.set == "yes": self._issue(action_after_return(self.locate(), report=self.report)) # No? All good, let's enter the node self.final_node = node result = ast.NodeVisitor.visit(self, node) # If a node failed to return something, return the UNKNOWN TYPE if result is None: result = UnknownType() self.analysis.node_types[node] = result # Pop the node out of the chain self.ast_id -= 1 self.node_chain.pop() return result def _visit_nodes(self, nodes): """ Visit all the nodes in the given list. Args: nodes (list): A list of values, of which any AST nodes will be visited. """ for node in nodes: if isinstance(node, ast.AST): self.visit(node) @staticmethod def walk_targets(targets, target_type, walker): """ Iterate through the targets and call the given function on each one. Args: targets (list of Ast nodes): A list of potential targets to be traversed. target_type (Type): The given type to be unraveled and applied to the targets. walker (Ast Node, Type -> None): A function that will process each target and unravel the type. """ for target in targets: walker(target, target_type) def _walk_target(self, target, target_type): """ Recursively apply the type to the target Args: target (Ast): The current AST node to process target_type (Type): The type to apply to this node """ if isinstance(target, ast.Name): self.store_iter_variable(target.id, target_type, self.locate(target)) return target.id elif isinstance(target, (ast.Tuple, ast.List)): result = None for i, elt in enumerate(target.elts): elt_type = target_type.iterate(LiteralNum(i)) potential_name = self._walk_target(elt, elt_type) if potential_name is not None and result is None: result = potential_name return result # TODO: Properly handle assignments with subscripts def assign_target(self, target, target_type): """ Assign the type to the target, handling all kinds of assignment statements, including Names, Tuples/Lists, Subscripts, and Attributes. Args: target (ast.AST): The target AST Node. target_type (Type): The TIFA type. Returns: """ if isinstance(target, ast.Name): self.store_variable(target.id, target_type) elif isinstance(target, (ast.Tuple, ast.List)): for i, elt in enumerate(target.elts): elt_type = target_type.iterate(LiteralNum(i)) self.assign_target(elt, elt_type) elif isinstance(target, ast.Subscript): left_hand_type = self.visit(target.value) if isinstance(left_hand_type, ListType): # TODO: Handle updating value in list pass elif isinstance(left_hand_type, DictType): # TODO: Update this for Python 3.9, now that Slice notation has changed if not isinstance(target.slice, ast.Index): # TODO: Can't subscript a dictionary assignment return None literal = self.get_literal(target.slice.value) if not literal: key_type = self.visit(target.slice.value) left_hand_type.empty = False left_hand_type.keys = [key_type.clone()] left_hand_type.values = [target_type.clone()] elif left_hand_type.literals: original_type = left_hand_type.has_literal(literal) if not original_type: left_hand_type.update_key(literal, target_type.clone()) elif not are_types_equal(original_type, target_type): # TODO: Fix "Dictionary" to be the name of the variable self._issue(type_changes(self.locate(), 'Dictionary', original_type, target_type)) elif isinstance(target, ast.Attribute): left_hand_type = self.visit(target.value) if isinstance(left_hand_type, InstanceType): left_hand_type.add_attr(target.attr, target_type) # TODO: Otherwise we attempted to assign to a non-instance # TODO: Handle minor type changes (e.g., appending to an inner list) def _visit_collection_loop(self, node): was_empty = False # Handle the iteration list iter_list = node.iter iter_list_name = None if isinstance(iter_list, ast.Name): iter_list_name = iter_list.id if iter_list_name == "___": self._issue(unconnected_blocks(self.locate(iter_list), report=self.report)) state = self.iterate_variable(iter_list_name, self.locate(iter_list)) iter_type = state.type else: iter_type = self.visit(iter_list) if iter_type.is_empty(): # TODO: It should check if its ONLY ever iterating over an empty list. # For now, only reports if we are NOT in a function was_empty = True if len(self.scope_chain) == 1: self._issue(iterating_over_empty_list(self.locate(iter_list), iter_list_name)) if not isinstance(iter_type, INDEXABLE_TYPES): self._issue(iterating_over_non_list(self.locate(iter_list), iter_list_name, report=self.report)) iter_subtype = iter_type.iterate(LiteralNum(0)) # Handle the iteration variable iter_variable_name = self._walk_target(node.target, iter_subtype) # Check that the iteration list and variable are distinct if iter_variable_name and iter_list_name: if iter_variable_name == iter_list_name: self._issue(iteration_problem(self.locate(node.target), iter_variable_name)) return was_empty def visit_AnnAssign(self, node): """ TODO: Implement! """ # Name, Attribute, or SubScript target = node.target # Type annotation = node.annotation # Optional assigned value value = node.value # 0 or 1, with 1 indicating pure names (not expressions) simple = node.simple # If it's a class attribute, then build up the type! if simple: self.visit(annotation) annotation = get_pedal_type_from_annotation(annotation, self) current_scope = self.scope_chain[0] if current_scope in self.class_scopes: # TODO: Treat it as a different kind of ClassType? TypedDict? self.class_scopes[current_scope].add_attr(target.id, annotation) def visit_Expr(self, node): """ Any expression being used as a statement. Args: node (AST): An Expr node Returns: """ value = self.visit(node.value) if isinstance(node.value, ast.Call) and not isinstance(value, NoneType): # TODO: Helper function to get name with title ("append method") if isinstance(node.value.func, ast.Name): call_type = 'function' else: call_type = 'method' name = self.identify_caller(node.value) self._issue(unused_returned_value(self.locate(), name, call_type, value)) def visit_Assign(self, node): """ Simple assignment statement: __targets__ = __value__ Args: node (AST): An Assign node Returns: None """ # Handle value value_type = self.visit(node.value) # Handle targets self._visit_nodes(node.targets) self.walk_targets(node.targets, value_type, self.assign_target) def visit_AugAssign(self, node): """ Args: node: Returns: """ # Handle value right = self.visit(node.value) # Handle target left = self.visit(node.target) # Target is always a Name, Subscript, or Attribute name = self.identify_caller(node.target) # Handle operation self.load_variable(name) if isinstance(left, UnknownType) or isinstance(right, UnknownType): return UnknownType() elif type(node.op) in VALID_BINOP_TYPES: op_lookup = VALID_BINOP_TYPES[type(node.op)] if type(left) in op_lookup: op_lookup = op_lookup[type(left)] if type(right) in op_lookup: op_lookup = op_lookup[type(right)] result_type = op_lookup(left, right) self.assign_target(node.target, result_type) return result_type self._issue(incompatible_types(self.locate(), node.op, left, right, report=self.report)) def visit_Attribute(self, node): """ Args: node: Returns: """ # Handle value value_type = self.visit(node.value) self.check_common_bad_lookups(value_type, node.attr, node.value) # Handle ctx # TODO: Handling contexts # Handle attr result = value_type.load_attr(node.attr) return result def visit_BinOp(self, node): """ Args: node: Returns: """ # Handle left and right left = self.visit(node.left) right = self.visit(node.right) # Handle operation if isinstance(left, UnknownType) or isinstance(right, UnknownType): return UnknownType() elif type(node.op) in VALID_BINOP_TYPES: op_lookup = VALID_BINOP_TYPES[type(node.op)] if type(left) in op_lookup: op_lookup = op_lookup[type(left)] if type(right) in op_lookup: op_lookup = op_lookup[type(right)] return op_lookup(left, right) self._issue(incompatible_types(self.locate(), node.op, left, right, report=self.report)) return UnknownType() def visit_Bool(self, node): """ Visit a constant boolean value. Args: node (ast.AST): The boolean value Node. Returns: Type: A Bool type. """ return BoolType() def visit_BoolOp(self, node): """ Args: node: Returns: """ # Handle left and right values = [] for value in node.values: values.append(self.visit(value)) # TODO: Truthiness is not supported! Probably need a Union type # TODO: Literals used as truthy value # Handle operation return BoolType() def visit_Call(self, node): """ Args: node: Returns: """ # Handle func part (Name or Attribute) function_type = self.visit(node.func) # TODO: Need to grab the actual type in some situations callee = self.identify_caller(node) # Handle args arguments = [self.visit(arg) for arg in node.args] if node.args else [] # Check special common mistakes # TODO: Handle keywords # TODO: Handle star args # TODO: Handle kwargs if isinstance(function_type, FunctionType): # Test if we have called this definition before if function_type.definition not in self.definition_chain: self.definition_chain.append(function_type.definition) # Function invocation result = function_type.definition(self, function_type, callee, arguments, self.locate()) self.definition_chain.pop() return result else: self._issue(recursive_call(self.locate(), callee, report=self.report)) elif isinstance(function_type, ClassType): constructor = function_type.get_constructor().definition self.definition_chain.append(constructor) result = constructor(self, constructor, callee, arguments, self.locate()) self.definition_chain.pop() if '__init__' in function_type.fields: initializer = function_type.fields['__init__'] if isinstance(initializer, FunctionType): self.definition_chain.append(initializer) initializer.definition(self, initializer, result, [result] + arguments, self.locate()) self.definition_chain.pop() return result elif isinstance(function_type, (NumType, StrType, BoolType, NoneType)): self._issue(not_a_function(self.locate(), callee, function_type, report=self.report)) return UnknownType() def visit_ClassDef(self, node): """ Args: node: """ class_name = node.name new_class_type = ClassType(class_name) self.store_variable(class_name, new_class_type) # TODO: Define a new scope definition that executes the body # TODO: find __init__, execute that # TODO: handle Record subclasses definitions_scope = self.scope_chain[:] class_scope = NewScope(self, definitions_scope, class_type=new_class_type) with class_scope: self.generic_visit(node) def visit_Compare(self, node): """ Args: node: Returns: """ # Handle left and right left = self.visit(node.left) comparators = [self.visit(compare) for compare in node.comparators] # Handle ops for op, right in zip(node.ops, comparators): if isinstance(op, (ast.Eq, ast.NotEq, ast.Is, ast.IsNot)): continue elif isinstance(op, (ast.Lt, ast.LtE, ast.GtE, ast.Gt)): if are_types_equal(left, right): if isinstance(left, ORDERABLE_TYPES): continue elif isinstance(op, (ast.In, ast.NotIn)): if isinstance(right, INDEXABLE_TYPES): continue self._issue(incompatible_types(self.locate(), op, left, right, report=self.report)) return BoolType() def visit_comprehension(self, node): """ Args: node: """ self._visit_collection_loop(node) # Handle ifs, unless they're blank (None in Skulpt :) if node.ifs: self.visit_statements(node.ifs) def visit_Dict(self, node): """ Three types of dictionaries - empty - uniform type - record TODO: Handle records appropriately """ result_type = DictType() if not node.keys: result_type.empty = True else: result_type.empty = False all_literals = True keys, values, literals = [], [], [] for key, value in zip(node.keys, node.values): literal = self.get_literal(key) key, value = self.visit(key), self.visit(value) values.append(value) keys.append(key) if literal is not None: literals.append(literal) else: all_literals = False if all_literals: result_type.literals = literals result_type.values = values else: result_type.keys = node.keys[0] result_type.values = node.values[0] return result_type def visit_DictComp(self, node): """ Args: node: Returns: """ # TODO: Handle comprehension scope for generator in node.generators: self.visit(generator) keys = self.visit(node.key) values = self.visit(node.value) return DictType(keys=keys, values=values) def visit_For(self, node): """ Args: node: """ was_empty = self._visit_collection_loop(node) # Handle the bodies #if not was_empty: #this_path_id = self.path_chain[0] #non_empty_path = NewPath(self, this_path_id, "f") #with non_empty_path: self.visit_statements(node.body) self.visit_statements(node.orelse) def visit_FunctionDef(self, node): """ Args: node: Returns: """ # Name function_name = node.name position = self.locate() definitions_scope = self.scope_chain[:] def definition(tifa, call_type, call_name, parameters, call_position): """ Args: tifa: call_type: call_name: parameters: call_position: Returns: """ function_scope = NewScope(self, definitions_scope) with function_scope: # Process arguments args = node.args.args if len(args) != len(parameters): self._issue(incorrect_arity(self.locate(), function_name, report=self.report)) # TODO: Handle special types of parameters for arg, parameter in zip(args, parameters): name = arg.arg if arg.annotation: self.visit(arg.annotation) annotation = get_pedal_type_from_annotation(arg.annotation, self) # TODO: Use parameter information to "fill in" empty lists if isinstance(parameter, ListType) and isinstance(annotation, ListType): if isinstance(parameter.subtype, UnknownType): parameter.subtype = annotation.subtype # TODO: Check that arg.type and parameter type match! if not are_types_equal(annotation, parameter, True): self._issue(parameter_type_mismatch(self.locate(), name, annotation, parameter)) if parameter is not None: parameter = parameter.clone_mutably() self.create_variable(name, parameter, position) # Too many arguments if len(args) < len(parameters): for undefined_parameter in parameters[len(args):]: self.create_variable(name, UnknownType(), position) # Not enough arguments if len(args) > len(parameters): for arg in args[len(parameters):]: if arg.annotation: self.visit(arg.annotation) annotation = get_pedal_type_from_annotation(arg.annotation, self) else: annotation = UnknownType() self.create_variable(arg.arg, annotation, position) self.visit_statements(node.body) return_state = self.find_variable_scope("*return") return_value = NoneType() # TODO: Figure out if we are not returning something when we should # If the pseudo variable exists, we load it and get its type if return_state.exists and return_state.in_scope: return_state = self.load_variable("*return", call_position) return_value = return_state.type if node.returns: # self.visit(node.returns) returns = get_pedal_type_from_annotation(node.returns, self) if not are_types_equal(return_value, returns, True): self._issue(multiple_return_types(return_state.position, returns.precise_description(), return_value.precise_description(), report=self.report)) return return_value function = FunctionType(definition=definition, name=function_name) self.store_variable(function_name, function) if len(self.node_chain) > 2: self._issue(nested_function_definition(self.locate(), function_name)) return function def visit_GeneratorExp(self, node): """ Args: node: Returns: """ # TODO: Handle comprehension scope for generator in node.generators: self.visit(generator) return GeneratorType(self.visit(node.elt)) def visit_If(self, node): """ Args: node: """ # Visit the conditional self.visit(node.test) if len(node.orelse) == 1 and isinstance(node.orelse[0], ast.Pass): self._issue(unnecessary_second_branch(self.locate())) elif len(node.body) == 1 and isinstance(node.body[0], ast.Pass): if node.orelse: self._issue(unnecessary_second_branch(self.locate())) # Visit the bodies this_path_id = self.path_chain[0] if_path = NewPath(self, this_path_id, "i") with if_path: for statement in node.body: self.visit(statement) else_path = NewPath(self, this_path_id, "e") with else_path: for statement in node.orelse: self.visit(statement) # TODO: Unconditional return # Combine two paths into one # Check for any names that are on the IF path self.merge_paths(this_path_id, if_path.id, else_path.id) def visit_IfExp(self, node): """ Args: node: Returns: """ # Visit the conditional self.visit(node.test) # Visit the body body = self.visit(node.body) # Visit the orelse orelse = self.visit(node.orelse) if are_types_equal(body, orelse): return body # TODO: Union type? return UnknownType() def visit_Import(self, node): """ Args: node: """ # Handle names for alias in node.names: asname = alias.asname or alias.name module_type = self.load_module(alias.name) self.store_variable(asname, module_type) def visit_ImportFrom(self, node): """ Args: node: """ # Handle names for alias in node.names: if node.module is None: asname = alias.asname or alias.name module_type = self.load_module(alias.name) else: module_name = node.module asname = alias.asname or alias.name module_type = self.load_module(module_name) name_type = module_type.load_attr(alias.name) self.store_variable(asname, name_type) def visit_Lambda(self, node): """ Args: node: Returns: """ # Name position = self.locate() definitions_scope = self.scope_chain[:] def definition(tifa, call_type, call_name, parameters, call_position): """ Args: tifa: call_type: call_name: parameters: call_position: Returns: """ function_scope = NewScope(self, definitions_scope) with function_scope: # Process arguments args = node.args.args if len(args) != len(parameters): self._issue(incorrect_arity(position, "lambda", report=self.report)) # TODO: Handle special types of parameters for arg, parameter in zip(args, parameters): name = arg.arg if parameter is not None: parameter = parameter.clone_mutably() self.store_variable(name, parameter, position) if len(args) < len(parameters): for undefined_parameter in parameters[len(args):]: self.store_variable(name, UnknownType(), position) return_value = self.visit(node.body) return return_value return FunctionType(definition=definition) def visit_List(self, node): """ Args: node: Returns: """ result_type = ListType() if node.elts: result_type.empty = False # TODO: confirm homogenous subtype for elt in node.elts: result_type.subtype = self.visit(elt) else: result_type.empty = True return result_type def visit_ListComp(self, node): """ Args: node: Returns: """ # TODO: Handle comprehension scope for generator in node.generators: self.visit(generator) return ListType(self.visit(node.elt)) def visit_NameConstant(self, node): """ Args: node: Returns: """ value = node.value if isinstance(value, bool): return BoolType() else: return NoneType() def visit_Name(self, node): """ Args: node: Returns: """ name = node.id if name == "___": self._issue(unconnected_blocks(self.locate())) if isinstance(node.ctx, ast.Load): if name == "True" or name == "False": return BoolType() elif name == "None": return NoneType() else: variable = self.find_variable_scope(name) builtin = get_builtin_function(name) if not variable.exists and builtin: return builtin else: state = self.load_variable(name) return state.type else: variable = self.find_variable_scope(name) if variable.exists: return variable.state.type else: return UnknownType() def visit_Num(self, node): """ Args: node: Returns: """ return NumType() def visit_Constant(self, node) -> Type: """ Handle new 3.8's Constant node """ return get_pedal_type_from_value(node.value) def visit_Return(self, node): """ Args: node: """ if len(self.scope_chain) == 1: self._issue(return_outside_function(self.locate(), report=self.report)) # TODO: Unconditional return inside loop if node.value is not None: self.return_variable(self.visit(node.value)) else: self.return_variable(NoneType()) def visit_Set(self, node): # Fun fact, it's impossible to make a literal empty set return SetType(subtype=self.visit(node.elts[0]), empty=False) def visit_SetComp(self, node): """ Args: node: Returns: """ # TODO: Handle comprehension scope for generator in node.generators: self.visit(generator) return SetType(subtype=self.visit(node.elt)) def visit_statements(self, nodes): """ Args: nodes: Returns: """ # TODO: Check for pass in the middle of a series of statement if any(isinstance(node, ast.Pass) for node in nodes): pass return [self.visit(statement) for statement in nodes] def visit_Str(self, node): """ Args: node: Returns: """ if node.s == "": return StrType(True) else: return StrType(False) def visit_JoinedStr(self, node): values = [self.visit(expr) for expr in node.values] # The result will be all StrType return StrType(empty=all(n.empty for n in values)) def visit_FormattedValue(self, node): value = self.visit(node.value) if isinstance(value, StrType): return value else: return StrType(empty=False) def visit_Subscript(self, node): """ Args: node: Returns: """ # Handle value value_type = self.visit(node.value) # Handle slice if IS_PYTHON_39 and isinstance(node.slice, ast.Tuple): # TODO: Do something about extslices (especially since students stumble into this accidentally) pass elif not IS_PYTHON_39 and isinstance(node.slice, ast.ExtSlice): # TODO: Do something about extslices (especially since students stumble into this accidentally) pass elif isinstance(node.slice, ast.Slice): self.visit_Slice(node.slice) return value_type else: if IS_PYTHON_39: slice = node.slice else: slice = node.slice.value literal = self.get_literal(slice) if literal is None: literal = get_pedal_literal_from_pedal_type(self.visit(slice)) result = value_type.index(literal) # TODO: Is this sufficient? Maybe we should be throwing? if isinstance(result, UnknownType): self._issue(invalid_indexing(self.locate(), value_type, literal.type())) else: return result def visit_Slice(self, node): """ Handles a slice by visiting its components; cannot return a value because the slice is always the same type as its value, which is not available on the Slice node itself. """ if node.lower is not None: self.visit(node.lower) if node.upper is not None: self.visit(node.upper) if node.step is not None: self.visit(node.step) def visit_Tuple(self, node) -> TupleType: """ Handle Tuple literal """ result_type = TupleType() if not node.elts: result_type.empty = True result_type.subtypes = [] else: result_type.empty = False # TODO: confirm homogenous subtype result_type.subtypes = [self.visit(elt) for elt in node.elts] return result_type def visit_UnaryOp(self, node): """ Args: node: Returns: """ # Handle operand operand = self.visit(node.operand) if isinstance(node.op, ast.Not): return BoolType() elif isinstance(operand, UnknownType): return UnknownType() elif type(node.op) in VALID_UNARYOP_TYPES: op_lookup = VALID_UNARYOP_TYPES[type(node.op)] if type(operand) in op_lookup: return op_lookup[type(operand)]() return UnknownType() def visit_While(self, node): """ Args: node: """ # Visit conditional self.visit(node.test) # Visit the bodies this_path_id = self.path_id # One path is that we never enter the body empty_path = NewPath(self, this_path_id, "e") with empty_path: pass # Another path is that we loop through the body and check the test again body_path = NewPath(self, this_path_id, "w") with body_path: for statement in node.body: self.visit(statement) # Revisit conditional self.visit(node.test) # If there's else bodies (WEIRD) then we should check them afterwards if node.orelse: self._issue(else_on_loop_body(self.locate())) for statement in node.orelse: self.visit(statement) # Combine two paths into one # Check for any names that are on the IF path self.merge_paths(this_path_id, body_path.id, empty_path.id) def visit_With(self, node): """ Args: node: """ for item in node.items: type_value = self.visit(item.context_expr) self.visit(item.optional_vars) self._walk_target(item.optional_vars, type_value) # Handle the bodies self.visit_statements(node.body)
33.793886
108
0.552721
2af7c1c4a0e2650a3078f0433382b5b254b6777f
7,580
py
Python
sira/modelling/structural.py
GeoscienceAustralia/sira
01c99acae497fedc971367e0fa1611a90f5c64ef
[ "Apache-2.0" ]
1
2021-11-17T16:10:56.000Z
2021-11-17T16:10:56.000Z
sira/modelling/structural.py
GeoscienceAustralia/sira
01c99acae497fedc971367e0fa1611a90f5c64ef
[ "Apache-2.0" ]
10
2020-07-28T02:19:22.000Z
2022-03-04T00:34:40.000Z
sira/modelling/structural.py
GeoscienceAustralia/sira
01c99acae497fedc971367e0fa1611a90f5c64ef
[ "Apache-2.0" ]
1
2019-08-22T10:26:38.000Z
2019-08-22T10:26:38.000Z
import inspect from sira.tools.utils import class_getter # from future.builtins import str, object # from future.utils import with_metaclass class NoDefaultException(Exception): """ Thrown when a :py:class:`_Base` is created without providing values for one or more :py:class:`Element`s which do not have default values. Note that users should never be instantiating or subclassing :py:class:`_Base` directly. One should extend a class returned by :py:func:`generate_element_base`, which returns a class which extends :py:class:`_Base`. """ class ValidationError(Exception): """ Thrown when validation of some item fails. Some examples of when this may occur are: - A value for an :py:class:`Element` is provided which is not an an instance of the type specified for the Element (which is specified via argument *cls* to :py:meth:`Element.__init__`). - One of the validators provided for an element (see the agument *validators* to :py:class:`Element.__init__`) fails or raises an exception of this type. """ # class AlreadySavedException(Exception): # """ # Raised if an attempt is made to save a 'Document' which has previously been # saved. # """ # pass class DisallowedElementException(ValueError): """ Raised if an an attempt is made to define an element with a disallowed name. Disallowed names are specified by :py:attr:StructuralMeta.DISALLOWED_FIELDS. """ class MultipleBasesOfTypeBaseError(ValueError): """ Raised if an attempt is made to define a class which inherits from multiple classes (``c``) for which ``issubclass(type(c), StructuralMeta)`` is *True*. The reason to dissalow multiple inheritance of said classes is to conform to the structure of XML, where an element can only have one parent. This may not turn out to be an issue as other interpretations of class hierachies in the context of XML may be sensible/feasible... but the semantics and practicalities would need to be considered so stop this for now and see how we go. """ class Info(str): """ Strings that provide 'metadata' on classes. At present, this is only used to identify immutable strings on a class when they are displayed. """ class Element(object): """ Represents an element of a model. If a model were represented in a relational database, this would be analogous to a field in a table. """ @staticmethod def NO_DEFAULT(): """ A callable that can be used to signal that an Element has no default value. Simply raises a :py:exception:`NoDefaultException`. """ raise NoDefaultException() def __init__(self, cls, description, default=None, validators=None): self.cls = cls self.description = Info(description) self._default = default self.validators = validators @property def default(self): if self._default is False: raise NoDefaultException() return self._default() if callable(self._default) else self._default class StructuralMeta(type): """ Metaclass for structural Names of :py:class:`Element`s that cannot be defined on any class ``c`` for which ``issubclass(type(c), StructuralMeta)`` is *True*. These are names of elements which are used internally and for the sake of the performance of attribute lookup, are banned for other use. """ DISALLOWED_FIELDS = [ 'class', 'predecessor', '_predecessor', '_id', '_value', '_attributes'] def __new__(mcs, name, bases, dct): # check that only one base is instance of _Base if len([base for base in bases if issubclass(type(base), StructuralMeta)]) > 1: raise MultipleBasesOfTypeBaseError('Invalid bases in class {}'.format(name)) def extract_params_of_type(clazz): # extract the parameters params = {} for k in list(dct.keys()): if isinstance(dct[k], clazz): params[k] = dct.pop(k) # cannot have a parameter with name class, as this messes with # serialisation for field in StructuralMeta.DISALLOWED_FIELDS: if field in params: raise DisallowedElementException( 'class {} cannot have Element with name "{}"'. format(name, field)) return params dct['__params__'] = extract_params_of_type(Element) # create a json description of the class json_desc = {} for k, v in list(dct['__params__'].items()): # TODO: put validators in here # noqa: W0511 json_desc[k] = {'class': v.cls} for k, v in list(extract_params_of_type(Info).items()): json_desc[k] = { 'class': 'Info', 'value': str(v)} dct['__json_desc__'] = json_desc return super(StructuralMeta, mcs).__new__(mcs, name, bases, dct) def __init__(cls, name, bases, dct): # We do this here as I prefer to get the module from the class. Not sure # if it matters in practice, but it feels better. cls_module contains # the module in which this class is defined and we know that the types # declared for the Elements of a class are accessible in that module. cls_module = inspect.getmodule(cls).__name__ cls.__json_desc__['class'] = '.'.join([cls_module, name]) for param in list(cls.__params__.values()): param.cls_module = cls_module for k, v in list(cls.__json_desc__.items()): if k == 'class': continue try: ecls = class_getter([cls_module, v['class']]) if hasattr(ecls, '__json_desc__'): cls.__json_desc__[k] = ecls.__json_desc__ else: v['class'] = '.'.join([ecls.__module__, ecls.__name__]) if isinstance(ecls, Element): try: default = v.default except NoDefaultException: pass else: # default = jsonify(default) if default: cls.__json_desc__[k]['default'] = default except Exception: # pylint: disable=broad-except v['class'] = '.'.join(['__builtin__', v['class']]) super(StructuralMeta, cls).__init__(name, bases, dct) class Base(metaclass=StructuralMeta): """ Base class for all 'model' classes. **This should never be used by clients** and serves as a base class for dynamically generated classes returned by :py:func:``, which are designed for use by clients. """ def __init__(self, **kwargs): self._predecessor = kwargs.pop('predecessor', None) if self._predecessor is None: # then we provide default values for each element for k, v in list(self.__params__.items()): # pylint: disable=no-member if k not in kwargs: try: kwargs[k] = v.default except NoDefaultException as error: raise ValueError('Must provide value for {}'.format(k)) from error for k, v in list(kwargs.items()): setattr(self, k, v)
36.095238
90
0.608311
e3d9df2108310e05b92f1268ca71bcca13e6c0ab
6,383
py
Python
os_pausebot_RECOMM.py
Cyb4rUf0/cyberufobvb02
ebbc212256dc27e5b02f5815a5a82c0a4c1b0b72
[ "MIT" ]
null
null
null
os_pausebot_RECOMM.py
Cyb4rUf0/cyberufobvb02
ebbc212256dc27e5b02f5815a5a82c0a4c1b0b72
[ "MIT" ]
null
null
null
os_pausebot_RECOMM.py
Cyb4rUf0/cyberufobvb02
ebbc212256dc27e5b02f5815a5a82c0a4c1b0b72
[ "MIT" ]
2
2021-11-18T17:19:46.000Z
2021-11-20T02:47:06.000Z
# Based off Firewatch custsignalmod.py from tradingview_ta import TA_Handler, Interval, Exchange # use for environment variables import os # use if needed to pass args to external modules import sys # used for directory handling import glob import threading import time # my helper utils from helpers.os_utils import(rchop) from vyacheslav_signalbuy_VolScan import txcolors MY_EXCHANGE = 'BINANCE' MY_SCREENER = 'CRYPTO' SYMBOLS = ['BTCUSDT', 'ETHUSDT'] MY_FIRST_INTERVAL = Interval.INTERVAL_1_MINUTE MY_SECOND_INTERVAL = Interval.INTERVAL_5_MINUTES MY_THIRD_INTERVAL = Interval.INTERVAL_15_MINUTES MY_FOUR_INTERVAL = Interval.INTERVAL_1_HOUR MY_FIVE_INTERVAL = Interval.INTERVAL_4_HOURS MY_SIX_INTERVAL = Interval.INTERVAL_1_DAY TIME_TO_WAIT = 1 # Minutes to wait between analysis FULL_LOG = True # List anylysis result to console SIGNAL_NAME = 'os_pausebot_RECOMM' SIGNAL_FILE = 'signals/pausebot.pause' def analyze(): taMax = 0 taMaxCoin = 'none' signal_coins = {} first_analysis = {} second_analysis = {} third_analysis = {} four_analysis = {} five_analysis = {} six_analysis = {} first_handler = {} second_handler = {} third_handler = {} four_handler = {} five_handler = {} six_handler = {} paused = 0 retPaused = False for symbol in SYMBOLS: first_handler[symbol] = TA_Handler( symbol=symbol, exchange=MY_EXCHANGE, screener=MY_SCREENER, interval=MY_FIRST_INTERVAL, timeout= 10 ) second_handler[symbol] = TA_Handler( symbol=symbol, exchange=MY_EXCHANGE, screener=MY_SCREENER, interval=MY_SECOND_INTERVAL, timeout= 10 ) third_handler[symbol] = TA_Handler( symbol=symbol, exchange=MY_EXCHANGE, screener=MY_SCREENER, interval=MY_THIRD_INTERVAL, timeout= 10 ) four_handler[symbol] = TA_Handler( symbol=symbol, exchange=MY_EXCHANGE, screener=MY_SCREENER, interval=MY_FOUR_INTERVAL, timeout= 10 ) five_handler[symbol] = TA_Handler( symbol=symbol, exchange=MY_EXCHANGE, screener=MY_SCREENER, interval=MY_FIVE_INTERVAL, timeout= 10 ) six_handler[symbol] = TA_Handler( symbol=symbol, exchange=MY_EXCHANGE, screener=MY_SCREENER, interval=MY_SIX_INTERVAL, timeout= 10 ) for symbol in SYMBOLS: try: first_analysis = first_handler[symbol].get_analysis() second_analysis = second_handler[symbol].get_analysis() third_analysis = third_handler[symbol].get_analysis() four_analysis = four_handler[symbol].get_analysis() five_analysis = five_handler[symbol].get_analysis() six_analysis = six_handler[symbol].get_analysis() except Exception as e: print(f'{SIGNAL_NAME}') print("Exception:") print(e) print (f'Coin: {symbol}') print (f'First handler: {first_handler[symbol]}') print (f'Second handler: {second_handler[symbol]}') print (f'Second handler: {third_handler[symbol]}') print(f'Four handler: {four_handler[symbol]}') print(f'Five handler: {five_handler[symbol]}') print(f'Six handler: {six_handler[symbol]}') continue first_recommendation = first_analysis.summary['RECOMMENDATION'] second_recommendation = second_analysis.summary['RECOMMENDATION'] third_recommendation = third_analysis.summary['RECOMMENDATION'] four_recommendation = four_analysis.summary['RECOMMENDATION'] five_recommendation = five_analysis.summary['RECOMMENDATION'] six_recommendation = six_analysis.summary['RECOMMENDATION'] #if FULL_LOG: #print(f'|{SIGNAL_NAME}| <{symbol}> |First: {first_recommendation}| |Second: {second_recommendation}| Third: {third_recommendation}| Four: {four_recommendation}| Five: {five_recommendation}| Six: {six_recommendation}|') #print(f'|{SIGNAL_NAME}| <{symbol}> |First: {first_recommendation}| |Second: {second_recommendation}| Third: {third_recommendation}|') if (first_recommendation == "SELL" or first_recommendation == "STRONG_SELL") and \ (second_recommendation == "SELL" or second_recommendation == "STRONG_SELL"): #and \ #(third_recommendation == "SELL" or third_recommendation == "STRONG_SELL"): #and \ #(four_recommendation == "BUY" or four_recommendation == "STRONG_BUY") and \ #(five_recommendation == "BUY" or five_recommendation == "STRON_BUY"): #and \ #(six_recommendation == "BUY" or five_recommendation == "STRONG_BUY"): paused = paused + 1 if FULL_LOG: #print(f'|{SIGNAL_NAME}| <{symbol}> |First: {first_recommendation}| |Second: {second_recommendation}| Third: {third_recommendation}| Four: {four_recommendation}| Five: {five_recommendation}| Six: {six_recommendation}|') print(f'|{SIGNAL_NAME}| <{symbol}> |First: {first_recommendation}| |Second: {second_recommendation}|') #print(f'{txcolors.YELLOW}|{SIGNAL_NAME}|: Buy Signal Detected On <{symbol}>{txcolors.DEFAULT}') if paused > 0: print(f'|{SIGNAL_NAME}| Market Alert: <PAUSED BUYING> [{TIME_TO_WAIT}] Minutes For Next Checkup') retPaused = True else: print(f'|{SIGNAL_NAME}| Market OK: <WORKING> [{TIME_TO_WAIT}] Minutes For Next Checkup') retPaused = False return retPaused def do_work(): while True: try: if not threading.main_thread().is_alive(): exit() paused = analyze() if paused: with open(SIGNAL_FILE,'a') as f: f.write('yes') else: if os.path.isfile(SIGNAL_FILE): os.remove(SIGNAL_FILE) time.sleep((TIME_TO_WAIT*60)) #except Exception as e: # print(f'{SIGNAL_NAME}: Exception do_work() 1: {e}') # continue except KeyboardInterrupt as ki: continue
37.110465
231
0.626351
deb0b68902d12d5797ad6034f160e798cb0797c5
3,829
py
Python
insta/settings.py
osman2491/Insta
f941f2b20f814e1c13fe0f9c02a1a60be3cd2c87
[ "MIT" ]
null
null
null
insta/settings.py
osman2491/Insta
f941f2b20f814e1c13fe0f9c02a1a60be3cd2c87
[ "MIT" ]
2
2021-06-10T22:33:39.000Z
2021-09-08T01:39:21.000Z
insta/settings.py
osman2491/Insta
f941f2b20f814e1c13fe0f9c02a1a60be3cd2c87
[ "MIT" ]
null
null
null
import os import django_heroku import dj_database_url from decouple import config,Csv # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) MODE=config("MODE", default="dev") SECRET_KEY = config('SECRET_KEY') DEBUG = config('DEBUG', default=False, cast=bool) # Application definition INSTALLED_APPS = [ 'instagram.apps.InstagramConfig', 'bootstrap4', 'pyuploadcare.dj', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'crispy_forms', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'whitenoise.middleware.WhiteNoiseMiddleware', ] ROOT_URLCONF = 'insta.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', 'django.template.context_processors.media', ], }, }, ] UPLOADCARE = { 'pub_key': 'aeed84efde73eba99ff6', 'secret': '1110614ad7e895d38955', } WSGI_APPLICATION = 'insta.wsgi.application' # Database # development if config('MODE')=="dev": DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql_psycopg2', 'NAME': config('DB_NAME'), 'USER': config('DB_USER'), 'PASSWORD': config('DB_PASSWORD'), 'HOST': config('DB_HOST'), 'PORT': '', } } # production else: DATABASES = { 'default': dj_database_url.config( default=config('DATABASE_URL') ) } db_from_env = dj_database_url.config(conn_max_age=500) DATABASES['default'].update(db_from_env) ALLOWED_HOSTS = config('ALLOWED_HOSTS', cast=Csv()) # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'Africa/Nairobi' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_ROOT = os.path.join(BASE_DIR, 'staticfiles') STATIC_URL = '/static/' STATICFILES_DIRS = [ os.path.join(BASE_DIR, "static"), ] STATICFILES_STORAGE = 'whitenoise.storage.CompressedManifestStaticFilesStorage' MEDIA_URL = '/media/' MEDIA_ROOT = os.path.join(BASE_DIR, 'media') django_heroku.settings(locals()) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/
26.406897
91
0.678245
dd85358f6ec6cbe0abeff6c5412ca9cbfae83e7a
6,772
py
Python
mmdet/apis/test.py
Andrew-Zhu/DyFPN
a74463b59c4ce28253c2449a07c0f6692a0147a1
[ "Apache-2.0" ]
32
2021-01-07T10:51:21.000Z
2022-03-24T02:49:51.000Z
mmdet/apis/test.py
Andrew-Zhu/DyFPN
a74463b59c4ce28253c2449a07c0f6692a0147a1
[ "Apache-2.0" ]
6
2021-04-14T11:22:18.000Z
2022-01-29T03:00:32.000Z
mmdet/apis/test.py
Andrew-Zhu/DyFPN
a74463b59c4ce28253c2449a07c0f6692a0147a1
[ "Apache-2.0" ]
9
2021-01-15T15:54:02.000Z
2022-03-21T07:51:24.000Z
import os.path as osp import pickle import shutil import tempfile import time import mmcv import torch import torch.distributed as dist from mmcv.runner import get_dist_info from mmdet.core import encode_mask_results, tensor2imgs def single_gpu_test(model, data_loader, show=False, out_dir=None, show_score_thr=0.3): model.eval() results = [] dataset = data_loader.dataset prog_bar = mmcv.ProgressBar(len(dataset)) for i, data in enumerate(data_loader): with torch.no_grad(): result = model(return_loss=False, rescale=True, **data) if show or out_dir: img_tensor = data['img'][0] img_metas = data['img_metas'][0].data[0] imgs = tensor2imgs(img_tensor, **img_metas[0]['img_norm_cfg']) assert len(imgs) == len(img_metas) for img, img_meta in zip(imgs, img_metas): h, w, _ = img_meta['img_shape'] img_show = img[:h, :w, :] ori_h, ori_w = img_meta['ori_shape'][:-1] img_show = mmcv.imresize(img_show, (ori_w, ori_h)) if out_dir: out_file = osp.join(out_dir, img_meta['ori_filename']) else: out_file = None model.module.show_result( img_show, result, show=show, out_file=out_file, score_thr=show_score_thr) # encode mask results if isinstance(result, tuple): bbox_results, mask_results = result encoded_mask_results = encode_mask_results(mask_results) result = bbox_results, encoded_mask_results results.append(result) batch_size = len(data['img_metas'][0].data) for _ in range(batch_size): prog_bar.update() return results def multi_gpu_test(model, data_loader, tmpdir=None, gpu_collect=False): """Test model with multiple gpus. This method tests model with multiple gpus and collects the results under two different modes: gpu and cpu modes. By setting 'gpu_collect=True' it encodes results to gpu tensors and use gpu communication for results collection. On cpu mode it saves the results on different gpus to 'tmpdir' and collects them by the rank 0 worker. Args: model (nn.Module): Model to be tested. data_loader (nn.Dataloader): Pytorch data loader. tmpdir (str): Path of directory to save the temporary results from different gpus under cpu mode. gpu_collect (bool): Option to use either gpu or cpu to collect results. Returns: list: The prediction results. """ model.eval() results = [] dataset = data_loader.dataset rank, world_size = get_dist_info() if rank == 0: prog_bar = mmcv.ProgressBar(len(dataset)) time.sleep(2) # This line can prevent deadlock problem in some cases. for i, data in enumerate(data_loader): with torch.no_grad(): result = model(return_loss=False, rescale=True, **data) # encode mask results if isinstance(result, tuple): bbox_results, mask_results = result encoded_mask_results = encode_mask_results(mask_results) result = bbox_results, encoded_mask_results results.append(result) if rank == 0: batch_size = ( len(data['img_meta'].data) if 'img_meta' in data else len(data['img_metas'][0].data)) for _ in range(batch_size * world_size): prog_bar.update() # collect results from all ranks if gpu_collect: results = collect_results_gpu(results, len(dataset)) else: results = collect_results_cpu(results, len(dataset), tmpdir) return results def collect_results_cpu(result_part, size, tmpdir=None): rank, world_size = get_dist_info() # create a tmp dir if it is not specified if tmpdir is None: MAX_LEN = 512 # 32 is whitespace dir_tensor = torch.full((MAX_LEN, ), 32, dtype=torch.uint8, device='cuda') if rank == 0: tmpdir = tempfile.mkdtemp() tmpdir = torch.tensor( bytearray(tmpdir.encode()), dtype=torch.uint8, device='cuda') dir_tensor[:len(tmpdir)] = tmpdir dist.broadcast(dir_tensor, 0) tmpdir = dir_tensor.cpu().numpy().tobytes().decode().rstrip() else: mmcv.mkdir_or_exist(tmpdir) # dump the part result to the dir mmcv.dump(result_part, osp.join(tmpdir, f'part_{rank}.pkl')) dist.barrier() # collect all parts if rank != 0: return None else: # load results of all parts from tmp dir part_list = [] for i in range(world_size): part_file = osp.join(tmpdir, f'part_{i}.pkl') part_list.append(mmcv.load(part_file)) # sort the results ordered_results = [] for res in zip(*part_list): ordered_results.extend(list(res)) # the dataloader may pad some samples ordered_results = ordered_results[:size] # remove tmp dir shutil.rmtree(tmpdir) return ordered_results def collect_results_gpu(result_part, size): rank, world_size = get_dist_info() # dump result part to tensor with pickle part_tensor = torch.tensor( bytearray(pickle.dumps(result_part)), dtype=torch.uint8, device='cuda') # gather all result part tensor shape shape_tensor = torch.tensor(part_tensor.shape, device='cuda') shape_list = [shape_tensor.clone() for _ in range(world_size)] dist.all_gather(shape_list, shape_tensor) # padding result part tensor to max length shape_max = torch.tensor(shape_list).max() part_send = torch.zeros(shape_max, dtype=torch.uint8, device='cuda') part_send[:shape_tensor[0]] = part_tensor part_recv_list = [ part_tensor.new_zeros(shape_max) for _ in range(world_size) ] # gather all result part dist.all_gather(part_recv_list, part_send) if rank == 0: part_list = [] for recv, shape in zip(part_recv_list, shape_list): part_list.append( pickle.loads(recv[:shape[0]].cpu().numpy().tobytes())) # sort the results ordered_results = [] for res in zip(*part_list): ordered_results.extend(list(res)) # the dataloader may pad some samples ordered_results = ordered_results[:size] return ordered_results
35.455497
79
0.60632
b98fb0fe4a9cbbfce76b2615b56a48427305ab31
5,552
py
Python
homeassistant/components/rflink/cover.py
learn-home-automation/core
c5d8792c3487e9b418b1e7d623bf59e7dbddd6b7
[ "Apache-2.0" ]
22,481
2020-03-02T13:09:59.000Z
2022-03-31T23:34:28.000Z
homeassistant/components/rflink/cover.py
learn-home-automation/core
c5d8792c3487e9b418b1e7d623bf59e7dbddd6b7
[ "Apache-2.0" ]
31,101
2020-03-02T13:00:16.000Z
2022-03-31T23:57:36.000Z
homeassistant/components/rflink/cover.py
learn-home-automation/core
c5d8792c3487e9b418b1e7d623bf59e7dbddd6b7
[ "Apache-2.0" ]
11,411
2020-03-02T14:19:20.000Z
2022-03-31T22:46:07.000Z
"""Support for Rflink Cover devices.""" import logging import voluptuous as vol from homeassistant.components.cover import PLATFORM_SCHEMA, CoverEntity from homeassistant.const import CONF_DEVICES, CONF_NAME, CONF_TYPE, STATE_OPEN import homeassistant.helpers.config_validation as cv from homeassistant.helpers.restore_state import RestoreEntity from . import ( CONF_ALIASES, CONF_DEVICE_DEFAULTS, CONF_FIRE_EVENT, CONF_GROUP, CONF_GROUP_ALIASES, CONF_NOGROUP_ALIASES, CONF_SIGNAL_REPETITIONS, DEVICE_DEFAULTS_SCHEMA, RflinkCommand, ) _LOGGER = logging.getLogger(__name__) PARALLEL_UPDATES = 0 TYPE_STANDARD = "standard" TYPE_INVERTED = "inverted" PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend( { vol.Optional( CONF_DEVICE_DEFAULTS, default=DEVICE_DEFAULTS_SCHEMA({}) ): DEVICE_DEFAULTS_SCHEMA, vol.Optional(CONF_DEVICES, default={}): vol.Schema( { cv.string: { vol.Optional(CONF_NAME): cv.string, vol.Optional(CONF_TYPE): vol.Any(TYPE_STANDARD, TYPE_INVERTED), vol.Optional(CONF_ALIASES, default=[]): vol.All( cv.ensure_list, [cv.string] ), vol.Optional(CONF_GROUP_ALIASES, default=[]): vol.All( cv.ensure_list, [cv.string] ), vol.Optional(CONF_NOGROUP_ALIASES, default=[]): vol.All( cv.ensure_list, [cv.string] ), vol.Optional(CONF_FIRE_EVENT, default=False): cv.boolean, vol.Optional(CONF_SIGNAL_REPETITIONS): vol.Coerce(int), vol.Optional(CONF_GROUP, default=True): cv.boolean, } } ), } ) def entity_type_for_device_id(device_id): """Return entity class for protocol of a given device_id. Async friendly. """ entity_type_mapping = { # KlikAanKlikUit cover have the controls inverted "newkaku": TYPE_INVERTED } protocol = device_id.split("_")[0] return entity_type_mapping.get(protocol, TYPE_STANDARD) def entity_class_for_type(entity_type): """Translate entity type to entity class. Async friendly. """ entity_device_mapping = { # default cover implementation TYPE_STANDARD: RflinkCover, # cover with open/close commands inverted # like KAKU/COCO ASUN-650 TYPE_INVERTED: InvertedRflinkCover, } return entity_device_mapping.get(entity_type, RflinkCover) def devices_from_config(domain_config): """Parse configuration and add Rflink cover devices.""" devices = [] for device_id, config in domain_config[CONF_DEVICES].items(): # Determine what kind of entity to create, RflinkCover # or InvertedRflinkCover if CONF_TYPE in config: # Remove type from config to not pass it as and argument # to entity instantiation entity_type = config.pop(CONF_TYPE) else: entity_type = entity_type_for_device_id(device_id) entity_class = entity_class_for_type(entity_type) device_config = dict(domain_config[CONF_DEVICE_DEFAULTS], **config) device = entity_class(device_id, **device_config) devices.append(device) return devices async def async_setup_platform(hass, config, async_add_entities, discovery_info=None): """Set up the Rflink cover platform.""" async_add_entities(devices_from_config(config)) class RflinkCover(RflinkCommand, CoverEntity, RestoreEntity): """Rflink entity which can switch on/stop/off (eg: cover).""" async def async_added_to_hass(self): """Restore RFLink cover state (OPEN/CLOSE).""" await super().async_added_to_hass() if (old_state := await self.async_get_last_state()) is not None: self._state = old_state.state == STATE_OPEN def _handle_event(self, event): """Adjust state if Rflink picks up a remote command for this device.""" self.cancel_queued_send_commands() command = event["command"] if command in ["on", "allon", "up"]: self._state = True elif command in ["off", "alloff", "down"]: self._state = False @property def should_poll(self): """No polling available in RFlink cover.""" return False @property def is_closed(self): """Return if the cover is closed.""" return not self._state @property def assumed_state(self): """Return True because covers can be stopped midway.""" return True async def async_close_cover(self, **kwargs): """Turn the device close.""" await self._async_handle_command("close_cover") async def async_open_cover(self, **kwargs): """Turn the device open.""" await self._async_handle_command("open_cover") async def async_stop_cover(self, **kwargs): """Turn the device stop.""" await self._async_handle_command("stop_cover") class InvertedRflinkCover(RflinkCover): """Rflink cover that has inverted open/close commands.""" async def _async_send_command(self, cmd, repetitions): """Will invert only the UP/DOWN commands.""" _LOGGER.debug("Getting command: %s for Rflink device: %s", cmd, self._device_id) cmd_inv = {"UP": "DOWN", "DOWN": "UP"} await super()._async_send_command(cmd_inv.get(cmd, cmd), repetitions)
32.852071
88
0.644813
0d03a943f1831d53e76b1bf0e5e3df680a1b1bce
17,241
py
Python
biobakery_workflows/files.py
tkuntz-hsph/biobakery_workflows
e861705d939354178362fd5b26e59dcc696489d2
[ "MIT" ]
47
2020-08-18T20:51:02.000Z
2022-03-21T19:43:13.000Z
biobakery_workflows/files.py
tkuntz-hsph/biobakery_workflows
e861705d939354178362fd5b26e59dcc696489d2
[ "MIT" ]
18
2020-06-12T21:26:46.000Z
2022-03-19T08:24:55.000Z
biobakery_workflows/files.py
tkuntz-hsph/biobakery_workflows
e861705d939354178362fd5b26e59dcc696489d2
[ "MIT" ]
15
2020-07-24T16:41:46.000Z
2022-02-22T09:02:01.000Z
""" bioBakery Workflows: tasks.files module A collection of file names used by tasks Copyright (c) 2017 Harvard School of Public Health Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import os import copy import sys from anadama2 import reporters from .utilities import name_files class FileInfo(object): def __init__(self, name=None, subfolder=None, tag=None, extension=None, description=None): # set a list of non-path keywords self.non_path_keywords=["description"] # concat multiple strings if present in description if description and isinstance(description,tuple): description="\n".join(description) keywords={"names":name, "subfolder":subfolder, "tag":tag, "extension":extension, "description":description} self.keywords = {key:value for key, value in keywords.items() if value} def get_path_keywords(self): info = copy.copy(self.keywords) # remove the non-path keywords for key in self.non_path_keywords: try: del info[key] except KeyError: pass return info def __getitem__(self, key): """ Return the file info """ try: value=self.keywords[key] except KeyError: value="" return value class Workflow(object): file_info = {} file_info["log"]=FileInfo(reporters.LOG_FILE_NAME, description="The AnADAMA2 workflow log.") @classmethod def path(cls, name, main_folder="", none_if_not_found=None, error_if_not_found=None, search_for_file=False, **keywords): merged_keywords = copy.copy(keywords) merged_keywords.update(cls.file_info[name].get_path_keywords()) file_path=name_files(folder=main_folder, **merged_keywords) # if the file is not found, then look in the input folder if not os.path.isfile(file_path) and search_for_file: file_name = cls.filename(name) file_path=os.path.join(main_folder, file_name) # if set, error if the file does not exist if error_if_not_found and not os.path.isfile(file_path): message="\nERROR: Unable to find file: "+file_path desc=cls.description(name) if desc: message+="\n\nFile description:\n"+desc sys.exit(message) # if set, check if the file exists, if not return None if none_if_not_found and not os.path.isfile(file_path): file_path = None return file_path @classmethod def description(cls,name): try: desc=cls.file_info[name].keywords["description"] except (KeyError, AttributeError): desc="" return desc @classmethod def filename(cls, name): try: fname=cls.file_info[name].keywords["names"] except (KeyError, AttributeError): fname="" return fname @classmethod def list_file_path_description(cls,folder,input_files): """ List the file names and descriptions in a format to be used in an argument help description """ desc="" for required in input_files: desc+="\n\n".join(["* "+cls.path(name,folder)+ " ( " + required + " )\n-- "+cls.description(name) for name in input_files[required]])+"\n" return desc @classmethod def list_file_description(cls,input_files): """ List the file names and descriptions in a format to be used in an argument help description """ desc="" for required in input_files: desc+="\n".join(["* "+cls.filename(name)+ " ( " + required + " )\n-- "+cls.description(name)+"\n\n" for name in input_files[required]])+"\n" return desc class ShotGun(Workflow): """ A collection of information of folders/files created by the shotgun tasks """ file_info=copy.copy(Workflow.file_info) # set the folder names for wmgx_wmtx data workflows wmgx_folder_name="whole_metagenome_shotgun" wmtx_folder_name="whole_metatranscriptome_shotgun" # set the kneaddata file name file_info["kneaddata_read_counts"]=FileInfo("kneaddata_read_count_table.tsv",subfolder=os.path.join("kneaddata","merged"), description=("A tab-delimited file with samples as rows and read counts as columns.", "This file is generated by compiling information from the KneadData log files. ", "The file contains read counts after each step of the Kneaddata workflow. ", "Depending on the input to Kneaddata this file will contain counts for ", "single or paired/orphan reads. The read counts from the filtering steps ", "are for filtering applied in a serial manner with the reads that do not ", "map to the first reference used as input in filtering with the next ", "reference database continuing until all databases have been run.")) # set the taxonomy file names file_info["taxonomic_profile"]=FileInfo("metaphlan_taxonomic_profiles.tsv",subfolder=os.path.join("metaphlan","merged"), description=("A tab-delimited file with samples as columns and relative abundance as rows.", "This file contains the merged taxonomic profiles computed by MetaPhlAn for all samples.")) file_info["species_counts"]=FileInfo("metaphlan_species_counts_table.tsv",subfolder=os.path.join("metaphlan","merged"), description=("A tab-delimited file with samples as rows and counts as columns.", "This file contains the counts of total species for each sample using the ", "species identified by MetaPhlAn.")) # set the merged feature file names file_info["genefamilies"]=FileInfo("genefamilies.tsv",subfolder=os.path.join("humann","merged"), description=("A tab-delimited file with samples as columns and gene families ", "as rows. This file is a merged set of gene families for all samples ", "computed by HUMAnN. This file contains stratified counts as RPKs.")) file_info["ecs"]=FileInfo("ecs.tsv", subfolder=os.path.join("humann","merged"), description=("A tab-delimited file with samples as columns and ecs as rows. ", "This file is a merged set of ecs for all samples generated from the gene ", "families computed by HUMAnN. This file contains stratified counts as RPKs.")) file_info["pathabundance"]=FileInfo("pathabundance.tsv", subfolder=os.path.join("humann","merged"), description=("A tab-delimited file with samples as columns and pathways ", "as rows. This file is a merged set of pathway abundances for all ", "samples computed by HUMAnN. This file contains stratified counts ", "of non-normalized abundances.")) # set the normed feature file names file_info["genefamilies_relab"]=FileInfo("genefamilies_relab.tsv", subfolder=os.path.join("humann","merged")) file_info["ecs_relab"]=FileInfo("ecs_relab.tsv", subfolder=os.path.join("humann","merged"), description=("A tab-delimited file with samples as columns and ECs as rows.", "This file is a merged set of EC abundances for all samples computed ", "by HUMAnN. This file contains relative abundances.")) file_info["pathabundance_relab"]=FileInfo("pathabundance_relab.tsv", subfolder=os.path.join("humann","merged"), description=("A tab-delimited file with samples as columns and pathways ", "as rows. This file is a merged set of pathway abundances for all ", "samples computed by HUMAnN. This file contains stratified counts ", "of relative abundances.")) # set the feature count file names file_info["genefamilies_relab_counts"]=FileInfo("humann_genefamilies_relab_counts.tsv", subfolder=os.path.join("humann","counts")) file_info["ecs_relab_counts"]=FileInfo("humann_ecs_relab_counts.tsv", subfolder=os.path.join("humann","counts")) file_info["pathabundance_relab_counts"]=FileInfo("humann_pathabundance_relab_counts.tsv", subfolder=os.path.join("humann","counts")) # set the all feature counts file names file_info["feature_counts"]=FileInfo("humann_feature_counts.tsv", subfolder=os.path.join("humann","counts"), description=("A tab-delimited file with samples as rows and features ", "as columns. This file includes the total feature counts (non-stratified)", "for the features computed by HUMAnN (genes, ecs, and pathways).")) file_info["humann_read_counts"]=FileInfo("humann_read_and_species_count_table.tsv", subfolder=os.path.join("humann","counts"), description=("A tab-delimited file with samples as rows and counts as columns.", "This file was created using the HUMAnN logs. It includes the total number ", "of species used to generate the custom database, the total number of initial", "reads, and the total reads aligning for both search steps.")) # set the names for the rna/dna normed files file_info["genefamilies_norm_ratio"]=FileInfo("rna_dna_relative_expression_unstratified.tsv",subfolder=os.path.join("humann","rna_dna_norm","genes"), description=("A tab-delimited file with samples as columns and genes as rows. ", "This file includes the normalized RNA abundances as a ratio to DNA abundance. ", "This file does not include stratified features.")) file_info["ecs_norm_ratio"]=FileInfo("rna_dna_relative_expression_unstratified.tsv",subfolder=os.path.join("humann","rna_dna_norm","ecs"), description=("A tab-delimited file with samples as columns and ecs as rows. ", "This file includes the normalized RNA abundances as a ratio to DNA abundance. ", "This file does not include stratified features.")) file_info["paths_norm_ratio"]=FileInfo("rna_dna_relative_expression_unstratified.tsv",subfolder=os.path.join("humann","rna_dna_norm","paths"), description=("A tab-delimited file with samples as columns and pathways as rows. ", "This file includes the normalized RNA abundances as a ratio to DNA abundance. ", "This file does not include stratified features.")) class ShotGunVis(Workflow): """ A collection of information of folders/files created by the shotgun vis templates """ file_info=copy.copy(Workflow.file_info) file_info["microbial_counts"]=FileInfo("microbial_counts_table.tsv", description="A tab-delimited file with samples as rows and ratios as "+\ "columns. Includes the proportion of reads remaining after "+\ "trimming and filtering in the quality control workflow.") file_info["rna_microbial_counts"]=FileInfo("rna_microbial_counts_table.tsv", description="A tab-delimited file with RNA samples as rows and ratios as "+\ "columns. Includes the proportion of reads remaining after "+\ "trimming and filtering in the quality control workflow.") file_info["qc_counts"]=FileInfo("qc_counts_table.tsv", description="A tab-delimited file with samples as rows and read counts "+\ "as columns. Includes the read counts for trimming and filtering steps "+\ "in the quality control workflow. The reads are single end.") file_info["qc_counts_paired"]=FileInfo("qc_counts_pairs_table.tsv", description="A tab-delimited file with samples as rows and read counts "+\ "as columns. Includes the read counts for trimming and filtering steps "+\ "in the quality control workflow. The reads are paired end and these "+\ "counts are only for pairs.") file_info["qc_counts_orphan"]=FileInfo("qc_counts_orphans_table.tsv", description="A tab-delimited file with samples as rows and read counts "+\ "as columns. Includes the read counts for trimming and filtering steps "+\ "in the quality control workflow. The reads are paired end and these "+\ "counts are only for orphans.") file_info["rna_qc_counts_paired"]=FileInfo("rna_qc_counts_pairs_table.tsv", description="A tab-delimited file with RNA samples as rows and read counts "+\ "as columns. Includes the read counts for trimming and filtering steps "+\ "in the quality control workflow. The reads are paired end and these "+\ "counts are only for pairs.") file_info["rna_qc_counts_orphan"]=FileInfo("rna_qc_counts_orphans_table.tsv", description="A tab-delimited file with RNA samples as rows and read counts "+\ "as columns. Includes the read counts for trimming and filtering steps "+\ "in the quality control workflow. The reads are paired end and these "+\ "counts are only for orphans.") file_info["taxa_counts"]=FileInfo("taxa_counts_table.tsv", description="A tab-delimited file with samples as rows and counts as "+\ "columns. These are the total number of species/genera identified for each "+\ "sample before and after filtering.") class SixteenS(Workflow): """ A collection of information of folders/files created by the 16s tasks """ file_info=copy.copy(Workflow.file_info) # set the names for the otu table and read count files file_info["otu_table_closed_reference"]=FileInfo("all_samples_taxonomy_closed_reference.tsv", description=("A tab-delimited file with samples/taxonomy as columns and taxonomy as rows. ", "First column is the OTU id and the last column is the taxonomy. The remaining", "columns are sample names. Values are counts.")) file_info["otu_table_open_reference"]=FileInfo("all_samples_taxonomy_open_reference.tsv", description=("A tab-delimited file with samples/taxonomy as columns and taxonomy as rows. ", "First column is the OTU id and the last column is the taxonomy. The remaining", "columns are sample names. Values are counts. All OTUs without taxonomy are labeled Unclassified.")) file_info["read_count_table"]=FileInfo("all_samples_read_counts.tsv", description=("A tab-delimited file with samples as rows and counts as columns. ", "The counts included are the original read count, total number of reads ", "mapping to an OTU with known taxonomy, and total reads mapping to an ", "unclassified OTU.")) file_info["eestats2"]=FileInfo("all_samples_eestats2.txt", description=("A file with maxee as columns and read lengths as rows.")) file_info["msa_nonchimera"]=FileInfo("all_samples_clustalo_aligned_nonchimera.fasta", description=("A multiple sequence alignment file generated from the nonchimera sequences ", "using Clustalo.")) file_info["msa_closed_reference"]=FileInfo("all_samples_clustalo_aligned_closed_reference.fasta", description=("A multiple sequence alignment file generated from the closed reference sequences ", "using Clustalo.")) # set the names for the otu tables and read count files file_info["error_ratesF"]=FileInfo("Error_rates_per_sample_FWD.png", description=("Plots of forward read error rates in dada2 workflow for each sample")) file_info["error_ratesR"]=FileInfo("Error_rates_per_sample_REV.png", description=("Plots of reverse read error rates in dada2 workflow for each sample")) file_info["readF_qc"]=FileInfo("FWD_read_plot.png", description=("Plots of quality of forward reads for each sample")) file_info["readR_qc"]=FileInfo("REV_read_plot.png", description=("Plots of quality of reverse reads for each sample")) file_info["counts_each_step"]=FileInfo("Read_counts_at_each_step.tsv", description=("A tab-delimited file with samples as rows and counts as columns. ", "The counts included in each step of workflow process")) file_info["filtN"]=FileInfo("filtN", description=("Folder with N filtered files"))
56.343137
153
0.687779
ce72d95f6a97f261ee3d0db2eb7691bfd5f6a51b
6,163
py
Python
ansible/modules/hashivault/hashivault_pki_cert_issue.py
headwest/ansible-modules-hashivault
d5742daf0d931a1c7eb053c1fbfc22fd2aa5607b
[ "MIT" ]
1
2020-09-08T05:49:24.000Z
2020-09-08T05:49:24.000Z
ansible/modules/hashivault/hashivault_pki_cert_issue.py
headwest/ansible-modules-hashivault
d5742daf0d931a1c7eb053c1fbfc22fd2aa5607b
[ "MIT" ]
null
null
null
ansible/modules/hashivault/hashivault_pki_cert_issue.py
headwest/ansible-modules-hashivault
d5742daf0d931a1c7eb053c1fbfc22fd2aa5607b
[ "MIT" ]
2
2020-09-09T03:42:29.000Z
2020-09-09T03:43:26.000Z
#!/usr/bin/env python from ansible.module_utils.hashivault import hashivault_auth_client from ansible.module_utils.hashivault import check_secrets_engines from ansible.module_utils.hashivault import hashivault_argspec from ansible.module_utils.hashivault import hashivault_init from ansible.module_utils.hashivault import check_pki_role from ansible.module_utils.hashivault import hashiwrapper ANSIBLE_METADATA = {'status': ['preview'], 'supported_by': 'community', 'version': '1.1'} DOCUMENTATION = r''' --- module: hashivault_pki_cert_issue version_added: "4.5.0" short_description: Hashicorp Vault PKI Generate Certificate description: - This module generates a new set of credentials (private key and certificate) based on the role named in the module. - The issuing CA certificate is returned as well, so that only the root CA need be in a client's trust store. options: role: recuired: true description: - Specifies the name of the role to create. common_name: recuired: true description: - Specifies the requested CN for the certificate. If the CN is allowed by role policy, it will be issued. mount_point: default: pki description: - location where secrets engine is mounted. also known as path extra_params: description: - "Collection of properties from pki role U(https://www.vaultproject.io/api-docs/secret/pki#parameters-6)" type: dict suboptions: alt_names: type: string description: - Specifies requested Subject Alternative Names, in a comma-delimited list. These can be host names or email addresses; they will be parsed into their respective fields. If any requested names do not match role policy, the entire request will be denied. ip_sans: type: string description: - Specifies requested IP Subject Alternative Names, in a comma-delimited list. Only valid if the role allows IP SANs (which is the default). uri_sans: type: string description: - Specifies the requested URI Subject Alternative Names, in a comma-delimited list. other_sans: type: string description: - Specifies custom OID/UTF8-string SANs. These must match values specified on the role in allowed_other_sans (see role creation for allowed_other_sans globbing rules). The format is the same as OpenSSL <oid>;<type>:<value> where the only current valid type is UTF8. This can be a comma-delimited list or a JSON string slice. ttl: type: string description: - Specifies requested Time To Live. Cannot be greater than the role's max_ttl value. If not provided, the role's ttl value will be used. Note that the role values default to system values if not explicitly set. format: type: string description: - Specifies the format for returned data. Can be pem, der, or pem_bundle; defaults to pem. If der, the output is base64 encoded. If pem_bundle, the certificate field will contain the private key and certificate, concatenated; if the issuing CA is not a Vault-derived self-signed root, this will be included as well. private_key_format: type: string description: - Specifies the format for marshaling the private key. Defaults to der which will return either base64-encoded DER or PEM-encoded DER, depending on the value of format. The other option is pkcs8 which will return the key marshalled as PEM-encoded PKCS8. exclude_cn_from_sans: type: bool description: - If true, the given common_name will not be included in DNS or Email Subject Alternate Names (as appropriate). Useful if the CN is not a hostname or email address, but is instead some human-readable identifier. extends_documentation_fragment: - hashivault ''' EXAMPLES = r''' --- - hosts: localhost tasks: - hashivault_pki_cert_issue: role: 'tester' common_name: 'test.example.com' register: cert - debug: msg="{{ cert }}" ''' def main(): argspec = hashivault_argspec() argspec['role'] = dict(required=True, type='str') argspec['common_name'] = dict(required=True, type='str') argspec['extra_params'] = dict(required=False, type='dict', default={}) argspec['mount_point'] = dict(required=False, type='str', default='pki') module = hashivault_init(argspec) result = hashivault_pki_cert_issue(module) if result.get('failed'): module.fail_json(**result) else: module.exit_json(**result) @hashiwrapper def hashivault_pki_cert_issue(module): params = module.params client = hashivault_auth_client(params) role = params.get('role').strip('/') common_name = params.get('common_name') extra_params = params.get('extra_params') mount_point = params.get('mount_point').strip('/') # check if engine is enabled _, err = check_secrets_engines(module, client) if err: return err if not check_pki_role(name=role, mount_point=mount_point, client=client): return {'failed': True, 'rc': 1, 'msg': 'role not found or permission denied'} result = {"changed": False, "rc": 0} try: result['data'] = client.secrets.pki.generate_certificate(name=role, common_name=common_name, extra_params=extra_params, mount_point=mount_point).get('data') except Exception as e: result['rc'] = 1 result['failed'] = True result['msg'] = u"Exception: " + str(e) return result if __name__ == '__main__': main()
41.362416
120
0.63719
3444cbdca63ea4bbc90f3a0d9f66bb71aac1d748
14,792
py
Python
astroquery/utils/commons.py
iskren-y-g/astroquery
8248ba8fd0aa3a4c8221db729a127db047e18f4e
[ "BSD-3-Clause" ]
6
2018-10-29T22:00:17.000Z
2021-07-18T14:33:39.000Z
astroquery/utils/commons.py
iskren-y-g/astroquery
8248ba8fd0aa3a4c8221db729a127db047e18f4e
[ "BSD-3-Clause" ]
3
2020-02-26T15:42:55.000Z
2020-03-30T13:56:06.000Z
astroquery/utils/commons.py
iskren-y-g/astroquery
8248ba8fd0aa3a4c8221db729a127db047e18f4e
[ "BSD-3-Clause" ]
3
2019-07-08T21:30:17.000Z
2021-04-15T08:24:28.000Z
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Common functions and classes that are required by all query classes. """ import re import warnings import os import shutil import socket import requests from six.moves.urllib_error import URLError import six import astropy.units as u from astropy import coordinates as coord from collections import OrderedDict from astropy.utils import minversion import astropy.utils.data as aud from astropy.io import fits, votable from astropy.coordinates import BaseCoordinateFrame from ..exceptions import TimeoutError, InputWarning from .. import version def ICRSCoordGenerator(*args, **kwargs): return coord.SkyCoord(*args, frame='icrs', **kwargs) def GalacticCoordGenerator(*args, **kwargs): return coord.SkyCoord(*args, frame='galactic', **kwargs) def FK5CoordGenerator(*args, **kwargs): return coord.SkyCoord(*args, frame='fk5', **kwargs) def FK4CoordGenerator(*args, **kwargs): return coord.SkyCoord(*args, frame='fk4', **kwargs) ICRSCoord = coord.SkyCoord CoordClasses = (coord.SkyCoord, BaseCoordinateFrame) __all__ = ['send_request', 'parse_coordinates', 'TableList', 'suppress_vo_warnings', 'validate_email', 'ASTROPY_LT_4_0', 'ASTROPY_LT_4_1'] ASTROPY_LT_4_0 = not minversion('astropy', '4.0') ASTROPY_LT_4_1 = not minversion('astropy', '4.1') def send_request(url, data, timeout, request_type='POST', headers={}, **kwargs): """ A utility function that post HTTP requests to remote server and returns the HTTP response. Parameters ---------- url : str The URL of the remote server data : dict A dictionary representing the payload to be posted via the HTTP request timeout : int, quantity_like Time limit for establishing successful connection with remote server request_type : str options are 'POST' (default) and 'GET'. Determines whether to perform an HTTP POST or an HTTP GET request headers : dict POST or GET headers. user-agent will be set to astropy:astroquery.version Returns ------- response : `requests.Response` Response object returned by the remote server """ headers['User-Agent'] = ('astropy:astroquery.{vers}' .format(vers=version.version)) if hasattr(timeout, "unit"): warnings.warn("Converting timeout to seconds and truncating " "to integer.", InputWarning) timeout = int(timeout.to(u.s).value) try: if request_type == 'GET': response = requests.get(url, params=data, timeout=timeout, headers=headers, **kwargs) elif request_type == 'POST': response = requests.post(url, data=data, timeout=timeout, headers=headers, **kwargs) else: raise ValueError("request_type must be either 'GET' or 'POST'.") response.raise_for_status() return response except requests.exceptions.Timeout: raise TimeoutError("Query timed out, time elapsed {time}s". format(time=timeout)) except requests.exceptions.RequestException as ex: raise Exception("Query failed: {0}\n".format(ex)) def radius_to_unit(radius, unit='degree'): """ Helper function: Parse a radius, then return its value in degrees Parameters ---------- radius : str or `~astropy.units.Quantity` The radius of a region Returns ------- Floating point scalar value of radius in degrees """ rad = coord.Angle(radius) if isinstance(unit, six.string_types): if hasattr(rad, unit): return getattr(rad, unit) elif hasattr(rad, f"{unit}s"): return getattr(rad, f"{unit}s") return rad.to(unit).value def parse_coordinates(coordinates): """ Takes a string or astropy.coordinates object. Checks if the string is parsable as an `astropy.coordinates` object or is a name that is resolvable. Otherwise asserts that the argument is an astropy.coordinates object. Parameters ---------- coordinates : str or `astropy.coordinates` object Astronomical coordinate Returns ------- coordinates : a subclass of `astropy.coordinates.BaseCoordinateFrame` Raises ------ astropy.units.UnitsError TypeError """ if isinstance(coordinates, six.string_types): try: c = ICRSCoordGenerator(coordinates) warnings.warn("Coordinate string is being interpreted as an " "ICRS coordinate.", InputWarning) except u.UnitsError: warnings.warn("Only ICRS coordinates can be entered as " "strings.\n For other systems please use the " "appropriate astropy.coordinates object.", InputWarning) raise u.UnitsError except ValueError as err: if isinstance(err.args[1], u.UnitsError): try: c = ICRSCoordGenerator(coordinates, unit='deg') warnings.warn("Coordinate string is being interpreted as an " "ICRS coordinate provided in degrees.", InputWarning) except ValueError: c = ICRSCoord.from_name(coordinates) else: c = ICRSCoord.from_name(coordinates) elif isinstance(coordinates, CoordClasses): if hasattr(coordinates, 'frame'): c = coordinates else: # Convert the "frame" object into a SkyCoord c = coord.SkyCoord(coordinates) else: raise TypeError("Argument cannot be parsed as a coordinate") return c def coord_to_radec(coordinate): """ Wrapper to turn any astropy coordinate into FK5 RA in Hours and FK5 Dec in degrees This is a hack / temporary wrapper to deal with the unstable astropy API (it may be wise to remove this hack since it's not clear that the old coordinate API can even do transforms) """ C = coordinate.transform_to('fk5') if hasattr(C.ra, 'hour'): ra = C.ra.hour elif hasattr(C.ra, 'hourangle'): ra = C.ra.hourangle else: raise ValueError("API Error: RA cannot be converted to hour " "or hourangle.") dec = C.dec.degree return ra, dec class TableList(list): """ A class that inherits from `list` but included some pretty printing methods for an OrderedDict of `astropy.table.Table` objects. HINT: To access the tables by # instead of by table ID: >>> t = TableList([('a',1),('b',2)]) >>> t[1] 2 >>> t['b'] 2 """ def __init__(self, inp): if not isinstance(inp, OrderedDict): try: inp = OrderedDict(inp) except (TypeError, ValueError): raise ValueError("Input to TableList must be an OrderedDict " "or list of (k,v) pairs") self._dict = inp super(TableList, self).__init__(inp.values()) def __getitem__(self, key): if isinstance(key, int): # get the value in the (key,value) pair return super(TableList, self).__getitem__(key) elif key in self._dict: return self._dict[key] else: raise TypeError("TableLists can only be indexed with the " "named keys and integers.") def __setitem__(self, value): raise TypeError("TableList is immutable.") def __getslice__(self, slice): return list(self.values())[slice] def keys(self): return list(self._dict.keys()) def values(self): return list(self._dict.values()) def __repr__(self): """ Overrides the `OrderedDict.__repr__` method to return a simple summary of the `TableList` object. """ return self.format_table_list() def format_table_list(self): """ Prints the names of all `astropy.table.Table` objects, with their respective number of row and columns, contained in the `TableList` instance. """ ntables = len(list(self.keys())) if ntables == 0: return "Empty TableList" header_str = "TableList with {keylen} tables:".format(keylen=ntables) body_str = "\n".join(["\t'{t_number}:{t_name}' with {ncol} column(s) " "and {nrow} row(s) " .format(t_number=t_number, t_name=t_name, nrow=len(self[t_number]), ncol=len(self[t_number].colnames)) for t_number, t_name in enumerate(self.keys())]) return "\n".join([header_str, body_str]) def print_table_list(self): print(self.format_table_list()) def pprint(self, **kwargs): """ Helper function to make API more similar to astropy.Tables """ if kwargs != {}: warnings.warn("TableList is a container of astropy.Tables.", InputWarning) self.print_table_list() def _is_coordinate(coordinates): """ Returns `True` if coordinates can be parsed via `astropy.coordinates` and `False` otherwise. Parameters ---------- coordinates : str or `astropy.coordinates` object The target around which to search. It may be specified as a string in which case it is resolved using online services or as the appropriate `astropy.coordinates` object. ICRS coordinates may also be entered as strings as specified in the `astropy.coordinates` module. Returns ------- bool """ if hasattr(coordinates, 'fk5'): # its coordinate-like enough return True try: ICRSCoordGenerator(coordinates) return True except ValueError: return False def suppress_vo_warnings(): """ Suppresses all warnings of the class `astropy.io.votable.exceptions.VOWarning`. """ warnings.filterwarnings("ignore", category=votable.exceptions.VOWarning) def validate_email(email): """ E-mail address validation. Uses validate_email if available, else a simple regex that will let through some invalid e-mails but will catch the most common violators. """ try: import validate_email return validate_email.validate_email(email) except ImportError: return bool(re.compile(r'^\S+@\S+\.\S+$').match(email)) class FileContainer: """ A File Object container, meant to offer lazy access to downloaded FITS files. """ def __init__(self, target, **kwargs): kwargs.setdefault('cache', True) self._target = target self._timeout = kwargs.get('remote_timeout', aud.conf.remote_timeout) if (os.path.splitext(target)[1] == '.fits' and not ('encoding' in kwargs and kwargs['encoding'] == 'binary')): warnings.warn("FITS files must be read as binaries; error is " "likely.", InputWarning) self._readable_object = get_readable_fileobj(target, **kwargs) def get_fits(self): """ Assuming the contained file is a FITS file, read it and return the file parsed as FITS HDUList """ filedata = self.get_string() if len(filedata) == 0: raise TypeError("The file retrieved was empty.") self._fits = fits.HDUList.fromstring(filedata) return self._fits def save_fits(self, savepath, link_cache='hard'): """ Save a FITS file to savepath Parameters ---------- savepath : str The full path to a FITS filename, e.g. "file.fits", or "/path/to/file.fits". link_cache : 'hard', 'sym', or False Try to create a hard or symbolic link to the astropy cached file? If the system is unable to create a hardlink, the file will be copied to the target location. """ self.get_fits() target_key = str(self._target) # There has been some internal refactoring in astropy.utils.data # so we do this check. Update when minimum required astropy changes. if ASTROPY_LT_4_0: if not aud.is_url_in_cache(target_key): raise IOError("Cached file not found / does not exist.") target = aud.download_file(target_key, cache=True) else: target = aud.download_file(target_key, cache=True, sources=[]) if link_cache == 'hard': try: os.link(target, savepath) except (IOError, OSError, AttributeError): shutil.copy(target, savepath) elif link_cache == 'sym': try: os.symlink(target, savepath) except AttributeError: raise OSError('Creating symlinks is not possible on this OS.') else: shutil.copy(target, savepath) def get_string(self): """ Download the file as a string """ if not hasattr(self, '_string'): try: with self._readable_object as f: data = f.read() self._string = data except URLError as e: if isinstance(e.reason, socket.timeout): raise TimeoutError("Query timed out, time elapsed {t}s". format(t=self._timeout)) else: raise e return self._string def get_stringio(self): """ Return the file as an io.StringIO object """ s = self.get_string() # TODO: replace with six.BytesIO try: return six.BytesIO(s) except TypeError: return six.StringIO(s) def __repr__(self): if hasattr(self, '_fits'): return f"Downloaded FITS file: {self._fits!r}" else: return f"Downloaded object from URL {self._target} with ID {id(self._readable_object)}" def get_readable_fileobj(*args, **kwargs): """ Overload astropy's get_readable_fileobj so that we can safely monkeypatch it in astroquery without affecting astropy core functionality """ return aud.get_readable_fileobj(*args, **kwargs) def parse_votable(content): """ Parse a votable in string format """ tables = votable.parse(six.BytesIO(content), pedantic=False) return tables
31.539446
99
0.600595
9f9a89e579c15d240052e8c06372ca89f0627875
8,096
py
Python
tests/test_tracer.py
pelotoncycle/dd-trace-py
b5254016dc42185eebfadce8dc634003408439d7
[ "BSD-3-Clause" ]
null
null
null
tests/test_tracer.py
pelotoncycle/dd-trace-py
b5254016dc42185eebfadce8dc634003408439d7
[ "BSD-3-Clause" ]
null
null
null
tests/test_tracer.py
pelotoncycle/dd-trace-py
b5254016dc42185eebfadce8dc634003408439d7
[ "BSD-3-Clause" ]
2
2017-05-27T05:58:36.000Z
2019-02-07T13:38:53.000Z
""" tests for Tracer and utilities. """ import time from nose.tools import assert_raises, eq_ from unittest.case import SkipTest from ddtrace.encoding import JSONEncoder, MsgpackEncoder from ddtrace.tracer import Tracer from ddtrace.writer import AgentWriter def test_tracer_vars(): writer = DummyWriter() tracer = Tracer() tracer.writer = writer # explicit vars s = tracer.trace("a", service="s", resource="r", span_type="t") eq_(s.service, "s") eq_(s.resource, "r") eq_(s.span_type, "t") s.finish() # defaults s = tracer.trace("a") eq_(s.service, None) eq_(s.resource, "a") # inherits eq_(s.span_type, None) def test_tracer(): # add some dummy tracing code. writer = DummyWriter() tracer = Tracer() tracer.writer = writer sleep = 0.05 def _mix(): with tracer.trace("cake.mix"): time.sleep(sleep) def _bake(): with tracer.trace("cake.bake"): time.sleep(sleep) def _make_cake(): with tracer.trace("cake.make") as span: span.service = "baker" span.resource = "cake" _mix() _bake() # let's run it and make sure all is well. assert not writer.spans _make_cake() spans = writer.pop() assert spans, "%s" % spans eq_(len(spans), 3) spans_by_name = {s.name:s for s in spans} eq_(len(spans_by_name), 3) make = spans_by_name["cake.make"] assert make.span_id assert make.parent_id is None assert make.trace_id for other in ["cake.mix", "cake.bake"]: s = spans_by_name[other] eq_(s.parent_id, make.span_id) eq_(s.trace_id, make.trace_id) eq_(s.service, make.service) # ensure it inherits the service eq_(s.resource, s.name) # ensure when we don't set a resource, it's there. # do it again and make sure it has new trace ids _make_cake() spans = writer.pop() for s in spans: assert s.trace_id != make.trace_id def test_tracer_wrap(): writer = DummyWriter() tracer = Tracer() tracer.writer = writer @tracer.wrap('decorated_function', service='s', resource='r', span_type='t') def f(tag_name, tag_value): # make sure we can still set tags span = tracer.current_span() span.set_tag(tag_name, tag_value) f('a', 'b') spans = writer.pop() eq_(len(spans), 1) s = spans[0] eq_(s.name, 'decorated_function') eq_(s.service, 's') eq_(s.resource, 'r') eq_(s.span_type, 't') eq_(s.to_dict()['meta']['a'], 'b') def test_tracer_wrap_default_name(): writer = DummyWriter() tracer = Tracer() tracer.writer = writer @tracer.wrap() def f(): pass f() eq_(writer.spans[0].name, 'tests.test_tracer.f') def test_tracer_wrap_exception(): writer = DummyWriter() tracer = Tracer() tracer.writer = writer @tracer.wrap() def f(): raise Exception('bim') assert_raises(Exception, f) eq_(len(writer.spans), 1) eq_(writer.spans[0].error, 1) def test_tracer_wrap_multiple_calls(): # Make sure that we create a new span each time the function is called writer = DummyWriter() tracer = Tracer() tracer.writer = writer @tracer.wrap() def f(): pass f() f() spans = writer.pop() eq_(len(spans), 2) assert spans[0].span_id != spans[1].span_id def test_tracer_wrap_span_nesting(): # Make sure that nested spans have the correct parents writer = DummyWriter() tracer = Tracer() tracer.writer = writer @tracer.wrap('inner') def inner(): pass @tracer.wrap('outer') def outer(): with tracer.trace('mid'): inner() outer() spans = writer.pop() eq_(len(spans), 3) # sift through the list so we're not dependent on span ordering within the # writer for span in spans: if span.name == 'outer': outer_span = span elif span.name == 'mid': mid_span = span elif span.name == 'inner': inner_span = span else: assert False, 'unknown span found' # should never get here assert outer_span assert mid_span assert inner_span eq_(outer_span.parent_id, None) eq_(mid_span.parent_id, outer_span.span_id) eq_(inner_span.parent_id, mid_span.span_id) def test_tracer_wrap_class(): writer = DummyWriter() tracer = Tracer() tracer.writer = writer class Foo(object): @staticmethod @tracer.wrap() def s(): return 1 @classmethod @tracer.wrap() def c(cls): return 2 @tracer.wrap() def i(cls): return 3 f = Foo() eq_(f.s(), 1) eq_(f.c(), 2) eq_(f.i(), 3) spans = writer.pop() eq_(len(spans), 3) names = [s.name for s in spans] # FIXME[matt] include the class name here. eq_(sorted(names), sorted(["tests.test_tracer.%s" % n for n in ["s", "c", "i"]])) def test_tracer_disabled(): # add some dummy tracing code. writer = DummyWriter() tracer = Tracer() tracer.writer = writer tracer.enabled = True with tracer.trace("foo") as s: s.set_tag("a", "b") assert writer.pop() tracer.enabled = False with tracer.trace("foo") as s: s.set_tag("a", "b") assert not writer.pop() def test_unserializable_span_with_finish(): try: import numpy as np except ImportError: raise SkipTest("numpy not installed") # a weird case where manually calling finish with an unserializable # span was causing an loop of serialization. writer = DummyWriter() tracer = Tracer() tracer.writer = writer with tracer.trace("parent") as span: span.metrics['as'] = np.int64(1) # circumvent the data checks span.finish() def test_tracer_disabled_mem_leak(): # ensure that if the tracer is disabled, we still remove things from the # span buffer upon finishing. writer = DummyWriter() tracer = Tracer() tracer.writer = writer tracer.enabled = False s1 = tracer.trace("foo") s1.finish() p1 = tracer.current_span() s2 = tracer.trace("bar") assert not s2._parent, s2._parent s2.finish() assert not p1, p1 def test_tracer_global_tags(): writer = DummyWriter() tracer = Tracer() tracer.writer = writer s1 = tracer.trace('brie') s1.finish() assert not s1.meta tracer.set_tags({'env': 'prod'}) s2 = tracer.trace('camembert') s2.finish() assert s2.meta == {'env': 'prod'} tracer.set_tags({'env': 'staging', 'other': 'tag'}) s3 = tracer.trace('gruyere') s3.finish() assert s3.meta == {'env': 'staging', 'other': 'tag'} class DummyWriter(AgentWriter): """ DummyWriter is a small fake writer used for tests. not thread-safe. """ def __init__(self): # original call super(DummyWriter, self).__init__() # dummy components self.spans = [] self.services = {} self.json_encoder = JSONEncoder() self.msgpack_encoder = MsgpackEncoder() def write(self, spans=None, services=None): if spans: # the traces encoding expect a list of traces so we # put spans in a list like we do in the real execution path # with both encoders self.json_encoder.encode_traces([spans]) self.msgpack_encoder.encode_traces([spans]) self.spans += spans if services: self.json_encoder.encode_services(services) self.msgpack_encoder.encode_services(services) self.services.update(services) def pop(self): # dummy method s = self.spans self.spans = [] return s def pop_services(self): # dummy method s = self.services self.services = {} return s def get_dummy_tracer(): tracer = Tracer() tracer.writer = DummyWriter() return tracer
24.607903
87
0.600667
1324f094165cc567c9aa7c5ee9a1cf3b6272f5da
14,459
py
Python
contrib/aseprite_codec/aseprite.py
Lylitalo/Minesweeper
37b5ea775436c588aa340e32a303b39aeb953daa
[ "BSD-3-Clause" ]
null
null
null
contrib/aseprite_codec/aseprite.py
Lylitalo/Minesweeper
37b5ea775436c588aa340e32a303b39aeb953daa
[ "BSD-3-Clause" ]
null
null
null
contrib/aseprite_codec/aseprite.py
Lylitalo/Minesweeper
37b5ea775436c588aa340e32a303b39aeb953daa
[ "BSD-3-Clause" ]
null
null
null
# ---------------------------------------------------------------------------- # pyglet # Copyright (c) 2006-2008 Alex Holkner # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # * Neither the name of pyglet nor the names of its # contributors may be used to endorse or promote products # derived from this software without specific prior written # permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # ---------------------------------------------------------------------------- """Decoder for Aseprite animation files in .ase or .aseprite format. """ __docformat__ = 'restructuredtext' __version__ = '$Id: $' import struct import zlib from pyglet.image import ImageData, Animation, AnimationFrame from pyglet.image.codecs import ImageDecoder, ImageDecodeException from pyglet.compat import BytesIO # Documentation for the Aseprite format can be found here: # https://raw.githubusercontent.com/aseprite/aseprite/master/docs/ase-file-specs.md BYTE = "B" WORD = "H" SIGNED_WORD = "h" DWORD = "I" BLEND_MODES = {0: 'Normal', 1: 'Multiply', 2: 'Screen', 3: 'Overlay', 4: 'Darken', 5: 'Lighten', 6: 'Color Dodge', 7: 'Color Burn', 8: 'Hard Light', 9: 'Soft Light', 10: 'Difference', 11: 'Exclusion', 12: 'Hue', 13: 'Saturation', 14: 'Color', 15: 'Luminosity'} PALETTE_DICT = {} PALETTE_INDEX = 0 def _unpack(fmt, file): """Unpack little endian bytes fram a file-like object. """ size = struct.calcsize(fmt) data = file.read(size) if len(data) < size: raise ImageDecodeException('Unexpected EOF') return struct.unpack("<" + fmt, data)[0] def _chunked_iter(seq, size): return (seq[pos:pos + size] for pos in range(0, len(seq), size)) ######################################### # Class for Aseprite compliant header ######################################### class AsepriteHeader(object): def __init__(self, file): self.file_size = _unpack(DWORD, file) self.magic_number = hex(_unpack(WORD, file)) self.num_frames = _unpack(WORD, file) self.width = _unpack(WORD, file) self.height = _unpack(WORD, file) self.color_depth = _unpack(WORD, file) self.flags = _unpack(DWORD, file) self.speed = _unpack(WORD, file) self._zero = _unpack(DWORD, file) self._zero = _unpack(DWORD, file) self.palette_index = _unpack(BYTE, file) self._ignore = _unpack(BYTE * 3, file) self.number_of_colors = _unpack(WORD, file) self._zero = _unpack(BYTE * 94, file) ######################################### # Class for Aseprite animation frames ######################################### class Frame(object): def __init__(self, num_chunks, duration, header, data): self.num_chunks = num_chunks self.duration = duration self.color_depth = header.color_depth self.width = header.width self.height = header.height self._data = data self.chunks = self._parse_chunks() self.cels = [c for c in self.chunks if type(c) == CelChunk] self.layers = [c for c in self.chunks if type(c) == LayerChunk] def _parse_chunks(self): fileobj = BytesIO(self._data) chunks = [] for chunk in range(self.num_chunks): chunk_size = _unpack(DWORD, fileobj) chunk_type = format(_unpack(WORD, fileobj), "#06x") header_size = struct.calcsize(DWORD + WORD) chunk_data = fileobj.read(chunk_size - header_size) if chunk_type in ("0x0004", "0x0011", "0x2016"): chunks.append(DeprecatedChunk(chunk_size, chunk_type, chunk_data)) elif chunk_type == "0x2004": chunks.append(LayerChunk(chunk_size, chunk_type, chunk_data)) elif chunk_type == "0x2005": chunks.append(CelChunk(chunk_size, chunk_type, chunk_data)) elif chunk_type == "0x2017": chunks.append(PathChunk(chunk_size, chunk_type, chunk_data)) elif chunk_type == "0x2018": chunks.append(FrameTagsChunk(chunk_size, chunk_type, chunk_data)) elif chunk_type == "0x2019": palette_chunk = PaletteChunk(chunk_size, chunk_type, chunk_data) chunks.append(palette_chunk) global PALETTE_DICT PALETTE_DICT = palette_chunk.palette_dict.copy() elif chunk_type == "0x2020": chunks.append(UserDataChunk(chunk_size, chunk_type, chunk_data)) return chunks def _pad_pixels(self, cel): """For cels that dont fill the entire frame, pad with zeros.""" fileobj = BytesIO(cel.pixel_data) padding = b'\x00\x00\x00\x00' top_pad = bytes(padding) * (self.width * cel.y_pos) left_pad = bytes(padding) * cel.x_pos right_pad = bytes(padding) * (self.width - cel.x_pos - cel.width) bottom_pad = bytes(padding) * (self.width * (self.height - cel.height - cel.y_pos)) line_size = cel.width * len(padding) pixel_array = top_pad for i in range(cel.height): pixel_array += (left_pad + fileobj.read(line_size) + right_pad) pixel_array += bottom_pad return pixel_array @staticmethod def _blend_pixels(bottom, top, mode): # Iterate over the arrays in chunks of 4 (RGBA): bottom_iter = _chunked_iter(bottom, 4) top_iter = _chunked_iter(top, 4) if mode == 'Normal': final_array = [] # If RGB values are > 0, use the top pixel. for bottom_pixel, top_pixel in zip(bottom_iter, top_iter): if sum(top_pixel[:3]) > 0: final_array.extend(top_pixel) else: final_array.extend(bottom_pixel) return bytes(final_array) # TODO: implement additional blend modes else: raise ImageDecodeException('Unsupported blend mode.') def _convert_to_rgba(self, cel): if self.color_depth == 8: global PALETTE_INDEX pixel_array = [] for pixel in cel.pixel_data: if pixel == PALETTE_INDEX: pixel_array.extend([0, 0, 0, 0]) else: pixel_array.extend(PALETTE_DICT[pixel]) cel.pixel_data = bytes(pixel_array) return cel elif self.color_depth == 16: greyscale_iter = _chunked_iter(cel.pixel_data, 2) pixel_array = [] for pixel in greyscale_iter: rgba = (pixel[0] * 3) + pixel[1] pixel_array.append(rgba) cel.pixel_data = bytes(pixel_array) return cel else: return cel def get_pixel_array(self, layers): # Start off with an empty RGBA base: pixel_array = bytes(4) * self.width * self.height # Blend each layer's cel data one-by-one: for cel in self.cels: cel = self._convert_to_rgba(cel) padded_pixels = self._pad_pixels(cel) blend_mode = BLEND_MODES[layers[cel.layer_index].blend_mode] pixel_array = self._blend_pixels(pixel_array, padded_pixels, blend_mode) return pixel_array ######################################### # Aseprite Chunk type definitions ######################################### class Chunk(object): def __init__(self, size, chunk_type): self.size = size self.chunk_type = chunk_type class LayerChunk(Chunk): def __init__(self, size, chunk_type, data): super(LayerChunk, self).__init__(size, chunk_type) fileobj = BytesIO(data) self.flags = _unpack(WORD, fileobj) self.layer_type = _unpack(WORD, fileobj) self.child_level = _unpack(WORD, fileobj) _ignored_width = _unpack(WORD, fileobj) _ignored_height = _unpack(WORD, fileobj) self.blend_mode = _unpack(WORD, fileobj) self.opacity = _unpack(BYTE, fileobj) _zero_unused = _unpack(BYTE * 3, fileobj) name_length = _unpack(WORD, fileobj) self.name = fileobj.read(name_length) if hasattr(self.name, "decode"): self.name = self.name.decode('utf8') class CelChunk(Chunk): def __init__(self, size, chunk_type, data): super(CelChunk, self).__init__(size, chunk_type) fileobj = BytesIO(data) self.layer_index = _unpack(WORD, fileobj) self.x_pos = _unpack(SIGNED_WORD, fileobj) self.y_pos = _unpack(SIGNED_WORD, fileobj) self.opacity_level = _unpack(BYTE, fileobj) self.cel_type = _unpack(WORD, fileobj) _zero_unused = _unpack(BYTE * 7, fileobj) if self.cel_type == 0: self.width = _unpack(WORD, fileobj) self.height = _unpack(WORD, fileobj) self.pixel_data = fileobj.read() elif self.cel_type == 1: self.frame_position = _unpack(WORD, fileobj) elif self.cel_type == 2: self.width = _unpack(WORD, fileobj) self.height = _unpack(WORD, fileobj) self.pixel_data = zlib.decompress(fileobj.read()) class PathChunk(Chunk): def __init__(self, size, chunk_type, data): super(PathChunk, self).__init__(size, chunk_type) class FrameTagsChunk(Chunk): def __init__(self, size, chunk_type, data): super(FrameTagsChunk, self).__init__(size, chunk_type) # TODO: unpack this data. class PaletteChunk(Chunk): def __init__(self, size, chunk_type, data): super(PaletteChunk, self).__init__(size, chunk_type) fileobj = BytesIO(data) self.palette_size = _unpack(DWORD, fileobj) self.first_color_index = _unpack(DWORD, fileobj) self.last_color_index = _unpack(DWORD, fileobj) _zero = _unpack(BYTE * 8, fileobj) self.palette_dict = {} if _unpack(WORD, fileobj) == 1: # color has name size = 7 else: size = 6 for index in range(self.first_color_index, self.last_color_index+1): rgba_data = fileobj.read(size) # Ignore the palette names, as they aren't needed: r, g, b, a = struct.unpack('<BBBB', rgba_data[:4]) self.palette_dict[index] = r, g, b, a class UserDataChunk(Chunk): def __init__(self, size, chunk_type, data): super(UserDataChunk, self).__init__(size, chunk_type) # TODO: unpack this data. class DeprecatedChunk(Chunk): def __init__(self, size, chunk_type, data): super(DeprecatedChunk, self).__init__(size, chunk_type) ######################################### # Image Decoder class definition ######################################### class AsepriteImageDecoder(ImageDecoder): def get_file_extensions(self): return ['.ase', '.aseprite'] def get_animation_file_extensions(self): return ['.ase', '.aseprite'] def decode(self, file, filename): header, frames, layers, pitch = self._parse_file(file, filename) pixel_data = frames[0].get_pixel_array(layers=layers) return ImageData(header.width, header.height, 'RGBA', pixel_data, -pitch) def decode_animation(self, file, filename): header, frames, layers, pitch = self._parse_file(file, filename) animation_frames = [] for frame in frames: pixel_data = frame.get_pixel_array(layers=layers) image = ImageData(header.width, header.height, 'RGBA', pixel_data, -pitch) animation_frames.append(AnimationFrame(image, frame.duration/1000.0)) return Animation(animation_frames) @staticmethod def _parse_file(file, filename): if not file: file = open(filename, 'rb') header = AsepriteHeader(file) if header.magic_number != '0xa5e0': raise ImageDecodeException("Does not appear to be a valid ASEprite file.") if header.color_depth not in (8, 16, 32): raise ImageDecodeException("Invalid color depth.") global PALETTE_INDEX PALETTE_INDEX = header.palette_index frames = [] for _ in range(header.num_frames): frame_size = _unpack(DWORD, file) magic_number = hex(_unpack(WORD, file)) if magic_number != '0xf1fa': raise ImageDecodeException("Malformed frame. File may be corrupted.") num_chunks = _unpack(WORD, file) duration = _unpack(WORD, file) _zero = _unpack(BYTE * 6, file) header_size = struct.calcsize(DWORD + WORD * 3 + BYTE * 6) data = file.read(frame_size - header_size) frames.append(Frame(num_chunks, duration, header, data)) # Layers chunk is in the first frame: layers = frames[0].layers pitch = len('RGBA') * header.width file.close() return header, frames, layers, pitch def get_decoders(): return [AsepriteImageDecoder()] def get_encoders(): return []
36.885204
91
0.606197
490553816be4cd6d31d978ffbf5040fc92cfc1ef
3,654
py
Python
testing/model_loading.py
l2tor/underworlds
2937b6f858a1725d4581a792e34e5c08587301d0
[ "BSD-3-Clause" ]
null
null
null
testing/model_loading.py
l2tor/underworlds
2937b6f858a1725d4581a792e34e5c08587301d0
[ "BSD-3-Clause" ]
null
null
null
testing/model_loading.py
l2tor/underworlds
2937b6f858a1725d4581a792e34e5c08587301d0
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python #-*- coding: UTF-8 -*- import unittest import underworlds import underworlds.server import logging; logger = logging.getLogger("underworlds.testing") logging.basicConfig(level=logging.DEBUG) import time from underworlds.tools.loader import ModelLoader from underworlds.types import MESH, CAMERA import os.path as path from underworlds.helpers.transformations import compose_matrix PROPAGATION_TIME=0.01 # time to wait for node update notification propagation (in sec) class TestModelLoading(unittest.TestCase): """Test for a bug where loading a second model reset the transformation of the first model """ def setUp(self): self.server = underworlds.server.start() time.sleep(0.1) # leave some time to the server to start self.ctx = underworlds.Context("unittest - root anchoring transformation issue") def test_basic_loading(self): world = self.ctx.worlds["test"] nodes = ModelLoader().load(path.join("res","tree.blend"), world="test") time.sleep(PROPAGATION_TIME) self.assertEquals(len(nodes), 2) # <BlenderRoot> and <tree> self.assertEquals(len(world.scene.nodes), 2) trees = world.scene.nodebyname("tree") self.assertEquals(len(trees), 1) # only one tree self.assertEquals(trees[0].type, MESH) def test_complex_loading(self): world = self.ctx.worlds["test"] nodes = ModelLoader().load(path.join("res","visibility.blend"), world="test") time.sleep(PROPAGATION_TIME) self.assertEquals(len(nodes), 8) self.assertEquals(len(world.scene.nodes), 8) self.assertEquals(len(world.scene.nodebyname("Camera1")), 1) cam1 = world.scene.nodebyname("Camera1")[0] self.assertEquals(cam1.type, CAMERA) self.assertFalse(cam1.hires) self.assertEquals(len(world.scene.nodebyname("Cube1")), 1) cube1 = world.scene.nodebyname("Cube1")[0] self.assertEquals(cube1.type, MESH) self.assertTrue(cube1.hires) def test_double_loading(self): world = self.ctx.worlds["test"] ModelLoader().load(path.join("res","tree.blend"), world="test") ModelLoader().load(path.join("res","tree.blend"), world="test") time.sleep(PROPAGATION_TIME) self.assertEquals(len(world.scene.nodes), 3) # one root and 2 trees trees = world.scene.nodebyname("tree") self.assertEquals(len(trees), 2) # should have 2 trees self.assertEquals(trees[0].hires, trees[1].hires) self.assertNotEquals(trees[0].id, trees[1].id) def test_anchoring(self): world = self.ctx.worlds["test"] nodes = ModelLoader().load(path.join("res","tree.blend"), world="test") tree = world.scene.nodebyname("tree")[0] self.assertEqual(tree.transformation[0,3], 0) tree.transformation = compose_matrix(None, None, None, [2, 0, 0], None) world.scene.nodes.update(tree) time.sleep(PROPAGATION_TIME) self.assertEqual(world.scene.nodes[tree.id].transformation[0,3], 2) # ...loading another model reset the transformation of our original # model nodes = ModelLoader().load(path.join("res","cow.blend"), world="test") time.sleep(PROPAGATION_TIME) self.assertEqual(world.scene.nodes[tree.id].transformation[0,3], 2) def tearDown(self): self.ctx.close() self.server.stop(0) def test_suite(): suite = unittest.TestLoader().loadTestsFromTestCase(TestModelLoading) return suite if __name__ == '__main__': unittest.main()
32.336283
94
0.660372
fa0e93a72aa6b8908730a267a8390376ce314a92
18,009
py
Python
homeassistant/components/zwave_js/services.py
RavensburgOP/core
0ea76e848b182ca0ebb0fdb54558f7f733898ad7
[ "Apache-2.0" ]
5
2019-02-24T11:46:18.000Z
2019-05-28T17:37:21.000Z
homeassistant/components/zwave_js/services.py
RavensburgOP/core
0ea76e848b182ca0ebb0fdb54558f7f733898ad7
[ "Apache-2.0" ]
77
2020-07-16T16:43:09.000Z
2022-03-31T06:14:37.000Z
homeassistant/components/zwave_js/services.py
Vaarlion/core
f3de8b9f28de01abf72c0f5bb0b457eb1841f201
[ "Apache-2.0" ]
7
2021-03-20T12:34:01.000Z
2021-12-02T10:13:52.000Z
"""Methods and classes related to executing Z-Wave commands and publishing these to hass.""" from __future__ import annotations import asyncio import logging from typing import Any import voluptuous as vol from zwave_js_server.client import Client as ZwaveClient from zwave_js_server.const import CommandStatus from zwave_js_server.exceptions import SetValueFailed from zwave_js_server.model.node import Node as ZwaveNode from zwave_js_server.model.value import get_value_id from zwave_js_server.util.multicast import async_multicast_set_value from zwave_js_server.util.node import ( async_bulk_set_partial_config_parameters, async_set_config_parameter, ) from homeassistant.const import ATTR_DEVICE_ID, ATTR_ENTITY_ID from homeassistant.core import HomeAssistant, ServiceCall, callback import homeassistant.helpers.config_validation as cv from homeassistant.helpers.device_registry import DeviceRegistry from homeassistant.helpers.dispatcher import async_dispatcher_send from homeassistant.helpers.entity_registry import EntityRegistry from . import const from .helpers import async_get_node_from_device_id, async_get_node_from_entity_id _LOGGER = logging.getLogger(__name__) def parameter_name_does_not_need_bitmask( val: dict[str, int | str | list[str]] ) -> dict[str, int | str | list[str]]: """Validate that if a parameter name is provided, bitmask is not as well.""" if ( isinstance(val[const.ATTR_CONFIG_PARAMETER], str) and const.ATTR_CONFIG_PARAMETER_BITMASK in val ): raise vol.Invalid( "Don't include a bitmask when a parameter name is specified", path=[const.ATTR_CONFIG_PARAMETER, const.ATTR_CONFIG_PARAMETER_BITMASK], ) return val def broadcast_command(val: dict[str, Any]) -> dict[str, Any]: """Validate that the service call is for a broadcast command.""" if val.get(const.ATTR_BROADCAST): return val raise vol.Invalid( "Either `broadcast` must be set to True or multiple devices/entities must be " "specified" ) # Validates that a bitmask is provided in hex form and converts it to decimal # int equivalent since that's what the library uses BITMASK_SCHEMA = vol.All( cv.string, vol.Lower, vol.Match( r"^(0x)?[0-9a-f]+$", msg="Must provide an integer (e.g. 255) or a bitmask in hex form (e.g. 0xff)", ), lambda value: int(value, 16), ) VALUE_SCHEMA = vol.Any( bool, vol.Coerce(int), vol.Coerce(float), BITMASK_SCHEMA, cv.string, ) class ZWaveServices: """Class that holds our services (Zwave Commands) that should be published to hass.""" def __init__( self, hass: HomeAssistant, ent_reg: EntityRegistry, dev_reg: DeviceRegistry ) -> None: """Initialize with hass object.""" self._hass = hass self._ent_reg = ent_reg self._dev_reg = dev_reg @callback def async_register(self) -> None: """Register all our services.""" @callback def get_nodes_from_service_data(val: dict[str, Any]) -> dict[str, Any]: """Get nodes set from service data.""" nodes: set[ZwaveNode] = set() for entity_id in val.pop(ATTR_ENTITY_ID, []): try: nodes.add( async_get_node_from_entity_id( self._hass, entity_id, self._ent_reg, self._dev_reg ) ) except ValueError as err: const.LOGGER.warning(err.args[0]) for device_id in val.pop(ATTR_DEVICE_ID, []): try: nodes.add( async_get_node_from_device_id( self._hass, device_id, self._dev_reg ) ) except ValueError as err: const.LOGGER.warning(err.args[0]) val[const.ATTR_NODES] = nodes return val @callback def validate_multicast_nodes(val: dict[str, Any]) -> dict[str, Any]: """Validate the input nodes for multicast.""" nodes: set[ZwaveNode] = val[const.ATTR_NODES] broadcast: bool = val[const.ATTR_BROADCAST] # User must specify a node if they are attempting a broadcast and have more # than one zwave-js network. if ( broadcast and not nodes and len(self._hass.config_entries.async_entries(const.DOMAIN)) > 1 ): raise vol.Invalid( "You must include at least one entity or device in the service call" ) first_node = next((node for node in nodes), None) # If any nodes don't have matching home IDs, we can't run the command because # we can't multicast across multiple networks if first_node and any( node.client.driver.controller.home_id != first_node.client.driver.controller.home_id for node in nodes ): raise vol.Invalid( "Multicast commands only work on devices in the same network" ) return val @callback def validate_entities(val: dict[str, Any]) -> dict[str, Any]: """Validate entities exist and are from the zwave_js platform.""" for entity_id in val[ATTR_ENTITY_ID]: entry = self._ent_reg.async_get(entity_id) if entry is None or entry.platform != const.DOMAIN: raise vol.Invalid( f"Entity {entity_id} is not a valid {const.DOMAIN} entity." ) return val self._hass.services.async_register( const.DOMAIN, const.SERVICE_SET_CONFIG_PARAMETER, self.async_set_config_parameter, schema=vol.Schema( vol.All( { vol.Optional(ATTR_DEVICE_ID): vol.All( cv.ensure_list, [cv.string] ), vol.Optional(ATTR_ENTITY_ID): cv.entity_ids, vol.Required(const.ATTR_CONFIG_PARAMETER): vol.Any( vol.Coerce(int), cv.string ), vol.Optional(const.ATTR_CONFIG_PARAMETER_BITMASK): vol.Any( vol.Coerce(int), BITMASK_SCHEMA ), vol.Required(const.ATTR_CONFIG_VALUE): vol.Any( vol.Coerce(int), BITMASK_SCHEMA, cv.string ), }, cv.has_at_least_one_key(ATTR_DEVICE_ID, ATTR_ENTITY_ID), parameter_name_does_not_need_bitmask, get_nodes_from_service_data, ), ), ) self._hass.services.async_register( const.DOMAIN, const.SERVICE_BULK_SET_PARTIAL_CONFIG_PARAMETERS, self.async_bulk_set_partial_config_parameters, schema=vol.Schema( vol.All( { vol.Optional(ATTR_DEVICE_ID): vol.All( cv.ensure_list, [cv.string] ), vol.Optional(ATTR_ENTITY_ID): cv.entity_ids, vol.Required(const.ATTR_CONFIG_PARAMETER): vol.Coerce(int), vol.Required(const.ATTR_CONFIG_VALUE): vol.Any( vol.Coerce(int), { vol.Any( vol.Coerce(int), BITMASK_SCHEMA, cv.string ): vol.Any(vol.Coerce(int), BITMASK_SCHEMA, cv.string) }, ), }, cv.has_at_least_one_key(ATTR_DEVICE_ID, ATTR_ENTITY_ID), get_nodes_from_service_data, ), ), ) self._hass.services.async_register( const.DOMAIN, const.SERVICE_REFRESH_VALUE, self.async_poll_value, schema=vol.Schema( vol.All( { vol.Required(ATTR_ENTITY_ID): cv.entity_ids, vol.Optional( const.ATTR_REFRESH_ALL_VALUES, default=False ): cv.boolean, }, validate_entities, ) ), ) self._hass.services.async_register( const.DOMAIN, const.SERVICE_SET_VALUE, self.async_set_value, schema=vol.Schema( vol.All( { vol.Optional(ATTR_DEVICE_ID): vol.All( cv.ensure_list, [cv.string] ), vol.Optional(ATTR_ENTITY_ID): cv.entity_ids, vol.Required(const.ATTR_COMMAND_CLASS): vol.Coerce(int), vol.Required(const.ATTR_PROPERTY): vol.Any( vol.Coerce(int), str ), vol.Optional(const.ATTR_PROPERTY_KEY): vol.Any( vol.Coerce(int), str ), vol.Optional(const.ATTR_ENDPOINT): vol.Coerce(int), vol.Required(const.ATTR_VALUE): VALUE_SCHEMA, vol.Optional(const.ATTR_WAIT_FOR_RESULT): cv.boolean, vol.Optional(const.ATTR_OPTIONS): {cv.string: VALUE_SCHEMA}, }, cv.has_at_least_one_key(ATTR_DEVICE_ID, ATTR_ENTITY_ID), get_nodes_from_service_data, ), ), ) self._hass.services.async_register( const.DOMAIN, const.SERVICE_MULTICAST_SET_VALUE, self.async_multicast_set_value, schema=vol.Schema( vol.All( { vol.Optional(ATTR_DEVICE_ID): vol.All( cv.ensure_list, [cv.string] ), vol.Optional(ATTR_ENTITY_ID): cv.entity_ids, vol.Optional(const.ATTR_BROADCAST, default=False): cv.boolean, vol.Required(const.ATTR_COMMAND_CLASS): vol.Coerce(int), vol.Required(const.ATTR_PROPERTY): vol.Any( vol.Coerce(int), str ), vol.Optional(const.ATTR_PROPERTY_KEY): vol.Any( vol.Coerce(int), str ), vol.Optional(const.ATTR_ENDPOINT): vol.Coerce(int), vol.Required(const.ATTR_VALUE): VALUE_SCHEMA, vol.Optional(const.ATTR_OPTIONS): {cv.string: VALUE_SCHEMA}, }, vol.Any( cv.has_at_least_one_key(ATTR_DEVICE_ID, ATTR_ENTITY_ID), broadcast_command, ), get_nodes_from_service_data, validate_multicast_nodes, ), ), ) self._hass.services.async_register( const.DOMAIN, const.SERVICE_PING, self.async_ping, schema=vol.Schema( vol.All( { vol.Optional(ATTR_DEVICE_ID): vol.All( cv.ensure_list, [cv.string] ), vol.Optional(ATTR_ENTITY_ID): cv.entity_ids, }, cv.has_at_least_one_key(ATTR_DEVICE_ID, ATTR_ENTITY_ID), get_nodes_from_service_data, ), ), ) async def async_set_config_parameter(self, service: ServiceCall) -> None: """Set a config value on a node.""" nodes = service.data[const.ATTR_NODES] property_or_property_name = service.data[const.ATTR_CONFIG_PARAMETER] property_key = service.data.get(const.ATTR_CONFIG_PARAMETER_BITMASK) new_value = service.data[const.ATTR_CONFIG_VALUE] for node in nodes: zwave_value, cmd_status = await async_set_config_parameter( node, new_value, property_or_property_name, property_key=property_key, ) if cmd_status == CommandStatus.ACCEPTED: msg = "Set configuration parameter %s on Node %s with value %s" else: msg = ( "Added command to queue to set configuration parameter %s on Node " "%s with value %s. Parameter will be set when the device wakes up" ) _LOGGER.info(msg, zwave_value, node, new_value) async def async_bulk_set_partial_config_parameters( self, service: ServiceCall ) -> None: """Bulk set multiple partial config values on a node.""" nodes = service.data[const.ATTR_NODES] property_ = service.data[const.ATTR_CONFIG_PARAMETER] new_value = service.data[const.ATTR_CONFIG_VALUE] for node in nodes: cmd_status = await async_bulk_set_partial_config_parameters( node, property_, new_value, ) if cmd_status == CommandStatus.ACCEPTED: msg = "Bulk set partials for configuration parameter %s on Node %s" else: msg = ( "Added command to queue to bulk set partials for configuration " "parameter %s on Node %s" ) _LOGGER.info(msg, property_, node) async def async_poll_value(self, service: ServiceCall) -> None: """Poll value on a node.""" for entity_id in service.data[ATTR_ENTITY_ID]: entry = self._ent_reg.async_get(entity_id) assert entry # Schema validation would have failed if we can't do this async_dispatcher_send( self._hass, f"{const.DOMAIN}_{entry.unique_id}_poll_value", service.data[const.ATTR_REFRESH_ALL_VALUES], ) async def async_set_value(self, service: ServiceCall) -> None: """Set a value on a node.""" nodes = service.data[const.ATTR_NODES] command_class = service.data[const.ATTR_COMMAND_CLASS] property_ = service.data[const.ATTR_PROPERTY] property_key = service.data.get(const.ATTR_PROPERTY_KEY) endpoint = service.data.get(const.ATTR_ENDPOINT) new_value = service.data[const.ATTR_VALUE] wait_for_result = service.data.get(const.ATTR_WAIT_FOR_RESULT) options = service.data.get(const.ATTR_OPTIONS) for node in nodes: success = await node.async_set_value( get_value_id( node, command_class, property_, endpoint=endpoint, property_key=property_key, ), new_value, options=options, wait_for_result=wait_for_result, ) if success is False: raise SetValueFailed( "Unable to set value, refer to " "https://zwave-js.github.io/node-zwave-js/#/api/node?id=setvalue " "for possible reasons" ) async def async_multicast_set_value(self, service: ServiceCall) -> None: """Set a value via multicast to multiple nodes.""" nodes = service.data[const.ATTR_NODES] broadcast: bool = service.data[const.ATTR_BROADCAST] options = service.data.get(const.ATTR_OPTIONS) if not broadcast and len(nodes) == 1: const.LOGGER.warning( "Passing the zwave_js.multicast_set_value service call to the " "zwave_js.set_value service since only one node was targeted" ) await self.async_set_value(service) return value = { "commandClass": service.data[const.ATTR_COMMAND_CLASS], "property": service.data[const.ATTR_PROPERTY], "propertyKey": service.data.get(const.ATTR_PROPERTY_KEY), "endpoint": service.data.get(const.ATTR_ENDPOINT), } new_value = service.data[const.ATTR_VALUE] # If there are no nodes, we can assume there is only one config entry due to # schema validation and can use that to get the client, otherwise we can just # get the client from the node. client: ZwaveClient = None first_node = next((node for node in nodes), None) if first_node: client = first_node.client else: entry_id = self._hass.config_entries.async_entries(const.DOMAIN)[0].entry_id client = self._hass.data[const.DOMAIN][entry_id][const.DATA_CLIENT] success = await async_multicast_set_value( client=client, new_value=new_value, value_data={k: v for k, v in value.items() if v is not None}, nodes=None if broadcast else list(nodes), options=options, ) if success is False: raise SetValueFailed("Unable to set value via multicast") async def async_ping(self, service: ServiceCall) -> None: """Ping node(s).""" nodes: set[ZwaveNode] = service.data[const.ATTR_NODES] await asyncio.gather(*(node.async_ping() for node in nodes))
39.407002
92
0.547282
479b7d66368e3fa1e8bafa81200b18f8abcf4beb
3,716
py
Python
muver/wrappers/samtools.py
lavenderca/muver
074c7b158610e4cedf99b20806721afbf69a21e1
[ "MIT" ]
null
null
null
muver/wrappers/samtools.py
lavenderca/muver
074c7b158610e4cedf99b20806721afbf69a21e1
[ "MIT" ]
null
null
null
muver/wrappers/samtools.py
lavenderca/muver
074c7b158610e4cedf99b20806721afbf69a21e1
[ "MIT" ]
1
2019-07-22T07:31:03.000Z
2019-07-22T07:31:03.000Z
import os import subprocess from __init__ import PATHS, quiet_call def mapq_filter(in_sam, out_sam, q=20): ''' Filter reads by MAPQ value using samtools view. ''' quiet_call([ PATHS['samtools'], 'view', '-Sh', '-q', str(q), in_sam, ], stdout=out_sam) def index_bam(bam_fn): ''' Run samtools index. ''' quiet_call([ PATHS['samtools'], 'index', bam_fn, ]) def merge_bams(bam_list, out_bam): ''' Run samtools merge. bam_list -- list of BAM file names to be merged ''' quiet_call([ PATHS['samtools'], 'merge', '-f', out_bam, ] + bam_list) index_bam(out_bam) def run_mpileup(bam_file, ref_fn, output_file): ''' Run samtools mpileup, writing to an output TXT file. ''' quiet_call([ PATHS['samtools'], 'mpileup', '-q', '5', '-Q', '10', '-B', '-d', '100000', '-f', ref_fn, bam_file, ], stdout=output_file) def mpileup_iter(bam_file, ref_fn): ''' Run samtools mpileup, returning an iterable. ''' proc = subprocess.Popen([ PATHS['samtools'], 'mpileup', '-q', '5', '-Q', '10', '-B', '-d', '100000', '-f', ref_fn, bam_file, ], stdout=subprocess.PIPE, stderr=open(os.devnull, 'w')) return iter(proc.stdout.readline, '') def faidx_index(ref_fn): ''' Run samtools faidx, creating an index if none exists ''' if not os.path.exists(ref_fn + '.fai'): quiet_call([ PATHS['samtools'], 'faidx', ref_fn, ]) def view_bam(input_bam): ''' Run samtools view, returning an iterable. ''' proc = subprocess.Popen([ PATHS['samtools'], 'view', input_bam, ], stdout=subprocess.PIPE, stderr=open(os.devnull, 'w')) return iter(proc.stdout.readline, '') def get_mpileup_depths(input_bam, ref_fn, output_bedgraph): ''' Run samtools mpileup, writing depths to an output bedGraph file. ''' def print_line(chromosome, start, end, value, OUT): if value: # Only prints non-zero values OUT.write( '{}\t{}\t{}\t{}\n'.format( chromosome, str(start - 1), str(end), str(value), ) ) last_pos = None last_val = None last_chr = None start = None end = None with open(output_bedgraph, 'w') as OUT: for line in mpileup_iter(input_bam, ref_fn): line_split = line.strip().split() chromosome, position, reference_base, coverage = line_split[:4] position = int(position) coverage = int(coverage) if int(coverage) > 0: bases = line_split[4] else: bases = '' i = 0 while i < len(bases): if bases[i] == '^': i += 1 elif bases[i] == '*': coverage += 1 i += 1 if (chromosome == last_chr and coverage == last_val and \ position == last_pos + 1): end = position else: print_line(last_chr, start, end, last_val, OUT) start = position end = position last_pos = position last_val = coverage last_chr = chromosome print_line(last_chr, start, end, last_val, OUT)
24.773333
76
0.483315
c9b16daa0da67497eb1e1e0a2845776b815dfe41
2,813
py
Python
pipscoin/consensus/pot_iterations.py
Pipscoin-Network/pipscoin-blockchain
f400d26956881eb319786230506bb441f76f64d9
[ "Apache-2.0" ]
8
2021-08-29T15:13:45.000Z
2022-03-30T17:23:04.000Z
pipscoin/consensus/pot_iterations.py
Pipscoin-Network/pipscoin-blockchain
f400d26956881eb319786230506bb441f76f64d9
[ "Apache-2.0" ]
28
2021-08-29T02:08:07.000Z
2022-03-24T23:32:00.000Z
pipscoin/consensus/pot_iterations.py
Pipscoin-Network/pipscoin-blockchain
f400d26956881eb319786230506bb441f76f64d9
[ "Apache-2.0" ]
4
2021-08-29T12:59:05.000Z
2022-03-15T08:38:29.000Z
from pipscoin.consensus.constants import ConsensusConstants from pipscoin.consensus.pos_quality import _expected_plot_size from pipscoin.types.blockchain_format.sized_bytes import bytes32 from pipscoin.util.hash import std_hash from pipscoin.util.ints import uint8, uint64, uint128 def is_overflow_block(constants: ConsensusConstants, signage_point_index: uint8) -> bool: if signage_point_index >= constants.NUM_SPS_SUB_SLOT: raise ValueError("SP index too high") return signage_point_index >= constants.NUM_SPS_SUB_SLOT - constants.NUM_SP_INTERVALS_EXTRA def calculate_sp_interval_iters(constants: ConsensusConstants, sub_slot_iters: uint64) -> uint64: assert sub_slot_iters % constants.NUM_SPS_SUB_SLOT == 0 return uint64(sub_slot_iters // constants.NUM_SPS_SUB_SLOT) def calculate_sp_iters(constants: ConsensusConstants, sub_slot_iters: uint64, signage_point_index: uint8) -> uint64: if signage_point_index >= constants.NUM_SPS_SUB_SLOT: raise ValueError("SP index too high") return uint64(calculate_sp_interval_iters(constants, sub_slot_iters) * signage_point_index) def calculate_ip_iters( constants: ConsensusConstants, sub_slot_iters: uint64, signage_point_index: uint8, required_iters: uint64, ) -> uint64: # Note that the SSI is for the block passed in, which might be in the previous epoch sp_iters = calculate_sp_iters(constants, sub_slot_iters, signage_point_index) sp_interval_iters: uint64 = calculate_sp_interval_iters(constants, sub_slot_iters) if sp_iters % sp_interval_iters != 0 or sp_iters >= sub_slot_iters: raise ValueError(f"Invalid sp iters {sp_iters} for this ssi {sub_slot_iters}") if required_iters >= sp_interval_iters or required_iters == 0: raise ValueError( f"Required iters {required_iters} is not below the sp interval iters {sp_interval_iters} " f"{sub_slot_iters} or not >0." ) return uint64((sp_iters + constants.NUM_SP_INTERVALS_EXTRA * sp_interval_iters + required_iters) % sub_slot_iters) def calculate_iterations_quality( difficulty_constant_factor: uint128, quality_string: bytes32, size: int, difficulty: uint64, cc_sp_output_hash: bytes32, ) -> uint64: """ Calculates the number of iterations from the quality. This is derives as the difficulty times the constant factor times a random number between 0 and 1 (based on quality string), divided by plot size. """ sp_quality_string: bytes32 = std_hash(quality_string + cc_sp_output_hash) iters = uint64( int(difficulty) * int(difficulty_constant_factor) * int.from_bytes(sp_quality_string, "big", signed=False) // (int(pow(2, 256)) * int(_expected_plot_size(size))) ) return max(iters, uint64(1))
42.621212
118
0.754355
0fbf8c8d325cd77864fc2a10479993ab93d7da5b
685
py
Python
app/core/migrations/0002_tag.py
eferroni/recipe-app-api
2a242c156a97cc0d838f5afb1cc051dea7e84fc6
[ "MIT" ]
null
null
null
app/core/migrations/0002_tag.py
eferroni/recipe-app-api
2a242c156a97cc0d838f5afb1cc051dea7e84fc6
[ "MIT" ]
null
null
null
app/core/migrations/0002_tag.py
eferroni/recipe-app-api
2a242c156a97cc0d838f5afb1cc051dea7e84fc6
[ "MIT" ]
null
null
null
# Generated by Django 3.2.8 on 2021-10-14 23:48 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('core', '0001_initial'), ] operations = [ migrations.CreateModel( name='Tag', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255)), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
28.541667
118
0.617518
6fc824b5c8812c901c9105fbfdee5596fddac519
264
py
Python
support_files/scraping/entries/proj_1935/proj_1935/items.py
miccaldas/new_rss
9580887ac44b5c3e4c4ed5045478f2c7fef36afe
[ "MIT" ]
null
null
null
support_files/scraping/entries/proj_1935/proj_1935/items.py
miccaldas/new_rss
9580887ac44b5c3e4c4ed5045478f2c7fef36afe
[ "MIT" ]
null
null
null
support_files/scraping/entries/proj_1935/proj_1935/items.py
miccaldas/new_rss
9580887ac44b5c3e4c4ed5045478f2c7fef36afe
[ "MIT" ]
null
null
null
# Define here the models for your scraped items # # See documentation in: # https://docs.scrapy.org/en/latest/topics/items.html import scrapy class Proj1935Item(scrapy.Item): # define the fields for your item here like: # name = scrapy.Field() pass
20.307692
53
0.715909
e6569812de2b898cbf7a065417413e956ac342e6
629
py
Python
Apps/Ayncio.py
srp98/Python-Stuff
fade8934718e01a3d30cf9db93515b8f02a20b18
[ "MIT" ]
null
null
null
Apps/Ayncio.py
srp98/Python-Stuff
fade8934718e01a3d30cf9db93515b8f02a20b18
[ "MIT" ]
null
null
null
Apps/Ayncio.py
srp98/Python-Stuff
fade8934718e01a3d30cf9db93515b8f02a20b18
[ "MIT" ]
1
2019-10-31T03:16:04.000Z
2019-10-31T03:16:04.000Z
from time import sleep import asyncio # Standard (Synchronous) Python def hello(): print('Hello') sleep(3) print('World') if __name__ == '__main__': hello() # Asyncio Example1 loop = asyncio.get_event_loop() @asyncio.coroutine def hello2(): print('Hello') yield from asyncio.sleep(3) print('World!') if __name__ == '__main__': loop.run_until_complete(hello2()) # Asyncio Example2 loop = asyncio.get_event_loop() @asyncio.coroutine async def hello2(): print('Hello') await asyncio.sleep(3) print('World!') if __name__ == '__main__': loop.run_until_complete(hello2())
14.627907
37
0.669316
cf81062ee4bd673b8f8ce35fef75cb54a1b7df6f
6,697
py
Python
PyObjCTest/test_nsatstypesetter.py
Khan/pyobjc-framework-Cocoa
f8b015ea2a72d8d78be6084fb12925c4785b8f1f
[ "MIT" ]
132
2015-01-01T10:02:42.000Z
2022-03-09T12:51:01.000Z
mac/pyobjc-framework-Cocoa/PyObjCTest/test_nsatstypesetter.py
mba811/music-player
7998986b34cfda2244ef622adefb839331b81a81
[ "BSD-2-Clause" ]
6
2015-01-06T08:23:19.000Z
2019-03-14T12:22:06.000Z
mac/pyobjc-framework-Cocoa/PyObjCTest/test_nsatstypesetter.py
mba811/music-player
7998986b34cfda2244ef622adefb839331b81a81
[ "BSD-2-Clause" ]
27
2015-02-23T11:51:43.000Z
2022-03-07T02:34:18.000Z
from PyObjCTools.TestSupport import * from AppKit import * class TestNSATSTypesetterHelper (NSATSTypesetter): def willSetLineFragmentRect_forGlyphRange_usedRect_baselineOffset_( self, lineRect, glyphRange, usedRect, offset): return None def shouldBreakLineByWordBeforeCharacterAtIndex_(self, v): return None def shouldBreakLineByHyphenatingBeforeCharacterAtIndex_(self, v): return True def hyphenationFactorForGlyphAtIndex_(self, v): return None def hyphenCharacterForGlyphAtIndex_(self, v): return None def boundingBoxForControlGlyphAtIndex_forTextContainer_proposedLineFragment_glyphPosition_characterIndex_(self, v, v2, v3, v4, v5): return None def characterRangeForGlyphRange_actualGlyphRange_(self, v1, v2): pass def glyphRangeForCharacterRange_actualCharacterRange_(self, v1, v2): pass def getGlyphsInRange_glyphs_characterIndexes_glyphInscriptions_elasticBits_(self, v1, v2, v3, v4, v5): pass def setLineFragmentRect_forGlyphRange_usedRect_baselineOffset_(self, v1, v2, v3, v4): pass def substituteGlyphsInRange_withGlyphs_(self, v1, v2): pass def insertGlyph_atGlyphIndex_characterIndex_(self, v1, v2, v3): pass def deleteGlyphsInRange_(self, v1): pass def setNotShownAttribute_forGlyphRange_(self, v1, v2): pass def setLocation_withAdvancements_forStartOfGlyphRange_(self, v1, v2, v3): pass def setAttachmentSize_forGlyphRange_(self, v1, v2): pass def setBidiLevels_forGlyphRange_(self, v1, v2): pass class TestNSATSTypesetter (TestCase): def testByRefArguments(self): self.assertArgIsOut(NSATSTypesetter.lineFragmentRectForProposedRect_remainingRect_, 1) self.assertArgIsInOut(NSATSTypesetter.layoutParagraphAtPoint_, 0) self.assertArgIsOut(NSATSTypesetter.getLineFragmentRect_usedRect_forParagraphSeparatorGlyphRange_atProposedOrigin_, 0) self.assertArgIsOut(NSATSTypesetter.getLineFragmentRect_usedRect_forParagraphSeparatorGlyphRange_atProposedOrigin_, 1) o = TestNSATSTypesetterHelper.alloc().init() m = o.willSetLineFragmentRect_forGlyphRange_usedRect_baselineOffset_.__metadata__() self.assertStartswith(m['arguments'][2]['type'], b'N^{') self.assertStartswith(m['arguments'][4]['type'], b'N^{') self.assertStartswith(m['arguments'][5]['type'], b'N^' + objc._C_CGFloat) m = o.shouldBreakLineByWordBeforeCharacterAtIndex_.__metadata__() self.assertEqual(m['retval']['type'], objc._C_NSBOOL) self.assertEqual(m['arguments'][2]['type'], objc._C_NSUInteger) m = o.shouldBreakLineByHyphenatingBeforeCharacterAtIndex_.__metadata__() self.assertEqual(m['retval']['type'], objc._C_NSBOOL) self.assertEqual(m['arguments'][2]['type'], objc._C_NSUInteger) m = o.hyphenationFactorForGlyphAtIndex_.__metadata__() self.assertEqual(m['retval']['type'], objc._C_FLT) self.assertEqual(m['arguments'][2]['type'], objc._C_NSUInteger) #m = o.hyphenCharacterForGlyphAtIndex_.__metadata__() #self.assertEqual(m['retval']['type'], objc._C_UINT) #self.assertEqual(m['arguments'][2]['type'], objc._C_NSUInteger) #m = o.boundingBoxForControlGlyphAtIndex_forTextContainer_proposedLineFragment_glyphPosition_characterIndex_.__metadata__() #self.assertEqual(m['retval']['type'], NSRect.__typestr__) #self.assertEqual(m['arguments'][2]['type'], objc._C_NSUInteger) #self.assertEqual(m['arguments'][3]['type'], objc._C_ID) #self.assertStartswith(m['arguments'][4]['type'], '{') #self.assertStartswith(m['arguments'][5]['type'], '{') #self.assertStartswith(m['arguments'][6]['type'], objc._C_NSUInteger) #m = o.characterRangeForGlyphRange_actualGlyphRange_.__metadata__() #self.assertStartswith(m['retval']['type'], '{') #self.assertStartswith(m['arguments'][2]['type'], '{') #self.assertStartswith(m['arguments'][3]['type'], 'o^{') m = o.glyphRangeForCharacterRange_actualCharacterRange_.__metadata__() self.assertStartswith(m['retval']['type'], b'{') self.assertStartswith(m['arguments'][2]['type'], b'{') self.assertStartswith(m['arguments'][3]['type'], b'o^{') #m = o.getGlyphsInRange_glyphs_characterIndexes_glyphInscriptions_elasticBits_.__metadata__() #self.assertEqual(m['retval']['type'], objc._C_NSUInteger) #self.assertEqual(m['arguments'][2]['type'], NSRange.__typestr__) #self.assertEqual(m['arguments'][3]['type'], 'o^S') #self.assertEqual(m['arguments'][3]['c_array_length_in_arg'], 2) #self.assertEqual(m['arguments'][4]['type'], objc._C_OUT + objc._C_PTR + objc._C_NSUInteger) #self.assertEqual(m['arguments'][4]['c_array_length_in_arg'], 2) #m = o.setLineFragmentRect_forGlyphRange_usedRect_baselineOffset_.__metadata__() #m = o.substituteGlyphsInRange_withGlyphs_.__metadata__() #m = o.insertGlyph_atGlyphIndex_characterIndex_.__metadata__() #m = o.deleteGlyphsInRange_.__metadata__() #m = o.setNotShownAttribute_forGlyphRange_.__metadata__() #m = o.setLocation_withAdvancements_forStartOfGlyphRange_.__metadata__() #m = o.setAttachmentSize_forGlyphRange_.__metadata__() #m = o.setBidiLevels_forGlyphRange_.__metadata__() self.assertResultIsBOOL(NSATSTypesetter.usesFontLeading) self.assertArgIsBOOL(NSATSTypesetter.setUsesFontLeading_, 0) self.assertResultIsBOOL(NSATSTypesetter.bidiProcessingEnabled) self.assertArgIsBOOL(NSATSTypesetter.setBidiProcessingEnabled_, 0) self.assertArgIsBOOL(NSATSTypesetter.setHardInvalidation_forGlyphRange_, 0) self.assertArgIsBOOL(NSATSTypesetter.setNotShownAttribute_forGlyphRange_, 0) self.assertArgIsBOOL(NSATSTypesetter.setDrawsOutsideLineFragment_forGlyphRange_, 0) self.assertArgIsIn(NSATSTypesetter.setLocation_withAdvancements_forStartOfGlyphRange_, 1) self.assertArgSizeInArg(NSATSTypesetter.setLocation_withAdvancements_forStartOfGlyphRange_, 1, 2) self.assertArgSizeInArg(NSATSTypesetter.setBidiLevels_forGlyphRange_, 0, 1) self.assertArgSizeInArg(NSATSTypesetter.setBidiLevels_forGlyphRange_, 0, 1) def testSubclassProtocols(self): self.assertResultIsBOOL(TestNSATSTypesetterHelper.shouldBreakLineByWordBeforeCharacterAtIndex_) self.assertResultIsBOOL(TestNSATSTypesetterHelper.shouldBreakLineByHyphenatingBeforeCharacterAtIndex_) if __name__ == "__main__": main()
44.946309
135
0.727639
a1ee0b53b8703a6f38710ca4c419090132cf1f93
16,504
py
Python
qcodes/instrument_drivers/oxford/triton.py
riju-pal/QCoDeS_riju
816e76809160e9af457f6ef6d4aca1b0dd5eea82
[ "MIT" ]
223
2016-10-29T15:00:24.000Z
2022-03-20T06:53:34.000Z
qcodes/instrument_drivers/oxford/triton.py
M1racleShih/Qcodes
c03029a6968e16379155aadc8b083a02e01876a6
[ "MIT" ]
3,406
2016-10-25T10:44:50.000Z
2022-03-31T09:47:35.000Z
qcodes/instrument_drivers/oxford/triton.py
nikhartman/Qcodes
042c5e25ab9e40b20c316b4055c4842844834d1e
[ "MIT" ]
263
2016-10-25T11:35:36.000Z
2022-03-31T08:53:20.000Z
import configparser import re from functools import partial import logging from traceback import format_exc from typing import Optional, Any, Union, List, Dict from qcodes import IPInstrument from qcodes.utils.validators import Enum, Ints from time import sleep class Triton(IPInstrument): r""" Triton Driver Args: tmpfile: Optional: an exported windows registry file from the registry path: `[HKEY_CURRENT_USER\Software\Oxford Instruments\Triton System Control\Thermometry]` and is used to extract the available temperature channels. Status: beta-version. TODO: fetch registry directly from fridge-computer """ def __init__( self, name: str, address: Optional[str] = None, port: Optional[int] = None, terminator: str = '\r\n', tmpfile: Optional[str] = None, timeout: float = 20, **kwargs: Any): super().__init__(name, address=address, port=port, terminator=terminator, timeout=timeout, **kwargs) self._heater_range_auto = False self._heater_range_temp = [0.03, 0.1, 0.3, 1, 12, 40] self._heater_range_curr = [0.316, 1, 3.16, 10, 31.6, 100] self._control_channel = 5 self.add_parameter(name='time', label='System Time', get_cmd='READ:SYS:TIME', get_parser=self._parse_time) self.add_parameter(name='action', label='Current action', get_cmd='READ:SYS:DR:ACTN', get_parser=self._parse_action) self.add_parameter(name='status', label='Status', get_cmd='READ:SYS:DR:STATUS', get_parser=self._parse_status) self.add_parameter(name='pid_control_channel', label='PID control channel', get_cmd=self._get_control_channel, set_cmd=self._set_control_channel, vals=Ints(1, 16)) self.add_parameter(name='pid_mode', label='PID Mode', get_cmd=partial(self._get_control_param, 'MODE'), set_cmd=partial(self._set_control_param, 'MODE'), val_mapping={'on': 'ON', 'off': 'OFF'}) self.add_parameter(name='pid_ramp', label='PID ramp enabled', get_cmd=partial(self._get_control_param, 'RAMP:ENAB'), set_cmd=partial(self._set_control_param, 'RAMP:ENAB'), val_mapping={'on': 'ON', 'off': 'OFF'}) self.add_parameter(name='pid_setpoint', label='PID temperature setpoint', unit='K', get_cmd=partial(self._get_control_param, 'TSET'), set_cmd=partial(self._set_control_param, 'TSET')) self.add_parameter(name='pid_rate', label='PID ramp rate', unit='K/min', get_cmd=partial(self._get_control_param, 'RAMP:RATE'), set_cmd=partial(self._set_control_param, 'RAMP:RATE')) self.add_parameter(name='pid_range', label='PID heater range', # TODO: The units in the software are mA, how to # do this correctly? unit='mA', get_cmd=partial(self._get_control_param, 'RANGE'), set_cmd=partial(self._set_control_param, 'RANGE'), vals=Enum(*self._heater_range_curr)) self.add_parameter(name='magnet_status', label='Magnet status', unit='', get_cmd=partial(self._get_control_B_param, 'ACTN')) self.add_parameter(name='magnet_sweeprate', label='Magnet sweep rate', unit='T/min', get_cmd=partial( self._get_control_B_param, 'RVST:RATE'), set_cmd=partial(self._set_control_magnet_sweeprate_param)) self.add_parameter(name='magnet_sweeprate_insta', label='Instantaneous magnet sweep rate', unit='T/min', get_cmd=partial(self._get_control_B_param, 'RFST')) self.add_parameter(name='B', label='Magnetic field', unit='T', get_cmd=partial(self._get_control_B_param, 'VECT')) self.add_parameter(name='Bx', label='Magnetic field x-component', unit='T', get_cmd=partial( self._get_control_Bcomp_param, 'VECTBx'), set_cmd=partial(self._set_control_Bx_param)) self.add_parameter(name='By', label='Magnetic field y-component', unit='T', get_cmd=partial( self._get_control_Bcomp_param, 'VECTBy'), set_cmd=partial(self._set_control_By_param)) self.add_parameter(name='Bz', label='Magnetic field z-component', unit='T', get_cmd=partial( self._get_control_Bcomp_param, 'VECTBz'), set_cmd=partial(self._set_control_Bz_param)) self.add_parameter(name='magnet_sweep_time', label='Magnet sweep time', unit='T/min', get_cmd=partial(self._get_control_B_param, 'RVST:TIME')) self.chan_alias: Dict[str, str] = {} self.chan_temp_names: Dict[str, Dict[str, Optional[str]]] = {} if tmpfile is not None: self._get_temp_channel_names(tmpfile) self._get_temp_channels() self._get_pressure_channels() try: self._get_named_channels() except: logging.warning('Ignored an error in _get_named_channels\n' + format_exc()) self.connect_message() def set_B(self, x: float, y: float, z: float, s: float) -> None: if 0 < s <= 0.2: self.write('SET:SYS:VRM:COO:CART:RVST:MODE:RATE:RATE:' + str(s) + ':VSET:[' + str(x) + ' ' + str(y) + ' ' + str(z) + ']\r\n') self.write('SET:SYS:VRM:ACTN:RTOS\r\n') t_wait = self.magnet_sweep_time() * 60 + 10 print('Please wait ' + str(t_wait) + ' seconds for the field sweep...') sleep(t_wait) else: print('Warning: set magnet sweep rate in range (0 , 0.2] T/min') def _get_control_B_param( self, param: str ) -> Optional[Union[float, str, List[float]]]: cmd = f'READ:SYS:VRM:{param}' return self._get_response_value(self.ask(cmd)) def _get_control_Bcomp_param( self, param: str ) -> Optional[Union[float, str, List[float]]]: cmd = f'READ:SYS:VRM:{param}' return self._get_response_value(self.ask(cmd[:-2]) + cmd[-2:]) def _get_response(self, msg: str) -> str: return msg.split(':')[-1] def _get_response_value( self, msg: str ) -> Optional[Union[float, str, List[float]]]: msg = self._get_response(msg) if msg.endswith('NOT_FOUND'): return None elif msg.endswith('IDLE'): return 'IDLE' elif msg.endswith('RTOS'): return 'RTOS' elif msg.endswith('Bx'): return float(re.findall(r"[-+]?\d*\.\d+|\d+", msg)[0]) elif msg.endswith('By'): return float(re.findall(r"[-+]?\d*\.\d+|\d+", msg)[1]) elif msg.endswith('Bz'): return float(re.findall(r"[-+]?\d*\.\d+|\d+", msg)[2]) elif len(re.findall(r"[-+]?\d*\.\d+|\d+", msg)) > 1: return [float(re.findall(r"[-+]?\d*\.\d+|\d+", msg)[0]), float(re.findall(r"[-+]?\d*\.\d+|\d+", msg)[1]), float(re.findall(r"[-+]?\d*\.\d+|\d+", msg)[2])] try: return float(re.findall(r"[-+]?\d*\.\d+|\d+", msg)[0]) except Exception: return msg def get_idn(self) -> Dict[str, Optional[str]]: """ Return the Instrument Identifier Message """ idstr = self.ask('*IDN?') idparts = [p.strip() for p in idstr.split(':', 4)][1:] return dict(zip(('vendor', 'model', 'serial', 'firmware'), idparts)) def _get_control_channel(self, force_get: bool = False) -> int: # verify current channel if self._control_channel and not force_get: tempval = self.ask( f'READ:DEV:T{self._control_channel}:TEMP:LOOP:MODE') if not tempval.endswith('NOT_FOUND'): return self._control_channel # either _control_channel is not set or wrong for i in range(1, 17): tempval = self.ask(f'READ:DEV:T{i}:TEMP:LOOP:MODE') if not tempval.endswith('NOT_FOUND'): self._control_channel = i break return self._control_channel def _set_control_channel(self, channel: int) -> None: self._control_channel = channel self.write('SET:DEV:T{}:TEMP:LOOP:HTR:H1'.format( self._get_control_channel())) def _get_control_param( self, param: str ) -> Optional[Union[float, str, List[float]]]: chan = self._get_control_channel() cmd = f'READ:DEV:T{chan}:TEMP:LOOP:{param}' return self._get_response_value(self.ask(cmd)) def _set_control_param(self, param: str, value: float) -> None: chan = self._get_control_channel() cmd = f'SET:DEV:T{chan}:TEMP:LOOP:{param}:{value}' self.write(cmd) def _set_control_magnet_sweeprate_param(self, s: float) -> None: if 0 < s <= 0.2: x = round(self.Bx(), 4) y = round(self.By(), 4) z = round(self.Bz(), 4) self.write('SET:SYS:VRM:COO:CART:RVST:MODE:RATE:RATE:' + str(s) + ':VSET:[' + str(x) + ' ' + str(y) + ' ' + str(z) + ']\r\n') else: print( 'Warning: set sweeprate in range (0 , 0.2] T/min, not setting sweeprate') def _set_control_Bx_param(self, x: float) -> None: s = self.magnet_sweeprate() y = round(self.By(), 4) z = round(self.Bz(), 4) self.write('SET:SYS:VRM:COO:CART:RVST:MODE:RATE:RATE:' + str(s) + ':VSET:[' + str(x) + ' ' + str(y) + ' ' + str(z) + ']\r\n') self.write('SET:SYS:VRM:ACTN:RTOS\r\n') # just to give an time estimate, +10s for overhead t_wait = self.magnet_sweep_time() * 60 + 10 print('Please wait ' + str(t_wait) + ' seconds for the field sweep...') while self.magnet_status() != 'IDLE': pass def _set_control_By_param(self, y: float) -> None: s = self.magnet_sweeprate() x = round(self.Bx(), 4) z = round(self.Bz(), 4) self.write('SET:SYS:VRM:COO:CART:RVST:MODE:RATE:RATE:' + str(s) + ':VSET:[' + str(x) + ' ' + str(y) + ' ' + str(z) + ']\r\n') self.write('SET:SYS:VRM:ACTN:RTOS\r\n') # just to give an time estimate, +10s for overhead t_wait = self.magnet_sweep_time() * 60 + 10 print('Please wait ' + str(t_wait) + ' seconds for the field sweep...') while self.magnet_status() != 'IDLE': pass def _set_control_Bz_param(self, z: float) -> None: s = self.magnet_sweeprate() x = round(self.Bx(), 4) y = round(self.By(), 4) self.write('SET:SYS:VRM:COO:CART:RVST:MODE:RATE:RATE:' + str(s) + ':VSET:[' + str(x) + ' ' + str(y) + ' ' + str(z) + ']\r\n') self.write('SET:SYS:VRM:ACTN:RTOS\r\n') # just to give an time estimate, +10s for overhead t_wait = self.magnet_sweep_time() * 60 + 10 print('Please wait ' + str(t_wait) + ' seconds for the field sweep...') while self.magnet_status() != 'IDLE': pass def _get_named_channels(self) -> None: allchans_str = self.ask('READ:SYS:DR:CHAN') allchans = allchans_str.replace('STAT:SYS:DR:CHAN:', '', 1).split(':') for ch in allchans: msg = 'READ:SYS:DR:CHAN:%s' % ch rep = self.ask(msg) if 'INVALID' not in rep and 'NONE' not in rep: alias, chan = rep.split(':')[-2:] self.chan_alias[alias] = chan self.add_parameter(name=alias, unit='K', get_cmd='READ:DEV:%s:TEMP:SIG:TEMP' % chan, get_parser=self._parse_temp) def _get_pressure_channels(self) -> None: chan_pressure_list = [] for i in range(1, 7): chan = 'P%d' % i chan_pressure_list.append(chan) self.add_parameter(name=chan, unit='bar', get_cmd='READ:DEV:%s:PRES:SIG:PRES' % chan, get_parser=self._parse_pres) self.chan_pressure = set(chan_pressure_list) def _get_temp_channel_names(self, file: str) -> None: config = configparser.ConfigParser() with open(file, encoding='utf16') as f: next(f) config.read_file(f) for section in config.sections(): options = config.options(section) namestr = '"m_lpszname"' if namestr in options: chan_number = int(section.split('\\')[-1].split('[')[-1]) + 1 # the names used in the register file are base 0 but the api and the gui # uses base one names so add one chan = 'T' + str(chan_number) name = config.get(section, '"m_lpszname"').strip("\"") self.chan_temp_names[chan] = {'name': name, 'value': None} def _get_temp_channels(self) -> None: chan_temps_list = [] for i in range(1, 17): chan = 'T%d' % i chan_temps_list.append(chan) self.add_parameter(name=chan, unit='K', get_cmd='READ:DEV:%s:TEMP:SIG:TEMP' % chan, get_parser=self._parse_temp) self.chan_temps = set(chan_temps_list) def _parse_action(self, msg: str) -> str: """ Parse message and return action as a string Args: msg: message string Returns action: string describing the action """ action = msg[17:] if action == 'PCL': action = 'Precooling' elif action == 'EPCL': action = 'Empty precool loop' elif action == 'COND': action = 'Condensing' elif action == 'NONE': if self.MC.get() < 2: action = 'Circulating' else: action = 'Idle' elif action == 'COLL': action = 'Collecting mixture' else: action = 'Unknown' return action def _parse_status(self, msg: str) -> str: return msg[19:] def _parse_time(self, msg: str) -> str: return msg[14:] def _parse_temp(self, msg: str) -> Optional[float]: if 'NOT_FOUND' in msg: return None return float(msg.split('SIG:TEMP:')[-1].strip('K')) def _parse_pres(self, msg: str) -> Optional[float]: if 'NOT_FOUND' in msg: return None return float(msg.split('SIG:PRES:')[-1].strip('mB')) * 1e3 def _recv(self) -> str: return super()._recv().rstrip()
40.253659
166
0.503454
d7d5bd0adfc158fb4c0e5fb4aef4582a281d1d79
1,774
py
Python
cognitive_services/speech_to_text/google_speech_to_text.py
franklinlindemberg/cognitive-services
043c6a625cd66a9351ae1366e05b1fef2907cd08
[ "MIT" ]
null
null
null
cognitive_services/speech_to_text/google_speech_to_text.py
franklinlindemberg/cognitive-services
043c6a625cd66a9351ae1366e05b1fef2907cd08
[ "MIT" ]
null
null
null
cognitive_services/speech_to_text/google_speech_to_text.py
franklinlindemberg/cognitive-services
043c6a625cd66a9351ae1366e05b1fef2907cd08
[ "MIT" ]
null
null
null
import base64 import json #from googleapiclient.discovery import build from .speech_to_text import SpeechToText from .speech_to_text_exception import SpeechToTextException class GoogleSpeechToText(SpeechToText): def __init__(self, credentials): api_key = credentials.get('api_key') if not api_key: raise SpeechToTextException(code=400, message='Missing parameters: api_key') #self.speechToText = build('speech', 'v1', developerKey=api_key) def recognize(self, audio, language): errors = [] if not language: errors.append("language") if not audio: errors.append("audio") if len(errors) > 0: raise SpeechToTextException(code=400, message='Missing parameters: {0}'.format(', '.join(errors))) if language == 'en': language_code = 'en-US' elif language == 'pt-br': language_code = 'pt-BR' else: raise SpeechToTextException(code=400, message='Invalid language value') body = { 'audio': { 'content': base64.b64encode(audio.read()).decode('utf-8') }, 'config': { 'languageCode': language_code } } # try: # return self.speechToText.speech().recognize( # body=body # ).execute() # except Exception as ex: # error = json.loads(ex.content).get('error') # if error: # raise SpeechToTextException(code=error['code'], message=error['message']) # else: # raise SpeechToTextException(code=500, message='Unknown error') def recognize_from_url(self, audio_url, language): pass
30.586207
110
0.57779
e05659474c38b80529682a75f506e7e4ae9ef5c3
1,818
py
Python
tests/helper.py
Docheinstein/lzw3
39098f01b66f8860390123e2662ef0662667748d
[ "MIT" ]
1
2020-06-11T10:16:55.000Z
2020-06-11T10:16:55.000Z
tests/helper.py
Docheinstein/LZW3
39098f01b66f8860390123e2662ef0662667748d
[ "MIT" ]
2
2019-03-05T22:51:19.000Z
2021-01-27T22:45:44.000Z
tests/helper.py
Docheinstein/LZW3
39098f01b66f8860390123e2662ef0662667748d
[ "MIT" ]
null
null
null
import os import shutil from typing import List from unittest import TestCase from lzw3.commons.constants import LZWConstants from lzw3.commons.log import Logger from lzw3.commons.utils import read_binary_file from lzw3.compressor import LZWCompressor from lzw3.decompressor import LZWDecompressor def remove_folder(path: str): if os.path.exists(path): shutil.rmtree(path) def create_folder(path: str): if not os.path.exists(path): os.makedirs(path) class LZWTestHelper(TestCase): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.verbose = False Logger.enable_logger(False) def _test_files(self, files: List[str]): for file in files: uncompressed_file_path = file compressed_file_path = file + LZWConstants.COMPRESSED_FILE_EXTENSION decompressed_file_path = compressed_file_path + ".after" file_content = read_binary_file(uncompressed_file_path) self.__print("Compressing '" + uncompressed_file_path + "'") LZWCompressor().compress( uncompressed_file_path, compressed_file_path ) self.__print("Decompressing '" + compressed_file_path + "'") LZWDecompressor().decompress( compressed_file_path, decompressed_file_path ) file_content_after = read_binary_file(decompressed_file_path) self.assertEqual(file_content, file_content_after, "Content after compression and decompression of file '" + file + "' is not the same!") self.__print("") def __print(self, *args, **kwargs): if self.verbose: print(*args, **kwargs)
30.813559
84
0.636964
27796fdc630f4e1dd508a2fbbeb3141aab1361df
1,189
py
Python
dl/data/txtrecog/datasets/base.py
jjjkkkjjj/pytorch.dl
d82aa1191c14f328c62de85e391ac6fa1b4c7ee3
[ "MIT" ]
2
2021-02-06T22:40:13.000Z
2021-03-26T09:15:34.000Z
dl/data/txtrecog/datasets/base.py
jjjkkkjjj/pytorch.dl
d82aa1191c14f328c62de85e391ac6fa1b4c7ee3
[ "MIT" ]
8
2020-07-11T07:10:51.000Z
2022-03-12T00:39:03.000Z
dl/data/txtrecog/datasets/base.py
jjjkkkjjj/pytorch.dl
d82aa1191c14f328c62de85e391ac6fa1b4c7ee3
[ "MIT" ]
2
2021-03-26T09:19:42.000Z
2021-07-27T02:38:09.000Z
import string from ...objrecog.datasets.base import ObjectRecognitionDatasetBase Alphabet_labels = list(string.ascii_lowercase) Alphabet_with_upper_labels = Alphabet_labels + list(string.ascii_uppercase) Alphabet_numbers = len(Alphabet_labels) Alphabet_with_upper_numbers = len(Alphabet_with_upper_labels) Number_labels = [str(i) for i in range(10)] Number_numbers = len(Number_labels) Alphanumeric_labels = Alphabet_labels + Number_labels Alphanumeric_numbers = Alphabet_numbers + Number_numbers Alphanumeric_with_upper_labels = Alphabet_with_upper_labels + Number_labels Alphanumeric_with_upper_numbers = Alphabet_with_upper_numbers + Number_numbers Alphanumeric_with_blank_labels = ['-'] + Alphabet_labels + Number_labels Alphanumeric_with_blank_numbers = 1 + Alphabet_numbers + Number_numbers Alphanumeric_with_upper_and_blank_labels = ['-'] + Alphabet_with_upper_labels + Number_labels Alphanumeric_with_upper_and_blank_numbers = 1 + Alphabet_with_upper_numbers + Number_numbers class TextRecognitionDatasetBase(ObjectRecognitionDatasetBase): def __getitem__(self, index): img, targets = self.get_imgtarget(index) texts = targets[0] return img, texts
44.037037
93
0.830109
6a2e8c7a0db65f1823e061925af11794f91469d5
8,199
py
Python
LogSystem_JE/venv/Lib/site-packages/pygments/lexers/grammar_notation.py
JE-Chen/je_old_repo
a8b2f1ac2eec25758bd15b71c64b59b27e0bcda5
[ "MIT" ]
null
null
null
LogSystem_JE/venv/Lib/site-packages/pygments/lexers/grammar_notation.py
JE-Chen/je_old_repo
a8b2f1ac2eec25758bd15b71c64b59b27e0bcda5
[ "MIT" ]
null
null
null
LogSystem_JE/venv/Lib/site-packages/pygments/lexers/grammar_notation.py
JE-Chen/je_old_repo
a8b2f1ac2eec25758bd15b71c64b59b27e0bcda5
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ pygments.lexers.grammar_notation ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Lexers for grammar notations like BNF. :copyright: Copyright 2006-2020 by the Pygments team, see AUTHORS. :license: BSD, see LICENSE for details. """ import re from pygments.lexer import RegexLexer, bygroups, include, this, using, words from pygments.token import Comment, Keyword, Literal, Name, Number, \ Operator, Punctuation, String, Text __all__ = ['BnfLexer', 'AbnfLexer', 'JsgfLexer', 'PegLexer'] class BnfLexer(RegexLexer): """ This lexer is for grammar notations which are similar to original BNF. In order to maximize a number of targets of this lexer, let's decide some designs: * We don't distinguish `Terminal Symbol`. * We do assume that `NonTerminal Symbol` are always enclosed with arrow brackets. * We do assume that `NonTerminal Symbol` may include any printable characters except arrow brackets and ASCII 0x20. This assumption is for `RBNF <http://www.rfc-base.org/txt/rfc-5511.txt>`_. * We do assume that target notation doesn't support comment. * We don't distinguish any operators and punctuation except `::=`. Though these desision making might cause too minimal highlighting and you might be disappointed, but it is reasonable for us. .. versionadded:: 2.1 """ name = 'BNF' aliases = ['bnf'] filenames = ['*.bnf'] mimetypes = ['text/x-bnf'] tokens = { 'root': [ (r'(<)([ -;=?-~]+)(>)', bygroups(Punctuation, Name.Class, Punctuation)), # an only operator (r'::=', Operator), # fallback (r'[^<>:]+', Text), # for performance (r'.', Text), ], } class AbnfLexer(RegexLexer): """ Lexer for `IETF 7405 ABNF <http://www.ietf.org/rfc/rfc7405.txt>`_ (Updates `5234 <http://www.ietf.org/rfc/rfc5234.txt>`_) grammars. .. versionadded:: 2.1 """ name = 'ABNF' aliases = ['abnf'] filenames = ['*.abnf'] mimetypes = ['text/x-abnf'] _core_rules = ( 'ALPHA', 'BIT', 'CHAR', 'CR', 'CRLF', 'CTL', 'DIGIT', 'DQUOTE', 'HEXDIG', 'HTAB', 'LF', 'LWSP', 'OCTET', 'SP', 'VCHAR', 'WSP') tokens = { 'root': [ # comment (r';.*$', Comment.Single), # quoted # double quote itself in this state, it is as '%x22'. (r'(%[si])?"[^"]*"', Literal), # binary (but i have never seen...) (r'%b[01]+\-[01]+\b', Literal), # range (r'%b[01]+(\.[01]+)*\b', Literal), # concat # decimal (r'%d[0-9]+\-[0-9]+\b', Literal), # range (r'%d[0-9]+(\.[0-9]+)*\b', Literal), # concat # hexadecimal (r'%x[0-9a-fA-F]+\-[0-9a-fA-F]+\b', Literal), # range (r'%x[0-9a-fA-F]+(\.[0-9a-fA-F]+)*\b', Literal), # concat # repetition (<a>*<b>element) including nRule (r'\b[0-9]+\*[0-9]+', Operator), (r'\b[0-9]+\*', Operator), (r'\b[0-9]+', Operator), (r'\*', Operator), # Strictly speaking, these are not keyword but # are called `Core Rule'. (words(_core_rules, suffix=r'\b'), Keyword), # nonterminals (ALPHA *(ALPHA / DIGIT / "-")) (r'[a-zA-Z][a-zA-Z0-9-]+\b', Name.Class), # operators (r'(=/|=|/)', Operator), # punctuation (r'[\[\]()]', Punctuation), # fallback (r'\s+', Text), (r'.', Text), ], } class JsgfLexer(RegexLexer): """ For `JSpeech Grammar Format <https://www.w3.org/TR/jsgf/>`_ grammars. .. versionadded:: 2.2 """ name = 'JSGF' aliases = ['jsgf'] filenames = ['*.jsgf'] mimetypes = ['application/jsgf', 'application/x-jsgf', 'text/jsgf'] flags = re.MULTILINE | re.UNICODE tokens = { 'root': [ include('comments'), include('non-comments'), ], 'comments': [ (r'/\*\*(?!/)', Comment.Multiline, 'documentation comment'), (r'/\*[\w\W]*?\*/', Comment.Multiline), (r'//.*', Comment.Single), ], 'non-comments': [ (r'\A#JSGF[^;]*', Comment.Preproc), (r'\s+', Text), (r';', Punctuation), (r'[=|()\[\]*+]', Operator), (r'/[^/]+/', Number.Float), (r'"', String.Double, 'string'), (r'\{', String.Other, 'tag'), (words(('import', 'public'), suffix=r'\b'), Keyword.Reserved), (r'grammar\b', Keyword.Reserved, 'grammar name'), (r'(<)(NULL|VOID)(>)', bygroups(Punctuation, Name.Builtin, Punctuation)), (r'<', Punctuation, 'rulename'), (r'\w+|[^\s;=|()\[\]*+/"{<\w]+', Text), ], 'string': [ (r'"', String.Double, '#pop'), (r'\\.', String.Escape), (r'[^\\"]+', String.Double), ], 'tag': [ (r'\}', String.Other, '#pop'), (r'\\.', String.Escape), (r'[^\\}]+', String.Other), ], 'grammar name': [ (r';', Punctuation, '#pop'), (r'\s+', Text), (r'\.', Punctuation), (r'[^;\s.]+', Name.Namespace), ], 'rulename': [ (r'>', Punctuation, '#pop'), (r'\*', Punctuation), (r'\s+', Text), (r'([^.>]+)(\s*)(\.)', bygroups(Name.Namespace, Text, Punctuation)), (r'[^.>]+', Name.Constant), ], 'documentation comment': [ (r'\*/', Comment.Multiline, '#pop'), (r'(^\s*\*?\s*)(@(?:example|see)\s+)' r'([\w\W]*?(?=(?:^\s*\*?\s*@|\*/)))', bygroups(Comment.Multiline, Comment.Special, using(this, state='example'))), (r'(^\s*\*?\s*)(@\S*)', bygroups(Comment.Multiline, Comment.Special)), (r'[^*\n@]+|\w|\W', Comment.Multiline), ], 'example': [ (r'\n\s*\*', Comment.Multiline), include('non-comments'), (r'.', Comment.Multiline), ], } class PegLexer(RegexLexer): """ This lexer is for `Parsing Expression Grammars <https://bford.info/pub/lang/peg.pdf>`_ (PEG). Various implementations of PEG have made different decisions regarding the syntax, so let's try to be accommodating: * `<-`, `←`, `:`, and `=` are all accepted as rule operators. * Both `|` and `/` are choice operators. * `^`, `↑`, and `~` are cut operators. * A single `a-z` character immediately before a string, or multiple `a-z` characters following a string, are part of the string (e.g., `r"..."` or `"..."ilmsuxa`). .. versionadded:: 2.6 """ name = 'PEG' aliases = ['peg'] filenames = ['*.peg'] mimetypes = ['text/x-peg'] tokens = { 'root': [ # Comments (r'#.*', Comment.Single), # All operators (r'<-|[←:=/|&!?*+^↑~]', Operator), # Other punctuation (r'[()]', Punctuation), # Keywords (r'\.', Keyword), # Character classes (r'(\[)([^\]]*(?:\\.[^\]\\]*)*)(\])', bygroups(Punctuation, String, Punctuation)), # Single and double quoted strings (with optional modifiers) (r'[a-z]?"[^"\\]*(?:\\.[^"\\]*)*"[a-z]*', String.Double), (r"[a-z]?'[^'\\]*(?:\\.[^'\\]*)*'[a-z]*", String.Single), # Nonterminals are not whitespace, operators, or punctuation (r'[^\s<←:=/|&!?*+\^↑~()\[\]"\'#]+', Name.Class), # Fallback (r'.', Text), ], }
30.254613
81
0.450055
90a0282f1f88ea48a054807762b01f8954bef1fa
11,801
py
Python
lib/python3.7/site-packages/elasticsearch_dsl/faceted_search.py
nguyentranhoan/uit-mobile
8546312b01373d94cf00c64f7eacb769e0f4ccce
[ "BSD-3-Clause" ]
2
2020-04-12T02:40:34.000Z
2021-08-10T17:59:55.000Z
lib/python3.7/site-packages/elasticsearch_dsl/faceted_search.py
nguyentranhoan/uit-mobile
8546312b01373d94cf00c64f7eacb769e0f4ccce
[ "BSD-3-Clause" ]
7
2020-06-06T01:06:19.000Z
2022-02-10T11:15:14.000Z
lib/python3.7/site-packages/elasticsearch_dsl/faceted_search.py
nguyentranhoan/uit-mobile
8546312b01373d94cf00c64f7eacb769e0f4ccce
[ "BSD-3-Clause" ]
1
2020-07-27T05:10:30.000Z
2020-07-27T05:10:30.000Z
from datetime import timedelta, datetime from six import iteritems, itervalues from .search import Search from .aggs import A from .utils import AttrDict from .response import Response from .query import Terms, Nested, Range, MatchAll __all__ = [ 'FacetedSearch', 'HistogramFacet', 'TermsFacet', 'DateHistogramFacet', 'RangeFacet', 'NestedFacet', ] class Facet(object): """ A facet on faceted search. Wraps and aggregation and provides functionality to create a filter for selected values and return a list of facet values from the result of the aggregation. """ agg_type = None def __init__(self, metric=None, metric_sort='desc', **kwargs): self.filter_values = () self._params = kwargs self._metric = metric if metric and metric_sort: self._params['order'] = {'metric': metric_sort} def get_aggregation(self): """ Return the aggregation object. """ agg = A(self.agg_type, **self._params) if self._metric: agg.metric('metric', self._metric) return agg def add_filter(self, filter_values): """ Construct a filter. """ if not filter_values: return f = self.get_value_filter(filter_values[0]) for v in filter_values[1:]: f |= self.get_value_filter(v) return f def get_value_filter(self, filter_value): """ Construct a filter for an individual value """ pass def is_filtered(self, key, filter_values): """ Is a filter active on the given key. """ return key in filter_values def get_value(self, bucket): """ return a value representing a bucket. Its key as default. """ return bucket['key'] def get_metric(self, bucket): """ Return a metric, by default doc_count for a bucket. """ if self._metric: return bucket['metric']['value'] return bucket['doc_count'] def get_values(self, data, filter_values): """ Turn the raw bucket data into a list of tuples containing the key, number of documents and a flag indicating whether this value has been selected or not. """ out = [] for bucket in data.buckets: key = self.get_value(bucket) out.append(( key, self.get_metric(bucket), self.is_filtered(key, filter_values) )) return out class TermsFacet(Facet): agg_type = 'terms' def add_filter(self, filter_values): """ Create a terms filter instead of bool containing term filters. """ if filter_values: return Terms(_expand__to_dot=False, **{self._params['field']: filter_values}) class RangeFacet(Facet): agg_type = 'range' def _range_to_dict(self, range): key, range = range out = {'key': key} if range[0] is not None: out['from'] = range[0] if range[1] is not None: out['to'] = range[1] return out def __init__(self, ranges, **kwargs): super(RangeFacet, self).__init__(**kwargs) self._params['ranges'] = list(map(self._range_to_dict, ranges)) self._params['keyed'] = False self._ranges = dict(ranges) def get_value_filter(self, filter_value): f, t = self._ranges[filter_value] limits = {} if f is not None: limits['gte'] = f if t is not None: limits['lt'] = t return Range(_expand__to_dot=False, **{ self._params['field']: limits }) class HistogramFacet(Facet): agg_type = 'histogram' def get_value_filter(self, filter_value): return Range(_expand__to_dot=False, **{ self._params['field']: { 'gte': filter_value, 'lt': filter_value + self._params['interval'] } }) class DateHistogramFacet(Facet): agg_type = 'date_histogram' DATE_INTERVALS = { 'month': lambda d: (d+timedelta(days=32)).replace(day=1), 'week': lambda d: d+timedelta(days=7), 'day': lambda d: d+timedelta(days=1), 'hour': lambda d: d+timedelta(hours=1), } def __init__(self, **kwargs): kwargs.setdefault("min_doc_count", 0) super(DateHistogramFacet, self).__init__(**kwargs) def get_value(self, bucket): if not isinstance(bucket['key'], datetime): # Elasticsearch returns key=None instead of 0 for date 1970-01-01, # so we need to set key to 0 to avoid TypeError exception if bucket['key'] is None: bucket['key'] = 0 # Preserve milliseconds in the datetime return datetime.utcfromtimestamp(int(bucket['key']) / 1000.0) else: return bucket['key'] def get_value_filter(self, filter_value): return Range(_expand__to_dot=False, **{ self._params['field']: { 'gte': filter_value, 'lt': self.DATE_INTERVALS[self._params['interval']](filter_value) } }) class NestedFacet(Facet): agg_type = 'nested' def __init__(self, path, nested_facet): self._path = path self._inner = nested_facet super(NestedFacet, self).__init__(path=path, aggs={'inner': nested_facet.get_aggregation()}) def get_values(self, data, filter_values): return self._inner.get_values(data.inner, filter_values) def add_filter(self, filter_values): inner_q = self._inner.add_filter(filter_values) if inner_q: return Nested(path=self._path, query=inner_q) class FacetedResponse(Response): @property def query_string(self): return self._faceted_search._query @property def facets(self): if not hasattr(self, '_facets'): super(AttrDict, self).__setattr__('_facets', AttrDict({})) for name, facet in iteritems(self._faceted_search.facets): self._facets[name] = facet.get_values( getattr(getattr(self.aggregations, '_filter_' + name), name), self._faceted_search.filter_values.get(name, ()) ) return self._facets class FacetedSearch(object): """ Abstraction for creating faceted navigation searches that takes care of composing the queries, aggregations and filters as needed as well as presenting the results in an easy-to-consume fashion:: class BlogSearch(FacetedSearch): index = 'blogs' doc_types = [Blog, Post] fields = ['title^5', 'category', 'description', 'body'] facets = { 'type': TermsFacet(field='_type'), 'category': TermsFacet(field='category'), 'weekly_posts': DateHistogramFacet(field='published_from', interval='week') } def search(self): ' Override search to add your own filters ' s = super(BlogSearch, self).search() return s.filter('term', published=True) # when using: blog_search = BlogSearch("web framework", filters={"category": "python"}) # supports pagination blog_search[10:20] response = blog_search.execute() # easy access to aggregation results: for category, hit_count, is_selected in response.facets.category: print( "Category %s has %d hits%s." % ( category, hit_count, ' and is chosen' if is_selected else '' ) ) """ index = None doc_types = None fields = None facets = {} using = 'default' def __init__(self, query=None, filters={}, sort=()): """ :arg query: the text to search for :arg filters: facet values to filter :arg sort: sort information to be passed to :class:`~elasticsearch_dsl.Search` """ self._query = query self._filters = {} self._sort = sort self.filter_values = {} for name, value in iteritems(filters): self.add_filter(name, value) self._s = self.build_search() def count(self): return self._s.count() def __getitem__(self, k): self._s = self._s[k] return self def __iter__(self): return iter(self._s) def add_filter(self, name, filter_values): """ Add a filter for a facet. """ # normalize the value into a list if not isinstance(filter_values, (tuple, list)): if filter_values is None: return filter_values = [filter_values, ] # remember the filter values for use in FacetedResponse self.filter_values[name] = filter_values # get the filter from the facet f = self.facets[name].add_filter(filter_values) if f is None: return self._filters[name] = f def search(self): """ Returns the base Search object to which the facets are added. You can customize the query by overriding this method and returning a modified search object. """ s = Search(doc_type=self.doc_types, index=self.index, using=self.using) return s.response_class(FacetedResponse) def query(self, search, query): """ Add query part to ``search``. Override this if you wish to customize the query used. """ if query: if self.fields: return search.query('multi_match', fields=self.fields, query=query) else: return search.query('multi_match', query=query) return search def aggregate(self, search): """ Add aggregations representing the facets selected, including potential filters. """ for f, facet in iteritems(self.facets): agg = facet.get_aggregation() agg_filter = MatchAll() for field, filter in iteritems(self._filters): if f == field: continue agg_filter &= filter search.aggs.bucket( '_filter_' + f, 'filter', filter=agg_filter ).bucket(f, agg) def filter(self, search): """ Add a ``post_filter`` to the search request narrowing the results based on the facet filters. """ if not self._filters: return search post_filter = MatchAll() for f in itervalues(self._filters): post_filter &= f return search.post_filter(post_filter) def highlight(self, search): """ Add highlighting for all the fields """ return search.highlight(*(f if '^' not in f else f.split('^', 1)[0] for f in self.fields)) def sort(self, search): """ Add sorting information to the request. """ if self._sort: search = search.sort(*self._sort) return search def build_search(self): """ Construct the ``Search`` object. """ s = self.search() s = self.query(s, self._query) s = self.filter(s) if self.fields: s = self.highlight(s) s = self.sort(s) self.aggregate(s) return s def execute(self): """ Execute the search and return the response. """ r = self._s.execute() r._faceted_search = self return r
30.104592
100
0.569189
7b7f9625c782cf82d7d634b47b483de41c126d44
2,325
py
Python
lino_book/projects/eric/tests/test_ddh.py
khchine5/book
b6272d33d49d12335d25cf0a2660f7996680b1d1
[ "BSD-2-Clause" ]
1
2018-01-12T14:09:58.000Z
2018-01-12T14:09:58.000Z
lino_book/projects/eric/tests/test_ddh.py
khchine5/book
b6272d33d49d12335d25cf0a2660f7996680b1d1
[ "BSD-2-Clause" ]
4
2018-02-06T19:53:10.000Z
2019-08-01T21:47:44.000Z
lino_book/projects/eric/tests/test_ddh.py
khchine5/book
b6272d33d49d12335d25cf0a2660f7996680b1d1
[ "BSD-2-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2016-2017 Luc Saffre # License: BSD (see file COPYING for details) """Runs some tests about the disable-delete handler and cascading deletes. You can run only these tests by issuing:: $ go team $ python manage.py test tests.test_ddh Or:: $ go book $ python setup.py test -s tests.ProjectsTests.test_ddh """ from __future__ import unicode_literals from __future__ import print_function from django.core.exceptions import ValidationError from lino.utils.djangotest import RemoteAuthTestCase from lino.api import rt from lino.utils.instantiator import create_row as create class DDHTests(RemoteAuthTestCase): maxDiff = None def test01(self): from lino.modlib.users.choicelists import UserTypes Ticket = rt.models.tickets.Ticket Project = rt.models.tickets.Project User = rt.models.users.User Star = rt.models.votes.Vote # ContentType = rt.models.contenttypes.ContentType # ct_Ticket = ContentType.objects.get_for_model(Ticket) create(Project, name='project') robin = create(User, username='robin', first_name="Robin", user_type=UserTypes.admin, language="en") def createit(): return create(Ticket, summary="Test", user=robin) # # If there are no vetos, user can ask to delete it # obj = createit() obj.delete() obj = createit() if False: try: robin.delete() self.fail("Expected veto") except Warning as e: self.assertEqual( str(e), "Cannot delete User Robin " "because 1 Tickets refer to it.") create(Star, votable=obj, user=robin) try: robin.delete() self.fail("Expected veto") except Warning as e: self.assertEqual( str(e), "Cannot delete User Robin " "because 1 Tickets refer to it.") self.assertEqual(Star.objects.count(), 1) self.assertEqual(Ticket.objects.count(), 1) obj.delete() self.assertEqual(Star.objects.count(), 0) self.assertEqual(Ticket.objects.count(), 0)
27.678571
74
0.597419
f3f5bf66cb91b820816d306a005dd2226274b05c
5,730
py
Python
pypbbot/affairs/registrar.py
PHIKN1GHT/pypbbot_archived
8ab70830509c43b0babc53c9972d0a73481bdaa2
[ "MIT" ]
null
null
null
pypbbot/affairs/registrar.py
PHIKN1GHT/pypbbot_archived
8ab70830509c43b0babc53c9972d0a73481bdaa2
[ "MIT" ]
null
null
null
pypbbot/affairs/registrar.py
PHIKN1GHT/pypbbot_archived
8ab70830509c43b0babc53c9972d0a73481bdaa2
[ "MIT" ]
null
null
null
from __future__ import annotations from .filters import _on_unloading from .filters import _on_loading from pypbbot.protocol import GroupMessageEvent, GroupRecallNoticeEvent from pypbbot.protocol import PrivateMessageEvent, FriendRecallNoticeEvent from .filters import _unfilterable from .filters import _on_starts_with_filter import typing from typing import Callable, Coroutine, Any, List if typing.TYPE_CHECKING: from typing import Optional, Callable, Coroutine, Any from pypbbot.affairs import ChatAffair, Filter, HandlerDecorator, BaseAffair import functools from pypbbot.logging import logger from pypbbot.plugin import _register from pypbbot.affairs.filters import partial_filter from pypbbot.affairs import HandlerPriority, ChatAffair from pypbbot.utils import asyncify import inspect __all__ = ['useFilter', 'unfilterable', 'onPrivateMessage', 'onGroupMessage', 'onStartsWith', 'onEndsWith', 'onLoading', 'onUnloading', 'onMessage'] def useFilter(ftr: Filter, priority: HandlerPriority = HandlerPriority.NORMAL) -> HandlerDecorator: '''An decorator to register an affair handler for a specific affait filter. Args: ftr: the filter function. priority: the priority of the handler ''' try: getattr(ftr, '__name__') except AttributeError: logger.error( 'Unnamed filter funcion detected. You SHOULD NOT use lambda expression.') setattr(ftr, '__name__', '[UNKNOWN]') ''' try: getattr(useFilter, ftr.__name__) except AttributeError: setattr(useFilter, ftr.__name__, ftr) ''' def decorator(func: Callable[[BaseAffair], Coroutine[Any, Any, None]]) -> Callable[[BaseAffair], Coroutine[Any, Any, None]]: # DO NOT USE LAMBDA EXPRESSION if not inspect.iscoroutinefunction(func): func = asyncify(func) logger.warning( "Function {} has been asyncified for being registered.".format(func.__name__)) _register(ftr.__name__, ftr, func, priority) @functools.wraps(func) def wrapper(affair: BaseAffair) -> Coroutine[Any, Any, None]: return func(affair) return wrapper return decorator def unfilterable(priority: HandlerPriority = HandlerPriority.NORMAL) -> HandlerDecorator: return useFilter(_unfilterable, priority) def onPrivateMessage(priority: HandlerPriority = HandlerPriority.NORMAL) -> HandlerDecorator: def _private_message_filter(_: BaseAffair) -> bool: return isinstance(_.event, PrivateMessageEvent) return useFilter(_private_message_filter, priority) def onGroupMessage(priority: HandlerPriority = HandlerPriority.NORMAL) -> HandlerDecorator: def _group_message_filter(_: BaseAffair) -> bool: return isinstance(_.event, GroupMessageEvent) return useFilter(_group_message_filter, priority) def onStartsWith(prefix: str, priority: HandlerPriority = HandlerPriority.NORMAL) -> HandlerDecorator: _filter = partial_filter(_on_starts_with_filter, (prefix, )) return useFilter(_filter, priority) def onEndsWith(suffix: str, priority: HandlerPriority = HandlerPriority.NORMAL) -> HandlerDecorator: def _on_ends_with_filter(_: BaseAffair) -> bool: return isinstance(_, ChatAffair) and _.event.raw_message.endswith(suffix) return useFilter(_on_ends_with_filter, priority) def onLoading(priority: HandlerPriority = HandlerPriority.NORMAL) -> HandlerDecorator: return useFilter(_on_loading, priority) def onGroupRecall(group_id: Optional[int] = None, priority: HandlerPriority = HandlerPriority.NORMAL) -> HandlerDecorator: def _filter(_: BaseAffair) -> bool: return isinstance(_.event, GroupRecallNoticeEvent) if group_id is None else (isinstance(_.event, GroupRecallNoticeEvent) and _.event.group_id == group_id) return useFilter(_filter, priority) def onFriendRecall(friend_id: Optional[int] = None, priority: HandlerPriority = HandlerPriority.NORMAL) -> HandlerDecorator: def _filter(_: BaseAffair) -> bool: return isinstance(_.event, FriendRecallNoticeEvent) if friend_id is None else (isinstance(_.event, GroupRecallNoticeEvent) and _.event.user_id == friend_id) return useFilter(_filter, priority) def onUnloading(priority: HandlerPriority = HandlerPriority.NORMAL) -> HandlerDecorator: return useFilter(_on_unloading, priority) def onMessage(priority: HandlerPriority = HandlerPriority.NORMAL) -> HandlerDecorator: def _message_filter(_: BaseAffair) -> bool: return isinstance(_, ChatAffair) return useFilter(_message_filter, priority) def onAllSatisfied(filter_helpers: List[Filter, Any], priority: HandlerPriority = HandlerPriority.NORMAL) -> HandlerDecorator: # args 1 should be named tuples global useFilter _useFilter: Callable[[Filter, HandlerPriority], HandlerDecorator] = useFilter ftrs: List[Filter] = [] def getAllNamedFilters(ftr: Filter, *args: Any) -> None: try: getattr(ftr, '__name__') except AttributeError: setattr(ftr, '__name__', '[UNKNOWN]') ftrs.append(ftr) useFilter: Callable = getAllNamedFilters for fhelper in filter_helpers: ftr, params = fhelper[0], fhelper[1:] ftr(*params) useFilter: Callable = _useFilter def _on_all_satisfied_(affair: BaseAffair) -> bool: result = True for ftr in ftrs: if not result: return result = result and ftr(affair) return result _on_all_satisfied_.__name__ = "_on_all_satisfied:" + \ "&".join([ftr.__name__ for ftr in ftrs]) return useFilter(_on_all_satisfied_, priority)
39.246575
164
0.721466
ad9995867b19dbc32bd926b4565581dfd86840d3
8,729
py
Python
tests/train_config_test.py
FranciscoShi/piepline
6105788339fc18bab39ea07625b5fd26ad687254
[ "MIT" ]
5
2020-06-24T15:25:26.000Z
2021-07-01T08:16:51.000Z
tests/train_config_test.py
FranciscoShi/piepline
6105788339fc18bab39ea07625b5fd26ad687254
[ "MIT" ]
21
2020-05-20T13:50:06.000Z
2020-07-26T09:56:19.000Z
tests/train_config_test.py
FranciscoShi/piepline
6105788339fc18bab39ea07625b5fd26ad687254
[ "MIT" ]
2
2021-06-17T12:57:37.000Z
2021-07-16T01:55:24.000Z
import unittest import numpy as np import torch from torch.nn import functional as F from torch import Tensor from piepline.train import Trainer from piepline.data_producer import DataProducer from piepline.train_config.metrics import MetricsGroup, AbstractMetric from piepline.train_config.train_config import BaseTrainConfig from piepline.train_config.stages import TrainStage from piepline.utils.fsm import FileStructManager from piepline.train_config.metrics_processor import MetricsProcessor from tests.common import UseFileStructure from tests.data_processor_test import SimpleModel, SimpleLoss from tests.data_producer_test import TestDataProducer __all__ = ['TrainConfigTest'] class SimpleMetric(AbstractMetric): def __init__(self): super().__init__('SimpleMetric') @staticmethod def calc(output: Tensor, target: Tensor) -> np.ndarray or float: return F.pairwise_distance(output, target, p=2).numpy() class FakeMetricsProcessor(MetricsProcessor): def __init__(self): super().__init__() self.call_num = 0 def calc_metrics(self, output, target): self.call_num += 1 class TrainConfigTest(UseFileStructure): def test_metric(self): metric = SimpleMetric() for i in range(10): output, target = torch.rand(1, 3), torch.rand(1, 3) res = metric.calc(output, target)[0] self.assertAlmostEqual(res, np.linalg.norm(output.numpy() - target.numpy()), delta=1e-5) vals = metric.get_values() self.assertEqual(vals.size, 0) values = [] for i in range(10): output, target = torch.rand(1, 3), torch.rand(1, 3) metric._calc(output, target) values.append(np.linalg.norm(output.numpy() - target.numpy())) vals = metric.get_values() self.assertEqual(vals.size, len(values)) for v1, v2 in zip(values, vals): self.assertAlmostEqual(v1, v2, delta=1e-5) metric.reset() self.assertEqual(metric.get_values().size, 0) self.assertEqual(metric.name(), "SimpleMetric") def test_metrics_group_nested(self): metrics_group_lv1 = MetricsGroup('lvl') metrics_group_lv2 = MetricsGroup('lv2') metrics_group_lv1.add(metrics_group_lv2) self.assertTrue(metrics_group_lv1.have_groups()) self.assertRaises(MetricsGroup.MGException, lambda: metrics_group_lv2.add(MetricsGroup('lv3'))) metrics_group_lv1 = MetricsGroup('lvl') metrics_group_lv2 = MetricsGroup('lv2') metrics_group_lv3 = MetricsGroup('lv2') metrics_group_lv2.add(metrics_group_lv3) self.assertRaises(MetricsGroup.MGException, lambda: metrics_group_lv1.add(metrics_group_lv2)) def test_metrics_group_calculation(self): metrics_group_lv1 = MetricsGroup('lvl').add(SimpleMetric()) metrics_group_lv2 = MetricsGroup('lv2').add(SimpleMetric()) metrics_group_lv1.add(metrics_group_lv2) values = [] for i in range(10): output, target = torch.rand(1, 3), torch.rand(1, 3) metrics_group_lv1.calc(output, target) values.append(np.linalg.norm(output.numpy() - target.numpy())) for metrics_group in [metrics_group_lv1, metrics_group_lv2]: for m in metrics_group.metrics(): for v1, v2 in zip(values, m.get_values()): self.assertAlmostEqual(v1, v2, delta=1e-5) metrics_group_lv1.reset() self.assertEqual(metrics_group_lv1.metrics()[0].get_values().size, 0) self.assertEqual(metrics_group_lv2.metrics()[0].get_values().size, 0) def test_metrics_pocessor_calculation(self): metrics_group_lv11 = MetricsGroup('lvl').add(SimpleMetric()) metrics_group_lv21 = MetricsGroup('lv2').add(SimpleMetric()) metrics_group_lv11.add(metrics_group_lv21) metrics_processor = MetricsProcessor() metrics_group_lv12 = MetricsGroup('lvl').add(SimpleMetric()) metrics_group_lv22 = MetricsGroup('lv2').add(SimpleMetric()) metrics_group_lv12.add(metrics_group_lv22) metrics_processor.add_metrics_group(metrics_group_lv11) metrics_processor.add_metrics_group(metrics_group_lv12) m1, m2 = SimpleMetric(), SimpleMetric() metrics_processor.add_metric(m1) metrics_processor.add_metric(m2) values = [] for i in range(10): output, target = torch.rand(1, 3), torch.rand(1, 3) metrics_processor.calc_metrics(output, target) values.append(np.linalg.norm(output.numpy() - target.numpy())) for metrics_group in [metrics_group_lv11, metrics_group_lv21, metrics_group_lv12, metrics_group_lv22]: for m in metrics_group.metrics(): for v1, v2 in zip(values, m.get_values()): self.assertAlmostEqual(v1, v2, delta=1e-5) for m in [m1, m2]: for v1, v2 in zip(values, m.get_values()): self.assertAlmostEqual(v1, v2, delta=1e-5) metrics_processor.reset_metrics() self.assertEqual(metrics_group_lv11.metrics()[0].get_values().size, 0) self.assertEqual(metrics_group_lv21.metrics()[0].get_values().size, 0) self.assertEqual(metrics_group_lv12.metrics()[0].get_values().size, 0) self.assertEqual(metrics_group_lv22.metrics()[0].get_values().size, 0) self.assertEqual(m1.get_values().size, 0) self.assertEqual(m2.get_values().size, 0) def test_metrics_and_groups_collection(self): m1 = SimpleMetric() name = 'lv1' metrics_group_lv1 = MetricsGroup(name) self.assertEqual(metrics_group_lv1.metrics(), []) metrics_group_lv1.add(m1) self.assertEqual(metrics_group_lv1.groups(), []) self.assertEqual(metrics_group_lv1.metrics(), [m1]) metrics_group_lv2 = MetricsGroup('lv2').add(SimpleMetric()) metrics_group_lv1.add(metrics_group_lv2) self.assertEqual(metrics_group_lv1.groups(), [metrics_group_lv2]) self.assertEqual(metrics_group_lv1.metrics(), [m1]) metrics_group_lv22 = MetricsGroup('lv2').add(SimpleMetric()) metrics_group_lv1.add(metrics_group_lv22) self.assertEqual(metrics_group_lv1.groups(), [metrics_group_lv2, metrics_group_lv22]) self.assertEqual(metrics_group_lv1.metrics(), [m1]) self.assertEqual(metrics_group_lv1.name(), name) def test_train_stage(self): data_producer = DataProducer([{'data': torch.rand(1, 3), 'target': torch.rand(1)} for _ in list(range(20))]) metrics_processor = FakeMetricsProcessor() train_stage = TrainStage(data_producer).enable_hard_negative_mining(0.1) metrics_processor.subscribe_to_stage(train_stage) fsm = FileStructManager(base_dir=self.base_dir, is_continue=False) model = SimpleModel() Trainer(BaseTrainConfig(model, [train_stage], SimpleLoss(), torch.optim.SGD(model.parameters(), lr=1)), fsm) \ .set_epoch_num(1).train() self.assertEqual(metrics_processor.call_num, len(data_producer)) def test_hard_negatives_mining(self): with self.assertRaises(ValueError): stage = TrainStage(None).enable_hard_negative_mining(0) with self.assertRaises(ValueError): stage = TrainStage(None).enable_hard_negative_mining(1) with self.assertRaises(ValueError): stage = TrainStage(None).enable_hard_negative_mining(-1) with self.assertRaises(ValueError): stage = TrainStage(None).enable_hard_negative_mining(1.1) dp = TestDataProducer([{'data': torch.Tensor([i]), 'target': torch.rand(1)} for i in list(range(20))]).pass_indices(True) stage = TrainStage(dp).enable_hard_negative_mining(0.1) losses = np.random.rand(20) samples = [] def on_batch(batch, data_processor): samples.append(batch) stage.hnm._losses = np.array([0]) stage.hnm._process_batch = on_batch stage.hnm.exec(None, losses, [[str(i)] for i in range(20)]) self.assertEqual(len(samples), 2) losses = [float(v) for v in losses] idxs = [int(s['data']) for s in samples] max_losses = [losses[i] for i in idxs] idxs.sort(reverse=True) for i in idxs: del losses[i] for l in losses: self.assertLess(l, min(max_losses)) stage.on_epoch_end() self.assertIsNone(stage.hnm._losses) stage.disable_hard_negative_mining() self.assertIsNone(stage.hnm) for data in dp: self.assertIn('data_idx', data) if __name__ == '__main__': unittest.main()
39.677273
129
0.671784
dedcdd33423f2dadae2329e75f772230b6704a5b
1,323
py
Python
waffler.py
thfm/waffler
275e430114e1ab011b71de682aada26653ad1144
[ "MIT" ]
null
null
null
waffler.py
thfm/waffler
275e430114e1ab011b71de682aada26653ad1144
[ "MIT" ]
null
null
null
waffler.py
thfm/waffler
275e430114e1ab011b71de682aada26653ad1144
[ "MIT" ]
null
null
null
import click from nltk.corpus import wordnet # Gets the unique synonyms of a word def __get_synonyms(word: str): synonyms = [] for synset in wordnet.synsets(word): name = synset.lemmas()[0].name() # Checks that the synonym is not the original word if name != word: synonyms.append(name) # Removes underscores from those synonyms with multiple words synonyms = [s.replace("_", " ") for s in synonyms] synonyms = list(set(synonyms)) # Removes duplicate synonyms return synonyms # Replaces each 'significant' word of an essay with # a more complicated counterpart @click.command() @click.argument("source") @click.option("-f", "--file", "is_file", is_flag=True, help="Source the essay content from a file.") def waffle(source: str, is_file: bool): essay = open(source).read() if is_file else source waffled = "" for word in essay.split(" "): synonyms = __get_synonyms(word) # If the word is not 'significant' # i.e. it is either short or has no synonyms... if len(word) <= 3 or len(synonyms) == 0: # ... then the original word is used waffled += word + " " else: waffled += synonyms[0] + " " click.echo(waffled) if __name__ == "__main__": waffle()
30.767442
65
0.621315
d5365fdfcc91500ebf4cd1600f83d374287dfb97
2,484
py
Python
src/aiy/vision/models/face_detection.py
sonjaq/aiyprojects-raspbian
101403c1b80433f80aad483d7f4d1ad757112cd9
[ "Apache-2.0" ]
null
null
null
src/aiy/vision/models/face_detection.py
sonjaq/aiyprojects-raspbian
101403c1b80433f80aad483d7f4d1ad757112cd9
[ "Apache-2.0" ]
null
null
null
src/aiy/vision/models/face_detection.py
sonjaq/aiyprojects-raspbian
101403c1b80433f80aad483d7f4d1ad757112cd9
[ "Apache-2.0" ]
null
null
null
# Copyright 2017 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """API for Face Detection.""" from __future__ import division from aiy.vision.inference import ModelDescriptor from aiy.vision.models import utils _COMPUTE_GRAPH_NAME = 'face_detection.binaryproto' def _reshape(array, width): assert len(array) % width == 0 height = len(array) // width return [array[i * width:(i + 1) * width] for i in range(height)] class Face(object): """Face detection result.""" def __init__(self, bounding_box, face_score, joy_score): """Creates a new Face instance. Args: bounding_box: (x, y, width, height). face_score: float, face confidence score. joy_score: float, face joy score. """ self.bounding_box = bounding_box self.face_score = face_score self.joy_score = joy_score def __str__(self): return 'face_score=%f, joy_score=%f, bbox=%s' % (self.face_score, self.joy_score, str(self.bounding_box)) def model(): # Face detection model has special implementation in VisionBonnet firmware. # input_shape, input_normalizer, and computate_graph params have on effect. return ModelDescriptor( name='FaceDetection', input_shape=(1, 0, 0, 3), input_normalizer=(0, 0), compute_graph=utils.load_compute_graph(_COMPUTE_GRAPH_NAME)) def get_faces(result): """Retunrs list of Face objects decoded from the inference result.""" assert len(result.tensors) == 3 # TODO(dkovalev): check tensor shapes bboxes = _reshape(result.tensors['bounding_boxes'].data, 4) face_scores = result.tensors['face_scores'].data joy_scores = result.tensors['joy_scores'].data assert len(bboxes) == len(joy_scores) assert len(bboxes) == len(face_scores) return [ Face(tuple(bbox), face_score, joy_score) for bbox, face_score, joy_score in zip(bboxes, face_scores, joy_scores) ]
33.567568
77
0.692432
b6e37dc494ca34bc4a7c9eefb1c74b6545eadddf
8,192
py
Python
grr/server/grr_response_server/output_plugins/sqlite_plugin.py
nkrios/grr
399e078ed522bf0555a2666fb086aa7809d54971
[ "Apache-2.0" ]
null
null
null
grr/server/grr_response_server/output_plugins/sqlite_plugin.py
nkrios/grr
399e078ed522bf0555a2666fb086aa7809d54971
[ "Apache-2.0" ]
null
null
null
grr/server/grr_response_server/output_plugins/sqlite_plugin.py
nkrios/grr
399e078ed522bf0555a2666fb086aa7809d54971
[ "Apache-2.0" ]
1
2020-07-09T01:08:48.000Z
2020-07-09T01:08:48.000Z
#!/usr/bin/env python """Plugin that exports results as SQLite db scripts.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals import collections import io import os import zipfile from future.utils import iteritems from future.utils import iterkeys from future.utils import itervalues import sqlite3 import yaml from grr_response_core.lib import rdfvalue from grr_response_core.lib import utils from grr_response_core.lib.rdfvalues import structs as rdf_structs from grr_response_core.lib.util import collection from grr_response_server import instant_output_plugin class Rdf2SqliteAdapter(object): """An adapter for converting RDF values to a SQLite-friendly form.""" class Converter(object): def __init__(self, sqlite_type, convert_fn): self.sqlite_type = sqlite_type self.convert_fn = convert_fn # PySQLite prefers dealing with unicode objects. DEFAULT_CONVERTER = Converter("TEXT", utils.SmartUnicode) INT_CONVERTER = Converter("INTEGER", int) # Converters for fields that have a semantic type annotation in their # protobuf definition. SEMANTIC_CONVERTERS = { rdfvalue.RDFInteger: INT_CONVERTER, rdfvalue.RDFBool: INT_CONVERTER, # Sqlite does not have a bool type. rdfvalue.RDFDatetime: Converter("INTEGER", lambda x: x.AsMicrosecondsSinceEpoch()), rdfvalue.RDFDatetimeSeconds: Converter("INTEGER", lambda x: x.AsSecondsSinceEpoch() * 1000000), rdfvalue.Duration: Converter("INTEGER", lambda x: x.microseconds), } # Converters for fields that do not have a semantic type annotation in their # protobuf definition. NON_SEMANTIC_CONVERTERS = { rdf_structs.ProtoUnsignedInteger: INT_CONVERTER, rdf_structs.ProtoSignedInteger: INT_CONVERTER, rdf_structs.ProtoFixed32: INT_CONVERTER, rdf_structs.ProtoFixed64: INT_CONVERTER, rdf_structs.ProtoFloat: Converter("REAL", float), rdf_structs.ProtoDouble: Converter("REAL", float), rdf_structs.ProtoBoolean: INT_CONVERTER, } @staticmethod def GetConverter(type_info): if type_info.__class__ is rdf_structs.ProtoRDFValue: return Rdf2SqliteAdapter.SEMANTIC_CONVERTERS.get( type_info.type, Rdf2SqliteAdapter.DEFAULT_CONVERTER) else: return Rdf2SqliteAdapter.NON_SEMANTIC_CONVERTERS.get( type_info.__class__, Rdf2SqliteAdapter.DEFAULT_CONVERTER) class SqliteInstantOutputPlugin( instant_output_plugin.InstantOutputPluginWithExportConversion): """Instant output plugin that converts results into SQLite db commands.""" plugin_name = "sqlite-zip" friendly_name = "SQLite scripts (zipped)" description = "Output ZIP archive containing SQLite scripts." output_file_extension = ".zip" ROW_BATCH = 100 def __init__(self, *args, **kwargs): super(SqliteInstantOutputPlugin, self).__init__(*args, **kwargs) self.archive_generator = None # Created in Start() self.export_counts = {} @property def path_prefix(self): prefix, _ = os.path.splitext(self.output_file_name) return prefix def Start(self): self.archive_generator = utils.StreamingZipGenerator( compression=zipfile.ZIP_DEFLATED) self.export_counts = {} return [] def ProcessSingleTypeExportedValues(self, original_value_type, exported_values): first_value = next(exported_values, None) if not first_value: return if not isinstance(first_value, rdf_structs.RDFProtoStruct): raise ValueError("The SQLite plugin only supports export-protos") yield self.archive_generator.WriteFileHeader( "%s/%s_from_%s.sql" % (self.path_prefix, first_value.__class__.__name__, original_value_type.__name__)) table_name = "%s.from_%s" % (first_value.__class__.__name__, original_value_type.__name__) schema = self._GetSqliteSchema(first_value.__class__) # We will buffer the sql statements into an in-memory sql database before # dumping them to the zip archive. We rely on the PySQLite library for # string escaping. db_connection = sqlite3.connect(":memory:") db_cursor = db_connection.cursor() yield self.archive_generator.WriteFileChunk( "BEGIN TRANSACTION;\n".encode("utf-8")) with db_connection: buf = io.StringIO() buf.write(u"CREATE TABLE \"%s\" (\n " % table_name) column_types = [(k, v.sqlite_type) for k, v in iteritems(schema)] buf.write(u",\n ".join([u"\"%s\" %s" % (k, v) for k, v in column_types])) buf.write(u"\n);") db_cursor.execute(buf.getvalue()) chunk = (buf.getvalue() + "\n").encode("utf-8") yield self.archive_generator.WriteFileChunk(chunk) self._InsertValueIntoDb(table_name, schema, first_value, db_cursor) for sql in self._FlushAllRows(db_connection, table_name): yield sql counter = 1 for batch in collection.Batch(exported_values, self.ROW_BATCH): counter += len(batch) with db_connection: for value in batch: self._InsertValueIntoDb(table_name, schema, value, db_cursor) for sql in self._FlushAllRows(db_connection, table_name): yield sql db_connection.close() yield self.archive_generator.WriteFileChunk("COMMIT;\n".encode("utf-8")) yield self.archive_generator.WriteFileFooter() counts_for_original_type = self.export_counts.setdefault( original_value_type.__name__, dict()) counts_for_original_type[first_value.__class__.__name__] = counter def _GetSqliteSchema(self, proto_struct_class, prefix=""): """Returns a mapping of SQLite column names to Converter objects.""" schema = collections.OrderedDict() for type_info in proto_struct_class.type_infos: if type_info.__class__ is rdf_structs.ProtoEmbedded: schema.update( self._GetSqliteSchema( type_info.type, prefix="%s%s." % (prefix, type_info.name))) else: field_name = utils.SmartStr(prefix + type_info.name) schema[field_name] = Rdf2SqliteAdapter.GetConverter(type_info) return schema def _InsertValueIntoDb(self, table_name, schema, value, db_cursor): sql_dict = self._ConvertToCanonicalSqlDict(schema, value.ToPrimitiveDict()) buf = io.StringIO() buf.write(u"INSERT INTO \"%s\" (\n " % table_name) buf.write(u",\n ".join(["\"%s\"" % k for k in iterkeys(sql_dict)])) buf.write(u"\n)") buf.write(u"VALUES (%s);" % u",".join([u"?"] * len(sql_dict))) db_cursor.execute(buf.getvalue(), list(itervalues(sql_dict))) def _ConvertToCanonicalSqlDict(self, schema, raw_dict, prefix=""): """Converts a dict of RDF values into a SQL-ready form.""" flattened_dict = {} for k, v in iteritems(raw_dict): if isinstance(v, dict): flattened_dict.update( self._ConvertToCanonicalSqlDict( schema, v, prefix="%s%s." % (prefix, k))) else: field_name = prefix + k flattened_dict[field_name] = schema[field_name].convert_fn(v) return flattened_dict def _FlushAllRows(self, db_connection, table_name): """Copies rows from the given db into the output file then deletes them.""" for sql in db_connection.iterdump(): if (sql.startswith("CREATE TABLE") or sql.startswith("BEGIN TRANSACTION") or sql.startswith("COMMIT")): # These statements only need to be written once. continue # The archive generator expects strings (not Unicode objects returned by # the pysqlite library). yield self.archive_generator.WriteFileChunk((sql + "\n").encode("utf-8")) with db_connection: db_connection.cursor().execute("DELETE FROM \"%s\";" % table_name) def Finish(self): manifest = {"export_stats": self.export_counts} header = self.path_prefix + "/MANIFEST" yield self.archive_generator.WriteFileHeader(header.encode("utf-8")) yield self.archive_generator.WriteFileChunk(yaml.safe_dump(manifest)) yield self.archive_generator.WriteFileFooter() yield self.archive_generator.Close()
37.925926
80
0.705444
314e81dba312d97e64e18cb88e377e92cac7104f
7,222
py
Python
pypureclient/flasharray/FA_2_9/models/host.py
ashahid-ps/py-pure-client
2e3565d37b2a41db69308769f6f485d08a7c46c3
[ "BSD-2-Clause" ]
null
null
null
pypureclient/flasharray/FA_2_9/models/host.py
ashahid-ps/py-pure-client
2e3565d37b2a41db69308769f6f485d08a7c46c3
[ "BSD-2-Clause" ]
null
null
null
pypureclient/flasharray/FA_2_9/models/host.py
ashahid-ps/py-pure-client
2e3565d37b2a41db69308769f6f485d08a7c46c3
[ "BSD-2-Clause" ]
null
null
null
# coding: utf-8 """ FlashArray REST API No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: 2.9 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re import six import typing from ....properties import Property if typing.TYPE_CHECKING: from pypureclient.flasharray.FA_2_9 import models class Host(object): """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'name': 'str', 'chap': 'Chap', 'connection_count': 'int', 'host_group': 'ReferenceNoId', 'iqns': 'list[str]', 'nqns': 'list[str]', 'personality': 'str', 'port_connectivity': 'HostPortConnectivity', 'preferred_arrays': 'list[Reference]', 'space': 'Space', 'wwns': 'list[str]', 'is_local': 'bool' } attribute_map = { 'name': 'name', 'chap': 'chap', 'connection_count': 'connection_count', 'host_group': 'host_group', 'iqns': 'iqns', 'nqns': 'nqns', 'personality': 'personality', 'port_connectivity': 'port_connectivity', 'preferred_arrays': 'preferred_arrays', 'space': 'space', 'wwns': 'wwns', 'is_local': 'is_local' } required_args = { } def __init__( self, name=None, # type: str chap=None, # type: models.Chap connection_count=None, # type: int host_group=None, # type: models.ReferenceNoId iqns=None, # type: List[str] nqns=None, # type: List[str] personality=None, # type: str port_connectivity=None, # type: models.HostPortConnectivity preferred_arrays=None, # type: List[models.Reference] space=None, # type: models.Space wwns=None, # type: List[str] is_local=None, # type: bool ): """ Keyword args: name (str): A user-specified name. The name must be locally unique and can be changed. chap (Chap) connection_count (int): The number of volumes connected to the specified host. host_group (ReferenceNoId): The host group to which the host should be associated. iqns (list[str]): The iSCSI qualified name (IQN) associated with the host. nqns (list[str]): The NVMe Qualified Name (NQN) associated with the host. personality (str): Determines how the system tunes the array to ensure that it works optimally with the host. Set `personality` to the name of the host operating system or virtual memory system. Valid values are `aix`, `esxi`, `hitachi-vsp`, `hpux`, `oracle-vm-server`, `solaris`, and `vms`. If your system is not listed as one of the valid host personalities, do not set the option. By default, the personality is not set. port_connectivity (HostPortConnectivity) preferred_arrays (list[Reference]): For synchronous replication configurations, sets a host's preferred array to specify which array exposes active/optimized paths to that host. Enter multiple preferred arrays in comma-separated format. If a preferred array is set for a host, then the other arrays in the same pod will expose active/non-optimized paths to that host. If the host is in a host group, `preferred_arrays` cannot be set because host groups have their own preferred arrays. On a preferred array of a certain host, all the paths on all the ports (for both the primary and secondary controllers) are set up as A/O (active/optimized) paths, while on a non-preferred array, all the paths are A/N (Active/Non-optimized) paths. space (Space): Displays provisioned size and physical storage consumption information for the sum of all volumes connected to the specified host. wwns (list[str]): The Fibre Channel World Wide Name (WWN) associated with the host. is_local (bool): -> If set to `true`, the location reference is to the local array. If set to `false`, the location reference is to a remote location, such as a remote array or offload target. """ if name is not None: self.name = name if chap is not None: self.chap = chap if connection_count is not None: self.connection_count = connection_count if host_group is not None: self.host_group = host_group if iqns is not None: self.iqns = iqns if nqns is not None: self.nqns = nqns if personality is not None: self.personality = personality if port_connectivity is not None: self.port_connectivity = port_connectivity if preferred_arrays is not None: self.preferred_arrays = preferred_arrays if space is not None: self.space = space if wwns is not None: self.wwns = wwns if is_local is not None: self.is_local = is_local def __setattr__(self, key, value): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `Host`".format(key)) self.__dict__[key] = value def __getattribute__(self, item): value = object.__getattribute__(self, item) if isinstance(value, Property): raise AttributeError else: return value def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): if hasattr(self, attr): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(Host, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, Host): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
40.573034
745
0.599695
e0fd5c31b56dcbfc8fedda3e8dabf70a298414e5
5,026
py
Python
mycroft/audio/speech.py
fortwally/mycroft-core
a8f7aee57294078dff39b824e6300001374f0b98
[ "Apache-2.0" ]
null
null
null
mycroft/audio/speech.py
fortwally/mycroft-core
a8f7aee57294078dff39b824e6300001374f0b98
[ "Apache-2.0" ]
null
null
null
mycroft/audio/speech.py
fortwally/mycroft-core
a8f7aee57294078dff39b824e6300001374f0b98
[ "Apache-2.0" ]
null
null
null
# Copyright 2017 Mycroft AI Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import re import time from threading import Lock from mycroft.configuration import Configuration from mycroft.metrics import report_timing, Stopwatch from mycroft.tts import TTSFactory from mycroft.util import create_signal, check_for_signal from mycroft.util.log import LOG from mycroft.messagebus.message import Message ws = None # TODO:18.02 - Rename to "messagebus" config = None tts = None tts_hash = None lock = Lock() _last_stop_signal = 0 def _start_listener(message): """ Force Mycroft to start listening (as if 'Hey Mycroft' was spoken) """ create_signal('startListening') def handle_speak(event): """ Handle "speak" message """ config = Configuration.get() Configuration.init(ws) global _last_stop_signal # Get conversation ID if event.context and 'ident' in event.context: ident = event.context['ident'] else: ident = 'unknown' with lock: stopwatch = Stopwatch() stopwatch.start() utterance = event.data['utterance'] if event.data.get('expect_response', False): # When expect_response is requested, the listener will be restarted # at the end of the next bit of spoken audio. ws.once('recognizer_loop:audio_output_end', _start_listener) # This is a bit of a hack for Picroft. The analog audio on a Pi blocks # for 30 seconds fairly often, so we don't want to break on periods # (decreasing the chance of encountering the block). But we will # keep the split for non-Picroft installs since it give user feedback # faster on longer phrases. # # TODO: Remove or make an option? This is really a hack, anyway, # so we likely will want to get rid of this when not running on Mimic if (config.get('enclosure', {}).get('platform') != "picroft" and len(re.findall('<[^>]*>', utterance)) == 0): start = time.time() chunks = re.split(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s', utterance) for chunk in chunks: try: mute_and_speak(chunk, ident) except KeyboardInterrupt: raise except Exception: LOG.error('Error in mute_and_speak', exc_info=True) if (_last_stop_signal > start or check_for_signal('buttonPress')): break else: mute_and_speak(utterance, ident) stopwatch.stop() report_timing(ident, 'speech', stopwatch, {'utterance': utterance, 'tts': tts.__class__.__name__}) def mute_and_speak(utterance, ident): """ Mute mic and start speaking the utterance using selected tts backend. Args: utterance: The sentence to be spoken ident: Ident tying the utterance to the source query """ global tts_hash # update TTS object if configuration has changed if tts_hash != hash(str(config.get('tts', ''))): global tts # Stop tts playback thread tts.playback.stop() tts.playback.join() # Create new tts instance tts = TTSFactory.create() tts.init(ws) tts_hash = hash(str(config.get('tts', ''))) LOG.info("Speak: " + utterance) try: tts.execute(utterance, ident) except Exception as e: LOG.error('TTS execution failed ({})'.format(repr(e))) def handle_stop(event): """ handle stop message """ global _last_stop_signal if check_for_signal("isSpeaking", -1): _last_stop_signal = time.time() tts.playback.clear_queue() tts.playback.clear_visimes() ws.emit(Message("mycroft.stop.handled", {"by": "TTS"})) def init(websocket): """ Start speech related handlers """ global ws global tts global tts_hash global config ws = websocket Configuration.init(ws) config = Configuration.get() ws.on('mycroft.stop', handle_stop) ws.on('mycroft.audio.speech.stop', handle_stop) ws.on('speak', handle_speak) ws.on('mycroft.mic.listen', _start_listener) tts = TTSFactory.create() tts.init(ws) tts_hash = config.get('tts') def shutdown(): if tts: tts.playback.stop() tts.playback.join()
30.834356
79
0.619976
ffb6837d939721d44b5c6ad7e9c6ac62769246e9
4,046
py
Python
plugins/earthAnimation.py
AY-ME/botShell
16f8a7364255cefa76844d38b3df3278a47988d3
[ "MIT" ]
24
2020-07-22T00:14:25.000Z
2021-09-24T12:30:05.000Z
plugins/earthAnimation.py
AY-ME/botShell
16f8a7364255cefa76844d38b3df3278a47988d3
[ "MIT" ]
null
null
null
plugins/earthAnimation.py
AY-ME/botShell
16f8a7364255cefa76844d38b3df3278a47988d3
[ "MIT" ]
19
2020-07-17T21:01:31.000Z
2022-02-17T11:07:43.000Z
import asyncio from utilities import utilities async def run(message, matches, chat_id, step, crons=None): response = [] if not (message.out): message = await message.reply(matches) msg = "▪️▪️▪️▪️▪️▪️▪️\r\n▪️▪️▪️🌖▪️▪️▪️\r\n▪️▪️▪️▪️▪️▪️▪️\r\n▪️▪️▪️🌍▪️▪️▪️\r\n▪️▪️▪️▪️▪️▪️▪️\r\n▪️▪️▪️🌒▪️▪️▪️\r\n▪️▪️▪️▪️▪️▪️▪️" response.append(message.edit(msg)) response.append(asyncio.sleep(0.5)) msg = "▪️▪️▪️▪️▪️▪️▪️\r\n▪️▪️▪️▪️🌖▪️▪️\r\n▪️▪️▪️▪️▪️▪️▪️\r\n▪️▪️▪️🌏▪️▪️▪️\r\n▪️▪️▪️▪️▪️▪️▪️\r\n▪️▪️🌒▪️▪️▪️▪️\r\n▪️▪️▪️▪️▪️▪️▪️" response.append(message.edit(msg)) response.append(asyncio.sleep(0.5)) msg = "▪️▪️▪️▪️▪️▪️▪️\r\n▪️▪️▪️▪️▪️🌖▪️\r\n▪️▪️▪️▪️▪️▪️▪️\r\n▪️▪️▪️🌎▪️▪️▪️\r\n▪️▪️▪️▪️▪️▪️▪️\r\n▪️🌒▪️▪️▪️▪️▪️\r\n▪️▪️▪️▪️▪️▪️▪️" response.append(message.edit(msg)) response.append(asyncio.sleep(0.5)) msg = "▪️▪️▪️▪️▪️▪️▪️\r\n▪️▪️▪️▪️▪️▪️▪️\r\n▪️▪️▪️▪️▪️🌖▪️\r\n▪️▪️▪️🌍▪️▪️▪️\r\n▪️🌒▪️▪️▪️▪️▪️\r\n▪️▪️▪️▪️▪️▪️▪️\r\n▪️▪️▪️▪️▪️▪️▪️" response.append(message.edit(msg)) response.append(asyncio.sleep(0.5)) msg = "▪️▪️▪️▪️▪️▪️▪️\r\n▪️▪️▪️▪️▪️▪️▪️\r\n▪️▪️▪️▪️▪️▪️▪️\r\n▪️🌒▪️🌎▪️🌖▪️\r\n▪️▪️▪️▪️▪️▪️▪️\r\n▪️▪️▪️▪️▪️▪️▪️\r\n▪️▪️▪️▪️▪️▪️▪️" response.append(message.edit(msg)) response.append(asyncio.sleep(0.5)) msg = "▪️▪️▪️▪️▪️▪️▪️\r\n▪️▪️▪️▪️▪️▪️▪️\r\n▪️🌒▪️▪️▪️▪️▪️\r\n▪️▪️▪️🌏▪️▪️▪️\r\n▪️▪️▪️▪️▪️🌖▪️\r\n▪️▪️▪️▪️▪️▪️▪️\r\n▪️▪️▪️▪️▪️▪️▪️" response.append(message.edit(msg)) response.append(asyncio.sleep(0.5)) msg = "▪️▪️▪️▪️▪️▪️▪️\r\n▪️🌒▪️▪️▪️▪️▪️\r\n▪️▪️▪️▪️▪️▪️▪️\r\n▪️▪️▪️🌍▪️▪️▪️\r\n▪️▪️▪️▪️▪️▪️▪️\r\n▪️▪️▪️▪️▪️🌖▪️\r\n▪️▪️▪️▪️▪️▪️▪️" response.append(message.edit(msg)) response.append(asyncio.sleep(0.5)) msg = "▪️▪️▪️▪️▪️▪️▪️\r\n▪️▪️🌒▪️▪️▪️▪️\r\n▪️▪️▪️▪️▪️▪️▪️\r\n▪️▪️▪️🌏▪️▪️▪️\r\n▪️▪️▪️▪️▪️▪️▪️\r\n▪️▪️▪️▪️🌖▪️▪️\r\n▪️▪️▪️▪️▪️▪️▪️" response.append(message.edit(msg)) response.append(asyncio.sleep(0.5)) msg = "▪️▪️▪️▪️▪️▪️▪️\r\n▪️▪️▪️🌒▪️▪️▪️\r\n▪️▪️▪️▪️▪️▪️▪️\r\n▪️▪️▪️🌎▪️▪️▪️\r\n▪️▪️▪️▪️▪️▪️▪️\r\n▪️▪️▪️🌖▪️▪️▪️\r\n▪️▪️▪️▪️▪️▪️▪️" response.append(message.edit(msg)) response.append(asyncio.sleep(0.5)) msg = "▪️▪️▪️▪️▪️▪️▪️\r\n▪️▪️▪️▪️🌒▪️▪️\r\n▪️▪️▪️▪️▪️▪️▪️\r\n▪️▪️▪️🌍▪️▪️▪️\r\n▪️▪️▪️▪️▪️▪️▪️\r\n▪️▪️🌖▪️▪️▪️▪️\r\n▪️▪️▪️▪️▪️▪️▪️" response.append(message.edit(msg)) response.append(asyncio.sleep(0.5)) msg = "▪️▪️▪️▪️▪️▪️▪️\r\n▪️▪️▪️▪️▪️🌒▪️\r\n▪️▪️▪️▪️▪️▪️▪️\r\n▪️▪️▪️🌎▪️▪️▪️\r\n▪️▪️▪️▪️▪️▪️▪️\r\n▪️🌖▪️▪️▪️▪️▪️\r\n▪️▪️▪️▪️▪️▪️▪️" response.append(message.edit(msg)) response.append(asyncio.sleep(0.5)) msg = "▪️▪️▪️▪️▪️▪️▪️\r\n▪️▪️▪️▪️▪️▪️▪️\r\n▪️▪️▪️▪️▪️🌒▪️\r\n▪️▪️▪️🌏▪️▪️▪️\r\n▪️🌖▪️▪️▪️▪️▪️\r\n▪️▪️▪️▪️▪️▪️▪️\r\n▪️▪️▪️▪️▪️▪️▪️" response.append(message.edit(msg)) response.append(asyncio.sleep(0.5)) msg = "▪️▪️▪️▪️▪️▪️▪️\r\n▪️▪️▪️▪️▪️▪️▪️\r\n▪️▪️▪️▪️▪️▪️▪️\r\n▪️🌖▪️🌍▪️🌒▪️\r\n▪️▪️▪️▪️▪️▪️▪️\r\n▪️▪️▪️▪️▪️▪️▪️\r\n▪️▪️▪️▪️▪️▪️▪️" response.append(message.edit(msg)) response.append(asyncio.sleep(0.5)) msg = "▪️▪️▪️▪️▪️▪️▪️\r\n▪️▪️▪️▪️▪️▪️▪️\r\n▪️🌖▪️▪️▪️▪️▪️\r\n▪️▪️▪️🌎▪️▪️▪️\r\n▪️▪️▪️▪️▪️🌒▪️\r\n▪️▪️▪️▪️▪️▪️▪️\r\n▪️▪️▪️▪️▪️▪️▪️" response.append(message.edit(msg)) response.append(asyncio.sleep(0.5)) msg = "▪️▪️▪️▪️▪️▪️▪️\r\n▪️🌖▪️▪️▪️▪️▪️\r\n▪️▪️▪️▪️▪️▪️▪️\r\n▪️▪️▪️🌏▪️▪️▪️\r\n▪️▪️▪️▪️▪️▪️▪️\r\n▪️▪️▪️▪️▪️🌒▪️\r\n▪️▪️▪️▪️▪️▪️▪️" response.append(message.edit(msg)) response.append(asyncio.sleep(0.5)) msg = "▪️▪️▪️▪️▪️▪️▪️\r\n▪️▪️🌖▪️▪️▪️▪️\r\n▪️▪️▪️▪️▪️▪️▪️\r\n▪️▪️▪️🌎▪️▪️▪️\r\n▪️▪️▪️▪️▪️▪️▪️\r\n▪️▪️▪️▪️🌒▪️▪️\r\n▪️▪️▪️▪️▪️▪️▪️" response.append(message.edit(msg)) response.append(asyncio.sleep(0.5)) msg = "▪️▪️▪️▪️▪️▪️▪️\r\n▪️▪️▪️🌖▪️▪️▪️\r\n▪️▪️▪️▪️▪️▪️▪️\r\n▪️▪️▪️🌍▪️▪️▪️\r\n▪️▪️▪️▪️▪️▪️▪️\r\n▪️▪️▪️🌒▪️▪️▪️\r\n▪️▪️▪️▪️▪️▪️▪️" response.append(message.edit(msg)) response.append(asyncio.sleep(0.5)) return response plugin = { "name": "Earth Animation", "desc": "Earth with moon and sun turn around it.", "usage": ["[!/#]earth Earth with moon and sun turn around it."], "run": run, "sudo": True, "patterns": ["^[!/#]earth$"], }
56.194444
131
0.367771
6544c583f715d0f828fc7b0a022bb630f6a84000
6,793
py
Python
trimage/ui.py
kalmi/Trimage
269e052ba407c16ab32953276c776d543930b917
[ "MIT" ]
434
2015-01-04T02:19:36.000Z
2022-03-29T20:26:28.000Z
trimage/ui.py
kalmi/Trimage
269e052ba407c16ab32953276c776d543930b917
[ "MIT" ]
61
2015-03-02T15:06:11.000Z
2022-01-30T02:53:03.000Z
trimage/ui.py
kalmi/Trimage
269e052ba407c16ab32953276c776d543930b917
[ "MIT" ]
61
2015-01-14T16:45:36.000Z
2021-12-04T01:03:24.000Z
#!/usr/bin/env python3 from os import path from PyQt5.QtCore import * from PyQt5.QtGui import * from PyQt5.QtWidgets import * class TrimageTableView(QTableView): drop_event_signal = pyqtSignal(list) """Init the table drop event.""" def __init__(self, parent=None): super(TrimageTableView, self).__init__(parent) self.setAcceptDrops(True) def dragEnterEvent(self, event): if event.mimeData().hasUrls: event.accept() else: event.ignore() def dragMoveEvent(self, event): event.accept() def dropEvent(self, event): event.accept() filelist = [] for url in event.mimeData().urls(): filelist.append(url.toLocalFile()) self.drop_event_signal.emit(filelist) class Ui_trimage(): def get_image(self, image): """Get the correct link to the images used in the UI.""" imagelink = path.join(path.dirname(path.dirname(path.realpath(__file__))), "trimage/" + image) return imagelink def setupUi(self, trimage): """Setup the entire UI.""" trimage.setObjectName("trimage") trimage.resize(600, 170) trimageIcon = QIcon(self.get_image("pixmaps/trimage-icon.png")) trimage.setWindowIcon(trimageIcon) self.centralwidget = QWidget(trimage) self.centralwidget.setObjectName("centralwidget") self.gridLayout_2 = QGridLayout(self.centralwidget) self.gridLayout_2.setContentsMargins(0, 0, 0, 0) self.gridLayout_2.setSpacing(0) self.gridLayout_2.setObjectName("gridLayout_2") self.widget = QWidget(self.centralwidget) self.widget.setEnabled(True) sizePolicy = QSizePolicy(QSizePolicy.Preferred, QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(1) sizePolicy.setVerticalStretch(1) sizePolicy.setHeightForWidth( self.widget.sizePolicy().hasHeightForWidth()) self.widget.setSizePolicy(sizePolicy) self.widget.setObjectName("widget") self.verticalLayout = QVBoxLayout(self.widget) self.verticalLayout.setSpacing(0) self.verticalLayout.setContentsMargins(0, 0, 0, 0) self.verticalLayout.setObjectName("verticalLayout") self.frame = QFrame(self.widget) self.frame.setObjectName("frame") self.verticalLayout_2 = QVBoxLayout(self.frame) self.verticalLayout_2.setSpacing(0) self.verticalLayout_2.setContentsMargins(0, 0, 0, 0) self.verticalLayout_2.setObjectName("verticalLayout_2") self.horizontalLayout = QHBoxLayout() self.horizontalLayout.setSpacing(0) self.horizontalLayout.setContentsMargins(10, 10, 10, 10) self.horizontalLayout.setObjectName("horizontalLayout") self.addfiles = QPushButton(self.frame) font = QFont() font.setPointSize(9) self.addfiles.setFont(font) self.addfiles.setCursor(Qt.PointingHandCursor) icon = QIcon() icon.addPixmap(QPixmap(self.get_image("pixmaps/list-add.png")), QIcon.Normal, QIcon.Off) self.addfiles.setIcon(icon) self.addfiles.setObjectName("addfiles") self.addfiles.setAcceptDrops(True) self.horizontalLayout.addWidget(self.addfiles) self.label = QLabel(self.frame) font = QFont() font.setPointSize(8) self.label.setFont(font) self.label.setFrameShadow(QFrame.Plain) self.label.setContentsMargins(1, 1, 1, 1) self.label.setIndent(10) self.label.setObjectName("label") self.horizontalLayout.addWidget(self.label) spacerItem = QSpacerItem(498, 20, QSizePolicy.Expanding, QSizePolicy.Minimum) self.horizontalLayout.addItem(spacerItem) self.recompress = QPushButton(self.frame) font = QFont() font.setPointSize(9) self.recompress.setFont(font) self.recompress.setCursor(Qt.PointingHandCursor) icon1 = QIcon() icon1.addPixmap(QPixmap(self.get_image("pixmaps/view-refresh.png")), QIcon.Normal, QIcon.Off) self.recompress.setIcon(icon1) self.recompress.setCheckable(False) self.recompress.setObjectName("recompress") self.horizontalLayout.addWidget(self.recompress) self.verticalLayout_2.addLayout(self.horizontalLayout) self.processedfiles = TrimageTableView(self.frame) self.processedfiles.setEnabled(True) self.processedfiles.setFrameShape(QFrame.NoFrame) self.processedfiles.setFrameShadow(QFrame.Plain) self.processedfiles.setLineWidth(0) self.processedfiles.setMidLineWidth(0) self.processedfiles.setHorizontalScrollBarPolicy(Qt.ScrollBarAlwaysOff) self.processedfiles.setTabKeyNavigation(True) self.processedfiles.setAlternatingRowColors(True) self.processedfiles.setTextElideMode(Qt.ElideRight) self.processedfiles.setShowGrid(True) self.processedfiles.setGridStyle(Qt.NoPen) self.processedfiles.setSortingEnabled(False) self.processedfiles.setObjectName("processedfiles") self.processedfiles.resizeColumnsToContents() self.processedfiles.setSelectionMode(QAbstractItemView.NoSelection) self.verticalLayout_2.addWidget(self.processedfiles) self.verticalLayout.addWidget(self.frame) self.gridLayout_2.addWidget(self.widget, 0, 0, 1, 1) trimage.setCentralWidget(self.centralwidget) self.retranslateUi(trimage) QMetaObject.connectSlotsByName(trimage) def retranslateUi(self, trimage): """Fill in the texts for all UI elements.""" trimage.setWindowTitle(QApplication.translate("trimage", "Trimage image compressor", None)) self.addfiles.setToolTip(QApplication.translate("trimage", "Add file to the compression list", None)) self.addfiles.setText(QApplication.translate("trimage", "&Add and compress", None)) self.addfiles.setShortcut(QApplication.translate("trimage", "Alt+A", None)) self.label.setText(QApplication.translate("trimage", "Drag and drop images onto the table", None)) self.recompress.setToolTip(QApplication.translate("trimage", "Recompress all images", None)) self.recompress.setText(QApplication.translate("trimage", "&Recompress", None)) self.recompress.setShortcut(QApplication.translate("trimage", "Alt+R", None)) self.processedfiles.setToolTip(QApplication.translate("trimage", "Drag files in here", None)) self.processedfiles.setWhatsThis(QApplication.translate("trimage", "Drag files in here", None))
39.265896
102
0.676579
e34bebe87d37fb2894c2ee6058b6dcf970136e1a
7,768
py
Python
from_cpython/Lib/test/test_imaplib.py
jmgc/pyston
9f672c1bbb75710ac17dd3d9107da05c8e9e8e8f
[ "BSD-2-Clause", "Apache-2.0" ]
null
null
null
from_cpython/Lib/test/test_imaplib.py
jmgc/pyston
9f672c1bbb75710ac17dd3d9107da05c8e9e8e8f
[ "BSD-2-Clause", "Apache-2.0" ]
null
null
null
from_cpython/Lib/test/test_imaplib.py
jmgc/pyston
9f672c1bbb75710ac17dd3d9107da05c8e9e8e8f
[ "BSD-2-Clause", "Apache-2.0" ]
null
null
null
from test import test_support as support # If we end up with a significant number of tests that don't require # threading, this test module should be split. Right now we skip # them all if we don't have threading. threading = support.import_module('threading') from contextlib import contextmanager import imaplib import os.path import SocketServer import time # Pyston change: changed to absolute import from test.test_support import reap_threads, verbose, transient_internet import unittest try: import ssl except ImportError: ssl = None CERTFILE = None class TestImaplib(unittest.TestCase): def test_that_Time2Internaldate_returns_a_result(self): # We can check only that it successfully produces a result, # not the correctness of the result itself, since the result # depends on the timezone the machine is in. timevalues = [2000000000, 2000000000.0, time.localtime(2000000000), '"18-May-2033 05:33:20 +0200"'] for t in timevalues: imaplib.Time2Internaldate(t) if ssl: class SecureTCPServer(SocketServer.TCPServer): def get_request(self): newsocket, fromaddr = self.socket.accept() connstream = ssl.wrap_socket(newsocket, server_side=True, certfile=CERTFILE) return connstream, fromaddr IMAP4_SSL = imaplib.IMAP4_SSL else: class SecureTCPServer: pass IMAP4_SSL = None class SimpleIMAPHandler(SocketServer.StreamRequestHandler): timeout = 1 def _send(self, message): if verbose: print "SENT:", message.strip() self.wfile.write(message) def handle(self): # Send a welcome message. self._send('* OK IMAP4rev1\r\n') while 1: # Gather up input until we receive a line terminator or we timeout. # Accumulate read(1) because it's simpler to handle the differences # between naked sockets and SSL sockets. line = '' while 1: try: part = self.rfile.read(1) if part == '': # Naked sockets return empty strings.. return line += part except IOError: # ..but SSLSockets raise exceptions. return if line.endswith('\r\n'): break if verbose: print 'GOT:', line.strip() splitline = line.split() tag = splitline[0] cmd = splitline[1] args = splitline[2:] if hasattr(self, 'cmd_%s' % (cmd,)): getattr(self, 'cmd_%s' % (cmd,))(tag, args) else: self._send('%s BAD %s unknown\r\n' % (tag, cmd)) def cmd_CAPABILITY(self, tag, args): self._send('* CAPABILITY IMAP4rev1\r\n') self._send('%s OK CAPABILITY completed\r\n' % (tag,)) class BaseThreadedNetworkedTests(unittest.TestCase): def make_server(self, addr, hdlr): class MyServer(self.server_class): def handle_error(self, request, client_address): self.close_request(request) self.server_close() raise if verbose: print "creating server" server = MyServer(addr, hdlr) self.assertEqual(server.server_address, server.socket.getsockname()) if verbose: print "server created" print "ADDR =", addr print "CLASS =", self.server_class print "HDLR =", server.RequestHandlerClass t = threading.Thread( name='%s serving' % self.server_class, target=server.serve_forever, # Short poll interval to make the test finish quickly. # Time between requests is short enough that we won't wake # up spuriously too many times. kwargs={'poll_interval':0.01}) t.daemon = True # In case this function raises. t.start() if verbose: print "server running" return server, t def reap_server(self, server, thread): if verbose: print "waiting for server" server.shutdown() thread.join() if verbose: print "done" @contextmanager def reaped_server(self, hdlr): server, thread = self.make_server((support.HOST, 0), hdlr) try: yield server finally: self.reap_server(server, thread) @reap_threads def test_connect(self): with self.reaped_server(SimpleIMAPHandler) as server: client = self.imap_class(*server.server_address) client.shutdown() @reap_threads def test_issue5949(self): class EOFHandler(SocketServer.StreamRequestHandler): def handle(self): # EOF without sending a complete welcome message. self.wfile.write('* OK') with self.reaped_server(EOFHandler) as server: self.assertRaises(imaplib.IMAP4.abort, self.imap_class, *server.server_address) def test_linetoolong(self): class TooLongHandler(SimpleIMAPHandler): def handle(self): # Send a very long response line self.wfile.write('* OK ' + imaplib._MAXLINE*'x' + '\r\n') with self.reaped_server(TooLongHandler) as server: self.assertRaises(imaplib.IMAP4.error, self.imap_class, *server.server_address) class ThreadedNetworkedTests(BaseThreadedNetworkedTests): server_class = SocketServer.TCPServer imap_class = imaplib.IMAP4 @unittest.skipUnless(ssl, "SSL not available") class ThreadedNetworkedTestsSSL(BaseThreadedNetworkedTests): server_class = SecureTCPServer imap_class = IMAP4_SSL def test_linetoolong(self): raise unittest.SkipTest("test is not reliable on 2.7; see issue 20118") class RemoteIMAPTest(unittest.TestCase): host = 'cyrus.andrew.cmu.edu' port = 143 username = 'anonymous' password = 'pass' imap_class = imaplib.IMAP4 def setUp(self): with transient_internet(self.host): self.server = self.imap_class(self.host, self.port) def tearDown(self): if self.server is not None: self.server.logout() def test_logincapa(self): self.assertTrue('LOGINDISABLED' in self.server.capabilities) def test_anonlogin(self): self.assertTrue('AUTH=ANONYMOUS' in self.server.capabilities) rs = self.server.login(self.username, self.password) self.assertEqual(rs[0], 'OK') def test_logout(self): rs = self.server.logout() self.server = None self.assertEqual(rs[0], 'BYE') @unittest.skipUnless(ssl, "SSL not available") class RemoteIMAP_SSLTest(RemoteIMAPTest): port = 993 imap_class = IMAP4_SSL def test_logincapa(self): self.assertFalse('LOGINDISABLED' in self.server.capabilities) self.assertTrue('AUTH=PLAIN' in self.server.capabilities) def test_main(): tests = [TestImaplib] if support.is_resource_enabled('network'): if ssl: global CERTFILE CERTFILE = os.path.join(os.path.dirname(__file__) or os.curdir, "keycert.pem") if not os.path.exists(CERTFILE): raise support.TestFailed("Can't read certificate files!") tests.extend([ ThreadedNetworkedTests, ThreadedNetworkedTestsSSL, RemoteIMAPTest, RemoteIMAP_SSLTest, ]) support.run_unittest(*tests) if __name__ == "__main__": test_main()
30.582677
79
0.608136
9c95c84897795c56e0bae2591c7b8f5502e229dc
2,442
py
Python
svg/tests.py
alexanderisora/django-inline-svg
33a86b8f3e4f60067bec8bb8d68827e1cde4097f
[ "MIT" ]
76
2016-03-24T14:04:07.000Z
2021-11-08T09:04:05.000Z
svg/tests.py
alexanderisora/django-inline-svg
33a86b8f3e4f60067bec8bb8d68827e1cde4097f
[ "MIT" ]
7
2016-03-24T14:52:35.000Z
2020-10-12T11:27:56.000Z
svg/tests.py
alexanderisora/django-inline-svg
33a86b8f3e4f60067bec8bb8d68827e1cde4097f
[ "MIT" ]
17
2016-03-31T15:43:46.000Z
2021-11-14T06:30:21.000Z
import os from django.conf import settings from django.core.exceptions import ImproperlyConfigured from django.template import Context, Template from django.test.testcases import SimpleTestCase from svg.exceptions import SVGNotFound class SVGTemplateTagTest(SimpleTestCase): def test_should_render_svg(self): svg_file = open(os.path.join(settings.BASE_DIR, 'static', 'svg', 'django.svg')).read() template = Template("{% load svg %}{% svg 'django' %}") self.assertEqual(svg_file, template.render(Context())) def test_when_given_invalid_file_it_should_fail_silently(self): template = Template("{% load svg %}{% svg 'thisdoesntexist' %}") self.assertEqual('', template.render(Context())) def test_when_debug_it_should_raise_an_error(self): template = Template("{% load svg %}{% svg 'thisdoesntexist' %}") with self.settings(DEBUG=True): with self.assertRaises(SVGNotFound): template.render(Context()) def test_should_load_svg_from_custom_directory(self): with self.settings(SVG_DIRS=[os.path.join(settings.BASE_DIR, 'static', 'custom-dir')]): svg_file = open(os.path.join(settings.BASE_DIR, 'static', 'custom-dir', 'other.svg')).read() template = Template("{% load svg %}{% svg 'other' %}") self.assertEqual(svg_file, template.render(Context())) def test_when_given_invalid_file_and_using_custom_directory_it_should_fail(self): # noqa with self.settings(SVG_DIRS=[os.path.join(settings.BASE_DIR, 'static', 'custom-dir')]): template = Template("{% load svg %}{% svg 'nonexistent' %}") self.assertEqual('', template.render(Context())) def test_when_SVG_DIRS_isnt_a_list_it_should_raise_an_error(self): with self.settings(SVG_DIRS=os.path.join(settings.BASE_DIR, 'static', 'custom-dir')): template = Template("{% load svg %}{% svg 'other' %}") with self.assertRaises(ImproperlyConfigured): template.render(Context())
42.103448
93
0.572072
274de8df36fe128e7e8a5719260c80ccdf75929d
44
py
Python
guillotina_volto/fields/__init__.py
enfold/guillotina-volto
d38ee300470c813c99341eaeb2ba8a2b5fb7d778
[ "BSD-2-Clause" ]
1
2020-11-14T13:09:49.000Z
2020-11-14T13:09:49.000Z
guillotina_volto/fields/__init__.py
enfold/guillotina-volto
d38ee300470c813c99341eaeb2ba8a2b5fb7d778
[ "BSD-2-Clause" ]
4
2021-05-14T20:21:03.000Z
2021-11-18T01:27:04.000Z
guillotina_volto/fields/__init__.py
enfold/guillotina-volto
d38ee300470c813c99341eaeb2ba8a2b5fb7d778
[ "BSD-2-Clause" ]
null
null
null
from .richtext import RichTextField # noqa
22
43
0.795455
b936f18101a54142c16cecc67745efd3a5d6cced
8,389
py
Python
dump/main.py
liuh-80/sonic-utilities
3d3c89bd75e3c70881c64e2a59043177c56111b4
[ "Apache-2.0" ]
null
null
null
dump/main.py
liuh-80/sonic-utilities
3d3c89bd75e3c70881c64e2a59043177c56111b4
[ "Apache-2.0" ]
null
null
null
dump/main.py
liuh-80/sonic-utilities
3d3c89bd75e3c70881c64e2a59043177c56111b4
[ "Apache-2.0" ]
null
null
null
import os import sys import json import re import click from tabulate import tabulate from sonic_py_common import multi_asic from utilities_common.constants import DEFAULT_NAMESPACE from swsscommon.swsscommon import ConfigDBConnector from dump.match_infra import RedisSource, JsonSource, ConnectionPool from dump import plugins # Autocompletion Helper def get_available_modules(ctx, args, incomplete): return [k for k in plugins.dump_modules.keys() if incomplete in k] # Display Modules Callback def show_modules(ctx, param, value): if not value or ctx.resilient_parsing: return header = ["Module", "Identifier"] display = [] for mod in plugins.dump_modules: display.append((mod, plugins.dump_modules[mod].ARG_NAME)) click.echo(tabulate(display, header)) ctx.exit() @click.group() def dump(): pass @dump.command() @click.pass_context @click.argument('module', required=True, type=str, autocompletion=get_available_modules) @click.argument('identifier', required=True, type=str) @click.option('--show', '-s', is_flag=True, default=False, expose_value=False, callback=show_modules, help='Display Modules Available', is_eager=True) @click.option('--db', '-d', multiple=True, help='Only dump from these Databases or the CONFIG_FILE') @click.option('--table', '-t', is_flag=True, default=False, help='Print in tabular format', show_default=True) @click.option('--key-map', '-k', is_flag=True, default=False, show_default=True, help="Only fetch the keys matched, don't extract field-value dumps") @click.option('--verbose', '-v', is_flag=True, default=False, show_default=True, help="Prints any intermediate output to stdout useful for dev & troubleshooting") @click.option('--namespace', '-n', default=DEFAULT_NAMESPACE, type=str, show_default=True, help='Dump the redis-state for this namespace.') def state(ctx, module, identifier, db, table, key_map, verbose, namespace): """ Dump the current state of the identifier for the specified module from Redis DB or CONFIG_FILE """ if not multi_asic.is_multi_asic() and namespace != DEFAULT_NAMESPACE: click.echo("Namespace option is not valid for a single-ASIC device") ctx.exit() if multi_asic.is_multi_asic() and (namespace != DEFAULT_NAMESPACE and namespace not in multi_asic.get_namespace_list()): click.echo("Namespace option is not valid. Choose one of {}".format(multi_asic.get_namespace_list())) ctx.exit() if module not in plugins.dump_modules: click.echo("No Matching Plugin has been Implemented") ctx.exit() if verbose: os.environ["VERBOSE"] = "1" else: os.environ["VERBOSE"] = "0" ctx.module = module obj = plugins.dump_modules[module]() if identifier == "all": ids = obj.get_all_args(namespace) else: ids = identifier.split(",") params = {} collected_info = {} params['namespace'] = namespace for arg in ids: params[plugins.dump_modules[module].ARG_NAME] = arg try: collected_info[arg] = obj.execute(params) except ValueError as err: click.fail(f"Failed to execute plugin: {err}") if len(db) > 0: collected_info = filter_out_dbs(db, collected_info) vidtorid = extract_rid(collected_info, namespace) if not key_map: collected_info = populate_fv(collected_info, module, namespace) for id in vidtorid.keys(): collected_info[id]["ASIC_DB"]["vidtorid"] = vidtorid[id] print_dump(collected_info, table, module, identifier, key_map) return def extract_rid(info, ns): r = RedisSource(ConnectionPool()) r.connect("ASIC_DB", ns) vidtorid = {} vid_cache = {} # Cache Entries to reduce number of Redis Calls for arg in info.keys(): mp = get_v_r_map(r, info[arg], vid_cache) if mp: vidtorid[arg] = mp return vidtorid def get_v_r_map(r, single_dict, vid_cache): v_r_map = {} asic_obj_ptrn = "ASIC_STATE:.*:oid:0x\w{1,14}" if "ASIC_DB" in single_dict and "keys" in single_dict["ASIC_DB"]: for redis_key in single_dict["ASIC_DB"]["keys"]: if re.match(asic_obj_ptrn, redis_key): matches = re.findall(r"oid:0x\w{1,14}", redis_key) if matches: vid = matches[0] if vid in vid_cache: rid = vid_cache[vid] else: rid = r.hget("ASIC_DB", "VIDTORID", vid) vid_cache[vid] = rid v_r_map[vid] = rid if rid else "Real ID Not Found" return v_r_map # Filter dbs which are not required def filter_out_dbs(db_list, collected_info): args_ = list(collected_info.keys()) for arg in args_: dbs = list(collected_info[arg].keys()) for db in dbs: if db not in db_list: del collected_info[arg][db] return collected_info def populate_fv(info, module, namespace): all_dbs = set() for id in info.keys(): for db_name in info[id].keys(): all_dbs.add(db_name) db_cfg_file = JsonSource() db_conn = ConnectionPool().initialize_connector(namespace) for db_name in all_dbs: if db_name == "CONFIG_FILE": db_cfg_file.connect(plugins.dump_modules[module].CONFIG_FILE, namespace) else: db_conn.connect(db_name) final_info = {} for id in info.keys(): final_info[id] = {} for db_name in info[id].keys(): final_info[id][db_name] = {} final_info[id][db_name]["keys"] = [] final_info[id][db_name]["tables_not_found"] = info[id][db_name]["tables_not_found"] for key in info[id][db_name]["keys"]: if db_name == "CONFIG_FILE": fv = db_cfg_file.get(db_name, key) else: fv = db_conn.get_all(db_name, key) final_info[id][db_name]["keys"].append({key: fv}) return final_info def get_dict_str(key_obj): conn = ConfigDBConnector() table = [] key_obj = conn.raw_to_typed(key_obj) for field, value in key_obj.items(): if isinstance(value, list): value = "\n".join(value) table.append((field, value)) return tabulate(table, headers=["field", "value"], tablefmt="psql") # print dump def print_dump(collected_info, table, module, identifier, key_map): if not table: click.echo(json.dumps(collected_info, indent=4)) return top_header = [plugins.dump_modules[module].ARG_NAME, "DB_NAME", "DUMP"] final_collection = [] for ids in collected_info.keys(): for db in collected_info[ids].keys(): total_info = "" if collected_info[ids][db]["tables_not_found"]: tabulate_fmt = [] for tab in collected_info[ids][db]["tables_not_found"]: tabulate_fmt.append([tab]) total_info += tabulate(tabulate_fmt, ["Tables Not Found"], tablefmt="grid") total_info += "\n" if not key_map: values = [] hdrs = ["Keys", "field-value pairs"] for key_obj in collected_info[ids][db]["keys"]: if isinstance(key_obj, dict) and key_obj: key = list(key_obj.keys())[0] values.append([key, get_dict_str(key_obj[key])]) total_info += str(tabulate(values, hdrs, tablefmt="grid")) else: temp = [] for key_ in collected_info[ids][db]["keys"]: temp.append([key_]) total_info += str(tabulate(temp, headers=["Keys Collected"], tablefmt="grid")) total_info += "\n" if "vidtorid" in collected_info[ids][db]: temp = [] for pair in collected_info[ids][db]["vidtorid"].items(): temp.append(list(pair)) total_info += str(tabulate(temp, headers=["vid", "rid"], tablefmt="grid")) final_collection.append([ids, db, total_info]) click.echo(tabulate(final_collection, top_header, tablefmt="grid")) return if __name__ == '__main__': dump()
35.247899
124
0.614138
e75bf47239910c9b8d43faf733006d1125b9929f
104,501
py
Python
__main__.py
labscript-suite-temp-archive/lyse-fork--cavitylab-lyse--forked-from--labscript_suite-lyse
b77583aad39800f9e22e638db7e878160e0b43ff
[ "BSD-2-Clause" ]
null
null
null
__main__.py
labscript-suite-temp-archive/lyse-fork--cavitylab-lyse--forked-from--labscript_suite-lyse
b77583aad39800f9e22e638db7e878160e0b43ff
[ "BSD-2-Clause" ]
null
null
null
__main__.py
labscript-suite-temp-archive/lyse-fork--cavitylab-lyse--forked-from--labscript_suite-lyse
b77583aad39800f9e22e638db7e878160e0b43ff
[ "BSD-2-Clause" ]
null
null
null
from __future__ import division, unicode_literals, print_function, absolute_import # Ease the transition to Python 3 # stdlib imports import os import sys import socket import logging import threading import signal import subprocess import time import traceback import pprint import ast # Turn on our error catching for all subsequent imports import labscript_utils.excepthook # 3rd party imports: import numpy as np import labscript_utils.h5_lock import h5py import pandas try: from labscript_utils import check_version except ImportError: raise ImportError('Require labscript_utils > 2.1.0') check_version('qtutils', '2.1.0', '3.0.0') import zprocess.locking from zprocess import ZMQServer from labscript_utils.labconfig import LabConfig, config_prefix from labscript_utils.setup_logging import setup_logging from labscript_utils.qtwidgets.headerview_with_widgets import HorizontalHeaderViewWithWidgets import labscript_utils.shared_drive as shared_drive from lyse.dataframe_utilities import (concat_with_padding, get_dataframe_from_shot, replace_with_padding) from qtutils.qt import QtCore, QtGui, QtWidgets from qtutils.qt.QtCore import pyqtSignal as Signal from qtutils import inmain_decorator, inmain, UiLoader, DisconnectContextManager from qtutils.outputbox import OutputBox from qtutils.auto_scroll_to_end import set_auto_scroll_to_end import qtutils.icons from labscript_utils import PY2 if PY2: str = unicode import Queue as queue else: import queue # Set working directory to lyse folder, resolving symlinks lyse_dir = os.path.dirname(os.path.realpath(__file__)) os.chdir(lyse_dir) # Set a meaningful name for zprocess.locking's client id: zprocess.locking.set_client_process_name('lyse') def set_win_appusermodel(window_id): from labscript_utils.winshell import set_appusermodel, appids, app_descriptions icon_path = os.path.abspath('lyse.ico') executable = sys.executable.lower() if not executable.endswith('w.exe'): executable = executable.replace('.exe', 'w.exe') relaunch_command = executable + ' ' + os.path.abspath(__file__.replace('.pyc', '.py')) relaunch_display_name = app_descriptions['lyse'] set_appusermodel(window_id, appids['lyse'], icon_path, relaunch_command, relaunch_display_name) @inmain_decorator() def error_dialog(message): QtWidgets.QMessageBox.warning(app.ui, 'lyse', message) @inmain_decorator() def question_dialog(message): reply = QtWidgets.QMessageBox.question(app.ui, 'lyse', message, QtWidgets.QMessageBox.Yes | QtWidgets.QMessageBox.No) return (reply == QtWidgets.QMessageBox.Yes) def scientific_notation(x, sigfigs=4, mode='eng'): """Returns a unicode string of the float f in scientific notation""" times = u'\u00d7' thinspace = u'\u2009' hairspace = u'\u200a' sups = {u'-': u'\u207b', u'0': u'\u2070', u'1': u'\xb9', u'2': u'\xb2', u'3': u'\xb3', u'4': u'\u2074', u'5': u'\u2075', u'6': u'\u2076', u'7': u'\u2077', u'8': u'\u2078', u'9': u'\u2079'} prefixes = { -24: u"y", -21: u"z", -18: u"a", -15: u"f", -12: u"p", -9: u"n", -6: u"\u03bc", -3: u"m", 0: u"", 3: u"k", 6: u"M", 9: u"G", 12: u"T", 15: u"P", 18: u"E", 21: u"Z", 24: u"Y" } if not isinstance(x, float): raise TypeError('x must be floating point number') if np.isnan(x) or np.isinf(x): return str(x) if x != 0: exponent = int(np.floor(np.log10(np.abs(x)))) # Only multiples of 10^3 exponent = int(np.floor(exponent / 3) * 3) else: exponent = 0 significand = x / 10 ** exponent pre_decimal, post_decimal = divmod(significand, 1) digits = sigfigs - len(str(int(pre_decimal))) significand = round(significand, digits) result = str(significand) if exponent: if mode == 'exponential': superscript = ''.join(sups.get(char, char) for char in str(exponent)) result += thinspace + times + thinspace + '10' + superscript elif mode == 'eng': try: # If our number has an SI prefix then use it prefix = prefixes[exponent] result += hairspace + prefix except KeyError: # Otherwise display in scientific notation superscript = ''.join(sups.get(char, char) for char in str(exponent)) result += thinspace + times + thinspace + '10' + superscript return result def get_screen_geometry(): """Return the a list of the geometries of each screen: each a tuple of left, top, width and height""" geoms = [] desktop = qapplication.desktop() for i in range(desktop.screenCount()): sg = desktop.screenGeometry(i) geoms.append((sg.left(), sg.top(), sg.width(), sg.height())) return geoms class WebServer(ZMQServer): def handler(self, request_data): logger.info('WebServer request: %s' % str(request_data)) if request_data == 'hello': return 'hello' elif request_data == 'get dataframe': # convert_objects() picks fixed datatypes for columns that are # compatible with fixed datatypes, dramatically speeding up # pickling. But we don't impose fixed datatypes earlier than now # because the user is free to use mixed datatypes in a column, and # we won't want to prevent values of a different type being added # in the future. All kwargs False because we don't want to coerce # strings to numbers or anything - just choose the correct # datatype for columns that are already a single datatype: return app.filebox.shots_model.dataframe.convert_objects( convert_dates=False, convert_numeric=False, convert_timedeltas=False) elif isinstance(request_data, dict): if 'filepath' in request_data: h5_filepath = shared_drive.path_to_local(request_data['filepath']) if isinstance(h5_filepath, bytes): h5_filepath = h5_filepath.decode('utf8') if not isinstance(h5_filepath, str): raise AssertionError(str(type(h5_filepath)) + ' is not str or bytes') app.filebox.incoming_queue.put(h5_filepath) return 'added successfully' return ("error: operation not supported. Recognised requests are:\n " "'get dataframe'\n 'hello'\n {'filepath': <some_h5_filepath>}") class LyseMainWindow(QtWidgets.QMainWindow): # A signal to show that the window is shown and painted. firstPaint = Signal() # A signal for when the window manager has created a new window for this widget: newWindow = Signal(int) def __init__(self, *args, **kwargs): QtWidgets.QMainWindow.__init__(self, *args, **kwargs) self._previously_painted = False def closeEvent(self, event): if app.on_close_event(): return QtWidgets.QMainWindow.closeEvent(self, event) else: event.ignore() def event(self, event): result = QtWidgets.QMainWindow.event(self, event) if event.type() == QtCore.QEvent.WinIdChange: self.newWindow.emit(self.effectiveWinId()) return result def paintEvent(self, event): result = QtWidgets.QMainWindow.paintEvent(self, event) if not self._previously_painted: self._previously_painted = True self.firstPaint.emit() return result class AnalysisRoutine(object): def __init__(self, filepath, model, output_box_port, checked=QtCore.Qt.Checked): self.filepath = filepath self.shortname = os.path.basename(self.filepath) self.model = model self.output_box_port = output_box_port self.COL_ACTIVE = RoutineBox.COL_ACTIVE self.COL_STATUS = RoutineBox.COL_STATUS self.COL_NAME = RoutineBox.COL_NAME self.ROLE_FULLPATH = RoutineBox.ROLE_FULLPATH self.error = False self.done = False self.to_worker, self.from_worker, self.worker = self.start_worker() # Make a row to put into the model: active_item = QtGui.QStandardItem() active_item.setCheckable(True) active_item.setCheckState(checked) info_item = QtGui.QStandardItem() name_item = QtGui.QStandardItem(self.shortname) name_item.setToolTip(self.filepath) name_item.setData(self.filepath, self.ROLE_FULLPATH) self.model.appendRow([active_item, info_item, name_item]) self.exiting = False def start_worker(self): # Start a worker process for this analysis routine: child_handles = zprocess.subprocess_with_queues('analysis_subprocess.py', self.output_box_port) to_worker, from_worker, worker = child_handles # Tell the worker what script it with be executing: to_worker.put(self.filepath) return to_worker, from_worker, worker def do_analysis(self, filepath): self.to_worker.put(['analyse', filepath]) signal, data = self.from_worker.get() if signal == 'error': return False, data elif signal == 'done': return True, data else: raise ValueError('invalid signal %s'%str(signal)) @inmain_decorator() def set_status(self, status): index = self.get_row_index() if index is None: # Yelp, we've just been deleted. Nothing to do here. return status_item = self.model.item(index, self.COL_STATUS) if status == 'done': status_item.setIcon(QtGui.QIcon(':/qtutils/fugue/tick')) self.done = True self.error = False elif status == 'working': status_item.setIcon(QtGui.QIcon(':/qtutils/fugue/hourglass')) self.done = False self.error = False elif status == 'error': status_item.setIcon(QtGui.QIcon(':/qtutils/fugue/exclamation')) self.error = True self.done = False elif status == 'clear': status_item.setData(None, QtCore.Qt.DecorationRole) self.done = False self.error = False else: raise ValueError(status) @inmain_decorator() def enabled(self): index = self.get_row_index() if index is None: # Yelp, we've just been deleted. return False enabled_item = self.model.item(index, self.COL_ACTIVE) return (enabled_item.checkState() == QtCore.Qt.Checked) def get_row_index(self): """Returns the row index for this routine's row in the model""" for row in range(self.model.rowCount()): name_item = self.model.item(row, self.COL_NAME) fullpath = name_item.data(self.ROLE_FULLPATH) if fullpath == self.filepath: return row def restart(self): # TODO set status to 'restarting' or an icon or something, and gray out the item? self.end_child(restart=True) def remove(self): """End the child process and remove from the treeview""" self.end_child() index = self.get_row_index() if index is None: # Already gone return self.model.removeRow(index) def end_child(self, restart=False): self.to_worker.put(['quit',None]) timeout_time = time.time() + 2 self.exiting = True QtCore.QTimer.singleShot(50, lambda: self.check_child_exited(self.worker, timeout_time, kill=False, restart=restart)) def check_child_exited(self, worker, timeout_time, kill=False, restart=False): worker.poll() if worker.returncode is None and time.time() < timeout_time: QtCore.QTimer.singleShot(50, lambda: self.check_child_exited(worker, timeout_time, kill, restart)) return elif worker.returncode is None: if not kill: worker.terminate() app.output_box.output('%s worker not responding.\n'%self.shortname) timeout_time = time.time() + 2 QtCore.QTimer.singleShot(50, lambda: self.check_child_exited(worker, timeout_time, kill=True, restart=restart)) return else: worker.kill() app.output_box.output('%s worker killed\n'%self.shortname, red=True) elif kill: app.output_box.output('%s worker terminated\n'%self.shortname, red=True) else: app.output_box.output('%s worker exited cleanly\n'%self.shortname) # if analysis was running notify analysisloop that analysis has failed self.from_worker.put(('error', {})) if restart: self.to_worker, self.from_worker, self.worker = self.start_worker() app.output_box.output('%s worker restarted\n'%self.shortname) self.exiting = False class TreeView(QtWidgets.QTreeView): leftClicked = Signal(QtCore.QModelIndex) doubleLeftClicked = Signal(QtCore.QModelIndex) """A QTreeView that emits a custom signal leftClicked(index) after a left click on a valid index, and doubleLeftClicked(index) (in addition) on double click.""" def __init__(self, *args): QtWidgets.QTreeView.__init__(self, *args) self._pressed_index = None self._double_click = False def mousePressEvent(self, event): result = QtWidgets.QTreeView.mousePressEvent(self, event) index = self.indexAt(event.pos()) if event.button() == QtCore.Qt.LeftButton and index.isValid(): self._pressed_index = self.indexAt(event.pos()) return result def leaveEvent(self, event): result = QtWidgets.QTreeView.leaveEvent(self, event) self._pressed_index = None self._double_click = False return result def mouseDoubleClickEvent(self, event): # Ensure our left click event occurs regardless of whether it is the # second click in a double click or not result = QtWidgets.QTreeView.mouseDoubleClickEvent(self, event) index = self.indexAt(event.pos()) if event.button() == QtCore.Qt.LeftButton and index.isValid(): self._pressed_index = self.indexAt(event.pos()) self._double_click = True return result def mouseReleaseEvent(self, event): result = QtWidgets.QTreeView.mouseReleaseEvent(self, event) index = self.indexAt(event.pos()) if event.button() == QtCore.Qt.LeftButton and index.isValid() and index == self._pressed_index: self.leftClicked.emit(index) if self._double_click: self.doubleLeftClicked.emit(index) self._pressed_index = None self._double_click = False return result class RoutineBox(object): COL_ACTIVE = 0 COL_STATUS = 1 COL_NAME = 2 ROLE_FULLPATH = QtCore.Qt.UserRole + 1 # This data (stored in the name item) does not necessarily match # the position in the model. It will be set just # prior to sort() being called with this role as the sort data. # This is how we will reorder the model's rows instead of # using remove/insert. ROLE_SORTINDEX = QtCore.Qt.UserRole + 2 def __init__(self, container, exp_config, filebox, from_filebox, to_filebox, output_box_port, multishot=False): self.multishot = multishot self.filebox = filebox self.exp_config = exp_config self.from_filebox = from_filebox self.to_filebox = to_filebox self.output_box_port = output_box_port self.logger = logging.getLogger('lyse.RoutineBox.%s'%('multishot' if multishot else 'singleshot')) loader = UiLoader() loader.registerCustomWidget(TreeView) self.ui = loader.load('routinebox.ui') container.addWidget(self.ui) if multishot: self.ui.groupBox.setTitle('Multishot routines') else: self.ui.groupBox.setTitle('Singleshot routines') self.model = UneditableModel() self.header = HorizontalHeaderViewWithWidgets(self.model) self.ui.treeView.setHeader(self.header) self.ui.treeView.setModel(self.model) active_item = QtGui.QStandardItem() active_item.setToolTip('Whether the analysis routine should run') status_item = QtGui.QStandardItem() status_item.setIcon(QtGui.QIcon(':qtutils/fugue/information')) status_item.setToolTip('The status of this analyis routine\'s execution') name_item = QtGui.QStandardItem('name') name_item.setToolTip('The name of the python script for the analysis routine') self.select_all_checkbox = QtWidgets.QCheckBox() self.select_all_checkbox.setToolTip('whether the analysis routine should run') self.header.setWidget(self.COL_ACTIVE, self.select_all_checkbox) self.header.setStretchLastSection(True) self.select_all_checkbox.setTristate(False) self.model.setHorizontalHeaderItem(self.COL_ACTIVE, active_item) self.model.setHorizontalHeaderItem(self.COL_STATUS, status_item) self.model.setHorizontalHeaderItem(self.COL_NAME, name_item) self.model.setSortRole(self.ROLE_SORTINDEX) self.ui.treeView.resizeColumnToContents(self.COL_ACTIVE) self.ui.treeView.resizeColumnToContents(self.COL_STATUS) self.ui.treeView.setColumnWidth(self.COL_NAME, 200) self.ui.treeView.setContextMenuPolicy(QtCore.Qt.CustomContextMenu) # Make the actions for the context menu: self.action_set_selected_active = QtWidgets.QAction( QtGui.QIcon(':qtutils/fugue/ui-check-box'), 'set selected routines active', self.ui) self.action_set_selected_inactive = QtWidgets.QAction( QtGui.QIcon(':qtutils/fugue/ui-check-box-uncheck'), 'set selected routines inactive', self.ui) self.action_restart_selected = QtWidgets.QAction( QtGui.QIcon(':qtutils/fugue/arrow-circle'), 'restart worker process for selected routines', self.ui) self.action_remove_selected = QtWidgets.QAction( QtGui.QIcon(':qtutils/fugue/minus'), 'Remove selected routines', self.ui) self.last_opened_routine_folder = self.exp_config.get('paths', 'analysislib') self.routines = [] self.connect_signals() self.analysis = threading.Thread(target = self.analysis_loop) self.analysis.daemon = True self.analysis.start() def connect_signals(self): self.ui.toolButton_add_routines.clicked.connect(self.on_add_routines_clicked) self.ui.toolButton_remove_routines.clicked.connect(self.on_remove_selection) self.model.itemChanged.connect(self.on_model_item_changed) self.ui.treeView.doubleLeftClicked.connect(self.on_treeview_double_left_clicked) # A context manager with which we can temporarily disconnect the above connection. self.model_item_changed_disconnected = DisconnectContextManager( self.model.itemChanged, self.on_model_item_changed) self.select_all_checkbox.stateChanged.connect(self.on_select_all_state_changed) self.select_all_checkbox_state_changed_disconnected = DisconnectContextManager( self.select_all_checkbox.stateChanged, self.on_select_all_state_changed) self.ui.treeView.customContextMenuRequested.connect(self.on_treeView_context_menu_requested) self.action_set_selected_active.triggered.connect( lambda: self.on_set_selected_triggered(QtCore.Qt.Checked)) self.action_set_selected_inactive.triggered.connect( lambda: self.on_set_selected_triggered(QtCore.Qt.Unchecked)) self.action_restart_selected.triggered.connect(self.on_restart_selected_triggered) self.action_remove_selected.triggered.connect(self.on_remove_selection) self.ui.toolButton_move_to_top.clicked.connect(self.on_move_to_top_clicked) self.ui.toolButton_move_up.clicked.connect(self.on_move_up_clicked) self.ui.toolButton_move_down.clicked.connect(self.on_move_down_clicked) self.ui.toolButton_move_to_bottom.clicked.connect(self.on_move_to_bottom_clicked) def on_add_routines_clicked(self): routine_files = QtWidgets.QFileDialog.getOpenFileNames(self.ui, 'Select analysis routines', self.last_opened_routine_folder, "Python scripts (*.py)") if type(routine_files) is tuple: routine_files, _ = routine_files if not routine_files: # User cancelled selection return # Convert to standard platform specific path, otherwise Qt likes forward slashes: routine_files = [os.path.abspath(routine_file) for routine_file in routine_files] # Save the containing folder for use next time we open the dialog box: self.last_opened_routine_folder = os.path.dirname(routine_files[0]) self.add_routines([(routine_file, QtCore.Qt.Checked) for routine_file in routine_files]) def add_routines(self, routine_files, clear_existing=False): """Add routines to the routine box, where routine_files is a list of tuples containing the filepath and whether the routine is enabled or not when it is added. if clear_existing == True, then any existing analysis routines will be cleared before the new ones are added.""" if clear_existing: for routine in self.routines[:]: routine.remove() self.routines.remove(routine) # Queue the files to be opened: for filepath, checked in routine_files: if filepath in [routine.filepath for routine in self.routines]: app.output_box.output('Warning: Ignoring duplicate analysis routine %s\n'%filepath, red=True) continue routine = AnalysisRoutine(filepath, self.model, self.output_box_port, checked) self.routines.append(routine) self.update_select_all_checkstate() def on_treeview_double_left_clicked(self, index): # If double clicking on the the name item, open # the routine in the specified text editor: if index.column() != self.COL_NAME: return name_item = self.model.item(index.row(), self.COL_NAME) routine_filepath = name_item.data(self.ROLE_FULLPATH) # get path to text editor editor_path = self.exp_config.get('programs', 'text_editor') editor_args = self.exp_config.get('programs', 'text_editor_arguments') # Get the current labscript file: if not editor_path: error_dialog("No editor specified in the labconfig.") if '{file}' in editor_args: # Split the args on spaces into a list, replacing {file} with the labscript file editor_args = [arg if arg != '{file}' else routine_filepath for arg in editor_args.split()] else: # Otherwise if {file} isn't already in there, append it to the other args: editor_args = [routine_filepath] + editor_args.split() try: subprocess.Popen([editor_path] + editor_args) except Exception as e: error_dialog("Unable to launch text editor specified in %s. Error was: %s" % (self.exp_config.config_path, str(e))) def on_remove_selection(self): self.remove_selection() def remove_selection(self, confirm=True): selected_indexes = self.ui.treeView.selectedIndexes() selected_rows = set(index.row() for index in selected_indexes) if not selected_rows: return if confirm and not question_dialog("Remove %d routines?" % len(selected_rows)): return name_items = [self.model.item(row, self.COL_NAME) for row in selected_rows] filepaths = [item.data(self.ROLE_FULLPATH) for item in name_items] for routine in self.routines[:]: if routine.filepath in filepaths: routine.remove() self.routines.remove(routine) self.update_select_all_checkstate() def on_model_item_changed(self, item): if item.column() == self.COL_ACTIVE: self.update_select_all_checkstate() def on_select_all_state_changed(self, state): with self.select_all_checkbox_state_changed_disconnected: # Do not allow a switch *to* a partially checked state: self.select_all_checkbox.setTristate(False) state = self.select_all_checkbox.checkState() with self.model_item_changed_disconnected: for row in range(self.model.rowCount()): active_item = self.model.item(row, self.COL_ACTIVE) active_item.setCheckState(state) def on_treeView_context_menu_requested(self, point): menu = QtWidgets.QMenu(self.ui.treeView) menu.addAction(self.action_set_selected_active) menu.addAction(self.action_set_selected_inactive) menu.addAction(self.action_restart_selected) menu.addAction(self.action_remove_selected) menu.exec_(QtGui.QCursor.pos()) def on_set_selected_triggered(self, active): selected_indexes = self.ui.treeView.selectedIndexes() selected_rows = set(index.row() for index in selected_indexes) for row in selected_rows: active_item = self.model.item(row, self.COL_ACTIVE) active_item.setCheckState(active) self.update_select_all_checkstate() def on_move_to_top_clicked(self): selected_indexes = self.ui.treeView.selectedIndexes() selected_rows = set(index.row() for index in selected_indexes) n = self.model.rowCount() i_selected = 0 i_unselected = len(selected_rows) order = [] for i in range(n): if i in selected_rows: order.append(i_selected) i_selected += 1 else: order.append(i_unselected) i_unselected += 1 self.reorder(order) def on_move_up_clicked(self): selected_indexes = self.ui.treeView.selectedIndexes() selected_rows = set(index.row() for index in selected_indexes) n = self.model.rowCount() order = [] last_unselected_index = None for i in range(n): if i in selected_rows: if last_unselected_index is None: order.append(i) else: order.append(i - 1) order[last_unselected_index] += 1 else: last_unselected_index = i order.append(i) self.reorder(order) def on_move_down_clicked(self): selected_indexes = self.ui.treeView.selectedIndexes() selected_rows = set(index.row() for index in selected_indexes) n = self.model.rowCount() order = [] last_unselected_index = None for i in reversed(range(n)): if i in selected_rows: if last_unselected_index is None: order.insert(0, i) else: order.insert(0, i + 1) order[last_unselected_index - n] -= 1 else: last_unselected_index = i order.insert(0, i) self.reorder(order) def on_move_to_bottom_clicked(self): selected_indexes = self.ui.treeView.selectedIndexes() selected_rows = set(index.row() for index in selected_indexes) n = self.model.rowCount() i_selected = n - len(selected_rows) i_unselected = 0 order = [] for i in range(n): if i in selected_rows: order.append(i_selected) i_selected += 1 else: order.append(i_unselected) i_unselected += 1 self.reorder(order) def on_restart_selected_triggered(self): selected_indexes = self.ui.treeView.selectedIndexes() selected_rows = set(index.row() for index in selected_indexes) name_items = [self.model.item(row, self.COL_NAME) for row in selected_rows] filepaths = [item.data(self.ROLE_FULLPATH) for item in name_items] for routine in self.routines: if routine.filepath in filepaths: routine.restart() self.update_select_all_checkstate() def analysis_loop(self): while True: filepath = self.from_filebox.get() if self.multishot: assert filepath is None # TODO: get the filepath of the output h5 file: # filepath = self.filechooserentry.get_text() self.logger.info('got a file to process: %s'%filepath) self.do_analysis(filepath) def todo(self): """How many analysis routines are not done?""" return len([r for r in self.routines if r.enabled() and not r.done]) def do_analysis(self, filepath): """Run all analysis routines once on the given filepath, which is a shot file if we are a singleshot routine box""" for routine in self.routines: routine.set_status('clear') remaining = self.todo() error = False updated_data = {} while remaining: self.logger.debug('%d routines left to do'%remaining) for routine in self.routines: if routine.enabled() and not routine.done: break else: routine = None if routine is not None: self.logger.info('running analysis routine %s'%routine.shortname) routine.set_status('working') success, updated_data = routine.do_analysis(filepath) if success: routine.set_status('done') self.logger.debug('success') else: routine.set_status('error') self.logger.debug('failure') error = True break # Race conditions here, but it's only for reporting percent done # so it doesn't matter if it's wrong briefly: remaining = self.todo() total = len([r for r in self.routines if r.enabled()]) done = total - remaining try: status_percent = 100*float(done)/(remaining + done) except ZeroDivisionError: # All routines got deleted mid-analysis, we're done here: status_percent = 100.0 self.to_filebox.put(['progress', status_percent, updated_data]) if error: self.to_filebox.put(['error', None, updated_data]) else: self.to_filebox.put(['done', 100.0, {}]) self.logger.debug('completed analysis of %s'%filepath) def reorder(self, order): assert len(order) == len(set(order)), 'ordering contains non-unique elements' # Apply the reordering to the liststore: for old_index, new_index in enumerate(order): name_item = self.model.item(old_index, self.COL_NAME) name_item.setData(new_index, self.ROLE_SORTINDEX) self.ui.treeView.sortByColumn(self.COL_NAME, QtCore.Qt.AscendingOrder) # Apply new order to our list of routines too: self.routines = [self.routines[order.index(i)] for i in range(len(order))] def update_select_all_checkstate(self): with self.select_all_checkbox_state_changed_disconnected: all_states = [] for row in range(self.model.rowCount()): active_item = self.model.item(row, self.COL_ACTIVE) all_states.append(active_item.checkState()) if all(state == QtCore.Qt.Checked for state in all_states): self.select_all_checkbox.setCheckState(QtCore.Qt.Checked) elif all(state == QtCore.Qt.Unchecked for state in all_states): self.select_all_checkbox.setCheckState(QtCore.Qt.Unchecked) else: self.select_all_checkbox.setCheckState(QtCore.Qt.PartiallyChecked) # TESTING ONLY REMOVE IN PRODUCTION def queue_dummy_routines(self): folder = os.path.abspath('test_routines') for filepath in ['hello.py', 'test.py']: routine = AnalysisRoutine(os.path.join(folder, filepath), self.model, self.output_box_port) self.routines.append(routine) self.update_select_all_checkstate() class EditColumnsDialog(QtWidgets.QDialog): # A signal for when the window manager has created a new window for this widget: newWindow = Signal(int) close_signal = Signal() def __init__(self): QtWidgets.QDialog.__init__(self, None, QtCore.Qt.WindowSystemMenuHint | QtCore.Qt.WindowTitleHint) def event(self, event): result = QtWidgets.QDialog.event(self, event) if event.type() == QtCore.QEvent.WinIdChange: self.newWindow.emit(self.effectiveWinId()) return result def closeEvent(self, event): self.close_signal.emit() event.ignore() class EditColumns(object): ROLE_SORT_DATA = QtCore.Qt.UserRole + 1 COL_VISIBLE = 0 COL_NAME = 1 def __init__(self, filebox, column_names, columns_visible): self.filebox = filebox self.column_names = column_names.copy() self.columns_visible = columns_visible.copy() self.old_columns_visible = columns_visible.copy() loader = UiLoader() self.ui = loader.load('edit_columns.ui', EditColumnsDialog()) self.model = UneditableModel() self.header = HorizontalHeaderViewWithWidgets(self.model) self.select_all_checkbox = QtWidgets.QCheckBox() self.select_all_checkbox.setTristate(False) self.ui.treeView.setHeader(self.header) self.proxy_model = QtCore.QSortFilterProxyModel() self.proxy_model.setSourceModel(self.model) self.proxy_model.setFilterCaseSensitivity(QtCore.Qt.CaseInsensitive) self.proxy_model.setFilterKeyColumn(self.COL_NAME) self.ui.treeView.setSortingEnabled(True) self.header.setStretchLastSection(True) self.proxy_model.setSortRole(self.ROLE_SORT_DATA) self.ui.treeView.setModel(self.proxy_model) self.ui.setWindowModality(QtCore.Qt.ApplicationModal) self.ui.treeView.setContextMenuPolicy(QtCore.Qt.CustomContextMenu) # Make the actions for the context menu: self.action_set_selected_visible = QtWidgets.QAction( QtGui.QIcon(':qtutils/fugue/ui-check-box'), 'Show selected columns', self.ui) self.action_set_selected_hidden = QtWidgets.QAction( QtGui.QIcon(':qtutils/fugue/ui-check-box-uncheck'), 'Hide selected columns', self.ui) self.connect_signals() self.populate_model(column_names, self.columns_visible) def connect_signals(self): if os.name == 'nt': self.ui.newWindow.connect(set_win_appusermodel) self.ui.close_signal.connect(self.close) self.ui.lineEdit_filter.textEdited.connect(self.on_filter_text_edited) self.ui.pushButton_make_it_so.clicked.connect(self.make_it_so) self.ui.pushButton_cancel.clicked.connect(self.cancel) self.model.itemChanged.connect(self.on_model_item_changed) # A context manager with which we can temporarily disconnect the above connection. self.model_item_changed_disconnected = DisconnectContextManager( self.model.itemChanged, self.on_model_item_changed) self.select_all_checkbox.stateChanged.connect(self.on_select_all_state_changed) self.select_all_checkbox_state_changed_disconnected = DisconnectContextManager( self.select_all_checkbox.stateChanged, self.on_select_all_state_changed) self.ui.treeView.customContextMenuRequested.connect(self.on_treeView_context_menu_requested) self.action_set_selected_visible.triggered.connect( lambda: self.on_set_selected_triggered(QtCore.Qt.Checked)) self.action_set_selected_hidden.triggered.connect( lambda: self.on_set_selected_triggered(QtCore.Qt.Unchecked)) def populate_model(self, column_names, columns_visible): self.model.clear() self.model.setHorizontalHeaderLabels(['', 'Name']) self.header.setWidget(self.COL_VISIBLE, self.select_all_checkbox) self.ui.treeView.resizeColumnToContents(self.COL_VISIBLE) # Which indices in self.columns_visible the row numbers correspond to self.column_indices = {} # Remove our special columns from the dict of column names by keeping only tuples: column_names = {i: name for i, name in column_names.items() if isinstance(name, tuple)} # Sort the column names as comma separated values, converting to lower case: sortkey = lambda item: ', '.join(item[1]).lower().strip(', ') for column_index, name in sorted(column_names.items(), key=sortkey): visible = columns_visible[column_index] visible_item = QtGui.QStandardItem() visible_item.setCheckable(True) if visible: visible_item.setCheckState(QtCore.Qt.Checked) visible_item.setData(QtCore.Qt.Checked, self.ROLE_SORT_DATA) else: visible_item.setCheckState(QtCore.Qt.Unchecked) visible_item.setData(QtCore.Qt.Unchecked, self.ROLE_SORT_DATA) name_as_string = ', '.join(name).strip(', ') name_item = QtGui.QStandardItem(name_as_string) name_item.setData(sortkey((column_index, name)), self.ROLE_SORT_DATA) self.model.appendRow([visible_item, name_item]) self.column_indices[self.model.rowCount() - 1] = column_index self.ui.treeView.resizeColumnToContents(self.COL_NAME) self.update_select_all_checkstate() self.ui.treeView.sortByColumn(self.COL_NAME, QtCore.Qt.AscendingOrder) def on_treeView_context_menu_requested(self, point): menu = QtWidgets.QMenu(self.ui) menu.addAction(self.action_set_selected_visible) menu.addAction(self.action_set_selected_hidden) menu.exec_(QtGui.QCursor.pos()) def on_set_selected_triggered(self, visible): selected_indexes = self.ui.treeView.selectedIndexes() selected_rows = set(self.proxy_model.mapToSource(index).row() for index in selected_indexes) for row in selected_rows: visible_item = self.model.item(row, self.COL_VISIBLE) self.update_visible_state(visible_item, visible) self.update_select_all_checkstate() self.do_sort() self.filebox.set_columns_visible(self.columns_visible) def on_filter_text_edited(self, text): self.proxy_model.setFilterWildcard(text) def on_select_all_state_changed(self, state): with self.select_all_checkbox_state_changed_disconnected: # Do not allow a switch *to* a partially checked state: self.select_all_checkbox.setTristate(False) state = self.select_all_checkbox.checkState() for row in range(self.model.rowCount()): visible_item = self.model.item(row, self.COL_VISIBLE) self.update_visible_state(visible_item, state) self.do_sort() self.filebox.set_columns_visible(self.columns_visible) def update_visible_state(self, item, state): assert item.column() == self.COL_VISIBLE, "unexpected column" row = item.row() with self.model_item_changed_disconnected: item.setCheckState(state) item.setData(state, self.ROLE_SORT_DATA) if state == QtCore.Qt.Checked: self.columns_visible[self.column_indices[row]] = True else: self.columns_visible[self.column_indices[row]] = False def update_select_all_checkstate(self): with self.select_all_checkbox_state_changed_disconnected: all_states = [] for row in range(self.model.rowCount()): visible_item = self.model.item(row, self.COL_VISIBLE) all_states.append(visible_item.checkState()) if all(state == QtCore.Qt.Checked for state in all_states): self.select_all_checkbox.setCheckState(QtCore.Qt.Checked) elif all(state == QtCore.Qt.Unchecked for state in all_states): self.select_all_checkbox.setCheckState(QtCore.Qt.Unchecked) else: self.select_all_checkbox.setCheckState(QtCore.Qt.PartiallyChecked) def on_model_item_changed(self, item): state = item.checkState() self.update_visible_state(item, state) self.update_select_all_checkstate() self.do_sort() self.filebox.set_columns_visible(self.columns_visible) def do_sort(self): header = self.ui.treeView.header() sort_column = header.sortIndicatorSection() sort_order = header.sortIndicatorOrder() self.ui.treeView.sortByColumn(sort_column, sort_order) def update_columns(self, column_names, columns_visible): # Index/name mapping may have changed. Get a mapping by *name* of # which columns were previously visible, so we can update our by-index # mapping in a moment: old_columns_visible_by_name = {} for old_column_number, visible in self.old_columns_visible.items(): column_name = self.column_names[old_column_number] old_columns_visible_by_name[column_name] = visible self.columns_visible = columns_visible.copy() self.column_names = column_names.copy() # Update the by-index mapping of which columns were visible before editing: self.old_columns_visible = {} for index, name in self.column_names.items(): try: self.old_columns_visible[index] = old_columns_visible_by_name[name] except KeyError: # A new column. If editing is cancelled, any new columns # should be set to visible: self.old_columns_visible[index] = True self.populate_model(column_names, self.columns_visible) def show(self): self.old_columns_visible = self.columns_visible.copy() self.ui.show() def close(self): self.columns_visible = self.old_columns_visible.copy() self.filebox.set_columns_visible(self.columns_visible) self.populate_model(self.column_names, self.columns_visible) self.ui.hide() def cancel(self): self.ui.close() def make_it_so(self): self.ui.hide() class ItemDelegate(QtWidgets.QStyledItemDelegate): """An item delegate with a fixed height and a progress bar in one column""" EXTRA_ROW_HEIGHT = 2 def __init__(self, view, model, col_status, role_status_percent): self.view = view self.model = model self.COL_STATUS = col_status self.ROLE_STATUS_PERCENT = role_status_percent QtWidgets.QStyledItemDelegate.__init__(self) def sizeHint(self, *args): fontmetrics = QtGui.QFontMetrics(self.view.font()) text_height = fontmetrics.height() row_height = text_height + self.EXTRA_ROW_HEIGHT size = QtWidgets.QStyledItemDelegate.sizeHint(self, *args) return QtCore.QSize(size.width(), row_height) def paint(self, painter, option, index): if index.column() == self.COL_STATUS: status_percent = self.model.data(index, self.ROLE_STATUS_PERCENT) if status_percent == 100: # Render as a normal item - this shows whatever icon is set instead of a progress bar. return QtWidgets.QStyledItemDelegate.paint(self, painter, option, index) else: # Method of rendering a progress bar into the view copied from # Qt's 'network-torrent' example: # http://qt-project.org/doc/qt-4.8/network-torrent-torrentclient-cpp.html # Set up a QStyleOptionProgressBar to precisely mimic the # environment of a progress bar. progress_bar_option = QtWidgets.QStyleOptionProgressBar() progress_bar_option.state = QtWidgets.QStyle.State_Enabled progress_bar_option.direction = qapplication.layoutDirection() progress_bar_option.rect = option.rect progress_bar_option.fontMetrics = qapplication.fontMetrics() progress_bar_option.minimum = 0 progress_bar_option.maximum = 100 progress_bar_option.textAlignment = QtCore.Qt.AlignCenter progress_bar_option.textVisible = True # Set the progress and text values of the style option. progress_bar_option.progress = status_percent progress_bar_option.text = '%d%%' % status_percent # Draw the progress bar onto the view. qapplication.style().drawControl(QtWidgets.QStyle.CE_ProgressBar, progress_bar_option, painter) else: return QtWidgets.QStyledItemDelegate.paint(self, painter, option, index) class UneditableModel(QtGui.QStandardItemModel): def flags(self, index): """Return flags as normal except that the ItemIsEditable flag is always False""" result = QtGui.QStandardItemModel.flags(self, index) return result & ~QtCore.Qt.ItemIsEditable class TableView(QtWidgets.QTableView): leftClicked = Signal(QtCore.QModelIndex) doubleLeftClicked = Signal(QtCore.QModelIndex) """A QTableView that emits a custom signal leftClicked(index) after a left click on a valid index, and doubleLeftClicked(index) (in addition) on double click. Multiple inheritance of QObjects is not possible, so we are forced to duplicate code instead of sharing code with the extremely similar TreeView class in this module""" def __init__(self, *args): QtWidgets.QTableView.__init__(self, *args) self._pressed_index = None self._double_click = False def mousePressEvent(self, event): result = QtWidgets.QTableView.mousePressEvent(self, event) index = self.indexAt(event.pos()) if event.button() == QtCore.Qt.LeftButton and index.isValid(): self._pressed_index = self.indexAt(event.pos()) return result def leaveEvent(self, event): result = QtWidgets.QTableView.leaveEvent(self, event) self._pressed_index = None self._double_click = False return result def mouseDoubleClickEvent(self, event): # Ensure our left click event occurs regardless of whether it is the # second click in a double click or not result = QtWidgets.QTableView.mouseDoubleClickEvent(self, event) index = self.indexAt(event.pos()) if event.button() == QtCore.Qt.LeftButton and index.isValid(): self._pressed_index = self.indexAt(event.pos()) self._double_click = True return result def mouseReleaseEvent(self, event): result = QtWidgets.QTableView.mouseReleaseEvent(self, event) index = self.indexAt(event.pos()) if event.button() == QtCore.Qt.LeftButton and index.isValid() and index == self._pressed_index: self.leftClicked.emit(index) if self._double_click: self.doubleLeftClicked.emit(index) self._pressed_index = None self._double_click = False return result class DataFrameModel(QtCore.QObject): COL_STATUS = 0 COL_FILEPATH = 1 ROLE_STATUS_PERCENT = QtCore.Qt.UserRole + 1 ROLE_DELETED_OFF_DISK = QtCore.Qt.UserRole + 2 columns_changed = Signal() def __init__(self, view, exp_config): QtCore.QObject.__init__(self) self._view = view self.exp_config = exp_config self._model = UneditableModel() self.row_number_by_filepath = {} self._previous_n_digits = 0 headerview_style = """ QHeaderView { font-size: 8pt; color: black; } QHeaderView::section{ font-size: 8pt; color: black; } """ self._header = HorizontalHeaderViewWithWidgets(self._model) self._vertheader = QtWidgets.QHeaderView(QtCore.Qt.Vertical) self._vertheader.setSectionResizeMode(QtWidgets.QHeaderView.Fixed) self._vertheader.setStyleSheet(headerview_style) self._header.setStyleSheet(headerview_style) self._vertheader.setHighlightSections(True) self._vertheader.setSectionsClickable(True) self._view.setModel(self._model) self._view.setHorizontalHeader(self._header) self._view.setVerticalHeader(self._vertheader) self._delegate = ItemDelegate(self._view, self._model, self.COL_STATUS, self.ROLE_STATUS_PERCENT) self._view.setItemDelegate(self._delegate) self._view.setSelectionBehavior(QtWidgets.QTableView.SelectRows) self._view.setContextMenuPolicy(QtCore.Qt.CustomContextMenu) # Check if integer indexing is to be used try: self.integer_indexing = self.exp_config.getboolean('lyse', 'integer_indexing') except (LabConfig.NoOptionError, LabConfig.NoSectionError): self.integer_indexing = False # This dataframe will contain all the scalar data # from the shot files that are currently open: index = pandas.MultiIndex.from_tuples([('filepath', '')]) self.dataframe = pandas.DataFrame({'filepath': []}, columns=index) # How many levels the dataframe's multiindex has: self.nlevels = self.dataframe.columns.nlevels status_item = QtGui.QStandardItem() status_item.setIcon(QtGui.QIcon(':qtutils/fugue/information')) status_item.setToolTip('status/progress of single-shot analysis') self._model.setHorizontalHeaderItem(self.COL_STATUS, status_item) filepath_item = QtGui.QStandardItem('filepath') filepath_item.setToolTip('filepath') self._model.setHorizontalHeaderItem(self.COL_FILEPATH, filepath_item) self._view.setColumnWidth(self.COL_STATUS, 70) self._view.setColumnWidth(self.COL_FILEPATH, 100) # Column indices to names and vice versa for fast lookup: self.column_indices = {'__status': self.COL_STATUS, ('filepath', ''): self.COL_FILEPATH} self.column_names = {self.COL_STATUS: '__status', self.COL_FILEPATH: ('filepath', '')} self.columns_visible = {self.COL_STATUS: True, self.COL_FILEPATH: True} # Whether or not a deleted column was visible at the time it was deleted (by name): self.deleted_columns_visible = {} # Make the actions for the context menu: self.action_remove_selected = QtWidgets.QAction( QtGui.QIcon(':qtutils/fugue/minus'), 'Remove selected shots', self._view) self.connect_signals() def connect_signals(self): self._view.customContextMenuRequested.connect(self.on_view_context_menu_requested) self.action_remove_selected.triggered.connect(self.on_remove_selection) def on_remove_selection(self): self.remove_selection() def remove_selection(self, confirm=True): selection_model = self._view.selectionModel() selected_indexes = selection_model.selectedRows() selected_name_items = [self._model.itemFromIndex(index) for index in selected_indexes] if not selected_name_items: return if confirm and not question_dialog("Remove %d shots?" % len(selected_name_items)): return # Remove from DataFrame first: self.dataframe = self.dataframe.drop(index.row() for index in selected_indexes) self.dataframe.index = pandas.Index(range(len(self.dataframe))) # Delete one at a time from Qt model: for name_item in selected_name_items: row = name_item.row() self._model.removeRow(row) self.renumber_rows() def mark_selection_not_done(self): selected_indexes = self._view.selectedIndexes() selected_rows = set(index.row() for index in selected_indexes) for row in selected_rows: status_item = self._model.item(row, self.COL_STATUS) if status_item.data(self.ROLE_DELETED_OFF_DISK): # If the shot was previously not readable on disk, check to # see if it's readable now. It may have been undeleted or # perhaps it being unreadable before was due to a network # glitch or similar. filepath = self._model.item(row, self.COL_FILEPATH).text() if not os.path.exists(filepath): continue # Shot file is accesible again: status_item.setData(False, self.ROLE_DELETED_OFF_DISK) status_item.setIcon(QtGui.QIcon(':qtutils/fugue/tick')) status_item.setToolTip(None) status_item.setData(0, self.ROLE_STATUS_PERCENT) def on_view_context_menu_requested(self, point): menu = QtWidgets.QMenu(self._view) menu.addAction(self.action_remove_selected) menu.exec_(QtGui.QCursor.pos()) def on_double_click(self, index): filepath_item = self._model.item(index.row(), self.COL_FILEPATH) shot_filepath = filepath_item.text() # get path to text editor viewer_path = self.exp_config.get('programs', 'hdf5_viewer') viewer_args = self.exp_config.get('programs', 'hdf5_viewer_arguments') # Get the current labscript file: if not viewer_path: error_dialog("No hdf5 viewer specified in the labconfig.") if '{file}' in viewer_args: # Split the args on spaces into a list, replacing {file} with the labscript file viewer_args = [arg if arg != '{file}' else shot_filepath for arg in viewer_args.split()] else: # Otherwise if {file} isn't already in there, append it to the other args: viewer_args = [shot_filepath] + viewer_args.split() try: subprocess.Popen([viewer_path] + viewer_args) except Exception as e: error_dialog("Unable to launch hdf5 viewer specified in %s. Error was: %s" % (self.exp_config.config_path, str(e))) def set_columns_visible(self, columns_visible): self.columns_visible = columns_visible for column_index, visible in columns_visible.items(): self._view.setColumnHidden(column_index, not visible) def update_column_levels(self): """Pads the keys and values of our lists of column names so that they still match those in the dataframe after the number of levels in its multiindex has increased""" extra_levels = self.dataframe.columns.nlevels - self.nlevels if extra_levels > 0: self.nlevels = self.dataframe.columns.nlevels column_indices = {} column_names = {} for column_name in self.column_indices: if not isinstance(column_name, tuple): # It's one of our special columns new_column_name = column_name else: new_column_name = column_name + ('',) * extra_levels column_index = self.column_indices[column_name] column_indices[new_column_name] = column_index column_names[column_index] = new_column_name self.column_indices = column_indices self.column_names = column_names @inmain_decorator() def mark_as_deleted_off_disk(self, filepath): # Confirm the shot hasn't been removed from lyse (we are in the main # thread so there is no race condition in checking first) if not filepath in self.dataframe['filepath'].values: # Shot has been removed from FileBox, nothing to do here: return row_number = self.row_number_by_filepath[filepath] status_item = self._model.item(row_number, self.COL_STATUS) already_marked_as_deleted = status_item.data(self.ROLE_DELETED_OFF_DISK) if already_marked_as_deleted: return # Icon only displays if percent completion is 100. This is also # important so that the shot is not picked up as analysis # incomplete and analysis re-attempted on it. status_item.setData(True, self.ROLE_DELETED_OFF_DISK) status_item.setData(100, self.ROLE_STATUS_PERCENT) status_item.setToolTip("Shot has been deleted off disk or is unreadable") status_item.setIcon(QtGui.QIcon(':qtutils/fugue/drive--minus')) app.output_box.output('Warning: Shot deleted from disk or no longer readable %s\n' % filepath, red=True) @inmain_decorator() def update_row(self, filepath, dataframe_already_updated=False, status_percent=None, new_row_data=None, updated_row_data=None): """"Updates a row in the dataframe and Qt model to the data in the HDF5 file for that shot. Also sets the percent done, if specified""" # To speed things up block signals to the model during update self._model.blockSignals(True) # Update the row in the dataframe first: if (new_row_data is None) == (updated_row_data is None) and not dataframe_already_updated: raise ValueError('Exactly one of new_row_data or updated_row_data must be provided') try: row_number = self.row_number_by_filepath[filepath] except KeyError: # Row has been deleted, nothing to do here: return filepath_colname = ('filepath',) + ('',) * (self.nlevels - 1) assert filepath == self.dataframe.get_value(row_number, filepath_colname) if updated_row_data is not None and not dataframe_already_updated: for group, name in updated_row_data: column_name = (group, name) + ('',) * (self.nlevels - 2) value = updated_row_data[group, name] try: self.dataframe.set_value(row_number, column_name, value) except ValueError: # did the column not already exist when we tried to set an iterable? if not column_name in self.dataframe.columns: # create it with a non-iterable and then overwrite with the iterable value: self.dataframe.set_value(row_number, column_name, None) else: # Incompatible datatype - convert the datatype of the column to # 'object' self.dataframe[column_name] = self.dataframe[column_name].astype('object') # Now that the column exists and has dtype object, we can set the value: self.dataframe.set_value(row_number, column_name, value) dataframe_already_updated = True if not dataframe_already_updated: if new_row_data is None: raise ValueError("If dataframe_already_updated is False, then new_row_data, as returned " "by dataframe_utils.get_dataframe_from_shot(filepath) must be provided.") self.dataframe = replace_with_padding(self.dataframe, new_row_data, row_number) self.update_column_levels() # Check and create necessary new columns in the Qt model: new_column_names = set(self.dataframe.columns) - set(self.column_names.values()) new_columns_start = self._model.columnCount() self._model.insertColumns(new_columns_start, len(new_column_names)) for i, column_name in enumerate(sorted(new_column_names)): # Set the header label of the new column: column_number = new_columns_start + i self.column_names[column_number] = column_name self.column_indices[column_name] = column_number if column_name in self.deleted_columns_visible: # Restore the former visibility of this column if we've # seen one with its name before: visible = self.deleted_columns_visible[column_name] self.columns_visible[column_number] = visible self._view.setColumnHidden(column_number, not visible) else: # new columns are visible by default: self.columns_visible[column_number] = True column_name_as_string = '\n'.join(column_name).strip() header_item = QtGui.QStandardItem(column_name_as_string) header_item.setToolTip(column_name_as_string) self._model.setHorizontalHeaderItem(column_number, header_item) if new_column_names: # Update the visibility state of new columns, in case some new columns are hidden: self.set_columns_visible # Check and remove any no-longer-needed columns in the Qt model: defunct_column_names = (set(self.column_names.values()) - set(self.dataframe.columns) - {self.column_names[self.COL_STATUS], self.column_names[self.COL_FILEPATH]}) defunct_column_indices = [self.column_indices[column_name] for column_name in defunct_column_names] for column_number in sorted(defunct_column_indices, reverse=True): # Remove columns from the Qt model. In reverse order so that # removals do not change the position of columns yet to be # removed. self._model.removeColumn(column_number) # Save whether or not the column was visible when it was # removed (so that if it is re-added the visibility will be retained): self.deleted_columns_visible[self.column_names[column_number]] = self.columns_visible[column_number] del self.column_names[column_number] del self.columns_visible[column_number] if defunct_column_indices: # Renumber the keys of self.columns_visible and self.column_names to reflect deletions: self.column_names = {newindex: name for newindex, (oldindex, name) in enumerate(sorted(self.column_names.items()))} self.columns_visible = {newindex: visible for newindex, (oldindex, visible) in enumerate(sorted(self.columns_visible.items()))} # Update the inverse mapping of self.column_names: self.column_indices = {name: index for index, name in self.column_names.items()} # Update the data in the Qt model: dataframe_row = self.dataframe.iloc[row_number].to_dict() for column_number, column_name in self.column_names.items(): if not isinstance(column_name, tuple): # One of our special columns, does not correspond to a column in the dataframe: continue if updated_row_data is not None and column_name not in updated_row_data: continue value = dataframe_row[column_name] if isinstance(value, float): value_str = scientific_notation(value) else: value_str = str(value) lines = value_str.splitlines() if len(lines) > 1: short_value_str = lines[0] + ' ...' else: short_value_str = value_str item = self._model.item(row_number, column_number) if item is None: # This is the first time we've written a value to this part of the model: item = QtGui.QStandardItem(short_value_str) item.setData(QtCore.Qt.AlignCenter, QtCore.Qt.TextAlignmentRole) self._model.setItem(row_number, column_number, item) else: item.setText(short_value_str) item.setToolTip(repr(value)) for i, column_name in enumerate(sorted(new_column_names)): # Resize any new columns to fit contents: column_number = new_columns_start + i self._view.resizeColumnToContents(column_number) if status_percent is not None: status_item = self._model.item(row_number, self.COL_STATUS) status_item.setData(status_percent, self.ROLE_STATUS_PERCENT) if new_column_names or defunct_column_names: self.columns_changed.emit() # unblock signals to the model and tell it to update self._model.blockSignals(False) self._model.layoutChanged.emit() def new_row(self, filepath): status_item = QtGui.QStandardItem() status_item.setData(0, self.ROLE_STATUS_PERCENT) status_item.setIcon(QtGui.QIcon(':qtutils/fugue/tick')) name_item = QtGui.QStandardItem(filepath) return [status_item, name_item] def renumber_rows(self, add_from=0): """Add/update row indices - the rows are numbered in simple sequential order for easy comparison with the dataframe. add_from allows you to only add numbers for new rows from the given index as a performance optimisation, though if the number of digits changes, all rows will still be renumbered. add_from should not be used if rows have been deleted.""" n_digits = len(str(self._model.rowCount())) if n_digits != self._previous_n_digits: # All labels must be updated: add_from = 0 self._previous_n_digits = n_digits if add_from == 0: self.row_number_by_filepath = {} for row_number in range(add_from, self._model.rowCount()): vertical_header_item = self._model.verticalHeaderItem(row_number) row_number_str = str(row_number).rjust(n_digits) vert_header_text = '{}. |'.format(row_number_str) filepath_item = self._model.item(row_number, self.COL_FILEPATH) filepath = filepath_item.text() self.row_number_by_filepath[filepath] = row_number if self.integer_indexing: header_cols = ['sequence_index', 'run number', 'run repeat'] header_strings = [] for col in header_cols: try: val = self.dataframe[col].values[row_number] header_strings.append(' {:04d}'.format(val)) except (KeyError, ValueError): header_strings.append('----') vert_header_text += ' |'.join(header_strings) else: basename = os.path.splitext(os.path.basename(filepath))[0] vert_header_text += ' ' + basename vertical_header_item.setText(vert_header_text) @inmain_decorator() def add_files(self, filepaths, new_row_data): """Add files to the dataframe model. New_row_data should be a dataframe containing the new rows.""" to_add = [] # Check for duplicates: for filepath in filepaths: if filepath in self.row_number_by_filepath or filepath in to_add: app.output_box.output('Warning: Ignoring duplicate shot %s\n' % filepath, red=True) if new_row_data is not None: df_row_index = np.where(new_row_data['filepath'].values == filepath) new_row_data = new_row_data.drop(df_row_index[0]) new_row_data.index = pandas.Index(range(len(new_row_data))) else: to_add.append(filepath) assert len(new_row_data) == len(to_add) if to_add: # Update the dataframe: self.dataframe = concat_with_padding(self.dataframe, new_row_data) self.update_column_levels() app.filebox.set_add_shots_progress(None, None, "updating filebox") for filepath in to_add: # Add the new rows to the Qt model: self._model.appendRow(self.new_row(filepath)) vert_header_item = QtGui.QStandardItem('...loading...') self._model.setVerticalHeaderItem(self._model.rowCount() - 1, vert_header_item) self._view.resizeRowToContents(self._model.rowCount() - 1) self.renumber_rows(add_from=self._model.rowCount()-len(to_add)) # Update the Qt model: for filepath in to_add: self.update_row(filepath, dataframe_already_updated=True) @inmain_decorator() def get_first_incomplete(self): """Returns the filepath of the first shot in the model that has not been analysed""" for row in range(self._model.rowCount()): status_item = self._model.item(row, self.COL_STATUS) if status_item.data(self.ROLE_STATUS_PERCENT) != 100: filepath_item = self._model.item(row, self.COL_FILEPATH) return filepath_item.text() class FileBox(object): def __init__(self, container, exp_config, to_singleshot, from_singleshot, to_multishot, from_multishot): self.exp_config = exp_config self.to_singleshot = to_singleshot self.to_multishot = to_multishot self.from_singleshot = from_singleshot self.from_multishot = from_multishot self.logger = logging.getLogger('lyse.FileBox') self.logger.info('starting') loader = UiLoader() loader.registerCustomWidget(TableView) self.ui = loader.load('filebox.ui') self.ui.progressBar_add_shots.hide() container.addWidget(self.ui) self.shots_model = DataFrameModel(self.ui.tableView, self.exp_config) set_auto_scroll_to_end(self.ui.tableView.verticalScrollBar()) self.edit_columns_dialog = EditColumns(self, self.shots_model.column_names, self.shots_model.columns_visible) self.last_opened_shots_folder = self.exp_config.get('paths', 'experiment_shot_storage') self.connect_signals() self.analysis_paused = False self.multishot_required = False # An Event to let the analysis thread know to check for shots that # need analysing, rather than using a time.sleep: self.analysis_pending = threading.Event() # The folder that the 'add shots' dialog will open to: self.current_folder = self.exp_config.get('paths', 'experiment_shot_storage') # A queue for storing incoming files from the ZMQ server so # the server can keep receiving files even if analysis is slow # or paused: self.incoming_queue = queue.Queue() # Start the thread to handle incoming files, and store them in # a buffer if processing is paused: self.incoming = threading.Thread(target=self.incoming_buffer_loop) self.incoming.daemon = True self.incoming.start() self.analysis = threading.Thread(target = self.analysis_loop) self.analysis.daemon = True self.analysis.start() def connect_signals(self): self.ui.pushButton_edit_columns.clicked.connect(self.on_edit_columns_clicked) self.shots_model.columns_changed.connect(self.on_columns_changed) self.ui.toolButton_add_shots.clicked.connect(self.on_add_shot_files_clicked) self.ui.toolButton_remove_shots.clicked.connect(self.shots_model.on_remove_selection) self.ui.tableView.doubleLeftClicked.connect(self.shots_model.on_double_click) self.ui.pushButton_analysis_running.toggled.connect(self.on_analysis_running_toggled) self.ui.pushButton_mark_as_not_done.clicked.connect(self.on_mark_selection_not_done_clicked) self.ui.pushButton_run_multishot_analysis.clicked.connect(self.on_run_multishot_analysis_clicked) def on_edit_columns_clicked(self): self.edit_columns_dialog.show() def on_columns_changed(self): column_names = self.shots_model.column_names columns_visible = self.shots_model.columns_visible self.edit_columns_dialog.update_columns(column_names, columns_visible) def on_add_shot_files_clicked(self): shot_files = QtWidgets.QFileDialog.getOpenFileNames(self.ui, 'Select shot files', self.last_opened_shots_folder, "HDF5 files (*.h5)") if type(shot_files) is tuple: shot_files, _ = shot_files if not shot_files: # User cancelled selection return # Convert to standard platform specific path, otherwise Qt likes forward slashes: shot_files = [os.path.abspath(shot_file) for shot_file in shot_files] # Save the containing folder for use next time we open the dialog box: self.last_opened_shots_folder = os.path.dirname(shot_files[0]) # Queue the files to be opened: for filepath in shot_files: self.incoming_queue.put(filepath) def on_analysis_running_toggled(self, pressed): if pressed: self.analysis_paused = True self.ui.pushButton_analysis_running.setIcon(QtGui.QIcon(':qtutils/fugue/control')) self.ui.pushButton_analysis_running.setText('Analysis paused') else: self.analysis_paused = False self.ui.pushButton_analysis_running.setIcon(QtGui.QIcon(':qtutils/fugue/control')) self.ui.pushButton_analysis_running.setText('Analysis running') self.analysis_pending.set() def on_mark_selection_not_done_clicked(self): self.shots_model.mark_selection_not_done() # Let the analysis loop know to look for these shots: self.analysis_pending.set() def on_run_multishot_analysis_clicked(self): self.multishot_required = True self.analysis_pending.set() def set_columns_visible(self, columns_visible): self.shots_model.set_columns_visible(columns_visible) @inmain_decorator() def set_add_shots_progress(self, completed, total, message): self.ui.progressBar_add_shots.setFormat("Adding shots: [{}] %v/%m (%p%)".format(message)) if completed == total and message is None: self.ui.progressBar_add_shots.hide() else: if total is not None: self.ui.progressBar_add_shots.setMaximum(total) if completed is not None: self.ui.progressBar_add_shots.setValue(completed) if self.ui.progressBar_add_shots.isHidden(): self.ui.progressBar_add_shots.show() if completed is None and total is None and message is not None: # Ensure a repaint when only the message changes: self.ui.progressBar_add_shots.repaint() def incoming_buffer_loop(self): """We use a queue as a buffer for incoming shots. We don't want to hang and not respond to a client submitting shots, so we just let shots pile up here until we can get to them. The downside to this is that we can't return errors to the client if the shot cannot be added, but the suggested workflow is to handle errors here anyway. A client running shots shouldn't stop the experiment on account of errors from the analyis stage, so what's the point of passing errors to it? We'll just raise errors here and the user can decide what to do with them.""" logger = logging.getLogger('lyse.FileBox.incoming') # HDF5 prints lots of errors by default, for things that aren't # actually errors. These are silenced on a per thread basis, # and automatically silenced in the main thread when h5py is # imported. So we'll silence them in this thread too: h5py._errors.silence_errors() n_shots_added = 0 while True: try: filepaths = [] filepath = self.incoming_queue.get() filepaths.append(filepath) if self.incoming_queue.qsize() == 0: # Wait momentarily in case more arrive so we can batch process them: time.sleep(0.1) # Batch process to decrease number of dataframe concatenations: batch_size = len(self.shots_model.dataframe) // 3 + 1 while True: try: filepath = self.incoming_queue.get(False) except queue.Empty: break else: filepaths.append(filepath) if len(filepaths) >= batch_size: break logger.info('adding:\n%s' % '\n'.join(filepaths)) if n_shots_added == 0: total_shots = self.incoming_queue.qsize() + len(filepaths) self.set_add_shots_progress(1, total_shots, "reading shot files") # Remove duplicates from the list (preserving order) in case the # client sent the same filepath multiple times: filepaths = sorted(set(filepaths), key=filepaths.index) # Inefficient but readable # We open the HDF5 files here outside the GUI thread so as not to hang the GUI: dataframes = [] indices_of_files_not_found = [] for i, filepath in enumerate(filepaths): try: dataframe = get_dataframe_from_shot(filepath) dataframes.append(dataframe) except IOError: app.output_box.output('Warning: Ignoring shot file not found or not readable %s\n' % filepath, red=True) indices_of_files_not_found.append(i) n_shots_added += 1 shots_remaining = self.incoming_queue.qsize() total_shots = n_shots_added + shots_remaining + len(filepaths) - (i + 1) self.set_add_shots_progress(n_shots_added, total_shots, "reading shot files") self.set_add_shots_progress(n_shots_added, total_shots, "concatenating dataframes") if dataframes: new_row_data = concat_with_padding(*dataframes) else: new_row_data = None # Do not add the shots that were not found on disk. Reverse # loop so that removing an item doesn't change the indices of # subsequent removals: for i in reversed(indices_of_files_not_found): del filepaths[i] if filepaths: self.shots_model.add_files(filepaths, new_row_data) # Let the analysis loop know to look for new shots: self.analysis_pending.set() if shots_remaining == 0: self.set_add_shots_progress(n_shots_added, total_shots, None) n_shots_added = 0 # reset our counter for the next batch except Exception: # Keep this incoming loop running at all costs, but make the # otherwise uncaught exception visible to the user: zprocess.raise_exception_in_thread(sys.exc_info()) def analysis_loop(self): logger = logging.getLogger('lyse.FileBox.analysis_loop') # HDF5 prints lots of errors by default, for things that aren't # actually errors. These are silenced on a per thread basis, # and automatically silenced in the main thread when h5py is # imported. So we'll silence them in this thread too: h5py._errors.silence_errors() while True: try: self.analysis_pending.wait() self.analysis_pending.clear() at_least_one_shot_analysed = False while True: if not self.analysis_paused: # Find the first shot that has not finished being analysed: filepath = self.shots_model.get_first_incomplete() if filepath is not None: logger.info('analysing: %s'%filepath) self.do_singleshot_analysis(filepath) at_least_one_shot_analysed = True if filepath is None and at_least_one_shot_analysed: self.multishot_required = True if filepath is None: break if self.multishot_required: logger.info('doing multishot analysis') self.do_multishot_analysis() else: logger.info('analysis is paused') break if self.multishot_required: logger.info('doing multishot analysis') self.do_multishot_analysis() except Exception: etype, value, tb = sys.exc_info() orig_exception = ''.join(traceback.format_exception_only(etype, value)) message = ('Analysis loop encountered unexpected exception. ' + 'This is a bug and should be reported. The analysis ' + 'loop is continuing, but lyse may be in an inconsistent state. ' 'Restart lyse, or continue at your own risk. ' 'Original exception was:\n\n' + orig_exception) # Raise the exception in a thread so we can keep running zprocess.raise_exception_in_thread((RuntimeError, RuntimeError(message), tb)) self.pause_analysis() @inmain_decorator() def pause_analysis(self): # This automatically triggers the slot that sets self.analysis_paused self.ui.pushButton_analysis_running.setChecked(True) def do_singleshot_analysis(self, filepath): # Check the shot file exists before sending it to the singleshot # routinebox. This does not guarantee it won't have been deleted by # the time the routinebox starts running analysis on it, but by # detecting it now we can most of the time avoid the user code # coughing exceptions due to the file not existing. Which would also # not be a problem, but this way we avoid polluting the outputbox with # more errors than necessary. if not os.path.exists(filepath): self.shots_model.mark_as_deleted_off_disk(filepath) return self.to_singleshot.put(filepath) while True: signal, status_percent, updated_data = self.from_singleshot.get() for file in updated_data: # Update the data for all the rows with new data: self.shots_model.update_row(file, updated_row_data=updated_data[file]) # Update the status percent for the the row on which analysis is actually running: self.shots_model.update_row(filepath, status_percent=status_percent, dataframe_already_updated=True) if signal == 'done': return if signal == 'error': if not os.path.exists(filepath): # Do not pause if the file has been deleted. An error is # no surprise there: self.shots_model.mark_as_deleted_off_disk(filepath) else: self.pause_analysis() return if signal == 'progress': continue raise ValueError('invalid signal %s' % str(signal)) def do_multishot_analysis(self): self.to_multishot.put(None) while True: signal, _, updated_data = self.from_multishot.get() for file in updated_data: self.shots_model.update_row(file, updated_row_data=updated_data[file]) if signal == 'done': self.multishot_required = False return elif signal == 'error': self.pause_analysis() return class Lyse(object): def __init__(self): loader = UiLoader() self.ui = loader.load('main.ui', LyseMainWindow()) self.connect_signals() self.setup_config() self.port = int(self.exp_config.get('ports', 'lyse')) # The singleshot routinebox will be connected to the filebox # by queues: to_singleshot = queue.Queue() from_singleshot = queue.Queue() # So will the multishot routinebox: to_multishot = queue.Queue() from_multishot = queue.Queue() self.output_box = OutputBox(self.ui.verticalLayout_output_box) self.singleshot_routinebox = RoutineBox(self.ui.verticalLayout_singleshot_routinebox, self.exp_config, self, to_singleshot, from_singleshot, self.output_box.port) self.multishot_routinebox = RoutineBox(self.ui.verticalLayout_multishot_routinebox, self.exp_config, self, to_multishot, from_multishot, self.output_box.port, multishot=True) self.filebox = FileBox(self.ui.verticalLayout_filebox, self.exp_config, to_singleshot, from_singleshot, to_multishot, from_multishot) self.last_save_config_file = None self.last_save_data = None self.ui.actionLoad_configuration.triggered.connect(self.on_load_configuration_triggered) self.ui.actionRevert_configuration.triggered.connect(self.on_revert_configuration_triggered) self.ui.actionSave_configuration.triggered.connect(self.on_save_configuration_triggered) self.ui.actionSave_configuration_as.triggered.connect(self.on_save_configuration_as_triggered) self.ui.resize(1600, 900) # Set the splitters to appropriate fractions of their maximum size: self.ui.splitter_horizontal.setSizes([1000, 600]) self.ui.splitter_vertical.setSizes([300, 600]) # autoload a config file, if labconfig is set to do so: try: autoload_config_file = self.exp_config.get('lyse', 'autoload_config_file') except (LabConfig.NoOptionError, LabConfig.NoSectionError): self.output_box.output('Ready.\n\n') else: self.ui.setEnabled(False) self.output_box.output('Loading default config file %s...' % autoload_config_file) def load_the_config_file(): try: self.load_configuration(autoload_config_file) self.output_box.output('done.\n') except Exception as e: self.output_box.output('\nCould not load config file: %s: %s\n\n' % (e.__class__.__name__, str(e)), red=True) else: self.output_box.output('Ready.\n\n') finally: self.ui.setEnabled(True) # Defer this until 50ms after the window has shown, # so that the GUI pops up faster in the meantime self.ui.firstPaint.connect(lambda: QtCore.QTimer.singleShot(50, load_the_config_file)) self.ui.show() # self.ui.showMaximized() def on_close_event(self): save_data = self.get_save_data() if self.last_save_data is not None and save_data != self.last_save_data: if self.only_window_geometry_is_different(save_data, self.last_save_data): self.save_configuration(self.last_save_config_file) return True message = ('Current configuration (which scripts are loaded and other GUI state) ' 'has changed: save config file \'%s\'?' % self.last_save_config_file) reply = QtWidgets.QMessageBox.question(self.ui, 'Quit lyse', message, QtWidgets.QMessageBox.Yes | QtWidgets.QMessageBox.No | QtWidgets.QMessageBox.Cancel) if reply == QtWidgets.QMessageBox.Cancel: return False if reply == QtWidgets.QMessageBox.Yes: self.save_configuration(self.last_save_config_file) return True def on_save_configuration_triggered(self): if self.last_save_config_file is None: self.on_save_configuration_as_triggered() self.ui.actionSave_configuration_as.setEnabled(True) self.ui.actionRevert_configuration.setEnabled(True) else: self.save_configuration(self.last_save_config_file) def on_revert_configuration_triggered(self): save_data = self.get_save_data() if self.last_save_data is not None and save_data != self.last_save_data: message = 'Revert configuration to the last saved state in \'%s\'?' % self.last_save_config_file reply = QtWidgets.QMessageBox.question(self.ui, 'Load configuration', message, QtWidgets.QMessageBox.Yes | QtWidgets.QMessageBox.Cancel) if reply == QtWidgets.QMessageBox.Cancel: return elif reply == QtWidgets.QMessageBox.Yes: self.load_configuration(self.last_save_config_file) else: error_dialog('no changes to revert') def on_save_configuration_as_triggered(self): if self.last_save_config_file is not None: default = self.last_save_config_file else: try: default_path = os.path.join(self.exp_config.get('DEFAULT', 'app_saved_configs'), 'lyse') except LabConfig.NoOptionError: self.exp_config.set('DEFAULT', 'app_saved_configs', os.path.join('%(labscript_suite)s', 'userlib', 'app_saved_configs', '%(experiment_name)s')) default_path = os.path.join(self.exp_config.get('DEFAULT', 'app_saved_configs'), 'lyse') if not os.path.exists(default_path): os.makedirs(default_path) default = os.path.join(default_path, 'lyse.ini') save_file = QtWidgets.QFileDialog.getSaveFileName(self.ui, 'Select file to save current lyse configuration', default, "config files (*.ini)") if type(save_file) is tuple: save_file, _ = save_file if not save_file: # User cancelled return # Convert to standard platform specific path, otherwise Qt likes # forward slashes: save_file = os.path.abspath(save_file) self.save_configuration(save_file) def only_window_geometry_is_different(self, current_data, old_data): ui_keys = ['window_size', 'window_pos', 'splitter', 'splitter_vertical', 'splitter_horizontal'] compare = [current_data[key] == old_data[key] for key in current_data.keys() if key not in ui_keys] return all(compare) def get_save_data(self): save_data = {} box = self.singleshot_routinebox save_data['SingleShot'] = list(zip([routine.filepath for routine in box.routines], [box.model.item(row, box.COL_ACTIVE).checkState() for row in range(box.model.rowCount())])) save_data['LastSingleShotFolder'] = box.last_opened_routine_folder box = self.multishot_routinebox save_data['MultiShot'] = list(zip([routine.filepath for routine in box.routines], [box.model.item(row, box.COL_ACTIVE).checkState() for row in range(box.model.rowCount())])) save_data['LastMultiShotFolder'] = box.last_opened_routine_folder save_data['LastFileBoxFolder'] = self.filebox.last_opened_shots_folder save_data['analysis_paused'] = self.filebox.analysis_paused window_size = self.ui.size() save_data['window_size'] = (window_size.width(), window_size.height()) window_pos = self.ui.pos() save_data['window_pos'] = (window_pos.x(), window_pos.y()) save_data['screen_geometry'] = get_screen_geometry() save_data['splitter'] = self.ui.splitter.sizes() save_data['splitter_vertical'] = self.ui.splitter_vertical.sizes() save_data['splitter_horizontal'] = self.ui.splitter_horizontal.sizes() return save_data def save_configuration(self, save_file): lyse_config = LabConfig(save_file) save_data = self.get_save_data() self.last_save_config_file = save_file self.last_save_data = save_data for key, value in save_data.items(): lyse_config.set('lyse_state', key, pprint.pformat(value)) def on_load_configuration_triggered(self): save_data = self.get_save_data() if self.last_save_data is not None and save_data != self.last_save_data: message = ('Current configuration (which groups are active/open and other GUI state) ' 'has changed: save config file \'%s\'?' % self.last_save_config_file) reply = QtWidgets.QMessageBox.question(self.ui, 'Load configuration', message, QtWidgets.QMessageBox.Yes | QtWidgets.QMessageBox.No | QtWidgets.QMessageBox.Cancel) if reply == QtWidgets.QMessageBox.Cancel: return if reply == QtWidgets.QMessageBox.Yes: self.save_configuration(self.last_save_config_file) if self.last_save_config_file is not None: default = self.last_save_config_file else: default = os.path.join(self.exp_config.get('paths', 'experiment_shot_storage'), 'lyse.ini') file = QtWidgets.QFileDialog.getOpenFileName(self.ui, 'Select lyse configuration file to load', default, "config files (*.ini)") if type(file) is tuple: file, _ = file if not file: # User cancelled return # Convert to standard platform specific path, otherwise Qt likes # forward slashes: file = os.path.abspath(file) self.load_configuration(file) def load_configuration(self, filename): self.last_save_config_file = filename self.ui.actionSave_configuration.setText('Save configuration %s' % filename) lyse_config = LabConfig(filename) try: self.singleshot_routinebox.add_routines(ast.literal_eval(lyse_config.get('lyse_state', 'SingleShot')), clear_existing=True) except (LabConfig.NoOptionError, LabConfig.NoSectionError): pass try: self.singleshot_routinebox.last_opened_routine_folder = ast.literal_eval(lyse_config.get('lyse_state', 'LastSingleShotFolder')) except (LabConfig.NoOptionError, LabConfig.NoSectionError): pass try: self.multishot_routinebox.add_routines(ast.literal_eval(lyse_config.get('lyse_state', 'MultiShot')), clear_existing=True) except (LabConfig.NoOptionError, LabConfig.NoSectionError): pass try: self.multishot_routinebox.last_opened_routine_folder = ast.literal_eval(lyse_config.get('lyse_state', 'LastMultiShotFolder')) except (LabConfig.NoOptionError, LabConfig.NoSectionError): pass try: self.filebox.last_opened_shots_folder = ast.literal_eval(lyse_config.get('lyse_state', 'LastFileBoxFolder')) except (LabConfig.NoOptionError, LabConfig.NoSectionError): pass try: if ast.literal_eval(lyse_config.get('lyse_state', 'analysis_paused')): self.filebox.pause_analysis() except (LabConfig.NoOptionError, LabConfig.NoSectionError): pass try: screen_geometry = ast.literal_eval(lyse_config.get('lyse_state', 'screen_geometry')) except (LabConfig.NoOptionError, LabConfig.NoSectionError): pass else: # Only restore the window size and position, and splitter # positions if the screen is the same size/same number of monitors # etc. This prevents the window moving off the screen if say, the # position was saved when 2 monitors were plugged in but there is # only one now, and the splitters may not make sense in light of a # different window size, so better to fall back to defaults: current_screen_geometry = get_screen_geometry() if current_screen_geometry == screen_geometry: try: self.ui.resize(*ast.literal_eval(lyse_config.get('lyse_state', 'window_size'))) except (LabConfig.NoOptionError, LabConfig.NoSectionError): pass try: self.ui.move(*ast.literal_eval(lyse_config.get('lyse_state', 'window_pos'))) except (LabConfig.NoOptionError, LabConfig.NoSectionError): pass try: self.ui.splitter.setSizes(ast.literal_eval(lyse_config.get('lyse_state', 'splitter'))) except (LabConfig.NoOptionError, LabConfig.NoSectionError): pass try: self.ui.splitter_vertical.setSizes(ast.literal_eval(lyse_config.get('lyse_state', 'splitter_vertical'))) except (LabConfig.NoOptionError, LabConfig.NoSectionError): pass try: self.ui.splitter_horizontal.setSizes(ast.literal_eval(lyse_config.get('lyse_state', 'splitter_horizontal'))) except (LabConfig.NoOptionError, LabConfig.NoSectionError): pass # Set as self.last_save_data: save_data = self.get_save_data() self.last_save_data = save_data self.ui.actionSave_configuration_as.setEnabled(True) self.ui.actionRevert_configuration.setEnabled(True) def setup_config(self): required_config_params = {"DEFAULT": ["experiment_name"], "programs": ["text_editor", "text_editor_arguments", "hdf5_viewer", "hdf5_viewer_arguments"], "paths": ["shared_drive", "experiment_shot_storage", "analysislib"], "ports": ["lyse"] } self.exp_config = LabConfig(required_params=required_config_params) def connect_signals(self): if os.name == 'nt': self.ui.newWindow.connect(set_win_appusermodel) # Keyboard shortcuts: QtWidgets.QShortcut('Del', self.ui, lambda: self.delete_items(True)) QtWidgets.QShortcut('Shift+Del', self.ui, lambda: self.delete_items(False)) def delete_items(self, confirm): """Delete items from whichever box has focus, with optional confirmation dialog""" if self.filebox.ui.tableView.hasFocus(): self.filebox.shots_model.remove_selection(confirm) if self.singleshot_routinebox.ui.treeView.hasFocus(): self.singleshot_routinebox.remove_selection(confirm) if self.multishot_routinebox.ui.treeView.hasFocus(): self.multishot_routinebox.remove_selection(confirm) if __name__ == "__main__": logger = setup_logging('lyse') labscript_utils.excepthook.set_logger(logger) logger.info('\n\n===============starting===============\n') qapplication = QtWidgets.QApplication(sys.argv) qapplication.setAttribute(QtCore.Qt.AA_DontShowIconsInMenus, False) app = Lyse() # Start the web server: server = WebServer(app.port) # Let the interpreter run every 500ms so it sees Ctrl-C interrupts: timer = QtCore.QTimer() timer.start(500) timer.timeout.connect(lambda: None) # Let the interpreter run each 500 ms. # Upon seeing a ctrl-c interrupt, quit the event loop signal.signal(signal.SIGINT, lambda *args: qapplication.exit()) qapplication.exec_() server.shutdown()
47.264134
160
0.620855
75b24703b4c357ed6d98a2a1b2b1ffea20540ce5
4,720
py
Python
Lib/idlelib/textview.py
Psycojoker/cpython
0afada163c7ef25c3a9d46ed445481fb69f2ecaf
[ "PSF-2.0" ]
2
2019-07-05T09:19:52.000Z
2019-12-18T10:31:38.000Z
Lib/idlelib/textview.py
Psycojoker/cpython
0afada163c7ef25c3a9d46ed445481fb69f2ecaf
[ "PSF-2.0" ]
1
2020-07-28T16:54:08.000Z
2020-07-28T16:54:08.000Z
Lib/idlelib/textview.py
izbyshev/cpython
ef8861c112ed1dac9351958c121bc24ca4ecdb08
[ "PSF-2.0" ]
1
2019-09-29T03:20:42.000Z
2019-09-29T03:20:42.000Z
"""Simple text browser for IDLE """ from tkinter import Toplevel, Text from tkinter.ttk import Frame, Scrollbar, Button from tkinter.messagebox import showerror class TextFrame(Frame): "Display text with scrollbar." def __init__(self, parent, rawtext): """Create a frame for Textview. parent - parent widget for this frame rawtext - text to display """ super().__init__(parent) self['relief'] = 'sunken' self['height'] = 700 # TODO: get fg/bg from theme. self.bg = '#ffffff' self.fg = '#000000' self.text = text = Text(self, wrap='word', highlightthickness=0, fg=self.fg, bg=self.bg) self.scroll = scroll = Scrollbar(self, orient='vertical', takefocus=False, command=text.yview) text['yscrollcommand'] = scroll.set text.insert(0.0, rawtext) text['state'] = 'disabled' text.focus_set() scroll.pack(side='right', fill='y') text.pack(side='left', expand=True, fill='both') class ViewFrame(Frame): "Display TextFrame and Close button." def __init__(self, parent, text): super().__init__(parent) self.parent = parent self.bind('<Return>', self.ok) self.bind('<Escape>', self.ok) self.textframe = TextFrame(self, text) self.button_ok = button_ok = Button( self, text='Close', command=self.ok, takefocus=False) self.textframe.pack(side='top', expand=True, fill='both') button_ok.pack(side='bottom') def ok(self, event=None): """Dismiss text viewer dialog.""" self.parent.destroy() class ViewWindow(Toplevel): "A simple text viewer dialog for IDLE." def __init__(self, parent, title, text, modal=True, *, _htest=False, _utest=False): """Show the given text in a scrollable window with a 'close' button. If modal is left True, users cannot interact with other windows until the textview window is closed. parent - parent of this dialog title - string which is title of popup dialog text - text to display in dialog _htest - bool; change box location when running htest. _utest - bool; don't wait_window when running unittest. """ super().__init__(parent) self['borderwidth'] = 5 # Place dialog below parent if running htest. x = parent.winfo_rootx() + 10 y = parent.winfo_rooty() + (10 if not _htest else 100) self.geometry(f'=750x500+{x}+{y}') self.title(title) self.viewframe = ViewFrame(self, text) self.protocol("WM_DELETE_WINDOW", self.ok) self.button_ok = button_ok = Button(self, text='Close', command=self.ok, takefocus=False) self.viewframe.pack(side='top', expand=True, fill='both') self.is_modal = modal if self.is_modal: self.transient(parent) self.grab_set() if not _utest: self.wait_window() def ok(self, event=None): """Dismiss text viewer dialog.""" if self.is_modal: self.grab_release() self.destroy() def view_text(parent, title, text, modal=True, _utest=False): """Create text viewer for given text. parent - parent of this dialog title - string which is the title of popup dialog text - text to display in this dialog modal - controls if users can interact with other windows while this dialog is displayed _utest - bool; controls wait_window on unittest """ return ViewWindow(parent, title, text, modal, _utest=_utest) def view_file(parent, title, filename, encoding, modal=True, _utest=False): """Create text viewer for text in filename. Return error message if file cannot be read. Otherwise calls view_text with contents of the file. """ try: with open(filename, 'r', encoding=encoding) as file: contents = file.read() except OSError: showerror(title='File Load Error', message=f'Unable to load file {filename!r} .', parent=parent) except UnicodeDecodeError as err: showerror(title='Unicode Decode Error', message=str(err), parent=parent) else: return view_text(parent, title, contents, modal, _utest=_utest) return None if __name__ == '__main__': from unittest import main main('idlelib.idle_test.test_textview', verbosity=2, exit=False) from idlelib.idle_test.htest import run run(ViewWindow)
33.475177
77
0.606992
e7c1141467900fd41463e4cc0a1159678f80104b
4,314
py
Python
examples/mark_bad_channels.py
ethanknights/mne-bids
cfb2ee9c7ddad6e3590427d65844de9f47e66d2d
[ "BSD-3-Clause" ]
null
null
null
examples/mark_bad_channels.py
ethanknights/mne-bids
cfb2ee9c7ddad6e3590427d65844de9f47e66d2d
[ "BSD-3-Clause" ]
null
null
null
examples/mark_bad_channels.py
ethanknights/mne-bids
cfb2ee9c7ddad6e3590427d65844de9f47e66d2d
[ "BSD-3-Clause" ]
null
null
null
""" =============================================== 03. Changing which channels are marked as "bad" =============================================== You can use MNE-BIDS to mark MEG or (i)EEG recording channels as "bad", for example if the connected sensor produced mostly noise – or no signal at all. Similarly, you can declare channels as "good", should you discover they were incorrectly marked as bad. """ # Authors: Richard Höchenberger <richard.hoechenberger@gmail.com> # License: BSD (3-clause) ############################################################################### # We will demonstrate how to mark individual channels as bad on the MNE # "sample" dataset. After that, we will mark channels as good again. # # Let's start by importing the required modules and functions, reading the # "sample" data, and writing it in the BIDS format. import os.path as op import mne from mne_bids import BIDSPath, write_raw_bids, read_raw_bids, mark_bad_channels data_path = mne.datasets.sample.data_path() raw_fname = op.join(data_path, 'MEG', 'sample', 'sample_audvis_raw.fif') bids_root = op.join(data_path, '..', 'MNE-sample-data-bids') bids_path = BIDSPath(subject='01', session='01', task='audiovisual', run='01', root=bids_root) raw = mne.io.read_raw_fif(raw_fname, verbose=False) raw.info['line_freq'] = 60 # Specify power line frequency as required by BIDS. write_raw_bids(raw, bids_path=bids_path, overwrite=True, verbose=False) ############################################################################### # Read the (now BIDS-formatted) data and print a list of channels currently # marked as bad. raw = read_raw_bids(bids_path=bids_path, verbose=False) print(f'The following channels are currently marked as bad:\n' f' {", ".join(raw.info["bads"])}\n') ############################################################################### # So currently, two channels are maked as bad: ``EEG 053`` and ``MEG 2443``. # Let's assume that through visual data inspection, we found that two more # MEG channels are problematic, and we would like to mark them as bad as well. # To do that, we simply add them to a list, which we then pass to # :func:`mne_bids.mark_bad_channels`: bads = ['MEG 0112', 'MEG 0131'] mark_bad_channels(ch_names=bads, bids_path=bids_path, verbose=False) ############################################################################### # That's it! Let's verify the result. raw = read_raw_bids(bids_path=bids_path, verbose=False) print(f'After marking MEG 0112 and MEG 0131 as bad, the following channels ' f'are now marked as bad:\n {", ".join(raw.info["bads"])}\n') ############################################################################### # As you can see, now a total of **four** channels is marked as bad: the ones # that were already bad when we started – ``EEG 053`` and ``MEG 2443`` – and # the two channels we passed to :func:`mne_bids.mark_bad_channels` – # ``MEG 0112`` and ``MEG 0131``. This shows that marking bad channels via # :func:`mne_bids.mark_bad_channels`, by default, is an **additive** procedure, # which allows you to mark additional channels as bad while retaining the # information about all channels that had *previously* been marked as bad. # # If you instead would like to **replace** the collection of bad channels # entirely, pass the argument ``overwrite=True``: bads = ['MEG 0112', 'MEG 0131'] mark_bad_channels(ch_names=bads, bids_path=bids_path, overwrite=True, verbose=False) raw = read_raw_bids(bids_path=bids_path, verbose=False) print(f'After marking MEG 0112 and MEG 0131 as bad and passing ' f'`overwrite=True`, the following channels ' f'are now marked as bad:\n {", ".join(raw.info["bads"])}\n') ############################################################################### # Lastly, if you're looking for a way to mark all channels as good, simply # pass an empty list as ``ch_names``, combined with ``overwrite=True``: bads = [] mark_bad_channels(ch_names=bads, bids_path=bids_path, overwrite=True, verbose=False) raw = read_raw_bids(bids_path=bids_path, verbose=False) print(f'After passing `ch_names=[]` and `overwrite=True`, the following ' f'channels are now marked as bad:\n {", ".join(raw.info["bads"])}\n')
45.410526
79
0.624942
dc041b92b14ffd46fe64e3bd6646d0af18096a4a
5,113
py
Python
tensorflow/python/keras/applications/applications_load_weight_test.py
ashutom/tensorflow-upstream
c16069c19de9e286dd664abb78d0ea421e9f32d4
[ "Apache-2.0" ]
10
2021-05-25T17:43:04.000Z
2022-03-08T10:46:09.000Z
tensorflow/python/keras/applications/applications_load_weight_test.py
CaptainGizzy21/tensorflow
3457a2b122e50b4d44ceaaed5a663d635e5c22df
[ "Apache-2.0" ]
1,056
2019-12-15T01:20:31.000Z
2022-02-10T02:06:28.000Z
tensorflow/python/keras/applications/applications_load_weight_test.py
CaptainGizzy21/tensorflow
3457a2b122e50b4d44ceaaed5a663d635e5c22df
[ "Apache-2.0" ]
6
2016-09-07T04:00:15.000Z
2022-01-12T01:47:38.000Z
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Integration tests for Keras applications.""" from absl import flags from absl.testing import parameterized import numpy as np from tensorflow.python.keras.applications import densenet from tensorflow.python.keras.applications import efficientnet from tensorflow.python.keras.applications import inception_resnet_v2 from tensorflow.python.keras.applications import inception_v3 from tensorflow.python.keras.applications import mobilenet from tensorflow.python.keras.applications import mobilenet_v2 from tensorflow.python.keras.applications import mobilenet_v3 from tensorflow.python.keras.applications import nasnet from tensorflow.python.keras.applications import resnet from tensorflow.python.keras.applications import resnet_v2 from tensorflow.python.keras.applications import vgg16 from tensorflow.python.keras.applications import vgg19 from tensorflow.python.keras.applications import xception from tensorflow.python.keras.preprocessing import image from tensorflow.python.keras.utils import data_utils from tensorflow.python.platform import test ARG_TO_MODEL = { 'resnet': (resnet, [resnet.ResNet50, resnet.ResNet101, resnet.ResNet152]), 'resnet_v2': (resnet_v2, [resnet_v2.ResNet50V2, resnet_v2.ResNet101V2, resnet_v2.ResNet152V2]), 'vgg16': (vgg16, [vgg16.VGG16]), 'vgg19': (vgg19, [vgg19.VGG19]), 'xception': (xception, [xception.Xception]), 'inception_v3': (inception_v3, [inception_v3.InceptionV3]), 'inception_resnet_v2': (inception_resnet_v2, [inception_resnet_v2.InceptionResNetV2]), 'mobilenet': (mobilenet, [mobilenet.MobileNet]), 'mobilenet_v2': (mobilenet_v2, [mobilenet_v2.MobileNetV2]), 'mobilenet_v3_small': (mobilenet_v3, [mobilenet_v3.MobileNetV3Small]), 'mobilenet_v3_large': (mobilenet_v3, [mobilenet_v3.MobileNetV3Large]), 'densenet': (densenet, [densenet.DenseNet121, densenet.DenseNet169, densenet.DenseNet201]), 'nasnet_mobile': (nasnet, [nasnet.NASNetMobile]), 'nasnet_large': (nasnet, [nasnet.NASNetLarge]), 'efficientnet': (efficientnet, [efficientnet.EfficientNetB0, efficientnet.EfficientNetB1, efficientnet.EfficientNetB2, efficientnet.EfficientNetB3, efficientnet.EfficientNetB4, efficientnet.EfficientNetB5, efficientnet.EfficientNetB6, efficientnet.EfficientNetB7]) } TEST_IMAGE_PATH = ('https://storage.googleapis.com/tensorflow/' 'keras-applications/tests/elephant.jpg') _IMAGENET_CLASSES = 1000 # Add a flag to define which application module file is tested. # This is set as an 'arg' in the build target to guarantee that # it only triggers the tests of the application models in the module # if that module file has been modified. FLAGS = flags.FLAGS flags.DEFINE_string('module', None, 'Application module used in this test.') def _get_elephant(target_size): # For models that don't include a Flatten step, # the default is to accept variable-size inputs # even when loading ImageNet weights (since it is possible). # In this case, default to 299x299. if target_size[0] is None: target_size = (299, 299) test_image = data_utils.get_file('elephant.jpg', TEST_IMAGE_PATH) img = image.load_img(test_image, target_size=tuple(target_size)) x = image.img_to_array(img) return np.expand_dims(x, axis=0) class ApplicationsLoadWeightTest(test.TestCase, parameterized.TestCase): def assertShapeEqual(self, shape1, shape2): if len(shape1) != len(shape2): raise AssertionError( 'Shapes are different rank: %s vs %s' % (shape1, shape2)) if shape1 != shape2: raise AssertionError('Shapes differ: %s vs %s' % (shape1, shape2)) def test_application_pretrained_weights_loading(self): app_module = ARG_TO_MODEL[FLAGS.module][0] apps = ARG_TO_MODEL[FLAGS.module][1] for app in apps: model = app(weights='imagenet') self.assertShapeEqual(model.output_shape, (None, _IMAGENET_CLASSES)) x = _get_elephant(model.input_shape[1:3]) x = app_module.preprocess_input(x) preds = model.predict(x) names = [p[1] for p in app_module.decode_predictions(preds)[0]] # Test correct label is in top 3 (weak correctness test). self.assertIn('African_elephant', names[:3]) if __name__ == '__main__': test.main()
44.46087
80
0.722472
8311b3bf8b6afe53e1ec69281af28e83e6c0641f
3,182
py
Python
pyt_regression1.py
mjbhobe/dl-pytorch
c1c443a0540b2678c38db364b56dfa1d9a1d1ae2
[ "MIT" ]
5
2020-01-09T08:58:32.000Z
2021-12-26T09:06:35.000Z
pyt_regression1.py
mjbhobe/dl-pytorch
c1c443a0540b2678c38db364b56dfa1d9a1d1ae2
[ "MIT" ]
1
2020-01-09T09:00:13.000Z
2020-01-09T09:00:13.000Z
pyt_regression1.py
mjbhobe/dl-pytorch
c1c443a0540b2678c38db364b56dfa1d9a1d1ae2
[ "MIT" ]
2
2020-01-09T08:58:40.000Z
2020-10-25T03:49:55.000Z
""" pyt_regression1.py: figure out the regression function between X & y @author: Manish Bhobe My experiments with Python, Machine Learning & Deep Learning. This code is meant for education purposes only & is not intended for commercial/production use! Use at your own risk!! I am not responsible if your CPU or GPU gets fried :D """ import warnings warnings.filterwarnings('ignore') import random import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.metrics import r2_score # tweaks for libraries np.set_printoptions(precision=6, linewidth=1024, suppress=True) plt.style.use('seaborn') sns.set_style('darkgrid') sns.set_context('notebook', font_scale=1.10) # Pytorch imports import torch print('Using Pytorch version: ', torch.__version__) import torch.nn as nn from torch import optim # My helper functions for training/evaluating etc. import pytorch_toolkit as pytk seed = 123 random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) # --------------------------------------------------------------------------- # Example:1 - with synthesized data # --------------------------------------------------------------------------- def get_data(): """ generate simple arrays """ """ NOTE: relationship is y = 2 * x - 1""" X = np.array([-1.0, 0.0, 1.0, 2.0, 3.0, 4.0], dtype=float) X = X.reshape(-1, 1) y = np.array([-3.0, -1.0, 1.0, 3.0, 5.0, 7.0], dtype=float) y = y.reshape(-1, 1) return (X, y) # our regression model class Net(pytk.PytkModule): def __init__(self): super(Net, self).__init__() self.fc1 = nn.Linear(1, 1) def forward(self, inp): out = self.fc1(inp) return out def main(): # generate data with noise X, y = get_data() print(f"X.shape: {X.shape} - y.shape: {y.shape}") # build our network net = Net() print('Before training: ') print(' Weight: %.3f bias: %.3f' % (net.fc1.weight.item(), net.fc1.bias.item())) criterion = nn.MSELoss() optimizer = optim.SGD(net.parameters(), lr=0.001) net.compile(loss=criterion, optimizer=optimizer, metrics=['mse', 'rmse', 'mae', 'r2_score']) print(net) # train on the data hist = net.fit(X, y, epochs=5000, report_interval=100) pytk.show_plots(hist, metric='r2_score', plot_title="Performance Metrics") # print the results print('After training: ') W, b = net.fc1.weight.item(), net.fc1.bias.item() print(f"After training -> Weight: {W:.3f} - bias: {b:.3f}") # get predictions (need to pass Tensors!) y_pred = net.predict(X) # what is my r2_score? print('R2 score (sklearn): %.3f' % r2_score(y, y_pred)) print('R2 score (pytk): %.3f' % pytk.r2_score( torch.Tensor(y_pred), torch.Tensor(y))) # display plot plt.figure(figsize=(8, 6)) plt.scatter(X, y, s=40, c='steelblue') plt.plot(X, y_pred, lw=2, color='firebrick') plt.title('Predicted Line -> $y = %.3f * X + %.3f$' % (W, b)) plt.show() if __name__ == '__main__': main() # Results: # Before training: # W: 2.0, b: -1.0 # After training (5000 epochs) # W: 1.997, b: -0.991 # R2 score: 0.765
27.669565
95
0.612194
6c3495ad5441f0303c1fb34a15cfbab9765561a0
857
py
Python
src/examples/C4-DDQNvsMinimax.py
kirarpit/connect4
ed5f2b9d4cca26e5230a124a4e3f9efe3efaf229
[ "MIT" ]
41
2018-07-14T10:05:04.000Z
2022-03-14T20:41:21.000Z
src/examples/C4-DDQNvsMinimax.py
kirarpit/connect4
ed5f2b9d4cca26e5230a124a4e3f9efe3efaf229
[ "MIT" ]
14
2019-07-22T23:28:46.000Z
2022-03-11T23:28:30.000Z
src/examples/C4-DDQNvsMinimax.py
kirarpit/connect4
ed5f2b9d4cca26e5230a124a4e3f9efe3efaf229
[ "MIT" ]
3
2019-12-05T16:12:15.000Z
2021-04-06T01:37:48.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Aug 16 20:26:39 2018 @author: Arpit """ from games.c4Game import C4Game from environment import Environment from players.minimaxC4Player import MinimaxC4Player from players.qPlayer import QPlayer from brains.qBrain import QBrain isConv = False layers = [ {'filters':16, 'kernel_size': (2,2), 'size':24} , {'filters':16, 'kernel_size': (2,2), 'size':24} ] game = C4Game(4, 5, isConv=isConv) brain = QBrain('c4DDQN', game, layers=layers, load_weights=False, plotModel=True) tBrain = QBrain('c4DDQN', game, layers=layers) player_config = {"mem_size":25000, "brain":brain, "tBrain":tBrain, "batch_size":64, "gamma":0.90, "n_step":11} p1 = QPlayer(1, game, **player_config) p2 = MinimaxC4Player(2, game, epsilon=0) env = Environment(game, p1, p2) env.run()
27.645161
81
0.681447
6955ec3a4a71b815b05675087b5589be36cf5bce
13,105
py
Python
tests/test_deadfixtures.py
Ivan-Feofanov/pytest-deadfixtures
d715a36d3a529403c85b1bd09c12c0b9ebe672c2
[ "MIT" ]
null
null
null
tests/test_deadfixtures.py
Ivan-Feofanov/pytest-deadfixtures
d715a36d3a529403c85b1bd09c12c0b9ebe672c2
[ "MIT" ]
null
null
null
tests/test_deadfixtures.py
Ivan-Feofanov/pytest-deadfixtures
d715a36d3a529403c85b1bd09c12c0b9ebe672c2
[ "MIT" ]
null
null
null
import pytest from pytest_deadfixtures import ( DUPLICATE_FIXTURES_HEADLINE, EXIT_CODE_ERROR, EXIT_CODE_SUCCESS, UNUSED_FIXTURES_FOUND_HEADLINE, ) def test_error_exit_code_on_dead_fixtures_found(pytester): pytester.makepyfile( """ import pytest @pytest.fixture() def some_fixture(): return 1 """ ) result = pytester.runpytest("--dead-fixtures") assert result.ret == EXIT_CODE_ERROR def test_success_exit_code_on_dead_fixtures_found(pytester): pytester.makepyfile( """ import pytest @pytest.fixture() def some_fixture(): return 1 def test_simple(some_fixture): assert 1 == some_fixture """ ) result = pytester.runpytest("--dead-fixtures") assert result.ret == EXIT_CODE_SUCCESS def test_dont_list_autouse_fixture(pytester, message_template): pytester.makepyfile( """ import pytest @pytest.fixture(autouse=True) def autouse_fixture(): return 1 def test_simple(): assert 1 == 1 """ ) result = pytester.runpytest("--dead-fixtures") message = message_template.format("autouse_fixture", "test_dont_list_autouse_fixture") assert message not in result.stdout.str() def test_dont_list_same_file_fixture(pytester, message_template): pytester.makepyfile( """ import pytest @pytest.fixture() def same_file_fixture(): return 1 def test_simple(same_file_fixture): assert 1 == same_file_fixture """ ) result = pytester.runpytest("--dead-fixtures") message = message_template.format( "same_file_fixture", "test_dont_list_same_file_fixture" ) assert message not in result.stdout.str() def test_list_same_file_unused_fixture(pytester, message_template): pytester.makepyfile( """ import pytest @pytest.fixture() def same_file_fixture(): return 1 def test_simple(): assert 1 == 1 """ ) result = pytester.runpytest("--dead-fixtures") message = message_template.format( "same_file_fixture", "test_list_same_file_unused_fixture" ) output = result.stdout.str() assert message in output assert UNUSED_FIXTURES_FOUND_HEADLINE.format(count=1) in output def test_list_same_file_multiple_unused_fixture(pytester, message_template): pytester.makepyfile( """ import pytest @pytest.fixture() def same_file_fixture(): return 1 @pytest.fixture() def plus_same_file_fixture(): return 2 def test_simple(): assert 1 == 1 """ ) result = pytester.runpytest("--dead-fixtures") first = message_template.format( "same_file_fixture", "test_list_same_file_multiple_unused_fixture" ) second = message_template.format( "plus_same_file_fixture", "test_list_same_file_multiple_unused_fixture" ) output = result.stdout.str() assert first in output assert second in output assert output.index(first) < output.index(second) assert UNUSED_FIXTURES_FOUND_HEADLINE.format(count=2) in output def test_dont_list_conftest_fixture(pytester, message_template): pytester.makepyfile( conftest=""" import pytest @pytest.fixture() def conftest_fixture(): return 1 """ ) pytester.makepyfile( """ import pytest def test_conftest_fixture(conftest_fixture): assert 1 == conftest_fixture """ ) result = pytester.runpytest("--dead-fixtures") message = message_template.format("conftest_fixture", "conftest") assert message not in result.stdout.str() def test_list_conftest_unused_fixture(pytester, message_template): pytester.makepyfile( conftest=""" import pytest @pytest.fixture() def conftest_fixture(): return 1 """ ) pytester.makepyfile( """ import pytest def test_conftest_fixture(): assert 1 == 1 """ ) result = pytester.runpytest("--dead-fixtures") message = message_template.format("conftest_fixture", "conftest") assert message in result.stdout.str() def test_list_conftest_multiple_unused_fixture(pytester, message_template): pytester.makepyfile( conftest=""" import pytest @pytest.fixture() def conftest_fixture(): return 1 @pytest.fixture() def plus_conftest_fixture(): return 2 """ ) pytester.makepyfile( """ import pytest def test_conftest_fixture(): assert 1 == 1 """ ) result = pytester.runpytest("--dead-fixtures") first = message_template.format("conftest_fixture", "conftest") second = message_template.format("plus_conftest_fixture", "conftest") output = result.stdout.str() assert first in output assert second in output assert output.index(first) < output.index(second) def test_dont_list_decorator_usefixtures(pytester, message_template): pytester.makepyfile( """ import pytest @pytest.fixture() def decorator_usefixtures(): return 1 @pytest.mark.usefixtures('decorator_usefixtures') def test_decorator_usefixtures(): assert 1 == decorator_usefixtures """ ) result = pytester.runpytest("--dead-fixtures") message = message_template.format( "decorator_usefixtures", "test_dont_list_decorator_usefixtures" ) assert message not in result.stdout.str() def test_write_docs_when_verbose(pytester): pytester.makepyfile( """ import pytest @pytest.fixture() def some_fixture(): '''Blabla fixture docs''' return 1 def test_simple(): assert 1 == 1 """ ) result = pytester.runpytest("--dead-fixtures", "-v") assert "Blabla fixture docs" in result.stdout.str() def test_repeated_fixtures_not_found(pytester): pytester.makepyfile( """ import pytest @pytest.fixture() def some_fixture(): return 1 def test_simple(some_fixture): assert 1 == some_fixture """ ) result = pytester.runpytest("--dup-fixtures") assert DUPLICATE_FIXTURES_HEADLINE not in result.stdout.str() def test_repeated_fixtures_found(pytester): pytester.makepyfile( """ import pytest class SomeClass: a = 1 def spam(self): return 'and eggs' @pytest.fixture() def someclass_fixture(): return SomeClass() @pytest.fixture() def someclass_samefixture(): return SomeClass() def test_simple(someclass_fixture): assert 1 == 1 def test_simple_again(someclass_samefixture): assert 2 == 2 """ ) result = pytester.runpytest("--dup-fixtures") assert DUPLICATE_FIXTURES_HEADLINE in result.stdout.str() assert "someclass_samefixture" in result.stdout.str() @pytest.mark.parametrize("directory", ("site-packages", "dist-packages", "<string>")) def test_should_not_list_fixtures_from_unrelated_directories( pytester, message_template, directory ): pytester.tmpdir = pytester.mkdir(directory) pytester.makepyfile( conftest=""" import pytest @pytest.fixture() def conftest_fixture(): return 1 """ ) pytester.makepyfile( """ import pytest def test_conftest_fixture(): assert 1 == 1 """ ) result = pytester.runpytest("--dead-fixtures") message = message_template.format("conftest_fixture", "{}/conftest".format(directory)) assert message not in result.stdout.str() def test_dont_list_fixture_used_after_test_which_does_not_use_fixtures( pytester, message_template ): pytester.makepyfile( """ import pytest @pytest.fixture() def same_file_fixture(): return 1 def test_no_fixture_used(): assert True def test_simple(same_file_fixture): assert 1 == same_file_fixture """ ) result = pytester.runpytest("--dead-fixtures") message = message_template.format( "same_file_fixture", "test_dont_list_fixture_used_after_test_which_does_not_use_fixtures", ) assert message not in result.stdout.str() def test_doctest_should_not_result_in_false_positive(pytester, message_template): pytester.makepyfile( """ import pytest @pytest.fixture() def same_file_fixture(): return 1 def something(): ''' a doctest in a docstring >>> something() 42 ''' return 42 def test_simple(same_file_fixture): assert 1 == same_file_fixture """ ) result = pytester.runpytest("--dead-fixtures", "--doctest-modules") message = message_template.format( "same_file_fixture", "test_doctest_should_not_result_in_false_positive" ) assert message not in result.stdout.str() def test_dont_list_fixture_used_by_another_fixture(pytester, message_template): pytester.makepyfile( """ import pytest @pytest.fixture() def some_fixture(): return 1 @pytest.fixture() def a_derived_fixture(some_fixture): return some_fixture + 1 def test_something(a_derived_fixture): assert a_derived_fixture == 2 """ ) result = pytester.runpytest("--dead-fixtures") for fixture_name in ["some_fixture", "a_derived_fixture"]: message = message_template.format( fixture_name, "test_dont_list_fixture_used_by_another_fixture", ) assert message not in result.stdout.str() def test_list_derived_fixtures_if_not_used_by_tests(pytester, message_template): pytester.makepyfile( """ import pytest @pytest.fixture() def some_fixture(): return 1 @pytest.fixture() def a_derived_fixture(some_fixture): return some_fixture + 1 def test_something(): assert True """ ) result = pytester.runpytest("--dead-fixtures") # although some_fixture is used by a_derived_fixture, since neither are used by a test case, # they should be reported. for fixture_name in ["some_fixture", "a_derived_fixture"]: message = message_template.format( fixture_name, "test_list_derived_fixtures_if_not_used_by_tests", ) assert message in result.stdout.str() def test_imported_fixtures(pytester): pytester.makepyfile( conftest=""" import pytest pytest_plugins = [ 'more_fixtures', ] @pytest.fixture def some_common_fixture(): return 'ok' """ ) pytester.makepyfile( more_fixtures=""" import pytest @pytest.fixture def some_fixture(): return 1 @pytest.fixture def a_derived_fixture(some_fixture): return some_fixture + 1 @pytest.fixture def some_unused_fixture(): return 'nope' """ ) pytester.makepyfile( """ import pytest def test_some_common_thing(some_common_fixture): assert True def test_some_derived_thing(a_derived_fixture): assert True """ ) result = pytester.runpytest("--dead-fixtures") for fixture_name in ["some_fixture", "a_derived_fixture", "some_common_fixture"]: assert fixture_name not in result.stdout.str() assert "some_unused_fixture" in result.stdout.str() @pytest.mark.xfail(reason="https://github.com/jllorencetti/pytest-deadfixtures/issues/28") def test_parameterized_fixture(pytester): pytester.makepyfile( conftest=""" import pytest @pytest.fixture def some_common_fixture(): return 1 """ ) pytester.makepyfile( """ import pytest @pytest.fixture(params=['some_common_fixture']) def another_fixture(request) fixture_value = request.getfixturevalue(request.param) return fixture_value + 1 def test_a_thing(another_fixture): assert another_fixture == 2 """ ) result = pytester.runpytest("--dead-fixtures") # Currently these cases are recognized as a false positive, whereas they shouldn't be. # Due to the dynamic lookup of the fixture, this is going to be hard to recognize. assert "some_common_fixture" not in result.stdout.str()
22.287415
96
0.619535
e556b03c3d549dbf7d6d7d6793621d4106f01f18
1,542
py
Python
libs/layers/roi_align_tf/roi_align_tf.py
FullStackD3vs/Detectron-PYTORCH
b42c78b393098c8b678bb21bd4a48cc41028141b
[ "Apache-2.0" ]
37
2018-07-25T16:30:47.000Z
2022-03-31T00:44:32.000Z
libs/layers/roi_align_tf/roi_align_tf.py
FullStackD3vs/Detectron-PYTORCH
b42c78b393098c8b678bb21bd4a48cc41028141b
[ "Apache-2.0" ]
2
2018-08-06T06:25:37.000Z
2019-04-30T03:41:04.000Z
libs/layers/roi_align_tf/roi_align_tf.py
FullStackD3vs/Detectron-PYTORCH
b42c78b393098c8b678bb21bd4a48cc41028141b
[ "Apache-2.0" ]
14
2019-01-15T08:42:19.000Z
2021-12-25T22:35:29.000Z
import torch from torch import nn from crop_and_resize import CropAndResizeFunction class RoIAlign(nn.Module): def __init__(self, crop_height, crop_width, extrapolation_value=0): super(RoIAlign, self).__init__() self.crop_height = crop_height self.crop_width = crop_width self.extrapolation_value = extrapolation_value def forward(self, featuremap, rois, spatial_scale): """ RoIAlign based on crop_and_resize. :param featuremap: NxCxHxW :param rois: Mx5 float box with (id, x1, y1, x2, y2) **without normalization** :param spatial_scale: a float, indicating the size ratio w.r.t. the original image :return: MxCxoHxoW """ boxes = rois[:, 1:5].contiguous() box_ind = rois[:, 0].int().contiguous() boxes = float(spatial_scale) * boxes x1, y1, x2, y2 = torch.split(boxes, 1, dim=1) spacing_w = (x2 - x1) / float(self.crop_width) spacing_h = (y2 - y1) / float(self.crop_height) image_height, image_width = featuremap.size()[2:4] nx0 = (x1 + spacing_w / 2 - 0.5) / float(image_width - 1) ny0 = (y1 + spacing_h / 2 - 0.5) / float(image_height - 1) nw = spacing_w * float(self.crop_width - 1) / float(image_width - 1) nh = spacing_h * float(self.crop_height - 1) / float(image_height - 1) boxes = torch.cat((ny0, nx0, ny0 + nh, nx0 + nw), 1) return CropAndResizeFunction(self.crop_height, self.crop_width, 0)(featuremap, boxes, box_ind)
35.860465
102
0.633593
200e73150881631947dbb2ae6b98ceac2c0768be
2,371
py
Python
tests/__init__.py
chronitis/ipyrmd
1e10d5de5b4df281a906159d51b3e95f6972e7d9
[ "MIT" ]
61
2015-05-27T19:59:38.000Z
2021-05-05T17:19:29.000Z
tests/__init__.py
chronitis/ipyrmd
1e10d5de5b4df281a906159d51b3e95f6972e7d9
[ "MIT" ]
7
2016-02-21T10:54:29.000Z
2019-11-15T05:14:33.000Z
tests/__init__.py
chronitis/ipyrmd
1e10d5de5b4df281a906159d51b3e95f6972e7d9
[ "MIT" ]
5
2016-02-19T05:07:36.000Z
2020-11-27T10:56:52.000Z
# run the test cases with `python3 -m unittest` from the project root import unittest import nbformat import tempfile import ipyrmd NBFORMAT_VERSION = 4 # generic test classes which start from either an ipynb or rmd source # file, write it to a tempfile, then convert it back and forth, after # which the outputs can be compared class IpynbTest(unittest.TestCase): default_metadata = { "language_info": { "name": "R", } } cells = [] metadata = None use_rmd = True def setUp(self): if self.metadata is None: metadata = self.default_metadata else: metadata = self.metadata self.orig = nbformat.from_dict({ "nbformat": NBFORMAT_VERSION, "nbformat_minor": 0, "metadata": metadata, "cells": self.cells }) with tempfile.TemporaryDirectory() as d: ipynb0_name = d + "/0" rmd_name = d + "/1" ipynb1_name = d + "/2" with open(ipynb0_name, "w") as f: nbformat.write(self.orig, f) if self.use_rmd: ipyrmd.ipynb_to_rmd(ipynb0_name, rmd_name) ipyrmd.rmd_to_ipynb(rmd_name, ipynb1_name) else: ipyrmd.ipynb_to_spin(ipynb0_name, rmd_name) ipyrmd.spin_to_ipynb(rmd_name, ipynb1_name) with open(rmd_name) as f: self.rmd = f.read() with open(ipynb1_name) as f: self.roundtrip = nbformat.read(f, NBFORMAT_VERSION) class RmdTest(unittest.TestCase): source = "" use_rmd = True def setUp(self): with tempfile.TemporaryDirectory() as d: rmd0_name = d + "/0" ipynb_name = d + "/1" rmd1_name = d + "/2" with open(rmd0_name, "w") as f: f.write(self.source) if self.use_rmd: ipyrmd.rmd_to_ipynb(rmd0_name, ipynb_name) ipyrmd.ipynb_to_rmd(ipynb_name, rmd1_name) else: ipyrmd.spin_to_ipynb(rmd0_name, ipynb_name) ipyrmd.ipynb_to_spin(ipynb_name, rmd1_name) with open(ipynb_name) as f: self.ipynb = nbformat.read(f, NBFORMAT_VERSION) with open(rmd1_name) as f: self.roundtrip = f.read()
29.271605
69
0.561367
84c65a1038e0fd531fb0c8046ef636479e36737a
8,863
py
Python
backtraderbd/strategies/base.py
rochi88/backtraderbd
dddc7694bda77b0dd91a2cd87d190bcb4004f99f
[ "MIT" ]
2
2020-04-09T06:35:02.000Z
2021-05-11T22:11:58.000Z
backtraderbd/strategies/base.py
rochi88/backtraderbd
dddc7694bda77b0dd91a2cd87d190bcb4004f99f
[ "MIT" ]
null
null
null
backtraderbd/strategies/base.py
rochi88/backtraderbd
dddc7694bda77b0dd91a2cd87d190bcb4004f99f
[ "MIT" ]
5
2020-04-10T14:45:58.000Z
2021-09-06T12:29:38.000Z
from __future__ import (absolute_import, division, print_function, unicode_literals) import os import sys import datetime as dt import math import pandas as pd import backtrader as bt import backtraderbd.data.bdshare as bds import backtraderbd.strategies.utils as bsu from backtraderbd.settings import settings as conf from backtraderbd.libs.log import get_logger from backtraderbd.libs.models import get_or_create_library logger = get_logger(__name__) class BaseStrategy(bt.Strategy): """ Base Strategy template for all strategies to be added """ def __init__(self): # Global variables self.init_cash = conf.DEFAULT_CASH self.buy_prop = conf.BUY_PROP self.sell_prop = conf.SELL_PROP self.execution_type = conf.EXECUTION_TYPE self.periodic_logging = conf.PERIODIC_LOGGING self.transaction_logging = conf.TRANSACTION_LOGGING print("===Global level arguments===") print("init_cash : {}".format(self.init_cash)) print("buy_prop : {}".format(self.buy_prop)) print("sell_prop : {}".format(self.sell_prop)) self.dataclose = self.datas[0].close # Keep a reference to the "close" line in the data[0] dataseries self.dataopen = self.datas[0].open self.order = None # To keep track of pending orders self.buyprice = None self.buycomm = None self.len_data = len(list(self.datas[0])) # Number of ticks in the input data def buy_signal(self): return True def sell_signal(self): return True def notify_order(self, order): if order.status in [order.Submitted, order.Accepted]: # Buy/Sell order submitted/accepted to/by broker - Nothing to do return # Check if an order has been completed # Attention: broker could reject order if not enough cash if order.status in [order.Completed]: if order.isbuy(): if self.transaction_logging: bsu.Utils.log( "BUY EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f" % ( order.executed.price, order.executed.value, order.executed.comm, ) ) self.buyprice = order.executed.price self.buycomm = order.executed.comm else: # Sell if self.transaction_logging: bsu.Utils.log( "SELL EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f" % ( order.executed.price, order.executed.value, order.executed.comm, ) ) self.bar_executed = len(self) elif order.status in [order.Canceled, order.Margin, order.Rejected]: if self.transaction_logging: if not self.periodic_logging: bsu.Utils.log("Cash %s Value %s" % (self.cash, self.value)) bsu.Utils.log("Order Canceled/Margin/Rejected") bsu.Utils.log("Canceled: {}".format(order.status == order.Canceled)) bsu.Utils.log("Margin: {}".format(order.status == order.Margin)) bsu.Utils.log("Rejected: {}".format(order.status == order.Rejected)) # Write down: no pending order self.order = None def notify_trade(self, trade): if not trade.isclosed: return if self.transaction_logging: bsu.Utils.log( "OPERATION PROFIT, GROSS %.2f, NET %.2f" % (trade.pnl, trade.pnlcomm) ) def notify_cashvalue(self, cash, value): # Update cash and value every period if self.periodic_logging: bsu.Utils.log("Cash %s Value %s" % (cash, value)) self.cash = cash self.value = value def next(self): # Simply log the closing price of the series from the reference if self.periodic_logging: bsu.Utils.log("Close, %.2f" % self.dataclose[0]) # Check if an order is pending ... if yes, we cannot send a 2nd one if self.order: return # Skip the last observation since purchases are based on next day closing prices (no value for the last observation) if len(self) + 1 >= self.len_data: return if self.periodic_logging: bsu.Utils.log("CURRENT POSITION SIZE: {}".format(self.position.size)) # Only buy if there is enough cash for at least one stock if self.cash >= self.dataclose[0]: if self.buy_signal(): if self.transaction_logging: bsu.Utils.log("BUY CREATE, %.2f" % self.dataclose[0]) # Take a 10% long position every time it's a buy signal (or whatever is afforded by the current cash position) # "size" refers to the number of stocks to purchase # Afforded size is based on closing price for the current trading day # Margin is required for buy commission # Add allowance to commission per transaction (avoid margin) afforded_size = int( self.cash / ( self.dataclose[0] * (1 + conf.COMMISSION_PER_TRANSACTION + 0.001) ) ) buy_prop_size = int(afforded_size * self.buy_prop) # Buy based on the closing price of the next closing day if self.execution_type == "close": final_size = min(buy_prop_size, afforded_size) if self.transaction_logging: bsu.Utils.log("Cash: {}".format(self.cash)) bsu.Utils.log("Price: {}".format(self.dataclose[0])) bsu.Utils.log("Buy prop size: {}".format(buy_prop_size)) bsu.Utils.log("Afforded size: {}".format(afforded_size)) bsu.Utils.log("Final size: {}".format(final_size)) # Explicitly setting exectype=bt.Order.Close will make the next day's closing the reference price self.order = self.buy(size=final_size) # Buy based on the opening price of the next closing day (only works "open" data exists in the dataset) else: # Margin is required for buy commission afforded_size = int( self.cash / ( self.dataopen[1] * (1 + conf.COMMISSION_PER_TRANSACTION + 0.001) ) ) final_size = min(buy_prop_size, afforded_size) if self.transaction_logging: bsu.Utils.log("Buy prop size: {}".format(buy_prop_size)) bsu.Utils.log("Afforded size: {}".format(afforded_size)) bsu.Utils.log("Final size: {}".format(final_size)) self.order = self.buy(size=final_size) # Only sell if you hold least one unit of the stock (and sell only that stock, so no short selling) stock_value = self.value - self.cash if stock_value > 0: if self.sell_signal(): if self.transaction_logging: bsu.Utils.log("SELL CREATE, %.2f" % self.dataclose[1]) # Sell a 5% sell position (or whatever is afforded by the current stock holding) # "size" refers to the number of stocks to purchase if self.execution_type == "close": if conf.SELL_PROP == 1: self.order = self.sell( size=self.position.size, exectype=bt.Order.Close ) else: # Sell based on the closing price of the next closing day self.order = self.sell( size=int( (stock_value / (self.dataclose[1])) * self.sell_prop ), exectype=bt.Order.Close, ) else: # Sell based on the opening price of the next closing day (only works "open" data exists in the dataset) self.order = self.sell( size=int( (self.init_cash / self.dataopen[1]) * self.sell_prop ) )
43.876238
126
0.528941
721abc0034e36d68f1f56ead0395216990166e67
827
py
Python
cart_venv/Lib/site-packages/tensorflow_core/python/keras/api/_v2/keras/applications/resnet50/__init__.py
juice1000/Synchronous-vs-Asynchronous-Learning-Tensorflow-
654be60f7986ac9bb7ce1d080ddee377c3389f93
[ "MIT" ]
2
2019-08-04T20:28:14.000Z
2019-10-27T23:26:42.000Z
cart_venv/Lib/site-packages/tensorflow_core/python/keras/api/_v2/keras/applications/resnet50/__init__.py
juice1000/Synchronous-vs-Asynchronous-Learning-Tensorflow-
654be60f7986ac9bb7ce1d080ddee377c3389f93
[ "MIT" ]
null
null
null
cart_venv/Lib/site-packages/tensorflow_core/python/keras/api/_v2/keras/applications/resnet50/__init__.py
juice1000/Synchronous-vs-Asynchronous-Learning-Tensorflow-
654be60f7986ac9bb7ce1d080ddee377c3389f93
[ "MIT" ]
1
2020-11-04T03:16:29.000Z
2020-11-04T03:16:29.000Z
# This file is MACHINE GENERATED! Do not edit. # Generated by: tensorflow/python/tools/api/generator/create_python_api.py script. """Public API for tf.keras.applications.resnet50 namespace. """ from __future__ import print_function as _print_function import sys as _sys from tensorflow.python.keras.applications import ResNet50 from tensorflow.python.keras.applications.resnet import decode_predictions from tensorflow.python.keras.applications.resnet import preprocess_input del _print_function from tensorflow.python.util import module_wrapper as _module_wrapper if not isinstance(_sys.modules[__name__], _module_wrapper.TFModuleWrapper): _sys.modules[__name__] = _module_wrapper.TFModuleWrapper( _sys.modules[__name__], "keras.applications.resnet50", public_apis=None, deprecation=False, has_lite=False)
37.590909
97
0.823458
84cf0bfa34bf909c7efc30c05fd287e0debdaf8a
1,845
py
Python
openstack/network/v2/auto_allocated_topology.py
teresa-ho/stx-openstacksdk
7d723da3ffe9861e6e9abcaeadc1991689f782c5
[ "Apache-2.0" ]
null
null
null
openstack/network/v2/auto_allocated_topology.py
teresa-ho/stx-openstacksdk
7d723da3ffe9861e6e9abcaeadc1991689f782c5
[ "Apache-2.0" ]
null
null
null
openstack/network/v2/auto_allocated_topology.py
teresa-ho/stx-openstacksdk
7d723da3ffe9861e6e9abcaeadc1991689f782c5
[ "Apache-2.0" ]
null
null
null
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from openstack.network import network_service from openstack import resource2 as resource class AutoAllocatedTopology(resource.Resource): resource_name = 'auto_allocated_topology' resource_key = 'auto_allocated_topology' base_path = '/auto-allocated-topology' service = network_service.NetworkService() # Capabilities allow_create = False allow_get = True allow_update = False allow_delete = True allow_list = False # NOTE: this resource doesn't support list or query # Properties #: Project ID #: If project is not specified the topology will be created #: for project user is authenticated against. #: Will return in error if resources have not been configured correctly #: To use this feature auto-allocated-topology, subnet_allocation, #: external-net and router extensions must be enabled and set up. project_id = resource.Body('tenant_id') class ValidateTopology(AutoAllocatedTopology): base_path = '/auto-allocated-topology/%(project)s?fields=dry-run' #: Validate requirements before running (Does not return topology) #: Will return "Deployment error:" if the resources required have not #: been correctly set up. dry_run = resource.Body('dry_run') project = resource.URI('project')
36.9
75
0.742005
4853d673869c55d62771f7cb403c5002b3c4ebb1
329
py
Python
news/migrations/0006_remove_facebookpost_slug.py
kermox/schronisko-krakow
8f8c546894e4b683ce463debad27db72ef820f90
[ "MIT" ]
1
2020-11-17T18:50:44.000Z
2020-11-17T18:50:44.000Z
news/migrations/0006_remove_facebookpost_slug.py
kermox/schronisko-krakow
8f8c546894e4b683ce463debad27db72ef820f90
[ "MIT" ]
9
2020-10-23T18:42:45.000Z
2022-03-12T00:39:57.000Z
news/migrations/0006_remove_facebookpost_slug.py
kermox/schronisko-krakow
8f8c546894e4b683ce463debad27db72ef820f90
[ "MIT" ]
null
null
null
# Generated by Django 3.0.5 on 2020-08-14 18:26 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('news', '0005_auto_20200814_1650'), ] operations = [ migrations.RemoveField( model_name='facebookpost', name='slug', ), ]
18.277778
47
0.592705
7369c41f92bcb12c2440e8751bb10845fa18ce66
1,077
py
Python
setup.py
Azmirol/click-man
827a2e2fd00363e5116a4d3fedd19ca617ba599a
[ "MIT" ]
105
2017-01-04T17:41:20.000Z
2022-03-31T13:00:54.000Z
setup.py
Azmirol/click-man
827a2e2fd00363e5116a4d3fedd19ca617ba599a
[ "MIT" ]
33
2017-03-06T16:02:13.000Z
2022-01-30T09:58:38.000Z
setup.py
Azmirol/click-man
827a2e2fd00363e5116a4d3fedd19ca617ba599a
[ "MIT" ]
31
2016-12-16T17:20:45.000Z
2022-03-26T09:54:27.000Z
import os from setuptools import setup, find_packages def read(fname): return open(os.path.join(os.path.dirname(__file__), fname)).read() setup( name='click-man', version='0.4.2', url='https://github.com/click-contrib/click-man', license='MIT', description='Generate man pages for click based CLI applications', long_description=read('README.md'), long_description_content_type='text/markdown', author='Timo Furrer', author_email='tuxtimo@gmail.com', install_requires=[ 'click', 'setuptools', ], packages=find_packages(exclude=('tests', )), entry_points={ 'console_scripts': [ 'click-man = click_man.__main__:cli', ] }, classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 3', 'Topic :: Documentation', ], )
27.615385
70
0.617456
1dd161e7daf343c5d605369339b67d506bfd1bfe
2,304
py
Python
agent.py
tdelubac/A3C
ad970b24fe2f2a532ccb42cf7e034894ef9b2838
[ "BSD-3-Clause-Clear" ]
null
null
null
agent.py
tdelubac/A3C
ad970b24fe2f2a532ccb42cf7e034894ef9b2838
[ "BSD-3-Clause-Clear" ]
15
2020-01-28T22:11:56.000Z
2022-03-11T23:16:57.000Z
agent.py
tdelubac/A3C
ad970b24fe2f2a532ccb42cf7e034894ef9b2838
[ "BSD-3-Clause-Clear" ]
null
null
null
import numpy as np import random N_STEP_RETURN = 8 FRAME = 0 class Agent: def __init__(self, brain, eps_start, eps_end, eps_steps): self.brain = brain self.eps_start = eps_start self.eps_end = eps_end self.eps_steps = eps_steps self.memory = [] self.R = 0. def epsilon(self): if FRAME > self.eps_steps: return self.eps_end else: return self.eps_start - (self.eps_start - self.eps_end) / self.eps_steps * FRAME def act(self,s,veto_a=None): global FRAME; FRAME = FRAME+1 if random.random() < self.epsilon(): return random.randint(0, self.brain.n_actions-1) else: s = np.asarray([s]) p = self.brain.predict_p(s) p = p[0] if veto_a!=None: p_veto_a = p[veto_a] p[veto_a] = 0 for a in range(self.brain.n_actions): if a == veto_a: continue p[a]+= p_veto_a / (self.brain.n_actions-1) # divide p_veto_a among other actions return np.random.choice(range(self.brain.n_actions), p=p) def train(self,s,a,r,s_,done,total_r): def get_sample(memory, n): s, a, _, _, _, _ = memory[0] _, _, _, s_, _, _ = memory[n-1] return s, a, self.R, s_, done, total_r a_cats = np.zeros(self.brain.n_actions) # turn action into one-hot representation a_cats[a] = 1 self.memory.append( (s, a_cats, r, s_, done, total_r) ) self.R = ( self.R + r * self.brain.gamma**N_STEP_RETURN ) / self.brain.gamma if done is True: while len(self.memory) > 0: n = len(self.memory) s, a, r, s_, done, total_r = get_sample(self.memory, n) self.brain.train_push(s, a, r, s_, done, total_r) self.R = ( self.R - self.memory[0][2] ) / self.brain.gamma self.memory.pop(0) self.R = 0 if len(self.memory) >= N_STEP_RETURN: s, a, r, s_, done, total_r = get_sample(self.memory, N_STEP_RETURN) self.brain.train_push(s, a, r, s_, done, total_r) self.R = self.R - self.memory[0][2] self.memory.pop(0)
32
100
0.532118
87a5a81b75124cd10e8e438185edb32579fa0b90
12,869
py
Python
tests/test_keep_largest_connected_component.py
wizofe/MONAI
d6327a765cf23dafd680b2a4b472edf9639e1087
[ "Apache-2.0" ]
null
null
null
tests/test_keep_largest_connected_component.py
wizofe/MONAI
d6327a765cf23dafd680b2a4b472edf9639e1087
[ "Apache-2.0" ]
null
null
null
tests/test_keep_largest_connected_component.py
wizofe/MONAI
d6327a765cf23dafd680b2a4b472edf9639e1087
[ "Apache-2.0" ]
null
null
null
# Copyright (c) MONAI Consortium # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch import torch.nn.functional as F from parameterized import parameterized from monai.transforms import KeepLargestConnectedComponent from monai.transforms.utils_pytorch_numpy_unification import moveaxis from monai.utils.type_conversion import convert_to_dst_type from tests.utils import TEST_NDARRAYS, assert_allclose def to_onehot(x): out = moveaxis(F.one_hot(torch.as_tensor(x).long())[0], -1, 0) out, *_ = convert_to_dst_type(out, x) return out grid_1 = [[[0, 0, 1, 0, 0], [0, 2, 1, 1, 1], [1, 2, 1, 0, 0], [1, 2, 0, 1, 0], [2, 2, 0, 0, 2]]] grid_2 = [[[0, 0, 0, 0, 1], [0, 0, 1, 1, 1], [1, 0, 1, 1, 2], [1, 0, 1, 2, 2], [0, 0, 0, 0, 1]]] grid_3 = [ [ [1.0, 1.0, 0.0, 1.0, 1.0], [1.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 1.0, 1.0], [0.0, 0.0, 1.0, 0.0, 1.0], [0.0, 0.0, 1.0, 1.0, 0.0], ], [ [0.0, 0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 1.0, 1.0], [1.0, 0.0, 1.0, 0.0, 0.0], [1.0, 0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0], ], [ [0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0], [1.0, 1.0, 0.0, 0.0, 1.0], ], ] grid_4 = [ [ [1.0, 1.0, 1.0, 1.0, 0.0], [1.0, 1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0], [1.0, 1.0, 1.0, 1.0, 0.0], ], [ [0.0, 0.0, 0.0, 0.0, 1.0], [0.0, 0.0, 1.0, 1.0, 1.0], [1.0, 0.0, 1.0, 1.0, 0.0], [1.0, 0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0], ], [ [0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0], [0.0, 0.0, 0.0, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0, 0.0], ], ] grid_5 = [[[0, 0, 1, 0, 0], [0, 1, 1, 1, 1], [1, 1, 1, 0, 0], [1, 1, 0, 1, 0], [1, 1, 0, 0, 1]]] TESTS = [] for p in TEST_NDARRAYS: TESTS.append( [ "value_1", {"independent": False, "applied_labels": 1, "is_onehot": False}, p(grid_1), torch.tensor([[[0, 0, 1, 0, 0], [0, 2, 1, 1, 1], [0, 2, 1, 0, 0], [0, 2, 0, 1, 0], [2, 2, 0, 0, 2]]]), ] ) TESTS.append( [ "value_2", {"independent": False, "applied_labels": [2], "is_onehot": False}, p(grid_1), torch.tensor([[[0, 0, 1, 0, 0], [0, 2, 1, 1, 1], [1, 2, 1, 0, 0], [1, 2, 0, 1, 0], [2, 2, 0, 0, 0]]]), ] ) TESTS.append( [ "independent_value_1_2", {"independent": True, "applied_labels": [1, 2], "is_onehot": False}, p(grid_1), torch.tensor([[[0, 0, 1, 0, 0], [0, 2, 1, 1, 1], [0, 2, 1, 0, 0], [0, 2, 0, 1, 0], [2, 2, 0, 0, 0]]]), ] ) TESTS.append( [ "dependent_value_1_2", {"independent": False, "applied_labels": [1, 2], "is_onehot": False}, p(grid_1), torch.tensor([[[0, 0, 1, 0, 0], [0, 2, 1, 1, 1], [1, 2, 1, 0, 0], [1, 2, 0, 1, 0], [2, 2, 0, 0, 2]]]), ] ) TESTS.append( [ "value_1", {"independent": True, "applied_labels": [1], "is_onehot": False}, p(grid_2), torch.tensor([[[0, 0, 0, 0, 1], [0, 0, 1, 1, 1], [0, 0, 1, 1, 2], [0, 0, 1, 2, 2], [0, 0, 0, 0, 0]]]), ] ) TESTS.append( [ "independent_value_1_2", {"independent": True, "applied_labels": [1, 2], "is_onehot": False}, p(grid_2), torch.tensor([[[0, 0, 0, 0, 1], [0, 0, 1, 1, 1], [0, 0, 1, 1, 2], [0, 0, 1, 2, 2], [0, 0, 0, 0, 0]]]), ] ) TESTS.append( [ "dependent_value_1_2", {"independent": False, "applied_labels": [1, 2], "is_onehot": False}, p(grid_2), torch.tensor([[[0, 0, 0, 0, 1], [0, 0, 1, 1, 1], [0, 0, 1, 1, 2], [0, 0, 1, 2, 2], [0, 0, 0, 0, 1]]]), ] ) TESTS.append( [ "value_1_connect_1", {"independent": False, "applied_labels": [1], "connectivity": 1, "is_onehot": False}, p(grid_1), torch.tensor([[[0, 0, 1, 0, 0], [0, 2, 1, 1, 1], [0, 2, 1, 0, 0], [0, 2, 0, 0, 0], [2, 2, 0, 0, 2]]]), ] ) TESTS.append( [ "independent_value_1_2_connect_1", {"independent": True, "applied_labels": [1, 2], "connectivity": 1, "is_onehot": False}, p(grid_1), torch.tensor([[[0, 0, 1, 0, 0], [0, 2, 1, 1, 1], [0, 2, 1, 0, 0], [0, 2, 0, 0, 0], [2, 2, 0, 0, 0]]]), ] ) TESTS.append( [ "onehot_none_dependent_value_1_2_connect_1", {"independent": False, "applied_labels": [1, 2], "connectivity": 1}, p(grid_1), torch.tensor([[[0, 0, 1, 0, 0], [0, 2, 1, 1, 1], [1, 2, 1, 0, 0], [1, 2, 0, 0, 0], [2, 2, 0, 0, 0]]]), ] ) TESTS.append( [ "onehot_independent_batch_2_apply_label_1_connect_1", {"independent": True, "applied_labels": [1], "connectivity": 1, "is_onehot": True}, p(grid_3), torch.tensor( [ [ [1.0, 1.0, 0.0, 1.0, 1.0], [1.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 1.0, 1.0], [0.0, 0.0, 1.0, 0.0, 1.0], [0.0, 0.0, 1.0, 1.0, 0.0], ], [ [0.0, 0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 1.0, 1.0], [0.0, 0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0], ], [ [0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0], [1.0, 1.0, 0.0, 0.0, 1.0], ], ] ), ] ) TESTS.append( [ "onehot_independent_batch_2_apply_label_1_connect_2", {"independent": True, "applied_labels": [1], "connectivity": 2, "is_onehot": True}, p(grid_3), torch.tensor( [ [ [1.0, 1.0, 0.0, 1.0, 1.0], [1.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 1.0, 1.0], [0.0, 0.0, 1.0, 0.0, 1.0], [0.0, 0.0, 1.0, 1.0, 0.0], ], [ [0.0, 0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 1.0, 1.0], [0.0, 0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0], ], [ [0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0], [1.0, 1.0, 0.0, 0.0, 1.0], ], ] ), ] ) TESTS.append( [ "onehot_independent_batch_2_apply_label_1_2_connect_2", {"independent": True, "applied_labels": [1, 2], "connectivity": 2, "is_onehot": True}, p(grid_3), torch.tensor( [ [ [1.0, 1.0, 0.0, 1.0, 1.0], [1.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 1.0, 1.0], [0.0, 0.0, 1.0, 0.0, 1.0], [0.0, 0.0, 1.0, 1.0, 0.0], ], [ [0.0, 0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 1.0, 1.0], [0.0, 0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0], ], [ [0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0], [1.0, 1.0, 0.0, 0.0, 0.0], ], ] ), ] ) TESTS.append( [ "onehot_dependent_batch_2_apply_label_1_2_connect_2", {"independent": False, "applied_labels": [1, 2], "connectivity": 2, "is_onehot": True}, p(grid_4), torch.tensor( [ [ [1.0, 1.0, 1.0, 1.0, 0.0], [1.0, 1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0], [1.0, 1.0, 1.0, 1.0, 0.0], ], [ [0.0, 0.0, 0.0, 0.0, 1.0], [0.0, 0.0, 1.0, 1.0, 1.0], [0.0, 0.0, 1.0, 1.0, 0.0], [0.0, 0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0], ], [ [0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0], [0.0, 0.0, 0.0, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0, 0.0], ], ] ), ] ) TESTS.append( [ "onehot_none_dependent_batch_2_apply_label_1_2_connect_1", {"independent": False, "applied_labels": [1, 2], "connectivity": 1}, p(grid_4), torch.tensor( [ [ [1.0, 1.0, 1.0, 1.0, 0.0], [1.0, 1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0], [1.0, 1.0, 1.0, 1.0, 0.0], ], [ [0.0, 0.0, 0.0, 0.0, 1.0], [0.0, 0.0, 1.0, 1.0, 1.0], [0.0, 0.0, 1.0, 1.0, 0.0], [0.0, 0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0], ], [ [0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0], [0.0, 0.0, 0.0, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0, 0.0], ], ] ), ] ) TESTS.append( [ "all_non_zero_labels", {"independent": True}, p(grid_1), torch.tensor([[[0, 0, 1, 0, 0], [0, 2, 1, 1, 1], [0, 2, 1, 0, 0], [0, 2, 0, 1, 0], [2, 2, 0, 0, 0]]]), ] ) class TestKeepLargestConnectedComponent(unittest.TestCase): @parameterized.expand(TESTS) def test_correct_results(self, _, args, input_image, expected): converter = KeepLargestConnectedComponent(**args) result = converter(input_image) assert_allclose(result, expected, type_test=False) if "is_onehot" in args: args["is_onehot"] = not args["is_onehot"] # if not onehotted, onehot it and make sure result stays the same if input_image.shape[0] == 1: img = to_onehot(input_image) result2 = KeepLargestConnectedComponent(**args)(img) result2 = result2.argmax(0)[None] assert_allclose(result, result2) # if onehotted, un-onehot and check result stays the same else: img = input_image.argmax(0)[None] result2 = KeepLargestConnectedComponent(**args)(img) assert_allclose(result.argmax(0)[None], result2) if __name__ == "__main__": unittest.main()
34.781081
114
0.361178
e8d7f46cf22ba1a00b9bbf2ecdd52f1c8627c537
2,519
py
Python
delta/data/utils/vocabulary.py
didichuxing/delta
31dfebc8f20b7cb282b62f291ff25a87e403cc86
[ "Apache-2.0" ]
1,442
2019-07-09T07:34:28.000Z
2020-11-15T09:52:09.000Z
delta/data/utils/vocabulary.py
didichuxing/delta
31dfebc8f20b7cb282b62f291ff25a87e403cc86
[ "Apache-2.0" ]
93
2019-07-22T09:20:20.000Z
2020-11-13T01:59:30.000Z
delta/data/utils/vocabulary.py
didichuxing/delta
31dfebc8f20b7cb282b62f291ff25a87e403cc86
[ "Apache-2.0" ]
296
2019-07-09T07:35:28.000Z
2020-11-16T02:27:51.000Z
# Copyright (C) 2017 Beijing Didi Infinity Technology and Development Co.,Ltd. # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Going to be deprecated""" import copy import collections # pylint: disable=too-many-instance-attributes class Vocabulary: ''' vocabulary ''' def __init__(self, use_default_dict): self._padding_token = "<pad>" self._unknown_token = "<unk>" self._start_of_sentence = "<sos>" self._end_of_sentence = "<eos>" self._s_token = "<s>" self._slash_s_token = "</s>" self._default_dict = { self._padding_token: 0, self._s_token: 1, self._slash_s_token: 2, self._unknown_token: 3, self._start_of_sentence: 4, self._end_of_sentence: 5 } self.use_default_dict = use_default_dict if self.use_default_dict: self._mapping = copy.deepcopy(self._default_dict) else: self._mapping = {} self._freq = collections.defaultdict(int) def __getitem__(self, key): return self._mapping[key] def add(self, word): ''' update vocab statis''' if word not in self._mapping: self._mapping[word] = len(self._mapping) self._freq[word] += 1 def trim(self, min_frequency): ''' trim word freq less than min_frequency''' # sort by frequency self._freq = sorted(self._freq.items(), key=lambda x: x[1], reverse=True) if self.use_default_dict: self._mapping = copy.deepcopy(self._default_dict) idx = len(self._default_dict) else: self._mapping = {} idx = 0 for word, count in self._freq: if count < min_frequency: break if word in self._mapping: continue self._mapping[word] = idx idx += 1 self._freq = dict(self._freq[:idx - 1]) @property def freq(self): '''candy _freq''' return self._freq @property def mapping(self): ''' candy _mapping''' return self._mapping
28.954023
80
0.647082
846a3c36e833a2c562ed026b2479289a6a4b56ba
1,534
py
Python
attendees/occasions/apps.py
xjlin0/attendees32
25913c75ea8d916dcb065a23f2fa68bea558f77c
[ "MIT" ]
null
null
null
attendees/occasions/apps.py
xjlin0/attendees32
25913c75ea8d916dcb065a23f2fa68bea558f77c
[ "MIT" ]
5
2022-01-21T03:26:40.000Z
2022-02-04T17:32:16.000Z
attendees/occasions/apps.py
xjlin0/attendees32
25913c75ea8d916dcb065a23f2fa68bea558f77c
[ "MIT" ]
null
null
null
import pghistory from django.apps import AppConfig from django.apps import apps as django_apps class OccasionsConfig(AppConfig): name = "attendees.occasions" def ready(self): schedule_calendar_model = django_apps.get_model("schedule.Calendar", require_ready=False) schedule_calendarrelation_model = django_apps.get_model("schedule.CalendarRelation", require_ready=False) schedule_event_model = django_apps.get_model("schedule.Event", require_ready=False) schedule_eventrelation_model = django_apps.get_model("schedule.EventRelation", require_ready=False) pghistory.track( pghistory.Snapshot('calendar.snapshot'), related_name='history', model_name='CalendarHistory', app_label='occasions' )(schedule_calendar_model) pghistory.track( pghistory.Snapshot('calendarrelation.snapshot'), related_name='history', model_name='CalendarRelationHistory', app_label='occasions', )(schedule_calendarrelation_model) pghistory.track( pghistory.Snapshot('event.snapshot'), related_name='history', model_name='EventHistory', app_label='occasions' )(schedule_event_model) pghistory.track( pghistory.Snapshot('eventrelation.snapshot'), related_name='history', model_name='EventRelationHistory', app_label='occasions', )(schedule_eventrelation_model)
36.52381
113
0.671447
111d0777b494bcd3d5c49aca04ebd89162294ffb
444
py
Python
model/InvertedIndexM.py
philgookang/Simulated_InvertedIndex_TFIDF_PageRank
612452f50913275b818942f82da098b78956ff3a
[ "MIT" ]
null
null
null
model/InvertedIndexM.py
philgookang/Simulated_InvertedIndex_TFIDF_PageRank
612452f50913275b818942f82da098b78956ff3a
[ "MIT" ]
null
null
null
model/InvertedIndexM.py
philgookang/Simulated_InvertedIndex_TFIDF_PageRank
612452f50913275b818942f82da098b78956ff3a
[ "MIT" ]
null
null
null
from system import * class InvertedIndexM: def __init__(self, dicts = {}): self.postman = Database.init() for key,val in dicts.items(): setattr(self, str(key), val) def createmany(self, lst): query = ''' INSERT INTO `inverted_index` ( `term`, `id`, `term_encod`) VALUES ( %s, %s, %s ) ''' self.postman.executemany(query, lst)
26.117647
45
0.502252
b2a832951132ceefa41e093eaa65f36461d93686
19,299
py
Python
code/ARAX/ARAXQuery/ARAX_ranker.py
RichardBruskiewich/RTX
ce126fdc5df6b5b13cc3ac2857ffee23954a0a7f
[ "MIT" ]
null
null
null
code/ARAX/ARAXQuery/ARAX_ranker.py
RichardBruskiewich/RTX
ce126fdc5df6b5b13cc3ac2857ffee23954a0a7f
[ "MIT" ]
null
null
null
code/ARAX/ARAXQuery/ARAX_ranker.py
RichardBruskiewich/RTX
ce126fdc5df6b5b13cc3ac2857ffee23954a0a7f
[ "MIT" ]
null
null
null
#!/bin/env python3 import sys def eprint(*args, **kwargs): print(*args, file=sys.stderr, **kwargs) import os import json import ast import re from datetime import datetime import numpy as np from response import Response from query_graph_info import QueryGraphInfo from knowledge_graph_info import KnowledgeGraphInfo from ARAX_messenger import ARAXMessenger sys.path.append(os.path.dirname(os.path.abspath(__file__))+"/../../") from RTXConfiguration import RTXConfiguration class ARAXRanker: # #### Constructor def __init__(self): self.response = None self.message = None self.parameters = None # #### ############################################################################################ # #### For each result[], aggregate all available confidence metrics and other scores to compute a final score def aggregate_scores(self, message, response=None): # #### Set up the response object if one is not already available if response is None: if self.response is None: response = Response() else: response = self.response else: self.response = response self.message = message # #### Compute some basic information about the query_graph query_graph_info = QueryGraphInfo() result = query_graph_info.assess(message) #response.merge(result) #if result.status != 'OK': # print(response.show(level=Response.DEBUG)) # return response # DMK FIXME: This need to be refactored so that: # 1. The attribute names are dynamically mapped to functions that handle their weightings (for ease of renaming attribute names) # 2. Weighting of individual attributes (eg. "probability" should be trusted MUCH less than "probability_treats") # 3. Auto-handling of normalizing scores to be in [0,1] (eg. observed_expected ration \in (-inf, inf) while probability \in (0,1) # 4. Auto-thresholding of values (eg. if chi_square <0.05, penalize the most, if probability_treats < 0.8, penalize the most, etc.) # 5. Allow for ranked answers (eg. observed_expected can have a single, huge value, skewing the rest of them # #### Iterate through all the edges in the knowledge graph to: # #### 1) Create a dict of all edges by id # #### 2) Collect some min,max stats for edge_attributes that we may need later kg_edges = {} score_stats = {} for edge in message.knowledge_graph.edges: kg_edges[edge.id] = edge if edge.edge_attributes is not None: for edge_attribute in edge.edge_attributes: # FIXME: DMK: We should probably have some some way to dynamically get the attribute names since they appear to be constantly changing # DMK: Crazy idea: have the individual ARAXi commands pass along their attribute names along with what they think of is a good way to handle them # DMK: eg. "higher is better" or "my range of [0, inf]" or "my value is a probability", etc. for attribute_name in [ 'probability', 'normalized_google_distance', 'jaccard_index', 'probability_treats', 'paired_concept_frequency', 'observed_expected_ratio', 'chi_square']: if edge_attribute.name == attribute_name: if attribute_name not in score_stats: score_stats[attribute_name] = {'minimum': None, 'maximum': None} # FIXME: doesn't handle the case when all values are inf or NaN value = float(edge_attribute.value) # TODO: don't set to max here, since returning inf for some edge attributes means "I have no data" #if np.isinf(value): # value = 9999 # initialize if not None already if not np.isinf(value) and not np.isinf(-value) and not np.isnan(value): # Ignore inf, -inf, and nan if not score_stats[attribute_name]['minimum']: score_stats[attribute_name]['minimum'] = value if not score_stats[attribute_name]['maximum']: score_stats[attribute_name]['maximum'] = value if value > score_stats[attribute_name]['maximum']: # DMK FIXME: expected type 'float', got 'None' instead score_stats[attribute_name]['maximum'] = value if value < score_stats[attribute_name]['minimum']: # DMK FIXME: expected type 'float', got 'None' instead score_stats[attribute_name]['minimum'] = value response.info(f"Summary of available edge metrics: {score_stats}") # #### Loop through the results[] in order to compute aggregated scores i_result = 0 for result in message.results: #response.debug(f"Metrics for result {i_result} {result.essence}: ") # #### Begin with a default score of 1.0 for everything score = 1.0 # #### There are often many edges associated with a result[]. Some are great, some are terrible. # #### For now, the score will be based on the best one. Maybe combining probabilities in quadrature would be better best_probability = 0.0 # TODO: What's this? the best probability of what? eps = np.finfo(np.float).eps # epsilon to avoid division by 0 penalize_factor = 0.7 # multiplicative factor to penalize by if the KS/KP return NaN or Inf indicating they haven't seen it before # #### Loop through each edge in the result for edge in result.edge_bindings: kg_edge_id = edge.kg_id # #### Set up a string buffer to keep some debugging information that could be printed buf = '' # #### If the edge has a confidence value, then multiply that into the final score if kg_edges[kg_edge_id].confidence is not None: buf += f" confidence={kg_edges[kg_edge_id].confidence}" score *= float(kg_edges[kg_edge_id].confidence) # #### If the edge has attributes, loop through those looking for scores that we know how to handle if kg_edges[kg_edge_id].edge_attributes is not None: for edge_attribute in kg_edges[kg_edge_id].edge_attributes: # FIXME: These are chemical_substance->protein binding probabilities, may not want be treating them like this.... #### EWD: Vlado has suggested that any of these links with chemical_substance->protein binding probabilities are #### EWD: mostly junk. very low probablility of being correct. His opinion seemed to be that they shouldn't be in the KG #### EWD: If we keep them, maybe their probabilities should be knocked down even further, in half, in quarter.. # DMK: I agree: hence why I said we should probably not be treating them like this (and not trusting them a lot) # #### If the edge_attribute is named 'probability', then for now use it to record the best probability only if edge_attribute.name == 'probability': value = float(edge_attribute.value) buf += f" probability={edge_attribute.value}" if value > best_probability: best_probability = value # #### If the edge_attribute is named 'probability_drug_treats', then for now we won't do anything # #### because this value also seems to be copied into the edge confidence field, so is already # #### taken into account #if edge_attribute.name == 'probability_drug_treats': # this is already put in confidence # buf += f" probability_drug_treats={edge_attribute.value}" # score *= value # DMK FIXME: Do we actually have 'probability_drug_treats' attributes?, the probability_drug_treats is *not* put in the confidence see: confidence = None in `predict_drug_treats_disease.py` # DMK: also note the edge type is: edge_type = "probably_treats" # If the edge_attribute is named 'probability_treats', use the value more or less as a probability #### EWD says: but note that when I last worked on this, the probability_treats was repeated in an edge attribute #### EWD says: as well as in the edge confidence score, so I commented out this section (see immediately above) DMK (same re: comment above :) ) #### EWD says: so that it wouldn't be counted twice. But that may have changed in the mean time. if edge_attribute.name == "probability_treats": prob_treats = float(edge_attribute.value) # Don't treat as a good prediction if the ML model returns a low value if prob_treats < penalize_factor: factor = penalize_factor else: factor = prob_treats score *= factor # already a number between 0 and 1, so just multiply # #### If the edge_attribute is named 'ngd', then use some hocus pocus to convert to a confidence if edge_attribute.name == 'normalized_google_distance': ngd = float(edge_attribute.value) # If the distance is infinite, then set it to 10, a very large number in this context if np.isinf(ngd): ngd = 10.0 buf += f" ngd={ngd}" # #### Apply a somewhat arbitrary transformation such that: # #### NGD = 0.3 leads to a factor of 1.0. That's *really* close # #### NGD = 0.5 leads to a factor of 0.88. That still a close NGD # #### NGD = 0.7 leads to a factor of 0.76. Same ballpark # #### NGD = 0.9 this is pretty far away. Still the factor is 0.64. Distantly related # #### NGD = 1.0 is very far. Still, factor is 0.58. Grade inflation is rampant. factor = 1 - ( ngd - 0.3) * 0.6 # Apply limits of 1.0 and 0.01 to the linear fudge if factor < 0.01: factor = 0.01 if factor > 1: factor = 1.0 buf += f" ngd_factor={factor}" score *= factor # #### If the edge_attribute is named 'jaccard_index', then use some hocus pocus to convert to a confidence if edge_attribute.name == 'jaccard_index': jaccard = float(edge_attribute.value) # If the jaccard index is infinite, set to some arbitrarily bad score if np.isinf(jaccard): jaccard = 0.01 # #### Set the confidence factor so that the best value of all results here becomes 0.95 # #### Why not 1.0? Seems like in scenarios where we're computing a Jaccard index, nothing is really certain factor = jaccard / score_stats['jaccard_index']['maximum'] * 0.95 buf += f" jaccard={jaccard}, factor={factor}" score *= factor # If the edge_attribute is named 'paired_concept_frequency', then ... if edge_attribute.name == "paired_concept_frequency": paired_concept_freq = float(edge_attribute.value) if np.isinf(paired_concept_freq) or np.isnan(paired_concept_freq): factor = penalize_factor else: try: factor = paired_concept_freq / score_stats['paired_concept_frequency']['maximum'] except: factor = paired_concept_freq / (score_stats['paired_concept_frequency']['maximum'] + eps) score *= factor buf += f" paired_concept_frequency={paired_concept_freq}, factor={factor}" # If the edge_attribute is named 'observed_expected_ratio', then ... if edge_attribute.name == 'observed_expected_ratio': obs_exp_ratio = float(edge_attribute.value) if np.isinf(obs_exp_ratio) or np.isnan(obs_exp_ratio): factor = penalize_factor # Penalize for missing info # Would love to throw this into a sigmoid like function customized by the max value observed # for now, just throw into a sigmoid and see what happens factor = 1 / float(1 + np.exp(-4*obs_exp_ratio)) score *= factor buf += f" observed_expected_ratio={obs_exp_ratio}, factor={factor}" # If the edge_attribute is named 'chi_square', then compute a factor based on the chisq and the max chisq if edge_attribute.name == 'chi_square': chi_square = float(edge_attribute.value) if np.isinf(chi_square) or np.isnan(chi_square): factor = penalize_factor else: try: factor = 1 - (chi_square / score_stats['chi_square']['maximum']) # lower is better except: factor = 1 - (chi_square / (score_stats['chi_square']['maximum'] + eps)) # lower is better score *= factor buf += f" chi_square={chi_square}, factor={factor}" # #### When debugging, log the edge_id and the accumulated information in the buffer #response.debug(f" - {kg_edge_id} {buf}") # #### If there was a best_probability recorded, then multiply into the running score #### EWD: This was commented out by DMK? I don't know why. I think it should be here FIXME #if best_probability > 0.0: # score *= best_probability # DMK: for some reason, this was causing my scores to be ridiculously low, so I commented it out and confidences went up "quite a bit" # #### Make all scores at least 0.01. This is all way low anyway, but let's not have anything that rounds to zero # #### This is a little bad in that 0.005 becomes better than 0.011, but this is all way low, so who cares if score < 0.01: score += 0.01 #### Round to reasonable precision. Keep only 3 digits after the decimal score = int(score * 1000 + 0.5) / 1000.0 #response.debug(f" ---> final score={score}") result.confidence = score result.row_data = [ score, result.essence, result.essence_type ] i_result += 1 #### Add table columns name message.table_column_names = [ 'confidence', 'essence', 'essence_type' ] #### Re-sort the final results message.results.sort(key=lambda result: result.confidence, reverse=True) # #### ############################################################################################ # #### For each result[], aggregate all available confidence metrics and other scores to compute a final score def sort_results_by_confidence(self, message, response=None): # #### Set up the response object if one is not already available if response is None: if self.response is None: response = Response() else: response = self.response else: self.response = response self.message = message response.info("Re-sorting results by overal confidence metrics") #### Dead-simple sort, probably not very robust message.results.sort(key=lambda result: result.confidence, reverse=True) # #### ############################################################################################ # #### For each result[], create a simple tabular entry of the essence values and confidence def create_tabular_results(self, message, response=None): # #### Set up the response object if one is not already available if response is None: if self.response is None: response = Response() else: response = self.response else: self.response = response self.message = message response.info(f"Add simple tabular results to the Message") # #### Loop through the results[] adding row_data for that result for result in message.results: # #### For now, just the confidence, essence, and essence_type result.row_data = [ result.confidence, result.essence, result.essence_type ] #### Add table columns name message.table_column_names = [ 'confidence', 'essence', 'essence_type' ] ########################################################################################## def main(): #### Create a response object response = Response() ranker = ARAXRanker() #### Get a Message to work on messenger = ARAXMessenger() print("INFO: Fetching message to work on from arax.rtx.ai",flush=True) message = messenger.fetch_message('https://arax.rtx.ai/api/rtx/v1/message/2614') if message is None: print("ERROR: Unable to fetch message") return ranker.aggregate_scores(message,response=response) #### Show the final result print(response.show(level=Response.DEBUG)) print("Results:") for result in message.results: confidence = result.confidence if confidence is None: confidence = 0.0 print(" -" + '{:6.3f}'.format(confidence) + f"\t{result.essence}") #print(json.dumps(ast.literal_eval(repr(message)),sort_keys=True,indent=2)) if __name__ == "__main__": main()
57.097633
213
0.550184
ddd74919e972c376750a315ccb824efc7f3187e5
1,795
py
Python
account_handler.py
Costa-SM/itabot_ferias
e3706f1b09d28a78e079e6d9ccdef4f00d41d047
[ "MIT" ]
null
null
null
account_handler.py
Costa-SM/itabot_ferias
e3706f1b09d28a78e079e6d9ccdef4f00d41d047
[ "MIT" ]
null
null
null
account_handler.py
Costa-SM/itabot_ferias
e3706f1b09d28a78e079e6d9ccdef4f00d41d047
[ "MIT" ]
null
null
null
import tweepy class Account(object): """ Represents the account that will be used with the Twitter API. """ def __init__(self, consumerkey, bearer, accesskey): """ Prepares the account for use with the Twitter API via Tweepy. :param consumerkey: Tuple containing the Consumer Key and Consumer Key Secret. :type consumerkey: tuple :param bearer: String containing the bearer for the account. :type bearer: str :param accesskey: Tuple containing the Access Token and Access Token Secret. :type accesskey: tuple """ self.consumer_key = consumerkey self.bearer = bearer self.access_key = accesskey self.auth = tweepy.OAuthHandler(self.consumer_key[0], self.consumer_key[1]) self.auth.set_access_token(self.access_key[0], self.access_key[1]) self.api = tweepy.API(self.auth) def get_homepage_tweets(self): """ Gets the last 20 tweets presented in the account's main timeline (i.e. homepage). :rtype: list of status objects """ return self.api.home_timeline() def get_last_tweet_date(self): """ Gets the last tweet from the account. :rtype: datetime object """ return self.api.user_timeline()[0].created_at def get_last_tweet_text(self): """ Gets the last tweet from the account. :rtype: str """ return self.api.user_timeline()[0].text def tweet(self, tweetedText): """ Tweets the specified string. :param: tweetedText: String that will be tweeted by the account. :type: tweetedText: str :rtype: none """ self.api.update_status(tweetedText)
30.423729
89
0.616156
f5b95333edf3bf2f8fd3e4885a5661403d64ebf7
1,008
py
Python
isi_sdk_8_2_1/test/test_certificate_server_certificate.py
mohitjain97/isilon_sdk_python
a371f438f542568edb8cda35e929e6b300b1177c
[ "Unlicense" ]
24
2018-06-22T14:13:23.000Z
2022-03-23T01:21:26.000Z
isi_sdk_8_2_1/test/test_certificate_server_certificate.py
mohitjain97/isilon_sdk_python
a371f438f542568edb8cda35e929e6b300b1177c
[ "Unlicense" ]
46
2018-04-30T13:28:22.000Z
2022-03-21T21:11:07.000Z
isi_sdk_8_2_1/test/test_certificate_server_certificate.py
mohitjain97/isilon_sdk_python
a371f438f542568edb8cda35e929e6b300b1177c
[ "Unlicense" ]
29
2018-06-19T00:14:04.000Z
2022-02-08T17:51:19.000Z
# coding: utf-8 """ Isilon SDK Isilon SDK - Language bindings for the OneFS API # noqa: E501 OpenAPI spec version: 8 Contact: sdk@isilon.com Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import isi_sdk_8_2_1 from isi_sdk_8_2_1.models.certificate_server_certificate import CertificateServerCertificate # noqa: E501 from isi_sdk_8_2_1.rest import ApiException class TestCertificateServerCertificate(unittest.TestCase): """CertificateServerCertificate unit test stubs""" def setUp(self): pass def tearDown(self): pass def testCertificateServerCertificate(self): """Test CertificateServerCertificate""" # FIXME: construct object with mandatory attributes with example values # model = isi_sdk_8_2_1.models.certificate_server_certificate.CertificateServerCertificate() # noqa: E501 pass if __name__ == '__main__': unittest.main()
24.585366
114
0.736111
5cb1369bc0ebec5d6fb5fd46376e3b66e29e1cb8
1,132
py
Python
data_stats.py
raphaelmenges/PierreKrapf-Bachelorthesis
9d0b92ffb9d862032e0531e9a210964bef6d2ea0
[ "MIT" ]
null
null
null
data_stats.py
raphaelmenges/PierreKrapf-Bachelorthesis
9d0b92ffb9d862032e0531e9a210964bef6d2ea0
[ "MIT" ]
null
null
null
data_stats.py
raphaelmenges/PierreKrapf-Bachelorthesis
9d0b92ffb9d862032e0531e9a210964bef6d2ea0
[ "MIT" ]
null
null
null
import os import os.path as path import numpy as np import re from prettytable import PrettyTable from functools import reduce # TODO: Turn this into arg folder_path = path.join("G:", "BA", "Data", "Out") all_files = os.listdir(folder_path) all_files_iter = iter(all_files) counts = {} for file_name in all_files_iter: cl = re.search("^\d+-\d+-(\w+).png$", file_name) if cl == None: continue # print("filename: %s" % file_name) # print("match: %s" % cl[1]) label = cl[1] if label in counts: counts[label] = counts[label] + 1 else: counts[label] = 1 arr = [] for (key, count) in counts.items(): arr.append((key, count)) sorted_arr = sorted(arr, key=lambda x: x[1]) sorted_arr.reverse() number_of_images = reduce((lambda acc, el: acc + el[1]), sorted_arr, 0) print(f"Number of images: {number_of_images}") # for (label, count) in sorted_arr: # print(f"{label}: {count}") tb = PrettyTable(["Nr", "Klasse", "Anzahl", "Anteil"]) for (nr, (label, count)) in enumerate(sorted_arr): tb.add_row([nr+1, label, count, round(count / number_of_images*100, 2)]) print(tb)
24.608696
76
0.64576
a379d2f292b4582d908295d1891c35c0dc9b8a49
2,711
py
Python
asyncfile/usefuls.py
try-fail1/asyncfile
bef47653308a2f0ca271391e0d07a151695de757
[ "MIT" ]
2
2020-06-07T04:32:07.000Z
2020-08-16T06:12:33.000Z
asyncfile/usefuls.py
try-fail1/asyncfile
bef47653308a2f0ca271391e0d07a151695de757
[ "MIT" ]
null
null
null
asyncfile/usefuls.py
try-fail1/asyncfile
bef47653308a2f0ca271391e0d07a151695de757
[ "MIT" ]
null
null
null
from asyncio import AbstractEventLoop from typing import ( Optional, Iterable, AsyncIterator, Callable ) from collections.abc import Coroutine from functools import wraps from .threads import threadwork Loop = Optional[AbstractEventLoop] def add_async_methods(names: Iterable): def the_class(cls): for i in names: setattr(cls, i, set_async(i)) return cls return the_class def add_properties(names: Iterable): def classy(cls): for i in names: setattr(cls, i, set_property(i)) return cls return classy def set_async(method_name: str) -> Callable: async def inner(self, *args, **kwargs): method_impl = getattr(self._hidden, method_name) return await threadwork(*args, func=method_impl, loop=self._loop, **kwargs) return inner def set_property(property_value: str) -> property: def getit(self): return getattr(self._hidden, property_value) def setit(self, value): setattr(self._hidden, property_value, value) def delit(self, value): delattr(self._hidden, property_value, value) return property(getit, setit, delit) class AsyncMixin: def __aiter__(self): return self async def __anext__(self): f = await self.readline() if not f: raise StopAsyncIteration return f async def __aenter__(self): return self async def __aexit__(self, *exc) -> None: await self.close() def generate_repr(cls): cls.__repr__ = lambda self: f"<{self.__class__.__name__}: {self.name!r}>" return cls class AwaitedForYou(Coroutine): __slots__ = ('coro', 'ret') def __init__(self, coro): self.coro = coro self.ret = None def send(self, val): return self.coro.send(val) def throw(self, typ, val=None, tb=None): return super().throw(typ, val, tb) def close(self) -> None: return self.coro.close() def __await__(self): return self.coro.__await__() async def __aenter__(self): self.ret = await self.coro return self.ret async def __aexit__(self, *exc) -> None: await self.ret.close() self.ret = None def __aiter__(self) -> AsyncIterator: async def asyncgen(): f = await self.coro async for i in f: yield i return asyncgen() # Ultimately, implementing `__anext__` # Is not reasonably acheivable here def make_async(func): @wraps(func) def different(*args, **kwargs): return AwaitedForYou(func(*args, **kwargs)) return different
25.101852
83
0.617484
46c1c9796617997daac4f76506c0ae5ef786b798
7,070
py
Python
multi_script_editor/widgets/themeEditor.py
paulwinex/pw_multiScriptEditor
e447e99f87cb07e238baf693b7e124e50efdbc51
[ "MIT" ]
142
2015-03-21T12:56:21.000Z
2022-02-08T04:42:46.000Z
multi_script_editor/widgets/themeEditor.py
paulwinex/pw_multiScriptEditor
e447e99f87cb07e238baf693b7e124e50efdbc51
[ "MIT" ]
7
2016-02-16T05:44:57.000Z
2022-01-07T06:05:35.000Z
multi_script_editor/widgets/themeEditor.py
paulwinex/pw_multiScriptEditor
e447e99f87cb07e238baf693b7e124e50efdbc51
[ "MIT" ]
43
2015-04-16T06:14:54.000Z
2021-11-01T05:07:18.000Z
try: from PySide.QtCore import * from PySide.QtGui import * qt = 1 except: from PySide2.QtCore import * from PySide2.QtGui import * from PySide2.QtWidgets import * qt = 2 import themeEditor_UIs as ui import settingsManager import os from .pythonSyntax import design from .pythonSyntax import syntaxHighLighter from . import inputWidget import icons_rcs class themeEditorClass(QDialog, ui.Ui_themeEditor): def __init__(self, parent = None, desk=None): super(themeEditorClass, self).__init__(parent) self.setupUi(self) self.preview_twd = inputWidget.inputClass(self, desk) self.preview_ly.addWidget(self.preview_twd) self.preview_twd.setPlainText(defaultText) self.splitter.setSizes([200,300]) self.s = settingsManager.scriptEditorClass() self.colors_lwd.itemDoubleClicked.connect(self.getNewColor) self.save_btn.clicked.connect(self.saveTheme) self.del_btn.clicked.connect(self.deleteTheme) self.themeList_cbb.currentIndexChanged.connect(self.updateColors) self.apply_btn.clicked.connect(self.apply) self.apply_btn.setText('Close') self.textSize_spb.valueChanged.connect(self.updateExample) self.fillUI() self.updateUI() self.updateColors() self.preview_twd.completer.updateCompleteList() self.namespace={} def fillUI(self, restore=None): if restore is None: restore = self.themeList_cbb.currentText() settings = self.s.readSettings() self.themeList_cbb.clear() self.themeList_cbb.addItem('default') if settings.get('colors'): for x in settings.get('colors'): self.themeList_cbb.addItem(x) if not restore: restore = settings.get('theme') if restore: index = self.themeList_cbb.findText(restore) self.themeList_cbb.setCurrentIndex(index) self.updateExample() def updateColors(self): curTheme = self.themeList_cbb.currentText() if curTheme == 'default': self.del_btn.setEnabled(0) colors = design.defaultColors else: self.del_btn.setEnabled(1) settings = self.s.readSettings() allThemes = settings.get('colors') if allThemes and curTheme in allThemes: colors = allThemes.get(curTheme) for k, v in design.getColors().items(): if not k in colors: colors[k] = v else: colors = design.getColors() self.colors_lwd.clear() for x in sorted(colors.keys()): if x == 'textsize': self.textSize_spb.setValue(colors['textsize']) else: item = QListWidgetItem(x) pix = QPixmap(QSize(16,16)) pix.fill(QColor(*colors[x])) item.setIcon(QIcon(pix)) item.setData(32, colors[x]) self.colors_lwd.addItem(item) self.updateExample() def updateExample(self): colors = self.getCurrentColors() self.preview_twd.applyPreviewStyle(colors) def getCurrentColors(self): colors = {} for i in range(self.colors_lwd.count()): item = self.colors_lwd.item(i) colors[item.text()] = item.data(32) colors['textsize'] = self.textSize_spb.value() return colors def getNewColor(self): items = self.colors_lwd.selectedItems() if items: item = items[0] init = QColor(*item.data(32)) color = QColorDialog.getColor(init ,self) if color.isValid(): newColor = (color.red(), color.green(), color.blue()) item.setData(32, newColor) pix = QPixmap(QSize(16,16)) pix.fill(QColor(*newColor)) item.setIcon(QIcon(pix)) self.updateExample() def saveTheme(self): text = self.themeList_cbb.currentText() or 'NewTheme' name = QInputDialog.getText(self, 'Theme name', 'Enter Theme name', QLineEdit.Normal, text) if name[1]: name = name[0] if name == 'default': name = 'Not default' settings = self.s.readSettings() if 'colors' in settings: if name in settings['colors']: if not self.yes_no_question('Replace exists?'): return colors = self.getCurrentColors() if 'colors' in settings: settings['colors'][name] = colors else: settings['colors'] = {name: colors} self.s.writeSettings(settings) self.fillUI(name) # self.updateUI() def deleteTheme(self): text = self.themeList_cbb.currentText() if text: if self.yes_no_question('Remove current theme?'): name = self.themeList_cbb.currentText() settings = self.s.readSettings() if 'colors' in settings: if name in settings['colors']: del settings['colors'][name] self.s.writeSettings(settings) self.fillUI(False) self.updateUI() def updateUI(self): if not self.themeList_cbb.count(): self.apply_btn.setEnabled(0) else: self.apply_btn.setEnabled(1) def apply(self): name = self.themeList_cbb.currentText() if name: settings = self.s.readSettings() settings['theme'] = name self.s.writeSettings(settings) self.accept() def keyPressEvent(self, event): if event.key() == Qt.Key_Escape: event.ignore() else: super(themeEditorClass, self).keyPressEvent(event) def current(self): pass # print self.colors_lwd.selectedItems()[0].data(32) def yes_no_question(self, question): msg_box = QMessageBox(self) msg_box.setText(question) yes_button = msg_box.addButton("Yes", QMessageBox.YesRole) no_button = msg_box.addButton("No", QMessageBox.NoRole) msg_box.exec_() return msg_box.clickedButton() == yes_button defaultText = r'''@decorator(param=1) def f(x): """ Syntax Highlighting Demo @param x Parameter""" s = ("Test", 2+3, {'a': 'b'}, x) # Comment print s[0].lower() class Foo: def __init__(self): string = 'newline' self.makeSense(whatever=1) def makeSense(self, whatever): self.sense = whatever x = len('abc') print(f.__doc__) ''' if __name__ == '__main__': app = QApplication([]) w = themeEditorClass() w.show() qss = os.path.join(os.path.dirname(os.path.dirname(__file__)),'style', 'style.css') if os.path.exists(qss): w.setStyleSheet(open(qss).read()) app.exec_()
32.883721
99
0.578218
465d8a3695d2f9c6321c7f2d70b8bb84b9adee5e
461
py
Python
aliyun_exporter/test_utils.py
BoringCat/aliyun-exporter
3c9af5e6ee42c9b3876ce312a3c39db046032740
[ "Apache-2.0" ]
1
2021-12-30T11:42:45.000Z
2021-12-30T11:42:45.000Z
aliyun_exporter/test_utils.py
BoringCat/aliyun-exporter
3c9af5e6ee42c9b3876ce312a3c39db046032740
[ "Apache-2.0" ]
null
null
null
aliyun_exporter/test_utils.py
BoringCat/aliyun-exporter
3c9af5e6ee42c9b3876ce312a3c39db046032740
[ "Apache-2.0" ]
1
2021-12-30T11:42:48.000Z
2021-12-30T11:42:48.000Z
from .utils import format_metric, format_period def test_format_metric(): assert format_metric("") == "" assert format_metric("a.b.c") == "a_b_c" assert format_metric("aBcD") == "aBcD" assert format_metric(".a.b.c.") == "_a_b_c_" def test_format_period(): assert format_period("") == "" assert format_period("3000") == "3000" assert format_period("5,10,25,50,100,300") == "5" assert format_period("300_00,500_00") == "300_00"
30.733333
53
0.652928
4a6d47a6cf2732946639dc449c00d301268f58c9
19,321
py
Python
Step_3_train_fast_RCNN.py
sumedhasingla/ExplainingBBSmoothly
0873d7a3b1fa0e9d967d01647e0fa5fe136a7604
[ "MIT" ]
null
null
null
Step_3_train_fast_RCNN.py
sumedhasingla/ExplainingBBSmoothly
0873d7a3b1fa0e9d967d01647e0fa5fe136a7604
[ "MIT" ]
null
null
null
Step_3_train_fast_RCNN.py
sumedhasingla/ExplainingBBSmoothly
0873d7a3b1fa0e9d967d01647e0fa5fe136a7604
[ "MIT" ]
null
null
null
import sys import os import tensorflow as tf import numpy as np import scipy.io as sio #from PIL import Image from Fast_RCNN.rpn_proposal.utils import read_batch, generate_anchors, pre_process_xml from Fast_RCNN.rpn_proposal.vggnet import vgg_16 from Fast_RCNN.rpn_proposal.ops import smooth_l1, offset2bbox from Fast_RCNN.rpn_proposal.networks import rpn import pdb from Fast_RCNN.fast_rcnn.networks import network from Fast_RCNN.fast_rcnn.ops import smooth_l1, xywh2x1y1x2y2 from Fast_RCNN.fast_rcnn.utils import read_batch as read_batch_rcnn from utils import load_images_and_labels import pdb import yaml import random import warnings import time import argparse warnings.filterwarnings("ignore", category=DeprecationWarning) tf.set_random_seed(0) np.random.seed(0) def Train(): parser = argparse.ArgumentParser() parser.add_argument( '--config', '-c', default='configs/Step_3_MIMIC_Object_Detector_256_Costophrenic_Recess.yaml') parser.add_argument( '--main_dir', '-m', default='/ocean/projects/asc170022p/singla/ExplainingBBSmoothly') args = parser.parse_args() main_dir = args.main_dir # ============= Load config ============= config_path = os.path.join(main_dir, args.config) config = yaml.load(open(config_path)) print(config) # ============= Experiment Folder============= assets_dir = os.path.join(main_dir, config['log_dir'], config['name']) log_dir = os.path.join(assets_dir, 'log') ckpt_dir = os.path.join(assets_dir, 'ckpt_dir') sample_dir = os.path.join(assets_dir, 'sample') test_dir = os.path.join(assets_dir, 'test') # make directory if not exist try: os.makedirs(log_dir) except: pass try: os.makedirs(ckpt_dir) except: pass try: os.makedirs(sample_dir) except: pass try: os.makedirs(test_dir) except: pass # ============= Experiment Parameters ============= name = config['name'] image_dir = config['image_dir'] BATCHSIZE = config['BATCHSIZE'] channels = config['num_channel'] IMG_H = config['IMG_H'] IMG_W = config['IMG_W'] MINIBATCH = config['MINIBATCH'] NUMS_PROPOSAL = config['NUMS_PROPOSAL'] NMS_THRESHOLD = config['NMS_THRESHOLD'] XML_PATH = config['XML_PATH'] IMG_PATH = config['IMG_PATH'] CLASSES = config['CLASSES'] CROP = config['CROP'] SUFFIX = config['SUFFIX'] starting_step = config['starting_step'] # ============= Data ============= xml_files = pre_process_xml(XML_PATH, CLASSES) print("The classification CLASSES are: ") print(CLASSES) print('The size of the training set: ', len(xml_files)) fp = open(os.path.join(log_dir, 'setting.txt'), 'w') fp.write('config_file:'+str(config_path)+'\n') fp.close() # ============= Model ============= with tf.device('/gpu:0'): imgs = tf.placeholder(tf.float32, [BATCHSIZE, IMG_H, IMG_W, 1]) bbox_indxs = tf.placeholder(tf.int32, [BATCHSIZE, MINIBATCH]) masks = tf.placeholder(tf.int32, [BATCHSIZE, MINIBATCH]) target_bboxes = tf.placeholder(tf.float32, [BATCHSIZE, MINIBATCH, 4]) learning_rate = tf.placeholder(tf.float32) vgg_logits = vgg_16(imgs) cls, reg = rpn(vgg_logits) cls_logits = tf.concat([tf.nn.embedding_lookup(cls[i], bbox_indxs[i])[tf.newaxis] for i in range(BATCHSIZE)], axis=0) reg_logits = tf.concat([tf.nn.embedding_lookup(reg[i], bbox_indxs[i])[tf.newaxis] for i in range(BATCHSIZE)], axis=0) one_hot = tf.one_hot(masks, 2) pos_nums = tf.reduce_sum(tf.cast(masks, dtype=tf.float32)) loss_cls = tf.reduce_sum(-tf.log(tf.reduce_sum(tf.nn.softmax(cls_logits) * one_hot, axis=-1) + 1e-10)) / pos_nums loss_reg = tf.reduce_sum(tf.reduce_sum(smooth_l1(reg_logits, target_bboxes), axis=-1) * tf.cast(masks, dtype=tf.float32)) / pos_nums regular = tf.add_n([tf.nn.l2_loss(var) for var in tf.trainable_variables()]) total_loss = loss_cls + loss_reg + regular * 0.0005 with tf.variable_scope("Opt"): Opt = tf.train.MomentumOptimizer(learning_rate, momentum=0.9).minimize(total_loss) # ============= Session ============= sess = tf.Session() sess.run(tf.global_variables_initializer()) # ============= Load VGG ============= saver = tf.train.Saver(tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope="vgg_16")) saver.restore(sess, os.path.join(main_dir, config['vgg_checkpoint'])) print("VGG16 checkpoint restored", config['vgg_checkpoint']) saver = tf.train.Saver() # ============= Generate Initial Anchors ============= anchors = generate_anchors(IMG_H, IMG_W) if starting_step == 1: print("******************** STEP-1 *********************************************") # ============= Round-1 RPN ============= for i in range(2000): BATCH_IMGS, BATCH_IDXS, TARGET_BBOXS, MASKS = read_batch(anchors, XML_PATH, IMG_PATH, CLASSES, BATCHSIZE, IMG_H, IMG_W, channels, MINIBATCH, CROP, SUFFIX) # (2, 256, 256, 1), (2, 64), (2, 64, 4), (2, 64) sess.run(Opt, feed_dict={imgs: BATCH_IMGS, bbox_indxs: BATCH_IDXS, masks: MASKS, target_bboxes: TARGET_BBOXS, learning_rate: 0.001}) if i % 100 == 0: [LOSS_CLS, LOSS_REG, TOTAL_LOSS] = sess.run([loss_cls, loss_reg, total_loss], feed_dict={imgs: BATCH_IMGS, bbox_indxs: BATCH_IDXS, masks: MASKS, target_bboxes: TARGET_BBOXS}) print("Iteration: %d, total_loss: %f, loss_cls: %f, loss_reg: %f" % (i, TOTAL_LOSS, LOSS_CLS, LOSS_REG)) if i % 1000 == 0: saver.save(sess, os.path.join(ckpt_dir,"model_rpn_"+name+".ckpt")) saver.save(sess, os.path.join(ckpt_dir,"model_rpn_"+name+".ckpt")) starting_step = 2 # ============= Update Proposal ============= if starting_step == 2: print("******************** STEP-2 *********************************************") cls, reg = cls[0], reg[0] scores = tf.nn.softmax(cls)[:, 1] anchors = tf.constant(anchors, dtype=tf.float32) pdb.set_trace() normal_bbox, reverse_bbox = offset2bbox(reg, anchors) nms_idxs = tf.image.non_max_suppression(reverse_bbox, scores, max_output_size=2000, iou_threshold=NMS_THRESHOLD) bboxes = tf.nn.embedding_lookup(normal_bbox, nms_idxs)[:NUMS_PROPOSAL] saver.restore(sess, os.path.join(ckpt_dir,"model_rpn_"+name+".ckpt")) print("RPN checkpoint restored!!!", os.path.join(ckpt_dir,"model_rpn_"+name+".ckpt")) proposal_data = {} for idx, filename in enumerate(xml_files): img_names = np.asarray([IMG_PATH + filename[:-4] + SUFFIX]) img = load_images_and_labels(img_names, image_dir='', input_size=IMG_W, crop_size=-1, num_channel=1) print(img.shape) #img = np.array(Image.open(IMG_PATH + filename[:-3] + "jpg").resize([IMG_W, IMG_H])) #img = np.expand_dims(img, axis=-1) pdb.set_trace() BBOX = sess.run(bboxes, feed_dict={imgs: img}) pdb.set_trace() x, y = (BBOX[:, 0:1] + BBOX[:, 2:3]) / 2, (BBOX[:, 1:2] + BBOX[:, 3:4]) / 2 w, h = BBOX[:, 2:3] - BBOX[:, 0:1], BBOX[:, 3:4] - BBOX[:, 1:2] BBOX = np.concatenate((x, y, w, h), axis=-1) proposal_data[filename] = BBOX print("Total: %d, Current: %d"%(len(xml_files), idx)) sio.savemat(os.path.join(ckpt_dir,"proposal_step2_"+name+".mat"), proposal_data) print("Proposal Data Saved!!!", os.path.join(ckpt_dir,"proposal_step2_"+name+".mat")) starting_step = 3 if starting_step == 3: print("******************** STEP-3 *********************************************") proposals = sio.loadmat(os.path.join(ckpt_dir,"proposal_step2_"+name+".mat")) tf.reset_default_graph() imgs = tf.placeholder(tf.float32, [BATCHSIZE, IMG_H, IMG_W, 1]) batch_proposal = tf.placeholder(tf.float32, [BATCHSIZE * MINIBATCH, 4]) target_bboxes = tf.placeholder(tf.float32, [BATCHSIZE * MINIBATCH, 4]) target_bboxes_idx = tf.placeholder(tf.int32, [BATCHSIZE * MINIBATCH])#for roi pooling target_classes = tf.placeholder(tf.int32, [BATCHSIZE * MINIBATCH]) masks = tf.placeholder(tf.float32, [BATCHSIZE * MINIBATCH]) learning_rate = tf.placeholder(tf.float32) batch_proposal_ = xywh2x1y1x2y2(batch_proposal, IMG_H, IMG_W)#for roi pooling cls, reg = network(imgs, batch_proposal_, target_bboxes_idx, CLASSES) print(cls) one_hot = tf.one_hot(target_classes, len(CLASSES) + 1) pos_nums = tf.reduce_sum(tf.cast(masks, dtype=tf.float32)) loss_cls = tf.reduce_sum(-tf.log(tf.reduce_sum(tf.nn.softmax(cls) * one_hot, axis=-1) + 1e-10)) / pos_nums loss_reg = tf.reduce_sum(tf.reduce_sum(smooth_l1(reg, target_bboxes), axis=-1) * masks) / pos_nums regular = tf.add_n([tf.nn.l2_loss(var) for var in tf.trainable_variables()]) total_loss = loss_cls + loss_reg + regular * 0.0005 with tf.variable_scope("Opt"): Opt = tf.train.MomentumOptimizer(learning_rate, momentum=0.9).minimize(total_loss) sess = tf.Session() sess.run(tf.global_variables_initializer()) saver = tf.train.Saver(tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope="vgg_16")) saver.restore(sess, os.path.join(main_dir, config['vgg_checkpoint'])) print("VGG16 checkpoint restored", config['vgg_checkpoint']) saver = tf.train.Saver() for i in range(2000): BATCH_IMGS, BATCH_PROPOSAL, TARGET_BBOXES, TARGET_BBOXES_IDX, TARGET_CLASSES, MASKS = read_batch_rcnn(proposals, CLASSES, xml_files, XML_PATH, IMG_PATH, BATCHSIZE, MINIBATCH, IMG_H, IMG_W, CROP, SUFFIX) _ = sess.run([Opt], feed_dict={imgs: BATCH_IMGS, batch_proposal: BATCH_PROPOSAL, masks: MASKS, target_bboxes: TARGET_BBOXES, target_bboxes_idx: TARGET_BBOXES_IDX,target_classes: TARGET_CLASSES, learning_rate: 0.001}) if i % 100 == 0: [LOSS_CLS, LOSS_REG, TOTAL_LOSS] = sess.run([loss_cls, loss_reg, total_loss], feed_dict={imgs: BATCH_IMGS, batch_proposal: BATCH_PROPOSAL, masks: MASKS, target_bboxes: TARGET_BBOXES, target_bboxes_idx: TARGET_BBOXES_IDX,target_classes: TARGET_CLASSES, learning_rate: 0.001}) print("Iteration: %d, total_loss: %f, loss_cls: %f, loss_reg: %f" % (i, TOTAL_LOSS, LOSS_CLS, LOSS_REG)) #pdb.set_trace() if i % 1000 == 0: saver.save(sess, os.path.join(ckpt_dir,"model_frcnn_"+name+".ckpt")) saver.save(sess, os.path.join(ckpt_dir,"model_frcnn_"+name+".ckpt")) starting_step = 4 if starting_step == 4: print("******************** STEP-4 *********************************************") tf.reset_default_graph() imgs = tf.placeholder(tf.float32, [None, IMG_H, IMG_W, 1]) bbox_indxs = tf.placeholder(tf.int32, [BATCHSIZE, MINIBATCH]) masks = tf.placeholder(tf.int32, [BATCHSIZE, MINIBATCH]) target_bboxes = tf.placeholder(tf.float32, [BATCHSIZE, MINIBATCH, 4]) learning_rate = tf.placeholder(tf.float32) vgg_logits = vgg_16(imgs) cls, reg = rpn(vgg_logits) cls_logits = tf.concat([tf.nn.embedding_lookup(cls[i], bbox_indxs[i])[tf.newaxis] for i in range(BATCHSIZE)], axis=0) reg_logits = tf.concat([tf.nn.embedding_lookup(reg[i], bbox_indxs[i])[tf.newaxis] for i in range(BATCHSIZE)], axis=0) one_hot = tf.one_hot(masks, 2) pos_nums = tf.reduce_sum(tf.cast(masks, dtype=tf.float32)) loss_cls = tf.reduce_sum(-tf.log(tf.reduce_sum(tf.nn.softmax(cls_logits) * one_hot, axis=-1) + 1e-10)) / pos_nums loss_reg = tf.reduce_sum(tf.reduce_sum(smooth_l1(reg_logits, target_bboxes), axis=-1) * tf.cast(masks, dtype=tf.float32)) / pos_nums regular = tf.add_n([tf.nn.l2_loss(var) for var in tf.trainable_variables()]) total_loss = loss_cls + loss_reg + regular * 0.0005 trainable_var = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope="rpn") with tf.variable_scope("Opt"): Opt = tf.train.MomentumOptimizer(learning_rate, momentum= 0.9).minimize(total_loss, var_list=trainable_var) sess = tf.Session() sess.run(tf.global_variables_initializer()) saver = tf.train.Saver(tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope="vgg_16")) saver.restore(sess, os.path.join(ckpt_dir,"model_frcnn_"+name+".ckpt")) print("step 4 load: ", os.path.join(ckpt_dir,"model_frcnn_"+name+".ckpt")) saver = tf.train.Saver() anchors = generate_anchors(IMG_H, IMG_W) for i in range(2000): s = time.time() BATCH_IMGS, BATCH_IDXS, TARGET_BBOXS, MASKS = read_batch(anchors, XML_PATH, IMG_PATH, CLASSES, BATCHSIZE, IMG_H, IMG_W, channels, MINIBATCH, CROP, SUFFIX) e = time.time() read_time = e - s s = time.time() sess.run(Opt, feed_dict={imgs: BATCH_IMGS, bbox_indxs: BATCH_IDXS, masks: MASKS, target_bboxes: TARGET_BBOXS, learning_rate: 0.001}) e = time.time() update_time = e - s if i % 100 == 0: [LOSS_CLS, LOSS_REG, TOTAL_LOSS] = sess.run([loss_cls, loss_reg, total_loss], feed_dict={imgs: BATCH_IMGS, bbox_indxs: BATCH_IDXS, masks: MASKS, target_bboxes: TARGET_BBOXS}) print("Iteration: %d, total_loss: %f, loss_cls: %f, loss_reg: %f, read_time: %f, update_time: %f" % (i, TOTAL_LOSS, LOSS_CLS, LOSS_REG, read_time, update_time)) if i % 1000 == 0: saver.save(sess, os.path.join(ckpt_dir,"model_rpn_step4_"+name+".ckpt")) saver.save(sess, os.path.join(ckpt_dir,"model_rpn_step4_"+name+".ckpt")) starting_step = 5 if starting_step == 5: print("******************** STEP-5 *********************************************") cls, reg = cls[0], reg[0] scores = tf.nn.softmax(cls)[:, 1] anchors = tf.constant(anchors, dtype=tf.float32) normal_bbox, reverse_bbox = offset2bbox(reg, anchors) nms_idxs = tf.image.non_max_suppression(reverse_bbox, scores, max_output_size=2000, iou_threshold=NMS_THRESHOLD) bboxes = tf.nn.embedding_lookup(normal_bbox, nms_idxs)[:NUMS_PROPOSAL] saver = tf.train.Saver() saver.restore(sess, os.path.join(ckpt_dir,"model_rpn_step4_"+name+".ckpt")) proposal_data = {} for idx, filename in enumerate(xml_files): img_names = np.asarray([IMG_PATH + filename[:-4] + SUFFIX]) img = load_images_and_labels(img_names, image_dir='', input_size=IMG_W, crop_size=-1, num_channel=1) #img = np.array(Image.open(IMG_PATH + filename[:-3] + "jpg").resize([IMG_W, IMG_H])) #img = np.expand_dims(img, axis=-1) BBOX = sess.run(bboxes, feed_dict={imgs: img}) x, y = (BBOX[:, 0:1] + BBOX[:, 2:3]) / 2, (BBOX[:, 1:2] + BBOX[:, 3:4]) / 2 w, h = BBOX[:, 2:3] - BBOX[:, 0:1], BBOX[:, 3:4] - BBOX[:, 1:2] BBOX = np.concatenate((x, y, w, h), axis=-1) proposal_data[filename] = BBOX print("Total: %d, Current: %d"%(len(xml_files), idx)) sio.savemat(os.path.join(ckpt_dir,"proposal_step5_"+name+".mat"), proposal_data) print("Proposal Data Saved!!!", os.path.join(ckpt_dir,"proposal_step5_"+name+".mat")) starting_step = 6 if starting_step == 6: print("********************STEP-6*********************************************") proposals = sio.loadmat(os.path.join(ckpt_dir,"proposal_step5_"+name+".mat")) tf.reset_default_graph() imgs = tf.placeholder(tf.float32, [BATCHSIZE, IMG_H, IMG_W, 1]) batch_proposal = tf.placeholder(tf.float32, [BATCHSIZE * MINIBATCH, 4]) target_bboxes = tf.placeholder(tf.float32, [BATCHSIZE * MINIBATCH, 4]) target_bboxes_idx = tf.placeholder(tf.int32, [BATCHSIZE * MINIBATCH])#for roi pooling target_classes = tf.placeholder(tf.int32, [BATCHSIZE * MINIBATCH]) masks = tf.placeholder(tf.float32, [BATCHSIZE * MINIBATCH]) learning_rate = tf.placeholder(tf.float32) batch_proposal_ = xywh2x1y1x2y2(batch_proposal, IMG_H, IMG_W)#for roi pooling cls, reg = network(imgs, batch_proposal_, target_bboxes_idx, CLASSES) one_hot = tf.one_hot(target_classes, len(CLASSES) + 1) pos_nums = tf.reduce_sum(tf.cast(masks, dtype=tf.float32)) loss_cls = tf.reduce_sum(-tf.log(tf.reduce_sum(tf.nn.softmax(cls) * one_hot, axis=-1) + 1e-10)) / pos_nums loss_reg = tf.reduce_sum(tf.reduce_sum(smooth_l1(reg, target_bboxes), axis=-1) * masks) / pos_nums regular = tf.add_n([tf.nn.l2_loss(var) for var in tf.trainable_variables()]) total_loss = loss_cls + loss_reg + regular * 0.0005 trainable_var = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope="vgg_16/fc") +\ tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope="classification") + \ tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope="regression") with tf.variable_scope("Opt"): Opt = tf.train.MomentumOptimizer(learning_rate, momentum=0.9).minimize(total_loss, var_list=trainable_var) sess = tf.Session() sess.run(tf.global_variables_initializer()) saver = tf.train.Saver() saver.restore(sess, os.path.join(ckpt_dir,"model_frcnn_"+name+".ckpt")) print("step 6 load: ", os.path.join(ckpt_dir,"model_frcnn_"+name+".ckpt")) for i in range(2001): BATCH_IMGS, BATCH_PROPOSAL, TARGET_BBOXES, TARGET_BBOXES_IDX, TARGET_CLASSES, MASKS = read_batch_rcnn(proposals, CLASSES, xml_files, XML_PATH, IMG_PATH, BATCHSIZE, MINIBATCH, IMG_H, IMG_W, CROP, SUFFIX) sess.run(Opt, feed_dict={imgs: BATCH_IMGS, batch_proposal: BATCH_PROPOSAL, masks: MASKS, target_bboxes: TARGET_BBOXES, target_bboxes_idx: TARGET_BBOXES_IDX,target_classes: TARGET_CLASSES, learning_rate: 0.001}) if i % 100 == 0: [LOSS_CLS, LOSS_REG, TOTAL_LOSS] = sess.run([loss_cls, loss_reg, total_loss], feed_dict={imgs: BATCH_IMGS, batch_proposal: BATCH_PROPOSAL, masks: MASKS, target_bboxes: TARGET_BBOXES, target_bboxes_idx: TARGET_BBOXES_IDX,target_classes: TARGET_CLASSES, learning_rate: 0.001}) print("Iteration: %d, total_loss: %f, loss_cls: %f, loss_reg: %f" % (i, TOTAL_LOSS, LOSS_CLS, LOSS_REG)) if i % 1000 == 0: saver.save(sess, os.path.join(ckpt_dir,"model_frcnn_step6_"+name+".ckpt")) saver.save(sess, os.path.join(ckpt_dir,"model_frcnn_step6_"+name+".ckpt")) if __name__ == "__main__": Train()
56.659824
290
0.617152
0ce7e60f4fa3ffd949d39919bda549c80c6d17e1
21,135
py
Python
train.py
avasalya/yolact
14c9eceae0432219084f9157c5ea00a246ff1cc6
[ "MIT" ]
null
null
null
train.py
avasalya/yolact
14c9eceae0432219084f9157c5ea00a246ff1cc6
[ "MIT" ]
null
null
null
train.py
avasalya/yolact
14c9eceae0432219084f9157c5ea00a246ff1cc6
[ "MIT" ]
null
null
null
from data import * from utils.augmentations import SSDAugmentation, BaseTransform from utils.functions import MovingAverage, SavePath from utils.logger import Log from utils import timer from layers.modules import MultiBoxLoss from yolact import Yolact import os import sys import time import math, random from pathlib import Path import torch from torch.autograd import Variable import torch.nn as nn import torch.optim as optim import torch.backends.cudnn as cudnn import torch.nn.init as init import torch.utils.data as data import numpy as np import argparse import datetime # Oof import eval as eval_script def str2bool(v): return v.lower() in ("yes", "true", "t", "1") parser = argparse.ArgumentParser( description='Yolact Training Script') parser.add_argument('--batch_size', default=8, type=int, help='Batch size for training') parser.add_argument('--resume', default=None, type=str, help='Checkpoint state_dict file to resume training from. If this is "interrupt"'\ ', the model will resume training from the interrupt file.') parser.add_argument('--start_iter', default=-1, type=int, help='Resume training at this iter. If this is -1, the iteration will be'\ 'determined from the file name.') parser.add_argument('--num_workers', default=4, type=int, help='Number of workers used in dataloading') parser.add_argument('--cuda', default=True, type=str2bool, help='Use CUDA to train model') parser.add_argument('--lr', '--learning_rate', default=None, type=float, help='Initial learning rate. Leave as None to read this from the config.') parser.add_argument('--momentum', default=None, type=float, help='Momentum for SGD. Leave as None to read this from the config.') parser.add_argument('--decay', '--weight_decay', default=None, type=float, help='Weight decay for SGD. Leave as None to read this from the config.') parser.add_argument('--gamma', default=None, type=float, help='For each lr step, what to multiply the lr by. Leave as None to read this from the config.') parser.add_argument('--save_folder', default='weights/', help='Directory for saving checkpoint models.') parser.add_argument('--log_folder', default='logs/', help='Directory for saving logs.') parser.add_argument('--config', default=None, help='The config object to use.') parser.add_argument('--save_interval', default=10000, type=int, help='The number of iterations between saving the model.') parser.add_argument('--validation_size', default=5000, type=int, help='The number of images to use for validation.') parser.add_argument('--validation_epoch', default=2, type=int, help='Output validation information every n iterations. If -1, do no validation.') parser.add_argument('--keep_latest', dest='keep_latest', action='store_true', help='Only keep the latest checkpoint instead of each one.') parser.add_argument('--keep_latest_interval', default=100000, type=int, help='When --keep_latest is on, don\'t delete the latest file at these intervals. This should be a multiple of save_interval or 0.') parser.add_argument('--dataset', default=None, type=str, help='If specified, override the dataset specified in the config with this one (example: coco2017_dataset).') parser.add_argument('--no_log', dest='log', action='store_false', help='Don\'t log per iteration information into log_folder.') parser.add_argument('--log_gpu', dest='log_gpu', action='store_true', help='Include GPU information in the logs. Nvidia-smi tends to be slow, so set this with caution.') parser.add_argument('--no_interrupt', dest='interrupt', action='store_false', help='Don\'t save an interrupt when KeyboardInterrupt is caught.') parser.add_argument('--batch_alloc', default=None, type=str, help='If using multiple GPUS, you can set this to be a comma separated list detailing which GPUs should get what local batch size (It should add up to your total batch size).') parser.add_argument('--no_autoscale', dest='autoscale', action='store_false', help='YOLACT will automatically scale the lr and the number of iterations depending on the batch size. Set this if you want to disable that.') parser.set_defaults(keep_latest=False, log=True, log_gpu=False, interrupt=True, autoscale=True) args = parser.parse_args() if args.config is not None: set_cfg(args.config) if args.dataset is not None: set_dataset(args.dataset) if args.autoscale and args.batch_size != 8: factor = args.batch_size / 8 if __name__ == '__main__': print('Scaling parameters by %.2f to account for a batch size of %d.' % (factor, args.batch_size)) cfg.lr *= factor cfg.max_iter //= factor cfg.lr_steps = [x // factor for x in cfg.lr_steps] # Update training parameters from the config if necessary def replace(name): if getattr(args, name) == None: setattr(args, name, getattr(cfg, name)) replace('lr') replace('decay') replace('gamma') replace('momentum') # This is managed by set_lr cur_lr = args.lr if torch.cuda.device_count() == 0: print('No GPUs detected. Exiting...') exit(-1) if args.batch_size // torch.cuda.device_count() < 6: if __name__ == '__main__': print('Per-GPU batch size is less than the recommended limit for batch norm. Disabling batch norm.') cfg.freeze_bn = True loss_types = ['B', 'C', 'M', 'P', 'D', 'E', 'S', 'I'] if torch.cuda.is_available(): if args.cuda: torch.set_default_tensor_type('torch.cuda.FloatTensor') if not args.cuda: print("WARNING: It looks like you have a CUDA device, but aren't " + "using CUDA.\nRun with --cuda for optimal training speed.") torch.set_default_tensor_type('torch.FloatTensor') else: torch.set_default_tensor_type('torch.FloatTensor') class NetLoss(nn.Module): """ A wrapper for running the network and computing the loss This is so we can more efficiently use DataParallel. """ def __init__(self, net:Yolact, criterion:MultiBoxLoss): super().__init__() self.net = net self.criterion = criterion def forward(self, images, targets, masks, num_crowds): preds = self.net(images) losses = self.criterion(self.net, preds, targets, masks, num_crowds) return losses class CustomDataParallel(nn.DataParallel): """ This is a custom version of DataParallel that works better with our training data. It should also be faster than the general case. """ def scatter(self, inputs, kwargs, device_ids): # More like scatter and data prep at the same time. The point is we prep the data in such a way # that no scatter is necessary, and there's no need to shuffle stuff around different GPUs. devices = ['cuda:' + str(x) for x in device_ids] splits = prepare_data(inputs[0], devices, allocation=args.batch_alloc) return [[split[device_idx] for split in splits] for device_idx in range(len(devices))], \ [kwargs] * len(devices) def gather(self, outputs, output_device): out = {} for k in outputs[0]: out[k] = torch.stack([output[k].to(output_device) for output in outputs]) return out def train(): if not os.path.exists(args.save_folder): os.mkdir(args.save_folder) dataset = COCODetection(image_path=cfg.dataset.train_images, info_file=cfg.dataset.train_info, transform=SSDAugmentation(MEANS)) if args.validation_epoch > 0: setup_eval() val_dataset = COCODetection(image_path=cfg.dataset.valid_images, info_file=cfg.dataset.valid_info, transform=BaseTransform(MEANS)) # Parallel wraps the underlying module, but when saving and loading we don't want that yolact_net = Yolact() net = yolact_net net.train() if args.log: log = Log(cfg.name, args.log_folder, dict(args._get_kwargs()), overwrite=(args.resume is None), log_gpu_stats=args.log_gpu) # I don't use the timer during training (I use a different timing method). # Apparently there's a race condition with multiple GPUs, so disable it just to be safe. timer.disable_all() # Both of these can set args.resume to None, so do them before the check if args.resume == 'interrupt': args.resume = SavePath.get_interrupt(args.save_folder) elif args.resume == 'latest': args.resume = SavePath.get_latest(args.save_folder, cfg.name) if args.resume is not None: print('Resuming training, loading {}...'.format(args.resume)) yolact_net.load_weights(args.resume) if args.start_iter == -1: args.start_iter = SavePath.from_str(args.resume).iteration else: print('Initializing weights...') yolact_net.init_weights(backbone_path=args.save_folder + cfg.backbone.path) optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.decay) criterion = MultiBoxLoss(num_classes=cfg.num_classes, pos_threshold=cfg.positive_iou_threshold, neg_threshold=cfg.negative_iou_threshold, negpos_ratio=cfg.ohem_negpos_ratio) if args.batch_alloc is not None: args.batch_alloc = [int(x) for x in args.batch_alloc.split(',')] if sum(args.batch_alloc) != args.batch_size: print('Error: Batch allocation (%s) does not sum to batch size (%s).' % (args.batch_alloc, args.batch_size)) exit(-1) net = CustomDataParallel(NetLoss(net, criterion)) if args.cuda: net = net.cuda() # Initialize everything if not cfg.freeze_bn: yolact_net.freeze_bn() # Freeze bn so we don't kill our means yolact_net(torch.zeros(1, 3, cfg.max_size, cfg.max_size).cuda()) if not cfg.freeze_bn: yolact_net.freeze_bn(True) # loss counters loc_loss = 0 conf_loss = 0 iteration = max(args.start_iter, 0) last_time = time.time() epoch_size = len(dataset) // args.batch_size num_epochs = math.ceil(cfg.max_iter / epoch_size) # Which learning rate adjustment step are we on? lr' = lr * gamma ^ step_index step_index = 0 data_loader = data.DataLoader(dataset, args.batch_size, num_workers=args.num_workers, shuffle=True, collate_fn=detection_collate, pin_memory=True) save_path = lambda epoch, iteration: SavePath(cfg.name, epoch, iteration).get_path(root=args.save_folder) time_avg = MovingAverage() global loss_types # Forms the print order loss_avgs = { k: MovingAverage(100) for k in loss_types } print('Begin training!') print() # try-except so you can use ctrl+c to save early and stop training try: for epoch in range(num_epochs): # Resume from start_iter if (epoch+1)*epoch_size < iteration: continue for datum in data_loader: # Stop if we've reached an epoch if we're resuming from start_iter if iteration == (epoch+1)*epoch_size: break # Stop at the configured number of iterations even if mid-epoch if iteration == cfg.max_iter: break # Change a config setting if we've reached the specified iteration changed = False for change in cfg.delayed_settings: if iteration >= change[0]: changed = True cfg.replace(change[1]) # Reset the loss averages because things might have changed for avg in loss_avgs: avg.reset() # If a config setting was changed, remove it from the list so we don't keep checking if changed: cfg.delayed_settings = [x for x in cfg.delayed_settings if x[0] > iteration] # Warm up by linearly interpolating the learning rate from some smaller value if cfg.lr_warmup_until > 0 and iteration <= cfg.lr_warmup_until: set_lr(optimizer, (args.lr - cfg.lr_warmup_init) * (iteration / cfg.lr_warmup_until) + cfg.lr_warmup_init) # Adjust the learning rate at the given iterations, but also if we resume from past that iteration while step_index < len(cfg.lr_steps) and iteration >= cfg.lr_steps[step_index]: step_index += 1 set_lr(optimizer, args.lr * (args.gamma ** step_index)) # Zero the grad to get ready to compute gradients optimizer.zero_grad() # Forward Pass + Compute loss at the same time (see CustomDataParallel and NetLoss) losses = net(datum) losses = { k: (v).mean() for k,v in losses.items() } # Mean here because Dataparallel loss = sum([losses[k] for k in losses]) # no_inf_mean removes some components from the loss, so make sure to backward through all of it # all_loss = sum([v.mean() for v in losses.values()]) # Backprop loss.backward() # Do this to free up vram even if loss is not finite if torch.isfinite(loss).item(): optimizer.step() # Add the loss to the moving average for bookkeeping for k in losses: loss_avgs[k].add(losses[k].item()) cur_time = time.time() elapsed = cur_time - last_time last_time = cur_time # Exclude graph setup from the timing information if iteration != args.start_iter: time_avg.add(elapsed) if iteration % 10 == 0: eta_str = str(datetime.timedelta(seconds=(cfg.max_iter-iteration) * time_avg.get_avg())).split('.')[0] total = sum([loss_avgs[k].get_avg() for k in losses]) loss_labels = sum([[k, loss_avgs[k].get_avg()] for k in loss_types if k in losses], []) print(('[%3d] %7d ||' + (' %s: %.3f |' * len(losses)) + ' T: %.3f || ETA: %s || timer: %.3f') % tuple([epoch, iteration] + loss_labels + [total, eta_str, elapsed]), flush=True) if args.log: precision = 5 loss_info = {k: round(losses[k].item(), precision) for k in losses} loss_info['T'] = round(loss.item(), precision) if args.log_gpu: log.log_gpu_stats = (iteration % 10 == 0) # nvidia-smi is sloooow log.log('train', loss=loss_info, epoch=epoch, iter=iteration, lr=round(cur_lr, 10), elapsed=elapsed) log.log_gpu_stats = args.log_gpu iteration += 1 if iteration % args.save_interval == 0 and iteration != args.start_iter: if args.keep_latest: latest = SavePath.get_latest(args.save_folder, cfg.name) print('Saving state, iter:', iteration) yolact_net.save_weights(save_path(epoch, iteration)) if args.keep_latest and latest is not None: if args.keep_latest_interval <= 0 or iteration % args.keep_latest_interval != args.save_interval: print('Deleting old save...') os.remove(latest) # This is done per epoch if args.validation_epoch > 0: if epoch % args.validation_epoch == 0 and epoch > 0: compute_validation_map(epoch, iteration, yolact_net, val_dataset, log if args.log else None) # Compute validation mAP after training is finished compute_validation_map(epoch, iteration, yolact_net, val_dataset, log if args.log else None) except KeyboardInterrupt: if args.interrupt: print('Stopping early. Saving network...') # Delete previous copy of the interrupted network so we don't spam the weights folder SavePath.remove_interrupt(args.save_folder) yolact_net.save_weights(save_path(epoch, repr(iteration) + '_interrupt')) exit() yolact_net.save_weights(save_path(epoch, iteration)) def set_lr(optimizer, new_lr): for param_group in optimizer.param_groups: param_group['lr'] = new_lr global cur_lr cur_lr = new_lr def gradinator(x): x.requires_grad = False return x def prepare_data(datum, devices:list=None, allocation:list=None): with torch.no_grad(): if devices is None: devices = ['cuda:0'] if args.cuda else ['cpu'] if allocation is None: allocation = [args.batch_size // len(devices)] * (len(devices) - 1) allocation.append(args.batch_size - sum(allocation)) # The rest might need more/less images, (targets, masks, num_crowds) = datum cur_idx = 0 for device, alloc in zip(devices, allocation): for _ in range(alloc): images[cur_idx] = gradinator(images[cur_idx].to(device)) targets[cur_idx] = gradinator(targets[cur_idx].to(device)) masks[cur_idx] = gradinator(masks[cur_idx].to(device)) cur_idx += 1 if cfg.preserve_aspect_ratio: # Choose a random size from the batch _, h, w = images[random.randint(0, len(images)-1)].size() for idx, (image, target, mask, num_crowd) in enumerate(zip(images, targets, masks, num_crowds)): images[idx], targets[idx], masks[idx], num_crowds[idx] \ = enforce_size(image, target, mask, num_crowd, w, h) cur_idx = 0 split_images, split_targets, split_masks, split_numcrowds \ = [[None for alloc in allocation] for _ in range(4)] for device_idx, alloc in enumerate(allocation): split_images[device_idx] = torch.stack(images[cur_idx:cur_idx+alloc], dim=0) split_targets[device_idx] = targets[cur_idx:cur_idx+alloc] split_masks[device_idx] = masks[cur_idx:cur_idx+alloc] split_numcrowds[device_idx] = num_crowds[cur_idx:cur_idx+alloc] cur_idx += alloc return split_images, split_targets, split_masks, split_numcrowds def no_inf_mean(x:torch.Tensor): """ Computes the mean of a vector, throwing out all inf values. If there are no non-inf values, this will return inf (i.e., just the normal mean). """ no_inf = [a for a in x if torch.isfinite(a)] if len(no_inf) > 0: return sum(no_inf) / len(no_inf) else: return x.mean() def compute_validation_loss(net, data_loader, criterion): global loss_types with torch.no_grad(): losses = {} # Don't switch to eval mode because we want to get losses iterations = 0 for datum in data_loader: images, targets, masks, num_crowds = prepare_data(datum) out = net(images) wrapper = ScatterWrapper(targets, masks, num_crowds) _losses = criterion(out, wrapper, wrapper.make_mask()) for k, v in _losses.items(): v = v.mean().item() if k in losses: losses[k] += v else: losses[k] = v iterations += 1 if args.validation_size <= iterations * args.batch_size: break for k in losses: losses[k] /= iterations loss_labels = sum([[k, losses[k]] for k in loss_types if k in losses], []) print(('Validation ||' + (' %s: %.3f |' * len(losses)) + ')') % tuple(loss_labels), flush=True) def compute_validation_map(epoch, iteration, yolact_net, dataset, log:Log=None): with torch.no_grad(): yolact_net.eval() start = time.time() print() print("Computing validation mAP (this may take a while)...", flush=True) val_info = eval_script.evaluate(yolact_net, dataset, train_mode=True) end = time.time() if log is not None: log.log('val', val_info, elapsed=(end - start), epoch=epoch, iter=iteration) yolact_net.train() def setup_eval(): eval_script.parse_args(['--no_bar', '--max_images='+str(args.validation_size)]) if __name__ == '__main__': train()
41.851485
196
0.617743
efc86815bc49d6cd0430569fd656deb7363871bc
2,075
py
Python
caffe2/python/operator_test/clip_tensor_op_test.py
MagiaSN/pytorch
7513455c743d3d644b45a804902c1a0d14b69f45
[ "Intel" ]
206
2020-11-28T22:56:38.000Z
2022-03-27T02:33:04.000Z
caffe2/python/operator_test/clip_tensor_op_test.py
MagiaSN/pytorch
7513455c743d3d644b45a804902c1a0d14b69f45
[ "Intel" ]
19
2020-12-09T23:13:14.000Z
2022-01-24T23:24:08.000Z
caffe2/python/operator_test/clip_tensor_op_test.py
MagiaSN/pytorch
7513455c743d3d644b45a804902c1a0d14b69f45
[ "Intel" ]
28
2020-11-29T15:25:12.000Z
2022-01-20T02:16:27.000Z
from caffe2.python import core import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial import hypothesis.strategies as st from hypothesis import given, settings import numpy as np class TestClipTensorByScalingOp(serial.SerializedTestCase): @given(n=st.integers(5, 8), d=st.integers(2, 4), threshold=st.floats(0.1, 10), additional_threshold=st.floats(0.1, 10), use_additional_threshold=st.booleans(), inplace=st.booleans(), **hu.gcs_cpu_only) @settings(deadline=1000) def test_clip_tensor_by_scaling(self, n, d, threshold, additional_threshold, use_additional_threshold, inplace, gc, dc): tensor = np.random.rand(n, d).astype(np.float32) val = np.array(np.linalg.norm(tensor)) additional_threshold = np.array([additional_threshold]).astype(np.float32) def clip_tensor_by_scaling_ref(tensor_data, val_data, additional_threshold=None): if additional_threshold is not None: final_threshold = threshold * additional_threshold else: final_threshold = threshold if val_data > final_threshold: ratio = final_threshold / float(val_data) tensor_data = tensor_data * ratio return [tensor_data] op = core.CreateOperator( "ClipTensorByScaling", ["tensor", "val"] if not use_additional_threshold else ( ["tensor", "val", "additional_threshold"]), ['Y'] if not inplace else ["tensor"], threshold=threshold, ) self.assertReferenceChecks( device_option=gc, op=op, inputs=[tensor, val] if not use_additional_threshold else ( [tensor, val, additional_threshold]), reference=clip_tensor_by_scaling_ref, ) if __name__ == "__main__": import unittest unittest.main()
32.421875
82
0.618313
20632b76248c8f6f81969b3d7c386a4814a19b7d
133
py
Python
seq2video/__init__.py
marcocaggioni/seq2video
53de4e7b6ae90c4544da590575d559bbae82ccee
[ "MIT" ]
null
null
null
seq2video/__init__.py
marcocaggioni/seq2video
53de4e7b6ae90c4544da590575d559bbae82ccee
[ "MIT" ]
null
null
null
seq2video/__init__.py
marcocaggioni/seq2video
53de4e7b6ae90c4544da590575d559bbae82ccee
[ "MIT" ]
null
null
null
"""Top-level package for Uptimer.""" __author__ = """Marco Caggioni""" __email__ = "marco.caggioni@gmail.com" __version__ = "0.1.0"
22.166667
38
0.691729
8a05fc1e44174ca88b9bfd39b61fbe604c16fefe
779
py
Python
src/modules/agents/rnn_agent.py
OscarPedaVendere/sc2MultiAgentES
54df34eb94f00294c2bcd1ac5a0c14386c0bbceb
[ "Apache-2.0" ]
null
null
null
src/modules/agents/rnn_agent.py
OscarPedaVendere/sc2MultiAgentES
54df34eb94f00294c2bcd1ac5a0c14386c0bbceb
[ "Apache-2.0" ]
4
2021-03-19T03:43:34.000Z
2022-01-13T01:39:12.000Z
src/modules/agents/rnn_agent.py
OscarPedaVendere/sc2MultiAgentES
54df34eb94f00294c2bcd1ac5a0c14386c0bbceb
[ "Apache-2.0" ]
null
null
null
import torch.nn as nn import torch.nn.functional as F class RNNAgent(nn.Module): def __init__(self, input_shape, args): super(RNNAgent, self).__init__() self.args = args self.fc1 = nn.Linear(input_shape, args.rnn_hidden_dim) self.rnn = nn.GRUCell(args.rnn_hidden_dim, args.rnn_hidden_dim) self.fc2 = nn.Linear(args.rnn_hidden_dim, args.n_actions) def init_hidden(self): # make hidden states on same device as model return self.fc1.weight.new(1, self.args.rnn_hidden_dim).zero_() def forward(self, inputs, hidden_state, ep_batch): x = F.relu(self.fc1(inputs)) h_in = hidden_state.reshape(-1, self.args.rnn_hidden_dim) h = self.rnn(x, h_in) q = self.fc2(h) return q, h
33.869565
71
0.655969
9bca5b5a57372c95bdff0bcae4a91ad755ffa764
3,806
py
Python
tests/test_config_lib_field.py
MacHu-GWU/configirl-project
77105874514c5520aa47aa25d89c28f51b152582
[ "MIT" ]
1
2019-07-27T17:38:32.000Z
2019-07-27T17:38:32.000Z
tests/test_config_lib_field.py
MacHu-GWU/configirl-project
77105874514c5520aa47aa25d89c28f51b152582
[ "MIT" ]
null
null
null
tests/test_config_lib_field.py
MacHu-GWU/configirl-project
77105874514c5520aa47aa25d89c28f51b152582
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Test field related options """ import pytest from pytest import raises from datetime import datetime from configirl import ConfigClass, Constant, Derivable from configirl import ValueNotSetError, DontDumpError, DerivableSetValueError class Config(ConfigClass): PROJECT_NAME = Constant() STAGE = Constant() PROJECT_NAME_SLUG = Derivable() @PROJECT_NAME_SLUG.getter def get_PROJECT_NAME_SLUG(self): return self.PROJECT_NAME.get_value().replace("_", "-") @PROJECT_NAME_SLUG.validator def check_PROJECT_NAME_SLUG(self, value): if "_" in value: raise ValueError("you can't use `_` in slugifie name!") PROJECT_NAME_SUPER_SLUG_CACHE_HIT = Constant(default=0) PROJECT_NAME_SUPER_SLUG = Derivable(cache=True) @PROJECT_NAME_SUPER_SLUG.getter def get_PROJECT_NAME_SUPER_SLUG(self, sep): self.PROJECT_NAME_SUPER_SLUG_CACHE_HIT.set_value( self.PROJECT_NAME_SUPER_SLUG_CACHE_HIT.get_value() + 1 ) return self.PROJECT_NAME.get_value().replace("_", sep) ENVIRONMENT_NAME = Derivable() @ENVIRONMENT_NAME.getter def get_ENVIRONMENT_NAME(self): return "{}-{}".format( self.PROJECT_NAME_SLUG.get_value(), self.STAGE.get_value(), ) GIT_PASSWORD = Constant(printable=False) CREATE_TIME = Constant(default=datetime.utcnow) METADATA = Constant(dont_dump=True) def test_value_not_set_error(): """ Test been correctly raised. """ conf = Config() with raises(ValueNotSetError): conf.PROJECT_NAME.get_value() with raises(ValueNotSetError): conf.PROJECT_NAME_SLUG.get_value() # when trying to get a derivable value but the dependent constant value # has not been set yet try: conf.PROJECT_NAME_SLUG.get_value() except Exception as e: assert "Config.PROJECT_NAME" in str(e) assert "Config.PROJECT_NAME_SLUG" in str(e) with raises(ValueNotSetError): conf.PROJECT_NAME_SLUG.get_value() try: conf.ENVIRONMENT_NAME.get_value() except Exception as e: assert "PROJECT_NAME" in str(e) assert "PROJECT_NAME_SLUG" in str(e) assert "ENVIRONMENT_NAME" in str(e) def test_default(): conf = Config() assert isinstance(conf.CREATE_TIME.get_value(), datetime) def test_dont_dump_error(): """ Test DontDumpError been correctly raised. """ conf = Config() with raises(DontDumpError): conf.METADATA.get_value(check_dont_dump=True) def test_derivable_set_value_error(): """ Test DerivableSetValueError been correctly raised. """ with raises(DerivableSetValueError): Config(ENVIRONMENT_NAME="my-project-dev") conf = Config() with raises(DerivableSetValueError): conf.ENVIRONMENT_NAME.set_value("my-project-dev") def test_get_value_from_env(): import os os.environ["CONFIGIRL_PROJECT_NAME"] = "configirl" conf = Config() PREFIX = "CONFIGIRL_" assert conf.PROJECT_NAME.get_value_from_env(PREFIX) == "configirl" def test_get_value_for_lbd(): conf = Config(PROJECT_NAME="configirl") PREFIX = "CONFIGIRL_" assert conf.PROJECT_NAME.get_value_for_lbd(PREFIX) == "configirl" def test_get_value_with_cache(): config = Config(PROJECT_NAME="my_project") assert config.PROJECT_NAME_SUPER_SLUG.get_value(sep="--") == "my--project" assert config.PROJECT_NAME_SUPER_SLUG_CACHE_HIT.get_value() == 1 assert config.PROJECT_NAME_SUPER_SLUG.get_value(sep="--") == "my--project" assert config.PROJECT_NAME_SUPER_SLUG_CACHE_HIT.get_value() == 1 if __name__ == "__main__": import os basename = os.path.basename(__file__) pytest.main([basename, "-s", "--tb=native"])
26.615385
78
0.694693