hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
455696f0c014cac3647a77723784dd28be19d946
7,915
py
Python
utils.py
nguyetn89/Gait-recognition-single-camera-for-MVLP
7511e04228ba5bcfe4a63b2656522e4290e8c635
[ "BSD-2-Clause" ]
2
2021-02-18T15:07:22.000Z
2021-06-02T13:26:19.000Z
utils.py
nguyetn89/Gait-recognition-single-camera-for-MVLP
7511e04228ba5bcfe4a63b2656522e4290e8c635
[ "BSD-2-Clause" ]
null
null
null
utils.py
nguyetn89/Gait-recognition-single-camera-for-MVLP
7511e04228ba5bcfe4a63b2656522e4290e8c635
[ "BSD-2-Clause" ]
null
null
null
""" Utilities for gait recognition Licence: BSD 2-Clause "Simplified" Author : Trong Nguyen Nguyen """ import torch import os import sys import re import numpy as np import torchvision.transforms as transforms from PIL import Image np.random.seed(3011) mean = torch.tensor([0.485, 0.456, 0.406]) std = torch.tensor([0.229, 0.224, 0.225]) tensor_normalize = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean=mean, std=std)]) # Class forming dataset helper # data access: self._data["train"/"test"]["probe"/"gallery"]["data"/"id"] (tensor) class MVLPdataset(torch.utils.data.Dataset): def __init__(self, GEI_path, angle, img_size): super().__init__() # set attributes self._GEI_path = GEI_path self._img_size = img_size self._Resizer = transforms.Resize(self._img_size, interpolation=2) self._angle = angle # for other functions accessing self._IDs = {"train": list(range(1, 10306, 2)), "test": list(range(2, 10307, 2)) + [10307]} self._common_ids_train = None self._indices_same_class = None self.data = {} # data for getting batch self.indices = {} # indices for getting batch self.labels = {} # labels for getting batch def get_available_test_IDs(self): return self.data["test"]["probe"]["id"] def _load_data_subset(self, path, IDs): loaded_data, loaded_ids = [], [] for id in IDs: if os.path.exists(path + "/%s.png" % str(id).zfill(5)): loaded_data.append(tensor_normalize(self._Resizer(Image.open(path + "/%s.png" % str(id).zfill(5))))) loaded_ids.append(id) print("loaded %d/%d GEIs" % (len(loaded_data), len(IDs))) return {"data": torch.cat(loaded_data, dim=0), "id": loaded_ids} def load_data(self, part): assert isinstance(part, str) and part in ("train", "test") out_file = os.path.join(self._GEI_path, "%s_%s_%d_x_%d.pt" % (str(self._angle).zfill(3), part, self._img_size[0], self._img_size[1])) if os.path.exists(out_file): self.data[part] = torch.load(out_file) else: self.data[part] = {} self.data[part]["probe"] = self._load_data_subset(self._GEI_path + "/%s-00" % str(self._angle).zfill(3), self._IDs[part]) self.data[part]["gallery"] = self._load_data_subset(self._GEI_path + "/%s-01" % str(self._angle).zfill(3), self._IDs[part]) torch.save(self.data[part], out_file) # mode: "train" or "test:an_ID_probe" def set_mode(self, mode): assert isinstance(mode, str) assert mode == "train" or (mode[:5] == "test:" and int(mode[5:]) in self.data["test"]["probe"]["id"]) self._mode = mode # indices["train"]["same_class"/"diff_class"]: list of (idx_probe, idx_gallery) def prepare_training_data(self, force_to_calc=False): if "train" not in self.indices or force_to_calc: if "train" not in self.data: self.load_data("train") # indices of same class GEI pairs (length = n) if self._common_ids_train is None or self._indices_same_class is None: self._common_ids_train = set(self.data["train"]["probe"]["id"]).intersection(self.data["train"]["gallery"]["id"]) idx_common_probe = [self.data["train"]["probe"]["id"].index(i) for i in self._common_ids_train] idx_common_gallery = [self.data["train"]["gallery"]["id"].index(i) for i in self._common_ids_train] self._indices_same_class = list(zip(idx_common_probe, idx_common_gallery)) # indices of the others (up to n) indices_diff_class = \ list(zip(np.random.permutation(np.arange(len(self.data["train"]["probe"]["id"])))[:len(self._common_ids_train)], np.random.permutation(np.arange(len(self.data["train"]["gallery"]["id"])))[:len(self._common_ids_train)])) # make sure two indices subsets are disjoint common_indices = set(self._indices_same_class).intersection(indices_diff_class) while len(common_indices) > 0: for common_idx in common_indices: indices_diff_class.remove(common_idx) indices_diff_class.append((np.random.randint(len(self.data["train"]["probe"]["id"])), np.random.randint(len(self.data["train"]["gallery"]["id"])))) common_indices = set(self._indices_same_class).intersection(indices_diff_class) # concat indices and generate labels labels_same_class = np.ones(len(self._indices_same_class), dtype=float) labels_diff_class = np.zeros(len(indices_diff_class), dtype=float) self.indices["train"] = np.array(self._indices_same_class + indices_diff_class, dtype=int) self.labels["train"] = np.array(list(labels_same_class) + list(labels_diff_class), dtype=float) permu = np.random.permutation(np.arange(len(self.labels["train"]))) self.indices["train"] = self.indices["train"][permu] self.labels["train"] = self.labels["train"][permu] assert len(np.unique(self.labels["train"])) == 2 else: print("Information of training part was already loaded -> skip this step") def __getitem__(self, index): if self._mode == "train": # get index sample_idx = self.indices["train"][index] assert len(sample_idx) == 2 # get corresponding data sample = torch.cat([torch.unsqueeze(self.data["train"]["probe"]["data"][sample_idx[0]], 0), torch.unsqueeze(self.data["train"]["gallery"]["data"][sample_idx[1]], 0)], dim=0) label = self.labels["train"][index] # assert isinstance(label, int) else: test_id = int(self._mode[5:]) sample_idx = self.data["test"]["probe"]["id"].index(test_id) sample = torch.cat([torch.unsqueeze(self.data["test"]["probe"]["data"][sample_idx], 0), torch.unsqueeze(self.data["test"]["gallery"]["data"][index], 0)], dim=0) label = int(test_id == self.data["test"]["gallery"]["id"][index]) return sample, label def __len__(self): if self._mode == "train": return len(self.indices["train"]) else: return len(self.data["test"]["gallery"]["id"]) # Modified from https://stackoverflow.com/questions/3160699/python-progress-bar class ProgressBar(object): DEFAULT = 'Progress: %(bar)s %(percent)3d%%' FULL = '%(bar)s %(current)d/%(total)d (%(percent)3d%%) %(remaining)d to go' def __init__(self, total, width=80, fmt=DEFAULT, symbol='#', output=sys.stderr): assert len(symbol) == 1 self.total = total self.width = width self.symbol = symbol self.output = output self.fmt = re.sub(r'(?P<name>%\(.+?\))d', r'\g<name>%dd' % len(str(total)), fmt) self.current = 0 def __call__(self, msg=''): percent = self.current / float(self.total) size = int(self.width * percent) remaining = self.total - self.current bar = '|' + self.symbol * size + '.' * (self.width - size) + '|' args = { 'total': self.total, 'bar': bar, 'current': self.current, 'percent': percent * 100, 'remaining': remaining } print('\r' + self.fmt % args + msg, file=self.output, end='') def done(self): self.current = self.total self() print('', file=self.output)
45.228571
135
0.582186
dc1f9a9fe1782b804d697d95f181d0dd396702d4
1,292
py
Python
main.py
hotchya/REST-pytorch
a6c8d03c07d3705a6110b29b381b04ed600296c1
[ "MIT" ]
null
null
null
main.py
hotchya/REST-pytorch
a6c8d03c07d3705a6110b29b381b04ed600296c1
[ "MIT" ]
1
2021-04-17T04:49:34.000Z
2021-04-17T04:57:42.000Z
main.py
hotchya/REST-pytorch
a6c8d03c07d3705a6110b29b381b04ed600296c1
[ "MIT" ]
null
null
null
import io import torch from torchvision import transforms from torchvision.transforms.transforms import Resize import models from PIL import Image from flask import Flask, render_template, request app = Flask (__name__) @app.route('/') def index(): return render_template('index.html') @app.route('/predict_mnist', methods=['POST']) def predict(): if request.method == 'POST': img = request.files['img'] img_bytes = img.read() result = mnist_predict(img_bytes) return str(result) def mnist_predict(img_bytes): img = Image.open(io.BytesIO(img_bytes)).convert('L') input_data = mnist_transform(img) input_data = input_data.unsqueeze(0) output = LeNet5_MNIST_model(input_data) result = int(torch.argmax(output)) return result if __name__=='__main__': ## set transform mnist_transform = transforms.Compose([ transforms.ToTensor(), transforms.Resize((28,28)), transforms.Normalize((0.5,), (0.5,)) ]) ## load model LeNet5_MNIST_model = models.LeNet5() LeNet5_MNIST_model.load_state_dict(torch.load('./saved_models/LeNet5.MNIST.pth.tar',map_location=torch.device('cpu' if torch.cuda.is_available else 'cuda'))['model_state_dict']) LeNet5_MNIST_model.eval() ## run server app.run(debug=True)
30.761905
181
0.70743
a5318d578942bf7589f8b01a56f5cc5deb378af2
423
py
Python
manage.py
NgugiMuthoni/The-news
3e2970e33e1d3e26becabf397ac5df20d33f9846
[ "Unlicense" ]
3
2018-10-03T07:59:18.000Z
2020-02-06T19:25:57.000Z
manage.py
Evohmike/News-Highlights
6f93fba34672bb3619df929561a44068edf887cc
[ "MIT" ]
null
null
null
manage.py
Evohmike/News-Highlights
6f93fba34672bb3619df929561a44068edf887cc
[ "MIT" ]
null
null
null
from app import create_app from flask_script import Manager, Server # create app instance app = create_app('production') manager = Manager(app) manager.add_command('server', Server) @manager.command def test(): ''' Runs the unittest ''' import unittest tests = unittest.TestLoader().discover('test') unittest.TextTestRunner(verbosity=2).run(tests) if __name__ == '__main__': manager.run()
18.391304
51
0.704492
0b9ed88272afbc8b940310a183b386d9416dbd87
1,173
py
Python
caproto_sandbox/io_camera_client.py
vstadnytskyi/caproto-sandbox
712d44a15770b0a51503fba1068a68b3286d8ee5
[ "BSD-3-Clause" ]
null
null
null
caproto_sandbox/io_camera_client.py
vstadnytskyi/caproto-sandbox
712d44a15770b0a51503fba1068a68b3286d8ee5
[ "BSD-3-Clause" ]
11
2019-10-08T18:37:08.000Z
2020-05-01T20:18:42.000Z
caproto_sandbox/io_camera_client.py
vstadnytskyi/caproto-sandbox
712d44a15770b0a51503fba1068a68b3286d8ee5
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ """ from logging import debug,warn,info,error import epics from time import time from caproto.threading.client import Context from pdb import pm default_prefix='camera:' print('epics Client') image = epics.PV(pvname = default_prefix+'image', connection_timeout = 20) t1 = time() def image_get(): """ I have created this fucntion to simplify the call from timeit. It doesn't change the fact that pyepics is slower than caproto """ global image return image.get(timeout = 20) img = image.get(timeout = 20) t2 = time() print(t2-t1, img.mean(), img.max(), img.min()) img2 = img.reshape((3960,3960)) print('caproto Client') ctx = Context() img_caproto, = ctx.get_pvs(default_prefix+'image') t1 = time() img_caproto_data = img_caproto.read() t2 = time() print(t2-t1, img_caproto_data.data.reshape((3960,3960)).mean(), img_caproto_data.data.reshape((3960,3960)).max(), img_caproto_data.data.reshape((3960,3960)).min()) from timeit import timeit t = timeit(image_get, number = 10) print('pyepics client: {}'.format(t/10)) t = timeit(img_caproto.read, number = 10) print('caproto client: {}'.format(t/10))
28.609756
163
0.709292
04de77133753517a13b94ea26bcddaec2ccc6ce9
1,543
py
Python
pyro/ops/welford.py
ludkinm/pyro
d24c808a9d86d79c43a99990fe9e418ce5976613
[ "Apache-2.0" ]
null
null
null
pyro/ops/welford.py
ludkinm/pyro
d24c808a9d86d79c43a99990fe9e418ce5976613
[ "Apache-2.0" ]
null
null
null
pyro/ops/welford.py
ludkinm/pyro
d24c808a9d86d79c43a99990fe9e418ce5976613
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2017-2019 Uber Technologies, Inc. # SPDX-License-Identifier: Apache-2.0 import torch class WelfordCovariance(object): """ Implements Welford's online scheme for estimating (co)variance (see :math:`[1]`). Useful for adapting diagonal and dense mass structures for HMC. **References** [1] `The Art of Computer Programming`, Donald E. Knuth """ def __init__(self, diagonal=True): self.diagonal = diagonal self.reset() def reset(self): self._mean = 0. self._m2 = 0. self.n_samples = 0 def update(self, sample): self.n_samples += 1 delta_pre = sample - self._mean self._mean = self._mean + delta_pre / self.n_samples delta_post = sample - self._mean if self.diagonal: self._m2 += delta_pre * delta_post else: self._m2 += torch.ger(delta_post, delta_pre) def get_covariance(self, regularize=True): if self.n_samples < 2: raise RuntimeError('Insufficient samples to estimate covariance') cov = self._m2 / (self.n_samples - 1) if regularize: # Regularization from stan scaled_cov = (self.n_samples / (self.n_samples + 5.)) * cov shrinkage = 1e-3 * (5. / (self.n_samples + 5.0)) if self.diagonal: cov = scaled_cov + shrinkage else: scaled_cov.view(-1)[::scaled_cov.size(0) + 1] += shrinkage cov = scaled_cov return cov
30.254902
85
0.585872
ff73849535b5a4ec6c9b27fd6e95a946784584ea
294
py
Python
Exercises/exercise-29.py
shoriwe-upb/TallerEjercicios
ba37eb6cd673a8d38a1dfac87c5efac3f728da21
[ "MIT" ]
null
null
null
Exercises/exercise-29.py
shoriwe-upb/TallerEjercicios
ba37eb6cd673a8d38a1dfac87c5efac3f728da21
[ "MIT" ]
null
null
null
Exercises/exercise-29.py
shoriwe-upb/TallerEjercicios
ba37eb6cd673a8d38a1dfac87c5efac3f728da21
[ "MIT" ]
null
null
null
def main(): number = int(input("Number: ")) if number > 0: print("Positive") elif number < 0: print("Negative") else: print("Is Zero") if number % 2: print("Es impar") else: print("Es par") if __name__ == '__main__': main()
17.294118
35
0.493197
a31a7b02952fd135d6ed508812b0b444ce4949ba
219
py
Python
dbtemplate/tests/app/urls.py
subuk/django-dbtemplate
cd8e3d6e548438297c8de96a3f1e9e47cf191ecf
[ "MIT" ]
null
null
null
dbtemplate/tests/app/urls.py
subuk/django-dbtemplate
cd8e3d6e548438297c8de96a3f1e9e47cf191ecf
[ "MIT" ]
null
null
null
dbtemplate/tests/app/urls.py
subuk/django-dbtemplate
cd8e3d6e548438297c8de96a3f1e9e47cf191ecf
[ "MIT" ]
null
null
null
from django.conf.urls import url from django.shortcuts import render_to_response def test_view(request): return render_to_response('test.html', {'username': 'test'}) urlpatterns = [ url(r'^$', test_view), ]
18.25
64
0.716895
c9ee6c1e6f0f76e7d0e22c73580bef52dcff5a8d
4,217
py
Python
discord/team.py
MinerChAI/discord.py
eeabb8ebb6eb5b6af2dea02c8d66c19c0e0e5dff
[ "MIT" ]
null
null
null
discord/team.py
MinerChAI/discord.py
eeabb8ebb6eb5b6af2dea02c8d66c19c0e0e5dff
[ "MIT" ]
null
null
null
discord/team.py
MinerChAI/discord.py
eeabb8ebb6eb5b6af2dea02c8d66c19c0e0e5dff
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ The MIT License (MIT) Copyright (c) 2015-2019 Rapptz Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from . import utils from .user import BaseUser from .asset import Asset from .enums import TeamMembershipState, try_enum __all__ = ("Team", "TeamMember") class Team: """Represents an application team for a bot provided by Discord. Attributes ------------- id: :class:`int` The team ID. name: :class:`str` The team name icon: Optional[:class:`str`] The icon hash, if it exists. owner_id: :class:`int` The team's owner ID. members: List[:class:`TeamMember`] A list of the members in the team """ __slots__ = ("_state", "id", "name", "icon", "owner_id", "members") def __init__(self, state, data): self._state = state self.id = utils._get_as_snowflake(data, "id") self.name = data["name"] self.icon = data["icon"] self.owner_id = utils._get_as_snowflake(data, "owner_user_id") self.members = [ TeamMember(self, self._state, member) for member in data["members"] ] def __repr__(self): return "<{0.__class__.__name__} id={0.id} name={0.name}>".format(self) @property def icon_url(self): """:class:`.Asset`: Retrieves the team's icon asset.""" return Asset._from_icon(self._state, self, "team") @property def owner(self): """Optional[:class:`TeamMember`]: The team's owner.""" return utils.get(self.members, id=self.owner_id) class TeamMember(BaseUser): """Represents a team member in a team. .. container:: operations .. describe:: x == y Checks if two team members are equal. .. describe:: x != y Checks if two team members are not equal. .. describe:: hash(x) Return the team member's hash. .. describe:: str(x) Returns the team member's name with discriminator. Attributes ------------- name: :class:`str` The team member's username. id: :class:`int` The team member's unique ID. discriminator: :class:`str` The team member's discriminator. This is given when the username has conflicts. avatar: Optional[:class:`str`] The avatar hash the team member has. Could be None. bot: :class:`bool` Specifies if the user is a bot account. team: :class:`Team` The team that the member is from. membership_state: :class:`TeamMembershipState` The membership state of the member (e.g. invited or accepted) """ __slots__ = BaseUser.__slots__ + ("team", "membership_state", "permissions") def __init__(self, team, state, data): self.team = team self.membership_state = try_enum(TeamMembershipState, data["membership_state"]) self.permissions = data["permissions"] super().__init__(state=state, data=data["user"]) def __repr__(self): return ( "<{0.__class__.__name__} id={0.id} name={0.name!r} " "discriminator={0.discriminator!r} membership_state={0.membership_state!r}>".format( self ) )
31.706767
96
0.649751
f7b1b565a8a1a39e2363429222ea160372487def
2,071
py
Python
src/pyramid_torque_engine_notifications/auth.py
opendesk/pyramid_torque_engine_notifications
330124fdfe9d015b5d35e0db0e81246cae7e2dc3
[ "Unlicense" ]
1
2015-06-23T12:51:43.000Z
2015-06-23T12:51:43.000Z
src/pyramid_torque_engine_notifications/auth.py
opendesk/pyramid_torque_engine_notifications
330124fdfe9d015b5d35e0db0e81246cae7e2dc3
[ "Unlicense" ]
3
2019-12-26T16:36:59.000Z
2022-03-21T22:16:06.000Z
src/pyramid_torque_engine_notifications/auth.py
opendesk/pyramid_torque_engine_notifications
330124fdfe9d015b5d35e0db0e81246cae7e2dc3
[ "Unlicense" ]
3
2015-06-24T10:25:35.000Z
2015-12-19T18:28:44.000Z
# -*- coding: utf-8 -*- """Provides a base ``ACLContainer`` class that wraps any context in a generic API key aware ``ACLWrapper`` and a """ __all__ = [ 'APIKeyAuthenticationPolicy', 'APIKeyAuthorizationPolicy', ] import logging logger = logging.getLogger(__name__) import re import zope.interface as zi from pyramid import authentication from pyramid import interfaces VALID_API_KEY = re.compile(r'^\w{40}$') @zi.implementer(interfaces.IAuthenticationPolicy) class APIKeyAuthenticationPolicy(authentication.CallbackAuthenticationPolicy): """A Pyramid authentication policy which obtains credential data from the ``request.headers['api_key']``. """ def __init__(self, header_keys, **kwargs): if isinstance(header_keys, basestring): header_keys = [header_keys] self.header_keys = header_keys self.valid_key = kwargs.get('valid_key', VALID_API_KEY) def unauthenticated_userid(self, request): """The ``api_key`` value found within the ``request.headers``.""" api_key = None for key in self.header_keys: value = request.headers.get(key, None) if value is not None: api_key = value break if api_key and self.valid_key.match(api_key): return api_key.decode('utf8') def remember(self, request, principal, **kw): """A no-op. There's no way to remember the user.""" return [] def forget(self, request): """A no-op. There's no user to forget.""" return [] @zi.implementer(interfaces.IAuthorizationPolicy) class APIKeyAuthorizationPolicy(object): """Global authorization policy that ignores the context and just checks whether the target api key is in the principals list. """ def __init__(self, api_key): self.api_key = api_key def permits(self, context, principals, permission): return self.api_key in principals def principals_allowed_by_permission(self, context, permission): raise NotImplementedError
29.169014
78
0.673588
cde0d4eb2285c53a2858796aa372d00f2f6a338e
1,849
py
Python
test/functional/test_f_park.py
mattsb42/pypi-parker
e4f2303927810f12d16dceb4b3125b447a3ee796
[ "Apache-2.0" ]
15
2017-10-08T18:02:34.000Z
2021-04-12T07:46:21.000Z
test/functional/test_f_park.py
mattsb42/pypi-parker
e4f2303927810f12d16dceb4b3125b447a3ee796
[ "Apache-2.0" ]
4
2017-10-09T03:35:47.000Z
2017-11-21T16:51:35.000Z
test/functional/test_f_park.py
mattsb42/pypi-parker
e4f2303927810f12d16dceb4b3125b447a3ee796
[ "Apache-2.0" ]
1
2019-06-26T17:18:36.000Z
2019-06-26T17:18:36.000Z
"""Functional test suite for :class:`pypi_parker.Park`.""" import os import shlex import subprocess import sys import pytest from .functional_helpers import HERE, read, TEST_PACKAGE_NAMES @pytest.mark.parametrize('config_filename, suffix', ( ('park.cfg', ''), ('A_DIFFERENT_FILENAME', ' --park=A_DIFFERENT_FILENAME'), ('ANOTHER_FILENAME', ' -p ANOTHER_FILENAME') )) def test_park(tmpdir, config_filename, suffix): target_dir = tmpdir.mkdir('test') target_setup = target_dir.join('setup.py') target_setup.write('from setuptools import setup\nsetup()\n') target_config = target_dir.join(config_filename) target_config.write(read(os.path.join(HERE, 'vectors', 'park.cfg'))) os.chdir(str(target_dir)) command_string = 'setup.py park' + suffix subprocess.check_call([sys.executable] + shlex.split(command_string)) results = os.listdir(os.path.join(str(target_dir), 'dist')) assert len(results) == len(TEST_PACKAGE_NAMES) def test_park_file_not_found_default(tmpdir): target_dir = tmpdir.mkdir('test') target_setup = target_dir.join('setup.py') target_setup.write('from setuptools import setup\nsetup()\n') os.chdir(str(target_dir)) with pytest.raises(subprocess.CalledProcessError): subprocess.check_call([sys.executable, 'setup.py', 'park']) def test_park_file_not_found_custom_filename(tmpdir): target_dir = tmpdir.mkdir('test') target_setup = target_dir.join('setup.py') target_setup.write('from setuptools import setup\nsetup()\n') target_config = target_dir.join('park.cfg') target_config.write(read(os.path.join(HERE, 'vectors', 'park.cfg'))) os.chdir(str(target_dir)) with pytest.raises(subprocess.CalledProcessError): subprocess.check_call([sys.executable, 'setup.py', 'park', '--park-config', 'ANOTHER_FILENAME'])
33.618182
104
0.721471
1aa0f852e34e1e866cb12ba08f7710b373f323a7
2,299
py
Python
tilt_python/job_sub_for_data_gather.py
FinMacDov/PhD_codes
44e781c270fa9822a8137ef271f35c6e945c5828
[ "MIT" ]
null
null
null
tilt_python/job_sub_for_data_gather.py
FinMacDov/PhD_codes
44e781c270fa9822a8137ef271f35c6e945c5828
[ "MIT" ]
null
null
null
tilt_python/job_sub_for_data_gather.py
FinMacDov/PhD_codes
44e781c270fa9822a8137ef271f35c6e945c5828
[ "MIT" ]
null
null
null
#import sys #import os import numpy as np import glob from pathlib import Path #import pandas as pd def bash_writter(qsub_names_list): file_bash = open('data_gather_tilt_qsub', 'w') file_bash.write('#!/bin/bash\n') for i_list in range(len(qsub_names_list)): file_bash.write('qsub '+qsub_names_list[i_list]+' &\n') file_bash.close() def submitter_creation_py(path_2_shared_drive, path_2_sub_dir, file_name, email, rmem, run_time, script_path, var_name): Path(path_2_shared_drive+path_2_sub_dir).mkdir(parents=True, exist_ok=True) # print('I have created: '+path_2_shared_drive+path_2_sub_dir) fname = path_2_shared_drive+path_2_sub_dir+'/sub_data_gather_'+file_name+'_py.sh' file_sub = open(fname, 'w') file_sub.write('#!/bin/bash \n#$ -l h_rt=' + run_time+ '\n#$ -l rmem=' + rmem + '\n#$ -m ea' + '\n#$ -M ' + email + '\n#$ -j y' + '\nexport given_path=' + var_name + '\nexport given_jet_name=' + '"' + jet_name + '"' + '\nmodule load apps/python/anaconda3-4.2.0' + '\n\nsource activate amrvac' + '\n\npython ' + script_path) file_sub.close() return fname path_2_shared_drive = '/shared/mhd_jet1/User/smp16fm/j' dir_paths = glob.glob(path_2_shared_drive+'/T/P300/B*/A*/T0') # testing #dir_paths = [dir_paths[-8]] script_path = '/shared/mhd_jet1/User/smp16fm/j/tilt_python/data_gather_sharc.py' path_2_sub_dir = '/data_gather_sub_dir_tilt' email = 'fmackenziedover1@sheffield.ac.uk' rmem = '4.0G' run_time = '96:00:00' #run_time = '00:10:00' list_of_fnames = [] for path in dir_paths: path_parts = path.split('/') path_parts = path_parts[len(path_parts)-3:] path_numerics = np.zeros(len(path_parts)) Fi = True # join names parts in desired form for item in path_parts: if Fi ==True: Fi=False jet_name = 'jet_'+item else: jet_name += '_'+item var_name = '"'+path+'"' list_of_fnames.append(submitter_creation_py(path_2_shared_drive, path_2_sub_dir, jet_name, email, rmem, run_time, script_path, var_name)) bash_writter(list_of_fnames)
34.833333
101
0.622445
9509cebefee0a72be3158844f71428c64c7c8e35
1,179
py
Python
lists/forms.py
ejpreciado/superlists
c2bddc0319503f9f84fac68bf6053601ec37c2f4
[ "MIT" ]
null
null
null
lists/forms.py
ejpreciado/superlists
c2bddc0319503f9f84fac68bf6053601ec37c2f4
[ "MIT" ]
null
null
null
lists/forms.py
ejpreciado/superlists
c2bddc0319503f9f84fac68bf6053601ec37c2f4
[ "MIT" ]
null
null
null
from django.core.exceptions import ValidationError from django import forms from lists.models import Item EMPTY_ITEM_ERROR = "You can't have an empty list item" DUPLICATE_ITEM_ERROR = "You've already got this in your list" class ItemForm(forms.models.ModelForm): class Meta: model = Item fields = ('text',) widgets = { 'text': forms.fields.TextInput(attrs={ 'placeholder': 'Enter a to-do item', 'class': 'form-control input-lg', }), } error_messages = { 'text': {'required': EMPTY_ITEM_ERROR} } def save(self, for_list): self.instance.list = for_list return super().save() class ExistingListItemForm(ItemForm): def __init__(self, for_list, *args, **kwargs): super().__init__(*args, **kwargs) self.instance.list = for_list def validate_unique(self): try: self.instance.validate_unique() except ValidationError as e: e.error_dict = {'text': [DUPLICATE_ITEM_ERROR]} self._update_errors(e) def save(self): return forms.models.ModelForm.save(self)
28.071429
61
0.606446
06909d5b796e05d330dc37c36d3309e8835eefc1
8,034
py
Python
networks.py
MinGyuGwon/RL_Trader
5956d17546dd283ae8b01ac2d8df622feb5c55d0
[ "MIT" ]
1
2021-11-08T14:41:25.000Z
2021-11-08T14:41:25.000Z
networks.py
MinGyuGwon/RL_Trader
5956d17546dd283ae8b01ac2d8df622feb5c55d0
[ "MIT" ]
null
null
null
networks.py
MinGyuGwon/RL_Trader
5956d17546dd283ae8b01ac2d8df622feb5c55d0
[ "MIT" ]
null
null
null
import os import threading import numpy as np if os.environ['KERAS_BACKEND'] == 'tensorflow': from tensorflow.keras.models import Model from tensorflow.keras.layers import Input, Dense, LSTM, Conv2D, \ BatchNormalization, Dropout, MaxPooling2D, Flatten from tensorflow.keras.optimizers import SGD import tensorflow as tf tf.compat.v1.disable_v2_behavior() # A3C 사용시에 comment out 시켜야함 print('Eager Mode: {}'.format(tf.executing_eagerly())) elif os.environ['KERAS_BACKEND'] == 'plaidml.keras.backend': from keras.models import Model from keras.layers import Input, Dense, LSTM, Conv2D, \ BatchNormalization, Dropout, MaxPooling2D, Flatten from keras.optimizers import SGD class Network: lock = threading.Lock() def __init__(self, input_dim=0, output_dim=0, lr=0.001, shared_network=None, activation='sigmoid', loss='mse'): self.input_dim = input_dim self.output_dim = output_dim self.lr = lr self.shared_network = shared_network self.activation = activation self.loss = loss self.model = None def predict(self, sample): with self.lock: return self.model.predict(sample).flatten() def train_on_batch(self, x, y): loss = 0. with self.lock: history = self.model.fit(x, y, epochs=10, verbose=False) loss += np.sum(history.history['loss']) return loss def save_model(self, model_path): if model_path is not None and self.model is not None: self.model.save_weights(model_path, overwrite=True) def load_model(self, model_path): if model_path is not None: self.model.load_weights(model_path) @classmethod # 인스턴스를 만들 필요 없이, 클래스를 이용해, 메소드를 사용할 수 있다. def get_shared_network(cls, net='dnn', num_steps=1, input_dim=0): if net == 'dnn': return DNN.get_network_head(Input((input_dim,))) elif net == 'lstm': return LSTMNetwork.get_network_head( Input((num_steps, input_dim))) elif net == 'cnn': return CNN.get_network_head( Input((1, num_steps, input_dim))) class DNN(Network): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) inp = None output = None if self.shared_network is None: inp = Input((self.input_dim,)) output = self.get_network_head(inp).output else: inp = self.shared_network.input output = self.shared_network.output # 추가로 Dense Layer 쌓기 output = Dense( self.output_dim, activation=self.activation, # 32차원에서 3차원으로 kernel_initializer='random_normal')(output) # kernel_initializer : 가중치 초기화 self.model = Model(inp, output) self.model.compile( optimizer=SGD(learning_rate=self.lr), loss=self.loss) @staticmethod # 객체를 부를 필요 없다. # 인스턴스 내용을 변경하지 않을때 사용한다 def get_network_head(inp): output = Dense(256, activation='sigmoid', kernel_initializer='random_normal')(inp) output = BatchNormalization()(output) output = Dropout(0.1)(output) output = Dense(128, activation='sigmoid', kernel_initializer='random_normal')(output) output = BatchNormalization()(output) output = Dropout(0.1)(output) output = Dense(64, activation='sigmoid', kernel_initializer='random_normal')(output) output = BatchNormalization()(output) output = Dropout(0.1)(output) output = Dense(32, activation='sigmoid', kernel_initializer='random_normal')(output) output = BatchNormalization()(output) output = Dropout(0.1)(output) return Model(inp, output) def train_on_batch(self, x, y): x = np.array(x).reshape((-1, self.input_dim)) return super().train_on_batch(x, y) # loss def predict(self, sample): sample = np.array(sample).reshape((1, self.input_dim)) return super().predict(sample) # loss 값 리턴 class LSTMNetwork(Network): def __init__(self, *args, num_steps=1, **kwargs): super().__init__(*args, **kwargs) self.num_steps = num_steps inp = None output = None if self.shared_network is None: inp = Input((self.num_steps, self.input_dim)) output = self.get_network_head(inp).output else: inp = self.shared_network.input output = self.shared_network.output output = Dense( self.output_dim, activation=self.activation, kernel_initializer='random_normal')(output) self.model = Model(inp, output) self.model.compile( optimizer=SGD(learning_rate=self.lr), loss=self.loss) @staticmethod def get_network_head(inp): # cuDNN 사용을 위한 조건 # https://www.tensorflow.org/api_docs/python/tf/keras/layers/LSTM output = LSTM(256, dropout=0.1, return_sequences=True, stateful=False, kernel_initializer='random_normal')(inp) output = BatchNormalization()(output) output = LSTM(128, dropout=0.1, return_sequences=True, stateful=False, kernel_initializer='random_normal')(output) output = BatchNormalization()(output) output = LSTM(64, dropout=0.1, return_sequences=True, stateful=False, kernel_initializer='random_normal')(output) output = BatchNormalization()(output) output = LSTM(32, dropout=0.1, stateful=False, kernel_initializer='random_normal')(output) output = BatchNormalization()(output) return Model(inp, output) def train_on_batch(self, x, y): x = np.array(x).reshape((-1, self.num_steps, self.input_dim)) return super().train_on_batch(x, y) def predict(self, sample): sample = np.array(sample).reshape((1, self.num_steps, self.input_dim)) return super().predict(sample) class CNN(Network): def __init__(self, *args, num_steps=1, **kwargs): super().__init__(*args, **kwargs) self.num_steps = num_steps inp = None output = None if self.shared_network is None: inp = Input((self.num_steps, self.input_dim, 1)) output = self.get_network_head(inp).output else: inp = self.shared_network.input output = self.shared_network.output output = Dense( self.output_dim, activation=self.activation, kernel_initializer='random_normal')(output) self.model = Model(inp, output) self.model.compile( optimizer=SGD(learning_rate=self.lr), loss=self.loss) @staticmethod def get_network_head(inp): output = Conv2D(256, kernel_size=(1, 5), padding='same', activation='sigmoid', kernel_initializer='random_normal')(inp) output = BatchNormalization()(output) output = MaxPooling2D(pool_size=(1, 2))(output) output = Dropout(0.1)(output) output = Conv2D(64, kernel_size=(1, 5), padding='same', activation='sigmoid', kernel_initializer='random_normal')(output) output = BatchNormalization()(output) output = MaxPooling2D(pool_size=(1, 2))(output) output = Dropout(0.1)(output) output = Conv2D(32, kernel_size=(1, 5), padding='same', activation='sigmoid', kernel_initializer='random_normal')(output) output = BatchNormalization()(output) output = MaxPooling2D(pool_size=(1, 2))(output) output = Dropout(0.1)(output) output = Flatten()(output) return Model(inp, output) def train_on_batch(self, x, y): x = np.array(x).reshape((-1, self.num_steps, self.input_dim, 1)) return super().train_on_batch(x, y) def predict(self, sample): sample = np.array(sample).reshape( (-1, self.num_steps, self.input_dim, 1)) return super().predict(sample)
39.382353
122
0.626711
69423c280ed042e850c6b6f8c80e25ca9df1de09
33,565
py
Python
py/resolution/sequence_graph/path_graph_multik.py
AntonBankevich/LJA
979d7929bf0b39fd142ec6465dc0c17814465ef9
[ "BSD-3-Clause" ]
53
2021-10-10T22:16:27.000Z
2022-03-23T06:21:06.000Z
py/resolution/sequence_graph/path_graph_multik.py
AntonBankevich/LJA
979d7929bf0b39fd142ec6465dc0c17814465ef9
[ "BSD-3-Clause" ]
20
2021-05-10T07:44:24.000Z
2022-03-24T13:23:58.000Z
py/resolution/sequence_graph/path_graph_multik.py
AntonBankevich/DR
73450ad3b25f90a3c7747aaf17fe60d13d9692d3
[ "BSD-3-Clause" ]
6
2022-01-27T01:45:56.000Z
2022-03-18T04:23:33.000Z
# (c) 2020 by Authors # This file is a part of centroFlye program. # Released under the BSD license (see LICENSE file) import argparse from collections import defaultdict import logging import math import os import subprocess import sys this_dirname = os.path.dirname(os.path.realpath(__file__)) sys.path.append(os.path.join(this_dirname, os.path.pardir)) import networkx as nx from sequence_graph.path_graph import IDBMappings from standard_logger import get_logger from subprocess import call from utils.bio import read_bio_seqs, read_bio_seq, compress_homopolymer, \ write_bio_seqs from utils.git import get_git_revision_short_hash from utils.os_utils import smart_makedirs, expandpath from utils.various import fst_iterable logger = logging.getLogger("centroFlye.sequence_graph.path_graph_multik") class PathMultiKGraph: def __init__(self, nx_graph, edge2seq, edge2index, index2edge, node2len, max_edge_index, max_node_index, idb_mappings, init_k, K, unique_edges=None): self.nx_graph = nx_graph self.edge2seq = edge2seq self.edge2index = edge2index self.index2edge = index2edge self.node2len = node2len self.max_edge_index = max_edge_index self.max_node_index = max_node_index self.idb_mappings = idb_mappings self.init_k = init_k self.SATURATING_K = K if unique_edges is None: unique_edges = set() self.unique_edges = unique_edges self.niter = 0 self.unresolved = set() self._update_unresolved_vertices() self.assert_validity() def assert_validity(self): if len(self.index2edge) == 0: return self.max_edge_index == 1 + max(self.index2edge) self.max_node_index == 1 + max(self.nx_graph.nodes) edges = set(self.nx_graph.edges(keys=True)) assert edges == set(self.edge2index.keys()) assert edges == set(self.index2edge.values()) assert all(edge == self.index2edge[self.edge2index[edge]] for edge in self.edge2index) ac = self.idb_mappings.get_active_connections() for i, j in ac: _, u, _ = self.index2edge[i] v, _, _ = self.index2edge[j] # print(i, j, self.index2edge[i], self.index2edge[j]) assert u == v for node in self.nx_graph.nodes: assert node in self.node2len nlen = self.node2len[node] if node not in self.unresolved: assert self.nx_graph.in_degree(node) != 1 or \ self.nx_graph.out_degree(node) != 1 for in_edge in self.nx_graph.in_edges(node, keys=True): e_index = self.edge2index[in_edge] in_seq = self.edge2seq[e_index] insuf = in_seq[-nlen:] for out_edge in self.nx_graph.out_edges(node, keys=True): e_outdex = self.edge2index[out_edge] out_seq = self.edge2seq[e_outdex] outpref = out_seq[:nlen] assert node in self.unresolved or insuf == outpref @classmethod def fromDB(cls, db, string_set, neutral_symbs=None, raw_mappings=None, K=None): if raw_mappings is None: raw_mappings = db.map_strings(string_set, only_unique_paths=True, neutral_symbs=neutral_symbs) nx_graph = nx.MultiDiGraph() edge2seq = {} edge_index = 0 edge2index = {} index2edge = {} node2len = {} for u in db.nx_graph.nodes(): node2len[u] = db.k-1 for u, v, key, data in db.nx_graph.edges(data=True, keys=True): nx_graph.add_edge(u, v, key) edge2index[(u, v, key)] = edge_index index2edge[edge_index] = (u, v, key) edge2seq[edge_index] = list(data['string']) edge_index += 1 mappings = {} for r_id, (raw_mapping, _, _) in raw_mappings.items(): mappings[r_id] = [edge2index[edge] for edge in raw_mapping] idb_mappings = IDBMappings(mappings) max_node_index = 1 + max(nx_graph.nodes) return cls(nx_graph=nx_graph, edge2seq=edge2seq, edge2index=edge2index, index2edge=index2edge, node2len=node2len, max_edge_index=edge_index, max_node_index=max_node_index, idb_mappings=idb_mappings, init_k=db.k, K=K) @classmethod def from_mono_db(cls, db, monostring_set, mappings=None): monostring = fst_iterable(monostring_set.values()) neutral_symbs = set([monostring.gap_symb]) return cls.fromDB(db=db, string_set=monostring_set, neutral_symbs=neutral_symbs, raw_mappings=mappings) @classmethod def fromDR(cls, db_fn, align_fn, k, K): class PerfectHash: hash2index = {} next_key = 0 def __getitem__(self, key): if key in self.hash2index: return self.hash2index[key] self.hash2index[key] = self.next_key self.next_key += 1 return self.hash2index[key] db = read_bio_seqs(db_fn) nx_graph = nx.MultiDiGraph() edge2seq = {} edge2index = {} index2edge = {} node2len = {} ph = PerfectHash() max_edge_index = 0 vertex_nucl2edgeindex = {} edge2cov = {} for e_id, seq in db.items(): split_id = e_id.split('_') index, s, e, _, cov = split_id index, s, e = int(index), int(s), int(e) cov = float(cov) s = ph[s] e = ph[e] key = nx_graph.add_edge(s, e) edge = (s, e, key) edge2seq[index] = list(seq) edge2index[edge] = index index2edge[index] = edge edge2cov[index] = cov max_edge_index = max(index, max_edge_index) vertex_nucl2edgeindex[(s, seq[k-1])] = index node2len[s] = k - 1 node2len[e] = k - 1 max_edge_index += 1 average_cov = sum(edge2cov[index] * len(edge2seq[index]) for index in edge2cov) / \ sum(len(edge2seq[index]) for index in edge2cov) logger.info(f'Average coverage {average_cov}') unique_edges = set([index for index, cov in edge2cov.items() if cov <= average_cov * 1.2]) mappings = {} with open(align_fn) as f: for i, line in enumerate(f): s_id, u, nucl = line.strip().split() u = ph[int(u)] mapping = [] for c in nucl: e = vertex_nucl2edgeindex[(u, c)] mapping.append(e) u = index2edge[e][1] mappings[s_id] = mapping idb_mappings = IDBMappings(mappings) return cls(nx_graph=nx_graph, edge2seq=edge2seq, edge2index=edge2index, index2edge=index2edge, node2len=node2len, max_edge_index=max_edge_index, max_node_index=ph.next_key, init_k=k, idb_mappings=idb_mappings, unique_edges=unique_edges, K=K) def move_edge(self, e1_st, e1_en, e1_key, e2_st, e2_en, e2_key=None): old_edge = (e1_st, e1_en, e1_key) i = self.edge2index[old_edge] self.nx_graph.remove_edge(*old_edge) e2_key = self.nx_graph.add_edge(e2_st, e2_en, key=e2_key) new_edge = (e2_st, e2_en, e2_key) self.edge2index[new_edge] = i del self.edge2index[old_edge] self.index2edge[i] = new_edge def remove_edge(self, edge=None, index=None, moving=True): assert (edge is None) != (index is None) if edge is None: edge = self.index2edge[index] else: index = self.edge2index[edge] self.idb_mappings.remove(index) self.nx_graph.remove_edge(*edge) del self.edge2index[edge] del self.index2edge[index] del self.edge2seq[index] self.unique_edges.discard(index) if moving: for e in list(self.nx_graph.in_edges(edge[1], keys=True)): self.move_edge(*e, e[0], edge[0]) for e in list(self.nx_graph.out_edges(edge[1], keys=True)): self.move_edge(*e, edge[0], e[1]) def get_new_vertex_index(self): index = self.max_node_index self.node2len[index] = self.init_k - 1 + self.niter self.max_node_index += 1 return index def merge_edges(self, e1, e2): assert self.nx_graph.degree(e1[1]) == 1 assert self.nx_graph.degree(e2[0]) == 1 i = self.edge2index[e1] j = self.edge2index[e2] self.idb_mappings.merge(i, j) if j in self.unique_edges: self.unique_edges.add(i) in_seq = self.edge2seq[i] out_seq = self.edge2seq[j] nlen = self.node2len[e2[0]]-1 # need -1 since new nodes have ++ assert in_seq[-nlen:] == out_seq[:nlen] seq = in_seq + out_seq[nlen:] self.edge2seq[i] = seq self.move_edge(*e1, e1[0], e2[1]) self.remove_edge(edge=e2, moving=False) def add_edge(self, i, j, seq): in_edge = self.index2edge[i] out_edge = self.index2edge[j] new_edge = (in_edge[1], out_edge[0]) key = self.nx_graph.add_edge(*new_edge) new_edge = (*new_edge, key) self.edge2index[new_edge] = self.max_edge_index self.index2edge[self.max_edge_index] = new_edge self.edge2seq[self.max_edge_index] = seq self.idb_mappings.add(i, j, self.max_edge_index) self.max_edge_index += 1 def _update_unresolved_vertices(self): for u in self.nx_graph.nodes: if u in self.unresolved: continue in_indexes = set( [self.edge2index[e_in] for e_in in self.nx_graph.in_edges(u, keys=True)]) out_indexes = set( [self.edge2index[e_out] for e_out in self.nx_graph.out_edges(u, keys=True)]) indegree = self.nx_graph.in_degree(u) outdegree = self.nx_graph.out_degree(u) if indegree == 1 and outdegree == 1: self_loop = in_indexes == out_indexes # assert self_loop self.unresolved.add(u) elif indegree >= 2 and outdegree >= 2: # do not process anything at all # self.unresolved.add(u) # process only fully resolved vertices # all_ac = self.idb_mappings.get_active_connections() # pairs = set() # for e_in in in_indexes: # for e_out in out_indexes: # if (e_in, e_out) in all_ac: # pairs.add((e_in, e_out)) # all_pairs = set((e_in, e_out) # for e_in in in_indexes # for e_out in out_indexes) # if len(all_pairs - pairs): # self.unresolved.add(u) # initial heuristic paired_in = set() paired_out = set() loops = in_indexes & out_indexes if len(loops) == 1: loop = fst_iterable(loops) if loop in self.unique_edges: rest_in = in_indexes - loops rest_out = out_indexes - loops if len(rest_in) == 1: in_index = fst_iterable(rest_in) paired_in.add(in_index) paired_out.add(loop) if len(rest_out) == 1: out_index = fst_iterable(rest_out) paired_in.add(loop) paired_out.add(out_index) for e_in in in_indexes: for e_out in out_indexes: if (e_in, e_out) in self.idb_mappings.pairindex2pos: paired_in.add(e_in) paired_out.add(e_out) unpaired_in = set(in_indexes) - paired_in unpaired_out = set(out_indexes) - paired_out if len(unpaired_in) == 1 and len(unpaired_out) == 1: if len(set(in_indexes) - self.unique_edges) == 0 or \ len(set(out_indexes) - self.unique_edges) == 0: unpaired_in_single = list(unpaired_in)[0] unpaired_out_single = list(unpaired_out)[0] paired_in.add(unpaired_in_single) paired_out.add(unpaired_out_single) tips = (in_indexes - paired_in) | (out_indexes - paired_out) if len(tips): self.unresolved.add(u) prev, new = self.unresolved, set() while len(prev): for u in prev: for edge in self.nx_graph.in_edges(u, keys=True): index = self.edge2index[edge] seq = self.edge2seq[index] v = edge[0] if v in self.unresolved: continue if self.node2len[v] + 1 == len(seq): new.add(v) for edge in self.nx_graph.out_edges(u, keys=True): index = self.edge2index[edge] seq = self.edge2seq[index] v = edge[1] if v in self.unresolved: continue if self.node2len[v] + 1 == len(seq): new.add(v) self.unresolved |= new prev, new = new, set() def __process_vertex(self, u): def process_simple(): if indegree == 1 and outdegree == 1: # node on nonbranching path - should not be happening assert False if indegree == 0 and outdegree == 0: # isolate - should be removed self.nx_graph.remove_node(u) del self.node2len[u] return elif indegree == 0 and outdegree > 0: # starting vertex for j in out_indexes[1:]: old_edge = self.index2edge[j] new_edge = (self.get_new_vertex_index(), old_edge[1], 0) self.move_edge(*old_edge, *new_edge) elif indegree > 0 and outdegree == 0: # ending vertex for i in in_indexes[1:]: old_edge = self.index2edge[i] new_edge = (old_edge[0], self.get_new_vertex_index(), 0) self.move_edge(*old_edge, *new_edge) elif indegree == 1 and outdegree > 1: # simple 1-in vertex assert len(in_indexes) == 1 in_index = in_indexes[0] in_seq = self.edge2seq[in_index] c = in_seq[-nlen-1] for j in out_indexes: assert self.edge2seq[j][:nlen] == in_seq[-nlen:] self.edge2seq[j].insert(0, c) elif indegree > 1 and outdegree == 1: # simple 1-out vertex assert len(out_indexes) == 1 out_index = out_indexes[0] out_seq = self.edge2seq[out_index] c = out_seq[nlen] for i in in_indexes: assert self.edge2seq[i][-nlen:] == out_seq[:nlen] self.edge2seq[i].append(c) self.node2len[u] += 1 def process_complex(): # complex vertex for i in in_indexes: old_edge = self.index2edge[i] new_edge = (old_edge[0], self.get_new_vertex_index(), 0) self.move_edge(*old_edge, *new_edge) for j in out_indexes: old_edge = self.index2edge[j] new_edge = (self.get_new_vertex_index(), old_edge[1], 0) self.move_edge(*old_edge, *new_edge) ac_s2e = defaultdict(set) ac_e2s = defaultdict(set) paired_in = set() paired_out = set() for e_in in in_indexes: for e_out in out_indexes: if (e_in, e_out) in self.idb_mappings.pairindex2pos: ac_s2e[e_in].add(e_out) ac_e2s[e_out].add(e_in) paired_in.add(e_in) paired_out.add(e_out) loops = set(in_indexes) & set(out_indexes) if len(loops) == 1: loop = fst_iterable(loops) if loop in self.unique_edges: rest_in = set(in_indexes) - loops rest_out = set(out_indexes) - loops if len(rest_in) == 1: in_index = fst_iterable(rest_in) ac_s2e[in_index].add(loop) ac_e2s[loop].add(in_index) if len(rest_out) == 1: out_index = fst_iterable(rest_out) ac_s2e[loop].add(out_index) ac_e2s[out_index].add(loop) unpaired_in = set(in_indexes) - paired_in unpaired_out = set(out_indexes) - paired_out if len(unpaired_in) == 1 and len(unpaired_out) == 1: if len(set(in_indexes) - self.unique_edges) == 0 or \ len(set(out_indexes) - self.unique_edges) == 0: unpaired_in_single = list(unpaired_in)[0] unpaired_out_single = list(unpaired_out)[0] ac_s2e[unpaired_in_single].add(unpaired_out_single) ac_e2s[unpaired_out_single].add(unpaired_in_single) # print(u, ac_s2e, ac_e2s) merged = {} for i in ac_s2e: for j in ac_s2e[i]: # print(u, i, j, ac_s2e[i], ac_e2s[j]) if i in merged: i = merged[i] if j in merged: j = merged[j] e_i = self.index2edge[i] e_j = self.index2edge[j] in_seq = self.edge2seq[i] out_seq = self.edge2seq[j] assert in_seq[-nlen:] == out_seq[:nlen] if len(ac_s2e[i]) == len(ac_e2s[j]) == 1: if e_i != e_j: self.merge_edges(e_i, e_j) merged[j] = i else: # isolated loop self.move_edge(*e_i, e_i[0], e_i[0]) if in_seq[-nlen-1:] != in_seq[:nlen+1]: self.edge2seq[i].append(in_seq[nlen]) elif len(ac_s2e[i]) >= 2 and len(ac_e2s[j]) >= 2: seq = in_seq[-nlen-1:] + [out_seq[nlen]] assert len(seq) == nlen + 2 self.add_edge(i, j, seq) elif len(ac_s2e[i]) == 1 and len(ac_e2s[j]) >= 2: # extend left edge to the right self.move_edge(*e_i, e_i[0], e_j[0]) seq = in_seq + [out_seq[nlen]] self.edge2seq[i] = seq elif len(ac_e2s[j]) == 1 and len(ac_s2e[i]) >= 2: # extend right edge to the left self.move_edge(*e_j, e_i[1], e_j[1]) seq = [in_seq[-nlen-1]] + out_seq self.edge2seq[j] = seq else: assert False assert self.nx_graph.in_degree(u) == 0 assert self.nx_graph.out_degree(u) == 0 self.nx_graph.remove_node(u) del self.node2len[u] in_indexes = [self.edge2index[e_in] for e_in in self.nx_graph.in_edges(u, keys=True)] out_indexes = [self.edge2index[e_out] for e_out in self.nx_graph.out_edges(u, keys=True)] indegree = self.nx_graph.in_degree(u) outdegree = self.nx_graph.out_degree(u) nlen = self.node2len[u] if indegree >= 2 and outdegree >= 2: process_complex() else: process_simple() def transform_single(self): if self.unresolved == set(self.nx_graph.nodes): return True self.niter += 1 for u in list(self.nx_graph.nodes): if u not in self.unresolved: self.__process_vertex(u) self.finalize_transformation() return False def transform(self, N): for _ in range(N): self.transform_single() def transform_until_saturated(self): while not self.transform_single(): pass def get_niter_wo_complex(self): n_iter_wo_complex = math.inf for u in list(self.nx_graph.nodes): if u in self.unresolved: continue indegree = self.nx_graph.in_degree(u) outdegree = self.nx_graph.out_degree(u) if (indegree >= 2 and outdegree >= 2) or \ (indegree == 0 and outdegree >= 2) or \ (indegree >= 2 and outdegree == 0): n_iter_wo_complex = 0 break nlen = self.node2len[u] in_indexes = [self.edge2index[e_in] for e_in in self.nx_graph.in_edges(u, keys=True)] out_indexes = [self.edge2index[e_out] for e_out in self.nx_graph.out_edges(u, keys=True)] if indegree == 1: index = in_indexes[0] fin_node = self.index2edge[index][0] elif outdegree == 1: index = out_indexes[0] fin_node = self.index2edge[index][1] else: assert False seq = self.edge2seq[index] n_iter_node = len(seq) - nlen if fin_node in self.unresolved: n_iter_node -= 1 n_iter_wo_complex = min(n_iter_wo_complex, n_iter_node) n_iter_wo_complex = min(n_iter_wo_complex, self.SATURATING_K - self.init_k - self.niter) # k + n + N == K => N = K - k - n return n_iter_wo_complex def _transform_simple_N(self, N): if N == 0: return for u in list(self.nx_graph.nodes): if u in self.unresolved: continue in_indexes = [self.edge2index[e_in] for e_in in self.nx_graph.in_edges(u, keys=True)] out_indexes = [self.edge2index[e_out] for e_out in self.nx_graph.out_edges(u, keys=True)] indegree = self.nx_graph.in_degree(u) outdegree = self.nx_graph.out_degree(u) nlen = self.node2len[u] if indegree == 0 and outdegree == 1: pass elif indegree == 1 and outdegree == 0: pass elif indegree == 1 and outdegree > 1: # simple 1-in vertex assert len(in_indexes) == 1 in_index = in_indexes[0] in_seq = self.edge2seq[in_index] prefix = in_seq[-nlen-N:-nlen] for j in out_indexes: assert self.edge2seq[j][:nlen] == in_seq[-nlen:] self.edge2seq[j] = prefix + self.edge2seq[j] elif indegree > 1 and outdegree == 1: # simple 1-out vertex assert len(out_indexes) == 1 out_index = out_indexes[0] out_seq = self.edge2seq[out_index] suffix = out_seq[nlen:nlen+N] for i in in_indexes: assert self.edge2seq[i][-nlen:] == out_seq[:nlen] self.edge2seq[i] += suffix else: assert False self.node2len[u] += N self.niter += N self.finalize_transformation() def finalize_transformation(self): collapsed_edges = [] for edge in self.nx_graph.edges: index = self.edge2index[edge] seq = self.edge2seq[index] u, v, _ = edge if len(seq) == self.node2len[u] or len(seq) == self.node2len[v]: assert self.node2len[u] == self.node2len[v] assert u not in self.unresolved and v not in self.unresolved collapsed_edges.append(index) # remove collapsed edges [self.remove_edge(index=index) for index in collapsed_edges] self.nx_graph.remove_nodes_from(list(nx.isolates(self.nx_graph))) self._update_unresolved_vertices() self.assert_validity() def transform_single_fast(self): if self.unresolved == set(self.nx_graph.nodes): return True n_iter_wo_complex = self.get_niter_wo_complex() logger.info(f'iter={self.niter}, simple_iter={n_iter_wo_complex}, V = {nx.number_of_nodes(self.nx_graph)}, E = {nx.number_of_edges(self.nx_graph)}') if n_iter_wo_complex > 0: self._transform_simple_N(N=n_iter_wo_complex) else: self.transform_single() return False def transform_fast_until_saturated(self): while self.init_k + self.niter < self.SATURATING_K and \ not self.transform_single_fast(): pass self.assert_validity() K = self.init_k+self.niter logger.info(f'Graph saturated, niter={self.niter}, K={K}') def estimate_lower_mult(self): mult = {edge: 1 for edge in self.index2edge} changed = True while changed: changed = False for u in self.nx_graph.nodes(): in_indexes = \ [self.edge2index[e_in] for e_in in self.nx_graph.in_edges(u, keys=True)] out_indexes = \ [self.edge2index[e_out] for e_out in self.nx_graph.out_edges(u, keys=True)] indegree = self.nx_graph.in_degree(u) outdegree = self.nx_graph.out_degree(u) in_mult = sum(mult[edge] for edge in in_indexes) out_mult = sum(mult[edge] for edge in out_indexes) if indegree == 1 and in_mult < out_mult: mult[in_indexes[0]] = out_mult changed = True elif outdegree == 1 and out_mult < in_mult: mult[out_indexes[0]] = in_mult changed = True return mult def write_dot(self, outdir, reffn=None, refhpc=False, compact=False, export_pdf=True): if reffn is not None: # TODO make a parameter exact_matcher_bin = '/Poppy/abzikadze/DR/bin/exact_matcher' ref = read_bio_seq(reffn) if refhpc: ref = compress_homopolymer(ref) reffn_outfn = os.path.join(outdir, 'ref.fasta') write_bio_seqs(reffn_outfn, {'ref': ref}) exact_matcher_outfn = os.path.join(outdir, 'edge_matching.tsv') edges_fn = os.path.join( outdir, f'dbg_{self.init_k}-{self.init_k+self.niter}.fasta') exact_matcher_cmd = \ f'{exact_matcher_bin} --output {exact_matcher_outfn} ' \ f'--reference {reffn_outfn} --query {edges_fn}' logger.info(f'Running exact matcher. Cmd: {exact_matcher_cmd}') exact_matcher_cmd = exact_matcher_cmd.split(' ') subprocess.call(exact_matcher_cmd) mult = defaultdict(lambda: [0, 0]) with open(exact_matcher_outfn) as f: f.readline() for line in f: line = line.strip().split('\t') _, index, pos, strand = line index, pos = int(index), int(pos) strand = strand != '+' # strand == '-' => 0 mult[index][strand] += 1 outfile = os.path.join(outdir, f'dbg_{self.init_k}-{self.init_k+self.niter}') graph = nx.MultiDiGraph() for node in self.nx_graph.nodes(): graph.add_node(node, label=f'{node} len={self.node2len[node]}') for edge in self.nx_graph.edges(keys=True): index = self.edge2index[edge] seq = self.edge2seq[index] if not compact else None seqlen = len(self.edge2seq[index]) label = f'index={index}\nlen={seqlen}' if reffn is not None: # print(mult[index], mult_est[index]) # assert mult[index] == 0 or mult[index] >= mult_est[index] if mult[index] == [0, 0]: logger.info(f'Warning: edge {index} has [0, 0] coverage') label += f'\nmult_real={mult[index]}' graph.add_edge(*edge, label=label, seq=seq) dotfile = f'{outfile}.dot' nx.drawing.nx_pydot.write_dot(graph, dotfile) if export_pdf and self.nx_graph.size() < 500: pdffile = f'{outfile}.pdf' # https://stackoverflow.com/a/3516106 cmd = ['dot', '-Tpdf', dotfile, '-o', pdffile] call(cmd) def main(): parser = argparse.ArgumentParser() parser.add_argument("-i", "--dbg", required=True, help="Directory with DBG output") parser.add_argument("-o", "--outdir", required=True) parser.add_argument("--ref") parser.add_argument("--refhpc", action='store_true') parser.add_argument("--no_export_pdf", action='store_true') parser.add_argument("-K", type=int, default=40002) params = parser.parse_args() params.dbg = expandpath(params.dbg) params.outdir = expandpath(params.outdir) smart_makedirs(params.outdir) logfn = os.path.join(params.outdir, 'inc_k.log') global logger logger = get_logger(logfn, logger_name='centroFlye: inc_k') logger.info(f'cmd: {sys.argv}') logger.info(f'git hash: {get_git_revision_short_hash()}') db_fn = os.path.join(params.dbg, 'graph.fasta') align_fn = os.path.join(params.dbg, 'alignments.txt') dbg_log_fn = os.path.join(params.dbg, 'dbg.log') with open(dbg_log_fn) as f: cmd = f.readline().strip().split(' ') i = 0 while cmd[i] != '-k': i += 1 k = int(cmd[i+1]) + 1 logger.info(f'init k = {k}') logger.info(f'Reading DBG output from {params.dbg}') lpdb = PathMultiKGraph.fromDR(db_fn=db_fn, align_fn=align_fn, k=k, K=params.K) logger.info(f'# vertices = {nx.number_of_nodes(lpdb.nx_graph)}') logger.info(f'# edges = {nx.number_of_edges(lpdb.nx_graph)}') logger.info(f'Finished reading DBG output') logger.info(f'Starting increasing k') lpdb.transform_fast_until_saturated() logger.info(f'Finished increasing k') logger.info(f'# vertices = {nx.number_of_nodes(lpdb.nx_graph)}') logger.info(f'# edges = {nx.number_of_edges(lpdb.nx_graph)}') outac = os.path.join(params.outdir, f'active_connections.txt') logger.info(f'Active connections output to {outac}') with open(outac, 'w') as f: ac = lpdb.idb_mappings.get_active_connections() ac = sorted(list(ac)) for i, j in ac: print(f'{i} {j}', file=f) outuniquedges = os.path.join(params.outdir, f'unique_edges.txt') logger.info(f'Unique edges output to {outuniquedges}') with open(outuniquedges, 'w') as f: for index in sorted(list(lpdb.unique_edges)): print(index, file=f) outdot = os.path.join(params.outdir, f'dbg_{k}-{lpdb.init_k+lpdb.niter}') logger.info(f'Writing final graph to {outdot}') outfasta = outdot + '.fasta' logger.info(f'Writing graph edges to {outfasta}') edges = {key: ''.join(edge) for key, edge in lpdb.edge2seq.items()} write_bio_seqs(outfasta, edges) lpdb.write_dot(params.outdir, compact=True, reffn=params.ref, refhpc=params.refhpc, export_pdf=not params.no_export_pdf) logger.info(f'Finished writing final graph (dot)') out = open(outdot + ".graph", "w") for edge in lpdb.nx_graph.edges(keys=True): index = lpdb.edge2index[edge] seq = lpdb.edge2seq[index] out.write(">" + "_".join([str(index), str(edge[0]), str(lpdb.node2len[edge[0]]), str(edge[1]), str(lpdb.node2len[edge[1]])]) + "\n") out.write("".join(seq)) out.write("\n") out.close() if __name__ == "__main__": main()
39.958333
156
0.526382
f7ea46bbea56b6d52b4da58f637445f646443bea
19,245
py
Python
examples/tensorflow/multiple-choice/run_swag.py
Knarik1/transformers
c2a7d7280250addae38a49c31a57ddd897be2065
[ "Apache-2.0" ]
2
2021-09-16T01:24:38.000Z
2021-09-29T18:45:34.000Z
examples/tensorflow/multiple-choice/run_swag.py
Knarik1/transformers
c2a7d7280250addae38a49c31a57ddd897be2065
[ "Apache-2.0" ]
null
null
null
examples/tensorflow/multiple-choice/run_swag.py
Knarik1/transformers
c2a7d7280250addae38a49c31a57ddd897be2065
[ "Apache-2.0" ]
2
2021-08-15T14:42:10.000Z
2021-09-25T15:40:49.000Z
#!/usr/bin/env python # coding=utf-8 # Copyright The HuggingFace Team and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-tuning the library models for multiple choice. """ # You can also adapt this script on your own multiple choice task. Pointers for this are left as comments. import logging import os import sys from dataclasses import dataclass, field from itertools import chain from pathlib import Path from typing import Optional import datasets import numpy as np import tensorflow as tf from datasets import load_dataset import transformers from transformers import ( CONFIG_NAME, TF2_WEIGHTS_NAME, AutoConfig, AutoTokenizer, HfArgumentParser, TFAutoModelForMultipleChoice, TFTrainingArguments, create_optimizer, set_seed, ) from transformers.utils import check_min_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.15.0.dev0") logger = logging.getLogger(__name__) # region Helper classes and functions class SavePretrainedCallback(tf.keras.callbacks.Callback): # Hugging Face models have a save_pretrained() method that saves both the weights and the necessary # metadata to allow them to be loaded as a pretrained model in future. This is a simple Keras callback # that saves the model with this method after each epoch. def __init__(self, output_dir, **kwargs): super().__init__() self.output_dir = output_dir def on_epoch_end(self, epoch, logs=None): self.model.save_pretrained(self.output_dir) def convert_dataset_for_tensorflow( dataset, non_label_column_names, batch_size, dataset_mode="variable_batch", shuffle=True, drop_remainder=True ): """Converts a Hugging Face dataset to a Tensorflow Dataset. The dataset_mode controls whether we pad all batches to the maximum sequence length, or whether we only pad to the maximum length within that batch. The former is most useful when training on TPU, as a new graph compilation is required for each sequence length. """ def densify_ragged_batch(features, label=None): features = { feature: ragged_tensor.to_tensor(shape=batch_shape[feature]) for feature, ragged_tensor in features.items() } if label is None: return features else: return features, label feature_keys = list(set(dataset.features.keys()) - set(non_label_column_names + ["label"])) if dataset_mode == "variable_batch": batch_shape = {key: None for key in feature_keys} data = {key: tf.ragged.constant(dataset[key]) for key in feature_keys} elif dataset_mode == "constant_batch": data = {key: tf.ragged.constant(dataset[key]) for key in feature_keys} batch_shape = { key: tf.concat(([batch_size], ragged_tensor.bounding_shape()[1:]), axis=0) for key, ragged_tensor in data.items() } else: raise ValueError("Unknown dataset mode!") if "label" in dataset.features: labels = tf.convert_to_tensor(np.array(dataset["label"])) tf_dataset = tf.data.Dataset.from_tensor_slices((data, labels)) else: tf_dataset = tf.data.Dataset.from_tensor_slices(data) if shuffle: tf_dataset = tf_dataset.shuffle(buffer_size=len(dataset)) options = tf.data.Options() options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.OFF tf_dataset = ( tf_dataset.with_options(options) .batch(batch_size=batch_size, drop_remainder=drop_remainder) .map(densify_ragged_batch) ) return tf_dataset # endregion # region Arguments @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) use_fast_tokenizer: bool = field( default=True, metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, ) model_revision: str = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) use_auth_token: bool = field( default=False, metadata={ "help": "Will use the token generated when running `transformers-cli login` (necessary to use this script " "with private models)." }, ) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."}) validation_file: Optional[str] = field( default=None, metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) preprocessing_num_workers: Optional[int] = field( default=None, metadata={"help": "The number of processes to use for the preprocessing."}, ) max_seq_length: Optional[int] = field( default=None, metadata={ "help": "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." }, ) pad_to_max_length: bool = field( default=False, metadata={ "help": "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." }, ) max_train_samples: Optional[int] = field( default=None, metadata={ "help": "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." }, ) max_eval_samples: Optional[int] = field( default=None, metadata={ "help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." }, ) def __post_init__(self): if self.train_file is not None: extension = self.train_file.split(".")[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: extension = self.validation_file.split(".")[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." # endregion def main(): # region Argument parsing # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() output_dir = Path(training_args.output_dir) output_dir.mkdir(parents=True, exist_ok=True) # endregion # region Logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) log_level = training_args.get_process_log_level() logger.setLevel(log_level) datasets.utils.logging.set_verbosity(log_level) transformers.utils.logging.set_verbosity(log_level) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # endregion # region Checkpoints checkpoint = None if len(os.listdir(training_args.output_dir)) > 0 and not training_args.overwrite_output_dir: if (output_dir / CONFIG_NAME).is_file() and (output_dir / TF2_WEIGHTS_NAME).is_file(): checkpoint = output_dir logger.info( f"Checkpoint detected, resuming training from checkpoint in {training_args.output_dir}. To avoid this" " behavior, change the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) else: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to continue regardless." ) # endregion # Set seed before initializing model. set_seed(training_args.seed) # region Load datasets # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: data_files = {} if data_args.train_file is not None: data_files["train"] = data_args.train_file if data_args.validation_file is not None: data_files["validation"] = data_args.validation_file extension = data_args.train_file.split(".")[-1] raw_datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir) else: # Downloading and loading the swag dataset from the hub. raw_datasets = load_dataset("swag", "regular", cache_dir=model_args.cache_dir) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # When using your own dataset or a different dataset from swag, you will probably need to change this. ending_names = [f"ending{i}" for i in range(4)] context_name = "sent1" question_header_name = "sent2" # endregion # region Load model config and tokenizer if checkpoint is not None: config_path = training_args.output_dir elif model_args.config_name: config_path = model_args.config_name else: config_path = model_args.model_name_or_path # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. config = AutoConfig.from_pretrained( config_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # endregion # region Dataset preprocessing if data_args.max_seq_length is None: max_seq_length = tokenizer.model_max_length if max_seq_length > 1024: logger.warning( f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). " "Picking 1024 instead. You can change that default value by passing --max_seq_length xxx." ) max_seq_length = 1024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length) def preprocess_function(examples): first_sentences = [[context] * 4 for context in examples[context_name]] question_headers = examples[question_header_name] second_sentences = [ [f"{header} {examples[end][i]}" for end in ending_names] for i, header in enumerate(question_headers) ] # Flatten out first_sentences = list(chain(*first_sentences)) second_sentences = list(chain(*second_sentences)) # Tokenize tokenized_examples = tokenizer(first_sentences, second_sentences, truncation=True, max_length=max_seq_length) # Un-flatten data = {k: [v[i : i + 4] for i in range(0, len(v), 4)] for k, v in tokenized_examples.items()} return data if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset") train_dataset = raw_datasets["train"] non_label_columns = [feature for feature in train_dataset.features if feature not in ("label", "labels")] if data_args.max_train_samples is not None: train_dataset = train_dataset.select(range(data_args.max_train_samples)) with training_args.main_process_first(desc="train dataset map pre-processing"): train_dataset = train_dataset.map( preprocess_function, batched=True, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset") eval_dataset = raw_datasets["validation"] if not training_args.do_train: non_label_columns = [feature for feature in eval_dataset.features if feature not in ("label", "labels")] if data_args.max_eval_samples is not None: eval_dataset = eval_dataset.select(range(data_args.max_eval_samples)) with training_args.main_process_first(desc="validation dataset map pre-processing"): eval_dataset = eval_dataset.map( preprocess_function, batched=True, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) # endregion with training_args.strategy.scope(): # region Build model if checkpoint is None: model_path = model_args.model_name_or_path else: model_path = checkpoint model = TFAutoModelForMultipleChoice.from_pretrained( model_path, config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) num_replicas = training_args.strategy.num_replicas_in_sync total_train_batch_size = training_args.per_device_train_batch_size * num_replicas total_eval_batch_size = training_args.per_device_eval_batch_size * num_replicas if training_args.do_train: total_train_steps = (len(train_dataset) // total_train_batch_size) * int(training_args.num_train_epochs) optimizer, lr_schedule = create_optimizer( init_lr=training_args.learning_rate, num_train_steps=int(total_train_steps), num_warmup_steps=0 ) else: optimizer = "adam" # Just put anything in here, since we're not using it anyway model.compile( optimizer=optimizer, loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=[tf.keras.metrics.SparseCategoricalAccuracy(name="accuracy")], ) # endregion # region Training if training_args.do_train: tf_train_dataset = convert_dataset_for_tensorflow( train_dataset, non_label_column_names=non_label_columns, batch_size=total_train_batch_size ) if training_args.do_eval: validation_data = convert_dataset_for_tensorflow( eval_dataset, non_label_column_names=non_label_columns, batch_size=total_eval_batch_size ) else: validation_data = None model.fit( tf_train_dataset, validation_data=validation_data, epochs=int(training_args.num_train_epochs), callbacks=[SavePretrainedCallback(output_dir=training_args.output_dir)], ) # endregion # region Evaluation if training_args.do_eval and not training_args.do_train: # Do a standalone evaluation pass tf_eval_dataset = convert_dataset_for_tensorflow( eval_dataset, non_label_column_names=non_label_columns, batch_size=total_eval_batch_size ) model.evaluate(tf_eval_dataset) # endregion # region Push to hub if training_args.push_to_hub: model.push_to_hub( finetuned_from=model_args.model_name_or_path, tasks="multiple-choice", dataset_tags="swag", dataset_args="regular", dataset="SWAG", language="en", ) # endregion if __name__ == "__main__": main()
41.746204
119
0.675448
cb8607c834da7e75b673ff46953926bccd6fd5d9
552
py
Python
floem/programs/inc2_function_ext.py
mangpo/floem
2ff53dc601237597b299ebf93607d51b82cb8f4c
[ "BSD-2-Clause" ]
21
2018-10-10T18:52:32.000Z
2022-02-16T12:23:51.000Z
floem/programs/inc2_function_ext.py
mangpo/floem
2ff53dc601237597b299ebf93607d51b82cb8f4c
[ "BSD-2-Clause" ]
null
null
null
floem/programs/inc2_function_ext.py
mangpo/floem
2ff53dc601237597b299ebf93607d51b82cb8f4c
[ "BSD-2-Clause" ]
3
2020-04-22T23:09:26.000Z
2021-09-30T01:35:34.000Z
from floem import * class Inc(Element): def configure(self): self.inp = Input(Int) self.out = Output(Int) def impl(self): self.run_c("int x = inp() + 1; output { out(x); }") class inc2(CallableSegment): def configure(self): self.inp = Input(Int) self.out = Output(Int) def impl(self): self.inp >> Inc() >> Inc() >> self.out inc2('inc2', process='simple_math') c = Compiler() c.generate_code_as_header('simple_math') c.depend = ['simple_math'] c.compile_and_run('simple_math_ext')
20.444444
59
0.608696
9ddc4b42e10363942e14f601c60f31a4d088250d
181
py
Python
src/water_management/exceptionclass.py
viswan29/watermanagement
ba5d3215d3799c0f56ceca96d26fef71f0238891
[ "MIT" ]
null
null
null
src/water_management/exceptionclass.py
viswan29/watermanagement
ba5d3215d3799c0f56ceca96d26fef71f0238891
[ "MIT" ]
null
null
null
src/water_management/exceptionclass.py
viswan29/watermanagement
ba5d3215d3799c0f56ceca96d26fef71f0238891
[ "MIT" ]
null
null
null
""" Exception class to raise exception """ class NotAllowed(Exception): def __init__(self, m): self.message = m def __str__(self): return self.message
22.625
35
0.624309
7c444482693018e16692dc279e14b1d1e0457cb0
29,058
py
Python
smac/epm/gp_kernels.py
TheVinhLuong102/AutoML-SMAC3
d4cb7ed76e0fbdd9edf6ab5360ff75de67ac2195
[ "BSD-3-Clause" ]
711
2016-08-22T14:23:29.000Z
2022-03-29T21:56:12.000Z
smac/epm/gp_kernels.py
TheVinhLuong102/AutoML-SMAC3
d4cb7ed76e0fbdd9edf6ab5360ff75de67ac2195
[ "BSD-3-Clause" ]
770
2016-08-17T14:39:07.000Z
2022-03-31T11:35:58.000Z
smac/epm/gp_kernels.py
TheVinhLuong102/AutoML-SMAC3
d4cb7ed76e0fbdd9edf6ab5360ff75de67ac2195
[ "BSD-3-Clause" ]
210
2016-08-20T15:14:29.000Z
2022-03-30T08:04:34.000Z
from inspect import signature, Signature import math from typing import Optional, Union, Tuple, List, Callable, Dict, Any import numpy as np import sklearn.gaussian_process.kernels as kernels import scipy.optimize import scipy.spatial.distance import scipy.special from smac.epm.gp_base_prior import Prior __copyright__ = "Copyright 2021, AutoML.org Freiburg-Hannover" __license__ = "3-clause BSD" # This file contains almost no type annotations to simplify comparing it to the original scikit-learn version! def get_conditional_hyperparameters(X: np.ndarray, Y: Optional[np.ndarray]) -> np.ndarray: # Taking care of conditional hyperparameters according to Levesque et al. X_cond = X <= -1 if Y is not None: Y_cond = Y <= -1 else: Y_cond = X <= -1 active = ~((np.expand_dims(X_cond, axis=1) != Y_cond).any(axis=2)) return active class MagicMixin: # This is a mixin for a kernel to override functions of the kernel. Because it overrides functions of the kernel, # it needs to be placed first in the inheritance hierarchy. For this reason it is not possible to subclass the # Mixin from the kernel class because this will prevent it from being instantiatable. Therefore, mypy won't know # about anything related to the superclass and I had to add a few type:ignore statements when accessing a member # that is declared in the superclass such as self.has_conditions, self._call, super().get_params etc. prior = None # type: Optional[Prior] def __call__( self, X: np.ndarray, Y: Optional[np.ndarray] = None, eval_gradient: bool = False, active: Optional[np.ndarray] = None, ) -> Union[np.ndarray, Tuple[np.ndarray, np.ndarray]]: if active is None and self.has_conditions: # type: ignore[attr-defined] # noqa F821 if self.operate_on is None: active = get_conditional_hyperparameters(X, Y) else: if Y is None: active = get_conditional_hyperparameters(X[:, self.operate_on], None) else: active = get_conditional_hyperparameters(X[:, self.operate_on], Y[:, self.operate_on]) if self.operate_on is None: rval = self._call(X, Y, eval_gradient, active) # type: ignore[attr-defined] # noqa F821 else: if Y is None: rval = self._call( # type: ignore[attr-defined] # noqa F821 X=X[:, self.operate_on].reshape([-1, self.len_active]), Y=None, eval_gradient=eval_gradient, active=active, ) X = X[:, self.operate_on].reshape((-1, self.len_active)) else: rval = self._call( # type: ignore[attr-defined] # noqa F821 X=X[:, self.operate_on].reshape([-1, self.len_active]), Y=Y[:, self.operate_on].reshape([-1, self.len_active]), eval_gradient=eval_gradient, active=active, ) X = X[:, self.operate_on].reshape((-1, self.len_active)) Y = Y[:, self.operate_on].reshape((-1, self.len_active)) return rval def __add__(self, b: Union[kernels.Kernel, float]) -> kernels.Sum: if not isinstance(b, kernels.Kernel): return Sum(self, ConstantKernel(b)) return Sum(self, b) def __radd__(self, b: Union[kernels.Kernel, float]) -> kernels.Sum: if not isinstance(b, kernels.Kernel): return Sum(ConstantKernel(b), self) return Sum(b, self) def __mul__(self, b: Union[kernels.Kernel, float]) -> kernels.Product: if not isinstance(b, kernels.Kernel): return Product(self, ConstantKernel(b)) return Product(self, b) def __rmul__(self, b: Union[kernels.Kernel, float]) -> kernels.Product: if not isinstance(b, kernels.Kernel): return Product(ConstantKernel(b), self) return Product(b, self) def _signature(self, func: Callable) -> Signature: try: sig_ = self._signature_cache.get(func) # type: Optional[Signature] except AttributeError: self._signature_cache = {} # type: Dict[Callable, Signature] sig_ = None if sig_ is None: sig = signature(func) self._signature_cache[func] = sig return sig else: return sig_ def get_params(self, deep: bool = True) -> Dict[str, Any]: """Get parameters of this kernel. Parameters ---------- deep : boolean, optional If True, will return the parameters for this estimator and contained subobjects that are estimators. Returns ------- params : mapping of string to any Parameter names mapped to their values. """ params = dict() try: args = self._args_cache except AttributeError: # ignore[misc] looks like it catches all kinds of errors, but misc is actually a category from mypy: # https://mypy.readthedocs.io/en/latest/error_code_list.html#miscellaneous-checks-misc tmp = super().get_params(deep) # type: ignore[misc] # noqa F821 args = list(tmp.keys()) # Sum and Product do not clone the 'has_conditions' attribute by default. Instead of changing their # get_params() method, we simply add the attribute here! if 'has_conditions' not in args: args.append('has_conditions') self._args_cache = args # type: List[Union[str, Any]] for arg in args: params[arg] = getattr(self, arg, None) return params @property def hyperparameters(self) -> List[kernels.Hyperparameter]: """Returns a list of all hyperparameter specifications.""" try: return self._hyperparameters_cache except AttributeError: pass r = super().hyperparameters # type: ignore[misc] # noqa F821 self._hyperparameters_cache = r # type: List[kernels.Hyperparameter] return r @property def n_dims(self) -> int: """Returns the number of non-fixed hyperparameters of the kernel.""" try: return self._n_dims_cache except AttributeError: pass self._n_dims_cache = -1 # type: int # I cannot use `varname: type = value` syntax because that's >=Python3.6 self._n_dims_cache = super().n_dims # type: ignore[misc] # noqa F821 return self._n_dims_cache def clone_with_theta(self, theta: np.ndarray) -> kernels.Kernel: """Returns a clone of self with given hyperparameters theta. Parameters ---------- theta : array, shape (n_dims,) The hyperparameters """ self.theta = theta return self def set_active_dims(self, operate_on: Optional[np.ndarray] = None) -> None: """Sets dimensions this kernel should work on Parameters ---------- operate_on : None, list or array, shape (n_dims,) """ if operate_on is not None and type(operate_on) in (list, np.ndarray): if not isinstance(operate_on, np.ndarray): raise TypeError('argument operate_on needs to be of type np.ndarray, but is %s' % type(operate_on)) if operate_on.dtype != np.int: raise ValueError('dtype of argument operate_on needs to be np.int, but is %s' % operate_on.dtype) self.operate_on = operate_on # type: Optional[np.ndarray] self.len_active = len(operate_on) # type: Optional[int] else: self.operate_on = None self.len_active = None class Sum(MagicMixin, kernels.Sum): def __init__( self, k1: kernels.Kernel, k2: kernels.Kernel, operate_on: np.ndarray = None, has_conditions: bool = False, ) -> None: super(Sum, self).__init__(k1=k1, k2=k2) self.set_active_dims(operate_on) self.has_conditions = has_conditions def _call( self, X: np.ndarray, Y: Optional[np.ndarray] = None, eval_gradient: bool = False, active: np.ndarray = None, ) -> Union[np.ndarray, Tuple[np.ndarray, np.ndarray]]: """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. active : np.ndarray (n_samples_X, n_features) (optional) Boolean array specifying which hyperparameters are active. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ if eval_gradient: K1, K1_gradient = self.k1(X, Y, eval_gradient=True, active=active) K2, K2_gradient = self.k2(X, Y, eval_gradient=True, active=active) return K1 + K2, np.dstack((K1_gradient, K2_gradient)) else: return self.k1(X, Y, active=active) + self.k2(X, Y, active=active) class Product(MagicMixin, kernels.Product): def __init__( self, k1: kernels.Kernel, k2: kernels.Kernel, operate_on: np.ndarray = None, has_conditions: bool = False, ) -> None: super(Product, self).__init__(k1=k1, k2=k2) self.set_active_dims(operate_on) self.has_conditions = has_conditions def _call( self, X: np.ndarray, Y: Optional[np.ndarray] = None, eval_gradient: bool = False, active: np.ndarray = None, ) -> Union[np.ndarray, Tuple[np.ndarray, np.ndarray]]: """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. active : np.ndarray (n_samples_X, n_features) (optional) Boolean array specifying which hyperparameters are active. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ if eval_gradient: K1, K1_gradient = self.k1(X, Y, eval_gradient=True, active=active) K2, K2_gradient = self.k2(X, Y, eval_gradient=True, active=active) return K1 * K2, np.dstack((K1_gradient * K2[:, :, np.newaxis], K2_gradient * K1[:, :, np.newaxis])) else: return self.k1(X, Y, active=active) * self.k2(X, Y, active=active) class ConstantKernel(MagicMixin, kernels.ConstantKernel): def __init__( self, constant_value: float = 1.0, constant_value_bounds: Tuple[float, float] = (1e-5, 1e5), operate_on: Optional[np.ndarray] = None, prior: Optional[Prior] = None, has_conditions: bool = False, ) -> None: super(ConstantKernel, self).__init__(constant_value=constant_value, constant_value_bounds=constant_value_bounds) self.set_active_dims(operate_on) self.prior = prior self.has_conditions = has_conditions def _call( self, X: np.ndarray, Y: Optional[np.ndarray] = None, eval_gradient: bool = False, active: Optional[np.ndarray] = None, ) -> Union[np.ndarray, Tuple[np.ndarray, np.ndarray]]: """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Only supported when Y is None. active : np.ndarray (n_samples_X, n_features) (optional) Boolean array specifying which hyperparameters are active. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ X = np.atleast_2d(X) if Y is None: Y = X elif eval_gradient: raise ValueError("Gradient can only be evaluated when Y is None.") K = np.full((X.shape[0], Y.shape[0]), self.constant_value, dtype=np.array(self.constant_value).dtype) if eval_gradient: if not self.hyperparameter_constant_value.fixed: return (K, np.full((X.shape[0], X.shape[0], 1), self.constant_value, dtype=np.array(self.constant_value).dtype)) else: return K, np.empty((X.shape[0], X.shape[0], 0)) else: return K class Matern(MagicMixin, kernels.Matern): def __init__( self, length_scale: Union[float, Tuple[float, ...]] = 1.0, length_scale_bounds: Union[Tuple[float, float], List[Tuple[float, float]]] = (1e-5, 1e5), nu: float = 1.5, operate_on: Optional[np.ndarray] = None, prior: Optional[Prior] = None, has_conditions: bool = False, ) -> None: super(Matern, self).__init__(length_scale=length_scale, length_scale_bounds=length_scale_bounds, nu=nu) self.set_active_dims(operate_on) self.prior = prior self.has_conditions = has_conditions def _call( self, X: np.ndarray, Y: Optional[np.ndarray] = None, eval_gradient: bool = False, active: Optional[np.ndarray] = None, ) -> Union[np.ndarray, Tuple[np.ndarray, np.ndarray]]: """ Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Only supported when Y is None. active : np.ndarray (n_samples_X, n_features) (optional) Boolean array specifying which hyperparameters are active. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ X = np.atleast_2d(X) length_scale = kernels._check_length_scale(X, self.length_scale) if Y is None: dists = scipy.spatial.distance.pdist(X / length_scale, metric='euclidean') else: if eval_gradient: raise ValueError( "Gradient can only be evaluated when Y is None.") dists = scipy.spatial.distance.cdist(X / length_scale, Y / length_scale, metric='euclidean') if self.nu == 0.5: K = np.exp(-dists) elif self.nu == 1.5: K = dists * math.sqrt(3) K = (1. + K) * np.exp(-K) elif self.nu == 2.5: K = dists * math.sqrt(5) K = (1. + K + K ** 2 / 3.0) * np.exp(-K) else: # general case; expensive to evaluate K = dists K[K == 0.0] += np.finfo(float).eps # strict zeros result in nan tmp = (math.sqrt(2 * self.nu) * K) K.fill((2 ** (1. - self.nu)) / scipy.special.gamma(self.nu)) K *= tmp ** self.nu K *= scipy.special.kv(self.nu, tmp) if Y is None: # convert from upper-triangular matrix to square matrix K = scipy.spatial.distance.squareform(K) np.fill_diagonal(K, 1) if active is not None: K = K * active if eval_gradient: if self.hyperparameter_length_scale.fixed: # Hyperparameter l kept fixed K_gradient = np.empty((X.shape[0], X.shape[0], 0)) return K, K_gradient # We need to recompute the pairwise dimension-wise distances if self.anisotropic: D = (X[:, np.newaxis, :] - X[np.newaxis, :, :]) ** 2 / (length_scale ** 2) else: D = scipy.spatial.distance.squareform(dists ** 2)[:, :, np.newaxis] if self.nu == 0.5: K_gradient = K[..., np.newaxis] * D / np.sqrt(D.sum(2))[:, :, np.newaxis] K_gradient[~np.isfinite(K_gradient)] = 0 elif self.nu == 1.5: K_gradient = 3 * D * np.exp(-np.sqrt(3 * D.sum(-1)))[..., np.newaxis] elif self.nu == 2.5: tmp = np.sqrt(5 * D.sum(-1))[..., np.newaxis] K_gradient = 5.0 / 3.0 * D * (tmp + 1) * np.exp(-tmp) else: # original sklearn code would approximate gradient numerically, but this would violate our assumption # that the kernel hyperparameters are not changed within __call__ raise ValueError(self.nu) if not self.anisotropic: return K, K_gradient[:, :].sum(-1)[:, :, np.newaxis] else: return K, K_gradient else: return K class RBF(MagicMixin, kernels.RBF): def __init__( self, length_scale: Union[float, Tuple[float, ...]] = 1.0, length_scale_bounds: Union[Tuple[float, float], List[Tuple[float, float]]] = (1e-5, 1e5), operate_on: Optional[np.ndarray] = None, prior: Optional[Prior] = None, has_conditions: bool = False, ) -> None: super(RBF, self).__init__(length_scale=length_scale, length_scale_bounds=length_scale_bounds) self.set_active_dims(operate_on) self.prior = prior self.has_conditions = has_conditions def _call( self, X: np.ndarray, Y: Optional[np.ndarray] = None, eval_gradient: bool = False, active: Optional[np.ndarray] = None, ) -> Union[np.ndarray, Tuple[np.ndarray, np.ndarray]]: """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Only supported when Y is None. active : np.ndarray (n_samples_X, n_features) (optional) Boolean array specifying which hyperparameters are active. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ X = np.atleast_2d(X) length_scale = kernels._check_length_scale(X, self.length_scale) if Y is None: dists = scipy.spatial.distance.pdist(X / length_scale, metric='sqeuclidean') K = np.exp(-.5 * dists) # convert from upper-triangular matrix to square matrix K = scipy.spatial.distance.squareform(K) np.fill_diagonal(K, 1) else: if eval_gradient: raise ValueError( "Gradient can only be evaluated when Y is None.") dists = scipy.spatial.distance.cdist(X / length_scale, Y / length_scale, metric='sqeuclidean') K = np.exp(-.5 * dists) if active is not None: K = K * active if eval_gradient: if self.hyperparameter_length_scale.fixed: # Hyperparameter l kept fixed return K, np.empty((X.shape[0], X.shape[0], 0)) elif not self.anisotropic or length_scale.shape[0] == 1: K_gradient = (K * scipy.spatial.distance.squareform(dists))[:, :, np.newaxis] return K, K_gradient elif self.anisotropic: # We need to recompute the pairwise dimension-wise distances K_gradient = (X[:, np.newaxis, :] - X[np.newaxis, :, :]) ** 2 / (length_scale ** 2) K_gradient *= K[..., np.newaxis] return K, K_gradient return K class WhiteKernel(MagicMixin, kernels.WhiteKernel): def __init__( self, noise_level: Union[float, Tuple[float, ...]] = 1.0, noise_level_bounds: Union[Tuple[float, float], List[Tuple[float, float]]] = (1e-5, 1e5), operate_on: Optional[np.ndarray] = None, prior: Optional[Prior] = None, has_conditions: bool = False, ) -> None: super(WhiteKernel, self).__init__(noise_level=noise_level, noise_level_bounds=noise_level_bounds) self.set_active_dims(operate_on) self.prior = prior self.has_conditions = has_conditions def _call( self, X: np.ndarray, Y: Optional[np.ndarray] = None, eval_gradient: bool = False, active: Optional[np.ndarray] = None, ) -> Union[np.ndarray, Tuple[np.ndarray, np.ndarray]]: """ Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Only supported when Y is None. active : np.ndarray (n_samples_X, n_features) (optional) Boolean array specifying which hyperparameters are active. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ X = np.atleast_2d(X) if Y is not None and eval_gradient: raise ValueError("Gradient can only be evaluated when Y is None.") if Y is None: K = self.noise_level * np.eye(X.shape[0]) if active is not None: K = K * active if eval_gradient: if not self.hyperparameter_noise_level.fixed: return (K, self.noise_level * np.eye(X.shape[0])[:, :, np.newaxis]) else: return K, np.empty((X.shape[0], X.shape[0], 0)) else: return K else: return np.zeros((X.shape[0], Y.shape[0])) class HammingKernel(MagicMixin, kernels.StationaryKernelMixin, kernels.NormalizedKernelMixin, kernels.Kernel): def __init__( self, length_scale: Union[float, Tuple[float, ...]] = 1.0, length_scale_bounds: Union[Tuple[float, float], List[Tuple[float, float]]] = (1e-5, 1e5), operate_on: Optional[np.ndarray] = None, prior: Optional[Prior] = None, has_conditions: bool = False, ) -> None: self.length_scale = length_scale self.length_scale_bounds = length_scale_bounds self.set_active_dims(operate_on) self.prior = prior self.has_conditions = has_conditions @property def hyperparameter_length_scale(self) -> kernels.Hyperparameter: length_scale = self.length_scale anisotropic = np.iterable(length_scale) and len(length_scale) > 1 # type: ignore if anisotropic: return kernels.Hyperparameter("length_scale", "numeric", self.length_scale_bounds, len(length_scale)) # type: ignore # noqa: E501 return kernels.Hyperparameter("length_scale", "numeric", self.length_scale_bounds) def _call( self, X: np.ndarray, Y: Optional[np.ndarray] = None, eval_gradient: bool = False, active: Optional[np.ndarray] = None, ) -> Union[np.ndarray, Tuple[np.ndarray, np.ndarray]]: """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : [array-like, shape=(n_samples_X, n_features)] Left argument of the returned kernel k(X, Y) Y : [array-like, shape=(n_samples_Y, n_features) or None(default)] Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : [bool, False(default)] Determines whether the gradient with respect to the kernel hyperparameter is determined. Only supported when Y is None. active : np.ndarray (n_samples_X, n_features) (optional) Boolean array specifying which hyperparameters are active. Returns ------- K : [array-like, shape=(n_samples_X, n_samples_Y)] Kernel k(X, Y) K_gradient : [array-like, shape=(n_samples_X, n_samples_X, n_dims)] The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. Note ---- Code partially copied from skopt (https://github.com/scikit-optimize). Made small changes to only compute necessary values and use scikit-learn helper functions. """ X = np.atleast_2d(X) length_scale = kernels._check_length_scale(X, self.length_scale) if Y is None: Y = X elif eval_gradient: raise ValueError("gradient can be evaluated only when Y != X") else: Y = np.atleast_2d(Y) indicator = np.expand_dims(X, axis=1) != Y K = (-1 / (2 * length_scale**2) * indicator).sum(axis=2) K = np.exp(K) if active is not None: K = K * active if eval_gradient: # dK / d theta = (dK / dl) * (dl / d theta) # theta = log(l) => dl / d (theta) = e^theta = l # dK / d theta = l * dK / dl # dK / dL computation if np.iterable(length_scale) and length_scale.shape[0] > 1: grad = (np.expand_dims(K, axis=-1) * np.array(indicator, dtype=np.float32)) else: grad = np.expand_dims(K * np.sum(indicator, axis=2), axis=-1) grad *= (1 / length_scale ** 3) return K, grad return K
38.744
143
0.585381
965dd39191fb85a1cd5cc660b762a93ec4b7f71e
578
py
Python
dots_connect_deta/board/signal.py
Sinha-Ujjawal/dots-connect-deta
cdb9ab69a22b8623a1265d565ee2e9dd91b1f1fe
[ "MIT" ]
null
null
null
dots_connect_deta/board/signal.py
Sinha-Ujjawal/dots-connect-deta
cdb9ab69a22b8623a1265d565ee2e9dd91b1f1fe
[ "MIT" ]
null
null
null
dots_connect_deta/board/signal.py
Sinha-Ujjawal/dots-connect-deta
cdb9ab69a22b8623a1265d565ee2e9dd91b1f1fe
[ "MIT" ]
null
null
null
from typing import Set from django import dispatch from asgiref.sync import async_to_sync from .channel import CHANNEL_LAYER from .models import Room BROADCAST_JOINED_USERS = dispatch.Signal(providing_args=["rooms"]) @dispatch.receiver(BROADCAST_JOINED_USERS) def handle_broadcast_joined_users_signal(rooms: Set[Room], **_kwargs): for room in rooms: async_to_sync(CHANNEL_LAYER.group_send)( f"chat_{room.room_id}", { "type": "broadcast_joined_users_infos_handler", "message": None, }, )
28.9
70
0.685121
15b9c8cc14eea593c05cab912d60c7c442f54630
10,541
py
Python
odps/df/backends/pd/engine.py
Emersonxuelinux/aliyun-odps-python-sdk
0b38c777711c95ed1775fa67822febf88fc3d642
[ "Apache-2.0" ]
null
null
null
odps/df/backends/pd/engine.py
Emersonxuelinux/aliyun-odps-python-sdk
0b38c777711c95ed1775fa67822febf88fc3d642
[ "Apache-2.0" ]
null
null
null
odps/df/backends/pd/engine.py
Emersonxuelinux/aliyun-odps-python-sdk
0b38c777711c95ed1775fa67822febf88fc3d642
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 1999-2017 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import tarfile import zipfile from .compiler import PandasCompiler from .types import pd_to_df_schema from ..core import Engine, ExecuteNode, ExprDAG from ..frame import ResultFrame from ... import DataFrame from ...expr.core import ExprDictionary from ...expr.expressions import * from ...expr.dynamic import DynamicMixin from ...backends.odpssql.types import df_schema_to_odps_schema, df_type_to_odps_type from ..errors import CompileError from ..utils import refresh_dynamic, write_table from ...utils import is_source_collection, is_constant_scalar from ...types import DynamicSchema, Unknown from ....models import Schema, Partition from ....errors import ODPSError from ....types import PartitionSpec from ....lib.importer import CompressImporter from .... import compat from ..context import context from . import analyzer as ana class PandasExecuteNode(ExecuteNode): def __repr__(self): return 'Local execution by pandas backend' def _repr_html_(self): return '<p>Local execution by pandas backend</p>' def with_thirdparty_libs(fun): def wrapped(self, *args, **kwargs): libraries = self._get_libraries(kwargs.get('libraries')) importer = self._build_library_importer(libraries) if importer is not None: sys.meta_path.append(importer) try: return fun(self, *args, **kwargs) finally: if importer is not None: sys.meta_path = [p for p in sys.meta_path if p is not importer] wrapped.__name__ = fun.__name__ wrapped.__doc__ = fun.__doc__ return wrapped class PandasEngine(Engine): def __init__(self, odps=None): self._odps = odps def _new_execute_node(self, expr_dag): return PandasExecuteNode(expr_dag) def _run(self, expr_dag, pd_dag, ui=None, progress_proportion=1, **_): ui.status('Try to execute by local pandas...', clear_keys=True) results = ExprDictionary() while True: topos = pd_dag.topological_sort() no_sub = True for node in topos: expr, func = node if expr in results: continue res = func(results) if isinstance(res, tuple): src = expr expr = res[0] res = res[1] results[src] = res results[expr] = res # break cuz the dag has changed no_sub = False break results[expr] = res if no_sub: break ui.inc(progress_proportion) try: return results[expr_dag.root] except KeyError as e: if len(results) == 1: return compat.lvalues(results)[0] raise e def _new_analyzer(self, expr_dag, on_sub=None): return ana.Analyzer(expr_dag) def _compile(self, expr_dag): backend = PandasCompiler(expr_dag) return backend.compile(expr_dag.root) def _cache(self, expr_dag, dag, expr, **kwargs): import pandas as pd if is_source_collection(expr_dag.root) or \ is_constant_scalar(expr_dag.root): return execute_dag = ExprDAG(expr_dag.root, dag=expr_dag) if isinstance(expr, CollectionExpr): root = expr_dag.root sub = CollectionExpr(_source_data=pd.DataFrame(), _schema=expr.schema) sub.add_deps(root) expr_dag.substitute(root, sub) execute_node = self._execute(execute_dag, dag, expr, ret_df=True, **kwargs) def callback(res): for col in res.columns: sub._source_data[col] = res[col] if isinstance(expr, DynamicMixin): sub._schema = pd_to_df_schema(res) refresh_dynamic(sub, expr_dag) execute_node.callback = callback else: assert isinstance(expr, Scalar) # sequence is not cache-able class ValueHolder(object): pass sub = Scalar(_value_type=expr.dtype) sub._value = ValueHolder() execute_node = self._execute(execute_dag, dag, expr, **kwargs) def callback(res): sub._value = res execute_node.callback = callback return sub, execute_node def _build_library_importer(self, libraries): if libraries is None: return None readers = [] for library in libraries: if isinstance(library, six.string_types): library = self._odps.get_resource(library) lib_name = library.name if lib_name.endswith('.zip') or lib_name.endswith('.egg') or lib_name.endswith('.whl'): readers.append(zipfile.ZipFile(library.open(mode='rb'))) elif lib_name.endswith('.tar') or lib_name.endswith('.tar.gz') or lib_name.endswith('.tar.bz2'): from io import BytesIO if lib_name.endswith('.tar'): mode = 'r' else: mode = 'r:gz' if lib_name.endswith('.tar.gz') else 'r:bz2' readers.append(tarfile.open(fileobj=BytesIO(library.open(mode='rb').read()), mode=mode)) else: raise ValueError( 'Unknown library type which should be one of zip(egg, wheel), tar, or tar.gz') return CompressImporter(*readers) @with_thirdparty_libs def _do_execute(self, expr_dag, expr, ui=None, progress_proportion=1, head=None, tail=None, **kw): expr_dag = self._convert_table(expr_dag) self._rewrite(expr_dag) ret_df = kw.pop('ret_df', False) src_expr = expr pd_dag = self._compile(expr_dag) df = self._run(expr_dag, pd_dag, ui=ui, progress_proportion=progress_proportion, **kw) if not isinstance(src_expr, Scalar): context.cache(src_expr, df) # reset schema if isinstance(src_expr, CollectionExpr) and \ (isinstance(src_expr._schema, DynamicSchema) or any(isinstance(col.type, Unknown) for col in src_expr._schema.columns)): src_expr._schema = expr_dag.root.schema if head: df = df[:head] elif tail: df = df[-tail:] if ret_df: return df return ResultFrame(df.values, schema=expr_dag.root.schema) else: res = df.values[0][0] context.cache(src_expr, res) return res @with_thirdparty_libs def _do_persist(self, expr_dag, expr, name, ui=None, project=None, partitions=None, partition=None, odps=None, lifecycle=None, progress_proportion=1, execute_percent=0.5, overwrite=True, drop_table=False, create_table=True, drop_partition=False, create_partition=False, cast=False, **kwargs): expr_dag = self._convert_table(expr_dag) self._rewrite(expr_dag) src_expr = expr expr = expr_dag.root odps = odps or self._odps if odps is None: raise ODPSError('ODPS entrance should be provided') df = self._do_execute(expr_dag, src_expr, ui=ui, progress_proportion=progress_proportion * execute_percent, **kwargs) schema = Schema(columns=df.columns) if partitions is not None: if isinstance(partitions, tuple): partitions = list(partitions) if not isinstance(partitions, list): partitions = [partitions, ] for p in partitions: if p not in schema: raise ValueError( 'Partition field(%s) does not exist in DataFrame schema' % p) columns = [c for c in schema.columns if c.name not in partitions] ps = [Partition(name=t, type=schema.get_type(t)) for t in partitions] schema = Schema(columns=columns, partitions=ps) elif partition is not None: t = odps.get_table(name, project=project) for col in expr.schema.columns: if col.name.lower() not in t.schema: raise CompileError('Column %s does not exist in table' % col.name) t_col = t.schema[col.name.lower()] if df_type_to_odps_type(col.type) != t_col.type: raise CompileError('Column %s\'s type does not match, expect %s, got %s' % ( col.name, t_col.type, col.type)) if drop_partition: t.delete_partition(partition, if_exists=True) if create_partition: t.create_partition(partition, if_not_exists=True) if partition is None: if drop_table: odps.delete_table(name, project=project, if_exists=True) if create_table and not odps.exist_table(name): schema = df_schema_to_odps_schema(schema) odps.create_table(name, schema, project=project, lifecycle=lifecycle) table = odps.get_table(name, project=project) write_table(df, table, ui=ui, cast=cast, partitions=partitions, partition=partition, progress_proportion=progress_proportion*(1-execute_percent)) if partition: partition = PartitionSpec(partition) filters = [] for k in partition.keys: filters.append(lambda x: x[k] == partition[k]) return DataFrame(odps.get_table(name, project=project)).filter(*filters) return DataFrame(odps.get_table(name, project=project))
36.985965
108
0.598425
43f854c3d6aec2fc4d0873e91996f858f6ef0f12
347
py
Python
setup.py
cpartington/bio-info
698e8d14d14493fbb03727e08c282a49ef4c62e8
[ "MIT" ]
null
null
null
setup.py
cpartington/bio-info
698e8d14d14493fbb03727e08c282a49ef4c62e8
[ "MIT" ]
null
null
null
setup.py
cpartington/bio-info
698e8d14d14493fbb03727e08c282a49ef4c62e8
[ "MIT" ]
null
null
null
from setuptools import setup, find_packages setup(name="bio_info", version="0.1", description="Basic algorithms for DNA manipulation.", url="http://github.com/cpartington/bio-info", author="Christie Partington", packages=find_packages(), install_requires=[ "progressbar2", "numpy" ])
26.692308
59
0.634006
ea072951b9b00bb00588746d36c54cfb17c50c9b
2,068
py
Python
APIS/hn_submissions.py
portelaoliveira/CSV_e_JSON
0c8c5b93f7a2ed4433d3133c93d004687aa4c497
[ "MIT" ]
2
2020-05-16T20:42:47.000Z
2020-05-16T20:42:50.000Z
APIS/hn_submissions.py
portelaoliveira/CSV_e_JSON
0c8c5b93f7a2ed4433d3133c93d004687aa4c497
[ "MIT" ]
null
null
null
APIS/hn_submissions.py
portelaoliveira/CSV_e_JSON
0c8c5b93f7a2ed4433d3133c93d004687aa4c497
[ "MIT" ]
null
null
null
import requests from operator import itemgetter # Faz uma chamada de API e armazena a resposta. url = 'https://hacker-news.firebaseio.com/v0/topstories.json' ''' Essa chamada de API devolve uma lista contendo os IDs dos 500 artigos mais populares do Hacker News no momento em que a chamada é feita. ''' r = requests.get(url) print('Status code:', r.status_code) # Processa informações sobre cada artigo submetido. submission_ids = r.json() # Covertemos o texto em uma lista Python. submission_dicts = [] # Usaremos esse IDs para criar um conjunto de diconários em que cada um aramzena informaçôes sobre um dos artigos submetidos. for submission_id in submission_ids[:10]: # Percorre os IDs dos 10 principais artigos submetidos. # Cria uma chamada de API separada para cada artigo submetido. url = f"https://hacker-news.firebaseio.com/v0/item/{submission_id}.json" # Faz uma nova chamada de API para cada artigo gerando um URL que inclui o valor atual. submission_r = requests.get(url) print(f"id: {submission_id}\tstatus: {submission_r.status_code}") # Ver se foi bem sucedido response_dict = submission_r.json() submission_dict = { 'title': response_dict['title'], # Título do artigo. 'hn_link': f"http://news.ycombinator.com/item?id={submission_id}", # Link para página de discurssão desse item. 'comments': response_dict['descendants'], # Número de comentários no dicionário. } submission_dicts.append(submission_dict) submission_dicts = sorted(submission_dicts, key = itemgetter('comments'), reverse = True) ''' A função itemgetter('comments') ordena a lita de dicionário de acordo com o número de comentários. A função sorted() então utiliza esse valor como base para ordenar a lista. Ordenamos a lista na ordem inversa para colocar as histórias mais comentadas antes. ''' for submission_dict in submission_dicts: print(f"\nTitle: {submission_dict['title']}") print(f"Discussion link: {submission_dict['hn_link']}") print(f"Comments: {submission_dict['comments']}")
54.421053
164
0.738878
b78d556f91281dedab632b10471f4901fbe112b5
5,021
py
Python
paddle/args.py
yongbowin/DuReader_annotation
138f60558f3a4810c0f83d2e8fcac150220bab60
[ "Apache-2.0" ]
null
null
null
paddle/args.py
yongbowin/DuReader_annotation
138f60558f3a4810c0f83d2e8fcac150220bab60
[ "Apache-2.0" ]
null
null
null
paddle/args.py
yongbowin/DuReader_annotation
138f60558f3a4810c0f83d2e8fcac150220bab60
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import distutils.util def parse_args(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( '--prepare', action='store_true', help='create the directories, prepare the vocabulary and embeddings') parser.add_argument('--train', action='store_true', help='train the model') parser.add_argument('--evaluate', action='store_true', help='evaluate the model on dev set') parser.add_argument('--predict', action='store_true', help='predict the answers for test set with trained model') parser.add_argument("--embed_size", type=int, default=300, help="The dimension of embedding table. (default: %(default)d)") parser.add_argument("--hidden_size", type=int, default=150, help="The size of rnn hidden unit. (default: %(default)d)") parser.add_argument("--learning_rate", type=float, default=0.001, help="Learning rate used to train the model. (default: %(default)f)") parser.add_argument('--optim', default='adam', help='optimizer type') parser.add_argument("--weight_decay", type=float, default=0.0001, help="Weight decay. (default: %(default)f)") parser.add_argument('--drop_rate', type=float, default=0.0, help="Dropout probability") parser.add_argument('--random_seed', type=int, default=123) parser.add_argument("--batch_size", type=int, default=32, help="The sequence number of a mini-batch data. (default: %(default)d)") parser.add_argument("--pass_num", type=int, default=5, help="The number epochs to train. (default: %(default)d)") """ if "--use_gpu" value in ('y', 'yes', 't', 'true', 'on', '1'), to use gpu. """ parser.add_argument("--use_gpu", type=distutils.util.strtobool, default=True, help="Whether to use gpu. (default: %(default)d)") parser.add_argument("--log_interval", type=int, default=50, help="log the train loss every n batches. (default: %(default)d)") parser.add_argument('--max_p_num', type=int, default=5) parser.add_argument('--max_a_len', type=int, default=200) parser.add_argument('--max_p_len', type=int, default=500) parser.add_argument('--max_q_len', type=int, default=60) parser.add_argument('--doc_num', type=int, default=5) parser.add_argument('--vocab_dir', default='../data/vocab', help='vocabulary') parser.add_argument("--save_dir", type=str, default="../data/models", help="Specify the path to save trained models.") parser.add_argument("--save_interval", type=int, default=1, help="Save the trained model every n passes. (default: %(default)d)") parser.add_argument("--load_dir", type=str, default="", help="Specify the path to load trained models.") parser.add_argument('--log_path', help='path of the log file. If not set, logs are printed to console') parser.add_argument('--result_dir', default='../data/results/', help='the dir to output the results') parser.add_argument('--result_name', default='test_result', help='the file name of the predicted results') parser.add_argument('--trainset', nargs='+', default=['../data/demo/trainset/search.train.json'], help='train dataset') parser.add_argument('--devset', nargs='+', default=['../data/demo/devset/search.dev.json'], help='dev dataset') parser.add_argument('--testset', nargs='+', default=['../data/demo/testset/search.test.json'], help='test dataset') parser.add_argument("--enable_ce", action='store_true', help="If set, run the task with continuous evaluation logs.") parser.add_argument('--para_print', action='store_true', help="Print debug info") parser.add_argument("--dev_interval", type=int, default=-1, help="evaluate on dev set loss every n batches. (default: %(default)d)") args = parser.parse_args() return args
52.852632
96
0.63334
d60166f7cf1209dc961c5e3cf4a5db104789e471
13,219
py
Python
pdb2pqr-1.9.0/scons/scons-local-2.3.0/SCons/Tool/packaging/rpm.py
Acpharis/protein_prep
8cc2f0caedefd5a3fdaa764ed013c2660a4df1b8
[ "BSD-3-Clause" ]
9
2016-08-17T06:52:10.000Z
2020-04-28T04:20:07.000Z
pdb2pqr-1.9.0/scons/scons-local-2.3.0/SCons/Tool/packaging/rpm.py
Acpharis/protein_prep
8cc2f0caedefd5a3fdaa764ed013c2660a4df1b8
[ "BSD-3-Clause" ]
null
null
null
pdb2pqr-1.9.0/scons/scons-local-2.3.0/SCons/Tool/packaging/rpm.py
Acpharis/protein_prep
8cc2f0caedefd5a3fdaa764ed013c2660a4df1b8
[ "BSD-3-Clause" ]
1
2021-03-03T23:20:25.000Z
2021-03-03T23:20:25.000Z
"""SCons.Tool.Packaging.rpm The rpm packager. """ # # Copyright (c) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 The SCons Foundation # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. __revision__ = "src/engine/SCons/Tool/packaging/rpm.py 2013/03/03 09:48:35 garyo" import os import SCons.Builder import SCons.Tool.rpmutils from SCons.Environment import OverrideEnvironment from SCons.Tool.packaging import stripinstallbuilder, src_targz from SCons.Errors import UserError def package(env, target, source, PACKAGEROOT, NAME, VERSION, PACKAGEVERSION, DESCRIPTION, SUMMARY, X_RPM_GROUP, LICENSE, **kw): # initialize the rpm tool SCons.Tool.Tool('rpm').generate(env) bld = env['BUILDERS']['Rpm'] # Generate a UserError whenever the target name has been set explicitly, # since rpm does not allow for controlling it. This is detected by # checking if the target has been set to the default by the Package() # Environment function. if str(target[0])!="%s-%s"%(NAME, VERSION): raise UserError( "Setting target is not supported for rpm." ) else: # This should be overridable from the construction environment, # which it is by using ARCHITECTURE=. buildarchitecture = SCons.Tool.rpmutils.defaultMachine() if 'ARCHITECTURE' in kw: buildarchitecture = kw['ARCHITECTURE'] fmt = '%s-%s-%s.%s.rpm' srcrpm = fmt % (NAME, VERSION, PACKAGEVERSION, 'src') binrpm = fmt % (NAME, VERSION, PACKAGEVERSION, buildarchitecture) target = [ srcrpm, binrpm ] # get the correct arguments into the kw hash loc=locals() del loc['kw'] kw.update(loc) del kw['source'], kw['target'], kw['env'] # if no "SOURCE_URL" tag is given add a default one. if 'SOURCE_URL' not in kw: #kw['SOURCE_URL']=(str(target[0])+".tar.gz").replace('.rpm', '') kw['SOURCE_URL']=(str(target[0])+".tar.gz").replace('.rpm', '') # mangle the source and target list for the rpmbuild env = OverrideEnvironment(env, kw) target, source = stripinstallbuilder(target, source, env) target, source = addspecfile(target, source, env) target, source = collectintargz(target, source, env) # now call the rpm builder to actually build the packet. return bld(env, target, source, **kw) def collectintargz(target, source, env): """ Puts all source files into a tar.gz file. """ # the rpm tool depends on a source package, until this is chagned # this hack needs to be here that tries to pack all sources in. sources = env.FindSourceFiles() # filter out the target we are building the source list for. #sources = [s for s in sources if not (s in target)] sources = [s for s in sources if s not in target] # find the .spec file for rpm and add it since it is not necessarily found # by the FindSourceFiles function. #sources.extend( [s for s in source if str(s).rfind('.spec')!=-1] ) spec_file = lambda s: str(s).rfind('.spec') != -1 sources.extend( list(filter(spec_file, source)) ) # as the source contains the url of the source package this rpm package # is built from, we extract the target name #tarball = (str(target[0])+".tar.gz").replace('.rpm', '') tarball = (str(target[0])+".tar.gz").replace('.rpm', '') try: #tarball = env['SOURCE_URL'].split('/')[-1] tarball = env['SOURCE_URL'].split('/')[-1] except KeyError, e: raise SCons.Errors.UserError( "Missing PackageTag '%s' for RPM packager" % e.args[0] ) tarball = src_targz.package(env, source=sources, target=tarball, PACKAGEROOT=env['PACKAGEROOT'], ) return (target, tarball) def addspecfile(target, source, env): specfile = "%s-%s" % (env['NAME'], env['VERSION']) bld = SCons.Builder.Builder(action = build_specfile, suffix = '.spec', target_factory = SCons.Node.FS.File) source.extend(bld(env, specfile, source)) return (target,source) def build_specfile(target, source, env): """ Builds a RPM specfile from a dictionary with string metadata and by analyzing a tree of nodes. """ file = open(target[0].abspath, 'w') str = "" try: file.write( build_specfile_header(env) ) file.write( build_specfile_sections(env) ) file.write( build_specfile_filesection(env, source) ) file.close() # call a user specified function if 'CHANGE_SPECFILE' in env: env['CHANGE_SPECFILE'](target, source) except KeyError, e: raise SCons.Errors.UserError( '"%s" package field for RPM is missing.' % e.args[0] ) # # mandatory and optional package tag section # def build_specfile_sections(spec): """ Builds the sections of a rpm specfile. """ str = "" mandatory_sections = { 'DESCRIPTION' : '\n%%description\n%s\n\n', } str = str + SimpleTagCompiler(mandatory_sections).compile( spec ) optional_sections = { 'DESCRIPTION_' : '%%description -l %s\n%s\n\n', 'CHANGELOG' : '%%changelog\n%s\n\n', 'X_RPM_PREINSTALL' : '%%pre\n%s\n\n', 'X_RPM_POSTINSTALL' : '%%post\n%s\n\n', 'X_RPM_PREUNINSTALL' : '%%preun\n%s\n\n', 'X_RPM_POSTUNINSTALL' : '%%postun\n%s\n\n', 'X_RPM_VERIFY' : '%%verify\n%s\n\n', # These are for internal use but could possibly be overriden 'X_RPM_PREP' : '%%prep\n%s\n\n', 'X_RPM_BUILD' : '%%build\n%s\n\n', 'X_RPM_INSTALL' : '%%install\n%s\n\n', 'X_RPM_CLEAN' : '%%clean\n%s\n\n', } # Default prep, build, install and clean rules # TODO: optimize those build steps, to not compile the project a second time if 'X_RPM_PREP' not in spec: spec['X_RPM_PREP'] = '[ -n "$RPM_BUILD_ROOT" -a "$RPM_BUILD_ROOT" != / ] && rm -rf "$RPM_BUILD_ROOT"' + '\n%setup -q' if 'X_RPM_BUILD' not in spec: spec['X_RPM_BUILD'] = 'mkdir "$RPM_BUILD_ROOT"' if 'X_RPM_INSTALL' not in spec: spec['X_RPM_INSTALL'] = 'scons --install-sandbox="$RPM_BUILD_ROOT" "$RPM_BUILD_ROOT"' if 'X_RPM_CLEAN' not in spec: spec['X_RPM_CLEAN'] = '[ -n "$RPM_BUILD_ROOT" -a "$RPM_BUILD_ROOT" != / ] && rm -rf "$RPM_BUILD_ROOT"' str = str + SimpleTagCompiler(optional_sections, mandatory=0).compile( spec ) return str def build_specfile_header(spec): """ Builds all section but the %file of a rpm specfile """ str = "" # first the mandatory sections mandatory_header_fields = { 'NAME' : '%%define name %s\nName: %%{name}\n', 'VERSION' : '%%define version %s\nVersion: %%{version}\n', 'PACKAGEVERSION' : '%%define release %s\nRelease: %%{release}\n', 'X_RPM_GROUP' : 'Group: %s\n', 'SUMMARY' : 'Summary: %s\n', 'LICENSE' : 'License: %s\n', } str = str + SimpleTagCompiler(mandatory_header_fields).compile( spec ) # now the optional tags optional_header_fields = { 'VENDOR' : 'Vendor: %s\n', 'X_RPM_URL' : 'Url: %s\n', 'SOURCE_URL' : 'Source: %s\n', 'SUMMARY_' : 'Summary(%s): %s\n', 'X_RPM_DISTRIBUTION' : 'Distribution: %s\n', 'X_RPM_ICON' : 'Icon: %s\n', 'X_RPM_PACKAGER' : 'Packager: %s\n', 'X_RPM_GROUP_' : 'Group(%s): %s\n', 'X_RPM_REQUIRES' : 'Requires: %s\n', 'X_RPM_PROVIDES' : 'Provides: %s\n', 'X_RPM_CONFLICTS' : 'Conflicts: %s\n', 'X_RPM_BUILDREQUIRES' : 'BuildRequires: %s\n', 'X_RPM_SERIAL' : 'Serial: %s\n', 'X_RPM_EPOCH' : 'Epoch: %s\n', 'X_RPM_AUTOREQPROV' : 'AutoReqProv: %s\n', 'X_RPM_EXCLUDEARCH' : 'ExcludeArch: %s\n', 'X_RPM_EXCLUSIVEARCH' : 'ExclusiveArch: %s\n', 'X_RPM_PREFIX' : 'Prefix: %s\n', 'X_RPM_CONFLICTS' : 'Conflicts: %s\n', # internal use 'X_RPM_BUILDROOT' : 'BuildRoot: %s\n', } # fill in default values: # Adding a BuildRequires renders the .rpm unbuildable under System, which # are not managed by rpm, since the database to resolve this dependency is # missing (take Gentoo as an example) # if not s.has_key('x_rpm_BuildRequires'): # s['x_rpm_BuildRequires'] = 'scons' if 'X_RPM_BUILDROOT' not in spec: spec['X_RPM_BUILDROOT'] = '%{_tmppath}/%{name}-%{version}-%{release}' str = str + SimpleTagCompiler(optional_header_fields, mandatory=0).compile( spec ) return str # # mandatory and optional file tags # def build_specfile_filesection(spec, files): """ builds the %file section of the specfile """ str = '%files\n' if 'X_RPM_DEFATTR' not in spec: spec['X_RPM_DEFATTR'] = '(-,root,root)' str = str + '%%defattr %s\n' % spec['X_RPM_DEFATTR'] supported_tags = { 'PACKAGING_CONFIG' : '%%config %s', 'PACKAGING_CONFIG_NOREPLACE' : '%%config(noreplace) %s', 'PACKAGING_DOC' : '%%doc %s', 'PACKAGING_UNIX_ATTR' : '%%attr %s', 'PACKAGING_LANG_' : '%%lang(%s) %s', 'PACKAGING_X_RPM_VERIFY' : '%%verify %s', 'PACKAGING_X_RPM_DIR' : '%%dir %s', 'PACKAGING_X_RPM_DOCDIR' : '%%docdir %s', 'PACKAGING_X_RPM_GHOST' : '%%ghost %s', } for file in files: # build the tagset tags = {} for k in supported_tags.keys(): try: tags[k]=getattr(file, k) except AttributeError: pass # compile the tagset str = str + SimpleTagCompiler(supported_tags, mandatory=0).compile( tags ) str = str + ' ' str = str + file.PACKAGING_INSTALL_LOCATION str = str + '\n\n' return str class SimpleTagCompiler(object): """ This class is a simple string substition utility: the replacement specfication is stored in the tagset dictionary, something like: { "abc" : "cdef %s ", "abc_" : "cdef %s %s" } the compile function gets a value dictionary, which may look like: { "abc" : "ghij", "abc_gh" : "ij" } The resulting string will be: "cdef ghij cdef gh ij" """ def __init__(self, tagset, mandatory=1): self.tagset = tagset self.mandatory = mandatory def compile(self, values): """ compiles the tagset and returns a str containing the result """ def is_international(tag): #return tag.endswith('_') return tag[-1:] == '_' def get_country_code(tag): return tag[-2:] def strip_country_code(tag): return tag[:-2] replacements = list(self.tagset.items()) str = "" #domestic = [ (k,v) for k,v in replacements if not is_international(k) ] domestic = [t for t in replacements if not is_international(t[0])] for key, replacement in domestic: try: str = str + replacement % values[key] except KeyError, e: if self.mandatory: raise e #international = [ (k,v) for k,v in replacements if is_international(k) ] international = [t for t in replacements if is_international(t[0])] for key, replacement in international: try: #int_values_for_key = [ (get_country_code(k),v) for k,v in values.items() if strip_country_code(k) == key ] x = [t for t in values.items() if strip_country_code(t[0]) == key] int_values_for_key = [(get_country_code(t[0]),t[1]) for t in x] for v in int_values_for_key: str = str + replacement % v except KeyError, e: if self.mandatory: raise e return str # Local Variables: # tab-width:4 # indent-tabs-mode:nil # End: # vim: set expandtab tabstop=4 shiftwidth=4:
36.924581
125
0.603677
0966f0f37958359787704841a80dd130a6fe4ce0
201
py
Python
Files.py/1035.py
gomes-gabriel/URI
5c79eccb37cd0633c2ed58144e876013bfad679a
[ "MIT" ]
null
null
null
Files.py/1035.py
gomes-gabriel/URI
5c79eccb37cd0633c2ed58144e876013bfad679a
[ "MIT" ]
null
null
null
Files.py/1035.py
gomes-gabriel/URI
5c79eccb37cd0633c2ed58144e876013bfad679a
[ "MIT" ]
null
null
null
inp = list(map(int, input().split(' '))) A, B, C, D = inp if B > C and D > A and C + D > A + B and C > 0 and D > 0 and A % 2 == 0: print('Valores aceitos') else: print('Valores nao aceitos')
22.333333
72
0.532338
78976e1146cb8cbd45848d4712610dbe13ec03d0
1,318
py
Python
telebot/plugins/fleaveme.py
IloveOrbiter/TinyBot
1b89757859f2c493f8405120b2b8e848e5c6b554
[ "MIT" ]
null
null
null
telebot/plugins/fleaveme.py
IloveOrbiter/TinyBot
1b89757859f2c493f8405120b2b8e848e5c6b554
[ "MIT" ]
null
null
null
telebot/plugins/fleaveme.py
IloveOrbiter/TinyBot
1b89757859f2c493f8405120b2b8e848e5c6b554
[ "MIT" ]
null
null
null
# Credit: @r4v4n4 """Emoji Available Commands: .fleave""" import asyncio from telebot import CMD_HELP from telebot.utils import admin_cmd @telebot.on(admin_cmd(pattern=r"(.*)", outgoing=True)) async def _(event): if event.fwd_from: return animation_interval = 1 animation_ttl = range(0, 17) input_str = event.pattern_match.group(1) if input_str == "fleave": await event.edit(input_str) animation_chars = [ "⬛⬛⬛\n⬛⬛⬛\n⬛⬛⬛", "⬛⬛⬛\n⬛🔄⬛\n⬛⬛⬛", "⬛⬆️⬛\n⬛🔄⬛\n⬛⬛⬛", "⬛⬆️↗️\n⬛🔄⬛\n⬛⬛⬛", "⬛⬆️↗️\n⬛🔄➡️\n⬛⬛⬛", "⬛⬆️↗️\n⬛🔄➡️\n⬛⬛↘️", "⬛⬆️↗️\n⬛🔄➡️\n⬛⬇️↘️", "⬛⬆️↗️\n⬛🔄➡️\n↙️⬇️↘️", "⬛⬆️↗️\n⬅️🔄➡️\n↙️⬇️↘️", "↖️⬆️↗️\n⬅️🔄➡️\n↙️⬇️↘️", "**Chat Message Exported To** `./Inpu/`", "**Chat Message Exported To** `./Inpu/homework/`", "**Chat Message Exported To** `./Inpu/homework/groupchat.txt`", "__Legend is leaving this chat.....!..__", "__Legend is leaving this chat.....!..__", ] for i in animation_ttl: await asyncio.sleep(animation_interval) await event.edit(animation_chars[i % 17]) CMD_HELP.update({"fleaveme": ".fleave\nUse - useless/leave the chat."})
23.122807
75
0.473445
866b30b219eb7d2fb9addc1d7524192cf8e94ceb
4,889
py
Python
data/train/python/866b30b219eb7d2fb9addc1d7524192cf8e94cebtest_install_repositories.py
harshp8l/deep-learning-lang-detection
2a54293181c1c2b1a2b840ddee4d4d80177efb33
[ "MIT" ]
84
2017-10-25T15:49:21.000Z
2021-11-28T21:25:54.000Z
data/train/python/866b30b219eb7d2fb9addc1d7524192cf8e94cebtest_install_repositories.py
vassalos/deep-learning-lang-detection
cbb00b3e81bed3a64553f9c6aa6138b2511e544e
[ "MIT" ]
5
2018-03-29T11:50:46.000Z
2021-04-26T13:33:18.000Z
data/train/python/866b30b219eb7d2fb9addc1d7524192cf8e94cebtest_install_repositories.py
vassalos/deep-learning-lang-detection
cbb00b3e81bed3a64553f9c6aa6138b2511e544e
[ "MIT" ]
24
2017-11-22T08:31:00.000Z
2022-03-27T01:22:31.000Z
import new, logging import install_and_test_tool_shed_repositories.base.test_db_util as test_db_util from install_and_test_tool_shed_repositories.base.twilltestcase import InstallTestRepository log = logging.getLogger(__name__) class InstallTestRepositories( InstallTestRepository ): """Abstract test case that installs and uninstalls a predefined list of repositories.""" def do_installation( self, repository_info_dict ): self.logout() self.login( email='test@bx.psu.edu', username='test' ) admin_user = test_db_util.get_user( 'test@bx.psu.edu' ) assert admin_user is not None, 'Problem retrieving user with email %s from the database' % admin_email admin_user_private_role = test_db_util.get_private_role( admin_user ) # Install the repository through the web interface using twill. self.install_repository( repository_info_dict ) def do_uninstallation( self, repository_info_dict, deactivate_only=False ): self.logout() self.login( email='test@bx.psu.edu', username='test' ) admin_user = test_db_util.get_user( 'test@bx.psu.edu' ) assert admin_user is not None, 'Problem retrieving user with email %s from the database' % admin_email # Get the repository from the database. repository = test_db_util.get_installed_repository_by_name_owner_changeset_revision( repository_info_dict[ 'name' ], repository_info_dict[ 'owner' ], repository_info_dict[ 'changeset_revision' ] ) admin_user_private_role = test_db_util.get_private_role( admin_user ) # Uninstall the repository through the web interface using twill. self.uninstall_repository( repository, deactivate_only ) def generate_install_method( repository_dict=None ): """Generate abstract test cases for the defined list of repositories.""" if repository_dict is None: return # Push all the toolbox tests to module level G = globals() # Eliminate all previous tests from G. for key, val in G.items(): if key.startswith( 'TestInstallRepository_' ) or key.startswith( 'TestUninstallRepository_' ) or key.startswith( 'TestForTool_' ): del G[ key ] # Create a new subclass with a method named install_repository_XXX that installs the repository specified by the provided dict. name = "TestInstallRepository_" + repository_dict[ 'name' ] baseclasses = ( InstallTestRepositories, ) namespace = dict() def make_install_method( repository_dict ): def test_install_repository( self ): self.do_installation( repository_dict ) return test_install_repository test_method = make_install_method( repository_dict ) test_method.__doc__ = "Install the repository %s from %s." % ( repository_dict[ 'name' ], repository_dict[ 'tool_shed_url' ] ) namespace[ 'install_repository_%s' % repository_dict[ 'name' ] ] = test_method # The new.classobj function returns a new class object, with name name, derived # from baseclasses (which should be a tuple of classes) and with namespace dict. new_class_obj = new.classobj( name, baseclasses, namespace ) G[ name ] = new_class_obj def generate_uninstall_method( repository_dict=None, deactivate_only=False ): """Generate abstract test cases for the defined list of repositories.""" if repository_dict is None: return # Push all the toolbox tests to module level G = globals() # Eliminate all previous tests from G. for key, val in G.items(): if key.startswith( 'TestInstallRepository_' ) or key.startswith( 'TestForTool_' ): del G[ key ] # Create a new subclass with a method named install_repository_XXX that installs the repository specified by the provided dict. name = "TestUninstallRepository_%s_%s" % ( repository_dict[ 'name' ], repository_dict[ 'changeset_revision' ] ) baseclasses = ( InstallTestRepositories, ) namespace = dict() def make_uninstall_method( repository_dict ): def test_install_repository( self ): self.do_uninstallation( repository_dict, deactivate_only ) return test_install_repository test_method = make_uninstall_method( repository_dict ) test_method.__doc__ = "Uninstall the repository %s." % repository_dict[ 'name' ] namespace[ 'uninstall_repository_%s_%s' % ( repository_dict[ 'name' ], repository_dict[ 'changeset_revision' ] ) ] = test_method # The new.classobj function returns a new class object, with name name, derived # from baseclasses (which should be a tuple of classes) and with namespace dict. new_class_obj = new.classobj( name, baseclasses, namespace ) G[ name ] = new_class_obj
59.621951
139
0.701575
9bb62096bbcc81a262d4e34d1ef0f87d836bfc0f
2,256
py
Python
Source/Oyooni/Color Recognition/detect.py
Oyooni5245/Oyooni
a00b845ac97eaee74d40cab563b9532fdeca97c8
[ "MIT" ]
null
null
null
Source/Oyooni/Color Recognition/detect.py
Oyooni5245/Oyooni
a00b845ac97eaee74d40cab563b9532fdeca97c8
[ "MIT" ]
null
null
null
Source/Oyooni/Color Recognition/detect.py
Oyooni5245/Oyooni
a00b845ac97eaee74d40cab563b9532fdeca97c8
[ "MIT" ]
null
null
null
import binascii from PIL import Image import numpy as np import scipy import scipy.misc import scipy.cluster def get_color_dict(): colorDict = dict() colorDict['أسود'] = [0, 0, 0] colorDict['رمادي'] = [127, 127, 127] colorDict['خمري'] = [136, 0, 21] colorDict['أحمر'] = [237, 28, 36] colorDict['برتقالي'] = [255, 127, 39] colorDict['أصفر'] = [255, 242, 0] colorDict['أخضر'] = [34, 177, 76] colorDict['ازرق'] = [203, 228, 253] colorDict['ازرق داكن'] = [0, 0, 128] colorDict['أزرق ملكي'] = [65, 105, 225] colorDict['احمر غامق'] = [139, 0, 0] colorDict['أخضرغامق'] = [0, 100, 0] colorDict['زيتوني'] = [85, 107, 47] colorDict['أزرق غامق'] = [0, 162, 232] colorDict['بنفسجي'] = [63, 72, 204] colorDict['أبيض'] = [255, 255, 255] colorDict['رمادي فاتح'] = [195, 195, 195] colorDict['زهري'] = [230, 39, 115] colorDict['فوشيا'] = [255, 0, 255] colorDict['زهري غامق'] = [255, 20, 147] return colorDict def closest(colors, color): colors = np.array(colors) color = np.array(color) distances = np.sqrt(np.sum((colors-color)**2, axis=1)) index_of_smallest = np.where(distances == np.amin(distances)) smallest_distance = colors[index_of_smallest] return smallest_distance[0] def detectColors(path, colorDict): NUM_CLUSTERS = 5 im = Image.open(path) im = im.resize((150, 150)) # optional, to reduce time ar = np.asarray(im) shape = ar.shape ar = ar.reshape(scipy.product(shape[:2]), shape[2]).astype(float) codes, _ = scipy.cluster.vq.kmeans(ar, NUM_CLUSTERS) vecs, _ = scipy.cluster.vq.vq(ar, codes) # assign codes counts, _ = scipy.histogram(vecs, len(codes)) # count occurrences index_max = scipy.argmax(counts) # find most frequent peak = codes[index_max] colour = binascii.hexlify(bytearray(int(c) for c in peak)).decode('ascii') rgb = list(int(colour[i:i+2], 16) for i in (0, 2, 4)) detectedColor = closest(list(colorDict.values()), rgb) detectedColor = list(detectedColor) outputColor = 'لم يتم التعرف على اللون' for key in colorDict.keys(): if colorDict[key] == detectedColor: outputColor = key return outputColor
33.176471
78
0.619681
7e3f39a20285dda504f52467117cfdd1bfe705c6
909
py
Python
setup.py
jmfilipe/baselines
8c7df56f6b74a7eb4915c0dda4b8ad5b0699fff2
[ "MIT" ]
null
null
null
setup.py
jmfilipe/baselines
8c7df56f6b74a7eb4915c0dda4b8ad5b0699fff2
[ "MIT" ]
null
null
null
setup.py
jmfilipe/baselines
8c7df56f6b74a7eb4915c0dda4b8ad5b0699fff2
[ "MIT" ]
null
null
null
from setuptools import setup, find_packages import sys if sys.version_info.major != 3: print('This Python is only compatible with Python 3, but you are running ' 'Python {}. The installation will likely fail.'.format(sys.version_info.major)) setup(name='baselines', packages=[package for package in find_packages() if package.startswith('baselines')], install_requires=[ 'gym[classic_control]', 'scipy', 'tqdm', 'joblib', 'zmq', 'dill', 'progressbar2', 'mpi4py', 'cloudpickle', 'tensorflow>=1.4.0', 'click', ], description='OpenAI baselines: high quality implementations of reinforcement learning algorithms', author='OpenAI', url='https://github.com/openai/baselines', author_email='gym@openai.com', version='0.1.5')
30.3
104
0.59516
1f2691723e4351ed2c6aa5bea6d289ffbafb5c72
2,692
py
Python
see/classifier_helpers/fetch_data.py
emmaline11235/see-segment
df4b8f1524114c92b9fc16a5f751d9f60c0ee2fc
[ "MIT" ]
2
2020-06-01T23:21:58.000Z
2020-06-12T19:07:33.000Z
see/classifier_helpers/fetch_data.py
chenqili2020/see-segment
f8b9f2376e0b1713e287152bf6797282036d1579
[ "MIT" ]
27
2020-06-12T13:07:36.000Z
2020-09-11T17:44:21.000Z
see/classifier_helpers/fetch_data.py
chenqili2020/see-segment
f8b9f2376e0b1713e287152bf6797282036d1579
[ "MIT" ]
12
2020-09-08T18:34:33.000Z
2022-01-14T19:35:12.000Z
"""The purpose of this file is to fetch or create data for benchmarking purposes.""" import numpy as np import pandas as pd from sklearn.datasets import make_moons, make_circles, make_classification from sklearn.preprocessing import label_binarize, StandardScaler def fetch_wisconsin_data(): """Fetches Breast Cancer Wisconsin (Diagnostic) data online. Returns ------- X : array-like of shape (n_samples, n_features) The data to fit or predict on where n_samples=569 and n_features=30. y : array-like of shape (n_samples,) The target label to predict. Labels are binary where 1 is Malignant and 0 is Benign Notes ----- This function relies on the data found at this url: "https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/wdbc.data" Data (X) is not preprocessed. """ # Data URL url = "https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/wdbc.data" data = pd.read_csv(url, header=None) X = data.iloc[:, 2:].to_numpy() y = data[1].to_numpy() y = label_binarize(y=y, classes=["B", "M"]).ravel() return X, y def generate_tutorial_data(): """ Generates tutorial data. Returns ------- datasets : dict Dictionary that contains the tutorial datasets. Dictionary keys are one of circles, linearly_separable, and moons. Dictionary values are tuples (X, y) where: X : array-like of shape (n_samples, n_features) The data to fit or predict on where n_samples=569 and n_features=30. y : array-like of shape (n_samples,) The target label to predict. Labels are binary where 1 is Malignant and 0 is Benign Notes ----- The scikit-learn tutorial that this is function relies on is here: https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html Data (X) is preprocessed in the same way that it is done in the tutorial. """ datasets = dict() datasets["circles"] = make_circles(noise=0.2, factor=0.5, random_state=1) datasets["moons"] = make_moons(noise=0.3, random_state=0) X, y = make_classification( n_features=2, n_redundant=0, n_informative=2, random_state=1, n_clusters_per_class=1, ) rng = np.random.RandomState(2) X += 2 * rng.uniform(size=X.shape) datasets["linearly_separable"] = (X, y) # Preprocess data for name in datasets: X, y = datasets[name] X = StandardScaler().fit_transform(X) datasets[name] = (X, y) return datasets
30.247191
103
0.653789
0d9f3d7d41c7ea29dd838a75fcb322f8bf4d733e
731
py
Python
register.py
amane-katagiri/pykick
6b59ac8c1fc101b66d6b2b5890b9a47b87436571
[ "MIT" ]
null
null
null
register.py
amane-katagiri/pykick
6b59ac8c1fc101b66d6b2b5890b9a47b87436571
[ "MIT" ]
1
2019-10-04T02:13:04.000Z
2019-10-04T02:13:04.000Z
register.py
amane-katagiri/maruberu
dec81e6ac97022e0f99090a0b9919c60736e2445
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Convert from Markdown to reST before upload to PyPI.""" import doctest from logging import DEBUG from logging import getLogger from logging import StreamHandler import os import pypandoc logger = getLogger(__name__) handler = StreamHandler() handler.setLevel(DEBUG) logger.setLevel(DEBUG) logger.addHandler(handler) def main(src: str, dst: str) -> None: """Convert 'src' in Markdown to 'dst' in reST.""" text = pypandoc.convert(src, "rst") logger.debug(text) with open(dst, "w+") as f: f.write(text) os.system("python setup.py sdist upload") os.remove(dst) if __name__ == "__main__": doctest.testmod() main("README.md", "README.rst")
22.151515
58
0.686731
2af51ec5ea39fc9e05e60d75a518cb973e3de7e1
6,584
py
Python
ostinato/statemachine/core.py
andrewebdev/django-ostinato
2c435dea23319be6e9011e7381afca2b4092b5a2
[ "MIT" ]
5
2015-01-28T09:56:48.000Z
2020-05-22T21:07:30.000Z
ostinato/statemachine/core.py
andrewebdev/django-ostinato
2c435dea23319be6e9011e7381afca2b4092b5a2
[ "MIT" ]
18
2015-02-03T15:37:22.000Z
2020-06-05T16:41:15.000Z
ostinato/statemachine/core.py
andrewebdev/django-ostinato
2c435dea23319be6e9011e7381afca2b4092b5a2
[ "MIT" ]
2
2015-02-23T19:34:59.000Z
2017-01-22T02:10:12.000Z
class SMException(Exception): def __init__(self, value): self.value = value def __str__(self): return self.value class InvalidState(SMException): pass class InvalidTransition(SMException): pass class InvalidStateMachine(SMException): pass class State(object): verbose_name = None transitions = {} permissions = ( ('view', 'Can View'), ('edit', 'Can Edit'), ('delete', 'Can Delete'), ) def __init__(self, instance=None, **kwargs): self.instance = instance self.extra_args = kwargs def set_state(self, new_state): """ A method that can be overridden for custom state processing. By default this method looks for a ``state_field`` on the instance and just updates that field. """ if self.instance: state_field = self.extra_args.get('state_field', 'state') setattr(self.instance, state_field, new_state) return new_state def transition(self, action, **kwargs): """ Performs a transition based on ``action`` and returns a instance for the next State """ try: new_state = self.transitions[action] except KeyError: raise InvalidTransition( '%s is not a valid action. Valid actions are: %s' % ( action, [k for k in self.transitions])) # Try to run a custom method if it exists if hasattr(self, action): getattr(self, action)(**kwargs) return self.set_state(new_state) class StateMachine(object): state_map = {} initial_state = '' def __init__(self, instance=None, **kwargs): """ The entry point for our statemachine. ``kwargs`` is extra arguments that the developer can pass through to the statemachine and it's States. This can then be used in the custom action methods for those states. """ self.instance = instance self.extra_args = kwargs self.process_state() self.verify_statemachine() def set_state(self, state): self._state = state def get_state(self): return self.state_map[self._state].verbose_name state = property(get_state) def get_actions(self): return [i for i in self.get_state_instance().transitions] actions = property(get_actions) @classmethod def get_choices(cls): """ Returns a standard django tuple containing a list of States, in the format, ``(<state_value>, '<verbose_name>')``. This is a handy helper for using in django choices fields etc. """ choices = () for k in cls.state_map: choices += ( (k, cls.state_map[k].verbose_name or cls.state_map[k].__name__), ) return choices def process_state(self): """ Our default state processor. This method can be overridden if the state is determined by more than just a field on the instance. If you override this method, make sure to call set_state() to set the state on the instance. """ self.state_field = self.extra_args.get('state_field', 'state') state = self.extra_args.get('state', None) if not state: state = getattr(self.instance, self.state_field, None) or self.initial_state if state not in self.state_map: state = self.initial_state self.set_state(state) def get_state_instance(self): """ Returns a single instance for the current state """ return self.state_map[self._state]( instance=self.instance, **self.extra_args) def take_action(self, action, **kwargs): self._state = self.get_state_instance().transition(action, **kwargs) def action_result(self, action): """ Determines what the resulting state for would be if ``action`` is transitioned. """ try: return self.get_state_instance().transitions[action] except KeyError: raise InvalidTransition('%s, is not a valid action.' % action) def verify_statemachine(self): """ Verify that the ``initial_state`` and ``state_map`` does not contain any invalid states. """ # First verify if the initial state is a valid state if self.initial_state not in self.state_map: raise InvalidStateMachine( '"%s" is not a valid state for %s. Valid states are %s' % ( self._state, self.__class__.__name__, [i for i in self.state_map.keys()] )) # Now cycle through every state in the state_map and make sure that # actions are valid and there are no "hanging states" state_keys = self.state_map.keys() # Hold on to these for testing for key in self.state_map: state_cl = self.state_map[key] targets = state_cl.transitions.values() for t in targets: if t not in state_keys: raise InvalidState( "%s contains an invalid action target, %s." % (state_cl.__name__, t)) @classmethod def get_permissions(cls, prefix, verbose_prefix=""): """ Returns the permissions for the different states and transitions as tuples, the same as what django's permission system expects. ``prefix`` is required so that we can specify on which model the permission applies. """ perms = () for k, v in cls.state_map.iteritems(): for perm in v.permissions: # permission codename format: "<state>_<action>_<prefix>" perms += (( '%s_%s_%s' % (v.__name__.lower(), perm[0], prefix), '[%s] %s %s' % (v.verbose_name, perm[1], verbose_prefix or prefix), ),) # Now add the transition permissions for t in v.transitions: perm = ( 'can_%s_%s' % (t, prefix), 'Can %s %s' % (t.capitalize(), verbose_prefix or prefix), ) if perm not in perms: # Dont add it if it already exists perms += (perm,) return perms class IntegerStateMachine(StateMachine): def set_state(self, state): super(IntegerStateMachine, self).set_state(int(state))
31.203791
88
0.581561
9c1bd6fd52ddf9bab9e3790370fbd21cbc791949
8,685
py
Python
termsaverlib/screen/base/urlfetcher.py
EddieDover/termsaver
cf2410ba9159988dcb283f5885b8cfada4b81400
[ "Apache-2.0" ]
67
2015-01-27T07:06:20.000Z
2022-03-27T11:24:27.000Z
termsaverlib/screen/base/urlfetcher.py
EddieDover/termsaver
cf2410ba9159988dcb283f5885b8cfada4b81400
[ "Apache-2.0" ]
31
2015-08-20T06:09:15.000Z
2022-03-23T03:10:37.000Z
termsaverlib/screen/base/urlfetcher.py
EddieDover/termsaver
cf2410ba9159988dcb283f5885b8cfada4b81400
[ "Apache-2.0" ]
22
2015-07-15T17:25:11.000Z
2021-06-03T10:39:42.000Z
############################################################################### # # file: urlfetcher.py # # Purpose: refer to module documentation for details # # Note: This file is part of Termsaver application, and should not be used # or executed separately. # ############################################################################### # # Copyright 2012 Termsaver # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # ############################################################################### """ This module contains a screen base class that handles URL fetched contents. See additional information in the class itself. The helper classes available here are: * `UrlFetcherBase` * `SimpleUrlFetcherBase` """ # # Internal modules # from termsaverlib.screen.base import ScreenBase from termsaverlib import exception, constants from termsaverlib.screen.helper.urlfetcher import URLFetcherHelperBase from termsaverlib.screen.helper.typing import TypingHelperBase from termsaverlib.i18n import _ class UrlFetcherBase(ScreenBase, TypingHelperBase, URLFetcherHelperBase): """ A base class used to handle URL fetched contents, and display them accordingly. This also includes the `TypingHelperBase` to add functionality of typing writer display. The instantiation of this class takes two additional arguments, compared with its base class: * url: the URL address to fetch data from * `delay`: defines the delay for printing out characters of a string """ url = "" """ the URL address to fetch data from """ def __init__(self, name, description, url=None, delay=None, cli_opts=None): """ Creates a new instance of this class. This constructor has two additional arguments, compared with its base class: * url: the URL address to fetch data from * `delay`: defines the delay for printing out characters of a string """ ScreenBase.__init__(self, name, description, cli_opts) if not cli_opts: self.cli_opts = { 'opts': 'hd:u:', 'long_opts': ['help', 'delay=', 'url='], } self.delay = delay self.url = url def _run_cycle(self): """ Executes a cycle of this screen. The actions taken here, for each cycle, are as follows: * retrieve data from `url` * print using `typing_print` """ data = self.fetch(self.url) self.clear_screen() self.typing_print(data.decode("utf-8")) def _message_no_url(self): """ Defines a method to be overriden by inheriting classes, with the purpose to display extra help information for specific errors. """ return "" def _usage_options_example(self): """ Describe here the options and examples of this screen. The method `_parse_args` will be handling the parsing of the options documented here. Additionally, this is dependent on the values exposed in `cli_opts`, passed to this class during its instantiation. Only values properly configured there will be accepted here. """ print (_(""" Options: -u, --url Defines the URL location from where the information should be fetched, then displayed. This option is MANDATORY. -d, --delay Sets the speed of the displaying characters default is 0.003 of a second (advised to keep between 0.01 and 0.001). -h, --help Displays this help message Examples: $ %(app_name)s %(screen)s -u www.google.com This will trigger the screensaver to fetch the HTML contents of this web site and display progressively. $ %(app_name)s %(screen)s -u www.google.com -d 0 This will trigger the screensaver to fetch the HTML contents of this web site with no delay (too fast for a screensaver, but it's your choice that matters!) """) % { 'screen': self.name, 'app_name': constants.App.NAME, }) def _parse_args(self, prepared_args): """ Handles the special command-line arguments available for this screen. Although this is a base screen, having these options prepared here can save coding for screens that will not change the default options. See `_usage_options_example` method for documentation on each of the options being parsed here. Additionally, this is dependent on the values exposed in `cli_opts`, passed to this class during its instantiation. Only values properly configured there will be accepted here. """ for o, a in prepared_args[0]: # optlist, args if o in ("-h", "--help"): self.usage() self.screen_exit() elif o in ("-d", "--delay"): try: # make sure argument is a valid value (float) self.delay = float(a) except: raise exception.InvalidOptionException("delay") elif o in ("-u", "--url"): try: # try to fix the url formatting self.url = self.fix_uri(a) except Exception as e: error_message = "" if hasattr(e, 'message'): error_message = e.message else: error_message = e raise exception.InvalidOptionException("url", error_message) else: # this should never happen! raise Exception(_("Unhandled option. See --help for details.")) # last validations if self.url in (None, ''): raise exception.InvalidOptionException("url", _("It is mandatory option"), help=self._message_no_url()) class SimpleUrlFetcherBase(UrlFetcherBase): """ Inherits the `UrlFetcherBase` class to handle basic URL fetching. This will simplify the use of UrlFetcherBase by forcing a fixed URL, and simplify the code of screens inheriting from it. """ def __init__(self, name, description, url, delay=None): """ Creates a new instance of this class. This constructor has forced the url argument, compared with its base class, as it has no command line options to define its value manually """ UrlFetcherBase.__init__(self, name, description, url, delay, {'opts': 'h', 'long_opts': ['help']}) def _usage_options_example(self): """ Describe here the options and examples of this screen. The method `_parse_args` will be handling the parsing of the options documented here. Additionally, this is dependent on the values exposed in `cli_opts`, passed to this class during its instantiation. Only values properly configured there will be accepted here. """ print (""" Options: -h, --help Displays this help message """) def _parse_args(self, prepared_args): """ Handles the special command-line arguments available for this screen. Although this is a base screen, having these options prepared here can save coding for screens that will not change the default options. See `_usage_options_example` method for documentation on each of the options being parsed here. Additionally, this is dependent on the values exposed in `cli_opts`, passed to this class during its instantiation. Only values properly configured there will be accepted here. """ for o, __ in prepared_args[0]: # optlist, args if o in ("-h", "--help"): self.usage() self.screen_exit() else: # this should never happen! raise Exception(_("Unhandled option. See --help for details."))
35.304878
80
0.602533
9c7f95a226448d29f02d4a7473e3114d2d79f8a4
5,819
py
Python
concur/testing.py
potocpav/python-concur
31b0a21f9fc64a517b139c3f2d050c8e17f50ca7
[ "MIT" ]
40
2019-10-24T12:58:23.000Z
2020-12-13T20:22:41.000Z
concur/testing.py
potocpav/python-concur
31b0a21f9fc64a517b139c3f2d050c8e17f50ca7
[ "MIT" ]
33
2020-01-27T18:42:06.000Z
2020-11-19T22:13:46.000Z
concur/testing.py
potocpav/python-concur
31b0a21f9fc64a517b139c3f2d050c8e17f50ca7
[ "MIT" ]
4
2019-11-25T14:37:29.000Z
2021-12-22T13:49:41.000Z
""" Routines for automated testing. The current automation/testing setup is work-in-progress, and the interface may change radically in future versions. There are some usability issues that I am not entirely happy with. See the [tests directory](https://github.com/potocpav/python-concur/tree/master/tests) for usage examples. """ import os import imgui import numpy as np # for floating point ranges from functools import partial from concur.integrations.puppet import PuppetRenderer, main from concur.draw import polyline from concur.core import orr, optional __pdoc__ = dict(test=False) def test(widget_gen, slow=None, draw_cursor=True, width=512, height=512, *args, **argv): return main( lambda puppet_renderer: widget_gen(draw_cursor, Testing(puppet_renderer, slow)), "Automatic Tester", width, height, *args, **argv) def test_widget(f): """ Function decorator for testing functions. Dead simple usage example, which just displays a button for a moment is: ```python @c.testing.test_widget def test_example(tester): yield from c.orr([c.button("Test Button"), tester.pause()]) if __name__ == '__main__': test_example() ``` This can be invoked either directly (`python test_example.py`), or using PyTest (`pytest -k test_example`). To slow the test down, set the environmental variable `SLOW_TEST=1`: ```bash SLOW_TEST=1 python test_example.py # or SLOW_TEST=1 pytest -k test_example ``` The decorated testing function takes a single argument `tester`, which contains a `Testing` class instance. This class provides convenient functions for user input automation, wrapping the raw user interaction primitives from `concur.integrations.puppet.PuppetRenderer`. """ def widget_gen(draw_cursor, tester): io = imgui.get_io() io.mouse_draw_cursor = draw_cursor yield from f(tester) def g(*args, **argv): draw_cursor = 'draw_cursor' in argv and argv['draw_cursor'] return test(widget_gen, *args, **argv) return g def benchmark_widget(f_gen): """ Benchmark a widget (experimental). See tests/test_draw.py for example usage. """ f = f_gen() def widget(_): for _ in range(240): next(f) yield def g(benchmark): benchmark.pedantic(main, (widget, "Perf Tester", 512, 512), dict(fps=None), rounds=1) return g class Testing(object): """ Must be used in conjunction with the `concur.integrations.puppet` backend. To setup all the plumbing effortlessly, use the `test_widget` decorator. All the methods in this class are widgets, and they can be composed as usual using `concur.core.orr`, `yield from`, and friends. """ def __init__(self, puppet_renderer, slow=None): assert isinstance(puppet_renderer, PuppetRenderer) self.puppet = puppet_renderer if slow is None: self.slow = 'SLOW_TEST' in os.environ and os.environ['SLOW_TEST'] == '1' else: self.slow = slow self.marked = {} def click(self, button=0): "Click a given mouse button." self.puppet.mouse_dn(button) if self.slow: for i in range(10): yield yield self.puppet.mouse_up(button) def click_next(self): "Click the next widget." x, y = imgui.get_cursor_screen_pos() yield from self.move_cursor(x + 5, y + 5) yield from self.pause() yield from self.click() # Give the widget time to react yield yield def mark(self, name, widget): """ Display a widget, but mark it with a name so it can be interacted with at a later point using methods such as `click_marked`. """ while True: self.marked[name] = imgui.get_cursor_screen_pos() try: next(widget) except StopIteration as e: return e.value yield def click_marked(self, name, x=5, y=5): "Click the given `marked` widget. Optionally, specify the click offset `x, y` coords." if name not in self.marked: raise ValueError(f"Name '{name}' was not previously marked.") x0, y0 = self.marked[name] yield from self.move_cursor(x0 + x, y0 + y) yield from self.pause() yield from self.click() yield def move_cursor(self, x, y): "Move cursor to a given position." io = imgui.get_io() ox, oy = io.mouse_pos yield if self.slow: for f in np.linspace(0, 1, 30): self.puppet.set_mouse_pos(x * f + ox * (1 - f), y * f + oy * (1 - f)) yield else: self.puppet.set_mouse_pos(x, y) yield def scroll_up(self): "Scroll up." self.puppet.scroll_up() yield def scroll_dn(self): "Scroll down." self.puppet.scroll_dn() yield def mouse_up(self, button=0): "Release the given mouse button." self.puppet.mouse_up(button) yield def mouse_dn(self, button=0): "Push the given mouse button." self.puppet.mouse_dn(button) yield def write_char(self, ch): "Write a given character." self.puppet.write_char(ch) yield def pause(self, nframes=0): """Pause for a specified number of frames. If `nframes` <= 0, the pause length depends on the environment variable `TEST_SLOW`. """ if nframes <= 0: if self.slow: for _ in range(30): yield yield else: for _ in range(nframes): yield
29.841026
111
0.612133
1d5e1b736ec1a7cc2d193c6cc9f0a1df94e06cf7
794
py
Python
core/urls.py
Romski19/recipe-app-api
6387e17bf9397c8bd0eb3d508e3076fc8cc68bca
[ "MIT" ]
null
null
null
core/urls.py
Romski19/recipe-app-api
6387e17bf9397c8bd0eb3d508e3076fc8cc68bca
[ "MIT" ]
null
null
null
core/urls.py
Romski19/recipe-app-api
6387e17bf9397c8bd0eb3d508e3076fc8cc68bca
[ "MIT" ]
null
null
null
"""core URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/4.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from . import views urlpatterns = [ path('admin/', admin.site.urls), path('', views.home), ]
30.538462
77
0.700252
bbdfd88d53f330b4f840e6e3a03b0e23f9b30190
13,908
py
Python
mobilenet_emotions/train.py
HikkaV/OAHEGA
0396cac52a360940234fdb64f5ea9ee55dab579c
[ "MIT" ]
1
2021-10-04T07:43:58.000Z
2021-10-04T07:43:58.000Z
mobilenet_emotions/train.py
HikkaV/OAHEGA
0396cac52a360940234fdb64f5ea9ee55dab579c
[ "MIT" ]
3
2021-02-08T13:30:46.000Z
2022-02-10T03:59:35.000Z
mobilenet_emotions/train.py
HikkaV/OAHEGA
0396cac52a360940234fdb64f5ea9ee55dab579c
[ "MIT" ]
null
null
null
import datetime import os import random from math import ceil import cv2 import keras import pandas as pd from skimage import transform from custom_callbacks import AdditionalMetrics from helper import * from keras.callbacks import ReduceLROnPlateau from keras_preprocessing.image import ImageDataGenerator from sklearn.model_selection import StratifiedShuffleSplit from skopt import forest_minimize import tensorflow as tf tf.random.set_seed(1) class Train: def __init__(self, train_batches=40, valid=25, eval_batch=100, num_epochs=50, ): """ initialize all necessary params """ self.list_with_pathes = [] self.eval_batch = eval_batch self.train_batch = train_batches self.dev_batch = valid self.datagen = ImageDataGenerator(rescale=1. / 255, zoom_range=[1.0, 1.5], horizontal_flip=True, fill_mode='nearest') self.pred_datagen = ImageDataGenerator(rescale=1. / 255 ) self.counter = 0 self.make_df() self.init_generators() self.classes = self.train_generator.class_indices self.now = datetime.datetime.now() self.date = str(self.now.year) + "-" + str(self.now.month) + "-" + str(self.now.day) + "_" + str( self.now.hour) + '-' + str(self.now.minute) self.hist_dir = user + '/visualize' self.path_to_hist = os.path.join(self.hist_dir, 'history_emotions') + self.date + ".csv" self.path_to_model = os.path.join(user, 'mobilenet_emotions/models') self.epochs = num_epochs self.img_size = dim[0] self.make_modelsdir() self.make_checkpoints() self.classes = dict((v, k) for k, v in self.classes.items()) self.model = None def make_df(self): df = pd.read_csv(path_to_data) df['path'] = df['path'].apply(lambda x: abs_path + x) X = df['path'] y = df['label'] skf = StratifiedShuffleSplit(random_state=seed, n_splits=2, test_size=0.15) X_train, X_dev, X_test = None, None, None y_train, y_dev, y_test = None, None, None for train_index, dev_index in skf.split(X, y): X_train, X_dev = X.iloc[train_index], X.iloc[dev_index] y_train, y_dev = y.iloc[train_index], y.iloc[dev_index] skf = StratifiedShuffleSplit(random_state=seed, n_splits=2, test_size=0.10) X_train2, y_train2 = None, None for train_index2, test_index in skf.split(X_train, y_train): X_train2, X_test = X_train.iloc[train_index2], X_train.iloc[test_index] y_train2, y_test = y_train.iloc[train_index2], y_train.iloc[test_index] X_train, y_train = X_train2, y_train2 self.valid_df = pd.DataFrame() self.train_df = pd.DataFrame() self.test_df = pd.DataFrame() self.valid_df['path'] = X_dev self.valid_df['label'] = y_dev self.train_df['path'] = X_train self.train_df['label'] = y_train self.test_df['path'] = X_test self.test_df['label'] = y_test def init_generators(self): self.dev_generator = self.pred_datagen.flow_from_dataframe(dataframe=self.valid_df, target_size=(dim[0], dim[1]), color_mode='rgb', batch_size=self.dev_batch, x_col='path', y_col='label', class_mode='categorical', shuffle=False, seed=random_state, ) self.test_generator = self.pred_datagen.flow_from_dataframe(dataframe=self.test_df, target_size=(dim[0], dim[1]), color_mode='rgb', batch_size=self.eval_batch, x_col='path', y_col='label', class_mode='categorical', shuffle=False, seed=random_state, ) self.train_generator = self.datagen.flow_from_dataframe(dataframe=self.train_df, target_size=(dim[0], dim[1]), color_mode='rgb', batch_size=self.train_batch, x_col='path', y_col='label', class_mode='categorical', shuffle=False, seed=random_state, ) self.filenames = dict(self.train_df.label.value_counts()) self.classes = self.train_generator.class_indices self.filenames = dict([(self.classes[k], v) for k, v in self.filenames.items()]) print(self.filenames) self.now = datetime.datetime.now() self.date = str(self.now.year) + "-" + str(self.now.month) + "-" + str(self.now.day) + "_" + str( self.now.hour) + '-' + str(self.now.minute) def make_modelsdir(self): if not os.path.exists(self.path_to_model): os.mkdir(self.path_to_model) self.path_to_model = os.path.join(self.path_to_model, self.date + '.h5') def make_checkpoints(self): self.path_to_cheks = os.path.join(user, 'mobilenet_emotions/checkpoints') if not os.path.exists(self.path_to_cheks): os.mkdir(self.path_to_cheks) self.path_to_cheks = os.path.join(self.path_to_cheks, self.date + '.h5') def evaluate(self, args=None): from helper import top_3_categorical_acc, recall, f1_score, precision if self.model is None: model_path = args.model_path try: self.model = keras.models.load_model(model_path) except: self.model = keras.models.load_model(model_path, custom_objects={'top_3_categorical_acc': top_3_categorical_acc, 'precision': precision, 'recall': recall, 'f1_score': f1_score}) acc = self.model.evaluate_generator(generator=self.test_generator, steps=ceil(self.test_generator.samples / self.eval_batch), verbose=1) metrics = dict([(i[0], i[1]) for i in zip(self.model.metrics_names, acc)]) print(metrics) def train_net(self, args): if args.from_file and os.path.exists('best_params.json'): params = load_params() else: params = defined_params dump_param, self.epochs, self.train_batch, self.dev_batch, dropout, drop_global, eta, trainable, l2, layers_to_add = \ params['x'] if classweights: from helper import create_class_weight classweight = create_class_weight(self.filenames, dump_param) print('Created weights for imbalanced data') else: classweight = None print(params) dn = DeepMN(self.classes, dropout=dropout, trainable=trainable, eta=eta, dropout_global=drop_global, train_mode=True, l2_=l2) self.init_generators() self.model, _ = dn.create_model() reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=10, ) checkpoint = keras.callbacks.ModelCheckpoint(self.path_to_cheks, monitor='val_acc', verbose=1, save_best_only=True, save_weights_only=False, mode='max', period=1) callbacks = [checkpoint, reduce_lr] self.model.fit_generator(callbacks=callbacks, generator=self.train_generator, validation_data=self.dev_generator, validation_steps=ceil(self.dev_generator.samples / self.dev_batch), steps_per_epoch=ceil(self.train_generator.samples / self.train_batch), epochs=self.epochs, class_weight=classweight, shuffle=True, workers=10, verbose=1) self.model.save(self.path_to_model) def define_params_nn(self, params): """ define best params of model with generator """ keras.backend.clear_session() id_ = random.randint(random.randint(25, 601), random.randint(602, 888)) dump_param, self.epochs, self.train_batch, self.dev_batch, dropout, drop_global, eta, trainable, l2, layers_to_add = \ params print( 'dump_param : {} , epochs : {} , train batch : {}, valid batch : {} , dropout : {} , ' 'dropout_global : {} , ' 'eta : {} , frozen layers : {}; l2 : {}, dense_layers : {}' .format(dump_param, self.epochs, self.train_batch, self.dev_batch, dropout, drop_global, eta, trainable, l2, layers_to_add )) self.init_generators() dict_logs = {} if not tune_lr: eta = 0.001 dict_logs['train_batch'] = self.train_batch dict_logs['valid_batch'] = self.dev_batch dict_logs['dropout'] = dropout dict_logs['dropout_global'] = drop_global dict_logs['eta'] = eta dict_logs['layers_toadd'] = layers_to_add dict_logs['dump_param'] = dump_param dict_logs['trainable_layers'] = trainable dict_logs['experiment_id'] = id_ dict_logs['l2'] = l2 reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=10, ) additional_metrics = AdditionalMetrics(self.pred_datagen, self.dev_generator.samples, list(self.classes.keys()), self.valid_df, dict_logs) if self.counter == 0: csv_logger = keras.callbacks.CSVLogger(self.path_to_hist, append=False) else: csv_logger = keras.callbacks.CSVLogger(self.path_to_hist, append=True) self.counter += 1 logdir = 'tensorboard_logs/scalars/model{}'.format(id_) tensorboard = keras.callbacks.TensorBoard(log_dir=logdir, profile_batch=0) file_writer = tf.summary.create_file_writer(logdir + "/metrics") file_writer.set_as_default() callbacks = [additional_metrics, reduce_lr, csv_logger, tensorboard] dn = DeepMN(self.classes, dropout=dropout, trainable=trainable, weights='imagenet', eta=eta, dropout_global=drop_global, l2_=l2, layer_params=layers_to_add) self.model, _ = dn.create_model() if classweights: from helper import create_class_weight classweight = create_class_weight(self.filenames, dump_param) print('Created weights for imbalanced data') else: classweight = None hist = self.model.fit_generator(callbacks=callbacks, generator=self.train_generator, validation_data=self.dev_generator, validation_steps=ceil(self.dev_generator.samples / self.dev_batch), steps_per_epoch=ceil(self.train_generator.samples / self.train_batch), epochs=self.epochs, class_weight=classweight ) self.model.save('models/model{0}.h5'.format(hist.history['val_acc'][len(hist.history['val_acc']) - 1])) return -hist.history['val_acc'][len(hist.history['val_acc']) - 1] def run_minimize(self, args=None): from helper import write_best_params space = space_params_fit_gen params = forest_minimize(self.define_params_nn, dimensions=space, n_calls=ncalls, verbose=True, random_state=seed) write_best_params(params) print('Best params are : {}'.format(params)) def predict(self, args=None, path_to_image=None, path_to_model=None): from helper import plot_single_pic if args is not None: path_to_model = args.model_path path_to_image = args.image_path if self.model is None: self.model = keras.models.load_model(path_to_model) np_image = cv2.imread(path_to_image) np_image = np.array(np_image).astype('float32') / 255 np_image = transform.resize(np_image, (dim[0], dim[1], 1)) np_image = np.expand_dims(np_image, axis=0) tmp = self.model.predict(np_image) prediction = np.argmax(tmp, axis=1) pred = self.classes[prediction[0]] plot_single_pic(path_to_image, pred)
49.319149
126
0.5348
e1b7bb8be128ddbd82b5432d9ee8750ebe989e10
1,149
py
Python
tests/bisque/test_dome.py
ASTROGBAE/POCS
ddbc716ba375be92c7af1c8ebd536f9cdbc899da
[ "MIT" ]
69
2015-08-27T01:17:26.000Z
2022-01-05T19:11:09.000Z
tests/bisque/test_dome.py
ASTROGBAE/POCS
ddbc716ba375be92c7af1c8ebd536f9cdbc899da
[ "MIT" ]
1,094
2016-01-19T18:18:06.000Z
2022-03-17T04:28:38.000Z
tests/bisque/test_dome.py
ASTROGBAE/POCS
ddbc716ba375be92c7af1c8ebd536f9cdbc899da
[ "MIT" ]
65
2015-08-27T01:17:28.000Z
2021-02-24T04:12:03.000Z
import os import pytest from panoptes.pocs.dome.bisque import Dome from panoptes.pocs.utils.theskyx import TheSkyX pytestmark = pytest.mark.skipif(TheSkyX().is_connected is False, reason="TheSkyX is not connected") @pytest.fixture(scope="function") def dome(config): try: del os.environ['POCSTIME'] except KeyError: pass dome = Dome() yield dome dome.disconnect() def test_create(dome): assert isinstance(dome, Dome) assert not dome.is_connected def test_connect(dome): assert not dome.is_connected assert dome.connect() is True assert dome.is_connected is True def test_disconnect(dome): assert dome.connect() is True assert dome.disconnect() is True assert dome.is_connected is False def test_open_and_close_slit(dome): dome.connect() assert dome.open() is True assert dome.read_slit_state() == 'Open' assert dome.status == 'Open' assert dome.is_open is True assert dome.close() is True assert dome.read_slit_state() == 'Closed' assert dome.status == 'Closed' assert dome.is_closed is True assert dome.disconnect() is True
21.679245
99
0.70322
54230b9623ccab7c9100b84d99e4c30066cf5374
474
py
Python
src/django-nonrel/tests/regressiontests/syndication/models.py
adamjmcgrath/glancydesign
826ede7c639879d5b79ee730eb5e91422768cb02
[ "BSD-3-Clause" ]
790
2015-01-03T02:13:39.000Z
2020-05-10T19:53:57.000Z
tests/regressiontests/syndication/models.py
mradziej/django
5d38965743a369981c9a738a298f467f854a2919
[ "BSD-3-Clause" ]
1,361
2015-01-08T23:09:40.000Z
2020-04-14T00:03:04.000Z
tests/regressiontests/syndication/models.py
mradziej/django
5d38965743a369981c9a738a298f467f854a2919
[ "BSD-3-Clause" ]
155
2015-01-08T22:59:31.000Z
2020-04-08T08:01:53.000Z
from django.db import models class Entry(models.Model): title = models.CharField(max_length=200) date = models.DateTimeField() class Meta: ordering = ('date',) def __unicode__(self): return self.title def get_absolute_url(self): return "/blog/%s/" % self.pk class Article(models.Model): title = models.CharField(max_length=200) entry = models.ForeignKey(Entry) def __unicode__(self): return self.title
19.75
44
0.654008
bdb3c87f5a919c78455ab2dfc478c4d9a5475ae7
3,204
py
Python
tests/test_issues/output/issue_80.py
deepakunni3/biolinkml
ca3567a59297e585d7f384df9d5c0bc9fecdb0b7
[ "CC0-1.0" ]
25
2019-07-05T01:16:18.000Z
2021-03-22T20:49:25.000Z
tests/test_issues/output/issue_80.py
deepakunni3/biolinkml
ca3567a59297e585d7f384df9d5c0bc9fecdb0b7
[ "CC0-1.0" ]
299
2019-03-05T15:15:30.000Z
2021-04-08T23:25:41.000Z
tests/test_issues/output/issue_80.py
deepakunni3/biolinkml
ca3567a59297e585d7f384df9d5c0bc9fecdb0b7
[ "CC0-1.0" ]
19
2019-05-23T17:46:47.000Z
2021-03-25T06:45:55.000Z
# Auto generated from issue_80.yaml by pythongen.py version: 0.9.0 # Generation date: 2021-01-04 21:53 # Schema: Issue_80_test_case # # id: http://example.org/issues/80 # description: Example identifier # license: https://creativecommons.org/publicdomain/zero/1.0/ import dataclasses import sys import re from typing import Optional, List, Union, Dict, ClassVar, Any from dataclasses import dataclass from biolinkml.meta import EnumDefinition, PermissibleValue, PvFormulaOptions from biolinkml.utils.slot import Slot from biolinkml.utils.metamodelcore import empty_list, empty_dict, bnode from biolinkml.utils.yamlutils import YAMLRoot, extended_str, extended_float, extended_int if sys.version_info < (3, 7, 6): from biolinkml.utils.dataclass_extensions_375 import dataclasses_init_fn_with_kwargs else: from biolinkml.utils.dataclass_extensions_376 import dataclasses_init_fn_with_kwargs from biolinkml.utils.formatutils import camelcase, underscore, sfx from biolinkml.utils.enumerations import EnumDefinitionImpl from rdflib import Namespace, URIRef from biolinkml.utils.curienamespace import CurieNamespace from biolinkml.utils.metamodelcore import ElementIdentifier from includes.types import Integer, Objectidentifier, String metamodel_version = "1.7.0" # Overwrite dataclasses _init_fn to add **kwargs in __init__ dataclasses._init_fn = dataclasses_init_fn_with_kwargs # Namespaces BIOLINK = CurieNamespace('biolink', 'https://w3id.org/biolink/vocab/') BIOLINKML = CurieNamespace('biolinkml', 'https://w3id.org/biolink/biolinkml/') EX = CurieNamespace('ex', 'http://example.org/') MODEL = CurieNamespace('model', 'https://w3id.org/biolink/') DEFAULT_ = BIOLINK # Types # Class references class PersonId(ElementIdentifier): pass @dataclass class Person(YAMLRoot): """ A person, living or dead """ _inherited_slots: ClassVar[List[str]] = [] class_class_uri: ClassVar[URIRef] = EX.PERSON class_class_curie: ClassVar[str] = "ex:PERSON" class_name: ClassVar[str] = "person" class_model_uri: ClassVar[URIRef] = BIOLINK.Person id: Union[str, PersonId] = None name: str = None age: Optional[int] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self.id is None: raise ValueError("id must be supplied") if not isinstance(self.id, PersonId): self.id = PersonId(self.id) if self.name is None: raise ValueError("name must be supplied") if not isinstance(self.name, str): self.name = str(self.name) if self.age is not None and not isinstance(self.age, int): self.age = int(self.age) super().__post_init__(**kwargs) # Enumerations # Slots class slots: pass slots.id = Slot(uri=BIOLINK.id, name="id", curie=BIOLINK.curie('id'), model_uri=BIOLINK.id, domain=None, range=URIRef) slots.name = Slot(uri=BIOLINK.name, name="name", curie=BIOLINK.curie('name'), model_uri=BIOLINK.name, domain=None, range=str) slots.age = Slot(uri=BIOLINK.age, name="age", curie=BIOLINK.curie('age'), model_uri=BIOLINK.age, domain=None, range=Optional[int])
33.030928
90
0.724095
7f9f4799105a225a6ea04adeef35b0b90930536c
1,617
py
Python
generate.py
rubarb666/ebay-listings
115a0dd24fe8f48727880bb2c71b6d0dbadbbd12
[ "CC0-1.0" ]
13
2015-10-31T05:09:25.000Z
2022-01-23T14:02:31.000Z
generate.py
rubarb666/ebay-listings
115a0dd24fe8f48727880bb2c71b6d0dbadbbd12
[ "CC0-1.0" ]
1
2015-04-26T22:54:34.000Z
2015-04-26T22:54:34.000Z
generate.py
rubarb666/ebay-listings
115a0dd24fe8f48727880bb2c71b6d0dbadbbd12
[ "CC0-1.0" ]
14
2015-04-26T20:57:30.000Z
2021-08-10T02:02:09.000Z
#!/usr/bin/env python # encoding: utf-8 import os import logging logger = logging.getLogger(__name__) from jinja2 import Environment, FileSystemLoader def get_args(): from argparse import ArgumentParser parser = ArgumentParser(description="TODO: description of the utility") parser.add_argument("-v", "--verbose", action="count", help="the logging verbosity (more gives more detail)") parser.add_argument("-t", "--template_dir", default="templates", help="Location of the template directory (default: %(default)s)") parser.add_argument("-o", "--output_dir", default="html", help="Location of the output directory (default: %(default)s)") args = parser.parse_args() if args.verbose == 1: level = logging.DEBUG else: level = logging.INFO logging.basicConfig(format="%(levelname)s %(asctime)s: %(message)s") logger.setLevel(level) return args def main(): args = get_args() env = Environment(loader=FileSystemLoader(args.template_dir)) try: os.makedirs(args.output_dir) except FileExistsError: pass for dirpath, dirnames, filenames in os.walk(args.template_dir): for filename in filenames: if not filename.endswith(".html"): continue input_path = filename template = env.get_template(input_path) result = template.render() path = os.path.join(args.output_dir, input_path) with open(path, "w") as of: of.write(result) break # just want the top level dir if __name__ == '__main__': main()
29.944444
134
0.649969
2c9ffa69c9ed458ca0f4b5d9bf560c8fc25a06fe
4,029
py
Python
alipay/aop/api/request/AlipayEbppIndustryBizinfoQueryRequest.py
articuly/alipay-sdk-python-all
0259cd28eca0f219b97dac7f41c2458441d5e7a6
[ "Apache-2.0" ]
null
null
null
alipay/aop/api/request/AlipayEbppIndustryBizinfoQueryRequest.py
articuly/alipay-sdk-python-all
0259cd28eca0f219b97dac7f41c2458441d5e7a6
[ "Apache-2.0" ]
null
null
null
alipay/aop/api/request/AlipayEbppIndustryBizinfoQueryRequest.py
articuly/alipay-sdk-python-all
0259cd28eca0f219b97dac7f41c2458441d5e7a6
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- import simplejson as json from alipay.aop.api.FileItem import FileItem from alipay.aop.api.constant.ParamConstants import * from alipay.aop.api.domain.AlipayEbppIndustryBizinfoQueryModel import AlipayEbppIndustryBizinfoQueryModel class AlipayEbppIndustryBizinfoQueryRequest(object): def __init__(self, biz_model=None): self._biz_model = biz_model self._biz_content = None self._version = "1.0" self._terminal_type = None self._terminal_info = None self._prod_code = None self._notify_url = None self._return_url = None self._udf_params = None self._need_encrypt = False @property def biz_model(self): return self._biz_model @biz_model.setter def biz_model(self, value): self._biz_model = value @property def biz_content(self): return self._biz_content @biz_content.setter def biz_content(self, value): if isinstance(value, AlipayEbppIndustryBizinfoQueryModel): self._biz_content = value else: self._biz_content = AlipayEbppIndustryBizinfoQueryModel.from_alipay_dict(value) @property def version(self): return self._version @version.setter def version(self, value): self._version = value @property def terminal_type(self): return self._terminal_type @terminal_type.setter def terminal_type(self, value): self._terminal_type = value @property def terminal_info(self): return self._terminal_info @terminal_info.setter def terminal_info(self, value): self._terminal_info = value @property def prod_code(self): return self._prod_code @prod_code.setter def prod_code(self, value): self._prod_code = value @property def notify_url(self): return self._notify_url @notify_url.setter def notify_url(self, value): self._notify_url = value @property def return_url(self): return self._return_url @return_url.setter def return_url(self, value): self._return_url = value @property def udf_params(self): return self._udf_params @udf_params.setter def udf_params(self, value): if not isinstance(value, dict): return self._udf_params = value @property def need_encrypt(self): return self._need_encrypt @need_encrypt.setter def need_encrypt(self, value): self._need_encrypt = value def add_other_text_param(self, key, value): if not self.udf_params: self.udf_params = dict() self.udf_params[key] = value def get_params(self): params = dict() params[P_METHOD] = 'alipay.ebpp.industry.bizinfo.query' params[P_VERSION] = self.version if self.biz_model: params[P_BIZ_CONTENT] = json.dumps(obj=self.biz_model.to_alipay_dict(), use_decimal=True, ensure_ascii=False, sort_keys=True, separators=(',', ':')) if self.biz_content: if hasattr(self.biz_content, 'to_alipay_dict'): params['biz_content'] = json.dumps(obj=self.biz_content.to_alipay_dict(), use_decimal=True, ensure_ascii=False, sort_keys=True, separators=(',', ':')) else: params['biz_content'] = self.biz_content if self.terminal_type: params['terminal_type'] = self.terminal_type if self.terminal_info: params['terminal_info'] = self.terminal_info if self.prod_code: params['prod_code'] = self.prod_code if self.notify_url: params['notify_url'] = self.notify_url if self.return_url: params['return_url'] = self.return_url if self.udf_params: params.update(self.udf_params) return params def get_multipart_params(self): multipart_params = dict() return multipart_params
27.786207
166
0.647803
c69640f4be2a2ba9a21c5374db6a94711e50784a
1,075
py
Python
aspdotnet/datadog_checks/aspdotnet/config_models/defaults.py
tdimnet/integrations-core
a78133a3b71a1b8377fa214d121a98647031ab06
[ "BSD-3-Clause" ]
663
2016-08-23T05:23:45.000Z
2022-03-29T00:37:23.000Z
aspdotnet/datadog_checks/aspdotnet/config_models/defaults.py
tdimnet/integrations-core
a78133a3b71a1b8377fa214d121a98647031ab06
[ "BSD-3-Clause" ]
6,642
2016-06-09T16:29:20.000Z
2022-03-31T22:24:09.000Z
aspdotnet/datadog_checks/aspdotnet/config_models/defaults.py
tdimnet/integrations-core
a78133a3b71a1b8377fa214d121a98647031ab06
[ "BSD-3-Clause" ]
1,222
2017-01-27T15:51:38.000Z
2022-03-31T18:17:51.000Z
# (C) Datadog, Inc. 2021-present # All rights reserved # Licensed under a 3-clause BSD style license (see LICENSE) from datadog_checks.base.utils.models.fields import get_default_field_value def shared_service(field, value): return get_default_field_value(field, value) def instance_additional_metrics(field, value): return get_default_field_value(field, value) def instance_counter_data_types(field, value): return get_default_field_value(field, value) def instance_disable_generic_tags(field, value): return False def instance_empty_default_hostname(field, value): return False def instance_host(field, value): return '.' def instance_min_collection_interval(field, value): return 15 def instance_password(field, value): return get_default_field_value(field, value) def instance_service(field, value): return get_default_field_value(field, value) def instance_tags(field, value): return get_default_field_value(field, value) def instance_username(field, value): return get_default_field_value(field, value)
21.938776
75
0.782326
855f6c3d13ea323f94f6d77571e5ce1fd32711ee
347
py
Python
mezaext/admin.py
PixxxeL/mezaext
7b2c437af567bd7c515ac67d2966dc7b1d41123a
[ "MIT" ]
null
null
null
mezaext/admin.py
PixxxeL/mezaext
7b2c437af567bd7c515ac67d2966dc7b1d41123a
[ "MIT" ]
null
null
null
mezaext/admin.py
PixxxeL/mezaext
7b2c437af567bd7c515ac67d2966dc7b1d41123a
[ "MIT" ]
null
null
null
# -*- coding: utf8 -*- from django.contrib import admin from django.contrib.admin.decorators import register from .models import EditableBlock @register(EditableBlock) class EditableBlockAdmin(admin.ModelAdmin): prepopulated_fields = {'slug': ('title',), } list_display = ('title', 'slug', 'enabled',) list_editable = ('enabled',)
24.785714
52
0.714697
efa3b0ab4f5130620c60dc9ab036f1216574323e
698
py
Python
ex100.py
Jordemar-D-Bousquet/Exercicios_Python
705d4c83720db033841f01aa843e4dbab08f1423
[ "MIT" ]
null
null
null
ex100.py
Jordemar-D-Bousquet/Exercicios_Python
705d4c83720db033841f01aa843e4dbab08f1423
[ "MIT" ]
null
null
null
ex100.py
Jordemar-D-Bousquet/Exercicios_Python
705d4c83720db033841f01aa843e4dbab08f1423
[ "MIT" ]
null
null
null
# Faça um programa que tenha uma lista chamada números e duas funções chamadas sorteia() e somaPar(). # A primeira função vai sortear 5 números e vai colocá-los dentro da lista # e a segunda função vai mostrar a soma entre todos os valores pares sorteados pela função anterior. from random import randint def sorteia(valor): for c in range(0,5): n = randint(0, 10) v.append(n) if n % 2 == 0: p.append(n) print(f'Sorteando os {c+1} valores da lista: ', end= '') def somaPar(par): soma.append(sum(par)) #Programa Principal v= [] p = [] soma = [] sorteia(v) print(v) somaPar(p) print(f'A somando os valores pares de {v} temos : {soma}')
18.368421
101
0.647564
195d2e973b5d87fc84d40576c276efb54761fa99
15,990
py
Python
pyspectools/routines.py
aowen-uwmad/PySpecTools
3fd0b68352910df1e653370797a8edd46d92fa1c
[ "MIT" ]
22
2018-03-14T10:44:17.000Z
2022-01-10T15:02:37.000Z
pyspectools/routines.py
aowen-uwmad/PySpecTools
3fd0b68352910df1e653370797a8edd46d92fa1c
[ "MIT" ]
21
2019-07-27T01:43:50.000Z
2021-11-15T14:57:15.000Z
pyspectools/routines.py
aowen-uwmad/PySpecTools
3fd0b68352910df1e653370797a8edd46d92fa1c
[ "MIT" ]
3
2020-08-03T16:22:00.000Z
2021-11-01T15:31:55.000Z
""" Routines to: Parse cat files Run SPFIT and/or SPCAT """ import os import subprocess import shutil import json import types from typing import List, Any, Union, Dict, Tuple from glob import glob from warnings import warn import ruamel.yaml as yaml import numpy as np import joblib import paramiko def run_spcat(filename: str, temperature=None): # Run SPCAT parameter_file = filename + ".var" if os.path.isfile(filename + ".var") is False: print("VAR file unavailable. Attempting to run with PAR file.") if os.path.isfile(filename + ".par") is False: raise FileNotFoundError("No .var or .par file found.") else: shutil.copy2(filename + ".par", parameter_file) process = subprocess.Popen( ["spcat", filename + ".int", parameter_file], stdout=subprocess.PIPE, # suppress stdout ) process.wait() # Extract the partition function at the specified temperature if temperature is not None: # Read in the piped standard output, and format into a list stdout = str(process.communicate()[0]).split("\\n") for line in stdout: if temperature in line: # If the specified temperature is found, get the partition # function Q = float(line.split()[1]) return Q def run_calbak(filename: str): """ Runs the calbak routine, which generates a .lin file from the .cat """ if os.path.isfile(filename + ".cat") is False: raise FileNotFoundError(filename + ".cat is missing; cannot run calbak.") process = subprocess.Popen( ["calbak", filename + ".cat", filename + ".lin"], stdout=subprocess.DEVNULL ) process.wait() with open(filename + ".lin") as read_file: lin_length = read_file.readlines() if lin_length == 0: raise RuntimeError("No lines produced in calbak! Check .cat file.") def run_spfit(filename: str): """ Parameters ---------- filename Returns ------- """ process = subprocess.run( ["spfit", filename + ".lin", filename + ".par"], timeout=20.0, capture_output=True, ) if process.returncode != 0: raise OSError("SPFIT failed to run.") def list_chunks(target: List[Any], n: int): """ Split a list into a number of chunks with length n. If there are not enough elements, the last chunk will finish the remaining elements. Parameters ---------- target: list List to split into chunks n: int Number of elements per chunk Returns ------- split_list: list Nested list of chunks """ split_list = [target[i : i + n] for i in range(0, len(target), n)] return split_list def human2pickett(name: str, reduction="A", linear=True, nuclei=0): """ Function for translating a Hamiltonian parameter to a Pickett identifier. An alternative way of doing this is to programmatically generate the Pickett identifiers, and just use format string to output the identifier. """ pickett_parameters = read_yaml( os.path.expanduser("~") + "/.pyspectools/pickett_terms.yml" ) if name is "B" and linear is True: # Haven't thought of a clever way of doing this yet... identifier = 100 elif name is "B" and linear is False: identifier = 20000 else: # Hyperfine terms if name in ["eQq", "eQq/2"]: identifier = str(pickett_parameters[name]).format(nuclei) elif "D_" in name or "del" in name: identifier = str(pickett_parameters[name][reduction]) else: try: identifier = pickett_parameters[name] except KeyError: print("Parameter name unknown!") return identifier def read_json(json_filepath: str) -> Dict[Any, Any]: """ Load a JSON file into memory as a Python dictionary. Parameters ---------- json_filepath : str Path to the JSON file Returns ------- Dict[Any, Any] Dictionary from JSON file """ with open(json_filepath, "r") as read_file: json_data = json.load(read_file) return json_data def dump_json(json_filepath: str, json_dict: Dict[Any, Any]): """ Function to serialize a Python dictionary into a JSON file. The pretty printing is enabled by default. Parameters ---------- json_filepath : str Path to the JSON file to save to json_dict : Dict[Any, Any] Dictionary to be serialized """ with open(json_filepath, "w+") as write_file: json.dump(json_dict, write_file, indent=4, sort_keys=True) def read_yaml(yaml_filepath: str) -> Dict[Any, Any]: """ Function to load in a YAML file into a Python dictionary. Parameters ---------- yaml_filepath : str Path to the YAML file Returns ------- Dict[Any, Any] Dictionary based on the YAML contents """ with open(yaml_filepath) as read_file: yaml_data = yaml.load(read_file, Loader=yaml.Loader) return yaml_data def dump_yaml(yaml_filepath: str, yaml_dict: Dict[Any, Any]): """ Function to serialize a Python dictionary into a YAML file. Parameters ---------- yaml_filepath : str Path to the YAML file yaml_dict : Dict[Any, Any] Dictionary to be serialized """ with open(yaml_filepath, "w+") as write_file: yaml.dump(yaml_dict, write_file) def generate_folder(): """ Generates the folder for the next calculation and returns the next calculation number """ folderlist = list_directories() # get every file/folder in directory # filter out any non-folders that happen to be here shortlist = list() for folder in folderlist: try: shortlist.append(int(folder)) except ValueError: # if it's not an integer pass if len(shortlist) == 0: lastcalc = 0 else: lastcalc = max(shortlist) # lastcalc = len(folderlist) os.mkdir(str(lastcalc + 1)) return lastcalc + 1 def format_uncertainty(value: float, uncertainty: float): """ Function to determine the number of decimal places to format the uncertainty. Probably not the most elegant way of doing this. """ # Convert the value into a string, then determine the length by # splitting at the decimal point decimal_places = decimal_length(value) uncertainty = float(uncertainty) # make sure we're dealing floats uncertainty_places = decimal_length(uncertainty) # Force the uncertainty into decimals uncertainty = uncertainty * 10 ** -uncertainty_places[1] # Work out how many places we've moved now uncertainty_places = decimal_length(uncertainty) # Move the precision of the uncertainty to match the precision of the value uncertainty = uncertainty * 10 ** (uncertainty_places[1] - decimal_places[1]) return uncertainty def decimal_length(value: float): # Function that determines the decimal length of a float; convert the value # into a string, then work out the length by splitting at the decimal point decimal_split = str(value).split(".") return [len(position) for position in decimal_split] def copy_template(): script_location = os.path.dirname(os.path.realpath(__file__)) templates_folder = script_location + "/templates/" available_templates = glob(templates_folder + "*.json") available_templates = [template.split("/")[-1] for template in available_templates] print("The templates available are:") for template in available_templates: print(template) target = input("Please specify which template to copy: ") if target not in available_templates: print("Not a template; probably a typo.") print("Please re-run the script.") else: shutil.copy2(templates_folder + target, os.getcwd() + "/parameters.json") print("Copied template " + target + " to your folder as parameters.json.") print("Edit the .json input file and re-run the script.") def flatten_list(input_list: List[List[Any]]): """ Takes a nested list of values and flattens it. The code is written as a try/except that makes the assumption that the data is a list/tuple/array, and in the case that it isn't will simply append the item to the output instead. Parameters ---------- input_list: list List of values, where some of the elements are lists Returns ------- output_list: list Flattened version of input_list """ output_list = list() for value in input_list: try: output_list.extend(value) # Ask for forgiveness except TypeError: output_list.append(value) return output_list def list_directories(): return [directory for directory in os.listdir() if os.path.isdir(directory)] def backup_files(molecule_name, save_location): extensions = [".cat", ".var", ".par", ".int", ".json", ".lin"] filenames = [molecule_name + ext for ext in extensions] for filename in filenames: if os.path.isfile(filename) is True: shutil.copy2(filename, save_location) print("Backing up " + filename + " to " + save_location) else: pass def isnotebook(): # Check if the code is being run in a notebook, IPython shell, or Python try: shell = get_ipython().__class__.__name__ if shell == "ZMQInteractiveShell": # Jupyter notebook or qtconsole? return True elif shell == "TerminalInteractiveShell": # Terminal running IPython? return False else: return False # Other type (?) except NameError: return False # Probably standard Python interpreter def save_obj(obj: Any, filepath: str, **kwargs): """ Function to serialize an object using dump from joblib. Additional kwargs are passed into the dump, which can be compression parameters, etc. parameters: --------------- obj - instance of object to be serialized filepath - filepath to save to """ settings = {"compress": ("gzip", 6), "protocol": 4} settings.update(kwargs) joblib.dump(obj, filepath, **settings) def read_obj(filepath: str): """ Wrapper for joblib.load to load an object from disk parameters: --------------- filepath - path to object """ obj = joblib.load(filepath) return obj def dump_packages(): """ Function that will return a list of packages that have been loaded and their version numbers. This function will ignore system packages: sys, __builtins__, types, os as well as modules with no version. This is not working the way I want it to... returns: ------------- mod_dict - dict with keys corresponding to module name, and values the version number. """ mod_dict = dict() sys_packages = ["sys", "__builtins__", "types", "os"] for name, module in globals().items(): if isinstance(module, types.ModuleType): if module.__name__ not in sys_packages: try: mod_name = module.__name__ mod_ver = module.__version__ mod_dict[mod_name] = mod_ver except AttributeError: pass return mod_dict def find_nearest(array: np.ndarray, value: Union[float, int]) -> Tuple[np.ndarray, int]: """ Function that will find the nearest value in a NumPy array to a specified value. Parameters ---------- array : np.ndarray NumPy 1D array value : float Value to search the array for Returns ------- Tuple[np.ndarray, int] Returns the closest value, as well as the index """ array = np.asarray(array) idx = (np.abs(array - value)).argmin() return array[idx], idx class RemoteClient(paramiko.SSHClient): def __init__(self, hostname=None, username=None, **kwargs): super().__init__() self.set_missing_host_key_policy(paramiko.AutoAddPolicy()) self.connect(hostname=hostname, username=username, **kwargs) self.sftp = self.open_sftp() @classmethod def from_file(cls, filepath: str): """ Reload a remote session from a pickle file created by the save_session. :param filepath: str path to RemoteClient pickle file :return: RemoteClient object """ remote = read_obj(filepath) # Make sure that the pickle file is a RemoteClient object if remote.__name__ != "RemoteClient": raise Exception( "File was not a RemoteClient session; {}".format(remote.__name__) ) else: return read_obj(filepath) def __exit__(self, exc_type, exc_value, traceback): """ Dunder method that should be called when the object is destroyed. In this case, the remote connection should be closed automatically. """ self.sftp.close() self.close() def get_file(self, remote_path: str, local_path=os.getcwd()): """ Download a file from remote server to disk. If no local path is provided, defaults to the current working directory. :param remote_path: str remote file path target :param local_path: str optional path to save the file to """ self.sftp.get(remote_path, local_path) def run_command(self, command: str): stdin, stdout, stderr = self.exec_command(command) error_msg = stderr.read() if len(error_msg) == 0: return stdout.readlines() else: raise Exception(f"Error in running command: {error_msg}") def open_remote(self, remote_path: str): """ Function to stream the file contents of a remote file. Can be used to directly provide data into memory without downloading it to disk. :param remote_path: str remote path to target file :return: list of contents of the target file """ contents = self.run_command("cat {}".format(remote_path)) return contents def ls(self, remote_path=""): """ Function to get the list of files present in a specified directory. Defaults to the current ssh directory. :param remote_path: str remote path to inspect :return: list of files and folders """ contents = self.run_command("ls {}".format(remote_path)) return contents def save_session(self, filepath="ssh.pkl", **kwargs): """ Function to dump the ssh settings object to a pickle file. Keep in mind that while this is a matter of convenience, the file is unencrypted and so storing passwords in here is not exactly the safest thing to do! :param filepath: str optional path to save the session to. """ save_obj(self, filepath, **kwargs) def group_consecutives(vals: List[float], step=1): """ Function to group all consecutive values in a list together. The primary purpose of this is to split concatenated spectra that are given in a single list of frequencies into individual windows. Parameters ---------- vals : list List of floats to be split step : int, optional [description], by default 1 Returns ------- [type] [description] """ run = [] result = [run] expect = None for v in vals: if (v == expect) or (expect is None): run.append(v) else: run = [v] result.append(run) expect = v + step return result
31.230469
112
0.62339
d4f32a171e56d5c67e77eb56401b6053ad674fd6
337
py
Python
ibl_fiberfluo_pilot_01/tasks/_iblrig_NPH_tasks_trainingChoiceWorld/scratch.py
int-brain-lab/personal_project_protocols
c20f923c1596384ba585164d65c3a40d58d8cbb1
[ "MIT" ]
null
null
null
ibl_fiberfluo_pilot_01/tasks/_iblrig_NPH_tasks_trainingChoiceWorld/scratch.py
int-brain-lab/personal_project_protocols
c20f923c1596384ba585164d65c3a40d58d8cbb1
[ "MIT" ]
null
null
null
ibl_fiberfluo_pilot_01/tasks/_iblrig_NPH_tasks_trainingChoiceWorld/scratch.py
int-brain-lab/personal_project_protocols
c20f923c1596384ba585164d65c3a40d58d8cbb1
[ "MIT" ]
null
null
null
import pandas as pd import scipy as sp f = 'C:\\iblrig_data\\Subjects\\_iblrig_calibration\\2018-12-04\\4\\raw_behavior_data\\_iblrig_calibration_water_function.csv' df1 = pd.read_csv(f) time2vol = sp.interpolate.pchip(df1["open_time"], df1["weight_perdrop"]) x=0 while np.round(time2vol(x), 3) < 3: x+=1
33.7
126
0.682493
41962bedfd252e8e534cc6fab2b83e2856dcb17f
49,507
py
Python
TurtleArt/taprimitive.py
sugar-activities/4742-activity
f1827d2f7e3363cb09211c7b190ee9f8ec4b124f
[ "MIT" ]
null
null
null
TurtleArt/taprimitive.py
sugar-activities/4742-activity
f1827d2f7e3363cb09211c7b190ee9f8ec4b124f
[ "MIT" ]
null
null
null
TurtleArt/taprimitive.py
sugar-activities/4742-activity
f1827d2f7e3363cb09211c7b190ee9f8ec4b124f
[ "MIT" ]
null
null
null
#Copyright (c) 2013 Marion Zepf #Copyright (c) 2014 Walter Bender #Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is #furnished to do so, subject to the following conditions: #The above copyright notice and this permission notice shall be included in #all copies or substantial portions of the Software. #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR #IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, #FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE #AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER #LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, #OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN #THE SOFTWARE. import ast from gettext import gettext as _ from math import sqrt from random import uniform import traceback #from ast_pprint import * # only used for debugging, safe to comment out from tablock import Media from tacanvas import TurtleGraphics from taconstants import (Color, CONSTANTS, ColorObj, Vector) from talogo import (LogoCode, logoerror, NegativeRootError) from taturtle import (Turtle, Turtles) from TurtleArt.tatype import (TYPE_CHAR, TYPE_INT, TYPE_FLOAT, TYPE_OBJECT, TYPE_MEDIA, TYPE_COLOR, BOX_AST, ACTION_AST, Type, TypeDisjunction, TATypeError, get_type, TypedSubscript, TypedName, is_bound_method, is_instancemethod, is_staticmethod, identity, get_converter, convert, get_call_ast) from tautils import debug_output from tawindow import (TurtleArtWindow, global_objects, plugins_in_use) from util import ast_extensions class PyExportError(BaseException): """ Error that is raised when something goes wrong while converting the blocks to python code """ def __init__(self, message, block=None): """ message -- the error message block -- the block where the error occurred """ self.message = message self.block = block def __str__(self): if self.block is not None: return _("error in highlighted block") + ": " + str(self.message) else: return _("error") + ": " + str(self.message) class Primitive(object): """ Something that can be called when the block code is executed in TA, but that can also be transformed into a Python AST.""" _DEBUG = False STANDARD_OPERATORS = {'plus': (ast.UAdd, ast.Add), 'minus': (ast.USub, ast.Sub), 'multiply': ast.Mult, 'divide': ast.Div, 'modulo': ast.Mod, 'power': ast.Pow, 'and_': ast.And, 'or_': ast.Or, 'not_': ast.Not, 'equals': ast.Eq, 'less': ast.Lt, 'greater': ast.Gt} def __init__(self, func, return_type=TYPE_OBJECT, arg_descs=None, kwarg_descs=None, call_afterwards=None, export_me=True): """ return_type -- the type (from the type hierarchy) that this Primitive will return arg_descs, kwarg_descs -- a list of argument descriptions and a dictionary of keyword argument descriptions. An argument description can be either an ArgSlot or a ConstantArg. call_afterwards -- Code to call after this Primitive has been called (e.g., for updating labels in LogoCode) (not used for creating AST) export_me -- True iff this Primitive should be exported to Python code (the default case) """ self.func = func self.return_type = return_type if arg_descs is None: self.arg_descs = [] else: self.arg_descs = arg_descs if kwarg_descs is None: self.kwarg_descs = {} else: self.kwarg_descs = kwarg_descs self.call_afterwards = call_afterwards self.export_me = export_me def copy(self): """ Return a Primitive object with the same attributes as this one. Shallow-copy the arg_descs and kwarg_descs attributes. """ arg_descs_copy = self.arg_descs[:] if isinstance(self.arg_descs, ArgListDisjunction): arg_descs_copy = ArgListDisjunction(arg_descs_copy) return Primitive(self.func, return_type=self.return_type, arg_descs=arg_descs_copy, kwarg_descs=self.kwarg_descs.copy(), call_afterwards=self.call_afterwards, export_me=self.export_me) def __repr__(self): return "Primitive(%s -> %s)" % (repr(self.func), str(self.return_type)) @property def __name__(self): return self.func.__name__ def get_name_for_export(self): """ Return the expression (as a string) that represents this Primitive in the exported Python code, e.g., 'turtle.forward'. """ func_name = "" if self.wants_turtle(): func_name = "turtle." elif self.wants_turtles(): func_name = "turtles." elif self.wants_canvas(): func_name = "canvas." elif self.wants_logocode(): func_name = "logo." elif self.wants_heap(): func_name = "logo.heap." elif self.wants_tawindow(): func_name = "tw." else: results, plugin = self.wants_plugin() if results: for k in global_objects.keys(): if k == plugin: if k not in plugins_in_use: plugins_in_use.append(k) func_name = k.lower() + '.' break # get the name of the function directly from the function itself func_name += self.func.__name__ return func_name def are_slots_filled(self): """ Return True iff none of the arg_descs or kwarg_descs is an ArgSlot. """ for arg_desc in self.arg_descs: if isinstance(arg_desc, ArgSlot): return False for key in self.kwarg_descs: if isinstance(self.kwarg_descs[key], ArgSlot): return False return True def fill_slots(self, arguments=None, keywords=None, convert_to_ast=False, call_my_args=True): """ Return a copy of this Primitive whose ArgSlots are filled with the given arguments, turned into ConstantArgs. Call the arguments, apply their wrappers, and check their types as appropriate. """ if arguments is None: arguments = [] if keywords is None: keywords = {} new_prim = self.copy() if isinstance(new_prim.arg_descs, ArgListDisjunction): slot_list_alternatives = list(new_prim.arg_descs) else: slot_list_alternatives = [new_prim.arg_descs] # arguments error = None filler = None for slot_list in slot_list_alternatives: error = None new_slot_list = [] filler_list = list(arguments[:]) for slot in slot_list: if isinstance(slot, ArgSlot): filler = filler_list.pop(0) try: const = slot.fill(filler, convert_to_ast=convert_to_ast, call_my_args=call_my_args) except TATypeError as error: if Primitive._DEBUG: traceback.print_exc() break else: new_slot_list.append(const) else: new_slot_list.append(slot) if error is None: new_prim.arg_descs = new_slot_list break if error is not None: raise error # keyword arguments for key in keywords: kwarg_desc = new_prim.kwarg_descs[key] if isinstance(kwarg_desc, ArgSlot): const = kwarg_desc.fill(keywords[key], convert_to_ast=convert_to_ast, call_my_args=call_my_args) new_prim.kwarg_descs[key] = const return new_prim def get_values_of_filled_slots(self, exportable_only=False): """ Return the values of all filled argument slots as a list, and the values of all filled keyword argument slots as a dictionary. Ignore all un-filled (keyword) argument slots. exportable_only -- return only exportable values and convert values to ASTs instead of calling them """ new_args = [] for c_arg in self.arg_descs: if (isinstance(c_arg, ConstantArg) and (not exportable_only or export_me(c_arg.value))): new_args.append(c_arg.get(convert_to_ast=exportable_only)) new_kwargs = {} for key in self.kwarg_descs: if (isinstance(self.kwarg_descs[key], ConstantArg) and (not exportable_only or export_me(self.kwarg_descs[key].value))): new_kwargs[key] = self.kwarg_descs[key].get( convert_to_ast=exportable_only) return (new_args, new_kwargs) def allow_call_args(self, recursive=False): """ Set call_args attribute of all argument descriptions to True recursive -- recursively call allow_call_args on all constant args that are Primitives """ for arg_desc in self.arg_descs: arg_desc.call_arg = True if (recursive and isinstance(arg_desc, ConstantArg) and isinstance(arg_desc.value, Primitive)): arg_desc.value.allow_call_args(recursive=True) for kwarg_desc in self.kwarg_descs: kwarg_desc.call_arg = True if (recursive and isinstance(kwarg_desc, ConstantArg) and isinstance(kwarg_desc.value, Primitive)): kwarg_desc.value.allow_call_args(recursive=True) def __call__(self, *runtime_args, **runtime_kwargs): """ Execute the function, passing it the arguments received at runtime. Also call the function in self.call_afterwards and pass it all runtime_args and runtime_kwargs. If the very first argument is a LogoCode instance, it is removed. The active turtle, the Turtles object, the canvas, the LogoCode object, or the TurtleArtWindow object will be prepended to the arguments (depending on what this Primitive wants). """ # remove the first argument if it is a LogoCode instance if runtime_args and isinstance(runtime_args[0], LogoCode): runtime_args = runtime_args[1:] if Primitive._DEBUG: debug_output(repr(self)) debug_output(" runtime_args: " + repr(runtime_args)) # fill the ArgSlots with the runtime arguments new_prim = self.fill_slots(runtime_args, runtime_kwargs, convert_to_ast=False) if not new_prim.are_slots_filled(): raise logoerror("#syntaxerror") if Primitive._DEBUG: debug_output(" new_prim.arg_descs: " + repr(new_prim.arg_descs)) # extract the actual values from the (now constant) arguments (new_args, new_kwargs) = new_prim.get_values_of_filled_slots() if Primitive._DEBUG: debug_output(" new_args: " + repr(new_args)) debug_output("end " + repr(self)) # what does this primitive want as its first argument? first_arg = None if not is_bound_method(new_prim.func): if new_prim.wants_turtle(): first_arg = global_objects["turtles"].get_active_turtle() elif new_prim.wants_turtles(): first_arg = global_objects["turtles"] elif new_prim.wants_canvas(): first_arg = global_objects["canvas"] elif new_prim.wants_logocode(): first_arg = global_objects["logo"] elif new_prim.wants_heap(): first_arg = global_objects["logo"].heap elif new_prim.wants_tawindow(): first_arg = global_objects["window"] else: result, plugin = new_prim.wants_plugin() if result: first_arg = plugin # execute the actual function if first_arg is None: return_value = new_prim.func(*new_args, **new_kwargs) else: return_value = new_prim.func(first_arg, *new_args, **new_kwargs) if new_prim.call_afterwards is not None: new_prim.call_afterwards(*new_args, **new_kwargs) return return_value def get_ast(self, *arg_asts, **kwarg_asts): """Transform this object into a Python AST. When serialized and executed, the AST will do exactly the same as calling this object.""" if Primitive._DEBUG: debug_output(repr(self)) debug_output(" arg_asts: " + repr(arg_asts)) new_prim = self.fill_slots(arg_asts, kwarg_asts, convert_to_ast=True) if not new_prim.are_slots_filled(): raise PyExportError("not enough arguments") if Primitive._DEBUG: debug_output(" new_prim.arg_descs: " + repr(new_prim.arg_descs)) # extract the actual values from the (now constant) arguments (new_arg_asts, new_kwarg_asts) = new_prim.get_values_of_filled_slots( exportable_only=True) if Primitive._DEBUG: debug_output(" new_arg_asts: " + repr(new_arg_asts)) debug_output("end " + repr(self)) # SPECIAL HANDLING # # loops if self == LogoCode.prim_loop: controller = self._get_loop_controller() if controller == Primitive.controller_repeat: # 'repeat' loop num_repetitions = new_arg_asts[0] if num_repetitions.func.id == 'controller_repeat': num_repetitions = num_repetitions.args[0] repeat_iter = get_call_ast("range", [num_repetitions]) # TODO use new variable name in nested loops loop_ast = ast.For(target=ast.Name(id="i", ctx=ast.Store), iter=repeat_iter, body=new_arg_asts[1], orelse=[]) return loop_ast else: if controller == Primitive.controller_forever: condition_ast = ast.Name(id="True", ctx=ast.Load) elif controller == Primitive.controller_while: condition_ast = new_arg_asts[0].args[0] elif controller == Primitive.controller_until: pos_cond_ast = new_arg_asts[0].args[0] condition_ast = ast.UnaryOp(op=ast.Not, operand=pos_cond_ast) else: raise PyExportError("unknown loop controller: " + repr(controller)) loop_ast = ast.While(test=condition_ast, body=new_arg_asts[1], orelse=[]) # Until always executes its body once. if controller == Primitive.controller_until: loop_list = [] for arg_ast in new_arg_asts[1]: loop_list.append(arg_ast) loop_list.append(loop_ast) return loop_list else: return loop_ast # conditionals elif self in (LogoCode.prim_if, LogoCode.prim_ifelse): test = new_arg_asts[0] body = new_arg_asts[1] if len(new_arg_asts) > 2: orelse = new_arg_asts[2] else: orelse = [] if_ast = ast.If(test=test, body=body, orelse=orelse) return if_ast # boxes elif self == LogoCode.prim_set_box: target_ast = ast.Subscript(value=BOX_AST, slice=ast.Index(value=new_arg_asts[0]), ctx=ast.Store) return ast.Assign(targets=[target_ast], value=new_arg_asts[1]) elif self == LogoCode.prim_get_box: return ast.Subscript(value=BOX_AST, slice=ast.Index(value=new_arg_asts[0]), ctx=ast.Load) # action stacks elif self == LogoCode.prim_define_stack: return elif self == LogoCode.prim_invoke_stack: stack_func = ast.Subscript( value=ACTION_AST, slice=ast.Index(value=new_arg_asts[0]), ctx=ast.Load) call_ast = get_call_ast('logo.icall', [stack_func]) return [call_ast, ast_yield_true()] # stop stack elif self == LogoCode.prim_stop_stack: return ast.Return() # sleep/ wait elif self == LogoCode.prim_wait: return [get_call_ast('sleep', new_arg_asts), ast_yield_true()] # standard operators elif self.func.__name__ in Primitive.STANDARD_OPERATORS: op = Primitive.STANDARD_OPERATORS[self.func.__name__] # 'divide': prevent unwanted integer division if self == Primitive.divide: def _is_float(x): return get_type(x)[0] == TYPE_FLOAT if (not _is_float(new_arg_asts[0]) and not _is_float(new_arg_asts[1])): new_arg_asts[0] = get_call_ast('float', [new_arg_asts[0]], return_type=TYPE_FLOAT) if len(new_arg_asts) == 1: if isinstance(op, tuple): op = op[0] return ast.UnaryOp(op=op, operand=new_arg_asts[0]) elif len(new_arg_asts) == 2: if isinstance(op, tuple): op = op[1] (left, right) = new_arg_asts if issubclass(op, ast.boolop): return ast.BoolOp(op=op, values=[left, right]) elif issubclass(op, ast.cmpop): return ast.Compare(left=left, ops=[op], comparators=[right]) else: return ast.BinOp(op=op, left=left, right=right) # f(x) elif self == LogoCode.prim_myfunction: param_asts = [] for id_ in ['x', 'y', 'z'][:len(new_arg_asts)-1]: param_asts.append(ast.Name(id=id_, ctx=ast.Param)) func_ast = ast_extensions.LambdaWithStrBody( body_str=new_arg_asts[0].s, args=param_asts) return get_call_ast(func_ast, new_arg_asts[1:], return_type=self.return_type) # square root elif self == Primitive.square_root: return get_call_ast('sqrt', new_arg_asts, new_kwarg_asts, return_type=self.return_type) # random elif self in (Primitive.random_char, Primitive.random_int): uniform_ast = get_call_ast('uniform', new_arg_asts) round_ast = get_call_ast('round', [uniform_ast, ast.Num(n=0)]) int_ast = get_call_ast('int', [round_ast], return_type=TYPE_INT) if self == Primitive.random_char: chr_ast = get_call_ast('chr', [int_ast], return_type=TYPE_CHAR) return chr_ast else: return int_ast # identity elif self == Primitive.identity: return new_arg_asts[0] # constant elif self == CONSTANTS.get: return TypedSubscript(value=ast.Name(id='CONSTANTS', ctx=ast.Load), slice_=ast.Index(value=new_arg_asts[0]), return_type=self.return_type) # group of Primitives or sandwich-clamp block elif self in (Primitive.group, LogoCode.prim_clamp): ast_list = [] for prim in new_arg_asts[0]: if export_me(prim): new_ast = value_to_ast(prim) if isinstance(new_ast, ast.AST): ast_list.append(new_ast) return ast_list # set turtle elif self == LogoCode.prim_turtle: text = 'turtle = turtles.get_active_turtle()' return [get_call_ast('logo.prim_turtle', new_arg_asts), ast_extensions.ExtraCode(text)] elif self == LogoCode.active_turtle: text = 'turtle = turtles.get_active_turtle()' return ast_extensions.ExtraCode(text) # comment elif self == Primitive.comment: if isinstance(new_arg_asts[0], ast.Str): text = ' ' + str(new_arg_asts[0].s) else: text = ' ' + str(new_arg_asts[0]) return ast_extensions.Comment(text) # print elif self == TurtleArtWindow.print_: func_name = self.get_name_for_export() call_ast = get_call_ast(func_name, new_arg_asts) print_ast = ast.Print(values=new_arg_asts[:1], dest=None, nl=True) return [call_ast, print_ast] # heap elif self == LogoCode.get_heap: return TypedName(id_='logo.heap', return_type=self.return_type) elif self == LogoCode.reset_heap: target_ast = ast.Name(id='logo.heap', ctx=ast.Store) value_ast = ast.List(elts=[], ctx=ast.Load) return ast.Assign(targets=[target_ast], value=value_ast) # NORMAL FUNCTION CALL # else: func_name = self.get_name_for_export() return get_call_ast(func_name, new_arg_asts, new_kwarg_asts, return_type=self.return_type) def __eq__(self, other): """ Two Primitives are equal iff their all their properties are equal. Consider bound and unbound methods equal. """ # other is a Primitive if isinstance(other, Primitive): return (self == other.func and self.return_type == other.return_type and self.arg_descs == other.arg_descs and self.kwarg_descs == other.kwarg_descs and self.call_afterwards == other.call_afterwards and self.export_me == other.export_me) # other is a callable elif callable(other): if is_instancemethod(self.func) != is_instancemethod(other): return False elif is_instancemethod(self.func): # and is_instancemethod(other): return (self.func.im_class == other.im_class and self.func.im_func == other.im_func) else: return self.func == other elif is_staticmethod(other): return self.func == other.__func__ # other is neither a Primitive nor a callable else: return False def wants_turtle(self): """Does this Primitive want to get the active turtle as its first argument?""" return self._wants(Turtle) def wants_turtles(self): """ Does this Primitive want to get the Turtles instance as its first argument? """ return self._wants(Turtles) def wants_canvas(self): """ Does this Primitive want to get the canvas as its first argument? """ return self._wants(TurtleGraphics) def wants_logocode(self): """ Does this Primitive want to get the LogoCode instance as its first argument? """ return (self.func.__name__ == '<lambda>' or self._wants(LogoCode)) def wants_heap(self): """ Does this Primitive want to get the heap as its first argument? """ return ((hasattr(self.func, '__self__') and isinstance(self.func.__self__, list)) or self.func in list.__dict__.values()) def wants_tawindow(self): """ Does this Primitive want to get the TurtleArtWindow instance as its first argument? """ return self._wants(TurtleArtWindow) def wants_plugin(self): """Does this Primitive want to get a plugin instance as its first argument? """ for obj in global_objects.keys(): if self._wants(global_objects[obj].__class__): return True, obj return False, None def wants_nothing(self): """Does this Primitive want nothing as its first argument? I.e. does it want to be passed all the arguments of the block and nothing else?""" return not is_instancemethod(self.func) def _wants(self, theClass): return is_instancemethod(self.func) and self.func.im_class == theClass # treat the following methods in a special way when converting the # Primitive to an AST @staticmethod def controller_repeat(num): """ Loop controller for the 'repeat' block """ for i in range(num): yield True yield False @staticmethod def controller_forever(): """ Loop controller for the 'forever' block """ while True: yield True @staticmethod def controller_while(condition): """ Loop controller for the 'while' block condition -- Primitive that is evaluated every time through the loop """ condition.allow_call_args(recursive=True) while condition(): yield True yield False @staticmethod def controller_until(condition): """ Loop controller for the 'until' block condition -- Primitive that is evaluated every time through the loop """ condition.allow_call_args(recursive=True) while not condition(): yield True yield False LOOP_CONTROLLERS = [controller_repeat, controller_forever, controller_while, controller_until] def _get_loop_controller(self): """ Return the controller for this loop Primitive. Raise a ValueError if no controller was found. """ def _is_loop_controller(candidate): return (callable(candidate) and candidate in Primitive.LOOP_CONTROLLERS) for desc in self.arg_descs: if isinstance(desc, ConstantArg): value = desc.value if _is_loop_controller(value): return value elif isinstance(desc, ArgSlot): wrapper = desc.wrapper if _is_loop_controller(wrapper): return wrapper # no controller found raise PyExportError("found no loop controller for " + repr(self)) @staticmethod def do_nothing(): pass @staticmethod def identity(arg): """ Return the argument unchanged """ return arg @staticmethod def group(prim_list): """ Group together multiple Primitives into one. Treat each Primitive as a separate line of code. """ return_val = None for prim in prim_list: return_val = prim() return return_val @staticmethod def plus(arg1, arg2=None): """ If only one argument is given, prefix it with '+'. If two arguments are given, add the second to the first. If the first argument is a tuple of length 2 and the second is None, use the values in the tuple as arg1 and arg2. """ if isinstance(arg1, (list, tuple)) and len(arg1) == 2 and arg2 is None: (arg1, arg2) = arg1 if arg2 is None: return + arg1 elif isinstance(arg1, Vector) and isinstance(arg2, Vector): vector = [] for i in range(len(arg1.vector)): vector.append(arg1.vector[i] + arg2.vector[i]) return Vector(arg1.name, vector) else: return arg1 + arg2 @staticmethod def minus(arg1, arg2=None): """ If only one argument is given, change its sign. If two arguments are given, subtract the second from the first. """ if arg2 is None: return - arg1 elif isinstance(arg1, Vector) and isinstance(arg2, Vector): vector = [] for i in range(len(arg1.vector)): vector.append(arg1.vector[i] - arg2.vector[i]) return Vector(arg1.name, vector) else: return arg1 - arg2 @staticmethod def multiply(arg1, arg2): """ Multiply the two arguments """ if isinstance(arg1, Vector) and isinstance(arg2, (int, float)): vector = [] for i in range(len(arg1.vector)): vector.append(arg1.vector[i] * arg2) return Vector(arg1.name, vector) elif isinstance(arg2, Vector) and isinstance(arg1, (int, float)): vector = [] for i in range(len(arg2.vector)): vector.append(arg2.vector[i] * arg1) return Vector(arg2.name, vector) else: return arg1 * arg2 @staticmethod def divide(arg1, arg2): """ Divide the first argument by the second """ if arg2 == 0: raise logoerror("#zerodivide") if isinstance(arg1, Vector) and isinstance(arg2, (int, float)): vector = [] for i in range(len(arg1.vector)): vector.append(arg1.vector[i] / arg2) return Vector(arg1.name, vector) elif isinstance(arg2, Vector) and isinstance(arg1, (int, float)): vector = [] for i in range(len(arg2.vector)): vector.append(arg2.vector[i] / arg1) return Vector(arg2.name, vector) else: return float(arg1) / arg2 @staticmethod def modulo(arg1, arg2): """ Return the remainder of dividing the first argument by the second. If the first argument is a string, format it with the value(s) in the second argument. """ return arg1 % arg2 @staticmethod def power(arg1, arg2): """ Raise the first argument to the power given by the second """ return arg1 ** arg2 @staticmethod def square_root(arg1): """ Return the square root of the argument. If it is a negative number, raise a NegativeRootError. """ if arg1 < 0: raise NegativeRootError(neg_value=arg1) return sqrt(arg1) @staticmethod def and_(arg1, arg2): """ Logcially conjoin the two arguments (using short-circuting) """ return arg1 and arg2 @staticmethod def or_(arg1, arg2): """ Logically disjoin the two arguments (using short-circuting) """ return arg1 or arg2 @staticmethod def not_(arg): """ Return True if the argument evaluates to False, and False otherwise. """ return not arg @staticmethod def equals(arg1, arg2): """ Return arg1 == arg2 """ # See comment in tatype.py TYPE_BOX -> TYPE_COLOR if isinstance(arg1, ColorObj) or isinstance(arg2, ColorObj): return str(arg1) == str(arg2) else: return arg1 == arg2 @staticmethod def less(arg1, arg2): """ Return arg1 < arg2 """ # See comment in tatype.py TYPE_BOX -> TYPE_COLOR if isinstance(arg1, ColorObj) or isinstance(arg2, ColorObj): return float(arg1) < float(arg2) else: return arg1 < arg2 @staticmethod def greater(arg1, arg2): """ Return arg1 > arg2 """ # See comment in tatype.py TYPE_BOX -> TYPE_COLOR if isinstance(arg1, ColorObj) or isinstance(arg2, ColorObj): return float(arg1) > float(arg2) else: return arg1 > arg2 @staticmethod def comment(text): """In 'snail' execution mode, display the comment. Else, do nothing.""" tw = global_objects["window"] if not tw.hide and tw.step_time != 0: tw.showlabel('print', text) @staticmethod def random_int(lower, upper): """ Choose a random integer between lower and upper, which must be integers """ return int(round(uniform(lower, upper), 0)) @staticmethod def random_char(lower, upper): """ Choose a random Unicode code point between lower and upper, which must be integers """ return chr(Primitive.random_int(lower, upper)) class Disjunction(tuple): """ Abstract disjunction class (not to be instantiated directly) """ def __init__(self, iterable): self = tuple(iterable) def __repr__(self): s = ["("] for disj in self: s.append(repr(disj)) s.append(" or ") s.pop() s.append(")") return "".join(s) def get_alternatives(self): """ Return a tuple of alternatives, i.e. self """ return self class PrimitiveDisjunction(Disjunction, Primitive): """ Disjunction of two or more Primitives. PrimitiveDisjunctions may not be nested. """ @property def return_type(self): """ Tuple of the return_types of all disjuncts """ return TypeDisjunction((prim.return_type for prim in self)) def __call__(self, *runtime_args, **runtime_kwargs): """ Loop over the disjunct Primitives and try to fill their slots with the given args and kwargs. Call the first Primitives whose slots could be filled successfully. If all disjunct Primitives fail, raise the last error that occurred. """ # remove the first argument if it is a LogoCode instance if runtime_args and isinstance(runtime_args[0], LogoCode): runtime_args = runtime_args[1:] error = None for prim in self: try: new_prim = prim.fill_slots(runtime_args, runtime_kwargs, convert_to_ast=False) except TATypeError as error: # on failure, try the next one continue else: # on success, call this Primitive return new_prim() # if we get here, all disjuncts failed if error is not None: raise error class ArgListDisjunction(Disjunction): """ Disjunction of two or more argument lists """ pass class ArgSlot(object): """ Description of the requirements that a Primitive demands from an argument or keyword argument. An ArgSlot is filled at runtime, based on the block program structure. """ def __init__(self, type_, call_arg=True, wrapper=None): """ type_ -- what type of the type hierarchy the argument should have (after the wrapper has been applied) call_arg -- if this argument is callable, should it be called and its return value passed to the parent Primitive (True, the default), or should it be passed as it is (False)? wrapper -- a Primitive that is 'wrapped around' the argument before it gets passed to its parent Primitive. Wrappers can be nested infinitely. """ self.type = type_ self.call_arg = call_arg self.wrapper = wrapper def __repr__(self): s = ["ArgSlot(type="] s.append(repr(self.type)) if not self.call_arg: s.append(", call=") s.append(repr(self.call_arg)) if self.wrapper is not None: s.append(", wrapper=") s.append(repr(self.wrapper)) s.append(")") return "".join(s) def get_alternatives(self): """ Return a tuple of slot alternatives, i.e. (self, ) """ return (self, ) def fill(self, argument, convert_to_ast=False, call_my_args=True): """ Try to fill this argument slot with the given argument. Return a ConstantArg containing the result. If there is a type problem, raise a TATypeError. """ if isinstance(argument, ast.AST): convert_to_ast = True # 1. can the argument be called? (func_disjunction, args) = (None, []) if (isinstance(argument, tuple) and argument and callable(argument[0])): func_disjunction = argument[0] if len(argument) >= 2 and isinstance(argument[1], LogoCode): args = argument[2:] else: args = argument[1:] elif callable(argument): func_disjunction = argument # make sure we can loop over func_disjunction if not isinstance(func_disjunction, PrimitiveDisjunction): func_disjunction = PrimitiveDisjunction((func_disjunction, )) error = None bad_value = argument # the value that caused the TATypeError for func in func_disjunction: error = None for slot in self.get_alternatives(): if isinstance(slot.wrapper, PrimitiveDisjunction): wrapper_disjunction = slot.wrapper else: wrapper_disjunction = PrimitiveDisjunction((slot.wrapper,)) for wrapper in wrapper_disjunction: # check if the argument can fill this slot (type-wise) # (lambda functions are always accepted) if getattr(func, '__name__', None) == '<lambda>': converter = identity old_type = TYPE_OBJECT new_type = slot.type else: if wrapper is not None: arg_types = get_type(wrapper)[0] bad_value = wrapper elif func is not None: arg_types = get_type(func)[0] bad_value = func else: arg_types = get_type(argument)[0] bad_value = argument converter = None if not isinstance(arg_types, TypeDisjunction): arg_types = TypeDisjunction((arg_types, )) if isinstance(slot.type, TypeDisjunction): slot_types = slot.type else: slot_types = TypeDisjunction((slot.type, )) for old_type in arg_types: for new_type in slot_types: converter = get_converter(old_type, new_type) if converter is not None: break if converter is not None: break # unable to convert, try next wrapper/ slot/ func if converter is None: continue # 1. (cont'd) call the argument or pass it on as a callable called_argument = argument if func is not None: func_prim = func if not isinstance(func_prim, Primitive): func_prim = Primitive( func_prim, [ArgSlot(TYPE_OBJECT)] * len(args)) try: func_prim = func_prim.fill_slots( args, convert_to_ast=convert_to_ast, call_my_args=(slot.call_arg and call_my_args)) except TATypeError as error: if Primitive._DEBUG: traceback.print_exc() # on failure, try next wrapper/ slot/ func bad_value = error.bad_value continue if convert_to_ast: called_argument = func_prim.get_ast() else: if slot.call_arg and call_my_args: # call and pass on the return value called_argument = func_prim() else: # don't call and pass on the callable called_argument = func_prim # 2. apply any wrappers wrapped_argument = called_argument if wrapper is not None: if convert_to_ast: if not hasattr(wrapper, "get_ast"): raise PyExportError( ("cannot convert callable" " %s to an AST") % (repr(wrapper))) wrapped_argument = wrapper.get_ast( called_argument) else: if slot.call_arg and call_my_args: wrapped_argument = wrapper(called_argument) else: wrapped_argument = wrapper.fill_slots( [called_argument], call_my_args=False) # last chance to convert raw values to ASTs # (but not lists of ASTs) if (convert_to_ast and not isinstance(wrapped_argument, ast.AST) and not (isinstance(wrapped_argument, list) and wrapped_argument and isinstance(wrapped_argument[0], ast.AST))): wrapped_argument = value_to_ast(wrapped_argument) # 3. check the type and convert the argument if necessary converted_argument = wrapped_argument if slot.call_arg and call_my_args: try: converted_argument = convert( wrapped_argument, new_type, old_type=old_type, converter=converter) except TATypeError as error: if Primitive._DEBUG: traceback.print_exc() # on failure, try next wrapper/ slot/ func bad_value = wrapped_argument continue elif converter != identity: converted_argument = Primitive( converter, return_type=new_type, arg_descs=[ConstantArg(wrapped_argument, value_type=old_type, call_arg=False)]) # on success, return the result return ConstantArg( converted_argument, value_type=new_type, call_arg=(slot.call_arg and call_my_args)) # if we haven't returned anything yet, then all alternatives failed if error is not None: raise error else: raise TATypeError(bad_value=bad_value, bad_type=old_type, req_type=new_type) class ArgSlotDisjunction(Disjunction, ArgSlot): """ Disjunction of two or more argument slots """ pass class ConstantArg(object): """ A constant argument or keyword argument to a Primitive. It is independent of the block program structure. """ def __init__(self, value, call_arg=True, value_type=None): """ call_arg -- call the value before returning it? value_type -- the type of the value (from the TA type system). This is useful to store e.g., the return type of call ASTs. """ self.value = value self.call_arg = call_arg self.value_type = value_type def get(self, convert_to_ast=False): """ If call_arg is True and the value is callable, call the value and return its return value. Else, return the value unchanged. convert_to_ast -- return the equivalent AST instead of a raw value """ if self.call_arg and callable(self.value): if convert_to_ast: return value_to_ast(self.value) else: return self.value() else: if convert_to_ast and not isinstance(self.value, list): return value_to_ast(self.value) else: return self.value def get_value_type(self): """ If this ConstantArg has stored the type of its value, return that. Else, use get_type(...) to guess the type of the value. """ if self.value_type is None: return get_type(self.value)[0] else: return self.value_type def __repr__(self): s = ["ConstantArg("] s.append(repr(self.value)) if not self.call_arg: s.append(", call=") s.append(repr(self.call_arg)) s.append(")") return "".join(s) def or_(*disjuncts): """ Return a disjunction object of the same type as the disjuncts. If the item type cannot be linked to a Disjunction class, return a tuple of the disjuncts. """ if isinstance(disjuncts[0], Primitive): return PrimitiveDisjunction(disjuncts) elif isinstance(disjuncts[0], (list, ArgListDisjunction)): return ArgListDisjunction(disjuncts) elif isinstance(disjuncts[0], ArgSlot): return ArgSlotDisjunction(disjuncts) elif isinstance(disjuncts[0], Type): return TypeDisjunction(disjuncts) else: return tuple(disjuncts) def value_to_ast(value, *args_for_prim, **kwargs_for_prim): """ Turn a value into an AST. Supported types: Primitive, int, float, bool, basestring, list If the value is already an AST, return it unchanged. If the value is a non-exportable Primitive, return None. """ # already an AST if isinstance(value, ast.AST): return value # Primitive elif isinstance(value, Primitive): if value.export_me: return value.get_ast(*args_for_prim, **kwargs_for_prim) else: return None # boolean elif isinstance(value, bool): return ast.Name(id=str(value), ctx=ast.Load) # number elif isinstance(value, (int, float)): return ast.Num(n=value) # string elif isinstance(value, basestring): return ast.Str(value) # list (recursively transform to an AST) elif isinstance(value, list): ast_list = [] for item in value: item_ast = value_to_ast(item) if item_ast is not None: ast_list.append(item_ast) return ast.List(elts=ast_list, ctx=ast.Load) # color elif isinstance(value, Color): # call to the Color constructor with this object's values, # e.g., Color('red', 0, 50, 100) return get_call_ast('Color', [value.name, value.color, value.shade, value.gray], return_type=TYPE_COLOR) # vector elif isinstance(value, Vector): # call to the Vector constructor with this object's values, # e.g., Vector('banana', [105, 1, 27, 3, 0]) return get_call_ast('Vector', [value.name, value.vector], return_type=TYPE_VECTOR) # media elif isinstance(value, Media): args = [value_to_ast(value.type), value_to_ast(value.value)] return get_call_ast('Media', args, return_type=TYPE_MEDIA) # unknown else: raise PyExportError("unknown type of raw value: " + repr(type(value))) def ast_yield_true(): return ast.Yield(value=ast.Name(id='True', ctx=ast.Load)) def export_me(something): """ Return True iff this is not a Primitive or its export_me attribute is True, i.e. everything is exportable except for Primitives with export_me == False """ return not isinstance(something, Primitive) or something.export_me
40.282343
79
0.5619
958410d4da1d15ee447645aa34382ef730ce3626
2,445
py
Python
utils/data_utils.py
enricomeloni/covid-tools
6920b8cfa0eb89bdb7e0ba96ecc74831185c44a7
[ "MIT" ]
1
2020-10-06T16:03:01.000Z
2020-10-06T16:03:01.000Z
utils/data_utils.py
enricomeloni/covid-tools
6920b8cfa0eb89bdb7e0ba96ecc74831185c44a7
[ "MIT" ]
3
2022-02-13T20:21:56.000Z
2022-02-27T10:19:23.000Z
utils/data_utils.py
sailab-code/learning-sidarthe
6920b8cfa0eb89bdb7e0ba96ecc74831185c44a7
[ "MIT" ]
null
null
null
import pandas as pd def select_regions(df, regions, col_name="denominazione_regione"): """ Select rows by values in regions from column col_name :param df: pandas dataFrame :param regions: a list of values :param col_name: a string indicating the column :return: a new DataFrame with only the selected rows of df """ return df[df[col_name].isin(regions)].reset_index() def select_column_values(df, col_name="totale_casi", groupby=["data"], group_by_criterion="sum"): """ :param df: pandas dataFrame :param col_name: column of interest :param groupby: column to group by (optional) data. :param group_by_criterion: how to merge the values of grouped elements in col_name. Only sum supported. :return: a list of of values """ if groupby is not None: if group_by_criterion == "sum": return df.groupby(by=groupby)[col_name].sum().reset_index()[col_name].values else: return RuntimeWarning else: return list(df[col_name]) def select_data(file, areas, area_col_name, value_col_name, groupby_cols, file_sep=","): """ Function to load any csv file, selecting which rows to get and which column :param file: :param areas: a list of values (strings) of the areas to :param area_col_name: :param value_col_name: :param groupby_cols: :param file_sep: :return: x and w ready, where x is just a range of integers from 1 (day 0) to N (last day), w are the values of the column selected. Example of usage: Getting time series of deaths in Toscana: df_file = os.path.join(os.getcwd(), "dati-regioni", "dpc-covid19-ita-regioni.csv") areas = ["Toscana"] area_col_name = "denominazione_regione" value_col_name = "deceduti" x,w = get_data(df_file, areas, area_col_name, value_col_name, file_sep=",") Getting time seris of deaths in whole Italy: just the same except for: areas = list(df["denominazione_regione"].unique()) """ df = pd.read_csv(file, sep=file_sep) df = df.fillna(-1) # set nans to -1 area_df = select_regions(df, areas, col_name=area_col_name) y = select_column_values(area_df, col_name=value_col_name, groupby=groupby_cols) x = list(range(1, len(y)+1)) dates = select_column_values(area_df, col_name="data", groupby=None) return x, y, dates
35.955882
105
0.666258
5835925f843940a3ebbd8324c0629c340190ffd4
2,219
py
Python
koans/about_sets.py
gtl-nitin-thakkar/koans-playground-master
3701a71c8e1d498c0ebdb62d1c8b026da345f2c9
[ "MIT" ]
null
null
null
koans/about_sets.py
gtl-nitin-thakkar/koans-playground-master
3701a71c8e1d498c0ebdb62d1c8b026da345f2c9
[ "MIT" ]
null
null
null
koans/about_sets.py
gtl-nitin-thakkar/koans-playground-master
3701a71c8e1d498c0ebdb62d1c8b026da345f2c9
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- from runner.koan import * class AboutSets(Koan): def test_sets_make_keep_lists_unique(self): highlanders = ['MacLeod', 'Ramirez', 'MacLeod', 'Matunas', 'MacLeod', 'Malcolm', 'MacLeod'] there_can_only_be_only_one = set(highlanders) self.assertEqual({'Matunas', 'Ramirez', 'Malcolm', 'MacLeod'}, there_can_only_be_only_one) def test_empty_sets_have_different_syntax_to_populated_sets(self): self.assertEqual({1, 2, 3}, {1, 2, 3}) self.assertEqual(set(), set()) def test_dictionaries_and_sets_use_same_curly_braces(self): # Note: Literal sets using braces were introduced in python 3. # They were also backported to python 2.7. self.assertEqual(set, {1, 2, 3}.__class__) self.assertEqual(dict, {'one': 1, 'two': 2}.__class__) self.assertEqual(dict, {}.__class__) def test_creating_sets_using_strings(self): self.assertEqual({'12345'}, {'12345'}) self.assertEqual({'4', '1', '2', '5', '3'}, set('12345')) def test_convert_the_set_into_a_list_to_sort_it(self): self.assertEqual(['1', '2', '3', '4', '5'], sorted(set('12345'))) # ------------------------------------------------------------------ def test_set_have_arithmetic_operators(self): scotsmen = {'MacLeod', 'Wallace', 'Willie'} warriors = {'MacLeod', 'Wallace', 'Leonidas'} self.assertEqual({'Willie'}, scotsmen - warriors) self.assertEqual({'Leonidas', 'MacLeod', 'Wallace', 'Willie'}, scotsmen | warriors) self.assertEqual({'Wallace', 'MacLeod'}, scotsmen & warriors) self.assertEqual({'Willie', 'Leonidas'}, scotsmen ^ warriors) # ------------------------------------------------------------------ def test_we_can_query_set_membership(self): self.assertEqual(True, 127 in {127, 0, 0, 1} ) self.assertEqual(True, 'cow' not in set('apocalypse now') ) def test_we_can_compare_subsets(self): self.assertEqual(True, set('cake') <= set('cherry cake')) self.assertEqual(True, set('cake').issubset(set('cherry cake')) ) self.assertEqual(False, set('cake') > set('pie'))
39.625
99
0.59982
77ea87e82bb6548a1e6c5ce65f8a883229f00bb0
2,288
py
Python
csm4cobra/manipulate.py
migp11/csm4cobra
af1b9ed03935180e936d3faa3b2cb0bf77764255
[ "MIT" ]
1
2019-07-22T10:08:01.000Z
2019-07-22T10:08:01.000Z
csm4cobra/manipulate.py
migp11/csm4cobra
af1b9ed03935180e936d3faa3b2cb0bf77764255
[ "MIT" ]
null
null
null
csm4cobra/manipulate.py
migp11/csm4cobra
af1b9ed03935180e936d3faa3b2cb0bf77764255
[ "MIT" ]
1
2021-07-02T10:43:51.000Z
2021-07-02T10:43:51.000Z
import warnings from cobra.core import Reaction from cobra.core import Metabolite from cobra.flux_analysis.deletion import find_gene_knockout_reactions def set_medium(model, medium, skip_absent=True, inplace=False): if not inplace: model = model.copy() def set_active_bound(reaction, bound): if reaction.reactants: reaction.lower_bound = -bound elif reaction.products: reaction.upper_bound = bound # Set the given media bounds media_rxns = list() for rxn_id, bound in medium.items(): if rxn_id not in model.reactions and skip_absent: warnings.warn("Exchange flux %s not found, skippied" % rxn_id) continue rxn = model.reactions.get_by_id(rxn_id) media_rxns.append(rxn) set_active_bound(rxn, bound) boundary_rxns = set([r for r in model.exchanges if r.id.startswith('EX')]) media_rxns = set(media_rxns) # Turn off reactions not present in media for rxn in (boundary_rxns - media_rxns): set_active_bound(rxn, 0) if not inplace: return model def add_reaction_dict(model, reaction_id, reaction_dict, compartment='c', lb=0.0, ub=1000, replace=False, inplace=True): if not inplace: model = model.copy() metabolites_to_add = {} for met_id, coeff in reaction_dict.items(): if len(compartment) > 0: met_id += "_" + compartment try: metabolite = model.metabolites.get_by_id(met_id) except: warnings.warn("Metabolites %s no present in model, added as new" % met_id) metabolite = Metabolite(met_id) metabolites_to_add[metabolite] = coeff if reaction_id in model.reactions: if replace: model.remove_reactions([reaction_id]) else: return reaction = Reaction(reaction_id) reaction.lower_bound = lb reaction.upper_bound = ub reaction.add_metabolites(metabolites_to_add) model.add_reaction(reaction) if not inplace: return model def add_atpm_reaction(model, inplace=True): metabolites_dict = {"atp":-1,"h2o":-1,"adp":1,"pi":1,"h":1} rxn_id = 'ATPM' add_reaction_dict(model, rxn_id, metabolites_dict, inplace=inplace)
29.333333
120
0.653409
ab2c1b1c702a7bb04612d2f98cdd8a5cbce765c3
1,967
py
Python
task/migrations/0001_initial.py
toladata/TolaProfile
0e8e904ef518a1835e815999e1015ff692d48cad
[ "Apache-2.0" ]
null
null
null
task/migrations/0001_initial.py
toladata/TolaProfile
0e8e904ef518a1835e815999e1015ff692d48cad
[ "Apache-2.0" ]
16
2017-07-12T09:44:34.000Z
2017-07-31T14:51:45.000Z
task/migrations/0001_initial.py
toladata/TolaProfile
0e8e904ef518a1835e815999e1015ff692d48cad
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.11.2 on 2017-07-04 12:52 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Task', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('task', models.CharField(max_length=140)), ('created_date', models.DateTimeField(auto_now=True)), ('due_date', models.DateTimeField(blank=True, null=True)), ('status', models.IntegerField(choices=[(1, 'Active'), (2, 'Reopened'), (3, 'Completed'), (4, 'Cancelled')], default=1)), ('completed_date', models.DateTimeField(blank=True, null=True)), ('submitter_email', models.EmailField(blank=True, help_text='The submitter will receive an email for all public follow-ups left for this task.', max_length=254, null=True, verbose_name='Submitter E-Mail')), ('note', models.TextField(blank=True, null=True)), ('priority', models.IntegerField(choices=[(1, 'High'), (2, 'Normal'), (3, 'Low')])), ('assigned_to', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='task_assigned_to', to=settings.AUTH_USER_MODEL, verbose_name='Assigned to')), ('created_by', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='task_created_by', to=settings.AUTH_USER_MODEL, verbose_name='Created By')), ], options={ 'ordering': ['priority'], 'managed': True, }, ), ]
49.175
222
0.628876
4f7a2600ed206762b73d2e3ee0edeedc44338d8b
6,993
py
Python
fairseq/tasks/language_modeling.py
zjumml/multilingual-kd-pytorch
a369a3edb08e255ba024cf76b00cc5a8d057bd2c
[ "BSD-3-Clause" ]
77
2019-04-29T01:56:04.000Z
2022-03-19T08:05:55.000Z
fairseq/tasks/language_modeling.py
zjumml/multilingual-kd-pytorch
a369a3edb08e255ba024cf76b00cc5a8d057bd2c
[ "BSD-3-Clause" ]
6
2019-04-29T05:36:16.000Z
2021-12-06T02:41:12.000Z
fairseq/tasks/language_modeling.py
zjumml/multilingual-kd-pytorch
a369a3edb08e255ba024cf76b00cc5a8d057bd2c
[ "BSD-3-Clause" ]
22
2019-04-28T04:39:41.000Z
2022-03-19T03:13:16.000Z
# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. import itertools import numpy as np import os from torch.utils.data import ConcatDataset from fairseq.data import ( Dictionary, IndexedInMemoryDataset, IndexedRawTextDataset, MonolingualDataset, TokenBlockDataset, TruncatedDictionary ) from . import FairseqTask, register_task @register_task('language_modeling') class LanguageModelingTask(FairseqTask): """ Train a language model. Args: dictionary (Dictionary): the dictionary for the input of the language model output_dictionary (Dictionary): the dictionary for the output of the language model. In most cases it will be the same as dictionary, but could possibly be a more limited version of the dictionary (if --output-dictionary-size is used). targets (List[str]): list of the target types that the language model should predict. Can be one of "self", "future", and "past". Defaults to "future". .. note:: The language modeling task is compatible with :mod:`train.py <train>`, :mod:`generate.py <generate>`, :mod:`interactive.py <interactive>` and :mod:`eval_lm.py <eval_lm>`. The language modeling task provides the following additional command-line arguments: .. argparse:: :ref: fairseq.tasks.language_modeling_parser :prog: """ @staticmethod def add_args(parser): """Add task-specific arguments to the parser.""" parser.add_argument('data', help='path to data directory') parser.add_argument('--sample-break-mode', choices=['none', 'complete', 'eos'], help='If omitted or "none", fills each sample with tokens-per-sample ' 'tokens. If set to "complete", splits samples only at the end ' 'of sentence, but may include multiple sentences per sample. ' 'If set to "eos", includes only one sentence per sample.') parser.add_argument('--tokens-per-sample', default=1024, type=int, help='max number of tokens per sample for LM dataset') parser.add_argument('--raw-text', default=False, action='store_true', help='load raw text dataset') parser.add_argument('--output-dictionary-size', default=-1, type=int, help='limit the size of output dictionary') parser.add_argument('--self-target', action='store_true', help='include self target') parser.add_argument('--future-target', action='store_true', help='include future target') parser.add_argument('--past-target', action='store_true', help='include past target') def __init__(self, args, dictionary, output_dictionary, targets=None): super().__init__(args) self.dictionary = dictionary self.output_dictionary = output_dictionary if targets is None: targets = ['future'] self.targets = targets @classmethod def setup_task(cls, args, **kwargs): """Setup the task (e.g., load dictionaries). Args: args (argparse.Namespace): parsed command-line arguments """ dictionary = Dictionary.load(os.path.join(args.data, 'dict.txt')) print('| dictionary: {} types'.format(len(dictionary))) output_dictionary = dictionary if args.output_dictionary_size >= 0: output_dictionary = TruncatedDictionary(dictionary, args.output_dictionary_size) # upgrade old checkpoints if hasattr(args, 'exclude_self_target'): args.self_target = not args.exclude_self_target targets = [] if getattr(args, 'self_target', False): targets.append('self') if getattr(args, 'future_target', False): targets.append('future') if getattr(args, 'past_target', False): targets.append('past') if len(targets) == 0: # standard language modeling targets = ['future'] return cls(args, dictionary, output_dictionary, targets=targets) def build_model(self, args): model = super().build_model(args) for target in self.targets: if target not in model.supported_targets: raise ValueError('Unsupported language modeling target: {}'.format(target)) return model def load_dataset(self, split, combine=False, **kwargs): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ loaded_datasets = [] for k in itertools.count(): split_k = split + (str(k) if k > 0 else '') path = os.path.join(self.args.data, split_k) if self.args.raw_text and IndexedRawTextDataset.exists(path): ds = IndexedRawTextDataset(path, self.dictionary) tokens = [t for l in ds.tokens_list for t in l] elif not self.args.raw_text and IndexedInMemoryDataset.exists(path): ds = IndexedInMemoryDataset(path, fix_lua_indexing=True) tokens = ds.buffer else: if k > 0: break else: raise FileNotFoundError('Dataset not found: {} ({})'.format(split, self.args.data)) loaded_datasets.append( TokenBlockDataset( tokens, ds.sizes, self.args.tokens_per_sample, pad=self.dictionary.pad(), eos=self.dictionary.eos(), break_mode=self.args.sample_break_mode, include_targets=True, )) print('| {} {} {} examples'.format(self.args.data, split_k, len(loaded_datasets[-1]))) if not combine: break if len(loaded_datasets) == 1: dataset = loaded_datasets[0] sizes = dataset.sizes else: dataset = ConcatDataset(loaded_datasets) sizes = np.concatenate([ds.sizes for ds in loaded_datasets]) add_eos_for_other_targets = self.args.sample_break_mode is not None and self.args.sample_break_mode != 'none' self.datasets[split] = MonolingualDataset( dataset, sizes, self.dictionary, self.output_dictionary, add_eos_for_other_targets=add_eos_for_other_targets, shuffle=True, targets=self.targets, ) @property def target_dictionary(self): """Return the :class:`~fairseq.data.Dictionary` for the language model.""" return self.output_dictionary
39.286517
120
0.611898
1b60117ebdd7beb9c69d1ee7662ec8d4a18ca818
3,416
py
Python
lib/SetAPI/genome/GenomeSetInterfaceV1.py
slebras/SetAPI
95fb805d8b5c2deba62c3bd89c47b379c802995f
[ "MIT" ]
null
null
null
lib/SetAPI/genome/GenomeSetInterfaceV1.py
slebras/SetAPI
95fb805d8b5c2deba62c3bd89c47b379c802995f
[ "MIT" ]
18
2016-10-25T23:28:01.000Z
2021-07-14T18:48:51.000Z
lib/SetAPI/genome/GenomeSetInterfaceV1.py
slebras/SetAPI
95fb805d8b5c2deba62c3bd89c47b379c802995f
[ "MIT" ]
14
2016-10-24T21:46:39.000Z
2021-03-12T15:25:31.000Z
from SetAPI.generic.SetInterfaceV1 import SetInterfaceV1 class GenomeSetInterfaceV1: def __init__(self, workspace_client): self.ws = workspace_client self.setInterface = SetInterfaceV1(workspace_client) def save_genome_set(self, ctx, params): """ by default save 'KBaseSets.GenomeSet' save 'KBaseSearch.GenomeSet' by setting save_search_set """ save_search_set = params.get('save_search_set', False) if 'data' in params: self._validate_genome_set_data(params['data'], save_search_set) else: raise ValueError('"data" parameter field required to save an GenomeSet') genome_type = 'KBaseSets.GenomeSet' if save_search_set: genome_type = 'KBaseSearch.GenomeSet' save_result = self.setInterface.save_set( genome_type, ctx['provenance'], params ) info = save_result[0] return { 'set_ref': str(info[6]) + '/' + str(info[0]) + '/' + str(info[4]), 'set_info': info } def _validate_genome_set_data(self, data, save_search_set): # TODO: add checks that only one copy of each genome data is in the set if save_search_set: if 'elements' not in data: raise ValueError('"elements" list must be defined in data to save a KBaseSearch.GenomeSet') if 'description' not in data: data['description'] = '' else: if 'items' not in data: raise ValueError('"items" list must be defined in data to save a KBaseSets.GenomeSet') # add 'description' and 'label' fields if not present in data: for item in data['items']: if 'label' not in item: item['label'] = '' if 'description' not in data: data['description'] = '' def get_genome_set(self, ctx, params): self._check_get_genome_set_params(params) include_item_info = False if 'include_item_info' in params: if params['include_item_info'] == 1: include_item_info = True include_set_item_ref_paths = False if 'include_set_item_ref_paths' in params: if params['include_set_item_ref_paths'] == 1: include_set_item_ref_paths = True ref_path_to_set = [] if 'ref_path_to_set' in params: ref_path_to_set = params['ref_path_to_set'] set_data = self.setInterface.get_set( params['ref'], include_item_info, ref_path_to_set, include_set_item_ref_paths ) set_data = self._normalize_genome_set_data(set_data) return set_data def _check_get_genome_set_params(self, params): if 'ref' not in params: raise ValueError('"ref" parameter field specifiying the genome set is required') if 'include_item_info' in params: if params['include_item_info'] not in [0, 1]: raise ValueError('"include_item_info" parameter field can only be set to 0 or 1') def _normalize_genome_set_data(self, set_data): # make sure that optional/missing fields are filled in or are defined # TODO: populate empty description field # TODO?: populate empty label fields return set_data
35.957895
107
0.608314
630094049d7ae527d08aba5d512a4e5626037861
128
py
Python
app/server/auth/jwt_handler.py
CSE-510-Aarogya/DP-Backend
1192689d1db29269b54c2c3f23db3eced0bd35c7
[ "MIT" ]
null
null
null
app/server/auth/jwt_handler.py
CSE-510-Aarogya/DP-Backend
1192689d1db29269b54c2c3f23db3eced0bd35c7
[ "MIT" ]
null
null
null
app/server/auth/jwt_handler.py
CSE-510-Aarogya/DP-Backend
1192689d1db29269b54c2c3f23db3eced0bd35c7
[ "MIT" ]
null
null
null
version https://git-lfs.github.com/spec/v1 oid sha256:80f9103b2cfae7ab16652a7c65849a6474fbda672d008e1ff6a0902ff8b91ec7 size 723
32
75
0.882813
960b072feadd053bac41c7a58587f8225944e145
11,081
py
Python
venv/lib/python3.6/site-packages/ansible_collections/community/general/plugins/modules/redis.py
usegalaxy-no/usegalaxy
75dad095769fe918eb39677f2c887e681a747f3a
[ "MIT" ]
22
2021-07-16T08:11:22.000Z
2022-03-31T07:15:34.000Z
venv/lib/python3.6/site-packages/ansible_collections/community/general/plugins/modules/redis.py
usegalaxy-no/usegalaxy
75dad095769fe918eb39677f2c887e681a747f3a
[ "MIT" ]
12
2020-02-21T07:24:52.000Z
2020-04-14T09:54:32.000Z
venv/lib/python3.6/site-packages/ansible_collections/community/general/plugins/modules/redis.py
usegalaxy-no/usegalaxy
75dad095769fe918eb39677f2c887e681a747f3a
[ "MIT" ]
39
2021-07-05T02:31:42.000Z
2022-03-31T02:46:03.000Z
#!/usr/bin/python # -*- coding: utf-8 -*- # Copyright: Ansible Project # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type DOCUMENTATION = ''' --- module: redis short_description: Various redis commands, replica and flush description: - Unified utility to interact with redis instances. options: command: description: - The selected redis command - C(config) ensures a configuration setting on an instance. - C(flush) flushes all the instance or a specified db. - C(replica) sets a redis instance in replica or master mode. (C(slave) is an alias for C(replica).) choices: [ config, flush, replica, slave ] type: str login_password: description: - The password used to authenticate with (usually not used) type: str login_host: description: - The host running the database default: localhost type: str login_port: description: - The port to connect to default: 6379 type: int master_host: description: - The host of the master instance [replica command] type: str master_port: description: - The port of the master instance [replica command] type: int replica_mode: description: - The mode of the redis instance [replica command] - C(slave) is an alias for C(replica). default: replica choices: [ master, replica, slave ] type: str aliases: - slave_mode db: description: - The database to flush (used in db mode) [flush command] type: int flush_mode: description: - Type of flush (all the dbs in a redis instance or a specific one) [flush command] default: all choices: [ all, db ] type: str name: description: - A redis config key. type: str value: description: - A redis config value. When memory size is needed, it is possible to specify it in the usal form of 1KB, 2M, 400MB where the base is 1024. Units are case insensitive i.e. 1m = 1mb = 1M = 1MB. type: str notes: - Requires the redis-py Python package on the remote host. You can install it with pip (pip install redis) or with a package manager. https://github.com/andymccurdy/redis-py - If the redis master instance we are making replica of is password protected this needs to be in the redis.conf in the masterauth variable seealso: - module: community.general.redis_info requirements: [ redis ] author: "Xabier Larrakoetxea (@slok)" ''' EXAMPLES = ''' - name: Set local redis instance to be a replica of melee.island on port 6377 community.general.redis: command: replica master_host: melee.island master_port: 6377 - name: Deactivate replica mode community.general.redis: command: replica replica_mode: master - name: Flush all the redis db community.general.redis: command: flush flush_mode: all - name: Flush only one db in a redis instance community.general.redis: command: flush db: 1 flush_mode: db - name: Configure local redis to have 10000 max clients community.general.redis: command: config name: maxclients value: 10000 - name: Configure local redis maxmemory to 4GB community.general.redis: command: config name: maxmemory value: 4GB - name: Configure local redis to have lua time limit of 100 ms community.general.redis: command: config name: lua-time-limit value: 100 ''' import traceback REDIS_IMP_ERR = None try: import redis except ImportError: REDIS_IMP_ERR = traceback.format_exc() redis_found = False else: redis_found = True from ansible.module_utils.basic import AnsibleModule, missing_required_lib from ansible.module_utils.common.text.formatters import human_to_bytes from ansible.module_utils.common.text.converters import to_native import re # Redis module specific support methods. def set_replica_mode(client, master_host, master_port): try: return client.slaveof(master_host, master_port) except Exception: return False def set_master_mode(client): try: return client.slaveof() except Exception: return False def flush(client, db=None): try: if not isinstance(db, int): return client.flushall() else: # The passed client has been connected to the database already return client.flushdb() except Exception: return False # Module execution. def main(): module = AnsibleModule( argument_spec=dict( command=dict(type='str', choices=['config', 'flush', 'replica', 'slave']), login_password=dict(type='str', no_log=True), login_host=dict(type='str', default='localhost'), login_port=dict(type='int', default=6379), master_host=dict(type='str'), master_port=dict(type='int'), replica_mode=dict(type='str', default='replica', choices=['master', 'replica', 'slave'], aliases=["slave_mode"]), db=dict(type='int'), flush_mode=dict(type='str', default='all', choices=['all', 'db']), name=dict(type='str'), value=dict(type='str') ), supports_check_mode=True, ) if not redis_found: module.fail_json(msg=missing_required_lib('redis'), exception=REDIS_IMP_ERR) login_password = module.params['login_password'] login_host = module.params['login_host'] login_port = module.params['login_port'] command = module.params['command'] if command == "slave": command = "replica" # Replica Command section ----------- if command == "replica": master_host = module.params['master_host'] master_port = module.params['master_port'] mode = module.params['replica_mode'] if mode == "slave": mode = "replica" # Check if we have all the data if mode == "replica": # Only need data if we want to be replica if not master_host: module.fail_json(msg='In replica mode master host must be provided') if not master_port: module.fail_json(msg='In replica mode master port must be provided') # Connect and check r = redis.StrictRedis(host=login_host, port=login_port, password=login_password) try: r.ping() except Exception as e: module.fail_json(msg="unable to connect to database: %s" % to_native(e), exception=traceback.format_exc()) # Check if we are already in the mode that we want info = r.info() if mode == "master" and info["role"] == "master": module.exit_json(changed=False, mode=mode) elif mode == "replica" and info["role"] == "slave" and info["master_host"] == master_host and info["master_port"] == master_port: status = dict( status=mode, master_host=master_host, master_port=master_port, ) module.exit_json(changed=False, mode=status) else: # Do the stuff # (Check Check_mode before commands so the commands aren't evaluated # if not necessary) if mode == "replica": if module.check_mode or set_replica_mode(r, master_host, master_port): info = r.info() status = { 'status': mode, 'master_host': master_host, 'master_port': master_port, } module.exit_json(changed=True, mode=status) else: module.fail_json(msg='Unable to set replica mode') else: if module.check_mode or set_master_mode(r): module.exit_json(changed=True, mode=mode) else: module.fail_json(msg='Unable to set master mode') # flush Command section ----------- elif command == "flush": db = module.params['db'] mode = module.params['flush_mode'] # Check if we have all the data if mode == "db": if db is None: module.fail_json(msg="In db mode the db number must be provided") # Connect and check r = redis.StrictRedis(host=login_host, port=login_port, password=login_password, db=db) try: r.ping() except Exception as e: module.fail_json(msg="unable to connect to database: %s" % to_native(e), exception=traceback.format_exc()) # Do the stuff # (Check Check_mode before commands so the commands aren't evaluated # if not necessary) if mode == "all": if module.check_mode or flush(r): module.exit_json(changed=True, flushed=True) else: # Flush never fails :) module.fail_json(msg="Unable to flush all databases") else: if module.check_mode or flush(r, db): module.exit_json(changed=True, flushed=True, db=db) else: # Flush never fails :) module.fail_json(msg="Unable to flush '%d' database" % db) elif command == 'config': name = module.params['name'] try: # try to parse the value as if it were the memory size if re.match(r'^\s*(\d*\.?\d*)\s*([A-Za-z]+)?\s*$', module.params['value'].upper()): value = str(human_to_bytes(module.params['value'].upper())) else: value = module.params['value'] except ValueError: value = module.params['value'] r = redis.StrictRedis(host=login_host, port=login_port, password=login_password) try: r.ping() except Exception as e: module.fail_json(msg="unable to connect to database: %s" % to_native(e), exception=traceback.format_exc()) try: old_value = r.config_get(name)[name] except Exception as e: module.fail_json(msg="unable to read config: %s" % to_native(e), exception=traceback.format_exc()) changed = old_value != value if module.check_mode or not changed: module.exit_json(changed=changed, name=name, value=value) else: try: r.config_set(name, value) except Exception as e: module.fail_json(msg="unable to write config: %s" % to_native(e), exception=traceback.format_exc()) module.exit_json(changed=changed, name=name, value=value) else: module.fail_json(msg='A valid command must be provided') if __name__ == '__main__': main()
33.477341
137
0.603104
26de70ed7cb894c60fdce2b60715aeedc72d05ba
1,439
py
Python
cc_pseudo_crawl/get_stats.py
edugp/data_tooling
bfa94bc916bcaa2c341586b2d14dd783be7d1972
[ "Apache-2.0" ]
null
null
null
cc_pseudo_crawl/get_stats.py
edugp/data_tooling
bfa94bc916bcaa2c341586b2d14dd783be7d1972
[ "Apache-2.0" ]
null
null
null
cc_pseudo_crawl/get_stats.py
edugp/data_tooling
bfa94bc916bcaa2c341586b2d14dd783be7d1972
[ "Apache-2.0" ]
null
null
null
import logging from argparse import ArgumentParser from pathlib import Path from datasets import concatenate_datasets, load_dataset, load_from_disk from datasets.utils.logging import set_verbosity_info set_verbosity_info() logger = logging.getLogger(__name__) def get_args(): parser = ArgumentParser() parser.add_argument("--dataset-path", type=str, required=True, help="Dataset path.") args = parser.parse_args() args.dataset_path = Path(args.dataset_path) return args def load_others(dataset_path: Path): others_path = dataset_path / "others" shards = [load_from_disk(str(shard_path.absolute())) for shard_path in sorted(others_path.iterdir())] return concatenate_datasets(shards) def main(): # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) args = get_args() logger.info( f"** The job is runned with the following arguments: **\n{args}\n **** " ) others = load_others(args.dataset_path) features = others.features.copy() features.pop("compressed_warc") text_htmls = load_dataset(str((args.dataset_path / "text__html").absolute()), data_files="**.jsonl.gz", features=features, split="train") logger.info(f"Text/html: {len(text_htmls)}") logger.info(f"Others: {len(others)}") if __name__ == "__main__": main()
30.617021
141
0.691452
3218b63fa10474eb6a3d38c414453f241a5f62dc
12,198
py
Python
lib/galaxy/managers/collections_util.py
common-workflow-language/galaxy
fd644561a80c682d99105a45294c8938b05f2ef6
[ "CC-BY-3.0" ]
10
2016-05-04T22:03:18.000Z
2019-05-28T23:34:06.000Z
lib/galaxy/managers/collections_util.py
common-workflow-language/galaxy
fd644561a80c682d99105a45294c8938b05f2ef6
[ "CC-BY-3.0" ]
125
2015-10-19T20:20:33.000Z
2021-11-11T17:04:38.000Z
lib/galaxy/managers/collections_util.py
common-workflow-language/galaxy
fd644561a80c682d99105a45294c8938b05f2ef6
[ "CC-BY-3.0" ]
3
2017-05-30T19:23:31.000Z
2021-11-08T20:07:24.000Z
import logging import math from galaxy import exceptions, model, web from galaxy.util import string_as_bool log = logging.getLogger(__name__) ERROR_MESSAGE_UNKNOWN_SRC = "Unknown dataset source (src) %s." ERROR_MESSAGE_NO_NESTED_IDENTIFIERS = "Dataset source new_collection requires nested element_identifiers for new collection." ERROR_MESSAGE_NO_NAME = "Cannot load invalid dataset identifier - missing name - %s" ERROR_MESSAGE_NO_COLLECTION_TYPE = "No collection_type define for nested collection %s." ERROR_MESSAGE_INVALID_PARAMETER_FOUND = "Found invalid parameter %s in element identifier description %s." ERROR_MESSAGE_DUPLICATED_IDENTIFIER_FOUND = "Found duplicated element identifier name %s." def api_payload_to_create_params(payload): """ Cleanup API payload to pass into dataset_collections. """ required_parameters = ["collection_type", "element_identifiers"] missing_parameters = [p for p in required_parameters if p not in payload] if missing_parameters: message = f"Missing required parameters {missing_parameters}" raise exceptions.ObjectAttributeMissingException(message) params = dict( collection_type=payload.get("collection_type"), element_identifiers=payload.get("element_identifiers"), name=payload.get("name", None), hide_source_items=string_as_bool(payload.get("hide_source_items", False)), copy_elements=string_as_bool(payload.get("copy_elements", False)), fields=payload.get("fields", None), ) return params def validate_input_element_identifiers(element_identifiers): """ Scan through the list of element identifiers supplied by the API consumer and verify the structure is valid. """ log.debug("Validating %d element identifiers for collection creation." % len(element_identifiers)) identifier_names = set() for element_identifier in element_identifiers: if "__object__" in element_identifier: message = ERROR_MESSAGE_INVALID_PARAMETER_FOUND % ("__object__", element_identifier) raise exceptions.RequestParameterInvalidException(message) if "name" not in element_identifier: message = ERROR_MESSAGE_NO_NAME % element_identifier raise exceptions.RequestParameterInvalidException(message) name = element_identifier["name"] if name in identifier_names: message = ERROR_MESSAGE_DUPLICATED_IDENTIFIER_FOUND % name raise exceptions.RequestParameterInvalidException(message) else: identifier_names.add(name) src = element_identifier.get("src", "hda") if src not in ["hda", "hdca", "ldda", "new_collection"]: message = ERROR_MESSAGE_UNKNOWN_SRC % src raise exceptions.RequestParameterInvalidException(message) if src == "new_collection": if "element_identifiers" not in element_identifier: message = ERROR_MESSAGE_NO_NESTED_IDENTIFIERS raise exceptions.RequestParameterInvalidException(ERROR_MESSAGE_NO_NESTED_IDENTIFIERS) if "collection_type" not in element_identifier: message = ERROR_MESSAGE_NO_COLLECTION_TYPE % element_identifier raise exceptions.RequestParameterInvalidException(message) validate_input_element_identifiers(element_identifier["element_identifiers"]) def get_hda_and_element_identifiers(dataset_collection_instance): name = dataset_collection_instance.name collection = dataset_collection_instance.collection return get_collection(collection, name=name) def get_collection(collection, name=""): names = [] hdas = [] if collection.has_subcollections: for element in collection.elements: subnames, subhdas = get_collection_elements(element.child_collection, name=f"{name}/{element.element_identifier}") names.extend(subnames) hdas.extend(subhdas) else: for element in collection.elements: names.append(f"{name}/{element.element_identifier}") hdas.append(element.dataset_instance) return names, hdas def get_collection_elements(collection, name=""): names = [] hdas = [] for element in collection.elements: full_element_name = f"{name}/{element.element_identifier}" if element.is_collection: subnames, subhdas = get_collection(element.child_collection, name=full_element_name) names.extend(subnames) hdas.extend(subhdas) else: names.append(full_element_name) hdas.append(element.dataset_instance) return names, hdas def dictify_dataset_collection_instance(dataset_collection_instance, parent, security, view="element", fuzzy_count=None): hdca_view = "element" if view in ["element", "element-reference"] else "collection" dict_value = dataset_collection_instance.to_dict(view=hdca_view) encoded_id = security.encode_id(dataset_collection_instance.id) if isinstance(parent, model.History): encoded_history_id = security.encode_id(parent.id) dict_value['url'] = web.url_for('history_content_typed', history_id=encoded_history_id, id=encoded_id, type="dataset_collection") elif isinstance(parent, model.LibraryFolder): encoded_library_id = security.encode_id(parent.library_root.id) encoded_folder_id = security.encode_id(parent.id) # TODO: Work in progress - this end-point is not right yet... dict_value['url'] = web.url_for('library_content', library_id=encoded_library_id, id=encoded_id, folder_id=encoded_folder_id) dict_value['contents_url'] = web.url_for( 'contents_dataset_collection', hdca_id=encoded_id, parent_id=security.encode_id(dataset_collection_instance.collection_id) ) if view in ["element", "element-reference"]: collection = dataset_collection_instance.collection rank_fuzzy_counts = gen_rank_fuzzy_counts(collection.collection_type, fuzzy_count) elements, rest_fuzzy_counts = get_fuzzy_count_elements(collection, rank_fuzzy_counts) if view == "element": dict_value['populated'] = collection.populated element_func = dictify_element else: element_func = dictify_element_reference dict_value['elements'] = [element_func(_, rank_fuzzy_counts=rest_fuzzy_counts) for _ in elements] security.encode_all_ids(dict_value, recursive=True) # TODO: Use Kyle's recursive formulation of this. return dict_value def dictify_element_reference(element, rank_fuzzy_counts=None, recursive=True, security=None): """Load minimal details of elements required to show outline of contents in history panel. History panel can use this reference to expand to full details if individual dataset elements are clicked. """ dictified = element.to_dict(view="element") element_object = element.element_object if element_object is not None: object_details = dict( id=element_object.id, model_class=element_object.__class__.__name__, ) if element.child_collection: object_details["collection_type"] = element_object.collection_type # Recursively yield elements for each nested collection... if recursive: child_collection = element.child_collection elements, rest_fuzzy_counts = get_fuzzy_count_elements(child_collection, rank_fuzzy_counts) object_details["elements"] = [dictify_element_reference(_, rank_fuzzy_counts=rest_fuzzy_counts, recursive=recursive) for _ in elements] object_details["element_count"] = child_collection.element_count else: object_details["state"] = element_object.state object_details["hda_ldda"] = 'hda' object_details["history_id"] = element_object.history_id dictified["object"] = object_details else: dictified["object"] = None return dictified def dictify_element(element, rank_fuzzy_counts=None): dictified = element.to_dict(view="element") element_object = element.element_object if element_object is not None: object_details = element.element_object.to_dict() if element.child_collection: child_collection = element.child_collection elements, rest_fuzzy_counts = get_fuzzy_count_elements(child_collection, rank_fuzzy_counts) # Recursively yield elements for each nested collection... object_details["elements"] = [dictify_element(_, rank_fuzzy_counts=rest_fuzzy_counts) for _ in elements] object_details["populated"] = child_collection.populated object_details["element_count"] = child_collection.element_count else: object_details = None dictified["object"] = object_details return dictified def get_fuzzy_count_elements(collection, rank_fuzzy_counts): if rank_fuzzy_counts and rank_fuzzy_counts[0]: rank_fuzzy_count = rank_fuzzy_counts[0] elements = collection.elements[0:rank_fuzzy_count] else: elements = collection.elements if rank_fuzzy_counts is not None: rest_fuzzy_counts = rank_fuzzy_counts[1:] else: rest_fuzzy_counts = None return elements, rest_fuzzy_counts def gen_rank_fuzzy_counts(collection_type, fuzzy_count=None): """Turn a global estimate on elements to return to per nested level based on collection type. This takes an arbitrary constant and generates an arbitrary constant and is quite messy. None of this should be relied on as a stable API - it is more of a general guideline to restrict within broad ranges the amount of objects returned. >>> def is_around(x, y): ... return y - 1 < x and y + 1 > y ... >>> gen_rank_fuzzy_counts("list", None) [None] >>> gen_rank_fuzzy_counts("list", 500) [500] >>> gen_rank_fuzzy_counts("paired", 500) [2] >>> gen_rank_fuzzy_counts("list:paired", None) [None, None] >>> gen_rank_fuzzy_counts("list:list", 101) # 100 would be edge case at 10 so bump to ensure 11 [11, 11] >>> ll, pl = gen_rank_fuzzy_counts("list:paired", 100) >>> pl 2 >>> is_around(ll, 50) True >>> pl, ll = gen_rank_fuzzy_counts("paired:list", 100) >>> pl 2 >>> is_around(ll, 50) True >>> gen_rank_fuzzy_counts("list:list:list", 1001) [11, 11, 11] >>> l1l, l2l, l3l, pl = gen_rank_fuzzy_counts("list:list:list:paired", 2000) >>> pl 2 >>> is_around(10, l1l) True >>> gen_rank_fuzzy_counts("list:list:list", 1) [1, 1, 1] >>> gen_rank_fuzzy_counts("list:list:list", 2) [2, 2, 2] >>> gen_rank_fuzzy_counts("paired:paired", 400) [2, 2] >>> gen_rank_fuzzy_counts("paired:paired", 5) [2, 2] >>> gen_rank_fuzzy_counts("paired:paired", 3) [2, 2] >>> gen_rank_fuzzy_counts("paired:paired", 1) [1, 1] >>> gen_rank_fuzzy_counts("paired:paired", 2) [2, 2] """ rank_collection_types = collection_type.split(":") if fuzzy_count is None: return [None for rt in rank_collection_types] else: # This is a list... paired_count = sum(1 if rt == "paired" else 0 for rt in rank_collection_types) list_count = len(rank_collection_types) - paired_count paired_fuzzy_count_mult = 1 if paired_count == 0 else 2 << (paired_count - 1) list_fuzzy_count_mult = math.floor((fuzzy_count * 1.0) / paired_fuzzy_count_mult) list_rank_fuzzy_count = int(math.floor(math.pow(list_fuzzy_count_mult, 1.0 / list_count)) + 1) if list_count > 0 else 1.0 pair_rank_fuzzy_count = 2 if list_rank_fuzzy_count > fuzzy_count: list_rank_fuzzy_count = fuzzy_count if pair_rank_fuzzy_count > fuzzy_count: pair_rank_fuzzy_count = fuzzy_count rank_fuzzy_counts = [pair_rank_fuzzy_count if rt == "paired" else list_rank_fuzzy_count for rt in rank_collection_types] return rank_fuzzy_counts __all__ = ('api_payload_to_create_params', 'dictify_dataset_collection_instance')
43.409253
151
0.704706
3d1407cb5e16c3b69f2e4425efcafbb15c473247
6,025
py
Python
engine.py
PrismaH/tetrisRL
5678751dde5aabcd4518c68103bbec9ef72306a7
[ "MIT" ]
null
null
null
engine.py
PrismaH/tetrisRL
5678751dde5aabcd4518c68103bbec9ef72306a7
[ "MIT" ]
null
null
null
engine.py
PrismaH/tetrisRL
5678751dde5aabcd4518c68103bbec9ef72306a7
[ "MIT" ]
null
null
null
#from __future__ import print_function import numpy as np import random shapes = { 'T': [(0, 0), (-1, 0), (1, 0), (0, -1)], 'J': [(0, 0), (-1, 0), (0, -1), (0, -2)], 'L': [(0, 0), (1, 0), (0, -1), (0, -2)], 'Z': [(0, 0), (-1, 0), (0, -1), (1, -1)], 'S': [(0, 0), (-1, -1), (0, -1), (1, 0)], 'I': [(0, 0), (0, -1), (0, -2), (0, -3)], 'O': [(0, 0), (0, -1), (-1, 0), (-1, -1)], } shape_names = ['T', 'J', 'L', 'Z', 'S', 'I', 'O'] def rotated(shape, cclk=False): if cclk: return [(-j, i) for i, j in shape] else: return [(j, -i) for i, j in shape] def is_occupied(shape, anchor, board): for i, j in shape: x, y = anchor[0] + i, anchor[1] + j if y < 0: continue if x < 0 or x >= board.shape[0] or y >= board.shape[1] or board[x, y]: return True return False def left(shape, anchor, board): new_anchor = (anchor[0] - 1, anchor[1]) return (shape, anchor) if is_occupied(shape, new_anchor, board) else (shape, new_anchor) def right(shape, anchor, board): new_anchor = (anchor[0] + 1, anchor[1]) return (shape, anchor) if is_occupied(shape, new_anchor, board) else (shape, new_anchor) def soft_drop(shape, anchor, board): new_anchor = (anchor[0], anchor[1] + 1) return (shape, anchor) if is_occupied(shape, new_anchor, board) else (shape, new_anchor) def hard_drop(shape, anchor, board): while True: _, anchor_new = soft_drop(shape, anchor, board) if anchor_new == anchor: return shape, anchor_new anchor = anchor_new def rotate_left(shape, anchor, board): new_shape = rotated(shape, cclk=False) return (shape, anchor) if is_occupied(new_shape, anchor, board) else (new_shape, anchor) def rotate_right(shape, anchor, board): new_shape = rotated(shape, cclk=True) return (shape, anchor) if is_occupied(new_shape, anchor, board) else (new_shape, anchor) def idle(shape, anchor, board): return (shape, anchor) class TetrisEngine: def __init__(self, width, height): self.width = width self.height = height self.board = np.zeros(shape=(width, height), dtype=np.float) # actions are triggered by letters self.value_action_map = { 0: left, 1: right, 2: hard_drop, 3: soft_drop, 4: rotate_left, 5: rotate_right, 6: idle, } self.action_value_map = dict([(j, i) for i, j in self.value_action_map.items()]) self.nb_actions = len(self.value_action_map) # for running the engine self.time = -1 self.score = -1 self.anchor = None self.shape = None self.n_deaths = 0 # used for generating shapes self._shape_counts = [0] * len(shapes) # clear after initializing self.clear() def _choose_shape(self): maxm = max(self._shape_counts) m = [5 + maxm - x for x in self._shape_counts] r = random.randint(1, sum(m)) for i, n in enumerate(m): r -= n if r <= 0: self._shape_counts[i] += 1 return shapes[shape_names[i]] def _new_piece(self): # Place randomly on x-axis with 2 tiles padding #x = int((self.width/2+1) * np.random.rand(1,1)[0,0]) + 2 self.anchor = (self.width / 2, 0) #self.anchor = (x, 0) self.shape = self._choose_shape() def _has_dropped(self): return is_occupied(self.shape, (self.anchor[0], self.anchor[1] + 1), self.board) def _clear_lines(self): can_clear = [np.all(self.board[:, i]) for i in range(self.height)] new_board = np.zeros_like(self.board) j = self.height - 1 for i in range(self.height - 1, -1, -1): if not can_clear[i]: new_board[:, j] = self.board[:, i] j -= 1 self.score += sum(can_clear) self.board = new_board return sum(can_clear) def valid_action_count(self): valid_action_sum = 0 for value, fn in self.value_action_map.items(): # If they're equal, it is not a valid action if fn(self.shape, self.anchor, self.board) != (self.shape, self.anchor): valid_action_sum += 1 return valid_action_sum def step(self, action): self.anchor = (int(self.anchor[0]), int(self.anchor[1])) self.shape, self.anchor = self.value_action_map[action.item()](self.shape, self.anchor, self.board) # Drop each step self.shape, self.anchor = soft_drop(self.shape, self.anchor, self.board) # Update time and reward self.time += 1 reward = self.valid_action_count() #reward = 1 done = False if self._has_dropped(): self._set_piece(True) reward += 10 * self._clear_lines() if np.any(self.board[:, 0]): self.clear() self.n_deaths += 1 done = True reward = -10 else: self._new_piece() self._set_piece(True) state = np.copy(self.board) self._set_piece(False) return state, reward, done def clear(self): self.time = 0 self.score = 0 self._new_piece() self.board = np.zeros_like(self.board) return self.board def _set_piece(self, on=False): for i, j in self.shape: x, y = i + self.anchor[0], j + self.anchor[1] if x < self.width and x >= 0 and y < self.height and y >= 0: self.board[int(self.anchor[0] + i), int(self.anchor[1] + j)] = on def __repr__(self): self._set_piece(True) s = 'o' + '-' * self.width + 'o\n' s += '\n'.join(['|' + ''.join(['X' if j else ' ' for j in i]) + '|' for i in self.board.T]) s += '\no' + '-' * self.width + 'o' self._set_piece(False) return s
30.897436
107
0.542241
73797e7dd9f15de84a80928ee26101c3637e2381
5,796
py
Python
ginga/cairow/ImageViewCanvasTypesCairo.py
sosey/ginga
cbcd6b88f58a8327d8dfb3cde4a50df68b184974
[ "BSD-3-Clause" ]
null
null
null
ginga/cairow/ImageViewCanvasTypesCairo.py
sosey/ginga
cbcd6b88f58a8327d8dfb3cde4a50df68b184974
[ "BSD-3-Clause" ]
null
null
null
ginga/cairow/ImageViewCanvasTypesCairo.py
sosey/ginga
cbcd6b88f58a8327d8dfb3cde4a50df68b184974
[ "BSD-3-Clause" ]
null
null
null
# # ImageViewCanvasTypesCairo.py -- drawing classes for ImageViewCanvas widget # # Eric Jeschke (eric@naoj.org) # # Copyright (c) Eric R. Jeschke. All rights reserved. # This is open-source software licensed under a BSD license. # Please see the file LICENSE.txt for details. import math import cairo from ginga import colors # TODO: this line is for backward compatibility with files importing # this module--to be removed from ginga.canvas.CanvasObject import * class RenderContext(object): def __init__(self, viewer): self.viewer = viewer self.cr = viewer.get_offscreen_context() self.fill = False self.fill_color = None self.fill_alpha = 1.0 def __get_color(self, color, alpha): if isinstance(color, str): r, g, b = colors.lookup_color(color) elif isinstance(color, tuple): # color is assumed to be a 3-tuple of RGB values as floats # between 0 and 1 r, g, b = color else: r, g, b = 1.0, 1.0, 1.0 return (r, g, b, alpha) def _set_color(self, color, alpha=1.0): r, g, b, a = self.__get_color(color, alpha) self.cr.set_source_rgba(r, g, b, a) def _reset_path(self): self.cr.new_path() def _draw_fill(self): if self.fill: self._set_color(self.fill_color, alpha=self.fill_alpha) self.cr.fill() def set_line_from_shape(self, shape): alpha = getattr(shape, 'alpha', 1.0) self._set_color(shape.color, alpha=alpha) linewidth = getattr(shape, 'linewidth', 1) self.cr.set_line_width(linewidth) if hasattr(shape, 'linestyle'): if shape.linestyle == 'dash': self.cr.set_dash([ 3.0, 4.0, 6.0, 4.0], 5.0) def set_fill_from_shape(self, shape): self.fill = getattr(shape, 'fill', False) if self.fill: color = getattr(shape, 'fillcolor', None) if color is None: color = shape.color self.fill_color = color alpha = getattr(shape, 'alpha', 1.0) self.fill_alpha = getattr(shape, 'fillalpha', alpha) def set_font_from_shape(self, shape): if hasattr(shape, 'font'): if hasattr(shape, 'fontsize') and shape.fontsize is not None: fontsize = shape.fontsize else: fontsize = shape.scale_font(self.viewer) self.cr.select_font_face(shape.font) self.cr.set_font_size(fontsize) def initialize_from_shape(self, shape, line=True, fill=True, font=True): if line: self.set_line_from_shape(shape) if fill: self.set_fill_from_shape(shape) if font: self.set_font_from_shape(shape) def set_line(self, color, alpha=1.0, linewidth=1, style='solid'): self._set_color(color, alpha=alpha) self.cr.set_line_width(linewidth) if style == 'dash': self.cr.set_dash([ 3.0, 4.0, 6.0, 4.0], 5.0) def set_fill(self, color, alpha=1.0): if color is None: self.fill = False else: self.fill = True self.fill_color = color self.fill_alpha = alpha def set_font(self, fontname, fontsize): self.cr.select_font_face(fontname) self.cr.set_font_size(fontsize) def text_extents(self, text): a, b, wd, ht, i, j = self.cr.text_extents(text) return wd, ht ##### DRAWING OPERATIONS ##### def draw_text(self, cx, cy, text): self.cr.move_to(cx, cy) self.cr.show_text(text) self.cr.new_path() def draw_polygon(self, cpoints): (cx0, cy0) = cpoints[-1] self.cr.move_to(cx0, cy0) for cx, cy in cpoints: self.cr.line_to(cx, cy) #cr.move_to(cx, cy) self.cr.close_path() self.cr.stroke_preserve() self._draw_fill() self.cr.new_path() def draw_circle(self, cx, cy, cradius): self.cr.arc(cx, cy, cradius, 0, 2*math.pi) self.cr.stroke_preserve() self._draw_fill() self.cr.new_path() def draw_bezier_curve(self, cp): self.cr.move_to(cp[0][0], cp[0][1]) self.cr.curve_to(cp[1][0], cp[1][1], cp[2][0], cp[2][1], cp[3][0], cp[3][1]) self.cr.stroke() self.cr.new_path() def draw_ellipse_bezier(self, cp): # draw 4 bezier curves to make the ellipse self.cr.move_to(cp[0][0], cp[0][1]) self.cr.curve_to(cp[1][0], cp[1][1], cp[2][0], cp[2][1], cp[3][0], cp[3][1]) self.cr.curve_to(cp[4][0], cp[4][1], cp[5][0], cp[5][1], cp[6][0], cp[6][1]) self.cr.curve_to(cp[7][0], cp[7][1], cp[8][0], cp[8][1], cp[9][0], cp[9][1]) self.cr.curve_to(cp[10][0], cp[10][1], cp[11][0], cp[11][1], cp[12][0], cp[12][1]) self.cr.stroke_preserve() self._draw_fill() self.cr.new_path() def draw_line(self, cx1, cy1, cx2, cy2): self.cr.set_line_cap(cairo.LINE_CAP_ROUND) self.cr.move_to(cx1, cy1) self.cr.line_to(cx2, cy2) self.cr.stroke() self.cr.new_path() def draw_path(self, cpoints): (cx0, cy0) = cpoints[0] self.cr.move_to(cx0, cy0) for cx, cy in cpoints[1:]: self.cr.line_to(cx, cy) self.cr.stroke() self.cr.new_path() class CanvasRenderer(object): def __init__(self, viewer): self.viewer = viewer def setup_cr(self, shape): cr = RenderContext(self.viewer) cr.initialize_from_shape(shape, font=False) return cr def get_dimensions(self, shape): cr = self.setup_cr(shape) cr.set_font_from_shape(shape) return cr.text_extents(shape.text) #END
29.876289
90
0.578675
e0cc7a825508ee86d377ba87a1aef719e5628aba
22,147
py
Python
sdk/network/azure-mgmt-network/azure/mgmt/network/v2017_06_01/aio/operations/_express_route_circuit_authorizations_operations.py
praveenkuttappan/azure-sdk-for-python
4b79413667b7539750a6c7dde15737013a3d4bd5
[ "MIT" ]
2,728
2015-01-09T10:19:32.000Z
2022-03-31T14:50:33.000Z
sdk/network/azure-mgmt-network/azure/mgmt/network/v2017_06_01/aio/operations/_express_route_circuit_authorizations_operations.py
v-xuto/azure-sdk-for-python
9c6296d22094c5ede410bc83749e8df8694ccacc
[ "MIT" ]
17,773
2015-01-05T15:57:17.000Z
2022-03-31T23:50:25.000Z
sdk/network/azure-mgmt-network/azure/mgmt/network/v2017_06_01/aio/operations/_express_route_circuit_authorizations_operations.py
v-xuto/azure-sdk-for-python
9c6296d22094c5ede410bc83749e8df8694ccacc
[ "MIT" ]
1,916
2015-01-19T05:05:41.000Z
2022-03-31T19:36:44.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar, Union import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling from ... import models as _models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class ExpressRouteCircuitAuthorizationsOperations: """ExpressRouteCircuitAuthorizationsOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2017_06_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config async def _delete_initial( self, resource_group_name: str, circuit_name: str, authorization_name: str, **kwargs: Any ) -> None: cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2017-06-01" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'circuitName': self._serialize.url("circuit_name", circuit_name, 'str'), 'authorizationName': self._serialize.url("authorization_name", authorization_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/expressRouteCircuits/{circuitName}/authorizations/{authorizationName}'} # type: ignore async def begin_delete( self, resource_group_name: str, circuit_name: str, authorization_name: str, **kwargs: Any ) -> AsyncLROPoller[None]: """Deletes the specified authorization from the specified express route circuit. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param circuit_name: The name of the express route circuit. :type circuit_name: str :param authorization_name: The name of the authorization. :type authorization_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._delete_initial( resource_group_name=resource_group_name, circuit_name=circuit_name, authorization_name=authorization_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'circuitName': self._serialize.url("circuit_name", circuit_name, 'str'), 'authorizationName': self._serialize.url("authorization_name", authorization_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/expressRouteCircuits/{circuitName}/authorizations/{authorizationName}'} # type: ignore async def get( self, resource_group_name: str, circuit_name: str, authorization_name: str, **kwargs: Any ) -> "_models.ExpressRouteCircuitAuthorization": """Gets the specified authorization from the specified express route circuit. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param circuit_name: The name of the express route circuit. :type circuit_name: str :param authorization_name: The name of the authorization. :type authorization_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ExpressRouteCircuitAuthorization, or the result of cls(response) :rtype: ~azure.mgmt.network.v2017_06_01.models.ExpressRouteCircuitAuthorization :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ExpressRouteCircuitAuthorization"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2017-06-01" accept = "application/json, text/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'circuitName': self._serialize.url("circuit_name", circuit_name, 'str'), 'authorizationName': self._serialize.url("authorization_name", authorization_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('ExpressRouteCircuitAuthorization', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/expressRouteCircuits/{circuitName}/authorizations/{authorizationName}'} # type: ignore async def _create_or_update_initial( self, resource_group_name: str, circuit_name: str, authorization_name: str, authorization_parameters: "_models.ExpressRouteCircuitAuthorization", **kwargs: Any ) -> "_models.ExpressRouteCircuitAuthorization": cls = kwargs.pop('cls', None) # type: ClsType["_models.ExpressRouteCircuitAuthorization"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2017-06-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json, text/json" # Construct URL url = self._create_or_update_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'circuitName': self._serialize.url("circuit_name", circuit_name, 'str'), 'authorizationName': self._serialize.url("authorization_name", authorization_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(authorization_parameters, 'ExpressRouteCircuitAuthorization') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('ExpressRouteCircuitAuthorization', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('ExpressRouteCircuitAuthorization', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_or_update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/expressRouteCircuits/{circuitName}/authorizations/{authorizationName}'} # type: ignore async def begin_create_or_update( self, resource_group_name: str, circuit_name: str, authorization_name: str, authorization_parameters: "_models.ExpressRouteCircuitAuthorization", **kwargs: Any ) -> AsyncLROPoller["_models.ExpressRouteCircuitAuthorization"]: """Creates or updates an authorization in the specified express route circuit. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param circuit_name: The name of the express route circuit. :type circuit_name: str :param authorization_name: The name of the authorization. :type authorization_name: str :param authorization_parameters: Parameters supplied to the create or update express route circuit authorization operation. :type authorization_parameters: ~azure.mgmt.network.v2017_06_01.models.ExpressRouteCircuitAuthorization :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either ExpressRouteCircuitAuthorization or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.network.v2017_06_01.models.ExpressRouteCircuitAuthorization] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.ExpressRouteCircuitAuthorization"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._create_or_update_initial( resource_group_name=resource_group_name, circuit_name=circuit_name, authorization_name=authorization_name, authorization_parameters=authorization_parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('ExpressRouteCircuitAuthorization', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'circuitName': self._serialize.url("circuit_name", circuit_name, 'str'), 'authorizationName': self._serialize.url("authorization_name", authorization_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/expressRouteCircuits/{circuitName}/authorizations/{authorizationName}'} # type: ignore def list( self, resource_group_name: str, circuit_name: str, **kwargs: Any ) -> AsyncIterable["_models.AuthorizationListResult"]: """Gets all authorizations in an express route circuit. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param circuit_name: The name of the circuit. :type circuit_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either AuthorizationListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2017_06_01.models.AuthorizationListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.AuthorizationListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2017-06-01" accept = "application/json, text/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'circuitName': self._serialize.url("circuit_name", circuit_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('AuthorizationListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/expressRouteCircuits/{circuitName}/authorizations'} # type: ignore
51.504651
232
0.680453
a1e6771d743295873aabe4bcce51ec0cae5efe05
1,885
py
Python
AB/pythonfunctions/search/lambda_function.py
PatrickJD/AWS
c7f976c0c5795ac43803ac201dbb57d584308bb0
[ "MIT" ]
null
null
null
AB/pythonfunctions/search/lambda_function.py
PatrickJD/AWS
c7f976c0c5795ac43803ac201dbb57d584308bb0
[ "MIT" ]
null
null
null
AB/pythonfunctions/search/lambda_function.py
PatrickJD/AWS
c7f976c0c5795ac43803ac201dbb57d584308bb0
[ "MIT" ]
null
null
null
import json import requests import boto3 import os from elasticsearch import Elasticsearch, RequestsHttpConnection from requests_aws4auth import AWS4Auth url = os.environ.get("SEARCH_ENDPOINT", None) # Process DynamoDB Stream records and insert the object in ElasticSearch # Use the Table name as index and doc_type name # Force index refresh upon all actions for close to realtime reindexing # Use IAM Role for authentication # Properly unmarshal DynamoDB JSON types. Binary NOT tested. def lambda_handler(event, context): session = boto3.session.Session() credentials = session.get_credentials() # Get proper credentials for ES auth awsauth = AWS4Auth(credentials.access_key, credentials.secret_key, session.region_name, 'es', session_token=credentials.token) # Put the user query into the query DSL for more accurate search results. # Note that certain fields are boosted (^). query = { "size": 25, "query": { "query_string": { "query": "*" + event['queryStringParameters']['q'] + "*", "fields": ["DetectedObjects.Labels.Name", "DetectedFaces.FaceDetails.Gender.Value", "DetectedText.TextDetections.DetectedText"] } } } # ES 6.x requires an explicit Content-Type header headers = { "Content-Type": "application/json" } # Make the signed HTTP request r = requests.get(url, auth=awsauth, headers=headers, data=json.dumps(query)) print(r.text) # Create the response and add some extra content to support CORS response = { "statusCode": 200, "headers": { "Access-Control-Allow-Origin": '*' }, "isBase64Encoded": False } # Add the search results to the response response['body'] = r.text return response
32.5
143
0.65252
11986e39937d7ac1fa7d35246cc3dfeeab01e4b1
6,554
py
Python
demo.py
Kazuhito00/iris-detection-using-py-mediapipe
85ead970598017967937d3f5d7ffe6238aa3fe9b
[ "Apache-2.0" ]
26
2021-02-06T09:47:29.000Z
2022-02-22T07:26:16.000Z
demo.py
Kazuhito00/iris-detection-using-py-mediapipe
85ead970598017967937d3f5d7ffe6238aa3fe9b
[ "Apache-2.0" ]
1
2021-12-09T12:11:46.000Z
2021-12-09T12:23:38.000Z
demo.py
Kazuhito00/iris-detection-using-py-mediapipe
85ead970598017967937d3f5d7ffe6238aa3fe9b
[ "Apache-2.0" ]
12
2021-04-02T02:41:45.000Z
2021-12-06T05:25:25.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- import copy import argparse import cv2 as cv import numpy as np from utils import CvFpsCalc from face_mesh.face_mesh import FaceMesh from iris_landmark.iris_landmark import IrisLandmark def get_args(): parser = argparse.ArgumentParser() parser.add_argument("--device", type=int, default=0) parser.add_argument("--width", help='cap width', type=int, default=960) parser.add_argument("--height", help='cap height', type=int, default=540) parser.add_argument("--max_num_faces", type=int, default=1) parser.add_argument("--min_detection_confidence", help='min_detection_confidence', type=float, default=0.7) parser.add_argument("--min_tracking_confidence", help='min_tracking_confidence', type=int, default=0.7) args = parser.parse_args() return args def main(): # 引数 ##################################################################### args = get_args() cap_device = args.device cap_width = args.width cap_height = args.height max_num_faces = args.max_num_faces min_detection_confidence = args.min_detection_confidence min_tracking_confidence = args.min_tracking_confidence # カメラ準備 ############################################################### cap = cv.VideoCapture(cap_device) cap.set(cv.CAP_PROP_FRAME_WIDTH, cap_width) cap.set(cv.CAP_PROP_FRAME_HEIGHT, cap_height) # モデルロード ############################################################# face_mesh = FaceMesh( max_num_faces, min_detection_confidence, min_tracking_confidence, ) iris_detector = IrisLandmark() # FPS計測モジュール ######################################################## cvFpsCalc = CvFpsCalc(buffer_len=10) while True: display_fps = cvFpsCalc.get() # カメラキャプチャ ##################################################### ret, image = cap.read() if not ret: break image = cv.flip(image, 1) # ミラー表示 debug_image = copy.deepcopy(image) # 検出実施 ############################################################# # Face Mesh検出 face_results = face_mesh(image) for face_result in face_results: # 目周辺のバウンディングボックス計算 left_eye, right_eye = face_mesh.calc_around_eye_bbox(face_result) # 虹彩検出 left_iris, right_iris = detect_iris(image, iris_detector, left_eye, right_eye) # 虹彩の外接円を計算 left_center, left_radius = calc_min_enc_losingCircle(left_iris) right_center, right_radius = calc_min_enc_losingCircle(right_iris) # デバッグ描画 debug_image = draw_debug_image( debug_image, left_iris, right_iris, left_center, left_radius, right_center, right_radius, ) cv.putText(debug_image, "FPS:" + str(display_fps), (10, 30), cv.FONT_HERSHEY_SIMPLEX, 1.0, (0, 255, 0), 2, cv.LINE_AA) # キー処理(ESC:終了) ################################################# key = cv.waitKey(1) if key == 27: # ESC break # 画面反映 ############################################################# cv.imshow('Iris(tflite) Demo', debug_image) cap.release() cv.destroyAllWindows() return def detect_iris(image, iris_detector, left_eye, right_eye): image_width, image_height = image.shape[1], image.shape[0] input_shape = iris_detector.get_input_shape() # 左目 # 目の周辺の画像を切り抜き left_eye_x1 = max(left_eye[0], 0) left_eye_y1 = max(left_eye[1], 0) left_eye_x2 = min(left_eye[2], image_width) left_eye_y2 = min(left_eye[3], image_height) left_eye_image = copy.deepcopy(image[left_eye_y1:left_eye_y2, left_eye_x1:left_eye_x2]) # 虹彩検出 eye_contour, iris = iris_detector(left_eye_image) # 座標を相対座標から絶対座標に変換 left_iris = calc_iris_point(left_eye, eye_contour, iris, input_shape) # 右目 # 目の周辺の画像を切り抜き right_eye_x1 = max(right_eye[0], 0) right_eye_y1 = max(right_eye[1], 0) right_eye_x2 = min(right_eye[2], image_width) right_eye_y2 = min(right_eye[3], image_height) right_eye_image = copy.deepcopy(image[right_eye_y1:right_eye_y2, right_eye_x1:right_eye_x2]) # 虹彩検出 eye_contour, iris = iris_detector(right_eye_image) # 座標を相対座標から絶対座標に変換 right_iris = calc_iris_point(right_eye, eye_contour, iris, input_shape) return left_iris, right_iris def calc_iris_point(eye_bbox, eye_contour, iris, input_shape): iris_list = [] for index in range(5): point_x = int(iris[index * 3] * ((eye_bbox[2] - eye_bbox[0]) / input_shape[0])) point_y = int(iris[index * 3 + 1] * ((eye_bbox[3] - eye_bbox[1]) / input_shape[1])) point_x += eye_bbox[0] point_y += eye_bbox[1] iris_list.append((point_x, point_y)) return iris_list def calc_min_enc_losingCircle(landmark_list): center, radius = cv.minEnclosingCircle(np.array(landmark_list)) center = (int(center[0]), int(center[1])) radius = int(radius) return center, radius def draw_debug_image( debug_image, left_iris, right_iris, left_center, left_radius, right_center, right_radius, ): # 虹彩:外接円 cv.circle(debug_image, left_center, left_radius, (0, 255, 0), 2) cv.circle(debug_image, right_center, right_radius, (0, 255, 0), 2) # 虹彩:ランドマーク for point in left_iris: cv.circle(debug_image, (point[0], point[1]), 1, (0, 0, 255), 2) for point in right_iris: cv.circle(debug_image, (point[0], point[1]), 1, (0, 0, 255), 2) # 虹彩:半径 cv.putText(debug_image, 'r:' + str(left_radius) + 'px', (left_center[0] + int(left_radius * 1.5), left_center[1] + int(left_radius * 0.5)), cv.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 1) cv.putText(debug_image, 'r:' + str(right_radius) + 'px', (right_center[0] + int(right_radius * 1.5), right_center[1] + int(right_radius * 0.5)), cv.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 1) return debug_image if __name__ == '__main__': main()
31.661836
79
0.561489
c3f7e6570cfddccaa1b153a44c093eedd8a3627c
7,151
py
Python
user_interface/test/test_dakota_class.py
ukaea/ALC_UQ
a2747c94036b04f1279abb5683c6a225a878aea3
[ "Apache-2.0" ]
2
2021-11-24T10:43:50.000Z
2021-12-07T20:02:38.000Z
user_interface/test/test_dakota_class.py
ukaea/ALC_UQ
a2747c94036b04f1279abb5683c6a225a878aea3
[ "Apache-2.0" ]
null
null
null
user_interface/test/test_dakota_class.py
ukaea/ALC_UQ
a2747c94036b04f1279abb5683c6a225a878aea3
[ "Apache-2.0" ]
null
null
null
from dakota_class import DakotaClass from exceptions import * import unittest import xarray as xr import numpy as np import os class TestDakotaClass(unittest.TestCase): # Try and create an instance of the dakota class def test_create_dakota_template(self): my_dakota = DakotaClass() self.assertEqual( my_dakota.dakota.get_attribute('evaluation_concurrency'), 1 ) self.assertEqual( my_dakota.dakota.get_attribute('response_functions'), 1 ) def test_add_run_settings(self): attrs = { 'sample_type':'sampling', 'seed':54 } new_settings = xr.Dataset(attrs=attrs) my_dakota = DakotaClass() my_dakota.update_settings(new_settings) self.assertEqual( my_dakota.dakota.get_attribute('sample_type').strip(), 'sampling' ) self.assertEqual( my_dakota.dakota.get_attribute('seed'), 54 ) def test_add_common_variable(self): attrs = { 'type':'normal' } means = [ 1.0,2.0,3.0,4.0 ] sds = [ 0.1,0.2,0.3,0.4 ] means = xr.DataArray( data=means, dims='T' ) sds = xr.DataArray( data=sds, dims='T' ) test_var = xr.Dataset( {'means':means, 'std_deviations':sds }, attrs=attrs ) my_dakota = DakotaClass() my_dakota.add_variable('test_var', test_var) self.assertTrue( np.array_equal( my_dakota.dakota.get_attribute('means'), means ) ) self.assertTrue( np.array_equal( my_dakota.dakota.get_attribute('std_deviations'), sds ) ) def test_add_lognormal_variable(self): attrs = { 'type':'lognormal' } means = [ 1.0,2.0,3.0,4.0 ] sds = [ 0.1,0.2,0.3,0.4 ] means = xr.DataArray( data=means, dims='T' ) sds = xr.DataArray( data=sds, dims='T' ) test_var = xr.Dataset( {'means':means, 'std_deviations':sds }, attrs=attrs ) my_dakota = DakotaClass() my_dakota.add_variable('test_var', test_var) self.assertTrue( np.array_equal( my_dakota.dakota.get_attribute('means'), means ) ) self.assertTrue( np.array_equal( my_dakota.dakota.get_attribute('std_deviations'), sds ) ) def test_add_scan_variable(self): attrs = { 'type':'scan' } lower = [ 0.1,0.2,0.3,0.4 ] upper = [ 1.0,2.0,3.0,4.0 ] partitions = [ 2,3,4,5 ] lower = xr.DataArray( data=lower, dims='T' ) upper = xr.DataArray( data=upper, dims='T' ) partitions = xr.DataArray( data=partitions, dims='T' ) test_var = xr.Dataset( {'lower_bounds':lower, 'upper_bounds':upper, 'partitions':partitions }, attrs=attrs ) my_dakota = DakotaClass() my_dakota.add_variable('test_var', test_var) self.assertTrue( np.array_equal( my_dakota.dakota.get_attribute('lower_bounds'), lower ) ) self.assertTrue( np.array_equal( my_dakota.dakota.get_attribute('upper_bounds'), upper ) ) def test_add_correlated_scan_variable(self): attrs = { 'type':'scan_correlated' } lower = [ 0.1,0.2,0.3,0.4 ] upper = [ 1.0,2.0,3.0,4.0 ] partitions = [ 4,4,4,4 ] lower = xr.DataArray( data=lower, dims='T' ) upper = xr.DataArray( data=upper, dims='T' ) partitions = xr.DataArray( data=partitions, dims='T' ) test_var = xr.Dataset( {'lower_bounds':lower, 'upper_bounds':upper, 'partitions':partitions }, attrs=attrs ) my_dakota = DakotaClass() my_dakota.add_variable('test_var', test_var) self.assertTrue( np.array_equal( my_dakota.dakota.get_attribute('lower_bounds'), [0.0] ) ) self.assertTrue( np.array_equal( my_dakota.dakota.get_attribute('upper_bounds'), [1.0] ) ) def test_write_dakote_file(self): my_dakota = DakotaClass() my_dakota.write_input_file('test_dakota.dat') self.assertTrue( os.path.isfile('test_dakota.dat') ) os.remove('test_dakota.dat') ###################################################### # FAILURE TESTS ###################################################### def test_add_variable_not_dataset(self): means = [ 1.0,2.0,3.0,4.0 ] sds = [ 0.1,0.2,0.3,0.4 ] test_var = {'means':means, 'std_deviations':sds } my_dakota = DakotaClass() with self.assertRaises(DatasetError): my_dakota.add_variable('test_var', test_var) def test_add_variable_with_no_type(self): means = [ 1.0,2.0,3.0,4.0 ] sds = [ 0.1,0.2,0.3,0.4 ] means = xr.DataArray( data=means, dims='T' ) sds = xr.DataArray( data=sds, dims='T' ) test_var = xr.Dataset( {'means':means, 'std_deviations':sds } ) my_dakota = DakotaClass() with self.assertRaises(DatasetError): my_dakota.add_variable('test_var', test_var) def test_add_variable_unknown_type(self): attrs = { 'type':'unknown' } means = [ 1.0,2.0,3.0,4.0 ] sds = [ 0.1,0.2,0.3,0.4 ] test_var = xr.Dataset( {'means':means, 'std_deviations':sds }, attrs=attrs ) my_dakota = DakotaClass() with self.assertRaises(DatasetError): my_dakota.add_variable('test_var', test_var) def test_add_variable_missing_data(self): attrs = { 'type':'normal' } means = [ 1.0,2.0,3.0,4.0 ] test_var = xr.Dataset( {'means':means}, attrs=attrs ) my_dakota = DakotaClass() with self.assertRaises(DatasetError): my_dakota.add_variable('test_var', test_var) def test_add_variable_incompatible_data(self): attrs = { 'type':'normal' } means = [ 1.0,2.0,3.0,4.0 ] sds = [ 0.1,0.2,0.3,0.4,0.5 ] test_var = xr.Dataset( {'means':means, 'std_deviations':sds}, attrs=attrs ) my_dakota = DakotaClass() with self.assertRaises(DatasetError): my_dakota.add_variable('test_var', test_var) def test_add_variable_with_nans(self): attrs = { 'type':'normal' } means = [ 1.0,2.0,np.nan,4.0 ] sds = [ 0.1,0.2,0.3,0.4 ] test_var = xr.Dataset( {'means':means, 'std_deviations':sds}, attrs=attrs ) my_dakota = DakotaClass() with self.assertRaises(DatasetError): my_dakota.add_variable('test_var', test_var) def test_add_correlated_scan_variable_with_inconsistent_partitions(self): attrs = { 'type':'scan_correlated' } lower = [ 0.1,0.2,0.3,0.4 ] upper = [ 1.0,2.0,3.0,4.0 ] partitions = [ 4,5,4,4 ] lower = xr.DataArray( data=lower, dims='T' ) upper = xr.DataArray( data=upper, dims='T' ) partitions = xr.DataArray( data=partitions, dims='T' ) test_var = xr.Dataset( {'lower_bounds':lower, 'upper_bounds':upper, 'partitions':partitions }, attrs=attrs ) my_dakota = DakotaClass() with self.assertRaises(DatasetError): my_dakota.add_variable('test_var', test_var)
34.379808
116
0.583974
4d00cd3d2aba5f017b6beb2e85eb69d78bdeea1e
1,835
py
Python
api/dependencies.py
Ju99ernaut/mailer
9ae97bcc1979a022a22f92631946754e8e77e5a8
[ "MIT" ]
null
null
null
api/dependencies.py
Ju99ernaut/mailer
9ae97bcc1979a022a22f92631946754e8e77e5a8
[ "MIT" ]
null
null
null
api/dependencies.py
Ju99ernaut/mailer
9ae97bcc1979a022a22f92631946754e8e77e5a8
[ "MIT" ]
null
null
null
import data.users as data from typing import Optional from fastapi import Depends, HTTPException, status from fastapi.security import OAuth2PasswordBearer from jose import JWTError, jwt from models import TokenData, User from constants import SECRET_KEY, ALGORITHM, ACTIVE_KEY, ROLE_KEY oauth2_scheme = OAuth2PasswordBearer(tokenUrl="auth") async def get_current_user(token: str = Depends(oauth2_scheme)): credentials_exception = HTTPException( status_code=status.HTTP_401_UNAUTHORIZED, detail="Could not validate credentials", headers={"WWW-Authenticate": "Bearer"}, ) try: payload = jwt.decode(token, SECRET_KEY, algorithms=[ALGORITHM]) username: str = payload.get("sub") if username is None: raise credentials_exception token_data = TokenData(username=username) except JWTError: raise credentials_exception user = data.get_user(username=token_data.username) if user is None: raise credentials_exception return user async def get_email(token: str = Depends(oauth2_scheme)): try: payload = jwt.decode(token, SECRET_KEY, algorithms=[ALGORITHM]) email: str = payload.get("sub") if email is None: return "expired" return email except JWTError: return "expired" async def current_user_is_active(current_user: User = Depends(get_current_user)): if not current_user[ACTIVE_KEY]: raise HTTPException( status_code=status.HTTP_400_BAD_REQUEST, detail="Not verified" ) return current_user async def current_user_is_admin(current_user: User = Depends(get_current_user)): if current_user[ROLE_KEY] != "admin": raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Not admin") return current_user
32.192982
88
0.712807
731ddc33ed519a924d5721b4dbdb9356b6d338d0
13,480
py
Python
intervalBatchLearn.py
lukinio/Continual-Learning-Benchmark
f971d98b42230f5a0a0bec3e772da2c96e1be10f
[ "MIT" ]
null
null
null
intervalBatchLearn.py
lukinio/Continual-Learning-Benchmark
f971d98b42230f5a0a0bec3e772da2c96e1be10f
[ "MIT" ]
null
null
null
intervalBatchLearn.py
lukinio/Continual-Learning-Benchmark
f971d98b42230f5a0a0bec3e772da2c96e1be10f
[ "MIT" ]
2
2021-04-11T13:53:18.000Z
2021-04-26T11:27:46.000Z
import os import sys import argparse import torch from torch.utils.data import DataLoader import numpy as np from random import shuffle from collections import OrderedDict import dataloaders.base from dataloaders.datasetGen import SplitGen, PermutedGen import agents import gc def run(args): # Prepare dataloaders train_dataset, val_dataset = dataloaders.base.__dict__[args.dataset](args.dataroot, args.train_aug) if args.n_permutation > 0: train_dataset_splits, val_dataset_splits, task_output_space = PermutedGen(train_dataset, val_dataset, args.n_permutation, remap_class=not args.no_class_remap) else: train_dataset_splits, val_dataset_splits, task_output_space = SplitGen(train_dataset, val_dataset, first_split_sz=args.first_split_size, other_split_sz=args.other_split_size, rand_split=args.rand_split, remap_class=not args.no_class_remap) task_names = sorted(list(task_output_space.keys()), key=int) if len(args.eps_val) == 1: args.eps_val = [args.eps_val[0]] * len(task_names) if len(args.eps_max) == 1: args.eps_max = [args.eps_max[0]] * len(task_names) if len(args.eps_epoch) == 1: args.eps_epoch = [args.eps_epoch[0]] * len(task_names) if len(args.kappa_epoch) == 1: args.kappa_epoch = [args.kappa_epoch[0]] * len(task_names) if len(args.kappa_min) == 1: args.kappa_min = [args.kappa_min[0]] * len(task_names) if len(args.warm_epoch) == 1: args.warm_epoch = [args.warm_epoch[0]] * len(task_names) if len(args.schedule) == 1: args.schedule = [args.schedule[0]] * len(task_names) # Prepare the Agent (model) agent_config = {'lr': args.lr, 'momentum': args.momentum, 'weight_decay': args.weight_decay, 'schedule': args.schedule, 'model_type': args.model_type, 'model_name': args.model_name, 'model_weights': args.model_weights, 'out_dim': {'All': args.force_out_dim} if args.force_out_dim > 0 else task_output_space, 'optimizer': args.optimizer, 'print_freq': args.print_freq, 'gpuid': args.gpuid, 'reg_coef': args.reg_coef, 'force_out_dim': args.force_out_dim, 'clipping': args.clipping, 'eps_per_model': args.eps_per_model, 'milestones': args.milestones, 'dataset_name': args.dataset } agent = agents.__dict__[args.agent_type].__dict__[args.agent_name](agent_config) print(agent.model) print('#parameter of model:', agent.count_parameter()) # Decide split ordering print('Task order:', task_names) if args.rand_split_order: shuffle(task_names) print('Shuffled task order:', task_names) acc_table = OrderedDict() if args.offline_training: # Non-incremental learning / offline_training / measure the upper-bound performance task_names = ['All'] train_dataset_all = torch.utils.data.ConcatDataset(train_dataset_splits.values()) val_dataset_all = torch.utils.data.ConcatDataset(val_dataset_splits.values()) train_loader = DataLoader(train_dataset_all, batch_size=args.batch_size, shuffle=True, num_workers=args.workers) val_loader = DataLoader(val_dataset_all, batch_size=args.batch_size, shuffle=False, num_workers=args.workers) agent.learn_batch(train_loader, val_loader) acc_table['All'] = {} acc_table['All']['All'] = agent.validation(val_loader) else: # Incremental learning # Feed data to agent and evaluate agent's performance for i in range(len(task_names)): train_name = task_names[i] agent.current_task = int(task_names[i]) print('======================', train_name, '=======================') train_loader = DataLoader(train_dataset_splits[train_name], batch_size=args.batch_size, shuffle=True, num_workers=args.workers) val_loader = DataLoader(val_dataset_splits[train_name], batch_size=args.batch_size, shuffle=False, num_workers=args.workers) if args.incremental_class: agent.add_valid_output_dim(task_output_space[train_name]) if args.eps_max: agent.eps_scheduler.set_end(args.eps_max[i]) agent.kappa_scheduler.end = args.kappa_min[i] iter_on_batch = len(train_loader) agent.kappa_scheduler.calc_coefficient(args.kappa_min[i]-1, args.kappa_epoch[i], iter_on_batch) agent.eps_scheduler.calc_coefficient(args.eps_val[i], args.eps_epoch[i], iter_on_batch) agent.kappa_scheduler.current, agent.eps_scheduler.current = 1, 0 if i > 0: agent.kappa_scheduler.warm_epoch(args.warm_epoch[i], iter_on_batch) if agent.multihead: agent.current_head = str(train_name) print(f"before batch eps: {agent.eps_scheduler.current}, kappa: {agent.kappa_scheduler.current}") agent.learn_batch(train_loader, val_loader) # Learn print(f"after batch eps: {agent.eps_scheduler.current}, kappa: {agent.kappa_scheduler.current}") if args.clipping: agent.save_params() agent.model.print_eps(agent.current_head) agent.model.reset_importance() # Evaluate acc_table[train_name] = OrderedDict() for j in range(i+1): val_name = task_names[j] print('validation split name:', val_name) val_data = val_dataset_splits[val_name] if not args.eval_on_train_set else train_dataset_splits[val_name] val_loader = DataLoader(val_data, batch_size=args.batch_size, shuffle=False, num_workers=args.workers) acc_table[val_name][train_name] = agent.validation(val_loader) agent.validation_with_move_weights(val_loader) # agent.tb.close() del agent gc.collect() torch.cuda.empty_cache() return acc_table, task_names def get_args(argv): # This function prepares the variables shared across demo.py parser = argparse.ArgumentParser() parser.add_argument('--gpuid', nargs="+", type=int, default=[0], help="The list of gpuid, ex:--gpuid 3 1. Negative value means cpu-only") parser.add_argument('--model_type', type=str, default='mlp', help="The type (mlp|lenet|vgg|resnet) of backbone network") parser.add_argument('--model_name', type=str, default='MLP', help="The name of actual model for the backbone") parser.add_argument('--force_out_dim', type=int, default=2, help="Set 0 to let the task decide the required output dimension") parser.add_argument('--agent_type', type=str, default='interval', help="The type (filename) of agent") parser.add_argument('--agent_name', type=str, default='IntervalNet', help="The class name of agent") parser.add_argument('--optimizer', type=str, default='SGD', help="SGD|Adam|RMSprop|amsgrad|Adadelta|Adagrad|Adamax ...") parser.add_argument('--dataroot', type=str, default='data', help="The root folder of dataset or downloaded data") parser.add_argument('--dataset', type=str, default='MNIST', help="MNIST(default)|CIFAR10|CIFAR100") parser.add_argument('--n_permutation', type=int, default=0, help="Enable permuted tests when >0") parser.add_argument('--first_split_size', type=int, default=2) parser.add_argument('--other_split_size', type=int, default=2) parser.add_argument('--no_class_remap', dest='no_class_remap', default=False, action='store_true', help="Avoid the dataset with a subset of classes doing the remapping. Ex: [2,5,6 ...] -> [0,1,2 ...]") parser.add_argument('--train_aug', dest='train_aug', default=False, action='store_true', help="Allow data augmentation during training") parser.add_argument('--rand_split', dest='rand_split', default=False, action='store_true', help="Randomize the classes in splits") parser.add_argument('--rand_split_order', dest='rand_split_order', default=False, action='store_true', help="Randomize the order of splits") parser.add_argument('--workers', type=int, default=3, help="#Thread for dataloader") parser.add_argument('--batch_size', type=int, default=100) parser.add_argument('--lr', type=float, default=0.01, help="Learning rate") parser.add_argument('--momentum', type=float, default=0) parser.add_argument('--weight_decay', type=float, default=0) parser.add_argument('--kappa_epoch', nargs="+", type=float, default=[1]) parser.add_argument('--kappa_min', nargs="+", type=float, default=[0.5]) parser.add_argument('--warm_epoch', nargs="+", type=float, default=[0]) parser.add_argument('--eps_epoch', nargs="+", type=float, default=[1]) parser.add_argument('--eps_max', nargs="+", type=float, default=[0]) parser.add_argument('--milestones', nargs="+", type=float, default=[]) parser.add_argument('--eps_val', nargs="+", type=float) parser.add_argument('--eps_per_model', dest='eps_per_model', default=False, action='store_true') parser.add_argument('--clipping', dest='clipping', default=False, action='store_true') parser.add_argument('--schedule', nargs="+", type=int, default=[2], help="The list of epoch numbers to reduce learning rate by factor of 0.1. Last number is the end epoch") parser.add_argument('--print_freq', type=float, default=100, help="Print the log at every x iteration") parser.add_argument('--model_weights', type=str, default=None, help="The path to the file for the model weights (*.pth).") parser.add_argument('--reg_coef', nargs="+", type=float, default=[0.], help="The coefficient for regularization. Larger means less plasilicity. Give a list for hyperparameter search.") parser.add_argument('--eval_on_train_set', dest='eval_on_train_set', default=False, action='store_true', help="Force the evaluation on train set") parser.add_argument('--offline_training', dest='offline_training', default=False, action='store_true', help="Non-incremental learning by make all data available in one batch. For measuring the upperbound performance.") parser.add_argument('--repeat', type=int, default=1, help="Repeat the experiment N times") parser.add_argument('--incremental_class', dest='incremental_class', default=False, action='store_true', help="The number of output node in the single-headed model increases along with new categories.") args = parser.parse_args(argv) return args if __name__ == '__main__': args = get_args(sys.argv[1:]) os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpuid[0]) if not os.path.exists('outputs'): os.mkdir('outputs') reg_coef_list = args.reg_coef avg_final_acc = {} # The for loops over hyper-paramerters or repeats for reg_coef in reg_coef_list: args.reg_coef = reg_coef avg_final_acc[reg_coef] = np.zeros(args.repeat) for r in range(args.repeat): # Run the experiment acc_table, task_names = run(args) # Calculate average performance across tasks # Customize this part for a different performance metric avg_acc_history = [0] * len(task_names) for i in range(len(task_names)): train_name = task_names[i] cls_acc_sum = 0 for j in range(i + 1): val_name = task_names[j] cls_acc_sum += acc_table[val_name][train_name] avg_acc_history[i] = cls_acc_sum / (i + 1) print('Task', train_name, 'average acc:', avg_acc_history[i]) # Gather the final avg accuracy avg_final_acc[reg_coef][r] = avg_acc_history[-1] # Print the summary so far print('===Summary of experiment repeats:', r+1, '/', args.repeat, '===') print('The regularization coefficient:', args.reg_coef) print('The last avg acc of all repeats:', avg_final_acc[reg_coef]) print('mean:', avg_final_acc[reg_coef].mean(), 'std:', avg_final_acc[reg_coef].std()) for reg_coef, v in avg_final_acc.items(): print('reg_coef:', reg_coef, 'mean:', avg_final_acc[reg_coef].mean(), 'std:', avg_final_acc[reg_coef].std()) print(f"* kappa decrease from 1 to {args.kappa_min} in {args.kappa_epoch} epoch") print(f"* eps increase by {args.eps_val} every {args.eps_epoch} epoch") print(f"* maximal eps: {args.eps_max if args.eps_max else 'inf'}") print(f"* tasks were trained {args.schedule} epoch {'with' if args.clipping else 'without'} clipping")
56.166667
188
0.632864
5b4b3a6f978c0fd15bd5a67c3b47a46e5ae0e357
24,814
py
Python
tensorflow/python/distribute/cross_device_utils.py
ajweiss/tensorflow
2f4d4da52f0c488417d7e917edaf1b7569b5e408
[ "Apache-2.0" ]
2
2019-01-07T03:20:51.000Z
2019-01-07T07:11:48.000Z
tensorflow/python/distribute/cross_device_utils.py
ajweiss/tensorflow
2f4d4da52f0c488417d7e917edaf1b7569b5e408
[ "Apache-2.0" ]
null
null
null
tensorflow/python/distribute/cross_device_utils.py
ajweiss/tensorflow
2f4d4da52f0c488417d7e917edaf1b7569b5e408
[ "Apache-2.0" ]
2
2019-12-17T09:27:07.000Z
2020-05-24T13:09:49.000Z
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utilities for cross_device_ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections as pycoll import threading from tensorflow.python.distribute import all_reduce from tensorflow.python.distribute import values as value_lib from tensorflow.python.framework import device as pydev from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import collective_ops from tensorflow.python.ops import gradients_impl from tensorflow.python.ops import math_ops from tensorflow.python.ops import nccl_ops def aggregate_gradients_using_nccl(replica_grads): """Aggregate gradients using nccl allreduce.""" agg_all_g_and_v = [] for single_g_and_v in zip(*replica_grads): single_grads = [g for g, _ in single_g_and_v] agg_grads = nccl_ops.all_sum(single_grads) agg_all_g_and_v.append( [(g, v) for g, (_, v) in zip(agg_grads, single_g_and_v)]) agg_all_g_and_v = list(zip(*agg_all_g_and_v)) return agg_all_g_and_v def aggregate_gradients_using_hierarchical_copy(avail_devices, replica_grads): """Aggregate gradients using hierarchical copies. Args: avail_devices: available GPU devices. replica_grads: List of lists of (gradient, variable) tuples. The outer list is over replicas. The inner list is over individual gradients. Returns: The list of (aggregated_gradient, variable), where the gradient has been summed across all replicas and the variable is chosen from the first replica. """ # This only works for DGX-1 type of machine topology # Device peer to peer matrix # DMA: 0 1 2 3 4 5 6 7 # 0: Y Y Y Y Y N N N # 1: Y Y Y Y N Y N N # 2: Y Y Y Y N N Y N # 3: Y Y Y Y N N N Y # 4: Y N N N Y Y Y Y # 5: N Y N N Y Y Y Y # 6: N N Y N Y Y Y Y # 7: N N N Y Y Y Y Y agg_grads = [] num_devices = len(avail_devices) # In the special case of DGX-1 machine topology, the two groups have equal # size. group_size = num_devices // 2 for i, single_grads in enumerate(zip(*replica_grads)): group_0_main_device = i % num_devices group_1_main_device = (group_0_main_device + group_size) % num_devices if group_0_main_device < group_size: group_0_begin = 0 group_1_begin = group_size else: group_0_begin = group_size group_1_begin = 0 # Aggregate the first group. group_0_device_grads = single_grads[group_0_begin: group_0_begin + group_size] with ops.device(avail_devices[group_0_main_device]): group_0_agg_grads, _ = aggregate_single_gradient_using_copy( group_0_device_grads, False, False) # Aggregate the second group. group_1_device_grads = single_grads[group_1_begin: group_1_begin + group_size] with ops.device(avail_devices[group_1_main_device]): group_1_agg_grads, _ = aggregate_single_gradient_using_copy( group_1_device_grads, False, False) # Aggregate between the groups. with ops.device(avail_devices[group_0_main_device]): (agg_total_grads, _), _ = aggregate_single_gradient_using_copy( [group_0_agg_grads, group_1_agg_grads], False, False) # Broadcast the result back into the root of each group. with ops.device(avail_devices[group_0_main_device]): group_0_agg_grads_bcast = array_ops.identity(agg_total_grads) with ops.device(avail_devices[group_1_main_device]): group_1_agg_grads_bcast = array_ops.identity(agg_total_grads) agg_grads_bcast = [] for j in range(len(single_grads)): with ops.device(avail_devices[j]): # Broadcast the result back to each member in the group from the root. if (group_0_main_device < group_size) == (j < group_size): src_device_grad = group_0_agg_grads_bcast else: src_device_grad = group_1_agg_grads_bcast agg_grads_bcast.append(array_ops.identity(src_device_grad)) agg_grads.append( [(g, v) for g, (_, v) in zip(agg_grads_bcast, single_grads)]) agg_grads = list(zip(*agg_grads)) return agg_grads def aggregate_single_gradient_using_copy(grad_and_vars, use_mean, check_inf_nan): """Calculate the average gradient for a shared variable across all replicas. Note that this function provides a synchronization point across all replicas. Args: grad_and_vars: A list or tuple of (gradient, variable) tuples. Each (gradient, variable) pair within the outer list represents the gradient of the variable calculated for a single replica, and the number of pairs equals the number of replicas. use_mean: if True, mean is taken, else sum of gradients is taken. check_inf_nan: check grads for nans and infs. Returns: The tuple ([(average_gradient, variable),], has_nan_or_inf) where the gradient has been averaged across all replicas. The variable is chosen from the first replica. The has_nan_or_inf indicates the grads has nan or inf. """ grads = [g for g, _ in grad_and_vars] grad = math_ops.add_n(grads) if use_mean and len(grads) > 1: grad = array_ops.multiply(grad, 1.0 / len(grads)) v = grad_and_vars[0][1] if check_inf_nan: has_nan_or_inf = array_ops.logical_not( array_ops.reduce_all(array_ops.is_finite(grads))) return (grad, v), has_nan_or_inf else: return (grad, v), None def group_device_names(devices, group_size): """Group device names into groups of group_size. Args: devices: a list of canonical device strings. group_size: integer which is equal to or greater than 1. Returns: list of lists of devices, where each inner list is group_size long, and each device appears at least once in an inner list. If len(devices) % group_size == 0 then each device will appear exactly once. Raises: ValueError: if group_size > len(devices) """ num_devices = len(devices) if group_size > num_devices: raise ValueError( 'only %d devices, but group_size=%d' % (num_devices, group_size)) num_groups = ( num_devices // group_size + (1 if (num_devices % group_size != 0) else 0)) groups = [[] for i in range(num_groups)] for i in range(num_groups * group_size): groups[i % num_groups].append(devices[i % num_devices]) return groups def split_grads_by_size(threshold_size, device_grads): """Break gradients into two sets according to tensor size. Args: threshold_size: int size cutoff for small vs large tensor. device_grads: List of lists of (gradient, variable) tuples. The outer list is over devices. The inner list is over individual gradients. Returns: small_grads: Subset of device_grads where shape is <= threshold_size elements. large_grads: Subset of device_grads where shape is > threshold_size elements. """ small_grads = [] large_grads = [] for dl in device_grads: small_dl = [] large_dl = [] for (g, v) in dl: tensor_size = g.get_shape().num_elements() if tensor_size <= threshold_size: small_dl.append([g, v]) else: large_dl.append([g, v]) if small_dl: small_grads.append(small_dl) if large_dl: large_grads.append(large_dl) return small_grads, large_grads # threading.Lock() and threading.local() cannot be pickled and therefore cannot # be a field of CollectiveKeys. Right now _thread_local is not necessary to be # an instance member of CollectiveKeys since we always create a new thread for # each replica. _lock = threading.Lock() _thread_local = threading.local() # TODO(yuefengz): use random key starts to avoid reusing keys? class CollectiveKeys(object): """Class that manages collective keys. We need to manage three different keys for collective: *Group key*: an integer key to identify the set of cooperative devices. Collective ops work under the same set of devices must using the same group key. *Instance key*: an integer key to identify the set of same counterpart of tensors on different devices in a device group that need to be all-reduced. "Graph key": an integer key that is unique key graph. This is used to support multiple graphs per client session. It must be non-zero and set in the `config` argument of each call to `session.run`. """ def __init__(self, group_key_start=1, instance_key_start=100, instance_key_with_id_start=10000): """Initializes the object. Args: group_key_start: the starting integer of group key. instance_key_start: the starting integer of instance key. instance_key_with_id_start: the starting integer of instance key that is recorded with an id. """ self._group_key = group_key_start self._group_key_table = dict() # For instance keys with ids self._instance_key_id_to_key_table = dict() self._instance_key_with_id_counter = instance_key_with_id_start # For instance keys without ids self._instance_key_start = instance_key_start def _get_thread_local_object(self): # We make instance key without key ids thread local so that it will work # with MirroredStrategy and distribute coordinator. if not hasattr(_thread_local, 'instance_key'): _thread_local.instance_key = self._instance_key_start return _thread_local def get_group_key(self, devices): """Returns a group key for the set of devices. Args: devices: list of strings naming devices in a collective group. Returns: int key uniquely identifying the set of device names. """ parsed = [pydev.DeviceSpec.from_string(d) for d in devices] # In the between-graph replicated training, different workers need to get # the same device key. So we remove the task_type and task_id from the # devices. # TODO(yuefengz): in the in-graph replicated training, we need to include # task_type and task_id. names = sorted(['%s:%d' % (d.device_type, d.device_index) for d in parsed]) key_id = ','.join(names) with _lock: if key_id not in self._group_key_table: new_key = self._group_key self._group_key += 1 self._group_key_table[key_id] = new_key return self._group_key_table[key_id] def get_instance_key(self, key_id=None): """Returns a new instance key for use in defining a collective op. Args: key_id: optional string. If set, key will be recorded and the same key will be returned when the same key_id is provided. If not, an increasing instance key will be returned. """ if key_id: with _lock: if key_id not in self._instance_key_id_to_key_table: self._instance_key_with_id_counter += 1 self._instance_key_id_to_key_table[key_id] = ( self._instance_key_with_id_counter) return self._instance_key_id_to_key_table[key_id] else: v = self._get_thread_local_object().instance_key self._get_thread_local_object().instance_key += 1 return v def build_collective_reduce(input_tensors, num_workers, collective_keys, reduction_op='Add', unary_op='Id'): """Build a subgraph that does one full all-reduce, using the collective Op. Args: input_tensors: tensors within a single worker graph that are to be reduced together; must be one per device. num_workers: total number of workers with identical independent graphs that will be doing this same reduction. The reduction will actually include the corresponding tensors at all these workers. collective_keys: a CollectiveKeys object. reduction_op: string naming the reduction op. unary_op: string naming the unary final op. Returns: An array of final tensors, one per device, computed by the full reduction. Raises: ValueError: There must be at least two tensors over all the workers. """ group_size = len(input_tensors) * num_workers if group_size < 2: raise ValueError('num_workers * len(input_tensors) must be 2 or greater') devices = [t.device for t in input_tensors] num_devices = len(devices) group_key = collective_keys.get_group_key(devices) instance_key = collective_keys.get_instance_key() out_tensors = [] subdiv_offsets = [0] # TODO(tucker): maybe support non-default subdiv spec for d in range(num_devices): with ops.device(devices[d]): reduce_op = collective_ops.all_reduce( input_tensors[d], group_size, group_key, instance_key, reduction_op, unary_op, subdiv_offsets) out_tensors.append(reduce_op) return out_tensors def sum_grad_and_var_all_reduce(grad_and_vars, num_workers, alg, gpu_indices, aux_devices=None, num_shards=1): """Apply all-reduce algorithm over specified gradient tensors.""" with ops.name_scope('allreduce'): # Note that each grad_and_vars looks like the following: # ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN)) scaled_grads = [g for g, _ in grad_and_vars] if alg == 'nccl': summed_grads = nccl_ops.all_sum(scaled_grads) elif alg == 'xring': summed_grads = all_reduce.build_ring_all_reduce( scaled_grads, num_workers, num_shards, gpu_indices, math_ops.add) elif alg == 'nccl/xring': summed_grads = all_reduce.build_nccl_then_ring(scaled_grads, num_shards, math_ops.add) elif alg == 'nccl/rechd': summed_grads = all_reduce.build_nccl_then_recursive_hd( scaled_grads, math_ops.add) elif alg == 'nccl/pscpu': summed_grads = all_reduce.build_nccl_then_shuffle( scaled_grads, aux_devices, math_ops.add, math_ops.add_n) elif alg == 'pscpu/pscpu': second_gather_devices = aux_devices[:num_shards] summed_grads = all_reduce.build_shuffle_then_shuffle( scaled_grads, aux_devices, second_gather_devices, math_ops.add_n) elif alg in ['pscpu', 'psgpu']: summed_grads = all_reduce.build_shuffle_all_reduce( scaled_grads, aux_devices, math_ops.add_n) else: raise ValueError('unsupported all_reduce alg: ', alg) result = [] for (_, v), g in zip(grad_and_vars, summed_grads): result.append([g, v]) return result def sum_gradients_all_reduce(dev_prefixes, replica_grads, num_workers, alg, num_shards, gpu_indices): """Apply all-reduce algorithm over specified gradient tensors. Args: dev_prefixes: list of prefix strings to use to generate PS device names. replica_grads: the gradients to reduce. num_workers: number of worker processes across entire job. alg: the all-reduce algorithm to apply. num_shards: alg-specific sharding factor. gpu_indices: indices of local GPUs in order usable for ring-reduce. Returns: list of reduced tensors """ alg_contains_shuffle = any(n in alg for n in ['pscpu', 'psgpu']) is_hierarchical = '/' in alg if 'pscpu' in alg: aux_devices = [prefix + '/cpu:0' for prefix in dev_prefixes] elif 'psgpu' in alg: aux_devices = [ prefix + '/gpu:%d' % i for i in range(len(gpu_indices)) for prefix in dev_prefixes ] else: aux_devices = ['/job:localhost/cpu:0'] # Auxiliary devices for hierarchical all-reduces. aux_device_groups = group_device_names( aux_devices, num_shards if alg_contains_shuffle else 1) group_index = 0 reduced_gv_list = [] for grad_and_vars in zip(*replica_grads): reduced_gv_list.append( sum_grad_and_var_all_reduce( grad_and_vars, num_workers, alg, gpu_indices, aux_devices if is_hierarchical else aux_device_groups[group_index], num_shards)) group_index = (group_index + 1) % len(aux_device_groups) new_replica_grads = [list(x) for x in zip(*reduced_gv_list)] return new_replica_grads def extract_ranges(index_list, range_size_limit=32): """Extract consecutive ranges and singles from index_list. Args: index_list: List of monotone increasing non-negative integers. range_size_limit: Largest size range to return. If a larger consecutive range exists, it will be returned as multiple ranges. Returns: (ranges, singles) where ranges is a list of [first, last] pairs of consecutive elements in index_list, and singles is all of the other elements, in original order. """ if not index_list: return [], [] first = index_list[0] last = first ranges = [] singles = [] for i in index_list[1:]: if i == last + 1 and (last - first) <= range_size_limit: last = i else: if last > first: ranges.append([first, last]) else: singles.append(first) first = i last = i if last > first: ranges.append([first, last]) else: singles.append(first) return ranges, singles GradPackTuple = pycoll.namedtuple('GradPackTuple', 'indices vars shapes') def pack_range(key, packing, grad_vars, rng): """Form the concatenation of a specified range of gradient tensors. Args: key: Value under which to store meta-data in packing that will be used later to restore the grad_var list structure. packing: Dict holding data describing packed ranges of small tensors. grad_vars: List of (grad, var) pairs for one replica. rng: A pair of integers giving the first, last indices of a consecutive range of tensors to be packed. Returns: A tensor that is the concatenation of all the specified small tensors. """ to_pack = grad_vars[rng[0]:rng[1] + 1] members = [] variables = [] restore_shapes = [] with ops.name_scope('pack'): for g, v in to_pack: variables.append(v) restore_shapes.append(g.shape) with ops.device(g.device): members.append(array_ops.reshape(g, [-1])) packing[key] = GradPackTuple( indices=range(rng[0], rng[1] + 1), vars=variables, shapes=restore_shapes) with ops.device(members[0].device): return array_ops.concat(members, 0) def unpack_grad_tuple(gv, gpt): """Unpack a previously packed collection of gradient tensors. Args: gv: A (grad, var) pair to be unpacked. gpt: A GradPackTuple describing the packing operation that produced gv. Returns: A list of (grad, var) pairs corresponding to the values that were originally packed into gv, maybe following subsequent operations like reduction. """ elt_widths = [x.num_elements() for x in gpt.shapes] with ops.device(gv[0][0].device): with ops.name_scope('unpack'): splits = array_ops.split(gv[0], elt_widths) unpacked_gv = [] for idx, s in enumerate(splits): unpacked_gv.append((array_ops.reshape(s, gpt.shapes[idx]), gpt.vars[idx])) return unpacked_gv def pack_small_tensors(replica_grads, max_bytes=0, max_group=0): """Concatenate small gradient tensors together for reduction. Args: replica_grads: List of lists of (gradient, variable) tuples. max_bytes: Int giving max number of bytes in a tensor that may be considered small. max_group: Int giving max number of small tensors that may be concatenated into one new tensor. Returns: new_replica_grads, packing where new_replica_grads is identical to replica_grads except that all feasible small_tensors have been removed from their places and concatenated into larger tensors that are now in the front of the list for each replica, and packing contains the data necessary to restore the replica_grads structure. Look through the first replica for gradients of the same type (float), and small size, that are all sequential. For each such group, replace by a new tensor that is a flattened concatenation. Note that the corresponding variable will be absent, which doesn't matter because it isn't used during all-reduce. Requires: Every gv_list in replicas must have isomorphic structure including identical tensor sizes and types. """ small_indices = [] large_indices = [] for idx, (g, _) in enumerate(replica_grads[0]): if g.dtype == dtypes.float32 and (4 * g.shape.num_elements()) <= max_bytes: small_indices.append(idx) else: large_indices.append(idx) small_ranges, small_singles = extract_ranges( small_indices, range_size_limit=max_group) large_indices = sorted(large_indices + small_singles) num_gv = len(replica_grads[0]) packing = {} if small_ranges: new_replica_grads = [] for dev_idx, gv_list in enumerate(replica_grads): assert len(gv_list) == num_gv new_gv_list = [] for r in small_ranges: key = '%d:%d' % (dev_idx, len(new_gv_list)) new_gv_list.append((pack_range(key, packing, gv_list, r), 'packing_var_placeholder')) for i in large_indices: new_gv_list.append(gv_list[i]) new_replica_grads.append(new_gv_list) return new_replica_grads, packing else: return replica_grads, None def unpack_small_tensors(replica_grads, packing): """Undo the structure alterations to replica_grads done by pack_small_tensors. Args: replica_grads: List of List of (grad, var) tuples. packing: A dict generated by pack_small_tensors describing the changes it made to replica_grads. Returns: new_replica_grads: identical to replica_grads except that concatenations of small tensors have been split apart and returned to their original positions, paired with their original variables. """ if not packing: return replica_grads new_replica_grads = [] num_devices = len(replica_grads) num_packed = len(packing.keys()) // num_devices for dev_idx, gv_list in enumerate(replica_grads): gv_list = list(gv_list) new_gv_list = gv_list[num_packed:] for i in range(num_packed): k = '%d:%d' % (dev_idx, i) gpt = packing[k] gv = unpack_grad_tuple(gv_list[i], gpt) for gi, idx in enumerate(gpt.indices): assert idx == gpt.indices[gi] new_gv_list.insert(idx, gv[gi]) new_replica_grads.append(new_gv_list) return new_replica_grads def aggregate_tensors_or_indexed_slices(values, accumulation_fn=math_ops.add_n): """Aggregate tensors using `accumulation_fn` and IndexedSlices via concat.""" if any(isinstance(v, ops.IndexedSlices) for v in values): return gradients_impl._AggregateIndexedSlicesGradients(values) # pylint: disable=protected-access else: return accumulation_fn(values) def divide_by_n_tensors_or_indexed_slices(value, n): if isinstance(value, ops.IndexedSlices): value = gradients_impl._HandleNestedIndexedSlices(value) # pylint: disable=protected-access return ops.IndexedSlices( value.values / n, value.indices, value.dense_shape) else: return value / n def copy_tensor_or_indexed_slices_to_device(value, device): with ops.device(device): if isinstance(value, ops.IndexedSlices): copied_values = array_ops.identity(value.values) copied_indices = array_ops.identity(value.indices) copied_shape = array_ops.identity(value.dense_shape) result = ops.IndexedSlices(copied_values, copied_indices, copied_shape) else: result = array_ops.identity(value) return result def contains_indexed_slices(value): """Check whether the value is `IndexedSlices` or contains `IndexedSlices`.""" if isinstance(value, ops.IndexedSlices): return True elif isinstance(value, (list, tuple)) and value: return any(contains_indexed_slices(v) for v in value) elif isinstance(value, value_lib.DistributedValues): return contains_indexed_slices(value.values) else: return False
36.925595
102
0.699404
1c63a15ee781acc702bdc4233b7bf46e1d128f96
161
py
Python
NFTmash/blueprints/main.py
cvasqxz/NFTmash
451af3a7f6cfa78f51b3a6897e653a6fd1b50fc3
[ "MIT" ]
null
null
null
NFTmash/blueprints/main.py
cvasqxz/NFTmash
451af3a7f6cfa78f51b3a6897e653a6fd1b50fc3
[ "MIT" ]
null
null
null
NFTmash/blueprints/main.py
cvasqxz/NFTmash
451af3a7f6cfa78f51b3a6897e653a6fd1b50fc3
[ "MIT" ]
null
null
null
from flask import Blueprint, render_template bp = Blueprint('main', __name__, url_prefix='/') @bp.route("/") def index(): return render_template("about.html")
23
48
0.726708
da3faa01b594dfdadc453d1230226dcb7c72b44d
3,343
py
Python
aiida/plugins/utils.py
joepvd/aiida_core
6e9711046753332933f982971db1d7ac7e7ade58
[ "BSD-2-Clause" ]
null
null
null
aiida/plugins/utils.py
joepvd/aiida_core
6e9711046753332933f982971db1d7ac7e7ade58
[ "BSD-2-Clause" ]
null
null
null
aiida/plugins/utils.py
joepvd/aiida_core
6e9711046753332933f982971db1d7ac7e7ade58
[ "BSD-2-Clause" ]
null
null
null
# -*- coding: utf-8 -*- ########################################################################### # Copyright (c), The AiiDA team. All rights reserved. # # This file is part of the AiiDA code. # # # # The code is hosted on GitHub at https://github.com/aiidateam/aiida_core # # For further information on the license, see the LICENSE.txt file # # For further information please visit http://www.aiida.net # ########################################################################### """ utilities for: * managing the registry cache folder * downloading json files * pickling to the registry cache folder """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import absolute_import import io def registry_cache_folder_name(): """ return the name of the subfolder of aiida_dir where registry caches are stored. """ return 'plugin_registry_cache' def registry_cache_folder_path(): """ return the fully resolved path to the cache folder """ from os import path as osp from aiida.common.setup import get_aiida_dir aiida_dir = get_aiida_dir() cache_dir = registry_cache_folder_name() return osp.join(aiida_dir, cache_dir) def registry_cache_folder_exists(): """ return True if the cache folder exists, False if not """ from os import path as osp cache_dir = registry_cache_folder_path() return osp.isdir(cache_dir) def safe_create_registry_cache_folder(): """ creates the registry cache folder if it does not exist """ from os import mkdir if not registry_cache_folder_exists(): cache_dir = registry_cache_folder_path() mkdir(cache_dir) def pickle_to_registry_cache_folder(obj, fname): """ pickles a python object to the registry cache folder """ from six.moves.cPickle import dump as pdump from os import path as osp safe_create_registry_cache_folder() cache_dir = registry_cache_folder_path() fpath = osp.join(cache_dir, fname) with io.open(fpath, 'w', encoding='utf8') as cache_file: pdump(obj, cache_file) def unpickle_from_registry_cache_folder(fname): """ looks for fname in the registry cache folder and tries to unpickle from it """ from six.moves.cPickle import load as pload from os import path as osp cache_dir = registry_cache_folder_path() fpath = osp.join(cache_dir, fname) with io.open(fpath, 'r', encoding='utf8') as cache: return pload(cache) def load_json_from_url(url, errorhandler=None): """ downloads a json file and returns the corresponding python dict """ import requests reply = requests.get(url) res = None try: res = reply.json() except Exception as e: if errorhandler: res = errorhandler(e) else: raise e return res def value_error_msg(e): msg = 'The AiiDA plugin registry seems to be temporarily unavailable.' msg += ' Please try again later. If the problem persists,' msg += ' look at github.com/aiidateam/aiida-registry and file an issue' msg += ' if there is none yet.' return msg
30.953704
83
0.635657
62f65090dd8e5c6dfaf77f13f899ca27f67b3e1e
929
py
Python
test/test_update_list_object.py
imissyouso/textmagic-rest-python
172c4c2bd588119eb97cdfaab3d8ba24bf3f3e09
[ "MIT" ]
2
2020-10-21T09:44:33.000Z
2021-06-29T20:58:57.000Z
test/test_update_list_object.py
imissyouso/textmagic-rest-python
172c4c2bd588119eb97cdfaab3d8ba24bf3f3e09
[ "MIT" ]
null
null
null
test/test_update_list_object.py
imissyouso/textmagic-rest-python
172c4c2bd588119eb97cdfaab3d8ba24bf3f3e09
[ "MIT" ]
1
2021-12-02T12:15:56.000Z
2021-12-02T12:15:56.000Z
# coding: utf-8 """ TextMagic API No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) # noqa: E501 OpenAPI spec version: 2 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import TextMagic from TextMagic.models.update_list_object import UpdateListObject # noqa: E501 from TextMagic.rest import ApiException class TestUpdateListObject(unittest.TestCase): """UpdateListObject unit test stubs""" def setUp(self): pass def tearDown(self): pass def testUpdateListObject(self): """Test UpdateListObject""" # FIXME: construct object with mandatory attributes with example values # model = TextMagic.models.update_list_object.UpdateListObject() # noqa: E501 pass if __name__ == '__main__': unittest.main()
22.658537
119
0.709365
d2ac47a7a2da7cca001189e8d7feda0f89e9ffc5
134
py
Python
apps/polls/admin.py
vanderland/vdl_site
43b9ad3e5e7b9a2d35fc3cbb6a378cc8374699f1
[ "MIT" ]
null
null
null
apps/polls/admin.py
vanderland/vdl_site
43b9ad3e5e7b9a2d35fc3cbb6a378cc8374699f1
[ "MIT" ]
null
null
null
apps/polls/admin.py
vanderland/vdl_site
43b9ad3e5e7b9a2d35fc3cbb6a378cc8374699f1
[ "MIT" ]
null
null
null
from django.contrib import admin from .models import Question, Choice admin.site.register(Question) admin.site.register(Choice)
22.333333
37
0.791045
e8312a019877c4e6a6cf4f44e083a3b761812316
1,763
py
Python
towers/core/validation.py
sys-git/towers
1b654620ba7a87b09d563e3b846180149860fb81
[ "MIT" ]
null
null
null
towers/core/validation.py
sys-git/towers
1b654620ba7a87b09d563e3b846180149860fb81
[ "MIT" ]
243
2017-09-13T07:18:13.000Z
2022-03-31T12:31:24.000Z
towers/core/validation.py
sys-git/towers
1b654620ba7a87b09d563e3b846180149860fb81
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: latin-1 -*- # # @module towers.core.validation # @version 0.1 # @copyright (c) 2017-present Francis Horsman. import abc import six from .errors import InvalidMoves, InvalidRods, InvalidTowerHeight __all__ = [ 'Validatable', 'validate_height', 'validate_rods', 'validate_moves', ] class Validatable(object): @abc.abstractmethod def validate(self): """ Perform self validation """ raise NotImplementedError() def validate_height(height): """ Validate the height of a :class:`Tower`s or :class:`Rod`. :param int height: The height to validate. :raises InvalidTowerHeight: The height of the :class:`Tower` is invalid. """ if height < 1: raise InvalidTowerHeight(height) def validate_rods(rods): """ Validate the rods. :param List[Rod]|None rods: The :class:`Rod`'s to validate. :raises InvalidRods: expecting type :class:`Rods`. :raises DuplicateDisk: This :class:`Rod` already contains this :class:`Disk` :raises CorruptRod: A :class:`Disk` is on top of a :class:`Disk` of smaller size. """ from towers import Rods if rods is not None: if not isinstance(rods, Rods): raise InvalidRods(rods) rods.validate() def validate_moves(moves): """ Validate the number of moves. :param int moves: The moves count to validate. :raises InvalidMoves: The number of moves is not an number or is less than zero. """ if moves is not None: if not isinstance(moves, six.integer_types): raise InvalidMoves(moves) if moves < 0: raise InvalidMoves(moves)
22.0375
69
0.621668
3b16ac2822a83bda6209950b55c561675504a040
2,302
py
Python
examples/plot_spam.py
emptymalei/forest-confidence-interval
b8bd6c92b3035df9eaafd213b621086264959953
[ "MIT" ]
250
2016-07-19T11:50:39.000Z
2022-03-21T18:30:10.000Z
examples/plot_spam.py
emptymalei/forest-confidence-interval
b8bd6c92b3035df9eaafd213b621086264959953
[ "MIT" ]
72
2016-07-19T16:16:22.000Z
2022-03-14T16:32:58.000Z
examples/plot_spam.py
emptymalei/forest-confidence-interval
b8bd6c92b3035df9eaafd213b621086264959953
[ "MIT" ]
45
2016-07-19T18:40:47.000Z
2021-11-23T03:25:02.000Z
""" ========================================= Plotting Classification Forest Error Bars ========================================= This example demonstrates the calculation of confidence intervals for :class:`sklearn.ensemble.RandomForestClassifier` objects. The data used here are synthetically generated to simulate a data-set in which email messages are labeled as spam based on 20 different features (the default of :func:`sklearn.datasets.make_classification`). """ import numpy as np from matplotlib import pyplot as plt from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier import forestci as fci from sklearn.datasets import make_classification spam_X, spam_y = make_classification(5000) # split the datainto training and test set spam_X_train, spam_X_test, spam_y_train, spam_y_test = train_test_split( spam_X, spam_y, test_size=0.2) # create RandomForestClassifier n_trees = 500 spam_RFC = RandomForestClassifier(max_features=5, n_estimators=n_trees, random_state=42) spam_RFC.fit(spam_X_train, spam_y_train) spam_y_hat = spam_RFC.predict_proba(spam_X_test) idx_spam = np.where(spam_y_test == 1)[0] idx_ham = np.where(spam_y_test == 0)[0] # Histogram predictions without error bars: fig, ax = plt.subplots(1) ax.hist(spam_y_hat[idx_spam, 1], histtype='step', label='spam') ax.hist(spam_y_hat[idx_ham, 1], histtype='step', label='not spam') ax.set_xlabel('Prediction (spam probability)') ax.set_ylabel('Number of observations') plt.legend() # Calculate the variance spam_V_IJ_unbiased = fci.random_forest_error(spam_RFC, spam_X_train, spam_X_test) # Plot forest prediction for emails and standard deviation for estimates # Blue points are spam emails; Green points are non-spam emails fig, ax = plt.subplots(1) ax.scatter(spam_y_hat[idx_spam, 1], np.sqrt(spam_V_IJ_unbiased[idx_spam]), label='spam') ax.scatter(spam_y_hat[idx_ham, 1], np.sqrt(spam_V_IJ_unbiased[idx_ham]), label='not spam') ax.set_xlabel('Prediction (spam probability)') ax.set_ylabel('Standard deviation') plt.legend() plt.show()
35.415385
78
0.688966
3dd5b64560b48ac517151b3fa72802f7f80d8afc
12,176
py
Python
mmdet/datasets/cityscapes.py
zehuichen123/mmdet2.0
a491935af7b9e42ded1e44045b550171fec76deb
[ "Apache-2.0" ]
13
2021-04-26T08:33:00.000Z
2022-03-30T03:29:36.000Z
mmdet/datasets/cityscapes.py
rechardgu0816/Instance-segmentation-tianchi
1d950cfd92ea9b4861fa189709d1cee3fc1b59aa
[ "MIT" ]
14
2021-06-24T07:02:38.000Z
2022-03-18T21:25:47.000Z
mmdet/datasets/cityscapes.py
rechardgu0816/Instance-segmentation-tianchi
1d950cfd92ea9b4861fa189709d1cee3fc1b59aa
[ "MIT" ]
3
2021-10-21T11:42:32.000Z
2022-03-26T08:30:34.000Z
# Modified from https://github.com/facebookresearch/detectron2/blob/master/detectron2/data/datasets/cityscapes.py # noqa # and https://github.com/mcordts/cityscapesScripts/blob/master/cityscapesscripts/evaluation/evalInstanceLevelSemanticLabeling.py # noqa import glob import os import os.path as osp import tempfile import mmcv import numpy as np import pycocotools.mask as maskUtils from mmcv.utils import print_log from .builder import DATASETS from .coco import CocoDataset @DATASETS.register_module() class CityscapesDataset(CocoDataset): CLASSES = ('person', 'rider', 'car', 'truck', 'bus', 'train', 'motorcycle', 'bicycle') def _filter_imgs(self, min_size=32): """Filter images too small or without ground truths.""" valid_inds = [] ids_with_ann = set(_['image_id'] for _ in self.coco.anns.values()) for i, img_info in enumerate(self.data_infos): img_id = img_info['id'] ann_ids = self.coco.getAnnIds(imgIds=[img_id]) ann_info = self.coco.loadAnns(ann_ids) all_iscrowd = all([_['iscrowd'] for _ in ann_info]) if self.filter_empty_gt and (self.img_ids[i] not in ids_with_ann or all_iscrowd): continue if min(img_info['width'], img_info['height']) >= min_size: valid_inds.append(i) return valid_inds def _parse_ann_info(self, img_info, ann_info): """Parse bbox and mask annotation. Args: img_info (dict): Image info of an image. ann_info (list[dict]): Annotation info of an image. Returns: dict: A dict containing the following keys: bboxes, bboxes_ignore, labels, masks, seg_map. "masks" are already decoded into binary masks. """ gt_bboxes = [] gt_labels = [] gt_bboxes_ignore = [] gt_masks_ann = [] for i, ann in enumerate(ann_info): if ann.get('ignore', False): continue x1, y1, w, h = ann['bbox'] if ann['area'] <= 0 or w < 1 or h < 1: continue if ann['category_id'] not in self.cat_ids: continue bbox = [x1, y1, x1 + w, y1 + h] if ann.get('iscrowd', False): gt_bboxes_ignore.append(bbox) else: gt_bboxes.append(bbox) gt_labels.append(self.cat2label[ann['category_id']]) gt_masks_ann.append(ann['segmentation']) if gt_bboxes: gt_bboxes = np.array(gt_bboxes, dtype=np.float32) gt_labels = np.array(gt_labels, dtype=np.int64) else: gt_bboxes = np.zeros((0, 4), dtype=np.float32) gt_labels = np.array([], dtype=np.int64) if gt_bboxes_ignore: gt_bboxes_ignore = np.array(gt_bboxes_ignore, dtype=np.float32) else: gt_bboxes_ignore = np.zeros((0, 4), dtype=np.float32) ann = dict( bboxes=gt_bboxes, labels=gt_labels, bboxes_ignore=gt_bboxes_ignore, masks=gt_masks_ann, seg_map=img_info['segm_file']) return ann def results2txt(self, results, outfile_prefix): """Dump the detection results to a txt file. Args: results (list[list | tuple | ndarray]): Testing results of the dataset. outfile_prefix (str): The filename prefix of the json files. If the prefix is "somepath/xxx", the txt files will be named "somepath/xxx.txt". Returns: list[str: str]: result txt files which contains corresponding instance segmentation images. """ try: import cityscapesscripts.helpers.labels as CSLabels except ImportError: raise ImportError('Please run "pip install citscapesscripts" to ' 'install cityscapesscripts first.') result_files = [] os.makedirs(outfile_prefix, exist_ok=True) prog_bar = mmcv.ProgressBar(len(self)) for idx in range(len(self)): result = results[idx] filename = self.data_infos[idx]['filename'] basename = osp.splitext(osp.basename(filename))[0] pred_txt = osp.join(outfile_prefix, basename + '_pred.txt') bbox_result, segm_result = result bboxes = np.vstack(bbox_result) # segm results if isinstance(segm_result, tuple): # Some detectors use different scores for bbox and mask, # like Mask Scoring R-CNN. Score of segm will be used instead # of bbox score. segms = mmcv.concat_list(segm_result[0]) mask_score = segm_result[1] else: # use bbox score for mask score segms = mmcv.concat_list(segm_result) mask_score = [bbox[-1] for bbox in bboxes] labels = [ np.full(bbox.shape[0], i, dtype=np.int32) for i, bbox in enumerate(bbox_result) ] labels = np.concatenate(labels) assert len(bboxes) == len(segms) == len(labels) num_instances = len(bboxes) prog_bar.update() with open(pred_txt, 'w') as fout: for i in range(num_instances): pred_class = labels[i] classes = self.CLASSES[pred_class] class_id = CSLabels.name2label[classes].id score = mask_score[i] mask = maskUtils.decode(segms[i]).astype(np.uint8) png_filename = osp.join(outfile_prefix, basename + f'_{i}_{classes}.png') mmcv.imwrite(mask, png_filename) fout.write(f'{osp.basename(png_filename)} {class_id} ' f'{score}\n') result_files.append(pred_txt) return result_files def format_results(self, results, txtfile_prefix=None): """Format the results to txt (standard format for Cityscapes evaluation). Args: results (list): Testing results of the dataset. txtfile_prefix (str | None): The prefix of txt files. It includes the file path and the prefix of filename, e.g., "a/b/prefix". If not specified, a temp file will be created. Default: None. Returns: tuple: (result_files, tmp_dir), result_files is a dict containing the json filepaths, tmp_dir is the temporal directory created for saving txt/png files when txtfile_prefix is not specified. """ assert isinstance(results, list), 'results must be a list' assert len(results) == len(self), ( 'The length of results is not equal to the dataset len: {} != {}'. format(len(results), len(self))) assert isinstance(results, list), 'results must be a list' assert len(results) == len(self), ( 'The length of results is not equal to the dataset len: {} != {}'. format(len(results), len(self))) if txtfile_prefix is None: tmp_dir = tempfile.TemporaryDirectory() txtfile_prefix = osp.join(tmp_dir.name, 'results') else: tmp_dir = None result_files = self.results2txt(results, txtfile_prefix) return result_files, tmp_dir def evaluate(self, results, metric='bbox', logger=None, outfile_prefix=None, classwise=False, proposal_nums=(100, 300, 1000), iou_thrs=np.arange(0.5, 0.96, 0.05)): """Evaluation in Cityscapes protocol. Args: results (list): Testing results of the dataset. metric (str | list[str]): Metrics to be evaluated. logger (logging.Logger | str | None): Logger used for printing related information during evaluation. Default: None. outfile_prefix (str | None): classwise (bool): Whether to evaluating the AP for each class. proposal_nums (Sequence[int]): Proposal number used for evaluating recalls, such as recall@100, recall@1000. Default: (100, 300, 1000). iou_thrs (Sequence[float]): IoU threshold used for evaluating recalls. If set to a list, the average recall of all IoUs will also be computed. Default: 0.5. Returns: dict[str: float] """ eval_results = dict() metrics = metric.copy() if isinstance(metric, list) else [metric] if 'cityscapes' in metrics: eval_results.update( self._evaluate_cityscapes(results, outfile_prefix, logger)) metrics.remove('cityscapes') # left metrics are all coco metric if len(metrics) > 0: # create CocoDataset with CityscapesDataset annotation self_coco = CocoDataset(self.ann_file, self.pipeline.transforms, None, self.data_root, self.img_prefix, self.seg_prefix, self.proposal_file, self.test_mode, self.filter_empty_gt) # TODO: remove this in the future # reload annotations of correct class self_coco.CLASSES = self.CLASSES self_coco.data_infos = self_coco.load_annotations(self.ann_file) eval_results.update( self_coco.evaluate(results, metrics, logger, outfile_prefix, classwise, proposal_nums, iou_thrs)) return eval_results def _evaluate_cityscapes(self, results, txtfile_prefix, logger): try: import cityscapesscripts.evaluation.evalInstanceLevelSemanticLabeling as CSEval # noqa except ImportError: raise ImportError('Please run "pip install citscapesscripts" to ' 'install cityscapesscripts first.') msg = 'Evaluating in Cityscapes style' if logger is None: msg = '\n' + msg print_log(msg, logger=logger) result_files, tmp_dir = self.format_results(results, txtfile_prefix) if tmp_dir is None: result_dir = osp.join(txtfile_prefix, 'results') else: result_dir = osp.join(tmp_dir.name, 'results') eval_results = {} print_log(f'Evaluating results under {result_dir} ...', logger=logger) # set global states in cityscapes evaluation API CSEval.args.cityscapesPath = os.path.join(self.img_prefix, '../..') CSEval.args.predictionPath = os.path.abspath(result_dir) CSEval.args.predictionWalk = None CSEval.args.JSONOutput = False CSEval.args.colorized = False CSEval.args.gtInstancesFile = os.path.join(result_dir, 'gtInstances.json') CSEval.args.groundTruthSearch = os.path.join( self.img_prefix.replace('leftImg8bit', 'gtFine'), '*/*_gtFine_instanceIds.png') groundTruthImgList = glob.glob(CSEval.args.groundTruthSearch) assert len(groundTruthImgList), 'Cannot find ground truth images' \ f' in {CSEval.args.groundTruthSearch}.' predictionImgList = [] for gt in groundTruthImgList: predictionImgList.append(CSEval.getPrediction(gt, CSEval.args)) CSEval_results = CSEval.evaluateImgLists(predictionImgList, groundTruthImgList, CSEval.args)['averages'] eval_results['mAP'] = CSEval_results['allAp'] eval_results['AP@50'] = CSEval_results['allAp50%'] if tmp_dir is not None: tmp_dir.cleanup() return eval_results
41.414966
135
0.574819
4b645000c3191c1ae2c81a305b6c17dd26da6d76
415
py
Python
RateMySchoolProject/RateMySchoolProject/wsgi.py
Tesfa-eth/web_application
90c062b18de39ed2a53367da4641b4ef942ea70b
[ "MIT" ]
null
null
null
RateMySchoolProject/RateMySchoolProject/wsgi.py
Tesfa-eth/web_application
90c062b18de39ed2a53367da4641b4ef942ea70b
[ "MIT" ]
null
null
null
RateMySchoolProject/RateMySchoolProject/wsgi.py
Tesfa-eth/web_application
90c062b18de39ed2a53367da4641b4ef942ea70b
[ "MIT" ]
null
null
null
""" WSGI config for RateMySchoolProject project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/4.0/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'RateMySchoolProject.settings') application = get_wsgi_application()
24.411765
79
0.79759
4c17786d0788b6d262c209f20a45e503bdd52d3b
896
py
Python
examples/ttgo/axp202_pek_sleep.py
OPHoperHPO/lv_micropython
64389d2b51ea7e0c998d67dc89821d1ce280c267
[ "MIT" ]
49
2020-07-22T14:41:53.000Z
2022-01-24T00:27:58.000Z
examples/ttgo/axp202_pek_sleep.py
OPHoperHPO/lv_micropython
64389d2b51ea7e0c998d67dc89821d1ce280c267
[ "MIT" ]
12
2020-08-01T03:09:00.000Z
2021-12-06T16:13:13.000Z
examples/ttgo/axp202_pek_sleep.py
OPHoperHPO/lv_micropython
64389d2b51ea7e0c998d67dc89821d1ce280c267
[ "MIT" ]
13
2020-07-27T17:52:31.000Z
2022-02-20T21:28:40.000Z
import lvgl as lv import machine import esp32 import ttgo def axp_callback(pin): power.clearIRQ() print("PEK was pressed! Go to sleep!!!!") watch.tft.backlight_fade(0) watch.tft.display_sleep() watch.power_off() power.setPowerOutPut(ttgo.axp202.AXP202_LDO2, False) esp32.wake_on_ext1((machine.Pin(35), ), esp32.WAKEUP_ALL_LOW) power.clearIRQ() machine.deepsleep() # Init watch watch = ttgo.Watch() power = watch.pmu tft = watch.tft # Init lvgl lv.init() watch.lvgl_begin() # Init interface scr = lv.obj() win = lv.win(scr) win.set_title("PowerKey Sleep Example") text_label = lv.label(win) text_label.set_text("Wait for the PEKKey\n interrupt to come...") lv.scr_load(scr) # Init irq watch.pmu_attach_interrupt(axp_callback) power.enableIRQ(ttgo.axp202.AXP202_PEK_SHORTPRESS_IRQ, True) power.clearIRQ() # Enable backlight watch.tft.backlight_fade(100)
20.837209
65
0.735491
8347ddea23290086517effe80e9875a48b893899
421
py
Python
tweetguru/migrations/0007_auto_20190122_1818.py
MaciejWWojcik/twitter-influencer-searcher
0b8b05aaa3540eeefcb2a728c5bce2fc5913446e
[ "MIT" ]
null
null
null
tweetguru/migrations/0007_auto_20190122_1818.py
MaciejWWojcik/twitter-influencer-searcher
0b8b05aaa3540eeefcb2a728c5bce2fc5913446e
[ "MIT" ]
9
2018-11-15T15:30:13.000Z
2019-01-20T01:40:05.000Z
tweetguru/migrations/0007_auto_20190122_1818.py
MaciejWWojcik/twitter-influencer-searcher
0b8b05aaa3540eeefcb2a728c5bce2fc5913446e
[ "MIT" ]
null
null
null
# Generated by Django 2.1.3 on 2019-01-22 18:18 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('tweetguru', '0006_auto_20190121_1623'), ] operations = [ migrations.AddField( model_name='userrank', name='score', field=models.IntegerField(default=0), preserve_default=False, ) ]
21.05
49
0.598575
f455d101077213feddd1c2e03eef3f19062c002e
3,032
py
Python
s3_scripts/sensor_test.py
garciart/SmartSensor
9aef5b7d47ee56f249ba22ab3d8c61ef9c62e6e9
[ "MIT" ]
null
null
null
s3_scripts/sensor_test.py
garciart/SmartSensor
9aef5b7d47ee56f249ba22ab3d8c61ef9c62e6e9
[ "MIT" ]
null
null
null
s3_scripts/sensor_test.py
garciart/SmartSensor
9aef5b7d47ee56f249ba22ab3d8c61ef9c62e6e9
[ "MIT" ]
null
null
null
#!/usr/bin/python3 # -*- coding: utf-8 -*- """Sensor and LCD output test. Python version used: 3.6.8 See requirements.txt for additional dependencies Styling guide: PEP 8 -- Style Guide for Python Code (https://www.python.org/dev/peps/pep-0008/) and PEP 257 -- Docstring Conventions (https://www.python.org/dev/peps/pep-0257/) """ from __future__ import (absolute_import, division, print_function, unicode_literals) import math import time import grovepi import grove_rgb_lcd # Module metadata dunders __author__ = "Rob Garcia" __copyright__ = "Copyright 2019-2020, Rob Garcia" __email__ = "rgarcia@rgprogramming.com" __license__ = "MIT" BLUE_DHT = 0 # For DHT11 # WHITE_DHT = 1 # For DHT22 GREEN_LED = 5 # Digital port 5 RED_LED = 6 # Digital port 6 DHT_SENSOR_PORT = 7 # Digital port 7 ON = 1 OFF = 0 def sensor_test(): """Collects and displays temperature and humidity data""" sensor_data = [] for x in range(10): try: for y in range(3): [temp, humid] = grovepi.dht(DHT_SENSOR_PORT, BLUE_DHT) if not math.isnan(temp) and not math.isnan(humid): if temp >= 20.0: # Temperature is good: Everything is green. grove_rgb_lcd.setRGB(0, 255, 0) grovepi.digitalWrite(GREEN_LED, ON) time.sleep(2) grovepi.digitalWrite(GREEN_LED, OFF) else: # Temperature is too low: Turn to red. grove_rgb_lcd.setRGB(255, 0, 0) grovepi.digitalWrite(RED_LED, ON) time.sleep(2) grovepi.digitalWrite(RED_LED, OFF) t_str = str(temp) h_str = str(humid) print("Temperature: {}C | Humidity: {}%".format(t_str, h_str)) grove_rgb_lcd.setText_norefresh( "T: {} C\nH: {} %".format(temp, humid)) sensor_data.append([temp, humid]) # For DHT11, wait three seconds before next reading time.sleep(3) except (IOError, TypeError) as ex: print("Error: {}".format(str(ex))) shutdown_board() except KeyboardInterrupt: shutdown_board() print(sensor_data) # Wait 30 seconds before collecting next set of data grove_rgb_lcd.setRGB(0, 0, 0) time.sleep(30) shutdown_board() def shutdown_board(): """Turns off LEDs and clears LCD screen""" grovepi.digitalWrite(RED_LED, OFF) grovepi.digitalWrite(GREEN_LED, OFF) grove_rgb_lcd.setRGB(0, 0, 0) grove_rgb_lcd.setText("") print("Job complete. Have an excellent day.") def main(): """Application entry point.""" print("Test of the GrovePi DHT sensor, LEDs and RGB LCD screen.\n") sensor_test() if __name__ == "__main__": main()
31.915789
82
0.569921
bf4ff72c26db6ace4996f9265681c46a165b1427
4,264
py
Python
ggjxx/src/game/game.py
Jbat1Jumper/GGJ2020
49dbbced90b235fd2e3a036a170a619aa6bb1830
[ "CC0-1.0" ]
null
null
null
ggjxx/src/game/game.py
Jbat1Jumper/GGJ2020
49dbbced90b235fd2e3a036a170a619aa6bb1830
[ "CC0-1.0" ]
1
2020-02-02T05:53:14.000Z
2020-02-02T05:53:14.000Z
ggjxx/src/game/game.py
Jbat1Jumper/GGJ2020
49dbbced90b235fd2e3a036a170a619aa6bb1830
[ "CC0-1.0" ]
null
null
null
from .cell import Cell from .constants import UP, DOWN, RIGHT, LEFT, MOVEMENT_NOT_ALLOWED, MOVEMENT_DONE, KILL_ROBOT from ..structure.levels.base_level import BaseLevel from .map import Map from copy import deepcopy class Game: def __init__(self, gameLevel): self.initialGameLevel = gameLevel self.listeners = [] def restart(self): gameLevel = deepcopy(self.initialGameLevel) self.map = gameLevel.getMap() self.turns_left = gameLevel.getMaxTurns() self.robots = gameLevel.getRobots() self.choose_robot(self.robots[0]) self._won = False def setRobots(self, robots): self.robots = robots def get_map(self): return self.map def get_controlled_robot(self): return self.controlled_robot def switchControlledRobot(self): for i in range(len(self.robots)): if self.robots[i].is_being_controlled: pos = i self.robots[i].is_being_controlled = False if pos+1 == len(self.robots): newPos = 0 else: newPos = pos+1 self.choose_robot(self.robots[newPos]) def won(self): return self._won def checkWin(self): if (self._won): return True if self.everyReactorHasBeenRepaired(): self.turns_left = 0 self._won = True return True return False def everyReactorHasBeenRepaired(self): return not self.map.hasFaultyReactor() def lost(self): return self.turns_left <= 0 and not self._won def available_robots(self): return filter(lambda r: not r.busy, self.map.get_robots()) def choose_robot(self, robot): robot.is_being_controlled = True self.controlled_robot = robot def is_robot_being_controlled(self): return self.controlled_robot != None def processTurnAfterMove(self, robot): self.consumeTurn() self.checkHazards(robot) self.checkWin() def go(self, direction): if not self.is_robot_being_controlled(): return r = self.controlled_robot if not self.map.getCell(r.x, r.y).canGo(direction) or not self.turns_left > 0: self.trigger_event(MOVEMENT_NOT_ALLOWED) return r.direction = direction r.advance() self.trigger_event(MOVEMENT_DONE) self.processTurnAfterMove(r) def go_left(self): self.go(LEFT) def go_right(self): self.go(RIGHT) def go_down(self): self.go(DOWN) def go_up(self): self.go(UP) def consumeTurn(self): self.turns_left = self.turns_left - 1 def checkHazards(self, robot): xPosition = robot.getX() yPosition = robot.getY() currentCell = self.map.getCell(robot.getX(), robot.getY()) cells = self.map.getAdjacentCells(xPosition, yPosition) for cell in cells: if cell.hasRadiation(): robot.interactWithRadiation(self, currentCell) if cell.hasFire(): robot.interactWithFire(self, currentCell) if cell.hasReactor(): robot.interactWithReactor(self, currentCell) def killRobot(self, robot): robot.resetPosition() self.trigger_event(KILL_ROBOT) def robot_action(self): pass def end_turn(self): self.turns_left -= 1 self.controlled_robot.is_being_controlled = False self.controlled_robot = None def terminate(self): self.turns_left = -1 def finished(self): return self.turns_left <= 0 def trigger_event(self, event): for listener in self.listeners: listener.trigger(event) def subscribe(self, listener): if not hasattr(listener, "trigger"): return self.listeners.append(listener) def update(self): self.update_fog() def update_fog(self): for robot in self.map.robots: x = robot.getX() y = robot.getY() for cell in self.map.getAdjacentCells(x, y): cell.disableFog() def getAdjacentCells(self,x,y): return self.map.getAdjacentCells(x,y)
26.987342
93
0.611163
6e21ab3fea8e31841c188b088f28448b521ccef0
26,486
py
Python
src/sage/modular/local_comp/type_space.py
fredstro/sage
c936d2cda81ec7ec3552a3bdb29c994b40d1bb24
[ "BSL-1.0" ]
null
null
null
src/sage/modular/local_comp/type_space.py
fredstro/sage
c936d2cda81ec7ec3552a3bdb29c994b40d1bb24
[ "BSL-1.0" ]
null
null
null
src/sage/modular/local_comp/type_space.py
fredstro/sage
c936d2cda81ec7ec3552a3bdb29c994b40d1bb24
[ "BSL-1.0" ]
null
null
null
r""" Type spaces of newforms Let `f` be a new modular eigenform of level `\Gamma_1(N)`, and `p` a prime dividing `N`, with `N = Mp^r` (`M` coprime to `p`). Suppose the power of `p` dividing the conductor of the character of `f` is `p^c` (so `c \le r`). Then there is an integer `u`, which is `\operatorname{min}([r/2], r-c)`, such that any twist of `f` by a character mod `p^u` also has level `N`. The *type space* of `f` is the span of the modular eigensymbols corresponding to all of these twists, which lie in a space of modular symbols for a suitable `\Gamma_H` subgroup. This space is the key to computing the isomorphism class of the local component of the newform at `p`. """ import operator from sage.misc.misc import verbose, cputime from sage.modular.arithgroup.all import GammaH from sage.modular.modform.element import Newform from sage.modular.modform.constructor import ModularForms from sage.modular.modsym.modsym import ModularSymbols from sage.rings.all import ZZ, Zmod, QQ from sage.rings.fast_arith import prime_range from sage.arith.all import crt from sage.structure.sage_object import SageObject from sage.matrix.constructor import matrix from sage.misc.cachefunc import cached_method, cached_function from liftings import lift_gen_to_gamma1, lift_ramified @cached_function def example_type_space(example_no = 0): r""" Quickly return an example of a type space. Used mainly to speed up doctesting. EXAMPLE:: sage: from sage.modular.local_comp.type_space import example_type_space sage: example_type_space() # takes a while but caches stuff (21s on sage.math, 2012) 6-dimensional type space at prime 7 of form q + q^2 + (-1/2*a1 + 1/2)*q^3 + q^4 + (a1 - 1)*q^5 + O(q^6) The above test takes a long time, but it precomputes and caches various things such that subsequent doctests can be very quick. So we don't want to mark it ``# long time``. """ from sage.modular.modform.constructor import Newform as Newform_constructor if example_no == 0: # a fairly generic example return TypeSpace(Newform_constructor('98b', names='a'), 7) elif example_no == 1: # a non-minimal example return TypeSpace(Newform_constructor('98a', names='a'), 7) elif example_no == 2: # a smaller example with QQ coefficients return TypeSpace(Newform_constructor('50a'), 5) elif example_no == 3: # a ramified (odd p-power level) case return TypeSpace(Newform_constructor('27a'), 3) def find_in_space(f, A, base_extend=False): r""" Given a Newform object `f`, and a space `A` of modular symbols of the same weight and level, find the subspace of `A` which corresponds to the Hecke eigenvalues of `f`. If ``base_extend = True``, this will return a 2-dimensional space generated by the plus and minus eigensymbols of `f`. If ``base_extend = False`` it will return a larger space spanned by the eigensymbols of `f` and its Galois conjugates. (NB: "Galois conjugates" needs to be interpreted carefully -- see the last example below.) `A` should be an ambient space (because non-ambient spaces don't implement ``base_extend``). EXAMPLES:: sage: from sage.modular.local_comp.type_space import find_in_space Easy case (`f` has rational coefficients):: sage: f = Newform('99a'); f q - q^2 - q^4 - 4*q^5 + O(q^6) sage: A = ModularSymbols(GammaH(99, [13])) sage: find_in_space(f, A) Modular Symbols subspace of dimension 2 of Modular Symbols space of dimension 25 for Congruence Subgroup Gamma_H(99) with H generated by [13] of weight 2 with sign 0 and over Rational Field Harder case:: sage: f = Newforms(23, names='a')[0] sage: A = ModularSymbols(Gamma1(23)) sage: find_in_space(f, A, base_extend=True) Modular Symbols subspace of dimension 2 of Modular Symbols space of dimension 45 for Gamma_1(23) of weight 2 with sign 0 and over Number Field in a0 with defining polynomial x^2 + x - 1 sage: find_in_space(f, A, base_extend=False) Modular Symbols subspace of dimension 4 of Modular Symbols space of dimension 45 for Gamma_1(23) of weight 2 with sign 0 and over Rational Field An example with character, indicating the rather subtle behaviour of ``base_extend``:: sage: chi = DirichletGroup(5).0 sage: f = Newforms(chi, 7, names='c')[0]; f # long time (4s on sage.math, 2012) q + c0*q^2 + (zeta4*c0 - 5*zeta4 + 5)*q^3 + ((-5*zeta4 - 5)*c0 + 24*zeta4)*q^4 + ((10*zeta4 - 5)*c0 - 40*zeta4 - 55)*q^5 + O(q^6) sage: find_in_space(f, ModularSymbols(Gamma1(5), 7), base_extend=True) # long time Modular Symbols subspace of dimension 2 of Modular Symbols space of dimension 12 for Gamma_1(5) of weight 7 with sign 0 and over Number Field in c0 with defining polynomial x^2 + (5*zeta4 + 5)*x - 88*zeta4 over its base field sage: find_in_space(f, ModularSymbols(Gamma1(5), 7), base_extend=False) # long time (27s on sage.math, 2012) Modular Symbols subspace of dimension 4 of Modular Symbols space of dimension 12 for Gamma_1(5) of weight 7 with sign 0 and over Cyclotomic Field of order 4 and degree 2 Note that the base ring in the second example is `\QQ(\zeta_4)` (the base ring of the character of `f`), *not* `\QQ`. """ if not A.weight() == f.weight(): raise ValueError( "Weight of space does not match weight of form" ) if not A.level() == f.level(): raise ValueError( "Level of space does not match level of form" ) if base_extend: D = A.base_extend(f.hecke_eigenvalue_field()) else: M = f.modular_symbols(sign=1) D = A.base_extend(M.base_ring()) expected_dimension = 2 if base_extend else 2*M.dimension() for p in prime_range(1 + A.sturm_bound()): h = D.hecke_operator(p) if base_extend: hh = h - f[p] else: f = M.hecke_polynomial(p) hh = f(h) DD = hh.kernel() if DD.dimension() < D.dimension(): D = DD if D.dimension() <= expected_dimension: break if D.dimension() != expected_dimension: raise ArithmeticError( "Error in find_in_space: " + "got dimension %s (should be %s)" % (D.dimension(), expected_dimension) ) return D class TypeSpace(SageObject): r""" The modular symbol type space associated to a newform, at a prime dividing the level. """ ################################################# # Basic initialisation and data-access functions ################################################# def __init__(self, f, p, base_extend=True): r""" EXAMPLE:: sage: from sage.modular.local_comp.type_space import example_type_space sage: example_type_space() # indirect doctest 6-dimensional type space at prime 7 of form q + q^2 + (-1/2*a1 + 1/2)*q^3 + q^4 + (a1 - 1)*q^5 + O(q^6) """ self._p = p self._f = f if f.level() % p: raise ValueError( "p must divide level" ) amb = ModularSymbols(self.group(), f.weight()) self.e_space = find_in_space(f, amb, base_extend=base_extend).sign_submodule(1) R = self.e_space.base_ring() mat = amb._action_on_modular_symbols([p**self.u(), 1, 0, p**self.u()]) V = amb.free_module().base_extend(R) bvecs = [] for v in self.e_space.free_module().basis(): bvecs += mat.maxspin(v) T = V.submodule(bvecs) self._unipmat = mat.change_ring(R).restrict(T).transpose() / ZZ(p ** (self.u() * (f.weight() - 2))) self.t_space = amb.base_extend(R).submodule(T, check=False) def _repr_(self): r""" String representation of self. EXAMPLE:: sage: from sage.modular.local_comp.type_space import example_type_space sage: example_type_space()._repr_() '6-dimensional type space at prime 7 of form q + q^2 + (-1/2*a1 + 1/2)*q^3 + q^4 + (a1 - 1)*q^5 + O(q^6)' """ return "%s-dimensional type space at prime %s of form %s" % (self.t_space.rank(), self.prime(), self.form()) def prime(self): r""" Return the prime `p`. EXAMPLE:: sage: from sage.modular.local_comp.type_space import example_type_space sage: example_type_space().prime() 7 """ return self._p def form(self): r""" The newform of which this is the type space. EXAMPLE:: sage: from sage.modular.local_comp.type_space import example_type_space sage: example_type_space().form() q + q^2 + (-1/2*a1 + 1/2)*q^3 + q^4 + (a1 - 1)*q^5 + O(q^6) """ return self._f def conductor(self): r""" Exponent of `p` dividing the level of the form. EXAMPLE:: sage: from sage.modular.local_comp.type_space import example_type_space sage: example_type_space().conductor() 2 """ return self.form().level().valuation(self.prime()) def character_conductor(self): r""" Exponent of `p` dividing the conductor of the character of the form. EXAMPLE:: sage: from sage.modular.local_comp.type_space import example_type_space sage: example_type_space().character_conductor() 0 """ return ZZ(self.form().character().conductor()).valuation(self.prime()) def u(self): r""" Largest integer `u` such that level of `f_\chi` = level of `f` for all Dirichlet characters `\chi` modulo `p^u`. EXAMPLE:: sage: from sage.modular.local_comp.type_space import example_type_space sage: example_type_space().u() 1 sage: from sage.modular.local_comp.type_space import TypeSpace sage: f = Newforms(Gamma1(5), 5, names='a')[0] sage: TypeSpace(f, 5).u() 0 """ return min(self.conductor() - self.character_conductor(), self.conductor() // 2) def free_module(self): r""" Return the underlying vector space of this type space. EXAMPLE:: sage: from sage.modular.local_comp.type_space import example_type_space sage: example_type_space().free_module() Vector space of dimension 6 over Number Field in a1 with defining polynomial ... """ return self.t_space.nonembedded_free_module() def eigensymbol_subspace(self): r""" Return the subspace of self corresponding to the plus eigensymbols of `f` and its Galois conjugates (as a subspace of the vector space returned by :meth:`~free_module`). EXAMPLE:: sage: from sage.modular.local_comp.type_space import example_type_space sage: T = example_type_space(); T.eigensymbol_subspace() Vector space of degree 6 and dimension 1 over Number Field in a1 with defining polynomial ... Basis matrix: [...] sage: T.eigensymbol_subspace().is_submodule(T.free_module()) True """ V = self.t_space.free_module() vecs = [V.coordinate_vector(x) for x in self.e_space.free_module().basis()] return vecs[0].parent().submodule(vecs) def tame_level(self): r""" The level away from `p`. EXAMPLE:: sage: from sage.modular.local_comp.type_space import example_type_space sage: example_type_space().tame_level() 2 """ return self.form().level() // self.prime() ** self.conductor() def group(self): r""" Return a `\Gamma_H` group which is the level of all of the relevant twists of `f`. EXAMPLE:: sage: from sage.modular.local_comp.type_space import example_type_space sage: example_type_space().group() Congruence Subgroup Gamma_H(98) with H generated by [57] """ p = self.prime() r = self.conductor() d = max(self.character_conductor(), r//2) n = self.tame_level() chi = self.form().character() tame_H = [i for i in chi.kernel() if (i % p**r) == 1] wild_H = [crt(1 + p**d, 1, p**r, n)] return GammaH(n * p**r, tame_H + wild_H) ############################################################################### # Testing minimality: is this form a twist of a form of strictly smaller level? ############################################################################### @cached_method def is_minimal(self): r""" Return True if there exists a newform `g` of level strictly smaller than `N`, and a Dirichlet character `\chi` of `p`-power conductor, such that `f = g \otimes \chi` where `f` is the form of which this is the type space. To find such a form, use :meth:`~minimal_twist`. The result is cached. EXAMPLE:: sage: from sage.modular.local_comp.type_space import example_type_space sage: example_type_space().is_minimal() True sage: example_type_space(1).is_minimal() False """ return self.t_space.is_submodule(self.t_space.ambient().new_submodule()) def minimal_twist(self): r""" Return a newform (not necessarily unique) which is a twist of the original form `f` by a Dirichlet character of `p`-power conductor, and which has minimal level among such twists of `f`. An error will be raised if `f` is already minimal. EXAMPLE:: sage: from sage.modular.local_comp.type_space import TypeSpace, example_type_space sage: T = example_type_space(1) sage: T.form().q_expansion(12) q - q^2 + 2*q^3 + q^4 - 2*q^6 - q^8 + q^9 + O(q^12) sage: g = T.minimal_twist() sage: g.q_expansion(12) q - q^2 - 2*q^3 + q^4 + 2*q^6 + q^7 - q^8 + q^9 + O(q^12) sage: g.level() 14 sage: TypeSpace(g, 7).is_minimal() True Test that :trac:`13158` is fixed:: sage: f = Newforms(256,names='a')[0] sage: T = TypeSpace(f,2) sage: g = T.minimal_twist(); g q - a*q^3 + O(q^6) sage: g.level() 64 """ if self.is_minimal(): raise ValueError( "Form is already minimal" ) NN = self.form().level() V = self.t_space A = V.ambient() while not V.is_submodule(A.new_submodule()): NN = NN / self.prime() D1 = A.degeneracy_map(NN, 1) Dp = A.degeneracy_map(NN, self.prime()) A = D1.codomain() vecs = [D1(v).element() for v in V.basis()] + [Dp(v).element() for v in V.basis()] VV = A.free_module().submodule(vecs) V = A.submodule(VV, check=False) D = V.decomposition()[0] if len(D.star_eigenvalues()) == 2: D = D.sign_submodule(1) D._set_sign(D.star_eigenvalues()[0]) M = ModularForms(D.group(), D.weight()) ff = Newform(M, D, names='a') return ff ##################################### # The group action on the type space. ##################################### def _rho_s(self, g): r""" Calculate the action of ``g`` on the type space, where ``g`` has determinant `1`. For internal use; this gets called by :meth:`~rho`. EXAMPLES:: sage: from sage.modular.local_comp.type_space import example_type_space sage: T = example_type_space(2) sage: T._rho_s([1,1,0,1]) [ 0 0 0 -1] [ 0 0 -1 0] [ 0 1 -2 1] [ 1 0 -1 1] sage: T._rho_s([0,-1,1,0]) [ 0 1 -2 1] [ 0 0 -1 0] [ 0 -1 0 0] [ 1 -2 1 0] sage: example_type_space(3)._rho_s([1,1,0,1]) [ 0 1] [-1 -1] """ if self.conductor() % 2 == 1: return self._rho_ramified(g) else: return self._rho_unramified(g) @cached_method def _second_gen_unramified(self): r""" Calculate the action of the matrix [0, -1; 1, 0] on the type space, in the unramified (even level) case. EXAMPLE:: sage: from sage.modular.local_comp.type_space import example_type_space sage: T = example_type_space(2) sage: T._second_gen_unramified() [ 0 1 -2 1] [ 0 0 -1 0] [ 0 -1 0 0] [ 1 -2 1 0] sage: T._second_gen_unramified()**4 == 1 True """ f = self.prime() ** self.u() g2 = lift_gen_to_gamma1(f, self.tame_level()) g3 = [f * g2[0], g2[1], f**2 * g2[2], f*g2[3]] A = self.t_space.ambient() mm = A._action_on_modular_symbols(g3).restrict(self.t_space.free_module()).transpose() m = mm / ZZ(f**(self.form().weight()-2)) return m def _rho_unramified(self, g): r""" Calculate the action of ``g`` on the type space, in the unramified (even level) case. Uses the two standard generators, and a solution of the word problem in `{\rm SL}_2(\ZZ / p^u \ZZ)`. INPUT: - ``g`` -- 4-tuple of integers (or more generally anything that can be converted into an element of the matrix group `{\rm SL}_2(\ZZ / p^u \ZZ)`). EXAMPLE:: sage: from sage.modular.local_comp.type_space import example_type_space sage: T = example_type_space(2) sage: T._rho_unramified([2,1,1,1]) [-1 1 -1 1] [ 0 0 0 1] [ 1 -1 0 1] [ 1 -2 1 0] sage: T._rho_unramified([1,-2,1,-1]) == T._rho_unramified([2,1,1,1]) * T._rho_unramified([0,-1,1,0]) True """ f = self.prime() ** self.u() from sage.groups.matrix_gps.all import SL G = SL(2, Zmod(f)) gg = G(g) s = G([1,1,0,1]) t = G([0,-1,1,0]) S = self._unipmat T = self._second_gen_unramified() w = gg.word_problem([s,t]) answer = S**0 for (x, n) in w: if x == s: answer = answer * S**n elif x == t: answer = answer * T**n return answer def _rho_ramified(self, g): r""" Calculate the action of a group element on the type space in the ramified (odd conductor) case. For internal use (called by :meth:`~rho`). EXAMPLE:: sage: from sage.modular.local_comp.type_space import example_type_space sage: T = example_type_space(3) sage: T._rho_ramified([1,0,3,1]) [-1 -1] [ 1 0] sage: T._rho_ramified([1,3,0,1]) == 1 True """ A = self.t_space.ambient() g = [ZZ(_) for _ in g] p = self.prime() assert g[2] % p == 0 gg = lift_ramified(g, p, self.u(), self.tame_level()) g3 = [p**self.u() * gg[0], gg[1], p**(2*self.u()) * gg[2], p**self.u() * gg[3]] return A._action_on_modular_symbols(g3).restrict(self.t_space.free_module()).transpose() / ZZ(p**(self.u() * (self.form().weight()-2) ) ) def _group_gens(self): r""" Return a set of generators of the group `S(K_0) / S(K_u)` (which is either `{\rm SL}_2(\ZZ / p^u \ZZ)` if the conductor is even, and a quotient of an Iwahori subgroup if the conductor is odd). EXAMPLES:: sage: from sage.modular.local_comp.type_space import example_type_space sage: example_type_space()._group_gens() [[1, 1, 0, 1], [0, -1, 1, 0]] sage: example_type_space(3)._group_gens() [[1, 1, 0, 1], [1, 0, 3, 1], [2, 0, 0, 5]] """ if (self.conductor() % 2) == 0: return [ [ZZ(1), ZZ(1), ZZ(0), ZZ(1)], [ZZ(0), ZZ(-1), ZZ(1), ZZ(0)] ] else: p = self.prime() if p == 2: return [ [ZZ(1), ZZ(1), ZZ(0), ZZ(1)], [ZZ(1), ZZ(0), ZZ(p), ZZ(1)] ] else: a = Zmod(p**(self.u() + 1))(ZZ(Zmod(p).unit_gens()[0])) return [ [ZZ(1), ZZ(1), ZZ(0), ZZ(1)], [ZZ(1), ZZ(0), ZZ(p), ZZ(1)], [ZZ(a), 0, 0, ZZ(~a)] ] def _intertwining_basis(self, a): r""" Return a basis for the set of homomorphisms between this representation and the same representation conjugated by [a,0; 0,1], where a is a generator of `(Z/p^uZ)^\times`. These are the "candidates" for extending the rep to a `\mathrm{GL}_2`-rep. Depending on the example, the hom-space has dimension either `1` or `2`. EXAMPLES:: sage: from sage.modular.local_comp.type_space import example_type_space sage: example_type_space(2)._intertwining_basis(2) [ [ 1 -2 1 0] [ 1 -1 0 1] [ 1 0 -1 1] [ 0 1 -2 1] ] sage: example_type_space(3)._intertwining_basis(2) [ [ 1 0] [0 1] [-1 -1], [1 0] ] """ if self.conductor() % 2: f = self.prime() ** (self.u() + 1) else: f = self.prime() ** self.u() # f is smallest p-power such that rho is trivial modulo f ainv = (~Zmod(f)(a)).lift() gens = self._group_gens() gensconj = [[x[0], ainv*x[1], a*x[2], x[3]] for x in gens] rgens = [self._rho_s(x) for x in gens] rgensinv = [operator.inv(_) for _ in rgens] rgensconj = [self._rho_s(x) for x in gensconj] rows = [] MS = rgens[0].parent() for m in MS.basis(): rows.append([]) for i in xrange(len(gens)): rows[-1] += (m - rgensinv[i] * m * rgensconj[i]).list() S = matrix(rows).left_kernel() return [MS(u.list()) for u in S.gens()] def _discover_torus_action(self): r""" Calculate and store the data necessary to extend the action of `S(K_0)` to `K_0`. EXAMPLE:: sage: from sage.modular.local_comp.type_space import example_type_space sage: example_type_space(2).rho([2,0,0,1]) # indirect doctest [ 1 -2 1 0] [ 1 -1 0 1] [ 1 0 -1 1] [ 0 1 -2 1] """ f = self.prime() ** self.u() if len(Zmod(f).unit_gens()) != 1: raise NotImplementedError a = ZZ(Zmod(f).unit_gens()[0]) mats = self._intertwining_basis(a) V = self.t_space.nonembedded_free_module() v = self.eigensymbol_subspace().gen(0) w = V.submodule_with_basis([m * v for m in mats]).coordinates(v) #v * self.e_space.diamond_eigenvalue(crt(a, 1, f, self.tame_level()))) self._a = a self._amat = sum([mats[i] * w[i] for i in xrange(len(mats))]) def rho(self, g): r""" Calculate the action of the group element `g` on the type space. EXAMPLE:: sage: from sage.modular.local_comp.type_space import example_type_space sage: T = example_type_space(2) sage: m = T.rho([2,0,0,1]); m [ 1 -2 1 0] [ 1 -1 0 1] [ 1 0 -1 1] [ 0 1 -2 1] sage: v = T.eigensymbol_subspace().basis()[0] sage: m * v == v True We test that it is a left action:: sage: T = example_type_space(0) sage: a = [0,5,4,3]; b = [0,2,3,5]; ab = [1,4,2,2] sage: T.rho(ab) == T.rho(a) * T.rho(b) True An odd level example:: sage: from sage.modular.local_comp.type_space import TypeSpace sage: T = TypeSpace(Newform('54a'), 3) sage: a = [0,1,3,0]; b = [2,1,0,1]; ab = [0,1,6,3] sage: T.rho(ab) == T.rho(a) * T.rho(b) True """ if not self.is_minimal(): raise NotImplementedError( "Group action on non-minimal type space not implemented" ) if self.u() == 0: # silly special case: rep is principal series or special, so SL2 # action on type space is trivial raise ValueError( "Representation is not supercuspidal" ) p = self.prime() f = p**self.u() g = [ZZ(_) for _ in g] d = (g[0]*g[3] - g[2]*g[1]) # g is in S(K_0) (easy case) if d % f == 1: return self._rho_s(g) # g is in K_0, but not in S(K_0) if d % p != 0: try: a = self._a except AttributeError: self._discover_torus_action() a = self._a i = 0 while (d * a**i) % f != 1: i += 1 if i > f: raise ArithmeticError return self._rho_s([a**i*g[0], g[1], a**i*g[2], g[3]]) * self._amat**(-i) # funny business if (self.conductor() % 2 == 0): if all([x.valuation(p) > 0 for x in g]): eps = self.form().character()(crt(1, p, f, self.tame_level())) return ~eps * self.rho([x // p for x in g]) else: raise ArithmeticError( "g(={0}) not in K".format(g) ) else: m = matrix(ZZ, 2, g) s = m.det().valuation(p) mm = (matrix(QQ, 2, [0, -1, p, 0])**(-s) * m).change_ring(ZZ) return self._unif_ramified()**s * self.rho(mm.list()) def _unif_ramified(self): r""" Return the action of [0,-1,p,0], in the ramified (odd p-power level) case. EXAMPLE:: sage: from sage.modular.local_comp.type_space import example_type_space sage: T = example_type_space(3) sage: T._unif_ramified() [-1 0] [ 0 -1] """ return self.t_space.atkin_lehner_operator(self.prime()).matrix().transpose() * self.prime() ** (-1 + self.form().weight() // 2)
36.837274
233
0.551008
49dcc20dfc2db8f3d051660d2365ed41f17707b0
1,004
py
Python
nhk.py
daite/crawl
7ffe3e9daf8956f959ca5258ece60c86217e727f
[ "MIT" ]
2
2020-12-25T09:29:02.000Z
2020-12-27T07:25:07.000Z
nhk.py
daite/crawl
7ffe3e9daf8956f959ca5258ece60c86217e727f
[ "MIT" ]
null
null
null
nhk.py
daite/crawl
7ffe3e9daf8956f959ca5258ece60c86217e727f
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 from bs4 import BeautifulSoup import requests import sys import os headers = {'User-Agent': "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_3)"\ "AppleWebKit/537.36 (KHTML, like Gecko) "\ "Chrome/66.0.3359.181 Safari/537.36"} ffmpeg_command = 'ffmpeg -i "{}" -bsf:a aac_adtstoasc' \ ' -vcodec copy -c copy -crf 50 "{}.mp4"' def extract_information(url): r = requests.get(url, headers=headers) soup = BeautifulSoup(r.content, 'lxml') title = soup.find('meta', {'property': 'og:title'})['content'] param = soup.find('iframe', src=True)['src'].split('?')[0]\ .split('/')[-1].strip('.html') return title, param def main(): url = sys.argv[1] title, param = extract_information(url) m3u8_url = 'https://nhks-vh.akamaihd.net/i/news/' \ '{}.mp4/master.m3u8'.format(param) command = ffmpeg_command.format(m3u8_url, title) os.system(command) if __name__ == '__main__': main()
27.888889
66
0.614542
bd598c9985c1c3b8c29ec2a444cf7b99543efb7f
1,628
py
Python
numba/cuda/tests/cudapy/test_debuginfo.py
uw-ipd/numba
26dde2b28cadda403a5549a84dc1698900b23f74
[ "BSD-2-Clause" ]
1,738
2017-09-21T10:59:12.000Z
2022-03-31T21:05:46.000Z
dev/Gems/CloudGemMetric/v1/AWS/python/windows/Lib/numba/cuda/tests/cudapy/test_debuginfo.py
olivier-be/lumberyard
3d688932f919dbf5821f0cb8a210ce24abe39e9e
[ "AML" ]
427
2017-09-29T22:54:36.000Z
2022-02-15T19:26:50.000Z
dev/Gems/CloudGemMetric/v1/AWS/python/windows/Lib/numba/cuda/tests/cudapy/test_debuginfo.py
olivier-be/lumberyard
3d688932f919dbf5821f0cb8a210ce24abe39e9e
[ "AML" ]
671
2017-09-21T08:04:01.000Z
2022-03-29T14:30:07.000Z
from __future__ import print_function, absolute_import from numba.tests.support import override_config, TestCase from numba.cuda.testing import skip_on_cudasim from numba import unittest_support as unittest from numba import cuda, types from numba.cuda.testing import SerialMixin @skip_on_cudasim('Simulator does not produce debug dumps') class TestCudaDebugInfo(SerialMixin, TestCase): """ These tests only checks the compiled PTX for debuginfo section """ def _getasm(self, fn, sig): fn.compile(sig) return fn.inspect_asm(sig) def _check(self, fn, sig, expect): asm = self._getasm(fn, sig=sig) assertfn = self.assertIn if expect else self.assertNotIn assertfn('.section .debug_info {', asm, msg=asm) def test_no_debuginfo_in_asm(self): @cuda.jit(debug=False) def foo(x): x[0] = 1 self._check(foo, sig=(types.int32[:],), expect=False) def test_debuginfo_in_asm(self): @cuda.jit(debug=True) def foo(x): x[0] = 1 self._check(foo, sig=(types.int32[:],), expect=True) def test_environment_override(self): with override_config('CUDA_DEBUGINFO_DEFAULT', 1): # Using default value @cuda.jit def foo(x): x[0] = 1 self._check(foo, sig=(types.int32[:],), expect=True) # User override default value @cuda.jit(debug=False) def bar(x): x[0] = 1 self._check(bar, sig=(types.int32[:],), expect=False) if __name__ == '__main__': unittest.main()
28.561404
66
0.621007
07bdadd43d6a23e11203a7f693bbd7f031e9e93e
3,195
py
Python
cloud/cloud/doctype/cloud_company_group/cloud_company_group.py
srdgame/symlink_cloud
0df41d9cd9c9757cf5e96f6bea841c3b86de8ee1
[ "MIT" ]
1
2021-07-25T08:53:01.000Z
2021-07-25T08:53:01.000Z
cloud/cloud/doctype/cloud_company_group/cloud_company_group.py
srdgame/symlink_cloud
0df41d9cd9c9757cf5e96f6bea841c3b86de8ee1
[ "MIT" ]
null
null
null
cloud/cloud/doctype/cloud_company_group/cloud_company_group.py
srdgame/symlink_cloud
0df41d9cd9c9757cf5e96f6bea841c3b86de8ee1
[ "MIT" ]
6
2017-04-02T04:01:08.000Z
2021-12-22T10:43:29.000Z
# -*- coding: utf-8 -*- # Copyright (c) 2017, Dirk Chang and contributors # For license information, please see license.txt from __future__ import unicode_literals import frappe from frappe import _dict, throw, _ from frappe.model.document import Document from cloud.cloud.doctype.cloud_company.cloud_company import list_admin_companies, list_user_companies class CloudCompanyGroup(Document): def validate(self): list = _dict() for d in self.user_list: if list.get(d.user): throw(_("Duplicated user found! {0}").format(d.user)) list[d.user] = d def append_users(self, role, *users): """Add groups to user""" current_users = [d.user for d in self.get("user_list")] for user in users: if user in current_users: continue if self.company not in list_user_companies(user): throw(_("Cannot add user into group, as {0} is not employee for your company").format(user)) self.append("user_list", {"user": user, "role": role}) def add_users(self, role, *users): """Add groups to user and save""" self.append_users(role, *users) self.save() def remove_users(self, *users): existing_users = dict((d.user, d) for d in self.get("user_list")) for user in users: if user in existing_users: self.get("user_list").remove(existing_users[user]) self.save() def on_doctype_update(): """Add indexes in `Cloud Company Group`""" frappe.db.add_index("Cloud Company Group", ["company"]) def get_permission_query_conditions(user): if 'Cloud Manager' in frappe.get_roles(user): return "" ent_list = list_admin_companies(user) return """(`tabCloud Company Group`.company in ({user_ents}))""".format( user_ents='"' + '", "'.join(ent_list) + '"') def has_permission(doc, ptype, user): if 'Cloud Manager' in frappe.get_roles(user): return True if frappe.get_value('Cloud Company', {'admin': user, 'name': doc.company}): return True return False def list_user_groups(user, check_enable=True): groups = [] appended_groups = [] for d in frappe.db.get_values("Cloud Company GroupUser", {"user": user}, ["parent", "role", "modified", "creation"]): if frappe.get_value("Cloud Company Group", d[0], "enabled"): groups.append(_dict({"name": d[0], "role": d[1], "modified": d[2], "creation": d[3], "user": user})) appended_groups.append(d[0]) for comp in list_admin_companies(user): for d in frappe.db.get_values("Cloud Company Group", {"company": comp, "enabled": 1}, "name"): if d[0] not in appended_groups: groups.append(_dict({"name": d[0], "role": "Admin", "user": user})) return groups def is_user_in_group(group, user): if 'Company Admin' in frappe.get_roles(user): company = frappe.get_value("Cloud Company Group", group, "company") if company in list_admin_companies(user): return True if frappe.get_value("Cloud Company GroupUser", {"user": user, "parent": group}, "name"): return True return False def list_users(group, check_enable=True): users = [] for d in frappe.db.get_values("Cloud Company GroupUser", {"parent": group}, ["user", "role", "modified", "creation"]): users.append(_dict({"name": d[0], "role": d[1], "modified": d[2], "creation": d[3], "group": group})) return users
31.633663
119
0.692645
0b05e635c25a3ed622bbf56ed86cd201a9be8b7e
4,942
py
Python
ml_model.py
Calsowah/testingAzurePython
9c046490b3a37e90e9c73b3b483f33f82034bf64
[ "MIT" ]
null
null
null
ml_model.py
Calsowah/testingAzurePython
9c046490b3a37e90e9c73b3b483f33f82034bf64
[ "MIT" ]
null
null
null
ml_model.py
Calsowah/testingAzurePython
9c046490b3a37e90e9c73b3b483f33f82034bf64
[ "MIT" ]
null
null
null
import pandas as pd import re import numpy as np import math from sklearn.naive_bayes import BernoulliNB from sklearn.naive_bayes import MultinomialNB from sklearn.model_selection import ShuffleSplit from collections import Counter, defaultdict # data = '/Users/bryankamau/Documents/SPRING 2019/CS 5412/testingAzurePython/data/' data_file = data + "data job posts.csv" # reading the csv files # path1 = "/Users/bryankamau/Documents/SPRING 2019/CS5412/testingAzurePython/data/Current_Job_Postings.csv" # path2 = "/Users/bryankamau/Documents/SPRING 2019/CS5412/testingAzurePython/data/data job posts.csv" # jobs_df = pd.read_csv(path1) jobs_df_2 = pd.read_csv(data_file) # tokenize job descriptions def tokenize(text): """Returns a list of words that make up the text. Note: for simplicity, lowercase everything. Requirement: Use Regex to satisfy this function Params: {text: String} Returns: List """ regex = re.compile(r'[a-z]+') return regex.findall(text.lower()) # work with numpy arrays instead jobs_df_2 = jobs_df_2.as_matrix() r, c = np.shape(jobs_df_2) # gets all words from the location, job description and requirements # does this for all job entries def all_words(jobs, row_num, col_num): job_desc = str(jobs[row_num, col_num]) lst = [] if job_desc != "nan": lst = tokenize(job_desc) return lst # returns the unique words from all entries def uniq_words(jobs, col_num): """Returns a list of unique words in the entire data set Params: {text: String, col_num: int} Returns: List """ words = [] r, c = np.shape(jobs) for i in range(r): # print(jobs_df_2[i, 11]) job_desc = str(jobs[i, col_num]) if job_desc != "nan": lst = tokenize(job_desc) for word in lst: if not word in words: words.append(word) return words # all unique words. Job Description all_unique_words = uniq_words(jobs_df_2, 11) # all unique locations all_locs = uniq_words(jobs_df_2, 10) # qualifications all_quals = uniq_words(jobs_df_2, 13) # all necessary features # concat the job des, locations, quals all_features = all_unique_words[:1000] #+ all_locs + all_quals # remove all words with less than 3 letters # the do not contribute much to the feature vector # might mess with locations relevant_unique_words = list( filter(lambda x: len(x) > 3 and len(x) < 10, all_features)) # job_id document matrix job_doc_matrix = np.zeros((r, len(relevant_unique_words))) # labels are the companies matched with companies = [] for i in range(r): companies.append(str(jobs_df_2[i, 3])) # set of all unique companies uniq_companies = set(companies) # returns the index of a company # company inverted index. More efficient comp_inv_idx = defaultdict(list) for idx, comp in enumerate(uniq_companies): if idx not in comp_inv_idx[comp]: comp_inv_idx[comp].append(idx) # creates a integer indexing (list) for companies # uses the company inverted index company_indices = [] for comp in companies: company_indices.append(comp_inv_idx[comp]) # builld an inverted index for efficiency inverted_index = defaultdict(list) for idx, wrd in enumerate(relevant_unique_words): if idx not in inverted_index[wrd]: inverted_index[wrd].append(idx) # fill up the job_document matrix (company document matrix) # initial job_document matrix is all zeros for i in range(r): tokens = all_words(jobs_df_2, i, 11)+all_words(jobs_df_2, i, 10)+all_words(jobs_df_2, i, 13) counts = Counter(tokens) for key, val in counts.items(): if key in all_features: job_doc_matrix[i][(inverted_index[key])] = val # Machine Learning Aspect # Naive Bayes Model shuffle_split = ShuffleSplit(len(companies), test_size=0.2, random_state=0) train_idx, test_idx = next(iter(shuffle_split)) train_set = job_doc_matrix[train_idx] test_set = job_doc_matrix[test_idx] # could be made more efficient class_train = [company_indices[i] for i in train_idx] class_train_flat_list = [idx for sublist in class_train for idx in sublist] class_test = [company_indices[i] for i in test_idx] class_test_flat_list = [idx for sublist in class_test for idx in sublist] # MNNB classifier classifier = MultinomialNB() classifier.fit(train_set, class_train_flat_list) # predict p = classifier.predict(test_set) print("Accuracy: {:.2f}%".format(np.mean(p == class_test_flat_list)*100)) # TO DO NEXT # Automate the path determination process # Debug the third last part to clean it up # Parse the questionnaires filled in and use that for prediction/matching # Reduce the dimensionality of the data as not all the features are important - This would make the model # efficient, faster, more accurate and cleaner. More relevant to fit it in the start-up context # Validate/regular expressions for the Google Form for consistency
30.134146
107
0.726427
13d7ea5ccf93465aee1b87e7d4ff9e7180bdadc2
9,640
py
Python
install.py
HuskyHacks/O-Course
aa6faa93f391bf6a30784cba6e66a18f316a6401
[ "MIT" ]
12
2020-11-10T22:40:57.000Z
2022-01-14T03:35:19.000Z
install.py
HuskyHacks/O-Course
aa6faa93f391bf6a30784cba6e66a18f316a6401
[ "MIT" ]
null
null
null
install.py
HuskyHacks/O-Course
aa6faa93f391bf6a30784cba6e66a18f316a6401
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 ############################################################################### # # # HuskyHacks | HackerOne | The O-Course # # # ############################################################################### import colorama from colorama import Fore, Style import time import threading import sys import subprocess as sub from subprocess import Popen, PIPE import os import argparse parser = argparse.ArgumentParser() parser.add_argument("--accessible", help="Runs install script in accessible mode", action="store_true") args = parser.parse_args() logo = ("""\ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@&@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@#*****(/****/@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@#***&@/,,,,,,,,%@#***@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@&**#(,,,,,,,,,,,,*,,,,,@**/@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@(**/,,,,,,,,,,,,,,,,,,**,,,,/**@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@%**,,,,,,,,,,,,#&@@%*,,,,,,***,,***@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@/**,***,,,,(@/*********/@@,,,,****,**%@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@*******,,,/*,*************,,/#,,,******#@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@******,,,,,,******************,,,,,******(@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@******,,,,,**&@@@@@****(@@@@@&***,,,,******%@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@(*****,,,,/@@@@@@@@@@***@@@@@@@@@@**,,,******@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@*****,,,/@@@@*****%@****/@#****/@@@@/,,,*****/@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@(***,,,,@@@@@@@@@@@***(&(***@@@@@@@@@@@*,,,****@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@***,,,,@&&@@@@@@@%@@@@@@@@@@@#@@@@@@@#&@*,,,***%@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@#**,,,,***@@@@@@@@@@@@@@@@@@@@@@@@@@@@%***,,,****@@@@@@@@@@@@@@@@@ @@@@@@@@@@&****,,,,***/@@@#@@@@@@/*****(@@@@@@%@@@/***,,,******@@@@@@@@@@@@@@@ @@@@@@@@@*******,,,,***@@@@(@@@@@******/@@@@@%@@@%***,,,,*******/@@@@@@@@@@@@@ @@@@@@@@&********,,,****@@@@@*&@@@@#*%@@@@%*@@@@%****,,,*********@@@@@@@@@@@@@ @@@@@@@@@@(********,,****#@@@@&***********@@@@@/****,,,********@@@@@@@@@@@@@@@ @@@@@@@@@@@@%*******,,*****&@(@(*********#@/@%*****,,*******/@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@/******,**,****#@(*******#@/****,**********&@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@/******,,*****@@****/@@*****,,*******&@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@#*****,,*****@@&@&*****,,*****(@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@/***,,***********,,***/@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@/**,,*****,,**/@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@%/,,,/&@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ """) h1logo = ("""\ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@&&@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@* * @@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@*.#@@@@@@@@@@@@@@@,,%@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ """) logotext = ("""\ A __ __ __ __ __ __ / / / /_ _______/ /____ __/ / / /___ ______/ /_______ / /_/ / / / / ___/ //_/ / / / /_/ / __ `/ ___/ //_/ ___/ / __ / /_/ (__ ) ,< / /_/ / __ / /_/ / /__/ ,< (__ ) /_/ /_/\__,_/____/_/|_|\__, /_/ /_/\__,_/\___/_/|_/____/ /____/ Production... """) accessibleLogoText = "A HuskyHacks Production" h1logotext = ("""\ In collaboration with... _ _ _ ___ | || |__ _ __| |_____ _ _ / _ \ _ _ ___ | __ / _` / _| / / -_) '_| (_) | ' \/ -_) |_||_\__,_\__|_\_\___|_| \___/|_||_\___| """) accessibleH1LogoText = "In collaboration with HackerOne" ocourseText = ("""\ The ___ ___ / _ \ ___ / __|___ _ _ _ _ ___ ___ | (_) |___| (__/ _ \ || | '_(_-</ -_) \___/ \___\___/\_,_|_| /__/\___| An OWASP Top 10 Obstacle Course for Beginners """) accessibleOcourseText = "The O-Course: An An OWASP Top 10 Obstacle Course for Beginners" info = (Fore.BLUE + "[*] ") recc = (Fore.YELLOW + "[*] ") good = (Fore.GREEN + "[+] ") error = (Fore.RED + "[X] ") def is_root(): if os.geteuid() == 0: return 0 else: print(info+"You need to run the install script as root!\n[*] Usage: sudo python3 install.py [--accessible]") exit() def intro(): print(logo) print(logotext) input("(Press Enter to continue...)") print(h1logo) print(h1logotext) input("(Press Enter to continue...)") print(ocourseText) input("(Press Enter to begin setup...)") print("\n") print (info+"Setting up your lab now...") time.sleep(2) print ("\n"+info+"Checking Docker and Docker-compose...") time.sleep(2) print(Style.RESET_ALL) def accessibleIntro(): print(accessibleLogoText) input("(Press Enter to continue...)") print(accessibleH1LogoText) input("(Press Enter to continue...)") print(accessibleOcourseText) input("(Press Enter to begin setup...)") print("\n") print (info+"Setting up your lab now...") time.sleep(2) print ("\n"+info+"Checking Docker and Docker-compose...") time.sleep(2) print(Style.RESET_ALL) def dockerInstallScript(): os.chmod('scripts4Install/docker4kali.sh', 0o755) sub.call("scripts4Install/docker4kali.sh") time.sleep(2) print("\n") def composeInstallScript(): os.chmod('scripts4Install/compose4kali.sh', 0o755) sub.call("scripts4Install/compose4kali.sh") time.sleep(2) print("\n") def checkDocker(): print(info+"Checking Docker...") print(Style.RESET_ALL) time.sleep(2) p = sub.Popen(['docker --version'], shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE) output, error = p.communicate() if p.returncode == 0: print(good+"Docker is installed!") print(Style.RESET_ALL) time.sleep(2) elif p.returncode > 0: print(info+"Docker is not installed. Running Install script!") print(Style.RESET_ALL) time.sleep(2) dockerInstallScript() else: print(error+"Some weird error...") sys.exit() def checkCompose(): print(info+"Checking Docker-Compose...\n") time.sleep(2) p = sub.Popen(['docker-compose --version'], shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE) output, error = p.communicate() if p.returncode == 0: print(good+"Docker-compose is installed!") time.sleep(2) print(Style.RESET_ALL) elif p.returncode > 0: print(info+"Docker-compose is not installed. Running Install script!") time.sleep(2) print(Style.RESET_ALL) composeInstallScript() else: print(error+"Some weird error...") sys.exit() def updateBurpMsg(): print(recc+"Kali 2020.3 comes pre-installed with Burpsuite Community Edition...\n") time.sleep(2) print(recc+"But I recommend updating to the newest version! Among other things, it has the embedded proxy enabled browser -chef's kiss-\n") time.sleep(2) print(recc+"Visit https://portswigger.net/burp/releases/professional-community-2020-9-2\ to download it!\n") time.sleep(2) def allSystemsGo(): print(good+"All systems go!\n") time.sleep(2) print(good+"Good Luck, recruit!\n") print(Style.RESET_ALL) time.sleep(1) input("(Press Enter to launch your docker web app...)") def launchDocker(): sub.call(['docker-compose up'], shell=True) def accessibleMain(): is_root() accessibleIntro() checkDocker() checkCompose() updateBurpMsg() allSystemsGo() launchDocker() exit() def main(): is_root() intro() checkDocker() checkCompose() updateBurpMsg() allSystemsGo() launchDocker() exit() if args.accessible: accessibleMain() elif __name__ == "__main__": main()
38.870968
143
0.333091
96d974cb83c864017afdfd935e44bd91b17deaa0
13,432
py
Python
generated/intermediate/ansible-module-sdk/azure_rm_azurefirewall_info.py
audevbot/autorest.devops.debug
a507fb6e2dd7826212537f27d583f203aac1c28f
[ "MIT" ]
null
null
null
generated/intermediate/ansible-module-sdk/azure_rm_azurefirewall_info.py
audevbot/autorest.devops.debug
a507fb6e2dd7826212537f27d583f203aac1c28f
[ "MIT" ]
null
null
null
generated/intermediate/ansible-module-sdk/azure_rm_azurefirewall_info.py
audevbot/autorest.devops.debug
a507fb6e2dd7826212537f27d583f203aac1c28f
[ "MIT" ]
null
null
null
#!/usr/bin/python # # Copyright (c) 2019 Zim Kalinowski, (@zikalino) # # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: azure_rm_azurefirewall_info version_added: '2.9' short_description: Get AzureFirewall info. description: - Get info of AzureFirewall. options: resource_group: description: - The name of the resource group. type: str name: description: - Resource name. type: str id: description: - Resource ID. type: str type: description: - Resource type. type: str location: description: - Resource location. type: str application_rule_collections: description: - Collection of application rule collections used by Azure Firewall. type: list suboptions: priority: description: - Priority of the application rule collection resource. type: number action: description: - The action type of a rule collection type: dict rules: description: - Collection of rules used by a application rule collection. type: list suboptions: name: description: - Name of the application rule. type: str description: description: - Description of the rule. type: str source_addresses: description: - List of source IP addresses for this rule. type: list protocols: description: - Array of ApplicationRuleProtocols. type: list target_fqdns: description: - List of FQDNs for this rule. type: list fqdn_tags: description: - List of FQDN Tags for this rule. type: list provisioning_state: description: - The provisioning state of the resource. type: str name: description: - >- Gets name of the resource that is unique within a resource group. This name can be used to access the resource. type: str etag: description: - >- Gets a unique read-only string that changes whenever the resource is updated. type: str nat_rule_collections: description: - Collection of NAT rule collections used by Azure Firewall. type: list suboptions: priority: description: - Priority of the NAT rule collection resource. type: number action: description: - The action type of a NAT rule collection type: dict suboptions: type: description: - The type of action. type: str rules: description: - Collection of rules used by a NAT rule collection. type: list suboptions: name: description: - Name of the NAT rule. type: str description: description: - Description of the rule. type: str source_addresses: description: - List of source IP addresses for this rule. type: list destination_addresses: description: - List of destination IP addresses for this rule. type: list destination_ports: description: - List of destination ports. type: list protocols: description: - >- Array of AzureFirewallNetworkRuleProtocols applicable to this NAT rule. type: list translated_address: description: - The translated address for this NAT rule. type: str translated_port: description: - The translated port for this NAT rule. type: str provisioning_state: description: - The provisioning state of the resource. type: str name: description: - >- Gets name of the resource that is unique within a resource group. This name can be used to access the resource. type: str etag: description: - >- Gets a unique read-only string that changes whenever the resource is updated. type: str network_rule_collections: description: - Collection of network rule collections used by Azure Firewall. type: list suboptions: priority: description: - Priority of the network rule collection resource. type: number action: description: - The action type of a rule collection type: dict suboptions: type: description: - The type of action. type: str rules: description: - Collection of rules used by a network rule collection. type: list suboptions: name: description: - Name of the network rule. type: str description: description: - Description of the rule. type: str protocols: description: - Array of AzureFirewallNetworkRuleProtocols. type: list source_addresses: description: - List of source IP addresses for this rule. type: list destination_addresses: description: - List of destination IP addresses. type: list destination_ports: description: - List of destination ports. type: list provisioning_state: description: - The provisioning state of the resource. type: str name: description: - >- Gets name of the resource that is unique within a resource group. This name can be used to access the resource. type: str etag: description: - >- Gets a unique read-only string that changes whenever the resource is updated. type: str ip_configurations: description: - IP configuration of the Azure Firewall resource. type: list suboptions: private_ip_address: description: - >- The Firewall Internal Load Balancer IP to be used as the next hop in User Defined Routes. type: str id: description: - Resource ID. type: str provisioning_state: description: - The provisioning state of the resource. type: str name: description: - >- Name of the resource that is unique within a resource group. This name can be used to access the resource. type: str etag: description: - >- A unique read-only string that changes whenever the resource is updated. type: str provisioning_state: description: - The provisioning state of the resource. type: str etag: description: - >- Gets a unique read-only string that changes whenever the resource is updated. type: str extends_documentation_fragment: - azure author: - Zim Kalinowski (@zikalino) ''' EXAMPLES = ''' - name: List all Azure Firewalls for a given subscription azure_rm_azurefirewall_info: {} - name: List all Azure Firewalls for a given resource group azure_rm_azurefirewall_info: resource_group: myResourceGroup - name: Get Azure Firewall azure_rm_azurefirewall_info: resource_group: myResourceGroup name: myAzureFirewall ''' RETURN = ''' azure_firewalls: description: >- A list of dict results where the key is the name of the AzureFirewall and the values are the facts for that AzureFirewall. returned: always type: complex contains: azurefirewall_name: description: The key is the name of the server that the values relate to. type: complex contains: id: description: - Resource ID. returned: always type: str sample: null name: description: - Resource name. returned: always type: str sample: null type: description: - Resource type. returned: always type: str sample: null location: description: - Resource location. returned: always type: str sample: null tags: description: - Resource tags. returned: always type: >- unknown[DictionaryType {"$id":"440","$type":"DictionaryType","valueType":{"$id":"441","$type":"PrimaryType","knownPrimaryType":"string","name":{"$id":"442","fixed":false,"raw":"String"},"deprecated":false},"supportsAdditionalProperties":false,"name":{"$id":"443","fixed":false},"deprecated":false}] sample: null properties: description: - '' returned: always type: dict sample: null etag: description: - >- Gets a unique read-only string that changes whenever the resource is updated. returned: always type: str sample: null ''' import time import json from ansible.module_utils.azure_rm_common import AzureRMModuleBase from copy import deepcopy try: from msrestazure.azure_exceptions import CloudError from azure.mgmt.network import NetworkManagementClient from msrestazure.azure_operation import AzureOperationPoller from msrest.polling import LROPoller except ImportError: # This is handled in azure_rm_common pass class AzureRMAzureFirewallsInfo(AzureRMModuleBase): def __init__(self): self.module_arg_spec = dict( resource_group=dict( type='str' ), name=dict( type='str' ) ) self.resource_group = None self.name = None self.id = None self.name = None self.type = None self.location = None self.tags = None self.properties = None self.etag = None self.results = dict(changed=False) self.mgmt_client = None self.state = None self.url = None self.status_code = [200] self.query_parameters = {} self.query_parameters['api-version'] = '2018-11-01' self.header_parameters = {} self.header_parameters['Content-Type'] = 'application/json; charset=utf-8' self.mgmt_client = None super(AzureRMAzureFirewallsInfo, self).__init__(self.module_arg_spec, supports_tags=True) def exec_module(self, **kwargs): for key in self.module_arg_spec: setattr(self, key, kwargs[key]) self.mgmt_client = self.get_mgmt_svc_client(NetworkManagementClientClient, base_url=self._cloud_environment.endpoints.resource_manager) if (self.resource_group is not None and self.name is not None): self.results['azure_firewalls'] = self.format_item(self.get()) elif (self.resource_group is not None): self.results['azure_firewalls'] = self.format_item(self.list()) else: self.results['azure_firewalls'] = [self.format_item(self.listall())] return self.results def get(self): response = None try: response = self.mgmt_client.azure_firewalls.get(resource_group_name=self.resource_group, azure_firewall_name=self.name) except CloudError as e: self.log('Could not get info for @(Model.ModuleOperationNameUpper).') return response.as_dict() def list(self): response = None try: response = self.mgmt_client.azure_firewalls.list(resource_group_name=self.resource_group) except CloudError as e: self.log('Could not get info for @(Model.ModuleOperationNameUpper).') return response.as_dict() def listall(self): response = None try: response = self.mgmt_client.azure_firewalls.list_all() except CloudError as e: self.log('Could not get info for @(Model.ModuleOperationNameUpper).') return response.as_dict() def format_item(item): return item def main(): AzureRMAzureFirewallsInfo() if __name__ == '__main__': main()
28.762313
288
0.562239
ad73466591099ef862437b050bf1b9bb1f862570
1,434
py
Python
grifo/snippets/models.py
pavelsimo/Grifo
aff3c6e2c2d5ad7598e5c6d022b444d3ed78e0d2
[ "MIT" ]
null
null
null
grifo/snippets/models.py
pavelsimo/Grifo
aff3c6e2c2d5ad7598e5c6d022b444d3ed78e0d2
[ "MIT" ]
null
null
null
grifo/snippets/models.py
pavelsimo/Grifo
aff3c6e2c2d5ad7598e5c6d022b444d3ed78e0d2
[ "MIT" ]
null
null
null
import logging from django.contrib.auth.models import User from django.db import models from django.utils.translation import ugettext as _ logger = logging.getLogger(__name__) class SnippetCategory(models.Model): name = models.CharField(max_length=255, blank=False, verbose_name=_('Name')) created_at = models.DateTimeField(auto_now_add=True, verbose_name=_('Created at')) updated_at = models.DateTimeField(auto_now=True, verbose_name=_('Updated at')) def __unicode__(self): return self.name class Meta: verbose_name = _('Snippet Category') db_table = 'snippet_category' class Snippet(models.Model): # Foreign keys owner = models.ForeignKey(User, null=True) category = models.ForeignKey(SnippetCategory) # Fields title = models.CharField(max_length=255, blank=False, verbose_name=_('Title')) content = models.TextField(max_length=10000, blank=False, verbose_name=_('Content')) description = models.TextField(max_length=10000, blank=True, verbose_name=_('Description')) url = models.CharField(max_length=255, blank=True, verbose_name=_('Url')) created_at = models.DateTimeField(auto_now_add=True, verbose_name=_('Created at')) updated_at = models.DateTimeField(auto_now=True, verbose_name=_('Updated at')) def __unicode__(self): return self.title class Meta: verbose_name = _('Snippet') db_table = 'snippet'
34.142857
95
0.723152
e3dafcac2831ff9e3b48ced286eff2313eeca3b1
1,159
py
Python
examples-turtle/fractal-tree.py
data-octo/python_by_examples
e67b037f5051802e6aef7e0be3cca7e426a07bae
[ "MIT" ]
null
null
null
examples-turtle/fractal-tree.py
data-octo/python_by_examples
e67b037f5051802e6aef7e0be3cca7e426a07bae
[ "MIT" ]
null
null
null
examples-turtle/fractal-tree.py
data-octo/python_by_examples
e67b037f5051802e6aef7e0be3cca7e426a07bae
[ "MIT" ]
null
null
null
import turtle WIDTH = 15 BRANCH_LENGTH = 120 ROTATION_LENGTH = 27 class Tree_Fractal(turtle.Turtle): def __init__(self, level): super(Tree_Fractal, self).__init__() self.level = level self.hideturtle() self.speed('fastest') self.left(90) self.width(WIDTH) self.penup() self.back(BRANCH_LENGTH * 1.5) self.pendown() self.forward(BRANCH_LENGTH) self.draw_tree(BRANCH_LENGTH, level) def draw_tree(self, branch_length, level): width = self.width() self.width(width * 3. / 4.) branch_length *= 3. / 4. self.left(ROTATION_LENGTH) self.forward(branch_length) if level > 0: self.draw_tree(branch_length, level - 1) self.back(branch_length) self.right(2 * ROTATION_LENGTH) self.forward(branch_length) if level > 0: self.draw_tree(branch_length, level - 1) self.back(branch_length) self.left(ROTATION_LENGTH) self.width(width) if __name__ == '__main__': tree_level = 5 # choose tree = Tree_Fractal(tree_level) turtle.done()
25.195652
52
0.604832
448183a516311fe26c30e916b8da81cf3b6177f4
6,117
py
Python
PongG.py
lilJDoesntknow/CSC290-Pong
cea2a0d3d0d11ccee6e3987834424f97cb7ffc37
[ "MIT" ]
null
null
null
PongG.py
lilJDoesntknow/CSC290-Pong
cea2a0d3d0d11ccee6e3987834424f97cb7ffc37
[ "MIT" ]
null
null
null
PongG.py
lilJDoesntknow/CSC290-Pong
cea2a0d3d0d11ccee6e3987834424f97cb7ffc37
[ "MIT" ]
null
null
null
import pygame pygame.init() win = pygame.display.set_mode((1300,700)) pygame.display.set_caption("Pong") player1x = 0 player1y = 300 player2x = 1280 player2y = 300 ballx = 650 bally = 350 ballSpeedy = 3 ballSpeedx = 3 width = 20 height = 100 speedy = 5 vel = 5 screen_h = 500 screen_w = 700 # class of setups class Design(): def __init__(self): # setup the screen self.width = 700 self.height = 500 self.white = (100, 100, 100) self.black = (0, 0, 0) self.bright_white = (255, 255, 255) self.gold = (255, 255, 0) self.starting_screen() def starting_screen(self): # setup the starting screen playing = True while playing: for event in pygame.event.get(): if event.type == pygame.QUIT: playing = False screen = pygame.display.set_mode([self.width, self.height], pygame.HWSURFACE | pygame.DOUBLEBUF) screen.fill(self.black) pygame.display.set_caption('Pong') font = pygame.font.Font("freesansbold.ttf", 120) game_name = font.render("PONG", True, self.gold) screen.blit(game_name, [180, 100]) #setup the buttons mouse = pygame.mouse.get_pos() click = pygame.mouse.get_pressed() font = pygame.font.Font("freesansbold.ttf", 50) play = font.render("Play", True, self.black) quit = font.render("Quit", True, self.black) if self.width - 400 < mouse[0] < self.width - 290 and self.height - 100 < mouse[1] < self.height - 50: a = pygame.draw.rect(screen, self.bright_white, [self.width - 400, self.height - 100, 110, 50]) screen.blit(quit, a) if click[0] == 1: pygame.quit() else: b = pygame.draw.rect(screen, self.white, [self.width - 400, self.height - 100, 110, 50]) screen.blit(quit, b) if self.width - 400 < mouse[0] < self.width - 290 and self.height - 180 < mouse[1] < self.height - 130: c = pygame.draw.rect(screen, self.bright_white, [self.width - 400, self.height - 180, 110, 50]) screen.blit(play, c) if click[0] == 1: playing = False else: d = pygame.draw.rect(screen, self.white, [self.width - 400, self.height - 180, 110, 50]) screen.blit(play, d) font = pygame.font.Font("freesansbold.ttf", 30) helper = font.render("?", True, self.gold) message1 = "Player 1: Arrow keys" message2 = "Player 2: W and S keys" message3 = "Get 5 points to win" message4 = "Good Luck!" screen.blit(helper, [self.width - 270, self.height - 165]) if self.width - 270 < mouse[0] < self.width - 250 and self.height - 165 < mouse[1] < self.height - 135: pygame.draw.rect(screen, self.white, [150, 50, 400, 300]) help_message1 = font.render(message1, True, self.black) help_message2 = font.render(message2, True, self.black) help_message3 = font.render(message3, True, self.black) help_message4 = font.render(message4, True, self.black) screen.blit(help_message1, [155, 60]) screen.blit(help_message2, [155, 140]) screen.blit(help_message3, [155, 220]) screen.blit(help_message4, [155, 300]) pygame.display.update() class Paddle(): """A paddle for Pong. === Attributes === key1: either pygame.K_UP or pygame.K_w key2: either pygame.K_DOWN or pygame.K_s x: the x coordinate of this paddle y: the y coordinate of this paddle """ def __init__(self, key1, key2, xpos, ypos): """Creates a paddle """ self.key1 = key1 self.key2 = key2 self.x = xpos self.y = ypos def move(self): key = pygame.key.get_pressed() if key[self.key1] and self.y >= 0: self.y -= speedy if key[self.key2] and self.y <= 500: self.y += speedy class Ball: """A ball for Pong. === Attributes === speed: speed of this ball xcoor: the x coordinate of this ball ycoor: the y coordinate of this ball """ def __init__(self): """Creates a ball """ self.xcoor = 650 self.ycoor = 350 self.speed = 1 def move(self, xdir, ydir): """Moves the ball """ self.xcoor += self.speed * xdir self.ycoor += self.speed * ydir #win = pygame.display.set_mode((700, 500)) selecting = Design() player1 = Paddle(pygame.K_w, pygame.K_s, 0, 300) player2 = Paddle(pygame.K_UP, pygame.K_DOWN, 680, 300) run = True while run: pygame.time.delay(10) pygame.display.update() #keeping the loop running until the game is closed for event in pygame.event.get(): if event.type == pygame.QUIT: run = False keys = pygame.key.get_pressed() #trying out different value to put into the code #test different case and demonstrate how the game will be hehave like #codes that helps teammates to build their individual class keys = pygame.key.get_pressed() if keys[pygame.K_w] or keys[pygame.K_s]: player1.move() if keys[pygame.K_UP] or keys[pygame.K_DOWN]: player2.move() win.fill((0, 0, 0)) # construct the all three objects that can be use pygame.draw.rect(win, (255, 255, 255), (player1.x, player1.y, width, height)) pygame.draw.rect(win, (255, 255, 255), (player2.x, player2.y, width, height)) pygame.draw.circle(win, (255, 0, 0), (ballx, bally),10) bally += ballSpeedy ballx += ballSpeedx #testing boundaries if bally>=690: ballSpeedy=ballSpeedy*-1 if bally<=10: ballSpeedy=ballSpeedy*-1 if ballx>=player2x+10: ballSpeedx = ballSpeedx*-1 pygame.quit()
30.893939
115
0.566618
8471aca774dcabfdf3fa18f8c2c36e6aabaa8a15
6,007
py
Python
test/test_lean_minhash.py
sergiiz/datasketch
52f7d6ab575e7a3bf72417301170f141e3e66fe2
[ "MIT" ]
1,771
2015-04-07T18:06:02.000Z
2022-03-31T17:45:24.000Z
test/test_lean_minhash.py
sergiiz/datasketch
52f7d6ab575e7a3bf72417301170f141e3e66fe2
[ "MIT" ]
159
2015-08-15T09:47:58.000Z
2022-03-22T12:55:21.000Z
test/test_lean_minhash.py
sergiiz/datasketch
52f7d6ab575e7a3bf72417301170f141e3e66fe2
[ "MIT" ]
278
2015-04-08T13:50:27.000Z
2022-03-02T13:00:33.000Z
import unittest import struct import pickle import numpy as np from datasketch import MinHash from datasketch import LeanMinHash from test.utils import fake_hash_func class TestLeanMinHash(unittest.TestCase): def test_init(self): m1 = MinHash(4, 1, hashfunc=fake_hash_func) m2 = MinHash(4, 1, hashfunc=fake_hash_func) lm1 = LeanMinHash(m1) lm2 = LeanMinHash(m2) self.assertTrue(np.array_equal(lm1.hashvalues, lm2.hashvalues)) self.assertTrue(np.array_equal(lm1.seed, lm2.seed)) lm1 = LeanMinHash(seed=m1.seed, hashvalues=m1.hashvalues) lm2 = LeanMinHash(seed=m2.seed, hashvalues=m2.hashvalues) self.assertTrue(np.array_equal(lm1.hashvalues, lm2.hashvalues)) self.assertTrue(np.array_equal(lm1.seed, lm2.seed)) def test_is_empty(self): m = MinHash() lm = LeanMinHash(m) self.assertTrue(lm.is_empty()) def test_update(self): m1 = MinHash(4, 1, hashfunc=fake_hash_func) try: lm1 = LeanMinHash(m1) lm1.update(12) except TypeError: pass else: raise Exception def test_jaccard(self): m1 = MinHash(4, 1, hashfunc=fake_hash_func) m2 = MinHash(4, 1, hashfunc=fake_hash_func) lm1 = LeanMinHash(m1) lm2 = LeanMinHash(m2) self.assertTrue(lm1.jaccard(lm2) == 1.0) m2.update(12) lm2 = LeanMinHash(m2) self.assertTrue(lm1.jaccard(lm2) == 0.0) m1.update(13) lm1 = LeanMinHash(m1) self.assertTrue(lm1.jaccard(lm2) < 1.0) def test_merge(self): m1 = MinHash(4, 1, hashfunc=fake_hash_func) m2 = MinHash(4, 1, hashfunc=fake_hash_func) m2.update(12) lm1 = LeanMinHash(m1) lm2 = LeanMinHash(m2) lm1.merge(lm2) self.assertTrue(lm1.jaccard(lm2) == 1.0) def test_union(self): m1 = MinHash(4, 1, hashfunc=fake_hash_func) m2 = MinHash(4, 1, hashfunc=fake_hash_func) m2.update(12) lm1 = LeanMinHash(m1) lm2 = LeanMinHash(m2) u = LeanMinHash.union(lm1, lm2) self.assertTrue(u.jaccard(lm2) == 1.0) def test_bytesize(self): m1 = MinHash(4, 1, hashfunc=fake_hash_func) lm1 = LeanMinHash(m1) self.assertTrue(lm1.bytesize() == (4*4)+4+8) def test_serialize(self): m1 = MinHash(2, 1, hashfunc=fake_hash_func) lm1 = LeanMinHash(m1) buf = bytearray(lm1.bytesize()) # Only test for syntax lm1.serialize(buf) m2 = MinHash(2, 1, hashfunc=fake_hash_func) lm2 = LeanMinHash(m2) size = lm1.bytesize() buf = bytearray(size*2) lm1.serialize(buf) lm2.serialize(buf[size:]) def test_deserialize(self): m1 = MinHash(10, 1, hashfunc=fake_hash_func) m1.update(123) lm1 = LeanMinHash(m1) buf = bytearray(lm1.bytesize()) lm1.serialize(buf) # Test if we get back the exact same LeanMinHash objects after # deserializing from bytes lm1d = LeanMinHash.deserialize(buf) self.assertEqual(lm1d.seed, lm1.seed) self.assertEqual(len(lm1d.hashvalues), len(lm1.hashvalues)) self.assertTrue(all(hvd == hv for hv, hvd in zip(lm1.hashvalues, lm1d.hashvalues))) def test_deserialize_byteorder(self): for byteorder in "@=<>!": m1 = MinHash(10, 1, hashfunc=fake_hash_func) m1.update(123) lm1 = LeanMinHash(m1) buf = bytearray(lm1.bytesize(byteorder)) lm1.serialize(buf, byteorder) # Test if we get back the exact same LeanMinHash objects after # deserializing from bytes lm1d = LeanMinHash.deserialize(buf, byteorder) self.assertEqual(lm1d.seed, lm1.seed) self.assertEqual(len(lm1d.hashvalues), len(lm1.hashvalues)) self.assertTrue(all(hvd == hv for hv, hvd in zip(lm1.hashvalues, lm1d.hashvalues))) def test_pickle(self): m = MinHash(4, 1, hashfunc=fake_hash_func) m.update(123) m.update(45) lm = LeanMinHash(m) p = pickle.loads(pickle.dumps(lm)) self.assertEqual(p.seed, lm.seed) self.assertTrue(np.array_equal(p.hashvalues, lm.hashvalues)) def test_eq(self): m1 = MinHash(4, 1, hashfunc=fake_hash_func) m2 = MinHash(4, 1, hashfunc=fake_hash_func) m3 = MinHash(4, 2, hashfunc=fake_hash_func) m4 = MinHash(8, 1, hashfunc=fake_hash_func) m5 = MinHash(4, 1, hashfunc=fake_hash_func) m1.update(11) m2.update(12) m3.update(11) m4.update(11) m5.update(11) lm1 = LeanMinHash(m1) lm2 = LeanMinHash(m2) lm3 = LeanMinHash(m3) lm4 = LeanMinHash(m4) lm5 = LeanMinHash(m5) self.assertNotEqual(lm1, lm2) self.assertNotEqual(lm1, lm3) self.assertNotEqual(lm1, lm4) self.assertEqual(lm1, lm5) m1.update(12) m2.update(11) lm1 = LeanMinHash(m1) lm2 = LeanMinHash(m2) self.assertEqual(lm1, lm2) def test_count(self): m = MinHash(hashfunc=fake_hash_func) m.update(11) m.update(123) m.update(92) m.update(98) m.update(123218) m.update(32) lm = LeanMinHash(m) c = lm.count() self.assertGreaterEqual(c, 0) def test_hash(self): m = MinHash(hashfunc=fake_hash_func) m.update(11) m.update(123) m.update(92) m.update(98) m.update(123218) m.update(32) lm1 = LeanMinHash(m) lm2 = LeanMinHash(m) self.assertEqual(hash(lm1), hash(lm2)) m.update(444) lm3 = LeanMinHash(m) self.assertNotEqual(hash(lm1), hash(lm3)) d = dict() d[lm1] = True self.assertTrue(d[lm2]) if __name__ == "__main__": unittest.main()
31.450262
76
0.592975
4ba0ce5eec3e7db362e26eb57dd2691239363aae
2,875
py
Python
gammapy/spectrum/tests/test_simulation.py
watsonjj/gammapy
8d2498c8f63f73d1fbe4ba81ab02d9e72552df67
[ "BSD-3-Clause" ]
null
null
null
gammapy/spectrum/tests/test_simulation.py
watsonjj/gammapy
8d2498c8f63f73d1fbe4ba81ab02d9e72552df67
[ "BSD-3-Clause" ]
null
null
null
gammapy/spectrum/tests/test_simulation.py
watsonjj/gammapy
8d2498c8f63f73d1fbe4ba81ab02d9e72552df67
[ "BSD-3-Clause" ]
null
null
null
# Licensed under a 3-clause BSD style license - see LICENSE.rst import numpy as np from numpy.testing import assert_allclose import astropy.units as u from ...utils.energy import EnergyBounds from ...irf import EnergyDispersion, EffectiveAreaTable from .. import SpectrumExtraction, SpectrumSimulation from ..models import PowerLaw class TestSpectrumSimulation: def setup(self): e_true = SpectrumExtraction.DEFAULT_TRUE_ENERGY e_reco = SpectrumExtraction.DEFAULT_RECO_ENERGY edisp = EnergyDispersion.from_gauss( e_true=e_true, e_reco=e_reco, sigma=0.2, bias=0 ) aeff = EffectiveAreaTable.from_parametrization(energy=e_true) self.source_model = PowerLaw( index=2.3, amplitude="2.5e-12 cm-2 s-1 TeV-1", reference="1 TeV" ) self.background_model = PowerLaw( index=3, amplitude="3e-12 cm-2 s-1 TeV-1", reference="1 TeV" ) self.alpha = 1.0 / 3 # Minimal setup self.sim = SpectrumSimulation( aeff=aeff, edisp=edisp, source_model=self.source_model, livetime=4 * u.h ) def test_without_background(self): self.sim.simulate_obs(seed=23, obs_id=23) assert self.sim.obs.on_vector.total_counts == 160 def test_with_background(self): self.sim.background_model = self.background_model self.sim.alpha = self.alpha self.sim.simulate_obs(seed=23, obs_id=23) assert self.sim.obs.on_vector.total_counts == 530 assert self.sim.obs.off_vector.total_counts == 1112 def test_observations_list(self): seeds = np.arange(5) self.sim.run(seed=seeds) assert (self.sim.result.obs_id == seeds).all() assert self.sim.result[0].on_vector.total_counts == 158 assert self.sim.result[1].on_vector.total_counts == 158 assert self.sim.result[2].on_vector.total_counts == 161 assert self.sim.result[3].on_vector.total_counts == 168 assert self.sim.result[4].on_vector.total_counts == 186 def test_without_edisp(self): sim = SpectrumSimulation( aeff=self.sim.aeff, source_model=self.sim.source_model, livetime=4 * u.h ) sim.simulate_obs(seed=23, obs_id=23) assert sim.obs.on_vector.total_counts == 161 # The test value is taken from the test with edisp assert_allclose( np.sum(sim.npred_source.data.data.value), 167.467572145, rtol=0.01 ) def test_without_aeff(self): e_true = EnergyBounds.equal_log_spacing(1, 10, 5, u.TeV) self.source_model.parameters["amplitude"].quantity = "1 TeV-1 s-1" sim = SpectrumSimulation( source_model=self.source_model, livetime=4 * u.h, e_true=e_true ) sim.simulate_obs(seed=23, obs_id=23) assert sim.obs.on_vector.total_counts == 10509
38.333333
84
0.665739
162237756458723ff0e4c63858aa3ed42445e5fb
5,204
py
Python
python/realbeam_experiments/clamped_beam_Case_B.py
srl-ethz/diffPD_sim2real
e491668995a163b8ff7542d99f0b4e0c0f4ed2df
[ "MIT" ]
4
2022-02-10T02:28:42.000Z
2022-02-10T07:28:35.000Z
python/realbeam_experiments/clamped_beam_Case_B.py
srl-ethz/diffPD_sim2real
e491668995a163b8ff7542d99f0b4e0c0f4ed2df
[ "MIT" ]
null
null
null
python/realbeam_experiments/clamped_beam_Case_B.py
srl-ethz/diffPD_sim2real
e491668995a163b8ff7542d99f0b4e0c0f4ed2df
[ "MIT" ]
null
null
null
# ------------------------------------------------------------------------------ # Benchmark against real beam (3cm x 3cm x 10cm) - Case B # ------------------------------------------------------------------------------ ### Import some useful functions import sys sys.path.append('../') from pathlib import Path import time import os import numpy as np from argparse import ArgumentParser from py_diff_pd.common.common import ndarray, create_folder, print_info,delete_folder from py_diff_pd.common.project_path import root_path from py_diff_pd.common.renderer import PbrtRenderer from py_diff_pd.core.py_diff_pd_core import StdRealVector, HexMesh3d, HexDeformable, TetMesh3d, TetDeformable from py_diff_pd.common.hex_mesh import generate_hex_mesh, voxelize, hex2obj from py_diff_pd.common.display import render_hex_mesh, export_gif, export_mp4 # Utility functions from utils import read_measurement_data, plots_B_C, create_combined_video ### Import the simulation scene from Environments.beam_env import BeamEnv ### MAIN if __name__ == '__main__': seed = 42 np.random.seed(seed) folder = Path('Clamped_Beam_Case_B') ### Motion Markers data qs_real = read_measurement_data(43,270,'Measurement_data/beam_load52_V2_a.c3d') ### Material and simulation parameters # QTM by default captures 100Hz data, dt = h = 0.01 dt = 1e-2 frame_num = len(qs_real)-1 # Initial frame not counted # Material parameters: Dragon Skin 10 youngs_modulus = 263824 # Optimized value poissons_ratio = 0.499 density = 1.07e3 # Gravity state_force = [0, 0, -9.80709] # Create simulation scene tet_params = { 'density': density, 'youngs_modulus': youngs_modulus, 'poissons_ratio': poissons_ratio, 'state_force_parameters': state_force, 'mesh_type': 'tet' } tet_env = BeamEnv(seed, folder, tet_params,-0.51012,'B') tet_deformable = tet_env.deformable() hex_params = { 'density': density, 'youngs_modulus': youngs_modulus, 'poissons_ratio': poissons_ratio, 'state_force_parameters': state_force, 'mesh_type': 'hex', 'refinement': 2.35 } hex_env = BeamEnv(seed, folder, hex_params,-0.51012,'B') hex_deformable = hex_env.deformable() # Simulation parameters methods = ('pd_eigen', ) thread_ct = 8 opts = ( { 'max_pd_iter': 5000, 'max_ls_iter': 10, 'abs_tol': 1e-9, 'rel_tol': 1e-4, 'verbose': 0, 'thread_ct': thread_ct, 'use_bfgs': 1, 'bfgs_history_size': 10 }, ) ### Optimize for the best frame R, t = tet_env.fit_realframe(qs_real[0]) qs_real = qs_real @ R.T + t ### Ask for videos: parser = ArgumentParser() parser.add_argument('--video', action='store_true') args = parser.parse_args() ### Simulation print_info(f"DoF: {tet_deformable.dofs()} Tet and {hex_deformable.dofs()} Hex") render_frame_skip = 1 for method, opt in zip(methods, opts): # Tetrahedral simulation print_info("Simulation for Tet Mesh...") if args.video: _, info_tet = tet_env.simulate(dt, frame_num, method, opt, require_grad=False, vis_folder=method+'_tet', verbose=1 ) else: _, info_tet = tet_env.simulate(dt, frame_num, method, opt, require_grad=False, verbose=1 ) print_info(f"Total for {frame_num} frames took {info_tet['forward_time']:.2f}s for Tetrahedral {method}") print_info(f"Time per frame: {1000*info_tet['forward_time']/frame_num:.2f}ms") if args.video: print_info(f"Time for visualization: {info_tet['visualize_time']:.2f}s") # Hexahedral simulation print_info("Simulation for Hex Mesh...") if args.video: _, info_hex = hex_env.simulate(dt, frame_num, method, opt, require_grad=False, vis_folder=method+'_hex', verbose=1 ) else: _, info_hex = hex_env.simulate(dt, frame_num, method, opt, require_grad=False, verbose=1 ) print_info(f"Total for {frame_num} frames took {info_hex['forward_time']:.2f}s for Hexahedral {method}") print_info(f"Time per frame: {1000*info_hex['forward_time']/frame_num:.2f}ms") if args.video: print_info(f"Time for visualization: {info_hex['visualize_time']:.2f}s") qs_tet = info_tet['q'] qs_hex = info_hex['q'] ### Results from Comsol for E=263824 q_comsol=np.array([ [2.0836, 15.015, 12.669], [0.46708, -0.10591, 7.1591], [-3.4292, 30.016,-10.282] ]) q_comsol=q_comsol*0.001 ### Plots plots_B_C(folder,frame_num,dt,hex_env.target_idx_tip_left,tet_env.target_idx_tip_left,hex_deformable.dofs(),tet_deformable.dofs(),qs_tet, qs_hex,qs_real); ### Create combined video if args.video: fps=20 create_combined_video(folder,frame_num, hex_env.target_idx, tet_env.target_idx, tet_env,hex_env, qs_real, q_comsol,method,fps,dt)
32.525
163
0.623559
9d1c3b91016d7d2bf1a8c6f301cf0edf36199f0f
1,298
py
Python
tests/changes/vcs/test_base.py
alex/changes
69a17b4c639e7082a75d037384ccb68ead3a0b4b
[ "Apache-2.0" ]
1
2015-11-08T13:00:44.000Z
2015-11-08T13:00:44.000Z
tests/changes/vcs/test_base.py
alex/changes
69a17b4c639e7082a75d037384ccb68ead3a0b4b
[ "Apache-2.0" ]
null
null
null
tests/changes/vcs/test_base.py
alex/changes
69a17b4c639e7082a75d037384ccb68ead3a0b4b
[ "Apache-2.0" ]
null
null
null
from datetime import datetime from changes.models import Revision from changes.vcs.base import RevisionResult from changes.testutils.cases import TestCase class RevisionResultTestCase(TestCase): def test_simple(self): repo = self.create_repo() result = RevisionResult( id='c' * 40, author='Foo Bar <foo@example.com>', committer='Biz Baz <baz@example.com>', author_date=datetime(2013, 9, 19, 22, 15, 22), committer_date=datetime(2013, 9, 19, 22, 15, 23), message='Hello world!', parents=['a' * 40, 'b' * 40], ) revision, created = result.save(repo) assert created assert type(revision) == Revision assert revision.repository == repo assert revision.sha == 'c' * 40 assert revision.message == 'Hello world!' assert revision.author.name == 'Foo Bar' assert revision.author.email == 'foo@example.com' assert revision.committer.name == 'Biz Baz' assert revision.committer.email == 'baz@example.com' assert revision.parents == ['a' * 40, 'b' * 40] assert revision.date_created == datetime(2013, 9, 19, 22, 15, 22) assert revision.date_committed == datetime(2013, 9, 19, 22, 15, 23)
36.055556
75
0.61094
f30b2d0b45ec15060fb348e33aff51e7a5c90d94
15,382
py
Python
glance/tests/unit/api/test_cmd_cache_manage.py
wkoathp/glance
eb0c47047ddc28371f546437118986ed904f41d3
[ "Apache-2.0" ]
null
null
null
glance/tests/unit/api/test_cmd_cache_manage.py
wkoathp/glance
eb0c47047ddc28371f546437118986ed904f41d3
[ "Apache-2.0" ]
null
null
null
glance/tests/unit/api/test_cmd_cache_manage.py
wkoathp/glance
eb0c47047ddc28371f546437118986ed904f41d3
[ "Apache-2.0" ]
null
null
null
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import optparse import mock from glance.cmd import cache_manage from glance.common import exception import glance.common.utils import glance.image_cache.client from glance.tests import utils as test_utils class TestGlanceCmdManage(test_utils.BaseTestCase): @mock.patch.object(glance.image_cache.client.CacheClient, 'get_cached_images') @mock.patch.object(glance.common.utils.PrettyTable, 'make_row') def test_list_cached_images(self, mock_row_create, mock_images): """ Verify that list_cached() method correctly processes images with all filled data and images with not filled 'last_accessed' field. """ mock_images.return_value = [ {'last_accessed': float(0), 'last_modified': float(1378985797.124511), 'image_id': '1', 'size': '128', 'hits': '1'}, {'last_accessed': float(1378985797.124511), 'last_modified': float(1378985797.124511), 'image_id': '2', 'size': '255', 'hits': '2'}] cache_manage.list_cached(mock.Mock(), '') self.assertEqual(len(mock_images.return_value), mock_row_create.call_count) @mock.patch.object(glance.image_cache.client.CacheClient, 'get_cached_images') def test_list_cached_images_empty(self, mock_images): """ Verify that list_cached() method handles a case when no images are cached without errors. """ mock_images.return_value = [] self.assertEqual(cache_manage.SUCCESS, cache_manage.list_cached(mock.Mock(), '')) @mock.patch.object(glance.image_cache.client.CacheClient, 'get_queued_images') @mock.patch.object(glance.common.utils.PrettyTable, 'make_row') def test_list_queued_images(self, mock_row_create, mock_images): """Verify that list_queued() method correctly processes images.""" mock_images.return_value = [ {'image_id': '1'}, {'image_id': '2'}] cache_manage.list_queued(mock.Mock(), '') self.assertEqual(len(mock_images.return_value), mock_row_create.call_count) @mock.patch.object(glance.image_cache.client.CacheClient, 'get_queued_images') def test_list_queued_images_empty(self, mock_images): """ Verify that list_queued() method handles a case when no images were queued without errors. """ mock_images.return_value = [] self.assertEqual(cache_manage.SUCCESS, cache_manage.list_queued(mock.Mock(), '')) def test_queue_image_without_index(self): self.assertEqual(cache_manage.FAILURE, cache_manage.queue_image(mock.Mock(), [])) @mock.patch.object(glance.cmd.cache_manage, 'user_confirm') @mock.patch.object(glance.cmd.cache_manage, 'get_client') def test_queue_image_not_forced_not_confirmed(self, mock_client, mock_confirm): # options.forced set to False and queue confirmation set to False. mock_confirm.return_value = False mock_options = mock.Mock() mock_options.force = False self.assertEqual(cache_manage.SUCCESS, cache_manage.queue_image(mock_options, ['img_id'])) self.assertFalse(mock_client.called) @mock.patch.object(glance.cmd.cache_manage, 'user_confirm') @mock.patch.object(glance.cmd.cache_manage, 'get_client') def test_queue_image_not_forced_confirmed(self, mock_client, mock_confirm): # options.forced set to False and queue confirmation set to True. mock_confirm.return_value = True mock_options = mock.Mock() mock_options.force = False mock_options.verbose = True # to cover additional condition and line manager = mock.MagicMock() manager.attach_mock(mock_client, 'mock_client') self.assertEqual(cache_manage.SUCCESS, cache_manage.queue_image(mock_options, ['img_id'])) self.assertTrue(mock_client.called) self.assertIn( mock.call.mock_client().queue_image_for_caching('img_id'), manager.mock_calls) def test_delete_cached_image_without_index(self): self.assertEqual(cache_manage.FAILURE, cache_manage.delete_cached_image(mock.Mock(), [])) @mock.patch.object(glance.cmd.cache_manage, 'user_confirm') @mock.patch.object(glance.cmd.cache_manage, 'get_client') def test_delete_cached_image_not_forced_not_confirmed(self, mock_client, mock_confirm): # options.forced set to False and delete confirmation set to False. mock_confirm.return_value = False mock_options = mock.Mock() mock_options.force = False self.assertEqual( cache_manage.SUCCESS, cache_manage.delete_cached_image(mock_options, ['img_id'])) self.assertFalse(mock_client.called) @mock.patch.object(glance.cmd.cache_manage, 'user_confirm') @mock.patch.object(glance.cmd.cache_manage, 'get_client') def test_delete_cached_image_not_forced_confirmed(self, mock_client, mock_confirm): # options.forced set to False and delete confirmation set to True. mock_confirm.return_value = True mock_options = mock.Mock() mock_options.force = False mock_options.verbose = True # to cover additional condition and line manager = mock.MagicMock() manager.attach_mock(mock_client, 'mock_client') self.assertEqual( cache_manage.SUCCESS, cache_manage.delete_cached_image(mock_options, ['img_id'])) self.assertIn( mock.call.mock_client().delete_cached_image('img_id'), manager.mock_calls) @mock.patch.object(glance.cmd.cache_manage, 'user_confirm') @mock.patch.object(glance.cmd.cache_manage, 'get_client') def test_delete_cached_images_not_forced_not_confirmed(self, mock_client, mock_confirm): # options.forced set to False and delete confirmation set to False. mock_confirm.return_value = False mock_options = mock.Mock() mock_options.force = False self.assertEqual( cache_manage.SUCCESS, cache_manage.delete_all_cached_images(mock_options, None)) self.assertFalse(mock_client.called) @mock.patch.object(glance.cmd.cache_manage, 'user_confirm') @mock.patch.object(glance.cmd.cache_manage, 'get_client') def test_delete_cached_images_not_forced_confirmed(self, mock_client, mock_confirm): # options.forced set to False and delete confirmation set to True. mock_confirm.return_value = True mock_options = mock.Mock() mock_options.force = False mock_options.verbose = True # to cover additional condition and line manager = mock.MagicMock() manager.attach_mock(mock_client, 'mock_client') self.assertEqual( cache_manage.SUCCESS, cache_manage.delete_all_cached_images(mock_options, None)) self.assertTrue(mock_client.called) self.assertIn( mock.call.mock_client().delete_all_cached_images(), manager.mock_calls) def test_delete_queued_image_without_index(self): self.assertEqual(cache_manage.FAILURE, cache_manage.delete_queued_image(mock.Mock(), [])) @mock.patch.object(glance.cmd.cache_manage, 'user_confirm') @mock.patch.object(glance.cmd.cache_manage, 'get_client') def test_delete_queued_image_not_forced_not_confirmed(self, mock_client, mock_confirm): # options.forced set to False and delete confirmation set to False. mock_confirm.return_value = False mock_options = mock.Mock() mock_options.force = False self.assertEqual( cache_manage.SUCCESS, cache_manage.delete_queued_image(mock_options, ['img_id'])) self.assertFalse(mock_client.called) @mock.patch.object(glance.cmd.cache_manage, 'user_confirm') @mock.patch.object(glance.cmd.cache_manage, 'get_client') def test_delete_queued_image_not_forced_confirmed(self, mock_client, mock_confirm): # options.forced set to False and delete confirmation set to True. mock_confirm.return_value = True mock_options = mock.Mock() mock_options.force = False mock_options.verbose = True # to cover additional condition and line manager = mock.MagicMock() manager.attach_mock(mock_client, 'mock_client') self.assertEqual( cache_manage.SUCCESS, cache_manage.delete_queued_image(mock_options, ['img_id'])) self.assertTrue(mock_client.called) self.assertIn( mock.call.mock_client().delete_queued_image('img_id'), manager.mock_calls) @mock.patch.object(glance.cmd.cache_manage, 'user_confirm') @mock.patch.object(glance.cmd.cache_manage, 'get_client') def test_delete_queued_images_not_forced_not_confirmed(self, mock_client, mock_confirm): # options.forced set to False and delete confirmation set to False. mock_confirm.return_value = False mock_options = mock.Mock() mock_options.force = False self.assertEqual( cache_manage.SUCCESS, cache_manage.delete_all_queued_images(mock_options, None)) self.assertFalse(mock_client.called) @mock.patch.object(glance.cmd.cache_manage, 'user_confirm') @mock.patch.object(glance.cmd.cache_manage, 'get_client') def test_delete_queued_images_not_forced_confirmed(self, mock_client, mock_confirm): # options.forced set to False and delete confirmation set to True. mock_confirm.return_value = True mock_options = mock.Mock() mock_options.force = False mock_options.verbose = True # to cover additional condition and line manager = mock.MagicMock() manager.attach_mock(mock_client, 'mock_client') self.assertEqual( cache_manage.SUCCESS, cache_manage.delete_all_queued_images(mock_options, None)) self.assertTrue(mock_client.called) self.assertIn( mock.call.mock_client().delete_all_queued_images(), manager.mock_calls) @mock.patch.object(glance.cmd.cache_manage, 'get_client') def test_catch_error_not_found(self, mock_function): mock_function.side_effect = exception.NotFound() self.assertEqual(cache_manage.FAILURE, cache_manage.list_cached(mock.Mock(), None)) @mock.patch.object(glance.cmd.cache_manage, 'get_client') def test_catch_error_forbidden(self, mock_function): mock_function.side_effect = exception.Forbidden() self.assertEqual(cache_manage.FAILURE, cache_manage.list_cached(mock.Mock(), None)) @mock.patch.object(glance.cmd.cache_manage, 'get_client') def test_catch_error_unhandled(self, mock_function): mock_function.side_effect = exception.Duplicate() my_mock = mock.Mock() my_mock.debug = False self.assertEqual(cache_manage.FAILURE, cache_manage.list_cached(my_mock, None)) @mock.patch.object(glance.cmd.cache_manage, 'get_client') def test_catch_error_unhandled_debug_mode(self, mock_function): mock_function.side_effect = exception.Duplicate() my_mock = mock.Mock() my_mock.debug = True self.assertRaises(exception.Duplicate, cache_manage.list_cached, my_mock, None) def test_cache_manage_env(self): def_value = 'sometext12345678900987654321' self.assertNotEqual(def_value, cache_manage.env('PATH', default=def_value)) def test_cache_manage_env_default(self): def_value = 'sometext12345678900987654321' self.assertEqual(def_value, cache_manage.env('TMPVALUE1234567890', default=def_value)) def test_create_option(self): oparser = optparse.OptionParser() cache_manage.create_options(oparser) self.assertTrue(len(oparser.option_list) > 0) @mock.patch.object(glance.cmd.cache_manage, 'lookup_command') def test_parse_options_no_parameters(self, mock_lookup): oparser = optparse.OptionParser() cache_manage.create_options(oparser) result = self.assertRaises(SystemExit, cache_manage.parse_options, oparser, []) self.assertEqual(0, result.code) self.assertFalse(mock_lookup.called) @mock.patch.object(optparse.OptionParser, 'print_usage') def test_parse_options_no_arguments(self, mock_printout): oparser = optparse.OptionParser() cache_manage.create_options(oparser) result = self.assertRaises(SystemExit, cache_manage.parse_options, oparser, ['-p', '1212']) self.assertEqual(0, result.code) self.assertTrue(mock_printout.called) @mock.patch.object(glance.cmd.cache_manage, 'lookup_command') def test_parse_options_retrieve_command(self, mock_lookup): mock_lookup.return_value = True oparser = optparse.OptionParser() cache_manage.create_options(oparser) (options, command, args) = cache_manage.parse_options(oparser, ['-p', '1212', 'list-cached']) self.assertTrue(command) def test_lookup_command_unsupported_command(self): self.assertRaises(SystemExit, cache_manage.lookup_command, mock.Mock(), 'unsupported_command') def test_lookup_command_supported_command(self): command = cache_manage.lookup_command(mock.Mock(), 'list-cached') self.assertEqual(cache_manage.list_cached, command)
42.96648
79
0.638994
968692208f5dc7cb4600cc6f1b7b256f30dc6df3
6,918
py
Python
tests/python/unittest/test_arith_const_int_bound.py
mostafaelhoushi/tvm
ae21eddf5f13ffa82d514e8311c87f38bcac559a
[ "Apache-2.0" ]
1
2021-03-07T15:30:16.000Z
2021-03-07T15:30:16.000Z
tests/python/unittest/test_arith_const_int_bound.py
mostafaelhoushi/tvm
ae21eddf5f13ffa82d514e8311c87f38bcac559a
[ "Apache-2.0" ]
null
null
null
tests/python/unittest/test_arith_const_int_bound.py
mostafaelhoushi/tvm
ae21eddf5f13ffa82d514e8311c87f38bcac559a
[ "Apache-2.0" ]
1
2020-02-09T10:42:31.000Z
2020-02-09T10:42:31.000Z
import tvm def test_dtype_bound(): analyzer = tvm.arith.Analyzer() x = tvm.var("x", dtype="int64") bd = analyzer.const_int_bound(x) assert bd.min_value == bd.NEG_INF assert bd.max_value == bd.POS_INF x = tvm.var("x", dtype="int8") bd = analyzer.const_int_bound(x) assert bd.min_value == -128 assert bd.max_value == 127 x = tvm.var("x", dtype="uint8") bd = analyzer.const_int_bound(x) assert bd.min_value == 0 assert bd.max_value == 255 def test_cast_bound(): analyzer = tvm.arith.Analyzer() x = tvm.var("x", dtype="int8") bd = analyzer.const_int_bound((x % 3).astype("uint32")) assert bd.min_value == 0 assert bd.max_value == 2 bd = analyzer.const_int_bound( (x % 3).astype("float32").astype("int32")) assert bd.min_value == -2 assert bd.max_value == 2 def test_add_sub_bound(): analyzer = tvm.arith.Analyzer() x, y = tvm.var("x", "int64"), tvm.var("y", "int64") bd = analyzer.const_int_bound(x + y) assert bd.min_value == bd.NEG_INF assert bd.max_value == bd.POS_INF analyzer.update(x, tvm.arith.ConstIntBound(0, 4)) analyzer.update(y, tvm.arith.ConstIntBound(1, 10)) bd = analyzer.const_int_bound(x + y) assert bd.min_value == 1 assert bd.max_value == 14 bd = analyzer.const_int_bound(x - y) assert bd.min_value == -10 assert bd.max_value == 3 analyzer.update(x, tvm.arith.ConstIntBound(0, bd.POS_INF), override=True) bd = analyzer.const_int_bound(x - y) assert bd.min_value == -10 assert bd.max_value == bd.POS_INF bd = analyzer.const_int_bound(1 - x) assert bd.min_value == bd.NEG_INF assert bd.max_value == 1 def test_mul_bound(): analyzer = tvm.arith.Analyzer() x, y = tvm.var("x"), tvm.var("y") analyzer.update(x, tvm.arith.ConstIntBound(-2, 4)) analyzer.update(y, tvm.arith.ConstIntBound(4, 10)) bd = analyzer.const_int_bound(x * y + 20) assert bd.min_value == 0 assert bd.max_value == 60 analyzer.update(x, tvm.arith.ConstIntBound(-3, 4), override=True) analyzer.update(y, tvm.arith.ConstIntBound(-8, 2), override=True) bd = analyzer.const_int_bound(x * y) assert bd.min_value == -32 assert bd.max_value == 24 analyzer.update(x, tvm.arith.ConstIntBound(bd.NEG_INF, 4), override=True) analyzer.update(y, tvm.arith.ConstIntBound(-8, 2), override=True) bd = analyzer.const_int_bound(x * y) assert bd.min_value == bd.NEG_INF assert bd.max_value == bd.POS_INF def test_div_bound(): analyzer = tvm.arith.Analyzer() x, y = tvm.var("x"), tvm.var("y") analyzer.update(x, tvm.arith.ConstIntBound(-9, 4)) analyzer.update(y, tvm.arith.ConstIntBound(4, 10)) bd = analyzer.const_int_bound(x / y) assert bd.min_value == -2 analyzer.update(x, tvm.arith.ConstIntBound(-9, 4), override=True) analyzer.update(y, tvm.arith.ConstIntBound(-2, 0), override=True) bd = analyzer.const_int_bound(x / y) assert bd.min_value == -4 assert bd.max_value == 9 analyzer.update(x, tvm.arith.ConstIntBound(bd.NEG_INF, 4), override=True) analyzer.update(y, tvm.arith.ConstIntBound(-2, 1), override=True) bd = analyzer.const_int_bound(x / y) assert bd.min_value == bd.NEG_INF assert bd.max_value == bd.POS_INF def test_mod_bound(): analyzer = tvm.arith.Analyzer() x, y = tvm.var("x"), tvm.var("y") analyzer.update(x, tvm.arith.ConstIntBound(-9, 4)) analyzer.update(y, tvm.arith.ConstIntBound(4, 10)) bd = analyzer.const_int_bound(x % y) assert bd.min_value == -9 assert bd.max_value == 4 analyzer.update(x, tvm.arith.ConstIntBound(bd.NEG_INF, bd.POS_INF), override=True) analyzer.update(y, tvm.arith.ConstIntBound(4, 10), override=True) bd = analyzer.const_int_bound(x % y) assert bd.min_value == -9 assert bd.max_value == 9 analyzer.update(x, tvm.arith.ConstIntBound(1, bd.POS_INF), override=True) analyzer.update(y, tvm.arith.ConstIntBound(4, 10), override=True) bd = analyzer.const_int_bound(x % y) assert bd.min_value == 0 assert bd.max_value == 9 def test_min_max_bound(): analyzer = tvm.arith.Analyzer() x, y = tvm.var("x"), tvm.var("y") analyzer.update(x, tvm.arith.ConstIntBound(-9, 11)) analyzer.update(y, tvm.arith.ConstIntBound(4, 10)) bd = analyzer.const_int_bound(tvm.min(x, y)) assert bd.min_value == -9 assert bd.max_value == 10 analyzer.update(x, tvm.arith.ConstIntBound(bd.NEG_INF, bd.POS_INF), override=True) analyzer.update(y, tvm.arith.ConstIntBound(4, 10), override=True) bd = analyzer.const_int_bound(tvm.min(x, y)) assert bd.min_value == bd.NEG_INF assert bd.max_value == 10 bd = analyzer.const_int_bound(tvm.max(x, y)) assert bd.min_value == 4 assert bd.max_value == bd.POS_INF analyzer.update(x, tvm.arith.ConstIntBound(1, bd.POS_INF), override=True) analyzer.update(y, tvm.arith.ConstIntBound(4, 10), override=True) bd = analyzer.const_int_bound(tvm.max(x, y)) assert bd.min_value == 4 assert bd.max_value == bd.POS_INF def test_select_bound(): analyzer = tvm.arith.Analyzer() x, y = tvm.var("x"), tvm.var("y") analyzer.update(x, tvm.arith.ConstIntBound(-9, 11)) analyzer.update(y, tvm.arith.ConstIntBound(4, 10)) bd = analyzer.const_int_bound( tvm.expr.Select(x > 1, (y < 0).astype("int32"), y + 1)) assert bd.min_value == 0 assert bd.max_value == 11 def test_shift_and_bound(): analyzer = tvm.arith.Analyzer() x, y = tvm.var("x"), tvm.var("y") analyzer.update(x, tvm.arith.ConstIntBound(-9, 11)) analyzer.update(y, tvm.arith.ConstIntBound(2, 10)) bd = analyzer.const_int_bound(x >> y) assert bd.min_value == -3 assert bd.max_value == 2 bd = analyzer.const_int_bound(x & y) assert bd.min_value == 0 assert bd.max_value == 10 analyzer.update(x, tvm.arith.ConstIntBound(10, 11), override=True) bd = analyzer.const_int_bound(x & y) assert bd.min_value == 0 assert bd.max_value == 10 def test_mix_index_bound(): analyzer = tvm.arith.Analyzer() x, y = tvm.var("x"), tvm.var("y") analyzer.update(x, tvm.arith.ConstIntBound(0, 24 - 1)) analyzer.update(y, tvm.arith.ConstIntBound(0, 3 - 1)) bd = analyzer.const_int_bound((x % 8) + (x / 8) * 8) assert bd.min_value == 0 assert bd.max_value == 24 - 1 bd = analyzer.const_int_bound(y + x * 3) assert bd.min_value == 0 assert bd.max_value == 24 * 3 - 1 bd = analyzer.const_int_bound((x % 7) + (x / 7) * 7) assert bd.min_value == 0 assert bd.max_value == (23 // 7) * 7 + 6 if __name__ == "__main__": test_dtype_bound() test_cast_bound() test_add_sub_bound() test_mul_bound() test_div_bound() test_mod_bound() test_min_max_bound() test_select_bound() test_shift_and_bound() test_mix_index_bound()
31.445455
86
0.655103
3ea324d3b9714799658908b07c4b68292621f9be
26
py
Python
assetsy/constants.py
syrusakbary/assetsy
f7b7a9eeab858b0950bcf86113dead6b2c9972ab
[ "BSD-3-Clause" ]
1
2017-06-27T05:10:51.000Z
2017-06-27T05:10:51.000Z
assetsy/constants.py
syrusakbary/assetsy
f7b7a9eeab858b0950bcf86113dead6b2c9972ab
[ "BSD-3-Clause" ]
null
null
null
assetsy/constants.py
syrusakbary/assetsy
f7b7a9eeab858b0950bcf86113dead6b2c9972ab
[ "BSD-3-Clause" ]
null
null
null
DEFAULT_ALIAS = 'default'
13
25
0.769231
cf302f8b0ad3e6d99868e810b0b644665fd76b98
3,566
py
Python
azure-mgmt-compute/azure/mgmt/compute/v2017_12_01/models/image_os_disk.py
v-Ajnava/azure-sdk-for-python
a1f6f80eb5869c5b710e8bfb66146546697e2a6f
[ "MIT" ]
4
2016-06-17T23:25:29.000Z
2022-03-30T22:37:45.000Z
azure-mgmt-compute/azure/mgmt/compute/v2017_12_01/models/image_os_disk.py
v-Ajnava/azure-sdk-for-python
a1f6f80eb5869c5b710e8bfb66146546697e2a6f
[ "MIT" ]
2
2016-09-30T21:40:24.000Z
2017-11-10T18:16:18.000Z
azure-mgmt-compute/azure/mgmt/compute/v2017_12_01/models/image_os_disk.py
v-Ajnava/azure-sdk-for-python
a1f6f80eb5869c5b710e8bfb66146546697e2a6f
[ "MIT" ]
3
2016-05-03T20:49:46.000Z
2017-10-05T21:05:27.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class ImageOSDisk(Model): """Describes an Operating System disk. :param os_type: This property allows you to specify the type of the OS that is included in the disk if creating a VM from a custom image. <br><br> Possible values are: <br><br> **Windows** <br><br> **Linux**. Possible values include: 'Windows', 'Linux' :type os_type: str or ~azure.mgmt.compute.v2017_12_01.models.OperatingSystemTypes :param os_state: The OS State. Possible values include: 'Generalized', 'Specialized' :type os_state: str or ~azure.mgmt.compute.v2017_12_01.models.OperatingSystemStateTypes :param snapshot: The snapshot. :type snapshot: ~azure.mgmt.compute.v2017_12_01.models.SubResource :param managed_disk: The managedDisk. :type managed_disk: ~azure.mgmt.compute.v2017_12_01.models.SubResource :param blob_uri: The Virtual Hard Disk. :type blob_uri: str :param caching: Specifies the caching requirements. <br><br> Possible values are: <br><br> **None** <br><br> **ReadOnly** <br><br> **ReadWrite** <br><br> Default: **None for Standard storage. ReadOnly for Premium storage**. Possible values include: 'None', 'ReadOnly', 'ReadWrite' :type caching: str or ~azure.mgmt.compute.v2017_12_01.models.CachingTypes :param disk_size_gb: Specifies the size of empty data disks in gigabytes. This element can be used to overwrite the name of the disk in a virtual machine image. <br><br> This value cannot be larger than 1023 GB :type disk_size_gb: int :param storage_account_type: Specifies the storage account type for the managed disk. Possible values are: Standard_LRS or Premium_LRS. Possible values include: 'Standard_LRS', 'Premium_LRS' :type storage_account_type: str or ~azure.mgmt.compute.v2017_12_01.models.StorageAccountTypes """ _validation = { 'os_type': {'required': True}, 'os_state': {'required': True}, } _attribute_map = { 'os_type': {'key': 'osType', 'type': 'OperatingSystemTypes'}, 'os_state': {'key': 'osState', 'type': 'OperatingSystemStateTypes'}, 'snapshot': {'key': 'snapshot', 'type': 'SubResource'}, 'managed_disk': {'key': 'managedDisk', 'type': 'SubResource'}, 'blob_uri': {'key': 'blobUri', 'type': 'str'}, 'caching': {'key': 'caching', 'type': 'CachingTypes'}, 'disk_size_gb': {'key': 'diskSizeGB', 'type': 'int'}, 'storage_account_type': {'key': 'storageAccountType', 'type': 'StorageAccountTypes'}, } def __init__(self, os_type, os_state, snapshot=None, managed_disk=None, blob_uri=None, caching=None, disk_size_gb=None, storage_account_type=None): super(ImageOSDisk, self).__init__() self.os_type = os_type self.os_state = os_state self.snapshot = snapshot self.managed_disk = managed_disk self.blob_uri = blob_uri self.caching = caching self.disk_size_gb = disk_size_gb self.storage_account_type = storage_account_type
46.921053
151
0.65816
286b85389e55a25dd2beb39a3607f3290c48217b
8,056
py
Python
twisted/plugins/cowrie_plugin.py
matricali/cowrie
720cbd5065d890d261aa54b54c61b840f24e7ec0
[ "BSD-3-Clause" ]
1
2018-08-11T18:29:07.000Z
2018-08-11T18:29:07.000Z
twisted/plugins/cowrie_plugin.py
anitazhaochen/cowrie
6f5edd3b77163976208acf932513355a7e424b9b
[ "BSD-3-Clause" ]
null
null
null
twisted/plugins/cowrie_plugin.py
anitazhaochen/cowrie
6f5edd3b77163976208acf932513355a7e424b9b
[ "BSD-3-Clause" ]
1
2019-12-20T20:07:39.000Z
2019-12-20T20:07:39.000Z
# Copyright (c) 2015 Michel Oosterhof <michel@oosterhof.net> # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. The names of the author(s) may not be used to endorse or promote # products derived from this software without specific prior written # permission. # # THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR # IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES # OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. # IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED # AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY # OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF # SUCH DAMAGE. """ FIXME: This module contains ... """ from __future__ import print_function, division, absolute_import from zope.interface import implementer, provider import os import sys import configparser from twisted._version import __version__ from twisted.python import log, usage from twisted.plugin import IPlugin from twisted.application.service import IServiceMaker from twisted.application import service from twisted.cred import portal from twisted.internet import reactor from twisted.logger import ILogObserver, globalLogPublisher from cowrie.core.config import CONFIG from cowrie.core.utils import get_endpoints_from_section, create_endpoint_services from cowrie import core import cowrie.core.realm import cowrie.core.checkers import cowrie.telnet.transport import cowrie.ssh.factory if __version__.major < 17: raise ImportError("Your version of Twisted is too old. Please ensure your virtual environment is set up correctly.") class Options(usage.Options): """ This defines commandline options and flags """ # The '-c' parameters is currently ignored optParameters = [] optFlags = [ ['help', 'h', 'Display this help and exit.'] ] @provider(ILogObserver) def importFailureObserver(event): """ """ if 'failure' in event and event['failure'].type is ImportError: log.err("ERROR: %s. Please run `pip install -U -r requirements.txt` " "from Cowrie's install directory and virtualenv to install " "the new dependency" % event['failure'].value.message) globalLogPublisher.addObserver(importFailureObserver) @implementer(IServiceMaker, IPlugin) class CowrieServiceMaker(object): """ FIXME: Docstring """ tapname = "cowrie" description = "She sells sea shells by the sea shore." options = Options dbloggers = None output_plugins = None def makeService(self, options): """ Construct a TCPServer from a factory defined in Cowrie. """ if options["help"] is True: print("""Usage: twistd [options] cowrie [-h] Options: -h, --help print this help message. Makes a Cowrie SSH/Telnet honeypot. """) sys.exit(1) if os.name == 'posix' and os.getuid() == 0: print('ERROR: You must not run cowrie as root!') sys.exit(1) log.msg("Python Version {}".format(str(sys.version).replace('\n', ''))) log.msg("Twisted Version {}.{}.{}".format(__version__.major, __version__.minor, __version__.micro)) # ssh is enabled by default try: enableSSH = CONFIG.getboolean('ssh', 'enabled') except (configparser.NoSectionError, configparser.NoOptionError): enableSSH = True # telnet is disabled by default try: enableTelnet = CONFIG.getboolean('telnet', 'enabled') except (configparser.NoSectionError, configparser.NoOptionError): enableTelnet = False if enableTelnet is False and enableSSH is False: print('ERROR: You must at least enable SSH or Telnet') sys.exit(1) # Load db loggers self.dbloggers = [] for x in CONFIG.sections(): if not x.startswith('database_'): continue engine = x.split('_')[1] try: dblogger = __import__('cowrie.dblog.{}'.format(engine), globals(), locals(), ['dblog']).DBLogger() log.addObserver(dblogger.emit) self.dbloggers.append(dblogger) log.msg("Loaded dblog engine: {}".format(engine)) except: log.err() log.msg("Failed to load dblog engine: {}".format(engine)) # Load output modules self.output_plugins = [] for x in CONFIG.sections(): if not x.startswith('output_'): continue if CONFIG.getboolean(x, 'enabled') is False: continue engine = x.split('_')[1] try: output = __import__('cowrie.output.{}'.format(engine), globals(), locals(), ['output']).Output() log.addObserver(output.emit) self.output_plugins.append(output) log.msg("Loaded output engine: {}".format(engine)) except ImportError as e: log.err("Failed to load output engine: {} due to ImportError: {}".format(engine, e)) log.msg("Please install the dependencies for {} listed in requirements-output.txt".format(engine)) except Exception: log.err() log.msg("Failed to load output engine: {}".format(engine)) topService = service.MultiService() application = service.Application('cowrie') topService.setServiceParent(application) if enableSSH: factory = cowrie.ssh.factory.CowrieSSHFactory() factory.tac = self factory.portal = portal.Portal(core.realm.HoneyPotRealm()) factory.portal.registerChecker( core.checkers.HoneypotPublicKeyChecker()) factory.portal.registerChecker( core.checkers.HoneypotPasswordChecker()) if CONFIG.has_option('honeypot', 'auth_none_enabled') and \ CONFIG.getboolean('honeypot', 'auth_none_enabled') is True: factory.portal.registerChecker( core.checkers.HoneypotNoneChecker()) if CONFIG.has_section('ssh'): listen_endpoints = get_endpoints_from_section(CONFIG, 'ssh', 2222) else: listen_endpoints = get_endpoints_from_section(CONFIG, 'honeypot', 2222) create_endpoint_services(reactor, topService, listen_endpoints, factory) if enableTelnet: f = cowrie.telnet.transport.HoneyPotTelnetFactory() f.tac = self f.portal = portal.Portal(core.realm.HoneyPotRealm()) f.portal.registerChecker(core.checkers.HoneypotPasswordChecker()) listen_endpoints = get_endpoints_from_section(CONFIG, 'telnet', 2223) create_endpoint_services(reactor, topService, listen_endpoints, f) return topService # Now construct an object which *provides* the relevant interfaces # The name of this variable is irrelevant, as long as there is *some* # name bound to a provider of IPlugin and IServiceMaker. serviceMaker = CowrieServiceMaker()
36.785388
120
0.653426
0f10ca0e10c1c9ea5310c7ff86d31536d7dbc2cd
2,384
py
Python
setup.py
crazy-penguins/raft
3eb829f1c0d90608743cadac4c5a04017c93c607
[ "BSD-2-Clause" ]
null
null
null
setup.py
crazy-penguins/raft
3eb829f1c0d90608743cadac4c5a04017c93c607
[ "BSD-2-Clause" ]
null
null
null
setup.py
crazy-penguins/raft
3eb829f1c0d90608743cadac4c5a04017c93c607
[ "BSD-2-Clause" ]
null
null
null
#!/usr/bin/env python # Support setuptools only, distutils has a divergent and more annoying API and # few folks will lack setuptools. from setuptools import setup, find_packages import sys # Version info -- read without importing _locals = {} with open("raft/_version.py") as fp: exec(fp.read(), None, _locals) version = _locals["__version__"] # PyYAML ships a split Python 2/3 codebase. Unfortunately, some pip versions # attempt to interpret both halves of PyYAML, yielding SyntaxErrors. Thus, we # exclude whichever appears inappropriate for the installing interpreter. exclude = ["*.yaml2", 'tests'] # Frankenstein long_description: version-specific changelog note + README text = open("README.rst").read() long_description = """ To find out what's new in this version of raft, please see `the changelog <http://pyinvoke.org/changelog.html#{}>`_. {} """.format( version, text ) setup( name="raft", version=version, description="Pythonic task execution", license="BSD", long_description=long_description, author="Preetam Shingavi", author_email="p.shingavi@yahoo.com", url="http://docs.pyinvoke.org", packages=find_packages(exclude=exclude), include_package_data=True, entry_points={ "console_scripts": [ "raft = raft.main:program.run", "convoke = raft.main:program.run", ] }, classifiers=[ "Development Status :: 5 - Production/Stable", "Environment :: Console", "Intended Audience :: Developers", "Intended Audience :: System Administrators", "License :: OSI Approved :: BSD License", "Operating System :: POSIX", "Operating System :: Unix", "Operating System :: MacOS :: MacOS X", "Operating System :: Microsoft :: Windows", "Programming Language :: Python", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Topic :: Software Development", "Topic :: Software Development :: Build Tools", "Topic :: Software Development :: Libraries", "Topic :: Software Development :: Libraries :: Python Modules", "Topic :: System :: Software Distribution", "Topic :: System :: Systems Administration", ], )
33.577465
78
0.651846
9b711051461c35952291ec76ef7e2173413f6a71
23,178
py
Python
submodules/ethio/kivy/trace_plot.py
BerkeleyLab/CMOC
79601fc64afde369a8e0534c3e87eb29cd927299
[ "BSD-3-Clause-LBNL" ]
3
2018-12-07T06:01:36.000Z
2022-02-07T17:56:15.000Z
submodules/ethio/kivy/trace_plot.py
BerkeleyLab/CMOC
79601fc64afde369a8e0534c3e87eb29cd927299
[ "BSD-3-Clause-LBNL" ]
null
null
null
submodules/ethio/kivy/trace_plot.py
BerkeleyLab/CMOC
79601fc64afde369a8e0534c3e87eb29cd927299
[ "BSD-3-Clause-LBNL" ]
1
2019-12-05T07:15:41.000Z
2019-12-05T07:15:41.000Z
from __future__ import division import numpy as np from scipy import signal from collections import deque from kivy.uix.boxlayout import BoxLayout from kivy.logger import Logger from kivy.garden.matplotlib.backend_kivyagg import FigureCanvas import matplotlib.pyplot as plt import matplotlib as mpl import matplotlib.ticker as ticker from matplotlib.ticker import MultipleLocator from matplotlib.backends.backend_pdf import PdfPages from mpl_toolkits.mplot3d import Axes3D # http://matplotlib.org/users/dflt_style_changes.html # mpl.style.use('classic') mpl.rcParams['lines.linewidth'] = 1.0 # mpl.rcParams['legend.fontsize'] = 10 # mpl.rcParams.update({'font.size': 9}) class TracesPlot(BoxLayout): def time_formatter(self, x, pos): return '{:.1f}'.format(x * 1e3) def freq_formatter(self, x, pos): return '{:.3f}'.format(x * 1e-6) def log10_formatter(self, y, pos): return '{:.1f}'.format(np.log10(y)) def __init__(self, **kwargs): super(TracesPlot, self).__init__(**kwargs) self.mode = 'FFT' self._cids = [] self.lines = {} self.time_format = ticker.FuncFormatter(self.time_formatter) self.freq_format = ticker.FuncFormatter(self.freq_formatter) self.log10_format = ticker.FuncFormatter(self.log10_formatter) chan_keep_names = kwargs.get('chan_keep_names', []) length = kwargs.get('length', 256) self.time_step = kwargs.get('time_step', 1) self.full_scale = kwargs.get('yscale', 8192) self.has_yunit = kwargs.get('has_yunit', False) avg_en = kwargs.get('avg_en', False) avg_num = 16 if avg_en else 1 self.avg_fifo = deque(maxlen=avg_num) # FIFO for averaging self.clear_all() self.prep_plot(chan_keep_names, length, self.full_scale, self.has_yunit) def prep_xy_data(self, time_length, time_step): """ Common for IQ mode plots """ self.time_step = time_step x_data = np.arange(0., time_step*time_length, time_step) y_data = np.zeros(time_length) return x_data, y_data def save_pdf_fig(self, pdf_name): with PdfPages(pdf_name) as pp: pp.savefig() def set_average_length(self, length=16): del self.avg_fifo self.avg_fifo = deque(maxlen=length) def clear_average_cache(self): self.avg_fifo.clear() def clear_all(self): self.clear_average_cache() self.clear_widgets() plt.close('all') self.disconnect_evt() def set_axes_xdata(self, xdata): """ Common for RAW, FFT, FFT_IQ mode """ self.x_data = xdata xmax = max(xdata) for line in self.lines: line.set_xdata(xdata) for ax in self.axes: ax.set_xlim(0, xmax) def set_axes_xdata_2line(self, xdata): """ Common for MP """ self.x_data = xdata xmax = max(xdata) for line_grp in self.lines: for line in line_grp: line.set_xdata(xdata) for ax in self.axes: ax.set_xlim(0, xmax) def set_axes_ylim(self, val=8192, has_yunit=False, yscale=145): """ Common for FFT, FFT_IQ mode """ self.full_scale = val major_locator = MultipleLocator(10) minor_locator = MultipleLocator(2) self.axes[0].yaxis.set_major_locator(major_locator) self.axes[0].yaxis.set_minor_locator(minor_locator) if not has_yunit: self.axes[0].set_ylabel('Power Spectrum [(dBFS)]') ymax = 0 else: # in dBm ymax = 10*np.log10(val**2/50*1e3) self.axes[0].set_ylabel('Power Spectrum [dBm]') self.axes[0].set_yscale('linear') ymin = ymax - yscale Logger.info('Set full scale to: %8.3f, %8.3f' % (ymin, ymax)) self.axes[0].set_ylim(ymin, ymax) def set_axes_yunit(self, has_yunit=False): self.has_yunit = has_yunit self.set_axes_ylim(self.full_scale, has_yunit) def disconnect_evt(self): for cid in self._cids: self.fig.canvas.mpl_disconnect(cid) def post_prep_plot(self, x_data, yscale, has_yunit): self.set_axes_xdata(x_data) self.set_axes_ylim(yscale) self.set_axes_yunit(has_yunit) self.fig.canvas.figure.patch.set_facecolor('white') self.add_widget(FigureCanvas(self.fig)) c1 = self.fig.canvas.mpl_connect('figure_enter_event', self.enter_fig) c2 = self.fig.canvas.mpl_connect('figure_leave_event', self.leave_fig) self._cids.extend([c1, c2]) def enter_fig(self, event): Logger.debug('%s:' % event.name) for ax in self.axes: ax.set_autoscaley_on(True) ax.relim() ax.autoscale_view(scalex=False, scaley=True) event.canvas.draw() def leave_fig(self, event): Logger.debug('%s:' % event.name) for ax in self.axes: ax.set_autoscaley_on(False) self.set_axes_ylim(self.full_scale, self.has_yunit) event.canvas.draw() def update_wfm_with_mode(self, darray, mode): if mode == self.mode: return self.update_wfm(darray) else: Logger.warning( 'Mismatched data mode. data mode = %s, current plot mode= %s' % (mode, self.mode)) return None def calc_spectra(self, varray, den_dds=22): """ TODO: pass den_dds from llrfapp Returns RMS linear spectrum in counts Use real part for single sided spectrum and correct scalling. See signal/spectral.py """ try: pxxs = [] mod = varray.shape[-1] % den_dds r = varray if mod == 0 else varray[:, :-mod] for x in r.real: freq, p_spec = signal.periodogram( x, 1./self.time_step, 'flattop', scaling='spectrum') pxxs.append(p_spec) return freq, np.array(pxxs) except TypeError as err: Logger.info('calc_spectra: %r' % err) def convert_cnt2_to_dbfs(self, cnt2): """ Convert from cnt^2 to dBFS Amplitude of sinusoidal component is sqrt(2)*(rms amplitude) """ c2 = 2*cnt2.clip(min=1e-15) # avoid divide by 0 fs_cnt2 = self.full_scale**2 return 10 * (np.log10(c2) - np.log10(fs_cnt2)) def convert_vrms2_to_dbm(self, vrms2): """ Convert from V_rms^2 to dBm Amplitude of sinusoidal component is sqrt(2)*(rms amplitude) """ v2 = 2*vrms2.clip(min=1e-15) # avoid divide by 0 return 10 * np.log10(v2 / 50. * 1e3) def update_wfm(self, darray): # f, [fft1, fft2, ...] for FFT, FFT_IQ mode f, yarrays = self.calc_spectra(darray) if self.has_yunit: # adc count to vrms2 is done at llrfapp yarrays = self.convert_vrms2_to_dbm(yarrays) else: yarrays = self.convert_cnt2_to_dbfs(yarrays) self.avg_fifo.append(np.array(yarrays)) yarrays_mean = np.mean(self.avg_fifo, axis=0) try: for line, ydata in zip(self.lines, yarrays_mean): line.set_data(f, ydata) self.fig.canvas.draw() return f, yarrays_mean except Exception as err: Logger.warning('update_fft_wfm: %r' % err) class TracesPlotMP(TracesPlot): def __init__(self, **kwargs): super(TracesPlotMP, self).__init__(**kwargs) self.mode = 'MP' def set_axes_xdata(self, xdata): return self.set_axes_xdata_2line(xdata) def set_axes_ylim(self, val=8192, has_yunit=False): self.full_scale = val Logger.info('Set full scale to: %8.3f' % val) self.axes[0].set_ylim(0, val) self.axes[1].set_ylim(-np.pi, np.pi) def set_axes_yunit(self, has_yunit=False): self.has_yunit = has_yunit label_unit = 'Count' if not has_yunit else 'V' self.axes[0].set_ylabel('Magnitude ['+label_unit+']') self.axes[1].set_ylabel('Phase [Radian]') def prep_plot(self, chan_keep_names, length, yscale, has_yunit): x_data, y_data = self.prep_xy_data(length, self.time_step) # Magnitude and phase subplots, each containing multiple lines self.fig, self.axes = plt.subplots(nrows=2, sharex=True) def add_zero_lines(ax): return [ax.plot(x_data, y_data, label=chn)[0] for chn in chan_keep_names] self.lines = [add_zero_lines(ax) for ax in self.axes] # self.axes[0].set_title('Magnitude') self.axes[0].legend(loc='upper center', ncol=4, bbox_to_anchor=(0., 1.12, 1., .101), mode="expand", borderaxespad=0.) # self.axes[1].set_title('Phase') self.axes[1].set_xlabel('Time [ms]') self.axes[1].get_xaxis().set_major_formatter(self.time_format) for ax in self.axes: ax.grid(color='grey', alpha=.5, linestyle='--') self.post_prep_plot(x_data, yscale, has_yunit) def calc_mp_traces(self, iq_arrays, length): try: mag_trace = np.abs(iq_arrays) phase_trace = np.angle(iq_arrays) # - self.mon_phs return np.array([mag_trace, phase_trace]) except TypeError as err: Logger.info('calc_mp_traces: %r' % err) def update_wfm(self, iq_traces): mp_traces = self.calc_mp_traces(iq_traces, len(iq_traces[0])) # [[m1,m2...],[p1,p2...]] try: if mp_traces.any(): for line_grp, data_grp in zip(self.lines, mp_traces): # zip channels for line, ydata in zip(line_grp, data_grp): line.set_ydata(ydata) self.fig.canvas.draw() return mp_traces except Exception as err: Logger.warning('update_mp_wfm: %r' % err) class TracesPlotIQ(TracesPlot): def __init__(self, **kwargs): super(TracesPlotIQ, self).__init__(**kwargs) self.mode = 'IQ' def set_axes_xdata(self, xdata): self.x_data = xdata xmax = max(xdata) for line in self.lines: line.set_3d_properties(xdata, 'x') self.axes3d.set_xlim3d(0, xmax) def set_axes_ylim(self, val=8192, has_yunit=False): self.full_scale = val Logger.info('Set full scale to: %8.3f' % val) self.axes3d.set_zlim3d(-val, val) self.axes3d.set_ylim3d(-val, val) def set_axes_yunit(self, has_yunit=False): self.has_yunit = has_yunit label_unit = 'Count' if not has_yunit else 'V' self.axes3d.set_ylabel('I ' + '['+label_unit+']') self.axes3d.set_zlabel('Q ' + '['+label_unit+']') def enter_fig(self, event): Logger.info('enter_fig event %s:' % event) self.axes3d.view_init(0, 0) event.canvas.draw() def leave_fig(self, event): Logger.info('leave_fig event %s:' % event) self.axes3d.view_init() event.canvas.draw() def prep_plot(self, chan_keep_names, length, yscale, has_yunit): x_data, y_data = self.prep_xy_data(length, self.time_step) self.fig = plt.figure('iq') self.axes3d = self.fig.gca(projection='3d') self.axes3d.set_xlabel('Time [ms]') self.axes3d.get_xaxis().set_major_formatter(self.time_format) self.lines = [self.axes3d.plot(y_data, y_data, x_data, label=chn)[0] for chn in chan_keep_names] self.post_prep_plot(x_data, yscale, has_yunit) self.axes3d.mouse_init() self._cids.extend(self.axes3d._cids) def update_wfm(self, darray): # [[i1,i2...],[q1,q2...]] darray = np.array([darray.real, darray.imag]) try: for line, idata, qdata in zip(self.lines, darray[0], darray[1]): line.set_data(idata, qdata) line.set_3d_properties(self.x_data, 'x') self.fig.canvas.draw() return darray except Exception as err: Logger.warning('update_iq_wfm: %r' % err) class TracesPlotRAW(TracesPlot): def time_formatter(self, x, pos): return '{:.1f}'.format(x * 1e6) def __init__(self, **kwargs): super(TracesPlotRAW, self).__init__(**kwargs) self.mode = 'RAW' def set_title(self, title): self.axes[0].set_title(title) def set_axes_ylim(self, val=8192, has_yunit=False): self.full_scale = val Logger.info('Set full scale to: %8.3f' % val) self.axes[0].set_ylim(-val, val) def set_axes_yunit(self, has_yunit=False): self.has_yunit = has_yunit label_unit = 'Count' if not has_yunit else 'V' self.axes[0].set_ylabel('Raw ADC Value ['+label_unit+']') def prep_plot(self, chan_keep_names, length, yscale, has_yunit): x_data, y_data = self.prep_xy_data(length, self.time_step) # Single window with sigle or multiple lines self.fig, ax = plt.subplots() self.axes = [ax] ax.set_xlabel('Time [$\mu$s]') ax.get_xaxis().set_major_formatter(self.time_format) ax.grid(color='grey', alpha=.5, linestyle='--') self.lines = [ax.plot(x_data, y_data)[0]] self.set_title(chan_keep_names[0]) self.post_prep_plot(x_data, yscale, has_yunit) def update_wfm(self, yarray): # [[y]] try: for line in self.lines: line.set_ydata(yarray[0]) self.fig.canvas.draw() return yarray except Exception as err: Logger.warning('update_raw_wfm: %r' % err) class TracesPlotFFT(TracesPlot): def __init__(self, **kwargs): super(TracesPlotFFT, self).__init__(**kwargs) self.mode = 'FFT' def set_title(self, title): self.axes[0].set_title(title) def prep_xy_data(self, time_length, time_step): self.time_step = time_step x_length = int(time_length/2 + 1) x_step = (1/time_step)/x_length/2 x_data = np.arange(0., x_step*x_length, x_step) y_data = np.ones(x_length)*.01 return x_data, y_data def prep_plot(self, chan_keep_names, length, yscale, has_yunit): x_data, y_data = self.prep_xy_data(length, self.time_step) self.fig, ax = plt.subplots() self.axes = [ax] ax.set_xlabel('Frequency [MHz]') ax.grid(color='grey', alpha=.5, linestyle='--') self.lines = [ax.plot(x_data, y_data)[0]] self.set_title(chan_keep_names[0]) self.post_prep_plot(x_data, yscale, has_yunit) ax.get_xaxis().set_major_formatter(self.freq_format) class TracesPlotFFTIQ(TracesPlotFFT): def freq_formatter(self, x, pos): return '{:.2f}'.format(x * 1e-3) def __init__(self, **kwargs): super(TracesPlotFFTIQ, self).__init__(**kwargs) self.mode = 'FFT_IQ' def prep_plot(self, chan_keep_names, length, yscale, has_yunit): x_data, y_data = self.prep_xy_data(length, self.time_step) self.fig, ax = plt.subplots() self.axes = [ax] ax.set_xlabel('Frequency [kHz]') ax.set_xscale('log') ax.grid(color='grey', alpha=.5, linestyle='--') self.lines = [ax.plot(x_data, y_data, label=chn)[0] for chn in chan_keep_names] ax.legend( loc='upper center', ncol=4, bbox_to_anchor=(0., 1.01, 1., .101), mode="expand", borderaxespad=0.) self.post_prep_plot(x_data, yscale, has_yunit) ax.get_xaxis().set_major_formatter(self.freq_format) class TracesPlotBode(TracesPlotFFT): """ ALS SRRF LLRF specific, for now """ def __init__(self, **kwargs): """ hard coded pulse_len """ super(TracesPlotBode, self).__init__(**kwargs) self.mode = 'Bode' reg_dict = kwargs.get('reg_dict', {}) self.update_reg(reg_dict) def update_reg(self, reg_dict): self.reg_dict = {} for key, val in reg_dict.items(): self.reg_dict[key] = val['value'] self.hybrid_mode = self.reg_dict.get('dsp_hybrid_mode', 2) self.pulse_len = self.reg_dict.get('dsp_pulse_high_len', 512) self.amp_base_setp = self.reg_dict.get('dsp_pigain_setpoint_1', 100) self.phs_base_setp = self.reg_dict.get('dsp_pigain_setpoint_3', 0) self.amp_delta_enable = self.reg_dict.get('dsp_pigain_delta_enable_1', 0) self.phs_delta_enable = self.reg_dict.get('dsp_pigain_delta_enable_3', 0) self.amp_delta_setp = self.reg_dict.get('dsp_pigain_setpoint_delta_1', 1000) * self.amp_delta_enable self.phs_delta_setp = self.reg_dict.get('dsp_pigain_setpoint_delta_3', 0) * self.phs_delta_enable self.amp_intg_gbw = self.reg_dict.get('dsp_pigain_intg_gbw_1', 0) self.phs_intg_gbw = self.reg_dict.get('dsp_pigain_intg_gbw_3', 0) self.amp_prop_gbw = self.reg_dict.get('dsp_pigain_prop_gbw_1', 0) self.phs_prop_gbw = self.reg_dict.get('dsp_pigain_prop_gbw_3', 0) self.amp_prop_pole = self.reg_dict.get('dsp_pigain_prop_pole_1', 10000) self.phs_prop_pole = self.reg_dict.get('dsp_pigain_prop_pole_3', 10000) self.amp_close = self.amp_intg_gbw > 0 or self.amp_prop_gbw > 0 self.phs_close = self.phs_intg_gbw > 0 or self.phs_prop_gbw > 0 self.amp_base_setp = self.amp_base_setp if self.amp_close else 1000 # TODO self.phs_base_setp = self.phs_base_setp if self.phs_close else 0 def set_axes_ylim(self, val=8192, has_yunit=False, yscale=100): """ Common for FFT, FFT_IQ mode """ self.full_scale = val major_locator = MultipleLocator(10) minor_locator = MultipleLocator(2) self.axes[0].yaxis.set_major_locator(major_locator) self.axes[0].yaxis.set_minor_locator(minor_locator) self.axes[0].set_ylabel('Amplitude[(dB)]') ymax = 50 ymin = ymax - yscale Logger.info('Set full scale to: %8.3f, %8.3f' % (ymin, ymax)) self.axes[0].set_ylim(ymin, ymax) self.axes[1].set_ylim(-np.pi, np.pi) def set_axes_xdata(self, xdata): self.x_data = xdata xmax = max(xdata) for line_grp in self.lines: for line in line_grp: line.set_xdata(xdata) for ax in self.axes: ax.set_xlim(xdata[1], xmax) def prep_plot(self, chan_keep_names, length, yscale, has_yunit): x_data, y_data = self.prep_xy_data(length/4, self.time_step) self.fig, self.axes = plt.subplots(nrows=2, sharex='col') for ax in self.axes: ax.grid(color='grey', alpha=.5, linestyle='--') # self.axes[0].set_ylim([-50, 10]) self.axes[0].set_ylabel('Amplitude [dB]') self.axes[1].set_ylabel('Phase [Radian]') self.axes[1].set_xscale('log') self.axes[1].set_xlabel('Frequency [MHz]') # self.axes[1].set_xlim([freq[1], freq[-1]]) fft_trace_names = ['Open', 'Close', 'Cav Mux'] def add_zero_lines(ax): return [ax.plot(x_data, y_data, label=chn)[0] for chn in fft_trace_names] self.lines = [add_zero_lines(ax) for ax in self.axes] self.axes[0].legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=4, ncol=3, mode="expand", borderaxespad=0.) self.fig.subplots_adjust(hspace=0.05) self.post_prep_plot(x_data, yscale, has_yunit) self.axes[1].get_xaxis().set_major_formatter(self.freq_format) def calc_controller(self, i_gbw, p_gbw, pole, npt=512): i_gbw = i_gbw / (1 << 15) p_gbw = p_gbw / (1 << 14) pole = pole / (1 << 10) num = [(i_gbw+p_gbw), (i_gbw+p_gbw)*(pole-1), -pole*p_gbw] den = [1, pole-2, -pole+1] w, h = signal.freqz(num, den, worN=npt) return (w, h) def calc_freq_resp(self, traces): hybrid_gain = 2.498995 # from simulation poff_fdbk = -1.99925 # phase gain from fdbk view poff_fdbk = poff_fdbk + .9857 # XXX unknown offset poff_0 = -2.32135 poff_1 = 0.4284 npt = traces.shape[-1] # transform setp from fdbk view to original amp_setp = (self.amp_base_setp + self.amp_delta_setp) / hybrid_gain amp_base = self.amp_base_setp / hybrid_gain phs_setp = 2*np.pi*(self.phs_base_setp + self.phs_delta_setp)/(1 << 18) - poff_fdbk phs_base = 2*np.pi*(self.phs_base_setp)/(1 << 18) - poff_fdbk base = amp_base * np.exp(1.j * phs_base) pulse = amp_setp * np.exp(1.j * phs_setp) setp = np.concatenate((np.ones(self.pulse_len) * pulse, np.ones(npt-self.pulse_len) * base)) cav1 = traces[0] * np.exp(1.j * -poff_0) cav2 = traces[1] * np.exp(1.j * -poff_0) fwd2 = traces[2] * np.exp(1.j * -poff_1) cavm = (np.abs(cav1) + np.abs(cav2))/2 cavm = cavm * np.exp(1.j * (np.angle(fwd2))) close_h = np.divide(np.fft.fft(cavm), np.fft.fft(setp)) amp_w, amp_freqz = self.calc_controller( self.amp_intg_gbw, self.amp_prop_gbw, self.amp_prop_pole, npt=close_h.size) phs_w, phs_freqz = self.calc_controller( self.amp_intg_gbw, self.amp_prop_gbw, self.amp_prop_pole, npt=close_h.size) open_h = np.divide(close_h, (1-close_h)) fft_array = np.array([open_h, close_h, amp_freqz, phs_freqz]) return fft_array def calc_bode_traces(self, varray, den_dds=22): """ TODO: hard coded everything Must select 3 channels, hybrid mode == 2, cav1 cell, cav2 cell, cav2 fwd interleave means pulse_len is 1/4 of waveform length, or 512/2048 """ interleave = True if varray.shape[0] == 3 and self.hybrid_mode == 2: try: mod = varray.shape[-1] % den_dds varray = varray[:, :-mod] fft_array = self.calc_freq_resp(varray) # only positive frequencies freq = np.fft.rfftfreq(fft_array.shape[-1], d=self.time_step) fft_array = fft_array[:, :freq.size] if interleave: freq = freq[::4] fft_array = fft_array[:, 1::4] m_trace = 20 * np.log10(np.abs(fft_array)) p_trace = np.angle(fft_array) else: m_trace = 20 * np.log10(np.abs(fft_array)) p_trace = np.angle(fft_array) return freq, [m_trace, p_trace] except TypeError as err: Logger.info('calc_bode_traces: %r' % err) def update_wfm(self, iq_array): # freq, [fft1, fft2, ...] try: freq, mp_fft_traces = self.calc_bode_traces(iq_array) for line_grp, data_grp in zip(self.lines, mp_fft_traces): for line, ydata in zip(line_grp, data_grp): line.set_data(freq, ydata) self.fig.canvas.draw() return freq, mp_fft_traces except Exception as err: Logger.warning('update_fft_wfm: %r' % err)
39.218274
108
0.605186
f0f5ef476a079b6bf81e2a611af46084178fe0d8
1,512
py
Python
scripts/sdk/gn/test_project/tests/e2e/test.py
wwjiang007/fuchsia-1
0db66b52b5bcd3e27c8b8c2163925309e8522f94
[ "BSD-2-Clause" ]
210
2019-02-05T12:45:09.000Z
2022-03-28T07:59:06.000Z
scripts/sdk/gn/test_project/tests/e2e/test.py
wwjiang007/fuchsia-1
0db66b52b5bcd3e27c8b8c2163925309e8522f94
[ "BSD-2-Clause" ]
56
2021-06-03T03:16:25.000Z
2022-03-20T01:07:44.000Z
scripts/sdk/gn/test_project/tests/e2e/test.py
wwjiang007/fuchsia-1
0db66b52b5bcd3e27c8b8c2163925309e8522f94
[ "BSD-2-Clause" ]
73
2019-03-06T18:55:23.000Z
2022-03-26T12:04:51.000Z
#!/usr/bin/env python2.7 import os import sys import unittest import testing # The path to GN SDK devtools. This is set in main() TOOLS_DIR = None class TestTesting(unittest.TestCase): def test_popen(self): """A Smoke test to verify testing.popen() works as expected""" with testing.popen(['echo', 'hello']) as p: stdout, stderr = p.communicate() self.assertEqual(stderr, '') self.assertEqual(stdout, 'hello\n') class TestFemuSh(unittest.TestCase): def test_basic(self): femu = os.path.join(TOOLS_DIR, "femu.sh") args = [femu, "--headless", "--software-gpu"] # A message that tells us we've booted into Zircon. welcome_message = 'welcome to Zircon' # The number of output lines to search for `welcome_message`. # This fails if the number of lines before the message grows too large, # but is not flaky in the way that a timeout can be. max_line_count = 3000 line_count = 0 with testing.popen(args) as p: while line_count <= max_line_count: line_count += 1 line = p.stdout.readline() if not line: break # Log the output for debugging. print(line) if welcome_message in line: return self.fail(( 'Did not find message "{}" after searching {} lines. ' 'check the output above for an error in the command that was executed.' ).format(welcome_message, line_count)) if __name__ == '__main__': TOOLS_DIR = sys.argv.pop() unittest.main()
28
77
0.652778