hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
fca689ff842187573cc5c9f59e5be60936d82444
861
py
Python
setup.py
IAmTheBlurr/TotalRecall
52e5018059f9d7f1b758984cbf0d57f2f1202272
[ "MIT" ]
null
null
null
setup.py
IAmTheBlurr/TotalRecall
52e5018059f9d7f1b758984cbf0d57f2f1202272
[ "MIT" ]
2
2019-09-26T18:40:12.000Z
2019-09-28T08:17:59.000Z
setup.py
IAmTheBlurr/TotalRecall
52e5018059f9d7f1b758984cbf0d57f2f1202272
[ "MIT" ]
1
2019-10-03T17:24:28.000Z
2019-10-03T17:24:28.000Z
import setuptools with open("README.md", "r") as file: long_description = file.read() setuptools.setup( name='Chronomancy', version='0.0.2', author='Jonathan Craig', author_email='blurr@iamtheblurr.com', description="The power of Time itself, for Python", long_description=long_description, long_description_content_type="text/markdown", classifiers=[ 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: MacOS', 'Operating System :: Microsoft :: Windows', 'Operating System :: POSIX :: Linux', 'Programming Language :: Python :: 3.7', 'Topic :: Software Development :: Libraries :: Python Modules' ], packages=setuptools.find_packages(), url='https://github.com/IAmTheBlurr/Chronomancy', license='MIT', )
31.888889
70
0.650407
758129989550e7f4799c6f188cf8582869c237ed
1,612
py
Python
scripts/plot_results.py
callaunchpad/emergence
b5da3697fa08202c23302c2ed628d24af3af4940
[ "MIT" ]
null
null
null
scripts/plot_results.py
callaunchpad/emergence
b5da3697fa08202c23302c2ed628d24af3af4940
[ "MIT" ]
null
null
null
scripts/plot_results.py
callaunchpad/emergence
b5da3697fa08202c23302c2ed628d24af3af4940
[ "MIT" ]
null
null
null
from stable_baselines import results_plotter import numpy as np import matplotlib import matplotlib.pyplot as plt plt.rcParams['svg.fonttype'] = 'none' X_TIMESTEPS = 'timesteps' X_EPISODES = 'episodes' X_WALLTIME = 'walltime_hrs' POSSIBLE_X_AXES = [X_TIMESTEPS, X_EPISODES, X_WALLTIME] EPISODES_WINDOW = 100 COLORS = ['blue', 'green', 'red', 'cyan', 'magenta', 'yellow', 'black', 'purple', 'pink', 'brown', 'orange', 'teal', 'coral', 'lightblue', 'lime', 'lavender', 'turquoise', 'darkgreen', 'tan', 'salmon', 'gold', 'lightpurple', 'darkred', 'darkblue'] def main(): """ Example usage in jupyter-notebook .. code-block:: python from stable_baselines import results_plotter %matplotlib inline results_plotter.plot_results(["./log"], 10e6, results_plotter.X_TIMESTEPS, "Breakout") Here ./log is a directory containing the monitor.csv files """ import argparse import os parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--dirs', help='List of log directories', nargs='*', default=['./log']) parser.add_argument('--num_timesteps', type=int, default=int(10e6)) parser.add_argument('--xaxis', help='Varible on X-axis', default=X_TIMESTEPS) parser.add_argument('--task_name', help='Title of plot', default='Title') args = parser.parse_args() args.dirs = [os.path.abspath(folder) for folder in args.dirs] results_plotter.plot_results(args.dirs, args.num_timesteps, args.xaxis, args.task_name) plt.show() if __name__ == '__main__': main()
36.636364
95
0.692928
e5ac8f5d9a520c52a18b5bc2264b4fac7c01babc
2,817
py
Python
web3/utils/threads.py
voBits/web3
947e252124f04b33ac5f96179dccd1a3476b3936
[ "MIT" ]
326
2016-04-29T21:51:06.000Z
2022-03-31T03:20:54.000Z
web3/utils/threads.py
voBits/web3
947e252124f04b33ac5f96179dccd1a3476b3936
[ "MIT" ]
283
2016-04-15T16:41:31.000Z
2017-11-28T16:41:36.000Z
web3/utils/threads.py
voBits/web3
947e252124f04b33ac5f96179dccd1a3476b3936
[ "MIT" ]
146
2016-04-14T16:27:54.000Z
2021-10-03T13:31:07.000Z
""" A minimal implementation of the various gevent APIs used within this codebase. """ import time import threading class Timeout(Exception): """ A limited subset of the `gevent.Timeout` context manager. """ seconds = None exception = None begun_at = None is_running = None def __init__(self, seconds=None, exception=None, *args, **kwargs): self.seconds = seconds self.exception = exception def __enter__(self): self.start() return self def __exit__(self, exc_type, exc_val, exc_tb): return False def __str__(self): if self.seconds is None: return '' return "{0} seconds".format(self.seconds) @property def expire_at(self): if self.seconds is None: raise ValueError("Timeouts with `seconds == None` do not have an expiration time") elif self.begun_at is None: raise ValueError("Timeout has not been started") return self.begun_at + self.seconds def start(self): if self.is_running is not None: raise ValueError("Timeout has already been started") self.begun_at = time.time() self.is_running = True def check(self): if self.is_running is None: raise ValueError("Timeout has not been started") elif self.is_running is False: raise ValueError("Timeout has already been cancelled") elif self.seconds is None: return elif time.time() > self.expire_at: self.is_running = False if isinstance(self.exception, type): raise self.exception(str(self)) elif isinstance(self.exception, Exception): raise self.exception else: raise self def cancel(self): self.is_running = False def sleep(self, seconds): time.sleep(seconds) self.check() class ThreadWithReturn(threading.Thread): def __init__(self, target=None, args=None, kwargs=None): super(ThreadWithReturn, self).__init__( target=target, args=args or tuple(), kwargs=kwargs or {}, ) self.target = target self.args = args self.kwargs = kwargs def run(self): self._return = self.target(*self.args, **self.kwargs) def get(self, timeout=None): self.join(timeout) try: return self._return except AttributeError: raise RuntimeError("Something went wrong. No `_return` property was set") def spawn(target, *args, thread_class=ThreadWithReturn, **kwargs): thread = thread_class( target=target, args=args, kwargs=kwargs, ) thread.daemon = True thread.start() return thread
27.617647
94
0.601704
c380b45bf852cdeab6da334d75c48533073d0360
1,586
py
Python
src/web/modules/finance/migrations/0008_auto_20160725_1510.py
fossabot/SIStema
1427dda2082688a9482c117d0e24ad380fdc26a6
[ "MIT" ]
5
2018-03-08T17:22:27.000Z
2018-03-11T14:20:53.000Z
src/web/modules/finance/migrations/0008_auto_20160725_1510.py
fossabot/SIStema
1427dda2082688a9482c117d0e24ad380fdc26a6
[ "MIT" ]
263
2018-03-08T18:05:12.000Z
2022-03-11T23:26:20.000Z
src/web/modules/finance/migrations/0008_auto_20160725_1510.py
fossabot/SIStema
1427dda2082688a9482c117d0e24ad380fdc26a6
[ "MIT" ]
6
2018-03-12T19:48:19.000Z
2022-01-14T04:58:52.000Z
# -*- coding: utf-8 -*- # Generated by Django 1.9.6 on 2016-07-25 12:10 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('finance', '0007_auto_20160531_0315'), ] operations = [ migrations.RenameField( model_name='discount', old_name='for_school', new_name='school', ), migrations.RenameField( model_name='discount', old_name='for_user', new_name='user', ), migrations.RenameField( model_name='document', old_name='for_school', new_name='school', ), migrations.RenameField( model_name='document', old_name='for_users', new_name='users', ), migrations.RenameField( model_name='documenttype', old_name='for_school', new_name='school', ), migrations.RenameField( model_name='paymentamount', old_name='for_school', new_name='school', ), migrations.RenameField( model_name='paymentamount', old_name='for_user', new_name='user', ), migrations.AlterUniqueTogether( name='documenttype', unique_together=set([('school', 'short_name')]), ), migrations.AlterUniqueTogether( name='paymentamount', unique_together=set([('school', 'user')]), ), ]
26.881356
60
0.534048
68be34c4fbebd434c73ecf1cf4699108c00590fb
3,876
py
Python
S2SRL/SymbolicExecutor/transform_util.py
gokasiko/NS-CQA-1
96399928c9c1ee30521ea5defd3257fff27bfa74
[ "MIT" ]
9
2020-04-29T00:49:59.000Z
2022-01-15T08:56:28.000Z
S2SRL/SymbolicExecutor/transform_util.py
gokasiko/NS-CQA-1
96399928c9c1ee30521ea5defd3257fff27bfa74
[ "MIT" ]
1
2020-07-19T09:04:47.000Z
2020-10-08T12:23:03.000Z
S2SRL/SymbolicExecutor/transform_util.py
gokasiko/NS-CQA-1
96399928c9c1ee30521ea5defd3257fff27bfa74
[ "MIT" ]
6
2020-07-19T09:01:05.000Z
2021-11-11T07:58:07.000Z
# -*- coding: utf-8 -*- # @Time : 2019/9/1 23:36 # @Author : Devin Hua # Function: transforming. # Transform boolean results into string format. def transformBooleanToString(list): temp_set = set() if len(list) == 0: return '' else: for i, item in enumerate(list): if item == True: list[i] = "YES" temp_set.add(list[i]) elif item == False: list[i] = "NO" temp_set.add(list[i]) else: return '' if len(temp_set) == 1: return temp_set.pop() if len(temp_set) > 1: return ((' and '.join(list)).strip() + ' respectively') # Transform action sequence ['A2', '(', 'Q5058355', 'P361', 'Q5058355', ')', 'A2', '(', 'Q5058355', 'P361', 'Q5058355', ')', 'A15', '(', 'Q22329858', ')'] into list. def list2dict(list): final_list = [] temp_list = [] new_list = [] action_list = [] left_count, right_count, action_count = 0, 0, 0 for a in list: if a.startswith("A"): action_count+=1 action_list.append(a) if (a == "("): new_list = [] left_count+=1 continue if (a == ")"): right_count+=1 if ("-" in new_list and new_list[-1] != "-"): new_list[new_list.index("-") + 1] = "-" + new_list[new_list.index("-") + 1] new_list.remove("-") if (new_list == []): new_list = ["", "", ""] if (len(new_list) == 1): new_list = [new_list[0], "", ""] if ("&" in new_list): new_list = ["&", "", ""] if ("-" in new_list): new_list = ["-", "", ""] if ("|" in new_list): new_list = ["|", "", ""] temp_list.append(new_list) # To handle the error when action sequence is like 'A1 (Q1,P1,Q2) A2 Q3,P2,Q4)'. new_list = [] continue if not a.startswith("A"): if a.startswith("E"): a = "Q17" if a.startswith("T"): a = "Q17" new_list.append(a) # To handle the error when action sequence is like 'A1 Q1,P1,Q2) A2(Q3,P2,Q4', 'A1(Q1,P1,Q2 A2(Q3,P2,Q4)'. number_list = [left_count, right_count, len(action_list), len(temp_list)] set_temp = set(number_list) # The value of multiple numbers is same. if len(set_temp) == 1: for action, parameter_temp in zip(action_list, temp_list): final_list.append({action: parameter_temp}) # print("final_list", final_list) return final_list def list2dict_webqsp(list): #print("list", list) final_list = [] temp_list = [] new_list = [] for a in list: if (a == "("): new_list = [] continue if (a == ")"): if ("-" in new_list): new_list[new_list.index("-") + 1] = "-" + new_list[new_list.index("-") + 1] new_list.remove("-") if (new_list == []): new_list = ["", "", ""] if (len(new_list) == 1): new_list = [new_list[0], "", ""] if ("&" in new_list): new_list = ["&", "", ""] if ("-" in new_list): new_list = ["-", "", ""] if ("|" in new_list): new_list = ["|", "", ""] temp_list.append(new_list) continue if not a.startswith("A"): # if a.startswith("E"): a = "Q17" # if a.startswith("T"): a = "Q17" new_list.append(a) i = 0 for a in list: if (a.startswith("A")): if i < len(temp_list): final_list.append({a: temp_list[i]}) # temp_dict[a] = temp_list[i] i += 1 return final_list
34.300885
165
0.45743
0c7b0486613e2145e4acf0b596f92345458cfd42
3,431
py
Python
3_Deep_Double_Q_Learning_Atari_Games/plot.py
vamshikumarkurva/DeepReinforcementLearning
e3c123ba60620dfdfb1514ca99f5f86c813984d1
[ "MIT" ]
8
2018-06-11T18:26:58.000Z
2021-05-12T07:57:54.000Z
3_Deep_Double_Q_Learning_Atari_Games/plot.py
vamshikumarkurva/DeepReinforcementLearning
e3c123ba60620dfdfb1514ca99f5f86c813984d1
[ "MIT" ]
2
2018-06-21T15:17:57.000Z
2018-07-12T14:42:05.000Z
3_Deep_Double_Q_Learning_Atari_Games/plot.py
vamshikumarkurva/DeepReinforcementLearning
e3c123ba60620dfdfb1514ca99f5f86c813984d1
[ "MIT" ]
3
2018-07-10T10:16:22.000Z
2020-09-02T10:48:32.000Z
import seaborn as sns import pandas as pd import matplotlib.pyplot as plt import json import os """ Using the plotter: Call it from the command line, and supply it with logdirs to experiments. Suppose you ran an experiment with name 'test', and you ran 'test' for 10 random seeds. The runner code stored it in the directory structure data L test_EnvName_DateTime L 0 L log.txt L params.json L 1 L log.txt L params.json . . . L 9 L log.txt L params.json To plot learning curves from the experiment, averaged over all random seeds, call python plot.py data/test_EnvName_DateTime --value AverageReturn and voila. To see a different statistics, change what you put in for the keyword --value. You can also enter /multiple/ values, and it will make all of them in order. Suppose you ran two experiments: 'test1' and 'test2'. In 'test2' you tried a different set of hyperparameters from 'test1', and now you would like to compare them -- see their learning curves side-by-side. Just call python plot.py data/test1 data/test2 and it will plot them both! They will be given titles in the legend according to their exp_name parameters. If you want to use custom legend titles, use the --legend flag and then provide a title for each logdir. """ def plot_data(data, value="AverageReturn"): print(data) if isinstance(data, list): data = pd.concat(data, ignore_index=True) sns.set(style="darkgrid", font_scale=1.5) sns.tsplot(data=data, time="Iteration", value=value, unit="Unit", condition="Condition") plt.legend(loc='best').draggable() plt.show() def get_datasets(fpath, condition=None): unit = 0 datasets = [] for root, dir, files in os.walk(fpath): if 'log.txt' in files: param_path = open(os.path.join(root,'params.json')) params = json.load(param_path) exp_name = params['exp_name'] log_path = os.path.join(root,'log.txt') experiment_data = pd.read_table(log_path) experiment_data.insert( len(experiment_data.columns), 'Unit', unit ) experiment_data.insert( len(experiment_data.columns), 'Condition', condition or exp_name ) datasets.append(experiment_data) unit += 1 return datasets def main(): import argparse parser = argparse.ArgumentParser() parser.add_argument('logdir', nargs='*') parser.add_argument('--legend', nargs='*') parser.add_argument('--value', default='AverageReturn', nargs='*') args = parser.parse_args() use_legend = False if args.legend is not None: assert len(args.legend) == len(args.logdir), \ "Must give a legend title for each set of experiments." use_legend = True data = [] if use_legend: for logdir, legend_title in zip(args.logdir, args.legend): data += get_datasets(logdir, legend_title) else: for logdir in args.logdir: data += get_datasets(logdir) if isinstance(args.value, list): values = args.value else: values = [args.value] for value in values: plot_data(data, value=value) if __name__ == "__main__": main()
28.355372
92
0.629554
bde2ac3f710d3e398bd53893c4acd0b9164d93be
3,637
py
Python
kubernetes_asyncio/client/models/v1_container_state_running.py
playground-julia/kubernetes_asyncio
91b2c41eedd282d9ebc059377fb7f207e220133d
[ "Apache-2.0" ]
null
null
null
kubernetes_asyncio/client/models/v1_container_state_running.py
playground-julia/kubernetes_asyncio
91b2c41eedd282d9ebc059377fb7f207e220133d
[ "Apache-2.0" ]
null
null
null
kubernetes_asyncio/client/models/v1_container_state_running.py
playground-julia/kubernetes_asyncio
91b2c41eedd282d9ebc059377fb7f207e220133d
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Kubernetes No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 The version of the OpenAPI document: v1.15.9 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from kubernetes_asyncio.client.configuration import Configuration class V1ContainerStateRunning(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'started_at': 'datetime' } attribute_map = { 'started_at': 'startedAt' } def __init__(self, started_at=None, local_vars_configuration=None): # noqa: E501 """V1ContainerStateRunning - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._started_at = None self.discriminator = None if started_at is not None: self.started_at = started_at @property def started_at(self): """Gets the started_at of this V1ContainerStateRunning. # noqa: E501 Time at which the container was last (re-)started # noqa: E501 :return: The started_at of this V1ContainerStateRunning. # noqa: E501 :rtype: datetime """ return self._started_at @started_at.setter def started_at(self, started_at): """Sets the started_at of this V1ContainerStateRunning. Time at which the container was last (re-)started # noqa: E501 :param started_at: The started_at of this V1ContainerStateRunning. # noqa: E501 :type: datetime """ self._started_at = started_at def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, V1ContainerStateRunning): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, V1ContainerStateRunning): return True return self.to_dict() != other.to_dict()
29.569106
124
0.598295
b50b0242fd3422d8333e80a40a09fd8ce1e4c6bb
372
py
Python
data.py
abc1763613206/UniversalTGChatBot
13d8144f71f4c9326b344a8697baa5fa72005e21
[ "MIT" ]
null
null
null
data.py
abc1763613206/UniversalTGChatBot
13d8144f71f4c9326b344a8697baa5fa72005e21
[ "MIT" ]
41
2019-12-05T21:16:22.000Z
2021-07-27T21:14:47.000Z
data.py
abc1763613206/UniversalTGChatBot
13d8144f71f4c9326b344a8697baa5fa72005e21
[ "MIT" ]
null
null
null
comment = { 'welcome_msg' : '用户发送 /start 或 /help 时的欢迎消息', 'text_not_supported' : '用户发送非文字时的回复', 'data_saved' : '保存数据后的回复', 'demo_mode_on' : '开启演示模式的回复', 'demo_mode_off' : '关闭演示模式的回复', 'not_admin' : '用户权限不足时的回复', 'quotes' : '(请勿使用该选项设置)语录库', 'texts' : '(请勿使用该选项设置)语录无法匹配时的随机库', 'admins' : '动态添加的管理,存储username,权限应与config.py中写死的admin作区分' }
33.818182
61
0.637097
f50106826a79986acacf743a46b511c03fb23e3d
3,363
py
Python
torrent_name_analyzer/name_parser/patterns.py
opacam/torrent-name-analyzer
3d6a8c05577925c4d8017a8151f725d9752771d7
[ "MIT" ]
1
2020-07-08T14:01:36.000Z
2020-07-08T14:01:36.000Z
torrent_name_analyzer/name_parser/patterns.py
opacam/torrent-name-analyzer
3d6a8c05577925c4d8017a8151f725d9752771d7
[ "MIT" ]
null
null
null
torrent_name_analyzer/name_parser/patterns.py
opacam/torrent-name-analyzer
3d6a8c05577925c4d8017a8151f725d9752771d7
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- delimiters = r'[\.\s\-\+_\/]' langs = ( r'rus|(?:True)?fr(?:ench)?|e?n(?:g(?:lish)?)?|vost(?:fr)?|ita(?:liano)?|' r'castellano|swedish|spanish|dk|german|multi|nordic|exyu|chs|hindi|polish' r'|mandarin' ) producers = 'ATVP|AMZN|NF|NICK|RED|DSNP' season_range_pattern = ( r'(?:Complete' + delimiters + r'*)?(?:' + delimiters + r'*)?(?:s(?:easons?)?)?' + delimiters + r'?(?:s?[0-9]{1,2}[\s]*(?:\-|(?:\s*to\s*))[\s]*s?[0-9]{1,2})(?:' + delimiters + r'*Complete)?' ) episode_pattern = ( '(?:(?:[ex]|ep)(?:[0-9]{1,2}(?:-(?:[ex]|ep)?(?:[0-9]{1,2})))|' '(?:[ex]|ep)([0-9]{1,2}))' ) year_pattern = '(?:19[0-9]|20[0-2])[0-9]' month_pattern = '0[1-9]|1[0-2]' day_pattern = '[0-2][0-9]|3[01]' patterns = [ ('season', delimiters + '(' # Season description can't be at the beginning, must be after this pattern # noqa: 501 '' + season_range_pattern + '|' # Describes season ranges '(?:Complete' + delimiters + ')?s([0-9]{1,2})(?:' + episode_pattern + ')?|' # Describes season, optionally with complete or episode # noqa: 501 '([0-9]{1,2})x[0-9]{2}|' # Describes 5x02, 12x15 type descriptions '(?:Complete' + delimiters + r')?Season[\. -]([0-9]{1,2})' # Describes Season.15 type descriptions # noqa: 501 ')(?:' + delimiters + '|$)'), ('episode', '(' + episode_pattern + ')(?:[^0-9]|$)'), ('year', r'([\[\(]?(' + year_pattern + r')[\]\)]?)'), ('month', '(?:' + year_pattern + ')' + delimiters + '(' + month_pattern + ')' + delimiters + '(?:' + day_pattern + ')' ), ('day', '(?:' + year_pattern + ')' + delimiters + '(?:' + month_pattern + ')' + delimiters + '(' + day_pattern + ')'), ('resolution', '([0-9]{3,4}p|1280x720)'), ('quality', (r'((?:PPV\.)?[HP]DTV|CAM-RIP|(?:HD)?CAM|B[DR]Rip|(?:HD-?)?TS|' r'HDRip|HDTVRip|DVDRip|DVDRIP|CamRip|(?:(?:' + producers + ')' + delimiters + r'?)?(?:PPV )?W[EB]B(?:-?DL(?:Mux)?)' r'?(?:Rip| DVDRip)?|BluRay|DvDScr|hdtv|telesync)')), ('codec', r'(xvid|[hx]\.?26[45])'), ('audio', (r'(MP3|DD5\.?1|Dual[\- ]Audio|LiNE|DTS|DTS5\.1|' r'AAC[ \.-]LC|AAC(?:(?:\.?2(?:\.0)?)?|(?:\.?5(?:\.1)?)?)|' r'(?:E-?)?AC-?3(?:' + delimiters + r'*?(?:2\.0|5\.1))?)')), ('group', '(- ?([^-]+(?:-={[^-]+-?$)?))$'), ('region', 'R[0-9]'), ('extended', '(EXTENDED(:?.CUT)?)'), ('hardcoded', 'HC'), ('proper', 'PROPER'), ('repack', 'REPACK'), ('container', '(MKV|AVI|MP4)'), ('widescreen', 'WS'), ('website', r'^(\[ ?([^\]]+?) ?\])'), ('subtitles', r'((?:(?:' + langs + r'|e-?)[\-\s.]*)*subs?)'), ('language', r'((?:(?:' + langs + ')' + delimiters + r'*)+)(?!(?:[\-\s.]*(?:' + langs + r')*)+[\-\s.]?subs)'), ('sbs', '(?:Half-)?SBS'), ('unrated', 'UNRATED'), ('size', r'(\d+(?:\.\d+)?(?:GB|MB))'), ('bitDepth', '(?:8|10)bit'), ('3d', '3D'), ('internal', 'iNTERNAL'), ('readnfo', 'READNFO') ] types = { 'season': 'integer', 'episode': 'integer', 'year': 'integer', 'month': 'integer', 'day': 'integer', 'extended': 'boolean', 'hardcoded': 'boolean', 'proper': 'boolean', 'repack': 'boolean', 'widescreen': 'boolean', 'unrated': 'boolean', '3d': 'boolean', 'internal': 'boolean', 'readnfo': 'boolean' }
38.655172
150
0.460898
456f0509d21782762e2f0fe95a0b373606af3094
99
py
Python
eventsrouter/apps.py
The-Politico/django-slack-events-router
a838d94a55f7be7afeafa19dad093c29e77ebe67
[ "MIT" ]
null
null
null
eventsrouter/apps.py
The-Politico/django-slack-events-router
a838d94a55f7be7afeafa19dad093c29e77ebe67
[ "MIT" ]
6
2019-12-05T00:43:05.000Z
2021-06-09T18:39:48.000Z
eventsrouter/apps.py
The-Politico/django-slack-events-router
a838d94a55f7be7afeafa19dad093c29e77ebe67
[ "MIT" ]
1
2021-05-30T15:00:36.000Z
2021-05-30T15:00:36.000Z
from django.apps import AppConfig class EventsrouterConfig(AppConfig): name = "eventsrouter"
16.5
36
0.777778
b90f6d3d8627004bd32a830d8f8e54420beaa4d4
217
py
Python
src/saml2/profile/samlec.py
skanct/pysaml2
0c1e26a6dd8759962857a30ebd67f63fe9e881ee
[ "Apache-2.0" ]
5,079
2015-01-01T03:39:46.000Z
2022-03-31T07:38:22.000Z
src/saml2/profile/samlec.py
skanct/pysaml2
0c1e26a6dd8759962857a30ebd67f63fe9e881ee
[ "Apache-2.0" ]
1,623
2015-01-01T08:06:24.000Z
2022-03-30T19:48:52.000Z
src/saml2/profile/samlec.py
skanct/pysaml2
0c1e26a6dd8759962857a30ebd67f63fe9e881ee
[ "Apache-2.0" ]
2,033
2015-01-04T07:18:02.000Z
2022-03-28T19:55:47.000Z
from saml2 import SamlBase NAMESPACE = 'urn:ietf:params:xml:ns:samlec' class GeneratedKey(SamlBase): c_tag = 'GeneratedKey' c_namespace = NAMESPACE ELEMENT_BY_TAG = { 'GeneratedKey': GeneratedKey, }
14.466667
43
0.718894
2450114b0e61dcd27df850da14fe58d0e68c4a21
2,959
py
Python
src/chatbot/chatbot.py
PYTHONBOY/carhood-garage-chatbot
bfa1dfd8ddfaa6bdc847861fa72fcb60a5a3defd
[ "Unlicense", "MIT" ]
null
null
null
src/chatbot/chatbot.py
PYTHONBOY/carhood-garage-chatbot
bfa1dfd8ddfaa6bdc847861fa72fcb60a5a3defd
[ "Unlicense", "MIT" ]
null
null
null
src/chatbot/chatbot.py
PYTHONBOY/carhood-garage-chatbot
bfa1dfd8ddfaa6bdc847861fa72fcb60a5a3defd
[ "Unlicense", "MIT" ]
null
null
null
#Meet Robo: your friend #import necessary libraries import io import random import string # to process standard python strings import warnings import numpy as np from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity import warnings warnings.filterwarnings('ignore') import nltk from chatterbot import ChatBot from nltk.stem import WordNetLemmatizer nltk.download('popular', quiet=True) # for downloading packages # uncomment the following only the first time #nltk.download('punkt') # first-time use only #nltk.download('wordnet') # first-time use only #Reading in the corpus with open('chatbot.txt','r', encoding='utf8', errors ='ignore') as fin: raw = fin.read().lower() #TOkenisation sent_tokens = nltk.sent_tokenize(raw)# converts to list of sentences word_tokens = nltk.word_tokenize(raw)# converts to list of words # Preprocessing lemmer = WordNetLemmatizer() def LemTokens(tokens): return [lemmer.lemmatize(token) for token in tokens] remove_punct_dict = dict((ord(punct), None) for punct in string.punctuation) def LemNormalize(text): return LemTokens(nltk.word_tokenize(text.lower().translate(remove_punct_dict))) # Keyword Matching GREETING_INPUTS = ("hello", "hi", "greetings", "sup", "what's up","hey",) GREETING_RESPONSES = ["hi", "hey", "*nods*", "hi there", "hello", "I am glad! You are talking to me"] def greeting(sentence): """If user's input is a greeting, return a greeting response""" for word in sentence.split(): if word.lower() in GREETING_INPUTS: return random.choice(GREETING_RESPONSES) # Generating response def response(user_response): robo_response='' sent_tokens.append(user_response) TfidfVec = TfidfVectorizer(tokenizer=LemNormalize, stop_words='english') tfidf = TfidfVec.fit_transform(sent_tokens) vals = cosine_similarity(tfidf[-1], tfidf) idx=vals.argsort()[0][-2] flat = vals.flatten() flat.sort() req_tfidf = flat[-2] if(req_tfidf==0): robo_response=robo_response+"I am sorry! I don't understand you" return robo_response else: robo_response = robo_response+sent_tokens[idx] return robo_response flag=True print("ROBO: My name is Robo. I will answer your queries about Chatbots. If you want to exit, type Bye!") while(flag==True): user_response = input() user_response=user_response.lower() if(user_response!='bye'): if(user_response=='thanks' or user_response=='thank you' ): flag=False print("ROBO: You are welcome..") else: if(greeting(user_response)!=None): print("ROBO: "+greeting(user_response)) else: print("ROBO: ",end="") print(response(user_response)) sent_tokens.remove(user_response) else: flag=False print("ROBO: Bye! take care..")
31.478723
105
0.690098
378c63eddf7e07f5b65538e9e858f1d56951a586
1,189
py
Python
src/updatedb.py
510908220/django-backend-template
77c6a789e86654885616334b4a3590934026b07e
[ "MIT" ]
1
2017-01-22T09:24:20.000Z
2017-01-22T09:24:20.000Z
src/updatedb.py
510908220/django-backend-template
77c6a789e86654885616334b4a3590934026b07e
[ "MIT" ]
null
null
null
src/updatedb.py
510908220/django-backend-template
77c6a789e86654885616334b4a3590934026b07e
[ "MIT" ]
null
null
null
# -*- encoding: utf-8 -*- """ 业务监控升级脚本 """ import subprocess import os import MySQLdb import time import traceback import stat ROOT_DIR = os.path.abspath(os.path.dirname(__file__)) def wait_db_ok(): def test_db(): db = MySQLdb.connect("db","root",os.environ['DB_PASSWORD'],os.environ['DB_NAME'] ) cursor = db.cursor() cursor.execute("SELECT VERSION()") data = cursor.fetchone() db.close() try: test_db() return True except: print ("test db error:",traceback.format_exc()) return False def update_supervisor_cfg(): print (subprocess.check_output("python generate_supervisor_conf.py", shell=True)) def update_db(): cmds = [ "python manage.py makemigrations", "python manage.py migrate", "python manage.py collectstatic --noinput" ] for cmd in cmds: out = subprocess.check_output(cmd, shell=True) print (out) def main(): while not wait_db_ok(): time.sleep(5) print ("db is not ok, wait ....") old_dir = os.getcwd() os.chdir(ROOT_DIR) update_supervisor_cfg() update_db() if __name__ == "__main__": main()
22.433962
90
0.618167
3a1c3a1cb678c56447f8b21bdd262bde1a3d8f0f
1,416
py
Python
summarizer/sentence_handler.py
FrontMage/bert-extractive-summarizer
317da7c92c33ed103d7e2e4a35ef10538ce034d6
[ "MIT" ]
null
null
null
summarizer/sentence_handler.py
FrontMage/bert-extractive-summarizer
317da7c92c33ed103d7e2e4a35ef10538ce034d6
[ "MIT" ]
null
null
null
summarizer/sentence_handler.py
FrontMage/bert-extractive-summarizer
317da7c92c33ed103d7e2e4a35ef10538ce034d6
[ "MIT" ]
1
2021-06-05T19:10:44.000Z
2021-06-05T19:10:44.000Z
from typing import List from spacy.lang.zh import Chinese class SentenceHandler(object): def __init__(self, language=Chinese): self.nlp = language() try: self.nlp.add_pipe(self.nlp.create_pipe('sentencizer')) self.is_spacy_3 = False except: self.nlp.add_pipe("sentencizer") self.is_spacy_3 = True def sentence_processor(self, doc, min_length: int = 40, max_length: int = 600): to_return = [] for c in doc.sents: if max_length > len(c.text.strip()) > min_length: if self.is_spacy_3: to_return.append(c.text.strip()) else: to_return.append(c.string.strip()) return to_return def process(self, body: str, min_length: int = 40, max_length: int = 600) -> List[str]: """ Processes the content sentences. :param body: The raw string body to process :param min_length: Minimum length that the sentences must be :param max_length: Max length that the sentences mus fall under :return: Returns a list of sentences. """ doc = self.nlp(body) return self.sentence_processor(doc, min_length, max_length) def __call__(self, body: str, min_length: int = 40, max_length: int = 600) -> List[str]: return self.process(body, min_length, max_length)
32.181818
92
0.605226
216b40f57de57ce47aabf8e82042a38dd81901f1
192
py
Python
Python2 Tutorials/pythonIntermediateTutorial/Tutorial6 - Modulating/package/subpackage/__init__.py
DrapsTV/DrapsTV_Materials
1aee31df2d622a312b0d3f4eb2d29080a8043828
[ "MIT" ]
20
2016-06-16T12:05:45.000Z
2020-11-25T06:31:53.000Z
Python3 Tutorials/python3IntermediateTutorial/Tutorial6 - Modulating/package/subpackage/__init__.py
AyushLalShrestha/DrapsTV_Materials
1aee31df2d622a312b0d3f4eb2d29080a8043828
[ "MIT" ]
null
null
null
Python3 Tutorials/python3IntermediateTutorial/Tutorial6 - Modulating/package/subpackage/__init__.py
AyushLalShrestha/DrapsTV_Materials
1aee31df2d622a312b0d3f4eb2d29080a8043828
[ "MIT" ]
22
2016-05-02T10:16:17.000Z
2020-12-30T13:02:25.000Z
# This initalizes the subpackage folder. # the __all__ special variable indicates what modules to load then the * star # is used for importing. __all__ = ['mySubModule', 'myOtherSubModule']
27.428571
77
0.765625
8d480c37c53a201107eb76160984d7c3ec3f1d35
1,741
py
Python
docs/examples/qc_set_next_step.py
AvroNelson/s4-clarity-lib
af6f2ec77cdb7f942f5ea3990a61950aa2a1b3a4
[ "MIT" ]
11
2019-04-11T16:29:36.000Z
2022-01-31T18:32:27.000Z
docs/examples/qc_set_next_step.py
AvroNelson/s4-clarity-lib
af6f2ec77cdb7f942f5ea3990a61950aa2a1b3a4
[ "MIT" ]
9
2019-04-13T17:08:39.000Z
2021-12-07T23:31:01.000Z
docs/examples/qc_set_next_step.py
AvroNelson/s4-clarity-lib
af6f2ec77cdb7f942f5ea3990a61950aa2a1b3a4
[ "MIT" ]
10
2019-04-13T14:29:43.000Z
2021-04-01T01:35:51.000Z
# Copyright 2019 Semaphore Solutions, Inc. # --------------------------------------------------------------------------- import logging from s4.clarity.artifact import Artifact from s4.clarity.scripts import TriggeredStepEPP log = logging.getLogger(__name__) class QCSetNextStep(TriggeredStepEPP): def should_repeat_step(self, input_analyte): # type: (Artifact) -> bool # QC flag is set on output result file artifacts output_measurements = self.step.details.input_keyed_lookup[input_analyte] # If QC failed for any replicate of the input it should repeat return any(output.qc_failed() for output in output_measurements) def on_record_details_exit(self): """ Set the next step actions for the user to inspect. """ for analyte, action in self.step.actions.artifact_actions.items(): if self.should_repeat_step(analyte): log.info("Setting Analyte '%s' (%s) to repeat step." % (analyte.name, analyte.limsid)) action.repeat() else: action.next_step() self.step.actions.commit() def on_end_of_step(self): """ Ensure analytes repeat the step but do not overwrite other user selections. """ # As this is a QC step it is the inputs that are moving to the next step. for input_analyte, action in self.step.actions.artifact_actions.items(): if self.should_repeat_step(input_analyte): log.info("Setting Analyte '%s' (%s) to repeat step." % (input_analyte.name, input_analyte.limsid)) action.repeat() self.step.actions.commit() if __name__ == "__main__": QCSetNextStep.main()
32.240741
114
0.622631
f8f1af4c3da51ca5fcaf5a216c48ebd573192679
3,586
py
Python
pandas/tests/arrays/boolean/test_arithmetic.py
k-fillmore/pandas
67d4cae17bec45e84b9cf51bcf4fb5bbe293b26f
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "MIT", "ECL-2.0", "BSD-3-Clause" ]
28,899
2016-10-13T03:32:12.000Z
2022-03-31T21:39:05.000Z
pandas/tests/arrays/boolean/test_arithmetic.py
k-fillmore/pandas
67d4cae17bec45e84b9cf51bcf4fb5bbe293b26f
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "MIT", "ECL-2.0", "BSD-3-Clause" ]
31,004
2016-10-12T23:22:27.000Z
2022-03-31T23:17:38.000Z
pandas/tests/arrays/boolean/test_arithmetic.py
k-fillmore/pandas
67d4cae17bec45e84b9cf51bcf4fb5bbe293b26f
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "MIT", "ECL-2.0", "BSD-3-Clause" ]
15,149
2016-10-13T03:21:31.000Z
2022-03-31T18:46:47.000Z
import operator import numpy as np import pytest import pandas as pd import pandas._testing as tm from pandas.arrays import FloatingArray @pytest.fixture def data(): return pd.array( [True, False] * 4 + [np.nan] + [True, False] * 44 + [np.nan] + [True, False], dtype="boolean", ) @pytest.fixture def left_array(): return pd.array([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean") @pytest.fixture def right_array(): return pd.array([True, False, None] * 3, dtype="boolean") # Basic test for the arithmetic array ops # ----------------------------------------------------------------------------- @pytest.mark.parametrize( "opname, exp", [ ("add", [True, True, None, True, False, None, None, None, None]), ("mul", [True, False, None, False, False, None, None, None, None]), ], ids=["add", "mul"], ) def test_add_mul(left_array, right_array, opname, exp): op = getattr(operator, opname) result = op(left_array, right_array) expected = pd.array(exp, dtype="boolean") tm.assert_extension_array_equal(result, expected) def test_sub(left_array, right_array): msg = ( r"numpy boolean subtract, the `-` operator, is (?:deprecated|not supported), " r"use the bitwise_xor, the `\^` operator, or the logical_xor function instead\." ) with pytest.raises(TypeError, match=msg): left_array - right_array def test_div(left_array, right_array): result = left_array / right_array expected = FloatingArray( np.array( [1.0, np.inf, np.nan, 0.0, np.nan, np.nan, np.nan, np.nan, np.nan], dtype="float64", ), np.array([False, False, True, False, False, True, True, True, True]), ) tm.assert_extension_array_equal(result, expected) @pytest.mark.parametrize( "opname", [ "floordiv", "mod", pytest.param( "pow", marks=pytest.mark.xfail(reason="TODO follow int8 behaviour? GH34686") ), ], ) def test_op_int8(left_array, right_array, opname): op = getattr(operator, opname) result = op(left_array, right_array) expected = op(left_array.astype("Int8"), right_array.astype("Int8")) tm.assert_extension_array_equal(result, expected) # Test generic characteristics / errors # ----------------------------------------------------------------------------- def test_error_invalid_values(data, all_arithmetic_operators): # invalid ops op = all_arithmetic_operators s = pd.Series(data) ops = getattr(s, op) # invalid scalars msg = ( "did not contain a loop with signature matching types|" "BooleanArray cannot perform the operation|" "not supported for the input types, and the inputs could not be safely coerced " "to any supported types according to the casting rule ''safe''" ) with pytest.raises(TypeError, match=msg): ops("foo") msg = ( r"unsupported operand type\(s\) for|" "Concatenation operation is not implemented for NumPy arrays" ) with pytest.raises(TypeError, match=msg): ops(pd.Timestamp("20180101")) # invalid array-likes if op not in ("__mul__", "__rmul__"): # TODO(extension) numpy's mul with object array sees booleans as numbers msg = ( r"unsupported operand type\(s\) for|can only concatenate str|" "not all arguments converted during string formatting" ) with pytest.raises(TypeError, match=msg): ops(pd.Series("foo", index=s.index))
29.393443
88
0.607641
3ee3d28b59182aec404758656033a51d13bede2a
6,833
py
Python
worldview.py
Berserker66/omnitool
6bf88ba86a7c68a968f8c8db569b57e6ba836e8e
[ "MIT" ]
40
2015-03-15T14:38:24.000Z
2021-12-18T04:30:39.000Z
worldview.py
Berserker66/omnitool
6bf88ba86a7c68a968f8c8db569b57e6ba836e8e
[ "MIT" ]
31
2015-03-14T12:12:14.000Z
2022-02-27T17:50:56.000Z
worldview.py
Berserker66/omnitool
6bf88ba86a7c68a968f8c8db569b57e6ba836e8e
[ "MIT" ]
13
2015-07-31T11:40:41.000Z
2021-04-09T14:36:07.000Z
from __future__ import with_statement import time import sys from multiprocessing import * from tlib import get_tile_buffered from tinterface import get_header, get_pointers is_exe = hasattr(sys, "frozen") try: import pygame._view except ImportError: pass try: import pygame except: raise RuntimeError("Failed to import pygame, please install it - pygame.org") import colorlib import database as db def make_map(path, outputpath=None, mark=False, name=None): images = {} render = {} if mark: mark = [12, 26, 31] else: mark = [] for tile in mark: try: images[tile] = (pygame.image.load(str(tile) + ".png")) except Exception as e: print("Could not load image for tile ID %d") % (tile) raise e render[tile] = [] if len(mark): chests = [] chestsizes = [] for x in range(6): chests.append((pygame.image.load("21_" + str(x * 36) + ".png"))) chestsizes.append(chests[-1].get_size()) mark.append(21) render[21] = [] start = time.clock() with open(path, "rb") as f: b = [0] header = get_header(f)[0] # read header with tlib.get_header and also reach tile data in f x, y = header["width"], header["height"] #read world size from header cache s = pygame.surface.Surface((x, y)) #create a software surface to save tile colors in s.fill((200, 200, 255)) levels = header["groundlevel"], header["rocklevel"] pygame.draw.rect(s, (150, 75, 0), ((0, levels[0]), (x, y - levels[0]))) pygame.draw.rect(s, (50, 50, 50), ((0, levels[1]), (x, y - levels[1]))) for xi in range(x): # for each slice for yi in range(y): # get the tiles #tiles start from the upper left corner, then go downwards # when a slice is complete its starts with the next slice tile, b = get_tile_buffered(f, b) #tlib.get_tile tile, wall, liquid, multi, wire = tile if not liquid: #liquid == 0 means no liquid # there could be a liquid and a tile, like a chest and water, #but I can only set one color to a pixel anyway, so I priotise the tile if tile == None: if wall: if wall in colorlib.walldata: s.set_at((xi, yi), colorlib.walldata[wall]) else: print(wall) s.set_at((xi, yi), (wall, wall, wall)) #s.set_at((xi,yi), (255,255,255))#if no tile present, set it white elif tile in colorlib.data: s.set_at((xi, yi), colorlib.data[tile]) #if colorlib has a color use it else: s.set_at((xi, yi), (tile, tile, tile)) #make a grey elif liquid > 0: #0>x>256 is water, the higher x is the more water is there s.set_at((xi, yi), (19, 86, 134)) else: #lava is -256>x>0 s.set_at((xi, yi), (150, 35, 17)) if tile in mark: if multi == None: render[tile].append((xi, yi, multi)) elif multi[0] % 36 == 0 and multi[1] == 0: render[tile].append((xi, yi, multi)) if xi % 100 == 0: # every ten slices print the progress if name == None: print("done %5d of %5d\r" % (xi, x)) else: print("done %5d of %5d, of %s" % (xi, x, name)) for tile in render: for pos in render[tile]: if tile == 21: if pos[2][0] % 36 == 0 and pos[2][1] == 0: kind = pos[2][0] // 36 try: s.blit(chests[kind], (pos[0] - chestsizes[kind][0] // 2, pos[1] - chestsizes[kind][1] // 2)) except IndexError: kind = 0 s.blit(chests[kind], (pos[0] - chestsizes[kind][0] // 2, pos[1] - chestsizes[kind][1] // 2)) else: i = images[tile] size = i.get_size() s.blit(i, (pos[0] - size[0] // 2, pos[1] - size[1] // 2)) try: if outputpath == None: pa = path[:-3] + "png" else: pa = outputpath[:-3] + "png" pygame.image.save(s, pa) except: # if pygame was not build with additional image types, we go with with bmp which is guaranteed to exist if outputpath == None: pa = path[:-3] + "bmp" else: pa = outputpath[:-3] + "bmp" pygame.image.save(s, pa) # save the map and exit if name: print("completed mapping " + name) else: print("Completed mapping a World! ") return pa if __name__ == "__main__": freeze_support() # sys.argv.append("mark")# remove the # if you dont want to specify mark via command line if "mark" in sys.argv: mark = True else: mark = False make = None #make = "world1.wld" if make: make_map(make) done = False for world in sys.argv[1:]: if world[-3:] == "wld": make_map(sys.argv[1]) done = True if done: pass else: import os try: # get the my documents folder in windows. on other OS it will fail somewhere import ctypes dll = ctypes.windll.shell32 buf = ctypes.create_unicode_buffer(300) dll.SHGetSpecialFolderPathW(None, buf, 0x0005, False) p = os.path.join(buf.value, "My Games", "Terraria", "Worlds") except: p = os.path.expanduser("~/My Games/Terraria/Worlds") processes = [] for item in os.listdir(p): if item[-3:] == "wld": if "drop_low" in sys.argv: pos = os.path.join("..", item) else: pos = item pro = Process(target=make_map, name=item, args=(os.path.join(p, item), pos, mark, item)) pro.start() processes.append(pro) while len(processes) > 0: dead = [] for p in processes: #print (p) if not p.is_alive(): dead.append(p) for d in dead: d.join() processes.remove(d) time.sleep(1) print("All tasks done") time.sleep(5)
35.041026
116
0.480755
8f14569c2661671486a7626e3f7326bf77796283
541
py
Python
gui/build/bdist.win32/python2.7-standalone/app/temp/wx/_misc_.py
stvnrhodes/CNCAirbrush
9ad9721573130d601276ca9f0447132fd8cdde90
[ "MIT" ]
1
2018-06-20T07:30:12.000Z
2018-06-20T07:30:12.000Z
gui/build/bdist.win32/python2.7-standalone/app/temp/wx/_misc_.py
stvnrhodes/CNCAirbrush
9ad9721573130d601276ca9f0447132fd8cdde90
[ "MIT" ]
null
null
null
gui/build/bdist.win32/python2.7-standalone/app/temp/wx/_misc_.py
stvnrhodes/CNCAirbrush
9ad9721573130d601276ca9f0447132fd8cdde90
[ "MIT" ]
null
null
null
def __load(): import imp, os, sys ext = 'wx\\_misc_.pyd' for path in sys.path: if not path.endswith('lib-dynload'): continue ext = os.path.join(path, ext) if os.path.exists(ext): #print "py2app extension module", __name__, "->", ext mod = imp.load_dynamic(__name__, ext) #mod.frozen = 1 break else: raise ImportError(repr(ext) + " not found") else: raise ImportError("lib-dynload not found") __load() del __load
27.05
65
0.543438
67f68b4c400a701ecf98158ba429403cdac38134
14,343
py
Python
dialogflow_ros/dialogflow_client.py
hypothe/dialogflow_ros
9e804acf31c384286ebf15e666a952740e2341d9
[ "MIT" ]
null
null
null
dialogflow_ros/dialogflow_client.py
hypothe/dialogflow_ros
9e804acf31c384286ebf15e666a952740e2341d9
[ "MIT" ]
null
null
null
dialogflow_ros/dialogflow_client.py
hypothe/dialogflow_ros
9e804acf31c384286ebf15e666a952740e2341d9
[ "MIT" ]
2
2021-09-09T07:33:27.000Z
2021-09-09T07:37:28.000Z
#!/usr/bin/env python # Dialogflow import dialogflow_v2beta1 from dialogflow_v2beta1.types import Context, EventInput, InputAudioConfig, \ OutputAudioConfig, QueryInput, QueryParameters, \ StreamingDetectIntentRequest, TextInput from dialogflow_v2beta1.gapic.enums import AudioEncoding, OutputAudioEncoding import google.api_core.exceptions import utils from AudioServerStream import AudioServerStream from MicrophoneStream import MicrophoneStream # Python import pyaudio import signal import time from uuid import uuid4 from yaml import load, YAMLError # ROS import rospy import rospkg from std_msgs.msg import String from dialogflow_ros.msg import * # Use to convert Struct messages to JSON # from google.protobuf.json_format import MessageToJson class DialogflowClient(object): def __init__(self, language_code='en-US', last_contexts=None): """Initialize all params and load data""" """ Constants and params """ self.CHUNK = 4096 self.FORMAT = pyaudio.paInt16 self.CHANNELS = 1 self.RATE = 44100 self.USE_AUDIO_SERVER = rospy.get_param('/dialogflow_client/use_audio_server', False) self.PLAY_AUDIO = rospy.get_param('/dialogflow_client/play_audio', True) self.DEBUG = rospy.get_param('/dialogflow_client/debug', False) # Register Ctrl-C sigint signal.signal(signal.SIGINT, self._signal_handler) """ Dialogflow setup """ # Get hints/clues rp = rospkg.RosPack() file_dir = rp.get_path('dialogflow_ros') + '/config/context.yaml' with open(file_dir, 'r') as f: try: self.phrase_hints = load(f) except YAMLError: rospy.logwarn("DF_CLIENT: Unable to open phrase hints yaml file!") self.phrase_hints = [] # Dialogflow params project_id = rospy.get_param('/dialogflow_client/project_id', 'gentle-proton-252714') session_id = str(uuid4()) # Random self._language_code = language_code self.last_contexts = last_contexts if last_contexts else [] # DF Audio Setup audio_encoding = AudioEncoding.AUDIO_ENCODING_LINEAR_16 # Possibel models: video, phone_call, command_and_search, default self._audio_config = InputAudioConfig(audio_encoding=audio_encoding, language_code=self._language_code, sample_rate_hertz=self.RATE, phrase_hints=self.phrase_hints, model='command_and_search') self._output_audio_config = OutputAudioConfig( audio_encoding=OutputAudioEncoding.OUTPUT_AUDIO_ENCODING_LINEAR_16 ) # Create a session self._session_cli = dialogflow_v2beta1.SessionsClient() self._session = self._session_cli.session_path(project_id, session_id) rospy.logdebug("DF_CLIENT: Session Path: {}".format(self._session)) """ ROS Setup """ results_topic = rospy.get_param('/dialogflow_client/results_topic', '/dialogflow_client/results') requests_topic = rospy.get_param('/dialogflow_client/requests_topic', '/dialogflow_client/requests') text_req_topic = requests_topic + '/string_msg' text_event_topic = requests_topic + '/string_event' msg_req_topic = requests_topic + '/df_msg' event_req_topic = requests_topic + '/df_event' self._results_pub = rospy.Publisher(results_topic, DialogflowResult, queue_size=10) rospy.Subscriber(text_req_topic, String, self._text_request_cb) rospy.Subscriber(text_event_topic, String, self._text_event_cb) rospy.Subscriber(msg_req_topic, DialogflowRequest, self._msg_request_cb) rospy.Subscriber(event_req_topic, DialogflowEvent, self._event_request_cb) """ Audio setup """ # Mic stream input setup self.audio = pyaudio.PyAudio() self._server_name = rospy.get_param('/dialogflow_client/server_name', '127.0.0.1') self._port = rospy.get_param('/dialogflow_client/port', 4444) if self.PLAY_AUDIO: self._create_audio_output() rospy.logdebug("DF_CLIENT: Last Contexts: {}".format(self.last_contexts)) rospy.loginfo("DF_CLIENT: Ready!") # ========================================= # # ROS Utility Functions # # ========================================= # def _text_request_cb(self, msg): """ROS Callback that sends text received from a topic to Dialogflow, :param msg: A String message. :type msg: String """ rospy.logdebug("DF_CLIENT: Request received") new_msg = DialogflowRequest(query_text=msg.data) df_msg = self.detect_intent_text(new_msg) def _msg_request_cb(self, msg): """ROS Callback that sends text received from a topic to Dialogflow, :param msg: A DialogflowRequest message. :type msg: DialogflowRequest """ df_msg = self.detect_intent_text(msg) rospy.logdebug("DF_CLIENT: Request received:\n{}".format(df_msg)) def _event_request_cb(self, msg): """ :param msg: DialogflowEvent Message :type msg: DialogflowEvent""" new_event = utils.converters.events_msg_to_struct(msg) self.event_intent(new_event) def _text_event_cb(self, msg): new_event = EventInput(name=msg.data, language_code=self._language_code) self.event_intent(new_event) # ================================== # # Setters/Getters # # ================================== # def get_language_code(self): return self._language_code def set_language_code(self, language_code): assert isinstance(language_code, str), "Language code must be a string!" self._language_code = language_code # ==================================== # # Utility Functions # # ==================================== # def _signal_handler(self, signal, frame): rospy.logwarn("\nDF_CLIENT: SIGINT caught!") self.exit() # ----------------- # # Audio Utilities # # ----------------- # def _create_audio_output(self): """Creates a PyAudio output stream.""" rospy.logdebug("DF_CLIENT: Creating audio output...") self.stream_out = self.audio.open(format=pyaudio.paInt16, channels=1, rate=44100, output=True) def _play_stream(self, data): """Simple function to play a the output Dialogflow response. :param data: Audio in bytes. """ self.stream_out.start_stream() self.stream_out.write(data) time.sleep(0.2) # Wait for stream to finish self.stream_out.stop_stream() # -------------- # # DF Utilities # # -------------- # def _play_stream(self, data): """Simple function to play a the output Dialogflow response. :param data: Audio in bytes. """ self.stream_out.start_stream() self.stream_out.write(data) time.sleep(0.2) # Wait for stream to finish self.stream_out.stop_stream() # -------------- # # DF Utilities # # -------------- # def _generator(self): """Generator function that continuously yields audio chunks from the buffer. Used to stream data to the Google Speech API Asynchronously. :return A streaming request with the audio data. First request carries config data per Dialogflow docs. :rtype: Iterator[:class:`StreamingDetectIntentRequest`] """ # First message contains session, query_input, and params query_input = QueryInput(audio_config=self._audio_config) contexts = utils.converters.contexts_msg_to_struct(self.last_contexts) params = QueryParameters(contexts=contexts) req = StreamingDetectIntentRequest( session=self._session, query_input=query_input, query_params=params, single_utterance=True, output_audio_config=self._output_audio_config ) yield req if self.USE_AUDIO_SERVER: with AudioServerStream() as stream: audio_generator = stream.generator() for content in audio_generator: yield StreamingDetectIntentRequest(input_audio=content) else: with MicrophoneStream() as stream: audio_generator = stream.generator() for content in audio_generator: yield StreamingDetectIntentRequest(input_audio=content) # ======================================== # # Dialogflow Functions # # ======================================== # def detect_intent_text(self, msg): """Use the Dialogflow API to detect a user's intent. Goto the Dialogflow console to define intents and params. :param msg: DialogflowRequest msg :return query_result: Dialogflow's query_result with action parameters :rtype: DialogflowResult """ # Create the Query Input text_input = TextInput(text=msg.query_text, language_code=self._language_code) query_input = QueryInput(text=text_input) # Create QueryParameters user_contexts = utils.converters.contexts_msg_to_struct(msg.contexts) self.last_contexts = utils.converters.contexts_msg_to_struct(self.last_contexts) contexts = self.last_contexts + user_contexts params = QueryParameters(contexts=contexts) try: response = self._session_cli.detect_intent( session=self._session, query_input=query_input, query_params=params, output_audio_config=self._output_audio_config ) except google.api_core.exceptions.ServiceUnavailable: rospy.logwarn("DF_CLIENT: Deadline exceeded exception caught. The response " "took too long or you aren't connected to the internet!") else: # Store context for future use self.last_contexts = utils.converters.contexts_struct_to_msg( response.query_result.output_contexts ) df_msg = utils.converters.result_struct_to_msg( response.query_result) rospy.loginfo(utils.output.print_result(response.query_result)) # Play audio if self.PLAY_AUDIO: self._play_stream(response.output_audio) self._results_pub.publish(df_msg) return df_msg def detect_intent_stream(self, return_result=False): """Gets data from an audio generator (mic) and streams it to Dialogflow. We use a stream for VAD and single utterance detection.""" # Generator yields audio chunks. requests = self._generator() responses = self._session_cli.streaming_detect_intent(requests) resp_list = [] try: for response in responses: resp_list.append(response) rospy.logdebug( 'DF_CLIENT: Intermediate transcript: "{}".'.format( response.recognition_result.transcript)) except google.api_core.exceptions.Cancelled as c: rospy.logwarn("DF_CLIENT: Caught a Google API Client cancelled " "exception:\n{}".format(c)) except google.api_core.exceptions.Unknown as u: rospy.logwarn("DF_CLIENT: Unknown Exception Caught:\n{}".format(u)) else: if response is None: rospy.logwarn("DF_CLIENT: No response received!") return None # The response list returns responses in the following order: # 1. All intermediate recognition results # 2. The Final query recognition result (no audio!) # 3. The output audio with config final_result = resp_list[-2].query_result final_audio = resp_list[-1] self.last_contexts = utils.converters.contexts_struct_to_msg( final_result.output_contexts ) df_msg = utils.converters.result_struct_to_msg(final_result) rospy.loginfo(utils.output.print_result(final_result)) # Play audio if self.PLAY_AUDIO: self._play_stream(final_audio.output_audio) # Pub self._results_pub.publish(df_msg) if return_result: return df_msg, final_result return df_msg def event_intent(self, event): """Send an event message to Dialogflow :param event: The ROS event message :type event: DialogflowEvent :return: The result from dialogflow as a ROS msg :rtype: DialogflowResult """ query_input = QueryInput(event=event) params = utils.converters.create_query_parameters( contexts=self.last_contexts ) response = self._session_cli.detect_intent( session=self._session, query_input=query_input, query_params=params, output_audio_config=self._output_audio_config ) df_msg = utils.converters.result_struct_to_msg(response) if self.PLAY_AUDIO: self._play_stream(response.output_audio) return df_msg def start(self): """Start the dialogflow client""" rospy.loginfo("DF_CLIENT: Spinning...") rospy.spin() def exit(self): """Close as cleanly as possible""" rospy.loginfo("DF_CLIENT: Shutting down") self.audio.terminate() exit() if __name__ == '__main__': rospy.init_node('dialogflow_client') df = DialogflowClient() df.start() df.detect_intent_stream()
40.631728
93
0.604894
73bfb5a327909f46039ad5066a57b6c22f8ab5d3
1,314
py
Python
container/web/rest_api.py
pureelk/pureelk
cd4bbc369379da4b8dcf42d20e26f31c3314b170
[ "Apache-2.0" ]
14
2015-10-15T21:57:17.000Z
2018-04-13T23:30:16.000Z
container/web/rest_api.py
gary-yang/PureElk
e87fdb58c29ad406b089226ca65a65ba1b4fb0eb
[ "Apache-2.0" ]
9
2016-03-01T21:40:59.000Z
2017-01-30T20:00:47.000Z
container/web/rest_api.py
gary-yang/PureElk
e87fdb58c29ad406b089226ca65a65ba1b4fb0eb
[ "Apache-2.0" ]
11
2015-09-24T14:48:16.000Z
2019-03-08T15:36:52.000Z
import flask from flask import request, make_response, current_app from errorcodes import ErrorCodes import json from functools import wraps def rest_api(f): """ A decorator for rest API :param f: :return: """ @wraps(f) def decorator(*args, **kwargs): json_object = None if request.data: try: json_object = json.loads(request.data) except ValueError as v: current_app.logger.info("Invalid input = {}, error = {}".format(request.data, v)) return make_rest_response(make_error(ErrorCodes.InvalidInput.value, "Input is invalid"), 400) if json_object: result = f(*args, **dict(kwargs, json_body=json_object)) else: result = f(*args, **kwargs) if isinstance(result, flask.Response): return result else: return flask.Response(json.dumps(result), content_type='application/json; charset=utf-8') return decorator def make_rest_response(error, status_code): response = make_response(json.dumps(error), status_code) response.headers["Content-Type"] = "'application/json; charset=utf-8'" return response def make_error(code, message): return { "code": code, "message": message }
26.816327
109
0.622527
af9faf21b79e0c8973f7dc742f7fec3f230fb0eb
6,954
py
Python
homeassistant/components/nanoleaf/light.py
JeffersonBledsoe/core
3825f80a2dd087ae70654079cd9f3071289b8423
[ "Apache-2.0" ]
3
2021-11-05T13:24:19.000Z
2022-01-08T12:17:09.000Z
homeassistant/components/nanoleaf/light.py
JeffersonBledsoe/core
3825f80a2dd087ae70654079cd9f3071289b8423
[ "Apache-2.0" ]
87
2020-07-06T22:22:54.000Z
2022-03-31T06:01:46.000Z
homeassistant/components/nanoleaf/light.py
JeffersonBledsoe/core
3825f80a2dd087ae70654079cd9f3071289b8423
[ "Apache-2.0" ]
3
2021-05-31T15:32:08.000Z
2021-08-10T22:08:42.000Z
"""Support for Nanoleaf Lights.""" from __future__ import annotations import logging import math from typing import Any from aionanoleaf import Nanoleaf, Unavailable import voluptuous as vol from homeassistant.components.light import ( ATTR_BRIGHTNESS, ATTR_COLOR_TEMP, ATTR_EFFECT, ATTR_HS_COLOR, ATTR_TRANSITION, PLATFORM_SCHEMA, SUPPORT_BRIGHTNESS, SUPPORT_COLOR, SUPPORT_COLOR_TEMP, SUPPORT_EFFECT, SUPPORT_TRANSITION, LightEntity, ) from homeassistant.config_entries import SOURCE_IMPORT, ConfigEntry from homeassistant.const import CONF_HOST, CONF_NAME, CONF_TOKEN from homeassistant.core import HomeAssistant import homeassistant.helpers.config_validation as cv from homeassistant.helpers.entity import DeviceInfo from homeassistant.helpers.entity_platform import AddEntitiesCallback from homeassistant.helpers.typing import ConfigType, DiscoveryInfoType from homeassistant.util.color import ( color_temperature_kelvin_to_mired as kelvin_to_mired, color_temperature_mired_to_kelvin as mired_to_kelvin, ) from .const import DOMAIN RESERVED_EFFECTS = ("*Solid*", "*Static*", "*Dynamic*") DEFAULT_NAME = "Nanoleaf" PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend( { vol.Required(CONF_HOST): cv.string, vol.Required(CONF_TOKEN): cv.string, vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string, } ) _LOGGER = logging.getLogger(__name__) async def async_setup_platform( hass: HomeAssistant, config: ConfigType, async_add_entities: AddEntitiesCallback, discovery_info: DiscoveryInfoType | None = None, ) -> None: """Import Nanoleaf light platform.""" hass.async_create_task( hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_IMPORT}, data={CONF_HOST: config[CONF_HOST], CONF_TOKEN: config[CONF_TOKEN]}, ) ) async def async_setup_entry( hass: HomeAssistant, entry: ConfigEntry, async_add_entities: AddEntitiesCallback ) -> None: """Set up the Nanoleaf light.""" nanoleaf: Nanoleaf = hass.data[DOMAIN][entry.entry_id] async_add_entities([NanoleafLight(nanoleaf)]) class NanoleafLight(LightEntity): """Representation of a Nanoleaf Light.""" def __init__(self, nanoleaf: Nanoleaf) -> None: """Initialize an Nanoleaf light.""" self._nanoleaf = nanoleaf self._attr_unique_id = self._nanoleaf.serial_no self._attr_name = self._nanoleaf.name self._attr_device_info = DeviceInfo( identifiers={(DOMAIN, self._nanoleaf.serial_no)}, name=self._nanoleaf.name, manufacturer=self._nanoleaf.manufacturer, model=self._nanoleaf.model, sw_version=self._nanoleaf.firmware_version, ) self._attr_min_mireds = math.ceil( 1000000 / self._nanoleaf.color_temperature_max ) self._attr_max_mireds = kelvin_to_mired(self._nanoleaf.color_temperature_min) @property def brightness(self) -> int: """Return the brightness of the light.""" return int(self._nanoleaf.brightness * 2.55) @property def color_temp(self) -> int: """Return the current color temperature.""" return kelvin_to_mired(self._nanoleaf.color_temperature) @property def effect(self) -> str | None: """Return the current effect.""" # The API returns the *Solid* effect if the Nanoleaf is in HS or CT mode. # The effects *Static* and *Dynamic* are not supported by Home Assistant. # These reserved effects are implicitly set and are not in the effect_list. # https://forum.nanoleaf.me/docs/openapi#_byoot0bams8f return ( None if self._nanoleaf.effect in RESERVED_EFFECTS else self._nanoleaf.effect ) @property def effect_list(self) -> list[str]: """Return the list of supported effects.""" return self._nanoleaf.effects_list @property def icon(self) -> str: """Return the icon to use in the frontend, if any.""" return "mdi:triangle-outline" @property def is_on(self) -> bool: """Return true if light is on.""" return self._nanoleaf.is_on @property def hs_color(self) -> tuple[int, int]: """Return the color in HS.""" return self._nanoleaf.hue, self._nanoleaf.saturation @property def supported_features(self) -> int: """Flag supported features.""" return ( SUPPORT_BRIGHTNESS | SUPPORT_COLOR_TEMP | SUPPORT_EFFECT | SUPPORT_COLOR | SUPPORT_TRANSITION ) async def async_turn_on(self, **kwargs: Any) -> None: """Instruct the light to turn on.""" brightness = kwargs.get(ATTR_BRIGHTNESS) hs_color = kwargs.get(ATTR_HS_COLOR) color_temp_mired = kwargs.get(ATTR_COLOR_TEMP) effect = kwargs.get(ATTR_EFFECT) transition = kwargs.get(ATTR_TRANSITION) if hs_color: hue, saturation = hs_color await self._nanoleaf.set_hue(int(hue)) await self._nanoleaf.set_saturation(int(saturation)) if color_temp_mired: await self._nanoleaf.set_color_temperature( mired_to_kelvin(color_temp_mired) ) if transition: if brightness: # tune to the required brightness in n seconds await self._nanoleaf.set_brightness( int(brightness / 2.55), transition=int(kwargs[ATTR_TRANSITION]) ) else: # If brightness is not specified, assume full brightness await self._nanoleaf.set_brightness(100, transition=int(transition)) else: # If no transition is occurring, turn on the light await self._nanoleaf.turn_on() if brightness: await self._nanoleaf.set_brightness(int(brightness / 2.55)) if effect: if effect not in self.effect_list: raise ValueError( f"Attempting to apply effect not in the effect list: '{effect}'" ) await self._nanoleaf.set_effect(effect) async def async_turn_off(self, **kwargs: Any) -> None: """Instruct the light to turn off.""" transition: float | None = kwargs.get(ATTR_TRANSITION) await self._nanoleaf.turn_off(None if transition is None else int(transition)) async def async_update(self) -> None: """Fetch new state data for this light.""" try: await self._nanoleaf.get_info() except Unavailable: if self.available: _LOGGER.warning("Could not connect to %s", self.name) self._attr_available = False return if not self.available: _LOGGER.info("Fetching %s data recovered", self.name) self._attr_available = True
34.77
88
0.658326
70629854deac753fafb41a0850d3fefc2764edf2
1,332
py
Python
homeassistant/components/devolo_home_control/devolo_multi_level_switch.py
csseal/core
5802d65ef71697e6627b82e1677894d13d0f16d7
[ "Apache-2.0" ]
6
2016-11-25T06:36:27.000Z
2021-11-16T11:20:23.000Z
homeassistant/components/devolo_home_control/devolo_multi_level_switch.py
SicAriuSx83/core
162c39258e68ae42fe4e1560ae91ed54f5662409
[ "Apache-2.0" ]
45
2020-07-23T07:13:34.000Z
2022-03-31T06:01:55.000Z
homeassistant/components/devolo_home_control/devolo_multi_level_switch.py
SicAriuSx83/core
162c39258e68ae42fe4e1560ae91ed54f5662409
[ "Apache-2.0" ]
2
2020-05-11T00:38:26.000Z
2021-01-15T13:23:44.000Z
"""Base class for multi level switches in devolo Home Control.""" import logging from .devolo_device import DevoloDeviceEntity _LOGGER = logging.getLogger(__name__) class DevoloMultiLevelSwitchDeviceEntity(DevoloDeviceEntity): """Representation of a multi level switch device within devolo Home Control. Something like a dimmer or a thermostat.""" def __init__(self, homecontrol, device_instance, element_uid): """Initialize a multi level switch within devolo Home Control.""" super().__init__( homecontrol=homecontrol, device_instance=device_instance, element_uid=element_uid, name=device_instance.item_name, sync=self._sync, ) self._multi_level_switch_property = device_instance.multi_level_switch_property[ element_uid ] self._value = self._multi_level_switch_property.value def _sync(self, message): """Update the multi level switch state.""" if message[0] == self._multi_level_switch_property.element_uid: self._value = message[1] elif message[0].startswith("hdm"): self._available = self._device_instance.is_online() else: _LOGGER.debug("No valid message received: %s", message) self.schedule_update_ha_state()
37
124
0.683183
7e02c097c79d1ccffbd9bb3129c8c9d831a01316
848
py
Python
dectauth/urls.py
stefanw/eventphoauth
bd5678297e998bc4c16892aeff0ce712925f073b
[ "MIT" ]
2
2019-08-25T15:18:11.000Z
2019-09-06T19:51:10.000Z
dectauth/urls.py
stefanw/eventphoauth
bd5678297e998bc4c16892aeff0ce712925f073b
[ "MIT" ]
null
null
null
dectauth/urls.py
stefanw/eventphoauth
bd5678297e998bc4c16892aeff0ce712925f073b
[ "MIT" ]
null
null
null
from django.conf.urls import url from oauth2_provider.views import ( AuthorizationView, TokenView, ) from .api_views import ProfileView from .views import start, challenge from .callout_views import challenge_voice_response, challenge_gather_input app_name = 'dectauth' urlpatterns = [ url(r'^$', start, name="start"), url(r'^api/user/', ProfileView.as_view(), name='api-user-profile'), url(r'^challenge/(?P<challenge_uuid>[^/]+)/$', challenge, name='challenge'), url(r'^authorize/$', AuthorizationView.as_view(), name="authorize"), url(r'^token/$', TokenView.as_view(), name="token"), url(r'^callout/(?P<challenge_uuid>[^/]+)/$', challenge_voice_response, name='challenge-callout'), url(r'^callout-gather/(?P<challenge_uuid>[^/]+)/$', challenge_gather_input, name='challenge-callout-gather'), ]
35.333333
80
0.692217
2ae2c4adae2c9b8eb32c1ef29941cc19d45e5e1d
498
py
Python
sdk/storage/azure-mgmt-storage/azure/mgmt/storage/v2017_06_01/version.py
iscai-msft/azure-sdk-for-python
83715b95c41e519d5be7f1180195e2fba136fc0f
[ "MIT" ]
4
2016-06-17T23:25:29.000Z
2022-03-30T22:37:45.000Z
sdk/storage/azure-mgmt-storage/azure/mgmt/storage/v2017_06_01/version.py
iscai-msft/azure-sdk-for-python
83715b95c41e519d5be7f1180195e2fba136fc0f
[ "MIT" ]
226
2019-07-24T07:57:21.000Z
2019-10-15T01:07:24.000Z
sdk/storage/azure-mgmt-storage/azure/mgmt/storage/v2017_06_01/version.py
iscai-msft/azure-sdk-for-python
83715b95c41e519d5be7f1180195e2fba136fc0f
[ "MIT" ]
3
2016-05-03T20:49:46.000Z
2017-10-05T21:05:27.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- VERSION = "2017-06-01"
35.571429
76
0.524096
1d29d126f1a167d3ba2539b7d84fd1229213fdfe
103
py
Python
DeepRTS/__init__.py
Yigit-Arisoy/deep-rts
a5ed2c29b76789830df9f7075480c7229ccf0f4d
[ "MIT" ]
null
null
null
DeepRTS/__init__.py
Yigit-Arisoy/deep-rts
a5ed2c29b76789830df9f7075480c7229ccf0f4d
[ "MIT" ]
null
null
null
DeepRTS/__init__.py
Yigit-Arisoy/deep-rts
a5ed2c29b76789830df9f7075480c7229ccf0f4d
[ "MIT" ]
null
null
null
try: from DeepRTS import Engine except ImportError: import Engine from DeepRTS import python
12.875
30
0.757282
6b8de90a198da52445bd6fea40e2ccf6ca24edd6
2,143
py
Python
token/ERC20/ERC20.q.py
ghiliweld/Quetz
50d052779e67e7bf9457e565b011cc7287863576
[ "MIT" ]
3
2018-01-22T01:52:53.000Z
2018-01-26T09:31:04.000Z
token/ERC20/ERC20.q.py
ghiliweld/Quetz
50d052779e67e7bf9457e565b011cc7287863576
[ "MIT" ]
1
2018-01-25T02:58:16.000Z
2018-01-25T02:58:16.000Z
token/ERC20/ERC20.q.py
ghiliweld/Quetz
50d052779e67e7bf9457e565b011cc7287863576
[ "MIT" ]
null
null
null
Contract: ERC20 QZ: 0.0.1 # Quetz compiler version, will be important in case the standard changes as time goes on # Hashtags are used for commenting # Events of the token. Event: Transfer logs a from{address}, a to{address}, a value{num} # Variables of the token. # Watch how variables are declared # _variableName_ is a _variableType_, set _variableValue_ or just _variableName_ is a _variableType_ name is a string, set "ERC20" # v.s. variableName{variableType} = variableValue # The second option has less writting so I'll stick to that but I'll consider both options later name{string} = "ERC20" symbol{string} = "20" totalSupply{num} = 9001 # IT'S OVER 9000!!!!!!! decimals{num} = 18 balances{mapping}: num[address] # mappingName{mapping}: valueType[keyType] # FUNCTIONS known as ACTIONS in Quetz # Functions in Quetz are called Actions, that react to calls and assess and act on parameters fed to them # Action _actionName_ takes(paramName{paramType}) *takes is optional, is _visibilityStatus, is _read/payable *(this is optional), gives _returnType *gives is optional Action symbol, is public, is read, gives a string: give symbol of this contract # this contract will be standard keywords to literally mean this contract on which the function is being called #What is the balance of a particularaccount? Action balanceOf takes(_owner{address}), is public, is read, gives a num: give balances of _owner # Return total supply of token. Action totalSupply, is public, is read, gives num: give totalSupply of this contract # Send `_value` tokens to `_to` from your account Action transfer takes(_to{address}, _amount{num}), is public, gives a bool: require _amount morethan 0 # No negative amounts, require is a keyword # the sentence goes on to the part after the comma if the condition isn't fulfilled, returns what is given and throws the transaction require balances of msg.sender moreequalthan _amount # You can't send more than you have balances of msg.sender minusequal _amount balances of _to plusequal _amount Transfer: msg.sender, _to, _amount # Transfer event call give True
46.586957
166
0.761549
4e8263674995b3d652c2907e0b107740d1a423fb
562
py
Python
music/migrations/0015_auto_20200127_1203.py
realsifocopypaste333/sifo-player-binary
fc4f9f9534a2ea64b09b3b4ba51832d3823c3b64
[ "MIT" ]
3
2020-02-08T16:55:03.000Z
2021-03-28T06:37:10.000Z
music/migrations/0015_auto_20200127_1203.py
AshkanGanj/Music-django-app
64d9c6557bc9bba212c828f8ca06fbdede38780f
[ "MIT" ]
1
2021-11-27T03:35:11.000Z
2021-11-27T03:35:11.000Z
music/migrations/0015_auto_20200127_1203.py
AshkanGanj/Music-django-app
64d9c6557bc9bba212c828f8ca06fbdede38780f
[ "MIT" ]
null
null
null
# Generated by Django 3.0.2 on 2020-01-27 08:33 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('music', '0014_auto_20200113_1100'), ] operations = [ migrations.RemoveField( model_name='song', name='is_favorite', ), migrations.AlterField( model_name='userprofile', name='image', field=models.ImageField(blank=True, default="{% static 'avatar.png' %}", null=True, upload_to='profile/'), ), ]
24.434783
118
0.581851
639188b3e8e69e379d0d834b6bf5ffaa8fd7bc1e
5,122
py
Python
frappe/website/utils.py
gangadhar-kadam/helpdesk-frappe
d50cc423258401ddcc89fb6607d11e5bb6ad8c25
[ "MIT" ]
null
null
null
frappe/website/utils.py
gangadhar-kadam/helpdesk-frappe
d50cc423258401ddcc89fb6607d11e5bb6ad8c25
[ "MIT" ]
null
null
null
frappe/website/utils.py
gangadhar-kadam/helpdesk-frappe
d50cc423258401ddcc89fb6607d11e5bb6ad8c25
[ "MIT" ]
1
2018-03-21T19:27:17.000Z
2018-03-21T19:27:17.000Z
# Copyright (c) 2015, Frappe Technologies Pvt. Ltd. and Contributors # MIT License. See license.txt from __future__ import unicode_literals import frappe, re, os def delete_page_cache(path): cache = frappe.cache() groups = ("page_context", "website_page", "sitemap_options") if path: for name in groups: cache.hdel(name, path) else: for name in groups: cache.delete_key(name) def find_first_image(html): m = re.finditer("""<img[^>]*src\s?=\s?['"]([^'"]*)['"]""", html) try: return m.next().groups()[0] except StopIteration: return None def can_cache(no_cache=False): return not (frappe.conf.disable_website_cache or getattr(frappe.local, "no_cache", False) or no_cache) def get_comment_list(doctype, name): return frappe.db.sql("""select comment, comment_by_fullname, creation, comment_by from `tabComment` where comment_doctype=%s and ifnull(comment_type, "Comment")="Comment" and comment_docname=%s order by creation""", (doctype, name), as_dict=1) or [] def get_home_page(): if frappe.local.flags.home_page: return frappe.local.flags.home_page def _get_home_page(): role_home_page = frappe.get_hooks("role_home_page") home_page = None if role_home_page: for role in frappe.get_roles(): if role in role_home_page: home_page = role_home_page[role][-1] break if not home_page: home_page = frappe.get_hooks("home_page") if home_page: home_page = home_page[-1] if not home_page: home_page = frappe.db.get_value("Website Settings", None, "home_page") or "login" return home_page return frappe.cache().hget("home_page", frappe.session.user, _get_home_page) def is_signup_enabled(): if getattr(frappe.local, "is_signup_enabled", None) is None: frappe.local.is_signup_enabled = True if frappe.utils.cint(frappe.db.get_value("Website Settings", "Website Settings", "disable_signup")): frappe.local.is_signup_enabled = False return frappe.local.is_signup_enabled def cleanup_page_name(title): """make page name from title""" if not title: return title name = title.lower() name = re.sub('[~!@#$%^&*+()<>,."\'\?]', '', name) name = re.sub('[:/]', '-', name) name = '-'.join(name.split()) # replace repeating hyphens name = re.sub(r"(-)\1+", r"\1", name) return name def get_shade(color, percent): color, color_format = detect_color_format(color) r, g, b, a = color avg = (float(int(r) + int(g) + int(b)) / 3) # switch dark and light shades if avg > 128: percent = -percent # stronger diff for darker shades if percent < 25 and avg < 64: percent = percent * 2 new_color = [] for channel_value in (r, g, b): new_color.append(get_shade_for_channel(channel_value, percent)) r, g, b = new_color return format_color(r, g, b, a, color_format) def detect_color_format(color): if color.startswith("rgba"): color_format = "rgba" color = [c.strip() for c in color[5:-1].split(",")] elif color.startswith("rgb"): color_format = "rgb" color = [c.strip() for c in color[4:-1].split(",")] + [1] else: # assume hex color_format = "hex" if color.startswith("#"): color = color[1:] if len(color) == 3: # hex in short form like #fff color = "{0}{0}{1}{1}{2}{2}".format(*tuple(color)) color = [int(color[0:2], 16), int(color[2:4], 16), int(color[4:6], 16), 1] return color, color_format def get_shade_for_channel(channel_value, percent): v = int(channel_value) + int(int('ff', 16) * (float(percent)/100)) if v < 0: v=0 if v > 255: v=255 return v def format_color(r, g, b, a, color_format): if color_format == "rgba": return "rgba({0}, {1}, {2}, {3})".format(r, g, b, a) elif color_format == "rgb": return "rgb({0}, {1}, {2})".format(r, g, b) else: # assume hex return "#{0}{1}{2}".format(convert_to_hex(r), convert_to_hex(g), convert_to_hex(b)) def convert_to_hex(channel_value): h = hex(channel_value)[2:] if len(h) < 2: h = "0" + h return h def abs_url(path): """Deconstructs and Reconstructs a URL into an absolute URL or a URL relative from root '/'""" if not path: return if path.startswith('http://') or path.startswith('https://'): return path if not path.startswith("/"): path = "/" + path return path def get_full_index(route=None, doctype="Web Page", extn = False): """Returns full index of the website (on Web Page) upto the n-th level""" all_routes = [] def get_children(parent): children = frappe.db.get_all(doctype, ["parent_website_route", "page_name", "title", "template_path"], {"parent_website_route": parent}, order_by="idx asc") for d in children: d.url = abs_url(os.path.join(d.parent_website_route or "", d.page_name)) if d.url not in all_routes: d.children = get_children(d.url.lstrip("/")) all_routes.append(d.url) if extn and os.path.basename(d.template_path).split(".")[0] != "index": d.url = d.url + ".html" # no index.html for home page # home should not be in table of contents if not parent: children = [d for d in children if d.page_name not in ("index.html", "index", "", "contents")] return children return get_children(route or "")
25.738693
104
0.671417
68beb4211e37917caf2c613ece89fd1790e86701
1,560
py
Python
app/fields.py
galyeshua/Index
96e1630efc51d2c03f2d80889dfa1d117155e2ee
[ "MIT" ]
null
null
null
app/fields.py
galyeshua/Index
96e1630efc51d2c03f2d80889dfa1d117155e2ee
[ "MIT" ]
null
null
null
app/fields.py
galyeshua/Index
96e1630efc51d2c03f2d80889dfa1d117155e2ee
[ "MIT" ]
null
null
null
from wtforms import FieldList from wtforms.utils import unset_value # override process func of FieldList to make it unordered class UnorderedFieldList(FieldList): def process(self, formdata, data=unset_value, extra_filters=None): if extra_filters: raise TypeError( "FieldList does not accept any filters. Instead, define" " them on the enclosed field." ) self.entries = [] if not data: try: data = self.default() except TypeError: data = self.default self.object_data = data if formdata: indices = self._remove_duplicates(self._extract_indices(self.name, formdata)) if self.max_entries: indices = indices[: self.max_entries] idata = iter(data) for index in indices: try: obj_data = next(idata) except StopIteration: obj_data = unset_value self._add_entry(formdata, obj_data, index=index) else: for obj_data in data: self._add_entry(formdata, obj_data) while len(self.entries) < self.min_entries: self._add_entry(formdata) @classmethod def _remove_duplicates(cls, seq): """Remove duplicates in a case insensitive, but case preserving manner""" d = {} for item in seq: if item not in d: d[item] = True yield item
30.588235
89
0.557051
eff5d765fe0855b9e2d3d1f90bd49b4d4ceb206c
445
py
Python
pywttr_models/vi.py
monosans/pywttr-models
da0b257b720b9604d0ed3db68e4f93c9b69e573c
[ "MIT" ]
4
2021-12-13T04:56:16.000Z
2021-12-25T11:40:29.000Z
pywttr_models/vi.py
monosans/pywttr-models
da0b257b720b9604d0ed3db68e4f93c9b69e573c
[ "MIT" ]
null
null
null
pywttr_models/vi.py
monosans/pywttr-models
da0b257b720b9604d0ed3db68e4f93c9b69e573c
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from typing import List as _List from pywttr_models import base as _base class CurrentConditionItem(_base.CurrentConditionItem): lang_vi: _List[_base.LangItem] class HourlyItem(_base.HourlyItem): lang_vi: _List[_base.LangItem] class WeatherItem(_base.WeatherItem): hourly: _List[HourlyItem] class Model(_base.Model): current_condition: _List[CurrentConditionItem] weather: _List[WeatherItem]
20.227273
55
0.761798
b1f33cd1b32e0700f4e51cf182ed80e0455b8dd4
1,584
py
Python
Examples/GraphOperator/Ising/ising.py
tvieijra/netket
ef3ff32b242f25b6a6ae0f08db1aada85775a2ea
[ "Apache-2.0" ]
10
2019-11-29T02:51:53.000Z
2021-08-14T18:52:33.000Z
Examples/GraphOperator/Ising/ising.py
tvieijra/netket
ef3ff32b242f25b6a6ae0f08db1aada85775a2ea
[ "Apache-2.0" ]
2
2018-11-04T14:38:01.000Z
2018-11-08T16:56:10.000Z
Examples/GraphOperator/Ising/ising.py
tvieijra/netket
ef3ff32b242f25b6a6ae0f08db1aada85775a2ea
[ "Apache-2.0" ]
6
2019-12-02T07:29:01.000Z
2021-04-04T21:55:21.000Z
# Copyright 2018 The Simons Foundation, Inc. - All Rights Reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import netket as nk import networkx as nx import numpy as np sigmax = [[0, 1], [1, 0]] sigmaz = [[1, 0], [0, -1]] mszsz = (np.kron(sigmaz, sigmaz)).tolist() # Notice that the Transverse-Field Ising model as defined here has sign problem L = 20 site_operator = [sigmax] bond_operator = [mszsz] # Hypercube g = nk.graph.Hypercube(length=L, n_dim=1, pbc=True) # Custom Hilbert Space hi = nk.hilbert.Spin(s=0.5, graph=g) # Graph Operator op = nk.operator.GraphOperator(hi, siteops=site_operator, bondops=bond_operator) # Restricted Boltzmann Machine ma = nk.machine.RbmSpin(hilbert=hi, alpha=1) ma.init_random_parameters(seed=1234, sigma=0.01) # Local Metropolis Sampling sa = nk.sampler.MetropolisLocal(machine=ma) # Optimizer opt = nk.optimizer.AdaMax() # Stochastic reconfiguration gs = nk.variational.Vmc( hamiltonian=op, sampler=sa, optimizer=opt, n_samples=1000, diag_shift=0.1, method="Gd", ) gs.run(output_prefix="test", n_iter=30000)
27.310345
80
0.737374
343629237d655fae627ea5d747d8381314f484ef
1,226
py
Python
code/phase_plot.py
jstac/cycles_moral_hazard
ff4881b8b27f6738edfc526ead98579bc801c834
[ "BSD-3-Clause" ]
2
2018-01-29T19:39:14.000Z
2018-08-24T03:36:25.000Z
code/phase_plot.py
jstac/cycles_moral_hazard
ff4881b8b27f6738edfc526ead98579bc801c834
[ "BSD-3-Clause" ]
null
null
null
code/phase_plot.py
jstac/cycles_moral_hazard
ff4881b8b27f6738edfc526ead98579bc801c834
[ "BSD-3-Clause" ]
3
2018-04-14T19:33:56.000Z
2019-12-27T17:24:55.000Z
import numpy as np def phase_plot(ax, g, h, xmin, xmax, ymin, ymax, gridsize=100): """ Plots the phase diagram for the system x' = g(x,y), y' = h(x,y) over the square [xmin, xmax] times [ymin, ymax]. """ ax.set_xlim(xmin, xmax) ax.set_ylim(ymin, ymax) delta_g = np.vectorize(lambda x, y: x - g(x, y)) delta_h = np.vectorize(lambda x, y: y - h(x, y)) xgrid = np.linspace(xmin, xmax, gridsize) ygrid = np.linspace(ymin, ymax, gridsize) X, Y = np.meshgrid(xgrid, ygrid) Zg, Zh = delta_g(X, Y), delta_h(X, Y) ax.contour(X, Y, Zg, [.0], lw=2, alpha=0.8) ax.contour(X, Y, Zh, [.0], lw=2, alpha=0.8) def draw_arrow(x, y): eps = 0.0001 v1, v2 = g(x, y) - x, h(x, y) - y nrm = np.sqrt(v1**2 + v2**2) scale = eps / nrm ax.arrow(x, y, scale * v1, scale * v2, antialiased=True, alpha=0.8, head_length=0.025*(xmax - xmin), head_width=0.012*(xmax - xmin), fill=False) xgrid = np.linspace(xmin * 1.1, xmax * 0.95, 12) ygrid = np.linspace(ymin * 1.1, ymax * 0.95, 12) for x in xgrid: for y in ygrid: draw_arrow(x, y)
28.511628
67
0.519576
081c4869991b6c5d68bb10453d44fae6204dfd56
2,864
py
Python
python/moneysocket/protocol/rendezvous/incoming_nexus.py
drschwabe/prototype
7948727443d5d3255b317fc94cebf03c128a58d3
[ "MIT" ]
null
null
null
python/moneysocket/protocol/rendezvous/incoming_nexus.py
drschwabe/prototype
7948727443d5d3255b317fc94cebf03c128a58d3
[ "MIT" ]
null
null
null
python/moneysocket/protocol/rendezvous/incoming_nexus.py
drschwabe/prototype
7948727443d5d3255b317fc94cebf03c128a58d3
[ "MIT" ]
null
null
null
# Copyright (c) 2020 Jarret Dyrbye # Distributed under the MIT software license, see the accompanying # file LICENSE or http://www.opensource.org/licenses/mit-license.php import uuid import logging from moneysocket.protocol.nexus import ProtocolNexus from moneysocket.message.notification.rendezvous import NotifyRendezvous from moneysocket.message.notification.rendezvous_not_ready import ( NotifyRendezvousNotReady) from moneysocket.message.notification.rendezvous_end import NotifyRendezvousEnd class IncomingRendezvousNexus(ProtocolNexus): def __init__(self, below_nexus, layer): super().__init__(below_nexus, layer) self.rendezvous_finished_cb = None self.request_reference_uuid = None self.rendezvous_id = None self.directory = layer.directory ########################################################################### def is_layer_message(self, msg): if msg['message_class'] != "REQUEST": return False return msg['request_name'] in {"REQUEST_RENDEZVOUS"} def recv_from_below_cb(self, below_nexus, msg): logging.info("rdv nexus got msg") if not self.is_layer_message(msg): # pass on to above super().recv_from_below_cb(below_nexus, msg) return assert msg['request_name'] == "REQUEST_RENDEZVOUS" self.rendezvous_id = msg['rendezvous_id'] self.request_reference_uuid = msg['request_uuid'] if self.directory.is_rid_peered(self.rendezvous_id): self.initiate_close() pass self.directory.add_nexus(self, self.rendezvous_id) peer = self.directory.get_peer_nexus(self) if peer: n = NotifyRendezvous(self.rendezvous_id, self.request_reference_uuid) self.send(n) self.rendezvous_finished_cb(self) peer.rendezvous_achieved() else: n = NotifyRendezvousNotReady(self.rendezvous_id, self.request_reference_uuid) self.send(n) def recv_raw_from_below_cb(self, below_nexus, msg_bytes): logging.info("rdv nexus got raw msg") super().recv_raw_from_below_cb(below_nexus, msg_bytes) ########################################################################### def wait_for_rendezvous(self, rendezvous_finished_cb): self.rendezvous_finished_cb = rendezvous_finished_cb def rendezvous_achieved(self): assert self.directory.is_rid_peered(self.rendezvous_id) n = NotifyRendezvous(self.rendezvous_id, self.request_reference_uuid) self.send(n) self.rendezvous_finished_cb(self) def end_rendezvous(self): self.directory.remove_nexus(self) n = NotifyRendezvousEnd(self.rendezvous_id) self.send(n)
36.717949
79
0.644204
369898f8e42e30bf1d9593aa89bb902de60445ae
3,526
py
Python
dtx/notify.py
qzed/linux-surfacegen5-dtx-daemon
1b48933a4e8666d8b63b9e4f7a314d4a9bd7c8f8
[ "MIT" ]
1
2019-03-22T19:47:14.000Z
2019-03-22T19:47:14.000Z
dtx/notify.py
qzed/linux-surfacegen5-dtx-daemon
1b48933a4e8666d8b63b9e4f7a314d4a9bd7c8f8
[ "MIT" ]
2
2019-04-08T01:19:44.000Z
2019-04-20T19:50:53.000Z
dtx/notify.py
qzed/linux-surfacegen5-dtx-daemon
1b48933a4e8666d8b63b9e4f7a314d4a9bd7c8f8
[ "MIT" ]
null
null
null
""" dBus System Notifications. Allows processes running as root to send notifications to all users. """ import dbus import os def get_user_paths(bus, clss='user'): """Get all dBus `User` object paths of class `clss`.""" user_paths = set() logind = bus.get_object('org.freedesktop.login1', '/org/freedesktop/login1') loginm = dbus.Interface(logind, 'org.freedesktop.login1.Manager') for sess_spec in loginm.ListSessions(): sess_path = sess_spec[4] sess = bus.get_object('org.freedesktop.login1', sess_path) sess_p = dbus.Interface(sess, 'org.freedesktop.DBus.Properties') if sess_p.Get('org.freedesktop.login1.Session', 'Class') == clss: user_path = sess_p.Get('org.freedesktop.login1.Session', 'User')[1] user_paths |= {user_path} return user_paths def get_user_runtime_paths(bus=dbus.SystemBus()): """Get dBus user runtime paths of all active "human" users.""" for user_path in get_user_paths(bus): user = bus.get_object('org.freedesktop.login1', user_path) user_p = dbus.Interface(user, 'org.freedesktop.DBus.Properties') uid = user_p.Get('org.freedesktop.login1.User', 'UID') rt_path = user_p.Get('org.freedesktop.login1.User', 'RuntimePath') yield uid, rt_path def _notify_all_show(n): """Show notification to all active "human" users.""" ids = dict() for uid, path in get_user_runtime_paths(): os.seteuid(uid) # bypass systemd access check addr = "unix:path={}/bus".format(path) sess = dbus.bus.BusConnection(addr) notif_o = sess.get_object('org.freedesktop.Notifications', '/org/freedesktop/Notifications') notif_i = dbus.Interface(notif_o, 'org.freedesktop.Notifications') notif_id = notif_i.Notify(n.app_name, n.replaces_id, n.app_icon, n.summary, n.body, n.actions, n.hints, n.timeout) os.seteuid(0) ids[uid] = notif_id return ActiveSystemNotification(n, ids) def _notify_all_close(n): """Close the notification on all sessions it is active.""" for uid, path in get_user_runtime_paths(): if uid not in n.ids: continue os.seteuid(uid) # bypass systemd access check addr = "unix:path={}/bus".format(path) sess = dbus.bus.BusConnection(addr) notif_o = sess.get_object('org.freedesktop.Notifications', '/org/freedesktop/Notifications') notif_i = dbus.Interface(notif_o, 'org.freedesktop.Notifications') notif_i.CloseNotification(n.ids[uid]) os.seteuid(0) class SystemNotification: """A notification that can be sent to all users.""" def __init__(self, app_name, summary="", body="", replaces_id=0, timeout=-1, app_icon=''): """Create a new notification.""" self.app_name = app_name self.app_icon = app_icon self.summary = summary self.body = body self.replaces_id = replaces_id self.timeout = timeout self.hints = dict() self.actions = list() def show(self): """Show this notification to all "human" users.""" return _notify_all_show(self) class ActiveSystemNotification: """A SystemNotification that has already been sent and is active.""" def __init__(self, notif, ids): self.notif = notif self.ids = ids def close(self): """Close this notification on all session it is active.""" _notify_all_close(self)
31.20354
100
0.64776
aa49033fcca30e24e21386a120abea03161c5942
1,129
py
Python
json_2_yolo.py
souvik0306/auairdataset
1f9a5fc4835feb49acf8df34b97f0348bdacf910
[ "MIT" ]
null
null
null
json_2_yolo.py
souvik0306/auairdataset
1f9a5fc4835feb49acf8df34b97f0348bdacf910
[ "MIT" ]
null
null
null
json_2_yolo.py
souvik0306/auairdataset
1f9a5fc4835feb49acf8df34b97f0348bdacf910
[ "MIT" ]
null
null
null
# This script can convert your AU-AIR annotations to YOLO Format import json data = open(r'annotations.json') #Pass in the path for AU-AIR annotation file ann_file = json.load(data) ann_list = ann_file['annotations'] b = [i.get('bbox') for i in ann_list] #b is a list which contains the bbox parameters for YOLO Conversion b = b[:10] # print(b) name = [] for i in ann_file['annotations']: name.append(i.get('image_name')) # print(name) YOLO_LABELS_PATH = r'yolo_annotation_folder/' # Pass in a folder to save the YOLO Annotation Files for a in range(0,len(b)): c = b[a] dw = 1/1920 dh = 1/1080 file = name[a] file = file.replace('jpg','txt') out_file = open(YOLO_LABELS_PATH + '/' + file, 'w') for i in range(0,len(c)): x = c[i]['left'] + c[i]['width']/2 x = x*dw y = c[i]['top'] + c[i]['height']/2 y = y*dh w = c[i]['width'] * dw h = c[i]['height'] * dh label = (round(x,6),round(y,6),round(w,6),round(h,6)) out_file.write(str(c[i]['class']) + " " + " ".join(str(f'{x:.6f}') for x in label) + '\n') out_file.close()
33.205882
105
0.585474
cad446320eae72fe9dfb800dd34ee6d9e2c314c2
391
py
Python
python/python-algorithm-intervew/23-dynamic-programing/85-fibonacci-number-2.py
bum12ark/algorithm
b6e262b0c29a8b5fb551db5a177a40feebc411b4
[ "MIT" ]
1
2022-03-06T03:49:31.000Z
2022-03-06T03:49:31.000Z
python/python-algorithm-intervew/23-dynamic-programing/85-fibonacci-number-2.py
bum12ark/algorithm
b6e262b0c29a8b5fb551db5a177a40feebc411b4
[ "MIT" ]
null
null
null
python/python-algorithm-intervew/23-dynamic-programing/85-fibonacci-number-2.py
bum12ark/algorithm
b6e262b0c29a8b5fb551db5a177a40feebc411b4
[ "MIT" ]
null
null
null
""" * 피보나치 수 피보나치 수를 구하라. """ import collections class Solution: dp = collections.defaultdict(int) # 메모이제이션 (하향식) def fib(self, n: int) -> int: if n <= 1: return n if self.dp[n]: return self.dp[n] self.dp[n] = self.fib(n - 1) + self.fib(n - 2) return self.dp[n] if __name__ == '__main__': print(Solution().fib(6))
17
54
0.519182
2774d1cd1ccd3c0b1e9083cb6784afa7c6243496
11,087
py
Python
source/astroNS/astroNS.py
pyastroNS/astroNS
35687267179467e4cb7ea59ac119c5f0f182107f
[ "MIT" ]
null
null
null
source/astroNS/astroNS.py
pyastroNS/astroNS
35687267179467e4cb7ea59ac119c5f0f182107f
[ "MIT" ]
null
null
null
source/astroNS/astroNS.py
pyastroNS/astroNS
35687267179467e4cb7ea59ac119c5f0f182107f
[ "MIT" ]
null
null
null
#! /usr/bin/env python3 """ astroNS simulator """ import simpy import argparse import pandas as pd import datetime import pytz import random import uuid import os import sys import json from multiprocessing import Queue, Process from collections import namedtuple from contextlib import redirect_stdout from typing import List, Dict, Tuple # # Main Simulation Controller # # takes a: # Network Parser # Input/Data Genertors # def runSim( filename: str, simStop: float, env: simpy.Environment ) -> Tuple[List["BaseNode"], simpy.Environment]: """Runs the simulation Args: filename: The filename for the network model. simStop: The length of the scenario to run. env: The simpy environment class. Returns: network_nodes: The nodes to be run. env: The simpy environment class. """ from nodes.core.base import BaseNode from interfaces.networkfactory import load_network_file from interfaces.outputdatawriter import output_loaded_config # Load in the file network_nodes = load_network_file(filename, env, None) # Connect the nodes BaseNode.make_link_map_data(network_nodes) # Put the nodes back in the environment for simpy env.network_nodes = network_nodes #!TODO Convert to logger instead of print print( " %| 0.00|2020-10-22T20:58:17.862886+00:00| CelerNet |[ Simulator ]|00000000-0000-0000-000000000000|Loaded |{}| total nodes".format( len(network_nodes) ) ) # Save the configuration to file with open( "{}/loaded_node_config.txt".format(env.path_to_results), "w" ) as node_config_file: output_loaded_config(network_nodes, node_config_file, env) try: # Run it env.run(until=simStop) except RuntimeError: print("Simulation process is too slow for real time mode. Stopping.") return network_nodes, env # default args part converts a dict to an pythonobject like the args class from __main__ def setup_env(env, args): """Sets up the simpy environment for a discrete event simulation Args: env: The simpy environment class. args: Argument class object. """ # this copies all the fields of 'args' into the 'env' object env.__dict__.update(args.__dict__) # Set the network name env.network_name = args.model_file # Set the epoch for the start of the scenario env.epoch = datetime.datetime.strptime(args.epoch, "%Y-%m-%dT%H:%M:%S.%fZ") env.epoch = env.epoch.replace(tzinfo=pytz.UTC) # No idea what this does env.now_datetime = lambda sim_time=None: env.epoch + datetime.timedelta( seconds=sim_time if sim_time else env.now ) # More timestamps? env.start_datetime = env.now_datetime(0).isoformat(timespec="microseconds") env.end_simtime_dt = env.now_datetime(env.end_simtime) # Forces node stats to True as well if args.node_stats_history: env.make_node_stats = True # helps to make the output tables well formatted pd.set_option("display.width", 150) # make a token for this run env.this_runs_uuid = uuid.uuid4() # More timestamps? env.start_datetime = env.now_datetime(0).isoformat(timespec="microseconds") env.end_simtime_dt = env.now_datetime(env.end_simtime) # Output directory path_to_results = "./Results/{}{}".format( args.network_name, env.now_datetime(0) .replace(tzinfo=None) .isoformat(timespec="microseconds") .replace(":", "-") .replace(".", "_"), ) if not os.path.exists(path_to_results): os.makedirs(path_to_results) env.path_to_results = path_to_results # Set the random seed if args.seed: seed = args.seed else: seed = random.randrange(sys.maxsize) # Uses random... random.seed(a=seed, version=2) env.seed = seed env.loaded_network_json = [] if args.promise_threads > 0: job_queue = Queue() def postprocess_network(env): """Post Process Args: env: The simpy environment class. args: Dictionary of all arguments to be passed. """ from nodes.core.base import BaseNode from interfaces.outputdatawriter import ( output_node_stats, output_msg_history, output_msg_history_tab, output_sim_end_state, ) # Write the network to file with open( "{}/loaded_network.json".format(env.path_to_results), "w" ) as loaded_network_json_file: loaded_network_json_file.write(json.dumps(env.loaded_network_json, indent=2)) if env.node_stats: with open( "{}/node_stats.txt".format(env.path_to_results), "w" ) as node_stats_file: with open( "{}/node_stats_total.txt".format(env.path_to_results), "w" ) as total_node_stats_file: output_node_stats( env.network_nodes, node_stats_file, env.node_stats_history ) with open( "{}/msg_history.txt".format(env.path_to_results), "w" ) as msg_history_file: output_msg_history(BaseNode.msg_history, msg_history_file) with open( "{}/msg_history.csv".format(env.path_to_results), "w" ) as msg_history_file: output_msg_history_tab(BaseNode.msg_history, msg_history_file) if env.final_node_states: with open( "{}/sim_end_state.txt".format(env.path_to_results), "w" ) as sim_end_state_file: output_sim_end_state(env, sim_end_state_file) print( " 100%|{:8.2f}|{}| CelerNet |[ Simulator ]|00000000-0000-0000-000000000000|Session token: {}".format( env.now, env.now_datetime().isoformat(timespec="microseconds"), env.this_runs_uuid, ) ) print( " 100%|{:8.2f}|{}| CelerNet |[ Simulator ]|00000000-0000-0000-000000000000|Done.".format( env.now, env.now_datetime().isoformat(timespec="microseconds") ) ) class Arguments: def __init__( self, model_file, seed, end_simtime, epoch, terminal, node_stats, node_stats_history, initial_node_states, final_node_states, real_time_mode, real_time_strict, real_time_factor, network_name, promise_threads, ): self.model_file = model_file self.seed = seed self.end_simtime = end_simtime self.epoch = epoch self.terminal = terminal self.node_stats = node_stats self.node_stats_history = node_stats_history self.inital_node_states = initial_node_states self.final_node_states = final_node_states self.real_time_mode = real_time_mode self.real_time_strict = real_time_strict self.real_time_factor = real_time_factor self.network_name = network_name self.promise_threads = promise_threads def main( model_file, seed=9001, end_simtime=200, epoch=datetime.datetime.now().isoformat() + "Z", terminal=False, node_stats=False, node_stats_history=False, initial_node_states=False, final_node_states=False, real_time_mode=False, real_time_strict=False, real_time_factor=1.0, network_name="Default_", promise_threads=0, ): """Main thread Args: model_file: File that contains the network model. Can be an .yml, .json seed: integer used to set the random stream number of desired end_simtime: runs sim until this SimTime is reached. epoch: Sim Start Date/Time. Defaults to now. terminal: writes the log to the terminal instead of the output file node_stats: Writes out Node stats data. node_stats_history: Writes out Node stats data and lists the first/last 30 messages to the node. initial_node_states: Write initial node state to file before sim is run final_node_states: Write initial node state to file before sim is run real_time_mode: runs the sim via real_time clock mode real_time_strict: if set, throws an error if a process takes more actual time than given in real time mode. real_time_factor: determines time unit for real_time mode. Default 1 unit = one second promise_threads: creates multiprocessing threads to parallelize node promises """ # env required by the simpy frameworks env = ( simpy.rt.RealtimeEnvironment(strict=real_time_strict) if real_time_mode else simpy.Environment() ) args = Arguments( model_file, seed, end_simtime, epoch, terminal, node_stats, node_stats_history, initial_node_states, final_node_states, real_time_mode, real_time_strict, real_time_factor, network_name, promise_threads, ) # configure the environment setup_env(env, args) print( " 0%| 0.00|{}| CelerNet |[ Simulator ]|00000000-0000-0000-000000000000|Session token: {}".format( env.start_datetime, env.this_runs_uuid ) ) # change the where to be an UUID representing the run # Setup the output log file, don't use system logging until we can figure out # how to play nice with celery logging with open("{}/simulation.log".format(env.path_to_results), "w") as sim_log: with open("{}/node_log.txt".format(env.path_to_results), "w") as node_log: env.node_log = node_log env.node_log.write( "SimTime\tNode\tData_ID\tData_Size\tWait_time\tProcessing_time\tDelay_to_Next\n" ) orig_stdout = sys.stdout if not args.terminal: sys.stdout = sim_log print( " 0%| 0.00|{}| CelerNet |[ Simulator ]|00000000-0000-0000-000000000000|Using Random seed: {}".format( env.start_datetime, env.seed ) ) print( " 0%| 0.00|{}| CelerNet |[ Simulator ]|00000000-0000-0000-000000000000|Session token: {}".format( env.start_datetime, env.this_runs_uuid ) ) filename = args.model_file SimStop = args.end_simtime network_nodes, env = runSim(filename, SimStop, env) print( " 100%|{:8.2f}|{}| CelerNet |[ Simulator ]|00000000-0000-0000-000000000000|Session token: {}".format( env.now, env.now_datetime().isoformat(timespec="microseconds"), env.this_runs_uuid, ) ) sys.stdout = orig_stdout # grab all of the stats at the end of the simulation postprocess_network(env) # Run this code if called directly if __name__ == "__main__": import fire fire.Fire(main)
29.884097
160
0.634617
46036e877174ef89ec2bedc6c9e54f20b059e5e2
11,982
py
Python
tests/test_graphql.py
ammogcoder/saleor
e4160652b68de002b51708a775050c95bfd1a3a5
[ "BSD-3-Clause" ]
null
null
null
tests/test_graphql.py
ammogcoder/saleor
e4160652b68de002b51708a775050c95bfd1a3a5
[ "BSD-3-Clause" ]
1
2022-02-10T12:53:30.000Z
2022-02-10T12:53:30.000Z
tests/test_graphql.py
ammogcoder/saleor
e4160652b68de002b51708a775050c95bfd1a3a5
[ "BSD-3-Clause" ]
1
2020-04-15T08:36:47.000Z
2020-04-15T08:36:47.000Z
import json import graphene import pytest from django.shortcuts import reverse from saleor.product.models import Category, Product, ProductAttribute from .utils import get_graphql_content def test_category_query(client, product_in_stock): category = Category.objects.first() query = ''' query { category(id: "%(category_pk)s") { id name ancestors { edges { node { name } } } children { edges { node { name } } } siblings { edges { node { name } } } } } ''' % {'category_pk': graphene.Node.to_global_id('Category', category.pk)} response = client.post(reverse('api'), {'query': query}) content = get_graphql_content(response) assert 'errors' not in content category_data = content['data']['category'] assert category_data is not None assert category_data['name'] == category.name assert ( len(category_data['ancestors']['edges']) == category.get_ancestors().count()) assert ( len(category_data['children']['edges']) == category.get_children().count()) assert ( len(category_data['siblings']['edges']) == category.get_siblings().count()) def test_fetch_all_products(client, product_in_stock): query = ''' query { products { totalCount edges { node { id } } } } ''' response = client.post(reverse('api'), {'query': query}) content = get_graphql_content(response) assert 'errors' not in content num_products = Product.objects.count() assert content['data']['products']['totalCount'] == num_products assert len(content['data']['products']['edges']) == num_products @pytest.mark.djangodb def test_fetch_unavailable_products(client, product_in_stock): Product.objects.update(is_published=False) query = ''' query { products { totalCount edges { node { id } } } } ''' response = client.post(reverse('api'), {'query': query}) content = get_graphql_content(response) assert 'errors' not in content assert content['data']['products']['totalCount'] == 0 assert not content['data']['products']['edges'] def test_product_query(client, product_in_stock): category = Category.objects.first() product = category.products.first() query = ''' query { category(id: "%(category_id)s") { products { edges { node { id name url thumbnailUrl images { url } variants { name stockQuantity } availability { available, priceRange { minPrice { gross net currency } } } } } } } } ''' % {'category_id': graphene.Node.to_global_id('Category', category.id)} response = client.post(reverse('api'), {'query': query}) content = get_graphql_content(response) assert 'errors' not in content assert content['data']['category'] is not None product_edges_data = content['data']['category']['products']['edges'] assert len(product_edges_data) == category.products.count() product_data = product_edges_data[0]['node'] assert product_data['name'] == product.name assert product_data['url'] == product.get_absolute_url() gross = product_data['availability']['priceRange']['minPrice']['gross'] assert float(gross) == float(product.price.gross) def test_filter_product_by_category(client, product_in_stock): category = product_in_stock.category query = ''' query getProducts($categoryId: ID) { products(category: $categoryId) { edges { node { name } } } } ''' response = client.post( reverse('api'), { 'query': query, 'variables': json.dumps( { 'categoryId': graphene.Node.to_global_id( 'Category', category.id)}), 'operationName': 'getProducts'}) content = get_graphql_content(response) assert 'errors' not in content product_data = content['data']['products']['edges'][0]['node'] assert product_data['name'] == product_in_stock.name def test_fetch_product_by_id(client, product_in_stock): query = ''' query ($productId: ID!) { node(id: $productId) { ... on Product { name } } } ''' response = client.post( reverse('api'), { 'query': query, 'variables': json.dumps( { 'productId': graphene.Node.to_global_id( 'Product', product_in_stock.id)})}) content = get_graphql_content(response) assert 'errors' not in content product_data = content['data']['node'] assert product_data['name'] == product_in_stock.name def test_filter_product_by_attributes(client, product_in_stock): product_attr = product_in_stock.product_type.product_attributes.first() category = product_in_stock.category attr_value = product_attr.values.first() filter_by = '%s:%s' % (product_attr.slug, attr_value.slug) query = ''' query { category(id: "%(category_id)s") { products(attributes: ["%(filter_by)s"]) { edges { node { name } } } } } ''' % { 'category_id': graphene.Node.to_global_id('Category', category.id), 'filter_by': filter_by} response = client.post(reverse('api'), {'query': query}) content = get_graphql_content(response) assert 'errors' not in content product_data = content['data']['category']['products']['edges'][0]['node'] assert product_data['name'] == product_in_stock.name def test_attributes_query(client, product_in_stock): attributes = ProductAttribute.objects.prefetch_related('values') query = ''' query { attributes { edges { node { id name slug values { id name slug } } } } } ''' response = client.post(reverse('api'), {'query': query}) content = get_graphql_content(response) assert 'errors' not in content attributes_data = content['data']['attributes']['edges'] assert len(attributes_data) == attributes.count() def test_attributes_in_category_query(client, product_in_stock): category = Category.objects.first() query = ''' query { attributes(inCategory: "%(category_id)s") { edges { node { id name slug values { id name slug } } } } } ''' % {'category_id': graphene.Node.to_global_id('Category', category.id)} response = client.post(reverse('api'), {'query': query}) content = get_graphql_content(response) assert 'errors' not in content attributes_data = content['data']['attributes']['edges'] assert len(attributes_data) == ProductAttribute.objects.count() def test_real_query(client, product_in_stock): category = product_in_stock.category product_attr = product_in_stock.product_type.product_attributes.first() category = product_in_stock.category attr_value = product_attr.values.first() filter_by = '%s:%s' % (product_attr.slug, attr_value.slug) query = ''' query Root($categoryId: ID!, $sortBy: String, $first: Int, $attributesFilter: [AttributeScalar], $minPrice: Float, $maxPrice: Float) { category(id: $categoryId) { ...CategoryPageFragmentQuery __typename } attributes(inCategory: $categoryId) { edges { node { ...ProductFiltersFragmentQuery __typename } } } } fragment CategoryPageFragmentQuery on Category { id name url ancestors { edges { node { name id url __typename } } } children { edges { node { name id url slug __typename } } } products(first: $first, sortBy: $sortBy, attributes: $attributesFilter, price_Gte: $minPrice, price_Lte: $maxPrice) { ...ProductListFragmentQuery __typename } __typename } fragment ProductListFragmentQuery on ProductCountableConnection { edges { node { ...ProductFragmentQuery __typename } __typename } pageInfo { hasNextPage __typename } __typename } fragment ProductFragmentQuery on Product { id name price { currency gross grossLocalized net __typename } availability { ...ProductPriceFragmentQuery __typename } thumbnailUrl1x: thumbnailUrl(size: "255x255") thumbnailUrl2x: thumbnailUrl(size: "510x510") url __typename } fragment ProductPriceFragmentQuery on ProductAvailability { available discount { gross __typename } priceRange { maxPrice { gross grossLocalized currency __typename } minPrice { gross grossLocalized currency __typename } __typename } __typename } fragment ProductFiltersFragmentQuery on ProductAttribute { id name slug values { id name slug color __typename } __typename } ''' response = client.post( '/graphql/', { 'query': query, 'variables': json.dumps( { 'categoryId': graphene.Node.to_global_id( 'Category', category.id), 'sortBy': 'name', 'first': 1, 'attributesFilter': [filter_by]})}) content = get_graphql_content(response) assert 'errors' not in content
28.393365
138
0.485144
df2e1558ca112a954b404856950bfe5297402869
7,436
py
Python
gpvdm_gui/gui/gl_mesh.py
roderickmackenzie/gpvdm
914fd2ee93e7202339853acaec1d61d59b789987
[ "BSD-3-Clause" ]
12
2016-09-13T08:58:13.000Z
2022-01-17T07:04:52.000Z
gpvdm_gui/gui/gl_mesh.py
roderickmackenzie/gpvdm
914fd2ee93e7202339853acaec1d61d59b789987
[ "BSD-3-Clause" ]
3
2017-11-11T12:33:02.000Z
2019-03-08T00:48:08.000Z
gpvdm_gui/gui/gl_mesh.py
roderickmackenzie/gpvdm
914fd2ee93e7202339853acaec1d61d59b789987
[ "BSD-3-Clause" ]
6
2019-01-03T06:17:12.000Z
2022-01-01T15:59:00.000Z
# # General-purpose Photovoltaic Device Model - a drift diffusion base/Shockley-Read-Hall # model for 1st, 2nd and 3rd generation solar cells. # Copyright (C) 2008-2022 Roderick C. I. MacKenzie r.c.i.mackenzie at googlemail.com # # https://www.gpvdm.com # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License v2.0, as published by # the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. # ## @package gl_view_point # The gl_view_point class for the OpenGL display. # import sys from math import fabs try: from OpenGL.GL import * from OpenGL.GLU import * from PyQt5 import QtOpenGL from PyQt5.QtOpenGL import QGLWidget from gl_lib import val_to_rgb from PyQt5.QtWidgets import QMenu except: pass from PyQt5.QtCore import QTimer from inp import inp from epitaxy import get_epi from mesh import get_mesh from gl_base_object import gl_base_object from gpvdm_json import gpvdm_data class gl_mesh(): def draw_mesh(self): x=[] y=[] z=[] data=gpvdm_data() epi=get_epi() device_start=epi.get_device_start(data) mesh=get_mesh() y,temp=mesh.y.calculate_points() x,temp=mesh.x.calculate_points() z,temp=mesh.z.calculate_points() x=self.scale.project_m2screen_x(x) y=self.scale.project_m2screen_y(y) z=self.scale.project_m2screen_z(z) glLineWidth(3) if mesh.y.circuit_model==False: self.drift_diffusion_mesh() def drift_diffusion_mesh(self): x=[] y=[] z=[] data=gpvdm_data() epi=get_epi() device_start=epi.get_device_start(data) mesh=get_mesh() y,temp=mesh.y.calculate_points() x,temp=mesh.x.calculate_points() z,temp=mesh.z.calculate_points() for i in range(0,len(y)): y[i]=y[i]+device_start x=self.scale.project_m2screen_x(x) y=self.scale.project_m2screen_y(y) z=self.scale.project_m2screen_z(z) glLineWidth(3) for zi in range(0,len(z)): for xi in range(0,len(x)): for yi in range(0,len(y)): name="mesh:"+str(xi)+":"+str(yi)+":"+str(zi) if yi==self.dump_energy_slice_ypos and xi==self.dump_energy_slice_xpos and zi==self.dump_energy_slice_zpos: a=gl_base_object() a.id=[name] a.type="ball" a.x=x[xi] a.y=y[yi] a.z=z[zi] a.dx=0.08 a.r=0.0 a.g=1.0 a.b=0.0 self.gl_objects_add(a) elif xi==self.dump_1d_slice_xpos and zi==self.dump_1d_slice_zpos: a=gl_base_object() a.id=[name] a.type="ball" a.x=x[xi] a.y=y[yi] a.z=z[zi] a.dx=0.05 a.r=0.0 a.g=0.0 a.b=1.0 self.gl_objects_add(a) else: a=gl_base_object() a.id=[name] a.type="ball" a.x=x[xi] a.y=y[yi] a.z=z[zi] a.dx=0.05 if self.dump_verbose_electrical_solver_results==False: a.alpha=0.5 else: a.alpha=0.9 a.r=1.0 a.g=0.0 a.b=0.0 self.gl_objects_add(a) if yi!=len(y)-1: a=gl_base_object() a.id=["electrical_mesh"] a.type="line" a.x=x[xi] a.y=y[yi] a.z=z[zi] a.dx=0.0 a.dy=y[yi+1]-y[yi] a.dz=0.0 a.r=1.0 a.g=0.0 a.b=0.0 self.gl_objects_add(a) if xi!=len(x)-1: a=gl_base_object() a.id=["electrical_mesh"] a.type="line" a.x=x[xi] a.y=y[yi] a.z=z[zi] a.dx=x[xi+1]-x[xi] a.dy=0.0 a.dz=0.0 a.r=1.0 a.g=0.0 a.b=0.0 self.gl_objects_add(a) if zi!=len(z)-1: a=gl_base_object() a.id=["electrical_mesh"] a.type="line" a.x=x[xi] a.y=y[yi] a.z=z[zi] a.dx=0.0 a.dy=0.0 a.dz=z[zi+1]-z[zi] a.r=1.0 a.g=0.0 a.b=0.0 self.gl_objects_add(a) def mesh_menu(self,event): view_menu = QMenu(self) menu = QMenu(self) view=menu.addMenu(_("Dump")) if self.dump_energy_slice_xpos==-1: action=view.addAction(_("Dump slice in energy space")) else: action=view.addAction(_("Don't dump slice in energy space")) action.triggered.connect(self.menu_energy_slice_dump) if self.dump_1d_slice_xpos==-1: action=view.addAction(_("Dump 1D slices")) else: action=view.addAction(_("Don't dump 1D slice")) action.triggered.connect(self.menu_1d_slice_dump) if self.dump_verbose_electrical_solver_results==False: action=view.addAction(_("Set verbose electrical solver dumping")) else: action=view.addAction(_("Unset verbose electrical solver dumping")) action.triggered.connect(self.menu_dump_verbose_electrical_solver_results) menu.exec_(event.globalPos()) def menu_energy_slice_dump(self): obj=self.gl_objects_get_first_selected() if obj!=None: s=obj.id_starts_with("mesh").split(":") x=int(s[1]) y=int(s[2]) z=int(s[3]) if self.dump_energy_slice_xpos==x and self.dump_energy_slice_ypos==y and self.dump_energy_slice_zpos==z: self.dump_energy_slice_xpos=-1 self.dump_energy_slice_ypos=-1 self.dump_energy_slice_zpos=-1 else: self.dump_energy_slice_xpos=x self.dump_energy_slice_ypos=y self.dump_energy_slice_zpos=z mesh=get_mesh() f=inp() f.load("dump.inp") f.replace("#dump_energy_slice_xpos",str(x)) f.replace("#dump_energy_slice_ypos",str(len(mesh.y.points)-1-y)) f.replace("#dump_energy_slice_zpos",str(z)) f.save() self.gl_objects_remove_regex("mesh") self.draw_mesh() self.do_draw() def menu_1d_slice_dump(self): obj=self.gl_objects_get_first_selected() if obj!=None: s=obj.id_starts_with("mesh").split(":") x=int(s[1]) y=int(s[2]) z=int(s[3]) if self.dump_1d_slice_xpos==x and self.dump_1d_slice_zpos==z: self.dump_1d_slice_xpos=-1 self.dump_1d_slice_zpos=-1 else: self.dump_1d_slice_xpos=x self.dump_1d_slice_zpos=z f=inp() f.load("dump.inp") f.replace("#dump_1d_slice_xpos",str(self.dump_1d_slice_xpos)) f.replace("#dump_1d_slice_zpos",str(self.dump_1d_slice_zpos)) f.save() self.gl_objects_remove_regex("mesh") self.draw_mesh() self.do_draw() def menu_dump_verbose_electrical_solver_results(self): self.dump_verbose_electrical_solver_results = not self.dump_verbose_electrical_solver_results f=inp() f.load("dump.inp") f.replace("#dump_verbose_electrical_solver_results",str(self.dump_verbose_electrical_solver_results)) f.save() self.gl_objects_remove_regex("mesh") self.draw_mesh() self.do_draw() def project_object_through_electrical_mesh(self,o): mesh=get_mesh() mesh_with_gaps=False for l in mesh.x.layers: if l.points==0: mesh_with_gaps=True break if mesh_with_gaps==False: self.gl_objects_add(o) else: for l in mesh.x.layers: if l.points!=0: new_obj=gl_base_object() new_obj.copy(o) #print(layer,l.start,l.end-l.start) new_obj.xyz.x=self.scale.project_m2screen_x(l.start) new_obj.dxyz.x=(l.end-l.start)*self.scale.x_mul #print(layer,o.xyz.x,o.dxyz.x) self.gl_objects_add(new_obj)
24.142857
112
0.666891
daecbcc325dd2460b18cdc548a030152904b1bae
3,295
py
Python
opentech/apply/funds/management/commands/migrate_fellowship_proposals.py
JakabGy/hypha
32634080ba1cb369f07f27f6616041e4eca8dbf2
[ "BSD-3-Clause" ]
null
null
null
opentech/apply/funds/management/commands/migrate_fellowship_proposals.py
JakabGy/hypha
32634080ba1cb369f07f27f6616041e4eca8dbf2
[ "BSD-3-Clause" ]
null
null
null
opentech/apply/funds/management/commands/migrate_fellowship_proposals.py
JakabGy/hypha
32634080ba1cb369f07f27f6616041e4eca8dbf2
[ "BSD-3-Clause" ]
null
null
null
from opentech.apply.funds.management.commands.migration_base import MigrateCommand class Command(MigrateCommand): CONTENT_TYPE = "fund" FUND_NAME = "Fellowship (archive fund)" ROUND_NAME = "Fellowship (archive round)" APPLICATION_TYPE = "proposal" STREAMFIELD_MAP = { "title": { "id": "title", "type": "direct", }, "field_proposal_common_name": { "id": "full_name", "type": "value", "key": "safe_value", }, "field_proposal_host_text": { "id": "bc03235e-3c78-4770-9fc2-97feb93c2c8c", "type": "value", "key": "safe_value", }, "field_proposal_start_date": { "id": "672cb6f1-335c-4005-a0f1-46c414feda06", "type": "value", "key": "value", }, "field_proposal_completion_date": { "id": "8262f209-f084-4a79-9dfa-2d18137119bb", "type": "value", "key": "value", }, "field_proposal_objectives": { "id": "af2c5f38-7257-4295-87fa-787060e845ef", "type": "value", "key": "safe_value", }, "field_proposal_activities": { "id": "3c521847-7642-4cae-aca9-d5336ad8962d", "type": "value", "key": "safe_value", }, "field_proposal_sustainability": { "id": "fd0eb7ea-e054-4bcf-9580-eb672d44745c", "type": "value", "key": "safe_value", }, "field_proposal_request_questions": { "id": "b6d71932-98c2-4ce8-a5e6-454a1f800d21", "type": "merge_value", "key": "safe_value", }, "field_proposal_upload": { "id": "30dfa46e-f656-46c9-9efc-bab9029f2008", "type": "file", # TODO: finish mapping }, } REQUEST_QUESTION_MAP = { "3618": { 0: "How will this project leverage the resources made available by the host organization?", 1: "Please detail the specific steps the applicant will take to ensure the project outcomes reach non-technical audiences", 2: "In what ways will this effort advance understanding in the relevant field?", 3: "What risks or variables could jeopardize either the outcomes of the project or the safety of the applicant?", 4: "How is the applicant well equipped to carry out the technical work proposed? (if applicable)", }, "3681": { 0: "Please detail the specific steps the applicant will take to ensure the project outcomes reach the internet freedom technology community.", 1: "What risks could jeopardize the fellowship project?", 2: "How would those risks be mitigated or addressed?", 3: "How will your work be sustained following the completion of your fellowship?", 4: "If your project includes public gatherings, do you have a code of conduct? If yes, please list below or provide links to where it can be publicly accessed.", 5: "Please include letters of support for the organization or organizations you would be working with (Please attach a file at the bottom of the application)", }, }
40.679012
173
0.579059
804cd0c6674e7b320e0e78c5fa8f8cedf105514a
1,872
py
Python
setup.py
benevpi/CIRCUITPYTHON_ifttt
ec8851c16b2a3bacde02654a104842b6bc1fe3ed
[ "MIT" ]
null
null
null
setup.py
benevpi/CIRCUITPYTHON_ifttt
ec8851c16b2a3bacde02654a104842b6bc1fe3ed
[ "MIT" ]
null
null
null
setup.py
benevpi/CIRCUITPYTHON_ifttt
ec8851c16b2a3bacde02654a104842b6bc1fe3ed
[ "MIT" ]
1
2020-12-07T13:35:40.000Z
2020-12-07T13:35:40.000Z
"""A setuptools based setup module. See: https://packaging.python.org/en/latest/distributing.html https://github.com/pypa/sampleproject """ from setuptools import setup, find_packages # To use a consistent encoding from codecs import open from os import path here = path.abspath(path.dirname(__file__)) # Get the long description from the README file with open(path.join(here, 'README.rst'), encoding='utf-8') as f: long_description = f.read() setup( name='adafruit-circuitpython-ifttt', use_scm_version=True, setup_requires=['setuptools_scm'], description='A simple link to If This Then That (IFTTT) webhooks', long_description=long_description, long_description_content_type='text/x-rst', # The project's main homepage. url='https://github.com/adafruit/Adafruit_CircuitPython_ifttt', # Author details author='Adafruit Industries', author_email='circuitpython@adafruit.com', install_requires=[ 'Adafruit-Blinka' ], # Choose your license license='MIT', # See https://pypi.python.org/pypi?%3Aaction=list_classifiers classifiers=[ 'Development Status :: 3 - Alpha', 'Intended Audience :: Developers', 'Topic :: Software Development :: Libraries', 'Topic :: System :: Hardware', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', ], # What does your project relate to? keywords='adafruit blinka circuitpython micropython ifttt IoT', # You can just specify the packages manually here if your project is # simple. Or you can use find_packages(). # TODO: IF LIBRARY FILES ARE A PACKAGE FOLDER, # CHANGE `py_modules=['...']` TO `packages=['...']` py_modules=['ifttt'], )
29.25
72
0.674145
90873cb905284fd68f19e61070028890ef086897
23,972
py
Python
mediagoblin/tests/test_api.py
saksham1115/mediagoblin
41302ad2b622b340caeb13339338ab3a5d0f7e6b
[ "CC0-1.0" ]
null
null
null
mediagoblin/tests/test_api.py
saksham1115/mediagoblin
41302ad2b622b340caeb13339338ab3a5d0f7e6b
[ "CC0-1.0" ]
null
null
null
mediagoblin/tests/test_api.py
saksham1115/mediagoblin
41302ad2b622b340caeb13339338ab3a5d0f7e6b
[ "CC0-1.0" ]
null
null
null
# GNU MediaGoblin -- federated, autonomous media hosting # Copyright (C) 2011, 2012 MediaGoblin contributors. See AUTHORS. # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import json try: import mock except ImportError: import unittest.mock as mock import pytest from webtest import AppError from .resources import GOOD_JPG from mediagoblin import mg_globals from mediagoblin.db.models import User, Activity, MediaEntry, TextComment from mediagoblin.tools.routing import extract_url_arguments from mediagoblin.tests.tools import fixture_add_user from mediagoblin.moderation.tools import take_away_privileges class TestAPI(object): """ Test mediagoblin's pump.io complient APIs """ @pytest.fixture(autouse=True) def setup(self, test_app): self.test_app = test_app self.db = mg_globals.database self.user = fixture_add_user(privileges=[u'active', u'uploader', u'commenter']) self.other_user = fixture_add_user( username="otheruser", privileges=[u'active', u'uploader', u'commenter'] ) self.active_user = self.user def _activity_to_feed(self, test_app, activity, headers=None): """ Posts an activity to the user's feed """ if headers: headers.setdefault("Content-Type", "application/json") else: headers = {"Content-Type": "application/json"} with self.mock_oauth(): response = test_app.post( "/api/user/{0}/feed".format(self.active_user.username), json.dumps(activity), headers=headers ) return response, json.loads(response.body.decode()) def _upload_image(self, test_app, image): """ Uploads and image to MediaGoblin via pump.io API """ data = open(image, "rb").read() headers = { "Content-Type": "image/jpeg", "Content-Length": str(len(data)) } with self.mock_oauth(): response = test_app.post( "/api/user/{0}/uploads".format(self.active_user.username), data, headers=headers ) image = json.loads(response.body.decode()) return response, image def _post_image_to_feed(self, test_app, image): """ Posts an already uploaded image to feed """ activity = { "verb": "post", "object": image, } return self._activity_to_feed(test_app, activity) def mocked_oauth_required(self, *args, **kwargs): """ Mocks mediagoblin.decorator.oauth_required to always validate """ def fake_controller(controller, request, *args, **kwargs): request.user = User.query.filter_by(id=self.active_user.id).first() return controller(request, *args, **kwargs) def oauth_required(c): return lambda *args, **kwargs: fake_controller(c, *args, **kwargs) return oauth_required def mock_oauth(self): """ Returns a mock.patch for the oauth_required decorator """ return mock.patch( target="mediagoblin.decorators.oauth_required", new_callable=self.mocked_oauth_required ) def test_can_post_image(self, test_app): """ Tests that an image can be posted to the API """ # First request we need to do is to upload the image response, image = self._upload_image(test_app, GOOD_JPG) # I should have got certain things back assert response.status_code == 200 assert "id" in image assert "fullImage" in image assert "url" in image["fullImage"] assert "url" in image assert "author" in image assert "published" in image assert "updated" in image assert image["objectType"] == "image" # Check that we got the response we're expecting response, _ = self._post_image_to_feed(test_app, image) assert response.status_code == 200 def test_unable_to_upload_as_someone_else(self, test_app): """ Test that can't upload as someoen else """ data = open(GOOD_JPG, "rb").read() headers = { "Content-Type": "image/jpeg", "Content-Length": str(len(data)) } with self.mock_oauth(): # Will be self.user trying to upload as self.other_user with pytest.raises(AppError) as excinfo: test_app.post( "/api/user/{0}/uploads".format(self.other_user.username), data, headers=headers ) assert "403 FORBIDDEN" in excinfo.value.args[0] def test_unable_to_post_feed_as_someone_else(self, test_app): """ Tests that can't post an image to someone else's feed """ response, data = self._upload_image(test_app, GOOD_JPG) activity = { "verb": "post", "object": data } headers = { "Content-Type": "application/json", } with self.mock_oauth(): with pytest.raises(AppError) as excinfo: test_app.post( "/api/user/{0}/feed".format(self.other_user.username), json.dumps(activity), headers=headers ) assert "403 FORBIDDEN" in excinfo.value.args[0] def test_only_able_to_update_own_image(self, test_app): """ Test's that the uploader is the only person who can update an image """ response, data = self._upload_image(test_app, GOOD_JPG) response, data = self._post_image_to_feed(test_app, data) activity = { "verb": "update", "object": data["object"], } headers = { "Content-Type": "application/json", } # Lets change the image uploader to be self.other_user, this is easier # than uploading the image as someone else as the way self.mocked_oauth_required # and self._upload_image. media = MediaEntry.query.filter_by(public_id=data["object"]["id"]).first() media.actor = self.other_user.id media.save() # Now lets try and edit the image as self.user, this should produce a 403 error. with self.mock_oauth(): with pytest.raises(AppError) as excinfo: test_app.post( "/api/user/{0}/feed".format(self.user.username), json.dumps(activity), headers=headers ) assert "403 FORBIDDEN" in excinfo.value.args[0] def test_upload_image_with_filename(self, test_app): """ Tests that you can upload an image with filename and description """ response, data = self._upload_image(test_app, GOOD_JPG) response, data = self._post_image_to_feed(test_app, data) image = data["object"] # Now we need to add a title and description title = "My image ^_^" description = "This is my super awesome image :D" license = "CC-BY-SA" image["displayName"] = title image["content"] = description image["license"] = license activity = {"verb": "update", "object": image} with self.mock_oauth(): response = test_app.post( "/api/user/{0}/feed".format(self.user.username), json.dumps(activity), headers={"Content-Type": "application/json"} ) image = json.loads(response.body.decode())["object"] # Check everything has been set on the media correctly media = MediaEntry.query.filter_by(public_id=image["id"]).first() assert media.title == title assert media.description == description assert media.license == license # Check we're being given back everything we should on an update assert image["id"] == media.public_id assert image["displayName"] == title assert image["content"] == description assert image["license"] == license def test_only_uploaders_post_image(self, test_app): """ Test that only uploaders can upload images """ # Remove uploader permissions from user take_away_privileges(self.user.username, u"uploader") # Now try and upload a image data = open(GOOD_JPG, "rb").read() headers = { "Content-Type": "image/jpeg", "Content-Length": str(len(data)), } with self.mock_oauth(): with pytest.raises(AppError) as excinfo: test_app.post( "/api/user/{0}/uploads".format(self.user.username), data, headers=headers ) # Assert that we've got a 403 assert "403 FORBIDDEN" in excinfo.value.args[0] def test_object_endpoint(self, test_app): """ Tests that object can be looked up at endpoint """ # Post an image response, data = self._upload_image(test_app, GOOD_JPG) response, data = self._post_image_to_feed(test_app, data) # Now lookup image to check that endpoint works. image = data["object"] assert "links" in image assert "self" in image["links"] # Get URI and strip testing host off object_uri = image["links"]["self"]["href"] object_uri = object_uri.replace("http://localhost:80", "") with self.mock_oauth(): request = test_app.get(object_uri) image = json.loads(request.body.decode()) entry = MediaEntry.query.filter_by(public_id=image["id"]).first() assert request.status_code == 200 assert "image" in image assert "fullImage" in image assert "pump_io" in image assert "links" in image def test_post_comment(self, test_app): """ Tests that I can post an comment media """ # Upload some media to comment on response, data = self._upload_image(test_app, GOOD_JPG) response, data = self._post_image_to_feed(test_app, data) content = "Hai this is a comment on this lovely picture ^_^" activity = { "verb": "post", "object": { "objectType": "comment", "content": content, "inReplyTo": data["object"], } } response, comment_data = self._activity_to_feed(test_app, activity) assert response.status_code == 200 # Find the objects in the database media = MediaEntry.query.filter_by(public_id=data["object"]["id"]).first() comment = media.get_comments()[0].comment() # Tests that it matches in the database assert comment.actor == self.user.id assert comment.content == content # Test that the response is what we should be given assert comment.content == comment_data["object"]["content"] def test_unable_to_post_comment_as_someone_else(self, test_app): """ Tests that you're unable to post a comment as someone else. """ # Upload some media to comment on response, data = self._upload_image(test_app, GOOD_JPG) response, data = self._post_image_to_feed(test_app, data) activity = { "verb": "post", "object": { "objectType": "comment", "content": "comment commenty comment ^_^", "inReplyTo": data["object"], } } headers = { "Content-Type": "application/json", } with self.mock_oauth(): with pytest.raises(AppError) as excinfo: test_app.post( "/api/user/{0}/feed".format(self.other_user.username), json.dumps(activity), headers=headers ) assert "403 FORBIDDEN" in excinfo.value.args[0] def test_unable_to_update_someone_elses_comment(self, test_app): """ Test that you're able to update someoen elses comment. """ # Upload some media to comment on response, data = self._upload_image(test_app, GOOD_JPG) response, data = self._post_image_to_feed(test_app, data) activity = { "verb": "post", "object": { "objectType": "comment", "content": "comment commenty comment ^_^", "inReplyTo": data["object"], } } headers = { "Content-Type": "application/json", } # Post the comment. response, comment_data = self._activity_to_feed(test_app, activity) # change who uploaded the comment as it's easier than changing comment = TextComment.query.filter_by(public_id=comment_data["object"]["id"]).first() comment.actor = self.other_user.id comment.save() # Update the comment as someone else. comment_data["object"]["content"] = "Yep" activity = { "verb": "update", "object": comment_data["object"] } with self.mock_oauth(): with pytest.raises(AppError) as excinfo: test_app.post( "/api/user/{0}/feed".format(self.user.username), json.dumps(activity), headers=headers ) assert "403 FORBIDDEN" in excinfo.value.args[0] def test_profile(self, test_app): """ Tests profile endpoint """ uri = "/api/user/{0}/profile".format(self.user.username) with self.mock_oauth(): response = test_app.get(uri) profile = json.loads(response.body.decode()) assert response.status_code == 200 assert profile["preferredUsername"] == self.user.username assert profile["objectType"] == "person" assert "links" in profile def test_user(self, test_app): """ Test the user endpoint """ uri = "/api/user/{0}/".format(self.user.username) with self.mock_oauth(): response = test_app.get(uri) user = json.loads(response.body.decode()) assert response.status_code == 200 assert user["nickname"] == self.user.username assert user["updated"] == self.user.created.isoformat() assert user["published"] == self.user.created.isoformat() # Test profile exists but self.test_profile will test the value assert "profile" in response def test_whoami_without_login(self, test_app): """ Test that whoami endpoint returns error when not logged in """ with pytest.raises(AppError) as excinfo: response = test_app.get("/api/whoami") assert "401 UNAUTHORIZED" in excinfo.value.args[0] def test_read_feed(self, test_app): """ Test able to read objects from the feed """ response, image_data = self._upload_image(test_app, GOOD_JPG) response, data = self._post_image_to_feed(test_app, image_data) uri = "/api/user/{0}/feed".format(self.active_user.username) with self.mock_oauth(): response = test_app.get(uri) feed = json.loads(response.body.decode()) assert response.status_code == 200 # Check it has the attributes it should assert "displayName" in feed assert "objectTypes" in feed assert "url" in feed assert "links" in feed assert "author" in feed assert "items" in feed # Check that image i uploaded is there assert feed["items"][0]["verb"] == "post" assert feed["items"][0]["id"] == data["id"] assert feed["items"][0]["object"]["objectType"] == "image" assert feed["items"][0]["object"]["id"] == data["object"]["id"] default_limit = 20 items_count = default_limit * 2 for i in range(items_count): response, image_data = self._upload_image(test_app, GOOD_JPG) self._post_image_to_feed(test_app, image_data) items_count += 1 # because there already is one # # default returns default_limit items # with self.mock_oauth(): response = test_app.get(uri) feed = json.loads(response.body.decode()) assert len(feed["items"]) == default_limit # # silentely ignore count and offset that that are # not a number # with self.mock_oauth(): response = test_app.get(uri + "?count=BAD&offset=WORSE") feed = json.loads(response.body.decode()) assert len(feed["items"]) == default_limit # # if offset is less than default_limit items # from the end of the feed, return less than # default_limit # with self.mock_oauth(): near_the_end = items_count - default_limit / 2 response = test_app.get(uri + "?offset=%d" % near_the_end) feed = json.loads(response.body.decode()) assert len(feed["items"]) < default_limit # # count=5 returns 5 items # with self.mock_oauth(): response = test_app.get(uri + "?count=5") feed = json.loads(response.body.decode()) assert len(feed["items"]) == 5 def test_read_another_feed(self, test_app): """ Test able to read objects from someone else's feed """ response, data = self._upload_image(test_app, GOOD_JPG) response, data = self._post_image_to_feed(test_app, data) # Change the active user to someone else. self.active_user = self.other_user # Fetch the feed url = "/api/user/{0}/feed".format(self.user.username) with self.mock_oauth(): response = test_app.get(url) feed = json.loads(response.body.decode()) assert response.status_code == 200 # Check it has the attributes it ought to. assert "displayName" in feed assert "objectTypes" in feed assert "url" in feed assert "links" in feed assert "author" in feed assert "items" in feed # Assert the uploaded image is there assert feed["items"][0]["verb"] == "post" assert feed["items"][0]["id"] == data["id"] assert feed["items"][0]["object"]["objectType"] == "image" assert feed["items"][0]["object"]["id"] == data["object"]["id"] def test_cant_post_to_someone_elses_feed(self, test_app): """ Test that can't post to someone elses feed """ response, data = self._upload_image(test_app, GOOD_JPG) self.active_user = self.other_user with self.mock_oauth(): with pytest.raises(AppError) as excinfo: self._post_image_to_feed(test_app, data) assert "403 FORBIDDEN" in excinfo.value.args[0] def test_object_endpoint_requestable(self, test_app): """ Test that object endpoint can be requested """ response, data = self._upload_image(test_app, GOOD_JPG) response, data = self._post_image_to_feed(test_app, data) object_id = data["object"]["id"] with self.mock_oauth(): response = test_app.get(data["object"]["links"]["self"]["href"]) data = json.loads(response.body.decode()) assert response.status_code == 200 assert object_id == data["id"] assert "url" in data assert "links" in data assert data["objectType"] == "image" def test_delete_media_by_activity(self, test_app): """ Test that an image can be deleted by a delete activity to feed """ response, data = self._upload_image(test_app, GOOD_JPG) response, data = self._post_image_to_feed(test_app, data) object_id = data["object"]["id"] activity = { "verb": "delete", "object": { "id": object_id, "objectType": "image", } } response = self._activity_to_feed(test_app, activity)[1] # Check the media is no longer in the database media = MediaEntry.query.filter_by(public_id=object_id).first() assert media is None # Check we've been given the full delete activity back assert "id" in response assert response["verb"] == "delete" assert "object" in response assert response["object"]["id"] == object_id assert response["object"]["objectType"] == "image" def test_delete_comment_by_activity(self, test_app): """ Test that a comment is deleted by a delete activity to feed """ # First upload an image to comment against response, data = self._upload_image(test_app, GOOD_JPG) response, data = self._post_image_to_feed(test_app, data) # Post a comment to delete activity = { "verb": "post", "object": { "objectType": "comment", "content": "This is a comment.", "inReplyTo": data["object"], } } comment = self._activity_to_feed(test_app, activity)[1] # Now delete the image activity = { "verb": "delete", "object": { "id": comment["object"]["id"], "objectType": "comment", } } delete = self._activity_to_feed(test_app, activity)[1] # Verify the comment no longer exists assert TextComment.query.filter_by(public_id=comment["object"]["id"]).first() is None comment_id = comment["object"]["id"] # Check we've got a delete activity back assert "id" in delete assert delete["verb"] == "delete" assert "object" in delete assert delete["object"]["id"] == comment["object"]["id"] assert delete["object"]["objectType"] == "comment" def test_edit_comment(self, test_app): """ Test that someone can update their own comment """ # First upload an image to comment against response, data = self._upload_image(test_app, GOOD_JPG) response, data = self._post_image_to_feed(test_app, data) # Post a comment to edit activity = { "verb": "post", "object": { "objectType": "comment", "content": "This is a comment", "inReplyTo": data["object"], } } comment = self._activity_to_feed(test_app, activity)[1] # Now create an update activity to change the content activity = { "verb": "update", "object": { "id": comment["object"]["id"], "content": "This is my fancy new content string!", "objectType": "comment", }, } comment = self._activity_to_feed(test_app, activity)[1] # Verify the comment reflects the changes model = TextComment.query.filter_by(public_id=comment["object"]["id"]).first() assert model.content == activity["object"]["content"]
35.886228
93
0.584766
4a3648742bf60264b163a477fc1b74b0c0dc8e60
4,516
py
Python
benchmark/startQiskit1802.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
benchmark/startQiskit1802.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
benchmark/startQiskit1802.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
# qubit number=5 # total number=60 import cirq import qiskit from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit import BasicAer, execute, transpile from pprint import pprint from qiskit.test.mock import FakeVigo from math import log2,floor, sqrt, pi import numpy as np import networkx as nx def build_oracle(n: int, f) -> QuantumCircuit: # implement the oracle O_f^\pm # NOTE: use U1 gate (P gate) with \lambda = 180 ==> CZ gate # or multi_control_Z_gate (issue #127) controls = QuantumRegister(n, "ofc") oracle = QuantumCircuit(controls, name="Zf") for i in range(2 ** n): rep = np.binary_repr(i, n) if f(rep) == "1": for j in range(n): if rep[j] == "0": oracle.x(controls[j]) # oracle.h(controls[n]) if n >= 2: oracle.mcu1(pi, controls[1:], controls[0]) for j in range(n): if rep[j] == "0": oracle.x(controls[j]) # oracle.barrier() return oracle def make_circuit(n:int,f) -> QuantumCircuit: # circuit begin input_qubit = QuantumRegister(n,"qc") classical = ClassicalRegister(n, "qm") prog = QuantumCircuit(input_qubit, classical) prog.h(input_qubit[0]) # number=3 prog.h(input_qubit[1]) # number=4 prog.h(input_qubit[2]) # number=5 prog.h(input_qubit[3]) # number=6 prog.h(input_qubit[3]) # number=59 prog.h(input_qubit[4]) # number=21 prog.h(input_qubit[0]) # number=43 prog.cz(input_qubit[4],input_qubit[0]) # number=44 prog.h(input_qubit[0]) # number=45 prog.h(input_qubit[0]) # number=56 prog.cz(input_qubit[4],input_qubit[0]) # number=57 prog.h(input_qubit[0]) # number=58 prog.z(input_qubit[4]) # number=47 prog.cx(input_qubit[4],input_qubit[0]) # number=48 prog.h(input_qubit[0]) # number=37 prog.cz(input_qubit[4],input_qubit[0]) # number=38 prog.h(input_qubit[0]) # number=39 Zf = build_oracle(n, f) repeat = floor(sqrt(2 ** n) * pi / 4) for i in range(repeat): prog.append(Zf.to_gate(), [input_qubit[i] for i in range(n)]) prog.h(input_qubit[0]) # number=1 prog.rx(-1.0430087609918113,input_qubit[4]) # number=36 prog.h(input_qubit[1]) # number=2 prog.h(input_qubit[2]) # number=7 prog.h(input_qubit[3]) # number=8 prog.cx(input_qubit[1],input_qubit[0]) # number=40 prog.cx(input_qubit[1],input_qubit[0]) # number=52 prog.x(input_qubit[0]) # number=53 prog.cx(input_qubit[1],input_qubit[0]) # number=54 prog.h(input_qubit[0]) # number=49 prog.cz(input_qubit[1],input_qubit[0]) # number=50 prog.h(input_qubit[0]) # number=51 prog.x(input_qubit[1]) # number=10 prog.rx(-0.06597344572538572,input_qubit[3]) # number=27 prog.cx(input_qubit[0],input_qubit[2]) # number=22 prog.x(input_qubit[2]) # number=23 prog.h(input_qubit[2]) # number=28 prog.cz(input_qubit[0],input_qubit[2]) # number=29 prog.h(input_qubit[2]) # number=30 prog.x(input_qubit[3]) # number=12 if n>=2: prog.mcu1(pi,input_qubit[1:],input_qubit[0]) prog.x(input_qubit[0]) # number=13 prog.x(input_qubit[1]) # number=14 prog.x(input_qubit[2]) # number=15 prog.x(input_qubit[3]) # number=16 prog.h(input_qubit[4]) # number=35 prog.h(input_qubit[0]) # number=17 prog.rx(2.4912829742967055,input_qubit[2]) # number=26 prog.h(input_qubit[1]) # number=18 prog.h(input_qubit[2]) # number=19 prog.h(input_qubit[2]) # number=55 prog.h(input_qubit[2]) # number=25 prog.h(input_qubit[3]) # number=20 # circuit end for i in range(n): prog.measure(input_qubit[i], classical[i]) return prog if __name__ == '__main__': key = "00000" f = lambda rep: str(int(rep == key)) prog = make_circuit(5,f) backend = BasicAer.get_backend('qasm_simulator') sample_shot =7924 info = execute(prog, backend=backend, shots=sample_shot).result().get_counts() backend = FakeVigo() circuit1 = transpile(prog,backend,optimization_level=2) writefile = open("../data/startQiskit1802.csv","w") print(info,file=writefile) print("results end", file=writefile) print(circuit1.depth(),file=writefile) print(circuit1,file=writefile) writefile.close()
32.489209
82
0.614925
613e5a61b14f569b04c926da6c8a8dca3dd36e2b
2,569
py
Python
src/deduplicate.py
hiyoung123/NewWordDetection
21f685c15ea2e2bb744ba5e8b6ee10bae00e854d
[ "MIT" ]
6
2021-06-24T03:58:32.000Z
2022-01-21T11:55:36.000Z
src/deduplicate.py
hiyoung123/NewWordDetection
21f685c15ea2e2bb744ba5e8b6ee10bae00e854d
[ "MIT" ]
null
null
null
src/deduplicate.py
hiyoung123/NewWordDetection
21f685c15ea2e2bb744ba5e8b6ee10bae00e854d
[ "MIT" ]
1
2021-06-24T05:19:34.000Z
2021-06-24T05:19:34.000Z
#!usr/bin/env python #-*- coding:utf-8 -*- from src.simhash import SimHash class DuplicateRemove: def __init__(self, hash_size, block_num, dict_file='../data/dict.txt', stopwords=[]): self.hash_size = hash_size self.block_num = block_num self.block_size = hash_size/block_num self.index = [{} for _ in range(self.block_num)] self.doc_hash_dict = {} self.hash = SimHash(hash_size, dict_file, stopwords) def insert(self, doc, doc_id): encoded = self.encode(doc) for b in range(self.block_num): key = '' for i in range(0, len(encoded), self.block_num): key += encoded[i] if key not in self.index[b]: self.index[b][key] = [] self.index[b][key].append(doc_id) self.doc_hash_dict[doc_id] = encoded def contains(self, doc): docs = self.recall(doc) doc_hash_code = self.encode(doc) for doc_id in docs: other_hash_code = self.get_hash_code(doc_id) if self.similar(other_hash_code, doc_hash_code): return True return False def recall(self, doc): result = [] encoded = self.encode(doc) for b in range(self.block_num): key = '' for i in range(0, len(encoded), self.block_num): key += encoded[i] doc_ids = self.index[b].get(key, []) result.extend(doc_ids) return result def similar(self, hash_code1, hash_code2): t1 = self.covert_str_to_int(hash_code1) t2 = self.covert_str_to_int(hash_code2) distance = self.hamming(t1, t2) return True if distance <= self.block_num-1 else False def encode(self, text): return self.hash.encode(text) def hamming(self, doc1, doc2): return self.hash.hamming(doc1, doc2, self.hash_size) def get_hash_code(self, doc_id): return self.doc_hash_dict.get(doc_id, None) def covert_str_to_int(self, text): return self.hash.covert_str_to_int(text) if __name__ == '__main__': with open('../data/document1', 'r', encoding='utf-8') as f: text1 = f.read() with open('../data/document2', 'r', encoding='utf-8') as f: text2 = f.read() with open('../data/document3', 'r', encoding='utf-8') as f: text3 = f.read() dr = DuplicateRemove(64, 4) if not dr.contains(text1): dr.insert(text1, 1) print(dr.contains(text1)) print(dr.contains(text2)) print(dr.contains(text3))
31.329268
89
0.591281
b942ff3dafb5c886434a478e8bfb0592e83afd1c
6,215
bzl
Python
antlir/bzl/image_layer.bzl
zeroxoneb/antlir
811d88965610d16a5c85d831d317f087797ca732
[ "MIT" ]
28
2020-08-11T16:22:46.000Z
2022-03-04T15:41:52.000Z
antlir/bzl/image_layer.bzl
zeroxoneb/antlir
811d88965610d16a5c85d831d317f087797ca732
[ "MIT" ]
137
2020-08-11T16:07:49.000Z
2022-02-27T10:59:05.000Z
antlir/bzl/image_layer.bzl
zeroxoneb/antlir
811d88965610d16a5c85d831d317f087797ca732
[ "MIT" ]
10
2020-09-10T00:01:28.000Z
2022-03-08T18:00:28.000Z
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ An `image.layer` is a set of `feature` with some additional parameters. Its purpose to materialize those `feature`s as a btrfs subvolume in the per-repo `buck-image/out/volume/targets`. We call the subvolume a "layer" because it can be built on top of a snapshot of its `parent_layer`, and thus can be represented as a btrfs send-stream for more efficient storage & distribution. The Buck output of an `image.layer` target is a JSON file with information on how to find the resulting layer in the per-repo `buck-image/out/volume/targets`. See `SubvolumeOnDisk.to_json_file`. ## Implementation notes The implementation of this converter deliberately minimizes the amount of business logic in its command. The converter must include **only** our interactions with the buck target graph. Everything else should be delegated to subcommands. ### Command In composing the `bash` command, our core maxim is: make it a hermetic function of the converter's inputs -- do not read data from disk, do not insert disk paths into the command, do not do anything that might cause the bytes of the command to vary between machines or between runs. To achieve this, we use Buck macros to resolve all paths, including those to helper scripts. We rely on environment variables or pipes to pass data between the helper scripts. Another reason to keep this converter minimal is that `buck test` cannot make assertions about targets that fail to build. Since we only have the ability to test the "good" targets, it behooves us to put most logic in external scripts, so that we can unit-test its successes **and** failures thoroughly. ### Output We mark `image.layer` uncacheable, because there's no easy way to teach Buck to serialize a btrfs subvolume (for that, we have `package.new`). That said, we should still follow best practices to avoid problems if e.g. the user renames their repo, or similar. These practices include: - The output JSON must store no absolute paths. - Store Buck target paths instead of paths into the output directory. ### Dependency resolution An `image.layer` consumes a set of `feature` outputs to decide what to put into the btrfs subvolume. These outputs are actually just JSON files that reference other targets, and do not contain the data to be written into the image. Therefore, `image.layer` has to explicitly tell buck that it needs all direct dependencies of its `feature`s to be present on disk -- see our `attrfilter` queries below. Without this, Buck would merrily fetch the just the `feature` JSONs from its cache, and not provide us with any of the buid artifacts that comprise the image. We do NOT need the direct dependencies of the parent layer's features, because we treat the parent layer as a black box -- whatever it has laid down in the image, that's what it provides (and we don't care about how). The consequences of this information hiding are: - Better Buck cache efficiency -- we don't have to download the dependencies of the ancestor layers' features. Doing that would be wasteful, since those bits are redundant with what's in the parent. - Ability to use genrule image layers / apply non-pure post-processing to a layer. In terms of engineering, both of these non-pure approaches are a terrible idea and a maintainability headache, but they do provide a useful bridge for transitioning to Buck image builds from legacy imperative systems. - The image compiler needs a litte extra code to walk the parent layer and determine what it provides. - We cannot have "unobservable" dependencies between features. Since feature dependencies are expected to routinely cross layer boundaries, feature implementations are forced only to depend on data that can be inferred from the filesystem -- since this is all that the parent layer implementation can do. NB: This is easy to relax in the future by writing a manifest with additional metadata into each layer, and using that metadata during compilation. """ load(":compile_image_features.bzl", "compile_image_features") load(":image_layer_utils.bzl", "image_layer_utils") load(":image_utils.bzl", "image_utils") def image_layer( name, parent_layer = None, features = None, flavor = None, flavor_config_override = None, antlir_rule = "user-internal", **image_layer_kwargs): """ Arguments - `parent_layer`: The name of another `image_layer` target, on top of which the current layer will install its features. - `features`: List of `feature` target paths and/or nameless structs from `feature.new`. - `flavor`: Picks default build options for the layer, including `build_appliance`, RPM installer, and others. See `flavor_helpers.bzl` for details. - `flavor_config_override`: A struct that can override the default values fetched from `REPO_CFG[flavor].flavor_to_config`. - `mount_config`: Specifies how this layer is mounted in the `mounts` field of a `feature` of a parent layer. See the field in `_image_layer_impl` in `image_layer_utils.bzl` - `runtime`: A list of desired helper buck targets to be emitted. `container` is always included in the list by default. See the field in `_image_layer_impl` in `image_layer_utils.bzl` and the [docs](/docs/tutorials/helper-buck-targets#imagelayer) for the list of possible helpers, their respective behaviours, and how to invoke them. """ image_layer_utils.image_layer_impl( _rule_type = "image_layer", _layer_name = name, # Build a new layer. It may be empty. _make_subvol_cmd = compile_image_features( name = name, current_target = image_utils.current_target(name), parent_layer = parent_layer, features = features, flavor = flavor, flavor_config_override = flavor_config_override, ), antlir_rule = antlir_rule, **image_layer_kwargs )
44.078014
79
0.740628
c1cf6547ed7bfd50ae90d81a89e64888002ed05c
654
py
Python
data/transcoder_evaluation_gfg/python/PROGRAM_FOR_FACTORIAL_OF_A_NUMBER_2.py
mxl1n/CodeGen
e5101dd5c5e9c3720c70c80f78b18f13e118335a
[ "MIT" ]
241
2021-07-20T08:35:20.000Z
2022-03-31T02:39:08.000Z
data/transcoder_evaluation_gfg/python/PROGRAM_FOR_FACTORIAL_OF_A_NUMBER_2.py
mxl1n/CodeGen
e5101dd5c5e9c3720c70c80f78b18f13e118335a
[ "MIT" ]
49
2021-07-22T23:18:42.000Z
2022-03-24T09:15:26.000Z
data/transcoder_evaluation_gfg/python/PROGRAM_FOR_FACTORIAL_OF_A_NUMBER_2.py
mxl1n/CodeGen
e5101dd5c5e9c3720c70c80f78b18f13e118335a
[ "MIT" ]
71
2021-07-21T05:17:52.000Z
2022-03-29T23:49:28.000Z
# Copyright (c) 2019-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # def f_gold ( n ) : return 1 if ( n == 1 or n == 0 ) else n * f_gold ( n - 1 ) #TOFILL if __name__ == '__main__': param = [ (24,), (46,), (47,), (41,), (98,), (69,), (83,), (2,), (12,), (11,) ] n_success = 0 for i, parameters_set in enumerate(param): if f_filled(*parameters_set) == f_gold(*parameters_set): n_success+=1 print("#Results: %i, %i" % (n_success, len(param)))
21.8
64
0.547401
d4c01cd0edc8d2153f80658f1a0ab4766c122f46
867
py
Python
other/pom.py
bartekpacia/python-training
00a1047f70ab44cc5afed8619eb4eac0e406f3e3
[ "MIT" ]
null
null
null
other/pom.py
bartekpacia/python-training
00a1047f70ab44cc5afed8619eb4eac0e406f3e3
[ "MIT" ]
null
null
null
other/pom.py
bartekpacia/python-training
00a1047f70ab44cc5afed8619eb4eac0e406f3e3
[ "MIT" ]
null
null
null
t = int(input("podaj t: ")) wszystkie_liczby = [] for i in range(0, t): liczby = input("podaj A B k: ") wszystkie_liczby.append(liczby.split()) print(wszystkie_liczby) for i in range(0, len(wszystkie_liczby)): A = wszystkie_liczby[i][0] B = wszystkie_liczby[i][1] k = int(wszystkie_liczby[i][2]) print(f"A: {A}, B: {B}, k: {k}") najwieksze_dobre_C = 0 for ii in range(0, k): for j in range(0, len(A)): for l in range(0, 10): C_list = list(A) zmieniona_cyfra = str(l) C_list[j] = zmieniona_cyfra kandydat_C = "".join(C_list) if int(kandydat_C) < int(B): if int(kandydat_C) > int(najwieksze_dobre_C): najwieksze_dobre_C = kandydat_C print(najwieksze_dobre_C + " - najwieksze dobre")
28.9
65
0.54902
d611b79120e6d156e719663d34b598736a9cef39
287
py
Python
plugins/raid/db/raid.py
dwieland/carnibot
83d660cac151739b524c6f11e8e7fe0b068869d7
[ "Apache-2.0" ]
1
2018-08-02T06:27:37.000Z
2018-08-02T06:27:37.000Z
plugins/raid/db/raid.py
dwieland/carnibot
83d660cac151739b524c6f11e8e7fe0b068869d7
[ "Apache-2.0" ]
4
2018-08-02T06:35:07.000Z
2018-08-02T06:37:14.000Z
plugins/raid/db/raid.py
dwieland/carnibot
83d660cac151739b524c6f11e8e7fe0b068869d7
[ "Apache-2.0" ]
null
null
null
from sqlalchemy import Column, Integer, DateTime, String from plugins.raid.db import Base class Raid(Base): __tablename__ = "RAID" id = Column(Integer, primary_key=True) date = Column(DateTime, unique=True) message_id = Column(String(32)) color = Column(Integer)
22.076923
56
0.710801
db9083a55bc6370222cc6fbe21804a38add57a37
946
py
Python
pyEpiabm/pyEpiabm/sweep/queue_sweep.py
Saketkr21/epiabm
3ec0dcbc78d3fd4114ed3c6bdd78ef39f0013d2f
[ "BSD-3-Clause" ]
11
2021-12-02T15:24:02.000Z
2022-03-10T14:02:13.000Z
pyEpiabm/pyEpiabm/sweep/queue_sweep.py
Saketkr21/epiabm
3ec0dcbc78d3fd4114ed3c6bdd78ef39f0013d2f
[ "BSD-3-Clause" ]
119
2021-11-24T13:56:48.000Z
2022-03-30T11:52:07.000Z
pyEpiabm/pyEpiabm/sweep/queue_sweep.py
SABS-R3-Epidemiology/epiabm
8eb83fd2de84104f6f77929e3771095f7b033ddc
[ "BSD-3-Clause" ]
3
2022-01-13T03:05:19.000Z
2022-03-11T22:00:17.000Z
# # Sweeps for enqueued persons to update infection status # from pyEpiabm.property import InfectionStatus from .abstract_sweep import AbstractSweep class QueueSweep(AbstractSweep): """Class to sweep through the enqueued persons in each cell and update their infection status. """ def __call__(self, time: float): """Function to run through the queue of people to be exposed. Parameters ---------- time : float Simulation time """ for cell in self._population.cells: while not cell.person_queue.empty(): person = cell.person_queue.get() # Get takes person from the queue and removes them, so clears # the queue for the next timestep. # Update the infection status person.next_infection_status = InfectionStatus.Exposed person.time_of_status_change = time
29.5625
77
0.627907
63c960cd6723083ac7223a2993f19dda5fb19182
3,762
py
Python
data/base_dataset.py
Uha661/instagan
4b49eb85ee1b0ef9c21ca3187604bf9933e0042b
[ "BSD-3-Clause" ]
null
null
null
data/base_dataset.py
Uha661/instagan
4b49eb85ee1b0ef9c21ca3187604bf9933e0042b
[ "BSD-3-Clause" ]
null
null
null
data/base_dataset.py
Uha661/instagan
4b49eb85ee1b0ef9c21ca3187604bf9933e0042b
[ "BSD-3-Clause" ]
null
null
null
import torch.utils.data as data from PIL import Image import torchvision.transforms as transforms class BaseDataset(data.Dataset): def __init__(self): super(BaseDataset, self).__init__() def name(self): return 'BaseDataset' @staticmethod def modify_commandline_options(parser, is_train): return parser def initialize(self, opt): pass def __len__(self): return 0 def get_transform(opt): transform_list = [] # Modify transform to specify width and height if opt.resize_or_crop == 'resize_and_crop': osize = [opt.loadSizeH, opt.loadSizeW] fsize = [opt.fineSizeH, opt.fineSizeW] transform_list.append(transforms.Resize(osize, Image.BICUBIC)) transform_list.append(transforms.RandomCrop(fsize)) # Original CycleGAN code # if opt.resize_or_crop == 'resize_and_crop': # osize = [opt.loadSize, opt.loadSize] # transform_list.append(transforms.Resize(osize, Image.BICUBIC)) # transform_list.append(transforms.RandomCrop(opt.fineSize)) # elif opt.resize_or_crop == 'crop': # transform_list.append(transforms.RandomCrop(opt.fineSize)) # elif opt.resize_or_crop == 'scale_width': # transform_list.append(transforms.Lambda( # lambda img: __scale_width(img, opt.fineSize))) # elif opt.resize_or_crop == 'scale_width_and_crop': # transform_list.append(transforms.Lambda( # lambda img: __scale_width(img, opt.loadSize))) # transform_list.append(transforms.RandomCrop(opt.fineSize)) # elif opt.resize_or_crop == 'none': # transform_list.append(transforms.Lambda( # lambda img: __adjust(img))) else: raise ValueError('--resize_or_crop %s is not a valid option.' % opt.resize_or_crop) if opt.isTrain and not opt.no_flip: transform_list.append(transforms.RandomHorizontalFlip()) transform_list += [transforms.ToTensor(), transforms.Normalize((0.5), (0.5))] return transforms.Compose(transform_list) # just modify the width and height to be multiple of 4 def __adjust(img): ow, oh = img.size # the size needs to be a multiple of this number, # because going through generator network may change img size # and eventually cause size mismatch error mult = 4 if ow % mult == 0 and oh % mult == 0: return img w = (ow - 1) // mult w = (w + 1) * mult h = (oh - 1) // mult h = (h + 1) * mult if ow != w or oh != h: __print_size_warning(ow, oh, w, h) return img.resize((w, h), Image.BICUBIC) def __scale_width(img, target_width): ow, oh = img.size # the size needs to be a multiple of this number, # because going through generator network may change img size # and eventually cause size mismatch error mult = 4 assert target_width % mult == 0, "the target width needs to be multiple of %d." % mult if (ow == target_width and oh % mult == 0): return img w = target_width target_height = int(target_width * oh / ow) m = (target_height - 1) // mult h = (m + 1) * mult if target_height != h: __print_size_warning(target_width, target_height, w, h) return img.resize((w, h), Image.BICUBIC) def __print_size_warning(ow, oh, w, h): if not hasattr(__print_size_warning, 'has_printed'): print("The image size needs to be a multiple of 4. " "The loaded image size was (%d, %d), so it was adjusted to " "(%d, %d). This adjustment will be done to all images " "whose sizes are not multiples of 4" % (ow, oh, w, h)) __print_size_warning.has_printed = True
34.2
91
0.639288
3a3e3e25b79c4b70a9cf9c813684e40159e3515c
7,884
py
Python
models/Strategy.py
Vashiru/pycryptobot
a4cf67cbb7467acc1d4aa7aab17cd65e8dbb80fe
[ "Apache-2.0" ]
1
2021-06-14T18:21:49.000Z
2021-06-14T18:21:49.000Z
models/Strategy.py
Vashiru/pycryptobot
a4cf67cbb7467acc1d4aa7aab17cd65e8dbb80fe
[ "Apache-2.0" ]
null
null
null
models/Strategy.py
Vashiru/pycryptobot
a4cf67cbb7467acc1d4aa7aab17cd65e8dbb80fe
[ "Apache-2.0" ]
null
null
null
from datetime import datetime from pandas import DataFrame from models.PyCryptoBot import PyCryptoBot from models.AppState import AppState from models.helper.LogHelper import Logger class Strategy(): def __init__(self, app: PyCryptoBot=None, state: AppState=AppState, df: DataFrame=DataFrame, iterations: int=0) -> None: if not isinstance(df, DataFrame): raise TypeError("'df' not a Pandas dataframe") if len(df) == 0: raise ValueError("'df' is empty") self._action = 'WAIT' self.app = app self.state = state self._df = df self._df_last = app.getInterval(df, iterations) def isBuySignal(self, now: datetime = datetime.today().strftime('%Y-%m-%d %H:%M:%S'), price: float=0.0) -> bool: # required technical indicators or candle sticks for buy signal strategy required_indicators = [ 'ema12gtema26co', 'macdgtsignal', 'goldencross', 'obv_pc', 'eri_buy' ] for indicator in required_indicators: if indicator not in self._df_last: raise AttributeError(f"'{indicator}' not in Pandas dataframe") # buy signal exclusion (if disabled, do not buy within 3% of the dataframe close high) if self.state.last_action == 'SELL' and self.app.disableBuyNearHigh() is True and (price > (self._df['close'].max() * 0.97)): log_text = str(now) + ' | ' + self.app.getMarket() + ' | ' + self.app.printGranularity() + ' | Ignoring Buy Signal (price ' + str(price) + ' within 3% of high ' + str(self._df['close'].max()) + ')' Logger.warning(log_text) return False # criteria for a buy signal 1 if bool(self._df_last['ema12gtema26co'].values[0]) is True \ and (bool(self._df_last['macdgtsignal'].values[0]) is True or self.app.disableBuyMACD()) \ and (bool(self._df_last['goldencross'].values[0]) is True or self.app.disableBullOnly()) \ and (float(self._df_last['obv_pc'].values[0]) > -5 or self.app.disableBuyOBV()) \ and (bool(self._df_last['eri_buy'].values[0]) is True or self.app.disableBuyElderRay()) \ and self.state.last_action != 'BUY': # required for all strategies Logger.debug('*** Buy Signal ***') for indicator in required_indicators: Logger.debug(f'{indicator}: {self._df_last[indicator].values[0]}') Logger.debug(f'last_action: {self.state.last_action}') return True # criteria for buy signal 2 (optionally add additional buy singals) elif bool(self._df_last['ema12gtema26co'].values[0]) is True \ and bool(self._df_last['macdgtsignalco'].values[0]) is True \ and (bool(self._df_last['goldencross'].values[0]) is True or self.app.disableBullOnly()) \ and (float(self._df_last['obv_pc'].values[0]) > -5 or self.app.disableBuyOBV()) \ and (bool(self._df_last['eri_buy'].values[0]) is True or self.app.disableBuyElderRay()) \ and self.state.last_action != 'BUY': # required for all strategies Logger.debug('*** Buy Signal ***') for indicator in required_indicators: Logger.debug(f'{indicator}: {self._df_last[indicator].values[0]}') Logger.debug(f'last_action: {self.state.last_action}') return True return False def isSellSignal(self) -> bool: # required technical indicators or candle sticks for buy signal strategy required_indicators = [ 'ema12ltema26co', 'macdltsignal' ] for indicator in required_indicators: if indicator not in self._df_last: raise AttributeError(f"'{indicator}' not in Pandas dataframe") # criteria for a sell signal 1 if bool(self._df_last['ema12ltema26co'].values[0]) is True \ and (bool(self._df_last['macdltsignal'].values[0]) is True or self.app.disableBuyMACD()) \ and self.state.last_action not in ['', 'SELL']: Logger.debug('*** Sell Signal ***') for indicator in required_indicators: Logger.debug(f'{indicator}: {self._df_last[indicator].values[0]}') Logger.debug(f'last_action: {self.state.last_action}') return True return False def isSellTrigger(self, price: float=0.0, price_exit: float=0.0, margin: float=0.0, change_pcnt_high: float=0.0, obv_pc: float=0.0, macdltsignal: bool=False) -> bool: # loss failsafe sell at fibonacci band if self.app.disableFailsafeFibonacciLow() is False and self.app.allowSellAtLoss() and self.app.sellLowerPcnt() is None and self.state.fib_low > 0 and self.state.fib_low >= float(price): log_text = '! Loss Failsafe Triggered (Fibonacci Band: ' + str(self.state.fib_low) + ')' Logger.warning(log_text) self.app.notifyTelegram(self.app.getMarket() + ' (' + self.app.printGranularity() + ') ' + log_text) return True # loss failsafe sell at trailing_stop_loss if self.app.trailingStopLoss() != None and change_pcnt_high < self.app.trailingStopLoss() and (self.app.allowSellAtLoss() or margin > 0): log_text = '! Trailing Stop Loss Triggered (< ' + str(self.app.trailingStopLoss()) + '%)' Logger.warning(log_text) self.app.notifyTelegram(self.app.getMarket() + ' (' + self.app.printGranularity() + ') ' + log_text) return True # loss failsafe sell at sell_lower_pcnt elif self.app.disableFailsafeLowerPcnt() is False and self.app.allowSellAtLoss() and self.app.sellLowerPcnt() != None and margin < self.app.sellLowerPcnt(): log_text = '! Loss Failsafe Triggered (< ' + str(self.app.sellLowerPcnt()) + '%)' Logger.warning(log_text) self.app.notifyTelegram(self.app.getMarket() + ' (' + self.app.printGranularity() + ') ' + log_text) return True # profit bank at sell_upper_pcnt if self.app.disableProfitbankUpperPcnt() is False and self.app.sellUpperPcnt() != None and margin > self.app.sellUpperPcnt(): log_text = '! Profit Bank Triggered (> ' + str(self.app.sellUpperPcnt()) + '%)' Logger.warning(log_text) self.app.notifyTelegram(self.app.getMarket() + ' (' + self.app.printGranularity() + ') ' + log_text) return True # profit bank when strong reversal detected if self.app.disableProfitbankReversal() is False and margin > 3 and obv_pc < 0 and macdltsignal is True: log_text = '! Profit Bank Triggered (Strong Reversal Detected)' Logger.warning(log_text) self.app.notifyTelegram(self.app.getMarket() + ' (' + self.app.printGranularity() + ') ' + log_text) return True # profit bank when strong reversal detected if self.app.sellAtResistance() is True and margin >= 2 and price > 0 and price != price_exit: log_text = '! Profit Bank Triggered (Selling At Resistance)' Logger.warning(log_text) if not (not self.app.allowSellAtLoss() and margin <= 0): self.app.notifyTelegram(self.app.getMarket() + ' (' + self.app.printGranularity() + ') ' + log_text) return True return False def isWaitTrigger(self, margin: float=0.0): # configuration specifies to not sell at a loss if self.state.action == 'SELL' and not self.app.allowSellAtLoss() and margin <= 0: log_text = '! Ignore Sell Signal (No Sell At Loss)' Logger.warning(log_text) return True return False def getAction(self): if self.isBuySignal(): return 'BUY' elif self.isSellSignal(): return 'SELL' else: return 'WAIT'
51.529412
209
0.622146
dcb3a903d6323b772ed3f8765d19bdc1a890ffc4
543
py
Python
phunspell/tests/test__es.py
dvwright/phunspell
818bbd081f84c570ec304fdc235ca112f9abd869
[ "MIT" ]
null
null
null
phunspell/tests/test__es.py
dvwright/phunspell
818bbd081f84c570ec304fdc235ca112f9abd869
[ "MIT" ]
1
2021-04-19T13:14:24.000Z
2021-05-16T04:43:24.000Z
phunspell/tests/test__es.py
dvwright/phunspell
818bbd081f84c570ec304fdc235ca112f9abd869
[ "MIT" ]
null
null
null
import phunspell import inspect import unittest class TestES(unittest.TestCase): pspell = phunspell.Phunspell('es') def test_word_found(self): self.assertTrue(self.pspell.lookup("pianista")) def test_word_not_found(self): self.assertFalse(self.pspell.lookup("phunspell")) def test_lookup_list_return_not_found(self): words = "pianista borken" self.assertListEqual( self.pspell.lookup_list(words.split(" ")), ["borken"] ) if __name__ == "__main__": unittest.main()
22.625
65
0.674033
1abd108bb22953377a0b8bd40f37ac8a5b5f5abf
3,158
py
Python
dags/scripts/spark/algorand_price_lin_regression.py
Tcfocus/ml_price_prediction_airflow_pysparkml_emr
735f4432398c48e1486715bea4eaf7b620dd1298
[ "Apache-2.0" ]
null
null
null
dags/scripts/spark/algorand_price_lin_regression.py
Tcfocus/ml_price_prediction_airflow_pysparkml_emr
735f4432398c48e1486715bea4eaf7b620dd1298
[ "Apache-2.0" ]
null
null
null
dags/scripts/spark/algorand_price_lin_regression.py
Tcfocus/ml_price_prediction_airflow_pysparkml_emr
735f4432398c48e1486715bea4eaf7b620dd1298
[ "Apache-2.0" ]
null
null
null
# pyspark import argparse from pyspark.sql import SparkSession from pyspark.sql.functions import * from pyspark.sql.types import * from pyspark.ml.feature import VectorAssembler from pyspark.ml.regression import LinearRegression from pyspark.sql.window import Window import pandas as pd import ta # function for calculating RSI from price def getRsi(x): ta_rsi = ta.momentum.RSIIndicator(close=x, window=14) return ta_rsi.rsi() def linear_regression_prediction(input_location, output_location): """ Create a Linear Regression model for predicting price based off of current price, volume, market cap, and RSI values """ df_input = spark.read.csv(input_location, header=True, inferSchema=True) # transform to pandas df and calculate RSI column then revert back to spark df df_input_ta = df_input.toPandas() df_input_ta['rsi'] = df_input_ta.price.transform(getRsi) df_input_ta = spark.createDataFrame(df_input_ta) # calculate 'next_price' column window = Window.orderBy("date") a = lead(col("price")).over(window) final_df = df_input_ta.withColumn("next_price", a).dropna(how="any") # Prepare data for Machine Learning by establishing features and label ("new_step") columns feature = VectorAssembler(inputCols=['price', 'volume', 'marketCap', 'rsi'], outputCol='features') final_ml_data = feature.transform(final_df) # select only 'features' and 'next_price' for the model final_ml_data = final_ml_data.select('features', 'next_price') # split data into test and train data splits = final_ml_data.randomSplit([0.7, 0.3]) train_df, test_df = final_ml_data.randomSplit([0.7, 0.3]) # Linear regression lr = LinearRegression(featuresCol='features', labelCol='next_price') model = lr.fit(train_df) # Run model on test set to make predictions predictions = model.transform(test_df) # Clean up final predictions data by extracting the values from the vector column split1_udf = udf(lambda value: value[0].item(), FloatType()) split2_udf = udf(lambda value: value[1].item(), FloatType()) split1_udf = udf(lambda value: value[2].item(), FloatType()) split2_udf = udf(lambda value: value[3].item(), FloatType()) predictions = predictions.withColumn('price', split1_udf('features')) \ .withColumn('volume', split2_udf('features')) \ .withColumn('marketCap', split2_udf('features')) \ .withColumn('rsi', split2_udf('features')) predictions = predictions.select("price", "volume", "marketCap", "rsi", "next_price", "prediction") # Output data as a parquet = a columnar storage format predictions.write.mode("overwrite").parquet(output_location) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--input", type=str, help="HDFS input", default="/source") parser.add_argument("--output", type=str, help="HDFS output", default="/output") args = parser.parse_args() spark = SparkSession.builder.appName("Linear Regression Prediction").getOrCreate() linear_regression_prediction(input_location=args.input, output_location=args.output)
40.487179
120
0.722926
0e31edc5db0cd67f8a3dd74eecaca5c7baa139e6
14,705
py
Python
bin/automated_detection_testing/ci/detection_testing_batch/modules/validate_args.py
kirtankhatana-crest/security_content
cc63c0d635cb56f4756e209b02e13fd839f1e383
[ "Apache-2.0" ]
null
null
null
bin/automated_detection_testing/ci/detection_testing_batch/modules/validate_args.py
kirtankhatana-crest/security_content
cc63c0d635cb56f4756e209b02e13fd839f1e383
[ "Apache-2.0" ]
null
null
null
bin/automated_detection_testing/ci/detection_testing_batch/modules/validate_args.py
kirtankhatana-crest/security_content
cc63c0d635cb56f4756e209b02e13fd839f1e383
[ "Apache-2.0" ]
1
2022-01-27T05:29:43.000Z
2022-01-27T05:29:43.000Z
import argparse import copy import io import json import modules.jsonschema_errorprinter as jsonschema_errorprinter import sys from typing import Union # If we want, we can easily add a description field to any of the objects here! ES_APP_NAME = "SPLUNK_ES_CONTENT_UPDATE" setup_schema = { "type": "object", "properties": { "branch": { "type": "string", "default": "develop" }, "commit_hash": { "type": ["string", "null"], "default": None }, "container_tag": { "type": "string", "default": "latest" }, "no_interactive_failure": { "type": "boolean", "default": False }, "interactive": { "type": "boolean", "default": False }, "detections_list": { "type": ["array", "null"], "items": { "type": "string" }, "default": None, }, "detections_file": { "type": ["string", "null"], "default": None }, "apps": { "type": "object", "additionalProperties": False, "patternProperties": { "^.*$": { "type": "object", "additionalProperties": False, "properties": { "app_number": { "type": ["integer","null"] }, "app_version": { "type": ["string","null"] }, "local_path": { "type": ["string","null"] }, "http_path": { "type": ["string", "null"] } }, "anyOf": [ {"required": ["local_path"]}, {"required": ["http_path"] }, {"required": ["app_number", "app_version"] }, ] } }, "default": { ES_APP_NAME : { "app_number": 3449, "app_version": None, "local_path": None }, #The default apps below were taken from the attack_range loadout: https://github.com/splunk/attack_range/blob/develop/attack_range.conf.template "SPLUNK_ADD_ON_FOR_MICROSOFT_WINDOWS": { "app_number": 742, "app_version": "8.4.0", "http_path": "https://attack-range-appbinaries.s3.us-west-2.amazonaws.com/Latest/splunk-add-on-for-microsoft-windows_840.tgz" }, "ADD_ON_FOR_LINUX_SYSMON": { "app_number": 6176, "app_version": "1.0.4", "http_path": "https://attack-range-appbinaries.s3.us-west-2.amazonaws.com/Latest/add-on-for-linux-sysmon_104.tgz" }, "SPLUNK_ADD_ON_FOR_SYSMON": { "app_number": 5709, "app_version": "2.0.0", "http_path": "https://attack-range-appbinaries.s3.us-west-2.amazonaws.com/Latest/splunk-add-on-for-sysmon_200.tgz" }, "SPLUNK_COMMON_INFORMATION_MODEL": { "app_number": 1621, "app_version": "5.0.0", "http_path": "https://attack-range-appbinaries.s3.us-west-2.amazonaws.com/Latest/splunk-common-information-model-cim_500.tgz" }, #Note - end of life on July 15, 2022 - https://splunkbase.splunk.com/app/1274/ "SPLUNK_APP_FOR_AWS": { "app_number": 1274, "app_version": "6.0.3", "http_path": "https://attack-range-appbinaries.s3.us-west-2.amazonaws.com/Latest/splunk-app-for-aws_603.tgz" }, "PYTHON_FOR_SCIENTIFIC_COMPUTING_FOR_LINUX_64_BIT": { "app_number": 2882, "app_version": "3.0.2", "http_path": "https://attack-range-appbinaries.s3.us-west-2.amazonaws.com/Latest/python-for-scientific-computing-for-linux-64-bit_302.tgz" }, "SPLUNK_MACHINE_LEARNING_TOOLKIT": { "app_number": 2890, "app_version": "5.3.1", "http_path": "https://attack-range-appbinaries.s3.us-west-2.amazonaws.com/Latest/splunk-machine-learning-toolkit_531.tgz" }, "SPLUNK_APP_FOR_STREAM": { "app_number": 1809, "app_version": "8.0.1", "http_path": "https://attack-range-appbinaries.s3.us-west-2.amazonaws.com/Latest/splunk-app-for-stream_801.tgz" }, "SPLUNK_ADD_ON_FOR_STREAM_WIRE_DATA": { "app_number": 5234, "app_version": "8.0.1", "http_path": "https://attack-range-appbinaries.s3.us-west-2.amazonaws.com/Latest/splunk-add-on-for-stream-wire-data_801.tgz" }, "SPLUNK_ADD_ON_FOR_STREAM_FORWARDERS": { "app_number": 5238, "app_version": "8.0.1", "http_path": "https://attack-range-appbinaries.s3.us-west-2.amazonaws.com/Latest/splunk-add-on-for-stream-forwarders_801.tgz" }, "SPLUNK_SECURITY_ESSENTIALS": { "app_number": 3435, "app_version": "3.4.0", "http_path": "https://attack-range-appbinaries.s3.us-west-2.amazonaws.com/Latest/splunk-security-essentials_340.tgz" }, "SPLUNK_ADD_ON_FOR_AMAZON_KINESIS_FIREHOSE": { "app_number": 3719, "app_version": "1.3.2", "http_path": "https://attack-range-appbinaries.s3.us-west-2.amazonaws.com/Latest/splunk-add-on-for-amazon-kinesis-firehose_132.tgz" }, "SPLUNK_ADD_ON_FOR_MICROSOFT_OFFICE_365": { "app_number": 4055, "app_version": "2.2.0", "http_path": "https://attack-range-appbinaries.s3.us-west-2.amazonaws.com/Latest/splunk-add-on-for-microsoft-office-365_220.tgz" }, "SPLUNK_ADD_ON_FOR_UNIX_AND_LINUX": { "app_number": 833, "app_version": "8.4.0", "http_path": "https://attack-range-appbinaries.s3.us-west-2.amazonaws.com/Latest/splunk-add-on-for-unix-and-linux_840.tgz" }, "SPLUNK_ADD_ON_FOR_NGINX": { "app_number": 3258, "app_version": "3.1.0", "http_path": "https://attack-range-appbinaries.s3.us-west-2.amazonaws.com/Latest/splunk-add-on-for-nginx_310.tgz" }, "SPLUNK_TA_FOR_ZEEK": { "app_number": 5466, "app_version": "1.0.5", "http_path": "https://attack-range-appbinaries.s3.us-west-2.amazonaws.com/Latest/ta-for-zeek_105.tgz" }, } }, "mode": { "type": "string", "enum": ["changes", "selected", "all"], "default": "changes" }, "num_containers": { "type": "integer", "minimum": 1, "default": 1 }, "persist_security_content": { "type": "boolean", "default": False }, "pr_number": { "type": ["integer", "null"], "default": None }, "reuse_image": { "type": "boolean", "default": True }, "show_splunk_app_password": { "type": "boolean", "default": False }, "splunkbase_username": { "type": ["string", "null"], "default": None }, "splunkbase_password": { "type": ["string", "null"], "default": None }, "splunk_app_password": { "type": ["string", "null"], "default": None }, "splunk_container_apps_directory": { "type": "string", "default": "/opt/splunk/etc/apps" }, "local_base_container_name": { "type": "string", "default": "splunk_test_%d" }, "mock": { "type": "boolean", "default": False }, "folders": { "type": "array", "items": { "type": "string", "enum": ["endpoint", "cloud", "network","web","experimental"] }, "default": ["endpoint", "cloud", "network","web"] }, "types": { "type": "array", "items": { "type": "string", "enum": ["Anomaly", "Hunting", "TTP"] }, "default": ["Anomaly", "Hunting", "TTP"] }, } } def validate_file(file: io.TextIOWrapper) -> tuple[Union[dict, None], dict]: try: settings = json.loads(file.read()) return validate(settings) except Exception as e: raise(e) def check_dependencies(settings: dict, skip_password_accessibility_check:bool=True) -> bool: # Check complex mode dependencies error_free = True # Make sure that all the mode arguments are sane if settings['mode'] == 'selected': # Make sure that exactly one of the following fields is populated if settings['detections_file'] == None and settings['detections_list'] == None: print("Error - mode was 'selected' but no detections_list or detections_file were supplied.", file=sys.stderr) error_free = False elif settings['detections_file'] != None and settings['detections_list'] != None: print("Error - mode was 'selected' but detections_list and detections_file were supplied.", file=sys.stderr) error_free = False if settings['mode'] != 'selected' and settings['detections_file'] != None: print("Error - mode was not 'selected' but detections_file was supplied.", file=sys.stderr) error_free = False elif settings['mode'] != 'selected' and settings['detections_list'] != None: print("Error - mode was not 'selected' but detections_list was supplied.", file=sys.stderr) error_free = False # Make sure that if we will be in an interactive mode, that either the user has provided the password or the password will be printed if skip_password_accessibility_check: pass elif (settings['interactive'] or not settings['no_interactive_failure']) and settings['show_splunk_app_password'] is False: print("\n\n******************************************************\n\n") if settings['splunk_app_password'] is not None: print("Warning: You have chosen an interactive mode, set show_splunk_app_password False,\n"\ "and provided a password in the config file. We will NOT print this password to\n"\ "stdout. Look in the config file for this password.",file=sys.stderr) else: print("Warning: You have chosen an interactive mode, set show_splunk_app_password False,\n"\ "and DID NOT provide a password in the config file. We have updated show_splunk_app_password\n"\ "to True for you. Otherwise, interactive mode login would be impossible.",file=sys.stderr) settings['show_splunk_app_password'] = True print("\n\n******************************************************\n\n") # Returns true if there are not errors return error_free def validate_and_write(configuration: dict, output_file: Union[io.TextIOWrapper, None] = None, strip_credentials: bool = False, skip_password_accessibility_check:bool=True) -> tuple[Union[dict, None], dict]: closeFile = False if output_file is None: import datetime now = datetime.datetime.now() configname = now.strftime('%Y-%m-%dT%H:%M:%S%z') + '-test-run.json' output_file = open(configname, "w") closeFile = True if strip_credentials: configuration = copy.deepcopy(configuration) configuration['splunkbase_password'] = None configuration['splunkbase_username'] = None configuration['container_password'] = None configuration['show_splunk_app_password'] = True validated_json, setup_schema = validate(configuration,skip_password_accessibility_check) if validated_json == None: print("Error in the new settings! No output file written") else: print("Settings updated. Writing results to: %s" % (output_file.name)) try: output_file.write(json.dumps( validated_json, sort_keys=True, indent=4)) except Exception as e: print("Error writing settings to %s: [%s]" % ( output_file.name, str(e)), file=sys.stderr) sys.exit(1) if closeFile is True: output_file.close() return validated_json, setup_schema def validate(configuration: dict, skip_password_accessibility_check:bool=True) -> tuple[Union[dict, None], dict]: # v = jsonschema.Draft201909Validator(argument_schema) try: validation_errors, validated_json = jsonschema_errorprinter.check_json( configuration, setup_schema) if len(validation_errors) == 0: # check to make sure there were no complex errors no_complex_errors = check_dependencies(validated_json,skip_password_accessibility_check) if no_complex_errors: return validated_json, setup_schema else: print("Validation failed due to error(s) listed above.", file=sys.stderr) return None, setup_schema else: print("[%d] failures detected during validation of the configuration!" % ( len(validation_errors)), file=sys.stderr) for error in validation_errors: print(error, end="\n\n", file=sys.stderr) return None, setup_schema except Exception as e: print("There was an error validation the configuration: [%s]" % ( str(e)), file=sys.stderr) return None, setup_schema
39.636119
207
0.521863
5c939586932a641c82633706d42d5d43e9f5f1d0
37,308
py
Python
numpy/distutils/fcompiler/__init__.py
numpy/numpy-refactor
6de313865ec3f49bcdd06ccbc879f27e65acf818
[ "BSD-3-Clause" ]
15
2015-03-23T09:40:07.000Z
2020-04-19T15:14:49.000Z
numpy/distutils/fcompiler/__init__.py
numpy/numpy-refactor
6de313865ec3f49bcdd06ccbc879f27e65acf818
[ "BSD-3-Clause" ]
5
2016-07-02T15:34:00.000Z
2020-09-01T06:45:13.000Z
numpy/distutils/fcompiler/__init__.py
numpy/numpy-refactor
6de313865ec3f49bcdd06ccbc879f27e65acf818
[ "BSD-3-Clause" ]
17
2015-02-12T21:33:40.000Z
2021-02-23T06:53:03.000Z
"""numpy.distutils.fcompiler Contains FCompiler, an abstract base class that defines the interface for the numpy.distutils Fortran compiler abstraction model. Terminology: To be consistent, where the term 'executable' is used, it means the single file, like 'gcc', that is executed, and should be a string. In contrast, 'command' means the entire command line, like ['gcc', '-c', 'file.c'], and should be a list. But note that FCompiler.executables is actually a dictionary of commands. """ __all__ = ['FCompiler','new_fcompiler','show_fcompilers', 'dummy_fortran_file'] import os import sys import re import types try: set except NameError: from sets import Set as set from numpy.compat import open_latin1 from distutils.sysconfig import get_config_var, get_python_lib from distutils.fancy_getopt import FancyGetopt from distutils.errors import DistutilsModuleError, \ DistutilsExecError, CompileError, LinkError, DistutilsPlatformError from distutils.util import split_quoted, strtobool from numpy.distutils.ccompiler import CCompiler, gen_lib_options from numpy.distutils import log from numpy.distutils.misc_util import is_string, all_strings, is_sequence, make_temp_file from numpy.distutils.environment import EnvironmentConfig from numpy.distutils.exec_command import find_executable from numpy.distutils.compat import get_exception __metaclass__ = type class CompilerNotFound(Exception): pass def flaglist(s): if is_string(s): return split_quoted(s) else: return s def str2bool(s): if is_string(s): return strtobool(s) return bool(s) def is_sequence_of_strings(seq): return is_sequence(seq) and all_strings(seq) class FCompiler(CCompiler): """Abstract base class to define the interface that must be implemented by real Fortran compiler classes. Methods that subclasses may redefine: update_executables(), find_executables(), get_version() get_flags(), get_flags_opt(), get_flags_arch(), get_flags_debug() get_flags_f77(), get_flags_opt_f77(), get_flags_arch_f77(), get_flags_debug_f77(), get_flags_f90(), get_flags_opt_f90(), get_flags_arch_f90(), get_flags_debug_f90(), get_flags_fix(), get_flags_linker_so() DON'T call these methods (except get_version) after constructing a compiler instance or inside any other method. All methods, except update_executables() and find_executables(), may call the get_version() method. After constructing a compiler instance, always call customize(dist=None) method that finalizes compiler construction and makes the following attributes available: compiler_f77 compiler_f90 compiler_fix linker_so archiver ranlib libraries library_dirs """ # These are the environment variables and distutils keys used. # Each configuration descripition is # (<hook name>, <environment variable>, <key in distutils.cfg>, <convert>) # The hook names are handled by the self._environment_hook method. # - names starting with 'self.' call methods in this class # - names starting with 'exe.' return the key in the executables dict # - names like 'flags.YYY' return self.get_flag_YYY() # convert is either None or a function to convert a string to the # appropiate type used. distutils_vars = EnvironmentConfig( distutils_section='config_fc', noopt = (None, None, 'noopt', str2bool), noarch = (None, None, 'noarch', str2bool), debug = (None, None, 'debug', str2bool), verbose = (None, None, 'verbose', str2bool), ) command_vars = EnvironmentConfig( distutils_section='config_fc', compiler_f77 = ('exe.compiler_f77', 'F77', 'f77exec', None), compiler_f90 = ('exe.compiler_f90', 'F90', 'f90exec', None), compiler_fix = ('exe.compiler_fix', 'F90', 'f90exec', None), version_cmd = ('exe.version_cmd', None, None, None), linker_so = ('exe.linker_so', 'LDSHARED', 'ldshared', None), linker_exe = ('exe.linker_exe', 'LD', 'ld', None), archiver = (None, 'AR', 'ar', None), ranlib = (None, 'RANLIB', 'ranlib', None), ) flag_vars = EnvironmentConfig( distutils_section='config_fc', f77 = ('flags.f77', 'F77FLAGS', 'f77flags', flaglist), f90 = ('flags.f90', 'F90FLAGS', 'f90flags', flaglist), free = ('flags.free', 'FREEFLAGS', 'freeflags', flaglist), fix = ('flags.fix', None, None, flaglist), opt = ('flags.opt', 'FOPT', 'opt', flaglist), opt_f77 = ('flags.opt_f77', None, None, flaglist), opt_f90 = ('flags.opt_f90', None, None, flaglist), arch = ('flags.arch', 'FARCH', 'arch', flaglist), arch_f77 = ('flags.arch_f77', None, None, flaglist), arch_f90 = ('flags.arch_f90', None, None, flaglist), debug = ('flags.debug', 'FDEBUG', 'fdebug', flaglist), debug_f77 = ('flags.debug_f77', None, None, flaglist), debug_f90 = ('flags.debug_f90', None, None, flaglist), flags = ('self.get_flags', 'FFLAGS', 'fflags', flaglist), linker_so = ('flags.linker_so', 'LDFLAGS', 'ldflags', flaglist), linker_exe = ('flags.linker_exe', 'LDFLAGS', 'ldflags', flaglist), ar = ('flags.ar', 'ARFLAGS', 'arflags', flaglist), ) language_map = {'.f':'f77', '.for':'f77', '.F':'f77', # XXX: needs preprocessor '.ftn':'f77', '.f77':'f77', '.f90':'f90', '.F90':'f90', # XXX: needs preprocessor '.f95':'f90', } language_order = ['f90','f77'] # These will be set by the subclass compiler_type = None compiler_aliases = () version_pattern = None possible_executables = [] executables = { 'version_cmd' : ["f77", "-v"], 'compiler_f77' : ["f77"], 'compiler_f90' : ["f90"], 'compiler_fix' : ["f90", "-fixed"], 'linker_so' : ["f90", "-shared"], 'linker_exe' : ["f90"], 'archiver' : ["ar", "-cr"], 'ranlib' : None, } # If compiler does not support compiling Fortran 90 then it can # suggest using another compiler. For example, gnu would suggest # gnu95 compiler type when there are F90 sources. suggested_f90_compiler = None compile_switch = "-c" object_switch = "-o " # Ending space matters! It will be stripped # but if it is missing then object_switch # will be prefixed to object file name by # string concatenation. library_switch = "-o " # Ditto! # Switch to specify where module files are created and searched # for USE statement. Normally it is a string and also here ending # space matters. See above. module_dir_switch = None # Switch to specify where module files are searched for USE statement. module_include_switch = '-I' pic_flags = [] # Flags to create position-independent code src_extensions = ['.for','.ftn','.f77','.f','.f90','.f95','.F','.F90'] obj_extension = ".o" shared_lib_extension = get_config_var('SO') # or .dll static_lib_extension = ".a" # or .lib static_lib_format = "lib%s%s" # or %s%s shared_lib_format = "%s%s" exe_extension = "" _exe_cache = {} _executable_keys = ['version_cmd', 'compiler_f77', 'compiler_f90', 'compiler_fix', 'linker_so', 'linker_exe', 'archiver', 'ranlib'] # This will be set by new_fcompiler when called in # command/{build_ext.py, build_clib.py, config.py} files. c_compiler = None def __init__(self, *args, **kw): CCompiler.__init__(self, *args, **kw) self.distutils_vars = self.distutils_vars.clone(self._environment_hook) self.command_vars = self.command_vars.clone(self._environment_hook) self.flag_vars = self.flag_vars.clone(self._environment_hook) self.executables = self.executables.copy() for e in self._executable_keys: if e not in self.executables: self.executables[e] = None # Some methods depend on .customize() being called first, so # this keeps track of whether that's happened yet. self._is_customised = False def __copy__(self): obj = self.__new__(self.__class__) obj.__dict__.update(self.__dict__) obj.distutils_vars = obj.distutils_vars.clone(obj._environment_hook) obj.command_vars = obj.command_vars.clone(obj._environment_hook) obj.flag_vars = obj.flag_vars.clone(obj._environment_hook) obj.executables = obj.executables.copy() return obj def copy(self): return self.__copy__() # Use properties for the attributes used by CCompiler. Setting them # as attributes from the self.executables dictionary is error-prone, # so we get them from there each time. def _command_property(key): def fget(self): assert self._is_customised return self.executables[key] return property(fget=fget) version_cmd = _command_property('version_cmd') compiler_f77 = _command_property('compiler_f77') compiler_f90 = _command_property('compiler_f90') compiler_fix = _command_property('compiler_fix') linker_so = _command_property('linker_so') linker_exe = _command_property('linker_exe') archiver = _command_property('archiver') ranlib = _command_property('ranlib') # Make our terminology consistent. def set_executable(self, key, value): self.set_command(key, value) def set_commands(self, **kw): for k, v in kw.items(): self.set_command(k, v) def set_command(self, key, value): if not key in self._executable_keys: raise ValueError( "unknown executable '%s' for class %s" % (key, self.__class__.__name__)) if is_string(value): value = split_quoted(value) assert value is None or is_sequence_of_strings(value[1:]), (key, value) self.executables[key] = value ###################################################################### ## Methods that subclasses may redefine. But don't call these methods! ## They are private to FCompiler class and may return unexpected ## results if used elsewhere. So, you have been warned.. def find_executables(self): """Go through the self.executables dictionary, and attempt to find and assign appropiate executables. Executable names are looked for in the environment (environment variables, the distutils.cfg, and command line), the 0th-element of the command list, and the self.possible_executables list. Also, if the 0th element is "<F77>" or "<F90>", the Fortran 77 or the Fortran 90 compiler executable is used, unless overridden by an environment setting. Subclasses should call this if overriden. """ assert self._is_customised exe_cache = self._exe_cache def cached_find_executable(exe): if exe in exe_cache: return exe_cache[exe] fc_exe = find_executable(exe) exe_cache[exe] = exe_cache[fc_exe] = fc_exe return fc_exe def verify_command_form(name, value): if value is not None and not is_sequence_of_strings(value): raise ValueError( "%s value %r is invalid in class %s" % (name, value, self.__class__.__name__)) def set_exe(exe_key, f77=None, f90=None): cmd = self.executables.get(exe_key, None) if not cmd: return None # Note that we get cmd[0] here if the environment doesn't # have anything set exe_from_environ = getattr(self.command_vars, exe_key) if not exe_from_environ: possibles = [f90, f77] + self.possible_executables else: possibles = [exe_from_environ] + self.possible_executables seen = set() unique_possibles = [] for e in possibles: if e == '<F77>': e = f77 elif e == '<F90>': e = f90 if not e or e in seen: continue seen.add(e) unique_possibles.append(e) for exe in unique_possibles: fc_exe = cached_find_executable(exe) if fc_exe: cmd[0] = fc_exe return fc_exe self.set_command(exe_key, None) return None ctype = self.compiler_type f90 = set_exe('compiler_f90') if not f90: f77 = set_exe('compiler_f77') if f77: log.warn('%s: no Fortran 90 compiler found' % ctype) else: raise CompilerNotFound('%s: f90 nor f77' % ctype) else: f77 = set_exe('compiler_f77', f90=f90) if not f77: log.warn('%s: no Fortran 77 compiler found' % ctype) set_exe('compiler_fix', f90=f90) set_exe('linker_so', f77=f77, f90=f90) set_exe('linker_exe', f77=f77, f90=f90) set_exe('version_cmd', f77=f77, f90=f90) set_exe('archiver') set_exe('ranlib') def update_executables(elf): """Called at the beginning of customisation. Subclasses should override this if they need to set up the executables dictionary. Note that self.find_executables() is run afterwards, so the self.executables dictionary values can contain <F77> or <F90> as the command, which will be replaced by the found F77 or F90 compiler. """ pass def get_flags(self): """List of flags common to all compiler types.""" return [] + self.pic_flags def _get_command_flags(self, key): cmd = self.executables.get(key, None) if cmd is None: return [] return cmd[1:] def get_flags_f77(self): """List of Fortran 77 specific flags.""" return self._get_command_flags('compiler_f77') def get_flags_f90(self): """List of Fortran 90 specific flags.""" return self._get_command_flags('compiler_f90') def get_flags_free(self): """List of Fortran 90 free format specific flags.""" return [] def get_flags_fix(self): """List of Fortran 90 fixed format specific flags.""" return self._get_command_flags('compiler_fix') def get_flags_linker_so(self): """List of linker flags to build a shared library.""" return self._get_command_flags('linker_so') def get_flags_linker_exe(self): """List of linker flags to build an executable.""" return self._get_command_flags('linker_exe') def get_flags_ar(self): """List of archiver flags. """ return self._get_command_flags('archiver') def get_flags_opt(self): """List of architecture independent compiler flags.""" return [] def get_flags_arch(self): """List of architecture dependent compiler flags.""" return [] def get_flags_debug(self): """List of compiler flags to compile with debugging information.""" return [] get_flags_opt_f77 = get_flags_opt_f90 = get_flags_opt get_flags_arch_f77 = get_flags_arch_f90 = get_flags_arch get_flags_debug_f77 = get_flags_debug_f90 = get_flags_debug def get_libraries(self): """List of compiler libraries.""" return self.libraries[:] def get_library_dirs(self): """List of compiler library directories.""" return self.library_dirs[:] def get_version(self, force=False, ok_status=[0]): assert self._is_customised version = CCompiler.get_version(self, force=force, ok_status=ok_status) if version is None: raise CompilerNotFound() return version ############################################################ ## Public methods: def customize(self, dist = None): """Customize Fortran compiler. This method gets Fortran compiler specific information from (i) class definition, (ii) environment, (iii) distutils config files, and (iv) command line (later overrides earlier). This method should be always called after constructing a compiler instance. But not in __init__ because Distribution instance is needed for (iii) and (iv). """ log.info('customize %s' % (self.__class__.__name__)) self._is_customised = True self.distutils_vars.use_distribution(dist) self.command_vars.use_distribution(dist) self.flag_vars.use_distribution(dist) self.update_executables() # find_executables takes care of setting the compiler commands, # version_cmd, linker_so, linker_exe, ar, and ranlib self.find_executables() noopt = self.distutils_vars.get('noopt', False) noarch = self.distutils_vars.get('noarch', noopt) debug = self.distutils_vars.get('debug', False) f77 = self.command_vars.compiler_f77 f90 = self.command_vars.compiler_f90 f77flags = [] f90flags = [] freeflags = [] fixflags = [] if f77: f77flags = self.flag_vars.f77 if f90: f90flags = self.flag_vars.f90 freeflags = self.flag_vars.free # XXX Assuming that free format is default for f90 compiler. fix = self.command_vars.compiler_fix if fix: fixflags = self.flag_vars.fix + f90flags oflags, aflags, dflags = [], [], [] # examine get_flags_<tag>_<compiler> for extra flags # only add them if the method is different from get_flags_<tag> def get_flags(tag, flags): # note that self.flag_vars.<tag> calls self.get_flags_<tag>() flags.extend(getattr(self.flag_vars, tag)) this_get = getattr(self, 'get_flags_' + tag) for name, c, flagvar in [('f77', f77, f77flags), ('f90', f90, f90flags), ('f90', fix, fixflags)]: t = '%s_%s' % (tag, name) if c and this_get is not getattr(self, 'get_flags_' + t): flagvar.extend(getattr(self.flag_vars, t)) if not noopt: get_flags('opt', oflags) if not noarch: get_flags('arch', aflags) if debug: get_flags('debug', dflags) fflags = self.flag_vars.flags + dflags + oflags + aflags if f77: self.set_commands(compiler_f77=[f77]+f77flags+fflags) if f90: self.set_commands(compiler_f90=[f90]+freeflags+f90flags+fflags) if fix: self.set_commands(compiler_fix=[fix]+fixflags+fflags) #XXX: Do we need LDSHARED->SOSHARED, LDFLAGS->SOFLAGS linker_so = self.linker_so if linker_so: linker_so_flags = self.flag_vars.linker_so if sys.platform.startswith('aix'): python_lib = get_python_lib(standard_lib=1) ld_so_aix = os.path.join(python_lib, 'config', 'ld_so_aix') python_exp = os.path.join(python_lib, 'config', 'python.exp') linker_so = [ld_so_aix] + linker_so + ['-bI:'+python_exp] self.set_commands(linker_so=linker_so+linker_so_flags) linker_exe = self.linker_exe if linker_exe: linker_exe_flags = self.flag_vars.linker_exe self.set_commands(linker_exe=linker_exe+linker_exe_flags) ar = self.command_vars.archiver if ar: arflags = self.flag_vars.ar self.set_commands(archiver=[ar]+arflags) self.set_library_dirs(self.get_library_dirs()) self.set_libraries(self.get_libraries()) def dump_properties(self): """Print out the attributes of a compiler instance.""" props = [] for key in self.executables.keys() + \ ['version','libraries','library_dirs', 'object_switch','compile_switch']: if hasattr(self,key): v = getattr(self,key) props.append((key, None, '= '+repr(v))) props.sort() pretty_printer = FancyGetopt(props) for l in pretty_printer.generate_help("%s instance properties:" \ % (self.__class__.__name__)): if l[:4]==' --': l = ' ' + l[4:] print(l) ################### def _compile(self, obj, src, ext, cc_args, extra_postargs, pp_opts): """Compile 'src' to product 'obj'.""" src_flags = {} if is_f_file(src) and not has_f90_header(src): flavor = ':f77' compiler = self.compiler_f77 src_flags = get_f77flags(src) elif is_free_format(src): flavor = ':f90' compiler = self.compiler_f90 if compiler is None: raise DistutilsExecError('f90 not supported by %s needed for %s'\ % (self.__class__.__name__,src)) else: flavor = ':fix' compiler = self.compiler_fix if compiler is None: raise DistutilsExecError('f90 (fixed) not supported by %s needed for %s'\ % (self.__class__.__name__,src)) if self.object_switch[-1]==' ': o_args = [self.object_switch.strip(),obj] else: o_args = [self.object_switch.strip()+obj] assert self.compile_switch.strip() s_args = [self.compile_switch, src] extra_flags = src_flags.get(self.compiler_type,[]) if extra_flags: log.info('using compile options from source: %r' \ % ' '.join(extra_flags)) command = compiler + cc_args + extra_flags + s_args + o_args \ + extra_postargs display = '%s: %s' % (os.path.basename(compiler[0]) + flavor, src) try: self.spawn(command,display=display) except DistutilsExecError: msg = str(get_exception()) raise CompileError(msg) def module_options(self, module_dirs, module_build_dir): options = [] if self.module_dir_switch is not None: if self.module_dir_switch[-1]==' ': options.extend([self.module_dir_switch.strip(),module_build_dir]) else: options.append(self.module_dir_switch.strip()+module_build_dir) else: print('XXX: module_build_dir=%r option ignored' % (module_build_dir)) print('XXX: Fix module_dir_switch for ',self.__class__.__name__) if self.module_include_switch is not None: for d in [module_build_dir]+module_dirs: options.append('%s%s' % (self.module_include_switch, d)) else: print('XXX: module_dirs=%r option ignored' % (module_dirs)) print('XXX: Fix module_include_switch for ',self.__class__.__name__) return options def library_option(self, lib): return "-l" + lib def library_dir_option(self, dir): return "-L" + dir def link(self, target_desc, objects, output_filename, output_dir=None, libraries=None, library_dirs=None, runtime_library_dirs=None, export_symbols=None, debug=0, extra_preargs=None, extra_postargs=None, build_temp=None, target_lang=None): objects, output_dir = self._fix_object_args(objects, output_dir) libraries, library_dirs, runtime_library_dirs = \ self._fix_lib_args(libraries, library_dirs, runtime_library_dirs) lib_opts = gen_lib_options(self, library_dirs, runtime_library_dirs, libraries) if is_string(output_dir): output_filename = os.path.join(output_dir, output_filename) elif output_dir is not None: raise TypeError("'output_dir' must be a string or None") if self._need_link(objects, output_filename): if self.library_switch[-1]==' ': o_args = [self.library_switch.strip(),output_filename] else: o_args = [self.library_switch.strip()+output_filename] if is_string(self.objects): ld_args = objects + [self.objects] else: ld_args = objects + self.objects ld_args = ld_args + lib_opts + o_args if debug: ld_args[:0] = ['-g'] if extra_preargs: ld_args[:0] = extra_preargs if extra_postargs: ld_args.extend(extra_postargs) self.mkpath(os.path.dirname(output_filename)) if target_desc == CCompiler.EXECUTABLE: linker = self.linker_exe[:] else: linker = self.linker_so[:] command = linker + ld_args try: self.spawn(command) except DistutilsExecError: msg = str(get_exception()) raise LinkError(msg) else: log.debug("skipping %s (up-to-date)", output_filename) def _environment_hook(self, name, hook_name): if hook_name is None: return None if is_string(hook_name): if hook_name.startswith('self.'): hook_name = hook_name[5:] hook = getattr(self, hook_name) return hook() elif hook_name.startswith('exe.'): hook_name = hook_name[4:] var = self.executables[hook_name] if var: return var[0] else: return None elif hook_name.startswith('flags.'): hook_name = hook_name[6:] hook = getattr(self, 'get_flags_' + hook_name) return hook() else: return hook_name() ## class FCompiler _default_compilers = ( # sys.platform mappings ('win32', ('gnu','intelv','absoft','compaqv','intelev','gnu95','g95', 'intelvem', 'intelem')), ('cygwin.*', ('gnu','intelv','absoft','compaqv','intelev','gnu95','g95')), ('linux.*', ('gnu','intel','lahey','pg','absoft','nag','vast','compaq', 'intele','intelem','gnu95','g95')), ('darwin.*', ('nag', 'absoft', 'ibm', 'intel', 'gnu', 'gnu95', 'g95', 'pg')), ('sunos.*', ('sun','gnu','gnu95','g95')), ('irix.*', ('mips','gnu','gnu95',)), ('aix.*', ('ibm','gnu','gnu95',)), # os.name mappings ('posix', ('gnu','gnu95',)), ('nt', ('gnu','gnu95',)), ('mac', ('gnu','gnu95','pg')), ) fcompiler_class = None fcompiler_aliases = None def load_all_fcompiler_classes(): """Cache all the FCompiler classes found in modules in the numpy.distutils.fcompiler package. """ from glob import glob global fcompiler_class, fcompiler_aliases if fcompiler_class is not None: return pys = os.path.join(os.path.dirname(__file__), '*.py') fcompiler_class = {} fcompiler_aliases = {} for fname in glob(pys): module_name, ext = os.path.splitext(os.path.basename(fname)) module_name = 'numpy.distutils.fcompiler.' + module_name __import__ (module_name) module = sys.modules[module_name] if hasattr(module, 'compilers'): for cname in module.compilers: klass = getattr(module, cname) desc = (klass.compiler_type, klass, klass.description) fcompiler_class[klass.compiler_type] = desc for alias in klass.compiler_aliases: if alias in fcompiler_aliases: raise ValueError("alias %r defined for both %s and %s" % (alias, klass.__name__, fcompiler_aliases[alias][1].__name__)) fcompiler_aliases[alias] = desc def _find_existing_fcompiler(compiler_types, osname=None, platform=None, requiref90=False, c_compiler=None): from numpy.distutils.core import get_distribution dist = get_distribution(always=True) for compiler_type in compiler_types: v = None try: c = new_fcompiler(plat=platform, compiler=compiler_type, c_compiler=c_compiler) c.customize(dist) v = c.get_version() if requiref90 and c.compiler_f90 is None: v = None new_compiler = c.suggested_f90_compiler if new_compiler: log.warn('Trying %r compiler as suggested by %r ' 'compiler for f90 support.' % (compiler_type, new_compiler)) c = new_fcompiler(plat=platform, compiler=new_compiler, c_compiler=c_compiler) c.customize(dist) v = c.get_version() if v is not None: compiler_type = new_compiler if requiref90 and c.compiler_f90 is None: raise ValueError('%s does not support compiling f90 codes, ' 'skipping.' % (c.__class__.__name__)) except DistutilsModuleError: log.debug("_find_existing_fcompiler: compiler_type='%s' raised DistutilsModuleError", compiler_type) except CompilerNotFound: log.debug("_find_existing_fcompiler: compiler_type='%s' not found", compiler_type) if v is not None: return compiler_type return None def available_fcompilers_for_platform(osname=None, platform=None): if osname is None: osname = os.name if platform is None: platform = sys.platform matching_compiler_types = [] for pattern, compiler_type in _default_compilers: if re.match(pattern, platform) or re.match(pattern, osname): for ct in compiler_type: if ct not in matching_compiler_types: matching_compiler_types.append(ct) if not matching_compiler_types: matching_compiler_types.append('gnu') return matching_compiler_types def get_default_fcompiler(osname=None, platform=None, requiref90=False, c_compiler=None): """Determine the default Fortran compiler to use for the given platform.""" matching_compiler_types = available_fcompilers_for_platform(osname, platform) compiler_type = _find_existing_fcompiler(matching_compiler_types, osname=osname, platform=platform, requiref90=requiref90, c_compiler=c_compiler) return compiler_type def new_fcompiler(plat=None, compiler=None, verbose=0, dry_run=0, force=0, requiref90=False, c_compiler = None): """Generate an instance of some FCompiler subclass for the supplied platform/compiler combination. """ load_all_fcompiler_classes() if plat is None: plat = os.name if compiler is None: compiler = get_default_fcompiler(plat, requiref90=requiref90, c_compiler=c_compiler) if compiler in fcompiler_class: module_name, klass, long_description = fcompiler_class[compiler] elif compiler in fcompiler_aliases: module_name, klass, long_description = fcompiler_aliases[compiler] else: msg = "don't know how to compile Fortran code on platform '%s'" % plat if compiler is not None: msg = msg + " with '%s' compiler." % compiler msg = msg + " Supported compilers are: %s)" \ % (','.join(fcompiler_class.keys())) log.warn(msg) return None compiler = klass(verbose=verbose, dry_run=dry_run, force=force) compiler.c_compiler = c_compiler return compiler def show_fcompilers(dist=None): """Print list of available compilers (used by the "--help-fcompiler" option to "config_fc"). """ if dist is None: from distutils.dist import Distribution from numpy.distutils.command.config_compiler import config_fc dist = Distribution() dist.script_name = os.path.basename(sys.argv[0]) dist.script_args = ['config_fc'] + sys.argv[1:] try: dist.script_args.remove('--help-fcompiler') except ValueError: pass dist.cmdclass['config_fc'] = config_fc dist.parse_config_files() dist.parse_command_line() compilers = [] compilers_na = [] compilers_ni = [] if not fcompiler_class: load_all_fcompiler_classes() platform_compilers = available_fcompilers_for_platform() for compiler in platform_compilers: v = None log.set_verbosity(-2) try: c = new_fcompiler(compiler=compiler, verbose=dist.verbose) c.customize(dist) v = c.get_version() except (DistutilsModuleError, CompilerNotFound): e = get_exception() log.debug("show_fcompilers: %s not found" % (compiler,)) log.debug(repr(e)) if v is None: compilers_na.append(("fcompiler="+compiler, None, fcompiler_class[compiler][2])) else: c.dump_properties() compilers.append(("fcompiler="+compiler, None, fcompiler_class[compiler][2] + ' (%s)' % v)) compilers_ni = list(set(fcompiler_class.keys()) - set(platform_compilers)) compilers_ni = [("fcompiler="+fc, None, fcompiler_class[fc][2]) for fc in compilers_ni] compilers.sort() compilers_na.sort() compilers_ni.sort() pretty_printer = FancyGetopt(compilers) pretty_printer.print_help("Fortran compilers found:") pretty_printer = FancyGetopt(compilers_na) pretty_printer.print_help("Compilers available for this " "platform, but not found:") if compilers_ni: pretty_printer = FancyGetopt(compilers_ni) pretty_printer.print_help("Compilers not available on this platform:") print("For compiler details, run 'config_fc --verbose' setup command.") def dummy_fortran_file(): fo, name = make_temp_file(suffix='.f') fo.write(" subroutine dummy()\n end\n") fo.close() return name[:-2] is_f_file = re.compile(r'.*[.](for|ftn|f77|f)\Z',re.I).match _has_f_header = re.compile(r'-[*]-\s*fortran\s*-[*]-',re.I).search _has_f90_header = re.compile(r'-[*]-\s*f90\s*-[*]-',re.I).search _has_fix_header = re.compile(r'-[*]-\s*fix\s*-[*]-',re.I).search _free_f90_start = re.compile(r'[^c*!]\s*[^\s\d\t]',re.I).match def is_free_format(file): """Check if file is in free format Fortran.""" # f90 allows both fixed and free format, assuming fixed unless # signs of free format are detected. result = 0 f = open_latin1(file,'r') line = f.readline() n = 10000 # the number of non-comment lines to scan for hints if _has_f_header(line): n = 0 elif _has_f90_header(line): n = 0 result = 1 while n>0 and line: line = line.rstrip() if line and line[0]!='!': n -= 1 if (line[0]!='\t' and _free_f90_start(line[:5])) or line[-1:]=='&': result = 1 break line = f.readline() f.close() return result def has_f90_header(src): f = open_latin1(src,'r') line = f.readline() f.close() return _has_f90_header(line) or _has_fix_header(line) _f77flags_re = re.compile(r'(c|)f77flags\s*\(\s*(?P<fcname>\w+)\s*\)\s*=\s*(?P<fflags>.*)',re.I) def get_f77flags(src): """ Search the first 20 lines of fortran 77 code for line pattern `CF77FLAGS(<fcompiler type>)=<f77 flags>` Return a dictionary {<fcompiler type>:<f77 flags>}. """ flags = {} f = open_latin1(src,'r') i = 0 for line in f.readlines(): i += 1 if i>20: break m = _f77flags_re.match(line) if not m: continue fcname = m.group('fcname').strip() fflags = m.group('fflags').strip() flags[fcname] = split_quoted(fflags) f.close() return flags if __name__ == '__main__': show_fcompilers()
38.701245
112
0.592715
5a34c47c4ada998bb1cd75a98c48136412d8322f
2,718
py
Python
PLC/Methods/GetSliceTicket.py
dreibh/planetlab-lxc-plcapi
065dfc54a2b668e99eab343d113f1a31fb154b13
[ "BSD-3-Clause" ]
null
null
null
PLC/Methods/GetSliceTicket.py
dreibh/planetlab-lxc-plcapi
065dfc54a2b668e99eab343d113f1a31fb154b13
[ "BSD-3-Clause" ]
null
null
null
PLC/Methods/GetSliceTicket.py
dreibh/planetlab-lxc-plcapi
065dfc54a2b668e99eab343d113f1a31fb154b13
[ "BSD-3-Clause" ]
null
null
null
import time from PLC.Faults import * from PLC.Method import Method from PLC.Parameter import Parameter, Mixed from PLC.Slices import Slice, Slices from PLC.Auth import Auth from PLC.GPG import gpg_sign, gpg_verify from PLC.InitScripts import InitScript, InitScripts from PLC.Methods.GetSlivers import get_slivers class GetSliceTicket(Method): """ Returns a ticket for, or signed representation of, the specified slice. Slice tickets may be used to manually instantiate or update a slice on a node. Present this ticket to the local Node Manager interface to redeem it. If the slice has not been added to a node with AddSliceToNodes, and the ticket is redeemed on that node, it will be deleted the next time the Node Manager contacts the API. Users may only obtain tickets for slices of which they are members. PIs may obtain tickets for any of the slices at their sites, or any slices of which they are members. Admins may obtain tickets for any slice. Returns 1 if successful, faults otherwise. """ roles = ['admin', 'pi', 'user', 'peer'] accepts = [ Auth(), Mixed(Slice.fields['slice_id'], Slice.fields['name']), ] returns = Parameter(str, 'Signed slice ticket') def call(self, auth, slice_id_or_name): slices = Slices(self.api, [slice_id_or_name]) if not slices: raise PLCInvalidArgument("No such slice") slice = slices[0] # Allow peers to obtain tickets for their own slices if slice['peer_id'] is not None: if not isinstance(self.caller, Peer): raise PLCInvalidArgument("Not a local slice") elif slice['peer_id'] != self.caller['peer_id']: raise PLCInvalidArgument("Only the authoritative peer may obtain tickets for that slice") # Tickets are the canonicalized XML-RPC methodResponse # representation of a partial GetSlivers() response, i.e., initscripts = InitScripts(self.api, {'enabled': True}) data = { 'timestamp': int(time.time()), 'initscripts': initscripts, 'slivers': get_slivers(self.api, self.caller, auth, [slice['slice_id']]), } # Sign ticket signed_ticket = gpg_sign((data,), self.api.config.PLC_ROOT_GPG_KEY, self.api.config.PLC_ROOT_GPG_KEY_PUB, methodresponse = True, detach_sign = False) # Verify ticket gpg_verify(signed_ticket, self.api.config.PLC_ROOT_GPG_KEY_PUB) return signed_ticket
34.846154
105
0.632082
6a3289f903f123d63fe70c39d4e66eaba78c75a6
8,148
py
Python
python/viz/motifs.py
icdm-extract/extract
18d6e8509f2f35719535e1de6c88874ec533cfb9
[ "MIT" ]
1
2019-03-05T01:17:05.000Z
2019-03-05T01:17:05.000Z
python/viz/motifs.py
icdm-extract/extract
18d6e8509f2f35719535e1de6c88874ec533cfb9
[ "MIT" ]
null
null
null
python/viz/motifs.py
icdm-extract/extract
18d6e8509f2f35719535e1de6c88874ec533cfb9
[ "MIT" ]
null
null
null
#!/bin/env/python import numpy as np import matplotlib.pyplot as plt from sklearn.decomposition import TruncatedSVD from ..algo.motif import findMotif, findAllMotifInstances from ..utils.subseq import simMatFromDistTensor from viz_utils import plotRect, plotRanges def findAndPlotMotif(seq, lengths, **kwargs): motif = findMotif([seq], lengths) plotMotif(seq, motif, **kwargs) def findAndPlotMotifInstances(seq, lengths, truthStartEndPairs=None, saveas=None, findMotifKwargs=None, **kwargs): # XXX this func will break if seq is a list of seqs, not just one ndarray if findMotifKwargs: startIdxs, instances, motif = findAllMotifInstances([seq], lengths, **findMotifKwargs) else: startIdxs, instances, motif = findAllMotifInstances([seq], lengths) # ------------------------ plot reported motif instances endIdxs = startIdxs + motif.length startEndPairs = np.c_[startIdxs, endIdxs] ax = plotMotifInstances(seq, startEndPairs, **kwargs) # ------------------------ plot ground truth if truthStartEndPairs is not None and len(truthStartEndPairs): try: if len(truthStartEndPairs[0]) == 1: # single points, not ranges color = 'k' truthStartEndPairs = np.asarray(truthStartEndPairs) truthStartEndPairs = np.c_[truthStartEndPairs, truthStartEndPairs] else: color = 'g' except: # elements are scalars and so len() throws color = 'k' truthStartEndPairs = np.asarray(truthStartEndPairs) truthStartEndPairs = np.c_[truthStartEndPairs, truthStartEndPairs] # make a vert line (spanning less than full graph height) # where the labels are yMin, yMax = np.min(seq), np.max(seq) yRange = yMax - yMin lineMin, lineMax = [yMin + frac * yRange for frac in (.4, .6)] plotMotifInstances(None, truthStartEndPairs, ax=ax, color=color, linestyle='-', lw=2, ymin=lineMin, ymax=lineMax) if saveas: plt.savefig(saveas) else: plt.show() def plotMotif(seq, motif, showExtracted=True, color='gray', title=None, saveas=None): start1 = motif[3] start2 = motif[4] end1 = start1 + len(motif[0]) - 1 end2 = start2 + len(motif[1]) - 1 # just show where the motif is in the original signal if not showExtracted: _, ax = plt.subplots() ax.autoscale(False) ax.plot(seq) plotRect(ax, start1, end1, color=color) plotRect(ax, start2, end2, color=color) if saveas: plt.savefig(saveas) else: plt.show() return ax # set up axes ax1 = plt.subplot2grid((2,2), (0,0), colspan=2) ax2 = plt.subplot2grid((2,2), (1,0)) ax3 = plt.subplot2grid((2,2), (1,1)) ax1.autoscale(tight=True) ax2.autoscale(tight=True) ax3.autoscale(tight=True) # plot raw ts on top and motif instances on the bottom ax1.plot(seq, lw=2) ax2.plot(motif[0], lw=2) ax3.plot(motif[1], lw=2) ax1.set_title('Original Signal') ax2.set_title('Motif Instance at %d' % start1) ax3.set_title('Motif Instance at %d' % start2) # draw rects in the ts where the motif is plotRect(ax1, start1, end1, color=color) plotRect(ax1, start2, end2, color=color) plt.tight_layout() if saveas: plt.savefig(saveas) else: plt.show() return ax1, ax2, ax3 def plotMotifInstances(seq, startEndIdxPairs, title=None, ax=None, saveas=None, **kwargs): if ax is None: _, ax = plt.subplots() # ax.autoscale(False) # makes it not actually work... if seq is not None and len(seq): # plot original seq if one is provided ax.plot(seq, **kwargs) plotRanges(ax, startEndIdxPairs, **kwargs) if not title: title = "Motif Instances in Data" ax.set_title(title) if seq is not None and len(seq): ax.set_ylim([np.min(seq), np.max(seq)]) ax.set_xlim([0, len(seq)]) if saveas: plt.savefig(saveas) return ax def showPairwiseSims(origSignal, m, simMat, clamp=True, pruneCorrAbove=-1, plotMotifs=True, showEigenVect=False, hasPadding=True, saveas=None): print "origSignal shape", origSignal.shape # padLen = len(origSignal) - simMat.shape[1] padLen = m - 1 if hasPadding else 0 subseqLen = m plt.figure(figsize=(8,10)) if showEigenVect: ax1 = plt.subplot2grid((20,10), (0,0), colspan=8, rowspan=5) ax2 = plt.subplot2grid((20,10), (5,0), colspan=8, rowspan=15) ax3 = plt.subplot2grid((20,10), (5,8), colspan=2, rowspan=15) ax3.autoscale(tight=True) ax3.set_title('Extracted') else: ax1 = plt.subplot2grid((4,2), (0,0), colspan=2) ax2 = plt.subplot2grid((4,2), (1,0), colspan=2, rowspan=3) ax1.autoscale(tight=True) ax2.autoscale(tight=True) ax1.set_title('Original Signal') ax1.set_ylabel('Value') if pruneCorrAbove > 0: ax2.set_title('Subsequence Cosine Similarities to Dictionary Sequences') else: ax2.set_title('Subsequence Pairwise Cosine Similarities') ax2.set_xlabel('Subsequence Start Index') ax2.set_ylabel('"Dictionary" Sequence Number') seq = origSignal imgMat = simMat print "imgMat shape: ", imgMat.shape # # show magnitude of similarities in each row in descending order; there are # # only about 60 entries > .01 in *any* row for msrc, and way fewer in most # # plt.figure() # # thresh = .5 # # sortedSimsByRow = np.sort(imgMat, axis=1) # # sortedSimsByRow = sortedSimsByRow[:, ::-1] # # nonzeroCols = np.sum(sortedSimsByRow, axis=0) > thresh # ignore tiny similarities # # sortedSimsByRow = sortedSimsByRow[:, nonzeroCols] # # # plt.imshow(sortedSimsByRow) # # # plt.plot(np.mean(sortedSimsByRow, axis=1)) # # plt.plot(np.sum(sortedSimsByRow > thresh, axis=1)) # entries > thresh per row # if pruneCorrAbove > 0.: # print "ImgMat Shape:" # print imgMat.shape # imgMat = removeCorrelatedRows(imgMat, pruneCorrAbove) # print imgMat.shape # print "NaNs at:", np.where(np.isnan(imgMat))[0] # print "Infs at:", np.where(np.isinf(imgMat))[0] # power iteration to see what we get if showEigenVect: width = int(subseqLen * 1.5) nRows, nCols = imgMat.shape nPositions = nCols - width + 1 if nPositions > 1: elementsPerPosition = nRows * width # size of 2d slice dataMat = np.empty((nPositions, elementsPerPosition)) # for i in range(nPositions): # step by 1 for i in range(0, nPositions, width): # step by width, so non-overlapping startCol = i endCol = startCol + width data = imgMat[:, startCol:endCol] dataMat[i] = data.flatten() # ah; power iteration is for cov matrix, cuz needs a square mat # v = np.ones(elementsPerPosition) / elementsPerPosition # uniform start vect # for i in range(3): # v = np.dot(dataMat.T, v) svd = TruncatedSVD(n_components=1, random_state=42) svd.fit(dataMat) v = svd.components_[0] learnedFilt = v.reshape((nRows, width)) ax3.imshow(learnedFilt) # seems to be pretty good # plt.show() ax1.plot(seq) ax2.imshow(imgMat, interpolation='nearest', aspect='auto') plt.tight_layout() if plotMotifs: searchSeq = seq print "searchSeq shape:", searchSeq.shape motif = findMotif([searchSeq], subseqLen) # motif of min length start1 = motif[3] start2 = motif[4] end1 = start1 + len(motif[0]) - 1 end2 = start2 + len(motif[1]) - 1 ax2.autoscale(False) color = 'grey' plotRect(ax1, start1, end1, color=color) plotRect(ax2, start1, end1, color=color) plotRect(ax1, start2, end2, color=color) plotRect(ax2, start2, end2, color=color) print "imgMat shape: ", imgMat.shape print "padLen: ", padLen if padLen: searchSeq = imgMat[:,:-padLen].T else: searchSeq = imgMat.T print "searchSeq shape:", searchSeq.shape print "subseqLen:", subseqLen motif = findMotif([searchSeq], subseqLen) # motif of min length start1 = motif[3] start2 = motif[4] end1 = start1 + len(motif[0]) - 1 end2 = start2 + len(motif[1]) - 1 print [start1, end1, start2, end2] color = 'm' # magenta plotRect(ax1, start1, end1, color=color) plotRect(ax2, start1, end1, color=color) plotRect(ax1, start2, end2, color=color) plotRect(ax2, start2, end2, color=color) if saveas: plt.savefig(saveas) else: plt.show() if showEigenVect: return ax1, ax2, ax3 return ax1, ax2 def showPairwiseDists(origSignal, m, Dtensor, **kwargs): padLen = len(origSignal) - Dtensor.shape[1] simMat = simMatFromDistTensor(Dtensor, m, padLen) showPairwiseSims(origSignal, m, simMat, **kwargs)
30.402985
87
0.695508
10aa41e19a171f1a075c8c7ccbde004092fa3e9c
3,235
py
Python
validator/schemas/specs.py
ChauffeurPrive/nestor-api
364b5f034eeb929932a5a8c3f3b00d1275a7ae5b
[ "Apache-2.0" ]
2
2020-08-17T09:59:03.000Z
2020-08-17T09:59:23.000Z
validator/schemas/specs.py
ChauffeurPrive/nestor-api
364b5f034eeb929932a5a8c3f3b00d1275a7ae5b
[ "Apache-2.0" ]
83
2020-06-12T14:37:35.000Z
2022-01-26T14:10:10.000Z
validator/schemas/specs.py
ChauffeurPrive/nestor-api
364b5f034eeb929932a5a8c3f3b00d1275a7ae5b
[ "Apache-2.0" ]
1
2020-07-02T14:33:45.000Z
2020-07-02T14:33:45.000Z
"""Schemas managed by Nestor""" SPECS = { "variables": { "confSubObjects": {"type": "object", "patternProperties": {"": {"type": "string",},},}, "subObjectSecrets": { "type": "object", "patternProperties": { "": { "type": "object", "properties": {"name": {"type": "string",}, "key": {"type": "string",},}, }, }, }, "projectSubObjects": {"type": "object", "patternProperties": {"": {"type": "string",},},}, }, "scales": { "type": "object", "patternProperties": {"": {"$ref": "#/definitions/scales/definitions/scaleSubProperty",},}, "definitions": { "scaleSubProperty": { "type": "object", "properties": { "maxReplicas": {"type": "integer",}, "minReplicas": {"type": "integer",}, "targetCPUUtilizationPercentage": { "type": "integer", "maximum": 100, "minimum": 0, }, }, "required": ["maxReplicas", "minReplicas", "targetCPUUtilizationPercentage",], "additionalProperties": False, }, }, }, "crons": { "type": "object", "patternProperties": {"": {"$ref": "#/definitions/crons/definitions/cronProperty",},}, "additionalProperties": False, "definitions": { "cronProperty": { "type": "object", "properties": { "schedule": { "type": "string", "pattern": "([0-9]{0,2}[*/,-]{0,3}[0-9]*\\s?){5}", }, "concurrency_policy": {"type": "string",}, "suspend": {"type": "boolean",}, }, "required": ["schedule", "concurrency_policy"], "additionalProperties": False, }, }, }, "probes": { "type": "object", "patternProperties": { "": { "properties": { "path": {"type": "string",}, "delay": {"type": "integer",}, "timeout": {"type": "integer",}, }, "required": ["path"], }, }, }, "resources": { "type": "object", "patternProperties": { "": { "type": "object", "properties": { "limits": {"$ref": "#/definitions/resources/definitions/resourcesSubProperty",}, "requests": { "$ref": "#/definitions/resources/definitions/resourcesSubProperty", }, }, }, }, "definitions": { "resourcesSubProperty": { "type": "object", "properties": { "cpu": {"anyOf": [{"type": "string",}, {"type": "number", "minimum": 0,},],}, "memory": {"type": "string",}, }, }, }, }, }
34.414894
100
0.374652
2e9b99a9f3b2a8cc525aa4db5abc3f2b3b943010
13,922
py
Python
waad/utils/indicators.py
ANSSI-FR/WAAD
276820be3e1aa45c52351b481105ab95a069b3e0
[ "BSD-2-Clause" ]
13
2021-04-08T15:59:57.000Z
2022-03-28T14:04:23.000Z
waad/utils/indicators.py
ANSSI-FR/WAAD
276820be3e1aa45c52351b481105ab95a069b3e0
[ "BSD-2-Clause" ]
null
null
null
waad/utils/indicators.py
ANSSI-FR/WAAD
276820be3e1aa45c52351b481105ab95a069b3e0
[ "BSD-2-Clause" ]
1
2022-03-08T19:50:36.000Z
2022-03-08T19:50:36.000Z
"""This module implements the computation of some indicators on assets.""" import bisect from datetime import datetime, timedelta from enum import Enum from functools import partial import numpy as np import pandas as pd from tqdm import tqdm from typing import Any, Callable, Dict, List, Optional from waad.utils.asset import Asset from waad.utils.config import ANOMALIES_SCORES from waad.utils.postgreSQL_utils import Table from waad.utils.rule import Rule from waad.utils.time_series_utils import StatSeries, TimeSeries class Indicator: """Defines an `Indicator` on a StatSeries and the conditions for which it applies. Attributes: name (str): Name of the indicator to compute. additional_columns (List[str]): Initially, only 'systemtime' is requested alongside with asset_1 and asset_2 see `ComputeIndicators` down below. All columns from `additional_columns` will be requested as well if needed in an `Indicator`. step_by_step_computation (Callable): For each `time_step`, all asset_1 corresponding authentication are gathered and `step_by_step_computation` is applied on the corresponding authenticaions dataframe. Exemples of such functions are : lambda window: window.shape[0] (to get number of asset_1 authentications for every time_step), lambda window: set(window['asset_2'].unique()) (to get all distinct asset_2 reached per `time_step` under the rule), get_privileges(window: pd.DataFrame) defined down below to get all distinct privileges granted per `time_step`. `step_by_step_computation` must be a function taking as input a window of authentications as built in `ComputeIndicators` and return a float for each `time_step`. intermediary_content_function (Optional[Callable]): After `step_by_step_computation` we are left with a list of float for each `time_step`. If `intermediary_content_function` is `None`, Timeseries.intermediary_content will be set to None. Else, `intermediary_content_function` is applied on the list to compute Timeseries.intermediary_content. For example, in the case of 'nb_new_assets_reached', after `step_by_step_computation` we are left with the list of all asset_2 reached at each `time_step`, with `intermediary_content_function` we want to keep in memory the new assets reached at each `time_step`. `intermediary_content_function` must be a function taking as input a list of floats and returning something from it (if we want exactly the output of `step_by_step_computation`, just write identity lambda x: x). time_series_function (Optional[Callable]): This function populates the attibute `series` of the `Timeseries` returned after computation. If None, it uses the result of `step_by_step_computation` as a result, else it takes as an input the output of `step_by_step_computation` and returns a list, computed from it. `time_series_function` must be either `None` or a function taking as input a list and returning a list from the same size. anomalies_detector (Optional[Callable]): This function defines how to compute possible anomalies on the `StatSeries` corresponding to the indicator. If `None`, the StatSeries.custom_outlier_detection wil be used with parameters correponding to the indicator written in config.py. Else, `anomalies_detector` must be a function taking as an input the StatSeries.series and returning the possible anomalies detected in a list of indices. """ def __init__(self, name: str, additional_columns: List[str] = [], step_by_step_computation: Callable = lambda window: window.shape[0], intermediary_content_function: Optional[Callable] = None, time_series_function: Optional[Callable] = None, anomalies_detector: Optional[Callable] = None ): self.name = name self.additional_columns = additional_columns self.step_by_step_computation = step_by_step_computation self.intermediary_content_function = intermediary_content_function self.time_series_function = time_series_function self.anomalies_detector = anomalies_detector def __repr__(self): return self.name class ComputeIndicators: """This class defines a framework to compute timeseries indicators from a dataset. Attributes: table (Table): `Table` object pointing to the postgreSQL dataset. rule (Rule): `Rule` object defining how to filter dataset rows based on analysts' requirements. time_step (int): Time step in between each time series tick. indicator_objects (List[Indicator]): List of all types of indicators we want to compute for each asset_1 object. """ def __init__(self, table: Table, rule: Rule, indicator_objects: List[Indicator], time_step: int = 86400): self.table = table self.rule = rule self.indicator_objects = indicator_objects self.time_step = time_step self.indicators: Dict[Asset, Dict[Indicator, TimeSeries]] = {} def run(self): cache = {} additional_columns = [e for indicator in self.indicator_objects for e in indicator.additional_columns] def update_cache(row: List, dataset_columns: List[str], condition: Dict): row = {col: value for col, value in zip(dataset_columns, row)} if condition['filter_function'](row): asset_1 = condition['asset_1'](row) asset_2 = condition['asset_2'](row) line_summary = {'systemtime': row['systemtime'], 'asset_2': asset_2} line_summary.update({col: row[col] for col in additional_columns}) try: cache[asset_1].append(line_summary) except Exception: cache[asset_1] = [line_summary] for condition in self.rule.conditions: sql_command = self.table.custom_psql_request({'fields_to_request': '*', 'filters': [condition['pre_filters']]}) cursor = self.table.database.get_iterator_from_command(sql_command, chunk_size=1000000) row_0 = next(cursor) columns = [desc[0] for desc in cursor.description] update_cache(row_0, columns, condition) for row in cursor: update_cache(row, columns, condition) cursor.close() self.table.database.disconnect() for asset, asset_authentications in cache.items(): self.indicators[asset] = ComputeIndicators.compute_indicators_over_time( pd.DataFrame(asset_authentications), indicators=self.indicator_objects, time_step=self.time_step ) @staticmethod def compute_new_items(items_sets: List[set], legitimate_model_duration: int = 25, enrich_model=True): """Compute the new items reached from a list of ``items_sets``. This is usable for example to compute the number of new computers reached or the number of new privileges granted. Args: items_sets: List of all items reached ``time_step`` after ``time_step``. legitimate_model_duration: Percentage of the dataset used to build the corresponding legitimate model for items reached. enrich_model: Boolean to know if after ``legitimate_model_duration`` new items are used to enrich the legitimate model. Returns: The new items reached ``time_step`` after ``time_step``. """ new_items: List[set] = [] legitimate_model = set() for index, items in enumerate(items_sets): if index <= int(legitimate_model_duration / 100 * len(items_sets)): new_items.append(set()) legitimate_model.update(items) else: new_items.append(items.difference(legitimate_model)) if enrich_model: legitimate_model.update(items) return new_items @staticmethod def compute_nb_new_items(items_sets: List[set], legitimate_model_duration: int = 25, enrich_model=True): """Compute the number of new items reached from a list of ``items_sets``. This is usable for example to compute the number of new computers reached or the number of new privileges granted. Args: items_sets: List of all items reached ``time_step`` after ``time_step``. legitimate_model_duration: Percentage of the dataset used to build the corresponding legitimate model for items reached. enrich_model: Boolean to know if after ``legitimate_model_duration`` new items are used to enrich the legitimate model. Returns: The number of new items reached ``time_step`` after ``time_step``. """ return [len(e) for e in ComputeIndicators.compute_new_items(items_sets=items_sets, legitimate_model_duration=legitimate_model_duration, enrich_model=enrich_model)] @staticmethod def get_privileges(window: pd.DataFrame): res = set() window['privilegelist'].apply(lambda x: res.update(set(x.split(':')))) try: res.remove('?') except Exception: pass return res @staticmethod def compute_indicators(window: pd.DataFrame, indicators: List[Indicator]) -> Dict: """Compute some indicators over ``window``. Args: window: Pandas ``Dataframe``, slice of the dataset. indicators: List containing the ``Indicator`` objects. Returns: A dictionnary containing the indicators computed on ``window``. """ return {indicator: indicator.step_by_step_computation(window) for indicator in indicators} @staticmethod def compute_indicators_over_time(data: pd.DataFrame, indicators: List[Indicator], time_step: int = 86400): """Compute some indicators over time, should be way faster because it uses `bisect` search. Args: data: Pandas ``Dataframe``, part of the dataset. indicators_name: List containing the names of indicators needed. time_step: Time step in seconds desired between each loop of indicators computation. Returns: A dictionnary containing the indicators computed on each time ``window``. """ step_by_step_results = {indicator: [] for indicator in indicators} # TODO: Implement better inclusion of a posteriori indicators if data.shape[0] == 0: return [TimeSeries(name=indicator.name, series=[], time_step=time_step) for indicator in indicators] # ISO8601 is not handled yet by datetime so as a fix we replace 'Z' by '+00:00' data = data.sort_values("systemtime") data.reset_index(drop=True, inplace=True) is_iso8601 = "Z" in data["systemtime"][0] if is_iso8601: data["systemtime"] = data["systemtime"].apply(lambda x: str(x).replace("Z", "+00:00").replace("T", " ")) start_time = data.systemtime.iloc[0] end_time = data.systemtime.iloc[-1] current_time = start_time current_index = 0 while current_time < end_time: to_insert = (datetime.fromisoformat(current_time) + timedelta(seconds=time_step)).isoformat().replace("T", " ") index = bisect.bisect_left(data.systemtime, to_insert, lo=current_index) window = data.iloc[current_index:index] window_indicators = ComputeIndicators.compute_indicators(window, indicators=indicators) for indicator, v in window_indicators.items(): step_by_step_results[indicator].append(v) current_index = index current_time = to_insert res = {} for indicator in indicators: intermediary_content = None series = step_by_step_results[indicator] if indicator.intermediary_content_function is not None: intermediary_content = indicator.intermediary_content_function(series) if indicator.time_series_function is not None: series = indicator.time_series_function(intermediary_content) res[indicator] = TimeSeries(name=indicator.name, series=series, time_step=time_step, start_time=start_time, intermediary_content=intermediary_content) return res class Indicators(Enum): """Enum to associate an indicator to its corresponding function.""" NB_AUTHENTICATIONS = Indicator(name='nb_authentications', step_by_step_computation=lambda window: window.shape[0]) NB_ASSETS_REACHED = Indicator( name='nb_assets_reached', step_by_step_computation=lambda window: set(window['asset_2'].unique()), intermediary_content_function=lambda x: x, time_series_function=lambda x: [len(e) for e in x] ) NB_NEW_ASSETS_REACHED = Indicator( name='nb_new_assets_reached', step_by_step_computation=lambda window: set(window['asset_2'].unique()), intermediary_content_function=lambda x: ComputeIndicators.compute_new_items(x, ANOMALIES_SCORES['nb_new_assets_reached']['legitimate_model_duration']), time_series_function=lambda x: ComputeIndicators.compute_nb_new_items(x, ANOMALIES_SCORES['nb_new_assets_reached']['legitimate_model_duration']) ) NB_PRIVILEGES_GRANTED = Indicator( name='nb_privileges_granted', additional_columns=['privilegelist'], step_by_step_computation=ComputeIndicators.get_privileges, intermediary_content_function=lambda x: x, time_series_function=lambda x: [len(e) for e in x], anomalies_detector=lambda series: StatSeries.detect_abnormal_outbreak_static(series, ANOMALIES_SCORES['nb_privileges_granted']['legitimate_model_duration']) )
50.810219
171
0.690418
a4f2d798b1b1b426e04a125f35f8f5ba51c419ad
23,477
py
Python
mypy/test/data.py
aghast/mypy
13ae58ffe8bedb7da9f4c657297f0d61e681d671
[ "PSF-2.0" ]
1
2021-01-19T09:59:44.000Z
2021-01-19T09:59:44.000Z
mypy/test/data.py
aghast/mypy
13ae58ffe8bedb7da9f4c657297f0d61e681d671
[ "PSF-2.0" ]
1
2020-10-24T15:04:11.000Z
2020-10-24T15:04:11.000Z
mypy/test/data.py
aghast/mypy
13ae58ffe8bedb7da9f4c657297f0d61e681d671
[ "PSF-2.0" ]
1
2020-12-22T10:18:11.000Z
2020-12-22T10:18:11.000Z
"""Utilities for processing .test files containing test case descriptions.""" import os.path import os import tempfile import posixpath import re import shutil from abc import abstractmethod import sys import pytest from typing import List, Tuple, Set, Optional, Iterator, Any, Dict, NamedTuple, Union from mypy.test.config import test_data_prefix, test_temp_dir, PREFIX root_dir = os.path.normpath(PREFIX) # File modify/create operation: copy module contents from source_path. UpdateFile = NamedTuple('UpdateFile', [('module', str), ('source_path', str), ('target_path', str)]) # File delete operation: delete module file. DeleteFile = NamedTuple('DeleteFile', [('module', str), ('path', str)]) FileOperation = Union[UpdateFile, DeleteFile] def parse_test_case(case: 'DataDrivenTestCase') -> None: """Parse and prepare a single case from suite with test case descriptions. This method is part of the setup phase, just before the test case is run. """ test_items = parse_test_data(case.data, case.name) base_path = case.suite.base_path if case.suite.native_sep: join = os.path.join else: join = posixpath.join out_section_missing = case.suite.required_out_section normalize_output = True files = [] # type: List[Tuple[str, str]] # path and contents output_files = [] # type: List[Tuple[str, str]] # path and contents for output files output = [] # type: List[str] # Regular output errors output2 = {} # type: Dict[int, List[str]] # Output errors for incremental, runs 2+ deleted_paths = {} # type: Dict[int, Set[str]] # from run number of paths stale_modules = {} # type: Dict[int, Set[str]] # from run number to module names rechecked_modules = {} # type: Dict[ int, Set[str]] # from run number module names triggered = [] # type: List[str] # Active triggers (one line per incremental step) targets = {} # type: Dict[int, List[str]] # Fine-grained targets (per fine-grained update) # Process the parsed items. Each item has a header of form [id args], # optionally followed by lines of text. item = first_item = test_items[0] for item in test_items[1:]: if item.id == 'file' or item.id == 'outfile': # Record an extra file needed for the test case. assert item.arg is not None contents = expand_variables('\n'.join(item.data)) file_entry = (join(base_path, item.arg), contents) if item.id == 'file': files.append(file_entry) else: output_files.append(file_entry) elif item.id in ('builtins', 'builtins_py2'): # Use an alternative stub file for the builtins module. assert item.arg is not None mpath = join(os.path.dirname(case.file), item.arg) fnam = 'builtins.pyi' if item.id == 'builtins' else '__builtin__.pyi' with open(mpath, encoding='utf8') as f: files.append((join(base_path, fnam), f.read())) elif item.id == 'typing': # Use an alternative stub file for the typing module. assert item.arg is not None src_path = join(os.path.dirname(case.file), item.arg) with open(src_path, encoding='utf8') as f: files.append((join(base_path, 'typing.pyi'), f.read())) elif re.match(r'stale[0-9]*$', item.id): passnum = 1 if item.id == 'stale' else int(item.id[len('stale'):]) assert passnum > 0 modules = (set() if item.arg is None else {t.strip() for t in item.arg.split(',')}) stale_modules[passnum] = modules elif re.match(r'rechecked[0-9]*$', item.id): passnum = 1 if item.id == 'rechecked' else int(item.id[len('rechecked'):]) assert passnum > 0 modules = (set() if item.arg is None else {t.strip() for t in item.arg.split(',')}) rechecked_modules[passnum] = modules elif re.match(r'targets[0-9]*$', item.id): passnum = 1 if item.id == 'targets' else int(item.id[len('targets'):]) assert passnum > 0 reprocessed = [] if item.arg is None else [t.strip() for t in item.arg.split(',')] targets[passnum] = reprocessed elif item.id == 'delete': # File to delete during a multi-step test case assert item.arg is not None m = re.match(r'(.*)\.([0-9]+)$', item.arg) assert m, 'Invalid delete section: {}'.format(item.arg) num = int(m.group(2)) assert num >= 2, "Can't delete during step {}".format(num) full = join(base_path, m.group(1)) deleted_paths.setdefault(num, set()).add(full) elif re.match(r'out[0-9]*$', item.id): if item.arg == 'skip-path-normalization': normalize_output = False tmp_output = [expand_variables(line) for line in item.data] if os.path.sep == '\\' and normalize_output: tmp_output = [fix_win_path(line) for line in tmp_output] if item.id == 'out' or item.id == 'out1': output = tmp_output else: passnum = int(item.id[len('out'):]) assert passnum > 1 output2[passnum] = tmp_output out_section_missing = False elif item.id == 'triggered' and item.arg is None: triggered = item.data else: raise ValueError( 'Invalid section header {} in {} at line {}'.format( item.id, case.file, item.line)) if out_section_missing: raise ValueError( '{}, line {}: Required output section not found'.format( case.file, first_item.line)) for passnum in stale_modules.keys(): if passnum not in rechecked_modules: # If the set of rechecked modules isn't specified, make it the same as the set # of modules with a stale public interface. rechecked_modules[passnum] = stale_modules[passnum] if (passnum in stale_modules and passnum in rechecked_modules and not stale_modules[passnum].issubset(rechecked_modules[passnum])): raise ValueError( ('Stale modules after pass {} must be a subset of rechecked ' 'modules ({}:{})').format(passnum, case.file, first_item.line)) input = first_item.data expand_errors(input, output, 'main') for file_path, contents in files: expand_errors(contents.split('\n'), output, file_path) case.input = input case.output = output case.output2 = output2 case.lastline = item.line case.files = files case.output_files = output_files case.expected_stale_modules = stale_modules case.expected_rechecked_modules = rechecked_modules case.deleted_paths = deleted_paths case.triggered = triggered or [] case.normalize_output = normalize_output case.expected_fine_grained_targets = targets class DataDrivenTestCase(pytest.Item): """Holds parsed data-driven test cases, and handles directory setup and teardown.""" # Override parent member type parent = None # type: DataSuiteCollector input = None # type: List[str] output = None # type: List[str] # Output for the first pass output2 = None # type: Dict[int, List[str]] # Output for runs 2+, indexed by run number # full path of test suite file = '' line = 0 # (file path, file content) tuples files = None # type: List[Tuple[str, str]] expected_stale_modules = None # type: Dict[int, Set[str]] expected_rechecked_modules = None # type: Dict[int, Set[str]] expected_fine_grained_targets = None # type: Dict[int, List[str]] # Whether or not we should normalize the output to standardize things like # forward vs backward slashes in file paths for Windows vs Linux. normalize_output = True # Extra attributes used by some tests. lastline = None # type: int output_files = None # type: List[Tuple[str, str]] # Path and contents for output files deleted_paths = None # type: Dict[int, Set[str]] # Mapping run number -> paths triggered = None # type: List[str] # Active triggers (one line per incremental step) def __init__(self, parent: 'DataSuiteCollector', suite: 'DataSuite', file: str, name: str, writescache: bool, only_when: str, platform: Optional[str], skip: bool, data: str, line: int) -> None: super().__init__(name, parent) self.suite = suite self.file = file self.writescache = writescache self.only_when = only_when if ((platform == 'windows' and sys.platform != 'win32') or (platform == 'posix' and sys.platform == 'win32')): skip = True self.skip = skip self.data = data self.line = line self.old_cwd = None # type: Optional[str] self.tmpdir = None # type: Optional[tempfile.TemporaryDirectory[str]] def runtest(self) -> None: if self.skip: pytest.skip() suite = self.parent.obj() suite.setup() try: suite.run_case(self) except Exception: # As a debugging aid, support copying the contents of the tmp directory somewhere save_dir = self.config.getoption('--save-failures-to', None) # type: Optional[str] if save_dir: assert self.tmpdir is not None target_dir = os.path.join(save_dir, os.path.basename(self.tmpdir.name)) print("Copying data from test {} to {}".format(self.name, target_dir)) if not os.path.isabs(target_dir): assert self.old_cwd target_dir = os.path.join(self.old_cwd, target_dir) shutil.copytree(self.tmpdir.name, target_dir) raise def setup(self) -> None: parse_test_case(case=self) self.old_cwd = os.getcwd() self.tmpdir = tempfile.TemporaryDirectory(prefix='mypy-test-') os.chdir(self.tmpdir.name) os.mkdir(test_temp_dir) for path, content in self.files: dir = os.path.dirname(path) os.makedirs(dir, exist_ok=True) with open(path, 'w', encoding='utf8') as f: f.write(content) def teardown(self) -> None: assert self.old_cwd is not None and self.tmpdir is not None, \ "test was not properly set up" os.chdir(self.old_cwd) try: self.tmpdir.cleanup() except OSError: pass self.old_cwd = None self.tmpdir = None def reportinfo(self) -> Tuple[str, int, str]: return self.file, self.line, self.name def repr_failure(self, excinfo: Any, style: Optional[Any] = None) -> str: if excinfo.errisinstance(SystemExit): # We assume that before doing exit() (which raises SystemExit) we've printed # enough context about what happened so that a stack trace is not useful. # In particular, uncaught exceptions during semantic analysis or type checking # call exit() and they already print out a stack trace. excrepr = excinfo.exconly() else: self.parent._prunetraceback(excinfo) # type: ignore[no-untyped-call] excrepr = excinfo.getrepr(style='short') return "data: {}:{}:\n{}".format(self.file, self.line, excrepr) def find_steps(self) -> List[List[FileOperation]]: """Return a list of descriptions of file operations for each incremental step. The first list item corresponds to the first incremental step, the second for the second step, etc. Each operation can either be a file modification/creation (UpdateFile) or deletion (DeleteFile). Defaults to having two steps if there aern't any operations. """ steps = {} # type: Dict[int, List[FileOperation]] for path, _ in self.files: m = re.match(r'.*\.([0-9]+)$', path) if m: num = int(m.group(1)) assert num >= 2 target_path = re.sub(r'\.[0-9]+$', '', path) module = module_from_path(target_path) operation = UpdateFile(module, path, target_path) steps.setdefault(num, []).append(operation) for num, paths in self.deleted_paths.items(): assert num >= 2 for path in paths: module = module_from_path(path) steps.setdefault(num, []).append(DeleteFile(module, path)) max_step = max(steps) if steps else 2 return [steps.get(num, []) for num in range(2, max_step + 1)] def module_from_path(path: str) -> str: path = re.sub(r'\.pyi?$', '', path) # We can have a mix of Unix-style and Windows-style separators. parts = re.split(r'[/\\]', path) assert parts[0] == test_temp_dir del parts[0] module = '.'.join(parts) module = re.sub(r'\.__init__$', '', module) return module class TestItem: """Parsed test caseitem. An item is of the form [id arg] .. data .. """ id = '' arg = '' # type: Optional[str] # Text data, array of 8-bit strings data = None # type: List[str] file = '' line = 0 # Line number in file def __init__(self, id: str, arg: Optional[str], data: List[str], line: int) -> None: self.id = id self.arg = arg self.data = data self.line = line def parse_test_data(raw_data: str, name: str) -> List[TestItem]: """Parse a list of lines that represent a sequence of test items.""" lines = ['', '[case ' + name + ']'] + raw_data.split('\n') ret = [] # type: List[TestItem] data = [] # type: List[str] id = None # type: Optional[str] arg = None # type: Optional[str] i = 0 i0 = 0 while i < len(lines): s = lines[i].strip() if lines[i].startswith('[') and s.endswith(']'): if id: data = collapse_line_continuation(data) data = strip_list(data) ret.append(TestItem(id, arg, strip_list(data), i0 + 1)) i0 = i id = s[1:-1] arg = None if ' ' in id: arg = id[id.index(' ') + 1:] id = id[:id.index(' ')] data = [] elif lines[i].startswith('\\['): data.append(lines[i][1:]) elif not lines[i].startswith('--'): data.append(lines[i]) elif lines[i].startswith('----'): data.append(lines[i][2:]) i += 1 # Process the last item. if id: data = collapse_line_continuation(data) data = strip_list(data) ret.append(TestItem(id, arg, data, i0 + 1)) return ret def strip_list(l: List[str]) -> List[str]: """Return a stripped copy of l. Strip whitespace at the end of all lines, and strip all empty lines from the end of the array. """ r = [] # type: List[str] for s in l: # Strip spaces at end of line r.append(re.sub(r'\s+$', '', s)) while len(r) > 0 and r[-1] == '': r.pop() return r def collapse_line_continuation(l: List[str]) -> List[str]: r = [] # type: List[str] cont = False for s in l: ss = re.sub(r'\\$', '', s) if cont: r[-1] += re.sub('^ +', '', ss) else: r.append(ss) cont = s.endswith('\\') return r def expand_variables(s: str) -> str: return s.replace('<ROOT>', root_dir) def expand_errors(input: List[str], output: List[str], fnam: str) -> None: """Transform comments such as '# E: message' or '# E:3: message' in input. The result is lines like 'fnam:line: error: message'. """ for i in range(len(input)): # The first in the split things isn't a comment for possible_err_comment in input[i].split(' # ')[1:]: m = re.search( r'^([ENW]):((?P<col>\d+):)? (?P<message>.*)$', possible_err_comment.strip()) if m: if m.group(1) == 'E': severity = 'error' elif m.group(1) == 'N': severity = 'note' elif m.group(1) == 'W': severity = 'warning' col = m.group('col') message = m.group('message') message = message.replace('\\#', '#') # adds back escaped # character if col is None: output.append( '{}:{}: {}: {}'.format(fnam, i + 1, severity, message)) else: output.append('{}:{}:{}: {}: {}'.format( fnam, i + 1, col, severity, message)) def fix_win_path(line: str) -> str: r"""Changes Windows paths to Linux paths in error messages. E.g. foo\bar.py -> foo/bar.py. """ line = line.replace(root_dir, root_dir.replace('\\', '/')) m = re.match(r'^([\S/]+):(\d+:)?(\s+.*)', line) if not m: return line else: filename, lineno, message = m.groups() return '{}:{}{}'.format(filename.replace('\\', '/'), lineno or '', message) def fix_cobertura_filename(line: str) -> str: r"""Changes filename paths to Linux paths in Cobertura output files. E.g. filename="pkg\subpkg\a.py" -> filename="pkg/subpkg/a.py". """ m = re.search(r'<class .* filename="(?P<filename>.*?)"', line) if not m: return line return '{}{}{}'.format(line[:m.start(1)], m.group('filename').replace('\\', '/'), line[m.end(1):]) ## # # pytest setup # ## # This function name is special to pytest. See # https://docs.pytest.org/en/latest/reference.html#initialization-hooks def pytest_addoption(parser: Any) -> None: group = parser.getgroup('mypy') group.addoption('--update-data', action='store_true', default=False, help='Update test data to reflect actual output' ' (supported only for certain tests)') group.addoption('--save-failures-to', default=None, help='Copy the temp directories from failing tests to a target directory') group.addoption('--mypy-verbose', action='count', help='Set the verbose flag when creating mypy Options') group.addoption('--mypyc-showc', action='store_true', default=False, help='Display C code on mypyc test failures') # This function name is special to pytest. See # http://doc.pytest.org/en/latest/writing_plugins.html#collection-hooks def pytest_pycollect_makeitem(collector: Any, name: str, obj: object) -> 'Optional[Any]': """Called by pytest on each object in modules configured in conftest.py files. collector is pytest.Collector, returns Optional[pytest.Class] """ if isinstance(obj, type): # Only classes derived from DataSuite contain test cases, not the DataSuite class itself if issubclass(obj, DataSuite) and obj is not DataSuite: # Non-None result means this obj is a test case. # The collect method of the returned DataSuiteCollector instance will be called later, # with self.obj being obj. return DataSuiteCollector.from_parent( # type: ignore[no-untyped-call] parent=collector, name=name ) return None def split_test_cases(parent: 'DataSuiteCollector', suite: 'DataSuite', file: str) -> Iterator['DataDrivenTestCase']: """Iterate over raw test cases in file, at collection time, ignoring sub items. The collection phase is slow, so any heavy processing should be deferred to after uninteresting tests are filtered (when using -k PATTERN switch). """ with open(file, encoding='utf-8') as f: data = f.read() cases = re.split(r'^\[case ([a-zA-Z_0-9]+)' r'(-writescache)?' r'(-only_when_cache|-only_when_nocache)?' r'(-posix|-windows)?' r'(-skip)?' r'\][ \t]*$\n', data, flags=re.DOTALL | re.MULTILINE) line_no = cases[0].count('\n') + 1 for i in range(1, len(cases), 6): name, writescache, only_when, platform_flag, skip, data = cases[i:i + 6] platform = platform_flag[1:] if platform_flag else None yield DataDrivenTestCase.from_parent( parent=parent, suite=suite, file=file, name=add_test_name_suffix(name, suite.test_name_suffix), writescache=bool(writescache), only_when=only_when, platform=platform, skip=bool(skip), data=data, line=line_no, ) line_no += data.count('\n') + 1 class DataSuiteCollector(pytest.Class): def collect(self) -> Iterator[pytest.Item]: """Called by pytest on each of the object returned from pytest_pycollect_makeitem""" # obj is the object for which pytest_pycollect_makeitem returned self. suite = self.obj # type: DataSuite for f in suite.files: yield from split_test_cases(self, suite, os.path.join(suite.data_prefix, f)) def add_test_name_suffix(name: str, suffix: str) -> str: # Find magic suffix of form "-foobar" (used for things like "-skip"). m = re.search(r'-[-A-Za-z0-9]+$', name) if m: # Insert suite-specific test name suffix before the magic suffix # which must be the last thing in the test case name since we # are using endswith() checks. magic_suffix = m.group(0) return name[:-len(magic_suffix)] + suffix + magic_suffix else: return name + suffix def is_incremental(testcase: DataDrivenTestCase) -> bool: return 'incremental' in testcase.name.lower() or 'incremental' in testcase.file def has_stable_flags(testcase: DataDrivenTestCase) -> bool: if any(re.match(r'# flags[2-9]:', line) for line in testcase.input): return False for filename, contents in testcase.files: if os.path.basename(filename).startswith('mypy.ini.'): return False return True class DataSuite: # option fields - class variables files = None # type: List[str] base_path = test_temp_dir # Allow external users of the test code to override the data prefix data_prefix = test_data_prefix required_out_section = False native_sep = False # Name suffix automatically added to each test case in the suite (can be # used to distinguish test cases in suites that share data files) test_name_suffix = '' def setup(self) -> None: """Setup fixtures (ad-hoc)""" pass @abstractmethod def run_case(self, testcase: DataDrivenTestCase) -> None: raise NotImplementedError
37.988673
98
0.579972
3a425bf3275d325bab05c4e255cdf8dccbba3cb0
518
py
Python
test/test_edit_contact.py
Physic67/python_training
a19206b8dc2fc642f0cd29781eb8431122501630
[ "Apache-2.0" ]
null
null
null
test/test_edit_contact.py
Physic67/python_training
a19206b8dc2fc642f0cd29781eb8431122501630
[ "Apache-2.0" ]
null
null
null
test/test_edit_contact.py
Physic67/python_training
a19206b8dc2fc642f0cd29781eb8431122501630
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- from model.contact import Contact def test_edit_first_contact(app): if app.contact.count() == 0: app.contact.add_new_contact(Contact(firstname="Edward", middlename="Vampire", lastname="Kallen", address="Forks, Washington", homephone="495-1234567", mobilephone="901-1234567", email="123@gmail.ru")) app.contact.edit_first_contact(Contact(firstname="Shrek", middlename="Vampire", lastname="Kallen", address="Forks, Washington", homephone="495", mobilephone="901", email="123"))
57.555556
208
0.727799
fe7068afc5aec7d30790d1569645ee0bf22a0ebe
17,651
py
Python
release/scripts/modules/bl_keymap_utils/keymap_from_toolbar.py
atlantic-crypto/blender
65fdf6f0ed592082ead87c76ea9be46cd54dba26
[ "Naumen", "Condor-1.1", "MS-PL" ]
null
null
null
release/scripts/modules/bl_keymap_utils/keymap_from_toolbar.py
atlantic-crypto/blender
65fdf6f0ed592082ead87c76ea9be46cd54dba26
[ "Naumen", "Condor-1.1", "MS-PL" ]
null
null
null
release/scripts/modules/bl_keymap_utils/keymap_from_toolbar.py
atlantic-crypto/blender
65fdf6f0ed592082ead87c76ea9be46cd54dba26
[ "Naumen", "Condor-1.1", "MS-PL" ]
1
2019-10-23T12:02:29.000Z
2019-10-23T12:02:29.000Z
# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### # <pep8 compliant> # Dynamically create a keymap which is used by the popup toolbar # for accelerator key access. __all__ = ( "generate", ) def generate(context, space_type): """ Keymap for popup toolbar, currently generated each time. """ from bl_ui.space_toolsystem_common import ToolSelectPanelHelper def modifier_keywords_from_item(kmi): kw = {} for (attr, default) in ( ("any", False), ("shift", False), ("ctrl", False), ("alt", False), ("oskey", False), ("key_modifier", 'NONE'), ): val = getattr(kmi, attr) if val != default: kw[attr] = val return kw def dict_as_tuple(d): return tuple((k, v) for (k, v) in sorted(d.items())) cls = ToolSelectPanelHelper._tool_class_from_space_type(space_type) items_all = [ # 0: tool # 1: keymap item (direct access) # 2: keymap item (newly calculated for toolbar) [item, None, None] for item in ToolSelectPanelHelper._tools_flatten(cls.tools_from_context(context)) if item is not None ] items_all_id = {item_container[0].idname for item_container in items_all} # Press the toolbar popup key again to set the default tool, # this is useful because the select box tool is useful as a way # to 'drop' currently active tools (it's basically a 'none' tool). # so this allows us to quickly go back to a state that allows # a shortcut based workflow (before the tool system was added). use_tap_reset = True # TODO: support other tools for modes which don't use this tool. tap_reset_tool = "builtin.cursor" # Check the tool is available in the current context. if tap_reset_tool not in items_all_id: use_tap_reset = False from bl_operators.wm import use_toolbar_release_hack # Pie-menu style release to activate. use_release_confirm = True # Generate items when no keys are mapped. use_auto_keymap_alpha = False # Map manially in the default keymap use_auto_keymap_num = True # Temporary, only create so we can pass 'properties' to find_item_from_operator. use_hack_properties = True km_name_default = "Toolbar Popup" km_name = km_name_default + " <temp>" wm = context.window_manager keyconf_user = wm.keyconfigs.user keyconf_active = wm.keyconfigs.active keymap = keyconf_active.keymaps.get(km_name) if keymap is None: keymap = keyconf_active.keymaps.new(km_name, space_type='EMPTY', region_type='TEMPORARY') for kmi in keymap.keymap_items: keymap.keymap_items.remove(kmi) keymap_src = keyconf_user.keymaps.get(km_name_default) if keymap_src is not None: for kmi_src in keymap_src.keymap_items: # Skip tools that aren't currently shown. if ( (kmi_src.idname == "wm.tool_set_by_id") and (kmi_src.properties.name not in items_all_id) ): continue keymap.keymap_items.new_from_item(kmi_src) del keymap_src del items_all_id kmi_unique_args = set() def kmi_unique_or_pass(kmi_args): kmi_unique_len = len(kmi_unique_args) kmi_unique_args.add(dict_as_tuple(kmi_args)) return kmi_unique_len != len(kmi_unique_args) cls = ToolSelectPanelHelper._tool_class_from_space_type(space_type) if use_hack_properties: kmi_hack = keymap.keymap_items.new("wm.tool_set_by_id", 'NONE', 'PRESS') kmi_hack_properties = kmi_hack.properties kmi_hack.active = False kmi_hack_brush_select = keymap.keymap_items.new("paint.brush_select", 'NONE', 'PRESS') kmi_hack_brush_select_properties = kmi_hack_brush_select.properties kmi_hack_brush_select.active = False if use_release_confirm or use_tap_reset: kmi_toolbar = wm.keyconfigs.find_item_from_operator( idname="wm.toolbar", )[1] kmi_toolbar_type = None if not kmi_toolbar else kmi_toolbar.type if use_tap_reset and kmi_toolbar_type is not None: kmi_toolbar_args_type_only = {"type": kmi_toolbar_type} kmi_toolbar_args = {**kmi_toolbar_args_type_only, **modifier_keywords_from_item(kmi_toolbar)} else: use_tap_reset = False del kmi_toolbar if use_tap_reset: kmi_found = None if use_hack_properties: # First check for direct assignment, if this tool already has a key, no need to add a new one. kmi_hack_properties.name = tap_reset_tool kmi_found = wm.keyconfigs.find_item_from_operator( idname="wm.tool_set_by_id", context='INVOKE_REGION_WIN', # properties={"name": item.idname}, properties=kmi_hack_properties, include={'KEYBOARD'}, )[1] if kmi_found: use_tap_reset = False del kmi_found if use_tap_reset: use_tap_reset = kmi_unique_or_pass(kmi_toolbar_args) if use_tap_reset: items_all[:] = [ item_container for item_container in items_all if item_container[0].idname != tap_reset_tool ] # ----------------------- # Begin Keymap Generation # ------------------------------------------------------------------------- # Direct Tool Assignment & Brushes for item_container in items_all: item = item_container[0] # Only check the first item in the tools key-map (a little arbitrary). if use_hack_properties: # First check for direct assignment. kmi_hack_properties.name = item.idname kmi_found = wm.keyconfigs.find_item_from_operator( idname="wm.tool_set_by_id", context='INVOKE_REGION_WIN', # properties={"name": item.idname}, properties=kmi_hack_properties, include={'KEYBOARD'}, )[1] if kmi_found is None: if item.data_block: # PAINT_OT_brush_select mode = context.active_object.mode # See: BKE_paint_get_tool_prop_id_from_paintmode attr = { 'SCULPT': "sculpt_tool", 'VERTEX_PAINT': "vertex_tool", 'WEIGHT_PAINT': "weight_tool", 'TEXTURE_PAINT': "image_tool", 'PAINT_GPENCIL': "gpencil_tool", }.get(mode, None) if attr is not None: setattr(kmi_hack_brush_select_properties, attr, item.data_block) kmi_found = wm.keyconfigs.find_item_from_operator( idname="paint.brush_select", context='INVOKE_REGION_WIN', properties=kmi_hack_brush_select_properties, include={'KEYBOARD'}, )[1] elif mode in {'PARTICLE_EDIT', 'SCULPT_GPENCIL'}: # Doesn't use brushes pass else: print("Unsupported mode:", mode) del mode, attr else: kmi_found = None if kmi_found is not None: pass elif item.operator is not None: kmi_found = wm.keyconfigs.find_item_from_operator( idname=item.operator, context='INVOKE_REGION_WIN', include={'KEYBOARD'}, )[1] elif item.keymap is not None: km = keyconf_user.keymaps.get(item.keymap[0]) if km is None: print("Keymap", repr(item.keymap[0]), "not found for tool", item.idname) kmi_found = None else: kmi_first = km.keymap_items kmi_first = kmi_first[0] if kmi_first else None if kmi_first is not None: kmi_found = wm.keyconfigs.find_item_from_operator( idname=kmi_first.idname, # properties=kmi_first.properties, # prevents matches, don't use. context='INVOKE_REGION_WIN', include={'KEYBOARD'}, )[1] if kmi_found is None: # We need non-keyboard events so keys with 'key_modifier' key is found. kmi_found = wm.keyconfigs.find_item_from_operator( idname=kmi_first.idname, # properties=kmi_first.properties, # prevents matches, don't use. context='INVOKE_REGION_WIN', exclude={'KEYBOARD'}, )[1] if kmi_found is not None: if kmi_found.key_modifier == 'NONE': kmi_found = None else: kmi_found = None del kmi_first del km else: kmi_found = None item_container[1] = kmi_found # ------------------------------------------------------------------------- # Single Key Access # More complex multi-pass test. for item_container in items_all: item, kmi_found = item_container[:2] if kmi_found is None: continue kmi_found_type = kmi_found.type # Only for single keys. if ( (len(kmi_found_type) == 1) or # When a tool is being activated instead of running an operator, just copy the shortcut. (kmi_found.idname in {"wm.tool_set_by_id", "WM_OT_tool_set_by_id"}) ): kmi_args = {"type": kmi_found_type, **modifier_keywords_from_item(kmi_found)} if kmi_unique_or_pass(kmi_args): kmi = keymap.keymap_items.new(idname="wm.tool_set_by_id", value='PRESS', **kmi_args) kmi.properties.name = item.idname item_container[2] = kmi # ------------------------------------------------------------------------- # Single Key Modifier # # # Test for key_modifier, where alpha key is used as a 'key_modifier' # (grease pencil holding 'D' for example). for item_container in items_all: item, kmi_found, kmi_exist = item_container if kmi_found is None or kmi_exist: continue kmi_found_type = kmi_found.type if kmi_found_type in { 'LEFTMOUSE', 'RIGHTMOUSE', 'MIDDLEMOUSE', 'BUTTON4MOUSE', 'BUTTON5MOUSE', 'BUTTON6MOUSE', 'BUTTON7MOUSE', }: kmi_found_type = kmi_found.key_modifier # excludes 'NONE' if len(kmi_found_type) == 1: kmi_args = {"type": kmi_found_type, **modifier_keywords_from_item(kmi_found)} del kmi_args["key_modifier"] if kmi_unique_or_pass(kmi_args): kmi = keymap.keymap_items.new(idname="wm.tool_set_by_id", value='PRESS', **kmi_args) kmi.properties.name = item.idname item_container[2] = kmi # ------------------------------------------------------------------------- # Assign A-Z to Keys # # When the keys are free. if use_auto_keymap_alpha: # Map all unmapped keys to numbers, # while this is a bit strange it means users will not confuse regular key bindings to ordered bindings. # First map A-Z. kmi_type_alpha_char = [chr(i) for i in range(65, 91)] kmi_type_alpha_args = {c: {"type": c} for c in kmi_type_alpha_char} kmi_type_alpha_args_tuple = {c: dict_as_tuple(kmi_type_alpha_args[c]) for c in kmi_type_alpha_char} for item_container in items_all: item, kmi_found, kmi_exist = item_container if kmi_exist: continue kmi_type = item.label[0].upper() kmi_tuple = kmi_type_alpha_args_tuple.get(kmi_type) if kmi_tuple and kmi_tuple not in kmi_unique_args: kmi_unique_args.add(kmi_tuple) kmi = keymap.keymap_items.new( idname="wm.tool_set_by_id", value='PRESS', **kmi_type_alpha_args[kmi_type], ) kmi.properties.name = item.idname item_container[2] = kmi del kmi_type_alpha_char, kmi_type_alpha_args, kmi_type_alpha_args_tuple # ------------------------------------------------------------------------- # Assign Numbers to Keys if use_auto_keymap_num: # Free events (last used first). kmi_type_auto = ('ONE', 'TWO', 'THREE', 'FOUR', 'FIVE', 'SIX', 'SEVEN', 'EIGHT', 'NINE', 'ZERO') # Map both numbers and num-pad. kmi_type_dupe = { 'ONE': 'NUMPAD_1', 'TWO': 'NUMPAD_2', 'THREE': 'NUMPAD_3', 'FOUR': 'NUMPAD_4', 'FIVE': 'NUMPAD_5', 'SIX': 'NUMPAD_6', 'SEVEN': 'NUMPAD_7', 'EIGHT': 'NUMPAD_8', 'NINE': 'NUMPAD_9', 'ZERO': 'NUMPAD_0', } def iter_free_events(): for mod in ({}, {"shift": True}, {"ctrl": True}, {"alt": True}): for e in kmi_type_auto: yield (e, mod) iter_events = iter(iter_free_events()) for item_container in items_all: item, kmi_found, kmi_exist = item_container if kmi_exist: continue kmi_args = None while True: key, mod = next(iter_events, (None, None)) if key is None: break kmi_args = {"type": key, **mod} kmi_tuple = dict_as_tuple(kmi_args) if kmi_tuple in kmi_unique_args: kmi_args = None else: break if kmi_args is not None: kmi = keymap.keymap_items.new(idname="wm.tool_set_by_id", value='PRESS', **kmi_args) kmi.properties.name = item.idname item_container[2] = kmi kmi_unique_args.add(kmi_tuple) key = kmi_type_dupe.get(kmi_args["type"]) if key is not None: kmi_args["type"] = key kmi_tuple = dict_as_tuple(kmi_args) if not kmi_tuple in kmi_unique_args: kmi = keymap.keymap_items.new(idname="wm.tool_set_by_id", value='PRESS', **kmi_args) kmi.properties.name = item.idname kmi_unique_args.add(kmi_tuple) # --------------------- # End Keymap Generation if use_hack_properties: keymap.keymap_items.remove(kmi_hack) keymap.keymap_items.remove(kmi_hack_brush_select) # Keep last so we can try add a key without any modifiers # in the case this toolbar was activated with modifiers. if use_tap_reset: if len(kmi_toolbar_args_type_only) == len(kmi_toolbar_args): kmi_toolbar_args_available = kmi_toolbar_args else: # We have modifiers, see if we have a free key w/o modifiers. kmi_toolbar_tuple = dict_as_tuple(kmi_toolbar_args_type_only) if kmi_toolbar_tuple not in kmi_unique_args: kmi_toolbar_args_available = kmi_toolbar_args_type_only kmi_unique_args.add(kmi_toolbar_tuple) else: kmi_toolbar_args_available = kmi_toolbar_args del kmi_toolbar_tuple kmi = keymap.keymap_items.new( "wm.tool_set_by_id", value='PRESS' if use_toolbar_release_hack else 'DOUBLE_CLICK', **kmi_toolbar_args_available, ) kmi.properties.name = tap_reset_tool if use_release_confirm: kmi = keymap.keymap_items.new( "ui.button_execute", type=kmi_toolbar_type, value='RELEASE', any=True, ) kmi.properties.skip_depressed = True if use_toolbar_release_hack: # ... or pass through to let the toolbar know we're released. # Let the operator know we're released. kmi = keymap.keymap_items.new( "wm.tool_set_by_id", type=kmi_toolbar_type, value='RELEASE', any=True, ) wm.keyconfigs.update() return keymap
38.708333
111
0.560365
02007ba86cb5579cf788732d1ea362c37d877f41
28
py
Python
mercadopago/__init__.py
amarisi/sdk-python
c22edfb19a48e0862e4317a34fff919528824546
[ "MIT" ]
null
null
null
mercadopago/__init__.py
amarisi/sdk-python
c22edfb19a48e0862e4317a34fff919528824546
[ "MIT" ]
null
null
null
mercadopago/__init__.py
amarisi/sdk-python
c22edfb19a48e0862e4317a34fff919528824546
[ "MIT" ]
null
null
null
from .mercadopago import MP
14
27
0.821429
41675f266c2fac2d598d962d5082d7a9df551ab9
942
py
Python
isi_sdk_8_2_0/test/test_storagepool_nodepools.py
mohitjain97/isilon_sdk_python
a371f438f542568edb8cda35e929e6b300b1177c
[ "Unlicense" ]
24
2018-06-22T14:13:23.000Z
2022-03-23T01:21:26.000Z
isi_sdk_8_2_0/test/test_storagepool_nodepools.py
mohitjain97/isilon_sdk_python
a371f438f542568edb8cda35e929e6b300b1177c
[ "Unlicense" ]
46
2018-04-30T13:28:22.000Z
2022-03-21T21:11:07.000Z
isi_sdk_8_2_0/test/test_storagepool_nodepools.py
mohitjain97/isilon_sdk_python
a371f438f542568edb8cda35e929e6b300b1177c
[ "Unlicense" ]
29
2018-06-19T00:14:04.000Z
2022-02-08T17:51:19.000Z
# coding: utf-8 """ Isilon SDK Isilon SDK - Language bindings for the OneFS API # noqa: E501 OpenAPI spec version: 7 Contact: sdk@isilon.com Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import isi_sdk_8_2_0 from isi_sdk_8_2_0.models.storagepool_nodepools import StoragepoolNodepools # noqa: E501 from isi_sdk_8_2_0.rest import ApiException class TestStoragepoolNodepools(unittest.TestCase): """StoragepoolNodepools unit test stubs""" def setUp(self): pass def tearDown(self): pass def testStoragepoolNodepools(self): """Test StoragepoolNodepools""" # FIXME: construct object with mandatory attributes with example values # model = isi_sdk_8_2_0.models.storagepool_nodepools.StoragepoolNodepools() # noqa: E501 pass if __name__ == '__main__': unittest.main()
22.97561
97
0.717622
574deb50a852e77e676763ecf9e8b742c4618002
4,641
py
Python
readthedocs/builds/views.py
Hiroshi18/readthedocs.org
95c00d0adec1b3b935ba49068c89375cc129238e
[ "MIT" ]
1
2021-07-01T01:31:58.000Z
2021-07-01T01:31:58.000Z
readthedocs/builds/views.py
Hiroshi18/readthedocs.org
95c00d0adec1b3b935ba49068c89375cc129238e
[ "MIT" ]
null
null
null
readthedocs/builds/views.py
Hiroshi18/readthedocs.org
95c00d0adec1b3b935ba49068c89375cc129238e
[ "MIT" ]
null
null
null
"""Views for builds app.""" import logging import textwrap from urllib.parse import urlparse from django.contrib import messages from django.contrib.auth.decorators import login_required from django.http import ( HttpResponseForbidden, HttpResponseRedirect, ) from django.shortcuts import get_object_or_404 from django.urls import reverse from django.utils.decorators import method_decorator from django.views.generic import DetailView, ListView from requests.utils import quote from readthedocs.builds.models import Build, Version from readthedocs.core.permissions import AdminPermission from readthedocs.core.utils import trigger_build from readthedocs.doc_builder.exceptions import BuildEnvironmentError from readthedocs.projects.models import Project log = logging.getLogger(__name__) class BuildBase: model = Build def get_queryset(self): self.project_slug = self.kwargs.get('project_slug', None) self.project = get_object_or_404( Project.objects.public(self.request.user), slug=self.project_slug, ) queryset = Build.objects.public( user=self.request.user, project=self.project, ).select_related('project', 'version') return queryset class BuildTriggerMixin: @method_decorator(login_required) def post(self, request, project_slug): project = get_object_or_404(Project, slug=project_slug) if not AdminPermission.is_admin(request.user, project): return HttpResponseForbidden() version_slug = request.POST.get('version_slug') version = get_object_or_404( Version.internal.all(), project=project, slug=version_slug, ) update_docs_task, build = trigger_build( project=project, version=version, ) if (update_docs_task, build) == (None, None): # Build was skipped messages.add_message( request, messages.WARNING, "This project is currently disabled and can't trigger new builds.", ) return HttpResponseRedirect( reverse('builds_project_list', args=[project.slug]), ) return HttpResponseRedirect( reverse('builds_detail', args=[project.slug, build.pk]), ) class BuildList(BuildBase, BuildTriggerMixin, ListView): def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) active_builds = self.get_queryset().exclude( state='finished', ).values('id') context['project'] = self.project context['active_builds'] = active_builds context['versions'] = Version.internal.public( user=self.request.user, project=self.project, ) context['build_qs'] = self.get_queryset() return context class BuildDetail(BuildBase, DetailView): pk_url_kwarg = 'build_pk' def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context['project'] = self.project build = self.get_object() if build.error != BuildEnvironmentError.GENERIC_WITH_BUILD_ID.format(build_id=build.pk): # Do not suggest to open an issue if the error is not generic return context scheme = ( 'https://github.com/rtfd/readthedocs.org/issues/new' '?title={title}{build_id}' '&body={body}' ) # TODO: we could use ``.github/ISSUE_TEMPLATE.md`` here, but we would # need to add some variables to it which could impact in the UX when # filling an issue from the web body = """ ## Details: * Project URL: https://readthedocs.org/projects/{project_slug}/ * Build URL(if applicable): https://readthedocs.org{build_path} * Read the Docs username(if applicable): {username} ## Expected Result *A description of what you wanted to happen* ## Actual Result *A description of what actually happened*""".format( project_slug=self.project, build_path=self.request.path, username=self.request.user, ) scheme_dict = { 'title': quote('Build error with build id #'), 'build_id': context['build'].id, 'body': quote(textwrap.dedent(body)), } issue_url = scheme.format(**scheme_dict) issue_url = urlparse(issue_url).geturl() context['issue_url'] = issue_url return context
30.136364
96
0.636716
26857ba235e4fe13904ca4f1334f4662a795f8a8
31,754
py
Python
tensorflow/contrib/timeseries/python/timeseries/state_space_models/state_space_model_test.py
PaulWang1905/tensorflow
ebf12d22b4801fb8dab5034cc94562bf7cc33fa0
[ "Apache-2.0" ]
848
2019-12-03T00:16:17.000Z
2022-03-31T22:53:17.000Z
tensorflow/contrib/timeseries/python/timeseries/state_space_models/state_space_model_test.py
PaulWang1905/tensorflow
ebf12d22b4801fb8dab5034cc94562bf7cc33fa0
[ "Apache-2.0" ]
656
2019-12-03T00:48:46.000Z
2022-03-31T18:41:54.000Z
tensorflow/contrib/timeseries/python/timeseries/state_space_models/state_space_model_test.py
PaulWang1905/tensorflow
ebf12d22b4801fb8dab5034cc94562bf7cc33fa0
[ "Apache-2.0" ]
506
2019-12-03T00:46:26.000Z
2022-03-30T10:34:56.000Z
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for state space model infrastructure.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import numpy from tensorflow.contrib import layers from tensorflow.contrib.timeseries.python.timeseries import estimators from tensorflow.contrib.timeseries.python.timeseries import feature_keys from tensorflow.contrib.timeseries.python.timeseries import input_pipeline from tensorflow.contrib.timeseries.python.timeseries import math_utils from tensorflow.contrib.timeseries.python.timeseries import saved_model_utils from tensorflow.contrib.timeseries.python.timeseries import state_management from tensorflow.contrib.timeseries.python.timeseries import test_utils from tensorflow.contrib.timeseries.python.timeseries.state_space_models import state_space_model from tensorflow.python.estimator import estimator_lib from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import random_seed from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import array_ops from tensorflow.python.ops import linalg_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables from tensorflow.python.platform import test from tensorflow.python.saved_model import loader from tensorflow.python.saved_model import tag_constants from tensorflow.python.training import coordinator as coordinator_lib from tensorflow.python.training import gradient_descent from tensorflow.python.training import queue_runner_impl class RandomStateSpaceModel(state_space_model.StateSpaceModel): def __init__(self, state_dimension, state_noise_dimension, configuration=state_space_model.StateSpaceModelConfiguration()): self.transition = numpy.random.normal( size=[state_dimension, state_dimension]).astype( configuration.dtype.as_numpy_dtype) self.noise_transform = numpy.random.normal( size=(state_dimension, state_noise_dimension)).astype( configuration.dtype.as_numpy_dtype) # Test batch broadcasting self.observation_model = numpy.random.normal( size=(configuration.num_features, state_dimension)).astype( configuration.dtype.as_numpy_dtype) super(RandomStateSpaceModel, self).__init__( configuration=configuration._replace( covariance_prior_fn=lambda _: 0.)) def get_state_transition(self): return self.transition def get_noise_transform(self): return self.noise_transform def get_observation_model(self, times): return self.observation_model class ConstructionTests(test.TestCase): def test_initialize_graph_error(self): with self.assertRaisesRegexp(ValueError, "initialize_graph"): model = RandomStateSpaceModel(2, 2) outputs = model.define_loss( features={ feature_keys.TrainEvalFeatures.TIMES: constant_op.constant([[1, 2]]), feature_keys.TrainEvalFeatures.VALUES: constant_op.constant([[[1.], [2.]]]) }, mode=estimator_lib.ModeKeys.TRAIN) initializer = variables.global_variables_initializer() with self.cached_session() as sess: sess.run([initializer]) outputs.loss.eval() def test_initialize_graph_state_manager_error(self): with self.assertRaisesRegexp(ValueError, "initialize_graph"): model = RandomStateSpaceModel(2, 2) state_manager = state_management.ChainingStateManager() outputs = state_manager.define_loss( model=model, features={ feature_keys.TrainEvalFeatures.TIMES: constant_op.constant([[1, 2]]), feature_keys.TrainEvalFeatures.VALUES: constant_op.constant([[[1.], [2.]]]) }, mode=estimator_lib.ModeKeys.TRAIN) initializer = variables.global_variables_initializer() with self.cached_session() as sess: sess.run([initializer]) outputs.loss.eval() class GapTests(test.TestCase): def _gap_test_template(self, times, values): random_model = RandomStateSpaceModel( state_dimension=1, state_noise_dimension=1, configuration=state_space_model.StateSpaceModelConfiguration( num_features=1)) random_model.initialize_graph() input_fn = input_pipeline.WholeDatasetInputFn( input_pipeline.NumpyReader({ feature_keys.TrainEvalFeatures.TIMES: times, feature_keys.TrainEvalFeatures.VALUES: values })) features, _ = input_fn() times = features[feature_keys.TrainEvalFeatures.TIMES] values = features[feature_keys.TrainEvalFeatures.VALUES] model_outputs = random_model.get_batch_loss( features={ feature_keys.TrainEvalFeatures.TIMES: times, feature_keys.TrainEvalFeatures.VALUES: values }, mode=None, state=math_utils.replicate_state( start_state=random_model.get_start_state(), batch_size=array_ops.shape(times)[0])) with self.cached_session() as session: variables.global_variables_initializer().run() coordinator = coordinator_lib.Coordinator() queue_runner_impl.start_queue_runners(session, coord=coordinator) model_outputs.loss.eval() coordinator.request_stop() coordinator.join() def test_start_gap(self): self._gap_test_template(times=[20, 21, 22], values=numpy.arange(3)) def test_mid_gap(self): self._gap_test_template(times=[2, 60, 61], values=numpy.arange(3)) def test_end_gap(self): self._gap_test_template(times=[2, 3, 73], values=numpy.arange(3)) def test_all_gaps(self): self._gap_test_template(times=[2, 4, 8, 16, 32, 64, 128], values=numpy.arange(7)) class StateSpaceEquivalenceTests(test.TestCase): def test_savedmodel_state_override(self): random_model = RandomStateSpaceModel( state_dimension=5, state_noise_dimension=4, configuration=state_space_model.StateSpaceModelConfiguration( exogenous_feature_columns=[layers.real_valued_column("exogenous")], dtype=dtypes.float64, num_features=1)) estimator = estimators.StateSpaceRegressor( model=random_model, optimizer=gradient_descent.GradientDescentOptimizer(0.1)) combined_input_fn = input_pipeline.WholeDatasetInputFn( input_pipeline.NumpyReader({ feature_keys.FilteringFeatures.TIMES: [1, 2, 3, 4], feature_keys.FilteringFeatures.VALUES: [1., 2., 3., 4.], "exogenous": [-1., -2., -3., -4.] })) estimator.train(combined_input_fn, steps=1) export_location = estimator.export_saved_model( self.get_temp_dir(), estimator.build_raw_serving_input_receiver_fn()) with ops.Graph().as_default() as graph: random_model.initialize_graph() with self.session(graph=graph) as session: variables.global_variables_initializer().run() evaled_start_state = session.run(random_model.get_start_state()) evaled_start_state = [ state_element[None, ...] for state_element in evaled_start_state] with ops.Graph().as_default() as graph: with self.session(graph=graph) as session: signatures = loader.load( session, [tag_constants.SERVING], export_location) first_split_filtering = saved_model_utils.filter_continuation( continue_from={ feature_keys.FilteringResults.STATE_TUPLE: evaled_start_state}, signatures=signatures, session=session, features={ feature_keys.FilteringFeatures.TIMES: [1, 2], feature_keys.FilteringFeatures.VALUES: [1., 2.], "exogenous": [[-1.], [-2.]]}) second_split_filtering = saved_model_utils.filter_continuation( continue_from=first_split_filtering, signatures=signatures, session=session, features={ feature_keys.FilteringFeatures.TIMES: [3, 4], feature_keys.FilteringFeatures.VALUES: [3., 4.], "exogenous": [[-3.], [-4.]] }) combined_filtering = saved_model_utils.filter_continuation( continue_from={ feature_keys.FilteringResults.STATE_TUPLE: evaled_start_state}, signatures=signatures, session=session, features={ feature_keys.FilteringFeatures.TIMES: [1, 2, 3, 4], feature_keys.FilteringFeatures.VALUES: [1., 2., 3., 4.], "exogenous": [[-1.], [-2.], [-3.], [-4.]] }) split_predict = saved_model_utils.predict_continuation( continue_from=second_split_filtering, signatures=signatures, session=session, steps=1, exogenous_features={ "exogenous": [[[-5.]]]}) combined_predict = saved_model_utils.predict_continuation( continue_from=combined_filtering, signatures=signatures, session=session, steps=1, exogenous_features={ "exogenous": [[[-5.]]]}) for state_key, combined_state_value in combined_filtering.items(): if state_key == feature_keys.FilteringResults.TIMES: continue self.assertAllClose( combined_state_value, second_split_filtering[state_key]) for prediction_key, combined_value in combined_predict.items(): self.assertAllClose(combined_value, split_predict[prediction_key]) def _equivalent_to_single_model_test_template(self, model_generator): with self.cached_session() as session: random_model = RandomStateSpaceModel( state_dimension=5, state_noise_dimension=4, configuration=state_space_model.StateSpaceModelConfiguration( dtype=dtypes.float64, num_features=1)) random_model.initialize_graph() series_length = 10 model_data = random_model.generate( number_of_series=1, series_length=series_length, model_parameters=random_model.random_model_parameters()) input_fn = input_pipeline.WholeDatasetInputFn( input_pipeline.NumpyReader(model_data)) features, _ = input_fn() model_outputs = random_model.get_batch_loss( features=features, mode=None, state=math_utils.replicate_state( start_state=random_model.get_start_state(), batch_size=array_ops.shape( features[feature_keys.TrainEvalFeatures.TIMES])[0])) variables.global_variables_initializer().run() compare_outputs_evaled_fn = model_generator( random_model, model_data) coordinator = coordinator_lib.Coordinator() queue_runner_impl.start_queue_runners(session, coord=coordinator) compare_outputs_evaled = compare_outputs_evaled_fn(session) model_outputs_evaled = session.run( (model_outputs.end_state, model_outputs.predictions)) coordinator.request_stop() coordinator.join() model_posteriors, model_predictions = model_outputs_evaled (_, compare_posteriors, compare_predictions) = compare_outputs_evaled (model_posterior_mean, model_posterior_var, model_from_time) = model_posteriors (compare_posterior_mean, compare_posterior_var, compare_from_time) = compare_posteriors self.assertAllClose(model_posterior_mean, compare_posterior_mean[0]) self.assertAllClose(model_posterior_var, compare_posterior_var[0]) self.assertAllClose(model_from_time, compare_from_time) self.assertEqual(sorted(model_predictions.keys()), sorted(compare_predictions.keys())) for prediction_name in model_predictions: if prediction_name == "loss": # Chunking means that losses will be different; skip testing them. continue # Compare the last chunk to their corresponding un-chunked model # predictions last_prediction_chunk = compare_predictions[prediction_name][-1] comparison_values = last_prediction_chunk.shape[0] model_prediction = ( model_predictions[prediction_name][0, -comparison_values:]) self.assertAllClose(model_prediction, last_prediction_chunk) def _model_equivalent_to_chained_model_test_template(self, chunk_size): def chained_model_outputs(original_model, data): input_fn = test_utils.AllWindowInputFn( input_pipeline.NumpyReader(data), window_size=chunk_size) state_manager = state_management.ChainingStateManager( state_saving_interval=1) features, _ = input_fn() state_manager.initialize_graph(original_model) model_outputs = state_manager.define_loss( model=original_model, features=features, mode=estimator_lib.ModeKeys.TRAIN) def _eval_outputs(session): for _ in range(50): # Warm up saved state model_outputs.loss.eval() (posterior_mean, posterior_var, priors_from_time) = model_outputs.end_state posteriors = ((posterior_mean,), (posterior_var,), priors_from_time) outputs = (model_outputs.loss, posteriors, model_outputs.predictions) chunked_outputs_evaled = session.run(outputs) return chunked_outputs_evaled return _eval_outputs self._equivalent_to_single_model_test_template(chained_model_outputs) def test_model_equivalent_to_chained_model_chunk_size_one(self): numpy.random.seed(2) random_seed.set_random_seed(3) self._model_equivalent_to_chained_model_test_template(1) def test_model_equivalent_to_chained_model_chunk_size_five(self): numpy.random.seed(4) random_seed.set_random_seed(5) self._model_equivalent_to_chained_model_test_template(5) class PredictionTests(test.TestCase): def _check_predictions( self, predicted_mean, predicted_covariance, window_size): self.assertAllEqual(predicted_covariance.shape, [1, # batch window_size, 1, # num features 1]) # num features self.assertAllEqual(predicted_mean.shape, [1, # batch window_size, 1]) # num features for position in range(window_size - 2): self.assertGreater(predicted_covariance[0, position + 2, 0, 0], predicted_covariance[0, position, 0, 0]) def test_predictions_direct(self): dtype = dtypes.float64 with variable_scope.variable_scope(dtype.name): random_model = RandomStateSpaceModel( state_dimension=5, state_noise_dimension=4, configuration=state_space_model.StateSpaceModelConfiguration( dtype=dtype, num_features=1)) random_model.initialize_graph() prediction_dict = random_model.predict(features={ feature_keys.PredictionFeatures.TIMES: [[1, 3, 5, 6]], feature_keys.PredictionFeatures.STATE_TUPLE: math_utils.replicate_state( start_state=random_model.get_start_state(), batch_size=1) }) with self.cached_session(): variables.global_variables_initializer().run() predicted_mean = prediction_dict["mean"].eval() predicted_covariance = prediction_dict["covariance"].eval() self._check_predictions(predicted_mean, predicted_covariance, window_size=4) def test_predictions_after_loss(self): dtype = dtypes.float32 with variable_scope.variable_scope(dtype.name): random_model = RandomStateSpaceModel( state_dimension=5, state_noise_dimension=4, configuration=state_space_model.StateSpaceModelConfiguration( dtype=dtype, num_features=1)) features = { feature_keys.TrainEvalFeatures.TIMES: [[1, 2, 3, 4]], feature_keys.TrainEvalFeatures.VALUES: array_ops.ones([1, 4, 1], dtype=dtype) } passthrough = state_management.PassthroughStateManager() random_model.initialize_graph() passthrough.initialize_graph(random_model) model_outputs = passthrough.define_loss( model=random_model, features=features, mode=estimator_lib.ModeKeys.EVAL) predictions = random_model.predict({ feature_keys.PredictionFeatures.TIMES: [[5, 7, 8]], feature_keys.PredictionFeatures.STATE_TUPLE: model_outputs.end_state }) with self.cached_session(): variables.global_variables_initializer().run() predicted_mean = predictions["mean"].eval() predicted_covariance = predictions["covariance"].eval() self._check_predictions(predicted_mean, predicted_covariance, window_size=3) class ExogenousTests(test.TestCase): def test_noise_increasing(self): for dtype in [dtypes.float32, dtypes.float64]: with variable_scope.variable_scope(dtype.name): random_model = RandomStateSpaceModel( state_dimension=5, state_noise_dimension=4, configuration=state_space_model.StateSpaceModelConfiguration( dtype=dtype, num_features=1)) original_covariance = array_ops.diag(array_ops.ones(shape=[5])) _, new_covariance, _ = random_model._exogenous_noise_increasing( current_times=[[1]], exogenous_values=[[5.]], state=[ array_ops.ones(shape=[1, 5]), original_covariance[None], [0] ]) with self.cached_session() as session: variables.global_variables_initializer().run() evaled_new_covariance, evaled_original_covariance = session.run( [new_covariance[0], original_covariance]) new_variances = numpy.diag(evaled_new_covariance) original_variances = numpy.diag(evaled_original_covariance) for i in range(5): self.assertGreater(new_variances[i], original_variances[i]) def test_noise_decreasing(self): for dtype in [dtypes.float32, dtypes.float64]: with variable_scope.variable_scope(dtype.name): random_model = RandomStateSpaceModel( state_dimension=5, state_noise_dimension=4, configuration=state_space_model.StateSpaceModelConfiguration( dtype=dtype, num_features=1)) random_model.initialize_graph() original_covariance = array_ops.diag( array_ops.ones(shape=[5], dtype=dtype)) _, new_covariance, _ = random_model._exogenous_noise_decreasing( current_times=[[1]], exogenous_values=constant_op.constant([[-2.]], dtype=dtype), state=[ -array_ops.ones(shape=[1, 5], dtype=dtype), original_covariance[None], [0] ]) with self.cached_session() as session: variables.global_variables_initializer().run() evaled_new_covariance, evaled_original_covariance = session.run( [new_covariance[0], original_covariance]) new_variances = numpy.diag(evaled_new_covariance) original_variances = numpy.diag(evaled_original_covariance) for i in range(5): self.assertLess(new_variances[i], original_variances[i]) class StubStateSpaceModel(state_space_model.StateSpaceModel): def __init__(self, transition, state_noise_dimension, configuration=state_space_model.StateSpaceModelConfiguration()): self.transition = transition self.noise_transform = numpy.random.normal( size=(transition.shape[0], state_noise_dimension)).astype(numpy.float32) # Test feature + batch broadcasting self.observation_model = numpy.random.normal( size=(transition.shape[0])).astype(numpy.float32) super(StubStateSpaceModel, self).__init__( configuration=configuration) def get_state_transition(self): return self.transition def get_noise_transform(self): return self.noise_transform def get_observation_model(self, times): return self.observation_model GeneratedModel = collections.namedtuple( "GeneratedModel", ["model", "data", "true_parameters"]) class PosteriorTests(test.TestCase): def _get_cycle_transition(self, period): cycle_transition = numpy.zeros([period - 1, period - 1], dtype=numpy.float32) cycle_transition[0, :] = -1 cycle_transition[1:, :-1] = numpy.identity(period - 2) return cycle_transition _adder_transition = numpy.array([[1, 1], [0, 1]], dtype=numpy.float32) def _get_single_model(self): numpy.random.seed(8) stub_model = StubStateSpaceModel( transition=self._get_cycle_transition(5), state_noise_dimension=0) series_length = 1000 stub_model.initialize_graph() true_params = stub_model.random_model_parameters() data = stub_model.generate( number_of_series=1, series_length=series_length, model_parameters=true_params) return GeneratedModel( model=stub_model, data=data, true_parameters=true_params) def test_exact_posterior_recovery_no_transition_noise(self): with self.cached_session() as session: stub_model, data, true_params = self._get_single_model() input_fn = input_pipeline.WholeDatasetInputFn( input_pipeline.NumpyReader(data)) features, _ = input_fn() model_outputs = stub_model.get_batch_loss( features=features, mode=None, state=math_utils.replicate_state( start_state=stub_model.get_start_state(), batch_size=array_ops.shape( features[feature_keys.TrainEvalFeatures.TIMES])[0])) variables.global_variables_initializer().run() coordinator = coordinator_lib.Coordinator() queue_runner_impl.start_queue_runners(session, coord=coordinator) posterior_mean, posterior_var, posterior_times = session.run( # Feed the true model parameters so that this test doesn't depend on # the generated parameters being close to the variable initializations # (an alternative would be training steps to fit the noise values, # which would be slow). model_outputs.end_state, feed_dict=true_params) coordinator.request_stop() coordinator.join() self.assertAllClose(numpy.zeros([1, 4, 4]), posterior_var, atol=1e-2) self.assertAllClose( numpy.dot( numpy.linalg.matrix_power( stub_model.transition, data[feature_keys.TrainEvalFeatures.TIMES].shape[1]), true_params[stub_model.prior_state_mean]), posterior_mean[0], rtol=1e-1) self.assertAllClose( math_utils.batch_end_time( features[feature_keys.TrainEvalFeatures.TIMES]).eval(), posterior_times) def test_chained_exact_posterior_recovery_no_transition_noise(self): with self.cached_session() as session: stub_model, data, true_params = self._get_single_model() chunk_size = 10 input_fn = test_utils.AllWindowInputFn( input_pipeline.NumpyReader(data), window_size=chunk_size) features, _ = input_fn() state_manager = state_management.ChainingStateManager( state_saving_interval=1) state_manager.initialize_graph(stub_model) model_outputs = state_manager.define_loss( model=stub_model, features=features, mode=estimator_lib.ModeKeys.TRAIN) variables.global_variables_initializer().run() coordinator = coordinator_lib.Coordinator() queue_runner_impl.start_queue_runners(session, coord=coordinator) for _ in range( data[feature_keys.TrainEvalFeatures.TIMES].shape[1] // chunk_size): model_outputs.loss.eval() posterior_mean, posterior_var, posterior_times = session.run( model_outputs.end_state, feed_dict=true_params) coordinator.request_stop() coordinator.join() self.assertAllClose(numpy.zeros([1, 4, 4]), posterior_var, atol=1e-2) self.assertAllClose( numpy.dot( numpy.linalg.matrix_power( stub_model.transition, data[feature_keys.TrainEvalFeatures.TIMES].shape[1]), true_params[stub_model.prior_state_mean]), posterior_mean[0], rtol=1e-1) self.assertAllClose(data[feature_keys.TrainEvalFeatures.TIMES][:, -1], posterior_times) class TimeDependentStateSpaceModel(state_space_model.StateSpaceModel): """A mostly trivial model which predicts values = times + 1.""" def __init__(self, static_unrolling_window_size_threshold=None): super(TimeDependentStateSpaceModel, self).__init__( configuration=state_space_model.StateSpaceModelConfiguration( use_observation_noise=False, transition_covariance_initial_log_scale_bias=5., static_unrolling_window_size_threshold= static_unrolling_window_size_threshold)) def get_state_transition(self): return array_ops.ones(shape=[1, 1]) def get_noise_transform(self): return array_ops.ones(shape=[1, 1]) def get_observation_model(self, times): return array_ops.reshape( tensor=math_ops.cast(times + 1, dtypes.float32), shape=[-1, 1, 1]) def make_priors(self): return (ops.convert_to_tensor([1.]), ops.convert_to_tensor([[0.]])) class UnknownShapeModel(TimeDependentStateSpaceModel): def get_observation_model(self, times): parent_model = super(UnknownShapeModel, self).get_observation_model(times) return array_ops.placeholder_with_default( input=parent_model, shape=tensor_shape.unknown_shape()) class TimeDependentTests(test.TestCase): def _time_dependency_test_template(self, model_type): """Test that a time-dependent observation model influences predictions.""" model = model_type() estimator = estimators.StateSpaceRegressor( model=model, optimizer=gradient_descent.GradientDescentOptimizer(0.1)) values = numpy.reshape([1., 2., 3., 4.], newshape=[1, 4, 1]) input_fn = input_pipeline.WholeDatasetInputFn( input_pipeline.NumpyReader({ feature_keys.TrainEvalFeatures.TIMES: [[0, 1, 2, 3]], feature_keys.TrainEvalFeatures.VALUES: values })) estimator.train(input_fn=input_fn, max_steps=1) predicted_values = estimator.evaluate(input_fn=input_fn, steps=1)["mean"] # Throw out the first value so we don't test the prior self.assertAllEqual(values[1:], predicted_values[1:]) def test_undefined_shape_time_dependency(self): self._time_dependency_test_template(UnknownShapeModel) def test_loop_unrolling(self): """Tests running/restoring from a checkpoint with static unrolling.""" model = TimeDependentStateSpaceModel( # Unroll during training, but not evaluation static_unrolling_window_size_threshold=2) estimator = estimators.StateSpaceRegressor(model=model) times = numpy.arange(100) values = numpy.arange(100) dataset = { feature_keys.TrainEvalFeatures.TIMES: times, feature_keys.TrainEvalFeatures.VALUES: values } train_input_fn = input_pipeline.RandomWindowInputFn( input_pipeline.NumpyReader(dataset), batch_size=16, window_size=2) eval_input_fn = input_pipeline.WholeDatasetInputFn( input_pipeline.NumpyReader(dataset)) estimator.train(input_fn=train_input_fn, max_steps=1) estimator.evaluate(input_fn=eval_input_fn, steps=1) class LevelOnlyModel(state_space_model.StateSpaceModel): def get_state_transition(self): return linalg_ops.eye(1, dtype=self.dtype) def get_noise_transform(self): return linalg_ops.eye(1, dtype=self.dtype) def get_observation_model(self, times): return [1] class MultivariateLevelModel( state_space_model.StateSpaceCorrelatedFeaturesEnsemble): def __init__(self, configuration): univariate_component_configuration = configuration._replace( num_features=1) components = [] for feature in range(configuration.num_features): with variable_scope.variable_scope("feature{}".format(feature)): components.append( LevelOnlyModel(configuration=univariate_component_configuration)) super(MultivariateLevelModel, self).__init__( ensemble_members=components, configuration=configuration) class MultivariateTests(test.TestCase): def test_multivariate(self): dtype = dtypes.float32 num_features = 3 covariance = numpy.eye(num_features) # A single off-diagonal has a non-zero value in the true transition # noise covariance. covariance[-1, 0] = 1. covariance[0, -1] = 1. dataset_size = 100 values = numpy.cumsum( numpy.random.multivariate_normal( mean=numpy.zeros(num_features), cov=covariance, size=dataset_size), axis=0) times = numpy.arange(dataset_size) model = MultivariateLevelModel( configuration=state_space_model.StateSpaceModelConfiguration( num_features=num_features, dtype=dtype, use_observation_noise=False, transition_covariance_initial_log_scale_bias=5.)) estimator = estimators.StateSpaceRegressor( model=model, optimizer=gradient_descent.GradientDescentOptimizer(0.1)) data = { feature_keys.TrainEvalFeatures.TIMES: times, feature_keys.TrainEvalFeatures.VALUES: values } train_input_fn = input_pipeline.RandomWindowInputFn( input_pipeline.NumpyReader(data), batch_size=16, window_size=16) estimator.train(input_fn=train_input_fn, steps=1) for component in model._ensemble_members: # Check that input statistics propagated to component models self.assertTrue(component._input_statistics) def test_ensemble_observation_noise(self): model = MultivariateLevelModel( configuration=state_space_model.StateSpaceModelConfiguration()) model.initialize_graph() outputs = model.define_loss( features={ feature_keys.TrainEvalFeatures.TIMES: constant_op.constant([[1, 2]]), feature_keys.TrainEvalFeatures.VALUES: constant_op.constant([[[1.], [2.]]]) }, mode=estimator_lib.ModeKeys.TRAIN) initializer = variables.global_variables_initializer() with self.cached_session() as sess: sess.run([initializer]) outputs.loss.eval() if __name__ == "__main__": test.main()
42.002646
96
0.692196
a05b8c2457a0177569eaa6eb7ee34f15a128436c
1,017
py
Python
view/workspace.py
LianGee/zed
0838eec03733a26705126d96dfb59af6bdf19a9e
[ "MIT" ]
null
null
null
view/workspace.py
LianGee/zed
0838eec03733a26705126d96dfb59af6bdf19a9e
[ "MIT" ]
null
null
null
view/workspace.py
LianGee/zed
0838eec03733a26705126d96dfb59af6bdf19a9e
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # @File : workspace.py # @Author: zaoshu # @Date : 2020-03-04 # @Desc : from flask import Blueprint, request, g from common.loged import log_this from common.login import login_required from common.response import Response from service.workspace_service import WorkspaceService workspace_bp = Blueprint('workspace', __name__) @workspace_bp.route('/save', methods=['post']) @login_required @log_this def save(): id = request.json.get('id') name = request.json.get('name') user_name = g.user.name return Response.success(WorkspaceService.save(user_name, id, name)) @workspace_bp.route('/list', methods=['get']) @login_required @log_this def get_workspace_list(): return Response.success(WorkspaceService.list(g.user.name)) @workspace_bp.route('/delete', methods=['delete']) @login_required @log_this def delete(): id = request.args.get('id') user_name = g.user.name return Response.success(WorkspaceService.delete(user_name, id))
24.804878
71
0.72763
52f6f9985bd28239334335b092ab3cfc5dceee78
1,058
py
Python
setup.py
mechaphish/meister
d115688f1a994984748a7d0dee31162ce2b3627f
[ "BSD-2-Clause" ]
9
2016-08-20T23:39:45.000Z
2020-11-06T23:10:04.000Z
setup.py
mechaphish/meister
d115688f1a994984748a7d0dee31162ce2b3627f
[ "BSD-2-Clause" ]
1
2016-11-14T07:16:27.000Z
2017-10-24T01:36:46.000Z
setup.py
mechaphish/meister
d115688f1a994984748a7d0dee31162ce2b3627f
[ "BSD-2-Clause" ]
8
2016-08-21T13:13:51.000Z
2020-11-06T23:10:15.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- """Distutil setup scripts for meister and its requirements.""" # pylint: disable=import-error,no-name-in-module import os import os.path import shutil from distutils.core import setup REQUIREMENTS, DEPENDENCIES = [], [] with open('requirements.txt', 'r') as req_file: for r in req_file.readlines(): r_ = r.strip() if r_.startswith('git+'): DEPENDENCIES.append(r_) # We discard the version number of our requirements REQUIREMENTS.append(r_.rsplit("egg=", 1)[1].rsplit("-", 1)[0]) else: REQUIREMENTS.append(r_) setup(name='meister', version='1.0.1', packages=['meister', 'meister.creators', 'meister.schedulers'], install_requires=REQUIREMENTS, dependency_links=DEPENDENCIES, entry_points={ 'console_scripts': [ "meister=meister.__main__:main" ], }, description='Master component of the Shellphish CRS.', url='https://github.com/mechaphish/meister')
28.594595
74
0.625709
d994e9a11094147ac6efb378b9b0dc5725c9344b
2,042
py
Python
grr/server/grr_response_server/databases/mysql_artifacts.py
oueldz4/grr
8c60d9198cc0875a8ea80b90237eb0a8272082ff
[ "Apache-2.0" ]
null
null
null
grr/server/grr_response_server/databases/mysql_artifacts.py
oueldz4/grr
8c60d9198cc0875a8ea80b90237eb0a8272082ff
[ "Apache-2.0" ]
null
null
null
grr/server/grr_response_server/databases/mysql_artifacts.py
oueldz4/grr
8c60d9198cc0875a8ea80b90237eb0a8272082ff
[ "Apache-2.0" ]
1
2020-07-09T01:08:48.000Z
2020-07-09T01:08:48.000Z
#!/usr/bin/env python """The MySQL database methods for handling artifacts.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals import MySQLdb from MySQLdb.constants import ER as mysql_error_constants from typing import Text from grr_response_core.lib.rdfvalues import artifacts as rdf_artifacts from grr_response_server import db from grr_response_server.databases import mysql_utils def _RowToArtifact(row): return rdf_artifacts.Artifact.FromSerializedString(row[0]) class MySQLDBArtifactsMixin(object): """An MySQL database mixin with artifact-related methods.""" @mysql_utils.WithTransaction() def WriteArtifact(self, artifact, cursor=None): """Writes new artifact to the database.""" name = Text(artifact.name) try: cursor.execute("INSERT INTO artifacts (name, definition) VALUES (%s, %s)", [name, artifact.SerializeToString()]) except MySQLdb.IntegrityError as error: if error.args[0] == mysql_error_constants.DUP_ENTRY: raise db.DuplicatedArtifactError(name, cause=error) else: raise @mysql_utils.WithTransaction() def ReadArtifact(self, name, cursor=None): """Looks up an artifact with given name from the database.""" cursor.execute("SELECT definition FROM artifacts WHERE name = %s", [name]) row = cursor.fetchone() if row is None: raise db.UnknownArtifactError(name) else: return _RowToArtifact(row) @mysql_utils.WithTransaction() def ReadAllArtifacts(self, cursor=None): """Lists all artifacts that are stored in the database.""" cursor.execute("SELECT definition FROM artifacts") return [_RowToArtifact(row) for row in cursor.fetchall()] @mysql_utils.WithTransaction() def DeleteArtifact(self, name, cursor=None): """Deletes an artifact with given name from the database.""" cursor.execute("DELETE FROM artifacts WHERE name = %s", [name]) if cursor.rowcount == 0: raise db.UnknownArtifactError(name)
32.935484
80
0.733105
61d270fe1a630d504b6900531a9e5c922e1e56f3
301
py
Python
7_funktionen/1_drawBotFunktionen.py
Coding-for-the-Arts/drawbot-samples
e37994f3497aca252312431100b53548b4573f15
[ "CC0-1.0" ]
null
null
null
7_funktionen/1_drawBotFunktionen.py
Coding-for-the-Arts/drawbot-samples
e37994f3497aca252312431100b53548b4573f15
[ "CC0-1.0" ]
null
null
null
7_funktionen/1_drawBotFunktionen.py
Coding-for-the-Arts/drawbot-samples
e37994f3497aca252312431100b53548b4573f15
[ "CC0-1.0" ]
null
null
null
""" DrawBot-Funktionen """ newPage("1000, 1000") oval(200, 200, 600, 600) saveImage("~/Desktop/myImage.pdf") """ Dies sind Beispiele für Funktionen, die nur in DrawBot existieren, aber nicht in Python. Informationen zu ihnen findest du in der DrawBot-Dokumentation. https://www.drawbot.com/ """
17.705882
64
0.724252
edc2bb9df188e52f787cdb79f68c203be8241f6a
45,345
py
Python
patsy/build.py
neurodebian/patsy
de8d1633f8db42a9c68507a7da0a32d62866a283
[ "PSF-2.0" ]
null
null
null
patsy/build.py
neurodebian/patsy
de8d1633f8db42a9c68507a7da0a32d62866a283
[ "PSF-2.0" ]
null
null
null
patsy/build.py
neurodebian/patsy
de8d1633f8db42a9c68507a7da0a32d62866a283
[ "PSF-2.0" ]
null
null
null
# This file is part of Patsy # Copyright (C) 2011-2013 Nathaniel Smith <njs@pobox.com> # See file LICENSE.txt for license information. # This file defines the core design matrix building functions. # These are made available in the patsy.* namespace __all__ = ["design_matrix_builders", "DesignMatrixBuilder", "build_design_matrices"] import itertools import six import numpy as np from patsy import PatsyError from patsy.categorical import (guess_categorical, CategoricalSniffer, categorical_to_int) from patsy.util import (atleast_2d_column_default, have_pandas, have_pandas_categorical, asarray_or_pandas) from patsy.design_info import DesignMatrix, DesignInfo from patsy.redundancy import pick_contrasts_for_term from patsy.desc import ModelDesc from patsy.eval import EvalEnvironment from patsy.contrasts import code_contrast_matrix, Treatment from patsy.compat import OrderedDict from patsy.missing import NAAction if have_pandas: import pandas class _MockFactor(object): def __init__(self, name="MOCKMOCK"): self._name = name def eval(self, state, env): return env["mock"] def name(self): return self._name def _max_allowed_dim(dim, arr, factor): if arr.ndim > dim: msg = ("factor '%s' evaluates to an %s-dimensional array; I only " "handle arrays with dimension <= %s" % (factor.name(), arr.ndim, dim)) raise PatsyError(msg, factor) def test__max_allowed_dim(): from nose.tools import assert_raises f = _MockFactor() _max_allowed_dim(1, np.array(1), f) _max_allowed_dim(1, np.array([1]), f) assert_raises(PatsyError, _max_allowed_dim, 1, np.array([[1]]), f) assert_raises(PatsyError, _max_allowed_dim, 1, np.array([[[1]]]), f) _max_allowed_dim(2, np.array(1), f) _max_allowed_dim(2, np.array([1]), f) _max_allowed_dim(2, np.array([[1]]), f) assert_raises(PatsyError, _max_allowed_dim, 2, np.array([[[1]]]), f) class _NumFactorEvaluator(object): def __init__(self, factor, state, expected_columns): # This one instance variable is part of our public API: self.factor = factor self._state = state self._expected_columns = expected_columns # Returns either a 2d ndarray, or a DataFrame, plus is_NA mask def eval(self, data, NA_action): result = self.factor.eval(self._state, data) result = atleast_2d_column_default(result, preserve_pandas=True) _max_allowed_dim(2, result, self.factor) if result.shape[1] != self._expected_columns: raise PatsyError("when evaluating factor %s, I got %s columns " "instead of the %s I was expecting" % (self.factor.name(), self._expected_columns, result.shape[1]), self.factor) if not np.issubdtype(np.asarray(result).dtype, np.number): raise PatsyError("when evaluating numeric factor %s, " "I got non-numeric data of type '%s'" % (self.factor.name(), result.dtype), self.factor) return result, NA_action.is_numerical_NA(result) def test__NumFactorEvaluator(): from nose.tools import assert_raises naa = NAAction() f = _MockFactor() nf1 = _NumFactorEvaluator(f, {}, 1) assert nf1.factor is f eval123, is_NA = nf1.eval({"mock": [1, 2, 3]}, naa) assert eval123.shape == (3, 1) assert np.all(eval123 == [[1], [2], [3]]) assert is_NA.shape == (3,) assert np.all(~is_NA) assert_raises(PatsyError, nf1.eval, {"mock": [[[1]]]}, naa) assert_raises(PatsyError, nf1.eval, {"mock": [[1, 2]]}, naa) assert_raises(PatsyError, nf1.eval, {"mock": ["a", "b"]}, naa) assert_raises(PatsyError, nf1.eval, {"mock": [True, False]}, naa) nf2 = _NumFactorEvaluator(_MockFactor(), {}, 2) eval123321, is_NA = nf2.eval({"mock": [[1, 3], [2, 2], [3, 1]]}, naa) assert eval123321.shape == (3, 2) assert np.all(eval123321 == [[1, 3], [2, 2], [3, 1]]) assert is_NA.shape == (3,) assert np.all(~is_NA) assert_raises(PatsyError, nf2.eval, {"mock": [1, 2, 3]}, naa) assert_raises(PatsyError, nf2.eval, {"mock": [[1, 2, 3]]}, naa) ev_nan, is_NA = nf1.eval({"mock": [1, 2, np.nan]}, NAAction(NA_types=["NaN"])) assert np.array_equal(is_NA, [False, False, True]) ev_nan, is_NA = nf1.eval({"mock": [1, 2, np.nan]}, NAAction(NA_types=[])) assert np.array_equal(is_NA, [False, False, False]) if have_pandas: eval_ser, _ = nf1.eval({"mock": pandas.Series([1, 2, 3], index=[10, 20, 30])}, naa) assert isinstance(eval_ser, pandas.DataFrame) assert np.array_equal(eval_ser, [[1], [2], [3]]) assert np.array_equal(eval_ser.index, [10, 20, 30]) eval_df1, _ = nf1.eval({"mock": pandas.DataFrame([[2], [1], [3]], index=[20, 10, 30])}, naa) assert isinstance(eval_df1, pandas.DataFrame) assert np.array_equal(eval_df1, [[2], [1], [3]]) assert np.array_equal(eval_df1.index, [20, 10, 30]) eval_df2, _ = nf2.eval({"mock": pandas.DataFrame([[2, 3], [1, 4], [3, -1]], index=[20, 30, 10])}, naa) assert isinstance(eval_df2, pandas.DataFrame) assert np.array_equal(eval_df2, [[2, 3], [1, 4], [3, -1]]) assert np.array_equal(eval_df2.index, [20, 30, 10]) assert_raises(PatsyError, nf2.eval, {"mock": pandas.Series([1, 2, 3], index=[10, 20, 30])}, naa) assert_raises(PatsyError, nf1.eval, {"mock": pandas.DataFrame([[2, 3], [1, 4], [3, -1]], index=[20, 30, 10])}, naa) class _CatFactorEvaluator(object): def __init__(self, factor, state, levels): # This one instance variable is part of our public API: self.factor = factor self._state = state self._levels = tuple(levels) # returns either a 1d ndarray or a pandas.Series, plus is_NA mask def eval(self, data, NA_action): result = self.factor.eval(self._state, data) result = categorical_to_int(result, self._levels, NA_action, origin=self.factor) assert result.ndim == 1 return result, np.asarray(result == -1) def test__CatFactorEvaluator(): from nose.tools import assert_raises from patsy.categorical import C naa = NAAction() f = _MockFactor() cf1 = _CatFactorEvaluator(f, {}, ["a", "b"]) assert cf1.factor is f cat1, _ = cf1.eval({"mock": ["b", "a", "b"]}, naa) assert cat1.shape == (3,) assert np.all(cat1 == [1, 0, 1]) assert_raises(PatsyError, cf1.eval, {"mock": ["c"]}, naa) assert_raises(PatsyError, cf1.eval, {"mock": C(["a", "c"])}, naa) assert_raises(PatsyError, cf1.eval, {"mock": C(["a", "b"], levels=["b", "a"])}, naa) assert_raises(PatsyError, cf1.eval, {"mock": [1, 0, 1]}, naa) bad_cat = np.asarray(["b", "a", "a", "b"]) bad_cat.resize((2, 2)) assert_raises(PatsyError, cf1.eval, {"mock": bad_cat}, naa) cat1_NA, is_NA = cf1.eval({"mock": ["a", None, "b"]}, NAAction(NA_types=["None"])) assert np.array_equal(is_NA, [False, True, False]) assert np.array_equal(cat1_NA, [0, -1, 1]) assert_raises(PatsyError, cf1.eval, {"mock": ["a", None, "b"]}, NAAction(NA_types=[])) cf2 = _CatFactorEvaluator(_MockFactor(), {}, [False, True]) cat2, _ = cf2.eval({"mock": [True, False, False, True]}, naa) assert cat2.shape == (4,) assert np.all(cat2 == [1, 0, 0, 1]) if have_pandas: s = pandas.Series(["b", "a"], index=[10, 20]) cat_s, _ = cf1.eval({"mock": s}, naa) assert isinstance(cat_s, pandas.Series) assert np.array_equal(cat_s, [1, 0]) assert np.array_equal(cat_s.index, [10, 20]) sbool = pandas.Series([True, False], index=[11, 21]) cat_sbool, _ = cf2.eval({"mock": sbool}, naa) assert isinstance(cat_sbool, pandas.Series) assert np.array_equal(cat_sbool, [1, 0]) assert np.array_equal(cat_sbool.index, [11, 21]) def _column_combinations(columns_per_factor): # For consistency with R, the left-most item iterates fastest: iterators = [range(n) for n in reversed(columns_per_factor)] for reversed_combo in itertools.product(*iterators): yield reversed_combo[::-1] def test__column_combinations(): assert list(_column_combinations([2, 3])) == [(0, 0), (1, 0), (0, 1), (1, 1), (0, 2), (1, 2)] assert list(_column_combinations([3])) == [(0,), (1,), (2,)] # This class is responsible for producing some columns in a final design # matrix output: class _ColumnBuilder(object): def __init__(self, factors, num_columns, cat_contrasts): self._factors = factors self._num_columns = num_columns self._cat_contrasts = cat_contrasts self._columns_per_factor = [] for factor in self._factors: if factor in self._cat_contrasts: columns = self._cat_contrasts[factor].matrix.shape[1] else: columns = num_columns[factor] self._columns_per_factor.append(columns) self.total_columns = np.prod(self._columns_per_factor, dtype=int) def column_names(self): if not self._factors: return ["Intercept"] column_names = [] for i, column_idxs in enumerate(_column_combinations(self._columns_per_factor)): name_pieces = [] for factor, column_idx in zip(self._factors, column_idxs): if factor in self._num_columns: if self._num_columns[factor] > 1: name_pieces.append("%s[%s]" % (factor.name(), column_idx)) else: assert column_idx == 0 name_pieces.append(factor.name()) else: contrast = self._cat_contrasts[factor] suffix = contrast.column_suffixes[column_idx] name_pieces.append("%s%s" % (factor.name(), suffix)) column_names.append(":".join(name_pieces)) assert len(column_names) == self.total_columns return column_names def build(self, factor_values, out): assert self.total_columns == out.shape[1] out[:] = 1 for i, column_idxs in enumerate(_column_combinations(self._columns_per_factor)): for factor, column_idx in zip(self._factors, column_idxs): if factor in self._cat_contrasts: contrast = self._cat_contrasts[factor] if np.any(factor_values[factor] < 0): raise PatsyError("can't build a design matrix " "containing missing values", factor) out[:, i] *= contrast.matrix[factor_values[factor], column_idx] else: assert (factor_values[factor].shape[1] == self._num_columns[factor]) out[:, i] *= factor_values[factor][:, column_idx] def test__ColumnBuilder(): from nose.tools import assert_raises from patsy.contrasts import ContrastMatrix from patsy.categorical import C f1 = _MockFactor("f1") f2 = _MockFactor("f2") f3 = _MockFactor("f3") contrast = ContrastMatrix(np.array([[0, 0.5], [3, 0]]), ["[c1]", "[c2]"]) cb = _ColumnBuilder([f1, f2, f3], {f1: 1, f3: 1}, {f2: contrast}) mat = np.empty((3, 2)) assert cb.column_names() == ["f1:f2[c1]:f3", "f1:f2[c2]:f3"] cb.build({f1: atleast_2d_column_default([1, 2, 3]), f2: np.asarray([0, 0, 1]), f3: atleast_2d_column_default([7.5, 2, -12])}, mat) assert np.allclose(mat, [[0, 0.5 * 1 * 7.5], [0, 0.5 * 2 * 2], [3 * 3 * -12, 0]]) # Check that missing categorical values blow up assert_raises(PatsyError, cb.build, {f1: atleast_2d_column_default([1, 2, 3]), f2: np.asarray([0, -1, 1]), f3: atleast_2d_column_default([7.5, 2, -12])}, mat) cb2 = _ColumnBuilder([f1, f2, f3], {f1: 2, f3: 1}, {f2: contrast}) mat2 = np.empty((3, 4)) cb2.build({f1: atleast_2d_column_default([[1, 2], [3, 4], [5, 6]]), f2: np.asarray([0, 0, 1]), f3: atleast_2d_column_default([7.5, 2, -12])}, mat2) assert cb2.column_names() == ["f1[0]:f2[c1]:f3", "f1[1]:f2[c1]:f3", "f1[0]:f2[c2]:f3", "f1[1]:f2[c2]:f3"] assert np.allclose(mat2, [[0, 0, 0.5 * 1 * 7.5, 0.5 * 2 * 7.5], [0, 0, 0.5 * 3 * 2, 0.5 * 4 * 2], [3 * 5 * -12, 3 * 6 * -12, 0, 0]]) # Check intercept building: cb_intercept = _ColumnBuilder([], {}, {}) assert cb_intercept.column_names() == ["Intercept"] mat3 = np.empty((3, 1)) cb_intercept.build({f1: [1, 2, 3], f2: [1, 2, 3], f3: [1, 2, 3]}, mat3) assert np.allclose(mat3, 1) def _factors_memorize(factors, data_iter_maker): # First, start off the memorization process by setting up each factor's # state and finding out how many passes it will need: factor_states = {} passes_needed = {} for factor in factors: state = {} which_pass = factor.memorize_passes_needed(state) factor_states[factor] = state passes_needed[factor] = which_pass # Now, cycle through the data until all the factors have finished # memorizing everything: memorize_needed = set() for factor, passes in six.iteritems(passes_needed): if passes > 0: memorize_needed.add(factor) which_pass = 0 while memorize_needed: for data in data_iter_maker(): for factor in memorize_needed: state = factor_states[factor] factor.memorize_chunk(state, which_pass, data) for factor in list(memorize_needed): factor.memorize_finish(factor_states[factor], which_pass) if which_pass == passes_needed[factor] - 1: memorize_needed.remove(factor) which_pass += 1 return factor_states def test__factors_memorize(): class MockFactor(object): def __init__(self, requested_passes, token): self._requested_passes = requested_passes self._token = token self._chunk_in_pass = 0 self._seen_passes = 0 def memorize_passes_needed(self, state): state["calls"] = [] state["token"] = self._token return self._requested_passes def memorize_chunk(self, state, which_pass, data): state["calls"].append(("memorize_chunk", which_pass)) assert data["chunk"] == self._chunk_in_pass self._chunk_in_pass += 1 def memorize_finish(self, state, which_pass): state["calls"].append(("memorize_finish", which_pass)) self._chunk_in_pass = 0 class Data(object): CHUNKS = 3 def __init__(self): self.calls = 0 self.data = [{"chunk": i} for i in range(self.CHUNKS)] def __call__(self): self.calls += 1 return iter(self.data) data = Data() f0 = MockFactor(0, "f0") f1 = MockFactor(1, "f1") f2a = MockFactor(2, "f2a") f2b = MockFactor(2, "f2b") factor_states = _factors_memorize(set([f0, f1, f2a, f2b]), data) assert data.calls == 2 mem_chunks0 = [("memorize_chunk", 0)] * data.CHUNKS mem_chunks1 = [("memorize_chunk", 1)] * data.CHUNKS expected = { f0: { "calls": [], "token": "f0", }, f1: { "calls": mem_chunks0 + [("memorize_finish", 0)], "token": "f1", }, f2a: { "calls": mem_chunks0 + [("memorize_finish", 0)] + mem_chunks1 + [("memorize_finish", 1)], "token": "f2a", }, f2b: { "calls": mem_chunks0 + [("memorize_finish", 0)] + mem_chunks1 + [("memorize_finish", 1)], "token": "f2b", }, } assert factor_states == expected def _examine_factor_types(factors, factor_states, data_iter_maker, NA_action): num_column_counts = {} cat_sniffers = {} examine_needed = set(factors) for data in data_iter_maker(): for factor in list(examine_needed): value = factor.eval(factor_states[factor], data) if factor in cat_sniffers or guess_categorical(value): if factor not in cat_sniffers: cat_sniffers[factor] = CategoricalSniffer(NA_action, factor.origin) done = cat_sniffers[factor].sniff(value) if done: examine_needed.remove(factor) else: # Numeric value = atleast_2d_column_default(value) _max_allowed_dim(2, value, factor) column_count = value.shape[1] num_column_counts[factor] = column_count examine_needed.remove(factor) if not examine_needed: break # Pull out the levels cat_levels_contrasts = {} for factor, sniffer in six.iteritems(cat_sniffers): cat_levels_contrasts[factor] = sniffer.levels_contrast() return (num_column_counts, cat_levels_contrasts) def test__examine_factor_types(): from patsy.categorical import C class MockFactor(object): def __init__(self): # You should check this using 'is', not '==' from patsy.origin import Origin self.origin = Origin("MOCK", 1, 2) def eval(self, state, data): return state[data] def name(self): return "MOCK MOCK" # This hacky class can only be iterated over once, but it keeps track of # how far it got. class DataIterMaker(object): def __init__(self): self.i = -1 def __call__(self): return self def __iter__(self): return self def next(self): self.i += 1 if self.i > 1: raise StopIteration return self.i __next__ = next num_1dim = MockFactor() num_1col = MockFactor() num_4col = MockFactor() categ_1col = MockFactor() bool_1col = MockFactor() string_1col = MockFactor() object_1col = MockFactor() object_levels = (object(), object(), object()) factor_states = { num_1dim: ([1, 2, 3], [4, 5, 6]), num_1col: ([[1], [2], [3]], [[4], [5], [6]]), num_4col: (np.zeros((3, 4)), np.ones((3, 4))), categ_1col: (C(["a", "b", "c"], levels=("a", "b", "c"), contrast="MOCK CONTRAST"), C(["c", "b", "a"], levels=("a", "b", "c"), contrast="MOCK CONTRAST")), bool_1col: ([True, True, False], [False, True, True]), # It has to read through all the data to see all the possible levels: string_1col: (["a", "a", "a"], ["c", "b", "a"]), object_1col: ([object_levels[0]] * 3, object_levels), } it = DataIterMaker() (num_column_counts, cat_levels_contrasts, ) = _examine_factor_types(factor_states.keys(), factor_states, it, NAAction()) assert it.i == 2 iterations = 0 assert num_column_counts == {num_1dim: 1, num_1col: 1, num_4col: 4} assert cat_levels_contrasts == { categ_1col: (("a", "b", "c"), "MOCK CONTRAST"), bool_1col: ((False, True), None), string_1col: (("a", "b", "c"), None), object_1col: (tuple(sorted(object_levels, key=id)), None), } # Check that it doesn't read through all the data if that's not necessary: it = DataIterMaker() no_read_necessary = [num_1dim, num_1col, num_4col, categ_1col, bool_1col] (num_column_counts, cat_levels_contrasts, ) = _examine_factor_types(no_read_necessary, factor_states, it, NAAction()) assert it.i == 0 assert num_column_counts == {num_1dim: 1, num_1col: 1, num_4col: 4} assert cat_levels_contrasts == { categ_1col: (("a", "b", "c"), "MOCK CONTRAST"), bool_1col: ((False, True), None), } # Illegal inputs: bool_3col = MockFactor() num_3dim = MockFactor() # no such thing as a multi-dimensional Categorical # categ_3dim = MockFactor() string_3col = MockFactor() object_3col = MockFactor() illegal_factor_states = { num_3dim: (np.zeros((3, 3, 3)), np.ones((3, 3, 3))), string_3col: ([["a", "b", "c"]], [["b", "c", "a"]]), object_3col: ([[[object()]]], [[[object()]]]), } from nose.tools import assert_raises for illegal_factor in illegal_factor_states: it = DataIterMaker() try: _examine_factor_types([illegal_factor], illegal_factor_states, it, NAAction()) except PatsyError as e: assert e.origin is illegal_factor.origin else: assert False def _make_term_column_builders(terms, num_column_counts, cat_levels_contrasts): # Sort each term into a bucket based on the set of numeric factors it # contains: term_buckets = OrderedDict() bucket_ordering = [] for term in terms: num_factors = [] for factor in term.factors: if factor in num_column_counts: num_factors.append(factor) bucket = frozenset(num_factors) if bucket not in term_buckets: bucket_ordering.append(bucket) term_buckets.setdefault(bucket, []).append(term) # Special rule: if there is a no-numerics bucket, then it always comes # first: if frozenset() in term_buckets: bucket_ordering.remove(frozenset()) bucket_ordering.insert(0, frozenset()) term_to_column_builders = {} new_term_order = [] # Then within each bucket, work out which sort of contrasts we want to use # for each term to avoid redundancy for bucket in bucket_ordering: bucket_terms = term_buckets[bucket] # Sort by degree of interaction bucket_terms.sort(key=lambda t: len(t.factors)) new_term_order += bucket_terms used_subterms = set() for term in bucket_terms: column_builders = [] factor_codings = pick_contrasts_for_term(term, num_column_counts, used_subterms) # Construct one _ColumnBuilder for each subterm for factor_coding in factor_codings: builder_factors = [] num_columns = {} cat_contrasts = {} # In order to preserve factor ordering information, the # coding_for_term just returns dicts, and we refer to # the original factors to figure out which are included in # each subterm, and in what order for factor in term.factors: # Numeric factors are included in every subterm if factor in num_column_counts: builder_factors.append(factor) num_columns[factor] = num_column_counts[factor] elif factor in factor_coding: builder_factors.append(factor) levels, contrast = cat_levels_contrasts[factor] # This is where the default coding is set to # Treatment: coded = code_contrast_matrix(factor_coding[factor], levels, contrast, default=Treatment) cat_contrasts[factor] = coded column_builder = _ColumnBuilder(builder_factors, num_columns, cat_contrasts) column_builders.append(column_builder) term_to_column_builders[term] = column_builders return new_term_order, term_to_column_builders def design_matrix_builders(termlists, data_iter_maker, NA_action="drop"): """Construct several :class:`DesignMatrixBuilders` from termlists. This is one of Patsy's fundamental functions. This function and :func:`build_design_matrices` together form the API to the core formula interpretation machinery. :arg termlists: A list of termlists, where each termlist is a list of :class:`Term` objects which together specify a design matrix. :arg data_iter_maker: A zero-argument callable which returns an iterator over dict-like data objects. This must be a callable rather than a simple iterator because sufficiently complex formulas may require multiple passes over the data (e.g. if there are nested stateful transforms). :arg NA_action: An :class:`NAAction` object or string, used to determine what values count as 'missing' for purposes of determining the levels of categorical factors. :returns: A list of :class:`DesignMatrixBuilder` objects, one for each termlist passed in. This function performs zero or more iterations over the data in order to sniff out any necessary information about factor types, set up stateful transforms, pick column names, etc. See :ref:`formulas` for details. .. versionadded:: 0.2.0 The ``NA_action`` argument. """ if isinstance(NA_action, str): NA_action = NAAction(NA_action) all_factors = set() for termlist in termlists: for term in termlist: all_factors.update(term.factors) factor_states = _factors_memorize(all_factors, data_iter_maker) # Now all the factors have working eval methods, so we can evaluate them # on some data to find out what type of data they return. (num_column_counts, cat_levels_contrasts) = _examine_factor_types(all_factors, factor_states, data_iter_maker, NA_action) # Now we need the factor evaluators, which encapsulate the knowledge of # how to turn any given factor into a chunk of data: factor_evaluators = {} for factor in all_factors: if factor in num_column_counts: evaluator = _NumFactorEvaluator(factor, factor_states[factor], num_column_counts[factor]) else: assert factor in cat_levels_contrasts levels = cat_levels_contrasts[factor][0] evaluator = _CatFactorEvaluator(factor, factor_states[factor], levels) factor_evaluators[factor] = evaluator # And now we can construct the DesignMatrixBuilder for each termlist: builders = [] for termlist in termlists: result = _make_term_column_builders(termlist, num_column_counts, cat_levels_contrasts) new_term_order, term_to_column_builders = result assert frozenset(new_term_order) == frozenset(termlist) term_evaluators = set() for term in termlist: for factor in term.factors: term_evaluators.add(factor_evaluators[factor]) builders.append(DesignMatrixBuilder(new_term_order, term_evaluators, term_to_column_builders)) return builders class DesignMatrixBuilder(object): """An opaque class representing Patsy's knowledge about how to build a specific design matrix. You get these objects from :func:`design_matrix_builders`, and pass them to :func:`build_design_matrices`. """ def __init__(self, terms, evaluators, term_to_column_builders): self._termlist = terms self._evaluators = evaluators self._term_to_column_builders = term_to_column_builders term_column_count = [] self._column_names = [] for term in self._termlist: column_builders = self._term_to_column_builders[term] this_count = 0 for column_builder in column_builders: this_names = column_builder.column_names() this_count += len(this_names) self._column_names += this_names term_column_count.append(this_count) term_column_starts = np.concatenate(([0], np.cumsum(term_column_count))) self._term_slices = [] for i, term in enumerate(self._termlist): span = slice(term_column_starts[i], term_column_starts[i + 1]) self._term_slices.append((term, span)) self.total_columns = np.sum(term_column_count, dtype=int) # Generate this on demand, to avoid a reference loop: @property def design_info(self): """A :class:`DesignInfo` object giving information about the design matrices that this DesignMatrixBuilder can be used to create.""" return DesignInfo(self._column_names, self._term_slices, builder=self) def subset(self, which_terms): """Create a new :class:`DesignMatrixBuilder` that includes only a subset of the terms that this object does. For example, if `builder` has terms `x`, `y`, and `z`, then:: builder2 = builder.subset(["x", "z"]) will return a new builder that will return design matrices with only the columns corresponding to the terms `x` and `z`. After we do this, then in general these two expressions will return the same thing (here we assume that `x`, `y`, and `z` each generate a single column of the output):: build_design_matrix([builder], data)[0][:, [0, 2]] build_design_matrix([builder2], data)[0] However, a critical difference is that in the second case, `data` need not contain any values for `y`. This is very useful when doing prediction using a subset of a model, in which situation R usually forces you to specify dummy values for `y`. If using a formula to specify the terms to include, remember that like any formula, the intercept term will be included by default, so use `0` or `-1` in your formula if you want to avoid this. :arg which_terms: The terms which should be kept in the new :class:`DesignMatrixBuilder`. If this is a string, then it is parsed as a formula, and then the names of the resulting terms are taken as the terms to keep. If it is a list, then it can contain a mixture of term names (as strings) and :class:`Term` objects. .. versionadded: 0.2.0 """ factor_to_evaluators = {} for evaluator in self._evaluators: factor_to_evaluators[evaluator.factor] = evaluator design_info = self.design_info term_name_to_term = dict(zip(design_info.term_names, design_info.terms)) if isinstance(which_terms, str): # We don't use this EvalEnvironment -- all we want to do is to # find matching terms, and we can't do that use == on Term # objects, because that calls == on factor objects, which in turn # compares EvalEnvironments. So all we do with the parsed formula # is pull out the term *names*, which the EvalEnvironment doesn't # effect. This is just a placeholder then to allow the ModelDesc # to be created: env = EvalEnvironment({}) desc = ModelDesc.from_formula(which_terms, env) if desc.lhs_termlist: raise PatsyError("right-hand-side-only formula required") which_terms = [term.name() for term in desc.rhs_termlist] terms = [] evaluators = set() term_to_column_builders = {} for term_or_name in which_terms: if isinstance(term_or_name, six.string_types): if term_or_name not in term_name_to_term: raise PatsyError("requested term %r not found in " "this DesignMatrixBuilder" % (term_or_name,)) term = term_name_to_term[term_or_name] else: term = term_or_name if term not in self._termlist: raise PatsyError("requested term '%s' not found in this " "DesignMatrixBuilder" % (term,)) for factor in term.factors: evaluators.add(factor_to_evaluators[factor]) terms.append(term) column_builder = self._term_to_column_builders[term] term_to_column_builders[term] = column_builder return DesignMatrixBuilder(terms, evaluators, term_to_column_builders) def _build(self, evaluator_to_values, dtype): factor_to_values = {} need_reshape = False num_rows = None for evaluator, value in six.iteritems(evaluator_to_values): if evaluator in self._evaluators: factor_to_values[evaluator.factor] = value if num_rows is not None: assert num_rows == value.shape[0] else: num_rows = value.shape[0] if num_rows is None: # We have no dependence on the data -- e.g. an empty termlist, or # only an intercept term. num_rows = 1 need_reshape = True m = DesignMatrix(np.empty((num_rows, self.total_columns), dtype=dtype), self.design_info) start_column = 0 for term in self._termlist: for column_builder in self._term_to_column_builders[term]: end_column = start_column + column_builder.total_columns m_slice = m[:, start_column:end_column] column_builder.build(factor_to_values, m_slice) start_column = end_column assert start_column == self.total_columns return need_reshape, m class _CheckMatch(object): def __init__(self, name, eq_fn): self._name = name self._eq_fn = eq_fn self.value = None self._value_desc = None self._value_origin = None def check(self, seen_value, desc, origin): if self.value is None: self.value = seen_value self._value_desc = desc self._value_origin = origin else: if not self._eq_fn(self.value, seen_value): msg = ("%s mismatch between %s and %s" % (self._name, self._value_desc, desc)) if isinstance(self.value, int): msg += " (%r versus %r)" % (self.value, seen_value) # XX FIXME: this is a case where having discontiguous Origins # would be useful... raise PatsyError(msg, origin) def build_design_matrices(builders, data, NA_action="drop", return_type="matrix", dtype=np.dtype(float)): """Construct several design matrices from :class:`DesignMatrixBuilder` objects. This is one of Patsy's fundamental functions. This function and :func:`design_matrix_builders` together form the API to the core formula interpretation machinery. :arg builders: A list of :class:`DesignMatrixBuilders` specifying the design matrices to be built. :arg data: A dict-like object which will be used to look up data. :arg NA_action: What to do with rows that contain missing values. You can ``"drop"`` them, ``"raise"`` an error, or for customization, pass an :class:`NAAction` object. See :class:`NAAction` for details on what values count as 'missing' (and how to alter this). :arg return_type: Either ``"matrix"`` or ``"dataframe"``. See below. :arg dtype: The dtype of the returned matrix. Useful if you want to use single-precision or extended-precision. This function returns either a list of :class:`DesignMatrix` objects (for ``return_type="matrix"``) or a list of :class:`pandas.DataFrame` objects (for ``return_type="dataframe"``). In both cases, all returned design matrices will have ``.design_info`` attributes containing the appropriate :class:`DesignInfo` objects. Note that unlike :func:`design_matrix_builders`, this function takes only a simple data argument, not any kind of iterator. That's because this function doesn't need a global view of the data -- everything that depends on the whole data set is already encapsulated in the `builders`. If you are incrementally processing a large data set, simply call this function for each chunk. Index handling: This function always checks for indexes in the following places: * If ``data`` is a :class:`pandas.DataFrame`, its ``.index`` attribute. * If any factors evaluate to a :class:`pandas.Series` or :class:`pandas.DataFrame`, then their ``.index`` attributes. If multiple indexes are found, they must be identical (same values in the same order). If no indexes are found, then a default index is generated using ``np.arange(num_rows)``. One way or another, we end up with a single index for all the data. If ``return_type="dataframe"``, then this index is used as the index of the returned DataFrame objects. Examining this index makes it possible to determine which rows were removed due to NAs. Determining the number of rows in design matrices: This is not as obvious as it might seem, because it's possible to have a formula like "~ 1" that doesn't depend on the data (it has no factors). For this formula, it's obvious what every row in the design matrix should look like (just the value ``1``); but, how many rows like this should there be? To determine the number of rows in a design matrix, this function always checks in the following places: * If ``data`` is a :class:`pandas.DataFrame`, then its number of rows. * The number of entries in any factors present in any of the design * matrices being built. All these values much match. In particular, if this function is called to generate multiple design matrices at once, then they must all have the same number of rows. .. versionadded:: 0.2.0 The ``NA_action`` argument. """ if isinstance(NA_action, str): NA_action = NAAction(NA_action) if return_type == "dataframe" and not have_pandas: raise PatsyError("pandas.DataFrame was requested, but pandas " "is not installed") if return_type not in ("matrix", "dataframe"): raise PatsyError("unrecognized output type %r, should be " "'matrix' or 'dataframe'" % (return_type,)) # Evaluate factors evaluator_to_values = {} evaluator_to_isNAs = {} import operator rows_checker = _CheckMatch("Number of rows", lambda a, b: a == b) index_checker = _CheckMatch("Index", lambda a, b: a.equals(b)) if have_pandas and isinstance(data, pandas.DataFrame): index_checker.check(data.index, "data.index", None) rows_checker.check(data.shape[0], "data argument", None) for builder in builders: # We look at evaluators rather than factors here, because it might # happen that we have the same factor twice, but with different # memorized state. for evaluator in builder._evaluators: if evaluator not in evaluator_to_values: value, is_NA = evaluator.eval(data, NA_action) evaluator_to_isNAs[evaluator] = is_NA # value may now be a Series, DataFrame, or ndarray name = evaluator.factor.name() origin = evaluator.factor.origin rows_checker.check(value.shape[0], name, origin) if (have_pandas and isinstance(value, (pandas.Series, pandas.DataFrame))): index_checker.check(value.index, name, origin) # Strategy: we work with raw ndarrays for doing the actual # combining; DesignMatrixBuilder objects never sees pandas # objects. Then at the end, if a DataFrame was requested, we # convert. So every entry in this dict is either a 2-d array # of floats, or a 1-d array of integers (representing # categories). value = np.asarray(value) evaluator_to_values[evaluator] = value # Handle NAs values = list(evaluator_to_values.values()) is_NAs = list(evaluator_to_isNAs.values()) origins = [evaluator.factor.origin for evaluator in evaluator_to_values] pandas_index = index_checker.value num_rows = rows_checker.value # num_rows is None iff evaluator_to_values (and associated sets like # 'values') are empty, i.e., we have no actual evaluators involved # (formulas like "~ 1"). if return_type == "dataframe" and num_rows is not None: if pandas_index is None: pandas_index = np.arange(num_rows) values.append(pandas_index) is_NAs.append(np.zeros(len(pandas_index), dtype=bool)) origins.append(None) new_values = NA_action.handle_NA(values, is_NAs, origins) # NA_action may have changed the number of rows. if new_values: num_rows = new_values[0].shape[0] if return_type == "dataframe" and num_rows is not None: pandas_index = new_values.pop() evaluator_to_values = dict(zip(evaluator_to_values, new_values)) # Build factor values into matrices results = [] for builder in builders: results.append(builder._build(evaluator_to_values, dtype)) matrices = [] for need_reshape, matrix in results: if need_reshape: # There is no data-dependence, at all -- a formula like "1 ~ 1". # In this case the builder just returns a single-row matrix, and # we have to broadcast it vertically to the appropriate size. If # we can figure out what that is... assert matrix.shape[0] == 1 if num_rows is not None: matrix = DesignMatrix(np.repeat(matrix, num_rows, axis=0), matrix.design_info) else: raise PatsyError( "No design matrix has any non-trivial factors, " "the data object is not a DataFrame. " "I can't tell how many rows the design matrix should " "have!" ) matrices.append(matrix) if return_type == "dataframe": assert have_pandas for i, matrix in enumerate(matrices): di = matrix.design_info matrices[i] = pandas.DataFrame(matrix, columns=di.column_names, index=pandas_index) matrices[i].design_info = di return matrices # It should be possible to do just the factors -> factor evaluators stuff # alone, since that, well, makes logical sense to do. though categorical # coding has to happen afterwards, hmm.
44.368885
88
0.581145
623e4190969b5f361d088a7c2e809afcc439139f
507
py
Python
ch04/fig04-01_onboard-led.py
ricelee-com/pico-starter-kit
f8286fab0bdd868e8fbe9def1dae23bd5d88215c
[ "BSD-3-Clause" ]
null
null
null
ch04/fig04-01_onboard-led.py
ricelee-com/pico-starter-kit
f8286fab0bdd868e8fbe9def1dae23bd5d88215c
[ "BSD-3-Clause" ]
null
null
null
ch04/fig04-01_onboard-led.py
ricelee-com/pico-starter-kit
f8286fab0bdd868e8fbe9def1dae23bd5d88215c
[ "BSD-3-Clause" ]
3
2021-03-28T15:54:13.000Z
2021-03-31T16:08:54.000Z
#!/usr/bin/python3 #+-+-+-+-+-+-+-+-+-+-+-+ #|R|i|c|e|L|e|e|.|c|o|m| #+-+-+-+-+-+-+-+-+-+-+-+ # Copyright (c) 2021, ricelee.com # All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. # # Origin: p48 at https://hackspace.raspberrypi.org/books/micropython-pico import machine import utime led_onboard = machine.Pin(25, machine.Pin.OUT) while True: led_onboard.value(1) utime.sleep(5) led_onboard.value(0) utime.sleep(5)
23.045455
73
0.641026
0b3c7500de5fe0a02bfe5e22c21ec8d3f3454166
223
py
Python
tests/settings.py
codesankalp/django-swappable-models
82f3bcda94b5c0b3bd028f2c4c03aecf4fc34e04
[ "MIT" ]
null
null
null
tests/settings.py
codesankalp/django-swappable-models
82f3bcda94b5c0b3bd028f2c4c03aecf4fc34e04
[ "MIT" ]
null
null
null
tests/settings.py
codesankalp/django-swappable-models
82f3bcda94b5c0b3bd028f2c4c03aecf4fc34e04
[ "MIT" ]
null
null
null
SECRET_KEY = '1234' INSTALLED_APPS = ( 'tests.default_app', ) MIDDLEWARE_CLASSES = tuple() DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': ':memory:', } } SWAP = False
17.153846
47
0.587444
a3f27f48e7b564a096deb9d2a5b3f01814ff1e46
16,023
py
Python
cep_price_console/unified_upload/view.py
zanebclark/cep_price_console
2f0e0a487a02a1eeceab9bc326d4cef153bd6781
[ "MIT" ]
null
null
null
cep_price_console/unified_upload/view.py
zanebclark/cep_price_console
2f0e0a487a02a1eeceab9bc326d4cef153bd6781
[ "MIT" ]
5
2021-03-31T19:27:48.000Z
2022-01-13T01:57:46.000Z
cep_price_console/unified_upload/view.py
zanebclark/cep_price_console
2f0e0a487a02a1eeceab9bc326d4cef153bd6781
[ "MIT" ]
null
null
null
from cep_price_console.utils.log_utils import CustomAdapter, debug from cep_price_console.utils import config from cep_price_console.utils.gui_utils import center_window from cep_price_console.unified_upload.view_1_file_selection import FileSelection from cep_price_console.unified_upload.view_2_worksheet_selection import WorksheetSelection from cep_price_console.unified_upload.view_3_column_mapping import ColumnSelection from cep_price_console.unified_upload.model import Model import tkinter as tk from tkinter import messagebox import tkinter.ttk as ttk import logging """ Make a list of a available steps. In the model? Maybe. Initially, this list will be the input file, but there might be branching logic that would append a different step for contract uploads or essendant cost updates. 1) start with file selection 2) when the filepath is valid, enable the proceed button 3) if the step id isn't the smallest id, grid the previous button 4) if the step id isn't the highest, grid the next button """ """ All of the steps need to be initialisable without data. The application needs to be stateless. Moving the view from one state to another should require some logic, but the views should exist and be populated with the appropriate data upon transition Steps: 1) File selection Encoding dropdown Which formats do I accommodate? 3) Header row hinting / Column Hinting/ Ignore empty columns Some tools have some logic built in to detect this. Feed it in and ask the user to verify it 4) Which vendor is this? Is it a customer? Use the paned frame approach from the price list along with the tkintertable selection method 5) Column Datatype Definition/Function Mapping This is the hardest part. Do I upload the data into SQL and then re-upload it with the new data definition when the user changes it? Or, do I keep the data in memory and upload post data type selection? Need: Universal button status function that calls the current step's get button status method that checks to see if we're ready to move on """ class View(tk.Toplevel): logger = CustomAdapter(logging.getLogger(str(__name__)), None) @debug(lvl=logging.DEBUG, prefix='') def __init__(self, master, *args, **kwargs): self.master = master super().__init__(*args, **kwargs) self.title("Contract Upload Procedure: Step 1") self.iconbitmap(config.FAVICON) self.columnconfigure(0, weight=1) self.rowconfigure(0, weight=1) self.model = Model(self) self.col_mapper = None self.match_review = None self.vpn_rev = None self.pop_frames = False self.checked_dict = None self.column_mapping_dataframe = None self.current_step_index = 0 # Force the notebook to fill the window self.protocol("WM_DELETE_WINDOW", self.close) # something = FileSelection(self) # self.frame_main = ttk.Frame(self, # style="odd.group.TFrame") # self.frame_main.grid(row=0, column=0, sticky=tk.NSEW) self.frame_cmd = ttk.Frame(self, style="even.group.TFrame") self.frame_cmd.grid(row=1, column=0, sticky=tk.E + tk.SW) self.frame_cmd.columnconfigure(0, weight=1) self.btn_next = ttk.Button(self.frame_cmd, text="Proceed", command=self.next) self.btn_next.grid(row=0, column=1, sticky=tk.SE) self.btn_prev = ttk.Button(self.frame_cmd, text="Previous", command=self.prev) self.btn_prev.grid(row=0, column=0, sticky=tk.SW) self.btn_prev.grid_remove() self.all_steps = { "file_selection": FileSelection(self), "sheet_selection": WorksheetSelection(self), "column_selection": ColumnSelection(self) } self.avail_step_list = [] self.testing() self.avail_step_list.append(self.all_steps["file_selection"]) self.current_step_index = 0 self.avail_step_list[self.current_step_index].open() # Center window on screen center_window(win_obj=self, width=1000, height=800) self.update_next_status() @debug(lvl=logging.DEBUG, prefix='') def reset_downstream(self): close_list = self.avail_step_list[self.current_step_index+1:] print("Close List: ") for step in close_list: print(str(step.__class__)) step.close() self.avail_step_list = [step for step in self.avail_step_list if step not in close_list] @debug(lvl=logging.DEBUG, prefix='') def testing(self): self.wb_filename = config.MEDIA_PATH / "LAGB_02-25-2019_test3.xlsx" self.ws_name_selection = "ESSENDANT FEBRUARY" self.header_row = 1 self.btn_prev.grid() # region wb_filename ############################################################################################### @property @debug(lvl=logging.DEBUG, prefix='') def wb_filename(self): return self.model.wb_filename @wb_filename.setter @debug(lvl=logging.DEBUG, prefix='') def wb_filename(self, value): if value != self.model.wb_filename: self.reset_downstream() self.model.wb_filename = value self.column_mapping_dataframe = None if self.all_steps["sheet_selection"] not in self.avail_step_list: self.avail_step_list.append(self.all_steps["sheet_selection"]) self.update_next_status() else: raise ValueError # endregion ######################################################################################################## # region ws_sheet_names ############################################################################################ @property @debug(lvl=logging.DEBUG, prefix='') def ws_sheet_names(self): return self.model.ws_sheet_names # endregion ######################################################################################################## # region ws_name_selection ######################################################################################### @property @debug(lvl=logging.DEBUG, prefix='') def ws_name_selection(self): return self.model.ws_name_selection @ws_name_selection.setter @debug(lvl=logging.DEBUG, prefix='') def ws_name_selection(self, value): if value != self.model.ws_name_selection: self.reset_downstream() self.model.ws_name_selection = value self.column_mapping_dataframe = None if self.all_steps["column_selection"] not in self.avail_step_list: self.avail_step_list.append(self.all_steps["column_selection"]) self.update_next_status() # endregion ######################################################################################################## # region header_row ######################################################################################### @property @debug(lvl=logging.DEBUG, prefix='') def header_row(self): return self.model.header_row @header_row.setter @debug(lvl=logging.DEBUG, prefix='') def header_row(self, value): if value != self.model.ws_name_selection: self.reset_downstream() self.model.header_row = value self.column_mapping_dataframe = None if self.all_steps["column_selection"] not in self.avail_step_list: self.avail_step_list.append(self.all_steps["column_selection"]) self.update_next_status() # endregion ######################################################################################################## # region Directory Section ######################################################################################## @debug(lvl=logging.DEBUG, prefix='') def flow_manager(self, add=False, subtract=False): self.avail_step_list[self.current_step_index].close() if add: self.current_step_index += 1 elif subtract: self.current_step_index -= 1 current_step_obj = self.avail_step_list[self.current_step_index] current_step_obj.open() if current_step_obj.initial: self.btn_prev.grid_remove() else: self.btn_prev.grid() if current_step_obj.terminal: self.btn_next.grid_remove() else: self.btn_next.grid() self.update_next_status() @debug(lvl=logging.DEBUG, prefix='') def update_next_status(self): print("Next Button Disable Logic:") print(self.current_step_index) print(len(self.avail_step_list)-1) if self.current_step_index == len(self.avail_step_list) - 1: self.btn_next.state(['disabled']) else: self.btn_next.state(['!disabled']) @debug(lvl=logging.DEBUG, prefix='') def close(self): msgbox = messagebox.askokcancel("Quit", "Do you want to quit?", parent=self) if msgbox: self.destroy() # noinspection PyUnusedLocal @debug(lvl=logging.DEBUG, prefix='') def next(self, *args): self.flow_manager(add=True) # noinspection PyUnusedLocal @debug(lvl=logging.DEBUG, prefix='') def prev(self, *args): self.flow_manager(subtract=True) # # # TODO: Create some unified function that would accept a step "id" and init/destroy without having separate fns # # TODO: Each step's next/prev button should run this unified function instead of a step-specific one. # @debug(lvl=logging.DEBUG, prefix='') # def flow_manager(self): # if self.file_selection is None: # self.file_selection = FileSelection(view=self) # center_window(win_obj=self) # elif Step.step_dict.get("FileSelection").complete: # if self.col_mapper is None: # self.file_selection.close() # self.model.sql_import() # self.col_mapper = ColumnMapping(view=self) # self.col_mapper.populate_frame() # center_window(win_obj=self) # elif Step.step_dict.get("ColumnMapping").complete: # if self.match_review is None: # self.col_mapper.close() # self.match_review = MatchReview(view=self) # self.match_review.populate_frame() # center_window(win_obj=self) # elif Step.step_dict.get("MatchReview").complete: # self.model.check_upload_table(self.checked_dict) # output_query = self.model.get_output_query() # # filename_options = dict( # title='Save Output', # initialdir=str(os.path.expanduser('~')).replace('\\', '/'), # initialfile=None, # parent=self.root, # filetypes=[('Workbook', '.xlsx')]) # # fullpath_var = str(filedialog.asksaveasfilename(**filename_options)).replace("/", "\\") # filename, _ = os.path.splitext(fullpath_var) # workbook = xlsxwriter.Workbook('{}.xlsx'.format(filename)) # worksheet = workbook.add_worksheet() # col_number = 0 # row_number = 0 # col_list = [] # for desc in output_query.column_descriptions: # name = desc.get('name').replace("'", "").replace('"', "") # col_list.append(name) # worksheet.write(row_number, col_number, name) # # col_number += 1 # # row_number += 1 # for row in output_query.all(): # col_number = 0 # for col_name in col_list: # # noinspection PyProtectedMember # value = row._asdict().get(col_name) # if isinstance(value, str): # value.replace("{", "").replace("}", "") # worksheet.write(row_number, col_number, value) # col_number += 1 # row_number += 1 # workbook.close() # self.close() # # if self.vpn_rev is None and \ # # self.model.func_dict.get("Vendor Part Number Revision").upload_col is not None: # # self.match_review.close() # # self.model.check_upload_table(self.checked_dict) # # self.vpn_rev = PartNumRevision(view=self) # # self.vpn_rev.populate_frame() # # center_window(win_obj=self) # # # if not self.pop_frames: # # self.process_definition() # # for next_step in sorted(Step.step_dict.values(), key=lambda x: int(x.order)): # # if not next_step.complete: # # print("Here's where you would do something") # # break # # def process_definition(self): # pass # # if self.model.func_dict.get("Action Indicator").upload_col is not None: # # self.action_ind = ActionIndicator(view=self) # # if self.model.func_dict.get("Primary UOM").upload_col is not None: # # self.uom = UnitOfMeasure(view=self) # # # class PartNumRevision(Step): # logger = CustomAdapter(logging.getLogger(str(__name__)), None) # # @debug(lvl=logging.DEBUG, prefix='') # def __init__(self, view, *args, **kwargs): # super().__init__(namely=str(PartNumRevision.__name__), order=4, view=view, *args, **kwargs) # self.part_num_rev_hdr = ttk.Label(self.frame_main) # self.part_num_rev_hdr.config(text="Vendor Part Number Revision", style="heading1.TLabel") # self.part_num_rev_hdr.grid(row=0, column=0, sticky=tk.NW) # # self.part_num_rev_instr_lbl = ttk.Label(self.frame_main) # self.part_num_rev_instr_lbl.config(text="These are the instructions on how to do this thing. \n" # "1) You need to do something. \n" # "2) You need to do something else. \n" # "3) Finally, you need to do something else. \n" # "Then you are done!") # self.part_num_rev_instr_lbl.grid(row=1, column=0) # # self.treeview = TreeviewConstructor(self.frame_main) # self.treeview.grid(row=2, # column=0, # sticky=tk.NSEW) # # self.btn_next.state(['!disabled']) # # @debug(lvl=logging.DEBUG, prefix='') # def populate_frame(self): # pass # # @debug(lvl=logging.DEBUG, prefix='') # def next(self, *args): # self.complete = True # self.view.flow_manager() # # # class ActionIndicator(Step): # logger = CustomAdapter(logging.getLogger(str(__name__)), None) # # @debug(lvl=logging.DEBUG, prefix='') # def __init__(self, view, *args, **kwargs): # super().__init__(namely=str(ActionIndicator.__name__), order=5, view=view, *args, **kwargs) # # # class UnitOfMeasure(Step): # logger = CustomAdapter(logging.getLogger(str(__name__)), None) # # @debug(lvl=logging.DEBUG, prefix='') # def __init__(self, view, *args, **kwargs): # super().__init__(namely=str(ColumnMapping.__name__), order=5, view=view, *args, **kwargs) #
42.957105
120
0.565312
326398b3a4041d233b390d4364ffc68e2793bf4a
20,474
py
Python
python/ray/tune/ray_trial_executor.py
vladfi1/ray
3b141b26cd4af491b3c1fb8ce4dbb00265246b1e
[ "Apache-2.0" ]
2
2019-03-26T12:40:26.000Z
2020-07-23T13:45:39.000Z
python/ray/tune/ray_trial_executor.py
vladfi1/ray
3b141b26cd4af491b3c1fb8ce4dbb00265246b1e
[ "Apache-2.0" ]
null
null
null
python/ray/tune/ray_trial_executor.py
vladfi1/ray
3b141b26cd4af491b3c1fb8ce4dbb00265246b1e
[ "Apache-2.0" ]
2
2019-04-09T12:30:24.000Z
2020-07-23T13:45:40.000Z
# coding: utf-8 from __future__ import absolute_import from __future__ import division from __future__ import print_function import logging import os import random import time import traceback import ray from ray.tune.error import TuneError, AbortTrialExecution from ray.tune.logger import NoopLogger from ray.tune.trial import Trial, Resources, Checkpoint from ray.tune.trial_executor import TrialExecutor from ray.tune.util import warn_if_slow logger = logging.getLogger(__name__) RESOURCE_REFRESH_PERIOD = 0.5 # Refresh resources every 500 ms BOTTLENECK_WARN_PERIOD_S = 60 NONTRIVIAL_WAIT_TIME_THRESHOLD_S = 1e-3 class _LocalWrapper(object): def __init__(self, result): self._result = result def unwrap(self): """Returns the wrapped result.""" return self._result class RayTrialExecutor(TrialExecutor): """An implemention of TrialExecutor based on Ray.""" def __init__(self, queue_trials=False, reuse_actors=False, refresh_period=RESOURCE_REFRESH_PERIOD): super(RayTrialExecutor, self).__init__(queue_trials) self._running = {} # Since trial resume after paused should not run # trial.train.remote(), thus no more new remote object id generated. # We use self._paused to store paused trials here. self._paused = {} self._reuse_actors = reuse_actors self._cached_actor = None self._avail_resources = Resources(cpu=0, gpu=0) self._committed_resources = Resources(cpu=0, gpu=0) self._resources_initialized = False self._refresh_period = refresh_period self._last_resource_refresh = float("-inf") self._last_nontrivial_wait = time.time() if ray.is_initialized(): self._update_avail_resources() def _setup_runner(self, trial, reuse_allowed): if (self._reuse_actors and reuse_allowed and self._cached_actor is not None): logger.debug("Reusing cached runner {} for {}".format( self._cached_actor, trial.trial_id)) existing_runner = self._cached_actor self._cached_actor = None else: if self._cached_actor: logger.debug( "Cannot reuse cached runner {} for new trial".format( self._cached_actor)) self._cached_actor.stop.remote() self._cached_actor.__ray_terminate__.remote() self._cached_actor = None existing_runner = None cls = ray.remote( num_cpus=trial.resources.cpu, num_gpus=trial.resources.gpu, resources=trial.resources.custom_resources)( trial._get_trainable_cls()) trial.init_logger() # We checkpoint metadata here to try mitigating logdir duplication self.try_checkpoint_metadata(trial) remote_logdir = trial.logdir if existing_runner: trial.runner = existing_runner if not self.reset_trial(trial, trial.config, trial.experiment_tag): raise AbortTrialExecution( "Trial runner reuse requires reset_trial() to be " "implemented and return True.") return existing_runner def logger_creator(config): # Set the working dir in the remote process, for user file writes if not os.path.exists(remote_logdir): os.makedirs(remote_logdir) os.chdir(remote_logdir) return NoopLogger(config, remote_logdir) # Logging for trials is handled centrally by TrialRunner, so # configure the remote runner to use a noop-logger. return cls.remote(config=trial.config, logger_creator=logger_creator) def _train(self, trial): """Start one iteration of training and save remote id.""" assert trial.status == Trial.RUNNING, trial.status remote = trial.runner.train.remote() # Local Mode if isinstance(remote, dict): remote = _LocalWrapper(remote) self._running[remote] = trial def _start_trial(self, trial, checkpoint=None): """Starts trial and restores last result if trial was paused. Raises: ValueError if restoring from checkpoint fails. """ prior_status = trial.status self.set_status(trial, Trial.RUNNING) trial.runner = self._setup_runner( trial, reuse_allowed=checkpoint is not None or trial._checkpoint.value is not None) if not self.restore(trial, checkpoint): if trial.status == Trial.ERROR: raise RuntimeError( "Restore from checkpoint failed for Trial {}.".format( str(trial))) previous_run = self._find_item(self._paused, trial) if (prior_status == Trial.PAUSED and previous_run): # If Trial was in flight when paused, self._paused stores result. self._paused.pop(previous_run[0]) self._running[previous_run[0]] = trial else: self._train(trial) def _stop_trial(self, trial, error=False, error_msg=None, stop_logger=True): """Stops this trial. Stops this trial, releasing all allocating resources. If stopping the trial fails, the run will be marked as terminated in error, but no exception will be thrown. Args: error (bool): Whether to mark this trial as terminated in error. error_msg (str): Optional error message. stop_logger (bool): Whether to shut down the trial logger. """ if stop_logger: trial.close_logger() if error: self.set_status(trial, Trial.ERROR) else: self.set_status(trial, Trial.TERMINATED) try: trial.write_error_log(error_msg) if hasattr(trial, 'runner') and trial.runner: if (not error and self._reuse_actors and self._cached_actor is None): logger.debug("Reusing actor for {}".format(trial.runner)) self._cached_actor = trial.runner else: logger.info( "Destroying actor for trial {}. If your trainable is " "slow to initialize, consider setting " "reuse_actors=True to reduce actor creation " "overheads.".format(trial)) trial.runner.stop.remote() trial.runner.__ray_terminate__.remote() except Exception: logger.exception("Error stopping runner for Trial %s", str(trial)) self.set_status(trial, Trial.ERROR) finally: trial.runner = None def start_trial(self, trial, checkpoint=None): """Starts the trial. Will not return resources if trial repeatedly fails on start. Args: trial (Trial): Trial to be started. checkpoint (Checkpoint): A Python object or path storing the state of trial. """ self._commit_resources(trial.resources) try: self._start_trial(trial, checkpoint) except Exception as e: logger.exception("Error starting runner for Trial %s", str(trial)) error_msg = traceback.format_exc() time.sleep(2) self._stop_trial(trial, error=True, error_msg=error_msg) if isinstance(e, AbortTrialExecution): return # don't retry fatal Tune errors try: # This forces the trial to not start from checkpoint. trial.clear_checkpoint() logger.info( "Trying to start runner for Trial %s without checkpoint.", str(trial)) self._start_trial(trial) except Exception: logger.exception( "Error starting runner for Trial %s, aborting!", str(trial)) error_msg = traceback.format_exc() self._stop_trial(trial, error=True, error_msg=error_msg) # note that we don't return the resources, since they may # have been lost def _find_item(self, dictionary, item): out = [rid for rid, t in dictionary.items() if t is item] return out def stop_trial(self, trial, error=False, error_msg=None, stop_logger=True): """Only returns resources if resources allocated.""" prior_status = trial.status self._stop_trial( trial, error=error, error_msg=error_msg, stop_logger=stop_logger) if prior_status == Trial.RUNNING: logger.debug("Returning resources for Trial %s.", str(trial)) self._return_resources(trial.resources) out = self._find_item(self._running, trial) for result_id in out: self._running.pop(result_id) def continue_training(self, trial): """Continues the training of this trial.""" self._train(trial) def pause_trial(self, trial): """Pauses the trial. If trial is in-flight, preserves return value in separate queue before pausing, which is restored when Trial is resumed. """ trial_future = self._find_item(self._running, trial) if trial_future: self._paused[trial_future[0]] = trial super(RayTrialExecutor, self).pause_trial(trial) def reset_trial(self, trial, new_config, new_experiment_tag): """Tries to invoke `Trainable.reset_config()` to reset trial. Args: trial (Trial): Trial to be reset. new_config (dict): New configuration for Trial trainable. new_experiment_tag (str): New experiment name for trial. Returns: True if `reset_config` is successful else False. """ trial.experiment_tag = new_experiment_tag trial.config = new_config trainable = trial.runner with warn_if_slow("reset_config"): reset_val = ray.get(trainable.reset_config.remote(new_config)) return reset_val def get_running_trials(self): """Returns the running trials.""" return list(self._running.values()) def get_next_available_trial(self): shuffled_results = list(self._running.keys()) random.shuffle(shuffled_results) # Note: We shuffle the results because `ray.wait` by default returns # the first available result, and we want to guarantee that slower # trials (i.e. trials that run remotely) also get fairly reported. # See https://github.com/ray-project/ray/issues/4211 for details. start = time.time() [result_id], _ = ray.wait(shuffled_results) wait_time = time.time() - start if wait_time > NONTRIVIAL_WAIT_TIME_THRESHOLD_S: self._last_nontrivial_wait = time.time() if time.time() - self._last_nontrivial_wait > BOTTLENECK_WARN_PERIOD_S: logger.warn( "Over the last {} seconds, the Tune event loop has been " "backlogged processing new results. Consider increasing your " "period of result reporting to improve performance.".format( BOTTLENECK_WARN_PERIOD_S)) self._last_nontrivial_wait = time.time() return self._running[result_id] def fetch_result(self, trial): """Fetches one result of the running trials. Returns: Result of the most recent trial training run.""" trial_future = self._find_item(self._running, trial) if not trial_future: raise ValueError("Trial was not running.") self._running.pop(trial_future[0]) with warn_if_slow("fetch_result"): result = ray.get(trial_future[0]) # For local mode if isinstance(result, _LocalWrapper): result = result.unwrap() return result def _commit_resources(self, resources): committed = self._committed_resources all_keys = set(resources.custom_resources).union( set(committed.custom_resources)) custom_resources = { k: committed.get(k) + resources.get_res_total(k) for k in all_keys } self._committed_resources = Resources( committed.cpu + resources.cpu_total(), committed.gpu + resources.gpu_total(), custom_resources=custom_resources) def _return_resources(self, resources): committed = self._committed_resources all_keys = set(resources.custom_resources).union( set(committed.custom_resources)) custom_resources = { k: committed.get(k) - resources.get_res_total(k) for k in all_keys } self._committed_resources = Resources( committed.cpu - resources.cpu_total(), committed.gpu - resources.gpu_total(), custom_resources=custom_resources) assert self._committed_resources.is_nonnegative(), ( "Resource invalid: {}".format(resources)) def _update_avail_resources(self, num_retries=5): for i in range(num_retries): try: resources = ray.global_state.cluster_resources() except Exception: # TODO(rliaw): Remove this when local mode is fixed. # https://github.com/ray-project/ray/issues/4147 logger.debug("Using resources for local machine.") resources = ray.services.check_and_update_resources( None, None, None) if not resources: logger.warning("Cluster resources not detected. Retrying...") time.sleep(0.5) if not resources or "CPU" not in resources: raise TuneError("Cluster resources cannot be detected. " "You can resume this experiment by passing in " "`resume=True` to `run`.") resources = resources.copy() num_cpus = resources.pop("CPU") num_gpus = resources.pop("GPU") custom_resources = resources self._avail_resources = Resources( int(num_cpus), int(num_gpus), custom_resources=custom_resources) self._last_resource_refresh = time.time() self._resources_initialized = True def has_resources(self, resources): """Returns whether this runner has at least the specified resources. This refreshes the Ray cluster resources if the time since last update has exceeded self._refresh_period. This also assumes that the cluster is not resizing very frequently. """ if time.time() - self._last_resource_refresh > self._refresh_period: self._update_avail_resources() currently_available = Resources.subtract(self._avail_resources, self._committed_resources) have_space = ( resources.cpu_total() <= currently_available.cpu and resources.gpu_total() <= currently_available.gpu and all( resources.get_res_total(res) <= currently_available.get(res) for res in resources.custom_resources)) if have_space: return True can_overcommit = self._queue_trials if (resources.cpu_total() > 0 and currently_available.cpu <= 0) or \ (resources.gpu_total() > 0 and currently_available.gpu <= 0) or \ any((resources.get_res_total(res_name) > 0 and currently_available.get(res_name) <= 0) for res_name in resources.custom_resources): can_overcommit = False # requested resource is already saturated if can_overcommit: logger.warning( "Allowing trial to start even though the " "cluster does not have enough free resources. Trial actors " "may appear to hang until enough resources are added to the " "cluster (e.g., via autoscaling). You can disable this " "behavior by specifying `queue_trials=False` in " "ray.tune.run().") return True return False def debug_string(self): """Returns a human readable message for printing to the console.""" if self._resources_initialized: status = "Resources requested: {}/{} CPUs, {}/{} GPUs".format( self._committed_resources.cpu, self._avail_resources.cpu, self._committed_resources.gpu, self._avail_resources.gpu) customs = ", ".join([ "{}/{} {}".format( self._committed_resources.get_res_total(name), self._avail_resources.get_res_total(name), name) for name in self._avail_resources.custom_resources ]) if customs: status += " ({})".format(customs) return status else: return "Resources requested: ?" def resource_string(self): """Returns a string describing the total resources available.""" if self._resources_initialized: res_str = "{} CPUs, {} GPUs".format(self._avail_resources.cpu, self._avail_resources.gpu) if self._avail_resources.custom_resources: custom = ", ".join( "{} {}".format( self._avail_resources.get_res_total(name), name) for name in self._avail_resources.custom_resources) res_str += " ({})".format(custom) return res_str else: return "? CPUs, ? GPUs" def on_step_begin(self): """Before step() called, update the available resources.""" self._update_avail_resources() def save(self, trial, storage=Checkpoint.DISK): """Saves the trial's state to a checkpoint.""" trial._checkpoint.storage = storage trial._checkpoint.last_result = trial.last_result if storage == Checkpoint.MEMORY: trial._checkpoint.value = trial.runner.save_to_object.remote() else: with warn_if_slow("save_to_disk"): trial._checkpoint.value = ray.get(trial.runner.save.remote()) return trial._checkpoint.value def restore(self, trial, checkpoint=None): """Restores training state from a given model checkpoint. This will also sync the trial results to a new location if restoring on a different node. """ if checkpoint is None or checkpoint.value is None: checkpoint = trial._checkpoint if checkpoint is None or checkpoint.value is None: return True if trial.runner is None: logger.error("Unable to restore - no runner.") self.set_status(trial, Trial.ERROR) return False try: value = checkpoint.value if checkpoint.storage == Checkpoint.MEMORY: assert type(value) != Checkpoint, type(value) trial.runner.restore_from_object.remote(value) else: worker_ip = ray.get(trial.runner.current_ip.remote()) trial.sync_logger_to_new_location(worker_ip) with warn_if_slow("restore_from_disk"): ray.get(trial.runner.restore.remote(value)) trial.last_result = checkpoint.last_result return True except Exception: logger.exception("Error restoring runner for Trial %s.", trial) self.set_status(trial, Trial.ERROR) return False def export_trial_if_needed(self, trial): """Exports model of this trial based on trial.export_formats. Return: A dict that maps ExportFormats to successfully exported models. """ if trial.export_formats and len(trial.export_formats) > 0: return ray.get( trial.runner.export_model.remote(trial.export_formats)) return {}
39.601547
79
0.605744
765e4527947fe9e37849daff30ab175fb2c01db7
550
py
Python
202-happy-number/happy_number.py
cnluocj/leetcode
5b870a63ba1aab3db1e05421c91f404a9aabc489
[ "MIT" ]
null
null
null
202-happy-number/happy_number.py
cnluocj/leetcode
5b870a63ba1aab3db1e05421c91f404a9aabc489
[ "MIT" ]
null
null
null
202-happy-number/happy_number.py
cnluocj/leetcode
5b870a63ba1aab3db1e05421c91f404a9aabc489
[ "MIT" ]
null
null
null
""" 70.49% """ class Solution(object): def isHappy(self, n): """ :type n: int :rtype: bool """ if n == 0 or n == 1: return True x = [n] curr = n ishappy = False while True: digits = list(str(curr)) curr = 0 for d in digits: curr += int(d) ** 2 x.append(curr) if curr == 1: ishappy = True if x.count(curr) >= 2: break return ishappy
19.642857
36
0.370909
bc1ddea700b49d9bf2b707a5c7ced44846e158e3
577
py
Python
trees/bstser.py
dhruvsharma1999/data-structures
f3b51ebca2f6e28eee3dcb5692f92d2f7f3533e5
[ "MIT" ]
null
null
null
trees/bstser.py
dhruvsharma1999/data-structures
f3b51ebca2f6e28eee3dcb5692f92d2f7f3533e5
[ "MIT" ]
null
null
null
trees/bstser.py
dhruvsharma1999/data-structures
f3b51ebca2f6e28eee3dcb5692f92d2f7f3533e5
[ "MIT" ]
null
null
null
#implementing bst search operation using python 3 #Node class class Node: def __init__(self,key): self.right = None self.left = None self.val = key #Utility function to search a given key in BST def search(root, key): #base case is root is NULL or key is present at the root if root is None or root.val == key: return root #if key greater than roots key if root.val < key: return search(root.right, key) #if key is smaller than root key return search(root.left, key)
25.086957
64
0.608319
ad228972520e6ef5fe24c9739ecf0cec3daa0122
2,239
py
Python
skater/core/visualizer/image_relevance_visualizer.py
RPUTHUMA/Skater
317460b88065b41eebe6790e9efdbb0595cbe450
[ "UPL-1.0" ]
718
2017-05-19T22:49:40.000Z
2019-03-27T06:40:54.000Z
skater/core/visualizer/image_relevance_visualizer.py
quant1729/Skater
b46a4abe3465ddc7b19ffc762ad45d1414b060a6
[ "UPL-1.0" ]
114
2017-05-24T16:55:59.000Z
2019-03-27T12:48:18.000Z
skater/core/visualizer/image_relevance_visualizer.py
quant1729/Skater
b46a4abe3465ddc7b19ffc762ad45d1414b060a6
[ "UPL-1.0" ]
121
2017-05-22T17:20:19.000Z
2019-03-21T15:06:19.000Z
# -*- coding: UTF-8 -*- from skimage.filters import roberts, sobel import numpy as np from skater.util.exceptions import MatplotlibUnavailableError try: import matplotlib.pyplot as plt except ImportError: raise (MatplotlibUnavailableError("Matplotlib is required but unavailable on your system.")) from skater.util.image_ops import normalize # helper function to enable or disable matplotlib access _enable_axis = lambda ax, flag: ax.axis("off") if flag is True else ax.axis("on") def visualize(relevance_score, original_input_img=None, edge_detector_type='sobel', cmap='bwr', axis=plt, percentile=100, alpha_edges=0.8, alpha_bgcolor=1, disable_axis=True): dx, dy = 0.01, 0.01 xx = np.arange(0.0, relevance_score.shape[1], dx) yy = np.arange(0.0, relevance_score.shape[0], dy) x_min, x_max, y_min, y_max = np.amin(xx), np.amax(xx), np.amin(yy), np.amax(yy) extent = x_min, x_max, y_min, y_max xi_cmap = plt.cm.gray xi_cmap.set_bad(alpha=0) edges = _edge_detection(original_input_img, edge_detector_type) if original_input_img is not None else None # draw the edges of the image before overlaying rest of the image if edges is not None: axis.imshow(edges, extent=extent, interpolation='nearest', cmap=xi_cmap, alpha=alpha_edges) abs_max = np.percentile(np.abs(relevance_score), percentile) abs_min = abs_max relevance_score = relevance_score[:, :, 0] if len(relevance_score.shape) == 3 else relevance_score # Plot the image with relevance scores axis.imshow(relevance_score, extent=extent, interpolation='nearest', cmap=cmap, vmin=-abs_min, vmax=abs_max, alpha=alpha_bgcolor) _enable_axis(axis, disable_axis) return axis def _edge_detection(original_input_img=None, edge_detector_alg='sobel'): # Normalize the input image to (0,1) xi = normalize(original_input_img) xi_greyscale = xi if len(xi.shape) == 2 else np.mean(xi, axis=-1) # Applying edge detection ( Roberts or Sobel edge detection ) # Reference: http://scikit-image.org/docs/0.11.x/auto_examples/plot_edge_filter.html edge_detector = {'robert': roberts, 'sobel': sobel} return edge_detector[edge_detector_alg](xi_greyscale)
41.462963
111
0.72711
38d1cf4c1414cf7c200d72497d11fd3c0e463ea8
2,334
py
Python
test/test_task_callbacks_api.py
nodeum-io/nodeum-sdk-python
205536491bff507dea7be44af46202c17e7121d9
[ "MIT" ]
null
null
null
test/test_task_callbacks_api.py
nodeum-io/nodeum-sdk-python
205536491bff507dea7be44af46202c17e7121d9
[ "MIT" ]
null
null
null
test/test_task_callbacks_api.py
nodeum-io/nodeum-sdk-python
205536491bff507dea7be44af46202c17e7121d9
[ "MIT" ]
null
null
null
# coding: utf-8 """ Nodeum API # About This document describes the Nodeum API version 2: If you are looking for any information about the product itself, reach the product website https://www.nodeum.io. You can also contact us at this email address : info@nodeum.io # Filter parameters When browsing a list of items, multiple filter parameters may be applied. Some operators can be added to the value as a prefix: - `=` value is equal. Default operator, may be omitted - `!=` value is different - `>` greater than - `>=` greater than or equal - `<` lower than - `>=` lower than or equal - `><` included in list, items should be separated by `|` - `!><` not included in list, items should be separated by `|` - `~` pattern matching, may include `%` (any characters) and `_` (one character) - `!~` pattern not matching, may include `%` (any characters) and `_` (one character) # noqa: E501 The version of the OpenAPI document: 2.1.0 Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import unittest import nodeum_sdk from nodeum_sdk.api.task_callbacks_api import TaskCallbacksApi # noqa: E501 from nodeum_sdk.rest import ApiException class TestTaskCallbacksApi(unittest.TestCase): """TaskCallbacksApi unit test stubs""" def setUp(self): self.api = nodeum_sdk.api.task_callbacks_api.TaskCallbacksApi() # noqa: E501 def tearDown(self): pass def test_create_task_callback(self): """Test case for create_task_callback Creates a new task callback. # noqa: E501 """ pass def test_destroy_task_callback(self): """Test case for destroy_task_callback Destroys a specific task callback. # noqa: E501 """ pass def test_index_task_callbacks(self): """Test case for index_task_callbacks Lists all task callbacks. # noqa: E501 """ pass def test_show_task_callback(self): """Test case for show_task_callback Displays a specific task callback. # noqa: E501 """ pass def test_update_task_callback(self): """Test case for update_task_callback Updates a specific task callback. # noqa: E501 """ pass if __name__ == '__main__': unittest.main()
33.826087
876
0.668809
d28a2d764f2fd5496af214b347faac1ebe81578e
31,018
py
Python
scripts/bot.py
parimple/zagadka
1cad1af657d9a621e6c42e3a66fb4dac10770810
[ "MIT" ]
null
null
null
scripts/bot.py
parimple/zagadka
1cad1af657d9a621e6c42e3a66fb4dac10770810
[ "MIT" ]
null
null
null
scripts/bot.py
parimple/zagadka
1cad1af657d9a621e6c42e3a66fb4dac10770810
[ "MIT" ]
null
null
null
import asyncio from datetime import datetime, timedelta import discord from datasources.queries import * import inspect import datasources.models as models import datasources.queries as queries from mappings import BOT, GUILD, COMMANDS, MUSIC_PREFIX, MUSIC_COMMANDS from datasources import session, engine from random import randint from functions import * from colour import Color if not engine.dialect.has_table(engine, 'member'): datasources.models.Base.metadata.create_all(engine) client = discord.Client() invites = [] channels = {} async def presence(): while True: await client.change_presence(activity=discord.Game(name='R')) await asyncio.sleep(8) await client.change_presence(activity=discord.Game(name='G')) await asyncio.sleep(8) await client.change_presence(activity=discord.Game(name='B')) await asyncio.sleep(8) async def minute(): while True: guild = client.get_guild(GUILD['id']) date_db = get_guild_date(GUILD['id']) date_now = datetime.now() invites_new = await guild.invites() diff = list(set(invites_new) - set(invites)) if len(diff) > 0: invites.extend(diff) if date_now.minute % 10 == 0: private_category = guild.get_channel(GUILD['private_category']) for channel in guild.voice_channels: if (len(channel.members) < 1) and (channel in private_category.channels): if channel.id != GUILD['create_channel']: del channels[channel] await channel.delete() continue for member in channel.members: if (not member.bot) and (check_member(member.id) is False): if (date_now - member.joined_at).seconds > 60: set_member(member.id, member.name, member.discriminator, None, datetime.now()) session.commit() set_member_scores(member.id, ['week']) session.commit() if member.voice.self_mute or member.voice.self_deaf or member.bot: continue else: if len(channel.members) > 1: add_member_score(member.id, date_now.strftime("%A"), 10) session.commit() else: add_member_score(member.id, date_now.strftime("%A"), 1) session.commit() if date_db.strftime("%A") != date_now.strftime("%A"): role_recruiter = guild.get_role(GUILD['recruiter']) for member in role_recruiter.members: await member.remove_roles(role_recruiter) role_temp_bonus = guild.get_role(GUILD['temp_bonus_id']) for member in role_temp_bonus.members: await member.remove_roles(role_temp_bonus) for role in guild.roles: if role.name == GUILD['colored_name'] or role.name == GUILD['multi_colored_name']: await role.delete() reset_points_global(date_now.strftime("%A")) if date_now.hour != date_db.hour: role_everyone = guild.get_role(GUILD['fake_everyone_id']) role_here = guild.get_role(GUILD['fake_here_id']) for member in role_everyone.members: await member.remove_roles(role_everyone) await member.remove_roles(role_here) members_top = get_top_members(GUILD['top']) roles_top = get_top_roles(GUILD['top']) for (role_top_id,), member_top in zip(roles_top, members_top): role_top = guild.get_role(role_top_id) member_top_id, member_top_score = member_top member = guild.get_member(member_top_id) if member is None: reset_points_by_id(member_top_id) continue else: for member_old in role_top.members: if member_old.id == member.id: continue else: await member_old.remove_roles(role_top, reason='top remove') await member.add_roles(role_top, reason='top add') set_guild_date(GUILD['id'], date_now) session.commit() await asyncio.sleep(60) @client.event async def on_voice_state_update(member, before, after): guild = member.guild private_category = guild.get_channel(GUILD['private_category']) if after.channel: if before.channel != after.channel: if after.channel.id == GUILD['create_channel']: overwrite = get_member_permissions(member.id) permission_overwrites = { guild.default_role: discord.PermissionOverwrite(read_messages=overwrite.host_everyone_view_channel, connect=overwrite.host_everyone_connect, speak=overwrite.host_everyone_speak) } overwrite_guests = get_member_guests(member.id) for guest_id, view_channel, connect, speak in overwrite_guests: guest = guild.get_member(guest_id) if guest: if all(p is None for p in [view_channel, connect, speak]): continue else: permission_overwrites[guest] = discord.PermissionOverwrite(read_messages=view_channel, connect=connect, speak=speak) permission_overwrites[member] = discord.PermissionOverwrite( read_messages=True, connect=True, speak=True, move_members=False) new_channel = await guild.create_voice_channel( member.display_name, category=after.channel.category, bitrate=GUILD['bitrate'], user_limit=overwrite.host_channel_limit, overwrites=permission_overwrites) await member.move_to(new_channel) channels[new_channel] = member if before.channel: if before.channel != after.channel: if before.channel in private_category.channels: if (len(before.channel.members) == 0) and before.channel.id != GUILD['create_channel']: if before.channel in channels: del channels[before.channel] await before.channel.delete() @client.event async def on_member_join(member): member_hosts = get_member_hosts(member.id) guild = member.guild print(member_hosts) if member_hosts: for host_id in member_hosts: print(host_id.speak, host_id.connect, host_id.view_channel) host = guild.get_member(host_id.member_host) if host: print(host) temp_channels = {k: v for k, v in channels.items() if v} for channel in temp_channels: if host == temp_channels[channel]: await channel.set_permissions(member, speak=host_id.speak, connect=host_id.connect, read_messages=host_id.view_channel) invites_old = invites.copy() invites.clear() invites.extend(await member.guild.invites()) try: invite = discord.utils.find(lambda inv: inv.uses > discord.utils.get(invites_old, id=inv.id).uses, invites) except AttributeError: diff = list(set(invites) - set(invites_old)) if len(diff) > 0: diff.sort(key=lambda inv: inv.created_at, reverse=True) invite = diff[0] else: invite = None if check_member(member.id) is False: if invite: set_member(member.id, member.name, member.discriminator, invite.inviter.id, datetime.now()) inviter = member.guild.get_member(invite.inviter.id) if (member.joined_at - member.created_at) > timedelta(days=3): if inviter: if not inviter.bot: await inviter.add_roles(member.guild.get_role(GUILD['recruiter']), reason='recruiter') if (member.joined_at - member.created_at) > timedelta(days=7): invited_list = get_invited_list(inviter.id) real_count = 0 for invited_id in invited_list: invited = guild.get_member(invited_id) if invited: if invited.avatar and (invited.joined_at - invited.created_at) > timedelta(days=3): real_count += 1 if real_count > 1: await inviter.add_roles(member.guild.get_role(GUILD['dj_id']), reason='dj') if real_count > 3: await inviter.add_roles(member.guild.get_role(GUILD['join_id']), reason='join') if real_count > 7: await inviter.add_roles(member.guild.get_role(GUILD['temp_bonus_id']), reason='bonus') if real_count > 15: await inviter.add_roles(member.guild.get_role(GUILD['bonus_id']), reason='bonus') if real_count > 31: pass if real_count > 63: if any(role.name == GUILD['colored_name'] for role in inviter.roles): pass else: colored_role = await guild.create_role(name=GUILD['colored_name']) colored_role_position = guild.get_role(GUILD['colored_role_position']) print('role position', colored_role_position.position) await inviter.add_roles(colored_role, reason='colored') await asyncio.sleep(10) await colored_role.edit(position=colored_role_position.position+1,reason='position') if real_count > 128: pass else: set_member(member.id, member.name, member.discriminator, None, datetime.now()) session.commit() set_member_scores(member.id, ['week']) session.commit() join_logs = member.guild.get_channel(GUILD['join_logs_id']) if invite: await join_logs.send('member: {}, display_name: {}, inviter: {} <@{}>' .format(member.mention, member.display_name, invite.inviter, invite.inviter.id)) else: await join_logs.send('member: {}, display_name: {}, inviter: {}' .format(member.mention, member.display_name, None)) @client.event async def on_message(message): message_save = message date_now = datetime.now() if not message.content: return if message.author.bot: return if message.role_mentions: await message.author.add_roles(message.guild.get_role(GUILD['fake_everyone_id']), reason='everyone ping') await message.author.add_roles(message.guild.get_role(GUILD['fake_here_id']), reason='here ping') args = message.content.split(' ') if len(message.content) < 2: return if message.channel.id != GUILD['bots_channel_id'] and len(args[0]) > 1 and \ args[0][0] in MUSIC_PREFIX and args[0][1:].lower() in MUSIC_COMMANDS: await message.delete() return for command in COMMANDS: if command in args[0].lower(): return points = 0 if len(args) > 32: points += 32 else: points += len(args) nitro_booster = message_save.guild.get_role(GUILD['nitro_booster_id']) if (nitro_booster in message.author.roles) and (randint(1, 100) < GUILD['rand_boost']): points += len(args) patreon_2 = message_save.guild.get_role(GUILD['patreon_2_id']) if (patreon_2 in message.author.roles) and (randint(1, 100) < GUILD['rand_boost']): points += len(args) temp_bonus = message_save.guild.get_role(GUILD['temp_bonus_id']) if (temp_bonus in message.author.roles) and (randint(1, 100) < GUILD['rand_boost']): points += len(args) bonus = message_save.guild.get_role(GUILD['bonus_id']) if (bonus in message.author.roles) and (randint(1, 100) < GUILD['rand_boost']): points += len(args) if check_member(message.author.id) is False: if (date_now - message.author.joined_at).seconds > 60: set_member(message.author.id, message.author.name, message.author.discriminator, None, datetime.now()) session.commit() set_member_scores(message.author.id, ['week']) session.commit() add_member_score(message.author.id, date_now.strftime("%A"), points) session.commit() parent_id = get_member_parent_id(message.author.id) if parent_id: if (check_member(parent_id)) and (randint(1, 100) < GUILD['rand_parent']): add_member_score(parent_id, date_now.strftime("%A"), points) session.commit() if not message.attachments and message.content[0] == BOT['prefix']: command = args.pop(0)[1:] print(datetime.now().strftime("%d/%m/%Y %H:%M:%S"), message.author, command, args) if command in ['color', 'colour']: if args: try: color_string = ''.join(args) if '#' in color_string: color_string = color_string.replace('#', '') new_color = Color(color_string) print(new_color.hex_l) hex_string = new_color.hex_l.replace('#', '') discord_color = discord.Color(int(hex_string, 16)) for role in message.author.roles: if role.name == GUILD['colored_name']: await role.edit(colour=discord_color) return except ValueError: pass try: color_string = ''.join(args) if '#' in color_string: color_string = color_string.replace('#', '') discord_color = discord.Color(int(color_string, 16)) for role in message.author.roles: if role.name == GUILD['colored_name']: await role.edit(colour=discord_color) return except ValueError: pass if command in ['help', 'h']: embed = discord.Embed() embed.add_field(name='connect permission', value='{}connect - <@{}>'.format(BOT['prefix'], message.author.id), inline=True) embed.add_field(name='view permission', value='{}view - <@{}>'.format(BOT['prefix'], message.author.id), inline=True) embed.add_field(name='speak permission', value='{}speak - <@{}>'.format(BOT['prefix'], message.author.id), inline=True) embed.add_field(name='reset permissions', value='{}reset <@{}>'.format(BOT['prefix'], message.author.id), inline=True) embed.add_field(name='global connect permission', value='{}connect -'.format(BOT['prefix'], message.author.id), inline=True) embed.add_field(name='global view permission', value='{}view -'.format(BOT['prefix'], message.author.id), inline=True) embed.add_field(name='global speak permission', value='{}speak -'.format(BOT['prefix'], message.author.id), inline=True) embed.add_field(name='reset global permissions', value='{}reset'.format(BOT['prefix'], message.author.id), inline=True) embed.add_field(name='user limit', value='{}limit 2'.format(BOT['prefix'], message.author.id), inline=True) embed.set_footer(text="to allow permission use +") await message.channel.send(embed=embed) return if command == 'profile': inviter = message.guild.get_member(parent_id) if inviter is None: inviter_name = 'None' else: inviter_name = inviter.display_name invited_count = get_invited_count(message.author.id) invited_list = get_invited_list(message.author.id) real_count = 0 for invited_id in invited_list: invited = message.guild.get_member(invited_id) if invited: if invited.avatar and (invited.joined_at - invited.created_at) > timedelta(days=3): real_count += 1 embed = discord.Embed() embed.add_field(name='invited people', value="{}({})".format(real_count, invited_count), inline=True) embed.set_footer(text="invited by {}".format(inviter_name)) await message.channel.send(embed=embed) return if command in ['speak', 's', 'connect', 'c', 'view', 'v', 'reset', 'r']: if (len(args) < 1) and command not in ['reset', 'r']: return host = message.author if command in ['reset', 'r']: parameter = '+' else: parameter = args.pop(0) allowed = BOT['true'] + BOT['false'] if parameter not in allowed: parameter = True else: if parameter in BOT['true']: parameter = True elif parameter in BOT['false']: parameter = False if message.mentions: guest = message.mentions[0] else: guest = None if guest: overwrites = get_member_member(host.id, guest.id) if not overwrites: set_member_member(host.id, guest.id) session.commit() if command in ['reset', 'r']: temp_channels = {k: v for k, v in channels.items() if v} for channel in temp_channels: if host == temp_channels[channel]: await channel.set_permissions(guest, overwrite=None) if guest in channel.members: afk_channel = message.guild.get_channel(GUILD['afk_channel_id']) await guest.move_to(afk_channel) await guest.move_to(channel) update_member_member(host.id, guest.id, speak=None, connect=None, view_channel=None) session.commit() elif command in ['speak', 's']: temp_channels = {k: v for k, v in channels.items() if v} for channel in temp_channels: if host == temp_channels[channel]: await channel.set_permissions(guest, speak=parameter) if guest in channel.members: afk_channel = message.guild.get_channel(GUILD['afk_channel_id']) await guest.move_to(afk_channel) await guest.move_to(channel) update_member_member(host.id, guest.id, speak=parameter) session.commit() elif command in ['connect', 'c']: temp_channels = {k: v for k, v in channels.items() if v} for channel in temp_channels: if host == temp_channels[channel]: await channel.set_permissions(guest, connect=parameter) if parameter is False: if guest in channel.members: await guest.move_to(None) update_member_member(host.id, guest.id, connect=parameter) session.commit() elif command in ['view', 'v']: temp_channels = {k: v for k, v in channels.items() if v} for channel in temp_channels: if host == temp_channels[channel]: await channel.set_permissions(guest, view_channel=parameter) if parameter is False: if guest in channel.members: await guest.move_to(None) update_member_member(host.id, guest.id, view_channel=parameter) session.commit() else: if command in ['reset', 'r']: create_channel = message.guild.get_channel(GUILD['create_channel']) update_member(host.id, speak=True, view_channel=True, connect=True, limit=99) update_member_members(host.id) session.commit() try: await host.move_to(create_channel) except discord.errors.HTTPException: return elif command in ['speak', 's']: temp_channels = {k: v for k, v in channels.items() if v} for channel in temp_channels: if host == temp_channels[channel]: await channel.set_permissions(message.guild.default_role, speak=parameter) update_member(host.id, speak=parameter) session.commit() elif command in ['connect', 'c']: temp_channels = {k: v for k, v in channels.items() if v} for channel in temp_channels: if host == temp_channels[channel]: await channel.set_permissions(message.guild.default_role, connect=parameter) update_member(host.id, connect=parameter) session.commit() elif command in ['view', 'v']: temp_channels = {k: v for k, v in channels.items() if v} for channel in temp_channels: if host == temp_channels[channel]: await channel.set_permissions(message.guild.default_role, view_channel=parameter) update_member(host.id, view_channel=parameter) session.commit() if command in ['limit', 'l']: if len(args) < 1: return host = message.author limit_str = args.pop(0) if limit_str.isdigit(): limit = int(limit_str) if isinstance(limit, int): if limit < 0: limit = 0 elif limit > 99: limit = 99 else: return temp_channels = {k: v for k, v in channels.items() if v} for channel in temp_channels: if host == temp_channels[channel]: await channel.edit(user_limit=limit) update_member(host.id, limit=limit) session.commit() if message.author.id == BOT['owner']: if command == 'ban': if message.mentions: to_ban = message.mentions[0] print(to_ban) else: to_ban_id = args.pop(0).strip('<@!>') to_ban = await client.fetch_user(to_ban_id) print(to_ban) if command == 'ban_all': if message.mentions: inviter = message.mentions[0] else: inviter_id = args.pop(0).strip('<@!>') inviter = await client.fetch_user(inviter_id) ban_list = get_invited_list_minutes(inviter.id, datetime.now() - timedelta(minutes=int(args.pop()))) for member_id in ban_list: # member = message.guild.get_member(member_id) member = discord.Object(member_id) print(member) try: await message.channel.send('<@{}> banned'.format(member_id)) await message.guild.ban(member) except discord.errors.NotFound: continue if command == 'eval': # try: code = cleanup_code(' '.join(args)) evaled = eval(code) # print(type(evaled)) if inspect.isawaitable(evaled): await message.channel.send(await evaled) else: await message.channel.send("```{}```".format(evaled)) # except: # print('eval except') # if type(evaled) != if command == 'dateTime': print(date_now.strftime("%A")) elif command == 'addNsfw': members = message.guild.members for member in members: if (date_now - member.created_at).days < 14: await member.add_roles(message.guild.get_role(GUILD['nsfw_id']), reason='nsfw new account') elif command == 'resetPoints': if len(args) > 0: if message.mentions: reset_points_by_id(message.mentions[0].id) else: reset_points_by_id(args[0]) else: print(message.content) return elif command == 'delTopRoles': top_roles = get_top_roles(128) for role_id, in top_roles: print(role_id) role = message.guild.get_role(role_id) await role.delete() return elif command == 'say': await message.channel.send(' '.join(args)) await message.delete() elif command == 'sayhc': message_old = await message.channel.fetch_message(592443154058182686) content = """ **Rangi numeryczne [1, 2, 3 … 128] na liście użytkowników. Co to jest?** Jest to autorski system rankingu aktywności, stworzony na potrzeby tego serwera. **Jak zdobyć własną rangę na liście użytkowników? Sposobów jest kilka:** 1. Aktywność na czacie tekstowym. 2. Przebywanie na kanałach głosowych. 3. Aktywność osób, które zostały przez Ciebie zaproszone (10% wygenerowanego ruchu pojawia się też na Twoim koncie) 4. Nitro Serwer Boost lub Patronite (https://www.patreon.com/zaGadka), zwiększają wszystkie pozostałe bonusy o 25% **Co dostaniesz za zaproszenie nowej osoby na serwer?** (ilość zaproszonych osób `?profile`) 1 osoba ♳ - czarny kolor nicku do końca dnia 2 osoby ♴ - DJ, czyli kontrola nad botami muzycznymi 4 osoby ♵ - możliwość tworzenia własnego kanału głosowego z możliwością mutowania (więcej komend: `?help`) 8+ osób ♶ - +25% punktów do końca dnia 16 osób ♷ - +25% punktów na stałe **32 osoby ✪ - dołączenie do moderacji zagadki na okres próbny** 64+ osoby ♸ - indywidualna ranga, możesz zmieniać jej kolor za pomocą komendy np `?color light blue` do końca dnia 128+ osób ♹ - indywidualna ranga jak wyżej, z tą różnicą że cyklicznie smienia ona wybrane przez Ciebie kolory + oznacza, że w następnym dniu, rola się odświeży po dołączeniu jednej osoby **Jak zmienić kolor nicku?** 1. Wybrać <a:zaGadkaRed:592406448302981149> <a:zaGadkaGreen:592406448315564062> <a:zaGadjaBlue:592406448386998289> za pomocą reakcji widocznych na samym dole 2. Aby otrzymać wyjątkowy, czarny kolor należy boostować serwer, być patronem($2 - czarny, $4 - dowolny), lub zaprosić nową osobę""" await message_old.edit(content=content) elif command == 'everyone': await message.channel.send('@everyone') await message.delete() elif command == 'rgb': message_rgb = await message.channel.send(GUILD['roles_rgb']) await message_rgb.delete() await message.delete() elif command == 'editMessage': message_old = await message.channel.fetch_message(args.pop(0)) content = ' '.join(args) await message_old.edit(content=content) @client.event async def on_member_remove(member): leave_logs = member.guild.get_channel(GUILD['leave_logs_id']) await leave_logs.send('member: {}, display_name: {}'.format(member.mention, member.display_name)) @client.event async def on_ready(): date_now = datetime.now() guild = client.get_guild(GUILD['id']) invites.extend(await guild.invites()) if check_score_by_type('week') is False: set_weeks() if check_role_by_type('top') is False: for i in range(1, GUILD['top'] + 1): print(i) role = await guild.create_role(name=i, hoist=True) set_role(role.id, i, 'top') session.commit() if check_guild_by_id(GUILD['id']) is False: set_guild_by_id(GUILD['id'], date_now) session.commit() # private_category = guild.get_channel(GUILD['private_category']) # for channel in private_category.channels: # if channel.id != GUILD['create_channel']: # await channel.delete() print(client.user.id) print(client.user.name) print('---------------') print('This bot is ready for action!') client.loop.create_task(presence()) client.loop.create_task(minute()) if __name__ == '__main__': try: client.run(BOT['token']) except Exception as e: print('Could Not Start Bot') print(e) finally: print('Closing Session') session.close()
47.211568
157
0.536173
550ad1d4a3a8dc2ba0d0b2f552a896950c473d5d
326
py
Python
portfolio/migrations/0025_remove_data_hits.py
ElmanTr/simple-django-web
07f9b938e42ade4b515cbb8b41364089a5f9f2b1
[ "MIT" ]
1
2020-10-07T14:03:13.000Z
2020-10-07T14:03:13.000Z
portfolio/migrations/0025_remove_data_hits.py
ElmanTr/simple-django-web
07f9b938e42ade4b515cbb8b41364089a5f9f2b1
[ "MIT" ]
null
null
null
portfolio/migrations/0025_remove_data_hits.py
ElmanTr/simple-django-web
07f9b938e42ade4b515cbb8b41364089a5f9f2b1
[ "MIT" ]
null
null
null
# Generated by Django 3.1.2 on 2020-11-22 12:57 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('portfolio', '0024_auto_20201115_1919'), ] operations = [ migrations.RemoveField( model_name='data', name='hits', ), ]
18.111111
49
0.588957
efa1ecf696ba58ce944e26cc3a9ac3069b8628d9
898
py
Python
azure-keyvault/azure/keyvault/models/deleted_key_item_paged.py
v-Ajnava/azure-sdk-for-python
a1f6f80eb5869c5b710e8bfb66146546697e2a6f
[ "MIT" ]
4
2016-06-17T23:25:29.000Z
2022-03-30T22:37:45.000Z
azure/keyvault/models/deleted_key_item_paged.py
EnjoyLifeFund/Debian_py36_packages
1985d4c73fabd5f08f54b922e73a9306e09c77a5
[ "BSD-3-Clause", "BSD-2-Clause", "MIT" ]
54
2016-03-25T17:25:01.000Z
2018-10-22T17:27:54.000Z
azure/keyvault/models/deleted_key_item_paged.py
EnjoyLifeFund/Debian_py36_packages
1985d4c73fabd5f08f54b922e73a9306e09c77a5
[ "BSD-3-Clause", "BSD-2-Clause", "MIT" ]
3
2016-05-03T20:49:46.000Z
2017-10-05T21:05:27.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.paging import Paged class DeletedKeyItemPaged(Paged): """ A paging container for iterating over a list of DeletedKeyItem object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[DeletedKeyItem]'} } def __init__(self, *args, **kwargs): super(DeletedKeyItemPaged, self).__init__(*args, **kwargs)
32.071429
76
0.569042
292fc2dba5da6be1968db15edb858c98bf0c8afe
178
py
Python
kuwala/common/python_utils/src/error_handler.py
SamDuan/kuwala
b417444493b3efcde33747e201b5d0bf13f8e14a
[ "Apache-2.0" ]
null
null
null
kuwala/common/python_utils/src/error_handler.py
SamDuan/kuwala
b417444493b3efcde33747e201b5d0bf13f8e14a
[ "Apache-2.0" ]
null
null
null
kuwala/common/python_utils/src/error_handler.py
SamDuan/kuwala
b417444493b3efcde33747e201b5d0bf13f8e14a
[ "Apache-2.0" ]
null
null
null
from quart import jsonify def general_error(error): return ( jsonify({"success": False, "error": {"message": error.description}}), error.status_code, )
19.777778
77
0.629213
2a30357973cd0fcb2a9e8dbb88984bfc75364b0d
213
py
Python
tests/src/__init__.py
char-lie/software_design
8784cc5f4dea1e1290f8e3ea0425677d1cbeb273
[ "MIT" ]
null
null
null
tests/src/__init__.py
char-lie/software_design
8784cc5f4dea1e1290f8e3ea0425677d1cbeb273
[ "MIT" ]
4
2016-02-23T14:27:43.000Z
2016-02-24T19:08:46.000Z
tests/src/__init__.py
char-lie/software_design
8784cc5f4dea1e1290f8e3ea0425677d1cbeb273
[ "MIT" ]
null
null
null
from unittest import defaultTestLoader from TransactionManager import TransactionManagerBase test_cases = [TransactionManagerBase] tests = [defaultTestLoader.loadTestsFromTestCase(test) for test in test_cases]
26.625
78
0.859155
ca3c2a8823ade1d2385c16ae7794f178282abe61
407
py
Python
torch/distributed/pipeline/sync/__init__.py
MagiaSN/pytorch
7513455c743d3d644b45a804902c1a0d14b69f45
[ "Intel" ]
7
2021-05-29T16:31:51.000Z
2022-02-21T18:52:25.000Z
torch/distributed/pipeline/sync/__init__.py
MagiaSN/pytorch
7513455c743d3d644b45a804902c1a0d14b69f45
[ "Intel" ]
1
2022-01-18T12:17:29.000Z
2022-01-18T12:17:29.000Z
torch/distributed/pipeline/sync/__init__.py
MagiaSN/pytorch
7513455c743d3d644b45a804902c1a0d14b69f45
[ "Intel" ]
2
2021-07-02T10:18:21.000Z
2021-08-18T10:10:28.000Z
# Copyright 2019 Kakao Brain # # Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. """A Pipe implementation in PyTorch.""" from .checkpoint import is_checkpointing, is_recomputing from .pipe import Pipe __all__ = ["Pipe", "is_checkpointing", "is_recomputing"]
33.916667
71
0.764128
21913d1641940905c07a6732a1068b272a202e65
774
py
Python
get_baseline_auc.py
helmersl/patent_similarity_search
8d6833607a58257a4e4b2c2c0ce58472d248805a
[ "CC-BY-4.0" ]
36
2018-12-10T08:08:21.000Z
2022-03-12T21:55:43.000Z
get_baseline_auc.py
helmersl/patent_similarity_search
8d6833607a58257a4e4b2c2c0ce58472d248805a
[ "CC-BY-4.0" ]
3
2019-07-18T05:01:02.000Z
2021-04-20T14:58:16.000Z
get_baseline_auc.py
helmersl/patent_similarity_search
8d6833607a58257a4e4b2c2c0ce58472d248805a
[ "CC-BY-4.0" ]
10
2018-08-09T05:10:19.000Z
2021-12-23T05:40:28.000Z
import numpy as np from plot_utils import plot_score_distr, group_combis, calc_auc binary_label_pairs = np.load('human_eval/corpus_info/binary_label_pairs.npy').item() human_label_pairs = np.load('human_eval/corpus_info/human_label_pairs.npy').item() combis = np.load('human_eval/corpus_info/combis.npy') human_sim_combis, human_diff_combis = group_combis(human_label_pairs) sim_vals = [binary_label_pairs[combi] for combi in human_sim_combis] diff_vals = [binary_label_pairs[combi] for combi in human_diff_combis] fpr, tpr, auc_val = calc_auc(sim_vals, diff_vals) plot_score_distr('human_eval', 'cited', ['relevant', 'not relevant'], {'relevant': sim_vals, 'not relevant': diff_vals}, auc_val, ['relevant'], histdir='baseline', bins=10)
55.285714
84
0.760982
34c3574c5179689640e3901e226c4b79f06968db
2,257
py
Python
tests/unit_testing/test_argument.py
pengzhengyi/Streamlined
59743f44e349318e51e1db4e72c7d1b5992f25be
[ "MIT" ]
null
null
null
tests/unit_testing/test_argument.py
pengzhengyi/Streamlined
59743f44e349318e51e1db4e72c7d1b5992f25be
[ "MIT" ]
5
2021-09-11T07:46:55.000Z
2022-03-12T02:03:54.000Z
tests/unit_testing/test_argument.py
pengzhengyi/Streamlined
59743f44e349318e51e1db4e72c7d1b5992f25be
[ "MIT" ]
null
null
null
from unittest.mock import Mock import pytest from streamlined.common import TYPE, VALUE from streamlined.middlewares import ( ARGPARSE, ARGS, ARGTYPE, ARGUMENT, ARGUMENTS, CLEANUP, NAME, SKIP, Argument, Arguments, ) @pytest.mark.asyncio async def test_argument_set_in_scope(simple_executor): argument = Argument({ARGUMENT: {NAME: "first_name", VALUE: "Alice"}}) scoped = await argument.run(simple_executor) assert scoped["first_name"] == "Alice" @pytest.mark.asyncio async def test_argument_skip(simple_executor): argument = Argument({ARGUMENT: {NAME: "first_name", VALUE: "Alice", SKIP: True}}) scoped = await argument.run(simple_executor) with pytest.raises(KeyError): scoped["first_name"] @pytest.mark.asyncio async def test_argument_set_after_action(simple_executor): mock = Mock() def is_name_set(name) -> str: mock(name) argument = Argument({ARGUMENT: {NAME: "name", VALUE: "Alice", CLEANUP: is_name_set}}) scoped = await argument.run(simple_executor) mock.assert_called_once_with("Alice") @pytest.mark.asyncio async def test_argument_argparse(simple_executor): argument = Argument( { ARGUMENT: { NAME: "num_processors", VALUE: {TYPE: ARGPARSE, NAME: "-p", ARGTYPE: int, ARGS: ["-p", "10", "--help"]}, } } ) scoped = await argument.run(simple_executor) assert scoped.get("num_processors") == 10 @pytest.mark.asyncio async def test_argument_argparse_parsed_argument_not_present(simple_executor): argument = Argument( { ARGUMENT: { NAME: "num_processors", VALUE: {TYPE: ARGPARSE, NAME: "-p", ARGTYPE: int, ARGS: ["--foo"]}, } } ) scoped = await argument.run(simple_executor) assert scoped.get("num_processors") is None @pytest.mark.asyncio async def test_arguments_set_in_scope(simple_executor): arguments = Arguments( {ARGUMENTS: [{NAME: "first_name", VALUE: "John"}, {NAME: "last_name", VALUE: "Doe"}]} ) scoped = await arguments.run(simple_executor) assert scoped["first_name"] == "John" assert scoped["last_name"] == "Doe"
25.359551
96
0.648206
06d6ceb93d922c8230fd50384732f9651b40abd3
10,987
py
Python
basil/web/oauth2.py
stmobo/BasilBot
96497786dc9ad6604ade47cac1ad101084da2346
[ "MIT" ]
null
null
null
basil/web/oauth2.py
stmobo/BasilBot
96497786dc9ad6604ade47cac1ad101084da2346
[ "MIT" ]
null
null
null
basil/web/oauth2.py
stmobo/BasilBot
96497786dc9ad6604ade47cac1ad101084da2346
[ "MIT" ]
null
null
null
from __future__ import annotations from aiohttp import ClientSession, ClientResponse, ClientResponseError from aioredis import Redis, RedisError import logging import secrets import time from typing import Optional, Dict, Iterable, Union, Tuple from urllib.parse import urljoin, urlencode from sanic import Sanic from sanic.request import Request from sanic.response import redirect, HTTPResponse from sanic.exceptions import InvalidUsage, ServerError STATE_START = "unauthenticated" STATE_INPROGRESS = "in-progress" STATE_AUTHORIZED = "authorized" REDIS_BASE_PREFIX = "sessions:auth" app = Sanic.get_app("basil") class OAuth2API(object): def __init__( self, authorize_url: str, token_url: str, revoke_url: str, redirect_url: str, client_id: str, client_secret: str, prefix: str, ): self.authorize_url: str = authorize_url self.token_url: str = token_url self.revoke_url: str = revoke_url self.redirect_url: str = redirect_url self.client_id: str = client_id self.client_secret: str = client_secret self.prefix: str = prefix def authorization_url(self, nonce: str, scopes: str, **kwargs) -> str: qstring = urlencode( { "client_id": self.client_id, "redirect_uri": self.redirect_url, "response_type": "code", "state": nonce, "scope": scopes, **kwargs, } ) return urljoin(self.authorize_url, "?" + qstring) async def exchange_code( self, session: ClientSession, scopes: str, code: str ) -> ClientResponse: headers = {"Content-Type": "application/x-www-form-urlencoded"} data = { "client_id": self.client_id, "client_secret": self.client_secret, "redirect_uri": self.redirect_url, "scope": scopes, "grant_type": "authorization_code", "code": code, } return await session.post( self.token_url, data=data, headers=headers, raise_for_status=True ) async def refresh_token( self, session: ClientSession, scopes: str, refresh_token: str ) -> ClientResponse: headers = {"Content-Type": "application/x-www-form-urlencoded"} data = { "client_id": self.client_id, "client_secret": self.client_secret, "redirect_uri": self.redirect_url, "scope": scopes, "grant_type": "refresh_token", "refresh_token": refresh_token, } return await session.post( self.token_url, data=data, headers=headers, raise_for_status=True ) async def revoke_token(self, session: ClientSession, token: str) -> ClientResponse: headers = {"Content-Type": "application/x-www-form-urlencoded"} data = { "token": token, "client_id": self.client_id, "client_secret": self.client_secret, } return await session.post( self.revoke_url, data=data, headers=headers, raise_for_status=True ) async def load_request_context(self, req: Request) -> OAuth2Context: return await OAuth2Context.load( req.ctx.session, app.ctx.http_session, app.ctx.redis, self ) class OAuth2Context(object): def __init__( self, session_id: str, http_session: ClientSession, redis: Redis, api: OAuth2API, **kwargs ): self.session_id = session_id self.http = http_session self.redis = redis self.api = api self.state: str = kwargs.get("state", STATE_START) self.nonce: Optional[str] = kwargs.get("nonce") self.landing_page: Optional[str] = kwargs.get("landing") self.scopes: Optional[str] = kwargs.get("scopes") self.access_token: Optional[str] = kwargs.get("access_token") self.token_type: Optional[str] = kwargs.get("token_type") self.refresh_token: Optional[str] = kwargs.get("refresh_token") self.expire_time: Optional[float] = None if "expire_time" in kwargs: self.expire_time = float(kwargs["expire_time"]) @property def auth_data_key(self) -> str: return REDIS_BASE_PREFIX + ":" + self.api.prefix + ":" + self.session_id @property def expire_in(self) -> float: if self.expire_time is None: return 0 return self.expire_time - time.time() @staticmethod def generate_nonce() -> str: return secrets.token_urlsafe(16) @classmethod async def load( cls, session_id: str, http_session: ClientSession, redis: Redis, api: OAuth2API ) -> OAuth2Context: data = await redis.hgetall( REDIS_BASE_PREFIX + ":" + api.prefix + ":" + session_id ) if data is None: data = {} return cls(session_id, http_session, redis, api, **data) async def reset(self): """Completely reset all state associated with this context.""" if self.access_token is not None and self.expire_in > 0: try: resp = await self.api.revoke_token(self.http, self.access_token) async with resp: msg = await resp.text() logging.info( "Revoked token for session {}: {}".format(self.session_id, msg) ) except ClientResponseError: logging.error( "Could not revoke token for session {}".format(self.session_id), exc_info=True, ) try: await self.redis.delete(self.auth_data_key) except RedisError: logging.error( "Could not delete Redis key {} for session {}".format( self.auth_data_key, self.session_id ), exc_info=True, ) self.access_token = None self.token_type = None self.refresh_token = None self.expire_time = None self.nonce = None self.landing_page = None self.scopes = None self.state = STATE_START async def start( self, scopes: Union[str, Iterable[str]], landing_page: str, **kwargs ) -> HTTPResponse: """Begin an OAuth2 client authentication flow.""" if isinstance(scopes, str): scopes = scopes.split() else: scopes = list(scopes) await self.reset() self.scopes = " ".join(scopes) self.nonce = self.generate_nonce() self.landing_page = landing_page self.state = STATE_INPROGRESS async with self.redis.pipeline(transaction=True) as tr: tr.hmset( self.auth_data_key, { "state": STATE_INPROGRESS, "nonce": self.nonce, "scopes": self.scopes, "landing": landing_page, }, ) tr.expire(self.auth_data_key, 900) await tr.execute() return redirect( self.api.authorization_url(self.nonce, self.scopes, **kwargs), status=303 ) async def _save_token(self, resp: ClientResponse): async with resp: token_data: dict = await resp.json() self.access_token = token_data["access_token"] self.token_type = token_data["token_type"] self.refresh_token = token_data.get("refresh_token") self.expire_time = time.time() + token_data["expires_in"] if "scope" in token_data: self.scopes = token_data["scope"] try: async with self.redis.pipeline(transaction=True) as tr: tr.hmset( self.auth_data_key, { "state": STATE_AUTHORIZED, "access_token": self.access_token, "token_type": self.token_type, "refresh_token": self.refresh_token, "expire_time": str(self.expire_time), "scopes": self.scopes, }, ) tr.hdel(self.auth_data_key, "nonce", "landing") tr.expireat(self.auth_data_key, int(self.expire_time)) await tr.execute() except RedisError: raise ServerError("Could not save authorization data to Redis") async def redirect(self, code: str, state_param: str) -> HTTPResponse: """Handle an authorization redirection in the OAuth2 flow.""" if self.state != STATE_INPROGRESS: raise ServerError( "Authorization flow in incorrect state for handling redirect" ) if self.nonce != state_param: raise InvalidUsage("Incorrect state parameter in redirect") try: resp = await self.api.exchange_code(self.http, self.scopes, code) except ClientResponseError as err: raise ServerError( "Could not get access token (error {}): {}".format( err.status, err.message ) ) await self._save_token(resp) return redirect(self.landing_page, status=303) async def refresh(self): """Refresh the access token associated with this context.""" if self.state != STATE_AUTHORIZED: return try: resp = await self.api.refresh_token( self.http, self.scopes, self.refresh_token ) except ClientResponseError as err: raise ServerError( "Could not get access token (error {}): {}".format( err.status, err.message ) ) await self._save_token(resp) async def credentials(self) -> Optional[Tuple[str, str]]: """Get the access token and its type, refreshing as necessary. If the token is close to expiring, it will automatically be refreshed. If the token has expired or has not been obtained yet, returns None. """ if self.state != STATE_AUTHORIZED: return None if self.expire_in <= 0: await self.reset() return None elif self.expire_in <= 86400: await self.refresh() if self.token_type is None or self.access_token is None: return None return (self.token_type, self.access_token) async def auth_header(self) -> Optional[Dict[str, str]]: """Get the HTTP headers used for authorizing requests in this context.""" creds = await self.credentials() if creds is None: return None return {"Authorization": creds[0] + " " + creds[1]}
34.01548
87
0.572859
d354efd0fbdfa0802f732396a8841b6eccb09145
320
py
Python
2_viewing_chain.py
gadsater/blockchain
c22ced0a8b1f5ff01cd928c4e79191f773684238
[ "MIT" ]
2
2018-10-16T10:15:57.000Z
2019-03-24T05:45:00.000Z
2_viewing_chain.py
sudar-coder321/BlockChain_For_TKnow
278e5d7ea9d34e7acfe795c561fc5fa906c9c8c0
[ "MIT" ]
1
2018-10-16T10:33:47.000Z
2018-10-16T10:33:47.000Z
2_viewing_chain.py
sudar-coder321/BlockChain_For_TKnow
278e5d7ea9d34e7acfe795c561fc5fa906c9c8c0
[ "MIT" ]
1
2018-10-14T16:03:05.000Z
2018-10-14T16:03:05.000Z
from blockchain import Blockchain if __name__ == '__main__': testchain = Blockchain() for i in range(5): proof = testchain.proof_of_work(testchain.last_block) hashval = testchain.hash(testchain.last_block) block = testchain.new_block(proof,hashval) print (*testchain.chain,sep="\n")
32
61
0.69375
6bc162cb1a22247d03e3efa9d9b015db7d994fbd
9,779
py
Python
stubs.min/System/Windows/Media/__init___parts/SkewTransform.py
ricardyn/ironpython-stubs
4d2b405eda3ceed186e8adca55dd97c332c6f49d
[ "MIT" ]
1
2021-02-02T13:39:16.000Z
2021-02-02T13:39:16.000Z
stubs.min/System/Windows/Media/__init___parts/SkewTransform.py
hdm-dt-fb/ironpython-stubs
4d2b405eda3ceed186e8adca55dd97c332c6f49d
[ "MIT" ]
null
null
null
stubs.min/System/Windows/Media/__init___parts/SkewTransform.py
hdm-dt-fb/ironpython-stubs
4d2b405eda3ceed186e8adca55dd97c332c6f49d
[ "MIT" ]
null
null
null
class SkewTransform(Transform,ISealable,IAnimatable,IResource,IFormattable): """ Represents a 2-D�skew. SkewTransform() SkewTransform(angleX: float,angleY: float) SkewTransform(angleX: float,angleY: float,centerX: float,centerY: float) """ def Clone(self): """ Clone(self: SkewTransform) -> SkewTransform Creates a modifiable copy of this System.Windows.Media.SkewTransform by making deep copies of its values. Returns: A modifiable deep copy of the current object. The System.Windows.Freezable.IsFrozen property of the cloned object returns false even if the System.Windows.Freezable.IsFrozen property of the source is true. """ pass def CloneCore(self,*args): """ CloneCore(self: Freezable,sourceFreezable: Freezable) Makes the instance a clone (deep copy) of the specified System.Windows.Freezable using base (non-animated) property values. sourceFreezable: The object to clone. """ pass def CloneCurrentValue(self): """ CloneCurrentValue(self: SkewTransform) -> SkewTransform Creates a modifiable copy of this System.Windows.Media.SkewTransform object by making deep copies of its values. This method does not copy resource references,data bindings,or animations,although it does copy their current values. Returns: A modifiable deep copy of the current object. The System.Windows.Freezable.IsFrozen property of the cloned object is false even if the System.Windows.Freezable.IsFrozen property of the source is true. """ pass def CloneCurrentValueCore(self,*args): """ CloneCurrentValueCore(self: Freezable,sourceFreezable: Freezable) Makes the instance a modifiable clone (deep copy) of the specified System.Windows.Freezable using current property values. sourceFreezable: The System.Windows.Freezable to be cloned. """ pass def CreateInstance(self,*args): """ CreateInstance(self: Freezable) -> Freezable Initializes a new instance of the System.Windows.Freezable class. Returns: The new instance. """ pass def CreateInstanceCore(self,*args): """ CreateInstanceCore(self: SkewTransform) -> Freezable """ pass def FreezeCore(self,*args): """ FreezeCore(self: Animatable,isChecking: bool) -> bool Makes this System.Windows.Media.Animation.Animatable object unmodifiable or determines whether it can be made unmodifiable. isChecking: true if this method should simply determine whether this instance can be frozen. false if this instance should actually freeze itself when this method is called. Returns: If isChecking is true,this method returns true if this System.Windows.Media.Animation.Animatable can be made unmodifiable,or false if it cannot be made unmodifiable. If isChecking is false,this method returns true if the if this System.Windows.Media.Animation.Animatable is now unmodifiable,or false if it cannot be made unmodifiable,with the side effect of having begun to change the frozen status of this object. """ pass def GetAsFrozenCore(self,*args): """ GetAsFrozenCore(self: Freezable,sourceFreezable: Freezable) Makes the instance a frozen clone of the specified System.Windows.Freezable using base (non-animated) property values. sourceFreezable: The instance to copy. """ pass def GetCurrentValueAsFrozenCore(self,*args): """ GetCurrentValueAsFrozenCore(self: Freezable,sourceFreezable: Freezable) Makes the current instance a frozen clone of the specified System.Windows.Freezable. If the object has animated dependency properties, their current animated values are copied. sourceFreezable: The System.Windows.Freezable to copy and freeze. """ pass def OnChanged(self,*args): """ OnChanged(self: Freezable) Called when the current System.Windows.Freezable object is modified. """ pass def OnFreezablePropertyChanged(self,*args): """ OnFreezablePropertyChanged(self: Freezable,oldValue: DependencyObject,newValue: DependencyObject,property: DependencyProperty) This member supports the Windows Presentation Foundation (WPF) infrastructure and is not intended to be used directly from your code. oldValue: The previous value of the data member. newValue: The current value of the data member. property: The property that changed. OnFreezablePropertyChanged(self: Freezable,oldValue: DependencyObject,newValue: DependencyObject) Ensures that appropriate context pointers are established for a System.Windows.DependencyObjectType data member that has just been set. oldValue: The previous value of the data member. newValue: The current value of the data member. """ pass def OnPropertyChanged(self,*args): """ OnPropertyChanged(self: Freezable,e: DependencyPropertyChangedEventArgs) Overrides the System.Windows.DependencyObject implementation of System.Windows.DependencyObject.OnPropertyChanged(System.Windows.DependencyPrope rtyChangedEventArgs) to also invoke any System.Windows.Freezable.Changed handlers in response to a changing dependency property of type System.Windows.Freezable. e: Event data that contains information about which property changed,and its old and new values. """ pass def ReadPreamble(self,*args): """ ReadPreamble(self: Freezable) Ensures that the System.Windows.Freezable is being accessed from a valid thread. Inheritors of System.Windows.Freezable must call this method at the beginning of any API that reads data members that are not dependency properties. """ pass def ShouldSerializeProperty(self,*args): """ ShouldSerializeProperty(self: DependencyObject,dp: DependencyProperty) -> bool Returns a value that indicates whether serialization processes should serialize the value for the provided dependency property. dp: The identifier for the dependency property that should be serialized. Returns: true if the dependency property that is supplied should be value-serialized; otherwise,false. ShouldSerializeProperty(self: Window_16$17,dp: DependencyProperty) -> bool ShouldSerializeProperty(self: Label_17$18,dp: DependencyProperty) -> bool ShouldSerializeProperty(self: TextBox_18$19,dp: DependencyProperty) -> bool ShouldSerializeProperty(self: Button_19$20,dp: DependencyProperty) -> bool ShouldSerializeProperty(self: CheckBox_20$21,dp: DependencyProperty) -> bool ShouldSerializeProperty(self: ComboBox_21$22,dp: DependencyProperty) -> bool ShouldSerializeProperty(self: Separator_22$23,dp: DependencyProperty) -> bool """ pass def WritePostscript(self,*args): """ WritePostscript(self: Freezable) Raises the System.Windows.Freezable.Changed event for the System.Windows.Freezable and invokes its System.Windows.Freezable.OnChanged method. Classes that derive from System.Windows.Freezable should call this method at the end of any API that modifies class members that are not stored as dependency properties. """ pass def WritePreamble(self,*args): """ WritePreamble(self: Freezable) Verifies that the System.Windows.Freezable is not frozen and that it is being accessed from a valid threading context. System.Windows.Freezable inheritors should call this method at the beginning of any API that writes to data members that are not dependency properties. """ pass def __format__(self,*args): """ __format__(formattable: IFormattable,format: str) -> str """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass @staticmethod def __new__(self,angleX=None,angleY=None,centerX=None,centerY=None): """ __new__(cls: type) __new__(cls: type,angleX: float,angleY: float) __new__(cls: type,angleX: float,angleY: float,centerX: float,centerY: float) """ pass def __str__(self,*args): pass AngleX=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets or sets the x-axis skew angle,which is measured in degrees counterclockwise from the y-axis. Get: AngleX(self: SkewTransform) -> float Set: AngleX(self: SkewTransform)=value """ AngleY=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets or sets the y-axis skew angle,which is measured in degrees counterclockwise from the x-axis. Get: AngleY(self: SkewTransform) -> float Set: AngleY(self: SkewTransform)=value """ CenterX=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets or sets the x-coordinate of the transform center. Get: CenterX(self: SkewTransform) -> float Set: CenterX(self: SkewTransform)=value """ CenterY=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets or sets the y-coordinate of the transform center. Get: CenterY(self: SkewTransform) -> float Set: CenterY(self: SkewTransform)=value """ Value=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets the current transformation value as a System.Windows.Media.Matrix. Get: Value(self: SkewTransform) -> Matrix """ AngleXProperty=None AngleYProperty=None CenterXProperty=None CenterYProperty=None
38.199219
215
0.722262
151479260ee96c8163f1b3916b969be1b6582bd4
56,278
py
Python
components/isceobj/Alos2Proc/Alos2ProcPublic.py
yuankailiu/isce2
c2567a33b3f96cc264f49972682c869fa36b9054
[ "ECL-2.0", "Apache-2.0" ]
1,133
2022-01-07T21:24:57.000Z
2022-01-07T21:33:08.000Z
components/isceobj/Alos2Proc/Alos2ProcPublic.py
yuankailiu/isce2
c2567a33b3f96cc264f49972682c869fa36b9054
[ "ECL-2.0", "Apache-2.0" ]
276
2019-02-10T07:18:28.000Z
2022-03-31T21:45:55.000Z
components/isceobj/Alos2Proc/Alos2ProcPublic.py
yuankailiu/isce2
c2567a33b3f96cc264f49972682c869fa36b9054
[ "ECL-2.0", "Apache-2.0" ]
235
2019-02-10T05:00:53.000Z
2022-03-18T07:37:24.000Z
#!/usr/bin/env python3 # # Author: Cunren Liang # Copyright 2015-present, NASA-JPL/Caltech # def runCmd(cmd, silent=0): import os if silent == 0: print("{}".format(cmd)) status = os.system(cmd) if status != 0: raise Exception('error when running:\n{}\n'.format(cmd)) def find_vrt_keyword(xmlfile, keyword): from xml.etree.ElementTree import ElementTree value = None xmlx = ElementTree(file=open(xmlfile,'r')).getroot() #try 10 times for i in range(10): path='' for j in range(i): path += '*/' value0 = xmlx.find(path+keyword) if value0 != None: value = value0.text break return value def find_vrt_file(xmlfile, keyword, relative_path=True): ''' find file in vrt in another directory xmlfile: vrt file relative_path: True: return relative (to current directory) path of the file False: return absolute path of the file ''' import os #get absolute directory of xmlfile xmlfile_dir = os.path.dirname(os.path.abspath(xmlfile)) #find source file path file = find_vrt_keyword(xmlfile, keyword) #get absolute path of source file file = os.path.abspath(os.path.join(xmlfile_dir, file)) #get relative path of source file if relative_path: file = os.path.relpath(file, './') return file def create_xml(fileName, width, length, fileType): import isceobj if fileType == 'slc': image = isceobj.createSlcImage() elif fileType == 'int': image = isceobj.createIntImage() elif fileType == 'amp': image = isceobj.createAmpImage() elif fileType == 'cor': image = isceobj.createOffsetImage() elif fileType == 'rmg' or fileType == 'unw': image = isceobj.Image.createUnwImage() elif fileType == 'byte': image = isceobj.createImage() image.setDataType('BYTE') elif fileType == 'float': image = isceobj.createImage() image.setDataType('FLOAT') elif fileType == 'double': image = isceobj.createImage() image.setDataType('DOUBLE') else: raise Exception('format not supported yet!\n') image.setFilename(fileName) image.extraFilename = fileName + '.vrt' image.setWidth(width) image.setLength(length) #image.setAccessMode('read') #image.createImage() image.renderHdr() #image.finalizeImage() def multilook_v1(data, nalks, nrlks, mean=True): ''' doing multiple looking ATTENSION: original array changed after running this function ''' (length, width)=data.shape width2 = int(width/nrlks) length2 = int(length/nalks) for i in range(1, nalks): data[0:length2*nalks:nalks, :] += data[i:length2*nalks:nalks, :] for i in range(1, nrlks): data[0:length2*nalks:nalks, 0:width2*nrlks:nrlks] += data[0:length2*nalks:nalks, i:width2*nrlks:nrlks] if mean: return data[0:length2*nalks:nalks, 0:width2*nrlks:nrlks] / nrlks / nalks else: return data[0:length2*nalks:nalks, 0:width2*nrlks:nrlks] def multilook(data, nalks, nrlks, mean=True): ''' doing multiple looking ''' import numpy as np (length, width)=data.shape width2 = int(width/nrlks) length2 = int(length/nalks) data2=np.zeros((length2, width), dtype=data.dtype) for i in range(0, nalks): data2 += data[i:length2*nalks:nalks, :] for i in range(1, nrlks): data2[:, 0:width2*nrlks:nrlks] += data2[:, i:width2*nrlks:nrlks] if mean: return data2[:, 0:width2*nrlks:nrlks] / nrlks / nalks else: return data2[:, 0:width2*nrlks:nrlks] def cal_coherence_1(inf, win=5): ''' Compute coherence using scipy convolve 2D. Same as "def cal_coherence(inf, win=5):" in funcs.py in insarzd #still use standard coherence estimation equation, but with magnitude removed. #for example, equation (2) in #H. Zebker and K. Chen, Accurate Estimation of Correlation in InSAR Observations, #IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 2, NO. 2, APRIL 2005. ''' import numpy as np import scipy.signal as ss filt = np.ones((win,win))/ (1.0*win*win) flag = ss.convolve2d((inf!=0), filt, mode='same') angle = inf / (np.absolute(inf)+(inf==0)) cor = ss.convolve2d(angle, filt, mode='same') cor = np.absolute(cor) #remove incomplete convolution result cor[np.nonzero(flag < 0.999)] = 0.0 #print(np.max(cor), np.min(cor)) #cor.astype(np.float32).tofile(f) return cor def computeOffsetFromOrbit(referenceSwath, referenceTrack, secondarySwath, secondaryTrack, referenceSample, referenceLine): ''' compute range and azimuth offsets using orbit. all range/azimuth indexes start with 0 referenceSample: reference sample where offset is computed, no need to be integer referenceLine: reference line where offset is computed, no need to be integer ''' import datetime pointingDirection = {'right': -1, 'left' :1} #compute a pair of range and azimuth offsets using geometry #using Piyush's code for computing range and azimuth offsets midRange = referenceSwath.startingRange + referenceSwath.rangePixelSize * referenceSample midSensingStart = referenceSwath.sensingStart + datetime.timedelta(seconds = referenceLine / referenceSwath.prf) llh = referenceTrack.orbit.rdr2geo(midSensingStart, midRange, side=pointingDirection[referenceTrack.pointingDirection]) slvaz, slvrng = secondaryTrack.orbit.geo2rdr(llh, side=pointingDirection[referenceTrack.pointingDirection]) ###Translate to offsets #at this point, secondary range pixel size and prf should be the same as those of reference rgoff = ((slvrng - secondarySwath.startingRange) / referenceSwath.rangePixelSize) - referenceSample azoff = ((slvaz - secondarySwath.sensingStart).total_seconds() * referenceSwath.prf) - referenceLine return (rgoff, azoff) def overlapFrequency(centerfreq1, bandwidth1, centerfreq2, bandwidth2): startfreq1 = centerfreq1 - bandwidth1 / 2.0 endingfreq1 = centerfreq1 + bandwidth1 / 2.0 startfreq2 = centerfreq2 - bandwidth2 / 2.0 endingfreq2 = centerfreq2 + bandwidth2 / 2.0 overlapfreq = [] if startfreq2 <= startfreq1 <= endingfreq2: overlapfreq.append(startfreq1) if startfreq2 <= endingfreq1 <= endingfreq2: overlapfreq.append(endingfreq1) if startfreq1 < startfreq2 < endingfreq1: overlapfreq.append(startfreq2) if startfreq1 < endingfreq2 < endingfreq1: overlapfreq.append(endingfreq2) if len(overlapfreq) != 2: #no overlap bandwidth return None else: startfreq = min(overlapfreq) endingfreq = max(overlapfreq) return [startfreq, endingfreq] def readOffset(filename): from isceobj.Location.Offset import OffsetField,Offset with open(filename, 'r') as f: lines = f.readlines() # 0 1 2 3 4 5 6 7 #retstr = "%s %s %s %s %s %s %s %s" % (self.x,self.dx,self.y,self.dy,self.snr, self.sigmax, self.sigmay, self.sigmaxy) offsets = OffsetField() for linex in lines: #linexl = re.split('\s+', linex) #detect blank lines with only spaces and tabs if linex.strip() == '': continue linexl = linex.split() offset = Offset() #offset.setCoordinate(int(linexl[0]),int(linexl[2])) offset.setCoordinate(float(linexl[0]),float(linexl[2])) offset.setOffset(float(linexl[1]),float(linexl[3])) offset.setSignalToNoise(float(linexl[4])) offset.setCovariance(float(linexl[5]),float(linexl[6]),float(linexl[7])) offsets.addOffset(offset) return offsets def writeOffset(offset, fileName): offsetsPlain = '' for offsetx in offset: offsetsPlainx = "{}".format(offsetx) offsetsPlainx = offsetsPlainx.split() offsetsPlain = offsetsPlain + "{:8d} {:10.3f} {:8d} {:12.3f} {:11.5f} {:11.6f} {:11.6f} {:11.6f}\n".format( int(float(offsetsPlainx[0])), float(offsetsPlainx[1]), int(float(offsetsPlainx[2])), float(offsetsPlainx[3]), float(offsetsPlainx[4]), float(offsetsPlainx[5]), float(offsetsPlainx[6]), float(offsetsPlainx[7]) ) offsetFile = fileName with open(offsetFile, 'w') as f: f.write(offsetsPlain) def reformatGeometricalOffset(rangeOffsetFile, azimuthOffsetFile, reformatedOffsetFile, rangeStep=1, azimuthStep=1, maximumNumberOfOffsets=10000): ''' reformat geometrical offset as ampcor output format ''' import numpy as np import isceobj img = isceobj.createImage() img.load(rangeOffsetFile+'.xml') width = img.width length = img.length step = int(np.sqrt(width*length/maximumNumberOfOffsets) + 0.5) if step == 0: step = 1 rgoff = np.fromfile(rangeOffsetFile, dtype=np.float32).reshape(length, width) azoff = np.fromfile(azimuthOffsetFile, dtype=np.float32).reshape(length, width) offsetsPlain = '' for i in range(0, length, step): for j in range(0, width, step): if (rgoff[i][j] == -999999.0) or (azoff[i][j] == -999999.0): continue offsetsPlain = offsetsPlain + "{:8d} {:10.3f} {:8d} {:12.3f} {:11.5f} {:11.6f} {:11.6f} {:11.6f}\n".format( int(j*rangeStep+1), float(rgoff[i][j])*rangeStep, int(i*azimuthStep+1), float(azoff[i][j])*azimuthStep, float(22.00015), float(0.000273), float(0.002126), float(0.000013) ) with open(reformatedOffsetFile, 'w') as f: f.write(offsetsPlain) return def cullOffsets(offsets): import isceobj from iscesys.StdOEL.StdOELPy import create_writer distances = (10,5,3,3,3,3,3,3) #numCullOffsetsLimits = (100, 75, 50, 50, 50, 50, 50, 50) numCullOffsetsLimits = (50, 40, 30, 30, 30, 30, 30, 30) refinedOffsets = offsets for i, (distance, numCullOffsetsLimit) in enumerate(zip(distances, numCullOffsetsLimits)): cullOff = isceobj.createOffoutliers() cullOff.wireInputPort(name='offsets', object=refinedOffsets) cullOff.setSNRThreshold(2.0) cullOff.setDistance(distance) #set the tag used in the outfile. each message is precided by this tag #is the writer is not of "file" type the call has no effect stdWriter = create_writer("log", "", True, filename="offoutliers.log") stdWriter.setFileTag("offoutliers", "log") stdWriter.setFileTag("offoutliers", "err") stdWriter.setFileTag("offoutliers", "out") cullOff.setStdWriter(stdWriter) #run it cullOff.offoutliers() refinedOffsets = cullOff.getRefinedOffsetField() numLeft = len(refinedOffsets._offsets) print('Number of offsets left after %2dth culling: %5d'%(i, numLeft)) if numLeft < numCullOffsetsLimit: refinedOffsets = None stdWriter.finalize() return refinedOffsets def cullOffsetsRoipac(offsets, numThreshold=50): ''' cull offsets using fortran program from ROI_PAC numThreshold: minmum number of offsets left ''' import os from contrib.alos2proc_f.alos2proc_f import fitoff from isceobj.Alos2Proc.Alos2ProcPublic import readOffset from isceobj.Alos2Proc.Alos2ProcPublic import writeOffset offsetFile = 'offset.off' cullOffsetFile = 'cull.off' writeOffset(offsets, offsetFile) #try different parameters to cull offsets breakFlag = 0 for maxrms in [0.08, 0.16, 0.24]: for nsig in [1.5, 1.4, 1.3, 1.2, 1.1, 1.0, 0.9]: fitoff(offsetFile, cullOffsetFile, nsig, maxrms, numThreshold) #check number of matching points left with open(cullOffsetFile, 'r') as ff: numCullOffsets = sum(1 for linex in ff) if numCullOffsets < numThreshold: print('offsets culling with nsig {} maxrms {}: {} left after culling, too few points'.format(nsig, maxrms, numCullOffsets)) else: print('offsets culling with nsig {} maxrms {}: {} left after culling, success'.format(nsig, maxrms, numCullOffsets)) breakFlag = 1 break if breakFlag == 1: break if numCullOffsets < numThreshold: refinedOffsets = None else: refinedOffsets = readOffset(cullOffsetFile) os.remove(offsetFile) os.remove(cullOffsetFile) return refinedOffsets def meanOffset(offsets): rangeOffset = 0.0 azimuthOffset = 0.0 i = 0 for offsetx in offsets: i += 1 rangeOffset += offsetx.dx azimuthOffset += offsetx.dy rangeOffset /= i azimuthOffset /= i return (rangeOffset, azimuthOffset) def fitOffset(inputOffset, order=1, axis='range'): '''fit a polynomial to the offset order=0 also works, output is mean offset ''' import numpy as np index = [] offset = [] for a in inputOffset: if axis=='range': index.append(a.x) offset.append(a.dx) else: index.append(a.y) offset.append(a.dy) p = np.polyfit(index, offset, order) return list(p[::-1]) def topo(swath, track, demFile, latFile, lonFile, hgtFile, losFile=None, incFile=None, mskFile=None, numberRangeLooks=1, numberAzimuthLooks=1, multilookTimeOffset=True): import datetime import isceobj from zerodop.topozero import createTopozero from isceobj.Planet.Planet import Planet pointingDirection = {'right': -1, 'left' :1} demImage = isceobj.createDemImage() demImage.load(demFile + '.xml') demImage.setAccessMode('read') #####Run Topo planet = Planet(pname='Earth') topo = createTopozero() topo.slantRangePixelSpacing = numberRangeLooks * swath.rangePixelSize topo.prf = 1.0 / (numberAzimuthLooks * swath.azimuthLineInterval) topo.radarWavelength = track.radarWavelength topo.orbit = track.orbit topo.width = int(swath.numberOfSamples/numberRangeLooks) topo.length = int(swath.numberOfLines/numberAzimuthLooks) topo.wireInputPort(name='dem', object=demImage) topo.wireInputPort(name='planet', object=planet) topo.numberRangeLooks = 1 #must be set as 1 topo.numberAzimuthLooks = 1 #must be set as 1 Cunren topo.lookSide = pointingDirection[track.pointingDirection] if multilookTimeOffset == True: topo.sensingStart = swath.sensingStart + datetime.timedelta(seconds=(numberAzimuthLooks-1.0)/2.0/swath.prf) topo.rangeFirstSample = swath.startingRange + (numberRangeLooks-1.0)/2.0 * swath.rangePixelSize else: topo.sensingStart = swath.sensingStart topo.rangeFirstSample = swath.startingRange topo.demInterpolationMethod='BIQUINTIC' topo.latFilename = latFile topo.lonFilename = lonFile topo.heightFilename = hgtFile if losFile != None: topo.losFilename = losFile if incFile != None: topo.incFilename = incFile if mskFile != None: topo.maskFilename = mskFile topo.topo() return list(topo.snwe) def geo2rdr(swath, track, latFile, lonFile, hgtFile, rangeOffsetFile, azimuthOffsetFile, numberRangeLooks=1, numberAzimuthLooks=1, multilookTimeOffset=True): import datetime import isceobj from zerodop.geo2rdr import createGeo2rdr from isceobj.Planet.Planet import Planet pointingDirection = {'right': -1, 'left' :1} latImage = isceobj.createImage() latImage.load(latFile + '.xml') latImage.setAccessMode('read') lonImage = isceobj.createImage() lonImage.load(lonFile + '.xml') lonImage.setAccessMode('read') hgtImage = isceobj.createDemImage() hgtImage.load(hgtFile + '.xml') hgtImage.setAccessMode('read') planet = Planet(pname='Earth') topo = createGeo2rdr() topo.configure() topo.slantRangePixelSpacing = numberRangeLooks * swath.rangePixelSize topo.prf = 1.0 / (numberAzimuthLooks * swath.azimuthLineInterval) topo.radarWavelength = track.radarWavelength topo.orbit = track.orbit topo.width = int(swath.numberOfSamples/numberRangeLooks) topo.length = int(swath.numberOfLines/numberAzimuthLooks) topo.demLength = hgtImage.length topo.demWidth = hgtImage.width topo.wireInputPort(name='planet', object=planet) topo.numberRangeLooks = 1 topo.numberAzimuthLooks = 1 #must be set to be 1 topo.lookSide = pointingDirection[track.pointingDirection] if multilookTimeOffset == True: topo.sensingStart = swath.sensingStart + datetime.timedelta(seconds=(numberAzimuthLooks-1.0)/2.0*swath.azimuthLineInterval) topo.rangeFirstSample = swath.startingRange + (numberRangeLooks-1.0)/2.0*swath.rangePixelSize else: topo.setSensingStart(swath.sensingStart) topo.rangeFirstSample = swath.startingRange topo.dopplerCentroidCoeffs = [0.] #we are using zero doppler geometry topo.demImage = hgtImage topo.latImage = latImage topo.lonImage = lonImage topo.rangeOffsetImageName = rangeOffsetFile topo.azimuthOffsetImageName = azimuthOffsetFile topo.geo2rdr() return def waterBodyRadar(latFile, lonFile, wbdFile, wbdOutFile): ''' create water boday in radar coordinates ''' import numpy as np import isceobj from isceobj.Alos2Proc.Alos2ProcPublic import create_xml demImage = isceobj.createDemImage() demImage.load(wbdFile + '.xml') #demImage.setAccessMode('read') wbd=np.memmap(wbdFile, dtype='byte', mode='r', shape=(demImage.length, demImage.width)) image = isceobj.createImage() image.load(latFile+'.xml') width = image.width length = image.length latFp = open(latFile, 'rb') lonFp = open(lonFile, 'rb') wbdOutFp = open(wbdOutFile, 'wb') wbdOutIndex = np.arange(width, dtype=np.int32) print("create water body in radar coordinates...") for i in range(length): if (((i+1)%200) == 0): print("processing line %6d of %6d" % (i+1, length), end='\r', flush=True) wbdOut = np.zeros(width, dtype='byte')-2 lat = np.fromfile(latFp, dtype=np.float64, count=width) lon = np.fromfile(lonFp, dtype=np.float64, count=width) #indexes start with zero lineIndex = np.int32((lat - demImage.firstLatitude) / demImage.deltaLatitude + 0.5) sampleIndex = np.int32((lon - demImage.firstLongitude) / demImage.deltaLongitude + 0.5) inboundIndex = np.logical_and( np.logical_and(lineIndex>=0, lineIndex<=demImage.length-1), np.logical_and(sampleIndex>=0, sampleIndex<=demImage.width-1) ) #keep SRTM convention. water body. (0) --- land; (-1) --- water; (-2 or other value) --- no data. wbdOut[(wbdOutIndex[inboundIndex],)] = wbd[(lineIndex[inboundIndex], sampleIndex[inboundIndex])] wbdOut.astype(np.int8).tofile(wbdOutFp) print("processing line %6d of %6d" % (length, length)) #create_xml(wbdOutFile, width, length, 'byte') image = isceobj.createImage() image.setDataType('BYTE') image.addDescription('water body. (0) --- land; (-1) --- water; (-2) --- no data.') image.setFilename(wbdOutFile) image.extraFilename = wbdOutFile + '.vrt' image.setWidth(width) image.setLength(length) image.renderHdr() del wbd, demImage, image latFp.close() lonFp.close() wbdOutFp.close() def renameFile(oldname, newname): import os import isceobj img = isceobj.createImage() img.load(oldname + '.xml') img.setFilename(newname) img.extraFilename = newname+'.vrt' img.renderHdr() os.rename(oldname, newname) os.remove(oldname + '.xml') os.remove(oldname + '.vrt') def cal_coherence(inf, win=5, edge=0): ''' compute coherence uisng only interferogram (phase). This routine still follows the regular equation for computing coherence, but assumes the amplitudes of reference and secondary are one, so that coherence can be computed using phase only. inf: interferogram win: window size edge: 0: remove all non-full convolution samples 1: remove samples computed from less than half convolution (win=5 used to illustration below) * * * * * * * * * * * * * * * 2: remove samples computed from less than quater convolution (win=5 used to illustration below) * * * * * * * * * 3: remove non-full convolution samples on image edges 4: keep all samples ''' import numpy as np import scipy.signal as ss if win % 2 != 1: raise Exception('window size must be odd!') hwin = np.int(np.around((win - 1) / 2)) filt = np.ones((win, win)) amp = np.absolute(inf) cnt = ss.convolve2d((amp!=0), filt, mode='same') cor = ss.convolve2d(inf/(amp + (amp==0)), filt, mode='same') cor = (amp!=0) * np.absolute(cor) / (cnt + (cnt==0)) #trim edges if edge == 0: num = win * win cor[np.nonzero(cnt < num)] = 0.0 elif edge == 1: num = win * (hwin+1) cor[np.nonzero(cnt < num)] = 0.0 elif edge == 2: num = (hwin+1) * (hwin+1) cor[np.nonzero(cnt < num)] = 0.0 elif edge == 3: cor[0:hwin, :] = 0.0 cor[-hwin:, :] = 0.0 cor[:, 0:hwin] = 0.0 cor[:, -hwin:] = 0.0 else: pass #print("coherence, max: {} min: {}".format(np.max(cor[np.nonzero(cor!=0)]), np.min(cor[np.nonzero(cor!=0)]))) return cor def snaphuUnwrap(track, t, wrapName, corName, unwrapName, nrlks, nalks, costMode = 'DEFO',initMethod = 'MST', defomax = 4.0, initOnly = False): #runUnwrap(self, costMode = 'SMOOTH',initMethod = 'MCF', defomax = 2, initOnly = True) ''' track: track object t: time for computing earth radius and altitude, normally mid azimuth time wrapName: input interferogram corName: input coherence file unwrapName: output unwrapped interferogram nrlks: number of range looks of the interferogram nalks: number of azimuth looks of the interferogram ''' import datetime import numpy as np import isceobj from contrib.Snaphu.Snaphu import Snaphu from isceobj.Planet.Planet import Planet corImg = isceobj.createImage() corImg.load(corName + '.xml') width = corImg.width length = corImg.length #get altitude orbit = track.orbit peg = orbit.interpolateOrbit(t, method='hermite') refElp = Planet(pname='Earth').ellipsoid llh = refElp.xyz_to_llh(peg.getPosition()) hdg = orbit.getENUHeading(t) refElp.setSCH(llh[0], llh[1], hdg) earthRadius = refElp.pegRadCur altitude = llh[2] rangeLooks = nrlks azimuthLooks = nalks azfact = 0.8 rngfact = 0.8 corrLooks = rangeLooks * azimuthLooks/(azfact*rngfact) maxComponents = 20 snp = Snaphu() snp.setInitOnly(initOnly) snp.setInput(wrapName) snp.setOutput(unwrapName) snp.setWidth(width) snp.setCostMode(costMode) snp.setEarthRadius(earthRadius) snp.setWavelength(track.radarWavelength) snp.setAltitude(altitude) snp.setCorrfile(corName) snp.setInitMethod(initMethod) snp.setCorrLooks(corrLooks) snp.setMaxComponents(maxComponents) snp.setDefoMaxCycles(defomax) snp.setRangeLooks(rangeLooks) snp.setAzimuthLooks(azimuthLooks) if corImg.bands == 1: snp.setCorFileFormat('FLOAT_DATA') snp.prepare() snp.unwrap() ######Render XML outImage = isceobj.Image.createUnwImage() outImage.setFilename(unwrapName) outImage.setWidth(width) outImage.setAccessMode('read') outImage.renderVRT() outImage.createImage() outImage.finalizeImage() outImage.renderHdr() #####Check if connected components was created if snp.dumpConnectedComponents: connImage = isceobj.Image.createImage() connImage.setFilename(unwrapName+'.conncomp') connImage.setWidth(width) connImage.setAccessMode('read') connImage.setDataType('BYTE') connImage.renderVRT() connImage.createImage() connImage.finalizeImage() connImage.renderHdr() del connImage del corImg del snp del outImage #remove wired things in no-data area amp=np.memmap(unwrapName, dtype='float32', mode='r+', shape=(length*2, width)) wrap = np.fromfile(wrapName, dtype=np.complex64).reshape(length, width) (amp[0:length*2:2, :])[np.nonzero(wrap==0)]=0 (amp[1:length*2:2, :])[np.nonzero(wrap==0)]=0 del amp del wrap return def snaphuUnwrapOriginal(wrapName, corName, ampName, unwrapName, costMode = 's', initMethod = 'mcf', snaphuConfFile = 'snaphu.conf'): ''' unwrap interferogram using original snaphu program ''' import numpy as np import isceobj corImg = isceobj.createImage() corImg.load(corName + '.xml') width = corImg.width length = corImg.length #specify coherence file format in configure file #snaphuConfFile = 'snaphu.conf' if corImg.bands == 1: snaphuConf = '''CORRFILEFORMAT FLOAT_DATA CONNCOMPFILE {} MAXNCOMPS 20'''.format(unwrapName+'.conncomp') else: snaphuConf = '''CORRFILEFORMAT ALT_LINE_DATA CONNCOMPFILE {} MAXNCOMPS 20'''.format(unwrapName+'.conncomp') with open(snaphuConfFile, 'w') as f: f.write(snaphuConf) cmd = 'snaphu {} {} -f {} -{} -o {} -a {} -c {} -v --{}'.format( wrapName, width, snaphuConfFile, costMode, unwrapName, ampName, corName, initMethod ) runCmd(cmd) create_xml(unwrapName, width, length, 'unw') connImage = isceobj.Image.createImage() connImage.setFilename(unwrapName+'.conncomp') connImage.setWidth(width) connImage.setAccessMode('read') connImage.setDataType('BYTE') connImage.renderVRT() connImage.createImage() connImage.finalizeImage() connImage.renderHdr() del connImage #remove wired things in no-data area amp=np.memmap(unwrapName, dtype='float32', mode='r+', shape=(length*2, width)) wrap = np.fromfile(wrapName, dtype=np.complex64).reshape(length, width) (amp[0:length*2:2, :])[np.nonzero(wrap==0)]=0 (amp[1:length*2:2, :])[np.nonzero(wrap==0)]=0 del amp del wrap return def getBboxGeo(track, useTrackOnly=False, numberOfSamples=1, numberOfLines=1, numberRangeLooks=1, numberAzimuthLooks=1): ''' get bounding box in geo-coordinate ''' import numpy as np pointingDirection = {'right': -1, 'left' :1} if useTrackOnly: import datetime rangeMin = track.startingRange + (numberRangeLooks-1.0)/2.0*track.rangePixelSize rangeMax = rangeMin + (numberOfSamples-1) * numberRangeLooks * track.rangePixelSize azimuthTimeMin = track.sensingStart + datetime.timedelta(seconds=(numberAzimuthLooks-1.0)/2.0*track.azimuthLineInterval) azimuthTimeMax = azimuthTimeMin + datetime.timedelta(seconds=(numberOfLines-1) * numberAzimuthLooks * track.azimuthLineInterval) bboxRdr = [rangeMin, rangeMax, azimuthTimeMin, azimuthTimeMax] else: bboxRdr = getBboxRdr(track) rangeMin = bboxRdr[0] rangeMax = bboxRdr[1] azimuthTimeMin = bboxRdr[2] azimuthTimeMax = bboxRdr[3] #get bounding box using Piyush's code hgtrange=[-500,9000] ts = [azimuthTimeMin, azimuthTimeMax] rngs = [rangeMin, rangeMax] pos = [] for ht in hgtrange: for tim in ts: for rng in rngs: llh = track.orbit.rdr2geo(tim, rng, height=ht, side=pointingDirection[track.pointingDirection]) pos.append(llh) pos = np.array(pos) # S N W E bbox = [np.min(pos[:,0]), np.max(pos[:,0]), np.min(pos[:,1]), np.max(pos[:,1])] return bbox def getBboxRdr(track): ''' get bounding box in radar-coordinate ''' import datetime numberOfFrames = len(track.frames) numberOfSwaths = len(track.frames[0].swaths) sensingStartList = [] sensingEndList = [] startingRangeList = [] endingRangeList = [] for i in range(numberOfFrames): for j in range(numberOfSwaths): swath = track.frames[i].swaths[j] sensingStartList.append(swath.sensingStart) sensingEndList.append(swath.sensingStart + datetime.timedelta(seconds=(swath.numberOfLines-1) * swath.azimuthLineInterval)) startingRangeList.append(swath.startingRange) endingRangeList.append(swath.startingRange + (swath.numberOfSamples - 1) * swath.rangePixelSize) azimuthTimeMin = min(sensingStartList) azimuthTimeMax = max(sensingEndList) azimuthTimeMid = azimuthTimeMin+datetime.timedelta(seconds=(azimuthTimeMax-azimuthTimeMin).total_seconds()/2.0) rangeMin = min(startingRangeList) rangeMax = max(endingRangeList) rangeMid = (rangeMin + rangeMax) / 2.0 bbox = [rangeMin, rangeMax, azimuthTimeMin, azimuthTimeMax] return bbox def filterInterferogram(data, alpha, windowSize, stepSize): ''' a filter wrapper ''' import os import numpy as np from contrib.alos2filter.alos2filter import psfilt1 (length, width)=data.shape data.astype(np.complex64).tofile('tmp1234.int') psfilt1('tmp1234.int', 'filt_tmp1234.int', width, alpha, windowSize, stepSize) data2 = np.fromfile('filt_tmp1234.int', dtype=np.complex64).reshape(length, width) os.remove('tmp1234.int') os.remove('filt_tmp1234.int') return data2 ################################################################### # these are routines for burst-by-burst ScanSAR interferometry ################################################################### def mosaicBurstInterferogram(swath, burstPrefix, outputFile, numberOfLooksThreshold=1): ''' take a burst sequence and output mosaicked file ''' import numpy as np interferogram = np.zeros((swath.numberOfLines, swath.numberOfSamples), dtype=np.complex64) cnt = np.zeros((swath.numberOfLines, swath.numberOfSamples), dtype=np.int8) for i in range(swath.numberOfBursts): burstFile = burstPrefix + '_%02d.int'%(i+1) burstInterferogram = np.fromfile(burstFile, dtype=np.complex64).reshape(swath.burstSlcNumberOfLines, swath.burstSlcNumberOfSamples) interferogram[0+swath.burstSlcFirstLineOffsets[i]:swath.burstSlcNumberOfLines+swath.burstSlcFirstLineOffsets[i], :] += burstInterferogram cnt[0+swath.burstSlcFirstLineOffsets[i]:swath.burstSlcNumberOfLines+swath.burstSlcFirstLineOffsets[i], :] += (burstInterferogram!=0) #trim upper and lower edges with less number of looks ############################################################################# firstLine = 0 for i in range(swath.numberOfLines): if np.sum(cnt[i,:]>=numberOfLooksThreshold) > swath.numberOfSamples/2: firstLine = i break lastLine = swath.numberOfLines - 1 for i in range(swath.numberOfLines): if np.sum(cnt[swath.numberOfLines-1-i,:]>=numberOfLooksThreshold) > swath.numberOfSamples/2: lastLine = swath.numberOfLines-1-i break interferogram[:firstLine,:]=0 interferogram[lastLine+1:,:]=0 # if numberOfLooksThreshold!= None: # interferogram[np.nonzero(cnt<numberOfLooksThreshold)] = 0 ############################################################################# interferogram.astype(np.complex64).tofile(outputFile) create_xml(outputFile, swath.numberOfSamples, swath.numberOfLines, 'int') def mosaicBurstAmplitude(swath, burstPrefix, outputFile, numberOfLooksThreshold=1): ''' take a burst sequence and output the magnitude ''' import numpy as np amp = np.zeros((swath.numberOfLines, swath.numberOfSamples), dtype=np.float32) cnt = np.zeros((swath.numberOfLines, swath.numberOfSamples), dtype=np.int8) for i in range(swath.numberOfBursts): burstFile = burstPrefix + '_%02d.slc'%(i+1) #azLineOffset = round((swath.burstSlcStartTimes[i] - swath.burstSlcStartTimes[0]).total_seconds() / swath.azimuthLineInterval) burstMag = np.absolute(np.fromfile(burstFile, dtype=np.complex64).reshape(swath.burstSlcNumberOfLines, swath.burstSlcNumberOfSamples)) burstPwr = burstMag * burstMag amp[0+swath.burstSlcFirstLineOffsets[i]:swath.burstSlcNumberOfLines+swath.burstSlcFirstLineOffsets[i], :] += burstPwr cnt[0+swath.burstSlcFirstLineOffsets[i]:swath.burstSlcNumberOfLines+swath.burstSlcFirstLineOffsets[i], :] += (burstPwr!=0) #trim upper and lower edges with less number of looks ############################################################################# firstLine = 0 for i in range(swath.numberOfLines): if np.sum(cnt[i,:]>=numberOfLooksThreshold) > swath.numberOfSamples/2: firstLine = i break lastLine = swath.numberOfLines - 1 for i in range(swath.numberOfLines): if np.sum(cnt[swath.numberOfLines-1-i,:]>=numberOfLooksThreshold) > swath.numberOfSamples/2: lastLine = swath.numberOfLines-1-i break amp[:firstLine,:]=0 amp[lastLine+1:,:]=0 # if numberOfLooksThreshold!= None: # amp[np.nonzero(cnt<numberOfLooksThreshold)] = 0 ############################################################################# np.sqrt(amp).astype(np.float32).tofile(outputFile) create_xml(outputFile, swath.numberOfSamples, swath.numberOfLines, 'float') def resampleBursts(referenceSwath, secondarySwath, referenceBurstDir, secondaryBurstDir, secondaryBurstResampledDir, interferogramDir, referenceBurstPrefix, secondaryBurstPrefix, secondaryBurstResampledPrefix, interferogramPrefix, rangeOffset, azimuthOffset, rangeOffsetResidual=0, azimuthOffsetResidual=0): import os import datetime import numpy as np import numpy.matlib from contrib.alos2proc.alos2proc import resamp os.makedirs(secondaryBurstResampledDir, exist_ok=True) os.makedirs(interferogramDir, exist_ok=True) #get burst file names referenceBurstSlc = [referenceBurstPrefix+'_%02d.slc'%(i+1) for i in range(referenceSwath.numberOfBursts)] secondaryBurstSlc = [secondaryBurstPrefix+'_%02d.slc'%(i+1) for i in range(secondarySwath.numberOfBursts)] secondaryBurstSlcResampled = [secondaryBurstPrefix+'_%02d.slc'%(i+1) for i in range(referenceSwath.numberOfBursts)] interferogram = [interferogramPrefix+'_%02d.int'%(i+1) for i in range(referenceSwath.numberOfBursts)] length = referenceSwath.burstSlcNumberOfLines width = referenceSwath.burstSlcNumberOfSamples lengthSecondary = secondarySwath.burstSlcNumberOfLines widthSecondary = secondarySwath.burstSlcNumberOfSamples #secondary burst slc start times secondaryBurstStartTimesSlc = [secondarySwath.firstBurstSlcStartTime + \ datetime.timedelta(seconds=secondarySwath.burstSlcFirstLineOffsets[i]*secondarySwath.azimuthLineInterval) \ for i in range(secondarySwath.numberOfBursts)] #secondary burst raw start times secondaryBurstStartTimesRaw = [secondarySwath.firstBurstRawStartTime + \ datetime.timedelta(seconds=i*secondarySwath.burstCycleLength/secondarySwath.prf) \ for i in range(secondarySwath.numberOfBursts)] for i in range(referenceSwath.numberOfBursts): ########################################################################## # 1. get offsets and corresponding secondary burst ########################################################################## #range offset with open(rangeOffset, 'rb') as f: f.seek(referenceSwath.burstSlcFirstLineOffsets[i] * width * np.dtype(np.float32).itemsize, 0) rgoffBurst = np.fromfile(f, dtype=np.float32, count=length*width).reshape(length,width) if type(rangeOffsetResidual) == np.ndarray: residual = rangeOffsetResidual[0+referenceSwath.burstSlcFirstLineOffsets[i]:length+referenceSwath.burstSlcFirstLineOffsets[i],:] rgoffBurst[np.nonzero(rgoffBurst!=-999999.0)] += residual[np.nonzero(rgoffBurst!=-999999.0)] else: rgoffBurst[np.nonzero(rgoffBurst!=-999999.0)] += rangeOffsetResidual #azimuth offset with open(azimuthOffset, 'rb') as f: f.seek(referenceSwath.burstSlcFirstLineOffsets[i] * width * np.dtype(np.float32).itemsize, 0) azoffBurst = np.fromfile(f, dtype=np.float32, count=length*width).reshape(length,width) if type(azimuthOffsetResidual) == np.ndarray: residual = azimuthOffsetResidual[0+referenceSwath.burstSlcFirstLineOffsets[i]:length+referenceSwath.burstSlcFirstLineOffsets[i],:] azoffBurst[np.nonzero(azoffBurst!=-999999.0)] += residual[np.nonzero(azoffBurst!=-999999.0)] else: azoffBurst[np.nonzero(azoffBurst!=-999999.0)] += azimuthOffsetResidual #find the corresponding secondary burst #get mean offset to use #remove BAD_VALUE = -999999.0 as defined in geo2rdr.f90 #single precision is not accurate enough to compute mean azoffBurstMean = np.mean(azoffBurst[np.nonzero(azoffBurst!=-999999.0)], dtype=np.float64) iSecondary = -1 for j in range(secondarySwath.numberOfBursts): if abs(referenceSwath.burstSlcFirstLineOffsets[i] + azoffBurstMean - secondarySwath.burstSlcFirstLineOffsets[j]) < (referenceSwath.burstLength / referenceSwath.prf * 2.0) / referenceSwath.azimuthLineInterval: iSecondary = j break #output zero resampled burst/interferogram if no secondary burst found if iSecondary == -1: print('\nburst pair, reference: %2d, secondary: no'%(i+1)) #output an interferogram with all pixels set to zero os.chdir(interferogramDir) np.zeros((length, width), dtype=np.complex64).astype(np.complex64).tofile(interferogram[i]) create_xml(interferogram[i], width, length, 'int') os.chdir('../') #output a resampled secondary image with all pixels set to zero os.chdir(secondaryBurstResampledDir) np.zeros((length, width), dtype=np.complex64).astype(np.complex64).tofile(secondaryBurstSlcResampled[i]) create_xml(secondaryBurstSlcResampled[i], width, length, 'slc') os.chdir('../') continue else: print('\nburst pair, reference: %2d, secondary: %3d'%(i+1, iSecondary+1)) #adjust azimuth offset accordingly, since original azimuth offset assumes reference and secondary start with sensingStart azoffBurst -= (secondarySwath.burstSlcFirstLineOffsets[iSecondary]-referenceSwath.burstSlcFirstLineOffsets[i]) ########################################################################## # 2. compute deramp and reramp signals ########################################################################## cj = np.complex64(1j) tbase = (secondaryBurstStartTimesSlc[iSecondary] - (secondaryBurstStartTimesRaw[iSecondary] + \ datetime.timedelta(seconds=(secondarySwath.burstLength - 1.0) / 2.0 / secondarySwath.prf))).total_seconds() #compute deramp signal index1 = np.matlib.repmat(np.arange(widthSecondary), lengthSecondary, 1) index2 = np.matlib.repmat(np.arange(lengthSecondary).reshape(lengthSecondary, 1), 1, widthSecondary) ka = secondarySwath.azimuthFmrateVsPixel[3] * index1**3 + secondarySwath.azimuthFmrateVsPixel[2] * index1**2 + \ secondarySwath.azimuthFmrateVsPixel[1] * index1 + secondarySwath.azimuthFmrateVsPixel[0] #use the convention that ka > 0 ka = -ka t = tbase + index2*secondarySwath.azimuthLineInterval deramp = np.exp(cj * np.pi * (-ka) * t**2) #compute reramp signal index1 = np.matlib.repmat(np.arange(width), length, 1) + rgoffBurst index2 = np.matlib.repmat(np.arange(length).reshape(length, 1), 1, width) + azoffBurst ka = secondarySwath.azimuthFmrateVsPixel[3] * index1**3 + secondarySwath.azimuthFmrateVsPixel[2] * index1**2 + \ secondarySwath.azimuthFmrateVsPixel[1] * index1 + secondarySwath.azimuthFmrateVsPixel[0] #use the convention that ka > 0 ka = -ka t = tbase + index2*secondarySwath.azimuthLineInterval reramp = np.exp(cj * np.pi * (ka) * t**2) ########################################################################## # 3. resample secondary burst ########################################################################## #go to secondary directory to do resampling os.chdir(secondaryBurstDir) #output offsets rgoffBurstFile = "burst_rg.off" azoffBurstFile = "burst_az.off" rgoffBurst.astype(np.float32).tofile(rgoffBurstFile) azoffBurst.astype(np.float32).tofile(azoffBurstFile) #deramp secondary burst secondaryBurstDerampedFile = "secondary.slc" sburst = np.fromfile(secondaryBurstSlc[iSecondary], dtype=np.complex64).reshape(lengthSecondary, widthSecondary) (deramp * sburst).astype(np.complex64).tofile(secondaryBurstDerampedFile) create_xml(secondaryBurstDerampedFile, widthSecondary, lengthSecondary, 'slc') #resampled secondary burst secondaryBurstResampFile = 'secondary_resamp.slc' #resample secondary burst #now doppler has bigger impact now, as it's value is about 35 Hz (azimuth resampling frequency is now only 1/20 * PRF) #we don't know if this doppler value is accurate or not, so we set it to zero, which seems to give best resampling result #otherwise if it is not accurate and we still use it, it will significantly affect resampling result dopplerVsPixel = secondarySwath.dopplerVsPixel dopplerVsPixel = [0.0, 0.0, 0.0, 0.0] resamp(secondaryBurstDerampedFile, secondaryBurstResampFile, rgoffBurstFile, azoffBurstFile, width, length, 1.0/secondarySwath.azimuthLineInterval, dopplerVsPixel, rgcoef=[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], azcoef=[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], azpos_off=0.0) #read resampled secondary burst and reramp sburstResamp = reramp * (np.fromfile(secondaryBurstResampFile, dtype=np.complex64).reshape(length, width)) #clear up os.remove(rgoffBurstFile) os.remove(azoffBurstFile) os.remove(secondaryBurstDerampedFile) os.remove(secondaryBurstDerampedFile+'.vrt') os.remove(secondaryBurstDerampedFile+'.xml') os.remove(secondaryBurstResampFile) os.remove(secondaryBurstResampFile+'.vrt') os.remove(secondaryBurstResampFile+'.xml') os.chdir('../') ########################################################################## # 4. dump results ########################################################################## #dump resampled secondary burst os.chdir(secondaryBurstResampledDir) sburstResamp.astype(np.complex64).tofile(secondaryBurstSlcResampled[i]) create_xml(secondaryBurstSlcResampled[i], width, length, 'slc') os.chdir('../') #dump burst interferogram mburst = np.fromfile(os.path.join(referenceBurstDir, referenceBurstSlc[i]), dtype=np.complex64).reshape(length, width) os.chdir(interferogramDir) (mburst * np.conj(sburstResamp)).astype(np.complex64).tofile(interferogram[i]) create_xml(interferogram[i], width, length, 'int') os.chdir('../') def create_multi_index(width, rgl): import numpy as np #create index after multilooking #assuming original index start with 0 #applies to both range and azimuth direction widthm = int(width/rgl) #create range index: This applies to both odd and even cases, "rgl = 1" case, and "rgl = 2" case start_rgindex = (rgl - 1.0) / 2.0 rgindex0 = start_rgindex + np.arange(widthm) * rgl return rgindex0 def create_multi_index2(width2, l1, l2): import numpy as np #for number of looks of l1 and l2 #calculate the correponding index number of l2 in the l1 array #applies to both range and azimuth direction return ((l2 - l1) / 2.0 + np.arange(width2) * l2) / l1 def computePhaseDiff(data1, data22, coherenceWindowSize=5, coherenceThreshold=0.85): import copy import numpy as np from isceobj.Alos2Proc.Alos2ProcPublic import cal_coherence_1 #data22 will be changed in the processing, so make a copy here data2 = copy.deepcopy(data22) dataDiff = data1 * np.conj(data2) cor = cal_coherence_1(dataDiff, win=coherenceWindowSize) index = np.nonzero(np.logical_and(cor>coherenceThreshold, dataDiff!=0)) #check if there are valid pixels if index[0].size == 0: phaseDiff = 0.0 numberOfValidSamples = 0 return (phaseDiff, numberOfValidSamples) else: numberOfValidSamples = index[0].size #in case phase difference is around PI, sum of +PI and -PI is zero, which affects the following #mean phase difference computation. #remove magnitude before doing sum? dataDiff = dataDiff / (np.absolute(dataDiff)+(dataDiff==0)) phaseDiff0 = np.angle(np.sum(dataDiff[index], dtype=np.complex128)) #now the phase difference values are mostly centered at 0 data2 *= np.exp(np.complex64(1j) * phaseDiff0) phaseDiff = phaseDiff0 #compute phase difference numberOfIterations = 1000000 threshold = 0.000001 for k in range(numberOfIterations): dataDiff = data1 * np.conj(data2) angle = np.mean(np.angle(dataDiff[index]), dtype=np.float64) phaseDiff += angle data2 *= np.exp(np.complex64(1j) * angle) print('phase offset: %15.12f rad after iteration: %3d'%(phaseDiff, k+1)) if (k+1 >= 5) and (angle <= threshold): break #only take the value within -pi--pi if phaseDiff > np.pi: phaseDiff -= 2.0 * np.pi if phaseDiff < -np.pi: phaseDiff += 2.0 * np.pi # mean phase difference # number of valid samples to compute the phase difference return (phaseDiff, numberOfValidSamples) def snap(inputValue, fixedValues, snapThreshold): ''' fixedValues can be a list or numpy array ''' import numpy as np diff = np.absolute(np.absolute(np.array(fixedValues)) - np.absolute(inputValue)) indexMin = np.argmin(diff) if diff[indexMin] < snapThreshold: outputValue = np.sign(inputValue) * np.absolute(fixedValues[indexMin]) snapped = True else: outputValue = inputValue snapped = False return (outputValue, snapped) modeProcParDict = { 'ALOS-2': { #All SPT (SBS) modes are the same 'SBS': { 'numberRangeLooks1': 2, 'numberAzimuthLooks1': 4, 'numberRangeLooks2': 4, 'numberAzimuthLooks2': 4, 'numberRangeLooksIon': 16, 'numberAzimuthLooksIon': 16, 'filterStdIon': 0.015 }, #All SM1 (UBS, UBD) modes are the same 'UBS': { 'numberRangeLooks1': 2, 'numberAzimuthLooks1': 3, 'numberRangeLooks2': 4, 'numberAzimuthLooks2': 4, 'numberRangeLooksIon': 32, 'numberAzimuthLooksIon': 32, 'filterStdIon': 0.015 }, 'UBD': { 'numberRangeLooks1': 2, 'numberAzimuthLooks1': 3, 'numberRangeLooks2': 4, 'numberAzimuthLooks2': 4, 'numberRangeLooksIon': 32, 'numberAzimuthLooksIon': 32, 'filterStdIon': 0.015 }, #All SM2 (HBS, HBD, HBQ) modes are the same 'HBS': { 'numberRangeLooks1': 2, 'numberAzimuthLooks1': 4, 'numberRangeLooks2': 4, 'numberAzimuthLooks2': 4, 'numberRangeLooksIon': 16, 'numberAzimuthLooksIon': 16, 'filterStdIon': 0.035 }, 'HBD': { 'numberRangeLooks1': 2, 'numberAzimuthLooks1': 4, 'numberRangeLooks2': 4, 'numberAzimuthLooks2': 4, 'numberRangeLooksIon': 16, 'numberAzimuthLooksIon': 16, 'filterStdIon': 0.035 }, 'HBQ': { 'numberRangeLooks1': 2, 'numberAzimuthLooks1': 4, 'numberRangeLooks2': 4, 'numberAzimuthLooks2': 4, 'numberRangeLooksIon': 16, 'numberAzimuthLooksIon': 16, 'filterStdIon': 0.035 }, #All SM3 (FBS, FBD, FBQ) modes are the same 'FBS': { 'numberRangeLooks1': 2, 'numberAzimuthLooks1': 4, 'numberRangeLooks2': 4, 'numberAzimuthLooks2': 4, 'numberRangeLooksIon': 16, 'numberAzimuthLooksIon': 16, 'filterStdIon': 0.075 }, 'FBD': { 'numberRangeLooks1': 2, 'numberAzimuthLooks1': 4, 'numberRangeLooks2': 4, 'numberAzimuthLooks2': 4, 'numberRangeLooksIon': 16, 'numberAzimuthLooksIon': 16, 'filterStdIon': 0.075 }, 'FBQ': { 'numberRangeLooks1': 2, 'numberAzimuthLooks1': 4, 'numberRangeLooks2': 4, 'numberAzimuthLooks2': 4, 'numberRangeLooksIon': 16, 'numberAzimuthLooksIon': 16, 'filterStdIon': 0.075 }, #All WD1 (WBS, WBD) modes are the same 'WBS': { 'numberRangeLooks1': 1, 'numberAzimuthLooks1': 14, 'numberRangeLooks2': 5, 'numberAzimuthLooks2': 2, 'numberRangeLooksIon': 80, 'numberAzimuthLooksIon': 32, 'filterStdIon': 0.1 }, 'WBD': { 'numberRangeLooks1': 1, 'numberAzimuthLooks1': 14, 'numberRangeLooks2': 5, 'numberAzimuthLooks2': 2, 'numberRangeLooksIon': 80, 'numberAzimuthLooksIon': 32, 'filterStdIon': 0.1 }, #All WD1 (WWS, WWD) modes are the same 'WWS': { 'numberRangeLooks1': 2, 'numberAzimuthLooks1': 14, 'numberRangeLooks2': 5, 'numberAzimuthLooks2': 2, 'numberRangeLooksIon': 80, 'numberAzimuthLooksIon': 32, 'filterStdIon': 0.075 }, 'WWD': { 'numberRangeLooks1': 2, 'numberAzimuthLooks1': 14, 'numberRangeLooks2': 5, 'numberAzimuthLooks2': 2, 'numberRangeLooksIon': 80, 'numberAzimuthLooksIon': 32, 'filterStdIon': 0.075 }, #All WD2 (VBS, VBD) modes are the same 'VBS': { 'numberRangeLooks1': 1, 'numberAzimuthLooks1': 14, 'numberRangeLooks2': 5, 'numberAzimuthLooks2': 2, 'numberRangeLooksIon': 80, 'numberAzimuthLooksIon': 32, 'filterStdIon': 0.1 }, 'VBD': { 'numberRangeLooks1': 1, 'numberAzimuthLooks1': 14, 'numberRangeLooks2': 5, 'numberAzimuthLooks2': 2, 'numberRangeLooksIon': 80, 'numberAzimuthLooksIon': 32, 'filterStdIon': 0.1 } } } import numpy as np filterStdPolyIon = np.array([ 2.31536879e-05, -3.41687763e-03, 1.39904121e-01])
38.362645
220
0.588187
53d04637c56f193d7be9471a32e495d1b4383694
1,693
py
Python
data/p2DJ/New/R2/benchmark/startCirq63.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
data/p2DJ/New/R2/benchmark/startCirq63.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
data/p2DJ/New/R2/benchmark/startCirq63.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 5/15/20 4:49 PM # @File : grover.py # qubit number=2 # total number=9 import cirq import cirq.google as cg from typing import Optional import sys from math import log2 import numpy as np #thatsNoCode from cirq.contrib.svg import SVGCircuit # Symbols for the rotation angles in the QAOA circuit. def make_circuit(n: int, input_qubit): c = cirq.Circuit() # circuit begin c.append(cirq.H.on(input_qubit[0])) # number=1 c.append(cirq.X.on(input_qubit[1])) # number=2 c.append(cirq.CNOT.on(input_qubit[0],input_qubit[1])) # number=4 c.append(cirq.X.on(input_qubit[1])) # number=5 c.append(cirq.CNOT.on(input_qubit[0],input_qubit[1])) # number=6 c.append(cirq.Y.on(input_qubit[1])) # number=7 c.append(cirq.Y.on(input_qubit[1])) # number=8 # circuit end c.append(cirq.measure(*input_qubit, key='result')) return c def bitstring(bits): return ''.join(str(int(b)) for b in bits) if __name__ == '__main__': qubit_count = 4 input_qubits = [cirq.GridQubit(i, 0) for i in range(qubit_count)] circuit = make_circuit(qubit_count,input_qubits) circuit = cg.optimized_for_sycamore(circuit, optimizer_type='sqrt_iswap') circuit_sample_count =2000 simulator = cirq.Simulator() result = simulator.run(circuit, repetitions=circuit_sample_count) frequencies = result.histogram(key='result', fold_func=bitstring) writefile = open("../data/startCirq63.csv","w+") print(format(frequencies),file=writefile) print("results end", file=writefile) print(circuit.__len__(), file=writefile) print(circuit,file=writefile) writefile.close()
27.306452
77
0.694625
7881c3d3f282e4d8b1baaad205eabb2cbc17501e
1,165
py
Python
limite/telaMonstro.py
Castagnna/dungeons-and-dragons
9821a47febb0669ff0a073585e53f286fe27bf0a
[ "CC0-1.0" ]
null
null
null
limite/telaMonstro.py
Castagnna/dungeons-and-dragons
9821a47febb0669ff0a073585e53f286fe27bf0a
[ "CC0-1.0" ]
null
null
null
limite/telaMonstro.py
Castagnna/dungeons-and-dragons
9821a47febb0669ff0a073585e53f286fe27bf0a
[ "CC0-1.0" ]
null
null
null
from limite.telaGenerica import TelaGenerica import PySimpleGUI as sg class TelaMonstro(TelaGenerica): def __init__(self, controlador): super(TelaMonstro, self).__init__(controlador) self.init_components() def init_components(self): sg.ChangeLookAndFeel('Reddit') layout = [ [sg.Button('Novo monstro', key='NOVO_MONSTRO')], [sg.Button('Listar monstros', key='LISTA_MONSTROS')], [sg.Button('Excluir monstro', key='EXCLUIR_MONSTRO')], [sg.Button('Cadastrar ataque do monstro', key='CADASTRA_ATAQUE')], [sg.Button('Excluir ataque do monstro', key='EXCLUIR_ATAQUE')], [sg.Button('Atacar jogador', key='ATACAR_JOGADOR')], [sg.Button('Movimentar monstro', key='MOVIMENTAR_MONSTRO')], [sg.Button('Mostra atributos do monstro', key='MOSTRA_ATRIBUTOS_MONSTRO')], [sg.Button('Cria monstro teste', key='CRIA_MONSTRO_TESTE')], [sg.Button('Voltar', key='VOLTAR')] ] janela = sg.Window('Menu Monstro', default_element_size=(40,50)).Layout(layout) super(TelaMonstro, self).cria_janela(janela)
44.807692
87
0.639485
fb1fd41ff3b393911c9b94ef3462a9fa9a0721b1
880
py
Python
практика/K1/numb1.py
Tamerlanchiques/usb
a6f5dd74a6209363bdfc820774509104e708700f
[ "MIT" ]
null
null
null
практика/K1/numb1.py
Tamerlanchiques/usb
a6f5dd74a6209363bdfc820774509104e708700f
[ "MIT" ]
null
null
null
практика/K1/numb1.py
Tamerlanchiques/usb
a6f5dd74a6209363bdfc820774509104e708700f
[ "MIT" ]
null
null
null
print('') print('Добро пожаловать в мой мир, сдесь мы с тобой сыграем в игру "угадай число"') print('Введи случайное число от 1 до 100') print('') mas = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100] point = int(input('Введите число и нажмите Enter: ')) print('') length = len(mas) for i in range(length): if mas[i] == point: print("В ячейке массива номер " + str(i) + " записано число " + str(mas[i])+" == " + str(point)+" УСПЕХ") break else: print("В ячейке массива номер " + str(i) + " записано число " + str(mas[i])+" != " + str(point))
51.764706
302
0.578409
cc05d40cc2423afdbaa7166fbe005035acefd191
287
py
Python
PicoCTF 2019/Forensics/WhitePages/solve.py
p-g-krish/CTF-Writeups
05ad6a9ecbc19ceb8890f4581dfee36f16d164aa
[ "MIT" ]
51
2018-06-26T09:49:42.000Z
2019-09-14T00:06:35.000Z
PicoCTF 2019/Forensics/WhitePages/solve.py
p-g-krish/CTF-Writeups
05ad6a9ecbc19ceb8890f4581dfee36f16d164aa
[ "MIT" ]
1
2018-06-29T18:40:59.000Z
2018-07-09T20:29:41.000Z
PicoCTF 2019/Forensics/WhitePages/solve.py
p-g-krish/CTF-Writeups
05ad6a9ecbc19ceb8890f4581dfee36f16d164aa
[ "MIT" ]
22
2019-10-03T14:52:43.000Z
2022-01-17T08:55:10.000Z
#!/usr/bin/env python3 from Cryptodome.Util.number import long_to_bytes f = open('whitepages.txt','rb').read() out = "" i = 0 while i < len(f): if f[i:i+1] == b'\x20': out+="1" elif f[i:i+3] == b'\xe2\x80\x83': out+="0" i+=2 i+=1 print(long_to_bytes(int(out,2)).decode('utf-8'))
22.076923
48
0.602787
53221fe74dfb3f8d887863e6244d048a8f18ef47
1,241
py
Python
tests/conftest.py
m1009d/scrapli_cfg
0d967f22be802ba57446f83b02a0703606546ec7
[ "MIT" ]
15
2021-03-14T18:27:15.000Z
2022-02-08T17:05:33.000Z
tests/conftest.py
m1009d/scrapli_cfg
0d967f22be802ba57446f83b02a0703606546ec7
[ "MIT" ]
21
2021-05-23T13:58:40.000Z
2022-03-02T14:38:00.000Z
tests/conftest.py
m1009d/scrapli_cfg
0d967f22be802ba57446f83b02a0703606546ec7
[ "MIT" ]
1
2021-10-04T12:48:14.000Z
2021-10-04T12:48:14.000Z
from pathlib import Path import pytest from devices import CONFIG_REPLACER, DEVICES import scrapli_cfg TEST_DATA_PATH = f"{Path(scrapli_cfg.__file__).parents[1]}/tests/test_data" @pytest.fixture(scope="session") def test_data_path(): """Fixture to provide path to test data files""" return TEST_DATA_PATH @pytest.fixture(scope="session") def test_devices_dict(): """Fixture to return test devices dict""" return DEVICES @pytest.fixture(scope="session") def expected_configs(): """Fixture to provide expected configs""" return { "arista_eos": open(f"{TEST_DATA_PATH}/expected/arista_eos").read(), "cisco_iosxe": open(f"{TEST_DATA_PATH}/expected/cisco_iosxe").read(), "cisco_nxos": open(f"{TEST_DATA_PATH}/expected/cisco_nxos").read(), "cisco_iosxr": open(f"{TEST_DATA_PATH}/expected/cisco_iosxr").read(), "juniper_junos": open(f"{TEST_DATA_PATH}/expected/juniper_junos").read(), } @pytest.fixture(scope="session") def test_devices_dict(): """Fixture to return test devices dict""" return DEVICES @pytest.fixture(scope="session") def config_replacer_dict(): """Fixture to return dict of config replacer helper functions""" return CONFIG_REPLACER
27.577778
81
0.714746
a2d2ba6abea83b3492e08e6698a7c86663780e66
11,495
py
Python
src/packagedcode/pubspec.py
Siddhant-K-code/scancode-toolkit
d1e725d3603a8f96c25f7e3f7595c68999b92a67
[ "Apache-2.0", "CC-BY-4.0" ]
1,511
2015-07-01T15:29:03.000Z
2022-03-30T13:40:05.000Z
src/packagedcode/pubspec.py
Siddhant-K-code/scancode-toolkit
d1e725d3603a8f96c25f7e3f7595c68999b92a67
[ "Apache-2.0", "CC-BY-4.0" ]
2,695
2015-07-01T16:01:35.000Z
2022-03-31T19:17:44.000Z
src/packagedcode/pubspec.py
Siddhant-K-code/scancode-toolkit
d1e725d3603a8f96c25f7e3f7595c68999b92a67
[ "Apache-2.0", "CC-BY-4.0" ]
540
2015-07-01T15:08:19.000Z
2022-03-31T12:13:11.000Z
# # Copyright (c) nexB Inc. and others. All rights reserved. # ScanCode is a trademark of nexB Inc. # SPDX-License-Identifier: Apache-2.0 # See http://www.apache.org/licenses/LICENSE-2.0 for the license text. # See https://github.com/nexB/scancode-toolkit for support or download. # See https://aboutcode.org for more information about nexB OSS projects. # import logging import sys import warnings import attr import saneyaml from commoncode import filetype from packageurl import PackageURL from packagedcode import models from packagedcode.utils import combine_expressions TRACE = False def logger_debug(*args): pass logger = logging.getLogger(__name__) if TRACE: logging.basicConfig(stream=sys.stdout) logger.setLevel(logging.DEBUG) def logger_debug(*args): return logger.debug(''.join(isinstance(a, str) and a or repr(a) for a in args)) """ Collect data from Dart pub packages. See https://dart.dev/tools/pub/pubspec """ """ TODO: - license is only in a LICENSE file https://dart.dev/tools/pub/publishing#preparing-to-publish See https://dart.dev/tools/pub/publishing#important-files API has theses URLs: is limited and only returns all versions of a package - feeds https://pub.dev/feed.atom - all packages, paginated: https://pub.dev/api/packages - one package, all version: https://pub.dev/api/packages/painter - one version: https://pub.dev/api/packages/painter/versions/0.3.1 See https://github.com/dart-lang/pub/blob/master/doc/repository-spec-v2.md """ @attr.s() class PubspecPackage(models.Package): default_type = 'pubspec' default_primary_language = 'dart' default_web_baseurl = 'https://pub.dev/packages' default_download_baseurl = 'https://pub.dartlang.org/packages' default_api_baseurl = 'https://pub.dev/api/packages' def repository_homepage_url(self, baseurl=default_web_baseurl): return f'{baseurl}/{self.name}/versions/{self.version}' def repository_download_url(self, baseurl=default_download_baseurl): # A URL should be in the form of: # https://pub.dartlang.org/packages/url_launcher/versions/6.0.9.tar.gz # And it may resolve to: # https://storage.googleapis.com/pub-packages/packages/http-0.13.2.tar.gz # as seen in the pub.dev web pages return f'{baseurl}/{self.name}/versions/{self.version}.tar.gz' def api_data_url(self, baseurl=default_api_baseurl): return f'{baseurl}/{self.name}/versions/{self.version}' def compute_normalized_license(self): return compute_normalized_license(self.declared_license) def compute_normalized_license(declared_license, location=None): """ Return a normalized license expression string detected from a list of declared license items. The specification for pub demands to have a LICENSE file side-by-side and nothing else. See https://dart.dev/tools/pub/publishing#preparing-to-publish """ # FIXME: we need a location to find the FILE file # Approach: # Find the LICENSE file # detect on the text # combine all expressions if not declared_license: return detected_licenses = [] if detected_licenses: return combine_expressions(detected_licenses) @attr.s() class PubspecYaml(PubspecPackage, models.PackageManifest): file_patterns = ('pubspec.yaml',) extensions = ('.yaml',) @classmethod def is_manifest(cls, location): """ Return True if the file at ``location`` is likely a manifest of this type. """ return file_endswith(location, 'pubspec.yaml') @classmethod def recognize(cls, location, compute_normalized_license=False): """ Yield one or more Package manifest objects given a file ``location`` pointing to a package archive, manifest or similar. """ with open(location) as inp: package_data = saneyaml.load(inp.read()) package = build_package(cls, package_data) if package and compute_normalized_license: package.compute_normalized_license() yield package def file_endswith(location, endswith): """ Check if the file at ``location`` ends with ``endswith`` string or tuple. """ return filetype.is_file(location) and location.endswith(endswith) @attr.s() class PubspecLock(PubspecPackage, models.PackageManifest): file_patterns = ('pubspec.lock',) extensions = ('.lock',) @classmethod def is_manifest(cls, location): """ Return True if the file at ``location`` is likely a manifest of this type. """ return file_endswith(location, 'pubspec.lock') @classmethod def recognize(cls, location): """ Yield one or more Package manifest objects given a file ``location`` pointing to a package archive, manifest or similar. """ with open(location) as inp: locks_data = saneyaml.load(inp.read()) yield cls(dependencies=list(collect_locks(locks_data))) def collect_locks(locks_data): """ Yield DependentPackage from locks data The general form is packages: _fe_analyzer_shared: dependency: transitive description: name: _fe_analyzer_shared url: "https://pub.dartlang.org" source: hosted version: "22.0.0" sdks: dart: ">=2.12.0 <3.0.0" """ # FIXME: we treat all as nno optioanl for now sdks = locks_data.get('sdks') or {} for name, version in sdks.items(): dep = build_dep( name, version, scope='sdk', is_runtime=True, is_optional=False, ) yield dep packages = locks_data.get('packages') or {} for name, details in packages.items(): version = details.get('version') # FIXME: see https://github.com/dart-lang/pub/blob/2a08832e0b997ff92de65571b6d79a9b9099faa0/lib/src/lock_file.dart#L344 # transitive, direct main, direct dev, direct overridden. # they do not map exactly to the pubspec scopes since transitive can be # either main or dev scope = details.get('dependency') if scope == 'direct dev': is_runtime = False else: is_runtime = True desc = details.get('description') or {} known_desc = isinstance(desc, dict) # issue a warning for unknown data structure warn = False if not known_desc: if not (isinstance(desc, str) and desc == 'flutter'): warn = True else: dname = desc.get('name') durl = desc.get('url') dsource = details.get('source') if ( (dname and dname != name) or (durl and durl != 'https://pub.dartlang.org') or (dsource and dsource not in ['hosted', 'sdk', ]) ): warn = True if warn: warnings.warn( f'Dart pubspec.locks with unsupported external repo ' f'description or source: {details}', stacklevel=1, ) dep = build_dep( name, version, scope=scope, is_runtime=is_runtime, is_optional=False, ) yield dep def collect_deps(data, dependency_field_name, is_runtime=True, is_optional=False): """ Yield DependentPackage found in the ``dependency_field_name`` of ``data``. Use is_runtime and is_optional in created DependentPackage. The shape of the data is: dependencies: path: 1.7.0 meta: ^1.2.4 yaml: ^3.1.0 environment: sdk: '>=2.12.0 <3.0.0' """ # TODO: these can be more complex for SDKs # https://dart.dev/tools/pub/dependencies#dependency-sources dependencies = data.get(dependency_field_name) or {} for name, version in dependencies.items(): dep = build_dep( name, version, scope=dependency_field_name, is_runtime=is_runtime, is_optional=is_optional, ) yield dep def build_dep(name, version, scope, is_runtime=True, is_optional=False): """ Return DependentPackage from the provided data. """ # TODO: these can be more complex for SDKs # https://dart.dev/tools/pub/dependencies#dependency-sources if isinstance(version, dict) and 'sdk' in version: # {'sdk': 'flutter'} type of deps.... # which is a wart that we keep as a requiremnet version = ', '.join(': '.join([k, str(v)]) for k, v in version.items()) if version.replace('.', '').isdigit(): # version is pinned exactly if it is only made of dots and digits purl = PackageURL(type='pubspec', name=name, version=version) is_resolved = True else: purl = PackageURL(type='pubspec', name=name) is_resolved = False dep = models.DependentPackage( purl=purl.to_string(), requirement=version, scope=scope, is_runtime=is_runtime, is_optional=is_optional, is_resolved=is_resolved, ) return dep def build_package(cls, pubspec_data): """ Return a package object from a package data mapping or None """ name = pubspec_data.get('name') version = pubspec_data.get('version') description = pubspec_data.get('description') homepage_url = pubspec_data.get('homepage') declared_license = pubspec_data.get('license') vcs_url = pubspec_data.get('repository') download_url = pubspec_data.get('archive_url') # Author and authors are deprecated authors = [] author = pubspec_data.get('author') if author: authors.append(author) authors.extend(pubspec_data.get('authors') or []) parties = [] for auth in authors: parties.append(models.Party( type=models.party_person, role='author', name=auth )) package_dependencies = [] dependencies = collect_deps( pubspec_data, 'dependencies', is_runtime=True, is_optional=False, ) package_dependencies.extend(dependencies) dev_dependencies = collect_deps( pubspec_data, 'dev_dependencies', is_runtime=False, is_optional=True, ) package_dependencies.extend(dev_dependencies) env_dependencies = collect_deps( pubspec_data, 'environment', is_runtime=True, is_optional=False, ) package_dependencies.extend(env_dependencies) extra_data = {} def add_to_extra_if_present(_key): _value = pubspec_data.get(_key) if _value: extra_data[_key] = _value add_to_extra_if_present('issue_tracker') add_to_extra_if_present('documentation') add_to_extra_if_present('dependencies_overrides') add_to_extra_if_present('executables') add_to_extra_if_present('publish_to') package = cls( name=name, version=version, vcs_url=vcs_url, description=description, declared_license=declared_license, parties=parties, homepage_url=homepage_url, dependencies=package_dependencies, extra_data=extra_data, ) if not download_url: package.download_url = package.repository_download_url() return package
29.474359
128
0.639321
31a235f6b095da37ba59015335d956eb2b8c258e
12,259
py
Python
QS-AD/old/Visualization_sunburst_v.0.9.py
miguelbarretosanz/QS-AgregartorDashboard
59a317e16e771b190e3d27e2aff0a3da9a553aea
[ "MIT" ]
null
null
null
QS-AD/old/Visualization_sunburst_v.0.9.py
miguelbarretosanz/QS-AgregartorDashboard
59a317e16e771b190e3d27e2aff0a3da9a553aea
[ "MIT" ]
null
null
null
QS-AD/old/Visualization_sunburst_v.0.9.py
miguelbarretosanz/QS-AgregartorDashboard
59a317e16e771b190e3d27e2aff0a3da9a553aea
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Mar 21 07:16:35 2018 @author: MiguelArturo """ __author__ = "Miguel Barreto Sanz" __copyright__ = "Copyright 2018, Miguel Barreto Sanz" __credits__ = ["Miguel Barreto Sanz"] __license__ = "MIT" __version__ = "0.0.9" __maintainer__ = "Miguel Barreto Sanz" __email__ = "miguelbarretosanz@gmail.com" __status__ = "Development" from math import log, sqrt import numpy as np import pandas as pd from bokeh.plotting import figure #Import modules for interactive graphics from bokeh.layouts import row, column from bokeh.models import HoverTool, ColumnDataSource, Select from bokeh.io import curdoc #Import modules for conversions to radians. import math #Import modules for time management and time zones import time, datetime #Color palette import seaborn as sns def make_plot(source): """ Plot the annular wedges Parameters ---------- source : ColumnDataSources Returns ------- return : Figure """ hover = HoverTool( names=["anular_wedges"], tooltips=[ ("Activity", "@Name"), ("color", "@color"), ]) plot = figure(width=700, height=700,tools=[hover], title="",x_axis_type=None, y_axis_type=None, x_range=(-420, 420), y_range=(-420, 420), min_border=0, outline_line_color="white", background_fill_color="#ffffff",) plot.annular_wedge(x=0, y=0, inner_radius='inner_radius', outer_radius='outer_radius',start_angle='start_angle', end_angle='end_angle', color='color', alpha=0.9, hover_color='color',hover_line_color="black", hover_alpha = 0.5, source=source,name="anular_wedges",legend='Name') #Fixed attributes plot.xgrid.grid_line_color = None plot.ygrid.grid_line_color = None #plot clock angles = 2*np.pi/24*pd.Series(list(range(0,24))) plot.annular_wedge(0, 0, fr_inner_radius, tr_outer_radius, angles, angles, color="lightgrey") # Plot clock labels (24 hours) labels = np.power(10.0, np.arange(-3, 4)) minr = sqrt(log(.001 * 1E4)) maxr = sqrt(log(1000 * 1E4)) a = ((tr_outer_radius + 10) - fr_inner_radius) / (minr - maxr) b = fr_inner_radius - a * maxr radii = a * np.sqrt(np.log(labels * 1E4)) + b xr = radii[0]*np.cos(np.array(angles)) yr = radii[0]*np.sin(np.array(angles)) label_angle=np.array(angles) label_angle[label_angle < -np.pi/2] += np.pi # easier to read labels on the left side labels_24h_clock = list(range(6,-1,-1)) + list(range(23,6,-1)) plot.text(xr, yr, pd.Series(labels_24h_clock), angle=label_angle, text_font_size="9pt", text_align="center", text_baseline="middle", text_color="lightgrey") return plot def get_dataset (src, unique_days_list, selected_day, df_activity_colors): def calculate_angles(start_time, duration): ts = time.strptime(start_time, "%H:%M:%S") hour = (ts[3] + (ts[4]/60) + (ts[5]/3600)) hour_rad = math.radians(hour * 15.0) #add "pi/2" to transform radians to a 24 hours clock form. hour_in_radians_to_plot = -hour_rad + np.pi/2 #Use duration and convert seconds in radians sec_rad = time.gmtime(duration) hour_duration = (sec_rad[3] + (sec_rad[4]/60) + (sec_rad[5]/3600)) hour_rad_duration = math.radians(hour_duration * 15.0) duration_in_radians_to_plot = (hour_in_radians_to_plot + hour_rad_duration) start_angle= hour_in_radians_to_plot - hour_rad_duration end_angle= duration_in_radians_to_plot - hour_rad_duration return start_angle, end_angle #Group all the events from the same day index_hours_same_day = np.where(unique_days_list== datetime.datetime.strptime(selected_day, "%Y-%m-%d").date()) events_at_day = src.Start_Time_Local[list(index_hours_same_day[0][:])] events_at_day = pd.to_datetime(events_at_day) end_time_events_at_day = src.End_time_Local[list(index_hours_same_day[0][:])] end_time_events_at_day = pd.to_datetime(end_time_events_at_day) #Select start time from timestamp start_time_list_to_plot = events_at_day.dt.time start_time_list_to_plot_dt = start_time_list_to_plot.to_frame() start_date = events_at_day.dt.date.to_frame() start_date.columns = ['start_date'] #get durations and events #To-do change iloc for the column name duration_list_to_plot = src.iloc[events_at_day.index[:],[0]] events_list_to_plot = src.iloc[events_at_day.index[:],[3]] #Select end time from timestamp end_time_events_at_day_to_plot = end_time_events_at_day.dt.time end_time_events_at_day_to_plot_dt = end_time_events_at_day_to_plot.to_frame() end_date = end_time_events_at_day.dt.date.to_frame() end_date.columns = ['end_date'] #Dataframe with "event duration" and "start time" duration_list_to_plot.reset_index(drop=True, inplace=True) events_list_to_plot.reset_index(drop=True, inplace=True) start_time_list_to_plot_dt.reset_index(drop=True, inplace=True) end_time_events_at_day_to_plot_dt.reset_index(drop=True, inplace=True) start_date.reset_index(drop=True, inplace=True) end_date.reset_index(drop=True, inplace=True) result2 = pd.concat([duration_list_to_plot, events_list_to_plot, start_time_list_to_plot_dt, end_time_events_at_day_to_plot_dt, start_date, end_date] , axis=1) df_start_end_angle = pd.DataFrame(index=range(0,result2.index.size),columns=['start_angle','end_angle']) for i in range(0, result2.index.size): s_d = str(result2.iloc[i]['Start_Time_Local']) du = result2.iloc[i]['Duration'] start_date = str(result2.iloc[i]['start_date']) end_date = str(result2.iloc[i]['end_date']) angles = calculate_angles(s_d, du) df_start_end_angle['start_angle'][i]= angles[0] df_start_end_angle['end_angle'][i] = angles[1] df_inner_outer_radius = pd.DataFrame(index=range(0,result2.index.size),columns=['inner_radius','outer_radius']) for i in range(0, result2.index.size): df_inner_outer_radius['inner_radius'][i]= fr_inner_radius df_inner_outer_radius['outer_radius'][i] = fr_outer_radius #Match events with its respective color code df_colors = pd.DataFrame(index=range(0,events_list_to_plot.index.size),columns=['color']) for i in range(0,events_list_to_plot.index.size): df_colors.color[i] = df_activity_colors.Colors[np.where(events_list_to_plot.Name[i] == df_activity_colors.Activities)[0][0]] final_df = pd.concat([df_start_end_angle,df_colors,df_inner_outer_radius,events_list_to_plot] , axis=1) return ColumnDataSource(data=final_df) def update_plot(attrname, old, new): selected_day = select_day.value src = get_dataset(LC_data_r,unique_days_list,selected_day,df_activity_colors) source.data.update(src.data) def activities_color_table (array_activities): df_activity_colors = pd.DataFrame(index=range(0,array_activities.size,1),columns=['Activities','Colors']) #create palette pal2 = sns.color_palette('pastel').as_hex() pal3 = sns.color_palette("Set1", 10).as_hex() pal4 = sns.color_palette("Set2", 10).as_hex() pal5 = sns.color_palette("Set3", 10).as_hex() pal6 = sns.color_palette("BrBG", 7).as_hex() pal7 = sns.color_palette("RdBu_r", 7).as_hex() pal8 = sns.color_palette("coolwarm", 7).as_hex() pal9 = sns.diverging_palette(10, 220, sep=80, n=7).as_hex() palette = np.concatenate((pal2,pal3,pal4,pal5,pal6,pal7,pal8,pal9), axis=0) for i in range(0,array_activities.size,1): df_activity_colors['Activities'][i]=array_activities[i] df_activity_colors['Colors'][i] = palette[i] return df_activity_colors def until_midnidnight_dataset(LC_data): df1 = pd.DataFrame(index=range(1,1,1),columns=['Start_Time_Local','End_time_Local' ,'Duration', 'Name','Location' ]) for i in LC_data.Start_Time_Local.index: start = str(LC_data.Start_Time_Local[i]).split(" ") end = str(LC_data.End_time_Local[i]).split(" ") if start[1] != end[1]: format = '%H:%M:%S' sh = start[2] eh = end[2] hor,min,sec = eh.split(":") eh_dur = int(hor)*3600 + 60*int(min) + int(sec) mn = '23:59:59' hours_one_day = pd.datetime.strptime(mn, format) - pd.datetime.strptime(sh, format) row_a_Start_Time_Local =(start[1] + " " + sh) row_a_End_time_Local = (start[1] + " " +mn) row_a_Duration = hours_one_day.seconds row_a_Name = LC_data.Name[i] row_a_Location = LC_data.Location[i] row_b_Start_Time_Local =(end[1] + " " + "00:00:00") row_b_End_time_Local = (end[1] + " " + end[2]) row_b_Duration = eh_dur row_b_Name = LC_data.Name[i] row_b_Location = LC_data.Location[i] df = pd.DataFrame({'Start_Time_Local': [row_a_Start_Time_Local,row_b_Start_Time_Local], 'End_time_Local' : [row_a_End_time_Local,row_b_End_time_Local], 'Duration' : [row_a_Duration,row_b_Duration], 'Name' : [row_a_Name,row_b_Name ], 'Location' : [row_a_Location,row_b_Location] }) df1 = pd.concat([df,df1] , axis=0) else: sh = start[2] eh = end[2] row_a_Start_Time_Local = (start[1] + " " + sh) row_a_End_time_Local = (end[1] + " " + eh ) row_a_Duration = LC_data.Duration[i] row_a_Name = LC_data.Name[i] row_a_Location = LC_data.Location[i] df = pd.DataFrame({'Start_Time_Local': [row_a_Start_Time_Local], 'End_time_Local' : [row_a_End_time_Local], 'Duration' : [row_a_Duration], 'Name' : [row_a_Name], 'Location' : [row_a_Location] }) df1 = pd.concat([df,df1] , axis=0) return df1 #Fixed plot's atributes fr_inner_radius = 140 #First ring (fr) parameters fr_outer_radius = 200 sr_inner_radius = fr_outer_radius+2 #Second ring (sr) parameters sr_outer_radius = fr_outer_radius+52 tr_inner_radius = fr_outer_radius+52+2, #third ring (tr) parameters tr_outer_radius = fr_outer_radius+52+2+42 #LIFE CYCLE DATA #Load Lyfe Cycle data LC_data = pd.read_csv('../data/Life Cycle/example/LC_export 3.csv') #Columns names were changed because the orinals have some espaces and special characters # that makes more complicated the string manipulation. For instace : ' NAME' , 'START DATE(UTC)'. LC_data.columns = ['Start_Date_UTC', 'End_Date_UTC','Start_Time_Local','End_time_Local','Duration','Name','Location'] #Create a new dataframe with events only from the same day. LC_data_r = until_midnidnight_dataset(LC_data) LC_data_r['Start_Time_Local'] = pd.to_datetime(LC_data_r.Start_Time_Local) #Get all the events' timestamps per unique selected day unique_days_list = LC_data_r.Start_Time_Local.dt.date #Create a dataframe to store unique_days_list columns_ud = ['Unique_Days'] New_data_days_unique = pd.DataFrame(unique_days_list.index,columns=columns_ud) for i in New_data_days_unique.index: New_data_days_unique['Unique_Days'][i]= pd.Timestamp.strftime(unique_days_list[i],'%Y-%m-%d') #Color per activity df_activity_colors = activities_color_table(LC_data_r.Name.unique()) #ACTIVITY WATCH DATA #List to be shown in the "select button" List_to_select_days = sorted(list(set(New_data_days_unique['Unique_Days']))) selected_day='2017-01-26' source=get_dataset(LC_data_r,unique_days_list,selected_day,df_activity_colors) plot = make_plot(source) #Timestamp selection select_day = Select(title="Day", value="foo", options=List_to_select_days) select_day.on_change('value', update_plot) controls = column(select_day) curdoc().add_root(row(plot, controls)) curdoc().title = "Sunburst"
42.272414
163
0.669549
22d8b41a9d71f01b3c6fc17684ebc2eef9c41ba8
1,446
bzl
Python
packer/deps.bzl
zacker330/bazel-distribution
148f7052f6b63cdfa035e95f8a140a2844696112
[ "Apache-2.0" ]
97
2019-02-12T12:56:55.000Z
2021-04-10T13:15:50.000Z
packer/deps.bzl
zacker330/bazel-distribution
148f7052f6b63cdfa035e95f8a140a2844696112
[ "Apache-2.0" ]
110
2019-01-18T12:57:19.000Z
2021-04-12T19:53:23.000Z
packer/deps.bzl
zacker330/bazel-distribution
148f7052f6b63cdfa035e95f8a140a2844696112
[ "Apache-2.0" ]
29
2019-07-15T16:48:17.000Z
2021-04-09T16:11:19.000Z
load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive") # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # def deps(): http_archive( name = "packer_osx", url = "https://releases.hashicorp.com/packer/1.7.4/packer_1.7.4_darwin_amd64.zip", sha256 = "7fe8e59d9c456e98e52c9dcbca53009659da31f4fa2bf0dda5af43ebcc688685", build_file_content = 'exports_files(["packer"])' ) http_archive( name = "packer_linux", url = "https://releases.hashicorp.com/packer/1.7.4/packer_1.7.4_linux_amd64.zip", sha256 = "3660064a56a174a6da5c37ee6b36107098c6b37e35cc84feb2f7f7519081b1b0", build_file_content = 'exports_files(["packer"])' )
40.166667
90
0.733057