hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
588720a8fbd2b194538c95af29d2bebc57a110ae
4,101
py
Python
custom_components/xiaomi_miot/device_tracker.py
ss109/hass-xiaomi-miot
a69c8e0e44400b9aa0f94f1003d3c6f3de4996fd
[ "Apache-2.0" ]
1
2021-12-10T12:30:34.000Z
2021-12-10T12:30:34.000Z
custom_components/xiaomi_miot/device_tracker.py
ss109/hass-xiaomi-miot
a69c8e0e44400b9aa0f94f1003d3c6f3de4996fd
[ "Apache-2.0" ]
null
null
null
custom_components/xiaomi_miot/device_tracker.py
ss109/hass-xiaomi-miot
a69c8e0e44400b9aa0f94f1003d3c6f3de4996fd
[ "Apache-2.0" ]
null
null
null
"""Support for Xiaomi device tracker.""" import logging from datetime import timedelta from homeassistant.const import * # noqa: F401 from homeassistant.components.device_tracker import ( DOMAIN as ENTITY_DOMAIN, ) from homeassistant.components.device_tracker.config_entry import TrackerEntity from . import ( DOMAIN, CONF_MODEL, XIAOMI_CONFIG_SCHEMA as PLATFORM_SCHEMA, # noqa: F401 MiotEntity, async_setup_config_entry, bind_services_to_entries, ) from .core.miot_spec import ( MiotSpec, MiotService, ) from .binary_sensor import MiotBinarySensorSubEntity _LOGGER = logging.getLogger(__name__) DATA_KEY = f'{ENTITY_DOMAIN}.{DOMAIN}' SCAN_INTERVAL = timedelta(seconds=60) SERVICE_TO_METHOD = {} async def async_setup_entry(hass, config_entry, async_add_entities): await async_setup_config_entry(hass, config_entry, async_setup_platform, async_add_entities, ENTITY_DOMAIN) async def async_setup_platform(hass, config, async_add_entities, discovery_info=None): hass.data.setdefault(DATA_KEY, {}) hass.data[DOMAIN]['add_entities'][ENTITY_DOMAIN] = async_add_entities model = str(config.get(CONF_MODEL) or '') if model.find('mirror') >= 0: _LOGGER.debug('Setup device_tracker: %s', config) entities = [] miot = config.get('miot_type') if miot: spec = await MiotSpec.async_from_type(hass, miot) for srv in spec.get_services('watch', 'rearview_mirror'): if not srv.get_property('latitude', 'longitude'): continue entities.append(MiotTrackerEntity(config, srv)) for entity in entities: hass.data[DOMAIN]['entities'][entity.unique_id] = entity async_add_entities(entities, update_before_add=True) bind_services_to_entries(hass, SERVICE_TO_METHOD) class MiotTrackerEntity(MiotEntity, TrackerEntity): def __init__(self, config, miot_service: MiotService): super().__init__(miot_service, config=config, logger=_LOGGER) async def async_update(self): await super().async_update() if not self._available: return add_binary_sensors = self._add_entities.get('binary_sensor') for p in self._miot_service.get_properties('driving_status'): if p.full_name in self._subs: self._subs[p.full_name].update() elif add_binary_sensors and p.format == 'bool': self._subs[p.full_name] = MiotBinarySensorSubEntity(self, p) add_binary_sensors([self._subs[p.full_name]]) @property def should_poll(self): """No polling for entities that have location pushed.""" return True @property def source_type(self): """Return the source type, eg gps or router, of the device.""" return 'gps' @property def latitude(self): """Return latitude value of the device.""" prop = self._miot_service.get_property('latitude') if prop: return prop.from_dict(self._state_attrs) return NotImplementedError @property def longitude(self): """Return longitude value of the device.""" prop = self._miot_service.get_property('longitude') if prop: return prop.from_dict(self._state_attrs) return NotImplementedError @property def location_name(self): """Return a location name for the current location of the device.""" prop = self._miot_service.get_property('current_address') if prop: return prop.from_dict(self._state_attrs) return None @property def location_accuracy(self): """Return the location accuracy of the device. Value in meters. """ return 0 @property def battery_level(self): """Return the battery level of the device.""" sls = [self._miot_service, *self._miot_service.spec.get_services('battery')] for srv in sls: prop = srv.get_property('battery_level') if prop: return prop.from_dict(self._state_attrs) return None
33.614754
111
0.674957
cd0bbfd868baf70536ea06d852d8d0548ddac6a8
5,279
py
Python
tools/split_dataset.py
by-liu/RetinalApp
53173b2b20dfcf613a3a22d6caa5178771d14225
[ "MIT" ]
null
null
null
tools/split_dataset.py
by-liu/RetinalApp
53173b2b20dfcf613a3a22d6caa5178771d14225
[ "MIT" ]
null
null
null
tools/split_dataset.py
by-liu/RetinalApp
53173b2b20dfcf613a3a22d6caa5178771d14225
[ "MIT" ]
null
null
null
import os.path as osp import math import random import numpy as np from tqdm import tqdm from retinal.data.retinal_lesions import RetinalLesions from retinal.utils import load_list, save_list def stats(): data_root = "./data/retinal-lesions/" dataset = RetinalLesions( data_root, osp.join(data_root, "all.txt"), return_id=True ) lesions = {} for i in tqdm(range(len(dataset))): img, target, sample_name = dataset[i] target = np.sum(target, axis=(0, 1)) lesions[sample_name] = [] for j in range(target.shape[0]): if target[j] > 0: lesions[sample_name].append(str(j)) out_path = osp.join(data_root, "lesions.txt") with open(out_path, "w") as f: for sample_name in lesions: f.write("{} {}\n".format(sample_name, ",".join(lesions[sample_name]))) def save_samples(samples, path) -> None: with open(path, "w") as f: for s in samples: f.write("{}\n".format(s)) def split_by_class(path): data_root = "./data/retinal-lesions/" classes_path = osp.join(data_root, "classes.txt") classes = load_list(classes_path) classes = [x.split(",")[0] for x in classes] classes.append("void") #classes_samples = [[] for _ in range(len(classes))] classes_samples = dict(zip(classes, [[] for _ in range(len(classes))])) with open(path, "r") as f: for line in f: fields = line.strip().split(" ") sample_name = fields[0] ids = "" if len(fields) == 1 else fields[1] # sample_name, ids = line.strip().split(" ") if ids == "": classes_samples["void"].append(sample_name) continue ids = [int(x) for x in ids.split(",")] for i in ids: classes_samples[classes[i]].append(sample_name) sorted_classes_samples = sorted(classes_samples.items(), key=lambda item: len(item[1])) train, val = set(), set() for class_name, samples in sorted_classes_samples: random.shuffle(samples) all_number = len(samples) val_number = min(math.ceil(all_number * 0.20), 200) train_number = all_number - val_number print("========") print("{} - train {} val {}".format(class_name, train_number, val_number)) index = 0 cnt = 0 while cnt < val_number and index < min(len(samples), val_number * 2): if samples[index] not in train and samples[index] not in val: val.add(samples[index]) cnt += 1 index += 1 else: index += 1 print("val {}".format(cnt)) index = 0 cnt = 0 # while cnt < train_number and index < len(samples): while index < len(samples): if samples[index] not in train and samples[index] not in val: train.add(samples[index]) cnt += 1 index += 1 else: index += 1 print("train {}".format(cnt)) print("After {} - train {} val {}".format(class_name, len(train), len(val))) print("train : {} {}".format(len(train), len(set(train)))) print("val : {} {}".format(len(val), len(set(val)))) save_samples(list(train), osp.join(data_root, "train.txt")) save_samples(list(val), osp.join(data_root, "val.txt")) def lesion_dist(split): data_root = "./data/retinal-lesions/" classes_path = osp.join(data_root, "classes.txt") classes = load_list(classes_path) classes = [x.split(",")[0] for x in classes] classes.append("void") samples = {} lesion_path = osp.join(data_root, "lesions.txt") with open(lesion_path, "r") as f: for line in f: fields = line.strip().split(" ") sample_name = fields[0] ids = "" if len(fields) == 1 else fields[1] if ids == "": samples[sample_name] = [-1] continue ids = [int(x) for x in ids.split(",")] samples[sample_name] = ids classes_count = {} for i in range(len(classes)): classes_count[classes[i]] = 0 split_path = osp.join(data_root, "{}.txt".format(split)) with open(split_path, "r") as f: for line in f: sample_name = line.strip() ids = samples[sample_name] for i in ids: classes_count[classes[i]] += 1 print(split) print("========") for i in range(len(classes)): print("{} {} {}".format(i, classes[i], classes_count[classes[i]])) print("========") # stats() data_root = "./data/retinal-lesions/" lesion_dist("train") lesion_dist("val") # split_by_class(osp.join(data_root, "lesions.txt")) # data_dir = "./data/retinal-lesions/" # all_list = load_list(osp.join(data_dir, "all.txt")) # random.shuffle(all_list) # train_num = int(len(all_list) * 0.8) # val_num = len(all_list) - train_num # train_list = all_list[:train_num] # val_list = all_list[train_num:] # print("{} + {} = {}".format(len(train_list), len(val_list), len(all_list))) # save_list(osp.join(data_dir, "train.txt"), train_list) # save_list(osp.join(data_dir, "val.txt"), val_list) # print("done")
32.189024
91
0.569426
9ddd0dd416af3ab28883b1871f8423817c06ec73
14,652
py
Python
pynndescent/distances.py
AvantiShri/pynndescent
e44b848148f0845eeb9fa762418055bb30c71267
[ "BSD-2-Clause" ]
null
null
null
pynndescent/distances.py
AvantiShri/pynndescent
e44b848148f0845eeb9fa762418055bb30c71267
[ "BSD-2-Clause" ]
null
null
null
pynndescent/distances.py
AvantiShri/pynndescent
e44b848148f0845eeb9fa762418055bb30c71267
[ "BSD-2-Clause" ]
null
null
null
# Author: Leland McInnes <leland.mcinnes@gmail.com> # # License: BSD 3 clause import numpy as np import numba _mock_identity = np.eye(2, dtype=np.float32) _mock_ones = np.ones(2, dtype=np.float32) @numba.njit(fastmath=True, cache=True) def euclidean(x, y): r"""Standard euclidean distance. .. math:: D(x, y) = \\sqrt{\sum_i (x_i - y_i)^2} """ result = 0.0 for i in range(x.shape[0]): result += (x[i] - y[i]) ** 2 return np.sqrt(result) @numba.njit( "f4(f4[::1],f4[::1])", fastmath=True, locals={ "result": numba.types.float32, "diff": numba.types.float32, "dim": numba.types.uint32, "i": numba.types.uint16, }, ) def squared_euclidean(x, y): r"""Squared euclidean distance. .. math:: D(x, y) = \sum_i (x_i - y_i)^2 """ result = 0.0 dim = x.shape[0] for i in range(dim): diff = x[i] - y[i] result += diff * diff return result @numba.njit(fastmath=True, cache=True) def standardised_euclidean(x, y, sigma=_mock_ones): r"""Euclidean distance standardised against a vector of standard deviations per coordinate. .. math:: D(x, y) = \sqrt{\sum_i \frac{(x_i - y_i)**2}{v_i}} """ result = 0.0 for i in range(x.shape[0]): result += ((x[i] - y[i]) ** 2) / sigma[i] return np.sqrt(result) @numba.njit(fastmath=True, cache=True) def manhattan(x, y): r"""Manhattan, taxicab, or l1 distance. .. math:: D(x, y) = \sum_i |x_i - y_i| """ result = 0.0 for i in range(x.shape[0]): result += np.abs(x[i] - y[i]) return result @numba.njit(fastmath=True, cache=True) def chebyshev(x, y): r"""Chebyshev or l-infinity distance. .. math:: D(x, y) = \max_i |x_i - y_i| """ result = 0.0 for i in range(x.shape[0]): result = max(result, np.abs(x[i] - y[i])) return result @numba.njit(fastmath=True, cache=True) def minkowski(x, y, p=2): r"""Minkowski distance. .. math:: D(x, y) = \left(\sum_i |x_i - y_i|^p\right)^{\frac{1}{p}} This is a general distance. For p=1 it is equivalent to manhattan distance, for p=2 it is Euclidean distance, and for p=infinity it is Chebyshev distance. In general it is better to use the more specialised functions for those distances. """ result = 0.0 for i in range(x.shape[0]): result += (np.abs(x[i] - y[i])) ** p return result ** (1.0 / p) @numba.njit(fastmath=True, cache=True) def weighted_minkowski(x, y, w=_mock_ones, p=2): r"""A weighted version of Minkowski distance. .. math:: D(x, y) = \left(\sum_i w_i |x_i - y_i|^p\right)^{\frac{1}{p}} If weights w_i are inverse standard deviations of graph_data in each dimension then this represented a standardised Minkowski distance (and is equivalent to standardised Euclidean distance for p=1). """ result = 0.0 for i in range(x.shape[0]): result += (w[i] * np.abs(x[i] - y[i])) ** p return result ** (1.0 / p) @numba.njit(fastmath=True, cache=True) def mahalanobis(x, y, vinv=_mock_identity): result = 0.0 diff = np.empty(x.shape[0], dtype=np.float32) for i in range(x.shape[0]): diff[i] = x[i] - y[i] for i in range(x.shape[0]): tmp = 0.0 for j in range(x.shape[0]): tmp += vinv[i, j] * diff[j] result += tmp * diff[i] return np.sqrt(result) @numba.njit(fastmath=True, cache=True) def hamming(x, y): result = 0.0 for i in range(x.shape[0]): if x[i] != y[i]: result += 1.0 return float(result) / x.shape[0] @numba.njit(fastmath=True, cache=True) def canberra(x, y): result = 0.0 for i in range(x.shape[0]): denominator = np.abs(x[i]) + np.abs(y[i]) if denominator > 0: result += np.abs(x[i] - y[i]) / denominator return result @numba.njit(fastmath=True, cache=True) def bray_curtis(x, y): numerator = 0.0 denominator = 0.0 for i in range(x.shape[0]): numerator += np.abs(x[i] - y[i]) denominator += np.abs(x[i] + y[i]) if denominator > 0.0: return float(numerator) / denominator else: return 0.0 @numba.njit(fastmath=True, cache=True) def jaccard(x, y): num_non_zero = 0.0 num_equal = 0.0 for i in range(x.shape[0]): x_true = x[i] != 0 y_true = y[i] != 0 num_non_zero += x_true or y_true num_equal += x_true and y_true if num_non_zero == 0.0: return 0.0 else: return float(num_non_zero - num_equal) / num_non_zero @numba.njit(fastmath=True, cache=True) def matching(x, y): num_not_equal = 0.0 for i in range(x.shape[0]): x_true = x[i] != 0 y_true = y[i] != 0 num_not_equal += x_true != y_true return float(num_not_equal) / x.shape[0] @numba.njit(fastmath=True, cache=True) def dice(x, y): num_true_true = 0.0 num_not_equal = 0.0 for i in range(x.shape[0]): x_true = x[i] != 0 y_true = y[i] != 0 num_true_true += x_true and y_true num_not_equal += x_true != y_true if num_not_equal == 0.0: return 0.0 else: return num_not_equal / (2.0 * num_true_true + num_not_equal) @numba.njit(fastmath=True, cache=True) def kulsinski(x, y): num_true_true = 0.0 num_not_equal = 0.0 for i in range(x.shape[0]): x_true = x[i] != 0 y_true = y[i] != 0 num_true_true += x_true and y_true num_not_equal += x_true != y_true if num_not_equal == 0: return 0.0 else: return float(num_not_equal - num_true_true + x.shape[0]) / ( num_not_equal + x.shape[0] ) @numba.njit(fastmath=True, cache=True) def rogers_tanimoto(x, y): num_not_equal = 0.0 for i in range(x.shape[0]): x_true = x[i] != 0 y_true = y[i] != 0 num_not_equal += x_true != y_true return (2.0 * num_not_equal) / (x.shape[0] + num_not_equal) @numba.njit(fastmath=True, cache=True) def russellrao(x, y): num_true_true = 0.0 for i in range(x.shape[0]): x_true = x[i] != 0 y_true = y[i] != 0 num_true_true += x_true and y_true if num_true_true == np.sum(x != 0) and num_true_true == np.sum(y != 0): return 0.0 else: return float(x.shape[0] - num_true_true) / (x.shape[0]) @numba.njit(fastmath=True, cache=True) def sokal_michener(x, y): num_not_equal = 0.0 for i in range(x.shape[0]): x_true = x[i] != 0 y_true = y[i] != 0 num_not_equal += x_true != y_true return (2.0 * num_not_equal) / (x.shape[0] + num_not_equal) @numba.njit(fastmath=True, cache=True) def sokal_sneath(x, y): num_true_true = 0.0 num_not_equal = 0.0 for i in range(x.shape[0]): x_true = x[i] != 0 y_true = y[i] != 0 num_true_true += x_true and y_true num_not_equal += x_true != y_true if num_not_equal == 0.0: return 0.0 else: return num_not_equal / (0.5 * num_true_true + num_not_equal) @numba.njit(fastmath=True, cache=True) def haversine(x, y): if x.shape[0] != 2: raise ValueError("haversine is only defined for 2 dimensional graph_data") sin_lat = np.sin(0.5 * (x[0] - y[0])) sin_long = np.sin(0.5 * (x[1] - y[1])) result = np.sqrt(sin_lat ** 2 + np.cos(x[0]) * np.cos(y[0]) * sin_long ** 2) return 2.0 * np.arcsin(result) @numba.njit(fastmath=True, cache=True) def yule(x, y): num_true_true = 0.0 num_true_false = 0.0 num_false_true = 0.0 for i in range(x.shape[0]): x_true = x[i] != 0 y_true = y[i] != 0 num_true_true += x_true and y_true num_true_false += x_true and (not y_true) num_false_true += (not x_true) and y_true num_false_false = x.shape[0] - num_true_true - num_true_false - num_false_true if num_true_false == 0.0 or num_false_true == 0.0: return 0.0 else: return (2.0 * num_true_false * num_false_true) / ( num_true_true * num_false_false + num_true_false * num_false_true ) @numba.njit(fastmath=True, cache=True) def cosine(x, y): result = 0.0 norm_x = 0.0 norm_y = 0.0 for i in range(x.shape[0]): result += x[i] * y[i] norm_x += x[i] ** 2 norm_y += y[i] ** 2 if norm_x == 0.0 and norm_y == 0.0: return 0.0 elif norm_x == 0.0 or norm_y == 0.0: return 1.0 else: return 1.0 - (result / np.sqrt(norm_x * norm_y)) @numba.njit( "f4(f4[::1],f4[::1])", fastmath=True, locals={ "result": numba.types.float32, "norm_x": numba.types.float32, "norm_y": numba.types.float32, "dim": numba.types.uint32, "i": numba.types.uint16, }, ) def alternative_cosine(x, y): result = 0.0 norm_x = 0.0 norm_y = 0.0 dim = x.shape[0] for i in range(dim): result += x[i] * y[i] norm_x += x[i] * x[i] norm_y += y[i] * y[i] if norm_x == 0.0 and norm_y == 0.0: return 0.0 elif norm_x == 0.0 or norm_y == 0.0: return np.inf elif result <= 0.0: return np.inf else: return 0.5 * (np.log(norm_x) + np.log(norm_y)) - np.log(result) @numba.vectorize(fastmath=True, cache=True) def correct_alternative_cosine(d): return 1.0 - np.exp(-d) @numba.njit(fastmath=True, cache=True) def correlation(x, y): mu_x = 0.0 mu_y = 0.0 norm_x = 0.0 norm_y = 0.0 dot_product = 0.0 for i in range(x.shape[0]): mu_x += x[i] mu_y += y[i] mu_x /= x.shape[0] mu_y /= x.shape[0] for i in range(x.shape[0]): shifted_x = x[i] - mu_x shifted_y = y[i] - mu_y norm_x += shifted_x ** 2 norm_y += shifted_y ** 2 dot_product += shifted_x * shifted_y if norm_x == 0.0 and norm_y == 0.0: return 0.0 elif dot_product == 0.0: return 1.0 else: return 1.0 - (dot_product / np.sqrt(norm_x * norm_y)) @numba.njit( "f4(f4[::1],f4[::1])", fastmath=True, locals={ "result": numba.types.float32, "l1_norm_x": numba.types.float32, "l1_norm_y": numba.types.float32, "dim": numba.types.uint32, "i": numba.types.uint16, }, ) def hellinger(x, y): result = 0.0 l1_norm_x = 0.0 l1_norm_y = 0.0 dim = x.shape[0] for i in range(dim): result += np.sqrt(x[i] * y[i]) l1_norm_x += x[i] l1_norm_y += y[i] if l1_norm_x == 0 and l1_norm_y == 0: return 0.0 elif l1_norm_x == 0 or l1_norm_y == 0: return 1.0 else: return np.sqrt(1 - result / np.sqrt(l1_norm_x * l1_norm_y)) @numba.njit( "f4(f4[::1],f4[::1])", fastmath=True, locals={ "result": numba.types.float32, "l1_norm_x": numba.types.float32, "l1_norm_y": numba.types.float32, "dim": numba.types.uint32, "i": numba.types.uint16, }, ) def alternative_hellinger(x, y): result = 0.0 l1_norm_x = 0.0 l1_norm_y = 0.0 dim = x.shape[0] for i in range(dim): result += np.sqrt(x[i] * y[i]) l1_norm_x += x[i] l1_norm_y += y[i] if l1_norm_x == 0 and l1_norm_y == 0: return 0.0 elif l1_norm_x == 0 or l1_norm_y == 0: return np.inf elif result <= 0: return np.inf else: return 0.5 * (np.log(l1_norm_x) + np.log(l1_norm_y)) - np.log(result) @numba.vectorize(fastmath=True, cache=True) def correct_alternative_hellinger(d): return np.arccos(np.exp(-d)) @numba.njit() def rankdata(a, method="average"): arr = np.ravel(np.asarray(a)) if method == "ordinal": sorter = arr.argsort(kind="mergesort") else: sorter = arr.argsort(kind="quicksort") inv = np.empty(sorter.size, dtype=np.intp) inv[sorter] = np.arange(sorter.size) if method == "ordinal": return (inv + 1).astype(np.float64) arr = arr[sorter] obs = np.ones(arr.size, np.bool_) obs[1:] = arr[1:] != arr[:-1] dense = obs.cumsum()[inv] if method == "dense": return dense.astype(np.float64) # cumulative counts of each unique value nonzero = np.nonzero(obs)[0] count = np.concatenate((nonzero, np.array([len(obs)], nonzero.dtype))) if method == "max": return count[dense].astype(np.float64) if method == "min": return (count[dense - 1] + 1).astype(np.float64) # average method return 0.5 * (count[dense] + count[dense - 1] + 1) @numba.njit(fastmath=True) def spearmanr(x, y): a = np.column_stack((x, y)) n_vars = a.shape[1] for i in range(n_vars): a[:, i] = rankdata(a[:, i]) rs = np.corrcoef(a, rowvar=0) return rs[1, 0] named_distances = { # general minkowski distances "euclidean": euclidean, "l2": euclidean, "manhattan": manhattan, "taxicab": manhattan, "l1": manhattan, "chebyshev": chebyshev, "linfinity": chebyshev, "linfty": chebyshev, "linf": chebyshev, "minkowski": minkowski, # Standardised/weighted distances "seuclidean": standardised_euclidean, "standardised_euclidean": standardised_euclidean, "wminkowski": weighted_minkowski, "weighted_minkowski": weighted_minkowski, "mahalanobis": mahalanobis, # Other distances "canberra": canberra, "cosine": cosine, "correlation": correlation, "hellinger": hellinger, "haversine": haversine, "braycurtis": bray_curtis, "spearmanr": spearmanr, # Binary distances "hamming": hamming, "jaccard": jaccard, "dice": dice, "matching": matching, "kulsinski": kulsinski, "rogerstanimoto": rogers_tanimoto, "russellrao": russellrao, "sokalsneath": sokal_sneath, "sokalmichener": sokal_michener, "yule": yule, } # Some distances have a faster to compute alternative that # retains the same ordering of distances. We can compute with # this instead, and then correct the final distances when complete. # This provides a list of distances that have such an alternative # along with the alternative distance function and the correction # function to be applied. fast_distance_alternatives = { "euclidean": {"dist": squared_euclidean, "correction": np.sqrt}, "l2": {"dist": squared_euclidean, "correction": np.sqrt}, "cosine": {"dist": alternative_cosine, "correction": correct_alternative_cosine}, "hellinger": { "dist": alternative_hellinger, "correction": correct_alternative_hellinger, }, }
25.218589
85
0.582105
082be12429b5455e54b7f5a468201147d3a1bf97
1,524
py
Python
fboss/py/fboss/cli/commands/agent.py
midopooler/fboss
c8d08dd4255e97e5977f53712e7c91a7d045a0cb
[ "BSD-3-Clause" ]
1
2020-03-20T22:47:21.000Z
2020-03-20T22:47:21.000Z
fboss/py/fboss/cli/commands/agent.py
phshaikh/fboss
05e6ed1e9d62bf7db45a770886b1761e046c1722
[ "BSD-3-Clause" ]
null
null
null
fboss/py/fboss/cli/commands/agent.py
phshaikh/fboss
05e6ed1e9d62bf7db45a770886b1761e046c1722
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python3 # # Copyright (c) 2004-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. An additional grant # of patent rights can be found in the PATENTS file in the same directory. # import json from fboss.cli.commands import commands as cmds from fboss.cli.utils.utils import KEYWORD_CONFIG_RELOAD, KEYWORD_CONFIG_SHOW from neteng.fboss.ttypes import FbossBaseError class AgentConfigCmd(cmds.FbossCmd): def _print_config(self): with self._create_agent_client() as client: resp = client.getRunningConfig() if not resp: print("No Agent Config Info Found") return parsed = json.loads(resp) print(json.dumps(parsed, indent=4, sort_keys=True, separators=(",", ": "))) def _reload_config(self): """ Reload agent config without restarting """ with self._create_agent_client() as client: try: client.reloadConfig() print("Config reloaded") return 0 except FbossBaseError as e: print("Fboss Error: " + e) return 2 def run(self, cmd_type): if cmd_type == KEYWORD_CONFIG_SHOW: self._print_config() elif cmd_type == KEYWORD_CONFIG_RELOAD: self._reload_config() else: raise Exception("Unknown command `{}`".format(cmd_type))
32.425532
83
0.636483
68831bf840d50483ad1e14a7b2106c8c66a620f9
628
py
Python
GT_forms/manage.py
10K-Linesofcode/Glowing-Tribble
be0e17ce5391b589792e4ae6b02156d7ee4ce145
[ "MIT" ]
null
null
null
GT_forms/manage.py
10K-Linesofcode/Glowing-Tribble
be0e17ce5391b589792e4ae6b02156d7ee4ce145
[ "MIT" ]
null
null
null
GT_forms/manage.py
10K-Linesofcode/Glowing-Tribble
be0e17ce5391b589792e4ae6b02156d7ee4ce145
[ "MIT" ]
null
null
null
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'GT_forms.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
28.545455
73
0.683121
9e5068b034cab2859b5d560d71be1c75f717cbf6
400
py
Python
learn-python/variable/nesting/list_nest.py
Moazzam125/learn-python
a0a92a5f4d1a031d0f66a7d10682c1844b1da80d
[ "MIT" ]
2
2020-12-25T06:42:13.000Z
2020-12-25T10:25:55.000Z
learn-python/variable/nesting/list_nest.py
Moazzam125/learn-python
a0a92a5f4d1a031d0f66a7d10682c1844b1da80d
[ "MIT" ]
null
null
null
learn-python/variable/nesting/list_nest.py
Moazzam125/learn-python
a0a92a5f4d1a031d0f66a7d10682c1844b1da80d
[ "MIT" ]
2
2021-12-27T06:15:40.000Z
2022-01-05T15:08:29.000Z
''' List Nesting ''' # List in string list_str = ['list in string', 'list'] str_nest = list_str print(str_nest) # List in List list0 = ['list', 'in'] list1 = ['list'] list_nest = [list0, list1] print(list_nest) # List in Dictionary list_dict0 = ['list', 'dictionary'] list_dict1 = ['in'] dict_nest = { 'sector': list_dict0[0] + " " + list_dict1[0] + " " + list_dict0[1] } print(dict_nest)
16
71
0.6325
28c6753f38de553d127ab549385d5af9443c8ee8
2,825
py
Python
cortex/secondary/data_quality.py
BIDMCDigitalPsychiatry/LAMP-cortex
805813e13843b0a76dad060a17b0e02756babf4d
[ "BSD-3-Clause" ]
4
2021-03-24T16:46:12.000Z
2022-02-09T15:55:11.000Z
cortex/secondary/data_quality.py
BIDMCDigitalPsychiatry/LAMP-cortex
805813e13843b0a76dad060a17b0e02756babf4d
[ "BSD-3-Clause" ]
15
2021-04-16T15:55:14.000Z
2022-03-04T16:42:27.000Z
cortex/secondary/data_quality.py
BIDMCDigitalPsychiatry/LAMP-cortex
805813e13843b0a76dad060a17b0e02756babf4d
[ "BSD-3-Clause" ]
3
2021-04-13T15:04:46.000Z
2021-06-21T11:50:16.000Z
""" Module to compute the data quality from raw data """ import pandas as pd import numpy as np from ..feature_types import secondary_feature, log from ..raw.accelerometer import accelerometer from ..raw.gps import gps MS_IN_A_DAY = 86400000 @secondary_feature( name='cortex.feature.data_quality', dependencies=[accelerometer, gps] ) def data_quality(feature, bin_size=-1, **kwargs): """Compute the data quality of raw data over time. Supported features: accelerometer, gps Args: feature (string): The feature to compute quality. bin_size (int): How to split up time in ms. Default: -1 will result in default settings for accelerometer: 1000 (1 Hz, every 1s) for gps: 1000 * 10 * 60 (every 10min) **kwargs: id (string): The participant's LAMP id. Required. start (int): The initial UNIX timestamp (in ms) of the window for which the feature is being generated. Required. end (int): The last UNIX timestamp (in ms) of the window for which the feature is being generated. Required. Returns: A dict consisting: timestamp (int): The beginning of the window (same as kwargs['start']). value (float): The percent of the time that there was at least one data point in each time window of size "bin_size". """ _data_quality = 0 bin_width = bin_size if feature == "accelerometer": _data = accelerometer(**kwargs)['data'] if bin_size == -1: bin_width = 1000 elif feature == "gps": _data = gps(**kwargs)['data'] if bin_size == -1: bin_width = 1000 * 10 * 60 else: log.info("This feature is not yet supported.") return {'timestamp':kwargs['start'], 'value': None} if len(_data) == 0: return {'timestamp':kwargs['start'], 'value': 0} _data_quality = _get_quality(pd.DataFrame(_data)[["timestamp"]], bin_width, kwargs["start"], kwargs["end"]) return {'timestamp':kwargs['start'], 'value': _data_quality} def _get_quality(_data, bin_size, start, end): """ Returns the data quality (percent of bins with one or more data points). Args: _data - the timestamps bin_size - the size of the bins in ms start - the start time in ms end - the end time in ms Returns: the data quality """ count = 0 total_bins = (end - start) / bin_size for i in range(start, end, bin_size): arr = _data["timestamp"].to_numpy() if np.any((arr < i + bin_size) & (arr >= i)): count += 1 return count / total_bins
35.3125
95
0.585841
3d3da13f918971e3f84874aa13298b495901f62c
722
py
Python
252_meeting_room.py
ojhaanshu87/LeetCode
e6e4a15c4bb9f01b67c50689be3ead6c6d5df155
[ "Unlicense" ]
null
null
null
252_meeting_room.py
ojhaanshu87/LeetCode
e6e4a15c4bb9f01b67c50689be3ead6c6d5df155
[ "Unlicense" ]
null
null
null
252_meeting_room.py
ojhaanshu87/LeetCode
e6e4a15c4bb9f01b67c50689be3ead6c6d5df155
[ "Unlicense" ]
null
null
null
''' Given an array of meeting time intervals where intervals[i] = [starti, endi], determine if a person could attend all meetings. Example 1: Input: intervals = [[0,30],[5,10],[15,20]] Output: false Example 2: Input: intervals = [[7,10],[2,4]] Output: true ''' ''' The idea here is to sort the meetings by starting time. Then, go through the meetings one by one and make sure that each meeting ends before the next one starts. ''' class Solution(object): def canAttendMeetings(self, intervals): intervals = sorted(intervals, key=lambda elem:elem[0]) for elem in range(len(intervals) - 1): if intervals[elem][1] > intervals[elem + 1][0]: return False return True
30.083333
161
0.66482
a99cb07093797b16305f61ac6260fc61857c489a
6,420
py
Python
src/kerassurgeon/examples/inception_flowers_prune.py
audatic/keras-surgeon
241ca31784cac59ec6ad31c0dfd723ce0e1643a3
[ "MIT" ]
null
null
null
src/kerassurgeon/examples/inception_flowers_prune.py
audatic/keras-surgeon
241ca31784cac59ec6ad31c0dfd723ce0e1643a3
[ "MIT" ]
null
null
null
src/kerassurgeon/examples/inception_flowers_prune.py
audatic/keras-surgeon
241ca31784cac59ec6ad31c0dfd723ce0e1643a3
[ "MIT" ]
null
null
null
"""Prunes channels from Inception V3 fine tuned on a small flowers data set. see setup instructions in inception_flowers_tune.py inception_flowers_tune.py must be run first """ import math from keras.applications import inception_v3 from keras.preprocessing.image import ImageDataGenerator from keras.optimizers import SGD from keras.models import Model, load_model from keras.layers import Dense from keras.callbacks import CSVLogger import keras.backend as K import pandas as pd import numpy as np import tensorflow as tf from kerassurgeon.identify import get_apoz from kerassurgeon import Surgeon # dimensions of our images. img_width, img_height = 299, 299 output_dir = "inception_flowers/" train_data_dir = output_dir + "data/train/" validation_data_dir = output_dir + "data/validation/" tuned_weights_path = output_dir + "tuned_weights.h5" epochs = 15 batch_size = 16 val_batch_size = 16 percent_pruning = 2 total_percent_pruning = 50 def iterative_prune_model(): # build the inception v3 network base_model = inception_v3.InceptionV3( include_top=False, weights="imagenet", pooling="avg", input_shape=(299, 299, 3) ) print("Model loaded.") top_output = Dense(5, activation="softmax")(base_model.output) # add the model on top of the convolutional base model = Model(base_model.inputs, top_output) del base_model model.load_weights(tuned_weights_path) # compile the model with a SGD/momentum optimizer # and a very slow learning rate. model.compile( loss="categorical_crossentropy", optimizer=SGD(lr=1e-4, momentum=0.9), metrics=["accuracy"], ) # Set up data generators train_datagen = ImageDataGenerator( preprocessing_function=inception_v3.preprocess_input, shear_range=0.2, zoom_range=0.2, horizontal_flip=True, ) train_generator = train_datagen.flow_from_directory( train_data_dir, target_size=(img_height, img_width), batch_size=batch_size, class_mode="categorical", ) train_steps = train_generator.n // train_generator.batch_size test_datagen = ImageDataGenerator( preprocessing_function=inception_v3.preprocess_input ) validation_generator = test_datagen.flow_from_directory( validation_data_dir, target_size=(img_height, img_width), batch_size=val_batch_size, class_mode="categorical", ) val_steps = validation_generator.n // validation_generator.batch_size # Evaluate the model performance before pruning loss = model.evaluate_generator( validation_generator, validation_generator.n // validation_generator.batch_size ) print("original model validation loss: ", loss[0], ", acc: ", loss[1]) total_channels = get_total_channels(model) n_channels_delete = int(math.floor(percent_pruning / 100 * total_channels)) # Incrementally prune the network, retraining it each time percent_pruned = 0 # If percent_pruned > 0, continue pruning from previous checkpoint if percent_pruned > 0: checkpoint_name = "inception_flowers_pruning_" + str(percent_pruned) + "percent" model = load_model(output_dir + checkpoint_name + ".h5") while percent_pruned <= total_percent_pruning: # Prune the model apoz_df = get_model_apoz(model, validation_generator) percent_pruned += percent_pruning print("pruning up to ", str(percent_pruned), "% of the original model weights") model = prune_model(model, apoz_df, n_channels_delete) # Clean up tensorflow session after pruning and re-load model checkpoint_name = "inception_flowers_pruning_" + str(percent_pruned) + "percent" model.save(output_dir + checkpoint_name + ".h5") del model K.clear_session() tf.reset_default_graph() model = load_model(output_dir + checkpoint_name + ".h5") # Re-train the model model.compile( loss="categorical_crossentropy", optimizer=SGD(lr=1e-4, momentum=0.9), metrics=["accuracy"], ) checkpoint_name = "inception_flowers_pruning_" + str(percent_pruned) + "percent" csv_logger = CSVLogger(output_dir + checkpoint_name + ".csv") model.fit_generator( train_generator, steps_per_epoch=train_steps, epochs=epochs, validation_data=validation_generator, validation_steps=val_steps, workers=4, callbacks=[csv_logger], ) # Evaluate the final model performance loss = model.evaluate_generator( validation_generator, validation_generator.n // validation_generator.batch_size ) print("pruned model loss: ", loss[0], ", acc: ", loss[1]) def prune_model(model, apoz_df, n_channels_delete): # Identify 5% of channels with the highest APoZ in model sorted_apoz_df = apoz_df.sort_values("apoz", ascending=False) high_apoz_index = sorted_apoz_df.iloc[0:n_channels_delete, :] # Create the Surgeon and add a 'delete_channels' job for each layer # whose channels are to be deleted. surgeon = Surgeon(model, copy=True) for name in high_apoz_index.index.unique().values: channels = list( pd.Series(high_apoz_index.loc[name, "index"], dtype=np.int64).values ) surgeon.add_job("delete_channels", model.get_layer(name), channels=channels) # Delete channels return surgeon.operate() def get_total_channels(model): start = None end = None channels = 0 for layer in model.layers[start:end]: if layer.__class__.__name__ == "Conv2D": channels += layer.filters return channels def get_model_apoz(model, generator): # Get APoZ start = None end = None apoz = [] for layer in model.layers[start:end]: if layer.__class__.__name__ == "Conv2D": print(layer.name) apoz.extend( [ (layer.name, i, value) for (i, value) in enumerate(get_apoz(model, layer, generator)) ] ) layer_name, index, apoz_value = zip(*apoz) apoz_df = pd.DataFrame({"layer": layer_name, "index": index, "apoz": apoz_value}) apoz_df = apoz_df.set_index("layer") return apoz_df if __name__ == "__main__": iterative_prune_model()
33.612565
88
0.684424
79e767de37a9b40dc316237ae6d4a2b879f80056
361
py
Python
game/migrations/0003_auto_20180311_2100.py
mingaleg/yakubovich
95398c78eaffbd6ff69f8fdbedfc847531219d8a
[ "MIT" ]
5
2018-12-12T16:24:42.000Z
2020-02-29T18:45:30.000Z
game/migrations/0003_auto_20180311_2100.py
mingaleg/yakubovich
95398c78eaffbd6ff69f8fdbedfc847531219d8a
[ "MIT" ]
3
2020-06-05T17:47:13.000Z
2022-02-11T03:39:54.000Z
game/migrations/0003_auto_20180311_2100.py
mingaleg/yakubovich
95398c78eaffbd6ff69f8fdbedfc847531219d8a
[ "MIT" ]
null
null
null
# Generated by Django 2.0.3 on 2018-03-11 21:00 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('game', '0002_auto_20180311_2050'), ] operations = [ migrations.AlterModelOptions( name='game', options={'permissions': (('start', 'Start game'),)}, ), ]
20.055556
64
0.584488
37b38306f49233c139da5ccaba916fe565db1c4e
4,863
py
Python
gpMgmt/bin/gppylib/operations/utils.py
darthunix/gpdb
ef7e33315d46586a4b511846531f4973c23187dd
[ "PostgreSQL", "Apache-2.0" ]
null
null
null
gpMgmt/bin/gppylib/operations/utils.py
darthunix/gpdb
ef7e33315d46586a4b511846531f4973c23187dd
[ "PostgreSQL", "Apache-2.0" ]
null
null
null
gpMgmt/bin/gppylib/operations/utils.py
darthunix/gpdb
ef7e33315d46586a4b511846531f4973c23187dd
[ "PostgreSQL", "Apache-2.0" ]
null
null
null
import os import sys import pickle from gppylib import gplog from gppylib.commands.base import OperationWorkerPool, Command, REMOTE from gppylib.operations import Operation DEFAULT_NUM_WORKERS = 64 logger = gplog.get_default_logger() class RemoteOperation(Operation): # TODO: The Operation that is run remotely cannot return Exceptions. # This can be resolved easily with a class that wraps the exception: ExceptionCapsule. (Thank you, Pyro.) # TODO: Remote traceback is lost. Again, this can be solved by embedding remote traceback in an ExceptionCapsule. """ RemoteOperation communicates w/ gpoperation.py on the remote end, with the following assumptions. 1) gppylib exists 2) gpoperation.py can see gppylib as a top-level module 3) obj is defined at the top level of its module This requirement actually arises out of an underlying pickle issue, which in turn, appears to result from a python class oddity. If class B is defined within class A, it does not consider A to be its module. B is merely a class that is an attribute of A. For this reason, once instantiated, B cannot be rebuilt from its module name and class name alone. Its outer class A is a missing piece of information that gppickle cannot attain from python internals. 4) Most importantly, the operation provided here must be imported into the gppylib... namespace. Otherwise, gpoperation.py will be unable to deserialize and import it on the remote end. In the normal gppylib use case, some bin/ level script will use an absolute import to bring in something from gppylib. In this manner, any ensuing imports (even if they're relative) will still be imported into the gppylib namespace. Thus, pickling such objects over ssh to gpoperation.py will succeed, because such objects will be immediately importable on the remote end. However, there is exactly one edge case: unit testing. If a unit test is invoked directly through CLI, its objects reside in the __main__ module as opposed to gppylib.test_something. Again, this can be circumvented by invoking unit tests through PyUnit or python -m unittest, etc. """ def __init__(self, operation, host, msg_ctx=""): super(RemoteOperation, self).__init__() self.operation = operation self.host = host self.msg_ctx = msg_ctx def execute(self): execname = os.path.split(sys.argv[0])[-1] pickled_execname = pickle.dumps(execname) pickled_operation = pickle.dumps(self.operation) cmd = Command('pickling an operation', '$GPHOME/sbin/gpoperation.py', ctxt=REMOTE, remoteHost=self.host, stdin = pickled_execname + pickled_operation) cmd.run(validateAfter=True) msg = "on host %s: %s" % (self.host, cmd.get_results().stdout) if self.msg_ctx: msg = "Output for %s %s" % (self.msg_ctx, msg) else: msg = "Output %s" %(msg) logger.debug(msg) ret = self.operation.ret = pickle.loads(cmd.get_results().stdout) if isinstance(ret, Exception): raise ret return ret def __str__(self): return "Remote(%s)" % str(self.operation) class ParallelOperation(Operation): """ Caveat: execute returns None. It is the caller's responsibility to introspect operations. """ def __init__(self, operations, max_parallelism=DEFAULT_NUM_WORKERS): super(ParallelOperation, self).__init__() self.operations = operations self.parallelism = min(len(operations), max_parallelism) def execute(self): if not self.operations or len(self.operations) == 0: return pool = OperationWorkerPool(numWorkers=self.parallelism, operations=self.operations) pool.join() pool.haltWork() def __str__(self): return "Parallel(%d)" % len(self.operations) class SerialOperation(Operation): """ Caveat: All operations must succeed. SerialOperation will raise first exception encountered. """ def __init__(self, operations): super(SerialOperation, self).__init__() self.operations = operations def execute(self): return [operation.run() for operation in self.operations] def __str__(self): return "Serial(%d)" % len(self.operations) class MasterOperation(Operation): def __init__(self, operation): super(MasterOperation, self).__init__() self.operation = operation def execute(self): # TODO: check that we're running on master pass if __name__ == "__main__": import sys from unix import CheckFile, CheckRemoteFile print RemoteOperation(CheckFile(sys.argv[1]), "localhost").run() print CheckRemoteFile(sys.argv[1], "localhost").run()
44.614679
129
0.691754
cba5a871d6c5b8647c0e25943133c0a6dcf78dd8
232
py
Python
lemon/__init__.py
trilan/lemon
7f55b72a84fcae2c4b6372279dda2a05332f1e4c
[ "BSD-3-Clause" ]
2
2018-11-11T16:15:21.000Z
2021-07-30T20:02:31.000Z
lemon/__init__.py
trilan/lemon
7f55b72a84fcae2c4b6372279dda2a05332f1e4c
[ "BSD-3-Clause" ]
null
null
null
lemon/__init__.py
trilan/lemon
7f55b72a84fcae2c4b6372279dda2a05332f1e4c
[ "BSD-3-Clause" ]
2
2016-10-07T06:42:03.000Z
2021-07-30T20:02:34.000Z
from .options import ModelAdmin, AppAdmin from .options import StackedInline, TabularInline from .sites import AdminSite, site __all__ = [ 'ModelAdmin', 'AppAdmin', 'StackedInline', 'TabularInline', 'AdminSite', 'site', ]
23.2
76
0.732759
cbf04dca5354cf0176909738de7d63cfe84e01cd
41,450
py
Python
cardinal_pythonlib/sqlalchemy/merge_db.py
bopopescu/pythonlib
9c2187d6092ba133342ca3374eb7c86f9d296c30
[ "Apache-2.0" ]
null
null
null
cardinal_pythonlib/sqlalchemy/merge_db.py
bopopescu/pythonlib
9c2187d6092ba133342ca3374eb7c86f9d296c30
[ "Apache-2.0" ]
null
null
null
cardinal_pythonlib/sqlalchemy/merge_db.py
bopopescu/pythonlib
9c2187d6092ba133342ca3374eb7c86f9d296c30
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # cardinal_pythonlib/sqlalchemy/merge_db.py """ =============================================================================== Original code copyright (C) 2009-2020 Rudolf Cardinal (rudolf@pobox.com). This file is part of cardinal_pythonlib. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. =============================================================================== **Function "merge_db" to merge two databases via SQLAlchemy.** *Notes:* Note in passing: there is no common base class for SQLAlchemy ORM instances (it's not :class:`DeclarativeMeta`). For example, in CamCOPS: .. code-block:: none > Phq9.__bases__ (<class 'camcops_server.cc_modules.cc_task.TaskHasPatientMixin'>, <class 'camcops_server.cc_modules.cc_task.Task'>, <class 'sqlalchemy.ext.declarative.api.Base'>) ... and that last :class:`Base` isn't a permanent class, just a newly named thing; see :func:`sqlalchemy.ext.declarative.api.declarative_base`. Again, with the CamCOPS classes: .. code-block:: none > issubclass(Phq9, Base) True > issubclass(Base, DeclarativeMeta) False > Base.__bases__ (<class 'object'>,) So the best type hints we have are: .. code-block:: none class: Type instance: object """ import sys from typing import Any, Callable, Dict, List, Tuple, Type import unittest from sqlalchemy.engine import create_engine from sqlalchemy.engine.base import Engine from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import lazyload, load_only from sqlalchemy.orm import relationship # noinspection PyProtectedMember from sqlalchemy.orm.session import make_transient, Session, sessionmaker from sqlalchemy.schema import sort_tables from sqlalchemy.sql.schema import Column, ForeignKey, MetaData, Table from sqlalchemy.sql.sqltypes import Integer, Text from cardinal_pythonlib.dicts import map_keys_to_values from cardinal_pythonlib.logs import ( get_brace_style_log_with_null_handler, main_only_quicksetup_rootlogger, ) from cardinal_pythonlib.sqlalchemy.dump import dump_database_as_insert_sql from cardinal_pythonlib.sqlalchemy.orm_inspect import ( rewrite_relationships, colname_to_attrname_dict, copy_sqla_object, get_orm_classes_by_table_name_from_base, get_pk_attrnames, ) from cardinal_pythonlib.sqlalchemy.schema import ( get_column_names, get_table_names, ) from cardinal_pythonlib.sqlalchemy.session import ( get_engine_from_session, get_safe_url_from_engine, get_safe_url_from_session, SQLITE_MEMORY_URL, ) from cardinal_pythonlib.sqlalchemy.table_identity import TableIdentity log = get_brace_style_log_with_null_handler(__name__) # ============================================================================= # TableDependency; get_all_dependencies # ============================================================================= class TableDependency(object): """ Stores a table dependency for use in functions such as :func:`sqlalchemy.schema.sort_tables`, which requires a tuple of two :class:`Table` objects, in the order ``(parent, child)``, where ``child`` depends on ``parent`` (e.g. a field like ``child.parent_id`` refers to ``parent.id``). """ def __init__(self, parent_table_id: TableIdentity = None, child_table_id: TableIdentity = None, parent_table: Table = None, child_table: Table = None, parent_tablename: str = None, child_tablename: str = None, metadata: MetaData = None) -> None: """ The parent and child tables can be specified by name, :class:`Table` object, or our :class:`TableIdentity` descriptor class. """ overspecified = "Don't specify table with both TableIdentity and " \ "Table/tablename" if parent_table_id: self._parent = parent_table_id assert parent_table is None and not parent_tablename, overspecified else: self._parent = TableIdentity(table=parent_table, tablename=parent_tablename, metadata=metadata) if child_table_id: self._child = child_table_id assert child_table is None and not child_tablename, overspecified else: self._child = TableIdentity(table=child_table, tablename=child_tablename, metadata=metadata) def __str__(self) -> str: return f"{self.child_tablename} -> {self.parent_tablename}" def __repr__(self) -> str: return ( f"TableDependency({self.child_tablename!r} " f"depends on {self.parent_tablename!r})" ) def set_metadata(self, metadata: MetaData) -> None: """ Sets the metadata for the parent and child tables. """ self._parent.set_metadata(metadata) self._child.set_metadata(metadata) def set_metadata_if_none(self, metadata: MetaData) -> None: """ Sets the metadata for the parent and child tables, unless they were set already. """ self._parent.set_metadata_if_none(metadata) self._child.set_metadata_if_none(metadata) @property def parent_table(self) -> Table: """ Returns the parent table as a :class:`Table`. """ return self._parent.table @property def child_table(self) -> Table: """ Returns the child table as a :class:`Table`. """ return self._child.table @property def parent_tablename(self) -> str: """ Returns the parent table's string name. """ return self._parent.tablename @property def child_tablename(self) -> str: """ Returns the child table's string name. """ return self._child.tablename def sqla_tuple(self) -> Tuple[Table, Table]: """ Returns the tuple ``(parent_table, child_table)``, both as :class:`Table` objects. """ return self.parent_table, self.child_table def get_all_dependencies(metadata: MetaData, extra_dependencies: List[TableDependency] = None, sort: bool = True) \ -> List[TableDependency]: """ Describes how the tables found in the metadata depend on each other. (If table B contains a foreign key to table A, for example, then B depends on A.) Args: metadata: the metadata to inspect extra_dependencies: additional table dependencies to specify manually sort: sort into alphabetical order of (parent, child) table names? Returns: a list of :class:`TableDependency` objects See :func:`sort_tables_and_constraints` for method. """ extra_dependencies = extra_dependencies or [] # type: List[TableDependency] # noqa for td in extra_dependencies: td.set_metadata_if_none(metadata) dependencies = set([td.sqla_tuple() for td in extra_dependencies]) tables = list(metadata.tables.values()) # type: List[Table] for table in tables: for fkc in table.foreign_key_constraints: if fkc.use_alter is True: # http://docs.sqlalchemy.org/en/latest/core/constraints.html#sqlalchemy.schema.ForeignKeyConstraint.params.use_alter # noqa continue dependent_on = fkc.referred_table if dependent_on is not table: dependencies.add((dependent_on, table)) if hasattr(table, "_extra_dependencies"): # noinspection PyProtectedMember dependencies.update( (parent, table) for parent in table._extra_dependencies ) dependencies = [ TableDependency(parent_table=parent, child_table=child) for parent, child in dependencies ] if sort: dependencies.sort(key=lambda td_: (td_.parent_tablename, td_.child_tablename)) return dependencies # ============================================================================= # TableDependencyClassification; classify_tables_by_dependency_type # ============================================================================= class TableDependencyClassification(object): """ Class to describe/classify a table in terms of its dependencies. """ def __init__(self, table: Table, children: List[Table] = None, parents: List[Table] = None) -> None: """ Args: table: the table in question children: its children (things that depend on it) parents: its parents (things that it depends on) """ self.table = table self.children = children or [] # type: List[Table] self.parents = parents or [] # type: List[Table] self.circular = False self.circular_chain = [] # type: List[Table] @property def is_child(self) -> bool: """ Is this table a child? """ return bool(self.parents) @property def is_parent(self) -> bool: """ Is this table a parent? """ return bool(self.children) @property def standalone(self) -> bool: """ Is this table standalone (neither a child nor a parent)? """ return not self.is_child and not self.is_parent @property def tablename(self) -> str: """ Returns the table's name. """ return self.table.name @property def parent_names(self) -> List[str]: """ Returns the names of this table's parents. """ return [t.name for t in self.parents] @property def child_names(self) -> List[str]: """ Returns the names of this table's children. """ return [t.name for t in self.children] def set_circular(self, circular: bool, chain: List[Table] = None) -> None: """ Mark this table as circular (or not). Args: circular: is it circular? chain: if it's circular, this should be the list of tables participating in the circular chain """ self.circular = circular self.circular_chain = chain or [] # type: List[Table] @property def circular_description(self) -> str: """ Description of the circular chain. """ return " -> ".join(t.name for t in self.circular_chain) @property def description(self) -> str: """ Short description. """ if self.is_parent and self.is_child: desc = "parent+child" elif self.is_parent: desc = "parent" elif self.is_child: desc = "child" else: desc = "standalone" if self.circular: desc += f"+CIRCULAR({self.circular_description})" return desc def __str__(self) -> str: return f"{self.tablename}:{self.description}" def __repr__(self) -> str: return ( f"TableDependencyClassification(" f"{self.tablename!r}:{self.description})" ) def classify_tables_by_dependency_type( metadata: MetaData, extra_dependencies: List[TableDependency] = None, sort: bool = True) \ -> List[TableDependencyClassification]: """ Inspects a metadata object (optionally adding other specified dependencies) and returns a list of objects describing their dependencies. Args: metadata: the :class:`MetaData` to inspect extra_dependencies: additional dependencies sort: sort the results by table name? Returns: list of :class:`TableDependencyClassification` objects, one for each table """ tables = list(metadata.tables.values()) # type: List[Table] all_deps = get_all_dependencies(metadata, extra_dependencies) tdcmap = {} # type: Dict[Table, TableDependencyClassification] for table in tables: parents = [td.parent_table for td in all_deps if td.child_table == table] children = [td.child_table for td in all_deps if td.parent_table == table] tdcmap[table] = TableDependencyClassification( table, parents=parents, children=children ) # Check for circularity def parents_contain(start: Table, probe: Table) -> Tuple[bool, List[Table]]: tdc_ = tdcmap[start] if probe in tdc_.parents: return True, [start, probe] for parent in tdc_.parents: contains_, chain_ = parents_contain(start=parent, probe=probe) if contains_: return True, [start] + chain_ return False, [] def children_contain(start: Table, probe: Table) -> Tuple[bool, List[Table]]: tdc_ = tdcmap[start] if probe in tdc_.children: return True, [start, probe] for child in tdc_.children: contains_, chain_ = children_contain(start=child, probe=probe) if contains_: return True, [start] + chain_ return False, [] for table in tables: tdc = tdcmap[table] contains, chain = parents_contain(start=table, probe=table) if contains: tdc.set_circular(contains, chain) else: contains, chain = children_contain(start=table, probe=table) if contains: tdc.set_circular(contains, chain) else: tdc.set_circular(False) classifications = list(tdcmap.values()) if sort: classifications.sort(key=lambda c: c.tablename) return classifications # ============================================================================= # TranslationContext (for merge_db) # ============================================================================= class TranslationContext(object): """ Information-passing object for user callbacks from :func:`merge_db`. Args: oldobj: The old SQLAlchemy ORM object from the source session. newobj: The framework's go at building a new SQLAlchemy ORM object, which will be inserted into the destination session. The sequence is: 1. ``newobj`` is created 2. a :class:`TranslationContext` is created, referring to ``newobj`` 3. The ``translate_fn`` parameter to :func:`merge_db` will be called with the :class:`TranslationContext` as its parameter - the user-suppled :func:`translate_fn` function can, at this point, modify the ``newobj`` attribute - if the user function sets the ``newobj`` attribute to ``None``, this object will be skipped 4. If the :class:`TranslationContext`'s ``newobj`` member is not ``None``, the new object is inserted into the destination session. objmap: A dictionary mapping old to new objects, for objects in tables other than standalone tables. table: SQLAlchemy ``Table`` object from the metadata. (Not necessarily bound to any session, but will reflect the structure of the destination, not necessarily the source, since the merge operation assumes that the metadata describes the destination.) tablename: Table name that corresponds to ``table``. src_session: The SQLAlchemy :class:`Session` object for the source. dst_session: The SQLAlchemy :class:`Session` object for the destination. src_engine: The SQLAlchemy :class:`Engine` object for the source. dst_engine: The SQLAlchemy :class:`Engine` object for the destination. missing_src_columns: Names of columns known to be present in the destination but absent from the source. info: Extra dictionary for additional user-specified information. It is possible that ``oldobj`` and ``newobj`` are the SAME OBJECT. """ def __init__(self, oldobj: object, newobj: object, objmap: Dict[object, object], table: Table, tablename: str, src_session: Session, dst_session: Session, src_engine: Engine, dst_engine: Engine, src_table_names: List[str], missing_src_columns: List[str] = None, info: Dict[str, Any] = None) -> None: self.oldobj = oldobj self.newobj = newobj self.objmap = objmap self.table = table self.tablename = tablename self.src_session = src_session self.dst_session = dst_session self.src_engine = src_engine self.dst_engine = dst_engine self.src_table_names = src_table_names self.missing_src_columns = missing_src_columns or [] # type: List[str] self.info = info or {} # type: Dict[str, Any] # ============================================================================= # merge_db # ============================================================================= def merge_db(base_class: Type, src_engine: Engine, dst_session: Session, allow_missing_src_tables: bool = True, allow_missing_src_columns: bool = True, translate_fn: Callable[[TranslationContext], None] = None, skip_tables: List[TableIdentity] = None, only_tables: List[TableIdentity] = None, tables_to_keep_pks_for: List[TableIdentity] = None, extra_table_dependencies: List[TableDependency] = None, dummy_run: bool = False, info_only: bool = False, report_every: int = 1000, flush_per_table: bool = True, flush_per_record: bool = False, commit_with_flush: bool = False, commit_at_end: bool = True, prevent_eager_load: bool = True, trcon_info: Dict[str, Any] = None) -> None: """ Copies an entire database as far as it is described by ``metadata`` and ``base_class``, from SQLAlchemy ORM session ``src_session`` to ``dst_session``, and in the process: - creates new primary keys at the destination, or raises an error if it doesn't know how (typically something like: ``Field 'name' doesn't have a default value``) - maintains relationships, or raises an error if it doesn't know how Basic method: - Examines the metadata for the SQLAlchemy ORM base class you provide. - Assumes that the tables exist (in the destination). - For each table/ORM class found in the metadata: - Queries (via the ORM) from the source. - For each ORM instance retrieved: - Writes information to the destination SQLAlchemy session. - If that ORM object has relationships, process them too. If a table is missing in the source, then that's OK if and only if ``allow_missing_src_tables`` is set. (Similarly with columns and ``allow_missing_src_columns``; we ask the ORM to perform a partial load, of a subset of attributes only.) Args: base_class: your ORM base class, e.g. from ``Base = declarative_base()`` src_engine: SQLALchemy :class:`Engine` for the source database dst_session: SQLAlchemy :class:`Session` for the destination database allow_missing_src_tables: proceed if tables are missing from the source (allowing you to import from older, incomplete databases) allow_missing_src_columns: proceed if columns are missing from the source (allowing you to import from older, incomplete databases) translate_fn: optional function called with each instance, so you can modify instances in the pipeline. Signature: .. code-block:: python def my_translate_fn(trcon: TranslationContext) -> None: # We can modify trcon.newobj, or replace it (including # setting trcon.newobj = None to omit this object). pass skip_tables: tables to skip (specified as a list of :class:`TableIdentity`) only_tables: tables to restrict the processor to (specified as a list of :class:`TableIdentity`) tables_to_keep_pks_for: tables for which PKs are guaranteed to be safe to insert into the destination database, without modification (specified as a list of :class:`TableIdentity`) extra_table_dependencies: optional list of :class:`TableDependency` objects (q.v.) dummy_run: don't alter the destination database info_only: show info, then stop report_every: provide a progress report every *n* records flush_per_table: flush the session after every table (reasonable) flush_per_record: flush the session after every instance (AVOID this if tables may refer to themselves) commit_with_flush: ``COMMIT`` with each flush? commit_at_end: ``COMMIT`` when finished? prevent_eager_load: disable any eager loading (use lazy loading instead) trcon_info: additional dictionary passed to ``TranslationContext.info`` (see :class:`.TranslationContext`) """ log.info("merge_db(): starting") if dummy_run: log.warning("Dummy run only; destination will not be changed") # Check parameters before we modify them if only_tables is not None and not only_tables: log.warning("... only_tables == []; nothing to do") return # Finalize parameters skip_tables = skip_tables or [] # type: List[TableIdentity] only_tables = only_tables or [] # type: List[TableIdentity] tables_to_keep_pks_for = tables_to_keep_pks_for or [] # type: List[TableIdentity] # noqa extra_table_dependencies = extra_table_dependencies or [] # type: List[TableDependency] # noqa trcon_info = trcon_info or {} # type: Dict[str, Any] # We need both Core and ORM for the source. # noinspection PyUnresolvedReferences metadata = base_class.metadata # type: MetaData src_session = sessionmaker(bind=src_engine)() # type: Session dst_engine = get_engine_from_session(dst_session) tablename_to_ormclass = get_orm_classes_by_table_name_from_base(base_class) # Tell all TableIdentity objects about their metadata for tilist in [skip_tables, only_tables, tables_to_keep_pks_for]: for ti in tilist: ti.set_metadata_if_none(metadata) for td in extra_table_dependencies: td.set_metadata_if_none(metadata) # Get all lists of tables as their names skip_table_names = [ti.tablename for ti in skip_tables] only_table_names = [ti.tablename for ti in only_tables] tables_to_keep_pks_for = [ti.tablename for ti in tables_to_keep_pks_for] # type: List[str] # noqa # ... now all are of type List[str] # Safety check: this is an imperfect check for source == destination, but # it is fairly easy to pass in the wrong URL, so let's try our best: _src_url = get_safe_url_from_engine(src_engine) _dst_url = get_safe_url_from_session(dst_session) assert _src_url != _dst_url or _src_url == SQLITE_MEMORY_URL, ( "Source and destination databases are the same!" ) # Check the right tables are present. src_tables = sorted(get_table_names(src_engine)) dst_tables = sorted(list(tablename_to_ormclass.keys())) log.debug("Source tables: {!r}", src_tables) log.debug("Destination tables: {!r}", dst_tables) if not allow_missing_src_tables: missing_tables = sorted( d for d in dst_tables if d not in src_tables and d not in skip_table_names ) if missing_tables: raise RuntimeError("The following tables are missing from the " "source database: " + repr(missing_tables)) table_num = 0 overall_record_num = 0 tables = list(metadata.tables.values()) # type: List[Table] # Very helpfully, MetaData.sorted_tables produces tables in order of # relationship dependency ("each table is preceded by all tables which # it references"); # http://docs.sqlalchemy.org/en/latest/core/metadata.html # HOWEVER, it only works if you specify ForeignKey relationships # explicitly. # We can also add in user-specified dependencies, and therefore can do the # sorting in one step with sqlalchemy.schema.sort_tables: ordered_tables = sort_tables( tables, extra_dependencies=[td.sqla_tuple() for td in extra_table_dependencies] ) # Note that the ordering is NOT NECESSARILY CONSISTENT, though (in that # the order of stuff it doesn't care about varies across runs). all_dependencies = get_all_dependencies(metadata, extra_table_dependencies) dep_classifications = classify_tables_by_dependency_type( metadata, extra_table_dependencies) circular = [tdc for tdc in dep_classifications if tdc.circular] assert not circular, f"Circular dependencies! {circular!r}" log.debug("All table dependencies: {}", "; ".join(str(td) for td in all_dependencies)) log.debug("Table dependency classifications: {}", "; ".join(str(c) for c in dep_classifications)) log.info("Processing tables in the order: {!r}", [table.name for table in ordered_tables]) objmap = {} def flush() -> None: if not dummy_run: log.debug("Flushing session") dst_session.flush() if commit_with_flush: log.debug("Committing...") dst_session.commit() def translate(oldobj_: object, newobj_: object) -> object: if translate_fn is None: return newobj_ tc = TranslationContext(oldobj=oldobj_, newobj=newobj_, objmap=objmap, table=table, tablename=tablename, src_session=src_session, dst_session=dst_session, src_engine=src_engine, dst_engine=dst_engine, missing_src_columns=missing_columns, src_table_names=src_tables, info=trcon_info) translate_fn(tc) if tc.newobj is None: log.debug("Instance skipped by user-supplied translate_fn") return tc.newobj # ------------------------------------------------------------------------- # Now, per table/ORM class... # ------------------------------------------------------------------------- for table in ordered_tables: tablename = table.name if tablename in skip_table_names: log.info("... skipping table {!r} (as per skip_tables)", tablename) continue if only_table_names and tablename not in only_table_names: log.info("... ignoring table {!r} (as per only_tables)", tablename) continue if allow_missing_src_tables and tablename not in src_tables: log.info("... ignoring table {!r} (not in source database)", tablename) continue table_num += 1 table_record_num = 0 src_columns = sorted(get_column_names(src_engine, tablename)) dst_columns = sorted([column.name for column in table.columns]) missing_columns = sorted(list(set(dst_columns) - set(src_columns))) if not allow_missing_src_columns and missing_columns: raise RuntimeError( f"The following columns are missing from source table " f"{tablename!r}: {missing_columns!r}") orm_class = tablename_to_ormclass[tablename] pk_attrs = get_pk_attrnames(orm_class) c2a = colname_to_attrname_dict(orm_class) missing_attrs = map_keys_to_values(missing_columns, c2a) tdc = [tdc for tdc in dep_classifications if tdc.table == table][0] log.info("Processing table {!r} via ORM class {!r}", tablename, orm_class) log.debug("PK attributes: {!r}", pk_attrs) log.debug("Table: {!r}", table) log.debug("Dependencies: parents = {!r}; children = {!r}", tdc.parent_names, tdc.child_names) if info_only: log.debug("info_only; skipping table contents") continue def wipe_primary_key(inst: object) -> None: for attrname in pk_attrs: setattr(inst, attrname, None) query = src_session.query(orm_class) if allow_missing_src_columns and missing_columns: src_attrs = map_keys_to_values(src_columns, c2a) log.info("Table {} is missing columns {} in the source", tablename, missing_columns) log.debug("... using only columns {} via attributes {}", src_columns, src_attrs) query = query.options(load_only(*src_attrs)) # PROBLEM: it will not ignore the PK. if prevent_eager_load: query = query.options(lazyload("*")) wipe_pk = tablename not in tables_to_keep_pks_for # How best to deal with relationships? # # This doesn't work: # - process tables in order of dependencies, eager-loading # relationships with # for relationship in insp.mapper.relationships: # type: RelationshipProperty # noqa # related_col = getattr(orm_class, relationship.key) # query = query.options(joinedload(related_col)) # - expunge from old session / make_transient / wipe_primary_key/ add # to new session # ... get errors like # sqlalchemy.exc.InvalidRequestError: Object '<Parent at # 0x7f99492440b8>' is already attached to session '7' (this is # '6') # # ... at the point of dst_session.add(instance) # ... when adding the object on the child side of the relationship # ... I suspect that we move the Parent from session S to session D, # but when we eager-load the Parent from the Child, that makes # another in session S, so when we add the Child to session D, its # parent is in session S, which is wrong. # # We must, therefore, take a more interventional approach, in which we # maintain a copy of the old object, make a copy using # copy_sqla_object, and re-assign relationships accordingly. for instance in query.all(): # log.debug("Source instance: {!r}", instance) table_record_num += 1 overall_record_num += 1 if table_record_num % report_every == 0: log.info("... progress{}: on table {} ({}); record {} this " "table; overall record {}", " (DUMMY RUN)" if dummy_run else "", table_num, tablename, table_record_num, overall_record_num) if tdc.standalone: # Our table has neither parents nor children. We can therefore # simply move the instance from one session to the other, # blanking primary keys. # https://stackoverflow.com/questions/14636192/sqlalchemy-modification-of-detached-object # noqa src_session.expunge(instance) make_transient(instance) if wipe_pk: wipe_primary_key(instance) instance = translate(instance, instance) if not instance: continue # translate_fn elected to skip it if not dummy_run: dst_session.add(instance) # new PK will be created when session is flushed else: # Our table has either parents or children. We therefore make # a copy and place the COPY in the destination session. If # this object may be a parent, we maintain a log (in objmap) # of the old-to-new mapping. If this object is a child, we # re-assign its relationships based on the old-to-new mapping # (since we will have processed the parent table first, having # carefully ordered them in advance). oldobj = instance # rename for clarity newobj = copy_sqla_object( oldobj, omit_pk=wipe_pk, omit_fk=True, omit_attrs=missing_attrs, debug=False ) rewrite_relationships(oldobj, newobj, objmap, debug=False, skip_table_names=skip_table_names) newobj = translate(oldobj, newobj) if not newobj: continue # translate_fn elected to skip it if not dummy_run: dst_session.add(newobj) # new PK will be created when session is flushed if tdc.is_parent: objmap[oldobj] = newobj # for its children's benefit if flush_per_record: flush() if flush_per_table: flush() flush() if commit_at_end: log.debug("Committing...") dst_session.commit() log.info("merge_db(): finished") # ============================================================================= # Unit tests # ============================================================================= class MergeTestMixin(object): """ Mixin to create source/destination databases as in-memory SQLite databases for unit testing purposes. """ def __init__(self, *args, echo: bool = False, **kwargs) -> None: self.src_engine = create_engine(SQLITE_MEMORY_URL, echo=echo) # type: Engine # noqa self.dst_engine = create_engine(SQLITE_MEMORY_URL, echo=echo) # type: Engine # noqa self.src_session = sessionmaker(bind=self.src_engine)() # type: Session # noqa self.dst_session = sessionmaker(bind=self.dst_engine)() # type: Session # noqa # log.critical("SRC SESSION: {}", self.src_session) # log.critical("DST SESSION: {}", self.dst_session) self.Base = declarative_base() # noinspection PyArgumentList super().__init__(*args, **kwargs) def dump_source(self) -> None: log.warning("Dumping source") dump_database_as_insert_sql( engine=self.src_engine, fileobj=sys.stdout, include_ddl=True, multirow=True ) def dump_destination(self) -> None: log.warning("Dumping destination") dump_database_as_insert_sql( engine=self.dst_engine, fileobj=sys.stdout, include_ddl=True, multirow=True ) def do_merge(self, dummy_run: bool = False) -> None: merge_db( base_class=self.Base, src_engine=self.src_engine, dst_session=self.dst_session, allow_missing_src_tables=False, allow_missing_src_columns=True, translate_fn=None, skip_tables=None, only_tables=None, extra_table_dependencies=None, dummy_run=dummy_run, report_every=1000 ) class MergeTestPlain(MergeTestMixin, unittest.TestCase): """ Unit tests for a simple merge operation. *Notes re unit testing:* - tests are found by virtue of the fact that their names start with "test"; see https://docs.python.org/3.6/library/unittest.html#basic-example - A separate instance of the class is created for each test, and in each case is called with: .. code-block:: python setUp() testSOMETHING() tearDown() ... see https://docs.python.org/3.6/library/unittest.html#test-cases - If you use mixins, they go AFTER :class:`unittest.TestCase`; see https://stackoverflow.com/questions/1323455/python-unit-test-with-base-and-sub-class """ # noqa def setUp(self) -> None: # log.info('In setUp()') class Parent(self.Base): __tablename__ = "parent" id = Column(Integer, primary_key=True, autoincrement=True) name = Column(Text) class Child(self.Base): __tablename__ = "child" id = Column(Integer, primary_key=True, autoincrement=True) name = Column(Text) parent_id = Column(Integer, ForeignKey("parent.id")) parent = relationship(Parent) self.Base.metadata.create_all(self.src_engine) self.Base.metadata.create_all(self.dst_engine) p1 = Parent(name="Parent 1") p2 = Parent(name="Parent 2") c1 = Child(name="Child 1") c2 = Child(name="Child 2") c1.parent = p1 c2.parent = p2 self.src_session.add_all([p1, p2, c1, c2]) self.src_session.commit() def tearDown(self) -> None: pass # log.info('In tearDown()') def test_source(self) -> None: self.dump_source() def test_dummy(self) -> None: log.info("Testing merge_db() in dummy run mode") self.do_merge(dummy_run=True) self.dst_session.commit() self.dump_destination() def test_merge_to_empty(self) -> None: log.info("Testing merge_db() to empty database") self.do_merge(dummy_run=False) self.dst_session.commit() self.dump_destination() # @unittest.skip def test_merge_to_existing(self) -> None: log.info("Testing merge_db() to pre-populated database") self.do_merge(dummy_run=False) self.dst_session.commit() self.do_merge(dummy_run=False) self.dst_session.commit() self.dump_destination() class MergeTestCircular(MergeTestMixin, unittest.TestCase): """ Unit tests including a circular dependency, which will fail. """ @unittest.expectedFailure def test_setup_circular(self): class Parent(self.Base): __tablename__ = "parent" id = Column(Integer, primary_key=True, autoincrement=True) name = Column(Text) child_id = Column(Integer, ForeignKey("child.id")) child = relationship("Child", foreign_keys=[child_id]) class Child(self.Base): __tablename__ = "child" id = Column(Integer, primary_key=True, autoincrement=True) name = Column(Text) parent_id = Column(Integer, ForeignKey("parent.id")) parent = relationship(Parent, foreign_keys=[parent_id]) self.Base.metadata.create_all(self.src_engine) self.Base.metadata.create_all(self.dst_engine) p1 = Parent(name="Parent 1") p2 = Parent(name="Parent 2") c1 = Child(name="Child 1") c2 = Child(name="Child 2") c1.parent = p1 c2.parent = p2 p1.child = c1 p2.child = c2 self.src_session.add_all([p1, p2, c1, c2]) self.src_session.commit() # will raise sqlalchemy.exc.CircularDependencyError # noqa @unittest.expectedFailure def test_circular(self) -> None: self.test_setup_circular() # fails here log.info("Testing merge_db() with circular relationship") self.do_merge(dummy_run=False) # would fail here, but fails earlier! self.dst_session.commit() self.dump_destination() # ============================================================================= # main # ============================================================================= # run with "python merge_db.py -v" to be verbose if __name__ == "__main__": main_only_quicksetup_rootlogger() unittest.main()
36.359649
140
0.595585
507167017c37a56d341bec21304559a189be2c37
2,603
py
Python
analysis/r_omega_two_star/r_contraction.py
yamauchi1132/Research_Codes
c9e104f8592277cb4aa5c479b014c78c702a0939
[ "FSFAP" ]
null
null
null
analysis/r_omega_two_star/r_contraction.py
yamauchi1132/Research_Codes
c9e104f8592277cb4aa5c479b014c78c702a0939
[ "FSFAP" ]
null
null
null
analysis/r_omega_two_star/r_contraction.py
yamauchi1132/Research_Codes
c9e104f8592277cb4aa5c479b014c78c702a0939
[ "FSFAP" ]
null
null
null
import sys, os sys.path.append(os.pardir) import numpy as np import operator import math import matplotlib as mpl import matplotlib.pyplot as plt from common import * dirname = "data/sph_t0000.dat" def calc_r_v_ratio(p1, p2, pos1_cg, vel1_cg, pos2_cg, vel2_cg): r_x = [] v_x = [] r_y = [] v_y = [] r_z = [] v_z = [] for i in range(len(p1)): vx = p1[i].vel[0] - vel1_cg[0] vy = p1[i].vel[1] - vel1_cg[1] vz = p1[i].vel[2] - vel1_cg[2] vx2 = vx * vx vy2 = vy * vy vz2 = vz * vz v2 = vx2 + vy2 + vz2 ene = 0.5*v2 + p1[i].pot + p1[i].uene if(ene < 0): r_x.append(p1[i].pos[0]-pos1_cg[0]) v_x.append(vx) r_y.append(p1[i].pos[1]-pos1_cg[1]) v_y.append(vy) r_z.append(p1[i].pos[2]-pos1_cg[2]) v_z.append(vz) for i in range(len(p2)): vx = p2[i].vel[0] - vel2_cg[0] vy = p2[i].vel[1] - vel2_cg[1] vz = p2[i].vel[2] - vel2_cg[2] vx2 = vx * vx vy2 = vy * vy vz2 = vz * vz v2 = vx2 + vy2 + vz2 ene = 0.5*v2 + p2[i].pot + p2[i].uene if(ene < 0): r_x.append(p2[i].pos[0]-pos2_cg[0]) v_x.append(vx) r_y.append(p2[i].pos[1]-pos2_cg[1]) v_y.append(vy) r_z.append(p2[i].pos[2]-pos2_cg[2]) v_z.append(vz) return r_x, v_x, r_y, v_y, r_z, v_z if __name__ == '__main__': args = sys.argv data = np.loadtxt(dirname) p = [Particle() for i in range(len(data))] readfile(data, p) p.sort(key=operator.attrgetter("p_id")) p1 = [Particle() for i in range(len(data)//2)] p2 = [Particle() for i in range(len(data)//2)] for i in range(len(p)): if i < len(p)//2: p1[i] = p[i] else: p2[i-(len(p))] = p[i] pos1_cg = np.array([0.,0.,0.]) vel1_cg = np.array([0.,0.,0.]) pos2_cg = np.array([0.,0.,0.]) vel2_cg = np.array([0.,0.,0.]) pos1_cg, vel1_cg = calc_center_of_gravity(p1) pos2_cg, vel2_cg = calc_center_of_gravity(p2) r_x, v_x, r_y, v_y, r_z, v_z = calc_r_v_ratio(p1, p2, pos1_cg, vel1_cg, pos2_cg, vel2_cg) #plot(r1, omega1, r2, omega2) fx = open('r_contraction_x.data', 'w') fy = open('r_contraction_y.data', 'w') fz = open('r_contraction_z.data', 'w') # f = open('axis_1.3.data', 'w') for i in range(len(r_x)//2): fx.write("%e %e %e %e\n"%(r_x[i], v_x[i], r_x[i+(len(r_x)//2)], v_x[i+(len(r_x)//2)])) for i in range(len(r_y)//2): fy.write("%e %e %e %e\n"%(r_y[i], v_y[i], r_y[i+(len(r_y)//2)], v_y[i+(len(r_y)//2)])) for i in range(len(r_z)//2): fz.write("%e %e %e %e\n"%(r_z[i], v_z[i], r_z[i+(len(r_z)//2)], v_z[i+(len(r_z)//2)])) fx.close() fy.close() fz.close()
26.561224
91
0.557434
39a641195b0929989264a20388d5cb86436d83ff
370
py
Python
Program/QT_Line.py
EleKoPhi/GBCT_new
660c41a009a4d9db0a872369cb9519d8e37a9c5d
[ "CECILL-B" ]
null
null
null
Program/QT_Line.py
EleKoPhi/GBCT_new
660c41a009a4d9db0a872369cb9519d8e37a9c5d
[ "CECILL-B" ]
null
null
null
Program/QT_Line.py
EleKoPhi/GBCT_new
660c41a009a4d9db0a872369cb9519d8e37a9c5d
[ "CECILL-B" ]
null
null
null
from PyQt5.QtWidgets import * class QHLine(QFrame): def __init__(self): super(QHLine, self).__init__() self.setFrameShape(QFrame.HLine) self.setFrameShadow(QFrame.Sunken) class QVLine(QFrame): def __init__(self): super(QVLine, self).__init__() self.setFrameShape(QFrame.VLine) self.setFrameShadow(QFrame.Sunken)
26.428571
42
0.675676
b2608621c012f722b2831025cc1520c0b929eedf
3,558
py
Python
iscc_bench/imageid/ssc.py
coblo/isccbench
daf22cdd740fa99c62c4a56233593159e398596b
[ "BSD-2-Clause" ]
3
2019-07-07T19:30:26.000Z
2020-09-17T10:17:36.000Z
iscc_bench/imageid/ssc.py
coblo/isccbench
daf22cdd740fa99c62c4a56233593159e398596b
[ "BSD-2-Clause" ]
3
2019-04-15T13:00:48.000Z
2021-12-13T19:44:12.000Z
iscc_bench/imageid/ssc.py
coblo/isccbench
daf22cdd740fa99c62c4a56233593159e398596b
[ "BSD-2-Clause" ]
1
2021-02-25T16:13:14.000Z
2021-02-25T16:13:14.000Z
# -*- coding: utf-8 -*- """ Original Code (MIT License) from: https://github.com/BAILOOL/ANMS-Codes """ import math def SSC(keypoints, num_ret_points, tolerance, cols, rows): exp1 = rows + cols + 2 * num_ret_points exp2 = ( 4 * cols + 4 * num_ret_points + 4 * rows * num_ret_points + rows * rows + cols * cols - 2 * rows * cols + 4 * rows * cols * num_ret_points ) exp3 = math.sqrt(exp2) exp4 = 2 * (num_ret_points - 1) sol1 = -round(float(exp1 + exp3) / exp4) # first solution sol2 = -round(float(exp1 - exp3) / exp4) # second solution high = ( sol1 if (sol1 > sol2) else sol2 ) # binary search range initialization with positive solution low = math.floor(math.sqrt(len(keypoints) / num_ret_points)) prevWidth = -1 selected_keypoints = [] ResultVec = [] result = [] complete = False K = num_ret_points Kmin = round(K - (K * tolerance)) Kmax = round(K + (K * tolerance)) while ~complete: width = low + (high - low) / 2 if ( width == prevWidth or low > high ): # needed to reassure the same radius is not repeated again ResultVec = result # return the keypoints from the previous iteration break c = width / 2 # initializing Grid numCellCols = int(math.floor(cols / c)) numCellRows = int(math.floor(rows / c)) coveredVec = [ [False for i in range(numCellCols + 1)] for j in range(numCellCols + 1) ] result = [] for i in range(len(keypoints)): row = int( math.floor(keypoints[i].pt[1] / c) ) # get position of the cell current point is located at col = int(math.floor(keypoints[i].pt[0] / c)) if coveredVec[row][col] == False: # if the cell is not covered result.append(i) rowMin = int( (row - math.floor(width / c)) if ((row - math.floor(width / c)) >= 0) else 0 ) # get range which current radius is covering rowMax = int( (row + math.floor(width / c)) if ((row + math.floor(width / c)) <= numCellRows) else numCellRows ) colMin = int( (col - math.floor(width / c)) if ((col - math.floor(width / c)) >= 0) else 0 ) colMax = int( (col + math.floor(width / c)) if ((col + math.floor(width / c)) <= numCellCols) else numCellCols ) for rowToCov in range(rowMin, rowMax + 1): for colToCov in range(colMin, colMax + 1): if ~coveredVec[rowToCov][colToCov]: coveredVec[rowToCov][ colToCov ] = True # cover cells within the square bounding box with width w if len(result) >= Kmin and len(result) <= Kmax: # solution found ResultVec = result complete = True elif len(result) < Kmin: high = width - 1 # update binary search range else: low = width + 1 prevWidth = width for i in range(len(ResultVec)): selected_keypoints.append(keypoints[ResultVec[i]]) return selected_keypoints
34.543689
95
0.497752
6a13e8a5d86376c8e8432dd9568bb1797c23a786
491
py
Python
Python3/0087-Scramble-String/soln-1.py
wyaadarsh/LeetCode-Solutions
3719f5cb059eefd66b83eb8ae990652f4b7fd124
[ "MIT" ]
5
2020-07-24T17:48:59.000Z
2020-12-21T05:56:00.000Z
Python3/0087-Scramble-String/soln-1.py
zhangyaqi1989/LeetCode-Solutions
2655a1ffc8678ad1de6c24295071308a18c5dc6e
[ "MIT" ]
null
null
null
Python3/0087-Scramble-String/soln-1.py
zhangyaqi1989/LeetCode-Solutions
2655a1ffc8678ad1de6c24295071308a18c5dc6e
[ "MIT" ]
2
2020-07-24T17:49:01.000Z
2020-08-31T19:57:35.000Z
class Solution: def isScramble(self, s1: str, s2: str) -> bool: if len(s1) != len(s2): return False if s1 == s2: return True if sorted(s1) != sorted(s2): return False n = len(s1) for i in range(1, n): if (self.isScramble(s1[:i], s2[-i:]) and self.isScramble(s1[i:], s2[:-i])) or (self.isScramble(s1[:i], s2[:i]) and self.isScramble(s1[i:], s2[i:])): return True return False
35.071429
160
0.492872
43ab2ee8a025745f55a9ab0ab119316b867a1072
2,272
py
Python
numba_dppy/examples/debug/side-by-side-2.py
akharche/numba-dppy
f12dac64b149bd72f305f341ff64b796bbb648c1
[ "Apache-2.0" ]
22
2020-11-25T12:13:33.000Z
2022-03-10T14:26:14.000Z
numba_dppy/examples/debug/side-by-side-2.py
akharche/numba-dppy
f12dac64b149bd72f305f341ff64b796bbb648c1
[ "Apache-2.0" ]
439
2020-11-17T14:48:38.000Z
2022-03-31T10:09:47.000Z
numba_dppy/examples/debug/side-by-side-2.py
akharche/numba-dppy
f12dac64b149bd72f305f341ff64b796bbb648c1
[ "Apache-2.0" ]
11
2020-11-24T14:29:46.000Z
2022-03-10T05:50:27.000Z
# Copyright 2020, 2021 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import dpctl import numba import numpy as np import numba_dppy as dppy def common_loop_body(i, a, b): param_a = a[i] param_b = b[i] param_c = param_a + 10 # Set breakpoint here param_d = param_b * 0.5 result = param_c + param_d return result def scenario(api): print("Using API:", api) global_size = 10 a, b, c = arguments(global_size) if api == "numba-dppy-kernel": dppy_func_driver(a, b, c) else: numba_func_driver(a, b, c) print(a, b, c, sep="\n") def arguments(N, dtype=np.float32): a = np.arange(N, dtype=dtype) b = np.arange(N, dtype=dtype) c = np.empty_like(a) return a, b, c @numba.njit(debug=True) def numba_func_driver(a, b, c): for i in range(len(c)): c[i] = numba_loop_body(i, a, b) def dppy_func_driver(a, b, c): device = dpctl.select_default_device() with dpctl.device_context(device): dppy_kernel[len(c), dppy.DEFAULT_LOCAL_SIZE](a, b, c) @dppy.kernel(debug=True) def dppy_kernel(a_in_kernel, b_in_kernel, c_in_kernel): i = dppy.get_global_id(0) c_in_kernel[i] = dppy_loop_body(i, a_in_kernel, b_in_kernel) numba_loop_body = numba.njit(debug=True)(common_loop_body) dppy_loop_body = dppy.func(debug=True)(common_loop_body) def main(): parser = argparse.ArgumentParser() parser.add_argument( "--api", required=False, default="numba", choices=["numba", "numba-dppy-kernel"], help="Start the version of functions using numba or numba-dppy API", ) args = parser.parse_args() scenario(args.api) print("Done...") if __name__ == "__main__": main()
23.915789
76
0.673856
96b9d10d0fa3b66dc3f0332d443b25e9744b44e2
43,987
py
Python
script_gravidade_bif.py
jpra2/Presto2.1
e2a3e3121280b011a6be2a59be708623bdc0b482
[ "CNRI-Python" ]
1
2018-12-04T19:32:27.000Z
2018-12-04T19:32:27.000Z
script_gravidade_bif.py
jpra2/Presto2.1
e2a3e3121280b011a6be2a59be708623bdc0b482
[ "CNRI-Python" ]
null
null
null
script_gravidade_bif.py
jpra2/Presto2.1
e2a3e3121280b011a6be2a59be708623bdc0b482
[ "CNRI-Python" ]
null
null
null
from test34_bif import Msclassic_bif import time import numpy as np from PyTrilinos import Epetra, AztecOO, EpetraExt class gravidade_bif(Msclassic_bif): def __init__(self): super().__init__() self.run_grav() def create_flux_vector_pf_gr(self): """ cria um vetor para armazenar os fluxos em cada volume da malha fina os fluxos sao armazenados de acordo com a direcao sendo 6 direcoes para cada volume, adicinando o efeito da gravidade """ t0 = time.time() verif_local = 1 lim4 = 1e-4 soma = 0 soma2 = 0 soma3 = 0 store_flux_pf = {} for volume in self.all_fine_vols: #1 flux = {} kvol = self.mb.tag_get_data(self.perm_tag, volume).reshape([3, 3]) centroid_volume = self.mesh_topo_util.get_average_position([volume]) z_vol = self.tz - centroid_volume[2] adjs_vol = self.mesh_topo_util.get_bridge_adjacencies(volume, 2, 3) gid_vol = self.mb.tag_get_data(self.global_id_tag, volume, flat=True)[0] pvol = self.mb.tag_get_data(self.pf_tag, volume, flat=True)[0] for adj in adjs_vol: #2 gid_adj = self.mb.tag_get_data(self.global_id_tag, adj, flat=True)[0] padj = self.mb.tag_get_data(self.pf_tag, adj, flat=True)[0] kadj = self.mb.tag_get_data(self.perm_tag, adj).reshape([3, 3]) centroid_adj = self.mesh_topo_util.get_average_position([adj]) z_adj = self.tz - centroid_adj[2] direction = centroid_adj - centroid_volume altura = centroid_adj[2] unit = direction/np.linalg.norm(direction) #unit = vetor unitario na direcao de direction uni = self.unitary(direction) z = uni[2] # uni = valor positivo do vetor unitario kvol = np.dot(np.dot(kvol,uni),uni) kadj = np.dot(np.dot(kadj,uni),uni) keq = self.kequiv(kvol, kadj) keq = keq*(np.dot(self.A, uni))/(self.mi) grad_p = (padj - pvol)/float(abs(np.dot(direction, uni))) grad_z = (z_adj - z_vol)/float(abs(np.dot(direction, uni))) q = (grad_p)*keq - grad_z*keq*self.gama flux[tuple(unit)] = q kvol = self.mb.tag_get_data(self.perm_tag, volume).reshape([3, 3]) #1 store_flux_pf[volume] = flux flt = sum(flux.values()) # print(gid_vol) # print(flt) # print(store_flux_pf) # print('\n') # import pdb; pdb.set_trace() self.mb.tag_set_data(self.flux_fine_pf_tag, volume, flt) soma += flt if abs(flt) > lim4 and volume not in self.wells: verif_local = 0 print('nao esta dando conservativo na malha fina') print(gid_vol) print(flt) import pdb; pdb.set_trace() soma_prod = [] soma_inj = [] with open('fluxo_malha_fina_gr.txt', 'w') as arq: for volume in self.wells: gid = self.mb.tag_get_data(self.global_id_tag, volume, flat = True)[0] values = store_flux_pf[volume].values() arq.write('gid:{0} , fluxo:{1}\n'.format(gid, sum(values))) # print('gid:{0}'.format(gid)) # print('valor:{0}'.format(sum(values))) if volume in self.wells_inj: soma_inj.append(sum(values)) else: soma_prod.append(sum(values)) # print('\n') soma2 += sum(values) arq.write('\n') arq.write('soma_inj:{0}\n'.format(sum(soma_inj))) arq.write('soma_prod:{0}'.format(sum(soma_prod))) print('soma_inj:{0}'.format(sum(soma_inj))) print('soma_prod:{0}'.format(sum(soma_prod))) print('soma2 : {0}'.format(soma2)) if abs(soma2) > lim4: print('nao esta dando conservativo globalmente') import pdb; pdb.set_trace() # print('saiu de def create_flux_vector_pf') print('\n') tf = time.time() # import pdb; pdb.set_trace() return store_flux_pf def create_flux_vector_pf_gr_bif_1(self): """ cria um vetor para armazenar os fluxos em cada volume da malha fina os fluxos sao armazenados de acordo com a direcao sendo 6 direcoes para cada volume adiciona o efeito da gravidade """ # volumes_in_primal_set = self.mb.tag_get_data(self.volumes_in_primal_tag, 0, flat=True)[0] # volumes_in_primal_set = self.mb.get_entities_by_handle(volumes_in_primal_set) lim = 1e-4 self.dfdsmax = 0 self.fimin = 10 self.qmax = 0 self.store_velocity_pf = {} store_flux_pf = {} for primal in self.primals: #1 primal_id1 = self.mb.tag_get_data(self.primal_id_tag, primal, flat=True)[0] primal_id = self.ident_primal[primal_id1] fine_elems_in_primal = self.mb.get_entities_by_handle(primal) for volume in fine_elems_in_primal: #2 list_keq = [] list_p = [] list_gid = [] list_keq3 = [] list_gidsadj = [] list_qw = [] qw3 = [] qw = 0 flux = {} velocity = {} fi = self.mb.tag_get_data(self.fi_tag, volume, flat=True)[0] if fi < self.fimin: self.fimin = fi kvol = self.mb.tag_get_data(self.perm_tag, volume).reshape([3, 3]) lamb_w_vol = self.mb.tag_get_data(self.lamb_w_tag, volume, flat=True)[0] lamb_o_vol = self.mb.tag_get_data(self.lamb_o_tag, volume, flat=True)[0] lbt_vol = lamb_w_vol + lamb_o_vol fw_vol = self.mb.tag_get_data(self.fw_tag, volume, flat=True)[0] sat_vol = self.mb.tag_get_data(self.sat_tag, volume, flat=True)[0] centroid_volume = self.mesh_topo_util.get_average_position([volume]) z_vol = self.tz - centroid_volume[2] adjs_vol = self.mesh_topo_util.get_bridge_adjacencies(volume, 2, 3) gid_vol = self.mb.tag_get_data(self.global_id_tag, volume, flat=True)[0] pvol = self.mb.tag_get_data(self.pf_tag, volume, flat=True)[0] for adj in adjs_vol: #3 gid_adj = self.mb.tag_get_data(self.global_id_tag, adj, flat=True)[0] sat_adj = self.mb.tag_get_data(self.sat_tag, adj, flat=True)[0] padj = self.mb.tag_get_data(self.pf_tag, adj, flat=True)[0] kadj = self.mb.tag_get_data(self.perm_tag, adj).reshape([3, 3]) centroid_adj = self.mesh_topo_util.get_average_position([adj]) z_adj = self.tz - centroid_adj[2] direction = centroid_adj - centroid_volume unit = direction/np.linalg.norm(direction) #unit = vetor unitario na direcao de direction uni = self.unitary(direction) # uni = valor positivo do vetor unitario kvol = np.dot(np.dot(kvol,uni),uni) kadj = np.dot(np.dot(kadj,uni),uni) lamb_w_adj = self.mb.tag_get_data(self.lamb_w_tag, adj, flat=True)[0] lamb_o_adj = self.mb.tag_get_data(self.lamb_o_tag, adj, flat=True)[0] lbt_adj = lamb_w_adj + lamb_o_adj fw_adj = self.mb.tag_get_data(self.fw_tag, adj, flat=True)[0] keq3 = (kvol*lamb_w_vol + kadj*lamb_w_adj)/2.0 # kvol = kvol*(lamb_w_vol + lamb_o_vol) # kadj = kadj*(lamb_w_adj + lamb_o_adj) keq = self.kequiv(kvol, kadj)*((lbt_adj + lbt_vol)/2.0) grad_p = (padj - pvol)/float(abs(np.dot(direction, uni))) grad_z = (z_adj - z_vol)/float(abs(np.dot(direction, uni))) q = ((grad_p) - grad_z*self.gama)*(np.dot(self.A, uni))*keq list_keq.append(keq) list_p.append(padj) list_gid.append(gid_adj) keq2 = keq qw += q*(fw_adj + fw_vol)/2.0 #keq = keq*(np.dot(self.A, uni)) #pvol2 = self.mb.tag_get_data(self.pms_tag, volume, flat=True)[0] #padj2 = self.mb.tag_get_data(self.pms_tag, adj, flat=True)[0] #grad_p2 = (padj2 - pvol2)/float(abs(np.dot(direction, uni))) #q = (grad_p)*keq #qw3.append(grad_p*keq3*(np.dot(self.A, uni))) # if grad_p < 0: # #4 # fw = fw_vol # qw += (fw*grad_p*kvol*(np.dot(self.A, uni))) # list_qw.append(fw*grad_p*kvol*(np.dot(self.A, uni))) # # else: # fw = fw_adj # qw += (fw*grad_p*kadj*(np.dot(self.A, uni))) # list_qw.append(fw*grad_p*kadj*(np.dot(self.A, uni))) # if gid_adj > gid_vol: # v = -(grad_p)*keq2 # else: # v = (grad_p)*keq2 flux[tuple(unit)] = q #velocity[tuple(unit)] = v kvol = self.mb.tag_get_data(self.perm_tag, volume).reshape([3, 3]) if abs(sat_adj - sat_vol) < lim or abs(fw_adj -fw_vol) < lim: continue dfds = abs((fw_adj - fw_vol)/(sat_adj - sat_vol)) # print('aqui') # print(gid_vol) # print(gid_adj) # print(fw_adj - fw_vol) # print(sat_adj - sat_vol) # print(dfds) if dfds > self.dfdsmax: self.dfdsmax = dfds #2 # list_keq.append(-sum(list_keq)) # list_p.append(pvol) # list_gid.append(gid_vol) # # list_keq = np.array(list_keq) # list_p = np.array(list_p) # resultado = sum(list_keq*list_p) # print(gid_vol) # print(velocity) # print('\n') # import pdb; pdb.set_trace() #self.store_velocity_pf[volume] = velocity store_flux_pf[volume] = flux flt = sum(flux.values()) print('gid') print(gid_vol) print('flux') print(flt) print('\n') import pdb; pdb.set_trace() self.mb.tag_set_data(self.flux_fine_pf_tag, volume, flt) if abs(sum(flux.values())) > lim and volume not in self.wells: print('nao esta dando conservativo na malha fina') print(gid_vol) print(sum(flux.values())) import pdb; pdb.set_trace() qmax = max(list(map(abs, flux.values()))) if qmax > self.qmax: self.qmax = qmax if volume in self.wells_prod: qw_out = sum(flux.values())*fw_vol #qw3.append(-qw_out) qo_out = sum(flux.values())*(1 - fw_vol) self.prod_o.append(qo_out) self.prod_w.append(qw_out) qw = qw - qw_out if abs(qw) < lim and qw < 0.0: qw = 0.0 elif qw < 0 and volume not in self.wells_inj: print('gid') print(gid_vol) print('qw < 0') print(qw) import pdb; pdb.set_trace() else: pass # if (qw < 0.0 or sum(qw3) < 0.0) and volume not in self.wells_inj: # print('qw3') # print(sum(qw3)) # print('qw') # print(qw) # import pdb; pdb.set_trace() self.mb.tag_set_data(self.flux_w_tag, volume, qw) # print(self.dfdsmax) # print(sum(flux.values())) # print(sum(qw)) # print(sum(qw3)) # print('\n') soma_inj = [] soma_prod = [] soma2 = 0 with open('fluxo_malha_fina_bif_gr{0}.txt'.format(self.loop), 'w') as arq: for volume in self.wells: gid = self.mb.tag_get_data(self.global_id_tag, volume, flat = True)[0] values = self.store_flux_pf[volume].values() arq.write('gid:{0} , fluxo:{1}\n'.format(gid, sum(values))) # print('gid:{0}'.format(gid)) # print('valor:{0}'.format(sum(values))) if volume in self.wells_inj: soma_inj.append(sum(values)) else: soma_prod.append(sum(values)) # print('\n') soma2 += sum(values) arq.write('\n') arq.write('soma_inj:{0}\n'.format(sum(soma_inj))) arq.write('soma_prod:{0}\n'.format(sum(soma_prod))) arq.write('tempo:{0}'.format(self.tempo)) return store_flux_pf def create_flux_vector_pms_gr(self): """ cria um vetor para armazenar os fluxos em cada volume da malha fina os fluxos sao armazenados de acordo com a direcao sendo 6 direcoes para cada volume adicinando o efeito da gravidade """ soma_prod = 0 soma_inj = 0 lim4 = 1e-4 store_velocity = {} store_flux = {} for primal in self.primals: #1 primal_id = self.mb.tag_get_data(self.primal_id_tag, primal, flat=True)[0] primal_id = self.ident_primal[primal_id] fine_elems_in_primal = self.mb.get_entities_by_handle(primal) for volume in fine_elems_in_primal: #2 flux = {} velocity = {} kvol = self.mb.tag_get_data(self.perm_tag, volume).reshape([3, 3]) centroid_volume = self.mesh_topo_util.get_average_position([volume]) z_vol = self.tz - centroid_volume[2] adjs_vol = self.mesh_topo_util.get_bridge_adjacencies(volume, 2, 3) gid_vol = self.mb.tag_get_data(self.global_id_tag, volume, flat=True)[0] for adj in adjs_vol: #3 gid_adj = self.mb.tag_get_data(self.global_id_tag, adj, flat=True)[0] if adj not in fine_elems_in_primal: #4 pvol = self.mb.tag_get_data(self.pms_tag, volume, flat=True)[0] padj = self.mb.tag_get_data(self.pms_tag, adj, flat=True)[0] #3 else: #4 pvol = self.mb.tag_get_data(self.pcorr_tag, volume, flat=True)[0] padj = self.mb.tag_get_data(self.pcorr_tag, adj, flat=True)[0] #3 kadj = self.mb.tag_get_data(self.perm_tag, adj).reshape([3, 3]) centroid_adj = self.mesh_topo_util.get_average_position([adj]) z_adj = self.tz - centroid_adj[2] direction = centroid_adj - centroid_volume unit = direction/np.linalg.norm(direction) #unit = vetor unitario na direcao de direction uni = self.unitary(direction) # uni = valor positivo do vetor unitario kvol = np.dot(np.dot(kvol,uni),uni) kadj = np.dot(np.dot(kadj,uni),uni) keq = self.kequiv(kvol, kadj)/(self.mi) keq2 = keq keq = keq*(np.dot(self.A, uni)) pvol2 = self.mb.tag_get_data(self.pms_tag, volume, flat=True)[0] padj2 = self.mb.tag_get_data(self.pms_tag, adj, flat=True)[0] grad_p = (padj - pvol)/float(abs(np.dot(direction, uni))) grad_z = (z_adj - z_vol)/float(abs(np.dot(direction, uni))) grad_p2 = (padj2 - pvol2)/float(abs(np.dot(direction, uni))) q = (grad_p)*keq - grad_z*keq*self.gama print((grad_p)*keq) print(- grad_z*keq*self.gama) print(q) print(self.store_flux_pf_gr[volume][tuple(unit)]) print('\n') import pdb; pdb.set_trace() if gid_adj > gid_vol: v = -((grad_p2)*keq2 - grad_z*self.gama*keq2) else: v = -((grad_p2)*keq2 - grad_z*self.gama*keq2) flux[tuple(unit)] = q velocity[tuple(unit)] = v kvol = self.mb.tag_get_data(self.perm_tag, volume).reshape([3, 3]) #2 # print(gid_vol) # print(velocity) # print('\n') # import pdb; pdb.set_trace() store_flux[volume] = flux self.mb.tag_set_data(self.flux_fine_pms_tag, volume, sum(flux.values())) # flt = sum(flux.values()) # if volume not in self.wells_inj and volume not in self.wells_prod: # lim4 = 1e-7 # if abs(flt) > lim4: # print(gid_vol) # print(flt) # import pdb; pdb.set_trace() # flt = sum(flux.values()) store_velocity[volume] = velocity for volume in set(self.all_fine_vols) - set(self.wells): gid = self.mb.tag_get_data(self.global_id_tag, volume, flat=True)[0] values = store_flux[volume].values() if sum(values) > lim4: print('fluxo multiescala nao esta dando conservativo') print('gid:{0}'.format(gid)) print(sum(values)) import pdb; pdb.set_trace() with open('fluxo_multiescala_gr.txt', 'w') as arq: for volume in self.wells: gid = self.mb.tag_get_data(self.global_id_tag, volume, flat= True)[0] values = store_flux[volume].values() if volume in self.wells_inj: soma_inj += sum(values) else: soma_prod += sum(values) arq.write('gid:{0} , fluxo:{1}\n'.format(gid, sum(values))) arq.write('\n') arq.write('soma_inj:{0}\n'.format(soma_inj)) arq.write('soma_prod:{0}\n'.format(soma_prod)) return store_flux def mount_lines_5_gr(self, volume, map_id): """ monta as linhas da matriz retorna o valor temp_k e o mapeamento temp_id map_id = mapeamento local dos elementos adiciona o efeito da gravidade temp_ids = [] # vetor com ids dados pelo mapeamento temp_k = [] # vetor com a permeabilidade equivalente temp_kgr = [] # vetor com a permeabilidade equivalente multipicada pelo gama temp_hs = [] # vetor com a diferença de altura dos elementos """ #0 soma2 = 0.0 soma3 = 0.0 temp_ids = [] temp_k = [] temp_kgr = [] temp_hs = [] gid1 = self.mb.tag_get_data(self.global_id_tag, volume, flat=True)[0] volume_centroid = self.mesh_topo_util.get_average_position([volume]) adj_volumes = self.mesh_topo_util.get_bridge_adjacencies(volume, 2, 3) kvol = self.mb.tag_get_data(self.perm_tag, volume).reshape([3, 3]) for adj in adj_volumes: #2 gid2 = self.mb.tag_get_data(self.global_id_tag, adj, flat=True)[0] #temp_ps.append(padj) adj_centroid = self.mesh_topo_util.get_average_position([adj]) direction = adj_centroid - volume_centroid altura = adj_centroid[2] uni = self.unitary(direction) z = uni[2] kvol = np.dot(np.dot(kvol,uni),uni) kadj = self.mb.tag_get_data(self.perm_tag, adj).reshape([3, 3]) kadj = np.dot(np.dot(kadj,uni),uni) keq = self.kequiv(kvol, kadj) keq = keq*(np.dot(self.A, uni))/(self.mi*abs(np.dot(direction, uni))) keq2 = keq*self.gama temp_kgr.append(-keq2) temp_hs.append(self.tz - altura) temp_ids.append(map_id[adj]) temp_k.append(-keq) kvol = self.mb.tag_get_data(self.perm_tag, volume).reshape([3, 3]) #1 # soma2 = soma2*(self.tz-volume_centroid[2]) # soma2 = -(soma2 + soma3) temp_hs.append(self.tz-volume_centroid[2]) temp_kgr.append(-sum(temp_kgr)) temp_k.append(-sum(temp_k)) temp_ids.append(map_id[volume]) #temp_ps.append(pvol) return temp_k, temp_ids, temp_hs, temp_kgr def Neuman_problem_6_gr(self): # self.set_of_collocation_points_elems = set() #0 """ map_volumes[volume] map_volumes[adj] """ volumes_in_primal_set = self.mb.tag_get_data(self.volumes_in_primal_tag, 0, flat=True)[0] volumes_in_primal_set = self.mb.get_entities_by_handle(volumes_in_primal_set) for primal in self.primals: #1 primal_id = self.mb.tag_get_data(self.primal_id_tag, primal, flat=True)[0] fine_elems_in_primal = self.mb.get_entities_by_handle(primal) volumes_in_primal = set(fine_elems_in_primal) & set(volumes_in_primal_set) #all_volumes = list(fine_elems_in_primal) dim = len(fine_elems_in_primal) map_volumes = dict(zip(fine_elems_in_primal, range(len(fine_elems_in_primal)))) std_map = Epetra.Map(len(fine_elems_in_primal), 0, self.comm) b = Epetra.Vector(std_map) A = Epetra.CrsMatrix(Epetra.Copy, std_map, 3) # b_np = np.zeros(dim) # A_np = np.zeros((dim, dim)) for volume in fine_elems_in_primal: #2 soma = 0 centroid_volume = self.mesh_topo_util.get_average_position([volume]) z_vol = self.tz - centroid_volume[2] pvol = self.mb.tag_get_data(self.pms_tag, volume, flat=True)[0] k_vol = self.mb.tag_get_data(self.perm_tag, volume).reshape([3, 3]) adjs_vol = self.mesh_topo_util.get_bridge_adjacencies(volume, 2, 3) temp_k = [] temp_id = [] if (volume in self.wells_d) or (volume in self.set_of_collocation_points_elems): #3 # value = self.mb.tag_get_data(self.pms_tag, volume, flat=True)[0] temp_k.append(1.0) temp_id.append(map_volumes[volume]) b[map_volumes[volume]] = pvol # b_np[map_volumes[volume]] = value #2 elif volume in volumes_in_primal: #3 for adj in adjs_vol: #4 gid2 = self.mb.tag_get_data(self.global_id_tag, adj, flat=True)[0] padj = self.mb.tag_get_data(self.pms_tag, adj, flat=True)[0] centroid_adj = self.mesh_topo_util.get_average_position([adj]) z_adj = self.tz - centroid_adj[2] direction = centroid_adj - centroid_volume uni = self.unitary(direction) # h = abs(np.dot(direction, uni)) k_vol = np.dot(np.dot(k_vol,uni),uni) k_adj = self.mb.tag_get_data(self.perm_tag, adj).reshape([3, 3]) k_adj = np.dot(np.dot(k_adj,uni),uni) keq = self.kequiv(k_vol, k_adj) keq = keq*(np.dot(self.A, uni))/(self.mi*abs(np.dot(direction, uni))) keq2 = keq*self.gama if adj in fine_elems_in_primal: #5 # soma += keq temp_k.append(-keq) temp_id.append(map_volumes[adj]) b[map_volumes[volume]] += -(z_adj - z_vol)*keq2 #4 else: #5 q_in = (padj - pvol)*(keq) - (z_adj - z_vol)*keq2 b[map_volumes[volume]] += q_in # b_np[map_volumes[volume]] += q_in k_vol = self.mb.tag_get_data(self.perm_tag, volume).reshape([3, 3]) #3 temp_k.append(-sum(temp_k)) temp_id.append(map_volumes[volume]) if volume in self.wells_n: #4 index = self.wells_n.index(volume) if volume in self.wells_inj: #5 b[map_volumes[volume]] += self.set_q[index] # b_np[map_volumes[volume]] += self.set_q[index] #4 else: #5 b[map_volumes[volume]] -= self.set_q[index] # b_np[map_volumes[volume]] -= self.set_q[index] #2 else: #3 temp_k, temp_id, temp_hs, temp_kgr = self.mount_lines_5_gr(volume, map_volumes) temp_hs = np.array(temp_hs) temp_kgr = np.array(temp_kgr) b[map_volumes[volume]] += - (np.dot(temp_hs, temp_kgr)) print(- (np.dot(temp_hs, temp_kgr))) print(temp_hs) print(temp_kgr) print('\n') import pdb; pdb.set_trace() if volume in self.wells_n: #4 index = self.wells_n.index(volume) if volume in self.wells_inj: #5 b[map_volumes[volume]] += self.set_q[index] # b_np[map_volumes[volume]] += self.set_q[index] #4 else: #5 b[map_volumes[volume]] -= self.set_q[index] # b_np[map_volumes[volume]] -= self.set_q[index] #2 A.InsertGlobalValues(map_volumes[volume], temp_k, temp_id) # A_np[map_volumes[volume], temp_id] = temp_k # print('primal_id') # print(self.ident_primal[primal_id]) # print('gid: {0}'.format(gid1)) # print('temp_id:{0}'.format(temp_id)) # print('temp_k:{0}'.format(temp_k)) # print(A_np[map_volumes[volume]]) # print('b_np:{0}'.format(b_np[map_volumes[volume]])) #1 A.FillComplete() x = self.solve_linear_problem(A, b, dim) # x_np = np.linalg.solve(A_np, b_np) # print(x_np) for volume in fine_elems_in_primal: #2 self.mb.tag_set_data(self.pcorr_tag, volume, x[map_volumes[volume]]) # self.mb.tag_set_data(self.pms3_tag, volume, x_np[map_volumes[volume]]) def run_grav(self): """ roda o programa inteiro adicionando o efeito da gravidade """ # Solucao direta self.prod_w = [] self.prod_o = [] t0 = time.time() # self.set_volumes_in_primal() self.set_sat_in() self.set_lamb_2() self.set_global_problem_vf_3_gr1_bif() self.Pf = self.solve_linear_problem(self.trans_fine, self.b, len(self.all_fine_vols_ic)) self.organize_Pf() del self.Pf self.mb.tag_set_data(self.pf_tag, self.all_fine_vols, np.asarray(self.Pf_all)) del self.Pf_all self.test_conservation_fine() # self.store_flux_pf_gr_bif = self.create_flux_vector_pf_gr_bif_1() """ ################################################################ # Solucao Multiescala self.calculate_restriction_op_2() self.calculate_prolongation_op_het() self.organize_op() self.Tc = self.modificar_matriz(self.pymultimat(self.pymultimat(self.trilOR, self.trans_fine, self.nf_ic), self.trilOP, self.nf_ic), self.nc, self.nc) self.Qc = self.modificar_vetor(self.multimat_vector(self.trilOR, self.nf_ic, self.b), self.nc) self.Pc = self.solve_linear_problem(self.Tc, self.Qc, self.nc) self.set_Pc() self.Pms = self.multimat_vector(self.trilOP, self.nf_ic, self.Pc) del self.trilOP del self.trilOR del self.Tc del self.Qc del self.Pc self.organize_Pms() del self.Pms self.mb.tag_set_data(self.pms_tag, self.all_fine_vols, np.asarray(self.Pms_all)) del self.Pms_all self.erro() self.test_conservation_coarse_gr() # self.Neuman_problem_6_gr() # self.store_flux_pms_gr = self.create_flux_vector_pms_gr() #################################################################### """ print('acaboooou') self.mb.write_file('new_out_bif_gr.vtk') shutil.copytree(self.caminho1, self.pasta) def set_global_problem_vf_3_gr1_bif(self): """ transmissibilidade da malha fina excluindo os volumes com pressao prescrita usando a mobilidade media adiciona o efeito da gravidade """ #0 std_map = Epetra.Map(len(self.all_fine_vols_ic),0,self.comm) self.trans_fine = Epetra.CrsMatrix(Epetra.Copy, std_map, 7) self.b = Epetra.Vector(std_map) for volume in self.all_fine_vols_ic - set(self.neigh_wells_d): #1 soma = 0.0 soma2 = 0.0 soma3 = 0.0 volume_centroid = self.mesh_topo_util.get_average_position([volume]) adj_volumes = self.mesh_topo_util.get_bridge_adjacencies(volume, 2, 3) kvol = self.mb.tag_get_data(self.perm_tag, volume).reshape([3, 3]) global_volume = self.mb.tag_get_data(self.global_id_tag, volume, flat=True)[0] lamb_w_vol = self.mb.tag_get_data(self.lamb_w_tag, volume)[0][0] lamb_o_vol = self.mb.tag_get_data(self.lamb_o_tag, volume)[0][0] lbt_vol = lamb_w_vol + lamb_o_vol z_vol = self.tz - volume_centroid[2] soma = 0.0 temp_glob_adj = [] temp_k = [] flux_gr = [] for adj in adj_volumes: #2 global_adj = self.mb.tag_get_data(self.global_id_tag, adj, flat=True)[0] adj_centroid = self.mesh_topo_util.get_average_position([adj]) z_adj = self.tz - adj_centroid[2] altura = adj_centroid[2] direction = adj_centroid - volume_centroid uni = self.unitary(direction) kvol = np.dot(np.dot(kvol,uni),uni) #kvol = kvol*(lamb_w_vol + lamb_o_vol) kadj = self.mb.tag_get_data(self.perm_tag, adj).reshape([3, 3]) kadj = np.dot(np.dot(kadj,uni),uni) lamb_w_adj = self.mb.tag_get_data(self.lamb_w_tag, adj)[0][0] lamb_o_adj = self.mb.tag_get_data(self.lamb_o_tag, adj)[0][0] lbt_adj = lamb_w_adj + lamb_o_adj #kadj = kadj*(lamb_w_adj + lamb_o_adj) keq = self.kequiv(kvol, kadj)*((lbt_adj + lbt_vol)/2.0) keq = keq*(np.dot(self.A, uni)/float(abs(np.dot(direction, uni)))) grad_z = (z_adj - z_vol) q_grad_z = grad_z*self.gama*keq flux_gr.append(q_grad_z) temp_glob_adj.append(self.map_vols_ic[adj]) temp_k.append(-keq) kvol = self.mb.tag_get_data(self.perm_tag, volume).reshape([3, 3]) #1 soma2 = -sum(flux_gr) temp_k.append(-sum(temp_k)) temp_glob_adj.append(self.map_vols_ic[volume]) self.trans_fine.InsertGlobalValues(self.map_vols_ic[volume], temp_k, temp_glob_adj) if volume in self.wells_n: #2 index = self.wells_n.index(volume) # tipo_de_poco = self.mb.tag_get_data(self.tipo_de_poco_tag, volume) if volume in self.wells_inj: #3 self.b[self.map_vols_ic[volume]] += self.set_q[index] + soma2 #2 else: #3 self.b[self.map_vols_ic[volume]] += -self.set_q[index] + soma2 #1 else: #2 self.b[self.map_vols_ic[volume]] += soma2 #0 for volume in self.neigh_wells_d: #1 soma2 = 0.0 soma3 = 0.0 volume_centroid = self.mesh_topo_util.get_average_position([volume]) z_vol = self.tz - volume_centroid[2] adj_volumes = self.mesh_topo_util.get_bridge_adjacencies(volume, 2, 3) kvol = self.mb.tag_get_data(self.perm_tag, volume).reshape([3, 3]) global_volume = self.mb.tag_get_data(self.global_id_tag, volume, flat=True)[0] lamb_w_vol = self.mb.tag_get_data(self.lamb_w_tag, volume)[0][0] lamb_o_vol = self.mb.tag_get_data(self.lamb_o_tag, volume)[0][0] lbt_vol = lamb_w_vol + lamb_o_vol soma = 0.0 temp_glob_adj = [] temp_k = [] flux_gr = [] for adj in adj_volumes: #2 global_adj = self.mb.tag_get_data(self.global_id_tag, adj, flat=True)[0] adj_centroid = self.mesh_topo_util.get_average_position([adj]) z_adj = self.tz - adj_centroid[2] altura = adj_centroid[2] direction = adj_centroid - volume_centroid uni = self.unitary(direction) z = uni[2] kvol = np.dot(np.dot(kvol,uni),uni) #kvol = kvol*(lamb_w_vol + lamb_o_vol) kadj = self.mb.tag_get_data(self.perm_tag, adj).reshape([3, 3]) kadj = np.dot(np.dot(kadj,uni),uni) lamb_w_adj = self.mb.tag_get_data(self.lamb_w_tag, adj)[0][0] lamb_o_adj = self.mb.tag_get_data(self.lamb_o_tag, adj)[0][0] lbt_adj = lamb_o_adj + lamb_o_adj #kadj = kadj*(lamb_w_adj + lamb_o_adj) keq = self.kequiv(kvol, kadj)*((lbt_adj + lbt_vol)/2.0) keq = keq*(np.dot(self.A, uni)/(abs(np.dot(direction, uni)))) grad_z = (z_adj - z_vol) q_grad_z = grad_z*self.gama*keq flux_gr.append(q_grad_z) #2 if adj in self.wells_d: #3 soma = soma + keq index = self.wells_d.index(adj) self.b[self.map_vols_ic[volume]] += self.set_p[index]*(keq) #2 else: #3 temp_glob_adj.append(self.map_vols_ic[adj]) temp_k.append(-keq) soma = soma + keq #2 kvol = self.mb.tag_get_data(self.perm_tag, volume).reshape([3, 3]) #1 soma2 = -sum(flux_gr) temp_k.append(soma) temp_glob_adj.append(self.map_vols_ic[volume]) self.trans_fine.InsertGlobalValues(self.map_vols_ic[volume], temp_k, temp_glob_adj) if volume in self.wells_n: #2 index = self.wells_n.index(volume) # tipo_de_poco = self.mb.tag_get_data(self.tipo_de_poco_tag, volume) if volume in self.wells_inj: #3 self.b[self.map_vols_ic[volume]] += self.set_q[index] + soma2 #2 else: #3 self.b[self.map_vols_ic[volume]] += -self.set_q[index] + soma2 #1 else: #2 self.b[self.map_vols_ic[volume]] += soma2 #0 self.trans_fine.FillComplete() def test_conservation_coarse_gr(self): """ verifica se o fluxo é conservativo nos volumes da malha grossa utilizando a pressao multiescala para calcular os fluxos na interface dos mesmos """ #0 volumes_in_primal_set = self.mb.tag_get_data(self.volumes_in_primal_tag, 0, flat=True)[0] volumes_in_primal_set = self.mb.get_entities_by_handle(volumes_in_primal_set) lim = 10**(-6) soma = 0 Qc2 = [] prim = [] for primal in self.primals: #1 Qc = 0 # my_adjs = set() primal_id1 = self.mb.tag_get_data(self.primal_id_tag, primal, flat=True)[0] primal_id = self.ident_primal[primal_id1] fine_elems_in_primal = self.mb.get_entities_by_handle(primal) volumes_in_primal = set(fine_elems_in_primal) & set(volumes_in_primal_set) for volume in volumes_in_primal: #2 adjs_vol = self.mesh_topo_util.get_bridge_adjacencies(volume, 2, 3) for adj in adjs_vol: #3 if adj in fine_elems_in_primal: continue # my_adjs.add(adj) pvol = self.mb.tag_get_data(self.pms_tag, volume, flat=True)[0] padj = self.mb.tag_get_data(self.pms_tag, adj, flat=True)[0] kvol = self.mb.tag_get_data(self.perm_tag, volume).reshape([3, 3]) kadj = self.mb.tag_get_data(self.perm_tag, adj).reshape([3, 3]) centroid_volume = self.mesh_topo_util.get_average_position([volume]) centroid_adj = self.mesh_topo_util.get_average_position([adj]) z_vol = self.tz - centroid_volume[2] z_adj = self.tz - centroid_adj[2] direction = centroid_adj - centroid_volume uni = self.unitary(direction) kvol = np.dot(np.dot(kvol,uni),uni) kadj = np.dot(np.dot(kadj,uni),uni) keq = self.kequiv(kvol, kadj) keq = keq*(np.dot(self.A, uni))/(self.mi) #*np.dot(self.h, uni)) grad_p = (padj - pvol)/float(abs(np.dot(direction, uni))) grad_z = (z_adj - z_vol)/float(abs(np.dot(direction, uni))) q = (grad_p)*keq - grad_z*keq*self.gama Qc += q #1 # print('Primal:{0} ///// Qc: {1}'.format(primal_id, Qc)) Qc2.append(Qc) prim.append(primal_id) self.mb.tag_set_data(self.flux_coarse_tag, fine_elems_in_primal, np.repeat(Qc, len(fine_elems_in_primal))) # if Qc > lim: # print('Qc nao deu zero') # import pdb; pdb.set_trace() with open('Qc_gr.txt', 'w') as arq: for i,j in zip(prim, Qc2): arq.write('Primal:{0} ///// Qc: {1}\n'.format(i, j)) arq.write('\n') arq.write('sum Qc:{0}'.format(sum(Qc2))) def test_conservation_fine(self): for volume in self.all_fine_vols: gid_vol = self.mb.tag_get_data(self.global_id_tag, volume, flat=True)[0] pvol = self.mb.tag_get_data(self.pf_tag, volume, flat=True)[0] sat_vol = self.mb.tag_get_data(self.sat_tag, volume, flat=True)[0] volume_centroid = self.mesh_topo_util.get_average_position([volume]) adj_volumes = self.mesh_topo_util.get_bridge_adjacencies(volume, 2, 3) kvol = self.mb.tag_get_data(self.perm_tag, volume).reshape([3, 3]) global_volume = self.mb.tag_get_data(self.global_id_tag, volume, flat=True)[0] lamb_w_vol = self.mb.tag_get_data(self.lamb_w_tag, volume)[0][0] lamb_o_vol = self.mb.tag_get_data(self.lamb_o_tag, volume)[0][0] lbt_vol = lamb_w_vol + lamb_o_vol z_vol = self.tz - volume_centroid[2] print('gidvol') print(gid_vol) print('pvol') print(pvol) print('zvol') print(z_vol) flux_gr = [] qt = 0 print('\n') for adj in adj_volumes: padj = self.mb.tag_get_data(self.pf_tag, adj, flat=True)[0] sat_adj = self.mb.tag_get_data(self.sat_tag, adj, flat=True)[0] gid_adj = self.mb.tag_get_data(self.global_id_tag, adj, flat=True)[0] sat_adj = self.mb.tag_get_data(self.sat_tag, adj, flat=True)[0] padj = self.mb.tag_get_data(self.pf_tag, adj, flat=True)[0] kadj = self.mb.tag_get_data(self.perm_tag, adj).reshape([3, 3]) centroid_adj = self.mesh_topo_util.get_average_position([adj]) z_adj = self.tz - centroid_adj[2] print('gidadj') print(gid_adj) print('padj') print(padj) print('zadj') print(z_adj) print('\n') direction = centroid_adj - volume_centroid # unit = direction/np.linalg.norm(direction) # unit = vetor unitario na direcao de direction uni = self.unitary(direction) # uni = valor positivo do vetor unitario kvol = np.dot(np.dot(kvol,uni),uni) kadj = np.dot(np.dot(kadj,uni),uni) lamb_w_adj = self.mb.tag_get_data(self.lamb_w_tag, adj, flat=True)[0] lamb_o_adj = self.mb.tag_get_data(self.lamb_o_tag, adj, flat=True)[0] lbt_adj = lamb_w_adj + lamb_o_adj keq = self.kequiv(kvol, kadj)*(lbt_vol + lbt_adj)/2.0 keq = keq*(np.dot(self.A, uni)/float(abs(np.dot(direction, uni)))) grad_p = (padj - pvol) grad_z = (z_adj - z_vol) print('keq') print(keq) print('gradp') print(grad_p) print('grad_z') print(grad_z) print('grad_p*keq') print(grad_p*keq) print('gradz*gama*keq') print(grad_z*self.gama*keq) print('gradp*keq - gradz*gama*keq') print(grad_p*keq - grad_z*self.gama*keq) print('\n') qt += (grad_p - grad_z*self.gama)*keq kvol = self.mb.tag_get_data(self.perm_tag, volume).reshape([3, 3]) print(gid_vol) print(qt) print('\n') import pdb; pdb.set_trace() sim_grav_bif = gravidade_bif()
45.022518
158
0.510992
913bf0a308c89940898763aacb693c97d4e43e50
18,994
py
Python
autocertkit/ack_cli.py
zhenzhenc/auto-cert-kit
82602c58899e2855078a3ccd03718c68fc38c42b
[ "BSD-2-Clause" ]
null
null
null
autocertkit/ack_cli.py
zhenzhenc/auto-cert-kit
82602c58899e2855078a3ccd03718c68fc38c42b
[ "BSD-2-Clause" ]
null
null
null
autocertkit/ack_cli.py
zhenzhenc/auto-cert-kit
82602c58899e2855078a3ccd03718c68fc38c42b
[ "BSD-2-Clause" ]
null
null
null
#!/usr/bin/python # Copyright (c) Citrix Systems Inc. # All rights reserved. # # Redistribution and use in source and binary forms, # with or without modification, are permitted provided # that the following conditions are met: # # * Redistributions of source code must retain the above # copyright notice, this list of conditions and the # following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the # following disclaimer in the documentation and/or other # materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND # CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, # INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF # SUCH DAMAGE. """CLI for generating auto cert kit configuration file""" # @PRODUCT_VERSION@ # @BUILD_NUMBER@ import utils import sys import os import ConfigParser import testbase import inspect import operator import itertools from test_generators import * from status import check_for_process import test_report import test_runner from optparse import OptionParser from exceptions import * MIN_VLAN = 0 MAX_VLAN = 4096 INSTALL_DIR = '/opt/xensource/packages/files/auto-cert-kit' def get_xapi_session(config): # Future improvement, implement remote login. For now, just return local return utils.get_local_xapi_session() def parse_cmd_args(): parser = OptionParser( usage="%prog [options]", version="%prog @KIT_VERSION@") parser.add_option("-d", "--debug", dest="debug", action="store_const", const=True, default=False, help="Run in debug mode, exit on failure") parser.add_option("-t", "--vlantag", dest="vlan", default="trunk", help="Specify a VLAN tag ID for which your switches have been configured") parser.add_option("-g", "--generate", dest="generate", action="store_const", const=True, default=False, help="Generate the config file only. Do not run the tests yet.") parser.add_option("-l", "--list", dest="list_tests", action="store_const", const=True, default=False, help="List all of the test methods") parser.add_option("-i", "--info", dest="info", help="Print out information about a specified test name.") parser.add_option("-m", "--mode", dest="mode", default="ALL", help="Specify the type of certification you wish to perform. (ALL (default) | NET | LSTOR | CPU | OPS).") parser.add_option("-e", "--exclude", dest="exclude", action="append", default=[], help="Exclude one or multiple set of tests. (OVS | BRIDGE | LSTOR | CPU | OPS | CRASH).") parser.add_option("-n", "--netconf", dest="netconf", help="Specify the network config file.") # The option string is an extension, allowing users to specify KVPs # e.g. optionstr = "dhcp=True,key1=val1,..." parser.add_option("-o", "--option", dest="optionstr", help="Specify extra options.") (options, _) = parser.parse_args() config = {} config['debug'] = options.debug if options.vlan: config['vlan_id'] = options.vlan if options.generate: config['generate'] = True if options.info: print_documentation(options.info) if options.netconf: assert_file_exists(options.netconf, 'Network config') config['netconf'] = parse_netconf_file(options.netconf) else: raise utils.ArgumentError( "You must specify a network configuration file. %s" % options.mode) config['mode'] = options.mode config['exclude'] = options.exclude utils.log.debug("Test Mode: %s" % options.netconf) if options.list_tests: print_all_test_classes() if options.optionstr: kvp_rec = kvp_string_to_rec(options.optionstr) for k, v in kvp_rec.iteritems(): config[k] = v # Check if files exist file_opts = [("vpx_dlvm_file", "VPX DLVM file")] for opt, label in file_opts: if opt in config.keys(): assert_file_exists(os.path.join(INSTALL_DIR, config[opt]), label) for key, value in config['netconf'].iteritems(): if key.startswith('eth'): vf_driver_pkg = value['vf_driver_pkg'] if vf_driver_pkg: assert_file_exists(os.path.join( INSTALL_DIR, vf_driver_pkg), "VF driver rpm package") return config def kvp_string_to_rec(string): """Take an input string 'a=b,c=d,e=f' and return the record {'a':'b','c':'d','e':'f'}""" rec = {} for kvp in string.split(','): arr = kvp.split('=') if len(arr) > 2: raise Exception("Cannot convert %s to KVP" % string) rec[arr[0]] = arr[1] return rec def parse_netconf_file(filename): """Parse network config file in ini format E.g. [eth0] network_id = 0 vlan_ids = 200,204,240 vf_driver_name = igbvf vf_driver_pkg = igbvf-2.3.9.6-1.x86_64.rpm max_vf_num = 8 [static_0_200] ip_start = 192.168.0.2 ip_end = 192.168.0.10 netmask = 255.255.255.0 gw = 192.168.0.1 [static_management] # similar to static_0_200 """ utils.log.debug("Parse network config file: %s" % filename) cp = ConfigParser.ConfigParser() cp.read(filename) rec = {} for section in cp.sections(): if section.startswith('eth'): # Ethernet Interface utils.log.debug("Ethernet Interface: '%s'" % section) # Network ID is a label of the physical network the adapter has been connected to # and should be uniform across all adapters. network_id = cp.get(section, 'network_id') utils.log.debug("Network IDs: '%s'" % network_id) try: network_id = int(network_id) except: raise utils.InvalidArgument('Network IDs for %s' % section, network_id, 'should be integer') # Parse VLAN IDs vlan_ids = "" if cp.has_option(section, 'vlan_ids'): vlan_ids = cp.get(section, 'vlan_ids') utils.log.debug("VLAN IDs: '%s'" % vlan_ids) try: vlan_ids = [int(id.strip()) for id in vlan_ids.split(',')] except: raise utils.InvalidArgument('VLAN IDs for %s' % section, vlan_ids, 'should be integer with comma as delimiter if multiple') # Ensure that the specified VLAN is valid for vlan_id in vlan_ids: if vlan_id > MAX_VLAN or vlan_id < MIN_VLAN: raise utils.InvalidArgument('VLAN ID for %s' % section, vlan_id, '%d < x < %d' % (MIN_VLAN, MAX_VLAN)) # VF driver info for SR-IOV test vf_driver_name = "" if cp.has_option(section, 'vf_driver_name'): vf_driver_name = cp.get(section, 'vf_driver_name') vf_driver_pkg = "" if cp.has_option(section, 'vf_driver_pkg'): vf_driver_pkg = cp.get(section, 'vf_driver_pkg') utils.log.debug("VF Driver Name: '%s'" % vf_driver_name) utils.log.debug("VF Driver Pkg: '%s'" % vf_driver_pkg) # User is able to specify maxinum VF number per PF to test max_vf_num = "" if cp.has_option(section, 'max_vf_num'): max_vf_num = cp.get(section, 'max_vf_num') if max_vf_num: try: max_vf_num = int(max_vf_num) except: raise utils.InvalidArgument('Maxinum VF number for %s' % section, max_vf_num, 'should be integer') if max_vf_num <= 1: raise utils.InvalidArgument('Maxinum VF number for %s' % section, max_vf_num, 'should be greater than 1') max_vf_num = str(max_vf_num) utils.log.debug( "Maxinum VF number per PF to test: '%s'" % max_vf_num) rec[section] = {'network_id': network_id, 'vlan_ids': vlan_ids, 'vf_driver_name': vf_driver_name, 'vf_driver_pkg': vf_driver_pkg, 'max_vf_num': max_vf_num} elif section == "static_management": rec[section] = parse_static_config(cp, section) elif section.startswith('static'): # Definition of network properties (e.g. dhcp/static) arr = section.split('_') if len(arr) != 3: raise utils.InvalidArgument('static addressing section', section, 'should be in format of "static_<network_id>_<vlan_id>"') net = arr[1] vlan = arr[2] if not unicode(net.strip()).isdecimal() or not unicode(vlan.strip()).isdecimal(): raise utils.InvalidArgument('static addressing section', section, 'should be valid network and/or vlan to determine') rec[section] = parse_static_config(cp, section) else: raise Exception("Error: Unknown section: '%s'" % section) return rec def assert_file_exists(file_name, label): """Check whether a file exists, if it doesn't, raise an exception""" if not os.path.isfile(file_name): raise utils.ConfigFileNotFound(file_name, label) def validate_param(value, possibles, arg_name): """Ensure that the provided value is one of values in the possibles list""" if value.upper() not in [string.upper() for string in possibles]: raise utils.InvalidArgument(arg_name, value, possibles) def parse_static_config(configParser, section): """Parse a ini section specifying static networking config for droid VMs to use.""" utils.log.debug("Read section '%s'" % section) config = {} for option in ['ip_start', 'ip_end', 'netmask', 'gw']: config[option] = configParser.get(section, option) utils.log.debug("Get option %s = '%s'" % (option, config[option])) if not config[option]: raise utils.InvalidArgument( option, config[option], "Should not be empty!") return config def network_interfaces_to_test(session, config): """Return a list of all the ethernet devices that must be tested by the auto cert kit. In turn, each device must be the 'primary' interface, upon which we run our cert tests.""" # Extract from netconf the network interfaces that the user # has specified. ifaces_to_test = [iface.strip() for iface in config['netconf'].keys() if iface.startswith('eth')] devices = utils.get_master_network_devices(session) # Filter the list of devices available on the master by the interfaces # specified by the caller in their netconf file. devices_to_test = [dev for dev in devices if dev['Kernel_name'] in ifaces_to_test] device_groups_list = [] for key, items in itertools.groupby(devices_to_test, operator.itemgetter('PCI_id')): device_groups_list.append(list(items)) ifaces = [] for grp in device_groups_list: dev = grp[0] # we can use any of the devices in the group ifaces.append(dev['Kernel_name']) return ifaces def storage_interfaces_to_test(session): """Return a list of all storage interface devices that connected to local disks and must be tested by the auto cert kit.""" def comp_key(src, dst, key): return key in src and key in dst and src[key] == dst[key] # Get all interfaces that has a disk connected. devices = utils.get_local_storage_info(session) # Some devices, which can have multiple disks, only need to be tested once. devices_to_test = [] for device in devices: for existing in devices_to_test: if comp_key(device, existing, 'vendor') and \ comp_key(device, existing, 'driver') and \ comp_key(device, existing, 'subclass') and \ comp_key(device, existing, 'class'): break if comp_key(device, existing, 'PCI_id'): break else: devices_to_test.append(device) return devices_to_test def generate_test_config(session, config, test_run_file): """Enumerate hardware on machine and setup test config file""" doc = minidom.Document() kit_info_rec = {'version': '@KIT_VERSION@', 'build': '@BUILD_NUMBER@', 'product_version': '@PRODUCT_VERSION@'} root_node = doc.createElement('automated_certification_kit') utils.set_dict_attributes(root_node, kit_info_rec) doc.appendChild(root_node) global_config_node = doc.createElement('global_config') utils.set_dict_attributes(global_config_node, config) root_node.appendChild(global_config_node) # Create the XML node under which, each device we are testing # is located. devices_node = doc.createElement('devices') root_node.appendChild(devices_node) # Based on the mode of operation, generate the particular tests # that the user would like to run. ifs = network_interfaces_to_test(session, config) storage_devs = storage_interfaces_to_test(session) # Take an interface to use for non-networking tests if not len(ifs): raise Exception( "Error: in order to run these tests, you need at least one network defined.") xml_generators = list(XML_GENERATORS) # Support the loading of additional tests try: import ack_addons xml_generators.extend(ack_addons.XML_GENERATORS) except ImportError: utils.log.debug("No ack_addons module found.") for gen_cls in xml_generators: xml_generator = gen_cls(session, config, config[ 'mode'], ifs, storage_devs) xml_generator.append_xml_config(doc, devices_node) fh = open(test_run_file, 'w') fh.write(doc.toxml()) fh.close() @utils.log_exceptions def pre_flight_checks(session, config): """Check for some of the common problems""" # Check for a run in progress if check_for_process(): raise Exception( "Error: An ACK process already exists on this host. Kill all running ACK processes and start the test again.") # Check for at least two hosts hosts = session.xenapi.host.get_all() if len(hosts) < 2: raise Exception( "Error: You need to have a pool of at least two hosts to run this kit. Only found %d." % (len(hosts))) for host in hosts: ver = utils.get_ack_version(session, host) if not ver: raise Exception( "Error: Both hosts need the Auto Cert Kit installed on them! The kit was not found on %s" % host) # Check that each host has some storage for host in hosts: avail_storage = utils.find_storage_for_host(session, host) if not avail_storage: raise Exception("Error: host '%s' has no available storage.") # Check that we have at least two network adaptors, on the same network recs = config['netconf'] ifaces = {} for k, v in recs.iteritems(): if k.startswith('eth'): ifaces[k] = v['network_id'] utils.log.debug( "Network interfaces specified in config file: %s" % ifaces.keys()) if 'singlenic' in config.keys() and config['singlenic'] == "true": utils.log.debug( "Skipping check for multiple networks, as only a single NIC is being tested") return # If less than 2 interfaces, raise an exception if len(ifaces.keys()) < 2: raise Exception("Error: the test kit needs at least 2 network interfaces to be defined in your network config file. Only %d were found: %s" % ( len(ifaces.keys()), ifaces.keys())) # If less than 2 interfaces share the same network, raise an exception for k, v in ifaces.iteritems(): if ifaces.values().count(v) < 2: raise Exception("Error: ethernet device %s on network %s is defined in the network config but does not have a matching partner. \ Please review the nework configuration and minumum requirements of this kit." % (k, v)) def main(config, test_run_file): """Main routine - assess which tests should be run, and create output file""" session = get_xapi_session(config) # Start Logger utils.init_ack_logging(session) utils.log.info("Options: %s" % config) # Pre checks before running tests pre_flight_checks(session, config) config['xs_version'] = utils.get_xenserver_version(session) config['xcp_version'] = utils.get_xcp_version(session) generate_test_config(session, config, test_run_file) if 'generate' in config: # Generate config file only utils.log.info("Test file generated") session.logout() return "OK" # cleanup in case previous run did not complete entirely if utils.pool_wide_cleanup(session): utils.reboot_normally(session) # Logout of XAPI session anyway - the test runner will create a new session # if needed. (We might only be generating). session.logout() # Kick off the testrunner utils.log.info("Starting Test Runner from ACK CLI.") test_file, output = test_runner.run_tests_from_file(test_run_file) if __name__ == "__main__": # Parse Args config = parse_cmd_args() # Default config file test_run_file = 'test_run.conf' main(config, test_run_file)
37.243137
151
0.613931
6865c8652de74d2e0a40d218cd1bd97e75504fbb
4,904
py
Python
Grid/grid_overlap_multi_xy_axis.py
zhang-xiao-feng/pyecharts-gallery
46c286f20372768e4375a34457c0638b0769aeee
[ "MIT" ]
1
2021-08-06T07:50:50.000Z
2021-08-06T07:50:50.000Z
Grid/grid_overlap_multi_xy_axis.py
yangzuogang/pyecharts-gallery
46c286f20372768e4375a34457c0638b0769aeee
[ "MIT" ]
null
null
null
Grid/grid_overlap_multi_xy_axis.py
yangzuogang/pyecharts-gallery
46c286f20372768e4375a34457c0638b0769aeee
[ "MIT" ]
1
2022-03-10T09:05:44.000Z
2022-03-10T09:05:44.000Z
from pyecharts import options as opts from pyecharts.charts import Bar, Grid, Line bar = ( Bar() .add_xaxis(["{}月".format(i) for i in range(1, 13)]) .add_yaxis( "蒸发量", [2.0, 4.9, 7.0, 23.2, 25.6, 76.7, 135.6, 162.2, 32.6, 20.0, 6.4, 3.3], yaxis_index=0, color="#d14a61", ) .add_yaxis( "降水量", [2.6, 5.9, 9.0, 26.4, 28.7, 70.7, 175.6, 182.2, 48.7, 18.8, 6.0, 2.3], yaxis_index=1, color="#5793f3", ) .extend_axis( yaxis=opts.AxisOpts( name="蒸发量", type_="value", min_=0, max_=250, position="right", axisline_opts=opts.AxisLineOpts( linestyle_opts=opts.LineStyleOpts(color="#d14a61") ), axislabel_opts=opts.LabelOpts(formatter="{value} ml"), ) ) .extend_axis( yaxis=opts.AxisOpts( type_="value", name="温度", min_=0, max_=25, position="left", axisline_opts=opts.AxisLineOpts( linestyle_opts=opts.LineStyleOpts(color="#675bba") ), axislabel_opts=opts.LabelOpts(formatter="{value} °C"), splitline_opts=opts.SplitLineOpts( is_show=True, linestyle_opts=opts.LineStyleOpts(opacity=1) ), ) ) .set_global_opts( yaxis_opts=opts.AxisOpts( name="降水量", min_=0, max_=250, position="right", offset=80, axisline_opts=opts.AxisLineOpts( linestyle_opts=opts.LineStyleOpts(color="#5793f3") ), axislabel_opts=opts.LabelOpts(formatter="{value} ml"), ), title_opts=opts.TitleOpts(title="Grid-Overlap-多 X/Y 轴示例"), tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="cross"), legend_opts=opts.LegendOpts(pos_left="25%"), ) ) line = ( Line() .add_xaxis(["{}月".format(i) for i in range(1, 13)]) .add_yaxis( "平均温度", [2.0, 2.2, 3.3, 4.5, 6.3, 10.2, 20.3, 23.4, 23.0, 16.5, 12.0, 6.2], yaxis_index=2, color="#675bba", label_opts=opts.LabelOpts(is_show=False), ) ) bar1 = ( Bar() .add_xaxis(["{}月".format(i) for i in range(1, 13)]) .add_yaxis( "蒸发量 1", [2.0, 4.9, 7.0, 23.2, 25.6, 76.7, 135.6, 162.2, 32.6, 20.0, 6.4, 3.3], color="#d14a61", xaxis_index=1, yaxis_index=3, ) .add_yaxis( "降水量 2", [2.6, 5.9, 9.0, 26.4, 28.7, 70.7, 175.6, 182.2, 48.7, 18.8, 6.0, 2.3], color="#5793f3", xaxis_index=1, yaxis_index=3, ) .extend_axis( yaxis=opts.AxisOpts( name="蒸发量", type_="value", min_=0, max_=250, position="right", axisline_opts=opts.AxisLineOpts( linestyle_opts=opts.LineStyleOpts(color="#d14a61") ), axislabel_opts=opts.LabelOpts(formatter="{value} ml"), ) ) .extend_axis( yaxis=opts.AxisOpts( type_="value", name="温度", min_=0, max_=25, position="left", axisline_opts=opts.AxisLineOpts( linestyle_opts=opts.LineStyleOpts(color="#675bba") ), axislabel_opts=opts.LabelOpts(formatter="{value} °C"), splitline_opts=opts.SplitLineOpts( is_show=True, linestyle_opts=opts.LineStyleOpts(opacity=1) ), ) ) .set_global_opts( xaxis_opts=opts.AxisOpts(grid_index=1), yaxis_opts=opts.AxisOpts( name="降水量", min_=0, max_=250, position="right", offset=80, grid_index=1, axisline_opts=opts.AxisLineOpts( linestyle_opts=opts.LineStyleOpts(color="#5793f3") ), axislabel_opts=opts.LabelOpts(formatter="{value} ml"), ), tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="cross"), legend_opts=opts.LegendOpts(pos_left="65%"), ) ) line1 = ( Line() .add_xaxis(["{}月".format(i) for i in range(1, 13)]) .add_yaxis( "平均温度 1", [2.0, 2.2, 3.3, 4.5, 6.3, 10.2, 20.3, 23.4, 23.0, 16.5, 12.0, 6.2], color="#675bba", label_opts=opts.LabelOpts(is_show=False), xaxis_index=1, yaxis_index=5, ) ) overlap_1 = bar.overlap(line) overlap_2 = bar1.overlap(line1) grid = ( Grid(init_opts=opts.InitOpts(width="1200px", height="800px")) .add( overlap_1, grid_opts=opts.GridOpts(pos_right="58%"), is_control_axis_index=True ) .add(overlap_2, grid_opts=opts.GridOpts(pos_left="58%"), is_control_axis_index=True) .render("grid_overlap_multi_xy_axis.html") )
29.365269
88
0.521615
44e893e60b2ec2e17764b76f4d81f5d019d24f88
6,665
py
Python
userbot/plugins/afk.py
NoobRider/catuserbot
dea79d5d8b7174efefcc1c35ed3434516a490f58
[ "MIT" ]
2
2020-04-12T11:51:06.000Z
2020-04-18T14:08:06.000Z
userbot/plugins/afk.py
NoobRider/catuserbot
dea79d5d8b7174efefcc1c35ed3434516a490f58
[ "MIT" ]
null
null
null
userbot/plugins/afk.py
NoobRider/catuserbot
dea79d5d8b7174efefcc1c35ed3434516a490f58
[ "MIT" ]
1
2020-05-18T10:46:56.000Z
2020-05-18T10:46:56.000Z
"""AFK Plugin for @UniBorg Syntax: .afk REASON""" import asyncio import datetime from datetime import datetime from telethon import events from telethon.tl import functions, types from userbot import CMD_HELP global USER_AFK # pylint:disable=E0602 global afk_time # pylint:disable=E0602 global last_afk_message # pylint:disable=E0602 global afk_start global afk_end USER_AFK = {} afk_time = None last_afk_message = {} afk_start = {} @borg.on(events.NewMessage(pattern=r"\.afk ?(.*)", outgoing=True)) # pylint:disable=E0602 async def _(event): if event.fwd_from: return global USER_AFK # pylint:disable=E0602 global afk_time # pylint:disable=E0602 global last_afk_message # pylint:disable=E0602 global afk_start global afk_end global reason USER_AFK = {} afk_time = None last_afk_message = {} afk_end = {} start_1 = datetime.now() afk_start = start_1.replace(microsecond=0) reason = event.pattern_match.group(1) if not USER_AFK: # pylint:disable=E0602 last_seen_status = await borg( # pylint:disable=E0602 functions.account.GetPrivacyRequest( types.InputPrivacyKeyStatusTimestamp() ) ) if isinstance(last_seen_status.rules, types.PrivacyValueAllowAll): afk_time = datetime.datetime.now() # pylint:disable=E0602 USER_AFK = f"yes: {reason}" # pylint:disable=E0602 if reason: await borg.send_message(event.chat_id, f"**I shall be Going afk!** __because ~ {reason}__") else: await borg.send_message(event.chat_id, f"**I am Going afk!**") await asyncio.sleep(5) await event.delete() try: await borg.send_message( # pylint:disable=E0602 Config.PRIVATE_GROUP_BOT_API_ID, # pylint:disable=E0602 f"Set AFK mode to True, and Reason is {reason}" ) except Exception as e: # pylint:disable=C0103,W0703 logger.warn(str(e)) # pylint:disable=E0602 @borg.on(events.NewMessage(outgoing=True)) # pylint:disable=E0602 async def set_not_afk(event): global USER_AFK # pylint:disable=E0602 global afk_time # pylint:disable=E0602 global last_afk_message # pylint:disable=E0602 global afk_start global afk_end back_alive = datetime.now() afk_end = back_alive.replace(microsecond=0) if afk_start != {}: total_afk_time = str((afk_end - afk_start)) current_message = event.message.message if ".afk" not in current_message and "yes" in USER_AFK: # pylint:disable=E0602 shite = await borg.send_message(event.chat_id, "__Back alive!__\n**No Longer afk.**\n `Was afk for:``" + total_afk_time + "`") try: await borg.send_message( # pylint:disable=E0602 Config.PRIVATE_GROUP_BOT_API_ID, # pylint:disable=E0602 "Set AFK mode to False" ) except Exception as e: # pylint:disable=C0103,W0703 await borg.send_message( # pylint:disable=E0602 event.chat_id, "Please set `PRIVATE_GROUP_BOT_API_ID` " + \ "for the proper functioning of afk functionality " + \ "check pinned message in @xtragbot.\n\n `{}`".format(str(e)), reply_to=event.message.id, silent=True ) await asyncio.sleep(5) await shite.delete() USER_AFK = {} # pylint:disable=E0602 afk_time = None # pylint:disable=E0602 @borg.on(events.NewMessage( # pylint:disable=E0602 incoming=True, func=lambda e: bool(e.mentioned or e.is_private) )) async def on_afk(event): if event.fwd_from: return global USER_AFK # pylint:disable=E0602 global afk_time # pylint:disable=E0602 global last_afk_message # pylint:disable=E0602 global afk_start global afk_end back_alivee = datetime.now() afk_end = back_alivee.replace(microsecond=0) if afk_start != {}: total_afk_time = str((afk_end - afk_start)) afk_since = "**a while ago**" current_message_text = event.message.message.lower() if "afk" in current_message_text: # userbot's should not reply to other userbot's # https://core.telegram.org/bots/faq#why-doesn-39t-my-bot-see-messages-from-other-bots return False if USER_AFK and not (await event.get_sender()).bot: # pylint:disable=E0602 if afk_time: # pylint:disable=E0602 now = datetime.datetime.now() datime_since_afk = now - afk_time # pylint:disable=E0602 time = float(datime_since_afk.seconds) days = time // (24 * 3600) time = time % (24 * 3600) hours = time // 3600 time %= 3600 minutes = time // 60 time %= 60 seconds = time if days == 1: afk_since = "**Yesterday**" elif days > 1: if days > 6: date = now + \ datetime.timedelta( days=-days, hours=-hours, minutes=-minutes) afk_since = date.strftime("%A, %Y %B %m, %H:%I") else: wday = now + datetime.timedelta(days=-days) afk_since = wday.strftime('%A') elif hours > 1: afk_since = f"`{int(hours)}h{int(minutes)}m` **ago**" elif minutes > 0: afk_since = f"`{int(minutes)}m{int(seconds)}s` **ago**" else: afk_since = f"`{int(seconds)}s` **ago**" msg = None message_to_reply = f"__My Master Has Been Gone For__ `{total_afk_time}`\nWhere He Is: ONLY GOD KNOWS " + \ f"\n\n__I promise I'll back in a few light years__\n**REASON**: {reason}" \ if reason \ else f"**Heya!**\n__I am currently unavailable. Since when, you ask? For {total_afk_time} I guess.__\n\nWhen will I be back? Soon __Whenever I feel like it__**( ಠ ʖ̯ ಠ)** " msg = await event.reply(message_to_reply) await asyncio.sleep(5) if event.chat_id in last_afk_message: # pylint:disable=E0602 await last_afk_message[event.chat_id].delete() # pylint:disable=E0602 last_afk_message[event.chat_id] = msg # pylint:disable=E0602 CMD_HELP.update({ "afk": ".afk [Optional Reason]\ \nUsage: Sets you as afk.\nReplies to anyone who tags/PM's \ you telling them that you are AFK(reason).\n\nSwitches off AFK when you type back anything, anywhere.\ \n afk full form away from keyboard/keypad.\ " })
39.672619
185
0.611253
4a7bf5312a6fcf888e9c41ef32ffd1a0192c66f5
10,475
py
Python
api/clouds/gdrive.py
h2020-westlife-eu/VRE
a85d5370767939b1971415be48a551ae6b1edc5d
[ "MIT" ]
1
2016-06-28T13:13:27.000Z
2016-06-28T13:13:27.000Z
api/clouds/gdrive.py
h2020-westlife-eu/VRE
a85d5370767939b1971415be48a551ae6b1edc5d
[ "MIT" ]
12
2016-06-28T11:19:46.000Z
2017-05-05T14:24:14.000Z
api/clouds/gdrive.py
h2020-westlife-eu/VRE
a85d5370767939b1971415be48a551ae6b1edc5d
[ "MIT" ]
null
null
null
# coding: utf-8 # Copyright Luna Technology 2015 # Matthieu Riviere <mriviere@luna-technology.com> import os import tempfile import traceback from apiclient.discovery import build import httplib2 from oauth2client import client from pydrive.auth import GoogleAuth from pydrive.drive import GoogleDrive from django.conf import settings from api.data import DATAFILE_READY from api.models import Folder, Datafile SCOPES = 'https://www.googleapis.com/auth/drive' # CLIENT_SECRET_FILE = os.path.join(os.path.dirname(__file__), 'client_secret.json') APPLICATION_NAME = 'Pype (dev)' REDIRECT_URI = 'http://dev.pype.com:8000/api/gdriveproviders/confirm_link.json/' AUTH_URI = "https://accounts.google.com/o/oauth2/auth" TOKEN_URI = "https://accounts.google.com/o/oauth2/token" FOLDER_MIMETYPE = "application/vnd.google-apps.folder" def get_flow(state=None): client_id = settings.GOOGLE_DRIVE_CLIENT_ID client_secret = settings.GOOGLE_DRIVE_CLIENT_SECRET redirect_uri = settings.GOOGLE_DRIVE_CLIENT_URI flow = client.OAuth2WebServerFlow( client_id, client_secret=client_secret, scope=SCOPES, redirect_uri=redirect_uri, auth_uri=AUTH_URI, token_uri=TOKEN_URI ) flow.params['access_type'] = 'offline' flow.params['approval_prompt'] = 'force' if state is not None: flow.params['state'] = state return flow def step1_get_authorize_url(state=None): flow = get_flow(state=state) auth_uri = flow.step1_get_authorize_url() return auth_uri def step2_redeem_code_for_credentials(code): flow = get_flow() credentials = flow.step2_exchange(code) return credentials.to_json() def step3_get_drive_service(credentials_json): credentials = client.OAuth2Credentials.from_json(credentials_json) http_auth = credentials.authorize(httplib2.Http()) drive_service = build('drive', 'v2', http=http_auth) return drive_service def get_pydrive_object(provider): credentials = client.OAuth2Credentials.from_json(provider.credentials) gauth = GoogleAuth() gauth.credentials = credentials if gauth.access_token_expired: print('Google Drive token expired. Refreshing...') gauth.Refresh() provider.credentials = gauth.credentials.to_json() provider.save() gauth.Authorize() drive = GoogleDrive(gauth) return drive def check_gdrive_credentials(provider): drive = get_pydrive_object(provider) drive.ListFile({'q': "'root' in parents and trashed=false"}).GetList() def upload_file_to_gdrive(datafile, provider, tempfile_path): drive = get_pydrive_object(provider) file1 = drive.CreateFile({ 'title': datafile.filename, 'parents': [{'id': datafile.folder.storage_key}] }) file1.SetContentFile(tempfile_path) file1.Upload() return file1['id'] def create_folder_on_gdrive(folder, provider): drive = get_pydrive_object(provider) file1 = drive.CreateFile({ 'title': folder.name, 'mimeType': FOLDER_MIMETYPE, 'parents': [{'id': folder.parent.storage_key}] }) file1.Upload() return file1['id'] def retrieve_file_from_gdrive(datafile, provider): drive = get_pydrive_object(provider) try: with tempfile.NamedTemporaryFile(delete=False) as tmpfile: tmpfilename = tmpfile.name print('Using storage_key: %s' % datafile.storage_key) file1 = drive.CreateFile({'id': datafile.storage_key}) print('Detected title is: %s' % file1['title']) file1.GetContentFile(tmpfilename) return tmpfilename except: print('Download failed: %s' % traceback.format_exc()) return None def delete_file_from_gdrive(provider, storage_key): drive = get_pydrive_object(provider) try: drive.auth.service.files().trash(fileId=storage_key).execute() return True except: print('Delete failed: %s' % traceback.format_exc()) return False def get_children(drive, parent_id=None): children = [] if parent_id is None or parent_id == 'root': query = "('root' in parents or sharedWithMe) and trashed=false" else: query = "'%s' in parents and trashed=false" % parent_id for f in drive.ListFile({'q': query}).GetList(): children.append(f) return children def get_children_from_filelist(files, parent_id=None): if parent_id is None or parent_id == 'root': def filter(f): if len(f['parents']) == 0: return True for parent in f['parents']: if parent['isRoot']: return True return False else: def filter(f): for parent in f['parents']: if parent['id'] == parent_id: return True return False return [f for f in files if filter(f)] def get_all_files(drive): files = [] query = 'trashed=false' for f in drive.ListFile({'q': query}).GetList(): files.append(f) return files def update_quota(provider, drive): try: quota = drive.auth.service.about().get().execute()['quotaBytesTotal'] except: print('Could not get quota from Google Drive:') traceback.print_exc() else: provider.quota_bytes = quota provider.save() def resync_from_gdrive(provider): drive = get_pydrive_object(provider) def update_or_create_file(file_data, parent_folder, child_files_map): if file_data['id'] in child_files_map.keys(): file1 = child_files_map[file_data['id']] if file1.filename != file_data['title']: file1.name = file_data['title'] file1.save() try: size = int(file_data['fileSize']) external_link = '' except (KeyError, ValueError): size = None try: external_link = file_data['alternateLink'] except: print(file_data) raise if file1.size != size or file1.external_link != external_link: file1.size = size file1.external_link = external_link file1.save() del(child_files_map[file_data['id']]) else: # The file isn't present locally. Create it file1 = Datafile() file1.owner = provider.owner file1.folder = parent_folder file1.filename = file_data['title'] file1.upload_state = DATAFILE_READY file1.storage_key = file_data['id'] try: file1.size = int(file_data['fileSize']) except (KeyError, ValueError): file1.size = None file1.external_link = file_data['alternateLink'] file1.save() return file1 def update_or_create_folder(folder_data, parent_folder, child_folders_map): # Check that the folder is present on both sides if folder_data['id'] in child_folders_map.keys(): folder = child_folders_map[folder_data['id']] if folder.name != folder_data['title']: folder.name = folder_data['title'] folder.save() del(child_folders_map[folder_data['id']]) else: # The folder isn't present locally. Create it folder = Folder() folder.owner = provider.owner folder.parent = parent_folder folder.name = folder_data['title'] folder.storage_account = provider folder.storage_key = folder_data['id'] folder.save() return folder def sync_folder_with_drive_2(all_files, local_folder): folder_id = local_folder.storage_key child_folders = list(Folder.objects.filter(parent=local_folder)) child_folders_map = {} for child_folder in child_folders: child_folders_map[child_folder.storage_key] = child_folder child_files = list(Datafile.objects.filter(folder=local_folder)) child_files_map = {} for child_file in child_files: child_files_map[child_file.storage_key] = child_file for c in get_children_from_filelist(all_files, parent_id=folder_id): if c['mimeType'] == FOLDER_MIMETYPE: folder = update_or_create_folder(c, local_folder, child_folders_map) sync_folder_with_drive_2(all_files, folder) else: update_or_create_file(c, local_folder, child_files_map) # Do we have any files on the local side that aren't on the distant side # anymore? for rem_folder_key in child_folders_map: rem_folder = child_folders_map[rem_folder_key] rem_folder.delete() for rem_file_key in child_files_map: rem_file = child_files_map[rem_file_key] rem_file.delete() def sync_folder_with_drive(local_folder): folder_id = local_folder.storage_key child_folders = list(Folder.objects.filter(parent=local_folder)) child_folders_map = {} for child_folder in child_folders: child_folders_map[child_folder.storage_key] = child_folder child_files = list(Datafile.objects.filter(folder=local_folder)) child_files_map = {} for child_file in child_files: child_files_map[child_file.storage_key] = child_file for c in get_children(drive, folder_id): if c['mimeType'] == FOLDER_MIMETYPE: folder = update_or_create_folder(c, local_folder, child_folders_map) sync_folder_with_drive(folder) else: update_or_create_file(c, local_folder, child_files_map) # Do we have any files on the local side that aren't on the distant side # anymore? for rem_folder_key in child_folders_map: rem_folder = child_folders_map[rem_folder_key] rem_folder.delete() for rem_file_key in child_files_map: rem_file = child_files_map[rem_file_key] rem_file.delete() all_files = get_all_files(drive) root_folder = Folder.objects.get(storage_account=provider, parent=None) sync_folder_with_drive_2(all_files, root_folder) #update_quota(provider, drive)
29.843305
84
0.641718
caee7f5f7d01177e3933bab5bc2181e592dee0b9
27,776
py
Python
milvus/grpc_gen/common_pb2.py
fishpenguin/pymilvus
4e73e87e3d8b6317628f2bebaf1e48eddaa05dba
[ "Apache-2.0" ]
null
null
null
milvus/grpc_gen/common_pb2.py
fishpenguin/pymilvus
4e73e87e3d8b6317628f2bebaf1e48eddaa05dba
[ "Apache-2.0" ]
null
null
null
milvus/grpc_gen/common_pb2.py
fishpenguin/pymilvus
4e73e87e3d8b6317628f2bebaf1e48eddaa05dba
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: common.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf.internal import enum_type_wrapper from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='common.proto', package='milvus.proto.common', syntax='proto3', serialized_options=_b('Z3github.com/milvus-io/milvus/internal/proto/commonpb'), serialized_pb=_b('\n\x0c\x63ommon.proto\x12\x13milvus.proto.common\"L\n\x06Status\x12\x32\n\nerror_code\x18\x01 \x01(\x0e\x32\x1e.milvus.proto.common.ErrorCode\x12\x0e\n\x06reason\x18\x02 \x01(\t\"*\n\x0cKeyValuePair\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\t\"\x15\n\x04\x42lob\x12\r\n\x05value\x18\x01 \x01(\x0c\"#\n\x07\x41\x64\x64ress\x12\n\n\x02ip\x18\x01 \x01(\t\x12\x0c\n\x04port\x18\x02 \x01(\x03\"m\n\x07MsgBase\x12.\n\x08msg_type\x18\x01 \x01(\x0e\x32\x1c.milvus.proto.common.MsgType\x12\r\n\x05msgID\x18\x02 \x01(\x03\x12\x11\n\ttimestamp\x18\x03 \x01(\x04\x12\x10\n\x08sourceID\x18\x04 \x01(\x03\"7\n\tMsgHeader\x12*\n\x04\x62\x61se\x18\x01 \x01(\x0b\x32\x1c.milvus.proto.common.MsgBase*\xa5\x04\n\tErrorCode\x12\x0b\n\x07Success\x10\x00\x12\x13\n\x0fUnexpectedError\x10\x01\x12\x11\n\rConnectFailed\x10\x02\x12\x14\n\x10PermissionDenied\x10\x03\x12\x17\n\x13\x43ollectionNotExists\x10\x04\x12\x13\n\x0fIllegalArgument\x10\x05\x12\x14\n\x10IllegalDimension\x10\x07\x12\x14\n\x10IllegalIndexType\x10\x08\x12\x19\n\x15IllegalCollectionName\x10\t\x12\x0f\n\x0bIllegalTOPK\x10\n\x12\x14\n\x10IllegalRowRecord\x10\x0b\x12\x13\n\x0fIllegalVectorID\x10\x0c\x12\x17\n\x13IllegalSearchResult\x10\r\x12\x10\n\x0c\x46ileNotFound\x10\x0e\x12\x0e\n\nMetaFailed\x10\x0f\x12\x0f\n\x0b\x43\x61\x63heFailed\x10\x10\x12\x16\n\x12\x43\x61nnotCreateFolder\x10\x11\x12\x14\n\x10\x43\x61nnotCreateFile\x10\x12\x12\x16\n\x12\x43\x61nnotDeleteFolder\x10\x13\x12\x14\n\x10\x43\x61nnotDeleteFile\x10\x14\x12\x13\n\x0f\x42uildIndexError\x10\x15\x12\x10\n\x0cIllegalNLIST\x10\x16\x12\x15\n\x11IllegalMetricType\x10\x17\x12\x0f\n\x0bOutOfMemory\x10\x18\x12\x11\n\rIndexNotExist\x10\x19\x12\x12\n\rDDRequestRace\x10\xe8\x07*X\n\nIndexState\x12\x12\n\x0eIndexStateNone\x10\x00\x12\x0c\n\x08Unissued\x10\x01\x12\x0e\n\nInProgress\x10\x02\x12\x0c\n\x08\x46inished\x10\x03\x12\n\n\x06\x46\x61iled\x10\x04*X\n\x0cSegmentState\x12\x14\n\x10SegmentStateNone\x10\x00\x12\x0c\n\x08NotExist\x10\x01\x12\x0b\n\x07Growing\x10\x02\x12\n\n\x06Sealed\x10\x03\x12\x0b\n\x07\x46lushed\x10\x04*\xba\x06\n\x07MsgType\x12\r\n\tUndefined\x10\x00\x12\x14\n\x10\x43reateCollection\x10\x64\x12\x12\n\x0e\x44ropCollection\x10\x65\x12\x11\n\rHasCollection\x10\x66\x12\x16\n\x12\x44\x65scribeCollection\x10g\x12\x13\n\x0fShowCollections\x10h\x12\x14\n\x10GetSystemConfigs\x10i\x12\x12\n\x0eLoadCollection\x10j\x12\x15\n\x11ReleaseCollection\x10k\x12\x14\n\x0f\x43reatePartition\x10\xc8\x01\x12\x12\n\rDropPartition\x10\xc9\x01\x12\x11\n\x0cHasPartition\x10\xca\x01\x12\x16\n\x11\x44\x65scribePartition\x10\xcb\x01\x12\x13\n\x0eShowPartitions\x10\xcc\x01\x12\x13\n\x0eLoadPartitions\x10\xcd\x01\x12\x16\n\x11ReleasePartitions\x10\xce\x01\x12\x11\n\x0cShowSegments\x10\xfa\x01\x12\x14\n\x0f\x44\x65scribeSegment\x10\xfb\x01\x12\x10\n\x0b\x43reateIndex\x10\xac\x02\x12\x12\n\rDescribeIndex\x10\xad\x02\x12\x0e\n\tDropIndex\x10\xae\x02\x12\x0b\n\x06Insert\x10\x90\x03\x12\x0b\n\x06\x44\x65lete\x10\x91\x03\x12\n\n\x05\x46lush\x10\x92\x03\x12\x0b\n\x06Search\x10\xf4\x03\x12\x11\n\x0cSearchResult\x10\xf5\x03\x12\x12\n\rGetIndexState\x10\xf6\x03\x12\x1a\n\x15GetIndexBuildProgress\x10\xf7\x03\x12\x1c\n\x17GetCollectionStatistics\x10\xf8\x03\x12\x1b\n\x16GetPartitionStatistics\x10\xf9\x03\x12\r\n\x08Retrieve\x10\xfa\x03\x12\x13\n\x0eRetrieveResult\x10\xfb\x03\x12\x10\n\x0bSegmentInfo\x10\xd8\x04\x12\r\n\x08TimeTick\x10\xb0\t\x12\x13\n\x0eQueryNodeStats\x10\xb1\t\x12\x0e\n\tLoadIndex\x10\xb2\t\x12\x0e\n\tRequestID\x10\xb3\t\x12\x0f\n\nRequestTSO\x10\xb4\t\x12\x14\n\x0f\x41llocateSegment\x10\xb5\t\x12\x16\n\x11SegmentStatistics\x10\xb6\t\x12\x15\n\x10SegmentFlushDone\x10\xb7\t*\"\n\x07\x44slType\x12\x07\n\x03\x44sl\x10\x00\x12\x0e\n\nBoolExprV1\x10\x01\x42\x35Z3github.com/milvus-io/milvus/internal/proto/commonpbb\x06proto3') ) _ERRORCODE = _descriptor.EnumDescriptor( name='ErrorCode', full_name='milvus.proto.common.ErrorCode', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='Success', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='UnexpectedError', index=1, number=1, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='ConnectFailed', index=2, number=2, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='PermissionDenied', index=3, number=3, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CollectionNotExists', index=4, number=4, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='IllegalArgument', index=5, number=5, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='IllegalDimension', index=6, number=7, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='IllegalIndexType', index=7, number=8, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='IllegalCollectionName', index=8, number=9, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='IllegalTOPK', index=9, number=10, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='IllegalRowRecord', index=10, number=11, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='IllegalVectorID', index=11, number=12, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='IllegalSearchResult', index=12, number=13, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='FileNotFound', index=13, number=14, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='MetaFailed', index=14, number=15, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CacheFailed', index=15, number=16, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CannotCreateFolder', index=16, number=17, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CannotCreateFile', index=17, number=18, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CannotDeleteFolder', index=18, number=19, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CannotDeleteFile', index=19, number=20, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='BuildIndexError', index=20, number=21, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='IllegalNLIST', index=21, number=22, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='IllegalMetricType', index=22, number=23, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='OutOfMemory', index=23, number=24, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='IndexNotExist', index=24, number=25, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='DDRequestRace', index=25, number=1000, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=388, serialized_end=937, ) _sym_db.RegisterEnumDescriptor(_ERRORCODE) ErrorCode = enum_type_wrapper.EnumTypeWrapper(_ERRORCODE) _INDEXSTATE = _descriptor.EnumDescriptor( name='IndexState', full_name='milvus.proto.common.IndexState', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='IndexStateNone', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='Unissued', index=1, number=1, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='InProgress', index=2, number=2, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='Finished', index=3, number=3, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='Failed', index=4, number=4, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=939, serialized_end=1027, ) _sym_db.RegisterEnumDescriptor(_INDEXSTATE) IndexState = enum_type_wrapper.EnumTypeWrapper(_INDEXSTATE) _SEGMENTSTATE = _descriptor.EnumDescriptor( name='SegmentState', full_name='milvus.proto.common.SegmentState', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='SegmentStateNone', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='NotExist', index=1, number=1, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='Growing', index=2, number=2, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='Sealed', index=3, number=3, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='Flushed', index=4, number=4, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=1029, serialized_end=1117, ) _sym_db.RegisterEnumDescriptor(_SEGMENTSTATE) SegmentState = enum_type_wrapper.EnumTypeWrapper(_SEGMENTSTATE) _MSGTYPE = _descriptor.EnumDescriptor( name='MsgType', full_name='milvus.proto.common.MsgType', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='Undefined', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CreateCollection', index=1, number=100, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='DropCollection', index=2, number=101, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='HasCollection', index=3, number=102, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='DescribeCollection', index=4, number=103, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='ShowCollections', index=5, number=104, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='GetSystemConfigs', index=6, number=105, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='LoadCollection', index=7, number=106, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='ReleaseCollection', index=8, number=107, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CreatePartition', index=9, number=200, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='DropPartition', index=10, number=201, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='HasPartition', index=11, number=202, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='DescribePartition', index=12, number=203, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='ShowPartitions', index=13, number=204, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='LoadPartitions', index=14, number=205, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='ReleasePartitions', index=15, number=206, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='ShowSegments', index=16, number=250, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='DescribeSegment', index=17, number=251, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CreateIndex', index=18, number=300, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='DescribeIndex', index=19, number=301, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='DropIndex', index=20, number=302, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='Insert', index=21, number=400, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='Delete', index=22, number=401, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='Flush', index=23, number=402, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='Search', index=24, number=500, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='SearchResult', index=25, number=501, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='GetIndexState', index=26, number=502, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='GetIndexBuildProgress', index=27, number=503, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='GetCollectionStatistics', index=28, number=504, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='GetPartitionStatistics', index=29, number=505, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='Retrieve', index=30, number=506, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='RetrieveResult', index=31, number=507, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='SegmentInfo', index=32, number=600, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='TimeTick', index=33, number=1200, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='QueryNodeStats', index=34, number=1201, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='LoadIndex', index=35, number=1202, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='RequestID', index=36, number=1203, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='RequestTSO', index=37, number=1204, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='AllocateSegment', index=38, number=1205, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='SegmentStatistics', index=39, number=1206, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='SegmentFlushDone', index=40, number=1207, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=1120, serialized_end=1946, ) _sym_db.RegisterEnumDescriptor(_MSGTYPE) MsgType = enum_type_wrapper.EnumTypeWrapper(_MSGTYPE) _DSLTYPE = _descriptor.EnumDescriptor( name='DslType', full_name='milvus.proto.common.DslType', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='Dsl', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='BoolExprV1', index=1, number=1, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=1948, serialized_end=1982, ) _sym_db.RegisterEnumDescriptor(_DSLTYPE) DslType = enum_type_wrapper.EnumTypeWrapper(_DSLTYPE) Success = 0 UnexpectedError = 1 ConnectFailed = 2 PermissionDenied = 3 CollectionNotExists = 4 IllegalArgument = 5 IllegalDimension = 7 IllegalIndexType = 8 IllegalCollectionName = 9 IllegalTOPK = 10 IllegalRowRecord = 11 IllegalVectorID = 12 IllegalSearchResult = 13 FileNotFound = 14 MetaFailed = 15 CacheFailed = 16 CannotCreateFolder = 17 CannotCreateFile = 18 CannotDeleteFolder = 19 CannotDeleteFile = 20 BuildIndexError = 21 IllegalNLIST = 22 IllegalMetricType = 23 OutOfMemory = 24 IndexNotExist = 25 DDRequestRace = 1000 IndexStateNone = 0 Unissued = 1 InProgress = 2 Finished = 3 Failed = 4 SegmentStateNone = 0 NotExist = 1 Growing = 2 Sealed = 3 Flushed = 4 Undefined = 0 CreateCollection = 100 DropCollection = 101 HasCollection = 102 DescribeCollection = 103 ShowCollections = 104 GetSystemConfigs = 105 LoadCollection = 106 ReleaseCollection = 107 CreatePartition = 200 DropPartition = 201 HasPartition = 202 DescribePartition = 203 ShowPartitions = 204 LoadPartitions = 205 ReleasePartitions = 206 ShowSegments = 250 DescribeSegment = 251 CreateIndex = 300 DescribeIndex = 301 DropIndex = 302 Insert = 400 Delete = 401 Flush = 402 Search = 500 SearchResult = 501 GetIndexState = 502 GetIndexBuildProgress = 503 GetCollectionStatistics = 504 GetPartitionStatistics = 505 Retrieve = 506 RetrieveResult = 507 SegmentInfo = 600 TimeTick = 1200 QueryNodeStats = 1201 LoadIndex = 1202 RequestID = 1203 RequestTSO = 1204 AllocateSegment = 1205 SegmentStatistics = 1206 SegmentFlushDone = 1207 Dsl = 0 BoolExprV1 = 1 _STATUS = _descriptor.Descriptor( name='Status', full_name='milvus.proto.common.Status', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='error_code', full_name='milvus.proto.common.Status.error_code', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='reason', full_name='milvus.proto.common.Status.reason', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=37, serialized_end=113, ) _KEYVALUEPAIR = _descriptor.Descriptor( name='KeyValuePair', full_name='milvus.proto.common.KeyValuePair', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='key', full_name='milvus.proto.common.KeyValuePair.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='value', full_name='milvus.proto.common.KeyValuePair.value', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=115, serialized_end=157, ) _BLOB = _descriptor.Descriptor( name='Blob', full_name='milvus.proto.common.Blob', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='value', full_name='milvus.proto.common.Blob.value', index=0, number=1, type=12, cpp_type=9, label=1, has_default_value=False, default_value=_b(""), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=159, serialized_end=180, ) _ADDRESS = _descriptor.Descriptor( name='Address', full_name='milvus.proto.common.Address', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='ip', full_name='milvus.proto.common.Address.ip', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='port', full_name='milvus.proto.common.Address.port', index=1, number=2, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=182, serialized_end=217, ) _MSGBASE = _descriptor.Descriptor( name='MsgBase', full_name='milvus.proto.common.MsgBase', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='msg_type', full_name='milvus.proto.common.MsgBase.msg_type', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='msgID', full_name='milvus.proto.common.MsgBase.msgID', index=1, number=2, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='timestamp', full_name='milvus.proto.common.MsgBase.timestamp', index=2, number=3, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='sourceID', full_name='milvus.proto.common.MsgBase.sourceID', index=3, number=4, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=219, serialized_end=328, ) _MSGHEADER = _descriptor.Descriptor( name='MsgHeader', full_name='milvus.proto.common.MsgHeader', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='base', full_name='milvus.proto.common.MsgHeader.base', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=330, serialized_end=385, ) _STATUS.fields_by_name['error_code'].enum_type = _ERRORCODE _MSGBASE.fields_by_name['msg_type'].enum_type = _MSGTYPE _MSGHEADER.fields_by_name['base'].message_type = _MSGBASE DESCRIPTOR.message_types_by_name['Status'] = _STATUS DESCRIPTOR.message_types_by_name['KeyValuePair'] = _KEYVALUEPAIR DESCRIPTOR.message_types_by_name['Blob'] = _BLOB DESCRIPTOR.message_types_by_name['Address'] = _ADDRESS DESCRIPTOR.message_types_by_name['MsgBase'] = _MSGBASE DESCRIPTOR.message_types_by_name['MsgHeader'] = _MSGHEADER DESCRIPTOR.enum_types_by_name['ErrorCode'] = _ERRORCODE DESCRIPTOR.enum_types_by_name['IndexState'] = _INDEXSTATE DESCRIPTOR.enum_types_by_name['SegmentState'] = _SEGMENTSTATE DESCRIPTOR.enum_types_by_name['MsgType'] = _MSGTYPE DESCRIPTOR.enum_types_by_name['DslType'] = _DSLTYPE _sym_db.RegisterFileDescriptor(DESCRIPTOR) Status = _reflection.GeneratedProtocolMessageType('Status', (_message.Message,), { 'DESCRIPTOR' : _STATUS, '__module__' : 'common_pb2' # @@protoc_insertion_point(class_scope:milvus.proto.common.Status) }) _sym_db.RegisterMessage(Status) KeyValuePair = _reflection.GeneratedProtocolMessageType('KeyValuePair', (_message.Message,), { 'DESCRIPTOR' : _KEYVALUEPAIR, '__module__' : 'common_pb2' # @@protoc_insertion_point(class_scope:milvus.proto.common.KeyValuePair) }) _sym_db.RegisterMessage(KeyValuePair) Blob = _reflection.GeneratedProtocolMessageType('Blob', (_message.Message,), { 'DESCRIPTOR' : _BLOB, '__module__' : 'common_pb2' # @@protoc_insertion_point(class_scope:milvus.proto.common.Blob) }) _sym_db.RegisterMessage(Blob) Address = _reflection.GeneratedProtocolMessageType('Address', (_message.Message,), { 'DESCRIPTOR' : _ADDRESS, '__module__' : 'common_pb2' # @@protoc_insertion_point(class_scope:milvus.proto.common.Address) }) _sym_db.RegisterMessage(Address) MsgBase = _reflection.GeneratedProtocolMessageType('MsgBase', (_message.Message,), { 'DESCRIPTOR' : _MSGBASE, '__module__' : 'common_pb2' # @@protoc_insertion_point(class_scope:milvus.proto.common.MsgBase) }) _sym_db.RegisterMessage(MsgBase) MsgHeader = _reflection.GeneratedProtocolMessageType('MsgHeader', (_message.Message,), { 'DESCRIPTOR' : _MSGHEADER, '__module__' : 'common_pb2' # @@protoc_insertion_point(class_scope:milvus.proto.common.MsgHeader) }) _sym_db.RegisterMessage(MsgHeader) DESCRIPTOR._options = None # @@protoc_insertion_point(module_scope)
35.248731
3,809
0.730019
a614822dffae3b980d1275df12c2b261f70f1279
610
py
Python
CF_Functions/Arcade/boxblur.py
glickmac/Misc_Scripts
7e18be79b84a309a1e79935f4470ea915141938d
[ "MIT" ]
null
null
null
CF_Functions/Arcade/boxblur.py
glickmac/Misc_Scripts
7e18be79b84a309a1e79935f4470ea915141938d
[ "MIT" ]
null
null
null
CF_Functions/Arcade/boxblur.py
glickmac/Misc_Scripts
7e18be79b84a309a1e79935f4470ea915141938d
[ "MIT" ]
1
2020-07-30T17:37:12.000Z
2020-07-30T17:37:12.000Z
def find_all_around(arr, row, col): top_left = arr[row-1][col-1] top = arr[row-1][col] top_right = arr[row-1][col+1] right= arr[row][col+1] bot_right = arr[row+1][col+1] bot = arr[row+1][col] bot_left = arr[row+1][col-1] left = arr[row][col-1] res = [top_left, top, top_right, right, bot_right, bot, bot_left, left] return sum(res) def boxBlur(arr): col = len(arr[0]) row = len(arr) res = [] for i in range(1,row-1): mew = [] for j in range(1, col-1): mew.append((find_all_around(arr, i, j) + arr[i][j])//9) res.append(mew) return res
25.416667
74
0.57377
da3c2923f5b21bb9de8cea20e3cf8e4a4f1116f3
36,516
py
Python
venv/Lib/site-packages/mistune.py
ajayiagbebaku/NFL-Model
afcc67a85ca7138c58c3334d45988ada2da158ed
[ "MIT" ]
1,318
2019-07-11T10:34:39.000Z
2022-03-29T15:05:19.000Z
venv/Lib/site-packages/mistune.py
ajayiagbebaku/NFL-Model
afcc67a85ca7138c58c3334d45988ada2da158ed
[ "MIT" ]
387
2019-09-05T16:33:09.000Z
2022-03-31T10:43:39.000Z
venv/Lib/site-packages/mistune.py
ajayiagbebaku/NFL-Model
afcc67a85ca7138c58c3334d45988ada2da158ed
[ "MIT" ]
66
2019-11-11T15:33:12.000Z
2022-03-01T07:55:55.000Z
# coding: utf-8 """ mistune ~~~~~~~ The fastest markdown parser in pure Python with renderer feature. :copyright: (c) 2014 - 2018 by Hsiaoming Yang. """ import re import inspect __version__ = '0.8.4' __author__ = 'Hsiaoming Yang <me@lepture.com>' __all__ = [ 'BlockGrammar', 'BlockLexer', 'InlineGrammar', 'InlineLexer', 'Renderer', 'Markdown', 'markdown', 'escape', ] _key_pattern = re.compile(r'\s+') _nonalpha_pattern = re.compile(r'\W') _escape_pattern = re.compile(r'&(?!#?\w+;)') _newline_pattern = re.compile(r'\r\n|\r') _block_quote_leading_pattern = re.compile(r'^ *> ?', flags=re.M) _block_code_leading_pattern = re.compile(r'^ {4}', re.M) _inline_tags = [ 'a', 'em', 'strong', 'small', 's', 'cite', 'q', 'dfn', 'abbr', 'data', 'time', 'code', 'var', 'samp', 'kbd', 'sub', 'sup', 'i', 'b', 'u', 'mark', 'ruby', 'rt', 'rp', 'bdi', 'bdo', 'span', 'br', 'wbr', 'ins', 'del', 'img', 'font', ] _pre_tags = ['pre', 'script', 'style'] _valid_end = r'(?!:/|[^\w\s@]*@)\b' _valid_attr = r'''\s*[a-zA-Z\-](?:\s*\=\s*(?:"[^"]*"|'[^']*'|[^\s'">]+))?''' _block_tag = r'(?!(?:%s)\b)\w+%s' % ('|'.join(_inline_tags), _valid_end) _scheme_blacklist = ('javascript:', 'vbscript:') def _pure_pattern(regex): pattern = regex.pattern if pattern.startswith('^'): pattern = pattern[1:] return pattern def _keyify(key): key = escape(key.lower(), quote=True) return _key_pattern.sub(' ', key) def escape(text, quote=False, smart_amp=True): """Replace special characters "&", "<" and ">" to HTML-safe sequences. The original cgi.escape will always escape "&", but you can control this one for a smart escape amp. :param quote: if set to True, " and ' will be escaped. :param smart_amp: if set to False, & will always be escaped. """ if smart_amp: text = _escape_pattern.sub('&amp;', text) else: text = text.replace('&', '&amp;') text = text.replace('<', '&lt;') text = text.replace('>', '&gt;') if quote: text = text.replace('"', '&quot;') text = text.replace("'", '&#39;') return text def escape_link(url): """Remove dangerous URL schemes like javascript: and escape afterwards.""" lower_url = url.lower().strip('\x00\x1a \n\r\t') for scheme in _scheme_blacklist: if re.sub(r'[^A-Za-z0-9\/:]+', '', lower_url).startswith(scheme): return '' return escape(url, quote=True, smart_amp=False) def preprocessing(text, tab=4): text = _newline_pattern.sub('\n', text) text = text.expandtabs(tab) text = text.replace('\u2424', '\n') pattern = re.compile(r'^ +$', re.M) return pattern.sub('', text) class BlockGrammar(object): """Grammars for block level tokens.""" def_links = re.compile( r'^ *\[([^^\]]+)\]: *' # [key]: r'<?([^\s>]+)>?' # <link> or link r'(?: +["(]([^\n]+)[")])? *(?:\n+|$)' ) def_footnotes = re.compile( r'^\[\^([^\]]+)\]: *(' r'[^\n]*(?:\n+|$)' # [^key]: r'(?: {1,}[^\n]*(?:\n+|$))*' r')' ) newline = re.compile(r'^\n+') block_code = re.compile(r'^( {4}[^\n]+\n*)+') fences = re.compile( r'^ *(`{3,}|~{3,}) *([^`\s]+)? *\n' # ```lang r'([\s\S]+?)\s*' r'\1 *(?:\n+|$)' # ``` ) hrule = re.compile(r'^ {0,3}[-*_](?: *[-*_]){2,} *(?:\n+|$)') heading = re.compile(r'^ *(#{1,6}) *([^\n]+?) *#* *(?:\n+|$)') lheading = re.compile(r'^([^\n]+)\n *(=|-)+ *(?:\n+|$)') block_quote = re.compile(r'^( *>[^\n]+(\n[^\n]+)*\n*)+') list_block = re.compile( r'^( *)(?=[*+-]|\d+\.)(([*+-])?(?:\d+\.)?) [\s\S]+?' r'(?:' r'\n+(?=\1?(?:[-*_] *){3,}(?:\n+|$))' # hrule r'|\n+(?=%s)' # def links r'|\n+(?=%s)' # def footnotes\ r'|\n+(?=\1(?(3)\d+\.|[*+-]) )' # heterogeneous bullet r'|\n{2,}' r'(?! )' r'(?!\1(?:[*+-]|\d+\.) )\n*' r'|' r'\s*$)' % ( _pure_pattern(def_links), _pure_pattern(def_footnotes), ) ) list_item = re.compile( r'^(( *)(?:[*+-]|\d+\.) [^\n]*' r'(?:\n(?!\2(?:[*+-]|\d+\.) )[^\n]*)*)', flags=re.M ) list_bullet = re.compile(r'^ *(?:[*+-]|\d+\.) +') paragraph = re.compile( r'^((?:[^\n]+\n?(?!' r'%s|%s|%s|%s|%s|%s|%s|%s|%s' r'))+)\n*' % ( _pure_pattern(fences).replace(r'\1', r'\2'), _pure_pattern(list_block).replace(r'\1', r'\3'), _pure_pattern(hrule), _pure_pattern(heading), _pure_pattern(lheading), _pure_pattern(block_quote), _pure_pattern(def_links), _pure_pattern(def_footnotes), '<' + _block_tag, ) ) block_html = re.compile( r'^ *(?:%s|%s|%s) *(?:\n{2,}|\s*$)' % ( r'<!--[\s\S]*?-->', r'<(%s)((?:%s)*?)>([\s\S]*?)<\/\1>' % (_block_tag, _valid_attr), r'<%s(?:%s)*?\s*\/?>' % (_block_tag, _valid_attr), ) ) table = re.compile( r'^ *\|(.+)\n *\|( *[-:]+[-| :]*)\n((?: *\|.*(?:\n|$))*)\n*' ) nptable = re.compile( r'^ *(\S.*\|.*)\n *([-:]+ *\|[-| :]*)\n((?:.*\|.*(?:\n|$))*)\n*' ) text = re.compile(r'^[^\n]+') class BlockLexer(object): """Block level lexer for block grammars.""" grammar_class = BlockGrammar default_rules = [ 'newline', 'hrule', 'block_code', 'fences', 'heading', 'nptable', 'lheading', 'block_quote', 'list_block', 'block_html', 'def_links', 'def_footnotes', 'table', 'paragraph', 'text' ] list_rules = ( 'newline', 'block_code', 'fences', 'lheading', 'hrule', 'block_quote', 'list_block', 'block_html', 'text', ) footnote_rules = ( 'newline', 'block_code', 'fences', 'heading', 'nptable', 'lheading', 'hrule', 'block_quote', 'list_block', 'block_html', 'table', 'paragraph', 'text' ) def __init__(self, rules=None, **kwargs): self.tokens = [] self.def_links = {} self.def_footnotes = {} if not rules: rules = self.grammar_class() self.rules = rules self._max_recursive_depth = kwargs.get('max_recursive_depth', 6) self._list_depth = 0 self._blockquote_depth = 0 def __call__(self, text, rules=None): return self.parse(text, rules) def parse(self, text, rules=None): text = text.rstrip('\n') if not rules: rules = self.default_rules def manipulate(text): for key in rules: rule = getattr(self.rules, key) m = rule.match(text) if not m: continue getattr(self, 'parse_%s' % key)(m) return m return False # pragma: no cover while text: m = manipulate(text) if m is not False: text = text[len(m.group(0)):] continue if text: # pragma: no cover raise RuntimeError('Infinite loop at: %s' % text) return self.tokens def parse_newline(self, m): length = len(m.group(0)) if length > 1: self.tokens.append({'type': 'newline'}) def parse_block_code(self, m): # clean leading whitespace code = _block_code_leading_pattern.sub('', m.group(0)) self.tokens.append({ 'type': 'code', 'lang': None, 'text': code, }) def parse_fences(self, m): self.tokens.append({ 'type': 'code', 'lang': m.group(2), 'text': m.group(3), }) def parse_heading(self, m): self.tokens.append({ 'type': 'heading', 'level': len(m.group(1)), 'text': m.group(2), }) def parse_lheading(self, m): """Parse setext heading.""" self.tokens.append({ 'type': 'heading', 'level': 1 if m.group(2) == '=' else 2, 'text': m.group(1), }) def parse_hrule(self, m): self.tokens.append({'type': 'hrule'}) def parse_list_block(self, m): bull = m.group(2) self.tokens.append({ 'type': 'list_start', 'ordered': '.' in bull, }) self._list_depth += 1 if self._list_depth > self._max_recursive_depth: self.tokens.append({'type': 'list_item_start'}) self.parse_text(m) self.tokens.append({'type': 'list_item_end'}) else: cap = m.group(0) self._process_list_item(cap, bull) self.tokens.append({'type': 'list_end'}) self._list_depth -= 1 def _process_list_item(self, cap, bull): cap = self.rules.list_item.findall(cap) _next = False length = len(cap) for i in range(length): item = cap[i][0] # remove the bullet space = len(item) item = self.rules.list_bullet.sub('', item) # outdent if '\n ' in item: space = space - len(item) pattern = re.compile(r'^ {1,%d}' % space, flags=re.M) item = pattern.sub('', item) # determine whether item is loose or not loose = _next if not loose and re.search(r'\n\n(?!\s*$)', item): loose = True rest = len(item) if i != length - 1 and rest: _next = item[rest-1] == '\n' if not loose: loose = _next if loose: t = 'loose_item_start' else: t = 'list_item_start' self.tokens.append({'type': t}) # recurse self.parse(item, self.list_rules) self.tokens.append({'type': 'list_item_end'}) def parse_block_quote(self, m): self.tokens.append({'type': 'block_quote_start'}) self._blockquote_depth += 1 if self._blockquote_depth > self._max_recursive_depth: self.parse_text(m) else: # clean leading > cap = _block_quote_leading_pattern.sub('', m.group(0)) self.parse(cap) self.tokens.append({'type': 'block_quote_end'}) self._blockquote_depth -= 1 def parse_def_links(self, m): key = _keyify(m.group(1)) self.def_links[key] = { 'link': m.group(2), 'title': m.group(3), } def parse_def_footnotes(self, m): key = _keyify(m.group(1)) if key in self.def_footnotes: # footnote is already defined return self.def_footnotes[key] = 0 self.tokens.append({ 'type': 'footnote_start', 'key': key, }) text = m.group(2) if '\n' in text: lines = text.split('\n') whitespace = None for line in lines[1:]: space = len(line) - len(line.lstrip()) if space and (not whitespace or space < whitespace): whitespace = space newlines = [lines[0]] for line in lines[1:]: newlines.append(line[whitespace:]) text = '\n'.join(newlines) self.parse(text, self.footnote_rules) self.tokens.append({ 'type': 'footnote_end', 'key': key, }) def parse_table(self, m): item = self._process_table(m) cells = re.sub(r'(?: *\| *)?\n$', '', m.group(3)) cells = cells.split('\n') for i, v in enumerate(cells): v = re.sub(r'^ *\| *| *\| *$', '', v) cells[i] = re.split(r' *(?<!\\)\| *', v) item['cells'] = self._process_cells(cells) self.tokens.append(item) def parse_nptable(self, m): item = self._process_table(m) cells = re.sub(r'\n$', '', m.group(3)) cells = cells.split('\n') for i, v in enumerate(cells): cells[i] = re.split(r' *(?<!\\)\| *', v) item['cells'] = self._process_cells(cells) self.tokens.append(item) def _process_table(self, m): header = re.sub(r'^ *| *\| *$', '', m.group(1)) header = re.split(r' *\| *', header) align = re.sub(r' *|\| *$', '', m.group(2)) align = re.split(r' *\| *', align) for i, v in enumerate(align): if re.search(r'^ *-+: *$', v): align[i] = 'right' elif re.search(r'^ *:-+: *$', v): align[i] = 'center' elif re.search(r'^ *:-+ *$', v): align[i] = 'left' else: align[i] = None item = { 'type': 'table', 'header': header, 'align': align, } return item def _process_cells(self, cells): for i, line in enumerate(cells): for c, cell in enumerate(line): # de-escape any pipe inside the cell here cells[i][c] = re.sub('\\\\\|', '|', cell) return cells def parse_block_html(self, m): tag = m.group(1) if not tag: text = m.group(0) self.tokens.append({ 'type': 'close_html', 'text': text }) else: attr = m.group(2) text = m.group(3) self.tokens.append({ 'type': 'open_html', 'tag': tag, 'extra': attr, 'text': text }) def parse_paragraph(self, m): text = m.group(1).rstrip('\n') self.tokens.append({'type': 'paragraph', 'text': text}) def parse_text(self, m): text = m.group(0) self.tokens.append({'type': 'text', 'text': text}) class InlineGrammar(object): """Grammars for inline level tokens.""" escape = re.compile(r'^\\([\\`*{}\[\]()#+\-.!_>~|])') # \* \+ \! .... inline_html = re.compile( r'^(?:%s|%s|%s)' % ( r'<!--[\s\S]*?-->', r'<(\w+%s)((?:%s)*?)\s*>([\s\S]*?)<\/\1>' % ( _valid_end, _valid_attr), r'<\w+%s(?:%s)*?\s*\/?>' % (_valid_end, _valid_attr), ) ) autolink = re.compile(r'^<([^ >]+(@|:)[^ >]+)>') link = re.compile( r'^!?\[(' r'(?:\[[^^\]]*\]|[^\[\]]|\](?=[^\[]*\]))*' r')\]\(' r'''\s*(<)?([\s\S]*?)(?(2)>)(?:\s+['"]([\s\S]*?)['"])?\s*''' r'\)' ) reflink = re.compile( r'^!?\[(' r'(?:\[[^^\]]*\]|[^\[\]]|\](?=[^\[]*\]))*' r')\]\s*\[([^^\]]*)\]' ) nolink = re.compile(r'^!?\[((?:\[[^\]]*\]|[^\[\]])*)\]') url = re.compile(r'''^(https?:\/\/[^\s<]+[^<.,:;"')\]\s])''') double_emphasis = re.compile( r'^_{2}([\s\S]+?)_{2}(?!_)' # __word__ r'|' r'^\*{2}([\s\S]+?)\*{2}(?!\*)' # **word** ) emphasis = re.compile( r'^\b_((?:__|[^_])+?)_\b' # _word_ r'|' r'^\*((?:\*\*|[^\*])+?)\*(?!\*)' # *word* ) code = re.compile(r'^(`+)\s*([\s\S]*?[^`])\s*\1(?!`)') # `code` linebreak = re.compile(r'^ {2,}\n(?!\s*$)') strikethrough = re.compile(r'^~~(?=\S)([\s\S]*?\S)~~') # ~~word~~ footnote = re.compile(r'^\[\^([^\]]+)\]') text = re.compile(r'^[\s\S]+?(?=[\\<!\[_*`~]|https?://| {2,}\n|$)') def hard_wrap(self): """Grammar for hard wrap linebreak. You don't need to add two spaces at the end of a line. """ self.linebreak = re.compile(r'^ *\n(?!\s*$)') self.text = re.compile( r'^[\s\S]+?(?=[\\<!\[_*`~]|https?://| *\n|$)' ) class InlineLexer(object): """Inline level lexer for inline grammars.""" grammar_class = InlineGrammar default_rules = [ 'escape', 'inline_html', 'autolink', 'url', 'footnote', 'link', 'reflink', 'nolink', 'double_emphasis', 'emphasis', 'code', 'linebreak', 'strikethrough', 'text', ] inline_html_rules = [ 'escape', 'inline_html', 'autolink', 'url', 'link', 'reflink', 'nolink', 'double_emphasis', 'emphasis', 'code', 'linebreak', 'strikethrough', 'text', ] def __init__(self, renderer, rules=None, **kwargs): self.renderer = renderer self.links = {} self.footnotes = {} self.footnote_index = 0 if not rules: rules = self.grammar_class() kwargs.update(self.renderer.options) if kwargs.get('hard_wrap'): rules.hard_wrap() self.rules = rules self._in_link = False self._in_footnote = False self._parse_inline_html = kwargs.get('parse_inline_html') def __call__(self, text, rules=None): return self.output(text, rules) def setup(self, links, footnotes): self.footnote_index = 0 self.links = links or {} self.footnotes = footnotes or {} def output(self, text, rules=None): text = text.rstrip('\n') if not rules: rules = list(self.default_rules) if self._in_footnote and 'footnote' in rules: rules.remove('footnote') output = self.renderer.placeholder() def manipulate(text): for key in rules: pattern = getattr(self.rules, key) m = pattern.match(text) if not m: continue self.line_match = m out = getattr(self, 'output_%s' % key)(m) if out is not None: return m, out return False # pragma: no cover while text: ret = manipulate(text) if ret is not False: m, out = ret output += out text = text[len(m.group(0)):] continue if text: # pragma: no cover raise RuntimeError('Infinite loop at: %s' % text) return output def output_escape(self, m): text = m.group(1) return self.renderer.escape(text) def output_autolink(self, m): link = m.group(1) if m.group(2) == '@': is_email = True else: is_email = False return self.renderer.autolink(link, is_email) def output_url(self, m): link = m.group(1) if self._in_link: return self.renderer.text(link) return self.renderer.autolink(link, False) def output_inline_html(self, m): tag = m.group(1) if self._parse_inline_html and tag in _inline_tags: text = m.group(3) if tag == 'a': self._in_link = True text = self.output(text, rules=self.inline_html_rules) self._in_link = False else: text = self.output(text, rules=self.inline_html_rules) extra = m.group(2) or '' html = '<%s%s>%s</%s>' % (tag, extra, text, tag) else: html = m.group(0) return self.renderer.inline_html(html) def output_footnote(self, m): key = _keyify(m.group(1)) if key not in self.footnotes: return None if self.footnotes[key]: return None self.footnote_index += 1 self.footnotes[key] = self.footnote_index return self.renderer.footnote_ref(key, self.footnote_index) def output_link(self, m): return self._process_link(m, m.group(3), m.group(4)) def output_reflink(self, m): key = _keyify(m.group(2) or m.group(1)) if key not in self.links: return None ret = self.links[key] return self._process_link(m, ret['link'], ret['title']) def output_nolink(self, m): key = _keyify(m.group(1)) if key not in self.links: return None ret = self.links[key] return self._process_link(m, ret['link'], ret['title']) def _process_link(self, m, link, title=None): line = m.group(0) text = m.group(1) if line[0] == '!': return self.renderer.image(link, title, text) self._in_link = True text = self.output(text) self._in_link = False return self.renderer.link(link, title, text) def output_double_emphasis(self, m): text = m.group(2) or m.group(1) text = self.output(text) return self.renderer.double_emphasis(text) def output_emphasis(self, m): text = m.group(2) or m.group(1) text = self.output(text) return self.renderer.emphasis(text) def output_code(self, m): text = m.group(2) return self.renderer.codespan(text) def output_linebreak(self, m): return self.renderer.linebreak() def output_strikethrough(self, m): text = self.output(m.group(1)) return self.renderer.strikethrough(text) def output_text(self, m): text = m.group(0) return self.renderer.text(text) class Renderer(object): """The default HTML renderer for rendering Markdown. """ def __init__(self, **kwargs): self.options = kwargs def placeholder(self): """Returns the default, empty output value for the renderer. All renderer methods use the '+=' operator to append to this value. Default is a string so rendering HTML can build up a result string with the rendered Markdown. Can be overridden by Renderer subclasses to be types like an empty list, allowing the renderer to create a tree-like structure to represent the document (which can then be reprocessed later into a separate format like docx or pdf). """ return '' def block_code(self, code, lang=None): """Rendering block level code. ``pre > code``. :param code: text content of the code block. :param lang: language of the given code. """ code = code.rstrip('\n') if not lang: code = escape(code, smart_amp=False) return '<pre><code>%s\n</code></pre>\n' % code code = escape(code, quote=True, smart_amp=False) return '<pre><code class="lang-%s">%s\n</code></pre>\n' % (lang, code) def block_quote(self, text): """Rendering <blockquote> with the given text. :param text: text content of the blockquote. """ return '<blockquote>%s\n</blockquote>\n' % text.rstrip('\n') def block_html(self, html): """Rendering block level pure html content. :param html: text content of the html snippet. """ if self.options.get('skip_style') and \ html.lower().startswith('<style'): return '' if self.options.get('escape'): return escape(html) return html def header(self, text, level, raw=None): """Rendering header/heading tags like ``<h1>`` ``<h2>``. :param text: rendered text content for the header. :param level: a number for the header level, for example: 1. :param raw: raw text content of the header. """ return '<h%d>%s</h%d>\n' % (level, text, level) def hrule(self): """Rendering method for ``<hr>`` tag.""" if self.options.get('use_xhtml'): return '<hr />\n' return '<hr>\n' def list(self, body, ordered=True): """Rendering list tags like ``<ul>`` and ``<ol>``. :param body: body contents of the list. :param ordered: whether this list is ordered or not. """ tag = 'ul' if ordered: tag = 'ol' return '<%s>\n%s</%s>\n' % (tag, body, tag) def list_item(self, text): """Rendering list item snippet. Like ``<li>``.""" return '<li>%s</li>\n' % text def paragraph(self, text): """Rendering paragraph tags. Like ``<p>``.""" return '<p>%s</p>\n' % text.strip(' ') def table(self, header, body): """Rendering table element. Wrap header and body in it. :param header: header part of the table. :param body: body part of the table. """ return ( '<table>\n<thead>%s</thead>\n' '<tbody>\n%s</tbody>\n</table>\n' ) % (header, body) def table_row(self, content): """Rendering a table row. Like ``<tr>``. :param content: content of current table row. """ return '<tr>\n%s</tr>\n' % content def table_cell(self, content, **flags): """Rendering a table cell. Like ``<th>`` ``<td>``. :param content: content of current table cell. :param header: whether this is header or not. :param align: align of current table cell. """ if flags['header']: tag = 'th' else: tag = 'td' align = flags['align'] if not align: return '<%s>%s</%s>\n' % (tag, content, tag) return '<%s style="text-align:%s">%s</%s>\n' % ( tag, align, content, tag ) def double_emphasis(self, text): """Rendering **strong** text. :param text: text content for emphasis. """ return '<strong>%s</strong>' % text def emphasis(self, text): """Rendering *emphasis* text. :param text: text content for emphasis. """ return '<em>%s</em>' % text def codespan(self, text): """Rendering inline `code` text. :param text: text content for inline code. """ text = escape(text.rstrip(), smart_amp=False) return '<code>%s</code>' % text def linebreak(self): """Rendering line break like ``<br>``.""" if self.options.get('use_xhtml'): return '<br />\n' return '<br>\n' def strikethrough(self, text): """Rendering ~~strikethrough~~ text. :param text: text content for strikethrough. """ return '<del>%s</del>' % text def text(self, text): """Rendering unformatted text. :param text: text content. """ if self.options.get('parse_block_html'): return text return escape(text) def escape(self, text): """Rendering escape sequence. :param text: text content. """ return escape(text) def autolink(self, link, is_email=False): """Rendering a given link or email address. :param link: link content or email address. :param is_email: whether this is an email or not. """ text = link = escape_link(link) if is_email: link = 'mailto:%s' % link return '<a href="%s">%s</a>' % (link, text) def link(self, link, title, text): """Rendering a given link with content and title. :param link: href link for ``<a>`` tag. :param title: title content for `title` attribute. :param text: text content for description. """ link = escape_link(link) if not title: return '<a href="%s">%s</a>' % (link, text) title = escape(title, quote=True) return '<a href="%s" title="%s">%s</a>' % (link, title, text) def image(self, src, title, text): """Rendering a image with title and text. :param src: source link of the image. :param title: title text of the image. :param text: alt text of the image. """ src = escape_link(src) text = escape(text, quote=True) if title: title = escape(title, quote=True) html = '<img src="%s" alt="%s" title="%s"' % (src, text, title) else: html = '<img src="%s" alt="%s"' % (src, text) if self.options.get('use_xhtml'): return '%s />' % html return '%s>' % html def inline_html(self, html): """Rendering span level pure html content. :param html: text content of the html snippet. """ if self.options.get('escape'): return escape(html) return html def newline(self): """Rendering newline element.""" return '' def footnote_ref(self, key, index): """Rendering the ref anchor of a footnote. :param key: identity key for the footnote. :param index: the index count of current footnote. """ html = ( '<sup class="footnote-ref" id="fnref-%s">' '<a href="#fn-%s">%d</a></sup>' ) % (escape(key), escape(key), index) return html def footnote_item(self, key, text): """Rendering a footnote item. :param key: identity key for the footnote. :param text: text content of the footnote. """ back = ( '<a href="#fnref-%s" class="footnote">&#8617;</a>' ) % escape(key) text = text.rstrip() if text.endswith('</p>'): text = re.sub(r'<\/p>$', r'%s</p>' % back, text) else: text = '%s<p>%s</p>' % (text, back) html = '<li id="fn-%s">%s</li>\n' % (escape(key), text) return html def footnotes(self, text): """Wrapper for all footnotes. :param text: contents of all footnotes. """ html = '<div class="footnotes">\n%s<ol>%s</ol>\n</div>\n' return html % (self.hrule(), text) class Markdown(object): """The Markdown parser. :param renderer: An instance of ``Renderer``. :param inline: An inline lexer class or instance. :param block: A block lexer class or instance. """ def __init__(self, renderer=None, inline=None, block=None, **kwargs): if not renderer: renderer = Renderer(**kwargs) else: kwargs.update(renderer.options) self.renderer = renderer if inline and inspect.isclass(inline): inline = inline(renderer, **kwargs) if block and inspect.isclass(block): block = block(**kwargs) if inline: self.inline = inline else: self.inline = InlineLexer(renderer, **kwargs) self.block = block or BlockLexer(BlockGrammar()) self.footnotes = [] self.tokens = [] # detect if it should parse text in block html self._parse_block_html = kwargs.get('parse_block_html') def __call__(self, text): return self.parse(text) def render(self, text): """Render the Markdown text. :param text: markdown formatted text content. """ return self.parse(text) def parse(self, text): out = self.output(preprocessing(text)) keys = self.block.def_footnotes # reset block self.block.def_links = {} self.block.def_footnotes = {} # reset inline self.inline.links = {} self.inline.footnotes = {} if not self.footnotes: return out footnotes = filter(lambda o: keys.get(o['key']), self.footnotes) self.footnotes = sorted( footnotes, key=lambda o: keys.get(o['key']), reverse=True ) body = self.renderer.placeholder() while self.footnotes: note = self.footnotes.pop() body += self.renderer.footnote_item( note['key'], note['text'] ) out += self.renderer.footnotes(body) return out def pop(self): if not self.tokens: return None self.token = self.tokens.pop() return self.token def peek(self): if self.tokens: return self.tokens[-1] return None # pragma: no cover def output(self, text, rules=None): self.tokens = self.block(text, rules) self.tokens.reverse() self.inline.setup(self.block.def_links, self.block.def_footnotes) out = self.renderer.placeholder() while self.pop(): out += self.tok() return out def tok(self): t = self.token['type'] # sepcial cases if t.endswith('_start'): t = t[:-6] return getattr(self, 'output_%s' % t)() def tok_text(self): text = self.token['text'] while self.peek()['type'] == 'text': text += '\n' + self.pop()['text'] return self.inline(text) def output_newline(self): return self.renderer.newline() def output_hrule(self): return self.renderer.hrule() def output_heading(self): return self.renderer.header( self.inline(self.token['text']), self.token['level'], self.token['text'], ) def output_code(self): return self.renderer.block_code( self.token['text'], self.token['lang'] ) def output_table(self): aligns = self.token['align'] aligns_length = len(aligns) cell = self.renderer.placeholder() # header part header = self.renderer.placeholder() for i, value in enumerate(self.token['header']): align = aligns[i] if i < aligns_length else None flags = {'header': True, 'align': align} cell += self.renderer.table_cell(self.inline(value), **flags) header += self.renderer.table_row(cell) # body part body = self.renderer.placeholder() for i, row in enumerate(self.token['cells']): cell = self.renderer.placeholder() for j, value in enumerate(row): align = aligns[j] if j < aligns_length else None flags = {'header': False, 'align': align} cell += self.renderer.table_cell(self.inline(value), **flags) body += self.renderer.table_row(cell) return self.renderer.table(header, body) def output_block_quote(self): body = self.renderer.placeholder() while self.pop()['type'] != 'block_quote_end': body += self.tok() return self.renderer.block_quote(body) def output_list(self): ordered = self.token['ordered'] body = self.renderer.placeholder() while self.pop()['type'] != 'list_end': body += self.tok() return self.renderer.list(body, ordered) def output_list_item(self): body = self.renderer.placeholder() while self.pop()['type'] != 'list_item_end': if self.token['type'] == 'text': body += self.tok_text() else: body += self.tok() return self.renderer.list_item(body) def output_loose_item(self): body = self.renderer.placeholder() while self.pop()['type'] != 'list_item_end': body += self.tok() return self.renderer.list_item(body) def output_footnote(self): self.inline._in_footnote = True body = self.renderer.placeholder() key = self.token['key'] while self.pop()['type'] != 'footnote_end': body += self.tok() self.footnotes.append({'key': key, 'text': body}) self.inline._in_footnote = False return self.renderer.placeholder() def output_close_html(self): text = self.token['text'] return self.renderer.block_html(text) def output_open_html(self): text = self.token['text'] tag = self.token['tag'] if self._parse_block_html and tag not in _pre_tags: text = self.inline(text, rules=self.inline.inline_html_rules) extra = self.token.get('extra') or '' html = '<%s%s>%s</%s>' % (tag, extra, text, tag) return self.renderer.block_html(html) def output_paragraph(self): return self.renderer.paragraph(self.inline(self.token['text'])) def output_text(self): return self.renderer.paragraph(self.tok_text()) def markdown(text, escape=True, **kwargs): """Render markdown formatted text to html. :param text: markdown formatted text content. :param escape: if set to False, all html tags will not be escaped. :param use_xhtml: output with xhtml tags. :param hard_wrap: if set to True, it will use the GFM line breaks feature. :param parse_block_html: parse text only in block level html. :param parse_inline_html: parse text only in inline level html. """ return Markdown(escape=escape, **kwargs)(text)
30.81519
79
0.51257
8b9644fe844a47c0591d9190ef81461e054347dd
995
py
Python
rustfst-python-bench/rustfst_python_bench/algorithms/compose.py
llogiq/rustfst
3172547ad57c5ae7e1c0474fd49187a81555b516
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
97
2018-11-22T00:55:26.000Z
2022-03-28T13:45:41.000Z
rustfst-python-bench/rustfst_python_bench/algorithms/compose.py
llogiq/rustfst
3172547ad57c5ae7e1c0474fd49187a81555b516
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
41
2019-08-02T23:29:45.000Z
2022-03-09T15:05:31.000Z
rustfst-python-bench/rustfst_python_bench/algorithms/compose.py
llogiq/rustfst
3172547ad57c5ae7e1c0474fd49187a81555b516
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
11
2018-10-22T22:06:19.000Z
2022-01-10T10:48:26.000Z
from rustfst_python_bench.utils import check_fst_equals class ComposeAlgorithm: def __init__(self, compose_type="default"): self.compose_type = compose_type @classmethod def openfst_cli(cls): return "fstcompose" @classmethod def rustfst_subcommand(cls): return "compose" def get_openfst_bench_cli(self): if self.compose_type == "default": return "bench_compose", [] elif self.compose_type == "lookahead": return "bench_compose_lookahead", [] else: raise RuntimeError(f"Unknown compose_type={self.compose_type}") def get_cli_args(self): return f"--compose_type={self.compose_type}" @classmethod def get_parameters(cls): compose_types = ["default", "lookahead"] return [cls(compose_type=m) for m in compose_types] def check_correctness(self, path_res_openfst, path_res_rustfst): check_fst_equals(path_res_openfst, path_res_rustfst)
28.428571
75
0.675377
9792dc66325ef5c04ec85ed8922eb973e0a161f2
9,168
py
Python
vif_plug_linux_bridge/linux_net.py
mail2nsrajesh/os-vif
6a9017d1dcf2a0a4ab8bf35f39d4bfb7cb56027d
[ "Apache-2.0" ]
null
null
null
vif_plug_linux_bridge/linux_net.py
mail2nsrajesh/os-vif
6a9017d1dcf2a0a4ab8bf35f39d4bfb7cb56027d
[ "Apache-2.0" ]
null
null
null
vif_plug_linux_bridge/linux_net.py
mail2nsrajesh/os-vif
6a9017d1dcf2a0a4ab8bf35f39d4bfb7cb56027d
[ "Apache-2.0" ]
null
null
null
# Derived from nova/network/linux_net.py # # Copyright (c) 2011 X.commerce, a business unit of eBay Inc. # Copyright 2010 United States Government as represented by the # Administrator of the National Aeronautics and Space Administration. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Implements vlans, bridges, and iptables rules using linux utilities.""" import os from oslo_concurrency import lockutils from oslo_concurrency import processutils from oslo_log import log as logging from oslo_utils import excutils from vif_plug_linux_bridge import privsep LOG = logging.getLogger(__name__) _IPTABLES_MANAGER = None def device_exists(device): """Check if ethernet device exists.""" return os.path.exists('/sys/class/net/%s' % device) def _set_device_mtu(dev, mtu): """Set the device MTU.""" processutils.execute('ip', 'link', 'set', dev, 'mtu', mtu, check_exit_code=[0, 2, 254]) def _ip_bridge_cmd(action, params, device): """Build commands to add/del ips to bridges/devices.""" cmd = ['ip', 'addr', action] cmd.extend(params) cmd.extend(['dev', device]) return cmd @privsep.vif_plug.entrypoint def ensure_vlan_bridge(vlan_num, bridge, bridge_interface, net_attrs=None, mac_address=None, mtu=None): """Create a vlan and bridge unless they already exist.""" interface = _ensure_vlan_privileged(vlan_num, bridge_interface, mac_address, mtu=mtu) _ensure_bridge_privileged(bridge, interface, net_attrs) _ensure_bridge_filtering(bridge, None) return interface @lockutils.synchronized('nova-lock_vlan', external=True) def _ensure_vlan_privileged(vlan_num, bridge_interface, mac_address, mtu): """Create a vlan unless it already exists. This assumes the caller is already annotated to run with elevated privileges. """ interface = 'vlan%s' % vlan_num if not device_exists(interface): LOG.debug('Starting VLAN interface %s', interface) processutils.execute('ip', 'link', 'add', 'link', bridge_interface, 'name', interface, 'type', 'vlan', 'id', vlan_num, check_exit_code=[0, 2, 254]) # (danwent) the bridge will inherit this address, so we want to # make sure it is the value set from the NetworkManager if mac_address: processutils.execute('ip', 'link', 'set', interface, 'address', mac_address, check_exit_code=[0, 2, 254]) processutils.execute('ip', 'link', 'set', interface, 'up', check_exit_code=[0, 2, 254]) if mtu: # NOTE(vish): set mtu every time to ensure that changes to mtu get # propogated _set_device_mtu(interface, mtu) else: LOG.debug("MTU not set on %(interface_name)s interface", {'interface_name': interface}) return interface @lockutils.synchronized('nova-lock_bridge', external=True) def ensure_bridge(bridge, interface, net_attrs=None, gateway=True, filtering=True): _ensure_bridge_privileged(bridge, interface, net_attrs, gateway, filtering) if filtering: _ensure_bridge_filtering(bridge, gateway) @privsep.vif_plug.entrypoint def _ensure_bridge_privileged(bridge, interface, net_attrs, gateway, filtering=True): """Create a bridge unless it already exists. :param interface: the interface to create the bridge on. :param net_attrs: dictionary with attributes used to create bridge. :param gateway: whether or not the bridge is a gateway. :param filtering: whether or not to create filters on the bridge. If net_attrs is set, it will add the net_attrs['gateway'] to the bridge using net_attrs['broadcast'] and net_attrs['cidr']. It will also add the ip_v6 address specified in net_attrs['cidr_v6'] if use_ipv6 is set. The code will attempt to move any ips that already exist on the interface onto the bridge and reset the default gateway if necessary. """ if not device_exists(bridge): LOG.debug('Starting Bridge %s', bridge) try: processutils.execute('brctl', 'addbr', bridge) except Exception: with excutils.save_and_reraise_exception() as ectx: ectx.reraise = not device_exists(bridge) processutils.execute('brctl', 'setfd', bridge, 0) # processutils.execute('brctl setageing %s 10' % bridge) processutils.execute('brctl', 'stp', bridge, 'off') disv6 = ('/proc/sys/net/ipv6/conf/%s/disable_ipv6' % bridge) if os.path.exists(disv6): processutils.execute('tee', disv6, process_input='1', check_exit_code=[0, 1]) # (danwent) bridge device MAC address can't be set directly. # instead it inherits the MAC address of the first device on the # bridge, which will either be the vlan interface, or a # physical NIC. processutils.execute('ip', 'link', 'set', bridge, 'up') if interface: LOG.debug('Adding interface %(interface)s to bridge %(bridge)s', {'interface': interface, 'bridge': bridge}) out, err = processutils.execute('brctl', 'addif', bridge, interface, check_exit_code=False) if (err and err != "device %s is already a member of a bridge; " "can't enslave it to bridge %s.\n" % (interface, bridge)): msg = _('Failed to add interface: %s') % err raise Exception(msg) out, err = processutils.execute('ip', 'link', 'set', interface, 'up', check_exit_code=False) # NOTE(vish): This will break if there is already an ip on the # interface, so we move any ips to the bridge # NOTE(danms): We also need to copy routes to the bridge so as # not to break existing connectivity on the interface old_routes = [] out, err = processutils.execute('ip', 'route', 'show', 'dev', interface) for line in out.split('\n'): fields = line.split() if fields and 'via' in fields: old_routes.append(fields) processutils.execute('ip', 'route', 'del', *fields) out, err = processutils.execute('ip', 'addr', 'show', 'dev', interface, 'scope', 'global') for line in out.split('\n'): fields = line.split() if fields and fields[0] == 'inet': if fields[-2] in ('secondary', 'dynamic', ): params = fields[1:-2] else: params = fields[1:-1] processutils.execute(*_ip_bridge_cmd('del', params, fields[-1]), check_exit_code=[0, 2, 254]) processutils.execute(*_ip_bridge_cmd('add', params, bridge), check_exit_code=[0, 2, 254]) for fields in old_routes: processutils.execute('ip', 'route', 'add', *fields) def _ensure_bridge_filtering(bridge, gateway): # This method leaves privsep usage to iptables manager # Don't forward traffic unless we were told to be a gateway LOG.debug("Ensuring filtering %s to %s", bridge, gateway) global _IPTABLES_MANAGER ipv4_filter = _IPTABLES_MANAGER.ipv4['filter'] if gateway: for rule in _IPTABLES_MANAGER.get_gateway_rules(bridge): ipv4_filter.add_rule(*rule) else: ipv4_filter.add_rule('FORWARD', ('--in-interface %s -j %s' % (bridge, _IPTABLES_MANAGER.iptables_drop_action))) ipv4_filter.add_rule('FORWARD', ('--out-interface %s -j %s' % (bridge, _IPTABLES_MANAGER.iptables_drop_action))) _IPTABLES_MANAGER.apply() def configure(iptables_mgr): """Configure the iptables manager impl. :param iptables_mgr: the iptables manager instance """ global _IPTABLES_MANAGER _IPTABLES_MANAGER = iptables_mgr
42.055046
79
0.599476
b2d831db91ab14ea096d0eff09632c7391805593
3,247
py
Python
src/msrnn_summary/msrnn_summary_run.py
ThuYShao/MatchZoo-py
dd8ff1328af58d3d14aacd1a7d56d79bbf847c15
[ "Apache-2.0" ]
null
null
null
src/msrnn_summary/msrnn_summary_run.py
ThuYShao/MatchZoo-py
dd8ff1328af58d3d14aacd1a7d56d79bbf847c15
[ "Apache-2.0" ]
null
null
null
src/msrnn_summary/msrnn_summary_run.py
ThuYShao/MatchZoo-py
dd8ff1328af58d3d14aacd1a7d56d79bbf847c15
[ "Apache-2.0" ]
1
2020-07-28T03:07:31.000Z
2020-07-28T03:07:31.000Z
# -*- coding: utf-8 -*- __author__ = 'yshao' import torch import numpy as np import pandas as pd import matchzoo as mz import os print('matchzoo version', mz.__version__) DATA_DIR = '/data/disk2/private/guozhipeng/syq/coliee/Case_Law/format/matchzoo' ranking_task = mz.tasks.Ranking(losses=mz.losses.RankCrossEntropyLoss(num_neg=1)) ranking_task.metrics = [ mz.metrics.Precision(k=5), mz.metrics.Recall(k=5), mz.metrics.F1(k=5) ] print("`ranking_task` initialized with metrics", ranking_task.metrics) train_pack_raw = mz.pack(pd.read_csv(os.path.join(DATA_DIR, 'train_512_bm25.csv'), index_col=False, encoding='utf8'), 'ranking') dev_pack_raw = mz.pack(pd.read_csv(os.path.join(DATA_DIR, 'dev_512_bm25.csv'), index_col=False, encoding='utf8'), 'ranking') test_pack_raw = mz.pack(pd.read_csv(os.path.join(DATA_DIR, 'test_512_bm25.csv'), index_col=False, encoding='utf8'), 'ranking') print('data loaded as `train_pack_raw` `dev_pack_raw` `test_pack_raw`') preprocessor = mz.models.MatchSRNN.get_default_preprocessor( filter_mode='df', filter_low_freq=2, ) train_pack_processed = preprocessor.fit_transform(train_pack_raw) dev_pack_processed = preprocessor.transform(dev_pack_raw) test_pack_processed = preprocessor.transform(test_pack_raw) print(preprocessor.context) glove_embedding = mz.datasets.embeddings.load_glove_embedding(dimension=300) term_index = preprocessor.context['vocab_unit'].state['term_index'] embedding_matrix = glove_embedding.build_matrix(term_index) l2_norm = np.sqrt((embedding_matrix * embedding_matrix).sum(axis=1)) embedding_matrix = embedding_matrix / l2_norm[:, np.newaxis] trainset = mz.dataloader.Dataset( data_pack=train_pack_processed, ) testset = mz.dataloader.Dataset( data_pack=test_pack_processed ) validset = mz.dataloader.Dataset( data_pack=dev_pack_processed ) padding_callback = mz.models.MatchSRNN.get_default_padding_callback( fixed_length_left=512, fixed_length_right=512, pad_word_value=0, pad_word_mode='pre' ) trainloader = mz.dataloader.DataLoader( dataset=trainset, batch_size=16, stage='train', sort=False, shuffle=True, callback=padding_callback, num_workers=4 ) validloader = mz.dataloader.DataLoader( dataset=validset, batch_size=8, stage='dev', sort=False, callback=padding_callback, num_workers=2 ) testloader = mz.dataloader.DataLoader( dataset=testset, batch_size=8, stage='dev', sort=False, callback=padding_callback, num_workers=2 ) model = mz.models.MatchSRNN() model.params['task'] = ranking_task model.params['embedding'] = embedding_matrix model.params['channels'] = 4 model.params['units'] = 10 model.params['dropout'] = 0.2 model.params['direction'] = 'lt' model.build() print(model) print('Trainable params: ', sum(p.numel() for p in model.parameters() if p.requires_grad)) model.build() print(model, sum(p.numel() for p in model.parameters() if p.requires_grad)) optimizer = torch.optim.Adadelta(model.parameters()) trainer = mz.trainers.Trainer( model=model, optimizer=optimizer, trainloader=trainloader, validloader=validloader, testloader=testloader, validate_interval=None, epochs=10 ) trainer.run()
26.398374
128
0.749307
16e28d369818cd1865621753db585621a9783aa5
653
py
Python
tottle/polling/abc.py
muffleo/tottle
69a5bdda879ab56d43505d517d3369a687c135a2
[ "MIT" ]
12
2020-09-06T15:31:34.000Z
2021-02-27T20:30:34.000Z
tottle/polling/abc.py
cyanlabs-org/tottle
6cf02022ed7b445c9b5af475c6e854b91780d792
[ "MIT" ]
2
2021-04-13T06:43:42.000Z
2021-07-07T20:52:39.000Z
tottle/polling/abc.py
cyanlabs-org/tottle
6cf02022ed7b445c9b5af475c6e854b91780d792
[ "MIT" ]
4
2020-09-12T03:09:25.000Z
2021-03-22T08:52:04.000Z
from abc import ABC, abstractmethod from typing import AsyncIterator, Any, Optional from tottle.exception_factory import ABCErrorHandler from tottle.api import ABCAPI class ABCPolling(ABC): @abstractmethod async def get_updates(self) -> Any: pass @abstractmethod async def listen(self) -> AsyncIterator[dict]: pass @property @abstractmethod def api(self) -> "ABCAPI": pass @api.setter def api(self, new_api: "ABCAPI"): pass @abstractmethod def construct( self, api: "ABCAPI", error_handler: Optional["ABCErrorHandler"] = None ) -> "ABCPolling": pass
21.064516
78
0.656968
dfc5e1cb286c79dc39b28a496122512ed784933a
1,404
py
Python
config_pb2_grpc.py
neolinsu/dlrm
3caad5079032b9603df93d9dae57f40e495eb540
[ "MIT" ]
null
null
null
config_pb2_grpc.py
neolinsu/dlrm
3caad5079032b9603df93d9dae57f40e495eb540
[ "MIT" ]
null
null
null
config_pb2_grpc.py
neolinsu/dlrm
3caad5079032b9603df93d9dae57f40e495eb540
[ "MIT" ]
null
null
null
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT! import grpc import config_pb2 as config__pb2 class ConfigStub(object): # missing associated documentation comment in .proto file pass def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.GetConfig = channel.unary_unary( '/hybridtraining.Config/GetConfig', request_serializer=config__pb2.ConfigRequest.SerializeToString, response_deserializer=config__pb2.ConfigReply.FromString, ) class ConfigServicer(object): # missing associated documentation comment in .proto file pass def GetConfig(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_ConfigServicer_to_server(servicer, server): rpc_method_handlers = { 'GetConfig': grpc.unary_unary_rpc_method_handler( servicer.GetConfig, request_deserializer=config__pb2.ConfigRequest.FromString, response_serializer=config__pb2.ConfigReply.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'hybridtraining.Config', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,))
29.87234
72
0.746439
b128a6549876bdcdd362171efd4462cfac8075cd
18,529
py
Python
sdk/python/pulumi_aws/cfg/rule.py
michael-golden/pulumi-aws
165e876e166ecab1870e857822247585d78aef64
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
sdk/python/pulumi_aws/cfg/rule.py
michael-golden/pulumi-aws
165e876e166ecab1870e857822247585d78aef64
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
sdk/python/pulumi_aws/cfg/rule.py
michael-golden/pulumi-aws
165e876e166ecab1870e857822247585d78aef64
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Union from .. import utilities, tables class Rule(pulumi.CustomResource): arn: pulumi.Output[str] """ The ARN of the config rule """ description: pulumi.Output[str] """ Description of the rule """ input_parameters: pulumi.Output[str] """ A string in JSON format that is passed to the AWS Config rule Lambda function. """ maximum_execution_frequency: pulumi.Output[str] """ The frequency that you want AWS Config to run evaluations for a rule that is triggered periodically. If specified, requires `message_type` to be `ScheduledNotification`. """ name: pulumi.Output[str] """ The name of the rule """ rule_id: pulumi.Output[str] """ The ID of the config rule """ scope: pulumi.Output[dict] """ Scope defines which resources can trigger an evaluation for the rule as documented below. * `complianceResourceId` (`str`) - The IDs of the only AWS resource that you want to trigger an evaluation for the rule. If you specify a resource ID, you must specify one resource type for `compliance_resource_types`. * `complianceResourceTypes` (`list`) - A list of resource types of only those AWS resources that you want to trigger an evaluation for the rule. e.g. `AWS::EC2::Instance`. You can only specify one type if you also specify a resource ID for `compliance_resource_id`. See [relevant part of AWS Docs](http://docs.aws.amazon.com/config/latest/APIReference/API_ResourceIdentifier.html#config-Type-ResourceIdentifier-resourceType) for available types. * `tagKey` (`str`) - The tag key that is applied to only those AWS resources that you want you want to trigger an evaluation for the rule. * `tagValue` (`str`) - The tag value applied to only those AWS resources that you want to trigger an evaluation for the rule. """ source: pulumi.Output[dict] """ Source specifies the rule owner, the rule identifier, and the notifications that cause the function to evaluate your AWS resources as documented below. * `owner` (`str`) - Indicates whether AWS or the customer owns and manages the AWS Config rule. Valid values are `AWS` or `CUSTOM_LAMBDA`. For more information about managed rules, see the [AWS Config Managed Rules documentation](https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config_use-managed-rules.html). For more information about custom rules, see the [AWS Config Custom Rules documentation](https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config_develop-rules.html). Custom Lambda Functions require permissions to allow the AWS Config service to invoke them, e.g. via the `lambda.Permission` resource. * `sourceDetails` (`list`) - Provides the source and type of the event that causes AWS Config to evaluate your AWS resources. Only valid if `owner` is `CUSTOM_LAMBDA`. * `eventSource` (`str`) - The source of the event, such as an AWS service, that triggers AWS Config to evaluate your AWS resources. This defaults to `aws.config` and is the only valid value. * `maximum_execution_frequency` (`str`) - The frequency that you want AWS Config to run evaluations for a rule that is triggered periodically. If specified, requires `message_type` to be `ScheduledNotification`. * `messageType` (`str`) - The type of notification that triggers AWS Config to run an evaluation for a rule. You can specify the following notification types: * `sourceIdentifier` (`str`) - For AWS Config managed rules, a predefined identifier, e.g `IAM_PASSWORD_POLICY`. For custom Lambda rules, the identifier is the ARN of the Lambda Function, such as `arn:aws:lambda:us-east-1:123456789012:function:custom_rule_name` or the `arn` attribute of the `lambda.Function` resource. """ tags: pulumi.Output[dict] """ A map of tags to assign to the resource. """ def __init__(__self__, resource_name, opts=None, description=None, input_parameters=None, maximum_execution_frequency=None, name=None, scope=None, source=None, tags=None, __props__=None, __name__=None, __opts__=None): """ Provides an AWS Config Rule. > **Note:** Config Rule requires an existing `Configuration Recorder` to be present. Use of `depends_on` is recommended (as shown below) to avoid race conditions. ## Example Usage ### AWS Managed Rules AWS managed rules can be used by setting the source owner to `AWS` and the source identifier to the name of the managed rule. More information about AWS managed rules can be found in the [AWS Config Developer Guide](https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config_use-managed-rules.html). ```python import pulumi import pulumi_aws as aws rule = aws.cfg.Rule("rule", source={ "owner": "AWS", "sourceIdentifier": "S3_BUCKET_VERSIONING_ENABLED", }, opts=ResourceOptions(depends_on=["aws_config_configuration_recorder.foo"])) role = aws.iam.Role("role", assume_role_policy=\"\"\"{ "Version": "2012-10-17", "Statement": [ { "Action": "sts:AssumeRole", "Principal": { "Service": "config.amazonaws.com" }, "Effect": "Allow", "Sid": "" } ] } \"\"\") foo = aws.cfg.Recorder("foo", role_arn=role.arn) role_policy = aws.iam.RolePolicy("rolePolicy", policy=\"\"\"{ "Version": "2012-10-17", "Statement": [ { "Action": "config:Put*", "Effect": "Allow", "Resource": "*" } ] } \"\"\", role=role.id) ``` ### Custom Rules Custom rules can be used by setting the source owner to `CUSTOM_LAMBDA` and the source identifier to the Amazon Resource Name (ARN) of the Lambda Function. The AWS Config service must have permissions to invoke the Lambda Function, e.g. via the `lambda.Permission` resource. More information about custom rules can be found in the [AWS Config Developer Guide](https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config_develop-rules.html). ```python import pulumi import pulumi_aws as aws example_recorder = aws.cfg.Recorder("exampleRecorder") example_function = aws.lambda_.Function("exampleFunction") example_permission = aws.lambda_.Permission("examplePermission", action="lambda:InvokeFunction", function=example_function.arn, principal="config.amazonaws.com") example_rule = aws.cfg.Rule("exampleRule", source={ "owner": "CUSTOM_LAMBDA", "sourceIdentifier": example_function.arn, }, opts=ResourceOptions(depends_on=[ "aws_config_configuration_recorder.example", "aws_lambda_permission.example", ])) ``` :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] description: Description of the rule :param pulumi.Input[str] input_parameters: A string in JSON format that is passed to the AWS Config rule Lambda function. :param pulumi.Input[str] maximum_execution_frequency: The frequency that you want AWS Config to run evaluations for a rule that is triggered periodically. If specified, requires `message_type` to be `ScheduledNotification`. :param pulumi.Input[str] name: The name of the rule :param pulumi.Input[dict] scope: Scope defines which resources can trigger an evaluation for the rule as documented below. :param pulumi.Input[dict] source: Source specifies the rule owner, the rule identifier, and the notifications that cause the function to evaluate your AWS resources as documented below. :param pulumi.Input[dict] tags: A map of tags to assign to the resource. The **scope** object supports the following: * `complianceResourceId` (`pulumi.Input[str]`) - The IDs of the only AWS resource that you want to trigger an evaluation for the rule. If you specify a resource ID, you must specify one resource type for `compliance_resource_types`. * `complianceResourceTypes` (`pulumi.Input[list]`) - A list of resource types of only those AWS resources that you want to trigger an evaluation for the rule. e.g. `AWS::EC2::Instance`. You can only specify one type if you also specify a resource ID for `compliance_resource_id`. See [relevant part of AWS Docs](http://docs.aws.amazon.com/config/latest/APIReference/API_ResourceIdentifier.html#config-Type-ResourceIdentifier-resourceType) for available types. * `tagKey` (`pulumi.Input[str]`) - The tag key that is applied to only those AWS resources that you want you want to trigger an evaluation for the rule. * `tagValue` (`pulumi.Input[str]`) - The tag value applied to only those AWS resources that you want to trigger an evaluation for the rule. The **source** object supports the following: * `owner` (`pulumi.Input[str]`) - Indicates whether AWS or the customer owns and manages the AWS Config rule. Valid values are `AWS` or `CUSTOM_LAMBDA`. For more information about managed rules, see the [AWS Config Managed Rules documentation](https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config_use-managed-rules.html). For more information about custom rules, see the [AWS Config Custom Rules documentation](https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config_develop-rules.html). Custom Lambda Functions require permissions to allow the AWS Config service to invoke them, e.g. via the `lambda.Permission` resource. * `sourceDetails` (`pulumi.Input[list]`) - Provides the source and type of the event that causes AWS Config to evaluate your AWS resources. Only valid if `owner` is `CUSTOM_LAMBDA`. * `eventSource` (`pulumi.Input[str]`) - The source of the event, such as an AWS service, that triggers AWS Config to evaluate your AWS resources. This defaults to `aws.config` and is the only valid value. * `maximum_execution_frequency` (`pulumi.Input[str]`) - The frequency that you want AWS Config to run evaluations for a rule that is triggered periodically. If specified, requires `message_type` to be `ScheduledNotification`. * `messageType` (`pulumi.Input[str]`) - The type of notification that triggers AWS Config to run an evaluation for a rule. You can specify the following notification types: * `sourceIdentifier` (`pulumi.Input[str]`) - For AWS Config managed rules, a predefined identifier, e.g `IAM_PASSWORD_POLICY`. For custom Lambda rules, the identifier is the ARN of the Lambda Function, such as `arn:aws:lambda:us-east-1:123456789012:function:custom_rule_name` or the `arn` attribute of the `lambda.Function` resource. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['description'] = description __props__['input_parameters'] = input_parameters __props__['maximum_execution_frequency'] = maximum_execution_frequency __props__['name'] = name __props__['scope'] = scope if source is None: raise TypeError("Missing required property 'source'") __props__['source'] = source __props__['tags'] = tags __props__['arn'] = None __props__['rule_id'] = None super(Rule, __self__).__init__( 'aws:cfg/rule:Rule', resource_name, __props__, opts) @staticmethod def get(resource_name, id, opts=None, arn=None, description=None, input_parameters=None, maximum_execution_frequency=None, name=None, rule_id=None, scope=None, source=None, tags=None): """ Get an existing Rule resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param str id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] arn: The ARN of the config rule :param pulumi.Input[str] description: Description of the rule :param pulumi.Input[str] input_parameters: A string in JSON format that is passed to the AWS Config rule Lambda function. :param pulumi.Input[str] maximum_execution_frequency: The frequency that you want AWS Config to run evaluations for a rule that is triggered periodically. If specified, requires `message_type` to be `ScheduledNotification`. :param pulumi.Input[str] name: The name of the rule :param pulumi.Input[str] rule_id: The ID of the config rule :param pulumi.Input[dict] scope: Scope defines which resources can trigger an evaluation for the rule as documented below. :param pulumi.Input[dict] source: Source specifies the rule owner, the rule identifier, and the notifications that cause the function to evaluate your AWS resources as documented below. :param pulumi.Input[dict] tags: A map of tags to assign to the resource. The **scope** object supports the following: * `complianceResourceId` (`pulumi.Input[str]`) - The IDs of the only AWS resource that you want to trigger an evaluation for the rule. If you specify a resource ID, you must specify one resource type for `compliance_resource_types`. * `complianceResourceTypes` (`pulumi.Input[list]`) - A list of resource types of only those AWS resources that you want to trigger an evaluation for the rule. e.g. `AWS::EC2::Instance`. You can only specify one type if you also specify a resource ID for `compliance_resource_id`. See [relevant part of AWS Docs](http://docs.aws.amazon.com/config/latest/APIReference/API_ResourceIdentifier.html#config-Type-ResourceIdentifier-resourceType) for available types. * `tagKey` (`pulumi.Input[str]`) - The tag key that is applied to only those AWS resources that you want you want to trigger an evaluation for the rule. * `tagValue` (`pulumi.Input[str]`) - The tag value applied to only those AWS resources that you want to trigger an evaluation for the rule. The **source** object supports the following: * `owner` (`pulumi.Input[str]`) - Indicates whether AWS or the customer owns and manages the AWS Config rule. Valid values are `AWS` or `CUSTOM_LAMBDA`. For more information about managed rules, see the [AWS Config Managed Rules documentation](https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config_use-managed-rules.html). For more information about custom rules, see the [AWS Config Custom Rules documentation](https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config_develop-rules.html). Custom Lambda Functions require permissions to allow the AWS Config service to invoke them, e.g. via the `lambda.Permission` resource. * `sourceDetails` (`pulumi.Input[list]`) - Provides the source and type of the event that causes AWS Config to evaluate your AWS resources. Only valid if `owner` is `CUSTOM_LAMBDA`. * `eventSource` (`pulumi.Input[str]`) - The source of the event, such as an AWS service, that triggers AWS Config to evaluate your AWS resources. This defaults to `aws.config` and is the only valid value. * `maximum_execution_frequency` (`pulumi.Input[str]`) - The frequency that you want AWS Config to run evaluations for a rule that is triggered periodically. If specified, requires `message_type` to be `ScheduledNotification`. * `messageType` (`pulumi.Input[str]`) - The type of notification that triggers AWS Config to run an evaluation for a rule. You can specify the following notification types: * `sourceIdentifier` (`pulumi.Input[str]`) - For AWS Config managed rules, a predefined identifier, e.g `IAM_PASSWORD_POLICY`. For custom Lambda rules, the identifier is the ARN of the Lambda Function, such as `arn:aws:lambda:us-east-1:123456789012:function:custom_rule_name` or the `arn` attribute of the `lambda.Function` resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["arn"] = arn __props__["description"] = description __props__["input_parameters"] = input_parameters __props__["maximum_execution_frequency"] = maximum_execution_frequency __props__["name"] = name __props__["rule_id"] = rule_id __props__["scope"] = scope __props__["source"] = source __props__["tags"] = tags return Rule(resource_name, opts=opts, __props__=__props__) def translate_output_property(self, prop): return tables._CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return tables._SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
66.412186
669
0.690647
5f34c62baad1916f21ac0441a9899ff2bec5a268
5,513
py
Python
main/driveupload.py
siddhantkhandelwal/pep-website
4d8b0fc7d2c7fe41c3497e64b8a3c34f02c13bf9
[ "MIT" ]
null
null
null
main/driveupload.py
siddhantkhandelwal/pep-website
4d8b0fc7d2c7fe41c3497e64b8a3c34f02c13bf9
[ "MIT" ]
3
2021-02-08T20:28:24.000Z
2021-06-10T21:04:27.000Z
main/driveupload.py
siddhantkhandelwal/pep-website
4d8b0fc7d2c7fe41c3497e64b8a3c34f02c13bf9
[ "MIT" ]
null
null
null
from pydrive.auth import GoogleAuth from pydrive.drive import GoogleDrive import sys import os import datetime from django.utils import timezone import pytz from main.models import Abstract, Paper, ParticipantProfile, ProfessorProfile, StaffProfile, College, SupervisorProfile, Category def upload_thread(pk): global uploaded_files global uploaded_files_path uploaded_files = [] uploaded_files_path = os.path.join(os.path.dirname( os.path.abspath(__file__)), "uploaded_files") if pk == 0: with open(uploaded_files_path, "r+") as f: uploaded_files = f.read().splitlines() elif pk == 1: with open(uploaded_files_path, "r+") as f: f.truncate() gauth = GoogleAuth() gauth.LoadCredentialsFile("creds.txt") if gauth.credentials is None: # Authenticate if they're not there gauth.LocalWebserverAuth() elif gauth.access_token_expired: # Refresh them if expired gauth.Refresh() else: # Initialize the saved creds gauth.Authorize() # Save the current credentials to a file gauth.SaveCredentialsFile("creds.txt") drive = GoogleDrive(gauth) # authentication. try: root_folder_name = 'PEP Portal' root_folder_id = create_root_folder(drive, root_folder_name) uploaded_files.append(root_folder_name) # category_folders_dict = create_category_folders( # drive, root_folder_id) date_folder_name = 'Upto 15th Nov' # if date_folder_name not in uploaded_files: date_folder_id_upto_15th = create_folder( drive, date_folder_name, root_folder_id) uploaded_files.append(date_folder_name + " - " + date_folder_id_upto_15th) # else: # date_folder_id_upto_15th = [entry.split(' - ')[2] for entry in uploaded_files if entry.contains('Upto 15th Nov - ')] date_folder_name = 'After 15th Nov' # if date_folder_name not in uploaded_files: date_folder_id_after_15th = create_folder( drive, date_folder_name, root_folder_id) uploaded_files.append(date_folder_name + "-" + date_folder_id_after_15th) # else: # date_folder_id_after_15th = [entry.split(' - ')[2] for entry in uploaded_files if entry.contains('After 15th Nov - ')] category_folders_dict_upto_15th = create_category_folders( drive, date_folder_id_upto_15th) category_folders_dict_after_15th = create_category_folders( drive, date_folder_id_after_15th) for category in Category.objects.all(): # id = category_folders_dict[category.name] for abstract in Abstract.objects.filter(category=category): if abstract.document.name.split("/")[2] not in uploaded_files: if abstract.submission_date <= timezone.datetime(2018, 11, 17).replace(tzinfo=pytz.timezone('Asia/Kolkata')): id = category_folders_dict_upto_15th[category.name] else: id = category_folders_dict_after_15th[category.name] file = drive.CreateFile(metadata={"title": abstract.document.name.split("/")[2], "parents": [{"kind": "drive#fileLink", "id": id}]}) file.SetContentFile(abstract.document.path) file.Upload() uploaded_files.append(file['title']) return 'Task Completed' except: return 'Error' finally: with open(uploaded_files_path, "w+") as f: for uploaded_file in uploaded_files: f.write(uploaded_file + '\n') def get_file_list(drive): file_list = drive.ListFile( {'q': "'root' in parents and trashed=false"}).GetList() return file_list def search_file_in_list(file_list, file_name_to_search): for file in file_list: if file['title'] == file_name_to_search: id = file['id'] return id return -1 def create_folder(drive, folder_name, parent_folder_id=''): folder_metadata = { 'title': folder_name, # The mimetype defines this new file as a folder, so don't change this. 'mimeType': 'application/vnd.google-apps.folder', } if parent_folder_id != '': folder_metadata['parents'] = [{'id': parent_folder_id}] folder = drive.CreateFile(folder_metadata) folder.Upload() return folder['id'] # return search_file_in_list(get_file_list(drive), folder_name) def create_root_folder(drive, root_folder_name): file_list = get_file_list(drive) id = search_file_in_list(file_list, root_folder_name) if id == -1: create_folder(drive, root_folder_name) id = search_file_in_list(get_file_list(drive), root_folder_name) return id def create_category_folders(drive, root_folder_id): category_folders_details = {} categories = Category.objects.all() for category in categories: if root_folder_id + category.name not in uploaded_files: id = create_folder(drive, category.name, root_folder_id) category_folders_details[category.name] = id uploaded_files.append(root_folder_id + category.name) return category_folders_details def execute(): upload_thread(1) print("Starting Execution")
36.753333
129
0.641937
59a5ac8062fdf6f6ef4fbdac2e93e8b986448a18
1,055
py
Python
apps/establishment_system/lookup.py
camilortte/RecomendadorUD
ebf9ee4482c4093d4751a27c90f56637a9c692a4
[ "MIT" ]
4
2015-01-29T17:17:26.000Z
2021-03-03T08:17:03.000Z
apps/establishment_system/lookup.py
camilortte/RecomendadorUD
ebf9ee4482c4093d4751a27c90f56637a9c692a4
[ "MIT" ]
null
null
null
apps/establishment_system/lookup.py
camilortte/RecomendadorUD
ebf9ee4482c4093d4751a27c90f56637a9c692a4
[ "MIT" ]
1
2015-09-22T08:35:26.000Z
2015-09-22T08:35:26.000Z
""" Por eliminar """ # from .models import Categoria,SubCategoria,Establecimiento # from selectable.base import ModelLookup # from selectable.registry import registry # class EstablecimientoLookUp(ModelLookup): # model = Establecimiento # search_fields = ('nombre__icontains','email', ) # class SubCategoriaLookUp(ModelLookup): # model = SubCategoria # search_fields = ('tag__icontains', ) # def get_query(self, request, term): # results = super(SubCategoriaLookUp, self).get_query(request, term) # print request.GET # categoria = request.GET.get('categorias', '') # print "Categoria: ",categoria # if categoria: # results = results.filter(categorias=categoria) # else: # results = results.none() # return results # class CategoriaLookUp(ModelLookup): # model = Categoria # search_fields = ('tag__icontains', ) # registry.register(EstablecimientoLookUp) # registry.register(SubCategoriaLookUp) # registry.register(CategoriaLookUp)
29.305556
76
0.676777
5e904397bc9e403254ae7d7657494e0307c11b82
7,150
py
Python
rain_animation.py
claytongulick/blinky_lights
84064264637cf6bb6c62100b5b8bd60fa8ef1af2
[ "MIT" ]
null
null
null
rain_animation.py
claytongulick/blinky_lights
84064264637cf6bb6c62100b5b8bd60fa8ef1af2
[ "MIT" ]
null
null
null
rain_animation.py
claytongulick/blinky_lights
84064264637cf6bb6c62100b5b8bd60fa8ef1af2
[ "MIT" ]
1
2021-08-22T09:28:33.000Z
2021-08-22T09:28:33.000Z
from random import random from animation import Animation from pprint import pprint import time import logging import math import sys from config import * from traceback import print_exception class RainAnimation(Animation): MAX_LINES = 25 class Line: def __init__(self, fade_speed, color, x, y, velocity): self.buffer = [POWER, 0.0, 0.0, 0.0] * PANEL_Y self.is_dead = False if not x: x = random() * (PANEL_X - 1) self.x = int(x) if not y: y = random() * (PANEL_Y - 1) self.current_y = y self.y = int(round(y)) self.buffer[self.y * 4:(self.y * 4) + 4] = [POWER, 255.0,255.0,255.0] if not velocity: velocity = .200 if velocity < .1: velocity = .1 self.velocity = velocity if not color: color = [POWER, 0.0,255.0,0.0] self.color = color #normalize based on a % of 255 self.fade_rate = [color[1]/255.0, color[2]/255.0, color[3]/255.0] #change the fade rate based on normalized color component self.fade_rate = [self.fade_rate[0] * fade_speed, self.fade_rate[1] * fade_speed, self.fade_rate[2] * fade_speed] self.render_count = 0 #logging.debug(self.fade_rate) def fade(self): for i in range(PANEL_Y): offset = i * 4 if i == self.y: #logging.debug("skipping: " + str(i)) #logging.debug( self.buffer[offset:offset+4] ) continue self.buffer[offset:offset+4] = [ self.buffer[offset], #power self.buffer[offset + 1] * (1-self.fade_rate[0]), self.buffer[offset + 2] * (1-self.fade_rate[1]), self.buffer[offset + 3] * (1-self.fade_rate[2]) ] #logging.debug("fade") #logging.debug(self.buffer) def tick(self, adjust_brightness): now = time.clock() self.fade() self.die() if self.current_y > PANEL_Y + 1: return last_y = int(round(self.current_y)) #move self.current_y = self.current_y + self.velocity #this is the floating point location self.y = int(round(self.current_y)) #this is the integer, rounded location #if we've moved down a pixel if self.y > last_y: #set the previous location to the current color offset = last_y * 4 self.buffer[offset:offset+4] = self.color #logging.debug("self.y:" + str(self.y) + " last_y: " + str(last_y)) #white leading pixel if self.y <= PANEL_Y: offset = self.y * 4 self.buffer[offset:offset+4] = [POWER, 255.0,255.0,255.0] #logging.debug("current_y:" + str(self.current_y) + " y:" + str(self.y) + " last_y:" + str(last_y)) #logging.debug(self.buffer) def render(self, buffer): #self.render_count = self.render_count + 1 #if self.render_count > 5: # sys.exit(0) #logging.debug(self.buffer) for i in range(PANEL_Y): offset = ((PANEL_X * i) + self.x) * 4 self_offset = i * 4 for j in range(4): #logging.debug(str(offset+j)) try: buffer[offset+j] = int(round(self.buffer[self_offset+j])) except: print_exception(*sys.exc_info()) logging.debug("self.x:" + str(self.x) + "i:" + str(i) + "offset:" + str(offset) + " self offset:"+str(self_offset)) def die(self): """check to see if all of the pixels in the buffer have faded to 0, if so, we're dead""" self.is_dead = True for i in range(PANEL_Y): offset = i * 4 if self.buffer[offset+1] > 1 or \ self.buffer[offset+2] > 1 or \ self.buffer[offset+3] > 1: self.is_dead = False return #logging.debug("line dead") def __init__(self, spawn_rate, fade_speed, color): Animation.__init__(self) if not spawn_rate: spawn_rate = 1/self.MAX_LINES self.spawn_rate = spawn_rate self.fade_speed = fade_speed self.color = color self.last_spawn_time = None self.start_time = None self.width = PANEL_X self.height = PANEL_Y self.lines = [] def load(self, folder): pass def clear(self): self.buffer = [POWER,0,0,0] * PANEL_X * PANEL_Y def get_next_frame(self): self.clear() now = time.clock() if not self.start_time: self.start_time = now if not self.last_frame_time: self.last_frame_time = now delta = now - self.last_frame_time delay = int(self.frame_delay) / 1000.0 if not self.last_spawn_time: self.last_spawn_time = now if (now - self.last_spawn_time) > self.spawn_rate: #logging.debug("current color: " + str(self.current_color)) if len(self.lines) < self.MAX_LINES: line = self.Line(self.fade_speed, self.color, round(random() * (PANEL_X - 1)), round(random() * PANEL_Y / 3), # don't want trails starting right at the bottom random()/10) # velocity self.last_spawn_time = now #[POWER, int(random()*255),int(random()*255),int(random() * 255)], None, None) self.lines.append(line) #cull any dead lines self.lines = [line for line in self.lines if not line.is_dead] for line in self.lines: line.tick(self.adjust_brightness) line.render(self.buffer) #logging.debug("now: " + str(now) + "last frame:" + str(self.last_frame_time) + " delta:" + str(delta) + " delay:" + str(delay) + " frame_delay:" + str(self.frame_delay)) if delta < delay: return None self.last_frame_time = now return self.buffer
36.85567
178
0.464196
4537158f84466009a8fa4ce57c8866c1f3e48de2
856
py
Python
version_control/scripts/upgrade/versions/v_00005.py
yaoyansibase/mymagicbox
e6e720aa7c45c5b059a953101d698c6b76212ea6
[ "MIT" ]
1
2018-08-02T03:59:04.000Z
2018-08-02T03:59:04.000Z
version_control/scripts/upgrade/versions/v_00005.py
yaoyansibase/mymagicbox
e6e720aa7c45c5b059a953101d698c6b76212ea6
[ "MIT" ]
null
null
null
version_control/scripts/upgrade/versions/v_00005.py
yaoyansibase/mymagicbox
e6e720aa7c45c5b059a953101d698c6b76212ea6
[ "MIT" ]
null
null
null
import maya.cmds as cmds import mymagicbox.log as log class Upgrade(object): def __init__(self): self.thisVersion = 00005; def do(self, nodes): log.info('------------------------------------'); log.info(' Trying To Upgrade to %s ... ', self.thisVersion); for node in nodes: if cmds.getAttr(node+'.mmbversion') >= self.thisVersion: continue;# skip the newer node nodeType = cmds.nodeType(node); if nodeType == 'testNodeA': self.on_testNodeA(node); elif nodeType == 'testNodeB': self.on_testNodeB(node); # update $node.mmbversion to thisVersion cmds.setAttr(node+'.mmbversion', self.thisVersion); log.info('\n\n\n'); def on_testNodeA(self, node): log.debug('upgrading %s to %s', node, self.thisVersion); def on_testNodeB(self, node): log.debug('upgrading %s to %s', node, self.thisVersion);
24.457143
69
0.643692
b5ea39484116d62db440b1ec664d1b3fecd494cc
4,145
py
Python
bot.py
V-I-C-T-O-R/rasa-chatbot
9c99a35e9a0d7e75fdc461fa0039d434b8083c33
[ "Apache-2.0" ]
9
2018-10-26T08:12:13.000Z
2020-11-26T01:05:17.000Z
bot.py
V-I-C-T-O-R/rasa-chatbot
9c99a35e9a0d7e75fdc461fa0039d434b8083c33
[ "Apache-2.0" ]
2
2018-12-19T06:09:30.000Z
2019-09-05T05:44:41.000Z
bot.py
V-I-C-T-O-R/rasa-chatbot
9c99a35e9a0d7e75fdc461fa0039d434b8083c33
[ "Apache-2.0" ]
4
2018-12-18T08:55:36.000Z
2019-08-23T15:09:39.000Z
import argparse import warnings from gevent.pywsgi import WSGIServer from rasa_core import train from rasa_core.agent import Agent from rasa_core.interpreter import NaturalLanguageInterpreter, RasaNLUInterpreter from rasa_core.policies.keras_policy import KerasPolicy from rasa_core.policies.memoization import MemoizationPolicy from rasa_core.run import serve_application,load_agent from rasa_core.training import online from rasa_core.utils import AvailableEndpoints from rasa_core_sdk.endpoint import endpoint_app def train_nlu(): from rasa_nlu.training_data import load_data from rasa_nlu.model import Trainer from rasa_nlu import config configs = config.load("config/nlu_model_config.yml") project = configs.get("project") model = configs.get("fixed_model_name") path = configs.get("path") num_threads = configs.get('num_threads') nlu_data_path = str(configs.get("data")) training_data = load_data(nlu_data_path) trainer = Trainer(configs) trainer.train(training_data, num_threads=num_threads) model_directory = trainer.persist(path=path, project_name=project, fixed_model_name=model) return model_directory def train_core(domain_file="config/domain.yml", model_path="models/dialogue", training_data_file="config/stories.md"): from rasa_core.featurizers import (MaxHistoryTrackerFeaturizer, BinarySingleStateFeaturizer) agent = Agent(domain_file, policies=[MemoizationPolicy(max_history=6), KerasPolicy(MaxHistoryTrackerFeaturizer(BinarySingleStateFeaturizer(), max_history=6))]) training_data = agent.load_data(training_data_file) # 训练agent的策略policy agent.train(training_data, epochs=800) agent.persist(model_path) return agent def run_online(domain_file="config/domain.yml", stories_file="config/stories.md", output_path="models/dialogue", max_history=3, kwargs={"batch_size": 50, "epochs": 800, "max_training_samples": 300}): interpreter = RasaNLUInterpreter("models/ticket/nlu_bot") agent = train.train_dialogue_model(domain_file=domain_file, interpreter=interpreter, stories_file=stories_file, output_path=output_path, max_history=max_history, endpoints=AvailableEndpoints.read_endpoints("config/endpoints.yml"), kwargs=kwargs) online.run_online_learning(agent) def endpoints(action='actions.ticket'): edp_app = endpoint_app(action_package_name=action) http_server = WSGIServer(('0.0.0.0',5055), edp_app) print("Starting action endpoint server...") http_server.start() print("Action endpoint is up and running. on {}" "".format(http_server.address)) http_server.serve_forever() def run(): endpoints = AvailableEndpoints.read_endpoints('config/endpoints.yml') interpreter = NaturalLanguageInterpreter.create('models/ticket/nlu_bot',endpoints.nlu) agent = load_agent("models/dialogue", interpreter=interpreter, endpoints=endpoints) serve_application(agent,channel='rest') # serve_application(agent) return agent if __name__ == "__main__": parser = argparse.ArgumentParser( description="starts the bot") parser.add_argument( "task", choices=["train-nlu", "train-core",'endpoints', "run", "online-train"], help="what the bot should do - e.g. run or train?") task = parser.parse_args().task # decide what to do based on first parameter of the script if task == "train-nlu": train_nlu() elif task == "train-core": train_core() elif task == "endpoints": endpoints() elif task == "run": run() elif task == "online": run_online() else: warnings.warn("Need to pass either 'train-nlu','endpoints', 'train-core','run', or 'online' to use the script.") exit(1)
38.027523
120
0.672859
37ee14322f255d2bb4f46f05e32976ee6c2e1a4d
2,787
py
Python
src/main/python/ui/savechart.py
3ll3d00d/pypolarmap
d96e16820b4da29ec33271abd34dc33c587e7657
[ "MIT" ]
1
2020-02-12T12:33:26.000Z
2020-02-12T12:33:26.000Z
src/main/python/ui/savechart.py
3ll3d00d/pypolarmap
d96e16820b4da29ec33271abd34dc33c587e7657
[ "MIT" ]
10
2018-06-04T18:09:59.000Z
2020-02-01T11:24:54.000Z
src/main/python/ui/savechart.py
3ll3d00d/pypolarmap
d96e16820b4da29ec33271abd34dc33c587e7657
[ "MIT" ]
1
2019-09-30T04:35:00.000Z
2019-09-30T04:35:00.000Z
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'savechart.ui' # # Created by: PyQt5 UI code generator 5.13.1 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets class Ui_saveChartDialog(object): def setupUi(self, saveChartDialog): saveChartDialog.setObjectName("saveChartDialog") saveChartDialog.setWindowModality(QtCore.Qt.ApplicationModal) saveChartDialog.resize(259, 155) saveChartDialog.setModal(True) self.gridLayout = QtWidgets.QGridLayout(saveChartDialog) self.gridLayout.setObjectName("gridLayout") self.formLayout = QtWidgets.QFormLayout() self.formLayout.setObjectName("formLayout") self.widthPixels = QtWidgets.QSpinBox(saveChartDialog) self.widthPixels.setMinimum(1) self.widthPixels.setMaximum(8192) self.widthPixels.setObjectName("widthPixels") self.formLayout.setWidget(1, QtWidgets.QFormLayout.FieldRole, self.widthPixels) self.heightPixels = QtWidgets.QSpinBox(saveChartDialog) self.heightPixels.setEnabled(False) self.heightPixels.setMinimum(1) self.heightPixels.setMaximum(8192) self.heightPixels.setObjectName("heightPixels") self.formLayout.setWidget(2, QtWidgets.QFormLayout.FieldRole, self.heightPixels) self.label = QtWidgets.QLabel(saveChartDialog) self.label.setObjectName("label") self.formLayout.setWidget(1, QtWidgets.QFormLayout.LabelRole, self.label) self.label_2 = QtWidgets.QLabel(saveChartDialog) self.label_2.setObjectName("label_2") self.formLayout.setWidget(2, QtWidgets.QFormLayout.LabelRole, self.label_2) self.gridLayout.addLayout(self.formLayout, 0, 0, 1, 1) self.buttonBox = QtWidgets.QDialogButtonBox(saveChartDialog) self.buttonBox.setOrientation(QtCore.Qt.Horizontal) self.buttonBox.setStandardButtons(QtWidgets.QDialogButtonBox.Cancel|QtWidgets.QDialogButtonBox.Save) self.buttonBox.setObjectName("buttonBox") self.gridLayout.addWidget(self.buttonBox, 1, 0, 1, 1) self.retranslateUi(saveChartDialog) self.buttonBox.accepted.connect(saveChartDialog.accept) self.buttonBox.rejected.connect(saveChartDialog.reject) self.widthPixels.valueChanged['int'].connect(saveChartDialog.updateHeight) QtCore.QMetaObject.connectSlotsByName(saveChartDialog) def retranslateUi(self, saveChartDialog): _translate = QtCore.QCoreApplication.translate saveChartDialog.setWindowTitle(_translate("saveChartDialog", "Save Chart")) self.label.setText(_translate("saveChartDialog", "Width")) self.label_2.setText(_translate("saveChartDialog", "Height"))
48.051724
108
0.733405
2fc321564ec22a3fc08d852dadd83738de2b7bb9
349
py
Python
languages/python/web_codepad_post.py
Andilyn/learntosolveit
fd15345c74ef543e4e26f4691bf91cb6dac568a4
[ "BSD-3-Clause" ]
1
2021-04-09T04:15:24.000Z
2021-04-09T04:15:24.000Z
languages/python/web_codepad_post.py
Andilyn/learntosolveit
fd15345c74ef543e4e26f4691bf91cb6dac568a4
[ "BSD-3-Clause" ]
null
null
null
languages/python/web_codepad_post.py
Andilyn/learntosolveit
fd15345c74ef543e4e26f4691bf91cb6dac568a4
[ "BSD-3-Clause" ]
1
2021-07-31T02:45:29.000Z
2021-07-31T02:45:29.000Z
import urllib2 import urllib url = 'http://codepad.org' with open('locate.py') as f: code = f.read() parameters = {'project':'uthcode', 'lang':'Python', 'code': code, 'private':'', 'run':'False', 'submit':'Submit'} seq = urllib.urlencode(parameters) r = urllib2.urlopen(url,seq) print r.url + '/fork'
18.368421
34
0.575931
8c477ee9e508168b7fdfad27e9932756e083549e
236
py
Python
Server/Python/src/dbs/dao/MySQL/ProcessedDataset/GetID.py
vkuznet/DBS
14df8bbe8ee8f874fe423399b18afef911fe78c7
[ "Apache-2.0" ]
8
2015-08-14T04:01:32.000Z
2021-06-03T00:56:42.000Z
Server/Python/src/dbs/dao/MySQL/ProcessedDataset/GetID.py
yuyiguo/DBS
14df8bbe8ee8f874fe423399b18afef911fe78c7
[ "Apache-2.0" ]
162
2015-01-07T21:34:47.000Z
2021-10-13T09:42:41.000Z
Server/Python/src/dbs/dao/MySQL/ProcessedDataset/GetID.py
yuyiguo/DBS
14df8bbe8ee8f874fe423399b18afef911fe78c7
[ "Apache-2.0" ]
16
2015-01-22T15:27:29.000Z
2021-04-28T09:23:28.000Z
#!/usr/bin/env python """ This module provides ProcessedDataset.GetID data access object. """ from dbs.dao.Oracle.ProcessedDataset.GetID import GetID as OraProcessedDatasetGetID class GetID(OraProcessedDatasetGetID): pass
23.6
83
0.771186
5717a9780ae8288174a5ec87f1881e0e25d549ce
5,865
py
Python
docs/source/conf.py
aeroramesh/eMInd
a699681c53637bc5b2ef2608fd4e5cb8ebc7b19d
[ "MIT" ]
98
2019-09-13T16:00:57.000Z
2022-03-25T05:15:36.000Z
docs/source/conf.py
aeroramesh/eMInd
a699681c53637bc5b2ef2608fd4e5cb8ebc7b19d
[ "MIT" ]
269
2019-08-22T01:47:09.000Z
2021-12-01T14:47:47.000Z
docs/source/conf.py
aeroramesh/eMInd
a699681c53637bc5b2ef2608fd4e5cb8ebc7b19d
[ "MIT" ]
5
2021-05-07T11:11:40.000Z
2022-03-29T08:38:33.000Z
# -*- coding: utf-8 -*- # # Configuration file for the Sphinx documentation builder. # # This file does only contain a selection of the most common options. For a # full list see the documentation: # http://www.sphinx-doc.org/en/master/config # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys sys.path.insert(0, os.path.abspath('../..')) import nodeeditor # -- Project information ----------------------------------------------------- project = 'NodeEditor' copyright = '2019, Pavel Křupala' author = 'Pavel Křupala' # The short X.Y version version = nodeeditor.__version__ # The full version, including alpha/beta/rc tags release = nodeeditor.__version__ # -- General configuration --------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. import sphinx_rtd_theme extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.autosectionlabel', 'sphinx_rtd_theme', 'sphinx.ext.todo', 'sphinx.ext.coverage', 'recommonmark', ] autosectionlabel_prefix_document = True autodoc_member_order = 'bysource' autoclass_content = "both" from recommonmark.transform import AutoStructify github_doc_root = 'https://github.com/rtfd/recommonmark/tree/master/doc/' def setup(app): app.add_config_value('recommonmark_config', { # 'url_resolver': lambda url: github_doc_root + url, 'auto_toc_tree_section': 'Contents', }, True) app.add_transform(AutoStructify) # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # source_suffix = ['.rst', '.md'] # source_suffix = '.rst' # The master toctree document. master_doc = 'index' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = [] # The name of the Pygments (syntax highlighting) style to use. pygments_style = None # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'sphinx_rtd_theme' html_theme_path = ["_themes", ] # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # The default sidebars (for documents that don't match any pattern) are # defined by theme itself. Builtin themes are using these templates by # default: ``['localtoc.html', 'relations.html', 'sourcelink.html', # 'searchbox.html']``. # # html_sidebars = {} # -- Options for HTMLHelp output --------------------------------------------- # Output file base name for HTML help builder. htmlhelp_basename = 'NodeEditordoc' # -- Options for LaTeX output ------------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'NodeEditor.tex', 'NodeEditor Documentation', 'Pavel Křupala', 'manual'), ] # -- Options for manual page output ------------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'nodeeditor', 'NodeEditor Documentation', [author], 1) ] # -- Options for Texinfo output ---------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'NodeEditor', 'NodeEditor Documentation', author, 'NodeEditor', 'One line description of project.', 'Miscellaneous'), ] # -- Options for Epub output ------------------------------------------------- # Bibliographic Dublin Core info. epub_title = project # The unique identifier of the text. This can be a ISBN number # or the project homepage. # # epub_identifier = '' # A unique identification for the text. # # epub_uid = '' # A list of files that should not be packed into the epub file. epub_exclude_files = ['search.html']
29.621212
79
0.66445
eb282e96df605c49958261d1bcdd1be576d4b1bf
3,574
py
Python
story_chain/flaskrunner.py
muchu1983/story_chain
3af4bb158be128a52c753f88eaffaed872d85880
[ "BSD-3-Clause" ]
null
null
null
story_chain/flaskrunner.py
muchu1983/story_chain
3af4bb158be128a52c753f88eaffaed872d85880
[ "BSD-3-Clause" ]
null
null
null
story_chain/flaskrunner.py
muchu1983/story_chain
3af4bb158be128a52c753f88eaffaed872d85880
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- """ Copyright (C) 2015, MuChu Hsu Contributed by Muchu Hsu (muchu1983@gmail.com) This file is part of BSD license <https://opensource.org/licenses/BSD-3-Clause> """ import json from flask import Flask from flask import request from flask import render_template from flask import jsonify from story_chain.localdb import LocalDbForStoryChain app = Flask(__name__.split(".")[0]) #啟動 server def start_flask_server(): app.run(host="0.0.0.0", port=5000, debug=True) #建立 jsonp response def make_jsonp_response(dicJsonObj=None): strCallback = request.args.get("strJsonpCallback", 0, type=str) return strCallback + "(" + json.dumps(dicJsonObj) + ")" #在指定的段落之後 加入新的故事段落 (return 新段落 id) @app.route("/story_chain/api_post/story", methods=["GET"]) def apiPostNewStory(): db = LocalDbForStoryChain() strStoryContent = request.args.get("str_story_content", type=str) intPrevStoryId = request.args.get("int_prev_story_id", type=int) intNewStoryId = db.insertNewStory(strContent=strStoryContent, intPrevId=intPrevStoryId) return make_jsonp_response(dicJsonObj={"new_story_id":intNewStoryId}) #取得指定段落內容 @app.route("/story_chain/api_get/story/<int:intStoryId>", methods=["GET"]) def apiGetStoryById(intStoryId=0): db = LocalDbForStoryChain() (strContent, intLike, intDislike) = db.fetchStoryById(intStoryId=intStoryId) dicJsonObj = {"str_content":strContent, "int_like":intLike, "int_dislike":intDislike} return make_jsonp_response(dicJsonObj=dicJsonObj) #修改指定段落內容 (按贊/按噓) @app.route("/story_chain/api_put/story/<int:intStoryId>", methods=["GET"]) def apiPutStoryById(intStoryId=0): pass #取得 前 or 後 故事段 列表 (return 段落 id list) @app.route("/story_chain/api_get/story", methods=["GET"]) def apiGetStoryList(): db = LocalDbForStoryChain() strType = request.args.get("str_type", type=str) #"next" or "prev" intStoryId = request.args.get("int_story_id", type=int) lstIntStoryId = db.fetchNextOrPrevStoryId(intStoryId=intStoryId, strFetchType=strType) dicJsonObj = None if strType == "prev": #前一段必定是唯一的 dicJsonObj = {"int_prev_story_id":(lstIntStoryId[0] if lstIntStoryId else 0)} elif strType == "next": #下一段可能有多個選擇 dicJsonObj = {"lst_int_next_story_id":lstIntStoryId} else: dicJsonObj = {} return make_jsonp_response(dicJsonObj) #讀取書籤 @app.route("/story_chain/api_get/tag/<strTagName>", methods=["GET"]) def apiGetTagByName(strTagName=None): pass #新增書籤 (書籤有時限) @app.route("/story_chain/api_post/tag", methods=["GET"]) def apiPostTag(strTagName=None): request.args.get("strTagName") request.args.get("intStoryId") pass #= Flask 範例 = #GET POST參數範例 @app.route("/hello/<username>/<int:num>", methods=["GET", "POST"]) def hello(username, num): #http://192.168.1.101:5000/hello/muchu/7?love=lunna request.form #get form data when POST return "Hello World! %s %d method: %s args: %s"%(username, num, request.method, request.args.get("love")) #template範例 @app.route("/template/") @app.route("/template/<name>") def template(name=None): return render_template("temp.html", name=name) #post json範例 @app.route("/jsonpapi", methods=["GET"]) def jsonpapi(): x = request.args.get("x", 0, type=int) y = request.args.get("y", 0, type=int) dicResultJson = {"result":x+y} return make_jsonp_response(dicJsonObj=dicResultJson) if __name__ == "__main__": start_flask_server()
34.038095
94
0.689144
1354c689298d20a92ecea8e5b49d805dfb56c133
4,002
py
Python
ML6_fruits.py
maedora/apphy186MLexercises
8086b9a98041ecfe332421e3637b97b37a0864e7
[ "MIT" ]
null
null
null
ML6_fruits.py
maedora/apphy186MLexercises
8086b9a98041ecfe332421e3637b97b37a0864e7
[ "MIT" ]
null
null
null
ML6_fruits.py
maedora/apphy186MLexercises
8086b9a98041ecfe332421e3637b97b37a0864e7
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Tue Jan 19 13:51:29 2021 @author: Alena Edora """ import matplotlib.pyplot as plt import numpy as np import pandas as pd from sklearn.metrics import accuracy_score, \ confusion_matrix, ConfusionMatrixDisplay df = pd.read_excel('classification_features.xlsx') # Get names of indexes to drop indexNames = df[df['Class'] == 'Banana'].index # Delete these row indexes from dataFrame df.drop(indexNames, inplace=True) # Replacing Mango and Orange with 1 and -1 df = df.replace(['Mango','Orange'], [1,0]) # splitting the test and training data set mango_df_train = df[df['Class']==1].head(18) mango_df_test = df[df['Class']==1].tail(17) orange_df_train = df[df['Class']==0].head(18) orange_df_test = df[df['Class']==0].tail(17) df_train = pd.concat([mango_df_train, orange_df_train], axis=0) df_test = pd.concat([mango_df_test, orange_df_test], axis=0) train_samples = df_train.shape[0] # no. of samples of train set test_samples = df_test.shape[0] # no. of samples of test set # input features + bias x1_train = df_train[['Normalized Hue','NormRound']].values x0_train = np.ones((train_samples,1)) x_train = np.concatenate((x0_train,x1_train), axis=1) x1_test = df_test[['Normalized Hue','NormRound']].values x0_test = np.ones((test_samples,1)) x_test = np.concatenate((x0_test,x1_test), axis=1) # true values t_train = df_train[['Class']].values t_test = df_test[['Class']].values # defining the functions to use def sigmoid(z): g = (1/(1+np.exp(-z))) return g def dsigmoid(g): dg = g * (1 - g) return dg def linear(z): g = z return g def dlinear(z): dg = np.ones(z.shape) return dg def relu(z): g = np.maximum(0,z) return g def drelu(z): dg = np.maximum(0,1) return dg def step(z): """ only for accuracy purposes since the output values of the neural network are not exactly at 1s and 0s """ y = [] for i in z.T: if i > 0.5: y.append(1) else: y.append(0) return y # initialization eta = 0.01 # learning rate epoch = 1000 # no. of times when all patterns have passed thru the network hidden_node = 5 # no. of hidden nodes output_node= 1 # no. of output nodes feature_count = 3 # including bias # plotting the cost function SSE_cost = [] # weights init w1 = np.random.rand(hidden_node, feature_count) - 0.5 # (5,3) w2 = np.random.rand(output_node, hidden_node) - 0.5 # (1,5) for i in range(epoch): # first layer a1 = np.dot(w1,x_train.T) z1 = np.array(relu(a1)) # second layer a2 = np.dot(w2,z1) z2 = np.array(relu(a2)) # also yk # computing error of output unit delta_2 = drelu(a2) * (z2-t_train.T) delta_1 = drelu(z1) * np.dot(delta_2.T,w2).T # computing the error derivatives of the samples dE_2 = np.dot(delta_2,z1.T) dE_1 = np.dot(delta_1,x_train) # computing for weight change w2 += -eta * dE_2 w1 += -eta * dE_1 err = 0.5 * np.sum((z2-t_train.T)**2) SSE_cost.append(err) # testing the accuracy of the model # y_pred = step(z2) aj = np.dot(w1,x_test.T) zj = np.array(relu(aj)) # second layer ak = np.dot(w2,zj) zk = np.array(relu(ak)) # also yk y_pred = step(zk) # prints accuracy of the model print('Accuracy: ', accuracy_score(y_pred,t_test)) cm = confusion_matrix(y_pred, t_test) disp = ConfusionMatrixDisplay(confusion_matrix=cm) disp.plot() plt.savefig('confusion_matrix-acc-0.8.png') plt.show() plt.plot(np.arange(0,epoch,1), SSE_cost) plt.xlabel('No. of Epochs') plt.ylabel('Cost Function') plt.title('2-layer Neural Network Cost Function for Fruit Classification') plt.savefig('cost_func_fruits.png') plt.show()
25.0125
81
0.617691
adc0003dca3e60f178b34c38f66966626eb9a784
1,077
py
Python
nginpro/ngin.py
thesabbir/nginpro
b3ca2fbadc19fa28798434bb640f4d0a1bf742b9
[ "MIT" ]
1
2020-12-28T16:33:54.000Z
2020-12-28T16:33:54.000Z
nginpro/ngin.py
thesabbir/nginpro
b3ca2fbadc19fa28798434bb640f4d0a1bf742b9
[ "MIT" ]
null
null
null
nginpro/ngin.py
thesabbir/nginpro
b3ca2fbadc19fa28798434bb640f4d0a1bf742b9
[ "MIT" ]
null
null
null
import argparse from nginx_conf import server, reverse_proxy from utils import to_nginx_template, make_indent, make_block """ Initiate argparse """ parser = argparse.ArgumentParser() """ Add arguments """ parser.add_argument("-r", "--revproxy", help="reverse proxy", action="store_true") parser.add_argument("-n", "--name", help="server name or domain name", action="store") parser.add_argument("-p", "--proxypass", help="proxy pass server", action="store") """ Parsing arguments """ args = parser.parse_args() """ Reverse proxy config generator """ if args.revproxy: if args.name is None or args.proxypass is None: raise SystemExit('Name and Pass is required!') server['server_name'] = args.name reverse_proxy['proxy_pass'] = args.proxypass to_nginx_template(reverse_proxy) location = make_block(name="location", content=to_nginx_template(reverse_proxy), pattern='/') server = to_nginx_template(server) block = '{} {}'.format(server, location) conf = make_block(name="server", content=block, pattern="") print make_indent(conf)
29.916667
97
0.715877
bfa274731702b7e93b1fde530bd4215f7eaa6a3d
854
py
Python
topics/DynamicProgramming/Paint_Fence_276/Paint_Fence_276.py
DmitryNaimark/leetcode-solutions-python
16af5f3a9cb8469d82b14c8953847f0e93a92324
[ "MIT" ]
1
2019-10-31T11:06:23.000Z
2019-10-31T11:06:23.000Z
topics/DynamicProgramming/Paint_Fence_276/Paint_Fence_276.py
DmitryNaimark/leetcode-solutions-python
16af5f3a9cb8469d82b14c8953847f0e93a92324
[ "MIT" ]
null
null
null
topics/DynamicProgramming/Paint_Fence_276/Paint_Fence_276.py
DmitryNaimark/leetcode-solutions-python
16af5f3a9cb8469d82b14c8953847f0e93a92324
[ "MIT" ]
null
null
null
# https://leetcode.com/problems/paint-fence/ # --------------------------------------------------- # Runtime Complexity: O(N) # Space Complexity: O(1) class Solution: def numWays(self, n: int, k: int) -> int: if n == 0: return 0 if n == 1: return k same_color = k diff_color = k * (k - 1) for i in range(2, n): # Amount of ways to paint next fence the same color is the same as diff_color for the previous fence. tmp = diff_color diff_color = (diff_color + same_color) * (k - 1) same_color = tmp return same_color + diff_color # --------------------------------------------------- # Test Cases # --------------------------------------------------- solution = Solution() # 6 print(solution.numWays(3, 2))
26.6875
113
0.443794
78606c340479b12753242b347ebfcd6ea59a504c
543
py
Python
Python/Linked List/traversal.py
msboffl/Data-Structures-and-Algorithms
ad823886f5c25b80487b42d92c9b71c5bdc5cf26
[ "MIT" ]
null
null
null
Python/Linked List/traversal.py
msboffl/Data-Structures-and-Algorithms
ad823886f5c25b80487b42d92c9b71c5bdc5cf26
[ "MIT" ]
null
null
null
Python/Linked List/traversal.py
msboffl/Data-Structures-and-Algorithms
ad823886f5c25b80487b42d92c9b71c5bdc5cf26
[ "MIT" ]
null
null
null
class Node: def __init__(self,data): self.data = data self.ref = None class LinkedList: def __init__(self): self.head = None # method for print LL def printLL(self): if(self.head == None): print('Linked List is empty') else: n = self.head while( n != None): print(n.data) n = n.ref LL1 = LinkedList() LL1.head = Node(10) second = Node(20) third = Node(30) LL1.head.ref = second second.ref = third LL1.printLL()
19.392857
41
0.526703
3f852d385494598301a1f5e931efebc98c5cec89
8,833
py
Python
networks/network.py
StanfordVL/cavin
581f70fefb3a869db739d8539f3b74759ab71777
[ "MIT" ]
17
2020-04-11T22:31:40.000Z
2021-08-16T09:29:16.000Z
networks/network.py
StanfordVL/cavin
581f70fefb3a869db739d8539f3b74759ab71777
[ "MIT" ]
null
null
null
networks/network.py
StanfordVL/cavin
581f70fefb3a869db739d8539f3b74759ab71777
[ "MIT" ]
4
2020-09-28T02:39:31.000Z
2021-05-16T13:44:29.000Z
"""Base extension to network to simplify copy operations. Note: This file overrides Network and DistributionNetwork classes in TF-Agents to get around Keras. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc # import sys import six import tensorflow as tf from tf_agents.specs import tensor_spec from tf_agents.trajectories import time_step from tensorflow.python.training.tracking import base # TF internal from tensorflow.python.util import tf_decorator # TF internal from tensorflow.python.util import tf_inspect # TF internal class _NetworkMeta(abc.ABCMeta): """Meta class for Network object. We mainly use this class to capture all args to `__init__` of all `Network` instances, and store them in `instance._saved_kwargs`. This in turn is used by the `instance.copy` method. """ def __new__(mcs, classname, baseclasses, attrs): """Control the creation of subclasses of the Network class. Args: classname: The name of the subclass being created. baseclasses: A tuple of parent classes. attrs: A dict mapping new attributes to their values. Returns: The class object. Raises: RuntimeError: if the class __init__ has *args in its signature. """ if baseclasses[0] == object: # This is just Network below. Return early. return abc.ABCMeta.__new__(mcs, classname, baseclasses, attrs) init = attrs.get("__init__", None) if not init: # This wrapper class does not define an __init__. When someone # creates the object, the __init__ of its parent class will be # called. We will call that __init__ instead separately since the # parent class is also a subclass of Network. Here just create # the class and return. return abc.ABCMeta.__new__(mcs, classname, baseclasses, attrs) arg_spec = tf_inspect.getargspec(init) if arg_spec.varargs is not None: raise RuntimeError( '%s.__init__ function accepts *args.' 'This is not allowed.' % classname) def _capture_init(self, *args, **kwargs): """Captures init args and kwargs into `_saved_kwargs`.""" if len(args) > len(arg_spec.args) + 1: # Error case: more inputs than args. Call init so that the # appropriate error can be raised to the user. init(self, *args, **kwargs) for i, arg in enumerate(args): # Add +1 to skip `self` in arg_spec.args. kwargs[arg_spec.args[1 + i]] = arg init(self, **kwargs) # Avoid auto tracking which prevents keras from tracking layers # that are passed as kwargs to the Network. with base.no_automatic_dependency_tracking_scope(self): setattr(self, "_saved_kwargs", kwargs) attrs["__init__"] = tf_decorator.make_decorator(init, _capture_init) return abc.ABCMeta.__new__(mcs, classname, baseclasses, attrs) @six.add_metaclass(_NetworkMeta) class Network(object): """Base extension to network to simplify copy operations.""" def __init__(self, input_tensor_spec, state_spec, name, mask_split_fn=None): """Creates an instance of `Network`. Args: input_tensor_spec: A nest of `tensor_spec.TensorSpec` representing the input observations. state_spec: A nest of `tensor_spec.TensorSpec` representing the state needed by the network. Use () if none. name: A string representing the name of the network. mask_split_fn: A function used for masking valid/invalid actions with each state of the environment. The function takes in a full observation and returns a tuple consisting of 1) the part of the observation intended as input to the network and 2) the mask. """ self._name = name self._input_tensor_spec = input_tensor_spec self._output_tensor_spec = None self._state_spec = state_spec self._mask_split_fn = mask_split_fn self._built = False @property def name(self): return self._name @property def state_spec(self): return self._state_spec @property def built(self): return self._built @property def weights(self): return self._weights @property def trainable_weights(self): return self._trainable_weights @property def non_trainable_weights(self): return self._non_trainable_weights def create_variables(self): if not self.built: random_input = tensor_spec.sample_spec_nest( self.input_tensor_spec, outer_dims=(1,)) step_type = tf.expand_dims(time_step.StepType.FIRST, 0) output_tensors = self.__call__(random_input, step_type, None) with tf.compat.v1.variable_scope(self._name): self._weights = tf.compat.v1.get_collection( key=tf.compat.v1.GraphKeys.GLOBAL_VARIABLES, scope=self._name) self._trainable_weights = tf.compat.v1.trainable_variables( scope=self._name) self._non_trainable_weights = [ var for var in self._weights if var not in self._trainable_weights] if self._output_tensor_spec is None: self._output_tensor_spec = tf.nest.map_structure( lambda t: tensor_spec.TensorSpec.from_tensor( tf.squeeze(t, axis=0)), output_tensors) @property def input_tensor_spec(self): """Returns the spec of the input to the network of type InputSpec.""" return self._input_tensor_spec @property def output_tensor_spec(self): """Returns the spec of the input to the network of type OutputSpec.""" assert self._output_tensor_spec is not None return self._output_tensor_spec @property def mask_split_fn(self): """Returns the mask_split_fn for handling masked actions.""" return self._mask_split_fn @property def variables(self): """Return the variables for all the network layers. If the network hasn't been built, builds it on random input (generated using self._input_tensor_spec) to build all the layers and their variables. Raises: ValueError: If the network fails to build. """ assert self.built return self.weights @property def trainable_variables(self): """Return the trainable variables for all the network layers. If the network hasn't been built, builds it on random input (generated using self._input_tensor_spec) to build all the layers and their variables. Raises: ValueError: If the network fails to build. """ assert self.built return self.trainable_weights @property def info_spec(self): return () def copy(self, **kwargs): """Create a shallow copy of this network. **NOTE** Network layer weights are *never* copied. This method recreates the `Network` instance with the same arguments it was initialized with (excepting any new kwargs). Args: **kwargs: Args to override when recreating this network. Commonly overridden args include 'name'. Returns: A shallow copy of this network. """ return type(self)(**dict(self._saved_kwargs, **kwargs)) def __call__(self, inputs, *args, **kwargs): tf.nest.assert_same_structure(inputs, self.input_tensor_spec) # TODO: Debug. with tf.compat.v1.variable_scope(self._name, reuse=tf.compat.v1.AUTO_REUSE): outputs = self.call(inputs, *args, **kwargs) self._built = True return outputs class DistributionNetwork(Network): """Base class for networks which generate Distributions as their output.""" def __init__(self, input_tensor_spec, state_spec, output_spec, name): super(DistributionNetwork, self).__init__( input_tensor_spec=input_tensor_spec, state_spec=state_spec, name=name) self._output_spec = output_spec @property def output_spec(self): return self._output_spec
35.332
79
0.625042
b877129fed8da189ac42018f3acc0805d83ffa13
6,330
py
Python
bin/ADFRsuite/CCSBpckgs/UTpackages/UTmesh/lbiemesher.py
AngelRuizMoreno/Jupyter_Dock_devel
6d23bc174d5294d1e9909a0a1f9da0713042339e
[ "MIT" ]
null
null
null
bin/ADFRsuite/CCSBpckgs/UTpackages/UTmesh/lbiemesher.py
AngelRuizMoreno/Jupyter_Dock_devel
6d23bc174d5294d1e9909a0a1f9da0713042339e
[ "MIT" ]
null
null
null
bin/ADFRsuite/CCSBpckgs/UTpackages/UTmesh/lbiemesher.py
AngelRuizMoreno/Jupyter_Dock_devel
6d23bc174d5294d1e9909a0a1f9da0713042339e
[ "MIT" ]
1
2021-11-04T21:48:14.000Z
2021-11-04T21:48:14.000Z
# This file was automatically generated by SWIG (http://www.swig.org). # Version 3.0.5 # # Do not make changes to this file unless you know what you are doing--modify # the SWIG interface file instead. from sys import version_info if version_info >= (2, 6, 0): def swig_import_helper(): from os.path import dirname import imp fp = None try: fp, pathname, description = imp.find_module('_lbiemesher', [dirname(__file__)]) except ImportError: import _lbiemesher return _lbiemesher if fp is not None: try: _mod = imp.load_module('_lbiemesher', fp, pathname, description) finally: fp.close() return _mod _lbiemesher = swig_import_helper() del swig_import_helper else: import _lbiemesher del version_info try: _swig_property = property except NameError: pass # Python < 2.2 doesn't have 'property'. def _swig_setattr_nondynamic(self, class_type, name, value, static=1): if (name == "thisown"): return self.this.own(value) if (name == "this"): if type(value).__name__ == 'SwigPyObject': self.__dict__[name] = value return method = class_type.__swig_setmethods__.get(name, None) if method: return method(self, value) if (not static): if _newclass: object.__setattr__(self, name, value) else: self.__dict__[name] = value else: raise AttributeError("You cannot add attributes to %s" % self) def _swig_setattr(self, class_type, name, value): return _swig_setattr_nondynamic(self, class_type, name, value, 0) def _swig_getattr_nondynamic(self, class_type, name, static=1): if (name == "thisown"): return self.this.own() method = class_type.__swig_getmethods__.get(name, None) if method: return method(self) if (not static): return object.__getattr__(self, name) else: raise AttributeError(name) def _swig_getattr(self, class_type, name): return _swig_getattr_nondynamic(self, class_type, name, 0) def _swig_repr(self): try: strthis = "proxy of " + self.this.__repr__() except: strthis = "" return "<%s.%s; %s >" % (self.__class__.__module__, self.__class__.__name__, strthis,) try: _object = object _newclass = 1 except AttributeError: class _object: pass _newclass = 0 _lbiemesher.DEFAULT_ERR_swigconstant(_lbiemesher) DEFAULT_ERR = _lbiemesher.DEFAULT_ERR _lbiemesher.DEFAULT_ERR_IN_swigconstant(_lbiemesher) DEFAULT_ERR_IN = _lbiemesher.DEFAULT_ERR_IN _lbiemesher.DEFAULT_IVAL_swigconstant(_lbiemesher) DEFAULT_IVAL = _lbiemesher.DEFAULT_IVAL _lbiemesher.DEFAULT_IVAL_IN_swigconstant(_lbiemesher) DEFAULT_IVAL_IN = _lbiemesher.DEFAULT_IVAL_IN _lbiemesher.SINGLE_swigconstant(_lbiemesher) SINGLE = _lbiemesher.SINGLE _lbiemesher.HEXA_swigconstant(_lbiemesher) HEXA = _lbiemesher.HEXA _lbiemesher.DOUBLE_swigconstant(_lbiemesher) DOUBLE = _lbiemesher.DOUBLE _lbiemesher.TETRA_swigconstant(_lbiemesher) TETRA = _lbiemesher.TETRA _lbiemesher.T_4_H_swigconstant(_lbiemesher) T_4_H = _lbiemesher.T_4_H _lbiemesher.TETRA2_swigconstant(_lbiemesher) TETRA2 = _lbiemesher.TETRA2 class LBIE_Mesher(_object): __swig_setmethods__ = {} __setattr__ = lambda self, name, value: _swig_setattr(self, LBIE_Mesher, name, value) __swig_getmethods__ = {} __getattr__ = lambda self, name: _swig_getattr(self, LBIE_Mesher, name) __repr__ = _swig_repr def __init__(self, *args): this = _lbiemesher.new_LBIE_Mesher(*args) try: self.this.append(this) except: self.this = this __swig_destroy__ = _lbiemesher.delete_LBIE_Mesher __del__ = lambda self: None __swig_setmethods__["oc"] = _lbiemesher.LBIE_Mesher_oc_set __swig_getmethods__["oc"] = _lbiemesher.LBIE_Mesher_oc_get if _newclass: oc = _swig_property(_lbiemesher.LBIE_Mesher_oc_get, _lbiemesher.LBIE_Mesher_oc_set) def inputData(self, data, dims, numVerts, numCells, origin=0, spans=0): return _lbiemesher.LBIE_Mesher_inputData(self, data, dims, numVerts, numCells, origin, spans) def fileOpen(self, arg2): return _lbiemesher.LBIE_Mesher_fileOpen(self, arg2) def fileSave(self, arg2): return _lbiemesher.LBIE_Mesher_fileSave(self, arg2) def setMesh(self, arg2): return _lbiemesher.LBIE_Mesher_setMesh(self, arg2) def errorChange(self, arg2): return _lbiemesher.LBIE_Mesher_errorChange(self, arg2) def errorChange_in(self, arg2): return _lbiemesher.LBIE_Mesher_errorChange_in(self, arg2) def isovalueChange(self, arg2): return _lbiemesher.LBIE_Mesher_isovalueChange(self, arg2) def isovalueChange_in(self, arg2): return _lbiemesher.LBIE_Mesher_isovalueChange_in(self, arg2) def outTriangle(self, outverts, outfaces): return _lbiemesher.LBIE_Mesher_outTriangle(self, outverts, outfaces) def outTetra(self, outverts, outfaces): return _lbiemesher.LBIE_Mesher_outTetra(self, outverts, outfaces) def outHexa(self, outverts, outfaces): return _lbiemesher.LBIE_Mesher_outHexa(self, outverts, outfaces) def outQuad(self, outverts, outfaces): return _lbiemesher.LBIE_Mesher_outQuad(self, outverts, outfaces) def getNumFaces(self): return _lbiemesher.LBIE_Mesher_getNumFaces(self) def getNumVerts(self): return _lbiemesher.LBIE_Mesher_getNumVerts(self) def getVolMin(self): return _lbiemesher.LBIE_Mesher_getVolMin(self) def getVolMax(self): return _lbiemesher.LBIE_Mesher_getVolMax(self) def getOuterSurface(self): return _lbiemesher.LBIE_Mesher_getOuterSurface(self) def setXCutPlane(self, plane_x): return _lbiemesher.LBIE_Mesher_setXCutPlane(self, plane_x) def setZCutPlane(self, plane_z): return _lbiemesher.LBIE_Mesher_setZCutPlane(self, plane_z) def getSurface(self, crossection=0): return _lbiemesher.LBIE_Mesher_getSurface(self, crossection) LBIE_Mesher_swigregister = _lbiemesher.LBIE_Mesher_swigregister LBIE_Mesher_swigregister(LBIE_Mesher) # This file is compatible with both classic and new-style classes.
30.432692
101
0.7109
f5f309234f3cae27b898390a996e7eca3a32c4cc
12,587
py
Python
iridauploader/core/cli_entry.py
dfornika/irida-uploader
0d855433bf5b567ff1e63501950fdc145b488742
[ "Apache-2.0" ]
null
null
null
iridauploader/core/cli_entry.py
dfornika/irida-uploader
0d855433bf5b567ff1e63501950fdc145b488742
[ "Apache-2.0" ]
null
null
null
iridauploader/core/cli_entry.py
dfornika/irida-uploader
0d855433bf5b567ff1e63501950fdc145b488742
[ "Apache-2.0" ]
null
null
null
import logging from pprint import pformat import iridauploader.api as api import iridauploader.parsers as parsers import iridauploader.progress as progress from iridauploader.model import DirectoryStatus from . import api_handler, parsing_handler, logger, exit_return VERSION_NUMBER = "0.4.1" def upload_run_single_entry(directory, force_upload=False): """ This function acts as a single point of entry for uploading a directory Handles getting a directories run status, and running if conditions are met (valid run, new run or forced upload). :param directory: Directory of the sequencing run to upload :param force_upload: When set to true, the upload status file will be ignored and file will attempt to be uploaded :return: ExitReturn """ directory_status = parsing_handler.get_run_status(directory) # Check if a run is invalid, an invalid run cannot be uploaded. if directory_status.status_equals(DirectoryStatus.INVALID): error_msg = "ERROR! Run in directory {} is invalid. Returned with message: '{}'".format( directory_status.directory, directory_status.message) logging.error(error_msg) return exit_error(error_msg) # Only upload if run is new, or force_upload is True if not force_upload: if not directory_status.status_equals(DirectoryStatus.NEW): error_msg = "ERROR! Run in directory {} is not new. It has either been uploaded, " \ "or an upload was attempted with error. " \ "Please check the status file 'irida_uploader_status.info' " \ "in the run directory for more details. " \ "You can bypass this error by uploading with the --force argument.".format(directory) logging.error(error_msg) return exit_error(error_msg) return _validate_and_upload(directory_status) def batch_upload_single_entry(batch_directory, force_upload=False): """ This function acts as a single point of entry for batch uploading run directories It uses _validate_and_upload as it function for uploading the individual runs A list of runs to be uploaded is generated at start up, and all found runs will be attempted to be uploaded. :param batch_directory: Directory containing sequencing run directories to upload :param force_upload: When set to true, the upload status file will be ignored and file will attempt to be uploaded :return: ExitReturn """ logging.debug("batch_upload_single_entry:Starting {} with force={}".format(batch_directory, force_upload)) # get all potential directories to upload directory_status_list = parsing_handler.get_run_status_list(batch_directory) # list info about directories found logging.info("Found {} potential run directories".format(len(directory_status_list))) for directory_status in directory_status_list: logging.info("DIRECTORY: %s\n" "%30sSTATUS: %s\n" "%30sDETAILS: %s" % (directory_status.directory, "", directory_status.status, "", directory_status.message)) # if `force` is on, only don't upload invalid runs if force_upload: upload_list = [x for x in directory_status_list if not x.status_equals(DirectoryStatus.INVALID)] logging.info("Starting upload for all non invalid runs. {} run(s) found. " "(Running with --force)".format(len(upload_list))) # without `force` only upload new runs else: upload_list = [x for x in directory_status_list if x.status_equals(DirectoryStatus.NEW)] logging.info("Starting upload for all new runs. {} run(s) found.".format(len(upload_list))) # run upload, keep track of which directories did not upload error_list = [] for directory_status in upload_list: logging.info("Starting upload for {}".format(directory_status.directory)) result = _validate_and_upload(directory_status) if result.exit_code == exit_return.EXIT_CODE_ERROR: error_list.append(directory_status.directory) logging.info("Uploads completed with {} error(s)".format(len(error_list))) for directory in error_list: logging.warning("Directory '{}' upload exited with ERROR, check log and status file for details" "".format(directory)) logging.info("Batch upload complete, Exiting!") return exit_success() def _validate_and_upload(directory_status): """ This function attempts to upload a single run directory Handles parsing and validating the directory for samples Sets up the api layer based on config file Verifies samples is able to be uploaded (verifies projects exist) Initializes objects/routes on IRIDA to accept Samples (creates samples if they don't exist) Starts the upload :param directory_status: DirectoryStatus object that has directory to try upload :return: ExitReturn """ logging_start_block(directory_status.directory) logging.debug("upload_run_single_entry:Starting {}".format(directory_status.directory)) # Add progress file to directory try: _set_and_write_directory_status(directory_status, DirectoryStatus.PARTIAL) except progress.exceptions.DirectoryError as e: logging.error("ERROR! Error while trying to write status file to directory {} with error message: {}" "".format(e.directory, e.message)) logging.info("Samples not uploaded!") return exit_error() # Do parsing (Also offline validation) try: sequencing_run = parsing_handler.parse_and_validate(directory_status.directory) except parsers.exceptions.DirectoryError as e: # Directory was not valid for some reason full_error = "ERROR! An error occurred with directory '{}', with message: {}".format(e.directory, e.message) logging.error(full_error) logging.info("Samples not uploaded!") _set_and_write_directory_status(directory_status, DirectoryStatus.ERROR, full_error) return exit_error(e) except parsers.exceptions.ValidationError as e: # Sequencing Run / SampleSheet was not valid for some reason error_msg = "ERROR! Errors occurred during validation with message: {}".format(e.message) logging.error(error_msg) error_list_msg = "Error list: " + pformat(e.validation_result.error_list) logging.error(error_list_msg) logging.info("Samples not uploaded!") full_error = error_msg + ", " + error_list_msg _set_and_write_directory_status(directory_status, DirectoryStatus.ERROR, full_error) return exit_error(e) # Initialize the api for first use logging.info("*** Connecting to IRIDA ***") try: api_handler.initialize_api_from_config() except api.exceptions.IridaConnectionError as e: logging.error("ERROR! Could not initialize irida api.") logging.error("Errors: " + pformat(e.args)) logging.info("Samples not uploaded!") full_error = "ERROR! Could not initialize irida api. Errors: " + pformat(e.args) _set_and_write_directory_status(directory_status, DirectoryStatus.ERROR, full_error) return exit_error(e) logging.info("*** Connected ***") logging.info("*** Verifying run (online validation) ***") try: validation_result = api_handler.prepare_and_validate_for_upload(sequencing_run) except api.exceptions.IridaConnectionError as e: logging.error("Lost connection to Irida") logging.error("Errors: " + pformat(e.args)) full_error = "Lost connection to Irida. Errors: " + pformat(e.args) _set_and_write_directory_status(directory_status, DirectoryStatus.ERROR, full_error) return exit_error(e) if not validation_result.is_valid(): logging.error("Sequencing run can not be uploaded") logging.error("Sequencing run can not be uploaded. Encountered {} errors" "".format(validation_result.error_count())) logging.error("Errors: " + pformat(validation_result.error_list)) full_error = "Sequencing run can not be uploaded, Errors: " + pformat(validation_result.error_list) _set_and_write_directory_status(directory_status, DirectoryStatus.ERROR, full_error) return exit_error(full_error) logging.info("*** Run Verified ***") # Start upload logging.info("*** Starting Upload ***") try: run_id = api_handler.upload_sequencing_run(sequencing_run) except api.exceptions.IridaConnectionError as e: logging.error("Lost connection to Irida") logging.error("Errors: " + pformat(e.args)) full_error = "Lost connection to Irida. Errors: " + pformat(e.args) _set_and_write_directory_status(directory_status, DirectoryStatus.ERROR, full_error) return exit_error(e) except api.exceptions.IridaResourceError as e: logging.error("Could not access IRIDA resource") logging.error("Errors: " + pformat(e.args)) full_error = "Could not access IRIDA resource Errors: " + pformat(e.args) _set_and_write_directory_status(directory_status, DirectoryStatus.ERROR, full_error) return exit_error(e) except api.exceptions.FileError as e: logging.error("Could not upload file to IRIDA") logging.error("Errors: " + pformat(e.args)) full_error = "Could not upload file to IRIDA. Errors: " + pformat(e.args) _set_and_write_directory_status(directory_status, DirectoryStatus.ERROR, full_error) return exit_error(e) logging.info("*** Upload Complete ***") # Set progress file to complete try: _set_and_write_directory_status(directory_status, DirectoryStatus.COMPLETE, run_id=run_id) except progress.exceptions.DirectoryError as e: # this is an exceptionally rare case (successful upload, but fails to write progress) logging.ERROR("ERROR! Error while trying to write status file to directory {} with error message: {}" "".format(e.directory, e.message)) logging.info("Samples were uploaded, but progress file may be incorrect!") logging.info("Samples in directory '{}' have finished uploading!".format(directory_status.directory)) logging_end_block() return exit_success() def _set_and_write_directory_status(directory_status, status, message=None, run_id=None): """ Given a DirectoryStatus object, sets the status and message, and then writes to the directory status directory :param directory_status: DirectoryStatus object :param status: a valid DirectoryStatus status :param message: string :param run_id: optional, if provided, the run id and irida instance will be included when written :return: """ directory_status.status = status directory_status.message = message if run_id: progress.write_directory_status(directory_status, run_id) else: progress.write_directory_status(directory_status) def exit_error(error): """ Returns an failed run exit code which ends the process when returned :return: ExitReturn with EXIT_CODE_ERROR """ logging_end_block() return exit_return.ExitReturn(exit_return.EXIT_CODE_ERROR, error) def exit_success(): """ Returns an success run exit code which ends the process when returned :return: ExitReturn with EXIT_CODE_SUCCESS """ return exit_return.ExitReturn(exit_return.EXIT_CODE_SUCCESS) def logging_start_block(directory): """ Logs an information block to the console and file which indicates the start of an upload run. Includes the uploader version number set in this module :return: """ logger.add_log_to_directory(directory) logging.info("==================================================") logging.info("---------------STARTING UPLOAD RUN----------------") logging.info("Uploader Version {}".format(VERSION_NUMBER)) logging.info("Logging to file in: " + logger.get_user_log_dir()) logging.info("==================================================") def logging_end_block(): """ Logs an block to the console and file that indicates the end of an upload run. :return: """ logging.info("==================================================") logging.info("----------------ENDING UPLOAD RUN-----------------") logging.info("==================================================") logger.remove_directory_logger()
45.937956
118
0.69111
6f3bf9e1410976950d6b3c1625db1efba20ae4eb
159
py
Python
pc_toolbox/utils_data/__init__.py
TracyYXChen/prediction-constrained-topic-models
91f6f71d10583b49161cd058ededffe93aed0e02
[ "MIT" ]
null
null
null
pc_toolbox/utils_data/__init__.py
TracyYXChen/prediction-constrained-topic-models
91f6f71d10583b49161cd058ededffe93aed0e02
[ "MIT" ]
null
null
null
pc_toolbox/utils_data/__init__.py
TracyYXChen/prediction-constrained-topic-models
91f6f71d10583b49161cd058ededffe93aed0e02
[ "MIT" ]
null
null
null
from pc_toolbox.utils_data.util_data_slicer import make_slice_for_step from pc_toolbox.utils_data.util_stratified_subsample import get_stratified_subsample_ids
79.5
88
0.930818
fac348b836b439122445dbce6457fb7301a0b8fb
7,406
py
Python
test/functional/qtum_duplicate_stake.py
machado-rev/HTMLCOIN
f8224d522932b929d4c9ff53ece6dc5e83d91749
[ "MIT" ]
106
2017-11-21T14:29:30.000Z
2022-01-28T04:40:07.000Z
test/functional/qtum_duplicate_stake.py
machado-rev/HTMLCOIN
f8224d522932b929d4c9ff53ece6dc5e83d91749
[ "MIT" ]
75
2018-01-04T16:23:02.000Z
2021-12-21T05:59:44.000Z
test/functional/qtum_duplicate_stake.py
machado-rev/HTMLCOIN
f8224d522932b929d4c9ff53ece6dc5e83d91749
[ "MIT" ]
106
2017-11-21T16:25:16.000Z
2022-01-20T13:58:15.000Z
#!/usr/bin/env python3 from test_framework.test_framework import BitcoinTestFramework from test_framework.util import * from test_framework.script import * from test_framework.mininode import * from test_framework.messages import * from test_framework.qtum import * import time class QtumDuplicateStakeTest(BitcoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 2 def skip_test_if_missing_module(self): self.skip_if_no_wallet() def start_p2p_connection(self): self.p2p_node = self.node.add_p2p_connection(P2PInterface()) self.p2p_alt_node = self.nodes[1].add_p2p_connection(P2PInterface()) def _remove_from_staking_prevouts(self, staking_prevouts, remove_prevout): for j in range(len(staking_prevouts)): prevout = staking_prevouts[j] if prevout[0].serialize() == remove_prevout.serialize(): staking_prevouts.pop(j) break def verify_duplicate_stakes_are_accepted_test(self): tip = self.node.getblock(self.node.getbestblockhash()) t = (tip['time']+0x10) & 0xfffffff0 # Create one "normal" block block, block_sig_key = create_unsigned_pos_block(self.node, self.staking_prevouts, nTime=t) block.sign_block(block_sig_key) block.rehash() # Create a slightly different block using the same staking utxo (only difference is the nonce) alt_block = CBlock(block) alt_block.vtx = block.vtx[:] alt_block.nNonce = 1 alt_block.rehash() alt_block.sign_block(block_sig_key) alt_block.rehash() # Send <block> to node self.p2p_node.send_message(msg_block(block)) # Send <alt_block> to alt_node self.p2p_alt_node.send_message(msg_block(alt_block)) time.sleep(2) assert_equal(self.node.getbestblockhash(), block.hash) assert_equal(self.alt_node.getbestblockhash(), alt_block.hash) # Build a longer chain on alt_node self.alt_node.generate(1) self.sync_all() self._remove_from_staking_prevouts(self.staking_prevouts, block.prevoutStake) def verify_spent_stake_is_accepted_in_fork_test(self): tip = self.node.getblock(self.node.getbestblockhash()) t = (tip['time']+0x10) & 0xfffffff0 # Create one "normal" block block, block_sig_key = create_unsigned_pos_block(self.node, self.staking_prevouts, nTime=t) block.sign_block(block_sig_key) block.rehash() # Create a different block that spends the prevoutStake from <block> alt_block, alt_block_sig_key = create_unsigned_pos_block(self.alt_node, self.alt_staking_prevouts, nTime=t) tx = CTransaction() tx.vin = [CTxIn(block.prevoutStake)] tx.vout = [CTxOut(int(COIN), scriptPubKey=CScript([OP_TRUE]))] tx = rpc_sign_transaction(self.node, tx) alt_block.vtx.append(tx) alt_block.hashMerkleRoot = alt_block.calc_merkle_root() alt_block.rehash() alt_block.sign_block(alt_block_sig_key) alt_block.rehash() # Send <alt_block> to alt_node self.p2p_alt_node.send_message(msg_block(alt_block)) # Send <block> to node self.p2p_node.send_message(msg_block(block)) time.sleep(2) assert_equal(self.node.getbestblockhash(), block.hash) assert_equal(self.alt_node.getbestblockhash(), alt_block.hash) # Build a longer chain on alt_node self.alt_node.generate(1) self.sync_all() self._remove_from_staking_prevouts(self.staking_prevouts, block.prevoutStake) self._remove_from_staking_prevouts(self.alt_staking_prevouts, alt_block.prevoutStake) def verify_spent_stake_in_old_block_is_rejected_test(self): tip = self.node.getblock(self.node.getbestblockhash()) t = (tip['time']+0x10) & 0xfffffff0 # Create one "normal" block block, block_sig_key = create_unsigned_pos_block(self.node, self.staking_prevouts, nTime=t) block.sign_block(block_sig_key) block.rehash() # Create a different block that spends the prevoutStake from <block> alt_block, alt_block_sig_key = create_unsigned_pos_block(self.alt_node, self.alt_staking_prevouts, nTime=t) tx = CTransaction() tx.vin = [CTxIn(block.prevoutStake)] tx.vout = [CTxOut(int(COIN), scriptPubKey=CScript([OP_TRUE]))] tx = rpc_sign_transaction(self.node, tx) alt_block.vtx.append(tx) alt_block.hashMerkleRoot = alt_block.calc_merkle_root() alt_block.rehash() alt_block.sign_block(alt_block_sig_key) alt_block.rehash() # Send <alt_block> to alt_node self.p2p_alt_node.send_message(msg_block(alt_block)) time.sleep(2) self.alt_node.generate(500) time.sleep(2) # Send <block> to node self.p2p_node.send_message(msg_block(block)) time.sleep(2) assert_raises_rpc_error(-5, "Block not found", self.node.getblockheader, block.hash) time.sleep(2) self.sync_all() self._remove_from_staking_prevouts(self.staking_prevouts, alt_block.prevoutStake) self._remove_from_staking_prevouts(self.alt_staking_prevouts, alt_block.prevoutStake) def run_test(self): privkey = byte_to_base58(hash256(struct.pack('<I', 0)), 239) for n in self.nodes: n.importprivkey(privkey) self.node = self.nodes[0] self.alt_node = self.nodes[1] self.node.setmocktime(int(time.time() - 100*24*60*60)) self.alt_node.setmocktime(int(time.time() - 100*24*60*60)) self.alt_node.generatetoaddress(50, "qSrM9K6FMhZ29Vkp8Rdk8Jp66bbfpjFETq") self.sync_all() self.node.generatetoaddress(500, "qSrM9K6FMhZ29Vkp8Rdk8Jp66bbfpjFETq") self.sync_all() self.alt_staking_prevouts = collect_prevouts(self.alt_node) self.node.generatetoaddress(50, "qSrM9K6FMhZ29Vkp8Rdk8Jp66bbfpjFETq") self.sync_all() self.staking_prevouts = collect_prevouts(self.node) print(len(self.staking_prevouts), len(self.alt_staking_prevouts)) for prevout in self.alt_staking_prevouts: self._remove_from_staking_prevouts(self.staking_prevouts, prevout[0]) print(len(self.staking_prevouts), len(self.alt_staking_prevouts)) self.node.setmocktime(0) self.alt_node.setmocktime(0) self.start_p2p_connection() time.sleep(0x10) print(len(self.staking_prevouts), len(self.alt_staking_prevouts)) self.verify_duplicate_stakes_are_accepted_test() assert_equal(self.node.getblockcount(), self.alt_node.getblockcount()) assert_equal(self.node.getbestblockhash(), self.alt_node.getbestblockhash()) time.sleep(0x10) print(len(self.staking_prevouts), len(self.alt_staking_prevouts)) self.verify_spent_stake_is_accepted_in_fork_test() assert_equal(self.node.getblockcount(), self.alt_node.getblockcount()) assert_equal(self.node.getbestblockhash(), self.alt_node.getbestblockhash()) time.sleep(0x10) print(len(self.staking_prevouts), len(self.alt_staking_prevouts)) self.verify_spent_stake_in_old_block_is_rejected_test() if __name__ == '__main__': QtumDuplicateStakeTest().main()
40.469945
115
0.692547
06631ab4743c076d1399306e9ae7bc314c0597d7
1,384
py
Python
project/project/urls.py
justo340/blogapp
7baaee3eed5385dd80b94d77ad72a1b95b7035f3
[ "MIT" ]
null
null
null
project/project/urls.py
justo340/blogapp
7baaee3eed5385dd80b94d77ad72a1b95b7035f3
[ "MIT" ]
null
null
null
project/project/urls.py
justo340/blogapp
7baaee3eed5385dd80b94d77ad72a1b95b7035f3
[ "MIT" ]
null
null
null
"""project URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include from users import views as user_views from django.contrib.auth import views as auth_views from django.conf import settings from django.conf.urls.static import static urlpatterns = [ path('admin/', admin.site.urls), path('', include('blog.urls')), path('register/', user_views.register, name='register'), path('login/', auth_views.LoginView.as_view(template_name='users/login.html'), name='login'), path('logout/', auth_views.LogoutView.as_view(template_name='users/logout.html'), name='logout'), path('profile/', user_views.profile, name='profile'), ] if settings.DEBUG: urlpatterns += static (settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
37.405405
101
0.725434
e03383704bbfced129cccf64b3855dde896b693d
3,002
py
Python
setup.py
IntelPython/smp
aa319b916d990c5a21a30f64817ee57ee75f761c
[ "BSD-3-Clause" ]
14
2017-07-13T15:51:30.000Z
2022-02-01T08:20:28.000Z
setup.py
IntelPython/smp
aa319b916d990c5a21a30f64817ee57ee75f761c
[ "BSD-3-Clause" ]
null
null
null
setup.py
IntelPython/smp
aa319b916d990c5a21a30f64817ee57ee75f761c
[ "BSD-3-Clause" ]
2
2019-02-13T20:58:41.000Z
2019-03-01T10:56:41.000Z
#!/usr/bin/env python # Copyright (c) 2017, Intel Corporation # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of Intel Corporation nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # System imports from __future__ import print_function import platform import os from smp import __version__ as ver, __doc__ as doc from distutils.core import * setup( name ="SMP", description ="Static Multi-Processing", long_description= doc, url ="https://software.intel.com/intel-distribution-for-python", author ="Intel Corporation", author_email="scripting@intel.com", license ="BSD", version = ver, classifiers =[ 'Development Status :: 4 - Beta', 'Environment :: Console', 'Environment :: Plugins', 'Intended Audience :: Developers', 'Intended Audience :: System Administrators', 'Intended Audience :: Other Audience', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: BSD License', #'Operating System :: MacOS :: MacOS X', #'Operating System :: Microsoft :: Windows', 'Operating System :: POSIX :: Linux', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 3', 'Topic :: System :: Hardware :: Symmetric Multi-processing', ], keywords='multiprocessing multithreading composable parallelism affinity', packages=['smp'], py_modules=['SMP'], )
46.184615
82
0.678548
e0935a9df4ee46fc3355e5db4720d55e79803a3e
19,206
py
Python
venv/lib/python3.7/site-packages/debian/debtags.py
margretmwangi/Rblog
2d606a858c3313e1d48cdd6a8ce205c8776be754
[ "Unlicense" ]
null
null
null
venv/lib/python3.7/site-packages/debian/debtags.py
margretmwangi/Rblog
2d606a858c3313e1d48cdd6a8ce205c8776be754
[ "Unlicense" ]
1
2021-02-08T20:34:54.000Z
2021-02-08T20:34:54.000Z
venv/lib/python3.7/site-packages/debian/debtags.py
margretmwangi/Rblog
2d606a858c3313e1d48cdd6a8ce205c8776be754
[ "Unlicense" ]
1
2020-11-04T06:48:34.000Z
2020-11-04T06:48:34.000Z
""" Facilities to work with debtags - tags for Debian packages """ # Copyright (C) 2006-2007 Enrico Zini <enrico@enricozini.org> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. from __future__ import absolute_import, print_function import re import six try: import cPickle as pickle # type: ignore except ImportError: import pickle # type: ignore try: # pylint: disable=unused-import from typing import ( Callable, Dict, IO, Iterable, Iterator, List, Optional, Set, Text, Tuple, ) PkgTagDbType = Dict[str, Set[str]] TagPkgDbType = Dict[str, Set[str]] PkgFilterType = Callable[[Text], bool] TagFilterType = Callable[[Text], bool] PkgTagFilterType = Callable[[Tuple[Text, Set[Text]]], bool] except ImportError: # Lack of typing is not important at runtime pass from debian.deprecation import function_deprecated_by def parse_tags(input_data): # type: (Iterator[Text]) -> Iterator[Tuple[Set[str], Set[str]]] lre = re.compile(r"^(.+?)(?::?\s*|:\s+(.+?)\s*)$") for line in input_data: # Is there a way to remove the last character of a line that does not # make a copy of the entire line? m = lre.match(line) if not m: continue pkgs = set(m.group(1).split(', ')) if m.group(2): tags = set(m.group(2).split(', ')) else: tags = set() yield pkgs, tags parseTags = function_deprecated_by(parse_tags) def read_tag_database(input_data): # type: (Iterator[Text]) -> PkgTagDbType """Read the tag database, returning a pkg->tags dictionary""" db = {} # type: PkgTagDbType for pkgs, tags in parse_tags(input_data): # Create the tag set using the native set for p in pkgs: db[p] = tags.copy() return db readTagDatabase = function_deprecated_by(read_tag_database) def read_tag_database_reversed(input_data): # type: (Iterator[Text]) -> TagPkgDbType """Read the tag database, returning a tag->pkgs dictionary""" db = {} # type: TagPkgDbType for pkgs, tags in parse_tags(input_data): # Create the tag set using the native set for tag in tags: if tag in db: db[tag] |= pkgs else: db[tag] = pkgs.copy() return db readTagDatabaseReversed = function_deprecated_by(read_tag_database_reversed) def read_tag_database_both_ways( input_data, # type: Iterator[Text] tag_filter=None, # type: TagFilterType ): # type: (...) -> Tuple[PkgTagDbType, TagPkgDbType] "Read the tag database, returning a pkg->tags and a tag->pkgs dictionary" db = {} # type: PkgTagDbType dbr = {} # type: TagPkgDbType for pkgs, tags in parse_tags(input_data): # Create the tag set using the native set if tag_filter is None: tags = set(tags) else: tags = set(filter(tag_filter, tags)) for pkg in pkgs: db[pkg] = tags.copy() for tag in tags: if tag in dbr: dbr[tag] |= pkgs else: dbr[tag] = pkgs.copy() return db, dbr readTagDatabaseBothWays = function_deprecated_by(read_tag_database_both_ways) def reverse(db): # type: (PkgTagDbType) -> TagPkgDbType """Reverse a tag database, from package -> tags to tag->packages""" res = {} # type: Dict[str, Set[str]] for pkg, tags in db.items(): for tag in tags: if tag not in res: res[tag] = set() res[tag].add(pkg) return res def output(db): # type: (PkgTagDbType) -> None "Write the tag database" for pkg, tags in db.items(): # Using % here seems awkward to me, but if I use calls to # sys.stdout.write it becomes a bit slower print("%s:" % (pkg), ", ".join(tags)) def relevance_index_function(full, sub): #return (float(sub.card(tag)) / float(sub.tag_count())) / \ # (float(full.card(tag)) / float(full.tag_count())) #return sub.card(tag) * full.card(tag) / sub.tag_count() # New cardinality divided by the old cardinality #return float(sub.card(tag)) / float(full.card(tag)) ## Same as before, but weighted by the relevance the tag had in the ## full collection, to downplay the importance of rare tags #return float(sub.card(tag) * full.card(tag)) / float(full.card(tag) * full.tag_count()) # Simplified version: # return float(sub.card(tag)) / float(full.tag_count()) # Weighted by the square root of the relevance, to downplay the very # common tags a bit # return lambda tag: float(sub.card(tag)) / float(full.card(tag)) * # math.sqrt(full.card(tag) / float(full.tag_count())) # return lambda tag: float(sub.card(tag)) / float(full.card(tag)) * # math.sqrt(full.card(tag) / float(full.package_count())) # One useless factor removed, and simplified further, thanks to Benjamin Mesing return lambda tag: float(sub.card(tag)**2) / float(full.card(tag)) # The difference between how many packages are in and how many packages are out # (problems: tags that mean many different things can be very much out # as well. In the case of 'image editor', for example, there will be # lots of editors not for images in the outside group. # It is very, very good for nonambiguous keywords like 'image'. # return lambda tag: 2 * sub.card(tag) - full.card(tag) # Same but it tries to downplay the 'how many are out' value in the # case of popular tags, to mitigate the 'there will always be popular # tags left out' cases. Does not seem to be much of an improvement. # return lambda tag: sub.card(tag) - float(full.card(tag) - sub.card(tag))/ # (math.sin(float(full.card(tag))*3.1415/full.package_count())/4 + 0.75) relevanceIndexFunction = function_deprecated_by(relevance_index_function) class DB: """ In-memory database mapping packages to tags and tags to packages. """ def __init__(self): # type: () -> None self.db = {} # type: PkgTagDbType self.rdb = {} # type: TagPkgDbType def read(self, input_data, # type: Iterator[Text] tag_filter=None, # type: TagFilterType ): # type: (...) -> None """ Read the database from a file. Example:: # Read the system Debtags database db.read(open("/var/lib/debtags/package-tags", "r")) """ self.db, self.rdb = read_tag_database_both_ways(input_data, tag_filter) def qwrite(self, file): # type: (IO[bytes]) -> None """Quickly write the data to a pickled file""" pickle.dump(self.db, file) pickle.dump(self.rdb, file) def qread(self, file): # type: (IO[bytes]) -> None """Quickly read the data from a pickled file""" self.db = pickle.load(file) self.rdb = pickle.load(file) def insert(self, pkg, tags): # type: (str, Set[str]) -> None self.db[pkg] = tags.copy() for tag in tags: if tag in self.rdb: self.rdb[tag].add(pkg) else: self.rdb[tag] = set((pkg)) def dump(self): # type: () -> None output(self.db) def dump_reverse(self): # type: () -> None output(self.rdb) dumpReverse = function_deprecated_by(dump_reverse) def reverse(self): # type: () -> DB "Return the reverse collection, sharing tagsets with this one" res = DB() res.db = self.rdb res.rdb = self.db return res def facet_collection(self): # type: () -> DB """ Return a copy of this collection, but replaces the tag names with only their facets. """ fcoll = DB() tofacet = re.compile(r"^([^:]+).+") for pkg, tags in self.iter_packages_tags(): ftags = {tofacet.sub(r"\1", t) for t in tags} fcoll.insert(pkg, ftags) return fcoll facetCollection = function_deprecated_by(facet_collection) def copy(self): # type: () -> DB """ Return a copy of this collection, with the tagsets copied as well. """ res = DB() res.db = self.db.copy() res.rdb = self.rdb.copy() return res def reverse_copy(self): # type: () -> DB """ Return the reverse collection, with a copy of the tagsets of this one. """ res = DB() res.db = self.rdb.copy() res.rdb = self.db.copy() return res reverseCopy = function_deprecated_by(reverse_copy) def choose_packages(self, package_iter): # type: (Iterable[str]) -> DB """ Return a collection with only the packages in package_iter, sharing tagsets with this one """ res = DB() db = {} for pkg in package_iter: if pkg in self.db: db[pkg] = self.db[pkg] res.db = db res.rdb = reverse(db) return res choosePackages = function_deprecated_by(choose_packages) def choose_packages_copy(self, package_iter): # type: (Iterable[str]) -> DB """ Return a collection with only the packages in package_iter, with a copy of the tagsets of this one """ res = DB() db = {} for pkg in package_iter: db[pkg] = self.db[pkg] res.db = db res.rdb = reverse(db) return res choosePackagesCopy = function_deprecated_by(choose_packages_copy) def filter_packages(self, package_filter): # type: (PkgFilterType) -> DB """ Return a collection with only those packages that match a filter, sharing tagsets with this one. The filter will match on the package. """ res = DB() db = {} for pkg in filter(package_filter, six.iterkeys(self.db)): db[pkg] = self.db[pkg] res.db = db res.rdb = reverse(db) return res filterPackages = function_deprecated_by(filter_packages) def filter_packages_copy(self, filter_data): # type: (PkgFilterType) -> DB """ Return a collection with only those packages that match a filter, with a copy of the tagsets of this one. The filter will match on the package. """ res = DB() db = {} for pkg in filter(filter_data, six.iterkeys(self.db)): db[pkg] = self.db[pkg].copy() res.db = db res.rdb = reverse(db) return res filterPackagesCopy = function_deprecated_by(filter_packages_copy) def filter_packages_tags(self, package_tag_filter): # type: (PkgTagFilterType) -> DB """ Return a collection with only those packages that match a filter, sharing tagsets with this one. The filter will match on (package, tags). """ res = DB() db = {} for pkg, _ in filter(package_tag_filter, six.iteritems(self.db)): db[pkg] = self.db[pkg] res.db = db res.rdb = reverse(db) return res filterPackagesTags = function_deprecated_by(filter_packages_tags) def filter_packages_tags_copy(self, package_tag_filter): # type: (PkgTagFilterType) -> DB """ Return a collection with only those packages that match a filter, with a copy of the tagsets of this one. The filter will match on (package, tags). """ res = DB() db = {} for pkg, _ in filter(package_tag_filter, six.iteritems(self.db)): db[pkg] = self.db[pkg].copy() res.db = db res.rdb = reverse(db) return res filterPackagesTagsCopy = function_deprecated_by(filter_packages_tags_copy) def filter_tags(self, tag_filter): # type: (TagFilterType) -> DB """ Return a collection with only those tags that match a filter, sharing package sets with this one. The filter will match on the tag. """ res = DB() rdb = {} for tag in filter(tag_filter, six.iterkeys(self.rdb)): rdb[tag] = self.rdb[tag] res.rdb = rdb res.db = reverse(rdb) return res filterTags = function_deprecated_by(filter_tags) def filter_tags_copy(self, tag_filter): # type: (TagFilterType) -> DB """ Return a collection with only those tags that match a filter, with a copy of the package sets of this one. The filter will match on the tag. """ res = DB() rdb = {} for tag in filter(tag_filter, six.iterkeys(self.rdb)): rdb[tag] = self.rdb[tag].copy() res.rdb = rdb res.db = reverse(rdb) return res filterTagsCopy = function_deprecated_by(filter_tags_copy) def has_package(self, pkg): # type: (str) -> bool """Check if the collection contains the given package""" return pkg in self.db hasPackage = function_deprecated_by(has_package) def has_tag(self, tag): # type: (str) -> bool """Check if the collection contains packages tagged with tag""" return tag in self.rdb hasTag = function_deprecated_by(has_tag) def tags_of_package(self, pkg): # type: (str) -> Set[str] """Return the tag set of a package""" return self.db[pkg] if pkg in self.db else set() tagsOfPackage = function_deprecated_by(tags_of_package) def packages_of_tag(self, tag): # type: (str) -> Set[str] """Return the package set of a tag""" return self.rdb[tag] if tag in self.rdb else set() packagesOfTag = function_deprecated_by(packages_of_tag) def tags_of_packages(self, pkgs): # type: (Iterable[str]) -> Set[str] """Return the set of tags that have all the packages in ``pkgs``""" return set.union(*(self.tags_of_package(p) for p in pkgs)) tagsOfPackages = function_deprecated_by(tags_of_packages) def packages_of_tags(self, tags): # type: (Iterable[str]) -> Set[str] """Return the set of packages that have all the tags in ``tags``""" return set.union(*(self.packages_of_tag(t) for t in tags)) packagesOfTags = function_deprecated_by(packages_of_tags) def card(self, tag): # type: (str) -> int """ Return the cardinality of a tag """ return len(self.rdb[tag]) if tag in self.rdb else 0 def discriminance(self, tag): # type: (str) -> int """ Return the discriminance index if the tag. Th discriminance index of the tag is defined as the minimum number of packages that would be eliminated by selecting only those tagged with this tag or only those not tagged with this tag. """ n = self.card(tag) tot = self.package_count() return min(n, tot - n) def iter_packages(self): # type: () -> Iterator[str] """Iterate over the packages""" return six.iterkeys(self.db) iterPackages = function_deprecated_by(iter_packages) def iter_tags(self): # type: () -> Iterator[str] """Iterate over the tags""" return six.iterkeys(self.rdb) iterTags = function_deprecated_by(iter_tags) def iter_packages_tags(self): # type: () -> Iterator[Tuple[str, Set[str]]] """Iterate over 2-tuples of (pkg, tags)""" return six.iteritems(self.db) iterPackagesTags = function_deprecated_by(iter_packages_tags) def iter_tags_packages(self): # type: () -> Iterator[Tuple[str, Set[str]]] """Iterate over 2-tuples of (tag, pkgs)""" return six.iteritems(self.rdb) iterTagsPackages = function_deprecated_by(iter_tags_packages) def package_count(self): # type: () -> int """Return the number of packages""" return len(self.db) packageCount = function_deprecated_by(package_count) def tag_count(self): # type: () -> int """Return the number of tags""" return len(self.rdb) tagCount = function_deprecated_by(tag_count) def ideal_tagset(self, tags): # type: (List[str]) -> Set[str] """ Return an ideal selection of the top tags in a list of tags. Return the tagset made of the highest number of tags taken in consecutive sequence from the beginning of the given vector, that would intersect with the tagset of a comfortable amount of packages. Comfortable is defined in terms of how far it is from 7. """ # TODO: the scoring function is quite ok, but may need more # tuning. I also center it on 15 instead of 7 since we're # setting a starting point for the search, not a target point def score_fun(x): return float((x-15)*(x-15))/x tagset = set() # type: Set[str] min_score = 3 for i in range(len(tags)): pkgs = self.packages_of_tags(tags[:i+1]) card = len(pkgs) if card == 0: break score = score_fun(card) if score < min_score: min_score = score tagset = set(tags[:i+1]) # Return always at least the first tag if not tagset: return set(tags[:1]) return tagset idealTagset = function_deprecated_by(ideal_tagset) def correlations(self): # type: () -> Iterator[Tuple[str, str, float]] """ Generate the list of correlation as a tuple (hastag, hasalsotag, score). Every tuple will indicate that the tag 'hastag' tends to also have 'hasalsotag' with a score of 'score'. """ for pivot in self.iter_tags(): # pylint: disable=cell-var-from-loop with_ = self.filter_packages_tags(lambda pt: pivot in pt[1]) without = self.filter_packages_tags(lambda pt: pivot not in pt[1]) for tag in with_.iter_tags(): if tag == pivot: continue has = float(with_.card(tag)) / float(with_.package_count()) hasnt = float(without.card(tag)) / float(without.package_count()) yield pivot, tag, has - hasnt
32.442568
92
0.596741
fa9d5e70e66f588cfb08d8a932fb5d8088429b6b
32,425
py
Python
scale/util/test/test_rest.py
kaydoh/scale
1b6a3b879ffe83e10d3b9d9074835a4c3bf476ee
[ "Apache-2.0" ]
121
2015-11-18T18:15:33.000Z
2022-03-10T01:55:00.000Z
scale/util/test/test_rest.py
kaydoh/scale
1b6a3b879ffe83e10d3b9d9074835a4c3bf476ee
[ "Apache-2.0" ]
1,415
2015-12-23T23:36:04.000Z
2022-01-07T14:10:09.000Z
scale/util/test/test_rest.py
kaydoh/scale
1b6a3b879ffe83e10d3b9d9074835a4c3bf476ee
[ "Apache-2.0" ]
66
2015-12-03T20:38:56.000Z
2020-07-27T15:28:11.000Z
from __future__ import unicode_literals import datetime import django import mock from django.http import QueryDict from django.test import TestCase from django.utils.timezone import utc from mock import MagicMock from rest_framework.request import Request import util.rest as rest_util from util.rest import BadParameter, ReadOnly class TestRest(TestCase): def setUp(self): django.setup() def test_check_update(self): """Tests checking a white-list of parameters allowed to be updated during a POST.""" request = MagicMock(Request) request.data = QueryDict('', mutable=True) request.data.update({ 'test': 'value1', }) self.assertTrue(rest_util.check_update(request, ['test'])) def test_check_bad_param_type(self): """Tests checking a white-list of invalid parameters allowed to be updated during a POST.""" request = MagicMock(Request) request.data = QueryDict('', mutable=True) request.data.update({ 'test1': 'value1', 'test2': 'value2', }) self.assertRaises(AssertionError, rest_util.check_update, request, 'test1') def test_check_update_invalid(self): """Tests checking a white-list of invalid parameters allowed to be updated during a POST.""" request = MagicMock(Request) request.data = QueryDict('', mutable=True) request.data.update({ 'test1': 'value1', 'test2': 'value2', }) self.assertRaises(ReadOnly, rest_util.check_update, request, ['test1']) def test_check_time_range(self): """Tests checking a time range is valid.""" self.assertTrue(rest_util.check_time_range(datetime.datetime(2015, 1, 1, tzinfo=utc), datetime.datetime(2015, 1, 30, tzinfo=utc))) def test_check_time_range_partial(self): """Tests checking a partial time range is valid.""" self.assertTrue(rest_util.check_time_range(datetime.datetime(2015, 1, 1, tzinfo=utc), None)) self.assertTrue(rest_util.check_time_range(None, datetime.datetime(2015, 1, 30, tzinfo=utc))) def test_check_time_range_equal(self): """Tests checking a time range that is invalid due to being equal.""" self.assertRaises(BadParameter, rest_util.check_time_range, datetime.datetime(2015, 1, 1, tzinfo=utc), datetime.datetime(2015, 1, 1, tzinfo=utc)) def test_check_time_range_flipped(self): """Tests checking a time range that is invalid due to start being after end.""" self.assertRaises(BadParameter, rest_util.check_time_range, datetime.datetime(2015, 1, 30, tzinfo=utc), datetime.datetime(2015, 1, 1, tzinfo=utc)) def test_check_time_range_duration(self): """Tests checking a time range that is invalid due to max duration exceeded.""" self.assertRaises(BadParameter, rest_util.check_time_range, datetime.datetime(2015, 1, 1, tzinfo=utc), datetime.datetime(2015, 3, 1, tzinfo=utc), datetime.timedelta(days=31)) def test_check_together_empty(self): """Tests checking multiple parameters together when none are given.""" self.assertFalse(rest_util.check_together([], [])) def test_check_together_none(self): """Tests checking multiple parameters together when none are given.""" self.assertFalse(rest_util.check_together(['test1', 'test2'], [None, None])) def test_check_together_single(self): """Tests checking multiple parameters together when one is given.""" self.assertFalse(rest_util.check_together(['test1'], [None])) def test_check_together_partial(self): """Tests checking multiple parameters together when some are given.""" self.assertRaises(BadParameter, rest_util.check_together, ['test1', 'test2'], ['value1', None]) def test_check_together_all(self): """Tests checking multiple parameters together.""" self.assertTrue(rest_util.check_together(['test1', 'test2'], ['value1', 'value2'])) def test_has_params_empty(self): """Tests checking parameter presence when none are given.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) self.assertFalse(rest_util.has_params(request)) def test_has_params_none(self): """Tests checking parameter presence when none are given.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) self.assertFalse(rest_util.has_params(request, None, None)) def test_has_params_single(self): """Tests checking parameter presence when one is given.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) request.query_params.update({ 'test1': 'value1', }) self.assertTrue(rest_util.has_params(request, 'test1')) def test_has_params_partial(self): """Tests checking parameter presence when some are given.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) request.query_params.update({ 'test1': 'value1', }) self.assertFalse(rest_util.has_params(request, 'test1', 'test2')) def test_has_params_all(self): """Tests checking parameter presence when all are given.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) request.query_params.update({ 'test1': 'value1', 'test2': None, }) self.assertTrue(rest_util.has_params(request, 'test1', 'test2')) def test_parse_string(self): """Tests parsing a required string parameter that is provided via GET.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) request.query_params.update({ 'test': 'value1', }) self.assertEqual(rest_util.parse_string(request, 'test'), 'value1') def test_parse_string_missing(self): """Tests parsing a required string parameter that is missing.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) request.query_params.update({ 'test': 'value1', }) self.assertRaises(BadParameter, rest_util.parse_string, request, 'test2') def test_parse_string_default(self): """Tests parsing an optional string parameter that is provided via default value.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) request.query_params.update({ 'test': 'value1', }) self.assertEqual(rest_util.parse_string(request, 'test2', 'value2'), 'value2') def test_parse_string_optional(self): """Tests parsing an optional string parameter that is missing.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) request.query_params.update({ 'test': 'value1', }) self.assertIsNone(rest_util.parse_string(request, 'test2', required=False)) def test_parse_string_accepted_none(self): """Tests parsing a string parameter where the value is not acceptable.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) request.query_params.update({ 'test': 'value1', }) self.assertRaises(BadParameter, rest_util.parse_string, request, 'test', accepted_values=['value']) def test_parse_string_accepted_all(self): """Tests parsing a string parameter where the value is acceptable.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) request.query_params.update({ 'test': 'value1', }) self.assertEqual(rest_util.parse_string(request, 'test', accepted_values=['value1']), 'value1') def test_parse_string_post(self): """Tests parsing a required string parameter that is provided via POST.""" request = MagicMock(Request) request.data = QueryDict('', mutable=True) request.data.update({ 'test': 'value1', }) self.assertEqual(rest_util.parse_string(request, 'test'), 'value1') def test_parse_string_list(self): """Tests parsing a required list of string parameters that is provided via GET.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) request.query_params.setlist('test', ['value1', 'value2']) self.assertListEqual(rest_util.parse_string_list(request, 'test'), ['value1', 'value2']) def test_parse_string_list_missing(self): """Tests parsing a required list of string parameters that are missing.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) request.query_params.setlist('test', ['value1', 'value2']) self.assertRaises(BadParameter, rest_util.parse_string_list, request, 'test2') def test_parse_string_list_default(self): """Tests parsing a required list of string parameters that are provided via default value.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) request.query_params.setlist('test', ['value1']) self.assertEqual(rest_util.parse_string_list(request, 'test2', ['value2', 'value3']), ['value2', 'value3']) def test_parse_string_list_optional(self): """Tests parsing an optional list of string parameters that are missing.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) request.query_params.setlist('test', ['value1']) self.assertListEqual(rest_util.parse_string_list(request, 'test2', required=False), []) def test_parse_string_list_accepted_none(self): """Tests parsing a list of string parameters where none of the values are acceptable.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) request.query_params.setlist('test', ['value1', 'value2']) self.assertRaises(BadParameter, rest_util.parse_string_list, request, 'test', accepted_values=['value']) def test_parse_string_list_accepted_partial(self): """Tests parsing a list of string parameters where only some values are acceptable.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) request.query_params.setlist('test', ['value1', 'value2']) self.assertRaises(BadParameter, rest_util.parse_string_list, request, 'test', accepted_values=['value1']) def test_parse_string_list_accepted_all(self): """Tests parsing a list of string parameters where all values are acceptable.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) request.query_params.setlist('test', ['value1', 'value2']) self.assertListEqual(rest_util.parse_string_list(request, 'test', accepted_values=['value1', 'value2']), ['value1', 'value2']) def test_parse_string_list_post(self): """Tests parsing a required list of string parameters that are provided via POST.""" request = MagicMock(Request) request.data = QueryDict('', mutable=True) request.data.update({ 'test': ['value1', 'value2'] }) self.assertEqual(rest_util.parse_string_list(request, 'test'), ['value1', 'value2']) def test_parse_bool_true(self): """Tests parsing a required bool parameter that is provided via GET.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) request.query_params.update({ 'test1': 'TRUE', 'test2': 'True', 'test3': 'true', 'test4': 't', 'test5': '1', }) self.assertTrue(rest_util.parse_bool(request, 'test1')) self.assertTrue(rest_util.parse_bool(request, 'test2')) self.assertTrue(rest_util.parse_bool(request, 'test3')) self.assertTrue(rest_util.parse_bool(request, 'test4')) self.assertTrue(rest_util.parse_bool(request, 'test5')) def test_parse_bool_false(self): """Tests parsing a required bool parameter that is provided via GET.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) request.query_params.update({ 'test1': 'FALSE', 'test2': 'False', 'test3': 'false', 'test4': 'f', 'test5': '0', }) self.assertFalse(rest_util.parse_bool(request, 'test1')) self.assertFalse(rest_util.parse_bool(request, 'test2')) self.assertFalse(rest_util.parse_bool(request, 'test3')) self.assertFalse(rest_util.parse_bool(request, 'test4')) self.assertFalse(rest_util.parse_bool(request, 'test5')) def test_parse_bool_missing(self): """Tests parsing a required bool parameter that is missing.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) request.query_params.update({ 'test': 'true', }) self.assertRaises(BadParameter, rest_util.parse_bool, request, 'test2') def test_parse_bool_default(self): """Tests parsing an optional bool parameter that is provided via default value.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) request.query_params.update({ 'test': 'true', }) self.assertFalse(rest_util.parse_bool(request, 'test2', False)) def test_parse_bool_optional(self): """Tests parsing an optional bool parameter that is missing.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) request.query_params.update({ 'test': 'true', }) self.assertIsNone(rest_util.parse_bool(request, 'test2', required=False)) def test_parse_bool_post(self): """Tests parsing a required bool parameter that is provided via POST.""" request = MagicMock(Request) request.data = QueryDict('', mutable=True) request.data.update({ 'test': 'true', }) self.assertTrue(rest_util.parse_bool(request, 'test')) def test_parse_int(self): """Tests parsing a required int parameter that is provided via GET.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) request.query_params.update({ 'test': '10', }) self.assertEqual(rest_util.parse_int(request, 'test'), 10) def test_parse_int_missing(self): """Tests parsing a required int parameter that is missing.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) request.query_params.update({ 'test': '10', }) self.assertRaises(BadParameter, rest_util.parse_int, request, 'test2') def test_parse_int_default(self): """Tests parsing a required int parameter that is provided via default value.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) request.query_params.update({ 'test': '10', }) self.assertEqual(rest_util.parse_int(request, 'test2', 20), 20) def test_parse_int_optional(self): """Tests parsing an optional int parameter that is missing.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) request.query_params.update({ 'test': 'value1', }) self.assertIsNone(rest_util.parse_int(request, 'test2', required=False)) def test_parse_int_accepted_none(self): """Tests parsing an int parameter where the value is not acceptable.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) request.query_params.update({ 'test': '1', }) self.assertRaises(BadParameter, rest_util.parse_int, request, 'test', accepted_values=[5, 10]) def test_parse_int_accepted_all(self): """Tests parsing an int parameter where the value is acceptable.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) request.query_params.update({ 'test': '1', }) self.assertEqual(rest_util.parse_int(request, 'test', accepted_values=[1, 2, 3]), 1) def test_parse_int_zero(self): """Tests parsing an optional int parameter zero instead of using the default value.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) request.query_params.update({ 'test': '0', }) self.assertEqual(rest_util.parse_int(request, 'test', 10), 0) def test_parse_int_invalid(self): """Tests parsing a required int parameter that is not a valid number.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) request.query_params.update({ 'test': 'abc', }) self.assertRaises(BadParameter, rest_util.parse_int, request, 'test') def test_parse_int_post(self): """Tests parsing a required int parameter that is provided via POST.""" request = MagicMock(Request) request.data = QueryDict('', mutable=True) request.data.update({ 'test': '10', }) self.assertEqual(rest_util.parse_int(request, 'test'), 10) def test_parse_int_list(self): """Tests parsing a required list of int parameters that is provided via GET.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) request.query_params.setlist('test', ['1', '2']) self.assertListEqual(rest_util.parse_int_list(request, 'test'), [1, 2]) def test_parse_int_list_missing(self): """Tests parsing a required list of int parameters that are missing.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) request.query_params.setlist('test', ['1', '2']) self.assertRaises(BadParameter, rest_util.parse_int_list, request, 'test2') def test_parse_int_list_default(self): """Tests parsing a required list of int parameters that are provided via default value.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) request.query_params.setlist('test', ['1']) self.assertEqual(rest_util.parse_int_list(request, 'test2', ['2', '3']), [2, 3]) def test_parse_int_list_optional(self): """Tests parsing an optional list of int parameters that are missing.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) request.query_params.setlist('test', ['1']) self.assertListEqual(rest_util.parse_int_list(request, 'test2', required=False), []) def test_parse_int_list_accepted_none(self): """Tests parsing a list of int parameters where none of the values are acceptable.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) request.query_params.setlist('test', ['1', '2']) self.assertRaises(BadParameter, rest_util.parse_int_list, request, 'test', accepted_values=[3]) def test_parse_int_list_accepted_partial(self): """Tests parsing a list of int parameters where only some values are acceptable.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) request.query_params.setlist('test', ['1', '2']) self.assertRaises(BadParameter, rest_util.parse_int_list, request, 'test', accepted_values=[1]) def test_parse_int_list_accepted_all(self): """Tests parsing a list of int parameters where all values are acceptable.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) request.query_params.setlist('test', ['1', '2']) self.assertListEqual(rest_util.parse_int_list(request, 'test', accepted_values=[1, 2]), [1, 2]) def test_parse_int_list_post(self): """Tests parsing a required list of int parameters that are provided via POST.""" request = MagicMock(Request) request.data = QueryDict('', mutable=True) request.data.update({ 'test': ['1', '2'] }) self.assertEqual(rest_util.parse_int_list(request, 'test'), [1, 2]) def test_parse_float(self): """Tests parsing a required float parameter that is provided via GET.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) request.query_params.update({ 'test': '10.1', }) self.assertEqual(rest_util.parse_float(request, 'test'), 10.1) def test_parse_float_missing(self): """Tests parsing a required float parameter that is missing.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) request.query_params.update({ 'test': '10.1', }) self.assertRaises(BadParameter, rest_util.parse_float, request, 'test2') def test_parse_float_default(self): """Tests parsing a required float parameter that is provided via default value.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) request.query_params.update({ 'test': '10.1', }) self.assertEqual(rest_util.parse_float(request, 'test2', 20.1), 20.1) def test_parse_float_optional(self): """Tests parsing an optional float parameter that is missing.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) request.query_params.update({ 'test': 'value1', }) self.assertIsNone(rest_util.parse_float(request, 'test2', required=False)) def test_parse_float_accepted_none(self): """Tests parsing a float parameter where the value is not acceptable.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) request.query_params.update({ 'test': '1.0', }) self.assertRaises(BadParameter, rest_util.parse_float, request, 'test', accepted_values=[5.0, 10.0]) def test_parse_float_valid(self): """Tests parsing a float parameter where the value is acceptable.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) request.query_params.update({ 'test': '1.1', }) self.assertEqual(rest_util.parse_float(request, 'test', accepted_values=[1.1, 2.2, 3.3]), 1.1) def test_parse_float_zero(self): """Tests parsing an optional float parameter zero instead of using the default value.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) request.query_params.update({ 'test': '0.0', }) self.assertEqual(rest_util.parse_float(request, 'test', 10.1), 0.0) def test_parse_float_invalid(self): """Tests parsing a required float parameter that is not a valid number.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) request.query_params.update({ 'test': 'abc', }) self.assertRaises(BadParameter, rest_util.parse_float, request, 'test') def test_parse_float_post(self): """Tests parsing a required float parameter that is provided via POST.""" request = MagicMock(Request) request.data = QueryDict('', mutable=True) request.data.update({ 'test': '10.1', }) self.assertEqual(rest_util.parse_float(request, 'test'), 10.1) def test_parse_duration(self): """Tests parsing a required ISO duration parameter that is provided via GET.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) request.query_params.update({ 'test': 'PT3H0M0S', }) self.assertEqual(rest_util.parse_duration(request, 'test'), datetime.timedelta(0, 10800)) def test_parse_duration_missing(self): """Tests parsing a required ISO duration parameter that is missing.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) request.query_params.update({ 'test': '10', }) self.assertRaises(BadParameter, rest_util.parse_duration, request, 'test2') def test_parse_duration_default(self): """Tests parsing a required ISO duration parameter that is provided via default value.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) request.query_params.update({ 'test': 'PT3H0M0S', }) default_value = datetime.timedelta(0, 20800) self.assertEqual(rest_util.parse_duration(request, 'test2', default_value), default_value) def test_parse_duration_optional(self): """Tests parsing an optional ISO duration parameter that is missing.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) request.query_params.update({ 'test': 'value1', }) self.assertIsNone(rest_util.parse_duration(request, 'test2', required=False)) def test_parse_duration_invalid(self): """Tests parsing a required ISO duration parameter that is formatted incorrectly.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) request.query_params.update({ 'test': 'BAD', }) self.assertRaises(BadParameter, rest_util.parse_duration, request, 'test') def test_parse_datetime(self): """Tests parsing a valid ISO datetime.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) request.query_params.update({ 'test': '2015-01-01T00:00:00Z', }) self.assertEqual(rest_util.parse_datetime(request, 'test'), datetime.datetime(2015, 1, 1, tzinfo=utc)) def test_parse_datetime_missing(self): """Tests parsing a required ISO datetime parameter that is missing.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) request.query_params.update({ 'test': '10', }) self.assertRaises(BadParameter, rest_util.parse_datetime, request, 'test2') def test_parse_datetime_default(self): """Tests parsing a required ISO datetime parameter that is provided via default value.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) request.query_params.update({ 'test': '2015-01-01T00:00:00Z', }) default_value = datetime.datetime(2015, 2, 10, tzinfo=utc) self.assertEqual(rest_util.parse_datetime(request, 'test2', default_value), default_value) def test_parse_datetime_optional(self): """Tests parsing an optional ISO datetime parameter that is missing.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) request.query_params.update({ 'test': 'value1', }) self.assertIsNone(rest_util.parse_datetime(request, 'test2', required=False)) def test_parse_datetime_invalid(self): """Tests parsing a required ISO datetime parameter that is formatted incorrectly.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) request.query_params.update({ 'test': '20150101T00:00:00Z', }) self.assertRaises(BadParameter, rest_util.parse_datetime, request, 'test') def test_parse_datetime_missing_timezone(self): """Tests parsing an ISO datetime missing a timezone.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) request.query_params.update({ 'test': '2015-01-01T00:00:00', }) self.assertRaises(BadParameter, rest_util.parse_datetime, request, 'test') @mock.patch('django.utils.timezone.now') def test_parse_timestamp_duration(self, mock_now): """Tests parsing a valid ISO duration.""" mock_now.return_value = datetime.datetime(2015, 1, 1, 10, tzinfo=utc) request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) request.query_params.update({ 'test': 'PT3H0M0S', }) self.assertEqual(rest_util.parse_timestamp(request, 'test'), datetime.datetime(2015, 1, 1, 7, tzinfo=utc)) def test_parse_timestamp_datetime(self): """Tests parsing a valid ISO datetime.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) request.query_params.update({ 'test': '2015-01-01T00:00:00Z', }) self.assertEqual(rest_util.parse_timestamp(request, 'test'), datetime.datetime(2015, 1, 1, tzinfo=utc)) def test_parse_dict(self): """Tests parsing a dictionary.""" result = { 'name': 'value', } request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) request.query_params.update({ 'test': result, }) self.assertDictEqual(rest_util.parse_dict(request, 'test'), result) def test_parse_dict_post(self): """Tests parsing a dictionary provided via POST.""" result = { 'name': 'value', } request = MagicMock(Request) request.data = QueryDict('', mutable=True) request.data.update({ 'test': result, }) self.assertDictEqual(rest_util.parse_dict(request, 'test'), result) def test_parse_dict_optional(self): """Tests parsing an optional dict with no default value.""" request = MagicMock(Request) request.query_params = QueryDict('', mutable=True) self.assertDictEqual(rest_util.parse_dict(request, 'test', required=False), {}) def test_parse_dict_list_post(self): """Tests parsing a list of dictionaries.""" results = [{ 'name': 'value' }, { 'name2': 'value2' }] request = MagicMock(Request) request.data = QueryDict('', mutable=True) request.data.update({ 'test': results, }) self.assertItemsEqual(rest_util.parse_dict_list(request, 'test'), results) def test_parse_dict_list_invalid_post(self): """Tests parsing a required list of dictionaries that is not all dictionaries.""" results = [{'name': 'value'}, 'BAD'] request = MagicMock(Request) request.data = QueryDict('', mutable=True) request.data.update({ 'test': results, }) self.assertRaises(BadParameter, rest_util.parse_dict_list, request, 'test') def test_parse_dict_list_optional(self): """Tests parsing an optional dict list with no default value.""" request = MagicMock(Request) request.data = QueryDict('', mutable=True) self.assertEqual(rest_util.parse_dict_list(request, 'test', required=False), []) def test_title_to_name(self): """Tests parsing an optional dict with no default value.""" title1 = 'Boring Normal Title' title2 = 'Underscore_Title' title3 = 'Title #1' set = None self.assertEqual(rest_util.title_to_name(set, title1), 'boring-normal-title') self.assertEqual(rest_util.title_to_name(set, title2), 'underscore-title') self.assertEqual(rest_util.title_to_name(set, title3), 'title-1')
43.003979
115
0.64478
c1f476bd225b71942c936cca89c6c595bb9ae6a2
3,104
py
Python
training/train_model.py
googleinterns/smart-news-query-embeddings
5c0f354100e3c92ad3e9c0b9ca43f3307b8b68c5
[ "Apache-2.0" ]
null
null
null
training/train_model.py
googleinterns/smart-news-query-embeddings
5c0f354100e3c92ad3e9c0b9ca43f3307b8b68c5
[ "Apache-2.0" ]
11
2020-08-06T18:53:39.000Z
2022-02-10T01:56:49.000Z
training/train_model.py
googleinterns/smart-news-query-embeddings
5c0f354100e3c92ad3e9c0b9ca43f3307b8b68c5
[ "Apache-2.0" ]
1
2020-09-02T08:20:14.000Z
2020-09-02T08:20:14.000Z
""" Copyright 2020 Google LLC. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import argparse import time from smart_news_query_embeddings.trainers.bert_model_trainer import BertModelTrainer from smart_news_query_embeddings.trainers.two_tower_model_trainer import TwoTowerModelTrainer from smart_news_query_embeddings.trainers.bert_model_specificity_score_trainer import BertModelSpecificityScoreTrainer """ Script that instantiates a trainer and trains the model. """ if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--batch-size', '-b', default=32, type=int) parser.add_argument('--learning-rate', '-l', default=1e-5, type=float) parser.add_argument('--max-seq-length', default=128, type=int) parser.add_argument('--dropout-rate', default=0.5, type=float) parser.add_argument('--num-train-epochs', '-n', default=3, type=int) parser.add_argument('--dense-size', '-d', default=256, type=int) parser.add_argument('--exp-name', '-e', required=True, type=str) parser.add_argument('--bert-dir', default='uncased_L-12_H-768_A-12', type=str) parser.add_argument('--two-tower', '-t', action='store_true', default=False) parser.add_argument('--specificity-scores', '-s', action='store_true', default=False) parser.add_argument('--cutoff', '-c', default=0.5, type=float) parser.add_argument('--train-tail', action='store_true', default=False) parser.add_argument('--no-batch-norm', action='store_true', default=False) args = parser.parse_args() if args.two_tower: trainer = TwoTowerModelTrainer(args.exp_name, batch_size=args.batch_size, learning_rate=args.learning_rate, max_seq_length=args.max_seq_length, dropout_rate=args.dropout_rate, epochs=args.num_train_epochs, dense_size=args.dense_size, bert_dir=args.bert_dir, use_batch_norm=not args.no_batch_norm) elif args.specificity_scores: trainer = BertModelSpecificityScoreTrainer(args.exp_name, batch_size=args.batch_size, learning_rate=args.learning_rate, max_seq_length=args.max_seq_length, dropout_rate=args.dropout_rate, epochs=args.num_train_epochs, dense_size=args.dense_size, bert_dir=args.bert_dir, tail_cutoff=args.cutoff, train_tail=args.train_tail) else: trainer = BertModelTrainer(args.exp_name, batch_size=args.batch_size, learning_rate=args.learning_rate, max_seq_length=args.max_seq_length, dropout_rate=args.dropout_rate, epochs=args.num_train_epochs, dense_size=args.dense_size, bert_dir=args.bert_dir) print('Trainer class is: {}'.format(type(trainer))) trainer.train()
53.517241
127
0.761276
ef67c7a8be76af61d823ee447dc272d58105caab
8,787
py
Python
build.py
k0sukey/TiSBTickerView
097a05801365db6857d1ef902c257d69cab257f3
[ "Unlicense", "MIT" ]
1
2016-11-16T19:30:17.000Z
2016-11-16T19:30:17.000Z
build.py
k0sukey/TiSBTickerView
097a05801365db6857d1ef902c257d69cab257f3
[ "Unlicense", "MIT" ]
null
null
null
build.py
k0sukey/TiSBTickerView
097a05801365db6857d1ef902c257d69cab257f3
[ "Unlicense", "MIT" ]
null
null
null
#!/usr/bin/env python # # Appcelerator Titanium Module Packager # # import os, subprocess, sys, glob, string, optparse, subprocess import zipfile from datetime import date cwd = os.path.abspath(os.path.dirname(sys._getframe(0).f_code.co_filename)) os.chdir(cwd) required_module_keys = ['name','version','moduleid','description','copyright','license','copyright','platform','minsdk'] module_defaults = { 'description':'My module', 'author': 'Your Name', 'license' : 'Specify your license', 'copyright' : 'Copyright (c) %s by Your Company' % str(date.today().year), } module_license_default = "TODO: place your license here and we'll include it in the module distribution" def find_sdk(config): sdk = config['TITANIUM_SDK'] return os.path.expandvars(os.path.expanduser(sdk)) def replace_vars(config,token): idx = token.find('$(') while idx != -1: idx2 = token.find(')',idx+2) if idx2 == -1: break key = token[idx+2:idx2] if not config.has_key(key): break token = token.replace('$(%s)' % key, config[key]) idx = token.find('$(') return token def read_ti_xcconfig(): contents = open(os.path.join(cwd,'titanium.xcconfig')).read() config = {} for line in contents.splitlines(False): line = line.strip() if line[0:2]=='//': continue idx = line.find('=') if idx > 0: key = line[0:idx].strip() value = line[idx+1:].strip() config[key] = replace_vars(config,value) return config def generate_doc(config): docdir = os.path.join(cwd,'documentation') if not os.path.exists(docdir): warn("Couldn't find documentation file at: %s" % docdir) return None try: import markdown2 as markdown except ImportError: import markdown documentation = [] for file in os.listdir(docdir): if file in ignoreFiles or os.path.isdir(os.path.join(docdir, file)): continue md = open(os.path.join(docdir,file)).read() html = markdown.markdown(md) documentation.append({file:html}); return documentation def compile_js(manifest,config): js_file = os.path.join(cwd,'assets','be.k0suke.tisbtickerview.js') if not os.path.exists(js_file): return from compiler import Compiler try: import json except: import simplejson as json compiler = Compiler(cwd, manifest['moduleid'], manifest['name'], 'commonjs') root_asset, module_assets = compiler.compile_module() root_asset_content = """ %s return filterDataInRange([NSData dataWithBytesNoCopy:data length:sizeof(data) freeWhenDone:NO], ranges[0]); """ % root_asset module_asset_content = """ %s NSNumber *index = [map objectForKey:path]; if (index == nil) { return nil; } return filterDataInRange([NSData dataWithBytesNoCopy:data length:sizeof(data) freeWhenDone:NO], ranges[index.integerValue]); """ % module_assets from tools import splice_code assets_router = os.path.join(cwd,'Classes','BeK0sukeTisbtickerviewModuleAssets.m') splice_code(assets_router, 'asset', root_asset_content) splice_code(assets_router, 'resolve_asset', module_asset_content) # Generate the exports after crawling all of the available JS source exports = open('metadata.json','w') json.dump({'exports':compiler.exports }, exports) exports.close() def die(msg): print msg sys.exit(1) def info(msg): print "[INFO] %s" % msg def warn(msg): print "[WARN] %s" % msg def validate_license(): c = open(os.path.join(cwd,'LICENSE')).read() if c.find(module_license_default)!=-1: warn('please update the LICENSE file with your license text before distributing') def validate_manifest(): path = os.path.join(cwd,'manifest') f = open(path) if not os.path.exists(path): die("missing %s" % path) manifest = {} for line in f.readlines(): line = line.strip() if line[0:1]=='#': continue if line.find(':') < 0: continue key,value = line.split(':') manifest[key.strip()]=value.strip() for key in required_module_keys: if not manifest.has_key(key): die("missing required manifest key '%s'" % key) if module_defaults.has_key(key): defvalue = module_defaults[key] curvalue = manifest[key] if curvalue==defvalue: warn("please update the manifest key: '%s' to a non-default value" % key) return manifest,path ignoreFiles = ['.DS_Store','.gitignore','libTitanium.a','titanium.jar','README'] ignoreDirs = ['.DS_Store','.svn','.git','CVSROOT'] def zip_dir(zf,dir,basepath,ignoreExt=[]): if not os.path.exists(dir): return for root, dirs, files in os.walk(dir): for name in ignoreDirs: if name in dirs: dirs.remove(name) # don't visit ignored directories for file in files: if file in ignoreFiles: continue e = os.path.splitext(file) if len(e) == 2 and e[1] in ignoreExt: continue from_ = os.path.join(root, file) to_ = from_.replace(dir, '%s/%s'%(basepath,dir), 1) zf.write(from_, to_) def glob_libfiles(): files = [] for libfile in glob.glob('build/**/*.a'): if libfile.find('Release-')!=-1: files.append(libfile) return files def build_module(manifest,config): from tools import ensure_dev_path ensure_dev_path() rc = os.system("xcodebuild -sdk iphoneos -configuration Release") if rc != 0: die("xcodebuild failed") rc = os.system("xcodebuild -sdk iphonesimulator -configuration Release") if rc != 0: die("xcodebuild failed") # build the merged library using lipo moduleid = manifest['moduleid'] libpaths = '' for libfile in glob_libfiles(): libpaths+='%s ' % libfile os.system("lipo %s -create -output build/lib%s.a" %(libpaths,moduleid)) def generate_apidoc(apidoc_build_path): global options if options.skip_docs: info("Skipping documentation generation.") return False else: info("Module apidoc generation can be skipped using --skip-docs") apidoc_path = os.path.join(cwd, "apidoc") if not os.path.exists(apidoc_path): warn("Skipping apidoc generation. No apidoc folder found at: %s" % apidoc_path) return False if not os.path.exists(apidoc_build_path): os.makedirs(apidoc_build_path) ti_root = string.strip(subprocess.check_output(["echo $TI_ROOT"], shell=True)) if not len(ti_root) > 0: warn("Not generating documentation from the apidoc folder. The titanium_mobile repo could not be found.") warn("Set the TI_ROOT environment variable to the parent folder where the titanium_mobile repo resides (eg.'export TI_ROOT=/Path').") return False docgen = os.path.join(ti_root, "titanium_mobile", "apidoc", "docgen.py") if not os.path.exists(docgen): warn("Not generating documentation from the apidoc folder. Couldn't find docgen.py at: %s" % docgen) return False info("Generating documentation from the apidoc folder.") rc = os.system("\"%s\" --format=jsca,modulehtml --css=styles.css -o \"%s\" -e \"%s\"" % (docgen, apidoc_build_path, apidoc_path)) if rc != 0: die("docgen failed") return True def package_module(manifest,mf,config): name = manifest['name'].lower() moduleid = manifest['moduleid'].lower() version = manifest['version'] modulezip = '%s-iphone-%s.zip' % (moduleid,version) if os.path.exists(modulezip): os.remove(modulezip) zf = zipfile.ZipFile(modulezip, 'w', zipfile.ZIP_DEFLATED) modulepath = 'modules/iphone/%s/%s' % (moduleid,version) zf.write(mf,'%s/manifest' % modulepath) libname = 'lib%s.a' % moduleid zf.write('build/%s' % libname, '%s/%s' % (modulepath,libname)) docs = generate_doc(config) if docs!=None: for doc in docs: for file, html in doc.iteritems(): filename = string.replace(file,'.md','.html') zf.writestr('%s/documentation/%s'%(modulepath,filename),html) apidoc_build_path = os.path.join(cwd, "build", "apidoc") if generate_apidoc(apidoc_build_path): for file in os.listdir(apidoc_build_path): if file in ignoreFiles or os.path.isdir(os.path.join(apidoc_build_path, file)): continue zf.write(os.path.join(apidoc_build_path, file), '%s/documentation/apidoc/%s' % (modulepath, file)) zip_dir(zf,'assets',modulepath,['.pyc','.js']) zip_dir(zf,'example',modulepath,['.pyc']) zip_dir(zf,'platform',modulepath,['.pyc','.js']) zf.write('LICENSE','%s/LICENSE' % modulepath) zf.write('module.xcconfig','%s/module.xcconfig' % modulepath) exports_file = 'metadata.json' if os.path.exists(exports_file): zf.write(exports_file, '%s/%s' % (modulepath, exports_file)) zf.close() if __name__ == '__main__': global options parser = optparse.OptionParser() parser.add_option("-s", "--skip-docs", dest="skip_docs", action="store_true", help="Will skip building documentation in apidoc folder", default=False) (options, args) = parser.parse_args() manifest,mf = validate_manifest() validate_license() config = read_ti_xcconfig() sdk = find_sdk(config) sys.path.insert(0,os.path.join(sdk,'iphone')) sys.path.append(os.path.join(sdk, "common")) compile_js(manifest,config) build_module(manifest,config) package_module(manifest,mf,config) sys.exit(0)
31.836957
135
0.709116
2094971b8c9beb6ca24941a01c25f083b08474bb
3,714
py
Python
post_tool/post_area.py
sus304/ForRocketWorkbench
453613ecde282cc8a2b481250f29e6de7438a230
[ "Apache-2.0" ]
null
null
null
post_tool/post_area.py
sus304/ForRocketWorkbench
453613ecde282cc8a2b481250f29e6de7438a230
[ "Apache-2.0" ]
null
null
null
post_tool/post_area.py
sus304/ForRocketWorkbench
453613ecde282cc8a2b481250f29e6de7438a230
[ "Apache-2.0" ]
null
null
null
import os import glob import numpy as np from tqdm import tqdm from post_tool.post_df import csv2df from post_tool.post_summary import post_summary from post_tool.post_kml import dump_area_kml def post_area(area_work_dir): os.chdir(area_work_dir) # ディレクトリ内の*_flight_log.csvをリストアップする log_file_list = glob.glob('*_flight_log.csv') # stage毎に振り分け # 弾道と減速を振り分け # Stage1のみ対応 stage1_log_file_list = [] stage1_ballistic_log_file_list = [] stage2_log_file_list = [] stage3_log_file_list = [] for file in tqdm(log_file_list): if '_stage1_' in file: if '_ballistic_' in file: stage1_ballistic_log_file_list.append(file) else: stage1_log_file_list.append(file) elif '_stage2_' in file: stage2_log_file_list.append(file) elif '_stage3_' in file: stage3_log_file_list.append(file) # ケース条件から風向風速の数を検出 case_param_list = np.loadtxt('wind_case_list.csv', delimiter=',', skiprows=1) previous_speed = case_param_list[0][1] direction_count = 0 for i in range(len(case_param_list)): # 風向数を検出 if previous_speed != case_param_list[i][1]: direction_count = i break speed_count = int(len(case_param_list) / direction_count) # 風速数を検出 # ケースナンバーからログファイルを振り分け direction_loop_list = [] speed_loop_list = [] for i in tqdm(range(len(case_param_list))): case_num = int(case_param_list[i][0]) for file in stage1_log_file_list: if '_wind'+str(case_num)+'_' in file: direction_loop_list.append(file) break if len(direction_loop_list) == direction_count: speed_loop_list.append(direction_loop_list) direction_loop_list = [] ballicstic_speed_loop_list = [] if len(stage1_ballistic_log_file_list) != 0: for i in tqdm(range(len(case_param_list))): case_num = int(case_param_list[i][0]) for file in stage1_ballistic_log_file_list: if '_wind'+str(case_num)+'_' in file: direction_loop_list.append(file) break if len(direction_loop_list) == direction_count: ballicstic_speed_loop_list.append(direction_loop_list) direction_loop_list = [] # 着地点を抽出してkmlへ speed_impact_points_latlon = [] direction_impact_points_latlon = [] for direction_log_files in tqdm(speed_loop_list): for log_file in direction_log_files: case_name = os.path.split(log_file)[-1] df, _, _ = csv2df(log_file) _, latlon = post_summary(df, case_name) direction_impact_points_latlon.append(latlon) speed_impact_points_latlon.append(direction_impact_points_latlon) direction_impact_points_latlon = [] if len(stage1_ballistic_log_file_list) == 0: dump_area_kml(speed_impact_points_latlon, 'ballistic') else: dump_area_kml(speed_impact_points_latlon, 'decent') speed_impact_points_latlon = [] direction_impact_points_latlon = [] for direction_log_files in tqdm(ballicstic_speed_loop_list): for log_file in direction_log_files: case_name = os.path.split(log_file)[-1] df, _, _ = csv2df(log_file) _, latlon = post_summary(df, case_name) direction_impact_points_latlon.append(latlon) speed_impact_points_latlon.append(direction_impact_points_latlon) direction_impact_points_latlon = [] dump_area_kml(speed_impact_points_latlon, 'ballistic') os.chdir('../')
36.058252
81
0.651319
303c319fcd1dd6304665954e517d8b0281190f65
2,288
py
Python
tests/test_philips_tiff_tiler.py
imi-bigpicture/opentile
1a84284c5bc2c3515e14d5345b6077842897b547
[ "Apache-2.0" ]
4
2021-12-02T17:19:10.000Z
2022-02-02T16:35:48.000Z
tests/test_philips_tiff_tiler.py
sectra-medical/opentile
1a84284c5bc2c3515e14d5345b6077842897b547
[ "Apache-2.0" ]
6
2021-12-02T13:22:04.000Z
2022-03-09T14:01:19.000Z
tests/test_philips_tiff_tiler.py
sectra-medical/opentile
1a84284c5bc2c3515e14d5345b6077842897b547
[ "Apache-2.0" ]
4
2022-02-04T08:24:20.000Z
2022-02-16T12:39:39.000Z
# Copyright 2021 SECTRA AB # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import unittest from hashlib import md5 from pathlib import Path import pytest from opentile.philips_tiff_tiler import PhilipsTiffTiler test_data_dir = os.environ.get("OPENTILE_TESTDIR", "tests/testdata") philips_file_path = Path(test_data_dir).joinpath( "slides/philips_tiff/philips1/input.tif" ) @pytest.mark.unittest class PhilipsTiffTilerTest(unittest.TestCase): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.tiler: PhilipsTiffTiler @classmethod def setUpClass(cls): try: cls.tiler = PhilipsTiffTiler(philips_file_path) except FileNotFoundError: raise unittest.SkipTest( 'Philips tiff test file not found, skipping' ) cls.level = cls.tiler.get_level(0) @classmethod def tearDownClass(cls): cls.tiler.close() def test_get_tile(self): tile = self.level.get_tile((0, 0)) self.assertEqual( '570d069f9de5d2716fb0d7167bc79195', md5(tile).hexdigest() ) tile = self.level.get_tile((20, 20)) self.assertEqual( 'db28efb73a72ef7e2780fc72c624d7ae', md5(tile).hexdigest() ) def test_photometric_interpretation(self): self.assertEqual( 'YCBCR', self.tiler.get_level(0).photometric_interpretation ) def test_subsampling(self): self.assertEqual( (2, 2), self.tiler.get_level(0).subsampling ) def test_sumples_per_pixel(self): self.assertEqual( 3, self.tiler.get_level(0).samples_per_pixel )
29.714286
77
0.652535
b555ae5d5f4276e7533584444a998c316ce4d983
10,223
py
Python
src/Updater.py
losek1/Sounder3
21999a309d9a395bcbc88ecb7fbfce1c507dfa6a
[ "MIT" ]
2
2019-08-12T15:40:23.000Z
2019-08-12T15:41:52.000Z
src/Updater.py
losek1/Sounder3
21999a309d9a395bcbc88ecb7fbfce1c507dfa6a
[ "MIT" ]
null
null
null
src/Updater.py
losek1/Sounder3
21999a309d9a395bcbc88ecb7fbfce1c507dfa6a
[ "MIT" ]
null
null
null
try: from os import getcwd, startfile, rename, remove from os.path import dirname, isfile, basename from threading import Thread from json import load from tkinter import Tk, PhotoImage, sys, Frame from tkinter import ttk from typing import ClassVar, Dict, List from requests import get from zipfile import ZipFile import logging from io import BytesIO from time import sleep from psutil import process_iter from PIL import Image, ImageSequence, ImageTk except ImportError as e: sys.exit(e) # dir sounder_dir: str = getcwd() # sounder_dir: str = dirname(sys.executable) # log logging.basicConfig(filename=f"{sounder_dir}\\errors.log", level=logging.ERROR) # window setup updater_window: ClassVar = Tk() updater_window.withdraw() updater_window.geometry(f"375x100+{int(updater_window.winfo_x() + ((updater_window.winfo_screenwidth() - 375) / 2))}" f"+{int(updater_window.winfo_y() +((updater_window.winfo_screenheight() - 100) / 2))}") updater_window.title("Sounder updater") try: updater_window.iconbitmap(f"{sounder_dir}\\icon.ico") except: sys.exit(1) updater_window.resizable(width=False, height=False) updater_window.configure(background="#fff") # theme updater_theme = ttk.Style() updater_theme.theme_use('clam') updater_theme.configure("TLabel", background='#fff', foreground='#000', border='0') updater_theme.configure("Horizontal.TProgressbar", foreground='#fff', background='#000', lightcolor='#fff' , darkcolor='#fff', bordercolor='#fff', troughcolor='#fff') updater_theme.configure("TButton", relief="flat", background='#000', font=('Bahnschrift', 10), foreground='#fff') updater_theme.map("TButton", background=[('pressed', '!disabled', '#000'), ('active', '#111')]) # variables config: Dict = {} server_version: str package = b'' # functions def dump(err_obj: ClassVar) -> None: error_reason_label.configure(text="Error: " + logging.getLevelName(err_obj)) show(error_frame) logging.error(err_obj, exc_info=True) def show(window) -> bool: try: window.tkraise() return True except Exception as e: dump(e) return False def load_config() -> bool: global config if isfile('cfg.json'): try: with open('cfg.json', 'r') as data: config = load(data) return True except: return False else: return False def close() -> None: for widget in updater_window.winfo_children(): widget.destroy() updater_window.destroy() sys.exit(0) def change_mode(mode: str) -> None: try: update_progress.stop() update_progress["value"] = 0 update_progress["maximum"] = 100 if mode == "determinate": update_progress.configure(mode="determinate") elif mode == "indeterminate": update_progress.configure(mode="indeterminate") update_progress.start(4) except Exception as e: dump(e) def update() -> bool: global server_version, package, sounder_dir chunk_size: int = 8192 change_mode("determinate") Thread(target=load_img, daemon=True).start() show(checking_frame) try: bytes_downloaded: float = 0 server_zip = get(f"https://github.com/losek1/Sounder3/releases/download/v{server_version}/package.zip" , stream=True) if server_zip.status_code == 200: update_progress["maximum"] = int(server_zip.headers.get('Content-Length')) show(update_frame) for chunk in server_zip.iter_content(chunk_size=chunk_size): if chunk: package += chunk bytes_downloaded += chunk_size update_progress["value"] = bytes_downloaded update_data.configure(text=f"{round(bytes_downloaded / 1000000, 1)}MB / {round(int(server_zip.headers.get('Content-Length')) / 1000000, 1)}MB") for process in process_iter(): if process.name() == "Sounder3.exe": process.kill() change_mode("indeterminate") update_label.configure(text="Installing updates ...") with ZipFile(BytesIO(package)) as zip_file: for file in zip_file.namelist(): update_data.configure(text=f"{zip_file.namelist().index(file)} / {len(zip_file.namelist())}") if file == "Updater.exe" or file == "errors.log": continue try: zip_file.extract(file, sounder_dir) except Exception as error_obj: logging.error(error_obj, exc_info=True) show(finish_frame) sleep(3) open_app() close() else: raise Exception("Cannot contact GitHub servers") except Exception as e: dump(e) return True def check_updates() -> bool: global config, server_version try: server_version = get( "https://raw.githubusercontent.com/losek1/Sounder3/master/updates/version.txt").text.strip() if int(config["version"].replace(".", "")) < int(server_version.replace(".", "")): return True else: return False except Exception as e: dump(e) def open_app() -> None: try: if isfile("Sounder3.exe"): startfile("Sounder3.exe") except Exception as e: dump(e) def update_task() -> None: Thread(target=update, daemon=True).start() def self_upgrade() -> bool: try: if basename(sys.argv[0]) == "New-Updater.exe": if isfile("Updater.exe"): remove("Updater.exe") rename(sys.argv[0], "Updater.exe") return False elif isfile("New-Updater.exe"): startfile("New-Updater.exe") return True else: return False except Exception as e: dump(e) def show_gui() -> None: show(checking_frame) updater_window.deiconify() updater_window.lift() updater_window.focus_force() def init() -> None: if self_upgrade(): close() elif load_config(): show_gui() if check_updates(): update_task() else: show(choice_frame) def load_img() -> None: try: img_frames: List = [] download_img: ClassVar = Image.open("download_light.gif") for frame in ImageSequence.Iterator(download_img): img_frames.append(ImageTk.PhotoImage(frame.copy().convert('RGBA').resize((48, 48)))) if len(img_frames) > 1: while True: for frame in img_frames: update_img_label.configure(image=frame) sleep(0.02) else: update_img_label.configure(image=img_frames) except Exception as e: dump(e) # frames # error frame error_frame: ClassVar = Frame(updater_window) error_frame.configure(background="#fff") error_reason_label: ClassVar = ttk.Label(error_frame, text="Error:", anchor='center', font='Bahnschrift 11') error_exit_button: ClassVar = ttk.Button(error_frame, text="EXIT", cursor="hand2", takefocus=False, command=close) error_reason_label.place(relx=0.5, rely=0, relheight=0.58, anchor="n") error_exit_button.place(relx=0.5, rely=0.6, relwidth=0.23, anchor="n") error_frame.place(relx=0, rely=0, relwidth=1, relheight=1) # end # update frame update_frame: ClassVar = Frame(updater_window) update_frame.configure(background="#fff") update_img_label: ClassVar = ttk.Label(update_frame, image=None, anchor='center') update_label: ClassVar = ttk.Label(update_frame, text="Downloading updates ...", font='Bahnschrift 11') update_data: ClassVar = ttk.Label(update_frame, text="-- MB / --MB", font='Bahnschrift 10', anchor='center') update_progress: ClassVar = ttk.Progressbar(update_frame, orient='horizontal') update_img_label.place(relx=0, rely=0, relwidth=0.25, relheight=1) update_label.place(relx=0.25, rely=0.15, relwidth=0.45, relheight=0.25) update_data.place(relx=0.70, rely=0.15, relwidth=0.30, relheight=0.25) update_progress.place(relx=0.25, rely=0.6, relwidth=0.75, relheight=0.25) update_frame.place(relx=0, rely=0, relwidth=1, relheight=1) # end # check frame checking_frame: ClassVar = Frame(updater_window) checking_frame.configure(background="#fff") checking_label: ClassVar = ttk.Label(checking_frame, text="Verifying\n" ". . .", font='Bahnschrift 16', anchor='center', justify='center') checking_label.place(relx=0.5, rely=0, relheight=1, anchor="n") checking_frame.place(relx=0, rely=0, relwidth=1, relheight=1) # end # choice frame choice_frame: ClassVar = Frame(updater_window) choice_frame.configure(background="#fff") choice_label: ClassVar = ttk.Label(choice_frame, text="The latest version of Sounder is already installed.\n" " Would you like to install it anyway?", font='Bahnschrift 11' , anchor='center', justify='center') choice_install_button: ClassVar = ttk.Button(choice_frame, text="INSTALL", cursor="hand2", takefocus=False, command=update_task) choice_exit_button: ClassVar = ttk.Button(choice_frame, text="EXIT", cursor="hand2", takefocus=False, command=close) choice_label.place(relx=0.5, rely=0.1, anchor="n") choice_install_button.place(relx=0.3, rely=0.6, anchor="n") choice_exit_button.place(relx=0.7, rely=0.6, anchor="n") choice_frame.place(relx=0, rely=0, relwidth=1, relheight=1) # end # finish frame finish_frame: ClassVar = Frame(updater_window) finish_frame.configure(background="#fff") finish_label: ClassVar = ttk.Label(finish_frame, text="All done!\nLaunching sounder in 3s" , anchor='center', justify='center', font='Bahnschrift 17') finish_label.place(relx=0, rely=0, relwidth=1, relheight=1) finish_frame.place(relx=0, rely=0, relwidth=1, relheight=1) # end Thread(target=init, daemon=True).start() updater_window.mainloop()
36.906137
163
0.638462
66ebad7fd2f39e50cf9a9f14ad3956b2bb7264bc
68,401
py
Python
mlflow/tracking/fluent.py
szczeles/mlflow
7e7b9f8fe8672e5fdc0a1b2c4180443c24918ad4
[ "Apache-2.0" ]
null
null
null
mlflow/tracking/fluent.py
szczeles/mlflow
7e7b9f8fe8672e5fdc0a1b2c4180443c24918ad4
[ "Apache-2.0" ]
null
null
null
mlflow/tracking/fluent.py
szczeles/mlflow
7e7b9f8fe8672e5fdc0a1b2c4180443c24918ad4
[ "Apache-2.0" ]
null
null
null
""" Internal module implementing the fluent API, allowing management of an active MLflow run. This module is exposed to users at the top-level :py:mod:`mlflow` module. """ import os import atexit import time import logging import inspect from copy import deepcopy from packaging.version import Version from typing import Any, Dict, List, Optional, Union, TYPE_CHECKING from mlflow.entities import Experiment, Run, RunInfo, RunStatus, Param, RunTag, Metric, ViewType from mlflow.entities.lifecycle_stage import LifecycleStage from mlflow.exceptions import MlflowException from mlflow.protos.databricks_pb2 import ( INVALID_PARAMETER_VALUE, RESOURCE_DOES_NOT_EXIST, ) from mlflow.tracking.client import MlflowClient from mlflow.tracking import artifact_utils, _get_store from mlflow.tracking.context import registry as context_registry from mlflow.tracking.default_experiment import registry as default_experiment_registry from mlflow.store.tracking import SEARCH_MAX_RESULTS_DEFAULT from mlflow.utils import env from mlflow.utils.autologging_utils import ( is_testing, autologging_integration, AUTOLOGGING_INTEGRATIONS, autologging_is_disabled, ) from mlflow.utils.import_hooks import register_post_import_hook from mlflow.utils.mlflow_tags import ( MLFLOW_PARENT_RUN_ID, MLFLOW_RUN_NAME, MLFLOW_RUN_NOTE, ) from mlflow.utils.validation import _validate_run_id if TYPE_CHECKING: import pandas # pylint: disable=unused-import import matplotlib # pylint: disable=unused-import import matplotlib.figure import plotly # pylint: disable=unused-import import numpy # pylint: disable=unused-import import PIL # pylint: disable=unused-import _EXPERIMENT_ID_ENV_VAR = "MLFLOW_EXPERIMENT_ID" _EXPERIMENT_NAME_ENV_VAR = "MLFLOW_EXPERIMENT_NAME" _RUN_ID_ENV_VAR = "MLFLOW_RUN_ID" _active_run_stack = [] _active_experiment_id = None _last_active_run_id = None SEARCH_MAX_RESULTS_PANDAS = 100000 NUM_RUNS_PER_PAGE_PANDAS = 10000 _logger = logging.getLogger(__name__) def set_experiment(experiment_name: str = None, experiment_id: str = None) -> Experiment: """ Set the given experiment as the active experiment. The experiment must either be specified by name via `experiment_name` or by ID via `experiment_id`. The experiment name and ID cannot both be specified. :param experiment_name: Case sensitive name of the experiment to be activated. If an experiment with this name does not exist, a new experiment wth this name is created. :param experiment_id: ID of the experiment to be activated. If an experiment with this ID does not exist, an exception is thrown. :return: An instance of :py:class:`mlflow.entities.Experiment` representing the new active experiment. .. code-block:: python :caption: Example import mlflow # Set an experiment name, which must be unique and case sensitive. mlflow.set_experiment("Social NLP Experiments") # Get Experiment Details experiment = mlflow.get_experiment_by_name("Social NLP Experiments") print("Experiment_id: {}".format(experiment.experiment_id)) print("Artifact Location: {}".format(experiment.artifact_location)) print("Tags: {}".format(experiment.tags)) print("Lifecycle_stage: {}".format(experiment.lifecycle_stage)) .. code-block:: text :caption: Output Experiment_id: 1 Artifact Location: file:///.../mlruns/1 Tags: {} Lifecycle_stage: active """ if (experiment_name is not None and experiment_id is not None) or ( experiment_name is None and experiment_id is None ): raise MlflowException( message="Must specify exactly one of: `experiment_id` or `experiment_name`.", error_code=INVALID_PARAMETER_VALUE, ) client = MlflowClient() if experiment_id is None: experiment = client.get_experiment_by_name(experiment_name) if not experiment: _logger.info( "Experiment with name '%s' does not exist. Creating a new experiment.", experiment_name, ) # NB: If two simultaneous threads or processes attempt to set the same experiment # simultaneously, a race condition may be encountered here wherein experiment creation # fails experiment_id = client.create_experiment(experiment_name) experiment = client.get_experiment(experiment_id) else: experiment = client.get_experiment(experiment_id) if experiment is None: raise MlflowException( message=f"Experiment with ID '{experiment_id}' does not exist.", error_code=RESOURCE_DOES_NOT_EXIST, ) if experiment.lifecycle_stage != LifecycleStage.ACTIVE: raise MlflowException( message=( "Cannot set a deleted experiment '%s' as the active experiment." " You can restore the experiment, or permanently delete the " " experiment to create a new one." % experiment.name ), error_code=INVALID_PARAMETER_VALUE, ) global _active_experiment_id _active_experiment_id = experiment.experiment_id return experiment class ActiveRun(Run): # pylint: disable=W0223 """Wrapper around :py:class:`mlflow.entities.Run` to enable using Python ``with`` syntax.""" def __init__(self, run): Run.__init__(self, run.info, run.data) def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): status = RunStatus.FINISHED if exc_type is None else RunStatus.FAILED end_run(RunStatus.to_string(status)) return exc_type is None def start_run( run_id: str = None, experiment_id: Optional[str] = None, run_name: Optional[str] = None, nested: bool = False, tags: Optional[Dict[str, Any]] = None, description: Optional[str] = None, ) -> ActiveRun: """ Start a new MLflow run, setting it as the active run under which metrics and parameters will be logged. The return value can be used as a context manager within a ``with`` block; otherwise, you must call ``end_run()`` to terminate the current run. If you pass a ``run_id`` or the ``MLFLOW_RUN_ID`` environment variable is set, ``start_run`` attempts to resume a run with the specified run ID and other parameters are ignored. ``run_id`` takes precedence over ``MLFLOW_RUN_ID``. If resuming an existing run, the run status is set to ``RunStatus.RUNNING``. MLflow sets a variety of default tags on the run, as defined in :ref:`MLflow system tags <system_tags>`. :param run_id: If specified, get the run with the specified UUID and log parameters and metrics under that run. The run's end time is unset and its status is set to running, but the run's other attributes (``source_version``, ``source_type``, etc.) are not changed. :param experiment_id: ID of the experiment under which to create the current run (applicable only when ``run_id`` is not specified). If ``experiment_id`` argument is unspecified, will look for valid experiment in the following order: activated using ``set_experiment``, ``MLFLOW_EXPERIMENT_NAME`` environment variable, ``MLFLOW_EXPERIMENT_ID`` environment variable, or the default experiment as defined by the tracking server. :param run_name: Name of new run (stored as a ``mlflow.runName`` tag). Used only when ``run_id`` is unspecified. :param nested: Controls whether run is nested in parent run. ``True`` creates a nested run. :param tags: An optional dictionary of string keys and values to set as tags on the run. If a run is being resumed, these tags are set on the resumed run. If a new run is being created, these tags are set on the new run. :param description: An optional string that populates the description box of the run. If a run is being resumed, the description is set on the resumed run. If a new run is being created, the description is set on the new run. :return: :py:class:`mlflow.ActiveRun` object that acts as a context manager wrapping the run's state. .. code-block:: python :caption: Example import mlflow # Create nested runs with mlflow.start_run(run_name='PARENT_RUN') as parent_run: mlflow.log_param("parent", "yes") with mlflow.start_run(run_name='CHILD_RUN', nested=True) as child_run: mlflow.log_param("child", "yes") print("parent run_id: {}".format(parent_run.info.run_id)) print("child run_id : {}".format(child_run.info.run_id)) print("--") # Search all child runs with a parent id query = "tags.mlflow.parentRunId = '{}'".format(parent_run.info.run_id) results = mlflow.search_runs(filter_string=query) print(results[["run_id", "params.child", "tags.mlflow.runName"]]) .. code-block:: text :caption: Output parent run_id: 5ec0e7ae18f54c2694ffb48c2fccf25c child run_id : 78b3b0d264b44cd29e8dc389749bb4be -- run_id params.child tags.mlflow.runName 0 78b3b0d264b44cd29e8dc389749bb4be yes CHILD_RUN """ global _active_run_stack # back compat for int experiment_id experiment_id = str(experiment_id) if isinstance(experiment_id, int) else experiment_id if len(_active_run_stack) > 0 and not nested: raise Exception( ( "Run with UUID {} is already active. To start a new run, first end the " + "current run with mlflow.end_run(). To start a nested " + "run, call start_run with nested=True" ).format(_active_run_stack[0].info.run_id) ) client = MlflowClient() if run_id: existing_run_id = run_id elif _RUN_ID_ENV_VAR in os.environ: existing_run_id = os.environ[_RUN_ID_ENV_VAR] del os.environ[_RUN_ID_ENV_VAR] else: existing_run_id = None if existing_run_id: _validate_run_id(existing_run_id) active_run_obj = client.get_run(existing_run_id) # Check to see if experiment_id from environment matches experiment_id from set_experiment() if ( _active_experiment_id is not None and _active_experiment_id != active_run_obj.info.experiment_id ): raise MlflowException( "Cannot start run with ID {} because active run ID " "does not match environment run ID. Make sure --experiment-name " "or --experiment-id matches experiment set with " "set_experiment(), or just use command-line " "arguments".format(existing_run_id) ) # Check to see if current run isn't deleted if active_run_obj.info.lifecycle_stage == LifecycleStage.DELETED: raise MlflowException( "Cannot start run with ID {} because it is in the " "deleted state.".format(existing_run_id) ) # Use previous end_time because a value is required for update_run_info end_time = active_run_obj.info.end_time _get_store().update_run_info( existing_run_id, run_status=RunStatus.RUNNING, end_time=end_time ) tags = tags or {} if description: if MLFLOW_RUN_NOTE in tags: raise MlflowException( f"Description is already set via the tag {MLFLOW_RUN_NOTE} in tags." f"Remove the key {MLFLOW_RUN_NOTE} from the tags or omit the description.", error_code=INVALID_PARAMETER_VALUE, ) tags[MLFLOW_RUN_NOTE] = description if tags: client.log_batch( run_id=existing_run_id, tags=[RunTag(key, str(value)) for key, value in tags.items()], ) active_run_obj = client.get_run(existing_run_id) else: if len(_active_run_stack) > 0: parent_run_id = _active_run_stack[-1].info.run_id else: parent_run_id = None exp_id_for_run = experiment_id if experiment_id is not None else _get_experiment_id() user_specified_tags = deepcopy(tags) or {} if description: if MLFLOW_RUN_NOTE in user_specified_tags: raise MlflowException( f"Description is already set via the tag {MLFLOW_RUN_NOTE} in tags." f"Remove the key {MLFLOW_RUN_NOTE} from the tags or omit the description.", error_code=INVALID_PARAMETER_VALUE, ) user_specified_tags[MLFLOW_RUN_NOTE] = description if parent_run_id is not None: user_specified_tags[MLFLOW_PARENT_RUN_ID] = parent_run_id if run_name is not None: user_specified_tags[MLFLOW_RUN_NAME] = run_name resolved_tags = context_registry.resolve_tags(user_specified_tags) active_run_obj = client.create_run(experiment_id=exp_id_for_run, tags=resolved_tags) _active_run_stack.append(ActiveRun(active_run_obj)) return _active_run_stack[-1] def end_run(status: str = RunStatus.to_string(RunStatus.FINISHED)) -> None: """End an active MLflow run (if there is one). .. code-block:: python :caption: Example import mlflow # Start run and get status mlflow.start_run() run = mlflow.active_run() print("run_id: {}; status: {}".format(run.info.run_id, run.info.status)) # End run and get status mlflow.end_run() run = mlflow.get_run(run.info.run_id) print("run_id: {}; status: {}".format(run.info.run_id, run.info.status)) print("--") # Check for any active runs print("Active run: {}".format(mlflow.active_run())) .. code-block:: text :caption: Output run_id: b47ee4563368419880b44ad8535f6371; status: RUNNING run_id: b47ee4563368419880b44ad8535f6371; status: FINISHED -- Active run: None """ global _active_run_stack, _last_active_run_id if len(_active_run_stack) > 0: # Clear out the global existing run environment variable as well. env.unset_variable(_RUN_ID_ENV_VAR) run = _active_run_stack.pop() MlflowClient().set_terminated(run.info.run_id, status) _last_active_run_id = run.info.run_id atexit.register(end_run) def active_run() -> Optional[ActiveRun]: """Get the currently active ``Run``, or None if no such run exists. **Note**: You cannot access currently-active run attributes (parameters, metrics, etc.) through the run returned by ``mlflow.active_run``. In order to access such attributes, use the :py:class:`mlflow.tracking.MlflowClient` as follows: .. code-block:: python :caption: Example import mlflow mlflow.start_run() run = mlflow.active_run() print("Active run_id: {}".format(run.info.run_id)) mlflow.end_run() .. code-block:: text :caption: Output Active run_id: 6f252757005748708cd3aad75d1ff462 """ return _active_run_stack[-1] if len(_active_run_stack) > 0 else None def last_active_run() -> Optional[Run]: """ Gets the most recent active run. Examples: .. code-block:: python :caption: To retrieve the most recent autologged run: import mlflow from sklearn.model_selection import train_test_split from sklearn.datasets import load_diabetes from sklearn.ensemble import RandomForestRegressor mlflow.autolog() db = load_diabetes() X_train, X_test, y_train, y_test = train_test_split(db.data, db.target) # Create and train models. rf = RandomForestRegressor(n_estimators = 100, max_depth = 6, max_features = 3) rf.fit(X_train, y_train) # Use the model to make predictions on the test dataset. predictions = rf.predict(X_test) autolog_run = mlflow.last_active_run() .. code-block:: python :caption: To get the most recently active run that ended: import mlflow mlflow.start_run() mlflow.end_run() run = mlflow.last_active_run() .. code-block:: python :caption: To retrieve the currently active run: import mlflow mlflow.start_run() run = mlflow.last_active_run() mlflow.end_run() :return: The active run (this is equivalent to ``mlflow.active_run()``) if one exists. Otherwise, the last run started from the current Python process that reached a terminal status (i.e. FINISHED, FAILED, or KILLED). """ _active_run = active_run() if _active_run is not None: return _active_run if _last_active_run_id is None: return None return get_run(_last_active_run_id) def get_run(run_id: str) -> Run: """ Fetch the run from backend store. The resulting :py:class:`Run <mlflow.entities.Run>` contains a collection of run metadata -- :py:class:`RunInfo <mlflow.entities.RunInfo>`, as well as a collection of run parameters, tags, and metrics -- :py:class:`RunData <mlflow.entities.RunData>`. In the case where multiple metrics with the same key are logged for the run, the :py:class:`RunData <mlflow.entities.RunData>` contains the most recently logged value at the largest step for each metric. :param run_id: Unique identifier for the run. :return: A single :py:class:`mlflow.entities.Run` object, if the run exists. Otherwise, raises an exception. .. code-block:: python :caption: Example import mlflow with mlflow.start_run() as run: mlflow.log_param("p", 0) run_id = run.info.run_id print("run_id: {}; lifecycle_stage: {}".format(run_id, mlflow.get_run(run_id).info.lifecycle_stage)) .. code-block:: text :caption: Output run_id: 7472befefc754e388e8e922824a0cca5; lifecycle_stage: active """ return MlflowClient().get_run(run_id) def log_param(key: str, value: Any) -> None: """ Log a parameter under the current run. If no run is active, this method will create a new active run. :param key: Parameter name (string). This string may only contain alphanumerics, underscores (_), dashes (-), periods (.), spaces ( ), and slashes (/). All backend stores will support keys up to length 250, but some may support larger keys. :param value: Parameter value (string, but will be string-ified if not). All backend stores will support values up to length 5000, but some may support larger values. .. code-block:: python :caption: Example import mlflow with mlflow.start_run(): mlflow.log_param("learning_rate", 0.01) """ run_id = _get_or_start_run().info.run_id MlflowClient().log_param(run_id, key, value) def set_tag(key: str, value: Any) -> None: """ Set a tag under the current run. If no run is active, this method will create a new active run. :param key: Tag name (string). This string may only contain alphanumerics, underscores (_), dashes (-), periods (.), spaces ( ), and slashes (/). All backend stores will support keys up to length 250, but some may support larger keys. :param value: Tag value (string, but will be string-ified if not). All backend stores will support values up to length 5000, but some may support larger values. .. code-block:: python :caption: Example import mlflow with mlflow.start_run(): mlflow.set_tag("release.version", "2.2.0") """ run_id = _get_or_start_run().info.run_id MlflowClient().set_tag(run_id, key, value) def delete_tag(key: str) -> None: """ Delete a tag from a run. This is irreversible. If no run is active, this method will create a new active run. :param key: Name of the tag .. code-block:: python :caption: Example import mlflow tags = {"engineering": "ML Platform", "engineering_remote": "ML Platform"} with mlflow.start_run() as run: mlflow.set_tags(tags) with mlflow.start_run(run_id=run.info.run_id): mlflow.delete_tag("engineering_remote") """ run_id = _get_or_start_run().info.run_id MlflowClient().delete_tag(run_id, key) def log_metric(key: str, value: float, step: Optional[int] = None) -> None: """ Log a metric under the current run. If no run is active, this method will create a new active run. :param key: Metric name (string). This string may only contain alphanumerics, underscores (_), dashes (-), periods (.), spaces ( ), and slashes (/). All backend stores will support keys up to length 250, but some may support larger keys. :param value: Metric value (float). Note that some special values such as +/- Infinity may be replaced by other values depending on the store. For example, the SQLAlchemy store replaces +/- Infinity with max / min float values. All backend stores will support values up to length 5000, but some may support larger values. :param step: Metric step (int). Defaults to zero if unspecified. .. code-block:: python :caption: Example import mlflow with mlflow.start_run(): mlflow.log_metric("mse", 2500.00) """ run_id = _get_or_start_run().info.run_id MlflowClient().log_metric(run_id, key, value, int(time.time() * 1000), step or 0) def log_metrics(metrics: Dict[str, float], step: Optional[int] = None) -> None: """ Log multiple metrics for the current run. If no run is active, this method will create a new active run. :param metrics: Dictionary of metric_name: String -> value: Float. Note that some special values such as +/- Infinity may be replaced by other values depending on the store. For example, sql based store may replace +/- Infinity with max / min float values. :param step: A single integer step at which to log the specified Metrics. If unspecified, each metric is logged at step zero. :returns: None .. code-block:: python :caption: Example import mlflow metrics = {"mse": 2500.00, "rmse": 50.00} # Log a batch of metrics with mlflow.start_run(): mlflow.log_metrics(metrics) """ run_id = _get_or_start_run().info.run_id timestamp = int(time.time() * 1000) metrics_arr = [Metric(key, value, timestamp, step or 0) for key, value in metrics.items()] MlflowClient().log_batch(run_id=run_id, metrics=metrics_arr, params=[], tags=[]) def log_params(params: Dict[str, Any]) -> None: """ Log a batch of params for the current run. If no run is active, this method will create a new active run. :param params: Dictionary of param_name: String -> value: (String, but will be string-ified if not) :returns: None .. code-block:: python :caption: Example import mlflow params = {"learning_rate": 0.01, "n_estimators": 10} # Log a batch of parameters with mlflow.start_run(): mlflow.log_params(params) """ run_id = _get_or_start_run().info.run_id params_arr = [Param(key, str(value)) for key, value in params.items()] MlflowClient().log_batch(run_id=run_id, metrics=[], params=params_arr, tags=[]) def set_tags(tags: Dict[str, Any]) -> None: """ Log a batch of tags for the current run. If no run is active, this method will create a new active run. :param tags: Dictionary of tag_name: String -> value: (String, but will be string-ified if not) :returns: None .. code-block:: python :caption: Example import mlflow tags = {"engineering": "ML Platform", "release.candidate": "RC1", "release.version": "2.2.0"} # Set a batch of tags with mlflow.start_run(): mlflow.set_tags(tags) """ run_id = _get_or_start_run().info.run_id tags_arr = [RunTag(key, str(value)) for key, value in tags.items()] MlflowClient().log_batch(run_id=run_id, metrics=[], params=[], tags=tags_arr) def log_artifact(local_path: str, artifact_path: Optional[str] = None) -> None: """ Log a local file or directory as an artifact of the currently active run. If no run is active, this method will create a new active run. :param local_path: Path to the file to write. :param artifact_path: If provided, the directory in ``artifact_uri`` to write to. .. code-block:: python :caption: Example import mlflow # Create a features.txt artifact file features = "rooms, zipcode, median_price, school_rating, transport" with open("features.txt", 'w') as f: f.write(features) # With artifact_path=None write features.txt under # root artifact_uri/artifacts directory with mlflow.start_run(): mlflow.log_artifact("features.txt") """ run_id = _get_or_start_run().info.run_id MlflowClient().log_artifact(run_id, local_path, artifact_path) def log_artifacts(local_dir: str, artifact_path: Optional[str] = None) -> None: """ Log all the contents of a local directory as artifacts of the run. If no run is active, this method will create a new active run. :param local_dir: Path to the directory of files to write. :param artifact_path: If provided, the directory in ``artifact_uri`` to write to. .. code-block:: python :caption: Example import os import mlflow # Create some files to preserve as artifacts features = "rooms, zipcode, median_price, school_rating, transport" data = {"state": "TX", "Available": 25, "Type": "Detached"} # Create couple of artifact files under the directory "data" os.makedirs("data", exist_ok=True) with open("data/data.json", 'w', encoding='utf-8') as f: json.dump(data, f, indent=2) with open("data/features.txt", 'w') as f: f.write(features) # Write all files in "data" to root artifact_uri/states with mlflow.start_run(): mlflow.log_artifacts("data", artifact_path="states") """ run_id = _get_or_start_run().info.run_id MlflowClient().log_artifacts(run_id, local_dir, artifact_path) def log_text(text: str, artifact_file: str) -> None: """ Log text as an artifact. :param text: String containing text to log. :param artifact_file: The run-relative artifact file path in posixpath format to which the text is saved (e.g. "dir/file.txt"). .. code-block:: python :caption: Example import mlflow with mlflow.start_run(): # Log text to a file under the run's root artifact directory mlflow.log_text("text1", "file1.txt") # Log text in a subdirectory of the run's root artifact directory mlflow.log_text("text2", "dir/file2.txt") # Log HTML text mlflow.log_text("<h1>header</h1>", "index.html") """ run_id = _get_or_start_run().info.run_id MlflowClient().log_text(run_id, text, artifact_file) def log_dict(dictionary: Any, artifact_file: str) -> None: """ Log a JSON/YAML-serializable object (e.g. `dict`) as an artifact. The serialization format (JSON or YAML) is automatically inferred from the extension of `artifact_file`. If the file extension doesn't exist or match any of [".json", ".yml", ".yaml"], JSON format is used. :param dictionary: Dictionary to log. :param artifact_file: The run-relative artifact file path in posixpath format to which the dictionary is saved (e.g. "dir/data.json"). .. code-block:: python :caption: Example import mlflow dictionary = {"k": "v"} with mlflow.start_run(): # Log a dictionary as a JSON file under the run's root artifact directory mlflow.log_dict(dictionary, "data.json") # Log a dictionary as a YAML file in a subdirectory of the run's root artifact directory mlflow.log_dict(dictionary, "dir/data.yml") # If the file extension doesn't exist or match any of [".json", ".yaml", ".yml"], # JSON format is used. mlflow.log_dict(dictionary, "data") mlflow.log_dict(dictionary, "data.txt") """ run_id = _get_or_start_run().info.run_id MlflowClient().log_dict(run_id, dictionary, artifact_file) def log_figure( figure: Union["matplotlib.figure.Figure", "plotly.graph_objects.Figure"], artifact_file: str ) -> None: """ Log a figure as an artifact. The following figure objects are supported: - `matplotlib.figure.Figure`_ - `plotly.graph_objects.Figure`_ .. _matplotlib.figure.Figure: https://matplotlib.org/api/_as_gen/matplotlib.figure.Figure.html .. _plotly.graph_objects.Figure: https://plotly.com/python-api-reference/generated/plotly.graph_objects.Figure.html :param figure: Figure to log. :param artifact_file: The run-relative artifact file path in posixpath format to which the figure is saved (e.g. "dir/file.png"). .. code-block:: python :caption: Matplotlib Example import mlflow import matplotlib.pyplot as plt fig, ax = plt.subplots() ax.plot([0, 1], [2, 3]) with mlflow.start_run(): mlflow.log_figure(fig, "figure.png") .. code-block:: python :caption: Plotly Example import mlflow from plotly import graph_objects as go fig = go.Figure(go.Scatter(x=[0, 1], y=[2, 3])) with mlflow.start_run(): mlflow.log_figure(fig, "figure.html") """ run_id = _get_or_start_run().info.run_id MlflowClient().log_figure(run_id, figure, artifact_file) def log_image(image: Union["numpy.ndarray", "PIL.Image.Image"], artifact_file: str) -> None: """ Log an image as an artifact. The following image objects are supported: - `numpy.ndarray`_ - `PIL.Image.Image`_ .. _numpy.ndarray: https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html .. _PIL.Image.Image: https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.Image Numpy array support - data type (( ) represents a valid value range): - bool - integer (0 ~ 255) - unsigned integer (0 ~ 255) - float (0.0 ~ 1.0) .. warning:: - Out-of-range integer values will be **clipped** to [0, 255]. - Out-of-range float values will be **clipped** to [0, 1]. - shape (H: height, W: width): - H x W (Grayscale) - H x W x 1 (Grayscale) - H x W x 3 (an RGB channel order is assumed) - H x W x 4 (an RGBA channel order is assumed) :param image: Image to log. :param artifact_file: The run-relative artifact file path in posixpath format to which the image is saved (e.g. "dir/image.png"). .. code-block:: python :caption: Numpy Example import mlflow import numpy as np image = np.random.randint(0, 256, size=(100, 100, 3), dtype=np.uint8) with mlflow.start_run(): mlflow.log_image(image, "image.png") .. code-block:: python :caption: Pillow Example import mlflow from PIL import Image image = Image.new("RGB", (100, 100)) with mlflow.start_run(): mlflow.log_image(image, "image.png") """ run_id = _get_or_start_run().info.run_id MlflowClient().log_image(run_id, image, artifact_file) def _record_logged_model(mlflow_model): run_id = _get_or_start_run().info.run_id MlflowClient()._record_logged_model(run_id, mlflow_model) def get_experiment(experiment_id: str) -> Experiment: """ Retrieve an experiment by experiment_id from the backend store :param experiment_id: The string-ified experiment ID returned from ``create_experiment``. :return: :py:class:`mlflow.entities.Experiment` .. code-block:: python :caption: Example import mlflow experiment = mlflow.get_experiment("0") print("Name: {}".format(experiment.name)) print("Artifact Location: {}".format(experiment.artifact_location)) print("Tags: {}".format(experiment.tags)) print("Lifecycle_stage: {}".format(experiment.lifecycle_stage)) .. code-block:: text :caption: Output Name: Default Artifact Location: file:///.../mlruns/0 Tags: {} Lifecycle_stage: active """ return MlflowClient().get_experiment(experiment_id) def get_experiment_by_name(name: str) -> Optional[Experiment]: """ Retrieve an experiment by experiment name from the backend store :param name: The case senstive experiment name. :return: An instance of :py:class:`mlflow.entities.Experiment` if an experiment with the specified name exists, otherwise None. .. code-block:: python :caption: Example import mlflow # Case sensitive name experiment = mlflow.get_experiment_by_name("Default") print("Experiment_id: {}".format(experiment.experiment_id)) print("Artifact Location: {}".format(experiment.artifact_location)) print("Tags: {}".format(experiment.tags)) print("Lifecycle_stage: {}".format(experiment.lifecycle_stage)) .. code-block:: text :caption: Output Experiment_id: 0 Artifact Location: file:///.../mlruns/0 Tags: {} Lifecycle_stage: active """ return MlflowClient().get_experiment_by_name(name) def list_experiments( view_type: int = ViewType.ACTIVE_ONLY, max_results: Optional[int] = None, ) -> List[Experiment]: """ :param view_type: Qualify requested type of experiments. :param max_results: If passed, specifies the maximum number of experiments desired. If not passed, all experiments will be returned. :return: A list of :py:class:`Experiment <mlflow.entities.Experiment>` objects. """ def pagination_wrapper_func(number_to_get, next_page_token): return MlflowClient().list_experiments( view_type=view_type, max_results=number_to_get, page_token=next_page_token, ) return _paginate(pagination_wrapper_func, SEARCH_MAX_RESULTS_DEFAULT, max_results) def create_experiment( name: str, artifact_location: Optional[str] = None, tags: Optional[Dict[str, Any]] = None, ) -> str: """ Create an experiment. :param name: The experiment name, which must be unique and is case sensitive :param artifact_location: The location to store run artifacts. If not provided, the server picks an appropriate default. :param tags: An optional dictionary of string keys and values to set as tags on the experiment. :return: String ID of the created experiment. .. code-block:: python :caption: Example import mlflow # Create an experiment name, which must be unique and case sensitive experiment_id = mlflow.create_experiment("Social NLP Experiments") experiment = mlflow.get_experiment(experiment_id) print("Name: {}".format(experiment.name)) print("Experiment_id: {}".format(experiment.experiment_id)) print("Artifact Location: {}".format(experiment.artifact_location)) print("Tags: {}".format(experiment.tags)) print("Lifecycle_stage: {}".format(experiment.lifecycle_stage)) .. code-block:: text :caption: Output Name: Social NLP Experiments Experiment_id: 1 Artifact Location: file:///.../mlruns/1 Tags= {} Lifecycle_stage: active """ return MlflowClient().create_experiment(name, artifact_location, tags) def delete_experiment(experiment_id: str) -> None: """ Delete an experiment from the backend store. :param experiment_id: The The string-ified experiment ID returned from ``create_experiment``. .. code-block:: python :caption: Example import mlflow experiment_id = mlflow.create_experiment("New Experiment") mlflow.delete_experiment(experiment_id) # Examine the deleted experiment details. experiment = mlflow.get_experiment(experiment_id) print("Name: {}".format(experiment.name)) print("Artifact Location: {}".format(experiment.artifact_location)) print("Lifecycle_stage: {}".format(experiment.lifecycle_stage)) .. code-block:: text :caption: Output Name: New Experiment Artifact Location: file:///.../mlruns/2 Lifecycle_stage: deleted """ MlflowClient().delete_experiment(experiment_id) def delete_run(run_id: str) -> None: """ Deletes a run with the given ID. :param run_id: Unique identifier for the run to delete. .. code-block:: python :caption: Example import mlflow with mlflow.start_run() as run: mlflow.log_param("p", 0) run_id = run.info.run_id mlflow.delete_run(run_id) print("run_id: {}; lifecycle_stage: {}".format(run_id, mlflow.get_run(run_id).info.lifecycle_stage)) .. code-block:: text :caption: Output run_id: 45f4af3e6fd349e58579b27fcb0b8277; lifecycle_stage: deleted """ MlflowClient().delete_run(run_id) def get_artifact_uri(artifact_path: Optional[str] = None) -> str: """ Get the absolute URI of the specified artifact in the currently active run. If `path` is not specified, the artifact root URI of the currently active run will be returned; calls to ``log_artifact`` and ``log_artifacts`` write artifact(s) to subdirectories of the artifact root URI. If no run is active, this method will create a new active run. :param artifact_path: The run-relative artifact path for which to obtain an absolute URI. For example, "path/to/artifact". If unspecified, the artifact root URI for the currently active run will be returned. :return: An *absolute* URI referring to the specified artifact or the currently adtive run's artifact root. For example, if an artifact path is provided and the currently active run uses an S3-backed store, this may be a uri of the form ``s3://<bucket_name>/path/to/artifact/root/path/to/artifact``. If an artifact path is not provided and the currently active run uses an S3-backed store, this may be a URI of the form ``s3://<bucket_name>/path/to/artifact/root``. .. code-block:: python :caption: Example import mlflow features = "rooms, zipcode, median_price, school_rating, transport" with open("features.txt", 'w') as f: f.write(features) # Log the artifact in a directory "features" under the root artifact_uri/features with mlflow.start_run(): mlflow.log_artifact("features.txt", artifact_path="features") # Fetch the artifact uri root directory artifact_uri = mlflow.get_artifact_uri() print("Artifact uri: {}".format(artifact_uri)) # Fetch a specific artifact uri artifact_uri = mlflow.get_artifact_uri(artifact_path="features/features.txt") print("Artifact uri: {}".format(artifact_uri)) .. code-block:: text :caption: Output Artifact uri: file:///.../0/a46a80f1c9644bd8f4e5dd5553fffce/artifacts Artifact uri: file:///.../0/a46a80f1c9644bd8f4e5dd5553fffce/artifacts/features/features.txt """ return artifact_utils.get_artifact_uri( run_id=_get_or_start_run().info.run_id, artifact_path=artifact_path ) def search_runs( experiment_ids: Optional[List[str]] = None, filter_string: str = "", run_view_type: int = ViewType.ACTIVE_ONLY, max_results: int = SEARCH_MAX_RESULTS_PANDAS, order_by: Optional[List[str]] = None, output_format: str = "pandas", search_all_experiments: bool = False, experiment_names: Optional[List[str]] = None, ) -> Union[List[Run], "pandas.DataFrame"]: """ Get a pandas DataFrame of runs that fit the search criteria. :param experiment_ids: List of experiment IDs. Search can work with experiment IDs or experiment names, but not both in the same call. Values other than ``None`` or ``[]`` will result in error if ``experiment_names`` is also not ``None`` or ``[]``. ``None`` will default to the active experiment if ``experiment_names`` is ``None`` or ``[]``. :param filter_string: Filter query string, defaults to searching all runs. :param run_view_type: one of enum values ``ACTIVE_ONLY``, ``DELETED_ONLY``, or ``ALL`` runs defined in :py:class:`mlflow.entities.ViewType`. :param max_results: The maximum number of runs to put in the dataframe. Default is 100,000 to avoid causing out-of-memory issues on the user's machine. :param order_by: List of columns to order by (e.g., "metrics.rmse"). The ``order_by`` column can contain an optional ``DESC`` or ``ASC`` value. The default is ``ASC``. The default ordering is to sort by ``start_time DESC``, then ``run_id``. :param output_format: The output format to be returned. If ``pandas``, a ``pandas.DataFrame`` is returned and, if ``list``, a list of :py:class:`mlflow.entities.Run` is returned. :param search_all_experiments: Boolean specifying whether all experiments should be searched. Only honored if ``experiment_ids`` is ``[]`` or ``None``. :param experiment_names: List of experiment names. Search can work with experiment IDs or experiment names, but not both in the same call. Values other than ``None`` or ``[]`` will result in error if ``experiment_ids`` is also not ``None`` or ``[]``. ``None`` will default to the active experiment if ``experiment_ids`` is ``None`` or ``[]``. :return: If output_format is ``list``: a list of :py:class:`mlflow.entities.Run`. If output_format is ``pandas``: ``pandas.DataFrame`` of runs, where each metric, parameter, and tag is expanded into its own column named metrics.*, params.*, or tags.* respectively. For runs that don't have a particular metric, parameter, or tag, the value for the corresponding column is (NumPy) ``Nan``, ``None``, or ``None`` respectively. .. code-block:: python :caption: Example import mlflow # Create an experiment and log two runs under it experiment_name = "Social NLP Experiments" experiment_id = mlflow.create_experiment(experiment_name) with mlflow.start_run(experiment_id=experiment_id): mlflow.log_metric("m", 1.55) mlflow.set_tag("s.release", "1.1.0-RC") with mlflow.start_run(experiment_id=experiment_id): mlflow.log_metric("m", 2.50) mlflow.set_tag("s.release", "1.2.0-GA") # Search for all the runs in the experiment with the given experiment ID df = mlflow.search_runs([experiment_id], order_by=["metrics.m DESC"]) print(df[["metrics.m", "tags.s.release", "run_id"]]) print("--") # Search the experiment_id using a filter_string with tag # that has a case insensitive pattern filter_string = "tags.s.release ILIKE '%rc%'" df = mlflow.search_runs([experiment_id], filter_string=filter_string) print(df[["metrics.m", "tags.s.release", "run_id"]]) print("--") # Search for all the runs in the experiment with the given experiment name df = mlflow.search_runs(experiment_name=[experiment_name], order_by=["metrics.m DESC"]) print(df[["metrics.m", "tags.s.release", "run_id"]]) .. code-block:: text :caption: Output metrics.m tags.s.release run_id 0 2.50 1.2.0-GA 147eed886ab44633902cc8e19b2267e2 1 1.55 1.1.0-RC 5cc7feaf532f496f885ad7750809c4d4 -- metrics.m tags.s.release run_id 0 1.55 1.1.0-RC 5cc7feaf532f496f885ad7750809c4d4 -- metrics.m tags.s.release run_id 0 2.50 1.2.0-GA 147eed886ab44633902cc8e19b2267e2 1 1.55 1.1.0-RC 5cc7feaf532f496f885ad7750809c4d4 """ no_ids = experiment_ids is None or len(experiment_ids) == 0 no_names = experiment_names is None or len(experiment_names) == 0 no_ids_or_names = no_ids and no_names if not no_ids and not no_names: raise MlflowException( message="Only experiment_ids or experiment_names can be used, but not both", error_code=INVALID_PARAMETER_VALUE, ) if search_all_experiments and no_ids_or_names: experiment_ids = [ exp.experiment_id for exp in list_experiments(view_type=ViewType.ACTIVE_ONLY) ] elif no_ids_or_names: experiment_ids = _get_experiment_id() elif not no_names: experiments = [get_experiment_by_name(n) for n in experiment_names if n is not None] experiment_ids = [e.experiment_id for e in experiments if e is not None] # Using an internal function as the linter doesn't like assigning a lambda, and inlining the # full thing is a mess def pagination_wrapper_func(number_to_get, next_page_token): return MlflowClient().search_runs( experiment_ids, filter_string, run_view_type, number_to_get, order_by, next_page_token, ) runs = _paginate(pagination_wrapper_func, NUM_RUNS_PER_PAGE_PANDAS, max_results) if output_format == "list": return runs # List[mlflow.entities.run.Run] elif output_format == "pandas": import numpy as np import pandas as pd info = { "run_id": [], "experiment_id": [], "status": [], "artifact_uri": [], "start_time": [], "end_time": [], } params, metrics, tags = ({}, {}, {}) PARAM_NULL, METRIC_NULL, TAG_NULL = (None, np.nan, None) for i, run in enumerate(runs): info["run_id"].append(run.info.run_id) info["experiment_id"].append(run.info.experiment_id) info["status"].append(run.info.status) info["artifact_uri"].append(run.info.artifact_uri) info["start_time"].append(pd.to_datetime(run.info.start_time, unit="ms", utc=True)) info["end_time"].append(pd.to_datetime(run.info.end_time, unit="ms", utc=True)) # Params param_keys = set(params.keys()) for key in param_keys: if key in run.data.params: params[key].append(run.data.params[key]) else: params[key].append(PARAM_NULL) new_params = set(run.data.params.keys()) - param_keys for p in new_params: params[p] = [PARAM_NULL] * i # Fill in null values for all previous runs params[p].append(run.data.params[p]) # Metrics metric_keys = set(metrics.keys()) for key in metric_keys: if key in run.data.metrics: metrics[key].append(run.data.metrics[key]) else: metrics[key].append(METRIC_NULL) new_metrics = set(run.data.metrics.keys()) - metric_keys for m in new_metrics: metrics[m] = [METRIC_NULL] * i metrics[m].append(run.data.metrics[m]) # Tags tag_keys = set(tags.keys()) for key in tag_keys: if key in run.data.tags: tags[key].append(run.data.tags[key]) else: tags[key].append(TAG_NULL) new_tags = set(run.data.tags.keys()) - tag_keys for t in new_tags: tags[t] = [TAG_NULL] * i tags[t].append(run.data.tags[t]) data = {} data.update(info) for key in metrics: data["metrics." + key] = metrics[key] for key in params: data["params." + key] = params[key] for key in tags: data["tags." + key] = tags[key] return pd.DataFrame(data) else: raise ValueError( "Unsupported output format: %s. Supported string values are 'pandas' or 'list'" % output_format ) def list_run_infos( experiment_id: str, run_view_type: int = ViewType.ACTIVE_ONLY, max_results: int = SEARCH_MAX_RESULTS_DEFAULT, order_by: Optional[List[str]] = None, ) -> List[RunInfo]: """ Return run information for runs which belong to the experiment_id. :param experiment_id: The experiment id which to search :param run_view_type: ACTIVE_ONLY, DELETED_ONLY, or ALL runs :param max_results: Maximum number of results desired. :param order_by: List of order_by clauses. Currently supported values are are ``metric.key``, ``parameter.key``, ``tag.key``, ``attribute.key``. For example, ``order_by=["tag.release ASC", "metric.click_rate DESC"]``. :return: A list of :py:class:`RunInfo <mlflow.entities.RunInfo>` objects that satisfy the search expressions. .. code-block:: python :caption: Example import mlflow from mlflow.entities import ViewType # Create two runs with mlflow.start_run() as run1: mlflow.log_param("p", 0) with mlflow.start_run() as run2: mlflow.log_param("p", 1) # Delete the last run mlflow.delete_run(run2.info.run_id) def print_run_infos(run_infos): for r in run_infos: print("- run_id: {}, lifecycle_stage: {}".format(r.run_id, r.lifecycle_stage)) print("Active runs:") print_run_infos(mlflow.list_run_infos("0", run_view_type=ViewType.ACTIVE_ONLY)) print("Deleted runs:") print_run_infos(mlflow.list_run_infos("0", run_view_type=ViewType.DELETED_ONLY)) print("All runs:") print_run_infos(mlflow.list_run_infos("0", run_view_type=ViewType.ALL)) .. code-block:: text :caption: Output Active runs: - run_id: 4937823b730640d5bed9e3e5057a2b34, lifecycle_stage: active Deleted runs: - run_id: b13f1badbed842cf9975c023d23da300, lifecycle_stage: deleted All runs: - run_id: b13f1badbed842cf9975c023d23da300, lifecycle_stage: deleted - run_id: 4937823b730640d5bed9e3e5057a2b34, lifecycle_stage: active """ # Using an internal function as the linter doesn't like assigning a lambda, and inlining the # full thing is a mess def pagination_wrapper_func(number_to_get, next_page_token): return MlflowClient().list_run_infos( experiment_id, run_view_type, number_to_get, order_by, next_page_token ) return _paginate(pagination_wrapper_func, SEARCH_MAX_RESULTS_DEFAULT, max_results) def _paginate(paginated_fn, max_results_per_page, max_results=None): """ Intended to be a general use pagination utility. :param paginated_fn: :type paginated_fn: This function is expected to take in the number of results to retrieve per page and a pagination token, and return a PagedList object :param max_results_per_page: :type max_results_per_page: The maximum number of results to retrieve per page :param max_results: :type max_results: The maximum number of results to retrieve overall. If unspecified, all results will be retrieved. :return: Returns a list of entities, as determined by the paginated_fn parameter, with no more entities than specified by max_results :rtype: list[object] """ all_results = [] next_page_token = None returns_all = max_results is None while returns_all or len(all_results) < max_results: num_to_get = max_results_per_page if returns_all else max_results - len(all_results) if num_to_get < max_results_per_page: page_results = paginated_fn(num_to_get, next_page_token) else: page_results = paginated_fn(max_results_per_page, next_page_token) all_results.extend(page_results) if hasattr(page_results, "token") and page_results.token: next_page_token = page_results.token else: break return all_results def _get_or_start_run(): if len(_active_run_stack) > 0: return _active_run_stack[-1] return start_run() def _get_experiment_id_from_env(): experiment_name = env.get_env(_EXPERIMENT_NAME_ENV_VAR) if experiment_name is not None: exp = MlflowClient().get_experiment_by_name(experiment_name) return exp.experiment_id if exp else None return env.get_env(_EXPERIMENT_ID_ENV_VAR) def _get_experiment_id(): return ( _active_experiment_id or _get_experiment_id_from_env() or default_experiment_registry.get_experiment_id() ) @autologging_integration("mlflow") def autolog( log_input_examples: bool = False, log_model_signatures: bool = True, log_models: bool = True, disable: bool = False, exclusive: bool = False, disable_for_unsupported_versions: bool = False, silent: bool = False, # pylint: disable=unused-argument ) -> None: """ Enables (or disables) and configures autologging for all supported integrations. The parameters are passed to any autologging integrations that support them. See the :ref:`tracking docs <automatic-logging>` for a list of supported autologging integrations. Note that framework-specific configurations set at any point will take precedence over any configurations set by this function. For example: .. code-block:: python mlflow.autolog(log_models=False, exclusive=True) import sklearn would enable autologging for `sklearn` with `log_models=False` and `exclusive=True`, but .. code-block:: python mlflow.autolog(log_models=False, exclusive=True) import sklearn mlflow.sklearn.autolog(log_models=True) would enable autologging for `sklearn` with `log_models=True` and `exclusive=False`, the latter resulting from the default value for `exclusive` in `mlflow.sklearn.autolog`; other framework autolog functions (e.g. `mlflow.tensorflow.autolog`) would use the configurations set by `mlflow.autolog` (in this instance, `log_models=False`, `exclusive=True`), until they are explicitly called by the user. :param log_input_examples: If ``True``, input examples from training datasets are collected and logged along with model artifacts during training. If ``False``, input examples are not logged. Note: Input examples are MLflow model attributes and are only collected if ``log_models`` is also ``True``. :param log_model_signatures: If ``True``, :py:class:`ModelSignatures <mlflow.models.ModelSignature>` describing model inputs and outputs are collected and logged along with model artifacts during training. If ``False``, signatures are not logged. Note: Model signatures are MLflow model attributes and are only collected if ``log_models`` is also ``True``. :param log_models: If ``True``, trained models are logged as MLflow model artifacts. If ``False``, trained models are not logged. Input examples and model signatures, which are attributes of MLflow models, are also omitted when ``log_models`` is ``False``. :param disable: If ``True``, disables all supported autologging integrations. If ``False``, enables all supported autologging integrations. :param exclusive: If ``True``, autologged content is not logged to user-created fluent runs. If ``False``, autologged content is logged to the active fluent run, which may be user-created. :param disable_for_unsupported_versions: If ``True``, disable autologging for versions of all integration libraries that have not been tested against this version of the MLflow client or are incompatible. :param silent: If ``True``, suppress all event logs and warnings from MLflow during autologging setup and training execution. If ``False``, show all events and warnings during autologging setup and training execution. .. code-block:: python :caption: Example import numpy as np import mlflow.sklearn from mlflow.tracking import MlflowClient from sklearn.linear_model import LinearRegression def print_auto_logged_info(r): tags = {k: v for k, v in r.data.tags.items() if not k.startswith("mlflow.")} artifacts = [f.path for f in MlflowClient().list_artifacts(r.info.run_id, "model")] print("run_id: {}".format(r.info.run_id)) print("artifacts: {}".format(artifacts)) print("params: {}".format(r.data.params)) print("metrics: {}".format(r.data.metrics)) print("tags: {}".format(tags)) # prepare training data X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]]) y = np.dot(X, np.array([1, 2])) + 3 # Auto log all the parameters, metrics, and artifacts mlflow.autolog() model = LinearRegression() with mlflow.start_run() as run: model.fit(X, y) # fetch the auto logged parameters and metrics for ended run print_auto_logged_info(mlflow.get_run(run_id=run.info.run_id)) .. code-block:: text :caption: Output run_id: fd10a17d028c47399a55ab8741721ef7 artifacts: ['model/MLmodel', 'model/conda.yaml', 'model/model.pkl'] params: {'copy_X': 'True', 'normalize': 'False', 'fit_intercept': 'True', 'n_jobs': 'None'} metrics: {'training_score': 1.0, 'training_rmse': 4.440892098500626e-16, 'training_r2_score': 1.0, 'training_mae': 2.220446049250313e-16, 'training_mse': 1.9721522630525295e-31} tags: {'estimator_class': 'sklearn.linear_model._base.LinearRegression', 'estimator_name': 'LinearRegression'} """ from mlflow import ( tensorflow, keras, gluon, xgboost, lightgbm, pyspark, statsmodels, spark, sklearn, fastai, pytorch, ) locals_copy = locals().items() # Mapping of library module name to specific autolog function # eg: mxnet.gluon is the actual library, mlflow.gluon.autolog is our autolog function for it LIBRARY_TO_AUTOLOG_FN = { "tensorflow": tensorflow.autolog, "keras": keras.autolog, "mxnet.gluon": gluon.autolog, "xgboost": xgboost.autolog, "lightgbm": lightgbm.autolog, "statsmodels": statsmodels.autolog, "sklearn": sklearn.autolog, "fastai": fastai.autolog, "pyspark": spark.autolog, "pyspark.ml": pyspark.ml.autolog, # TODO: Broaden this beyond pytorch_lightning as we add autologging support for more # Pytorch frameworks under mlflow.pytorch.autolog "pytorch_lightning": pytorch.autolog, } CONF_KEY_IS_GLOBALLY_CONFIGURED = "globally_configured" def get_autologging_params(autolog_fn): try: needed_params = list(inspect.signature(autolog_fn).parameters.keys()) return {k: v for k, v in locals_copy if k in needed_params} except Exception: return {} def setup_autologging(module): try: autolog_fn = LIBRARY_TO_AUTOLOG_FN[module.__name__] # Only call integration's autolog function with `mlflow.autolog` configs # if the integration's autolog function has not already been called by the user. # Logic is as follows: # - if a previous_config exists, that means either `mlflow.autolog` or # `mlflow.integration.autolog` was called. # - if the config contains `CONF_KEY_IS_GLOBALLY_CONFIGURED`, the configuration # was set by `mlflow.autolog`, and so we can safely call `autolog_fn` with # `autologging_params`. # - if the config doesn't contain this key, the configuration was set by an # `mlflow.integration.autolog` call, so we should not call `autolog_fn` with # new configs. prev_config = AUTOLOGGING_INTEGRATIONS.get(autolog_fn.integration_name) if prev_config and not prev_config.get(CONF_KEY_IS_GLOBALLY_CONFIGURED, False): return autologging_params = get_autologging_params(autolog_fn) autolog_fn(**autologging_params) AUTOLOGGING_INTEGRATIONS[autolog_fn.integration_name][ CONF_KEY_IS_GLOBALLY_CONFIGURED ] = True if not autologging_is_disabled( autolog_fn.integration_name ) and not autologging_params.get("silent", False): _logger.info("Autologging successfully enabled for %s.", module.__name__) except Exception as e: if is_testing(): # Raise unexpected exceptions in test mode in order to detect # errors within dependent autologging integrations raise elif not autologging_params.get("silent", False): _logger.warning( "Exception raised while enabling autologging for %s: %s", module.__name__, str(e), ) # for each autolog library (except pyspark), register a post-import hook. # this way, we do not send any errors to the user until we know they are using the library. # the post-import hook also retroactively activates for previously-imported libraries. for module in list( set(LIBRARY_TO_AUTOLOG_FN.keys()) - set(["tensorflow", "keras", "pyspark", "pyspark.ml"]) ): register_post_import_hook(setup_autologging, module, overwrite=True) FULLY_IMPORTED_KERAS = False TF_AUTOLOG_SETUP_CALLED = False def conditionally_set_up_keras_autologging(keras_module): nonlocal FULLY_IMPORTED_KERAS, TF_AUTOLOG_SETUP_CALLED FULLY_IMPORTED_KERAS = True if Version(keras_module.__version__) >= Version("2.6.0"): # NB: Keras unconditionally depends on TensorFlow beginning with Version 2.6.0, and # many classes defined in the `keras` module are aliases of classes in the `tf.keras` # module. Accordingly, TensorFlow autologging serves as a replacement for Keras # autologging in Keras >= 2.6.0 try: import tensorflow setup_autologging(tensorflow) TF_AUTOLOG_SETUP_CALLED = True except Exception as e: _logger.debug( "Failed to set up TensorFlow autologging for tf.keras models upon" " Keras library import: %s", str(e), ) raise else: setup_autologging(keras_module) register_post_import_hook(conditionally_set_up_keras_autologging, "keras", overwrite=True) def set_up_tensorflow_autologging(tensorflow_module): import sys nonlocal FULLY_IMPORTED_KERAS, TF_AUTOLOG_SETUP_CALLED if "keras" in sys.modules and not FULLY_IMPORTED_KERAS: # In Keras >= 2.6.0, importing Keras imports the TensorFlow library, which can # trigger this autologging import hook for TensorFlow before the entire Keras import # procedure is completed. Attempting to set up autologging before the Keras import # procedure has completed will result in a failure due to the unavailability of # certain modules. In this case, we terminate the TensorFlow autologging import hook # and rely on the Keras autologging import hook to successfully set up TensorFlow # autologging for tf.keras models once the Keras import procedure has completed return # By design, in Keras >= 2.6.0, Keras needs to enable tensorflow autologging so that # tf.keras models always use tensorflow autologging, rather than vanilla keras autologging. # As a result, Keras autologging must call `mlflow.tensorflow.autolog()` in Keras >= 2.6.0. # Accordingly, we insert this check to ensure that importing tensorflow, which may import # keras, does not enable tensorflow autologging twice. if not TF_AUTOLOG_SETUP_CALLED: setup_autologging(tensorflow_module) register_post_import_hook(set_up_tensorflow_autologging, "tensorflow", overwrite=True) # for pyspark, we activate autologging immediately, without waiting for a module import. # this is because on Databricks a SparkSession already exists and the user can directly # interact with it, and this activity should be logged. try: import pyspark as pyspark_module import pyspark.ml as pyspark_ml_module setup_autologging(pyspark_module) setup_autologging(pyspark_ml_module) except ImportError as ie: # if pyspark isn't installed, a user could potentially install it in the middle # of their session so we want to enable autologging once they do if "pyspark" in str(ie): register_post_import_hook(setup_autologging, "pyspark", overwrite=True) register_post_import_hook(setup_autologging, "pyspark.ml", overwrite=True) except Exception as e: if is_testing(): # Raise unexpected exceptions in test mode in order to detect # errors within dependent autologging integrations raise else: _logger.warning("Exception raised while enabling autologging for spark: %s", str(e))
39.333525
100
0.638119
6c4dbedf8128fda560f7c312c84bab9e8f5ecfb9
2,687
py
Python
movement_primitives/data/_minimum_jerk.py
maotto/movement_primitives
b79c78a5a0667cc24a26b7b6cc64a5762d8f4dd4
[ "BSD-3-Clause" ]
17
2021-11-17T15:36:16.000Z
2022-03-26T08:49:25.000Z
movement_primitives/data/_minimum_jerk.py
DavidYaonanZhu/movement_primitives
ce355837f06cb5fada24be7259cb0305e8ea5d91
[ "BSD-3-Clause" ]
9
2021-12-01T10:33:04.000Z
2022-03-23T12:41:39.000Z
movement_primitives/data/_minimum_jerk.py
DavidYaonanZhu/movement_primitives
ce355837f06cb5fada24be7259cb0305e8ea5d91
[ "BSD-3-Clause" ]
8
2021-11-25T03:53:40.000Z
2022-03-31T03:19:25.000Z
import numpy as np def generate_minimum_jerk(start, goal, execution_time=1.0, dt=0.01): """Create a minimum jerk trajectory. A minimum jerk trajectory from :math:`x_0` to :math:`g` minimizes the third time derivative of the positions: .. math:: \\arg \min_{x_0, \ldots, x_T} \int_{t=0}^T \dddot{x}(t)^2 dt The trajectory will have .. code-block:: python n_steps = 1 + execution_time / dt steps because we start at 0 seconds and end at execution_time seconds. Parameters ---------- start : array-like, shape (n_dims,) Initial state goal : array-like, shape (n_dims,) Goal state execution_time : float, optional (default: 1) Execution time in seconds dt : float, optional (default: 0.01) Time between successive steps in seconds Returns ------- X : array, shape (n_steps, n_dims) The positions of the trajectory Xd : array, shape (n_steps, n_dims) The velocities of the trajectory Xdd : array, shape (n_steps, n_dims) The accelerations of the trajectory Raises ------ ValueError If the shapes of the initial and goal state do not match. """ x0 = np.asarray(start) g = np.asarray(goal) if x0.shape != g.shape: raise ValueError("Shape of initial state %s and goal %s must be equal" % (x0.shape, g.shape)) n_dims = x0.shape[0] n_steps = 1 + int(execution_time / dt) X = np.zeros((n_steps, n_dims)) Xd = np.zeros((n_steps, n_dims)) Xdd = np.zeros((n_steps, n_dims)) x = x0.copy() xd = np.zeros(n_dims) xdd = np.zeros(n_dims) X[0] = x for t in range(1, n_steps): tau = execution_time - t * dt if tau >= dt: dist = g - x a1 = 0 a0 = xdd * tau ** 2 v1 = 0 v0 = xd * tau t1 = dt t2 = dt ** 2 t3 = dt ** 3 t4 = dt ** 4 t5 = dt ** 5 c1 = (6. * dist + (a1 - a0) / 2. - 3. * (v0 + v1)) / tau ** 5 c2 = (-15. * dist + (3. * a0 - 2. * a1) / 2. + 8. * v0 + 7. * v1) / tau ** 4 c3 = (10. * dist + (a1 - 3. * a0) / 2. - 6. * v0 - 4. * v1) / tau ** 3 c4 = xdd / 2. c5 = xd c6 = x x = c1 * t5 + c2 * t4 + c3 * t3 + c4 * t2 + c5 * t1 + c6 xd = (5. * c1 * t4 + 4 * c2 * t3 + 3 * c3 * t2 + 2 * c4 * t1 + c5) xdd = (20. * c1 * t3 + 12. * c2 * t2 + 6. * c3 * t1 + 2. * c4) X[t] = x Xd[t] = xd Xdd[t] = xdd return X, Xd, Xdd
25.590476
78
0.484927
b239e9d99986355452a79bf2ac4bb9e7a9e33c14
5,467
py
Python
beit/semantic_segmentation/tools/test.py
Sanster/unilm
8dc116038a49f51abb9506071283a817af43fd60
[ "MIT" ]
5,129
2019-09-30T11:21:03.000Z
2022-03-31T22:35:12.000Z
beit/semantic_segmentation/tools/test.py
Sanster/unilm
8dc116038a49f51abb9506071283a817af43fd60
[ "MIT" ]
604
2019-10-05T00:39:46.000Z
2022-03-31T11:12:07.000Z
beit/semantic_segmentation/tools/test.py
Sanster/unilm
8dc116038a49f51abb9506071283a817af43fd60
[ "MIT" ]
1,034
2019-09-30T15:01:32.000Z
2022-03-31T06:14:50.000Z
import argparse import os import mmcv import torch from mmcv.parallel import MMDataParallel, MMDistributedDataParallel from mmcv.runner import get_dist_info, init_dist, load_checkpoint from mmcv.utils import DictAction from mmseg.apis import multi_gpu_test, single_gpu_test from mmseg.datasets import build_dataloader, build_dataset from mmseg.models import build_segmentor from backbone import beit def parse_args(): parser = argparse.ArgumentParser( description='mmseg test (and eval) a model') parser.add_argument('config', help='test config file path') parser.add_argument('checkpoint', help='checkpoint file') parser.add_argument( '--aug-test', action='store_true', help='Use Flip and Multi scale aug') parser.add_argument('--out', help='output result file in pickle format') parser.add_argument( '--format-only', action='store_true', help='Format the output results without perform evaluation. It is' 'useful when you want to format the result to a specific format and ' 'submit it to the test server') parser.add_argument( '--eval', type=str, nargs='+', help='evaluation metrics, which depends on the dataset, e.g., "mIoU"' ' for generic datasets, and "cityscapes" for Cityscapes') parser.add_argument('--show', action='store_true', help='show results') parser.add_argument( '--show-dir', help='directory where painted images will be saved') parser.add_argument( '--gpu-collect', action='store_true', help='whether to use gpu to collect results.') parser.add_argument( '--tmpdir', help='tmp directory used for collecting results from multiple ' 'workers, available when gpu_collect is not specified') parser.add_argument( '--options', nargs='+', action=DictAction, help='custom options') parser.add_argument( '--eval-options', nargs='+', action=DictAction, help='custom options for evaluation') parser.add_argument( '--launcher', choices=['none', 'pytorch', 'slurm', 'mpi'], default='none', help='job launcher') parser.add_argument('--local_rank', type=int, default=0) args = parser.parse_args() if 'LOCAL_RANK' not in os.environ: os.environ['LOCAL_RANK'] = str(args.local_rank) return args def main(): args = parse_args() assert args.out or args.eval or args.format_only or args.show \ or args.show_dir, \ ('Please specify at least one operation (save/eval/format/show the ' 'results / save the results) with the argument "--out", "--eval"' ', "--format-only", "--show" or "--show-dir"') if args.eval and args.format_only: raise ValueError('--eval and --format_only cannot be both specified') if args.out is not None and not args.out.endswith(('.pkl', '.pickle')): raise ValueError('The output file must be a pkl file.') cfg = mmcv.Config.fromfile(args.config) if args.options is not None: cfg.merge_from_dict(args.options) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True if args.aug_test: # hard code index cfg.data.test.pipeline[1].img_ratios = [ 0.5, 0.75, 1.0, 1.25, 1.5, 1.75 ] cfg.data.test.pipeline[1].flip = True cfg.model.pretrained = None cfg.data.test.test_mode = True # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False else: distributed = True init_dist(args.launcher, **cfg.dist_params) # build the dataloader # TODO: support multiple images per gpu (only minor changes are needed) dataset = build_dataset(cfg.data.test) data_loader = build_dataloader( dataset, samples_per_gpu=1, workers_per_gpu=cfg.data.workers_per_gpu, dist=distributed, shuffle=False) # build the model and load checkpoint cfg.model.train_cfg = None model = build_segmentor(cfg.model, test_cfg=cfg.get('test_cfg')) checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu') model.CLASSES = checkpoint['meta']['CLASSES'] model.PALETTE = checkpoint['meta']['PALETTE'] efficient_test = False if args.eval_options is not None: efficient_test = args.eval_options.get('efficient_test', False) if not distributed: model = MMDataParallel(model, device_ids=[0]) outputs = single_gpu_test(model, data_loader, args.show, args.show_dir, efficient_test) else: model = MMDistributedDataParallel( model.cuda(), device_ids=[torch.cuda.current_device()], broadcast_buffers=False) outputs = multi_gpu_test(model, data_loader, args.tmpdir, args.gpu_collect, efficient_test) rank, _ = get_dist_info() if rank == 0: if args.out: print(f'\nwriting results to {args.out}') mmcv.dump(outputs, args.out) kwargs = {} if args.eval_options is None else args.eval_options if args.format_only: dataset.format_results(outputs, **kwargs) if args.eval: dataset.evaluate(outputs, args.eval, **kwargs) if __name__ == '__main__': main()
36.205298
79
0.646607
cb251d46489255b0a3f31d69a14afe0f5e39044b
291,287
py
Python
pandas/core/frame.py
dhimmel/pandas
776fed3ab63d74ddef6e5af1a702b10c2a30bbb6
[ "BSD-3-Clause" ]
null
null
null
pandas/core/frame.py
dhimmel/pandas
776fed3ab63d74ddef6e5af1a702b10c2a30bbb6
[ "BSD-3-Clause" ]
null
null
null
pandas/core/frame.py
dhimmel/pandas
776fed3ab63d74ddef6e5af1a702b10c2a30bbb6
[ "BSD-3-Clause" ]
null
null
null
""" DataFrame --------- An efficient 2D container for potentially mixed-type time series or other labeled data series. Similar to its R counterpart, data.frame, except providing automatic data alignment and a host of useful data manipulation methods having to do with the labeling information """ from __future__ import division # pylint: disable=E1101,E1103 # pylint: disable=W0212,W0231,W0703,W0622 import functools import collections import itertools import sys import warnings from textwrap import dedent import numpy as np import numpy.ma as ma from pandas.core.accessor import CachedAccessor from pandas.core.dtypes.cast import ( maybe_upcast, cast_scalar_to_array, construct_1d_arraylike_from_scalar, infer_dtype_from_scalar, maybe_cast_to_datetime, maybe_infer_to_datetimelike, maybe_convert_platform, maybe_downcast_to_dtype, invalidate_string_dtypes, coerce_to_dtypes, maybe_upcast_putmask, find_common_type) from pandas.core.dtypes.common import ( is_categorical_dtype, is_object_dtype, is_extension_type, is_extension_array_dtype, is_datetimetz, is_datetime64_any_dtype, is_bool_dtype, is_integer_dtype, is_float_dtype, is_integer, is_scalar, is_dtype_equal, needs_i8_conversion, _get_dtype_from_object, ensure_float64, ensure_int64, ensure_platform_int, is_list_like, is_nested_list_like, is_iterator, is_sequence, is_named_tuple) from pandas.core.dtypes.concat import _get_sliced_frame_result_type from pandas.core.dtypes.missing import isna, notna from pandas.core.generic import NDFrame, _shared_docs from pandas.core.index import (Index, MultiIndex, ensure_index, ensure_index_from_sequences) from pandas.core.indexing import (maybe_droplevels, convert_to_index_sliceable, check_bool_indexer) from pandas.core.internals import (BlockManager, create_block_manager_from_arrays, create_block_manager_from_blocks) from pandas.core.series import Series from pandas.core.arrays import Categorical, ExtensionArray import pandas.core.algorithms as algorithms from pandas.compat import (range, map, zip, lrange, lmap, lzip, StringIO, u, OrderedDict, raise_with_traceback, string_and_binary_types) from pandas import compat from pandas.compat import PY36 from pandas.compat.numpy import function as nv from pandas.util._decorators import (Appender, Substitution, rewrite_axis_style_signature, deprecate_kwarg) from pandas.util._validators import (validate_bool_kwarg, validate_axis_style_args) from pandas.core.indexes.period import PeriodIndex from pandas.core.indexes.datetimes import DatetimeIndex from pandas.core.indexes.timedeltas import TimedeltaIndex import pandas.core.indexes.base as ibase import pandas.core.common as com import pandas.core.nanops as nanops import pandas.core.ops as ops import pandas.io.formats.console as console import pandas.io.formats.format as fmt from pandas.io.formats.printing import pprint_thing import pandas.plotting._core as gfx from pandas._libs import lib, algos as libalgos from pandas.core.config import get_option # --------------------------------------------------------------------- # Docstring templates _shared_doc_kwargs = dict( axes='index, columns', klass='DataFrame', axes_single_arg="{0 or 'index', 1 or 'columns'}", axis=""" axis : {0 or 'index', 1 or 'columns'}, default 0 - 0 or 'index': apply function to each column. - 1 or 'columns': apply function to each row.""", optional_by=""" by : str or list of str Name or list of names to sort by. - if `axis` is 0 or `'index'` then `by` may contain index levels and/or column labels - if `axis` is 1 or `'columns'` then `by` may contain column levels and/or index labels .. versionchanged:: 0.23.0 Allow specifying index or column level names.""", versionadded_to_excel='', optional_labels="""labels : array-like, optional New labels / index to conform the axis specified by 'axis' to.""", optional_axis="""axis : int or str, optional Axis to target. Can be either the axis name ('index', 'columns') or number (0, 1).""", ) _numeric_only_doc = """numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data """ _merge_doc = """ Merge DataFrame or named Series objects by performing a database-style join operation by columns or indexes. If joining columns on columns, the DataFrame indexes *will be ignored*. Otherwise if joining indexes on indexes or indexes on a column or columns, the index will be passed on. Parameters ----------%s right : DataFrame or named Series Object to merge with. how : {'left', 'right', 'outer', 'inner'}, default 'inner' Type of merge to be performed. * left: use only keys from left frame, similar to a SQL left outer join; preserve key order * right: use only keys from right frame, similar to a SQL right outer join; preserve key order * outer: use union of keys from both frames, similar to a SQL full outer join; sort keys lexicographically * inner: use intersection of keys from both frames, similar to a SQL inner join; preserve the order of the left keys on : label or list Column or index level names to join on. These must be found in both DataFrames. If `on` is None and not merging on indexes then this defaults to the intersection of the columns in both DataFrames. left_on : label or list, or array-like Column or index level names to join on in the left DataFrame. Can also be an array or list of arrays of the length of the left DataFrame. These arrays are treated as if they are columns. right_on : label or list, or array-like Column or index level names to join on in the right DataFrame. Can also be an array or list of arrays of the length of the right DataFrame. These arrays are treated as if they are columns. left_index : boolean, default False Use the index from the left DataFrame as the join key(s). If it is a MultiIndex, the number of keys in the other DataFrame (either the index or a number of columns) must match the number of levels. right_index : boolean, default False Use the index from the right DataFrame as the join key. Same caveats as left_index. sort : boolean, default False Sort the join keys lexicographically in the result DataFrame. If False, the order of the join keys depends on the join type (how keyword). suffixes : 2-length sequence (tuple, list, ...) Suffix to apply to overlapping column names in the left and right side, respectively. copy : boolean, default True If False, avoid copy if possible. indicator : boolean or string, default False If True, adds a column to output DataFrame called "_merge" with information on the source of each row. If string, column with information on source of each row will be added to output DataFrame, and column will be named value of string. Information column is Categorical-type and takes on a value of "left_only" for observations whose merge key only appears in 'left' DataFrame, "right_only" for observations whose merge key only appears in 'right' DataFrame, and "both" if the observation's merge key is found in both. validate : string, default None If specified, checks if merge is of specified type. * "one_to_one" or "1:1": check if merge keys are unique in both left and right datasets. * "one_to_many" or "1:m": check if merge keys are unique in left dataset. * "many_to_one" or "m:1": check if merge keys are unique in right dataset. * "many_to_many" or "m:m": allowed, but does not result in checks. .. versionadded:: 0.21.0 Returns ------- DataFrame Notes ----- Support for specifying index levels as the `on`, `left_on`, and `right_on` parameters was added in version 0.23.0 Support for merging named Series objects was added in version 0.24.0 See Also -------- merge_ordered : merge with optional filling/interpolation. merge_asof : merge on nearest keys. DataFrame.join : similar method using indices. Examples -------- >>> A = pd.DataFrame({'lkey': ['foo', 'bar', 'baz', 'foo'], ... 'value': [1, 2, 3, 5]}) >>> B = pd.DataFrame({'rkey': ['foo', 'bar', 'baz', 'foo'], ... 'value': [5, 6, 7, 8]}) >>> A lkey value 0 foo 1 1 bar 2 2 baz 3 3 foo 5 >>> B rkey value 0 foo 5 1 bar 6 2 baz 7 3 foo 8 >>> A.merge(B, left_on='lkey', right_on='rkey', how='outer') lkey value_x rkey value_y 0 foo 1 foo 5 1 foo 1 foo 8 2 foo 5 foo 5 3 foo 5 foo 8 4 bar 2 bar 6 5 baz 3 baz 7 """ # ----------------------------------------------------------------------- # DataFrame class class DataFrame(NDFrame): """ Two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes (rows and columns). Arithmetic operations align on both row and column labels. Can be thought of as a dict-like container for Series objects. The primary pandas data structure. Parameters ---------- data : ndarray (structured or homogeneous), Iterable, dict, or DataFrame Dict can contain Series, arrays, constants, or list-like objects .. versionchanged :: 0.23.0 If data is a dict, argument order is maintained for Python 3.6 and later. index : Index or array-like Index to use for resulting frame. Will default to RangeIndex if no indexing information part of input data and no index provided columns : Index or array-like Column labels to use for resulting frame. Will default to RangeIndex (0, 1, 2, ..., n) if no column labels are provided dtype : dtype, default None Data type to force. Only a single dtype is allowed. If None, infer copy : boolean, default False Copy data from inputs. Only affects DataFrame / 2d ndarray input Examples -------- Constructing DataFrame from a dictionary. >>> d = {'col1': [1, 2], 'col2': [3, 4]} >>> df = pd.DataFrame(data=d) >>> df col1 col2 0 1 3 1 2 4 Notice that the inferred dtype is int64. >>> df.dtypes col1 int64 col2 int64 dtype: object To enforce a single dtype: >>> df = pd.DataFrame(data=d, dtype=np.int8) >>> df.dtypes col1 int8 col2 int8 dtype: object Constructing DataFrame from numpy ndarray: >>> df2 = pd.DataFrame(np.random.randint(low=0, high=10, size=(5, 5)), ... columns=['a', 'b', 'c', 'd', 'e']) >>> df2 a b c d e 0 2 8 8 3 4 1 4 2 9 0 9 2 1 0 7 8 0 3 5 1 7 1 3 4 6 0 2 4 2 See also -------- DataFrame.from_records : constructor from tuples, also record arrays DataFrame.from_dict : from dicts of Series, arrays, or dicts DataFrame.from_items : from sequence of (key, value) pairs pandas.read_csv, pandas.read_table, pandas.read_clipboard """ @property def _constructor(self): return DataFrame _constructor_sliced = Series _deprecations = NDFrame._deprecations | frozenset( ['sortlevel', 'get_value', 'set_value', 'from_csv', 'from_items']) _accessors = set() @property def _constructor_expanddim(self): from pandas.core.panel import Panel return Panel def __init__(self, data=None, index=None, columns=None, dtype=None, copy=False): if data is None: data = {} if dtype is not None: dtype = self._validate_dtype(dtype) if isinstance(data, DataFrame): data = data._data if isinstance(data, BlockManager): mgr = self._init_mgr(data, axes=dict(index=index, columns=columns), dtype=dtype, copy=copy) elif isinstance(data, dict): mgr = self._init_dict(data, index, columns, dtype=dtype) elif isinstance(data, ma.MaskedArray): import numpy.ma.mrecords as mrecords # masked recarray if isinstance(data, mrecords.MaskedRecords): mgr = _masked_rec_array_to_mgr(data, index, columns, dtype, copy) # a masked array else: mask = ma.getmaskarray(data) if mask.any(): data, fill_value = maybe_upcast(data, copy=True) data[mask] = fill_value else: data = data.copy() mgr = self._init_ndarray(data, index, columns, dtype=dtype, copy=copy) elif isinstance(data, (np.ndarray, Series, Index)): if data.dtype.names: data_columns = list(data.dtype.names) data = {k: data[k] for k in data_columns} if columns is None: columns = data_columns mgr = self._init_dict(data, index, columns, dtype=dtype) elif getattr(data, 'name', None) is not None: mgr = self._init_dict({data.name: data}, index, columns, dtype=dtype) else: mgr = self._init_ndarray(data, index, columns, dtype=dtype, copy=copy) # For data is list-like, or Iterable (will consume into list) elif (isinstance(data, collections.Iterable) and not isinstance(data, string_and_binary_types)): if not isinstance(data, collections.Sequence): data = list(data) if len(data) > 0: if is_list_like(data[0]) and getattr(data[0], 'ndim', 1) == 1: if is_named_tuple(data[0]) and columns is None: columns = data[0]._fields arrays, columns = _to_arrays(data, columns, dtype=dtype) columns = ensure_index(columns) # set the index if index is None: if isinstance(data[0], Series): index = _get_names_from_index(data) elif isinstance(data[0], Categorical): index = ibase.default_index(len(data[0])) else: index = ibase.default_index(len(data)) mgr = _arrays_to_mgr(arrays, columns, index, columns, dtype=dtype) else: mgr = self._init_ndarray(data, index, columns, dtype=dtype, copy=copy) else: mgr = self._init_dict({}, index, columns, dtype=dtype) else: try: arr = np.array(data, dtype=dtype, copy=copy) except (ValueError, TypeError) as e: exc = TypeError('DataFrame constructor called with ' 'incompatible data and dtype: {e}'.format(e=e)) raise_with_traceback(exc) if arr.ndim == 0 and index is not None and columns is not None: values = cast_scalar_to_array((len(index), len(columns)), data, dtype=dtype) mgr = self._init_ndarray(values, index, columns, dtype=values.dtype, copy=False) else: raise ValueError('DataFrame constructor not properly called!') NDFrame.__init__(self, mgr, fastpath=True) def _init_dict(self, data, index, columns, dtype=None): """ Segregate Series based on type and coerce into matrices. Needs to handle a lot of exceptional cases. """ if columns is not None: arrays = Series(data, index=columns, dtype=object) data_names = arrays.index missing = arrays.isnull() if index is None: # GH10856 # raise ValueError if only scalars in dict index = extract_index(arrays[~missing]) else: index = ensure_index(index) # no obvious "empty" int column if missing.any() and not is_integer_dtype(dtype): if dtype is None or np.issubdtype(dtype, np.flexible): # 1783 nan_dtype = object else: nan_dtype = dtype v = construct_1d_arraylike_from_scalar(np.nan, len(index), nan_dtype) arrays.loc[missing] = [v] * missing.sum() else: keys = com.dict_keys_to_ordered_list(data) columns = data_names = Index(keys) arrays = [data[k] for k in keys] return _arrays_to_mgr(arrays, data_names, index, columns, dtype=dtype) def _init_ndarray(self, values, index, columns, dtype=None, copy=False): # input must be a ndarray, list, Series, index if isinstance(values, Series): if columns is None: if values.name is not None: columns = [values.name] if index is None: index = values.index else: values = values.reindex(index) # zero len case (GH #2234) if not len(values) and columns is not None and len(columns): values = np.empty((0, 1), dtype=object) # helper to create the axes as indexes def _get_axes(N, K, index=index, columns=columns): # return axes or defaults if index is None: index = ibase.default_index(N) else: index = ensure_index(index) if columns is None: columns = ibase.default_index(K) else: columns = ensure_index(columns) return index, columns # we could have a categorical type passed or coerced to 'category' # recast this to an _arrays_to_mgr if (is_categorical_dtype(getattr(values, 'dtype', None)) or is_categorical_dtype(dtype)): if not hasattr(values, 'dtype'): values = _prep_ndarray(values, copy=copy) values = values.ravel() elif copy: values = values.copy() index, columns = _get_axes(len(values), 1) return _arrays_to_mgr([values], columns, index, columns, dtype=dtype) elif (is_datetimetz(values) or is_extension_array_dtype(values)): # GH19157 if columns is None: columns = [0] return _arrays_to_mgr([values], columns, index, columns, dtype=dtype) # by definition an array here # the dtypes will be coerced to a single dtype values = _prep_ndarray(values, copy=copy) if dtype is not None: if not is_dtype_equal(values.dtype, dtype): try: values = values.astype(dtype) except Exception as orig: e = ValueError("failed to cast to '{dtype}' (Exception " "was: {orig})".format(dtype=dtype, orig=orig)) raise_with_traceback(e) index, columns = _get_axes(*values.shape) values = values.T # if we don't have a dtype specified, then try to convert objects # on the entire block; this is to convert if we have datetimelike's # embedded in an object type if dtype is None and is_object_dtype(values): values = maybe_infer_to_datetimelike(values) return create_block_manager_from_blocks([values], [columns, index]) @property def axes(self): """ Return a list representing the axes of the DataFrame. It has the row axis labels and column axis labels as the only members. They are returned in that order. Examples -------- >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]}) >>> df.axes [RangeIndex(start=0, stop=2, step=1), Index(['coll', 'col2'], dtype='object')] """ return [self.index, self.columns] @property def shape(self): """ Return a tuple representing the dimensionality of the DataFrame. See Also -------- ndarray.shape Examples -------- >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]}) >>> df.shape (2, 2) >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4], ... 'col3': [5, 6]}) >>> df.shape (2, 3) """ return len(self.index), len(self.columns) def _repr_fits_vertical_(self): """ Check length against max_rows. """ max_rows = get_option("display.max_rows") return len(self) <= max_rows def _repr_fits_horizontal_(self, ignore_width=False): """ Check if full repr fits in horizontal boundaries imposed by the display options width and max_columns. In case off non-interactive session, no boundaries apply. ignore_width is here so ipnb+HTML output can behave the way users expect. display.max_columns remains in effect. GH3541, GH3573 """ width, height = console.get_console_size() max_columns = get_option("display.max_columns") nb_columns = len(self.columns) # exceed max columns if ((max_columns and nb_columns > max_columns) or ((not ignore_width) and width and nb_columns > (width // 2))): return False # used by repr_html under IPython notebook or scripts ignore terminal # dims if ignore_width or not console.in_interactive_session(): return True if (get_option('display.width') is not None or console.in_ipython_frontend()): # check at least the column row for excessive width max_rows = 1 else: max_rows = get_option("display.max_rows") # when auto-detecting, so width=None and not in ipython front end # check whether repr fits horizontal by actually checking # the width of the rendered repr buf = StringIO() # only care about the stuff we'll actually print out # and to_string on entire frame may be expensive d = self if not (max_rows is None): # unlimited rows # min of two, where one may be None d = d.iloc[:min(max_rows, len(d))] else: return True d.to_string(buf=buf) value = buf.getvalue() repr_width = max(len(l) for l in value.split('\n')) return repr_width < width def _info_repr(self): """True if the repr should show the info view.""" info_repr_option = (get_option("display.large_repr") == "info") return info_repr_option and not (self._repr_fits_horizontal_() and self._repr_fits_vertical_()) def __unicode__(self): """ Return a string representation for a particular DataFrame Invoked by unicode(df) in py2 only. Yields a Unicode String in both py2/py3. """ buf = StringIO(u("")) if self._info_repr(): self.info(buf=buf) return buf.getvalue() max_rows = get_option("display.max_rows") max_cols = get_option("display.max_columns") show_dimensions = get_option("display.show_dimensions") if get_option("display.expand_frame_repr"): width, _ = console.get_console_size() else: width = None self.to_string(buf=buf, max_rows=max_rows, max_cols=max_cols, line_width=width, show_dimensions=show_dimensions) return buf.getvalue() def _repr_html_(self): """ Return a html representation for a particular DataFrame. Mainly for IPython notebook. """ # qtconsole doesn't report its line width, and also # behaves badly when outputting an HTML table # that doesn't fit the window, so disable it. # XXX: In IPython 3.x and above, the Qt console will not attempt to # display HTML, so this check can be removed when support for # IPython 2.x is no longer needed. if console.in_qtconsole(): # 'HTML output is disabled in QtConsole' return None if self._info_repr(): buf = StringIO(u("")) self.info(buf=buf) # need to escape the <class>, should be the first line. val = buf.getvalue().replace('<', r'&lt;', 1) val = val.replace('>', r'&gt;', 1) return '<pre>' + val + '</pre>' if get_option("display.notebook_repr_html"): max_rows = get_option("display.max_rows") max_cols = get_option("display.max_columns") show_dimensions = get_option("display.show_dimensions") return self.to_html(max_rows=max_rows, max_cols=max_cols, show_dimensions=show_dimensions, notebook=True) else: return None @property def style(self): """ Property returning a Styler object containing methods for building a styled HTML representation fo the DataFrame. See Also -------- pandas.io.formats.style.Styler """ from pandas.io.formats.style import Styler return Styler(self) def iteritems(self): """ Iterator over (column name, Series) pairs. See also -------- iterrows : Iterate over DataFrame rows as (index, Series) pairs. itertuples : Iterate over DataFrame rows as namedtuples of the values. """ if self.columns.is_unique and hasattr(self, '_item_cache'): for k in self.columns: yield k, self._get_item_cache(k) else: for i, k in enumerate(self.columns): yield k, self._ixs(i, axis=1) def iterrows(self): """ Iterate over DataFrame rows as (index, Series) pairs. Notes ----- 1. Because ``iterrows`` returns a Series for each row, it does **not** preserve dtypes across the rows (dtypes are preserved across columns for DataFrames). For example, >>> df = pd.DataFrame([[1, 1.5]], columns=['int', 'float']) >>> row = next(df.iterrows())[1] >>> row int 1.0 float 1.5 Name: 0, dtype: float64 >>> print(row['int'].dtype) float64 >>> print(df['int'].dtype) int64 To preserve dtypes while iterating over the rows, it is better to use :meth:`itertuples` which returns namedtuples of the values and which is generally faster than ``iterrows``. 2. You should **never modify** something you are iterating over. This is not guaranteed to work in all cases. Depending on the data types, the iterator returns a copy and not a view, and writing to it will have no effect. Returns ------- it : generator A generator that iterates over the rows of the frame. See also -------- itertuples : Iterate over DataFrame rows as namedtuples of the values. iteritems : Iterate over (column name, Series) pairs. """ columns = self.columns klass = self._constructor_sliced for k, v in zip(self.index, self.values): s = klass(v, index=columns, name=k) yield k, s def itertuples(self, index=True, name="Pandas"): """ Iterate over DataFrame rows as namedtuples, with index value as first element of the tuple. Parameters ---------- index : boolean, default True If True, return the index as the first element of the tuple. name : string, default "Pandas" The name of the returned namedtuples or None to return regular tuples. Notes ----- The column names will be renamed to positional names if they are invalid Python identifiers, repeated, or start with an underscore. With a large number of columns (>255), regular tuples are returned. See also -------- iterrows : Iterate over DataFrame rows as (index, Series) pairs. iteritems : Iterate over (column name, Series) pairs. Examples -------- >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [0.1, 0.2]}, index=['a', 'b']) >>> df col1 col2 a 1 0.1 b 2 0.2 >>> for row in df.itertuples(): ... print(row) ... Pandas(Index='a', col1=1, col2=0.10000000000000001) Pandas(Index='b', col1=2, col2=0.20000000000000001) """ arrays = [] fields = [] if index: arrays.append(self.index) fields.append("Index") # use integer indexing because of possible duplicate column names arrays.extend(self.iloc[:, k] for k in range(len(self.columns))) # Python 3 supports at most 255 arguments to constructor, and # things get slow with this many fields in Python 2 if name is not None and len(self.columns) + index < 256: # `rename` is unsupported in Python 2.6 try: itertuple = collections.namedtuple(name, fields + list(self.columns), rename=True) return map(itertuple._make, zip(*arrays)) except Exception: pass # fallback to regular tuples return zip(*arrays) items = iteritems def __len__(self): """Returns length of info axis, but here we use the index """ return len(self.index) def dot(self, other): """ Matrix multiplication with DataFrame or Series objects. Can also be called using `self @ other` in Python >= 3.5. Parameters ---------- other : DataFrame or Series Returns ------- dot_product : DataFrame or Series """ if isinstance(other, (Series, DataFrame)): common = self.columns.union(other.index) if (len(common) > len(self.columns) or len(common) > len(other.index)): raise ValueError('matrices are not aligned') left = self.reindex(columns=common, copy=False) right = other.reindex(index=common, copy=False) lvals = left.values rvals = right.values else: left = self lvals = self.values rvals = np.asarray(other) if lvals.shape[1] != rvals.shape[0]: raise ValueError('Dot product shape mismatch, ' '{l} vs {r}'.format(l=lvals.shape, r=rvals.shape)) if isinstance(other, DataFrame): return self._constructor(np.dot(lvals, rvals), index=left.index, columns=other.columns) elif isinstance(other, Series): return Series(np.dot(lvals, rvals), index=left.index) elif isinstance(rvals, (np.ndarray, Index)): result = np.dot(lvals, rvals) if result.ndim == 2: return self._constructor(result, index=left.index) else: return Series(result, index=left.index) else: # pragma: no cover raise TypeError('unsupported type: {oth}'.format(oth=type(other))) def __matmul__(self, other): """ Matrix multiplication using binary `@` operator in Python>=3.5 """ return self.dot(other) def __rmatmul__(self, other): """ Matrix multiplication using binary `@` operator in Python>=3.5 """ return self.T.dot(np.transpose(other)).T # ---------------------------------------------------------------------- # IO methods (to / from other formats) @classmethod def from_dict(cls, data, orient='columns', dtype=None, columns=None): """ Construct DataFrame from dict of array-like or dicts. Creates DataFrame object from dictionary by columns or by index allowing dtype specification. Parameters ---------- data : dict Of the form {field : array-like} or {field : dict}. orient : {'columns', 'index'}, default 'columns' The "orientation" of the data. If the keys of the passed dict should be the columns of the resulting DataFrame, pass 'columns' (default). Otherwise if the keys should be rows, pass 'index'. dtype : dtype, default None Data type to force, otherwise infer. columns : list, default None Column labels to use when ``orient='index'``. Raises a ValueError if used with ``orient='columns'``. .. versionadded:: 0.23.0 Returns ------- pandas.DataFrame See Also -------- DataFrame.from_records : DataFrame from ndarray (structured dtype), list of tuples, dict, or DataFrame DataFrame : DataFrame object creation using constructor Examples -------- By default the keys of the dict become the DataFrame columns: >>> data = {'col_1': [3, 2, 1, 0], 'col_2': ['a', 'b', 'c', 'd']} >>> pd.DataFrame.from_dict(data) col_1 col_2 0 3 a 1 2 b 2 1 c 3 0 d Specify ``orient='index'`` to create the DataFrame using dictionary keys as rows: >>> data = {'row_1': [3, 2, 1, 0], 'row_2': ['a', 'b', 'c', 'd']} >>> pd.DataFrame.from_dict(data, orient='index') 0 1 2 3 row_1 3 2 1 0 row_2 a b c d When using the 'index' orientation, the column names can be specified manually: >>> pd.DataFrame.from_dict(data, orient='index', ... columns=['A', 'B', 'C', 'D']) A B C D row_1 3 2 1 0 row_2 a b c d """ index = None orient = orient.lower() if orient == 'index': if len(data) > 0: # TODO speed up Series case if isinstance(list(data.values())[0], (Series, dict)): data = _from_nested_dict(data) else: data, index = list(data.values()), list(data.keys()) elif orient == 'columns': if columns is not None: raise ValueError("cannot use columns parameter with " "orient='columns'") else: # pragma: no cover raise ValueError('only recognize index or columns for orient') return cls(data, index=index, columns=columns, dtype=dtype) def to_dict(self, orient='dict', into=dict): """ Convert the DataFrame to a dictionary. The type of the key-value pairs can be customized with the parameters (see below). Parameters ---------- orient : str {'dict', 'list', 'series', 'split', 'records', 'index'} Determines the type of the values of the dictionary. - 'dict' (default) : dict like {column -> {index -> value}} - 'list' : dict like {column -> [values]} - 'series' : dict like {column -> Series(values)} - 'split' : dict like {'index' -> [index], 'columns' -> [columns], 'data' -> [values]} - 'records' : list like [{column -> value}, ... , {column -> value}] - 'index' : dict like {index -> {column -> value}} Abbreviations are allowed. `s` indicates `series` and `sp` indicates `split`. into : class, default dict The collections.Mapping subclass used for all Mappings in the return value. Can be the actual class or an empty instance of the mapping type you want. If you want a collections.defaultdict, you must pass it initialized. .. versionadded:: 0.21.0 Returns ------- result : collections.Mapping like {column -> {index -> value}} See Also -------- DataFrame.from_dict: create a DataFrame from a dictionary DataFrame.to_json: convert a DataFrame to JSON format Examples -------- >>> df = pd.DataFrame({'col1': [1, 2], ... 'col2': [0.5, 0.75]}, ... index=['a', 'b']) >>> df col1 col2 a 1 0.50 b 2 0.75 >>> df.to_dict() {'col1': {'a': 1, 'b': 2}, 'col2': {'a': 0.5, 'b': 0.75}} You can specify the return orientation. >>> df.to_dict('series') {'col1': a 1 b 2 Name: col1, dtype: int64, 'col2': a 0.50 b 0.75 Name: col2, dtype: float64} >>> df.to_dict('split') {'index': ['a', 'b'], 'columns': ['col1', 'col2'], 'data': [[1.0, 0.5], [2.0, 0.75]]} >>> df.to_dict('records') [{'col1': 1.0, 'col2': 0.5}, {'col1': 2.0, 'col2': 0.75}] >>> df.to_dict('index') {'a': {'col1': 1.0, 'col2': 0.5}, 'b': {'col1': 2.0, 'col2': 0.75}} You can also specify the mapping type. >>> from collections import OrderedDict, defaultdict >>> df.to_dict(into=OrderedDict) OrderedDict([('col1', OrderedDict([('a', 1), ('b', 2)])), ('col2', OrderedDict([('a', 0.5), ('b', 0.75)]))]) If you want a `defaultdict`, you need to initialize it: >>> dd = defaultdict(list) >>> df.to_dict('records', into=dd) [defaultdict(<class 'list'>, {'col1': 1.0, 'col2': 0.5}), defaultdict(<class 'list'>, {'col1': 2.0, 'col2': 0.75})] """ if not self.columns.is_unique: warnings.warn("DataFrame columns are not unique, some " "columns will be omitted.", UserWarning, stacklevel=2) # GH16122 into_c = com.standardize_mapping(into) if orient.lower().startswith('d'): return into_c( (k, v.to_dict(into)) for k, v in compat.iteritems(self)) elif orient.lower().startswith('l'): return into_c((k, v.tolist()) for k, v in compat.iteritems(self)) elif orient.lower().startswith('sp'): return into_c((('index', self.index.tolist()), ('columns', self.columns.tolist()), ('data', lib.map_infer(self.values.ravel(), com.maybe_box_datetimelike) .reshape(self.values.shape).tolist()))) elif orient.lower().startswith('s'): return into_c((k, com.maybe_box_datetimelike(v)) for k, v in compat.iteritems(self)) elif orient.lower().startswith('r'): return [into_c((k, com.maybe_box_datetimelike(v)) for k, v in zip(self.columns, np.atleast_1d(row))) for row in self.values] elif orient.lower().startswith('i'): return into_c((t[0], dict(zip(self.columns, t[1:]))) for t in self.itertuples()) else: raise ValueError("orient '{o}' not understood".format(o=orient)) def to_gbq(self, destination_table, project_id=None, chunksize=None, reauth=False, if_exists='fail', private_key=None, auth_local_webserver=False, table_schema=None, location=None, progress_bar=True, verbose=None): """ Write a DataFrame to a Google BigQuery table. This function requires the `pandas-gbq package <https://pandas-gbq.readthedocs.io>`__. See the `How to authenticate with Google BigQuery <https://pandas-gbq.readthedocs.io/en/latest/howto/authentication.html>`__ guide for authentication instructions. Parameters ---------- destination_table : str Name of table to be written, in the form ``dataset.tablename``. project_id : str, optional Google BigQuery Account project ID. Optional when available from the environment. chunksize : int, optional Number of rows to be inserted in each chunk from the dataframe. Set to ``None`` to load the whole dataframe at once. reauth : bool, default False Force Google BigQuery to re-authenticate the user. This is useful if multiple accounts are used. if_exists : str, default 'fail' Behavior when the destination table exists. Value can be one of: ``'fail'`` If table exists, do nothing. ``'replace'`` If table exists, drop it, recreate it, and insert data. ``'append'`` If table exists, insert data. Create if does not exist. private_key : str, optional Service account private key in JSON format. Can be file path or string contents. This is useful for remote server authentication (eg. Jupyter/IPython notebook on remote host). auth_local_webserver : bool, default False Use the `local webserver flow`_ instead of the `console flow`_ when getting user credentials. .. _local webserver flow: http://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow.run_local_server .. _console flow: http://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow.run_console *New in version 0.2.0 of pandas-gbq*. table_schema : list of dicts, optional List of BigQuery table fields to which according DataFrame columns conform to, e.g. ``[{'name': 'col1', 'type': 'STRING'},...]``. If schema is not provided, it will be generated according to dtypes of DataFrame columns. See BigQuery API documentation on available names of a field. *New in version 0.3.1 of pandas-gbq*. location : str, optional Location where the load job should run. See the `BigQuery locations documentation <https://cloud.google.com/bigquery/docs/dataset-locations>`__ for a list of available locations. The location must match that of the target dataset. *New in version 0.5.0 of pandas-gbq*. progress_bar : bool, default True Use the library `tqdm` to show the progress bar for the upload, chunk by chunk. *New in version 0.5.0 of pandas-gbq*. verbose : bool, deprecated Deprecated in Pandas-GBQ 0.4.0. Use the `logging module to adjust verbosity instead <https://pandas-gbq.readthedocs.io/en/latest/intro.html#logging>`__. See Also -------- pandas_gbq.to_gbq : This function in the pandas-gbq library. pandas.read_gbq : Read a DataFrame from Google BigQuery. """ from pandas.io import gbq return gbq.to_gbq( self, destination_table, project_id=project_id, chunksize=chunksize, reauth=reauth, if_exists=if_exists, private_key=private_key, auth_local_webserver=auth_local_webserver, table_schema=table_schema, location=location, progress_bar=progress_bar, verbose=verbose) @classmethod def from_records(cls, data, index=None, exclude=None, columns=None, coerce_float=False, nrows=None): """ Convert structured or record ndarray to DataFrame Parameters ---------- data : ndarray (structured dtype), list of tuples, dict, or DataFrame index : string, list of fields, array-like Field of array to use as the index, alternately a specific set of input labels to use exclude : sequence, default None Columns or fields to exclude columns : sequence, default None Column names to use. If the passed data do not have names associated with them, this argument provides names for the columns. Otherwise this argument indicates the order of the columns in the result (any names not found in the data will become all-NA columns) coerce_float : boolean, default False Attempt to convert values of non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets nrows : int, default None Number of rows to read if data is an iterator Returns ------- df : DataFrame """ # Make a copy of the input columns so we can modify it if columns is not None: columns = ensure_index(columns) if is_iterator(data): if nrows == 0: return cls() try: first_row = next(data) except StopIteration: return cls(index=index, columns=columns) dtype = None if hasattr(first_row, 'dtype') and first_row.dtype.names: dtype = first_row.dtype values = [first_row] if nrows is None: values += data else: values.extend(itertools.islice(data, nrows - 1)) if dtype is not None: data = np.array(values, dtype=dtype) else: data = values if isinstance(data, dict): if columns is None: columns = arr_columns = ensure_index(sorted(data)) arrays = [data[k] for k in columns] else: arrays = [] arr_columns = [] for k, v in compat.iteritems(data): if k in columns: arr_columns.append(k) arrays.append(v) arrays, arr_columns = _reorder_arrays(arrays, arr_columns, columns) elif isinstance(data, (np.ndarray, DataFrame)): arrays, columns = _to_arrays(data, columns) if columns is not None: columns = ensure_index(columns) arr_columns = columns else: arrays, arr_columns = _to_arrays(data, columns, coerce_float=coerce_float) arr_columns = ensure_index(arr_columns) if columns is not None: columns = ensure_index(columns) else: columns = arr_columns if exclude is None: exclude = set() else: exclude = set(exclude) result_index = None if index is not None: if (isinstance(index, compat.string_types) or not hasattr(index, "__iter__")): i = columns.get_loc(index) exclude.add(index) if len(arrays) > 0: result_index = Index(arrays[i], name=index) else: result_index = Index([], name=index) else: try: to_remove = [arr_columns.get_loc(field) for field in index] index_data = [arrays[i] for i in to_remove] result_index = ensure_index_from_sequences(index_data, names=index) exclude.update(index) except Exception: result_index = index if any(exclude): arr_exclude = [x for x in exclude if x in arr_columns] to_remove = [arr_columns.get_loc(col) for col in arr_exclude] arrays = [v for i, v in enumerate(arrays) if i not in to_remove] arr_columns = arr_columns.drop(arr_exclude) columns = columns.drop(exclude) mgr = _arrays_to_mgr(arrays, arr_columns, result_index, columns) return cls(mgr) def to_records(self, index=True, convert_datetime64=None): """ Convert DataFrame to a NumPy record array. Index will be put in the 'index' field of the record array if requested. Parameters ---------- index : boolean, default True Include index in resulting record array, stored in 'index' field. convert_datetime64 : boolean, default None .. deprecated:: 0.23.0 Whether to convert the index to datetime.datetime if it is a DatetimeIndex. Returns ------- y : numpy.recarray See Also -------- DataFrame.from_records: convert structured or record ndarray to DataFrame. numpy.recarray: ndarray that allows field access using attributes, analogous to typed columns in a spreadsheet. Examples -------- >>> df = pd.DataFrame({'A': [1, 2], 'B': [0.5, 0.75]}, ... index=['a', 'b']) >>> df A B a 1 0.50 b 2 0.75 >>> df.to_records() rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)], dtype=[('index', 'O'), ('A', '<i8'), ('B', '<f8')]) The index can be excluded from the record array: >>> df.to_records(index=False) rec.array([(1, 0.5 ), (2, 0.75)], dtype=[('A', '<i8'), ('B', '<f8')]) By default, timestamps are converted to `datetime.datetime`: >>> df.index = pd.date_range('2018-01-01 09:00', periods=2, freq='min') >>> df A B 2018-01-01 09:00:00 1 0.50 2018-01-01 09:01:00 2 0.75 >>> df.to_records() rec.array([(datetime.datetime(2018, 1, 1, 9, 0), 1, 0.5 ), (datetime.datetime(2018, 1, 1, 9, 1), 2, 0.75)], dtype=[('index', 'O'), ('A', '<i8'), ('B', '<f8')]) The timestamp conversion can be disabled so NumPy's datetime64 data type is used instead: >>> df.to_records(convert_datetime64=False) rec.array([('2018-01-01T09:00:00.000000000', 1, 0.5 ), ('2018-01-01T09:01:00.000000000', 2, 0.75)], dtype=[('index', '<M8[ns]'), ('A', '<i8'), ('B', '<f8')]) """ if convert_datetime64 is not None: warnings.warn("The 'convert_datetime64' parameter is " "deprecated and will be removed in a future " "version", FutureWarning, stacklevel=2) if index: if is_datetime64_any_dtype(self.index) and convert_datetime64: ix_vals = [self.index.to_pydatetime()] else: if isinstance(self.index, MultiIndex): # array of tuples to numpy cols. copy copy copy ix_vals = lmap(np.array, zip(*self.index.values)) else: ix_vals = [self.index.values] arrays = ix_vals + [self[c].get_values() for c in self.columns] count = 0 index_names = list(self.index.names) if isinstance(self.index, MultiIndex): for i, n in enumerate(index_names): if n is None: index_names[i] = 'level_%d' % count count += 1 elif index_names[0] is None: index_names = ['index'] names = (lmap(compat.text_type, index_names) + lmap(compat.text_type, self.columns)) else: arrays = [self[c].get_values() for c in self.columns] names = lmap(compat.text_type, self.columns) formats = [v.dtype for v in arrays] return np.rec.fromarrays( arrays, dtype={'names': names, 'formats': formats} ) @classmethod def from_items(cls, items, columns=None, orient='columns'): """Construct a dataframe from a list of tuples .. deprecated:: 0.23.0 `from_items` is deprecated and will be removed in a future version. Use :meth:`DataFrame.from_dict(dict(items)) <DataFrame.from_dict>` instead. :meth:`DataFrame.from_dict(OrderedDict(items)) <DataFrame.from_dict>` may be used to preserve the key order. Convert (key, value) pairs to DataFrame. The keys will be the axis index (usually the columns, but depends on the specified orientation). The values should be arrays or Series. Parameters ---------- items : sequence of (key, value) pairs Values should be arrays or Series. columns : sequence of column labels, optional Must be passed if orient='index'. orient : {'columns', 'index'}, default 'columns' The "orientation" of the data. If the keys of the input correspond to column labels, pass 'columns' (default). Otherwise if the keys correspond to the index, pass 'index'. Returns ------- frame : DataFrame """ warnings.warn("from_items is deprecated. Please use " "DataFrame.from_dict(dict(items), ...) instead. " "DataFrame.from_dict(OrderedDict(items)) may be used to " "preserve the key order.", FutureWarning, stacklevel=2) keys, values = lzip(*items) if orient == 'columns': if columns is not None: columns = ensure_index(columns) idict = dict(items) if len(idict) < len(items): if not columns.equals(ensure_index(keys)): raise ValueError('With non-unique item names, passed ' 'columns must be identical') arrays = values else: arrays = [idict[k] for k in columns if k in idict] else: columns = ensure_index(keys) arrays = values # GH 17312 # Provide more informative error msg when scalar values passed try: return cls._from_arrays(arrays, columns, None) except ValueError: if not is_nested_list_like(values): raise ValueError('The value in each (key, value) pair ' 'must be an array, Series, or dict') elif orient == 'index': if columns is None: raise TypeError("Must pass columns with orient='index'") keys = ensure_index(keys) # GH 17312 # Provide more informative error msg when scalar values passed try: arr = np.array(values, dtype=object).T data = [lib.maybe_convert_objects(v) for v in arr] return cls._from_arrays(data, columns, keys) except TypeError: if not is_nested_list_like(values): raise ValueError('The value in each (key, value) pair ' 'must be an array, Series, or dict') else: # pragma: no cover raise ValueError("'orient' must be either 'columns' or 'index'") @classmethod def _from_arrays(cls, arrays, columns, index, dtype=None): mgr = _arrays_to_mgr(arrays, columns, index, columns, dtype=dtype) return cls(mgr) @classmethod def from_csv(cls, path, header=0, sep=',', index_col=0, parse_dates=True, encoding=None, tupleize_cols=None, infer_datetime_format=False): """Read CSV file. .. deprecated:: 0.21.0 Use :func:`pandas.read_csv` instead. It is preferable to use the more powerful :func:`pandas.read_csv` for most general purposes, but ``from_csv`` makes for an easy roundtrip to and from a file (the exact counterpart of ``to_csv``), especially with a DataFrame of time series data. This method only differs from the preferred :func:`pandas.read_csv` in some defaults: - `index_col` is ``0`` instead of ``None`` (take first column as index by default) - `parse_dates` is ``True`` instead of ``False`` (try parsing the index as datetime by default) So a ``pd.DataFrame.from_csv(path)`` can be replaced by ``pd.read_csv(path, index_col=0, parse_dates=True)``. Parameters ---------- path : string file path or file handle / StringIO header : int, default 0 Row to use as header (skip prior rows) sep : string, default ',' Field delimiter index_col : int or sequence, default 0 Column to use for index. If a sequence is given, a MultiIndex is used. Different default from read_table parse_dates : boolean, default True Parse dates. Different default from read_table tupleize_cols : boolean, default False write multi_index columns as a list of tuples (if True) or new (expanded format) if False) infer_datetime_format: boolean, default False If True and `parse_dates` is True for a column, try to infer the datetime format based on the first datetime string. If the format can be inferred, there often will be a large parsing speed-up. See also -------- pandas.read_csv Returns ------- y : DataFrame """ warnings.warn("from_csv is deprecated. Please use read_csv(...) " "instead. Note that some of the default arguments are " "different, so please refer to the documentation " "for from_csv when changing your function calls", FutureWarning, stacklevel=2) from pandas.io.parsers import read_csv return read_csv(path, header=header, sep=sep, parse_dates=parse_dates, index_col=index_col, encoding=encoding, tupleize_cols=tupleize_cols, infer_datetime_format=infer_datetime_format) def to_sparse(self, fill_value=None, kind='block'): """ Convert to SparseDataFrame. Implement the sparse version of the DataFrame meaning that any data matching a specific value it's omitted in the representation. The sparse DataFrame allows for a more efficient storage. Parameters ---------- fill_value : float, default None The specific value that should be omitted in the representation. kind : {'block', 'integer'}, default 'block' The kind of the SparseIndex tracking where data is not equal to the fill value: - 'block' tracks only the locations and sizes of blocks of data. - 'integer' keeps an array with all the locations of the data. In most cases 'block' is recommended, since it's more memory efficient. Returns ------- SparseDataFrame The sparse representation of the DataFrame. See Also -------- DataFrame.to_dense : Converts the DataFrame back to the its dense form. Examples -------- >>> df = pd.DataFrame([(np.nan, np.nan), ... (1., np.nan), ... (np.nan, 1.)]) >>> df 0 1 0 NaN NaN 1 1.0 NaN 2 NaN 1.0 >>> type(df) <class 'pandas.core.frame.DataFrame'> >>> sdf = df.to_sparse() >>> sdf 0 1 0 NaN NaN 1 1.0 NaN 2 NaN 1.0 >>> type(sdf) <class 'pandas.core.sparse.frame.SparseDataFrame'> """ from pandas.core.sparse.frame import SparseDataFrame return SparseDataFrame(self._series, index=self.index, columns=self.columns, default_kind=kind, default_fill_value=fill_value) def to_panel(self): """ Transform long (stacked) format (DataFrame) into wide (3D, Panel) format. .. deprecated:: 0.20.0 Currently the index of the DataFrame must be a 2-level MultiIndex. This may be generalized later Returns ------- panel : Panel """ # only support this kind for now if (not isinstance(self.index, MultiIndex) or # pragma: no cover len(self.index.levels) != 2): raise NotImplementedError('Only 2-level MultiIndex are supported.') if not self.index.is_unique: raise ValueError("Can't convert non-uniquely indexed " "DataFrame to Panel") self._consolidate_inplace() # minor axis must be sorted if self.index.lexsort_depth < 2: selfsorted = self.sort_index(level=0) else: selfsorted = self major_axis, minor_axis = selfsorted.index.levels major_labels, minor_labels = selfsorted.index.labels shape = len(major_axis), len(minor_axis) # preserve names, if any major_axis = major_axis.copy() major_axis.name = self.index.names[0] minor_axis = minor_axis.copy() minor_axis.name = self.index.names[1] # create new axes new_axes = [selfsorted.columns, major_axis, minor_axis] # create new manager new_mgr = selfsorted._data.reshape_nd(axes=new_axes, labels=[major_labels, minor_labels], shape=shape, ref_items=selfsorted.columns) return self._constructor_expanddim(new_mgr) def to_csv(self, path_or_buf=None, sep=",", na_rep='', float_format=None, columns=None, header=True, index=True, index_label=None, mode='w', encoding=None, compression='infer', quoting=None, quotechar='"', line_terminator='\n', chunksize=None, tupleize_cols=None, date_format=None, doublequote=True, escapechar=None, decimal='.'): r"""Write DataFrame to a comma-separated values (csv) file Parameters ---------- path_or_buf : string or file handle, default None File path or object, if None is provided the result is returned as a string. sep : character, default ',' Field delimiter for the output file. na_rep : string, default '' Missing data representation float_format : string, default None Format string for floating point numbers columns : sequence, optional Columns to write header : boolean or list of string, default True Write out the column names. If a list of strings is given it is assumed to be aliases for the column names index : boolean, default True Write row names (index) index_label : string or sequence, or False, default None Column label for index column(s) if desired. If None is given, and `header` and `index` are True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex. If False do not print fields for index names. Use index_label=False for easier importing in R mode : str Python write mode, default 'w' encoding : string, optional A string representing the encoding to use in the output file, defaults to 'ascii' on Python 2 and 'utf-8' on Python 3. compression : {'infer', 'gzip', 'bz2', 'zip', 'xz', None}, default 'infer' If 'infer' and `path_or_buf` is path-like, then detect compression from the following extensions: '.gz', '.bz2', '.zip' or '.xz' (otherwise no compression). .. versionchanged:: 0.24.0 'infer' option added and set to default line_terminator : string, default ``'\n'`` The newline character or character sequence to use in the output file quoting : optional constant from csv module defaults to csv.QUOTE_MINIMAL. If you have set a `float_format` then floats are converted to strings and thus csv.QUOTE_NONNUMERIC will treat them as non-numeric quotechar : string (length 1), default '\"' character used to quote fields doublequote : boolean, default True Control quoting of `quotechar` inside a field escapechar : string (length 1), default None character used to escape `sep` and `quotechar` when appropriate chunksize : int or None rows to write at a time tupleize_cols : boolean, default False .. deprecated:: 0.21.0 This argument will be removed and will always write each row of the multi-index as a separate row in the CSV file. Write MultiIndex columns as a list of tuples (if True) or in the new, expanded format, where each MultiIndex column is a row in the CSV (if False). date_format : string, default None Format string for datetime objects decimal: string, default '.' Character recognized as decimal separator. E.g. use ',' for European data """ if tupleize_cols is not None: warnings.warn("The 'tupleize_cols' parameter is deprecated and " "will be removed in a future version", FutureWarning, stacklevel=2) else: tupleize_cols = False from pandas.io.formats.csvs import CSVFormatter formatter = CSVFormatter(self, path_or_buf, line_terminator=line_terminator, sep=sep, encoding=encoding, compression=compression, quoting=quoting, na_rep=na_rep, float_format=float_format, cols=columns, header=header, index=index, index_label=index_label, mode=mode, chunksize=chunksize, quotechar=quotechar, tupleize_cols=tupleize_cols, date_format=date_format, doublequote=doublequote, escapechar=escapechar, decimal=decimal) formatter.save() if path_or_buf is None: return formatter.path_or_buf.getvalue() @Appender(_shared_docs['to_excel'] % _shared_doc_kwargs) def to_excel(self, excel_writer, sheet_name='Sheet1', na_rep='', float_format=None, columns=None, header=True, index=True, index_label=None, startrow=0, startcol=0, engine=None, merge_cells=True, encoding=None, inf_rep='inf', verbose=True, freeze_panes=None): from pandas.io.formats.excel import ExcelFormatter formatter = ExcelFormatter(self, na_rep=na_rep, cols=columns, header=header, float_format=float_format, index=index, index_label=index_label, merge_cells=merge_cells, inf_rep=inf_rep) formatter.write(excel_writer, sheet_name=sheet_name, startrow=startrow, startcol=startcol, freeze_panes=freeze_panes, engine=engine) @deprecate_kwarg(old_arg_name='encoding', new_arg_name=None) def to_stata(self, fname, convert_dates=None, write_index=True, encoding="latin-1", byteorder=None, time_stamp=None, data_label=None, variable_labels=None, version=114, convert_strl=None): """ Export Stata binary dta files. Parameters ---------- fname : path (string), buffer or path object string, path object (pathlib.Path or py._path.local.LocalPath) or object implementing a binary write() functions. If using a buffer then the buffer will not be automatically closed after the file data has been written. convert_dates : dict Dictionary mapping columns containing datetime types to stata internal format to use when writing the dates. Options are 'tc', 'td', 'tm', 'tw', 'th', 'tq', 'ty'. Column can be either an integer or a name. Datetime columns that do not have a conversion type specified will be converted to 'tc'. Raises NotImplementedError if a datetime column has timezone information. write_index : bool Write the index to Stata dataset. encoding : str Default is latin-1. Unicode is not supported. byteorder : str Can be ">", "<", "little", or "big". default is `sys.byteorder`. time_stamp : datetime A datetime to use as file creation date. Default is the current time. data_label : str A label for the data set. Must be 80 characters or smaller. variable_labels : dict Dictionary containing columns as keys and variable labels as values. Each label must be 80 characters or smaller. .. versionadded:: 0.19.0 version : {114, 117} Version to use in the output dta file. Version 114 can be used read by Stata 10 and later. Version 117 can be read by Stata 13 or later. Version 114 limits string variables to 244 characters or fewer while 117 allows strings with lengths up to 2,000,000 characters. .. versionadded:: 0.23.0 convert_strl : list, optional List of column names to convert to string columns to Stata StrL format. Only available if version is 117. Storing strings in the StrL format can produce smaller dta files if strings have more than 8 characters and values are repeated. .. versionadded:: 0.23.0 Raises ------ NotImplementedError * If datetimes contain timezone information * Column dtype is not representable in Stata ValueError * Columns listed in convert_dates are neither datetime64[ns] or datetime.datetime * Column listed in convert_dates is not in DataFrame * Categorical label contains more than 32,000 characters .. versionadded:: 0.19.0 See Also -------- pandas.read_stata : Import Stata data files pandas.io.stata.StataWriter : low-level writer for Stata data files pandas.io.stata.StataWriter117 : low-level writer for version 117 files Examples -------- >>> data.to_stata('./data_file.dta') Or with dates >>> data.to_stata('./date_data_file.dta', {2 : 'tw'}) Alternatively you can create an instance of the StataWriter class >>> writer = StataWriter('./data_file.dta', data) >>> writer.write_file() With dates: >>> writer = StataWriter('./date_data_file.dta', data, {2 : 'tw'}) >>> writer.write_file() """ kwargs = {} if version not in (114, 117): raise ValueError('Only formats 114 and 117 supported.') if version == 114: if convert_strl is not None: raise ValueError('strl support is only available when using ' 'format 117') from pandas.io.stata import StataWriter as statawriter else: from pandas.io.stata import StataWriter117 as statawriter kwargs['convert_strl'] = convert_strl writer = statawriter(fname, self, convert_dates=convert_dates, byteorder=byteorder, time_stamp=time_stamp, data_label=data_label, write_index=write_index, variable_labels=variable_labels, **kwargs) writer.write_file() def to_feather(self, fname): """ write out the binary feather-format for DataFrames .. versionadded:: 0.20.0 Parameters ---------- fname : str string file path """ from pandas.io.feather_format import to_feather to_feather(self, fname) def to_parquet(self, fname, engine='auto', compression='snappy', **kwargs): """ Write a DataFrame to the binary parquet format. .. versionadded:: 0.21.0 This function writes the dataframe as a `parquet file <https://parquet.apache.org/>`_. You can choose different parquet backends, and have the option of compression. See :ref:`the user guide <io.parquet>` for more details. Parameters ---------- fname : str String file path. engine : {'auto', 'pyarrow', 'fastparquet'}, default 'auto' Parquet library to use. If 'auto', then the option ``io.parquet.engine`` is used. The default ``io.parquet.engine`` behavior is to try 'pyarrow', falling back to 'fastparquet' if 'pyarrow' is unavailable. compression : {'snappy', 'gzip', 'brotli', None}, default 'snappy' Name of the compression to use. Use ``None`` for no compression. **kwargs Additional arguments passed to the parquet library. See :ref:`pandas io <io.parquet>` for more details. See Also -------- read_parquet : Read a parquet file. DataFrame.to_csv : Write a csv file. DataFrame.to_sql : Write to a sql table. DataFrame.to_hdf : Write to hdf. Notes ----- This function requires either the `fastparquet <https://pypi.org/project/fastparquet>`_ or `pyarrow <https://arrow.apache.org/docs/python/>`_ library. Examples -------- >>> df = pd.DataFrame(data={'col1': [1, 2], 'col2': [3, 4]}) >>> df.to_parquet('df.parquet.gzip', compression='gzip') >>> pd.read_parquet('df.parquet.gzip') col1 col2 0 1 3 1 2 4 """ from pandas.io.parquet import to_parquet to_parquet(self, fname, engine, compression=compression, **kwargs) @Substitution(header='Write out the column names. If a list of strings ' 'is given, it is assumed to be aliases for the ' 'column names') @Substitution(shared_params=fmt.common_docstring, returns=fmt.return_docstring) def to_string(self, buf=None, columns=None, col_space=None, header=True, index=True, na_rep='NaN', formatters=None, float_format=None, sparsify=None, index_names=True, justify=None, line_width=None, max_rows=None, max_cols=None, show_dimensions=False): """ Render a DataFrame to a console-friendly tabular output. %(shared_params)s line_width : int, optional Width to wrap a line in characters. %(returns)s See Also -------- to_html : Convert DataFrame to HTML. Examples -------- >>> d = {'col1' : [1, 2, 3], 'col2' : [4, 5, 6]} >>> df = pd.DataFrame(d) >>> print(df.to_string()) col1 col2 0 1 4 1 2 5 2 3 6 """ formatter = fmt.DataFrameFormatter(self, buf=buf, columns=columns, col_space=col_space, na_rep=na_rep, formatters=formatters, float_format=float_format, sparsify=sparsify, justify=justify, index_names=index_names, header=header, index=index, line_width=line_width, max_rows=max_rows, max_cols=max_cols, show_dimensions=show_dimensions) formatter.to_string() if buf is None: result = formatter.buf.getvalue() return result @Substitution(header='whether to print column labels, default True') @Substitution(shared_params=fmt.common_docstring, returns=fmt.return_docstring) def to_html(self, buf=None, columns=None, col_space=None, header=True, index=True, na_rep='NaN', formatters=None, float_format=None, sparsify=None, index_names=True, justify=None, bold_rows=True, classes=None, escape=True, max_rows=None, max_cols=None, show_dimensions=False, notebook=False, decimal='.', border=None, table_id=None): """ Render a DataFrame as an HTML table. %(shared_params)s bold_rows : boolean, default True Make the row labels bold in the output classes : str or list or tuple, default None CSS class(es) to apply to the resulting html table escape : boolean, default True Convert the characters <, >, and & to HTML-safe sequences. notebook : {True, False}, default False Whether the generated HTML is for IPython Notebook. decimal : string, default '.' Character recognized as decimal separator, e.g. ',' in Europe .. versionadded:: 0.18.0 border : int A ``border=border`` attribute is included in the opening `<table>` tag. Default ``pd.options.html.border``. .. versionadded:: 0.19.0 table_id : str, optional A css id is included in the opening `<table>` tag if specified. .. versionadded:: 0.23.0 %(returns)s See Also -------- to_string : Convert DataFrame to a string. """ if (justify is not None and justify not in fmt._VALID_JUSTIFY_PARAMETERS): raise ValueError("Invalid value for justify parameter") formatter = fmt.DataFrameFormatter(self, buf=buf, columns=columns, col_space=col_space, na_rep=na_rep, formatters=formatters, float_format=float_format, sparsify=sparsify, justify=justify, index_names=index_names, header=header, index=index, bold_rows=bold_rows, escape=escape, max_rows=max_rows, max_cols=max_cols, show_dimensions=show_dimensions, decimal=decimal, table_id=table_id) # TODO: a generic formatter wld b in DataFrameFormatter formatter.to_html(classes=classes, notebook=notebook, border=border) if buf is None: return formatter.buf.getvalue() def info(self, verbose=None, buf=None, max_cols=None, memory_usage=None, null_counts=None): """ Print a concise summary of a DataFrame. This method prints information about a DataFrame including the index dtype and column dtypes, non-null values and memory usage. Parameters ---------- verbose : bool, optional Whether to print the full summary. By default, the setting in ``pandas.options.display.max_info_columns`` is followed. buf : writable buffer, defaults to sys.stdout Where to send the output. By default, the output is printed to sys.stdout. Pass a writable buffer if you need to further process the output. max_cols : int, optional When to switch from the verbose to the truncated output. If the DataFrame has more than `max_cols` columns, the truncated output is used. By default, the setting in ``pandas.options.display.max_info_columns`` is used. memory_usage : bool, str, optional Specifies whether total memory usage of the DataFrame elements (including the index) should be displayed. By default, this follows the ``pandas.options.display.memory_usage`` setting. True always show memory usage. False never shows memory usage. A value of 'deep' is equivalent to "True with deep introspection". Memory usage is shown in human-readable units (base-2 representation). Without deep introspection a memory estimation is made based in column dtype and number of rows assuming values consume the same memory amount for corresponding dtypes. With deep memory introspection, a real memory usage calculation is performed at the cost of computational resources. null_counts : bool, optional Whether to show the non-null counts. By default, this is shown only if the frame is smaller than ``pandas.options.display.max_info_rows`` and ``pandas.options.display.max_info_columns``. A value of True always shows the counts, and False never shows the counts. Returns ------- None This method prints a summary of a DataFrame and returns None. See Also -------- DataFrame.describe: Generate descriptive statistics of DataFrame columns. DataFrame.memory_usage: Memory usage of DataFrame columns. Examples -------- >>> int_values = [1, 2, 3, 4, 5] >>> text_values = ['alpha', 'beta', 'gamma', 'delta', 'epsilon'] >>> float_values = [0.0, 0.25, 0.5, 0.75, 1.0] >>> df = pd.DataFrame({"int_col": int_values, "text_col": text_values, ... "float_col": float_values}) >>> df int_col text_col float_col 0 1 alpha 0.00 1 2 beta 0.25 2 3 gamma 0.50 3 4 delta 0.75 4 5 epsilon 1.00 Prints information of all columns: >>> df.info(verbose=True) <class 'pandas.core.frame.DataFrame'> RangeIndex: 5 entries, 0 to 4 Data columns (total 3 columns): int_col 5 non-null int64 text_col 5 non-null object float_col 5 non-null float64 dtypes: float64(1), int64(1), object(1) memory usage: 200.0+ bytes Prints a summary of columns count and its dtypes but not per column information: >>> df.info(verbose=False) <class 'pandas.core.frame.DataFrame'> RangeIndex: 5 entries, 0 to 4 Columns: 3 entries, int_col to float_col dtypes: float64(1), int64(1), object(1) memory usage: 200.0+ bytes Pipe output of DataFrame.info to buffer instead of sys.stdout, get buffer content and writes to a text file: >>> import io >>> buffer = io.StringIO() >>> df.info(buf=buffer) >>> s = buffer.getvalue() >>> with open("df_info.txt", "w", encoding="utf-8") as f: ... f.write(s) 260 The `memory_usage` parameter allows deep introspection mode, specially useful for big DataFrames and fine-tune memory optimization: >>> random_strings_array = np.random.choice(['a', 'b', 'c'], 10 ** 6) >>> df = pd.DataFrame({ ... 'column_1': np.random.choice(['a', 'b', 'c'], 10 ** 6), ... 'column_2': np.random.choice(['a', 'b', 'c'], 10 ** 6), ... 'column_3': np.random.choice(['a', 'b', 'c'], 10 ** 6) ... }) >>> df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 1000000 entries, 0 to 999999 Data columns (total 3 columns): column_1 1000000 non-null object column_2 1000000 non-null object column_3 1000000 non-null object dtypes: object(3) memory usage: 22.9+ MB >>> df.info(memory_usage='deep') <class 'pandas.core.frame.DataFrame'> RangeIndex: 1000000 entries, 0 to 999999 Data columns (total 3 columns): column_1 1000000 non-null object column_2 1000000 non-null object column_3 1000000 non-null object dtypes: object(3) memory usage: 188.8 MB """ if buf is None: # pragma: no cover buf = sys.stdout lines = [] lines.append(str(type(self))) lines.append(self.index._summary()) if len(self.columns) == 0: lines.append('Empty {name}'.format(name=type(self).__name__)) fmt.buffer_put_lines(buf, lines) return cols = self.columns # hack if max_cols is None: max_cols = get_option('display.max_info_columns', len(self.columns) + 1) max_rows = get_option('display.max_info_rows', len(self) + 1) if null_counts is None: show_counts = ((len(self.columns) <= max_cols) and (len(self) < max_rows)) else: show_counts = null_counts exceeds_info_cols = len(self.columns) > max_cols def _verbose_repr(): lines.append('Data columns (total %d columns):' % len(self.columns)) space = max(len(pprint_thing(k)) for k in self.columns) + 4 counts = None tmpl = "{count}{dtype}" if show_counts: counts = self.count() if len(cols) != len(counts): # pragma: no cover raise AssertionError( 'Columns must equal counts ' '({cols:d} != {counts:d})'.format( cols=len(cols), counts=len(counts))) tmpl = "{count} non-null {dtype}" dtypes = self.dtypes for i, col in enumerate(self.columns): dtype = dtypes.iloc[i] col = pprint_thing(col) count = "" if show_counts: count = counts.iloc[i] lines.append(_put_str(col, space) + tmpl.format(count=count, dtype=dtype)) def _non_verbose_repr(): lines.append(self.columns._summary(name='Columns')) def _sizeof_fmt(num, size_qualifier): # returns size in human readable format for x in ['bytes', 'KB', 'MB', 'GB', 'TB']: if num < 1024.0: return ("{num:3.1f}{size_q} " "{x}".format(num=num, size_q=size_qualifier, x=x)) num /= 1024.0 return "{num:3.1f}{size_q} {pb}".format(num=num, size_q=size_qualifier, pb='PB') if verbose: _verbose_repr() elif verbose is False: # specifically set to False, not nesc None _non_verbose_repr() else: if exceeds_info_cols: _non_verbose_repr() else: _verbose_repr() counts = self.get_dtype_counts() dtypes = ['{k}({kk:d})'.format(k=k[0], kk=k[1]) for k in sorted(compat.iteritems(counts))] lines.append('dtypes: {types}'.format(types=', '.join(dtypes))) if memory_usage is None: memory_usage = get_option('display.memory_usage') if memory_usage: # append memory usage of df to display size_qualifier = '' if memory_usage == 'deep': deep = True else: # size_qualifier is just a best effort; not guaranteed to catch # all cases (e.g., it misses categorical data even with object # categories) deep = False if ('object' in counts or self.index._is_memory_usage_qualified()): size_qualifier = '+' mem_usage = self.memory_usage(index=True, deep=deep).sum() lines.append("memory usage: {mem}\n".format( mem=_sizeof_fmt(mem_usage, size_qualifier))) fmt.buffer_put_lines(buf, lines) def memory_usage(self, index=True, deep=False): """ Return the memory usage of each column in bytes. The memory usage can optionally include the contribution of the index and elements of `object` dtype. This value is displayed in `DataFrame.info` by default. This can be suppressed by setting ``pandas.options.display.memory_usage`` to False. Parameters ---------- index : bool, default True Specifies whether to include the memory usage of the DataFrame's index in returned Series. If ``index=True`` the memory usage of the index the first item in the output. deep : bool, default False If True, introspect the data deeply by interrogating `object` dtypes for system-level memory consumption, and include it in the returned values. Returns ------- sizes : Series A Series whose index is the original column names and whose values is the memory usage of each column in bytes. See Also -------- numpy.ndarray.nbytes : Total bytes consumed by the elements of an ndarray. Series.memory_usage : Bytes consumed by a Series. pandas.Categorical : Memory-efficient array for string values with many repeated values. DataFrame.info : Concise summary of a DataFrame. Examples -------- >>> dtypes = ['int64', 'float64', 'complex128', 'object', 'bool'] >>> data = dict([(t, np.ones(shape=5000).astype(t)) ... for t in dtypes]) >>> df = pd.DataFrame(data) >>> df.head() int64 float64 complex128 object bool 0 1 1.0 (1+0j) 1 True 1 1 1.0 (1+0j) 1 True 2 1 1.0 (1+0j) 1 True 3 1 1.0 (1+0j) 1 True 4 1 1.0 (1+0j) 1 True >>> df.memory_usage() Index 80 int64 40000 float64 40000 complex128 80000 object 40000 bool 5000 dtype: int64 >>> df.memory_usage(index=False) int64 40000 float64 40000 complex128 80000 object 40000 bool 5000 dtype: int64 The memory footprint of `object` dtype columns is ignored by default: >>> df.memory_usage(deep=True) Index 80 int64 40000 float64 40000 complex128 80000 object 160000 bool 5000 dtype: int64 Use a Categorical for efficient storage of an object-dtype column with many repeated values. >>> df['object'].astype('category').memory_usage(deep=True) 5168 """ result = Series([c.memory_usage(index=False, deep=deep) for col, c in self.iteritems()], index=self.columns) if index: result = Series(self.index.memory_usage(deep=deep), index=['Index']).append(result) return result def transpose(self, *args, **kwargs): """ Transpose index and columns. Reflect the DataFrame over its main diagonal by writing rows as columns and vice-versa. The property :attr:`.T` is an accessor to the method :meth:`transpose`. Parameters ---------- copy : bool, default False If True, the underlying data is copied. Otherwise (default), no copy is made if possible. *args, **kwargs Additional keywords have no effect but might be accepted for compatibility with numpy. Returns ------- DataFrame The transposed DataFrame. See Also -------- numpy.transpose : Permute the dimensions of a given array. Notes ----- Transposing a DataFrame with mixed dtypes will result in a homogeneous DataFrame with the `object` dtype. In such a case, a copy of the data is always made. Examples -------- **Square DataFrame with homogeneous dtype** >>> d1 = {'col1': [1, 2], 'col2': [3, 4]} >>> df1 = pd.DataFrame(data=d1) >>> df1 col1 col2 0 1 3 1 2 4 >>> df1_transposed = df1.T # or df1.transpose() >>> df1_transposed 0 1 col1 1 2 col2 3 4 When the dtype is homogeneous in the original DataFrame, we get a transposed DataFrame with the same dtype: >>> df1.dtypes col1 int64 col2 int64 dtype: object >>> df1_transposed.dtypes 0 int64 1 int64 dtype: object **Non-square DataFrame with mixed dtypes** >>> d2 = {'name': ['Alice', 'Bob'], ... 'score': [9.5, 8], ... 'employed': [False, True], ... 'kids': [0, 0]} >>> df2 = pd.DataFrame(data=d2) >>> df2 name score employed kids 0 Alice 9.5 False 0 1 Bob 8.0 True 0 >>> df2_transposed = df2.T # or df2.transpose() >>> df2_transposed 0 1 name Alice Bob score 9.5 8 employed False True kids 0 0 When the DataFrame has mixed dtypes, we get a transposed DataFrame with the `object` dtype: >>> df2.dtypes name object score float64 employed bool kids int64 dtype: object >>> df2_transposed.dtypes 0 object 1 object dtype: object """ nv.validate_transpose(args, dict()) return super(DataFrame, self).transpose(1, 0, **kwargs) T = property(transpose) # ---------------------------------------------------------------------- # Picklability # legacy pickle formats def _unpickle_frame_compat(self, state): # pragma: no cover if len(state) == 2: # pragma: no cover series, idx = state columns = sorted(series) else: series, cols, idx = state columns = com._unpickle_array(cols) index = com._unpickle_array(idx) self._data = self._init_dict(series, index, columns, None) def _unpickle_matrix_compat(self, state): # pragma: no cover # old unpickling (vals, idx, cols), object_state = state index = com._unpickle_array(idx) dm = DataFrame(vals, index=index, columns=com._unpickle_array(cols), copy=False) if object_state is not None: ovals, _, ocols = object_state objects = DataFrame(ovals, index=index, columns=com._unpickle_array(ocols), copy=False) dm = dm.join(objects) self._data = dm._data # ---------------------------------------------------------------------- # Getting and setting elements def get_value(self, index, col, takeable=False): """Quickly retrieve single value at passed column and index .. deprecated:: 0.21.0 Use .at[] or .iat[] accessors instead. Parameters ---------- index : row label col : column label takeable : interpret the index/col as indexers, default False Returns ------- value : scalar value """ warnings.warn("get_value is deprecated and will be removed " "in a future release. Please use " ".at[] or .iat[] accessors instead", FutureWarning, stacklevel=2) return self._get_value(index, col, takeable=takeable) def _get_value(self, index, col, takeable=False): if takeable: series = self._iget_item_cache(col) return com.maybe_box_datetimelike(series._values[index]) series = self._get_item_cache(col) engine = self.index._engine try: return engine.get_value(series._values, index) except (TypeError, ValueError): # we cannot handle direct indexing # use positional col = self.columns.get_loc(col) index = self.index.get_loc(index) return self._get_value(index, col, takeable=True) _get_value.__doc__ = get_value.__doc__ def set_value(self, index, col, value, takeable=False): """Put single value at passed column and index .. deprecated:: 0.21.0 Use .at[] or .iat[] accessors instead. Parameters ---------- index : row label col : column label value : scalar value takeable : interpret the index/col as indexers, default False Returns ------- frame : DataFrame If label pair is contained, will be reference to calling DataFrame, otherwise a new object """ warnings.warn("set_value is deprecated and will be removed " "in a future release. Please use " ".at[] or .iat[] accessors instead", FutureWarning, stacklevel=2) return self._set_value(index, col, value, takeable=takeable) def _set_value(self, index, col, value, takeable=False): try: if takeable is True: series = self._iget_item_cache(col) return series._set_value(index, value, takeable=True) series = self._get_item_cache(col) engine = self.index._engine engine.set_value(series._values, index, value) return self except (KeyError, TypeError): # set using a non-recursive method & reset the cache self.loc[index, col] = value self._item_cache.pop(col, None) return self _set_value.__doc__ = set_value.__doc__ def _ixs(self, i, axis=0): """ i : int, slice, or sequence of integers axis : int """ # irow if axis == 0: """ Notes ----- If slice passed, the resulting data will be a view """ if isinstance(i, slice): return self[i] else: label = self.index[i] if isinstance(label, Index): # a location index by definition result = self.take(i, axis=axis) copy = True else: new_values = self._data.fast_xs(i) if is_scalar(new_values): return new_values # if we are a copy, mark as such copy = (isinstance(new_values, np.ndarray) and new_values.base is None) result = self._constructor_sliced(new_values, index=self.columns, name=self.index[i], dtype=new_values.dtype) result._set_is_copy(self, copy=copy) return result # icol else: """ Notes ----- If slice passed, the resulting data will be a view """ label = self.columns[i] if isinstance(i, slice): # need to return view lab_slice = slice(label[0], label[-1]) return self.loc[:, lab_slice] else: if isinstance(label, Index): return self._take(i, axis=1) index_len = len(self.index) # if the values returned are not the same length # as the index (iow a not found value), iget returns # a 0-len ndarray. This is effectively catching # a numpy error (as numpy should really raise) values = self._data.iget(i) if index_len and not len(values): values = np.array([np.nan] * index_len, dtype=object) result = self._box_col_values(values, label) # this is a cached value, mark it so result._set_as_cached(label, self) return result def __getitem__(self, key): key = com.apply_if_callable(key, self) # shortcut if the key is in columns try: if self.columns.is_unique and key in self.columns: if self.columns.nlevels > 1: return self._getitem_multilevel(key) return self._get_item_cache(key) except (TypeError, ValueError): # The TypeError correctly catches non hashable "key" (e.g. list) # The ValueError can be removed once GH #21729 is fixed pass # Do we have a slicer (on rows)? indexer = convert_to_index_sliceable(self, key) if indexer is not None: return self._slice(indexer, axis=0) # Do we have a (boolean) DataFrame? if isinstance(key, DataFrame): return self._getitem_frame(key) # Do we have a (boolean) 1d indexer? if com.is_bool_indexer(key): return self._getitem_bool_array(key) # We are left with two options: a single key, and a collection of keys, # We interpret tuples as collections only for non-MultiIndex is_single_key = isinstance(key, tuple) or not is_list_like(key) if is_single_key: if self.columns.nlevels > 1: return self._getitem_multilevel(key) indexer = self.columns.get_loc(key) if is_integer(indexer): indexer = [indexer] else: if is_iterator(key): key = list(key) indexer = self.loc._convert_to_indexer(key, axis=1, raise_missing=True) # take() does not accept boolean indexers if getattr(indexer, "dtype", None) == bool: indexer = np.where(indexer)[0] data = self._take(indexer, axis=1) if is_single_key: # What does looking for a single key in a non-unique index return? # The behavior is inconsistent. It returns a Series, except when # - the key itself is repeated (test on data.shape, #9519), or # - we have a MultiIndex on columns (test on self.columns, #21309) if data.shape[1] == 1 and not isinstance(self.columns, MultiIndex): data = data[key] return data def _getitem_bool_array(self, key): # also raises Exception if object array with NA values # warning here just in case -- previously __setitem__ was # reindexing but __getitem__ was not; it seems more reasonable to # go with the __setitem__ behavior since that is more consistent # with all other indexing behavior if isinstance(key, Series) and not key.index.equals(self.index): warnings.warn("Boolean Series key will be reindexed to match " "DataFrame index.", UserWarning, stacklevel=3) elif len(key) != len(self.index): raise ValueError('Item wrong length %d instead of %d.' % (len(key), len(self.index))) # check_bool_indexer will throw exception if Series key cannot # be reindexed to match DataFrame rows key = check_bool_indexer(self.index, key) indexer = key.nonzero()[0] return self._take(indexer, axis=0) def _getitem_multilevel(self, key): loc = self.columns.get_loc(key) if isinstance(loc, (slice, Series, np.ndarray, Index)): new_columns = self.columns[loc] result_columns = maybe_droplevels(new_columns, key) if self._is_mixed_type: result = self.reindex(columns=new_columns) result.columns = result_columns else: new_values = self.values[:, loc] result = self._constructor(new_values, index=self.index, columns=result_columns) result = result.__finalize__(self) # If there is only one column being returned, and its name is # either an empty string, or a tuple with an empty string as its # first element, then treat the empty string as a placeholder # and return the column as if the user had provided that empty # string in the key. If the result is a Series, exclude the # implied empty string from its name. if len(result.columns) == 1: top = result.columns[0] if isinstance(top, tuple): top = top[0] if top == '': result = result[''] if isinstance(result, Series): result = self._constructor_sliced(result, index=self.index, name=key) result._set_is_copy(self) return result else: return self._get_item_cache(key) def _getitem_frame(self, key): if key.values.size and not is_bool_dtype(key.values): raise ValueError('Must pass DataFrame with boolean values only') return self.where(key) def query(self, expr, inplace=False, **kwargs): """Query the columns of a frame with a boolean expression. Parameters ---------- expr : string The query string to evaluate. You can refer to variables in the environment by prefixing them with an '@' character like ``@a + b``. inplace : bool Whether the query should modify the data in place or return a modified copy .. versionadded:: 0.18.0 kwargs : dict See the documentation for :func:`pandas.eval` for complete details on the keyword arguments accepted by :meth:`DataFrame.query`. Returns ------- q : DataFrame Notes ----- The result of the evaluation of this expression is first passed to :attr:`DataFrame.loc` and if that fails because of a multidimensional key (e.g., a DataFrame) then the result will be passed to :meth:`DataFrame.__getitem__`. This method uses the top-level :func:`pandas.eval` function to evaluate the passed query. The :meth:`~pandas.DataFrame.query` method uses a slightly modified Python syntax by default. For example, the ``&`` and ``|`` (bitwise) operators have the precedence of their boolean cousins, :keyword:`and` and :keyword:`or`. This *is* syntactically valid Python, however the semantics are different. You can change the semantics of the expression by passing the keyword argument ``parser='python'``. This enforces the same semantics as evaluation in Python space. Likewise, you can pass ``engine='python'`` to evaluate an expression using Python itself as a backend. This is not recommended as it is inefficient compared to using ``numexpr`` as the engine. The :attr:`DataFrame.index` and :attr:`DataFrame.columns` attributes of the :class:`~pandas.DataFrame` instance are placed in the query namespace by default, which allows you to treat both the index and columns of the frame as a column in the frame. The identifier ``index`` is used for the frame index; you can also use the name of the index to identify it in a query. Please note that Python keywords may not be used as identifiers. For further details and examples see the ``query`` documentation in :ref:`indexing <indexing.query>`. See Also -------- pandas.eval DataFrame.eval Examples -------- >>> df = pd.DataFrame(np.random.randn(10, 2), columns=list('ab')) >>> df.query('a > b') >>> df[df.a > df.b] # same result as the previous expression """ inplace = validate_bool_kwarg(inplace, 'inplace') if not isinstance(expr, compat.string_types): msg = "expr must be a string to be evaluated, {0} given" raise ValueError(msg.format(type(expr))) kwargs['level'] = kwargs.pop('level', 0) + 1 kwargs['target'] = None res = self.eval(expr, **kwargs) try: new_data = self.loc[res] except ValueError: # when res is multi-dimensional loc raises, but this is sometimes a # valid query new_data = self[res] if inplace: self._update_inplace(new_data) else: return new_data def eval(self, expr, inplace=False, **kwargs): """ Evaluate a string describing operations on DataFrame columns. Operates on columns only, not specific rows or elements. This allows `eval` to run arbitrary code, which can make you vulnerable to code injection if you pass user input to this function. Parameters ---------- expr : str The expression string to evaluate. inplace : bool, default False If the expression contains an assignment, whether to perform the operation inplace and mutate the existing DataFrame. Otherwise, a new DataFrame is returned. .. versionadded:: 0.18.0. kwargs : dict See the documentation for :func:`~pandas.eval` for complete details on the keyword arguments accepted by :meth:`~pandas.DataFrame.query`. Returns ------- ndarray, scalar, or pandas object The result of the evaluation. See Also -------- DataFrame.query : Evaluates a boolean expression to query the columns of a frame. DataFrame.assign : Can evaluate an expression or function to create new values for a column. pandas.eval : Evaluate a Python expression as a string using various backends. Notes ----- For more details see the API documentation for :func:`~pandas.eval`. For detailed examples see :ref:`enhancing performance with eval <enhancingperf.eval>`. Examples -------- >>> df = pd.DataFrame({'A': range(1, 6), 'B': range(10, 0, -2)}) >>> df A B 0 1 10 1 2 8 2 3 6 3 4 4 4 5 2 >>> df.eval('A + B') 0 11 1 10 2 9 3 8 4 7 dtype: int64 Assignment is allowed though by default the original DataFrame is not modified. >>> df.eval('C = A + B') A B C 0 1 10 11 1 2 8 10 2 3 6 9 3 4 4 8 4 5 2 7 >>> df A B 0 1 10 1 2 8 2 3 6 3 4 4 4 5 2 Use ``inplace=True`` to modify the original DataFrame. >>> df.eval('C = A + B', inplace=True) >>> df A B C 0 1 10 11 1 2 8 10 2 3 6 9 3 4 4 8 4 5 2 7 """ from pandas.core.computation.eval import eval as _eval inplace = validate_bool_kwarg(inplace, 'inplace') resolvers = kwargs.pop('resolvers', None) kwargs['level'] = kwargs.pop('level', 0) + 1 if resolvers is None: index_resolvers = self._get_index_resolvers() resolvers = dict(self.iteritems()), index_resolvers if 'target' not in kwargs: kwargs['target'] = self kwargs['resolvers'] = kwargs.get('resolvers', ()) + tuple(resolvers) return _eval(expr, inplace=inplace, **kwargs) def select_dtypes(self, include=None, exclude=None): """ Return a subset of the DataFrame's columns based on the column dtypes. Parameters ---------- include, exclude : scalar or list-like A selection of dtypes or strings to be included/excluded. At least one of these parameters must be supplied. Raises ------ ValueError * If both of ``include`` and ``exclude`` are empty * If ``include`` and ``exclude`` have overlapping elements * If any kind of string dtype is passed in. Returns ------- subset : DataFrame The subset of the frame including the dtypes in ``include`` and excluding the dtypes in ``exclude``. Notes ----- * To select all *numeric* types, use ``np.number`` or ``'number'`` * To select strings you must use the ``object`` dtype, but note that this will return *all* object dtype columns * See the `numpy dtype hierarchy <http://docs.scipy.org/doc/numpy/reference/arrays.scalars.html>`__ * To select datetimes, use ``np.datetime64``, ``'datetime'`` or ``'datetime64'`` * To select timedeltas, use ``np.timedelta64``, ``'timedelta'`` or ``'timedelta64'`` * To select Pandas categorical dtypes, use ``'category'`` * To select Pandas datetimetz dtypes, use ``'datetimetz'`` (new in 0.20.0) or ``'datetime64[ns, tz]'`` Examples -------- >>> df = pd.DataFrame({'a': [1, 2] * 3, ... 'b': [True, False] * 3, ... 'c': [1.0, 2.0] * 3}) >>> df a b c 0 1 True 1.0 1 2 False 2.0 2 1 True 1.0 3 2 False 2.0 4 1 True 1.0 5 2 False 2.0 >>> df.select_dtypes(include='bool') b 0 True 1 False 2 True 3 False 4 True 5 False >>> df.select_dtypes(include=['float64']) c 0 1.0 1 2.0 2 1.0 3 2.0 4 1.0 5 2.0 >>> df.select_dtypes(exclude=['int']) b c 0 True 1.0 1 False 2.0 2 True 1.0 3 False 2.0 4 True 1.0 5 False 2.0 """ if not is_list_like(include): include = (include,) if include is not None else () if not is_list_like(exclude): exclude = (exclude,) if exclude is not None else () selection = tuple(map(frozenset, (include, exclude))) if not any(selection): raise ValueError('at least one of include or exclude must be ' 'nonempty') # convert the myriad valid dtypes object to a single representation include, exclude = map( lambda x: frozenset(map(_get_dtype_from_object, x)), selection) for dtypes in (include, exclude): invalidate_string_dtypes(dtypes) # can't both include AND exclude! if not include.isdisjoint(exclude): raise ValueError('include and exclude overlap on {inc_ex}'.format( inc_ex=(include & exclude))) # empty include/exclude -> defaults to True # three cases (we've already raised if both are empty) # case 1: empty include, nonempty exclude # we have True, True, ... True for include, same for exclude # in the loop below we get the excluded # and when we call '&' below we get only the excluded # case 2: nonempty include, empty exclude # same as case 1, but with include # case 3: both nonempty # the "union" of the logic of case 1 and case 2: # we get the included and excluded, and return their logical and include_these = Series(not bool(include), index=self.columns) exclude_these = Series(not bool(exclude), index=self.columns) def is_dtype_instance_mapper(idx, dtype): return idx, functools.partial(issubclass, dtype.type) for idx, f in itertools.starmap(is_dtype_instance_mapper, enumerate(self.dtypes)): if include: # checks for the case of empty include or exclude include_these.iloc[idx] = any(map(f, include)) if exclude: exclude_these.iloc[idx] = not any(map(f, exclude)) dtype_indexer = include_these & exclude_these return self.loc[com.get_info_slice(self, dtype_indexer)] def _box_item_values(self, key, values): items = self.columns[self.columns.get_loc(key)] if values.ndim == 2: return self._constructor(values.T, columns=items, index=self.index) else: return self._box_col_values(values, items) def _box_col_values(self, values, items): """ provide boxed values for a column """ klass = _get_sliced_frame_result_type(values, self) return klass(values, index=self.index, name=items, fastpath=True) def __setitem__(self, key, value): key = com.apply_if_callable(key, self) # see if we can slice the rows indexer = convert_to_index_sliceable(self, key) if indexer is not None: return self._setitem_slice(indexer, value) if isinstance(key, DataFrame) or getattr(key, 'ndim', None) == 2: self._setitem_frame(key, value) elif isinstance(key, (Series, np.ndarray, list, Index)): self._setitem_array(key, value) else: # set column self._set_item(key, value) def _setitem_slice(self, key, value): self._check_setitem_copy() self.loc._setitem_with_indexer(key, value) def _setitem_array(self, key, value): # also raises Exception if object array with NA values if com.is_bool_indexer(key): if len(key) != len(self.index): raise ValueError('Item wrong length %d instead of %d!' % (len(key), len(self.index))) key = check_bool_indexer(self.index, key) indexer = key.nonzero()[0] self._check_setitem_copy() self.loc._setitem_with_indexer(indexer, value) else: if isinstance(value, DataFrame): if len(value.columns) != len(key): raise ValueError('Columns must be same length as key') for k1, k2 in zip(key, value.columns): self[k1] = value[k2] else: indexer = self.loc._convert_to_indexer(key, axis=1) self._check_setitem_copy() self.loc._setitem_with_indexer((slice(None), indexer), value) def _setitem_frame(self, key, value): # support boolean setting with DataFrame input, e.g. # df[df > df2] = 0 if isinstance(key, np.ndarray): if key.shape != self.shape: raise ValueError( 'Array conditional must be same shape as self' ) key = self._constructor(key, **self._construct_axes_dict()) if key.values.size and not is_bool_dtype(key.values): raise TypeError( 'Must pass DataFrame or 2-d ndarray with boolean values only' ) self._check_inplace_setting(value) self._check_setitem_copy() self._where(-key, value, inplace=True) def _ensure_valid_index(self, value): """ ensure that if we don't have an index, that we can create one from the passed value """ # GH5632, make sure that we are a Series convertible if not len(self.index) and is_list_like(value): try: value = Series(value) except: raise ValueError('Cannot set a frame with no defined index ' 'and a value that cannot be converted to a ' 'Series') self._data = self._data.reindex_axis(value.index.copy(), axis=1, fill_value=np.nan) def _set_item(self, key, value): """ Add series to DataFrame in specified column. If series is a numpy-array (not a Series/TimeSeries), it must be the same length as the DataFrames index or an error will be thrown. Series/TimeSeries will be conformed to the DataFrames index to ensure homogeneity. """ self._ensure_valid_index(value) value = self._sanitize_column(key, value) NDFrame._set_item(self, key, value) # check if we are modifying a copy # try to set first as we want an invalid # value exception to occur first if len(self): self._check_setitem_copy() def insert(self, loc, column, value, allow_duplicates=False): """ Insert column into DataFrame at specified location. Raises a ValueError if `column` is already contained in the DataFrame, unless `allow_duplicates` is set to True. Parameters ---------- loc : int Insertion index. Must verify 0 <= loc <= len(columns) column : string, number, or hashable object label of the inserted column value : int, Series, or array-like allow_duplicates : bool, optional """ self._ensure_valid_index(value) value = self._sanitize_column(column, value, broadcast=False) self._data.insert(loc, column, value, allow_duplicates=allow_duplicates) def assign(self, **kwargs): r""" Assign new columns to a DataFrame. Returns a new object with all original columns in addition to new ones. Existing columns that are re-assigned will be overwritten. Parameters ---------- kwargs : keyword, value pairs The column names are keywords. If the values are callable, they are computed on the DataFrame and assigned to the new columns. The callable must not change input DataFrame (though pandas doesn't check it). If the values are not callable, (e.g. a Series, scalar, or array), they are simply assigned. Returns ------- df : DataFrame A new DataFrame with the new columns in addition to all the existing columns. Notes ----- Assigning multiple columns within the same ``assign`` is possible. For Python 3.6 and above, later items in '\*\*kwargs' may refer to newly created or modified columns in 'df'; items are computed and assigned into 'df' in order. For Python 3.5 and below, the order of keyword arguments is not specified, you cannot refer to newly created or modified columns. All items are computed first, and then assigned in alphabetical order. .. versionchanged :: 0.23.0 Keyword argument order is maintained for Python 3.6 and later. Examples -------- >>> df = pd.DataFrame({'A': range(1, 11), 'B': np.random.randn(10)}) Where the value is a callable, evaluated on `df`: >>> df.assign(ln_A = lambda x: np.log(x.A)) A B ln_A 0 1 0.426905 0.000000 1 2 -0.780949 0.693147 2 3 -0.418711 1.098612 3 4 -0.269708 1.386294 4 5 -0.274002 1.609438 5 6 -0.500792 1.791759 6 7 1.649697 1.945910 7 8 -1.495604 2.079442 8 9 0.549296 2.197225 9 10 -0.758542 2.302585 Where the value already exists and is inserted: >>> newcol = np.log(df['A']) >>> df.assign(ln_A=newcol) A B ln_A 0 1 0.426905 0.000000 1 2 -0.780949 0.693147 2 3 -0.418711 1.098612 3 4 -0.269708 1.386294 4 5 -0.274002 1.609438 5 6 -0.500792 1.791759 6 7 1.649697 1.945910 7 8 -1.495604 2.079442 8 9 0.549296 2.197225 9 10 -0.758542 2.302585 Where the keyword arguments depend on each other >>> df = pd.DataFrame({'A': [1, 2, 3]}) >>> df.assign(B=df.A, C=lambda x:x['A']+ x['B']) A B C 0 1 1 2 1 2 2 4 2 3 3 6 """ data = self.copy() # >= 3.6 preserve order of kwargs if PY36: for k, v in kwargs.items(): data[k] = com.apply_if_callable(v, data) else: # <= 3.5: do all calculations first... results = OrderedDict() for k, v in kwargs.items(): results[k] = com.apply_if_callable(v, data) # <= 3.5 and earlier results = sorted(results.items()) # ... and then assign for k, v in results: data[k] = v return data def _sanitize_column(self, key, value, broadcast=True): """ Ensures new columns (which go into the BlockManager as new blocks) are always copied and converted into an array. Parameters ---------- key : object value : scalar, Series, or array-like broadcast : bool, default True If ``key`` matches multiple duplicate column names in the DataFrame, this parameter indicates whether ``value`` should be tiled so that the returned array contains a (duplicated) column for each occurrence of the key. If False, ``value`` will not be tiled. Returns ------- sanitized_column : numpy-array """ def reindexer(value): # reindex if necessary if value.index.equals(self.index) or not len(self.index): value = value._values.copy() else: # GH 4107 try: value = value.reindex(self.index)._values except Exception as e: # duplicate axis if not value.index.is_unique: raise e # other raise TypeError('incompatible index of inserted column ' 'with frame index') return value if isinstance(value, Series): value = reindexer(value) elif isinstance(value, DataFrame): # align right-hand-side columns if self.columns # is multi-index and self[key] is a sub-frame if isinstance(self.columns, MultiIndex) and key in self.columns: loc = self.columns.get_loc(key) if isinstance(loc, (slice, Series, np.ndarray, Index)): cols = maybe_droplevels(self.columns[loc], key) if len(cols) and not cols.equals(value.columns): value = value.reindex(cols, axis=1) # now align rows value = reindexer(value).T elif isinstance(value, ExtensionArray): from pandas.core.series import _sanitize_index # Explicitly copy here, instead of in _sanitize_index, # as sanitize_index won't copy an EA, even with copy=True value = value.copy() value = _sanitize_index(value, self.index, copy=False) elif isinstance(value, Index) or is_sequence(value): from pandas.core.series import _sanitize_index # turn me into an ndarray value = _sanitize_index(value, self.index, copy=False) if not isinstance(value, (np.ndarray, Index)): if isinstance(value, list) and len(value) > 0: value = maybe_convert_platform(value) else: value = com.asarray_tuplesafe(value) elif value.ndim == 2: value = value.copy().T elif isinstance(value, Index): value = value.copy(deep=True) else: value = value.copy() # possibly infer to datetimelike if is_object_dtype(value.dtype): value = maybe_infer_to_datetimelike(value) else: # cast ignores pandas dtypes. so save the dtype first infer_dtype, _ = infer_dtype_from_scalar( value, pandas_dtype=True) # upcast value = cast_scalar_to_array(len(self.index), value) value = maybe_cast_to_datetime(value, infer_dtype) # return internal types directly if is_extension_type(value) or is_extension_array_dtype(value): return value # broadcast across multiple columns if necessary if broadcast and key in self.columns and value.ndim == 1: if (not self.columns.is_unique or isinstance(self.columns, MultiIndex)): existing_piece = self[key] if isinstance(existing_piece, DataFrame): value = np.tile(value, (len(existing_piece.columns), 1)) return np.atleast_2d(np.asarray(value)) @property def _series(self): result = {} for idx, item in enumerate(self.columns): result[item] = Series(self._data.iget(idx), index=self.index, name=item) return result def lookup(self, row_labels, col_labels): """Label-based "fancy indexing" function for DataFrame. Given equal-length arrays of row and column labels, return an array of the values corresponding to each (row, col) pair. Parameters ---------- row_labels : sequence The row labels to use for lookup col_labels : sequence The column labels to use for lookup Notes ----- Akin to:: result = [] for row, col in zip(row_labels, col_labels): result.append(df.get_value(row, col)) Examples -------- values : ndarray The found values """ n = len(row_labels) if n != len(col_labels): raise ValueError('Row labels must have same size as column labels') thresh = 1000 if not self._is_mixed_type or n > thresh: values = self.values ridx = self.index.get_indexer(row_labels) cidx = self.columns.get_indexer(col_labels) if (ridx == -1).any(): raise KeyError('One or more row labels was not found') if (cidx == -1).any(): raise KeyError('One or more column labels was not found') flat_index = ridx * len(self.columns) + cidx result = values.flat[flat_index] else: result = np.empty(n, dtype='O') for i, (r, c) in enumerate(zip(row_labels, col_labels)): result[i] = self._get_value(r, c) if is_object_dtype(result): result = lib.maybe_convert_objects(result) return result # ---------------------------------------------------------------------- # Reindexing and alignment def _reindex_axes(self, axes, level, limit, tolerance, method, fill_value, copy): frame = self columns = axes['columns'] if columns is not None: frame = frame._reindex_columns(columns, method, copy, level, fill_value, limit, tolerance) index = axes['index'] if index is not None: frame = frame._reindex_index(index, method, copy, level, fill_value, limit, tolerance) return frame def _reindex_index(self, new_index, method, copy, level, fill_value=np.nan, limit=None, tolerance=None): new_index, indexer = self.index.reindex(new_index, method=method, level=level, limit=limit, tolerance=tolerance) return self._reindex_with_indexers({0: [new_index, indexer]}, copy=copy, fill_value=fill_value, allow_dups=False) def _reindex_columns(self, new_columns, method, copy, level, fill_value=None, limit=None, tolerance=None): new_columns, indexer = self.columns.reindex(new_columns, method=method, level=level, limit=limit, tolerance=tolerance) return self._reindex_with_indexers({1: [new_columns, indexer]}, copy=copy, fill_value=fill_value, allow_dups=False) def _reindex_multi(self, axes, copy, fill_value): """ we are guaranteed non-Nones in the axes! """ new_index, row_indexer = self.index.reindex(axes['index']) new_columns, col_indexer = self.columns.reindex(axes['columns']) if row_indexer is not None and col_indexer is not None: indexer = row_indexer, col_indexer new_values = algorithms.take_2d_multi(self.values, indexer, fill_value=fill_value) return self._constructor(new_values, index=new_index, columns=new_columns) else: return self._reindex_with_indexers({0: [new_index, row_indexer], 1: [new_columns, col_indexer]}, copy=copy, fill_value=fill_value) @Appender(_shared_docs['align'] % _shared_doc_kwargs) def align(self, other, join='outer', axis=None, level=None, copy=True, fill_value=None, method=None, limit=None, fill_axis=0, broadcast_axis=None): return super(DataFrame, self).align(other, join=join, axis=axis, level=level, copy=copy, fill_value=fill_value, method=method, limit=limit, fill_axis=fill_axis, broadcast_axis=broadcast_axis) @Appender(_shared_docs['reindex'] % _shared_doc_kwargs) @rewrite_axis_style_signature('labels', [('method', None), ('copy', True), ('level', None), ('fill_value', np.nan), ('limit', None), ('tolerance', None)]) def reindex(self, *args, **kwargs): axes = validate_axis_style_args(self, args, kwargs, 'labels', 'reindex') kwargs.update(axes) # Pop these, since the values are in `kwargs` under different names kwargs.pop('axis', None) kwargs.pop('labels', None) return super(DataFrame, self).reindex(**kwargs) @Appender(_shared_docs['reindex_axis'] % _shared_doc_kwargs) def reindex_axis(self, labels, axis=0, method=None, level=None, copy=True, limit=None, fill_value=np.nan): return super(DataFrame, self).reindex_axis(labels=labels, axis=axis, method=method, level=level, copy=copy, limit=limit, fill_value=fill_value) def drop(self, labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors='raise'): """ Drop specified labels from rows or columns. Remove rows or columns by specifying label names and corresponding axis, or by specifying directly index or column names. When using a multi-index, labels on different levels can be removed by specifying the level. Parameters ---------- labels : single label or list-like Index or column labels to drop. axis : {0 or 'index', 1 or 'columns'}, default 0 Whether to drop labels from the index (0 or 'index') or columns (1 or 'columns'). index, columns : single label or list-like Alternative to specifying axis (``labels, axis=1`` is equivalent to ``columns=labels``). .. versionadded:: 0.21.0 level : int or level name, optional For MultiIndex, level from which the labels will be removed. inplace : bool, default False If True, do operation inplace and return None. errors : {'ignore', 'raise'}, default 'raise' If 'ignore', suppress error and only existing labels are dropped. Returns ------- dropped : pandas.DataFrame See Also -------- DataFrame.loc : Label-location based indexer for selection by label. DataFrame.dropna : Return DataFrame with labels on given axis omitted where (all or any) data are missing DataFrame.drop_duplicates : Return DataFrame with duplicate rows removed, optionally only considering certain columns Series.drop : Return Series with specified index labels removed. Raises ------ KeyError If none of the labels are found in the selected axis Examples -------- >>> df = pd.DataFrame(np.arange(12).reshape(3,4), ... columns=['A', 'B', 'C', 'D']) >>> df A B C D 0 0 1 2 3 1 4 5 6 7 2 8 9 10 11 Drop columns >>> df.drop(['B', 'C'], axis=1) A D 0 0 3 1 4 7 2 8 11 >>> df.drop(columns=['B', 'C']) A D 0 0 3 1 4 7 2 8 11 Drop a row by index >>> df.drop([0, 1]) A B C D 2 8 9 10 11 Drop columns and/or rows of MultiIndex DataFrame >>> midx = pd.MultiIndex(levels=[['lama', 'cow', 'falcon'], ... ['speed', 'weight', 'length']], ... labels=[[0, 0, 0, 1, 1, 1, 2, 2, 2], ... [0, 1, 2, 0, 1, 2, 0, 1, 2]]) >>> df = pd.DataFrame(index=midx, columns=['big', 'small'], ... data=[[45, 30], [200, 100], [1.5, 1], [30, 20], ... [250, 150], [1.5, 0.8], [320, 250], ... [1, 0.8], [0.3,0.2]]) >>> df big small lama speed 45.0 30.0 weight 200.0 100.0 length 1.5 1.0 cow speed 30.0 20.0 weight 250.0 150.0 length 1.5 0.8 falcon speed 320.0 250.0 weight 1.0 0.8 length 0.3 0.2 >>> df.drop(index='cow', columns='small') big lama speed 45.0 weight 200.0 length 1.5 falcon speed 320.0 weight 1.0 length 0.3 >>> df.drop(index='length', level=1) big small lama speed 45.0 30.0 weight 200.0 100.0 cow speed 30.0 20.0 weight 250.0 150.0 falcon speed 320.0 250.0 weight 1.0 0.8 """ return super(DataFrame, self).drop(labels=labels, axis=axis, index=index, columns=columns, level=level, inplace=inplace, errors=errors) @rewrite_axis_style_signature('mapper', [('copy', True), ('inplace', False), ('level', None)]) def rename(self, *args, **kwargs): """Alter axes labels. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don't throw an error. See the :ref:`user guide <basics.rename>` for more. Parameters ---------- mapper, index, columns : dict-like or function, optional dict-like or functions transformations to apply to that axis' values. Use either ``mapper`` and ``axis`` to specify the axis to target with ``mapper``, or ``index`` and ``columns``. axis : int or str, optional Axis to target with ``mapper``. Can be either the axis name ('index', 'columns') or number (0, 1). The default is 'index'. copy : boolean, default True Also copy underlying data inplace : boolean, default False Whether to return a new DataFrame. If True then value of copy is ignored. level : int or level name, default None In case of a MultiIndex, only rename labels in the specified level. Returns ------- renamed : DataFrame See Also -------- pandas.DataFrame.rename_axis Examples -------- ``DataFrame.rename`` supports two calling conventions * ``(index=index_mapper, columns=columns_mapper, ...)`` * ``(mapper, axis={'index', 'columns'}, ...)`` We *highly* recommend using keyword arguments to clarify your intent. >>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) >>> df.rename(index=str, columns={"A": "a", "B": "c"}) a c 0 1 4 1 2 5 2 3 6 >>> df.rename(index=str, columns={"A": "a", "C": "c"}) a B 0 1 4 1 2 5 2 3 6 Using axis-style parameters >>> df.rename(str.lower, axis='columns') a b 0 1 4 1 2 5 2 3 6 >>> df.rename({1: 2, 2: 4}, axis='index') A B 0 1 4 2 2 5 4 3 6 """ axes = validate_axis_style_args(self, args, kwargs, 'mapper', 'rename') kwargs.update(axes) # Pop these, since the values are in `kwargs` under different names kwargs.pop('axis', None) kwargs.pop('mapper', None) return super(DataFrame, self).rename(**kwargs) @Substitution(**_shared_doc_kwargs) @Appender(NDFrame.fillna.__doc__) def fillna(self, value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs): return super(DataFrame, self).fillna(value=value, method=method, axis=axis, inplace=inplace, limit=limit, downcast=downcast, **kwargs) @Appender(_shared_docs['replace'] % _shared_doc_kwargs) def replace(self, to_replace=None, value=None, inplace=False, limit=None, regex=False, method='pad'): return super(DataFrame, self).replace(to_replace=to_replace, value=value, inplace=inplace, limit=limit, regex=regex, method=method) @Appender(_shared_docs['shift'] % _shared_doc_kwargs) def shift(self, periods=1, freq=None, axis=0): return super(DataFrame, self).shift(periods=periods, freq=freq, axis=axis) def set_index(self, keys, drop=True, append=False, inplace=False, verify_integrity=False): """ Set the DataFrame index (row labels) using one or more existing columns. By default yields a new object. Parameters ---------- keys : column label or list of column labels / arrays drop : boolean, default True Delete columns to be used as the new index append : boolean, default False Whether to append columns to existing index inplace : boolean, default False Modify the DataFrame in place (do not create a new object) verify_integrity : boolean, default False Check the new index for duplicates. Otherwise defer the check until necessary. Setting to False will improve the performance of this method Examples -------- >>> df = pd.DataFrame({'month': [1, 4, 7, 10], ... 'year': [2012, 2014, 2013, 2014], ... 'sale':[55, 40, 84, 31]}) month sale year 0 1 55 2012 1 4 40 2014 2 7 84 2013 3 10 31 2014 Set the index to become the 'month' column: >>> df.set_index('month') sale year month 1 55 2012 4 40 2014 7 84 2013 10 31 2014 Create a multi-index using columns 'year' and 'month': >>> df.set_index(['year', 'month']) sale year month 2012 1 55 2014 4 40 2013 7 84 2014 10 31 Create a multi-index using a set of values and a column: >>> df.set_index([[1, 2, 3, 4], 'year']) month sale year 1 2012 1 55 2 2014 4 40 3 2013 7 84 4 2014 10 31 Returns ------- dataframe : DataFrame """ inplace = validate_bool_kwarg(inplace, 'inplace') if not isinstance(keys, list): keys = [keys] if inplace: frame = self else: frame = self.copy() arrays = [] names = [] if append: names = [x for x in self.index.names] if isinstance(self.index, MultiIndex): for i in range(self.index.nlevels): arrays.append(self.index._get_level_values(i)) else: arrays.append(self.index) to_remove = [] for col in keys: if isinstance(col, MultiIndex): # append all but the last column so we don't have to modify # the end of this loop for n in range(col.nlevels - 1): arrays.append(col._get_level_values(n)) level = col._get_level_values(col.nlevels - 1) names.extend(col.names) elif isinstance(col, Series): level = col._values names.append(col.name) elif isinstance(col, Index): level = col names.append(col.name) elif isinstance(col, (list, np.ndarray, Index)): level = col names.append(None) else: level = frame[col]._values names.append(col) if drop: to_remove.append(col) arrays.append(level) index = ensure_index_from_sequences(arrays, names) if verify_integrity and not index.is_unique: duplicates = index[index.duplicated()].unique() raise ValueError('Index has duplicate keys: {dup}'.format( dup=duplicates)) for c in to_remove: del frame[c] # clear up memory usage index._cleanup() frame.index = index if not inplace: return frame def reset_index(self, level=None, drop=False, inplace=False, col_level=0, col_fill=''): """ For DataFrame with multi-level index, return new DataFrame with labeling information in the columns under the index names, defaulting to 'level_0', 'level_1', etc. if any are None. For a standard index, the index name will be used (if set), otherwise a default 'index' or 'level_0' (if 'index' is already taken) will be used. Parameters ---------- level : int, str, tuple, or list, default None Only remove the given levels from the index. Removes all levels by default drop : boolean, default False Do not try to insert index into dataframe columns. This resets the index to the default integer index. inplace : boolean, default False Modify the DataFrame in place (do not create a new object) col_level : int or str, default 0 If the columns have multiple levels, determines which level the labels are inserted into. By default it is inserted into the first level. col_fill : object, default '' If the columns have multiple levels, determines how the other levels are named. If None then the index name is repeated. Returns ------- resetted : DataFrame Examples -------- >>> df = pd.DataFrame([('bird', 389.0), ... ('bird', 24.0), ... ('mammal', 80.5), ... ('mammal', np.nan)], ... index=['falcon', 'parrot', 'lion', 'monkey'], ... columns=('class', 'max_speed')) >>> df class max_speed falcon bird 389.0 parrot bird 24.0 lion mammal 80.5 monkey mammal NaN When we reset the index, the old index is added as a column, and a new sequential index is used: >>> df.reset_index() index class max_speed 0 falcon bird 389.0 1 parrot bird 24.0 2 lion mammal 80.5 3 monkey mammal NaN We can use the `drop` parameter to avoid the old index being added as a column: >>> df.reset_index(drop=True) class max_speed 0 bird 389.0 1 bird 24.0 2 mammal 80.5 3 mammal NaN You can also use `reset_index` with `MultiIndex`. >>> index = pd.MultiIndex.from_tuples([('bird', 'falcon'), ... ('bird', 'parrot'), ... ('mammal', 'lion'), ... ('mammal', 'monkey')], ... names=['class', 'name']) >>> columns = pd.MultiIndex.from_tuples([('speed', 'max'), ... ('species', 'type')]) >>> df = pd.DataFrame([(389.0, 'fly'), ... ( 24.0, 'fly'), ... ( 80.5, 'run'), ... (np.nan, 'jump')], ... index=index, ... columns=columns) >>> df speed species max type class name bird falcon 389.0 fly parrot 24.0 fly mammal lion 80.5 run monkey NaN jump If the index has multiple levels, we can reset a subset of them: >>> df.reset_index(level='class') class speed species max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump If we are not dropping the index, by default, it is placed in the top level. We can place it in another level: >>> df.reset_index(level='class', col_level=1) speed species class max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump When the index is inserted under another level, we can specify under which one with the parameter `col_fill`: >>> df.reset_index(level='class', col_level=1, col_fill='species') species speed species class max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump If we specify a nonexistent level for `col_fill`, it is created: >>> df.reset_index(level='class', col_level=1, col_fill='genus') genus speed species class max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump """ inplace = validate_bool_kwarg(inplace, 'inplace') if inplace: new_obj = self else: new_obj = self.copy() def _maybe_casted_values(index, labels=None): values = index._values if not isinstance(index, (PeriodIndex, DatetimeIndex)): if values.dtype == np.object_: values = lib.maybe_convert_objects(values) # if we have the labels, extract the values with a mask if labels is not None: mask = labels == -1 # we can have situations where the whole mask is -1, # meaning there is nothing found in labels, so make all nan's if mask.all(): values = np.empty(len(mask)) values.fill(np.nan) else: values = values.take(labels) if mask.any(): values, changed = maybe_upcast_putmask( values, mask, np.nan) return values new_index = ibase.default_index(len(new_obj)) if level is not None: if not isinstance(level, (tuple, list)): level = [level] level = [self.index._get_level_number(lev) for lev in level] if len(level) < self.index.nlevels: new_index = self.index.droplevel(level) if not drop: if isinstance(self.index, MultiIndex): names = [n if n is not None else ('level_%d' % i) for (i, n) in enumerate(self.index.names)] to_insert = lzip(self.index.levels, self.index.labels) else: default = 'index' if 'index' not in self else 'level_0' names = ([default] if self.index.name is None else [self.index.name]) to_insert = ((self.index, None),) multi_col = isinstance(self.columns, MultiIndex) for i, (lev, lab) in reversed(list(enumerate(to_insert))): if not (level is None or i in level): continue name = names[i] if multi_col: col_name = (list(name) if isinstance(name, tuple) else [name]) if col_fill is None: if len(col_name) not in (1, self.columns.nlevels): raise ValueError("col_fill=None is incompatible " "with incomplete column name " "{}".format(name)) col_fill = col_name[0] lev_num = self.columns._get_level_number(col_level) name_lst = [col_fill] * lev_num + col_name missing = self.columns.nlevels - len(name_lst) name_lst += [col_fill] * missing name = tuple(name_lst) # to ndarray and maybe infer different dtype level_values = _maybe_casted_values(lev, lab) new_obj.insert(0, name, level_values) new_obj.index = new_index if not inplace: return new_obj # ---------------------------------------------------------------------- # Reindex-based selection methods @Appender(_shared_docs['isna'] % _shared_doc_kwargs) def isna(self): return super(DataFrame, self).isna() @Appender(_shared_docs['isna'] % _shared_doc_kwargs) def isnull(self): return super(DataFrame, self).isnull() @Appender(_shared_docs['notna'] % _shared_doc_kwargs) def notna(self): return super(DataFrame, self).notna() @Appender(_shared_docs['notna'] % _shared_doc_kwargs) def notnull(self): return super(DataFrame, self).notnull() def dropna(self, axis=0, how='any', thresh=None, subset=None, inplace=False): """ Remove missing values. See the :ref:`User Guide <missing_data>` for more on which values are considered missing, and how to work with missing data. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 Determine if rows or columns which contain missing values are removed. * 0, or 'index' : Drop rows which contain missing values. * 1, or 'columns' : Drop columns which contain missing value. .. deprecated:: 0.23.0 Pass tuple or list to drop on multiple axes. Only a single axis is allowed. how : {'any', 'all'}, default 'any' Determine if row or column is removed from DataFrame, when we have at least one NA or all NA. * 'any' : If any NA values are present, drop that row or column. * 'all' : If all values are NA, drop that row or column. thresh : int, optional Require that many non-NA values. subset : array-like, optional Labels along other axis to consider, e.g. if you are dropping rows these would be a list of columns to include. inplace : bool, default False If True, do operation inplace and return None. Returns ------- DataFrame DataFrame with NA entries dropped from it. See Also -------- DataFrame.isna: Indicate missing values. DataFrame.notna : Indicate existing (non-missing) values. DataFrame.fillna : Replace missing values. Series.dropna : Drop missing values. Index.dropna : Drop missing indices. Examples -------- >>> df = pd.DataFrame({"name": ['Alfred', 'Batman', 'Catwoman'], ... "toy": [np.nan, 'Batmobile', 'Bullwhip'], ... "born": [pd.NaT, pd.Timestamp("1940-04-25"), ... pd.NaT]}) >>> df name toy born 0 Alfred NaN NaT 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT Drop the rows where at least one element is missing. >>> df.dropna() name toy born 1 Batman Batmobile 1940-04-25 Drop the columns where at least one element is missing. >>> df.dropna(axis='columns') name 0 Alfred 1 Batman 2 Catwoman Drop the rows where all elements are missing. >>> df.dropna(how='all') name toy born 0 Alfred NaN NaT 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT Keep only the rows with at least 2 non-NA values. >>> df.dropna(thresh=2) name toy born 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT Define in which columns to look for missing values. >>> df.dropna(subset=['name', 'born']) name toy born 1 Batman Batmobile 1940-04-25 Keep the DataFrame with valid entries in the same variable. >>> df.dropna(inplace=True) >>> df name toy born 1 Batman Batmobile 1940-04-25 """ inplace = validate_bool_kwarg(inplace, 'inplace') if isinstance(axis, (tuple, list)): # GH20987 msg = ("supplying multiple axes to axis is deprecated and " "will be removed in a future version.") warnings.warn(msg, FutureWarning, stacklevel=2) result = self for ax in axis: result = result.dropna(how=how, thresh=thresh, subset=subset, axis=ax) else: axis = self._get_axis_number(axis) agg_axis = 1 - axis agg_obj = self if subset is not None: ax = self._get_axis(agg_axis) indices = ax.get_indexer_for(subset) check = indices == -1 if check.any(): raise KeyError(list(np.compress(check, subset))) agg_obj = self.take(indices, axis=agg_axis) count = agg_obj.count(axis=agg_axis) if thresh is not None: mask = count >= thresh elif how == 'any': mask = count == len(agg_obj._get_axis(agg_axis)) elif how == 'all': mask = count > 0 else: if how is not None: raise ValueError('invalid how option: {h}'.format(h=how)) else: raise TypeError('must specify how or thresh') result = self._take(mask.nonzero()[0], axis=axis) if inplace: self._update_inplace(result) else: return result def drop_duplicates(self, subset=None, keep='first', inplace=False): """ Return DataFrame with duplicate rows removed, optionally only considering certain columns Parameters ---------- subset : column label or sequence of labels, optional Only consider certain columns for identifying duplicates, by default use all of the columns keep : {'first', 'last', False}, default 'first' - ``first`` : Drop duplicates except for the first occurrence. - ``last`` : Drop duplicates except for the last occurrence. - False : Drop all duplicates. inplace : boolean, default False Whether to drop duplicates in place or to return a copy Returns ------- deduplicated : DataFrame """ inplace = validate_bool_kwarg(inplace, 'inplace') duplicated = self.duplicated(subset, keep=keep) if inplace: inds, = (-duplicated).nonzero() new_data = self._data.take(inds) self._update_inplace(new_data) else: return self[-duplicated] def duplicated(self, subset=None, keep='first'): """ Return boolean Series denoting duplicate rows, optionally only considering certain columns Parameters ---------- subset : column label or sequence of labels, optional Only consider certain columns for identifying duplicates, by default use all of the columns keep : {'first', 'last', False}, default 'first' - ``first`` : Mark duplicates as ``True`` except for the first occurrence. - ``last`` : Mark duplicates as ``True`` except for the last occurrence. - False : Mark all duplicates as ``True``. Returns ------- duplicated : Series """ from pandas.core.sorting import get_group_index from pandas._libs.hashtable import duplicated_int64, _SIZE_HINT_LIMIT def f(vals): labels, shape = algorithms.factorize( vals, size_hint=min(len(self), _SIZE_HINT_LIMIT)) return labels.astype('i8', copy=False), len(shape) if subset is None: subset = self.columns elif (not np.iterable(subset) or isinstance(subset, compat.string_types) or isinstance(subset, tuple) and subset in self.columns): subset = subset, # Verify all columns in subset exist in the queried dataframe # Otherwise, raise a KeyError, same as if you try to __getitem__ with a # key that doesn't exist. diff = Index(subset).difference(self.columns) if not diff.empty: raise KeyError(diff) vals = (col.values for name, col in self.iteritems() if name in subset) labels, shape = map(list, zip(*map(f, vals))) ids = get_group_index(labels, shape, sort=False, xnull=False) return Series(duplicated_int64(ids, keep), index=self.index) # ---------------------------------------------------------------------- # Sorting @Appender(_shared_docs['sort_values'] % _shared_doc_kwargs) def sort_values(self, by, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last'): inplace = validate_bool_kwarg(inplace, 'inplace') axis = self._get_axis_number(axis) stacklevel = 2 # Number of stack levels from df.sort_values if not isinstance(by, list): by = [by] if is_sequence(ascending) and len(by) != len(ascending): raise ValueError('Length of ascending (%d) != length of by (%d)' % (len(ascending), len(by))) if len(by) > 1: from pandas.core.sorting import lexsort_indexer keys = [] for x in by: k = self._get_label_or_level_values(x, axis=axis, stacklevel=stacklevel) keys.append(k) indexer = lexsort_indexer(keys, orders=ascending, na_position=na_position) indexer = ensure_platform_int(indexer) else: from pandas.core.sorting import nargsort by = by[0] k = self._get_label_or_level_values(by, axis=axis, stacklevel=stacklevel) if isinstance(ascending, (tuple, list)): ascending = ascending[0] indexer = nargsort(k, kind=kind, ascending=ascending, na_position=na_position) new_data = self._data.take(indexer, axis=self._get_block_manager_axis(axis), verify=False) if inplace: return self._update_inplace(new_data) else: return self._constructor(new_data).__finalize__(self) @Appender(_shared_docs['sort_index'] % _shared_doc_kwargs) def sort_index(self, axis=0, level=None, ascending=True, inplace=False, kind='quicksort', na_position='last', sort_remaining=True, by=None): # TODO: this can be combined with Series.sort_index impl as # almost identical inplace = validate_bool_kwarg(inplace, 'inplace') # 10726 if by is not None: warnings.warn("by argument to sort_index is deprecated, " "please use .sort_values(by=...)", FutureWarning, stacklevel=2) if level is not None: raise ValueError("unable to simultaneously sort by and level") return self.sort_values(by, axis=axis, ascending=ascending, inplace=inplace) axis = self._get_axis_number(axis) labels = self._get_axis(axis) # make sure that the axis is lexsorted to start # if not we need to reconstruct to get the correct indexer labels = labels._sort_levels_monotonic() if level is not None: new_axis, indexer = labels.sortlevel(level, ascending=ascending, sort_remaining=sort_remaining) elif isinstance(labels, MultiIndex): from pandas.core.sorting import lexsort_indexer indexer = lexsort_indexer(labels._get_labels_for_sorting(), orders=ascending, na_position=na_position) else: from pandas.core.sorting import nargsort # Check monotonic-ness before sort an index # GH11080 if ((ascending and labels.is_monotonic_increasing) or (not ascending and labels.is_monotonic_decreasing)): if inplace: return else: return self.copy() indexer = nargsort(labels, kind=kind, ascending=ascending, na_position=na_position) baxis = self._get_block_manager_axis(axis) new_data = self._data.take(indexer, axis=baxis, verify=False) # reconstruct axis if needed new_data.axes[baxis] = new_data.axes[baxis]._sort_levels_monotonic() if inplace: return self._update_inplace(new_data) else: return self._constructor(new_data).__finalize__(self) def sortlevel(self, level=0, axis=0, ascending=True, inplace=False, sort_remaining=True): """Sort multilevel index by chosen axis and primary level. Data will be lexicographically sorted by the chosen level followed by the other levels (in order). .. deprecated:: 0.20.0 Use :meth:`DataFrame.sort_index` Parameters ---------- level : int axis : {0 or 'index', 1 or 'columns'}, default 0 ascending : boolean, default True inplace : boolean, default False Sort the DataFrame without creating a new instance sort_remaining : boolean, default True Sort by the other levels too. Returns ------- sorted : DataFrame See Also -------- DataFrame.sort_index(level=...) """ warnings.warn("sortlevel is deprecated, use sort_index(level= ...)", FutureWarning, stacklevel=2) return self.sort_index(level=level, axis=axis, ascending=ascending, inplace=inplace, sort_remaining=sort_remaining) def nlargest(self, n, columns, keep='first'): """ Return the first `n` rows ordered by `columns` in descending order. Return the first `n` rows with the largest values in `columns`, in descending order. The columns that are not specified are returned as well, but not used for ordering. This method is equivalent to ``df.sort_values(columns, ascending=False).head(n)``, but more performant. Parameters ---------- n : int Number of rows to return. columns : label or list of labels Column label(s) to order by. keep : {'first', 'last', 'all'}, default 'first' Where there are duplicate values: - `first` : prioritize the first occurrence(s) - `last` : prioritize the last occurrence(s) - ``all`` : do not drop any duplicates, even it means selecting more than `n` items. .. versionadded:: 0.24.0 Returns ------- DataFrame The first `n` rows ordered by the given columns in descending order. See Also -------- DataFrame.nsmallest : Return the first `n` rows ordered by `columns` in ascending order. DataFrame.sort_values : Sort DataFrame by the values DataFrame.head : Return the first `n` rows without re-ordering. Notes ----- This function cannot be used with all column types. For example, when specifying columns with `object` or `category` dtypes, ``TypeError`` is raised. Examples -------- >>> df = pd.DataFrame({'a': [1, 10, 8, 11, 8, 2], ... 'b': list('abdcef'), ... 'c': [1.0, 2.0, np.nan, 3.0, 4.0, 9.0]}) >>> df a b c 0 1 a 1.0 1 10 b 2.0 2 8 d NaN 3 11 c 3.0 4 8 e 4.0 5 2 f 9.0 In the following example, we will use ``nlargest`` to select the three rows having the largest values in column "a". >>> df.nlargest(3, 'a') a b c 3 11 c 3.0 1 10 b 2.0 2 8 d NaN When using ``keep='last'``, ties are resolved in reverse order: >>> df.nlargest(3, 'a', keep='last') a b c 3 11 c 3.0 1 10 b 2.0 4 8 e 4.0 When using ``keep='all'``, all duplicate items are maintained: >>> df.nlargest(3, 'a', keep='all') a b c 3 11 c 3.0 1 10 b 2.0 2 8 d NaN 4 8 e 4.0 To order by the largest values in column "a" and then "c", we can specify multiple columns like in the next example. >>> df.nlargest(3, ['a', 'c']) a b c 4 8 e 4.0 3 11 c 3.0 1 10 b 2.0 Attempting to use ``nlargest`` on non-numeric dtypes will raise a ``TypeError``: >>> df.nlargest(3, 'b') Traceback (most recent call last): TypeError: Column 'b' has dtype object, cannot use method 'nlargest' """ return algorithms.SelectNFrame(self, n=n, keep=keep, columns=columns).nlargest() def nsmallest(self, n, columns, keep='first'): """Get the rows of a DataFrame sorted by the `n` smallest values of `columns`. Parameters ---------- n : int Number of items to retrieve columns : list or str Column name or names to order by keep : {'first', 'last', 'all'}, default 'first' Where there are duplicate values: - ``first`` : take the first occurrence. - ``last`` : take the last occurrence. - ``all`` : do not drop any duplicates, even it means selecting more than `n` items. .. versionadded:: 0.24.0 Returns ------- DataFrame Examples -------- >>> df = pd.DataFrame({'a': [1, 10, 8, 11, 8, 2], ... 'b': list('abdcef'), ... 'c': [1.0, 2.0, np.nan, 3.0, 4.0, 9.0]}) >>> df a b c 0 1 a 1.0 1 10 b 2.0 2 8 d NaN 3 11 c 3.0 4 8 e 4.0 5 2 f 9.0 In the following example, we will use ``nsmallest`` to select the three rows having the smallest values in column "a". >>> df.nsmallest(3, 'a') a b c 0 1 a 1.0 5 2 f 9.0 2 8 d NaN When using ``keep='last'``, ties are resolved in reverse order: >>> df.nsmallest(3, 'a', keep='last') a b c 0 1 a 1.0 5 2 f 9.0 4 8 e 4.0 When using ``keep='all'``, all duplicate items are maintained: >>> df.nsmallest(3, 'a', keep='all') a b c 0 1 a 1.0 5 2 f 9.0 2 8 d NaN 4 8 e 4.0 To order by the largest values in column "a" and then "c", we can specify multiple columns like in the next example. >>> df.nsmallest(3, ['a', 'c']) a b c 0 1 a 1.0 5 2 f 9.0 4 8 e 4.0 Attempting to use ``nsmallest`` on non-numeric dtypes will raise a ``TypeError``: >>> df.nsmallest(3, 'b') Traceback (most recent call last): TypeError: Column 'b' has dtype object, cannot use method 'nsmallest' """ return algorithms.SelectNFrame(self, n=n, keep=keep, columns=columns).nsmallest() def swaplevel(self, i=-2, j=-1, axis=0): """ Swap levels i and j in a MultiIndex on a particular axis Parameters ---------- i, j : int, string (can be mixed) Level of index to be swapped. Can pass level name as string. Returns ------- swapped : same type as caller (new object) .. versionchanged:: 0.18.1 The indexes ``i`` and ``j`` are now optional, and default to the two innermost levels of the index. """ result = self.copy() axis = self._get_axis_number(axis) if axis == 0: result.index = result.index.swaplevel(i, j) else: result.columns = result.columns.swaplevel(i, j) return result def reorder_levels(self, order, axis=0): """ Rearrange index levels using input order. May not drop or duplicate levels Parameters ---------- order : list of int or list of str List representing new level order. Reference level by number (position) or by key (label). axis : int Where to reorder levels. Returns ------- type of caller (new object) """ axis = self._get_axis_number(axis) if not isinstance(self._get_axis(axis), MultiIndex): # pragma: no cover raise TypeError('Can only reorder levels on a hierarchical axis.') result = self.copy() if axis == 0: result.index = result.index.reorder_levels(order) else: result.columns = result.columns.reorder_levels(order) return result # ---------------------------------------------------------------------- # Arithmetic / combination related def _combine_frame(self, other, func, fill_value=None, level=None): this, other = self.align(other, join='outer', level=level, copy=False) new_index, new_columns = this.index, this.columns def _arith_op(left, right): # for the mixed_type case where we iterate over columns, # _arith_op(left, right) is equivalent to # left._binop(right, func, fill_value=fill_value) left, right = ops.fill_binop(left, right, fill_value) return func(left, right) if this._is_mixed_type or other._is_mixed_type: # iterate over columns if this.columns.is_unique: # unique columns result = {col: _arith_op(this[col], other[col]) for col in this} result = self._constructor(result, index=new_index, columns=new_columns, copy=False) else: # non-unique columns result = {i: _arith_op(this.iloc[:, i], other.iloc[:, i]) for i, col in enumerate(this.columns)} result = self._constructor(result, index=new_index, copy=False) result.columns = new_columns return result else: result = _arith_op(this.values, other.values) return self._constructor(result, index=new_index, columns=new_columns, copy=False) def _combine_match_index(self, other, func, level=None): left, right = self.align(other, join='outer', axis=0, level=level, copy=False) new_data = func(left.values.T, right.values).T return self._constructor(new_data, index=left.index, columns=self.columns, copy=False) def _combine_match_columns(self, other, func, level=None, try_cast=True): left, right = self.align(other, join='outer', axis=1, level=level, copy=False) new_data = left._data.eval(func=func, other=right, axes=[left.columns, self.index], try_cast=try_cast) return self._constructor(new_data) def _combine_const(self, other, func, errors='raise', try_cast=True): new_data = self._data.eval(func=func, other=other, errors=errors, try_cast=try_cast) return self._constructor(new_data) def _compare_frame(self, other, func, str_rep): # compare_frame assumes self._indexed_same(other) import pandas.core.computation.expressions as expressions # unique if self.columns.is_unique: def _compare(a, b): return {col: func(a[col], b[col]) for col in a.columns} new_data = expressions.evaluate(_compare, str_rep, self, other) return self._constructor(data=new_data, index=self.index, columns=self.columns, copy=False) # non-unique else: def _compare(a, b): return {i: func(a.iloc[:, i], b.iloc[:, i]) for i, col in enumerate(a.columns)} new_data = expressions.evaluate(_compare, str_rep, self, other) result = self._constructor(data=new_data, index=self.index, copy=False) result.columns = self.columns return result def combine(self, other, func, fill_value=None, overwrite=True): """ Perform column-wise combine with another DataFrame based on a passed function. Combines a DataFrame with `other` DataFrame using `func` to element-wise combine columns. The row and column indexes of the resulting DataFrame will be the union of the two. Parameters ---------- other : DataFrame The DataFrame to merge column-wise. func : function Function that takes two series as inputs and return a Series or a scalar. Used to merge the two dataframes column by columns. fill_value : scalar value, default None The value to fill NaNs with prior to passing any column to the merge func. overwrite : boolean, default True If True, columns in `self` that do not exist in `other` will be overwritten with NaNs. Returns ------- result : DataFrame Examples -------- Combine using a simple function that chooses the smaller column. >>> df1 = pd.DataFrame({'A': [0, 0], 'B': [4, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) >>> take_smaller = lambda s1, s2: s1 if s1.sum() < s2.sum() else s2 >>> df1.combine(df2, take_smaller) A B 0 0 3 1 0 3 Example using a true element-wise combine function. >>> df1 = pd.DataFrame({'A': [5, 0], 'B': [2, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) >>> df1.combine(df2, np.minimum) A B 0 1 2 1 0 3 Using `fill_value` fills Nones prior to passing the column to the merge function. >>> df1 = pd.DataFrame({'A': [0, 0], 'B': [None, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) >>> df1.combine(df2, take_smaller, fill_value=-5) A B 0 0 -5.0 1 0 4.0 However, if the same element in both dataframes is None, that None is preserved >>> df1 = pd.DataFrame({'A': [0, 0], 'B': [None, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [None, 3]}) >>> df1.combine(df2, take_smaller, fill_value=-5) A B 0 0 NaN 1 0 3.0 Example that demonstrates the use of `overwrite` and behavior when the axis differ between the dataframes. >>> df1 = pd.DataFrame({'A': [0, 0], 'B': [4, 4]}) >>> df2 = pd.DataFrame({'B': [3, 3], 'C': [-10, 1],}, index=[1, 2]) >>> df1.combine(df2, take_smaller) A B C 0 NaN NaN NaN 1 NaN 3.0 -10.0 2 NaN 3.0 1.0 >>> df1.combine(df2, take_smaller, overwrite=False) A B C 0 0.0 NaN NaN 1 0.0 3.0 -10.0 2 NaN 3.0 1.0 Demonstrating the preference of the passed in dataframe. >>> df2 = pd.DataFrame({'B': [3, 3], 'C': [1, 1],}, index=[1, 2]) >>> df2.combine(df1, take_smaller) A B C 0 0.0 NaN NaN 1 0.0 3.0 NaN 2 NaN 3.0 NaN >>> df2.combine(df1, take_smaller, overwrite=False) A B C 0 0.0 NaN NaN 1 0.0 3.0 1.0 2 NaN 3.0 1.0 See Also -------- DataFrame.combine_first : Combine two DataFrame objects and default to non-null values in frame calling the method """ other_idxlen = len(other.index) # save for compare this, other = self.align(other, copy=False) new_index = this.index if other.empty and len(new_index) == len(self.index): return self.copy() if self.empty and len(other) == other_idxlen: return other.copy() # sorts if possible new_columns = this.columns.union(other.columns) do_fill = fill_value is not None result = {} for col in new_columns: series = this[col] otherSeries = other[col] this_dtype = series.dtype other_dtype = otherSeries.dtype this_mask = isna(series) other_mask = isna(otherSeries) # don't overwrite columns unecessarily # DO propagate if this column is not in the intersection if not overwrite and other_mask.all(): result[col] = this[col].copy() continue if do_fill: series = series.copy() otherSeries = otherSeries.copy() series[this_mask] = fill_value otherSeries[other_mask] = fill_value # if we have different dtypes, possibly promote new_dtype = this_dtype if not is_dtype_equal(this_dtype, other_dtype): new_dtype = find_common_type([this_dtype, other_dtype]) if not is_dtype_equal(this_dtype, new_dtype): series = series.astype(new_dtype) if not is_dtype_equal(other_dtype, new_dtype): otherSeries = otherSeries.astype(new_dtype) # see if we need to be represented as i8 (datetimelike) # try to keep us at this dtype needs_i8_conversion_i = needs_i8_conversion(new_dtype) if needs_i8_conversion_i: arr = func(series, otherSeries, True) else: arr = func(series, otherSeries) arr = maybe_downcast_to_dtype(arr, this_dtype) result[col] = arr # convert_objects just in case return self._constructor(result, index=new_index, columns=new_columns)._convert(datetime=True, copy=False) def combine_first(self, other): """ Update null elements with value in the same location in `other`. Combine two DataFrame objects by filling null values in one DataFrame with non-null values from other DataFrame. The row and column indexes of the resulting DataFrame will be the union of the two. Parameters ---------- other : DataFrame Provided DataFrame to use to fill null values. Returns ------- combined : DataFrame Examples -------- >>> df1 = pd.DataFrame({'A': [None, 0], 'B': [None, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) >>> df1.combine_first(df2) A B 0 1.0 3.0 1 0.0 4.0 Null values still persist if the location of that null value does not exist in `other` >>> df1 = pd.DataFrame({'A': [None, 0], 'B': [4, None]}) >>> df2 = pd.DataFrame({'B': [3, 3], 'C': [1, 1]}, index=[1, 2]) >>> df1.combine_first(df2) A B C 0 NaN 4.0 NaN 1 0.0 3.0 1.0 2 NaN 3.0 1.0 See Also -------- DataFrame.combine : Perform series-wise operation on two DataFrames using a given function """ import pandas.core.computation.expressions as expressions def combiner(x, y, needs_i8_conversion=False): x_values = x.values if hasattr(x, 'values') else x y_values = y.values if hasattr(y, 'values') else y if needs_i8_conversion: mask = isna(x) x_values = x_values.view('i8') y_values = y_values.view('i8') else: mask = isna(x_values) return expressions.where(mask, y_values, x_values) return self.combine(other, combiner, overwrite=False) def update(self, other, join='left', overwrite=True, filter_func=None, raise_conflict=False): """ Modify in place using non-NA values from another DataFrame. Aligns on indices. There is no return value. Parameters ---------- other : DataFrame, or object coercible into a DataFrame Should have at least one matching index/column label with the original DataFrame. If a Series is passed, its name attribute must be set, and that will be used as the column name to align with the original DataFrame. join : {'left'}, default 'left' Only left join is implemented, keeping the index and columns of the original object. overwrite : bool, default True How to handle non-NA values for overlapping keys: * True: overwrite original DataFrame's values with values from `other`. * False: only update values that are NA in the original DataFrame. filter_func : callable(1d-array) -> boolean 1d-array, optional Can choose to replace values other than NA. Return True for values that should be updated. raise_conflict : bool, default False If True, will raise a ValueError if the DataFrame and `other` both contain non-NA data in the same place. Raises ------ ValueError When `raise_conflict` is True and there's overlapping non-NA data. See Also -------- dict.update : Similar method for dictionaries. DataFrame.merge : For column(s)-on-columns(s) operations. Examples -------- >>> df = pd.DataFrame({'A': [1, 2, 3], ... 'B': [400, 500, 600]}) >>> new_df = pd.DataFrame({'B': [4, 5, 6], ... 'C': [7, 8, 9]}) >>> df.update(new_df) >>> df A B 0 1 4 1 2 5 2 3 6 The DataFrame's length does not increase as a result of the update, only values at matching index/column labels are updated. >>> df = pd.DataFrame({'A': ['a', 'b', 'c'], ... 'B': ['x', 'y', 'z']}) >>> new_df = pd.DataFrame({'B': ['d', 'e', 'f', 'g', 'h', 'i']}) >>> df.update(new_df) >>> df A B 0 a d 1 b e 2 c f For Series, it's name attribute must be set. >>> df = pd.DataFrame({'A': ['a', 'b', 'c'], ... 'B': ['x', 'y', 'z']}) >>> new_column = pd.Series(['d', 'e'], name='B', index=[0, 2]) >>> df.update(new_column) >>> df A B 0 a d 1 b y 2 c e >>> df = pd.DataFrame({'A': ['a', 'b', 'c'], ... 'B': ['x', 'y', 'z']}) >>> new_df = pd.DataFrame({'B': ['d', 'e']}, index=[1, 2]) >>> df.update(new_df) >>> df A B 0 a x 1 b d 2 c e If `other` contains NaNs the corresponding values are not updated in the original dataframe. >>> df = pd.DataFrame({'A': [1, 2, 3], ... 'B': [400, 500, 600]}) >>> new_df = pd.DataFrame({'B': [4, np.nan, 6]}) >>> df.update(new_df) >>> df A B 0 1 4.0 1 2 500.0 2 3 6.0 """ import pandas.core.computation.expressions as expressions # TODO: Support other joins if join != 'left': # pragma: no cover raise NotImplementedError("Only left join is supported") if not isinstance(other, DataFrame): other = DataFrame(other) other = other.reindex_like(self) for col in self.columns: this = self[col].values that = other[col].values if filter_func is not None: with np.errstate(all='ignore'): mask = ~filter_func(this) | isna(that) else: if raise_conflict: mask_this = notna(that) mask_that = notna(this) if any(mask_this & mask_that): raise ValueError("Data overlaps.") if overwrite: mask = isna(that) else: mask = notna(this) # don't overwrite columns unecessarily if mask.all(): continue self[col] = expressions.where(mask, this, that) # ---------------------------------------------------------------------- # Data reshaping def pivot(self, index=None, columns=None, values=None): """ Return reshaped DataFrame organized by given index / column values. Reshape data (produce a "pivot" table) based on column values. Uses unique values from specified `index` / `columns` to form axes of the resulting DataFrame. This function does not support data aggregation, multiple values will result in a MultiIndex in the columns. See the :ref:`User Guide <reshaping>` for more on reshaping. Parameters ---------- index : string or object, optional Column to use to make new frame's index. If None, uses existing index. columns : string or object Column to use to make new frame's columns. values : string, object or a list of the previous, optional Column(s) to use for populating new frame's values. If not specified, all remaining columns will be used and the result will have hierarchically indexed columns. .. versionchanged :: 0.23.0 Also accept list of column names. Returns ------- DataFrame Returns reshaped DataFrame. Raises ------ ValueError: When there are any `index`, `columns` combinations with multiple values. `DataFrame.pivot_table` when you need to aggregate. See Also -------- DataFrame.pivot_table : generalization of pivot that can handle duplicate values for one index/column pair. DataFrame.unstack : pivot based on the index values instead of a column. Notes ----- For finer-tuned control, see hierarchical indexing documentation along with the related stack/unstack methods. Examples -------- >>> df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two', ... 'two'], ... 'bar': ['A', 'B', 'C', 'A', 'B', 'C'], ... 'baz': [1, 2, 3, 4, 5, 6], ... 'zoo': ['x', 'y', 'z', 'q', 'w', 't']}) >>> df foo bar baz zoo 0 one A 1 x 1 one B 2 y 2 one C 3 z 3 two A 4 q 4 two B 5 w 5 two C 6 t >>> df.pivot(index='foo', columns='bar', values='baz') bar A B C foo one 1 2 3 two 4 5 6 >>> df.pivot(index='foo', columns='bar')['baz'] bar A B C foo one 1 2 3 two 4 5 6 >>> df.pivot(index='foo', columns='bar', values=['baz', 'zoo']) baz zoo bar A B C A B C foo one 1 2 3 x y z two 4 5 6 q w t A ValueError is raised if there are any duplicates. >>> df = pd.DataFrame({"foo": ['one', 'one', 'two', 'two'], ... "bar": ['A', 'A', 'B', 'C'], ... "baz": [1, 2, 3, 4]}) >>> df foo bar baz 0 one A 1 1 one A 2 2 two B 3 3 two C 4 Notice that the first two rows are the same for our `index` and `columns` arguments. >>> df.pivot(index='foo', columns='bar', values='baz') Traceback (most recent call last): ... ValueError: Index contains duplicate entries, cannot reshape """ from pandas.core.reshape.reshape import pivot return pivot(self, index=index, columns=columns, values=values) _shared_docs['pivot_table'] = """ Create a spreadsheet-style pivot table as a DataFrame. The levels in the pivot table will be stored in MultiIndex objects (hierarchical indexes) on the index and columns of the result DataFrame Parameters ----------%s values : column to aggregate, optional index : column, Grouper, array, or list of the previous If an array is passed, it must be the same length as the data. The list can contain any of the other types (except list). Keys to group by on the pivot table index. If an array is passed, it is being used as the same manner as column values. columns : column, Grouper, array, or list of the previous If an array is passed, it must be the same length as the data. The list can contain any of the other types (except list). Keys to group by on the pivot table column. If an array is passed, it is being used as the same manner as column values. aggfunc : function, list of functions, dict, default numpy.mean If list of functions passed, the resulting pivot table will have hierarchical columns whose top level are the function names (inferred from the function objects themselves) If dict is passed, the key is column to aggregate and value is function or list of functions fill_value : scalar, default None Value to replace missing values with margins : boolean, default False Add all row / columns (e.g. for subtotal / grand totals) dropna : boolean, default True Do not include columns whose entries are all NaN margins_name : string, default 'All' Name of the row / column that will contain the totals when margins is True. Examples -------- >>> df = pd.DataFrame({"A": ["foo", "foo", "foo", "foo", "foo", ... "bar", "bar", "bar", "bar"], ... "B": ["one", "one", "one", "two", "two", ... "one", "one", "two", "two"], ... "C": ["small", "large", "large", "small", ... "small", "large", "small", "small", ... "large"], ... "D": [1, 2, 2, 3, 3, 4, 5, 6, 7]}) >>> df A B C D 0 foo one small 1 1 foo one large 2 2 foo one large 2 3 foo two small 3 4 foo two small 3 5 bar one large 4 6 bar one small 5 7 bar two small 6 8 bar two large 7 >>> table = pivot_table(df, values='D', index=['A', 'B'], ... columns=['C'], aggfunc=np.sum) >>> table C large small A B bar one 4.0 5.0 two 7.0 6.0 foo one 4.0 1.0 two NaN 6.0 >>> table = pivot_table(df, values='D', index=['A', 'B'], ... columns=['C'], aggfunc=np.sum) >>> table C large small A B bar one 4.0 5.0 two 7.0 6.0 foo one 4.0 1.0 two NaN 6.0 >>> table = pivot_table(df, values=['D', 'E'], index=['A', 'C'], ... aggfunc={'D': np.mean, ... 'E': [min, max, np.mean]}) >>> table D E mean max median min A C bar large 5.500000 16 14.5 13 small 5.500000 15 14.5 14 foo large 2.000000 10 9.5 9 small 2.333333 12 11.0 8 Returns ------- table : DataFrame See also -------- DataFrame.pivot : pivot without aggregation that can handle non-numeric data """ @Substitution('') @Appender(_shared_docs['pivot_table']) def pivot_table(self, values=None, index=None, columns=None, aggfunc='mean', fill_value=None, margins=False, dropna=True, margins_name='All'): from pandas.core.reshape.pivot import pivot_table return pivot_table(self, values=values, index=index, columns=columns, aggfunc=aggfunc, fill_value=fill_value, margins=margins, dropna=dropna, margins_name=margins_name) def stack(self, level=-1, dropna=True): """ Stack the prescribed level(s) from columns to index. Return a reshaped DataFrame or Series having a multi-level index with one or more new inner-most levels compared to the current DataFrame. The new inner-most levels are created by pivoting the columns of the current dataframe: - if the columns have a single level, the output is a Series; - if the columns have multiple levels, the new index level(s) is (are) taken from the prescribed level(s) and the output is a DataFrame. The new index levels are sorted. Parameters ---------- level : int, str, list, default -1 Level(s) to stack from the column axis onto the index axis, defined as one index or label, or a list of indices or labels. dropna : bool, default True Whether to drop rows in the resulting Frame/Series with missing values. Stacking a column level onto the index axis can create combinations of index and column values that are missing from the original dataframe. See Examples section. Returns ------- DataFrame or Series Stacked dataframe or series. See Also -------- DataFrame.unstack : Unstack prescribed level(s) from index axis onto column axis. DataFrame.pivot : Reshape dataframe from long format to wide format. DataFrame.pivot_table : Create a spreadsheet-style pivot table as a DataFrame. Notes ----- The function is named by analogy with a collection of books being re-organised from being side by side on a horizontal position (the columns of the dataframe) to being stacked vertically on top of of each other (in the index of the dataframe). Examples -------- **Single level columns** >>> df_single_level_cols = pd.DataFrame([[0, 1], [2, 3]], ... index=['cat', 'dog'], ... columns=['weight', 'height']) Stacking a dataframe with a single level column axis returns a Series: >>> df_single_level_cols weight height cat 0 1 dog 2 3 >>> df_single_level_cols.stack() cat weight 0 height 1 dog weight 2 height 3 dtype: int64 **Multi level columns: simple case** >>> multicol1 = pd.MultiIndex.from_tuples([('weight', 'kg'), ... ('weight', 'pounds')]) >>> df_multi_level_cols1 = pd.DataFrame([[1, 2], [2, 4]], ... index=['cat', 'dog'], ... columns=multicol1) Stacking a dataframe with a multi-level column axis: >>> df_multi_level_cols1 weight kg pounds cat 1 2 dog 2 4 >>> df_multi_level_cols1.stack() weight cat kg 1 pounds 2 dog kg 2 pounds 4 **Missing values** >>> multicol2 = pd.MultiIndex.from_tuples([('weight', 'kg'), ... ('height', 'm')]) >>> df_multi_level_cols2 = pd.DataFrame([[1.0, 2.0], [3.0, 4.0]], ... index=['cat', 'dog'], ... columns=multicol2) It is common to have missing values when stacking a dataframe with multi-level columns, as the stacked dataframe typically has more values than the original dataframe. Missing values are filled with NaNs: >>> df_multi_level_cols2 weight height kg m cat 1.0 2.0 dog 3.0 4.0 >>> df_multi_level_cols2.stack() height weight cat kg NaN 1.0 m 2.0 NaN dog kg NaN 3.0 m 4.0 NaN **Prescribing the level(s) to be stacked** The first parameter controls which level or levels are stacked: >>> df_multi_level_cols2.stack(0) kg m cat height NaN 2.0 weight 1.0 NaN dog height NaN 4.0 weight 3.0 NaN >>> df_multi_level_cols2.stack([0, 1]) cat height m 2.0 weight kg 1.0 dog height m 4.0 weight kg 3.0 dtype: float64 **Dropping missing values** >>> df_multi_level_cols3 = pd.DataFrame([[None, 1.0], [2.0, 3.0]], ... index=['cat', 'dog'], ... columns=multicol2) Note that rows where all values are missing are dropped by default but this behaviour can be controlled via the dropna keyword parameter: >>> df_multi_level_cols3 weight height kg m cat NaN 1.0 dog 2.0 3.0 >>> df_multi_level_cols3.stack(dropna=False) height weight cat kg NaN NaN m 1.0 NaN dog kg NaN 2.0 m 3.0 NaN >>> df_multi_level_cols3.stack(dropna=True) height weight cat m 1.0 NaN dog kg NaN 2.0 m 3.0 NaN """ from pandas.core.reshape.reshape import stack, stack_multiple if isinstance(level, (tuple, list)): return stack_multiple(self, level, dropna=dropna) else: return stack(self, level, dropna=dropna) def unstack(self, level=-1, fill_value=None): """ Pivot a level of the (necessarily hierarchical) index labels, returning a DataFrame having a new level of column labels whose inner-most level consists of the pivoted index labels. If the index is not a MultiIndex, the output will be a Series (the analogue of stack when the columns are not a MultiIndex). The level involved will automatically get sorted. Parameters ---------- level : int, string, or list of these, default -1 (last level) Level(s) of index to unstack, can pass level name fill_value : replace NaN with this value if the unstack produces missing values .. versionadded:: 0.18.0 See also -------- DataFrame.pivot : Pivot a table based on column values. DataFrame.stack : Pivot a level of the column labels (inverse operation from `unstack`). Examples -------- >>> index = pd.MultiIndex.from_tuples([('one', 'a'), ('one', 'b'), ... ('two', 'a'), ('two', 'b')]) >>> s = pd.Series(np.arange(1.0, 5.0), index=index) >>> s one a 1.0 b 2.0 two a 3.0 b 4.0 dtype: float64 >>> s.unstack(level=-1) a b one 1.0 2.0 two 3.0 4.0 >>> s.unstack(level=0) one two a 1.0 3.0 b 2.0 4.0 >>> df = s.unstack(level=0) >>> df.unstack() one a 1.0 b 2.0 two a 3.0 b 4.0 dtype: float64 Returns ------- unstacked : DataFrame or Series """ from pandas.core.reshape.reshape import unstack return unstack(self, level, fill_value) _shared_docs['melt'] = (""" "Unpivots" a DataFrame from wide format to long format, optionally leaving identifier variables set. This function is useful to massage a DataFrame into a format where one or more columns are identifier variables (`id_vars`), while all other columns, considered measured variables (`value_vars`), are "unpivoted" to the row axis, leaving just two non-identifier columns, 'variable' and 'value'. %(versionadded)s Parameters ---------- frame : DataFrame id_vars : tuple, list, or ndarray, optional Column(s) to use as identifier variables. value_vars : tuple, list, or ndarray, optional Column(s) to unpivot. If not specified, uses all columns that are not set as `id_vars`. var_name : scalar Name to use for the 'variable' column. If None it uses ``frame.columns.name`` or 'variable'. value_name : scalar, default 'value' Name to use for the 'value' column. col_level : int or string, optional If columns are a MultiIndex then use this level to melt. See also -------- %(other)s pivot_table DataFrame.pivot Examples -------- >>> df = pd.DataFrame({'A': {0: 'a', 1: 'b', 2: 'c'}, ... 'B': {0: 1, 1: 3, 2: 5}, ... 'C': {0: 2, 1: 4, 2: 6}}) >>> df A B C 0 a 1 2 1 b 3 4 2 c 5 6 >>> %(caller)sid_vars=['A'], value_vars=['B']) A variable value 0 a B 1 1 b B 3 2 c B 5 >>> %(caller)sid_vars=['A'], value_vars=['B', 'C']) A variable value 0 a B 1 1 b B 3 2 c B 5 3 a C 2 4 b C 4 5 c C 6 The names of 'variable' and 'value' columns can be customized: >>> %(caller)sid_vars=['A'], value_vars=['B'], ... var_name='myVarname', value_name='myValname') A myVarname myValname 0 a B 1 1 b B 3 2 c B 5 If you have multi-index columns: >>> df.columns = [list('ABC'), list('DEF')] >>> df A B C D E F 0 a 1 2 1 b 3 4 2 c 5 6 >>> %(caller)scol_level=0, id_vars=['A'], value_vars=['B']) A variable value 0 a B 1 1 b B 3 2 c B 5 >>> %(caller)sid_vars=[('A', 'D')], value_vars=[('B', 'E')]) (A, D) variable_0 variable_1 value 0 a B E 1 1 b B E 3 2 c B E 5 """) @Appender(_shared_docs['melt'] % dict(caller='df.melt(', versionadded='.. versionadded:: 0.20.0\n', other='melt')) def melt(self, id_vars=None, value_vars=None, var_name=None, value_name='value', col_level=None): from pandas.core.reshape.melt import melt return melt(self, id_vars=id_vars, value_vars=value_vars, var_name=var_name, value_name=value_name, col_level=col_level) # ---------------------------------------------------------------------- # Time series-related def diff(self, periods=1, axis=0): """ First discrete difference of element. Calculates the difference of a DataFrame element compared with another element in the DataFrame (default is the element in the same column of the previous row). Parameters ---------- periods : int, default 1 Periods to shift for calculating difference, accepts negative values. axis : {0 or 'index', 1 or 'columns'}, default 0 Take difference over rows (0) or columns (1). .. versionadded:: 0.16.1. Returns ------- diffed : DataFrame See Also -------- Series.diff: First discrete difference for a Series. DataFrame.pct_change: Percent change over given number of periods. DataFrame.shift: Shift index by desired number of periods with an optional time freq. Examples -------- Difference with previous row >>> df = pd.DataFrame({'a': [1, 2, 3, 4, 5, 6], ... 'b': [1, 1, 2, 3, 5, 8], ... 'c': [1, 4, 9, 16, 25, 36]}) >>> df a b c 0 1 1 1 1 2 1 4 2 3 2 9 3 4 3 16 4 5 5 25 5 6 8 36 >>> df.diff() a b c 0 NaN NaN NaN 1 1.0 0.0 3.0 2 1.0 1.0 5.0 3 1.0 1.0 7.0 4 1.0 2.0 9.0 5 1.0 3.0 11.0 Difference with previous column >>> df.diff(axis=1) a b c 0 NaN 0.0 0.0 1 NaN -1.0 3.0 2 NaN -1.0 7.0 3 NaN -1.0 13.0 4 NaN 0.0 20.0 5 NaN 2.0 28.0 Difference with 3rd previous row >>> df.diff(periods=3) a b c 0 NaN NaN NaN 1 NaN NaN NaN 2 NaN NaN NaN 3 3.0 2.0 15.0 4 3.0 4.0 21.0 5 3.0 6.0 27.0 Difference with following row >>> df.diff(periods=-1) a b c 0 -1.0 0.0 -3.0 1 -1.0 -1.0 -5.0 2 -1.0 -1.0 -7.0 3 -1.0 -2.0 -9.0 4 -1.0 -3.0 -11.0 5 NaN NaN NaN """ bm_axis = self._get_block_manager_axis(axis) new_data = self._data.diff(n=periods, axis=bm_axis) return self._constructor(new_data) # ---------------------------------------------------------------------- # Function application def _gotitem(self, key, # type: Union[str, List[str]] ndim, # type: int subset=None # type: Union[Series, DataFrame, None] ): # type: (...) -> Union[Series, DataFrame] """ sub-classes to define return a sliced object Parameters ---------- key : string / list of selections ndim : 1,2 requested ndim of result subset : object, default None subset to act on """ if subset is None: subset = self elif subset.ndim == 1: # is Series return subset # TODO: _shallow_copy(subset)? return subset[key] _agg_doc = dedent(""" The aggregation operations are always performed over an axis, either the index (default) or the column axis. This behavior is different from `numpy` aggregation functions (`mean`, `median`, `prod`, `sum`, `std`, `var`), where the default is to compute the aggregation of the flattened array, e.g., ``numpy.mean(arr_2d)`` as opposed to ``numpy.mean(arr_2d, axis=0)``. `agg` is an alias for `aggregate`. Use the alias. Examples -------- >>> df = pd.DataFrame([[1, 2, 3], ... [4, 5, 6], ... [7, 8, 9], ... [np.nan, np.nan, np.nan]], ... columns=['A', 'B', 'C']) Aggregate these functions over the rows. >>> df.agg(['sum', 'min']) A B C sum 12.0 15.0 18.0 min 1.0 2.0 3.0 Different aggregations per column. >>> df.agg({'A' : ['sum', 'min'], 'B' : ['min', 'max']}) A B max NaN 8.0 min 1.0 2.0 sum 12.0 NaN Aggregate over the columns. >>> df.agg("mean", axis="columns") 0 2.0 1 5.0 2 8.0 3 NaN dtype: float64 See also -------- DataFrame.apply : Perform any type of operations. DataFrame.transform : Perform transformation type operations. pandas.core.groupby.GroupBy : Perform operations over groups. pandas.core.resample.Resampler : Perform operations over resampled bins. pandas.core.window.Rolling : Perform operations over rolling window. pandas.core.window.Expanding : Perform operations over expanding window. pandas.core.window.EWM : Perform operation over exponential weighted window. """) @Appender(_agg_doc) @Appender(_shared_docs['aggregate'] % dict( versionadded='.. versionadded:: 0.20.0', **_shared_doc_kwargs)) def aggregate(self, func, axis=0, *args, **kwargs): axis = self._get_axis_number(axis) result = None try: result, how = self._aggregate(func, axis=axis, *args, **kwargs) except TypeError: pass if result is None: return self.apply(func, axis=axis, args=args, **kwargs) return result def _aggregate(self, arg, axis=0, *args, **kwargs): if axis == 1: # NDFrame.aggregate returns a tuple, and we need to transpose # only result result, how = (super(DataFrame, self.T) ._aggregate(arg, *args, **kwargs)) result = result.T if result is not None else result return result, how return super(DataFrame, self)._aggregate(arg, *args, **kwargs) agg = aggregate @Appender(_shared_docs['transform'] % _shared_doc_kwargs) def transform(self, func, axis=0, *args, **kwargs): axis = self._get_axis_number(axis) if axis == 1: return super(DataFrame, self.T).transform(func, *args, **kwargs).T return super(DataFrame, self).transform(func, *args, **kwargs) def apply(self, func, axis=0, broadcast=None, raw=False, reduce=None, result_type=None, args=(), **kwds): """ Apply a function along an axis of the DataFrame. Objects passed to the function are Series objects whose index is either the DataFrame's index (``axis=0``) or the DataFrame's columns (``axis=1``). By default (``result_type=None``), the final return type is inferred from the return type of the applied function. Otherwise, it depends on the `result_type` argument. Parameters ---------- func : function Function to apply to each column or row. axis : {0 or 'index', 1 or 'columns'}, default 0 Axis along which the function is applied: * 0 or 'index': apply function to each column. * 1 or 'columns': apply function to each row. broadcast : bool, optional Only relevant for aggregation functions: * ``False`` or ``None`` : returns a Series whose length is the length of the index or the number of columns (based on the `axis` parameter) * ``True`` : results will be broadcast to the original shape of the frame, the original index and columns will be retained. .. deprecated:: 0.23.0 This argument will be removed in a future version, replaced by result_type='broadcast'. raw : bool, default False * ``False`` : passes each row or column as a Series to the function. * ``True`` : the passed function will receive ndarray objects instead. If you are just applying a NumPy reduction function this will achieve much better performance. reduce : bool or None, default None Try to apply reduction procedures. If the DataFrame is empty, `apply` will use `reduce` to determine whether the result should be a Series or a DataFrame. If ``reduce=None`` (the default), `apply`'s return value will be guessed by calling `func` on an empty Series (note: while guessing, exceptions raised by `func` will be ignored). If ``reduce=True`` a Series will always be returned, and if ``reduce=False`` a DataFrame will always be returned. .. deprecated:: 0.23.0 This argument will be removed in a future version, replaced by ``result_type='reduce'``. result_type : {'expand', 'reduce', 'broadcast', None}, default None These only act when ``axis=1`` (columns): * 'expand' : list-like results will be turned into columns. * 'reduce' : returns a Series if possible rather than expanding list-like results. This is the opposite of 'expand'. * 'broadcast' : results will be broadcast to the original shape of the DataFrame, the original index and columns will be retained. The default behaviour (None) depends on the return value of the applied function: list-like results will be returned as a Series of those. However if the apply function returns a Series these are expanded to columns. .. versionadded:: 0.23.0 args : tuple Positional arguments to pass to `func` in addition to the array/series. **kwds Additional keyword arguments to pass as keywords arguments to `func`. Notes ----- In the current implementation apply calls `func` twice on the first column/row to decide whether it can take a fast or slow code path. This can lead to unexpected behavior if `func` has side-effects, as they will take effect twice for the first column/row. See also -------- DataFrame.applymap: For elementwise operations DataFrame.aggregate: only perform aggregating type operations DataFrame.transform: only perform transforming type operations Examples -------- >>> df = pd.DataFrame([[4, 9],] * 3, columns=['A', 'B']) >>> df A B 0 4 9 1 4 9 2 4 9 Using a numpy universal function (in this case the same as ``np.sqrt(df)``): >>> df.apply(np.sqrt) A B 0 2.0 3.0 1 2.0 3.0 2 2.0 3.0 Using a reducing function on either axis >>> df.apply(np.sum, axis=0) A 12 B 27 dtype: int64 >>> df.apply(np.sum, axis=1) 0 13 1 13 2 13 dtype: int64 Retuning a list-like will result in a Series >>> df.apply(lambda x: [1, 2], axis=1) 0 [1, 2] 1 [1, 2] 2 [1, 2] dtype: object Passing result_type='expand' will expand list-like results to columns of a Dataframe >>> df.apply(lambda x: [1, 2], axis=1, result_type='expand') 0 1 0 1 2 1 1 2 2 1 2 Returning a Series inside the function is similar to passing ``result_type='expand'``. The resulting column names will be the Series index. >>> df.apply(lambda x: pd.Series([1, 2], index=['foo', 'bar']), axis=1) foo bar 0 1 2 1 1 2 2 1 2 Passing ``result_type='broadcast'`` will ensure the same shape result, whether list-like or scalar is returned by the function, and broadcast it along the axis. The resulting column names will be the originals. >>> df.apply(lambda x: [1, 2], axis=1, result_type='broadcast') A B 0 1 2 1 1 2 2 1 2 Returns ------- applied : Series or DataFrame """ from pandas.core.apply import frame_apply op = frame_apply(self, func=func, axis=axis, broadcast=broadcast, raw=raw, reduce=reduce, result_type=result_type, args=args, kwds=kwds) return op.get_result() def applymap(self, func): """ Apply a function to a Dataframe elementwise. This method applies a function that accepts and returns a scalar to every element of a DataFrame. Parameters ---------- func : callable Python function, returns a single value from a single value. Returns ------- DataFrame Transformed DataFrame. See also -------- DataFrame.apply : Apply a function along input axis of DataFrame Examples -------- >>> df = pd.DataFrame([[1, 2.12], [3.356, 4.567]]) >>> df 0 1 0 1.000 2.120 1 3.356 4.567 >>> df.applymap(lambda x: len(str(x))) 0 1 0 3 4 1 5 5 Note that a vectorized version of `func` often exists, which will be much faster. You could square each number elementwise. >>> df.applymap(lambda x: x**2) 0 1 0 1.000000 4.494400 1 11.262736 20.857489 But it's better to avoid applymap in that case. >>> df ** 2 0 1 0 1.000000 4.494400 1 11.262736 20.857489 """ # if we have a dtype == 'M8[ns]', provide boxed values def infer(x): if x.empty: return lib.map_infer(x, func) return lib.map_infer(x.astype(object).values, func) return self.apply(infer) # ---------------------------------------------------------------------- # Merging / joining methods def append(self, other, ignore_index=False, verify_integrity=False, sort=None): """ Append rows of `other` to the end of caller, returning a new object. Columns in `other` that are not in the caller are added as new columns. Parameters ---------- other : DataFrame or Series/dict-like object, or list of these The data to append. ignore_index : boolean, default False If True, do not use the index labels. verify_integrity : boolean, default False If True, raise ValueError on creating index with duplicates. sort : boolean, default None Sort columns if the columns of `self` and `other` are not aligned. The default sorting is deprecated and will change to not-sorting in a future version of pandas. Explicitly pass ``sort=True`` to silence the warning and sort. Explicitly pass ``sort=False`` to silence the warning and not sort. .. versionadded:: 0.23.0 Returns ------- appended : DataFrame Notes ----- If a list of dict/series is passed and the keys are all contained in the DataFrame's index, the order of the columns in the resulting DataFrame will be unchanged. Iteratively appending rows to a DataFrame can be more computationally intensive than a single concatenate. A better solution is to append those rows to a list and then concatenate the list with the original DataFrame all at once. See also -------- pandas.concat : General function to concatenate DataFrame, Series or Panel objects Examples -------- >>> df = pd.DataFrame([[1, 2], [3, 4]], columns=list('AB')) >>> df A B 0 1 2 1 3 4 >>> df2 = pd.DataFrame([[5, 6], [7, 8]], columns=list('AB')) >>> df.append(df2) A B 0 1 2 1 3 4 0 5 6 1 7 8 With `ignore_index` set to True: >>> df.append(df2, ignore_index=True) A B 0 1 2 1 3 4 2 5 6 3 7 8 The following, while not recommended methods for generating DataFrames, show two ways to generate a DataFrame from multiple data sources. Less efficient: >>> df = pd.DataFrame(columns=['A']) >>> for i in range(5): ... df = df.append({'A': i}, ignore_index=True) >>> df A 0 0 1 1 2 2 3 3 4 4 More efficient: >>> pd.concat([pd.DataFrame([i], columns=['A']) for i in range(5)], ... ignore_index=True) A 0 0 1 1 2 2 3 3 4 4 """ if isinstance(other, (Series, dict)): if isinstance(other, dict): other = Series(other) if other.name is None and not ignore_index: raise TypeError('Can only append a Series if ignore_index=True' ' or if the Series has a name') if other.name is None: index = None else: # other must have the same index name as self, otherwise # index name will be reset index = Index([other.name], name=self.index.name) idx_diff = other.index.difference(self.columns) try: combined_columns = self.columns.append(idx_diff) except TypeError: combined_columns = self.columns.astype(object).append(idx_diff) other = other.reindex(combined_columns, copy=False) other = DataFrame(other.values.reshape((1, len(other))), index=index, columns=combined_columns) other = other._convert(datetime=True, timedelta=True) if not self.columns.equals(combined_columns): self = self.reindex(columns=combined_columns) elif isinstance(other, list) and not isinstance(other[0], DataFrame): other = DataFrame(other) if (self.columns.get_indexer(other.columns) >= 0).all(): other = other.loc[:, self.columns] from pandas.core.reshape.concat import concat if isinstance(other, (list, tuple)): to_concat = [self] + other else: to_concat = [self, other] return concat(to_concat, ignore_index=ignore_index, verify_integrity=verify_integrity, sort=sort) def join(self, other, on=None, how='left', lsuffix='', rsuffix='', sort=False): """ Join columns with other DataFrame either on index or on a key column. Efficiently Join multiple DataFrame objects by index at once by passing a list. Parameters ---------- other : DataFrame, Series with name field set, or list of DataFrame Index should be similar to one of the columns in this one. If a Series is passed, its name attribute must be set, and that will be used as the column name in the resulting joined DataFrame on : name, tuple/list of names, or array-like Column or index level name(s) in the caller to join on the index in `other`, otherwise joins index-on-index. If multiple values given, the `other` DataFrame must have a MultiIndex. Can pass an array as the join key if it is not already contained in the calling DataFrame. Like an Excel VLOOKUP operation how : {'left', 'right', 'outer', 'inner'}, default: 'left' How to handle the operation of the two objects. * left: use calling frame's index (or column if on is specified) * right: use other frame's index * outer: form union of calling frame's index (or column if on is specified) with other frame's index, and sort it lexicographically * inner: form intersection of calling frame's index (or column if on is specified) with other frame's index, preserving the order of the calling's one lsuffix : string Suffix to use from left frame's overlapping columns rsuffix : string Suffix to use from right frame's overlapping columns sort : boolean, default False Order result DataFrame lexicographically by the join key. If False, the order of the join key depends on the join type (how keyword) Notes ----- on, lsuffix, and rsuffix options are not supported when passing a list of DataFrame objects Support for specifying index levels as the `on` parameter was added in version 0.23.0 Examples -------- >>> caller = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3', 'K4', 'K5'], ... 'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']}) >>> caller A key 0 A0 K0 1 A1 K1 2 A2 K2 3 A3 K3 4 A4 K4 5 A5 K5 >>> other = pd.DataFrame({'key': ['K0', 'K1', 'K2'], ... 'B': ['B0', 'B1', 'B2']}) >>> other B key 0 B0 K0 1 B1 K1 2 B2 K2 Join DataFrames using their indexes. >>> caller.join(other, lsuffix='_caller', rsuffix='_other') >>> A key_caller B key_other 0 A0 K0 B0 K0 1 A1 K1 B1 K1 2 A2 K2 B2 K2 3 A3 K3 NaN NaN 4 A4 K4 NaN NaN 5 A5 K5 NaN NaN If we want to join using the key columns, we need to set key to be the index in both caller and other. The joined DataFrame will have key as its index. >>> caller.set_index('key').join(other.set_index('key')) >>> A B key K0 A0 B0 K1 A1 B1 K2 A2 B2 K3 A3 NaN K4 A4 NaN K5 A5 NaN Another option to join using the key columns is to use the on parameter. DataFrame.join always uses other's index but we can use any column in the caller. This method preserves the original caller's index in the result. >>> caller.join(other.set_index('key'), on='key') >>> A key B 0 A0 K0 B0 1 A1 K1 B1 2 A2 K2 B2 3 A3 K3 NaN 4 A4 K4 NaN 5 A5 K5 NaN See also -------- DataFrame.merge : For column(s)-on-columns(s) operations Returns ------- joined : DataFrame """ # For SparseDataFrame's benefit return self._join_compat(other, on=on, how=how, lsuffix=lsuffix, rsuffix=rsuffix, sort=sort) def _join_compat(self, other, on=None, how='left', lsuffix='', rsuffix='', sort=False): from pandas.core.reshape.merge import merge from pandas.core.reshape.concat import concat if isinstance(other, Series): if other.name is None: raise ValueError('Other Series must have a name') other = DataFrame({other.name: other}) if isinstance(other, DataFrame): return merge(self, other, left_on=on, how=how, left_index=on is None, right_index=True, suffixes=(lsuffix, rsuffix), sort=sort) else: if on is not None: raise ValueError('Joining multiple DataFrames only supported' ' for joining on index') frames = [self] + list(other) can_concat = all(df.index.is_unique for df in frames) # join indexes only using concat if can_concat: if how == 'left': how = 'outer' join_axes = [self.index] else: join_axes = None return concat(frames, axis=1, join=how, join_axes=join_axes, verify_integrity=True) joined = frames[0] for frame in frames[1:]: joined = merge(joined, frame, how=how, left_index=True, right_index=True) return joined @Substitution('') @Appender(_merge_doc, indents=2) def merge(self, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=('_x', '_y'), copy=True, indicator=False, validate=None): from pandas.core.reshape.merge import merge return merge(self, right, how=how, on=on, left_on=left_on, right_on=right_on, left_index=left_index, right_index=right_index, sort=sort, suffixes=suffixes, copy=copy, indicator=indicator, validate=validate) def round(self, decimals=0, *args, **kwargs): """ Round a DataFrame to a variable number of decimal places. Parameters ---------- decimals : int, dict, Series Number of decimal places to round each column to. If an int is given, round each column to the same number of places. Otherwise dict and Series round to variable numbers of places. Column names should be in the keys if `decimals` is a dict-like, or in the index if `decimals` is a Series. Any columns not included in `decimals` will be left as is. Elements of `decimals` which are not columns of the input will be ignored. Examples -------- >>> df = pd.DataFrame(np.random.random([3, 3]), ... columns=['A', 'B', 'C'], index=['first', 'second', 'third']) >>> df A B C first 0.028208 0.992815 0.173891 second 0.038683 0.645646 0.577595 third 0.877076 0.149370 0.491027 >>> df.round(2) A B C first 0.03 0.99 0.17 second 0.04 0.65 0.58 third 0.88 0.15 0.49 >>> df.round({'A': 1, 'C': 2}) A B C first 0.0 0.992815 0.17 second 0.0 0.645646 0.58 third 0.9 0.149370 0.49 >>> decimals = pd.Series([1, 0, 2], index=['A', 'B', 'C']) >>> df.round(decimals) A B C first 0.0 1 0.17 second 0.0 1 0.58 third 0.9 0 0.49 Returns ------- DataFrame object See Also -------- numpy.around Series.round """ from pandas.core.reshape.concat import concat def _dict_round(df, decimals): for col, vals in df.iteritems(): try: yield _series_round(vals, decimals[col]) except KeyError: yield vals def _series_round(s, decimals): if is_integer_dtype(s) or is_float_dtype(s): return s.round(decimals) return s nv.validate_round(args, kwargs) if isinstance(decimals, (dict, Series)): if isinstance(decimals, Series): if not decimals.index.is_unique: raise ValueError("Index of decimals must be unique") new_cols = [col for col in _dict_round(self, decimals)] elif is_integer(decimals): # Dispatch to Series.round new_cols = [_series_round(v, decimals) for _, v in self.iteritems()] else: raise TypeError("decimals must be an integer, a dict-like or a " "Series") if len(new_cols) > 0: return self._constructor(concat(new_cols, axis=1), index=self.index, columns=self.columns) else: return self # ---------------------------------------------------------------------- # Statistical methods, etc. def corr(self, method='pearson', min_periods=1): """ Compute pairwise correlation of columns, excluding NA/null values Parameters ---------- method : {'pearson', 'kendall', 'spearman'} * pearson : standard correlation coefficient * kendall : Kendall Tau correlation coefficient * spearman : Spearman rank correlation min_periods : int, optional Minimum number of observations required per pair of columns to have a valid result. Currently only available for pearson and spearman correlation Returns ------- y : DataFrame """ numeric_df = self._get_numeric_data() cols = numeric_df.columns idx = cols.copy() mat = numeric_df.values if method == 'pearson': correl = libalgos.nancorr(ensure_float64(mat), minp=min_periods) elif method == 'spearman': correl = libalgos.nancorr_spearman(ensure_float64(mat), minp=min_periods) else: if min_periods is None: min_periods = 1 mat = ensure_float64(mat).T corrf = nanops.get_corr_func(method) K = len(cols) correl = np.empty((K, K), dtype=float) mask = np.isfinite(mat) for i, ac in enumerate(mat): for j, bc in enumerate(mat): if i > j: continue valid = mask[i] & mask[j] if valid.sum() < min_periods: c = np.nan elif i == j: c = 1. elif not valid.all(): c = corrf(ac[valid], bc[valid]) else: c = corrf(ac, bc) correl[i, j] = c correl[j, i] = c return self._constructor(correl, index=idx, columns=cols) def cov(self, min_periods=None): """ Compute pairwise covariance of columns, excluding NA/null values. Compute the pairwise covariance among the series of a DataFrame. The returned data frame is the `covariance matrix <https://en.wikipedia.org/wiki/Covariance_matrix>`__ of the columns of the DataFrame. Both NA and null values are automatically excluded from the calculation. (See the note below about bias from missing values.) A threshold can be set for the minimum number of observations for each value created. Comparisons with observations below this threshold will be returned as ``NaN``. This method is generally used for the analysis of time series data to understand the relationship between different measures across time. Parameters ---------- min_periods : int, optional Minimum number of observations required per pair of columns to have a valid result. Returns ------- DataFrame The covariance matrix of the series of the DataFrame. See Also -------- pandas.Series.cov : compute covariance with another Series pandas.core.window.EWM.cov: exponential weighted sample covariance pandas.core.window.Expanding.cov : expanding sample covariance pandas.core.window.Rolling.cov : rolling sample covariance Notes ----- Returns the covariance matrix of the DataFrame's time series. The covariance is normalized by N-1. For DataFrames that have Series that are missing data (assuming that data is `missing at random <https://en.wikipedia.org/wiki/Missing_data#Missing_at_random>`__) the returned covariance matrix will be an unbiased estimate of the variance and covariance between the member Series. However, for many applications this estimate may not be acceptable because the estimate covariance matrix is not guaranteed to be positive semi-definite. This could lead to estimate correlations having absolute values which are greater than one, and/or a non-invertible covariance matrix. See `Estimation of covariance matrices <http://en.wikipedia.org/w/index.php?title=Estimation_of_covariance_ matrices>`__ for more details. Examples -------- >>> df = pd.DataFrame([(1, 2), (0, 3), (2, 0), (1, 1)], ... columns=['dogs', 'cats']) >>> df.cov() dogs cats dogs 0.666667 -1.000000 cats -1.000000 1.666667 >>> np.random.seed(42) >>> df = pd.DataFrame(np.random.randn(1000, 5), ... columns=['a', 'b', 'c', 'd', 'e']) >>> df.cov() a b c d e a 0.998438 -0.020161 0.059277 -0.008943 0.014144 b -0.020161 1.059352 -0.008543 -0.024738 0.009826 c 0.059277 -0.008543 1.010670 -0.001486 -0.000271 d -0.008943 -0.024738 -0.001486 0.921297 -0.013692 e 0.014144 0.009826 -0.000271 -0.013692 0.977795 **Minimum number of periods** This method also supports an optional ``min_periods`` keyword that specifies the required minimum number of non-NA observations for each column pair in order to have a valid result: >>> np.random.seed(42) >>> df = pd.DataFrame(np.random.randn(20, 3), ... columns=['a', 'b', 'c']) >>> df.loc[df.index[:5], 'a'] = np.nan >>> df.loc[df.index[5:10], 'b'] = np.nan >>> df.cov(min_periods=12) a b c a 0.316741 NaN -0.150812 b NaN 1.248003 0.191417 c -0.150812 0.191417 0.895202 """ numeric_df = self._get_numeric_data() cols = numeric_df.columns idx = cols.copy() mat = numeric_df.values if notna(mat).all(): if min_periods is not None and min_periods > len(mat): baseCov = np.empty((mat.shape[1], mat.shape[1])) baseCov.fill(np.nan) else: baseCov = np.cov(mat.T) baseCov = baseCov.reshape((len(cols), len(cols))) else: baseCov = libalgos.nancorr(ensure_float64(mat), cov=True, minp=min_periods) return self._constructor(baseCov, index=idx, columns=cols) def corrwith(self, other, axis=0, drop=False): """ Compute pairwise correlation between rows or columns of two DataFrame objects. Parameters ---------- other : DataFrame, Series axis : {0 or 'index', 1 or 'columns'}, default 0 0 or 'index' to compute column-wise, 1 or 'columns' for row-wise drop : boolean, default False Drop missing indices from result, default returns union of all Returns ------- correls : Series """ axis = self._get_axis_number(axis) this = self._get_numeric_data() if isinstance(other, Series): return this.apply(other.corr, axis=axis) other = other._get_numeric_data() left, right = this.align(other, join='inner', copy=False) # mask missing values left = left + right * 0 right = right + left * 0 if axis == 1: left = left.T right = right.T # demeaned data ldem = left - left.mean() rdem = right - right.mean() num = (ldem * rdem).sum() dom = (left.count() - 1) * left.std() * right.std() correl = num / dom if not drop: raxis = 1 if axis == 0 else 0 result_index = this._get_axis(raxis).union(other._get_axis(raxis)) correl = correl.reindex(result_index) return correl # ---------------------------------------------------------------------- # ndarray-like stats methods def count(self, axis=0, level=None, numeric_only=False): """ Count non-NA cells for each column or row. The values `None`, `NaN`, `NaT`, and optionally `numpy.inf` (depending on `pandas.options.mode.use_inf_as_na`) are considered NA. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 If 0 or 'index' counts are generated for each column. If 1 or 'columns' counts are generated for each **row**. level : int or str, optional If the axis is a `MultiIndex` (hierarchical), count along a particular `level`, collapsing into a `DataFrame`. A `str` specifies the level name. numeric_only : boolean, default False Include only `float`, `int` or `boolean` data. Returns ------- Series or DataFrame For each column/row the number of non-NA/null entries. If `level` is specified returns a `DataFrame`. See Also -------- Series.count: number of non-NA elements in a Series DataFrame.shape: number of DataFrame rows and columns (including NA elements) DataFrame.isna: boolean same-sized DataFrame showing places of NA elements Examples -------- Constructing DataFrame from a dictionary: >>> df = pd.DataFrame({"Person": ... ["John", "Myla", None, "John", "Myla"], ... "Age": [24., np.nan, 21., 33, 26], ... "Single": [False, True, True, True, False]}) >>> df Person Age Single 0 John 24.0 False 1 Myla NaN True 2 None 21.0 True 3 John 33.0 True 4 Myla 26.0 False Notice the uncounted NA values: >>> df.count() Person 4 Age 4 Single 5 dtype: int64 Counts for each **row**: >>> df.count(axis='columns') 0 3 1 2 2 2 3 3 4 3 dtype: int64 Counts for one level of a `MultiIndex`: >>> df.set_index(["Person", "Single"]).count(level="Person") Age Person John 2 Myla 1 """ axis = self._get_axis_number(axis) if level is not None: return self._count_level(level, axis=axis, numeric_only=numeric_only) if numeric_only: frame = self._get_numeric_data() else: frame = self # GH #423 if len(frame._get_axis(axis)) == 0: result = Series(0, index=frame._get_agg_axis(axis)) else: if frame._is_mixed_type or frame._data.any_extension_types: # the or any_extension_types is really only hit for single- # column frames with an extension array result = notna(frame).sum(axis=axis) else: # GH13407 series_counts = notna(frame).sum(axis=axis) counts = series_counts.values result = Series(counts, index=frame._get_agg_axis(axis)) return result.astype('int64') def _count_level(self, level, axis=0, numeric_only=False): if numeric_only: frame = self._get_numeric_data() else: frame = self count_axis = frame._get_axis(axis) agg_axis = frame._get_agg_axis(axis) if not isinstance(count_axis, MultiIndex): raise TypeError("Can only count levels on hierarchical " "{ax}.".format(ax=self._get_axis_name(axis))) if frame._is_mixed_type: # Since we have mixed types, calling notna(frame.values) might # upcast everything to object mask = notna(frame).values else: # But use the speedup when we have homogeneous dtypes mask = notna(frame.values) if axis == 1: # We're transposing the mask rather than frame to avoid potential # upcasts to object, which induces a ~20x slowdown mask = mask.T if isinstance(level, compat.string_types): level = count_axis._get_level_number(level) level_index = count_axis.levels[level] labels = ensure_int64(count_axis.labels[level]) counts = lib.count_level_2d(mask, labels, len(level_index), axis=0) result = DataFrame(counts, index=level_index, columns=agg_axis) if axis == 1: # Undo our earlier transpose return result.T else: return result def _reduce(self, op, name, axis=0, skipna=True, numeric_only=None, filter_type=None, **kwds): if axis is None and filter_type == 'bool': labels = None constructor = None else: # TODO: Make other agg func handle axis=None properly axis = self._get_axis_number(axis) labels = self._get_agg_axis(axis) constructor = self._constructor def f(x): return op(x, axis=axis, skipna=skipna, **kwds) # exclude timedelta/datetime unless we are uniform types if axis == 1 and self._is_mixed_type and self._is_datelike_mixed_type: numeric_only = True if numeric_only is None: try: values = self.values result = f(values) if (filter_type == 'bool' and is_object_dtype(values) and axis is None): # work around https://github.com/numpy/numpy/issues/10489 # TODO: combine with hasattr(result, 'dtype') further down # hard since we don't have `values` down there. result = np.bool_(result) except Exception as e: # try by-column first if filter_type is None and axis == 0: try: # this can end up with a non-reduction # but not always. if the types are mixed # with datelike then need to make sure a series # we only end up here if we have not specified # numeric_only and yet we have tried a # column-by-column reduction, where we have mixed type. # So let's just do what we can from pandas.core.apply import frame_apply opa = frame_apply(self, func=f, result_type='expand', ignore_failures=True) result = opa.get_result() if result.ndim == self.ndim: result = result.iloc[0] return result except Exception: pass if filter_type is None or filter_type == 'numeric': data = self._get_numeric_data() elif filter_type == 'bool': data = self._get_bool_data() else: # pragma: no cover e = NotImplementedError( "Handling exception with filter_type {f} not" "implemented.".format(f=filter_type)) raise_with_traceback(e) with np.errstate(all='ignore'): result = f(data.values) labels = data._get_agg_axis(axis) else: if numeric_only: if filter_type is None or filter_type == 'numeric': data = self._get_numeric_data() elif filter_type == 'bool': data = self._get_bool_data() else: # pragma: no cover msg = ("Generating numeric_only data with filter_type {f}" "not supported.".format(f=filter_type)) raise NotImplementedError(msg) values = data.values labels = data._get_agg_axis(axis) else: values = self.values result = f(values) if hasattr(result, 'dtype') and is_object_dtype(result.dtype): try: if filter_type is None or filter_type == 'numeric': result = result.astype(np.float64) elif filter_type == 'bool' and notna(result).all(): result = result.astype(np.bool_) except (ValueError, TypeError): # try to coerce to the original dtypes item by item if we can if axis == 0: result = coerce_to_dtypes(result, self.dtypes) if constructor is not None: result = Series(result, index=labels) return result def nunique(self, axis=0, dropna=True): """ Return Series with number of distinct observations over requested axis. .. versionadded:: 0.20.0 Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 dropna : boolean, default True Don't include NaN in the counts. Returns ------- nunique : Series Examples -------- >>> df = pd.DataFrame({'A': [1, 2, 3], 'B': [1, 1, 1]}) >>> df.nunique() A 3 B 1 >>> df.nunique(axis=1) 0 1 1 2 2 2 """ return self.apply(Series.nunique, axis=axis, dropna=dropna) def idxmin(self, axis=0, skipna=True): """ Return index of first occurrence of minimum over requested axis. NA/null values are excluded. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 0 or 'index' for row-wise, 1 or 'columns' for column-wise skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA. Raises ------ ValueError * If the row/column is empty Returns ------- idxmin : Series Notes ----- This method is the DataFrame version of ``ndarray.argmin``. See Also -------- Series.idxmin """ axis = self._get_axis_number(axis) indices = nanops.nanargmin(self.values, axis=axis, skipna=skipna) index = self._get_axis(axis) result = [index[i] if i >= 0 else np.nan for i in indices] return Series(result, index=self._get_agg_axis(axis)) def idxmax(self, axis=0, skipna=True): """ Return index of first occurrence of maximum over requested axis. NA/null values are excluded. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 0 or 'index' for row-wise, 1 or 'columns' for column-wise skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA. Raises ------ ValueError * If the row/column is empty Returns ------- idxmax : Series Notes ----- This method is the DataFrame version of ``ndarray.argmax``. See Also -------- Series.idxmax """ axis = self._get_axis_number(axis) indices = nanops.nanargmax(self.values, axis=axis, skipna=skipna) index = self._get_axis(axis) result = [index[i] if i >= 0 else np.nan for i in indices] return Series(result, index=self._get_agg_axis(axis)) def _get_agg_axis(self, axis_num): """ let's be explicit about this """ if axis_num == 0: return self.columns elif axis_num == 1: return self.index else: raise ValueError('Axis must be 0 or 1 (got %r)' % axis_num) def mode(self, axis=0, numeric_only=False, dropna=True): """ Gets the mode(s) of each element along the axis selected. Adds a row for each mode per label, fills in gaps with nan. Note that there could be multiple values returned for the selected axis (when more than one item share the maximum frequency), which is the reason why a dataframe is returned. If you want to impute missing values with the mode in a dataframe ``df``, you can just do this: ``df.fillna(df.mode().iloc[0])`` Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 * 0 or 'index' : get mode of each column * 1 or 'columns' : get mode of each row numeric_only : boolean, default False if True, only apply to numeric columns dropna : boolean, default True Don't consider counts of NaN/NaT. .. versionadded:: 0.24.0 Returns ------- modes : DataFrame (sorted) Examples -------- >>> df = pd.DataFrame({'A': [1, 2, 1, 2, 1, 2, 3]}) >>> df.mode() A 0 1 1 2 """ data = self if not numeric_only else self._get_numeric_data() def f(s): return s.mode(dropna=dropna) return data.apply(f, axis=axis) def quantile(self, q=0.5, axis=0, numeric_only=True, interpolation='linear'): """ Return values at the given quantile over requested axis, a la numpy.percentile. Parameters ---------- q : float or array-like, default 0.5 (50% quantile) 0 <= q <= 1, the quantile(s) to compute axis : {0, 1, 'index', 'columns'} (default 0) 0 or 'index' for row-wise, 1 or 'columns' for column-wise numeric_only : boolean, default True If False, the quantile of datetime and timedelta data will be computed as well interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} .. versionadded:: 0.18.0 This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points `i` and `j`: * linear: `i + (j - i) * fraction`, where `fraction` is the fractional part of the index surrounded by `i` and `j`. * lower: `i`. * higher: `j`. * nearest: `i` or `j` whichever is nearest. * midpoint: (`i` + `j`) / 2. Returns ------- quantiles : Series or DataFrame - If ``q`` is an array, a DataFrame will be returned where the index is ``q``, the columns are the columns of self, and the values are the quantiles. - If ``q`` is a float, a Series will be returned where the index is the columns of self and the values are the quantiles. Examples -------- >>> df = pd.DataFrame(np.array([[1, 1], [2, 10], [3, 100], [4, 100]]), columns=['a', 'b']) >>> df.quantile(.1) a 1.3 b 3.7 dtype: float64 >>> df.quantile([.1, .5]) a b 0.1 1.3 3.7 0.5 2.5 55.0 Specifying `numeric_only=False` will also compute the quantile of datetime and timedelta data. >>> df = pd.DataFrame({'A': [1, 2], 'B': [pd.Timestamp('2010'), pd.Timestamp('2011')], 'C': [pd.Timedelta('1 days'), pd.Timedelta('2 days')]}) >>> df.quantile(0.5, numeric_only=False) A 1.5 B 2010-07-02 12:00:00 C 1 days 12:00:00 Name: 0.5, dtype: object See Also -------- pandas.core.window.Rolling.quantile """ self._check_percentile(q) data = self._get_numeric_data() if numeric_only else self axis = self._get_axis_number(axis) is_transposed = axis == 1 if is_transposed: data = data.T result = data._data.quantile(qs=q, axis=1, interpolation=interpolation, transposed=is_transposed) if result.ndim == 2: result = self._constructor(result) else: result = self._constructor_sliced(result, name=q) if is_transposed: result = result.T return result def to_timestamp(self, freq=None, how='start', axis=0, copy=True): """ Cast to DatetimeIndex of timestamps, at *beginning* of period Parameters ---------- freq : string, default frequency of PeriodIndex Desired frequency how : {'s', 'e', 'start', 'end'} Convention for converting period to timestamp; start of period vs. end axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to convert (the index by default) copy : boolean, default True If false then underlying input data is not copied Returns ------- df : DataFrame with DatetimeIndex """ new_data = self._data if copy: new_data = new_data.copy() axis = self._get_axis_number(axis) if axis == 0: new_data.set_axis(1, self.index.to_timestamp(freq=freq, how=how)) elif axis == 1: new_data.set_axis(0, self.columns.to_timestamp(freq=freq, how=how)) else: # pragma: no cover raise AssertionError('Axis must be 0 or 1. Got {ax!s}'.format( ax=axis)) return self._constructor(new_data) def to_period(self, freq=None, axis=0, copy=True): """ Convert DataFrame from DatetimeIndex to PeriodIndex with desired frequency (inferred from index if not passed) Parameters ---------- freq : string, default axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to convert (the index by default) copy : boolean, default True If False then underlying input data is not copied Returns ------- ts : TimeSeries with PeriodIndex """ new_data = self._data if copy: new_data = new_data.copy() axis = self._get_axis_number(axis) if axis == 0: new_data.set_axis(1, self.index.to_period(freq=freq)) elif axis == 1: new_data.set_axis(0, self.columns.to_period(freq=freq)) else: # pragma: no cover raise AssertionError('Axis must be 0 or 1. Got {ax!s}'.format( ax=axis)) return self._constructor(new_data) def isin(self, values): """ Return boolean DataFrame showing whether each element in the DataFrame is contained in values. Parameters ---------- values : iterable, Series, DataFrame or dictionary The result will only be true at a location if all the labels match. If `values` is a Series, that's the index. If `values` is a dictionary, the keys must be the column names, which must match. If `values` is a DataFrame, then both the index and column labels must match. Returns ------- DataFrame of booleans Examples -------- When ``values`` is a list: >>> df = pd.DataFrame({'A': [1, 2, 3], 'B': ['a', 'b', 'f']}) >>> df.isin([1, 3, 12, 'a']) A B 0 True True 1 False False 2 True False When ``values`` is a dict: >>> df = pd.DataFrame({'A': [1, 2, 3], 'B': [1, 4, 7]}) >>> df.isin({'A': [1, 3], 'B': [4, 7, 12]}) A B 0 True False # Note that B didn't match the 1 here. 1 False True 2 True True When ``values`` is a Series or DataFrame: >>> df = pd.DataFrame({'A': [1, 2, 3], 'B': ['a', 'b', 'f']}) >>> df2 = pd.DataFrame({'A': [1, 3, 3, 2], 'B': ['e', 'f', 'f', 'e']}) >>> df.isin(df2) A B 0 True False 1 False False # Column A in `df2` has a 3, but not at index 1. 2 True True """ if isinstance(values, dict): from pandas.core.reshape.concat import concat values = collections.defaultdict(list, values) return concat((self.iloc[:, [i]].isin(values[col]) for i, col in enumerate(self.columns)), axis=1) elif isinstance(values, Series): if not values.index.is_unique: raise ValueError("cannot compute isin with " "a duplicate axis.") return self.eq(values.reindex_like(self), axis='index') elif isinstance(values, DataFrame): if not (values.columns.is_unique and values.index.is_unique): raise ValueError("cannot compute isin with " "a duplicate axis.") return self.eq(values.reindex_like(self)) else: if not is_list_like(values): raise TypeError("only list-like or dict-like objects are " "allowed to be passed to DataFrame.isin(), " "you passed a " "{0!r}".format(type(values).__name__)) return DataFrame( algorithms.isin(self.values.ravel(), values).reshape(self.shape), self.index, self.columns) # ---------------------------------------------------------------------- # Add plotting methods to DataFrame plot = CachedAccessor("plot", gfx.FramePlotMethods) hist = gfx.hist_frame boxplot = gfx.boxplot_frame DataFrame._setup_axes(['index', 'columns'], info_axis=1, stat_axis=0, axes_are_reversed=True, aliases={'rows': 0}, docs={ 'index': 'The index (row labels) of the DataFrame.', 'columns': 'The column labels of the DataFrame.'}) DataFrame._add_numeric_operations() DataFrame._add_series_or_dataframe_operations() ops.add_flex_arithmetic_methods(DataFrame) ops.add_special_arithmetic_methods(DataFrame) def _arrays_to_mgr(arrays, arr_names, index, columns, dtype=None): """ Segregate Series based on type and coerce into matrices. Needs to handle a lot of exceptional cases. """ # figure out the index, if necessary if index is None: index = extract_index(arrays) # don't force copy because getting jammed in an ndarray anyway arrays = _homogenize(arrays, index, dtype) # from BlockManager perspective axes = [ensure_index(columns), ensure_index(index)] return create_block_manager_from_arrays(arrays, arr_names, axes) def extract_index(data): from pandas.core.index import _union_indexes index = None if len(data) == 0: index = Index([]) elif len(data) > 0: raw_lengths = [] indexes = [] have_raw_arrays = False have_series = False have_dicts = False for v in data: if isinstance(v, Series): have_series = True indexes.append(v.index) elif isinstance(v, dict): have_dicts = True indexes.append(list(v.keys())) elif is_list_like(v) and getattr(v, 'ndim', 1) == 1: have_raw_arrays = True raw_lengths.append(len(v)) if not indexes and not raw_lengths: raise ValueError('If using all scalar values, you must pass' ' an index') if have_series or have_dicts: index = _union_indexes(indexes) if have_raw_arrays: lengths = list(set(raw_lengths)) if len(lengths) > 1: raise ValueError('arrays must all be same length') if have_dicts: raise ValueError('Mixing dicts with non-Series may lead to ' 'ambiguous ordering.') if have_series: if lengths[0] != len(index): msg = ('array length %d does not match index length %d' % (lengths[0], len(index))) raise ValueError(msg) else: index = ibase.default_index(lengths[0]) return ensure_index(index) def _prep_ndarray(values, copy=True): if not isinstance(values, (np.ndarray, Series, Index)): if len(values) == 0: return np.empty((0, 0), dtype=object) def convert(v): return maybe_convert_platform(v) # we could have a 1-dim or 2-dim list here # this is equiv of np.asarray, but does object conversion # and platform dtype preservation try: if is_list_like(values[0]) or hasattr(values[0], 'len'): values = np.array([convert(v) for v in values]) elif isinstance(values[0], np.ndarray) and values[0].ndim == 0: # GH#21861 values = np.array([convert(v) for v in values]) else: values = convert(values) except: values = convert(values) else: # drop subclass info, do not copy data values = np.asarray(values) if copy: values = values.copy() if values.ndim == 1: values = values.reshape((values.shape[0], 1)) elif values.ndim != 2: raise ValueError('Must pass 2-d input') return values def _to_arrays(data, columns, coerce_float=False, dtype=None): """ Return list of arrays, columns """ if isinstance(data, DataFrame): if columns is not None: arrays = [data._ixs(i, axis=1).values for i, col in enumerate(data.columns) if col in columns] else: columns = data.columns arrays = [data._ixs(i, axis=1).values for i in range(len(columns))] return arrays, columns if not len(data): if isinstance(data, np.ndarray): columns = data.dtype.names if columns is not None: return [[]] * len(columns), columns return [], [] # columns if columns is not None else [] if isinstance(data[0], (list, tuple)): return _list_to_arrays(data, columns, coerce_float=coerce_float, dtype=dtype) elif isinstance(data[0], collections.Mapping): return _list_of_dict_to_arrays(data, columns, coerce_float=coerce_float, dtype=dtype) elif isinstance(data[0], Series): return _list_of_series_to_arrays(data, columns, coerce_float=coerce_float, dtype=dtype) elif isinstance(data[0], Categorical): if columns is None: columns = ibase.default_index(len(data)) return data, columns elif (isinstance(data, (np.ndarray, Series, Index)) and data.dtype.names is not None): columns = list(data.dtype.names) arrays = [data[k] for k in columns] return arrays, columns else: # last ditch effort data = lmap(tuple, data) return _list_to_arrays(data, columns, coerce_float=coerce_float, dtype=dtype) def _masked_rec_array_to_mgr(data, index, columns, dtype, copy): """ extract from a masked rec array and create the manager """ # essentially process a record array then fill it fill_value = data.fill_value fdata = ma.getdata(data) if index is None: index = _get_names_from_index(fdata) if index is None: index = ibase.default_index(len(data)) index = ensure_index(index) if columns is not None: columns = ensure_index(columns) arrays, arr_columns = _to_arrays(fdata, columns) # fill if needed new_arrays = [] for fv, arr, col in zip(fill_value, arrays, arr_columns): mask = ma.getmaskarray(data[col]) if mask.any(): arr, fv = maybe_upcast(arr, fill_value=fv, copy=True) arr[mask] = fv new_arrays.append(arr) # create the manager arrays, arr_columns = _reorder_arrays(new_arrays, arr_columns, columns) if columns is None: columns = arr_columns mgr = _arrays_to_mgr(arrays, arr_columns, index, columns) if copy: mgr = mgr.copy() return mgr def _reorder_arrays(arrays, arr_columns, columns): # reorder according to the columns if (columns is not None and len(columns) and arr_columns is not None and len(arr_columns)): indexer = ensure_index(arr_columns).get_indexer(columns) arr_columns = ensure_index([arr_columns[i] for i in indexer]) arrays = [arrays[i] for i in indexer] return arrays, arr_columns def _list_to_arrays(data, columns, coerce_float=False, dtype=None): if len(data) > 0 and isinstance(data[0], tuple): content = list(lib.to_object_array_tuples(data).T) else: # list of lists content = list(lib.to_object_array(data).T) return _convert_object_array(content, columns, dtype=dtype, coerce_float=coerce_float) def _list_of_series_to_arrays(data, columns, coerce_float=False, dtype=None): from pandas.core.index import _get_objs_combined_axis if columns is None: columns = _get_objs_combined_axis(data, sort=False) indexer_cache = {} aligned_values = [] for s in data: index = getattr(s, 'index', None) if index is None: index = ibase.default_index(len(s)) if id(index) in indexer_cache: indexer = indexer_cache[id(index)] else: indexer = indexer_cache[id(index)] = index.get_indexer(columns) values = com.values_from_object(s) aligned_values.append(algorithms.take_1d(values, indexer)) values = np.vstack(aligned_values) if values.dtype == np.object_: content = list(values.T) return _convert_object_array(content, columns, dtype=dtype, coerce_float=coerce_float) else: return values.T, columns def _list_of_dict_to_arrays(data, columns, coerce_float=False, dtype=None): if columns is None: gen = (list(x.keys()) for x in data) sort = not any(isinstance(d, OrderedDict) for d in data) columns = lib.fast_unique_multiple_list_gen(gen, sort=sort) # assure that they are of the base dict class and not of derived # classes data = [(type(d) is dict) and d or dict(d) for d in data] content = list(lib.dicts_to_array(data, list(columns)).T) return _convert_object_array(content, columns, dtype=dtype, coerce_float=coerce_float) def _convert_object_array(content, columns, coerce_float=False, dtype=None): if columns is None: columns = ibase.default_index(len(content)) else: if len(columns) != len(content): # pragma: no cover # caller's responsibility to check for this... raise AssertionError('{col:d} columns passed, passed data had ' '{con} columns'.format(col=len(columns), con=len(content))) # provide soft conversion of object dtypes def convert(arr): if dtype != object and dtype != np.object: arr = lib.maybe_convert_objects(arr, try_float=coerce_float) arr = maybe_cast_to_datetime(arr, dtype) return arr arrays = [convert(arr) for arr in content] return arrays, columns def _get_names_from_index(data): has_some_name = any(getattr(s, 'name', None) is not None for s in data) if not has_some_name: return ibase.default_index(len(data)) index = lrange(len(data)) count = 0 for i, s in enumerate(data): n = getattr(s, 'name', None) if n is not None: index[i] = n else: index[i] = 'Unnamed %d' % count count += 1 return index def _homogenize(data, index, dtype=None): from pandas.core.series import _sanitize_array oindex = None homogenized = [] for v in data: if isinstance(v, Series): if dtype is not None: v = v.astype(dtype) if v.index is not index: # Forces alignment. No need to copy data since we # are putting it into an ndarray later v = v.reindex(index, copy=False) else: if isinstance(v, dict): if oindex is None: oindex = index.astype('O') if isinstance(index, (DatetimeIndex, TimedeltaIndex)): v = com.dict_compat(v) else: v = dict(v) v = lib.fast_multiget(v, oindex.values, default=np.nan) v = _sanitize_array(v, index, dtype=dtype, copy=False, raise_cast_failure=False) homogenized.append(v) return homogenized def _from_nested_dict(data): # TODO: this should be seriously cythonized new_data = OrderedDict() for index, s in compat.iteritems(data): for col, v in compat.iteritems(s): new_data[col] = new_data.get(col, OrderedDict()) new_data[col][index] = v return new_data def _put_str(s, space): return u'{s}'.format(s=s)[:space].ljust(space)
36.561692
169
0.532059
d7e9eff463b2892c2d8827ec61ac2ac40f295522
10,123
py
Python
rdkit/ML/NaiveBayes/ClassificationModel.py
kazuyaujihara/rdkit
06027dcd05674787b61f27ba46ec0d42a6037540
[ "BSD-3-Clause" ]
1,609
2015-01-05T02:41:13.000Z
2022-03-30T21:57:24.000Z
rdkit/ML/NaiveBayes/ClassificationModel.py
kazuyaujihara/rdkit
06027dcd05674787b61f27ba46ec0d42a6037540
[ "BSD-3-Clause" ]
3,412
2015-01-06T12:13:33.000Z
2022-03-31T17:25:41.000Z
rdkit/ML/NaiveBayes/ClassificationModel.py
kazuyaujihara/rdkit
06027dcd05674787b61f27ba46ec0d42a6037540
[ "BSD-3-Clause" ]
811
2015-01-11T03:33:48.000Z
2022-03-28T11:57:49.000Z
# $Id$ # # Copyright (C) 2004-2008 Greg Landrum and Rational Discovery LLC # All Rights Reserved # """ Defines Naive Baysean classification model Based on development in: Chapter 6 of "Machine Learning" by Tom Mitchell """ import numpy from rdkit.ML.Data import Quantize def _getBinId(val, qBounds): bid = 0 for bnd in qBounds: if (val > bnd): bid += 1 return bid # FIX: this class has not been updated to new-style classes # (RD Issue380) because that would break all of our legacy pickled # data. Until a solution is found for this breakage, an update is # impossible. class NaiveBayesClassifier: """ _NaiveBayesClassifier_s can save the following pieces of internal state, accessible via standard setter/getter functions: 1) _Examples_: a list of examples which have been predicted 2) _TrainingExamples_: List of training examples - the descriptor value of these examples are quantized based on info gain using ML/Data/Quantize.py if necessary 3) _TestExamples_: the list of examples used to test the model 4) _BadExamples_ : list of examples that were incorrectly classified 4) _QBoundVals_: Quant bound values for each varaible - a list of lists 5) _QBounds_ : Number of bounds for each variable """ def __init__(self, attrs, nPossibleVals, nQuantBounds, mEstimateVal=-1.0, useSigs=False): """ Constructor """ self._attrs = attrs self._mEstimateVal = mEstimateVal self._useSigs = useSigs self._classProbs = {} self._examples = [] self._trainingExamples = [] self._testExamples = [] self._badExamples = [] self._QBoundVals = {} self._nClasses = nPossibleVals[-1] self._qBounds = nQuantBounds self._nPosVals = nPossibleVals self._needsQuant = 1 self._name = "" self.mprob = -1.0 # for the sake a of efficiency lets try to change the conditional probabilities # to a numpy array instead of a dictionary. The three dimension array is indexed # on the activity class, the descriptor ID and the descriptor binID # self._condProbs = {} # self._condProbs = numpy.zeros((self._nClasses, max(self._attrs)+1, # max(self._nPosVals)+1), 'd') self._condProbs = [None] * self._nClasses for i in range(self._nClasses): if not (hasattr(self, '_useSigs') and self._useSigs): nA = max(self._attrs) + 1 self._condProbs[i] = [None] * nA for j in range(nA): nV = self._nPosVals[j] if self._qBounds[j]: nV = max(nV, self._qBounds[j] + 1) self._condProbs[i][j] = [0.0] * nV else: self._condProbs[i] = {} for idx in self._attrs: self._condProbs[i][idx] = [0.0] * 2 def GetName(self): return self._name def SetName(self, name): self._name = name def NameModel(self, varNames): self.SetName('NaiveBayesClassifier') def GetExamples(self): return self._examples def SetExamples(self, examples): self._examples = examples def GetTrainingExamples(self): return self._trainingExamples def SetTrainingExamples(self, examples): self._trainingExamples = examples def GetTestExamples(self): return self._testExamples def SetTestExamples(self, examples): self._testExamples = examples def SetBadExamples(self, examples): self._badExamples = examples def GetBadExamples(self): return self._badExamples def _computeQuantBounds(self): neg = len(self._trainingExamples) natr = len(self._attrs) # make a list of results and values allVals = numpy.zeros((neg, natr), 'd') res = [] # list of y values i = 0 for eg in self._trainingExamples: res.append(eg[-1]) j = 0 for ai in self._attrs: val = eg[ai] allVals[i, j] = val j += 1 i += 1 # now loop over each of the columns and compute the bounds # the number of bounds is determined by the maximum info gain i = 0 for ai in self._attrs: nbnds = self._qBounds[ai] if nbnds > 0: mbnds = [] mgain = -1.0 for j in range(1, nbnds + 1): bnds, igain = Quantize.FindVarMultQuantBounds( allVals[:, i], j, res, self._nClasses) if (igain > mgain): mbnds = bnds mgain = igain self._QBoundVals[ai] = mbnds i += 1 def trainModel(self): """ We will assume at this point that the training examples have been set We have to estmate the conditional probabilities for each of the (binned) descriptor component give a outcome (or class). Also the probabilities for each class is estimated """ # first estimate the class probabilities n = len(self._trainingExamples) for i in range(self._nClasses): self._classProbs[i] = 0.0 # for i in range(self._nClasses): # self._classProbs[i] = float(self._classProbs[i])/n # first find the bounds for each descriptor value if necessary if not self._useSigs and max(self._qBounds) > 0: self._computeQuantBounds() # now compute the probabilities ncls = {} incr = 1.0 / n for eg in self._trainingExamples: cls = eg[-1] self._classProbs[cls] += incr ncls[cls] = ncls.get(cls, 0) + 1 tmp = self._condProbs[cls] if not self._useSigs: for ai in self._attrs: bid = eg[ai] if self._qBounds[ai] > 0: bid = _getBinId(bid, self._QBoundVals[ai]) tmp[ai][bid] += 1.0 else: for ai in self._attrs: if eg[1].GetBit(ai): tmp[ai][1] += 1.0 else: tmp[ai][0] += 1.0 # for key in self._condProbs: for cls in range(self._nClasses): if cls not in ncls: continue # cls = key[0] tmp = self._condProbs[cls] for ai in self._attrs: if not self._useSigs: nbnds = self._nPosVals[ai] if (self._qBounds[ai] > 0): nbnds = self._qBounds[ai] else: nbnds = 2 for bid in range(nbnds): if self._mEstimateVal <= 0.0: # this is simple the fraction of of time this descriptor component assume # this value for the examples that belong a specific class # self._condProbs[key] = (float(self._condProbs[key]))/ncls[cls] tmp[ai][bid] /= ncls[cls] else: # this a bit more complicated form - more appropriate for unbalanced data # see "Machine Learning" by Tom Mitchell section 6.9.1.1 # this is the probability that this descriptor component can take this specific value # in the lack of any other information is is simply the inverse of the number of # possible values 'npossible' # If we quantized this component then # npossible = 1 + len(self._QBoundVals[ai]) # else if we did no qunatize (the descriptor came quantized) # npossible = nPossibleVals[ai] # ai = key[1] pdesc = 0.0 if self._qBounds[ai] > 0: pdesc = 1.0 / (1 + len(self._QBoundVals[ai])) elif (self._nPosVals[ai] > 0): pdesc = 1.0 / (self._nPosVals[ai]) else: raise ValueError( 'Neither Bounds set nor data pre-quantized for attribute ' + str(ai)) tmp[ai][bid] += (self._mEstimateVal) * pdesc tmp[ai][bid] /= (ncls[cls] + self._mEstimateVal) def ClassifyExamples(self, examples, appendExamples=0): preds = [] for eg in examples: pred = self.ClassifyExample(eg, appendExamples) preds.append(int(pred)) return preds def GetClassificationDetails(self): """ returns the probability of the last prediction """ return self.mprob def ClassifyExample(self, example, appendExamples=0): """ Classify an example by summing over the conditional probabilities The most likely class is the one with the largest probability """ if appendExamples: self._examples.append(example) clsProb = {} for key, prob in self._classProbs.items(): clsProb[key] = prob tmp = self._condProbs[key] for ai in self._attrs: if not (hasattr(self, '_useSigs') and self._useSigs): bid = example[ai] if self._qBounds[ai] > 0: bid = _getBinId(bid, self._QBoundVals[ai]) else: if example[1].GetBit(ai): bid = 1 else: bid = 0 clsProb[key] *= tmp[ai][bid] mkey = -1 self.mprob = -1.0 for key, prob in clsProb.items(): if (prob > self.mprob): mkey = key self.mprob = prob return mkey
36.024911
109
0.533735
9d3e347088cde32ff29b272a06cbe7014fd5dcf2
726
py
Python
fixture/session.py
hvolena/python_training
621a9342939054f32129f9e0652a786269f0174b
[ "Apache-2.0" ]
null
null
null
fixture/session.py
hvolena/python_training
621a9342939054f32129f9e0652a786269f0174b
[ "Apache-2.0" ]
null
null
null
fixture/session.py
hvolena/python_training
621a9342939054f32129f9e0652a786269f0174b
[ "Apache-2.0" ]
null
null
null
class SessionHelper: def __init__(self, app): self.app = app def logout(self): wd = self.app.wd wd.find_element_by_link_text("Logout").click() while not wd.find_element_by_name("user"): pass def login(self, username, password): wd = self.app.wd self.app.open_home_page() wd.find_element_by_name("user").click() wd.find_element_by_name("user").clear() wd.find_element_by_name("user").send_keys(username) wd.find_element_by_name("pass").click() wd.find_element_by_name("pass").clear() wd.find_element_by_name("pass").send_keys(password) wd.find_element_by_xpath("//input[@value='Login']").click()
33
67
0.632231
56a27d2a0f9aab5376986b6edfdd24da60a530ba
869
py
Python
first_django_project/first_django_project/urls.py
ArRosid/Django-Article
92bfb1047b734ac1627ab17163d4d077ed0d2c44
[ "MIT" ]
null
null
null
first_django_project/first_django_project/urls.py
ArRosid/Django-Article
92bfb1047b734ac1627ab17163d4d077ed0d2c44
[ "MIT" ]
null
null
null
first_django_project/first_django_project/urls.py
ArRosid/Django-Article
92bfb1047b734ac1627ab17163d4d077ed0d2c44
[ "MIT" ]
null
null
null
"""first_django_project URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path # from . import views from .views import home, about_me urlpatterns = [ path('admin/', admin.site.urls), path('', home), path('about/', about_me) ]
31.035714
77
0.703107
9e0b7a9517a7020a66b30aa03bb6b6883c97425d
6,740
py
Python
src/out/PLDI19evaluation/squeezenet/tensorflow/squeezenet.py
supunab/Lantern
932a031816617d71c46653f3b2245129a6a8a7c8
[ "BSD-3-Clause" ]
158
2018-03-28T21:58:07.000Z
2022-02-22T00:49:46.000Z
src/out/PLDI19evaluation/squeezenet/tensorflow/squeezenet.py
douxiansheng/Lantern
f453de532da638c1f467953b32bbe49a3dedfa45
[ "BSD-3-Clause" ]
35
2018-09-03T21:27:15.000Z
2019-05-11T02:17:49.000Z
src/out/PLDI19evaluation/squeezenet/tensorflow/squeezenet.py
douxiansheng/Lantern
f453de532da638c1f467953b32bbe49a3dedfa45
[ "BSD-3-Clause" ]
15
2018-03-29T06:29:22.000Z
2020-05-20T06:56:03.000Z
from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from tensorflow.contrib.layers import conv2d, avg_pool2d, max_pool2d from tensorflow.contrib.layers import batch_norm, l2_regularizer from tensorflow.contrib.framework import add_arg_scope from tensorflow.contrib.framework import arg_scope @add_arg_scope def fire_module(inputs, squeeze_depth, expand_depth, reuse=None, scope=None): with tf.variable_scope(scope, 'fire', [inputs], reuse=reuse): with arg_scope([conv2d, max_pool2d]): net = _squeeze(inputs, squeeze_depth) net = _expand(net, expand_depth) return net def fire_module1(inputs, squeeze_depth, expand_depth, reuse=None, scope=None): with tf.variable_scope(scope, 'fire', [inputs], reuse = reuse): net = _squeeze(inputs, squeeze_depth) net = _expand(net, expand_depth) return net def _squeeze(inputs, num_outputs): return conv2d(inputs, num_outputs, [1, 1], stride=1, scope='squeeze') def _expand(inputs, num_outputs): with tf.variable_scope('expand'): e1x1 = conv2d(inputs, num_outputs, [1, 1], stride=1, scope='1x1') e3x3 = conv2d(inputs, num_outputs, [3, 3], scope='3x3') return tf.concat([e1x1, e3x3], 1) class Squeezenet(object): """Original squeezenet architecture for 224x224 images.""" name = 'squeezenet' def __init__(self, args): self._num_classes = args.num_classes self._weight_decay = args.weight_decay self._batch_norm_decay = args.batch_norm_decay self._is_built = False def build(self, x, is_training): self._is_built = True with tf.variable_scope(self.name, values=[x]): with arg_scope(_arg_scope(is_training, self._weight_decay, self._batch_norm_decay)): return self._squeezenet(x, self._num_classes) @staticmethod def _squeezenet(images, num_classes=1000): net = conv2d(images, 96, [7, 7], stride=2, scope='conv1') net = max_pool2d(net, [3, 3], stride=2, scope='maxpool1') net = fire_module(net, 16, 64, scope='fire2') net = fire_module(net, 16, 64, scope='fire3') net = fire_module(net, 32, 128, scope='fire4') net = max_pool2d(net, [3, 3], stride=2, scope='maxpool4') net = fire_module(net, 32, 128, scope='fire5') net = fire_module(net, 48, 192, scope='fire6') net = fire_module(net, 48, 192, scope='fire7') net = fire_module(net, 64, 256, scope='fire8') net = max_pool2d(net, [3, 3], stride=2, scope='maxpool8') net = fire_module(net, 64, 256, scope='fire9') net = conv2d(net, num_classes, [1, 1], stride=1, scope='conv10') net = avg_pool2d(net, [13, 13], stride=1, scope='avgpool10') logits = tf.squeeze(net, [2], name='logits') return logits class Squeezenet_CIFAR1(object): name = 'squeezenet_cifar' def __init__(self, args): self._is_built = False def build(self, x, is_training): self._is_built = True with tf.variable_scope(self.name, values=[x]): return self._squeezenet(x) def _squeezenet(images, num_classes = 10): net = conv2d(images, 96, [3, 3], scope='conv1') net = max_pool2d(net, [2, 2], scope='maxpool1') net = fire_module1(net, 16, 64, scope='fire2') net = fire_module1(net, 16, 64, scope='fire3') net = fire_module1(net, 32, 128, scope='fire4') net = max_pool2d(net, [2, 2], scope='maxpool4') net = fire_module1(net, 32, 128, scope='fire5') net = fire_module1(net, 48, 192, scope='fire6') net = fire_module1(net, 48, 192, scope='fire7') net = fire_module1(net, 64, 256, scope='fire8') net = max_pool2d(net, [2, 2], scope='maxpool8') net = fire_module1(net, 64, 256, scope='fire9') net = avg_pool2d(net, [4, 4], scope='avgpool10') net = conv2d(net, num_classes, [1, 1], activation_fn=None, normalizer_fn=None, scope='conv10') logits = tf.squeeze(net, [2], name='logits') return logits class Squeezenet_CIFAR(object): """Modified version of squeezenet for CIFAR images""" name = 'squeezenet_cifar' def __init__(self, args): self._weight_decay = args.weight_decay self._batch_norm_decay = args.batch_norm_decay self._is_built = False def build(self, x, is_training): self._is_built = True with tf.variable_scope(self.name, values=[x]): # with arg_scope(_arg_scope(is_training, # self._weight_decay, # self._batch_norm_decay)): with arg_scope([conv2d, avg_pool2d, max_pool2d], data_format='NCHW'): return self._squeezenet(x) @staticmethod def _squeezenet(images, num_classes=10): net = conv2d(images, 96, [3, 3], scope='conv1') net = max_pool2d(net, [2, 2], scope='maxpool1') net = fire_module(net, 16, 64, scope='fire2') net = fire_module(net, 16, 64, scope='fire3') net = fire_module(net, 32, 128, scope='fire4') net = max_pool2d(net, [2, 2], scope='maxpool4') net = fire_module(net, 32, 128, scope='fire5') net = fire_module(net, 48, 192, scope='fire6') net = fire_module(net, 48, 192, scope='fire7') net = fire_module(net, 64, 256, scope='fire8') net = max_pool2d(net, [2, 2], scope='maxpool8') net = fire_module(net, 64, 256, scope='fire9') net = avg_pool2d(net, [4, 4], scope='avgpool10') net = conv2d(net, num_classes, [1, 1], activation_fn=None, normalizer_fn=None, scope='conv10') logits = tf.squeeze(net, [2], name='logits') return logits def _arg_scope(is_training, weight_decay, bn_decay): with arg_scope([conv2d], weights_regularizer=l2_regularizer(weight_decay), normalizer_fn=batch_norm, normalizer_params={'is_training': is_training, 'fused': True, 'decay': bn_decay}): with arg_scope([conv2d, avg_pool2d, max_pool2d, batch_norm], data_format='NCHW') as sc: return sc ''' Network in Network: https://arxiv.org/abs/1312.4400 See Section 3.2 for global average pooling '''
40.848485
78
0.59451
c72a3e0eeba605d114269b5f1257605f8211b8cc
1,175
py
Python
kolibri/plugins/device/kolibri_plugin.py
MBKayro/kolibri
0a38a5fb665503cf8f848b2f65938e73bfaa5989
[ "MIT" ]
545
2016-01-19T19:26:55.000Z
2022-03-20T00:13:04.000Z
kolibri/plugins/device/kolibri_plugin.py
MBKayro/kolibri
0a38a5fb665503cf8f848b2f65938e73bfaa5989
[ "MIT" ]
8,329
2016-01-19T19:32:02.000Z
2022-03-31T21:23:12.000Z
kolibri/plugins/device/kolibri_plugin.py
MBKayro/kolibri
0a38a5fb665503cf8f848b2f65938e73bfaa5989
[ "MIT" ]
493
2016-01-19T19:26:48.000Z
2022-03-28T14:35:05.000Z
from __future__ import absolute_import from __future__ import print_function from __future__ import unicode_literals from kolibri.core.auth.constants.user_kinds import SUPERUSER from kolibri.core.device.utils import get_device_setting from kolibri.core.hooks import NavigationHook from kolibri.core.hooks import RoleBasedRedirectHook from kolibri.core.webpack.hooks import WebpackBundleHook from kolibri.plugins import KolibriPluginBase from kolibri.plugins.hooks import register_hook class DeviceManagementPlugin(KolibriPluginBase): untranslated_view_urls = "api_urls" translated_view_urls = "urls" @register_hook class DeviceManagementAsset(WebpackBundleHook): bundle_id = "app" @property def plugin_data(self): return { "isSubsetOfUsersDevice": get_device_setting( "subset_of_users_device", False ), } @register_hook class DeviceRedirect(RoleBasedRedirectHook): roles = (SUPERUSER,) @property def url(self): return self.plugin_url(DeviceManagementPlugin, "device_management") @register_hook class DeviceManagementNavItem(NavigationHook): bundle_id = "side_nav"
26.704545
75
0.772766
149a40181ae1a97390338f32baa92c4c174ed096
377
py
Python
opentech/public/utils/context_processors.py
stdevteam/opentech.fund
6888dc5aa1a8c60f17629dff03877412275e08a5
[ "BSD-3-Clause" ]
null
null
null
opentech/public/utils/context_processors.py
stdevteam/opentech.fund
6888dc5aa1a8c60f17629dff03877412275e08a5
[ "BSD-3-Clause" ]
null
null
null
opentech/public/utils/context_processors.py
stdevteam/opentech.fund
6888dc5aa1a8c60f17629dff03877412275e08a5
[ "BSD-3-Clause" ]
null
null
null
from opentech.apply.home.models import ApplyHomePage from opentech.public.home.models import HomePage from opentech.public.mailchimp.forms import NewsletterForm def global_vars(request): return { 'APPLY_SITE': ApplyHomePage.objects.first().get_site(), 'PUBLIC_SITE': HomePage.objects.first().get_site(), 'newsletter_form': NewsletterForm() }
29
63
0.737401
08c20ee47538fed4491627eaebbbd46ac2b9b0c9
5,877
py
Python
plugins/trigger_operators.py
slaclab/cryoem-pipeline
b3fcfb6072fda64164eaef7681d82fa3838dc05e
[ "MIT" ]
null
null
null
plugins/trigger_operators.py
slaclab/cryoem-pipeline
b3fcfb6072fda64164eaef7681d82fa3838dc05e
[ "MIT" ]
null
null
null
plugins/trigger_operators.py
slaclab/cryoem-pipeline
b3fcfb6072fda64164eaef7681d82fa3838dc05e
[ "MIT" ]
1
2020-12-13T00:00:53.000Z
2020-12-13T00:00:53.000Z
from airflow.plugins_manager import AirflowPlugin from airflow.operators.trigger_dagrun import TriggerDagRunOperator from airflow_multi_dagrun.operators import TriggerMultiDagRunOperator from airflow.exceptions import AirflowException, AirflowSkipException from airflow import settings import contextlib from airflow.models import DagRun, DagBag from airflow.utils.state import State from pathlib import Path from datetime import datetime from time import sleep import re import logging LOG = logging.getLogger(__name__) def trigger_preprocessing(context): """ calls the preprocessing dag: pass the filenames of the stuff to process """ # we have a jpg, xml, small mrc and large mrc, and gainref dm4 file # assume the common filename is the same and allow the preprocessing dag wait for the other files? what happens if two separate calls to the same dag occur? found = {} if context == None: return for f in context['ti'].xcom_pull( task_ids='rsync', key='return_value' ): this = Path(f).resolve().stem for pattern in ( r'\-\d+$', r'\-gain\-ref$' ): if re.search( pattern, this): this = re.sub( pattern, '', this) #LOG.info("mapped: %s -> %s" % (f, this)) # LOG.info("this: %s, f: %s" % (this,f)) # EPU SPA # epu2 if '_Fractions' in f and f.endswith('.xml'): base = re.sub( '_Fractions', '', this ) found[base] = True # epu1 elif f.endswith('.xml') and not f.startswith('Atlas') and not f.startswith('Tile_') and '_Data_' in f and not '_Fractions' in f: found[this] = True # tomo4 tomography file elif '[' in this and ']' in this: t = this.split(']')[0] + ']' found[t] = True # serialem else: # tomogram m = re.match( r'^(?P<base>.*)\_(?P<seq>\d{5}\_\d{3})\_(?P<angle>\-?\d{1,2}\.\d)\_(?P<other>.*)?\.(mrc|tif)$', f ) if m: n = m.groupdict() fn = "%s_%s[%s]" % (n['base'], n['seq'], n['angle']) # ignore countref files if not 'CountRef' in n['base']: found[ fn ] = True # single particle else: m = re.match( r'^(?P<base>.*\_\d\d\d\d\d)(\_.*)?\.(tif|tiff|mrc)$', f ) if m: b = m.groupdict()['base'] LOG.info('found %s' % (b,)) found[b] = True else: # stupid new epu m = re.match( r'^(?P<base>.*)\_fractions\.(tiff|mrc)$', f ) if m: n = m.groupdict()['base'] if n != 'PreviewDoseFraction': found[n] = True # LOG.info("FOUND: %s" % (found,)) for base_filename,_ in sorted(found.items()): sample = context['ti'].xcom_pull( task_ids='config', key='sample' ) inst = context['ti'].xcom_pull( task_ids='config', key='instrument' ) name = context['ti'].xcom_pull( task_ids='config', key='experiment' ) run_id = '%s__%s' % (name, base_filename) #dro = DagRunOrder(run_id=run_id) d = sample['params'] d['data_directory'] = context['ti'].xcom_pull( task_ids='config', key='directory_suffix' ) + '/' + sample['guid'] d['base'] = base_filename d['experiment'] = name d['microscope'] = inst['_id'] d['cs'] = inst['params']['cs'] d['keV'] = inst['params']['keV'] # only do single-particle LOG.info('triggering run id %s with %s' % (run_id,d)) #dro.payload = d #yield dro dro = {'run_id': run_id, 'payload': payload} yield dro return def trigger_null(context): raise AirflowSkipException('Intentionally not doing it') @contextlib.contextmanager def create_session(): session = settings.Session() try: yield session session.expunge_all() session.commit() except: session.rollback() raise finally: session.close() class TriggerMultiDagRunOperator(TriggerDagRunOperator): template_fields = ('trigger_dag_id', 'dry_run' ) def __init__(self, dry_run=False, *args,**kwargs): self.dry_run = dry_run self.python_callable = trigger_preprocessing super( TriggerMultiDagRunOperator, self ).__init__( *args, **kwargs ) def execute(self, context): count = 0 self.python_callable = trigger_preprocessing dry = True if self.dry_run.lower() == 'true' else False try: with create_session() as session: dbag = DagBag(settings.DAGS_FOLDER) trigger_dag = dbag.get_dag(self.trigger_dag_id) # get dro's for dro in self.python_callable(context): if dro and not dry: try: dr = trigger_dag.create_dagrun( run_id=dro['run_id'], state=State.RUNNING, conf=dro['payload'], external_trigger=True) # LOG.info("Creating DagRun %s", dr) session.add(dr) count = count + 1 except Exception as e: LOG.error("Could not add %s: %s" % (dro.run_id,e)) session.commit() except Exception as e: LOG.error("Could not connect to airflow") if count == 0: raise AirflowSkipException('No external dags triggered') class TriggerPlugin(AirflowPlugin): name = 'trigger_plugin' operators = [TriggerMultiDagRunOperator,]
35.835366
161
0.537349
1849732d58598a4fd39cd95f066af6f711120f43
3,612
py
Python
frontend/main.py
Fox520/PaymentGateway
c4c0675b056ac377b135de778069b1c63883b6de
[ "MIT" ]
1
2021-11-23T16:33:39.000Z
2021-11-23T16:33:39.000Z
frontend/main.py
Fox520/PaymentGateway
c4c0675b056ac377b135de778069b1c63883b6de
[ "MIT" ]
null
null
null
frontend/main.py
Fox520/PaymentGateway
c4c0675b056ac377b135de778069b1c63883b6de
[ "MIT" ]
null
null
null
import os import json import webbrowser from kivy.network.urlrequest import UrlRequest from kivy.storage.dictstore import DictStore from kivy.app import App from kivy.properties import StringProperty from kivy.lang import Builder from kivy.uix.screenmanager import ScreenManager, Screen BASE_URL = "https://c73e12ff8ac1.ngrok.io" USER_ID = "user1" store = DictStore("tempo.dat") Builder.load_string( """ <HomeScreen>: BoxLayout: orientation: "vertical" Button: text: "Create order" on_release: root.create_order() Button: text: "start transaction" on_release: root.start_transaction() Button: text: "check if transaction is complete" on_release: root.is_transaction_complete() Label: text: root.status """ ) # Declare both screens class HomeScreen(Screen): status = StringProperty("meh") def create_order(self): my_order = { "uid": "user1", "products": [ {"product_id": "prd1", "count": 3}, {"product_id": "prd2", "count": 2}, ], } headers = {'Content-type': 'application/json', 'Accept': 'application/json'} UrlRequest( f"{BASE_URL}/create-order", req_body=json.dumps(my_order), req_headers=headers, on_success=self.on_order_success, on_error=self.on_order_error, ) def on_order_success(self, *args): # (<UrlRequest(Thread-1, started daemon 7296)>, '{\n "cost": "70.45"\n}\n') data = json.loads(args[1]) self.status = str(data) def on_order_error(self, *args): self.status = str(args) def start_transaction(self): info = { "uid": "user1", "currency":"ZAR", "locale": "en-za", "country": "ZAF", "pay_method":"CC", "email": "customer@paygate.co.za" } headers = {'Content-type': 'application/json', 'Accept': 'application/json'} UrlRequest( f"{BASE_URL}/start-transaction", req_body=json.dumps(info), req_headers=headers, on_success=self.on_start_transaction_success, on_error=self.on_start_transaction_error, ) def on_start_transaction_success(self, *args): data = args[1] transaction_ref = data["transaction_ref"] store.put("transaction_ref", transaction_ref=transaction_ref) html_form = data["data"] f = open("temporary.html", "w") f.write(html_form) f.close() webbrowser.open(os.path.abspath("temporary.html")) def on_start_transaction_error(self, *args): self.status = str(args) def is_transaction_complete(self): order_id = store.get("transaction_ref")["transaction_ref"] print(order_id) UrlRequest( f"{BASE_URL}/is-order-complete/{USER_ID}/{order_id}", on_success=self.on_transaction_complete_success, on_error=self.on_transaction_complete_error, ) def on_transaction_complete_success(self, *args): self.status = str(args) def on_transaction_complete_error(self, *args): self.status = str(args) # Create the screen manager sm = ScreenManager() sm.add_widget(HomeScreen(name="menu")) class MyShop(App): def build(self): return sm def on_resume(self): return True if __name__ == "__main__": MyShop().run()
28.21875
86
0.590808
433efa9ec98b5c6296506866da1cdd77611469e4
6,385
py
Python
examples/NAS-Envelopenet-trainingcontainer/evaluate.py
adamjm/katib
41143e8aa3affd0835727df379c38eaf298593cc
[ "Apache-2.0" ]
null
null
null
examples/NAS-Envelopenet-trainingcontainer/evaluate.py
adamjm/katib
41143e8aa3affd0835727df379c38eaf298593cc
[ "Apache-2.0" ]
1
2019-06-14T21:22:35.000Z
2019-06-14T21:22:35.000Z
examples/NAS-Envelopenet-trainingcontainer/evaluate.py
adamjm/katib
41143e8aa3affd0835727df379c38eaf298593cc
[ "Apache-2.0" ]
null
null
null
from datetime import datetime import math import numpy as np import tensorflow as tf import net class Evaluate(object): def __init__(self, arch, config, checkpoint_dir): self.task_config = config self.arch = arch self.checkpoint_dir = checkpoint_dir self.get_task_params() def get_task_params(self): self.log_stats = self.task_config["log_stats"] self.dataset = self.task_config["dataset"] self.image_size = self.task_config["input_size"] self.init_cell={ "Layer0": {"Branch0": {"block": "conv2d", "kernel_size": [1, 1], "outputs": 64}}, "Layer2": {"Branch0": {"block": "lrn" }} } self.classification_cell={ "Layer0": {"Branch0": {"block": "reduce_mean", "size": [1, 2]}}, "Layer1": {"Branch0": {"block": "flatten", "size": [3, 3]}}, "Layer2": {"Branch0": {"block": "dropout", "keep_prob": 0.8}}, "Layer3": {"Branch0": {"block": "fc-final", "inputs": 192, "outputs": 10}} } self.batch_size = self.task_config["batch_size"] self.num_examples = 10000 self.run_once = True self.eval_dir = os.path.join(self.task_config["data_dir"],"results", "nac_envelopenet","evaluate") self.evaluate() def eval_once(self, saver, summary_writer, top_k_op, summary_op, k=1): """Run Eval once. Args: saver: Saver. summary_writer: Summary writer. top_k_op: Top K op. summary_op: Summary op. """ with tf.Session() as sess: ckpt = tf.train.get_checkpoint_state(self.checkpoint_dir) if ckpt and ckpt.model_checkpoint_path: # Restores from checkpoint saver.restore(sess, ckpt.model_checkpoint_path) # Assuming model_checkpoint_path looks something like: # /my-favorite-path/cifar10_train/model.ckpt-0, # extract global_step from it. global_step = ckpt.model_checkpoint_path.split( '/')[-1].split('-')[-1] else: print('No checkpoint file found') return # Start the queue runners. coord = tf.train.Coordinator() try: threads = [] for q_runner in tf.get_collection(tf.GraphKeys.QUEUE_RUNNERS): threads.extend( q_runner.create_threads( sess, coord=coord, daemon=True, start=True)) num_iter = int(math.ceil(self.num_examples / self.batch_size)) true_count = 0 # Counts the number of correct predictions. total_sample_count = num_iter * self.batch_size step = 0 while step < num_iter and not coord.should_stop(): predictions = sess.run([top_k_op]) true_count += np.sum(predictions) step += 1 if k == 1: # Compute precision @ 1. precision = true_count / total_sample_count print( '%s: precision @ 1 = %.3f' % (datetime.now(), precision)) elif k == 5: # Compute precision @ 5. precision = true_count / total_sample_count print( '%s: precision @ 5 = %.3f' % (datetime.now(), precision)) summary = tf.Summary() summary.ParseFromString(sess.run(summary_op)) summary.value.add( tag='Precision @ %d' % (k), simple_value=precision) summary_writer.add_summary(summary, global_step) except Exception as excpn: # pylint: disable=broad-except coord.request_stop(excpn) coord.request_stop() coord.join(threads, stop_grace_period_secs=10) def evaluate(self): network = net.Net(self.arch, self.task_config) """Eval a network for a number of steps.""" with tf.Graph().as_default() as grph: # Get images and labels for CIFAR-10. eval_data = True images, labels = network.inputs(eval_data=eval_data) arch = self.arch init_cell = self.init_cell classification_cell = self.classification_cell log_stats = self.log_stats scope = "Nacnet" is_training = False logits = network.inference(images, arch, init_cell, classification_cell, log_stats, is_training, scope) # Calculate predictions. # if imagenet is running then run precision@1,5 top_k_op = tf.nn.in_top_k(logits, labels, 1) if self.dataset == "imagenet": # Quick dirty fixes to incorporate changes brought by # imagenet self.num_examples = 50000 top_5_op = tf.nn.in_top_k(logits, labels, 5) # Restore the moving average version of the learned variables for # eval. variable_averages = tf.train.ExponentialMovingAverage( net.MOVING_AVERAGE_DECAY) variables_to_restore = variable_averages.variables_to_restore() saver = tf.train.Saver(variables_to_restore) # Build the summary operation based on the TF collection of # Summaries. summary_op = tf.summary.merge_all() summary_writer = tf.summary.FileWriter(self.eval_dir, grph) while True: self.eval_once(saver, summary_writer, top_k_op, summary_op) if self.dataset == "imagenet": self.eval_once(saver, summary_writer, top_5_op, summary_op, k=5) if self.run_once: break
40.66879
89
0.511198
41b7865f3e1f2aae69df2318bc3af482c604e0e5
3,680
py
Python
bin/Python27/Lib/site-packages/scipy/optimize/tests/test_cobyla.py
lefevre-fraser/openmeta-mms
08f3115e76498df1f8d70641d71f5c52cab4ce5f
[ "MIT" ]
null
null
null
bin/Python27/Lib/site-packages/scipy/optimize/tests/test_cobyla.py
lefevre-fraser/openmeta-mms
08f3115e76498df1f8d70641d71f5c52cab4ce5f
[ "MIT" ]
null
null
null
bin/Python27/Lib/site-packages/scipy/optimize/tests/test_cobyla.py
lefevre-fraser/openmeta-mms
08f3115e76498df1f8d70641d71f5c52cab4ce5f
[ "MIT" ]
1
2020-05-07T11:04:14.000Z
2020-05-07T11:04:14.000Z
from __future__ import division, print_function, absolute_import import math import numpy as np from numpy.testing import assert_allclose, TestCase, run_module_suite, \ assert_ from scipy.optimize import fmin_cobyla, minimize class TestCobyla(TestCase): def setUp(self): self.x0 = [4.95, 0.66] self.solution = [math.sqrt(25 - (2.0/3)**2), 2.0/3] self.opts = {'disp': False, 'rhobeg': 1, 'tol': 1e-5, 'maxiter': 100} def fun(self, x): return x[0]**2 + abs(x[1])**3 def con1(self, x): return x[0]**2 + x[1]**2 - 25 def con2(self, x): return -self.con1(x) def test_simple(self): x = fmin_cobyla(self.fun, self.x0, [self.con1, self.con2], rhobeg=1, rhoend=1e-5, iprint=0, maxfun=100) assert_allclose(x, self.solution, atol=1e-4) def test_minimize_simple(self): # Minimize with method='COBYLA' cons = ({'type': 'ineq', 'fun': self.con1}, {'type': 'ineq', 'fun': self.con2}) sol = minimize(self.fun, self.x0, method='cobyla', constraints=cons, options=self.opts) assert_allclose(sol.x, self.solution, atol=1e-4) assert_(sol.success, sol.message) assert_(sol.maxcv < 1e-5, sol) assert_(sol.nfev < 70, sol) assert_(sol.fun < self.fun(self.solution) + 1e-3, sol) def test_minimize_constraint_violation(self): np.random.seed(1234) pb = np.random.rand(10, 10) spread = np.random.rand(10) def p(w): return pb.dot(w) def f(w): return -(w * spread).sum() def c1(w): return 500 - abs(p(w)).sum() def c2(w): return 5 - abs(p(w).sum()) def c3(w): return 5 - abs(p(w)).max() cons = ({'type': 'ineq', 'fun': c1}, {'type': 'ineq', 'fun': c2}, {'type': 'ineq', 'fun': c3}) w0 = np.zeros((10, 1)) sol = minimize(f, w0, method='cobyla', constraints=cons, options={'catol': 1e-6}) assert_(sol.maxcv > 1e-6) assert_(not sol.success) def test_vector_constraints(): # test that fmin_cobyla and minimize can take a combination # of constraints, some returning a number and others an array def fun(x): return (x[0] - 1)**2 + (x[1] - 2.5)**2 def fmin(x): return fun(x) - 1 def cons1(x): a = np.array([[1, -2, 2], [-1, -2, 6], [-1, 2, 2]]) return np.array([a[i, 0] * x[0] + a[i, 1] * x[1] + a[i, 2] for i in range(len(a))]) def cons2(x): return x # identity, acts as bounds x > 0 x0 = np.array([2, 0]) cons_list = [fun, cons1, cons2] xsol = [1.4, 1.7] fsol = 0.8 # testing fmin_cobyla sol = fmin_cobyla(fun, x0, cons_list, rhoend=1e-5, iprint=0) assert_allclose(sol, xsol, atol=1e-4) sol = fmin_cobyla(fun, x0, fmin, rhoend=1e-5, iprint=0) assert_allclose(fun(sol), 1, atol=1e-4) # testing minimize constraints = [{'type': 'ineq', 'fun': cons} for cons in cons_list] sol = minimize(fun, x0, constraints=constraints, tol=1e-5) assert_allclose(sol.x, xsol, atol=1e-4) assert_(sol.success, sol.message) assert_allclose(sol.fun, fsol, atol=1e-4) constraints = {'type': 'ineq', 'fun': fmin} sol = minimize(fun, x0, constraints=constraints, tol=1e-5) assert_allclose(sol.fun, 1, atol=1e-4) if __name__ == "__main__": run_module_suite()
30.92437
77
0.533424
8e7a57824055e65e1a88d14c274b24445b020e94
8,028
py
Python
moe/optimal_learning/python/python_version/domain.py
mikepsinn/MOE
fdc2e1318d37c89c54a7b7902c12f8f164f517e8
[ "Apache-2.0" ]
null
null
null
moe/optimal_learning/python/python_version/domain.py
mikepsinn/MOE
fdc2e1318d37c89c54a7b7902c12f8f164f517e8
[ "Apache-2.0" ]
null
null
null
moe/optimal_learning/python/python_version/domain.py
mikepsinn/MOE
fdc2e1318d37c89c54a7b7902c12f8f164f517e8
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """Various python implementations of interfaces.domain_interface.DomainInterface (e.g., TensorProduct). These are currently used to describe domain limits for optimizers (i.e., implementations of :mod:`moe.optimal_learning.python.interfaces.optimization_interface`). Each domain provides functions to: * Describe the set of boundary planes * Check whether a point is inside/outside * Generate random point(s) inside * Generate points on a fixed grid * Limit updates (from optimizers) so that a path stays inside the domain """ import copy import numpy from moe.optimal_learning.python.constant import TENSOR_PRODUCT_DOMAIN_TYPE from moe.optimal_learning.python.geometry_utils import generate_grid_points, generate_latin_hypercube_points from moe.optimal_learning.python.interfaces.domain_interface import DomainInterface class TensorProductDomain(DomainInterface): r"""Domain type for a tensor product domain. A d-dimensional tensor product domain is ``D = [x_0_{min}, x_0_{max}] X [x_1_{min}, x_1_{max}] X ... X [x_d_{min}, x_d_{max}]`` """ domain_type = TENSOR_PRODUCT_DOMAIN_TYPE def __init__(self, domain_bounds): """Construct a TensorProductDomain with the specified bounds. :param domain_bounds: the boundaries of a dim-dimensional tensor-product domain :type domain_bounds: iterable of dim :class:`moe.optimal_learning.python.geometry_utils.ClosedInterval` """ self._domain_bounds = copy.deepcopy(domain_bounds) for interval in self._domain_bounds: if interval.is_empty(): raise ValueError('Tensor product region is EMPTY.') @property def dim(self): """Return the number of spatial dimensions.""" return len(self._domain_bounds) def get_json_serializable_info(self, minimal=False): """Create and return a domain_info dictionary of this domain object. :param minimal: True for all domain contents; False for ``domain_type`` and ``dim`` only :type minimal: bool :return: dict representation of this domain :rtype: dict """ response = { 'domain_type': self.domain_type, 'dim': self.dim, } if not minimal: response['domain_bounds'] = self._domain_bounds return response def check_point_inside(self, point): r"""Check if a point is inside the domain/on its boundary or outside. :param point: point to check :type point: array of float64 with shape (dim) :return: true if point is inside the domain :rtype: bool """ # Generate a list of bool; i-th entry is True if i-th coordinate is inside the i-th bounds. # Then check that all entries are True. return all([interval.is_inside(point[i]) for i, interval in enumerate(self._domain_bounds)]) def get_bounding_box(self): """Return a list of ClosedIntervals representing a bounding box for this domain.""" return copy.copy(self._domain_bounds) def generate_random_point_in_domain(self, random_source=None): """Generate ``point`` uniformly at random such that ``self.check_point_inside(point)`` is True. .. Note:: if you need multiple points, use generate_uniform_random_points_in_domain instead; it yields better distributions over many points (via latin hypercube samplling) b/c it guarantees that no non-uniform clusters may arise (in subspaces) versus this method which treats all draws independently. :return: point in domain :rtype: array of float64 with shape (dim) """ return numpy.array([numpy.random.uniform(interval.min, interval.max) for interval in self._domain_bounds]) def generate_uniform_random_points_in_domain(self, num_points, random_source=None): r"""Generate ``num_points`` on a latin-hypercube (i.e., like a checkerboard). See python.geometry_utils.generate_latin_hypercube_points for more details. :param num_points: max number of points to generate :type num_points: integer >= 0 :param random_source: random source producing uniform random numbers (e.g., numpy.random.uniform) (UNUSED) :type random_source: callable yielding uniform random numbers in [0,1] :return: uniform random sampling of points from the domain :rtype: array of float64 with shape (num_points, dim) """ # TODO(GH-56): Allow users to pass in a random source. return generate_latin_hypercube_points(num_points, self._domain_bounds) def generate_grid_points_in_domain(self, points_per_dimension, random_source=None): """Generate a grid of ``N_0 by N_1 by ... by N_{dim-1}`` points, with each dimension uniformly spaced along the domain boundary. See python.geometry_utils.generate_grid_points for more details. :param points_per_dimension: (n_1, n_2, ... n_{dim}) number of stencil points per spatial dimension. If len(points_per_dimension) == 1, then n_i = len(points_per_dimension) :type points_per_dimension: tuple or scalar :param random_source: random source producing uniform random numbers (e.g., numpy.random.uniform) (UNUSED) :type random_source: callable yielding uniform random numbers in [0,1] :return: uniform random sampling of points from the domain """ # TODO(GH-56): Allow users to pass in a random source. return generate_grid_points(points_per_dimension, self._domain_bounds) def compute_update_restricted_to_domain(self, max_relative_change, current_point, update_vector): r"""Compute a new update so that CheckPointInside(``current_point`` + ``new_update``) is true. Changes new_update_vector so that: ``point_new = point + new_update_vector`` has coordinates such that ``CheckPointInside(point_new)`` returns true. We select ``point_new`` by projecting ``point + update_vector`` to the nearest point on the domain. ``new_update_vector`` is a function of ``update_vector``. ``new_update_vector`` is just a copy of ``update_vector`` if ``current_point`` is already inside the domain. .. NOTE:: We modify update_vector (instead of returning point_new) so that further update limiting/testing may be performed. :param max_relative_change: max change allowed per update (as a relative fraction of current distance to boundary) :type max_relative_change: float64 in (0, 1] :param current_point: starting point :type current_point: array of float64 with shape (dim) :param update_vector: proposed update :type update_vector: array of float64 with shape (dim) :return: new update so that the final point remains inside the domain :rtype: array of float64 with shape (dim) """ # TODO(GH-58): Vectorize the loop over j, step. output_update = numpy.empty(self.dim) # Note: since all boundary planes are axis-aligned, projecting becomes very simple. for j, step in enumerate(update_vector): # Distance to the nearest boundary in the j-th dimension distance_to_boundary = numpy.fmin( current_point[j] - self._domain_bounds[j].min, self._domain_bounds[j].max - current_point[j]) desired_step = step # If we are close to a boundary, optionally (via max_relative_change) limit the step size # 0 < max_relative_change <= 1 so at worst we reach the boundary. if numpy.fabs(step) > max_relative_change * distance_to_boundary: # Move the max allowed distance, in the original direction of travel (obtained via copy-sign) desired_step = numpy.copysign(max_relative_change * distance_to_boundary, step) output_update[j] = desired_step return output_update
44.849162
136
0.692576
2401261db541681371f9647577ed258f4458a6d1
1,805
py
Python
zk_shell/tree.py
sellers/zk_shell
5f5972c4362212f97de91a75e44d2a551c7bcd51
[ "Apache-2.0" ]
163
2015-01-24T06:17:34.000Z
2021-12-17T22:58:46.000Z
zk_shell/tree.py
sellers/zk_shell
5f5972c4362212f97de91a75e44d2a551c7bcd51
[ "Apache-2.0" ]
86
2015-01-01T00:22:57.000Z
2022-03-02T14:50:59.000Z
zk_shell/tree.py
sellers/zk_shell
5f5972c4362212f97de91a75e44d2a551c7bcd51
[ "Apache-2.0" ]
32
2015-02-18T17:33:16.000Z
2021-12-28T03:43:45.000Z
""" Async tree builder Example usage: >>> from kazoo.client import KazooClient >>> from zk_shell.tree import Tree >>> zk = KazooClient(hosts) >>> zk.start() >>> gen = PathMap(zk, "/configs").get() >>> str([path for path in gen]) [ 'servers', 'ports', ] >>> zk.stop() """ import os try: from Queue import Queue except ImportError: # py3k from queue import Queue from kazoo.exceptions import NoAuthError, NoNodeError class Request(object): __slots__ = ('path', 'result') def __init__(self, path, result): self.path, self.result = path, result @property def value(self): return self.result.get() class Tree(object): __slots__ = ("zk", "path") def __init__(self, zk, path): self.zk, self.path = zk, path def get(self, exclude_recurse=None): """ Paths matching exclude_recurse will not be recursed. """ reqs = Queue() pending = 1 path = self.path zk = self.zk def child_of(path): return zk.get_children_async(path) def dispatch(path): return Request(path, child_of(path)) stat = zk.exists(path) if stat is None or stat.numChildren == 0: return reqs.put(dispatch(path)) while pending: req = reqs.get() try: children = req.value for child in children: cpath = os.path.join(req.path, child) if exclude_recurse is None or exclude_recurse not in child: pending += 1 reqs.put(dispatch(cpath)) yield cpath except (NoNodeError, NoAuthError): pass pending -= 1
22.283951
79
0.539612
6332a649ca12944902f405f9042c9685c6593101
7,376
py
Python
src/ptb/ptb_enas_controller.py
ankdesh/enas
95fa07744440c0ae79f7f7a108ef08ee5099fdca
[ "Apache-2.0" ]
7
2018-05-30T06:44:03.000Z
2021-03-11T03:59:43.000Z
src/ptb/ptb_enas_controller.py
ankdesh/enas
95fa07744440c0ae79f7f7a108ef08ee5099fdca
[ "Apache-2.0" ]
2
2018-11-15T06:31:05.000Z
2020-06-27T03:07:08.000Z
src/ptb/ptb_enas_controller.py
wangshy31/enas
18cfbbf4dbb82b859ee81a40fbc3357da650d6da
[ "Apache-2.0" ]
3
2018-06-28T16:40:12.000Z
2019-11-18T11:42:16.000Z
from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys import os import time import numpy as np import tensorflow as tf from src.utils import get_train_ops from src.common_ops import stack_lstm from tensorflow.python.training import moving_averages class PTBEnasController(object): def __init__(self, rhn_depth=5, lstm_size=32, lstm_num_layers=2, lstm_keep_prob=1.0, tanh_constant=None, temperature=None, lr_init=1e-3, lr_dec_start=0, lr_dec_every=100, lr_dec_rate=0.9, l2_reg=0, entropy_weight=None, clip_mode=None, grad_bound=None, bl_dec=0.999, optim_algo="adam", sync_replicas=False, num_aggregate=None, num_replicas=None, name="controller"): print("-" * 80) print("Building PTBEnasController") self.rhn_depth = rhn_depth self.lstm_size = lstm_size self.lstm_num_layers = lstm_num_layers self.lstm_keep_prob = lstm_keep_prob self.tanh_constant = tanh_constant self.temperature = temperature self.lr_init = lr_init self.lr_dec_start = lr_dec_start self.lr_dec_every = lr_dec_every self.lr_dec_rate = lr_dec_rate self.l2_reg = l2_reg self.entropy_weight = entropy_weight self.clip_mode = clip_mode self.grad_bound = grad_bound self.bl_dec = bl_dec self.optim_algo = optim_algo self.sync_replicas = sync_replicas self.num_aggregate = num_aggregate self.num_replicas = num_replicas self.name = name self._create_params() self._build_sampler() def _create_params(self): initializer = tf.random_uniform_initializer(minval=-0.1, maxval=0.1) with tf.variable_scope(self.name, initializer=initializer): with tf.variable_scope("lstm"): self.w_lstm = [] for layer_id in xrange(self.lstm_num_layers): with tf.variable_scope("layer_{}".format(layer_id)): w = tf.get_variable("w", [2 * self.lstm_size, 4 * self.lstm_size]) self.w_lstm.append(w) num_funcs = 4 with tf.variable_scope("embedding"): self.g_emb = tf.get_variable("g_emb", [1, self.lstm_size]) self.w_emb = tf.get_variable("w", [num_funcs, self.lstm_size]) with tf.variable_scope("softmax"): self.w_soft = tf.get_variable("w", [self.lstm_size, num_funcs]) with tf.variable_scope("attention"): self.attn_w_1 = tf.get_variable("w_1", [self.lstm_size, self.lstm_size]) self.attn_w_2 = tf.get_variable("w_2", [self.lstm_size, self.lstm_size]) self.attn_v = tf.get_variable("v", [self.lstm_size, 1]) def _build_sampler(self): """Build the sampler ops and the log_prob ops.""" arc_seq = [] sample_log_probs = [] sample_entropy = [] all_h = [] all_h_w = [] # sampler ops inputs = self.g_emb prev_c, prev_h = [], [] for _ in xrange(self.lstm_num_layers): prev_c.append(tf.zeros([1, self.lstm_size], dtype=tf.float32)) prev_h.append(tf.zeros([1, self.lstm_size], dtype=tf.float32)) # used = tf.zeros([self.rhn_depth, 2], dtype=tf.int32) for layer_id in xrange(self.rhn_depth): next_c, next_h = stack_lstm(inputs, prev_c, prev_h, self.w_lstm) all_h.append(next_h[-1]) all_h_w.append(tf.matmul(next_h[-1], self.attn_w_1)) if layer_id > 0: query = tf.matmul(next_h[-1], self.attn_w_2) query = query + tf.concat(all_h_w[:-1], axis=0) query = tf.tanh(query) logits = tf.matmul(query, self.attn_v) logits = tf.reshape(logits, [1, layer_id]) if self.temperature is not None: logits /= self.temperature if self.tanh_constant is not None: logits = self.tanh_constant * tf.tanh(logits) diff = tf.to_float(layer_id - tf.range(0, layer_id)) ** 2 logits -= tf.reshape(diff, [1, layer_id]) / 12.0 skip_index = tf.multinomial(logits, 1) skip_index = tf.to_int32(skip_index) skip_index = tf.reshape(skip_index, [1]) arc_seq.append(skip_index) log_prob = tf.nn.sparse_softmax_cross_entropy_with_logits( logits=logits, labels=skip_index) sample_log_probs.append(log_prob) entropy = log_prob * tf.exp(-log_prob) sample_entropy.append(tf.stop_gradient(entropy)) inputs = tf.nn.embedding_lookup( tf.concat(all_h[:-1], axis=0), skip_index) inputs /= (0.1 + tf.to_float(layer_id - skip_index)) else: inputs = self.g_emb next_c, next_h = stack_lstm(inputs, prev_c, prev_h, self.w_lstm) logits = tf.matmul(next_h[-1], self.w_soft) if self.temperature is not None: logits /= self.temperature if self.tanh_constant is not None: logits = self.tanh_constant * tf.tanh(logits) func = tf.multinomial(logits, 1) func = tf.to_int32(func) func = tf.reshape(func, [1]) arc_seq.append(func) log_prob = tf.nn.sparse_softmax_cross_entropy_with_logits( logits=logits, labels=func) sample_log_probs.append(log_prob) entropy = log_prob * tf.exp(-log_prob) sample_entropy.append(tf.stop_gradient(entropy)) inputs = tf.nn.embedding_lookup(self.w_emb, func) arc_seq = tf.concat(arc_seq, axis=0) self.sample_arc = arc_seq self.sample_log_probs = tf.concat(sample_log_probs, axis=0) self.ppl = tf.exp(tf.reduce_mean(self.sample_log_probs)) sample_entropy = tf.concat(sample_entropy, axis=0) self.sample_entropy = tf.reduce_sum(sample_entropy) self.all_h = all_h def build_trainer(self, child_model): # actor self.valid_loss = tf.to_float(child_model.rl_loss) self.valid_loss = tf.stop_gradient(self.valid_loss) self.valid_loss = tf.minimum(self.valid_loss, 10.0) self.valid_ppl = tf.exp(self.valid_loss) self.reward = 80.0 / self.valid_ppl if self.entropy_weight is not None: self.reward += self.entropy_weight * self.sample_entropy # or baseline self.sample_log_probs = tf.reduce_sum(self.sample_log_probs) self.baseline = tf.Variable(0.0, dtype=tf.float32, trainable=False) baseline_update = tf.assign_sub( self.baseline, (1 - self.bl_dec) * (self.baseline - self.reward)) with tf.control_dependencies([baseline_update]): self.reward = tf.identity(self.reward) self.loss = self.sample_log_probs * (self.reward - self.baseline) self.train_step = tf.Variable( 0, dtype=tf.int32, trainable=False, name="train_step") tf_variables = [var for var in tf.trainable_variables() if var.name.startswith(self.name)] self.train_op, self.lr, self.grad_norm, self.optimizer = get_train_ops( self.loss, tf_variables, self.train_step, clip_mode=self.clip_mode, grad_bound=self.grad_bound, l2_reg=self.l2_reg, lr_init=self.lr_init, lr_dec_start=self.lr_dec_start, lr_dec_every=self.lr_dec_every, lr_dec_rate=self.lr_dec_rate, optim_algo=self.optim_algo, sync_replicas=self.sync_replicas, num_aggregate=self.num_aggregate, num_replicas=self.num_replicas)
34.46729
80
0.656589
2dc9962a101f881a2d46f7c305617a4543c36550
2,350
py
Python
tests/test_html_cleaner.py
theseus-automl/gorgona
a7366d54430caa5a038488432fb93702e1cb83b8
[ "Apache-2.0" ]
1
2021-12-12T10:47:00.000Z
2021-12-12T10:47:00.000Z
tests/test_html_cleaner.py
theseus-automl/gorgona
a7366d54430caa5a038488432fb93702e1cb83b8
[ "Apache-2.0" ]
5
2021-12-12T10:45:04.000Z
2022-01-17T07:51:14.000Z
tests/test_html_cleaner.py
theseus-automl/gorgona
a7366d54430caa5a038488432fb93702e1cb83b8
[ "Apache-2.0" ]
null
null
null
import pytest from gorgona.stages.cleaners import * @pytest.fixture() def setup_html_cleaner() -> HtmlCleaner: html_cleaner = HtmlCleaner( 'html', '', ) return html_cleaner def test_html_cleaner_no_tags(setup_html_cleaner): assert setup_html_cleaner('hello world') == 'hello world' # single tags def test_html_cleaner_single_open_tag(setup_html_cleaner): assert setup_html_cleaner('<br>') == '' def test_html_cleaner_single_open_tag_with_attr(setup_html_cleaner): assert setup_html_cleaner('<p color="green">') == '' def test_html_cleaner_single_closing_tag(setup_html_cleaner): assert setup_html_cleaner('</br>') == '' def test_html_cleaner_single_paired_tag_without_content(setup_html_cleaner): assert setup_html_cleaner('<p></p>') == '' def test_html_cleaner_single_paired_tag_without_content_with_attr(setup_html_cleaner): assert setup_html_cleaner('<p style="bold"></p>') == '' def test_html_cleaner_single_paired_tag_with_content(setup_html_cleaner): assert setup_html_cleaner('<p>hello, world!</p>') == 'hello, world!' def test_html_cleaner_single_paired_tag_with_content_with_attr(setup_html_cleaner): assert setup_html_cleaner('<p class="news">hello, world!</p>') == 'hello, world!' # multiple tags def test_html_cleaner_multiple_open_tags(setup_html_cleaner): assert setup_html_cleaner('<br><a><p>') == '' def test_html_cleaner_multiple_open_tags_with_attrs(setup_html_cleaner): assert setup_html_cleaner('<br attr=""><a href="hello.world"><p color="red">') == '' def test_html_cleaner_multiple_closing_tags(setup_html_cleaner): assert setup_html_cleaner('</br></a></p>') == '' def test_html_cleaner_multiple_paired_tags_without_content(setup_html_cleaner): assert setup_html_cleaner('<a></a><p></p>') == '' def test_html_cleaner_multiple_paired_tags_without_content_with_attrs(setup_html_cleaner): assert setup_html_cleaner('<a href="hello.world"></a><p color="blue"></p>') == '' def test_html_cleaner_multiple_paired_tags_with_content(setup_html_cleaner): assert setup_html_cleaner('<a>link</a> <p>text</p>') == 'link text' def test_html_cleaner_multiple_paired_tags_with_content_with_attrs(setup_html_cleaner): assert setup_html_cleaner('<a href="hello.world">link</a> <p font="helvetica">text</p>') == 'link text'
30.921053
107
0.755745
9d328e81362dc90d7245dd8821cae1b316c87583
20,039
py
Python
tests/text/helpers.py
bibinwils/metrics
e1c3fda24f90367803c2b04315ad7c8bced719db
[ "Apache-2.0" ]
4
2021-03-22T09:02:31.000Z
2021-03-23T07:35:39.000Z
tests/text/helpers.py
bibinwils/metrics
e1c3fda24f90367803c2b04315ad7c8bced719db
[ "Apache-2.0" ]
4
2021-06-14T08:40:18.000Z
2021-07-27T20:01:08.000Z
tests/text/helpers.py
bibinwils/metrics
e1c3fda24f90367803c2b04315ad7c8bced719db
[ "Apache-2.0" ]
2
2021-10-16T05:02:43.000Z
2022-02-10T16:01:52.000Z
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pickle import sys from enum import Enum, unique from functools import partial from typing import Any, Callable, Sequence, Union import pytest import torch from torch import Tensor from torch.multiprocessing import set_start_method from tests.helpers.testers import MetricTester, _assert_allclose, _assert_requires_grad, _assert_tensor from torchmetrics import Metric try: set_start_method("spawn") except RuntimeError: pass @unique class INPUT_ORDER(Enum): PREDS_FIRST = 1 TARGETS_FIRST = 2 TEXT_METRIC_INPUT = Union[Sequence[str], Sequence[Sequence[str]], Sequence[Sequence[Sequence[str]]]] NUM_BATCHES = 2 def _class_test( rank: int, worldsize: int, preds: TEXT_METRIC_INPUT, targets: TEXT_METRIC_INPUT, metric_class: Metric, sk_metric: Callable, dist_sync_on_step: bool, metric_args: dict = None, check_dist_sync_on_step: bool = True, check_batch: bool = True, atol: float = 1e-8, device: str = "cpu", fragment_kwargs: bool = False, check_scriptable: bool = True, input_order: INPUT_ORDER = INPUT_ORDER.PREDS_FIRST, key: str = None, **kwargs_update: Any, ): """Utility function doing the actual comparison between lightning class metric and reference metric. Args: rank: rank of current process worldsize: number of processes preds: Sequence of predicted tokens or predicted sentences targets: Sequence of target tokens or target sentences metric_class: lightning metric class that should be tested sk_metric: callable function that is used for comparison dist_sync_on_step: bool, if true will synchronize metric state across processes at each ``forward()`` metric_args: dict with additional arguments used for class initialization check_dist_sync_on_step: bool, if true will check if the metric is also correctly calculated per batch per device (and not just at the end) check_batch: bool, if true will check if the metric is also correctly calculated across devices for each batch (and not just at the end) device: determine which device to run on, either 'cuda' or 'cpu' fragment_kwargs: whether tensors in kwargs should be divided as `preds` and `targets` among processes input_order: Define the ordering for the preds and targets positional arguments. key: The key passed onto the `_assert_allclose` to compare the respective metric from the Dict output against the sk_metric. kwargs_update: Additional keyword arguments that will be passed with preds and targets when running update on the metric. """ if not metric_args: metric_args = {} # Instanciate lightning metric metric = metric_class( compute_on_step=check_dist_sync_on_step or check_batch, dist_sync_on_step=dist_sync_on_step, **metric_args ) # check that the metric is scriptable if check_scriptable: torch.jit.script(metric) # move to device metric = metric.to(device) kwargs_update = {k: v.to(device) if isinstance(v, Tensor) else v for k, v in kwargs_update.items()} # verify metrics work after being loaded from pickled state pickled_metric = pickle.dumps(metric) metric = pickle.loads(pickled_metric) for i in range(rank, NUM_BATCHES, worldsize): batch_kwargs_update = {k: v[i] if isinstance(v, Tensor) else v for k, v in kwargs_update.items()} if input_order == INPUT_ORDER.PREDS_FIRST: batch_result = metric(preds[i], targets[i], **batch_kwargs_update) elif input_order == INPUT_ORDER.TARGETS_FIRST: batch_result = metric(targets[i], preds[i], **batch_kwargs_update) if metric.dist_sync_on_step and check_dist_sync_on_step and rank == 0: # Concatenation of Sequence of strings ddp_preds = type(preds)() ddp_targets = type(targets)() for r in range(worldsize): ddp_preds = ddp_preds + preds[i + r] ddp_targets = ddp_targets + targets[i + r] ddp_kwargs_upd = { k: torch.cat([v[i + r] for r in range(worldsize)]).cpu() if isinstance(v, Tensor) else v for k, v in (kwargs_update if fragment_kwargs else batch_kwargs_update).items() } if input_order == INPUT_ORDER.PREDS_FIRST: sk_batch_result = sk_metric(ddp_preds, ddp_targets, **ddp_kwargs_upd) elif input_order == INPUT_ORDER.TARGETS_FIRST: sk_batch_result = sk_metric(ddp_targets, ddp_preds, **ddp_kwargs_upd) _assert_allclose(batch_result, sk_batch_result, atol=atol, key=key) elif check_batch and not metric.dist_sync_on_step: batch_kwargs_update = { k: v.cpu() if isinstance(v, Tensor) else v for k, v in (batch_kwargs_update if fragment_kwargs else kwargs_update).items() } if input_order == INPUT_ORDER.PREDS_FIRST: sk_batch_result = sk_metric(preds[i], targets[i], **batch_kwargs_update) elif input_order == INPUT_ORDER.TARGETS_FIRST: sk_batch_result = sk_metric(targets[i], preds[i], **batch_kwargs_update) _assert_allclose(batch_result, sk_batch_result, atol=atol, key=key) # check that metrics are hashable assert hash(metric) # check on all batches on all ranks result = metric.compute() _assert_tensor(result, key=key) # Concatenation of Sequence of strings total_preds = type(preds)() total_targets = type(targets)() for i in range(NUM_BATCHES): total_preds = total_preds + preds[i] total_targets = total_targets + targets[i] total_kwargs_update = { k: torch.cat([v[i] for i in range(NUM_BATCHES)]).cpu() if isinstance(v, Tensor) else v for k, v in kwargs_update.items() } if input_order == INPUT_ORDER.PREDS_FIRST: sk_result = sk_metric(total_preds, total_targets, **total_kwargs_update) elif input_order == INPUT_ORDER.TARGETS_FIRST: sk_result = sk_metric(total_targets, total_preds, **total_kwargs_update) # assert after aggregation _assert_allclose(result, sk_result, atol=atol, key=key) def _functional_test( preds: TEXT_METRIC_INPUT, targets: TEXT_METRIC_INPUT, metric_functional: Callable, sk_metric: Callable, metric_args: dict = None, atol: float = 1e-8, device: str = "cpu", fragment_kwargs: bool = False, input_order: INPUT_ORDER = INPUT_ORDER.PREDS_FIRST, key: str = None, **kwargs_update, ): """Utility function doing the actual comparison between lightning functional metric and reference metric. Args: preds: torch tensor with predictions targets: torch tensor with targets metric_functional: lightning metric functional that should be tested sk_metric: callable function that is used for comparison metric_args: dict with additional arguments used for class initialization device: determine which device to run on, either 'cuda' or 'cpu' fragment_kwargs: whether tensors in kwargs should be divided as `preds` and `targets` among processes input_order: Define the ordering for the preds and targets positional arguments. key: The key passed onto the `_assert_allclose` to compare the respective metric from the Dict output against the sk_metric. kwargs_update: Additional keyword arguments that will be passed with preds and targets when running update on the metric. """ if not metric_args: metric_args = {} metric = partial(metric_functional, **metric_args) # Move to device kwargs_update = {k: v.to(device) if isinstance(v, Tensor) else v for k, v in kwargs_update.items()} for i in range(NUM_BATCHES): extra_kwargs = {k: v[i] if isinstance(v, Tensor) else v for k, v in kwargs_update.items()} if input_order == INPUT_ORDER.PREDS_FIRST: lightning_result = metric(preds[i], targets[i], **extra_kwargs) elif input_order == INPUT_ORDER.TARGETS_FIRST: lightning_result = metric(targets[i], preds[i], **extra_kwargs) extra_kwargs = { k: v.cpu() if isinstance(v, Tensor) else v for k, v in (extra_kwargs if fragment_kwargs else kwargs_update).items() } if input_order == INPUT_ORDER.PREDS_FIRST: sk_result = sk_metric(preds[i], targets[i], **extra_kwargs) elif input_order == INPUT_ORDER.TARGETS_FIRST: sk_result = sk_metric(targets[i], preds[i], **extra_kwargs) # assert its the same _assert_allclose(lightning_result, sk_result, atol=atol, key=key) def _assert_half_support( metric_module: Metric, metric_functional: Callable, preds: TEXT_METRIC_INPUT, targets: TEXT_METRIC_INPUT, device: str = "cpu", **kwargs_update, ): """Test if an metric can be used with half precision tensors. Args: metric_module: the metric module to test metric_functional: the metric functional to test preds: torch tensor with predictions targets: torch tensor with targets device: determine device, either "cpu" or "cuda" kwargs_update: Additional keyword arguments that will be passed with preds and targets when running update on the metric. """ y_hat = preds[0] y = targets[0] kwargs_update = { k: (v[0].half() if v.is_floating_point() else v[0]).to(device) if isinstance(v, Tensor) else v for k, v in kwargs_update.items() } metric_module = metric_module.to(device) _assert_tensor(metric_module(y_hat, y, **kwargs_update)) _assert_tensor(metric_functional(y_hat, y, **kwargs_update)) class TextTester(MetricTester): """Class used for efficiently run alot of parametrized tests in ddp mode. Makes sure that ddp is only setup once and that pool of processes are used for all tests. All tests for text metrics should subclass from this and implement a new method called `test_metric_name` where the method `self.run_metric_test` is called inside. """ def run_functional_metric_test( self, preds: TEXT_METRIC_INPUT, targets: TEXT_METRIC_INPUT, metric_functional: Callable, sk_metric: Callable, metric_args: dict = None, fragment_kwargs: bool = False, input_order: INPUT_ORDER = INPUT_ORDER.PREDS_FIRST, key: str = None, **kwargs_update, ): """Main method that should be used for testing functions. Call this inside testing method. Args: preds: torch tensor with predictions targets: torch tensor with targets metric_functional: lightning metric class that should be tested sk_metric: callable function that is used for comparison metric_args: dict with additional arguments used for class initialization fragment_kwargs: whether tensors in kwargs should be divided as `preds` and `targets` among processes input_order: Define the ordering for the preds and targets positional arguments. key: The key passed onto the `_assert_allclose` to compare the respective metric from the Dict output against the sk_metric. kwargs_update: Additional keyword arguments that will be passed with preds and targets when running update on the metric. """ device = "cuda" if (torch.cuda.is_available() and torch.cuda.device_count() > 0) else "cpu" _functional_test( preds=preds, targets=targets, metric_functional=metric_functional, sk_metric=sk_metric, metric_args=metric_args, atol=self.atol, device=device, fragment_kwargs=fragment_kwargs, input_order=input_order, key=key, **kwargs_update, ) def run_class_metric_test( self, ddp: bool, preds: TEXT_METRIC_INPUT, targets: TEXT_METRIC_INPUT, metric_class: Metric, sk_metric: Callable, dist_sync_on_step: bool, metric_args: dict = None, check_dist_sync_on_step: bool = True, check_batch: bool = True, fragment_kwargs: bool = False, check_scriptable: bool = True, input_order: INPUT_ORDER = INPUT_ORDER.PREDS_FIRST, key: str = None, **kwargs_update, ): """Main method that should be used for testing class. Call this inside testing methods. Args: ddp: bool, if running in ddp mode or not preds: torch tensor with predictions targets: torch tensor with targets metric_class: lightning metric class that should be tested sk_metric: callable function that is used for comparison dist_sync_on_step: bool, if true will synchronize metric state across processes at each ``forward()`` metric_args: dict with additional arguments used for class initialization check_dist_sync_on_step: bool, if true will check if the metric is also correctly calculated per batch per device (and not just at the end) check_batch: bool, if true will check if the metric is also correctly calculated across devices for each batch (and not just at the end) fragment_kwargs: whether tensors in kwargs should be divided as `preds` and `targets` among processes input_order: Define the ordering for the preds and targets positional arguments. key: The key passed onto the `_assert_allclose` to compare the respective metric from the Dict output against the sk_metric. kwargs_update: Additional keyword arguments that will be passed with preds and targets when running update on the metric. """ if not metric_args: metric_args = {} if ddp: if sys.platform == "win32": pytest.skip("DDP not supported on windows") self.pool.starmap( partial( _class_test, preds=preds, targets=targets, metric_class=metric_class, sk_metric=sk_metric, dist_sync_on_step=dist_sync_on_step, metric_args=metric_args, check_dist_sync_on_step=check_dist_sync_on_step, check_batch=check_batch, atol=self.atol, fragment_kwargs=fragment_kwargs, check_scriptable=check_scriptable, input_order=input_order, key=key, **kwargs_update, ), [(rank, self.poolSize) for rank in range(self.poolSize)], ) else: device = "cuda" if (torch.cuda.is_available() and torch.cuda.device_count() > 0) else "cpu" _class_test( rank=0, worldsize=1, preds=preds, targets=targets, metric_class=metric_class, sk_metric=sk_metric, dist_sync_on_step=dist_sync_on_step, metric_args=metric_args, check_dist_sync_on_step=check_dist_sync_on_step, check_batch=check_batch, atol=self.atol, device=device, fragment_kwargs=fragment_kwargs, check_scriptable=check_scriptable, input_order=input_order, key=key, **kwargs_update, ) @staticmethod def run_precision_test_cpu( preds: TEXT_METRIC_INPUT, targets: TEXT_METRIC_INPUT, metric_module: Metric, metric_functional: Callable, metric_args: dict = None, **kwargs_update, ): """Test if a metric can be used with half precision tensors on cpu Args: preds: torch tensor with predictions targets: torch tensor with targets metric_module: the metric module to test metric_functional: the metric functional to test metric_args: dict with additional arguments used for class initialization kwargs_update: Additional keyword arguments that will be passed with preds and targets when running update on the metric. """ metric_args = metric_args or {} _assert_half_support( metric_module(**metric_args), metric_functional, preds, targets, device="cpu", **kwargs_update ) @staticmethod def run_precision_test_gpu( preds: TEXT_METRIC_INPUT, targets: TEXT_METRIC_INPUT, metric_module: Metric, metric_functional: Callable, metric_args: dict = None, **kwargs_update, ): """Test if a metric can be used with half precision tensors on gpu Args: preds: torch tensor with predictions targets: torch tensor with targets metric_module: the metric module to test metric_functional: the metric functional to test metric_args: dict with additional arguments used for class initialization kwargs_update: Additional keyword arguments that will be passed with preds and targets when running update on the metric. """ metric_args = metric_args or {} _assert_half_support( metric_module(**metric_args), metric_functional, preds, targets, device="cuda", **kwargs_update ) @staticmethod def run_differentiability_test( preds: TEXT_METRIC_INPUT, targets: TEXT_METRIC_INPUT, metric_module: Metric, metric_functional: Callable, metric_args: dict = None, input_order: INPUT_ORDER = INPUT_ORDER.PREDS_FIRST, key: str = None, ): """Test if a metric is differentiable or not. Args: preds: torch tensor with predictions targets: torch tensor with targets metric_module: the metric module to test metric_args: dict with additional arguments used for class initialization input_order: Define the ordering for the preds and targets positional arguments. key: The key passed onto the `_assert_allclose` to compare the respective metric from the Dict output against the sk_metric. """ metric_args = metric_args or {} # only floating point tensors can require grad metric = metric_module(**metric_args) if input_order == INPUT_ORDER.PREDS_FIRST: out = metric(preds[0], targets[0]) elif input_order == INPUT_ORDER.TARGETS_FIRST: out = metric(targets[0], preds[0]) # Check if requires_grad matches is_differentiable attribute _assert_requires_grad(metric, out, key=key) if metric.is_differentiable: # check for numerical correctness assert torch.autograd.gradcheck(partial(metric_functional, **metric_args), (preds[0], targets[0]))
41.747917
119
0.653975
edb037153683fc5e77e8700b4b9145a7be6758dd
1,467
py
Python
communication/migrations/0023_auto_20161026_1503.py
stewardshiptools/stewardshiptools
ee5d27e7b0d5d4947f34ad02bdf63a06ad0a5c3e
[ "MIT" ]
null
null
null
communication/migrations/0023_auto_20161026_1503.py
stewardshiptools/stewardshiptools
ee5d27e7b0d5d4947f34ad02bdf63a06ad0a5c3e
[ "MIT" ]
11
2020-03-24T15:29:46.000Z
2022-03-11T23:14:48.000Z
communication/migrations/0023_auto_20161026_1503.py
stewardshiptools/stewardshiptools
ee5d27e7b0d5d4947f34ad02bdf63a06ad0a5c3e
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models ''' Migration 0023, 0024, and 0025 form 3 parts of custom migration to remove asset inheritance on messageattachment model. Needed a new ID pk field but it had to be added as null=True, calculated (0024) and then set to PK and null=False (0025) ''' # def nullify_fax_document_fks(apps, schema_editor): # from communication.models import Fax # Fax.objects.all().update(document=None) class Migration(migrations.Migration): dependencies = [ ('communication', '0022_auto_20161021_2200'), ] operations = [ migrations.RemoveField( model_name='messageattachment', name='communicationasset_ptr', ), # Setting to null makes this reversable; the field gets dropped in a future mig. anyways. migrations.AddField( model_name='messageattachment', name='file', field=models.ForeignKey(to='communication.CommunicationFileRelation', null=True), preserve_default=False, ), migrations.AddField( model_name='messageattachment', name='id', # field=models.AutoField(primary_key=True, auto_created=True, verbose_name='ID', null=True, serialize=False), field=models.IntegerField(verbose_name='ID', null=True, serialize=False), preserve_default=False, ), ]
32.6
121
0.662577
d7558814c02dcba8aa17a948bc90e92df8c45977
1,468
py
Python
discourse_sso_oidc_bridge/group_processor.py
ThoreKr/discourse-sso-oidc-bridge
bade9fd83142bca335ea1dbb7f7cae2700ffbacb
[ "Apache-2.0" ]
null
null
null
discourse_sso_oidc_bridge/group_processor.py
ThoreKr/discourse-sso-oidc-bridge
bade9fd83142bca335ea1dbb7f7cae2700ffbacb
[ "Apache-2.0" ]
null
null
null
discourse_sso_oidc_bridge/group_processor.py
ThoreKr/discourse-sso-oidc-bridge
bade9fd83142bca335ea1dbb7f7cae2700ffbacb
[ "Apache-2.0" ]
null
null
null
from typing import Dict, List def process_group_mappings( group_mapping_config: Dict[str, dict], sso_attributes: dict, groups: List[str] ): """Processes the groups from the mapping rule config into discourse compatible formats Args: group_mapping_config (Dict[str, dict]): Predefined mapping rules for the keycloak group tree { "<group_name>": { "name": "<group name in discourse>", "isMod": false, "isAdmin": false }, ... } sso_attributes (dict): SSO Attributes as they will be processed by the bridge groups (List[str]): List of groups from the userinfo endpoint """ grps = list() for group in groups: mapping_rule = group_mapping_config.get(group) if mapping_rule is None: continue if mapping_rule.get("isAdmin", False): sso_attributes["admin"] = "true" elif mapping_rule.get("isMod", False): sso_attributes["moderator"] = "true" else: grps.append(mapping_rule["name"]) # Make sure the mod and admin privileges are pinned to false to trigger permission reset on group change. for priv in ["admin", "moderator"]: if priv not in sso_attributes: sso_attributes[priv] = "false" sso_attributes["groups"] = ",".join(grps) return sso_attributes
34.139535
113
0.588556
82148527ea88e8bef6426be71c8573d8e46af4c8
708
py
Python
waterspout_api/migrations/0040_auto_20210613_1728.py
Water-Systems-Management-UCM/Waterspout
78965f1e53b09f442e278dff72c290ceac22ed60
[ "MIT" ]
1
2020-09-10T20:43:24.000Z
2020-09-10T20:43:24.000Z
waterspout_api/migrations/0040_auto_20210613_1728.py
Water-Systems-Management-UCM/Waterspout
78965f1e53b09f442e278dff72c290ceac22ed60
[ "MIT" ]
72
2020-05-28T17:20:12.000Z
2022-03-28T14:11:40.000Z
waterspout_api/migrations/0040_auto_20210613_1728.py
Water-Systems-Management-UCM/Waterspout
78965f1e53b09f442e278dff72c290ceac22ed60
[ "MIT" ]
null
null
null
# Generated by Django 3.2 on 2021-06-14 00:28 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('waterspout_api', '0039_userprofile_dense_tables'), ] operations = [ migrations.AlterField( model_name='cropmodification', name='region', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='crop_modifications', to='waterspout_api.region'), ), migrations.AlterUniqueTogether( name='cropmodification', unique_together={('model_run', 'crop', 'region')}, ), ]
29.5
167
0.649718
514c6fc5e609d67fe70862c3146b02fb9f1e8c9a
7,992
py
Python
build/lib.macosx-10.9-x86_64-3.9/gators/feature_generation/tests/test_is_equal.py
Aditya-Kapadiya/gators
d7c9967e3a8e304a601b6a92ad834d03d3e36338
[ "Apache-2.0" ]
4
2021-10-29T18:20:52.000Z
2022-03-31T22:53:03.000Z
build/lib.macosx-10.9-x86_64-3.9/gators/feature_generation/tests/test_is_equal.py
Aditya-Kapadiya/gators
d7c9967e3a8e304a601b6a92ad834d03d3e36338
[ "Apache-2.0" ]
1
2022-02-21T20:02:16.000Z
2022-02-21T20:02:16.000Z
build/lib.macosx-10.9-x86_64-3.9/gators/feature_generation/tests/test_is_equal.py
Aditya-Kapadiya/gators
d7c9967e3a8e304a601b6a92ad834d03d3e36338
[ "Apache-2.0" ]
5
2021-11-17T20:16:54.000Z
2022-02-21T18:21:02.000Z
# License: Apache-2.0 from gators.feature_generation.is_equal import IsEqual from pandas.testing import assert_frame_equal import pytest import numpy as np import pandas as pd import databricks.koalas as ks ks.set_option('compute.default_index_type', 'distributed-sequence') @pytest.fixture def data(): X = pd.DataFrame( {'A': [99., 1., 2.], 'B': [99., 4., 5.], 'C': [99., 7., 8.]}) X_expected = pd.DataFrame( {'A': [99., 1., 2.], 'B': [99., 4., 5.], 'C': [99., 7., 8.], 'A__is__B': [1., 0., 0.], 'A__is__C': [1., 0., 0.]}) obj = IsEqual(columns_a=list('AA'), columns_b=list('BC')).fit(X) return obj, X, X_expected @pytest.fixture def data_int16(): X = pd.DataFrame( {'A': [99., 1., 2.], 'B': [99., 4., 5.], 'C': [99., 7., 8.]}).astype(np.int16) X_expected = pd.DataFrame( {'A': [99., 1., 2.], 'B': [99., 4., 5.], 'C': [99., 7., 8.], 'A__is__B': [1., 0., 0.], 'A__is__C': [1., 0., 0.]}).astype(np.int16) obj = IsEqual(columns_a=list('AA'), columns_b=list('BC')).fit(X) return obj, X, X_expected @pytest.fixture def data_obj(): X = pd.DataFrame( {'A': ['a', 'b', 'c'], 'B': ['a', 'f', 'e'], 'C': ['a', 'p', 'd'], 'D': [1, 2, 3]}) X_expected = pd.DataFrame( {'A': ['a', 'b', 'c'], 'B': ['a', 'f', 'e'], 'C': ['a', 'p', 'd'], 'D': [1, 2, 3], 'A__is__B': [1., 0., 0.], 'A__is__C': [1., 0., 0.]}) obj = IsEqual(columns_a=list('AA'), columns_b=list('BC')).fit(X) return obj, X, X_expected @pytest.fixture def data_names(): X = pd.DataFrame( {'A': [99., 1., 2.], 'B': [99., 4., 5.], 'C': [99., 7., 8.]}) X_expected = pd.DataFrame( {'A': [99., 1., 2.], 'B': [99., 4., 5.], 'C': [99., 7., 8.], 'A==B': [1., 0., 0.], 'A==C': [1., 0., 0.]}) obj = IsEqual(columns_a=list('AA'), columns_b=list('BC'), column_names=['A==B', 'A==C']).fit(X) return obj, X, X_expected @pytest.fixture def data_ks(): X = ks.DataFrame( {'A': [99., 1., 2.], 'B': [99., 4., 5.], 'C': [99., 7., 8.]}) X_expected = pd.DataFrame( {'A': [99., 1., 2.], 'B': [99., 4., 5.], 'C': [99., 7., 8.], 'A__is__B': [1., 0., 0.], 'A__is__C': [1., 0., 0.]}) obj = IsEqual(columns_a=list('AA'), columns_b=list('BC')).fit(X) return obj, X, X_expected @pytest.fixture def data_int16_ks(): X = ks.DataFrame( {'A': [99., 1., 2.], 'B': [99., 4., 5.], 'C': [99., 7., 8.]}).astype(np.int16) X_expected = pd.DataFrame( {'A': [99., 1., 2.], 'B': [99., 4., 5.], 'C': [99., 7., 8.], 'A__is__B': [1., 0., 0.], 'A__is__C': [1., 0., 0.]}).astype(np.int16) obj = IsEqual(columns_a=list('AA'), columns_b=list('BC')).fit(X) return obj, X, X_expected @pytest.fixture def data_obj_ks(): X = ks.DataFrame( {'A': ['a', 'b', 'c'], 'B': ['a', 'f', 'e'], 'C': ['a', 'p', 'd'], 'D': [1, 2, 3]}) X_expected = pd.DataFrame( {'A': ['a', 'b', 'c'], 'B': ['a', 'f', 'e'], 'C': ['a', 'p', 'd'], 'D': [1, 2, 3], 'A__is__B': [1., 0., 0.], 'A__is__C': [1., 0., 0.]}) obj = IsEqual(columns_a=list('AA'), columns_b=list('BC')).fit(X) return obj, X, X_expected @pytest.fixture def data_names_ks(): X = ks.DataFrame( {'A': [99., 1., 2.], 'B': [99., 4., 5.], 'C': [99., 7., 8.]}) X_expected = pd.DataFrame( {'A': [99., 1., 2.], 'B': [99., 4., 5.], 'C': [99., 7., 8.], 'A==B': [1., 0., 0.], 'A==C': [1., 0., 0.]}) obj = IsEqual( columns_a=list('AA'), columns_b=list('BC'), column_names=['A==B', 'A==C']).fit(X) return obj, X, X_expected def test_pd(data): obj, X, X_expected = data X_new = obj.transform(X) assert_frame_equal(X_new, X_expected) @pytest.mark.koalas def test_ks(data_ks): obj, X, X_expected = data_ks X_new = obj.transform(X) assert_frame_equal(X_new.to_pandas(), X_expected) def test_pd_np(data): obj, X, X_expected = data X_numpy_new = obj.transform_numpy(X.to_numpy()) X_new = pd.DataFrame(X_numpy_new) X_expected = pd.DataFrame(X_expected.values.astype(np.float64)) assert_frame_equal(X_new, X_expected) @pytest.mark.koalas def test_ks_np(data_ks): obj, X, X_expected = data_ks X_numpy_new = obj.transform_numpy(X.to_numpy()) X_new = pd.DataFrame(X_numpy_new) X_expected = pd.DataFrame(X_expected.values.astype(np.float64)) assert_frame_equal(X_new, X_expected) def test_int16_pd(data_int16): obj, X, X_expected = data_int16 X_new = obj.transform(X) assert_frame_equal(X_new, X_expected) @pytest.mark.koalas def test_int16_ks(data_int16_ks): obj, X, X_expected = data_int16_ks X_new = obj.transform(X) assert_frame_equal(X_new.to_pandas(), X_expected) def test_int16_pd_np(data_int16): obj, X, X_expected = data_int16 X_numpy_new = obj.transform_numpy(X.to_numpy()) X_new = pd.DataFrame(X_numpy_new) X_expected = pd.DataFrame(X_expected.values) assert_frame_equal(X_new, X_expected) @pytest.mark.koalas def test_int16_ks_np(data_int16_ks): obj, X, X_expected = data_int16_ks X_numpy_new = obj.transform_numpy(X.to_numpy()) X_new = pd.DataFrame(X_numpy_new) X_expected = pd.DataFrame(X_expected.values) assert_frame_equal(X_new, X_expected) def test_obj(data_obj): obj, X, X_expected = data_obj X_new = obj.transform(X) assert_frame_equal(X_new, X_expected) @pytest.mark.koalas def test_obj_ks(data_obj_ks): obj, X, X_expected = data_obj_ks X_new = obj.transform(X) assert_frame_equal(X_new.to_pandas(), X_expected) def test_obj_np(data_obj): obj, X, X_expected = data_obj X_numpy_new = obj.transform_numpy(X.to_numpy()) X_new = pd.DataFrame(X_numpy_new) X_expected = pd.DataFrame(X_expected.values) assert_frame_equal(X_new, X_expected) @pytest.mark.koalas def test_obj_ks_np(data_obj_ks): obj, X, X_expected = data_obj_ks X_numpy_new = obj.transform_numpy(X.to_numpy()) X_new = pd.DataFrame(X_numpy_new) X_expected = pd.DataFrame(X_expected.values) assert_frame_equal(X_new, X_expected) def test_names_pd(data_names): obj, X, X_expected = data_names X_new = obj.transform(X) assert_frame_equal(X_new, X_expected) @pytest.mark.koalas def test_names_ks(data_names_ks): obj, X, X_expected = data_names_ks X_new = obj.transform(X) assert_frame_equal(X_new.to_pandas(), X_expected) def test_names_pd_np(data_names): obj, X, X_expected = data_names X_numpy_new = obj.transform_numpy(X.to_numpy()) X_new = pd.DataFrame(X_numpy_new) X_expected = pd.DataFrame(X_expected.values.astype(np.float64)) assert_frame_equal(X_new, X_expected) @pytest.mark.koalas def test_names_ks_np(data_names_ks): obj, X, X_expected = data_names_ks X_numpy_new = obj.transform_numpy(X.to_numpy()) X_new = pd.DataFrame(X_numpy_new) X_expected = pd.DataFrame(X_expected.values.astype(np.float64)) assert_frame_equal(X_new, X_expected) def test_input(): with pytest.raises(TypeError): _ = IsEqual(columns_a=0, columns_b=['B']) with pytest.raises(TypeError): _ = IsEqual(columns_a=['A'], columns_b=0) with pytest.raises(TypeError): _ = IsEqual(columns_a=['A'], columns_b=['B'], column_names=0) with pytest.raises(ValueError): _ = IsEqual(columns_a=['A'], columns_b=['B', 'C']) with pytest.raises(ValueError): _ = IsEqual(columns_a=['A'], columns_b=['B'], column_names=['x', 'y']) with pytest.raises(ValueError): _ = IsEqual(columns_a=[], columns_b=[])
28.140845
78
0.567067
b74f013921b804f8b9e6548450eaf9285d5c6dde
311
py
Python
users/urls.py
redhat-beyond/roo.me
7d711c1828a8951c7e29be796f9f26ed61e2b683
[ "MIT" ]
7
2021-03-08T18:15:44.000Z
2021-05-24T21:04:24.000Z
users/urls.py
AmitAharoni/roo.me
eb93ed99ab8635543a5e9489893e6718344ddfd9
[ "MIT" ]
232
2021-03-08T15:35:56.000Z
2021-06-06T21:33:10.000Z
users/urls.py
AmitAharoni/roo.me
eb93ed99ab8635543a5e9489893e6718344ddfd9
[ "MIT" ]
7
2021-03-08T13:11:46.000Z
2021-03-22T06:58:39.000Z
from django.urls import path from . import views as user_views urlpatterns = [ path('update/', user_views.update_user, name='update-user'), path('password_change/', user_views.password_change, name='change-password'), path('<int:user_id>/details', user_views.user_details, name='user-details'), ]
31.1
81
0.729904
c21db1d26d92bcf337fcfdab4effa89ce267769c
185
py
Python
pluggie/exceptions.py
local-minimum/pluggie
526944f2741f8c04e9444fcbdbf6460aaf0e6438
[ "MIT" ]
null
null
null
pluggie/exceptions.py
local-minimum/pluggie
526944f2741f8c04e9444fcbdbf6460aaf0e6438
[ "MIT" ]
null
null
null
pluggie/exceptions.py
local-minimum/pluggie
526944f2741f8c04e9444fcbdbf6460aaf0e6438
[ "MIT" ]
null
null
null
class PluggieError(Exception): pass class SignatureError(PluggieError): pass class PluginLoadError(PluggieError): pass class EventTriggerError(PluggieError): pass
12.333333
38
0.751351
9952bd1e8115efe971c6183b42504f9ddc8270fd
979
py
Python
manage.py
christopherjmedlin/blog.christophermedlin.me
b1d1c10ab304a9f31b90b439e9cddd44b173d6a0
[ "MIT" ]
null
null
null
manage.py
christopherjmedlin/blog.christophermedlin.me
b1d1c10ab304a9f31b90b439e9cddd44b173d6a0
[ "MIT" ]
null
null
null
manage.py
christopherjmedlin/blog.christophermedlin.me
b1d1c10ab304a9f31b90b439e9cddd44b173d6a0
[ "MIT" ]
null
null
null
#!/usr/bin/env python from flask_script import Manager import flask_s3 from werkzeug.security import generate_password_hash import getpass import pytest from blog import app, mongo manager = Manager(app) @manager.command def createuser(): username = input("Username: ") pswd = getpass.getpass("Password: ") first_name = input("First name: ") last_name = input("Last name: ") password = generate_password_hash(pswd) document = { "username": username, "password": password, "first_name": first_name, "last_name": last_name } mongo.db.users.insert_one(document) @manager.command def rmuser(): username = input("Type the username of the user you want to remove: ") mongo.db.users.delete_one({"username": username}) @manager.command def s3upload(): flask_s3.create_all(app) @manager.command def test(): pytest.main(["blog/tests.py"]) if __name__ == "__main__": manager.run()
20.829787
74
0.675179
49ccb5147cf6893074c35931d3e70bafbf15d1a7
15,424
py
Python
appengine/monorail/services/chart_svc.py
allaparthi/monorail
e18645fc1b952a5a6ff5f06e0c740d75f1904473
[ "BSD-3-Clause" ]
null
null
null
appengine/monorail/services/chart_svc.py
allaparthi/monorail
e18645fc1b952a5a6ff5f06e0c740d75f1904473
[ "BSD-3-Clause" ]
7
2022-02-15T01:11:37.000Z
2022-03-02T12:46:13.000Z
appengine/monorail/services/chart_svc.py
allaparthi/monorail
e18645fc1b952a5a6ff5f06e0c740d75f1904473
[ "BSD-3-Clause" ]
null
null
null
# Copyright 2018 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style # license that can be found in the LICENSE file or at # https://developers.google.com/open-source/licenses/bsd """A service for querying data for charts. Functions for querying the IssueSnapshot table and associated join tables. """ from __future__ import print_function from __future__ import division from __future__ import absolute_import import logging import settings import time from features import hotlist_helpers from framework import framework_helpers from framework import sql from search import search_helpers from tracker import tracker_bizobj from tracker import tracker_helpers from search import query2ast from search import ast2select from search import ast2ast ISSUESNAPSHOT_TABLE_NAME = 'IssueSnapshot' ISSUESNAPSHOT2CC_TABLE_NAME = 'IssueSnapshot2Cc' ISSUESNAPSHOT2COMPONENT_TABLE_NAME = 'IssueSnapshot2Component' ISSUESNAPSHOT2LABEL_TABLE_NAME = 'IssueSnapshot2Label' ISSUESNAPSHOT_COLS = ['id', 'issue_id', 'shard', 'project_id', 'local_id', 'reporter_id', 'owner_id', 'status_id', 'period_start', 'period_end', 'is_open'] ISSUESNAPSHOT2CC_COLS = ['issuesnapshot_id', 'cc_id'] ISSUESNAPSHOT2COMPONENT_COLS = ['issuesnapshot_id', 'component_id'] ISSUESNAPSHOT2LABEL_COLS = ['issuesnapshot_id', 'label_id'] class ChartService(object): """Class for querying chart data.""" def __init__(self, config_service): """Constructor for ChartService. Args: config_service (ConfigService): An instance of ConfigService. """ self.config_service = config_service # Set up SQL table objects. self.issuesnapshot_tbl = sql.SQLTableManager(ISSUESNAPSHOT_TABLE_NAME) self.issuesnapshot2cc_tbl = sql.SQLTableManager( ISSUESNAPSHOT2CC_TABLE_NAME) self.issuesnapshot2component_tbl = sql.SQLTableManager( ISSUESNAPSHOT2COMPONENT_TABLE_NAME) self.issuesnapshot2label_tbl = sql.SQLTableManager( ISSUESNAPSHOT2LABEL_TABLE_NAME) def QueryIssueSnapshots(self, cnxn, services, unixtime, effective_ids, project, perms, group_by=None, label_prefix=None, query=None, canned_query=None, hotlist=None): """Queries historical issue counts grouped by label or component. Args: cnxn: A MonorailConnection instance. services: A Services instance. unixtime: An integer representing the Unix time in seconds. effective_ids: The effective User IDs associated with the current user. project: A project object representing the current project. perms: A permissions object associated with the current user. group_by (str, optional): Which dimension to group by. Values can be 'label', 'component', or None, in which case no grouping will be applied. label_prefix: Required when group_by is 'label.' Will limit the query to only labels with the specified prefix (for example 'Pri'). query (str, optional): A query string from the request to apply to the snapshot query. canned_query (str, optional): Parsed canned query applied to the query scope. hotlist (Hotlist, optional): Hotlist to search under (in lieu of project). Returns: 1. A dict of {'2nd dimension or "total"': number of occurences}. 2. A list of any unsupported query conditions in query. 3. A boolean that is true if any results were capped. """ if hotlist: # TODO(jeffcarp): Get project_ids in a more efficient manner. We can # query for "SELECT DISTINCT(project_id)" for all issues in hotlist. issues_list = services.issue.GetIssues(cnxn, [hotlist_issue.issue_id for hotlist_issue in hotlist.items]) hotlist_issues_project_ids = hotlist_helpers.GetAllProjectsOfIssues( [issue for issue in issues_list]) config_list = hotlist_helpers.GetAllConfigsOfProjects( cnxn, hotlist_issues_project_ids, services) project_config = tracker_bizobj.HarmonizeConfigs(config_list) else: project_config = services.config.GetProjectConfig(cnxn, project.project_id) if project: project_ids = [project.project_id] else: project_ids = hotlist_issues_project_ids try: query_left_joins, query_where, unsupported_conds = self._QueryToWhere( cnxn, services, project_config, query, canned_query, project_ids) except ast2select.NoPossibleResults: return {}, ['Invalid query.'], False restricted_label_ids = search_helpers.GetPersonalAtRiskLabelIDs( cnxn, None, self.config_service, effective_ids, project, perms) left_joins = [ ('Issue ON IssueSnapshot.issue_id = Issue.id', []), ] if restricted_label_ids: left_joins.append( (('Issue2Label AS Forbidden_label' ' ON Issue.id = Forbidden_label.issue_id' ' AND Forbidden_label.label_id IN (%s)' % ( sql.PlaceHolders(restricted_label_ids) )), restricted_label_ids)) if effective_ids: left_joins.append( ('Issue2Cc AS I2cc' ' ON Issue.id = I2cc.issue_id' ' AND I2cc.cc_id IN (%s)' % sql.PlaceHolders(effective_ids), effective_ids)) # TODO(jeffcarp): Handle case where there are issues with no labels. where = [ ('IssueSnapshot.period_start <= %s', [unixtime]), ('IssueSnapshot.period_end > %s', [unixtime]), ('Issue.is_spam = %s', [False]), ('Issue.deleted = %s', [False]), ] if project_ids: where.append( ('IssueSnapshot.project_id IN (%s)' % sql.PlaceHolders(project_ids), project_ids)) forbidden_label_clause = 'Forbidden_label.label_id IS NULL' if effective_ids: if restricted_label_ids: forbidden_label_clause = ' OR %s' % forbidden_label_clause else: forbidden_label_clause = '' where.append( (( '(Issue.reporter_id IN (%s)' ' OR Issue.owner_id IN (%s)' ' OR I2cc.cc_id IS NOT NULL' '%s)' ) % ( sql.PlaceHolders(effective_ids), sql.PlaceHolders(effective_ids), forbidden_label_clause ), list(effective_ids) + list(effective_ids) )) else: where.append((forbidden_label_clause, [])) if group_by == 'component': cols = ['Comp.path', 'COUNT(IssueSnapshot.issue_id)'] left_joins.extend([ (('IssueSnapshot2Component AS Is2c ON' ' Is2c.issuesnapshot_id = IssueSnapshot.id'), []), ('ComponentDef AS Comp ON Comp.id = Is2c.component_id', []), ]) group_by = ['Comp.path'] elif group_by == 'label': cols = ['Lab.label', 'COUNT(IssueSnapshot.issue_id)'] left_joins.extend([ (('IssueSnapshot2Label AS Is2l' ' ON Is2l.issuesnapshot_id = IssueSnapshot.id'), []), ('LabelDef AS Lab ON Lab.id = Is2l.label_id', []), ]) if not label_prefix: raise ValueError('`label_prefix` required when grouping by label.') # TODO(jeffcarp): If LookupIDsOfLabelsMatching() is called on output, # ensure regex is case-insensitive. where.append(('LOWER(Lab.label) LIKE %s', [label_prefix.lower() + '-%'])) group_by = ['Lab.label'] elif group_by == 'open': cols = ['IssueSnapshot.is_open', 'COUNT(IssueSnapshot.issue_id) AS issue_count'] group_by = ['IssueSnapshot.is_open'] elif group_by == 'status': left_joins.append(('StatusDef AS Stats ON ' \ 'Stats.id = IssueSnapshot.status_id', [])) cols = ['Stats.status', 'COUNT(IssueSnapshot.issue_id)'] group_by = ['Stats.status'] elif group_by == 'owner': cols = ['IssueSnapshot.owner_id', 'COUNT(IssueSnapshot.issue_id)'] group_by = ['IssueSnapshot.owner_id'] elif not group_by: cols = ['IssueSnapshot.issue_id'] else: raise ValueError('`group_by` must be label, component, ' \ 'open, status, owner or None.') if query_left_joins: left_joins.extend(query_left_joins) if query_where: where.extend(query_where) if hotlist: left_joins.extend([ (('IssueSnapshot2Hotlist AS Is2h' ' ON Is2h.issuesnapshot_id = IssueSnapshot.id' ' AND Is2h.hotlist_id = %s'), [hotlist.hotlist_id]), ]) where.append( ('Is2h.hotlist_id = %s', [hotlist.hotlist_id])) promises = [] for shard_id in range(settings.num_logical_shards): count_stmt, stmt_args = self._BuildSnapshotQuery(cols=cols, where=where, joins=left_joins, group_by=group_by, shard_id=shard_id) promises.append(framework_helpers.Promise(cnxn.Execute, count_stmt, stmt_args, shard_id=shard_id)) shard_values_dict = {} search_limit_reached = False for promise in promises: # Wait for each query to complete and add it to the dict. shard_values = list(promise.WaitAndGetValue()) if not shard_values: continue if group_by: for name, count in shard_values: if count >= settings.chart_query_max_rows: search_limit_reached = True shard_values_dict.setdefault(name, 0) shard_values_dict[name] += count else: if shard_values[0][0] >= settings.chart_query_max_rows: search_limit_reached = True shard_values_dict.setdefault('total', 0) shard_values_dict['total'] += shard_values[0][0] unsupported_field_names = list(set([ field.field_name for cond in unsupported_conds for field in cond.field_defs ])) return shard_values_dict, unsupported_field_names, search_limit_reached def StoreIssueSnapshots(self, cnxn, issues, commit=True): """Adds an IssueSnapshot and updates the previous one for each issue.""" for issue in issues: right_now = self._currentTime() # Update previous snapshot of current issue's end time to right now. self.issuesnapshot_tbl.Update(cnxn, delta={'period_end': right_now}, where=[('IssueSnapshot.issue_id = %s', [issue.issue_id]), ('IssueSnapshot.period_end = %s', [settings.maximum_snapshot_period_end])], commit=commit) config = self.config_service.GetProjectConfig(cnxn, issue.project_id) period_end = settings.maximum_snapshot_period_end is_open = tracker_helpers.MeansOpenInProject( tracker_bizobj.GetStatus(issue), config) shard = issue.issue_id % settings.num_logical_shards status = tracker_bizobj.GetStatus(issue) status_id = self.config_service.LookupStatusID( cnxn, issue.project_id, status) or None owner_id = tracker_bizobj.GetOwnerId(issue) or None issuesnapshot_rows = [(issue.issue_id, shard, issue.project_id, issue.local_id, issue.reporter_id, owner_id, status_id, right_now, period_end, is_open)] ids = self.issuesnapshot_tbl.InsertRows( cnxn, ISSUESNAPSHOT_COLS[1:], issuesnapshot_rows, replace=True, commit=commit, return_generated_ids=True) issuesnapshot_id = ids[0] # Add all labels to IssueSnapshot2Label. label_rows = [ (issuesnapshot_id, self.config_service.LookupLabelID(cnxn, issue.project_id, label)) for label in tracker_bizobj.GetLabels(issue) ] self.issuesnapshot2label_tbl.InsertRows( cnxn, ISSUESNAPSHOT2LABEL_COLS, label_rows, replace=True, commit=commit) # Add all CCs to IssueSnapshot2Cc. cc_rows = [ (issuesnapshot_id, cc_id) for cc_id in tracker_bizobj.GetCcIds(issue) ] self.issuesnapshot2cc_tbl.InsertRows( cnxn, ISSUESNAPSHOT2CC_COLS, cc_rows, replace=True, commit=commit) # Add all components to IssueSnapshot2Component. component_rows = [ (issuesnapshot_id, component_id) for component_id in issue.component_ids ] self.issuesnapshot2component_tbl.InsertRows( cnxn, ISSUESNAPSHOT2COMPONENT_COLS, component_rows, replace=True, commit=commit) # Add all components to IssueSnapshot2Hotlist. # This is raw SQL to obviate passing FeaturesService down through # the call stack wherever this function is called. # TODO(jrobbins): sort out dependencies between service classes. cnxn.Execute(''' INSERT INTO IssueSnapshot2Hotlist (issuesnapshot_id, hotlist_id) SELECT %s, hotlist_id FROM Hotlist2Issue WHERE issue_id = %s ''', [issuesnapshot_id, issue.issue_id]) def ExpungeHotlistsFromIssueSnapshots(self, cnxn, hotlist_ids, commit=True): """Expunge the existence of hotlists from issue snapshots. Args: cnxn: connection to SQL database. hotlist_ids: list of hotlist_ids for hotlists we want to delete. commit: set to False to skip the DB commit and do it in a caller. """ vals_ph = sql.PlaceHolders(hotlist_ids) cnxn.Execute( 'DELETE FROM IssueSnapshot2Hotlist ' 'WHERE hotlist_id IN ({vals_ph})'.format(vals_ph=vals_ph), hotlist_ids, commit=commit) def _currentTime(self): """This is a separate method so it can be mocked by tests.""" return time.time() def _QueryToWhere(self, cnxn, services, project_config, query, canned_query, project_ids): """Parses a query string into LEFT JOIN and WHERE conditions. Args: cnxn: A MonorailConnection instance. services: A Services instance. project_config: The configuration for the given project. query (string): The query to parse. canned_query (string): The supplied canned query. project_ids: The current project ID(s). Returns: 1. A list of LEFT JOIN clauses for the SQL query. 2. A list of WHERE clases for the SQL query. 3. A list of query conditions that are unsupported with snapshots. """ if not (query or canned_query): return [], [], [] query = query or '' scope = canned_query or '' query_ast = query2ast.ParseUserQuery(query, scope, query2ast.BUILTIN_ISSUE_FIELDS, project_config) query_ast = ast2ast.PreprocessAST(cnxn, query_ast, project_ids, services, project_config) left_joins, where, unsupported = ast2select.BuildSQLQuery(query_ast, snapshot_mode=True) return left_joins, where, unsupported def _BuildSnapshotQuery(self, cols, where, joins, group_by, shard_id): """Given SQL arguments, executes a snapshot COUNT query.""" stmt = sql.Statement.MakeSelect('IssueSnapshot', cols, distinct=True) stmt.AddJoinClauses(joins, left=True) stmt.AddWhereTerms(where + [('IssueSnapshot.shard = %s', [shard_id])]) if group_by: stmt.AddGroupByTerms(group_by) stmt.SetLimitAndOffset(limit=settings.chart_query_max_rows, offset=0) stmt_str, stmt_args = stmt.Generate() if group_by: if group_by[0] == 'IssueSnapshot.is_open': count_stmt = ('SELECT IF(results.is_open = 1, "Opened", "Closed") ' \ 'AS bool_open, results.issue_count ' \ 'FROM (%s) AS results' % stmt_str) else: count_stmt = stmt_str else: count_stmt = 'SELECT COUNT(results.issue_id) FROM (%s) AS results' % ( stmt_str) return count_stmt, stmt_args
37.436893
80
0.676024
9462aea5b80ab2fdc325f56d03b30de3b1e9d0db
66,830
py
Python
features/bert_similarity_between_tweet_and_tweets_user_vectors_feature.py
wantedly/recsys2020-challenge
d9967860cc4767380d28d2ed7af00d467cc6941a
[ "Apache-2.0" ]
35
2020-06-23T05:33:50.000Z
2021-11-22T08:22:42.000Z
features/bert_similarity_between_tweet_and_tweets_user_vectors_feature.py
wantedly/recsys2020-challenge
d9967860cc4767380d28d2ed7af00d467cc6941a
[ "Apache-2.0" ]
15
2020-12-28T05:31:06.000Z
2021-01-22T06:49:28.000Z
features/bert_similarity_between_tweet_and_tweets_user_vectors_feature.py
wantedly/recsys2020-challenge
d9967860cc4767380d28d2ed7af00d467cc6941a
[ "Apache-2.0" ]
2
2020-06-30T10:02:05.000Z
2021-05-22T09:57:19.000Z
from typing import List, Tuple from google.cloud import bigquery, bigquery_storage_v1beta1 import pandas as pd from base import BaseFeature, reduce_mem_usage class BertSimilarityBetweenTweetAndTweetsUserVectorsFeature(BaseFeature): # 使わない def import_columns(self) -> List[str]: ... def make_features( self, df_train_input: pd.DataFrame, df_test_input: pd.DataFrame ) -> Tuple[pd.DataFrame, pd.DataFrame]: ... def read_and_save_features( self, train_table_name: str, test_table_name: str, train_output_path: str, test_output_path: str, ) -> None: df_train_features = self._read_from_bigquery(train_table_name) df_test_features = self._read_from_bigquery(test_table_name) df_train_features.columns = f"{self.name}_" + df_train_features.columns df_test_features.columns = f"{self.name}_" + df_test_features.columns if self.save_memory: self._logger.info("Reduce memory size - train data") df_train_features = reduce_mem_usage(df_train_features) self._logger.info("Reduce memory size - test data") df_test_features = reduce_mem_usage(df_test_features) self._logger.info(f"Saving features to {train_output_path}") df_train_features.to_feather(train_output_path) self._logger.info(f"Saving features to {test_output_path}") df_test_features.to_feather(test_output_path) def _read_from_bigquery(self, table_name: str) -> pd.DataFrame: self._logger.info(f"Reading from {table_name}") query = _QUERY.format(table_name=table_name) if self.debugging: query += " limit 10000" bqclient = bigquery.Client(project=self.PROJECT_ID) bqstorageclient = bigquery_storage_v1beta1.BigQueryStorageClient() df = ( bqclient.query(query) .result() .to_dataframe(bqstorage_client=bqstorageclient) ) return df _QUERY = r""" with unique_tweets as ( select tweet_id, engaged_user_id from `recsys2020.training` t group by tweet_id, engaged_user_id ), user_tweet_vectors as ( select engaged_user_id as user_id, avg(gap_0) as gap_0, avg(gap_1) as gap_1, avg(gap_2) as gap_2, avg(gap_3) as gap_3, avg(gap_4) as gap_4, avg(gap_5) as gap_5, avg(gap_6) as gap_6, avg(gap_7) as gap_7, avg(gap_8) as gap_8, avg(gap_9) as gap_9, avg(gap_10) as gap_10, avg(gap_11) as gap_11, avg(gap_12) as gap_12, avg(gap_13) as gap_13, avg(gap_14) as gap_14, avg(gap_15) as gap_15, avg(gap_16) as gap_16, avg(gap_17) as gap_17, avg(gap_18) as gap_18, avg(gap_19) as gap_19, avg(gap_20) as gap_20, avg(gap_21) as gap_21, avg(gap_22) as gap_22, avg(gap_23) as gap_23, avg(gap_24) as gap_24, avg(gap_25) as gap_25, avg(gap_26) as gap_26, avg(gap_27) as gap_27, avg(gap_28) as gap_28, avg(gap_29) as gap_29, avg(gap_30) as gap_30, avg(gap_31) as gap_31, avg(gap_32) as gap_32, avg(gap_33) as gap_33, avg(gap_34) as gap_34, avg(gap_35) as gap_35, avg(gap_36) as gap_36, avg(gap_37) as gap_37, avg(gap_38) as gap_38, avg(gap_39) as gap_39, avg(gap_40) as gap_40, avg(gap_41) as gap_41, avg(gap_42) as gap_42, avg(gap_43) as gap_43, avg(gap_44) as gap_44, avg(gap_45) as gap_45, avg(gap_46) as gap_46, avg(gap_47) as gap_47, avg(gap_48) as gap_48, avg(gap_49) as gap_49, avg(gap_50) as gap_50, avg(gap_51) as gap_51, avg(gap_52) as gap_52, avg(gap_53) as gap_53, avg(gap_54) as gap_54, avg(gap_55) as gap_55, avg(gap_56) as gap_56, avg(gap_57) as gap_57, avg(gap_58) as gap_58, avg(gap_59) as gap_59, avg(gap_60) as gap_60, avg(gap_61) as gap_61, avg(gap_62) as gap_62, avg(gap_63) as gap_63, avg(gap_64) as gap_64, avg(gap_65) as gap_65, avg(gap_66) as gap_66, avg(gap_67) as gap_67, avg(gap_68) as gap_68, avg(gap_69) as gap_69, avg(gap_70) as gap_70, avg(gap_71) as gap_71, avg(gap_72) as gap_72, avg(gap_73) as gap_73, avg(gap_74) as gap_74, avg(gap_75) as gap_75, avg(gap_76) as gap_76, avg(gap_77) as gap_77, avg(gap_78) as gap_78, avg(gap_79) as gap_79, avg(gap_80) as gap_80, avg(gap_81) as gap_81, avg(gap_82) as gap_82, avg(gap_83) as gap_83, avg(gap_84) as gap_84, avg(gap_85) as gap_85, avg(gap_86) as gap_86, avg(gap_87) as gap_87, avg(gap_88) as gap_88, avg(gap_89) as gap_89, avg(gap_90) as gap_90, avg(gap_91) as gap_91, avg(gap_92) as gap_92, avg(gap_93) as gap_93, avg(gap_94) as gap_94, avg(gap_95) as gap_95, avg(gap_96) as gap_96, avg(gap_97) as gap_97, avg(gap_98) as gap_98, avg(gap_99) as gap_99, avg(gap_100) as gap_100, avg(gap_101) as gap_101, avg(gap_102) as gap_102, avg(gap_103) as gap_103, avg(gap_104) as gap_104, avg(gap_105) as gap_105, avg(gap_106) as gap_106, avg(gap_107) as gap_107, avg(gap_108) as gap_108, avg(gap_109) as gap_109, avg(gap_110) as gap_110, avg(gap_111) as gap_111, avg(gap_112) as gap_112, avg(gap_113) as gap_113, avg(gap_114) as gap_114, avg(gap_115) as gap_115, avg(gap_116) as gap_116, avg(gap_117) as gap_117, avg(gap_118) as gap_118, avg(gap_119) as gap_119, avg(gap_120) as gap_120, avg(gap_121) as gap_121, avg(gap_122) as gap_122, avg(gap_123) as gap_123, avg(gap_124) as gap_124, avg(gap_125) as gap_125, avg(gap_126) as gap_126, avg(gap_127) as gap_127, avg(gap_128) as gap_128, avg(gap_129) as gap_129, avg(gap_130) as gap_130, avg(gap_131) as gap_131, avg(gap_132) as gap_132, avg(gap_133) as gap_133, avg(gap_134) as gap_134, avg(gap_135) as gap_135, avg(gap_136) as gap_136, avg(gap_137) as gap_137, avg(gap_138) as gap_138, avg(gap_139) as gap_139, avg(gap_140) as gap_140, avg(gap_141) as gap_141, avg(gap_142) as gap_142, avg(gap_143) as gap_143, avg(gap_144) as gap_144, avg(gap_145) as gap_145, avg(gap_146) as gap_146, avg(gap_147) as gap_147, avg(gap_148) as gap_148, avg(gap_149) as gap_149, avg(gap_150) as gap_150, avg(gap_151) as gap_151, avg(gap_152) as gap_152, avg(gap_153) as gap_153, avg(gap_154) as gap_154, avg(gap_155) as gap_155, avg(gap_156) as gap_156, avg(gap_157) as gap_157, avg(gap_158) as gap_158, avg(gap_159) as gap_159, avg(gap_160) as gap_160, avg(gap_161) as gap_161, avg(gap_162) as gap_162, avg(gap_163) as gap_163, avg(gap_164) as gap_164, avg(gap_165) as gap_165, avg(gap_166) as gap_166, avg(gap_167) as gap_167, avg(gap_168) as gap_168, avg(gap_169) as gap_169, avg(gap_170) as gap_170, avg(gap_171) as gap_171, avg(gap_172) as gap_172, avg(gap_173) as gap_173, avg(gap_174) as gap_174, avg(gap_175) as gap_175, avg(gap_176) as gap_176, avg(gap_177) as gap_177, avg(gap_178) as gap_178, avg(gap_179) as gap_179, avg(gap_180) as gap_180, avg(gap_181) as gap_181, avg(gap_182) as gap_182, avg(gap_183) as gap_183, avg(gap_184) as gap_184, avg(gap_185) as gap_185, avg(gap_186) as gap_186, avg(gap_187) as gap_187, avg(gap_188) as gap_188, avg(gap_189) as gap_189, avg(gap_190) as gap_190, avg(gap_191) as gap_191, avg(gap_192) as gap_192, avg(gap_193) as gap_193, avg(gap_194) as gap_194, avg(gap_195) as gap_195, avg(gap_196) as gap_196, avg(gap_197) as gap_197, avg(gap_198) as gap_198, avg(gap_199) as gap_199, avg(gap_200) as gap_200, avg(gap_201) as gap_201, avg(gap_202) as gap_202, avg(gap_203) as gap_203, avg(gap_204) as gap_204, avg(gap_205) as gap_205, avg(gap_206) as gap_206, avg(gap_207) as gap_207, avg(gap_208) as gap_208, avg(gap_209) as gap_209, avg(gap_210) as gap_210, avg(gap_211) as gap_211, avg(gap_212) as gap_212, avg(gap_213) as gap_213, avg(gap_214) as gap_214, avg(gap_215) as gap_215, avg(gap_216) as gap_216, avg(gap_217) as gap_217, avg(gap_218) as gap_218, avg(gap_219) as gap_219, avg(gap_220) as gap_220, avg(gap_221) as gap_221, avg(gap_222) as gap_222, avg(gap_223) as gap_223, avg(gap_224) as gap_224, avg(gap_225) as gap_225, avg(gap_226) as gap_226, avg(gap_227) as gap_227, avg(gap_228) as gap_228, avg(gap_229) as gap_229, avg(gap_230) as gap_230, avg(gap_231) as gap_231, avg(gap_232) as gap_232, avg(gap_233) as gap_233, avg(gap_234) as gap_234, avg(gap_235) as gap_235, avg(gap_236) as gap_236, avg(gap_237) as gap_237, avg(gap_238) as gap_238, avg(gap_239) as gap_239, avg(gap_240) as gap_240, avg(gap_241) as gap_241, avg(gap_242) as gap_242, avg(gap_243) as gap_243, avg(gap_244) as gap_244, avg(gap_245) as gap_245, avg(gap_246) as gap_246, avg(gap_247) as gap_247, avg(gap_248) as gap_248, avg(gap_249) as gap_249, avg(gap_250) as gap_250, avg(gap_251) as gap_251, avg(gap_252) as gap_252, avg(gap_253) as gap_253, avg(gap_254) as gap_254, avg(gap_255) as gap_255, avg(gap_256) as gap_256, avg(gap_257) as gap_257, avg(gap_258) as gap_258, avg(gap_259) as gap_259, avg(gap_260) as gap_260, avg(gap_261) as gap_261, avg(gap_262) as gap_262, avg(gap_263) as gap_263, avg(gap_264) as gap_264, avg(gap_265) as gap_265, avg(gap_266) as gap_266, avg(gap_267) as gap_267, avg(gap_268) as gap_268, avg(gap_269) as gap_269, avg(gap_270) as gap_270, avg(gap_271) as gap_271, avg(gap_272) as gap_272, avg(gap_273) as gap_273, avg(gap_274) as gap_274, avg(gap_275) as gap_275, avg(gap_276) as gap_276, avg(gap_277) as gap_277, avg(gap_278) as gap_278, avg(gap_279) as gap_279, avg(gap_280) as gap_280, avg(gap_281) as gap_281, avg(gap_282) as gap_282, avg(gap_283) as gap_283, avg(gap_284) as gap_284, avg(gap_285) as gap_285, avg(gap_286) as gap_286, avg(gap_287) as gap_287, avg(gap_288) as gap_288, avg(gap_289) as gap_289, avg(gap_290) as gap_290, avg(gap_291) as gap_291, avg(gap_292) as gap_292, avg(gap_293) as gap_293, avg(gap_294) as gap_294, avg(gap_295) as gap_295, avg(gap_296) as gap_296, avg(gap_297) as gap_297, avg(gap_298) as gap_298, avg(gap_299) as gap_299, avg(gap_300) as gap_300, avg(gap_301) as gap_301, avg(gap_302) as gap_302, avg(gap_303) as gap_303, avg(gap_304) as gap_304, avg(gap_305) as gap_305, avg(gap_306) as gap_306, avg(gap_307) as gap_307, avg(gap_308) as gap_308, avg(gap_309) as gap_309, avg(gap_310) as gap_310, avg(gap_311) as gap_311, avg(gap_312) as gap_312, avg(gap_313) as gap_313, avg(gap_314) as gap_314, avg(gap_315) as gap_315, avg(gap_316) as gap_316, avg(gap_317) as gap_317, avg(gap_318) as gap_318, avg(gap_319) as gap_319, avg(gap_320) as gap_320, avg(gap_321) as gap_321, avg(gap_322) as gap_322, avg(gap_323) as gap_323, avg(gap_324) as gap_324, avg(gap_325) as gap_325, avg(gap_326) as gap_326, avg(gap_327) as gap_327, avg(gap_328) as gap_328, avg(gap_329) as gap_329, avg(gap_330) as gap_330, avg(gap_331) as gap_331, avg(gap_332) as gap_332, avg(gap_333) as gap_333, avg(gap_334) as gap_334, avg(gap_335) as gap_335, avg(gap_336) as gap_336, avg(gap_337) as gap_337, avg(gap_338) as gap_338, avg(gap_339) as gap_339, avg(gap_340) as gap_340, avg(gap_341) as gap_341, avg(gap_342) as gap_342, avg(gap_343) as gap_343, avg(gap_344) as gap_344, avg(gap_345) as gap_345, avg(gap_346) as gap_346, avg(gap_347) as gap_347, avg(gap_348) as gap_348, avg(gap_349) as gap_349, avg(gap_350) as gap_350, avg(gap_351) as gap_351, avg(gap_352) as gap_352, avg(gap_353) as gap_353, avg(gap_354) as gap_354, avg(gap_355) as gap_355, avg(gap_356) as gap_356, avg(gap_357) as gap_357, avg(gap_358) as gap_358, avg(gap_359) as gap_359, avg(gap_360) as gap_360, avg(gap_361) as gap_361, avg(gap_362) as gap_362, avg(gap_363) as gap_363, avg(gap_364) as gap_364, avg(gap_365) as gap_365, avg(gap_366) as gap_366, avg(gap_367) as gap_367, avg(gap_368) as gap_368, avg(gap_369) as gap_369, avg(gap_370) as gap_370, avg(gap_371) as gap_371, avg(gap_372) as gap_372, avg(gap_373) as gap_373, avg(gap_374) as gap_374, avg(gap_375) as gap_375, avg(gap_376) as gap_376, avg(gap_377) as gap_377, avg(gap_378) as gap_378, avg(gap_379) as gap_379, avg(gap_380) as gap_380, avg(gap_381) as gap_381, avg(gap_382) as gap_382, avg(gap_383) as gap_383, avg(gap_384) as gap_384, avg(gap_385) as gap_385, avg(gap_386) as gap_386, avg(gap_387) as gap_387, avg(gap_388) as gap_388, avg(gap_389) as gap_389, avg(gap_390) as gap_390, avg(gap_391) as gap_391, avg(gap_392) as gap_392, avg(gap_393) as gap_393, avg(gap_394) as gap_394, avg(gap_395) as gap_395, avg(gap_396) as gap_396, avg(gap_397) as gap_397, avg(gap_398) as gap_398, avg(gap_399) as gap_399, avg(gap_400) as gap_400, avg(gap_401) as gap_401, avg(gap_402) as gap_402, avg(gap_403) as gap_403, avg(gap_404) as gap_404, avg(gap_405) as gap_405, avg(gap_406) as gap_406, avg(gap_407) as gap_407, avg(gap_408) as gap_408, avg(gap_409) as gap_409, avg(gap_410) as gap_410, avg(gap_411) as gap_411, avg(gap_412) as gap_412, avg(gap_413) as gap_413, avg(gap_414) as gap_414, avg(gap_415) as gap_415, avg(gap_416) as gap_416, avg(gap_417) as gap_417, avg(gap_418) as gap_418, avg(gap_419) as gap_419, avg(gap_420) as gap_420, avg(gap_421) as gap_421, avg(gap_422) as gap_422, avg(gap_423) as gap_423, avg(gap_424) as gap_424, avg(gap_425) as gap_425, avg(gap_426) as gap_426, avg(gap_427) as gap_427, avg(gap_428) as gap_428, avg(gap_429) as gap_429, avg(gap_430) as gap_430, avg(gap_431) as gap_431, avg(gap_432) as gap_432, avg(gap_433) as gap_433, avg(gap_434) as gap_434, avg(gap_435) as gap_435, avg(gap_436) as gap_436, avg(gap_437) as gap_437, avg(gap_438) as gap_438, avg(gap_439) as gap_439, avg(gap_440) as gap_440, avg(gap_441) as gap_441, avg(gap_442) as gap_442, avg(gap_443) as gap_443, avg(gap_444) as gap_444, avg(gap_445) as gap_445, avg(gap_446) as gap_446, avg(gap_447) as gap_447, avg(gap_448) as gap_448, avg(gap_449) as gap_449, avg(gap_450) as gap_450, avg(gap_451) as gap_451, avg(gap_452) as gap_452, avg(gap_453) as gap_453, avg(gap_454) as gap_454, avg(gap_455) as gap_455, avg(gap_456) as gap_456, avg(gap_457) as gap_457, avg(gap_458) as gap_458, avg(gap_459) as gap_459, avg(gap_460) as gap_460, avg(gap_461) as gap_461, avg(gap_462) as gap_462, avg(gap_463) as gap_463, avg(gap_464) as gap_464, avg(gap_465) as gap_465, avg(gap_466) as gap_466, avg(gap_467) as gap_467, avg(gap_468) as gap_468, avg(gap_469) as gap_469, avg(gap_470) as gap_470, avg(gap_471) as gap_471, avg(gap_472) as gap_472, avg(gap_473) as gap_473, avg(gap_474) as gap_474, avg(gap_475) as gap_475, avg(gap_476) as gap_476, avg(gap_477) as gap_477, avg(gap_478) as gap_478, avg(gap_479) as gap_479, avg(gap_480) as gap_480, avg(gap_481) as gap_481, avg(gap_482) as gap_482, avg(gap_483) as gap_483, avg(gap_484) as gap_484, avg(gap_485) as gap_485, avg(gap_486) as gap_486, avg(gap_487) as gap_487, avg(gap_488) as gap_488, avg(gap_489) as gap_489, avg(gap_490) as gap_490, avg(gap_491) as gap_491, avg(gap_492) as gap_492, avg(gap_493) as gap_493, avg(gap_494) as gap_494, avg(gap_495) as gap_495, avg(gap_496) as gap_496, avg(gap_497) as gap_497, avg(gap_498) as gap_498, avg(gap_499) as gap_499, avg(gap_500) as gap_500, avg(gap_501) as gap_501, avg(gap_502) as gap_502, avg(gap_503) as gap_503, avg(gap_504) as gap_504, avg(gap_505) as gap_505, avg(gap_506) as gap_506, avg(gap_507) as gap_507, avg(gap_508) as gap_508, avg(gap_509) as gap_509, avg(gap_510) as gap_510, avg(gap_511) as gap_511, avg(gap_512) as gap_512, avg(gap_513) as gap_513, avg(gap_514) as gap_514, avg(gap_515) as gap_515, avg(gap_516) as gap_516, avg(gap_517) as gap_517, avg(gap_518) as gap_518, avg(gap_519) as gap_519, avg(gap_520) as gap_520, avg(gap_521) as gap_521, avg(gap_522) as gap_522, avg(gap_523) as gap_523, avg(gap_524) as gap_524, avg(gap_525) as gap_525, avg(gap_526) as gap_526, avg(gap_527) as gap_527, avg(gap_528) as gap_528, avg(gap_529) as gap_529, avg(gap_530) as gap_530, avg(gap_531) as gap_531, avg(gap_532) as gap_532, avg(gap_533) as gap_533, avg(gap_534) as gap_534, avg(gap_535) as gap_535, avg(gap_536) as gap_536, avg(gap_537) as gap_537, avg(gap_538) as gap_538, avg(gap_539) as gap_539, avg(gap_540) as gap_540, avg(gap_541) as gap_541, avg(gap_542) as gap_542, avg(gap_543) as gap_543, avg(gap_544) as gap_544, avg(gap_545) as gap_545, avg(gap_546) as gap_546, avg(gap_547) as gap_547, avg(gap_548) as gap_548, avg(gap_549) as gap_549, avg(gap_550) as gap_550, avg(gap_551) as gap_551, avg(gap_552) as gap_552, avg(gap_553) as gap_553, avg(gap_554) as gap_554, avg(gap_555) as gap_555, avg(gap_556) as gap_556, avg(gap_557) as gap_557, avg(gap_558) as gap_558, avg(gap_559) as gap_559, avg(gap_560) as gap_560, avg(gap_561) as gap_561, avg(gap_562) as gap_562, avg(gap_563) as gap_563, avg(gap_564) as gap_564, avg(gap_565) as gap_565, avg(gap_566) as gap_566, avg(gap_567) as gap_567, avg(gap_568) as gap_568, avg(gap_569) as gap_569, avg(gap_570) as gap_570, avg(gap_571) as gap_571, avg(gap_572) as gap_572, avg(gap_573) as gap_573, avg(gap_574) as gap_574, avg(gap_575) as gap_575, avg(gap_576) as gap_576, avg(gap_577) as gap_577, avg(gap_578) as gap_578, avg(gap_579) as gap_579, avg(gap_580) as gap_580, avg(gap_581) as gap_581, avg(gap_582) as gap_582, avg(gap_583) as gap_583, avg(gap_584) as gap_584, avg(gap_585) as gap_585, avg(gap_586) as gap_586, avg(gap_587) as gap_587, avg(gap_588) as gap_588, avg(gap_589) as gap_589, avg(gap_590) as gap_590, avg(gap_591) as gap_591, avg(gap_592) as gap_592, avg(gap_593) as gap_593, avg(gap_594) as gap_594, avg(gap_595) as gap_595, avg(gap_596) as gap_596, avg(gap_597) as gap_597, avg(gap_598) as gap_598, avg(gap_599) as gap_599, avg(gap_600) as gap_600, avg(gap_601) as gap_601, avg(gap_602) as gap_602, avg(gap_603) as gap_603, avg(gap_604) as gap_604, avg(gap_605) as gap_605, avg(gap_606) as gap_606, avg(gap_607) as gap_607, avg(gap_608) as gap_608, avg(gap_609) as gap_609, avg(gap_610) as gap_610, avg(gap_611) as gap_611, avg(gap_612) as gap_612, avg(gap_613) as gap_613, avg(gap_614) as gap_614, avg(gap_615) as gap_615, avg(gap_616) as gap_616, avg(gap_617) as gap_617, avg(gap_618) as gap_618, avg(gap_619) as gap_619, avg(gap_620) as gap_620, avg(gap_621) as gap_621, avg(gap_622) as gap_622, avg(gap_623) as gap_623, avg(gap_624) as gap_624, avg(gap_625) as gap_625, avg(gap_626) as gap_626, avg(gap_627) as gap_627, avg(gap_628) as gap_628, avg(gap_629) as gap_629, avg(gap_630) as gap_630, avg(gap_631) as gap_631, avg(gap_632) as gap_632, avg(gap_633) as gap_633, avg(gap_634) as gap_634, avg(gap_635) as gap_635, avg(gap_636) as gap_636, avg(gap_637) as gap_637, avg(gap_638) as gap_638, avg(gap_639) as gap_639, avg(gap_640) as gap_640, avg(gap_641) as gap_641, avg(gap_642) as gap_642, avg(gap_643) as gap_643, avg(gap_644) as gap_644, avg(gap_645) as gap_645, avg(gap_646) as gap_646, avg(gap_647) as gap_647, avg(gap_648) as gap_648, avg(gap_649) as gap_649, avg(gap_650) as gap_650, avg(gap_651) as gap_651, avg(gap_652) as gap_652, avg(gap_653) as gap_653, avg(gap_654) as gap_654, avg(gap_655) as gap_655, avg(gap_656) as gap_656, avg(gap_657) as gap_657, avg(gap_658) as gap_658, avg(gap_659) as gap_659, avg(gap_660) as gap_660, avg(gap_661) as gap_661, avg(gap_662) as gap_662, avg(gap_663) as gap_663, avg(gap_664) as gap_664, avg(gap_665) as gap_665, avg(gap_666) as gap_666, avg(gap_667) as gap_667, avg(gap_668) as gap_668, avg(gap_669) as gap_669, avg(gap_670) as gap_670, avg(gap_671) as gap_671, avg(gap_672) as gap_672, avg(gap_673) as gap_673, avg(gap_674) as gap_674, avg(gap_675) as gap_675, avg(gap_676) as gap_676, avg(gap_677) as gap_677, avg(gap_678) as gap_678, avg(gap_679) as gap_679, avg(gap_680) as gap_680, avg(gap_681) as gap_681, avg(gap_682) as gap_682, avg(gap_683) as gap_683, avg(gap_684) as gap_684, avg(gap_685) as gap_685, avg(gap_686) as gap_686, avg(gap_687) as gap_687, avg(gap_688) as gap_688, avg(gap_689) as gap_689, avg(gap_690) as gap_690, avg(gap_691) as gap_691, avg(gap_692) as gap_692, avg(gap_693) as gap_693, avg(gap_694) as gap_694, avg(gap_695) as gap_695, avg(gap_696) as gap_696, avg(gap_697) as gap_697, avg(gap_698) as gap_698, avg(gap_699) as gap_699, avg(gap_700) as gap_700, avg(gap_701) as gap_701, avg(gap_702) as gap_702, avg(gap_703) as gap_703, avg(gap_704) as gap_704, avg(gap_705) as gap_705, avg(gap_706) as gap_706, avg(gap_707) as gap_707, avg(gap_708) as gap_708, avg(gap_709) as gap_709, avg(gap_710) as gap_710, avg(gap_711) as gap_711, avg(gap_712) as gap_712, avg(gap_713) as gap_713, avg(gap_714) as gap_714, avg(gap_715) as gap_715, avg(gap_716) as gap_716, avg(gap_717) as gap_717, avg(gap_718) as gap_718, avg(gap_719) as gap_719, avg(gap_720) as gap_720, avg(gap_721) as gap_721, avg(gap_722) as gap_722, avg(gap_723) as gap_723, avg(gap_724) as gap_724, avg(gap_725) as gap_725, avg(gap_726) as gap_726, avg(gap_727) as gap_727, avg(gap_728) as gap_728, avg(gap_729) as gap_729, avg(gap_730) as gap_730, avg(gap_731) as gap_731, avg(gap_732) as gap_732, avg(gap_733) as gap_733, avg(gap_734) as gap_734, avg(gap_735) as gap_735, avg(gap_736) as gap_736, avg(gap_737) as gap_737, avg(gap_738) as gap_738, avg(gap_739) as gap_739, avg(gap_740) as gap_740, avg(gap_741) as gap_741, avg(gap_742) as gap_742, avg(gap_743) as gap_743, avg(gap_744) as gap_744, avg(gap_745) as gap_745, avg(gap_746) as gap_746, avg(gap_747) as gap_747, avg(gap_748) as gap_748, avg(gap_749) as gap_749, avg(gap_750) as gap_750, avg(gap_751) as gap_751, avg(gap_752) as gap_752, avg(gap_753) as gap_753, avg(gap_754) as gap_754, avg(gap_755) as gap_755, avg(gap_756) as gap_756, avg(gap_757) as gap_757, avg(gap_758) as gap_758, avg(gap_759) as gap_759, avg(gap_760) as gap_760, avg(gap_761) as gap_761, avg(gap_762) as gap_762, avg(gap_763) as gap_763, avg(gap_764) as gap_764, avg(gap_765) as gap_765, avg(gap_766) as gap_766, avg(gap_767) as gap_767 from unique_tweets inner join `recsys2020.pretrained_bert_gap` gap on unique_tweets.tweet_id = gap.tweet_id group by user_id ) select 1.0 / 768 * ( (tweet_gap.gap_0 * user_tweet_vectors.gap_0) + (tweet_gap.gap_1 * user_tweet_vectors.gap_1) + (tweet_gap.gap_2 * user_tweet_vectors.gap_2) + (tweet_gap.gap_3 * user_tweet_vectors.gap_3) + (tweet_gap.gap_4 * user_tweet_vectors.gap_4) + (tweet_gap.gap_5 * user_tweet_vectors.gap_5) + (tweet_gap.gap_6 * user_tweet_vectors.gap_6) + (tweet_gap.gap_7 * user_tweet_vectors.gap_7) + (tweet_gap.gap_8 * user_tweet_vectors.gap_8) + (tweet_gap.gap_9 * user_tweet_vectors.gap_9) + (tweet_gap.gap_10 * user_tweet_vectors.gap_10) + (tweet_gap.gap_11 * user_tweet_vectors.gap_11) + (tweet_gap.gap_12 * user_tweet_vectors.gap_12) + (tweet_gap.gap_13 * user_tweet_vectors.gap_13) + (tweet_gap.gap_14 * user_tweet_vectors.gap_14) + (tweet_gap.gap_15 * user_tweet_vectors.gap_15) + (tweet_gap.gap_16 * user_tweet_vectors.gap_16) + (tweet_gap.gap_17 * user_tweet_vectors.gap_17) + (tweet_gap.gap_18 * user_tweet_vectors.gap_18) + (tweet_gap.gap_19 * user_tweet_vectors.gap_19) + (tweet_gap.gap_20 * user_tweet_vectors.gap_20) + (tweet_gap.gap_21 * user_tweet_vectors.gap_21) + (tweet_gap.gap_22 * user_tweet_vectors.gap_22) + (tweet_gap.gap_23 * user_tweet_vectors.gap_23) + (tweet_gap.gap_24 * user_tweet_vectors.gap_24) + (tweet_gap.gap_25 * user_tweet_vectors.gap_25) + (tweet_gap.gap_26 * user_tweet_vectors.gap_26) + (tweet_gap.gap_27 * user_tweet_vectors.gap_27) + (tweet_gap.gap_28 * user_tweet_vectors.gap_28) + (tweet_gap.gap_29 * user_tweet_vectors.gap_29) + (tweet_gap.gap_30 * user_tweet_vectors.gap_30) + (tweet_gap.gap_31 * user_tweet_vectors.gap_31) + (tweet_gap.gap_32 * user_tweet_vectors.gap_32) + (tweet_gap.gap_33 * user_tweet_vectors.gap_33) + (tweet_gap.gap_34 * user_tweet_vectors.gap_34) + (tweet_gap.gap_35 * user_tweet_vectors.gap_35) + (tweet_gap.gap_36 * user_tweet_vectors.gap_36) + (tweet_gap.gap_37 * user_tweet_vectors.gap_37) + (tweet_gap.gap_38 * user_tweet_vectors.gap_38) + (tweet_gap.gap_39 * user_tweet_vectors.gap_39) + (tweet_gap.gap_40 * user_tweet_vectors.gap_40) + (tweet_gap.gap_41 * user_tweet_vectors.gap_41) + (tweet_gap.gap_42 * user_tweet_vectors.gap_42) + (tweet_gap.gap_43 * user_tweet_vectors.gap_43) + (tweet_gap.gap_44 * user_tweet_vectors.gap_44) + (tweet_gap.gap_45 * user_tweet_vectors.gap_45) + (tweet_gap.gap_46 * user_tweet_vectors.gap_46) + (tweet_gap.gap_47 * user_tweet_vectors.gap_47) + (tweet_gap.gap_48 * user_tweet_vectors.gap_48) + (tweet_gap.gap_49 * user_tweet_vectors.gap_49) + (tweet_gap.gap_50 * user_tweet_vectors.gap_50) + (tweet_gap.gap_51 * user_tweet_vectors.gap_51) + (tweet_gap.gap_52 * user_tweet_vectors.gap_52) + (tweet_gap.gap_53 * user_tweet_vectors.gap_53) + (tweet_gap.gap_54 * user_tweet_vectors.gap_54) + (tweet_gap.gap_55 * user_tweet_vectors.gap_55) + (tweet_gap.gap_56 * user_tweet_vectors.gap_56) + (tweet_gap.gap_57 * user_tweet_vectors.gap_57) + (tweet_gap.gap_58 * user_tweet_vectors.gap_58) + (tweet_gap.gap_59 * user_tweet_vectors.gap_59) + (tweet_gap.gap_60 * user_tweet_vectors.gap_60) + (tweet_gap.gap_61 * user_tweet_vectors.gap_61) + (tweet_gap.gap_62 * user_tweet_vectors.gap_62) + (tweet_gap.gap_63 * user_tweet_vectors.gap_63) + (tweet_gap.gap_64 * user_tweet_vectors.gap_64) + (tweet_gap.gap_65 * user_tweet_vectors.gap_65) + (tweet_gap.gap_66 * user_tweet_vectors.gap_66) + (tweet_gap.gap_67 * user_tweet_vectors.gap_67) + (tweet_gap.gap_68 * user_tweet_vectors.gap_68) + (tweet_gap.gap_69 * user_tweet_vectors.gap_69) + (tweet_gap.gap_70 * user_tweet_vectors.gap_70) + (tweet_gap.gap_71 * user_tweet_vectors.gap_71) + (tweet_gap.gap_72 * user_tweet_vectors.gap_72) + (tweet_gap.gap_73 * user_tweet_vectors.gap_73) + (tweet_gap.gap_74 * user_tweet_vectors.gap_74) + (tweet_gap.gap_75 * user_tweet_vectors.gap_75) + (tweet_gap.gap_76 * user_tweet_vectors.gap_76) + (tweet_gap.gap_77 * user_tweet_vectors.gap_77) + (tweet_gap.gap_78 * user_tweet_vectors.gap_78) + (tweet_gap.gap_79 * user_tweet_vectors.gap_79) + (tweet_gap.gap_80 * user_tweet_vectors.gap_80) + (tweet_gap.gap_81 * user_tweet_vectors.gap_81) + (tweet_gap.gap_82 * user_tweet_vectors.gap_82) + (tweet_gap.gap_83 * user_tweet_vectors.gap_83) + (tweet_gap.gap_84 * user_tweet_vectors.gap_84) + (tweet_gap.gap_85 * user_tweet_vectors.gap_85) + (tweet_gap.gap_86 * user_tweet_vectors.gap_86) + (tweet_gap.gap_87 * user_tweet_vectors.gap_87) + (tweet_gap.gap_88 * user_tweet_vectors.gap_88) + (tweet_gap.gap_89 * user_tweet_vectors.gap_89) + (tweet_gap.gap_90 * user_tweet_vectors.gap_90) + (tweet_gap.gap_91 * user_tweet_vectors.gap_91) + (tweet_gap.gap_92 * user_tweet_vectors.gap_92) + (tweet_gap.gap_93 * user_tweet_vectors.gap_93) + (tweet_gap.gap_94 * user_tweet_vectors.gap_94) + (tweet_gap.gap_95 * user_tweet_vectors.gap_95) + (tweet_gap.gap_96 * user_tweet_vectors.gap_96) + (tweet_gap.gap_97 * user_tweet_vectors.gap_97) + (tweet_gap.gap_98 * user_tweet_vectors.gap_98) + (tweet_gap.gap_99 * user_tweet_vectors.gap_99) + (tweet_gap.gap_100 * user_tweet_vectors.gap_100) + (tweet_gap.gap_101 * user_tweet_vectors.gap_101) + (tweet_gap.gap_102 * user_tweet_vectors.gap_102) + (tweet_gap.gap_103 * user_tweet_vectors.gap_103) + (tweet_gap.gap_104 * user_tweet_vectors.gap_104) + (tweet_gap.gap_105 * user_tweet_vectors.gap_105) + (tweet_gap.gap_106 * user_tweet_vectors.gap_106) + (tweet_gap.gap_107 * user_tweet_vectors.gap_107) + (tweet_gap.gap_108 * user_tweet_vectors.gap_108) + (tweet_gap.gap_109 * user_tweet_vectors.gap_109) + (tweet_gap.gap_110 * user_tweet_vectors.gap_110) + (tweet_gap.gap_111 * user_tweet_vectors.gap_111) + (tweet_gap.gap_112 * user_tweet_vectors.gap_112) + (tweet_gap.gap_113 * user_tweet_vectors.gap_113) + (tweet_gap.gap_114 * user_tweet_vectors.gap_114) + (tweet_gap.gap_115 * user_tweet_vectors.gap_115) + (tweet_gap.gap_116 * user_tweet_vectors.gap_116) + (tweet_gap.gap_117 * user_tweet_vectors.gap_117) + (tweet_gap.gap_118 * user_tweet_vectors.gap_118) + (tweet_gap.gap_119 * user_tweet_vectors.gap_119) + (tweet_gap.gap_120 * user_tweet_vectors.gap_120) + (tweet_gap.gap_121 * user_tweet_vectors.gap_121) + (tweet_gap.gap_122 * user_tweet_vectors.gap_122) + (tweet_gap.gap_123 * user_tweet_vectors.gap_123) + (tweet_gap.gap_124 * user_tweet_vectors.gap_124) + (tweet_gap.gap_125 * user_tweet_vectors.gap_125) + (tweet_gap.gap_126 * user_tweet_vectors.gap_126) + (tweet_gap.gap_127 * user_tweet_vectors.gap_127) + (tweet_gap.gap_128 * user_tweet_vectors.gap_128) + (tweet_gap.gap_129 * user_tweet_vectors.gap_129) + (tweet_gap.gap_130 * user_tweet_vectors.gap_130) + (tweet_gap.gap_131 * user_tweet_vectors.gap_131) + (tweet_gap.gap_132 * user_tweet_vectors.gap_132) + (tweet_gap.gap_133 * user_tweet_vectors.gap_133) + (tweet_gap.gap_134 * user_tweet_vectors.gap_134) + (tweet_gap.gap_135 * user_tweet_vectors.gap_135) + (tweet_gap.gap_136 * user_tweet_vectors.gap_136) + (tweet_gap.gap_137 * user_tweet_vectors.gap_137) + (tweet_gap.gap_138 * user_tweet_vectors.gap_138) + (tweet_gap.gap_139 * user_tweet_vectors.gap_139) + (tweet_gap.gap_140 * user_tweet_vectors.gap_140) + (tweet_gap.gap_141 * user_tweet_vectors.gap_141) + (tweet_gap.gap_142 * user_tweet_vectors.gap_142) + (tweet_gap.gap_143 * user_tweet_vectors.gap_143) + (tweet_gap.gap_144 * user_tweet_vectors.gap_144) + (tweet_gap.gap_145 * user_tweet_vectors.gap_145) + (tweet_gap.gap_146 * user_tweet_vectors.gap_146) + (tweet_gap.gap_147 * user_tweet_vectors.gap_147) + (tweet_gap.gap_148 * user_tweet_vectors.gap_148) + (tweet_gap.gap_149 * user_tweet_vectors.gap_149) + (tweet_gap.gap_150 * user_tweet_vectors.gap_150) + (tweet_gap.gap_151 * user_tweet_vectors.gap_151) + (tweet_gap.gap_152 * user_tweet_vectors.gap_152) + (tweet_gap.gap_153 * user_tweet_vectors.gap_153) + (tweet_gap.gap_154 * user_tweet_vectors.gap_154) + (tweet_gap.gap_155 * user_tweet_vectors.gap_155) + (tweet_gap.gap_156 * user_tweet_vectors.gap_156) + (tweet_gap.gap_157 * user_tweet_vectors.gap_157) + (tweet_gap.gap_158 * user_tweet_vectors.gap_158) + (tweet_gap.gap_159 * user_tweet_vectors.gap_159) + (tweet_gap.gap_160 * user_tweet_vectors.gap_160) + (tweet_gap.gap_161 * user_tweet_vectors.gap_161) + (tweet_gap.gap_162 * user_tweet_vectors.gap_162) + (tweet_gap.gap_163 * user_tweet_vectors.gap_163) + (tweet_gap.gap_164 * user_tweet_vectors.gap_164) + (tweet_gap.gap_165 * user_tweet_vectors.gap_165) + (tweet_gap.gap_166 * user_tweet_vectors.gap_166) + (tweet_gap.gap_167 * user_tweet_vectors.gap_167) + (tweet_gap.gap_168 * user_tweet_vectors.gap_168) + (tweet_gap.gap_169 * user_tweet_vectors.gap_169) + (tweet_gap.gap_170 * user_tweet_vectors.gap_170) + (tweet_gap.gap_171 * user_tweet_vectors.gap_171) + (tweet_gap.gap_172 * user_tweet_vectors.gap_172) + (tweet_gap.gap_173 * user_tweet_vectors.gap_173) + (tweet_gap.gap_174 * user_tweet_vectors.gap_174) + (tweet_gap.gap_175 * user_tweet_vectors.gap_175) + (tweet_gap.gap_176 * user_tweet_vectors.gap_176) + (tweet_gap.gap_177 * user_tweet_vectors.gap_177) + (tweet_gap.gap_178 * user_tweet_vectors.gap_178) + (tweet_gap.gap_179 * user_tweet_vectors.gap_179) + (tweet_gap.gap_180 * user_tweet_vectors.gap_180) + (tweet_gap.gap_181 * user_tweet_vectors.gap_181) + (tweet_gap.gap_182 * user_tweet_vectors.gap_182) + (tweet_gap.gap_183 * user_tweet_vectors.gap_183) + (tweet_gap.gap_184 * user_tweet_vectors.gap_184) + (tweet_gap.gap_185 * user_tweet_vectors.gap_185) + (tweet_gap.gap_186 * user_tweet_vectors.gap_186) + (tweet_gap.gap_187 * user_tweet_vectors.gap_187) + (tweet_gap.gap_188 * user_tweet_vectors.gap_188) + (tweet_gap.gap_189 * user_tweet_vectors.gap_189) + (tweet_gap.gap_190 * user_tweet_vectors.gap_190) + (tweet_gap.gap_191 * user_tweet_vectors.gap_191) + (tweet_gap.gap_192 * user_tweet_vectors.gap_192) + (tweet_gap.gap_193 * user_tweet_vectors.gap_193) + (tweet_gap.gap_194 * user_tweet_vectors.gap_194) + (tweet_gap.gap_195 * user_tweet_vectors.gap_195) + (tweet_gap.gap_196 * user_tweet_vectors.gap_196) + (tweet_gap.gap_197 * user_tweet_vectors.gap_197) + (tweet_gap.gap_198 * user_tweet_vectors.gap_198) + (tweet_gap.gap_199 * user_tweet_vectors.gap_199) + (tweet_gap.gap_200 * user_tweet_vectors.gap_200) + (tweet_gap.gap_201 * user_tweet_vectors.gap_201) + (tweet_gap.gap_202 * user_tweet_vectors.gap_202) + (tweet_gap.gap_203 * user_tweet_vectors.gap_203) + (tweet_gap.gap_204 * user_tweet_vectors.gap_204) + (tweet_gap.gap_205 * user_tweet_vectors.gap_205) + (tweet_gap.gap_206 * user_tweet_vectors.gap_206) + (tweet_gap.gap_207 * user_tweet_vectors.gap_207) + (tweet_gap.gap_208 * user_tweet_vectors.gap_208) + (tweet_gap.gap_209 * user_tweet_vectors.gap_209) + (tweet_gap.gap_210 * user_tweet_vectors.gap_210) + (tweet_gap.gap_211 * user_tweet_vectors.gap_211) + (tweet_gap.gap_212 * user_tweet_vectors.gap_212) + (tweet_gap.gap_213 * user_tweet_vectors.gap_213) + (tweet_gap.gap_214 * user_tweet_vectors.gap_214) + (tweet_gap.gap_215 * user_tweet_vectors.gap_215) + (tweet_gap.gap_216 * user_tweet_vectors.gap_216) + (tweet_gap.gap_217 * user_tweet_vectors.gap_217) + (tweet_gap.gap_218 * user_tweet_vectors.gap_218) + (tweet_gap.gap_219 * user_tweet_vectors.gap_219) + (tweet_gap.gap_220 * user_tweet_vectors.gap_220) + (tweet_gap.gap_221 * user_tweet_vectors.gap_221) + (tweet_gap.gap_222 * user_tweet_vectors.gap_222) + (tweet_gap.gap_223 * user_tweet_vectors.gap_223) + (tweet_gap.gap_224 * user_tweet_vectors.gap_224) + (tweet_gap.gap_225 * user_tweet_vectors.gap_225) + (tweet_gap.gap_226 * user_tweet_vectors.gap_226) + (tweet_gap.gap_227 * user_tweet_vectors.gap_227) + (tweet_gap.gap_228 * user_tweet_vectors.gap_228) + (tweet_gap.gap_229 * user_tweet_vectors.gap_229) + (tweet_gap.gap_230 * user_tweet_vectors.gap_230) + (tweet_gap.gap_231 * user_tweet_vectors.gap_231) + (tweet_gap.gap_232 * user_tweet_vectors.gap_232) + (tweet_gap.gap_233 * user_tweet_vectors.gap_233) + (tweet_gap.gap_234 * user_tweet_vectors.gap_234) + (tweet_gap.gap_235 * user_tweet_vectors.gap_235) + (tweet_gap.gap_236 * user_tweet_vectors.gap_236) + (tweet_gap.gap_237 * user_tweet_vectors.gap_237) + (tweet_gap.gap_238 * user_tweet_vectors.gap_238) + (tweet_gap.gap_239 * user_tweet_vectors.gap_239) + (tweet_gap.gap_240 * user_tweet_vectors.gap_240) + (tweet_gap.gap_241 * user_tweet_vectors.gap_241) + (tweet_gap.gap_242 * user_tweet_vectors.gap_242) + (tweet_gap.gap_243 * user_tweet_vectors.gap_243) + (tweet_gap.gap_244 * user_tweet_vectors.gap_244) + (tweet_gap.gap_245 * user_tweet_vectors.gap_245) + (tweet_gap.gap_246 * user_tweet_vectors.gap_246) + (tweet_gap.gap_247 * user_tweet_vectors.gap_247) + (tweet_gap.gap_248 * user_tweet_vectors.gap_248) + (tweet_gap.gap_249 * user_tweet_vectors.gap_249) + (tweet_gap.gap_250 * user_tweet_vectors.gap_250) + (tweet_gap.gap_251 * user_tweet_vectors.gap_251) + (tweet_gap.gap_252 * user_tweet_vectors.gap_252) + (tweet_gap.gap_253 * user_tweet_vectors.gap_253) + (tweet_gap.gap_254 * user_tweet_vectors.gap_254) + (tweet_gap.gap_255 * user_tweet_vectors.gap_255) + (tweet_gap.gap_256 * user_tweet_vectors.gap_256) + (tweet_gap.gap_257 * user_tweet_vectors.gap_257) + (tweet_gap.gap_258 * user_tweet_vectors.gap_258) + (tweet_gap.gap_259 * user_tweet_vectors.gap_259) + (tweet_gap.gap_260 * user_tweet_vectors.gap_260) + (tweet_gap.gap_261 * user_tweet_vectors.gap_261) + (tweet_gap.gap_262 * user_tweet_vectors.gap_262) + (tweet_gap.gap_263 * user_tweet_vectors.gap_263) + (tweet_gap.gap_264 * user_tweet_vectors.gap_264) + (tweet_gap.gap_265 * user_tweet_vectors.gap_265) + (tweet_gap.gap_266 * user_tweet_vectors.gap_266) + (tweet_gap.gap_267 * user_tweet_vectors.gap_267) + (tweet_gap.gap_268 * user_tweet_vectors.gap_268) + (tweet_gap.gap_269 * user_tweet_vectors.gap_269) + (tweet_gap.gap_270 * user_tweet_vectors.gap_270) + (tweet_gap.gap_271 * user_tweet_vectors.gap_271) + (tweet_gap.gap_272 * user_tweet_vectors.gap_272) + (tweet_gap.gap_273 * user_tweet_vectors.gap_273) + (tweet_gap.gap_274 * user_tweet_vectors.gap_274) + (tweet_gap.gap_275 * user_tweet_vectors.gap_275) + (tweet_gap.gap_276 * user_tweet_vectors.gap_276) + (tweet_gap.gap_277 * user_tweet_vectors.gap_277) + (tweet_gap.gap_278 * user_tweet_vectors.gap_278) + (tweet_gap.gap_279 * user_tweet_vectors.gap_279) + (tweet_gap.gap_280 * user_tweet_vectors.gap_280) + (tweet_gap.gap_281 * user_tweet_vectors.gap_281) + (tweet_gap.gap_282 * user_tweet_vectors.gap_282) + (tweet_gap.gap_283 * user_tweet_vectors.gap_283) + (tweet_gap.gap_284 * user_tweet_vectors.gap_284) + (tweet_gap.gap_285 * user_tweet_vectors.gap_285) + (tweet_gap.gap_286 * user_tweet_vectors.gap_286) + (tweet_gap.gap_287 * user_tweet_vectors.gap_287) + (tweet_gap.gap_288 * user_tweet_vectors.gap_288) + (tweet_gap.gap_289 * user_tweet_vectors.gap_289) + (tweet_gap.gap_290 * user_tweet_vectors.gap_290) + (tweet_gap.gap_291 * user_tweet_vectors.gap_291) + (tweet_gap.gap_292 * user_tweet_vectors.gap_292) + (tweet_gap.gap_293 * user_tweet_vectors.gap_293) + (tweet_gap.gap_294 * user_tweet_vectors.gap_294) + (tweet_gap.gap_295 * user_tweet_vectors.gap_295) + (tweet_gap.gap_296 * user_tweet_vectors.gap_296) + (tweet_gap.gap_297 * user_tweet_vectors.gap_297) + (tweet_gap.gap_298 * user_tweet_vectors.gap_298) + (tweet_gap.gap_299 * user_tweet_vectors.gap_299) + (tweet_gap.gap_300 * user_tweet_vectors.gap_300) + (tweet_gap.gap_301 * user_tweet_vectors.gap_301) + (tweet_gap.gap_302 * user_tweet_vectors.gap_302) + (tweet_gap.gap_303 * user_tweet_vectors.gap_303) + (tweet_gap.gap_304 * user_tweet_vectors.gap_304) + (tweet_gap.gap_305 * user_tweet_vectors.gap_305) + (tweet_gap.gap_306 * user_tweet_vectors.gap_306) + (tweet_gap.gap_307 * user_tweet_vectors.gap_307) + (tweet_gap.gap_308 * user_tweet_vectors.gap_308) + (tweet_gap.gap_309 * user_tweet_vectors.gap_309) + (tweet_gap.gap_310 * user_tweet_vectors.gap_310) + (tweet_gap.gap_311 * user_tweet_vectors.gap_311) + (tweet_gap.gap_312 * user_tweet_vectors.gap_312) + (tweet_gap.gap_313 * user_tweet_vectors.gap_313) + (tweet_gap.gap_314 * user_tweet_vectors.gap_314) + (tweet_gap.gap_315 * user_tweet_vectors.gap_315) + (tweet_gap.gap_316 * user_tweet_vectors.gap_316) + (tweet_gap.gap_317 * user_tweet_vectors.gap_317) + (tweet_gap.gap_318 * user_tweet_vectors.gap_318) + (tweet_gap.gap_319 * user_tweet_vectors.gap_319) + (tweet_gap.gap_320 * user_tweet_vectors.gap_320) + (tweet_gap.gap_321 * user_tweet_vectors.gap_321) + (tweet_gap.gap_322 * user_tweet_vectors.gap_322) + (tweet_gap.gap_323 * user_tweet_vectors.gap_323) + (tweet_gap.gap_324 * user_tweet_vectors.gap_324) + (tweet_gap.gap_325 * user_tweet_vectors.gap_325) + (tweet_gap.gap_326 * user_tweet_vectors.gap_326) + (tweet_gap.gap_327 * user_tweet_vectors.gap_327) + (tweet_gap.gap_328 * user_tweet_vectors.gap_328) + (tweet_gap.gap_329 * user_tweet_vectors.gap_329) + (tweet_gap.gap_330 * user_tweet_vectors.gap_330) + (tweet_gap.gap_331 * user_tweet_vectors.gap_331) + (tweet_gap.gap_332 * user_tweet_vectors.gap_332) + (tweet_gap.gap_333 * user_tweet_vectors.gap_333) + (tweet_gap.gap_334 * user_tweet_vectors.gap_334) + (tweet_gap.gap_335 * user_tweet_vectors.gap_335) + (tweet_gap.gap_336 * user_tweet_vectors.gap_336) + (tweet_gap.gap_337 * user_tweet_vectors.gap_337) + (tweet_gap.gap_338 * user_tweet_vectors.gap_338) + (tweet_gap.gap_339 * user_tweet_vectors.gap_339) + (tweet_gap.gap_340 * user_tweet_vectors.gap_340) + (tweet_gap.gap_341 * user_tweet_vectors.gap_341) + (tweet_gap.gap_342 * user_tweet_vectors.gap_342) + (tweet_gap.gap_343 * user_tweet_vectors.gap_343) + (tweet_gap.gap_344 * user_tweet_vectors.gap_344) + (tweet_gap.gap_345 * user_tweet_vectors.gap_345) + (tweet_gap.gap_346 * user_tweet_vectors.gap_346) + (tweet_gap.gap_347 * user_tweet_vectors.gap_347) + (tweet_gap.gap_348 * user_tweet_vectors.gap_348) + (tweet_gap.gap_349 * user_tweet_vectors.gap_349) + (tweet_gap.gap_350 * user_tweet_vectors.gap_350) + (tweet_gap.gap_351 * user_tweet_vectors.gap_351) + (tweet_gap.gap_352 * user_tweet_vectors.gap_352) + (tweet_gap.gap_353 * user_tweet_vectors.gap_353) + (tweet_gap.gap_354 * user_tweet_vectors.gap_354) + (tweet_gap.gap_355 * user_tweet_vectors.gap_355) + (tweet_gap.gap_356 * user_tweet_vectors.gap_356) + (tweet_gap.gap_357 * user_tweet_vectors.gap_357) + (tweet_gap.gap_358 * user_tweet_vectors.gap_358) + (tweet_gap.gap_359 * user_tweet_vectors.gap_359) + (tweet_gap.gap_360 * user_tweet_vectors.gap_360) + (tweet_gap.gap_361 * user_tweet_vectors.gap_361) + (tweet_gap.gap_362 * user_tweet_vectors.gap_362) + (tweet_gap.gap_363 * user_tweet_vectors.gap_363) + (tweet_gap.gap_364 * user_tweet_vectors.gap_364) + (tweet_gap.gap_365 * user_tweet_vectors.gap_365) + (tweet_gap.gap_366 * user_tweet_vectors.gap_366) + (tweet_gap.gap_367 * user_tweet_vectors.gap_367) + (tweet_gap.gap_368 * user_tweet_vectors.gap_368) + (tweet_gap.gap_369 * user_tweet_vectors.gap_369) + (tweet_gap.gap_370 * user_tweet_vectors.gap_370) + (tweet_gap.gap_371 * user_tweet_vectors.gap_371) + (tweet_gap.gap_372 * user_tweet_vectors.gap_372) + (tweet_gap.gap_373 * user_tweet_vectors.gap_373) + (tweet_gap.gap_374 * user_tweet_vectors.gap_374) + (tweet_gap.gap_375 * user_tweet_vectors.gap_375) + (tweet_gap.gap_376 * user_tweet_vectors.gap_376) + (tweet_gap.gap_377 * user_tweet_vectors.gap_377) + (tweet_gap.gap_378 * user_tweet_vectors.gap_378) + (tweet_gap.gap_379 * user_tweet_vectors.gap_379) + (tweet_gap.gap_380 * user_tweet_vectors.gap_380) + (tweet_gap.gap_381 * user_tweet_vectors.gap_381) + (tweet_gap.gap_382 * user_tweet_vectors.gap_382) + (tweet_gap.gap_383 * user_tweet_vectors.gap_383) + (tweet_gap.gap_384 * user_tweet_vectors.gap_384) + (tweet_gap.gap_385 * user_tweet_vectors.gap_385) + (tweet_gap.gap_386 * user_tweet_vectors.gap_386) + (tweet_gap.gap_387 * user_tweet_vectors.gap_387) + (tweet_gap.gap_388 * user_tweet_vectors.gap_388) + (tweet_gap.gap_389 * user_tweet_vectors.gap_389) + (tweet_gap.gap_390 * user_tweet_vectors.gap_390) + (tweet_gap.gap_391 * user_tweet_vectors.gap_391) + (tweet_gap.gap_392 * user_tweet_vectors.gap_392) + (tweet_gap.gap_393 * user_tweet_vectors.gap_393) + (tweet_gap.gap_394 * user_tweet_vectors.gap_394) + (tweet_gap.gap_395 * user_tweet_vectors.gap_395) + (tweet_gap.gap_396 * user_tweet_vectors.gap_396) + (tweet_gap.gap_397 * user_tweet_vectors.gap_397) + (tweet_gap.gap_398 * user_tweet_vectors.gap_398) + (tweet_gap.gap_399 * user_tweet_vectors.gap_399) + (tweet_gap.gap_400 * user_tweet_vectors.gap_400) + (tweet_gap.gap_401 * user_tweet_vectors.gap_401) + (tweet_gap.gap_402 * user_tweet_vectors.gap_402) + (tweet_gap.gap_403 * user_tweet_vectors.gap_403) + (tweet_gap.gap_404 * user_tweet_vectors.gap_404) + (tweet_gap.gap_405 * user_tweet_vectors.gap_405) + (tweet_gap.gap_406 * user_tweet_vectors.gap_406) + (tweet_gap.gap_407 * user_tweet_vectors.gap_407) + (tweet_gap.gap_408 * user_tweet_vectors.gap_408) + (tweet_gap.gap_409 * user_tweet_vectors.gap_409) + (tweet_gap.gap_410 * user_tweet_vectors.gap_410) + (tweet_gap.gap_411 * user_tweet_vectors.gap_411) + (tweet_gap.gap_412 * user_tweet_vectors.gap_412) + (tweet_gap.gap_413 * user_tweet_vectors.gap_413) + (tweet_gap.gap_414 * user_tweet_vectors.gap_414) + (tweet_gap.gap_415 * user_tweet_vectors.gap_415) + (tweet_gap.gap_416 * user_tweet_vectors.gap_416) + (tweet_gap.gap_417 * user_tweet_vectors.gap_417) + (tweet_gap.gap_418 * user_tweet_vectors.gap_418) + (tweet_gap.gap_419 * user_tweet_vectors.gap_419) + (tweet_gap.gap_420 * user_tweet_vectors.gap_420) + (tweet_gap.gap_421 * user_tweet_vectors.gap_421) + (tweet_gap.gap_422 * user_tweet_vectors.gap_422) + (tweet_gap.gap_423 * user_tweet_vectors.gap_423) + (tweet_gap.gap_424 * user_tweet_vectors.gap_424) + (tweet_gap.gap_425 * user_tweet_vectors.gap_425) + (tweet_gap.gap_426 * user_tweet_vectors.gap_426) + (tweet_gap.gap_427 * user_tweet_vectors.gap_427) + (tweet_gap.gap_428 * user_tweet_vectors.gap_428) + (tweet_gap.gap_429 * user_tweet_vectors.gap_429) + (tweet_gap.gap_430 * user_tweet_vectors.gap_430) + (tweet_gap.gap_431 * user_tweet_vectors.gap_431) + (tweet_gap.gap_432 * user_tweet_vectors.gap_432) + (tweet_gap.gap_433 * user_tweet_vectors.gap_433) + (tweet_gap.gap_434 * user_tweet_vectors.gap_434) + (tweet_gap.gap_435 * user_tweet_vectors.gap_435) + (tweet_gap.gap_436 * user_tweet_vectors.gap_436) + (tweet_gap.gap_437 * user_tweet_vectors.gap_437) + (tweet_gap.gap_438 * user_tweet_vectors.gap_438) + (tweet_gap.gap_439 * user_tweet_vectors.gap_439) + (tweet_gap.gap_440 * user_tweet_vectors.gap_440) + (tweet_gap.gap_441 * user_tweet_vectors.gap_441) + (tweet_gap.gap_442 * user_tweet_vectors.gap_442) + (tweet_gap.gap_443 * user_tweet_vectors.gap_443) + (tweet_gap.gap_444 * user_tweet_vectors.gap_444) + (tweet_gap.gap_445 * user_tweet_vectors.gap_445) + (tweet_gap.gap_446 * user_tweet_vectors.gap_446) + (tweet_gap.gap_447 * user_tweet_vectors.gap_447) + (tweet_gap.gap_448 * user_tweet_vectors.gap_448) + (tweet_gap.gap_449 * user_tweet_vectors.gap_449) + (tweet_gap.gap_450 * user_tweet_vectors.gap_450) + (tweet_gap.gap_451 * user_tweet_vectors.gap_451) + (tweet_gap.gap_452 * user_tweet_vectors.gap_452) + (tweet_gap.gap_453 * user_tweet_vectors.gap_453) + (tweet_gap.gap_454 * user_tweet_vectors.gap_454) + (tweet_gap.gap_455 * user_tweet_vectors.gap_455) + (tweet_gap.gap_456 * user_tweet_vectors.gap_456) + (tweet_gap.gap_457 * user_tweet_vectors.gap_457) + (tweet_gap.gap_458 * user_tweet_vectors.gap_458) + (tweet_gap.gap_459 * user_tweet_vectors.gap_459) + (tweet_gap.gap_460 * user_tweet_vectors.gap_460) + (tweet_gap.gap_461 * user_tweet_vectors.gap_461) + (tweet_gap.gap_462 * user_tweet_vectors.gap_462) + (tweet_gap.gap_463 * user_tweet_vectors.gap_463) + (tweet_gap.gap_464 * user_tweet_vectors.gap_464) + (tweet_gap.gap_465 * user_tweet_vectors.gap_465) + (tweet_gap.gap_466 * user_tweet_vectors.gap_466) + (tweet_gap.gap_467 * user_tweet_vectors.gap_467) + (tweet_gap.gap_468 * user_tweet_vectors.gap_468) + (tweet_gap.gap_469 * user_tweet_vectors.gap_469) + (tweet_gap.gap_470 * user_tweet_vectors.gap_470) + (tweet_gap.gap_471 * user_tweet_vectors.gap_471) + (tweet_gap.gap_472 * user_tweet_vectors.gap_472) + (tweet_gap.gap_473 * user_tweet_vectors.gap_473) + (tweet_gap.gap_474 * user_tweet_vectors.gap_474) + (tweet_gap.gap_475 * user_tweet_vectors.gap_475) + (tweet_gap.gap_476 * user_tweet_vectors.gap_476) + (tweet_gap.gap_477 * user_tweet_vectors.gap_477) + (tweet_gap.gap_478 * user_tweet_vectors.gap_478) + (tweet_gap.gap_479 * user_tweet_vectors.gap_479) + (tweet_gap.gap_480 * user_tweet_vectors.gap_480) + (tweet_gap.gap_481 * user_tweet_vectors.gap_481) + (tweet_gap.gap_482 * user_tweet_vectors.gap_482) + (tweet_gap.gap_483 * user_tweet_vectors.gap_483) + (tweet_gap.gap_484 * user_tweet_vectors.gap_484) + (tweet_gap.gap_485 * user_tweet_vectors.gap_485) + (tweet_gap.gap_486 * user_tweet_vectors.gap_486) + (tweet_gap.gap_487 * user_tweet_vectors.gap_487) + (tweet_gap.gap_488 * user_tweet_vectors.gap_488) + (tweet_gap.gap_489 * user_tweet_vectors.gap_489) + (tweet_gap.gap_490 * user_tweet_vectors.gap_490) + (tweet_gap.gap_491 * user_tweet_vectors.gap_491) + (tweet_gap.gap_492 * user_tweet_vectors.gap_492) + (tweet_gap.gap_493 * user_tweet_vectors.gap_493) + (tweet_gap.gap_494 * user_tweet_vectors.gap_494) + (tweet_gap.gap_495 * user_tweet_vectors.gap_495) + (tweet_gap.gap_496 * user_tweet_vectors.gap_496) + (tweet_gap.gap_497 * user_tweet_vectors.gap_497) + (tweet_gap.gap_498 * user_tweet_vectors.gap_498) + (tweet_gap.gap_499 * user_tweet_vectors.gap_499) + (tweet_gap.gap_500 * user_tweet_vectors.gap_500) + (tweet_gap.gap_501 * user_tweet_vectors.gap_501) + (tweet_gap.gap_502 * user_tweet_vectors.gap_502) + (tweet_gap.gap_503 * user_tweet_vectors.gap_503) + (tweet_gap.gap_504 * user_tweet_vectors.gap_504) + (tweet_gap.gap_505 * user_tweet_vectors.gap_505) + (tweet_gap.gap_506 * user_tweet_vectors.gap_506) + (tweet_gap.gap_507 * user_tweet_vectors.gap_507) + (tweet_gap.gap_508 * user_tweet_vectors.gap_508) + (tweet_gap.gap_509 * user_tweet_vectors.gap_509) + (tweet_gap.gap_510 * user_tweet_vectors.gap_510) + (tweet_gap.gap_511 * user_tweet_vectors.gap_511) + (tweet_gap.gap_512 * user_tweet_vectors.gap_512) + (tweet_gap.gap_513 * user_tweet_vectors.gap_513) + (tweet_gap.gap_514 * user_tweet_vectors.gap_514) + (tweet_gap.gap_515 * user_tweet_vectors.gap_515) + (tweet_gap.gap_516 * user_tweet_vectors.gap_516) + (tweet_gap.gap_517 * user_tweet_vectors.gap_517) + (tweet_gap.gap_518 * user_tweet_vectors.gap_518) + (tweet_gap.gap_519 * user_tweet_vectors.gap_519) + (tweet_gap.gap_520 * user_tweet_vectors.gap_520) + (tweet_gap.gap_521 * user_tweet_vectors.gap_521) + (tweet_gap.gap_522 * user_tweet_vectors.gap_522) + (tweet_gap.gap_523 * user_tweet_vectors.gap_523) + (tweet_gap.gap_524 * user_tweet_vectors.gap_524) + (tweet_gap.gap_525 * user_tweet_vectors.gap_525) + (tweet_gap.gap_526 * user_tweet_vectors.gap_526) + (tweet_gap.gap_527 * user_tweet_vectors.gap_527) + (tweet_gap.gap_528 * user_tweet_vectors.gap_528) + (tweet_gap.gap_529 * user_tweet_vectors.gap_529) + (tweet_gap.gap_530 * user_tweet_vectors.gap_530) + (tweet_gap.gap_531 * user_tweet_vectors.gap_531) + (tweet_gap.gap_532 * user_tweet_vectors.gap_532) + (tweet_gap.gap_533 * user_tweet_vectors.gap_533) + (tweet_gap.gap_534 * user_tweet_vectors.gap_534) + (tweet_gap.gap_535 * user_tweet_vectors.gap_535) + (tweet_gap.gap_536 * user_tweet_vectors.gap_536) + (tweet_gap.gap_537 * user_tweet_vectors.gap_537) + (tweet_gap.gap_538 * user_tweet_vectors.gap_538) + (tweet_gap.gap_539 * user_tweet_vectors.gap_539) + (tweet_gap.gap_540 * user_tweet_vectors.gap_540) + (tweet_gap.gap_541 * user_tweet_vectors.gap_541) + (tweet_gap.gap_542 * user_tweet_vectors.gap_542) + (tweet_gap.gap_543 * user_tweet_vectors.gap_543) + (tweet_gap.gap_544 * user_tweet_vectors.gap_544) + (tweet_gap.gap_545 * user_tweet_vectors.gap_545) + (tweet_gap.gap_546 * user_tweet_vectors.gap_546) + (tweet_gap.gap_547 * user_tweet_vectors.gap_547) + (tweet_gap.gap_548 * user_tweet_vectors.gap_548) + (tweet_gap.gap_549 * user_tweet_vectors.gap_549) + (tweet_gap.gap_550 * user_tweet_vectors.gap_550) + (tweet_gap.gap_551 * user_tweet_vectors.gap_551) + (tweet_gap.gap_552 * user_tweet_vectors.gap_552) + (tweet_gap.gap_553 * user_tweet_vectors.gap_553) + (tweet_gap.gap_554 * user_tweet_vectors.gap_554) + (tweet_gap.gap_555 * user_tweet_vectors.gap_555) + (tweet_gap.gap_556 * user_tweet_vectors.gap_556) + (tweet_gap.gap_557 * user_tweet_vectors.gap_557) + (tweet_gap.gap_558 * user_tweet_vectors.gap_558) + (tweet_gap.gap_559 * user_tweet_vectors.gap_559) + (tweet_gap.gap_560 * user_tweet_vectors.gap_560) + (tweet_gap.gap_561 * user_tweet_vectors.gap_561) + (tweet_gap.gap_562 * user_tweet_vectors.gap_562) + (tweet_gap.gap_563 * user_tweet_vectors.gap_563) + (tweet_gap.gap_564 * user_tweet_vectors.gap_564) + (tweet_gap.gap_565 * user_tweet_vectors.gap_565) + (tweet_gap.gap_566 * user_tweet_vectors.gap_566) + (tweet_gap.gap_567 * user_tweet_vectors.gap_567) + (tweet_gap.gap_568 * user_tweet_vectors.gap_568) + (tweet_gap.gap_569 * user_tweet_vectors.gap_569) + (tweet_gap.gap_570 * user_tweet_vectors.gap_570) + (tweet_gap.gap_571 * user_tweet_vectors.gap_571) + (tweet_gap.gap_572 * user_tweet_vectors.gap_572) + (tweet_gap.gap_573 * user_tweet_vectors.gap_573) + (tweet_gap.gap_574 * user_tweet_vectors.gap_574) + (tweet_gap.gap_575 * user_tweet_vectors.gap_575) + (tweet_gap.gap_576 * user_tweet_vectors.gap_576) + (tweet_gap.gap_577 * user_tweet_vectors.gap_577) + (tweet_gap.gap_578 * user_tweet_vectors.gap_578) + (tweet_gap.gap_579 * user_tweet_vectors.gap_579) + (tweet_gap.gap_580 * user_tweet_vectors.gap_580) + (tweet_gap.gap_581 * user_tweet_vectors.gap_581) + (tweet_gap.gap_582 * user_tweet_vectors.gap_582) + (tweet_gap.gap_583 * user_tweet_vectors.gap_583) + (tweet_gap.gap_584 * user_tweet_vectors.gap_584) + (tweet_gap.gap_585 * user_tweet_vectors.gap_585) + (tweet_gap.gap_586 * user_tweet_vectors.gap_586) + (tweet_gap.gap_587 * user_tweet_vectors.gap_587) + (tweet_gap.gap_588 * user_tweet_vectors.gap_588) + (tweet_gap.gap_589 * user_tweet_vectors.gap_589) + (tweet_gap.gap_590 * user_tweet_vectors.gap_590) + (tweet_gap.gap_591 * user_tweet_vectors.gap_591) + (tweet_gap.gap_592 * user_tweet_vectors.gap_592) + (tweet_gap.gap_593 * user_tweet_vectors.gap_593) + (tweet_gap.gap_594 * user_tweet_vectors.gap_594) + (tweet_gap.gap_595 * user_tweet_vectors.gap_595) + (tweet_gap.gap_596 * user_tweet_vectors.gap_596) + (tweet_gap.gap_597 * user_tweet_vectors.gap_597) + (tweet_gap.gap_598 * user_tweet_vectors.gap_598) + (tweet_gap.gap_599 * user_tweet_vectors.gap_599) + (tweet_gap.gap_600 * user_tweet_vectors.gap_600) + (tweet_gap.gap_601 * user_tweet_vectors.gap_601) + (tweet_gap.gap_602 * user_tweet_vectors.gap_602) + (tweet_gap.gap_603 * user_tweet_vectors.gap_603) + (tweet_gap.gap_604 * user_tweet_vectors.gap_604) + (tweet_gap.gap_605 * user_tweet_vectors.gap_605) + (tweet_gap.gap_606 * user_tweet_vectors.gap_606) + (tweet_gap.gap_607 * user_tweet_vectors.gap_607) + (tweet_gap.gap_608 * user_tweet_vectors.gap_608) + (tweet_gap.gap_609 * user_tweet_vectors.gap_609) + (tweet_gap.gap_610 * user_tweet_vectors.gap_610) + (tweet_gap.gap_611 * user_tweet_vectors.gap_611) + (tweet_gap.gap_612 * user_tweet_vectors.gap_612) + (tweet_gap.gap_613 * user_tweet_vectors.gap_613) + (tweet_gap.gap_614 * user_tweet_vectors.gap_614) + (tweet_gap.gap_615 * user_tweet_vectors.gap_615) + (tweet_gap.gap_616 * user_tweet_vectors.gap_616) + (tweet_gap.gap_617 * user_tweet_vectors.gap_617) + (tweet_gap.gap_618 * user_tweet_vectors.gap_618) + (tweet_gap.gap_619 * user_tweet_vectors.gap_619) + (tweet_gap.gap_620 * user_tweet_vectors.gap_620) + (tweet_gap.gap_621 * user_tweet_vectors.gap_621) + (tweet_gap.gap_622 * user_tweet_vectors.gap_622) + (tweet_gap.gap_623 * user_tweet_vectors.gap_623) + (tweet_gap.gap_624 * user_tweet_vectors.gap_624) + (tweet_gap.gap_625 * user_tweet_vectors.gap_625) + (tweet_gap.gap_626 * user_tweet_vectors.gap_626) + (tweet_gap.gap_627 * user_tweet_vectors.gap_627) + (tweet_gap.gap_628 * user_tweet_vectors.gap_628) + (tweet_gap.gap_629 * user_tweet_vectors.gap_629) + (tweet_gap.gap_630 * user_tweet_vectors.gap_630) + (tweet_gap.gap_631 * user_tweet_vectors.gap_631) + (tweet_gap.gap_632 * user_tweet_vectors.gap_632) + (tweet_gap.gap_633 * user_tweet_vectors.gap_633) + (tweet_gap.gap_634 * user_tweet_vectors.gap_634) + (tweet_gap.gap_635 * user_tweet_vectors.gap_635) + (tweet_gap.gap_636 * user_tweet_vectors.gap_636) + (tweet_gap.gap_637 * user_tweet_vectors.gap_637) + (tweet_gap.gap_638 * user_tweet_vectors.gap_638) + (tweet_gap.gap_639 * user_tweet_vectors.gap_639) + (tweet_gap.gap_640 * user_tweet_vectors.gap_640) + (tweet_gap.gap_641 * user_tweet_vectors.gap_641) + (tweet_gap.gap_642 * user_tweet_vectors.gap_642) + (tweet_gap.gap_643 * user_tweet_vectors.gap_643) + (tweet_gap.gap_644 * user_tweet_vectors.gap_644) + (tweet_gap.gap_645 * user_tweet_vectors.gap_645) + (tweet_gap.gap_646 * user_tweet_vectors.gap_646) + (tweet_gap.gap_647 * user_tweet_vectors.gap_647) + (tweet_gap.gap_648 * user_tweet_vectors.gap_648) + (tweet_gap.gap_649 * user_tweet_vectors.gap_649) + (tweet_gap.gap_650 * user_tweet_vectors.gap_650) + (tweet_gap.gap_651 * user_tweet_vectors.gap_651) + (tweet_gap.gap_652 * user_tweet_vectors.gap_652) + (tweet_gap.gap_653 * user_tweet_vectors.gap_653) + (tweet_gap.gap_654 * user_tweet_vectors.gap_654) + (tweet_gap.gap_655 * user_tweet_vectors.gap_655) + (tweet_gap.gap_656 * user_tweet_vectors.gap_656) + (tweet_gap.gap_657 * user_tweet_vectors.gap_657) + (tweet_gap.gap_658 * user_tweet_vectors.gap_658) + (tweet_gap.gap_659 * user_tweet_vectors.gap_659) + (tweet_gap.gap_660 * user_tweet_vectors.gap_660) + (tweet_gap.gap_661 * user_tweet_vectors.gap_661) + (tweet_gap.gap_662 * user_tweet_vectors.gap_662) + (tweet_gap.gap_663 * user_tweet_vectors.gap_663) + (tweet_gap.gap_664 * user_tweet_vectors.gap_664) + (tweet_gap.gap_665 * user_tweet_vectors.gap_665) + (tweet_gap.gap_666 * user_tweet_vectors.gap_666) + (tweet_gap.gap_667 * user_tweet_vectors.gap_667) + (tweet_gap.gap_668 * user_tweet_vectors.gap_668) + (tweet_gap.gap_669 * user_tweet_vectors.gap_669) + (tweet_gap.gap_670 * user_tweet_vectors.gap_670) + (tweet_gap.gap_671 * user_tweet_vectors.gap_671) + (tweet_gap.gap_672 * user_tweet_vectors.gap_672) + (tweet_gap.gap_673 * user_tweet_vectors.gap_673) + (tweet_gap.gap_674 * user_tweet_vectors.gap_674) + (tweet_gap.gap_675 * user_tweet_vectors.gap_675) + (tweet_gap.gap_676 * user_tweet_vectors.gap_676) + (tweet_gap.gap_677 * user_tweet_vectors.gap_677) + (tweet_gap.gap_678 * user_tweet_vectors.gap_678) + (tweet_gap.gap_679 * user_tweet_vectors.gap_679) + (tweet_gap.gap_680 * user_tweet_vectors.gap_680) + (tweet_gap.gap_681 * user_tweet_vectors.gap_681) + (tweet_gap.gap_682 * user_tweet_vectors.gap_682) + (tweet_gap.gap_683 * user_tweet_vectors.gap_683) + (tweet_gap.gap_684 * user_tweet_vectors.gap_684) + (tweet_gap.gap_685 * user_tweet_vectors.gap_685) + (tweet_gap.gap_686 * user_tweet_vectors.gap_686) + (tweet_gap.gap_687 * user_tweet_vectors.gap_687) + (tweet_gap.gap_688 * user_tweet_vectors.gap_688) + (tweet_gap.gap_689 * user_tweet_vectors.gap_689) + (tweet_gap.gap_690 * user_tweet_vectors.gap_690) + (tweet_gap.gap_691 * user_tweet_vectors.gap_691) + (tweet_gap.gap_692 * user_tweet_vectors.gap_692) + (tweet_gap.gap_693 * user_tweet_vectors.gap_693) + (tweet_gap.gap_694 * user_tweet_vectors.gap_694) + (tweet_gap.gap_695 * user_tweet_vectors.gap_695) + (tweet_gap.gap_696 * user_tweet_vectors.gap_696) + (tweet_gap.gap_697 * user_tweet_vectors.gap_697) + (tweet_gap.gap_698 * user_tweet_vectors.gap_698) + (tweet_gap.gap_699 * user_tweet_vectors.gap_699) + (tweet_gap.gap_700 * user_tweet_vectors.gap_700) + (tweet_gap.gap_701 * user_tweet_vectors.gap_701) + (tweet_gap.gap_702 * user_tweet_vectors.gap_702) + (tweet_gap.gap_703 * user_tweet_vectors.gap_703) + (tweet_gap.gap_704 * user_tweet_vectors.gap_704) + (tweet_gap.gap_705 * user_tweet_vectors.gap_705) + (tweet_gap.gap_706 * user_tweet_vectors.gap_706) + (tweet_gap.gap_707 * user_tweet_vectors.gap_707) + (tweet_gap.gap_708 * user_tweet_vectors.gap_708) + (tweet_gap.gap_709 * user_tweet_vectors.gap_709) + (tweet_gap.gap_710 * user_tweet_vectors.gap_710) + (tweet_gap.gap_711 * user_tweet_vectors.gap_711) + (tweet_gap.gap_712 * user_tweet_vectors.gap_712) + (tweet_gap.gap_713 * user_tweet_vectors.gap_713) + (tweet_gap.gap_714 * user_tweet_vectors.gap_714) + (tweet_gap.gap_715 * user_tweet_vectors.gap_715) + (tweet_gap.gap_716 * user_tweet_vectors.gap_716) + (tweet_gap.gap_717 * user_tweet_vectors.gap_717) + (tweet_gap.gap_718 * user_tweet_vectors.gap_718) + (tweet_gap.gap_719 * user_tweet_vectors.gap_719) + (tweet_gap.gap_720 * user_tweet_vectors.gap_720) + (tweet_gap.gap_721 * user_tweet_vectors.gap_721) + (tweet_gap.gap_722 * user_tweet_vectors.gap_722) + (tweet_gap.gap_723 * user_tweet_vectors.gap_723) + (tweet_gap.gap_724 * user_tweet_vectors.gap_724) + (tweet_gap.gap_725 * user_tweet_vectors.gap_725) + (tweet_gap.gap_726 * user_tweet_vectors.gap_726) + (tweet_gap.gap_727 * user_tweet_vectors.gap_727) + (tweet_gap.gap_728 * user_tweet_vectors.gap_728) + (tweet_gap.gap_729 * user_tweet_vectors.gap_729) + (tweet_gap.gap_730 * user_tweet_vectors.gap_730) + (tweet_gap.gap_731 * user_tweet_vectors.gap_731) + (tweet_gap.gap_732 * user_tweet_vectors.gap_732) + (tweet_gap.gap_733 * user_tweet_vectors.gap_733) + (tweet_gap.gap_734 * user_tweet_vectors.gap_734) + (tweet_gap.gap_735 * user_tweet_vectors.gap_735) + (tweet_gap.gap_736 * user_tweet_vectors.gap_736) + (tweet_gap.gap_737 * user_tweet_vectors.gap_737) + (tweet_gap.gap_738 * user_tweet_vectors.gap_738) + (tweet_gap.gap_739 * user_tweet_vectors.gap_739) + (tweet_gap.gap_740 * user_tweet_vectors.gap_740) + (tweet_gap.gap_741 * user_tweet_vectors.gap_741) + (tweet_gap.gap_742 * user_tweet_vectors.gap_742) + (tweet_gap.gap_743 * user_tweet_vectors.gap_743) + (tweet_gap.gap_744 * user_tweet_vectors.gap_744) + (tweet_gap.gap_745 * user_tweet_vectors.gap_745) + (tweet_gap.gap_746 * user_tweet_vectors.gap_746) + (tweet_gap.gap_747 * user_tweet_vectors.gap_747) + (tweet_gap.gap_748 * user_tweet_vectors.gap_748) + (tweet_gap.gap_749 * user_tweet_vectors.gap_749) + (tweet_gap.gap_750 * user_tweet_vectors.gap_750) + (tweet_gap.gap_751 * user_tweet_vectors.gap_751) + (tweet_gap.gap_752 * user_tweet_vectors.gap_752) + (tweet_gap.gap_753 * user_tweet_vectors.gap_753) + (tweet_gap.gap_754 * user_tweet_vectors.gap_754) + (tweet_gap.gap_755 * user_tweet_vectors.gap_755) + (tweet_gap.gap_756 * user_tweet_vectors.gap_756) + (tweet_gap.gap_757 * user_tweet_vectors.gap_757) + (tweet_gap.gap_758 * user_tweet_vectors.gap_758) + (tweet_gap.gap_759 * user_tweet_vectors.gap_759) + (tweet_gap.gap_760 * user_tweet_vectors.gap_760) + (tweet_gap.gap_761 * user_tweet_vectors.gap_761) + (tweet_gap.gap_762 * user_tweet_vectors.gap_762) + (tweet_gap.gap_763 * user_tweet_vectors.gap_763) + (tweet_gap.gap_764 * user_tweet_vectors.gap_764) + (tweet_gap.gap_765 * user_tweet_vectors.gap_765) + (tweet_gap.gap_766 * user_tweet_vectors.gap_766) + (tweet_gap.gap_767 * user_tweet_vectors.gap_767) ) as dot_product_of_engaged_tweet_and_engaging_user from {table_name} t left join `recsys2020.pretrained_bert_gap` tweet_gap on t.tweet_id = tweet_gap.tweet_id left join user_tweet_vectors on t.engaging_user_id = user_tweet_vectors.user_id order by t.tweet_id, t.engaging_user_id """ if __name__ == "__main__": BertSimilarityBetweenTweetAndTweetsUserVectorsFeature.main()
41.304079
90
0.712345
80ec3a501b72a2c357bc9f855c07b80e31abed0a
22,072
py
Python
tensorflow_addons/seq2seq/tests/beam_search_decoder_test.py
leondgarse/addons
6c512e1ec49ae14ca61f1bbf0fd3403204ba21e2
[ "Apache-2.0" ]
1,560
2018-11-26T23:57:34.000Z
2022-03-27T10:37:34.000Z
tensorflow_addons/seq2seq/tests/beam_search_decoder_test.py
leondgarse/addons
6c512e1ec49ae14ca61f1bbf0fd3403204ba21e2
[ "Apache-2.0" ]
2,067
2018-11-28T04:40:23.000Z
2022-03-31T11:36:50.000Z
tensorflow_addons/seq2seq/tests/beam_search_decoder_test.py
leondgarse/addons
6c512e1ec49ae14ca61f1bbf0fd3403204ba21e2
[ "Apache-2.0" ]
679
2018-11-27T14:39:25.000Z
2022-03-31T10:09:22.000Z
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tfa.seq2seq.seq2seq.beam_search_decoder.""" import numpy as np import pytest import tensorflow as tf from tensorflow_addons.seq2seq import attention_wrapper from tensorflow_addons.seq2seq import beam_search_decoder, gather_tree @pytest.mark.usefixtures("run_custom_and_py_ops") def test_gather_tree(): # (max_time = 3, batch_size = 2, beam_width = 3) # create (batch_size, max_time, beam_width) matrix and transpose it predicted_ids = np.array( [[[1, 2, 3], [4, 5, 6], [7, 8, 9]], [[2, 3, 4], [5, 6, 7], [8, 9, 10]]], dtype=np.int32, ).transpose([1, 0, 2]) parent_ids = np.array( [[[0, 0, 0], [0, 1, 1], [2, 1, 2]], [[0, 0, 0], [1, 2, 0], [2, 1, 1]]], dtype=np.int32, ).transpose([1, 0, 2]) # sequence_lengths is shaped (batch_size = 3) max_sequence_lengths = [3, 3] expected_result = np.array( [[[2, 2, 2], [6, 5, 6], [7, 8, 9]], [[2, 4, 4], [7, 6, 6], [8, 9, 10]]] ).transpose([1, 0, 2]) res = gather_tree( predicted_ids, parent_ids, max_sequence_lengths=max_sequence_lengths, end_token=11, ) np.testing.assert_equal(expected_result, res) def _test_gather_tree_from_array(depth_ndims=0, merged_batch_beam=False): array = np.array( [ [[1, 2, 3], [4, 5, 6], [7, 8, 9], [0, 0, 0]], [[2, 3, 4], [5, 6, 7], [8, 9, 10], [11, 12, 0]], ] ).transpose([1, 0, 2]) parent_ids = np.array( [ [[0, 0, 0], [0, 1, 1], [2, 1, 2], [-1, -1, -1]], [[0, 0, 0], [1, 1, 0], [2, 0, 1], [0, 1, 0]], ] ).transpose([1, 0, 2]) expected_array = np.array( [ [[2, 2, 2], [6, 5, 6], [7, 8, 9], [0, 0, 0]], [[2, 3, 2], [7, 5, 7], [8, 9, 8], [11, 12, 0]], ] ).transpose([1, 0, 2]) sequence_length = [[3, 3, 3], [4, 4, 3]] array = tf.convert_to_tensor(array, dtype=tf.float32) parent_ids = tf.convert_to_tensor(parent_ids, dtype=tf.int32) expected_array = tf.convert_to_tensor(expected_array, dtype=tf.float32) max_time = tf.shape(array)[0] batch_size = tf.shape(array)[1] beam_width = tf.shape(array)[2] def _tile_in_depth(tensor): # Generate higher rank tensors by concatenating tensor and # tensor + 1. for _ in range(depth_ndims): tensor = tf.stack([tensor, tensor + 1], -1) return tensor if merged_batch_beam: array = tf.reshape(array, [max_time, batch_size * beam_width]) expected_array = tf.reshape(expected_array, [max_time, batch_size * beam_width]) if depth_ndims > 0: array = _tile_in_depth(array) expected_array = _tile_in_depth(expected_array) sorted_array = beam_search_decoder.gather_tree_from_array( array, parent_ids, sequence_length ) np.testing.assert_equal(expected_array.numpy(), sorted_array.numpy()) @pytest.mark.usefixtures("run_custom_and_py_ops") def test_gather_tree_from_array_scalar(): _test_gather_tree_from_array() @pytest.mark.usefixtures("run_custom_and_py_ops") def test_gather_tree_from_array_1d(): _test_gather_tree_from_array(depth_ndims=1) @pytest.mark.usefixtures("run_custom_and_py_ops") def test_gather_tree_from_array_1d_with_merged_batch_beam(): _test_gather_tree_from_array(depth_ndims=1, merged_batch_beam=True) @pytest.mark.usefixtures("run_custom_and_py_ops") def test_gather_tree_from_array_2d(): _test_gather_tree_from_array(depth_ndims=2) @pytest.mark.usefixtures("run_custom_and_py_ops") def test_gather_tree_from_array_complex_trajectory(): # Max. time = 7, batch = 1, beam = 5. array = np.expand_dims( np.array( [ [[25, 12, 114, 89, 97]], [[9, 91, 64, 11, 162]], [[34, 34, 34, 34, 34]], [[2, 4, 2, 2, 4]], [[2, 3, 6, 2, 2]], [[2, 2, 2, 3, 2]], [[2, 2, 2, 2, 2]], ] ), -1, ) parent_ids = np.array( [ [[0, 0, 0, 0, 0]], [[0, 0, 0, 0, 0]], [[0, 1, 2, 3, 4]], [[0, 0, 1, 2, 1]], [[0, 1, 1, 2, 3]], [[0, 1, 3, 1, 2]], [[0, 1, 2, 3, 4]], ] ) expected_array = np.expand_dims( np.array( [ [[25, 25, 25, 25, 25]], [[9, 9, 91, 9, 9]], [[34, 34, 34, 34, 34]], [[2, 4, 2, 4, 4]], [[2, 3, 6, 3, 6]], [[2, 2, 2, 3, 2]], [[2, 2, 2, 2, 2]], ] ), -1, ) sequence_length = [[4, 6, 4, 7, 6]] array = tf.convert_to_tensor(array, dtype=tf.float32) parent_ids = tf.convert_to_tensor(parent_ids, dtype=tf.int32) expected_array = tf.convert_to_tensor(expected_array, dtype=tf.float32) sorted_array = beam_search_decoder.gather_tree_from_array( array, parent_ids, sequence_length ) np.testing.assert_equal(expected_array.numpy(), sorted_array.numpy()) def basic_test_array_shape_dynamic_checks( static_shape, dynamic_shape, batch_size, beam_width, is_valid=True ): @tf.function(input_signature=(tf.TensorSpec(dynamic_shape, dtype=tf.float32),)) def _test_body(t): beam_search_decoder._check_batch_beam(t, batch_size, beam_width) t = tf.random.uniform(static_shape, dtype=tf.float32) if is_valid: _test_body(t) else: with pytest.raises(tf.errors.InvalidArgumentError): _test_body(t) @pytest.mark.usefixtures("maybe_run_functions_eagerly") def test_array_shape_dynamic_checks(): basic_test_array_shape_dynamic_checks( (8, 4, 5, 10), (None, None, 5, 10), 4, 5, is_valid=True ) basic_test_array_shape_dynamic_checks( (8, 20, 10), (None, None, 10), 4, 5, is_valid=True ) basic_test_array_shape_dynamic_checks( (8, 21, 10), (None, None, 10), 4, 5, is_valid=False ) basic_test_array_shape_dynamic_checks( (8, 4, 6, 10), (None, None, None, 10), 4, 5, is_valid=False ) basic_test_array_shape_dynamic_checks((8, 4), (None, None), 4, 5, is_valid=False) def test_array_shape_static_checks(): assert ( beam_search_decoder._check_static_batch_beam_maybe( tf.TensorShape([None, None, None]), 3, 5 ) is True ) assert ( beam_search_decoder._check_static_batch_beam_maybe( tf.TensorShape([15, None, None]), 3, 5 ) is True ) assert ( beam_search_decoder._check_static_batch_beam_maybe( tf.TensorShape([16, None, None]), 3, 5 ) is False ) assert ( beam_search_decoder._check_static_batch_beam_maybe( tf.TensorShape([3, 5, None]), 3, 5 ) is True ) assert ( beam_search_decoder._check_static_batch_beam_maybe( tf.TensorShape([3, 6, None]), 3, 5 ) is False ) assert ( beam_search_decoder._check_static_batch_beam_maybe( tf.TensorShape([5, 3, None]), 3, 5 ) is False ) def test_eos_masking(): probs = tf.constant( [ [ [-0.2, -0.2, -0.2, -0.2, -0.2], [-0.3, -0.3, -0.3, 3, 0], [5, 6, 0, 0, 0], ], [[-0.2, -0.2, -0.2, -0.2, 0], [-0.3, -0.3, -0.1, 3, 0], [5, 6, 3, 0, 0]], ] ) eos_token = 0 previously_finished = np.array([[0, 1, 0], [0, 1, 1]], dtype=bool) masked = beam_search_decoder._mask_probs(probs, eos_token, previously_finished) masked = masked.numpy() np.testing.assert_equal(probs[0][0], masked[0][0]) np.testing.assert_equal(probs[0][2], masked[0][2]) np.testing.assert_equal(probs[1][0], masked[1][0]) np.testing.assert_equal(masked[0][1][0], 0) np.testing.assert_equal(masked[1][1][0], 0) np.testing.assert_equal(masked[1][2][0], 0) for i in range(1, 5): np.testing.assert_allclose(masked[0][1][i], np.finfo("float32").min) np.testing.assert_allclose(masked[1][1][i], np.finfo("float32").min) np.testing.assert_allclose(masked[1][2][i], np.finfo("float32").min) def test_missing_embedding_fn(): batch_size = 6 beam_width = 4 cell = tf.keras.layers.LSTMCell(5) decoder = beam_search_decoder.BeamSearchDecoder(cell, beam_width=beam_width) initial_state = cell.get_initial_state( batch_size=batch_size * beam_width, dtype=tf.float32 ) start_tokens = tf.ones([batch_size], dtype=tf.int32) end_token = tf.constant(2, dtype=tf.int32) with pytest.raises(ValueError): decoder(None, start_tokens, end_token, initial_state) def test_beam_step(): batch_size = 2 beam_width = 3 vocab_size = 5 end_token = 0 length_penalty_weight = 0.6 coverage_penalty_weight = 0.0 output_all_scores = False dummy_cell_state = tf.zeros([batch_size, beam_width]) beam_state = beam_search_decoder.BeamSearchDecoderState( cell_state=dummy_cell_state, log_probs=tf.nn.log_softmax(tf.ones([batch_size, beam_width])), lengths=tf.constant(2, shape=[batch_size, beam_width], dtype=tf.int64), finished=tf.zeros([batch_size, beam_width], dtype=tf.bool), accumulated_attention_probs=(), ) logits_ = np.full([batch_size, beam_width, vocab_size], 0.0001) logits_[0, 0, 2] = 1.9 logits_[0, 0, 3] = 2.1 logits_[0, 1, 3] = 3.1 logits_[0, 1, 4] = 0.9 logits_[1, 0, 1] = 0.5 logits_[1, 1, 2] = 2.7 logits_[1, 2, 2] = 10.0 logits_[1, 2, 3] = 0.2 logits = tf.convert_to_tensor(logits_, dtype=tf.float32) log_probs = tf.nn.log_softmax(logits) outputs, next_beam_state = beam_search_decoder._beam_search_step( time=2, logits=logits, next_cell_state=dummy_cell_state, beam_state=beam_state, batch_size=tf.convert_to_tensor(batch_size), beam_width=beam_width, end_token=end_token, length_penalty_weight=length_penalty_weight, coverage_penalty_weight=coverage_penalty_weight, output_all_scores=output_all_scores, ) outputs_, next_state_, state_, log_probs_ = [ outputs, next_beam_state, beam_state, log_probs, ] np.testing.assert_equal( outputs_.predicted_ids.numpy(), np.asanyarray([[3, 3, 2], [2, 2, 1]]) ) np.testing.assert_equal( outputs_.parent_ids.numpy(), np.asanyarray([[1, 0, 0], [2, 1, 0]]) ) np.testing.assert_equal( next_state_.lengths.numpy(), np.asanyarray([[3, 3, 3], [3, 3, 3]]) ) np.testing.assert_equal( next_state_.finished.numpy(), np.asanyarray([[False, False, False], [False, False, False]]), ) expected_log_probs = [] expected_log_probs.append(state_.log_probs[0].numpy()) expected_log_probs.append(state_.log_probs[1].numpy()) expected_log_probs[0][0] += log_probs_[0, 1, 3] expected_log_probs[0][1] += log_probs_[0, 0, 3] expected_log_probs[0][2] += log_probs_[0, 0, 2] expected_log_probs[1][0] += log_probs_[1, 2, 2] expected_log_probs[1][1] += log_probs_[1, 1, 2] expected_log_probs[1][2] += log_probs_[1, 0, 1] np.testing.assert_equal( next_state_.log_probs.numpy(), np.asanyarray(expected_log_probs) ) def test_step_with_eos(): batch_size = 2 beam_width = 3 vocab_size = 5 end_token = 0 length_penalty_weight = 0.6 coverage_penalty_weight = 0.0 output_all_scores = False dummy_cell_state = tf.zeros([batch_size, beam_width]) beam_state = beam_search_decoder.BeamSearchDecoderState( cell_state=dummy_cell_state, log_probs=tf.nn.log_softmax(tf.ones([batch_size, beam_width])), lengths=tf.convert_to_tensor([[2, 1, 2], [2, 2, 1]], dtype=tf.int64), finished=tf.convert_to_tensor( [[False, True, False], [False, False, True]], dtype=tf.bool ), accumulated_attention_probs=(), ) logits_ = np.full([batch_size, beam_width, vocab_size], 0.0001) logits_[0, 0, 2] = 1.9 logits_[0, 0, 3] = 2.1 logits_[0, 1, 3] = 3.1 logits_[0, 1, 4] = 0.9 logits_[1, 0, 1] = 0.5 logits_[1, 1, 2] = 5.7 # why does this not work when it's 2.7? logits_[1, 2, 2] = 1.0 logits_[1, 2, 3] = 0.2 logits = tf.convert_to_tensor(logits_, dtype=tf.float32) log_probs = tf.nn.log_softmax(logits) outputs, next_beam_state = beam_search_decoder._beam_search_step( time=2, logits=logits, next_cell_state=dummy_cell_state, beam_state=beam_state, batch_size=tf.convert_to_tensor(batch_size), beam_width=beam_width, end_token=end_token, length_penalty_weight=length_penalty_weight, coverage_penalty_weight=coverage_penalty_weight, output_all_scores=output_all_scores, ) outputs_, next_state_, state_, log_probs_ = [ outputs, next_beam_state, beam_state, log_probs, ] np.testing.assert_equal( outputs_.parent_ids.numpy(), np.asanyarray([[1, 0, 0], [1, 2, 0]]) ) np.testing.assert_equal( outputs_.predicted_ids.numpy(), np.asanyarray([[0, 3, 2], [2, 0, 1]]) ) np.testing.assert_equal( next_state_.lengths.numpy(), np.asanyarray([[1, 3, 3], [3, 1, 3]]) ) np.testing.assert_equal( next_state_.finished.numpy(), np.asanyarray([[True, False, False], [False, True, False]]), ) expected_log_probs = [] expected_log_probs.append(state_.log_probs[0].numpy()) expected_log_probs.append(state_.log_probs[1].numpy()) expected_log_probs[0][1] += log_probs_[0, 0, 3] expected_log_probs[0][2] += log_probs_[0, 0, 2] expected_log_probs[1][0] += log_probs_[1, 1, 2] expected_log_probs[1][2] += log_probs_[1, 0, 1] np.testing.assert_equal( next_state_.log_probs.numpy(), np.asanyarray(expected_log_probs) ) def test_large_beam_step(): batch_size = 2 beam_width = 8 vocab_size = 5 end_token = 0 length_penalty_weight = 0.6 coverage_penalty_weight = 0.0 output_all_scores = False def get_probs(): """this simulates the initialize method in BeamSearchDecoder.""" log_prob_mask = tf.one_hot( tf.zeros([batch_size], dtype=tf.int32), depth=beam_width, on_value=True, off_value=False, dtype=tf.bool, ) log_prob_zeros = tf.zeros([batch_size, beam_width], dtype=tf.float32) log_prob_neg_inf = tf.ones([batch_size, beam_width], dtype=tf.float32) * -np.Inf log_probs = tf.where(log_prob_mask, log_prob_zeros, log_prob_neg_inf) return log_probs log_probs = get_probs() dummy_cell_state = tf.zeros([batch_size, beam_width]) _finished = tf.one_hot( tf.zeros([batch_size], dtype=tf.int32), depth=beam_width, on_value=False, off_value=True, dtype=tf.bool, ) _lengths = np.zeros([batch_size, beam_width], dtype=np.int64) _lengths[:, 0] = 2 _lengths = tf.constant(_lengths, dtype=tf.int64) beam_state = beam_search_decoder.BeamSearchDecoderState( cell_state=dummy_cell_state, log_probs=log_probs, lengths=_lengths, finished=_finished, accumulated_attention_probs=(), ) logits_ = np.full([batch_size, beam_width, vocab_size], 0.0001) logits_[0, 0, 2] = 1.9 logits_[0, 0, 3] = 2.1 logits_[0, 1, 3] = 3.1 logits_[0, 1, 4] = 0.9 logits_[1, 0, 1] = 0.5 logits_[1, 1, 2] = 2.7 logits_[1, 2, 2] = 10.0 logits_[1, 2, 3] = 0.2 logits = tf.constant(logits_, dtype=tf.float32) log_probs = tf.nn.log_softmax(logits) outputs, next_beam_state = beam_search_decoder._beam_search_step( time=2, logits=logits, next_cell_state=dummy_cell_state, beam_state=beam_state, batch_size=tf.convert_to_tensor(batch_size), beam_width=beam_width, end_token=end_token, length_penalty_weight=length_penalty_weight, coverage_penalty_weight=coverage_penalty_weight, output_all_scores=output_all_scores, ) outputs_, next_state_ = [outputs, next_beam_state] assert outputs_.predicted_ids[0, 0] == 3 assert outputs_.predicted_ids[0, 1] == 2 assert outputs_.predicted_ids[1, 0] == 1 neg_inf = -np.Inf np.testing.assert_equal( next_state_.log_probs[:, -3:].numpy(), np.asanyarray([[neg_inf, neg_inf, neg_inf], [neg_inf, neg_inf, neg_inf]]), ) np.testing.assert_equal( np.asanyarray(next_state_.log_probs[:, :-3] > neg_inf), True ) np.testing.assert_equal(np.asanyarray(next_state_.lengths[:, :-3] > 0), True) np.testing.assert_equal( next_state_.lengths[:, -3:].numpy(), np.asanyarray([[0, 0, 0], [0, 0, 0]]) ) @pytest.mark.parametrize("output_all_scores", [True, False]) @pytest.mark.parametrize("with_alignment_history", [True, False]) @pytest.mark.parametrize("has_attention", [True, False]) @pytest.mark.parametrize("time_major", [True, False]) @pytest.mark.parametrize( "cell_class", [tf.keras.layers.LSTMCell, tf.keras.layers.GRUCell] ) @pytest.mark.usefixtures("maybe_run_functions_eagerly") @pytest.mark.usefixtures("run_custom_and_py_ops") def test_beam_search_decoder( cell_class, time_major, has_attention, with_alignment_history, output_all_scores ): encoder_sequence_length = np.array([3, 2, 3, 1, 1]) batch_size = 5 decoder_max_time = 4 input_depth = 7 cell_depth = 9 attention_depth = 6 vocab_size = 20 end_token = vocab_size - 1 start_token = 0 embedding_dim = 50 maximum_iterations = 3 output_layer = tf.keras.layers.Dense(vocab_size, use_bias=True, activation=None) beam_width = 3 embedding = tf.random.normal([vocab_size, embedding_dim]) cell = cell_class(cell_depth) if has_attention: attention_mechanism = attention_wrapper.BahdanauAttention( units=attention_depth, ) cell = attention_wrapper.AttentionWrapper( cell=cell, attention_mechanism=attention_mechanism, attention_layer_size=attention_depth, alignment_history=with_alignment_history, ) coverage_penalty_weight = 0.2 else: coverage_penalty_weight = 0.0 bsd = beam_search_decoder.BeamSearchDecoder( cell=cell, beam_width=beam_width, output_layer=output_layer, length_penalty_weight=0.0, coverage_penalty_weight=coverage_penalty_weight, output_time_major=time_major, maximum_iterations=maximum_iterations, output_all_scores=output_all_scores, ) @tf.function( input_signature=( tf.TensorSpec([None, None, input_depth], dtype=tf.float32), tf.TensorSpec([None], dtype=tf.int32), ) ) def _beam_decode_from(memory, memory_sequence_length): batch_size_tensor = tf.shape(memory)[0] if has_attention: tiled_memory = beam_search_decoder.tile_batch(memory, multiplier=beam_width) tiled_memory_sequence_length = beam_search_decoder.tile_batch( memory_sequence_length, multiplier=beam_width ) attention_mechanism.setup_memory( tiled_memory, memory_sequence_length=tiled_memory_sequence_length ) cell_state = cell.get_initial_state( batch_size=batch_size_tensor * beam_width, dtype=tf.float32 ) return bsd( embedding, start_tokens=tf.fill([batch_size_tensor], start_token), end_token=end_token, initial_state=cell_state, ) memory = tf.random.normal([batch_size, decoder_max_time, input_depth]) memory_sequence_length = tf.constant(encoder_sequence_length, dtype=tf.int32) final_outputs, final_state, final_sequence_lengths = _beam_decode_from( memory, memory_sequence_length ) def _t(shape): if time_major: return (shape[1], shape[0]) + shape[2:] return shape assert isinstance(final_outputs, beam_search_decoder.FinalBeamSearchDecoderOutput) assert isinstance(final_state, beam_search_decoder.BeamSearchDecoderState) beam_search_decoder_output = final_outputs.beam_search_decoder_output max_sequence_length = np.max(final_sequence_lengths.numpy()) assert _t((batch_size, max_sequence_length, beam_width)) == tuple( final_outputs.predicted_ids.shape.as_list() ) if output_all_scores: assert _t((batch_size, max_sequence_length, beam_width, vocab_size)) == tuple( beam_search_decoder_output.scores.shape.as_list() ) # Check that the vocab size corresponds to the dimensions of the output. assert (beam_width, vocab_size) == tuple(bsd.output_size.scores.as_list()) else: assert _t((batch_size, max_sequence_length, beam_width)) == tuple( beam_search_decoder_output.scores.shape.as_list() ) # Check only the beam width corresponds to the dimensions of the output. assert (beam_width,) == tuple(bsd.output_size.scores.as_list())
33.34139
88
0.62577
887885085ba4682c5d3c658760961a3c28dba7b2
52,406
py
Python
zerver/lib/message.py
Awawdi/zulip
f2e7b92b024cfec6a9babace8298de9537925347
[ "Apache-2.0" ]
2
2018-09-24T14:12:46.000Z
2018-09-24T14:12:59.000Z
zerver/lib/message.py
adb-web-designs/zulip
1b303e7b2f0271f81265123ad1e7125ed3914d68
[ "Apache-2.0" ]
18
2021-08-14T01:12:30.000Z
2022-03-04T20:28:51.000Z
zerver/lib/message.py
adb-web-designs/zulip
1b303e7b2f0271f81265123ad1e7125ed3914d68
[ "Apache-2.0" ]
1
2020-07-09T23:28:34.000Z
2020-07-09T23:28:34.000Z
import copy import datetime import zlib from dataclasses import dataclass, field from typing import Any, Dict, List, Mapping, Optional, Sequence, Set, Tuple, Union import ahocorasick import orjson from django.conf import settings from django.db import connection from django.db.models import Max, Sum from django.utils.timezone import now as timezone_now from django.utils.translation import gettext as _ from psycopg2.sql import SQL from typing_extensions import TypedDict from analytics.lib.counts import COUNT_STATS from analytics.models import RealmCount from zerver.lib.avatar import get_avatar_field from zerver.lib.cache import ( cache_with_key, generic_bulk_cached_fetch, to_dict_cache_key, to_dict_cache_key_id, ) from zerver.lib.display_recipient import bulk_fetch_display_recipients from zerver.lib.exceptions import JsonableError, MissingAuthenticationError from zerver.lib.markdown import MessageRenderingResult, markdown_convert, topic_links from zerver.lib.markdown import version as markdown_version from zerver.lib.mention import MentionData from zerver.lib.request import RequestVariableConversionError from zerver.lib.stream_subscription import ( get_stream_subscriptions_for_user, get_subscribed_stream_recipient_ids_for_user, num_subscribers_for_stream_id, ) from zerver.lib.streams import get_web_public_streams_queryset from zerver.lib.timestamp import datetime_to_timestamp from zerver.lib.topic import DB_TOPIC_NAME, MESSAGE__TOPIC, TOPIC_LINKS, TOPIC_NAME from zerver.lib.topic_mutes import build_topic_mute_checker, topic_is_muted from zerver.lib.types import DisplayRecipientT, UserDisplayRecipient from zerver.models import ( MAX_TOPIC_NAME_LENGTH, Message, Reaction, Realm, Recipient, Stream, SubMessage, Subscription, UserMessage, UserProfile, get_display_recipient_by_id, get_usermessage_by_message_id, query_for_ids, ) class RawReactionRow(TypedDict): emoji_code: str emoji_name: str message_id: int reaction_type: str user_profile__email: str user_profile__full_name: str user_profile_id: int class RawUnreadStreamDict(TypedDict): stream_id: int topic: str class RawUnreadPrivateMessageDict(TypedDict): sender_id: int class RawUnreadHuddleDict(TypedDict): user_ids_string: str class RawUnreadMessagesResult(TypedDict): pm_dict: Dict[int, RawUnreadPrivateMessageDict] stream_dict: Dict[int, RawUnreadStreamDict] huddle_dict: Dict[int, RawUnreadHuddleDict] mentions: Set[int] muted_stream_ids: List[int] unmuted_stream_msgs: Set[int] old_unreads_missing: bool class UnreadMessagesResult(TypedDict): pms: List[Dict[str, Any]] streams: List[Dict[str, Any]] huddles: List[Dict[str, Any]] mentions: List[int] count: int old_unreads_missing: bool @dataclass class SendMessageRequest: message: Message rendering_result: MessageRenderingResult stream: Optional[Stream] local_id: Optional[str] sender_queue_id: Optional[str] realm: Realm mention_data: MentionData mentioned_user_groups_map: Dict[int, int] active_user_ids: Set[int] online_push_user_ids: Set[int] pm_mention_push_disabled_user_ids: Set[int] pm_mention_email_disabled_user_ids: Set[int] stream_push_user_ids: Set[int] stream_email_user_ids: Set[int] muted_sender_user_ids: Set[int] um_eligible_user_ids: Set[int] long_term_idle_user_ids: Set[int] default_bot_user_ids: Set[int] service_bot_tuples: List[Tuple[int, int]] all_bot_user_ids: Set[int] wildcard_mention_user_ids: Set[int] links_for_embed: Set[str] widget_content: Optional[Dict[str, Any]] submessages: List[Dict[str, Any]] = field(default_factory=list) deliver_at: Optional[datetime.datetime] = None delivery_type: Optional[str] = None # We won't try to fetch more unread message IDs from the database than # this limit. The limit is super high, in large part because it means # client-side code mostly doesn't need to think about the case that a # user has more older unread messages that were cut off. MAX_UNREAD_MESSAGES = 50000 def truncate_content(content: str, max_length: int, truncation_message: str) -> str: if len(content) > max_length: content = content[: max_length - len(truncation_message)] + truncation_message return content def normalize_body(body: str) -> str: body = body.rstrip().lstrip("\n") if len(body) == 0: raise JsonableError(_("Message must not be empty")) if "\x00" in body: raise JsonableError(_("Message must not contain null bytes")) return truncate_content(body, settings.MAX_MESSAGE_LENGTH, "\n[message truncated]") def truncate_topic(topic: str) -> str: return truncate_content(topic, MAX_TOPIC_NAME_LENGTH, "...") def messages_for_ids( message_ids: List[int], user_message_flags: Dict[int, List[str]], search_fields: Dict[int, Dict[str, str]], apply_markdown: bool, client_gravatar: bool, allow_edit_history: bool, ) -> List[Dict[str, Any]]: cache_transformer = MessageDict.build_dict_from_raw_db_row id_fetcher = lambda row: row["id"] message_dicts = generic_bulk_cached_fetch( to_dict_cache_key_id, MessageDict.get_raw_db_rows, message_ids, id_fetcher=id_fetcher, cache_transformer=cache_transformer, extractor=extract_message_dict, setter=stringify_message_dict, ) message_list: List[Dict[str, Any]] = [] for message_id in message_ids: msg_dict = message_dicts[message_id] msg_dict.update(flags=user_message_flags[message_id]) if message_id in search_fields: msg_dict.update(search_fields[message_id]) # Make sure that we never send message edit history to clients # in realms with allow_edit_history disabled. if "edit_history" in msg_dict and not allow_edit_history: del msg_dict["edit_history"] message_list.append(msg_dict) MessageDict.post_process_dicts(message_list, apply_markdown, client_gravatar) return message_list def sew_messages_and_reactions( messages: List[Dict[str, Any]], reactions: List[Dict[str, Any]] ) -> List[Dict[str, Any]]: """Given a iterable of messages and reactions stitch reactions into messages. """ # Add all messages with empty reaction item for message in messages: message["reactions"] = [] # Convert list of messages into dictionary to make reaction stitching easy converted_messages = {message["id"]: message for message in messages} for reaction in reactions: converted_messages[reaction["message_id"]]["reactions"].append(reaction) return list(converted_messages.values()) def sew_messages_and_submessages( messages: List[Dict[str, Any]], submessages: List[Dict[str, Any]] ) -> None: # This is super similar to sew_messages_and_reactions. for message in messages: message["submessages"] = [] message_dict = {message["id"]: message for message in messages} for submessage in submessages: message_id = submessage["message_id"] if message_id in message_dict: message = message_dict[message_id] message["submessages"].append(submessage) def extract_message_dict(message_bytes: bytes) -> Dict[str, Any]: return orjson.loads(zlib.decompress(message_bytes)) def stringify_message_dict(message_dict: Dict[str, Any]) -> bytes: return zlib.compress(orjson.dumps(message_dict)) @cache_with_key(to_dict_cache_key, timeout=3600 * 24) def message_to_dict_json(message: Message, realm_id: Optional[int] = None) -> bytes: return MessageDict.to_dict_uncached([message], realm_id)[message.id] def save_message_rendered_content(message: Message, content: str) -> str: rendering_result = render_markdown(message, content, realm=message.get_realm()) rendered_content = None if rendering_result is not None: rendered_content = rendering_result.rendered_content message.rendered_content = rendered_content message.rendered_content_version = markdown_version message.save_rendered_content() return rendered_content class MessageDict: """MessageDict is the core class responsible for marshalling Message objects obtained from the database into a format that can be sent to clients via the Zulip API, whether via `GET /messages`, outgoing webhooks, or other code paths. There are two core flows through which this class is used: * For just-sent messages, we construct a single `wide_dict` object containing all the data for the message and the related UserProfile models (sender_info and recipient_info); this object can be stored in queues, caches, etc., and then later turned into an API-format JSONable dictionary via finalize_payload. * When fetching messages from the database, we fetch their data in bulk using messages_for_ids, which makes use of caching, bulk fetches that skip the Django ORM, etc., to provide an optimized interface for fetching hundreds of thousands of messages from the database and then turning them into API-format JSON dictionaries. """ @staticmethod def wide_dict(message: Message, realm_id: Optional[int] = None) -> Dict[str, Any]: """ The next two lines get the cacheable field related to our message object, with the side effect of populating the cache. """ json = message_to_dict_json(message, realm_id) obj = extract_message_dict(json) """ The steps below are similar to what we do in post_process_dicts(), except we don't call finalize_payload(), since that step happens later in the queue processor. """ MessageDict.bulk_hydrate_sender_info([obj]) MessageDict.bulk_hydrate_recipient_info([obj]) return obj @staticmethod def post_process_dicts( objs: List[Dict[str, Any]], apply_markdown: bool, client_gravatar: bool ) -> None: """ NOTE: This function mutates the objects in the `objs` list, rather than making shallow copies. It might be safer to make shallow copies here, but performance is somewhat important here, as we are often fetching hundreds of messages. """ MessageDict.bulk_hydrate_sender_info(objs) MessageDict.bulk_hydrate_recipient_info(objs) for obj in objs: MessageDict.finalize_payload(obj, apply_markdown, client_gravatar, skip_copy=True) @staticmethod def finalize_payload( obj: Dict[str, Any], apply_markdown: bool, client_gravatar: bool, keep_rendered_content: bool = False, skip_copy: bool = False, ) -> Dict[str, Any]: """ By default, we make a shallow copy of the incoming dict to avoid mutation-related bugs. Code paths that are passing a unique object can pass skip_copy=True to avoid this extra work. """ if not skip_copy: obj = copy.copy(obj) MessageDict.set_sender_avatar(obj, client_gravatar) if apply_markdown: obj["content_type"] = "text/html" obj["content"] = obj["rendered_content"] else: obj["content_type"] = "text/x-markdown" if not keep_rendered_content: del obj["rendered_content"] del obj["sender_realm_id"] del obj["sender_avatar_source"] del obj["sender_delivery_email"] del obj["sender_avatar_version"] del obj["recipient_type"] del obj["recipient_type_id"] del obj["sender_is_mirror_dummy"] return obj @staticmethod def sew_submessages_and_reactions_to_msgs( messages: List[Dict[str, Any]] ) -> List[Dict[str, Any]]: msg_ids = [msg["id"] for msg in messages] submessages = SubMessage.get_raw_db_rows(msg_ids) sew_messages_and_submessages(messages, submessages) reactions = Reaction.get_raw_db_rows(msg_ids) return sew_messages_and_reactions(messages, reactions) @staticmethod def to_dict_uncached( messages: List[Message], realm_id: Optional[int] = None ) -> Dict[int, bytes]: messages_dict = MessageDict.to_dict_uncached_helper(messages, realm_id) encoded_messages = {msg["id"]: stringify_message_dict(msg) for msg in messages_dict} return encoded_messages @staticmethod def to_dict_uncached_helper( messages: List[Message], realm_id: Optional[int] = None ) -> List[Dict[str, Any]]: # Near duplicate of the build_message_dict + get_raw_db_rows # code path that accepts already fetched Message objects # rather than message IDs. def get_rendering_realm_id(message: Message) -> int: # realm_id can differ among users, currently only possible # with cross realm bots. if realm_id is not None: return realm_id if message.recipient.type == Recipient.STREAM: return Stream.objects.get(id=message.recipient.type_id).realm_id return message.sender.realm_id message_rows = [ { "id": message.id, DB_TOPIC_NAME: message.topic_name(), "date_sent": message.date_sent, "last_edit_time": message.last_edit_time, "edit_history": message.edit_history, "content": message.content, "rendered_content": message.rendered_content, "rendered_content_version": message.rendered_content_version, "recipient_id": message.recipient.id, "recipient__type": message.recipient.type, "recipient__type_id": message.recipient.type_id, "rendering_realm_id": get_rendering_realm_id(message), "sender_id": message.sender.id, "sending_client__name": message.sending_client.name, "sender__realm_id": message.sender.realm_id, } for message in messages ] MessageDict.sew_submessages_and_reactions_to_msgs(message_rows) return [MessageDict.build_dict_from_raw_db_row(row) for row in message_rows] @staticmethod def get_raw_db_rows(needed_ids: List[int]) -> List[Dict[str, Any]]: # This is a special purpose function optimized for # callers like get_messages_backend(). fields = [ "id", DB_TOPIC_NAME, "date_sent", "last_edit_time", "edit_history", "content", "rendered_content", "rendered_content_version", "recipient_id", "recipient__type", "recipient__type_id", "sender_id", "sending_client__name", "sender__realm_id", ] messages = Message.objects.filter(id__in=needed_ids).values(*fields) return MessageDict.sew_submessages_and_reactions_to_msgs(messages) @staticmethod def build_dict_from_raw_db_row(row: Dict[str, Any]) -> Dict[str, Any]: """ row is a row from a .values() call, and it needs to have all the relevant fields populated """ return MessageDict.build_message_dict( message_id=row["id"], last_edit_time=row["last_edit_time"], edit_history=row["edit_history"], content=row["content"], topic_name=row[DB_TOPIC_NAME], date_sent=row["date_sent"], rendered_content=row["rendered_content"], rendered_content_version=row["rendered_content_version"], sender_id=row["sender_id"], sender_realm_id=row["sender__realm_id"], sending_client_name=row["sending_client__name"], rendering_realm_id=row.get("rendering_realm_id", row["sender__realm_id"]), recipient_id=row["recipient_id"], recipient_type=row["recipient__type"], recipient_type_id=row["recipient__type_id"], reactions=row["reactions"], submessages=row["submessages"], ) @staticmethod def build_message_dict( message_id: int, last_edit_time: Optional[datetime.datetime], edit_history: Optional[str], content: str, topic_name: str, date_sent: datetime.datetime, rendered_content: Optional[str], rendered_content_version: Optional[int], sender_id: int, sender_realm_id: int, sending_client_name: str, rendering_realm_id: int, recipient_id: int, recipient_type: int, recipient_type_id: int, reactions: List[RawReactionRow], submessages: List[Dict[str, Any]], ) -> Dict[str, Any]: obj = dict( id=message_id, sender_id=sender_id, content=content, recipient_type_id=recipient_type_id, recipient_type=recipient_type, recipient_id=recipient_id, timestamp=datetime_to_timestamp(date_sent), client=sending_client_name, ) obj[TOPIC_NAME] = topic_name obj["sender_realm_id"] = sender_realm_id # Render topic_links with the stream's realm instead of the # sender's realm; this is important for messages sent by # cross-realm bots like NOTIFICATION_BOT. obj[TOPIC_LINKS] = topic_links(rendering_realm_id, topic_name) if last_edit_time is not None: obj["last_edit_timestamp"] = datetime_to_timestamp(last_edit_time) assert edit_history is not None obj["edit_history"] = orjson.loads(edit_history) if Message.need_to_render_content( rendered_content, rendered_content_version, markdown_version ): # We really shouldn't be rendering objects in this method, but there is # a scenario where we upgrade the version of Markdown and fail to run # management commands to re-render historical messages, and then we # need to have side effects. This method is optimized to not need full # blown ORM objects, but the Markdown renderer is unfortunately highly # coupled to Message, and we also need to persist the new rendered content. # If we don't have a message object passed in, we get one here. The cost # of going to the DB here should be overshadowed by the cost of rendering # and updating the row. # TODO: see #1379 to eliminate Markdown dependencies message = Message.objects.select_related().get(id=message_id) assert message is not None # Hint for mypy. # It's unfortunate that we need to have side effects on the message # in some cases. rendered_content = save_message_rendered_content(message, content) if rendered_content is not None: obj["rendered_content"] = rendered_content else: obj["rendered_content"] = ( "<p>[Zulip note: Sorry, we could not " + "understand the formatting of your message]</p>" ) if rendered_content is not None: obj["is_me_message"] = Message.is_status_message(content, rendered_content) else: obj["is_me_message"] = False obj["reactions"] = [ ReactionDict.build_dict_from_raw_db_row(reaction) for reaction in reactions ] obj["submessages"] = submessages return obj @staticmethod def bulk_hydrate_sender_info(objs: List[Dict[str, Any]]) -> None: sender_ids = list({obj["sender_id"] for obj in objs}) if not sender_ids: return query = UserProfile.objects.values( "id", "full_name", "delivery_email", "email", "realm__string_id", "avatar_source", "avatar_version", "is_mirror_dummy", ) rows = query_for_ids(query, sender_ids, "zerver_userprofile.id") sender_dict = {row["id"]: row for row in rows} for obj in objs: sender_id = obj["sender_id"] user_row = sender_dict[sender_id] obj["sender_full_name"] = user_row["full_name"] obj["sender_email"] = user_row["email"] obj["sender_delivery_email"] = user_row["delivery_email"] obj["sender_realm_str"] = user_row["realm__string_id"] obj["sender_avatar_source"] = user_row["avatar_source"] obj["sender_avatar_version"] = user_row["avatar_version"] obj["sender_is_mirror_dummy"] = user_row["is_mirror_dummy"] @staticmethod def hydrate_recipient_info(obj: Dict[str, Any], display_recipient: DisplayRecipientT) -> None: """ This method hyrdrates recipient info with things like full names and emails of senders. Eventually our clients should be able to hyrdrate these fields themselves with info they already have on users. """ recipient_type = obj["recipient_type"] recipient_type_id = obj["recipient_type_id"] sender_is_mirror_dummy = obj["sender_is_mirror_dummy"] sender_email = obj["sender_email"] sender_full_name = obj["sender_full_name"] sender_id = obj["sender_id"] if recipient_type == Recipient.STREAM: display_type = "stream" elif recipient_type in (Recipient.HUDDLE, Recipient.PERSONAL): assert not isinstance(display_recipient, str) display_type = "private" if len(display_recipient) == 1: # add the sender in if this isn't a message between # someone and themself, preserving ordering recip: UserDisplayRecipient = { "email": sender_email, "full_name": sender_full_name, "id": sender_id, "is_mirror_dummy": sender_is_mirror_dummy, } if recip["email"] < display_recipient[0]["email"]: display_recipient = [recip, display_recipient[0]] elif recip["email"] > display_recipient[0]["email"]: display_recipient = [display_recipient[0], recip] else: raise AssertionError(f"Invalid recipient type {recipient_type}") obj["display_recipient"] = display_recipient obj["type"] = display_type if obj["type"] == "stream": obj["stream_id"] = recipient_type_id @staticmethod def bulk_hydrate_recipient_info(objs: List[Dict[str, Any]]) -> None: recipient_tuples = { # We use set to eliminate duplicate tuples. ( obj["recipient_id"], obj["recipient_type"], obj["recipient_type_id"], ) for obj in objs } display_recipients = bulk_fetch_display_recipients(recipient_tuples) for obj in objs: MessageDict.hydrate_recipient_info(obj, display_recipients[obj["recipient_id"]]) @staticmethod def set_sender_avatar(obj: Dict[str, Any], client_gravatar: bool) -> None: sender_id = obj["sender_id"] sender_realm_id = obj["sender_realm_id"] sender_delivery_email = obj["sender_delivery_email"] sender_avatar_source = obj["sender_avatar_source"] sender_avatar_version = obj["sender_avatar_version"] obj["avatar_url"] = get_avatar_field( user_id=sender_id, realm_id=sender_realm_id, email=sender_delivery_email, avatar_source=sender_avatar_source, avatar_version=sender_avatar_version, medium=False, client_gravatar=client_gravatar, ) class ReactionDict: @staticmethod def build_dict_from_raw_db_row(row: RawReactionRow) -> Dict[str, Any]: return { "emoji_name": row["emoji_name"], "emoji_code": row["emoji_code"], "reaction_type": row["reaction_type"], # TODO: We plan to remove this redundant user dictionary once # clients are updated to support accessing use user_id. See # https://github.com/zulip/zulip/pull/14711 for details. # # When we do that, we can likely update the `.values()` query to # not fetch the extra user_profile__* fields from the database # as a small performance optimization. "user": { "email": row["user_profile__email"], "id": row["user_profile_id"], "full_name": row["user_profile__full_name"], }, "user_id": row["user_profile_id"], } def access_message( user_profile: UserProfile, message_id: int, lock_message: bool = False, ) -> Tuple[Message, Optional[UserMessage]]: """You can access a message by ID in our APIs that either: (1) You received or have previously accessed via starring (aka have a UserMessage row for). (2) Was sent to a public stream in your realm. We produce consistent, boring error messages to avoid leaking any information from a security perspective. The lock_message parameter should be passed by callers that are planning to modify the Message object. This will use the SQL `SELECT FOR UPDATE` feature to ensure that other processes cannot delete the message during the current transaction, which is important to prevent rare race conditions. Callers must only pass lock_message when inside a @transaction.atomic block. """ try: base_query = Message.objects.select_related() if lock_message: # We want to lock only the `Message` row, and not the related fields # because the `Message` row only has a possibility of races. base_query = base_query.select_for_update(of=("self",)) message = base_query.get(id=message_id) except Message.DoesNotExist: raise JsonableError(_("Invalid message(s)")) user_message = get_usermessage_by_message_id(user_profile, message_id) if has_message_access(user_profile, message, has_user_message=user_message is not None): return (message, user_message) raise JsonableError(_("Invalid message(s)")) def access_web_public_message( realm: Realm, message_id: int, ) -> Message: """Access control method for unauthenticated requests interacting with a message in web public streams. """ # We throw a MissingAuthenticationError for all errors in this # code path, to avoid potentially leaking information on whether a # message with the provided ID exists on the server if the client # shouldn't have access to it. if not realm.web_public_streams_enabled(): raise MissingAuthenticationError() try: message = Message.objects.select_related().get(id=message_id) except Message.DoesNotExist: raise MissingAuthenticationError() if not message.is_stream_message(): raise MissingAuthenticationError() queryset = get_web_public_streams_queryset(realm) try: stream = queryset.get(id=message.recipient.type_id) except Stream.DoesNotExist: raise MissingAuthenticationError() # These should all have been enforced by the code in # get_web_public_streams_queryset assert stream.is_web_public assert not stream.deactivated assert not stream.invite_only assert stream.history_public_to_subscribers # Now that we've confirmed this message was sent to the target # web-public stream, we can return it as having been successfully # accessed. return message def has_message_access( user_profile: UserProfile, message: Message, *, has_user_message: bool, stream: Optional[Stream] = None, is_subscribed: Optional[bool] = None, ) -> bool: """ Returns whether a user has access to a given message. * The user_message parameter must be provided if the user has a UserMessage row for the target message. * The optional stream parameter is validated; is_subscribed is not. """ # If you have a user_message object, you have access. if has_user_message: return True if message.recipient.type != Recipient.STREAM: # You can't access private messages you didn't receive return False if stream is None: stream = Stream.objects.get(id=message.recipient.type_id) else: assert stream.recipient_id == message.recipient_id if stream.realm != user_profile.realm: # You can't access public stream messages in other realms return False if not stream.is_history_public_to_subscribers(): # You can't access messages you didn't directly receive # unless history is public to subscribers. return False if stream.is_public() and user_profile.can_access_public_streams(): return True # is_history_public_to_subscribers, so check if you're subscribed if is_subscribed is not None: return is_subscribed return Subscription.objects.filter( user_profile=user_profile, active=True, recipient=message.recipient ).exists() def bulk_access_messages( user_profile: UserProfile, messages: Sequence[Message], *, stream: Optional[Stream] = None ) -> List[Message]: """This function does the full has_message_access check for each message. If stream is provided, it is used to avoid unnecessary database queries, and will use exactly 2 bulk queries instead. Throws AssertionError if stream is passed and any of the messages were not sent to that stream. """ filtered_messages = [] user_message_set = set( bulk_access_messages_expect_usermessage( user_profile.id, [message.id for message in messages] ) ) # TODO: Ideally, we'd do a similar bulk-stream-fetch if stream is # None, so that this function is fast with subscribed_recipient_ids = set(get_subscribed_stream_recipient_ids_for_user(user_profile)) for message in messages: has_user_message = message.id in user_message_set is_subscribed = message.recipient_id in subscribed_recipient_ids if has_message_access( user_profile, message, has_user_message=has_user_message, stream=stream, is_subscribed=is_subscribed, ): filtered_messages.append(message) return filtered_messages def bulk_access_messages_expect_usermessage( user_profile_id: int, message_ids: Sequence[int] ) -> List[int]: """ Like bulk_access_messages, but faster and potentially stricter. Returns a subset of `message_ids` containing only messages the user can access. Makes O(1) database queries. Use this function only when the user is expected to have a UserMessage row for every message in `message_ids`. If a UserMessage row is missing, the message will be omitted even if the user has access (e.g. because it went to a public stream.) See also: `access_message`, `bulk_access_messages`. """ return UserMessage.objects.filter( user_profile_id=user_profile_id, message_id__in=message_ids, ).values_list("message_id", flat=True) def render_markdown( message: Message, content: str, realm: Optional[Realm] = None, realm_alert_words_automaton: Optional[ahocorasick.Automaton] = None, mention_data: Optional[MentionData] = None, email_gateway: bool = False, ) -> MessageRenderingResult: """ This is basically just a wrapper for do_render_markdown. """ if realm is None: realm = message.get_realm() sender = message.sender sent_by_bot = sender.is_bot translate_emoticons = sender.translate_emoticons rendering_result = markdown_convert( content, realm_alert_words_automaton=realm_alert_words_automaton, message=message, message_realm=realm, sent_by_bot=sent_by_bot, translate_emoticons=translate_emoticons, mention_data=mention_data, email_gateway=email_gateway, ) return rendering_result def huddle_users(recipient_id: int) -> str: display_recipient: DisplayRecipientT = get_display_recipient_by_id( recipient_id, Recipient.HUDDLE, None, ) # str is for streams. assert not isinstance(display_recipient, str) user_ids: List[int] = [obj["id"] for obj in display_recipient] user_ids = sorted(user_ids) return ",".join(str(uid) for uid in user_ids) def aggregate_message_dict( input_dict: Dict[int, Any], lookup_fields: List[str] ) -> List[Dict[str, Any]]: lookup_dict: Dict[Tuple[Any, ...], Dict[str, Any]] = {} """ A concrete example might help explain the inputs here: input_dict = { 1002: dict(stream_id=5, topic='foo'), 1003: dict(stream_id=5, topic='foo'), 1004: dict(stream_id=6, topic='baz'), } lookup_fields = ['stream_id', 'topic'] The first time through the loop: attribute_dict = dict(stream_id=5, topic='foo') lookup_key = (5, 'foo') lookup_dict = { (5, 'foo'): dict(stream_id=5, topic='foo', unread_message_ids=[1002, 1003], ), ... } result = [ dict(stream_id=5, topic='foo', unread_message_ids=[1002, 1003], ), ... ] """ for message_id, attribute_dict in input_dict.items(): lookup_key = tuple(attribute_dict[f] for f in lookup_fields) if lookup_key not in lookup_dict: obj = {} for f in lookup_fields: obj[f] = attribute_dict[f] obj["unread_message_ids"] = [] lookup_dict[lookup_key] = obj bucket = lookup_dict[lookup_key] bucket["unread_message_ids"].append(message_id) for dct in lookup_dict.values(): dct["unread_message_ids"].sort() sorted_keys = sorted(lookup_dict.keys()) return [lookup_dict[k] for k in sorted_keys] def get_inactive_recipient_ids(user_profile: UserProfile) -> List[int]: rows = ( get_stream_subscriptions_for_user(user_profile) .filter( active=False, ) .values( "recipient_id", ) ) inactive_recipient_ids = [row["recipient_id"] for row in rows] return inactive_recipient_ids def get_muted_stream_ids(user_profile: UserProfile) -> List[int]: rows = ( get_stream_subscriptions_for_user(user_profile) .filter( active=True, is_muted=True, ) .values( "recipient__type_id", ) ) muted_stream_ids = [row["recipient__type_id"] for row in rows] return muted_stream_ids def get_starred_message_ids(user_profile: UserProfile) -> List[int]: return list( UserMessage.objects.filter( user_profile=user_profile, ) .extra( where=[UserMessage.where_starred()], ) .order_by( "message_id", ) .values_list("message_id", flat=True)[0:10000] ) def get_raw_unread_data(user_profile: UserProfile) -> RawUnreadMessagesResult: excluded_recipient_ids = get_inactive_recipient_ids(user_profile) user_msgs = ( UserMessage.objects.filter( user_profile=user_profile, ) .exclude( message__recipient_id__in=excluded_recipient_ids, ) .extra( where=[UserMessage.where_unread()], ) .values( "message_id", "message__sender_id", MESSAGE__TOPIC, "message__recipient_id", "message__recipient__type", "message__recipient__type_id", "flags", ) .order_by("-message_id") ) # Limit unread messages for performance reasons. user_msgs = list(user_msgs[:MAX_UNREAD_MESSAGES]) rows = list(reversed(user_msgs)) return extract_unread_data_from_um_rows(rows, user_profile) def extract_unread_data_from_um_rows( rows: List[Dict[str, Any]], user_profile: Optional[UserProfile] ) -> RawUnreadMessagesResult: pm_dict: Dict[int, RawUnreadPrivateMessageDict] = {} stream_dict: Dict[int, RawUnreadStreamDict] = {} unmuted_stream_msgs: Set[int] = set() huddle_dict: Dict[int, RawUnreadHuddleDict] = {} mentions: Set[int] = set() total_unreads = 0 raw_unread_messages: RawUnreadMessagesResult = dict( pm_dict=pm_dict, stream_dict=stream_dict, muted_stream_ids=[], unmuted_stream_msgs=unmuted_stream_msgs, huddle_dict=huddle_dict, mentions=mentions, old_unreads_missing=False, ) if user_profile is None: return raw_unread_messages muted_stream_ids = get_muted_stream_ids(user_profile) raw_unread_messages["muted_stream_ids"] = muted_stream_ids topic_mute_checker = build_topic_mute_checker(user_profile) def is_row_muted(stream_id: int, recipient_id: int, topic: str) -> bool: if stream_id in muted_stream_ids: return True if topic_mute_checker(recipient_id, topic): return True # Messages sent by muted users are never unread, so we don't # need any logic related to muted users here. return False huddle_cache: Dict[int, str] = {} def get_huddle_users(recipient_id: int) -> str: if recipient_id in huddle_cache: return huddle_cache[recipient_id] user_ids_string = huddle_users(recipient_id) huddle_cache[recipient_id] = user_ids_string return user_ids_string for row in rows: total_unreads += 1 message_id = row["message_id"] msg_type = row["message__recipient__type"] recipient_id = row["message__recipient_id"] sender_id = row["message__sender_id"] if msg_type == Recipient.STREAM: stream_id = row["message__recipient__type_id"] topic = row[MESSAGE__TOPIC] stream_dict[message_id] = dict( stream_id=stream_id, topic=topic, ) if not is_row_muted(stream_id, recipient_id, topic): unmuted_stream_msgs.add(message_id) elif msg_type == Recipient.PERSONAL: if sender_id == user_profile.id: other_user_id = row["message__recipient__type_id"] else: other_user_id = sender_id # The `sender_id` field here is misnamed. It's really # just the other participant in a PM conversation. For # most unread PM messages, the other user is also the sender, # but that's not true for certain messages sent from the # API. Unfortunately, it's difficult now to rename the # field without breaking mobile. pm_dict[message_id] = dict( sender_id=other_user_id, ) elif msg_type == Recipient.HUDDLE: user_ids_string = get_huddle_users(recipient_id) huddle_dict[message_id] = dict( user_ids_string=user_ids_string, ) # TODO: Add support for alert words here as well. is_mentioned = (row["flags"] & UserMessage.flags.mentioned) != 0 is_wildcard_mentioned = (row["flags"] & UserMessage.flags.wildcard_mentioned) != 0 if is_mentioned: mentions.add(message_id) if is_wildcard_mentioned: if msg_type == Recipient.STREAM: stream_id = row["message__recipient__type_id"] topic = row[MESSAGE__TOPIC] if not is_row_muted(stream_id, recipient_id, topic): mentions.add(message_id) else: # nocoverage # TODO: Test wildcard mentions in PMs. mentions.add(message_id) # Record whether the user had more than MAX_UNREAD_MESSAGES total # unreads -- that's a state where Zulip's behavior will start to # be erroneous, and clients should display a warning. raw_unread_messages["old_unreads_missing"] = total_unreads == MAX_UNREAD_MESSAGES return raw_unread_messages def aggregate_unread_data(raw_data: RawUnreadMessagesResult) -> UnreadMessagesResult: pm_dict = raw_data["pm_dict"] stream_dict = raw_data["stream_dict"] unmuted_stream_msgs = raw_data["unmuted_stream_msgs"] huddle_dict = raw_data["huddle_dict"] mentions = list(raw_data["mentions"]) count = len(pm_dict) + len(unmuted_stream_msgs) + len(huddle_dict) pm_objects = aggregate_message_dict( input_dict=pm_dict, lookup_fields=[ "sender_id", ], ) stream_objects = aggregate_message_dict( input_dict=stream_dict, lookup_fields=[ "stream_id", "topic", ], ) huddle_objects = aggregate_message_dict( input_dict=huddle_dict, lookup_fields=[ "user_ids_string", ], ) result: UnreadMessagesResult = dict( pms=pm_objects, streams=stream_objects, huddles=huddle_objects, mentions=mentions, count=count, old_unreads_missing=raw_data["old_unreads_missing"], ) return result def apply_unread_message_event( user_profile: UserProfile, state: RawUnreadMessagesResult, message: Dict[str, Any], flags: List[str], ) -> None: message_id = message["id"] if message["type"] == "stream": message_type = "stream" elif message["type"] == "private": others = [recip for recip in message["display_recipient"] if recip["id"] != user_profile.id] if len(others) <= 1: message_type = "private" else: message_type = "huddle" else: raise AssertionError("Invalid message type {}".format(message["type"])) if message_type == "stream": stream_id = message["stream_id"] topic = message[TOPIC_NAME] state["stream_dict"][message_id] = RawUnreadStreamDict( stream_id=stream_id, topic=topic, ) if stream_id not in state["muted_stream_ids"]: # This next check hits the database. if not topic_is_muted(user_profile, stream_id, topic): state["unmuted_stream_msgs"].add(message_id) elif message_type == "private": if len(others) == 1: other_id = others[0]["id"] else: other_id = user_profile.id # The `sender_id` field here is misnamed. state["pm_dict"][message_id] = RawUnreadPrivateMessageDict( sender_id=other_id, ) else: display_recipient = message["display_recipient"] user_ids = [obj["id"] for obj in display_recipient] user_ids = sorted(user_ids) user_ids_string = ",".join(str(uid) for uid in user_ids) state["huddle_dict"][message_id] = RawUnreadHuddleDict( user_ids_string=user_ids_string, ) if "mentioned" in flags: state["mentions"].add(message_id) if "wildcard_mentioned" in flags: if message_id in state["unmuted_stream_msgs"]: state["mentions"].add(message_id) def remove_message_id_from_unread_mgs(state: RawUnreadMessagesResult, message_id: int) -> None: # The opposite of apply_unread_message_event; removes a read or # deleted message from a raw_unread_msgs data structure. state["pm_dict"].pop(message_id, None) state["stream_dict"].pop(message_id, None) state["huddle_dict"].pop(message_id, None) state["unmuted_stream_msgs"].discard(message_id) state["mentions"].discard(message_id) def estimate_recent_messages(realm: Realm, hours: int) -> int: stat = COUNT_STATS["messages_sent:is_bot:hour"] d = timezone_now() - datetime.timedelta(hours=hours) return ( RealmCount.objects.filter(property=stat.property, end_time__gt=d, realm=realm).aggregate( Sum("value") )["value__sum"] or 0 ) def get_first_visible_message_id(realm: Realm) -> int: return realm.first_visible_message_id def maybe_update_first_visible_message_id(realm: Realm, lookback_hours: int) -> None: recent_messages_count = estimate_recent_messages(realm, lookback_hours) if realm.message_visibility_limit is not None and recent_messages_count > 0: update_first_visible_message_id(realm) def update_first_visible_message_id(realm: Realm) -> None: if realm.message_visibility_limit is None: realm.first_visible_message_id = 0 else: try: first_visible_message_id = ( Message.objects.filter(sender__realm=realm) .values("id") .order_by("-id")[realm.message_visibility_limit - 1]["id"] ) except IndexError: first_visible_message_id = 0 realm.first_visible_message_id = first_visible_message_id realm.save(update_fields=["first_visible_message_id"]) def get_last_message_id() -> int: # We generally use this function to populate RealmAuditLog, and # the max id here is actually systemwide, not per-realm. I # assume there's some advantage in not filtering by realm. last_id = Message.objects.aggregate(Max("id"))["id__max"] if last_id is None: # During initial realm creation, there might be 0 messages in # the database; in that case, the `aggregate` query returns # None. Since we want an int for "beginning of time", use -1. last_id = -1 return last_id def get_recent_conversations_recipient_id( user_profile: UserProfile, recipient_id: int, sender_id: int ) -> int: """Helper for doing lookups of the recipient_id that get_recent_private_conversations would have used to record that message in its data structure. """ my_recipient_id = user_profile.recipient_id if recipient_id == my_recipient_id: return UserProfile.objects.values_list("recipient_id", flat=True).get(id=sender_id) return recipient_id def get_recent_private_conversations(user_profile: UserProfile) -> Dict[int, Dict[str, Any]]: """This function uses some carefully optimized SQL queries, designed to use the UserMessage index on private_messages. It is significantly complicated by the fact that for 1:1 private messages, we store the message against a recipient_id of whichever user was the recipient, and thus for 1:1 private messages sent directly to us, we need to look up the other user from the sender_id on those messages. You'll see that pattern repeated both here and also in zerver/lib/events.py. Ideally, we would write these queries using Django, but even without the UNION ALL, that seems to not be possible, because the equivalent Django syntax (for the first part of this query): message_data = UserMessage.objects.select_related("message__recipient_id").filter( user_profile=user_profile, ).extra( where=[UserMessage.where_private()] ).order_by("-message_id")[:1000].values( "message__recipient_id").annotate(last_message_id=Max("message_id")) does not properly nest the GROUP BY (from .annotate) with the slicing. We return a dictionary structure for convenient modification below; this structure is converted into its final form by post_process. """ RECENT_CONVERSATIONS_LIMIT = 1000 recipient_map = {} my_recipient_id = user_profile.recipient_id query = SQL( """ SELECT subquery.recipient_id, MAX(subquery.message_id) FROM ( (SELECT um.message_id AS message_id, m.recipient_id AS recipient_id FROM zerver_usermessage um JOIN zerver_message m ON um.message_id = m.id WHERE um.user_profile_id=%(user_profile_id)s AND um.flags & 2048 <> 0 AND m.recipient_id <> %(my_recipient_id)s ORDER BY message_id DESC LIMIT %(conversation_limit)s) UNION ALL (SELECT m.id AS message_id, sender_profile.recipient_id AS recipient_id FROM zerver_message m JOIN zerver_userprofile sender_profile ON m.sender_id = sender_profile.id WHERE m.recipient_id=%(my_recipient_id)s ORDER BY message_id DESC LIMIT %(conversation_limit)s) ) AS subquery GROUP BY subquery.recipient_id """ ) with connection.cursor() as cursor: cursor.execute( query, { "user_profile_id": user_profile.id, "conversation_limit": RECENT_CONVERSATIONS_LIMIT, "my_recipient_id": my_recipient_id, }, ) rows = cursor.fetchall() # The resulting rows will be (recipient_id, max_message_id) # objects for all parties we've had recent (group?) private # message conversations with, including PMs with yourself (those # will generate an empty list of user_ids). for recipient_id, max_message_id in rows: recipient_map[recipient_id] = dict( max_message_id=max_message_id, user_ids=[], ) # Now we need to map all the recipient_id objects to lists of user IDs for (recipient_id, user_profile_id) in ( Subscription.objects.filter(recipient_id__in=recipient_map.keys()) .exclude(user_profile_id=user_profile.id) .values_list("recipient_id", "user_profile_id") ): recipient_map[recipient_id]["user_ids"].append(user_profile_id) # Sort to prevent test flakes and client bugs. for rec in recipient_map.values(): rec["user_ids"].sort() return recipient_map def wildcard_mention_allowed(sender: UserProfile, stream: Stream) -> bool: realm = sender.realm # If there are fewer than Realm.WILDCARD_MENTION_THRESHOLD, we # allow sending. In the future, we may want to make this behavior # a default, and also just allow explicitly setting whether this # applies to a stream as an override. if num_subscribers_for_stream_id(stream.id) <= Realm.WILDCARD_MENTION_THRESHOLD: return True if realm.wildcard_mention_policy == Realm.WILDCARD_MENTION_POLICY_NOBODY: return False if realm.wildcard_mention_policy == Realm.WILDCARD_MENTION_POLICY_EVERYONE: return True if realm.wildcard_mention_policy == Realm.WILDCARD_MENTION_POLICY_ADMINS: return sender.is_realm_admin if realm.wildcard_mention_policy == Realm.WILDCARD_MENTION_POLICY_MODERATORS: return sender.is_realm_admin or sender.is_moderator if realm.wildcard_mention_policy == Realm.WILDCARD_MENTION_POLICY_STREAM_ADMINS: # TODO: Change this when we implement stream administrators return sender.is_realm_admin if realm.wildcard_mention_policy == Realm.WILDCARD_MENTION_POLICY_FULL_MEMBERS: return sender.is_realm_admin or (not sender.is_provisional_member and not sender.is_guest) if realm.wildcard_mention_policy == Realm.WILDCARD_MENTION_POLICY_MEMBERS: return not sender.is_guest raise AssertionError("Invalid wildcard mention policy") def parse_message_content_delete_limit( value: Union[int, str], special_values_map: Mapping[str, Optional[int]], ) -> Optional[int]: if isinstance(value, str) and value in special_values_map.keys(): return special_values_map[value] if isinstance(value, str) or value <= 0: raise RequestVariableConversionError("message_content_delete_limit_seconds", value) assert isinstance(value, int) return value
35.242771
100
0.664122
71e1386266d2484bf5093dd8f1e466dfc0c69ce7
462
py
Python
data/scripts/templates/object/tangible/container/base/shared_base_container.py
obi-two/GameServer
7d37024e2291a97d49522610cd8f1dbe5666afc2
[ "MIT" ]
20
2015-02-23T15:11:56.000Z
2022-03-18T20:56:48.000Z
data/scripts/templates/object/tangible/container/base/shared_base_container.py
apathyboy/swganh
665128efe9154611dec4cb5efc61d246dd095984
[ "MIT" ]
null
null
null
data/scripts/templates/object/tangible/container/base/shared_base_container.py
apathyboy/swganh
665128efe9154611dec4cb5efc61d246dd095984
[ "MIT" ]
20
2015-04-04T16:35:59.000Z
2022-03-24T14:54:37.000Z
#### NOTICE: THIS FILE IS AUTOGENERATED #### MODIFICATIONS MAY BE LOST IF DONE IMPROPERLY #### PLEASE SEE THE ONLINE DOCUMENTATION FOR EXAMPLES from swgpy.object import * def create(kernel): result = Tangible() result.template = "object/tangible/container/base/shared_base_container.iff" result.attribute_template_id = -1 result.stfName("container_name","base_container") #### BEGIN MODIFICATIONS #### #### END MODIFICATIONS #### return result
27.176471
77
0.733766
c9f2316df3a4602cab86028a4664761a9040d6c1
667
py
Python
lib/aoc/year_2019_day_01.py
Repiphany/AoC
d59badb62b82434bccd757e37d6d5c4d0bbf2838
[ "MIT" ]
null
null
null
lib/aoc/year_2019_day_01.py
Repiphany/AoC
d59badb62b82434bccd757e37d6d5c4d0bbf2838
[ "MIT" ]
null
null
null
lib/aoc/year_2019_day_01.py
Repiphany/AoC
d59badb62b82434bccd757e37d6d5c4d0bbf2838
[ "MIT" ]
1
2019-12-06T19:16:12.000Z
2019-12-06T19:16:12.000Z
#!/usr/bin/env python3 from .input import get_input def fuel(mass): return max(mass // 3 - 2, 0) def fuelr(mass): fr = [fuel(mass)] while fr[-1]: fr.append(fuel(fr[-1])) return sum(fr) def test(args): assert fuel(12) == 2 assert fuel(14) == 2 assert fuel(1969) == 654 assert fuel(100756) == 33583 assert fuelr(14) == 2 assert fuelr(1969) == 966 assert fuelr(100756) == 50346 print('Tests passed') def main(args): fuel_sum = fuelr_sum = 0 for line in get_input(args.YEAR, args.DAY): fuel_sum += fuel(int(line)) fuelr_sum += fuelr(int(line)) print(fuel_sum) print(fuelr_sum)
20.84375
47
0.595202
b74e7a475fa7ff574e5e1429f8f1ebd1c456d878
68
py
Python
processing/backends/__init__.py
Kingjmk/mlfaati
12c0dcbe0389c2c1da0bde80509fb3374955e293
[ "MIT" ]
1
2021-01-04T07:34:34.000Z
2021-01-04T07:34:34.000Z
processing/backends/__init__.py
Kingjmk/mlfaati
12c0dcbe0389c2c1da0bde80509fb3374955e293
[ "MIT" ]
null
null
null
processing/backends/__init__.py
Kingjmk/mlfaati
12c0dcbe0389c2c1da0bde80509fb3374955e293
[ "MIT" ]
null
null
null
""" This module contains processing backends for each file type """
17
59
0.75
9027820a6ca71736928645d1903955f76db01f42
1,995
py
Python
test2.py
blevine37/blarf
8f1d1abb05d72069323d7911f2afb38ad3d9146b
[ "MIT" ]
null
null
null
test2.py
blevine37/blarf
8f1d1abb05d72069323d7911f2afb38ad3d9146b
[ "MIT" ]
null
null
null
test2.py
blevine37/blarf
8f1d1abb05d72069323d7911f2afb38ad3d9146b
[ "MIT" ]
null
null
null
import numpy as np import blarf import os natoms = 5 k = 200 ff = blarf.potential() ff.init_chain(natoms,1.0,1.0,(1.414/1.122),0.1) r = np.zeros(natoms*3) r[3] = 0.2 r[5] = 1.0 r[7] = 1.1 r[8] = 1.0 #3 r[10] = 1.1 r[11] = 1.9 r[13] = 0.9 r[14] = 3.0 # 5 #r[15] = 0.3 #r[16] = 0.9 #r[17] = 4.0 # 6 #r[19] = 1.1 #r[20] = 4.8 print "r ", r ff.eval_pes(r) print "e ", ff.get_energy() print "f ", ff.get_forces() vv = blarf.classical() vv.set_numdims(natoms*3) vv.set_positions(r) vv.set_momenta(np.zeros(natoms*3)) vv.set_timestep(0.001) vv.set_maxtime(1000.0) vv.set_num_rescale_steps(100) vv.set_temperature(0.1) data = blarf.dataset(natoms*3) vv.propagate(ff,data,stride=100) print data.get_numpoints() print data.get_positions() print data.get_energies_exact() thindata = data.thin_dataset(1) thindata.set_internal_type("reciprical_bond") thindata.compute_internals() #width_factors = [2.0, 4.0, 8.0, 16.0, 32.0, 64.0, 128.0] #numtrials = 5 width_factors = [32.0] numtrials = 1 if os.path.exists("mur.dat"): os.remove("mur.dat") iw = 0 for w in width_factors: murs = np.zeros(numtrials) for itrial in range(numtrials): clust = blarf.cluster(k,thindata.get_numinternals()) clust.k_means_optimization(thindata) thindata.h5_output("thindata.hdf5") network = blarf.rbfn() network.set_width_factor(w) network.init_from_cluster_reciprical_bonds_traditionalrbf(clust) #network.init_from_cluster_reciprical_bonds_onedimensional(clust) network.solve_weights(thindata) filename = "network." + str(w) + "." + str(itrial) + ".hdf5" network.h5_output(filename) murs[itrial] = thindata.get_mean_unsigned_residual() f = open('mur.dat', 'a') s = str(w) + " " for imur in range(murs.size): s = s + str(murs[imur]) + " " s = s + str(np.sum(murs) / murs.size) + "\n" f.write(s) f.close() iw += 1
18.472222
73
0.626566
34021945763c42e2a492d05de7d4984bb354e36d
221
py
Python
PyHEADTAIL/trackers/simple_long_tracking.py
fsoubelet/PyHEADTAIL
51cae8845cceb61cc3f140db4ab0eeb68469110f
[ "BSD-3-Clause" ]
null
null
null
PyHEADTAIL/trackers/simple_long_tracking.py
fsoubelet/PyHEADTAIL
51cae8845cceb61cc3f140db4ab0eeb68469110f
[ "BSD-3-Clause" ]
null
null
null
PyHEADTAIL/trackers/simple_long_tracking.py
fsoubelet/PyHEADTAIL
51cae8845cceb61cc3f140db4ab0eeb68469110f
[ "BSD-3-Clause" ]
null
null
null
from .longitudinal_tracking import * from PyHEADTAIL.general.decorators import deprecated @deprecated("--> Use the longitudinal_tracking module instead.\n") def simple_long_tracking(): pass simple_long_tracking()
20.090909
66
0.79638
f029f0ff0d0f555e3d9113675f41decf654add74
2,421
py
Python
nlp_news.py
CoderPaulK/news_nlp
1a74a08727993b8ef3b38a2cc9151bdfd275abff
[ "Apache-2.0" ]
null
null
null
nlp_news.py
CoderPaulK/news_nlp
1a74a08727993b8ef3b38a2cc9151bdfd275abff
[ "Apache-2.0" ]
null
null
null
nlp_news.py
CoderPaulK/news_nlp
1a74a08727993b8ef3b38a2cc9151bdfd275abff
[ "Apache-2.0" ]
null
null
null
import pprint import requests import pickle import pandas as pd import spacy from sklearn.neighbors import NearestNeighbors from tqdm import tqdm from sklearn.cluster import DBSCAN from sklearn.datasets.samples_generator import make_blobs import numpy as np from matplotlib import pyplot as plt import seaborn as sns sns.set() def show_blobs(): X, y = make_blobs(n_samples=300, centers=4, cluster_std=0.60, random_state=0) plt.scatter(X[:, 0], X[:, 1]) def load_web(): secret = 'xxx' url = 'https://newsapi.org/v2/everything?' parameters = { 'q': 'big data', # query phrase 'pageSize': 20, # maximum is 100 'apiKey': secret # your own API key } # Make the request response = requests.get(url, params=parameters) # Convert the response to JSON format and pretty print it data = response.json() with open('output.pickle', 'wb') as w: pickle.dump(data, w) def load_file(): with open('output.pickle', 'rb') as r: articles = pickle.load(r) return articles def make_df(): titles = [] dates = [] descriptions = [] for line in load_file()['articles']: titles.append(line['title']) dates.append(line['publishedAt']) descriptions.append(line['description']) # print({'titles':titles,'desc':descriptions, 'dates':dates}) df = pd.DataFrame(data={'titles': titles, 'desc': descriptions, 'dates': dates}) df = df.drop_duplicates(subset='titles').reset_index(drop=True) df = df.dropna() print(df.head()) return df, titles df, titles = make_df() nlp = spacy.load('en_core_web_sm') sent_vecs = {} docs = [] for title in tqdm(titles): doc = nlp(title) docs.append(doc) sent_vecs.update({title: doc.vector}) sentences = list(sent_vecs.keys()) vectors = list(sent_vecs.values()) print(sentences) X = np.array(vectors) n_classes = {} neigh = NearestNeighbors(n_neighbors=2) nbrs = neigh.fit(X) distances, indices = nbrs.kneighbors(X) distances = np.sort(distances, axis=0) distances = distances[:, 1] plt.plot(distances) plt.show() for i in tqdm(np.arange(0.2, 0.3, 0.001)): dbscan = DBSCAN(eps=i, min_samples=2, metric='cosine').fit(X) n_classes.update({i: len(pd.Series(dbscan.labels_).value_counts())}) print(dbscan.labels_) # dbscan=DBSCAN(eps=0.26, min_samples=2, metric='cosine').fit(X) # print(n_classes.values()) # show_blobs() # plt.show()
27.827586
84
0.670384
49e3198cbd569976172fded57185698c8c8ae7e2
4,001
py
Python
wiserHeatAPIv2/heating_actuator.py
LGO44/wiserHeatAPIv2
dfe66edf21d069764f64842e4218ae39c81701dc
[ "MIT" ]
null
null
null
wiserHeatAPIv2/heating_actuator.py
LGO44/wiserHeatAPIv2
dfe66edf21d069764f64842e4218ae39c81701dc
[ "MIT" ]
null
null
null
wiserHeatAPIv2/heating_actuator.py
LGO44/wiserHeatAPIv2
dfe66edf21d069764f64842e4218ae39c81701dc
[ "MIT" ]
null
null
null
from . import _LOGGER from .device import _WiserDevice from .helpers import _WiserTemperatureFunctions as tf from .rest_controller import _WiserRestController from .const import TEMP_OFF, TEXT_UNKNOWN, WISERHEATINGACTUATOR, WISERDEVICE import inspect class _WiserHeatingActuator(_WiserDevice): """Class representing a Wiser Heating Actuator device""" def __init__(self, wiser_rest_controller:_WiserRestController, data: dict, device_type_data: dict): super().__init__(data) self._wiser_rest_controller = wiser_rest_controller self._device_type_data = device_type_data self._device_lock_enabled = False self._indentify_active = data.get("IdentifyActive", False) def _send_command(self, cmd: dict, device_level: bool = False): """ Send control command to the heating actuator param cmd: json command structure return: boolen - true = success, false = failed """ if device_level: result = self._wiser_rest_controller._send_command(WISERDEVICE.format(self.id), cmd) else: result = self._wiser_rest_controller._send_command(WISERHEATINGACTUATOR.format(self.id), cmd) if result: _LOGGER.debug( "Wiser heating actuator - {} command successful".format( inspect.stack()[1].function ) ) return result @property def current_target_temperature(self) -> float: """Get the smart valve current target temperature setting""" return tf._from_wiser_temp(self._device_type_data.get("OccupiedHeatingSetPoint", TEMP_OFF)) @property def current_temperature(self) -> float: """Get the current temperature measured by the smart valve""" return tf._from_wiser_temp(self._device_type_data.get("MeasuredTemperature", TEMP_OFF), "current") @property def delivered_power(self) -> int: """Get the amount of current throught the plug over time""" return self._device_type_data.get("CurrentSummationDelivered", 0) @property def device_lock_enabled(self) -> bool: """Get or set heating actuator device lock""" return self._device_lock_enabled @device_lock_enabled.setter def device_lock_enabled(self, enable: bool): if self._send_command({"DeviceLockEnabled": enable}, True): self._device_lock_enabled = enable @property def identify(self) -> bool: """Get or set if the smart valve identify function is enabled""" return self._indentify_active @identify.setter def identify(self, enable: bool = False): if self._send_command({"Identify": enable}, True): self._indentify_active = enable @property def instantaneous_power(self) -> int: """Get the amount of current throught the plug now""" return self._device_type_data.get("InstantaneousDemand", 0) @property def output_type(self) -> str: """Get output type""" return self._device_type_data.get("OutputType", TEXT_UNKNOWN) @property def room_id(self) -> int: """Get heating actuator room id""" return self._device_type_data.get("RoomId", 0) class _WiserHeatingActuatorCollection(object): """Class holding all wiser heating actuators""" def __init__(self): self._heating_actuators = [] @property def all(self) -> dict: return list(self._heating_actuators) @property def count(self) -> int: return len(self.all) def get_by_id(self, id: int) -> _WiserHeatingActuator: """ Gets a Heating Actuator object from the Heating Actuators id param id: id of smart valve return: _WiserSmartValve object """ try: return [ heating_actuator for heating_actuator in self.all if heating_actuator.id == id ][0] except IndexError: return None
33.90678
106
0.662584
df1d359d4686ef890cadcdc7efbc056ba0abca4a
4,936
py
Python
src/modules/db_operations/operations.py
AndersenLab/CAENDR
ce4cdb74db736db8226ffc90988959b71b0d5ff5
[ "MIT" ]
3
2022-02-09T07:04:37.000Z
2022-03-11T02:46:35.000Z
src/modules/db_operations/operations.py
AndersenLab/CAENDR
ce4cdb74db736db8226ffc90988959b71b0d5ff5
[ "MIT" ]
4
2022-01-28T22:28:08.000Z
2022-02-11T21:47:15.000Z
src/modules/db_operations/operations.py
AndersenLab/CAENDR
ce4cdb74db736db8226ffc90988959b71b0d5ff5
[ "MIT" ]
1
2022-01-11T03:39:02.000Z
2022-01-11T03:39:02.000Z
import os from caendr.services.cloud.postgresql import health_database_status from logzero import logger from caendr.models.error import EnvVarError from caendr.models.sql import WormbaseGene, WormbaseGeneSummary, Strain, Homolog, StrainAnnotatedVariant from caendr.services.sql.db import (drop_tables, download_all_external_dbs, download_external_db, backup_external_db, fetch_internal_db) from caendr.services.sql.etl import (load_strains, load_genes_summary, load_genes, load_homologs, load_orthologs, load_strain_annotated_variants) def execute_operation(app, db, DB_OP): WORMBASE_VERSION = os.environ.get('WORMBASE_VERSION') STRAIN_VARIANT_ANNOTATION_VERSION = os.environ.get('STRAIN_VARIANT_ANNOTATION_VERSION') logger.info(f'Executing {DB_OP}: WORMBASE_VERSION:{WORMBASE_VERSION} STRAIN_VARIANT_ANNOTATION_VERSION:{STRAIN_VARIANT_ANNOTATION_VERSION}') if DB_OP == 'DROP_AND_POPULATE_ALL_TABLES': if not WORMBASE_VERSION or not STRAIN_VARIANT_ANNOTATION_VERSION: raise EnvVarError() drop_and_populate_all_tables(app, db, WORMBASE_VERSION, STRAIN_VARIANT_ANNOTATION_VERSION) elif DB_OP == 'DROP_AND_POPULATE_STRAINS': drop_and_populate_strains(app, db) elif DB_OP == 'DROP_AND_POPULATE_WORMBASE_GENES': if not WORMBASE_VERSION: raise EnvVarError() drop_and_populate_wormbase_genes(app, db, WORMBASE_VERSION) elif DB_OP == 'DROP_AND_POPULATE_STRAIN_ANNOTATED_VARIANTS': if not STRAIN_VARIANT_ANNOTATION_VERSION: raise EnvVarError() drop_and_populate_strain_annotated_variants(app, db, STRAIN_VARIANT_ANNOTATION_VERSION) elif DB_OP == 'TEST_ECHO': result, message = health_database_status() if not result: raise Exception(f"DB Connection is: { ('OK' if result else 'ERROR') }. {message}") elif DB_OP == 'TEST_MOCK_DATA': os.environ["USE_MOCK_DATA"] = "1" os.environ["MODULE_DB_OPERATIONS_CONNECTION_TYPE"] = "memory" logger.info("Using MOCK DATA") drop_and_populate_all_tables(app, db, WORMBASE_VERSION, STRAIN_VARIANT_ANNOTATION_VERSION) def drop_and_populate_strains(app, db): drop_tables(app, db, tables=[Strain.__table__]) load_strains(db) def drop_and_populate_wormbase_genes(app, db, wb_ver: str): logger.info(f"Running Drop and Populate wormbase genes with version: {wb_ver}") gene_gff_fname = download_external_db('GENE_GFF_URL', wb_ver=wb_ver) gene_gtf_fname = download_external_db('GENE_GTF_URL', wb_ver=wb_ver) gene_ids_fname = download_external_db('GENE_IDS_URL', wb_ver=wb_ver) homologene_fname = download_external_db('HOMOLOGENE_URL') ortholog_fname = download_external_db('ORTHOLOG_URL') drop_tables(app, db, tables=[Homolog.__table__, WormbaseGene.__table__]) drop_tables(app, db, tables=[WormbaseGeneSummary.__table__]) load_genes_summary(db, gene_gff_fname) load_genes(db, gene_gtf_fname, gene_ids_fname) load_homologs(db, homologene_fname) load_orthologs(db, ortholog_fname) def drop_and_populate_strain_annotated_variants(app, db, sva_ver: str): sva_fname = fetch_internal_db('SVA_CSVGZ_URL', sva_ver=sva_ver) db.session.commit() logger.info(f"Dropping table...") drop_tables(app, db, tables=[StrainAnnotatedVariant.__table__]) logger.info("Loading strain annotated variants...") load_strain_annotated_variants(db, sva_fname) def drop_and_populate_all_tables(app, db, wb_ver: str, sva_ver: str): logger.info(f'Dropping and populating all tables - WORMBASE_VERSION: {wb_ver} STRAIN_VARIANT_ANNOTATION_VERSION: {sva_ver}') logger.info("[1/8] Downloading databases...eta ~0:15") filenames = download_all_external_dbs(wb_ver) gene_gff_fname = filenames['GENE_GFF_URL'] gene_gtf_fname = filenames['GENE_GTF_URL'] gene_ids_fname = filenames['GENE_IDS_URL'] homologene_fname = filenames['HOMOLOGENE_URL'] ortholog_fname = filenames['ORTHOLOG_URL'] filenames['SVA_CSVGZ_URL'] = fetch_internal_db('SVA_CSVGZ_URL', sva_ver) sva_fname = filenames['SVA_CSVGZ_URL'] logger.info("[2/8] Dropping tables...eta ~0:01") drop_tables(app, db) logger.info("[3/8] Load Strains...eta ~0:24") load_strains(db) logger.info("[4/8] Load genes summary...eta ~3:15") load_genes_summary(db, gene_gff_fname) logger.info("[5/8] Load genes...eta ~12:37") load_genes(db, gene_gtf_fname, gene_ids_fname) logger.info("[6/8] Load Homologs...eta ~3:10") load_homologs(db, homologene_fname) logger.info("[7/8] Load Horthologs...eta ~17:13") load_orthologs(db, ortholog_fname) logger.info("[8/8] Load Strains Annotated Variants...eta ~26:47") load_strain_annotated_variants(db, sva_fname)
41.478992
142
0.725081
bd6e2b32c2f0efc91472f87505948f39c17b04c0
9,949
py
Python
jax/interpreters/sharded_jit.py
davesque/jax
47df7b95c44d27a2bb78636c7642a60cdb622402
[ "ECL-2.0", "Apache-2.0" ]
1
2020-03-12T04:34:46.000Z
2020-03-12T04:34:46.000Z
jax/interpreters/sharded_jit.py
davesque/jax
47df7b95c44d27a2bb78636c7642a60cdb622402
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
jax/interpreters/sharded_jit.py
davesque/jax
47df7b95c44d27a2bb78636c7642a60cdb622402
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial from absl import logging import numpy as onp from .. import core from ..abstract_arrays import ShapedArray, ConcreteArray, array_types from . import partial_eval as pe from . import xla from .. import linear_util as lu from ..lib import xla_bridge as xb from ..lib import xla_client as xc from ..api_util import flatten_fun from ..tree_util import tree_flatten, tree_unflatten from ..util import extend_name_stack, wrap_name """WIP shared_jit""" def _map(f, *xs): return tuple(map(f, *xs)) ### arg handling def _spatial_partitioned_args(devices, assignments, partitions, args): nargs = len(args) nrep, npar = assignments.shape # buffers = [[[None] * nargs for _ in range(npar)] for _ in range(nrep)] # TODO buffers = [[None] * nargs for _ in range(nrep * npar)] for a, (arg, partition) in enumerate(zip(args, partitions)): bufs = _partition_array(arg, devices, assignments, partition) for r in range(nrep): for p in range(npar): # buffers[r][p][a] = bufs[r][p] # TODO update C++ buffers[r * npar + p][a] = bufs[r][p] return buffers partition_arg_handlers = {} def _partition_array(x, devices, assignments, partition): nrep, npar = assignments.shape assert nrep == 1 # TODO generalize beyond single-replica shards = [x] for i, parts in enumerate(partition): shards = _flatten(onp.split(s, parts, i) for s in shards) # logging.error("===== shards: %s" % [s.shape for s in shards]) bufs = [[None] * npar for _ in range(nrep)] for (r, p), device in onp.ndenumerate(assignments): bufs[r][p] = xla.device_put(shards[p], devices[device]) return bufs def _flatten(lst): return [elt for sublst in lst for elt in sublst] for _t in array_types: partition_arg_handlers[_t] = _partition_array ### result handling def _pvals_to_results_handler(nrep, npar, partitions, out_pvals): nouts = len(out_pvals) handlers = _map(_pval_to_result_handler, partitions, out_pvals) def handler(out_bufs): buffers = [[[None] * npar for _ in range(nrep)] for _ in range(nouts)] for raw_idx, tuple_buf in enumerate(out_bufs): r, p = onp.unravel_index(raw_idx, (nrep, npar)) for i, buf in enumerate(tuple_buf.destructure()): buffers[i][r][p] = buf return [h(bufs) for h, bufs in zip(handlers, buffers)] return handler def _pval_to_result_handler(partition, pval): pv, const = pval if pv is None: raise NotImplementedError # TODO handle constant outputs else: return _aval_to_result_handler(partition, pv) def _aval_to_result_handler(partition, aval): return result_handlers[type(aval)](partition, aval) result_handlers = {} def _array_result_handler(partition, aval): def handler(bufs): bufs, = bufs # TODO generalize beyond single replica shards = [buf.to_py() for buf in bufs] # TODO device persistence partition = (1,) # TODO (wangtao): revisit this hack. for i, parts in enumerate(partition): shards = [onp.concatenate(cs, axis=i) for cs in _chunk(shards, parts)] result = shards return result return handler def _chunk(lst, sz): assert not len(lst) % sz return [lst[i:i + sz] for i in range(0, len(lst), sz)] result_handlers[ShapedArray] = _array_result_handler result_handlers[ConcreteArray] = _array_result_handler ### computation building @lu.cache def _sharded_callable(fun: lu.WrappedFun, partitions, name, *abstract_args): nrep = 1 # TODO generalize in_pvals = [pe.PartialVal((aval, core.unit)) for aval in abstract_args] jaxpr, out_pvals, consts = pe.trace_to_jaxpr(fun, in_pvals, instantiate=False, bottom=True) if not jaxpr.eqns and all(outvar is core.unitvar for outvar in jaxpr.outvars): return lambda *_: [core.unit] * len(jaxpr.outvars) c = xb.make_computation_builder("spjit_{}".format(fun.__name__)) xla_consts = _map(c.Constant, consts) xla_args = _xla_sharded_args(c, abstract_args, partitions[0]) axis_env = xla.AxisEnv(nrep, [], []) out_nodes = xla.jaxpr_subcomp( c, jaxpr, None, axis_env, xla_consts, (), extend_name_stack(wrap_name(name, "sharded_jit")), *xla_args) c._builder.SetSharding(_sharding_to_proto(partitions[1])) out_tuple = c.Tuple(*out_nodes) c._builder.ClearSharding() built = c.Build(out_tuple) num_partitions = _get_num_partitions(partitions[0]) devices = xb.local_devices()[:num_partitions] assert len(devices) == num_partitions # TODO generalize beyond single-replica device_assignment = onp.array([[d.id for d in devices]]) device_assignment = onp.reshape(device_assignment, (-1, num_partitions)) # device_assignment = None # TODO(skye): replace with default device assignment? compiled = built.Compile( compile_options=xb.get_compile_options(nrep, num_partitions, device_assignment), backend=xb.get_backend(None)) # logging.error("===== hlo:\n%s" % built.GetHloText()) handle_args = partial(_spatial_partitioned_args, compiled.local_devices(), device_assignment, partitions[0]) handle_outs = _pvals_to_results_handler(nrep, num_partitions, partitions[1], out_pvals) return partial(_execute_spatially_partitioned, compiled, handle_args, handle_outs) def _sharded_jit_translation_rule(c, axis_env, freevar_nodes, in_nodes, name_stack, partitions, backend, name, call_jaxpr): subc = xb.make_computation_builder("jaxpr_subcomputation") # TODO(mattjj): name freevars = [subc.ParameterWithShape(c.GetShape(n)) for n in freevar_nodes] args = [] for p, a in zip(partitions[0], in_nodes): subc._builder.SetSharding(_sharding_to_proto(p)) args.append(subc.ParameterWithShape(c.GetShape(a))) subc._builder.ClearSharding() # args = [subc.ParameterWithShape(c.GetShape(n)) for n in in_nodes] out_nodes = xla.jaxpr_subcomp(subc, call_jaxpr, backend, axis_env, (), freevars, name_stack, *args) subc._builder.SetSharding(_sharding_to_proto(partitions[1])) out_tuple = subc.Tuple(*out_nodes) subc._builder.ClearSharding() subc = subc.Build(out_tuple) return c.Call(subc, list(freevar_nodes) + list(in_nodes)) def _execute_spatially_partitioned(compiled, in_handler, out_handler, *args): input_bufs = in_handler(args) out_bufs = compiled.ExecuteOnLocalDevices(list(input_bufs)) return out_handler(out_bufs) def _xla_sharded_args(c, avals, partitions): xla_args = [] for p, a in zip(partitions, avals): c._builder.SetSharding(_sharding_to_proto(p)) # logging.error("===== aval shape: %s" % str(a.shape)) shape = xc.Shape.array_shape(a.dtype, (4,8)) xla_args.append(c.ParameterWithShape(xla.aval_to_xla_shape(a))) c._builder.ClearSharding() return xla_args def _sharding_to_proto(sharding): proto = xc.OpSharding() if isinstance(sharding, tuple): if sharding[0] is None or isinstance(sharding[0], tuple): sub_protos = [_sharding_to_proto(s) for s in sharding] xc.type = xc.OpSharding.Type.TUPLE xc.tuple_shardings = sub_protos return proto if sharding is None: proto.type = xc.OpSharding.Type.REPLICATED else: proto.type = xc.OpSharding.Type.OTHER proto.tile_assignment_dimensions = list(sharding) proto.tile_assignment_devices = list(range(onp.product(sharding))) return proto def _get_num_partitions(partitions): num_partitions = onp.prod(onp.max(partitions, axis=0)) return num_partitions def get_num_partitions(partitions): num_partitions_set = set(_get_num_partitions(parts) for parts in partitions) if len(num_partitions_set) > 1: raise ValueError( "All partition specs must use the same number of total partitions, " "got: %s" % partitions) return num_partitions_set.pop() def jaxpr_partitions(jaxpr): for eqn in jaxpr.eqns: if eqn.primitive == sharded_call_p: # TODO(skye): change API to support different output partitions return (eqn.params["partitions"][0], (eqn.params["partitions"][1],)) # TODO(skye): more error checking # return _get_num_partitions(eqn.params["partitions"][0]) return None, None ### sharded_call def _sharded_call_impl(fun: lu.WrappedFun, *args, **params): partitions = params.pop("partitions") name = params.pop("name") assert not params, params compiled_fun = _sharded_callable(fun, partitions, name, *map(xla.abstractify, args)) return compiled_fun(*args) sharded_call_p = core.Primitive("sharded_call") sharded_call_p.call_primitive = True sharded_call_p.multiple_results = True sharded_call = partial(core.call_bind, sharded_call_p) sharded_call_p.def_custom_bind(sharded_call) sharded_call_p.def_impl(_sharded_call_impl) xla.call_translations[sharded_call_p] = _sharded_jit_translation_rule def sharded_jit(fun, partitions): if xb.get_backend().platform != "tpu": logging.warning("sharded_jit only works on TPU") def wrapped(*args, **kwargs): f = lu.wrap_init(fun) args_flat, in_tree = tree_flatten((args, kwargs)) flat_fun, out_tree = flatten_fun(f, in_tree) out = sharded_call(flat_fun, *args_flat, partitions=partitions, name=flat_fun.__name__) return tree_unflatten(out_tree(), out) return wrapped
33.498316
101
0.711026
59c4db74a162570274e849486bee7887be54b18a
62,157
py
Python
libcloud/compute/base.py
gig-tech/libcloud
3c7f83f64ee72252a14ddc1e1f8cac4474a0be4b
[ "Apache-2.0" ]
null
null
null
libcloud/compute/base.py
gig-tech/libcloud
3c7f83f64ee72252a14ddc1e1f8cac4474a0be4b
[ "Apache-2.0" ]
null
null
null
libcloud/compute/base.py
gig-tech/libcloud
3c7f83f64ee72252a14ddc1e1f8cac4474a0be4b
[ "Apache-2.0" ]
null
null
null
# Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Provides base classes for working with drivers """ from __future__ import with_statement from typing import Dict from typing import List from typing import Tuple from typing import Type from typing import Optional from typing import Any from typing import Union from typing import TYPE_CHECKING import time import hashlib import os import re import socket import random import binascii import datetime from libcloud.utils.py3 import b import libcloud.compute.ssh from libcloud.pricing import get_size_price from libcloud.compute.types import NodeState, StorageVolumeState,\ DeploymentError if TYPE_CHECKING: from libcloud.compute.deployment import Deployment from libcloud.compute.types import Provider from libcloud.compute.types import NodeImageMemberState from libcloud.compute.ssh import SSHClient from libcloud.compute.ssh import BaseSSHClient from libcloud.common.base import Connection from libcloud.common.base import ConnectionKey from libcloud.common.base import BaseDriver from libcloud.common.types import LibcloudError from libcloud.compute.ssh import have_paramiko from libcloud.utils.networking import is_private_subnet from libcloud.utils.networking import is_valid_ip_address if have_paramiko: from paramiko.ssh_exception import SSHException from paramiko.ssh_exception import AuthenticationException SSH_TIMEOUT_EXCEPTION_CLASSES = (AuthenticationException, SSHException, IOError, socket.gaierror, socket.error) else: SSH_TIMEOUT_EXCEPTION_CLASSES = (IOError, socket.gaierror, # type: ignore socket.error) # type: ignore T_Auth = Union['NodeAuthSSHKey', 'NodeAuthPassword'] T_Ssh_key = Union[List[str], str] # How long to wait for the node to come online after creating it NODE_ONLINE_WAIT_TIMEOUT = 10 * 60 # How long to try connecting to a remote SSH server when running a deployment # script. SSH_CONNECT_TIMEOUT = 5 * 60 __all__ = [ 'Node', 'NodeState', 'NodeSize', 'NodeImage', 'NodeImageMember', 'NodeLocation', 'NodeAuthSSHKey', 'NodeAuthPassword', 'NodeDriver', 'StorageVolume', 'StorageVolumeState', 'VolumeSnapshot', # Deprecated, moved to libcloud.utils.networking 'is_private_subnet', 'is_valid_ip_address' ] class UuidMixin(object): """ Mixin class for get_uuid function. """ def __init__(self): self._uuid = None # type: str def get_uuid(self): """ Unique hash for a node, node image, or node size The hash is a function of an SHA1 hash of the node, node image, or node size's ID and its driver which means that it should be unique between all objects of its type. In some subclasses (e.g. GoGridNode) there is no ID available so the public IP address is used. This means that, unlike a properly done system UUID, the same UUID may mean a different system install at a different time >>> from libcloud.compute.drivers.dummy import DummyNodeDriver >>> driver = DummyNodeDriver(0) >>> node = driver.create_node() >>> node.get_uuid() 'd3748461511d8b9b0e0bfa0d4d3383a619a2bb9f' Note, for example, that this example will always produce the same UUID! :rtype: ``str`` """ if not self._uuid: self._uuid = hashlib.sha1(b('%s:%s' % (self.id, self.driver.type))).hexdigest() return self._uuid @property def uuid(self): # type: () -> str return self.get_uuid() class Node(UuidMixin): """ Provide a common interface for handling nodes of all types. The Node object provides the interface in libcloud through which we can manipulate nodes in different cloud providers in the same way. Node objects don't actually do much directly themselves, instead the node driver handles the connection to the node. You don't normally create a node object yourself; instead you use a driver and then have that create the node for you. >>> from libcloud.compute.drivers.dummy import DummyNodeDriver >>> driver = DummyNodeDriver(0) >>> node = driver.create_node() >>> node.public_ips[0] '127.0.0.3' >>> node.name 'dummy-3' You can also get nodes from the driver's list_node function. >>> node = driver.list_nodes()[0] >>> node.name 'dummy-1' The node keeps a reference to its own driver which means that we can work on nodes from different providers without having to know which is which. >>> driver = DummyNodeDriver(72) >>> node2 = driver.create_node() >>> node.driver.creds 0 >>> node2.driver.creds 72 Although Node objects can be subclassed, this isn't normally done. Instead, any driver specific information is stored in the "extra" attribute of the node. >>> node.extra {'foo': 'bar'} """ def __init__(self, id, # type: str name, # type: str state, # type: NodeState public_ips, # type: List[str] private_ips, # type: List[str] driver, size=None, # type: NodeSize image=None, # type: NodeImage extra=None, # type: dict created_at=None # type: datetime.datetime ): """ :param id: Node ID. :type id: ``str`` :param name: Node name. :type name: ``str`` :param state: Node state. :type state: :class:`libcloud.compute.types.NodeState` :param public_ips: Public IP addresses associated with this node. :type public_ips: ``list`` :param private_ips: Private IP addresses associated with this node. :type private_ips: ``list`` :param driver: Driver this node belongs to. :type driver: :class:`.NodeDriver` :param size: Size of this node. (optional) :type size: :class:`.NodeSize` :param image: Image of this node. (optional) :type image: :class:`.NodeImage` :param created_at: The datetime this node was created (optional) :type created_at: :class: `datetime.datetime` :param extra: Optional provider specific attributes associated with this node. :type extra: ``dict`` """ self.id = str(id) if id else None self.name = name self.state = state self.public_ips = public_ips if public_ips else [] self.private_ips = private_ips if private_ips else [] self.driver = driver self.size = size self.created_at = created_at self.image = image self.extra = extra or {} UuidMixin.__init__(self) def reboot(self): # type: () -> bool """ Reboot this node :return: ``bool`` This calls the node's driver and reboots the node >>> from libcloud.compute.drivers.dummy import DummyNodeDriver >>> driver = DummyNodeDriver(0) >>> node = driver.create_node() >>> node.state == NodeState.RUNNING True >>> node.state == NodeState.REBOOTING False >>> node.reboot() True >>> node.state == NodeState.REBOOTING True """ return self.driver.reboot_node(self) def start(self): # type: () -> bool """ Start this node. :return: ``bool`` """ return self.driver.start_node(self) def stop_node(self): # type: () -> bool """ Stop (shutdown) this node. :return: ``bool`` """ return self.driver.stop_node(self) def destroy(self): # type: () -> bool """ Destroy this node :return: ``bool`` This calls the node's driver and destroys the node >>> from libcloud.compute.drivers.dummy import DummyNodeDriver >>> driver = DummyNodeDriver(0) >>> from libcloud.compute.types import NodeState >>> node = driver.create_node() >>> node.state == NodeState.RUNNING True >>> node.destroy() True >>> node.state == NodeState.RUNNING False """ return self.driver.destroy_node(self) def __repr__(self): state = NodeState.tostring(self.state) return (('<Node: uuid=%s, name=%s, state=%s, public_ips=%s, ' 'private_ips=%s, provider=%s ...>') % (self.uuid, self.name, state, self.public_ips, self.private_ips, self.driver.name)) class NodeSize(UuidMixin): """ A Base NodeSize class to derive from. NodeSizes are objects which are typically returned a driver's list_sizes function. They contain a number of different parameters which define how big an image is. The exact parameters available depends on the provider. N.B. Where a parameter is "unlimited" (for example bandwidth in Amazon) this will be given as 0. >>> from libcloud.compute.drivers.dummy import DummyNodeDriver >>> driver = DummyNodeDriver(0) >>> size = driver.list_sizes()[0] >>> size.ram 128 >>> size.bandwidth 500 >>> size.price 4 """ def __init__(self, id, # type: str name, # type: str ram, # type: int disk, # type: int bandwidth, # type: Optional[int] price, # type: float driver, # type: NodeDriver extra=None # type: Optional[dict] ): """ :param id: Size ID. :type id: ``str`` :param name: Size name. :type name: ``str`` :param ram: Amount of memory (in MB) provided by this size. :type ram: ``int`` :param disk: Amount of disk storage (in GB) provided by this image. :type disk: ``int`` :param bandwidth: Amount of bandiwdth included with this size. :type bandwidth: ``int`` :param price: Price (in US dollars) of running this node for an hour. :type price: ``float`` :param driver: Driver this size belongs to. :type driver: :class:`.NodeDriver` :param extra: Optional provider specific attributes associated with this size. :type extra: ``dict`` """ self.id = str(id) self.name = name self.ram = ram self.disk = disk self.bandwidth = bandwidth self.price = price self.driver = driver self.extra = extra or {} UuidMixin.__init__(self) def __repr__(self): return (('<NodeSize: id=%s, name=%s, ram=%s disk=%s bandwidth=%s ' 'price=%s driver=%s ...>') % (self.id, self.name, self.ram, self.disk, self.bandwidth, self.price, self.driver.name)) class NodeImage(UuidMixin): """ An operating system image. NodeImage objects are typically returned by the driver for the cloud provider in response to the list_images function >>> from libcloud.compute.drivers.dummy import DummyNodeDriver >>> driver = DummyNodeDriver(0) >>> image = driver.list_images()[0] >>> image.name 'Ubuntu 9.10' Apart from name and id, there is no further standard information; other parameters are stored in a driver specific "extra" variable When creating a node, a node image should be given as an argument to the create_node function to decide which OS image to use. >>> node = driver.create_node(image=image) """ def __init__(self, id, # type: str name, # type: str driver, # type: NodeDriver extra=None # type: Optional[dict] ): """ :param id: Image ID. :type id: ``str`` :param name: Image name. :type name: ``str`` :param driver: Driver this image belongs to. :type driver: :class:`.NodeDriver` :param extra: Optional provided specific attributes associated with this image. :type extra: ``dict`` """ self.id = str(id) self.name = name self.driver = driver self.extra = extra or {} UuidMixin.__init__(self) def __repr__(self): return (('<NodeImage: id=%s, name=%s, driver=%s ...>') % (self.id, self.name, self.driver.name)) class NodeImageMember(UuidMixin): """ A member of an image. At some cloud providers there is a mechanism to share images. Once an image is shared with another account that user will be a 'member' of the image. For example, see the image members schema in the OpenStack Image Service API v2 documentation. https://developer.openstack.org/ api-ref/image/v2/index.html#image-members-schema NodeImageMember objects are typically returned by the driver for the cloud provider in response to the list_image_members method """ def __init__(self, id, # type: str image_id, # type: str state, # type: NodeImageMemberState driver, # type: NodeDriver created=None, # type: datetime.datetime extra=None # type: Optional[dict] ): """ :param id: Image member ID. :type id: ``str`` :param id: The associated image ID. :type id: ``str`` :param state: State of the NodeImageMember. If not provided, will default to UNKNOWN. :type state: :class:`.NodeImageMemberState` :param driver: Driver this image belongs to. :type driver: :class:`.NodeDriver` :param created: A datetime object that represents when the image member was created :type created: ``datetime.datetime`` :param extra: Optional provided specific attributes associated with this image. :type extra: ``dict`` """ self.id = str(id) self.image_id = str(image_id) self.state = state self.driver = driver self.created = created self.extra = extra or {} UuidMixin.__init__(self) def __repr__(self): return (('<NodeImageMember: id=%s, image_id=%s, ' 'state=%s, driver=%s ...>') % (self.id, self.image_id, self.state, self.driver.name)) class NodeLocation(object): """ A physical location where nodes can be. >>> from libcloud.compute.drivers.dummy import DummyNodeDriver >>> driver = DummyNodeDriver(0) >>> location = driver.list_locations()[0] >>> location.country 'US' """ def __init__(self, id, # type: str name, # type: str country, # type: str driver, # type: NodeDriver extra=None # type: Optional[dict] ): """ :param id: Location ID. :type id: ``str`` :param name: Location name. :type name: ``str`` :param country: Location country. :type country: ``str`` :param driver: Driver this location belongs to. :type driver: :class:`.NodeDriver` :param extra: Optional provided specific attributes associated with this location. :type extra: ``dict`` """ self.id = str(id) self.name = name self.country = country self.driver = driver self.extra = extra or {} def __repr__(self): return (('<NodeLocation: id=%s, name=%s, country=%s, driver=%s>') % (self.id, self.name, self.country, self.driver.name)) class NodeAuthSSHKey(object): """ An SSH key to be installed for authentication to a node. This is the actual contents of the users ssh public key which will normally be installed as root's public key on the node. >>> pubkey = '...' # read from file >>> from libcloud.compute.base import NodeAuthSSHKey >>> k = NodeAuthSSHKey(pubkey) >>> k <NodeAuthSSHKey> """ def __init__(self, pubkey): # type: (str) -> None """ :param pubkey: Public key material. :type pubkey: ``str`` """ self.pubkey = pubkey def __repr__(self): return '<NodeAuthSSHKey>' class NodeAuthPassword(object): """ A password to be used for authentication to a node. """ def __init__(self, password, generated=False): # type: (str, bool) -> None """ :param password: Password. :type password: ``str`` :type generated: ``True`` if this password was automatically generated, ``False`` otherwise. """ self.password = password self.generated = generated def __repr__(self): return '<NodeAuthPassword>' class StorageVolume(UuidMixin): """ A base StorageVolume class to derive from. """ def __init__(self, id, # type: str name, # type: str size, # type: int driver, # type: NodeDriver state=None, # type: Optional[StorageVolumeState] extra=None # type: Optional[Dict] ): # type: (...) -> None """ :param id: Storage volume ID. :type id: ``str`` :param name: Storage volume name. :type name: ``str`` :param size: Size of this volume (in GB). :type size: ``int`` :param driver: Driver this image belongs to. :type driver: :class:`.NodeDriver` :param state: Optional state of the StorageVolume. If not provided, will default to UNKNOWN. :type state: :class:`.StorageVolumeState` :param extra: Optional provider specific attributes. :type extra: ``dict`` """ self.id = id self.name = name self.size = size self.driver = driver self.extra = extra self.state = state UuidMixin.__init__(self) def list_snapshots(self): # type: () -> List[VolumeSnapshot] """ :rtype: ``list`` of ``VolumeSnapshot`` """ return self.driver.list_volume_snapshots(volume=self) def attach(self, node, device=None): # type: (Node, Optional[str]) -> bool """ Attach this volume to a node. :param node: Node to attach volume to :type node: :class:`.Node` :param device: Where the device is exposed, e.g. '/dev/sdb (optional) :type device: ``str`` :return: ``True`` if attach was successful, ``False`` otherwise. :rtype: ``bool`` """ return self.driver.attach_volume(node=node, volume=self, device=device) def detach(self): # type: () -> bool """ Detach this volume from its node :return: ``True`` if detach was successful, ``False`` otherwise. :rtype: ``bool`` """ return self.driver.detach_volume(volume=self) def snapshot(self, name): # type: (str) -> VolumeSnapshot """ Creates a snapshot of this volume. :return: Created snapshot. :rtype: ``VolumeSnapshot`` """ return self.driver.create_volume_snapshot(volume=self, name=name) def destroy(self): # type: () -> bool """ Destroy this storage volume. :return: ``True`` if destroy was successful, ``False`` otherwise. :rtype: ``bool`` """ return self.driver.destroy_volume(volume=self) def __repr__(self): return '<StorageVolume id=%s size=%s driver=%s>' % ( self.id, self.size, self.driver.name) class VolumeSnapshot(object): """ A base VolumeSnapshot class to derive from. """ def __init__(self, id, # type: str driver, # type: NodeDriver size=None, # type: int extra=None, # type: Optional[Dict] created=None, # type: Optional[datetime.datetime] state=None, # type: StorageVolumeState name=None # type: Optional[str] ): # type: (...) -> None """ VolumeSnapshot constructor. :param id: Snapshot ID. :type id: ``str`` :param driver: The driver that represents a connection to the provider :type driver: `NodeDriver` :param size: A snapshot size in GB. :type size: ``int`` :param extra: Provider depends parameters for snapshot. :type extra: ``dict`` :param created: A datetime object that represents when the snapshot was created :type created: ``datetime.datetime`` :param state: A string representing the state the snapshot is in. See `libcloud.compute.types.StorageVolumeState`. :type state: ``StorageVolumeState`` :param name: A string representing the name of the snapshot :type name: ``str`` """ self.id = id self.driver = driver self.size = size self.extra = extra or {} self.created = created self.state = state self.name = name def destroy(self): # type: () -> bool """ Destroys this snapshot. :rtype: ``bool`` """ return self.driver.destroy_volume_snapshot(snapshot=self) def __repr__(self): return ('<VolumeSnapshot "%s" id=%s size=%s driver=%s state=%s>' % (self.name, self.id, self.size, self.driver.name, self.state)) class KeyPair(object): """ Represents a SSH key pair. """ def __init__(self, name, # type: str public_key, # type: str fingerprint, # type: str driver, # type: NodeDriver private_key=None, # type: Optional[str] extra=None # type: Optional[Dict] ): # type: (...) -> None """ Constructor. :keyword name: Name of the key pair object. :type name: ``str`` :keyword fingerprint: Key fingerprint. :type fingerprint: ``str`` :keyword public_key: Public key in OpenSSH format. :type public_key: ``str`` :keyword private_key: Private key in PEM format. :type private_key: ``str`` :keyword extra: Provider specific attributes associated with this key pair. (optional) :type extra: ``dict`` """ self.name = name self.fingerprint = fingerprint self.public_key = public_key self.private_key = private_key self.driver = driver self.extra = extra or {} def __repr__(self): return ('<KeyPair name=%s fingerprint=%s driver=%s>' % (self.name, self.fingerprint, self.driver.name)) class NodeDriver(BaseDriver): """ A base NodeDriver class to derive from This class is always subclassed by a specific driver. For examples of base behavior of most functions (except deploy node) see the dummy driver. """ connectionCls = ConnectionKey # type: Type[Connection] name = None # type: str api_name = None # type: str website = None # type: str type = None # type: Union[Provider,str] port = None # type: int features = {'create_node': []} # type: Dict[str, List[str]] """ List of available features for a driver. - :meth:`libcloud.compute.base.NodeDriver.create_node` - ssh_key: Supports :class:`.NodeAuthSSHKey` as an authentication method for nodes. - password: Supports :class:`.NodeAuthPassword` as an authentication method for nodes. - generates_password: Returns a password attribute on the Node object returned from creation. """ NODE_STATE_MAP = {} # type: Dict[str, NodeState] def list_nodes(self, *args, **kwargs): # type: (Any, Any) -> List[Node] """ List all nodes. :return: list of node objects :rtype: ``list`` of :class:`.Node` """ raise NotImplementedError( 'list_nodes not implemented for this driver') def list_sizes(self, location=None): # type: (Optional[NodeLocation]) -> List[NodeSize] """ List sizes on a provider :param location: The location at which to list sizes :type location: :class:`.NodeLocation` :return: list of node size objects :rtype: ``list`` of :class:`.NodeSize` """ raise NotImplementedError( 'list_sizes not implemented for this driver') def list_locations(self): # type: () -> List[NodeLocation] """ List data centers for a provider :return: list of node location objects :rtype: ``list`` of :class:`.NodeLocation` """ raise NotImplementedError( 'list_locations not implemented for this driver') def create_node(self, name, # type: str size, # type: NodeSize image, # type: NodeImage location=None, # type: Optional[NodeLocation] auth=None # type: T_Auth ): # type: (...) -> Node """ Create a new node instance. This instance will be started automatically. Not all hosting API's are created equal and to allow libcloud to support as many as possible there are some standard supported variations of ``create_node``. These are declared using a ``features`` API. You can inspect ``driver.features['create_node']`` to see what variation of the API you are dealing with: ``ssh_key`` You can inject a public key into a new node allows key based SSH authentication. ``password`` You can inject a password into a new node for SSH authentication. If no password is provided libcloud will generated a password. The password will be available as ``return_value.extra['password']``. ``generates_password`` The hosting provider will generate a password. It will be returned to you via ``return_value.extra['password']``. Some drivers allow you to set how you will authenticate with the instance that is created. You can inject this initial authentication information via the ``auth`` parameter. If a driver supports the ``ssh_key`` feature flag for ``created_node`` you can upload a public key into the new instance:: >>> from libcloud.compute.drivers.dummy import DummyNodeDriver >>> driver = DummyNodeDriver(0) >>> auth = NodeAuthSSHKey('pubkey data here') >>> node = driver.create_node("test_node", auth=auth) If a driver supports the ``password`` feature flag for ``create_node`` you can set a password:: >>> driver = DummyNodeDriver(0) >>> auth = NodeAuthPassword('mysecretpassword') >>> node = driver.create_node("test_node", auth=auth) If a driver supports the ``password`` feature and you don't provide the ``auth`` argument libcloud will assign a password:: >>> driver = DummyNodeDriver(0) >>> node = driver.create_node("test_node") >>> password = node.extra['password'] A password will also be returned in this way for drivers that declare the ``generates_password`` feature, though in that case the password is actually provided to the driver API by the hosting provider rather than generated by libcloud. You can only pass a :class:`.NodeAuthPassword` or :class:`.NodeAuthSSHKey` to ``create_node`` via the auth parameter if has the corresponding feature flag. :param name: String with a name for this new node (required) :type name: ``str`` :param size: The size of resources allocated to this node. (required) :type size: :class:`.NodeSize` :param image: OS Image to boot on node. (required) :type image: :class:`.NodeImage` :param location: Which data center to create a node in. If empty, undefined behavior will be selected. (optional) :type location: :class:`.NodeLocation` :param auth: Initial authentication information for the node (optional) :type auth: :class:`.NodeAuthSSHKey` or :class:`NodeAuthPassword` :return: The newly created node. :rtype: :class:`.Node` """ raise NotImplementedError( 'create_node not implemented for this driver') def deploy_node(self, deploy, # type: Deployment ssh_username='root', # type: str ssh_alternate_usernames=None, # type: Optional[List[str]] ssh_port=22, # type: int ssh_timeout=10, # type: int ssh_key=None, # type: Optional[T_Ssh_key] auth=None, # type: T_Auth timeout=SSH_CONNECT_TIMEOUT, # type: int max_tries=3, # type: int ssh_interface='public_ips', # type: str **create_node_kwargs): # type: (...) -> Node """ Create a new node, and start deployment. In order to be able to SSH into a created node access credentials are required. A user can pass either a :class:`.NodeAuthPassword` or :class:`.NodeAuthSSHKey` to the ``auth`` argument. If the ``create_node`` implementation supports that kind if credential (as declared in ``self.features['create_node']``) then it is passed on to ``create_node``. Otherwise it is not passed on to ``create_node`` and it is only used for authentication. If the ``auth`` parameter is not supplied but the driver declares it supports ``generates_password`` then the password returned by ``create_node`` will be used to SSH into the server. Finally, if the ``ssh_key_file`` is supplied that key will be used to SSH into the server. This function may raise a :class:`DeploymentException`, if a create_node call was successful, but there is a later error (like SSH failing or timing out). This exception includes a Node object which you may want to destroy if incomplete deployments are not desirable. >>> from libcloud.compute.drivers.dummy import DummyNodeDriver >>> from libcloud.compute.deployment import ScriptDeployment >>> from libcloud.compute.deployment import MultiStepDeployment >>> from libcloud.compute.base import NodeAuthSSHKey >>> driver = DummyNodeDriver(0) >>> key = NodeAuthSSHKey('...') # read from file >>> script = ScriptDeployment("yum -y install emacs strace tcpdump") >>> msd = MultiStepDeployment([key, script]) >>> def d(): ... try: ... driver.deploy_node(deploy=msd) ... except NotImplementedError: ... print ("not implemented for dummy driver") >>> d() not implemented for dummy driver Deploy node is typically not overridden in subclasses. The existing implementation should be able to handle most such. :param deploy: Deployment to run once machine is online and available to SSH. :type deploy: :class:`Deployment` :param ssh_username: Optional name of the account which is used when connecting to SSH server (default is root) :type ssh_username: ``str`` :param ssh_alternate_usernames: Optional list of ssh usernames to try to connect with if using the default one fails :type ssh_alternate_usernames: ``list`` :param ssh_port: Optional SSH server port (default is 22) :type ssh_port: ``int`` :param ssh_timeout: Optional SSH connection timeout in seconds (default is 10) :type ssh_timeout: ``float`` :param auth: Initial authentication information for the node (optional) :type auth: :class:`.NodeAuthSSHKey` or :class:`NodeAuthPassword` :param ssh_key: A path (or paths) to an SSH private key with which to attempt to authenticate. (optional) :type ssh_key: ``str`` or ``list`` of ``str`` :param timeout: How many seconds to wait before timing out. (default is 600) :type timeout: ``int`` :param max_tries: How many times to retry if a deployment fails before giving up (default is 3) :type max_tries: ``int`` :param ssh_interface: The interface to wait for. Default is 'public_ips', other option is 'private_ips'. :type ssh_interface: ``str`` """ if not libcloud.compute.ssh.have_paramiko: raise RuntimeError('paramiko is not installed. You can install ' + 'it using pip: pip install paramiko') if auth: if not isinstance(auth, (NodeAuthSSHKey, NodeAuthPassword)): raise NotImplementedError( 'If providing auth, only NodeAuthSSHKey or' 'NodeAuthPassword is supported') elif ssh_key: # If an ssh_key is provided we can try deploy_node pass elif 'create_node' in self.features: f = self.features['create_node'] if 'generates_password' not in f and "password" not in f: raise NotImplementedError( 'deploy_node not implemented for this driver') else: raise NotImplementedError( 'deploy_node not implemented for this driver') # NOTE 1: This is a workaround for legacy code. Sadly a lot of legacy # code uses **kwargs in "create_node()" method and simply ignores # "deploy_node()" arguments which are passed to it. # That's obviously far from idea that's why we first try to pass only # non-deploy node arguments to the "create_node()" methods and if it # that doesn't work, fall back to the old approach and simply pass in # all the arguments # NOTE 2: Some drivers which use password based SSH authentication # rely on password being stored on the "auth" argument and that's why # we also propagate that argument to "create_node()" method. try: # NOTE: We only pass auth to the method if auth argument is # provided if auth: node = self.create_node(auth=auth, **create_node_kwargs) else: node = self.create_node(**create_node_kwargs) except TypeError as e: msg_1_re = (r'create_node\(\) missing \d+ required ' 'positional arguments.*') msg_2_re = r'create_node\(\) takes at least \d+ arguments.*' if re.match(msg_1_re, str(e)) or re.match(msg_2_re, str(e)): # pylint: disable=unexpected-keyword-arg node = self.create_node( # type: ignore deploy=deploy, ssh_username=ssh_username, ssh_alternate_usernames=ssh_alternate_usernames, ssh_port=ssh_port, ssh_timeout=ssh_timeout, ssh_key=ssh_key, auth=auth, timeout=timeout, max_tries=max_tries, ssh_interface=ssh_interface, **create_node_kwargs) # pylint: enable=unexpected-keyword-arg else: raise e password = None if auth: if isinstance(auth, NodeAuthPassword): password = auth.password elif 'password' in node.extra: password = node.extra['password'] wait_timeout = timeout or NODE_ONLINE_WAIT_TIMEOUT # Wait until node is up and running and has IP assigned try: node, ip_addresses = self.wait_until_running( nodes=[node], wait_period=3, timeout=wait_timeout, ssh_interface=ssh_interface)[0] except Exception as e: raise DeploymentError(node=node, original_exception=e, driver=self) ssh_alternate_usernames = ssh_alternate_usernames or [] deploy_timeout = timeout or SSH_CONNECT_TIMEOUT deploy_error = None for username in ([ssh_username] + ssh_alternate_usernames): try: self._connect_and_run_deployment_script( task=deploy, node=node, ssh_hostname=ip_addresses[0], ssh_port=ssh_port, ssh_username=username, ssh_password=password, ssh_key_file=ssh_key, ssh_timeout=ssh_timeout, timeout=deploy_timeout, max_tries=max_tries) except Exception as e: # Try alternate username # Todo: Need to fix paramiko so we can catch a more specific # exception deploy_error = e else: # Script successfully executed, don't try alternate username deploy_error = None break if deploy_error is not None: raise DeploymentError(node=node, original_exception=deploy_error, driver=self) return node def reboot_node(self, node): # type: (Node) -> bool """ Reboot a node. :param node: The node to be rebooted :type node: :class:`.Node` :return: True if the reboot was successful, otherwise False :rtype: ``bool`` """ raise NotImplementedError( 'reboot_node not implemented for this driver') def start_node(self, node): # type: (Node) -> bool """ Start a node. :param node: The node to be started :type node: :class:`.Node` :return: True if the start was successful, otherwise False :rtype: ``bool`` """ raise NotImplementedError( 'start_node not implemented for this driver') def stop_node(self, node): # type: (Node) -> bool """ Stop a node :param node: The node to be stopped. :type node: :class:`.Node` :return: True if the stop was successful, otherwise False :rtype: ``bool`` """ raise NotImplementedError( 'stop_node not implemented for this driver') def destroy_node(self, node): # type: (Node) -> bool """ Destroy a node. Depending upon the provider, this may destroy all data associated with the node, including backups. :param node: The node to be destroyed :type node: :class:`.Node` :return: True if the destroy was successful, False otherwise. :rtype: ``bool`` """ raise NotImplementedError( 'destroy_node not implemented for this driver') ## # Volume and snapshot management methods ## def list_volumes(self): # type: () -> List[StorageVolume] """ List storage volumes. :rtype: ``list`` of :class:`.StorageVolume` """ raise NotImplementedError( 'list_volumes not implemented for this driver') def list_volume_snapshots(self, volume): # type: (StorageVolume) -> List[VolumeSnapshot] """ List snapshots for a storage volume. :rtype: ``list`` of :class:`VolumeSnapshot` """ raise NotImplementedError( 'list_volume_snapshots not implemented for this driver') def create_volume(self, size, # type: int name, # type: str location=None, # Optional[NodeLocation] snapshot=None # Optional[VolumeSnapshot] ): # type: (...) -> StorageVolume """ Create a new volume. :param size: Size of volume in gigabytes (required) :type size: ``int`` :param name: Name of the volume to be created :type name: ``str`` :param location: Which data center to create a volume in. If empty, undefined behavior will be selected. (optional) :type location: :class:`.NodeLocation` :param snapshot: Snapshot from which to create the new volume. (optional) :type snapshot: :class:`.VolumeSnapshot` :return: The newly created volume. :rtype: :class:`StorageVolume` """ raise NotImplementedError( 'create_volume not implemented for this driver') def create_volume_snapshot(self, volume, name=None): # type: (StorageVolume, Optional[str]) -> VolumeSnapshot """ Creates a snapshot of the storage volume. :param volume: The StorageVolume to create a VolumeSnapshot from :type volume: :class:`.StorageVolume` :param name: Name of created snapshot (optional) :type name: `str` :rtype: :class:`VolumeSnapshot` """ raise NotImplementedError( 'create_volume_snapshot not implemented for this driver') def attach_volume(self, node, volume, device=None): # type: (Node, StorageVolume, Optional[str]) -> bool """ Attaches volume to node. :param node: Node to attach volume to. :type node: :class:`.Node` :param volume: Volume to attach. :type volume: :class:`.StorageVolume` :param device: Where the device is exposed, e.g. '/dev/sdb' :type device: ``str`` :rytpe: ``bool`` """ raise NotImplementedError('attach not implemented for this driver') def detach_volume(self, volume): # type: (StorageVolume) -> bool """ Detaches a volume from a node. :param volume: Volume to be detached :type volume: :class:`.StorageVolume` :rtype: ``bool`` """ raise NotImplementedError('detach not implemented for this driver') def destroy_volume(self, volume): # type: (StorageVolume) -> bool """ Destroys a storage volume. :param volume: Volume to be destroyed :type volume: :class:`StorageVolume` :rtype: ``bool`` """ raise NotImplementedError( 'destroy_volume not implemented for this driver') def destroy_volume_snapshot(self, snapshot): # type: (VolumeSnapshot) -> bool """ Destroys a snapshot. :param snapshot: The snapshot to delete :type snapshot: :class:`VolumeSnapshot` :rtype: :class:`bool` """ raise NotImplementedError( 'destroy_volume_snapshot not implemented for this driver') ## # Image management methods ## def list_images(self, location=None): # type: (Optional[NodeLocation]) -> List[NodeImage] """ List images on a provider. :param location: The location at which to list images. :type location: :class:`.NodeLocation` :return: list of node image objects. :rtype: ``list`` of :class:`.NodeImage` """ raise NotImplementedError( 'list_images not implemented for this driver') def create_image(self, node, name, description=None): # type: (Node, str, Optional[str]) -> List[NodeImage] """ Creates an image from a node object. :param node: Node to run the task on. :type node: :class:`.Node` :param name: name for new image. :type name: ``str`` :param description: description for new image. :type name: ``description`` :rtype: :class:`.NodeImage`: :return: NodeImage instance on success. """ raise NotImplementedError( 'create_image not implemented for this driver') def delete_image(self, node_image): # type: (NodeImage) -> bool """ Deletes a node image from a provider. :param node_image: Node image object. :type node_image: :class:`.NodeImage` :return: ``True`` if delete_image was successful, ``False`` otherwise. :rtype: ``bool`` """ raise NotImplementedError( 'delete_image not implemented for this driver') def get_image(self, image_id): # type: (str) -> NodeImage """ Returns a single node image from a provider. :param image_id: Node to run the task on. :type image_id: ``str`` :rtype :class:`.NodeImage`: :return: NodeImage instance on success. """ raise NotImplementedError( 'get_image not implemented for this driver') def copy_image(self, source_region, node_image, name, description=None): # type: (str, NodeImage, str, Optional[str]) -> NodeImage """ Copies an image from a source region to the current region. :param source_region: Region to copy the node from. :type source_region: ``str`` :param node_image: NodeImage to copy. :type node_image: :class:`.NodeImage`: :param name: name for new image. :type name: ``str`` :param description: description for new image. :type name: ``str`` :rtype: :class:`.NodeImage`: :return: NodeImage instance on success. """ raise NotImplementedError( 'copy_image not implemented for this driver') ## # SSH key pair management methods ## def list_key_pairs(self): # type: () -> List[KeyPair] """ List all the available key pair objects. :rtype: ``list`` of :class:`.KeyPair` objects """ raise NotImplementedError( 'list_key_pairs not implemented for this driver') def get_key_pair(self, name): # type: (str) -> KeyPair """ Retrieve a single key pair. :param name: Name of the key pair to retrieve. :type name: ``str`` :rtype: :class:`.KeyPair` """ raise NotImplementedError( 'get_key_pair not implemented for this driver') def create_key_pair(self, name): # type: (str) -> KeyPair """ Create a new key pair object. :param name: Key pair name. :type name: ``str`` :rtype: :class:`.KeyPair` object """ raise NotImplementedError( 'create_key_pair not implemented for this driver') def import_key_pair_from_string(self, name, key_material): # type: (str, str) -> KeyPair """ Import a new public key from string. :param name: Key pair name. :type name: ``str`` :param key_material: Public key material. :type key_material: ``str`` :rtype: :class:`.KeyPair` object """ raise NotImplementedError( 'import_key_pair_from_string not implemented for this driver') def import_key_pair_from_file(self, name, key_file_path): # type: (str, str) -> KeyPair """ Import a new public key from string. :param name: Key pair name. :type name: ``str`` :param key_file_path: Path to the public key file. :type key_file_path: ``str`` :rtype: :class:`.KeyPair` object """ key_file_path = os.path.expanduser(key_file_path) with open(key_file_path, 'r') as fp: key_material = fp.read().strip() return self.import_key_pair_from_string(name=name, key_material=key_material) def delete_key_pair(self, key_pair): # type: (KeyPair) -> bool """ Delete an existing key pair. :param key_pair: Key pair object. :type key_pair: :class:`.KeyPair` :rtype: ``bool`` """ raise NotImplementedError( 'delete_key_pair not implemented for this driver') def wait_until_running(self, nodes, # type: List[Node] wait_period=3, # type: float timeout=600, # type: int ssh_interface='public_ips', # type: str force_ipv4=True, # type: bool ex_list_nodes_kwargs=None # type: Optional[Dict] ): # type: (...) -> List[Tuple[Node, List[str]]] """ Block until the provided nodes are considered running. Node is considered running when it's state is "running" and when it has at least one IP address assigned. :param nodes: List of nodes to wait for. :type nodes: ``list`` of :class:`.Node` :param wait_period: How many seconds to wait between each loop iteration. (default is 3) :type wait_period: ``int`` :param timeout: How many seconds to wait before giving up. (default is 600) :type timeout: ``int`` :param ssh_interface: Which attribute on the node to use to obtain an IP address. Valid options: public_ips, private_ips. Default is public_ips. :type ssh_interface: ``str`` :param force_ipv4: Ignore IPv6 addresses (default is True). :type force_ipv4: ``bool`` :param ex_list_nodes_kwargs: Optional driver-specific keyword arguments which are passed to the ``list_nodes`` method. :type ex_list_nodes_kwargs: ``dict`` :return: ``[(Node, ip_addresses)]`` list of tuple of Node instance and list of ip_address on success. :rtype: ``list`` of ``tuple`` """ ex_list_nodes_kwargs = ex_list_nodes_kwargs or {} def is_supported(address): # type: (str) -> bool """ Return True for supported address. """ if force_ipv4 and not is_valid_ip_address(address=address, family=socket.AF_INET): return False return True def filter_addresses(addresses): # type: (List[str]) -> List[str] """ Return list of supported addresses. """ return [address for address in addresses if is_supported(address)] if ssh_interface not in ['public_ips', 'private_ips']: raise ValueError('ssh_interface argument must either be ' + 'public_ips or private_ips') start = time.time() end = start + timeout uuids = set([node.uuid for node in nodes]) while time.time() < end: all_nodes = self.list_nodes(**ex_list_nodes_kwargs) matching_nodes = list([node for node in all_nodes if node.uuid in uuids]) if len(matching_nodes) > len(uuids): found_uuids = [node.uuid for node in matching_nodes] msg = ('Unable to match specified uuids ' + '(%s) with existing nodes. Found ' % (uuids) + 'multiple nodes with same uuid: (%s)' % (found_uuids)) raise LibcloudError(value=msg, driver=self) running_nodes = [node for node in matching_nodes if node.state == NodeState.RUNNING] addresses = [] for node in running_nodes: node_addresses = filter_addresses(getattr(node, ssh_interface)) if len(node_addresses) >= 1: addresses.append(node_addresses) if len(running_nodes) == len(uuids) == len(addresses): return list(zip(running_nodes, addresses)) else: time.sleep(wait_period) continue raise LibcloudError(value='Timed out after %s seconds' % (timeout), driver=self) def _get_and_check_auth(self, auth): # type: (T_Auth) -> T_Auth """ Helper function for providers supporting :class:`.NodeAuthPassword` or :class:`.NodeAuthSSHKey` Validates that only a supported object type is passed to the auth parameter and raises an exception if it is not. If no :class:`.NodeAuthPassword` object is provided but one is expected then a password is automatically generated. """ if isinstance(auth, NodeAuthPassword): if 'password' in self.features['create_node']: return auth raise LibcloudError( 'Password provided as authentication information, but password' 'not supported', driver=self) if isinstance(auth, NodeAuthSSHKey): if 'ssh_key' in self.features['create_node']: return auth raise LibcloudError( 'SSH Key provided as authentication information, but SSH Key' 'not supported', driver=self) if 'password' in self.features['create_node']: value = os.urandom(16) value = binascii.hexlify(value).decode('ascii') # Some providers require password to also include uppercase # characters so convert some characters to uppercase password = '' for char in value: if not char.isdigit() and char.islower(): if random.randint(0, 1) == 1: char = char.upper() password += char return NodeAuthPassword(password, generated=True) if auth: raise LibcloudError( '"auth" argument provided, but it was not a NodeAuthPassword' 'or NodeAuthSSHKey object', driver=self) def _wait_until_running(self, node, wait_period=3, timeout=600, ssh_interface='public_ips', force_ipv4=True): # type: (Node, float, int, str, bool) -> List[Tuple[Node, List[str]]] # This is here for backward compatibility and will be removed in the # next major release return self.wait_until_running(nodes=[node], wait_period=wait_period, timeout=timeout, ssh_interface=ssh_interface, force_ipv4=force_ipv4) def _ssh_client_connect(self, ssh_client, wait_period=1.5, timeout=300): # type: (BaseSSHClient, float, int) -> BaseSSHClient """ Try to connect to the remote SSH server. If a connection times out or is refused it is retried up to timeout number of seconds. :param ssh_client: A configured SSHClient instance :type ssh_client: ``SSHClient`` :param wait_period: How many seconds to wait between each loop iteration. (default is 1.5) :type wait_period: ``int`` :param timeout: How many seconds to wait before giving up. (default is 300) :type timeout: ``int`` :return: ``SSHClient`` on success """ start = time.time() end = start + timeout while time.time() < end: try: ssh_client.connect() except SSH_TIMEOUT_EXCEPTION_CLASSES as e: # Errors which represent fatal invalid key files which should # be propagated to the user message = str(e).lower() invalid_key_msgs = [ 'no such file or directory', 'invalid key', 'not a valid ', ] # Propagate (key) file doesn't exist errors # NOTE: Paramiko only supports PEM private key format # See https://github.com/paramiko/paramiko/issues/1313 # for details for invalid_key_msg in invalid_key_msgs: if invalid_key_msg in message: raise e # Retry if a connection is refused, timeout occurred, # or the connection fails due to failed authentication. ssh_client.close() time.sleep(wait_period) continue else: return ssh_client raise LibcloudError(value='Could not connect to the remote SSH ' + 'server. Giving up.', driver=self) def _connect_and_run_deployment_script( self, task, # type: Deployment node, # type: Node ssh_hostname, # type: str ssh_port, # type: int ssh_username, # type: str ssh_password, # type: Optional[str] ssh_key_file, # type:Optional[T_Ssh_key] ssh_timeout, # type: int timeout, # type: int max_tries # type: int ): """ Establish an SSH connection to the node and run the provided deployment task. :rtype: :class:`.Node`: :return: Node instance on success. """ ssh_client = SSHClient(hostname=ssh_hostname, port=ssh_port, username=ssh_username, password=ssh_password, key_files=ssh_key_file, timeout=ssh_timeout) ssh_client = self._ssh_client_connect(ssh_client=ssh_client, timeout=timeout) # Execute the deployment task node = self._run_deployment_script(task=task, node=node, ssh_client=ssh_client, max_tries=max_tries) return node def _run_deployment_script(self, task, node, ssh_client, max_tries=3): # type: (Deployment, Node, BaseSSHClient, int) -> Node """ Run the deployment script on the provided node. At this point it is assumed that SSH connection has already been established. :param task: Deployment task to run. :type task: :class:`Deployment` :param node: Node to run the task on. :type node: ``Node`` :param ssh_client: A configured and connected SSHClient instance. :type ssh_client: :class:`SSHClient` :param max_tries: How many times to retry if a deployment fails before giving up. (default is 3) :type max_tries: ``int`` :rtype: :class:`.Node` :return: ``Node`` Node instance on success. """ tries = 0 while tries < max_tries: try: node = task.run(node, ssh_client) except Exception as e: tries += 1 if tries >= max_tries: raise LibcloudError(value='Failed after %d tries: %s' % (max_tries, str(e)), driver=self) else: # Deployment succeeded ssh_client.close() return node return node def _get_size_price(self, size_id): # type: (str) -> float """ Return pricing information for the provided size id. """ return get_size_price(driver_type='compute', driver_name=self.api_name, size_id=size_id) if __name__ == '__main__': import doctest doctest.testmod()
33.707701
79
0.569397