hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
f9e45c36491a00295de9370b55f71068fbf9553b
448
py
Python
python/Data Structures and Algorithms in Python Book/recursion/linear_sum.py
gauravssnl/Data-Structures-and-Algorithms
1c335c72ce514d4f95090241bbd6edf01a1141a8
[ "MIT" ]
7
2020-05-10T09:57:23.000Z
2021-03-27T11:55:07.000Z
python/Data Structures and Algorithms in Python Book/recursion/linear_sum.py
gauravssnl/Data-Structures-and-Algorithms
1c335c72ce514d4f95090241bbd6edf01a1141a8
[ "MIT" ]
null
null
null
python/Data Structures and Algorithms in Python Book/recursion/linear_sum.py
gauravssnl/Data-Structures-and-Algorithms
1c335c72ce514d4f95090241bbd6edf01a1141a8
[ "MIT" ]
3
2021-03-27T03:42:57.000Z
2021-08-09T12:03:41.000Z
# For n inputs, this function makes n+1 calls # Complexity: O(n) def linear_sum(S, n): """Computing the sum of a sequence recursively, by adding the last number to the sum of the first n−1 numbers""" if n == 0: return 0 else: print("linear_sum({}, {}) + S[n-1]: {}".format(S, n-1, S[n-1])) return linear_sum(S, n-1) + S[n-1] if __name__ == "__main__": s = list(range(1, 11)) print(linear_sum(s, len(s)))
34.461538
116
0.589286
758e148f20a3fce55bb2aff040978440eca17515
295
py
Python
benchmark/backends/command_dispatcher/channels/base.py
creditease-natrix/natrix
8b97efdc9287645ea6b99dcf3a99fbe3f6ba6862
[ "MIT" ]
3
2019-06-28T02:25:10.000Z
2019-12-16T08:50:08.000Z
benchmark/backends/command_dispatcher/channels/base.py
creditease-natrix/natrix
8b97efdc9287645ea6b99dcf3a99fbe3f6ba6862
[ "MIT" ]
3
2020-02-12T00:17:22.000Z
2021-06-10T21:29:11.000Z
benchmark/backends/command_dispatcher/channels/base.py
creditease-natrix/natrix
8b97efdc9287645ea6b99dcf3a99fbe3f6ba6862
[ "MIT" ]
1
2019-06-22T06:04:59.000Z
2019-06-22T06:04:59.000Z
# -*- coding: utf-8 -*- """ """ class DispachClient(object): def __init__(self): super(DispachClient, self).__init__() def __enter__(self): pass def __exit__(self, exc_type, exc_val, exc_tb): pass def subscribe(self, *args, **kwargs): pass
14.75
50
0.572881
c08c2fc88465e6b5637e8fe10ac9dabe9ea01d0b
2,328
py
Python
tests/casefiles/Tool_Menu_EventBinding_Phoenix.py
RSabet/wxGlade
8b62eb8397308e60977857455b2765727b1b940f
[ "MIT" ]
225
2018-03-26T11:23:22.000Z
2022-03-24T09:44:08.000Z
tests/casefiles/Tool_Menu_EventBinding_Phoenix.py
RSabet/wxGlade
8b62eb8397308e60977857455b2765727b1b940f
[ "MIT" ]
403
2018-01-03T19:47:28.000Z
2018-03-23T17:43:39.000Z
tests/casefiles/Tool_Menu_EventBinding_Phoenix.py
DietmarSchwertberger/wxGlade
8e78cdc509d458cc896d47315e19f3daa6c09213
[ "MIT" ]
47
2018-04-08T16:48:38.000Z
2021-12-21T20:08:44.000Z
#!/usr/bin/env python # -*- coding: UTF-8 -*- # # generated by wxGlade # import wx # begin wxGlade: dependencies # end wxGlade # begin wxGlade: extracode # end wxGlade class MyFrame(wx.Frame): def __init__(self, *args, **kwds): # begin wxGlade: MyFrame.__init__ kwds["style"] = kwds.get("style", 0) | wx.DEFAULT_FRAME_STYLE wx.Frame.__init__(self, *args, **kwds) self.SetSize((400, 300)) self.SetTitle("frame") # Menu Bar self.frame_menubar = wx.MenuBar() wxglade_tmp_menu = wx.Menu() self.frame_menubar.item1 = wxglade_tmp_menu.Append(wx.ID_ANY, "My Menu Item 1", "") self.Bind(wx.EVT_MENU, self.on_menu_item1, self.frame_menubar.item1) item = wxglade_tmp_menu.Append(wx.ID_ANY, "My Menu Item 1", "without attribute name") self.Bind(wx.EVT_MENU, self.on_menu_item2, item) self.frame_menubar.Append(wxglade_tmp_menu, "Menu 1") self.SetMenuBar(self.frame_menubar) # Menu Bar end # Tool Bar self.frame_toolbar = wx.ToolBar(self, -1) tool = self.frame_toolbar.AddTool(wx.ID_ANY, "My Tool", wx.Bitmap("..\\..\\icons\\button.png", wx.BITMAP_TYPE_ANY), wx.NullBitmap, wx.ITEM_NORMAL, "", "") self.Bind(wx.EVT_TOOL, self.on_my_tool, id=tool.GetId()) self.SetToolBar(self.frame_toolbar) self.frame_toolbar.Realize() # Tool Bar end sizer_1 = wx.BoxSizer(wx.VERTICAL) sizer_1.Add((0, 0), 0, 0, 0) self.SetSizer(sizer_1) self.Layout() # end wxGlade def on_menu_item1(self, event): # wxGlade: MyFrame.<event_handler> print("Event handler 'on_menu_item1' not implemented!") event.Skip() def on_menu_item2(self, event): # wxGlade: MyFrame.<event_handler> print("Event handler 'on_menu_item2' not implemented!") event.Skip() def on_my_tool(self, event): # wxGlade: MyFrame.<event_handler> print("Event handler 'on_my_tool' not implemented!") event.Skip() # end of class MyFrame class MyApp(wx.App): def OnInit(self): self.frame = MyFrame(None, wx.ID_ANY, "") self.SetTopWindow(self.frame) self.frame.Show() return True # end of class MyApp if __name__ == "__main__": app = MyApp(0) app.MainLoop()
29.468354
162
0.631014
fac168f10f3c88436db00c2b99047bdf1a1e8652
7,742
py
Python
src/models/predict_model.py
chrimaho/MDSI_ADSI_FEB21_AT1
79e854dbe6a3ed5a2eb1b27ae74071a0159f2b44
[ "MIT" ]
null
null
null
src/models/predict_model.py
chrimaho/MDSI_ADSI_FEB21_AT1
79e854dbe6a3ed5a2eb1b27ae74071a0159f2b44
[ "MIT" ]
null
null
null
src/models/predict_model.py
chrimaho/MDSI_ADSI_FEB21_AT1
79e854dbe6a3ed5a2eb1b27ae74071a0159f2b44
[ "MIT" ]
1
2021-01-28T10:41:21.000Z
2021-01-28T10:41:21.000Z
import numpy as np import pandas as pd from datetime import datetime # Define reusable function for easy random searching def easy_random_search \ ( estimator , search_space:dict , feat_trn:np.real , targ_trn:np.real , feat_val:np.real , targ_val:np.real , df_metrics:pd.DataFrame , n_iter:int=100 , cv:int=5 , random_state:int=123 , check_best_params:bool=True , dump_model:bool=True , dump_location:str="./models/Chris/" , dump_name:str=datetime.now().strftime("%Y-%m-%d %H:%M:%S") , print_all:bool=True , print_matrix:bool=True , print_plot:bool=True , print_df:bool=True ): """ Quickly and easily re-run the Random Search algorithm to find the optimal parameters and see the model results. Args: estimator (estimator): An estimator to be used for training. Must be instantiated! search_space (dict) : The search space to be checked. The keys must be valid hyperparameters in the `estimator` object. feat_trn (np.real) : The features to be used for training. targ_trn (np.real) : The target values to be used for training. feat_val (np.real) : The features to be used for validation. targ_val (np.real) : The target values to be used for validation. df_metrics (pd.DataFrame) : The data frame to be updated to contain the model metrics. n_iter (int, optional) : Number of times the Search Space is to be checked. Defaults to 100. cv (int, optional) : Number of cross-validations to be run per iteration. Defaults to 5. random_state (int, optional) : The random state to be used for the `cv` splitting. Defaults to 123. check_best_params (bool, optional) : Whether or not to print the best params from the search space after training. Defaults to True. dump_model (bool, optional) : Whether or not to dump the model after training. Defaults to True. dump_location (str, optional) : The location where the model should be dumped to. Defaults to "./models/Chris/". dump_name (str, optional) : The file name of the model once dumped. Defaults to datetime.now().strftime("%Y-%m-%d %H:%M:%S"). print_all (bool, optional) : Whether or not to print all the results & metrics. Defaults to True. print_matrix (bool, optional) : Whether or not to print the confusion matrix. Defaults to True. print_plot (bool, optional) : Whether or not to print the ROC plot. Defaults to True. print_df (bool, optional) : Whether or not to print the dataframe with the results from all models for all metrics. Defaults to True. Raises: Assertions: All parameters are asserted to the correct type and correct attributes. Returns: estimator: The re-trained model, using the best params from the search space. """ # Imports from sklearn.model_selection import RandomizedSearchCV from src.utils.misc import all_in from src.utils.performance import TicToc from src.models.performance import save_reg_perf import numpy as np from xgboost.sklearn import XGBModel from sklearn.metrics import make_scorer, roc_auc_score import os from joblib import dump # Instantiate timer t = TicToc() # Assertions # assert "base_estimator" in estimator.__dict__.keys() # assert "sklearn" in estimator.__module__.split(".")[0] assert isinstance(search_space, dict), \ "`search_space` must be type `dict`." assert all_in(search_space.keys(), estimator.__dict__.keys()), \ "All keys in `search_space` must be valid parameters in `estimator`." for param in ["feat_trn", "targ_trn", "feat_val", "targ_val"]: assert isinstance(eval(param), np.ndarray), \ "`{param}` must be type `np.ndarray`." assert np.all(np.isreal(eval(param))), \ "All elements of `{param}` must be Real numbers." assert len(feat_trn)==len(targ_trn), \ "Lengh of `feat_trn` must be same as `targ_trn`." assert len(feat_val)==len(targ_val), \ "Length of `feat_val` must be same as `targ_val`." for param in ["n_iter", "cv", "random_state"]: assert isinstance(eval(param), int), \ "`{param}` must be type `int`." assert eval(param)>0, \ "`{param}` must be a positive integer." for param in ["check_best_params", "dump_model", "print_all", "print_matrix", "print_plot", "print_df"]: assert isinstance(eval(param), bool), \ "`{param}` must be type `bool`." for param in ["dump_location", "dump_name"]: assert isinstance(eval(param), str), \ "`{param}` must be type `str`." assert os.path.isdir(dump_location), \ "`dump_location` must be a valid direcory." # Instantiate trainer clf = RandomizedSearchCV \ ( estimator=estimator , param_distributions=search_space , n_iter=n_iter , scoring={"auc": make_scorer(roc_auc_score, needs_proba=True)} , cv=cv , refit="auc" , random_state=random_state , return_train_score=True ) # Search for results t.tic() if isinstance(estimator, XGBModel): res = clf.fit(feat_trn, targ_trn, eval_metric="auc") else: res = clf.fit(feat_trn, targ_trn) t.toc() # Check best params if check_best_params: print("Best score: {}".format(res.best_score_)) print("Best params: {}".format(res.best_params_)) # Update params estimator = estimator.set_params(**res.best_params_) # Refit if isinstance(estimator, XGBModel): estimator.fit(feat_trn, targ_trn, eval_metric="auc") else: estimator.fit(feat_trn, targ_trn) # Predict pred_trn = estimator.predict(feat_trn) pred_prob_trn = estimator.predict_proba(feat_trn) pred_val = estimator.predict(feat_val) pred_prob_val = estimator.predict_proba(feat_val) # Check performance df_metrics = save_reg_perf \ ( targ=targ_trn , pred=pred_trn , pred_prob=pred_prob_trn , df_metrics=df_metrics , name=dump_name+" - within bag" , print_all=False , print_matrix=print_matrix , print_plot=print_plot , print_df=print_df ) df_metrics = save_reg_perf \ ( targ=targ_val , pred=pred_val , pred_prob=pred_prob_val , df_metrics=df_metrics , name=dump_name+" - out of bag" , print_all=print_all , print_matrix=print_matrix , print_plot=print_plot , print_df=print_df ) # Backup if dump_model: dump(estimator, dump_location+dump_name+".joblib") # Return return estimator, df_metrics def fit_predict_print(classifier, name:str, feat_trn, targ_trn, feat_val, targ_val, print_roc:bool=True): # Imports from src.utils import assertions as a from sklearn.metrics import roc_auc_score # Assertions assert a.all_str(name) assert a.all_dataframe_or_series_or_ndarray([feat_trn, targ_trn, feat_val, targ_val]) assert a.all_bool(print_roc) # Fit classifier classifier.fit(feat_trn, targ_trn) # Get predictions pred_trn = classifier.predict(feat_trn) pred_val = classifier.predict(feat_val) prob_val = classifier.predict_proba(feat_val)[:,1] # Get score scor_auc = roc_auc_score(targ_val, prob_val) if print_roc: print("\nROC:\t", scor_auc, "\n") return pred_trn, pred_val, prob_val
39.907216
150
0.64557
4c38e0580ebfaa9fe1d5519a655cbd8d2e9f48c1
5,666
py
Python
openstack_dashboard/dashboards/project/volumes/snapshots/tables.py
whitepages/horizon
47e5d8528d4e0ba22de29a23f675a8c27025130b
[ "Apache-2.0" ]
null
null
null
openstack_dashboard/dashboards/project/volumes/snapshots/tables.py
whitepages/horizon
47e5d8528d4e0ba22de29a23f675a8c27025130b
[ "Apache-2.0" ]
1
2021-03-21T11:48:09.000Z
2021-03-21T11:48:09.000Z
openstack_dashboard/dashboards/project/volumes/snapshots/tables.py
isabella232/horizon-2
47e5d8528d4e0ba22de29a23f675a8c27025130b
[ "Apache-2.0" ]
1
2021-03-21T11:36:49.000Z
2021-03-21T11:36:49.000Z
# Copyright 2012 Nebula, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from django.core.urlresolvers import reverse from django.utils import html from django.utils.http import urlencode from django.utils import safestring from django.utils.translation import ugettext_lazy as _ from django.utils.translation import ungettext_lazy from horizon import tables from openstack_dashboard import api from openstack_dashboard.api import base from openstack_dashboard.api import cinder from openstack_dashboard import policy from openstack_dashboard.dashboards.project.volumes \ .volumes import tables as volume_tables class LaunchSnapshot(volume_tables.LaunchVolume): name = "launch_snapshot" def get_link_url(self, datum): base_url = reverse(self.url) vol_id = "%s:snap" % self.table.get_object_id(datum) params = urlencode({"source_type": "volume_snapshot_id", "source_id": vol_id}) return "?".join([base_url, params]) def allowed(self, request, snapshot=None): if snapshot: if (snapshot._volume and getattr(snapshot._volume, 'bootable', '') == 'true'): return snapshot.status == "available" return False class DeleteVolumeSnapshot(policy.PolicyTargetMixin, tables.DeleteAction): @staticmethod def action_present(count): return ungettext_lazy( u"Delete Volume Snapshot", u"Delete Volume Snapshots", count ) @staticmethod def action_past(count): return ungettext_lazy( u"Scheduled deletion of Volume Snapshot", u"Scheduled deletion of Volume Snapshots", count ) policy_rules = (("volume", "volume:delete_snapshot"),) policy_target_attrs = (("project_id", 'os-extended-snapshot-attributes:project_id'),) def delete(self, request, obj_id): api.cinder.volume_snapshot_delete(request, obj_id) class EditVolumeSnapshot(policy.PolicyTargetMixin, tables.LinkAction): name = "edit" verbose_name = _("Edit Snapshot") url = "horizon:project:volumes:snapshots:update" classes = ("ajax-modal",) icon = "pencil" policy_rules = (("volume", "volume:update_snapshot"),) policy_target_attrs = (("project_id", 'os-extended-snapshot-attributes:project_id'),) def allowed(self, request, snapshot=None): return snapshot.status == "available" class CreateVolumeFromSnapshot(tables.LinkAction): name = "create_from_snapshot" verbose_name = _("Create Volume") url = "horizon:project:volumes:volumes:create" classes = ("ajax-modal",) icon = "camera" policy_rules = (("volume", "volume:create"),) def get_link_url(self, datum): base_url = reverse(self.url) params = urlencode({"snapshot_id": self.table.get_object_id(datum)}) return "?".join([base_url, params]) def allowed(self, request, volume=None): if volume and base.is_service_enabled(request, 'volume'): return volume.status == "available" return False class UpdateRow(tables.Row): ajax = True def get_data(self, request, snapshot_id): snapshot = cinder.volume_snapshot_get(request, snapshot_id) snapshot._volume = cinder.volume_get(request, snapshot.volume_id) return snapshot class SnapshotVolumeNameColumn(tables.Column): def get_raw_data(self, snapshot): volume = snapshot._volume if volume: volume_name = volume.name volume_name = html.escape(volume_name) else: volume_name = _("Unknown") return safestring.mark_safe(volume_name) def get_link_url(self, snapshot): volume = snapshot._volume if volume: volume_id = volume.id return reverse(self.link, args=(volume_id,)) class VolumeSnapshotsFilterAction(tables.FilterAction): def filter(self, table, snapshots, filter_string): """Naive case-insensitive search.""" query = filter_string.lower() return [snapshot for snapshot in snapshots if query in snapshot.name.lower()] class VolumeSnapshotsTable(volume_tables.VolumesTableBase): name = tables.Column("name", verbose_name=_("Name"), link="horizon:project:volumes:snapshots:detail") volume_name = SnapshotVolumeNameColumn( "name", verbose_name=_("Volume Name"), link="horizon:project:volumes:volumes:detail") class Meta(object): name = "volume_snapshots" verbose_name = _("Volume Snapshots") pagination_param = 'snapshot_marker' prev_pagination_param = 'prev_snapshot_marker' table_actions = (VolumeSnapshotsFilterAction, DeleteVolumeSnapshot,) row_actions = (CreateVolumeFromSnapshot, LaunchSnapshot, EditVolumeSnapshot, DeleteVolumeSnapshot) row_class = UpdateRow status_columns = ("status",) permissions = ['openstack.services.volume']
34.339394
78
0.667314
061dfe3a1c52800102fb0b2a669aecfe65ebd6bb
4,842
py
Python
graphs/__init__.py
alfonsoeromero/S2F
fccb741b15acfdeb02ca0de411eb4b00ae73be85
[ "MIT" ]
9
2019-10-24T18:46:46.000Z
2022-03-23T13:21:45.000Z
graphs/__init__.py
alfonsoeromero/S2F
fccb741b15acfdeb02ca0de411eb4b00ae73be85
[ "MIT" ]
5
2022-01-26T18:00:01.000Z
2022-02-08T14:09:42.000Z
graphs/__init__.py
alfonsoeromero/S2F
fccb741b15acfdeb02ca0de411eb4b00ae73be85
[ "MIT" ]
2
2022-01-27T12:52:32.000Z
2022-01-29T12:08:26.000Z
import abc import numpy as np import pandas as pd from scipy import sparse from itertools import combinations from Utils import FancyApp class Graph(FancyApp.FancyApp): __metaclass__ = abc.ABCMeta @abc.abstractmethod def compute_graph(self): """ Computes protein-protein graph(s) """ @abc.abstractmethod def get_graph(self, **kwargs): """ Return the computed graph :return: scipy matrix or dictionary of scipy matrices """ @abc.abstractmethod def write_graph(self, filename): """ Saves the computed graph in text format :param filename: the path to write the graph """ @staticmethod def assert_lexicographical_order(df, p1='Protein 1', p2='Protein 2'): """ Guarantees that lexicographical order is maintained in the dataframe so that df[p1] < df_col[p2] :param df: The dataframe to modify :param p1: the name of the min column :param p2: the name of the max column :return: None """ # 3.- we guarantee the lexicographical order between # the protein columns, that is, # that df_col.protein1 < df_col.protein2 min_protein = df[[p1, p2]].min(axis=1) max_protein = df[[p1, p2]].max(axis=1) df.loc[:, p1] = min_protein df.loc[:, p2] = max_protein @staticmethod def ij2triangular(rows, cols, n): """ Transforms the rows and columns coordinates to a 1 dimensional index which corresponds to the upper triangle of a n*n matrix. This mapping is consistent only for coordinates over the main diagnonal taken from https://stackoverflow.com/q/27086195/943138 :param rows: np.array of the rows :param cols: np.array of the columns :param n: number of nodes in the matrix :return: np.array indexing in 1 dimension """ return (n*(n-1)/2) - (n-rows)*((n-rows)-1)/2 + cols - rows - 1 # return ((cols-1)*n + rows) - ( n*(n-1)/2 - (n-cols)*(n-cols+1)/2 ) @staticmethod def triangular2ij(indices, n): """ Inverse of `ij2triangular` :param indices: np.array of indices :param n: number of nodes in the matrix :return: rows, cols in 2D coordinates """ rows = n - 2 - np.floor(np.sqrt(-8 * indices + 4 * n * (n - 1) - 7) / 2.0 - 0.5) cols = indices + rows + 1 - n * (n - 1) / 2 +\ (n - rows) * ((n - rows) - 1) / 2 return rows, cols @staticmethod def to_sparse_vector(x): """ Given a (N, N) sparse matrix in COO format, returns a sparse matrix of dimensions (N*(N-1)/2, 1), which keeps only the upper triangle above the main diagonal. This function requires that x is the output of scipy.sparse.triu(m, 1) :param x: scipy.sparse.coo_matrix with shape (N, N) :return: scipy.sparse.coo_matrix with shape (N*(N-1)/2, 1) """ n = x.shape[0] cols = np.zeros(x.data.shape[0]) rows = Graph.ij2triangular(x.row, x.col, n) return sparse.coo_matrix((x.data, (rows, cols)), shape=(int(n*(n-1)/2), 1)) @staticmethod def to_sparse_matrix(x): """ The inverse of `to_sparse_vector` :param x: scipy.sparse.coo_matrix with shape (N*(N-1)/2, 1) :return: scipy.sparse.coo_matrix with shape (N, N) """ n = int((1+np.sqrt(8*x.shape[0] + 1))/2) rows, cols = Graph.triangular2ij(x.row, n) return sparse.coo_matrix((x.data, (rows, cols)), shape=(n, n)) @staticmethod def fill_lower_triangle(x): """ Given a sparse matrix with only the upper triangle, fill the lower triangle and return. :param x: scipy.sparse.coo_matrix with shape (N, N) :return: scipy.sparse.coo_matrix with shape (N, N) """ return sparse.coo_matrix( sparse.triu(x, 1) + sparse.triu(x, 1).T ) @staticmethod def numpy_to_pandas(adjacency, proteins): """transform a numpy array into a pandas DataFrame Parameters ---------- adjacency : np.ndarray adjacency matrix proteins : List[str] the names of the nodes, it must correspond to the adjacency matrix Returns ------- pd.DataFrame the PPI in pandas format """ data = {'p1': [], 'p2': [], 'w': []} for p1, p2 in combinations(range(len(proteins)), 2): data['p1'].append(proteins[p1]) data['p2'].append(proteins[p2]) data['w'].append(adjacency[p1, p2]) return pd.DataFrame(data)
32.496644
79
0.566708
555d99c23e42b6b405db4c7df19a89a699dc8814
9,725
py
Python
applications/ParticleMechanicsApplication/tests/test_generate_mpm_particle.py
lcirrott/Kratos
8406e73e0ad214c4f89df4e75e9b29d0eb4a47ea
[ "BSD-4-Clause" ]
2
2019-10-25T09:28:10.000Z
2019-11-21T12:51:46.000Z
applications/ParticleMechanicsApplication/tests/test_generate_mpm_particle.py
lcirrott/Kratos
8406e73e0ad214c4f89df4e75e9b29d0eb4a47ea
[ "BSD-4-Clause" ]
13
2019-10-07T12:06:51.000Z
2020-02-18T08:48:33.000Z
applications/ParticleMechanicsApplication/tests/test_generate_mpm_particle.py
lcirrott/Kratos
8406e73e0ad214c4f89df4e75e9b29d0eb4a47ea
[ "BSD-4-Clause" ]
null
null
null
from __future__ import print_function, absolute_import, division import KratosMultiphysics import KratosMultiphysics.ParticleMechanicsApplication as KratosParticle import KratosMultiphysics.KratosUnittest as KratosUnittest class TestGenerateMPMParticle(KratosUnittest.TestCase): def _generate_particle_element_and_check(self, current_model, dimension, geometry_element, num_particle, expected_num_particle): KratosMultiphysics.Logger.GetDefaultOutput().SetSeverity(KratosMultiphysics.Logger.Severity.WARNING) # Initialize model part ## Material model part definition material_point_model_part = current_model.CreateModelPart("dummy_name") material_point_model_part.ProcessInfo.SetValue(KratosMultiphysics.DOMAIN_SIZE, dimension) ## Initial material model part definition initial_mesh_model_part = current_model.CreateModelPart("Initial_dummy_name") initial_mesh_model_part.ProcessInfo.SetValue(KratosMultiphysics.DOMAIN_SIZE, dimension) ## Grid model part definition grid_model_part = current_model.CreateModelPart("Background_Grid") grid_model_part.ProcessInfo.SetValue(KratosMultiphysics.DOMAIN_SIZE, dimension) # Create element and nodes for background grids sub_background = grid_model_part.CreateSubModelPart("test_background") self._create_nodes(sub_background, dimension, geometry_element) self._create_elements(sub_background,dimension, geometry_element) # Create element and nodes for initial meshes sub_mp = initial_mesh_model_part.CreateSubModelPart("test") sub_mp.GetProperties()[1].SetValue(KratosParticle.PARTICLES_PER_ELEMENT, num_particle) self._create_nodes(sub_mp, dimension, geometry_element) self._create_elements(sub_mp,dimension, geometry_element) # Generate MP Elements KratosParticle.GenerateMaterialPointElement(grid_model_part, initial_mesh_model_part, material_point_model_part, False, False) # Check total number of element particle_counter = material_point_model_part.NumberOfElements() self.assertEqual(expected_num_particle,particle_counter) def _create_nodes(self, initial_mp, dimension, geometry_element): if geometry_element == "Triangle": initial_mp.CreateNewNode(1, 0.0, 0.0, 0.0) initial_mp.CreateNewNode(2, 1.0, 0.0, 0.0) initial_mp.CreateNewNode(3, 0.0, 1.0, 0.0) if (dimension == 3): initial_mp.CreateNewNode(4, 0.0, 0.0, 1.0) elif geometry_element == "Quadrilateral": initial_mp.CreateNewNode(1, -0.5, -0.5, 0.0) initial_mp.CreateNewNode(2, 0.5, -0.5, 0.0) initial_mp.CreateNewNode(3, 0.5, 0.5, 0.0) initial_mp.CreateNewNode(4, -0.5, 0.5, 0.0) if (dimension == 3): initial_mp.CreateNewNode(5, -0.5, -0.5, 1.0) initial_mp.CreateNewNode(6, 0.5, -0.5, 1.0) initial_mp.CreateNewNode(7, 0.5, 0.5, 1.0) initial_mp.CreateNewNode(8, -0.5, 0.5, 1.0) def _create_elements(self, initial_mp, dimension, geometry_element): if geometry_element == "Triangle": if (dimension == 2): initial_mp.CreateNewElement("UpdatedLagrangian2D3N", 1, [1,2,3], initial_mp.GetProperties()[1]) if (dimension == 3): initial_mp.CreateNewElement("UpdatedLagrangian3D4N", 1, [1,2,3,4], initial_mp.GetProperties()[1]) elif geometry_element == "Quadrilateral": if (dimension == 2): initial_mp.CreateNewElement("UpdatedLagrangian2D4N", 1, [1,2,3,4], initial_mp.GetProperties()[1]) if (dimension == 3): initial_mp.CreateNewElement("UpdatedLagrangian3D8N", 1, [1,2,3,4,5,6,7,8], initial_mp.GetProperties()[1]) KratosMultiphysics.VariableUtils().SetFlag(KratosMultiphysics.ACTIVE, True, initial_mp.Elements) def test_GenerateMPMParticleTriangle2D1P(self): current_model = KratosMultiphysics.Model() self._generate_particle_element_and_check(current_model, dimension=2, geometry_element="Triangle", num_particle=1, expected_num_particle=1) def test_GenerateMPMParticleTriangle2D3P(self): current_model = KratosMultiphysics.Model() self._generate_particle_element_and_check(current_model, dimension=2, geometry_element="Triangle", num_particle=3, expected_num_particle=3) def test_GenerateMPMParticleTriangle2D6P(self): current_model = KratosMultiphysics.Model() self._generate_particle_element_and_check(current_model, dimension=2, geometry_element="Triangle", num_particle=6, expected_num_particle=6) def test_GenerateMPMParticleTriangle2D12P(self): current_model = KratosMultiphysics.Model() self._generate_particle_element_and_check(current_model, dimension=2, geometry_element="Triangle", num_particle=12, expected_num_particle=12) def test_GenerateMPMParticleTriangle2D16P(self): current_model = KratosMultiphysics.Model() self._generate_particle_element_and_check(current_model, dimension=2, geometry_element="Triangle", num_particle=16, expected_num_particle=16) def test_GenerateMPMParticleTriangle2D33P(self): current_model = KratosMultiphysics.Model() self._generate_particle_element_and_check(current_model, dimension=2, geometry_element="Triangle", num_particle=33, expected_num_particle=33) def test_GenerateMPMParticleTriangle2DDefault(self): current_model = KratosMultiphysics.Model() self._generate_particle_element_and_check(current_model, dimension=2, geometry_element="Triangle", num_particle=50, expected_num_particle=3) def test_GenerateMPMParticleTriangle3D1P(self): current_model = KratosMultiphysics.Model() self._generate_particle_element_and_check(current_model, dimension=3, geometry_element="Triangle", num_particle=1, expected_num_particle=1) def test_GenerateMPMParticleTriangle3D4P(self): current_model = KratosMultiphysics.Model() self._generate_particle_element_and_check(current_model, dimension=3, geometry_element="Triangle", num_particle=3, expected_num_particle=4) def test_GenerateMPMParticleTriangle3D14P(self): current_model = KratosMultiphysics.Model() self._generate_particle_element_and_check(current_model, dimension=3, geometry_element="Triangle", num_particle=6, expected_num_particle=14) def test_GenerateMPMParticleTriangle3D24P(self): current_model = KratosMultiphysics.Model() self._generate_particle_element_and_check(current_model, dimension=3, geometry_element="Triangle", num_particle=12, expected_num_particle=24) def test_GenerateMPMParticleTriangle3DDefault(self): current_model = KratosMultiphysics.Model() self._generate_particle_element_and_check(current_model, dimension=3, geometry_element="Triangle", num_particle=50, expected_num_particle=4) def test_GenerateMPMParticleQuadrilateral2D1P(self): current_model = KratosMultiphysics.Model() self._generate_particle_element_and_check(current_model, dimension=2, geometry_element="Quadrilateral", num_particle=1, expected_num_particle=1) def test_GenerateMPMParticleQuadrilateral2D4P(self): current_model = KratosMultiphysics.Model() self._generate_particle_element_and_check(current_model, dimension=2, geometry_element="Quadrilateral", num_particle=4, expected_num_particle=4) def test_GenerateMPMParticleQuadrilateral2D9P(self): current_model = KratosMultiphysics.Model() self._generate_particle_element_and_check(current_model, dimension=2, geometry_element="Quadrilateral", num_particle=9, expected_num_particle=9) def test_GenerateMPMParticleQuadrilateral2D16P(self): current_model = KratosMultiphysics.Model() self._generate_particle_element_and_check(current_model, dimension=2, geometry_element="Quadrilateral", num_particle=16, expected_num_particle=16) def test_GenerateMPMParticleQuadrilateral2DDefault(self): current_model = KratosMultiphysics.Model() self._generate_particle_element_and_check(current_model, dimension=2, geometry_element="Quadrilateral", num_particle=50, expected_num_particle=4) def test_GenerateMPMParticleQuadrilateral3D1P(self): current_model = KratosMultiphysics.Model() self._generate_particle_element_and_check(current_model, dimension=3, geometry_element="Quadrilateral", num_particle=1, expected_num_particle=1) def test_GenerateMPMParticleQuadrilateral3D8P(self): current_model = KratosMultiphysics.Model() self._generate_particle_element_and_check(current_model, dimension=3, geometry_element="Quadrilateral", num_particle=4, expected_num_particle=8) def test_GenerateMPMParticleQuadrilateral3D27P(self): current_model = KratosMultiphysics.Model() self._generate_particle_element_and_check(current_model, dimension=3, geometry_element="Quadrilateral", num_particle=9, expected_num_particle=27) def test_GenerateMPMParticleQuadrilateral3D64P(self): current_model = KratosMultiphysics.Model() self._generate_particle_element_and_check(current_model, dimension=3, geometry_element="Quadrilateral", num_particle=16, expected_num_particle=64) def test_GenerateMPMParticleQuadrilateral3DDefault(self): current_model = KratosMultiphysics.Model() self._generate_particle_element_and_check(current_model, dimension=3, geometry_element="Quadrilateral", num_particle=50, expected_num_particle=8) if __name__ == '__main__': KratosUnittest.main()
58.584337
154
0.759589
a5ee1638defc9a4dcfdbd3d4b6d117c0ba5afdc4
3,236
py
Python
profiles_project/settings.py
Kozphy/django_api_learn
9cdbabcdc26438af09ccbd241c0cf9bfaff4138a
[ "MIT" ]
null
null
null
profiles_project/settings.py
Kozphy/django_api_learn
9cdbabcdc26438af09ccbd241c0cf9bfaff4138a
[ "MIT" ]
null
null
null
profiles_project/settings.py
Kozphy/django_api_learn
9cdbabcdc26438af09ccbd241c0cf9bfaff4138a
[ "MIT" ]
null
null
null
""" Django settings for profiles_project project. Generated by 'django-admin startproject' using Django 2.2. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'fzdc8b7572ck2m!7k8q0_c4tzn9aem3z8c1t=e0$kh@dr*xrso' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'rest_framework', 'rest_framework.authtoken', 'profiles_api', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'profiles_project.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'profiles_project.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/' AUTH_USER_MODEL = 'profiles_api.UserProfile'
25.68254
91
0.702101
9c6992441d5e22c85fcc8d4423a286f1e9360d19
11,763
py
Python
Global/detection_models/networks.py
ZoeyCheung/Bringing-Old-Photos-Back-to-Life
56032e9edbad0ab4b33feb6901b9011f5d813528
[ "MIT" ]
null
null
null
Global/detection_models/networks.py
ZoeyCheung/Bringing-Old-Photos-Back-to-Life
56032e9edbad0ab4b33feb6901b9011f5d813528
[ "MIT" ]
null
null
null
Global/detection_models/networks.py
ZoeyCheung/Bringing-Old-Photos-Back-to-Life
56032e9edbad0ab4b33feb6901b9011f5d813528
[ "MIT" ]
null
null
null
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import torch import torch.nn as nn import torch.nn.functional as F from detection_models.sync_batchnorm.replicate import DataParallelWithCallback from detection_models.antialiasing import Downsample class UNet(nn.Module): def __init__( self, in_channels=3, out_channels=3, depth=5, conv_num=2, wf=6, padding=True, batch_norm=True, up_mode="upsample", with_tanh=False, sync_bn=True, antialiasing=True, ): """ Implementation of U-Net: Convolutional Networks for Biomedical Image Segmentation (Ronneberger et al., 2015) https://arxiv.org/abs/1505.04597 Using the default arguments will yield the exact version used in the original paper Args: in_channels (int): number of input channels out_channels (int): number of output channels depth (int): depth of the network wf (int): number of filters in the first layer is 2**wf padding (bool): if True, apply padding such that the input shape is the same as the output. This may introduce artifacts batch_norm (bool): Use BatchNorm after layers with an activation function up_mode (str): one of 'upconv' or 'upsample'. 'upconv' will use transposed convolutions for learned upsampling. 'upsample' will use bilinear upsampling. """ super().__init__() assert up_mode in ("upconv", "upsample") self.padding = padding self.depth = depth - 1 prev_channels = in_channels self.first = nn.Sequential( *[nn.ReflectionPad2d(3), nn.Conv2d(in_channels, 2 ** wf, kernel_size=7), nn.LeakyReLU(0.2, True)] ) prev_channels = 2 ** wf self.down_path = nn.ModuleList() self.down_sample = nn.ModuleList() for i in range(depth): if antialiasing and depth > 0: self.down_sample.append( nn.Sequential( *[ nn.ReflectionPad2d(1), nn.Conv2d(prev_channels, prev_channels, kernel_size=3, stride=1, padding=0), nn.BatchNorm2d(prev_channels), nn.LeakyReLU(0.2, True), Downsample(channels=prev_channels, stride=2), ] ) ) else: self.down_sample.append( nn.Sequential( *[ nn.ReflectionPad2d(1), nn.Conv2d(prev_channels, prev_channels, kernel_size=4, stride=2, padding=0), nn.BatchNorm2d(prev_channels), nn.LeakyReLU(0.2, True), ] ) ) self.down_path.append( UNetConvBlock(conv_num, prev_channels, 2 ** (wf + i + 1), padding, batch_norm) ) prev_channels = 2 ** (wf + i + 1) self.up_path = nn.ModuleList() for i in reversed(range(depth)): self.up_path.append( UNetUpBlock(conv_num, prev_channels, 2 ** (wf + i), up_mode, padding, batch_norm) ) prev_channels = 2 ** (wf + i) if with_tanh: self.last = nn.Sequential( *[nn.ReflectionPad2d(1), nn.Conv2d(prev_channels, out_channels, kernel_size=3), nn.Tanh()] ) else: self.last = nn.Sequential( *[nn.ReflectionPad2d(1), nn.Conv2d(prev_channels, out_channels, kernel_size=3)] ) if sync_bn: self = DataParallelWithCallback(self) def forward(self, x): x = self.first(x) blocks = [] for i, down_block in enumerate(self.down_path): blocks.append(x) x = self.down_sample[i](x) x = down_block(x) for i, up in enumerate(self.up_path): x = up(x, blocks[-i - 1]) return self.last(x) class UNetConvBlock(nn.Module): def __init__(self, conv_num, in_size, out_size, padding, batch_norm): super(UNetConvBlock, self).__init__() block = [] for _ in range(conv_num): block.append(nn.ReflectionPad2d(padding=int(padding))) block.append(nn.Conv2d(in_size, out_size, kernel_size=3, padding=0)) if batch_norm: block.append(nn.BatchNorm2d(out_size)) block.append(nn.LeakyReLU(0.2, True)) in_size = out_size self.block = nn.Sequential(*block) def forward(self, x): out = self.block(x) return out class UNetUpBlock(nn.Module): def __init__(self, conv_num, in_size, out_size, up_mode, padding, batch_norm): super(UNetUpBlock, self).__init__() if up_mode == "upconv": self.up = nn.ConvTranspose2d(in_size, out_size, kernel_size=2, stride=2) elif up_mode == "upsample": self.up = nn.Sequential( nn.Upsample(mode="bilinear", scale_factor=2, align_corners=False), nn.ReflectionPad2d(1), nn.Conv2d(in_size, out_size, kernel_size=3, padding=0), ) self.conv_block = UNetConvBlock(conv_num, in_size, out_size, padding, batch_norm) def center_crop(self, layer, target_size): _, _, layer_height, layer_width = layer.size() diff_y = (layer_height - target_size[0]) // 2 diff_x = (layer_width - target_size[1]) // 2 return layer[:, :, diff_y : (diff_y + target_size[0]), diff_x : (diff_x + target_size[1])] def forward(self, x, bridge): up = self.up(x) crop1 = self.center_crop(bridge, up.shape[2:]) out = torch.cat([up, crop1], 1) out = self.conv_block(out) return out class UnetGenerator(nn.Module): """Create a Unet-based generator""" def __init__(self, input_nc, output_nc, num_downs, ngf=64, norm_type="BN", use_dropout=False): """Construct a Unet generator Parameters: input_nc (int) -- the number of channels in input images output_nc (int) -- the number of channels in output images num_downs (int) -- the number of downsamplings in UNet. For example, # if |num_downs| == 7, image of size 128x128 will become of size 1x1 # at the bottleneck ngf (int) -- the number of filters in the last conv layer norm_layer -- normalization layer We construct the U-Net from the innermost layer to the outermost layer. It is a recursive process. """ super().__init__() if norm_type == "BN": norm_layer = nn.BatchNorm2d elif norm_type == "IN": norm_layer = nn.InstanceNorm2d else: raise NameError("Unknown norm layer") # construct unet structure unet_block = UnetSkipConnectionBlock( ngf * 8, ngf * 8, input_nc=None, submodule=None, norm_layer=norm_layer, innermost=True ) # add the innermost layer for i in range(num_downs - 5): # add intermediate layers with ngf * 8 filters unet_block = UnetSkipConnectionBlock( ngf * 8, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer, use_dropout=use_dropout, ) # gradually reduce the number of filters from ngf * 8 to ngf unet_block = UnetSkipConnectionBlock( ngf * 4, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer ) unet_block = UnetSkipConnectionBlock( ngf * 2, ngf * 4, input_nc=None, submodule=unet_block, norm_layer=norm_layer ) unet_block = UnetSkipConnectionBlock( ngf, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer ) self.model = UnetSkipConnectionBlock( output_nc, ngf, input_nc=input_nc, submodule=unet_block, outermost=True, norm_layer=norm_layer ) # add the outermost layer def forward(self, input): return self.model(input) class UnetSkipConnectionBlock(nn.Module): """Defines the Unet submodule with skip connection. -------------------identity---------------------- |-- downsampling -- |submodule| -- upsampling --| """ def __init__( self, outer_nc, inner_nc, input_nc=None, submodule=None, outermost=False, innermost=False, norm_layer=nn.BatchNorm2d, use_dropout=False, ): """Construct a Unet submodule with skip connections. Parameters: outer_nc (int) -- the number of filters in the outer conv layer inner_nc (int) -- the number of filters in the inner conv layer input_nc (int) -- the number of channels in input images/features submodule (UnetSkipConnectionBlock) -- previously defined submodules outermost (bool) -- if this module is the outermost module innermost (bool) -- if this module is the innermost module norm_layer -- normalization layer user_dropout (bool) -- if use dropout layers. """ super().__init__() self.outermost = outermost use_bias = norm_layer == nn.InstanceNorm2d if input_nc is None: input_nc = outer_nc downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=4, stride=2, padding=1, bias=use_bias) downrelu = nn.LeakyReLU(0.2, True) downnorm = norm_layer(inner_nc) uprelu = nn.LeakyReLU(0.2, True) upnorm = norm_layer(outer_nc) if outermost: upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, kernel_size=4, stride=2, padding=1) down = [downconv] up = [uprelu, upconv, nn.Tanh()] model = down + [submodule] + up elif innermost: upconv = nn.ConvTranspose2d(inner_nc, outer_nc, kernel_size=4, stride=2, padding=1, bias=use_bias) down = [downrelu, downconv] up = [uprelu, upconv, upnorm] model = down + up else: upconv = nn.ConvTranspose2d( inner_nc * 2, outer_nc, kernel_size=4, stride=2, padding=1, bias=use_bias ) down = [downrelu, downconv, downnorm] up = [uprelu, upconv, upnorm] if use_dropout: model = down + [submodule] + up + [nn.Dropout(0.5)] else: model = down + [submodule] + up self.model = nn.Sequential(*model) def forward(self, x): if self.outermost: return self.model(x) else: # add skip connections return torch.cat([x, self.model(x)], 1) # ============================================ # Network testing # ============================================ if __name__ == "__main__": from torchsummary import summary device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = UNet_two_decoders( in_channels=3, out_channels1=3, out_channels2=1, depth=4, conv_num=1, wf=6, padding=True, batch_norm=True, up_mode="upsample", with_tanh=False, ) model.to(device) model_pix2pix = UnetGenerator(3, 3, 5, ngf=64, norm_type="BN", use_dropout=False) model_pix2pix.to(device) print("customized unet:") summary(model, (3, 256, 256)) print("cyclegan unet:") summary(model_pix2pix, (3, 256, 256)) x = torch.zeros(1, 3, 256, 256).requires_grad_(True).cuda() g = make_dot(model(x)) g.render("models/Digraph.gv", view=False)
35.324324
110
0.579104
9fbe08aafd7e4c907fc2a1395521228fbbcfcaa5
3,273
py
Python
sales_info/mysite/settings.py
originlake/web_dev_project
1fe75279734fe687fb93173351b3dae6e7de93f7
[ "MIT" ]
null
null
null
sales_info/mysite/settings.py
originlake/web_dev_project
1fe75279734fe687fb93173351b3dae6e7de93f7
[ "MIT" ]
null
null
null
sales_info/mysite/settings.py
originlake/web_dev_project
1fe75279734fe687fb93173351b3dae6e7de93f7
[ "MIT" ]
null
null
null
""" Django settings for mysite project. Generated by 'django-admin startproject' using Django 2.1.3. For more information on this file, see https://docs.djangoproject.com/en/2.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.1/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = ')&&ojaa@&@2%_rn*r3r_-&uxsqab$a2ue#48-30v*hivurd3j@' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['*'] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'account', 'items', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'mysite.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': ['templates'], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'mysite.wsgi.application' # Database # https://docs.djangoproject.com/en/2.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'America/Chicago' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.1/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS =[ os.path.join(BASE_DIR, 'static'), ] MEDIA_URL = '/media/' MEDIA_ROOT = os.path.join(BASE_DIR, 'media')
24.984733
91
0.692026
ccfed67bf66b53cb27891a0e0611552b98750342
7,260
py
Python
src/compas_plotters/plotter2.py
XingxinHE/compas
d2901dbbacdaf4694e5adae78ba8f093f10532bf
[ "MIT" ]
null
null
null
src/compas_plotters/plotter2.py
XingxinHE/compas
d2901dbbacdaf4694e5adae78ba8f093f10532bf
[ "MIT" ]
null
null
null
src/compas_plotters/plotter2.py
XingxinHE/compas
d2901dbbacdaf4694e5adae78ba8f093f10532bf
[ "MIT" ]
null
null
null
from __future__ import print_function from __future__ import absolute_import from __future__ import division import matplotlib.pyplot as plt from compas_plotters import Artist __all__ = ['Plotter2'] class Plotter2(object): """""" def __init__(self, view=None, figsize=(8, 5), **kwargs): """Initialises a plotter object""" self._show_axes = kwargs.get('show_axes', False) self._bgcolor = None self._viewbox = None self._axes = None self._artists = [] self.viewbox = view self.figsize = figsize self.dpi = kwargs.get('dpi', 100) self.bgcolor = kwargs.get('bgcolor', '#ffffff') @property def viewbox(self): return self._viewbox @viewbox.setter def viewbox(self, view): if not view: view = ([-10, 10], [-3, 10]) if len(view) != 2: return xlim, ylim = view if len(xlim) != 2: return if len(ylim) != 2: return self._viewbox = xlim, ylim @property def axes(self): """Returns the axes subplot matplotlib object. Returns ------- Axes The matplotlib axes object. Notes ----- For more info, see the documentation of the Axes class ([1]_) and the axis and tick API ([2]_). References ---------- .. [1] https://matplotlib.org/api/axes_api.html .. [2] https://matplotlib.org/api/axis_api.html """ if not self._axes: figure = plt.figure(facecolor=self.bgcolor, figsize=self.figsize, dpi=self.dpi) axes = figure.add_subplot(111, aspect='equal') if self.viewbox: xmin, xmax = self.viewbox[0] ymin, ymax = self.viewbox[1] axes.set_xlim(xmin, xmax) axes.set_ylim(ymin, ymax) axes.set_xscale('linear') axes.set_yscale('linear') axes.grid(False) if self._show_axes: axes.set_frame_on(True) axes.set_xticks([]) axes.set_yticks([]) axes.spines['top'].set_color('none') axes.spines['right'].set_color('none') axes.spines['left'].set_position('zero') axes.spines['bottom'].set_position('zero') axes.spines['left'].set_linestyle(':') axes.spines['bottom'].set_linestyle(':') else: axes.set_frame_on(False) axes.set_xticks([]) axes.set_yticks([]) axes.autoscale() plt.tight_layout() self._axes = axes return self._axes @property def figure(self): """Returns the matplotlib figure instance. Returns ------- Figure The matplotlib figure instance. Notes ----- For more info, see the figure API ([1]_). References ---------- .. [1] https://matplotlib.org/2.0.2/api/figure_api.html """ return self.axes.get_figure() @property def canvas(self): """Returns the canvas of the figure instance. """ return self.figure.canvas @property def bgcolor(self): """Returns the background color. Returns ------- str The color as a string (hex colors). """ return self._bgcolor @bgcolor.setter def bgcolor(self, value): """Sets the background color. Parameters ---------- value : str, tuple The color specififcation for the figure background. Colors should be specified in the form of a string (hex colors) or as a tuple of normalized RGB components. """ self._bgcolor = value self.figure.set_facecolor(value) @property def title(self): """Returns the title of the plot. Returns ------- str The title of the plot. """ return self.figure.canvas.get_window_title() @title.setter def title(self, value): """Sets the title of the plot. Parameters ---------- value : str The title of the plot. """ self.figure.canvas.set_window_title(value) @property def artists(self): return self._artists @artists.setter def artists(self, artists): self._artists = artists # ========================================================================= # Methods # ========================================================================= def zoom_extents(self): self.axes.autoscale_view() def add(self, item, artist=None, **kwargs): if not artist: artist = Artist.build(item, **kwargs) artist.plotter = self artist.draw() self._artists.append(artist) return artist def add_as(self, item, artist_type, **kwargs): artist = Artist.build_as(item, artist_type, **kwargs) artist.plotter = self artist.draw() self._artists.append(artist) return artist def find(self, item): raise NotImplementedError def register_listener(self, listener): """Register a listener for pick events. Parameters ---------- listener : callable The handler for pick events. Returns ------- None Notes ----- For more information, see the docs of ``mpl_connect`` ([1]_), and on event handling and picking ([2]_). References ---------- .. [1] https://matplotlib.org/api/backend_bases_api.html#matplotlib.backend_bases.FigureCanvasBase.mpl_connect .. [2] https://matplotlib.org/users/event_handling.html Examples -------- .. code-block:: python # """ self.figure.canvas.mpl_connect('pick_event', listener) def draw(self, pause=None): self.figure.canvas.draw() self.figure.canvas.flush_events() if pause: plt.pause(pause) def redraw(self, pause=None): """Updates and pauses the plot. Parameters ---------- pause : float Ammount of time to pause the plot in seconds. """ for artist in self._artists: artist.redraw() self.figure.canvas.draw() self.figure.canvas.flush_events() if pause: plt.pause(pause) def show(self): """Displays the plot. """ self.draw() plt.show() def save(self, filepath, **kwargs): """Saves the plot to a file. Parameters ---------- filepath : str Full path of the file. Notes ----- For an overview of all configuration options, see [1]_. References ---------- .. [1] https://matplotlib.org/2.0.2/api/pyplot_api.html#matplotlib.pyplot.savefig """ plt.savefig(filepath, **kwargs)
25.56338
118
0.513912
6cf27866fa01c25719f4abf21590bda880800285
13,952
py
Python
netapp/santricity/models/symbol/nv_meo_f_interface_statistics.py
NetApp/santricity-webapi-pythonsdk
1d3df4a00561192f4cdcdd1890f4d27547ed2de2
[ "BSD-3-Clause-Clear" ]
5
2016-08-23T17:52:22.000Z
2019-05-16T08:45:30.000Z
netapp/santricity/models/symbol/nv_meo_f_interface_statistics.py
NetApp/santricity-webapi-pythonsdk
1d3df4a00561192f4cdcdd1890f4d27547ed2de2
[ "BSD-3-Clause-Clear" ]
2
2016-11-10T05:30:21.000Z
2019-04-05T15:03:37.000Z
netapp/santricity/models/symbol/nv_meo_f_interface_statistics.py
NetApp/santricity-webapi-pythonsdk
1d3df4a00561192f4cdcdd1890f4d27547ed2de2
[ "BSD-3-Clause-Clear" ]
7
2016-08-25T16:11:44.000Z
2021-02-22T05:31:25.000Z
# coding: utf-8 """ NVMeoFInterfaceStatistics.py The Clear BSD License Copyright (c) – 2016, NetApp, Inc. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted (subject to the limitations in the disclaimer below) provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of NetApp, Inc. nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ from pprint import pformat from six import iteritems class NVMeoFInterfaceStatistics(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ def __init__(self): """ NVMeoFInterfaceStatistics - a model defined in Swagger :param dict swaggerTypes: The key is attribute name and the value is attribute type. :param dict attributeMap: The key is attribute name and the value is json key in definition. """ self.swagger_types = { 'interface_ref': 'str', # (required parameter) 'total_controller_count': 'int', # (required parameter) 'keep_alive_timeouts': 'int', # (required parameter) 'max_io_queues_connect_failures': 'int', # (required parameter) 'max_controller_connect_failures': 'int', # (required parameter) 'nvme_controller_resets': 'int', # (required parameter) 'nvme_controller_shutdowns': 'int', # (required parameter) 'admin_queue_statistics': 'NVMeoFQueueStatistics', # (required parameter) 'io_queue_statistics': 'NVMeoFQueueStatistics' } self.attribute_map = { 'interface_ref': 'interfaceRef', # (required parameter) 'total_controller_count': 'totalControllerCount', # (required parameter) 'keep_alive_timeouts': 'keepAliveTimeouts', # (required parameter) 'max_io_queues_connect_failures': 'maxIoQueuesConnectFailures', # (required parameter) 'max_controller_connect_failures': 'maxControllerConnectFailures', # (required parameter) 'nvme_controller_resets': 'nvmeControllerResets', # (required parameter) 'nvme_controller_shutdowns': 'nvmeControllerShutdowns', # (required parameter) 'admin_queue_statistics': 'adminQueueStatistics', # (required parameter) 'io_queue_statistics': 'ioQueueStatistics' } self._interface_ref = None self._total_controller_count = None self._keep_alive_timeouts = None self._max_io_queues_connect_failures = None self._max_controller_connect_failures = None self._nvme_controller_resets = None self._nvme_controller_shutdowns = None self._admin_queue_statistics = None self._io_queue_statistics = None @property def interface_ref(self): """ Gets the interface_ref of this NVMeoFInterfaceStatistics. The reference to the interface object. :return: The interface_ref of this NVMeoFInterfaceStatistics. :rtype: str :required/optional: required """ return self._interface_ref @interface_ref.setter def interface_ref(self, interface_ref): """ Sets the interface_ref of this NVMeoFInterfaceStatistics. The reference to the interface object. :param interface_ref: The interface_ref of this NVMeoFInterfaceStatistics. :type: str """ self._interface_ref = interface_ref @property def total_controller_count(self): """ Gets the total_controller_count of this NVMeoFInterfaceStatistics. The number of NVMe controllers (i.e., I_T_Nexuses in SCSI terminology) over this interface. :return: The total_controller_count of this NVMeoFInterfaceStatistics. :rtype: int :required/optional: required """ return self._total_controller_count @total_controller_count.setter def total_controller_count(self, total_controller_count): """ Sets the total_controller_count of this NVMeoFInterfaceStatistics. The number of NVMe controllers (i.e., I_T_Nexuses in SCSI terminology) over this interface. :param total_controller_count: The total_controller_count of this NVMeoFInterfaceStatistics. :type: int """ self._total_controller_count = total_controller_count @property def keep_alive_timeouts(self): """ Gets the keep_alive_timeouts of this NVMeoFInterfaceStatistics. The number of Keep Alive Timeouts that have occurred on this NVMe over Fabrics interface. :return: The keep_alive_timeouts of this NVMeoFInterfaceStatistics. :rtype: int :required/optional: required """ return self._keep_alive_timeouts @keep_alive_timeouts.setter def keep_alive_timeouts(self, keep_alive_timeouts): """ Sets the keep_alive_timeouts of this NVMeoFInterfaceStatistics. The number of Keep Alive Timeouts that have occurred on this NVMe over Fabrics interface. :param keep_alive_timeouts: The keep_alive_timeouts of this NVMeoFInterfaceStatistics. :type: int """ self._keep_alive_timeouts = keep_alive_timeouts @property def max_io_queues_connect_failures(self): """ Gets the max_io_queues_connect_failures of this NVMeoFInterfaceStatistics. The maximum number of I/O Queue Connect Failures that have occurred on this NVMe over Fabrics interface. :return: The max_io_queues_connect_failures of this NVMeoFInterfaceStatistics. :rtype: int :required/optional: required """ return self._max_io_queues_connect_failures @max_io_queues_connect_failures.setter def max_io_queues_connect_failures(self, max_io_queues_connect_failures): """ Sets the max_io_queues_connect_failures of this NVMeoFInterfaceStatistics. The maximum number of I/O Queue Connect Failures that have occurred on this NVMe over Fabrics interface. :param max_io_queues_connect_failures: The max_io_queues_connect_failures of this NVMeoFInterfaceStatistics. :type: int """ self._max_io_queues_connect_failures = max_io_queues_connect_failures @property def max_controller_connect_failures(self): """ Gets the max_controller_connect_failures of this NVMeoFInterfaceStatistics. The maximum number of NVMe Controller Connect Failures that have occurred on this NVMe over Fabrics interface. :return: The max_controller_connect_failures of this NVMeoFInterfaceStatistics. :rtype: int :required/optional: required """ return self._max_controller_connect_failures @max_controller_connect_failures.setter def max_controller_connect_failures(self, max_controller_connect_failures): """ Sets the max_controller_connect_failures of this NVMeoFInterfaceStatistics. The maximum number of NVMe Controller Connect Failures that have occurred on this NVMe over Fabrics interface. :param max_controller_connect_failures: The max_controller_connect_failures of this NVMeoFInterfaceStatistics. :type: int """ self._max_controller_connect_failures = max_controller_connect_failures @property def nvme_controller_resets(self): """ Gets the nvme_controller_resets of this NVMeoFInterfaceStatistics. The number of NVM Controller Resets that have occurred on this NVMe over Fabrics interface. :return: The nvme_controller_resets of this NVMeoFInterfaceStatistics. :rtype: int :required/optional: required """ return self._nvme_controller_resets @nvme_controller_resets.setter def nvme_controller_resets(self, nvme_controller_resets): """ Sets the nvme_controller_resets of this NVMeoFInterfaceStatistics. The number of NVM Controller Resets that have occurred on this NVMe over Fabrics interface. :param nvme_controller_resets: The nvme_controller_resets of this NVMeoFInterfaceStatistics. :type: int """ self._nvme_controller_resets = nvme_controller_resets @property def nvme_controller_shutdowns(self): """ Gets the nvme_controller_shutdowns of this NVMeoFInterfaceStatistics. The number of NVM Controller Shutdowns that have occurred on this NVMe over Fabrics interface. :return: The nvme_controller_shutdowns of this NVMeoFInterfaceStatistics. :rtype: int :required/optional: required """ return self._nvme_controller_shutdowns @nvme_controller_shutdowns.setter def nvme_controller_shutdowns(self, nvme_controller_shutdowns): """ Sets the nvme_controller_shutdowns of this NVMeoFInterfaceStatistics. The number of NVM Controller Shutdowns that have occurred on this NVMe over Fabrics interface. :param nvme_controller_shutdowns: The nvme_controller_shutdowns of this NVMeoFInterfaceStatistics. :type: int """ self._nvme_controller_shutdowns = nvme_controller_shutdowns @property def admin_queue_statistics(self): """ Gets the admin_queue_statistics of this NVMeoFInterfaceStatistics. This structure describes the NVMe over Fabrics queue statistics for the Admin Queue. :return: The admin_queue_statistics of this NVMeoFInterfaceStatistics. :rtype: NVMeoFQueueStatistics :required/optional: required """ return self._admin_queue_statistics @admin_queue_statistics.setter def admin_queue_statistics(self, admin_queue_statistics): """ Sets the admin_queue_statistics of this NVMeoFInterfaceStatistics. This structure describes the NVMe over Fabrics queue statistics for the Admin Queue. :param admin_queue_statistics: The admin_queue_statistics of this NVMeoFInterfaceStatistics. :type: NVMeoFQueueStatistics """ self._admin_queue_statistics = admin_queue_statistics @property def io_queue_statistics(self): """ Gets the io_queue_statistics of this NVMeoFInterfaceStatistics. This structure describes the NVMe over Fabrics queue statistics for the I/O Queues. :return: The io_queue_statistics of this NVMeoFInterfaceStatistics. :rtype: NVMeoFQueueStatistics :required/optional: required """ return self._io_queue_statistics @io_queue_statistics.setter def io_queue_statistics(self, io_queue_statistics): """ Sets the io_queue_statistics of this NVMeoFInterfaceStatistics. This structure describes the NVMe over Fabrics queue statistics for the I/O Queues. :param io_queue_statistics: The io_queue_statistics of this NVMeoFInterfaceStatistics. :type: NVMeoFQueueStatistics """ self._io_queue_statistics = io_queue_statistics def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ if self is None: return None return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if self is None or other is None: return None return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
41.772455
844
0.690869
67ea0827462f662b8dd73f2ca6b30de4efcd50ab
3,149
py
Python
svg/charts/css.py
ewerybody/svg.charts
eb77a381f0721b3d59ae9461765ac9e9cffef586
[ "MIT" ]
26
2016-05-04T09:57:13.000Z
2021-08-23T17:59:20.000Z
svg/charts/css.py
ewerybody/svg.charts
eb77a381f0721b3d59ae9461765ac9e9cffef586
[ "MIT" ]
21
2016-03-22T00:39:51.000Z
2021-08-14T00:43:21.000Z
svg/charts/css.py
ewerybody/svg.charts
eb77a381f0721b3d59ae9461765ac9e9cffef586
[ "MIT" ]
15
2016-04-06T09:57:38.000Z
2021-08-17T03:56:40.000Z
import cssutils SVG = 'SVG 1.1' # http://www.w3.org/TR/SVG11/styling.html macros = { 'paint': 'none|currentColor|{color}', 'unitidentifier': 'em|ex|px|pt|pc|cm|mm|in|%', 'length': '{positivenum}({unitidentifier})?', 'dasharray': r'{positivenum}(\s*,\s*{positivenum})*', # a number greater-than or equal to one 'number-ge-one': r'{[1-9][0-9]*(\.[0-9]+)?', } properties = { # Clipping, Masking, and Compositing 'clip-path': '{uri}|none|inherit', 'clip-rule': 'nonzero|evenodd|inherit', 'mask': '{uri}|none|inherit', 'opacity': '{num}|inherit', # Filter Effects 'enable-background': r'accumulate|new(\s+{num}){0,4}|inherit', 'filter': '{uri}|none|inherit', 'flood-color': 'currentColor|{color}|inherit', 'flood-opacity': '{num}|inherit', 'lighting-color': 'currentColor|{color}|inherit', # Gradient Properties 'stop-color': 'currentColor|{color}|inherit', 'stop-opacity': '{num}|inherit', # Interactivity Properties 'pointer-events': 'visiblePainted|visibleFill|visibleStroke|visible' '|painted|fill|stroke|all|none|inherit', # Color and Pointing Properties 'color-interpolation': 'auto|sRGB|linearRGB|inherit', 'color-interpolation-filters': 'auto|sRGB|linearRGB|inherit', 'color-rendering': 'auto|optimizeSpeed|optimizeQuality|inherit', 'shape-rendering': 'auto|optimizeSpeed|crispEdges|geometricPrecision|inherit', 'text-rendering': ( 'auto|optimizeSpeed|optimizeLegibility|geometricPrecision|inherit' ), 'fill': '{paint}', 'fill-opacity': '{num}|inherit', 'fill-rule': 'nonzero|evenodd|inherit', 'image-rendering': 'auto|optimizeSpeed|optimizeQuality|inherit', 'marker': 'none|inherit|{uri}', 'marker-end': 'none|inherit|{uri}', 'marker-mid': 'none|inherit|{uri}', 'marker-start': 'none|inherit|{uri}', 'shape-rendering': 'auto|optimizeSpeed|crispEdges|geometricPrecision|inherit', 'stroke': '{paint}', 'stroke-dasharray': 'none|{dasharray}|inherit', 'stroke-dashoffset': '{length}|inherit', 'stroke-linecap': 'butt|round|square|inherit', 'stroke-linejoin': 'miter|round|bevel|inherit', 'stroke-miterlimit': '{number-ge-one}|inherit', 'stroke-opacity': '{num}|inherit', 'stroke-width': '{length}|inherit', # Text Properties 'alignment-baseline': 'auto|baseline|before-edge|text-before-edge|middle' '|central|after-edge|text-after-edge|ideographic' '|alphabetic|hanging|mathematical|inherit', 'baseline-shift': 'baseline|sub|super|{percentage}|{length}|inherit', 'dominant-baseline': 'auto|use-script|no-change|reset-size|ideographic' '|alphabetic|hanging||mathematical|central|middle' '|text-after-edge|text-before-edge|inherit', 'glyph-orientation-horizontal': '{angle}|inherit', 'glyph-orientation-vertical': 'auto|{angle}|inherit', 'kerning': 'auto|{length}|inherit', 'text-anchor': 'start|middle|end|inherit', 'writing-mode': 'lr-tb|rl-tb|tb-rl|lr|rl|tb|inherit', } cssutils.profile.addProfile(SVG, properties, macros) cssutils.profile.defaultProfiles = [SVG, cssutils.profile.CSS_LEVEL_2]
41.986667
82
0.671959
d718a560a41f81149b9787e80b6695562144b89f
64
py
Python
discum/gateway/user/__init__.py
firewood-b/Discord-S.C.U.M
1beb8c25ab245a1389431a5206eafb9b4a95df0f
[ "MIT" ]
null
null
null
discum/gateway/user/__init__.py
firewood-b/Discord-S.C.U.M
1beb8c25ab245a1389431a5206eafb9b4a95df0f
[ "MIT" ]
null
null
null
discum/gateway/user/__init__.py
firewood-b/Discord-S.C.U.M
1beb8c25ab245a1389431a5206eafb9b4a95df0f
[ "MIT" ]
null
null
null
from .combo import * from .parse import * from .request import *
21.333333
22
0.734375
f2c6fc721f0dd8316234db1205edcf98924f0a55
612
py
Python
spinsys/__init__.py
macthecadillac/Interacting-Fermions
6122d2a7e67533b28e581929995ce8e2a2ad41fc
[ "BSD-3-Clause" ]
1
2020-07-29T06:06:12.000Z
2020-07-29T06:06:12.000Z
spinsys/__init__.py
macthecadillac/Interacting-Fermions
6122d2a7e67533b28e581929995ce8e2a2ad41fc
[ "BSD-3-Clause" ]
null
null
null
spinsys/__init__.py
macthecadillac/Interacting-Fermions
6122d2a7e67533b28e581929995ce8e2a2ad41fc
[ "BSD-3-Clause" ]
null
null
null
from spinsys import constructors from spinsys import dmrg from spinsys import exceptions from spinsys import half from spinsys import quantities from spinsys import state_generators from spinsys import time_dependent from spinsys import utils import shutil import numpy __all__ = [ "constructors", "dmrg", "exceptions", "half", "quantities", "state_generators", "time_dependent", "utils" ] # set default print options for better display of data on screen term_width = tuple(shutil.get_terminal_size())[0] numpy.set_printoptions(precision=5, suppress=True, linewidth=term_width)
23.538462
72
0.76634
218f8c4feadc5fce1ff089f0a30326c829827aa5
954
py
Python
test/unit/bench_cli/context.py
systay/arewefastyet
f21f3c0c63b5e3729d946bd2283004641b427aad
[ "Apache-2.0" ]
null
null
null
test/unit/bench_cli/context.py
systay/arewefastyet
f21f3c0c63b5e3729d946bd2283004641b427aad
[ "Apache-2.0" ]
1
2021-03-04T11:06:58.000Z
2021-03-04T11:06:58.000Z
test/unit/bench_cli/context.py
systay/arewefastyet
f21f3c0c63b5e3729d946bd2283004641b427aad
[ "Apache-2.0" ]
1
2021-09-03T16:06:08.000Z
2021-09-03T16:06:08.000Z
# Copyright 2021 The Vitess Authors. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '../../../'))) import bench_cli.cli as cli import bench_cli.configuration as configuration import bench_cli.run_benchmark as run_benchmark import bench_cli.task as task import bench_cli.task_factory as taskfac import bench_cli.task_oltp as oltp import bench_cli.task_tpcc as tpcc
41.478261
89
0.786164
7f7389444434f2b4fe57df1e0c221c9c565baf73
1,498
py
Python
sort_key_test.py
PythonCHB/sort_key_tests
00e0fdb872a58b9f0797176afd3332fa8c5be159
[ "Unlicense" ]
1
2019-07-22T06:19:39.000Z
2019-07-22T06:19:39.000Z
sort_key_test.py
PythonCHB/sort_key_tests
00e0fdb872a58b9f0797176afd3332fa8c5be159
[ "Unlicense" ]
null
null
null
sort_key_test.py
PythonCHB/sort_key_tests
00e0fdb872a58b9f0797176afd3332fa8c5be159
[ "Unlicense" ]
null
null
null
#!/usr/bin/env python3 import random import time random.seed(hash('Testing Keys')) lt_calls = 0 key_calls = 0 outer_key_calls = 0 def outer_key(item): # global outer_key_calls # outer_key_calls += 1 return item.key() class MyObject: def __init__(self, value1, value2): self.value1 = value1 self.value2 = value2 def __lt__(self, other): global lt_calls lt_calls += 1 if self.value1 < other.value1: return True else: return self.value2 < other.value2 def key(self): global key_calls key_calls += 1 return self.value1, self.value2 # def __lt__(self, other): # global lt_calls # lt_calls += 1 # return self.value1 < other.value1 # def key(self): # global key_calls # key_calls += 1 # return self.value1 lt_list = [MyObject(value1, value1 - 50) for value1 in reversed(range(1000))] random.shuffle(lt_list) key_list = lt_list[:] outer_key_list = lt_list[:] print("Using a length: {} list".format(len(lt_list))) s = time.time() key_list.sort(key=MyObject.key) ek = time.time() - s print('key %.6fs %6d calls' % (ek, key_calls)) s = time.time() outer_key_list.sort(key=outer_key) eok = time.time() - s print('outer_key %.6fs %6d calls' % (eok, outer_key_calls)) s = time.time() lt_list.sort() elt = time.time() - s print('lt %.6fs %6d calls' % (elt, lt_calls)) print("time ratio:", elt / eok)
18.962025
77
0.613485
56db30aee1fe93d79335fe03cdad6bfc7e984233
1,584
py
Python
epotential.py
the-fridge/Python_Projects
73758eb57acdae26b58a14e6e4996919a7bdde43
[ "MIT" ]
1
2021-04-18T22:25:56.000Z
2021-04-18T22:25:56.000Z
epotential.py
iamfeysal/Python_Projects
73758eb57acdae26b58a14e6e4996919a7bdde43
[ "MIT" ]
null
null
null
epotential.py
iamfeysal/Python_Projects
73758eb57acdae26b58a14e6e4996919a7bdde43
[ "MIT" ]
1
2019-03-21T08:49:21.000Z
2019-03-21T08:49:21.000Z
#We import our libs: import numpy as np import matplotlib.pyplot as plt from numba import jit @jit def solver(N): # Make the initial guess for solution matrix V = np.zeros((N,N)) # Solver: iterations = 0 eps = 1e-10 # Convergence threshold error = 1e4 # Large dummy error while iterations < 1e4 and error > eps: V_temp = np.copy(V) error = 0 # we make this accumulate in the loop for j in range(1,N-1): for i in range(1,N-1): V[i,j] = 0.25*(V[i+1,j] + V[i-1,j] + V[i,j-1] + V[i,j+1] + rho[i,j]*ds**2) error += abs(V[i,j]-V_temp[i,j]) iterations += 1 print("iterations =", iterations) return V # Set dimensions of the problem: L = 1.0 N = 21 ds = L/N # Define arrays used for plotting: x = np.linspace(0,L,N) y = np.copy(x) X, Y = np.meshgrid(x,y) # Make the charge density matrix: rho0 = 1.0 rho = np.zeros((N,N)) rho[int(round(N/2.0)),int(round(N/2.0))] = rho0 # for j in range(round(N/2.0)-int(N/20.0),round(N/2.0)+int(N/20.0)): # rho[round(N/2.0)-int(N/30.0),j] = rho0 # rho[round(N/2.0)+int(N/30.0),j] = -rho0 # Solver: V = solver(N) # Plotting: eps = 3 zoomX = X[round(N/2.0)-eps:round(N/2.0)+eps] zoomY = Y[round(N/2.0)-eps:round(N/2.0)+eps] zoomV = V[round(N/2.0)-eps:round(N/2.0)+eps] plt.figure(figsize=(5,3)) CS = plt.contour(zoomX, zoomY, zoomV, 30) # Make a contour plot plt.clabel(CS, inline=1, fontsize=10) plt.title("PDE solution of a point charge") CB = plt.colorbar(CS, extend="both") plt.show() # Print matrix: print(zoomV)
24.75
90
0.595328
e5b9bcde26cfdc17e604b1629b37cd170b7f33a6
411
py
Python
python37/Scripts/pinyin-script.py
sheyingqi/lushi_python
1a093a34433f2cd90ca525baec09327a72c57099
[ "MIT" ]
1
2021-12-23T02:30:19.000Z
2021-12-23T02:30:19.000Z
python37/Scripts/pinyin-script.py
sheyingqi/lushi_python
1a093a34433f2cd90ca525baec09327a72c57099
[ "MIT" ]
null
null
null
python37/Scripts/pinyin-script.py
sheyingqi/lushi_python
1a093a34433f2cd90ca525baec09327a72c57099
[ "MIT" ]
null
null
null
#!C:\Users\Administrator\Desktop\python37\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'pinyin==0.4.0','console_scripts','pinyin' __requires__ = 'pinyin==0.4.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pinyin==0.4.0', 'console_scripts', 'pinyin')() )
31.615385
72
0.673966
522a505bda785e941a43161f1e4b466e509c1a81
38
py
Python
tabular/src/autogluon/tabular/trainer/__init__.py
zhiqiangdon/autogluon
71ee7ef0f05d8f0aad112d8c1719174aa33194d9
[ "Apache-2.0" ]
4,462
2019-12-09T17:41:07.000Z
2022-03-31T22:00:41.000Z
tabular/src/autogluon/tabular/trainer/__init__.py
zhiqiangdon/autogluon
71ee7ef0f05d8f0aad112d8c1719174aa33194d9
[ "Apache-2.0" ]
1,408
2019-12-09T17:48:59.000Z
2022-03-31T20:24:12.000Z
tabular/src/autogluon/tabular/trainer/__init__.py
zhiqiangdon/autogluon
71ee7ef0f05d8f0aad112d8c1719174aa33194d9
[ "Apache-2.0" ]
623
2019-12-10T02:04:18.000Z
2022-03-20T17:11:01.000Z
from .auto_trainer import AutoTrainer
19
37
0.868421
6feb97609a006b219ba2e12264c00c16b77972b1
458
py
Python
ccvalidate/api/permissions.py
orion3000/albert
84373ab1e413513758d131adf992534e5ffd4621
[ "BSD-3-Clause" ]
null
null
null
ccvalidate/api/permissions.py
orion3000/albert
84373ab1e413513758d131adf992534e5ffd4621
[ "BSD-3-Clause" ]
5
2021-04-08T20:24:24.000Z
2022-02-10T11:17:41.000Z
ccvalidate/api/permissions.py
orion3000/albert
84373ab1e413513758d131adf992534e5ffd4621
[ "BSD-3-Clause" ]
null
null
null
from rest_framework.permissions import BasePermission from .models import Creditcard class IsOwner(BasePermission): """Custom permission class to allow only creditcard owners to edit them.""" def has_object_permission(self, request, view, obj): """Return True if permission is granted to the creditcard owner.""" if isinstance(obj, Creditcard): return obj.owner == request.user return obj.owner == request.user
35.230769
79
0.713974
e61c7b240ef1e5b3cb5597a0cb8c7b8c0e6ba4b7
1,903
py
Python
autotest/gcore/aaigrid_read.py
dtusk/gdal1
30dcdc1eccbca2331674f6421f1c5013807da609
[ "MIT" ]
3
2017-01-12T10:18:56.000Z
2020-03-21T16:42:55.000Z
autotest/gcore/aaigrid_read.py
ShinNoNoir/gdal-1.11.5-vs2015
5d544e176a4c11f9bcd12a0fe66f97fd157824e6
[ "MIT" ]
null
null
null
autotest/gcore/aaigrid_read.py
ShinNoNoir/gdal-1.11.5-vs2015
5d544e176a4c11f9bcd12a0fe66f97fd157824e6
[ "MIT" ]
null
null
null
#!/usr/bin/env python ############################################################################### # $Id$ # # Project: GDAL/OGR Test Suite # Purpose: Test basic read support for Arc/Info ASCII grid (AAIGrid) file. # Author: Andrey Kiselev, dron@remotesensing.org # ############################################################################### # Copyright (c) 2003, Andrey Kiselev <dron@remotesensing.org> # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Library General Public License for more details. # # You should have received a copy of the GNU Library General Public # License along with this library; if not, write to the # Free Software Foundation, Inc., 59 Temple Place - Suite 330, # Boston, MA 02111-1307, USA. ############################################################################### import os import sys sys.path.append( '../pymod' ) import gdaltest from osgeo import gdal ############################################################################### # When imported build a list of units based on the files available. gdaltest_list = [] init_list = [ \ ('byte.tif.grd', 1, 4672, None)] for item in init_list: ut = gdaltest.GDALTest( 'AAIGrid', item[0], item[1], item[2] ) if ut is None: print( 'AAIGrid tests skipped' ) sys.exit() gdaltest_list.append( (ut.testOpen, item[0]) ) if __name__ == '__main__': gdaltest.setup_run( 'aaigrid_read' ) gdaltest.run_tests( gdaltest_list ) gdaltest.summarize()
32.254237
79
0.594325
bc3513cb203b5eb746d7ca1948d927c26402a7f1
390
py
Python
palsbet/migrations/0003_auto_20180323_0018.py
denis254/palsbetc
d70d0fadaa661ff36c046a4f0a87a88d890c0dc4
[ "BSD-3-Clause" ]
null
null
null
palsbet/migrations/0003_auto_20180323_0018.py
denis254/palsbetc
d70d0fadaa661ff36c046a4f0a87a88d890c0dc4
[ "BSD-3-Clause" ]
11
2020-03-24T16:11:23.000Z
2021-12-13T19:47:29.000Z
palsbet/migrations/0003_auto_20180323_0018.py
denis254/overtimebet
063af2fc263580d96e396e953ef8658a75ac38a5
[ "BSD-3-Clause" ]
null
null
null
# Generated by Django 2.0.2 on 2018-03-22 21:18 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('palsbet', '0002_viptipsgames'), ] operations = [ migrations.AlterField( model_name='viptipsgames', name='cathegory', field=models.CharField(max_length=100), ), ]
20.526316
51
0.602564
1017b343a5b7dcbbbb64251b24cb90f54b1de90d
2,925
py
Python
qbflask/conventions.py
kevindkeogh/qbootstrapper-flask
490906837d6522e3669193e5097bd33e1f953451
[ "MIT" ]
1
2017-04-27T08:59:01.000Z
2017-04-27T08:59:01.000Z
qbflask/conventions.py
kevindkeogh/qbootstrapper-flask
490906837d6522e3669193e5097bd33e1f953451
[ "MIT" ]
null
null
null
qbflask/conventions.py
kevindkeogh/qbootstrapper-flask
490906837d6522e3669193e5097bd33e1f953451
[ "MIT" ]
null
null
null
#!/usr/bin/python3 '''Functions and constants for all conventions, including adding and returning lists of conventions ''' import qbflask.models as models import json import re INSTRUMENT_TYPES = [('OISCashRate', 'OIS Cash Rate'), ('OISSwap', 'OIS Swap'), ('LIBORCashRate', 'LIBOR Cash Rate'), ('LIBORFuture', 'LIBOR Future'), ('LIBORFRA', 'LIBOR FRA'), ('LIBORSwap', 'LIBOR Swap Rate')] CURVE_TYPES = [('OIS', 'OIS'), ('LIBOR', 'LIBOR')] FREQ_TYPES = [('months', 'Months'), ('weeks', 'Weeks'), ('days', 'Days')] ADJ_TYPES = [('unadjusted', 'Unadjusted'), ('following', 'Following'), ('modified following', 'Modified Following'), ('preceding', 'Preceding')] BASIS_TYPES = [('act360', 'Actual/360'), ('act365', 'Actual/365'), ('30360', '30/360'), ('30E360', '30/360E')] def add_convention(raw_data): '''Takes a flask request JSON object, calls the parser, and adds the information to the database ''' try: data = parse_convs_form(raw_data) name = data['conv_name'] ccy = data['currency'] inst = data['conv_instrument_type'] conv = json.dumps(data) db = models.get_db() cur = db.cursor() query = ('INSERT INTO CONVENTIONS(name, currency, instrument, ' 'convention) VALUES(?, ?, ?, ?)') cur.execute(query, (name, ccy, inst, conv)) db.commit() return (True, '{name} convention successfully added'.format(**locals())) except: return (False, 'An error occurred: {name} not added'.format(**locals())) def parse_convs_form(raw_data): '''Takes Flask request JSON object and parses to dict for db addition''' convs = {} for row in raw_data: convs[row['name']] = row['value'] return convs def get_conventions_list(): '''Returns nested dict of all conventions { Currency : { Instrument_type : [Name] } } ''' db = models.get_db() cur = db.cursor() query = 'SELECT currency, instrument, name FROM CONVENTIONS' cur.execute(query) convs = {} for row in cur: if row['currency'] not in convs: convs[row['currency']] = {} if row['instrument'] not in convs[row['currency']]: convs[row['currency']][row['instrument']] = [] convs[row['currency']][row['instrument']].append(row['name']) return convs def convs_validate(conv): ''' ''' pass def get_convention(name, currency): '''Gets a single convention from the database. Returns a python dict of conventions and strings ''' db = models.get_db() cur = db.cursor() query = 'SELECT convention FROM conventions WHERE (name=? AND currency=?)' cur.execute(query, (name, currency)) conv = cur.fetchone()[0] conv = json.loads(conv) return conv
30.46875
80
0.585641
5c434083f7212828c6a5503ed23b5c1ea78119fa
1,765
py
Python
tulingApi.py
Jim-Luo/MyQQRobot2
35b97593ff6b317e68eb1e68a9ef9821d5f862a7
[ "MIT" ]
3
2019-10-01T13:46:16.000Z
2021-03-14T11:37:29.000Z
tulingApi.py
Jim-Luo/MyQQRobot2
35b97593ff6b317e68eb1e68a9ef9821d5f862a7
[ "MIT" ]
null
null
null
tulingApi.py
Jim-Luo/MyQQRobot2
35b97593ff6b317e68eb1e68a9ef9821d5f862a7
[ "MIT" ]
1
2019-07-23T06:55:00.000Z
2019-07-23T06:55:00.000Z
# -*- coding:utf-8 -*- import json import logging import requests from urllib import urlopen from urllib import urlencode class TulingAPI(object): def __init__(self): # API接口地址 self.turing_url = 'http://openapi.tuling123.com/openapi/api/v2?' def get_turing_text(self,text): turing_url_data = { "perception": { "inputText": { "text": text } }, } # print("The things to Request is:",self.turing_url + urlencode(turing_url_data)) # print("The result of Request is:",self.request) try: self.request = requests.post(self.turing_url, data=json.dumps(turing_url_data)) # print("Type of the data from urlopen:",type(w_data)) # print("The data from urlopen is:",w_data) except Exception,e: logging.error(e.message) raise KeyError("Server wouldn't respond (invalid key or quota has been maxed out)") # 其他情况断言提示服务相应次数已经达到上限 response_text = self.request.text # print("Type of the response_text :",type(response_text)) # print("response_text :",response_text) json_result = json.loads(response_text) # print("Type of the json_result :",type(json_result)) return json.loads(response_text)['results'][0]['values']['text'].encode('utf-8') if __name__ == '__main__': print("Now u can type in something & input q to quit") turing = TulingAPI() while True: msg = raw_input('\nMaster:') if msg == 'q': exit("u r quit the chat !") # 设定输入q,退出聊天。 else: turing_data = turing.get_turing_text(msg) print turing_data
29.915254
96
0.584136
78dc6cc9edea9c4210a0b5d28078e367fec43a70
1,819
py
Python
datumaro/datumaro/plugins/voc_format/importer.py
lravindr/cvat
b025acea43fbb55c7ea7eac7b12007f0eb6d3f45
[ "MIT" ]
2
2020-03-16T03:41:27.000Z
2020-03-16T03:53:01.000Z
datumaro/datumaro/plugins/voc_format/importer.py
lravindr/cvat
b025acea43fbb55c7ea7eac7b12007f0eb6d3f45
[ "MIT" ]
24
2020-11-13T18:43:15.000Z
2022-03-12T00:21:52.000Z
datumaro/datumaro/plugins/voc_format/importer.py
lravindr/cvat
b025acea43fbb55c7ea7eac7b12007f0eb6d3f45
[ "MIT" ]
5
2020-07-01T18:02:48.000Z
2021-01-22T02:21:48.000Z
# Copyright (C) 2019 Intel Corporation # # SPDX-License-Identifier: MIT from glob import glob import os.path as osp from datumaro.components.extractor import Importer from .format import VocTask, VocPath class VocImporter(Importer): _TASKS = [ (VocTask.classification, 'voc_classification', 'Main'), (VocTask.detection, 'voc_detection', 'Main'), (VocTask.segmentation, 'voc_segmentation', 'Segmentation'), (VocTask.person_layout, 'voc_layout', 'Layout'), (VocTask.action_classification, 'voc_action', 'Action'), ] @classmethod def detect(cls, path): return len(cls.find_subsets(path)) != 0 def __call__(self, path, **extra_params): from datumaro.components.project import Project # cyclic import project = Project() subset_paths = self.find_subsets(path) if len(subset_paths) == 0: raise Exception("Failed to find 'voc' dataset at '%s'" % path) for task, extractor_type, subset_path in subset_paths: project.add_source('%s-%s' % (task.name, osp.splitext(osp.basename(subset_path))[0]), { 'url': subset_path, 'format': extractor_type, 'options': dict(extra_params), }) return project @staticmethod def find_subsets(path): subset_paths = [] for task, extractor_type, task_dir in __class__._TASKS: task_dir = osp.join(path, VocPath.SUBSETS_DIR, task_dir) if not osp.isdir(task_dir): continue task_subsets = [p for p in glob(osp.join(task_dir, '*.txt')) if '_' not in osp.basename(p)] subset_paths += [(task, extractor_type, p) for p in task_subsets] return subset_paths
31.912281
77
0.611875
25379fb59d0f92a5acae582e1383759f8ed83135
62
py
Python
malib/evaluators/__init__.py
renos/Emergent-Multiagent-Strategies
afaf6acfdd6d505668f06ac23dfb33e872ab2872
[ "MIT" ]
23
2020-07-05T11:13:00.000Z
2022-01-28T00:24:41.000Z
malib/evaluators/__init__.py
renos/Emergent-Multiagent-Strategies
afaf6acfdd6d505668f06ac23dfb33e872ab2872
[ "MIT" ]
2
2020-09-07T19:09:40.000Z
2021-06-02T02:21:51.000Z
malib/evaluators/__init__.py
renos/Emergent-Multiagent-Strategies
afaf6acfdd6d505668f06ac23dfb33e872ab2872
[ "MIT" ]
8
2020-07-06T07:24:37.000Z
2021-09-27T20:28:25.000Z
from malib.evaluators.multiagent_evaluator import MAEvaluator
31
61
0.903226
89502a87a1247b7bfdf5f805a5eed458d40b2e51
2,741
py
Python
Matching/Scheduler.py
JaredsAlgorithms/MatchingSchedules
08c6a60a28119cf9d6a49effb306158d0fa7dc5b
[ "MIT" ]
null
null
null
Matching/Scheduler.py
JaredsAlgorithms/MatchingSchedules
08c6a60a28119cf9d6a49effb306158d0fa7dc5b
[ "MIT" ]
null
null
null
Matching/Scheduler.py
JaredsAlgorithms/MatchingSchedules
08c6a60a28119cf9d6a49effb306158d0fa7dc5b
[ "MIT" ]
null
null
null
from Matching.TimeSlot import TimeSlot from Matching.Stack import Stack class Scheduler: def combineSchedules(self, person1, person2) -> list: """ Remove duplicate time intervals """ a, b = len(person1.schedule), len(person2.schedule) # True: person1 # False: person2 _info = ( False if a < b else True, abs(a - b) ) container = [] for schedule1, schedule2 in zip(person1.schedule, person2.schedule): if(schedule1 not in container): container.append(schedule1) if(schedule2 not in container): container.append(schedule2) # make sure you add the contents of the larger schedule into the container if(a != b): __which_container, index = _info person = person1 if(__which_container) else person2 for value in person.schedule[index:]: if(value not in container): container.append(value) container.sort(key=lambda x: x.begin) # O(n * log(n)) time complexity return container def mergeSchedules(self, person1, person2): """ Input: pre-sorted container Return a range of times that possibly work for each party """ # NOTE: this project pulls from this solution from LeetCode: # https://leetcode.com/problems/merge-intervals/solution/ # smaller time intervals will be combined into one contiguous interval # I wanted to be creative and use a stack instead of a pure list # assumes result is not a n empty list result = self.combineSchedules(person1, person2) if not(result): return [] _Stack = Stack() _Stack.push(result[0]) for slot in result[1:]: top = _Stack.peek() if(top.end < slot.begin): _Stack.push(slot) else: top.end = max(top.end, slot.end) return _Stack.container def dispenseTimes(self, merged): # strip edge cases edge_one, edge_two = merged[0].end, merged[-1].begin # 2 new_container = [] # iterate over the range not including fringe cases for element in merged[1:-1]: begin, end = element.begin, element.end new_container.append(begin) new_container.append(end) new_container.insert(0, edge_one) new_container.append(edge_two) # create a list where every other indexes are pairs: # container = [1, 2, 3, 4] would be [[1, 2], [3, 4]] return [new_container[n:n+2] for n in range(0, len(new_container), 2)]
32.247059
82
0.581175
241b71dadf22b5b3892b7c4f2889c50a1a83ecb4
411
py
Python
src/dsalgo/stack_test.py
kagemeka/python-algorithms
dface89b8c618845cf524429aa8e97c4b2b10ceb
[ "MIT" ]
1
2022-02-10T02:13:07.000Z
2022-02-10T02:13:07.000Z
src/dsalgo/stack_test.py
kagemeka/python-algorithms
dface89b8c618845cf524429aa8e97c4b2b10ceb
[ "MIT" ]
6
2022-01-05T09:15:54.000Z
2022-01-09T05:48:43.000Z
src/dsalgo/stack_test.py
kagemeka/python-algorithms
dface89b8c618845cf524429aa8e97c4b2b10ceb
[ "MIT" ]
null
null
null
import unittest import dsalgo.stack class Test(unittest.TestCase): def test(self) -> None: st = dsalgo.stack.Stack[int]() st.push(3) st.push(2) self.assertEqual(len(st), 2) self.assertEqual(st.top(), 2) self.assertEqual(len(st), 2) self.assertEqual(st.pop(), 2) self.assertEqual(len(st), 1) if __name__ == "__main__": unittest.main()
20.55
38
0.586375
abcfbc020b718594f4d703d1edc81820b706f90e
706
py
Python
tests/test_is_pattern.py
rtmigo/framefile_py
b787ef7701bd3e1e99822fc2de6304384a8a06c0
[ "MIT" ]
null
null
null
tests/test_is_pattern.py
rtmigo/framefile_py
b787ef7701bd3e1e99822fc2de6304384a8a06c0
[ "MIT" ]
null
null
null
tests/test_is_pattern.py
rtmigo/framefile_py
b787ef7701bd3e1e99822fc2de6304384a8a06c0
[ "MIT" ]
null
null
null
# SPDX-FileCopyrightText: (c) 2021 Artёm IG <github.com/rtmigo> # SPDX-License-Identifier: MIT import unittest from framefile import is_pattern, Format class TestIsPattern(unittest.TestCase): def test_pct(self): self.assertTrue(is_pattern("/path/to/%05d.png", fmt=Format.percent)) self.assertFalse(is_pattern("/path/to/#####.png", fmt=Format.percent)) self.assertFalse(is_pattern("/path/to/image.png", fmt=Format.percent)) def test_hash(self): self.assertTrue(is_pattern("/path/to/#####.png", fmt=Format.hash)) self.assertFalse(is_pattern("/path/to/%05d.png", fmt=Format.hash)) self.assertFalse(is_pattern("/path/to/image.png", fmt=Format.hash))
39.222222
78
0.695467
868cc36730d19cde3ac7cbcf9836ae5412fa3c3a
1,002
py
Python
mimic/text_translator.py
ubclaunchpad/mimic
a5cee4e96d726d8d91f344ad86428501b63b1320
[ "MIT" ]
4
2019-02-08T06:25:29.000Z
2020-02-12T04:29:40.000Z
mimic/text_translator.py
ubclaunchpad/mimic
a5cee4e96d726d8d91f344ad86428501b63b1320
[ "MIT" ]
62
2019-02-02T22:35:38.000Z
2022-02-26T10:17:19.000Z
mimic/text_translator.py
ubclaunchpad/mimic
a5cee4e96d726d8d91f344ad86428501b63b1320
[ "MIT" ]
1
2019-07-11T22:33:49.000Z
2019-07-11T22:33:49.000Z
"""Core text translator module.""" from mimic.model.translation_model import TranslationModel class TextTranslator: """ Core text translator class. User-facing class that offers loading of bilingual dataset for training and predition functionalities. """ def __init__(self): """Initialize a TextTranslator.""" self.model = TranslationModel() def load_bilingual_text_file(self, bilingual_file_path): """ Load training dataset for consumption by the model. The dataset is a pkl file of lines of phrases in source language in 1st column and in target laungauge in 2nd column, seperated by a tab. Example: Hi. Hallo! Hi. Grüß Gott! Run! Lauf! Wow! Potzdonner! Wow! Donnerwetter! """ raise NotImplementedError def translate_text(self): """Translate text to the target language of the training dataset.""" raise NotImplementedError
27.081081
76
0.652695
38b762dbb185f806dcff54992459538d529f8a99
108
py
Python
2019/D10/Q2/MonitoringStation.py
buchasia/advent-of-code
f568c6330c8934325913705b39ef8c25a1023057
[ "MIT" ]
null
null
null
2019/D10/Q2/MonitoringStation.py
buchasia/advent-of-code
f568c6330c8934325913705b39ef8c25a1023057
[ "MIT" ]
null
null
null
2019/D10/Q2/MonitoringStation.py
buchasia/advent-of-code
f568c6330c8934325913705b39ef8c25a1023057
[ "MIT" ]
null
null
null
from Map import AsteroidMap asteroidMap = AsteroidMap('InputDay10.txt') asteroidMap.getDistanceSlopeMap()
18
43
0.824074
a79f164ba0f3bb7bb2ff551ce0c9ea7f76ef3c84
1,786
py
Python
homeassistant/components/nsw_fuel_station/__init__.py
NikoM87/core
7403ba1e81579b4ab83da24e570d4afe864e6312
[ "Apache-2.0" ]
2
2020-03-29T05:32:57.000Z
2021-06-13T06:55:05.000Z
homeassistant/components/nsw_fuel_station/__init__.py
NikoM87/core
7403ba1e81579b4ab83da24e570d4afe864e6312
[ "Apache-2.0" ]
79
2020-07-23T07:13:37.000Z
2022-03-22T06:02:37.000Z
homeassistant/components/nsw_fuel_station/__init__.py
kmdm/home-assistant
4007430d7262ef035bb80affea13657fdc993b1d
[ "Apache-2.0" ]
1
2020-11-18T21:04:18.000Z
2020-11-18T21:04:18.000Z
"""The nsw_fuel_station component.""" from __future__ import annotations from dataclasses import dataclass import datetime import logging from nsw_fuel import FuelCheckClient, FuelCheckError, Station from homeassistant.helpers.update_coordinator import DataUpdateCoordinator from .const import DATA_NSW_FUEL_STATION _LOGGER = logging.getLogger(__name__) DOMAIN = "nsw_fuel_station" SCAN_INTERVAL = datetime.timedelta(hours=1) async def async_setup(hass, config): """Set up the NSW Fuel Station platform.""" client = FuelCheckClient() async def async_update_data(): return await hass.async_add_executor_job(fetch_station_price_data, client) coordinator = DataUpdateCoordinator( hass, _LOGGER, name="sensor", update_interval=SCAN_INTERVAL, update_method=async_update_data, ) hass.data[DATA_NSW_FUEL_STATION] = coordinator await coordinator.async_refresh() return True @dataclass class StationPriceData: """Data structure for O(1) price and name lookups.""" stations: dict[int, Station] prices: dict[tuple[int, str], float] def fetch_station_price_data(client: FuelCheckClient) -> StationPriceData | None: """Fetch fuel price and station data.""" try: raw_price_data = client.get_fuel_prices() # Restructure prices and station details to be indexed by station code # for O(1) lookup return StationPriceData( stations={s.code: s for s in raw_price_data.stations}, prices={ (p.station_code, p.fuel_type): p.price for p in raw_price_data.prices }, ) except FuelCheckError as exc: _LOGGER.error("Failed to fetch NSW Fuel station price data. %s", exc) return None
27.476923
85
0.703247
0a4ca05c3cc8ac05bc2affa4412756434ad1671c
12,823
py
Python
SmartBinApp.py
OpenSUTD/SmartBin
134eee02795dd9bd5936846c261283070c7b062e
[ "MIT" ]
37
2018-04-21T22:35:01.000Z
2020-02-22T15:21:30.000Z
SmartBinApp.py
OpenSUTD/SmartBin
134eee02795dd9bd5936846c261283070c7b062e
[ "MIT" ]
3
2018-09-10T17:11:02.000Z
2019-02-07T01:16:50.000Z
SmartBinApp.py
OpenSUTD/SmartBin
134eee02795dd9bd5936846c261283070c7b062e
[ "MIT" ]
12
2018-07-09T02:53:20.000Z
2020-12-18T15:37:22.000Z
# ============================================== # Configuration # Some often-tweaked parameters during testing # ============================================== import os os.environ['KIVY_HOME'] = "/home/pi/.kivy" # model configuration file, taken from training enviroment config_path = "data/config.json" # path to the best weights, taken from the training enviroment weights_path = "data/best_weights_11.h5" # Kivy resizes the camera image to size before displaying frame_size = 1180, 1180 # ==================== # Initialise LED Strip # ==================== print("[i] Initialising LED Strip") from neopixel import * from threading import Thread import time red = Color(0, 255, 0) green = Color(255, 0, 0) blue = Color(0, 0, 255) yellow = Color(255, 255, 0) # Create NeoPixel object with appropriate configuration. strip = Adafruit_NeoPixel(25, 18, 800000, 10, False, 100, 0) # Intialize the library (must be called once before other functions). strip.begin() class lightshow(): """ A thread that's sole purpose is to show you the loading progress. The model takes around 110 seconds to load, so that's what the progress bar shows you. It's a bit naive, but it's also here for fun. """ def __init__(self): # Initiate properties global strip self.stopped = False self.start_time = None self.progress = 0 self.pixels = strip.numPixels() def start(self): # start the thread to read frames from the video stream self.start_time = time.time() Thread(target=self.update, args=()).start() return self def update(self): # keep looping infinitely until the thread is stopped global strip, yellow, green while True: if self.stopped: return elif self.progress == 100: self.stop() else: time.sleep(0.6) self.progress += 0.5 for i in range(int((self.progress+4.4)/100*self.pixels)): strip.setPixelColor(i, red) for i in range(int((self.progress+2.6)/100*self.pixels)): strip.setPixelColor(i, yellow) for i in range(int(self.progress/100*self.pixels)): strip.setPixelColor(i, green) strip.show() def stop(self): self.stopped = True # ==================================== # Computer Vision Pipeline # Components (as threads): # 1. Camera stream (PiVideoStream) # 2. Inference (prediction) stream # ==================================== # start the progress bar animation progress_bar = lightshow().start() print("[i] Initialising Computer Vision pipeline") import cv2 import json import numpy as np from box_utils import draw_boxes from object_detection_model import ObjectDetection with open(config_path) as config_buffer: config = json.load(config_buffer) from camera import PiVideoStream print("[i] Loading feature extractor:", config['model']['backend']) print("[+] Trained labels:", config['model']['labels']) print("[i] Building model... This will take a while... (< 2 mins)") load_start = time.time() model = ObjectDetection(backend=config['model']['backend'], input_size=config['model']['input_size'], labels=config['model']['labels'], max_box_per_image=config['model']['max_box_per_image'], anchors=config['model']['anchors']) print("[i] Model took", (time.time()-load_start), "seconds to load") print("[c] Starting video capture") cap = PiVideoStream().start() print("[i] Loading weights from", weights_path) model.load_weights(weights_path) class predictions(): """ Streaming inferences independently of camera and UI updates Makes use of the following global variables: 1. current frame from camera stream 2. currently loaded object detection model """ def __init__(self): self.boxes = ["can", "bottle", "ken", "grace", "frank", "tim", "shelly"] self.stopped = False def start(self): # start the thread to read frames from the video stream Thread(target=self.update, args=()).start() return self def update(self): global model, frame # keep looping infinitely until the thread is stopped while True: if self.stopped: return else: self.boxes = model.predict(frame) def read(self): return self.boxes def stop(self): self.stopped = True # ========= # IOT Setup # 1. Import firebase iot functions # 2. Authenticate and instantiate firebase # 3. Reset firebase on first run # ========= from iot import * #firebase = firebase_setup() # firebase_reset(firebase) # ====================================================== # Perform one inference to test if everything is working # ====================================================== print("[i] Running self-test") try: frame = cap.read() # read one frame from the stream boxes = model.predict(frame) # get bounding boxes # if previous line succeded, our model is functional; start the predictions stream pred = predictions().start() print("[+] Self-test: OK") except Exception as error: print("[!] Fatal error", end=": ") print(error) exit() # ============================== # Kivy Configuration # Only needed on the first run # ============================== from kivy.config import Config Config.set('graphics', 'fullscreen', 'fake') Config.set('graphics', 'fbo', 'hardware') Config.set('graphics', 'show_cursor', 1) Config.set('graphics', 'borderless', 0) Config.set('kivy', 'exit_on_escape', 1) Config.write() # ======================== # GUI Setup # Necessary Kivy imports # ========================= from kivy.app import App from kivy.graphics import * from kivy.graphics.texture import Texture from kivy.lang import Builder from kivy.clock import Clock from kivy.uix.screenmanager import ScreenManager, Screen from kivy.core.window import Window Builder.load_file('app_layout.kv') # Kivy layout file # Declare individual screens class MainView(Screen): """ This is the main screen, shown when the app starts. It displays the camera feed and 3 buttons """ def __init__(self, **kwargs): global cap, frame, frame_size # capture and render the first frame self.frame_size = frame_size frame = cap.read() image = cv2.flip(frame, 0) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) image = cv2.resize(image, frame_size) buf = image.tostring() self.image_texture = Texture.create(size=(image.shape[1], image.shape[0]), colorfmt='rgb') self.image_texture.blit_buffer(buf, colorfmt='rgb', bufferfmt='ubyte') # coordinates of Trashy self.t_x = 0 self.t_y = 0 self.current_user = 'No user yet' self.tickcount = 0 self.labels = ["can", "bottle", "ken", "grace", "frank", "tim", "shelly"] self.users = ["ken", "grace", "frank", "tim", "shelly"] super(MainView, self).__init__(**kwargs) Clock.schedule_interval(self.tick, 0.06) def tick(self, dt): global pred, cap, frame, strip, red, green, blue #global firebase can_detected, bottle_detected = False, False #self.tickcount += 1 # Process frame from OpenCV frame = cap.read() image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) boxes = pred.read() image = draw_boxes(image, boxes, config['model']['labels']) image = cv2.resize(cv2.flip(image, 0), self.frame_size) buf = image.tostring() # Update displayed image in user interface camera view self.image_texture = Texture.create( size=(self.frame_size), colorfmt='rgb') self.image_texture.blit_buffer(buf, colorfmt='rgb', bufferfmt='ubyte') self.ids.cameraView.texture = self.image_texture if len(boxes) > 0: # Trashy avatar follows the bounding box of the detected entity # Augmented Reality :) self.t_x = int((boxes[0].xmin-0.5) * 1000) - 80 self.t_y = -1 * (int((boxes[0].ymin-0.5) * 1000) + 80) self.ids.trashyView.opacity = 1.0 self.ids.trashyView.pos = (self.t_x, self.t_y) display_label = "" for box in boxes: # Obtain current entity prediction label curr_label = box.get_label() if self.labels[curr_label] == "can": can_detected = True if self.labels[curr_label] == "bottle": bottle_detected = True # if self.labels[curr_label] in self.users: # Update current user property if a valid entity label is detected # self.current_user = self.labels[curr_label] if can_detected == True: # Set led lights at the 'cans' box to green to signal user for i in range(8): strip.setPixelColor(i, red) for i in range(15, 25): strip.setPixelColor(i, green) display_label = display_label + \ "\nThrow your can in the recycling bin\nPlease wash the can first!" # Increment firebase user count for cans by 1 every time a can is detected with a valid user # Also only updates every 10 ticks to reduce lag # if self.current_user in self.users and self.tickcount % 10 == 0: # firebase_update(firebase, self.current_user, 'cans', 1) if bottle_detected == True: # Set led lights at the 'blue' box to green to signal user for i in range(8): strip.setPixelColor(i, red) for i in range(8, 15): strip.setPixelColor(i, blue) display_label = display_label + \ "\nThrow your bottle into the recycling bin\nPlease empty it first!" # Increment firebase user count for bottles by 1 every time a bottle is detected with a valid user # Also only updates every 10 ticks to reduce lag # if self.current_user in self.users and self.tickcount % 10 == 0: # firebase_update(firebase, self.current_user, 'bottles', 1) self.ids.labelObjDet.text = display_label else: # Trashy avatar disappears and message popup self.ids.trashyView.opacity = 0.0 self.ids.labelObjDet.text = "No recyclable trash detected" strip.show() # reset the LED strip to original state (but don't show it!) for i in range(strip.numPixels()): strip.setPixelColor(i, red) for i in range(8): strip.setPixelColor(i, green) def quit(self): # Stop predictions and video capture global strip pred.stop() cap.stop() # Turn off led strip for i in range(strip.numPixels()): strip.setPixelColor(i, Color(0, 0, 0)) strip.show() # Exit kivy Window.close() App.get_running_app().stop() exit() class InfoView(Screen): """Secondary screen that displays information about recycling in Singapore""" def __init__(self, **kwargs): super(InfoView, self).__init__(**kwargs) class AboutView(Screen): """Secondary screen that displays information about this project""" def __init__(self, **kwargs): super(AboutView, self).__init__(**kwargs) # ========================================== # Tie everything together and launch the app # ========================================== # everything works! set LED strip to initial state for i in range(strip.numPixels()): strip.setPixelColor(i, red) for i in range(8): strip.setPixelColor(i, green) strip.show() print("[u] Loading UI") Window.clearcolor = (1, 1, 1, 1) # set white background # setup Kivy screen manager sm = ScreenManager() sm.add_widget(MainView(name='mainView')) sm.add_widget(InfoView(name='infoView')) sm.add_widget(AboutView(name='aboutView')) class SmartBinApp(App): # Main Kivy app def build(self): return sm # Run SmartBinApp and exit if running fails try: SmartBinApp().run() except KeyboardInterrupt: pred.stop() cap.stop() print('exciting due to KeyboardInterrupt') for i in range(strip.numPixels()): strip.setPixelColor(i, Color(0, 0, 0)) strip.show() App.get_running_app().stop() exit()
32.218593
114
0.591047
dea2d7bc65bb27f34dde357e8857090910e648fe
472
py
Python
data/scripts/templates/object/mobile/shared_dressed_rebel_second_lieutenant_rodian_male_01.py
obi-two/GameServer
7d37024e2291a97d49522610cd8f1dbe5666afc2
[ "MIT" ]
20
2015-02-23T15:11:56.000Z
2022-03-18T20:56:48.000Z
data/scripts/templates/object/mobile/shared_dressed_rebel_second_lieutenant_rodian_male_01.py
apathyboy/swganh
665128efe9154611dec4cb5efc61d246dd095984
[ "MIT" ]
null
null
null
data/scripts/templates/object/mobile/shared_dressed_rebel_second_lieutenant_rodian_male_01.py
apathyboy/swganh
665128efe9154611dec4cb5efc61d246dd095984
[ "MIT" ]
20
2015-04-04T16:35:59.000Z
2022-03-24T14:54:37.000Z
#### NOTICE: THIS FILE IS AUTOGENERATED #### MODIFICATIONS MAY BE LOST IF DONE IMPROPERLY #### PLEASE SEE THE ONLINE DOCUMENTATION FOR EXAMPLES from swgpy.object import * def create(kernel): result = Creature() result.template = "object/mobile/shared_dressed_rebel_second_lieutenant_rodian_male_01.iff" result.attribute_template_id = 9 result.stfName("npc_name","rodian_base_male") #### BEGIN MODIFICATIONS #### #### END MODIFICATIONS #### return result
27.764706
92
0.745763
be01d659f3c954c560b89a834a7f444f9c8f0f0e
26,538
py
Python
mmocr/datasets/pipelines/transforms.py
quincylin1/mmocr-1
0e70f99f4d8fa0180bdab16f8697e65e71590c72
[ "Apache-2.0" ]
null
null
null
mmocr/datasets/pipelines/transforms.py
quincylin1/mmocr-1
0e70f99f4d8fa0180bdab16f8697e65e71590c72
[ "Apache-2.0" ]
null
null
null
mmocr/datasets/pipelines/transforms.py
quincylin1/mmocr-1
0e70f99f4d8fa0180bdab16f8697e65e71590c72
[ "Apache-2.0" ]
null
null
null
import math import cv2 import numpy as np import torchvision.transforms as transforms from PIL import Image import mmocr.core.evaluation.utils as eval_utils from mmdet.core import BitmapMasks, PolygonMasks from mmdet.datasets.builder import PIPELINES from mmdet.datasets.pipelines.transforms import Resize from mmocr.utils import check_argument @PIPELINES.register_module() class RandomCropInstances: """Randomly crop images and make sure to contain text instances. Args: target_size (tuple or int): (height, width) positive_sample_ratio (float): The probability of sampling regions that go through positive regions. """ def __init__( self, target_size, instance_key, mask_type='inx0', # 'inx0' or 'union_all' positive_sample_ratio=5.0 / 8.0): assert mask_type in ['inx0', 'union_all'] self.mask_type = mask_type self.instance_key = instance_key self.positive_sample_ratio = positive_sample_ratio self.target_size = target_size if (target_size is None or isinstance( target_size, tuple)) else (target_size, target_size) def sample_offset(self, img_gt, img_size): h, w = img_size t_h, t_w = self.target_size # target size is bigger than origin size t_h = t_h if t_h < h else h t_w = t_w if t_w < w else w if (img_gt is not None and np.random.random_sample() < self.positive_sample_ratio and np.max(img_gt) > 0): # make sure to crop the positive region # the minimum top left to crop positive region (h,w) tl = np.min(np.where(img_gt > 0), axis=1) - (t_h, t_w) tl[tl < 0] = 0 # the maximum top left to crop positive region br = np.max(np.where(img_gt > 0), axis=1) - (t_h, t_w) br[br < 0] = 0 # if br is too big so that crop the outside region of img br[0] = min(br[0], h - t_h) br[1] = min(br[1], w - t_w) # h = np.random.randint(tl[0], br[0]) if tl[0] < br[0] else 0 w = np.random.randint(tl[1], br[1]) if tl[1] < br[1] else 0 else: # make sure not to crop outside of img h = np.random.randint(0, h - t_h) if h - t_h > 0 else 0 w = np.random.randint(0, w - t_w) if w - t_w > 0 else 0 return (h, w) @staticmethod def crop_img(img, offset, target_size): h, w = img.shape[:2] br = np.min( np.stack((np.array(offset) + np.array(target_size), np.array( (h, w)))), axis=0) return img[offset[0]:br[0], offset[1]:br[1]], np.array( [offset[1], offset[0], br[1], br[0]]) def crop_bboxes(self, bboxes, canvas_bbox): kept_bboxes = [] kept_inx = [] canvas_poly = eval_utils.box2polygon(canvas_bbox) tl = canvas_bbox[0:2] for inx, bbox in enumerate(bboxes): poly = eval_utils.box2polygon(bbox) area, inters = eval_utils.poly_intersection(poly, canvas_poly) if area == 0: continue xmin, xmax, ymin, ymax = inters.boundingBox() kept_bboxes += [ np.array( [xmin - tl[0], ymin - tl[1], xmax - tl[0], ymax - tl[1]], dtype=np.float32) ] kept_inx += [inx] if len(kept_inx) == 0: return np.array([]).astype(np.float32).reshape(0, 4), kept_inx return np.stack(kept_bboxes), kept_inx @staticmethod def generate_mask(gt_mask, type): if type == 'inx0': return gt_mask.masks[0] if type == 'union_all': mask = gt_mask.masks[0].copy() for inx in range(1, len(gt_mask.masks)): mask = np.logical_or(mask, gt_mask.masks[inx]) return mask raise NotImplementedError def __call__(self, results): gt_mask = results[self.instance_key] mask = None if len(gt_mask.masks) > 0: mask = self.generate_mask(gt_mask, self.mask_type) results['crop_offset'] = self.sample_offset(mask, results['img'].shape[:2]) # crop img. bbox = [x1,y1,x2,y2] img, bbox = self.crop_img(results['img'], results['crop_offset'], self.target_size) results['img'] = img img_shape = img.shape results['img_shape'] = img_shape # crop masks for key in results.get('mask_fields', []): results[key] = results[key].crop(bbox) # for mask rcnn for key in results.get('bbox_fields', []): results[key], kept_inx = self.crop_bboxes(results[key], bbox) if key == 'gt_bboxes': # ignore gt_labels accordingly if 'gt_labels' in results: ori_labels = results['gt_labels'] ori_inst_num = len(ori_labels) results['gt_labels'] = [ ori_labels[inx] for inx in range(ori_inst_num) if inx in kept_inx ] # ignore g_masks accordingly if 'gt_masks' in results: ori_mask = results['gt_masks'].masks kept_mask = [ ori_mask[inx] for inx in range(ori_inst_num) if inx in kept_inx ] target_h, target_w = bbox[3] - bbox[1], bbox[2] - bbox[0] if len(kept_inx) > 0: kept_mask = np.stack(kept_mask) else: kept_mask = np.empty((0, target_h, target_w), dtype=np.float32) results['gt_masks'] = BitmapMasks(kept_mask, target_h, target_w) return results def __repr__(self): repr_str = self.__class__.__name__ return repr_str @PIPELINES.register_module() class RandomRotateTextDet: """Randomly rotate images.""" def __init__(self, rotate_ratio=1.0, max_angle=10): self.rotate_ratio = rotate_ratio self.max_angle = max_angle @staticmethod def sample_angle(max_angle): angle = np.random.random_sample() * 2 * max_angle - max_angle return angle @staticmethod def rotate_img(img, angle): h, w = img.shape[:2] rotation_matrix = cv2.getRotationMatrix2D((w / 2, h / 2), angle, 1) img_target = cv2.warpAffine( img, rotation_matrix, (w, h), flags=cv2.INTER_NEAREST) assert img_target.shape == img.shape return img_target def __call__(self, results): if np.random.random_sample() < self.rotate_ratio: # rotate imgs results['rotated_angle'] = self.sample_angle(self.max_angle) img = self.rotate_img(results['img'], results['rotated_angle']) results['img'] = img img_shape = img.shape results['img_shape'] = img_shape # rotate masks for key in results.get('mask_fields', []): masks = results[key].masks mask_list = [] for m in masks: rotated_m = self.rotate_img(m, results['rotated_angle']) mask_list.append(rotated_m) results[key] = BitmapMasks(mask_list, *(img_shape[:2])) return results def __repr__(self): repr_str = self.__class__.__name__ return repr_str @PIPELINES.register_module() class ColorJitter: """An interface for torch color jitter so that it can be invoked in mmdetection pipeline.""" def __init__(self, **kwargs): self.transform = transforms.ColorJitter(**kwargs) def __call__(self, results): # img is bgr img = results['img'][..., ::-1] img = Image.fromarray(img) img = self.transform(img) img = np.asarray(img) img = img[..., ::-1] results['img'] = img return results def __repr__(self): repr_str = self.__class__.__name__ return repr_str @PIPELINES.register_module() class ScaleAspectJitter(Resize): """Resize image and segmentation mask encoded by coordinates. Allowed resize types are `around_min_img_scale`, `long_short_bound`, and `indep_sample_in_range`. """ def __init__(self, img_scale=None, multiscale_mode='range', ratio_range=None, keep_ratio=False, resize_type='around_min_img_scale', aspect_ratio_range=None, long_size_bound=None, short_size_bound=None, scale_range=None): super().__init__( img_scale=img_scale, multiscale_mode=multiscale_mode, ratio_range=ratio_range, keep_ratio=keep_ratio) assert not keep_ratio assert resize_type in [ 'around_min_img_scale', 'long_short_bound', 'indep_sample_in_range' ] self.resize_type = resize_type if resize_type == 'indep_sample_in_range': assert ratio_range is None assert aspect_ratio_range is None assert short_size_bound is None assert long_size_bound is None assert scale_range is not None else: assert scale_range is None assert isinstance(ratio_range, tuple) assert isinstance(aspect_ratio_range, tuple) assert check_argument.equal_len(ratio_range, aspect_ratio_range) if resize_type in ['long_short_bound']: assert short_size_bound is not None assert long_size_bound is not None self.aspect_ratio_range = aspect_ratio_range self.long_size_bound = long_size_bound self.short_size_bound = short_size_bound self.scale_range = scale_range @staticmethod def sample_from_range(range): assert len(range) == 2 min_value, max_value = min(range), max(range) value = np.random.random_sample() * (max_value - min_value) + min_value return value def _random_scale(self, results): if self.resize_type == 'indep_sample_in_range': w = self.sample_from_range(self.scale_range) h = self.sample_from_range(self.scale_range) results['scale'] = (int(w), int(h)) # (w,h) results['scale_idx'] = None return h, w = results['img'].shape[0:2] if self.resize_type == 'long_short_bound': scale1 = 1 if max(h, w) > self.long_size_bound: scale1 = self.long_size_bound / max(h, w) scale2 = self.sample_from_range(self.ratio_range) scale = scale1 * scale2 if min(h, w) * scale <= self.short_size_bound: scale = (self.short_size_bound + 10) * 1.0 / min(h, w) elif self.resize_type == 'around_min_img_scale': short_size = min(self.img_scale[0]) ratio = self.sample_from_range(self.ratio_range) scale = (ratio * short_size) / min(h, w) else: raise NotImplementedError aspect = self.sample_from_range(self.aspect_ratio_range) h_scale = scale * math.sqrt(aspect) w_scale = scale / math.sqrt(aspect) results['scale'] = (int(w * w_scale), int(h * h_scale)) # (w,h) results['scale_idx'] = None @PIPELINES.register_module() class AffineJitter: """An interface for torchvision random affine so that it can be invoked in mmdet pipeline.""" def __init__(self, degrees=4, translate=(0.02, 0.04), scale=(0.9, 1.1), shear=None, resample=False, fillcolor=0): self.transform = transforms.RandomAffine( degrees=degrees, translate=translate, scale=scale, shear=shear, resample=resample, fillcolor=fillcolor) def __call__(self, results): # img is bgr img = results['img'][..., ::-1] img = Image.fromarray(img) img = self.transform(img) img = np.asarray(img) img = img[..., ::-1] results['img'] = img return results def __repr__(self): repr_str = self.__class__.__name__ return repr_str @PIPELINES.register_module() class RandomCropPolyInstances: """Randomly crop images and make sure to contain at least one intact instance.""" def __init__(self, instance_key='gt_masks', crop_ratio=5.0 / 8.0, min_side_ratio=0.4): super().__init__() self.instance_key = instance_key self.crop_ratio = crop_ratio self.min_side_ratio = min_side_ratio def sample_valid_start_end(self, valid_array, min_len, max_start, min_end): assert isinstance(min_len, int) assert len(valid_array) > min_len start_array = valid_array.copy() max_start = min(len(start_array) - min_len, max_start) start_array[max_start:] = 0 start_array[0] = 1 diff_array = np.hstack([0, start_array]) - np.hstack([start_array, 0]) region_starts = np.where(diff_array < 0)[0] region_ends = np.where(diff_array > 0)[0] region_ind = np.random.randint(0, len(region_starts)) start = np.random.randint(region_starts[region_ind], region_ends[region_ind]) end_array = valid_array.copy() min_end = max(start + min_len, min_end) end_array[:min_end] = 0 end_array[-1] = 1 diff_array = np.hstack([0, end_array]) - np.hstack([end_array, 0]) region_starts = np.where(diff_array < 0)[0] region_ends = np.where(diff_array > 0)[0] region_ind = np.random.randint(0, len(region_starts)) end = np.random.randint(region_starts[region_ind], region_ends[region_ind]) return start, end def sample_crop_box(self, img_size, results): """Generate crop box and make sure not to crop the polygon instances. Args: img_size (tuple(int)): The image size (h, w). results (dict): The results dict. """ assert isinstance(img_size, tuple) h, w = img_size[:2] key_masks = results[self.instance_key].masks x_valid_array = np.ones(w, dtype=np.int32) y_valid_array = np.ones(h, dtype=np.int32) selected_mask = key_masks[np.random.randint(0, len(key_masks))] selected_mask = selected_mask[0].reshape((-1, 2)).astype(np.int32) max_x_start = max(np.min(selected_mask[:, 0]) - 2, 0) min_x_end = min(np.max(selected_mask[:, 0]) + 3, w - 1) max_y_start = max(np.min(selected_mask[:, 1]) - 2, 0) min_y_end = min(np.max(selected_mask[:, 1]) + 3, h - 1) for key in results.get('mask_fields', []): if len(results[key].masks) == 0: continue masks = results[key].masks for mask in masks: assert len(mask) == 1 mask = mask[0].reshape((-1, 2)).astype(np.int32) clip_x = np.clip(mask[:, 0], 0, w - 1) clip_y = np.clip(mask[:, 1], 0, h - 1) min_x, max_x = np.min(clip_x), np.max(clip_x) min_y, max_y = np.min(clip_y), np.max(clip_y) x_valid_array[min_x - 2:max_x + 3] = 0 y_valid_array[min_y - 2:max_y + 3] = 0 min_w = int(w * self.min_side_ratio) min_h = int(h * self.min_side_ratio) x1, x2 = self.sample_valid_start_end(x_valid_array, min_w, max_x_start, min_x_end) y1, y2 = self.sample_valid_start_end(y_valid_array, min_h, max_y_start, min_y_end) return np.array([x1, y1, x2, y2]) def crop_img(self, img, bbox): assert img.ndim == 3 h, w, _ = img.shape assert 0 <= bbox[1] < bbox[3] <= h assert 0 <= bbox[0] < bbox[2] <= w return img[bbox[1]:bbox[3], bbox[0]:bbox[2]] def __call__(self, results): if len(results[self.instance_key].masks) < 1: return results if np.random.random_sample() < self.crop_ratio: crop_box = self.sample_crop_box(results['img'].shape, results) results['crop_region'] = crop_box img = self.crop_img(results['img'], crop_box) results['img'] = img results['img_shape'] = img.shape # crop and filter masks x1, y1, x2, y2 = crop_box w = max(x2 - x1, 1) h = max(y2 - y1, 1) labels = results['gt_labels'] valid_labels = [] for key in results.get('mask_fields', []): if len(results[key].masks) == 0: continue results[key] = results[key].crop(crop_box) # filter out polygons beyond crop box. masks = results[key].masks valid_masks_list = [] for ind, mask in enumerate(masks): assert len(mask) == 1 polygon = mask[0].reshape((-1, 2)) if (polygon[:, 0] > -4).all() and (polygon[:, 0] < w + 4).all() and ( polygon[:, 1] > -4).all() and (polygon[:, 1] < h + 4).all(): mask[0][::2] = np.clip(mask[0][::2], 0, w) mask[0][1::2] = np.clip(mask[0][1::2], 0, h) if key == self.instance_key: valid_labels.append(labels[ind]) valid_masks_list.append(mask) results[key] = PolygonMasks(valid_masks_list, h, w) results['gt_labels'] = np.array(valid_labels) return results def __repr__(self): repr_str = self.__class__.__name__ return repr_str @PIPELINES.register_module() class RandomRotatePolyInstances: def __init__(self, rotate_ratio=0.5, max_angle=10, pad_with_fixed_color=False, pad_value=(0, 0, 0)): """Randomly rotate images and polygon masks. Args: rotate_ratio (float): The ratio of samples to operate rotation. max_angle (int): The maximum rotation angle. pad_with_fixed_color (bool): The flag for whether to pad rotated image with fixed value. If set to False, the rotated image will be padded onto cropped image. pad_value (tuple(int)): The color value for padding rotated image. """ self.rotate_ratio = rotate_ratio self.max_angle = max_angle self.pad_with_fixed_color = pad_with_fixed_color self.pad_value = pad_value def rotate(self, center, points, theta, center_shift=(0, 0)): # rotate points. (center_x, center_y) = center center_y = -center_y x, y = points[::2], points[1::2] y = -y theta = theta / 180 * math.pi cos = math.cos(theta) sin = math.sin(theta) x = (x - center_x) y = (y - center_y) _x = center_x + x * cos - y * sin + center_shift[0] _y = -(center_y + x * sin + y * cos) + center_shift[1] points[::2], points[1::2] = _x, _y return points def cal_canvas_size(self, ori_size, degree): assert isinstance(ori_size, tuple) angle = degree * math.pi / 180.0 h, w = ori_size[:2] cos = math.cos(angle) sin = math.sin(angle) canvas_h = int(w * math.fabs(sin) + h * math.fabs(cos)) canvas_w = int(w * math.fabs(cos) + h * math.fabs(sin)) canvas_size = (canvas_h, canvas_w) return canvas_size def sample_angle(self, max_angle): angle = np.random.random_sample() * 2 * max_angle - max_angle return angle def rotate_img(self, img, angle, canvas_size): h, w = img.shape[:2] rotation_matrix = cv2.getRotationMatrix2D((w / 2, h / 2), angle, 1) rotation_matrix[0, 2] += int((canvas_size[1] - w) / 2) rotation_matrix[1, 2] += int((canvas_size[0] - h) / 2) if self.pad_with_fixed_color: target_img = cv2.warpAffine( img, rotation_matrix, (canvas_size[1], canvas_size[0]), flags=cv2.INTER_NEAREST, borderValue=self.pad_value) else: mask = np.zeros_like(img) (h_ind, w_ind) = (np.random.randint(0, h * 7 // 8), np.random.randint(0, w * 7 // 8)) img_cut = img[h_ind:(h_ind + h // 9), w_ind:(w_ind + w // 9)] img_cut = cv2.resize(img_cut, (canvas_size[1], canvas_size[0])) mask = cv2.warpAffine( mask, rotation_matrix, (canvas_size[1], canvas_size[0]), borderValue=[1, 1, 1]) target_img = cv2.warpAffine( img, rotation_matrix, (canvas_size[1], canvas_size[0]), borderValue=[0, 0, 0]) target_img = target_img + img_cut * mask return target_img def __call__(self, results): if np.random.random_sample() < self.rotate_ratio: img = results['img'] h, w = img.shape[:2] angle = self.sample_angle(self.max_angle) canvas_size = self.cal_canvas_size((h, w), angle) center_shift = (int( (canvas_size[1] - w) / 2), int((canvas_size[0] - h) / 2)) # rotate image results['rotated_poly_angle'] = angle img = self.rotate_img(img, angle, canvas_size) results['img'] = img img_shape = img.shape results['img_shape'] = img_shape # rotate polygons for key in results.get('mask_fields', []): if len(results[key].masks) == 0: continue masks = results[key].masks rotated_masks = [] for mask in masks: rotated_mask = self.rotate((w / 2, h / 2), mask[0], angle, center_shift) rotated_masks.append([rotated_mask]) results[key] = PolygonMasks(rotated_masks, *(img_shape[:2])) return results def __repr__(self): repr_str = self.__class__.__name__ return repr_str @PIPELINES.register_module() class SquareResizePad: def __init__(self, target_size, pad_ratio=0.6, pad_with_fixed_color=False, pad_value=(0, 0, 0)): """Resize or pad images to be square shape. Args: target_size (int): The target size of square shaped image. pad_with_fixed_color (bool): The flag for whether to pad rotated image with fixed value. If set to False, the rescales image will be padded onto cropped image. pad_value (tuple(int)): The color value for padding rotated image. """ assert isinstance(target_size, int) assert isinstance(pad_ratio, float) assert isinstance(pad_with_fixed_color, bool) assert isinstance(pad_value, tuple) self.target_size = target_size self.pad_ratio = pad_ratio self.pad_with_fixed_color = pad_with_fixed_color self.pad_value = pad_value def resize_img(self, img, keep_ratio=True): h, w, _ = img.shape if keep_ratio: t_h = self.target_size if h >= w else int(h * self.target_size / w) t_w = self.target_size if h <= w else int(w * self.target_size / h) else: t_h = t_w = self.target_size img = cv2.resize(img, (t_w, t_h)) return img, (t_h, t_w) def square_pad(self, img): h, w = img.shape[:2] if h == w: return img, (0, 0) pad_size = max(h, w) if self.pad_with_fixed_color: expand_img = np.ones((pad_size, pad_size, 3), dtype=np.uint8) expand_img[:] = self.pad_value else: (h_ind, w_ind) = (np.random.randint(0, h * 7 // 8), np.random.randint(0, w * 7 // 8)) img_cut = img[h_ind:(h_ind + h // 9), w_ind:(w_ind + w // 9)] expand_img = cv2.resize(img_cut, (pad_size, pad_size)) if h > w: y0, x0 = 0, (h - w) // 2 else: y0, x0 = (w - h) // 2, 0 expand_img[y0:y0 + h, x0:x0 + w] = img offset = (x0, y0) return expand_img, offset def square_pad_mask(self, points, offset): x0, y0 = offset pad_points = points.copy() pad_points[::2] = pad_points[::2] + x0 pad_points[1::2] = pad_points[1::2] + y0 return pad_points def __call__(self, results): img = results['img'] if np.random.random_sample() < self.pad_ratio: img, out_size = self.resize_img(img, keep_ratio=True) img, offset = self.square_pad(img) else: img, out_size = self.resize_img(img, keep_ratio=False) offset = (0, 0) results['img'] = img results['img_shape'] = img.shape for key in results.get('mask_fields', []): if len(results[key].masks) == 0: continue results[key] = results[key].resize(out_size) masks = results[key].masks processed_masks = [] for mask in masks: square_pad_mask = self.square_pad_mask(mask[0], offset) processed_masks.append([square_pad_mask]) results[key] = PolygonMasks(processed_masks, *(img.shape[:2])) return results def __repr__(self): repr_str = self.__class__.__name__ return repr_str
36.155313
79
0.546801
b7d5a60fbdb76687fc39cd1c5c8e08ebfcca6f94
403
py
Python
thirtyonedays/thirtyonedays/wsgi.py
kmikitin/31daysofhalloween
989e304ddb6ffa414d4e396221fe0f8cc5d3b175
[ "MIT" ]
null
null
null
thirtyonedays/thirtyonedays/wsgi.py
kmikitin/31daysofhalloween
989e304ddb6ffa414d4e396221fe0f8cc5d3b175
[ "MIT" ]
6
2019-12-04T23:12:28.000Z
2022-02-10T09:03:49.000Z
thirtyonedays/thirtyonedays/wsgi.py
kmikitin/31daysofhalloween
989e304ddb6ffa414d4e396221fe0f8cc5d3b175
[ "MIT" ]
null
null
null
""" WSGI config for thirtyonedays project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'thirtyonedays.settings') application = get_wsgi_application()
23.705882
78
0.791563
a5226e42afbe3e86ee8a5202f12d275869692771
16,082
py
Python
common/mask_prune/prune_v1.py
jiahuei/tf-sparse-captioning
9d7b8ecdd44fb1541500ca4f920d6c94fd15bad1
[ "BSD-3-Clause" ]
null
null
null
common/mask_prune/prune_v1.py
jiahuei/tf-sparse-captioning
9d7b8ecdd44fb1541500ca4f920d6c94fd15bad1
[ "BSD-3-Clause" ]
null
null
null
common/mask_prune/prune_v1.py
jiahuei/tf-sparse-captioning
9d7b8ecdd44fb1541500ca4f920d6c94fd15bad1
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on 12 Jul 2019 22:45:39 @author: jiahuei """ import tensorflow as tf import numpy as np import os import logging from tensorflow.contrib.model_pruning.python import pruning_utils # from tensorflow.contrib.model_pruning.python import pruning from common import ops_v1 as ops from common.mask_prune import masked_layer from common.mask_prune import sampler logger = logging.getLogger(__name__) # _NBINS = 256 _NBINS = 512 LOSS_TYPE = ['L1', 'L2', 'hinge_L1'] pjoin = os.path.join _shape = ops.shape def calculate_weight_sparsities(weights, weight_op_names=None): return calculate_sparsities(tensor_list=weights, count_nnz_fn=lambda x: tf.count_nonzero(x, axis=None, dtype=tf.float32), tensor_op_names=weight_op_names) def calculate_mask_sparsities(sampled_masks, mask_op_names): return calculate_sparsities(tensor_list=sampled_masks, count_nnz_fn=tf.reduce_sum, tensor_op_names=mask_op_names) def calculate_sparsities(tensor_list, count_nnz_fn, tensor_op_names=None): if tensor_op_names is not None: assert isinstance(tensor_op_names, list) tensor_sizes = [tf.to_float(tf.reduce_prod(_shape(t))) for t in tensor_list] tensor_nnz = [] tensor_sps = [] for i, m in enumerate(tensor_list): m_nnz = count_nnz_fn(m) m_sps = tf.subtract(1.0, tf.divide(m_nnz, tensor_sizes[i])) tensor_nnz.append(m_nnz) if tensor_op_names is None: m_name = '' else: # m_name = '/'.join(tensor_op_names[i].split('/')[-3:]) m_name = tensor_op_names[i] tensor_sps.append((m_name, m_sps)) # tf.summary.scalar(m_name, m_sps) total_nnz = tf.add_n(tensor_nnz) total_size = tf.add_n(tensor_sizes) total_sparsity = tf.subtract(1.0, tf.divide(total_nnz, total_size)) return total_sparsity, total_nnz, tensor_sps def mask_sparsity_summaries(masks_list, mask_op_names): """ Add summary ops for mask sparsity levels. The masks provided must have binary values (either 0. or 1.). :param masks_list: :param mask_op_names: :return: """ with tf.name_scope('sparsity'): total_sparsity, total_nnz, mask_sps = calculate_mask_sparsities(masks_list, mask_op_names) for sps in mask_sps: tf.summary.scalar(*sps) tf.summary.scalar('total_nnz', total_nnz) tf.summary.scalar('total_sparsity', total_sparsity) return total_sparsity def write_sparsities_to_file(log_dir, val): assert 'global_step' in val assert 'total_sparsity' in val assert 'total_nnz' in val assert 'mask_sps' in val out = [ '{}'.format(val['global_step']), '{:9.7f}'.format(val['total_sparsity']), '{:d}'.format(int(val['total_nnz'])) ] out += ['{:9.7f}'.format(sps[1]) for sps in val['mask_sps']] out = '\r\n' + ','.join(out) fpath = pjoin(log_dir, 'sparsity_values.csv') if not os.path.isfile(fpath): headers = 'Global step,Total sparsity,Total NNZ,' headers += ','.join([str(sps[0]) for sps in val['mask_sps']]) out = headers + out with open(fpath, 'a') as f: f.write(out) def get_masks(sampling_method='binarise_round', exclude_scopes=None): masks = tf.contrib.model_pruning.get_masks() mask_sampled_ref = tf.get_collection('masks_sampled') is_mag_prune = len(mask_sampled_ref) == 0 if exclude_scopes is not None: assert isinstance(exclude_scopes, (list, tuple)) masks = tf.contrib.framework.filter_variables( var_list=masks, include_patterns=None, exclude_patterns=exclude_scopes, reg_search=True) mask_sampled_ref = tf.contrib.framework.filter_variables( var_list=mask_sampled_ref, include_patterns=None, exclude_patterns=exclude_scopes, reg_search=True) if is_mag_prune: logger.debug('get_mask(): Should be magnitude pruning') return masks, masks else: assert sampling_method in ['binarise_round', 'rand', 'sigmoid'] if sampling_method == 'rand': sampled_masks = mask_sampled_ref[:] else: sampled_masks = [] for m, m_sampled in zip(masks, mask_sampled_ref): if sampling_method == 'binarise_round': m = sampler.binarise_sigmoid(m) else: raise NotImplementedError m = tf.nn.sigmoid(m) m_sampled_s = _shape(m_sampled) if _shape(m) != m_sampled_s: # Mask mode is Structured m = tf.tile(m, multiples=[m_sampled_s[0], m_sampled_s[1] // _shape(m)[-1]]) sampled_masks.append(m) return sampled_masks, masks def get_weights(exclude_scopes=None): weights = tf.contrib.model_pruning.get_weights() if exclude_scopes is not None: assert isinstance(exclude_scopes, (list, tuple)) weights = tf.contrib.framework.filter_variables( var_list=weights, include_patterns=None, exclude_patterns=exclude_scopes, reg_search=True) return weights def get_mask_assign_ops(mask_type, sparsity_target, exclude_scopes, loss=None): if mask_type in masked_layer.MAG_PRUNE_MASKS + [masked_layer.LOTTERY]: masks, _ = get_masks(exclude_scopes=exclude_scopes) weights = get_weights(exclude_scopes=exclude_scopes) else: raise ValueError('Invalid mask type. Must be one of {}'.format( # masked_layer.MAG_PRUNE_MASKS + masked_layer.MASK_PRUNE)) masked_layer.MAG_PRUNE_MASKS)) assert len(weights) == len(masks) assert len(masks) > 0 with tf.name_scope('mask_assign_ops'): if mask_type == masked_layer.SNIP: # Maybe accumulate saliency with tf.variable_scope('accum_saliency'): zero_init = tf.initializers.zeros(loss.dtype) var_kwargs = dict(dtype=loss.dtype, initializer=zero_init, trainable=False) saliency = [tf.get_variable('saliency_m{}'.format(i), shape=_shape(m), **var_kwargs) for i, m in enumerate(masks)] # saliency_batch = [tf.abs(s) for s in tf.gradients(ys=loss, xs=masks)] saliency_batch = [s for s in tf.gradients(ys=loss, xs=masks)] # Ops for accumulating saliency accum_ops = [sal.assign_add(sal_b) for (sal, sal_b) in zip(saliency, saliency_batch)] # saliency = [tf.abs(s) for s in tf.gradients(ys=loss, xs=masks)] mask_ori_shape = [_shape(m) for m in masks] mask_num_elems = [np.prod(m) for m in mask_ori_shape] saliency_vec = tf.concat([tf.reshape(s, [-1]) for s in saliency], axis=0) saliency_vec = tf.abs(saliency_vec) saliency_vec = tf.divide(saliency_vec, tf.reduce_sum(saliency_vec)) num_params = _shape(saliency_vec)[0] kappa = int(round(num_params * (1. - sparsity_target))) _, ind = tf.nn.top_k(saliency_vec, k=kappa, sorted=True) mask_sparse_vec = tf.sparse_to_dense(ind, tf.shape(saliency_vec), tf.ones_like(ind, dtype=tf.float32), validate_indices=False) mask_sparse_split = tf.split(mask_sparse_vec, mask_num_elems) mask_sparse = [tf.reshape(m, ms) for m, ms in zip(mask_sparse_split, mask_ori_shape)] assign_ops = [tf.assign(m, new_mask) for m, new_mask in zip(masks, mask_sparse)] return assign_ops, accum_ops elif mask_type == masked_layer.MAG_DIST: # Magnitude pruning, class-distribution # Calculate standard dev of each class # Transform weights as positive factor of standard dev, ie w' = | (w - mean) / std_dev | # Reshape and concat all factorised weights, and calculate threshold # The rest of the operations are same as class-blind abs_weights = [] for w in weights: mean, var = tf.nn.moments(w, axes=list(range(len(_shape(w))))) std_dev = tf.sqrt(var) w = tf.abs(tf.divide(tf.subtract(w, mean), std_dev)) abs_weights.append(w) criterion = [tf.concat([tf.reshape(w, [-1]) for w in abs_weights], axis=0)] else: abs_weights = [tf.abs(w) for w in weights] # if mask_type in masked_layer.MAG_BLIND + masked_layer.MASK_BLIND: if mask_type == masked_layer.MAG_UNIFORM: # Magnitude pruning, class-uniform criterion = abs_weights elif mask_type in (masked_layer.MAG_BLIND, masked_layer.LOTTERY): # Magnitude pruning, class-blind # We reshape all the weights into a vector, and concat them criterion = [tf.concat([tf.reshape(w, [-1]) for w in abs_weights], axis=0)] # len == 1 for class-blind, and len == len(weights) for others thresholds = [_get_threshold(c, sparsity_target, nbins=_NBINS) for c in criterion] if len(thresholds) != len(masks): assert len(thresholds) == 1, 'Threshold list should be either of length 1 or equal length as masks list.' assign_ops = [] # new_masks = [] for index, mask in enumerate(masks): abs_w = abs_weights[index] threshold = thresholds[min(index, len(thresholds) - 1)] new_mask = tf.cast(tf.greater(abs_w, threshold), tf.float32) assign_ops.append(tf.assign(mask, new_mask)) # new_masks.append(new_mask) # Assign ops need to be executed for the summaries to capture correct values # mask_sparsity_summaries(masks, [m.op.name for m in masks]) return assign_ops def conditional_mask_update_op(exclude_scopes, pruning_scheme, global_step, initial_sparsity, final_sparsity, pruning_start_step, pruning_end_step, prune_frequency): """ Conditional mask update ops for gradual pruning. https://arxiv.org/abs/1710.01878 https://github.com/tensorflow/tensorflow/blob/r1.10/tensorflow/contrib/model_pruning :param exclude_scopes: :param pruning_scheme: :param global_step: :param initial_sparsity: :param final_sparsity: :param pruning_start_step: :param pruning_end_step: :param prune_frequency: :return: """ assert pruning_scheme in masked_layer.MAG_PRUNE_MASKS if (pruning_end_step - pruning_start_step) % prune_frequency != 0: raise ValueError('Pruning end step must be equal to start step added by multiples of frequency.') def maybe_update_masks(): with tf.name_scope('mask_update'): is_step_within_pruning_range = tf.logical_and( tf.greater_equal(global_step, pruning_start_step), # If end_pruning_step is negative, keep pruning forever! tf.logical_or( tf.less_equal(global_step, pruning_end_step), tf.less(pruning_end_step, 0))) is_pruning_step = tf.equal( tf.floormod(tf.subtract(global_step, pruning_start_step), prune_frequency), 0) is_pruning_step = tf.logical_and(is_step_within_pruning_range, is_pruning_step) return is_pruning_step def mask_update_op(): current_sparsity = _get_current_sparsity(global_step=global_step, initial_sparsity=initial_sparsity, final_sparsity=final_sparsity, pruning_start_step=pruning_start_step, pruning_end_step=pruning_end_step) # tf.summary.scalar('sparsity_target', current_sparsity) mask_assign_ops = get_mask_assign_ops( mask_type=pruning_scheme, sparsity_target=current_sparsity, exclude_scopes=exclude_scopes) with tf.control_dependencies(mask_assign_ops): # logger.info('Updating masks.') return tf.no_op('mask_update') # return tf.identity(global_step) def no_update_op(): return tf.no_op() # return tf.identity(global_step) return tf.cond(maybe_update_masks(), mask_update_op, no_update_op) def _get_current_sparsity(global_step, initial_sparsity, final_sparsity, pruning_start_step, pruning_end_step): """ Get current sparsity level for gradual pruning. https://arxiv.org/abs/1710.01878 https://github.com/tensorflow/tensorflow/blob/r1.10/tensorflow/contrib/model_pruning :param global_step: :param initial_sparsity: :param final_sparsity: :param pruning_start_step: :param pruning_end_step: :return: """ si = initial_sparsity sf = final_sparsity t = global_step t0 = pruning_start_step tn = pruning_end_step p = tf.div(tf.cast(t - t0, tf.float32), tn - t0) p = tf.minimum(1.0, tf.maximum(0.0, p)) st = tf.add(sf, tf.multiply(si - sf, tf.pow(1 - p, 3))) return st def sparsity_loss(sparsity_target, loss_type='L1', exclude_scopes=None): """ Loss for controlling sparsity of Supermasks. :param sparsity_target: Desired sparsity rate. :param loss_type: The distance metric. :param exclude_scopes: Mask scopes to exclude. :return: Scalar loss value. """ assert loss_type in LOSS_TYPE, 'Valid loss functions: {}'.format(LOSS_TYPE) if loss_type == 'L1': loss_fn = _l1_loss elif loss_type == 'L2': loss_fn = _l2_loss elif loss_type == 'hinge_L1': loss_fn = _hinge_l1_loss else: raise ValueError() logger.debug('Using mask sparsity loss: `{}`'.format(loss_type)) sampled_masks, masks = get_masks(exclude_scopes=exclude_scopes) if len(masks) == 0: return 0. total_sparsity = mask_sparsity_summaries(sampled_masks, [m.op.name for m in masks]) with tf.name_scope('sparsity'): # Log average mask value mask_vec = tf.concat([tf.reshape(m, [-1]) for m in masks], axis=0) mask_av = tf.reduce_mean(mask_vec) tf.summary.scalar('mask_average_val', mask_av) with tf.name_scope('loss'): loss = loss_fn(total_sparsity, sparsity_target) total_size_np = int(sum([np.prod(_shape(m)) for m in sampled_masks])) logger.debug('mask_loss: Total mask size: {:,d}'.format(total_size_np)) return loss def _l1_loss(curr, target): with tf.name_scope('l1'): return tf.abs(tf.subtract(target, curr)) # return tf.abs(tf.subtract(curr, target)) def _l2_loss(curr, target): with tf.name_scope('l2'): return tf.squared_difference(curr, target) def _hinge_l1_loss(curr, target): with tf.name_scope('hinge_l1'): return tf.nn.relu(tf.subtract(target, curr)) def _get_threshold(abs_weights, sparsity_target, nbins, use_tpu=False): with tf.name_scope('get_threshold'): max_value = tf.reduce_max(abs_weights) cdf_fn = pruning_utils.compute_cdf_from_histogram if use_tpu: cdf_fn = pruning_utils.compute_cdf norm_cdf = cdf_fn(abs_weights, [0.0, max_value], nbins=nbins) prune_nbins = tf.reduce_sum(tf.cast(tf.less(norm_cdf, sparsity_target), tf.float32)) threshold = tf.multiply(tf.div(prune_nbins, float(nbins)), max_value) return threshold
41.663212
117
0.623057
eadc393e19f2820fe270f419062b84e06b133edf
278
py
Python
testresults/scons120_vs_make/results_windows/all/scons_cleanbuild_plot.py
SCons/scons-performance
2df4558a1132b62a36f20c1c0b37da8fafa00114
[ "MIT" ]
null
null
null
testresults/scons120_vs_make/results_windows/all/scons_cleanbuild_plot.py
SCons/scons-performance
2df4558a1132b62a36f20c1c0b37da8fafa00114
[ "MIT" ]
1
2020-09-24T16:09:23.000Z
2020-09-27T17:30:13.000Z
testresults/scons120_vs_make/results_windows/all/scons_cleanbuild_plot.py
SCons/scons-performance
2df4558a1132b62a36f20c1c0b37da8fafa00114
[ "MIT" ]
2
2020-09-27T21:18:11.000Z
2022-03-23T17:32:03.000Z
import matplotlib.pyplot as plt files = [2500, 4500, 8500, 16500] buildtime = [425.255, 730.854, 1151.060, 2161.544] plt.plot(files, buildtime, marker='o', color='g') plt.xlabel('C Files') plt.ylabel('Time [s]') plt.title('SCons Build') plt.legend(loc='upper left') plt.show()
25.272727
50
0.694245
1a516f3d944ecf89703351bc6e54a4c52c2c7daf
2,409
py
Python
stacker/lookups/handlers/kms.py
theister/stacker
f563a6f5a23550c7a668a1500bcea2b4e94f5bbf
[ "BSD-2-Clause" ]
372
2018-05-16T19:35:54.000Z
2022-02-28T09:11:53.000Z
stacker/lookups/handlers/kms.py
theister/stacker
f563a6f5a23550c7a668a1500bcea2b4e94f5bbf
[ "BSD-2-Clause" ]
452
2015-03-12T16:46:29.000Z
2018-05-14T21:15:01.000Z
stacker/lookups/handlers/kms.py
theister/stacker
f563a6f5a23550c7a668a1500bcea2b4e94f5bbf
[ "BSD-2-Clause" ]
111
2015-03-29T19:22:02.000Z
2018-05-04T02:17:27.000Z
from __future__ import print_function from __future__ import division from __future__ import absolute_import import codecs import sys from stacker.session_cache import get_session from . import LookupHandler from ...util import read_value_from_path TYPE_NAME = "kms" class KmsLookup(LookupHandler): @classmethod def handle(cls, value, **kwargs): """Decrypt the specified value with a master key in KMS. kmssimple field types should be in the following format: [<region>@]<base64 encrypted value> Note: The region is optional, and defaults to the environment's `AWS_DEFAULT_REGION` if not specified. For example: # We use the aws cli to get the encrypted value for the string # "PASSWORD" using the master key called "myStackerKey" in # us-east-1 $ aws --region us-east-1 kms encrypt --key-id alias/myStackerKey \ --plaintext "PASSWORD" --output text --query CiphertextBlob CiD6bC8t2Y<...encrypted blob...> # In stacker we would reference the encrypted value like: conf_key: ${kms us-east-1@CiD6bC8t2Y<...encrypted blob...>} You can optionally store the encrypted value in a file, ie: kms_value.txt us-east-1@CiD6bC8t2Y<...encrypted blob...> and reference it within stacker (NOTE: the path should be relative to the stacker config file): conf_key: ${kms file://kms_value.txt} # Both of the above would resolve to conf_key: PASSWORD """ value = read_value_from_path(value) region = None if "@" in value: region, value = value.split("@", 1) kms = get_session(region).client('kms') # encode str value as an utf-8 bytestring for use with codecs.decode. value = value.encode('utf-8') # get raw but still encrypted value from base64 version. decoded = codecs.decode(value, 'base64') # check python version in your system python3_or_later = sys.version_info[0] >= 3 # decrypt and return the plain text raw value. if python3_or_later: return kms.decrypt(CiphertextBlob=decoded)["Plaintext"]\ .decode('utf-8') else: return kms.decrypt(CiphertextBlob=decoded)["Plaintext"]
31.697368
79
0.626816
2da7e57672dbb51d40da8d6dddf7cd232b830a4b
683
py
Python
Not_necessary_for_dhcp_spoofing/snifftest.py
shamiul94/DHCP-Spoofing-Attack-Network-Security
09312d439b56701d82e22fe4ae9c99cc9678e232
[ "MIT" ]
2
2021-05-03T08:54:12.000Z
2022-03-22T08:19:38.000Z
Not_necessary_for_dhcp_spoofing/snifftest.py
shamiul94/DHCP-Spoofing-Attack-Network-Security
09312d439b56701d82e22fe4ae9c99cc9678e232
[ "MIT" ]
null
null
null
Not_necessary_for_dhcp_spoofing/snifftest.py
shamiul94/DHCP-Spoofing-Attack-Network-Security
09312d439b56701d82e22fe4ae9c99cc9678e232
[ "MIT" ]
null
null
null
#! /usr/bin/env python3 from collections import Counter from scapy.all import sniff ## Create a Packet Counter packet_counts = Counter() ## Define our Custom Action function def custom_action(packet): # Create tuple of Src/Dst in sorted order key = tuple(sorted([packet[0][1].src, packet[0][1].dst])) packet_counts.update([key]) return f"Packet #{sum(packet_counts.values())}: {packet[0][1].src} ==> {packet[0][1].dst}" ## Setup sniff, filtering for IP traffic sniff(iface="wlo1", prn=custom_action, count=1000) ## Print out packet count per A <--> Z address pair print("\n".join(f"{f'{key[0]} <--> {key[1]}'}: {count}" for key, count in packet_counts.items()))
32.52381
97
0.682284
79ff29b5acad87155a04ed5cbd6bade028873dfb
412
py
Python
tests/assets/sample.py
Kludex/typer-cli
a8000afa67ec8b05238e3ee02910eca5d3c1ef16
[ "MIT" ]
187
2020-03-08T23:27:42.000Z
2022-03-23T20:53:16.000Z
tests/assets/sample.py
Kludex/typer-cli
a8000afa67ec8b05238e3ee02910eca5d3c1ef16
[ "MIT" ]
53
2020-03-08T19:00:38.000Z
2022-03-25T13:04:11.000Z
tests/assets/sample.py
Kludex/typer-cli
a8000afa67ec8b05238e3ee02910eca5d3c1ef16
[ "MIT" ]
17
2020-06-29T03:10:50.000Z
2022-03-11T18:25:50.000Z
import typer app = typer.Typer() @app.command() def hello(name: str = "World", formal: bool = False): """ Say hi """ if formal: typer.echo(f"Good morning Ms. {name}") else: typer.echo(f"Hello {name}!") @app.command() def bye(friend: bool = False): """ Say bye """ if friend: typer.echo("Goodbye my friend") else: typer.echo("Goodbye")
15.846154
53
0.536408
3c21f29c4640b6a457b4ac57fab083bf5907f3cc
4,213
py
Python
maptrainer/data/IPDataLoader.py
mothguib/maptrainer
335334fed073f8d14a4c5137eaa0424efcbcac63
[ "MIT" ]
null
null
null
maptrainer/data/IPDataLoader.py
mothguib/maptrainer
335334fed073f8d14a4c5137eaa0424efcbcac63
[ "MIT" ]
null
null
null
maptrainer/data/IPDataLoader.py
mothguib/maptrainer
335334fed073f8d14a4c5137eaa0424efcbcac63
[ "MIT" ]
null
null
null
import numpy as np import torch from maptrainer import DATA, DURATION from maptrainer.data.MAPDataLoader import MAPDataLoader class IPDataLoader(MAPDataLoader): """ On-vertex idleness path data loader: loads data with individual idlenesses as input and real idlenesses as output. """ def __init__(self, nagts: int, tpl: str, nb_folds: int = 1, pre: bool = False, datasrc: str = None, strt: str = None, strt_variant: str = None, rtn: float = 0.8, domain_data_dirpath: str = DATA, duration: int = DURATION, soc_name: str = None, inf_exec_id: int = 0, sup_exec_id: int = 99): """ :param datasrc: data type :type datasrc: str :param nagts: :type nagts: :param _map: :type _map: :param nb_folds: :type nb_folds: :param pre: :type pre: :param strt: :type strt: :param rtn: rate of train data over the whole dataset if the number of folds is 1. :type rtn: :param domain_data_dirpath: path of data :param duration: duration of executions to load. :type duration: :param soc_name: :type soc_name: :param inf_exec_id: :type inf_exec_id: :param sup_exec_id: :type sup_exec_id: """ MAPDataLoader.__init__(self, nagts=nagts, tpl=tpl, nb_folds=nb_folds, pre=pre, strt=strt, rtn=rtn, datasrc=datasrc, domain_data_dirpath=domain_data_dirpath, duration=duration, soc_name=soc_name, inf_exec_id=inf_exec_id, sup_exec_id=sup_exec_id, strt_variant=strt_variant) def specific_load_data(self): """ Shape: Nb_seq x (seq_length -1) x dim_vector :return: """ domain_data = self.load_viidls() target_data = self.load_vidls() self.domain_data = torch.from_numpy(np.array(domain_data)). \ float().contiguous() self.target_data = torch.from_numpy(np.array(target_data)). \ float().contiguous() @staticmethod def label_data(_input: torch.FloatTensor, targets: torch.FloatTensor, evaluation: bool = False) \ -> (torch.FloatTensor, torch.FloatTensor): """ Returns inputs and labels for the output of the model wrapped into the data `Variable` structure. :param _input: :type _input: of inputs :param targets: the output vectors not labelled :type targets: :param cuda: :type cuda: :param evaluation: :type evaluation: :return: :rtype: """ return _input, targets @staticmethod def mean(t: torch.FloatTensor, dim: int) -> torch.FloatTensor: """ :param t: the tensor whose the mean will be computed for each element on the dimension `dim` over the other dimensions :type t: :param dim: dimension to keep :type dim: :return: :rtype: """ mean = t for d in range(len(t.size())): offset = 0 if d != dim: mean = torch.mean(mean, offset) else: offset += 1 return mean def specific_load_pre_data(self): pass @staticmethod def reshape_output(output: torch.Tensor): """ Reshapes output data for its use in the `criterion` function :param output: :type output: :return: """ return output.view(-1) @staticmethod def reshape_labels(labels: torch.Tensor): """ Reshapes label data for its use in the `criterion` function :param labels: :type labels: :return: """ return labels.view(-1)
26.834395
78
0.525754
dcbd92ea7f427b7ff762fb5c0f4f08fcc478b4c0
6,862
py
Python
server/mysch.py
creasyimm/flask-vue-crud
49858176df71604436cfae2dfc08be2faae42ffe
[ "MIT" ]
null
null
null
server/mysch.py
creasyimm/flask-vue-crud
49858176df71604436cfae2dfc08be2faae42ffe
[ "MIT" ]
null
null
null
server/mysch.py
creasyimm/flask-vue-crud
49858176df71604436cfae2dfc08be2faae42ffe
[ "MIT" ]
null
null
null
# -*- coding:utf-8 -*- from multiprocessing import Process import os import time import json import urllib.request from utils import * from tcp_latency import measure_latency from datetime import datetime # import docker def mypost(body): try: # body = {"who":"2.247","cpu":6,"memory":3,"disk":5} myurl = "http://127.0.0.1:5000/update" req = urllib.request.Request(myurl) req.add_header('Content-Type', 'application/json; charset=utf-8') jsondata = json.dumps(body) jsondataasbytes = jsondata.encode('utf-8') # needs to be bytes req.add_header('Content-Length', len(jsondataasbytes)) response = urllib.request.urlopen(req, jsondataasbytes) return response.status except: return 404 def test_ping(who, stype, host): delay = 1000 my_post_body={'who':who, 'type':stype, 'latency':delay} while True: # ping server try: delay = do_one_ping(host) except: delay = 1000 # write latency to post data my_post_body['latency'] = delay # post to rest API # print( "delay: %d"%delay) ret = mypost(my_post_body) if (ret) != 200: print('rest service error [%d]'%ret, file=sys.stderr) if stype == 'ping' and delay == 1000: continue time.sleep(2) def test_tcp(who, stype, host, port): delay = 1000 my_post_body={'who':who, 'type':stype, 'latency':delay} while True: # ping server try: delay_ar = measure_latency(host=host, port=port, wait=0) delay = round(delay_ar[0],3) except: delay = 1000 # write latency to post data my_post_body['latency'] = delay # post to rest API ret = mypost(my_post_body) if (ret) != 200: print('rest service error [%d]'%ret, file=sys.stderr) if stype == 'ping' and delay == 1000: continue time.sleep(0.9) def test_service(who, stype, host, keykey): delay = 1000 my_post_body={'who':who, 'type':stype, 'latency':delay} while True: # ping server try: a=datetime.now() resp = urllib.request.urlopen(host).read() b=datetime.now() delay = round(((b-a).microseconds)/1000, 3) json_resp = json.loads(resp) # print(type(json_resp)) # print(json_resp,file=sys.stderr) test_key = eval(keykey%json_resp) # print (test_key) if not test_key: delay = 1000 except: delay = 1000 # write latency to post data my_post_body['latency'] = delay # post to rest API ret = mypost(my_post_body) if (ret) != 200: print('rest service error [%d]'%ret, file=sys.stderr) if stype == 'ping' and delay == 1000: continue time.sleep(0.9) # a = measure_latency(host='172.16.0.221', port=8081, wait=0) def backup_server_p(): ''' 172.16.0.220, BareMetal ping ''' print('running') stype = 'ping' who = '0.220' host = '172.16.0.220' test_ping(who, stype, host) def nexus_server_p(): ''' 172.16.0.221, BareMetal ping ''' stype = 'ping' who = '0.221' host = '172.16.0.221' test_ping(who, stype, host) def nexus_services_port_p(): ''' 172.16.0.221, nexus, Service tcp_ping ''' stype = 'tcp_ping' who = 'nexus' host = '172.16.0.221' test_tcp(who, stype, host, 8081) def nas_backup_p(): ''' 172.16.0.57, VirtualMachine ping ''' stype = 'ping' who = '0.57' host = '172.16.0.57' test_ping(who, stype, host) def dev_env_p(): ''' 172.16.75.223, BareMetal ping ''' stype = 'ping' who = '75.223' host = '172.16.75.223' test_ping(who, stype, host) def test_env_p(): ''' 172.16.75.249, BareMetal ping ''' stype = 'ping' who = '75.249' host = '172.16.75.249' test_ping(who, stype, host) def it0_env_p(): ''' 192.168.2.247, BareMetal ping ''' stype = 'ping' who = '2.247' host = '192.168.2.247' test_ping(who, stype, host) def yapi_p(): ''' 172.16.0.58, VirtualMachine ping ''' stype = 'ping' who = '0.58' host = '172.16.0.58' test_ping(who, stype, host) def jump_p(): ''' 172.16.0.239, VirtualMachine ping ''' stype = 'ping' who = '0.239' host = '172.16.0.239' test_ping(who, stype, host) def it1_env_p(): ''' 192.168.2.248, BareMetal ping ''' stype = 'ping' who = '2.248' host = '192.168.2.248' test_ping(who, stype, host) def nas_p(): ''' 172.16.0.55, VirtualMachine ping ''' stype = 'ping' who = '0.55' host = '172.16.0.55' test_ping(who, stype, host) def git_p(): ''' 172.16.0.222, VirtualMachine ping ''' stype = 'ping' who = '0.222' host = '172.16.0.222' test_ping(who, stype, host) def pfsense_gw_p(): ''' 192.168.2.204, VirtualMachine ping ''' stype = 'ping' who = '0.11' host = '192.168.2.204' test_ping(who, stype, host) def pfsense_p(): ''' 172.16.0.5, VirtualMachine ping ''' stype = 'ping' who = '2.10' host = '172.16.0.5' test_ping(who, stype, host) def dockerhome_p(): ''' 172.16.0.235, VirtualMachine ping ''' stype = 'ping' who = '0.235' host = '172.16.0.235' test_ping(who, stype, host) def docker_services_port_p(): ''' 172.16.0.235, docker, Service tcp_ping ''' stype = 'tcp_ping' who = 'dockerhome' host = '172.16.0.235' test_tcp(who, stype, host, 1219) def mysql_port_p(): ''' 172.16.0.235, docker, Service tcp_ping ''' stype = 'tcp_ping' who = 'mysql' host = 'http://172.16.0.235:1219/containers/9a194e59486e/json' test_service(who, stype, host, '%s["State"]["Status"]!="exited"') def pm_services_p(): ''' 172.16.0.235, pm, Container curl ''' stype = 'url_ping' who = 'pm' host = 'http://pm.csdev.com/projects.json' test_service(who, stype, host, '"projects" in %s') def pm2_services_p(): ''' 172.16.0.235, pm2, Container curl ''' stype = 'url_ping' who = 'pm2' host = 'http://pm2.csdev.com/projects.json' test_service(who, stype, host, '"projects" in %s') def wiki_services_p(): ''' 172.16.0.235, wiki, Container curl ''' stype = 'url_ping' who = 'wiki' host = 'http://wiki.csdev.com/status' test_service(who, stype, host, '%s["state"] == "RUNNING"') def run_proc(): """子进程要执行的代码""" print('子进程运行中,pid=%d...' % os.getpid()) # os.getpid获取当前进程的进程号 print('子进程将要结束...') def run_proc1(): test('192.168.1.1') all_proc = [ 'backup_server_p', 'nexus_server_p', 'nexus_services_port_p', 'nas_backup_p', 'dev_env_p', 'test_env_p', 'it0_env_p', 'yapi_p', 'jump_p', 'it1_env_p', 'nas_p', 'git_p', 'pfsense_gw_p', 'pfsense_p', 'dockerhome_p', 'docker_services_port_p', 'mysql_port_p', 'pm_services_p', 'pm2_services_p', 'wiki_services_p', ] def active_auto_update_ts_job(): response = urllib.request.urlopen('http://127.0.0.1:5000/updatets').read() ret = json.loads(response) print(ret) def run_all(): active_auto_update_ts_job() for p in all_proc: pp = eval('Process(target=%s)'%p) pp.daemon = True pp.start() while True: time.sleep(60) if __name__ == '__main__': # print('父进程pid: %d' % os.getpid()) # os.getpid获取当前进程的进程号 # p = Process(target=run_proc) # p2 = Process(target=run_proc1) # p3 = Process(target=run_proc1) # p2.start() # p.start() run_all() # wiki_services_p()
18.955801
75
0.644564
accc199dfc0495359087a54dc6fb49913c761bf0
3,257
py
Python
samples/fig5.py
ctschnur/kr-poylmer-growth-simulation
7dfbd71cd7cc96eb34afe5632cbb18e95ca87e74
[ "MIT" ]
null
null
null
samples/fig5.py
ctschnur/kr-poylmer-growth-simulation
7dfbd71cd7cc96eb34afe5632cbb18e95ca87e74
[ "MIT" ]
null
null
null
samples/fig5.py
ctschnur/kr-poylmer-growth-simulation
7dfbd71cd7cc96eb34afe5632cbb18e95ca87e74
[ "MIT" ]
null
null
null
from __future__ import (absolute_import, division, print_function, unicode_literals) import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl # -- import most important classes from kr.kr import Kr, Kr_constants from kr.plot_utils import Plot_utility def mpl_settings(): # -- plotting settings pgf_with_custom_preamble = { "figure.figsize": (6.4*0.8, 4.8*0.7), "savefig.format": "png", # change this to pgf or png "pgf.rcfonts": False, # don't use pre-specified fonts (in rcParmams) "text.usetex": True, # use latex backend not just built-in MathText "text.latex.unicode": True, # to be able to pass unicode characters to mpl "text.latex.preamble": [ # required for actual rendering to png r"\usepackage{amsmath, siunitx}", ], "pgf.preamble": [ # when exporting pgf code, mpl checks it for compilablity r"\usepackage{amsmath, siunitx}", ]} mpl.rcParams.update(pgf_with_custom_preamble) def fig5(my_kr): config_title = "FIG05-1000" print(" --- ", config_title) # import a configuration of initial parameters importdict = Kr_constants.import_dict_from_file("conf.json", config_title) # show first, which simulation parameters are different # compared with DEFAULT configuration print("custom simulation parameters: \n", Kr_constants.compare_dicts( importdict, Kr_constants.import_dict_from_file("conf.json", "DEFAULT"))) evolution_data_unit_dict, clds = my_kr.run( importdict) # --- dispersity bundle_name = "dispersity" config_and_bundle_str = config_title + bundle_name x_name, y_name = evolution_data_unit_dict[bundle_name].get_xy_names() fig, ax = plt.subplots() ax.set_xlabel("$X$") ax.set_ylabel("$\mathrm{PDI}$") # # reference data # ref_x, ref_y = np.loadtxt("paper_ref_data/butteFig5b-KR1000pointssolid.csv", # skiprows=1, delimiter=',', unpack=True) # ax.plot(ref_x, ref_y, ".", markersize=5, alpha=0.8, color="k", # label=r"reference simulated curve") # bundle data x, y = evolution_data_unit_dict[bundle_name].get_xy_vectors() ax.plot(x, y, linestyle='-', label="simulated") ax.grid() ax.legend(loc='upper left') plt.tight_layout() plt.savefig(my_kr.get_run_hash_str() + config_and_bundle_str) plt.savefig(my_kr.get_run_hash_str() + "_" + config_and_bundle_str + ".pgf", format="pgf") fig_clds = plt.figure() Plot_utility.plot_clds( clds, refdatas=[ # { # "data": np.loadtxt( # "paper_ref_data/butteFig5a-KR1000pointssolid.csv", # skiprows=1, delimiter=','), # "label": "$X=0.6$" # } ], labels={"config_and_bundle_str": "FIG05-1000", # "ref": r"reference simulated curve", "own": "simulated"}, kr_obj=my_kr, savefig=True, savefig_pgf=True, mpl_figure=fig_clds) def main(): mpl_settings() # matplotlib settings my_kr = Kr() fig5(my_kr) if __name__ == "__main__": main()
32.89899
84
0.621738
d34bf60711970c9a7213fd134eca72664d9f8123
909
py
Python
courses/migrations/0003_auto_20210519_1041.py
OjureFred/CloudSchool
ca45e031ac68dddd01e0abf74aa915043bb896c5
[ "MIT" ]
null
null
null
courses/migrations/0003_auto_20210519_1041.py
OjureFred/CloudSchool
ca45e031ac68dddd01e0abf74aa915043bb896c5
[ "MIT" ]
null
null
null
courses/migrations/0003_auto_20210519_1041.py
OjureFred/CloudSchool
ca45e031ac68dddd01e0abf74aa915043bb896c5
[ "MIT" ]
null
null
null
# Generated by Django 3.0.14 on 2021-05-19 07:41 import courses.fields from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('courses', '0002_content_file_image_text_video'), ] operations = [ migrations.AlterModelOptions( name='content', options={'ordering': ['order']}, ), migrations.AlterModelOptions( name='module', options={'ordering': ['order']}, ), migrations.AddField( model_name='content', name='order', field=courses.fields.OrderField(blank=True, default=0), preserve_default=False, ), migrations.AddField( model_name='module', name='order', field=courses.fields.OrderField(blank=True, default=0), preserve_default=False, ), ]
25.971429
67
0.563256
ebfd1409fa73ee49a4bcb56f8265efc3e08d92d7
4,178
py
Python
aioketraapi/models/inline_response2003.py
s4v4g3/aio-ketra-api
1c8fefa2a66d4a66addeefdc33c71b2f0faa1137
[ "MIT" ]
null
null
null
aioketraapi/models/inline_response2003.py
s4v4g3/aio-ketra-api
1c8fefa2a66d4a66addeefdc33c71b2f0faa1137
[ "MIT" ]
null
null
null
aioketraapi/models/inline_response2003.py
s4v4g3/aio-ketra-api
1c8fefa2a66d4a66addeefdc33c71b2f0faa1137
[ "MIT" ]
null
null
null
# coding: utf-8 """ Ketra Lighting API Control your Ketra lights # noqa: E501 The version of the OpenAPI document: 1.4.0 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from aioketraapi.configuration import Configuration class InlineResponse2003(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'success': 'bool', 'error': 'str' } attribute_map = { 'success': 'Success', 'error': 'Error' } def __init__(self, success=None, error=None, local_vars_configuration=None): # noqa: E501 """InlineResponse2003 - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._success = None self._error = None self.discriminator = None if success is not None: self.success = success if error is not None: self.error = error @property def success(self): """Gets the success of this InlineResponse2003. # noqa: E501 true if the transaction was successful, false if an error occurred # noqa: E501 :return: The success of this InlineResponse2003. # noqa: E501 :rtype: bool """ return self._success @success.setter def success(self, success): """Sets the success of this InlineResponse2003. true if the transaction was successful, false if an error occurred # noqa: E501 :param success: The success of this InlineResponse2003. # noqa: E501 :type success: bool """ self._success = success @property def error(self): """Gets the error of this InlineResponse2003. # noqa: E501 error message # noqa: E501 :return: The error of this InlineResponse2003. # noqa: E501 :rtype: str """ return self._error @error.setter def error(self, error): """Sets the error of this InlineResponse2003. error message # noqa: E501 :param error: The error of this InlineResponse2003. # noqa: E501 :type error: str """ self._error = error def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, InlineResponse2003): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, InlineResponse2003): return True return self.to_dict() != other.to_dict()
27.668874
94
0.577549
ed0d36133da372d55b0352efff8ceb7fa3e388aa
9,663
py
Python
webnlg_eval_scripts/benchmark_reader.py
zhaochaocs/DualEnc
4175a7ed3f2c3232152ecce5ffd6ee4c727e64b9
[ "MIT" ]
19
2020-07-09T03:46:08.000Z
2022-01-05T08:34:43.000Z
webnlg_eval_scripts/benchmark_reader.py
zhaochaocs/DualEnc
4175a7ed3f2c3232152ecce5ffd6ee4c727e64b9
[ "MIT" ]
12
2020-07-11T07:44:40.000Z
2022-03-12T00:44:15.000Z
webnlg_eval_scripts/benchmark_reader.py
zhaochaocs/DualEnc
4175a7ed3f2c3232152ecce5ffd6ee4c727e64b9
[ "MIT" ]
4
2020-07-15T16:11:38.000Z
2021-10-16T16:58:02.000Z
import random import re import string import xml.etree.ElementTree as Et from collections import defaultdict import _pickle as pickle punc_regex = re.compile('[%s]' % re.escape(string.punctuation)) def remove_punc(s): # From Vinko's solution, with fix. return punc_regex.sub('', s) def normalize(p, split=False): p = punc_regex.sub('', p.lower().replace('_', ' ').replace('"', '')) if split: return ' '.join(p.split()) else: return ''.join(p.split()) def normalize2(p, punc=False, split=False, lower=True): p = p.replace('_', ' ').replace('"', '') if lower: p = p.lower() if not punc: p = punc_regex.sub("", p) else: p = ' '.join(re.split('(\W)', p)) if split: return ' '.join(p.split()) else: return ''.join(p.split()) class Triple: def __init__(self, s, p, o): self.s = s self.o = o self.p = p def __eq__(self, other): if not isinstance(other, Triple): # don't attempt to compare against unrelated types return NotImplemented return remove_punc(self.s) == remove_punc(other.s) and \ remove_punc(self.p) == remove_punc(other.p) and \ remove_punc(self.o) == remove_punc(other.o) class Tripleset: def __init__(self): self.triples = [] @property def size(self): return len(self.triples) def fill_tripleset(self, t): for xml_triple in t: s, p, o = xml_triple.text.split(' | ') triple = Triple(s, p, o) self.triples.append(triple) def fill_tripleset2(self, t): for xml_triple in t: s, p, o = xml_triple.split(' | ') triple = Triple(s, p, o) self.triples.append(triple) def shuffle_triples(self): pass # random.shuffle(self.triples) def get_order(self, tripleset2): order = [] for triple in tripleset2.triples: idx = self.triples.index(triple) order.append(idx) assert len(set(order)) == len(order) return list(map(str, order)) class Lexicalisation: def __init__(self, lex, comment, lid, orderedtripleset=None, refs=None, template=None, tripleset_split=[]): self.lex = lex self.comment = comment self.id = lid self.orderedtripleset = orderedtripleset self.refs = refs self.template = template self.tripleset_split = tripleset_split self.good = True class Entry: def __init__(self, category, size, eid): self.originaltripleset = [] self.modifiedtripleset = Tripleset() self.lexs = [] self.category = category self.size = size self.id = eid self.agent_entity_map = {} self.agent_entity_map_relex = {} self.entity_agent_map = {} def fill_originaltriple(self, xml_t): otripleset = Tripleset() self.originaltripleset.append(otripleset) # multiple originaltriplesets for one entry otripleset.fill_tripleset(xml_t) def fill_modifiedtriple(self, xml_t): self.modifiedtripleset.fill_tripleset(xml_t) self.modifiedtripleset.shuffle_triples() def create_lex(self, xml_lex, size): comment = xml_lex.attrib['comment'] lid = xml_lex.attrib['lid'] tripleset, lex_text, refs, lex_template = None, "", [], '' for child in xml_lex: if child.tag == "sortedtripleset": sents = [] for sentence in child: if len(sents) and not len(sents[-1]): pass else: sents.append([]) for striple in sentence: sents[-1].append(striple) sents_len = [len(subsents) for subsents in sents if len(subsents)] sents = [sent for subsents in sents for sent in subsents] tripleset = Tripleset() tripleset.fill_tripleset(sents) elif child.tag == "text": lex_text = child.text elif child.tag == "template": lex_template = child.text elif child.tag == 'references': for ref in child: ref_info = {'entity': ref.attrib['entity'], 'tag': ref.attrib['tag'], 'text': ref.text} refs.append(ref_info) lex = Lexicalisation(lex_text, comment, lid, tripleset, refs, lex_template, sents_len) if tripleset is not None and lex_text is not None: # and tripleset.size == size: self.lexs.append(lex) def count_lexs(self): return len(self.lexs) class Benchmark: def __init__(self): self.entries = [] def fill_benchmark(self, fileslist): cnt = 0 for file in fileslist: tree = Et.parse(file[0] + '/' + file[1]) root = tree.getroot() for xml_entry in root.iter('entry'): # ignore triples with no lexicalisations lexfound = False for child in xml_entry: if child.tag == "lex": lexfound = True break if lexfound is False: continue entry_id = xml_entry.attrib['eid'] category = xml_entry.attrib['category'] size = xml_entry.attrib['size'] entry = Entry(category, size, entry_id) for child in xml_entry: if child.tag == 'originaltripleset': entry.fill_originaltriple(child) elif child.tag == 'modifiedtripleset': entry.fill_modifiedtriple(child) elif child.tag == 'lex': entry.create_lex(child, int(size)) elif child.tag == 'entitymap': for entity_map in child: agent, entity = entity_map.text.split(' | ') agent = agent.strip() entity = entity.replace('_', ' ').replace('"', '').strip() entity = ' '.join(re.split('(\W)', entity)) assert agent not in entry.agent_entity_map entry.agent_entity_map[agent] = normalize(entity) entry.agent_entity_map_relex[agent.lower()] = normalize2(entity, punc=True, lower=True, split=True) entry.entity_agent_map = {e:a for a, e in entry.agent_entity_map.items()} for lex in entry.lexs: # check the size # assert int(size) == len(lex.orderedtripleset.triples) cnt += 1 self.entries.append(entry) print(" ** Reading {} lex entries **".format(cnt)) def total_lexcount(self): count = [entry.count_lexs() for entry in self.entries] return sum(count) def unique_p(self): properties = [triple.p for entry in self.entries for triple in entry.modifiedtripleset.triples] return len(set(properties)) def entry_count(self, size=None, cat=None): """ calculate the number of entries in benchmark :param size: size (should be string) :param cat: category :return: entry count """ if not size and cat: entries = [entry for entry in self.entries if entry.category == cat] elif not cat and size: entries = [entry for entry in self.entries if entry.size == size] elif not size and not cat: return len(self.entries) else: entries = [entry for entry in self.entries if entry.category == cat and entry.size == size] return len(entries) def lexcount_size_category(self, size='', cat=''): count = [entry.count_lexs() for entry in self.entries if entry.category == cat and entry.size == size] return len(count) def property_map(self): mprop_oprop = defaultdict(set) for entry in self.entries: for tripleset in entry.originaltripleset: for i, triple in enumerate(tripleset.triples): mprop_oprop[entry.modifiedtripleset.triples[i].p].add(triple.p) return mprop_oprop # def order_tripleset(self, ordered_dataset): # with open(ordered_dataset, 'rb') as fr: # lexEntry_orderedTripleset = pickle.load(fr) # # for entry in self.entries: # for lex in entry.lexs: # entry_id = "{}_{}_{}_{}".format(entry.id, entry.size, entry.category, lex.id) # try: # ordered_tripleset = Tripleset() # orderedtripleset_str = lexEntry_orderedTripleset[entry_id]["ordered_source_out"] # for triple in orderedtripleset_str.split(" < TSP > "): # s, p, o = triple.split(" | ") # ordered_tripleset.triples.append(Triple(s, p, o)) # lex.orderedtripleset = ordered_tripleset # except: # # print("Fail to match the ordered tripleset of {} ...".format(entry_id)) # lex.orderedtripleset = entry.modifiedtripleset
37.453488
128
0.534099
4bb30338c51ab12e51d691b2c08b06a133e8558f
4,291
py
Python
tests/conftest.py
sdrobert/pydrobert-pytorch
7abad0dbb2e80b4267aebcee492aa9fd7d83ea3f
[ "Apache-2.0" ]
14
2019-01-04T21:19:55.000Z
2021-01-06T16:01:03.000Z
tests/conftest.py
sdrobert/pydrobert-pytorch
7abad0dbb2e80b4267aebcee492aa9fd7d83ea3f
[ "Apache-2.0" ]
6
2021-04-17T23:34:57.000Z
2022-02-11T00:49:41.000Z
tests/conftest.py
sdrobert/pydrobert-pytorch
7abad0dbb2e80b4267aebcee492aa9fd7d83ea3f
[ "Apache-2.0" ]
1
2020-05-19T08:03:43.000Z
2020-05-19T08:03:43.000Z
# Copyright 2021 Sean Robertson # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest import os import math from tempfile import mkdtemp from shutil import rmtree import torch @pytest.fixture def temp_dir(): dir_name = mkdtemp() yield dir_name rmtree(dir_name) @pytest.fixture( params=[ pytest.param("cpu", marks=pytest.mark.cpu), pytest.param("cuda", marks=pytest.mark.gpu), ], scope="session", ) def device(request): if request.param == "cuda": return torch.device(torch.cuda.current_device()) else: return torch.device(request.param) CUDA_AVAIL = torch.cuda.is_available() def pytest_runtest_setup(item): if any(mark.name == "gpu" for mark in item.iter_markers()): if not CUDA_AVAIL: pytest.skip("cuda is not available") # implicitly seeds all tests for the sake of reproducibility torch.manual_seed(abs(hash(item.name))) @pytest.fixture(scope="session") def populate_torch_dir(): def _populate_torch_dir( dr, num_utts, min_width=1, max_width=10, num_filts=5, max_class=10, include_ali=True, include_ref=True, file_prefix="", file_suffix=".pt", seed=1, include_frame_shift=True, feat_dtype=torch.float, ): torch.manual_seed(seed) feat_dir = os.path.join(dr, "feat") ali_dir = os.path.join(dr, "ali") ref_dir = os.path.join(dr, "ref") if not os.path.isdir(feat_dir): os.makedirs(feat_dir) if include_ali and not os.path.isdir(ali_dir): os.makedirs(ali_dir) if include_ref and not os.path.isdir(ref_dir): os.makedirs(ref_dir) feats, feat_sizes, utt_ids = [], [], [] alis = [] if include_ali else None refs, ref_sizes = ([], []) if include_ref else (None, None) utt_id_fmt_str = "{{:0{}d}}".format(int(math.log10(num_utts)) + 1) for utt_idx in range(num_utts): utt_id = utt_id_fmt_str.format(utt_idx) feat_size = torch.randint(min_width, max_width + 1, (1,)).long() feat_size = feat_size.item() feat = (torch.rand(feat_size, num_filts) * 1000).to(dtype=feat_dtype) torch.save(feat, os.path.join(feat_dir, file_prefix + utt_id + file_suffix)) feats.append(feat) feat_sizes.append(feat_size) utt_ids.append(utt_id) if include_ali: ali = torch.randint(max_class + 1, (feat_size,)).long() torch.save( ali, os.path.join(ali_dir, file_prefix + utt_id + file_suffix) ) alis.append(ali) if include_ref: ref_size = torch.randint(1, feat_size + 1, (1,)).long().item() max_ref_length = torch.randint(1, feat_size + 1, (1,)).long() max_ref_length = max_ref_length.item() ref = torch.randint(100, (ref_size,)).long() if include_frame_shift: ref_starts = torch.randint( feat_size - max_ref_length + 1, (ref_size,) ).long() ref_lengths = torch.randint( 1, max_ref_length + 1, (ref_size,) ).long() ref = torch.stack( [ref, ref_starts, ref_starts + ref_lengths], dim=-1 ) torch.save( ref, os.path.join(ref_dir, file_prefix + utt_id + file_suffix) ) ref_sizes.append(ref_size) refs.append(ref) return feats, alis, refs, feat_sizes, ref_sizes, utt_ids return _populate_torch_dir
34.055556
88
0.588907
bad50547319a01f69819e0c7ea4346456f6321c0
445
py
Python
opensource/opencv/readimage.py
marciojv/hacks-cognitives-plataforms
5b43f52d6afde4ad2768ad5b85e376578e2c9b2f
[ "Apache-2.0" ]
1
2021-05-14T18:43:51.000Z
2021-05-14T18:43:51.000Z
opensource/opencv/readimage.py
marciojv/hacks-cognitives-plataforms
5b43f52d6afde4ad2768ad5b85e376578e2c9b2f
[ "Apache-2.0" ]
null
null
null
opensource/opencv/readimage.py
marciojv/hacks-cognitives-plataforms
5b43f52d6afde4ad2768ad5b85e376578e2c9b2f
[ "Apache-2.0" ]
9
2019-02-04T22:08:08.000Z
2021-07-17T12:12:12.000Z
import cv2 #captura imagem do disco e mostra colorido # o defaulthe colorido caso nao informado imagem = cv2.imread("datasets/fotos/reuniao-professores.jpeg",1) cv2.imshow("Mostra Imagem Colorida",imagem) cv2.waitKey(0) cv2.destroyAllWindows() #captura imagem do disco e mostra em cinza imagem = cv2.imread("datasets/fotos/reuniao-professores.jpeg",0) cv2.imshow("Mostra Imagem em Cinza",imagem) cv2.waitKey(0) cv2.destroyAllWindows()
22.25
64
0.775281
04d1cc371ccaf3ef4cf21a3fb08417b18d0b3064
1,324
py
Python
lux/utils/message.py
Moh-Yakoub/lux
127806f653602afeea92d6cb45917401c0ee366e
[ "Apache-2.0" ]
3,731
2020-01-16T01:06:30.000Z
2022-03-31T21:01:04.000Z
lux/utils/message.py
Moh-Yakoub/lux
127806f653602afeea92d6cb45917401c0ee366e
[ "Apache-2.0" ]
393
2020-01-29T04:52:27.000Z
2022-03-31T20:02:19.000Z
lux/utils/message.py
Moh-Yakoub/lux
127806f653602afeea92d6cb45917401c0ee366e
[ "Apache-2.0" ]
304
2020-01-29T03:00:50.000Z
2022-03-25T22:31:20.000Z
# Copyright 2019-2020 The Lux Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class Message: def __init__(self): self.messages = [] def add_unique(self, item, priority=-1): msg = {"text": item, "priority": priority} if msg not in self.messages: self.messages.append(msg) def add(self, item, priority=-1): self.messages.append({"text": item, "priority": priority}) def to_html(self): if len(self.messages) == 0: return "" else: sorted_msgs = sorted(self.messages, key=lambda i: i["priority"], reverse=True) html = "<ul>" for msg in sorted_msgs: msgTxt = msg["text"] html += f"<li>{msgTxt}</li>" html += "</ul>" return html
33.948718
90
0.619335
a2e4abbc9027ba8a09caf01c5dcf9b9ce5a1cb5e
792
py
Python
Notes/Python/src/requests/requests_demo.py
liuhll/BlogAndarticle
23b3b69178b0616837cd6f0b588bda943366b448
[ "MIT" ]
2
2016-10-21T16:29:30.000Z
2016-10-26T12:49:02.000Z
Notes/Python/src/requests/requests_demo.py
liuhll/BlogAndarticle
23b3b69178b0616837cd6f0b588bda943366b448
[ "MIT" ]
8
2016-10-16T15:38:46.000Z
2021-07-14T02:25:10.000Z
Notes/Python/src/requests/requests_demo.py
liuhll/BlogAndArticle
23b3b69178b0616837cd6f0b588bda943366b448
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import requests URL_IP = 'http://192.168.0.160:8001/ip' URL_GET = 'http://192.168.0.160:8001/get' def use_simple_requests(): response = requests.get(URL_IP) print '>>>>Response Headers:' print response.headers print '>>>>Response Body:' print response.text def use_params_requests(): params = {'param1':'hellp','param2':'world'} print '>>>>Request Params:' print params resp = requests.get(URL_GET,params=params) print '>>>>Response Headers:' print resp.headers print '>>>>Status Code:' print resp.status_code print '>>>>Response Body:' print resp.json() if __name__ == '__main__': print 'Use simple urllib2:' use_simple_requests() print "--------------------------" print 'Use params urllib2:' use_params_requests()
20.307692
46
0.651515
f90cd981f08717cabaa84d79be6d2213ae00c14f
5,642
py
Python
src/sagemaker_sklearn_container/serving.py
ipanepen/sagemaker-scikit-learn-container
3214b0d36955fed0b6338b997b26bcc883f7b883
[ "Apache-2.0" ]
105
2018-11-28T21:48:12.000Z
2022-03-27T18:51:29.000Z
src/sagemaker_sklearn_container/serving.py
ipanepen/sagemaker-scikit-learn-container
3214b0d36955fed0b6338b997b26bcc883f7b883
[ "Apache-2.0" ]
55
2019-01-01T18:52:12.000Z
2022-03-29T09:06:38.000Z
src/sagemaker_sklearn_container/serving.py
ipanepen/sagemaker-scikit-learn-container
3214b0d36955fed0b6338b997b26bcc883f7b883
[ "Apache-2.0" ]
94
2019-01-21T06:46:07.000Z
2022-03-31T18:25:13.000Z
# Copyright 2019-2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the 'License'). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the 'license' file accompanying this file. This file is # distributed on an 'AS IS' BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. from __future__ import absolute_import import os import importlib import logging import numpy as np from sagemaker_containers.beta.framework import ( content_types, encoders, env, modules, transformer, worker, server) from sagemaker_sklearn_container.serving_mms import start_model_server logging.basicConfig(format='%(asctime)s %(levelname)s - %(name)s - %(message)s', level=logging.INFO) logging.getLogger('boto3').setLevel(logging.INFO) logging.getLogger('s3transfer').setLevel(logging.INFO) logging.getLogger('botocore').setLevel(logging.WARN) logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) def is_multi_model(): return os.environ.get('SAGEMAKER_MULTI_MODEL') def default_model_fn(model_dir): """Loads a model. For Scikit-learn, a default function to load a model is not provided. Users should provide customized model_fn() in script. Args: model_dir: a directory where model is saved. Returns: A Scikit-learn model. """ return transformer.default_model_fn(model_dir) def default_input_fn(input_data, content_type): """Takes request data and de-serializes the data into an object for prediction. When an InvokeEndpoint operation is made against an Endpoint running SageMaker model server, the model server receives two pieces of information: - The request Content-Type, for example "application/json" - The request data, which is at most 5 MB (5 * 1024 * 1024 bytes) in size. The input_fn is responsible to take the request data and pre-process it before prediction. Args: input_data (obj): the request data. content_type (str): the request Content-Type. Returns: (obj): data ready for prediction. """ np_array = encoders.decode(input_data, content_type) return np_array.astype(np.float32) if content_type in content_types.UTF8_TYPES else np_array def default_predict_fn(input_data, model): """A default predict_fn for Scikit-learn. Calls a model on data deserialized in input_fn. Args: input_data: input data (Numpy array) for prediction deserialized by input_fn model: Scikit-learn model loaded in memory by model_fn Returns: a prediction """ output = model.predict(input_data) return output def default_output_fn(prediction, accept): """Function responsible to serialize the prediction for the response. Args: prediction (obj): prediction returned by predict_fn . accept (str): accept content-type expected by the client. Returns: (worker.Response): a Flask response object with the following args: * Args: response: the serialized data to return accept: the content-type that the data was transformed to. """ return worker.Response(encoders.encode(prediction, accept), accept, mimetype=accept) def _user_module_transformer(user_module): model_fn = getattr(user_module, 'model_fn', default_model_fn) input_fn = getattr(user_module, 'input_fn', default_input_fn) predict_fn = getattr(user_module, 'predict_fn', default_predict_fn) output_fn = getattr(user_module, 'output_fn', default_output_fn) return transformer.Transformer(model_fn=model_fn, input_fn=input_fn, predict_fn=predict_fn, output_fn=output_fn) def _user_module_execution_parameters_fn(user_module): return getattr(user_module, 'execution_parameters_fn', None) def import_module(module_name, module_dir): try: # if module_name already exists, use the existing one user_module = importlib.import_module(module_name) except ImportError: # if the module has not been loaded, 'modules' downloads and installs it. user_module = modules.import_module(module_dir, module_name) except Exception: # this shouldn't happen logger.info("Encountered an unexpected error.") raise user_module_transformer = _user_module_transformer(user_module) user_module_transformer.initialize() return user_module_transformer, _user_module_execution_parameters_fn(user_module) app = None def main(environ, start_response): global app if app is None: serving_env = env.ServingEnv() user_module_transformer, execution_parameters_fn = import_module(serving_env.module_name, serving_env.module_dir) app = worker.Worker(transform_fn=user_module_transformer.transform, module_name=serving_env.module_name, execution_parameters_fn=execution_parameters_fn) return app(environ, start_response) def serving_entrypoint(): """Start Inference Server. NOTE: If the inference server is multi-model, MxNet Model Server will be used as the base server. Otherwise, GUnicorn is used as the base server. """ if is_multi_model(): start_model_server() else: server.start(env.ServingEnv().framework_module)
38.380952
112
0.718894
3cfe36f4d9e977833f97d387e6f25dad6d4c9f18
1,672
py
Python
test/test_curvature.py
weepingwillowben/reward-surfaces
f27211faf3784df3305972b7cad65002fd57d7bf
[ "MIT" ]
null
null
null
test/test_curvature.py
weepingwillowben/reward-surfaces
f27211faf3784df3305972b7cad65002fd57d7bf
[ "MIT" ]
null
null
null
test/test_curvature.py
weepingwillowben/reward-surfaces
f27211faf3784df3305972b7cad65002fd57d7bf
[ "MIT" ]
2
2021-10-03T14:51:38.000Z
2021-11-10T02:54:26.000Z
import gym import numpy as np from stable_baselines3.a2c import A2C from stable_baselines3.ppo import PPO from stable_baselines3.ddpg import DDPG from stable_baselines3.td3 import TD3 from stable_baselines3.sac import SAC from stable_baselines3.her import HER import tempfile import gym # open ai gym from stable_baselines3.common.bit_flipping_env import BitFlippingEnv from reward_surfaces.agents import SB3OnPolicyTrainer,SB3OffPolicyTrainer,SB3HerPolicyTrainer from reward_surfaces.agents import ExtA2C, ExtPPO, ExtSAC from reward_surfaces.algorithms import calculate_est_hesh_eigenvalues from reward_surfaces.agents import RainbowTrainer def test_curvature(env_fn, trainer): # test trainer learning saved_files = trainer.train(100,"test_results",save_freq=1000) results = trainer.calculate_eigenvalues(100,1.e-5) print(results['maxeig'], results['mineig'], results['ratio']) def discrete_env_fn(): return gym.make("CartPole-v1") def continious_env_fn(): return gym.make("Pendulum-v0") if __name__ == "__main__": print("testing SB3 SAC curvature") test_curvature(continious_env_fn, SB3OffPolicyTrainer(continious_env_fn,ExtSAC("MlpPolicy",continious_env_fn(),device="cuda"))) print("testing SB3 A2C curvature") test_curvature(discrete_env_fn, SB3OnPolicyTrainer(discrete_env_fn,ExtA2C("MlpPolicy",discrete_env_fn(),device="cpu"))) print("testing SB3 PPO curvature") test_curvature(discrete_env_fn, SB3OnPolicyTrainer(discrete_env_fn,ExtPPO("MlpPolicy",discrete_env_fn(),device="cpu"))) print("testing Rainbow curvature") test_curvature(discrete_env_fn,RainbowTrainer("space_invaders",learning_starts=1000))
42.871795
131
0.805622
199284c680bc27e8966bc04f6718fd87a2603e35
30,055
py
Python
tests/helpers/test_entity_platform.py
unverbraucht/core
312af53935a1bffd58b3b35e82e31292a6ec22ad
[ "Apache-2.0" ]
2
2019-11-20T20:56:59.000Z
2021-01-03T08:52:18.000Z
tests/helpers/test_entity_platform.py
shownor/core
b50281a9173e7fb4a37b3f813ca92876088eaac3
[ "Apache-2.0" ]
null
null
null
tests/helpers/test_entity_platform.py
shownor/core
b50281a9173e7fb4a37b3f813ca92876088eaac3
[ "Apache-2.0" ]
1
2021-04-18T19:36:34.000Z
2021-04-18T19:36:34.000Z
"""Tests for the EntityPlatform helper.""" import asyncio from datetime import timedelta import logging from unittest.mock import MagicMock, Mock, patch import asynctest import pytest from homeassistant.const import UNIT_PERCENTAGE from homeassistant.core import callback from homeassistant.exceptions import PlatformNotReady from homeassistant.helpers import entity_platform, entity_registry from homeassistant.helpers.entity import async_generate_entity_id from homeassistant.helpers.entity_component import ( DEFAULT_SCAN_INTERVAL, EntityComponent, ) import homeassistant.util.dt as dt_util from tests.common import ( MockConfigEntry, MockEntity, MockEntityPlatform, MockPlatform, async_fire_time_changed, mock_entity_platform, mock_registry, ) _LOGGER = logging.getLogger(__name__) DOMAIN = "test_domain" PLATFORM = "test_platform" async def test_polling_only_updates_entities_it_should_poll(hass): """Test the polling of only updated entities.""" component = EntityComponent(_LOGGER, DOMAIN, hass, timedelta(seconds=20)) no_poll_ent = MockEntity(should_poll=False) no_poll_ent.async_update = Mock() poll_ent = MockEntity(should_poll=True) poll_ent.async_update = Mock() await component.async_add_entities([no_poll_ent, poll_ent]) no_poll_ent.async_update.reset_mock() poll_ent.async_update.reset_mock() async_fire_time_changed(hass, dt_util.utcnow() + timedelta(seconds=20)) await hass.async_block_till_done() assert not no_poll_ent.async_update.called assert poll_ent.async_update.called async def test_polling_updates_entities_with_exception(hass): """Test the updated entities that not break with an exception.""" component = EntityComponent(_LOGGER, DOMAIN, hass, timedelta(seconds=20)) update_ok = [] update_err = [] def update_mock(): """Mock normal update.""" update_ok.append(None) def update_mock_err(): """Mock error update.""" update_err.append(None) raise AssertionError("Fake error update") ent1 = MockEntity(should_poll=True) ent1.update = update_mock_err ent2 = MockEntity(should_poll=True) ent2.update = update_mock ent3 = MockEntity(should_poll=True) ent3.update = update_mock ent4 = MockEntity(should_poll=True) ent4.update = update_mock await component.async_add_entities([ent1, ent2, ent3, ent4]) update_ok.clear() update_err.clear() async_fire_time_changed(hass, dt_util.utcnow() + timedelta(seconds=20)) await hass.async_block_till_done() assert len(update_ok) == 3 assert len(update_err) == 1 async def test_update_state_adds_entities(hass): """Test if updating poll entities cause an entity to be added works.""" component = EntityComponent(_LOGGER, DOMAIN, hass) ent1 = MockEntity() ent2 = MockEntity(should_poll=True) await component.async_add_entities([ent2]) assert len(hass.states.async_entity_ids()) == 1 ent2.update = lambda *_: component.add_entities([ent1]) async_fire_time_changed(hass, dt_util.utcnow() + DEFAULT_SCAN_INTERVAL) await hass.async_block_till_done() assert len(hass.states.async_entity_ids()) == 2 async def test_update_state_adds_entities_with_update_before_add_true(hass): """Test if call update before add to state machine.""" component = EntityComponent(_LOGGER, DOMAIN, hass) ent = MockEntity() ent.update = Mock(spec_set=True) await component.async_add_entities([ent], True) await hass.async_block_till_done() assert len(hass.states.async_entity_ids()) == 1 assert ent.update.called async def test_update_state_adds_entities_with_update_before_add_false(hass): """Test if not call update before add to state machine.""" component = EntityComponent(_LOGGER, DOMAIN, hass) ent = MockEntity() ent.update = Mock(spec_set=True) await component.async_add_entities([ent], False) await hass.async_block_till_done() assert len(hass.states.async_entity_ids()) == 1 assert not ent.update.called @asynctest.patch("homeassistant.helpers.entity_platform.async_track_time_interval") async def test_set_scan_interval_via_platform(mock_track, hass): """Test the setting of the scan interval via platform.""" def platform_setup(hass, config, add_entities, discovery_info=None): """Test the platform setup.""" add_entities([MockEntity(should_poll=True)]) platform = MockPlatform(platform_setup) platform.SCAN_INTERVAL = timedelta(seconds=30) mock_entity_platform(hass, "test_domain.platform", platform) component = EntityComponent(_LOGGER, DOMAIN, hass) component.setup({DOMAIN: {"platform": "platform"}}) await hass.async_block_till_done() assert mock_track.called assert timedelta(seconds=30) == mock_track.call_args[0][2] async def test_adding_entities_with_generator_and_thread_callback(hass): """Test generator in add_entities that calls thread method. We should make sure we resolve the generator to a list before passing it into an async context. """ component = EntityComponent(_LOGGER, DOMAIN, hass) def create_entity(number): """Create entity helper.""" entity = MockEntity() entity.entity_id = async_generate_entity_id(DOMAIN + ".{}", "Number", hass=hass) return entity await component.async_add_entities(create_entity(i) for i in range(2)) async def test_platform_warn_slow_setup(hass): """Warn we log when platform setup takes a long time.""" platform = MockPlatform() mock_entity_platform(hass, "test_domain.platform", platform) component = EntityComponent(_LOGGER, DOMAIN, hass) with patch.object(hass.loop, "call_later", MagicMock()) as mock_call: await component.async_setup({DOMAIN: {"platform": "platform"}}) assert mock_call.called # mock_calls[0] is the warning message for component setup # mock_calls[3] is the warning message for platform setup timeout, logger_method = mock_call.mock_calls[3][1][:2] assert timeout == entity_platform.SLOW_SETUP_WARNING assert logger_method == _LOGGER.warning assert mock_call().cancel.called async def test_platform_error_slow_setup(hass, caplog): """Don't block startup more than SLOW_SETUP_MAX_WAIT.""" with patch.object(entity_platform, "SLOW_SETUP_MAX_WAIT", 0): called = [] async def setup_platform(*args): called.append(1) await asyncio.sleep(1) platform = MockPlatform(async_setup_platform=setup_platform) component = EntityComponent(_LOGGER, DOMAIN, hass) mock_entity_platform(hass, "test_domain.test_platform", platform) await component.async_setup({DOMAIN: {"platform": "test_platform"}}) assert len(called) == 1 assert "test_domain.test_platform" not in hass.config.components assert "test_platform is taking longer than 0 seconds" in caplog.text async def test_updated_state_used_for_entity_id(hass): """Test that first update results used for entity ID generation.""" component = EntityComponent(_LOGGER, DOMAIN, hass) class MockEntityNameFetcher(MockEntity): """Mock entity that fetches a friendly name.""" async def async_update(self): """Mock update that assigns a name.""" self._values["name"] = "Living Room" await component.async_add_entities([MockEntityNameFetcher()], True) entity_ids = hass.states.async_entity_ids() assert len(entity_ids) == 1 assert entity_ids[0] == "test_domain.living_room" async def test_parallel_updates_async_platform(hass): """Test async platform does not have parallel_updates limit by default.""" platform = MockPlatform() mock_entity_platform(hass, "test_domain.platform", platform) component = EntityComponent(_LOGGER, DOMAIN, hass) component._platforms = {} await component.async_setup({DOMAIN: {"platform": "platform"}}) handle = list(component._platforms.values())[-1] assert handle.parallel_updates is None class AsyncEntity(MockEntity): """Mock entity that has async_update.""" async def async_update(self): pass entity = AsyncEntity() await handle.async_add_entities([entity]) assert entity.parallel_updates is None async def test_parallel_updates_async_platform_with_constant(hass): """Test async platform can set parallel_updates limit.""" platform = MockPlatform() platform.PARALLEL_UPDATES = 2 mock_entity_platform(hass, "test_domain.platform", platform) component = EntityComponent(_LOGGER, DOMAIN, hass) component._platforms = {} await component.async_setup({DOMAIN: {"platform": "platform"}}) handle = list(component._platforms.values())[-1] class AsyncEntity(MockEntity): """Mock entity that has async_update.""" async def async_update(self): pass entity = AsyncEntity() await handle.async_add_entities([entity]) assert entity.parallel_updates is not None assert entity.parallel_updates._value == 2 async def test_parallel_updates_sync_platform(hass): """Test sync platform parallel_updates default set to 1.""" platform = MockPlatform() mock_entity_platform(hass, "test_domain.platform", platform) component = EntityComponent(_LOGGER, DOMAIN, hass) component._platforms = {} await component.async_setup({DOMAIN: {"platform": "platform"}}) handle = list(component._platforms.values())[-1] class SyncEntity(MockEntity): """Mock entity that has update.""" async def update(self): pass entity = SyncEntity() await handle.async_add_entities([entity]) assert entity.parallel_updates is not None assert entity.parallel_updates._value == 1 async def test_parallel_updates_sync_platform_with_constant(hass): """Test sync platform can set parallel_updates limit.""" platform = MockPlatform() platform.PARALLEL_UPDATES = 2 mock_entity_platform(hass, "test_domain.platform", platform) component = EntityComponent(_LOGGER, DOMAIN, hass) component._platforms = {} await component.async_setup({DOMAIN: {"platform": "platform"}}) handle = list(component._platforms.values())[-1] class SyncEntity(MockEntity): """Mock entity that has update.""" async def update(self): pass entity = SyncEntity() await handle.async_add_entities([entity]) assert entity.parallel_updates is not None assert entity.parallel_updates._value == 2 async def test_raise_error_on_update(hass): """Test the add entity if they raise an error on update.""" updates = [] component = EntityComponent(_LOGGER, DOMAIN, hass) entity1 = MockEntity(name="test_1") entity2 = MockEntity(name="test_2") def _raise(): """Raise an exception.""" raise AssertionError entity1.update = _raise entity2.update = lambda: updates.append(1) await component.async_add_entities([entity1, entity2], True) assert len(updates) == 1 assert 1 in updates async def test_async_remove_with_platform(hass): """Remove an entity from a platform.""" component = EntityComponent(_LOGGER, DOMAIN, hass) entity1 = MockEntity(name="test_1") await component.async_add_entities([entity1]) assert len(hass.states.async_entity_ids()) == 1 await entity1.async_remove() assert len(hass.states.async_entity_ids()) == 0 async def test_not_adding_duplicate_entities_with_unique_id(hass): """Test for not adding duplicate entities.""" component = EntityComponent(_LOGGER, DOMAIN, hass) await component.async_add_entities( [MockEntity(name="test1", unique_id="not_very_unique")] ) assert len(hass.states.async_entity_ids()) == 1 await component.async_add_entities( [MockEntity(name="test2", unique_id="not_very_unique")] ) assert len(hass.states.async_entity_ids()) == 1 async def test_using_prescribed_entity_id(hass): """Test for using predefined entity ID.""" component = EntityComponent(_LOGGER, DOMAIN, hass) await component.async_add_entities( [MockEntity(name="bla", entity_id="hello.world")] ) assert "hello.world" in hass.states.async_entity_ids() async def test_using_prescribed_entity_id_with_unique_id(hass): """Test for amending predefined entity ID because currently exists.""" component = EntityComponent(_LOGGER, DOMAIN, hass) await component.async_add_entities([MockEntity(entity_id="test_domain.world")]) await component.async_add_entities( [MockEntity(entity_id="test_domain.world", unique_id="bla")] ) assert "test_domain.world_2" in hass.states.async_entity_ids() async def test_using_prescribed_entity_id_which_is_registered(hass): """Test not allowing predefined entity ID that already registered.""" component = EntityComponent(_LOGGER, DOMAIN, hass) registry = mock_registry(hass) # Register test_domain.world registry.async_get_or_create(DOMAIN, "test", "1234", suggested_object_id="world") # This entity_id will be rewritten await component.async_add_entities([MockEntity(entity_id="test_domain.world")]) assert "test_domain.world_2" in hass.states.async_entity_ids() async def test_name_which_conflict_with_registered(hass): """Test not generating conflicting entity ID based on name.""" component = EntityComponent(_LOGGER, DOMAIN, hass) registry = mock_registry(hass) # Register test_domain.world registry.async_get_or_create(DOMAIN, "test", "1234", suggested_object_id="world") await component.async_add_entities([MockEntity(name="world")]) assert "test_domain.world_2" in hass.states.async_entity_ids() async def test_entity_with_name_and_entity_id_getting_registered(hass): """Ensure that entity ID is used for registration.""" component = EntityComponent(_LOGGER, DOMAIN, hass) await component.async_add_entities( [MockEntity(unique_id="1234", name="bla", entity_id="test_domain.world")] ) assert "test_domain.world" in hass.states.async_entity_ids() async def test_overriding_name_from_registry(hass): """Test that we can override a name via the Entity Registry.""" component = EntityComponent(_LOGGER, DOMAIN, hass) mock_registry( hass, { "test_domain.world": entity_registry.RegistryEntry( entity_id="test_domain.world", unique_id="1234", # Using component.async_add_entities is equal to platform "domain" platform="test_domain", name="Overridden", ) }, ) await component.async_add_entities( [MockEntity(unique_id="1234", name="Device Name")] ) state = hass.states.get("test_domain.world") assert state is not None assert state.name == "Overridden" async def test_registry_respect_entity_namespace(hass): """Test that the registry respects entity namespace.""" mock_registry(hass) platform = MockEntityPlatform(hass, entity_namespace="ns") entity = MockEntity(unique_id="1234", name="Device Name") await platform.async_add_entities([entity]) assert entity.entity_id == "test_domain.ns_device_name" async def test_registry_respect_entity_disabled(hass): """Test that the registry respects entity disabled.""" mock_registry( hass, { "test_domain.world": entity_registry.RegistryEntry( entity_id="test_domain.world", unique_id="1234", # Using component.async_add_entities is equal to platform "domain" platform="test_platform", disabled_by=entity_registry.DISABLED_USER, ) }, ) platform = MockEntityPlatform(hass) entity = MockEntity(unique_id="1234") await platform.async_add_entities([entity]) assert entity.entity_id == "test_domain.world" assert hass.states.async_entity_ids() == [] async def test_entity_registry_updates_name(hass): """Test that updates on the entity registry update platform entities.""" registry = mock_registry( hass, { "test_domain.world": entity_registry.RegistryEntry( entity_id="test_domain.world", unique_id="1234", # Using component.async_add_entities is equal to platform "domain" platform="test_platform", name="before update", ) }, ) platform = MockEntityPlatform(hass) entity = MockEntity(unique_id="1234") await platform.async_add_entities([entity]) state = hass.states.get("test_domain.world") assert state is not None assert state.name == "before update" registry.async_update_entity("test_domain.world", name="after update") await hass.async_block_till_done() await hass.async_block_till_done() state = hass.states.get("test_domain.world") assert state.name == "after update" async def test_setup_entry(hass): """Test we can setup an entry.""" registry = mock_registry(hass) async def async_setup_entry(hass, config_entry, async_add_entities): """Mock setup entry method.""" async_add_entities([MockEntity(name="test1", unique_id="unique")]) return True platform = MockPlatform(async_setup_entry=async_setup_entry) config_entry = MockConfigEntry(entry_id="super-mock-id") entity_platform = MockEntityPlatform( hass, platform_name=config_entry.domain, platform=platform ) assert await entity_platform.async_setup_entry(config_entry) await hass.async_block_till_done() full_name = f"{entity_platform.domain}.{config_entry.domain}" assert full_name in hass.config.components assert len(hass.states.async_entity_ids()) == 1 assert len(registry.entities) == 1 assert registry.entities["test_domain.test1"].config_entry_id == "super-mock-id" async def test_setup_entry_platform_not_ready(hass, caplog): """Test when an entry is not ready yet.""" async_setup_entry = Mock(side_effect=PlatformNotReady) platform = MockPlatform(async_setup_entry=async_setup_entry) config_entry = MockConfigEntry() ent_platform = MockEntityPlatform( hass, platform_name=config_entry.domain, platform=platform ) with patch.object(entity_platform, "async_call_later") as mock_call_later: assert not await ent_platform.async_setup_entry(config_entry) full_name = f"{ent_platform.domain}.{config_entry.domain}" assert full_name not in hass.config.components assert len(async_setup_entry.mock_calls) == 1 assert "Platform test not ready yet" in caplog.text assert len(mock_call_later.mock_calls) == 1 async def test_reset_cancels_retry_setup(hass): """Test that resetting a platform will cancel scheduled a setup retry.""" async_setup_entry = Mock(side_effect=PlatformNotReady) platform = MockPlatform(async_setup_entry=async_setup_entry) config_entry = MockConfigEntry() ent_platform = MockEntityPlatform( hass, platform_name=config_entry.domain, platform=platform ) with patch.object(entity_platform, "async_call_later") as mock_call_later: assert not await ent_platform.async_setup_entry(config_entry) assert len(mock_call_later.mock_calls) == 1 assert len(mock_call_later.return_value.mock_calls) == 0 assert ent_platform._async_cancel_retry_setup is not None await ent_platform.async_reset() assert len(mock_call_later.return_value.mock_calls) == 1 assert ent_platform._async_cancel_retry_setup is None async def test_not_fails_with_adding_empty_entities_(hass): """Test for not fails on empty entities list.""" component = EntityComponent(_LOGGER, DOMAIN, hass) await component.async_add_entities([]) assert len(hass.states.async_entity_ids()) == 0 async def test_entity_registry_updates_entity_id(hass): """Test that updates on the entity registry update platform entities.""" registry = mock_registry( hass, { "test_domain.world": entity_registry.RegistryEntry( entity_id="test_domain.world", unique_id="1234", # Using component.async_add_entities is equal to platform "domain" platform="test_platform", name="Some name", ) }, ) platform = MockEntityPlatform(hass) entity = MockEntity(unique_id="1234") await platform.async_add_entities([entity]) state = hass.states.get("test_domain.world") assert state is not None assert state.name == "Some name" registry.async_update_entity( "test_domain.world", new_entity_id="test_domain.planet" ) await hass.async_block_till_done() await hass.async_block_till_done() assert hass.states.get("test_domain.world") is None assert hass.states.get("test_domain.planet") is not None async def test_entity_registry_updates_invalid_entity_id(hass): """Test that we can't update to an invalid entity id.""" registry = mock_registry( hass, { "test_domain.world": entity_registry.RegistryEntry( entity_id="test_domain.world", unique_id="1234", # Using component.async_add_entities is equal to platform "domain" platform="test_platform", name="Some name", ), "test_domain.existing": entity_registry.RegistryEntry( entity_id="test_domain.existing", unique_id="5678", platform="test_platform", ), }, ) platform = MockEntityPlatform(hass) entity = MockEntity(unique_id="1234") await platform.async_add_entities([entity]) state = hass.states.get("test_domain.world") assert state is not None assert state.name == "Some name" with pytest.raises(ValueError): registry.async_update_entity( "test_domain.world", new_entity_id="test_domain.existing" ) with pytest.raises(ValueError): registry.async_update_entity( "test_domain.world", new_entity_id="invalid_entity_id" ) with pytest.raises(ValueError): registry.async_update_entity( "test_domain.world", new_entity_id="diff_domain.world" ) await hass.async_block_till_done() await hass.async_block_till_done() assert hass.states.get("test_domain.world") is not None assert hass.states.get("invalid_entity_id") is None assert hass.states.get("diff_domain.world") is None async def test_device_info_called(hass): """Test device info is forwarded correctly.""" registry = await hass.helpers.device_registry.async_get_registry() via = registry.async_get_or_create( config_entry_id="123", connections=set(), identifiers={("hue", "via-id")}, manufacturer="manufacturer", model="via", ) async def async_setup_entry(hass, config_entry, async_add_entities): """Mock setup entry method.""" async_add_entities( [ # Invalid device info MockEntity(unique_id="abcd", device_info={}), # Valid device info MockEntity( unique_id="qwer", device_info={ "identifiers": {("hue", "1234")}, "connections": {("mac", "abcd")}, "manufacturer": "test-manuf", "model": "test-model", "name": "test-name", "sw_version": "test-sw", "via_device": ("hue", "via-id"), }, ), ] ) return True platform = MockPlatform(async_setup_entry=async_setup_entry) config_entry = MockConfigEntry(entry_id="super-mock-id") entity_platform = MockEntityPlatform( hass, platform_name=config_entry.domain, platform=platform ) assert await entity_platform.async_setup_entry(config_entry) await hass.async_block_till_done() assert len(hass.states.async_entity_ids()) == 2 device = registry.async_get_device({("hue", "1234")}, set()) assert device is not None assert device.identifiers == {("hue", "1234")} assert device.connections == {("mac", "abcd")} assert device.manufacturer == "test-manuf" assert device.model == "test-model" assert device.name == "test-name" assert device.sw_version == "test-sw" assert device.via_device_id == via.id async def test_device_info_not_overrides(hass): """Test device info is forwarded correctly.""" registry = await hass.helpers.device_registry.async_get_registry() device = registry.async_get_or_create( config_entry_id="bla", connections={("mac", "abcd")}, manufacturer="test-manufacturer", model="test-model", ) assert device.manufacturer == "test-manufacturer" assert device.model == "test-model" async def async_setup_entry(hass, config_entry, async_add_entities): """Mock setup entry method.""" async_add_entities( [ MockEntity( unique_id="qwer", device_info={"connections": {("mac", "abcd")}} ) ] ) return True platform = MockPlatform(async_setup_entry=async_setup_entry) config_entry = MockConfigEntry(entry_id="super-mock-id") entity_platform = MockEntityPlatform( hass, platform_name=config_entry.domain, platform=platform ) assert await entity_platform.async_setup_entry(config_entry) await hass.async_block_till_done() device2 = registry.async_get_device(set(), {("mac", "abcd")}) assert device2 is not None assert device.id == device2.id assert device2.manufacturer == "test-manufacturer" assert device2.model == "test-model" async def test_entity_disabled_by_integration(hass): """Test entity disabled by integration.""" component = EntityComponent(_LOGGER, DOMAIN, hass, timedelta(seconds=20)) entity_default = MockEntity(unique_id="default") entity_disabled = MockEntity( unique_id="disabled", entity_registry_enabled_default=False ) await component.async_add_entities([entity_default, entity_disabled]) registry = await hass.helpers.entity_registry.async_get_registry() entry_default = registry.async_get_or_create(DOMAIN, DOMAIN, "default") assert entry_default.disabled_by is None entry_disabled = registry.async_get_or_create(DOMAIN, DOMAIN, "disabled") assert entry_disabled.disabled_by == "integration" async def test_entity_info_added_to_entity_registry(hass): """Test entity info is written to entity registry.""" component = EntityComponent(_LOGGER, DOMAIN, hass, timedelta(seconds=20)) entity_default = MockEntity( unique_id="default", capability_attributes={"max": 100}, supported_features=5, device_class="mock-device-class", unit_of_measurement=UNIT_PERCENTAGE, ) await component.async_add_entities([entity_default]) registry = await hass.helpers.entity_registry.async_get_registry() entry_default = registry.async_get_or_create(DOMAIN, DOMAIN, "default") print(entry_default) assert entry_default.capabilities == {"max": 100} assert entry_default.supported_features == 5 assert entry_default.device_class == "mock-device-class" assert entry_default.unit_of_measurement == UNIT_PERCENTAGE async def test_override_restored_entities(hass): """Test that we allow overriding restored entities.""" registry = mock_registry(hass) registry.async_get_or_create( "test_domain", "test_domain", "1234", suggested_object_id="world" ) hass.states.async_set("test_domain.world", "unavailable", {"restored": True}) component = EntityComponent(_LOGGER, DOMAIN, hass) await component.async_add_entities( [MockEntity(unique_id="1234", state="on", entity_id="test_domain.world")], True ) state = hass.states.get("test_domain.world") assert state.state == "on" async def test_platform_with_no_setup(hass, caplog): """Test setting up a platform that does not support setup.""" entity_platform = MockEntityPlatform( hass, domain="mock-integration", platform_name="mock-platform", platform=None ) await entity_platform.async_setup(None) assert ( "The mock-platform platform for the mock-integration integration does not support platform setup." in caplog.text ) async def test_platforms_sharing_services(hass): """Test platforms share services.""" entity_platform1 = MockEntityPlatform( hass, domain="mock_integration", platform_name="mock_platform", platform=None ) entity1 = MockEntity(entity_id="mock_integration.entity_1") await entity_platform1.async_add_entities([entity1]) entity_platform2 = MockEntityPlatform( hass, domain="mock_integration", platform_name="mock_platform", platform=None ) entity2 = MockEntity(entity_id="mock_integration.entity_2") await entity_platform2.async_add_entities([entity2]) entities = [] @callback def handle_service(entity, data): entities.append(entity) entity_platform1.async_register_entity_service("hello", {}, handle_service) entity_platform2.async_register_entity_service( "hello", {}, Mock(side_effect=AssertionError("Should not be called")) ) await hass.services.async_call( "mock_platform", "hello", {"entity_id": "all"}, blocking=True ) assert len(entities) == 2 assert entity1 in entities assert entity2 in entities
33.960452
106
0.69659
37a5546718fa569571bc660c0d97b97ad1ce66e8
5,120
py
Python
python/jittor/test/test_grad.py
gitqifan/jittor
0a5bd61bf46179c1316b66d5e26498960bbd3b88
[ "Apache-2.0" ]
5
2020-08-09T02:27:58.000Z
2021-01-13T16:04:32.000Z
python/jittor/test/test_grad.py
gitqifan/jittor
0a5bd61bf46179c1316b66d5e26498960bbd3b88
[ "Apache-2.0" ]
null
null
null
python/jittor/test/test_grad.py
gitqifan/jittor
0a5bd61bf46179c1316b66d5e26498960bbd3b88
[ "Apache-2.0" ]
1
2020-06-23T16:25:42.000Z
2020-06-23T16:25:42.000Z
# *************************************************************** # Copyright (c) 2020 Jittor. Authors: Dun Liang <randonlang@gmail.com>. All Rights Reserved. # This file is subject to the terms and conditions defined in # file 'LICENSE.txt', which is part of this source code package. # *************************************************************** import unittest import jittor as jt import numpy as np from .test_core import expect_error def equal_size(x, y): return x.dtype == y.dtype and x.shape == y.shape def ngrad(func, vars, eps): out = func(vars) dout = [] for i in range(len(vars)): pvar = vars[i].astype("float64") if type(pvar)==np.ndarray and pvar.size>1: grad = [] var_f = pvar.flatten() for j in range(len(var_f)): var = pvar.flatten() var[j] += eps vars[i] = var.reshape(pvar.shape) out2 = func(vars) grad.append((out2-out)/eps) dout.append(np.array(grad).reshape(pvar.shape)) else: vars[i] = vars[i] + eps out2 = func(vars) dout.append((out2-out)/eps) vars[i] = pvar return out, dout class TestGrad(unittest.TestCase): def test_grad(self): x = jt.array([1.0, 2.0]) y = jt.array([3.0, 4.0]) z = x*y dx, dy, dz = jt.grad(z, [x,y,z]) assert equal_size(dx, x) and equal_size(dy, y), f"{x} {y} {dx} {dy}" assert (dy.data == x.data).all(), f"{dy.data} {x.data}" assert (dx.data == y.data).all(), f"{dx.data} {y.data}" assert (dz.data == 1).all() def test_check_float(self): x = jt.array(1) y = x*x expect_error(lambda: jt.grad(y, [x])) def test_grad2(self): def test(n): x = jt.array(2.0) y = x for _ in range(n-1): y = y*x dx, = jt.grad(y, [x]) assert dx.data == n*2**(n-1), f"{dx.data} {x.data}, {y.data}" test(5) test(6) test(7) test(8) def test_var_index(self): x = jt.array(2.0) y = x-x dx, = jt.grad(y, [x]) assert dx.data == 0, dx.data x = jt.array(2.0) y = x/x dx, = jt.grad(x, [y]) assert dx.data == 0 def test_random_graph(self): def test(num_vars, num_ops, seed): np.random.seed(seed) vars = [] for _ in range(num_vars): vars.append(np.random.rand(1)) def random_func(vars): np.random.seed(seed+1) vars = list(vars) for i in range(num_ops): v1 = len(vars)-1-np.random.randint(num_vars) v2 = len(vars)-1-np.random.randint(num_vars) rop = "+-*/"[np.random.randint(4)] if (rop == '/' or rop == '-') and v1 is v2: rop = '+' vout = eval(f"vars[v1]{rop}vars[v2]") vars.append(vout) if type(vars[i]) == jt.Var: for i in range(len(vars)): vars[i].name("v"+str(i)) return vout np_out, np_dout = ngrad(random_func, vars, 1e-7) jt_vars = [ jt.array(v) for v in vars ] jt_out = random_func(jt_vars) assert (np.abs(jt_out.data-np_out) < 1e-5).all(), (jt_out.data, np_out) jt_dout = jt.grad(jt_out, jt_vars) jt_dout = [ v.data for v in jt_dout ] for jt_d, np_d in zip(jt_dout, np_dout): assert abs(jt_d - np_d) < 1e-3, f"{jt_d} {np_d}" test(1,1,0) # test(3,3,1) test(3,6,0) test(10,100,2) test(30,100,4) test(50,100,6) def test_top_sort(self): x = jt.array(2.0) x.name('x') y1 = x*x # 2 y1.name('y1') y2 = x*x # 2 y2.name('y2') y3 = y1*y2 # 4 y3.name('y3') y4 = y3*y1 # 6 y4.name('y4') y5 = y4*y1 # 8 y5.name('y5') y6 = y5*y1 # 10 y6.name('y6') vars = [x,y1,y2,y3,y4,y5,y6] grads = [ g.data for g in jt.grad(y6, vars) ] dx = grads[0] assert dx == 10*2**9, f"{grads}" def test_int_grad(self): x = jt.array(2.0) z = x*x*x*x*x dx, = jt.grad(z, [x]) self.assertEqual(dx.data, 5*2**4) y1 = jt.int(x) y2 = jt.float(x) z = x*x*y1*y1*y2 expect_error(lambda: jt.grad(z, [y1])) dx, = jt.grad(z, [x]) self.assertEqual(dx.data, 48) def test_nth_grad(self): x = jt.array(2.0) y = x*x*x*x dx = jt.grad(y, x) ddx = jt.grad(dx, x) dddx = jt.grad(ddx, x) self.assertEqual(y.data, 2**4) self.assertEqual(dx.data, 4*2**3) self.assertEqual(ddx.data, 4*3*2**2) self.assertEqual(dddx.data, 4*3*2*2**1) if __name__ == "__main__": unittest.main()
32.405063
92
0.455664
fae01fafed1141d0aa4a4e4501cf7b4d6d813e1d
18,328
py
Python
networkx/algorithms/flow/tests/test_mincost.py
CrazyPython/networkx
cc5a81a1d437e490efaf23e4fb82ab49e05ca392
[ "BSD-3-Clause" ]
null
null
null
networkx/algorithms/flow/tests/test_mincost.py
CrazyPython/networkx
cc5a81a1d437e490efaf23e4fb82ab49e05ca392
[ "BSD-3-Clause" ]
null
null
null
networkx/algorithms/flow/tests/test_mincost.py
CrazyPython/networkx
cc5a81a1d437e490efaf23e4fb82ab49e05ca392
[ "BSD-3-Clause" ]
2
2016-09-04T10:59:12.000Z
2020-02-17T07:43:04.000Z
# -*- coding: utf-8 -*- import networkx as nx from nose.tools import assert_equal, assert_raises import os class TestMinCostFlow: def test_simple_digraph(self): G = nx.DiGraph() G.add_node('a', demand = -5) G.add_node('d', demand = 5) G.add_edge('a', 'b', weight = 3, capacity = 4) G.add_edge('a', 'c', weight = 6, capacity = 10) G.add_edge('b', 'd', weight = 1, capacity = 9) G.add_edge('c', 'd', weight = 2, capacity = 5) flowCost, H = nx.network_simplex(G) soln = {'a': {'b': 4, 'c': 1}, 'b': {'d': 4}, 'c': {'d': 1}, 'd': {}} assert_equal(flowCost, 24) assert_equal(nx.min_cost_flow_cost(G), 24) assert_equal(H, soln) assert_equal(nx.min_cost_flow(G), soln) assert_equal(nx.cost_of_flow(G, H), 24) flowCost, H = nx.capacity_scaling(G) assert_equal(flowCost, 24) assert_equal(nx.cost_of_flow(G, H), 24) assert_equal(H, soln) def test_negcycle_infcap(self): G = nx.DiGraph() G.add_node('s', demand = -5) G.add_node('t', demand = 5) G.add_edge('s', 'a', weight = 1, capacity = 3) G.add_edge('a', 'b', weight = 3) G.add_edge('c', 'a', weight = -6) G.add_edge('b', 'd', weight = 1) G.add_edge('d', 'c', weight = -2) G.add_edge('d', 't', weight = 1, capacity = 3) assert_raises(nx.NetworkXUnfeasible, nx.network_simplex, G) assert_raises(nx.NetworkXUnbounded, nx.capacity_scaling, G) def test_sum_demands_not_zero(self): G = nx.DiGraph() G.add_node('s', demand = -5) G.add_node('t', demand = 4) G.add_edge('s', 'a', weight = 1, capacity = 3) G.add_edge('a', 'b', weight = 3) G.add_edge('a', 'c', weight = -6) G.add_edge('b', 'd', weight = 1) G.add_edge('c', 'd', weight = -2) G.add_edge('d', 't', weight = 1, capacity = 3) assert_raises(nx.NetworkXUnfeasible, nx.network_simplex, G) assert_raises(nx.NetworkXUnfeasible, nx.capacity_scaling, G) def test_no_flow_satisfying_demands(self): G = nx.DiGraph() G.add_node('s', demand = -5) G.add_node('t', demand = 5) G.add_edge('s', 'a', weight = 1, capacity = 3) G.add_edge('a', 'b', weight = 3) G.add_edge('a', 'c', weight = -6) G.add_edge('b', 'd', weight = 1) G.add_edge('c', 'd', weight = -2) G.add_edge('d', 't', weight = 1, capacity = 3) assert_raises(nx.NetworkXUnfeasible, nx.network_simplex, G) assert_raises(nx.NetworkXUnfeasible, nx.capacity_scaling, G) def test_transshipment(self): G = nx.DiGraph() G.add_node('a', demand = 1) G.add_node('b', demand = -2) G.add_node('c', demand = -2) G.add_node('d', demand = 3) G.add_node('e', demand = -4) G.add_node('f', demand = -4) G.add_node('g', demand = 3) G.add_node('h', demand = 2) G.add_node('r', demand = 3) G.add_edge('a', 'c', weight = 3) G.add_edge('r', 'a', weight = 2) G.add_edge('b', 'a', weight = 9) G.add_edge('r', 'c', weight = 0) G.add_edge('b', 'r', weight = -6) G.add_edge('c', 'd', weight = 5) G.add_edge('e', 'r', weight = 4) G.add_edge('e', 'f', weight = 3) G.add_edge('h', 'b', weight = 4) G.add_edge('f', 'd', weight = 7) G.add_edge('f', 'h', weight = 12) G.add_edge('g', 'd', weight = 12) G.add_edge('f', 'g', weight = -1) G.add_edge('h', 'g', weight = -10) flowCost, H = nx.network_simplex(G) soln = {'a': {'c': 0}, 'b': {'a': 0, 'r': 2}, 'c': {'d': 3}, 'd': {}, 'e': {'r': 3, 'f': 1}, 'f': {'d': 0, 'g': 3, 'h': 2}, 'g': {'d': 0}, 'h': {'b': 0, 'g': 0}, 'r': {'a': 1, 'c': 1}} assert_equal(flowCost, 41) assert_equal(nx.min_cost_flow_cost(G), 41) assert_equal(H, soln) assert_equal(nx.min_cost_flow(G), soln) assert_equal(nx.cost_of_flow(G, H), 41) flowCost, H = nx.capacity_scaling(G) assert_equal(flowCost, 41) assert_equal(nx.cost_of_flow(G, H), 41) assert_equal(H, soln) def test_max_flow_min_cost(self): G = nx.DiGraph() G.add_edge('s', 'a', bandwidth = 6) G.add_edge('s', 'c', bandwidth = 10, cost = 10) G.add_edge('a', 'b', cost = 6) G.add_edge('b', 'd', bandwidth = 8, cost = 7) G.add_edge('c', 'd', cost = 10) G.add_edge('d', 't', bandwidth = 5, cost = 5) soln = {'s': {'a': 5, 'c': 0}, 'a': {'b': 5}, 'b': {'d': 5}, 'c': {'d': 0}, 'd': {'t': 5}, 't': {}} flow = nx.max_flow_min_cost(G, 's', 't', capacity = 'bandwidth', weight = 'cost') assert_equal(flow, soln) assert_equal(nx.cost_of_flow(G, flow, weight = 'cost'), 90) G.add_edge('t', 's', cost = -100) flowCost, flow = nx.capacity_scaling(G, capacity = 'bandwidth', weight = 'cost') G.remove_edge('t', 's') assert_equal(flowCost, -410) assert_equal(flow['t']['s'], 5) del flow['t']['s'] assert_equal(flow, soln) assert_equal(nx.cost_of_flow(G, flow, weight = 'cost'), 90) def test_digraph1(self): # From Bradley, S. P., Hax, A. C. and Magnanti, T. L. Applied # Mathematical Programming. Addison-Wesley, 1977. G = nx.DiGraph() G.add_node(1, demand = -20) G.add_node(4, demand = 5) G.add_node(5, demand = 15) G.add_edges_from([(1, 2, {'capacity': 15, 'weight': 4}), (1, 3, {'capacity': 8, 'weight': 4}), (2, 3, {'weight': 2}), (2, 4, {'capacity': 4, 'weight': 2}), (2, 5, {'capacity': 10, 'weight': 6}), (3, 4, {'capacity': 15, 'weight': 1}), (3, 5, {'capacity': 5, 'weight': 3}), (4, 5, {'weight': 2}), (5, 3, {'capacity': 4, 'weight': 1})]) flowCost, H = nx.network_simplex(G) soln = {1: {2: 12, 3: 8}, 2: {3: 8, 4: 4, 5: 0}, 3: {4: 11, 5: 5}, 4: {5: 10}, 5: {3: 0}} assert_equal(flowCost, 150) assert_equal(nx.min_cost_flow_cost(G), 150) assert_equal(H, soln) assert_equal(nx.min_cost_flow(G), soln) assert_equal(nx.cost_of_flow(G, H), 150) flowCost, H = nx.capacity_scaling(G) assert_equal(flowCost, 150) assert_equal(H, soln) assert_equal(nx.cost_of_flow(G, H), 150) def test_digraph2(self): # Example from ticket #430 from mfrasca. Original source: # http://www.cs.princeton.edu/courses/archive/spr03/cs226/lectures/mincost.4up.pdf, slide 11. G = nx.DiGraph() G.add_edge('s', 1, capacity=12) G.add_edge('s', 2, capacity=6) G.add_edge('s', 3, capacity=14) G.add_edge(1, 2, capacity=11, weight=4) G.add_edge(2, 3, capacity=9, weight=6) G.add_edge(1, 4, capacity=5, weight=5) G.add_edge(1, 5, capacity=2, weight=12) G.add_edge(2, 5, capacity=4, weight=4) G.add_edge(2, 6, capacity=2, weight=6) G.add_edge(3, 6, capacity=31, weight=3) G.add_edge(4, 5, capacity=18, weight=4) G.add_edge(5, 6, capacity=9, weight=5) G.add_edge(4, 't', capacity=3) G.add_edge(5, 't', capacity=7) G.add_edge(6, 't', capacity=22) flow = nx.max_flow_min_cost(G, 's', 't') soln = {1: {2: 6, 4: 5, 5: 1}, 2: {3: 6, 5: 4, 6: 2}, 3: {6: 20}, 4: {5: 2, 't': 3}, 5: {6: 0, 't': 7}, 6: {'t': 22}, 's': {1: 12, 2: 6, 3: 14}, 't': {}} assert_equal(flow, soln) G.add_edge('t', 's', weight=-100) flowCost, flow = nx.capacity_scaling(G) G.remove_edge('t', 's') assert_equal(flow['t']['s'], 32) assert_equal(flowCost, -3007) del flow['t']['s'] assert_equal(flow, soln) assert_equal(nx.cost_of_flow(G, flow), 193) def test_digraph3(self): """Combinatorial Optimization: Algorithms and Complexity, Papadimitriou Steiglitz at page 140 has an example, 7.1, but that admits multiple solutions, so I alter it a bit. From ticket #430 by mfrasca.""" G = nx.DiGraph() G.add_edge('s', 'a') G['s']['a'].update({0: 2, 1: 4}) G.add_edge('s', 'b') G['s']['b'].update({0: 2, 1: 1}) G.add_edge('a', 'b') G['a']['b'].update({0: 5, 1: 2}) G.add_edge('a', 't') G['a']['t'].update({0: 1, 1: 5}) G.add_edge('b', 'a') G['b']['a'].update({0: 1, 1: 3}) G.add_edge('b', 't') G['b']['t'].update({0: 3, 1: 2}) "PS.ex.7.1: testing main function" sol = nx.max_flow_min_cost(G, 's', 't', capacity=0, weight=1) flow = sum(v for v in sol['s'].values()) assert_equal(4, flow) assert_equal(23, nx.cost_of_flow(G, sol, weight=1)) assert_equal(sol['s'], {'a': 2, 'b': 2}) assert_equal(sol['a'], {'b': 1, 't': 1}) assert_equal(sol['b'], {'a': 0, 't': 3}) assert_equal(sol['t'], {}) G.add_edge('t', 's') G['t']['s'].update({1: -100}) flowCost, sol = nx.capacity_scaling(G, capacity=0, weight=1) G.remove_edge('t', 's') flow = sum(v for v in sol['s'].values()) assert_equal(4, flow) assert_equal(sol['t']['s'], 4) assert_equal(flowCost, -377) del sol['t']['s'] assert_equal(sol['s'], {'a': 2, 'b': 2}) assert_equal(sol['a'], {'b': 1, 't': 1}) assert_equal(sol['b'], {'a': 0, 't': 3}) assert_equal(sol['t'], {}) assert_equal(nx.cost_of_flow(G, sol, weight=1), 23) def test_zero_capacity_edges(self): """Address issue raised in ticket #617 by arv.""" G = nx.DiGraph() G.add_edges_from([(1, 2, {'capacity': 1, 'weight': 1}), (1, 5, {'capacity': 1, 'weight': 1}), (2, 3, {'capacity': 0, 'weight': 1}), (2, 5, {'capacity': 1, 'weight': 1}), (5, 3, {'capacity': 2, 'weight': 1}), (5, 4, {'capacity': 0, 'weight': 1}), (3, 4, {'capacity': 2, 'weight': 1})]) G.node[1]['demand'] = -1 G.node[2]['demand'] = -1 G.node[4]['demand'] = 2 flowCost, H = nx.network_simplex(G) soln = {1: {2: 0, 5: 1}, 2: {3: 0, 5: 1}, 3: {4: 2}, 4: {}, 5: {3: 2, 4: 0}} assert_equal(flowCost, 6) assert_equal(nx.min_cost_flow_cost(G), 6) assert_equal(H, soln) assert_equal(nx.min_cost_flow(G), soln) assert_equal(nx.cost_of_flow(G, H), 6) flowCost, H = nx.capacity_scaling(G) assert_equal(flowCost, 6) assert_equal(H, soln) assert_equal(nx.cost_of_flow(G, H), 6) def test_digon(self): """Check if digons are handled properly. Taken from ticket #618 by arv.""" nodes = [(1, {}), (2, {'demand': -4}), (3, {'demand': 4}), ] edges = [(1, 2, {'capacity': 3, 'weight': 600000}), (2, 1, {'capacity': 2, 'weight': 0}), (2, 3, {'capacity': 5, 'weight': 714285}), (3, 2, {'capacity': 2, 'weight': 0}), ] G = nx.DiGraph(edges) G.add_nodes_from(nodes) flowCost, H = nx.network_simplex(G) soln = {1: {2: 0}, 2: {1: 0, 3: 4}, 3: {2: 0}} assert_equal(flowCost, 2857140) assert_equal(nx.min_cost_flow_cost(G), 2857140) assert_equal(H, soln) assert_equal(nx.min_cost_flow(G), soln) assert_equal(nx.cost_of_flow(G, H), 2857140) flowCost, H = nx.capacity_scaling(G) assert_equal(flowCost, 2857140) assert_equal(H, soln) assert_equal(nx.cost_of_flow(G, H), 2857140) def test_infinite_capacity_neg_digon(self): """An infinite capacity negative cost digon results in an unbounded instance.""" nodes = [(1, {}), (2, {'demand': -4}), (3, {'demand': 4}), ] edges = [(1, 2, {'weight': -600}), (2, 1, {'weight': 0}), (2, 3, {'capacity': 5, 'weight': 714285}), (3, 2, {'capacity': 2, 'weight': 0}), ] G = nx.DiGraph(edges) G.add_nodes_from(nodes) assert_raises(nx.NetworkXUnbounded, nx.network_simplex, G) assert_raises(nx.NetworkXUnbounded, nx.capacity_scaling, G) def test_finite_capacity_neg_digon(self): """The digon should receive the maximum amount of flow it can handle. Taken from ticket #749 by @chuongdo.""" G = nx.DiGraph() G.add_edge('a', 'b', capacity=1, weight=-1) G.add_edge('b', 'a', capacity=1, weight=-1) min_cost = -2 assert_equal(nx.min_cost_flow_cost(G), min_cost) flowCost, H = nx.capacity_scaling(G) assert_equal(flowCost, -2) assert_equal(H, {'a': {'b': 1}, 'b': {'a': 1}}) assert_equal(nx.cost_of_flow(G, H), -2) def test_multidigraph(self): """Multidigraphs are acceptable.""" G = nx.MultiDiGraph() G.add_weighted_edges_from([(1, 2, 1), (2, 3, 2)], weight='capacity') flowCost, H = nx.network_simplex(G) assert_equal(flowCost, 0) assert_equal(H, {1: {2: {0: 0}}, 2: {3: {0: 0}}, 3: {}}) flowCost, H = nx.capacity_scaling(G) assert_equal(flowCost, 0) assert_equal(H, {1: {2: {0: 0}}, 2: {3: {0: 0}}, 3: {}}) def test_negative_selfloops(self): """Negative selfloops should cause an exception if uncapacitated and always be saturated otherwise. """ G = nx.DiGraph() G.add_edge(1, 1, weight=-1) assert_raises(nx.NetworkXUnbounded, nx.network_simplex, G) assert_raises(nx.NetworkXUnbounded, nx.capacity_scaling, G) G[1][1]['capacity'] = 2 flowCost, H = nx.network_simplex(G) assert_equal(flowCost, -2) assert_equal(H, {1: {1: 2}}) flowCost, H = nx.capacity_scaling(G) assert_equal(flowCost, -2) assert_equal(H, {1: {1: 2}}) G = nx.MultiDiGraph() G.add_edge(1, 1, 'x', weight=-1) G.add_edge(1, 1, 'y', weight=1) assert_raises(nx.NetworkXUnbounded, nx.network_simplex, G) assert_raises(nx.NetworkXUnbounded, nx.capacity_scaling, G) G[1][1]['x']['capacity'] = 2 flowCost, H = nx.network_simplex(G) assert_equal(flowCost, -2) assert_equal(H, {1: {1: {'x': 2, 'y': 0}}}) flowCost, H = nx.capacity_scaling(G) assert_equal(flowCost, -2) assert_equal(H, {1: {1: {'x': 2, 'y': 0}}}) def test_bone_shaped(self): # From #1283 G = nx.DiGraph() G.add_node(0, demand=-4) G.add_node(1, demand=2) G.add_node(2, demand=2) G.add_node(3, demand=4) G.add_node(4, demand=-2) G.add_node(5, demand=-2) G.add_edge(0, 1, capacity=4) G.add_edge(0, 2, capacity=4) G.add_edge(4, 3, capacity=4) G.add_edge(5, 3, capacity=4) G.add_edge(0, 3, capacity=0) flowCost, H = nx.network_simplex(G) assert_equal(flowCost, 0) assert_equal( H, {0: {1: 2, 2: 2, 3: 0}, 1: {}, 2: {}, 3: {}, 4: {3: 2}, 5: {3: 2}}) flowCost, H = nx.capacity_scaling(G) assert_equal(flowCost, 0) assert_equal( H, {0: {1: 2, 2: 2, 3: 0}, 1: {}, 2: {}, 3: {}, 4: {3: 2}, 5: {3: 2}}) def test_exceptions(self): G = nx.Graph() assert_raises(nx.NetworkXNotImplemented, nx.network_simplex, G) assert_raises(nx.NetworkXNotImplemented, nx.capacity_scaling, G) G = nx.MultiGraph() assert_raises(nx.NetworkXNotImplemented, nx.network_simplex, G) assert_raises(nx.NetworkXNotImplemented, nx.capacity_scaling, G) G = nx.DiGraph() assert_raises(nx.NetworkXError, nx.network_simplex, G) assert_raises(nx.NetworkXError, nx.capacity_scaling, G) G.add_node(0, demand=float('inf')) assert_raises(nx.NetworkXError, nx.network_simplex, G) assert_raises(nx.NetworkXUnfeasible, nx.capacity_scaling, G) G.node[0]['demand'] = 0 G.add_node(1, demand=0) G.add_edge(0, 1, weight=-float('inf')) assert_raises(nx.NetworkXError, nx.network_simplex, G) assert_raises(nx.NetworkXUnfeasible, nx.capacity_scaling, G) G[0][1]['weight'] = 0 G.add_edge(0, 0, weight=float('inf')) assert_raises(nx.NetworkXError, nx.network_simplex, G) #assert_raises(nx.NetworkXError, nx.capacity_scaling, G) G[0][0]['weight'] = 0 G[0][1]['capacity'] = -1 assert_raises(nx.NetworkXUnfeasible, nx.network_simplex, G) #assert_raises(nx.NetworkXUnfeasible, nx.capacity_scaling, G) G[0][1]['capacity'] = 0 G[0][0]['capacity'] = -1 assert_raises(nx.NetworkXUnfeasible, nx.network_simplex, G) #assert_raises(nx.NetworkXUnfeasible, nx.capacity_scaling, G) def test_large(self): fname = os.path.join(os.path.dirname(__file__), 'netgen-2.gpickle.bz2') G = nx.read_gpickle(fname) flowCost, flowDict = nx.network_simplex(G) assert_equal(6749969302, flowCost) assert_equal(6749969302, nx.cost_of_flow(G, flowDict)) flowCost, flowDict = nx.capacity_scaling(G) assert_equal(6749969302, flowCost) assert_equal(6749969302, nx.cost_of_flow(G, flowDict))
40.017467
101
0.509712
fdfd371002b3718846c9a441c3bb9e39a9b821d4
1,235
py
Python
zeus/api/resources/test_details.py
edgerepo/zeus
aea557bde167e95b505a42877422a652baee14c9
[ "Apache-2.0" ]
null
null
null
zeus/api/resources/test_details.py
edgerepo/zeus
aea557bde167e95b505a42877422a652baee14c9
[ "Apache-2.0" ]
null
null
null
zeus/api/resources/test_details.py
edgerepo/zeus
aea557bde167e95b505a42877422a652baee14c9
[ "Apache-2.0" ]
null
null
null
from flask import Response from sqlalchemy.orm import joinedload, undefer from zeus.config import db from zeus.models import TestCase from .base import Resource from ..schemas import TestCaseSchema testcase_schema = TestCaseSchema(strict=True) class TestDetailsResource(Resource): def dispatch_request(self, test_id: str, *args, **kwargs) -> Response: test = TestCase.query.options(undefer("message"), joinedload("job")).get( test_id ) if not test: return self.not_found() return Resource.dispatch_request(self, test, *args, **kwargs) def get(self, test: TestCase): """ Return a test. """ return self.respond_with_schema(testcase_schema, test) def put(self, test: TestCase): """ Update a test. """ result = self.schema_from_request(testcase_schema, partial=True) if result.errors: return self.respond(result.errors, 403) for key, value in result.data.items(): if getattr(test, key) != value: setattr(test, key, value) db.session.add(test) db.session.commit() return self.respond_with_schema(testcase_schema, test)
28.72093
81
0.637247
5c8cf65054782518772c5caf42acaf56ef09305f
1,499
py
Python
migrations/005_make_end_time_nullable.py
mritsurgeon/frigate
bfecee9650f7aa962c3222ed4de466f8c4acdefe
[ "MIT" ]
1
2022-02-23T00:01:24.000Z
2022-02-23T00:01:24.000Z
migrations/005_make_end_time_nullable.py
mritsurgeon/frigate
bfecee9650f7aa962c3222ed4de466f8c4acdefe
[ "MIT" ]
null
null
null
migrations/005_make_end_time_nullable.py
mritsurgeon/frigate
bfecee9650f7aa962c3222ed4de466f8c4acdefe
[ "MIT" ]
null
null
null
"""Peewee migrations -- 004_add_bbox_region_area.py. Some examples (model - class or model name):: > Model = migrator.orm['model_name'] # Return model in current state by name > migrator.sql(sql) # Run custom SQL > migrator.python(func, *args, **kwargs) # Run python code > migrator.create_model(Model) # Create a model (could be used as decorator) > migrator.remove_model(model, cascade=True) # Remove a model > migrator.add_fields(model, **fields) # Add fields to a model > migrator.change_fields(model, **fields) # Change fields > migrator.remove_fields(model, *field_names, cascade=True) > migrator.rename_field(model, old_field_name, new_field_name) > migrator.rename_table(model, new_table_name) > migrator.add_index(model, *col_names, unique=False) > migrator.drop_index(model, *col_names) > migrator.add_not_null(model, *field_names) > migrator.drop_not_null(model, *field_names) > migrator.add_default(model, field_name, default) """ import datetime as dt import peewee as pw from playhouse.sqlite_ext import * from decimal import ROUND_HALF_EVEN from frigate.models import Event try: import playhouse.postgres_ext as pw_pext except ImportError: pass SQL = pw.SQL def migrate(migrator, database, fake=False, **kwargs): migrator.drop_not_null(Event, "end_time") def rollback(migrator, database, fake=False, **kwargs): pass
34.068182
97
0.691127
d88fe1108666843db9b345c03945083d38223436
11,516
py
Python
website/addons/zotero/tests/test_models.py
lbanner/osf.io
1898ef0ff8bd91713e94c60e7463b5f81ac62caa
[ "Apache-2.0" ]
null
null
null
website/addons/zotero/tests/test_models.py
lbanner/osf.io
1898ef0ff8bd91713e94c60e7463b5f81ac62caa
[ "Apache-2.0" ]
null
null
null
website/addons/zotero/tests/test_models.py
lbanner/osf.io
1898ef0ff8bd91713e94c60e7463b5f81ac62caa
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- import mock from nose.tools import * # noqa from framework.exceptions import PermissionsError from tests.base import OsfTestCase from tests.factories import UserFactory, ProjectFactory from website.addons.zotero.tests.factories import ( ZoteroAccountFactory, ZoteroUserSettingsFactory, ExternalAccountFactory, ZoteroNodeSettingsFactory ) from website.addons.zotero.provider import ZoteroCitationsProvider import datetime from website.addons.zotero import model class ZoteroProviderTestCase(OsfTestCase): def setUp(self): super(ZoteroProviderTestCase, self).setUp() self.provider = model.Zotero() def test_handle_callback(self): mock_response = { 'userID': 'Fake User ID', 'username': 'Fake User Name', } res = self.provider.handle_callback(mock_response) assert_equal(res.get('display_name'), 'Fake User Name') assert_equal(res.get('provider_id'), 'Fake User ID') def test_citation_lists(self): mock_client = mock.Mock() mock_folders = [ { 'data': { 'name': 'Fake Folder', 'key': 'Fake Key', } } ] mock_client.collections.return_value = mock_folders self.provider._client = mock_client mock_account = mock.Mock() self.provider.account = mock_account res = self.provider.citation_lists(ZoteroCitationsProvider()._extract_folder) assert_equal( res[1]['name'], 'Fake Folder' ) assert_equal( res[1]['id'], 'Fake Key' ) class ZoteroNodeSettingsTestCase(OsfTestCase): def setUp(self): super(ZoteroNodeSettingsTestCase, self).setUp() self.node = ProjectFactory() self.node_settings = model.ZoteroNodeSettings(owner=self.node) self.node_settings.save() self.user = self.node.creator self.user_settings = self.user.get_or_add_addon('zotero') def tearDown(self): super(ZoteroNodeSettingsTestCase, self).tearDown() self.user_settings.remove() self.node_settings.remove() self.node.remove() self.user.remove() @mock.patch('website.addons.zotero.model.Zotero') def test_api_not_cached(self, mock_zotero): # The first call to .api returns a new object api = self.node_settings.api mock_zotero.assert_called_once() assert_equal(api, mock_zotero()) @mock.patch('website.addons.zotero.model.Zotero') def test_api_cached(self, mock_zotero): # Repeated calls to .api returns the same object self.node_settings._api = 'testapi' api = self.node_settings.api assert_false(mock_zotero.called) assert_equal(api, 'testapi') def test_set_auth(self): external_account = ExternalAccountFactory() self.user.external_accounts.append(external_account) self.user.save() # this should be reset after the call self.node_settings.zotero_list_id = 'anything' self.node_settings.set_auth( external_account=external_account, user=self.user ) # this instance is updated assert_equal( self.node_settings.external_account, external_account ) assert_equal( self.node_settings.user_settings, self.user_settings ) assert_is_none( self.node_settings.zotero_list_id ) # user_settings was updated # TODO: The call to grant_oauth_access in set_auth should be mocked assert_true( self.user_settings.verify_oauth_access( node=self.node, external_account=external_account, ) ) def test_set_auth_wrong_user(self): external_account = ExternalAccountFactory() self.user.external_accounts.append(external_account) self.user.save() with assert_raises(PermissionsError): self.node_settings.set_auth( external_account=external_account, user=UserFactory() ) def test_clear_auth(self): self.node_settings.external_account = ExternalAccountFactory() self.node_settings.zotero_list_id = 'something' self.node_settings.user_settings = self.user_settings self.node_settings.save() self.node_settings.clear_auth() assert_is_none(self.node_settings.external_account) assert_is_none(self.node_settings.zotero_list_id) assert_is_none(self.node_settings.user_settings) def test_set_target_folder(self): external_account = ExternalAccountFactory() self.user.external_accounts.append(external_account) self.user.save() self.node_settings.set_auth( external_account=external_account, user=self.user ) assert_is_none(self.node_settings.zotero_list_id) self.node_settings.set_target_folder('fake-folder-id') # instance was updated assert_equal( self.node_settings.zotero_list_id, 'fake-folder-id', ) # user_settings was updated # TODO: the call to grant_oauth_access should be mocked assert_true( self.user_settings.verify_oauth_access( node=self.node, external_account=external_account, metadata={'folder': 'fake-folder-id'} ) ) def test_has_auth_false(self): external_account = ExternalAccountFactory() assert_false(self.node_settings.has_auth) # both external_account and user_settings must be set to have auth self.node_settings.external_account = external_account assert_false(self.node_settings.has_auth) self.node_settings.external_account = None self.node_settings.user_settings = self.user_settings assert_false(self.node_settings.has_auth) # set_auth must be called to have auth self.node_settings.external_account = external_account self.node_settings.user_settings = self.user_settings assert_false(self.node_settings.has_auth) def test_has_auth_true(self): external_account = ExternalAccountFactory() self.user.external_accounts.append(external_account) self.node_settings.set_auth(external_account, self.user) # zotero_list_id should have no effect self.node_settings.zotero_list_id = None assert_true(self.node_settings.has_auth) # zotero_list_id should have no effect self.node_settings.zotero_list_id = 'totally fake ID' assert_true(self.node_settings.has_auth) def test_selected_folder_name_root(self): self.node_settings.zotero_list_id = 'ROOT' assert_equal( self.node_settings.selected_folder_name, "All Documents" ) def test_selected_folder_name_empty(self): self.node_settings.zotero_list_id = None assert_equal( self.node_settings.selected_folder_name, '' ) @mock.patch('website.addons.zotero.model.Zotero._folder_metadata') def test_selected_folder_name(self, mock_folder_metadata): # Mock the return from api call to get the folder's name mock_folder = {'data': {'name': 'Fake Folder'}} # Add the mocked return object to the mocked api client mock_folder_metadata.return_value = mock_folder self.node_settings.zotero_list_id = 'fake-list-id' assert_equal( self.node_settings.selected_folder_name, 'Fake Folder' ) class ZoteroUserSettingsTestCase(OsfTestCase): def test_get_connected_accounts(self): # Get all Zotero accounts for user user_accounts = [ZoteroAccountFactory(), ZoteroAccountFactory()] user = UserFactory(external_accounts=user_accounts) user_addon = ZoteroUserSettingsFactory(owner=user) assert_equal(user_addon._get_connected_accounts(), user_accounts) def test_to_json(self): # All values are passed to the user settings view user_accounts = [ZoteroAccountFactory(), ZoteroAccountFactory()] user = UserFactory(external_accounts=user_accounts) user_addon = ZoteroUserSettingsFactory(owner=user) res = user_addon.to_json(user) for account in user_accounts: assert_in( { 'id': account._id, 'provider_id': account.provider_id, 'display_name': account.display_name }, res['accounts'], ) def _prep_oauth_case(self): self.node = ProjectFactory() self.user = self.node.creator self.external_account = ExternalAccountFactory() self.user.external_accounts.append(self.external_account) self.user.save() self.user_settings = self.user.get_or_add_addon('zotero') def test_grant_oauth_access_no_metadata(self): self._prep_oauth_case() self.user_settings.grant_oauth_access( node=self.node, external_account=self.external_account, ) self.user_settings.save() assert_equal( self.user_settings.oauth_grants, {self.node._id: {self.external_account._id: {}}}, ) def test_grant_oauth_access_metadata(self): self._prep_oauth_case() self.user_settings.grant_oauth_access( node=self.node, external_account=self.external_account, metadata={'folder': 'fake_folder_id'} ) self.user_settings.save() assert_equal( self.user_settings.oauth_grants, { self.node._id: { self.external_account._id: {'folder': 'fake_folder_id'} }, } ) def test_verify_oauth_access_no_metadata(self): self._prep_oauth_case() self.user_settings.grant_oauth_access( node=self.node, external_account=self.external_account, ) self.user_settings.save() assert_true( self.user_settings.verify_oauth_access( node=self.node, external_account=self.external_account ) ) assert_false( self.user_settings.verify_oauth_access( node=self.node, external_account=ExternalAccountFactory() ) ) def test_verify_oauth_access_metadata(self): self._prep_oauth_case() self.user_settings.grant_oauth_access( node=self.node, external_account=self.external_account, metadata={'folder': 'fake_folder_id'} ) self.user_settings.save() assert_true( self.user_settings.verify_oauth_access( node=self.node, external_account=self.external_account, metadata={'folder': 'fake_folder_id'} ) ) assert_false( self.user_settings.verify_oauth_access( node=self.node, external_account=self.external_account, metadata={'folder': 'another_folder_id'} ) )
31.378747
85
0.633293
d723e47448ec2194d9fe5d5625cd517bb1d05547
77,110
py
Python
deps/python/2.7/Lib/lib-tk/Tix.py
eljefedelrodeodeljefe/node-cpython
a6e5414fa4c089c30135c3a7db3eaf1e1d600f68
[ "MIT" ]
13
2015-11-12T14:43:03.000Z
2021-04-30T07:02:11.000Z
deps/python/2.7/Lib/lib-tk/Tix.py
eljefedelrodeodeljefe/node-cpython
a6e5414fa4c089c30135c3a7db3eaf1e1d600f68
[ "MIT" ]
5
2015-05-23T13:07:01.000Z
2016-01-06T16:23:05.000Z
deps/python/2.7/Lib/lib-tk/Tix.py
eljefedelrodeodeljefe/node-cpython
a6e5414fa4c089c30135c3a7db3eaf1e1d600f68
[ "MIT" ]
5
2015-10-30T21:25:24.000Z
2017-03-25T15:50:55.000Z
# -*-mode: python; fill-column: 75; tab-width: 8; coding: iso-latin-1-unix -*- # # $Id$ # # Tix.py -- Tix widget wrappers. # # For Tix, see http://tix.sourceforge.net # # - Sudhir Shenoy (sshenoy@gol.com), Dec. 1995. # based on an idea of Jean-Marc Lugrin (lugrin@ms.com) # # NOTE: In order to minimize changes to Tkinter.py, some of the code here # (TixWidget.__init__) has been taken from Tkinter (Widget.__init__) # and will break if there are major changes in Tkinter. # # The Tix widgets are represented by a class hierarchy in python with proper # inheritance of base classes. # # As a result after creating a 'w = StdButtonBox', I can write # w.ok['text'] = 'Who Cares' # or w.ok['bg'] = w['bg'] # or even w.ok.invoke() # etc. # # Compare the demo tixwidgets.py to the original Tcl program and you will # appreciate the advantages. # from Tkinter import * from Tkinter import _flatten, _cnfmerge, _default_root # WARNING - TkVersion is a limited precision floating point number if TkVersion < 3.999: raise ImportError, "This version of Tix.py requires Tk 4.0 or higher" import _tkinter # If this fails your Python may not be configured for Tk # Some more constants (for consistency with Tkinter) WINDOW = 'window' TEXT = 'text' STATUS = 'status' IMMEDIATE = 'immediate' IMAGE = 'image' IMAGETEXT = 'imagetext' BALLOON = 'balloon' AUTO = 'auto' ACROSSTOP = 'acrosstop' # A few useful constants for the Grid widget ASCII = 'ascii' CELL = 'cell' COLUMN = 'column' DECREASING = 'decreasing' INCREASING = 'increasing' INTEGER = 'integer' MAIN = 'main' MAX = 'max' REAL = 'real' ROW = 'row' S_REGION = 's-region' X_REGION = 'x-region' Y_REGION = 'y-region' # Some constants used by Tkinter dooneevent() TCL_DONT_WAIT = 1 << 1 TCL_WINDOW_EVENTS = 1 << 2 TCL_FILE_EVENTS = 1 << 3 TCL_TIMER_EVENTS = 1 << 4 TCL_IDLE_EVENTS = 1 << 5 TCL_ALL_EVENTS = 0 # BEWARE - this is implemented by copying some code from the Widget class # in Tkinter (to override Widget initialization) and is therefore # liable to break. import Tkinter, os # Could probably add this to Tkinter.Misc class tixCommand: """The tix commands provide access to miscellaneous elements of Tix's internal state and the Tix application context. Most of the information manipulated by these commands pertains to the application as a whole, or to a screen or display, rather than to a particular window. This is a mixin class, assumed to be mixed to Tkinter.Tk that supports the self.tk.call method. """ def tix_addbitmapdir(self, directory): """Tix maintains a list of directories under which the tix_getimage and tix_getbitmap commands will search for image files. The standard bitmap directory is $TIX_LIBRARY/bitmaps. The addbitmapdir command adds directory into this list. By using this command, the image files of an applications can also be located using the tix_getimage or tix_getbitmap command. """ return self.tk.call('tix', 'addbitmapdir', directory) def tix_cget(self, option): """Returns the current value of the configuration option given by option. Option may be any of the options described in the CONFIGURATION OPTIONS section. """ return self.tk.call('tix', 'cget', option) def tix_configure(self, cnf=None, **kw): """Query or modify the configuration options of the Tix application context. If no option is specified, returns a dictionary all of the available options. If option is specified with no value, then the command returns a list describing the one named option (this list will be identical to the corresponding sublist of the value returned if no option is specified). If one or more option-value pairs are specified, then the command modifies the given option(s) to have the given value(s); in this case the command returns an empty string. Option may be any of the configuration options. """ # Copied from Tkinter.py if kw: cnf = _cnfmerge((cnf, kw)) elif cnf: cnf = _cnfmerge(cnf) if cnf is None: return self._getconfigure('tix', 'configure') if isinstance(cnf, StringType): return self._getconfigure1('tix', 'configure', '-'+cnf) return self.tk.call(('tix', 'configure') + self._options(cnf)) def tix_filedialog(self, dlgclass=None): """Returns the file selection dialog that may be shared among different calls from this application. This command will create a file selection dialog widget when it is called the first time. This dialog will be returned by all subsequent calls to tix_filedialog. An optional dlgclass parameter can be passed to specified what type of file selection dialog widget is desired. Possible options are tix FileSelectDialog or tixExFileSelectDialog. """ if dlgclass is not None: return self.tk.call('tix', 'filedialog', dlgclass) else: return self.tk.call('tix', 'filedialog') def tix_getbitmap(self, name): """Locates a bitmap file of the name name.xpm or name in one of the bitmap directories (see the tix_addbitmapdir command above). By using tix_getbitmap, you can avoid hard coding the pathnames of the bitmap files in your application. When successful, it returns the complete pathname of the bitmap file, prefixed with the character '@'. The returned value can be used to configure the -bitmap option of the TK and Tix widgets. """ return self.tk.call('tix', 'getbitmap', name) def tix_getimage(self, name): """Locates an image file of the name name.xpm, name.xbm or name.ppm in one of the bitmap directories (see the addbitmapdir command above). If more than one file with the same name (but different extensions) exist, then the image type is chosen according to the depth of the X display: xbm images are chosen on monochrome displays and color images are chosen on color displays. By using tix_ getimage, you can avoid hard coding the pathnames of the image files in your application. When successful, this command returns the name of the newly created image, which can be used to configure the -image option of the Tk and Tix widgets. """ return self.tk.call('tix', 'getimage', name) def tix_option_get(self, name): """Gets the options maintained by the Tix scheme mechanism. Available options include: active_bg active_fg bg bold_font dark1_bg dark1_fg dark2_bg dark2_fg disabled_fg fg fixed_font font inactive_bg inactive_fg input1_bg input2_bg italic_font light1_bg light1_fg light2_bg light2_fg menu_font output1_bg output2_bg select_bg select_fg selector """ # could use self.tk.globalgetvar('tixOption', name) return self.tk.call('tix', 'option', 'get', name) def tix_resetoptions(self, newScheme, newFontSet, newScmPrio=None): """Resets the scheme and fontset of the Tix application to newScheme and newFontSet, respectively. This affects only those widgets created after this call. Therefore, it is best to call the resetoptions command before the creation of any widgets in a Tix application. The optional parameter newScmPrio can be given to reset the priority level of the Tk options set by the Tix schemes. Because of the way Tk handles the X option database, after Tix has been has imported and inited, it is not possible to reset the color schemes and font sets using the tix config command. Instead, the tix_resetoptions command must be used. """ if newScmPrio is not None: return self.tk.call('tix', 'resetoptions', newScheme, newFontSet, newScmPrio) else: return self.tk.call('tix', 'resetoptions', newScheme, newFontSet) class Tk(Tkinter.Tk, tixCommand): """Toplevel widget of Tix which represents mostly the main window of an application. It has an associated Tcl interpreter.""" def __init__(self, screenName=None, baseName=None, className='Tix'): Tkinter.Tk.__init__(self, screenName, baseName, className) tixlib = os.environ.get('TIX_LIBRARY') self.tk.eval('global auto_path; lappend auto_path [file dir [info nameof]]') if tixlib is not None: self.tk.eval('global auto_path; lappend auto_path {%s}' % tixlib) self.tk.eval('global tcl_pkgPath; lappend tcl_pkgPath {%s}' % tixlib) # Load Tix - this should work dynamically or statically # If it's static, tcl/tix8.1/pkgIndex.tcl should have # 'load {} Tix' # If it's dynamic under Unix, tcl/tix8.1/pkgIndex.tcl should have # 'load libtix8.1.8.3.so Tix' self.tk.eval('package require Tix') def destroy(self): # For safety, remove the delete_window binding before destroy self.protocol("WM_DELETE_WINDOW", "") Tkinter.Tk.destroy(self) # The Tix 'tixForm' geometry manager class Form: """The Tix Form geometry manager Widgets can be arranged by specifying attachments to other widgets. See Tix documentation for complete details""" def config(self, cnf={}, **kw): self.tk.call('tixForm', self._w, *self._options(cnf, kw)) form = config def __setitem__(self, key, value): Form.form(self, {key: value}) def check(self): return self.tk.call('tixForm', 'check', self._w) def forget(self): self.tk.call('tixForm', 'forget', self._w) def grid(self, xsize=0, ysize=0): if (not xsize) and (not ysize): x = self.tk.call('tixForm', 'grid', self._w) y = self.tk.splitlist(x) z = () for x in y: z = z + (self.tk.getint(x),) return z return self.tk.call('tixForm', 'grid', self._w, xsize, ysize) def info(self, option=None): if not option: return self.tk.call('tixForm', 'info', self._w) if option[0] != '-': option = '-' + option return self.tk.call('tixForm', 'info', self._w, option) def slaves(self): return map(self._nametowidget, self.tk.splitlist( self.tk.call( 'tixForm', 'slaves', self._w))) Tkinter.Widget.__bases__ = Tkinter.Widget.__bases__ + (Form,) class TixWidget(Tkinter.Widget): """A TixWidget class is used to package all (or most) Tix widgets. Widget initialization is extended in two ways: 1) It is possible to give a list of options which must be part of the creation command (so called Tix 'static' options). These cannot be given as a 'config' command later. 2) It is possible to give the name of an existing TK widget. These are child widgets created automatically by a Tix mega-widget. The Tk call to create these widgets is therefore bypassed in TixWidget.__init__ Both options are for use by subclasses only. """ def __init__ (self, master=None, widgetName=None, static_options=None, cnf={}, kw={}): # Merge keywords and dictionary arguments if kw: cnf = _cnfmerge((cnf, kw)) else: cnf = _cnfmerge(cnf) # Move static options into extra. static_options must be # a list of keywords (or None). extra=() # 'options' is always a static option if static_options: static_options.append('options') else: static_options = ['options'] for k,v in cnf.items()[:]: if k in static_options: extra = extra + ('-' + k, v) del cnf[k] self.widgetName = widgetName Widget._setup(self, master, cnf) # If widgetName is None, this is a dummy creation call where the # corresponding Tk widget has already been created by Tix if widgetName: self.tk.call(widgetName, self._w, *extra) # Non-static options - to be done via a 'config' command if cnf: Widget.config(self, cnf) # Dictionary to hold subwidget names for easier access. We can't # use the children list because the public Tix names may not be the # same as the pathname component self.subwidget_list = {} # We set up an attribute access function so that it is possible to # do w.ok['text'] = 'Hello' rather than w.subwidget('ok')['text'] = 'Hello' # when w is a StdButtonBox. # We can even do w.ok.invoke() because w.ok is subclassed from the # Button class if you go through the proper constructors def __getattr__(self, name): if name in self.subwidget_list: return self.subwidget_list[name] raise AttributeError, name def set_silent(self, value): """Set a variable without calling its action routine""" self.tk.call('tixSetSilent', self._w, value) def subwidget(self, name): """Return the named subwidget (which must have been created by the sub-class).""" n = self._subwidget_name(name) if not n: raise TclError, "Subwidget " + name + " not child of " + self._name # Remove header of name and leading dot n = n[len(self._w)+1:] return self._nametowidget(n) def subwidgets_all(self): """Return all subwidgets.""" names = self._subwidget_names() if not names: return [] retlist = [] for name in names: name = name[len(self._w)+1:] try: retlist.append(self._nametowidget(name)) except: # some of the widgets are unknown e.g. border in LabelFrame pass return retlist def _subwidget_name(self,name): """Get a subwidget name (returns a String, not a Widget !)""" try: return self.tk.call(self._w, 'subwidget', name) except TclError: return None def _subwidget_names(self): """Return the name of all subwidgets.""" try: x = self.tk.call(self._w, 'subwidgets', '-all') return self.tk.splitlist(x) except TclError: return None def config_all(self, option, value): """Set configuration options for all subwidgets (and self).""" if option == '': return elif not isinstance(option, StringType): option = repr(option) if not isinstance(value, StringType): value = repr(value) names = self._subwidget_names() for name in names: self.tk.call(name, 'configure', '-' + option, value) # These are missing from Tkinter def image_create(self, imgtype, cnf={}, master=None, **kw): if not master: master = Tkinter._default_root if not master: raise RuntimeError, 'Too early to create image' if kw and cnf: cnf = _cnfmerge((cnf, kw)) elif kw: cnf = kw options = () for k, v in cnf.items(): if hasattr(v, '__call__'): v = self._register(v) options = options + ('-'+k, v) return master.tk.call(('image', 'create', imgtype,) + options) def image_delete(self, imgname): try: self.tk.call('image', 'delete', imgname) except TclError: # May happen if the root was destroyed pass # Subwidgets are child widgets created automatically by mega-widgets. # In python, we have to create these subwidgets manually to mirror their # existence in Tk/Tix. class TixSubWidget(TixWidget): """Subwidget class. This is used to mirror child widgets automatically created by Tix/Tk as part of a mega-widget in Python (which is not informed of this)""" def __init__(self, master, name, destroy_physically=1, check_intermediate=1): if check_intermediate: path = master._subwidget_name(name) try: path = path[len(master._w)+1:] plist = path.split('.') except: plist = [] if not check_intermediate: # immediate descendant TixWidget.__init__(self, master, None, None, {'name' : name}) else: # Ensure that the intermediate widgets exist parent = master for i in range(len(plist) - 1): n = '.'.join(plist[:i+1]) try: w = master._nametowidget(n) parent = w except KeyError: # Create the intermediate widget parent = TixSubWidget(parent, plist[i], destroy_physically=0, check_intermediate=0) # The Tk widget name is in plist, not in name if plist: name = plist[-1] TixWidget.__init__(self, parent, None, None, {'name' : name}) self.destroy_physically = destroy_physically def destroy(self): # For some widgets e.g., a NoteBook, when we call destructors, # we must be careful not to destroy the frame widget since this # also destroys the parent NoteBook thus leading to an exception # in Tkinter when it finally calls Tcl to destroy the NoteBook for c in self.children.values(): c.destroy() if self._name in self.master.children: del self.master.children[self._name] if self._name in self.master.subwidget_list: del self.master.subwidget_list[self._name] if self.destroy_physically: # This is bypassed only for a few widgets self.tk.call('destroy', self._w) # Useful class to create a display style - later shared by many items. # Contributed by Steffen Kremser class DisplayStyle: """DisplayStyle - handle configuration options shared by (multiple) Display Items""" def __init__(self, itemtype, cnf={}, **kw): master = _default_root # global from Tkinter if not master and 'refwindow' in cnf: master=cnf['refwindow'] elif not master and 'refwindow' in kw: master= kw['refwindow'] elif not master: raise RuntimeError, "Too early to create display style: no root window" self.tk = master.tk self.stylename = self.tk.call('tixDisplayStyle', itemtype, *self._options(cnf,kw) ) def __str__(self): return self.stylename def _options(self, cnf, kw): if kw and cnf: cnf = _cnfmerge((cnf, kw)) elif kw: cnf = kw opts = () for k, v in cnf.items(): opts = opts + ('-'+k, v) return opts def delete(self): self.tk.call(self.stylename, 'delete') def __setitem__(self,key,value): self.tk.call(self.stylename, 'configure', '-%s'%key, value) def config(self, cnf={}, **kw): return self._getconfigure( self.stylename, 'configure', *self._options(cnf,kw)) def __getitem__(self,key): return self.tk.call(self.stylename, 'cget', '-%s'%key) ###################################################### ### The Tix Widget classes - in alphabetical order ### ###################################################### class Balloon(TixWidget): """Balloon help widget. Subwidget Class --------- ----- label Label message Message""" # FIXME: It should inherit -superclass tixShell def __init__(self, master=None, cnf={}, **kw): # static seem to be -installcolormap -initwait -statusbar -cursor static = ['options', 'installcolormap', 'initwait', 'statusbar', 'cursor'] TixWidget.__init__(self, master, 'tixBalloon', static, cnf, kw) self.subwidget_list['label'] = _dummyLabel(self, 'label', destroy_physically=0) self.subwidget_list['message'] = _dummyLabel(self, 'message', destroy_physically=0) def bind_widget(self, widget, cnf={}, **kw): """Bind balloon widget to another. One balloon widget may be bound to several widgets at the same time""" self.tk.call(self._w, 'bind', widget._w, *self._options(cnf, kw)) def unbind_widget(self, widget): self.tk.call(self._w, 'unbind', widget._w) class ButtonBox(TixWidget): """ButtonBox - A container for pushbuttons. Subwidgets are the buttons added with the add method. """ def __init__(self, master=None, cnf={}, **kw): TixWidget.__init__(self, master, 'tixButtonBox', ['orientation', 'options'], cnf, kw) def add(self, name, cnf={}, **kw): """Add a button with given name to box.""" btn = self.tk.call(self._w, 'add', name, *self._options(cnf, kw)) self.subwidget_list[name] = _dummyButton(self, name) return btn def invoke(self, name): if name in self.subwidget_list: self.tk.call(self._w, 'invoke', name) class ComboBox(TixWidget): """ComboBox - an Entry field with a dropdown menu. The user can select a choice by either typing in the entry subwidget or selecting from the listbox subwidget. Subwidget Class --------- ----- entry Entry arrow Button slistbox ScrolledListBox tick Button cross Button : present if created with the fancy option""" # FIXME: It should inherit -superclass tixLabelWidget def __init__ (self, master=None, cnf={}, **kw): TixWidget.__init__(self, master, 'tixComboBox', ['editable', 'dropdown', 'fancy', 'options'], cnf, kw) self.subwidget_list['label'] = _dummyLabel(self, 'label') self.subwidget_list['entry'] = _dummyEntry(self, 'entry') self.subwidget_list['arrow'] = _dummyButton(self, 'arrow') self.subwidget_list['slistbox'] = _dummyScrolledListBox(self, 'slistbox') try: self.subwidget_list['tick'] = _dummyButton(self, 'tick') self.subwidget_list['cross'] = _dummyButton(self, 'cross') except TypeError: # unavailable when -fancy not specified pass # align def add_history(self, str): self.tk.call(self._w, 'addhistory', str) def append_history(self, str): self.tk.call(self._w, 'appendhistory', str) def insert(self, index, str): self.tk.call(self._w, 'insert', index, str) def pick(self, index): self.tk.call(self._w, 'pick', index) class Control(TixWidget): """Control - An entry field with value change arrows. The user can adjust the value by pressing the two arrow buttons or by entering the value directly into the entry. The new value will be checked against the user-defined upper and lower limits. Subwidget Class --------- ----- incr Button decr Button entry Entry label Label""" # FIXME: It should inherit -superclass tixLabelWidget def __init__ (self, master=None, cnf={}, **kw): TixWidget.__init__(self, master, 'tixControl', ['options'], cnf, kw) self.subwidget_list['incr'] = _dummyButton(self, 'incr') self.subwidget_list['decr'] = _dummyButton(self, 'decr') self.subwidget_list['label'] = _dummyLabel(self, 'label') self.subwidget_list['entry'] = _dummyEntry(self, 'entry') def decrement(self): self.tk.call(self._w, 'decr') def increment(self): self.tk.call(self._w, 'incr') def invoke(self): self.tk.call(self._w, 'invoke') def update(self): self.tk.call(self._w, 'update') class DirList(TixWidget): """DirList - displays a list view of a directory, its previous directories and its sub-directories. The user can choose one of the directories displayed in the list or change to another directory. Subwidget Class --------- ----- hlist HList hsb Scrollbar vsb Scrollbar""" # FIXME: It should inherit -superclass tixScrolledHList def __init__(self, master, cnf={}, **kw): TixWidget.__init__(self, master, 'tixDirList', ['options'], cnf, kw) self.subwidget_list['hlist'] = _dummyHList(self, 'hlist') self.subwidget_list['vsb'] = _dummyScrollbar(self, 'vsb') self.subwidget_list['hsb'] = _dummyScrollbar(self, 'hsb') def chdir(self, dir): self.tk.call(self._w, 'chdir', dir) class DirTree(TixWidget): """DirTree - Directory Listing in a hierarchical view. Displays a tree view of a directory, its previous directories and its sub-directories. The user can choose one of the directories displayed in the list or change to another directory. Subwidget Class --------- ----- hlist HList hsb Scrollbar vsb Scrollbar""" # FIXME: It should inherit -superclass tixScrolledHList def __init__(self, master, cnf={}, **kw): TixWidget.__init__(self, master, 'tixDirTree', ['options'], cnf, kw) self.subwidget_list['hlist'] = _dummyHList(self, 'hlist') self.subwidget_list['vsb'] = _dummyScrollbar(self, 'vsb') self.subwidget_list['hsb'] = _dummyScrollbar(self, 'hsb') def chdir(self, dir): self.tk.call(self._w, 'chdir', dir) class DirSelectBox(TixWidget): """DirSelectBox - Motif style file select box. It is generally used for the user to choose a file. FileSelectBox stores the files mostly recently selected into a ComboBox widget so that they can be quickly selected again. Subwidget Class --------- ----- selection ComboBox filter ComboBox dirlist ScrolledListBox filelist ScrolledListBox""" def __init__(self, master, cnf={}, **kw): TixWidget.__init__(self, master, 'tixDirSelectBox', ['options'], cnf, kw) self.subwidget_list['dirlist'] = _dummyDirList(self, 'dirlist') self.subwidget_list['dircbx'] = _dummyFileComboBox(self, 'dircbx') class ExFileSelectBox(TixWidget): """ExFileSelectBox - MS Windows style file select box. It provides a convenient method for the user to select files. Subwidget Class --------- ----- cancel Button ok Button hidden Checkbutton types ComboBox dir ComboBox file ComboBox dirlist ScrolledListBox filelist ScrolledListBox""" def __init__(self, master, cnf={}, **kw): TixWidget.__init__(self, master, 'tixExFileSelectBox', ['options'], cnf, kw) self.subwidget_list['cancel'] = _dummyButton(self, 'cancel') self.subwidget_list['ok'] = _dummyButton(self, 'ok') self.subwidget_list['hidden'] = _dummyCheckbutton(self, 'hidden') self.subwidget_list['types'] = _dummyComboBox(self, 'types') self.subwidget_list['dir'] = _dummyComboBox(self, 'dir') self.subwidget_list['dirlist'] = _dummyDirList(self, 'dirlist') self.subwidget_list['file'] = _dummyComboBox(self, 'file') self.subwidget_list['filelist'] = _dummyScrolledListBox(self, 'filelist') def filter(self): self.tk.call(self._w, 'filter') def invoke(self): self.tk.call(self._w, 'invoke') # Should inherit from a Dialog class class DirSelectDialog(TixWidget): """The DirSelectDialog widget presents the directories in the file system in a dialog window. The user can use this dialog window to navigate through the file system to select the desired directory. Subwidgets Class ---------- ----- dirbox DirSelectDialog""" # FIXME: It should inherit -superclass tixDialogShell def __init__(self, master, cnf={}, **kw): TixWidget.__init__(self, master, 'tixDirSelectDialog', ['options'], cnf, kw) self.subwidget_list['dirbox'] = _dummyDirSelectBox(self, 'dirbox') # cancel and ok buttons are missing def popup(self): self.tk.call(self._w, 'popup') def popdown(self): self.tk.call(self._w, 'popdown') # Should inherit from a Dialog class class ExFileSelectDialog(TixWidget): """ExFileSelectDialog - MS Windows style file select dialog. It provides a convenient method for the user to select files. Subwidgets Class ---------- ----- fsbox ExFileSelectBox""" # FIXME: It should inherit -superclass tixDialogShell def __init__(self, master, cnf={}, **kw): TixWidget.__init__(self, master, 'tixExFileSelectDialog', ['options'], cnf, kw) self.subwidget_list['fsbox'] = _dummyExFileSelectBox(self, 'fsbox') def popup(self): self.tk.call(self._w, 'popup') def popdown(self): self.tk.call(self._w, 'popdown') class FileSelectBox(TixWidget): """ExFileSelectBox - Motif style file select box. It is generally used for the user to choose a file. FileSelectBox stores the files mostly recently selected into a ComboBox widget so that they can be quickly selected again. Subwidget Class --------- ----- selection ComboBox filter ComboBox dirlist ScrolledListBox filelist ScrolledListBox""" def __init__(self, master, cnf={}, **kw): TixWidget.__init__(self, master, 'tixFileSelectBox', ['options'], cnf, kw) self.subwidget_list['dirlist'] = _dummyScrolledListBox(self, 'dirlist') self.subwidget_list['filelist'] = _dummyScrolledListBox(self, 'filelist') self.subwidget_list['filter'] = _dummyComboBox(self, 'filter') self.subwidget_list['selection'] = _dummyComboBox(self, 'selection') def apply_filter(self): # name of subwidget is same as command self.tk.call(self._w, 'filter') def invoke(self): self.tk.call(self._w, 'invoke') # Should inherit from a Dialog class class FileSelectDialog(TixWidget): """FileSelectDialog - Motif style file select dialog. Subwidgets Class ---------- ----- btns StdButtonBox fsbox FileSelectBox""" # FIXME: It should inherit -superclass tixStdDialogShell def __init__(self, master, cnf={}, **kw): TixWidget.__init__(self, master, 'tixFileSelectDialog', ['options'], cnf, kw) self.subwidget_list['btns'] = _dummyStdButtonBox(self, 'btns') self.subwidget_list['fsbox'] = _dummyFileSelectBox(self, 'fsbox') def popup(self): self.tk.call(self._w, 'popup') def popdown(self): self.tk.call(self._w, 'popdown') class FileEntry(TixWidget): """FileEntry - Entry field with button that invokes a FileSelectDialog. The user can type in the filename manually. Alternatively, the user can press the button widget that sits next to the entry, which will bring up a file selection dialog. Subwidgets Class ---------- ----- button Button entry Entry""" # FIXME: It should inherit -superclass tixLabelWidget def __init__(self, master, cnf={}, **kw): TixWidget.__init__(self, master, 'tixFileEntry', ['dialogtype', 'options'], cnf, kw) self.subwidget_list['button'] = _dummyButton(self, 'button') self.subwidget_list['entry'] = _dummyEntry(self, 'entry') def invoke(self): self.tk.call(self._w, 'invoke') def file_dialog(self): # FIXME: return python object pass class HList(TixWidget, XView, YView): """HList - Hierarchy display widget can be used to display any data that have a hierarchical structure, for example, file system directory trees. The list entries are indented and connected by branch lines according to their places in the hierarchy. Subwidgets - None""" def __init__ (self,master=None,cnf={}, **kw): TixWidget.__init__(self, master, 'tixHList', ['columns', 'options'], cnf, kw) def add(self, entry, cnf={}, **kw): return self.tk.call(self._w, 'add', entry, *self._options(cnf, kw)) def add_child(self, parent=None, cnf={}, **kw): if not parent: parent = '' return self.tk.call( self._w, 'addchild', parent, *self._options(cnf, kw)) def anchor_set(self, entry): self.tk.call(self._w, 'anchor', 'set', entry) def anchor_clear(self): self.tk.call(self._w, 'anchor', 'clear') def column_width(self, col=0, width=None, chars=None): if not chars: return self.tk.call(self._w, 'column', 'width', col, width) else: return self.tk.call(self._w, 'column', 'width', col, '-char', chars) def delete_all(self): self.tk.call(self._w, 'delete', 'all') def delete_entry(self, entry): self.tk.call(self._w, 'delete', 'entry', entry) def delete_offsprings(self, entry): self.tk.call(self._w, 'delete', 'offsprings', entry) def delete_siblings(self, entry): self.tk.call(self._w, 'delete', 'siblings', entry) def dragsite_set(self, index): self.tk.call(self._w, 'dragsite', 'set', index) def dragsite_clear(self): self.tk.call(self._w, 'dragsite', 'clear') def dropsite_set(self, index): self.tk.call(self._w, 'dropsite', 'set', index) def dropsite_clear(self): self.tk.call(self._w, 'dropsite', 'clear') def header_create(self, col, cnf={}, **kw): self.tk.call(self._w, 'header', 'create', col, *self._options(cnf, kw)) def header_configure(self, col, cnf={}, **kw): if cnf is None: return self._getconfigure(self._w, 'header', 'configure', col) self.tk.call(self._w, 'header', 'configure', col, *self._options(cnf, kw)) def header_cget(self, col, opt): return self.tk.call(self._w, 'header', 'cget', col, opt) def header_exists(self, col): return self.tk.call(self._w, 'header', 'exists', col) def header_delete(self, col): self.tk.call(self._w, 'header', 'delete', col) def header_size(self, col): return self.tk.call(self._w, 'header', 'size', col) def hide_entry(self, entry): self.tk.call(self._w, 'hide', 'entry', entry) def indicator_create(self, entry, cnf={}, **kw): self.tk.call( self._w, 'indicator', 'create', entry, *self._options(cnf, kw)) def indicator_configure(self, entry, cnf={}, **kw): if cnf is None: return self._getconfigure( self._w, 'indicator', 'configure', entry) self.tk.call( self._w, 'indicator', 'configure', entry, *self._options(cnf, kw)) def indicator_cget(self, entry, opt): return self.tk.call(self._w, 'indicator', 'cget', entry, opt) def indicator_exists(self, entry): return self.tk.call (self._w, 'indicator', 'exists', entry) def indicator_delete(self, entry): self.tk.call(self._w, 'indicator', 'delete', entry) def indicator_size(self, entry): return self.tk.call(self._w, 'indicator', 'size', entry) def info_anchor(self): return self.tk.call(self._w, 'info', 'anchor') def info_bbox(self, entry): return self._getints( self.tk.call(self._w, 'info', 'bbox', entry)) or None def info_children(self, entry=None): c = self.tk.call(self._w, 'info', 'children', entry) return self.tk.splitlist(c) def info_data(self, entry): return self.tk.call(self._w, 'info', 'data', entry) def info_dragsite(self): return self.tk.call(self._w, 'info', 'dragsite') def info_dropsite(self): return self.tk.call(self._w, 'info', 'dropsite') def info_exists(self, entry): return self.tk.call(self._w, 'info', 'exists', entry) def info_hidden(self, entry): return self.tk.call(self._w, 'info', 'hidden', entry) def info_next(self, entry): return self.tk.call(self._w, 'info', 'next', entry) def info_parent(self, entry): return self.tk.call(self._w, 'info', 'parent', entry) def info_prev(self, entry): return self.tk.call(self._w, 'info', 'prev', entry) def info_selection(self): c = self.tk.call(self._w, 'info', 'selection') return self.tk.splitlist(c) def item_cget(self, entry, col, opt): return self.tk.call(self._w, 'item', 'cget', entry, col, opt) def item_configure(self, entry, col, cnf={}, **kw): if cnf is None: return self._getconfigure(self._w, 'item', 'configure', entry, col) self.tk.call(self._w, 'item', 'configure', entry, col, *self._options(cnf, kw)) def item_create(self, entry, col, cnf={}, **kw): self.tk.call( self._w, 'item', 'create', entry, col, *self._options(cnf, kw)) def item_exists(self, entry, col): return self.tk.call(self._w, 'item', 'exists', entry, col) def item_delete(self, entry, col): self.tk.call(self._w, 'item', 'delete', entry, col) def entrycget(self, entry, opt): return self.tk.call(self._w, 'entrycget', entry, opt) def entryconfigure(self, entry, cnf={}, **kw): if cnf is None: return self._getconfigure(self._w, 'entryconfigure', entry) self.tk.call(self._w, 'entryconfigure', entry, *self._options(cnf, kw)) def nearest(self, y): return self.tk.call(self._w, 'nearest', y) def see(self, entry): self.tk.call(self._w, 'see', entry) def selection_clear(self, cnf={}, **kw): self.tk.call(self._w, 'selection', 'clear', *self._options(cnf, kw)) def selection_includes(self, entry): return self.tk.call(self._w, 'selection', 'includes', entry) def selection_set(self, first, last=None): self.tk.call(self._w, 'selection', 'set', first, last) def show_entry(self, entry): return self.tk.call(self._w, 'show', 'entry', entry) class InputOnly(TixWidget): """InputOnly - Invisible widget. Unix only. Subwidgets - None""" def __init__ (self,master=None,cnf={}, **kw): TixWidget.__init__(self, master, 'tixInputOnly', None, cnf, kw) class LabelEntry(TixWidget): """LabelEntry - Entry field with label. Packages an entry widget and a label into one mega widget. It can beused be used to simplify the creation of ``entry-form'' type of interface. Subwidgets Class ---------- ----- label Label entry Entry""" def __init__ (self,master=None,cnf={}, **kw): TixWidget.__init__(self, master, 'tixLabelEntry', ['labelside','options'], cnf, kw) self.subwidget_list['label'] = _dummyLabel(self, 'label') self.subwidget_list['entry'] = _dummyEntry(self, 'entry') class LabelFrame(TixWidget): """LabelFrame - Labelled Frame container. Packages a frame widget and a label into one mega widget. To create widgets inside a LabelFrame widget, one creates the new widgets relative to the frame subwidget and manage them inside the frame subwidget. Subwidgets Class ---------- ----- label Label frame Frame""" def __init__ (self,master=None,cnf={}, **kw): TixWidget.__init__(self, master, 'tixLabelFrame', ['labelside','options'], cnf, kw) self.subwidget_list['label'] = _dummyLabel(self, 'label') self.subwidget_list['frame'] = _dummyFrame(self, 'frame') class ListNoteBook(TixWidget): """A ListNoteBook widget is very similar to the TixNoteBook widget: it can be used to display many windows in a limited space using a notebook metaphor. The notebook is divided into a stack of pages (windows). At one time only one of these pages can be shown. The user can navigate through these pages by choosing the name of the desired page in the hlist subwidget.""" def __init__(self, master, cnf={}, **kw): TixWidget.__init__(self, master, 'tixListNoteBook', ['options'], cnf, kw) # Is this necessary? It's not an exposed subwidget in Tix. self.subwidget_list['pane'] = _dummyPanedWindow(self, 'pane', destroy_physically=0) self.subwidget_list['hlist'] = _dummyHList(self, 'hlist') self.subwidget_list['shlist'] = _dummyScrolledHList(self, 'shlist') def add(self, name, cnf={}, **kw): self.tk.call(self._w, 'add', name, *self._options(cnf, kw)) self.subwidget_list[name] = TixSubWidget(self, name) return self.subwidget_list[name] def page(self, name): return self.subwidget(name) def pages(self): # Can't call subwidgets_all directly because we don't want .nbframe names = self.tk.split(self.tk.call(self._w, 'pages')) ret = [] for x in names: ret.append(self.subwidget(x)) return ret def raise_page(self, name): # raise is a python keyword self.tk.call(self._w, 'raise', name) class Meter(TixWidget): """The Meter widget can be used to show the progress of a background job which may take a long time to execute. """ def __init__(self, master=None, cnf={}, **kw): TixWidget.__init__(self, master, 'tixMeter', ['options'], cnf, kw) class NoteBook(TixWidget): """NoteBook - Multi-page container widget (tabbed notebook metaphor). Subwidgets Class ---------- ----- nbframe NoteBookFrame <pages> page widgets added dynamically with the add method""" def __init__ (self,master=None,cnf={}, **kw): TixWidget.__init__(self,master,'tixNoteBook', ['options'], cnf, kw) self.subwidget_list['nbframe'] = TixSubWidget(self, 'nbframe', destroy_physically=0) def add(self, name, cnf={}, **kw): self.tk.call(self._w, 'add', name, *self._options(cnf, kw)) self.subwidget_list[name] = TixSubWidget(self, name) return self.subwidget_list[name] def delete(self, name): self.tk.call(self._w, 'delete', name) self.subwidget_list[name].destroy() del self.subwidget_list[name] def page(self, name): return self.subwidget(name) def pages(self): # Can't call subwidgets_all directly because we don't want .nbframe names = self.tk.split(self.tk.call(self._w, 'pages')) ret = [] for x in names: ret.append(self.subwidget(x)) return ret def raise_page(self, name): # raise is a python keyword self.tk.call(self._w, 'raise', name) def raised(self): return self.tk.call(self._w, 'raised') class NoteBookFrame(TixWidget): # FIXME: This is dangerous to expose to be called on its own. pass class OptionMenu(TixWidget): """OptionMenu - creates a menu button of options. Subwidget Class --------- ----- menubutton Menubutton menu Menu""" def __init__(self, master, cnf={}, **kw): TixWidget.__init__(self, master, 'tixOptionMenu', ['labelside', 'options'], cnf, kw) self.subwidget_list['menubutton'] = _dummyMenubutton(self, 'menubutton') self.subwidget_list['menu'] = _dummyMenu(self, 'menu') def add_command(self, name, cnf={}, **kw): self.tk.call(self._w, 'add', 'command', name, *self._options(cnf, kw)) def add_separator(self, name, cnf={}, **kw): self.tk.call(self._w, 'add', 'separator', name, *self._options(cnf, kw)) def delete(self, name): self.tk.call(self._w, 'delete', name) def disable(self, name): self.tk.call(self._w, 'disable', name) def enable(self, name): self.tk.call(self._w, 'enable', name) class PanedWindow(TixWidget): """PanedWindow - Multi-pane container widget allows the user to interactively manipulate the sizes of several panes. The panes can be arranged either vertically or horizontally.The user changes the sizes of the panes by dragging the resize handle between two panes. Subwidgets Class ---------- ----- <panes> g/p widgets added dynamically with the add method.""" def __init__(self, master, cnf={}, **kw): TixWidget.__init__(self, master, 'tixPanedWindow', ['orientation', 'options'], cnf, kw) # add delete forget panecget paneconfigure panes setsize def add(self, name, cnf={}, **kw): self.tk.call(self._w, 'add', name, *self._options(cnf, kw)) self.subwidget_list[name] = TixSubWidget(self, name, check_intermediate=0) return self.subwidget_list[name] def delete(self, name): self.tk.call(self._w, 'delete', name) self.subwidget_list[name].destroy() del self.subwidget_list[name] def forget(self, name): self.tk.call(self._w, 'forget', name) def panecget(self, entry, opt): return self.tk.call(self._w, 'panecget', entry, opt) def paneconfigure(self, entry, cnf={}, **kw): if cnf is None: return self._getconfigure(self._w, 'paneconfigure', entry) self.tk.call(self._w, 'paneconfigure', entry, *self._options(cnf, kw)) def panes(self): names = self.tk.splitlist(self.tk.call(self._w, 'panes')) return [self.subwidget(x) for x in names] class PopupMenu(TixWidget): """PopupMenu widget can be used as a replacement of the tk_popup command. The advantage of the Tix PopupMenu widget is it requires less application code to manipulate. Subwidgets Class ---------- ----- menubutton Menubutton menu Menu""" # FIXME: It should inherit -superclass tixShell def __init__(self, master, cnf={}, **kw): TixWidget.__init__(self, master, 'tixPopupMenu', ['options'], cnf, kw) self.subwidget_list['menubutton'] = _dummyMenubutton(self, 'menubutton') self.subwidget_list['menu'] = _dummyMenu(self, 'menu') def bind_widget(self, widget): self.tk.call(self._w, 'bind', widget._w) def unbind_widget(self, widget): self.tk.call(self._w, 'unbind', widget._w) def post_widget(self, widget, x, y): self.tk.call(self._w, 'post', widget._w, x, y) class ResizeHandle(TixWidget): """Internal widget to draw resize handles on Scrolled widgets.""" def __init__(self, master, cnf={}, **kw): # There seems to be a Tix bug rejecting the configure method # Let's try making the flags -static flags = ['options', 'command', 'cursorfg', 'cursorbg', 'handlesize', 'hintcolor', 'hintwidth', 'x', 'y'] # In fact, x y height width are configurable TixWidget.__init__(self, master, 'tixResizeHandle', flags, cnf, kw) def attach_widget(self, widget): self.tk.call(self._w, 'attachwidget', widget._w) def detach_widget(self, widget): self.tk.call(self._w, 'detachwidget', widget._w) def hide(self, widget): self.tk.call(self._w, 'hide', widget._w) def show(self, widget): self.tk.call(self._w, 'show', widget._w) class ScrolledHList(TixWidget): """ScrolledHList - HList with automatic scrollbars.""" # FIXME: It should inherit -superclass tixScrolledWidget def __init__(self, master, cnf={}, **kw): TixWidget.__init__(self, master, 'tixScrolledHList', ['options'], cnf, kw) self.subwidget_list['hlist'] = _dummyHList(self, 'hlist') self.subwidget_list['vsb'] = _dummyScrollbar(self, 'vsb') self.subwidget_list['hsb'] = _dummyScrollbar(self, 'hsb') class ScrolledListBox(TixWidget): """ScrolledListBox - Listbox with automatic scrollbars.""" # FIXME: It should inherit -superclass tixScrolledWidget def __init__(self, master, cnf={}, **kw): TixWidget.__init__(self, master, 'tixScrolledListBox', ['options'], cnf, kw) self.subwidget_list['listbox'] = _dummyListbox(self, 'listbox') self.subwidget_list['vsb'] = _dummyScrollbar(self, 'vsb') self.subwidget_list['hsb'] = _dummyScrollbar(self, 'hsb') class ScrolledText(TixWidget): """ScrolledText - Text with automatic scrollbars.""" # FIXME: It should inherit -superclass tixScrolledWidget def __init__(self, master, cnf={}, **kw): TixWidget.__init__(self, master, 'tixScrolledText', ['options'], cnf, kw) self.subwidget_list['text'] = _dummyText(self, 'text') self.subwidget_list['vsb'] = _dummyScrollbar(self, 'vsb') self.subwidget_list['hsb'] = _dummyScrollbar(self, 'hsb') class ScrolledTList(TixWidget): """ScrolledTList - TList with automatic scrollbars.""" # FIXME: It should inherit -superclass tixScrolledWidget def __init__(self, master, cnf={}, **kw): TixWidget.__init__(self, master, 'tixScrolledTList', ['options'], cnf, kw) self.subwidget_list['tlist'] = _dummyTList(self, 'tlist') self.subwidget_list['vsb'] = _dummyScrollbar(self, 'vsb') self.subwidget_list['hsb'] = _dummyScrollbar(self, 'hsb') class ScrolledWindow(TixWidget): """ScrolledWindow - Window with automatic scrollbars.""" # FIXME: It should inherit -superclass tixScrolledWidget def __init__(self, master, cnf={}, **kw): TixWidget.__init__(self, master, 'tixScrolledWindow', ['options'], cnf, kw) self.subwidget_list['window'] = _dummyFrame(self, 'window') self.subwidget_list['vsb'] = _dummyScrollbar(self, 'vsb') self.subwidget_list['hsb'] = _dummyScrollbar(self, 'hsb') class Select(TixWidget): """Select - Container of button subwidgets. It can be used to provide radio-box or check-box style of selection options for the user. Subwidgets are buttons added dynamically using the add method.""" # FIXME: It should inherit -superclass tixLabelWidget def __init__(self, master, cnf={}, **kw): TixWidget.__init__(self, master, 'tixSelect', ['allowzero', 'radio', 'orientation', 'labelside', 'options'], cnf, kw) self.subwidget_list['label'] = _dummyLabel(self, 'label') def add(self, name, cnf={}, **kw): self.tk.call(self._w, 'add', name, *self._options(cnf, kw)) self.subwidget_list[name] = _dummyButton(self, name) return self.subwidget_list[name] def invoke(self, name): self.tk.call(self._w, 'invoke', name) class Shell(TixWidget): """Toplevel window. Subwidgets - None""" def __init__ (self,master=None,cnf={}, **kw): TixWidget.__init__(self, master, 'tixShell', ['options', 'title'], cnf, kw) class DialogShell(TixWidget): """Toplevel window, with popup popdown and center methods. It tells the window manager that it is a dialog window and should be treated specially. The exact treatment depends on the treatment of the window manager. Subwidgets - None""" # FIXME: It should inherit from Shell def __init__ (self,master=None,cnf={}, **kw): TixWidget.__init__(self, master, 'tixDialogShell', ['options', 'title', 'mapped', 'minheight', 'minwidth', 'parent', 'transient'], cnf, kw) def popdown(self): self.tk.call(self._w, 'popdown') def popup(self): self.tk.call(self._w, 'popup') def center(self): self.tk.call(self._w, 'center') class StdButtonBox(TixWidget): """StdButtonBox - Standard Button Box (OK, Apply, Cancel and Help) """ def __init__(self, master=None, cnf={}, **kw): TixWidget.__init__(self, master, 'tixStdButtonBox', ['orientation', 'options'], cnf, kw) self.subwidget_list['ok'] = _dummyButton(self, 'ok') self.subwidget_list['apply'] = _dummyButton(self, 'apply') self.subwidget_list['cancel'] = _dummyButton(self, 'cancel') self.subwidget_list['help'] = _dummyButton(self, 'help') def invoke(self, name): if name in self.subwidget_list: self.tk.call(self._w, 'invoke', name) class TList(TixWidget, XView, YView): """TList - Hierarchy display widget which can be used to display data in a tabular format. The list entries of a TList widget are similar to the entries in the Tk listbox widget. The main differences are (1) the TList widget can display the list entries in a two dimensional format and (2) you can use graphical images as well as multiple colors and fonts for the list entries. Subwidgets - None""" def __init__ (self,master=None,cnf={}, **kw): TixWidget.__init__(self, master, 'tixTList', ['options'], cnf, kw) def active_set(self, index): self.tk.call(self._w, 'active', 'set', index) def active_clear(self): self.tk.call(self._w, 'active', 'clear') def anchor_set(self, index): self.tk.call(self._w, 'anchor', 'set', index) def anchor_clear(self): self.tk.call(self._w, 'anchor', 'clear') def delete(self, from_, to=None): self.tk.call(self._w, 'delete', from_, to) def dragsite_set(self, index): self.tk.call(self._w, 'dragsite', 'set', index) def dragsite_clear(self): self.tk.call(self._w, 'dragsite', 'clear') def dropsite_set(self, index): self.tk.call(self._w, 'dropsite', 'set', index) def dropsite_clear(self): self.tk.call(self._w, 'dropsite', 'clear') def insert(self, index, cnf={}, **kw): self.tk.call(self._w, 'insert', index, *self._options(cnf, kw)) def info_active(self): return self.tk.call(self._w, 'info', 'active') def info_anchor(self): return self.tk.call(self._w, 'info', 'anchor') def info_down(self, index): return self.tk.call(self._w, 'info', 'down', index) def info_left(self, index): return self.tk.call(self._w, 'info', 'left', index) def info_right(self, index): return self.tk.call(self._w, 'info', 'right', index) def info_selection(self): c = self.tk.call(self._w, 'info', 'selection') return self.tk.splitlist(c) def info_size(self): return self.tk.call(self._w, 'info', 'size') def info_up(self, index): return self.tk.call(self._w, 'info', 'up', index) def nearest(self, x, y): return self.tk.call(self._w, 'nearest', x, y) def see(self, index): self.tk.call(self._w, 'see', index) def selection_clear(self, cnf={}, **kw): self.tk.call(self._w, 'selection', 'clear', *self._options(cnf, kw)) def selection_includes(self, index): return self.tk.call(self._w, 'selection', 'includes', index) def selection_set(self, first, last=None): self.tk.call(self._w, 'selection', 'set', first, last) class Tree(TixWidget): """Tree - The tixTree widget can be used to display hierarchical data in a tree form. The user can adjust the view of the tree by opening or closing parts of the tree.""" # FIXME: It should inherit -superclass tixScrolledWidget def __init__(self, master=None, cnf={}, **kw): TixWidget.__init__(self, master, 'tixTree', ['options'], cnf, kw) self.subwidget_list['hlist'] = _dummyHList(self, 'hlist') self.subwidget_list['vsb'] = _dummyScrollbar(self, 'vsb') self.subwidget_list['hsb'] = _dummyScrollbar(self, 'hsb') def autosetmode(self): '''This command calls the setmode method for all the entries in this Tree widget: if an entry has no child entries, its mode is set to none. Otherwise, if the entry has any hidden child entries, its mode is set to open; otherwise its mode is set to close.''' self.tk.call(self._w, 'autosetmode') def close(self, entrypath): '''Close the entry given by entryPath if its mode is close.''' self.tk.call(self._w, 'close', entrypath) def getmode(self, entrypath): '''Returns the current mode of the entry given by entryPath.''' return self.tk.call(self._w, 'getmode', entrypath) def open(self, entrypath): '''Open the entry given by entryPath if its mode is open.''' self.tk.call(self._w, 'open', entrypath) def setmode(self, entrypath, mode='none'): '''This command is used to indicate whether the entry given by entryPath has children entries and whether the children are visible. mode must be one of open, close or none. If mode is set to open, a (+) indicator is drawn next to the entry. If mode is set to close, a (-) indicator is drawn next to the entry. If mode is set to none, no indicators will be drawn for this entry. The default mode is none. The open mode indicates the entry has hidden children and this entry can be opened by the user. The close mode indicates that all the children of the entry are now visible and the entry can be closed by the user.''' self.tk.call(self._w, 'setmode', entrypath, mode) # Could try subclassing Tree for CheckList - would need another arg to init class CheckList(TixWidget): """The CheckList widget displays a list of items to be selected by the user. CheckList acts similarly to the Tk checkbutton or radiobutton widgets, except it is capable of handling many more items than checkbuttons or radiobuttons. """ # FIXME: It should inherit -superclass tixTree def __init__(self, master=None, cnf={}, **kw): TixWidget.__init__(self, master, 'tixCheckList', ['options', 'radio'], cnf, kw) self.subwidget_list['hlist'] = _dummyHList(self, 'hlist') self.subwidget_list['vsb'] = _dummyScrollbar(self, 'vsb') self.subwidget_list['hsb'] = _dummyScrollbar(self, 'hsb') def autosetmode(self): '''This command calls the setmode method for all the entries in this Tree widget: if an entry has no child entries, its mode is set to none. Otherwise, if the entry has any hidden child entries, its mode is set to open; otherwise its mode is set to close.''' self.tk.call(self._w, 'autosetmode') def close(self, entrypath): '''Close the entry given by entryPath if its mode is close.''' self.tk.call(self._w, 'close', entrypath) def getmode(self, entrypath): '''Returns the current mode of the entry given by entryPath.''' return self.tk.call(self._w, 'getmode', entrypath) def open(self, entrypath): '''Open the entry given by entryPath if its mode is open.''' self.tk.call(self._w, 'open', entrypath) def getselection(self, mode='on'): '''Returns a list of items whose status matches status. If status is not specified, the list of items in the "on" status will be returned. Mode can be on, off, default''' c = self.tk.split(self.tk.call(self._w, 'getselection', mode)) return self.tk.splitlist(c) def getstatus(self, entrypath): '''Returns the current status of entryPath.''' return self.tk.call(self._w, 'getstatus', entrypath) def setstatus(self, entrypath, mode='on'): '''Sets the status of entryPath to be status. A bitmap will be displayed next to the entry its status is on, off or default.''' self.tk.call(self._w, 'setstatus', entrypath, mode) ########################################################################### ### The subclassing below is used to instantiate the subwidgets in each ### ### mega widget. This allows us to access their methods directly. ### ########################################################################### class _dummyButton(Button, TixSubWidget): def __init__(self, master, name, destroy_physically=1): TixSubWidget.__init__(self, master, name, destroy_physically) class _dummyCheckbutton(Checkbutton, TixSubWidget): def __init__(self, master, name, destroy_physically=1): TixSubWidget.__init__(self, master, name, destroy_physically) class _dummyEntry(Entry, TixSubWidget): def __init__(self, master, name, destroy_physically=1): TixSubWidget.__init__(self, master, name, destroy_physically) class _dummyFrame(Frame, TixSubWidget): def __init__(self, master, name, destroy_physically=1): TixSubWidget.__init__(self, master, name, destroy_physically) class _dummyLabel(Label, TixSubWidget): def __init__(self, master, name, destroy_physically=1): TixSubWidget.__init__(self, master, name, destroy_physically) class _dummyListbox(Listbox, TixSubWidget): def __init__(self, master, name, destroy_physically=1): TixSubWidget.__init__(self, master, name, destroy_physically) class _dummyMenu(Menu, TixSubWidget): def __init__(self, master, name, destroy_physically=1): TixSubWidget.__init__(self, master, name, destroy_physically) class _dummyMenubutton(Menubutton, TixSubWidget): def __init__(self, master, name, destroy_physically=1): TixSubWidget.__init__(self, master, name, destroy_physically) class _dummyScrollbar(Scrollbar, TixSubWidget): def __init__(self, master, name, destroy_physically=1): TixSubWidget.__init__(self, master, name, destroy_physically) class _dummyText(Text, TixSubWidget): def __init__(self, master, name, destroy_physically=1): TixSubWidget.__init__(self, master, name, destroy_physically) class _dummyScrolledListBox(ScrolledListBox, TixSubWidget): def __init__(self, master, name, destroy_physically=1): TixSubWidget.__init__(self, master, name, destroy_physically) self.subwidget_list['listbox'] = _dummyListbox(self, 'listbox') self.subwidget_list['vsb'] = _dummyScrollbar(self, 'vsb') self.subwidget_list['hsb'] = _dummyScrollbar(self, 'hsb') class _dummyHList(HList, TixSubWidget): def __init__(self, master, name, destroy_physically=1): TixSubWidget.__init__(self, master, name, destroy_physically) class _dummyScrolledHList(ScrolledHList, TixSubWidget): def __init__(self, master, name, destroy_physically=1): TixSubWidget.__init__(self, master, name, destroy_physically) self.subwidget_list['hlist'] = _dummyHList(self, 'hlist') self.subwidget_list['vsb'] = _dummyScrollbar(self, 'vsb') self.subwidget_list['hsb'] = _dummyScrollbar(self, 'hsb') class _dummyTList(TList, TixSubWidget): def __init__(self, master, name, destroy_physically=1): TixSubWidget.__init__(self, master, name, destroy_physically) class _dummyComboBox(ComboBox, TixSubWidget): def __init__(self, master, name, destroy_physically=1): TixSubWidget.__init__(self, master, name, ['fancy',destroy_physically]) self.subwidget_list['label'] = _dummyLabel(self, 'label') self.subwidget_list['entry'] = _dummyEntry(self, 'entry') self.subwidget_list['arrow'] = _dummyButton(self, 'arrow') self.subwidget_list['slistbox'] = _dummyScrolledListBox(self, 'slistbox') try: self.subwidget_list['tick'] = _dummyButton(self, 'tick') #cross Button : present if created with the fancy option self.subwidget_list['cross'] = _dummyButton(self, 'cross') except TypeError: # unavailable when -fancy not specified pass class _dummyDirList(DirList, TixSubWidget): def __init__(self, master, name, destroy_physically=1): TixSubWidget.__init__(self, master, name, destroy_physically) self.subwidget_list['hlist'] = _dummyHList(self, 'hlist') self.subwidget_list['vsb'] = _dummyScrollbar(self, 'vsb') self.subwidget_list['hsb'] = _dummyScrollbar(self, 'hsb') class _dummyDirSelectBox(DirSelectBox, TixSubWidget): def __init__(self, master, name, destroy_physically=1): TixSubWidget.__init__(self, master, name, destroy_physically) self.subwidget_list['dirlist'] = _dummyDirList(self, 'dirlist') self.subwidget_list['dircbx'] = _dummyFileComboBox(self, 'dircbx') class _dummyExFileSelectBox(ExFileSelectBox, TixSubWidget): def __init__(self, master, name, destroy_physically=1): TixSubWidget.__init__(self, master, name, destroy_physically) self.subwidget_list['cancel'] = _dummyButton(self, 'cancel') self.subwidget_list['ok'] = _dummyButton(self, 'ok') self.subwidget_list['hidden'] = _dummyCheckbutton(self, 'hidden') self.subwidget_list['types'] = _dummyComboBox(self, 'types') self.subwidget_list['dir'] = _dummyComboBox(self, 'dir') self.subwidget_list['dirlist'] = _dummyScrolledListBox(self, 'dirlist') self.subwidget_list['file'] = _dummyComboBox(self, 'file') self.subwidget_list['filelist'] = _dummyScrolledListBox(self, 'filelist') class _dummyFileSelectBox(FileSelectBox, TixSubWidget): def __init__(self, master, name, destroy_physically=1): TixSubWidget.__init__(self, master, name, destroy_physically) self.subwidget_list['dirlist'] = _dummyScrolledListBox(self, 'dirlist') self.subwidget_list['filelist'] = _dummyScrolledListBox(self, 'filelist') self.subwidget_list['filter'] = _dummyComboBox(self, 'filter') self.subwidget_list['selection'] = _dummyComboBox(self, 'selection') class _dummyFileComboBox(ComboBox, TixSubWidget): def __init__(self, master, name, destroy_physically=1): TixSubWidget.__init__(self, master, name, destroy_physically) self.subwidget_list['dircbx'] = _dummyComboBox(self, 'dircbx') class _dummyStdButtonBox(StdButtonBox, TixSubWidget): def __init__(self, master, name, destroy_physically=1): TixSubWidget.__init__(self, master, name, destroy_physically) self.subwidget_list['ok'] = _dummyButton(self, 'ok') self.subwidget_list['apply'] = _dummyButton(self, 'apply') self.subwidget_list['cancel'] = _dummyButton(self, 'cancel') self.subwidget_list['help'] = _dummyButton(self, 'help') class _dummyNoteBookFrame(NoteBookFrame, TixSubWidget): def __init__(self, master, name, destroy_physically=0): TixSubWidget.__init__(self, master, name, destroy_physically) class _dummyPanedWindow(PanedWindow, TixSubWidget): def __init__(self, master, name, destroy_physically=1): TixSubWidget.__init__(self, master, name, destroy_physically) ######################## ### Utility Routines ### ######################## #mike Should tixDestroy be exposed as a wrapper? - but not for widgets. def OptionName(widget): '''Returns the qualified path name for the widget. Normally used to set default options for subwidgets. See tixwidgets.py''' return widget.tk.call('tixOptionName', widget._w) # Called with a dictionary argument of the form # {'*.c':'C source files', '*.txt':'Text Files', '*':'All files'} # returns a string which can be used to configure the fsbox file types # in an ExFileSelectBox. i.e., # '{{*} {* - All files}} {{*.c} {*.c - C source files}} {{*.txt} {*.txt - Text Files}}' def FileTypeList(dict): s = '' for type in dict.keys(): s = s + '{{' + type + '} {' + type + ' - ' + dict[type] + '}} ' return s # Still to be done: # tixIconView class CObjView(TixWidget): """This file implements the Canvas Object View widget. This is a base class of IconView. It implements automatic placement/adjustment of the scrollbars according to the canvas objects inside the canvas subwidget. The scrollbars are adjusted so that the canvas is just large enough to see all the objects. """ # FIXME: It should inherit -superclass tixScrolledWidget pass class Grid(TixWidget, XView, YView): '''The Tix Grid command creates a new window and makes it into a tixGrid widget. Additional options, may be specified on the command line or in the option database to configure aspects such as its cursor and relief. A Grid widget displays its contents in a two dimensional grid of cells. Each cell may contain one Tix display item, which may be in text, graphics or other formats. See the DisplayStyle class for more information about Tix display items. Individual cells, or groups of cells, can be formatted with a wide range of attributes, such as its color, relief and border. Subwidgets - None''' # valid specific resources as of Tk 8.4 # editdonecmd, editnotifycmd, floatingcols, floatingrows, formatcmd, # highlightbackground, highlightcolor, leftmargin, itemtype, selectmode, # selectunit, topmargin, def __init__(self, master=None, cnf={}, **kw): static= [] self.cnf= cnf TixWidget.__init__(self, master, 'tixGrid', static, cnf, kw) # valid options as of Tk 8.4 # anchor, bdtype, cget, configure, delete, dragsite, dropsite, entrycget, # edit, entryconfigure, format, geometryinfo, info, index, move, nearest, # selection, set, size, unset, xview, yview def anchor_clear(self): """Removes the selection anchor.""" self.tk.call(self, 'anchor', 'clear') def anchor_get(self): "Get the (x,y) coordinate of the current anchor cell" return self._getints(self.tk.call(self, 'anchor', 'get')) def anchor_set(self, x, y): """Set the selection anchor to the cell at (x, y).""" self.tk.call(self, 'anchor', 'set', x, y) def delete_row(self, from_, to=None): """Delete rows between from_ and to inclusive. If to is not provided, delete only row at from_""" if to is None: self.tk.call(self, 'delete', 'row', from_) else: self.tk.call(self, 'delete', 'row', from_, to) def delete_column(self, from_, to=None): """Delete columns between from_ and to inclusive. If to is not provided, delete only column at from_""" if to is None: self.tk.call(self, 'delete', 'column', from_) else: self.tk.call(self, 'delete', 'column', from_, to) def edit_apply(self): """If any cell is being edited, de-highlight the cell and applies the changes.""" self.tk.call(self, 'edit', 'apply') def edit_set(self, x, y): """Highlights the cell at (x, y) for editing, if the -editnotify command returns True for this cell.""" self.tk.call(self, 'edit', 'set', x, y) def entrycget(self, x, y, option): "Get the option value for cell at (x,y)" if option and option[0] != '-': option = '-' + option return self.tk.call(self, 'entrycget', x, y, option) def entryconfigure(self, x, y, cnf=None, **kw): return self._configure(('entryconfigure', x, y), cnf, kw) # def format # def index def info_exists(self, x, y): "Return True if display item exists at (x,y)" return self._getboolean(self.tk.call(self, 'info', 'exists', x, y)) def info_bbox(self, x, y): # This seems to always return '', at least for 'text' displayitems return self.tk.call(self, 'info', 'bbox', x, y) def move_column(self, from_, to, offset): """Moves the range of columns from position FROM through TO by the distance indicated by OFFSET. For example, move_column(2, 4, 1) moves the columns 2,3,4 to columns 3,4,5.""" self.tk.call(self, 'move', 'column', from_, to, offset) def move_row(self, from_, to, offset): """Moves the range of rows from position FROM through TO by the distance indicated by OFFSET. For example, move_row(2, 4, 1) moves the rows 2,3,4 to rows 3,4,5.""" self.tk.call(self, 'move', 'row', from_, to, offset) def nearest(self, x, y): "Return coordinate of cell nearest pixel coordinate (x,y)" return self._getints(self.tk.call(self, 'nearest', x, y)) # def selection adjust # def selection clear # def selection includes # def selection set # def selection toggle def set(self, x, y, itemtype=None, **kw): args= self._options(self.cnf, kw) if itemtype is not None: args= ('-itemtype', itemtype) + args self.tk.call(self, 'set', x, y, *args) def size_column(self, index, **kw): """Queries or sets the size of the column given by INDEX. INDEX may be any non-negative integer that gives the position of a given column. INDEX can also be the string "default"; in this case, this command queries or sets the default size of all columns. When no option-value pair is given, this command returns a tuple containing the current size setting of the given column. When option-value pairs are given, the corresponding options of the size setting of the given column are changed. Options may be one of the follwing: pad0 pixels Specifies the paddings to the left of a column. pad1 pixels Specifies the paddings to the right of a column. size val Specifies the width of a column. Val may be: "auto" -- the width of the column is set to the width of the widest cell in the column; a valid Tk screen distance unit; or a real number following by the word chars (e.g. 3.4chars) that sets the width of the column to the given number of characters.""" return self.tk.split(self.tk.call(self._w, 'size', 'column', index, *self._options({}, kw))) def size_row(self, index, **kw): """Queries or sets the size of the row given by INDEX. INDEX may be any non-negative integer that gives the position of a given row . INDEX can also be the string "default"; in this case, this command queries or sets the default size of all rows. When no option-value pair is given, this command returns a list con- taining the current size setting of the given row . When option-value pairs are given, the corresponding options of the size setting of the given row are changed. Options may be one of the follwing: pad0 pixels Specifies the paddings to the top of a row. pad1 pixels Specifies the paddings to the bottom of a row. size val Specifies the height of a row. Val may be: "auto" -- the height of the row is set to the height of the highest cell in the row; a valid Tk screen distance unit; or a real number following by the word chars (e.g. 3.4chars) that sets the height of the row to the given number of characters.""" return self.tk.split(self.tk.call( self, 'size', 'row', index, *self._options({}, kw))) def unset(self, x, y): """Clears the cell at (x, y) by removing its display item.""" self.tk.call(self._w, 'unset', x, y) class ScrolledGrid(Grid): '''Scrolled Grid widgets''' # FIXME: It should inherit -superclass tixScrolledWidget def __init__(self, master=None, cnf={}, **kw): static= [] self.cnf= cnf TixWidget.__init__(self, master, 'tixScrolledGrid', static, cnf, kw)
39.624872
96
0.62333
2d4d7dd9b943d1b0639ceaab83e3882ad0815cd3
1,947
py
Python
examples/dhclient.py
li-ma/pyroute2
48b85e39d675c18c05eb209229db082316aa760a
[ "Apache-2.0" ]
null
null
null
examples/dhclient.py
li-ma/pyroute2
48b85e39d675c18c05eb209229db082316aa760a
[ "Apache-2.0" ]
null
null
null
examples/dhclient.py
li-ma/pyroute2
48b85e39d675c18c05eb209229db082316aa760a
[ "Apache-2.0" ]
null
null
null
import sys import select from pprint import pprint from pyroute2.dhcp import BOOTREQUEST from pyroute2.dhcp import DHCPDISCOVER from pyroute2.dhcp import DHCPOFFER from pyroute2.dhcp import DHCPREQUEST from pyroute2.dhcp import DHCPACK from pyroute2.dhcp.dhcp4msg import dhcp4msg from pyroute2.dhcp.dhcp4socket import DHCP4Socket def req(s, poll, msg, expect): do_req = True xid = None while True: # get transaction id if do_req: xid = s.put(msg)['xid'] # wait for response events = poll.poll(2) for (fd, event) in events: response = s.get() if response['xid'] != xid: do_req = False continue if response['options']['message_type'] != expect: raise Exception("DHCP protocol error") return response do_req = True def action(ifname): s = DHCP4Socket(ifname) poll = select.poll() poll.register(s, select.POLLIN | select.POLLPRI) # DISCOVER discover = dhcp4msg({'op': BOOTREQUEST, 'chaddr': s.l2addr, 'options': {'message_type': DHCPDISCOVER, 'parameter_list': [1, 3, 6, 12, 15, 28]}}) reply = req(s, poll, discover, expect=DHCPOFFER) # REQUEST request = dhcp4msg({'op': BOOTREQUEST, 'chaddr': s.l2addr, 'options': {'message_type': DHCPREQUEST, 'requested_ip': reply['yiaddr'], 'server_id': reply['options']['server_id'], 'parameter_list': [1, 3, 6, 12, 15, 28]}}) reply = req(s, poll, request, expect=DHCPACK) pprint(reply) s.close() return reply if __name__ == '__main__': if len(sys.argv) > 1: ifname = sys.argv[1] else: ifname = 'eth0' action(ifname)
29.953846
79
0.546482
bb3929a528dd9a8fe45a1509be0c380735c4e7e7
1,365
py
Python
youtubevidz/urls.py
MsNahid/Youtube-Hall
6a2c17801aac932020bc11ad66bb7a2f0af08c7f
[ "MIT" ]
null
null
null
youtubevidz/urls.py
MsNahid/Youtube-Hall
6a2c17801aac932020bc11ad66bb7a2f0af08c7f
[ "MIT" ]
null
null
null
youtubevidz/urls.py
MsNahid/Youtube-Hall
6a2c17801aac932020bc11ad66bb7a2f0af08c7f
[ "MIT" ]
null
null
null
"""youtubevidz URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin, auth from django.contrib.auth import views as auth_views from django.urls import path from halls import views from django.conf.urls.static import static from django.conf import settings urlpatterns = [ path('admin/', admin.site.urls), path('', views.home, name='home'), # AUTH path('signup', views.SignUp.as_view(), name='signup'), path('login', auth_views.LoginView.as_view(), name='login'), path('logout', auth_views.LogoutView.as_view(), name='logout'), #Hall path('halloffame/create', views.createHallsView.as_view(), name='create_hall'), ] urlpatterns += static(settings.STATIC_URL, document_root=settings.STATIC_ROOT)
36.891892
84
0.698901
9b09c9131955fd799a3e07b80f9abc16795f5395
494
py
Python
pebble/PblCommand.py
Nikolabenakova90/libpebble
e935e9aa50fe7dde25bbee8cbe0e7606378edbb8
[ "MIT" ]
167
2015-01-02T00:36:07.000Z
2021-07-08T00:20:10.000Z
pebble/PblCommand.py
Nikolabenakova90/libpebble
e935e9aa50fe7dde25bbee8cbe0e7606378edbb8
[ "MIT" ]
7
2015-01-01T17:58:40.000Z
2022-02-04T01:57:38.000Z
pebble/PblCommand.py
Nikolabenakova90/libpebble
e935e9aa50fe7dde25bbee8cbe0e7606378edbb8
[ "MIT" ]
34
2015-01-23T13:39:20.000Z
2022-01-26T10:23:31.000Z
import os class PblCommand: name = '' help = '' def run(args): pass def configure_subparser(self, parser): parser.add_argument('--sdk', help='Path to Pebble SDK (ie: ~/pebble-dev/PebbleSDK-2.X/)') def sdk_path(self, args): """ Tries to guess the location of the Pebble SDK """ if args.sdk: return args.sdk else: return os.path.normpath(os.path.join(os.path.dirname(__file__), '..', '..'))
22.454545
97
0.550607
f44140ad0121845e9c45499ceebd0c458e33344e
2,030
py
Python
demo/analysis.py
rintoj/ai
a9f4e9edca6ffcbcd79186f5a61a55dfdaeefedd
[ "MIT" ]
null
null
null
demo/analysis.py
rintoj/ai
a9f4e9edca6ffcbcd79186f5a61a55dfdaeefedd
[ "MIT" ]
null
null
null
demo/analysis.py
rintoj/ai
a9f4e9edca6ffcbcd79186f5a61a55dfdaeefedd
[ "MIT" ]
null
null
null
# analysis.py # ----------- # Licensing Information: Please do not distribute or publish solutions to this # project. You are free to use and extend these projects for educational # purposes. The Pacman AI projects were developed at UC Berkeley, primarily by # John DeNero (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu). # For more info, see http://inst.eecs.berkeley.edu/~cs188/sp09/pacman.html ###################### # ANALYSIS QUESTIONS # ###################### # Set the given parameters to obtain the specified policies through # value iteration. def question2(): answerDiscount = 0.9 answerNoise = 0.0 return answerDiscount, answerNoise def question3a(): answerDiscount = 0.3 answerNoise = 0.0 answerLivingReward = 0.0 return answerDiscount, answerNoise, answerLivingReward # If not possible, return 'NOT POSSIBLE' def question3b(): answerDiscount = 0.3 answerNoise = 0.1 answerLivingReward = -0.9 return answerDiscount, answerNoise, answerLivingReward # If not possible, return 'NOT POSSIBLE' def question3c(): answerDiscount = 0.9 answerNoise = 0.0 answerLivingReward = 0.0 return answerDiscount, answerNoise, answerLivingReward # If not possible, return 'NOT POSSIBLE' def question3d(): answerDiscount = 0.9 answerNoise = 0.1 answerLivingReward = 0.1 return answerDiscount, answerNoise, answerLivingReward # If not possible, return 'NOT POSSIBLE' def question3e(): answerDiscount = 0.0 answerNoise = 0.0 answerLivingReward = 0.1 return answerDiscount, answerNoise, answerLivingReward # If not possible, return 'NOT POSSIBLE' def question6(): answerEpsilon = 0.5 answerLearningRate = 0.5 return 'NOT POSSIBLE' #answerEpsilon, answerLearningRate # If not possible, return 'NOT POSSIBLE' if __name__ == '__main__': print 'Answers to analysis questions:' import analysis for q in [q for q in dir(analysis) if q.startswith('question')]: response = getattr(analysis, q)() print ' Question %s:\t%s' % (q, str(response))
29.852941
78
0.718719
ce34e913ae10504c1ea08c6c105f04117de0cd7e
21
py
Python
aliyun-python-sdk-petadata/aliyunsdkpetadata/__init__.py
yndu13/aliyun-openapi-python-sdk
12ace4fb39fe2fb0e3927a4b1b43ee4872da43f5
[ "Apache-2.0" ]
1,001
2015-07-24T01:32:41.000Z
2022-03-25T01:28:18.000Z
aliyun-python-sdk-petadata/aliyunsdkpetadata/__init__.py
yndu13/aliyun-openapi-python-sdk
12ace4fb39fe2fb0e3927a4b1b43ee4872da43f5
[ "Apache-2.0" ]
363
2015-10-20T03:15:00.000Z
2022-03-08T12:26:19.000Z
aliyun-python-sdk-petadata/aliyunsdkpetadata/__init__.py
yndu13/aliyun-openapi-python-sdk
12ace4fb39fe2fb0e3927a4b1b43ee4872da43f5
[ "Apache-2.0" ]
682
2015-09-22T07:19:02.000Z
2022-03-22T09:51:46.000Z
__version__ = '1.2.1'
21
21
0.666667
355d3cae6499b918ce903c3b334c51c30cd75486
2,667
py
Python
any/unit_test.py
assassinen/coursera_mfti_python
eee7b3c55256f391c1be32924fa1ad3364b307f2
[ "Apache-2.0" ]
null
null
null
any/unit_test.py
assassinen/coursera_mfti_python
eee7b3c55256f391c1be32924fa1ad3364b307f2
[ "Apache-2.0" ]
null
null
null
any/unit_test.py
assassinen/coursera_mfti_python
eee7b3c55256f391c1be32924fa1ad3364b307f2
[ "Apache-2.0" ]
null
null
null
# -*- encoding: utf-8 -*- import unittest class Point(object): def __init__(self, x, y): self.x = float(x) self.y = float(y) def __str__(self): return '({0}, {1})'.format(self.x, self.y) def __eq__(self, other): return True if ((self.x == other.x) and (self.y == other.y)) else False def __ne__(self, other): return True if ((self.x != other.x) or (self.y != other.y)) else False class TestPoint(unittest.TestCase): def setUp(self): self.A = Point(5, 6) self.B = Point(6, 10) self.C = Point(5.0, 6.0) self.D = Point(-5, -6) def test_init(self): print(self.A.x, self.A.y) # print(self.assertEqual(self.A.x, self.A.y), (float(5), float(6))) self.assertEqual((self.A.x, self.A.y), (float(5), float(6)), "Полученные значения не являются вещественными!!!") self.assertEqual((self.B.x, self.B.y), (float(6), float(10)), "Полученные значения не являются вещественными!!!") self.assertEqual((self.C.x, self.C.y), (float(5), float(6)), "Полученные значения не являются вещественными!!!") self.assertEqual((self.D.x, self.D.y), (float(-5), float(-6)), "Полученные значения не являются вещественными!!!") def test_str(self): self.assertTrue(str(self.A) == "(5.0, 6.0)", "Неправильный вывод на экран!!!") self.assertTrue(str(self.B) == "(6.0, 10.0)", "Неправильный вывод на экран!!!") self.assertTrue(str(self.C) == "(5.0, 6.0)", "Неправильный вывод на экран!!!") self.assertTrue(str(self.D) == "(-5.0, -6.0)", "Неправильный вывод на экран!!!") def test_eq(self): self.assertTrue(self.A == self.C, "Данные две точки равны, а в результате тестирования, они оказались неравными!!!") self.assertFalse(self.A == self.B, "Данные две точки неравны, а в результате тестирования, они оказались равными!!!") self.assertFalse(self.A == self.D, "Данные две точки неравны, а в результате тестирования, они оказались равными!!!") def test_ne(self): self.assertFalse(self.A != self.C, "Данные две точки равны, а в результате тестирования, они оказались неравными!!!") self.assertTrue(self.A != self.B, "Данные две точки неравны, а в результате тестирования, они оказались равными!!!") self.assertTrue(self.A != self.D, "Данные две точки неравны, а в результате тестирования, они оказались равными!!!") if __name__ == '__main__': unittest.main()
44.45
120
0.578178
1a299a0c8958629dd4047e98745410f5d66e4eb6
647
py
Python
var/spack/repos/builtin/packages/gmtsar/package.py
xiki-tempula/spack
9d66c05e93ab8a933fc59915040c0e0c86a4aac4
[ "ECL-2.0", "Apache-2.0", "MIT" ]
9
2018-04-18T07:51:40.000Z
2021-09-10T03:56:57.000Z
var/spack/repos/builtin/packages/gmtsar/package.py
xiki-tempula/spack
9d66c05e93ab8a933fc59915040c0e0c86a4aac4
[ "ECL-2.0", "Apache-2.0", "MIT" ]
907
2018-04-18T11:17:57.000Z
2022-03-31T13:20:25.000Z
var/spack/repos/builtin/packages/gmtsar/package.py
xiki-tempula/spack
9d66c05e93ab8a933fc59915040c0e0c86a4aac4
[ "ECL-2.0", "Apache-2.0", "MIT" ]
29
2018-11-05T16:14:23.000Z
2022-02-03T16:07:09.000Z
# Copyright 2013-2020 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class Gmtsar(CMakePackage): """GMTSAR is an open source (GNU General Public License) InSAR processing system designed for users familiar with Generic Mapping Tools (GMT). """ homepage = "https://topex.ucsd.edu/gmtsar/" url = "https://elenacreinisch.com/gmtsar/GMTSAR-5.6.tar.gz" version('5.6', sha256='0f7326f46aedf1e8e4dc80dd03f1ae8681f52a8253dc4a00a943aec14562994b') depends_on('gmt')
30.809524
93
0.731066
7813e5421911d0e838934fd13a56c6b894b7db01
2,193
py
Python
ijal_interlinear/tests/test_DegenerateLine.py
davidjamesbeck/IJAL-interlinear
cb5dbb1d6aea98cce76668aa868a9189f31baf3f
[ "BSD-2-Clause" ]
null
null
null
ijal_interlinear/tests/test_DegenerateLine.py
davidjamesbeck/IJAL-interlinear
cb5dbb1d6aea98cce76668aa868a9189f31baf3f
[ "BSD-2-Clause" ]
null
null
null
ijal_interlinear/tests/test_DegenerateLine.py
davidjamesbeck/IJAL-interlinear
cb5dbb1d6aea98cce76668aa868a9189f31baf3f
[ "BSD-2-Clause" ]
null
null
null
# test_CanonicalLine.py #---------------------------------------------------------------------------------------------------- import re import sys sys.path.append("..") from line import * from degenerateLine import * import importlib pd.set_option('display.width', 1000) #---------------------------------------------------------------------------------------------------- def runTests(): test_constructor() test_toHTML() def test_constructor(): """ MonkeyAndThunder starts off with a few introductory lines in Spanish, with English translation. No words, no glosses, just a line with time slots, and one child element, the free translation """ print("--- test_constructor") filename = "../testData/monkeyAndThunder/AYA1_MonkeyandThunder.eaf" doc = etree.parse(filename) x0 = DegenerateLine(doc, 0) assert(x0.getTierCount() == 2) #print(x0.getTable()) def test_toHTML(displayPage=False): """ create a barebones webpage, and htmlDoc, then render a DegenerateLine into it """ print("--- test_toHTML") filename = "../testData/monkeyAndThunder/AYA1_MonkeyandThunder.eaf" doc = etree.parse(filename) x0 = DegenerateLine(doc, 0) htmlDoc = Doc() htmlDoc.asis('<!DOCTYPE html>') with htmlDoc.tag('html', lang="en"): with htmlDoc.tag('head'): htmlDoc.asis('<link rel="stylesheet" href="ijal.css">') with htmlDoc.tag('body'): x0.toHtml(htmlDoc) htmlText = htmlDoc.getvalue() assert(htmlText.find("Por ejemplo") > 100) assert(htmlText.find("For example") > 200) assert(htmlText.count("line-content") == 1) assert(htmlText.count("speech-tier") == 1) assert(htmlText.count("freeTranslation-tier") == 1) # three divs only: line-content, speech-tier, freeTranslation-tier assert(htmlText.count("<div class") == 3) if(displayPage): f = open("degenerate.html", "w") f.write(indent(htmlText)) f.close() os.system("open %s" % "degenerate.html") #---------------------------------------------------------------------------------------------------- if __name__ == '__main__': runTests()
32.731343
101
0.559964
912f88065dd6e7dab013c4056340790049150bf7
3,125
py
Python
minibot/scripts/SwarmMaster.py
cornell-cup/cs-minibot
bf44124f103570a9796430f2978b12dd2c0405c2
[ "Apache-2.0" ]
9
2017-10-01T17:30:10.000Z
2020-07-16T04:32:37.000Z
minibot/scripts/SwarmMaster.py
cornell-cup/cs-minibot
bf44124f103570a9796430f2978b12dd2c0405c2
[ "Apache-2.0" ]
53
2017-10-03T02:11:51.000Z
2018-03-25T01:56:30.000Z
minibot/scripts/SwarmMaster.py
cornell-cup/cs-minibot
bf44124f103570a9796430f2978b12dd2c0405c2
[ "Apache-2.0" ]
2
2017-10-03T15:43:46.000Z
2018-03-17T19:25:36.000Z
from hardware.communication.ZMQ import ZMQExchange from hardware.communication.TCP import TCP from threading import Thread from peripherals.colorsensor import ColorSensor import time threads = [] count = {"F":0,"B":0,"L":0,"R":0} def run(bot): # Sets up TCP connection between master and minions. Starts publisher-side # connection. # always set the mediator first z = ZMQExchange() z.setMediator() z.setBroadcaster() TCP.tcp.send_to_basestation("SwarmIP", z.getIP("wlan0")) mediateThread = Thread(target=z.mediate) mediateThread.start() threads.append(mediateThread) #echobot(bot,z) colorbot(bot,z) def colorbot(bot,z): speed = 10 cs = bot.get_sensor_by_name("ColorSensor") cs.calibrate() pinkFirstTime = True orangeFirstTime = True try: while(True): c = cs.read_color() if(c=="RED"): # stop msg = (0,0) count["F"]=0 count["B"]=0 count["L"]=0 count["R"]=0 speed = 10 elif(c=="GREEN"): # forwards count["F"]+=1 count["B"]=0 count["L"]=0 count["R"]=0 speed = increment_speed("F",3,speed,15) msg = (speed,speed) elif(c=="BLUE"): # backwards count["F"]=0 count["B"]+=1 count["L"]=0 count["R"]=0 speed = increment_speed("B",3,speed,15) msg = (-speed,-speed) elif(c=="YELLOW"): # turn left count["F"]=0 count["B"]=0 count["L"]+=1 count["R"]=0 speed = increment_speed("L",3,speed,15) msg = (-speed,speed) elif(c=="VIOLET"): # turn right count["F"]=0 count["B"]=0 count["L"]=0 count["R"]+=1 speed = increment_speed("R",3,speed,15) msg = (speed,-speed) z.broadcast(msg) time.sleep(0.2) finally: cleanup(z) def increment_speed(direction, inc_time, speed, inc_amt): """ Given a direction, increments the speed after inc_time amount of seconds by inc_amt increase of power to the motors. """ if(count[direction]>(inc_time*5)): count[direction] = 0 if(speed<50): speed += inc_amt print("Speed increased: " + str(speed)) return speed def echobot(bot,z): try: while(True): # msg is a tuple of left motor and right motor, respectively. msg = bot.get_actuator_by_name("two_wheel_movement").get_value() print("MSG: " + msg) z.broadcast(msg) time.sleep(0.1) if not TCP.tcp.isConnected(): break finally: cleanup(z) def cleanup(z): for t in threads: t.join(0.1) z.stopZMQExchange()
27.654867
83
0.48992
90480542f7cd684726f7d1d3fdf0093cebf4f6f0
2,396
py
Python
setup_sub.py
shimwell/pyne
0c2714d7c0d1b5e20be6ae6527da2c660dd6b1b3
[ "MIT" ]
182
2015-01-03T15:53:31.000Z
2022-03-22T16:23:18.000Z
setup_sub.py
shimwell/pyne
0c2714d7c0d1b5e20be6ae6527da2c660dd6b1b3
[ "MIT" ]
781
2015-01-13T02:47:11.000Z
2022-03-22T17:29:29.000Z
setup_sub.py
shimwell/pyne
0c2714d7c0d1b5e20be6ae6527da2c660dd6b1b3
[ "MIT" ]
153
2015-01-15T21:34:43.000Z
2021-12-21T22:19:38.000Z
#!/usr/bin/env python """Welcome to PyNE's setup.py sub script.""" from __future__ import print_function import io import os import re import sys import imp import shutil import tarfile import argparse import platform import warnings import subprocess from glob import glob from distutils import core, dir_util, sysconfig from contextlib import contextmanager if sys.version_info[0] < 3: from urllib import urlopen else: from urllib.request import urlopen from distutils.core import setup from pyne.pyne_version import PYNE_VERSION IS_NT = os.name == 'nt' def main(): scripts = [os.path.join('scripts', f) for f in os.listdir('scripts')] scripts = [s for s in scripts if (os.name == 'nt' and s.endswith('.bat')) or (os.name != 'nt' and not s.endswith('.bat'))] packages = ['pyne', 'pyne.dbgen', 'pyne.apigen', 'pyne.xs', 'pyne.transmute', 'pyne.gui', 'pyne.cli', 'pyne.fortranformat'] pack_dir = { 'pyne': 'pyne', 'pyne.xs': 'pyne/xs', 'pyne.gui': 'pyne/gui', 'pyne.cli': 'pyne/cli', 'pyne.dbgen': 'pyne/dbgen', 'pyne.apigen': 'pyne/apigen', 'pyne.transmute': 'pyne/transmute', 'pyne.fortranformat': 'pyne/fortranformat', } extpttn = ['*.dll', '*.so', '*.dylib', '*.pyd', '*.pyo'] pack_data = { 'lib': extpttn, 'pyne': ['*.pxd', #'include/*.h', 'include/*.pxi', 'include/*/*.h', #'include/*/*/*.h', 'include/*/*/*/*.h', '*.json', '*.inp', #'_includes/*.txt', '_includes/*.pxd', '_includes/*/*', #'_includes/*/*/*' ] + extpttn, 'pyne.xs': ['*.pxd'] + extpttn, 'pyne.gui': ['*.pyw'], 'pyne.dbgen': ['*.html', '*.csv', 'abundances.txt', 'mass.mas16', '*.dat'], } setup_kwargs = { "name": "pyne", "version": PYNE_VERSION, "description": 'The Nuclear Engineering Toolkit', "author": 'PyNE Development Team', "author_email": 'pyne-dev@googlegroups.com', "url": 'http://pyne.github.com/', "packages": packages, "package_dir": pack_dir, "package_data": pack_data, "scripts": scripts, } rtn = setup(**setup_kwargs) if __name__ == "__main__": main()
30.329114
83
0.541319
50e53ac83012aefe97d8d210acbb50a56f6ff6c9
929
py
Python
mopidy_notify/__init__.py
phijor/mopidy-notify
22c6c00dc1f27ad71de1ea38d7973fdfc67331f1
[ "Apache-2.0" ]
null
null
null
mopidy_notify/__init__.py
phijor/mopidy-notify
22c6c00dc1f27ad71de1ea38d7973fdfc67331f1
[ "Apache-2.0" ]
null
null
null
mopidy_notify/__init__.py
phijor/mopidy-notify
22c6c00dc1f27ad71de1ea38d7973fdfc67331f1
[ "Apache-2.0" ]
null
null
null
import logging import pathlib import pkg_resources from mopidy import config, ext __version__ = pkg_resources.get_distribution("Mopidy-Notify").version # TODO: If you need to log, use loggers named after the current Python module logger = logging.getLogger(__name__) class Extension(ext.Extension): dist_name = "Mopidy-Notify" ext_name = "notify" version = __version__ def get_default_config(self): return config.read(pathlib.Path(__file__).parent / "ext.conf") def get_config_schema(self): schema = super().get_config_schema() schema["max_icon_size"] = config.Integer(minimum=0) schema["fallback_icon"] = config.Path() schema["track_summary"] = config.String() schema["track_message"] = config.String() return schema def setup(self, registry): from .frontend import NotifyFrontend registry.add("frontend", NotifyFrontend)
27.323529
77
0.700753
02fed1497694144a40d113915743bd61fa10ca91
528
py
Python
main.py
Tmw/edward
0a58022d0bbf1f80abecb880f7565acaa5cebfde
[ "MIT" ]
20
2019-01-07T08:36:57.000Z
2021-06-15T09:21:37.000Z
main.py
Tmw/edward
0a58022d0bbf1f80abecb880f7565acaa5cebfde
[ "MIT" ]
1
2019-01-17T12:34:29.000Z
2019-01-17T12:34:29.000Z
main.py
Tmw/edward
0a58022d0bbf1f80abecb880f7565acaa5cebfde
[ "MIT" ]
2
2020-01-14T07:30:01.000Z
2020-03-03T17:13:16.000Z
from edward import Edward import os import signal DEFAULT_MAX_THREADS = 2 def main(): token = os.getenv("SLACK_TOKEN") threads = os.getenv("THREADS", DEFAULT_MAX_THREADS) if token is None: raise RuntimeError("SLACK_TOKEN not set") edward = Edward(slack_token=token, max_threads=threads) stopper = lambda *args: edward.stop() signal.signal(signal.SIGINT, stopper) signal.signal(signal.SIGTERM, stopper) edward.start() # Kick off main program if __name__ == "__main__": main()
19.555556
59
0.69697
b01cf0c5b06b89f848414853673af7d269bdd755
1,572
py
Python
catalyst/utils/tests/test_swa.py
and-kul/catalyst
51428d7756e62b9b8ee5379f38e9fd576eeb36e5
[ "Apache-2.0" ]
2
2019-04-19T21:34:31.000Z
2019-05-02T22:50:25.000Z
catalyst/utils/tests/test_swa.py
and-kul/catalyst
51428d7756e62b9b8ee5379f38e9fd576eeb36e5
[ "Apache-2.0" ]
1
2021-01-07T16:13:45.000Z
2021-01-21T09:27:54.000Z
catalyst/utils/tests/test_swa.py
and-kul/catalyst
51428d7756e62b9b8ee5379f38e9fd576eeb36e5
[ "Apache-2.0" ]
1
2021-01-07T02:50:38.000Z
2021-01-07T02:50:38.000Z
import os from pathlib import Path import shutil import unittest import torch import torch.nn as nn from catalyst.utils.checkpoint import load_checkpoint from catalyst.utils.swa import get_averaged_weights_by_path_mask class Net(nn.Module): """Dummy network class.""" def __init__(self, init_weight=4): """Initialization of network and filling it with given numbers.""" super(Net, self).__init__() self.fc = nn.Linear(2, 1) self.fc.weight.data.fill_(init_weight) self.fc.bias.data.fill_(init_weight) class TestSwa(unittest.TestCase): """Test SWA class.""" def setUp(self): """Test set up.""" net1 = Net(init_weight=2.0) net2 = Net(init_weight=5.0) os.mkdir("./checkpoints") torch.save(net1.state_dict(), "./checkpoints/net1.pth") torch.save(net2.state_dict(), "./checkpoints/net2.pth") def tearDown(self): """Test tear down.""" shutil.rmtree("./checkpoints") def test_averaging(self): """Test SWA method.""" weights = get_averaged_weights_by_path_mask( logdir=Path("./"), path_mask="net*" ) torch.save(weights, str("./checkpoints/swa_weights.pth")) model = Net() model.load_state_dict(load_checkpoint("./checkpoints/swa_weights.pth")) self.assertEqual(float(model.fc.weight.data[0][0]), 3.5) self.assertEqual(float(model.fc.weight.data[0][1]), 3.5) self.assertEqual(float(model.fc.bias.data[0]), 3.5) if __name__ == "__main__": unittest.main()
29.111111
79
0.641221
43e49d7bb7544f7f445d875a7b1e6f2c240920ce
1,429
py
Python
pgcli/key_bindings.py
czchen/debian-pgcli
67498d4e8f6d153de7f2f73380d2b749c550c247
[ "BSD-3-Clause" ]
null
null
null
pgcli/key_bindings.py
czchen/debian-pgcli
67498d4e8f6d153de7f2f73380d2b749c550c247
[ "BSD-3-Clause" ]
null
null
null
pgcli/key_bindings.py
czchen/debian-pgcli
67498d4e8f6d153de7f2f73380d2b749c550c247
[ "BSD-3-Clause" ]
null
null
null
import logging from prompt_toolkit.keys import Keys from prompt_toolkit.key_binding.manager import KeyBindingManager _logger = logging.getLogger(__name__) def pgcli_bindings(vi_mode=False): """ Custom key bindings for pgcli. """ key_binding_manager = KeyBindingManager(enable_vi_mode=vi_mode) @key_binding_manager.registry.add_binding(Keys.F2) def _(event): """ Enable/Disable SmartCompletion Mode. """ _logger.debug('Detected F2 key.') buf = event.cli.current_buffer buf.completer.smart_completion = not buf.completer.smart_completion @key_binding_manager.registry.add_binding(Keys.F3) def _(event): """ Enable/Disable Multiline Mode. """ _logger.debug('Detected F3 key.') buf = event.cli.current_buffer buf.always_multiline = not buf.always_multiline @key_binding_manager.registry.add_binding(Keys.F4) def _(event): """ Toggle between Vi and Emacs mode. """ _logger.debug('Detected F4 key.') key_binding_manager.enable_vi_mode = not key_binding_manager.enable_vi_mode @key_binding_manager.registry.add_binding(Keys.ControlSpace) def _(event): """ Force autocompletion at cursor. """ _logger.debug('Detected <C-Space> key.') event.cli.current_buffer.complete_next() return key_binding_manager
29.770833
83
0.673898
e950bda2fd349c9e08d0660e9fb68760bcc37beb
13,626
py
Python
sdk/python/pulumi_azure_nextgen/network/v20180701/network_interface.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
31
2020-09-21T09:41:01.000Z
2021-02-26T13:21:59.000Z
sdk/python/pulumi_azure_nextgen/network/v20180701/network_interface.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
231
2020-09-21T09:38:45.000Z
2021-03-01T11:16:03.000Z
sdk/python/pulumi_azure_nextgen/network/v20180701/network_interface.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
4
2020-09-29T14:14:59.000Z
2021-02-10T20:38:16.000Z
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables from . import outputs from ._enums import * from ._inputs import * __all__ = ['NetworkInterface'] class NetworkInterface(pulumi.CustomResource): def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, dns_settings: Optional[pulumi.Input[pulumi.InputType['NetworkInterfaceDnsSettingsArgs']]] = None, enable_accelerated_networking: Optional[pulumi.Input[bool]] = None, enable_ip_forwarding: Optional[pulumi.Input[bool]] = None, etag: Optional[pulumi.Input[str]] = None, id: Optional[pulumi.Input[str]] = None, ip_configurations: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['NetworkInterfaceIPConfigurationArgs']]]]] = None, location: Optional[pulumi.Input[str]] = None, mac_address: Optional[pulumi.Input[str]] = None, network_interface_name: Optional[pulumi.Input[str]] = None, network_security_group: Optional[pulumi.Input[pulumi.InputType['NetworkSecurityGroupArgs']]] = None, primary: Optional[pulumi.Input[bool]] = None, provisioning_state: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, resource_guid: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, virtual_machine: Optional[pulumi.Input[pulumi.InputType['SubResourceArgs']]] = None, __props__=None, __name__=None, __opts__=None): """ A network interface in a resource group. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[pulumi.InputType['NetworkInterfaceDnsSettingsArgs']] dns_settings: The DNS settings in network interface. :param pulumi.Input[bool] enable_accelerated_networking: If the network interface is accelerated networking enabled. :param pulumi.Input[bool] enable_ip_forwarding: Indicates whether IP forwarding is enabled on this network interface. :param pulumi.Input[str] etag: A unique read-only string that changes whenever the resource is updated. :param pulumi.Input[str] id: Resource ID. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['NetworkInterfaceIPConfigurationArgs']]]] ip_configurations: A list of IPConfigurations of the network interface. :param pulumi.Input[str] location: Resource location. :param pulumi.Input[str] mac_address: The MAC address of the network interface. :param pulumi.Input[str] network_interface_name: The name of the network interface. :param pulumi.Input[pulumi.InputType['NetworkSecurityGroupArgs']] network_security_group: The reference of the NetworkSecurityGroup resource. :param pulumi.Input[bool] primary: Gets whether this is a primary network interface on a virtual machine. :param pulumi.Input[str] provisioning_state: The provisioning state of the public IP resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. :param pulumi.Input[str] resource_group_name: The name of the resource group. :param pulumi.Input[str] resource_guid: The resource GUID property of the network interface resource. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Resource tags. :param pulumi.Input[pulumi.InputType['SubResourceArgs']] virtual_machine: The reference of a virtual machine. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['dns_settings'] = dns_settings __props__['enable_accelerated_networking'] = enable_accelerated_networking __props__['enable_ip_forwarding'] = enable_ip_forwarding __props__['etag'] = etag __props__['id'] = id __props__['ip_configurations'] = ip_configurations __props__['location'] = location __props__['mac_address'] = mac_address __props__['network_interface_name'] = network_interface_name __props__['network_security_group'] = network_security_group __props__['primary'] = primary __props__['provisioning_state'] = provisioning_state if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__['resource_group_name'] = resource_group_name __props__['resource_guid'] = resource_guid __props__['tags'] = tags __props__['virtual_machine'] = virtual_machine __props__['name'] = None __props__['type'] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:network:NetworkInterface"), pulumi.Alias(type_="azure-nextgen:network/latest:NetworkInterface"), pulumi.Alias(type_="azure-nextgen:network/v20150501preview:NetworkInterface"), pulumi.Alias(type_="azure-nextgen:network/v20150615:NetworkInterface"), pulumi.Alias(type_="azure-nextgen:network/v20160330:NetworkInterface"), pulumi.Alias(type_="azure-nextgen:network/v20160601:NetworkInterface"), pulumi.Alias(type_="azure-nextgen:network/v20160901:NetworkInterface"), pulumi.Alias(type_="azure-nextgen:network/v20161201:NetworkInterface"), pulumi.Alias(type_="azure-nextgen:network/v20170301:NetworkInterface"), pulumi.Alias(type_="azure-nextgen:network/v20170601:NetworkInterface"), pulumi.Alias(type_="azure-nextgen:network/v20170801:NetworkInterface"), pulumi.Alias(type_="azure-nextgen:network/v20170901:NetworkInterface"), pulumi.Alias(type_="azure-nextgen:network/v20171001:NetworkInterface"), pulumi.Alias(type_="azure-nextgen:network/v20171101:NetworkInterface"), pulumi.Alias(type_="azure-nextgen:network/v20180101:NetworkInterface"), pulumi.Alias(type_="azure-nextgen:network/v20180201:NetworkInterface"), pulumi.Alias(type_="azure-nextgen:network/v20180401:NetworkInterface"), pulumi.Alias(type_="azure-nextgen:network/v20180601:NetworkInterface"), pulumi.Alias(type_="azure-nextgen:network/v20180801:NetworkInterface"), pulumi.Alias(type_="azure-nextgen:network/v20181001:NetworkInterface"), pulumi.Alias(type_="azure-nextgen:network/v20181101:NetworkInterface"), pulumi.Alias(type_="azure-nextgen:network/v20181201:NetworkInterface"), pulumi.Alias(type_="azure-nextgen:network/v20190201:NetworkInterface"), pulumi.Alias(type_="azure-nextgen:network/v20190401:NetworkInterface"), pulumi.Alias(type_="azure-nextgen:network/v20190601:NetworkInterface"), pulumi.Alias(type_="azure-nextgen:network/v20190701:NetworkInterface"), pulumi.Alias(type_="azure-nextgen:network/v20190801:NetworkInterface"), pulumi.Alias(type_="azure-nextgen:network/v20190901:NetworkInterface"), pulumi.Alias(type_="azure-nextgen:network/v20191101:NetworkInterface"), pulumi.Alias(type_="azure-nextgen:network/v20191201:NetworkInterface"), pulumi.Alias(type_="azure-nextgen:network/v20200301:NetworkInterface"), pulumi.Alias(type_="azure-nextgen:network/v20200401:NetworkInterface"), pulumi.Alias(type_="azure-nextgen:network/v20200501:NetworkInterface"), pulumi.Alias(type_="azure-nextgen:network/v20200601:NetworkInterface"), pulumi.Alias(type_="azure-nextgen:network/v20200701:NetworkInterface"), pulumi.Alias(type_="azure-nextgen:network/v20200801:NetworkInterface")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(NetworkInterface, __self__).__init__( 'azure-nextgen:network/v20180701:NetworkInterface', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'NetworkInterface': """ Get an existing NetworkInterface resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() return NetworkInterface(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="dnsSettings") def dns_settings(self) -> pulumi.Output[Optional['outputs.NetworkInterfaceDnsSettingsResponse']]: """ The DNS settings in network interface. """ return pulumi.get(self, "dns_settings") @property @pulumi.getter(name="enableAcceleratedNetworking") def enable_accelerated_networking(self) -> pulumi.Output[Optional[bool]]: """ If the network interface is accelerated networking enabled. """ return pulumi.get(self, "enable_accelerated_networking") @property @pulumi.getter(name="enableIPForwarding") def enable_ip_forwarding(self) -> pulumi.Output[Optional[bool]]: """ Indicates whether IP forwarding is enabled on this network interface. """ return pulumi.get(self, "enable_ip_forwarding") @property @pulumi.getter def etag(self) -> pulumi.Output[Optional[str]]: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter(name="ipConfigurations") def ip_configurations(self) -> pulumi.Output[Optional[Sequence['outputs.NetworkInterfaceIPConfigurationResponse']]]: """ A list of IPConfigurations of the network interface. """ return pulumi.get(self, "ip_configurations") @property @pulumi.getter def location(self) -> pulumi.Output[Optional[str]]: """ Resource location. """ return pulumi.get(self, "location") @property @pulumi.getter(name="macAddress") def mac_address(self) -> pulumi.Output[Optional[str]]: """ The MAC address of the network interface. """ return pulumi.get(self, "mac_address") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Resource name. """ return pulumi.get(self, "name") @property @pulumi.getter(name="networkSecurityGroup") def network_security_group(self) -> pulumi.Output[Optional['outputs.NetworkSecurityGroupResponse']]: """ The reference of the NetworkSecurityGroup resource. """ return pulumi.get(self, "network_security_group") @property @pulumi.getter def primary(self) -> pulumi.Output[Optional[bool]]: """ Gets whether this is a primary network interface on a virtual machine. """ return pulumi.get(self, "primary") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> pulumi.Output[Optional[str]]: """ The provisioning state of the public IP resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="resourceGuid") def resource_guid(self) -> pulumi.Output[Optional[str]]: """ The resource GUID property of the network interface resource. """ return pulumi.get(self, "resource_guid") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ Resource tags. """ return pulumi.get(self, "tags") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ Resource type. """ return pulumi.get(self, "type") @property @pulumi.getter(name="virtualMachine") def virtual_machine(self) -> pulumi.Output[Optional['outputs.SubResourceResponse']]: """ The reference of a virtual machine. """ return pulumi.get(self, "virtual_machine") def translate_output_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return _tables.SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
54.286853
2,639
0.690445
3a31e8259e821dac3c003fb6f4d1178dc29b1349
28,226
py
Python
lib/python3.8/site-packages/ansible_collections/cisco/meraki/plugins/modules/meraki_mr_rf_profile.py
cjsteel/python3-venv-ansible-2.10.5
c95395c4cae844dc66fddde9b4343966f4b2ecd5
[ "Apache-1.1" ]
null
null
null
lib/python3.8/site-packages/ansible_collections/cisco/meraki/plugins/modules/meraki_mr_rf_profile.py
cjsteel/python3-venv-ansible-2.10.5
c95395c4cae844dc66fddde9b4343966f4b2ecd5
[ "Apache-1.1" ]
null
null
null
lib/python3.8/site-packages/ansible_collections/cisco/meraki/plugins/modules/meraki_mr_rf_profile.py
cjsteel/python3-venv-ansible-2.10.5
c95395c4cae844dc66fddde9b4343966f4b2ecd5
[ "Apache-1.1" ]
null
null
null
#!/usr/bin/python # -*- coding: utf-8 -*- # Copyright: (c) 2018, Kevin Breit (@kbreit) <kevin.breit@kevinbreit.net> # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = { 'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community' } DOCUMENTATION = r''' --- module: meraki_mr_rf_profile short_description: Manage RF profiles for Meraki wireless networks description: - Allows for configuration of radio frequency (RF) profiles in Meraki MR wireless networks. options: state: description: - Query, edit, or delete wireless RF profile settings. type: str choices: [ present, query, absent] default: present net_name: description: - Name of network. type: str net_id: description: - ID of network. type: str profile_id: description: - Unique identifier of existing RF profile. type: str aliases: [ id ] band_selection_type: description: - Sets whether band selection is assigned per access point or SSID. - This param is required on creation. choices: [ ssid, ap ] type: str min_bitrate_type: description: - Type of minimum bitrate. choices: [ band, ssid ] type: str name: description: - The unique name of the new profile. - This param is required on creation. type: str client_balancing_enabled: description: - Steers client to best available access point. type: bool ap_band_settings: description: - Settings that will be enabled if selectionType is set to 'ap'. type: dict suboptions: mode: description: - Sets which RF band the AP will support. choices: [ 2.4ghz, 5ghz, dual ] aliases: [ band_operation_mode ] type: str band_steering_enabled: description: - Steers client to most open band. type: bool five_ghz_settings: description: - Settings related to 5Ghz band. type: dict suboptions: max_power: description: - Sets max power (dBm) of 5Ghz band. - Can be integer between 8 and 30. type: int min_power: description: - Sets minmimum power (dBm) of 5Ghz band. - Can be integer between 8 and 30. type: int min_bitrate: description: - Sets minimum bitrate (Mbps) of 5Ghz band. choices: [ 6, 9, 12, 18, 24, 36, 48, 54 ] type: int rxsop: description: - The RX-SOP level controls the sensitivity of the radio. - It is strongly recommended to use RX-SOP only after consulting a wireless expert. - RX-SOP can be configured in the range of -65 to -95 (dBm). type: int channel_width: description: - Sets channel width (MHz) for 5Ghz band. choices: [ auto, 20, 40, 80 ] type: str valid_auto_channels: description: - Sets valid auto channels for 5Ghz band. type: list elements: int choices: [36, 40, 44, 48, 52, 56, 60, 64, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 149, 153, 157, 161, 165] two_four_ghz_settings: description: - Settings related to 2.4Ghz band type: dict suboptions: max_power: description: - Sets max power (dBm) of 2.4Ghz band. - Can be integer between 5 and 30. type: int min_power: description: - Sets minmimum power (dBm) of 2.4Ghz band. - Can be integer between 5 and 30. type: int min_bitrate: description: - Sets minimum bitrate (Mbps) of 2.4Ghz band. choices: [ 1, 2, 5.5, 6, 9, 11, 12, 18, 24, 36, 48, 54 ] type: float rxsop: description: - The RX-SOP level controls the sensitivity of the radio. - It is strongly recommended to use RX-SOP only after consulting a wireless expert. - RX-SOP can be configured in the range of -65 to -95 (dBm). type: int ax_enabled: description: - Determines whether ax radio on 2.4Ghz band is on or off. type: bool valid_auto_channels: description: - Sets valid auto channels for 2.4Ghz band. choices: [ 1, 6, 11 ] type: list elements: int author: - Kevin Breit (@kbreit) extends_documentation_fragment: cisco.meraki.meraki ''' EXAMPLES = r''' - name: Create RF profile in check mode meraki_mr_rf_profile: auth_key: abc123 org_name: YourOrg net_name: YourNet state: present name: Test Profile band_selection_type: ap client_balancing_enabled: True ap_band_settings: mode: dual band_steering_enabled: true five_ghz_settings: max_power: 10 min_bitrate: 12 min_power: 8 rxsop: -65 channel_width: 20 valid_auto_channels: - 36 - 40 - 44 two_four_ghz_settings: max_power: 10 min_bitrate: 12 min_power: 8 rxsop: -65 ax_enabled: false valid_auto_channels: - 1 delegate_to: localhost - name: Query all RF profiles meraki_mr_rf_profile: auth_key: abc123 org_name: YourOrg net_name: YourNet state: query delegate_to: localhost - name: Query one RF profile by ID meraki_mr_rf_profile: auth_key: abc123 org_name: YourOrg net_name: YourNet state: query profile_id: '{{ profile_id }}' delegate_to: localhost - name: Update profile meraki_mr_rf_profile: auth_key: abc123 org_name: YourOrg net_name: YourNet state: present profile_id: 12345 band_selection_type: ap client_balancing_enabled: True ap_band_settings: mode: dual band_steering_enabled: true five_ghz_settings: max_power: 10 min_bitrate: 12 min_power: 8 rxsop: -65 channel_width: 20 valid_auto_channels: - 36 - 44 two_four_ghz_settings: max_power: 10 min_bitrate: 12 min_power: 8 rxsop: -75 ax_enabled: false valid_auto_channels: - 1 delegate_to: localhost - name: Delete RF profile meraki_mr_rf_profile: auth_key: abc123 org_name: YourOrg net_name: YourNet state: absent profile_id: 12345 delegate_to: localhost ''' RETURN = r''' data: description: List of wireless RF profile settings. returned: success type: complex contains: id: description: - Unique identifier of existing RF profile. type: str returned: success sample: 12345 band_selection_type: description: - Sets whether band selection is assigned per access point or SSID. - This param is required on creation. type: str returned: success sample: ap min_bitrate_type: description: - Type of minimum bitrate. type: str returned: success sample: ssid name: description: - The unique name of the new profile. - This param is required on creation. type: str returned: success sample: Guest RF profile client_balancing_enabled: description: - Steers client to best available access point. type: bool returned: success sample: true ap_band_settings: description: - Settings that will be enabled if selectionType is set to 'ap'. type: complex returned: success contains: mode: description: - Sets which RF band the AP will support. type: str returned: success sample: dual band_steering_enabled: description: - Steers client to most open band. type: bool returned: success sample: true five_ghz_settings: description: - Settings related to 5Ghz band. type: complex returned: success contains: max_power: description: - Sets max power (dBm) of 5Ghz band. - Can be integer between 8 and 30. type: int returned: success sample: 12 min_power: description: - Sets minmimum power (dBm) of 5Ghz band. - Can be integer between 8 and 30. type: int returned: success sample: 12 min_bitrate: description: - Sets minimum bitrate (Mbps) of 5Ghz band. type: int returned: success sample: 6 rxsop: description: - The RX-SOP level controls the sensitivity of the radio. type: int returned: success sample: -70 channel_width: description: - Sets channel width (MHz) for 5Ghz band. type: str returned: success sample: auto valid_auto_channels: description: - Sets valid auto channels for 5Ghz band. type: list returned: success two_four_ghz_settings: description: - Settings related to 2.4Ghz band type: complex returned: success contains: max_power: description: - Sets max power (dBm) of 2.4Ghz band. type: int returned: success sample: 12 min_power: description: - Sets minmimum power (dBm) of 2.4Ghz band. type: int returned: success sample: 12 min_bitrate: description: - Sets minimum bitrate (Mbps) of 2.4Ghz band. type: float returned: success sample: 5.5 rxsop: description: - The RX-SOP level controls the sensitivity of the radio. type: int returned: success sample: -70 ax_enabled: description: - Determines whether ax radio on 2.4Ghz band is on or off. type: bool returned: success sample: true valid_auto_channels: description: - Sets valid auto channels for 2.4Ghz band. type: list returned: success sample: 6 ''' from ansible.module_utils.basic import AnsibleModule, json from ansible.module_utils.common.dict_transformations import snake_dict_to_camel_dict from ansible_collections.cisco.meraki.plugins.module_utils.network.meraki.meraki import MerakiModule, meraki_argument_spec from re import sub def get_profile(meraki, profiles, name): for profile in profiles: if profile['name'] == name: return profile return None def construct_payload(meraki): payload = {} if meraki.params['name'] is not None: payload['name'] = meraki.params['name'] if meraki.params['band_selection_type'] is not None: payload['bandSelectionType'] = meraki.params['band_selection_type'] if meraki.params['min_bitrate_type'] is not None: payload['minBitrateType'] = meraki.params['min_bitrate_type'] if meraki.params['client_balancing_enabled'] is not None: payload['clientBalancingEnabled'] = meraki.params['client_balancing_enabled'] if meraki.params['ap_band_settings'] is not None: payload['apBandSettings'] = {} if meraki.params['ap_band_settings']['mode'] is not None: payload['apBandSettings']['bandOperationMode'] = meraki.params['ap_band_settings']['mode'] if meraki.params['ap_band_settings']['band_steering_enabled'] is not None: payload['apBandSettings']['bandSteeringEnabled'] = meraki.params['ap_band_settings']['band_steering_enabled'] if meraki.params['five_ghz_settings'] is not None: payload['fiveGhzSettings'] = {} if meraki.params['five_ghz_settings']['max_power'] is not None: payload['fiveGhzSettings']['maxPower'] = meraki.params['five_ghz_settings']['max_power'] if meraki.params['five_ghz_settings']['min_bitrate'] is not None: payload['fiveGhzSettings']['minBitrate'] = meraki.params['five_ghz_settings']['min_bitrate'] if meraki.params['five_ghz_settings']['min_power'] is not None: payload['fiveGhzSettings']['minPower'] = meraki.params['five_ghz_settings']['min_power'] if meraki.params['five_ghz_settings']['rxsop'] is not None: payload['fiveGhzSettings']['rxsop'] = meraki.params['five_ghz_settings']['rxsop'] if meraki.params['five_ghz_settings']['channel_width'] is not None: payload['fiveGhzSettings']['channelWidth'] = meraki.params['five_ghz_settings']['channel_width'] if meraki.params['five_ghz_settings']['valid_auto_channels'] is not None: payload['fiveGhzSettings']['validAutoChannels'] = meraki.params['five_ghz_settings']['valid_auto_channels'] if meraki.params['two_four_ghz_settings'] is not None: payload['twoFourGhzSettings'] = {} if meraki.params['two_four_ghz_settings']['max_power'] is not None: payload['twoFourGhzSettings']['maxPower'] = meraki.params['two_four_ghz_settings']['max_power'] if meraki.params['two_four_ghz_settings']['min_bitrate'] is not None: payload['twoFourGhzSettings']['minBitrate'] = meraki.params['two_four_ghz_settings']['min_bitrate'] if meraki.params['two_four_ghz_settings']['min_power'] is not None: payload['twoFourGhzSettings']['minPower'] = meraki.params['two_four_ghz_settings']['min_power'] if meraki.params['two_four_ghz_settings']['rxsop'] is not None: payload['twoFourGhzSettings']['rxsop'] = meraki.params['two_four_ghz_settings']['rxsop'] if meraki.params['two_four_ghz_settings']['ax_enabled'] is not None: payload['twoFourGhzSettings']['axEnabled'] = meraki.params['two_four_ghz_settings']['ax_enabled'] if meraki.params['two_four_ghz_settings']['valid_auto_channels'] is not None: payload['twoFourGhzSettings']['validAutoChannels'] = meraki.params['two_four_ghz_settings']['valid_auto_channels'] return payload def main(): # define the available arguments/parameters that a user can pass to # the module band_arg_spec = dict(mode=dict(type='str', aliases=['band_operation_mode'], choices=['2.4ghz', '5ghz', 'dual']), band_steering_enabled=dict(type='bool'), ) five_arg_spec = dict(max_power=dict(type='int'), min_bitrate=dict(type='int', choices=[6, 9, 12, 18, 24, 36, 48, 54]), min_power=dict(type='int'), rxsop=dict(type='int'), channel_width=dict(type='str', choices=['auto', '20', '40', '80']), valid_auto_channels=dict(type='list', elements='int', choices=[36, 40, 44, 48, 52, 56, 60, 64, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 149, 153, 157, 161, 165]), ) two_arg_spec = dict(max_power=dict(type='int'), min_bitrate=dict(type='float', choices=[1, 2, 5.5, 6, 9, 11, 12, 18, 24, 36, 48, 54]), min_power=dict(type='int'), rxsop=dict(type='int'), ax_enabled=dict(type='bool'), valid_auto_channels=dict(type='list', elements='int', choices=[1, 6, 11]), ) argument_spec = meraki_argument_spec() argument_spec.update(state=dict(type='str', choices=['present', 'query', 'absent'], default='present'), org_name=dict(type='str', aliases=['organization']), org_id=dict(type='str'), net_name=dict(type='str'), net_id=dict(type='str'), profile_id=dict(type='str', aliases=['id']), band_selection_type=dict(type='str', choices=['ssid', 'ap']), min_bitrate_type=dict(type='str', choices=['band', 'ssid']), name=dict(type='str'), client_balancing_enabled=dict(type='bool'), ap_band_settings=dict(type='dict', options=band_arg_spec), five_ghz_settings=dict(type='dict', options=five_arg_spec), two_four_ghz_settings=dict(type='dict', options=two_arg_spec), ) # the AnsibleModule object will be our abstraction working with Ansible # this includes instantiation, a couple of common attr would be the # args/params passed to the execution, as well as if the module # supports check mode module = AnsibleModule(argument_spec=argument_spec, supports_check_mode=True, ) meraki = MerakiModule(module, function='mr_rf_profile') meraki.params['follow_redirects'] = 'all' query_all_urls = {'mr_rf_profile': '/networks/{net_id}/wireless/rfProfiles'} query_urls = {'mr_rf_profile': '/networks/{net_id}/wireless/rfProfiles/{profile_id}'} create_urls = {'mr_rf_profile': '/networks/{net_id}/wireless/rfProfiles'} update_urls = {'mr_rf_profile': '/networks/{net_id}/wireless/rfProfiles/{profile_id}'} delete_urls = {'mr_rf_profile': '/networks/{net_id}/wireless/rfProfiles/{profile_id}'} meraki.url_catalog['get_all'].update(query_all_urls) meraki.url_catalog['get_one'].update(query_urls) meraki.url_catalog['create'] = create_urls meraki.url_catalog['update'] = update_urls meraki.url_catalog['delete'] = delete_urls if meraki.params['five_ghz_settings'] is not None: if meraki.params['five_ghz_settings']['max_power'] is not None: if meraki.params['five_ghz_settings']['max_power'] < 8 or meraki.params['five_ghz_settings']['max_power'] > 30: meraki.fail_json(msg="5ghz max power must be between 8 and 30.") if meraki.params['five_ghz_settings']['min_power'] is not None: if meraki.params['five_ghz_settings']['min_power'] < 8 or meraki.params['five_ghz_settings']['min_power'] > 30: meraki.fail_json(msg="5ghz min power must be between 8 and 30.") if meraki.params['five_ghz_settings']['rxsop'] is not None: if meraki.params['five_ghz_settings']['rxsop'] < -95 or meraki.params['five_ghz_settings']['rxsop'] > -65: meraki.fail_json(msg="5ghz min power must be between 8 and 30.") if meraki.params['two_four_ghz_settings'] is not None: if meraki.params['two_four_ghz_settings']['max_power'] is not None: if meraki.params['two_four_ghz_settings']['max_power'] < 5 or meraki.params['two_four_ghz_settings']['max_power'] > 30: meraki.fail_json(msg="5ghz max power must be between 5 and 30.") if meraki.params['two_four_ghz_settings']['min_power'] is not None: if meraki.params['two_four_ghz_settings']['min_power'] < 5 or meraki.params['two_four_ghz_settings']['min_power'] > 30: meraki.fail_json(msg="5ghz min power must be between 5 and 30.") if meraki.params['two_four_ghz_settings']['rxsop'] is not None: if meraki.params['two_four_ghz_settings']['rxsop'] < -95 or meraki.params['two_four_ghz_settings']['rxsop'] > -65: meraki.fail_json(msg="5ghz min power must be between 8 and 30.") org_id = meraki.params['org_id'] net_id = meraki.params['net_id'] profile_id = meraki.params['profile_id'] profile = None profiles = None if org_id is None: org_id = meraki.get_org_id(meraki.params['org_name']) if net_id is None: nets = meraki.get_nets(org_id=org_id) net_id = meraki.get_net_id(org_id, meraki.params['net_name'], data=nets) if profile_id is None: path = meraki.construct_path('get_all', net_id=net_id) profiles = meraki.request(path, method='GET') profile = get_profile(meraki, profiles, meraki.params['name']) if meraki.params['state'] == 'query': if profile_id is not None: path = meraki.construct_path('get_one', net_id=net_id, custom={'profile_id': profile_id}) result = meraki.request(path, method='GET') meraki.result['data'] = result meraki.exit_json(**meraki.result) if profiles is None: path = meraki.construct_path('get_all', net_id=net_id) profiles = meraki.request(path, method='GET') meraki.result['data'] = profiles meraki.exit_json(**meraki.result) elif meraki.params['state'] == 'present': payload = construct_payload(meraki) if profile_id is None: # Create a new RF profile if meraki.check_mode is True: meraki.result['data'] = payload meraki.result['changed'] = True meraki.exit_json(**meraki.result) path = meraki.construct_path('create', net_id=net_id) response = meraki.request(path, method='POST', payload=json.dumps(payload)) meraki.result['data'] = response meraki.result['changed'] = True meraki.exit_json(**meraki.result) else: path = meraki.construct_path('get_one', net_id=net_id, custom={'profile_id': profile_id}) original = meraki.request(path, method='GET') if meraki.is_update_required(original, payload) is True: if meraki.check_mode is True: meraki.result['data'] = payload meraki.result['changed'] = True meraki.exit_json(**meraki.result) path = meraki.construct_path('update', net_id=net_id, custom={'profile_id': profile_id}) response = meraki.request(path, method='PUT', payload=json.dumps(payload)) meraki.result['data'] = response meraki.result['changed'] = True meraki.exit_json(**meraki.result) else: meraki.result['data'] = original meraki.exit_json(**meraki.result) elif meraki.params['state'] == 'absent': if meraki.check_mode is True: meraki.result['data'] = {} meraki.result['changed'] = True meraki.exit_json(**meraki.result) path = meraki.construct_path('delete', net_id=net_id, custom={'profile_id': profile_id}) response = meraki.request(path, method='DELETE') meraki.result['data'] = {} meraki.result['changed'] = True meraki.exit_json(**meraki.result) # in the event of a successful module execution, you will want to # simple AnsibleModule.exit_json(), passing the key/value results meraki.exit_json(**meraki.result) if __name__ == '__main__': main()
42.509036
131
0.501346
4495b6fc53b4473f1c062d55368705173714b041
17,198
py
Python
src/azul/service/responseobjects/cart_item_manager.py
VIIgit/azul
bb61965f625c667979a2f255f6bc39dcafaaf40b
[ "Apache-2.0" ]
null
null
null
src/azul/service/responseobjects/cart_item_manager.py
VIIgit/azul
bb61965f625c667979a2f255f6bc39dcafaaf40b
[ "Apache-2.0" ]
null
null
null
src/azul/service/responseobjects/cart_item_manager.py
VIIgit/azul
bb61965f625c667979a2f255f6bc39dcafaaf40b
[ "Apache-2.0" ]
null
null
null
import base64 import hashlib import json import logging import uuid from azul import config from azul.es import ESClientFactory from azul.service.responseobjects.dynamo_data_access import DynamoDataAccessor from azul.service.responseobjects.elastic_request_builder import ElasticTransformDump from azul.service.step_function_helper import StepFunctionHelper from azul.service.user_service import UserService, UpdateError logger = logging.getLogger(__name__) class CartItemManager: """ Helper functions to handle read/write/update of carts and cart items """ step_function_helper = StepFunctionHelper() def __init__(self): self.dynamo_accessor = DynamoDataAccessor() self.user_service = UserService() @staticmethod def encode_params(params): return base64.urlsafe_b64encode(bytes(json.dumps(params), encoding='utf-8')).decode('utf-8') @staticmethod def decode_token(token): return json.loads(base64.urlsafe_b64decode(token).decode('utf-8')) @staticmethod def convert_resume_token_to_exclusive_start_key(resume_token:str): if resume_token is None: return None return json.loads(base64.b64decode(resume_token).decode('utf-8')) @staticmethod def convert_last_evaluated_key_to_resume_token(last_evaluated_key): if last_evaluated_key is None: return None return base64.b64encode(json.dumps(last_evaluated_key).encode('utf-8')).decode('utf-8') def create_cart(self, user_id:str, cart_name:str, default:bool) -> str: """ Add a cart to the cart table and return the ID of the created cart An error will be raised if the user already has a cart of the same name or if a default cart is being created while one already exists. """ query_dict = {'UserId': user_id, 'CartName': cart_name} if self.dynamo_accessor.count(table_name=config.dynamo_cart_table_name, key_conditions=query_dict, index_name='UserCartNameIndex') > 0: raise DuplicateItemError(f'Cart `{cart_name}` already exists') cart_id = str(uuid.uuid4()) if default: try: self.user_service.update(user_id, default_cart_id=cart_id) except UpdateError: # As DynamoDB client doesn't differentiate errors caused by # failing the key condition ("Key") or the condition expression # ("ConditionExpression"). The method will attempt to update # the user object again by ensuring that the user object exists # before the update. self.user_service.get_or_create(user_id) try: self.user_service.update(user_id, default_cart_id=cart_id) except UpdateError: # At this point, the user already has a default cart. return self.get_default_cart(user_id)['CartId'] self.dynamo_accessor.insert_item(config.dynamo_cart_table_name, item={'CartId': cart_id, **query_dict}) return cart_id def get_cart(self, user_id, cart_id): cart = self.dynamo_accessor.get_item(config.dynamo_cart_table_name, keys={'UserId': user_id, 'CartId': cart_id}) if cart is None: raise ResourceAccessError('Cart does not exist') return cart def get_default_cart(self, user_id): user = self.user_service.get_or_create(user_id) if user['DefaultCartId'] is None: raise ResourceAccessError('Cart does not exist') cart = self.dynamo_accessor.get_item(config.dynamo_cart_table_name, keys={'UserId': user_id, 'CartId': user['DefaultCartId']}) if cart is None: raise ResourceAccessError('Cart does not exist') return cart def get_or_create_default_cart(self, user_id): user = self.user_service.get_or_create(user_id) cart_id = user['DefaultCartId'] or self.create_cart(user_id, 'Default Cart', default=True) return self.dynamo_accessor.get_item(config.dynamo_cart_table_name, keys={'UserId': user_id, 'CartId': cart_id}) def get_user_carts(self, user_id): return list(self.dynamo_accessor.query(table_name=config.dynamo_cart_table_name, key_conditions={'UserId': user_id}, index_name='UserIndex')) def delete_cart(self, user_id, cart_id): default_cart_id = self.user_service.get_or_create(user_id)['DefaultCartId'] if default_cart_id == cart_id: self.user_service.update(user_id, default_cart_id=None) self.dynamo_accessor.delete_by_key(config.dynamo_cart_item_table_name, {'CartId': cart_id}) return self.dynamo_accessor.delete_item(config.dynamo_cart_table_name, {'UserId': user_id, 'CartId': cart_id}) def update_cart(self, user_id, cart_id, update_attributes, validate_attributes=True): """ Update the attributes of a cart and return the updated item Only accepted attributes will be updated and any others will be ignored """ if cart_id is None: cart = self.get_or_create_default_cart(user_id) else: cart = self.get_cart(user_id, cart_id) real_cart_id = cart['CartId'] if validate_attributes: accepted_attributes = {'CartName', 'Description'} for key in list(update_attributes.keys()): if key not in accepted_attributes: del update_attributes[key] if 'CartName' in update_attributes.keys(): matching_carts = list(self.dynamo_accessor.query(table_name=config.dynamo_cart_table_name, key_conditions={ 'UserId': user_id, 'CartName': update_attributes['CartName'] }, index_name='UserCartNameIndex')) # There cannot be more than one matching cart because of the index's keys if len(matching_carts) > 0 and matching_carts[0]['CartId'] != real_cart_id: raise DuplicateItemError(f'Cart `{update_attributes["CartName"]}` already exists') return self.dynamo_accessor.update_item(config.dynamo_cart_table_name, {'UserId': user_id, 'CartId': real_cart_id}, update_values=update_attributes) def create_cart_item_id(self, cart_id, entity_id, entity_type, bundle_uuid, bundle_version): return hashlib.sha256(f'{cart_id}/{entity_id}/{bundle_uuid}/{bundle_version}/{entity_type}'.encode('utf-8')).hexdigest() def add_cart_item(self, user_id, cart_id, entity_id, entity_type, entity_version): """ Add an item to a cart and return the created item ID An error will be raised if the cart does not exist or does not belong to the user """ # TODO: Cart item should have some user readable name if cart_id is None: cart = self.get_or_create_default_cart(user_id) else: cart = self.get_cart(user_id, cart_id) real_cart_id = cart['CartId'] if not entity_version: # When entity_version is not given, this method will check the data integrity and retrieve the version. entity = ESClientFactory.get().get(index=config.es_index_name(entity_type, True), id=entity_id, _source=True, _source_include=['contents.files.uuid', # data file UUID 'contents.files.version', # data file version 'contents.projects.document_id', # metadata file UUID 'contents.samples.document_id', # metadata file UUID ] )['_source'] normalized_entity = self.extract_entity_info(entity_type, entity) entity_version = normalized_entity['version'] new_item = self.transform_entity_to_cart_item(real_cart_id, entity_type, entity_id, entity_version) self.dynamo_accessor.insert_item(config.dynamo_cart_item_table_name, new_item) return new_item['CartItemId'] @staticmethod def extract_entity_info(entity_type:str, entity): normalized_entity = dict(uuid=None, version=None) content = entity['contents'][entity_type][0] if entity_type == 'files': normalized_entity.update(dict(uuid=content['uuid'], version=content['version'])) elif entity_type in ('samples', 'projects'): print(content) normalized_entity['uuid'] = content['document_id'] else: raise ValueError('entity_type must be one of files, samples, or projects') return normalized_entity @staticmethod def transform_entity_to_cart_item(cart_id:str, entity_type:str, entity_id:str, entity_version:str): return { 'CartItemId': f'{entity_id}:{entity_version or ""}', # Range Key 'CartId': cart_id, # Hash Key 'EntityId': entity_id, 'EntityVersion': entity_version, 'EntityType': entity_type } def get_cart_items(self, user_id, cart_id): """ Get all items in a cart An error will be raised if the cart does not exist or does not belong to the user """ if cart_id is None: cart = self.get_or_create_default_cart(user_id) else: cart = self.get_cart(user_id, cart_id) real_cart_id = cart['CartId'] return list(self.dynamo_accessor.query(table_name=config.dynamo_cart_item_table_name, key_conditions={'CartId': real_cart_id})) def get_cart_item_count(self, user_id, cart_id): if cart_id is None: cart = self.get_or_create_default_cart(user_id) else: cart = self.get_cart(user_id, cart_id) real_cart_id = cart['CartId'] return self.dynamo_accessor.count(table_name=config.dynamo_cart_item_table_name, key_conditions={'CartId': real_cart_id}, select=['EntityType']) def get_paginable_cart_items(self, user_id, cart_id, page_size:int=20, exclusive_start_key=None, resume_token=None): """ Get cart items (with pagination). :param user_id: User ID :param cart_id: Cart ID (UUID) :param page_size: Requested Query Limit :param exclusive_start_key: the exclusive start key (like an offset in MySQL), recommended for in-code operations :param resume_token: the base64-encoded string of exclusive_start_key recommended for using with external clients :return: Return a dictionary of search result with ``items`` (cart items), ``last_evaluated_key`` (last evaluated key, null if it is the last page), ``resume_token`` (the base64-encoded string of ``last_evaluated_key``) and ``page_length`` (the returning page size) The ``page_length`` attribute in the returning dictionary is designed to provide the actual number of returned items as DynamoDB may return less than what the client asks because of the the maximum size of 1 MB for query. See https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html. ``exclusive_start_key`` and ``resume_token`` must not be defined at the same time. Otherwise, the method will throw ``ValueError`. """ if exclusive_start_key and resume_token: raise ValueError('exclusive_start_key or resume_token must be defined at the same time.') if resume_token is not None: exclusive_start_key = self.convert_resume_token_to_exclusive_start_key(resume_token) if cart_id is None: cart = self.get_or_create_default_cart(user_id) else: cart = self.get_cart(user_id, cart_id) real_cart_id = cart['CartId'] page_query = dict( table_name=config.dynamo_cart_item_table_name, key_conditions={'CartId': real_cart_id}, exclusive_start_key=exclusive_start_key, select=['CartItemId', 'EntityId', 'EntityVersion', 'EntityType'], limit=page_size ) page = next(self.dynamo_accessor.make_query(**page_query)) items = [item for item in page.items] last_evaluated_key = page.last_evaluated_key return dict(items=items, last_evaluated_key=last_evaluated_key, resume_token=self.convert_last_evaluated_key_to_resume_token(last_evaluated_key), page_length=len(items)) def delete_cart_item(self, user_id, cart_id, item_id): """ Delete an item from a cart and return the deleted item if it exists, None otherwise An error will be raised if the cart does not exist or does not belong to the user """ if cart_id is None: cart = self.get_or_create_default_cart(user_id) else: cart = self.get_cart(user_id, cart_id) real_cart_id = cart['CartId'] return self.dynamo_accessor.delete_item(config.dynamo_cart_item_table_name, keys={'CartId': real_cart_id, 'CartItemId': item_id}) def transform_hit_to_cart_item(self, hit, entity_type, cart_id): """ Transform a hit from ES to the schema for the cart item table """ entity = self.extract_entity_info(entity_type, hit) return self.transform_entity_to_cart_item(cart_id, entity_type, entity['uuid'], entity['version']) def start_batch_cart_item_write(self, user_id, cart_id, entity_type, filters, item_count, batch_size): """ Trigger the job that will write the cart items and return a token to be used to check the job status """ if cart_id is None: cart = self.get_or_create_default_cart(user_id) else: cart = self.get_cart(user_id, cart_id) real_cart_id = cart['CartId'] execution_id = str(uuid.uuid4()) execution_input = { 'filters': filters, 'entity_type': entity_type, 'cart_id': real_cart_id, 'item_count': item_count, 'batch_size': batch_size } self.step_function_helper.start_execution(config.cart_item_state_machine_name, execution_name=execution_id, execution_input=execution_input) return self.encode_params({'execution_id': execution_id}) def get_batch_cart_item_write_status(self, token): params = self.decode_token(token) execution_id = params['execution_id'] return self.step_function_helper.describe_execution(config.cart_item_state_machine_name, execution_id)['status'] def write_cart_item_batch(self, entity_type, filters, cart_id, batch_size, search_after): """ Query ES for one page of items matching the entity type and filters and return the number of items written and the search_after for the next page """ es_td = ElasticTransformDump() hits, next_search_after = es_td.transform_cart_item_request(entity_type=entity_type, filters=filters, search_after=search_after, size=batch_size) self.dynamo_accessor.batch_write(config.dynamo_cart_item_table_name, [self.transform_hit_to_cart_item(hit, entity_type, cart_id) for hit in hits]) return len(hits), next_search_after class ResourceAccessError(Exception): def __init__(self, msg): self.msg = msg class DuplicateItemError(Exception): def __init__(self, msg): self.msg = msg
49.705202
128
0.603152
fb58a82b8623838488aabb614315603fe0024ba4
1,661
py
Python
simpledecorators/Async.py
shaddyx/simpleDecorators
4d4b042c956a3b6d11a03937e44ce89c4d7fc4ea
[ "MIT" ]
1
2016-10-15T19:03:03.000Z
2016-10-15T19:03:03.000Z
simpledecorators/Async.py
shaddyx/simpleDecorators
4d4b042c956a3b6d11a03937e44ce89c4d7fc4ea
[ "MIT" ]
null
null
null
simpledecorators/Async.py
shaddyx/simpleDecorators
4d4b042c956a3b6d11a03937e44ce89c4d7fc4ea
[ "MIT" ]
null
null
null
from functools import wraps from threading import Thread class AsyncFuture(object): complete=False working=False error=None result=None def Async(executor=None): """ @type executor: simpledecorators.ThreadPool @rtype: AsyncFuture """ def asyncDecorator (func): @wraps(func) def wrapped(*args, **kwargs): future = AsyncFuture(); def threadWrapper(): future.working = True try: future.result=func(*args, **kwargs) future.complete = True except Exception as e: future.error=True finally: future.working=False if not executor: thread = Thread(target=threadWrapper) thread.daemon = True thread.start() else: executor.add_task(threadWrapper) return future return wrapped return asyncDecorator if __name__ == "__main__": from time import sleep from ThreadPool import * try: xrange except NameError: xrange = range class TestClass(): @Async() def testDecorated(self): print (345) testClass = TestClass() testClass.testDecorated() @Async(executor=ThreadPool(5)) def func(a, b): print ("func called") sleep(1) print ("func exit:" + str(a)) @Async() def funcWithoutExecutor(a): print (a) for x in xrange(1, 10): funcWithoutExecutor("noExecutor:" + str(x)) for x in xrange(1, 15): func(x, 2)
25.553846
55
0.539434
0ca36eb996eb76aac9ad93040d269f55631a4c65
2,301
py
Python
tests/common/markers.py
ravi-mosaicml/ravi-composer
d100053198524672f628c3959a8c4e51a9302e2d
[ "Apache-2.0" ]
1
2021-11-09T22:58:46.000Z
2021-11-09T22:58:46.000Z
tests/common/markers.py
ravi-mosaicml/ravi-composer
d100053198524672f628c3959a8c4e51a9302e2d
[ "Apache-2.0" ]
null
null
null
tests/common/markers.py
ravi-mosaicml/ravi-composer
d100053198524672f628c3959a8c4e51a9302e2d
[ "Apache-2.0" ]
null
null
null
"""Pytest marker helpers.""" from typing import Callable import pytest from composer.core import Precision def device(*args, precision=False): """Decorator for device and optionally precision. Input choices are ('cpu', 'gpu'), or if precision=True, also accept ('gpu-amp', 'gpu-fp32', and 'cpu-fp32'). Returns the parameter "device", or if precision=True, also returns the parameter "precision". """ # convert cpu-fp32 and gpu-fp32 to cpu, gpu if not precision and any(['-' in arg for arg in args]): raise ValueError('-fp32 and -amp tags must be removed if precision=False') args = [arg.replace('-fp32', '') for arg in args] if precision: devices = { 'cpu': pytest.param('cpu', Precision.FP32, id="cpu-fp32"), 'gpu': pytest.param('gpu', Precision.FP32, id="gpu-fp32", marks=pytest.mark.gpu), 'gpu-amp': pytest.param('gpu', Precision.AMP, id='gpu-amp', marks=pytest.mark.gpu) } name = "device,precision" else: devices = { 'cpu': pytest.param('cpu', id="cpu"), 'gpu': pytest.param('gpu', id="gpu", marks=pytest.mark.gpu), } name = "device" parameters = [devices[arg] for arg in args] def decorator(test): if not parameters: return test return pytest.mark.parametrize(name, parameters)(test) return decorator def world_size(*world_sizes: int, param_name: str = "world_size"): """Decorator to mark tests with a given world size. This helper automatically sets the `pytest.mark.world_size` marker. Args: world_sizes (int): The world sizes. param_name (str, optional): The parameter name for the `world_size` parameter. Defaults to ``'world_size'``. Example: >>> @world_size(1, 2) def test_something(world_size: int): ... """ parameters = [] for world_size in world_sizes: if world_size == 1: parameters.append(pytest.param(1)) else: parameters.append(pytest.param(2, marks=pytest.mark.world_size(2))) def decorator(test: Callable): if len(parameters) == 0: return test return pytest.mark.parametrize(param_name, parameters)(test) return decorator
30.276316
116
0.617123
80a7973dfc29efa502748396e20a92b6a34bc74b
12,215
py
Python
plotSpeed.py
dib-lab/2020-paper-mqf-benchmarks
29245836d142b4912c120f3e3899042e972e959c
[ "BSD-3-Clause" ]
1
2020-07-15T20:27:53.000Z
2020-07-15T20:27:53.000Z
plotSpeed.py
dib-lab/2020-paper-mqf-benchmarks
29245836d142b4912c120f3e3899042e972e959c
[ "BSD-3-Clause" ]
null
null
null
plotSpeed.py
dib-lab/2020-paper-mqf-benchmarks
29245836d142b4912c120f3e3899042e972e959c
[ "BSD-3-Clause" ]
1
2021-03-22T01:09:08.000Z
2021-03-22T01:09:08.000Z
import matplotlib.pyplot as plt import numpy as np from matplotlib.patches import Patch import sys inputFile=open(sys.argv[1]).readlines() opType=sys.argv[2] inputFile=[list(map(float,x.split("\t"))) for x in inputFile ] def prepare(arr2): arr=arr2.copy() bottoms=[] for l in arr: bottoms.append([0]*len(l)) for i in range(len(arr[0])): tmp=sorted(range(len(arr)),key=lambda x:arr[x][i]) for k in range(1,4): for j in range(k): arr[tmp[k]][i]-=arr[tmp[j]][i] bottoms[tmp[k]][i]+=arr[tmp[j]][i] return (arr,bottoms) mqf_res=prepare([inputFile[0],inputFile[1],inputFile[2],inputFile[3]]) # mqf_fpr_0_01 = np.array(inputFile[0]) # mqf_fpr_0_001 = np.array(inputFile[1]) # mqf_fpr_0_0001 = np.array(inputFile[2]) # mqf_fpr_0_001-=mqf_fpr_0_0001 # mqf_fpr_0_01-=mqf_fpr_0_001+mqf_fpr_0_0001 cqf_res=prepare([inputFile[4],inputFile[5],inputFile[6],inputFile[7]]) # cqf_fpr_0_01 = np.array(inputFile[3]) # cqf_fpr_0_001 = np.array(inputFile[4]) # cqf_fpr_0_0001 = np.array(inputFile[5]) # cqf_fpr_0_001-=cqf_fpr_0_0001 # cqf_fpr_0_01-=cqf_fpr_0_001+cqf_fpr_0_0001 bmqf_res=prepare([inputFile[8],inputFile[9],inputFile[10],inputFile[11]]) # bmqf_fpr_0_01 = np.array(inputFile[6]) # bmqf_fpr_0_001 = np.array(inputFile[7]) # bmqf_fpr_0_0001 = np.array(inputFile[8]) # bmqf_fpr_0_001-=bmqf_fpr_0_0001 # bmqf_fpr_0_01-=bmqf_fpr_0_001+bmqf_fpr_0_0001 # there is a problem here because bmqf_fpr_0_01 > bmqf_fpr_0_001 CountminKhmer_res=prepare([inputFile[12],inputFile[13],inputFile[14],inputFile[15]]) # CountminKhmer_fpr_0_01 = np.array(inputFile[9]) # CountminKhmer_fpr_0_001 = np.array(inputFile[10]) # CountminKhmer_fpr_0_0001 = np.array(inputFile[11]) # CountminKhmer_fpr_0_001-=CountminKhmer_fpr_0_0001 # CountminKhmer_fpr_0_01-=CountminKhmer_fpr_0_001+CountminKhmer_fpr_0_0001 Countmin_res=prepare([inputFile[16],inputFile[17],inputFile[18],inputFile[19]]) # Countmin_fpr_0_01 = np.array(inputFile[12]) # Countmin_fpr_0_001 = np.array(inputFile[13]) # Countmin_fpr_0_0001 = np.array(inputFile[14]) # Countmin_fpr_0_001-=Countmin_fpr_0_0001 # Countmin_fpr_0_01-=Countmin_fpr_0_001+Countmin_fpr_0_0001 distributions = ['Zipfian Z=2', 'Zipfian Z=3', 'Zipfian Z=5','Real Kmers'] fig, ax = plt.subplots() bar_width = 0.35 epsilon = .035 line_width = 1 opacity = 1 mqf_bar_positions = np.arange(len(mqf_res[0][0]))*2.5 cqf_bar_positions = mqf_bar_positions + bar_width bmqf_bar_positions = mqf_bar_positions + 2*bar_width CountminKhmer_bar_positions = mqf_bar_positions + 3*bar_width Countmin_bar_positions = mqf_bar_positions + 4*bar_width mqfColor='#d73027' cqfColor='#fc8d59' bmqfColor='#fee090' CountminKhmerColor='#91bfdb' CountminColor='#4575b4' # make bar plots mqf_fpr_0_0001_bar = plt.bar(mqf_bar_positions, mqf_res[0][3], bar_width-epsilon, color=mqfColor, edgecolor=mqfColor, linewidth=line_width, bottom=mqf_res[1][3], label='MQF FPR 0.0001') mqf_fpr_0_001_bar = plt.bar(mqf_bar_positions, mqf_res[0][2], bar_width-epsilon, bottom=mqf_res[1][2], alpha=opacity, color='white', edgecolor=mqfColor, linewidth=line_width, hatch='//', label='MQF FPR 0.001') mqf_fpr_0_01_bar = plt.bar(mqf_bar_positions, mqf_res[0][1], bar_width-epsilon, bottom=mqf_res[1][1], alpha=opacity, color='white', edgecolor=mqfColor, linewidth=line_width, hatch='0', label='MQF FPR 0.01') mqf_fpr_0_1_bar = plt.bar(mqf_bar_positions, mqf_res[0][0], bar_width-epsilon, bottom=mqf_res[1][0], alpha=opacity, color='white', edgecolor=mqfColor, linewidth=line_width, hatch='.', label='MQF FPR 0.1') cqf_fpr_0_0001_bar = plt.bar(cqf_bar_positions, cqf_res[0][3], bar_width- epsilon, color=cqfColor, bottom=cqf_res[1][3], linewidth=line_width, edgecolor=cqfColor, ecolor="#0000DD", label='CQF FPR 0.0001') cqf_fpr_0_001_bar = plt.bar(cqf_bar_positions, cqf_res[0][2], bar_width-epsilon, bottom=cqf_res[1][2], color="white", hatch='//', edgecolor=cqfColor, ecolor="#0000DD", linewidth=line_width, label='CQF FPR 0.001') cqf_fpr_0_01_bar = plt.bar(cqf_bar_positions, cqf_res[0][1], bar_width-epsilon, bottom=cqf_res[1][1], color="white", hatch='0', edgecolor=cqfColor, linewidth=line_width, label='CQF FPR 0.01') cqf_fpr_0_1_bar = plt.bar(cqf_bar_positions, cqf_res[0][0], bar_width-epsilon, bottom=cqf_res[1][0], color="white", hatch='.', edgecolor=cqfColor, linewidth=line_width, label='CQF FPR 0.1') CountminKhmer_fpr_0_0001_bar = plt.bar(CountminKhmer_bar_positions, CountminKhmer_res[0][3], bar_width- epsilon, color=CountminKhmerColor, bottom=CountminKhmer_res[1][3], edgecolor=CountminKhmerColor, linewidth=line_width, label='CMS Khmer FPR 0.0001') CountminKhmer_fpr_0_001_bar = plt.bar(CountminKhmer_bar_positions, CountminKhmer_res[0][2], bar_width-epsilon, bottom=CountminKhmer_res[1][2], alpha=opacity, color='white', edgecolor=CountminKhmerColor, linewidth=line_width, hatch='//', label='CMS Khmer FPR 0.001') CountminKhmer_fpr_0_01_bar = plt.bar(CountminKhmer_bar_positions, CountminKhmer_res[0][1], bar_width-epsilon, bottom=CountminKhmer_res[1][1], alpha=opacity, color='white', edgecolor=CountminKhmerColor, linewidth=line_width, hatch='0', label='CMS Khmer FPR 0.01') CountminKhmer_fpr_0_1_bar = plt.bar(CountminKhmer_bar_positions, CountminKhmer_res[0][0], bar_width-epsilon, bottom=CountminKhmer_res[1][0], alpha=opacity, color='white', edgecolor=CountminKhmerColor, linewidth=line_width, hatch='.', label='CMS Khmer FPR 0.1') bmqf_fpr_0_0001_bar = plt.bar(bmqf_bar_positions, bmqf_res[0][3], bar_width- epsilon, bottom=bmqf_res[1][3], color=bmqfColor, edgecolor=bmqfColor, linewidth=line_width, label='Buffered MQF FPR 0.0001') bmqf_fpr_0_001_bar = plt.bar(bmqf_bar_positions, bmqf_res[0][2], bar_width-epsilon, bottom=bmqf_res[1][2], alpha=opacity, color='white', edgecolor=bmqfColor, linewidth=line_width, hatch='//', label='Buffered MQF FPR 0.001') bmqf_fpr_0_01_bar = plt.bar(bmqf_bar_positions, bmqf_res[0][1], bar_width-epsilon, bottom=bmqf_res[1][1], alpha=opacity, color='white', edgecolor=bmqfColor, linewidth=line_width, hatch='0', label='Buffered MQF FPR 0.01') bmqf_fpr_0_1_bar = plt.bar(bmqf_bar_positions, bmqf_res[0][0], bar_width-epsilon, bottom=bmqf_res[1][0], alpha=opacity, color='white', edgecolor=bmqfColor, linewidth=line_width, hatch='.', label='Buffered MQF FPR 0.1') Countmin_fpr_0_0001_bar = plt.bar(Countmin_bar_positions, Countmin_res[0][3], bar_width- epsilon, color=CountminColor, bottom=Countmin_res[1][3], edgecolor=CountminColor, linewidth=line_width, label='CMS FPR 0.0001') Countmin_fpr_0_001_bar = plt.bar(Countmin_bar_positions, Countmin_res[0][2], bar_width-epsilon, bottom=Countmin_res[1][2], alpha=opacity, color='white', edgecolor=CountminColor, linewidth=line_width, hatch='//', label='CMS FPR 0.001') Countmin_fpr_0_01_bar = plt.bar(Countmin_bar_positions, Countmin_res[0][1], bar_width-epsilon, bottom=Countmin_res[1][1], alpha=opacity, color='white', edgecolor=CountminColor, linewidth=line_width, hatch='0', label='CMS FPR 0.01') Countmin_fpr_0_1_bar = plt.bar(Countmin_bar_positions, Countmin_res[0][0], bar_width-epsilon, bottom=Countmin_res[1][0], alpha=opacity, color='white', edgecolor=CountminColor, linewidth=line_width, hatch='.', label='CMS FPR 0.1') plt.xticks(bmqf_bar_positions, distributions, rotation=45) plt.ylabel('Million of %s Per Second'%opType) legend_elements = [ Patch(facecolor=mqfColor,label='MQF',linewidth=0.5,edgecolor='black'), Patch(facecolor=cqfColor,label='CQF',linewidth=0.5,edgecolor='black'), Patch(facecolor=bmqfColor,label='Bufferd MQF',linewidth=0.5,edgecolor='black'), Patch(facecolor=CountminKhmerColor,label='CMS Khmer',linewidth=0.5,edgecolor='black'), Patch(facecolor=CountminColor,label='CMS',linewidth=0.5,edgecolor='black') ] fpr_leged=[Patch(facecolor="black",label='0.0001',linewidth=0.5,edgecolor='black'), Patch(facecolor="white",label='0.001',hatch='//',linewidth=0.5,edgecolor='black'), Patch(facecolor="white",label='0.01',hatch='0',linewidth=0.5,edgecolor='black'), Patch(facecolor="white",label='0.1',hatch='.',linewidth=0.5,edgecolor='black') ] #l1=plt.legend(handles=legend_elements, bbox_to_anchor=(1.19, 0.95), # fancybox=True,title='Data Structures') #l2=plt.legend(handles=fpr_leged, bbox_to_anchor=(1.171, 0.650), # fancybox=True,title='False Positive Rates') l1=plt.legend(handles=legend_elements, bbox_to_anchor=(1., 0.95), fancybox=True,title='Data Structures') l2=plt.legend(handles=fpr_leged, bbox_to_anchor=(1., 0.450), fancybox=True,title='False Positive Rates') ax.add_artist(l1) ax.add_artist(l2) # plt.legend(loc='best') #ax.legend() # sns.despine() #plt.show() fig.set_size_inches(5.5, 3.5) fig.savefig(opType+'.png',bbox_inches='tight', dpi=fig.dpi)
43.625
112
0.541056
6a12090c051c51e6f1d51469a92f046ffec58ad8
1,694
py
Python
nicos_mlz/biodiff/setups/special/watchdog.py
jkrueger1/nicos
5f4ce66c312dedd78995f9d91e8a6e3c891b262b
[ "CC-BY-3.0", "Apache-2.0", "CC-BY-4.0" ]
null
null
null
nicos_mlz/biodiff/setups/special/watchdog.py
jkrueger1/nicos
5f4ce66c312dedd78995f9d91e8a6e3c891b262b
[ "CC-BY-3.0", "Apache-2.0", "CC-BY-4.0" ]
null
null
null
nicos_mlz/biodiff/setups/special/watchdog.py
jkrueger1/nicos
5f4ce66c312dedd78995f9d91e8a6e3c891b262b
[ "CC-BY-3.0", "Apache-2.0", "CC-BY-4.0" ]
null
null
null
description = 'setup for the NICOS watchdog' group = 'special' # watch_conditions: # The entries in this list are dictionaries. Possible keys: # # 'setup' -- setup that must be loaded (default '' to mean all setups) # 'condition' -- condition for warning (a Python expression where cache keys # can be used: t_value stands for t/value etc. # 'gracetime' -- time in sec allowed for the condition to be true without # emitting a warning (default 5 sec) # 'message' -- warning message to display # 'type' -- for defining different types of warnings; this corresponds to the # configured notifiers (default 'default') # type '' does not emit warnings (useful together with scriptaction) # 'scriptaction' -- 'pausecount' to pause the count loop on the condition # or 'stop' or 'immediatestop' to cancel script execution # (default '') # 'action' -- code to execute if condition is true (default no code is executed) watch_conditions = [ dict(condition = '(sixfold_value == \'closed\' or nl1_value == \'closed\') ' 'and reactorpower_value > 19.1', message = 'NL1 or sixfold shutter closed', type = 'critical', ), dict(condition = 'selector_speed_status[0] == ERROR', message = 'Selector in error status; check Windows software!', type = 'critical', ), ] includes = ['notifiers'] notifiers = { 'default': ['email'], 'critical': ['email', 'smser'], } devices = dict( Watchdog = device('nicos.services.watchdog.Watchdog', cache = 'phys.biodiff.frm2:14869', notifiers = notifiers, mailreceiverkey = 'email/receivers', watch = watch_conditions, ), )
36.042553
80
0.654664
e9bad51532d88d14b28c85f70b8a687f26586af2
478
py
Python
top/api/rest/WdtExtStatRefundQueryAogouRequest.py
SAMZONG/taobao-sdk-python3
202a9df2085229838541713bd24433a90d07c7fc
[ "MIT" ]
null
null
null
top/api/rest/WdtExtStatRefundQueryAogouRequest.py
SAMZONG/taobao-sdk-python3
202a9df2085229838541713bd24433a90d07c7fc
[ "MIT" ]
null
null
null
top/api/rest/WdtExtStatRefundQueryAogouRequest.py
SAMZONG/taobao-sdk-python3
202a9df2085229838541713bd24433a90d07c7fc
[ "MIT" ]
null
null
null
''' Created by auto_sdk on 2021.06.25 ''' from top.api.base import RestApi class WdtExtStatRefundQueryAogouRequest(RestApi): def __init__(self,domain='gw.api.taobao.com',port=80): RestApi.__init__(self,domain, port) self.is_retail = None self.page_no = None self.page_size = None self.shop_no = None self.sid = None self.stockin_date = None self.warehouse_no = None def getapiname(self): return 'hu3cgwt0tc.wdt.ext.stat.refund.query.aogou'
26.555556
56
0.717573
c71d8e0f2949b23baf91343a66943791f37adb19
5,669
py
Python
pysnmp-with-texts/ChrComPmAtmATM-VC-Day-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
8
2019-05-09T17:04:00.000Z
2021-06-09T06:50:51.000Z
pysnmp-with-texts/ChrComPmAtmATM-VC-Day-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
4
2019-05-31T16:42:59.000Z
2020-01-31T21:57:17.000Z
pysnmp-with-texts/ChrComPmAtmATM-VC-Day-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
10
2019-04-30T05:51:36.000Z
2022-02-16T03:33:41.000Z
# # PySNMP MIB module ChrComPmAtmATM-VC-Day-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/ChrComPmAtmATM-VC-Day-MIB # Produced by pysmi-0.3.4 at Wed May 1 12:35:11 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # OctetString, ObjectIdentifier, Integer = mibBuilder.importSymbols("ASN1", "OctetString", "ObjectIdentifier", "Integer") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ValueSizeConstraint, ConstraintsUnion, ConstraintsIntersection, SingleValueConstraint, ValueRangeConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ValueSizeConstraint", "ConstraintsUnion", "ConstraintsIntersection", "SingleValueConstraint", "ValueRangeConstraint") atmVclVpi, atmVclVci = mibBuilder.importSymbols("ATM-MIB", "atmVclVpi", "atmVclVci") chrComIfifIndex, = mibBuilder.importSymbols("ChrComIfifTable-MIB", "chrComIfifIndex") TruthValue, = mibBuilder.importSymbols("ChrTyp-MIB", "TruthValue") chrComPmAtm, = mibBuilder.importSymbols("Chromatis-MIB", "chrComPmAtm") NotificationGroup, ModuleCompliance = mibBuilder.importSymbols("SNMPv2-CONF", "NotificationGroup", "ModuleCompliance") Counter32, Integer32, MibIdentifier, Bits, Counter64, Gauge32, ModuleIdentity, Unsigned32, ObjectIdentity, MibScalar, MibTable, MibTableRow, MibTableColumn, IpAddress, TimeTicks, NotificationType, iso = mibBuilder.importSymbols("SNMPv2-SMI", "Counter32", "Integer32", "MibIdentifier", "Bits", "Counter64", "Gauge32", "ModuleIdentity", "Unsigned32", "ObjectIdentity", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "IpAddress", "TimeTicks", "NotificationType", "iso") TextualConvention, DisplayString = mibBuilder.importSymbols("SNMPv2-TC", "TextualConvention", "DisplayString") chrComPmAtmATM_VC_DayTable = MibTable((1, 3, 6, 1, 4, 1, 3695, 1, 10, 4, 9), ).setLabel("chrComPmAtmATM-VC-DayTable") if mibBuilder.loadTexts: chrComPmAtmATM_VC_DayTable.setStatus('current') if mibBuilder.loadTexts: chrComPmAtmATM_VC_DayTable.setDescription('') chrComPmAtmATM_VC_DayEntry = MibTableRow((1, 3, 6, 1, 4, 1, 3695, 1, 10, 4, 9, 1), ).setLabel("chrComPmAtmATM-VC-DayEntry").setIndexNames((0, "ChrComIfifTable-MIB", "chrComIfifIndex"), (0, "ATM-MIB", "atmVclVpi"), (0, "ATM-MIB", "atmVclVci"), (0, "ChrComPmAtmATM-VC-Day-MIB", "chrComPmAtmDayNumber")) if mibBuilder.loadTexts: chrComPmAtmATM_VC_DayEntry.setStatus('current') if mibBuilder.loadTexts: chrComPmAtmATM_VC_DayEntry.setDescription('') chrComPmAtmDayNumber = MibTableColumn((1, 3, 6, 1, 4, 1, 3695, 1, 10, 4, 9, 1, 1), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(1, 2))).setMaxAccess("readonly") if mibBuilder.loadTexts: chrComPmAtmDayNumber.setStatus('current') if mibBuilder.loadTexts: chrComPmAtmDayNumber.setDescription('') chrComPmAtmSuspectedInterval = MibTableColumn((1, 3, 6, 1, 4, 1, 3695, 1, 10, 4, 9, 1, 2), TruthValue()).setMaxAccess("readonly") if mibBuilder.loadTexts: chrComPmAtmSuspectedInterval.setStatus('current') if mibBuilder.loadTexts: chrComPmAtmSuspectedInterval.setDescription('') chrComPmAtmElapsedTime = MibTableColumn((1, 3, 6, 1, 4, 1, 3695, 1, 10, 4, 9, 1, 3), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 4294967295))).setMaxAccess("readonly") if mibBuilder.loadTexts: chrComPmAtmElapsedTime.setStatus('current') if mibBuilder.loadTexts: chrComPmAtmElapsedTime.setDescription('') chrComPmAtmSuppressedIntrvls = MibTableColumn((1, 3, 6, 1, 4, 1, 3695, 1, 10, 4, 9, 1, 4), Gauge32().subtype(subtypeSpec=ValueRangeConstraint(0, 4294967295))).setMaxAccess("readonly") if mibBuilder.loadTexts: chrComPmAtmSuppressedIntrvls.setStatus('current') if mibBuilder.loadTexts: chrComPmAtmSuppressedIntrvls.setDescription('') chrComPmAtmReceivedCells = MibTableColumn((1, 3, 6, 1, 4, 1, 3695, 1, 10, 4, 9, 1, 5), Gauge32().subtype(subtypeSpec=ValueRangeConstraint(0, 4294967295))).setMaxAccess("readonly") if mibBuilder.loadTexts: chrComPmAtmReceivedCells.setStatus('current') if mibBuilder.loadTexts: chrComPmAtmReceivedCells.setDescription('') chrComPmAtmTransmittedCells = MibTableColumn((1, 3, 6, 1, 4, 1, 3695, 1, 10, 4, 9, 1, 6), Gauge32().subtype(subtypeSpec=ValueRangeConstraint(0, 4294967295))).setMaxAccess("readonly") if mibBuilder.loadTexts: chrComPmAtmTransmittedCells.setStatus('current') if mibBuilder.loadTexts: chrComPmAtmTransmittedCells.setDescription('') chrComPmAtmThresholdProfIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 3695, 1, 10, 4, 9, 1, 7), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 4294967295))).setMaxAccess("readwrite") if mibBuilder.loadTexts: chrComPmAtmThresholdProfIndex.setStatus('current') if mibBuilder.loadTexts: chrComPmAtmThresholdProfIndex.setDescription('') chrComPmAtmResetPmCountersAction = MibTableColumn((1, 3, 6, 1, 4, 1, 3695, 1, 10, 4, 9, 1, 8), TruthValue()).setMaxAccess("readwrite") if mibBuilder.loadTexts: chrComPmAtmResetPmCountersAction.setStatus('current') if mibBuilder.loadTexts: chrComPmAtmResetPmCountersAction.setDescription('') mibBuilder.exportSymbols("ChrComPmAtmATM-VC-Day-MIB", chrComPmAtmReceivedCells=chrComPmAtmReceivedCells, chrComPmAtmThresholdProfIndex=chrComPmAtmThresholdProfIndex, chrComPmAtmTransmittedCells=chrComPmAtmTransmittedCells, chrComPmAtmSuppressedIntrvls=chrComPmAtmSuppressedIntrvls, chrComPmAtmATM_VC_DayTable=chrComPmAtmATM_VC_DayTable, chrComPmAtmElapsedTime=chrComPmAtmElapsedTime, chrComPmAtmATM_VC_DayEntry=chrComPmAtmATM_VC_DayEntry, chrComPmAtmResetPmCountersAction=chrComPmAtmResetPmCountersAction, chrComPmAtmDayNumber=chrComPmAtmDayNumber, chrComPmAtmSuspectedInterval=chrComPmAtmSuspectedInterval)
115.693878
607
0.800141
d1cbd5d5b30706fdbd9b7a1f536043887efb0d54
1,333
py
Python
test/snow/engine/common/test_subnet.py
jgeofil/avax-python
b09e78e3d7e1c35db5ae42e3918e960e775f2d45
[ "MIT" ]
25
2021-05-16T23:43:47.000Z
2022-03-29T03:08:30.000Z
test/snow/engine/common/test_subnet.py
zefonseca/ava-python
9c72af7c720edfab9c73379a102cf6a11d864ebd
[ "MIT" ]
2
2021-04-26T11:43:22.000Z
2021-06-04T07:55:22.000Z
test/snow/engine/common/test_subnet.py
jgeofil/avax-python
b09e78e3d7e1c35db5ae42e3918e960e775f2d45
[ "MIT" ]
4
2021-08-06T10:55:58.000Z
2022-03-29T08:03:05.000Z
# avax-python : Python tools for the exploration of the Avalanche AVAX network. # # Documentation at https://crypto.bi """ Copyright © 2021 ojrdev Support this Open Source project! Donate to X-avax1qr6yzjykcjmeflztsgv6y88dl0xnlel3chs3r4 Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ # --#--#-- from avaxpython.snow.engine.common import subnet
60.590909
463
0.793698
9c279e5049de1d10c432ee6ee3cd0cfd436fe6f5
17,333
py
Python
src/memory_saving_gradients.py
gonzzza007/Russian-gpt-2
22bc186d6320b315cd0066bd21bff9c5c9457c77
[ "MIT" ]
null
null
null
src/memory_saving_gradients.py
gonzzza007/Russian-gpt-2
22bc186d6320b315cd0066bd21bff9c5c9457c77
[ "MIT" ]
null
null
null
src/memory_saving_gradients.py
gonzzza007/Russian-gpt-2
22bc186d6320b315cd0066bd21bff9c5c9457c77
[ "MIT" ]
null
null
null
from toposort import toposort import contextlib import numpy as np import tensorflow as tf import tensorflow.contrib.graph_editor as ge import time import sys sys.setrecursionlimit(10000) # refers back to current module if we decide to split helpers out util = sys.modules[__name__] # getting rid of "WARNING:tensorflow:VARIABLES collection name is deprecated" setattr(tf.compat.v1.GraphKeys, "VARIABLES", "variables") # save original gradients since tf.gradient could be monkey-patched to point # to our version from tensorflow.python.ops import gradients as tf_gradients_lib tf_gradients = tf_gradients_lib.gradients MIN_CHECKPOINT_NODE_SIZE=1024 # use lower value during testing # specific versions we can use to do process-wide replacement of tf.gradients def gradients_speed(ys, xs, grad_ys=None, **kwargs): return gradients(ys, xs, grad_ys, checkpoints='speed', **kwargs) def gradients_memory(ys, xs, grad_ys=None, **kwargs): return gradients(ys, xs, grad_ys, checkpoints='memory', **kwargs) def gradients_collection(ys, xs, grad_ys=None, **kwargs): return gradients(ys, xs, grad_ys, checkpoints='collection', **kwargs) def gradients(ys, xs, grad_ys=None, checkpoints='collection', **kwargs): ''' Authors: Tim Salimans & Yaroslav Bulatov memory efficient gradient implementation inspired by "Training Deep Nets with Sublinear Memory Cost" by Chen et al. 2016 (https://arxiv.org/abs/1604.06174) ys,xs,grad_ys,kwargs are the arguments to standard tensorflow tf.gradients (https://www.tensorflow.org/versions/r0.12/api_docs/python/train.html#gradients) 'checkpoints' can either be - a list consisting of tensors from the forward pass of the neural net that we should re-use when calculating the gradients in the backward pass all other tensors that do not appear in this list will be re-computed - a string specifying how this list should be determined. currently we support - 'speed': checkpoint all outputs of convolutions and matmuls. these ops are usually the most expensive, so checkpointing them maximizes the running speed (this is a good option if nonlinearities, concats, batchnorms, etc are taking up a lot of memory) - 'memory': try to minimize the memory usage (currently using a very simple strategy that identifies a number of bottleneck tensors in the graph to checkpoint) - 'collection': look for a tensorflow collection named 'checkpoints', which holds the tensors to checkpoint ''' # print("Calling memsaving gradients with", checkpoints) if not isinstance(ys,list): ys = [ys] if not isinstance(xs,list): xs = [xs] bwd_ops = ge.get_backward_walk_ops([y.op for y in ys], inclusive=True) debug_print("bwd_ops: %s", bwd_ops) # forward ops are all ops that are candidates for recomputation fwd_ops = ge.get_forward_walk_ops([x.op for x in xs], inclusive=True, within_ops=bwd_ops) debug_print("fwd_ops: %s", fwd_ops) # exclude ops with no inputs fwd_ops = [op for op in fwd_ops if op.inputs] # don't recompute xs, remove variables xs_ops = _to_ops(xs) fwd_ops = [op for op in fwd_ops if not op in xs_ops] fwd_ops = [op for op in fwd_ops if not '/assign' in op.name] fwd_ops = [op for op in fwd_ops if not '/Assign' in op.name] fwd_ops = [op for op in fwd_ops if not '/read' in op.name] ts_all = ge.filter_ts(fwd_ops, True) # get the tensors ts_all = [t for t in ts_all if '/read' not in t.name] ts_all = set(ts_all) - set(xs) - set(ys) # construct list of tensors to checkpoint during forward pass, if not # given as input if type(checkpoints) is not list: if checkpoints == 'collection': checkpoints = tf.compat.v1.get_collection('checkpoints') elif checkpoints == 'speed': # checkpoint all expensive ops to maximize running speed checkpoints = ge.filter_ts_from_regex(fwd_ops, 'conv2d|Conv|MatMul') elif checkpoints == 'memory': # remove very small tensors and some weird ops def fixdims(t): # tf.Dimension values are not compatible with int, convert manually try: return [int(e if e.value is not None else 64) for e in t] except: return [0] # unknown shape ts_all = [t for t in ts_all if np.prod(fixdims(t.shape)) > MIN_CHECKPOINT_NODE_SIZE] ts_all = [t for t in ts_all if 'L2Loss' not in t.name] ts_all = [t for t in ts_all if 'entropy' not in t.name] ts_all = [t for t in ts_all if 'FusedBatchNorm' not in t.name] ts_all = [t for t in ts_all if 'Switch' not in t.name] ts_all = [t for t in ts_all if 'dropout' not in t.name] # DV: FP16_FIX - need to add 'Cast' layer here to make it work for FP16 ts_all = [t for t in ts_all if 'Cast' not in t.name] # filter out all tensors that are inputs of the backward graph with util.capture_ops() as bwd_ops: tf_gradients(ys, xs, grad_ys, **kwargs) bwd_inputs = [t for op in bwd_ops for t in op.inputs] # list of tensors in forward graph that is in input to bwd graph ts_filtered = list(set(bwd_inputs).intersection(ts_all)) debug_print("Using tensors %s", ts_filtered) # try two slightly different ways of getting bottlenecks tensors # to checkpoint for ts in [ts_filtered, ts_all]: # get all bottlenecks in the graph bottleneck_ts = [] for t in ts: b = set(ge.get_backward_walk_ops(t.op, inclusive=True, within_ops=fwd_ops)) f = set(ge.get_forward_walk_ops(t.op, inclusive=False, within_ops=fwd_ops)) # check that there are not shortcuts b_inp = set([inp for op in b for inp in op.inputs]).intersection(ts_all) f_inp = set([inp for op in f for inp in op.inputs]).intersection(ts_all) if not set(b_inp).intersection(f_inp) and len(b_inp)+len(f_inp) >= len(ts_all): bottleneck_ts.append(t) # we have a bottleneck! else: debug_print("Rejected bottleneck candidate and ops %s", [t] + list(set(ts_all) - set(b_inp) - set(f_inp))) # success? or try again without filtering? if len(bottleneck_ts) >= np.sqrt(len(ts_filtered)): # yes, enough bottlenecks found! break if not bottleneck_ts: raise Exception('unable to find bottleneck tensors! please provide checkpoint nodes manually, or use checkpoints="speed".') # sort the bottlenecks bottlenecks_sorted_lists = tf_toposort(bottleneck_ts, within_ops=fwd_ops) sorted_bottlenecks = [t for ts in bottlenecks_sorted_lists for t in ts] # save an approximately optimal number ~ sqrt(N) N = len(ts_filtered) if len(bottleneck_ts) <= np.ceil(np.sqrt(N)): checkpoints = sorted_bottlenecks else: step = int(np.ceil(len(bottleneck_ts) / np.sqrt(N))) checkpoints = sorted_bottlenecks[step::step] else: raise Exception('%s is unsupported input for "checkpoints"' % (checkpoints,)) checkpoints = list(set(checkpoints).intersection(ts_all)) # at this point automatic selection happened and checkpoints is list of nodes assert isinstance(checkpoints, list) debug_print("Checkpoint nodes used: %s", checkpoints) # better error handling of special cases # xs are already handled as checkpoint nodes, so no need to include them xs_intersect_checkpoints = set(xs).intersection(set(checkpoints)) if xs_intersect_checkpoints: debug_print("Warning, some input nodes are also checkpoint nodes: %s", xs_intersect_checkpoints) ys_intersect_checkpoints = set(ys).intersection(set(checkpoints)) debug_print("ys: %s, checkpoints: %s, intersect: %s", ys, checkpoints, ys_intersect_checkpoints) # saving an output node (ys) gives no benefit in memory while creating # new edge cases, exclude them if ys_intersect_checkpoints: debug_print("Warning, some output nodes are also checkpoints nodes: %s", format_ops(ys_intersect_checkpoints)) # remove initial and terminal nodes from checkpoints list if present checkpoints = list(set(checkpoints) - set(ys) - set(xs)) # check that we have some nodes to checkpoint # if not checkpoints: # raise Exception('no checkpoints nodes found or given as input! ') # disconnect dependencies between checkpointed tensors checkpoints_disconnected = {} for x in checkpoints: if x.op and x.op.name is not None: grad_node = tf.stop_gradient(x, name=x.op.name+"_sg") else: grad_node = tf.stop_gradient(x) checkpoints_disconnected[x] = grad_node # partial derivatives to the checkpointed tensors and xs ops_to_copy = fast_backward_ops(seed_ops=[y.op for y in ys], stop_at_ts=checkpoints, within_ops=fwd_ops) debug_print("Found %s ops to copy within fwd_ops %s, seed %s, stop_at %s", len(ops_to_copy), fwd_ops, [r.op for r in ys], checkpoints) debug_print("ops_to_copy = %s", ops_to_copy) debug_print("Processing list %s", ys) copied_sgv, info = ge.copy_with_input_replacements(ge.sgv(ops_to_copy), {}) for origin_op, op in info._transformed_ops.items(): op._set_device(origin_op.node_def.device) copied_ops = info._transformed_ops.values() debug_print("Copied %s to %s", ops_to_copy, copied_ops) ge.reroute_ts(checkpoints_disconnected.values(), checkpoints_disconnected.keys(), can_modify=copied_ops) debug_print("Rewired %s in place of %s restricted to %s", checkpoints_disconnected.values(), checkpoints_disconnected.keys(), copied_ops) # get gradients with respect to current boundary + original x's copied_ys = [info._transformed_ops[y.op]._outputs[0] for y in ys] boundary = list(checkpoints_disconnected.values()) dv = tf_gradients(ys=copied_ys, xs=boundary+xs, grad_ys=grad_ys, **kwargs) debug_print("Got gradients %s", dv) debug_print("for %s", copied_ys) debug_print("with respect to %s", boundary+xs) inputs_to_do_before = [y.op for y in ys] if grad_ys is not None: inputs_to_do_before += grad_ys wait_to_do_ops = list(copied_ops) + [g.op for g in dv if g is not None] my_add_control_inputs(wait_to_do_ops, inputs_to_do_before) # partial derivatives to the checkpointed nodes # dictionary of "node: backprop" for nodes in the boundary d_checkpoints = {r: dr for r,dr in zip(checkpoints_disconnected.keys(), dv[:len(checkpoints_disconnected)])} # partial derivatives to xs (usually the params of the neural net) d_xs = dv[len(checkpoints_disconnected):] # incorporate derivatives flowing through the checkpointed nodes checkpoints_sorted_lists = tf_toposort(checkpoints, within_ops=fwd_ops) for ts in checkpoints_sorted_lists[::-1]: debug_print("Processing list %s", ts) checkpoints_other = [r for r in checkpoints if r not in ts] checkpoints_disconnected_other = [checkpoints_disconnected[r] for r in checkpoints_other] # copy part of the graph below current checkpoint node, stopping at # other checkpoints nodes ops_to_copy = fast_backward_ops(within_ops=fwd_ops, seed_ops=[r.op for r in ts], stop_at_ts=checkpoints_other) debug_print("Found %s ops to copy within %s, seed %s, stop_at %s", len(ops_to_copy), fwd_ops, [r.op for r in ts], checkpoints_other) debug_print("ops_to_copy = %s", ops_to_copy) if not ops_to_copy: # we're done! break copied_sgv, info = ge.copy_with_input_replacements(ge.sgv(ops_to_copy), {}) for origin_op, op in info._transformed_ops.items(): op._set_device(origin_op.node_def.device) copied_ops = info._transformed_ops.values() debug_print("Copied %s to %s", ops_to_copy, copied_ops) ge.reroute_ts(checkpoints_disconnected_other, checkpoints_other, can_modify=copied_ops) debug_print("Rewired %s in place of %s restricted to %s", checkpoints_disconnected_other, checkpoints_other, copied_ops) # gradient flowing through the checkpointed node boundary = [info._transformed_ops[r.op]._outputs[0] for r in ts] substitute_backprops = [d_checkpoints[r] for r in ts] dv = tf_gradients(boundary, checkpoints_disconnected_other+xs, grad_ys=substitute_backprops, **kwargs) debug_print("Got gradients %s", dv) debug_print("for %s", boundary) debug_print("with respect to %s", checkpoints_disconnected_other+xs) debug_print("with boundary backprop substitutions %s", substitute_backprops) inputs_to_do_before = [d_checkpoints[r].op for r in ts] wait_to_do_ops = list(copied_ops) + [g.op for g in dv if g is not None] my_add_control_inputs(wait_to_do_ops, inputs_to_do_before) # partial derivatives to the checkpointed nodes for r, dr in zip(checkpoints_other, dv[:len(checkpoints_other)]): if dr is not None: if d_checkpoints[r] is None: d_checkpoints[r] = dr else: d_checkpoints[r] += dr def _unsparsify(x): if not isinstance(x, tf.IndexedSlices): return x assert x.dense_shape is not None, "memory_saving_gradients encountered sparse gradients of unknown shape" indices = x.indices while indices.shape.ndims < x.values.shape.ndims: indices = tf.expand_dims(indices, -1) return tf.scatter_nd(indices, x.values, x.dense_shape) # partial derivatives to xs (usually the params of the neural net) d_xs_new = dv[len(checkpoints_other):] for j in range(len(xs)): if d_xs_new[j] is not None: if d_xs[j] is None: d_xs[j] = _unsparsify(d_xs_new[j]) else: d_xs[j] += _unsparsify(d_xs_new[j]) return d_xs def tf_toposort(ts, within_ops=None): all_ops = ge.get_forward_walk_ops([x.op for x in ts], within_ops=within_ops) deps = {} for op in all_ops: for o in op.outputs: deps[o] = set(op.inputs) sorted_ts = toposort(deps) # only keep the tensors from our original list ts_sorted_lists = [] for l in sorted_ts: keep = list(set(l).intersection(ts)) if keep: ts_sorted_lists.append(keep) return ts_sorted_lists def fast_backward_ops(within_ops, seed_ops, stop_at_ts): bwd_ops = set(ge.get_backward_walk_ops(seed_ops, stop_at_ts=stop_at_ts)) ops = bwd_ops.intersection(within_ops).difference([t.op for t in stop_at_ts]) return list(ops) @contextlib.contextmanager def capture_ops(): """Decorator to capture ops created in the block. with capture_ops() as ops: # create some ops print(ops) # => prints ops created. """ micros = int(time.time()*10**6) scope_name = str(micros) op_list = [] with tf.name_scope(scope_name): yield op_list g = tf.get_default_graph() op_list.extend(ge.select_ops(scope_name+"/.*", graph=g)) def _to_op(tensor_or_op): if hasattr(tensor_or_op, "op"): return tensor_or_op.op return tensor_or_op def _to_ops(iterable): if not _is_iterable(iterable): return iterable return [_to_op(i) for i in iterable] def _is_iterable(o): try: _ = iter(o) except Exception: return False return True DEBUG_LOGGING=False def debug_print(s, *args): """Like logger.log, but also replaces all TensorFlow ops/tensors with their names. Sensitive to value of DEBUG_LOGGING, see enable_debug/disable_debug Usage: debug_print("see tensors %s for %s", tensorlist, [1,2,3]) """ if DEBUG_LOGGING: formatted_args = [format_ops(arg) for arg in args] print("DEBUG "+s % tuple(formatted_args)) def format_ops(ops, sort_outputs=True): """Helper method for printing ops. Converts Tensor/Operation op to op.name, rest to str(op).""" if hasattr(ops, '__iter__') and not isinstance(ops, str): l = [(op.name if hasattr(op, "name") else str(op)) for op in ops] if sort_outputs: return sorted(l) return l else: return ops.name if hasattr(ops, "name") else str(ops) def my_add_control_inputs(wait_to_do_ops, inputs_to_do_before): for op in wait_to_do_ops: ci = [i for i in inputs_to_do_before if op.control_inputs is None or i not in op.control_inputs] ge.add_control_inputs(op, ci)
44.67268
139
0.656205
c750cc3ed9765378186d3d91464bfbb3d6420303
724
py
Python
src/features/inversion/__init__.py
dimitrymindlin/xray
0476d2ac950a118b9182e5cc3b077ccd32b8d722
[ "MIT" ]
31
2020-01-29T12:45:41.000Z
2022-03-01T14:07:02.000Z
src/features/inversion/__init__.py
dimitrymindlin/xray
0476d2ac950a118b9182e5cc3b077ccd32b8d722
[ "MIT" ]
5
2020-12-07T04:32:34.000Z
2022-01-23T14:39:01.000Z
src/features/inversion/__init__.py
dimitrymindlin/xray
0476d2ac950a118b9182e5cc3b077ccd32b8d722
[ "MIT" ]
12
2020-08-03T12:20:19.000Z
2022-02-18T06:48:05.000Z
import glob import cv2 import matplotlib.pyplot as plt import numpy as np from src import DATA_PATH # Saves data to the same folder XR_HAND_CENTRED_PATH = f'{DATA_PATH}/XR_HAND_CENTRED' path_to_data = f'{XR_HAND_CENTRED_PATH}/*/*/*' paths = glob.glob(path_to_data) threshold = 255 / 2 for path in paths: img = cv2.imread(path) img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) # Mean color of corners color = np.array([img[0:50, 0:50].mean(), img[-50:, -50:].mean(), img[:50, -50:].mean(), img[-50:, :50].mean()]).mean() if img.mean() > threshold or color > threshold: plt.imshow(img, cmap='gray', vmin=0, vmax=255) plt.show() cv2.imwrite(path, 255 - img)
24.965517
75
0.635359
2969bcd5a971f4f7167322b9efe5c35f49e373a2
10,091
py
Python
core/targets.py
Prodject/OWASP-Nettacker
b6fb4a1fe6b3cf1a0a49872480fd387b77ed9b44
[ "Apache-2.0" ]
35
2019-10-17T17:42:50.000Z
2020-10-06T12:08:29.000Z
core/targets.py
Prodject/OWASP-Nettacker
b6fb4a1fe6b3cf1a0a49872480fd387b77ed9b44
[ "Apache-2.0" ]
1
2022-03-29T22:02:36.000Z
2022-03-29T22:02:36.000Z
core/targets.py
Prodject/OWASP-Nettacker
b6fb4a1fe6b3cf1a0a49872480fd387b77ed9b44
[ "Apache-2.0" ]
7
2019-10-17T21:46:09.000Z
2021-12-15T04:56:29.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- import socket import json import netaddr.ip import re from core.ip import * from core.alert import * from core._die import __die_failure from lib.scan.subdomain.engine import __get_subs from core.log import __log_into_file def target_to_host(target): """ convert a target to host, example http://owasp.org to owasp.org or http://127.0.0.1 to 127.0.0.1 Args: target: the target Returns: the host target """ if target_type(target) == 'HTTP': target = target.lower().replace( 'http://', '').replace('https://', '').rsplit('/')[0] if ':' in target: target = target.rsplit(':')[0] return target def target_type(target): """ define the target type Args: target: the target Returns: the target type (SINGLE_IPv4, SINGLE_IPv6, RANGE_IPv4, DOMAIN, HTTP, CIDR_IPv4, UNKNOWN) """ if isIP(target): return 'SINGLE_IPv4' elif isIP6(target): return 'SINGLE_IPv6' elif len(target.rsplit('.')) is 7 and '-' in target and '/' not in target: start_ip, stop_ip = target.rsplit('-') if isIP(start_ip) and isIP(stop_ip): return 'RANGE_IPv4' elif re.match('^([a-z0-9]+(-[a-z0-9]+)*\.)+[a-z]{2,}$', target): return 'DOMAIN' elif (target.lower().startswith('http://') or target.lower().startswith('https://')): t = target.rsplit("://")[1].rsplit("/")[0].rsplit(":")[0] if isIP(t) or isIP6(t) or re.match('^([a-z0-9]+(-[a-z0-9]+)*\.)+[a-z]{2,}$', t): return 'HTTP' elif len(target.rsplit('.')) is 4 and '-' not in target and '/' in target: IP, CIDR = target.rsplit('/') if isIP(IP) and (int(CIDR) >= 0 and int(CIDR) <= 32): return 'CIDR_IPv4' return 'UNKNOWN' def analysis(targets, check_ranges, check_subdomains, subs_temp, range_temp, log_in_file, time_sleep, language, verbose_level, retries, socks_proxy, enumerate_flag): """ analysis and calulcate targets. Args: targets: targets check_ranges: check IP range flag check_subdomains: check subdomain flag subs_temp: subdomain temp filename range_temp: IP range tmp filename log_in_file: output filename time_sleep: time to sleep language: language verbose_level: verbose level number retries: retries number socks_proxy: socks proxy enumerate_flag: enumerate flag Returns: a generator """ __log_into_file(range_temp, 'a', '', language) __log_into_file(subs_temp, 'a', '', language) for target in targets: if target_type(target) == 'SINGLE_IPv4': if check_ranges: if not enumerate_flag: info(messages(language, "checking_range").format(target)) IPs = IPRange(getIPRange(target), range_temp, language) if type(IPs) == netaddr.ip.IPNetwork: for IPm in IPs: yield IPm elif type(IPs) == list: for IPm in IPs: for IP in IPm: yield IP else: if not enumerate_flag: info(messages(language, "target_submitted").format(target)) yield target elif target_type(target) == 'SINGLE_IPv6': yield target elif target_type(target) == 'RANGE_IPv4' or target_type(target) == 'CIDR_IPv4': IPs = IPRange(target, range_temp, language) if not enumerate_flag: info(messages(language, "checking").format(target)) if type(IPs) == netaddr.ip.IPNetwork: for IPm in IPs: yield IPm elif type(IPs) == list: for IPm in IPs: for IP in IPm: yield IP elif target_type(target) == 'DOMAIN': if check_subdomains: if check_ranges: if enumerate_flag: info(messages(language, "checking").format(target)) sub_domains = json.loads(open(subs_temp).read()) if len(open(subs_temp).read()) > 2 else \ __get_subs(target, 3, '', 0, language, 0, socks_proxy, 3, 0, 0) if len(open(subs_temp).read()) is 0: __log_into_file(subs_temp, 'a', json.dumps( sub_domains), language) if target not in sub_domains: sub_domains.append(target) for target in sub_domains: if not enumerate_flag: info(messages(language, "target_submitted").format(target)) yield target n = 0 err = 0 IPs = [] while True: try: IPs.append(socket.gethostbyname(target)) err = 0 n += 1 if n is 12: break except: err += 1 if err is 3 or n is 12: break IPz = list(set(IPs)) for IP in IPz: if not enumerate_flag: info(messages(language, "checking_range").format(IP)) IPs = IPRange(getIPRange(IP), range_temp, language) if type(IPs) == netaddr.ip.IPNetwork: for IPm in IPs: yield IPm elif type(IPs) == list: for IPm in IPs: for IPn in IPm: yield IPn else: if enumerate_flag: info(messages(language, "checking").format(target)) sub_domains = json.loads(open(subs_temp).read()) if len(open(subs_temp).read()) > 2 else \ __get_subs(target, 3, '', 0, language, 0, socks_proxy, 3, 0, 0) if len(open(subs_temp).read()) is 0: __log_into_file(subs_temp, 'a', json.dumps( sub_domains), language) if target not in sub_domains: sub_domains.append(target) for target in sub_domains: if not enumerate_flag: info(messages(language, "target_submitted").format(target)) yield target else: if check_ranges: if not enumerate_flag: info(messages(language, "checking").format(target)) yield target n = 0 err = 0 IPs = [] while True: try: IPs.append(socket.gethostbyname(target)) err = 0 n += 1 if n is 12: break except: err += 1 if err is 3 or n is 12: break IPz = list(set(IPs)) for IP in IPz: if not enumerate_flag: info(messages(language, "checking_range").format(IP)) IPs = IPRange(getIPRange(IP), range_temp, language) if type(IPs) == netaddr.ip.IPNetwork: for IPm in IPs: yield IPm elif type(IPs) == list: for IPm in IPs: for IPn in IPm: yield IPn else: if not enumerate_flag: info(messages(language, "target_submitted").format(target)) yield target elif target_type(target) == 'HTTP': if not enumerate_flag: info(messages(language, "checking").format(target)) yield target if check_ranges: if 'http://' == target[:7].lower(): target = target[7:].rsplit('/')[0] if 'https://' == target[:8].lower(): target = target[8:].rsplit('/')[0] yield target IPs = [] while True: try: IPs.append(socket.gethostbyname(target)) err = 0 n += 1 if n is 12: break except: err += 1 if err is 3 or n is 12: break IPz = list(set(IPs)) for IP in IPz: if not enumerate_flag: info(messages(language, "checking_range").format(IP)) IPs = IPRange(getIPRange(IP), range_temp, language) if type(IPs) == netaddr.ip.IPNetwork: for IPm in IPs: yield IPm elif type(IPs) == list: for IPm in IPs: for IPn in IPm: yield IPn else: __die_failure(messages(language, "unknown_target").format(target))
40.203187
110
0.440591
844542e302f02a2c57d4dd9620f574b9fd7f750e
1,541
py
Python
items.py
q6806161/-_scrapy-
281463018530fd519843a7994c9219f126194675
[ "MIT" ]
null
null
null
items.py
q6806161/-_scrapy-
281463018530fd519843a7994c9219f126194675
[ "MIT" ]
null
null
null
items.py
q6806161/-_scrapy-
281463018530fd519843a7994c9219f126194675
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Define here the models for your scraped items # # See documentation in: # https://doc.scrapy.org/en/latest/topics/items.html import scrapy class HouseInfoItem(scrapy.Item): # define the fields for your item here like: City = scrapy.Field() # 城市 Item_Url = scrapy.Field() # 对应网址 House_Title = scrapy.Field() # 租房标题 Rent_Style = scrapy.Field() # 整租或合租 Rent_Salary = scrapy.Field() # 租金 House_Type = scrapy.Field() # 户型 House_Area = scrapy.Field() # 房间面积 Rouse_Direction = scrapy.Field() # 朝向 Floor = scrapy.Field() # 楼层 Decoration = scrapy.Field() # 装修 House_Kind = scrapy.Field() # 房子类型 Community = scrapy.Field() # 小区 House_Equipment = scrapy.Field() # 房间配套 House_Description = scrapy.Field() # 房源概况 Agent_Name = scrapy.Field() # 中介名称 Agent_Level = scrapy.Field() # 中介星级(打败同业人员多少percent) House_Score = scrapy.Field() # 房源评分 Service_Score = scrapy.Field() # 中介服务评分 Evaluation_Score = scrapy.Field() # 用户评价 Agent_Company = scrapy.Field() # 中介公司 Branch_Office = scrapy.Field() # 所处分公司 Company_License = scrapy.Field() # 公司营业执照号 Publish_Date = scrapy.Field() # 发布时间 Font_Url = scrapy.Field() # 字符替换url Elevator = scrapy.Field() # 有无电梯 Subway = scrapy.Field() # 地铁 District = scrapy.Field() # 城市区域 pass
37.585366
63
0.5756
e7a912cb274237c7758bb4d36156942f1cda107f
149
py
Python
mypower/matpower_ported/most/lib/t/test_most.py
yasirroni/mypower
123c2d3380bf5f753a479c35e7b5cbafc82a8ebc
[ "Apache-2.0" ]
2
2020-08-08T15:13:49.000Z
2021-01-04T07:21:29.000Z
mypower/matpower_ported/most/lib/t/test_most.py
yasirroni/mypower
123c2d3380bf5f753a479c35e7b5cbafc82a8ebc
[ "Apache-2.0" ]
null
null
null
mypower/matpower_ported/most/lib/t/test_most.py
yasirroni/mypower
123c2d3380bf5f753a479c35e7b5cbafc82a8ebc
[ "Apache-2.0" ]
1
2020-08-08T15:14:17.000Z
2020-08-08T15:14:17.000Z
def test_most(*args,nout=1,oc=None): if oc == None: from .....oc_api import oc_matpower oc = oc_matpower() return oc.test_most(*args,nout=nout)
24.833333
37
0.697987
5e6153f130a7b9bde23586c05ceef1cf7ce241c1
3,785
py
Python
unterwegs/utils/pages.py
mountain/unterwegs
fe84ef366b278382f7589fc21d3442ffd9db530f
[ "MIT" ]
7
2020-11-03T11:28:22.000Z
2021-01-11T04:10:55.000Z
unterwegs/utils/pages.py
mountain/unterwegs
fe84ef366b278382f7589fc21d3442ffd9db530f
[ "MIT" ]
1
2020-11-06T01:59:36.000Z
2021-04-29T13:51:56.000Z
unterwegs/utils/pages.py
mountain/unterwegs
fe84ef366b278382f7589fc21d3442ffd9db530f
[ "MIT" ]
null
null
null
import orjson as json from unterwegs.utils.db import ts, rd, rn, rc from zlib import decompress, compress def search_result(q): ckey = 'search:%s' % q result = rc.get(ckey) if result is not None: result = json.loads(decompress(result)) else: result = ts.collections['pages'].documents.search({ 'q': q, 'per_page': 200, 'query_by': 'content', 'sort_by': '_text_match:desc', 'include_fields': 'id,article', 'drop_tokens_threshold': 0, 'typo_tokens_threshold': 0, 'highlight_affix_num_tokens': 50, }) rc.set(ckey, compress(json.dumps(result))) rc.expire(ckey, 3600) return result def frquency_analyze(q, hits): ckey = 'frequency:%s' % q result = rc.get(ckey) if result is not None: result = json.loads(decompress(result)) else: nkey = 'freq:%s' % q keys = ['bow:%s' % doc['document']['id'] for doc in hits] rn.zunionstore(nkey, keys, 'SUM') rn.expire(nkey, 3600) freq = rn.zrange(nkey, 0, -1, desc=True, withscores=True) total = sum([v for k, v in freq]) result = [{"index": ix, "term": f[0].decode('utf-8'), "total": f[1] / total} for ix, f in enumerate(freq) if ix < 300] rc.set(ckey, compress(json.dumps(result))) rc.expire(ckey, 3600) return result def frequency_of(q, pid, hits): ckey = 'bagofwords:%s:%s' % (q, pid) result = rc.get(ckey) if result is not None: result = json.loads(decompress(result)) else: nkey = 'bow:%s' % pid freq = rn.zrange(nkey, 0, -1, desc=True, withscores=True) total = sum([v for k, v in freq]) freq = {k.decode('utf-8'): v / total for k, v in freq} base = frquency_analyze(q, hits) result = [] for item in base: ix, term, total = item['index'], item['term'], item['total'] if term in freq: result.append({"index": ix, "term": term, "total": total, "page": freq[term]}) rc.set(ckey, compress(json.dumps(result))) rc.expire(ckey, 3600) return result def coocurrence_nodes(q, hits): ckey = 'nodes:%s' % q result = rc.get(ckey) if result is not None: result = json.loads(decompress(result)) else: result = [] for ix, hit in enumerate(hits): pid = hit['document']['id'] fid = rd.get('articleOf:page:%s' % pid) fid = fid.decode('utf-8') if fid else 'None' result.append({"name": pid, "group": fid, "index": ix, 'highlight': hit['highlights'][0]['snippet']}) rc.set(ckey, compress(json.dumps(result))) rc.expire(ckey, 3600) return result def coocurrence_links(q, hits): ckey = 'links:%s' % q result = rc.get(ckey) if result is not None: result = json.loads(decompress(result)) else: result = [] total, avg = 0, 0 for ix, ih in enumerate(hits): src = ih['document']['id'] for jx, jh in enumerate(hits): tgt = jh['document']['id'] if ix != jx: skey, tkey, dkey = 'bow:%s' % src, 'bow:%s' % tgt, 'coocur:%s:%s' % (src, tgt) if not rn.exists(dkey): cnt = rn.zinterstore(dkey, [skey, tkey], 'MIN') rn.expire(dkey, 3600 * 24 * 7) else: cnt = rn.zcard(dkey) if cnt > 0: total += cnt result.append({"source": ix, "target": jx, "value": int(cnt)}) rc.set(ckey, compress(json.dumps(result))) rc.expire(ckey, 3600) return result
33.201754
126
0.523118
74ec62f02b7abe41ce56cce60ee3184b3163d19f
2,530
py
Python
app/recipe/tests/test_tags_api.py
bl4ck4ndbr0wn/recipe-api
0ff03ea2c62a6ec47396c3aaccb25279b4375edf
[ "MIT" ]
null
null
null
app/recipe/tests/test_tags_api.py
bl4ck4ndbr0wn/recipe-api
0ff03ea2c62a6ec47396c3aaccb25279b4375edf
[ "MIT" ]
null
null
null
app/recipe/tests/test_tags_api.py
bl4ck4ndbr0wn/recipe-api
0ff03ea2c62a6ec47396c3aaccb25279b4375edf
[ "MIT" ]
null
null
null
from django.contrib.auth import get_user_model from django.urls import reverse from django.test import TestCase from rest_framework import status from rest_framework.test import APIClient from core.models import Tag from recipe.serializers import TagSerializer TAGS_URL = reverse('recipe:tag-list') class PublicTagsApiTests(TestCase): """Test thae publicly available tags API""" def setUp(self): self.client = APIClient() def test_login_required(self): """Test tha login is required for retrieving tags""" res = self.client.get(TAGS_URL) self.assertEqual(res.status_code, status.HTTP_401_UNAUTHORIZED) class PrivateTagsApiTests(TestCase): """Test the authorized tags API""" def setUp(self): self.user = get_user_model().objects.create_user( 'test@gmail.com', 'testPass' ) self.client = APIClient() self.client.force_authenticate(self.user) def test_retieve_tags(self): """Test retrieve tags""" Tag.objects.create(user=self.user, name='Vegan') Tag.objects.create(user=self.user, name='Dessert') res = self.client.get(TAGS_URL) tags = Tag.objects.all().order_by('-name') serializer = TagSerializer(tags, many=True) self.assertEqual(res.status_code, status.HTTP_200_OK) self.assertEqual(res.data, serializer.data) def test_tags_limited_to_user(self): """Test that that tag returned are for the authenticated user""" user2 = get_user_model().objects.create_user( 'other@gmail.com', 'testPass' ) Tag.objects.create(user=user2, name='Fruity') tag = Tag.objects.create(user=self.user, name='Comfort Food') res = self.client.get(TAGS_URL) self.assertEqual(res.status_code, status.HTTP_200_OK) self.assertEqual(len(res.data), 1) self.assertEqual(res.data[0]['name'], tag.name) def test_create_tag_successfull(self): """test create a new Tag""" payload = {"name": "test tag"} self.client.post(TAGS_URL, payload) exist = Tag.objects.filter( user = self.user, name = payload['name'] ).exists() self.assertTrue(exist) def test_create_tag_invalid(self): """Test creating anew tag with invalid payload""" payload = {'name':''} res = self.client.post(TAGS_URL, payload) self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST)
29.418605
72
0.651383
d100fa9a32b5e8b1cc478e2734d1a018dfa2831f
181
py
Python
blog/urls.py
Ellena45/template-python-django
87819a83ba256f9277610df4b878bd73ae52febc
[ "MIT" ]
null
null
null
blog/urls.py
Ellena45/template-python-django
87819a83ba256f9277610df4b878bd73ae52febc
[ "MIT" ]
null
null
null
blog/urls.py
Ellena45/template-python-django
87819a83ba256f9277610df4b878bd73ae52febc
[ "MIT" ]
null
null
null
from django.urls import path from .import views app_name='blog' urlpatterns = [ path('',views.index, name='index'), path('timeline/',views.timeline_view,name='timeline'), ]
22.625
58
0.701657
ce1bf58a602fe07f8df73be8fbe01c8b343c569d
4,869
py
Python
built-in/TensorFlow/Research/reinforcement-learning/ModelZoo_PPO_TensorFlow/rl/xt/environment/dst/digital_sky.py
Huawei-Ascend/modelzoo
df51ed9c1d6dbde1deef63f2a037a369f8554406
[ "Apache-2.0" ]
null
null
null
built-in/TensorFlow/Research/reinforcement-learning/ModelZoo_PPO_TensorFlow/rl/xt/environment/dst/digital_sky.py
Huawei-Ascend/modelzoo
df51ed9c1d6dbde1deef63f2a037a369f8554406
[ "Apache-2.0" ]
3
2021-03-31T20:15:40.000Z
2022-02-09T23:50:46.000Z
built-in/TensorFlow/Research/reinforcement-learning/ModelZoo_PPO_TensorFlow/rl/xt/environment/dst/digital_sky.py
Huawei-Ascend/modelzoo
df51ed9c1d6dbde1deef63f2a037a369f8554406
[ "Apache-2.0" ]
null
null
null
""" digital sky game environment """ import numpy as np from gym import spaces from xt.environment.dst.external_env import ExternalEnv from xt.environment.dst.state_transform import get_preprocessor from xt.framework.register import Registers observation_space = spaces.Dict({ "self_health": spaces.Box(0, 1000, (1, )), "self_shield": spaces.Box(0, 100, (1, )), "self_shield_cd": spaces.Box(0, 100, (1, )), "self_shield_state": spaces.Box(0, 10, (4, )), "self_parry_range": spaces.Box(0, 100, (1, )), "self_x": spaces.Box(-np.inf, np.inf, (1, )), "self_y": spaces.Box(-np.inf, np.inf, (1, )), "self_z": spaces.Box(-np.inf, np.inf, (1, )), "self_heading_x": spaces.Box(-np.inf, np.inf, (1, )), "self_heading_y": spaces.Box(-np.inf, np.inf, (1, )), "self_heading_z": spaces.Box(-np.inf, np.inf, (1, )), "self_state": spaces.Discrete(101), "self_CurrentHurtCount": spaces.Box(0, 100, (1, )), "self_MaxHurtCount": spaces.Box(0, 100, (1, )), "self_CurrentParryCountInDefence": spaces.Box(0, 100, (1, )), "self_ParryCountInDefence": spaces.Box(0, 100, (1, )), "self_Teleport_cd": spaces.Box(0, 100, (1, )), "self_in_air": spaces.Discrete(2), "opponent_health": spaces.Box(0, 1000, (1, )), "opponent_shield": spaces.Box(0, 100, (1, )), "opponent_shield_cd": spaces.Box(0, 100, (1, )), "opponent_shield_state": spaces.Box(0, 10, (4, )), "opponent_parry_range": spaces.Box(0, 100, (1, )), "opponent_x": spaces.Box(-np.inf, np.inf, (1, )), "opponent_y": spaces.Box(-np.inf, np.inf, (1, )), "opponent_z": spaces.Box(-np.inf, np.inf, (1, )), "opponent_heading_x": spaces.Box(-np.inf, np.inf, (1, )), "opponent_heading_y": spaces.Box(-np.inf, np.inf, (1, )), "opponent_heading_z": spaces.Box(-np.inf, np.inf, (1, )), "opponent_state": spaces.Discrete(101), "opponent_CurrentHurtCount": spaces.Box(0, 200, (1, )), "opponent_MaxHurtCount": spaces.Box(0, 100, (1, )), "opponent_CurrentParryCountInDefence": spaces.Box(0, 100, (1, )), "opponent_ParryCountInDefence": spaces.Box(0, 100, (1, )), "opponent_Teleport_cd": spaces.Box(0, 100, (1, )), "opponent_in_air": spaces.Discrete(2), }) @Registers.env class DigitalSky(ExternalEnv): """ DigitalSky server class """ def transfer_state(self, state, *args): """ transform state """ state_dict = {} state_dict["self_health"] = np.array([state[0]]) state_dict["self_shield"] = np.array([state[1]]) state_dict["self_shield_cd"] = np.array([state[2]]) state_dict["self_shield_state"] = np.array(state[3:7]) state_dict["self_parry_range"] = np.array([state[7]]) state_dict["self_x"] = np.array([state[8]]) state_dict["self_y"] = np.array([state[9]]) state_dict["self_z"] = np.array([state[10]]) state_dict["self_heading_x"] = np.array([state[11]]) state_dict["self_heading_y"] = np.array([state[12]]) state_dict["self_heading_z"] = np.array([state[13]]) state_dict["self_state"] = np.array(state[14]) state_dict["self_CurrentHurtCount"] = np.array([state[15]]) state_dict["self_MaxHurtCount"] = np.array([state[16]]) state_dict["self_CurrentParryCountInDefence"] = np.array([state[17]]) state_dict["self_ParryCountInDefence"] = np.array([state[18]]) state_dict["self_Teleport_cd"] = np.array([state[19]]) state_dict["self_in_air"] = np.array(int(state[20] == 'true')) state_dict["opponent_health"] = np.array([state[21]]) state_dict["opponent_shield"] = np.array([state[22]]) state_dict["opponent_shield_cd"] = np.array([state[23]]) state_dict["opponent_shield_state"] = np.array(state[24:28]) state_dict["opponent_parry_range"] = np.array([state[28]]) state_dict["opponent_x"] = np.array([state[29]]) state_dict["opponent_y"] = np.array([state[30]]) state_dict["opponent_z"] = np.array([state[31]]) state_dict["opponent_heading_x"] = np.array([state[32]]) state_dict["opponent_heading_y"] = np.array([state[33]]) state_dict["opponent_heading_z"] = np.array([state[34]]) state_dict["opponent_state"] = np.array(state[35]) state_dict["opponent_CurrentHurtCount"] = np.array([state[36]]) state_dict["opponent_MaxHurtCount"] = np.array([state[37]]) state_dict["opponent_CurrentParryCountInDefence"] = np.array([state[38]]) state_dict["opponent_ParryCountInDefence"] = np.array([state[39]]) state_dict["opponent_Teleport_cd"] = np.array([state[40]]) state_dict["opponent_in_air"] = np.array(int(state[41] == 'true')) processor = get_preprocessor(observation_space)(observation_space) state = processor.transform(state_dict) return state
47.735294
81
0.633395
09119ac8c2c3831ba156ab2e3bb2b28ab116c6d1
5,683
py
Python
comp0037_explorer/src/comp0037_explorer/explorer_node_WFD_base.py
Yun5141/0037-assignment2
b95627e181ee4d46ec6193aad950094de0628de4
[ "BSD-3-Clause" ]
null
null
null
comp0037_explorer/src/comp0037_explorer/explorer_node_WFD_base.py
Yun5141/0037-assignment2
b95627e181ee4d46ec6193aad950094de0628de4
[ "BSD-3-Clause" ]
null
null
null
comp0037_explorer/src/comp0037_explorer/explorer_node_WFD_base.py
Yun5141/0037-assignment2
b95627e181ee4d46ec6193aad950094de0628de4
[ "BSD-3-Clause" ]
null
null
null
import rospy from explorer_node_base import ExplorerNodeBase from nav_msgs.msg import Odometry # Part 2.3 # This class is a base class implementing the wave front detection # refering the seudocode in the suggested paper 'Frontier Based Exploration for Autonomous Robot' class ExplorerNodeWFDBase(ExplorerNodeBase): def __init__(self): self.blackList = [] # to get self position for searching the frontiers self.searchStartCell = None # search start cell / current cell coords self.position = None # for wave frontier detection self.frontierList = [] self.initFrontierInfo() ExplorerNodeBase.__init__(self) # not sure but has to be put here, or it can't find the above two attributes self.current_pose_subscriber = rospy.Subscriber('/robot0/odom', Odometry, self.current_pose_callback) # pose callback to get self cell position def current_pose_callback(self, data): pose = data.pose.pose pos = pose.position try: self.occupancyGrid except AttributesError: return position = self.occupancyGrid.getCellCoordinatesFromWorldCoordinates((pos.x,pos.y)) self.position = position # if a goal is found unreachable, add it to the blacklist def destinationReached(self, goal, goalReached): if goalReached is False: # print 'Adding ' + str(goal) + ' to the naughty step' self.blackList.append(goal) # ------------------------------------ def initFrontierInfo(self): rospy.loginfo("Clearing old frontier info") self.frontierList = [] def isInBoundary(self, cell): width, height = self.occupancyGrid.getWidthInCells(), self.occupancyGrid.getHeightInCells() return cell[0] in range(0,width) and cell[1] in range(0,height) def isEmptyCell(self, cell): return self.occupancyGrid.getCell(cell[0], cell[1]) == 0.0 def getNeighbours(self, centerCell): offset = [-1,0,1] offset2 = [[offsetX,offsetY] for offsetX in offset for offsetY in offset] l = [[centerCell[0] + offsetX, centerCell[1] + offsetY] \ for offsetX, offsetY in offset2 \ if not [offsetX, offsetY] == [0,0]] l = filter(lambda x:self.isInBoundary(x),l) return l def hasAtLeastOneOpenNeighbours(self, cell): for neighbours in self.getNeighbours(cell): if self.isInBoundary(neighbours) and self.isEmptyCell(neighbours): return True # breadth first search, starting with self position def searchFrontiers(self,searchStartCell,frontierList): currentCell = searchStartCell waitingList = [searchStartCell] visitedList = [] while len(waitingList) != 0: currentCell = waitingList.pop(0) if currentCell in visitedList or currentCell in self.blackList: continue if self.isFrontierCell(currentCell[0], currentCell[1]): currentPotentialFrontier = currentCell waitingPotentialFrontierList = [currentCell] while len(waitingPotentialFrontierList) != 0: currentPotentialFrontier = waitingPotentialFrontierList.pop(0) if currentPotentialFrontier in visitedList or currentPotentialFrontier in self.blackList: continue if self.isFrontierCell(currentPotentialFrontier[0], currentPotentialFrontier[1]): frontierList.append(currentPotentialFrontier) for neighbours in self.getNeighbours(currentPotentialFrontier): if neighbours not in visitedList: waitingPotentialFrontierList.append(neighbours) visitedList.append(currentPotentialFrontier) for neighbours in self.getNeighbours(currentCell): if neighbours not in waitingList and neighbours not in visitedList and self.hasAtLeastOneOpenNeighbours(neighbours): waitingList.append(neighbours) visitedList.append(currentCell) return frontierList def getArbitraryFreeCell(self): rospy.loginfo("initial search start cell is None\n") width, height = self.occupancyGrid.getWidthInCells(), \ self.occupancyGrid.getHeightInCells() cellMatrix = [[x,y] for x in range(0, width) for y in range(0, height)] return filter(lambda cell : self.isEmptyCell(cell), cellMatrix)[0] def checkSelfPosition(self): if not self.searchStartCell: self.searchStartCell = self.getArbitraryFreeCell() if not self.position: self.position = self.searchStartCell return self.position # wave front detection, using the current self cell position as the search start cell def updateFrontiers(self): rospy.loginfo("Update frontiers") rospy.loginfo("clearing old info") self.initFrontierInfo() searchStartCell = self.checkSelfPosition() rospy.loginfo("search start cell: (%d, %d)\n",searchStartCell[0],searchStartCell[1]) frontierList = self.searchFrontiers(searchStartCell, []) if len(frontierList) != 0: # remove unwanted entry self.frontierList = filter(lambda x : x not in self.blackList, frontierList) return True else: return False
36.664516
132
0.626782
e11d7b213469d833c5031bbadcb293907ca8d01e
3,390
py
Python
django/tiantian/tiantian/settings.py
zhang15780/web_project
820708ae68f4d1bc06cdde4a86e40a5457c11df8
[ "Apache-2.0" ]
null
null
null
django/tiantian/tiantian/settings.py
zhang15780/web_project
820708ae68f4d1bc06cdde4a86e40a5457c11df8
[ "Apache-2.0" ]
null
null
null
django/tiantian/tiantian/settings.py
zhang15780/web_project
820708ae68f4d1bc06cdde4a86e40a5457c11df8
[ "Apache-2.0" ]
null
null
null
""" Django settings for tiantian project. Generated by 'django-admin startproject' using Django 1.11. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'e1wy)!ga02f#fd^=%8drrc*dhfy%*02=01jv86*=jjd=k7w(5m' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['*'] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'goods', 'carts', 'users', 'order', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'utils.usermiddleware.AuthMiddleware', ] ROOT_URLCONF = 'tiantian.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')] , 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'tiantian.wsgi.application' # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME': 'tiantian', 'HOST': '47.106.81.203', 'USER': 'root', 'PASSWORD': 'admin@123', 'PORT': '3306', } } # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'Asia/Shanghai' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS = [ os.path.join(BASE_DIR, 'static') ]
26.904762
91
0.682596
4a111e481264ea2f2f7c1097aa1a982cdab129e2
473
py
Python
platform/core/polyaxon/administration/__init__.py
hackerwins/polyaxon
ff56a098283ca872abfbaae6ba8abba479ffa394
[ "Apache-2.0" ]
null
null
null
platform/core/polyaxon/administration/__init__.py
hackerwins/polyaxon
ff56a098283ca872abfbaae6ba8abba479ffa394
[ "Apache-2.0" ]
null
null
null
platform/core/polyaxon/administration/__init__.py
hackerwins/polyaxon
ff56a098283ca872abfbaae6ba8abba479ffa394
[ "Apache-2.0" ]
null
null
null
from hestia.service_interface import LazyServiceWrapper from django.conf import settings from administration.service import AdminService def get_admin_backend(): return settings.ADMIN_BACKEND or 'administration.service.AdminService' def get_admin_options(): return {'models': settings.ADMIN_MODELS} backend = LazyServiceWrapper( backend_base=AdminService, backend_path=get_admin_backend(), options=get_admin_options() ) backend.expose(locals())
21.5
74
0.79704
422e7024e12141476d31715f4b192b7dc6feab18
6,253
py
Python
tests/test_routes_artist.py
purwin/Parks-Database
98cb06dbfacf73c300f32d55f0872fb63ff4a906
[ "MIT" ]
null
null
null
tests/test_routes_artist.py
purwin/Parks-Database
98cb06dbfacf73c300f32d55f0872fb63ff4a906
[ "MIT" ]
2
2021-03-09T19:47:01.000Z
2022-02-10T19:41:33.000Z
tests/test_routes_artist.py
purwin/Parks-Database
98cb06dbfacf73c300f32d55f0872fb63ff4a906
[ "MIT" ]
null
null
null
import unittest from flask import request from app import db from app.parks_db import Artist from base import BaseTests class TestRoutesArtist(BaseTests): default_artist = dict( pName='Person', fName='Cool', email='cool_person@website.com', phone='555-345-5678', website='www.party.com' ) @staticmethod def create_artist(**kwargs): """ Static method to add artist class object to database Takes the following string args: pName, fName, email, phone, website Adds class to Artist database, commits session, and flushes to get id val Returns the created class instance """ artist = Artist(**kwargs) db.session.add(artist) db.session.commit() db.session.flush() return artist # Test artists page not logged in def test_invalid_artists_not_logged_in(self): with self.app: response = self.app.get('/artists', follow_redirects=True) req = request.url self.assertIn(b'/login', req) self.assertEqual(response.status_code, 200) # Test artists page logged in def test_valid_artists_logged_in(self): with self.app as c: with c.session_transaction() as sess: sess['url'] = '/' self.login() response = self.app.get('/artists', follow_redirects=True) req = request.url self.assertIn(b'/artists', req) self.assertEqual(response.status_code, 200) # Test artist page not logged in def test_invalid_artist_not_logged_in(self): artist = self.default_artist # Add artist to database self.create_artist(**artist) with self.app: response = self.app.get('/artists/1', follow_redirects=True) req = request.url self.assertIn(b'/login', req) self.assertEqual(response.status_code, 200) # Test artist page logged in def test_valid_artist_logged_in(self): artist = self.default_artist # Add artist to database self.create_artist(**artist) with self.app as c: with c.session_transaction() as sess: sess['url'] = '/' self.login() response = self.app.get('/artists/1', follow_redirects=True) req = request.url self.assertIn(b'/artists/1', req) self.assertEqual(response.status_code, 200) # Test artist page with no artists def test_invalid_artist_no_artists(self): with self.app as c: with c.session_transaction() as sess: sess['url'] = '/' self.login() response = self.app.get('/artists/1', follow_redirects=True) req = request.url self.assertIn(b'/artists/1', req) self.assertEqual(response.status_code, 404) # Test GET artist CREATE page def test_invalid_artist_create_get(self): with self.app: response = self.app.get('/artists/create', follow_redirects=True) self.assertIn('Method Not Allowed', response.data) self.assertEqual(response.status_code, 405) # Test artist CREATE page logged in def test_valid_artist_create_post(self): artist = self.default_artist with self.app as c: with c.session_transaction() as sess: sess['url'] = '/' self.login() response = self.app.post( '/artists/create', data=artist, follow_redirects=True ) self.assertIn('"success": true', response.data) self.assertEqual(response.status_code, 200) # Test artist CREATE page not logged in def test_invalid_artist_create_post(self): artist = self.default_artist with self.app as c: response = self.app.post( '/artists/create', data=artist, follow_redirects=True ) req = request.url self.assertIn(b'/login', req) self.assertEqual(response.status_code, 200) # Test POST artist EDIT page logged in def test_valid_artist_edit_post(self): artist = self.default_artist new_artist_fName = 'Cooler' # Add artist to database self.create_artist(**artist) with self.app as c: with c.session_transaction() as sess: sess['url'] = '/' self.login() response = self.app.post( '/artists/1/edit', data=dict( fName=new_artist_fName, pName=artist['pName'], email=artist['email'], phone=artist['phone'], website=artist['website'] ), follow_redirects=True ) self.assertIn('"success": true', response.data) self.assertIn(new_artist_fName, response.data) self.assertEqual(response.status_code, 200) # Test POST artist EDIT page not logged in def test_invalid_artist_edit_post(self): artist = self.default_artist new_artist_fName = 'Cooler' # Add artist to database self.create_artist(**artist) with self.app as c: response = self.app.post( '/artists/1/edit', data=dict( fName=new_artist_fName, pName=artist['pName'], email=artist['email'], phone=artist['phone'], website=artist['website'] ), follow_redirects=True ) req = request.url self.assertIn(b'/login', req) self.assertEqual(response.status_code, 200) # Test artist DELETE page logged in def test_valid_artist_delete_post(self): artist = self.default_artist # Add artist to database self.create_artist(**artist) with self.app as c: with c.session_transaction() as sess: sess['url'] = '/' self.login() response = self.app.post( '/artists/1/delete', follow_redirects=True ) req = request.url retry = self.app.get( '/artists/1', follow_redirects=True ) self.assertIn('/artists', req) self.assertEqual(response.status_code, 200) self.assertEqual(retry.status_code, 404) # Test artist DELETE page not logged in def test_invalid_artist_delete_post(self): artist = self.default_artist # Add artist to database self.create_artist(**artist) with self.app as c: response = self.app.post( '/artists/1/delete', follow_redirects=True ) req = request.url self.assertIn(b'/login', req) self.assertEqual(response.status_code, 200)
25.73251
77
0.641132
aea4b7b422ea022c7bda6c88084cad070e832762
1,134
py
Python
samples/openapi3/client/features/dynamic-servers/python-experimental/setup.py
therockstorm/openapi-generator
01d0b5d4780ebe2d6025e2b443ec136c6ce16c45
[ "Apache-2.0" ]
3
2021-04-09T01:04:32.000Z
2022-02-02T11:02:22.000Z
samples/openapi3/client/features/dynamic-servers/python-experimental/setup.py
therockstorm/openapi-generator
01d0b5d4780ebe2d6025e2b443ec136c6ce16c45
[ "Apache-2.0" ]
10
2021-03-09T14:12:46.000Z
2022-02-27T11:42:16.000Z
samples/openapi3/client/features/dynamic-servers/python-experimental/setup.py
therockstorm/openapi-generator
01d0b5d4780ebe2d6025e2b443ec136c6ce16c45
[ "Apache-2.0" ]
5
2020-11-26T05:13:41.000Z
2021-04-09T15:58:18.000Z
# coding: utf-8 """ OpenAPI Extension with dynamic servers This specification shows how to use dynamic servers. # noqa: E501 The version of the OpenAPI document: 1.0.0 Generated by: https://openapi-generator.tech """ from setuptools import setup, find_packages # noqa: H301 NAME = "dynamic-servers" VERSION = "1.0.0" # To install the library, run the following # # python setup.py install # # prerequisite: setuptools # http://pypi.python.org/pypi/setuptools REQUIRES = [ "urllib3 >= 1.15", "certifi", "python-dateutil", "nulltype", ] setup( name=NAME, version=VERSION, description="OpenAPI Extension with dynamic servers", author="OpenAPI Generator community", author_email="team@openapitools.org", url="", keywords=["OpenAPI", "OpenAPI-Generator", "OpenAPI Extension with dynamic servers"], python_requires=">=3.5", install_requires=REQUIRES, packages=find_packages(exclude=["test", "tests"]), include_package_data=True, license="Apache-2.0", long_description="""\ This specification shows how to use dynamic servers. # noqa: E501 """ )
23.625
88
0.687831
8be087faead54fa09f244c7fca0b6fef62da54d5
5,604
py
Python
test/test_simulate.py
bmkramer/automated-systematic-review
f99079926f381bc7895ff6fefa9e6e729a2c26b8
[ "Apache-2.0" ]
1
2021-01-22T15:18:33.000Z
2021-01-22T15:18:33.000Z
test/test_simulate.py
bmkramer/automated-systematic-review
f99079926f381bc7895ff6fefa9e6e729a2c26b8
[ "Apache-2.0" ]
null
null
null
test/test_simulate.py
bmkramer/automated-systematic-review
f99079926f381bc7895ff6fefa9e6e729a2c26b8
[ "Apache-2.0" ]
null
null
null
import os from shutil import copyfile import numpy as np from asreview.logging import open_logger from asreview.review.factory import get_reviewer data_fp = os.path.join("test", "demo_data", "generic_labels.csv") embedding_fp = os.path.join("test", "demo_data", "generic.vec") cfg_dir = os.path.join("test", "cfg_files") log_dir = os.path.join("test", "log_files") h5_log_file = os.path.join(log_dir, "test.h5") json_log_file = os.path.join(log_dir, "test.json") def test_log_continue_json(): inter_file = os.path.join(log_dir, "test_1_inst.json") if not os.path.isfile(inter_file): reviewer = get_reviewer( data_fp, mode="simulate", model="nb", embedding_fp=embedding_fp, prior_included=[1, 3], prior_excluded=[2, 4], log_file=inter_file, n_instances=1, n_queries=1) reviewer.review() copyfile(inter_file, json_log_file) check_model(mode="simulate", model="nb", log_file=json_log_file, continue_from_log=True, n_instances=1, n_queries=2) def test_log_continue_h5(): inter_file = os.path.join(log_dir, "test_1_inst.h5") if not os.path.isfile(inter_file): reviewer = get_reviewer( data_fp, mode="simulate", model="nb", embedding_fp=embedding_fp, prior_included=[1, 3], prior_excluded=[2, 4], log_file=inter_file, n_instances=1, n_queries=1) reviewer.review() copyfile(inter_file, h5_log_file) check_model(mode="simulate", model="nb", log_file=h5_log_file, continue_from_log=True, n_instances=1, n_queries=2) def test_lstm_base(): check_model(mode="simulate", config_file=os.path.join(cfg_dir, "lstm_base.ini"), log_file=h5_log_file) def test_lstm_pool(): check_model(mode="simulate", config_file=os.path.join(cfg_dir, "lstm_pool.ini"), log_file=json_log_file) def test_nb(): check_model(mode="simulate", model="nb", log_file=None, use_granular=True, n_instances=1, n_queries=1) def test_svm(): check_model(mode="simulate", model="svm", log_file=json_log_file, use_granular=False, n_instances=1, n_queries=2) def test_rf(): check_model(mode="simulate", model="rf", log_file=json_log_file, use_granular=False, n_instances=1, n_queries=2) def test_nn_2_layer(): check_model(mode="simulate", model="nn-2-layer", log_file=json_log_file, n_instances=1, n_queries=2) def test_logistic(): check_model(mode="simulate", model="logistic", log_file=json_log_file, n_instances=1, n_queries=2) def check_label_methods(label_methods, n_labels, methods): assert len(label_methods) == n_labels for method in label_methods: assert method in methods def check_log(logger): check_label_methods(logger.get("label_methods", 0), 4, ["initial"]) check_label_methods(logger.get("label_methods", 1), 1, ["max", "random"]) check_label_methods(logger.get("label_methods", 2), 1, ["max", "random"]) assert len(logger.get("inclusions", 0)) == 4 assert len(logger.get("inclusions", 1)) == 1 assert len(logger.get("inclusions", 2)) == 1 assert len(logger.get("train_idx", 1)) == 4 assert len(logger.get("pool_idx", 1)) == 2 assert len(logger.get("train_idx", 2)) == 5 assert len(logger.get("pool_idx", 2)) == 1 assert len(logger.get("labels")) == 6 def check_model(monkeypatch=None, use_granular=False, log_file=h5_log_file, continue_from_log=False, mode="oracle", **kwargs): if not continue_from_log: try: if log_file is not None: os.unlink(log_file) except OSError: pass if monkeypatch is not None: monkeypatch.setattr('builtins.input', lambda _: "0") # start the review process. reviewer = get_reviewer(data_fp, mode=mode, embedding_fp=embedding_fp, prior_included=[1, 3], prior_excluded=[2, 4], log_file=log_file, **kwargs) if use_granular: with open_logger(log_file) as logger: # Two loops of training and classification. reviewer.train() reviewer.log_probabilities(logger) query_idx = reviewer.query(1) inclusions = reviewer._get_labels(query_idx) reviewer.classify(query_idx, inclusions, logger) reviewer.train() reviewer.log_probabilities(logger) query_idx = reviewer.query(1) inclusions = reviewer._get_labels(query_idx) reviewer.classify(query_idx, inclusions, logger) else: with open_logger(log_file) as logger: if log_file is None: logger.set_labels(reviewer.y) init_idx, init_labels = reviewer._prior_knowledge() reviewer.query_i = 0 reviewer.train_idx = np.array([], dtype=np.int) reviewer.classify(init_idx, init_labels, logger, method="initial") reviewer._do_review(logger) if log_file is None: print(logger._log_dict) check_log(logger) if log_file is not None: with open_logger(log_file, read_only=True) as logger: check_log(logger)
33.556886
78
0.611171