hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
3614d33d41608cc98e11c32c8f6332442dec7bc8
44,167
py
Python
statsmodels/tsa/tests/results/arima111_css_results.py
yarikoptic/statsmodels
f990cb1a1ef0c9883c9394444e6f9d027efabec6
[ "BSD-3-Clause" ]
34
2018-07-13T11:30:46.000Z
2022-01-05T13:48:10.000Z
venv/lib/python3.6/site-packages/statsmodels/tsa/tests/results/arima111_css_results.py
HeyWeiPan/vnpy_crypto
844381797a475a01c05a4e162592a5a6e3a48032
[ "MIT" ]
6
2015-08-28T16:59:03.000Z
2019-04-12T22:29:01.000Z
venv/lib/python3.6/site-packages/statsmodels/tsa/tests/results/arima111_css_results.py
HeyWeiPan/vnpy_crypto
844381797a475a01c05a4e162592a5a6e3a48032
[ "MIT" ]
28
2015-04-01T20:02:25.000Z
2021-07-03T00:09:28.000Z
import numpy as np llf = np.array([-242.06033399744]) nobs = np.array([ 202]) k = np.array([ 4]) k_exog = np.array([ 1]) sigma = np.array([ .80201496146073]) chi2 = np.array([ 348.43324197088]) df_model = np.array([ 2]) k_ar = np.array([ 1]) k_ma = np.array([ 1]) params = np.array([ .82960638524364, .93479332833705, -.75728342544279, .64322799840686]) cov_params = np.array([ .14317811930738, -.01646077810033, .01510986837498, -.00280799533479, -.01646077810033, .00321032468661, -.00353027620719, .00097645385252, .01510986837498, -.00353027620719, .00484312817753, -.00112050648944, -.00280799533479, .00097645385252, -.00112050648944, .0007715609499]).reshape(4,4) xb = np.array([ .82960641384125, .82960641384125, .697261095047, .61113905906677, .51607495546341, .47362637519836, .41342103481293, .40238001942635, .37454023957253, .33222004771233, .32514902949333, .31093680858612, .30019253492355, .31159669160843, .29182952642441, .30349296331406, .29457464814186, .28427124023438, .30664679408073, .29696446657181, .31270903348923, .29268020391464, .28816330432892, .29006817936897, .30216124653816, .30066826939583, .31728908419609, .30679926276207, .3272570669651, .37292611598969, .36668366193771, .40278288722038, .36799272894859, .36827209591866, .38623574376106, .39983862638474, .42789059877396, .43138384819031, .46953064203262, .48066720366478, .48910140991211, .53098994493484, .54496067762375, .55554050207138, .58130383491516, .60081332921982, .58008605241776, .58214038610458, .58369606733322, .53162068128586, .54543834924698, .52040082216263, .50143963098526, .48708060383797, .47620677947998, .48572361469269, .51068127155304, .61833620071411, .61110657453537, .76539021730423, .84672522544861, .92606955766678, .96840506792068, 1.0892199277878, 1.1097067594528, 1.0187155008316, 1.0030621290207, .97345739603043, .95103752613068, .82755368947983, .84054774045944, .85038793087006, .84008830785751, .92104357481003, .89359468221664, .87280809879303, .91032028198242, .95647835731506, 1.0624366998672, 1.1426770687103, 1.1679404973984, 1.311328291893, 1.473167181015, 1.5602221488953, 1.7326545715332, 1.8809853792191, 1.7803012132645, 1.7750589847565, 1.8420933485031, 1.7863517999649, 1.8328944444656, 1.7793855667114, 1.5791050195694, 1.3564316034317, 1.5250737667084, 1.3155146837234, 1.014811873436, .98235523700714, .97552710771561, .97035628557205, 1.0196926593781, 1.0393049716949, .98315137624741, .97613000869751, .89980864524841, .96626943349838, .91009211540222, .88530200719833, .97303456068039, .57794612646103, .63377332687378, .65829831361771, .76562696695328, .86465454101563, .90414637327194, .95180231332779, .95238989591599, .98833626508713, 1.0333099365234, 1.0851185321808, 1.1066001653671, 1.2293750047684, 1.233595252037, 1.1480363607407, 1.2962552309036, 1.2842413187027, 1.3106474876404, 1.5614050626755, 1.4672855138779, 1.2362524271011, 1.1855486631393, 1.1294020414352, 1.1046353578568, 1.0858771800995, 1.0716745853424, 1.0786685943604, 1.0662157535553, 1.0390332937241, .96519494056702, .9802839756012, .92070508003235, .91108840703964, .95705932378769, .95637094974518, .97360169887543, 1.0221517086029, .9701629281044, .94854199886322, .98542231321335, 1.048855304718, 1.0081344842911, 1.0305507183075, 1.0475262403488, .93612504005432, .85176283121109, .89438372850418, .820152759552, .71068543195724, .76979607343674, .76130604743958, .77262878417969, .85220617055893, .84146595001221, .93983960151672, .97883212566376, 1.0793634653091, 1.1909983158112, 1.1690304279327, 1.2411522865295, 1.1360056400299, 1.0918840169907, .9164656996727, .76586949825287, .918093085289, .87360894680023, .92867678403854, 1.00588285923, .92233866453171, .84132260084152, .90422683954239, .9873673915863, .99707210063934, 1.1109310388565, 1.1971517801285, 1.138188958168, 1.2710473537445, 1.1763968467712, 1.7437561750412, 1.4101150035858, 1.3527159690857, 1.4335050582886, .99765706062317, 1.1067585945129, 1.3086627721786, 1.2968333959579, 1.3547962903976, 1.6768488883972, 1.5905654430389, 2.0774590969086, 1.3218278884888, .21813294291496, .30750840902328, .60612773895264]) y = np.array([np.nan, 29.809606552124, 29.847261428833, 29.961139678955, 29.886075973511, 30.013628005981, 29.96342086792, 30.152379989624, 30.214540481567, 30.142219543457, 30.245149612427, 30.290935516357, 30.3401927948, 30.521595001221, 30.511829376221, 30.683492660522, 30.734575271606, 30.764270782471, 30.996646881104, 31.046964645386, 31.252710342407, 31.242681503296, 31.308164596558, 31.410068511963, 31.582162857056, 31.680667877197, 31.897289276123, 31.956798553467, 32.207256317139, 32.652923583984, 32.8166847229, 33.252780914307, 33.267993927002, 33.468269348145, 33.786235809326, 34.099838256836, 34.527889251709, 34.831386566162, 35.369533538818, 35.780666351318, 36.189102172852, 36.830989837646, 37.344959259033, 37.855541229248, 38.481304168701, 39.100814819336, 39.480087280273, 39.9821434021, 40.483695983887, 40.631618499756, 41.145435333252, 41.420402526855, 41.701438903809, 41.987079620361, 42.276206970215, 42.685726165771, 43.210681915283, 44.318336486816, 44.811107635498, 46.365386962891, 47.646724700928, 49.026069641113, 50.268405914307, 52.089218139648, 53.409706115723, 54.018714904785, 55.003063201904, 55.873458862305, 56.751037597656, 56.927551269531, 57.840549468994, 58.750389099121, 59.540088653564, 60.921043395996, 61.693592071533, 62.472805023193, 63.610321044922, 64.856483459473, 66.562438964844, 68.24267578125, 69.667938232422, 71.911323547363, 74.473167419434, 76.760215759277, 79.732650756836, 82.780990600586, 84.380302429199, 86.475059509277, 89.042091369629, 90.886352539063, 93.332893371582, 95.179389953613, 95.979103088379, 96.356430053711, 99.02507019043, 99.415512084961, 98.914810180664, 99.782356262207, 100.7755279541, 101.770362854, 103.11968994141, 104.33930969238, 105.083152771, 106.07612609863, 106.59980773926, 107.96627044678, 108.61009216309, 109.38529968262, 110.87303924561, 109.27794647217, 110.13377380371, 110.85829162598, 112.16562652588, 113.56465148926, 114.70414733887, 115.95180511475, 116.95239257813, 118.188331604, 119.53330993652, 120.98512268066, 122.30659484863, 124.3293762207, 125.73359680176, 126.54803466797, 128.79624938965, 130.18423461914, 131.81065368652, 134.96139526367, 136.16728210449, 136.33625793457, 137.38554382324, 138.32939147949, 139.40463256836, 140.48587036133, 141.57167053223, 142.77867126465, 143.86622619629, 144.83903503418, 145.46519470215, 146.58029174805, 147.220703125, 148.11108398438, 149.35705566406, 150.35636901855, 151.47360229492, 152.82215881348, 153.5701751709, 154.44854736328, 155.68542480469, 157.14886474609, 158.00813293457, 159.23054504395, 160.44752502441, 160.83612060547, 161.25175476074, 162.39437866211, 162.82015991211, 162.91067504883, 163.96978759766, 164.66130065918, 165.47262573242, 166.75219726563, 167.54145812988, 169.03984069824, 170.27883911133, 171.9793548584, 173.89099121094, 175.06903076172, 176.84115600586, 177.5359954834, 178.49188232422, 178.5164642334, 178.46586608887, 180.21809387207, 180.8736114502, 182.12867736816, 183.60589599609, 184.12232971191, 184.54132080078, 185.80421447754, 187.28736877441, 188.39706420898, 190.2109375, 191.99716186523, 192.93818664551, 195.07104492188, 195.8763885498, 200.94375610352, 200.81010437012, 202.05271911621, 204.13349914551, 202.89764404297, 204.68077087402, 207.22866821289, 208.63482666016, 210.48779296875, 214.17184448242, 215.58755493164, 220.68745422363, 218.21083068848, 212.39213562012, 212.978515625, 215.07511901855]) resid = np.array([np.nan, -.6596063375473, -.49726036190987, -.5911386013031, -.34607490897179, -.46362805366516, -.21342028677464, -.31237986683846, -.40454092621803, -.22221945226192, -.26514956355095, -.2509354352951, -.13019436597824, -.30159646272659, -.1318296790123, -.24349159002304, -.25457563996315, -.07427024841309, -.24664734303951, -.10696394741535, -.30270880460739, -.22268049418926, -.18816292285919, -.13006833195686, -.20216277241707, -.10066751390696, -.24728938937187, -.07679972797632, .07274255156517, -.20292413234711, .03331403434277, -.35277983546257, -.16799576580524, -.06826904416084, -.08623649924994, .00015908146452, -.12788754701614, .06861615926027, -.06953293830156, -.08066567778587, .11089706420898, -.03098993562162, -.04496069997549, .04446176066995, .01869462057948, -.20081178843975, -.08008606731892, -.08214038610458, -.38369914889336, -.03162068501115, -.24543529748917, -.22040157020092, -.20144037902355, -.18708138167858, -.07620526105165, .01427639275789, .48931872844696, -.11833623051643, .78889113664627, .43461054563522, .45327401161194, .27393117547035, .73159569501877, .21077930927277, -.40970605611801, -.01871551014483, -.10306061804295, -.0734596773982, -.65103828907013, .0724478662014, .05945380032063, -.05038867890835, .45991089940071, -.12104434520006, -.09359546005726, .22719417512417, .28968048095703, .64352011680603, .53756183385849, .25732442736626, .93205803632736, 1.0886732339859, .72682982683182, 1.2397809028625, 1.1673469543457, -.18098846077919, .31969723105431, .72494095563889, .05790812522173, .61364978551865, .06710703670979, -.77938556671143, -.97910648584366, 1.1435683965683, -.92507529258728, -1.5155116319656, -.11481033265591, .01764474436641, .02447287365794, .32963913679123, .18031190335751, -.23930950462818, .01684862375259, -.37613153457642, .40019443631172, -.2662724852562, -.11008904129267, .51469951868057, -2.1730391979218, .22205695509911, .06622361391783, .54170626401901, .53436845541, .2353515625, .29585054516792, .04819770529866, .24760706722736, .31166675686836, .36669155955315, .21487690508366, .79340130090714, .17062658071518, -.33359375596046, .95196217298508, .10373862832785, .31576481461525, 1.589346408844, -.26140204071999, -1.0672763586044, -.13626158237457, -.18554861843586, -.02939598634839, -.00464448658749, .01412893645465, .1283223181963, .02133745700121, -.06621573865414, -.33903631567955, .13481116294861, -.28028702735901, -.02071117423475, .28890857100487, .04294065013528, .14363515377045, .32640132308006, -.22214868664742, -.0701690018177, .25145494937897, .41458681225777, -.14886146783829, .19186246395111, .16944620013237, -.54752624034882, -.43612506985664, .2482432872057, -.39438369870186, -.62015581130981, .28931456804276, -.06979911774397, .03869699314237, .4273681640625, -.05220314115286, .55854320526123, .26015737652779, .62115871906281, .72063958644867, .00899865385145, .53098171949387, -.44116449356079, -.13600566983223, -.89187180995941, -.81647485494614, .83413660526276, -.21809615194798, .32638800144196, .47133237123489, -.4058920443058, -.42233863472939, .35867437720299, .49578228592873, .11262346804142, .70294010639191, .58906590938568, -.19715182483196, .86181098222733, -.37105345726013, 3.3236031532288, -1.543759226799, -.11011194437742, .64728397130966, -2.2335081100464, .67635416984558, 1.2392344474792, .10933646559715, .49816474318504, 2.0072033405304, -.17484994232655, 3.0224411487579, -3.7984521389008, -6.0368394851685, .27887633442879, 1.4904805421829, 1.3098726272583]) yr = np.array([np.nan, -.6596063375473, -.49726036190987, -.5911386013031, -.34607490897179, -.46362805366516, -.21342028677464, -.31237986683846, -.40454092621803, -.22221945226192, -.26514956355095, -.2509354352951, -.13019436597824, -.30159646272659, -.1318296790123, -.24349159002304, -.25457563996315, -.07427024841309, -.24664734303951, -.10696394741535, -.30270880460739, -.22268049418926, -.18816292285919, -.13006833195686, -.20216277241707, -.10066751390696, -.24728938937187, -.07679972797632, .07274255156517, -.20292413234711, .03331403434277, -.35277983546257, -.16799576580524, -.06826904416084, -.08623649924994, .00015908146452, -.12788754701614, .06861615926027, -.06953293830156, -.08066567778587, .11089706420898, -.03098993562162, -.04496069997549, .04446176066995, .01869462057948, -.20081178843975, -.08008606731892, -.08214038610458, -.38369914889336, -.03162068501115, -.24543529748917, -.22040157020092, -.20144037902355, -.18708138167858, -.07620526105165, .01427639275789, .48931872844696, -.11833623051643, .78889113664627, .43461054563522, .45327401161194, .27393117547035, .73159569501877, .21077930927277, -.40970605611801, -.01871551014483, -.10306061804295, -.0734596773982, -.65103828907013, .0724478662014, .05945380032063, -.05038867890835, .45991089940071, -.12104434520006, -.09359546005726, .22719417512417, .28968048095703, .64352011680603, .53756183385849, .25732442736626, .93205803632736, 1.0886732339859, .72682982683182, 1.2397809028625, 1.1673469543457, -.18098846077919, .31969723105431, .72494095563889, .05790812522173, .61364978551865, .06710703670979, -.77938556671143, -.97910648584366, 1.1435683965683, -.92507529258728, -1.5155116319656, -.11481033265591, .01764474436641, .02447287365794, .32963913679123, .18031190335751, -.23930950462818, .01684862375259, -.37613153457642, .40019443631172, -.2662724852562, -.11008904129267, .51469951868057, -2.1730391979218, .22205695509911, .06622361391783, .54170626401901, .53436845541, .2353515625, .29585054516792, .04819770529866, .24760706722736, .31166675686836, .36669155955315, .21487690508366, .79340130090714, .17062658071518, -.33359375596046, .95196217298508, .10373862832785, .31576481461525, 1.589346408844, -.26140204071999, -1.0672763586044, -.13626158237457, -.18554861843586, -.02939598634839, -.00464448658749, .01412893645465, .1283223181963, .02133745700121, -.06621573865414, -.33903631567955, .13481116294861, -.28028702735901, -.02071117423475, .28890857100487, .04294065013528, .14363515377045, .32640132308006, -.22214868664742, -.0701690018177, .25145494937897, .41458681225777, -.14886146783829, .19186246395111, .16944620013237, -.54752624034882, -.43612506985664, .2482432872057, -.39438369870186, -.62015581130981, .28931456804276, -.06979911774397, .03869699314237, .4273681640625, -.05220314115286, .55854320526123, .26015737652779, .62115871906281, .72063958644867, .00899865385145, .53098171949387, -.44116449356079, -.13600566983223, -.89187180995941, -.81647485494614, .83413660526276, -.21809615194798, .32638800144196, .47133237123489, -.4058920443058, -.42233863472939, .35867437720299, .49578228592873, .11262346804142, .70294010639191, .58906590938568, -.19715182483196, .86181098222733, -.37105345726013, 3.3236031532288, -1.543759226799, -.11011194437742, .64728397130966, -2.2335081100464, .67635416984558, 1.2392344474792, .10933646559715, .49816474318504, 2.0072033405304, -.17484994232655, 3.0224411487579, -3.7984521389008, -6.0368394851685, .27887633442879, 1.4904805421829, 1.3098726272583]) mse = np.array([ 1.0121052265167, .66349595785141, .65449619293213, .64957880973816, .64683443307877, .64528465270996, .64440369606018, .64390099048615, .64361357688904, .64344894886017, .64335465431213, .64330065250397, .64326965808868, .64325189590454, .64324170351028, .6432358622551, .64323252439499, .64323055744171, .64322948455811, .64322882890701, .64322847127914, .64322829246521, .64322817325592, .64322811365128, .64322805404663, .64322805404663, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199, .64322799444199]) stdp = np.array([ .82960641384125, .82960641384125, .697261095047, .61113905906677, .51607495546341, .47362637519836, .41342103481293, .40238001942635, .37454023957253, .33222004771233, .32514902949333, .31093680858612, .30019253492355, .31159669160843, .29182952642441, .30349296331406, .29457464814186, .28427124023438, .30664679408073, .29696446657181, .31270903348923, .29268020391464, .28816330432892, .29006817936897, .30216124653816, .30066826939583, .31728908419609, .30679926276207, .3272570669651, .37292611598969, .36668366193771, .40278288722038, .36799272894859, .36827209591866, .38623574376106, .39983862638474, .42789059877396, .43138384819031, .46953064203262, .48066720366478, .48910140991211, .53098994493484, .54496067762375, .55554050207138, .58130383491516, .60081332921982, .58008605241776, .58214038610458, .58369606733322, .53162068128586, .54543834924698, .52040082216263, .50143963098526, .48708060383797, .47620677947998, .48572361469269, .51068127155304, .61833620071411, .61110657453537, .76539021730423, .84672522544861, .92606955766678, .96840506792068, 1.0892199277878, 1.1097067594528, 1.0187155008316, 1.0030621290207, .97345739603043, .95103752613068, .82755368947983, .84054774045944, .85038793087006, .84008830785751, .92104357481003, .89359468221664, .87280809879303, .91032028198242, .95647835731506, 1.0624366998672, 1.1426770687103, 1.1679404973984, 1.311328291893, 1.473167181015, 1.5602221488953, 1.7326545715332, 1.8809853792191, 1.7803012132645, 1.7750589847565, 1.8420933485031, 1.7863517999649, 1.8328944444656, 1.7793855667114, 1.5791050195694, 1.3564316034317, 1.5250737667084, 1.3155146837234, 1.014811873436, .98235523700714, .97552710771561, .97035628557205, 1.0196926593781, 1.0393049716949, .98315137624741, .97613000869751, .89980864524841, .96626943349838, .91009211540222, .88530200719833, .97303456068039, .57794612646103, .63377332687378, .65829831361771, .76562696695328, .86465454101563, .90414637327194, .95180231332779, .95238989591599, .98833626508713, 1.0333099365234, 1.0851185321808, 1.1066001653671, 1.2293750047684, 1.233595252037, 1.1480363607407, 1.2962552309036, 1.2842413187027, 1.3106474876404, 1.5614050626755, 1.4672855138779, 1.2362524271011, 1.1855486631393, 1.1294020414352, 1.1046353578568, 1.0858771800995, 1.0716745853424, 1.0786685943604, 1.0662157535553, 1.0390332937241, .96519494056702, .9802839756012, .92070508003235, .91108840703964, .95705932378769, .95637094974518, .97360169887543, 1.0221517086029, .9701629281044, .94854199886322, .98542231321335, 1.048855304718, 1.0081344842911, 1.0305507183075, 1.0475262403488, .93612504005432, .85176283121109, .89438372850418, .820152759552, .71068543195724, .76979607343674, .76130604743958, .77262878417969, .85220617055893, .84146595001221, .93983960151672, .97883212566376, 1.0793634653091, 1.1909983158112, 1.1690304279327, 1.2411522865295, 1.1360056400299, 1.0918840169907, .9164656996727, .76586949825287, .918093085289, .87360894680023, .92867678403854, 1.00588285923, .92233866453171, .84132260084152, .90422683954239, .9873673915863, .99707210063934, 1.1109310388565, 1.1971517801285, 1.138188958168, 1.2710473537445, 1.1763968467712, 1.7437561750412, 1.4101150035858, 1.3527159690857, 1.4335050582886, .99765706062317, 1.1067585945129, 1.3086627721786, 1.2968333959579, 1.3547962903976, 1.6768488883972, 1.5905654430389, 2.0774590969086, 1.3218278884888, .21813294291496, .30750840902328, .60612773895264]) icstats = np.array([ 202, np.nan, -242.06033399744, 4, 492.12066799488, 505.35373878448]) class Bunch(dict): def __init__(self, **kw): dict.__init__(self, kw) self.__dict__ = self results = Bunch(llf=llf, nobs=nobs, k=k, k_exog=k_exog, sigma=sigma, chi2=chi2, df_model=df_model, k_ar=k_ar, k_ma=k_ma, params=params, cov_params=cov_params, xb=xb, y=y, resid=resid, yr=yr, mse=mse, stdp=stdp, icstats=icstats, )
34.451638
229
0.402042
d65b4b8b488f7aceea6d7dc05230aa8a1bf929c9
3,014
py
Python
core/setup.py
tconbeer/dbt
bf867f6aff79fd9dad98ed36ceecd4aa181fe106
[ "Apache-2.0" ]
null
null
null
core/setup.py
tconbeer/dbt
bf867f6aff79fd9dad98ed36ceecd4aa181fe106
[ "Apache-2.0" ]
null
null
null
core/setup.py
tconbeer/dbt
bf867f6aff79fd9dad98ed36ceecd4aa181fe106
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python import os import sys if sys.version_info < (3, 6): print('Error: dbt does not support this version of Python.') print('Please upgrade to Python 3.6 or higher.') sys.exit(1) from setuptools import setup try: from setuptools import find_namespace_packages except ImportError: # the user has a downlevel version of setuptools. print('Error: dbt requires setuptools v40.1.0 or higher.') print('Please upgrade setuptools with "pip install --upgrade setuptools" ' 'and try again') sys.exit(1) def read(fname): return open(os.path.join(os.path.dirname(__file__), fname)).read() package_name = "dbt-core" package_version = "0.20.0rc1" description = """dbt (data build tool) is a command line tool that helps \ analysts and engineers transform data in their warehouse more effectively""" setup( name=package_name, version=package_version, description=description, long_description=description, author="Fishtown Analytics", author_email="info@fishtownanalytics.com", url="https://github.com/fishtown-analytics/dbt", packages=find_namespace_packages(include=['dbt', 'dbt.*']), package_data={ 'dbt': [ 'include/index.html', 'include/global_project/dbt_project.yml', 'include/global_project/docs/*.md', 'include/global_project/macros/*.sql', 'include/global_project/macros/**/*.sql', 'include/global_project/macros/**/**/*.sql', 'py.typed', ] }, test_suite='test', entry_points={ 'console_scripts': [ 'dbt = dbt.main:main', ], }, scripts=[ 'scripts/dbt', ], install_requires=[ 'Jinja2==2.11.3', 'PyYAML>=3.11', 'agate>=1.6,<1.6.2', 'colorama>=0.3.9,<0.4.5', 'dataclasses>=0.6,<0.9;python_version<"3.7"', 'hologram==0.0.14', 'isodate>=0.6,<0.7', 'json-rpc>=1.12,<2', 'logbook>=1.5,<1.6', 'mashumaro==2.5', 'minimal-snowplow-tracker==0.0.2', 'networkx>=2.3,<3', 'packaging~=20.9', 'sqlparse>=0.2.3,<0.4', 'tree-sitter==0.19.0', 'tree-sitter-jinja2==0.1.0a1', 'typing-extensions>=3.7.4,<3.8', 'werkzeug>=0.15,<2.0', # the following are all to match snowflake-connector-python 'requests<3.0.0', 'idna>=2.5,<3', 'cffi>=1.9,<2.0.0', ], zip_safe=False, classifiers=[ 'Development Status :: 5 - Production/Stable', 'License :: OSI Approved :: Apache Software License', 'Operating System :: Microsoft :: Windows', 'Operating System :: MacOS :: MacOS X', 'Operating System :: POSIX :: Linux', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', ], python_requires=">=3.6.3", )
29.54902
78
0.584605
4c6724b907fa4faab66d93b06519ede0cb2ab4c2
4,889
py
Python
scripts/google-java-format-diff.py
taesu82/google-java-format
5202af98006d744aafc2ba7cba2fa19a14e9b7b1
[ "Apache-2.0" ]
4
2019-11-08T16:42:02.000Z
2021-11-11T17:56:38.000Z
scripts/google-java-format-diff.py
taesu82/google-java-format
5202af98006d744aafc2ba7cba2fa19a14e9b7b1
[ "Apache-2.0" ]
null
null
null
scripts/google-java-format-diff.py
taesu82/google-java-format
5202af98006d744aafc2ba7cba2fa19a14e9b7b1
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python2.7 # #===- google-java-format-diff.py - google-java-format Diff Reformatter -----===# # # The LLVM Compiler Infrastructure # # This file is distributed under the University of Illinois Open Source # License. See LICENSE.TXT for details. # #===------------------------------------------------------------------------===# """ google-java-format Diff Reformatter ============================ This script reads input from a unified diff and reformats all the changed lines. This is useful to reformat all the lines touched by a specific patch. Example usage for git/svn users: git diff -U0 HEAD^ | google-java-format-diff.py -p1 -i svn diff --diff-cmd=diff -x-U0 | google-java-format-diff.py -i For perforce users: P4DIFF="git --no-pager diff --no-index" p4 diff | ./google-java-format-diff.py -i -p7 """ import argparse import difflib import re import string import subprocess import StringIO import sys from distutils.spawn import find_executable def main(): parser = argparse.ArgumentParser(description= 'Reformat changed lines in diff. Without -i ' 'option just output the diff that would be ' 'introduced.') parser.add_argument('-i', action='store_true', default=False, help='apply edits to files instead of displaying a diff') parser.add_argument('-p', metavar='NUM', default=0, help='strip the smallest prefix containing P slashes') parser.add_argument('-regex', metavar='PATTERN', default=None, help='custom pattern selecting file paths to reformat ' '(case sensitive, overrides -iregex)') parser.add_argument('-iregex', metavar='PATTERN', default=r'.*\.java', help='custom pattern selecting file paths to reformat ' '(case insensitive, overridden by -regex)') parser.add_argument('-v', '--verbose', action='store_true', help='be more verbose, ineffective without -i') parser.add_argument('-a', '--aosp', action='store_true', help='use AOSP style instead of Google Style (4-space indentation)') parser.add_argument('--skip-sorting-imports', action='store_true', help='do not fix the import order') parser.add_argument('-b', '--binary', help='path to google-java-format binary') parser.add_argument('--google-java-format-jar', metavar='ABSOLUTE_PATH', default=None, help='use a custom google-java-format jar') args = parser.parse_args() # Extract changed lines for each file. filename = None lines_by_file = {} for line in sys.stdin: match = re.search('^\+\+\+\ (.*?/){%s}(\S*)' % args.p, line) if match: filename = match.group(2) if filename == None: continue if args.regex is not None: if not re.match('^%s$' % args.regex, filename): continue else: if not re.match('^%s$' % args.iregex, filename, re.IGNORECASE): continue match = re.search('^@@.*\+(\d+)(,(\d+))?', line) if match: start_line = int(match.group(1)) line_count = 1 if match.group(3): line_count = int(match.group(3)) if line_count == 0: continue end_line = start_line + line_count - 1; lines_by_file.setdefault(filename, []).extend( ['-lines', str(start_line) + ':' + str(end_line)]) if args.binary: base_command = [args.binary] elif args.google_java_format_jar: base_command = ['java', '-jar', args.google_java_format_jar] else: binary = find_executable('google-java-format') or '/usr/bin/google-java-format' base_command = [binary] # Reformat files containing changes in place. for filename, lines in lines_by_file.iteritems(): if args.i and args.verbose: print 'Formatting', filename command = base_command[:] if args.i: command.append('-i') if args.aosp: command.append('--aosp') if args.skip_sorting_imports: command.append('--skip-sorting-imports') command.extend(lines) command.append(filename) p = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=None, stdin=subprocess.PIPE) stdout, stderr = p.communicate() if p.returncode != 0: sys.exit(p.returncode); if not args.i: with open(filename) as f: code = f.readlines() formatted_code = StringIO.StringIO(stdout).readlines() diff = difflib.unified_diff(code, formatted_code, filename, filename, '(before formatting)', '(after formatting)') diff_string = string.join(diff, '') if len(diff_string) > 0: sys.stdout.write(diff_string) if __name__ == '__main__': main()
35.948529
90
0.605236
2b4fd39b448316935008160974f748dcfb693fff
15,052
py
Python
python/oneflow/compatible/single_client/__init__.py
mosout/oneflow
afbb221d900f1a340568ae2462b2022f8fcc4b3d
[ "Apache-2.0" ]
1
2022-01-19T07:50:28.000Z
2022-01-19T07:50:28.000Z
python/oneflow/compatible/single_client/__init__.py
mosout/oneflow
afbb221d900f1a340568ae2462b2022f8fcc4b3d
[ "Apache-2.0" ]
null
null
null
python/oneflow/compatible/single_client/__init__.py
mosout/oneflow
afbb221d900f1a340568ae2462b2022f8fcc4b3d
[ "Apache-2.0" ]
null
null
null
""" Copyright 2020 The OneFlow Authors. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import oneflow._oneflow_internal Size = oneflow._oneflow_internal.Size device = oneflow._oneflow_internal.device placement = oneflow._oneflow_internal.placement locals()["dtype"] = oneflow._oneflow_internal.dtype locals()["bool"] = oneflow._oneflow_internal.bool locals()["char"] = oneflow._oneflow_internal.char locals()["float16"] = oneflow._oneflow_internal.float16 locals()["half"] = oneflow._oneflow_internal.float16 locals()["float32"] = oneflow._oneflow_internal.float32 locals()["float"] = oneflow._oneflow_internal.float locals()["double"] = oneflow._oneflow_internal.double locals()["float64"] = oneflow._oneflow_internal.float64 locals()["int8"] = oneflow._oneflow_internal.int8 locals()["int"] = oneflow._oneflow_internal.int32 locals()["int32"] = oneflow._oneflow_internal.int32 locals()["int64"] = oneflow._oneflow_internal.int64 locals()["long"] = oneflow._oneflow_internal.int64 locals()["uint8"] = oneflow._oneflow_internal.uint8 locals()["record"] = oneflow._oneflow_internal.record locals()["tensor_buffer"] = oneflow._oneflow_internal.tensor_buffer locals()["bfloat16"] = oneflow._oneflow_internal.bfloat16 locals()["uint16"] = oneflow._oneflow_internal.uint16 locals()["uint32"] = oneflow._oneflow_internal.uint32 locals()["uint64"] = oneflow._oneflow_internal.uint64 locals()["uint128"] = oneflow._oneflow_internal.uint128 locals()["int16"] = oneflow._oneflow_internal.int16 locals()["int128"] = oneflow._oneflow_internal.int128 locals()["complex32"] = oneflow._oneflow_internal.complex32 locals()["complex64"] = oneflow._oneflow_internal.complex64 locals()["complex128"] = oneflow._oneflow_internal.complex128 from oneflow.compatible.single_client.framework import ( env_util, session_context, session_util, ) from oneflow.core.job.job_conf_pb2 import JobConfigProto from oneflow.core.job.job_set_pb2 import ConfigProto oneflow._oneflow_internal.DestroyGlobalForeignCallback() oneflow._oneflow_internal.DestroyEnv() import time time.sleep(1) del time oneflow._oneflow_internal.SetIsMultiClient(False) session_context.OpenDefaultSession( session_util.Session(oneflow._oneflow_internal.NewSessionId()) ) oneflow._oneflow_internal.EnableEagerEnvironment(False) del env_util del session_util del session_context import oneflow.compatible.single_client.framework.c_api_util from oneflow.compatible.single_client.framework import ( python_callback, register_python_callback, ) oneflow._oneflow_internal.RegisterGlobalForeignCallback( python_callback.global_python_callback ) del python_callback del register_python_callback from oneflow.compatible.single_client.framework import watcher oneflow._oneflow_internal.RegisterGlobalWatcher(watcher._global_watcher) del watcher from oneflow.compatible.single_client.eager import boxing_util oneflow._oneflow_internal.deprecated.RegisterBoxingUtilOnlyOnce( boxing_util._global_boxing_util ) del boxing_util from oneflow.compatible.single_client.ops.util import custom_op_module oneflow._oneflow_internal.RegisterPyKernels( custom_op_module._python_kernel_reg.kernels_ ) del custom_op_module from oneflow.compatible.single_client.framework import register_class_method_util register_class_method_util.RegisterMethod4Class() del register_class_method_util INVALID_SPLIT_AXIS = oneflow._oneflow_internal.INVALID_SPLIT_AXIS import atexit from oneflow.compatible.single_client.framework.session_context import ( TryCloseAllSession, ) atexit.register(TryCloseAllSession) del TryCloseAllSession del atexit import sys __original_exit__ = sys.exit def custom_exit(returncode): if returncode != 0: import oneflow oneflow._oneflow_internal.MasterSendAbort() __original_exit__(returncode) sys.exit = custom_exit del custom_exit del sys from oneflow.compatible.single_client.autograd import no_grad from oneflow.compatible.single_client.advanced.distribute_ops import ( cast_to_current_logical_view, ) from oneflow.compatible.single_client.deprecated.initializer_util import ( truncated_normal_initializer as truncated_normal, ) from oneflow.compatible.single_client.experimental.namescope import ( deprecated_name_scope as name_scope, ) from oneflow.compatible.single_client.framework.check_point_v2 import ( GetAllVariables as get_all_variables, ) from oneflow.compatible.single_client.framework.check_point_v2 import Load as load from oneflow.compatible.single_client.framework.check_point_v2 import ( LoadVariables as load_variables, ) from oneflow.compatible.single_client.framework.check_point_v2 import save from oneflow.compatible.single_client.framework.dtype import ( convert_oneflow_dtype_to_numpy_dtype, dtypes, ) from oneflow.compatible.single_client.framework.env_util import ( api_enable_eager_execution as enable_eager_execution, ) from oneflow.compatible.single_client.framework.env_util import ( api_get_current_machine_id as current_machine_id, ) from oneflow.compatible.single_client.framework.env_util import ( api_get_current_resource as current_resource, ) from oneflow.compatible.single_client.framework.function_desc import ( api_current_global_function_desc as current_global_function_desc, ) from oneflow.compatible.single_client.framework.function_util import FunctionConfig from oneflow.compatible.single_client.framework.function_util import ( FunctionConfig as ExecutionConfig, ) from oneflow.compatible.single_client.framework.function_util import ( FunctionConfig as function_config, ) from oneflow.compatible.single_client.framework.function_util import ( api_oneflow_function as global_function, ) from oneflow.compatible.single_client.framework.generator import ( create_generator as Generator, ) from oneflow.compatible.single_client.framework.generator import manual_seed from oneflow.compatible.single_client.framework.input_blob_def import ( DeprecatedFixedTensorDef as FixedTensorDef, ) from oneflow.compatible.single_client.framework.input_blob_def import ( DeprecatedMirroredTensorDef as MirroredTensorDef, ) from oneflow.compatible.single_client.framework.job_set_util import ( inter_job_reuse_mem_strategy, ) from oneflow.compatible.single_client.framework.model import Model from oneflow.compatible.single_client.framework.ops import api_acc as acc from oneflow.compatible.single_client.framework.ops import ( api_hierarchical_parallel_cast as hierarchical_parallel_cast, ) from oneflow.compatible.single_client.framework.ops import api_pack as pack from oneflow.compatible.single_client.framework.ops import ( api_parallel_cast as parallel_cast, ) from oneflow.compatible.single_client.framework.ops import api_repeat as repeat from oneflow.compatible.single_client.framework.ops import api_unpack as unpack from oneflow.compatible.single_client.framework.placement_util import ( deprecated_placement as device_prior_placement, ) from oneflow.compatible.single_client.framework.placement_util import ( deprecated_placement as fixed_placement, ) from oneflow.compatible.single_client.framework.scope_util import ( api_current_scope as current_scope, ) from oneflow.compatible.single_client.framework.session_util import ( TmpInitEagerGlobalSession as InitEagerGlobalSession, ) from oneflow.compatible.single_client.framework.session_util import ( api_clear_default_session as clear_default_session, ) from oneflow.compatible.single_client.framework.session_util import ( api_eager_execution_enabled as eager_execution_enabled, ) from oneflow.compatible.single_client.framework.session_util import ( api_find_or_create_module as find_or_create_module, ) from oneflow.compatible.single_client.framework.session_util import ( api_sync_default_session as sync_default_session, ) from oneflow.compatible.single_client.framework.tensor import Tensor from oneflow.compatible.single_client.ops.array_ops import amp_white_identity from oneflow.compatible.single_client.ops.array_ops import ( api_slice_update as slice_update, ) from oneflow.compatible.single_client.ops.array_ops import ( argwhere, broadcast_like, cast_to_static_shape, concat, dim_gather, dynamic_reshape, elem_cnt, expand, expand_dims, flatten, gather, gather_nd, identity, identity_n, masked_fill, nonzero, ones, reshape, reshape_like, reverse, scatter_nd, slice, slice_v2, squeeze, stack, sync_dynamic_resize, tensor_scatter_nd_add, tensor_scatter_nd_update, transpose, where, zeros, ) from oneflow.compatible.single_client.ops.assign_op import assign from oneflow.compatible.single_client.ops.stateful_ops import StatefulOp as stateful_op from oneflow.compatible.single_client.ops.categorical_ordinal_encode_op import ( categorical_ordinal_encode, ) from oneflow.compatible.single_client.ops.combined_margin_loss import ( combined_margin_loss, ) from oneflow.compatible.single_client.ops.constant_op import ( constant, constant_like, constant_scalar, ones_like, zeros_like, ) from oneflow.compatible.single_client.ops.count_not_finite import ( count_not_finite, multi_count_not_finite, ) from oneflow.compatible.single_client.ops.diag_ops import diag from oneflow.compatible.single_client.ops.eager_nccl_ops import eager_nccl_all_reduce from oneflow.compatible.single_client.ops.get_variable import ( api_get_variable as get_variable, ) from oneflow.compatible.single_client.ops.initializer_util import ( constant_initializer, empty_initializer, ) from oneflow.compatible.single_client.ops.initializer_util import ( glorot_normal_initializer, ) from oneflow.compatible.single_client.ops.initializer_util import ( glorot_normal_initializer as xavier_normal_initializer, ) from oneflow.compatible.single_client.ops.initializer_util import ( glorot_uniform_initializer, ) from oneflow.compatible.single_client.ops.initializer_util import ( glorot_uniform_initializer as xavier_uniform_initializer, ) from oneflow.compatible.single_client.ops.initializer_util import ( kaiming_initializer, ones_initializer, random_normal_initializer, random_uniform_initializer, truncated_normal_initializer, variance_scaling_initializer, zeros_initializer, ) from oneflow.compatible.single_client.ops.linalg import matmul from oneflow.compatible.single_client.ops.loss_ops import ctc_loss, smooth_l1_loss from oneflow.compatible.single_client.ops.math_ops import ( broadcast_to_compatible_with as broadcast_to_compatible_with, ) from oneflow.compatible.single_client.ops.math_ops import cast from oneflow.compatible.single_client.ops.math_ops import clip_by_value as clamp from oneflow.compatible.single_client.ops.math_ops import clip_by_value as clip from oneflow.compatible.single_client.ops.math_ops import ( clip_by_value as clip_by_scalar, ) from oneflow.compatible.single_client.ops.math_ops import clip_by_value as clip_by_value from oneflow.compatible.single_client.ops.math_ops import in_top_k as in_top_k from oneflow.compatible.single_client.ops.math_ops import range from oneflow.compatible.single_client.ops.math_ops import ( unsorted_batch_segment_sum as unsorted_batch_segment_sum, ) from oneflow.compatible.single_client.ops.math_ops import ( unsorted_segment_sum as unsorted_segment_sum, ) from oneflow.compatible.single_client.ops.math_ops import ( unsorted_segment_sum_like as unsorted_segment_sum_like, ) from oneflow.compatible.single_client.ops.one_hot import one_hot from oneflow.compatible.single_client.ops.pad import ( constant_pad2d, pad, pad_grad, reflection_pad2d, replication_pad2d, same_padding, zero_pad2d, ) from oneflow.compatible.single_client.ops.partial_fc_sample import ( distributed_partial_fc_sample, ) from oneflow.compatible.single_client.ops.sort_ops import argsort, sort from oneflow.compatible.single_client.ops.tensor_buffer_ops import ( gen_tensor_buffer, tensor_buffer_to_list_of_tensors, tensor_buffer_to_tensor, tensor_to_tensor_buffer, ) from oneflow.compatible.single_client.ops.user_data_ops import ( api_image_random_crop as image_random_crop, ) from oneflow.compatible.single_client.ops.user_data_ops import ( api_image_resize as image_resize, ) from oneflow.compatible.single_client.ops.user_data_ops import ( api_image_target_resize as image_target_resize, ) from oneflow.compatible.single_client.ops.user_data_ops import ( image_batch_align as image_batch_align, ) from oneflow.compatible.single_client.ops.user_data_ops import ( image_decode as image_decode, ) from oneflow.compatible.single_client.ops.user_data_ops import image_flip as image_flip from oneflow.compatible.single_client.ops.user_data_ops import ( image_normalize as image_normalize, ) from oneflow.compatible.single_client.ops.user_data_ops import ( object_bbox_flip as object_bbox_flip, ) from oneflow.compatible.single_client.ops.user_data_ops import ( object_bbox_scale as object_bbox_scale, ) from oneflow.compatible.single_client.ops.user_data_ops import ( object_segm_poly_flip as object_segmentation_polygon_flip, ) from oneflow.compatible.single_client.ops.user_data_ops import ( object_segm_poly_scale as object_segmentation_polygon_scale, ) from oneflow.compatible.single_client.ops.user_data_ops import ( object_segm_poly_to_mask as object_segmentation_polygon_to_mask, ) from oneflow.compatible.single_client.ops.user_op_builder import ( api_consistent_user_op_builder as consistent_user_op_builder, ) from oneflow.compatible.single_client.ops.user_op_builder import ( api_consistent_user_op_module_builder as consistent_user_op_module_builder, ) from oneflow.compatible.single_client.ops.user_op_builder import ( api_user_op_builder as user_op_builder, ) from oneflow.compatible.single_client.ops.user_op_builder import ( api_user_op_module_builder as user_op_module_builder, ) from oneflow.compatible.single_client.ops.watch import Watch as watch from oneflow.compatible.single_client.ops.watch import WatchDiff as watch_diff from . import ( checkpoint, config, data, distribute, distributed, env, image, layers, losses, math, model, optimizer, profiler, random, regularizers, saved_model, scope, summary, sysconfig, tensorrt, train, typing, util, )
35.5
88
0.821884
aa303c4affd686620d30062a8a518957c2f54ef1
1,830
py
Python
tests/test_synthesizer.py
SebastianWolf-SAP/data-synthesis-for-machine-learning
b622739776cedf57a906d7304a96aa31f767340c
[ "Apache-2.0" ]
12
2019-10-24T08:52:41.000Z
2021-12-20T21:54:09.000Z
tests/test_synthesizer.py
SebastianWolf-SAP/data-synthesis-for-machine-learning
b622739776cedf57a906d7304a96aa31f767340c
[ "Apache-2.0" ]
7
2020-01-07T23:02:42.000Z
2022-02-17T21:36:19.000Z
tests/test_synthesizer.py
SebastianWolf-SAP/data-synthesis-for-machine-learning
b622739776cedf57a906d7304a96aa31f767340c
[ "Apache-2.0" ]
9
2019-12-16T19:51:48.000Z
2022-02-27T18:40:40.000Z
from .testdata import adults01 def test_calculate_degree(): from ds4ml.synthesizer import calculate_degree degree = calculate_degree(8140, 6, 0.05) assert 0 < degree <= 6 / 2 def test_greedy_bayes(): from pandas import DataFrame from ds4ml.synthesizer import greedy_bayes network = greedy_bayes(DataFrame(adults01), epsilon=0.1) assert network[0][0] in adults01.columns assert type(network[0][1]) == list def test_noisy_distributions(): from ds4ml.synthesizer import noisy_distributions from pandas import DataFrame dataset = DataFrame([ [1, 0, 40], [1, 1, 42], [0, 0, 30], [0, 1, 30], [1, 1, 36], [1, 1, 50], [0, 0, 32], [0, 0, 28] ], columns=['salary', 'sex', 'age']) columns = ['salary', 'sex'] epsilon = 0.05 noisy = noisy_distributions(dataset, columns, epsilon) assert noisy.shape == (4, 3) assert len(noisy[noisy['freq'] >= 0]) == 4 def test_noisy_conditionals(): from ds4ml.synthesizer import noisy_conditionals from pandas import DataFrame dataset = DataFrame([ [1, 0, 40], [1, 1, 42], [0, 0, 30], [0, 1, 30], [1, 1, 36], [1, 1, 50], [0, 0, 32], [0, 0, 28] ], columns=['salary', 'sex', 'age']) epsilon = 0.05 network = [('salary', ['sex']), ('age', ['sex', 'salary'])] noisy = noisy_conditionals(network, dataset, epsilon) assert len(noisy['sex']) == 2 assert (1.0 - sum(noisy['sex'])) < 1e-6 assert len(noisy['salary']) == 2 assert '[0]' in noisy['salary'] assert '[1]' in noisy['salary'] assert len(noisy['age']) == 4 assert '[0, 0]' in noisy['age'] assert '[0, 1]' in noisy['age'] assert '[1, 0]' in noisy['age'] assert '[1, 1]' in noisy['age']
28.153846
63
0.564481
aa3b89c0810862bbf3b19b25408247533e949c3b
3,217
py
Python
tests/oauth2/rfc6749/endpoints/test_revocation_endpoint.py
garciasolero/oauthlib
8dadaf0fde2b502df359632853fda00963dce3f5
[ "BSD-3-Clause" ]
1
2015-10-22T09:49:50.000Z
2015-10-22T09:49:50.000Z
tests/oauth2/rfc6749/endpoints/test_revocation_endpoint.py
garciasolero/oauthlib
8dadaf0fde2b502df359632853fda00963dce3f5
[ "BSD-3-Clause" ]
null
null
null
tests/oauth2/rfc6749/endpoints/test_revocation_endpoint.py
garciasolero/oauthlib
8dadaf0fde2b502df359632853fda00963dce3f5
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import absolute_import, unicode_literals from json import loads from mock import MagicMock from oauthlib.common import urlencode from oauthlib.oauth2 import RequestValidator, RevocationEndpoint from ....unittest import TestCase class RevocationEndpointTest(TestCase): def setUp(self): self.validator = MagicMock(wraps=RequestValidator()) self.validator.authenticate_client.return_value = True self.validator.revoke_token.return_value = True self.endpoint = RevocationEndpoint(self.validator) self.uri = 'https://example.com/revoke_token' self.headers = { 'Content-Type': 'application/x-www-form-urlencoded', } def test_revoke_token(self): for token_type in ('access_token', 'refresh_token', 'invalid'): body = urlencode([('token', 'foo'), ('token_type_hint', token_type)]) h, b, s = self.endpoint.create_revocation_response(self.uri, headers=self.headers, body=body) self.assertEqual(h, {}) self.assertEqual(b, '') self.assertEqual(s, 200) def test_revoke_token_without_client_authentication(self): self.validator.client_authentication_required.return_value = False self.validator.authenticate_client.return_value = False for token_type in ('access_token', 'refresh_token', 'invalid'): body = urlencode([('token', 'foo'), ('token_type_hint', token_type)]) h, b, s = self.endpoint.create_revocation_response(self.uri, headers=self.headers, body=body) self.assertEqual(h, {}) self.assertEqual(b, '') self.assertEqual(s, 200) def test_revoke_with_callback(self): endpoint = RevocationEndpoint(self.validator, enable_jsonp=True) callback = 'package.hello_world' for token_type in ('access_token', 'refresh_token', 'invalid'): body = urlencode([('token', 'foo'), ('token_type_hint', token_type), ('callback', callback)]) h, b, s = endpoint.create_revocation_response(self.uri, headers=self.headers, body=body) self.assertEqual(h, {}) self.assertEqual(b, callback + '();') self.assertEqual(s, 200) def test_revoke_unsupported_token(self): endpoint = RevocationEndpoint(self.validator, supported_token_types=['access_token']) body = urlencode([('token', 'foo'), ('token_type_hint', 'refresh_token')]) h, b, s = endpoint.create_revocation_response(self.uri, headers=self.headers, body=body) self.assertEqual(h, {}) self.assertEqual(loads(b)['error'], 'unsupported_token_type') self.assertEqual(s, 400) h, b, s = endpoint.create_revocation_response(self.uri, headers=self.headers, body='') self.assertEqual(h, {}) self.assertEqual(loads(b)['error'], 'invalid_request') self.assertEqual(s, 400)
41.779221
77
0.607087
2c1b6f77bf8583fbc12ecc39334cc773eb7ea663
1,536
py
Python
app/infrastructures/repositories/user_repository.py
harokki/fastapi-authenticated
baca823d3489739843b4df68f57fa785da7bf50d
[ "MIT" ]
null
null
null
app/infrastructures/repositories/user_repository.py
harokki/fastapi-authenticated
baca823d3489739843b4df68f57fa785da7bf50d
[ "MIT" ]
null
null
null
app/infrastructures/repositories/user_repository.py
harokki/fastapi-authenticated
baca823d3489739843b4df68f57fa785da7bf50d
[ "MIT" ]
null
null
null
from contextlib import AbstractContextManager from typing import Callable, List from sqlalchemy.orm import Session from app.domains.entities.user import User from app.domains.repositories.user_repository import UserRepository from app.schemas.user import UserCreateSchema class SAUserRepository(UserRepository): def __init__(self, session_factory: Callable[..., AbstractContextManager[Session]]): self.session_factory = session_factory def find_by_username(self, username: str) -> User: with self.session_factory() as session: user = session.query(User).filter(User.username == username).first() return user def find_by_email(self, email: str) -> User: with self.session_factory() as session: user = session.query(User).filter(User.email == email).first() return user def create_user(self, user: UserCreateSchema) -> User: hashed_password = User.get_hashed_password(user.password) db_user = User( user.username, user.email, user.account_name, hashed_password, user.created_by, ) with self.session_factory() as session: session.add(db_user) session.commit() session.refresh(db_user) return db_user def get_users(self, skip: int = 0, limit: int = 100) -> List[User]: with self.session_factory() as session: users = session.query(User).offset(skip).limit(limit).all() return users
33.391304
88
0.66276
7e511b00d49dfedea45fc30dc21c606534dc8abc
83
py
Python
pys/namta.py
nahian-147/my_codes
9729c56b227d75354ea49982720de94ed1c21909
[ "MIT" ]
null
null
null
pys/namta.py
nahian-147/my_codes
9729c56b227d75354ea49982720de94ed1c21909
[ "MIT" ]
null
null
null
pys/namta.py
nahian-147/my_codes
9729c56b227d75354ea49982720de94ed1c21909
[ "MIT" ]
null
null
null
n = int(input()) for k in range(1,11): print(str(n)+'x'+str(k)+'='+str(n*k))
16.6
39
0.506024
2785c0c59e943376320d0aafd538da33ef19f8a8
11,215
py
Python
pymc/backends/ndarray.py
michaeloriordan/pymc
a099292f1de592447abc54f223ecd6e5d93a95dc
[ "Apache-2.0" ]
null
null
null
pymc/backends/ndarray.py
michaeloriordan/pymc
a099292f1de592447abc54f223ecd6e5d93a95dc
[ "Apache-2.0" ]
null
null
null
pymc/backends/ndarray.py
michaeloriordan/pymc
a099292f1de592447abc54f223ecd6e5d93a95dc
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 The PyMC Developers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """NumPy array trace backend Store sampling values in memory as a NumPy array. """ import json import os import shutil import warnings from typing import Any, Dict, List, Optional import numpy as np from pymc.backends import base from pymc.backends.base import MultiTrace from pymc.exceptions import TraceDirectoryError from pymc.model import Model, modelcontext class SerializeNDArray: metadata_file = "metadata.json" samples_file = "samples.npz" metadata_path = None # type: str samples_path = None # type: str def __init__(self, directory: str): """Helper to save and load NDArray objects""" warnings.warn( "The `SerializeNDArray` class will soon be removed. " "Instead, use ArviZ to save/load traces.", FutureWarning, ) self.directory = directory self.metadata_path = os.path.join(self.directory, self.metadata_file) self.samples_path = os.path.join(self.directory, self.samples_file) @staticmethod def to_metadata(ndarray): """Extract ndarray metadata into json-serializable content""" if ndarray._stats is None: stats = ndarray._stats sampler_vars = None else: stats = [] sampler_vars = [] for stat in ndarray._stats: stats.append({key: value.tolist() for key, value in stat.items()}) sampler_vars.append({key: str(value.dtype) for key, value in stat.items()}) metadata = { "draw_idx": ndarray.draw_idx, "draws": ndarray.draws, "_stats": stats, "chain": ndarray.chain, "sampler_vars": sampler_vars, } return metadata def save(self, ndarray): """Serialize a ndarray to file The goal here is to be modestly safer and more portable than a pickle file. The expense is that the model code must be available to reload the multitrace. """ if not isinstance(ndarray, NDArray): raise TypeError("Can only save NDArray") if os.path.isdir(self.directory): shutil.rmtree(self.directory) os.mkdir(self.directory) with open(self.metadata_path, "w") as buff: json.dump(SerializeNDArray.to_metadata(ndarray), buff) np.savez_compressed(self.samples_path, **ndarray.samples) def load(self, model: Model) -> "NDArray": """Load the saved ndarray from file""" if not os.path.exists(self.samples_path) or not os.path.exists(self.metadata_path): raise TraceDirectoryError("%s is not a trace directory" % self.directory) new_trace = NDArray(model=model) with open(self.metadata_path) as buff: metadata = json.load(buff) metadata["_stats"] = [ {k: np.array(v) for k, v in stat.items()} for stat in metadata["_stats"] ] # it seems like at least some old traces don't have 'sampler_vars' try: sampler_vars = metadata.pop("sampler_vars") new_trace._set_sampler_vars(sampler_vars) except KeyError: pass for key, value in metadata.items(): setattr(new_trace, key, value) new_trace.samples = dict(np.load(self.samples_path)) return new_trace class NDArray(base.BaseTrace): """NDArray trace object Parameters ---------- name: str Name of backend. This has no meaning for the NDArray backend. model: Model If None, the model is taken from the `with` context. vars: list of variables Sampling values will be stored for these variables. If None, `model.unobserved_RVs` is used. """ supports_sampler_stats = True def __init__(self, name=None, model=None, vars=None, test_point=None): super().__init__(name, model, vars, test_point) self.draw_idx = 0 self.draws = None self.samples = {} self._stats = None # Sampling methods def setup(self, draws, chain, sampler_vars=None) -> None: """Perform chain-specific setup. Parameters ---------- draws: int Expected number of draws chain: int Chain number sampler_vars: list of dicts Names and dtypes of the variables that are exported by the samplers. """ super().setup(draws, chain, sampler_vars) self.chain = chain if self.samples: # Concatenate new array if chain is already present. old_draws = len(self) self.draws = old_draws + draws self.draw_idx = old_draws for varname, shape in self.var_shapes.items(): old_var_samples = self.samples[varname] new_var_samples = np.zeros((draws,) + shape, self.var_dtypes[varname]) self.samples[varname] = np.concatenate((old_var_samples, new_var_samples), axis=0) else: # Otherwise, make array of zeros for each variable. self.draws = draws for varname, shape in self.var_shapes.items(): self.samples[varname] = np.zeros((draws,) + shape, dtype=self.var_dtypes[varname]) if sampler_vars is None: return if self._stats is None: self._stats = [] for sampler in sampler_vars: data = dict() # type: Dict[str, np.ndarray] self._stats.append(data) for varname, dtype in sampler.items(): data[varname] = np.zeros(draws, dtype=dtype) else: for data, vars in zip(self._stats, sampler_vars): if vars.keys() != data.keys(): raise ValueError("Sampler vars can't change") old_draws = len(self) for varname, dtype in vars.items(): old = data[varname] new = np.zeros(draws, dtype=dtype) data[varname] = np.concatenate([old, new]) def record(self, point, sampler_stats=None) -> None: """Record results of a sampling iteration. Parameters ---------- point: dict Values mapped to variable names """ for varname, value in zip(self.varnames, self.fn(point)): self.samples[varname][self.draw_idx] = value if self._stats is not None and sampler_stats is None: raise ValueError("Expected sampler_stats") if self._stats is None and sampler_stats is not None: raise ValueError("Unknown sampler_stats") if sampler_stats is not None: for data, vars in zip(self._stats, sampler_stats): for key, val in vars.items(): data[key][self.draw_idx] = val self.draw_idx += 1 def _get_sampler_stats(self, varname, sampler_idx, burn, thin): return self._stats[sampler_idx][varname][burn::thin] def close(self): if self.draw_idx == self.draws: return # Remove trailing zeros if interrupted before completed all # draws. self.samples = {var: vtrace[: self.draw_idx] for var, vtrace in self.samples.items()} if self._stats is not None: self._stats = [ {var: trace[: self.draw_idx] for var, trace in stats.items()} for stats in self._stats ] # Selection methods def __len__(self): if not self.samples: # `setup` has not been called. return 0 return self.draw_idx def get_values(self, varname: str, burn=0, thin=1) -> np.ndarray: """Get values from trace. Parameters ---------- varname: str burn: int thin: int Returns ------- A NumPy array """ return self.samples[varname][burn::thin] def _slice(self, idx): # Slicing directly instead of using _slice_as_ndarray to # support stop value in slice (which is needed by # iter_sample). # Only the first `draw_idx` value are valid because of preallocation idx = slice(*idx.indices(len(self))) sliced = NDArray(model=self.model, vars=self.vars) sliced.chain = self.chain sliced.samples = {varname: values[idx] for varname, values in self.samples.items()} sliced.sampler_vars = self.sampler_vars sliced.draw_idx = (idx.stop - idx.start) // idx.step if self._stats is None: return sliced sliced._stats = [] for vars in self._stats: var_sliced = {} sliced._stats.append(var_sliced) for key, vals in vars.items(): var_sliced[key] = vals[idx] return sliced def point(self, idx) -> Dict[str, Any]: """Return dictionary of point values at `idx` for current chain with variable names as keys. """ idx = int(idx) return {varname: values[idx] for varname, values in self.samples.items()} def _slice_as_ndarray(strace, idx): sliced = NDArray(model=strace.model, vars=strace.vars) sliced.chain = strace.chain # Happy path where we do not need to load everything from the trace if (idx.step is None or idx.step >= 1) and (idx.stop is None or idx.stop == len(strace)): start, stop, step = idx.indices(len(strace)) sliced.samples = { v: strace.get_values(v, burn=idx.start, thin=idx.step) for v in strace.varnames } sliced.draw_idx = (stop - start) // step else: start, stop, step = idx.indices(len(strace)) sliced.samples = {v: strace.get_values(v)[start:stop:step] for v in strace.varnames} sliced.draw_idx = (stop - start) // step return sliced def point_list_to_multitrace( point_list: List[Dict[str, np.ndarray]], model: Optional[Model] = None ) -> MultiTrace: """transform point list into MultiTrace""" _model = modelcontext(model) varnames = list(point_list[0].keys()) with _model: chain = NDArray(model=_model, vars=[_model[vn] for vn in varnames]) chain.setup(draws=len(point_list), chain=0) # since we are simply loading a trace by hand, we need only a vacuous function for # chain.record() to use. This crushes the default. def point_fun(point): return [point[vn] for vn in varnames] chain.fn = point_fun for point in point_list: chain.record(point) return MultiTrace([chain])
34.937695
98
0.605707
3337008f4b17aa8eb9f627980ac7000d0d391fb2
6,393
py
Python
gector/datareader.py
convobox/gector
348be658027f2d16ce2e883755a1fb4a9222831e
[ "Apache-2.0" ]
null
null
null
gector/datareader.py
convobox/gector
348be658027f2d16ce2e883755a1fb4a9222831e
[ "Apache-2.0" ]
null
null
null
gector/datareader.py
convobox/gector
348be658027f2d16ce2e883755a1fb4a9222831e
[ "Apache-2.0" ]
null
null
null
"""Tweaked AllenNLP dataset reader.""" import logging import re from random import random from typing import Dict, List from allennlp.common.file_utils import cached_path from allennlp.data.dataset_readers.dataset_reader import DatasetReader from allennlp.data.fields import TextField, SequenceLabelField, MetadataField, Field from allennlp.data.instance import Instance from allennlp.data.token_indexers import TokenIndexer, SingleIdTokenIndexer from allennlp.data.tokenizers import Token from overrides import overrides # for gector from gector.utils.helpers import SEQ_DELIMETERS, START_TOKEN logger = logging.getLogger(__name__) # pylint: disable=invalid-name @DatasetReader.register("seq2labels_datareader") class Seq2LabelsDatasetReader(DatasetReader): """ Reads instances from a pretokenised file where each line is in the following format: WORD###TAG [TAB] WORD###TAG [TAB] ..... \n and converts it into a ``Dataset`` suitable for sequence tagging. You can also specify alternative delimiters in the constructor. Parameters ---------- delimiters: ``dict`` The dcitionary with all delimeters. token_indexers : ``Dict[str, TokenIndexer]``, optional (default=``{"tokens": SingleIdTokenIndexer()}``) We use this to define the input representation for the text. See :class:`TokenIndexer`. Note that the `output` tags will always correspond to single token IDs based on how they are pre-tokenised in the data file. max_len: if set than will truncate long sentences """ # fix broken sentences mostly in Lang8 BROKEN_SENTENCES_REGEXP = re.compile(r'\.[a-zA-RT-Z]') def __init__(self, token_indexers: Dict[str, TokenIndexer] = None, delimeters: dict = SEQ_DELIMETERS, skip_correct: bool = False, skip_complex: int = 0, lazy: bool = False, max_len: int = None, test_mode: bool = False, tag_strategy: str = "keep_one", tn_prob: float = 0, tp_prob: float = 0, broken_dot_strategy: str = "keep") -> None: super().__init__(lazy) self._token_indexers = token_indexers or {'tokens': SingleIdTokenIndexer()} self._delimeters = delimeters self._max_len = max_len self._skip_correct = skip_correct self._skip_complex = skip_complex self._tag_strategy = tag_strategy self._broken_dot_strategy = broken_dot_strategy self._test_mode = test_mode self._tn_prob = tn_prob self._tp_prob = tp_prob @overrides def _read(self, file_path): # if `file_path` is a URL, redirect to the cache file_path = cached_path(file_path) with open(file_path, "r") as data_file: logger.info("Reading instances from lines in file at: %s", file_path) for line in data_file: line = line.strip("\n") # skip blank and broken lines if not line or (not self._test_mode and self._broken_dot_strategy == 'skip' and self.BROKEN_SENTENCES_REGEXP.search(line) is not None): continue tokens_and_tags = [pair.rsplit(self._delimeters['labels'], 1) for pair in line.split(self._delimeters['tokens'])] try: tokens = [Token(token) for token, tag in tokens_and_tags] tags = [tag for token, tag in tokens_and_tags] except ValueError: tokens = [Token(token[0]) for token in tokens_and_tags] tags = None if tokens and tokens[0] != Token(START_TOKEN): tokens = [Token(START_TOKEN)] + tokens words = [x.text for x in tokens] if self._max_len is not None: tokens = tokens[:self._max_len] tags = None if tags is None else tags[:self._max_len] instance = self.text_to_instance(tokens, tags, words) if instance: yield instance def extract_tags(self, tags: List[str]): op_del = self._delimeters['operations'] labels = [x.split(op_del) for x in tags] comlex_flag_dict = {} # get flags for i in range(5): idx = i + 1 comlex_flag_dict[idx] = sum([len(x) > idx for x in labels]) if self._tag_strategy == "keep_one": # get only first candidates for r_tags in right and the last for left labels = [x[0] for x in labels] elif self._tag_strategy == "merge_all": # consider phrases as a words pass else: raise Exception("Incorrect tag strategy") detect_tags = ["CORRECT" if label == "$KEEP" else "INCORRECT" for label in labels] return labels, detect_tags, comlex_flag_dict def text_to_instance(self, tokens: List[Token], tags: List[str] = None, words: List[str] = None) -> Instance: # type: ignore """ We take `pre-tokenized` input here, because we don't have a tokenizer in this class. """ # pylint: disable=arguments-differ fields: Dict[str, Field] = {} sequence = TextField(tokens, self._token_indexers) fields["tokens"] = sequence fields["metadata"] = MetadataField({"words": words}) if tags is not None: labels, detect_tags, complex_flag_dict = self.extract_tags(tags) if self._skip_complex and complex_flag_dict[self._skip_complex] > 0: return None rnd = random() # skip TN if self._skip_correct and all(x == "CORRECT" for x in detect_tags): if rnd > self._tn_prob: return None # skip TP else: if rnd > self._tp_prob: return None fields["labels"] = SequenceLabelField(labels, sequence, label_namespace="labels") fields["d_tags"] = SequenceLabelField(detect_tags, sequence, label_namespace="d_tags") return Instance(fields)
41.784314
107
0.595026
51de8faf5a3d7e6151cc4ab124c94f0d802206e4
9,869
py
Python
testing/test_env.py
zipated/src
2b8388091c71e442910a21ada3d97ae8bc1845d3
[ "BSD-3-Clause" ]
2,151
2020-04-18T07:31:17.000Z
2022-03-31T08:39:18.000Z
testing/test_env.py
cangulcan/src
2b8388091c71e442910a21ada3d97ae8bc1845d3
[ "BSD-3-Clause" ]
395
2020-04-18T08:22:18.000Z
2021-12-08T13:04:49.000Z
testing/test_env.py
cangulcan/src
2b8388091c71e442910a21ada3d97ae8bc1845d3
[ "BSD-3-Clause" ]
338
2020-04-18T08:03:10.000Z
2022-03-29T12:33:22.000Z
#!/usr/bin/env python # Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Sets environment variables needed to run a chromium unit test.""" import io import os import stat import subprocess import sys import time # This is hardcoded to be src/ relative to this script. ROOT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) CHROME_SANDBOX_ENV = 'CHROME_DEVEL_SANDBOX' CHROME_SANDBOX_PATH = '/opt/chromium/chrome_sandbox' def get_sandbox_env(env): """Returns the environment flags needed for the SUID sandbox to work.""" extra_env = {} chrome_sandbox_path = env.get(CHROME_SANDBOX_ENV, CHROME_SANDBOX_PATH) # The above would silently disable the SUID sandbox if the env value were # an empty string. We don't want to allow that. http://crbug.com/245376 # TODO(jln): Remove this check once it's no longer possible to disable the # sandbox that way. if not chrome_sandbox_path: chrome_sandbox_path = CHROME_SANDBOX_PATH extra_env[CHROME_SANDBOX_ENV] = chrome_sandbox_path return extra_env def trim_cmd(cmd): """Removes internal flags from cmd since they're just used to communicate from the host machine to this script running on the swarm slaves.""" sanitizers = ['asan', 'lsan', 'msan', 'tsan'] internal_flags = frozenset('--%s=%d' % (name, value) for name in sanitizers for value in [0, 1]) return [i for i in cmd if i not in internal_flags] def fix_python_path(cmd): """Returns the fixed command line to call the right python executable.""" out = cmd[:] if out[0] == 'python': out[0] = sys.executable elif out[0].endswith('.py'): out.insert(0, sys.executable) return out def get_sanitizer_env(cmd, asan, lsan, msan, tsan, cfi_diag): """Returns the envirnoment flags needed for sanitizer tools.""" extra_env = {} # Instruct GTK to use malloc while running sanitizer-instrumented tests. extra_env['G_SLICE'] = 'always-malloc' extra_env['NSS_DISABLE_ARENA_FREE_LIST'] = '1' extra_env['NSS_DISABLE_UNLOAD'] = '1' # TODO(glider): remove the symbolizer path once # https://code.google.com/p/address-sanitizer/issues/detail?id=134 is fixed. symbolizer_path = os.path.join(ROOT_DIR, 'third_party', 'llvm-build', 'Release+Asserts', 'bin', 'llvm-symbolizer') if lsan or tsan: # LSan is not sandbox-compatible, so we can use online symbolization. In # fact, it needs symbolization to be able to apply suppressions. symbolization_options = ['symbolize=1', 'external_symbolizer_path=%s' % symbolizer_path] elif (asan or msan or cfi_diag) and sys.platform not in ['win32', 'cygwin']: # ASan uses a script for offline symbolization, except on Windows. # Important note: when running ASan with leak detection enabled, we must use # the LSan symbolization options above. symbolization_options = ['symbolize=0'] # Set the path to llvm-symbolizer to be used by asan_symbolize.py extra_env['LLVM_SYMBOLIZER_PATH'] = symbolizer_path else: symbolization_options = [] if asan: asan_options = symbolization_options[:] if lsan: asan_options.append('detect_leaks=1') if asan_options: extra_env['ASAN_OPTIONS'] = ' '.join(asan_options) if sys.platform == 'darwin': isolate_output_dir = os.path.abspath(os.path.dirname(cmd[0])) # This is needed because the test binary has @executable_path embedded in # it that the OS tries to resolve to the cache directory and not the # mapped directory. extra_env['DYLD_LIBRARY_PATH'] = str(isolate_output_dir) if lsan: if asan or msan: lsan_options = [] else: lsan_options = symbolization_options[:] if sys.platform == 'linux2': # Use the debug version of libstdc++ under LSan. If we don't, there will # be a lot of incomplete stack traces in the reports. extra_env['LD_LIBRARY_PATH'] = '/usr/lib/x86_64-linux-gnu/debug:' extra_env['LSAN_OPTIONS'] = ' '.join(lsan_options) if msan: msan_options = symbolization_options[:] if lsan: msan_options.append('detect_leaks=1') extra_env['MSAN_OPTIONS'] = ' '.join(msan_options) if tsan: tsan_options = symbolization_options[:] extra_env['TSAN_OPTIONS'] = ' '.join(tsan_options) # CFI uses the UBSan runtime to provide diagnostics. if cfi_diag: ubsan_options = symbolization_options[:] + ['print_stacktrace=1'] extra_env['UBSAN_OPTIONS'] = ' '.join(ubsan_options) return extra_env def get_sanitizer_symbolize_command(json_path=None, executable_path=None): """Construct the command to invoke offline symbolization script.""" script_path = os.path.join( ROOT_DIR, 'tools', 'valgrind', 'asan', 'asan_symbolize.py') cmd = [sys.executable, script_path] if json_path is not None: cmd.append('--test-summary-json-file=%s' % json_path) if executable_path is not None: cmd.append('--executable-path=%s' % executable_path) return cmd def get_json_path(cmd): """Extract the JSON test summary path from a command line.""" json_path_flag = '--test-launcher-summary-output=' for arg in cmd: if arg.startswith(json_path_flag): return arg.split(json_path_flag).pop() return None def symbolize_snippets_in_json(cmd, env): """Symbolize output snippets inside the JSON test summary.""" json_path = get_json_path(cmd) if json_path is None: return try: symbolize_command = get_sanitizer_symbolize_command( json_path=json_path, executable_path=cmd[0]) p = subprocess.Popen(symbolize_command, stderr=subprocess.PIPE, env=env) (_, stderr) = p.communicate() except OSError as e: print >> sys.stderr, 'Exception while symbolizing snippets: %s' % e raise if p.returncode != 0: print >> sys.stderr, "Error: failed to symbolize snippets in JSON:\n" print >> sys.stderr, stderr raise subprocess.CalledProcessError(p.returncode, symbolize_command) def run_command_with_output(argv, stdoutfile, env=None, cwd=None): """ Run command and stream its stdout/stderr to the console & |stdoutfile|. """ print('Running %r in %r (env: %r)' % (argv, cwd, env)) assert stdoutfile with io.open(stdoutfile, 'w') as writer, io.open(stdoutfile, 'r', 1) as \ reader: process = subprocess.Popen(argv, env=env, cwd=cwd, stdout=writer, stderr=subprocess.STDOUT) while process.poll() is None: sys.stdout.write(reader.read()) time.sleep(0.1) # Read the remaining. sys.stdout.write(reader.read()) print('Command %r returned exit code %d' % (argv, process.returncode)) return process.returncode def run_executable(cmd, env, stdoutfile=None): """Runs an executable with: - CHROME_HEADLESS set to indicate that the test is running on a bot and shouldn't do anything interactive like show modal dialogs. - environment variable CR_SOURCE_ROOT set to the root directory. - environment variable LANGUAGE to en_US.UTF-8. - environment variable CHROME_DEVEL_SANDBOX set - Reuses sys.executable automatically. """ extra_env = { # Set to indicate that the executable is running non-interactively on # a bot. 'CHROME_HEADLESS': '1', # Many tests assume a English interface... 'LANG': 'en_US.UTF-8', } # Used by base/base_paths_linux.cc as an override. Just make sure the default # logic is used. env.pop('CR_SOURCE_ROOT', None) extra_env.update(get_sandbox_env(env)) # Copy logic from tools/build/scripts/slave/runtest.py. asan = '--asan=1' in cmd lsan = '--lsan=1' in cmd msan = '--msan=1' in cmd tsan = '--tsan=1' in cmd cfi_diag = '--cfi-diag=1' in cmd if stdoutfile or sys.platform in ['win32', 'cygwin']: # Symbolization works in-process on Windows even when sandboxed. use_symbolization_script = False else: # LSan doesn't support sandboxing yet, so we use the in-process symbolizer. # Note that ASan and MSan can work together with LSan. use_symbolization_script = (asan or msan or cfi_diag) and not lsan if asan or lsan or msan or tsan or cfi_diag: extra_env.update(get_sanitizer_env(cmd, asan, lsan, msan, tsan, cfi_diag)) if lsan or tsan: # LSan and TSan are not sandbox-friendly. cmd.append('--no-sandbox') cmd = trim_cmd(cmd) # Ensure paths are correctly separated on windows. cmd[0] = cmd[0].replace('/', os.path.sep) cmd = fix_python_path(cmd) print('Additional test environment:\n%s\n' 'Command: %s\n' % ( '\n'.join(' %s=%s' % (k, v) for k, v in sorted(extra_env.iteritems())), ' '.join(cmd))) sys.stdout.flush() env.update(extra_env or {}) try: if stdoutfile: # Write to stdoutfile and poll to produce terminal output. return run_command_with_output(cmd, env=env, stdoutfile=stdoutfile) elif use_symbolization_script: # See above comment regarding offline symbolization. # Need to pipe to the symbolizer script. p1 = subprocess.Popen(cmd, env=env, stdout=subprocess.PIPE, stderr=sys.stdout) p2 = subprocess.Popen( get_sanitizer_symbolize_command(executable_path=cmd[0]), env=env, stdin=p1.stdout) p1.stdout.close() # Allow p1 to receive a SIGPIPE if p2 exits. p1.wait() p2.wait() # Also feed the out-of-band JSON output to the symbolizer script. symbolize_snippets_in_json(cmd, env) return p1.returncode else: return subprocess.call(cmd, env=env) except OSError: print >> sys.stderr, 'Failed to start %s' % cmd raise def main(): return run_executable(sys.argv[1:], os.environ.copy()) if __name__ == '__main__': sys.exit(main())
35.120996
80
0.69004
b88b21df9859466fa2bd0ca00e69abfbe371bd8c
2,091
py
Python
rapidsms/messages/incoming.py
Code4Salone/rapidsms
6f8354c0af04c1eccfa051782fcd71a6095532e9
[ "BSD-3-Clause" ]
null
null
null
rapidsms/messages/incoming.py
Code4Salone/rapidsms
6f8354c0af04c1eccfa051782fcd71a6095532e9
[ "BSD-3-Clause" ]
2
2018-08-03T18:48:09.000Z
2019-01-02T19:33:23.000Z
rapidsms/messages/incoming.py
Code4Salone/rapidsms
6f8354c0af04c1eccfa051782fcd71a6095532e9
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # vim: ai ts=4 sts=4 et sw=4 from rapidsms.messages.base import MessageBase from rapidsms.messages.error import ErrorMessage class IncomingMessage(MessageBase): """Inbound message that provides an API to handle responses. """ def __init__(self, *args, **kwargs): if 'received_at' in kwargs: raise Exception("IncomingMessage.received_at is meaningless") super(IncomingMessage, self).__init__(*args, **kwargs) #: list of messages created by IncomingMessage.respond() self.responses = [] @property def date(self): raise Exception("IncomingMessage.date is meaningless") def respond(self, text, **kwargs): """ Respond to this message, sending the given text to the connections that this message came from. Responses are saved, and sent after incoming processing phases are complete. Arbitrary arguments are passed along to the :py:meth:`~rapidsms.router.send` method. :param string text: The text of the message :param connections: (optional) send to a different set of connections than were in the incoming message. :type connections: list of :py:class:`~rapidsms.models.Connection` :param in_response_to: (optional) the message being responded to. :type in_response_to: :py:class:`~rapidsms.messages.base.MessageBase` :returns: dictionary with the arguments that will be passed to :py:meth:`rapidsms.router.send` to send this response. """ if 'template' in kwargs: raise TypeError("`template` is no longer valid usage for " "respond(). Pass the message text as `text`.") context = {'text': text, 'connections': self.connections, 'in_response_to': self} context.update(kwargs) self.responses.append(context) return context def error(self, text, **kwargs): return self.respond(class_=ErrorMessage, text=text, **kwargs)
36.684211
77
0.643711
e3df486cc520c7fa5e11d066dbea40fe85f266d5
3,293
py
Python
conans/test/unittests/client/conf/config_installer_test.py
laundry-96/conan
fd938f7220ca042d94c42ec5eb607ee69c6785a3
[ "MIT" ]
1
2021-06-14T01:39:27.000Z
2021-06-14T01:39:27.000Z
conans/test/unittests/client/conf/config_installer_test.py
laundry-96/conan
fd938f7220ca042d94c42ec5eb607ee69c6785a3
[ "MIT" ]
2
2018-02-22T21:28:04.000Z
2018-09-28T13:51:47.000Z
conans/test/unittests/client/conf/config_installer_test.py
laundry-96/conan
fd938f7220ca042d94c42ec5eb607ee69c6785a3
[ "MIT" ]
1
2021-06-03T23:08:43.000Z
2021-06-03T23:08:43.000Z
import os import unittest from parameterized import parameterized from conans.client.conf.config_installer import _process_config_install_item from conans.errors import ConanException from conans.test.utils.test_files import temp_folder from conans.util.files import save class ConfigInstallerTests(unittest.TestCase): def process_config_install_item_test(self): config_type, url_or_path, verify_ssl, args = _process_config_install_item( "git, whaterver.url.com/repo.git, False, --recusrive --other -b 0.3.4") self.assertEqual("git", config_type) self.assertEqual("whaterver.url.com/repo.git", url_or_path) self.assertFalse(verify_ssl) self.assertEqual("--recusrive --other -b 0.3.4", args) config_type, url_or_path, verify_ssl, args = _process_config_install_item("whaterver.url.com/repo.git") self.assertEqual("git", config_type) self.assertEqual("whaterver.url.com/repo.git", url_or_path) self.assertIsNone(verify_ssl) self.assertIsNone(args) dir_path = temp_folder() for dir_item in ["dir, %s, True, None" % dir_path, dir_path]: config_type, url_or_path, verify_ssl, args = _process_config_install_item(dir_item) self.assertEqual("dir", config_type) self.assertEqual(dir_path, url_or_path) self.assertTrue(verify_ssl) if dir_item.startswith("dir,")\ else self.assertIsNone(verify_ssl) self.assertIsNone(args) file_path = os.path.join(dir_path, "file.zip") save(file_path, "") for file_item in ["file, %s, True, None" % file_path, file_path]: config_type, url_or_path, verify_ssl, args = _process_config_install_item(file_item) self.assertEqual("file", config_type) self.assertEqual(file_path, url_or_path) self.assertTrue(verify_ssl) if file_item.startswith("file,") \ else self.assertIsNone(verify_ssl) self.assertIsNone(args) for url_item in ["url, http://is/an/absloute/path with spaces/here/file.zip, True, None", "http://is/an/absloute/path with spaces/here/file.zip"]: config_type, url_or_path, verify_ssl, args = _process_config_install_item(url_item) self.assertEqual("url", config_type) self.assertEqual("http://is/an/absloute/path with spaces/here/file.zip", url_or_path) self.assertTrue(verify_ssl) if url_item.startswith("url,") \ else self.assertIsNone(verify_ssl) self.assertIsNone(args) config_type, url, verify_ssl, args = _process_config_install_item( "url, http://is/an/absloute/path with spaces/here/file.zip,False, --option ") self.assertEqual("url", config_type) self.assertEqual("http://is/an/absloute/path with spaces/here/file.zip", url) self.assertFalse(verify_ssl) self.assertEqual("--option", args) # Test wrong input for item in ["git@github.com:conan-io/conan.git, None" "file/not/exists.zip"]: with self.assertRaisesRegexp(ConanException, "Unable to process config install"): _, _, _, _ = _process_config_install_item(item)
49.149254
111
0.666262
443e67ef077448665b781b7cbd4b746ddf066e0b
3,291
py
Python
setup.py
sap-archive/cloud-sapjwt
b5244e68bc1f1b7bc2e69f8a10115cf1666d5e1b
[ "BSD-Source-Code" ]
2
2019-07-09T21:23:18.000Z
2019-11-04T18:52:47.000Z
setup.py
sap-archive/cloud-sapjwt
b5244e68bc1f1b7bc2e69f8a10115cf1666d5e1b
[ "BSD-Source-Code" ]
null
null
null
setup.py
sap-archive/cloud-sapjwt
b5244e68bc1f1b7bc2e69f8a10115cf1666d5e1b
[ "BSD-Source-Code" ]
null
null
null
"""setup for sap-py-jwt See: https://github.com/SAP-samples/cloud-sapjwt """ # To use a consistent encoding from codecs import open # pylint: disable=W0622 from os import path # Always prefer setuptools over distutils from setuptools import setup, find_packages here = path.abspath(path.dirname(__file__)) # pylint: disable=invalid-name # Get the long description from the README file with open(path.join(here, 'README.md'), encoding='utf-8') as f: long_description = f.read() # pylint: disable=invalid-name def get_version(): """ get version """ with open('version.txt') as ver_file: version_str = ver_file.readline().rstrip() return version_str def get_install_requires(): """ install requires """ reqs = [] with open('requirements.txt') as reqs_file: for line in iter(lambda: reqs_file.readline().rstrip(), ''): reqs.append(line) return reqs def get_extras_require(): """ extras """ with open('test-requirements.txt') as reqs_file: reqs = [line.rstrip() for line in reqs_file.readlines()] return {'test': reqs} setup(name="sap_py_jwt", version=get_version(), entry_points={"distutils.commands": ["whitesource_update = plugin.WssPythonPlugin:SetupToolsCommand"]}, packages=find_packages(exclude=['contrib', 'docs', 'tests*', 'coverage', 'scripts']), description="SAP CP Security Client Library for JWT offline validation", long_description=long_description, long_description_content_type="text/markdown", install_requires=get_install_requires(), extras_require=get_extras_require(), keywords="sap jwt sapjwt python", author="SAP SE", author_email="secure@sap.com", license="SAP Developer", url="https://github.com/SAP-samples/cloud-sapjwt", package=['sapjwt'], package_dir={'sapjwt': 'sapjwt'}, package_data={'sapjwt': ['deps/linux/x64/libsapssoext.so', 'deps/linux/ppc64/libsapssoext.so', 'deps/linux/ppc64le/libsapssoext.so', 'deps/darwin/x64/libsapssoext.dylib', 'deps/win32/x64/sapssoext.dll' ]}, classifiers=[ # http://pypi.python.org/pypi?%3Aaction=list_classifiers "Development Status :: 5 - Production/Stable", "Topic :: Security", "License :: OSI Approved :: Apache Software License", "Natural Language :: English", "Operating System :: MacOS :: MacOS X", "Operating System :: POSIX", "Operating System :: POSIX :: BSD", "Operating System :: POSIX :: Linux", "Operating System :: Microsoft :: Windows", "Programming Language :: Python", "Programming Language :: Python :: 2", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.4", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: Implementation :: CPython", "Programming Language :: Python :: Implementation :: PyPy", ], )
37.397727
91
0.618353
0f2a0c417595319bddc65b4145e1c2da365aedf7
78
py
Python
sppas/sppas/src/ui/phoenix/page_analyze/__init__.py
mirfan899/MTTS
3167b65f576abcc27a8767d24c274a04712bd948
[ "MIT" ]
null
null
null
sppas/sppas/src/ui/phoenix/page_analyze/__init__.py
mirfan899/MTTS
3167b65f576abcc27a8767d24c274a04712bd948
[ "MIT" ]
null
null
null
sppas/sppas/src/ui/phoenix/page_analyze/__init__.py
mirfan899/MTTS
3167b65f576abcc27a8767d24c274a04712bd948
[ "MIT" ]
null
null
null
from .analyze import sppasAnalyzePanel __all__ = ( "sppasAnalyzePanel" )
13
38
0.74359
31e1e3fd02b33fcfd3d5a1999511688c10cdff65
1,754
py
Python
tensorflow_federated/python/learning/reconstruction/__init__.py
zhihansh/federated-oss
38cfcb05702ff7297db76d3ccb5f5afef53ca09b
[ "Apache-2.0" ]
1
2022-02-08T01:11:14.000Z
2022-02-08T01:11:14.000Z
tensorflow_federated/python/learning/reconstruction/__init__.py
zhihansh/federated-oss
38cfcb05702ff7297db76d3ccb5f5afef53ca09b
[ "Apache-2.0" ]
null
null
null
tensorflow_federated/python/learning/reconstruction/__init__.py
zhihansh/federated-oss
38cfcb05702ff7297db76d3ccb5f5afef53ca09b
[ "Apache-2.0" ]
null
null
null
# Copyright 2021, The TensorFlow Federated Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Libraries for using federated reconstruction algorithms.""" from tensorflow_federated.python.learning.reconstruction.evaluation_computation import build_federated_evaluation from tensorflow_federated.python.learning.reconstruction.keras_utils import from_keras_model from tensorflow_federated.python.learning.reconstruction.model import BatchOutput from tensorflow_federated.python.learning.reconstruction.model import Model from tensorflow_federated.python.learning.reconstruction.reconstruction_utils import build_dataset_split_fn from tensorflow_federated.python.learning.reconstruction.reconstruction_utils import DatasetSplitFn from tensorflow_federated.python.learning.reconstruction.reconstruction_utils import get_global_variables from tensorflow_federated.python.learning.reconstruction.reconstruction_utils import get_local_variables from tensorflow_federated.python.learning.reconstruction.reconstruction_utils import simple_dataset_split_fn from tensorflow_federated.python.learning.reconstruction.training_process import build_training_process from tensorflow_federated.python.learning.reconstruction.training_process import ClientOutput
64.962963
113
0.86146
e48cdf7a4ce34e8080bd1d05ffd87fcc3c2f1560
557
py
Python
advertorch/setup.py
sleepstagingrest/rest
cf0de7ae82b6b74fe23e9d057214970cd3c9672d
[ "MIT" ]
18
2020-02-03T07:14:40.000Z
2021-12-20T18:45:43.000Z
advertorch/setup.py
sleepstagingrest/rest
cf0de7ae82b6b74fe23e9d057214970cd3c9672d
[ "MIT" ]
11
2020-01-28T23:16:25.000Z
2022-02-10T01:04:56.000Z
advertorch/setup.py
sleepstagingrest/REST
cf0de7ae82b6b74fe23e9d057214970cd3c9672d
[ "MIT" ]
2
2020-08-20T08:15:09.000Z
2021-02-23T07:30:40.000Z
# Copyright (c) 2018-present, Royal Bank of Canada. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os from setuptools import setup from setuptools import find_packages with open(os.path.join(os.path.dirname(__file__), 'advertorch/VERSION')) as f: version = f.read().strip() setup(name='advertorch', version=version, url='https://github.com/BorealisAI/advertorch', include_package_data=True, packages=find_packages())
25.318182
78
0.728905
decd98e50120348080b7b12e71cd5bd4863de355
2,981
py
Python
q1.py
rklogan/Finite-Element-Music-Synthesis
7d250678f7bdf6caebbd9a375faef7f3ed69cf16
[ "Unlicense" ]
null
null
null
q1.py
rklogan/Finite-Element-Music-Synthesis
7d250678f7bdf6caebbd9a375faef7f3ed69cf16
[ "Unlicense" ]
null
null
null
q1.py
rklogan/Finite-Element-Music-Synthesis
7d250678f7bdf6caebbd9a375faef7f3ed69cf16
[ "Unlicense" ]
null
null
null
import sys import numpy as np import time OUTPUT_TIMING_DATA = False #define constants grid_size = 4 eta = 0.0002 rho = 0.5 G = 0.75 #debug function. Not used in submission def print_grid(grid, current_only=False): for row in grid: string = '' for col in row: if current_only: string += str(col[0]) + '\t' else: string += str(col) + ', ' print(string) #processes the internal part of the grid def iterate(grid): row = 1 while row < grid_size - 1: col = 1 while col < grid_size - 1: grid[row][col][0] = grid[row-1][col][1] grid[row][col][0] += grid[row+1][col][1] grid[row][col][0] += grid[row][col-1][1] grid[row][col][0] += grid[row][col+1][1] grid[row][col][0] -= 4 * grid[row][col][1] grid[row][col][0] *= rho grid[row][col][0] += 2 * grid[row][col][1] grid[row][col][0] -= (1 - eta) * grid[row][col][2] grid[row][col][0] /= (1 + eta) col += 1 row += 1 return grid #processes the edges and corners def apply_boundary_conditions(grid): #apply the first 4 boundary conditions i = 1 while i < grid_size - 1: grid[0][i][0] = G * grid[1][i][0] grid[grid_size-1][i][0] = G * grid[grid_size-2][i][0] grid[i][0][0] = G * grid[i][1][0] grid[i][grid_size -1][0] = G * grid[i][grid_size-2][0] i += 1 #corner cases grid[0][0][0] = G * grid[1][0][0] grid[grid_size-1][0][0] = G * grid[grid_size-2][0][0] grid[0][grid_size-1][0] = G * grid[0][grid_size-2][0] grid[grid_size-1][grid_size-1][0] = G * grid[grid_size-1][grid_size-2][0] return grid #copies u1 to u2 and u0 to u1 for the grid def propagate(grid): row = 0 while row < grid_size: col = 0 while col < grid_size: grid[row][col][2] = grid[row][col][1] grid[row][col][1] = grid[row][col][0] col += 1 row += 1 return grid if __name__ == "__main__": # initialize the grid grid = np.zeros((grid_size, grid_size, 3), dtype=np.float) grid[grid_size//2,grid_size//2,1] = 1 #get CLAs num_iterations = 20 if len(sys.argv) >= 2: num_iterations = int(sys.argv[1]) start = time.time() #process the grid the required number of times for i in range(num_iterations): grid = iterate(grid) grid = apply_boundary_conditions(grid) grid = propagate(grid) #format to match sample u = grid[grid_size//2][grid_size//2][0] u_string = '{:.6f}'.format(round(u, 6)) if u >= 0: u_string = ' ' + u_string if i < 9: u_string = ' ' + u_string print(str(i+1) + ': ' + u_string) end = time.time() if OUTPUT_TIMING_DATA: with open('single-threaded.csv', 'a+') as f: f.write(str(end-start) + ',')
27.859813
77
0.526669
beae614adbbb166cde6e1a7de77bec9bfe772ade
1,549
py
Python
duke-cs671-fall21-coupon-recommendation/outputs/rules/RF/11_features/numtrees_30/rule_12.py
apcarrik/kaggle
6e2d4db58017323e7ba5510bcc2598e01a4ee7bf
[ "MIT" ]
null
null
null
duke-cs671-fall21-coupon-recommendation/outputs/rules/RF/11_features/numtrees_30/rule_12.py
apcarrik/kaggle
6e2d4db58017323e7ba5510bcc2598e01a4ee7bf
[ "MIT" ]
null
null
null
duke-cs671-fall21-coupon-recommendation/outputs/rules/RF/11_features/numtrees_30/rule_12.py
apcarrik/kaggle
6e2d4db58017323e7ba5510bcc2598e01a4ee7bf
[ "MIT" ]
null
null
null
def findDecision(obj): #obj[0]: Passanger, obj[1]: Time, obj[2]: Coupon, obj[3]: Age, obj[4]: Education, obj[5]: Occupation, obj[6]: Bar, obj[7]: Coffeehouse, obj[8]: Restaurant20to50, obj[9]: Direction_same, obj[10]: Distance # {"feature": "Age", "instances": 34, "metric_value": 0.7871, "depth": 1} if obj[3]>1: # {"feature": "Education", "instances": 25, "metric_value": 0.9044, "depth": 2} if obj[4]>0: # {"feature": "Bar", "instances": 17, "metric_value": 0.9975, "depth": 3} if obj[6]<=1.0: # {"feature": "Distance", "instances": 15, "metric_value": 0.971, "depth": 4} if obj[10]>1: # {"feature": "Time", "instances": 9, "metric_value": 0.7642, "depth": 5} if obj[1]<=2: return 'True' elif obj[1]>2: # {"feature": "Occupation", "instances": 4, "metric_value": 1.0, "depth": 6} if obj[5]<=9: return 'True' elif obj[5]>9: return 'False' else: return 'False' else: return 'True' elif obj[10]<=1: # {"feature": "Occupation", "instances": 6, "metric_value": 0.9183, "depth": 5} if obj[5]>11: return 'False' elif obj[5]<=11: # {"feature": "Time", "instances": 3, "metric_value": 0.9183, "depth": 6} if obj[1]>0: return 'True' elif obj[1]<=0: return 'False' else: return 'False' else: return 'True' else: return 'False' elif obj[6]>1.0: return 'False' else: return 'False' elif obj[4]<=0: return 'True' else: return 'True' elif obj[3]<=1: return 'True' else: return 'True'
36.023256
226
0.562298
fce225e87c40716a539b67a0324275c25ed9202f
897
py
Python
test/test_customer_video_stats_list_response.py
kinow-io/kaemo-python-sdk
610fce09e3a9e631babf09195b0492959d9e4d56
[ "Apache-2.0" ]
1
2017-05-03T12:48:22.000Z
2017-05-03T12:48:22.000Z
test/test_customer_video_stats_list_response.py
kinow-io/kaemo-python-sdk
610fce09e3a9e631babf09195b0492959d9e4d56
[ "Apache-2.0" ]
null
null
null
test/test_customer_video_stats_list_response.py
kinow-io/kaemo-python-sdk
610fce09e3a9e631babf09195b0492959d9e4d56
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Server API Reference for Server API (REST/Json) OpenAPI spec version: 2.0.9 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import os import sys import unittest import kinow_client from kinow_client.rest import ApiException from kinow_client.models.customer_video_stats_list_response import CustomerVideoStatsListResponse class TestCustomerVideoStatsListResponse(unittest.TestCase): """ CustomerVideoStatsListResponse unit test stubs """ def setUp(self): pass def tearDown(self): pass def testCustomerVideoStatsListResponse(self): """ Test CustomerVideoStatsListResponse """ model = kinow_client.models.customer_video_stats_list_response.CustomerVideoStatsListResponse() if __name__ == '__main__': unittest.main()
20.860465
103
0.735786
fd780e955efca20dd3a1104f87d39fd1fd8b9148
339
py
Python
setup.py
jrminter/ezwrappers
89da5bb0f555901813a4da0e1c60a193c3c77d65
[ "MIT" ]
null
null
null
setup.py
jrminter/ezwrappers
89da5bb0f555901813a4da0e1c60a193c3c77d65
[ "MIT" ]
null
null
null
setup.py
jrminter/ezwrappers
89da5bb0f555901813a4da0e1c60a193c3c77d65
[ "MIT" ]
null
null
null
from setuptools import setup setup(name='ezwrappers', version='0.0.910.dev0', description='Utility functions for python 3.x w/o hyperspy', url='http://github.com/jrminter/ezwrappers', author='Many', author_email='jrminter@gmail.com', license='MIT', packages=['ezwrappers'], zip_safe=False)
28.25
66
0.651917
56d2e8119b5d2f8b78119df16d4f7749b7e076d8
4,371
py
Python
light_field_neural_rendering/src/models/transformer.py
shaun95/google-research
d41bbaca1eb9bfd980ec2b3fd201c3ddb4d1f2e5
[ "Apache-2.0" ]
1
2022-02-25T05:34:44.000Z
2022-02-25T05:34:44.000Z
light_field_neural_rendering/src/models/transformer.py
shaun95/google-research
d41bbaca1eb9bfd980ec2b3fd201c3ddb4d1f2e5
[ "Apache-2.0" ]
null
null
null
light_field_neural_rendering/src/models/transformer.py
shaun95/google-research
d41bbaca1eb9bfd980ec2b3fd201c3ddb4d1f2e5
[ "Apache-2.0" ]
1
2022-03-30T07:20:29.000Z
2022-03-30T07:20:29.000Z
# coding=utf-8 # Copyright 2022 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Transformer model.""" import dataclasses import functools from typing import Any, Callable, Optional, Tuple from flax import linen as nn from jax import lax import jax.numpy as jnp from light_field_neural_rendering.src.utils import config_utils PRNGKey = Any Shape = Tuple[int] Dtype = Any Array = Any def _resolve(a, b): """Returns a if a is not None, else returns b.""" if a is not None: return a else: return b # The function is tweaked from https://github.com/google/flax/blob/main/examples/wmt/models.py class LearnedPositionEmbs(nn.Module): """Learned positional embeddings.""" max_length: int # Max length of the 2nd dimension @nn.compact def __call__( self, inputs, input_positions=None, ): """Add a leaned positional embeding to the input Args: inputs: input data. (bs, near_view, num_proj, in_dim) Returns: output: `(bs, near_view, num_proj, in_dim)` """ input_shape = inputs.shape pos_emb_shape = (1, self.max_length, inputs.shape[-1]) pos_embedding = self.param('pos_embedding', nn.initializers.normal(stddev=1e-6), pos_emb_shape) if input_positions is not None: pos_embedding = jnp.take(pos_embedding, input_positions, axis=1) return pos_embedding class Mlp(nn.Module): """Transformer MLP block with single hidden layer.""" hidden_params: Optional[int] = None out_params: Optional[int] = None dropout_rate: float = 0. kernel_init: Callable[[PRNGKey, Shape, Dtype], Array] = ( nn.initializers.xavier_uniform()) bias_init: Callable[[PRNGKey, Shape, Dtype], Array] = ( nn.initializers.normal(stddev=1e-6)) @nn.compact def __call__(self, inputs, deterministic): h = nn.Dense( features=_resolve(self.hidden_params, inputs.shape[-1]), kernel_init=self.kernel_init, bias_init=self.bias_init)( # pytype: disable=wrong-arg-types inputs) h = nn.gelu(h) h = nn.Dense( features=_resolve(self.out_params, inputs.shape[-1]), kernel_init=self.kernel_init, bias_init=self.bias_init)( # pytype: disable=wrong-arg-types h) return h class SelfAttentionTransformerLayer(nn.Module): """Transformer layer.""" attention_heads: int qkv_params: Optional[int] = None mlp_params: Optional[int] = None dropout_rate: float = 0. @nn.compact def __call__(self, query, deterministic): out_params = query.shape[-1] aux = {} # Attention from query to value attention_output = nn.SelfAttention( num_heads=self.attention_heads, qkv_features=self.qkv_params, out_features=out_params, dropout_rate=self.dropout_rate)( query, deterministic=deterministic) normalized_attention_output = nn.LayerNorm()(query + attention_output) mlp_output = Mlp( hidden_params=self.mlp_params, out_params=out_params, dropout_rate=self.dropout_rate)( normalized_attention_output, deterministic=deterministic) return nn.LayerNorm()(normalized_attention_output + mlp_output) class SelfAttentionTransformer(nn.Module): """Self Attention Transformer.""" params: config_utils.TransformerParams # Network parameters. @nn.compact def __call__(self, points, deterministic): """Call the transformer on a set of inputs.""" for i in range(self.params.num_layers): points = SelfAttentionTransformerLayer( attention_heads=self.params.attention_heads, qkv_params=self.params.qkv_params, mlp_params=self.params.mlp_params, dropout_rate=self.params.dropout_rate)( query=points, deterministic=deterministic) return points
30.566434
94
0.693663
b13d9ed8055b9a5c7e3cb6f4e27e7a6594da50a6
259
py
Python
exercises/ex10.py
gravyboat/python-exercises
50162a9e6f3d51fbb2c15ed08fcecba810d61338
[ "MIT" ]
null
null
null
exercises/ex10.py
gravyboat/python-exercises
50162a9e6f3d51fbb2c15ed08fcecba810d61338
[ "MIT" ]
null
null
null
exercises/ex10.py
gravyboat/python-exercises
50162a9e6f3d51fbb2c15ed08fcecba810d61338
[ "MIT" ]
null
null
null
#!/usr/bin/python def overlapping(first_list, second_list): ''' Takes two lists and checks if they have at least one number in common ''' for item in first_list: if item in second_list: return(True) return(False)
21.583333
73
0.625483
d6990d9cd0c07fe8dfe0c1623a5f20fdd38db5ed
3,577
py
Python
aav/util/model_utils.py
muell-monster/google-research
04d2024f4723bc4be3d639a668c19fb1f6a31478
[ "Apache-2.0" ]
2
2021-01-06T04:28:23.000Z
2021-02-24T13:46:04.000Z
aav/util/model_utils.py
Alfaxad/google-research
2c0043ecd507e75e2df9973a3015daf9253e1467
[ "Apache-2.0" ]
7
2021-11-10T19:44:38.000Z
2022-02-10T06:48:39.000Z
aav/util/model_utils.py
Alfaxad/google-research
2c0043ecd507e75e2df9973a3015daf9253e1467
[ "Apache-2.0" ]
4
2021-02-08T10:25:45.000Z
2021-04-17T14:46:26.000Z
# coding=utf-8 # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Model utilities for extracting information from training checkpoints.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import pandas import tensorflow as tf def get_best_checkpoint_path( model_dir, metric='loss', eval_subdir='eval_one_pass'): """Gets the path of the best checkpoint by given metric. Args: model_dir: (str) Path to tf.Estimator model. metric: (str) Model evaluation metric over which to optimize. eval_subdir: (str) Subdir path within model_dir to search for evaluation events. Returns: (str) The path to the model best checkpoint. Raises: ValueError: If the given metric is not supported. """ events = tf.event_accumulator.EventAccumulator( os.path.join(model_dir, eval_subdir)) events.Reload() # Actually read the event files into memory. step = None if metric == 'precision': step = _get_best_checkpoint_step(events, metric, higher_is_better=True) elif metric == 'loss': step = _get_best_checkpoint_step(events, metric, higher_is_better=False) elif metric == 'accuracy': step = _get_best_checkpoint_step(events, metric, higher_is_better=True) elif metric == 'recall': step = _get_best_checkpoint_step(events, metric, higher_is_better=True) else: raise ValueError('Unknown metric "%s" is not supported' % metric) return os.path.join(model_dir, 'model.ckpt-%d' % step) def _get_best_checkpoint_step( events, metric_key='precision', higher_is_better=True): """Gets the global step number of the best checkpoint by given metric. Args: events: (tf.Events) The summary events for a model evaluation. metric_key: (str) The model evaluation metric key to optimize over. higher_is_better: (bool) Is a higher value of the metric better? Returns: (int) The global step number of the best checkpoint. """ summary_df = pandas.DataFrame([ {'step': entry.step, metric_key: entry.value} for entry in events.Scalars(metric_key) ]) metric = summary_df[metric_key] best_index = None if higher_is_better: best_index = metric.idxmax() else: best_index = metric.idxmin() best_checkpoint = summary_df.iloc[best_index] return best_checkpoint.step
35.77
80
0.727705
f9a7c684dd923abc734b92869ee33441ddc5a8dd
1,510
py
Python
game/passwordValidator.py
MayankShrivastava17/algorithms-python-hacktoberfest-2021
bfb06448229c6a00f81f126e62f212205ce7d7e7
[ "MIT" ]
4
2021-10-01T13:22:20.000Z
2021-10-04T11:39:25.000Z
game/passwordValidator.py
MayankShrivastava17/algorithms-python-hacktoberfest-2021
bfb06448229c6a00f81f126e62f212205ce7d7e7
[ "MIT" ]
2
2021-10-11T16:56:03.000Z
2021-10-30T14:25:25.000Z
game/passwordValidator.py
MayankShrivastava17/algorithms-python-hacktoberfest-2021
bfb06448229c6a00f81f126e62f212205ce7d7e7
[ "MIT" ]
10
2021-10-11T12:28:48.000Z
2021-10-31T16:37:02.000Z
upper=["A","B","C","D","E","F","G","H","I","J","K","L","M","N","O","P","Q","R","S","T","U","V","W","X","Y","Z"] upper_new=[] lower=["a","b","c","d","e","f","g","h","i","j","k","l","m","n","o","p","q","r","s","t","u","v","w","x","y","z"] lower_new=[] number=["0","1","2","3","4","5","6","7","8","9"] number_new=[] character=["$","#","@"] character_new=[] while True: password=list(input("Enter Password: ")) if len(password)<6: print("Password is too short") continue elif len(password)>16: print("Password is too long") continue else: for i in password: if i in upper: upper_new.append(i) elif i in lower: lower_new.append(i) elif i in number: number_new.append(i) elif i in character: character_new.append(i) if len(upper_new)==0: print("Password Must Contain At Least 1 Uppercase Alphabet") continue elif len(lower_new)==0: print("Password Must Contain At Least 1 Lowercase Alphabet") continue elif len(character_new)==0: print("Password Must Contain At Least 1 Special Character") continue elif len(number_new)==0: print("Password Must Contain At Least 1 Number Between 0-9") continue else: print("Congratulations ! You Entered A Valid Password") break
27.454545
111
0.49404
c947c21401e6c3311c0b41b322793fcd77e2e4d7
10,328
py
Python
docs/conf.py
invenio-toaster/invenio-marc21
98f7259d5dc14763fb44cd90908a0c9b802ec605
[ "MIT" ]
1
2016-06-10T04:50:20.000Z
2016-06-10T04:50:20.000Z
docs/conf.py
invenio-toaster/invenio-marc21
98f7259d5dc14763fb44cd90908a0c9b802ec605
[ "MIT" ]
41
2016-02-11T15:21:32.000Z
2018-03-15T16:06:30.000Z
docs/conf.py
invenio-toaster/invenio-marc21
98f7259d5dc14763fb44cd90908a0c9b802ec605
[ "MIT" ]
25
2016-02-12T09:51:21.000Z
2021-12-07T08:59:05.000Z
# -*- coding: utf-8 -*- # # This file is part of Invenio. # Copyright (C) 2016-2018 CERN. # # Invenio is free software; you can redistribute it and/or modify it # under the terms of the MIT License; see LICENSE file for more details. from __future__ import print_function import os import sphinx.environment from docutils.utils import get_source_line # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Do not warn on external images. suppress_warnings = ['image.nonlocal_uri'] # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.coverage', 'sphinx.ext.doctest', 'sphinx.ext.intersphinx', 'sphinx.ext.viewcode', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'Invenio-MARC21' copyright = u'2016, CERN' author = u'CERN' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. # Get the version string. Cannot be done with import! g = {} with open(os.path.join(os.path.dirname(__file__), '..', 'invenio_marc21', 'version.py'), 'rt') as fp: exec(fp.read(), g) version = g['__version__'] # The full version, including alpha/beta/rc tags. release = version # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = [] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ---------------------------------------------- html_theme = 'alabaster' html_theme_options = { 'description': 'Invenio module with nice defaults for MARC21 overlay.', 'github_user': 'inveniosoftware', 'github_repo': 'invenio-marc21', 'github_button': False, 'github_banner': True, 'show_powered_by': False, 'extra_nav_links': { 'invenio-marc21@GitHub': 'https://github.com/inveniosoftware/invenio-marc21', 'invenio-marc21@PyPI': 'https://pypi.python.org/pypi/invenio-marc21/', } } # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". #html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. html_sidebars = { '**': [ 'about.html', 'navigation.html', 'relations.html', 'searchbox.html', 'donate.html', ] } # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Language to be used for generating the HTML full-text search index. # Sphinx supports the following languages: # 'da', 'de', 'en', 'es', 'fi', 'fr', 'hu', 'it', 'ja' # 'nl', 'no', 'pt', 'ro', 'ru', 'sv', 'tr' #html_search_language = 'en' # A dictionary with options for the search language support, empty by default. # Now only 'ja' uses this config value #html_search_options = {'type': 'default'} # The name of a javascript file (relative to the configuration directory) that # implements a search results scorer. If empty, the default will be used. #html_search_scorer = 'scorer.js' # Output file base name for HTML help builder. htmlhelp_basename = 'invenio-marc21_namedoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', # Latex figure (float) alignment #'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'invenio-marc21.tex', u'invenio-marc21 Documentation', u'CERN', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'invenio-marc21', u'invenio-marc21 Documentation', [author], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'invenio-marc21', u'Invenio-MARC21 Documentation', author, 'invenio-marc21', 'Invenio module with nice defaults for MARC21 overlay.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = { 'https://docs.python.org/': None, 'flask': ( 'http://flask.pocoo.org/docs/', None), 'invenio-pidstore': ( 'https://invenio-pidstore.readthedocs.io/en/latest/', None), 'invenio-records': ( 'https://invenio-records.readthedocs.io/en/latest/', None), } # Autodoc configuraton. autoclass_content = 'both'
31.392097
85
0.70488
252564c77cefbb21c122f70fa88a032329e73b7e
112
py
Python
pages/urls.py
chulth/CV
79be708588455bf2894b005734fb137eb5e338e1
[ "CC0-1.0" ]
3
2021-12-08T21:36:52.000Z
2021-12-15T15:49:33.000Z
pages/urls.py
chulth/CV
79be708588455bf2894b005734fb137eb5e338e1
[ "CC0-1.0" ]
1
2022-02-28T22:50:06.000Z
2022-02-28T22:50:06.000Z
pages/urls.py
chulth/CV
79be708588455bf2894b005734fb137eb5e338e1
[ "CC0-1.0" ]
1
2022-02-15T17:18:15.000Z
2022-02-15T17:18:15.000Z
from django.urls import path from . import views urlpatterns = [ path('', views.index, name='index'), ]
18.666667
40
0.651786
8ede39824e9633bb4c1b875280ccb4d72874754c
342
py
Python
DjangoApp/stwms_app/migrations/0021_remove_rawmaterialrequest_status.py
EricBrianAnil/smarTangle-auth0
777a260260dfc36b338c141aac9a69d475f0adeb
[ "Apache-2.0" ]
null
null
null
DjangoApp/stwms_app/migrations/0021_remove_rawmaterialrequest_status.py
EricBrianAnil/smarTangle-auth0
777a260260dfc36b338c141aac9a69d475f0adeb
[ "Apache-2.0" ]
null
null
null
DjangoApp/stwms_app/migrations/0021_remove_rawmaterialrequest_status.py
EricBrianAnil/smarTangle-auth0
777a260260dfc36b338c141aac9a69d475f0adeb
[ "Apache-2.0" ]
null
null
null
# Generated by Django 3.0.3 on 2020-06-24 03:58 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('stwms_app', '0020_auto_20200624_0927'), ] operations = [ migrations.RemoveField( model_name='rawmaterialrequest', name='status', ), ]
19
49
0.608187
dc9a0e0e0c27aa4732a607d0281f94234dbcf5ef
385
py
Python
src/fidesops/schemas/redis_cache.py
eastandwestwind/fidesops
93e2881c0fdc30075b7cc22024965d18cec0bdea
[ "Apache-2.0" ]
41
2021-11-01T23:53:43.000Z
2022-03-22T23:07:56.000Z
src/fidesops/schemas/redis_cache.py
eastandwestwind/fidesops
93e2881c0fdc30075b7cc22024965d18cec0bdea
[ "Apache-2.0" ]
235
2021-11-01T20:31:55.000Z
2022-03-31T15:40:58.000Z
src/fidesops/schemas/redis_cache.py
eastandwestwind/fidesops
93e2881c0fdc30075b7cc22024965d18cec0bdea
[ "Apache-2.0" ]
12
2021-11-02T00:44:51.000Z
2022-03-14T16:23:10.000Z
from typing import Optional from pydantic import Extra from fidesops.schemas.base_class import BaseSchema class PrivacyRequestIdentity(BaseSchema): """Some PII grouping pertaining to a human""" phone_number: Optional[str] = None email: Optional[str] = None class Config: """Only allow phone_number and email to be supplied""" extra = Extra.forbid
22.647059
62
0.719481
4ac8e1730e0561df713a47a6a427a67c30b8b871
765
py
Python
buuctf/31-0ctf_2018_heapstorm2/exp.py
RoderickChan/ctf_tasks
a021c6d86cade26448d099933f3caa856ed28360
[ "MIT" ]
null
null
null
buuctf/31-0ctf_2018_heapstorm2/exp.py
RoderickChan/ctf_tasks
a021c6d86cade26448d099933f3caa856ed28360
[ "MIT" ]
null
null
null
buuctf/31-0ctf_2018_heapstorm2/exp.py
RoderickChan/ctf_tasks
a021c6d86cade26448d099933f3caa856ed28360
[ "MIT" ]
null
null
null
#! /usr/bin/python3 from pwncli import * cli_script() def allocate(p:tube, size): p.sendlineafter("Command: ", "1") p.sendlineafter("Size: ", str(size)) p.recvline() def update(p:tube, idx, size, content): p.sendlineafter("Command: ", "2") p.sendlineafter("Index: ", str(idx)) p.sendlineafter("Size: ", str(size)) p.sendafter("Content: ", content) p.recvline() def delete(p:tube, idx): p.sendlineafter("Command: ", "3") p.sendlineafter("Index: ", str(idx)) p.recvline() def view(p:tube, idx): p.sendlineafter("Command: ", "4") p.sendlineafter("Index: ", str(idx)) msg = p.recvuntil("1. Allocate\n") info("msg recv: {}".format(msg)) return msg def attack(p:tube): pass attack(gift['io'])
20.675676
40
0.607843
7f60a3dcf4ce91ddc38916e9a81b059da308a945
232
py
Python
reverse_complement.py
rjcc/bioinformatics_algorithms
99a5e564f8c02e6da5ee9e186bf8d5d3f1effb92
[ "MIT" ]
1
2019-05-13T13:44:57.000Z
2019-05-13T13:44:57.000Z
reverse_complement.py
rjcc/bioinformatics_algorithms
99a5e564f8c02e6da5ee9e186bf8d5d3f1effb92
[ "MIT" ]
null
null
null
reverse_complement.py
rjcc/bioinformatics_algorithms
99a5e564f8c02e6da5ee9e186bf8d5d3f1effb92
[ "MIT" ]
1
2019-11-07T12:47:12.000Z
2019-11-07T12:47:12.000Z
def complement(p): if (p == "A"): return "T" if (p == "C"): return "G" if (p == "G"): return "C" if (p == "T"): return "A" def reverse_complement(pattern): p = "" for i in pattern: p = complement(i) + p return p
17.846154
32
0.517241
043429e8f687518ec0c3a02d638f82940fac2853
1,083
py
Python
pyscreenshot/check/speedtest.py
gatoatigrado/pyscreenshot
40233cf17492f2f6b2f7e0950ac42317e9487b40
[ "BSD-2-Clause" ]
null
null
null
pyscreenshot/check/speedtest.py
gatoatigrado/pyscreenshot
40233cf17492f2f6b2f7e0950ac42317e9487b40
[ "BSD-2-Clause" ]
null
null
null
pyscreenshot/check/speedtest.py
gatoatigrado/pyscreenshot
40233cf17492f2f6b2f7e0950ac42317e9487b40
[ "BSD-2-Clause" ]
null
null
null
import pyscreenshot import tempfile import time import shutil def run(force_backend, n): tmpdir = tempfile.mkdtemp(prefix='pyscreenshot_speedtest_') start = time.time() for _ in range(n): pyscreenshot.grab( backend=force_backend, childprocess=True) end = time.time() dt = end - start s = '' s += '%-20s' % force_backend s += '\t' s += '%-4.2g sec' % dt s += '\t' s += '(%5d ms per call)' % (1000.0 * dt / n) print(s) shutil.rmtree(tmpdir) def run_all(n): print('') s = '' s += 'n=%s' % n print(s) print('------------------------------------------------------') for x in pyscreenshot.backends(): try: run(x, n) except pyscreenshot.FailedBackendError as e: print(e) def speedtest(): n = 10 run_all(n) def main(virtual_display=False): if virtual_display: from pyvirtualdisplay import Display with Display(visible=0): speedtest() else: speedtest() if __name__ == '__main__': main()
19
67
0.527239
69827888d485788c8d6a18a21b8e39b5bb87ebde
1,911
py
Python
tests/ogm/test_validators.py
TwoBitAlchemist/NeoAlchemy
e28634734da3aa6b80eeb439cfc217d9b7de82a8
[ "MIT" ]
25
2016-07-19T00:21:22.000Z
2021-12-28T14:37:54.000Z
tests/ogm/test_validators.py
TwoBitAlchemist/NeoAlchemy
e28634734da3aa6b80eeb439cfc217d9b7de82a8
[ "MIT" ]
4
2016-12-29T22:08:27.000Z
2021-09-04T07:03:09.000Z
tests/ogm/test_validators.py
TwoBitAlchemist/NeoAlchemy
e28634734da3aa6b80eeb439cfc217d9b7de82a8
[ "MIT" ]
9
2017-03-21T07:40:40.000Z
2021-10-25T00:16:57.000Z
"""Tests for type validators""" import uuid import pytest from neoalchemy.validators import * def test_date_validators(): assert isodate('Mar 24, 1985') == '1985-03-24' assert isodate('03/24/1985') == '1985-03-24' assert isodate('1985-03-24') == '1985-03-24' assert isodate('3-24-85') == '1985-03-24' with pytest.raises(ValueError): isodate('chicken nugget') assert isodatetime('Mar 24, 1985 10:50 PM') == '1985-03-24T22:50:00' assert isodatetime('Mar 24, 1985 10:50 p.m.') == '1985-03-24T22:50:00' assert isodatetime('24 Mar, 1985 22:50') == '1985-03-24T22:50:00' with pytest.raises(ValueError): isodatetime('cat loaf') def test_uuid_validator(): assert UUID(uuid.uuid1()) assert UUID(uuid.uuid4()) with pytest.raises(ValueError): assert UUID('12345') def test_varchar_validator(): max5 = varchar(5) assert max5('hello') == 'hello' assert max5('hi') == 'hi' with pytest.raises(ValueError): assert max5('hello!') max3 = varchar(3) assert max3('hi') == 'hi' with pytest.raises(ValueError): assert max3('hello') def test_IP_validators(): assert IPv4('192.168.1.1') == '192.168.1.1' assert IPv4('0.0.0.0') == '0.0.0.0' with pytest.raises(ValueError): assert IPv4('123.456.789.000') assert IPv6('::1') == '::1' assert IPv6('::FFFF:123:456:789:000') == '::FFFF:123:456:789:000' assert IPv6('0:0:0:0:0:0:0:1') == '0:0:0:0:0:0:0:1' with pytest.raises(ValueError): assert IPv6('2345235:5923058209385:wtfisthis') assert IP('192.168.1.1') == '192.168.1.1' assert IP('0.0.0.0') == '0.0.0.0' assert IP('::1') == '::1' assert IP('::FFFF:123:456:789:000') == '::FFFF:123:456:789:000' assert IP('0:0:0:0:0:0:0:1') == '0:0:0:0:0:0:0:1' with pytest.raises(ValueError): assert IP('Good morning starshine the earth says hello')
32.389831
74
0.608582
1feb9d61b5b252eb7443fd00ac639d2c48ec0f59
492
py
Python
quizzie/urls.py
JogiDheeraj/hello
1c918d9709a5c07b1df38da1ff05fbece60585db
[ "MIT" ]
null
null
null
quizzie/urls.py
JogiDheeraj/hello
1c918d9709a5c07b1df38da1ff05fbece60585db
[ "MIT" ]
null
null
null
quizzie/urls.py
JogiDheeraj/hello
1c918d9709a5c07b1df38da1ff05fbece60585db
[ "MIT" ]
null
null
null
from django.conf.urls import url, include from django.contrib import admin from django.contrib.auth.views import login, logout from game.views import index urlpatterns = [ url(r'^$', index, name='homepage'), url(r'^accounts/login/$', login, name='login'), url(r'^accounts/logout/$', logout, name='logout'), url(r'^auth/', include('social_django.urls', namespace='social')), url(r'^admin/', admin.site.urls), url(r'^quiz/', include('game.urls', namespace='quiz')), ]
32.8
70
0.672764
0ff29e53e76b7f2e22558926c3cfa8c3baed514b
1,312
py
Python
DEVWKS-1512/code/jinja_create_vlan.py
akennerly/byrne-workshops
5a002c511a42a598736ca6c96967a22ec09432c8
[ "MIT" ]
8
2018-10-08T16:51:42.000Z
2021-04-05T22:01:30.000Z
DEVWKS-1512/code/jinja_create_vlan.py
akennerly/byrne-workshops
5a002c511a42a598736ca6c96967a22ec09432c8
[ "MIT" ]
3
2019-01-10T17:39:38.000Z
2021-03-31T18:50:08.000Z
DEVWKS-1512/code/jinja_create_vlan.py
akennerly/byrne-workshops
5a002c511a42a598736ca6c96967a22ec09432c8
[ "MIT" ]
10
2019-05-23T07:31:33.000Z
2021-02-23T20:04:41.000Z
#!/usr/bin/env python """ Copyright (c) 2019 Cisco and/or its affiliates. This software is licensed to you under the terms of the Cisco Sample Code License, Version 1.0 (the "License"). You may obtain a copy of the License at https://developer.cisco.com/docs/licenses All use of the material herein must be in accordance with the terms of the License. All rights not expressly granted by the License are reserved. Unless required by applicable law or agreed to separately in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. """ __author__ = "Bryan Byrne <brybyrne@cisco.com>" __contributors__ = [ ] __copyright__ = "Copyright (c) 2019 Cisco and/or its affiliates." __license__ = "Cisco Sample Code License, Version 1.0" from jinja2 import Template template_in = Template(""" vlan {{ id }} name {{vlan_name }} ! interface vlan {{ id }} ip address {{ ip_addr }} {{ mask }} """) template_out = template_in.render(id=200, vlan_name='DATA', ip_addr='192.168.1.1', mask="255.255.255.0") print(template_out)
29.818182
72
0.634909
8df2be99c4663be0348ead924e2a13f808f4876d
192
py
Python
src/plugin/__init__.py
changleibox/flutter_build_script
a93a7d9ce276b68c3a2d34b5830a4fc9683e574b
[ "Apache-2.0" ]
null
null
null
src/plugin/__init__.py
changleibox/flutter_build_script
a93a7d9ce276b68c3a2d34b5830a4fc9683e574b
[ "Apache-2.0" ]
null
null
null
src/plugin/__init__.py
changleibox/flutter_build_script
a93a7d9ce276b68c3a2d34b5830a4fc9683e574b
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (c) 2020 CHANGLEI. All rights reserved. # Created by changlei on 2020/6/29. from src.plugin.dingtalk_chatbot import DingtalkChatbot
27.428571
55
0.729167
95a9c60c677322304b6cd09bde1d137d7360ea76
21,926
py
Python
tensorflow/contrib/layers/python/layers/optimizers_test.py
uve/tensorflow
e08079463bf43e5963acc41da1f57e95603f8080
[ "Apache-2.0" ]
null
null
null
tensorflow/contrib/layers/python/layers/optimizers_test.py
uve/tensorflow
e08079463bf43e5963acc41da1f57e95603f8080
[ "Apache-2.0" ]
null
null
null
tensorflow/contrib/layers/python/layers/optimizers_test.py
uve/tensorflow
e08079463bf43e5963acc41da1f57e95603f8080
[ "Apache-2.0" ]
null
null
null
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for optimizers.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.layers.python.layers import optimizers as optimizers_lib from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import random_seed from tensorflow.python.ops import array_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import state_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables from tensorflow.python.platform import test from tensorflow.python.training import gradient_descent def _setup_model(): x = array_ops.placeholder(dtypes.float32, []) var = variable_scope.get_variable( "test", [], initializer=init_ops.constant_initializer(10)) loss = math_ops.abs(var * x) global_step = variable_scope.get_variable( "global_step", [], trainable=False, dtype=dtypes.int64, initializer=init_ops.constant_initializer( 0, dtype=dtypes.int64)) return x, var, loss, global_step def _no_op_learning_rate_decay_fn(lr, global_step): assert lr is not None assert global_step is not None return lr class OptimizersTest(test.TestCase): def testSGDOptimizer(self): optimizers = [ "SGD", gradient_descent.GradientDescentOptimizer, gradient_descent.GradientDescentOptimizer(learning_rate=0.1), lambda lr: gradient_descent.GradientDescentOptimizer(learning_rate=lr), "Momentum" ] for optimizer in optimizers: with ops.Graph().as_default() as g: with self.session(graph=g) as session: x, var, loss, global_step = _setup_model() train = optimizers_lib.optimize_loss( loss, global_step, learning_rate=0.1, optimizer=optimizer) variables.global_variables_initializer().run() session.run(train, feed_dict={x: 5}) var_value, global_step_value = session.run([var, global_step]) self.assertEqual(var_value, 9.5) self.assertEqual(global_step_value, 1) def testNoLrCallable(self): def optimizer_fn(): return gradient_descent.GradientDescentOptimizer(learning_rate=0.1) with ops.Graph().as_default() as g: with self.session(graph=g) as session: x, var, loss, global_step = _setup_model() train = optimizers_lib.optimize_loss( loss, global_step, learning_rate=None, optimizer=optimizer_fn) variables.global_variables_initializer().run() session.run(train, feed_dict={x: 5}) var_value, global_step_value = session.run([var, global_step]) self.assertEqual(var_value, 9.5) self.assertEqual(global_step_value, 1) def testWrongOptimizer(self): optimizers = ["blah", variables.Variable, object(), lambda x: None] for optimizer in optimizers: with ops.Graph().as_default() as g: with self.session(graph=g): _, _, loss, global_step = _setup_model() with self.assertRaises(ValueError): optimizers_lib.optimize_loss( loss, global_step, learning_rate=0.1, optimizer=optimizer) def testBadSummaries(self): with ops.Graph().as_default() as g, self.session(graph=g): _, _, loss, global_step = _setup_model() with self.assertRaises(ValueError): optimizers_lib.optimize_loss( loss, global_step, learning_rate=0.1, optimizer="SGD", summaries=["loss", "bad_summary"]) def testInvalidLoss(self): with ops.Graph().as_default() as g, self.session(graph=g): _, _, _, global_step = _setup_model() with self.assertRaises(ValueError): optimizers_lib.optimize_loss( None, global_step, learning_rate=0.1, optimizer="SGD") with self.assertRaises(ValueError): optimizers_lib.optimize_loss( [[1.0]], global_step, learning_rate=0.1, optimizer="SGD") def testInvalidGlobalStep(self): with ops.Graph().as_default() as g, self.session(graph=g): x = array_ops.placeholder(dtypes.float32, []) var = variable_scope.get_variable( "test", [], initializer=init_ops.constant_initializer(10)) loss = math_ops.abs(var * x) with self.assertRaises(AttributeError): optimizers_lib.optimize_loss( loss, global_step=constant_op.constant( 43, dtype=dtypes.int64), learning_rate=0.1, optimizer="SGD") with self.assertRaises(TypeError): optimizers_lib.optimize_loss( loss, global_step=variable_scope.get_variable( "global_step", [], trainable=False, dtype=dtypes.float64, initializer=init_ops.constant_initializer( 0.0, dtype=dtypes.float64)), learning_rate=0.1, optimizer="SGD") with self.assertRaises(ValueError): optimizers_lib.optimize_loss( loss, global_step=variable_scope.get_variable( "global_step", [1], trainable=False, dtype=dtypes.int64, initializer=init_ops.constant_initializer( [0], dtype=dtypes.int64)), learning_rate=0.1, optimizer="SGD") def testInvalidLearningRate(self): with ops.Graph().as_default() as g, self.session(graph=g): _, _, loss, global_step = _setup_model() with self.assertRaises(ValueError): optimizers_lib.optimize_loss( loss, global_step, learning_rate=-0.1, optimizer="SGD") def testGradientNoise(self): random_seed.set_random_seed(42) with self.cached_session() as session: x, var, loss, global_step = _setup_model() train = optimizers_lib.optimize_loss( loss, global_step, learning_rate=0.1, optimizer="SGD", gradient_noise_scale=10.0) variables.global_variables_initializer().run() session.run(train, feed_dict={x: 5}) var_value, global_step_value = session.run([var, global_step]) # Due to randomness the following number may change if graph is different. self.assertAlmostEqual(var_value, 9.86912, 4) self.assertEqual(global_step_value, 1) def testGradientNoiseWithClipping(self): random_seed.set_random_seed(42) with self.cached_session() as session: x, var, loss, global_step = _setup_model() train = optimizers_lib.optimize_loss( loss, global_step, learning_rate=0.1, optimizer="SGD", gradient_noise_scale=10.0, clip_gradients=10.0) variables.global_variables_initializer().run() session.run(train, feed_dict={x: 5}) var_value, global_step_value = session.run([var, global_step]) self.assertAlmostEqual(var_value, 9.86912, 4) self.assertEqual(global_step_value, 1) def testGradientClip(self): with self.cached_session() as session: x, var, loss, global_step = _setup_model() train = optimizers_lib.optimize_loss( loss, global_step, learning_rate=0.1, optimizer="SGD", clip_gradients=0.1) variables.global_variables_initializer().run() session.run(train, feed_dict={x: 5}) var_value, global_step_value = session.run([var, global_step]) self.assertAlmostEqual(var_value, 9.98999, 4) self.assertEqual(global_step_value, 1) def testAdaptiveGradientClip(self): with self.cached_session() as session: x, var, loss, global_step = _setup_model() clip_gradients = optimizers_lib.adaptive_clipping_fn() train = optimizers_lib.optimize_loss( loss, global_step, learning_rate=0.1, optimizer="SGD", clip_gradients=clip_gradients) variables.global_variables_initializer().run() session.run(train, feed_dict={x: 5}) var_value, global_step_value = session.run([var, global_step]) self.assertAlmostEqual(var_value, 9.8916, 4) self.assertEqual(global_step_value, 1) var_count = 0 for var in variables.global_variables(): if var.name.startswith("OptimizeLoss/AdaptiveMaxNorm"): var_count += 1 self.assertEqual(2, var_count) def testGradientMultiply(self): with self.cached_session() as session: x, var, loss, global_step = _setup_model() train = optimizers_lib.optimize_loss( loss, global_step, learning_rate=0.1, optimizer="SGD", gradient_multipliers={var: 7.}) variables.global_variables_initializer().run() session.run(train, feed_dict={x: 5}) var_value, global_step_value = session.run([var, global_step]) # var(0) = 10, x = 5, var(0)/dx = 5, # var(1) = var(0) - learning_rate * gradient_multiplier * var(0)/dx self.assertAlmostEqual(var_value, 6.5, 4) self.assertEqual(global_step_value, 1) def testGradientMultiplyInt32Tensor(self): with self.cached_session() as session: x, var, loss, global_step = _setup_model() v = array_ops.placeholder(dtypes.float32, []) train = optimizers_lib.optimize_loss( loss, global_step, learning_rate=0.1, optimizer="SGD", gradient_multipliers={var: v}) variables.global_variables_initializer().run() session.run(train, feed_dict={x: 5, v: 7.}) var_value, global_step_value = session.run([var, global_step]) # var(0) = 10, x = 5, var(0)/dx = 5, # var(1) = var(0) - learning_rate * gradient_multiplier * var(0)/dx self.assertAlmostEqual(var_value, 6.5, 4) self.assertEqual(global_step_value, 1) def testGradientMultiplyInt64Tensor(self): with self.cached_session() as session: x, var, loss, global_step = _setup_model() v = array_ops.placeholder(dtypes.float64, []) train = optimizers_lib.optimize_loss( loss, global_step, learning_rate=0.1, optimizer="SGD", gradient_multipliers={var: v}) variables.global_variables_initializer().run() session.run(train, feed_dict={x: 5, v: 7.}) var_value, global_step_value = session.run([var, global_step]) # var(0) = 10, x = 5, var(0)/dx = 5, # var(1) = var(0) - learning_rate * gradient_multiplier * var(0)/dx self.assertAlmostEqual(var_value, 6.5, 4) self.assertEqual(global_step_value, 1) def testIgnoreVariablesWithNoGradients(self): _, _, loss, global_step = _setup_model() unused_variable = variable_scope.get_variable("ignore_me", []) optimizers_lib.optimize_loss( loss, global_step, learning_rate=0.1, optimizer="SGD", gradient_noise_scale=10.0, gradient_multipliers={unused_variable: 1.}, clip_gradients=10.0) def testNoGlobalStep(self): optimizers = [ "SGD", gradient_descent.GradientDescentOptimizer, gradient_descent.GradientDescentOptimizer(learning_rate=0.1) ] for optimizer in optimizers: with ops.Graph().as_default() as g, self.session(graph=g) as session: x = array_ops.placeholder(dtypes.float32, []) var = variable_scope.get_variable( "test", [], initializer=init_ops.constant_initializer(10)) loss = math_ops.abs(var * x) update_var = variable_scope.get_variable( "update", [], initializer=init_ops.constant_initializer(10)) update_op = state_ops.assign(update_var, 20) train = optimizers_lib.optimize_loss( loss, global_step=None, learning_rate=0.1, optimizer=optimizer, update_ops=[update_op]) variables.global_variables_initializer().run() session.run(train, feed_dict={x: 5}) self.assertEqual(9.5, var.eval()) self.assertEqual(20, update_var.eval()) def testNoGlobalStepWithDecay(self): optimizers = [ "SGD", gradient_descent.GradientDescentOptimizer, gradient_descent.GradientDescentOptimizer(learning_rate=0.1) ] for optimizer in optimizers: with ops.Graph().as_default() as g, self.session(graph=g): x = array_ops.placeholder(dtypes.float32, []) var = variable_scope.get_variable( "test", [], initializer=init_ops.constant_initializer(10)) loss = math_ops.abs(var * x) update_var = variable_scope.get_variable( "update", [], initializer=init_ops.constant_initializer(10)) update_op = state_ops.assign(update_var, 20) with self.assertRaisesRegexp( ValueError, "global_step is required for learning_rate_decay_fn"): optimizers_lib.optimize_loss( loss, global_step=None, learning_rate=0.1, learning_rate_decay_fn=_no_op_learning_rate_decay_fn, optimizer=optimizer, update_ops=[update_op]) def testNoGlobalStepArg(self): optimizers = [ "SGD", gradient_descent.GradientDescentOptimizer, gradient_descent.GradientDescentOptimizer(learning_rate=0.1) ] for optimizer in optimizers: with ops.Graph().as_default() as g, self.session(graph=g) as session: x, var, loss, global_step = _setup_model() update_var = variable_scope.get_variable( "update", [], initializer=init_ops.constant_initializer(10)) update_op = state_ops.assign(update_var, 20) train = optimizers_lib.optimize_loss( loss, global_step=None, learning_rate=0.1, optimizer=optimizer, update_ops=[update_op]) variables.global_variables_initializer().run() session.run(train, feed_dict={x: 5}) self.assertEqual(9.5, var.eval()) self.assertEqual(20, update_var.eval()) self.assertEqual(1, global_step.eval()) def testUpdateOp(self): optimizers = [ "SGD", gradient_descent.GradientDescentOptimizer, gradient_descent.GradientDescentOptimizer(learning_rate=0.1) ] for optimizer in optimizers: with ops.Graph().as_default() as g, self.session(graph=g) as session: x, var, loss, global_step = _setup_model() update_var = variable_scope.get_variable( "update", [], initializer=init_ops.constant_initializer(10)) update_op = state_ops.assign(update_var, 20) train = optimizers_lib.optimize_loss( loss, global_step, learning_rate=0.1, optimizer=optimizer, update_ops=[update_op]) variables.global_variables_initializer().run() session.run(train, feed_dict={x: 5}) self.assertEqual(9.5, var.eval()) self.assertEqual(20, update_var.eval()) self.assertEqual(1, global_step.eval()) def testUpdateOpNoIncrementGlobalStep(self): optimizers = [ "SGD", gradient_descent.GradientDescentOptimizer, gradient_descent.GradientDescentOptimizer(learning_rate=0.1) ] for optimizer in optimizers: with ops.Graph().as_default() as g, self.session(graph=g) as session: x, var, loss, global_step = _setup_model() update_var = variable_scope.get_variable( "update", [], initializer=init_ops.constant_initializer(10)) update_op = state_ops.assign(update_var, 20) train = optimizers_lib.optimize_loss( loss, global_step, learning_rate=0.1, optimizer=optimizer, update_ops=[update_op], increment_global_step=False) variables.global_variables_initializer().run() session.run(train, feed_dict={x: 5}) self.assertEqual(9.5, var.eval()) self.assertEqual(20, update_var.eval()) self.assertEqual(0, global_step.eval()) def testUpdateOpWithNoOpDecay(self): optimizers = [ "SGD", gradient_descent.GradientDescentOptimizer, gradient_descent.GradientDescentOptimizer(learning_rate=0.1) ] for optimizer in optimizers: with ops.Graph().as_default() as g, self.session(graph=g) as session: x, var, loss, global_step = _setup_model() update_var = variable_scope.get_variable( "update", [], initializer=init_ops.constant_initializer(10)) update_op = state_ops.assign(update_var, 20) train = optimizers_lib.optimize_loss( loss, global_step, learning_rate=0.1, learning_rate_decay_fn=_no_op_learning_rate_decay_fn, optimizer=optimizer, update_ops=[update_op]) variables.global_variables_initializer().run() session.run(train, feed_dict={x: 5}) self.assertEqual(9.5, var.eval()) self.assertEqual(20, update_var.eval()) self.assertEqual(1, global_step.eval()) def testUpdateOpFromCollection(self): optimizers = [ "SGD", gradient_descent.GradientDescentOptimizer, gradient_descent.GradientDescentOptimizer(learning_rate=0.1) ] for optimizer in optimizers: with ops.Graph().as_default() as g, self.session(graph=g) as session: x, var, loss, global_step = _setup_model() update_var = variable_scope.get_variable( "update", [], initializer=init_ops.constant_initializer(10)) update_op = state_ops.assign(update_var, 20) ops.add_to_collection(ops.GraphKeys.UPDATE_OPS, update_op) train = optimizers_lib.optimize_loss( loss, global_step, learning_rate=0.1, optimizer=optimizer) variables.global_variables_initializer().run() session.run(train, feed_dict={x: 5}) var_value, update_var_value, global_step_value = session.run( [var, update_var, global_step]) self.assertEqual(var_value, 9.5) self.assertEqual(update_var_value, 20) self.assertEqual(global_step_value, 1) class AdaptiveClipping(test.TestCase): def testAverages(self): with self.cached_session() as session: scale = 2. grad = array_ops.ones([3, 4]) * scale log_norm = np.log(np.sqrt(scale**2 * grad.get_shape().num_elements())) grads_and_vars = [(grad, grad)] grads_and_vars = optimizers_lib.adaptive_clipping_fn( decay=0.5)(grads_and_vars) var_dict = {} for var in variables.global_variables(): if var.name.startswith("AdaptiveMaxNorm"): var_dict[var.name.split(":")[0]] = var self.assertEqual(2, len(var_dict)) moving_mean = var_dict["AdaptiveMaxNorm/mean"] moving_sq_mean = var_dict["AdaptiveMaxNorm/sq_mean"] variables.global_variables_initializer().run() mean, sq_mean = session.run([moving_mean, moving_sq_mean]) self.assertEqual([0], mean) self.assertEqual([0], sq_mean) for i in range(20): mean, sq_mean, _ = session.run( [moving_mean, moving_sq_mean, grads_and_vars[0][0]]) if i == 0: self.assertLess(mean, 0.9 * log_norm) self.assertLess(sq_mean, 0.9 * log_norm**2) self.assertAlmostEqual(float(mean), log_norm, places=4) self.assertAlmostEqual(float(sq_mean), log_norm**2, places=4) def testClip(self): with self.cached_session() as session: spike = 1000. multiplier = array_ops.placeholder(dtypes.float32, [], "multiplier") step = array_ops.placeholder(dtypes.int32, [], "step") grad = array_ops.ones([3, 4]) * multiplier grads_and_vars = [(grad, grad)] grads_and_vars = optimizers_lib.adaptive_clipping_fn( decay=0.9, global_step=step)(grads_and_vars) variables.global_variables_initializer().run() def run(scale, i): return session.run(grads_and_vars[0][0], feed_dict={multiplier: scale, step: i}) for i in range(20): scale = [1., -2.][i % 2] clipped_grad = run(scale, i) if i > 3: self.assertAllClose(np.ones(clipped_grad.shape) * scale, clipped_grad) # assert that the spike will have low influence. clipped_grad = run(spike, 20) self.assertTrue((clipped_grad < 25.).all()) # assert that a repeated spike will converge to this new value. for i in range(10): clipped_grad = run(spike, i + 21) self.assertAllClose(np.ones(clipped_grad.shape) * spike, clipped_grad) if __name__ == "__main__": test.main()
40.754647
81
0.639332
5427837b055703bbbc6bd9a0642e2276e82b6c63
2,140
py
Python
generated-libraries/python/netapp/cluster_peer/cluster_peer_active_address.py
radekg/netapp-ontap-lib-get
6445ebb071ec147ea82a486fbe9f094c56c5c40d
[ "MIT" ]
2
2017-03-28T15:31:26.000Z
2018-08-16T22:15:18.000Z
generated-libraries/python/netapp/cluster_peer/cluster_peer_active_address.py
radekg/netapp-ontap-lib-get
6445ebb071ec147ea82a486fbe9f094c56c5c40d
[ "MIT" ]
null
null
null
generated-libraries/python/netapp/cluster_peer/cluster_peer_active_address.py
radekg/netapp-ontap-lib-get
6445ebb071ec147ea82a486fbe9f094c56c5c40d
[ "MIT" ]
null
null
null
from netapp.netapp_object import NetAppObject class ClusterPeerActiveAddress(NetAppObject): """ A list of active IP addresses configured in a peer cluster When returned as part of the output, all elements of this typedef are reported, unless limited by a set of desired attributes specified by the caller. <p> When used as input to specify desired attributes to return, omitting a given element indicates that it shall not be returned in the output. In contrast, by providing an element (even with no value) the caller ensures that a value for that element will be returned, given that the value can be retrieved. <p> When used as input to specify queries, any element can be omitted in which case the resulting set of objects is not constrained by any specific value of that attribute. """ _peer_addresses = None @property def peer_addresses(self): """ The active IP Addresses of the peer cluster. Attributes: non-creatable, non-modifiable """ return self._peer_addresses @peer_addresses.setter def peer_addresses(self, val): if val != None: self.validate('peer_addresses', val) self._peer_addresses = val _cluster_name = None @property def cluster_name(self): """ The name of the peer cluster. Attributes: key, non-creatable, non-modifiable """ return self._cluster_name @cluster_name.setter def cluster_name(self, val): if val != None: self.validate('cluster_name', val) self._cluster_name = val @staticmethod def get_api_name(): return "cluster-peer-active-address" @staticmethod def get_desired_attrs(): return [ 'peer-addresses', 'cluster-name', ] def describe_properties(self): return { 'peer_addresses': { 'class': basestring, 'is_list': True, 'required': 'optional' }, 'cluster_name': { 'class': basestring, 'is_list': False, 'required': 'optional' }, }
32.923077
95
0.63972
763910886922259b2b079a7f69baeb548ee01782
25,418
py
Python
scheduler/scheduler.py
wmodes/blackrockstation
8134322517803d225b936958a2d4ad16e286397a
[ "MIT" ]
1
2021-04-18T06:46:07.000Z
2021-04-18T06:46:07.000Z
scheduler/scheduler.py
wmodes/blackrockstation
8134322517803d225b936958a2d4ad16e286397a
[ "MIT" ]
null
null
null
scheduler/scheduler.py
wmodes/blackrockstation
8134322517803d225b936958a2d4ad16e286397a
[ "MIT" ]
null
null
null
"""Controller class for scheduler subsystem.""" from shared import config from shared.controller import Controller import logging from datetime import datetime, timedelta import csv from columnar import columnar import time import re import random import shutil from curses import wrapper logger = logging.getLogger() logger.setLevel(config.LOG_LEVEL) class Scheduler(Controller): """Scheduler controller class.""" def __init__(self): """Initialize Scheduler class.""" super().__init__() self.whoami = "scheduler" self.schedule = [] self.__read_schedule() self.__sort_schedule() self.delayed_events = [] self.current_year = config.YEARS[0] self.last_event = "" self.last_timeslip = datetime.now() self.cycle_count = 0 """ SETUP """ def __read_schedule(self): logging.info('Reading schedule') with open(config.SCHED_DATA, newline='') as csvfile: reader = csv.DictReader(csvfile, config.SCHED_FIELDS,restkey='Extras') # skips the header line next(reader) for row in reader: if row['event'] != '': self.schedule.append(dict(row)) def __sort_schedule(self): self.schedule = sorted( self.schedule, key=lambda k: time.strptime(k['time'], "%H:%M")) for index in range(len(self.schedule)): self.schedule[index]["index"] = index """ REPORTS """ def get_status(self): """Full status for controller.""" return { "controller" : self.whoami, "running" : True, "currentYear" : self.current_year, "nextTrain" : self.get_next_train(), "nextTimeslip" : self.next_timeslip() } def get_next_train(self): """Return an obj representing next train.""" return self.get_future_trains(1)[0] def get_future_trains(self, n=10): """Return array of objects representing future trains. We do this in a few steps: 1) Interate through train schedule until we find the item just after the current now() time 2) Add each item to a list 3) If we have n items already, we can stop, but 4) If we hit the end of the records before n items, 5) We iterate from the beginning of the schedule appending items to our list until we either get n items or hit where we started """ future_list = [] # search through train schedule for time that matches H:M now_dt = datetime.now() for event in self.schedule: # if this event is not a train event, skip if event["controller"] != "train": continue # if this event is already in the past, skip if self.str2dt(event["time"], False) < now_dt: continue # all the following events are in the future # if we have n events, stop if len(future_list) >= n: break future_list.append(event) # if we don't have if len(future_list) < n: for event in self.schedule: # if this event is not a train event, skip if event["controller"] != "train": continue # if this event is not in the past, stop (i.e., we've wrapped around) if self.str2dt(event["time"], False) > now_dt: break # if we have n events, stop if len(future_list) >= n: break future_list.append(event) return future_list def display_future_trains(self, n=10): """Return human-readable schedule of future trains.""" event_list = self.get_future_trains(n) headers = ['Train', 'Arrival', 'Direction', 'Type', 'Notes'] # convert dict to array of arrays events = [] for event in event_list: if event['controller'] == "train": events.append([event['event'], event['time'], event['direction'], event['traintype'], event['notes']]) if not len(events): return width = shutil.get_terminal_size().columns - 2 table = columnar(events, headers, no_borders=True, wrap_max=8, terminal_width=width) return str(table) def display_train_schedule(self, event_list=None): """Return human-readable schedule of all trains.""" if not event_list: event_list = self.schedule headers = ['Train', 'Arrival', 'Direction', 'Type', 'Notes'] # convert dict to array of arrays events = [] for event in event_list: if event['controller'] == "train": events.append([event['event'], event['time'], event['direction'], event['traintype'], event['notes']]) if not len(events): return #table = columnar(events, headers, terminal_width=100, column_sep='│', row_sep='─') table = columnar(events, headers, no_borders=True, terminal_width=110, wrap_max=8) #table = columnar(events, headers, terminal_width=110, column_sep='|', row_sep='─') return str(table) """ ORDERS """ def act_on_order(self, order): """ Take action based on orders. Possible comnmands: - order *controller* *order* - reqTrains [num_events] - reqStatus - reqLog [num_events] """ if not order: error = "No command received" return_val = {'status': 'FAIL', 'error': error} return return_val if "cmd" not in order: error = f"No 'cmd' in order received: '{order}'" logging.info(error) return_val = {'status': 'FAIL', 'error': error} return return_val # # request future schedule # Format: { # "cmd" : "reqTrains", # "qty" : **integer** # } # if order['cmd'].lower() == "reqtrains": if "qty" in order: results = self.get_future_trains(int(order["qty"])) else: results = self.get_future_trains() return_val = {'status': 'OK', 'cmd': 'reqTrains', 'results': results} return return_val # # request full train schedule # Format: { # "cmd" : "reqAllTrains" # } # if order['cmd'].lower() == "reqalltrains": results = self.schedule return_val = {'status': 'OK', 'cmd': 'reqAllTrains', 'results': results} return return_val # # request status # Format: { # "cmd" : "reqStatus" # } # elif order['cmd'].lower() == "reqstatus": return_val = {'status': 'OK', 'cmd': 'reqStatus', 'results': self.get_status()} return return_val # # request log # Format: { # "cmd" : "reqLog", # "qty" : **integer** # } # elif order['cmd'].lower() == "reqlog": if "qty" in order: results = self.get_logs(order["qty"]) else: results = self.get_logs() return_val = {'status': 'OK', 'cmd': 'reqLog', 'results': results} return return_val # # send order to other controller # Format: { # "cmd" : "order", # "controller" : **str**, # "relay" : **order** # } elif order['cmd'].lower() == "order": if "controller" not in order or "relay" not in order: error = "controller or relay values missing" logging.warning(error) return_val = {'status': 'FAIL', 'cmd': 'order', 'error': error} return return_val if order['controller'] not in list(config.CONTROLLERS): error = "invalid controller" logging.warning(error) return_val = {'status': 'FAIL', 'cmd': 'order', 'error': error, 'hint': list(config.CONTROLLERS)} return return_val results = self.send_order_to_controller( order["controller"], order["relay"]) return_val = {'status': results['status'], 'cmd': 'order', 'results': results} return return_val # # set year # Format: { # "cmd" : "setYear", # "year" : *year* # } # elif order['cmd'].lower() == "setyear": if "year" not in order: error = "No year in order received" logging.warning(error) return_val = {'status': 'FAIL', 'cmd': 'setYear', 'error': error} return return_val return_val = self.set_year(order['year']) return return_val # # set train # Format: { # "cmd" : "setTrain", # "index" : *int* # } # elif order['cmd'].lower() == "settrain": if "index" not in order: error = "No index in order received" logging.warning(error) return_val = {'status': 'FAIL', 'cmd': 'setTrain', 'error': error} return return_val if order["index"] < 0 or order["index"] > len(self.schedule) - 1: error = f"Index in order invalid: {index}" logging.warning(error) return_val = {'status': 'FAIL', 'cmd': 'setTrain', 'error': error} return return_val self.set_train(order['index']) return_val = {'status': 'OK', 'cmd': 'setTrain'} return return_val # # help # elif order['cmd'].lower() == "help": cmds = [ {'cmd': 'order', 'controller': ["announce", "crossing", "lights", "radio", "scheduler", "bridge", "train", "television"], 'order': {'cmd': 'reqStatus'}}, {'cmd': 'setTrain', 'index': 7}, {'cmd': 'setYear', 'year': ['1858', '1888', '1938', '1959', '1982', '2014', '2066', '2110']}, {'cmd': 'reqTrains', 'qty': '5'}, {'cmd': 'reqAllTrains'}, {'cmd': 'reqStatus'}, {'cmd': 'reqLog', 'qty': '10'} ] return_val = {'status': 'OK', 'cmd': 'help', 'commands': cmds} return return_val # # invalid order # else: error = "invalid order received" logging.warning(error + ': ' + order['cmd']) return_val = {'status': 'FAIL', 'cmd': order['cmd'], 'error': error} return return_val def send_order_to_controller(self, controller, cmd_obj): """Send an arbitrary order to another controller.""" now_dt = datetime.now() results = self.comms.send_order(controller, cmd_obj) if results["status"] == 'FAIL': logging.warning(f"order to {controller} failed: {results['error']}") return results """ TIME HELPERS """ def str2dt(self, time_str, is_next=True): """ Given a time string, returns the next matching datetime. Params: time_str (str) representing a time in %H:%M format is_next (bool) whether today's datetime (False) or the next datetime (True) should be found """ now_dt = datetime.now() tomorrow_dt = now_dt + timedelta(days=1) try: nexttime_t = datetime.strptime(time_str, '%H:%M').time() nexttime_dt = datetime.combine(now_dt, nexttime_t) if is_next: time_delta = nexttime_dt - now_dt if time_delta.total_seconds() < 0: nexttime_dt = datetime.combine(tomorrow_dt, nexttime_t) except: logging.warning(f"Bad date: {time_str}") nexttime_dt = tomorrow_dt return nexttime_dt def next_train(self): time_str = self.get_next_train()["time"] next_dt = self.str2dt(time_str) now_dt = datetime.now() time_delta = next_dt - now_dt secs = time_delta.total_seconds() hrs = int(secs // 3600) mins = int((secs % 3600) // 60) secs = int(secs % 60) return f"{hrs}:{mins:02d}:{secs:02d}" def next_timeslip(self): next = self.last_timeslip + timedelta(minutes=config.SCHED_TIMESLIP_INTERVAL) now_dt = datetime.now() time_delta = next - now_dt min = int(time_delta.total_seconds() // 60) sec = int(time_delta.total_seconds() % 60) return f"{min}:{sec:02d}" """ TIME CHECKS """ def check_for_scheduled_event(self): """ Check for scheduled event and send command to appropriate controller. Matches now() in H:M format with train schedule arrival time and records last event to prevent bounce. Note: Two events shouldn't share the same time. """ # TODO: Implement variance # search through train schedule for time that matches H:M now_t = datetime.now().time() for event in self.schedule: # if this event matches current time if now_t.strftime("%H:%M") == event["time"]: # if scheduled event already happened, return if self.last_event == event: return # record this event as last_event self.last_event = event # make event happen if event['controller'] == "train": self.trigger_train(event) else: self.trigger_event(event) break def check_for_timeslip(self): """Check to see if it is time for a timeslip.""" now_dt = datetime.now() # prevent bounce: if the time in H:M is the same as the last timeslip, return if now_dt.strftime("%H:%M") == self.last_timeslip.strftime("%H:%M"): return next_timeslip = self.last_timeslip + timedelta(minutes=config.SCHED_TIMESLIP_INTERVAL) if now_dt > next_timeslip: self.trigger_timeslip() def check_for_delayed_events(self): """Check if it is time for delayed events.""" now_dt = datetime.now() for event in self.delayed_events: # logging.debug(f"Delayed event: Now: {now_dt.strftime('%H:%M:%S')}, Time: {event['time_dt'].strftime('%H:%M:%S')}, Delta: {now_delta.strftime('%H:%M:%S')}") if now_dt > event['time_dt']: self.trigger_event(event) self.delayed_events.remove(event) def check_for_random_events(self): """ Check if it is time for random events. Randomly calculate the chances of any of a list of events happening /right now/ """ denominator = 24 * 60 * 60 * (1/config.SCHED_LOOP_DELAY) for event in config.SCHED_PERIODIC: # an N in 345600 chance if random.random() < event["times_per_day"]/denominator: # lucky you! you get chosen! self.trigger_event(event) # only one winner at a time, thank you break """ PLAY STUFF """ def set_year(self, year): """Set year attribute.""" logging.info(f"Setting year: {year}") if str(year) not in config.VALID_YEARS: error = f"Invalid year: {year}" logging.warning(error) return_val = {'status': 'FAIL', 'error': error} return return_val self.trigger_timeslip(year) return_val = {'status': 'OK', 'cmd': 'setYear'} return return_val def set_train(self, index): event = self.schedule[index] if event['controller'] == "train": self.trigger_train(event) else: self.trigger_event(event) """ EVENTS """ def delay_event(self, event): """ Add an event to the delayed queue. The time is a key within the object. """ self.delayed_events.append(event) def trigger_event(self, event): """Constuct order from basic event info and send to appropriate controller.""" if event['controller'] == "train": # send command to train controller # form: set train *direction* *traintype* *year* order = { "cmd" : "setTrain", "direction" : event['direction'], "traintype" : event['traintype'], "year" : self.current_year } self.send_order_to_controller("train", order) elif event['controller'] == "announce": # send command to announce controller # form: set announce *id* *year* order = { "cmd" : "setAnnounce", "announceid" : event['announceid'], "year" : self.current_year } self.send_order_to_controller("announce", order) elif event['controller'] == "crossing": # send command to crossing controller # form: # set on # set off if event['event'] == "on": order = { "cmd" : "setOn" } elif event['event'] == "off": order = { "cmd" : "setOff" } #TODO: Convert above to True/False? self.send_order_to_controller("crossing", order) elif event['controller'] == "bridge": # send command to bridge controller # form: # set go *direction* # set stop if event['event'] == "stop": order = { "cmd" : "setStop" } elif event['event'] == "go": order = { "cmd" : "setGo", "direction" : event['direction'] } self.send_order_to_controller("bridge", order) elif re.search('radio|television|lights', event['controller']): # send command to radio, tv, or lights controller # form: # set glitch # set year *year* if event['event'] == "glitch": order = { "cmd" : "setGlitch" } elif event['event'] == "year": order = { "cmd" : "setYear", "year" : self.current_year } else: return self.send_order_to_controller(event['controller'], order) def trigger_train(self, train_event): """ Trigger the events that happen with a train. train_event comes from the schedule """ # let's calculate the timing of some things to schedule the next few events now_dt = datetime.now() # time_announce_arrival = now_dt # time_signal_is_go = now_dt time_we_hear_train = now_dt + timedelta(minutes=config.SCHED_BRIDGE_BEFORE) time_crossing_is_on = time_we_hear_train + timedelta(minutes=config.SCHED_CROSSING_DELAY) time_departure_announce = time_we_hear_train + timedelta(minutes=float(train_event['duration'])/2) time_signal_is_stop = time_we_hear_train + timedelta(minutes=float(train_event['duration'])) - timedelta(minutes=config.SCHED_DEPART_TIME) time_crossing_is_off = time_we_hear_train + timedelta(minutes=float(train_event['duration'])) - timedelta(minutes=config.SCHED_CROSSING_DELAY) # # 1) BRIDGE signal turns green as soon as train enters the # block, i.e., several minutes before we can hear it self.delay_event({ "controller": "bridge", "event": "go", "direction": train_event['direction'], "time_dt": datetime.now() + timedelta(seconds=1) }) # # 2) ANNOUNCE arrival when train approached station # i.e., we when begin to hear it if train_event['announceid'] != "": self.delay_event({ "controller": "announce", "announceid": f"{train_event['announceid']}-announce-arrival", "time_dt": datetime.now() + timedelta(seconds=15) }) # # 3) TRAINAUDIO starts train_event['time_dt'] = time_we_hear_train self.delay_event(train_event) # # 4) CROSSING comes on as soon as train nears crossing # i.e., some minutes after we can hear it self.delay_event({ "controller": "crossing", "event": "on", "time_dt": time_crossing_is_on }) # # 5) ANNOUNCE departure before train leaves station # i.e., halfway through duration if train_event['announceid'] != "": self.delay_event({ "controller": "announce", "announceid": f"{train_event['announceid']}-announce-departure", "time_dt": time_departure_announce }) # # 6) BRIDGE signal turns red as soon as the train passes the # station, i.e., some minutes before end of duration self.delay_event({ "controller": "bridge", "event": "stop", "direction": train_event['direction'], "time_dt": time_signal_is_stop }) # # 7) CROSSING turns off as soon as the train passes # i.e., at the end of the train's duration self.delay_event({ "controller": "crossing", "event": "off", "time_dt": time_crossing_is_off }) def trigger_timeslip(self, year=None): """Trigger a timeslip event and the things that go with it.""" if year: self.current_year = year; else: # # find out what the index of the current year is # index = config.YEARS.index(int(self.current_year)) # # increment one # index += 1 # # make sure we don't have index overrun # if index >= len(config.YEARS): # index = 0 # self.current_year = config.YEARS[index] # # now we pick years at random, but prevent a repeat new_year = self.current_year while new_year == self.current_year: new_year = random.choice(config.YEARS) self.current_year = new_year # record the time of the timeslip to prevent bounce self.last_timeslip = datetime.now() logging.info(f"Timeslip to {self.current_year}") # trigger glitch events and schedule year event for controller in ["radio", "television", "lights"]: self.delay_event({ "controller": controller, "event": "glitch", "time_dt": datetime.now() + timedelta(seconds=1) }) self.delay_event({ "controller": controller, "event": "year", "time_dt": datetime.now() + timedelta(seconds=config.SCHED_TIMESLIP_GLITCH) }) """ MAIN LOOP """ def main_loop(self): """Get orders and acts on them.""" while True: self.act_on_order(self.receive_order()) self.check_for_delayed_events() self.check_for_timeslip() self.check_for_random_events() self.check_for_scheduled_event() time.sleep(config.SCHED_LOOP_DELAY) def start(self): """Get the party started.""" logging.info('Starting.') time.sleep(1) self.trigger_timeslip() self.main_loop() def main(): """Test the class.""" import sys logging.basicConfig(filename=sys.stderr, encoding='utf-8', format='%(asctime)s %(levelname)s:%(message)s', level=logging.DEBUG) scheduler = Scheduler() scheduler.order_act_loop() if __name__ == '__main__': main()
36.259629
169
0.511409
cd6fbfb85755bf30dc0e353fc07b5ef28fa8ae7a
332
py
Python
xautodl/models/cell_searchs/_test_module.py
Joey61Liuyi/AutoDL-Projects
2092e144920e82d74753a7ac31e1890a150d41cf
[ "MIT" ]
817
2020-01-15T00:23:41.000Z
2022-03-31T14:52:03.000Z
xautodl/models/cell_searchs/_test_module.py
Joey61Liuyi/AutoDL-Projects
2092e144920e82d74753a7ac31e1890a150d41cf
[ "MIT" ]
77
2020-01-14T14:02:45.000Z
2022-03-25T07:06:02.000Z
xautodl/models/cell_searchs/_test_module.py
Joey61Liuyi/AutoDL-Projects
2092e144920e82d74753a7ac31e1890a150d41cf
[ "MIT" ]
176
2020-01-15T10:39:41.000Z
2022-03-31T04:24:53.000Z
################################################## # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # ################################################## import torch from search_model_enas_utils import Controller def main(): controller = Controller(6, 4) predictions = controller() if __name__ == "__main__": main()
22.133333
50
0.478916
3def23c95e424d306ecfd158c75361ce90c44da1
1,716
py
Python
minato_namikaze/botmain/bot/cogs/info/feedback.py
Onii-Chan-Discord/yondaime-hokage
d6e75405a9d30b37bfb4fd588f02c0de813c92b1
[ "Apache-2.0" ]
null
null
null
minato_namikaze/botmain/bot/cogs/info/feedback.py
Onii-Chan-Discord/yondaime-hokage
d6e75405a9d30b37bfb4fd588f02c0de813c92b1
[ "Apache-2.0" ]
null
null
null
minato_namikaze/botmain/bot/cogs/info/feedback.py
Onii-Chan-Discord/yondaime-hokage
d6e75405a9d30b37bfb4fd588f02c0de813c92b1
[ "Apache-2.0" ]
null
null
null
import discord from discord.ext import commands from discord.ext.commands import command from ...lib import ( Embed, ErrorEmbed, check_if_feedback_system_setup, return_feedback_channel, ) class Feedback(commands.Cog): def __init__(self, bot): self.bot = bot self.description = 'Sends your feedback about the server to the server owner. (This can only be done if it is enabled by the server owner)' @command() @commands.cooldown(1, 60, commands.BucketType.user) @commands.guild_only() @commands.check(check_if_feedback_system_setup) async def feedback(self, ctx, *, feed): '''Sends your feedback about the server to the server owner. (This can only be done if it is enabled by the server owner)''' await ctx.message.delete() channel = return_feedback_channel(ctx) e = Embed( title="Feedback sent!", description=f"Your feedback '{feed}' has been sent!", ) await ctx.send(embed=e, delete_after=10) e2 = discord.Embed( title=f"{ctx.author} has sent feedback", description=f"{feed}", colour=ctx.author.color or ctx.author.top_role.colour.value or discord.Color.random() ) await channel.send(embed=e2) @feedback.error async def feedback_handler(self, ctx, error): if isinstance(error, commands.CheckFailure): e = ErrorEmbed( title='No Feedback system setup for this server!', description='An admin can always setup the **feedback system** using `)setup` command' ) await ctx.send(embed=e, delete_after=10) def setup(bot): bot.add_cog(Feedback(bot))
33.647059
147
0.648601
5da8e18e51f5f3a5bac1b38762ca3bfb485d1e4b
3,022
py
Python
lib/galaxy/model/migrate/versions/0108_add_extended_metadata.py
igorhollaender/sirv_dashboard
85aec60b80ef6f561d89398e3da5963d3d0f2aa4
[ "CC-BY-3.0" ]
2
2018-10-14T16:42:39.000Z
2018-10-14T16:42:41.000Z
lib/galaxy/model/migrate/versions/0108_add_extended_metadata.py
igorhollaender/OBSOLETE_sirv_dashboard
85aec60b80ef6f561d89398e3da5963d3d0f2aa4
[ "CC-BY-3.0" ]
null
null
null
lib/galaxy/model/migrate/versions/0108_add_extended_metadata.py
igorhollaender/OBSOLETE_sirv_dashboard
85aec60b80ef6f561d89398e3da5963d3d0f2aa4
[ "CC-BY-3.0" ]
null
null
null
""" Add the ExtendedMetadata and ExtendedMetadataIndex tables """ import logging from sqlalchemy import Column, ForeignKey, Integer, MetaData, String, Table, TEXT from galaxy.model.custom_types import JSONType log = logging.getLogger( __name__ ) metadata = MetaData() ExtendedMetadata_table = Table("extended_metadata", metadata, Column( "id", Integer, primary_key=True ), Column( "data", JSONType ) ) ExtendedMetadataIndex_table = Table("extended_metadata_index", metadata, Column( "id", Integer, primary_key=True ), Column( "extended_metadata_id", Integer, ForeignKey("extended_metadata.id", onupdate="CASCADE", ondelete="CASCADE" ), index=True ), Column( "path", String( 255 )), Column( "value", TEXT)) extended_metadata_ldda_col = Column( "extended_metadata_id", Integer, ForeignKey("extended_metadata.id"), nullable=True ) def display_migration_details(): print "This migration script adds a ExtendedMetadata tables" def upgrade(migrate_engine): print __doc__ metadata.bind = migrate_engine metadata.reflect() try: ExtendedMetadata_table.create() except: log.debug("Could not create ExtendedMetadata Table.") try: ExtendedMetadataIndex_table.create() except: log.debug("Could not create ExtendedMetadataIndex Table.") # Add the extended_metadata_id to the ldda table try: ldda_table = Table( "library_dataset_dataset_association", metadata, autoload=True ) extended_metadata_ldda_col.create( ldda_table ) assert extended_metadata_ldda_col is ldda_table.c.extended_metadata_id except Exception, e: print str(e) log.error( "Adding column 'extended_metadata_id' to library_dataset_dataset_association table failed: %s" % str( e ) ) def downgrade(migrate_engine): metadata.bind = migrate_engine metadata.reflect() try: ExtendedMetadataIndex_table.drop() except Exception, e: log.debug( "Dropping 'extended_metadata_index' table failed: %s" % ( str( e ) ) ) try: ExtendedMetadata_table.drop() except Exception, e: log.debug( "Dropping 'extended_metadata' table failed: %s" % ( str( e ) ) ) # Drop the LDDA table's extended metadata ID column. try: ldda_table = Table( "library_dataset_dataset_association", metadata, autoload=True ) extended_metadata_id = ldda_table.c.extended_metadata_id extended_metadata_id.drop() except Exception, e: log.debug( "Dropping 'extended_metadata_id' column from library_dataset_dataset_association table failed: %s" % ( str( e ) ) )
40.293333
134
0.62045
28160127efd3dd3a1d9e0a1b9da8676dab93d4f2
7,951
py
Python
bridge_adaptivity/module/tests/test_utils.py
eng-alecrim/bridge-adaptivity
8644e512272006eaeedd0928ac743fd6295bd731
[ "BSD-3-Clause" ]
32
2017-06-01T16:31:50.000Z
2021-11-19T03:37:00.000Z
bridge_adaptivity/module/tests/test_utils.py
eng-alecrim/bridge-adaptivity
8644e512272006eaeedd0928ac743fd6295bd731
[ "BSD-3-Clause" ]
44
2017-08-04T13:58:12.000Z
2021-06-09T17:25:59.000Z
bridge_adaptivity/module/tests/test_utils.py
eng-alecrim/bridge-adaptivity
8644e512272006eaeedd0928ac743fd6295bd731
[ "BSD-3-Clause" ]
17
2017-12-08T07:24:28.000Z
2022-03-14T16:56:10.000Z
import logging import ddt from django.core.exceptions import MultipleObjectsReturned from django.test import TestCase from mock import patch from bridge_lti.models import BridgeUser, LtiLmsPlatform, LtiUser, OutcomeService from module.models import ( Activity, Collection, CollectionOrder, Engine, GradingPolicy, ModuleGroup, Sequence, SequenceItem ) from module.utils import choose_activity, select_next_sequence_item log = logging.getLogger(__name__) @ddt.ddt class TestUtilities(TestCase): fixtures = ['gradingpolicy', 'engine'] @patch('module.tasks.sync_collection_engines.apply_async') def setUp(self, mock_apply_async): self.user = BridgeUser.objects.create_user( username='test_user', password='test_pass', email='test@test.com' ) self.collection = Collection.objects.create(name='testcol1', owner=self.user) self.collection2 = Collection.objects.create(name='testcol2', owner=self.user) self.source_launch_url = 'http://test_source_launch_url.com' self.activity = Activity.objects.create( name='testactivity1', collection=self.collection, source_launch_url=self.source_launch_url ) self.activity2 = Activity.objects.create( name='testactivity2', collection=self.collection2, source_launch_url=self.source_launch_url ) self.activity3 = Activity.objects.create( name='testactivity3', collection=self.collection, source_launch_url=f"{self.source_launch_url}3", ) self.activity4 = Activity.objects.create( name='testactivity4', collection=self.collection, source_launch_url=f"{self.source_launch_url}4", stype='problem', ) self.activity5 = Activity.objects.create( name='testactivity5', collection=self.collection, source_launch_url=f"{self.source_launch_url}5", stype='problem', ) self.lti_lms_platform = LtiLmsPlatform.objects.create( consumer_name='test_consumer', consumer_key='test_consumer_key', consumer_secret='test_consumer_secret' ) self.lti_user = LtiUser.objects.create( user_id='test_user_id', lti_lms_platform=self.lti_lms_platform, bridge_user=self.user ) self.engine = Engine.objects.get(engine='engine_mock') self.gading_policy = GradingPolicy.objects.get(name='trials_count') self.outcome_service = OutcomeService.objects.create( lis_outcome_service_url='test_url', lms_lti_connection=self.lti_lms_platform ) self.test_cg = ModuleGroup.objects.create(name='TestColGroup', owner=self.user) self.collection_order1 = CollectionOrder.objects.create( group=self.test_cg, collection=self.collection, engine=self.engine, grading_policy=self.gading_policy ) self.sequence = Sequence.objects.create( lti_user=self.lti_user, collection_order=self.collection_order1, ) self.vpal_engine = Engine.objects.get(engine='engine_vpal') self.vpal_group = ModuleGroup.objects.create(name='TestVpalGroup', owner=self.user) self.collection_order2 = CollectionOrder.objects.create( group=self.vpal_group, collection=self.collection, engine=self.vpal_engine, ) self.vpal_sequence = Sequence.objects.create( lti_user=self.lti_user, collection_order=self.collection_order2, outcome_service=self.outcome_service ) self.sequence_item_1 = SequenceItem.objects.create(sequence=self.sequence, activity=self.activity, score=0.4) self.sequence_item_2 = SequenceItem.objects.create( sequence=self.sequence, activity=self.activity2, score=0.6, position=2 ) self.sequence_item_3 = SequenceItem.objects.create(sequence=self.sequence, activity=self.activity3, position=3) self.sequence_item_4 = SequenceItem.objects.create(sequence=self.sequence, activity=self.activity4, position=4) def test_choose_activity(self): try: # test if 2 activities has the same launch url but has different collections # this method should return only one activity, filtered by collection_order.order and sequence.collection chosen_activity = choose_activity(sequence=self.sequence) except MultipleObjectsReturned as e: log.error(Activity.ojbects.all().values('collection', 'source_launch_url')) self.fail(e) expected_activity = Activity.objects.get( collection=self.sequence.collection_order.collection, source_launch_url=f"{self.source_launch_url}5" ) self.assertEqual(chosen_activity, expected_activity) @patch('module.engines.engine_vpal.EngineVPAL.select_activity', return_value=None) def test_choose_activity_with_unconfigured_engine(self, mock_choose_activity_by_engine): """ Test sequence is deleted if after creating first activity is not chosen for any reason. """ choose_activity(sequence=self.vpal_sequence) sequence_is_exists = Sequence.objects.filter(collection_order=self.collection_order2) self.assertFalse(sequence_is_exists) @patch('module.engines.engine_vpal.EngineVPAL.select_activity', return_value={'complete': True}) def test_choose_activity_from_completed_collection(self, mock_choose_activity_by_engine): """ Test sequence becomes completed if at least one sequence_item exists and there no new activity chosen. """ sequence_item = SequenceItem.objects.create(sequence=self.vpal_sequence, activity=self.activity) choose_activity(sequence_item=sequence_item) completed_sequence = Sequence.objects.filter(collection_order=self.collection_order2).first() self.assertEqual(completed_sequence, self.vpal_sequence) self.assertTrue(completed_sequence.completed) @ddt.unpack @ddt.data( { 'item_index': 1, 'update_activity': False, 'last_item': 4, 'position': 2, 'pre_expected_result': (2, None, None) }, { 'item_index': 3, 'update_activity': False, 'last_item': 4, 'position': 4, 'pre_expected_result': (4, None, None) }, { 'item_index': 3, 'update_activity': True, 'last_item': 4, 'position': 4, 'pre_expected_result': (5, None, None) }, { 'item_index': 4, 'update_activity': False, 'last_item': 4, 'position': 5, 'pre_expected_result': (4, None, None) }, ) def test_select_next_sequence_item(self, item_index, update_activity, last_item, position, pre_expected_result): next_item = getattr(self, f"sequence_item_{pre_expected_result[0]}", None) result = select_next_sequence_item( getattr(self, f"sequence_item_{item_index}"), update_activity, last_item, position, ) if position > last_item or update_activity: next_item = self.sequence.items.last() expected_result = (next_item, *pre_expected_result[1:]) self.assertEqual(expected_result, result) def test_sequence_completed_in_select_next_sequence_item(self): self.sequence_item_5 = SequenceItem.objects.create(sequence=self.sequence, activity=self.activity5, position=5) sequence_item = self.sequence_item_5 expected_result = (sequence_item, True, None) result = select_next_sequence_item(sequence_item, update_activity=False, last_item=5, position=6) self.assertEqual(expected_result, result)
43.448087
119
0.672871
8598dfacdcb9949cd7d4adf4c90b56c407aa8544
2,587
py
Python
heron/cli/src/python/jars.py
sbilly/heron
d8cc6977791dd3d8ed4333562e2ce249646a5226
[ "Apache-2.0" ]
1
2021-04-25T11:25:44.000Z
2021-04-25T11:25:44.000Z
heron/cli/src/python/jars.py
sbilly/heron
d8cc6977791dd3d8ed4333562e2ce249646a5226
[ "Apache-2.0" ]
null
null
null
heron/cli/src/python/jars.py
sbilly/heron
d8cc6977791dd3d8ed4333562e2ce249646a5226
[ "Apache-2.0" ]
null
null
null
# Copyright 2016 Twitter. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os, fnmatch import heron.cli.src.python.utils as utils ################################################################################ # Get the topology jars - TODO, make the jars independent version free ################################################################################ def pick(dirname, pattern): file_list = fnmatch.filter(os.listdir(dirname), pattern) return file_list[0] if file_list else None ################################################################################ # Get the topology jars - TODO, make the jars independent version free ################################################################################ def topology_jars(): jars = [ os.path.join(utils.get_heron_lib_dir(), "third_party", "*") ] return jars ################################################################################ # Get the scheduler jars ################################################################################ def scheduler_jars(): jars = [ os.path.join(utils.get_heron_lib_dir(), "scheduler", "*") ] return jars ################################################################################ # Get the uploader jars ################################################################################ def uploader_jars(): jars = [ os.path.join(utils.get_heron_lib_dir(), "uploader", "*") ] return jars ################################################################################ # Get the statemgr jars ################################################################################ def statemgr_jars(): jars = [ os.path.join(utils.get_heron_lib_dir(), "statemgr", "*") ] return jars ################################################################################ # Get the packing algorithm jars ################################################################################ def packing_jars(): jars = [ os.path.join(utils.get_heron_lib_dir(), "packing", "*") ] return jars
36.957143
80
0.443757
2344428346134dab4e8b6ea8fc0110dbe3f0f59a
4,019
py
Python
cv/classification/classicNets/resNet.py
XingJinming-real/DL
9c793338a60b663ab3cdc702dc73617156b4ae93
[ "MIT" ]
1
2021-07-22T13:16:51.000Z
2021-07-22T13:16:51.000Z
cv/classification/classicNets/resNet.py
XingJinming-real/DL
9c793338a60b663ab3cdc702dc73617156b4ae93
[ "MIT" ]
null
null
null
cv/classification/classicNets/resNet.py
XingJinming-real/DL
9c793338a60b663ab3cdc702dc73617156b4ae93
[ "MIT" ]
null
null
null
import time import d2l.torch import numpy as np import pandas as pd import torch.nn as nn import torch from torchvision import datasets from torchvision import transforms from torch.utils import data import matplotlib.pyplot as plt import torch.nn.functional as F from sklearn.preprocessing import LabelEncoder from PIL import Image class residual(nn.Module): def __init__(self, inputChannels, outputChannels, stride=1): super(residual, self).__init__() self.conv1 = nn.Conv2d(inputChannels, outputChannels, kernel_size=(3, 3), stride=stride, padding=(1, 1)) self.conv2 = nn.Conv2d(outputChannels, outputChannels, kernel_size=(3, 3), padding=(1, 1)) if stride != 1: self.conv3 = nn.Conv2d(inputChannels, outputChannels, stride=stride, kernel_size=(1, 1)) else: self.conv3 = None self.bn1 = nn.BatchNorm2d(outputChannels) self.bn2 = nn.BatchNorm2d(outputChannels) self.relu = nn.ReLU(inplace=True) def forward(self, x): y = self.relu(self.bn1(self.conv1(x))) y = self.bn2(self.conv2(y)) if self.conv3: x = self.conv3(x) y += x return self.relu(y) b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=(7, 7), stride=(2, 2), padding=(2, 2)), nn.BatchNorm2d(64), nn.ReLU(), nn.MaxPool2d(kernel_size=(3, 3), stride=2, padding=1)) def resnetBlock(inputChannel, outputChannel, numResidual, first=False): blk = [] for _ in range(numResidual): if not first and _ == 0: blk.append(residual(inputChannel, outputChannel, 2)) else: blk.append(residual(outputChannel, outputChannel)) return blk b2 = nn.Sequential(*resnetBlock(64, 64, 2, first=True)) b3 = nn.Sequential(*resnetBlock(64, 128, 2)) b4 = nn.Sequential(*resnetBlock(128, 256, 2)) b5 = nn.Sequential(*resnetBlock(256, 512, 2)) net = nn.Sequential(b1, b2, b3, b4, b5, nn.AdaptiveAvgPool2d((1, 1)), nn.Flatten(), nn.Linear(512, 10), nn.Softmax(dim=0)) x = torch.rand((1, 1, 224, 224)) def getData(): trainIdx = pd.read_csv('../data/leavesClassification/train.csv') le = LabelEncoder() label = le.fit_transform(trainIdx['label']) return data.DataLoader(datasets.FashionMNIST('../../data', transform=transforms.ToTensor()), batch_size=batchSize, shuffle=True), \ data.DataLoader(datasets.FashionMNIST('../../data', transform=transforms.ToTensor(), train=False)) def accuracy(predict, y): mask = torch.ones(len(y)) mask = mask[predict.max(axis=1).indices == y] return float(sum(mask) / len(y)) if torch.cuda.is_available(): device = 'cuda' else: device = 'cpu' lr, numEpoch, batchSize = 0.4, 100, 256 # trainIter, testIter = getData() loss = nn.CrossEntropyLoss() optimizer = torch.optim.SGD(net.parameters(), lr, momentum=0.9) pltX = [] pltY = [] plt.ion() net.to(device) bestScore = 0 print(net(torch.rand((1, 1, 224, 224)))) # for epoch in range(numEpoch): # L = 0 # accumulator = [0, 0, 0] # # num = 0 # begin = time.time() # for X, y in trainIter: # if torch.cuda.is_available(): # X, y = X.to(device), y.to(device) # optimizer.zero_grad() # predict = net(X) # l = loss(predict, y) # l.backward() # optimizer.step() # L += l * len(y) # # num += len(y) # accumulator[0] += float(l) * len(y) # accumulator[1] += accuracy(predict, y) # accumulator[2] += len(y) # print(f'loss on train {accumulator[0] / accumulator[2]}, accu on train {accumulator[1] / accumulator[2]}') # # if accumulator[0] / accumulator[2] > bestScore: # # bestScore = accumulator[0] / accumulator[2] # # torch.save(net.state_dict(), './resNet18' + str(epoch) + '.pt') # pltX.append(epoch) # pltY.append(accumulator[0] / accumulator[2]) # plt.plot(pltX, pltY) # plt.show() # plt.pause(0.5) # plt.ioff() # # plt.show()
33.491667
118
0.619059
bb9ead70808a80058ecf34502635a152aa495c1c
3,640
py
Python
utils.py
raoofnaushad/Fourier-Transformation-for-Image-Processing
f3f1d11dc97e593392a019ad25d583dd19d07552
[ "MIT" ]
2
2020-10-15T11:38:58.000Z
2021-09-27T08:30:09.000Z
utils.py
raoofnaushad/Fourier-Transformation-for-Image-Processing
f3f1d11dc97e593392a019ad25d583dd19d07552
[ "MIT" ]
null
null
null
utils.py
raoofnaushad/Fourier-Transformation-for-Image-Processing
f3f1d11dc97e593392a019ad25d583dd19d07552
[ "MIT" ]
null
null
null
import numpy as np import cv2 import os from fourier_transform import * def img_FFT(img): if len(img.shape) == 2 or len(img.shape) == 3: return FFT_2D(img) else: raise ValueError("Please input a gray or RGB image!") def img_FFT_inverse(img): if len(img.shape) == 2 or len(img.shape) == 3: return inverseFFT_2D(img) else: raise ValueError("Please input a gray or RGB image!") def findpower2(num): """find the nearest number that is the power of 2""" if num & (num-1) == 0: return num bin_num = bin(num) origin_bin_num = str(bin_num)[2:] near_power2 = pow(10, len(origin_bin_num)) near_power2 = "0b" + str(near_power2) near_power2 = int(near_power2, base=2) return near_power2 def image_padding(img): """ padding the image size to power of 2, for fft computation requirement""" if len(img.shape) == 2: h, w = img.shape[0], img.shape[1] h_pad = findpower2(h)-h w_pad = findpower2(w)-w img = np.pad(img, pad_width=((0, h_pad), (0, w_pad)), mode='constant') return img elif len(img.shape) == 3: h, w = img.shape[0], img.shape[1] h_pad = findpower2(h)-h w_pad = findpower2(w)-w img = np.pad(img, pad_width=((0, h_pad), (0, w_pad), (0, 0)), mode='constant') return img def image_fft(img_path, result_folder_path="result/"): """ read, padding, fft, cut to origin size and save """ data_root, img_name = os.path.split(img_path) if img_name[-3:] != "png" and img_name[-3:] != "tif" \ and img_name[-4:] != "jpeg" and img_name[-3:] != "jpg": return 0 if not os.path.exists(result_folder_path): os.mkdir(result_folder_path) img_origin = cv2.imread(img_path, 0) img = image_padding(img_origin) img_fft = img_FFT(img) if len(img_origin.shape) == 2: img_fft = img_fft[:img_origin.shape[0], :img_origin.shape[1]] else: img_fft = img_fft[:img_origin.shape[0], :img_origin.shape[1], :] img_fft_complex = img_fft.copy() img_fft = np.fft.fftshift(img_fft_complex) # save real value for human seeing img_fft = np.real(img_fft) name, _ = img_name.split(".") save_img_name = result_folder_path + name + "_fft.png" cv2.imwrite(save_img_name, img_fft) return img_fft_complex def image_fft_inverse(img_fft_complex, img_path, result_folder_path="result/"): """ inverse the read fft_img, cut to origin size and save """ if not os.path.exists(result_folder_path): os.mkdir(result_folder_path) _, img_name = os.path.split(img_path) img_fft = image_padding(img_fft_complex) img_origin = img_FFT_inverse(img_fft) img_ifft = np.real(img_origin) name, _ = img_name.split(".") save_img_name = result_folder_path + name + "_inverse.png" if len(img_origin.shape) == 2: img_ifft = img_ifft[:img_fft_complex.shape[0], :img_fft_complex.shape[1]] else: img_ifft = img_ifft[:img_fft_complex.shape[0], :img_fft_complex.shape[1], :] cv2.imwrite(save_img_name, img_ifft) return img_origin if __name__ == '__main__': x = np.mgrid[:8, :8][0] # x = np.mgrid[:4, :4][0] print(x) print("-------------------") # print(np.allclose(FFT(x), np.fft.fft(x))) # print(np.allclose(FFT_2D(x), np.fft.fft2(x))) # print(FFT_2D(x)) print(inverseFFT_2D(x)) # print(inverseDFT_2D(x)) print("-------------------") print(np.fft.ifft2(x)) print("-------------------") # print(np.fft.fft(x)) # print(np.allclose(np.fft.fft(x), np.fft.fft2(x)))
28
86
0.615659
0c81eceb34faf06deca8059ed34a529d843304e5
30
py
Python
btd6_memory_info/generated/Assets/Scripts/Models/Towers/Behaviors/Abilities/Behaviors/IncreaseRangeModel/increase_range_model.py
56kyle/bloons_auto
419d55b51d1cddc49099593970adf1c67985b389
[ "MIT" ]
null
null
null
btd6_memory_info/generated/Assets/Scripts/Models/Towers/Behaviors/Abilities/Behaviors/IncreaseRangeModel/increase_range_model.py
56kyle/bloons_auto
419d55b51d1cddc49099593970adf1c67985b389
[ "MIT" ]
null
null
null
btd6_memory_info/generated/Assets/Scripts/Models/Towers/Behaviors/Abilities/Behaviors/IncreaseRangeModel/increase_range_model.py
56kyle/bloons_auto
419d55b51d1cddc49099593970adf1c67985b389
[ "MIT" ]
null
null
null
class IncreaseRangeModel: pass
30
30
0.9
9cdf65fe1c1914d17292901be27526fe0de91919
14,448
py
Python
dsbox/ml/feature_engineering/timeseries.py
Pandinosaurus/dsbox
aea56049025ed7e6e66427f8636286f8be1b6e03
[ "Apache-2.0" ]
16
2020-05-11T09:10:15.000Z
2021-04-13T08:43:28.000Z
dsbox/ml/feature_engineering/timeseries.py
Pandinosaurus/dsbox
aea56049025ed7e6e66427f8636286f8be1b6e03
[ "Apache-2.0" ]
1
2020-12-03T20:02:32.000Z
2020-12-03T20:02:32.000Z
dsbox/ml/feature_engineering/timeseries.py
Pandinosaurus/dsbox
aea56049025ed7e6e66427f8636286f8be1b6e03
[ "Apache-2.0" ]
1
2020-05-11T17:22:20.000Z
2020-05-11T17:22:20.000Z
import numpy as np import pandas as pd from numpy.lib.stride_tricks import as_strided from sklearn.base import BaseEstimator, TransformerMixin import types __author__ = "Vincent Levorato" __credits__ = "https://github.com/octo-technology/bdacore" __license__ = "Apache 2.0" class Shifter(BaseEstimator, TransformerMixin): """ Compute shifted values for a given dataframe, and creates columns associated. Parameters ---------- shifts: list, optional, default [1] Allows to shift data by periods (meaning by row) using the pandas.shift() method. prefix: string, optional Put a prefix in front of the column names. suffix: string, optional Put a suffix at the end of the column names. group_by_cols: list, optional, default None Allows to shift values grouped by columns. ignore_cols: list, optional, default None Allows to ignore some columns to be not shifted. Examples -------- >>> from dsbox.ml.feature_engineering.timeseries import Shifter >>> df_ts = pd.DataFrame({'data': [0.0, 1.0, 2.0, 3.0, 4.0]}) >>> shifter = Shifter(shifts=[1],prefix='t-') >>> df_shift_ts = shifter.transform(df_ts) >>> df_shift_ts t-1_data 0 NaN 1 0.0 2 1.0 3 2.0 4 3.0 """ def __init__(self, shifts=[1], prefix='', suffix='', **kwargs): self.shifts = shifts self.prefix = prefix self.suffix = suffix self.kwargs = kwargs def fit(self, X=None, y=None): """ No-op. This method doesn't do anything. It exists purely for compatibility with the scikit-learn transformer API. Parameters ---------- X: array-like y: array-like Returns ------- self: Shifter """ return self def transform(self, X): """ Transform a dataframe into shift values corresponding to shift periods Parameters ---------- X: dataframe Input pandas dataframe. Returns ------- X: dataframe Dataframe with columns having shifted values (one by shift) """ X_shifted = pd.DataFrame() for shift_value in self.shifts: X_shifted_tmp = X X_shifted_tmp = X_shifted_tmp.shift(periods=shift_value, **self.kwargs) prefix = '' suffix = '' if self.prefix != '': prefix = self.prefix + str(shift_value) + '_' if self.suffix != '': suffix = self.suffix + str(shift_value) if self.suffix == '' and self.prefix == '': suffix = '_' + str(shift_value) X_shifted_tmp.columns = X_shifted_tmp.columns.map(lambda x: prefix + x + suffix) if len(X_shifted) == 0: X_shifted = X_shifted_tmp else: X_shifted = X_shifted.join(X_shifted_tmp) return X_shifted class RollingWindower(BaseEstimator, TransformerMixin): """ Compute rolling aggregated values for a given dataframe. Classical operators (mean, std, median, etc.) or custom operators can be used to compute the windows. Windows are based on index, which could be a simple integer or a pandas timestamp. Use **kwargs to pass extra arguments to pandas rolling function (like min_periods for instance). Parameters ---------- operation: str or function, optional, default 'mean' Set the aggregation function used to aggregate a window. windows: list, optional, default [3] Set the windows used to aggregate data. Time windows can be set also (see pandas time unit syntax) if the dataframe index is a timestamp Examples: [3]: one window of size 3 [2,5]: one window of size 2 and one window of size 5 [2s, 10s]: one window of 2 secs and one window of 10 secs diff_mode: boolean, optional, default False Process the difference between values and its window aggregate value. Examples -------- >>> import pandas as pd >>> from dsbox.ml.feature_engineering.timeseries import RollingWindower >>> df = pd.DataFrame({'data': [0, 1, 2, 3, 4]}) >>> roller = RollingWindower(windows=[2,3]) >>> df_roll = roller.transform(df) >>> df_roll mean_2_data mean_3_data 0 NaN NaN 1 0.5 NaN 2 1.5 1.0 3 2.5 2.0 4 3.5 3.0 >>> df_ts = pd.DataFrame({'data': [0, 1, 2, 3, 4]}, \ index=[pd.Timestamp('20130101 09:00:00'), \ pd.Timestamp('20130101 09:00:02'), \ pd.Timestamp('20130101 09:00:03'), \ pd.Timestamp('20130101 09:00:05'), \ pd.Timestamp('20130101 09:00:06')]) >>> roller = RollingWindower(windows=['5s', '2s']) >>> df_roll = roller.transform(df_ts) >>> df_roll mean_5s_data mean_2s_data 2013-01-01 09:00:00 0.0 0.0 2013-01-01 09:00:02 0.5 1.0 2013-01-01 09:00:03 1.0 1.5 2013-01-01 09:00:05 2.0 3.0 2013-01-01 09:00:06 2.5 3.5 """ def __init__(self, operation='mean', windows=[3], **kwargs): self.operation = operation self.windows = windows self.kwargs = kwargs def fit(self, X=None, y=None): """ No-op. This method doesn't do anything. It exists purely for compatibility with the scikit-learn transformer API. Parameters ---------- X: array-like y: array-like Returns ------- self: RollingWindower """ return self def transform(self, raw_X): """ Transform a dataframe into aggregated values corresponding to window sizes Parameters ---------- raw_X: dataframe Input pandas dataframe. Returns ------- X: dataframe Dataframe with columns having rolling measures (one per window) """ X = pd.DataFrame() for window in self.windows: X_m = raw_X.rolling(window, **self.kwargs).agg(self.operation) columns_name = [] if isinstance(self.operation, types.FunctionType): col_name = self.operation.__name__ else: col_name = self.operation for col in X_m.columns: columns_name.append(col_name + '_' + str(window) + '_' + col) X_m.columns = columns_name if len(X) == 0: X = X_m else: X = X.join(X_m) return X class DistributionTransformer(BaseEstimator, TransformerMixin): """ Build a discrete distribution (histogram) for feature engineering for each column, per line, following a rolling window. It captures the evolving distribution of a feature. For instance, if a serie is composed of the following values: [3, 10, 12, 23], and with a window parameter of 3, it takes these values, and apply histogram (bins=4) function on it: [3] => [0, 0, 1, 0] [3, 10] => [1, 0, 0, 1] [3, 10, 12] => [1, 0, 0, 2] [10, 12, 23] => [2, 0, 0, 1] Parameters ---------- window: int Size of the rolling window. bins: int, optional, (default=4) Amount of bins used to estimate distribution quantiles: int, optional, (default=None) If set, the transformer will return quantiles information. Examples -------- >>> import pandas as pd >>> from dsbox.ml.feature_engineering.timeseries import DistributionTransformer >>> df = pd.DataFrame({'sales': [3, 10, 12, 23, 48, 19, 21]}) >>> distrib_transformer = DistributionTransformer(3) >>> distrib_transformer.fit_transform(df) sales_bin_1 sales_bin_2 sales_bin_3 sales_bin_4 0 0 0 1 0 1 1 0 0 1 2 1 0 0 2 3 2 0 0 1 4 1 1 0 1 5 2 0 0 1 6 2 0 0 1 """ def __init__(self, window, bins=4, quantiles=None): self.window = window self.bins = bins self.quantiles = quantiles def fit(self, X=None, y=None): """ No-op. This method doesn't do anything. It exists purely for compatibility with the scikit-learn transformer API. Parameters ---------- X: array-like y: array-like Returns ------- self """ return self def transform(self, X): """ Transform a dataframe to build discrete distribution per column. Parameters ---------- X: dataframe Input pandas dataframe. Returns ------- X: dataframe Dataframe with bin values per column. """ X_distrib = pd.DataFrame() for col in X.columns: col_serie = X[col] bins_list = [] for i in range(0, len(col_serie)): min_bound = i - self.window + 1 if min_bound < 0: min_bound = 0 max_bound = i + 1 if max_bound >= len(col_serie): max_bound = len(col_serie) if self.quantiles is None: bins_list.append(np.histogram(col_serie[min_bound:max_bound], bins=self.bins)[0]) else: bins_list.append(np.quantile(col_serie[min_bound:max_bound], self.quantiles)) X_col_distrib = pd.DataFrame(bins_list) X_col_distrib = X_col_distrib.set_index(X.index) if self.quantiles is None: X_col_distrib.columns = [col + '_bin_' + str(i) for i in range(1, self.bins + 1)] else: X_col_distrib.columns = [col + '_quantile_' + str(i) for i in range(1, len(self.quantiles) + 1)] X_col_distrib = X_col_distrib.fillna(0) if len(X_distrib) == 0: X_distrib = X_col_distrib else: X_distrib = X_distrib.join(X_col_distrib) return X_distrib def transform_datetxt2int(X, col_date, format='%Y-%m-%d'): """ Inplace transformation of a string date column into an integer format date column. Parameters ---------- X: dataframe col_date: str Column name to transform format: str Pandas date str format """ X[col_date] = pd.to_datetime(X[col_date], format=format) X[col_date] = X[col_date].map(lambda x: (x.year * 10 ** 4) + (x.month * 10 ** 2) + x.day) X[col_date] = X[col_date].astype('int') def create_diff_shift_features(df_shift, cols=[], prefix='diff_'): """ Create diff values between time series columns with have been shifted. Parameters ---------- df_shift: dataframe Dataset with columns to make apply diff. cols: list Columns names, in order, to apply diff. prefix: str Prefix used to name diff columns. """ for i in range(0, len(cols) - 1): df_shift[prefix + cols[i + 1] + '_' + cols[i]] = df_shift[cols[i + 1]] - df_shift[cols[i]] def _get_numpy_array_strides(array, window): shape = array.shape[:-1] + (array.shape[-1], window) strides = array.strides + (array.strides[-1],) sequence_strides = as_strided(array, shape=shape, strides=strides) return sequence_strides def np_rolling_agg_window(array, window=3, agg_func=np.nanmean): """ Calculating rolling aggregation using function, based on zero memory copying with numpy. By default, the aggregation function is mean, so it returns rolling mean. Efficient version of Pandas rolling function (with less parameters). Parameters ---------- array: numpy.array or pandas.Series array values window: int, default=3 window size for the aggregate function rolling calculation agg_func: Callable, default=numpy.nanmean function used for aggregation Returns ------- agg: numpy.array Rolling result. """ if type(array) == pd.Series: array = array.values sequence_strides = _get_numpy_array_strides(array, window) agg = np.roll(agg_func(sequence_strides, axis=1), window - 1) agg[0:window - 1] = np.nan return agg def np_rolling_agg_abs_deviation_window(array, window=3, agg_func=np.nanmean): """ Calculating rolling absolute deviation related to an aggregation function, using zero memory copying based on numpy. By default, the aggregation function is mean, so it returns rollling Mean Absolute Deviation. Other calculation can be done like the rolling Median Absolute Deviation. Parameters ---------- array: numpy.array or pandas.Series array values window: int, default=3 window size for the aggregate function rolling calculation agg_func: Callable, default=numpy.nanmean function used for aggregation Returns ------- agg_abs_deviation: numpy.array Rolling "Agg" Absolute Deviation result. """ if type(array) == pd.Series: array = array.values sequence_strides = _get_numpy_array_strides(array, window) m = agg_func(sequence_strides, axis=1).reshape(-1, 1) agg_abs_deviation = np.roll(agg_func(np.abs(sequence_strides - m), axis=1), window - 1) agg_abs_deviation[0:window - 1] = np.nan return agg_abs_deviation
30.871795
127
0.55018
07e3f17638e89cc1e785f0ea1ab11efd910cc619
4,638
py
Python
models/hr_attendance_day.py
gregoril/hr_cgt
10a92c0d54f63aa7216318448f7053c874d1be7d
[ "Apache-2.0" ]
null
null
null
models/hr_attendance_day.py
gregoril/hr_cgt
10a92c0d54f63aa7216318448f7053c874d1be7d
[ "Apache-2.0" ]
null
null
null
models/hr_attendance_day.py
gregoril/hr_cgt
10a92c0d54f63aa7216318448f7053c874d1be7d
[ "Apache-2.0" ]
2
2019-08-07T18:25:43.000Z
2019-08-19T16:19:57.000Z
# -*- coding: utf-8 -*- from odoo import models, fields, api, _ from odoo.exceptions import ValidationError from odoo.tools import DEFAULT_SERVER_DATE_FORMAT, \ DEFAULT_SERVER_DATETIME_FORMAT import pytz from datetime import datetime class FullAttendanceDay(models.Model): _name = 'hr.attendance.day' _description = "Attendance by Day" _order = "day desc" _sql_constraints = [ ( 'employee_day_unique', 'unique(employee_id, day)', 'Day be unique for employee' ), ] @api.multi def name_get(self): result = [] for attendance in self: result.append((attendance.id, _("%(empl_name)s for %(day)s") % { 'empl_name': attendance.employee_id.name_related, 'day': fields.Date.to_string( datetime.strptime( attendance.day, DEFAULT_SERVER_DATE_FORMAT ) ), })) return result @api.depends('attendance_ids.check_in', 'attendance_ids.check_out', 'attendance_id.check_in') def _compute_day(self): # detect timezone if self.env.user.tz: local = pytz.timezone(self.env.user.tz) else: local = pytz.utc for r in self: if isinstance(r.id, models.NewId): continue attendances = self.env['hr.attendance'].search( [('attendance_day_id', '=', r.id)], order="check_in asc", ) tot_worked = 0 tot_break = 0 check_in = False check_out = False if not attendances: attendances = [r.attendance_id] first_a = attendances[0] check_in = first_a.check_in day = datetime.strftime( pytz.utc.localize( datetime.strptime( check_in, DEFAULT_SERVER_DATETIME_FORMAT ) ).astimezone(local), DEFAULT_SERVER_DATE_FORMAT) prev = False for a in attendances: if prev: delta = datetime.strptime( a.check_in, DEFAULT_SERVER_DATETIME_FORMAT ) - datetime.strptime( prev.check_out, DEFAULT_SERVER_DATETIME_FORMAT ) tot_break += delta.total_seconds() / 3600.0 tot_worked += a.worked_hours check_out = a.check_out prev = a r.day = day r.check_in = check_in r.check_out = check_out r.worked_hours = tot_worked r.break_hours = tot_break # Fields day = fields.Date( string=u'Day', compute=_compute_day, store=True, readonly=True, required=True, default=fields.Date.context_today, ) worked_hours = fields.Float( string='Worked Hours', compute=_compute_day, store=True, readonly=True ) break_hours = fields.Float( string='Break Hours', compute=_compute_day, store=True, readonly=True ) check_in = fields.Datetime( string="Check In", compute=_compute_day, store=True, readonly=True ) check_out = fields.Datetime( string="Check Out", compute=_compute_day, store=True, readonly=True ) employee_id = fields.Many2one( 'hr.employee', string="Employee", required=True, ondelete='cascade', index=True, readonly=True ) attendance_ids = fields.One2many( string=u'Attendance', comodel_name='hr.attendance', inverse_name='attendance_day_id', ) attendance_id = fields.Many2one( 'hr.attendance', string="Creating attendance", required=True, readonly=True ) @api.multi def unlink(self): """ Delete all record(s) from recordset return True on success, False otherwise @return: True on success, False otherwise #TODO: process before delete resource """ related_attendances = self.env['hr.attendance'].search([ ('attendance_day_id', 'in', self.ids) ]) result = super(FullAttendanceDay, self).unlink() related_attendances.unlink() return result
26.20339
76
0.525873
96f433068e3392fa16f667bd2b6aacd25a03c4ff
1,309
py
Python
settings/EnsembleSAXS_PP_Panel_settings.py
bopopescu/Lauecollect
60ae2b05ea8596ba0decf426e37aeaca0bc8b6be
[ "MIT" ]
null
null
null
settings/EnsembleSAXS_PP_Panel_settings.py
bopopescu/Lauecollect
60ae2b05ea8596ba0decf426e37aeaca0bc8b6be
[ "MIT" ]
1
2019-10-22T21:28:31.000Z
2019-10-22T21:39:12.000Z
settings/EnsembleSAXS_PP_Panel_settings.py
bopopescu/Lauecollect
60ae2b05ea8596ba0decf426e37aeaca0bc8b6be
[ "MIT" ]
2
2019-06-06T15:06:46.000Z
2020-07-20T02:03:22.000Z
Calibration.CustomView = ['X-ray Scope Trigger', 'Ps Laser Osc. Delay', 'Ps Laser Trigger', 'Ns Laser Q-Switch Trigger', 'Ns Laser Flash Lamp Trigger', 'Laser Scope Trigger', 'Heatload Chopper Phase', 'Heatload Chop. Act. Phase', 'ChemMat Chopper Phase', 'ChemMat Chop. Act. Phase', 'X-ray Shutter Delay'] Calibration.view = 'Custom' CustomView = ['Delay', 'Mode', 'Period [1-kHz cycles]', 'Laser', 'X-ray ms shutter', 'Pump', 'Trigger code', 'X-ray detector trigger', 'Image number', 'X-ray detector trigger count', 'X-ray detector acquistion count', 'X-ray scope trigger count', 'X-ray scope acquistion count', 'Laser scope trigger count', 'Laser scope acquistion count', 'Image number increment', 'Acquiring', 'Queue active', 'Queue length [sequences]', 'Current queue length [seq]', 'Current queue sequence cnt', 'Queue repeat count', 'Queue max repeat count', 'Next queue sequence cnt', 'Packets generated', 'Packets loaded', 'Sequencer Running', 'Sequence generator', 'Sequence generator version', 'Heatload chopper phase', 'Heatload chop. act. phase', 'High-speed chopper phase', 'P0 shift'] refresh_period = 1.0 view = 'Custom' TimingConfiguration.CustomView = ['#', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24']
218.166667
764
0.679908
5b4414a98835034efd4fbc353ec021208fbe2d83
238
py
Python
smartbackup/__main__.py
alexsilva/smartbackup
fa203ff7c4c8e7eba5ae0f7e8e72578c6c844685
[ "MIT" ]
null
null
null
smartbackup/__main__.py
alexsilva/smartbackup
fa203ff7c4c8e7eba5ae0f7e8e72578c6c844685
[ "MIT" ]
null
null
null
smartbackup/__main__.py
alexsilva/smartbackup
fa203ff7c4c8e7eba5ae0f7e8e72578c6c844685
[ "MIT" ]
null
null
null
#!/usr/local/bin/python # What is '__main__' module ? # Reference - https://docs.python.org/2/using/cmdline.html#cmdoption-m __author__ = 'alex' def main(): import bakthat bakthat.main() if __name__ == '__main__': main()
15.866667
70
0.663866
02b89d5f168b6cd6fd05fb18a196571e26be7c7f
328
py
Python
Chapter07/c7_24_read_ffcMonthly.py
John-ye666/Python-for-Finance-Second-Edition
dabef09bcdd7b0ec2934774741bd0a7e1950de73
[ "MIT" ]
236
2017-07-02T03:06:54.000Z
2022-03-31T03:15:33.000Z
Chapter07/c7_24_read_ffcMonthly.py
John-ye666/Python-for-Finance-Second-Edition
dabef09bcdd7b0ec2934774741bd0a7e1950de73
[ "MIT" ]
null
null
null
Chapter07/c7_24_read_ffcMonthly.py
John-ye666/Python-for-Finance-Second-Edition
dabef09bcdd7b0ec2934774741bd0a7e1950de73
[ "MIT" ]
139
2017-06-30T10:28:16.000Z
2022-01-19T19:43:34.000Z
""" Name : c7_24_read_ffMonthly.py Book : Python for Finance (2nd ed.) Publisher: Packt Publishing Ltd. Author : Yuxing Yan Date : 6/6/2017 email : yany@canisius.edu paulyxy@hotmail.com """ import pandas as pd x=pd.read_pickle("c:/temp/ffMonthly.pkl") print(x.head()) print(x.tail())
21.866667
41
0.631098
14c3e0e1b201402ecba988680caead86765bb5b1
2,877
py
Python
sdk/network/azure-mgmt-dns/setup.py
iscai-msft/azure-sdk-for-python
83715b95c41e519d5be7f1180195e2fba136fc0f
[ "MIT" ]
8
2021-01-13T23:44:08.000Z
2021-03-17T10:13:36.000Z
sdk/network/azure-mgmt-dns/setup.py
iscai-msft/azure-sdk-for-python
83715b95c41e519d5be7f1180195e2fba136fc0f
[ "MIT" ]
226
2019-07-24T07:57:21.000Z
2019-10-15T01:07:24.000Z
sdk/network/azure-mgmt-dns/setup.py
iscai-msft/azure-sdk-for-python
83715b95c41e519d5be7f1180195e2fba136fc0f
[ "MIT" ]
2
2020-05-21T22:51:22.000Z
2020-05-26T20:53:01.000Z
#!/usr/bin/env python #------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. #-------------------------------------------------------------------------- import re import os.path from io import open from setuptools import find_packages, setup # Change the PACKAGE_NAME only to change folder and different name PACKAGE_NAME = "azure-mgmt-dns" PACKAGE_PPRINT_NAME = "DNS Management" # a-b-c => a/b/c package_folder_path = PACKAGE_NAME.replace('-', '/') # a-b-c => a.b.c namespace_name = PACKAGE_NAME.replace('-', '.') # azure v0.x is not compatible with this package # azure v0.x used to have a __version__ attribute (newer versions don't) try: import azure try: ver = azure.__version__ raise Exception( 'This package is incompatible with azure=={}. '.format(ver) + 'Uninstall it with "pip uninstall azure".' ) except AttributeError: pass except ImportError: pass # Version extraction inspired from 'requests' with open(os.path.join(package_folder_path, 'version.py'), 'r') as fd: version = re.search(r'^VERSION\s*=\s*[\'"]([^\'"]*)[\'"]', fd.read(), re.MULTILINE).group(1) if not version: raise RuntimeError('Cannot find version information') with open('README.md', encoding='utf-8') as f: readme = f.read() with open('CHANGELOG.md', encoding='utf-8') as f: changelog = f.read() setup( name=PACKAGE_NAME, version=version, description='Microsoft Azure {} Client Library for Python'.format(PACKAGE_PPRINT_NAME), long_description=readme + '\n\n' + changelog, long_description_content_type='text/markdown', license='MIT License', author='Microsoft Corporation', author_email='azpysdkhelp@microsoft.com', url='https://github.com/Azure/azure-sdk-for-python', classifiers=[ 'Development Status :: 4 - Beta', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'License :: OSI Approved :: MIT License', ], zip_safe=False, packages=find_packages(exclude=[ 'tests', # Exclude packages that will be covered by PEP420 or nspkg 'azure', 'azure.mgmt', ]), install_requires=[ 'msrest>=0.5.0', 'msrestazure>=0.4.32,<2.0.0', 'azure-common~=1.1', ], extras_require={ ":python_version<'3.0'": ['azure-mgmt-nspkg'], } )
32.325843
91
0.601668
005c023bb35eb6941588b482adcd80a017afa84f
2,758
py
Python
tests/test_item_rates.py
Canisback/solari
bd7c46e5cb727033644b32531f4559702cb41f68
[ "MIT" ]
16
2021-01-04T21:44:24.000Z
2022-01-07T12:02:26.000Z
tests/test_item_rates.py
Canisback/solari
bd7c46e5cb727033644b32531f4559702cb41f68
[ "MIT" ]
1
2021-01-26T07:45:24.000Z
2021-02-03T19:11:39.000Z
tests/test_item_rates.py
Canisback/solari
bd7c46e5cb727033644b32531f4559702cb41f68
[ "MIT" ]
2
2021-01-05T14:00:28.000Z
2021-07-25T04:03:44.000Z
from solari import Leona from solari.stats import ItemPickrate, ItemWinrate def test_item_pickrate(match_set_1): l = Leona([ ItemPickrate() ]) for m in match_set_1: l.push_match(m) stats = l.get_stats() # Nightbringer picked 7 times in 3 games assert stats["Pickrate"].loc[4636] == 7/30 def test_item_pickrate_with_duplicate(match_set_1): l = Leona([ ItemPickrate() ]) for m in match_set_1: l.push_match(m) stats = l.get_stats() # Needlessly large rod picked 8 times, but twice in duplicate assert stats["Pickrate"].loc[1058] == 6/30 def test_item_winrate(match_set_1): l = Leona([ ItemWinrate() ]) for m in match_set_1: l.push_match(m) stats = l.get_stats() # Nightbringer won 3 times in 7 picks assert stats["Winrate"].loc[4636] == 3/7 def test_item_winrate_with_duplicate(match_set_1): l = Leona([ ItemWinrate() ]) for m in match_set_1: l.push_match(m) stats = l.get_stats() # Needlessly large rod won 4 times out of the 8 picks, but twice in duplicate assert stats["Winrate"].loc[1058] == 4/6 def test_item_pickrate_by_champion(match_set_1): l = Leona([ ItemPickrate(by_champion=True) ]) for m in match_set_1: l.push_match(m) stats = l.get_stats() # Nightbringer picked 2 times in 3 Zoe assert stats["Pickrate"].loc[(142,4636)] == 2/3 def test_item_winrate_by_champion(match_set_1): l = Leona([ ItemWinrate(by_champion=True) ]) for m in match_set_1: l.push_match(m) stats = l.get_stats() # Nightbringer won 1 time in 2 picks by Zoe assert stats["Winrate"].loc[(142,4636)] == 1/2 def test_item_multiple_keys(match_set_1): l = Leona([ ItemPickrate(), ItemPickrate(by_champion=True) ]) for m in match_set_1: l.push_match(m) stats = l.get_stats() # There should by two DataFrames assert len(stats) == 2 # One index by itemId only assert stats[("itemId",)]["Pickrate"].loc[4636] == 7/30 # One index by itemId and championId assert stats[("championId","itemId")]["Pickrate"].loc[(142,4636)] == 2/3 def test_item_by_key(match_set_1): l = Leona([ ItemPickrate(), ItemPickrate(by_champion=True) ]) for m in match_set_1: l.push_match(m) stats = l.get_stats() # There should by two DataFrames assert len(stats) == 2 # Directly check for the itemId index l.get_stats(("itemId",))["Pickrate"].loc[4636] == 7/30
23.176471
81
0.592821
d5521e804ac7b05c00179c152fe3c2a0e316a994
10,153
py
Python
yt/geometry/coordinates/coordinate_handler.py
themousepotato/yt
6befef2bc0427250fd62395962599be41b193e65
[ "BSD-3-Clause-Clear" ]
null
null
null
yt/geometry/coordinates/coordinate_handler.py
themousepotato/yt
6befef2bc0427250fd62395962599be41b193e65
[ "BSD-3-Clause-Clear" ]
null
null
null
yt/geometry/coordinates/coordinate_handler.py
themousepotato/yt
6befef2bc0427250fd62395962599be41b193e65
[ "BSD-3-Clause-Clear" ]
null
null
null
import numpy as np import weakref from numbers import Number from yt.funcs import \ validate_width_tuple, \ fix_unitary, \ iterable from yt.units.yt_array import \ YTArray, YTQuantity from yt.utilities.exceptions import \ YTCoordinateNotImplemented, \ YTInvalidWidthError def _unknown_coord(field, data): raise YTCoordinateNotImplemented def _get_coord_fields(axi, units = "code_length"): def _dds(field, data): rv = data.ds.arr(data.fwidth[...,axi].copy(), units) return data._reshape_vals(rv) def _coords(field, data): rv = data.ds.arr(data.fcoords[...,axi].copy(), units) return data._reshape_vals(rv) return _dds, _coords def _get_vert_fields(axi, units = "code_length"): def _vert(field, data): rv = data.ds.arr(data.fcoords_vertex[...,axi].copy(), units) return rv return _vert def validate_iterable_width(width, ds, unit=None): if isinstance(width[0], tuple) and isinstance(width[1], tuple): validate_width_tuple(width[0]) validate_width_tuple(width[1]) return (ds.quan(width[0][0], fix_unitary(width[0][1])), ds.quan(width[1][0], fix_unitary(width[1][1]))) elif isinstance(width[0], Number) and isinstance(width[1], Number): return (ds.quan(width[0], 'code_length'), ds.quan(width[1], 'code_length')) elif isinstance(width[0], YTQuantity) and isinstance(width[1], YTQuantity): return (ds.quan(width[0]), ds.quan(width[1])) else: validate_width_tuple(width) # If width and unit are both valid width tuples, we # assume width controls x and unit controls y try: validate_width_tuple(unit) return (ds.quan(width[0], fix_unitary(width[1])), ds.quan(unit[0], fix_unitary(unit[1]))) except YTInvalidWidthError: return (ds.quan(width[0], fix_unitary(width[1])), ds.quan(width[0], fix_unitary(width[1]))) class CoordinateHandler: name = None def __init__(self, ds, ordering): self.ds = weakref.proxy(ds) self.axis_order = ordering def setup_fields(self): # This should return field definitions for x, y, z, r, theta, phi raise NotImplementedError def pixelize(self, dimension, data_source, field, bounds, size, antialias = True): # This should *actually* be a pixelize call, not just returning the # pixelizer raise NotImplementedError def pixelize_line(self, field, start_point, end_point, npoints): raise NotImplementedError def distance(self, start, end): p1 = self.convert_to_cartesian(start) p2 = self.convert_to_cartesian(end) return np.sqrt(((p1-p2)**2.0).sum()) def convert_from_cartesian(self, coord): raise NotImplementedError def convert_to_cartesian(self, coord): raise NotImplementedError def convert_to_cylindrical(self, coord): raise NotImplementedError def convert_from_cylindrical(self, coord): raise NotImplementedError def convert_to_spherical(self, coord): raise NotImplementedError def convert_from_spherical(self, coord): raise NotImplementedError _data_projection = None @property def data_projection(self): if self._data_projection is not None: return self._data_projection dpj = {} for ax in self.axis_order: dpj[ax] = None self._data_projection = dpj return dpj _data_transform = None @property def data_transform(self): if self._data_transform is not None: return self._data_transform dtx = {} for ax in self.axis_order: dtx[ax] = None self._data_transform = dtx return dtx _axis_name = None @property def axis_name(self): if self._axis_name is not None: return self._axis_name an = {} for axi, ax in enumerate(self.axis_order): an[axi] = ax an[ax] = ax an[ax.capitalize()] = ax self._axis_name = an return an _axis_id = None @property def axis_id(self): if self._axis_id is not None: return self._axis_id ai = {} for axi, ax in enumerate(self.axis_order): ai[ax] = ai[axi] = axi self._axis_id = ai return ai _image_axis_name = None @property def image_axis_name(self): # Default if self._image_axis_name is not None: return self._image_axis_name self._image_axis_name = rv = {} for i in range(3): rv[i] = (self.axis_name[self.x_axis[i]], self.axis_name[self.y_axis[i]]) rv[self.axis_name[i]] = rv[i] rv[self.axis_name[i].capitalize()] = rv[i] return rv _x_axis = None @property def x_axis(self): if self._x_axis is not None: return self._x_axis ai = self.axis_id xa = {} for a1, a2 in self._x_pairs: xa[a1] = xa[ai[a1]] = ai[a2] self._x_axis = xa return xa _y_axis = None @property def y_axis(self): if self._y_axis is not None: return self._y_axis ai = self.axis_id ya = {} for a1, a2 in self._y_pairs: ya[a1] = ya[ai[a1]] = ai[a2] self._y_axis = ya return ya @property def period(self): raise NotImplementedError def sanitize_depth(self, depth): if iterable(depth): validate_width_tuple(depth) depth = (self.ds.quan(depth[0], fix_unitary(depth[1])), ) elif isinstance(depth, Number): depth = (self.ds.quan(depth, 'code_length', registry=self.ds.unit_registry), ) elif isinstance(depth, YTQuantity): depth = (depth, ) else: raise YTInvalidWidthError(depth) return depth def sanitize_width(self, axis, width, depth): if width is None: # initialize the index if it is not already initialized self.ds.index # Default to code units if not iterable(axis): xax = self.x_axis[axis] yax = self.y_axis[axis] w = self.ds.domain_width[np.array([xax, yax])] else: # axis is actually the normal vector # for an off-axis data object. mi = np.argmin(self.ds.domain_width) w = self.ds.domain_width[np.array((mi, mi))] width = (w[0], w[1]) elif iterable(width): width = validate_iterable_width(width, self.ds) elif isinstance(width, YTQuantity): width = (width, width) elif isinstance(width, Number): width = (self.ds.quan(width, 'code_length'), self.ds.quan(width, 'code_length')) else: raise YTInvalidWidthError(width) if depth is not None: depth = self.sanitize_depth(depth) return width + depth return width def sanitize_center(self, center, axis): if isinstance(center, str): if center.lower() == "m" or center.lower() == "max": v, center = self.ds.find_max(("gas", "density")) center = self.ds.arr(center, 'code_length') elif center.lower() == "c" or center.lower() == "center": # domain_left_edge and domain_right_edge might not be # initialized until we create the index, so create it self.ds.index center = (self.ds.domain_left_edge + self.ds.domain_right_edge) / 2 else: raise RuntimeError('center keyword \"%s\" not recognized' % center) elif isinstance(center, YTArray): return self.ds.arr(center), self.convert_to_cartesian(center) elif iterable(center): if isinstance(center[0], str) and isinstance(center[1], str): if center[0].lower() == "min": v, center = self.ds.find_min(center[1]) elif center[0].lower() == "max": v, center = self.ds.find_max(center[1]) else: raise RuntimeError("center keyword \"%s\" not recognized" % center) center = self.ds.arr(center, 'code_length') elif iterable(center[0]) and isinstance(center[1], str): center = self.ds.arr(center[0], center[1]) else: center = self.ds.arr(center, 'code_length') else: raise RuntimeError("center keyword \"%s\" not recognized" % center) # This has to return both a center and a display_center display_center = self.convert_to_cartesian(center) return center, display_center def sanitize_buffer_fill_values(self, buff): """Replace nans with +inf in buff, if all valid values are positive""" # In buffer with only positive values, maplotlib will raise a warning # if nan is used as a filler, while it tolerates np.inf just fine minval = buff[~np.isnan(buff)].min() if minval >= 0: buff[np.isnan(buff)] = np.inf def cartesian_to_cylindrical(coord, center = (0,0,0)): c2 = np.zeros_like(coord) if not isinstance(center, YTArray): center = center * coord.uq c2[...,0] = ((coord[...,0] - center[0])**2.0 + (coord[...,1] - center[1])**2.0)**0.5 c2[...,1] = coord[...,2] # rzt c2[...,2] = np.arctan2(coord[...,1] - center[1], coord[...,0] - center[0]) return c2 def cylindrical_to_cartesian(coord, center = (0,0,0)): c2 = np.zeros_like(coord) if not isinstance(center, YTArray): center = center * coord.uq c2[...,0] = np.cos(coord[...,0]) * coord[...,1] + center[0] c2[...,1] = np.sin(coord[...,0]) * coord[...,1] + center[1] c2[...,2] = coord[...,2] return c2
35.253472
87
0.578548
9fc8326051148f3440f52ec4c2b97ddbfc6657e9
714
py
Python
postprocessing/partner_annotations/luigi_pipeline_spec_dir/run_debug.py
d-v-b/CNNectome
2b1f4786282306edf94b231c9fcf64419d8d1e2a
[ "BSD-2-Clause" ]
4
2019-06-21T18:06:22.000Z
2021-11-29T08:28:46.000Z
CNNectome/postprocessing/partner_annotations/luigi_pipeline_spec_dir/run_debug.py
GenevieveBuckley/CNNectome
bde8528ed5adc0a4aefca3b19ecc4c2144f2cbcc
[ "BSD-2-Clause" ]
4
2018-12-18T19:31:04.000Z
2022-01-10T16:06:45.000Z
CNNectome/postprocessing/partner_annotations/luigi_pipeline_spec_dir/run_debug.py
GenevieveBuckley/CNNectome
bde8528ed5adc0a4aefca3b19ecc4c2144f2cbcc
[ "BSD-2-Clause" ]
9
2018-03-22T18:17:57.000Z
2022-03-24T01:17:21.000Z
import luigi import os from cleftreport_luigi import CleftReport from partnerreport_luigi import PartnerReport import logging class AllEvaluations(luigi.WrapperTask): it = 90000 data_train = "data2016-unaligned" augmentation = "deluxe" data_eval = "data2017-unaligned" mode = "validation" samples = luigi.TupleParameter(default=("A", "B", "C")) def requires(self): yield PartnerReport( self.it, self.data_train, self.augmentation, self.data_eval, self.mode, self.samples, (self.data_eval,), ) if __name__ == "__main__": logging.basicConfig(level=logging.DEBUG) luigi.run()
23.032258
59
0.630252
4b2579fa231d30e6360dc0d4b65381bc4a1ba122
8,662
py
Python
pedash/utils.py
theoturner/Pedash
cb3dbdefbc970ca9b1a5147498010e9a23558732
[ "Apache-2.0" ]
null
null
null
pedash/utils.py
theoturner/Pedash
cb3dbdefbc970ca9b1a5147498010e9a23558732
[ "Apache-2.0" ]
null
null
null
pedash/utils.py
theoturner/Pedash
cb3dbdefbc970ca9b1a5147498010e9a23558732
[ "Apache-2.0" ]
null
null
null
""" Utilities for the issuer and prover plus a postgres wallet plugin """ import sys import asyncio import json import random from ctypes import cdll, CDLL from time import sleep import platform import logging from indy import wallet from indy.error import ErrorCode, IndyError from vcx.api.connection import Connection from vcx.api.credential_def import CredentialDef from vcx.api.issuer_credential import IssuerCredential from vcx.api.credential import Credential from vcx.api.proof import Proof from vcx.api.disclosed_proof import DisclosedProof from vcx.api.schema import Schema from vcx.api.utils import vcx_agent_provision, vcx_messages_download from vcx.api.vcx_init import vcx_init_with_config from vcx.state import State, ProofState async def create_schema_and_cred_def(schema_uuid, schema_name, schema_attrs, creddef_uuid, creddef_name): version = format("%d.%d.%d" % (random.randint(1, 101), random.randint(1, 101), random.randint(1, 101))) schema = await Schema.create(schema_uuid, schema_name, version, schema_attrs, 0) schema_id = await schema.get_schema_id() cred_def = await CredentialDef.create(creddef_uuid, creddef_name, schema_id, 0) cred_def_handle = cred_def.handle await cred_def.get_cred_def_id() cred_def_json = await cred_def.serialize() print(" >>> cred_def_handle", cred_def_handle) return cred_def_json async def send_credential_request(my_connection, cred_def_json, schema_attrs, cred_tag, cred_name): cred_def = await CredentialDef.deserialize(cred_def_json) cred_def_handle = cred_def.handle print(" >>> cred_def_handle", cred_def_handle) credential = await IssuerCredential.create(cred_tag, schema_attrs, cred_def_handle, cred_name, '0') await credential.send_offer(my_connection) # serialize/deserialize credential - waiting for prover to respond with credential request credential_data = await credential.serialize() while True: my_credential = await IssuerCredential.deserialize(credential_data) await my_credential.update_state() credential_state = await my_credential.get_state() if credential_state == State.RequestReceived: break else: credential_data = await my_credential.serialize() sleep(2) await my_credential.send_credential(my_connection) # serialize/deserialize - waiting for prover to accept credential credential_data = await my_credential.serialize() while True: my_credential2 = await IssuerCredential.deserialize(credential_data) await my_credential2.update_state() credential_state = await my_credential2.get_state() if credential_state == State.Accepted: break else: credential_data = await my_credential2.serialize() sleep(2) async def send_proof_request(my_connection, institution_did, proof_attrs, proof_uuid, proof_name, proof_predicates): proof = await Proof.create(proof_uuid, proof_name, proof_attrs, {}, requested_predicates=proof_predicates) await proof.request_proof(my_connection) # serialize/deserialize proof proof_data = await proof.serialize() while True: my_proof = await Proof.deserialize(proof_data) await my_proof.update_state() proof_state = await my_proof.get_state() if proof_state == State.Accepted: break else: proof_data = await my_proof.serialize() sleep(2) await my_proof.get_proof(my_connection) # Check proof is valid if my_proof.proof_state == ProofState.Verified: print("proof is verified!!") else: print("could not verify proof :(") async def handle_messages(my_connection, handled_offers, handled_requests): offers = await Credential.get_offers(my_connection) for offer in offers: handled = False for handled_offer in handled_offers: if offer[0]['msg_ref_id'] == handled_offer['msg_ref_id']: print(">>> got back offer that was already handled", offer[0]['msg_ref_id']) handled = True break if not handled: save_offer = offer[0].copy() print(" >>> handling offer", save_offer['msg_ref_id']) await handle_credential_offer(my_connection, offer) handled_offers.append(save_offer) requests = await DisclosedProof.get_requests(my_connection) for request in requests: print("request", type(request), request) handled = False for handled_request in handled_requests: if request['msg_ref_id'] == handled_request['msg_ref_id']: print(">>> got back request that was already handled", request['msg_ref_id']) handled = True break if not handled: save_request = request.copy() print(" >>> handling proof", save_request['msg_ref_id']) await handle_proof_request(my_connection, request) handled_requests.append(save_request) async def handle_credential_offer(my_connection, offer): credential = await Credential.create('credential', offer) await credential.send_request(my_connection, 0) # serialize/deserialize credential - wait for Issuer to send credential credential_data = await credential.serialize() while True: my_credential = await Credential.deserialize(credential_data) await my_credential.update_state() credential_state = await my_credential.get_state() if credential_state == State.Accepted: break else: credential_data = await my_credential.serialize() sleep(2) async def handle_proof_request(my_connection, request): proof = await DisclosedProof.create('proof', request) credentials = await proof.get_creds() # Include self-attested attributes (not included in credentials) self_attested = {} # Use the first available credentials to satisfy the proof request for attr in credentials['attrs']: if 0 < len(credentials['attrs'][attr]): credentials['attrs'][attr] = { 'credential': credentials['attrs'][attr][0] } else: self_attested[attr] = 'my self-attested value' for attr in self_attested: del credentials['attrs'][attr] print('credentials', credentials) print('self_attested', self_attested) await proof.generate_proof(credentials, self_attested) # FIXME possible segfault await proof.send_proof(my_connection) # serialize/deserialize proof proof_data = await proof.serialize() while True: my_proof = await DisclosedProof.deserialize(proof_data) await my_proof.update_state() proof_state = await my_proof.get_state() if proof_state == State.Accepted: break else: proof_data = await my_proof.serialize() sleep(2) print("proof_state", proof_state) EXTENSION = {"darwin": ".dylib", "linux": ".so", "win32": ".dll", 'windows': '.dll'} def file_ext(): your_platform = platform.system().lower() return EXTENSION[your_platform] if (your_platform in EXTENSION) else '.so' # load postgres dll and configure postgres wallet def load_postgres_plugin(provisionConfig): print("Initializing postgres wallet") stg_lib = cdll.LoadLibrary("libindystrgpostgres" + file_ext()) result = stg_lib.postgresstorage_init() if result != 0: print("Error unable to load postgres wallet storage", result) sys.exit(0) provisionConfig['wallet_type'] = 'postgres_storage' provisionConfig['storage_config'] = '{"url":"localhost:5432"}' provisionConfig['storage_credentials'] = '{"account":"postgres","password":"mysecretpassword","admin_account":"postgres","admin_password":"mysecretpassword"}' print("Success, loaded postgres wallet storage") async def create_postgres_wallet(provisionConfig): print("Provision postgres wallet in advance") wallet_config = { 'id': provisionConfig['wallet_name'], 'storage_type': provisionConfig['wallet_type'], 'storage_config': json.loads(provisionConfig['storage_config']), } wallet_creds = { 'key': provisionConfig['wallet_key'], 'storage_credentials': json.loads(provisionConfig['storage_credentials']), } try: await wallet.create_wallet(json.dumps(wallet_config), json.dumps(wallet_creds)) except IndyError as ex: if ex.error_code == ErrorCode.PoolLedgerConfigAlreadyExistsError: pass print("Postgres wallet provisioned")
40.476636
162
0.69903
cd361d9e8a3441547ed67fc0dc239dd81c6d7d6a
8,064
py
Python
Tools/LyTestTools/tests/unit/test_editor_test_utils.py
GameInstitute/o3de
daf4dbb54d94b1c4240a273a9fdd831cce543339
[ "Apache-2.0", "MIT" ]
1
2021-12-25T02:43:48.000Z
2021-12-25T02:43:48.000Z
Tools/LyTestTools/tests/unit/test_editor_test_utils.py
RoddieKieley/o3de
e804fd2a4241b039a42d9fa54eaae17dc94a7a92
[ "Apache-2.0", "MIT" ]
2
2021-09-08T03:30:28.000Z
2022-03-12T00:59:27.000Z
Tools/LyTestTools/tests/unit/test_editor_test_utils.py
RoddieKieley/o3de
e804fd2a4241b039a42d9fa54eaae17dc94a7a92
[ "Apache-2.0", "MIT" ]
1
2021-07-09T06:02:14.000Z
2021-07-09T06:02:14.000Z
""" Copyright (c) Contributors to the Open 3D Engine Project. For complete copyright and license terms please see the LICENSE at the root of this distribution. SPDX-License-Identifier: Apache-2.0 OR MIT """ import pytest import os import unittest.mock as mock import unittest import ly_test_tools.o3de.editor_test_utils as editor_test_utils pytestmark = pytest.mark.SUITE_smoke class TestEditorTestUtils(unittest.TestCase): @mock.patch('ly_test_tools.environment.process_utils.kill_processes_named') def test_KillAllLyProcesses_IncludeAP_CallsCorrectly(self, mock_kill_processes_named): process_list = ['Editor', 'Profiler', 'RemoteConsole', 'AssetProcessor', 'AssetProcessorBatch', 'AssetBuilder'] editor_test_utils.kill_all_ly_processes(include_asset_processor=True) mock_kill_processes_named.assert_called_once_with(process_list, ignore_extensions=True) @mock.patch('ly_test_tools.environment.process_utils.kill_processes_named') def test_KillAllLyProcesses_NotIncludeAP_CallsCorrectly(self, mock_kill_processes_named): process_list = ['Editor', 'Profiler', 'RemoteConsole'] ap_process_list = ['AssetProcessor', 'AssetProcessorBatch', 'AssetBuilder'] editor_test_utils.kill_all_ly_processes(include_asset_processor=False) mock_kill_processes_named.assert_called_once() assert ap_process_list not in mock_kill_processes_named.call_args[0] def test_GetTestcaseModuleFilepath_NoExtension_ReturnsPYExtension(self): mock_module = mock.MagicMock() file_path = os.path.join('path', 'under_test') mock_module.__file__ = file_path assert file_path + '.py' == editor_test_utils.get_testcase_module_filepath(mock_module) def test_GetTestcaseModuleFilepath_PYExtension_ReturnsPYExtension(self): mock_module = mock.MagicMock() file_path = os.path.join('path', 'under_test.py') mock_module.__file__ = file_path assert file_path == editor_test_utils.get_testcase_module_filepath(mock_module) def test_GetModuleFilename_PythonModule_ReturnsFilename(self): mock_module = mock.MagicMock() file_path = os.path.join('path', 'under_test.py') mock_module.__file__ = file_path assert 'under_test' == editor_test_utils.get_module_filename(mock_module) def test_RetrieveLogPath_NormalProject_ReturnsLogPath(self): mock_workspace = mock.MagicMock() mock_workspace.paths.project.return_value = 'mock_project_path' expected = os.path.join('mock_project_path', 'user', 'log_test_0') assert expected == editor_test_utils.retrieve_log_path(0, mock_workspace) @mock.patch('ly_test_tools.o3de.editor_test_utils.retrieve_log_path') @mock.patch('ly_test_tools.environment.waiter.wait_for', mock.MagicMock()) def test_RetrieveCrashOutput_CrashLogExists_ReturnsLogInfo(self, mock_retrieve_log_path): mock_retrieve_log_path.return_value = 'mock_log_path' mock_workspace = mock.MagicMock() mock_log = 'mock crash info' with mock.patch('builtins.open', mock.mock_open(read_data=mock_log)) as mock_file: assert mock_log == editor_test_utils.retrieve_crash_output(0, mock_workspace, 0) @mock.patch('ly_test_tools.o3de.editor_test_utils.retrieve_log_path') @mock.patch('ly_test_tools.environment.waiter.wait_for', mock.MagicMock()) def test_RetrieveCrashOutput_CrashLogNotExists_ReturnsError(self, mock_retrieve_log_path): mock_retrieve_log_path.return_value = 'mock_log_path' mock_workspace = mock.MagicMock() error_message = "No crash log available" assert error_message in editor_test_utils.retrieve_crash_output(0, mock_workspace, 0) @mock.patch('os.path.getmtime', mock.MagicMock()) @mock.patch('os.rename') @mock.patch('time.strftime') @mock.patch('ly_test_tools.o3de.editor_test_utils.retrieve_log_path') @mock.patch('os.path.exists') def test_CycleCrashReport_DmpExists_NamedCorrectly(self, mock_exists, mock_retrieve_log_path, mock_strftime, mock_rename): mock_exists.side_effect = [False, True] mock_retrieve_log_path.return_value = 'mock_log_path' mock_workspace = mock.MagicMock() mock_strftime.return_value = 'mock_strftime' editor_test_utils.cycle_crash_report(0, mock_workspace) mock_rename.assert_called_once_with(os.path.join('mock_log_path', 'error.dmp'), os.path.join('mock_log_path', 'error_mock_strftime.dmp')) @mock.patch('os.path.getmtime', mock.MagicMock()) @mock.patch('os.rename') @mock.patch('time.strftime') @mock.patch('ly_test_tools.o3de.editor_test_utils.retrieve_log_path') @mock.patch('os.path.exists') def test_CycleCrashReport_LogExists_NamedCorrectly(self, mock_exists, mock_retrieve_log_path, mock_strftime, mock_rename): mock_exists.side_effect = [True, False] mock_retrieve_log_path.return_value = 'mock_log_path' mock_workspace = mock.MagicMock() mock_strftime.return_value = 'mock_strftime' editor_test_utils.cycle_crash_report(0, mock_workspace) mock_rename.assert_called_once_with(os.path.join('mock_log_path', 'error.log'), os.path.join('mock_log_path', 'error_mock_strftime.log')) @mock.patch('ly_test_tools.o3de.editor_test_utils.retrieve_log_path') @mock.patch('ly_test_tools.environment.waiter.wait_for', mock.MagicMock()) def test_RetrieveEditorLogContent_CrashLogExists_ReturnsLogInfo(self, mock_retrieve_log_path): mock_retrieve_log_path.return_value = 'mock_log_path' mock_logname = 'mock_log.log' mock_workspace = mock.MagicMock() mock_log = 'mock log info' with mock.patch('builtins.open', mock.mock_open(read_data=mock_log)) as mock_file: assert f'[{mock_logname}] {mock_log}' == editor_test_utils.retrieve_editor_log_content(0, mock_logname, mock_workspace) @mock.patch('ly_test_tools.o3de.editor_test_utils.retrieve_log_path') @mock.patch('ly_test_tools.environment.waiter.wait_for', mock.MagicMock()) def test_RetrieveEditorLogContent_CrashLogNotExists_ReturnsError(self, mock_retrieve_log_path): mock_retrieve_log_path.return_value = 'mock_log_path' mock_logname = 'mock_log.log' mock_workspace = mock.MagicMock() expected = f"-- Error reading {mock_logname}" assert expected in editor_test_utils.retrieve_editor_log_content(0, mock_logname, mock_workspace) def test_RetrieveLastRunTestIndexFromOutput_SecondTestFailed_Returns0(self): mock_test = mock.MagicMock() mock_test.__name__ = 'mock_test_name' mock_test_list = [mock_test] mock_editor_output = 'mock_test_name\n' \ 'mock_test_name_1' assert 0 == editor_test_utils.retrieve_last_run_test_index_from_output(mock_test_list, mock_editor_output) def test_RetrieveLastRunTestIndexFromOutput_TenthTestFailed_Returns9(self): mock_test_list = [] mock_editor_output = '' for x in range(10): mock_test = mock.MagicMock() mock_test.__name__ = f'mock_test_name_{x}' mock_test_list.append(mock_test) mock_editor_output += f'{mock_test.__name__}\n' mock_editor_output += 'mock_test_name_x' assert 9 == editor_test_utils.retrieve_last_run_test_index_from_output(mock_test_list, mock_editor_output) def test_RetrieveLastRunTestIndexFromOutput_FirstItemFailed_Returns0(self): mock_test_list = [] mock_editor_output = '' for x in range(10): mock_test = mock.MagicMock() mock_test.__name__ = f'mock_test_name_{x}' mock_test_list.append(mock_test) assert 0 == editor_test_utils.retrieve_last_run_test_index_from_output(mock_test_list, mock_editor_output)
49.472393
132
0.728919
c625843e6d75f46dbf1c64d752abd82c11f8668a
8,672
py
Python
platform/gsutil/gslib/addlhelp/metadata.py
IsaacHuang/google-cloud-sdk
52afa5d1a75dff08f4f5380c5cccc015bf796ca5
[ "Apache-2.0" ]
null
null
null
platform/gsutil/gslib/addlhelp/metadata.py
IsaacHuang/google-cloud-sdk
52afa5d1a75dff08f4f5380c5cccc015bf796ca5
[ "Apache-2.0" ]
null
null
null
platform/gsutil/gslib/addlhelp/metadata.py
IsaacHuang/google-cloud-sdk
52afa5d1a75dff08f4f5380c5cccc015bf796ca5
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2012 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Additional help about object metadata.""" from __future__ import absolute_import from gslib.help_provider import HelpProvider _DETAILED_HELP_TEXT = (""" <B>OVERVIEW OF METADATA</B> Objects can have associated metadata, which control aspects of how GET requests are handled, including Content-Type, Cache-Control, Content-Disposition, and Content-Encoding (discussed in more detail in the subsections below). In addition, you can set custom metadata that can be used by applications (e.g., tagging that particular objects possess some property). There are two ways to set metadata on objects: - at upload time you can specify one or more headers to associate with objects, using the gsutil -h option. For example, the following command would cause gsutil to set the Content-Type and Cache-Control for each of the files being uploaded: gsutil -h "Content-Type:text/html" \\ -h "Cache-Control:public, max-age=3600" cp -r images \\ gs://bucket/images Note that -h is an option on the gsutil command, not the cp sub-command. - You can set or remove metadata fields from already uploaded objects using the gsutil setmeta command. See "gsutil help setmeta". More details about specific pieces of metadata are discussed below. <B>CONTENT TYPE</B> The most commonly set metadata is Content-Type (also known as MIME type), which allows browsers to render the object properly. gsutil sets the Content-Type automatically at upload time, based on each filename extension. For example, uploading files with names ending in .txt will set Content-Type to text/plain. If you're running gsutil on Linux or MacOS and would prefer to have content type set based on naming plus content examination, see the use_magicfile configuration variable in the gsutil/boto configuration file (See also "gsutil help config"). In general, using use_magicfile is more robust and configurable, but is not available on Windows. If you specify a Content-Type header with -h when uploading content (like the example gsutil command given in the previous section), it overrides the Content-Type that would have been set based on filename extension or content. This can be useful if the Content-Type detection algorithm doesn't work as desired for some of your files. You can also completely suppress content type detection in gsutil, by specifying an empty string on the Content-Type header: gsutil -h 'Content-Type:' cp -r images gs://bucket/images In this case, the Google Cloud Storage service will not attempt to detect the content type. In general this approach will work better than using filename extension-based content detection in gsutil, because the list of filename extensions is kept more current in the server-side content detection system than in the Python library upon which gsutil content type detection depends. (For example, at the time of writing this, the filename extension ".webp" was recognized by the server-side content detection system, but not by gsutil.) <B>CACHE-CONTROL</B> Another commonly set piece of metadata is Cache-Control, which allows you to control whether and for how long browser and Internet caches are allowed to cache your objects. Cache-Control only applies to objects with a public-read ACL. Non-public data are not cacheable. Here's an example of uploading an object set to allow caching: gsutil -h "Cache-Control:public,max-age=3600" cp -a public-read \\ -r html gs://bucket/html This command would upload all files in the html directory (and subdirectories) and make them publicly readable and cacheable, with cache expiration of one hour. Note that if you allow caching, at download time you may see older versions of objects after uploading a newer replacement object. Note also that because objects can be cached at various places on the Internet there is no way to force a cached object to expire globally (unlike the way you can force your browser to refresh its cache). Another use of the Cache-Control header is through the "no-transform" value, which instructs Google Cloud Storage to not apply any content transformations based on specifics of a download request, such as removing gzip content-encoding for incompatible clients. Note that this parameter is only respected by the XML API. The Google Cloud Storage JSON API respects only the no-cache and max-age Cache-Control parameters. <B>CONTENT-ENCODING</B> You can specify a Content-Encoding to indicate that an object is compressed (for example, with gzip compression) while maintaining its Content-Type. You will need to ensure that the files have been compressed using the specified Content-Encoding before using gsutil to upload them. Consider the following example for Linux: echo "Highly compressible text" | gzip > foo.txt gsutil -h "Content-Encoding:gzip" -h "Content-Type:text/plain" \\ cp foo.txt gs://bucket/compressed Note that this is different from uploading a gzipped object foo.txt.gz with Content-Type: application/x-gzip because most browsers are able to dynamically decompress and process objects served with Content-Encoding: gzip based on the underlying Content-Type. For compressible content, using Content-Encoding: gzip saves network and storage costs, and improves content serving performance. However, for content that is already inherently compressed (archives and many media formats, for instance) applying another level of compression via Content-Encoding is typically detrimental to both object size and performance and should be avoided. Note also that gsutil provides an easy way to cause content to be compressed and stored with Content-Encoding: gzip: see the -z option in "gsutil help cp". <B>CONTENT-DISPOSITION</B> You can set Content-Disposition on your objects, to specify presentation information about the data being transmitted. Here's an example: gsutil -h 'Content-Disposition:attachment; filename=filename.ext' \\ cp -r attachments gs://bucket/attachments Setting the Content-Disposition allows you to control presentation style of the content, for example determining whether an attachment should be automatically displayed vs should require some form of action from the user to open it. See http://www.w3.org/Protocols/rfc2616/rfc2616-sec19.html#sec19.5.1 for more details about the meaning of Content-Disposition. <B>CUSTOM METADATA</B> You can add your own custom metadata (e.g,. for use by your application) to an object by setting a header that starts with "x-goog-meta", for example: gsutil -h x-goog-meta-reviewer:jane cp mycode.java gs://bucket/reviews You can add multiple differently named custom metadata fields to each object. <B>SETTABLE FIELDS; FIELD VALUES</B> You can't set some metadata fields, such as ETag and Content-Length. The fields you can set are: - Cache-Control - Content-Disposition - Content-Encoding - Content-Language - Content-MD5 - Content-Type - Any field starting with a matching Cloud Storage Provider prefix, such as x-goog-meta- (i.e., custom metadata). Header names are case-insensitive. x-goog-meta- fields can have data set to arbitrary Unicode values. All other fields must have ASCII values. <B>VIEWING CURRENTLY SET METADATA</B> You can see what metadata is currently set on an object by using: gsutil ls -L gs://the_bucket/the_object """) class CommandOptions(HelpProvider): """Additional help about object metadata.""" # Help specification. See help_provider.py for documentation. help_spec = HelpProvider.HelpSpec( help_name='metadata', help_name_aliases=[ 'cache-control', 'caching', 'content type', 'mime type', 'mime', 'type'], help_type='additional_help', help_one_line_summary='Working With Object Metadata', help_text=_DETAILED_HELP_TEXT, subcommand_help_text={}, )
43.144279
80
0.758649
888cfea0d976ad02e38ff51870ebd54a09163f6d
860
py
Python
python/test.py
ajdinm/crypto
d013e607de5e099749e20a748bff5bf7ef4f6689
[ "MIT" ]
null
null
null
python/test.py
ajdinm/crypto
d013e607de5e099749e20a748bff5bf7ef4f6689
[ "MIT" ]
1
2019-11-29T19:07:26.000Z
2019-11-29T19:07:26.000Z
python/test.py
ajdinm/crypto
d013e607de5e099749e20a748bff5bf7ef4f6689
[ "MIT" ]
null
null
null
from termcolor import colored def test(test_cases, f, f_name, ok_msg = 'OK', nok_msg = 'NOK', print_ok_case = False, print_nok_case = True): print '--- init testing ' + f_name + ' function ---' for test_case in test_cases: result = f(*test_case[:-1]) is_ok = result == test_case[-1] to_print = '' color = 'green' if is_ok: to_print = to_print + 'OK' else: color = 'red' to_print = to_print + 'NOK' if (is_ok and print_ok_case) or (not is_ok and print_nok_case): to_print = to_print + ': ' + f_name + str(test_case[:-1]) to_print = to_print + ': expected: ' + str(test_case[-1]) to_print = to_print + '; got: ' + str(result) print colored(to_print, color) print '--- done testing ' + f_name + ' function ---\n'
40.952381
110
0.553488
7c0a837cce384af4c07f196f0608df57074a5b08
7,271
py
Python
FGAN/fgan_model.py
sumersumerdjl/kozistr-Awesome-GANs
6e20e9cd07d0ec413a187d496159b97d793dab0c
[ "MIT" ]
1
2021-08-16T01:40:46.000Z
2021-08-16T01:40:46.000Z
FGAN/fgan_model.py
siavelis/Awesome-GANs
9add33fdfcb9fead75c37dd7afdbede625a303c9
[ "MIT" ]
null
null
null
FGAN/fgan_model.py
siavelis/Awesome-GANs
9add33fdfcb9fead75c37dd7afdbede625a303c9
[ "MIT" ]
1
2021-08-16T01:35:21.000Z
2021-08-16T01:35:21.000Z
import tensorflow as tf import numpy as np import sys sys.path.append('../') import tfutil as t tf.set_random_seed(777) class FGAN: def __init__(self, s, batch_size=64, height=28, width=28, channel=1, sample_num=8 * 8, sample_size=8, z_dim=128, dfc_unit=256, gfc_unit=1024, lr=2e-4, divergence_method='KL', use_tricky_g_loss=False): """ # General Settings :param s: TF Session :param batch_size: training batch size, default 64 :param height: input image height, default 28 :param width: input image width, default 28 :param channel: input image channel, default 1 # Output Settings :param sample_num: the number of sample images, default 64 :param sample_size: sample image size, default 8 # Model Settings :param z_dim: z noise dimension, default 128 :param dfc_unit: the number of fully connected units used at disc, default 256 :param gfc_unit: the number of fully connected units used at gen, default 1024 # Training Settings :param lr: learning rate, default 2e-4 :param divergence_method: the method of f-divergences, default 'KL' :param use_tricky_g_loss: use g_loss referred in f-GAN Section 3.2, default False """ self.s = s self.batch_size = batch_size self.height = height self.width = width self.channel = channel self.sample_size = sample_size self.sample_num = sample_num self.image_shape = [self.height, self.width, self.channel] self.n_input = self.height * self.width * self.channel self.z_dim = z_dim self.dfc_unit = dfc_unit self.gfc_unit = gfc_unit # pre-defined self.d_loss = 0. self.g_loss = 0. self.g = None self.d_op = None self.g_op = None self.merged = None self.writer = None self.saver = None # Placeholders self.x = tf.placeholder(tf.float32, shape=[None, self.n_input], name='x-images') self.z = tf.placeholder(tf.float32, shape=[None, self.z_dim], name='z-noise') # Training Options self.beta1 = 0.5 self.lr = lr self.divergence = divergence_method self.use_tricky_g_loss = use_tricky_g_loss self.bulid_fgan() # build f-GAN model def discriminator(self, x, reuse=None): with tf.variable_scope('discriminator', reuse=reuse): x = t.dense(x, self.dfc_unit, name='disc-fc-1') x = tf.nn.elu(x) x = t.dense(x, self.dfc_unit, name='disc-fc-2') x = tf.nn.elu(x) x = tf.layers.flatten(x) x = t.dense(x, 1, name='disc-fc-3') return x def generator(self, z, reuse=None, is_train=True): with tf.variable_scope('generator', reuse=reuse): x = t.dense(z, self.gfc_unit, name='gen-fc-1') x = t.batch_norm(x, is_train=is_train, name='gen-bn-1') x = tf.nn.relu(x) x = t.dense(x, self.gfc_unit, name='gen-fc-2') x = t.batch_norm(x, is_train=is_train, name='gen-bn-2') x = tf.nn.relu(x) x = t.dense(x, self.n_input, name='gen-fc-3') x = tf.nn.sigmoid(x) return x def bulid_fgan(self): # Generator self.g = self.generator(self.z) # Discriminator d_real = self.discriminator(self.x) d_fake = self.discriminator(self.g, reuse=True) # Losses if self.divergence == 'GAN': def activation(x): return -tf.reduce_mean(-t.safe_log(1. + tf.exp(-x))) def conjugate(x): return -tf.reduce_mean(-t.safe_log(1. - tf.exp(x))) elif self.divergence == 'KL': # tf.distribution.kl_divergence def activation(x): return -tf.reduce_mean(x) def conjugate(x): return -tf.reduce_mean(tf.exp(x - 1.)) elif self.divergence == 'Reverse-KL': def activation(x): return -tf.reduce_mean(-tf.exp(x)) def conjugate(x): return -tf.reduce_mean(-1. - x) # remove log elif self.divergence == 'JS': def activation(x): return -tf.reduce_mean(tf.log(2.) - t.safe_log(1. + tf.exp(-x))) def conjugate(x): return -tf.reduce_mean(-t.safe_log(2. - tf.exp(x))) elif self.divergence == 'JS-Weighted': def activation(x): return -tf.reduce_mean(-np.pi * np.log(np.pi) - t.safe_log(1. + tf.exp(-x))) def conjugate(x): return -tf.reduce_mean((1. - np.pi) * t.safe_log((1. - np.pi) / (1. - np.pi * tf.exp(x / np.pi)))) elif self.divergence == 'Squared-Hellinger': def activation(x): return -tf.reduce_mean(1. - tf.exp(x)) def conjugate(x): return -tf.reduce_mean(x / (1. - x)) elif self.divergence == 'Pearson': def activation(x): return -tf.reduce_mean(x) def conjugate(x): return -tf.reduce_mean(tf.square(x) / 4. + x) elif self.divergence == 'Neyman': def activation(x): return -tf.reduce_mean(1. - tf.exp(x)) def conjugate(x): return -tf.reduce_mean(2. - 2. * tf.sqrt(1. - x)) elif self.divergence == 'Jeffrey': from scipy.special import lambertw def activation(x): return -tf.reduce_mean(x) def conjugate(x): lambert_w = lambertw(self.s.run(tf.exp(1. - x))) # need to be replaced with another tensor func return -tf.reduce_mean(lambert_w + 1. / lambert_w + x - 2.) elif self.divergence == 'Total-Variation': def activation(x): return -tf.reduce_mean(tf.nn.tanh(x) / 2.) def conjugate(x): return -tf.reduce_mean(x) else: raise NotImplementedError("[-] Not Implemented f-divergence %s" % self.divergence) d_real_loss = activation(d_real) d_fake_loss = conjugate(d_fake) self.d_loss = d_real_loss - d_fake_loss if self.use_tricky_g_loss: self.g_loss = activation(d_fake) else: self.g_loss = d_fake_loss # Summary tf.summary.scalar("loss/d_real_loss", d_real_loss) tf.summary.scalar("loss/d_fake_loss", d_fake_loss) tf.summary.scalar("loss/d_loss", self.d_loss) tf.summary.scalar("loss/g_loss", self.g_loss) # Collect trainer values t_vars = tf.trainable_variables() d_params = [v for v in t_vars if v.name.startswith('d')] g_params = [v for v in t_vars if v.name.startswith('g')] # Optimizer self.d_op = tf.train.AdamOptimizer(learning_rate=self.lr, beta1=self.beta1).minimize(self.d_loss, var_list=d_params) self.g_op = tf.train.AdamOptimizer(learning_rate=self.lr, beta1=self.beta1).minimize(self.g_loss, var_list=g_params) # Merge summary self.merged = tf.summary.merge_all() # Model Saver self.saver = tf.train.Saver(max_to_keep=1) self.writer = tf.summary.FileWriter('./model/%s/' % self.divergence, self.s.graph)
36.174129
113
0.581213
5b637ff6d8b11e209b1b17f4529389b9e5bce031
691
py
Python
range-exclude.py
bpcox/range-exclude
c151f843964408481a5f6569718537a786ff5722
[ "MIT" ]
1
2016-06-27T15:11:37.000Z
2016-06-27T15:11:37.000Z
range-exclude.py
bpcox/range-exclude
c151f843964408481a5f6569718537a786ff5722
[ "MIT" ]
null
null
null
range-exclude.py
bpcox/range-exclude
c151f843964408481a5f6569718537a786ff5722
[ "MIT" ]
null
null
null
#! /usr/bin/env python3.4 import ipaddress import math supernet = False subnet = False while not supernet: inputRange = input('Input the IP range you would like remove a subrange from: ') try: supernet =ipaddress.ip_network(inputRange) except ValueError: print('Invalid input, try again') while not subnet: inputRange = input('Input the IP range you would like to remove: ') try: subnet = ipaddress.ip_network(inputRange) except ValueError: print('Invalid input, try again') if (supernet.version == subnet.version): result =supernet.address_exclude(subnet) for IPrange in result: print(IPrange) else: print('Both IP ranges must be of the same type (IPv4 or IPv6)')
23.033333
81
0.740955
909a25babe1f0965af793a6d69d15dcd1f295b81
3,245
py
Python
game.py
iamgreaser/fireball
2c5afb3dc5756a3b26da9045278f7e4a2bc036d2
[ "BSD-2-Clause-FreeBSD" ]
1
2019-05-06T15:11:17.000Z
2019-05-06T15:11:17.000Z
game.py
iamgreaser/fireball
2c5afb3dc5756a3b26da9045278f7e4a2bc036d2
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
game.py
iamgreaser/fireball
2c5afb3dc5756a3b26da9045278f7e4a2bc036d2
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
""" Copyright 2011 Ben Russell & contributors. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ANY CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. The views and conclusions contained in the software and documentation are those of the authors and should not be interpreted as representing official policies, either expressed or implied, of the contributors. """ import world, event, entity class AbstractGame: def __init__(self, *args, **kwargs): self.entities_main = [None for i in xrange(256)] self.entities_main_free = set([i for i in xrange(len(self.entities_main))]) self.entities_anon = set() def set_world(self, world): self.world = world def add_entity_main(self, ent, idx=None): # TODO: catch some errors if idx == None: idx = self.entities_main_free.pop() else: self.entities_main_free.remove(idx) self.entities_main[idx] = ent ent.set_game(idx, self) def rm_entity_main(self, idx): ent = self.entities_main[idx] if ent == None: return ent.set_game(-1, None) self.entities_main[idx] = None self.entities_main_free.add(idx) def update(self, dt): for ent in self.entities_main: if ent == None: continue ent.update(dt) for ent in self.entities_anon: ent.update(dt) class LocalGame(AbstractGame): def __init__(self, *args, **kwargs): AbstractGame.__init__(self, *args, **kwargs) pass def send_event(self, idx, event): self.recv_event(idx, event) def recv_event(self, idx, event): if idx == None: ent = self.entities_main[idx] if ent != None: ent.handle_event(event) else: for ent in self.entities_main: if ent == None: continue ent.handle_event() for ent in self.entities_anon: ent.handle_event() class NetworkGame(AbstractGame): def __init__(self, *args, **kwargs): AbstractGame.__init__(self, *args, **kwargs) pass class ServerGame(NetworkGame): def __init__(self, *args, **kwargs): NetworkGame.__init__(self, *args, **kwargs) pass class ClientGame(NetworkGame): def __init__(self, *args, **kwargs): NetworkGame.__init__(self, *args, **kwargs) pass
30.046296
92
0.735901
00749ac20ab37e147373dec3cca8fd4757f24e69
694
py
Python
funds/funds/models/funds.py
zxc111/funds
0d52d1fc305d329c3d31a909aed41f092ed12160
[ "MIT" ]
null
null
null
funds/funds/models/funds.py
zxc111/funds
0d52d1fc305d329c3d31a909aed41f092ed12160
[ "MIT" ]
null
null
null
funds/funds/models/funds.py
zxc111/funds
0d52d1fc305d329c3d31a909aed41f092ed12160
[ "MIT" ]
null
null
null
# coding: utf8 from sqlalchemy import Column, Integer, String from .config import Base class Fund(Base): __tablename__ = "funds" id = Column(Integer, primary_key=True) name = Column(String(256)) fundcode = Column(String(32), unique=True) manager = Column(String(32)) @classmethod def get_exist_fundcode_list(cls, fundcode_list, session): if not fundcode_list: return fundcode_list fc_set = set(fundcode_list) res = session.query(cls.fundcode).filter( cls.fundcode.in_(fundcode_list) ).all() result = [] for fundcode in res: result.append(fundcode[0]) return result
22.387097
61
0.631124
df93fea315585c30af4c09a7c4775e83fbff50b7
2,247
py
Python
gcc/models/gcn.py
TangYucopper/GCC
26c9e0bbe9db330748055924bc0f2bc3a0868cdf
[ "MIT" ]
243
2020-06-16T08:06:57.000Z
2022-03-31T10:09:37.000Z
gcc/models/gcn.py
TangYucopper/GCC
26c9e0bbe9db330748055924bc0f2bc3a0868cdf
[ "MIT" ]
21
2020-06-22T01:31:35.000Z
2022-01-06T08:02:07.000Z
gcc/models/gcn.py
TangYucopper/GCC
26c9e0bbe9db330748055924bc0f2bc3a0868cdf
[ "MIT" ]
49
2020-06-28T02:37:17.000Z
2022-03-29T08:07:35.000Z
#!/usr/bin/env python # encoding: utf-8 # File Name: gcn.py # Author: Jiezhong Qiu # Create Time: 2019/12/13 15:38 # TODO: import dgl import dgl.function as fn import torch import torch.nn as nn import torch.nn.functional as F from dgl.model_zoo.chem.gnn import GCNLayer from dgl.nn.pytorch import AvgPooling, Set2Set class UnsupervisedGCN(nn.Module): def __init__( self, hidden_size=64, num_layer=2, readout="avg", layernorm: bool = False, set2set_lstm_layer: int = 3, set2set_iter: int = 6, ): super(UnsupervisedGCN, self).__init__() self.layers = nn.ModuleList( [ GCNLayer( in_feats=hidden_size, out_feats=hidden_size, activation=F.relu if i + 1 < num_layer else None, residual=False, batchnorm=False, dropout=0.0, ) for i in range(num_layer) ] ) if readout == "avg": self.readout = AvgPooling() elif readout == "set2set": self.readout = Set2Set( hidden_size, n_iters=set2set_iter, n_layers=set2set_lstm_layer ) self.linear = nn.Linear(2 * hidden_size, hidden_size) elif readout == "root": # HACK: process outside the model part self.readout = lambda _, x: x else: raise NotImplementedError self.layernorm = layernorm if layernorm: self.ln = nn.LayerNorm(hidden_size, elementwise_affine=False) # self.ln = nn.BatchNorm1d(hidden_size, affine=False) def forward(self, g, feats, efeats=None): for layer in self.layers: feats = layer(g, feats) feats = self.readout(g, feats) if isinstance(self.readout, Set2Set): feats = self.linear(feats) if self.layernorm: feats = self.ln(feats) return feats if __name__ == "__main__": model = UnsupervisedGCN() print(model) g = dgl.DGLGraph() g.add_nodes(3) g.add_edges([0, 0, 1], [1, 2, 2]) feat = torch.rand(3, 64) print(model(g, feat).shape)
29.181818
78
0.558522
a2651aee8e6701544a6b83b225c20e91bfbb2482
2,591
py
Python
pysnmp/CISCO-POP-MGMT-CAPABILITY.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
11
2021-02-02T16:27:16.000Z
2021-08-31T06:22:49.000Z
pysnmp/CISCO-POP-MGMT-CAPABILITY.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
75
2021-02-24T17:30:31.000Z
2021-12-08T00:01:18.000Z
pysnmp/CISCO-POP-MGMT-CAPABILITY.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
10
2019-04-30T05:51:36.000Z
2022-02-16T03:33:41.000Z
# # PySNMP MIB module CISCO-POP-MGMT-CAPABILITY (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/CISCO-POP-MGMT-CAPABILITY # Produced by pysmi-0.3.4 at Mon Apr 29 17:52:48 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # Integer, OctetString, ObjectIdentifier = mibBuilder.importSymbols("ASN1", "Integer", "OctetString", "ObjectIdentifier") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") SingleValueConstraint, ValueRangeConstraint, ConstraintsIntersection, ValueSizeConstraint, ConstraintsUnion = mibBuilder.importSymbols("ASN1-REFINEMENT", "SingleValueConstraint", "ValueRangeConstraint", "ConstraintsIntersection", "ValueSizeConstraint", "ConstraintsUnion") ciscoAgentCapability, = mibBuilder.importSymbols("CISCO-SMI", "ciscoAgentCapability") ModuleCompliance, NotificationGroup, AgentCapabilities = mibBuilder.importSymbols("SNMPv2-CONF", "ModuleCompliance", "NotificationGroup", "AgentCapabilities") Gauge32, MibIdentifier, ObjectIdentity, IpAddress, TimeTicks, Counter32, Integer32, MibScalar, MibTable, MibTableRow, MibTableColumn, NotificationType, ModuleIdentity, Counter64, Unsigned32, Bits, iso = mibBuilder.importSymbols("SNMPv2-SMI", "Gauge32", "MibIdentifier", "ObjectIdentity", "IpAddress", "TimeTicks", "Counter32", "Integer32", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "NotificationType", "ModuleIdentity", "Counter64", "Unsigned32", "Bits", "iso") DisplayString, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "DisplayString", "TextualConvention") ciscoPopMgmtCapability = ModuleIdentity((1, 3, 6, 1, 4, 1, 9, 7, 447)) ciscoPopMgmtCapability.setRevisions(('2005-10-12 00:00', '2005-08-25 00:00',)) if mibBuilder.loadTexts: ciscoPopMgmtCapability.setLastUpdated('200510120000Z') if mibBuilder.loadTexts: ciscoPopMgmtCapability.setOrganization('Cisco Systems, Inc.') ciscoPopMgmtCapabilityV12R04 = AgentCapabilities((1, 3, 6, 1, 4, 1, 9, 7, 447, 1)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoPopMgmtCapabilityV12R04 = ciscoPopMgmtCapabilityV12R04.setProductRelease('Cisco IOS 12.4 for C3600 family platforms') if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoPopMgmtCapabilityV12R04 = ciscoPopMgmtCapabilityV12R04.setStatus('current') mibBuilder.exportSymbols("CISCO-POP-MGMT-CAPABILITY", ciscoPopMgmtCapabilityV12R04=ciscoPopMgmtCapabilityV12R04, ciscoPopMgmtCapability=ciscoPopMgmtCapability, PYSNMP_MODULE_ID=ciscoPopMgmtCapability)
103.64
477
0.791586
f4865eaa08850bb7be0a373c47e33c0b92147a15
1,870
py
Python
mac_os_scripts/configure_ntp.py
initialed85/mac_os_scripts
aa8a2c1dc9193dbce796985f5f125c82f6f90bed
[ "MIT", "BSD-3-Clause" ]
32
2017-11-01T17:20:41.000Z
2020-06-22T02:18:48.000Z
mac_os_scripts/configure_ntp.py
initialed85/mac_os_scripts
aa8a2c1dc9193dbce796985f5f125c82f6f90bed
[ "MIT", "BSD-3-Clause" ]
null
null
null
mac_os_scripts/configure_ntp.py
initialed85/mac_os_scripts
aa8a2c1dc9193dbce796985f5f125c82f6f90bed
[ "MIT", "BSD-3-Clause" ]
null
null
null
""" This script is responsible for enabling NTP and setting the NTP server Commands used: - systemsetup -setusingnetworktime on - systemsetup -setnetworktimeserver (NTP server) """ from common import CLITieIn class NTPConfigurator(CLITieIn): def enable_ntp(self): command = '/usr/sbin/systemsetup -setusingnetworktime on' command_output = self.command(command) if command_output.error_level != 0: self._logger.error( '{0} failed stating {1}'.format( command, command_output ) ) return False return True def set_ntp_server(self, server): command = '/usr/sbin/systemsetup -setnetworktimeserver {0}'.format(server) command_output = self.command(command) if command_output.error_level != 0: self._logger.error( '{0} failed stating {1}'.format( command, command_output ) ) return False return True def run(self, server): if not self.enable_ntp(): self._logger.error('failed enable_ntp; cannot continue') return False if not self.set_ntp_server(server): self._logger.error('failed set_ntp_server; cannot continue') return False self._logger.debug('passed') return True if __name__ == '__main__': from utils import get_argparser, get_args parser = get_argparser() parser.add_argument( '-s', '--server', type=str, required=True, help='NTP server to use' ) args = get_args(parser) actor = NTPConfigurator( sudo_password=args.sudo_password, ) result = actor.run( server=args.server, ) if not result: exit(1) exit(0)
22.261905
82
0.582353
5b17faf1258bbe066c95df11238fb4f0cc4f86a3
6,132
py
Python
wfexs_backend/podman_container.py
stain/WfExS-backend
e0e1cf5bc1466791043f0dd052ef9ea04927e108
[ "Apache-2.0" ]
10
2021-04-21T20:56:51.000Z
2022-03-28T15:03:11.000Z
wfexs_backend/podman_container.py
stain/WfExS-backend
e0e1cf5bc1466791043f0dd052ef9ea04927e108
[ "Apache-2.0" ]
22
2021-05-14T10:05:22.000Z
2022-03-31T22:35:19.000Z
wfexs_backend/podman_container.py
Acivico/WfExS-backend
05173ceca4dfdcd65f2a957e3638a65d76c6eb25
[ "Apache-2.0" ]
2
2021-09-22T09:34:33.000Z
2021-11-03T09:27:42.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 2020-2021 Barcelona Supercomputing Center (BSC), Spain # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import import os import json import subprocess import tempfile from typing import Dict, List, Tuple from .common import * from .container import ContainerFactory, ContainerFactoryException DOCKER_PROTO = 'docker://' class PodmanContainerFactory(ContainerFactory): def __init__(self, cacheDir=None, local_config=None, engine_name='unset', tempDir=None): super().__init__(cacheDir=cacheDir, local_config=local_config, engine_name=engine_name, tempDir=tempDir) self.runtime_cmd = local_config.get('tools', {}).get('podmanCommand', DEFAULT_PODMAN_CMD) self._environment.update({ 'XDG_DATA_HOME': self.containersCacheDir, }) # Now, detect whether userns could work userns_supported = False if self.supportsFeature('host_userns'): userns_supported = True self._features.add('userns') self.logger.debug(f'Podman supports userns: {userns_supported}') @classmethod def ContainerType(cls) -> ContainerType: return ContainerType.Podman def _inspect(self, dockerTag : ContainerTaggedName, matEnv) -> Tuple[int, bytes, str]: with tempfile.NamedTemporaryFile() as d_out, tempfile.NamedTemporaryFile() as d_err: self.logger.debug(f"querying podman container {dockerTag}") d_retval = subprocess.Popen( [self.runtime_cmd, 'inspect', dockerTag], env=matEnv, stdout=d_out, stderr=d_err ).wait() self.logger.debug(f"podman inspect {dockerTag} retval: {d_retval}") with open(d_out.name, mode="rb") as c_stF: d_out_v = c_stF.read().decode('utf-8', errors='continue') with open(d_err.name, mode="r") as c_stF: d_err_v = c_stF.read() self.logger.debug(f"podman inspect stdout: {d_out_v}") self.logger.debug(f"podman inspect stderr: {d_err_v}") return d_retval , d_out_v , d_err_v def _pull(self, dockerTag : ContainerTaggedName, matEnv) -> Tuple[int, str, str]: with tempfile.NamedTemporaryFile() as d_out, tempfile.NamedTemporaryFile() as d_err: self.logger.debug(f"pulling podman container {dockerTag}") d_retval = subprocess.Popen( [self.runtime_cmd, 'pull', dockerTag], env=matEnv, stdout=d_out, stderr=d_err ).wait() self.logger.debug(f"podman pull {dockerTag} retval: {d_retval}") with open(d_out.name, mode="r") as c_stF: d_out_v = c_stF.read() with open(d_err.name,"r") as c_stF: d_err_v = c_stF.read() self.logger.debug(f"podman pull stdout: {d_out_v}") self.logger.debug(f"podman pull stderr: {d_err_v}") return d_retval , d_out_v , d_err_v def materializeContainers(self, tagList: List[ContainerTaggedName], simpleFileNameMethod: ContainerFileNamingMethod, offline: bool = False) -> List[Container]: """ It is assured the containers are materialized """ containersList = [] matEnv = dict(os.environ) matEnv.update(self.environment) for tag in tagList: # It is an absolute URL, we are removing the docker:// if tag.startswith(DOCKER_PROTO): dockerTag = tag[len(DOCKER_PROTO):] podmanPullTag = tag else: dockerTag = tag podmanPullTag = DOCKER_PROTO + tag self.logger.info(f"downloading podman container: {tag}") d_retval , d_out_v , d_err_v = self._inspect(dockerTag, matEnv) # Time to pull the image if d_retval != 0: d_retval , d_out_v , d_err_v = self._pull(podmanPullTag, matEnv) if d_retval == 0: # Second try d_retval , d_out_v , d_err_v = self._inspect(dockerTag, matEnv) if d_retval != 0: errstr = """Could not materialize podman image {}. Retval {} ====== STDOUT ====== {} ====== STDERR ====== {}""".format(podmanPullTag, d_retval, d_out_v, d_err_v) raise ContainerFactoryException(errstr) # Parsing the output from docker inspect try: manifests = json.loads(d_out_v) manifest = manifests[0] except Exception as e: raise ContainerFactoryException(f"FATAL ERROR: Podman finished properly but it did not properly materialize {tag}: {e}") # Then, compute the signature tagId = manifest['Id'] fingerprint = None if len(manifest['RepoDigests']) > 0: fingerprint = manifest['RepoDigests'][0] containersList.append( Container( origTaggedName=tag, taggedName=dockerTag, signature=tagId, fingerprint=fingerprint, type=self.containerType ) ) return containersList
37.619632
163
0.580072
c31946b04feb4d7894e2b4173ad8779bc994afa1
499
py
Python
users/migrations/0002_auto_20190224_0337.py
JySa65/platzi-gram
e991a59a8ebe28574671f39cf8bd552e31799cd8
[ "MIT" ]
null
null
null
users/migrations/0002_auto_20190224_0337.py
JySa65/platzi-gram
e991a59a8ebe28574671f39cf8bd552e31799cd8
[ "MIT" ]
null
null
null
users/migrations/0002_auto_20190224_0337.py
JySa65/platzi-gram
e991a59a8ebe28574671f39cf8bd552e31799cd8
[ "MIT" ]
null
null
null
# Generated by Django 2.1 on 2019-02-24 07:37 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('users', '0001_initial'), ] operations = [ migrations.RenameField( model_name='profile', old_name='created', new_name='created_at', ), migrations.RenameField( model_name='profile', old_name='modified', new_name='updated_at', ), ]
20.791667
45
0.553106
909e3f8ccad76fd04557fdc6d0e8eb449816c506
1,199
py
Python
djangocms_snippet/migrations/0006_auto_20160831_0729.py
Bernardvdv/djangocms-snippet
883f9f895c6036f243ae90ce24a6e30ec82ad57f
[ "BSD-3-Clause" ]
27
2015-03-29T01:06:26.000Z
2020-02-04T02:02:55.000Z
djangocms_snippet/migrations/0006_auto_20160831_0729.py
Bernardvdv/djangocms-snippet
883f9f895c6036f243ae90ce24a6e30ec82ad57f
[ "BSD-3-Clause" ]
65
2015-01-02T05:15:17.000Z
2020-09-20T17:56:04.000Z
djangocms_snippet/migrations/0006_auto_20160831_0729.py
adam-murray/djangocms-snippet
a58974888ea4e2569a22feafe03b051f28bc22db
[ "BSD-3-Clause" ]
28
2015-01-10T06:34:43.000Z
2020-09-20T17:35:03.000Z
from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('djangocms_snippet', '0005_set_related_name_for_cmsplugin_ptr'), ] operations = [ migrations.AlterModelOptions( name='snippetptr', options={'verbose_name': 'Snippet', 'verbose_name_plural': 'Snippets'}, ), migrations.AlterField( model_name='snippet', name='name', field=models.CharField(unique=True, max_length=255, verbose_name='Name'), ), migrations.AlterField( model_name='snippet', name='slug', field=models.SlugField(default='', unique=True, max_length=255, verbose_name='Slug'), ), migrations.AlterField( model_name='snippet', name='template', field=models.CharField(help_text='Enter a template (i.e. "snippets/plugin_xy.html") which will be rendered. If "template" is given, the contents of field "HTML" will be passed as template variable {{ html }} to the template. Else, the content of "HTML" is rendered.', max_length=255, verbose_name='Template', blank=True), ), ]
38.677419
333
0.622185
09716c10e7765af5eb12ad9cdc2cab32a9540016
2,078
py
Python
setup.py
manonthemat/froide
698c49935eaf2e922f3c9f6a46af0fd545ccbbbb
[ "MIT" ]
null
null
null
setup.py
manonthemat/froide
698c49935eaf2e922f3c9f6a46af0fd545ccbbbb
[ "MIT" ]
null
null
null
setup.py
manonthemat/froide
698c49935eaf2e922f3c9f6a46af0fd545ccbbbb
[ "MIT" ]
null
null
null
#!/usr/bin/env python import codecs import re import os from setuptools import setup, find_packages def read(*parts): filename = os.path.join(os.path.dirname(__file__), *parts) with codecs.open(filename, encoding='utf-8') as fp: return fp.read() def find_version(*file_paths): version_file = read(*file_paths) version_match = re.search(r"^__version__ = ['\"]([^'\"]*)['\"]", version_file, re.M) if version_match: return version_match.group(1) raise RuntimeError("Unable to find version string.") setup( name="froide", version=find_version("froide", "__init__.py"), url='https://github.com/okfde/froide', license='MIT', description="German Freedom of Information Portal", long_description=read('README.md'), author='Stefan Wehrmeyer', author_email='mail@stefanwehrmeyer.com', packages=find_packages(), scripts=['manage.py'], install_requires=[ 'Django', 'Markdown', 'celery', 'geoip2', 'django-elasticsearch-dsl', 'django-taggit', 'pytz', 'requests', 'python-magic', 'djangorestframework', 'djangorestframework-csv', 'djangorestframework-jsonp', 'python-mimeparse', 'django-configurations', 'django-crossdomainmedia', 'django-storages', 'django-wikidata', 'dj-database-url', 'django-cache-url', 'django-filter', 'phonenumbers', 'django-filingcabinet', 'icalendar', ], include_package_data=True, classifiers=[ 'Development Status :: 5 - Production/Stable', 'Environment :: Web Environment', 'Framework :: Django', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Natural Language :: English', 'Operating System :: OS Independent', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Topic :: Internet :: WWW/HTTP' ] )
27.706667
68
0.593359
90aeb33200d94264d3875f7066881ff3b799d13f
29,957
py
Python
sdk/keyvault/azure-keyvault-keys/azure/keyvault/keys/_client.py
vchske/azure-sdk-for-python
6383ed3676b7355af7be394562b126209961ec13
[ "MIT" ]
null
null
null
sdk/keyvault/azure-keyvault-keys/azure/keyvault/keys/_client.py
vchske/azure-sdk-for-python
6383ed3676b7355af7be394562b126209961ec13
[ "MIT" ]
null
null
null
sdk/keyvault/azure-keyvault-keys/azure/keyvault/keys/_client.py
vchske/azure-sdk-for-python
6383ed3676b7355af7be394562b126209961ec13
[ "MIT" ]
1
2019-06-17T22:18:23.000Z
2019-06-17T22:18:23.000Z
# ------------------------------------ # Copyright (c) Microsoft Corporation. # Licensed under the MIT License. # ------------------------------------ from datetime import datetime try: from typing import TYPE_CHECKING except ImportError: TYPE_CHECKING = False if TYPE_CHECKING: from typing import Any, Dict, Generator, Mapping, Optional from azure.core.exceptions import ResourceExistsError, ResourceNotFoundError from ._shared import KeyVaultClientBase from ._models import Key, KeyBase, DeletedKey, KeyOperationResult class KeyClient(KeyVaultClientBase): """KeyClient is a high-level interface for managing a vault's keys. Example: .. literalinclude:: ../tests/test_samples_keys.py :start-after: [START create_key_client] :end-before: [END create_key_client] :language: python :caption: Creates a new instance of the Key client :dedent: 4 """ # pylint:disable=protected-access def create_key( self, name, key_type, size=None, key_operations=None, enabled=None, expires=None, not_before=None, tags=None, curve=None, **kwargs ): # type: (str, str, Optional[int], Optional[List[str]], Optional[bool], Optional[datetime], Optional[datetime], Optional[Dict[str, str]], Optional[str], Mapping[str, Any]) -> Key """Creates a new key, stores it, then returns the key to the client. The create key operation can be used to create any key type in Azure Key Vault. If the named key already exists, Azure Key Vault creates a new version of the key. It requires the keys/create permission. :param name: The name for the new key. The system will generate the version name for the new key. :type name: str :param key_type: The type of key to create. For valid values, see JsonWebKeyType. Possible values include: 'EC', 'EC-HSM', 'RSA', 'RSA-HSM', 'oct' :type key_type: str or ~azure.keyvault.keys._generated.v7_0.models.JsonWebKeyType :param size: The key size in bits. For example: 2048, 3072, or 4096 for RSA. :type size: int :param key_operations: Supported key operations. :type key_operations: list[str or ~azure.keyvault.keys._generated.v7_0.models.JsonWebKeyOperation] :param enabled: Determines whether the object is enabled. :type enabled: bool :param expires: Expiry date of the key in UTC. :type expires: datetime.datetime :param not_before: Not before date of the key in UTC :type not_before: datetime.datetime :param tags: Application specific metadata in the form of key-value pairs. :type tags: Dict[str, str] :param curve: Elliptic curve name. If none then defaults to 'P-256'. For valid values, see JsonWebKeyCurveName. Possible values include: 'P-256', 'P-384', 'P-521', 'SECP256K1' :type curve: str or ~azure.keyvault.keys._generated.v7_0.models.JsonWebKeyCurveName :returns: The created key :rtype: ~azure.keyvault.keys._models.Key Example: .. literalinclude:: ../tests/test_samples_keys.py :start-after: [START create_key] :end-before: [END create_key] :language: python :caption: Creates a key in the key vault :dedent: 8 """ if enabled is not None or not_before is not None or expires is not None: attributes = self._client.models.KeyAttributes(enabled=enabled, not_before=not_before, expires=expires) else: attributes = None bundle = self._client.create_key( self.vault_url, name, key_type, size, key_attributes=attributes, key_ops=key_operations, tags=tags, curve=curve, **kwargs ) return Key._from_key_bundle(bundle) def create_rsa_key( self, name, hsm, size=None, key_operations=None, enabled=None, expires=None, not_before=None, tags=None, **kwargs ): # type: (str, bool, Optional[int], Optional[List[str]], Optional[bool], Optional[datetime], Optional[datetime], Optional[Dict[str, str]], Mapping[str, Any]) -> Key """Creates a new RSA type key, stores it, then returns key to the client. The create key operation can be used to create any key type in Azure Key Vault. If the named key already exists, Azure Key Vault creates a new version of the key. It requires the keys/create permission. :param name: The name for the new key. The system will generate the version name for the new key. :type name: str :param hsm: Whether to create as a hardware key (HSM) or software key. :type hsm: bool :param size: The key size in bits. For example: 2048, 3072, or 4096 for RSA. :type size: int :param key_operations: Supported key operations. :type key_operations: list[str or ~azure.keyvault.keys._generated.v7_0.models.JsonWebKeyOperation] :param enabled: Determines whether the object is enabled. :type enabled: bool :param expires: Expiry date of the key in UTC. :type expires: datetime.datetime :param not_before: Not before date of the key in UTC :type not_before: datetime.datetime :param tags: Application specific metadata in the form of key-value pairs. :type tags: Dict[str, str] :returns: The created RSA key :rtype: ~azure.keyvault.keys._models.Key Example: .. literalinclude:: ../tests/test_samples_keys.py :start-after: [START create_rsa_key] :end-before: [END create_rsa_key] :language: python :caption: Creates a RSA key in the key vault :dedent: 8 """ key_type = "RSA-HSM" if hsm else "RSA" return self.create_key( name, key_type=key_type, size=size, key_operations=key_operations, enabled=enabled, expires=expires, not_before=not_before, tags=tags, **kwargs ) def create_ec_key( self, name, hsm, curve=None, key_operations=None, enabled=None, expires=None, not_before=None, tags=None, **kwargs ): # type: (str, bool, Optional[str], Optional[List[str]], Optional[bool], Optional[datetime], Optional[datetime], Optional[Dict[str, str]], Mapping[str, Any]) -> Key """Creates a new Elliptic curve type key, stores it, then returns key to the client. The create key operation can be used to create any key type in Azure Key Vault. If the named key already exists, Azure Key Vault creates a new version of the key. It requires the keys/create permission. :param name: The name for the new key. The system will generate the version name for the new key. :type name: str :param hsm: Whether to create as a hardware key (HSM) or software key. :type hsm: bool :param curve: Elliptic curve name. If none then defaults to 'P-256'. For valid values, see JsonWebKeyCurveName. Possible values include: 'P-256', 'P-384', 'P-521', 'SECP256K1' :type curve: str or ~azure.keyvault.keys._generated.v7_0.models.JsonWebKeyCurveName :param key_operations: Supported key operations. :type key_operations: list[str or ~azure.keyvault.keys._generated.v7_0.models.JsonWebKeyOperation] :param enabled: Determines whether the object is enabled. :type enabled: bool :param expires: Expiry date of the key in UTC. :type expires: datetime.datetime :param not_before: Not before date of the key in UTC :type not_before: datetime.datetime :param tags: Application specific metadata in the form of key-value pairs. :type tags: Dict[str, str] :returns: The created EC key :rtype: ~azure.keyvault.keys._models.Key Example: .. literalinclude:: ../tests/test_samples_keys.py :start-after: [START create_ec_key] :end-before: [END create_ec_key] :language: python :caption: Creates an EC key in the key vault :dedent: 8 """ key_type = "EC-HSM" if hsm else "EC" return self.create_key( name, key_type=key_type, curve=curve, key_operations=key_operations, enabled=enabled, expires=expires, not_before=not_before, tags=tags, **kwargs ) def delete_key(self, name, **kwargs): # type: (str, Mapping[str, Any]) -> DeletedKey """Deletes a key from the Key Vault. The delete key operation cannot be used to remove individual versions of a key. This operation removes the cryptographic material associated with the key, which means the key is not usable for Sign/Verify, Wrap/Unwrap or Encrypt/Decrypt operations. This operation requires the keys/delete permission. :param name: The name of the key to delete. :type name: str :returns: The deleted key :rtype: ~azure.keyvault.keys._models.DeletedKey :raises: ~azure.core.exceptions.ResourceNotFoundError if the client failed to retrieve the key Example: .. literalinclude:: ../tests/test_samples_keys.py :start-after: [START delete_key] :end-before: [END delete_key] :language: python :caption: Deletes a key in the key vault :dedent: 8 """ bundle = self._client.delete_key(self.vault_url, name, error_map={404: ResourceNotFoundError}, **kwargs) return DeletedKey._from_deleted_key_bundle(bundle) def get_key(self, name, version=None, **kwargs): # type: (str, Optional[str], Mapping[str, Any]) -> Key """Gets the public part of a stored key. The get key operation is applicable to all key types. If the requested key is symmetric, then no key material is released in the response. This operation requires the keys/get permission. :param name: The name of the key to get. :type name: str :param version: Retrieves a specific version of a key. If the version is None or an empty string, the latest version of the key is returned :type version: str :returns: Key :rtype: ~azure.keyvault.keys._models.Key :raises: ~azure.core.exceptions.ResourceNotFoundError if the client failed to retrieve the key Example: .. literalinclude:: ../tests/test_samples_keys.py :start-after: [START get_key] :end-before: [END get_key] :language: python :caption: Retrieves a key from the key vault :dedent: 8 """ bundle = self._client.get_key( self.vault_url, name, key_version=version or "", error_map={404: ResourceNotFoundError}, **kwargs ) return Key._from_key_bundle(bundle) def get_deleted_key(self, name, **kwargs): # type: (str, Mapping[str, Any]) -> DeletedKey """Gets a deleted key from the Key Vault The Get Deleted Key operation is applicable for soft-delete enabled vaults. While the operation can be invoked on any vault, it will return an error if invoked on a non soft-delete enabled vault. This operation requires the keys/get permission. :param name: The name of the key. :type name: str :returns: The deleted key :rtype: ~azure.keyvault.keys._models.DeletedKey Example: .. literalinclude:: ../tests/test_samples_keys.py :start-after: [START get_deleted_key] :end-before: [END get_deleted_key] :language: python :caption: Retrieves a deleted key from the key vault :dedent: 8 """ bundle = self._client.get_deleted_key(self.vault_url, name, error_map={404: ResourceNotFoundError}, **kwargs) return DeletedKey._from_deleted_key_bundle(bundle) def list_deleted_keys(self, **kwargs): # type: (Mapping[str, Any]) -> Generator[DeletedKey] """Lists the deleted keys in the Key Vault Retrieves a list of the keys in the Key Vault as JSON Web Key structures that contain the public part of a deleted key. This operation includes deletion-specific information. The Get Deleted Keys operation is applicable for vaults enabled for soft-delete. While the operation can be invoked on any vault, it will return an error if invoked on a non soft-delete enabled vault. This operation requires the keys/list permission. :returns: An iterator like instance of DeletedKey :rtype: Generator[~azure.keyvault.keys._models.DeletedKey] Example: .. literalinclude:: ../tests/test_samples_keys.py :start-after: [START list_deleted_keys] :end-before: [END list_deleted_keys] :language: python :caption: List all the deleted keys in the vault :dedent: 8 """ max_page_size = kwargs.get("max_page_size", None) pages = self._client.get_deleted_keys(self._vault_url, maxresults=max_page_size, **kwargs) return (DeletedKey._from_deleted_key_item(item) for item in pages) def list_keys(self, **kwargs): # type: (Mapping[str, Any]) -> Generator[KeyBase] """List the keys in the Key Vault Retrieves a list of the keys in the Key Vault as JSON Web Key structures that contain the public part of a stored key. The LIST operation is applicable to all key types, however only the base key identifier, attributes, and tags are provided in the response. Individual versions of a key are not listed in the response. This operation requires the keys/list permission. :returns: An iterator like instance of KeyBase :rtype: Generator[~azure.keyvault.keys._models.KeyBase] Example: .. literalinclude:: ../tests/test_samples_keys.py :start-after: [START list_keys] :end-before: [END list_keys] :language: python :caption: List all keys in the vault :dedent: 8 """ max_page_size = kwargs.get("max_page_size", None) pages = self._client.get_keys(self._vault_url, maxresults=max_page_size, **kwargs) return (KeyBase._from_key_item(item) for item in pages) def list_key_versions(self, name, **kwargs): # type: (str, Mapping[str, Any]) -> Generator[KeyBase] """Retrieves a list of individual key versions with the same key name. The full key identifier, attributes, and tags are provided in the response. This operation requires the keys/list permission. :param name: The name of the key. :type name: str :returns: An iterator like instance of KeyBase :rtype: Generator[~azure.keyvault.keys._models.KeyBase] Example: .. literalinclude:: ../tests/test_samples_keys.py :start-after: [START list_key_versions] :end-before: [END list_key_versions] :language: python :caption: List all versions of the specified key :dedent: 8 """ max_page_size = kwargs.get("max_page_size", None) pages = self._client.get_key_versions(self._vault_url, name, maxresults=max_page_size, **kwargs) return (KeyBase._from_key_item(item) for item in pages) def purge_deleted_key(self, name, **kwargs): # type: (str, Mapping[str, Any]) -> None """Permanently deletes the specified key. The Purge Deleted Key operation is applicable for soft-delete enabled vaults. While the operation can be invoked on any vault, it will return an error if invoked on a non soft-delete enabled vault. This operation requires the keys/purge permission. :param name: The name of the key :type name: str :returns: None :rtype: None Example: .. code-block:: python # if the vault has soft-delete enabled, purge permanently deletes a deleted key # (with soft-delete disabled, delete itself is permanent) key_client.purge_deleted_key("key-name") """ self._client.purge_deleted_key(self.vault_url, name, kwargs) def recover_deleted_key(self, name, **kwargs): # type: (str, Mapping[str, Any]) -> Key """Recovers the deleted key to its latest version. The Recover Deleted Key operation is applicable for deleted keys in soft-delete enabled vaults. It recovers the deleted key back to its latest version under /keys. An attempt to recover an non-deleted key will return an error. Consider this the inverse of the delete operation on soft-delete enabled vaults. This operation requires the keys/recover permission. :param name: The name of the deleted key. :type name: str :returns: The recovered deleted key :rtype: ~azure.keyvault.keys._models.Key Example: .. literalinclude:: ../tests/test_samples_keys.py :start-after: [START recover_deleted_key] :end-before: [END recover_deleted_key] :language: python :caption: Recovers the specified soft-deleted key :dedent: 8 """ bundle = self._client.recover_deleted_key(self.vault_url, name, kwargs) return Key._from_key_bundle(bundle) def update_key( self, name, version=None, key_operations=None, enabled=None, expires=None, not_before=None, tags=None, **kwargs ): # type: (str, Optional[str], Optional[List[str]], Optional[bool], Optional[datetime], Optional[datetime], Optional[Dict[str, str]], Mapping[str, Any]) -> Key """The update key operation changes specified attributes of a stored key and can be applied to any key type and key version stored in Azure Key Vault. In order to perform this operation, the key must already exist in the Key Vault. Note: The cryptographic material of a key itself cannot be changed. This operation requires the keys/update permission. :param name: The name of key to update. :type name: str :param version: The version of the key to update. :type version: str :param key_operations: Json web key operations. For more information on possible key operations, see JsonWebKeyOperation. :type key_operations: list[str or ~azure.keyvault.keys._generated.v7_0.models.JsonWebKeyOperation] :param enabled: Determines whether the object is enabled. :type enabled: bool :param expires: Expiry date of the key in UTC. :type expires: datetime.datetime :param not_before: Not before date of the key in UTC :type not_before: datetime.datetime :param tags: Application specific metadata in the form of key-value pairs. :type tags: Dict[str, str] :returns: The updated key :rtype: ~azure.keyvault.keys._models.Key :raises: ~azure.core.exceptions.ResourceNotFoundError if the client failed to retrieve the key Example: .. literalinclude:: ../tests/test_samples_keys.py :start-after: [START update_key] :end-before: [END update_key] :language: python :caption: Updates a key in the key vault :dedent: 8 """ if enabled is not None or not_before is not None or expires is not None: attributes = self._client.models.KeyAttributes(enabled=enabled, not_before=not_before, expires=expires) else: attributes = None bundle = self._client.update_key( self.vault_url, name, key_version=version or "", key_ops=key_operations, tags=tags, key_attributes=attributes, error_map={404: ResourceNotFoundError}, **kwargs ) return Key._from_key_bundle(bundle) def backup_key(self, name, **kwargs): # type: (str, Mapping[str, Any]) -> bytes """Backs up the specified key. Requests that a backup of the specified secret be downloaded to the client. The Key Backup operation exports a key from Azure Key Vault in a protected form. Note that this operation does NOT return key material in a form that can be used outside the Azure Key Vault system, the returned key material is either protected to a Azure Key Vault HSM or to Azure Key Vault itself. The intent of this operation is to allow a client to GENERATE a key in one Azure Key Vault instance, BACKUP the key, and then RESTORE it into another Azure Key Vault instance. The BACKUP operation may be used to export, in protected form, any key type from Azure Key Vault. Individual versions of a key cannot be backed up. BACKUP / RESTORE can be performed within geographical boundaries only; meaning that a BACKUP from one geographical area cannot be restored to another geographical area. For example, a backup from the US geographical area cannot be restored in an EU geographical area. This operation requires the key/backup permission. :param name: The name of the key. :type name: str :returns: The raw bytes of the key backup. :rtype: bytes :raises: ~azure.core.exceptions.ResourceNotFoundError if the client failed to retrieve the key Example: .. literalinclude:: ../tests/test_samples_keys.py :start-after: [START backup_key] :end-before: [END backup_key] :language: python :caption: Backs up the specified key to the key vault :dedent: 8 """ backup_result = self._client.backup_key(self.vault_url, name, error_map={404: ResourceNotFoundError}, **kwargs) return backup_result.value def restore_key(self, backup, **kwargs): # type: (bytes, Mapping[str, Any]) -> Key """Restores a backed up key to the Key Vault Imports a previously backed up key into Azure Key Vault, restoring the key, its key identifier, attributes and access control policies. The RESTORE operation may be used to import a previously backed up key. Individual versions of a key cannot be restored. The key is restored in its entirety with the same key name as it had when it was backed up. If the key name is not available in the target Key Vault, the RESTORE operation will be rejected. While the key name is retained during restore, the final key identifier will change if the key is restored to a different vault. Restore will restore all versions and preserve version identifiers. The RESTORE operation is subject to security constraints: The target Key Vault must be owned by the same Microsoft Azure Subscription as the source Key Vault The user must have RESTORE permission in the target Key Vault. This operation requires the keys/restore permission. :param backup: The raw bytes of the key backup :type backup: bytes :returns: The restored key :rtype: ~azure.keyvault.keys._models.Key :raises: ~azure.core.exceptions.ResourceExistsError if the client failed to retrieve the key Example: .. literalinclude:: ../tests/test_samples_keys.py :start-after: [START restore_key] :end-before: [END restore_key] :language: python :caption: Restores a backed up key to the vault :dedent: 8 """ bundle = self._client.restore_key(self.vault_url, backup, error_map={409: ResourceExistsError}, **kwargs) return Key._from_key_bundle(bundle) def import_key(self, name, key, hsm=None, enabled=None, not_before=None, expires=None, tags=None, **kwargs): # type: (str, List[str], Optional[bool], Optional[bool], Optional[datetime], Optional[datetime], Optional[Dict[str, str]], Mapping[str, Any]) -> Key """Imports an externally created key, stores it, and returns the key to the client. The import key operation may be used to import any key type into an Azure Key Vault. If the named key already exists, Azure Key Vault creates a new version of the key. This operation requires the keys/import permission. :param name: Name for the imported key. :type name: str :param key: The Json web key :type key: ~azure.security.keyvault.v7_0.models.JsonWebKey :param hsm: Whether to import as a hardware key (HSM) or software key. :type hsm: bool :param enabled: Determines whether the object is enabled. :type enabled: bool :param expires: Expiry date of the key in UTC. :type expires: datetime.datetime :param not_before: Not before date of the key in UTC :type not_before: datetime.datetime :param tags: Application specific metadata in the form of key-value pairs. :type tags: Dict[str, str] :returns: The imported key :rtype: ~azure.keyvault.keys._models.Key """ if enabled is not None or not_before is not None or expires is not None: attributes = self._client.models.KeyAttributes(enabled=enabled, not_before=not_before, expires=expires) else: attributes = None bundle = self._client.import_key( self.vault_url, name, key=key, hsm=hsm, key_attributes=attributes, tags=tags, **kwargs ) return Key._from_key_bundle(bundle) def wrap_key(self, name, algorithm, value, version=None, **kwargs): # type: (str, str, Optional[str], bytes, Mapping[str, Any]) -> KeyOperationResult """Wraps a symmetric key using a specified key. The WRAP operation supports encryption of a symmetric key using a key encryption key that has previously been stored in an Azure Key Vault. The WRAP operation is only strictly necessary for symmetric keys stored in Azure Key Vault since protection with an asymmetric key can be performed using the public portion of the key. This operation is supported for asymmetric keys as a convenience for callers that have a key-reference but do not have access to the public key material. This operation requires the keys/wrapKey permission. :param name: The name of the key. :type name: str :param version: The version of the key. :type version: str :param algorithm: algorithm identifier. Possible values include: 'RSA-OAEP', 'RSA-OAEP-256', 'RSA1_5' :type algorithm: str or ~azure.security.keyvault.v7_0.models.JsonWebKeyEncryptionAlgorithm :param value: :type value: bytes :returns: The wrapped symmetric key. :rtype: ~azure.keyvault.keys._models.KeyOperationResult """ if version is None: version = "" bundle = self._client.wrap_key( self.vault_url, name, key_version=version, algorithm=algorithm, value=value, **kwargs ) return KeyOperationResult(id=bundle.kid, value=bundle.result) def unwrap_key(self, name, algorithm, value, version=None, **kwargs): # type: (str, str, Optional[str], bytes, Mapping[str, Any]) -> KeyOperationResult """Unwraps a symmetric key using the specified key that was initially used for wrapping that key. The UNWRAP operation supports decryption of a symmetric key using the target key encryption key. This operation is the reverse of the WRAP operation. The UNWRAP operation applies to asymmetric and symmetric keys stored in Azure Key Vault since it uses the private portion of the key. This operation requires the keys/unwrapKey permission. :param name: The name of the key. :type name: str :param version: The version of the key. :type version: str :param algorithm: algorithm identifier. Possible values include: 'RSA-OAEP', 'RSA-OAEP-256', 'RSA1_5' :type algorithm: str or ~azure.security.keyvault.v7_0.models.JsonWebKeyEncryptionAlgorithm :param value: :type value: bytes :returns: The unwrapped symmetric key. :rtype: ~azure.keyvault.keys._models.KeyOperationResult """ if version is None: version = "" bundle = self._client.unwrap_key( self.vault_url, name, key_version=version, algorithm=algorithm, value=value, **kwargs ) return KeyOperationResult(id=bundle.kid, value=bundle.result)
43.542151
185
0.632807
fa1d88bb6d07924afde5015c96f82b97699def28
1,304
py
Python
mi/dataset/driver/fdchp_a/fdchp_a_recovered_driver.py
petercable/mi-dataset
d3c1607ea31af85fbba5719a31d4a60bf39f8dd3
[ "BSD-2-Clause" ]
1
2018-09-14T23:28:29.000Z
2018-09-14T23:28:29.000Z
mi/dataset/driver/fdchp_a/fdchp_a_recovered_driver.py
petercable/mi-dataset
d3c1607ea31af85fbba5719a31d4a60bf39f8dd3
[ "BSD-2-Clause" ]
33
2017-04-25T19:53:45.000Z
2022-03-18T17:42:18.000Z
mi/dataset/driver/fdchp_a/fdchp_a_recovered_driver.py
petercable/mi-dataset
d3c1607ea31af85fbba5719a31d4a60bf39f8dd3
[ "BSD-2-Clause" ]
31
2015-03-04T01:01:09.000Z
2020-10-28T14:42:12.000Z
#!/usr/bin/env python """ @package mi.dataset.driver.fdchp_a @file mi/dataset/driver/fdchp_a/fdchp_a_recovered_driver.py @author Emily Hahn @brief Driver for the fdchp series a recovered instrument """ from mi.dataset.dataset_driver import SimpleDatasetDriver from mi.dataset.parser.fdchp_a import FdchpAParser from mi.core.versioning import version @version("15.7.1") def parse(unused, source_file_path, particle_data_handler): """ This is the method called by Uframe :param unused :param source_file_path This is the full path and filename of the file to be parsed :param particle_data_handler Java Object to consume the output of the parser :return particle_data_handler """ with open(source_file_path, 'rb') as stream_handle: # create and instance of the concrete driver class defined below driver = FdchpARecoveredDriver(unused, stream_handle, particle_data_handler) driver.processFileStream() return particle_data_handler class FdchpARecoveredDriver(SimpleDatasetDriver): """ Derived fdchp a driver class All this needs to do is create a concrete _build_parser method """ def _build_parser(self, stream_handle): # build the parser return FdchpAParser(stream_handle, self._exception_callback)
30.325581
87
0.753834
706c9917f17617e5469d6dc54d2d396cebfe5b74
4,481
py
Python
train_stage2.py
pravn/StackGAN
cbb76e0af44b05a74a0c852cdb2fb9b5736a95b8
[ "MIT" ]
2
2020-02-11T11:28:27.000Z
2021-09-16T06:33:28.000Z
train_stage2.py
pravn/StackGAN
cbb76e0af44b05a74a0c852cdb2fb9b5736a95b8
[ "MIT" ]
null
null
null
train_stage2.py
pravn/StackGAN
cbb76e0af44b05a74a0c852cdb2fb9b5736a95b8
[ "MIT" ]
1
2019-08-24T20:41:54.000Z
2019-08-24T20:41:54.000Z
import argparse import torch import os import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader from torch.autograd import Variable from torch import autograd #from torchvision.datasets import MNIST #from torchvision.transforms import transforms from torchvision.utils import save_image from torch.optim.lr_scheduler import StepLR from torch.nn import functional as F from utils import weights_init_G from utils import weights_init_D def get_loss(gen, tgt): loss = (gen-tgt).pow(2) return torch.sum(loss) def run_stage2_trainer(train_loader, G2, D2, optimizer_G2, optimizer_D2, args): batch_size = args.batchSize real_label = 1 fake_label = 0 device = torch.device("cuda:0" if args.cuda else "cpu") if args.restart == '': G2.apply(weights_init_G) D2.apply(weights_init_D) else: G2 = torch.load('./G2_model.pt') D2 = torch.load('./D2_model.pt') criterion_BCE = nn.BCELoss() criterion_MSE = nn.MSELoss() criterion_L1 = nn.L1Loss() width = args.Stage2imageSize height = args.Stage2imageSize channels = args.nc if args.cuda: criterion_BCE = criterion_BCE.cuda() criterion_MSE = criterion_MSE.cuda() criterion_L1 = criterion_L1.cuda() for epoch in range(100): for i, (src, tgt) in enumerate(train_loader): if i==16000: break src = Variable(src) src = src.cuda() tgt = Variable(tgt) tgt = tgt.cuda() label = torch.full((batch_size,5,5), real_label, device=device) for p in G2.parameters(): p.requires_grad = True for p in D2.parameters(): p.requires_grad = False G2.zero_grad() #z = torch.FloatTensor(args.batchSize, args.nz).normal_(0,1) #if args.cuda: # z = z.cuda() #z = Variable(z) #fake1 = G1(z) fake = G2(src) D2_fake, feats_fake = D2(fake) D2_tgt, feats_tgt = D2(tgt) #exp_feats_fake = torch.mean(feats_fake, dim=0) #exp_feats_tgt = torch.mean(feats_tgt, dim=0) #G2_loss = criterion_MSE(exp_feats_fake, exp_feats_tgt) #G2_loss = 0.001*get_loss(exp_feats_fake, exp_feats_tgt) G2_loss = 0.01 * criterion_MSE(feats_fake, feats_tgt) #Supervised (L1) loss L1_loss = criterion_L1(fake, tgt) #L1_loss *= 1.0 L1_loss.backward(retain_graph=True) #fill with label '1' #label.fill_(real_label) #Global Adversarial Loss #G2_loss = criterion_BCE(D2_fake, label) #G2_loss = criterion_MSE(D2_fake, label) #G2_loss *= 0.1 G2_loss.backward(retain_graph=True) optimizer_G2.step() #train D2 for p in D2.parameters(): p.requires_grad = True for p in G2.parameters(): p.requires_grad = False D2.zero_grad() #real D2_real, _ = D2(tgt) label.fill_(real_label) #D2_loss_real = criterion_BCE(D2_real, label) D2_loss_real = criterion_MSE(D2_real, label) D2_loss_real.backward(retain_graph=True) fake = G2(src) D_fake, _ = D2(fake.detach()) label.fill_(fake_label) #D2_loss_fake = criterion_BCE(D_fake, label) D2_loss_fake = criterion_MSE(D_fake, label) D2_loss_fake.backward(retain_graph=True) optimizer_D2.step() if i %100 == 0: print('saving images for batch', i) save_image(src.squeeze().data.cpu().detach(), 'source.png') save_image(tgt.squeeze().data.cpu().detach(), 'target.png') save_image(fake.squeeze().data.cpu().detach(), 'fake.png') if i % 100 == 0: torch.save(G2, './G2_model.pt') torch.save(D2, './D2_model.pt') print('%d [%d/%d] G Loss [L1/GAdv] [%.4f/%.4f] Loss D (real/fake) [%.4f/%.4f]'% (epoch, i, len(train_loader), L1_loss, G2_loss, D2_loss_real, D2_loss_fake))
28.909677
95
0.552778
4ab508ec6d76d7d86d55af5c3712895e2a5d2bee
439
py
Python
firecares/weather/migrations/0006_auto_20181015_1358.py
FireCARES/firecares
aa708d441790263206dd3a0a480eb6ca9031439d
[ "MIT" ]
12
2016-01-30T02:28:35.000Z
2019-05-29T15:49:56.000Z
firecares/weather/migrations/0006_auto_20181015_1358.py
FireCARES/firecares
aa708d441790263206dd3a0a480eb6ca9031439d
[ "MIT" ]
455
2015-07-27T20:21:56.000Z
2022-03-11T23:26:20.000Z
firecares/weather/migrations/0006_auto_20181015_1358.py
FireCARES/firecares
aa708d441790263206dd3a0a480eb6ca9031439d
[ "MIT" ]
14
2015-07-29T09:45:53.000Z
2020-10-21T20:03:17.000Z
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('weather', '0005_auto_20181015_1355'), ] operations = [ migrations.AlterField( model_name='weatherwarnings', name='warnid', field=models.CharField(db_index=True, max_length=200, blank=True), ), ]
21.95
78
0.624146
61fac75e765587b715755954029c8304ec12f8ec
599
py
Python
TWLight/applications/migrations/0009_auto_20160527_1505.py
jajodiaraghav/TWLight
22359ab0b95ee3653e8ffa0eb698acd7bb8ebf70
[ "MIT" ]
1
2019-10-24T04:49:52.000Z
2019-10-24T04:49:52.000Z
TWLight/applications/migrations/0009_auto_20160527_1505.py
jajodiaraghav/TWLight
22359ab0b95ee3653e8ffa0eb698acd7bb8ebf70
[ "MIT" ]
1
2019-03-29T15:29:45.000Z
2019-03-29T15:57:20.000Z
TWLight/applications/migrations/0009_auto_20160527_1505.py
jajodiaraghav/TWLight
22359ab0b95ee3653e8ffa0eb698acd7bb8ebf70
[ "MIT" ]
1
2019-09-26T14:40:27.000Z
2019-09-26T14:40:27.000Z
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('applications', '0008_auto_20160527_1502'), ] operations = [ migrations.RemoveField( model_name='application', name='user', ), migrations.AlterField( model_name='application', name='editor', field=models.ForeignKey(related_name='applications', default=1, to='users.Editor'), preserve_default=False, ), ]
23.96
95
0.597663
d34d4a134f4dc3edfb20a6f83f81aee69524029e
657
py
Python
Web/urlib.py
YangChenye/Python-Code
66a7edff84143ed6cc9518717c555399683e334c
[ "MIT" ]
41
2019-01-30T05:19:06.000Z
2022-01-30T06:37:16.000Z
Web/urlib.py
YangChenye/Python-Code
66a7edff84143ed6cc9518717c555399683e334c
[ "MIT" ]
null
null
null
Web/urlib.py
YangChenye/Python-Code
66a7edff84143ed6cc9518717c555399683e334c
[ "MIT" ]
44
2019-01-30T05:14:26.000Z
2022-01-02T08:15:19.000Z
from urllib import request if __name__ == "__main__": #访问网址 url = 'http://www.whatismyip.com.tw/' #这是代理IP proxy = {'http':'106.46.136.112:808'} #创建ProxyHandler proxy_support = request.ProxyHandler(proxy) #创建Opener opener = request.build_opener(proxy_support) #添加User Angent opener.addheaders = [('User-Agent','Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/56.0.2924.87 Safari/537.36')] #安装OPener request.install_opener(opener) #使用自己安装好的Opener response = request.urlopen(url) #读取相应信息并解码 html = response.read().decode("utf-8") #打印信息 print(html)
29.863636
156
0.668189
de75c874b64242d7348d4329dfa083046b036a7b
6,877
py
Python
tensorflow/compiler/plugin/poplar/tests/sendrecv_ops_test.py
DebeshJha/tensorflow-1
2b5a225c49d25273532d11c424d37ce394d7579a
[ "Apache-2.0" ]
2
2021-03-08T23:32:06.000Z
2022-01-13T03:43:49.000Z
tensorflow/compiler/plugin/poplar/tests/sendrecv_ops_test.py
DebeshJha/tensorflow-1
2b5a225c49d25273532d11c424d37ce394d7579a
[ "Apache-2.0" ]
null
null
null
tensorflow/compiler/plugin/poplar/tests/sendrecv_ops_test.py
DebeshJha/tensorflow-1
2b5a225c49d25273532d11c424d37ce394d7579a
[ "Apache-2.0" ]
null
null
null
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import numpy as np from absl.testing import parameterized from tensorflow.compiler.plugin.poplar.ops import gen_sendrecv_ops from tensorflow.compiler.tests import xla_test from tensorflow.python.framework import combinations from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ipu import ipu_compiler from tensorflow.python.ipu import utils from tensorflow.python.ipu.scopes import ipu_scope from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.platform import googletest class IpuSendRecvOpsTest(xla_test.XLATestCase, parameterized.TestCase): # pylint: disable=abstract-method @combinations.generate( combinations.combine( dtype=[dtypes.float16, dtypes.float32, dtypes.int32])) def testSendScalar(self, dtype): with self.session() as sess: def device_fn(x): return gen_sendrecv_ops.ipu_send_to_host(x, tensor_name="test_tensor", send_device="/device:IPU:0", send_device_incarnation=0, recv_device="/device:CPU:0") inputs = array_ops.placeholder(dtype=dtype, shape=()) with ipu_scope("/device:IPU:0"): send_op = ipu_compiler.compile(device_fn, inputs=[inputs]) with ops.device("/device:CPU:0"): recv_op = gen_sendrecv_ops.ipu_recv_at_host( T=dtype, tensor_name="test_tensor", send_device="/device:IPU:0", send_device_incarnation=0, recv_device="/device:CPU:0") opts = utils.create_ipu_config() utils.configure_ipu_system(opts) sent, received = sess.run([send_op, recv_op], feed_dict={inputs: 1}) self.assertIsNone(sent) # Send op has no output self.assertEqual(dtype, received.dtype) self.assertEqual(0, len(received.shape)) self.assertEqual(1, received) def testSendFromTwoEngines(self): with self.session() as sess: def make_device_fn(i): def device_fn(x): return gen_sendrecv_ops.ipu_send_to_host( x, tensor_name="tensor_{}".format(i), send_device="/device:IPU:0", send_device_incarnation=0, recv_device="/device:CPU:0") return device_fn input_1 = array_ops.placeholder(dtype=dtypes.float32, shape=()) input_2 = array_ops.placeholder(dtype=dtypes.float32, shape=()) with ipu_scope("/device:IPU:0"): send_1 = ipu_compiler.compile(make_device_fn(1), inputs=[input_1]) send_2 = ipu_compiler.compile(make_device_fn(2), inputs=[input_2]) with ops.device("/device:CPU:0"): recv_1 = gen_sendrecv_ops.ipu_recv_at_host(T=dtypes.float32, tensor_name="tensor_1", send_device="/device:IPU:0", send_device_incarnation=0, recv_device="/device:CPU:0") recv_2 = gen_sendrecv_ops.ipu_recv_at_host(T=dtypes.float32, tensor_name="tensor_2", send_device="/device:IPU:0", send_device_incarnation=0, recv_device="/device:CPU:0") opts = utils.create_ipu_config() utils.configure_ipu_system(opts) # Test it a couple of times to verify the communication channel is reusable. for i in range(2): _, _, result_1, result_2 = sess.run([send_1, send_2, recv_1, recv_2], feed_dict={ input_1: i, input_2: i + 1 }) self.assertEqual(i, result_1) self.assertEqual(i + 1, result_2) @combinations.generate( combinations.combine(dtype=[dtypes.float16, dtypes.float32])) def testSendMatrices(self, dtype): with self.session() as sess: L = 3 def device_fn(x): for i in range(L): x = math_ops.matmul(x, x) if i < L - 1: gen_sendrecv_ops.ipu_send_to_host(x, tensor_name="x_{}".format(i), send_device="/device:IPU:0", send_device_incarnation=0, recv_device="/device:CPU:0") return x N = 2 inputs = array_ops.placeholder(dtype=dtype, shape=(N, N)) with ipu_scope("/device:IPU:0"): [device_out] = ipu_compiler.compile(device_fn, inputs=[inputs]) received = [] with ops.device("/device:CPU:0"): for i in range(L - 1): received.append( gen_sendrecv_ops.ipu_recv_at_host(T=dtype, tensor_name="x_{}".format(i), send_device="/device:IPU:0", send_device_incarnation=0, recv_device="/device:CPU:0")) opts = utils.create_ipu_config() utils.configure_ipu_system(opts) received_values, device_value = sess.run( [received, device_out], feed_dict={inputs: np.ones((N, N))}) self.assertAllClose(2 * np.ones((N, N)), received_values[0]) self.assertAllClose(8 * np.ones((N, N)), received_values[1]) self.assertAllClose(128 * np.ones((N, N)), device_value) if __name__ == "__main__": os.environ['TF_XLA_FLAGS'] = ('--tf_xla_min_cluster_size=1 ' + os.environ.get('TF_XLA_FLAGS', '')) googletest.main()
40.934524
106
0.566381
0e2e807c886e18878f8f76a1ab8a971bb43d0fc9
6,961
py
Python
spinoffs/oryx/oryx/experimental/nn/convolution.py
brianwa84/probability
6f8e78d859ac41170be5147c8c7bde54cc5aa83e
[ "Apache-2.0" ]
2
2020-12-17T20:43:24.000Z
2021-06-11T22:09:16.000Z
spinoffs/oryx/oryx/experimental/nn/convolution.py
brianwa84/probability
6f8e78d859ac41170be5147c8c7bde54cc5aa83e
[ "Apache-2.0" ]
2
2021-08-25T16:14:51.000Z
2022-02-10T04:47:11.000Z
spinoffs/oryx/oryx/experimental/nn/convolution.py
brianwa84/probability
6f8e78d859ac41170be5147c8c7bde54cc5aa83e
[ "Apache-2.0" ]
1
2021-01-03T20:23:52.000Z
2021-01-03T20:23:52.000Z
# Copyright 2020 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Contains building blocks for convolutional neural networks.""" import collections import itertools from jax import lax from jax import random from jax.experimental import stax import jax.numpy as np from oryx.core import state from oryx.experimental.nn import base __all__ = [ 'conv_info', 'Conv', 'Deconv', ] DIMENSION_NUMBERS = ('NHWC', 'HWIO', 'NHWC') ConvParams = collections.namedtuple('ConvParams', ['kernel', 'bias']) ConvInfo = collections.namedtuple('ConvInfo', ['strides', 'padding', 'one', 'use_bias']) def conv_info(in_shape, out_chan, filter_shape, strides=None, padding='VALID', kernel_init=None, bias_init=stax.randn(1e-6), transpose=False): """Returns parameters and output shape information given input shapes.""" # Essentially the `stax` implementation if len(in_shape) != 3: raise ValueError('Need to `jax.vmap` in order to batch') in_shape = (1,) + in_shape lhs_spec, rhs_spec, out_spec = DIMENSION_NUMBERS one = (1,) * len(filter_shape) strides = strides or one kernel_init = kernel_init or stax.glorot( rhs_spec.index('O'), rhs_spec.index('I')) filter_shape_iter = iter(filter_shape) kernel_shape = tuple([out_chan if c == 'O' else in_shape[lhs_spec.index('C')] if c == 'I' else next(filter_shape_iter) for c in rhs_spec]) if transpose: out_shape = lax.conv_transpose_shape_tuple( in_shape, kernel_shape, strides, padding, DIMENSION_NUMBERS) else: out_shape = lax.conv_general_shape_tuple( in_shape, kernel_shape, strides, padding, DIMENSION_NUMBERS) bias_shape = [out_chan if c == 'C' else 1 for c in out_spec] bias_shape = tuple(itertools.dropwhile(lambda x: x == 1, bias_shape)) out_shape = out_shape[1:] shapes = (out_shape, kernel_shape, bias_shape) inits = (kernel_init, bias_init) return shapes, inits, (strides, padding, one) class Conv(base.Layer): """Neural network layer for 2D convolution.""" @classmethod def initialize(cls, key, in_spec, out_chan, filter_shape, strides=None, padding='VALID', kernel_init=None, bias_init=stax.randn(1e-6), use_bias=True): in_shape = in_spec.shape shapes, inits, (strides, padding, one) = conv_info( in_shape, out_chan, filter_shape, strides=strides, padding=padding, kernel_init=kernel_init, bias_init=bias_init ) info = ConvInfo(strides, padding, one, use_bias) _, kernel_shape, bias_shape = shapes kernel_init, bias_init = inits k1, k2 = random.split(key) if use_bias: params = ConvParams( base.create_parameter(k1, kernel_shape, init=kernel_init), base.create_parameter(k2, bias_shape, init=bias_init), ) else: params = ConvParams( base.create_parameter(k1, kernel_shape, init=kernel_init), None ) return base.LayerParams(params, info=info) @classmethod def spec(cls, in_spec, out_chan, filter_shape, strides=None, padding='VALID', kernel_init=None, bias_init=stax.randn(1e-6), use_bias=True): del use_bias in_shape = in_spec.shape shapes, _, _ = conv_info( in_shape, out_chan, filter_shape, strides=strides, padding=padding, kernel_init=kernel_init, bias_init=bias_init ) return state.Shape(shapes[0], dtype=in_spec.dtype) def _call_batched(self, x): params, info = self.params, self.info result = lax.conv_general_dilated(x, params.kernel, info.strides, info.padding, info.one, info.one, DIMENSION_NUMBERS) if info.use_bias: result += params.bias return result def _call(self, x): """Applies 2D convolution of the params with the input x.""" if len(x.shape) != 3: raise ValueError('Need to `jax.vmap` in order to batch: {}'.format( x.shape)) result = self._call_batched(x[np.newaxis]) return result[0] class Deconv(base.Layer): """Neural network layer for 2D transposed convolution.""" @classmethod def initialize(cls, key, in_spec, out_chan, filter_shape, strides=None, padding='VALID', kernel_init=None, bias_init=stax.randn(1e-6), use_bias=True): in_shape = in_spec.shape shapes, inits, (strides, padding, one) = conv_info( in_shape, out_chan, filter_shape, strides=strides, padding=padding, kernel_init=kernel_init, bias_init=bias_init, transpose=True ) info = ConvInfo(strides, padding, one, use_bias) _, kernel_shape, bias_shape = shapes kernel_init, bias_init = inits k1, k2 = random.split(key) if use_bias: params = ConvParams( base.create_parameter(k1, kernel_shape, init=kernel_init), base.create_parameter(k2, bias_shape, init=bias_init), ) else: params = ConvParams( base.create_parameter(k1, kernel_shape, init=kernel_init), None ) return base.LayerParams(params, info=info) @classmethod def spec(cls, in_spec, out_chan, filter_shape, strides=None, padding='VALID', kernel_init=None, bias_init=stax.randn(1e-6), use_bias=True): del use_bias in_shape = in_spec.shape shapes, _, _ = conv_info( in_shape, out_chan, filter_shape, strides=strides, padding=padding, kernel_init=kernel_init, bias_init=bias_init, transpose=True ) return state.Shape(shapes[0], dtype=in_spec.dtype) def _call_batched(self, x): params, info = self.params, self.info result = lax.conv_transpose(x, params.kernel, info.strides, info.padding, dimension_numbers=DIMENSION_NUMBERS) if info.use_bias: result += params.bias return result def _call(self, x): """Applies 2D transposed convolution of the params with the input x.""" if len(x.shape) != 3: raise ValueError('Need to `jax.vmap` in order to batch') result = self._call_batched(x[np.newaxis]) return result[0]
35.515306
78
0.644304
f4546ec5f67b9126df66038612427cd79680eeee
8,269
py
Python
deepsim/deepsim/core/math.py
aws-deepracer/deepsim
cad2639f525c2f94ec5c03d8b855cc65b0b8ee55
[ "Apache-2.0" ]
1
2022-03-25T07:20:49.000Z
2022-03-25T07:20:49.000Z
deepsim/deepsim/core/math.py
aws-deepracer/deepsim
cad2639f525c2f94ec5c03d8b855cc65b0b8ee55
[ "Apache-2.0" ]
null
null
null
deepsim/deepsim/core/math.py
aws-deepracer/deepsim
cad2639f525c2f94ec5c03d8b855cc65b0b8ee55
[ "Apache-2.0" ]
null
null
null
################################################################################# # Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # # # # Licensed under the Apache License, Version 2.0 (the "License"). # # You may not use this file except in compliance with the License. # # You may obtain a copy of the License at # # # # http://www.apache.org/licenses/LICENSE-2.0 # # # # Unless required by applicable law or agreed to in writing, software # # distributed under the License is distributed on an "AS IS" BASIS, # # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # # limitations under the License. # ################################################################################# """A class for math.""" import math from typing import Tuple, Union, TypeVar import numpy as np Point = TypeVar('Point') Vector3 = TypeVar('Vector3') Quaternion = TypeVar('Quaternion') Euler = TypeVar('Euler') # The order of rotation applied: yaw (z) -> pitch (y) -> roll (x) def euler_to_quaternion(roll: float = 0, pitch: float = 0, yaw: float = 0) -> Tuple[float, float, float, float]: """ Convert Euler to Quaternion Args: roll (float): roll angle in radian (x-axis) pitch (float): pitch angle in radian (y-axis) yaw (float): yaw angle in radian (z-axis) Returns: Tuple[float, float, float, float]: x, y, z, w """ # Abbreviations for the various angular functions cy = math.cos(yaw * 0.5) sy = math.sin(yaw * 0.5) cp = math.cos(pitch * 0.5) sp = math.sin(pitch * 0.5) cr = math.cos(roll * 0.5) sr = math.sin(roll * 0.5) # Quaternion w = cr * cp * cy + sr * sp * sy x = sr * cp * cy - cr * sp * sy y = cr * sp * cy + sr * cp * sy z = cr * cp * sy - sr * sp * cy return x, y, z, w def quaternion_to_euler(x: float, y: float, z: float, w: float) -> Tuple[float, float, float]: """ Convert quaternion x, y, z, w to euler angle roll, pitch, yaw Args: x (float): quaternion x y (float): quaternion y z (float): quaternion z w (float): quaternion w Returns: Tuple: (roll, pitch, yaw) in radian """ # roll (x-axis rotation) sinr_cosp = 2.0 * (w * x + y * z) cosr_cosp = 1.0 - 2.0 * (x * x + y * y) roll = math.atan2(sinr_cosp, cosr_cosp) # pitch (y-axis rotation) sinp = 2.0 * (w * y - z * x) if abs(sinp) >= 1.0: pitch = math.copysign(math.pi / 2.0, sinp) # use 90 degrees if out of range else: pitch = math.asin(sinp) # yaw (z-axis rotation) siny_cosp = 2.0 * (w * z + x * y) cosy_cosp = 1.0 - 2.0 * (y * y + z * z) yaw = math.atan2(siny_cosp, cosy_cosp) return roll, pitch, yaw def project_to_2d(point_on_plane: Union[Point, Vector3], plane_center: Union[Point, Vector3], plane_width: float, plane_height: float, plane_quaternion: Quaternion) -> Tuple[float, float]: """ Project the point to 2d. Args: point_on_plane (Union[Point, Vector3]): the point on plane to project. plane_center (Union[Point, Vector3]): plane center plane_width (float): width of plane plane_height (float): height of plane plane_quaternion (Quaternion): plane orientation Returns: Tuple[float, float]: x and y in 2d space scaled between 0.0 and 1.0. """ from deepsim.core.vector3 import Vector3 from deepsim.core.quaternion import Quaternion from deepsim.core.euler import Euler point_on_plane = point_on_plane if isinstance(point_on_plane, Vector3) else point_on_plane.to_vector() plane_center = plane_center if isinstance(plane_center, Vector3) else plane_center.to_vector() # Transpose the center back to origin point_on_plane_from_origin = point_on_plane - plane_center # Reverse the rotation so plane can align back to y-axis inverse_cam_quaternion = plane_quaternion.inverse() point_on_y_axis = point_on_plane_from_origin.rotate(inverse_cam_quaternion) # Rotate pitch 90 degree and yaw 90 degree, so plane will align to x and y axis # Remember rotation order is roll, pitch, yaw in euler_to_quaternion method project_2d_quaternion = Quaternion.from_euler(Euler(pitch=np.pi / 2.0, yaw=np.pi / 2.0)) point_on_2d_plane = point_on_y_axis.rotate(project_2d_quaternion) # Align plane to origin at x, y = (0, 0) point_on_2d_plane = point_on_2d_plane + Vector3.from_list([plane_width / 2.0, plane_height / 2.0, 0.0]) # Re-scale x and y space between 0 and 1 return (point_on_2d_plane[0] / plane_width), (point_on_2d_plane[1] / plane_height) def lerp(a: float, b: float, t: float) -> float: """ Linear Interpolation Args: a (float): start value b (float): end value t (float): fraction Returns: float: interpolated value """ t = np.clip(t, 0.0, 1.0).item() return a + t * (b - a) def lerp_angle_rad(a: float, b: float, t: float) -> float: """ Angular Linear Interpolation in radian. Args: a (float): current angle value in radian b (float): target angle value in radian t (float): fraction Returns: float: interpolated angle value in radian """ t = np.clip(t, 0.0, 1.0).item() max_ang = 2.0 * math.pi diff = b - a da = np.clip(diff - diff // max_ang * max_ang, 0.0, max_ang) return lerp(a, a + ((da - max_ang) if da > math.pi else da), t) def cross(v1: Vector3, v2: Vector3) -> Vector3: """ Cross product of two vectors Args: v1 (Vector3): first vector v2 (Vector3): second vector Returns: Vector3: Cross product of two vectors """ return v1.cross(v2) def dot(v1: Union[Vector3, Quaternion], v2: Union[Vector3, Quaternion]) -> float: """ Dot product of two vectors or two quaternions Args: v1 (Union[Vector3, Quaternion]): first vector or quaternion v2 (Union[Vector3, Quaternion]): second vector or quaternion Returns: float: Dot product of two vectors or two quaternions """ return v1.dot(v2) def magnitude(item: Union[Vector3, Quaternion]) -> float: """ Returns the magnitude of given vector or quaternion. Args: item (Union[Vector3, Quaternion]): vector or quaternion to find the magnitude. Returns: float: the magnitude of given vector or quaternion. """ return math.sqrt(item.dot(item)) def sqr_magnitude(item: Union[Vector3, Quaternion]) -> float: """ Returns the squared magnitude of given vector or quaternion. Args: item (Union[Vector3, Quaternion]): vector or quaternion to find the squared magnitude. Returns: float: the squared magnitude of given vector or quaternion. """ return item.dot(item) def unit(item: Union[Vector3, Quaternion]) -> Union[Vector3, Quaternion]: """ Returns a unit vector or quaternion in the direction of v Args: item (Union[Vector3, Quaternion]): vector or quaternion to find the unit. Returns: Union[Vector3, Quaternion]: A unit vector or quaternion in the direction of item """ return item / magnitude(item) def distance(a: Union[Point, Vector3], b: Union[Point, Vector3]) -> float: """ Returns the distance between v1 and v2. - (a - b).magnitude Args: a (Vector3): vector a b (Vector3): vector b Returns: float: (a - b).manitude """ from deepsim.core.vector3 import Vector3 a = a if isinstance(a, Vector3) else a.to_vector() b = b if isinstance(b, Vector3) else b.to_vector() diff = a - b return diff.magnitude
32.813492
112
0.58943
e324012a32d7e4b62dde14d0c920e33fa27eb7d5
30,026
py
Python
airflow/providers/google/cloud/hooks/tasks.py
troywinter/airflow
ba66ba0d97941c55d9f00f66329a9d3c7ad673e7
[ "Apache-2.0" ]
1
2020-11-26T16:00:01.000Z
2020-11-26T16:00:01.000Z
airflow/providers/google/cloud/hooks/tasks.py
troywinter/airflow
ba66ba0d97941c55d9f00f66329a9d3c7ad673e7
[ "Apache-2.0" ]
9
2020-07-28T15:07:03.000Z
2022-03-29T22:27:52.000Z
airflow/providers/google/cloud/hooks/tasks.py
troywinter/airflow
ba66ba0d97941c55d9f00f66329a9d3c7ad673e7
[ "Apache-2.0" ]
1
2019-06-15T08:38:53.000Z
2019-06-15T08:38:53.000Z
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ This module contains a CloudTasksHook which allows you to connect to GCP Cloud Tasks service, performing actions to queues or tasks. """ from typing import Dict, List, Optional, Sequence, Tuple, Union from google.api_core.retry import Retry from google.cloud.tasks_v2 import CloudTasksClient, enums from google.cloud.tasks_v2.types import FieldMask, Queue, Task from airflow.exceptions import AirflowException from airflow.providers.google.common.hooks.base_google import GoogleBaseHook class CloudTasksHook(GoogleBaseHook): """ Hook for Google Cloud Tasks APIs. Cloud Tasks allows developers to manage the execution of background work in their applications. All the methods in the hook where project_id is used must be called with keyword arguments rather than positional. :param gcp_conn_id: The connection ID to use when fetching connection info. :type gcp_conn_id: str :param delegate_to: The account to impersonate using domain-wide delegation of authority, if any. For this to work, the service account making the request must have domain-wide delegation enabled. :type delegate_to: str :param impersonation_chain: Optional service account to impersonate using short-term credentials, or chained list of accounts required to get the access_token of the last account in the list, which will be impersonated in the request. If set as a string, the account must grant the originating account the Service Account Token Creator IAM role. If set as a sequence, the identities from the list must grant Service Account Token Creator IAM role to the directly preceding identity, with first account from the list granting this role to the originating account. :type impersonation_chain: Union[str, Sequence[str]] """ def __init__( self, gcp_conn_id: str = "google_cloud_default", delegate_to: Optional[str] = None, impersonation_chain: Optional[Union[str, Sequence[str]]] = None, ) -> None: super().__init__( gcp_conn_id=gcp_conn_id, delegate_to=delegate_to, impersonation_chain=impersonation_chain, ) self._client = None def get_conn(self): """ Provides a client for interacting with the Cloud Tasks API. :return: GCP Cloud Tasks API Client :rtype: google.cloud.tasks_v2.CloudTasksClient """ if not self._client: self._client = CloudTasksClient( credentials=self._get_credentials(), client_info=self.client_info ) return self._client @GoogleBaseHook.fallback_to_default_project_id def create_queue( self, location: str, task_queue: Union[Dict, Queue], project_id: str, queue_name: Optional[str] = None, retry: Optional[Retry] = None, timeout: Optional[float] = None, metadata: Optional[Sequence[Tuple[str, str]]] = None ) -> Queue: """ Creates a queue in Cloud Tasks. :param location: The location name in which the queue will be created. :type location: str :param task_queue: The task queue to create. Queue's name cannot be the same as an existing queue. If a dict is provided, it must be of the same form as the protobuf message Queue. :type task_queue: dict or google.cloud.tasks_v2.types.Queue :param project_id: (Optional) The ID of the GCP project that owns the Cloud Tasks. If set to None or missing, the default project_id from the GCP connection is used. :type project_id: str :param queue_name: (Optional) The queue's name. If provided, it will be used to construct the full queue path. :type queue_name: str :param retry: (Optional) A retry object used to retry requests. If None is specified, requests will not be retried. :type retry: google.api_core.retry.Retry :param timeout: (Optional) The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt. :type timeout: float :param metadata: (Optional) Additional metadata that is provided to the method. :type metadata: sequence[tuple[str, str]]] :rtype: google.cloud.tasks_v2.types.Queue """ client = self.get_conn() if queue_name: full_queue_name = CloudTasksClient.queue_path(project_id, location, queue_name) if isinstance(task_queue, Queue): task_queue.name = full_queue_name elif isinstance(task_queue, dict): task_queue['name'] = full_queue_name else: raise AirflowException('Unable to set queue_name.') full_location_path = CloudTasksClient.location_path(project_id, location) return client.create_queue( parent=full_location_path, queue=task_queue, retry=retry, timeout=timeout, metadata=metadata, ) @GoogleBaseHook.fallback_to_default_project_id def update_queue( self, task_queue: Queue, project_id: str, location: Optional[str] = None, queue_name: Optional[str] = None, update_mask: Optional[FieldMask] = None, retry: Optional[Retry] = None, timeout: Optional[float] = None, metadata: Optional[Sequence[Tuple[str, str]]] = None ) -> Queue: """ Updates a queue in Cloud Tasks. :param task_queue: The task queue to update. This method creates the queue if it does not exist and updates the queue if it does exist. The queue's name must be specified. :type task_queue: dict or google.cloud.tasks_v2.types.Queue :param project_id: (Optional) The ID of the GCP project that owns the Cloud Tasks. If set to None or missing, the default project_id from the GCP connection is used. :type project_id: str :param location: (Optional) The location name in which the queue will be updated. If provided, it will be used to construct the full queue path. :type location: str :param queue_name: (Optional) The queue's name. If provided, it will be used to construct the full queue path. :type queue_name: str :param update_mask: A mast used to specify which fields of the queue are being updated. If empty, then all fields will be updated. If a dict is provided, it must be of the same form as the protobuf message. :type update_mask: dict or google.cloud.tasks_v2.types.FieldMask :param retry: (Optional) A retry object used to retry requests. If None is specified, requests will not be retried. :type retry: google.api_core.retry.Retry :param timeout: (Optional) The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt. :type timeout: float :param metadata: (Optional) Additional metadata that is provided to the method. :type metadata: sequence[tuple[str, str]]] :rtype: google.cloud.tasks_v2.types.Queue """ client = self.get_conn() if queue_name and location: full_queue_name = CloudTasksClient.queue_path(project_id, location, queue_name) if isinstance(task_queue, Queue): task_queue.name = full_queue_name elif isinstance(task_queue, dict): task_queue['name'] = full_queue_name else: raise AirflowException('Unable to set queue_name.') return client.update_queue( queue=task_queue, update_mask=update_mask, retry=retry, timeout=timeout, metadata=metadata, ) @GoogleBaseHook.fallback_to_default_project_id def get_queue( self, location: str, queue_name: str, project_id: str, retry: Optional[Retry] = None, timeout: Optional[float] = None, metadata: Optional[Sequence[Tuple[str, str]]] = None ) -> Queue: """ Gets a queue from Cloud Tasks. :param location: The location name in which the queue was created. :type location: str :param queue_name: The queue's name. :type queue_name: str :param project_id: (Optional) The ID of the GCP project that owns the Cloud Tasks. If set to None or missing, the default project_id from the GCP connection is used. :type project_id: str :param retry: (Optional) A retry object used to retry requests. If None is specified, requests will not be retried. :type retry: google.api_core.retry.Retry :param timeout: (Optional) The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt. :type timeout: float :param metadata: (Optional) Additional metadata that is provided to the method. :type metadata: sequence[tuple[str, str]]] :rtype: google.cloud.tasks_v2.types.Queue """ client = self.get_conn() full_queue_name = CloudTasksClient.queue_path(project_id, location, queue_name) return client.get_queue( name=full_queue_name, retry=retry, timeout=timeout, metadata=metadata ) @GoogleBaseHook.fallback_to_default_project_id def list_queues( self, location: str, project_id: str, results_filter: Optional[str] = None, page_size: Optional[int] = None, retry: Optional[Retry] = None, timeout: Optional[float] = None, metadata: Optional[Sequence[Tuple[str, str]]] = None ) -> List[Queue]: """ Lists queues from Cloud Tasks. :param location: The location name in which the queues were created. :type location: str :param project_id: (Optional) The ID of the GCP project that owns the Cloud Tasks. If set to None or missing, the default project_id from the GCP connection is used. :type project_id: str :param results_filter: (Optional) Filter used to specify a subset of queues. :type results_filter: str :param page_size: (Optional) The maximum number of resources contained in the underlying API response. :type page_size: int :param retry: (Optional) A retry object used to retry requests. If None is specified, requests will not be retried. :type retry: google.api_core.retry.Retry :param timeout: (Optional) The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt. :type timeout: float :param metadata: (Optional) Additional metadata that is provided to the method. :type metadata: sequence[tuple[str, str]]] :rtype: list[google.cloud.tasks_v2.types.Queue] """ client = self.get_conn() full_location_path = CloudTasksClient.location_path(project_id, location) queues = client.list_queues( parent=full_location_path, filter_=results_filter, page_size=page_size, retry=retry, timeout=timeout, metadata=metadata, ) return list(queues) @GoogleBaseHook.fallback_to_default_project_id def delete_queue( self, location: str, queue_name: str, project_id: str, retry: Optional[Retry] = None, timeout: Optional[float] = None, metadata: Optional[Sequence[Tuple[str, str]]] = None ) -> None: """ Deletes a queue from Cloud Tasks, even if it has tasks in it. :param location: The location name in which the queue will be deleted. :type location: str :param queue_name: The queue's name. :type queue_name: str :param project_id: (Optional) The ID of the GCP project that owns the Cloud Tasks. If set to None or missing, the default project_id from the GCP connection is used. :type project_id: str :param retry: (Optional) A retry object used to retry requests. If None is specified, requests will not be retried. :type retry: google.api_core.retry.Retry :param timeout: (Optional) The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt. :type timeout: float :param metadata: (Optional) Additional metadata that is provided to the method. :type metadata: sequence[tuple[str, str]]] """ client = self.get_conn() full_queue_name = CloudTasksClient.queue_path(project_id, location, queue_name) client.delete_queue( name=full_queue_name, retry=retry, timeout=timeout, metadata=metadata ) @GoogleBaseHook.fallback_to_default_project_id def purge_queue( self, location: str, queue_name: str, project_id: str, retry: Optional[Retry] = None, timeout: Optional[float] = None, metadata: Optional[Sequence[Tuple[str, str]]] = None ) -> List[Queue]: """ Purges a queue by deleting all of its tasks from Cloud Tasks. :param location: The location name in which the queue will be purged. :type location: str :param queue_name: The queue's name. :type queue_name: str :param project_id: (Optional) The ID of the GCP project that owns the Cloud Tasks. If set to None or missing, the default project_id from the GCP connection is used. :type project_id: str :param retry: (Optional) A retry object used to retry requests. If None is specified, requests will not be retried. :type retry: google.api_core.retry.Retry :param timeout: (Optional) The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt. :type timeout: float :param metadata: (Optional) Additional metadata that is provided to the method. :type metadata: sequence[tuple[str, str]]] :rtype: list[google.cloud.tasks_v2.types.Queue] """ client = self.get_conn() full_queue_name = CloudTasksClient.queue_path(project_id, location, queue_name) return client.purge_queue( name=full_queue_name, retry=retry, timeout=timeout, metadata=metadata ) @GoogleBaseHook.fallback_to_default_project_id def pause_queue( self, location: str, queue_name: str, project_id: str, retry: Optional[Retry] = None, timeout: Optional[float] = None, metadata: Optional[Sequence[Tuple[str, str]]] = None ) -> List[Queue]: """ Pauses a queue in Cloud Tasks. :param location: The location name in which the queue will be paused. :type location: str :param queue_name: The queue's name. :type queue_name: str :param project_id: (Optional) The ID of the GCP project that owns the Cloud Tasks. If set to None or missing, the default project_id from the GCP connection is used. :type project_id: str :param retry: (Optional) A retry object used to retry requests. If None is specified, requests will not be retried. :type retry: google.api_core.retry.Retry :param timeout: (Optional) The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt. :type timeout: float :param metadata: (Optional) Additional metadata that is provided to the method. :type metadata: sequence[tuple[str, str]]] :rtype: list[google.cloud.tasks_v2.types.Queue] """ client = self.get_conn() full_queue_name = CloudTasksClient.queue_path(project_id, location, queue_name) return client.pause_queue( name=full_queue_name, retry=retry, timeout=timeout, metadata=metadata ) @GoogleBaseHook.fallback_to_default_project_id def resume_queue( self, location: str, queue_name: str, project_id: str, retry: Optional[Retry] = None, timeout: Optional[float] = None, metadata: Optional[Sequence[Tuple[str, str]]] = None ) -> List[Queue]: """ Resumes a queue in Cloud Tasks. :param location: The location name in which the queue will be resumed. :type location: str :param queue_name: The queue's name. :type queue_name: str :param project_id: (Optional) The ID of the GCP project that owns the Cloud Tasks. If set to None or missing, the default project_id from the GCP connection is used. :type project_id: str :param retry: (Optional) A retry object used to retry requests. If None is specified, requests will not be retried. :type retry: google.api_core.retry.Retry :param timeout: (Optional) The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt. :type timeout: float :param metadata: (Optional) Additional metadata that is provided to the method. :type metadata: sequence[tuple[str, str]]] :rtype: list[google.cloud.tasks_v2.types.Queue] """ client = self.get_conn() full_queue_name = CloudTasksClient.queue_path(project_id, location, queue_name) return client.resume_queue( name=full_queue_name, retry=retry, timeout=timeout, metadata=metadata ) @GoogleBaseHook.fallback_to_default_project_id def create_task( self, location: str, queue_name: str, task: Union[Dict, Task], project_id: str, task_name: Optional[str] = None, response_view: Optional[enums.Task.View] = None, retry: Optional[Retry] = None, timeout: Optional[float] = None, metadata: Optional[Sequence[Tuple[str, str]]] = None ) -> Task: """ Creates a task in Cloud Tasks. :param location: The location name in which the task will be created. :type location: str :param queue_name: The queue's name. :type queue_name: str :param task: The task to add. If a dict is provided, it must be of the same form as the protobuf message Task. :type task: dict or google.cloud.tasks_v2.types.Task :param project_id: (Optional) The ID of the GCP project that owns the Cloud Tasks. If set to None or missing, the default project_id from the GCP connection is used. :type project_id: str :param task_name: (Optional) The task's name. If provided, it will be used to construct the full task path. :type task_name: str :param response_view: (Optional) This field specifies which subset of the Task will be returned. :type response_view: google.cloud.tasks_v2.enums.Task.View :param retry: (Optional) A retry object used to retry requests. If None is specified, requests will not be retried. :type retry: google.api_core.retry.Retry :param timeout: (Optional) The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt. :type timeout: float :param metadata: (Optional) Additional metadata that is provided to the method. :type metadata: sequence[tuple[str, str]]] :rtype: google.cloud.tasks_v2.types.Task """ client = self.get_conn() if task_name: full_task_name = CloudTasksClient.task_path( project_id, location, queue_name, task_name ) if isinstance(task, Task): task.name = full_task_name elif isinstance(task, dict): task['name'] = full_task_name else: raise AirflowException('Unable to set task_name.') full_queue_name = CloudTasksClient.queue_path(project_id, location, queue_name) return client.create_task( parent=full_queue_name, task=task, response_view=response_view, retry=retry, timeout=timeout, metadata=metadata, ) @GoogleBaseHook.fallback_to_default_project_id def get_task( self, location: str, queue_name: str, task_name: str, project_id: str, response_view: Optional[enums.Task.View] = None, retry: Optional[Retry] = None, timeout: Optional[float] = None, metadata: Optional[Sequence[Tuple[str, str]]] = None ) -> Task: """ Gets a task from Cloud Tasks. :param location: The location name in which the task was created. :type location: str :param queue_name: The queue's name. :type queue_name: str :param task_name: The task's name. :type task_name: str :param project_id: (Optional) The ID of the GCP project that owns the Cloud Tasks. If set to None or missing, the default project_id from the GCP connection is used. :type project_id: str :param response_view: (Optional) This field specifies which subset of the Task will be returned. :type response_view: google.cloud.tasks_v2.enums.Task.View :param retry: (Optional) A retry object used to retry requests. If None is specified, requests will not be retried. :type retry: google.api_core.retry.Retry :param timeout: (Optional) The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt. :type timeout: float :param metadata: (Optional) Additional metadata that is provided to the method. :type metadata: sequence[tuple[str, str]]] :rtype: google.cloud.tasks_v2.types.Task """ client = self.get_conn() full_task_name = CloudTasksClient.task_path(project_id, location, queue_name, task_name) return client.get_task( name=full_task_name, response_view=response_view, retry=retry, timeout=timeout, metadata=metadata, ) @GoogleBaseHook.fallback_to_default_project_id def list_tasks( self, location: str, queue_name: str, project_id: str, response_view: Optional[enums.Task.View] = None, page_size: Optional[int] = None, retry: Optional[Retry] = None, timeout: Optional[float] = None, metadata: Optional[Sequence[Tuple[str, str]]] = None ) -> List[Task]: """ Lists the tasks in Cloud Tasks. :param location: The location name in which the tasks were created. :type location: str :param queue_name: The queue's name. :type queue_name: str :param project_id: (Optional) The ID of the GCP project that owns the Cloud Tasks. If set to None or missing, the default project_id from the GCP connection is used. :type project_id: str :param response_view: (Optional) This field specifies which subset of the Task will be returned. :type response_view: google.cloud.tasks_v2.enums.Task.View :param page_size: (Optional) The maximum number of resources contained in the underlying API response. :type page_size: int :param retry: (Optional) A retry object used to retry requests. If None is specified, requests will not be retried. :type retry: google.api_core.retry.Retry :param timeout: (Optional) The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt. :type timeout: float :param metadata: (Optional) Additional metadata that is provided to the method. :type metadata: sequence[tuple[str, str]]] :rtype: list[google.cloud.tasks_v2.types.Task] """ client = self.get_conn() full_queue_name = CloudTasksClient.queue_path(project_id, location, queue_name) tasks = client.list_tasks( parent=full_queue_name, response_view=response_view, page_size=page_size, retry=retry, timeout=timeout, metadata=metadata, ) return list(tasks) @GoogleBaseHook.fallback_to_default_project_id def delete_task( self, location: str, queue_name: str, task_name: str, project_id: str, retry: Optional[Retry] = None, timeout: Optional[float] = None, metadata: Optional[Sequence[Tuple[str, str]]] = None ) -> None: """ Deletes a task from Cloud Tasks. :param location: The location name in which the task will be deleted. :type location: str :param queue_name: The queue's name. :type queue_name: str :param task_name: The task's name. :type task_name: str :param project_id: (Optional) The ID of the GCP project that owns the Cloud Tasks. If set to None or missing, the default project_id from the GCP connection is used. :type project_id: str :param retry: (Optional) A retry object used to retry requests. If None is specified, requests will not be retried. :type retry: google.api_core.retry.Retry :param timeout: (Optional) The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt. :type timeout: float :param metadata: (Optional) Additional metadata that is provided to the method. :type metadata: sequence[tuple[str, str]]] """ client = self.get_conn() full_task_name = CloudTasksClient.task_path(project_id, location, queue_name, task_name) client.delete_task( name=full_task_name, retry=retry, timeout=timeout, metadata=metadata ) @GoogleBaseHook.fallback_to_default_project_id def run_task( self, location: str, queue_name: str, task_name: str, project_id: str, response_view: Optional[enums.Task.View] = None, retry: Optional[Retry] = None, timeout: Optional[float] = None, metadata: Optional[Sequence[Tuple[str, str]]] = None ) -> Task: """ Forces to run a task in Cloud Tasks. :param location: The location name in which the task was created. :type location: str :param queue_name: The queue's name. :type queue_name: str :param task_name: The task's name. :type task_name: str :param project_id: (Optional) The ID of the GCP project that owns the Cloud Tasks. If set to None or missing, the default project_id from the GCP connection is used. :type project_id: str :param response_view: (Optional) This field specifies which subset of the Task will be returned. :type response_view: google.cloud.tasks_v2.enums.Task.View :param retry: (Optional) A retry object used to retry requests. If None is specified, requests will not be retried. :type retry: google.api_core.retry.Retry :param timeout: (Optional) The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt. :type timeout: float :param metadata: (Optional) Additional metadata that is provided to the method. :type metadata: sequence[tuple[str, str]]] :rtype: google.cloud.tasks_v2.types.Task """ client = self.get_conn() full_task_name = CloudTasksClient.task_path(project_id, location, queue_name, task_name) return client.run_task( name=full_task_name, response_view=response_view, retry=retry, timeout=timeout, metadata=metadata, )
42.529745
96
0.643009
d250dc6cde24da9826634f0d45793bab58267b81
1,405
py
Python
test/test_node_partitions_node_partition_statfs.py
Atomicology/isilon_sdk_python
91039da803ae37ed4abf8d2a3f59c333f3ef1866
[ "MIT" ]
null
null
null
test/test_node_partitions_node_partition_statfs.py
Atomicology/isilon_sdk_python
91039da803ae37ed4abf8d2a3f59c333f3ef1866
[ "MIT" ]
null
null
null
test/test_node_partitions_node_partition_statfs.py
Atomicology/isilon_sdk_python
91039da803ae37ed4abf8d2a3f59c333f3ef1866
[ "MIT" ]
null
null
null
# coding: utf-8 """ Copyright 2016 SmartBear Software Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ref: https://github.com/swagger-api/swagger-codegen """ from __future__ import absolute_import import os import sys import unittest import swagger_client from swagger_client.rest import ApiException from swagger_client.models.node_partitions_node_partition_statfs import NodePartitionsNodePartitionStatfs class TestNodePartitionsNodePartitionStatfs(unittest.TestCase): """ NodePartitionsNodePartitionStatfs unit test stubs """ def setUp(self): pass def tearDown(self): pass def testNodePartitionsNodePartitionStatfs(self): """ Test NodePartitionsNodePartitionStatfs """ model = swagger_client.models.node_partitions_node_partition_statfs.NodePartitionsNodePartitionStatfs() if __name__ == '__main__': unittest.main()
28.673469
111
0.760142
dd2cd4738c86a30adb627297acaa3db38fccf148
153
py
Python
F_django/Scripts/django-admin.py
lincoco/learning_log
980c4ae41cd4e34d3208057a77e7d232c389dec3
[ "MIT" ]
1
2019-06-03T03:41:26.000Z
2019-06-03T03:41:26.000Z
F_django/Scripts/django-admin.py
lincoco/learning_log
980c4ae41cd4e34d3208057a77e7d232c389dec3
[ "MIT" ]
null
null
null
F_django/Scripts/django-admin.py
lincoco/learning_log
980c4ae41cd4e34d3208057a77e7d232c389dec3
[ "MIT" ]
null
null
null
#!c:\py_\f_django\f_django\scripts\python.exe from django.core import management if __name__ == "__main__": management.execute_from_command_line()
25.5
46
0.777778
e4a30816c6b68cb8e83ec352c7a27365d18f31e2
5,094
py
Python
src/gamesbyexample/bouncingdvd.py
spp2/PythonStdioGames
7edc6a07ef816a44579800e773f30217541971fa
[ "MIT" ]
null
null
null
src/gamesbyexample/bouncingdvd.py
spp2/PythonStdioGames
7edc6a07ef816a44579800e773f30217541971fa
[ "MIT" ]
null
null
null
src/gamesbyexample/bouncingdvd.py
spp2/PythonStdioGames
7edc6a07ef816a44579800e773f30217541971fa
[ "MIT" ]
1
2020-10-12T06:43:06.000Z
2020-10-12T06:43:06.000Z
"""Bouncing DVD Logo, by Al Sweigart al@inventwithpython.com A bouncing DVD logo animation. You have to be "of a certain age" to appreciate this. Press Ctrl-C to stop. NOTE: Do not resize the terminal window while this program is running. This and other games are available at https://nostarch.com/XX Tags: short, artistic, bext, terminal""" __version__ = 0 import sys, random, time try: import bext except ImportError: print('This program requires the bext module, which you') print('can install by following the instructions at') print('https://pypi.org/project/Bext/') sys.exit() # Set up the constants: WIDTH, HEIGHT = bext.size() # We can't print to the last column on Windows without it adding a # newline automatically, so reduce the width by one: WIDTH -= 1 NUMBER_OF_LOGOS = 5 # (!) Try changing this to 1 or 100. PAUSE_AMOUNT = 0.2 # (!) Try changing this to 1.0 or 0.0. # (!) Try changing this list to fewer colors: COLORS = ['red', 'green', 'yellow', 'blue', 'magenta', 'cyan', 'white'] UP_RIGHT = 'ur' UP_LEFT = 'ul' DOWN_RIGHT = 'dr' DOWN_LEFT = 'dl' DIRECTIONS = (UP_RIGHT, UP_LEFT, DOWN_RIGHT, DOWN_LEFT) # Key names for logo dictionaries: COLOR = 'color' X = 'x' Y = 'y' DIR = 'direction' def main(): bext.clear() # Generate some logos. logos = [] for i in range(NUMBER_OF_LOGOS): logos.append({COLOR: random.choice(COLORS), X: random.randint(1, WIDTH - 4), Y: random.randint(1, HEIGHT - 4), DIR: random.choice(DIRECTIONS)}) if logos[-1][X] % 2 == 1: # Make sure X is even so it can hit the corner. logos[-1][X] -= 1 cornerBounces = 0 # Count how many times a logo hits a corner. while True: # Main program loop. for logo in logos: # Handle each logo in the logos list. # Erase the logo's current location: bext.goto(logo[X], logo[Y]) print(' ', end='') originalDirection = logo[DIR] # See if the logo bounces off the corners: if logo[X] == 0 and logo[Y] == 0: logo[DIR] = DOWN_RIGHT cornerBounces += 1 elif logo[X] == 0 and logo[Y] == HEIGHT - 1: logo[DIR] = UP_RIGHT cornerBounces += 1 elif logo[X] == WIDTH - 3 and logo[Y] == 0: logo[DIR] = DOWN_LEFT cornerBounces += 1 elif logo[X] == WIDTH - 3 and logo[Y] == HEIGHT - 1: logo[DIR] = UP_LEFT cornerBounces += 1 # See if the logo bounces off the left edge: elif logo[X] == 0 and logo[DIR] == UP_LEFT: logo[DIR] = UP_RIGHT elif logo[X] == 0 and logo[DIR] == DOWN_LEFT: logo[DIR] = DOWN_RIGHT # See if the logo bounces off the right edge: # (WIDTH - 3 because 'DVD' has 3 letters.) elif logo[X] == WIDTH - 3 and logo[DIR] == UP_RIGHT: logo[DIR] = UP_LEFT elif logo[X] == WIDTH - 3 and logo[DIR] == DOWN_RIGHT: logo[DIR] = DOWN_LEFT # See if the logo bounces off the top edge: elif logo[Y] == 0 and logo[DIR] == UP_LEFT: logo[DIR] = DOWN_LEFT elif logo[Y] == 0 and logo[DIR] == UP_RIGHT: logo[DIR] = DOWN_RIGHT # See if the logo bounces off the bottom edge: elif logo[Y] == HEIGHT - 1 and logo[DIR] == DOWN_LEFT: logo[DIR] = UP_LEFT elif logo[Y] == HEIGHT - 1 and logo[DIR] == DOWN_RIGHT: logo[DIR] = UP_RIGHT if logo[DIR] != originalDirection: # Change color when the logo bounces: logo[COLOR] = random.choice(COLORS) # Move the logo. (X moves by 2 because the terminal # characters are twice as tall as they are wide.) if logo[DIR] == UP_RIGHT: logo[X] += 2 logo[Y] -= 1 elif logo[DIR] == UP_LEFT: logo[X] -= 2 logo[Y] -= 1 elif logo[DIR] == DOWN_RIGHT: logo[X] += 2 logo[Y] += 1 elif logo[DIR] == DOWN_LEFT: logo[X] -= 2 logo[Y] += 1 # Display number of corner bounces: bext.goto(5, 0) bext.fg('white') print('Corner bounces:', cornerBounces, end='') for logo in logos: # Draw the logos at their new location: bext.goto(logo[X], logo[Y]) bext.fg(logo[COLOR]) print('DVD', end='') bext.goto(0, 0) sys.stdout.flush() # (Required for bext-using programs.) time.sleep(PAUSE_AMOUNT) # If this program was run (instead of imported), run the game: if __name__ == '__main__': try: main() except KeyboardInterrupt: print() print('Bouncing DVD Logo, by Al Sweigart') sys.exit() # When Ctrl-C is pressed, end the program.
34.187919
71
0.540636
f56291a9ec5414b75b831e6f75a491faa1950a91
3,357
py
Python
apps/connections/statistics.py
Houston-ARTCC/zhu-core
99a2f95fa7c61e27560557b3a8aee41cc995d101
[ "MIT" ]
1
2020-12-25T04:21:07.000Z
2020-12-25T04:21:07.000Z
apps/connections/statistics.py
Houston-ARTCC/zhu-core
99a2f95fa7c61e27560557b3a8aee41cc995d101
[ "MIT" ]
3
2021-09-21T18:22:51.000Z
2021-12-10T20:31:19.000Z
apps/connections/statistics.py
Houston-ARTCC/zhu-core
99a2f95fa7c61e27560557b3a8aee41cc995d101
[ "MIT" ]
1
2021-04-13T23:33:39.000Z
2021-04-13T23:33:39.000Z
from datetime import timedelta from django.db.models import Sum, Q, DurationField from django.db.models.functions import Coalesce, Cast from django.utils import timezone from .models import ControllerSession from ..users.models import User, Status def annotate_hours(query): """ Annotates given QuerySet with controlling hours for the current (curr_hours), previous (prev_hours), and penultimate (prev_prev_hours) months. """ MONTH_NOW = timezone.now().month YEAR_NOW = timezone.now().year CURR_MONTH = (Q(sessions__start__month=MONTH_NOW) & Q(sessions__start__year=YEAR_NOW)) PREV_MONTH = (Q(sessions__start__month=MONTH_NOW - 1 if MONTH_NOW > 1 else 12) & Q(sessions__start__year=YEAR_NOW if MONTH_NOW > 1 else YEAR_NOW - 1)) PREV_PREV_MONTH = (Q(sessions__start__month=MONTH_NOW - 2 if MONTH_NOW > 2 else 12 if MONTH_NOW > 1 else 11) & Q(sessions__start__year=YEAR_NOW if MONTH_NOW > 2 else YEAR_NOW - 1)) return query.annotate( curr_hours=Coalesce(Sum('sessions__duration', filter=CURR_MONTH), Cast(timedelta(), DurationField())), prev_hours=Coalesce(Sum('sessions__duration', filter=PREV_MONTH), Cast(timedelta(), DurationField())), prev_prev_hours=Coalesce(Sum('sessions__duration', filter=PREV_PREV_MONTH), Cast(timedelta(), DurationField())), ) def get_user_hours(): """ Returns query set of active users annotated with controlling hours for the current (curr_hours), previous (prev_hours), and penultimate (prev_prev_hours) months. """ return annotate_hours(User.objects.exclude(status=Status.NON_MEMBER)) def get_top_controllers(): """ Returns query set of active users annotated with controlling hour sums for the current month (hours) sorted by most controlling hours (controllers with no hours are not included). """ SAME_MONTH = Q(sessions__start__month=timezone.now().month) SAME_YEAR = Q(sessions__start__year=timezone.now().year) users = User.objects.exclude(status=Status.NON_MEMBER) users = users.annotate(hours=Sum('sessions__duration', filter=SAME_MONTH & SAME_YEAR)) return users.exclude(hours__isnull=True).order_by('-hours') def get_top_positions(): SAME_MONTH = Q(start__month=timezone.now().month) SAME_YEAR = Q(start__year=timezone.now().year) sessions = ControllerSession.objects.filter(SAME_MONTH & SAME_YEAR) position_durations = {} for session in sessions: position = session.facility + '_' + session.level if position in position_durations: position_durations[position] += session.duration else: position_durations[position] = session.duration sorted_positions = sorted(position_durations, key=position_durations.get, reverse=True) return [{'position': position, 'hours': position_durations[position]} for position in sorted_positions] def get_daily_statistics(year, user=None): """ Returns a query dictionary of every day of the given year annotated with the controlling hours for that day. """ sessions = ControllerSession.objects.filter(start__year=year) if user: sessions = sessions.filter(user=user) return sessions.extra({'day': 'date(start)'}).values('day').annotate(value=Sum('duration'))
39.964286
120
0.716413
ad5d530c875330f18c850d869e31e10471526da8
3,063
py
Python
speech.py
derHeinz/speech_recognition
fe715980826ebdcfff8c416efdf1957a13098c8e
[ "Apache-2.0" ]
null
null
null
speech.py
derHeinz/speech_recognition
fe715980826ebdcfff8c416efdf1957a13098c8e
[ "Apache-2.0" ]
null
null
null
speech.py
derHeinz/speech_recognition
fe715980826ebdcfff8c416efdf1957a13098c8e
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python3 # -*- coding: utf-8 -*- from speech_recognition import Microphone, RequestError, UnknownValueError import json import os import sys import logging from porcupinerecognizer import CallbackCapablePorcupineRecognizer from tonegenerator_multithreading import ToneGeneratorThread import postopenhab from healthcheck import HealthCheck logger = logging.getLogger(__file__) def setup_logging(): logging.basicConfig( stream=sys.stdout, level=logging.DEBUG, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' ) logger.info("logger configured") def read_config_file(filename): logger.info("reading file {}".format(filename)) relative_path = os.path.join(os.path.dirname(__file__), filename) data = None with open(relative_path) as data_file: return json.load(data_file) if __name__ == '__main__': # logging setup_logging() # read configs config = read_config_file('config.json') voice_itemname = config['voice_itemname'] openhab_baseurl = config['openhab_baseurl'] hotword = config['hotword'] # monitoring-health endpoint h = HealthCheck(config['health-port']) h.start() # Initialize the recognizer a = ToneGeneratorThread() r = CallbackCapablePorcupineRecognizer(lambda: a.ready(), lambda: a.confirm()) while(True): # Exception handling to handle # exceptions at the runtime try: # use the microphone as source for input. with Microphone(chunk_size=512, sample_rate=16000) as src: # use same chunk size than porcupine.frame_length # wait for a second to let the recognizer # adjust the energy threshold based on # the surrounding noise level r.adjust_for_ambient_noise(src, duration=0.2) #listens for the user's input logger.info("listening for hotword...") audio_part = r.listen_hotword(src, phrase_time_limit=20, keywords=[hotword]) logger.info("...returning from listen_hotword") # Using ggogle to recognize audio text = r.recognize_google(audio_part, language="de-DE") # remove the keyword if (text is not None): text = text.replace(hotword, '') text = text.replace(hotword.title(), '') text = text.replace(hotword.lower(), '') text = text.replace(hotword.upper(), '') text = text.strip() logger.info("Did you say '{}'".format(text)) postopenhab.post_value_to_openhab(voice_itemname, text, openhab_baseurl) except RequestError as e: logger.error("Could not request results; {0}".format(e)) except UnknownValueError: logger.error("unknown error occured")
35.206897
120
0.603983
0cd926f0660759b0d22e439c89144dc8cc27ba65
1,128
py
Python
eth2/beacon/types/proposal_signed_data.py
kushagrasharma/trinity
0dd33ee304630b93192861626ac5e9eca6fc4d92
[ "MIT" ]
null
null
null
eth2/beacon/types/proposal_signed_data.py
kushagrasharma/trinity
0dd33ee304630b93192861626ac5e9eca6fc4d92
[ "MIT" ]
null
null
null
eth2/beacon/types/proposal_signed_data.py
kushagrasharma/trinity
0dd33ee304630b93192861626ac5e9eca6fc4d92
[ "MIT" ]
null
null
null
from eth_typing import ( Hash32, ) import rlp from eth2.beacon._utils.hash import hash_eth2 from eth2.beacon.sedes import ( uint64, hash32, ) from eth2.beacon.typing import ( SlotNumber, ShardNumber, ) class ProposalSignedData(rlp.Serializable): """ Note: using RLP until we have standardized serialization format. """ fields = [ # Slot number ('slot', uint64), # Shard number (or `2**64 - 1` for beacon chain) ('shard', uint64), # block root ('block_root', hash32), ] def __init__(self, slot: SlotNumber, shard: ShardNumber, block_root: Hash32) -> None: super().__init__( slot, shard, block_root, ) _hash = None @property def hash(self) -> Hash32: if self._hash is None: self._hash = hash_eth2(rlp.encode(self)) return self._hash @property def root(self) -> Hash32: # Alias of `hash`. # Using flat hash, might change to SSZ tree hash. return self.hash
20.888889
68
0.553191
51d6977ca2cea8afc292595613721344730eb8d2
1,914
py
Python
Mdd-master/willusetfidf.py
ayushsahu1999/startupGuidance
f6ca8c2c81cdd1f135aedd780b18771bd2681acd
[ "MIT" ]
null
null
null
Mdd-master/willusetfidf.py
ayushsahu1999/startupGuidance
f6ca8c2c81cdd1f135aedd780b18771bd2681acd
[ "MIT" ]
null
null
null
Mdd-master/willusetfidf.py
ayushsahu1999/startupGuidance
f6ca8c2c81cdd1f135aedd780b18771bd2681acd
[ "MIT" ]
2
2019-10-13T16:14:36.000Z
2020-10-10T08:36:40.000Z
# -*- coding: utf-8 -*- """ Created on Wed Apr 17 22:13:41 2019 @author: Dell """ # Making the Uniqueness Function of MDD Model # Let's get started BITCH! # Importing the Libraries def Uniqueness(): import numpy as np import pandas as pd import math # Importing the dataset dataset = pd.read_csv('startup_funding_1.csv') # Cleaning the texts and tf import re import nltk # nltk.download('stopwords') from nltk.corpus import stopwords corpus = [] ct = 0 oc = [] for i in range(0, 347): review = re.sub('[^a-zA-Z]', ' ', dataset['SubVertical'][i]) review = review.lower() review = review.split() corpus.append(review) # counting numbers d = 0 ct = [0]*len(review) for word in review: ct[d] = ct[d] + review.count(word) d = d + 1 oc.append(ct) for i in range(len(oc)): for j in range(len(oc[i])): oc[i][j] = oc[i][j]/(len(oc[i])) # Getting the Idf Value i = 0 j = 0 k = 0 l = 0 money = 0 idf1 = [] no = 0 for i in range(0, 347): idf = [0] * len(corpus[i]) for j in range(0, len(corpus[i])): no = 0 for k in range(0, 347): money = 0 for l in range(0, len(corpus[k])): if (corpus[i][j] == corpus[k][l]): money = money + 1 if (money > 0): no = no + 1 idf[j] = no idf1.append(idf) i = 0 j = 0 for i in range(0, 347): for j in range(0, len(corpus[i])): idf1[i][j] = math.log((347/idf1[i][j])) # Making the TFIDF Model i = 0 j = 0 for i in range(0, 347): for j in range(0, len(oc[i])): idf1[i][j] = oc[i][j] * idf1[i][j] return (idf1)
22
68
0.471264
a06fb51a97ccf6c6e5d1bf55e453bba47b6aa4db
12,509
py
Python
tests/test_keep_largest_connected_componentd.py
function2-llx/MONAI
4cddaa830b61b88ec78e089bb5f21e05bb1a78f4
[ "Apache-2.0" ]
1
2022-03-16T01:18:43.000Z
2022-03-16T01:18:43.000Z
tests/test_keep_largest_connected_componentd.py
function2-llx/MONAI
4cddaa830b61b88ec78e089bb5f21e05bb1a78f4
[ "Apache-2.0" ]
null
null
null
tests/test_keep_largest_connected_componentd.py
function2-llx/MONAI
4cddaa830b61b88ec78e089bb5f21e05bb1a78f4
[ "Apache-2.0" ]
null
null
null
# Copyright (c) MONAI Consortium # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from parameterized import parameterized from monai.transforms import KeepLargestConnectedComponentd from tests.utils import TEST_NDARRAYS, assert_allclose grid_1 = [[[0, 0, 1, 0, 0], [0, 2, 1, 1, 1], [1, 2, 1, 0, 0], [1, 2, 0, 1, 0], [2, 2, 0, 0, 2]]] grid_2 = [[[0, 0, 0, 0, 1], [0, 0, 1, 1, 1], [1, 0, 1, 1, 2], [1, 0, 1, 2, 2], [0, 0, 0, 0, 1]]] grid_3 = [ [ [1.0, 1.0, 0.0, 1.0, 1.0], [1.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 1.0, 1.0], [0.0, 0.0, 1.0, 0.0, 1.0], [0.0, 0.0, 1.0, 1.0, 0.0], ], [ [0.0, 0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 1.0, 1.0], [1.0, 0.0, 1.0, 0.0, 0.0], [1.0, 0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0], ], [ [0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0], [1.0, 1.0, 0.0, 0.0, 1.0], ], ] grid_4 = [ [ [1.0, 1.0, 1.0, 1.0, 0.0], [1.0, 1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0], [1.0, 1.0, 1.0, 1.0, 0.0], ], [ [0.0, 0.0, 0.0, 0.0, 1.0], [0.0, 0.0, 1.0, 1.0, 1.0], [1.0, 0.0, 1.0, 1.0, 0.0], [1.0, 0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0], ], [ [0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0], [0.0, 0.0, 0.0, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0, 0.0], ], ] grid_5 = [[[0, 0, 1, 0, 0], [0, 1, 1, 1, 1], [1, 1, 1, 0, 0], [1, 1, 0, 1, 0], [1, 1, 0, 0, 1]]] VALID_CASES = [] for p in TEST_NDARRAYS: VALID_CASES.append( [ "value_1", {"keys": ["img"], "independent": False, "applied_labels": 1, "is_onehot": False}, {"img": p(grid_1)}, torch.tensor([[[0, 0, 1, 0, 0], [0, 2, 1, 1, 1], [0, 2, 1, 0, 0], [0, 2, 0, 1, 0], [2, 2, 0, 0, 2]]]), ] ) VALID_CASES.append( [ "value_2", {"keys": ["img"], "independent": False, "applied_labels": [2], "is_onehot": False}, {"img": p(grid_1)}, torch.tensor([[[0, 0, 1, 0, 0], [0, 2, 1, 1, 1], [1, 2, 1, 0, 0], [1, 2, 0, 1, 0], [2, 2, 0, 0, 0]]]), ] ) VALID_CASES.append( [ "independent_value_1_2", {"keys": ["img"], "independent": True, "applied_labels": [1, 2], "is_onehot": False}, {"img": p(grid_1)}, torch.tensor([[[0, 0, 1, 0, 0], [0, 2, 1, 1, 1], [0, 2, 1, 0, 0], [0, 2, 0, 1, 0], [2, 2, 0, 0, 0]]]), ] ) VALID_CASES.append( [ "dependent_value_1_2", {"keys": ["img"], "independent": False, "applied_labels": [1, 2], "is_onehot": False}, {"img": p(grid_1)}, torch.tensor([[[0, 0, 1, 0, 0], [0, 2, 1, 1, 1], [1, 2, 1, 0, 0], [1, 2, 0, 1, 0], [2, 2, 0, 0, 2]]]), ] ) VALID_CASES.append( [ "value_1", {"keys": ["img"], "independent": True, "applied_labels": [1], "is_onehot": False}, {"img": p(grid_2)}, torch.tensor([[[0, 0, 0, 0, 1], [0, 0, 1, 1, 1], [0, 0, 1, 1, 2], [0, 0, 1, 2, 2], [0, 0, 0, 0, 0]]]), ] ) VALID_CASES.append( [ "independent_value_1_2", {"keys": ["img"], "independent": True, "applied_labels": [1, 2], "is_onehot": False}, {"img": p(grid_2)}, torch.tensor([[[0, 0, 0, 0, 1], [0, 0, 1, 1, 1], [0, 0, 1, 1, 2], [0, 0, 1, 2, 2], [0, 0, 0, 0, 0]]]), ] ) VALID_CASES.append( [ "dependent_value_1_2", {"keys": ["img"], "independent": False, "applied_labels": [1, 2], "is_onehot": False}, {"img": p(grid_2)}, torch.tensor([[[0, 0, 0, 0, 1], [0, 0, 1, 1, 1], [0, 0, 1, 1, 2], [0, 0, 1, 2, 2], [0, 0, 0, 0, 1]]]), ] ) VALID_CASES.append( [ "value_1_connect_1", {"keys": ["img"], "independent": False, "applied_labels": [1], "connectivity": 1, "is_onehot": False}, {"img": p(grid_1)}, torch.tensor([[[0, 0, 1, 0, 0], [0, 2, 1, 1, 1], [0, 2, 1, 0, 0], [0, 2, 0, 0, 0], [2, 2, 0, 0, 2]]]), ] ) VALID_CASES.append( [ "independent_value_1_2_connect_1", {"keys": ["img"], "independent": True, "applied_labels": [1, 2], "connectivity": 1, "is_onehot": False}, {"img": p(grid_1)}, torch.tensor([[[0, 0, 1, 0, 0], [0, 2, 1, 1, 1], [0, 2, 1, 0, 0], [0, 2, 0, 0, 0], [2, 2, 0, 0, 0]]]), ] ) VALID_CASES.append( [ "onehot_none_dependent_value_1_2_connect_1", {"keys": ["img"], "independent": False, "applied_labels": [1, 2], "connectivity": 1}, {"img": p(grid_1)}, torch.tensor([[[0, 0, 1, 0, 0], [0, 2, 1, 1, 1], [1, 2, 1, 0, 0], [1, 2, 0, 0, 0], [2, 2, 0, 0, 0]]]), ] ) VALID_CASES.append( [ "onehot_independent_batch_2_apply_label_1_connect_1", {"keys": ["img"], "independent": True, "applied_labels": [1], "connectivity": 1, "is_onehot": True}, {"img": p(grid_3)}, torch.tensor( [ [ [1.0, 1.0, 0.0, 1.0, 1.0], [1.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 1.0, 1.0], [0.0, 0.0, 1.0, 0.0, 1.0], [0.0, 0.0, 1.0, 1.0, 0.0], ], [ [0.0, 0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 1.0, 1.0], [0.0, 0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0], ], [ [0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0], [1.0, 1.0, 0.0, 0.0, 1.0], ], ] ), ] ) VALID_CASES.append( [ "onehot_independent_batch_2_apply_label_1_connect_2", {"keys": ["img"], "independent": True, "applied_labels": [1], "connectivity": 2, "is_onehot": True}, {"img": p(grid_3)}, torch.tensor( [ [ [1.0, 1.0, 0.0, 1.0, 1.0], [1.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 1.0, 1.0], [0.0, 0.0, 1.0, 0.0, 1.0], [0.0, 0.0, 1.0, 1.0, 0.0], ], [ [0.0, 0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 1.0, 1.0], [0.0, 0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0], ], [ [0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0], [1.0, 1.0, 0.0, 0.0, 1.0], ], ] ), ] ) VALID_CASES.append( [ "onehot_independent_batch_2_apply_label_1_2_connect_2", {"keys": ["img"], "independent": True, "applied_labels": [1, 2], "connectivity": 2, "is_onehot": True}, {"img": p(grid_3)}, torch.tensor( [ [ [1.0, 1.0, 0.0, 1.0, 1.0], [1.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 1.0, 1.0], [0.0, 0.0, 1.0, 0.0, 1.0], [0.0, 0.0, 1.0, 1.0, 0.0], ], [ [0.0, 0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 1.0, 1.0], [0.0, 0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0], ], [ [0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0], [1.0, 1.0, 0.0, 0.0, 0.0], ], ] ), ] ) VALID_CASES.append( [ "onehot_dependent_batch_2_apply_label_1_2_connect_2", {"keys": ["img"], "independent": False, "applied_labels": [1, 2], "connectivity": 2, "is_onehot": True}, {"img": p(grid_4)}, torch.tensor( [ [ [1.0, 1.0, 1.0, 1.0, 0.0], [1.0, 1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0], [1.0, 1.0, 1.0, 1.0, 0.0], ], [ [0.0, 0.0, 0.0, 0.0, 1.0], [0.0, 0.0, 1.0, 1.0, 1.0], [0.0, 0.0, 1.0, 1.0, 0.0], [0.0, 0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0], ], [ [0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0], [0.0, 0.0, 0.0, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0, 0.0], ], ] ), ] ) VALID_CASES.append( [ "onehot_none_dependent_batch_2_apply_label_1_2_connect_1", {"keys": ["img"], "independent": False, "applied_labels": [1, 2], "connectivity": 1}, {"img": p(grid_4)}, torch.tensor( [ [ [1.0, 1.0, 1.0, 1.0, 0.0], [1.0, 1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0], [1.0, 1.0, 1.0, 1.0, 0.0], ], [ [0.0, 0.0, 0.0, 0.0, 1.0], [0.0, 0.0, 1.0, 1.0, 1.0], [0.0, 0.0, 1.0, 1.0, 0.0], [0.0, 0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0], ], [ [0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0], [0.0, 0.0, 0.0, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0, 0.0], ], ] ), ] ) VALID_CASES.append( [ "single_channel_onehot", {"keys": ["img"], "independent": False, "applied_labels": 0, "connectivity": 1, "is_onehot": True}, {"img": p(grid_5)}, torch.tensor([[[0, 0, 1, 0, 0], [0, 1, 1, 1, 1], [1, 1, 1, 0, 0], [1, 1, 0, 0, 0], [1, 1, 0, 0, 0]]]), ] ) class TestKeepLargestConnectedComponentd(unittest.TestCase): @parameterized.expand(VALID_CASES) def test_correct_results(self, _, args, input_dict, expected): converter = KeepLargestConnectedComponentd(**args) result = converter(input_dict) assert_allclose(result["img"], expected, type_test=False) if __name__ == "__main__": unittest.main()
36.048991
116
0.34679
09e6bb214cc83de36d8633ec0b2628a12398198d
2,029
py
Python
setup.py
ScriptBox99/deepmind-sonnet
5cbfdc356962d9b6198d5b63f0826a80acfdf35b
[ "Apache-2.0" ]
10,287
2017-04-07T12:33:37.000Z
2022-03-30T03:32:16.000Z
setup.py
ScriptBox99/deepmind-sonnet
5cbfdc356962d9b6198d5b63f0826a80acfdf35b
[ "Apache-2.0" ]
209
2017-04-07T15:57:11.000Z
2022-03-27T10:43:03.000Z
setup.py
ScriptBox99/deepmind-sonnet
5cbfdc356962d9b6198d5b63f0826a80acfdf35b
[ "Apache-2.0" ]
1,563
2017-04-07T13:15:06.000Z
2022-03-29T15:26:04.000Z
"""Setup for pip package.""" from setuptools import find_namespace_packages from setuptools import setup def _get_sonnet_version(): with open('sonnet/__init__.py') as fp: for line in fp: if line.startswith('__version__'): g = {} exec(line, g) # pylint: disable=exec-used return g['__version__'] raise ValueError('`__version__` not defined in `sonnet/__init__.py`') def _parse_requirements(requirements_txt_path): with open(requirements_txt_path) as fp: return fp.read().splitlines() _VERSION = _get_sonnet_version() EXTRA_PACKAGES = { 'tensorflow': ['tensorflow>=2'], 'tensorflow with gpu': ['tensorflow-gpu>=2'], } setup( name='dm-sonnet', version=_VERSION, url='https://github.com/deepmind/sonnet', license='Apache 2.0', author='DeepMind', description=( 'Sonnet is a library for building neural networks in TensorFlow.'), long_description=open('README.md').read(), long_description_content_type='text/markdown', author_email='sonnet-dev-os@google.com', # Contained modules and scripts. packages=find_namespace_packages(exclude=['*_test.py']), install_requires=_parse_requirements('requirements.txt'), extras_require=EXTRA_PACKAGES, tests_require=_parse_requirements('requirements-test.txt'), requires_python='>=3.6', include_package_data=True, zip_safe=False, # PyPI package information. classifiers=[ 'Development Status :: 3 - Alpha', 'Intended Audience :: Developers', 'Intended Audience :: Education', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: Apache Software License', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Topic :: Scientific/Engineering :: Mathematics', 'Topic :: Software Development :: Libraries :: Python Modules', 'Topic :: Software Development :: Libraries', ], )
32.206349
75
0.66831
a6fa75d51247bb002b5fbfa7ce99d2439332ff22
2,415
py
Python
spiceypy/utils/callbacks.py
seignovert/SpiceyPy
6bee6198d4842d38ea9c6e9f4a54976407ce8d26
[ "MIT" ]
null
null
null
spiceypy/utils/callbacks.py
seignovert/SpiceyPy
6bee6198d4842d38ea9c6e9f4a54976407ce8d26
[ "MIT" ]
null
null
null
spiceypy/utils/callbacks.py
seignovert/SpiceyPy
6bee6198d4842d38ea9c6e9f4a54976407ce8d26
[ "MIT" ]
null
null
null
""" The MIT License (MIT) Copyright (c) [2015-2017] [Andrew Annex] Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import functools from ctypes import c_bool, c_double, POINTER, CFUNCTYPE, byref UDFUNS = CFUNCTYPE(None, c_double, POINTER(c_double)) UDFUNB = CFUNCTYPE(None, UDFUNS, c_double, POINTER(c_bool)) def SpiceUDFUNS(f): """ Decorator for wrapping python functions in spice udfuns callback type :param f: function that has one argument of type float, and returns a float :type f: builtins.function :return: wrapped udfunc function :rtype: builtins.function """ @functools.wraps(f) def wrapping_udfuns(x, value): result = f(x) value[0] = c_double(result) return UDFUNS(wrapping_udfuns) def SpiceUDFUNB(f): """ Decorator for wrapping python functions in spice udfunb callback type :param f: :type f: builtins.function :return: """ @functools.wraps(f) def wrapping_udfunb(udf, et, xbool): result = f(udf, et) # the function takes a udffunc as a argument xbool[0] = c_bool(result) return UDFUNB(wrapping_udfunb) def CallUDFUNS(f, x): """ We are given a UDF CFUNCTYPE and want to call it in python :param f: SpiceUDFUNS :type f: CFUNCTYPE :param x: some scalar :type x: float :return: value :rtype: float """ value = c_double() f(x, byref(value)) return value.value
32.2
79
0.722567
ae929dd48f7f4d6040d8671348b2ac7dd7334e06
2,464
py
Python
pokemongo_bot/event_manager.py
walaoaaa1234/PokemonGo-Bot_
24affedf5ff4b70aa816da00a6186a9eb37dc40f
[ "MIT" ]
1
2018-12-29T07:47:48.000Z
2018-12-29T07:47:48.000Z
pokemongo_bot/event_manager.py
walaoaaa1234/PokemonGo-Bot_
24affedf5ff4b70aa816da00a6186a9eb37dc40f
[ "MIT" ]
2
2021-03-25T21:33:45.000Z
2021-06-01T21:42:48.000Z
pokemongo_bot/event_manager.py
walaoaaa1234/PokemonGo-Bot_
24affedf5ff4b70aa816da00a6186a9eb37dc40f
[ "MIT" ]
1
2018-02-10T23:56:46.000Z
2018-02-10T23:56:46.000Z
# -*- coding: utf-8 -*- from __future__ import unicode_literals from __future__ import print_function from sys import stdout class EventNotRegisteredException(Exception): pass class EventMalformedException(Exception): pass class EventHandler(object): def __init__(self): pass def handle_event(self, event, kwargs): raise NotImplementedError("Please implement") class EventManager(object): def __init__(self, limit_output=False, *handlers): self._registered_events = dict() self._handlers = list(handlers) or [] self._last_event = None self._limit_output = limit_output def event_report(self): for event, parameters in self._registered_events.iteritems(): print('-'*80) print('Event: {}'.format(event)) if parameters: print('Parameters:') for parameter in parameters: print('* {}'.format(parameter)) def add_handler(self, event_handler): self._handlers.append(event_handler) def register_event(self, name, parameters=[]): self._registered_events[name] = parameters def emit(self, event, sender=None, level='info', formatted='', data={}): if not sender: raise ArgumentError('Event needs a sender!') levels = ['info', 'warning', 'error', 'critical', 'debug'] if not level in levels: raise ArgumentError('Event level needs to be in: {}'.format(levels)) if event not in self._registered_events: raise EventNotRegisteredException("Event %s not registered..." % event) if self._limit_output: if (event == self._last_event) and (event in ["moving_to_fort", "moving_to_lured_fort", "position_update"]): stdout.write("\033[1A\033[0K\r") stdout.flush() if level == "info" and formatted: self._last_event = event # verify params match event parameters = self._registered_events[event] if parameters: for k, v in data.iteritems(): if k not in parameters: raise EventMalformedException("Event %s does not require parameter %s" % (event, k)) formatted_msg = formatted.format(**data) # send off to the handlers for handler in self._handlers: handler.handle_event(event, sender, level, formatted_msg, data)
31.589744
120
0.620536
21dda736c3d4aaee37185a85702ad8c80c0265a8
7,296
py
Python
activitysim/activitysim/core/util.py
ual/DOE-repo-deliverable
4bafdd9a702a9a6466dd32ae62f440644d735d3c
[ "BSD-3-Clause" ]
null
null
null
activitysim/activitysim/core/util.py
ual/DOE-repo-deliverable
4bafdd9a702a9a6466dd32ae62f440644d735d3c
[ "BSD-3-Clause" ]
null
null
null
activitysim/activitysim/core/util.py
ual/DOE-repo-deliverable
4bafdd9a702a9a6466dd32ae62f440644d735d3c
[ "BSD-3-Clause" ]
null
null
null
import os import psutil import gc from operator import itemgetter import numpy as np import pandas as pd from zbox import toolz as tz def memory_info(): gc.collect() process = psutil.Process(os.getpid()) bytes = process.memory_info().rss mb = (bytes / (1024 * 1024.0)) gb = (bytes / (1024 * 1024 * 1024.0)) return "memory_info: %s MB (%s GB)" % (int(mb), round(gb, 2)) def left_merge_on_index_and_col(left_df, right_df, join_col, target_col): """ like pandas left merge, but join on both index and a specified join_col FIXME - for now return a series of ov values from specified right_df target_col Parameters ---------- left_df : pandas DataFrame index name assumed to be same as that of right_df right_df : pandas DataFrame index name assumed to be same as that of left_df join_col : str name of column to join on (in addition to index values) should have same name in both dataframes target_col : str name of column from right_df whose joined values should be returned as series Returns ------- target_series : pandas Series series of target_col values with same index as left_df i.e. values joined to left_df from right_df with index of left_df """ assert left_df.index.name == right_df.index.name # want to know name previous index column will have after reset_index idx_col = right_df.index.name # SELECT target_col FROM full_sample LEFT JOIN unique_sample on idx_col, join_col merged = \ pd.merge( left_df[[join_col]].reset_index(), right_df[[join_col, target_col]].reset_index(), on=[idx_col, join_col], how="left") merged.set_index(idx_col, inplace=True) return merged[target_col] def reindex(series1, series2): """ This reindexes the first series by the second series. This is an extremely common operation that does not appear to be in Pandas at this time. If anyone knows of an easier way to do this in Pandas, please inform the UrbanSim developers. The canonical example would be a parcel series which has an index which is parcel_ids and a value which you want to fetch, let's say it's land_area. Another dataset, let's say of buildings has a series which indicate the parcel_ids that the buildings are located on, but which does not have land_area. If you pass parcels.land_area as the first series and buildings.parcel_id as the second series, this function returns a series which is indexed by buildings and has land_area as values and can be added to the buildings dataset. In short, this is a join on to a different table using a foreign key stored in the current table, but with only one attribute rather than for a full dataset. This is very similar to the pandas "loc" function or "reindex" function, but neither of those functions return the series indexed on the current table. In both of those cases, the series would be indexed on the foreign table and would require a second step to change the index. Parameters ---------- series1, series2 : pandas.Series Returns ------- reindexed : pandas.Series """ # turns out the merge is much faster than the .loc below df = pd.merge(series2.to_frame(name='left'), series1.to_frame(name='right'), left_on="left", right_index=True, how="left") return df.right # return pd.Series(series1.loc[series2.values].values, index=series2.index) def other_than(groups, bools): """ Construct a Series that has booleans indicating the presence of something- or someone-else with a certain property within a group. Parameters ---------- groups : pandas.Series A column with the same index as `bools` that defines the grouping of `bools`. The `bools` Series will be used to index `groups` and then the grouped values will be counted. bools : pandas.Series A boolean Series indicating where the property of interest is present. Should have the same index as `groups`. Returns ------- others : pandas.Series A boolean Series with the same index as `groups` and `bools` indicating whether there is something- or something-else within a group with some property (as indicated by `bools`). """ counts = groups[bools].value_counts() merge_col = groups.to_frame(name='right') pipeline = tz.compose( tz.curry(pd.Series.fillna, value=False), itemgetter('left'), tz.curry( pd.DataFrame.merge, right=merge_col, how='right', left_index=True, right_on='right'), tz.curry(pd.Series.to_frame, name='left')) gt0 = pipeline(counts > 0) gt1 = pipeline(counts > 1) return gt1.where(bools, other=gt0) def quick_loc_df(loc_list, target_df, attribute): """ faster replacement for target_df.loc[loc_list][attribute] pandas DataFrame.loc[] indexing doesn't scale for large arrays (e.g. > 1,000,000 elements) Parameters ---------- loc_list : list-like (numpy.ndarray, pandas.Int64Index, or pandas.Series) target_df : pandas.DataFrame containing column named attribute attribute : name of column from loc_list to return Returns ------- pandas.Series """ left_on = "left" if isinstance(loc_list, pd.Int64Index): left_df = pd.DataFrame({left_on: loc_list.values}) elif isinstance(loc_list, pd.Series): left_df = loc_list.to_frame(name=left_on) elif isinstance(loc_list, np.ndarray): left_df = pd.DataFrame({left_on: loc_list}) else: raise RuntimeError("quick_loc_df loc_list of unexpected type %s" % type(loc_list)) df = pd.merge(left_df, target_df[[attribute]], left_on=left_on, right_index=True, how="left") # regression test # assert list(df[attribute]) == list(target_df.loc[loc_list][attribute]) return df[attribute] def quick_loc_series(loc_list, target_series): """ faster replacement for target_series.loc[loc_list] pandas Series.loc[] indexing doesn't scale for large arrays (e.g. > 1,000,000 elements) Parameters ---------- loc_list : list-like (numpy.ndarray, pandas.Int64Index, or pandas.Series) target_series : pandas.Series Returns ------- pandas.Series """ left_on = "left" if isinstance(loc_list, pd.Int64Index): left_df = pd.DataFrame({left_on: loc_list.values}) elif isinstance(loc_list, pd.Series): left_df = loc_list.to_frame(name=left_on) elif isinstance(loc_list, np.ndarray): left_df = pd.DataFrame({left_on: loc_list}) else: raise RuntimeError("quick_loc_series loc_list of unexpected type %s" % type(loc_list)) df = pd.merge(left_df, target_series.to_frame(name='right'), left_on=left_on, right_index=True, how="left") # regression test # assert list(df.right) == list(target_series.loc[loc_list]) return df.right
32.426667
94
0.658306
f2e4158eef445ba8f1bc21de095f108bae4aa8ea
8,038
py
Python
flash/tabular/forecasting/data.py
ar90n/lightning-flash
61e1a2d3b72f8fbbffe6ace14fb5b5bb35c5f131
[ "Apache-2.0" ]
null
null
null
flash/tabular/forecasting/data.py
ar90n/lightning-flash
61e1a2d3b72f8fbbffe6ace14fb5b5bb35c5f131
[ "Apache-2.0" ]
null
null
null
flash/tabular/forecasting/data.py
ar90n/lightning-flash
61e1a2d3b72f8fbbffe6ace14fb5b5bb35c5f131
[ "Apache-2.0" ]
null
null
null
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, List, Optional, Type, Union from torch.utils.data.sampler import Sampler from flash.core.data.callback import BaseDataFetcher from flash.core.data.data_module import DataModule from flash.core.data.io.input import Input from flash.core.data.io.input_transform import INPUT_TRANSFORM_TYPE, InputTransform from flash.core.utilities.imports import _PANDAS_AVAILABLE, _TABULAR_TESTING from flash.core.utilities.stages import RunningStage from flash.tabular.forecasting.input import TabularForecastingDataFrameInput if _PANDAS_AVAILABLE: from pandas.core.frame import DataFrame else: DataFrame = object # Skip doctests if requirements aren't available if not _TABULAR_TESTING: __doctest_skip__ = ["TabularForecastingData", "TabularForecastingData.*"] class TabularForecastingData(DataModule): """The ``TabularForecastingData`` class is a :class:`~flash.core.data.data_module.DataModule` with a set of classmethods for loading data for tabular forecasting.""" input_transform_cls = InputTransform @property def parameters(self) -> Optional[Dict[str, Any]]: """The ``parameters`` dictionary from the ``TimeSeriesDataSet`` object created from the train data when constructing the ``TabularForecastingData`` object.""" return getattr(self.train_dataset, "parameters", None) @classmethod def from_data_frame( cls, time_idx: Optional[str] = None, target: Optional[Union[str, List[str]]] = None, group_ids: Optional[List[str]] = None, parameters: Optional[Dict[str, Any]] = None, train_data_frame: Optional[DataFrame] = None, val_data_frame: Optional[DataFrame] = None, test_data_frame: Optional[DataFrame] = None, predict_data_frame: Optional[DataFrame] = None, input_cls: Type[Input] = TabularForecastingDataFrameInput, transform: INPUT_TRANSFORM_TYPE = InputTransform, transform_kwargs: Optional[Dict] = None, data_fetcher: Optional[BaseDataFetcher] = None, val_split: Optional[float] = None, batch_size: Optional[int] = None, num_workers: int = 0, sampler: Optional[Type[Sampler]] = None, pin_memory: bool = True, persistent_workers: bool = True, **input_kwargs: Any, ) -> "TabularForecastingData": """Creates a :class:`~flash.tabular.forecasting.data.TabularForecastingData` object from the given data frames. .. note:: The ``time_idx``, ``target``, and ``group_ids`` do not need to be provided if ``parameters`` are passed instead. These can be obtained from the :attr:`~flash.tabular.forecasting.data.TabularForecastingData.parameters` attribute of the :class:`~flash.tabular.forecasting.data.TabularForecastingData` object that contains your training data. To learn how to customize the transforms applied for each stage, read our :ref:`customizing transforms guide <customizing_transforms>`. Args: time_idx: Column denoting the time index of each observation. target: Column denoting the target or list of columns denoting the target. group_ids: List of column names identifying a time series. This means that the group_ids identify a sample together with the time_idx. If you have only one timeseries, set this to the name of a column that is constant. parameters: Parameters to use for the timeseries if ``time_idx``, ``target``, and ``group_ids`` are not provided (e.g. when loading data for inference or validation). train_data_frame: The pandas DataFrame to use when training. val_data_frame: The pandas DataFrame to use when validating. test_data_frame: The pandas DataFrame to use when testing. predict_data_frame: The pandas DataFrame to use when predicting. input_cls: The :class:`~flash.core.data.io.input.Input` type to use for loading the data. transform: The :class:`~flash.core.data.io.input_transform.InputTransform` type to use. transform_kwargs: Dict of keyword arguments to be provided when instantiating the transforms. input_kwargs: Additional keyword arguments to be used when creating the TimeSeriesDataset. Returns: The constructed :class:`~flash.tabular.forecasting.data.TabularForecastingData`. Examples ________ .. testsetup:: >>> from pytorch_forecasting.data.examples import generate_ar_data >>> data = generate_ar_data(seasonality=10.0, timesteps=100, n_series=5, seed=42) We have a DataFrame `data` with the following contents: .. doctest:: >>> data.head(3) series time_idx value 0 0 0 -0.000000 1 0 1 0.141552 2 0 2 0.232782 .. doctest:: >>> from pandas import DataFrame >>> from flash import Trainer >>> from flash.tabular import TabularForecaster, TabularForecastingData >>> datamodule = TabularForecastingData.from_data_frame( ... "time_idx", ... "value", ... ["series"], ... train_data_frame=data, ... predict_data_frame=DataFrame.from_dict( ... { ... "time_idx": list(range(50)), ... "value": [0.0] * 50, ... "series": [0] * 50, ... } ... ), ... time_varying_unknown_reals=["value"], ... max_encoder_length=30, ... max_prediction_length=20, ... batch_size=32, ... ) >>> model = TabularForecaster( ... datamodule.parameters, ... backbone="n_beats", ... backbone_kwargs={"widths": [16, 256]}, ... ) >>> trainer = Trainer(fast_dev_run=True) >>> trainer.fit(model, datamodule=datamodule) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE Training... >>> trainer.predict(model, datamodule=datamodule) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE Predicting... .. testcleanup:: >>> del data """ ds_kw = dict( time_idx=time_idx, group_ids=group_ids, target=target, parameters=parameters, **input_kwargs, ) train_input = input_cls(RunningStage.TRAINING, train_data_frame, **ds_kw) ds_kw["parameters"] = train_input.parameters if train_input else parameters return cls( train_input, input_cls(RunningStage.VALIDATING, val_data_frame, **ds_kw), input_cls(RunningStage.TESTING, test_data_frame, **ds_kw), input_cls(RunningStage.PREDICTING, predict_data_frame, **ds_kw), transform=transform, transform_kwargs=transform_kwargs, data_fetcher=data_fetcher, val_split=val_split, batch_size=batch_size, num_workers=num_workers, sampler=sampler, pin_memory=pin_memory, persistent_workers=persistent_workers, )
42.983957
118
0.635606
fc3dd87173d8e3e1a808e0fda902045e844dddbf
12
py
Python
mock/ten.py
kevinghst/UDA_sup
c970622370d5de6b8c48b458cb8b4fe59e37effb
[ "Apache-2.0" ]
null
null
null
mock/ten.py
kevinghst/UDA_sup
c970622370d5de6b8c48b458cb8b4fe59e37effb
[ "Apache-2.0" ]
null
null
null
mock/ten.py
kevinghst/UDA_sup
c970622370d5de6b8c48b458cb8b4fe59e37effb
[ "Apache-2.0" ]
null
null
null
print("ten")
12
12
0.666667
f0d3931242c1d4cebe05d5322a31738405d02220
1,006
py
Python
main.py
aallali/SFJ-MSR
f87f45df46341ae8d9f2e84484cccbdde26b9baf
[ "MIT" ]
1
2022-03-04T14:32:27.000Z
2022-03-04T14:32:27.000Z
main.py
aallali/SFJ-MSR
f87f45df46341ae8d9f2e84484cccbdde26b9baf
[ "MIT" ]
null
null
null
main.py
aallali/SFJ-MSR
f87f45df46341ae8d9f2e84484cccbdde26b9baf
[ "MIT" ]
null
null
null
# **************************************************************************** # # # # ::: :::::::: # # main.py :+: :+: :+: # # +:+ +:+ +:+ # # By: aallali <hi@allali.me> +#+ +:+ +#+ # # +#+#+#+#+#+ +#+ # # Created: 2021/10/18 17:59:13 by aallali #+# #+# # # Updated: 2021/10/18 18:00:55 by aallali ### ########.fr # # # # **************************************************************************** # import uvicorn if __name__ == "__main__": uvicorn.run("app.api:app", host="0.0.0.0", port=7080, reload=True)
59.176471
80
0.162028
602a4b937ce16f95b41d5122f2b7d6175ee1cdd9
4,266
py
Python
handy_tools/_scratch_rot_morph.py
VelionaVollerei/PMX-VMD-Scripting-Tools
f935669e3bbc14f4a9b47803a1ccea1464b538b2
[ "MIT" ]
null
null
null
handy_tools/_scratch_rot_morph.py
VelionaVollerei/PMX-VMD-Scripting-Tools
f935669e3bbc14f4a9b47803a1ccea1464b538b2
[ "MIT" ]
null
null
null
handy_tools/_scratch_rot_morph.py
VelionaVollerei/PMX-VMD-Scripting-Tools
f935669e3bbc14f4a9b47803a1ccea1464b538b2
[ "MIT" ]
null
null
null
_SCRIPT_VERSION = "Script version: Nuthouse01 - 6/10/2021 - v6.00" """ DO FEET THE BEST WAY !!! in the final model, first vertex morph is applied, then bone morph is applied requires: vertex morph from pointed feet pose to flat feet pose sequence: 1. invert v morph that goes point > flat, save as feetflat 2. use "avg normals face" and "avg normals near" to create set of normals for when feet are flat 3. create "rigid" version of flat mesh, save as feetflatrigid 4. import feetflatrigid into point for comparing 5. determine what bone rotation to apply to point that gets me the closest to flat, save as morph (also apply this rotation to the toe IK bones and get their yz delta into the bone morph too) 6. with bone rotation applied (looks like shit) do "update model" on pointed version, go to list view, copy all bones, then undo 7. paste into list view of feetflat, will move bones to be aligned with flat-foot geometry, save! 8. apply inverse bone rotation to feetflat in transform view, do "update model", save as feetflatrot 9. get v morph from feetpoint to feetflatrot 10. apply b + v to feetpoint to verify it's close, only bdef2 zones are divergent 11. invert v-point-to-rot to apply, then "update model" with b-rot-to-almost to apply, then save feetalmost 12. get v morph from feetalmost to feetflat, copy to feetpoint 13. correct the morph by rotation-per-weight 14. merge the point-to-rot vmorph and almost-to-flat(rotated) vmorph using "join morph (boolean)" 15. transfer-by-order normals from feetflatrot to feetpoint """ import sys try: sys.path.append("../") from python import nuthouse01_core as core from python import nuthouse01_pmx_parser as pmxlib from python import nuthouse01_pmx_struct as pmxstruct from python import morph_scale except ImportError as eee: print(eee) print("ERROR: failed to import some of the necessary files, all my scripts must be together in the same folder!") print("...press ENTER to exit...") input() exit() core = pmxlib = pmxstruct = morph_scale = None import math matchbones = (17, 21, 30, 31,) # rotamt = (28, 28, -28, -28,) rotamt = (-28, -28, 28, 28,) # first try opposite values from the point-to-flat morph ################### # rotate morph ################### def main(): m = core.prompt_user_filename(".pmx") pmx = pmxlib.read_pmx(m) core.MY_PRINT_FUNC("") # valid input is any string that can matched aginst a morph idx s = core.MY_GENERAL_INPUT_FUNC(lambda x: morph_scale.get_idx_in_pmxsublist(x, pmx.morphs) is not None, ["Please specify the target morph: morph #, JP name, or EN name (names are not case sensitive).", "Empty input will quit the script."]) # do it again, cuz the lambda only returns true/false morph = morph_scale.get_idx_in_pmxsublist(s, pmx.morphs) print(pmx.morphs[morph].name_jp) newmorphitems = [] print("target morph controls %d verts" % len(pmx.morphs[morph].items)) count = 0 for item in pmx.morphs[morph].items: item:pmxstruct.PmxMorphItemVertex v = pmx.verts[item.vert_idx] w = v.weight # already know its all mode1 rot = 0 # only care about BDEF2, right? or sdef # if not a bdef2 vertex, then rot=0 meaning no change if v.weighttype in (pmxstruct.WeightMode.BDEF2, pmxstruct.WeightMode.SDEF): for b,r in zip(matchbones, rotamt): # get the weight %, multiply it by how much the bone is rotated by if w[0][0] == b: rot += r * w[0][1] elif w[1][0] == b: rot += r * w[1][1] # count how many actually get rotated if rot != 0: count += 1 # convert from degrees to radians for rotate2d() rot = math.radians(rot) # now the YZ component of the morph vector is rotated around the origin ny, nz = core.rotate2d((0,0), rot, item.move[1:3]) newitem = pmxstruct.PmxMorphItemVertex(item.vert_idx, [item.move[0], ny, nz]) newmorphitems.append(newitem) print("partial-rotated %d verts" % count) newmorph = pmxstruct.PmxMorph("v-rot", "v-rot", morphtype=pmxstruct.MorphType.VERTEX, panel=pmxstruct.MorphPanel.OTHER, items=newmorphitems) pmx.morphs.append(newmorph) # done iter, now write OUT = core.get_unused_file_name("NEW.pmx") pmxlib.write_pmx(OUT, pmx) print("done") if __name__ == "__main__": print(_SCRIPT_VERSION) main()
36.152542
191
0.716128
093de2884f525651728367c2b55e829a7b94cbd6
1,073
py
Python
tensorflow/python/keras/saving/saved_model/constants.py
khanhlvg/tensorflow
a59b74ccaafae59d616ecf08204d63023ff6f49c
[ "Apache-2.0" ]
2
2021-01-06T23:39:38.000Z
2021-01-06T23:39:38.000Z
tensorflow/python/keras/saving/saved_model/constants.py
khanhlvg/tensorflow
a59b74ccaafae59d616ecf08204d63023ff6f49c
[ "Apache-2.0" ]
8
2019-07-08T10:09:18.000Z
2019-09-26T20:55:43.000Z
tensorflow/python/keras/saving/saved_model/constants.py
khanhlvg/tensorflow
a59b74ccaafae59d616ecf08204d63023ff6f49c
[ "Apache-2.0" ]
1
2021-02-27T07:40:01.000Z
2021-02-27T07:40:01.000Z
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Constants for Keras SavedModel serialization.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # Namespace used to store all attributes added during serialization. # e.g. the list of layers can be accessed using `loaded.keras_api.layers`, in an # object loaded from `tf.saved_model.load()`. KERAS_ATTR = 'keras_api'
42.92
80
0.719478
debadbd655f80c9770d752693710fb57412fa4d4
8,956
py
Python
geeet/meteo.py
Kripankc/geeet
64f183e62376dc119989ba0e7db0ed6acbd041c6
[ "MIT" ]
12
2021-03-11T12:09:13.000Z
2022-03-15T07:53:02.000Z
geeet/meteo.py
Kripankc/geeet
64f183e62376dc119989ba0e7db0ed6acbd041c6
[ "MIT" ]
2
2021-08-29T11:39:12.000Z
2022-01-12T13:10:45.000Z
geeet/meteo.py
Kripankc/geeet
64f183e62376dc119989ba0e7db0ed6acbd041c6
[ "MIT" ]
5
2021-03-27T19:48:13.000Z
2022-02-28T05:57:26.000Z
"""Meteorological functions""" from geeet.common import is_img import numpy as np # Constants defined as in # https://www.ecmwf.int/sites/default/files/elibrary/2016/17117-part-iv-physical-processes.pdf#subsection.L.5 Rdry = 287.0597 # gas constant for dry air, J/(kg*degK) Rvap = 461.5250 # gas constant for water vapor, J/(kg*degK) epsilon = Rdry/Rvap # (~0.622) ratio of the molecular weight of water vapor to dry air c_pd = (7/2)*Rdry # Heat capacity of dry air at constant pressure, J kg-1 K-1 c_pv = 4*Rvap # Heat capacity of water vapor at constant pressure, J kg-1 K-1 # Constants for Teten's formula using parameters from Buck (1981) # for saturation over water. a1 = 611.21 # in Pa a3 = 17.502 a4 = 32.19 # in K T0 = 273.16 # in K def teten(T): ''' Compute Teten's formula for saturation water vapour pressure (esat (T)) in Pa with parameters set according to Buck (1981) for saturation over water. Reference: https://www.ecmwf.int/sites/default/files/elibrary/2016/17117-part-iv-physical-processes.pdf#subsection.7.2.1 Input: T (numpy array or ee.Image) Temperature in Kelvin ''' if is_img(T): T1 = T.subtract(T0) # in K T2 = T.subtract(a4) # in K esat = T1.divide(T2).multiply(a3).exp().multiply(a1) else: esat = a1*np.exp(a3*(T-T0)/(T-a4)) return esat def specific_humidity(T,P): ''' Input: (ee.Images or np.arrays): - P: surface pressure in Pascals - T: temperature in Kelvin Output: (ee.Image or np.array): - Q: specific humidity ''' if is_img(T): esat = teten(T) denom = P.subtract(esat.multiply(1-epsilon)) Q = esat.multiply(epsilon).divide(denom) else: esat = teten(T) Q = epsilon*esat/(P-(1-epsilon)*esat) return Q def relative_humidity(temperature, dewpoint_temperature, pressure, band_name='relative_humidity'): ''' Input: (ee.Images or np.arrays): - temperature, in Kelvin - dewpoint_temperature, in Kelvin - pressure: surface pressure in Pascals Output: (ee.Image or np.array): - RH: relative humidity(%) Equation 7.91 in: https://www.ecmwf.int/sites/default/files/elibrary/2016/17117-part-iv-physical-processes.pdf ''' if is_img(temperature): Q = specific_humidity(dewpoint_temperature,pressure) esat = teten(temperature) denom = Q.multiply(1/epsilon -1).add(1).multiply(esat) RH = pressure.multiply(Q).multiply(100/epsilon).divide(denom).rename(band_name) else: esat = teten(temperature) Q = specific_humidity(dewpoint_temperature,pressure) RH = (pressure*Q*100/epsilon)/(esat*(1+Q*((1/epsilon) - 1))) return RH def vpd(RH, Temp_K, band_name=None): ''' Function to compute the vapor pressure deficit in kPa. Inputs: - RH (numpy array or ee.Image): the relative humidity [0-100]. - Temp_K (numpy array or ee.Image): array with the temperature values in Kelvin. Outputs: - VPD (numpy array or ee.Image): the vapor pressure deficit [kPa]. References ---------- Allen et al., 1998 ''' is_RH_img = is_img(RH) is_TempK_img = is_img(Temp_K) if is_RH_img != is_TempK_img: print('Either both inputs should be numpy array or ee.Img, but not mixed.') return esat = teten(Temp_K) # in Pa if is_RH_img: ea = (RH.divide(100.0)).multiply(esat) VPD = esat.subtract(ea) VPD = VPD.divide(1000) # convert to KPa if band_name: VPD = VPD.rename(band_name) else: ea = (RH/100.0)*esat VPD = esat - ea VPD = VPD/1000.0 # conver to KPa return VPD def LatHeatVap(Temp_K): """ Calculates the Latent heat of vaporization Inputs (ee.Image or np.array): - temperature: air temperature (Kelvin). Outputs (ee. Image or np.array): - L: latent heat of vaporization (MJ kg-1) based on Eq. 3-1 Allen FAO98 """ if is_img(Temp_K): from ee import Image L = Image(2.501).subtract((Temp_K.subtract(273.15)).multiply(2.361e-3)) else: L = 2.501 - (2.361e-3*(Temp_K-273.15)) # at 20C this is ~2.45 MJ kg-1 return L def compute_met_params(temperature, pressure): """ Calculates several temperature and/or pressure-dependent parameters related to heat flux in air, which are commonly used in ET models Inputs (ee.Image or np.arrays): - temperature: air temperature at reference height (Kelvin). - pressure: total air pressure (dry air + water vapor) (Pa) Outputs: (ee.Image with following bands, OR list of np.arrays:) - q (specific humidity) - ea (water vapor pressure), in Pa - rho (air density), in kg m-3 - cp (air heat capacity), in (J kg-1 K-1) - s (delta vapor pressure, i.e. slope of the saturation water vapor pressure), in Pa K-1 - lambda (latent heat of vaporization), in MJ kg-1 - psicr (psicrometric constant), in Pa K-1 - taylor (=s/(s+psicr)), in Pa K-1 """ q = specific_humidity(temperature, pressure) ea = teten(temperature) # in Pa Lambda = LatHeatVap(temperature) # in MJ kg-1 if is_img(pressure): from ee import Image mfactor = Image(1.0).subtract(ea.multiply(1.0-epsilon).divide(pressure)) rho = pressure.divide(temperature.multiply(Rdry)).multiply(mfactor) cp = ((Image(1.0).subtract(q)).multiply(c_pd)).add(q.multiply(c_pv)) s = ea.multiply(a3*(T0-a4)).divide((temperature.subtract(a4)).pow(2)) psicr = cp.multiply(pressure).divide(Lambda.multiply(epsilon*1e6)) taylor = s.divide(s.add(psicr)) met_params = q.addBands(ea).addBands(rho).addBands(cp).addBands(s).addBands(Lambda).addBands(psicr).addBands(taylor) met_params = met_params.rename(['q', 'ea', 'rho', 'cp', 'delta', 'Lambda', 'gamma', 'taylor']) else: # Hydrology - An Introduction (Brutsaert 2005) eq 2.6 (pp 25) rho = (pressure/(Rdry * temperature )) * (1.0 - (1.0 - epsilon) * ea / pressure) # Rearranged from https://www.ecmwf.int/sites/default/files/elibrary/2016/17117-part-iv-physical-processes.pdf#section.2.7 cp = (1.0-q)*c_pd + q*c_pv # Slope of saturation water vapor pressure (i.e. slope of teten's formula): #esat = a1*np.exp(a3*(T-T0)/(T-a4)) # desat/dT = # a3*(T0-a4) * a1*np.exp(a3*(T-T0)/(T-a4)) /(T-a4)**2 # = a3*(t0-a4) * esat / (T-a4)**2 s = a3*(T0-a4)*ea/((temperature-a4)**2) # in Pa K-1 # Psicrometric constant psicr = cp*pressure/(epsilon*Lambda*1e6) # Pa/K # Priestley-Taylor term DELTA/ (DELTA+GAMMA) taylor = s/(s+psicr) met_params = [np.array(q), np.array(ea), np.array(rho), np.array(cp), np.array(s), np.array(Lambda), np.array(psicr), np.array(taylor)] return met_params def compute_roughness(CH, fm=0.125, fd=0.65, kb=2.0, min_values = [0.003, 0.003, 0.004], band_names = ['ZM', 'ZH', 'D0']): """ Roughness length (m) for momentum and heat transport (ZM, ZH) and zero-plane displacement height (m) (D0) Inputs: - CH: canopy height in m (ee.Image or numpy array) Scalar (optional) inputs: - fm: ratio of vegetation height used for ZM (default is 0.125) - fd: ratio of vegetation height used for D0 (default is 0.65) - kb: parameter kb=ln(ZM/ZH) (default is 2.0) - min_values: minimum values for ZM, ZH, and D0 given as a list. - band_names: if provided, rename the output ee.Image with these names Defaults to 'ZM', 'ZH', and 'D0' Outputs: rough (ee.Image or list) containing ZM, ZH, and D0 either as bands in an ee.Image or numpy arrays ZM and D0 are based on simple fractions (fm, fd) of canopy height while ZH is based on a log relation between ZM and ZH: ln(ZM/ZH)~kb these are all mentioned in-text in Norman et al., 1995 (N95): ZM = canopy height * fm Brutsaert (1982) ZH = ZM/exp(kb) Garrat and Hicks (1973) mentioned in N95 D0 = canopy height * fd Brutsaert (1982) The default ratio values for ZM and D0 are fm=1/8 and fd=0.65, respectively The default kb parameter is 2.0 Minimum values for all parameters can be set by default (3 mm, 3 mm, and 4 mm). """ import numpy as np zM_min, zH_min, D0_min = min_values if is_img(CH): from ee import Image ZM = CH.multiply(fm) ZM = ZM.max(Image(zM_min)) ZH = ZM.divide(Image(kb).exp()) ZH = ZH.max(Image(zH_min)) D0 = CH.multiply(fd) D0 = D0.max(Image(D0_min)) rough = ZM.addBands(ZH).addBands(D0).rename(band_names) else: ZM = np.maximum(zM_min, fm*CH) ZH = np.maximum(zH_min, ZM/np.exp(kb)) D0 = np.maximum(D0_min, fd*CH) rough = [ZM, ZH, D0] return rough
39.280702
143
0.625167
e6c484d7c63a1dc15b997611d27f24e47edea40f
4,564
py
Python
keras_gym/wrappers/video.py
KristianHolsheimer/keras-gym
0296ddcc8685e1ce732c3173caaa0fd25af9ef58
[ "MIT" ]
16
2019-07-01T10:56:26.000Z
2021-01-31T18:56:56.000Z
keras_gym/wrappers/video.py
KristianHolsheimer/keras-gym
0296ddcc8685e1ce732c3173caaa0fd25af9ef58
[ "MIT" ]
10
2019-03-10T21:56:10.000Z
2020-09-06T21:49:55.000Z
keras_gym/wrappers/video.py
KristianHolsheimer/keras-gym
0296ddcc8685e1ce732c3173caaa0fd25af9ef58
[ "MIT" ]
5
2019-08-02T22:11:19.000Z
2020-04-19T20:18:38.000Z
import gym import numpy as np from PIL import Image from ..utils import check_numpy_array from ..base.mixins import AddOrigToInfoDictMixin from ..base.errors import NumpyArrayCheckError __all__ = ( 'ImagePreprocessor', 'FrameStacker', ) class ImagePreprocessor(gym.Wrapper, AddOrigToInfoDictMixin): """ Preprocessor for images. This preprocessing is adapted from this blog post: https://becominghuman.ai/lets-build-an-atari-ai-part-1-dqn-df57e8ff3b26 Parameters ---------- env : gym environment A gym environment. height : positive int Output height (number of pixels). width : positive int Output width (number of pixels). grayscale : bool, optional Whether to convert RGB image to grayscale. assert_input_shape : shape tuple, optional If provided, the preprocessor will assert the given input shape. """ def __init__( self, env, height, width, grayscale=True, assert_input_shape=None): super().__init__(env) self.height = int(height) self.width = int(width) self.grayscale = bool(grayscale) # check input shape? self.assert_input_shape = assert_input_shape if self.assert_input_shape is not None: self.assert_input_shape = tuple(self.assert_input_shape) # check original shape / dtype shape = self.env.observation_space.shape dtype = self.env.observation_space.dtype assert len(shape) == 3, "bad shape: {}".format(shape) assert shape[2] == 3, "bad shape: {}".format(shape) assert dtype == 'uint8', "bad dtype: {}".format(dtype) # update observation space if self.grayscale: shape = (self.height, self.width) else: shape = (self.height, self.width, shape[2]) self.observation_space = gym.spaces.Box( shape=shape, low=0, high=255, dtype='uint8') def _preprocess_frame(self, s): check_numpy_array(s, shape=self.assert_input_shape) img = Image.fromarray(s) if self.grayscale: img = img.convert('L') img = img.resize((self.width, self.height)) return np.array(img) def reset(self): self._s_orig = self.env.reset() s = self._preprocess_frame(self._s_orig) # shape: [h, w] return s def step(self, a): self._s_next_orig, r, done, info = self.env.step(a) self._add_s_orig_to_info_dict(info) s_next = self._preprocess_frame(self._s_next_orig) return s_next, r, done, info class FrameStacker(gym.Wrapper, AddOrigToInfoDictMixin): """ Stack multiple frames into one state observation. Parameters ---------- env : gym environment A gym environment. num_frames : positive int, optional Number of frames to stack in order to build a state feature vector. """ def __init__( self, env, num_frames=4): super().__init__(env) self.num_frames = int(num_frames) s = self.env.observation_space.sample() check_numpy_array(s, dtype=('uint8', 'int')) if s.ndim == 2: self._perm = (1, 2, 0) elif s.ndim == 3: self._perm = (1, 2, 3, 0) else: NumpyArrayCheckError( "expected ndim equal to 2 or 3, got shape: {}".format(s.shape)) # update observation space shape = s.shape + (self.num_frames,) self.observation_space = gym.spaces.Box( shape=shape, low=0, high=255, dtype='uint8') def reset(self): frame_shape = tuple(self.env.observation_space.shape) # [h, w, c?] shape = (self.num_frames,) + frame_shape # [f, h, w, c?] self._frames = np.zeros(shape, self.observation_space.dtype) self._s_orig = self.env.reset() # shape: [h, w, c?] s = np.expand_dims(self._s_orig, axis=0) # shape: [1, h, w, c?] self._frames[...] = s # broadcast along axis=0 s = np.transpose(self._frames, self._perm) # to shape: [h, w, c?, f] return s def step(self, a): self._s_next_orig, r, done, info = self.env.step(a) self._add_s_orig_to_info_dict(info) self._frames = np.roll(self._frames, -1, axis=0) self._frames[-1] = self._s_next_orig s_next = np.transpose(self._frames, self._perm) # shape: [h, w, c?, f] return s_next, r, done, info
29.636364
79
0.599036