hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
โŒ€
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
โŒ€
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
โŒ€
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
โŒ€
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
โŒ€
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
โŒ€
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
โŒ€
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
โŒ€
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
โŒ€
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
808b83cd4a03ada23ba7b0d19c7fdff35b5b8ea3
978
py
Python
models_test.py
bmritz/spend-tracker
093ace1a3ec20b0d9e0d918ca9e074ecfd03734c
[ "Apache-2.0" ]
1
2019-01-20T17:09:50.000Z
2019-01-20T17:09:50.000Z
models_test.py
bmritz/spend-tracker
093ace1a3ec20b0d9e0d918ca9e074ecfd03734c
[ "Apache-2.0" ]
null
null
null
models_test.py
bmritz/spend-tracker
093ace1a3ec20b0d9e0d918ca9e074ecfd03734c
[ "Apache-2.0" ]
null
null
null
"""Tests.""" from models import Message def test_msg_to_sections(): msg_content = """---------- Forwarded message --------- From: Personal Capital <support@personalcapital.com> Date: Sat, Jan 12, 2019 at 9:28 AM Subject: Your Personal Capital Daily Monitor Email To: bmritz@indiana.edu <bmritz@indiana.edu> *this *Section 1* content Auth : Kevs Convenience Store -$2.02 *Top Gainers* *Top Losers* No gainers to show No losers to show *Accounts That Need Your Attention* 1st Source Bank: Hsa - Individual - Ending in 8056 Discovery Benefits: Health Savings Account """ section_1 = 'content\nAuth : Kevs Convenience Store\n-$2.02' msg = Message(content=msg_content) sections = msg.sections() assert all(x in sections.keys() for x in ["Section 1", "Top Gainers", "Top Losers", "Accounts That Need Your Attention"]) assert sections['Section 1'] == section_1
21.733333
104
0.643149
c5cf133fb6229e37733476f874a7adca4849c3bd
4,845
py
Python
framework/communication/aiocoap/util/prettyprint.py
nidiascampos/smartgreen
d574d90918702ac3bd383ed77d673f871576c5b0
[ "Apache-2.0" ]
1
2021-02-13T07:42:04.000Z
2021-02-13T07:42:04.000Z
framework/communication/aiocoap/util/prettyprint.py
nidiascampos/smartgreen
d574d90918702ac3bd383ed77d673f871576c5b0
[ "Apache-2.0" ]
null
null
null
framework/communication/aiocoap/util/prettyprint.py
nidiascampos/smartgreen
d574d90918702ac3bd383ed77d673f871576c5b0
[ "Apache-2.0" ]
null
null
null
# This file is part of the Python aiocoap library project. # # Copyright (c) 2012-2014 Maciej Wasilak <http://sixpinetrees.blogspot.com/>, # 2013-2014 Christian Amsรผss <c.amsuess@energyharvesting.at> # # aiocoap is free software, this file is published under the MIT license as # described in the accompanying LICENSE file. """A pretty-printer for known mime types""" import json import pprint import re import cbor import pygments import pygments.formatters import pygments.lexers from aiocoap.numbers import media_types from communication.aiocoap.util import _register from communication.aiocoap.util import linkformat _register() MEDIATYPE_HEXDUMP = 'text/vnd.aiocoap.hexdump' def lexer_for_mime(mime): """A wrapper around pygments.lexers.get_lexer_for_mimetype that takes subtypes into consideration and catches the custom hexdump mime type.""" if mime == MEDIATYPE_HEXDUMP: return pygments.lexers.HexdumpLexer() if mime == 'text/plain;charset=utf8': # We have fall-throughs in place anwyay, no need to go through a no-op # TextLexer raise pygments.util.ClassNotFound try: return pygments.lexers.get_lexer_for_mimetype(mime) except pygments.util.ClassNotFound: mime = re.sub('^([^/]+)/.*\\+([^;]+)(;.*)?$', lambda args: args[1] + '/' + args[2], mime) return pygments.lexers.get_lexer_for_mimetype(mime) def pretty_print(message): """Given a CoAP message, reshape its payload into something human-readable. The return value is a triple (infos, mime, text) where text represents the payload, mime is a type that could be used to syntax-highlight the text (not necessarily related to the original mime type, eg. a report of some binary data that's shaped like Markdown could use a markdown mime type), and some line of infos that give additional data (like the reason for a hex dump or the original mime type). """ infos = [] info = lambda m: infos.append(m) cf = message.opt.content_format mime_type = media_types.get(cf, "type %s" % cf) mime_type, *parameters = mime_type.split(';') type, _, subtype = mime_type.partition('/') show_hex = None if linkformat is not None and mime_type == 'application/link-format': try: parsed = linkformat.link_header.parse(message.payload.decode('utf8')) except ValueError: pass else: info("application/link-format content was re-formatted") prettyprinted = ",\n".join(str(l) for l in parsed.links) return (infos, 'application/link-format', prettyprinted) elif subtype == 'cbor' or subtype.endswith('+cbor'): try: parsed = cbor.loads(message.payload) except ValueError: show_hex = "CBOR value is invalid" else: info("CBOR message shown in naรฏve Python decoding") # Formatting it via Python b/c that's reliably available (as # opposed to JSON which might not round-trip well). The repr for # tags might still not be parsable, but I think chances of good # highlighting are best this way formatted = pprint.pformat(parsed) return (infos, 'text/x-python3', formatted) elif subtype == 'json' or subtype.endswith('+json'): try: parsed = json.loads(message.payload.decode('utf8')) except ValueError: pass else: info("JSON re-formated and indented") formatted = json.dumps(parsed, indent=4) return (infos, 'application/json', formatted) # That's about the formats we do for now. if show_hex is None: try: text = message.payload.decode('utf8') except UnicodeDecodeError: show_hex = "Message can not be parsed as UTF-8" else: return (infos, 'text/plain;charset=utf8', text) info("Showing hex dump of %s payload%s" % ( mime_type if cf is not None else "untyped", ": " + show_hex if show_hex is not None else "")) data = message.payload # Not the most efficient hex dumper, but we won't stream video over # this anyway formatted = [] offset = 0 while data: line, data = data[:16], data[16:] formatted.append("%08x " % offset + \ " ".join("%02x" % line[i] if i < len(line) else " " for i in range(8)) + " " + \ " ".join("%02x" % line[i] if i < len(line) else " " for i in range(8, 16)) + " |" + \ "".join(chr(x) if 32 <= x <= 127 else '.' for x in line) + \ "|\n") offset += len(line) if offset % 16 != 0: formatted.append("%08x\n" % offset) return (infos, MEDIATYPE_HEXDUMP, "".join(formatted))
36.704545
103
0.62807
a28f9571e669dd85d7d84017dcdb5dfd0a03f0af
129
py
Python
oktacli/exceptions.py
bousquf/okta-cli
8073ee171bd0ae690f087fa8f3260cbd24cefbda
[ "MIT" ]
28
2019-02-10T00:10:36.000Z
2022-03-02T14:33:36.000Z
oktacli/exceptions.py
bousquf/okta-cli
8073ee171bd0ae690f087fa8f3260cbd24cefbda
[ "MIT" ]
9
2020-03-27T03:39:08.000Z
2021-12-03T21:09:57.000Z
oktacli/exceptions.py
bousquf/okta-cli
8073ee171bd0ae690f087fa8f3260cbd24cefbda
[ "MIT" ]
11
2019-04-30T06:26:41.000Z
2022-02-06T03:41:31.000Z
# OktaException is defined in okta.py :) class CLIException(Exception): pass class ExitException(CLIException): pass
12.9
40
0.728682
015a22c4577c9e770eee669f9a35b646e30e1397
7,274
py
Python
benchmarks/test_utils.py
tbeatty/edgetpu
14237f65ba07b7b1d8287e9f60dd20c88562871a
[ "Apache-2.0" ]
1
2020-02-05T15:12:53.000Z
2020-02-05T15:12:53.000Z
benchmarks/test_utils.py
tbeatty/edgetpu
14237f65ba07b7b1d8287e9f60dd20c88562871a
[ "Apache-2.0" ]
null
null
null
benchmarks/test_utils.py
tbeatty/edgetpu
14237f65ba07b7b1d8287e9f60dd20c88562871a
[ "Apache-2.0" ]
1
2020-01-08T05:55:58.000Z
2020-01-08T05:55:58.000Z
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test utils for benchmark and manual tests.""" import argparse import collections import contextlib import csv import os import platform import random import urllib.parse import numpy as np from PIL import Image def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--enable_assertion', dest='enable_assertion', action='store_true', default=False) return parser.parse_args() def check_cpu_scaling_governor_status(): """Checks whether CPU scaling enabled.""" with open('/sys/devices/system/cpu/cpu0/cpufreq/scaling_governor') as f: status = f.read() if 'performance' != status.strip(): print('************************ WARNING *****************************') print('CPU scaling is enabled! Please switch to \'performance\' mode ') print('**************************************************************') def machine_info(): """Gets platform info to choose reference value.""" machine = platform.machine() if machine == 'armv7l': with open('/proc/device-tree/model') as model_file: board_info = model_file.read() if 'Raspberry Pi 3 Model B Rev' in board_info: machine = 'rp3b' elif 'Raspberry Pi 3 Model B Plus Rev' in board_info: machine = 'rp3b+' elif 'Raspberry Pi 4 Model B Rev 1.1' in board_info: machine = 'rp4b' else: machine = 'unknown' return machine TEST_DATA_DIR = os.path.join(os.path.dirname(os.path.realpath(__file__)), '..', 'test_data') REFERENCE_DATA_DIR = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'reference') BENCHMARK_RESULT_DIR = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'result') def test_data_path(path, *paths): """Returns absolute path for a given test file.""" return os.path.abspath(os.path.join(TEST_DATA_DIR, path, *paths)) def reference_path(path, *paths): """Returns absolute path for a given benchmark reference file.""" return os.path.abspath(os.path.join(REFERENCE_DATA_DIR, path, *paths)) def benchmark_result_path(path, *paths): """Returns absolute path for a given benchmark result file.""" return os.path.abspath(os.path.join(BENCHMARK_RESULT_DIR, path, *paths)) @contextlib.contextmanager def test_image(path, *paths): """Returns opened test image.""" with open(test_data_path(path, *paths), 'rb') as f: with Image.open(f) as image: yield image def generate_random_input(seed, n): """Generates a list with n uint8 numbers.""" random.seed(a=seed) return [random.randint(0, 255) for _ in range(n)] def prepare_classification_data_set(filename): """Prepares classification data set. Args: filename: name of the csv file. It contains filenames of images and the categories they belonged. Returns: Dict with format {category_name : list of filenames} """ ret = collections.defaultdict(list) with open(filename, mode='r') as csv_file: for row in csv.DictReader(csv_file): if not row['URL']: continue url = urllib.parse.urlparse(row['URL']) filename = os.path.basename(url.path) ret[row['Category']].append(filename) return ret def prepare_images(image_list, directory, shape): """Reads images and converts them to numpy array with specified shape. Args: image_list: a list of strings storing file names. directory: string, path of directory storing input images. shape: a 2-D tuple represents the shape of required input tensor. Returns: A list of numpy.array. """ ret = [] for filename in image_list: file_path = os.path.join(directory, filename) if not os.path.isfile(file_path): continue with Image.open(file_path) as img: img = img.resize(shape, Image.NEAREST) flat_img = np.asarray(img).flatten() if flat_img.shape[0] == shape[0] * shape[1] * 3: ret.append(flat_img) return np.array(ret) def read_reference(file_name): """Reads reference from csv file. Args: file_name: string, name of the reference file. Returns: model_list: list of string. reference: { environment : reference_time}, environment is a string tuple while reference_time is a float number. """ model_list = set() reference = {} with open(reference_path(file_name), newline='') as csvfile: reader = csv.reader(csvfile, delimiter=' ', quotechar='|') # Drop first line(column names). next(reader) for row in reader: reference[tuple(row[:-1])] = float(row[-1]) model_list.add(row[0]) return sorted(model_list), reference def check_result(reference, result_list, enable_assertion): """Checks result, warns when latency is abnormal. Args: reference: { environment : reference_time}, environment is a string tuple while reference_time is a float number. result_list: a list of tuple. enable_assertion: bool, throw assertion when unexpected latencty detected. """ # Allow 30% variance. variance_threshold = 0.30 print('******************** Check results *********************') cnt = 0 # Drop first line(column name). for result in result_list[1:]: environment = result[:-1] inference_time = result[-1] if environment not in reference: print(' * No matching record for [%s].' % (','.join(environment))) cnt += 1 reference_latency = reference[environment] up_limit = reference_latency * (1 + variance_threshold) down_limit = reference_latency * (1 - variance_threshold) if inference_time > up_limit: msg = ((' * Unexpected high latency! [%s]\n' ' Inference time: %s ms Reference time: %s ms') % (','.join(environment), inference_time, reference_latency)) print(msg) cnt += 1 if inference_time < down_limit: msg = ((' * Unexpected low latency! [%s]\n' ' Inference time: %s ms Reference time: %s ms') % (','.join(environment), inference_time, reference_latency)) print(msg) cnt += 1 print('******************** Check finished! *******************') if enable_assertion: assert cnt == 0, 'Benchmark test failed!' def save_as_csv(file_name, result): """Saves benchmark result as csv files. Args: file_name: string, name of the saved file. result: A list of tuple. """ os.makedirs(BENCHMARK_RESULT_DIR, exist_ok=True) with open(benchmark_result_path(file_name), 'w', newline='') as csv_file: writer = csv.writer( csv_file, delimiter=' ', quotechar='|', quoting=csv.QUOTE_MINIMAL) for line in result: writer.writerow(line) print(file_name, ' saved!')
32.328889
80
0.659747
e785c76ea0b95dd944a0359055ea67b92fd0e617
3,427
py
Python
ElevatorBot/commands/destiny/weapon.py
LukasSchmid97/destinyBloodoakStats
1420802ce01c3435ad5c283f44eb4531d9b22c38
[ "MIT" ]
3
2019-10-19T11:24:50.000Z
2021-01-29T12:02:17.000Z
ElevatorBot/commands/destiny/weapon.py
LukasSchmid97/destinyBloodoakStats
1420802ce01c3435ad5c283f44eb4531d9b22c38
[ "MIT" ]
29
2019-10-14T12:26:10.000Z
2021-07-28T20:50:29.000Z
ElevatorBot/commands/destiny/weapon.py
LukasSchmid97/destinyBloodoakStats
1420802ce01c3435ad5c283f44eb4531d9b22c38
[ "MIT" ]
2
2019-10-13T17:11:09.000Z
2020-05-13T15:29:04.000Z
# from discord.ext.commands import Cog # from discord_slash import cog_ext # from discord_slash import SlashContext # from discord_slash.utils.manage_commands import create_choice # from discord_slash.utils.manage_commands import create_option # # from ElevatorBot.commandHelpers.optionTemplates import default_user_option # from ElevatorBot.commandHelpers.optionTemplates import get_mode_choices # # # class Weapon(Cog): # def __init__(self, client): # self.client = client # # @cog_ext.cog_slash( # name="weapon", # description="Shows weapon stats for the specified weapon with in-depth customisation", # options=[ # create_option( # name="weapon", # description="The name of the weapon you want to see stats for", # option_type=3, # required=True, # ), # create_option( # name="stat", # description="Which stat you want to see for the weapon", # option_type=3, # required=False, # choices=[ # create_choice(name="Kills (default)", value="kills"), # create_choice(name="Precision Kills", value="precisionkills"), # create_choice(name="% Precision Kills", value="precisionkillspercent"), # ], # ), # create_option( # name="graph", # description="Default: 'False' - See a timeline of your weapon usage instead of an overview of key stats", # option_type=5, # required=False, # ), # create_option( # name="class", # description="You can restrict the class where the weapon stats count", # option_type=3, # required=False, # choices=[ # create_choice(name="Warlock", value="2271682572"), # create_choice(name="Hunter", value="671679327"), # create_choice(name="Titan", value="3655393761"), # ], # ), # create_option( # name="starttime", # description="Format: 'DD/MM/YY' - You can restrict the time from when the weapon stats start counting", # option_type=3, # required=False, # ), # create_option( # name="endtime", # description="Format: 'DD/MM/YY' - You can restrict the time up until which the weapon stats count", # option_type=3, # required=False, # ), # create_option( # name="mode", # description="You can restrict the game mode where the weapon stats count", # option_type=3, # required=False, # choices=get_mode_choices(), # ), # create_option( # name="activityhash", # description="You can restrict the activity where the weapon stats count (advanced)", # option_type=4, # required=False, # ), # default_user_option(), # ], # ) # async def _weapon(self, ctx: SlashContext, **kwargs): # pass # # # def setup(client): # Weapon(client)
39.390805
123
0.520572
98f3acd2ee3e29a26696c320111aba7876c64021
1,138
py
Python
setup.py
aprendizaje-de-maquinas/addict
54f00e3e3d32446571996f2050b831b5fe6f9a52
[ "MIT" ]
1
2019-12-14T15:35:10.000Z
2019-12-14T15:35:10.000Z
setup.py
mbenhaddou/addict
cf29d47eab24a7d935cb6841d13eac686dcd6e86
[ "MIT" ]
null
null
null
setup.py
mbenhaddou/addict
cf29d47eab24a7d935cb6841d13eac686dcd6e86
[ "MIT" ]
null
null
null
from setuptools import setup import addict SHORT='Addict is a dictionary whose items can be set using both attribute and item syntax.' LONG=('Addict is a module that exposes a dictionary subclass that allows items to be set like attributes. ' 'Values are gettable and settable using both attribute and item syntax. ' 'For more info check out the README at \'github.com/mewwts/addict\'.') setup( name='addict', version=addict.__version__, packages=['addict'], url='https://github.com/mewwts/addict', author=addict.__author__, author_email='mats@plysjbyen.net', classifiers=[ 'Programming Language :: Python', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Intended Audience :: Developers', 'Topic :: Software Development :: Libraries :: Python Modules', ], description=SHORT, long_description=LONG, test_suite='test_addict', package_data={'': ['LICENSE']} )
36.709677
107
0.666081
764e7d831f594f8fd48a09d869bad37feb65fb1b
19,987
py
Python
fireworks/core/message_test.py
kellylab/Fireworks
ff027cd8d1b8ce5eec6a37d786e7de675d8c0849
[ "MIT" ]
9
2019-05-01T01:22:10.000Z
2020-12-08T15:41:13.000Z
fireworks/core/message_test.py
smk508/Fireworks
ff027cd8d1b8ce5eec6a37d786e7de675d8c0849
[ "MIT" ]
53
2019-01-20T17:02:38.000Z
2019-03-24T18:00:08.000Z
fireworks/core/message_test.py
smk508/Fireworks
ff027cd8d1b8ce5eec6a37d786e7de675d8c0849
[ "MIT" ]
4
2019-07-04T15:39:46.000Z
2021-08-17T04:59:25.000Z
from fireworks import message as messi from fireworks import Message, TensorMessage import torch import os import numpy as np from itertools import product import pandas as pd from itertools import count from io import BytesIO import pickle tensors = { 'a': torch.Tensor([1,2,3]), 'b': torch.Tensor([4,5,6]), } vectors = { 'c': np.array([7,8,9]), 'd': np.array([10,11,12]), } dtensors = { 'a': torch.Tensor([[1,2,3],[4,5,6],[7,8,9]]), 'b': torch.Tensor([[-1,-2,-3],[-4,-5,-6], [-7,-8,-9]]), } def test_compute_length(): l = messi.compute_length(tensors) assert l == 3 l = messi.compute_length(vectors) assert l == 3 def test_extract_tensors(): target = {**tensors, **vectors} t, v = messi.extract_tensors(target) assert t == tensors assert v == vectors t, v = messi.extract_tensors(tensors) assert t == tensors assert v == {} t, v = messi.extract_tensors(vectors) assert t == {} assert v == vectors def test_complement(): n = 10 index = 7 complement = messi.complement(index, n) assert complement == [0,1,2,3,4,5,6,8,9] index = slice(2,5) complement = messi.complement(index, n) assert complement == [0,1,5,6,7,8,9] index = [2,4,6] complement = messi.complement(index, n) assert complement == [0,1,3,5,7,8,9] def test_Message(): """ Test init, getitem, and len methopl. """ def attribute_test(message, length = 3): assert len(message) == length assert message[0].tensors() == { 'a': torch.Tensor([1]), 'b': torch.Tensor([4]), } assert message[0].dataframe().equals(pd.DataFrame({ 'c': np.array([7]), 'd': np.array([10]), })) assert message[0] == Message({'a': torch.Tensor([1]),'b': torch.Tensor([4])}, pd.DataFrame({'c': np.array([7]),'d': np.array([10]),})) assert message[1:3].tensors() == { 'a': torch.Tensor([2,3]), 'b': torch.Tensor([5,6]), } assert message[1:3].dataframe().equals(pd.DataFrame({ 'c': np.array([8,9]), 'd': np.array([11,12]), })) assert (message['a'] == torch.Tensor([1,2,3])).all() assert message[['a','c']] == Message({'a': torch.Tensor([1,2,3]), 'c': np.array([7,8,9])}) assert message[1:3] == Message({'a': torch.Tensor([2,3]),'b': torch.Tensor([5,6])}, pd.DataFrame({'c': np.array([8,9]),'d': np.array([11,12])})) # Test length assert len(message) == length # Test __getitem__ # Init empty message m = Message() assert len(m) == 0 # Init message from tensor_dict / TensorMessage and dict of arrays / dataframe using positional arguments. tensor_message = TensorMessage(tensors) tensor_as_message = Message(tensors = tensors) df = pd.DataFrame(vectors) df_as_message = Message(df = vectors) # Try every combination tensor_options = [tensors, tensor_message, tensor_as_message] vector_options = [vectors, df, df_as_message] for t, v in product(tensor_options, vector_options): m = Message(t, v) attribute_test(m) m = Message(tensors = t, df = v) attribute_test(m) # Test one sided Messages for t in tensor_options: m = Message(t, None) assert len(m) == 3 assert m == Message(tensors) for v in vector_options: m = Message(None, v) assert len(m) == 3 assert m == Message(vectors) # Init message from a single dict everything = {**tensors, **vectors} m = Message(everything) attribute_test(m) def test_Message_from_objects(): v = vectors.copy() t = tensors.copy() v['c'] = np.array([1.,2.]) v['r'] = 'howdy' t['a'] = torch.randn(5) t['q'] = torch.randn([4,3]) combined = {**t, **v} m = Message.from_objects(t, v) assert (set(m.keys()) == set(['c','d','r','b','a','q'])) for key in ['c','d','b','a','q']: assert (m[key][0] == combined[key]).all() assert m['r'][0] == combined['r'] assert len(m) == 1 def test_getitem(): m = Message(tensors, vectors) assert m[0] == Message({'a': torch.Tensor([1]), 'b': torch.Tensor([4])}, {'c': np.array([7]), 'd': np.array([10])}) assert m[[0,2]] == Message({'a': torch.Tensor([1,3]), 'b': torch.Tensor([4,6])}, {'c': np.array([7,9]), 'd': np.array([10,12])}) # Check that out of bounds index calls raise errors try: m[3] assert False except IndexError: assert True try: m[3:5] assert False except IndexError: assert True def test_cache(): pass def test_tensors(): m = Message(tensors, vectors) t = m.tensors() assert t == TensorMessage(tensors) t = m.tensors(keys=['a']) assert t == TensorMessage({'a': tensors['a']}) t = m.tensors(keys=['a','c']) assert t == TensorMessage({'a': tensors['a'], 'c': torch.Tensor(vectors['c'])}) def test_df(): m = Message(tensors, vectors) df = m.dataframe() assert df.equals(pd.DataFrame(vectors)) df = m.dataframe(keys=['c']) assert df.equals(pd.DataFrame({'c': vectors['c']})) df = m.dataframe(keys=['c','a']) assert (df == (pd.DataFrame({'c': vectors['c'], 'a': np.array(tensors['a'])}))).all().all() def test_to_dataframe(): mo = Message(tensors,vectors) # no = mo.to_dataframe() # assert no.tensor_message == {} # assert (no['a'] == mo['a']).all() # assert (no['b'] == mo['b']).all() # for letter in ['a','b','c','d']: # assert letter in no.df lo = Message(dtensors, vectors) ok = lo.to_dataframe() for i in range(3): assert (ok['a'][i] == dtensors['a'][i].numpy()).all() assert (ok['b'][i] == dtensors['b'][i].numpy()).all() def test_cpu_gpu(): m = Message(tensors, vectors) m.cpu() assert set(m.tensors().keys()) == set(['a','b']) for key, tensor in m.tensors().items(): assert tensor.device.type == 'cpu' if torch.cuda.is_available(): m.cuda() for key, tensor in m.tensors().items(): assert tensor.device.type == 'cuda' m.cpu() for key, tensor in m.tensors().items(): assert tensor.device.type == 'cpu' def test_append(): t = tensors v = vectors m1 = Message(t, v) m2 = Message(t, v) m3 = Message(t) m4 = TensorMessage(t) m5 = Message(pd.DataFrame(v)) m6 = pd.DataFrame(v) m0 = Message() assert(len(m0) == 0) m = m0.append(Message(t)) assert m == Message(t) m = m0.append(Message(v)) assert m == Message(v) m = m0.append(Message(t,v)) assert m == Message(t,v) m = m1.append(m2) assert len(m) == 6 assert m == Message({'a': torch.Tensor([1,2,3,1,2,3]), 'b': torch.Tensor([4,5,6,4,5,6])}, {'c': np.array([7,8,9,7,8,9]), 'd': np.array([10,11,12,10,11,12])}) m = m3.append(t) assert len(m) == 6 assert m == Message({'a': torch.Tensor([1,2,3,1,2,3]), 'b': torch.Tensor([4,5,6,4,5,6])}) m = m3.append(m3) assert len(m) == 6 assert m == Message({'a': torch.Tensor([1,2,3,1,2,3]), 'b': torch.Tensor([4,5,6,4,5,6])}) m = m3.append(m4) assert len(m) == 6 assert m == Message({'a': torch.Tensor([1,2,3,1,2,3]), 'b': torch.Tensor([4,5,6,4,5,6])}) m = m4.append(t) assert len(m) == 6 assert m == TensorMessage({'a': torch.Tensor([1,2,3,1,2,3]), 'b': torch.Tensor([4,5,6,4,5,6])}) m = m4.append(m3) assert len(m) == 6 assert m == TensorMessage({'a': torch.Tensor([1,2,3,1,2,3]), 'b': torch.Tensor([4,5,6,4,5,6])}) m = m4.append(m4) assert len(m) == 6 assert m == TensorMessage({'a': torch.Tensor([1,2,3,1,2,3]), 'b': torch.Tensor([4,5,6,4,5,6])}) m = m5.append(v) assert len(m) == 6 assert m == Message({'c': np.array([7,8,9,7,8,9]), 'd': np.array([10,11,12,10,11,12])}) m = m5.append(m5) assert len(m) == 6 assert m == Message({'c': np.array([7,8,9,7,8,9]), 'd': np.array([10,11,12,10,11,12])}) m = m5.append(m6) assert len(m) == 6 assert m == Message({'c': np.array([7,8,9,7,8,9]), 'd': np.array([10,11,12,10,11,12])}) # Test type conversions on appending to TensorMessage m = m4.append({'a': np.array([42]), 'b': np.array([24])}) assert len(m) == 4 assert m == TensorMessage({'a': torch.Tensor([1,2,3,42]), 'b': torch.Tensor([4,5,6,24])}) def test_join(): t = tensors v = vectors t2 = {'d': torch.Tensor([13,14,15])} v2 = {'e': np.array([16,17,18])} m1 = Message(t,v) m2 = Message(t) m2_t = TensorMessage(t) m3 = Message(v) m4 = Message(t2,v2) m5 = Message(t2) m5_t = TensorMessage(t2) m6 = Message(v2) m7 = Message(t,v2) m8 = Message(t2, v) # Test if a tensor message can be merged into a message and vice versa assert m2.merge(m3) == m1 assert m3.merge(m2) == m1 assert m3.merge(m2_t) == m1 assert m3.merge(t) == m1 # Test if the tensors in messages can be merged assert m2.merge(t2) == Message({**t, **t2}) assert m2.merge(m5) == Message({**t, **t2}) assert m2.merge(m5_t) == Message({**t, **t2}) assert m2_t.merge(t2) == TensorMessage({**t, **t2}) assert m2_t.merge(m5) == TensorMessage({**t, **t2}) assert m2_t.merge(m5_t) == TensorMessage({**t, **t2}) # Test if the dataframes in messages can be merged assert m3.merge(m6) == Message({**v, **v2}) assert m6.merge(m3) == Message({**v, **v2}) assert m3.merge(v2) == Message({**v, **v2}) def test_Message_set_get(): # Test point updates email = Message(tensors, vectors) gmail = Message({'a':torch.Tensor([1,42,3]), 'b':torch.Tensor([4,43,6]), 'c': np.array([7,99,9]), 'd': np.array([10,100,12])}) replacement = {'a': torch.Tensor([42]), 'b': torch.Tensor([43]), 'c': np.array([99]), 'd': np.array([100])} assert len(email) == 3 assert email != gmail email[1] = replacement assert email == gmail # Test ranged updates email = Message(tensors, vectors) gmail = Message({'a':torch.Tensor([1,42,33]), 'b':torch.Tensor([4,43,66]), 'c': np.array([7,99,99]), 'd': np.array([10,100,122])}) replacement = {'a': torch.Tensor([42,33]), 'b': torch.Tensor([43,66]), 'c': np.array([99,99]), 'd': np.array([100,122])} assert email != gmail email[1:3] = replacement assert email == gmail # Test updates using lists as indexes email = Message(tensors, vectors) assert email != gmail email[[1,2]] = replacement assert email == gmail # Test column updates email['a'] = torch.Tensor([9,9,9]) assert torch.equal(email['a'], torch.Tensor([9,9,9])) email['c'] = np.array([9,9,9]) assert email['c'].equals(pd.Series([9,9,9])) # Test column updates that switch from df to tensor and vice-versa email = Message(tensors, vectors) assert set(email.columns) == set(['a','b','c','d']) assert set(email.tensor_message.columns) == set(['a','b']) assert set(email.df.columns) == set(['c','d']) new_a = np.array([1,2,3]) # Switch from tensor to vector email['a'] = new_a assert set(email.columns) == set(['a','b','c','d']) assert set(email.tensor_message.columns) == set(['b']) assert set(email.df.columns) == set(['a','c','d']) assert (email['a'] == new_a).all() new_c = torch.Tensor([7,8,9]) email['c'] = new_c assert set(email.columns) == set(['a','b','c','d']) assert set(email.tensor_message.columns) == set(['b','c']) assert set(email.df.columns) == set(['a','d']) assert (email['c'] == new_c).all() # Test column updates that end up clearing either self.df or self.tensor_message email = Message(tensors, vectors) df = email.dataframe(['a', 'b']) assert len(email) == 3 assert len(email.tensor_message) == 3 assert len(email.df) == 3 email[['a','b']] = df assert len(email) == 3 assert len(email.tensor_message) == 0 assert len(email.df) == 3 # TODO: Test the other way around def test_Message_del(): t = { 'a': torch.Tensor([1,2,3]), 'b': torch.Tensor([4,5,6]), } v = { 'c': np.array([7,8,9]), 'd': np.array([10,11,12]), } t2 = { 'a': torch.Tensor([1,2]), 'b': torch.Tensor([4,5]), } v2 = { 'c': np.array([7,8]), 'd': np.array([10,11]), } t3 = { 'a': torch.Tensor([1]), 'b': torch.Tensor([4]), } v3 = { 'c': np.array([7]), 'd': np.array([10]), } # Test deletions for messages with only tensors, only df, and both # Test point deletions m = Message(t,v) m1 = Message(t) m2 = Message(v) assert m != Message(t2,v2) assert m1 != Message(t2) assert m2 != Message(v2) assert len(m) == 3 assert len(m1) == 3 assert len(m2) == 3 del m[2] del m1[2] del m2[2] assert len(m) == 2 assert len(m1) == 2 assert len(m2) == 2 assert m == Message(t2,v2) assert m1 == Message(t2) assert m2 == Message(v2) # Test range deletions m = Message(t,v) m1 = Message(t) m2 = Message(v) assert m != Message(t3,v3) assert m1 != Message(t3) assert m2 != Message(v3) assert len(m) == 3 assert len(m1) == 3 assert len(m2) == 3 del m[1:3] del m1[1:3] del m2[1:3] assert len(m) == 1 assert len(m1) == 1 assert len(m2) == 1 assert m == Message(t3,v3) assert m1 == Message(t3) assert m2 == Message(v3) # Test list deletions m = Message(t,v) m1 = Message(t) m2 = Message(v) assert m != Message(t3,v3) assert m1 != Message(t3) assert m2 != Message(v3) assert len(m) == 3 assert len(m1) == 3 assert len(m2) == 3 del m[[1,2]] del m1[[1,2]] del m2[[1,2]] assert len(m) == 1 assert len(m1) == 1 assert len(m2) == 1 assert m == Message(t3,v3) assert m1 == Message(t3) assert m2 == Message(v3) # Test column deletions m = Message(t,v) assert set(m.columns) == set(['a','b','c','d']) del m['a'] assert set(m.columns)== set(['b','c','d']) del m['c'] assert set(m.columns) == set(['b','d']) def test_Message_iter(): m = Message(tensors, vectors) l = len(m) for x,i in zip(m, count()): assert type(x) is Message if i > l: assert False assert i == l - 1 t = TensorMessage(tensors) l = len(t) for x,i in zip(t, count()): assert type(x) is TensorMessage if i > l: assert False assert i == l - 1 def test_map(): pass def test_TensorMessage(): a = [1,2,3] b = [4, 5, 6] # Test init empty = TensorMessage() assert len(empty) == 0 assert empty.keys() == {}.keys() email = TensorMessage({'a': a, 'b':b}) # Test error cases # TODO: test error cases # Test length assert len(email) == 3 # Test getitem x = email[2] assert set(x.keys()) == set(['a','b']) assert (x['a'] == torch.Tensor([3])).all() assert (x['b'] == torch.Tensor([6])).all() x = email[0:2] assert set(x.keys()) == set(['a','b']) assert (x['a'] == torch.Tensor([1,2])).all() assert (x['b'] == torch.Tensor([4,5])).all() # Test for length 1 init gmail = TensorMessage({'a':1, 'b': 80}) assert len(gmail) == 1 y = gmail[0] assert set(y.keys()) == set(['a','b']) assert (y['a'] == torch.Tensor([1])).all() assert (y['b'] == torch.Tensor([80])).all() # Test extend yahoomail = email.append(gmail) assert len(yahoomail) == 4 z = yahoomail[0:4] assert set(z.keys()) == set(['a','b']) assert (z['a'] == torch.Tensor([1,2,3,1])).all() assert (z['b'] == torch.Tensor([4, 5, 6, 80])).all() def test_TensorMessage_set_get_del(): a = [1,2,3] b = [4, 5, 6] email = TensorMessage({'a': a, 'b':b}) replacement = {'a': torch.Tensor([42]), 'b': torch.Tensor([43])} gmail = TensorMessage({'a':torch.Tensor([42,2,3]), 'b': torch.Tensor([43,5,6])}) yahoomail = TensorMessage({'a':torch.Tensor([2,3]), 'b': torch.Tensor([5,6])}) assert email != gmail email[0] = replacement assert email == gmail assert len(email) == 3 email['a'] = torch.Tensor([9,9,9]) assert torch.equal(email['a'], torch.Tensor([9,9,9])) assert gmail != yahoomail del gmail[0] assert len(gmail) == 2 assert gmail == yahoomail # Test column deletions email = TensorMessage({'a': a, 'b':b}) assert set(email.columns) == set(['a','b']) del email['a'] assert set(email.columns) == set(['b']) # Test that out of bounds requests raise errors try: email[3] assert False except IndexError: assert True try: email[3:5] assert False except IndexError: assert True # Test length adjustment if all columns are deleted zohomail = TensorMessage({'a':a,'b':b}) assert len(zohomail) == 3 del zohomail['a'] assert len(zohomail) == 3 del zohomail['b'] assert len(zohomail) == 0 def test_TensorMessage_eq(): a = [1,2,3] b = [4, 5, 6] # Test init email = TensorMessage({'a': a, 'b':b}) gmail = TensorMessage(email) def test_cat(): m = Message(tensors, vectors) m0 = m[0] m1 = m[1] m2 = m[2] babaghanush = messi.cat([m0,m1,m2]) assert babaghanush == m def test_TensorMessage_permute(): a = [1,2,3] b = [4, 5, 6] email = TensorMessage({'a': a, 'b':b}) gmail = email.permute([2,1,0]) assert gmail == TensorMessage({'a':[3,2,1], 'b':[6,5,4]}) gmail = email.permute([0,0,0]) assert gmail == TensorMessage({'a':[1,1,1], 'b':[4,4,4]}) def test_permute(): tensors = { 'a': torch.Tensor([1,2,3]), 'b': torch.Tensor([4,5,6]), } vectors = { 'c': np.array([7,8,9]), 'd': np.array([10,11,12]), } email = Message(tensors, vectors) gmail = email.permute([2,1,0]) assert gmail == Message({'a':[3,2,1], 'b':[6,5,4]}, {'c': np.array([9,8,7]), 'd': np.array([12,11,10])}) gmail = email.permute([0,0,0]) assert gmail == Message({'a':[1,1,1], 'b':[4,4,4]}, {'c': np.array([7,7,7]), 'd': np.array([10,10,10])}) # Test with only tensors email = Message(tensors) gmail = email.permute([2,1,0]) assert gmail == Message({'a':[3,2,1], 'b':[6,5,4]}, {}) gmail = email.permute([0,0,0]) assert gmail == Message({'a':[1,1,1], 'b':[4,4,4]}, {}) # Test with only dataframes email = Message(vectors) gmail = email.permute([2,1,0]) assert gmail == Message({'c': np.array([9,8,7]), 'd': np.array([12,11,10])}) gmail = email.permute([0,0,0]) assert gmail == Message({'c': np.array([7,7,7]), 'd': np.array([10,10,10])}) def test_to_csv(): m = Message(tensors, vectors) pass #TODO: Implement def test_to_pickle(): m = Message(tensors, vectors) pass #TODO: Implement def test_to_sql(): m = Message(tensors, vectors) pass #TODO: Implement def test_to_dict(): m = Message(tensors, vectors) md = m.to_dict() assert type(md) is dict assert (md['c'] == md['c']) assert (md['d'] == md['d']) assert (md['a'] == np.array(md['a'])).all() assert (md['b'] == np.array(md['b'])).all() def test_to_excel(): m = Message(tensors, vectors) pass #TODO: Implement def test_to_json(): m = Message(tensors, vectors) pass #TODO: Implement def test_to_string(): m = Message(tensors, vectors) pass #TODO: Implement def test_save_load(): m = Message(tensors, vectors) test_path = 'test.fireworks' m.save(test_path) new_m = Message.load(test_path) assert new_m == m os.remove(test_path) buffer = BytesIO() m.save(buffer) buffed_m = Message.load(buffer) assert buffed_m == m def test_pickle(): m = Message(tensors, vectors) state = pickle.dumps(m) new_m = pickle.loads(state) assert new_m == m
30.100904
161
0.551609
014443d27280436fa9155d28fe25026c95ccd13f
4,361
py
Python
Spyder/newsSpyder-.py
Ironstarboy/DataSciBasic
6fb5af851388a3d6dfab7c3bcc6916f3e19ba654
[ "MIT" ]
1
2021-04-30T12:53:03.000Z
2021-04-30T12:53:03.000Z
Spyder/newsSpyder-.py
Ironstarboy/DataSciBasic
6fb5af851388a3d6dfab7c3bcc6916f3e19ba654
[ "MIT" ]
null
null
null
Spyder/newsSpyder-.py
Ironstarboy/DataSciBasic
6fb5af851388a3d6dfab7c3bcc6916f3e19ba654
[ "MIT" ]
3
2021-03-06T07:55:26.000Z
2021-04-30T12:52:58.000Z
import datetime from fake_useragent import UserAgent import requests import re import os from bs4 import BeautifulSoup as bs import time import random def show_time(seconds): m, s = divmod(seconds, 60) h, m = divmod(m, 60) return "%d:%02d:%02d" % (h, m, s) def get_random_header():#้šๆœบๅคด ua = UserAgent() user_agent = ua.random return user_agent def get_html_text(url): '''่Žทๅ–ๅฝ“ๅ‰urlๆบไปฃ็ ''' sleepTime=random.uniform(1,2.33)#็ญ‰ๅพ…ๆ—ถ้—ด๏ผŒไธ่ฆๅคชๅฐๅง time.sleep(sleepTime) myheader=get_random_header() try: r=requests.request("GET",url,headers={'user-agent':myheader},timeout=3) r.encoding='utf-8' #r.apparent_encoding return r.text except Exception as e: return '' ''' <div class="box-result clearfix" data-sudaclick="blk_result_index_3"> <h2><a href="https://news.sina.com.cn/o/2019-12-26/doc-iihnzahk0127138.shtml" target="_blank">ๅ›ฝๅฎถๅซๅฅๅง”๏ผš็›ฎๅ‰ๅ…จๅ›ฝไผ ๆŸ“็—…<font color="red">็–ซๆƒ…</font>ๅฝขๅŠฟๆ€ปไฝ“ๅนณ็จณ</a> <span class="fgray_time">ไธญๅ›ฝๆ–ฐ้—ป็ฝ‘ 2019-12-26 15:23:32</span></h2> <div class="r-img"> <a href="https://news.sina.com.cn/o/2019-12-26/doc-iihnzahk0127138.shtml" target="_blank" class="a-img"><img alt="" class="left_img" width="120" onload="a_r_i(this);" onerror="set_right_url3(this,'http:\/\/n.sinaimg.cn\/spider20191226\/145\/w540h405\/20191226\/1c81-imfiehq4029080.jpg');" src="http://n.sinaimg.cn/spider20191226/145/w540h405/20191226/1c81-imfiehq4029080.jpg" /></a> </div> <div class="r-info"> <p class="content"> ใ€€ใ€€ๅ›ฝๅฎถๅซๅฅๅง”๏ผš็›ฎๅ‰ไธญๅ›ฝไผ ๆŸ“็—…<font color="red">็–ซๆƒ…</font>ๅฝขๅŠฟๆ€ปไฝ“ๅนณ็จณ ไธญๆ–ฐ็คพๅŒ—ไบฌ12ๆœˆ26ๆ—ฅ็”ต (่ฎฐ่€… ๆŽไบšๅ—)ไธญๅ›ฝๅ›ฝๅฎถๅซ็”Ÿๅฅๅบทๅง”ๅ‘˜ไผš็–พ็—…้ข„้˜ฒๆŽงๅˆถๅฑ€ๅ‰ฏๅฑ€้•ฟ็Ž‹ๆ–Œ26ๆ—ฅๅœจๅŒ—ไบฌ่กจ็คบ</p> </div> </div> ''' def getOutcomeHtmlText(htmltext):#ๅพ—ๅˆฐๅŒ…ๅซๆœ็ดข็ป“ๆžœๆบไปฃ็ ๆ–‡ๆœฌ ๅˆ—่กจ,ๆ ผๅผๅฆ‚ไธŠ soup = bs(htmltext, 'html.parser',) eachOutcomeText=soup.find_all('div',attrs={'class':"box-result clearfix"}) #่ฟ”ๅ›žๆฏไธชๆœ็ดข็ป“ๆžœ็š„ๅฏนๅบ”ๆบไปฃ็ ้ƒจๅˆ† return eachOutcomeText def save_outcome_info2csv(htmlText,filename): title = '' jumpUrl='' source_and_time='' source='' publish_time='' try: title = re.search('target="_blank">(.*?)</a>', htmlText).group(1).strip().replace('<font color="red">','').replace('</font>','') jumpUrl = re.search('<a href="(.*?)" target="_blank">',htmlText).group(1).strip() source_and_time=re.search('<span class="fgray_time">(.*?)</span>',htmlText).group(1).strip() spaceIndex=source_and_time.index(' ') source=source_and_time[:spaceIndex] publish_time=source_and_time[spaceIndex+1:spaceIndex+11] except Exception as e: print(e) with open(filename,'a+') as f: #ๅฏ่ƒฝไผšๅ‡บ็Žฐ็ผ–็ ้”™่ฏฏ try: f.write(title+',') f.write(jumpUrl+',') f.write(source+',') f.write(publish_time+'\n') except: f.write('\n') def urlParam(stime, etime, page, keyword='%e8%82%ba%e7%82%8e', my_range='title'):#range๏ผšallๅ…จๆ–‡ titleๆ ‡้ข˜ '''time:2020-01-01''' out='https://search.sina.com.cn/?q={keyword}&c=news&range={my_range}&size=20&time=2020&stime={stime}%2000:00:00&etime={etime}%2023:59:59&num=10&page={page}'.format(keyword=keyword,my_range=my_range, stime=stime, etime=etime, page=page) return out def timeitr(smonth,sday,emonth,eday,year=2020): #้ๅކไธ€ๅฎš่Œƒๅ›ดๅ†…็š„ๆ—ฅๆœŸ๏ผŒ่ฟ”ๅ›žๆ—ฅๆœŸๅญ—็ฌฆไธฒๅˆ—่กจ๏ผŒ้—ญๅŒบ้—ด begin = datetime.date(year, smonth, sday) end = datetime.date(year, emonth, eday) outDaylst=[] for i in range((end - begin).days + 1): outday = begin + datetime.timedelta(days=i) outDaylst.append(str(outday)) return outDaylst def run(): #่ฟ™้‡Œไฟฎๆ”นๅ‚ๆ•ฐ keyword='่‚บ็‚Ž' my_range='all'#ๅ…จๆ–‡:all๏ผŒๆ ‡้ข˜:title fileName=r'test.csv' days=timeitr(3,18,3,18,2020)#้—ญๅŒบ้—ด๏ผŒ่ทจๅนด้œ€่ฆๅˆ†2ๆฎต for ymd in days:#ymd:year month day for page in range(1): currentPageUrl=urlParam(ymd,ymd,str(page),keyword,my_range) currentPageText=get_html_text(currentPageUrl) outcomeTextList=getOutcomeHtmlText(currentPageText) for i in range(len(outcomeTextList)): text=str(outcomeTextList[i]).replace('\n','') save_outcome_info2csv(text,fileName) print(ymd+' done!') print('done!') if __name__=='__main__': start_time = datetime.datetime.now() # ่ฎก็ฎ—ไธป็จ‹ๅบ่ฟ่กŒๆ—ถ้—ด run() end_time = datetime.datetime.now() seconds=(end_time - start_time).seconds spendTime=show_time(seconds) print(spendTime)
31.601449
387
0.649163
6497c3c632d6649abc1604de6e48ee44ba18552d
598
py
Python
outros-codigos/beautiful.py
Exterminus/WebScrapingSecomp
18a8a079dcb995f965e6a346724f4bbb585ce706
[ "MIT" ]
1
2018-09-14T04:14:43.000Z
2018-09-14T04:14:43.000Z
outros-codigos/beautiful.py
Exterminus/WebScrapingSecomp
18a8a079dcb995f965e6a346724f4bbb585ce706
[ "MIT" ]
null
null
null
outros-codigos/beautiful.py
Exterminus/WebScrapingSecomp
18a8a079dcb995f965e6a346724f4bbb585ce706
[ "MIT" ]
1
2018-09-14T04:14:45.000Z
2018-09-14T04:14:45.000Z
from bs4 import BeautifulSoup html_doc = """ <!DOCTYPE html> <html lang='pt' dir="ltr"> <head> <meta charset="utf-8"> <title>Tรญtulo</title> </head> <body> <div id= 'msg_1' class= 'mensagens'> <p>Meu nome รฉ Thrawn</p> <div> <div id= 'msg_2' class= 'mensagens' > <p>Olรก meu nome รฉ Vader</p> <a href="https://ufsj.edu.br">UFSJ</a> </body> </html> """ soup = BeautifulSoup(html_doc, 'html.parser') print(soup.text) print("Titulo:",soup.title) # <title>The Dormouse's story</title> print("Tag P:",soup.p) #print("Div",soup.div) print(soup.find_all("div",class_='mensa'))
22.148148
45
0.628763
98071f646a1fe2d1ea33a6d4c995d73bfc35f6b3
5,600
py
Python
prob_mbrl/envs/pendulum/env.py
Praneethsv/prob_mbrl
7b1adee6bff742b6f90e9b96ea243f12c9153b9b
[ "MIT" ]
108
2018-10-24T07:59:14.000Z
2021-11-28T05:29:35.000Z
prob_mbrl/envs/pendulum/env.py
Praneethsv/prob_mbrl
7b1adee6bff742b6f90e9b96ea243f12c9153b9b
[ "MIT" ]
8
2019-08-14T00:20:13.000Z
2019-10-18T01:45:29.000Z
prob_mbrl/envs/pendulum/env.py
Praneethsv/prob_mbrl
7b1adee6bff742b6f90e9b96ea243f12c9153b9b
[ "MIT" ]
14
2019-06-27T10:10:08.000Z
2020-08-31T03:16:22.000Z
# Copyright (C) 2018, Anass Al # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <https://www.gnu.org/licenses/> """Pendulum environment.""" import torch import numpy as np from gym import spaces from .model import PendulumModel from ..base import GymEnv from ...utils import angles class PendulumReward(torch.nn.Module): def __init__(self, pole_length=1.0, target=torch.tensor([np.pi, 0]), Q=4.0 * torch.eye(2), R=1e-4 * torch.eye(1)): super(PendulumReward, self).__init__() self.Q = torch.nn.Parameter(Q, requires_grad=False) self.R = torch.nn.Parameter(R, requires_grad=False) if target.dim() == 1: target = target.unsqueeze(0) self.target = torch.nn.Parameter(target, requires_grad=False) self.pole_length = torch.nn.Parameter(pole_length, requires_grad=False) def forward(self, x, u): if not isinstance(x, torch.Tensor): x = torch.tensor(x) if not isinstance(u, torch.Tensor): u = torch.tensor(u) x = x.to(device=self.Q.device, dtype=self.Q.dtype) u = u.to(device=self.Q.device, dtype=self.Q.dtype) if x.dim() == 1: x = x.unsqueeze(0) if u.dim() == 1: u = u.unsqueeze(0) # compute the distance between the tip of the pole and the target tip # location targeta = angles.to_complex(self.target, [0]) target_tip_xy = torch.cat([ self.pole_length * targeta[:, 1:2], -self.pole_length * targeta[:, 2:3] ], dim=-1) if x.shape[-1] != targeta.shape[-1]: xa = angles.to_complex(x, [0]) else: xa = x pole_tip_xy = torch.cat( [self.pole_length * xa[:, 1:2], -self.pole_length * xa[:, 2:3]], dim=-1) # normalized distance so that cost at [0 ,0] is 1 delta = (pole_tip_xy - target_tip_xy) delta = delta / (2 * self.pole_length) # compute cost cost = 0.5 * ((delta.mm(self.Q) * delta).sum(-1, keepdim=True) + (u.mm(self.R) * u).sum(-1, keepdim=True)) # reward is negative cost. # optimizing the exponential of the negative cost reward = (-cost).exp() return reward class Pendulum(GymEnv): """Open AI gym pendulum environment. Based on the OpenAI gym Pendulum-v0 environment, but with more custom dynamics for a better ground truth. """ metadata = { "render.modes": ["human", "rgb_array"], "video.frames_per_second": 30, } def __init__(self, model=None, reward_func=None, **kwargs): if model is None: model = PendulumModel() # init parent class reward_func = reward_func if callable(reward_func) else PendulumReward( pole_length=model.l) measurement_noise = torch.tensor([0.1, 0.01]) super(Pendulum, self).__init__(model, reward_func, measurement_noise, angle_dims=[0], **kwargs) # init this class high = np.array([2.5]) self.action_space = spaces.Box(low=-high, high=high, dtype=np.float32) high = np.array([np.pi, np.finfo(np.float32).max]) if self.angle_dims is not None: low = angles.to_complex(torch.tensor(-high), self.angle_dims).numpy() high = angles.to_complex(torch.tensor(high), self.angle_dims).numpy() else: low = -high self.observation_space = spaces.Box(low=low, high=high, dtype=np.float32) def reset(self, init_state=np.array([0.0, 0.0]), init_state_std=1e-1): return super(Pendulum, self).reset(init_state, init_state_std) def render(self, mode="human"): if self.viewer is None: from gym.envs.classic_control import rendering self.viewer = rendering.Viewer(500, 500) self.viewer.window.set_vsync(False) self.viewer.set_bounds(-2.2, 2.2, -2.2, 2.2) rod = rendering.make_capsule(1.0 * self.model.l, 0.2 * torch.sqrt(self.model.m / 1.0)) rod.set_color(0.8, 0.3, 0.3) self.pole_transform = rendering.Transform() rod.add_attr(self.pole_transform) self.viewer.add_geom(rod) axle = rendering.make_circle(0.05) axle.set_color(0, 0, 0) self.viewer.add_geom(axle) theta, _ = self.state self.pole_transform.set_rotation(theta - np.pi / 2) return self.viewer.render(return_rgb_array=mode == "rgb_array") def close(self): if self.viewer: self.viewer.close()
36.842105
79
0.565179
0f9be3ddba8c0711e6374e85d5c57523c385c80d
2,276
py
Python
src/plotting/bin/modules/decodingPotential.py
WoutDavid/ST-nextflow-pipeline
8de3da218ec4f10f183e1163fe782c19fd8dd841
[ "MIT" ]
null
null
null
src/plotting/bin/modules/decodingPotential.py
WoutDavid/ST-nextflow-pipeline
8de3da218ec4f10f183e1163fe782c19fd8dd841
[ "MIT" ]
null
null
null
src/plotting/bin/modules/decodingPotential.py
WoutDavid/ST-nextflow-pipeline
8de3da218ec4f10f183e1163fe782c19fd8dd841
[ "MIT" ]
null
null
null
import pandas as pd import matplotlib.pyplot as plt import numpy as np def plotDecodingPotential(decoded_genes: str, codebook: str): decoded_genes = pd.read_csv(decoded_genes) codebook = pd.read_csv(codebook) # First extracts all possible "good" barcodes true_barcode_list = [str(i) for i in list(codebook['Barcode'])] # extract called barcodesk called_barcodes_list = [str(i) for i in list(decoded_genes['Barcode'])] total_nr_called_spots = len(called_barcodes_list) # This function assumes that the length of the future barcode list elements are the same length as the inputted barcode barcode_excerpt intervals = range(1, len(true_barcode_list[0])+1) # key = length of the intermediate barcode, value = list of barcodes of that length sliced_barcode_dict = {str(n_rounds): [barcode[:n_rounds] for barcode in true_barcode_list] for n_rounds in intervals} nr_future_matches_dict = {} # key = len of the barcode, value = number of spots that still represent a future possible barcodes for n_rounds in intervals: for spot in called_barcodes_list: barcode_excerpt = spot[:n_rounds] if barcode_excerpt in sliced_barcode_dict[str(n_rounds)]: nr_future_matches_dict[n_rounds] = nr_future_matches_dict.get(n_rounds, 0) + 1 ratio_future_matches_dict = {k:round((v/total_nr_called_spots), 3)*100 for k,v in nr_future_matches_dict.items()} # Make a pretty plot out of it fig, ax = plt.subplots(1,1) ax.set_title("Measurement of possible true barcode matches by round progression") ax.set_xlabel("Round number") ax.set_ylabel("Ratio of valid barcodes (%)") ax.plot(ratio_future_matches_dict.keys(), ratio_future_matches_dict.values(), '-o') ax.set_xticks(list(ratio_future_matches_dict.keys())) for x,y in zip(ratio_future_matches_dict.keys(), ratio_future_matches_dict.values()): label = "{:.2f}".format(y) plt.annotate(label, # this is the text (x,y), # this is the point to label textcoords="offset points", # how to position the text xytext=(0,10), # distance from text to points (x,y) ha='center') fig.tight_layout() return plt
48.425532
139
0.696397
57fc0e4cfad715e917a9be463b7f1ab954225f82
3,956
py
Python
users/management/commands/load_sighting_data.py
maverick-labs-pune/wikirumours
51651aae651fd88468b54d08abb8ec28a93e65fa
[ "MIT" ]
null
null
null
users/management/commands/load_sighting_data.py
maverick-labs-pune/wikirumours
51651aae651fd88468b54d08abb8ec28a93e65fa
[ "MIT" ]
null
null
null
users/management/commands/load_sighting_data.py
maverick-labs-pune/wikirumours
51651aae651fd88468b54d08abb8ec28a93e65fa
[ "MIT" ]
null
null
null
import csv import datetime import os from django.contrib.gis.geos import Point from django.core.management import BaseCommand, CommandError from django.db import transaction from geopy import Nominatim from countries.models import Country from report.models import Report, Sighting, ReportedViaChoice from users.models import User class Command(BaseCommand): help = "load sighting data" def handle(self, *args, **kwargs): import_sightings() def import_sightings(): with transaction.atomic(): dir_path = os.path.dirname(os.path.realpath(__file__)) # load users with transaction.atomic(): sightings_csv_file_path = dir_path + '/../data/wikirumours_production_table_wr_rumour_sightings.csv' with open(sightings_csv_file_path, "r") as file: reader = csv.DictReader(x.replace('\0', '') for x in file) for row in reader: sighting_id = row["sighting_id"].strip() public_id = row["public_id"].strip() rumour_id = row["rumour_id"].strip() details = row["details"].strip() heard_on = row["heard_on"].strip() country_id = row["country_id"].strip() city = row["city"].strip() location_type = row["location_type"].strip() latitude = row["latitude"].strip() longitude = row["longitude"].strip() unable_to_geocode = row["unable_to_geocode"].strip() source_id = row["source_id"].strip() ipv4 = row["ipv4"].strip() ipv6 = row["ipv6"].strip() created_by = row["created_by"].strip() entered_by = row["entered_by"].strip() entered_on = row["entered_on"].strip() user = User.objects.filter(id=created_by).first() if user is None: continue report = Report.objects.filter(id=rumour_id).first() if report is None: continue else: latitude = float(latitude) longitude = float(longitude) address = city if not heard_on or heard_on[0] == '0': heard_on = None else: try: heard_on = datetime.datetime.strptime( heard_on, "%Y-%m-%d %H:%M:%S" ) except: heard_on = None created_at = datetime.datetime.strptime( entered_on, "%Y-%m-%d %H:%M:%S" ) country = Country.objects.filter( iso_code=country_id.replace('"', "") ).first() reported_via = ReportedViaChoice.objects.filter(id=source_id).first() sighting = Sighting() sighting.id = int(sighting_id) sighting.report = report sighting.user = user sighting.heard_on = heard_on sighting.reported_via = reported_via sighting.address = address sighting.country = country sighting.source = None sighting.overheard_at = None sighting.location = Point(longitude, latitude) sighting.is_first_sighting = False sighting.save() sighting.created_at = created_at sighting.save()
40.783505
112
0.476239
c38111916dbe94a58306d0cd5340e5b1aa38cb46
229
py
Python
app/core/tests/test_simple_function.py
mmansuri8701/recipe-app-api
ac587d203fd09dadc06f83e5419f034bcdbc93c7
[ "MIT" ]
null
null
null
app/core/tests/test_simple_function.py
mmansuri8701/recipe-app-api
ac587d203fd09dadc06f83e5419f034bcdbc93c7
[ "MIT" ]
null
null
null
app/core/tests/test_simple_function.py
mmansuri8701/recipe-app-api
ac587d203fd09dadc06f83e5419f034bcdbc93c7
[ "MIT" ]
null
null
null
from unittest.mock import patch from core import simple from django.test import TestCase class SimpleTest(TestCase): def test_use_simple_function(self): #result = simple.simple_function() print(simple.simple_function())
22.9
36
0.79476
f5cd9bb57ce575298429e24c25dba42bc85929eb
441
py
Python
backend/work/migrations/0005_auto_20200504_0153.py
ecto0310/groupware
e1c9f76b19e6d1f6782f8e2b287ff75d1351fa83
[ "MIT" ]
3
2020-03-23T19:18:00.000Z
2021-04-12T04:01:17.000Z
backend/work/migrations/0005_auto_20200504_0153.py
ecto0310/groupware
e1c9f76b19e6d1f6782f8e2b287ff75d1351fa83
[ "MIT" ]
95
2020-03-07T12:29:38.000Z
2022-02-17T22:44:07.000Z
backend/work/migrations/0005_auto_20200504_0153.py
ecto0310/groupware
e1c9f76b19e6d1f6782f8e2b287ff75d1351fa83
[ "MIT" ]
2
2021-12-27T16:50:36.000Z
2021-12-27T16:53:12.000Z
# Generated by Django 3.0.3 on 2020-05-03 16:53 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('tool', '0006_delete_usertool'), ('work', '0004_auto_20200501_1600'), ] operations = [ migrations.AlterField( model_name='work', name='tools', field=models.ManyToManyField(blank=True, to='tool.Tool'), ), ]
22.05
69
0.594104
300d53333d50a06f1156024e4729e6af9b3b655d
4,521
py
Python
tests/test_sklearn_feature_union.py
MaxNoe/sklearn-onnx
698c9347e7c70cbb1a2c5bba1657e6548ff5897d
[ "MIT" ]
null
null
null
tests/test_sklearn_feature_union.py
MaxNoe/sklearn-onnx
698c9347e7c70cbb1a2c5bba1657e6548ff5897d
[ "MIT" ]
null
null
null
tests/test_sklearn_feature_union.py
MaxNoe/sklearn-onnx
698c9347e7c70cbb1a2c5bba1657e6548ff5897d
[ "MIT" ]
1
2020-10-01T09:26:27.000Z
2020-10-01T09:26:27.000Z
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- import unittest import numpy as np from sklearn.datasets import load_digits, load_iris from sklearn.decomposition import PCA, TruncatedSVD from sklearn.model_selection import train_test_split from sklearn.pipeline import FeatureUnion from sklearn.preprocessing import StandardScaler, MinMaxScaler from skl2onnx import convert_sklearn from skl2onnx.common.data_types import FloatTensorType, Int64TensorType from test_utils import dump_data_and_model class TestSklearnAdaBoostModels(unittest.TestCase): def test_feature_union_default(self): data = load_iris() X, y = data.data, data.target X = X.astype(np.float32) X_train, X_test, *_ = train_test_split(X, y, test_size=0.5, random_state=42) model = FeatureUnion([('standard', StandardScaler()), ('minmax', MinMaxScaler())]).fit(X_train) model_onnx = convert_sklearn( model, 'feature union', [('input', FloatTensorType([None, X_test.shape[1]]))]) self.assertTrue(model_onnx is not None) dump_data_and_model(X_test, model, model_onnx, basename="SklearnFeatureUnionDefault") def test_feature_union_transformer_weights_0(self): data = load_iris() X, y = data.data, data.target X = X.astype(np.float32) X_train, X_test, *_ = train_test_split(X, y, test_size=0.5, random_state=42) model = FeatureUnion([('standard', StandardScaler()), ('minmax', MinMaxScaler())], transformer_weights={'standard': 2, 'minmax': 4} ).fit(X_train) model_onnx = convert_sklearn( model, 'feature union', [('input', FloatTensorType([None, X_test.shape[1]]))]) self.assertTrue(model_onnx is not None) dump_data_and_model(X_test, model, model_onnx, basename="SklearnFeatureUnionTransformerWeights0") def test_feature_union_transformer_weights_1(self): data = load_digits() X, y = data.data, data.target X = X.astype(np.int64) X_train, X_test, *_ = train_test_split(X, y, test_size=0.5, random_state=42) model = FeatureUnion([('pca', PCA()), ('svd', TruncatedSVD())], transformer_weights={'pca': 10, 'svd': 3} ).fit(X_train) model_onnx = convert_sklearn( model, 'feature union', [('input', Int64TensorType([None, X_test.shape[1]]))]) self.assertTrue(model_onnx is not None) dump_data_and_model( X_test, model, model_onnx, basename="SklearnFeatureUnionTransformerWeights1-Dec4", allow_failure="StrictVersion(" "onnxruntime.__version__)" "<= StrictVersion('0.2.1')", ) def test_feature_union_transformer_weights_2(self): data = load_digits() X, y = data.data, data.target X = X.astype(np.float32) X_train, X_test, *_ = train_test_split(X, y, test_size=0.5, random_state=42) model = FeatureUnion([('pca', PCA()), ('svd', TruncatedSVD())], transformer_weights={'pca1': 10, 'svd2': 3} ).fit(X_train) model_onnx = convert_sklearn( model, 'feature union', [('input', FloatTensorType([None, X_test.shape[1]]))]) self.assertTrue(model_onnx is not None) dump_data_and_model( X_test, model, model_onnx, basename="SklearnFeatureUnionTransformerWeights2-Dec4", allow_failure="StrictVersion(" "onnxruntime.__version__)" "<= StrictVersion('0.2.1')", ) if __name__ == "__main__": unittest.main()
42.252336
78
0.538376
86c7fb53ec475248fd25329584e82d21855e3b7a
2,931
py
Python
project/code/analysis/bayes.py
cycomachead/info290
694361cfa755daec24c773e15d5bc965411d4caf
[ "BSD-2-Clause" ]
2
2015-05-12T01:21:56.000Z
2015-07-04T21:14:06.000Z
project/code/analysis/bayes.py
cycomachead/info290
694361cfa755daec24c773e15d5bc965411d4caf
[ "BSD-2-Clause" ]
1
2015-02-19T12:26:34.000Z
2015-05-14T12:42:56.000Z
project/code/analysis/bayes.py
cycomachead/info290
694361cfa755daec24c773e15d5bc965411d4caf
[ "BSD-2-Clause" ]
null
null
null
#! /usr/bin/env python3 from pandas import * import sklearn from sklearn.naive_bayes import GaussianNB from sklearn.naive_bayes import MultinomialNB from sklearn.grid_search import GridSearchCV import numpy as np import random STYLE = "American_IPA" """ Performs cross validation on data using a given method Returns the average score. Percent is the percentage of data to use as validation, this should be an integer, not a decimal. Rounds is the number of rounds of cv to run. """ def cross_val(data, labels, percent, rounds, method): row_count = len(data.index) scores = [] # Test round times and take average score for _ in range(rounds): # randomly select row indices for test/train sets test_rows = [] for i in range(row_count//percent): test_rows.append(random.randint(0, row_count-1)) test_rows.sort() train_rows = [i for i in range(len(data.index))] train_rows = [i for i in train_rows if i not in test_rows] train_rows.sort() # select test/train sets test_data = data.drop(train_rows) train_data = data.drop(test_rows) test_labels = labels.drop(train_rows) train_labels = labels.drop(test_rows) # train random forest fit_cv = method.fit(train_data, train_labels) # calculate score score_cv = method.score(test_data, test_labels) scores.append(score_cv) return sum(scores)/len(scores) data = read_pickle("processed/pandas/%s.pkl"%(STYLE)) labels = data['beer_id'] del data['beer_id'] data = data.fillna(0) ########################### ### Basic Bayes Methods ### ########################### gnb = GaussianNB() fit = gnb.fit(data, labels) score = gnb.score(data, labels) print('Gaussian NB') print(score) mbn = MultinomialNB() fit = mbn.fit(data, labels) score = mbn.score(data, labels) print('Multinomial NB') print(score) ######################## ### Cross Validation ### ######################## # rounds = 2 # pct = 10 # # for c in criterion: # # for t in trees: # # for s in samples: # # param_grid = {'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000] } # clf = GridSearchCV(LogisticRegression(penalty='l2'), param_grid) # lr = LogisticRegression(C=1.0, intercept_scaling=1, dual=False, # fit_intercept=True, penalty='l2', tol=0.0001) # # gs = GridSearchCV(cv=None, estimator=lr, param_grid=param_grid) # # # fit = clf.fit(data, labels) # # score = clf.score(data, labels) # # print('Grid Search Method') # # print(score) # # print("===== Cross Validation ====") # lr = LogisticRegression(C=1.0, intercept_scaling=1, dual=False, # fit_intercept=True, penalty='l2', tol=0.0001) # fit = clf.fit(data, labels) # score = clf.score(data, labels) # print("Training Score: %f "% score) # print("Cross Validation Score: %f" % (cross_val(data, labels, pct, rounds, clf))) #
28.182692
83
0.635278
bbd3d4f2166ef1066e6b144eae94c534f44e9065
7,696
py
Python
cisco-ios-xe/ydk/models/cisco_ios_xe/CISCO_IETF_ATM2_PVCTRAP_MIB.py
bopopescu/ACI
dd717bc74739eeed4747b3ea9e36b239580df5e1
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
cisco-ios-xe/ydk/models/cisco_ios_xe/CISCO_IETF_ATM2_PVCTRAP_MIB.py
bopopescu/ACI
dd717bc74739eeed4747b3ea9e36b239580df5e1
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
cisco-ios-xe/ydk/models/cisco_ios_xe/CISCO_IETF_ATM2_PVCTRAP_MIB.py
bopopescu/ACI
dd717bc74739eeed4747b3ea9e36b239580df5e1
[ "ECL-2.0", "Apache-2.0" ]
1
2020-07-22T04:04:44.000Z
2020-07-22T04:04:44.000Z
""" CISCO_IETF_ATM2_PVCTRAP_MIB This MIB Module is a supplement to the ATM\-MIB. """ from collections import OrderedDict from ydk.types import Entity, EntityPath, Identity, Enum, YType, YLeaf, YLeafList, YList, LeafDataList, Bits, Empty, Decimal64 from ydk.filters import YFilter from ydk.errors import YError, YModelError from ydk.errors.error_handler import handle_type_error as _handle_type_error class CISCOIETFATM2PVCTRAPMIB(Entity): """ .. attribute:: atmcurrentlyfailingpvcltable A table indicating all VCLs for which there is an active row in the atmVclTable having an atmVclConnKind value of `pvc' and an atmVclOperStatus with a value other than `up' **type**\: :py:class:`Atmcurrentlyfailingpvcltable <ydk.models.cisco_ios_xe.CISCO_IETF_ATM2_PVCTRAP_MIB.CISCOIETFATM2PVCTRAPMIB.Atmcurrentlyfailingpvcltable>` """ _prefix = 'CISCO-IETF-ATM2-PVCTRAP-MIB' _revision = '1998-02-03' def __init__(self): super(CISCOIETFATM2PVCTRAPMIB, self).__init__() self._top_entity = None self.yang_name = "CISCO-IETF-ATM2-PVCTRAP-MIB" self.yang_parent_name = "CISCO-IETF-ATM2-PVCTRAP-MIB" self.is_top_level_class = True self.has_list_ancestor = False self.ylist_key_names = [] self._child_container_classes = OrderedDict([("atmCurrentlyFailingPVclTable", ("atmcurrentlyfailingpvcltable", CISCOIETFATM2PVCTRAPMIB.Atmcurrentlyfailingpvcltable))]) self._child_list_classes = OrderedDict([]) self._leafs = OrderedDict() self.atmcurrentlyfailingpvcltable = CISCOIETFATM2PVCTRAPMIB.Atmcurrentlyfailingpvcltable() self.atmcurrentlyfailingpvcltable.parent = self self._children_name_map["atmcurrentlyfailingpvcltable"] = "atmCurrentlyFailingPVclTable" self._children_yang_names.add("atmCurrentlyFailingPVclTable") self._segment_path = lambda: "CISCO-IETF-ATM2-PVCTRAP-MIB:CISCO-IETF-ATM2-PVCTRAP-MIB" class Atmcurrentlyfailingpvcltable(Entity): """ A table indicating all VCLs for which there is an active row in the atmVclTable having an atmVclConnKind value of `pvc' and an atmVclOperStatus with a value other than `up'. .. attribute:: atmcurrentlyfailingpvclentry Each entry in this table represents a VCL for which the atmVclRowStatus is `active', the atmVclConnKind is `pvc', and the atmVclOperStatus is other than `up' **type**\: list of :py:class:`Atmcurrentlyfailingpvclentry <ydk.models.cisco_ios_xe.CISCO_IETF_ATM2_PVCTRAP_MIB.CISCOIETFATM2PVCTRAPMIB.Atmcurrentlyfailingpvcltable.Atmcurrentlyfailingpvclentry>` """ _prefix = 'CISCO-IETF-ATM2-PVCTRAP-MIB' _revision = '1998-02-03' def __init__(self): super(CISCOIETFATM2PVCTRAPMIB.Atmcurrentlyfailingpvcltable, self).__init__() self.yang_name = "atmCurrentlyFailingPVclTable" self.yang_parent_name = "CISCO-IETF-ATM2-PVCTRAP-MIB" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = [] self._child_container_classes = OrderedDict([]) self._child_list_classes = OrderedDict([("atmCurrentlyFailingPVclEntry", ("atmcurrentlyfailingpvclentry", CISCOIETFATM2PVCTRAPMIB.Atmcurrentlyfailingpvcltable.Atmcurrentlyfailingpvclentry))]) self._leafs = OrderedDict() self.atmcurrentlyfailingpvclentry = YList(self) self._segment_path = lambda: "atmCurrentlyFailingPVclTable" self._absolute_path = lambda: "CISCO-IETF-ATM2-PVCTRAP-MIB:CISCO-IETF-ATM2-PVCTRAP-MIB/%s" % self._segment_path() def __setattr__(self, name, value): self._perform_setattr(CISCOIETFATM2PVCTRAPMIB.Atmcurrentlyfailingpvcltable, [], name, value) class Atmcurrentlyfailingpvclentry(Entity): """ Each entry in this table represents a VCL for which the atmVclRowStatus is `active', the atmVclConnKind is `pvc', and the atmVclOperStatus is other than `up'. .. attribute:: ifindex (key) **type**\: int **range:** 1..2147483647 **refers to**\: :py:class:`ifindex <ydk.models.cisco_ios_xe.IF_MIB.IFMIB.Iftable.Ifentry>` .. attribute:: atmvclvpi (key) **type**\: int **range:** 0..4095 **refers to**\: :py:class:`atmvclvpi <ydk.models.cisco_ios_xe.ATM_MIB.ATMMIB.Atmvcltable.Atmvclentry>` .. attribute:: atmvclvci (key) **type**\: int **range:** 0..65535 **refers to**\: :py:class:`atmvclvci <ydk.models.cisco_ios_xe.ATM_MIB.ATMMIB.Atmvcltable.Atmvclentry>` .. attribute:: atmcurrentlyfailingpvcltimestamp The time at which this PVCL began to fail **type**\: int **range:** 0..4294967295 .. attribute:: atmpreviouslyfailedpvcltimestamp The time at which this PVCL began to fail during the PVC Notification interval **type**\: int **range:** 0..4294967295 """ _prefix = 'CISCO-IETF-ATM2-PVCTRAP-MIB' _revision = '1998-02-03' def __init__(self): super(CISCOIETFATM2PVCTRAPMIB.Atmcurrentlyfailingpvcltable.Atmcurrentlyfailingpvclentry, self).__init__() self.yang_name = "atmCurrentlyFailingPVclEntry" self.yang_parent_name = "atmCurrentlyFailingPVclTable" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = ['ifindex','atmvclvpi','atmvclvci'] self._child_container_classes = OrderedDict([]) self._child_list_classes = OrderedDict([]) self._leafs = OrderedDict([ ('ifindex', YLeaf(YType.str, 'ifIndex')), ('atmvclvpi', YLeaf(YType.str, 'atmVclVpi')), ('atmvclvci', YLeaf(YType.str, 'atmVclVci')), ('atmcurrentlyfailingpvcltimestamp', YLeaf(YType.uint32, 'atmCurrentlyFailingPVclTimeStamp')), ('atmpreviouslyfailedpvcltimestamp', YLeaf(YType.uint32, 'atmPreviouslyFailedPVclTimeStamp')), ]) self.ifindex = None self.atmvclvpi = None self.atmvclvci = None self.atmcurrentlyfailingpvcltimestamp = None self.atmpreviouslyfailedpvcltimestamp = None self._segment_path = lambda: "atmCurrentlyFailingPVclEntry" + "[ifIndex='" + str(self.ifindex) + "']" + "[atmVclVpi='" + str(self.atmvclvpi) + "']" + "[atmVclVci='" + str(self.atmvclvci) + "']" self._absolute_path = lambda: "CISCO-IETF-ATM2-PVCTRAP-MIB:CISCO-IETF-ATM2-PVCTRAP-MIB/atmCurrentlyFailingPVclTable/%s" % self._segment_path() def __setattr__(self, name, value): self._perform_setattr(CISCOIETFATM2PVCTRAPMIB.Atmcurrentlyfailingpvcltable.Atmcurrentlyfailingpvclentry, ['ifindex', 'atmvclvpi', 'atmvclvci', 'atmcurrentlyfailingpvcltimestamp', 'atmpreviouslyfailedpvcltimestamp'], name, value) def clone_ptr(self): self._top_entity = CISCOIETFATM2PVCTRAPMIB() return self._top_entity
43.480226
244
0.633966
621137bd4a03944c4a8c965f6881cb12180e6a53
385
py
Python
conf/wsgi.py
almazkun/dup
f188d771c02e5b4da96131c09c74ad981280e7a5
[ "MIT" ]
null
null
null
conf/wsgi.py
almazkun/dup
f188d771c02e5b4da96131c09c74ad981280e7a5
[ "MIT" ]
1
2021-12-22T02:45:00.000Z
2021-12-22T02:45:00.000Z
conf/wsgi.py
almazkun/dup
f188d771c02e5b4da96131c09c74ad981280e7a5
[ "MIT" ]
null
null
null
""" WSGI config for conf project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "conf.settings") application = get_wsgi_application()
22.647059
78
0.781818
6f8606d67bd82cc3cd92aebceaf4c27e6769369e
12,805
py
Python
tests/test_nat.py
abanu-ms/sonic-swss
2cab51d11f26fa673ab08210c9422b6a31168ac3
[ "Apache-2.0" ]
null
null
null
tests/test_nat.py
abanu-ms/sonic-swss
2cab51d11f26fa673ab08210c9422b6a31168ac3
[ "Apache-2.0" ]
null
null
null
tests/test_nat.py
abanu-ms/sonic-swss
2cab51d11f26fa673ab08210c9422b6a31168ac3
[ "Apache-2.0" ]
1
2020-12-04T10:35:38.000Z
2020-12-04T10:35:38.000Z
import time from dvslib.dvs_common import wait_for_result class TestNat(object): def setup_db(self, dvs): self.app_db = dvs.get_app_db() self.asic_db = dvs.get_asic_db() self.config_db = dvs.get_config_db() def set_interfaces(self, dvs): fvs = {"NULL": "NULL"} self.config_db.create_entry("INTERFACE", "Ethernet0|67.66.65.1/24", fvs) self.config_db.create_entry("INTERFACE", "Ethernet4|18.18.18.1/24", fvs) self.config_db.create_entry("INTERFACE", "Ethernet0", fvs) self.config_db.create_entry("INTERFACE", "Ethernet4", fvs) dvs.runcmd("config interface startup Ethernet0") dvs.runcmd("config interface startup Ethernet4") dvs.servers[0].runcmd("ip link set down dev eth0") dvs.servers[0].runcmd("ip link set up dev eth0") dvs.servers[0].runcmd("ifconfig eth0 67.66.65.2/24") dvs.servers[0].runcmd("ip route add default via 67.66.65.1") dvs.servers[1].runcmd("ip link set down dev eth0") dvs.servers[1].runcmd("ip link set up dev eth0") dvs.servers[1].runcmd("ifconfig eth0 18.18.18.2/24") dvs.servers[1].runcmd("ip route add default via 18.18.18.1") dvs.runcmd("config nat add interface Ethernet0 -nat_zone 1") time.sleep(1) def clear_interfaces(self, dvs): dvs.servers[0].runcmd("ifconfig eth0 0.0.0.0") dvs.servers[1].runcmd("ifconfig eth0 0.0.0.0") time.sleep(1) def test_NatGlobalTable(self, dvs, testlog): # initialize self.setup_db(dvs) # enable NAT feature dvs.runcmd("config nat feature enable") dvs.runcmd("config nat set timeout 450") dvs.runcmd("config nat set udp-timeout 360") dvs.runcmd("config nat set tcp-timeout 900") # check NAT global values in appdb self.app_db.wait_for_n_keys("NAT_GLOBAL_TABLE", 1) fvs = self.app_db.wait_for_entry("NAT_GLOBAL_TABLE", "Values") assert fvs == {"admin_mode": "enabled", "nat_timeout": "450", "nat_udp_timeout": "360", "nat_tcp_timeout": "900"} def test_NatInterfaceZone(self, dvs, testlog): # initialize self.setup_db(dvs) self.set_interfaces(dvs) # check NAT zone is set for interface in app db fvs = self.app_db.wait_for_entry("INTF_TABLE", "Ethernet0") zone = False for f, v in fvs.items(): if f == "nat_zone" and v == '1': zone = True break assert zone def test_AddNatStaticEntry(self, dvs, testlog): # initialize self.setup_db(dvs) # get neighbor and arp entry dvs.servers[0].runcmd("ping -c 1 18.18.18.2") # add a static nat entry dvs.runcmd("config nat add static basic 67.66.65.1 18.18.18.2") # check the entry in the config db self.config_db.wait_for_n_keys("STATIC_NAT", 1) fvs = self.config_db.wait_for_entry("STATIC_NAT", "67.66.65.1") assert fvs == {"local_ip": "18.18.18.2"} # check the entry in app db self.app_db.wait_for_n_keys("NAT_TABLE", 2) fvs = self.app_db.wait_for_entry("NAT_TABLE", "67.66.65.1") assert fvs == { "translated_ip": "18.18.18.2", "nat_type": "dnat", "entry_type": "static" } #check the entry in asic db, 3 keys = SNAT, DNAT and DNAT_Pool keys = self.asic_db.wait_for_n_keys("ASIC_STATE:SAI_OBJECT_TYPE_NAT_ENTRY", 3) for key in keys: if (key.find("dst_ip:67.66.65.1")) or (key.find("src_ip:18.18.18.2")): assert True else: assert False def test_DelNatStaticEntry(self, dvs, testlog): # initialize self.setup_db(dvs) # delete a static nat entry dvs.runcmd("config nat remove static basic 67.66.65.1 18.18.18.2") # check the entry is no there in the config db self.config_db.wait_for_n_keys("STATIC_NAT", 0) # check the entry is not there in app db self.app_db.wait_for_n_keys("NAT_TABLE", 0) #check the entry is not there in asic db self.asic_db.wait_for_n_keys("ASIC_STATE:SAI_OBJECT_TYPE_NAT_ENTRY", 0) def test_AddNaPtStaticEntry(self, dvs, testlog): # initialize self.setup_db(dvs) # get neighbor and arp entry dvs.servers[0].runcmd("ping -c 1 18.18.18.2") # add a static nat entry dvs.runcmd("config nat add static udp 67.66.65.1 670 18.18.18.2 180") # check the entry in the config db self.config_db.wait_for_n_keys("STATIC_NAPT", 1) fvs = self.config_db.wait_for_entry("STATIC_NAPT", "67.66.65.1|UDP|670") assert fvs == {"local_ip": "18.18.18.2", "local_port": "180"} # check the entry in app db self.app_db.wait_for_n_keys("NAPT_TABLE:UDP", 2) fvs = self.app_db.wait_for_entry("NAPT_TABLE:UDP", "67.66.65.1:670") assert fvs == {"translated_ip": "18.18.18.2", "translated_l4_port": "180", "nat_type": "dnat", "entry_type": "static"} #check the entry in asic db, 3 keys = SNAT, DNAT and DNAT_Pool keys = self.asic_db.wait_for_n_keys("ASIC_STATE:SAI_OBJECT_TYPE_NAT_ENTRY", 3) for key in keys: if (key.find("dst_ip:67.66.65.1")) and (key.find("key.l4_dst_port:670")): assert True if (key.find("src_ip:18.18.18.2")) or (key.find("key.l4_src_port:180")): assert True else: assert False def test_DelNaPtStaticEntry(self, dvs, testlog): # initialize self.setup_db(dvs) # delete a static nat entry dvs.runcmd("config nat remove static udp 67.66.65.1 670 18.18.18.2 180") # check the entry is no there in the config db self.config_db.wait_for_n_keys("STATIC_NAPT", 0) # check the entry is not there in app db self.app_db.wait_for_n_keys("NAPT_TABLE:UDP", 0) #check the entry is not there in asic db self.asic_db.wait_for_n_keys("ASIC_STATE:SAI_OBJECT_TYPE_NAT_ENTRY", 0) def test_AddTwiceNatEntry(self, dvs, testlog): # initialize self.setup_db(dvs) # get neighbor and arp entry dvs.servers[0].runcmd("ping -c 1 18.18.18.2") dvs.servers[1].runcmd("ping -c 1 67.66.65.2") # add a twice nat entry dvs.runcmd("config nat add static basic 67.66.65.2 18.18.18.1 -nat_type snat -twice_nat_id 9") dvs.runcmd("config nat add static basic 67.66.65.1 18.18.18.2 -nat_type dnat -twice_nat_id 9") # check the entry in the config db self.config_db.wait_for_n_keys("STATIC_NAT", 2) fvs = self.config_db.wait_for_entry("STATIC_NAT", "67.66.65.1") assert fvs == {"nat_type": "dnat", "twice_nat_id": "9", "local_ip": "18.18.18.2"} fvs = self.config_db.wait_for_entry("STATIC_NAT", "67.66.65.2") assert fvs == {"nat_type": "snat", "twice_nat_id": "9", "local_ip": "18.18.18.1"} # check the entry in app db self.app_db.wait_for_n_keys("NAT_TWICE_TABLE", 2) fvs = self.app_db.wait_for_entry("NAT_TWICE_TABLE", "67.66.65.2:67.66.65.1") assert fvs == {"translated_src_ip": "18.18.18.1", "translated_dst_ip": "18.18.18.2", "entry_type": "static"} fvs = self.app_db.wait_for_entry("NAT_TWICE_TABLE", "18.18.18.2:18.18.18.1") assert fvs == {"translated_src_ip": "67.66.65.1", "translated_dst_ip": "67.66.65.2", "entry_type": "static"} #check the entry in asic db, 4 keys = SNAT, DNAT and 2 DNAT_Pools keys = self.asic_db.wait_for_n_keys("ASIC_STATE:SAI_OBJECT_TYPE_NAT_ENTRY", 4) for key in keys: if (key.find("dst_ip:18.18.18.1")) or (key.find("src_ip:18.18.18.2")): assert True else: assert False def test_DelTwiceNatStaticEntry(self, dvs, testlog): # initialize self.setup_db(dvs) # delete a static nat entry dvs.runcmd("config nat remove static basic 67.66.65.2 18.18.18.1") dvs.runcmd("config nat remove static basic 67.66.65.1 18.18.18.2") # check the entry is no there in the config db self.config_db.wait_for_n_keys("STATIC_NAT", 0) # check the entry is not there in app db self.app_db.wait_for_n_keys("NAT_TWICE_TABLE", 0) #check the entry is not there in asic db self.asic_db.wait_for_n_keys("ASIC_STATE:SAI_OBJECT_TYPE_NAT_ENTRY", 0) def test_AddTwiceNaPtEntry(self, dvs, testlog): # initialize self.setup_db(dvs) # get neighbor and arp entry dvs.servers[0].runcmd("ping -c 1 18.18.18.2") dvs.servers[1].runcmd("ping -c 1 67.66.65.2") # add a twice nat entry dvs.runcmd("config nat add static udp 67.66.65.2 670 18.18.18.1 181 -nat_type snat -twice_nat_id 7") dvs.runcmd("config nat add static udp 67.66.65.1 660 18.18.18.2 182 -nat_type dnat -twice_nat_id 7") # check the entry in the config db self.config_db.wait_for_n_keys("STATIC_NAPT", 2) fvs = self.config_db.wait_for_entry("STATIC_NAPT", "67.66.65.1|UDP|660") assert fvs == {"nat_type": "dnat", "local_ip": "18.18.18.2", "twice_nat_id": "7", "local_port": "182"} fvs = self.config_db.wait_for_entry("STATIC_NAPT", "67.66.65.2|UDP|670") assert fvs == {"nat_type": "snat", "local_ip": "18.18.18.1", "twice_nat_id": "7", "local_port": "181"} # check the entry in app db self.app_db.wait_for_n_keys("NAPT_TWICE_TABLE", 2) fvs = self.app_db.wait_for_entry("NAPT_TWICE_TABLE", "UDP:67.66.65.2:670:67.66.65.1:660") assert fvs == {"translated_src_ip": "18.18.18.1", "translated_src_l4_port": "181", "translated_dst_ip": "18.18.18.2", "translated_dst_l4_port": "182", "entry_type": "static"} fvs = self.app_db.wait_for_entry("NAPT_TWICE_TABLE", "UDP:18.18.18.2:182:18.18.18.1:181") assert fvs == {"translated_src_ip": "67.66.65.1", "translated_src_l4_port": "660", "translated_dst_ip": "67.66.65.2", "translated_dst_l4_port": "670", "entry_type": "static"} #check the entry in asic db, 4 keys = SNAT, DNAT and 2 DNAT_Pools keys = self.asic_db.wait_for_n_keys("ASIC_STATE:SAI_OBJECT_TYPE_NAT_ENTRY", 4) for key in keys: if (key.find("src_ip:18.18.18.2")) or (key.find("l4_src_port:182")): assert True if (key.find("dst_ip:18.18.18.1")) or (key.find("l4_dst_port:181")): assert True else: assert False def test_DelTwiceNaPtStaticEntry(self, dvs, testlog): # initialize self.setup_db(dvs) # delete a static nat entry dvs.runcmd("config nat remove static udp 67.66.65.2 670 18.18.18.1 181") dvs.runcmd("config nat remove static udp 67.66.65.1 660 18.18.18.2 182") # check the entry is not there in the config db self.config_db.wait_for_n_keys("STATIC_NAPT", 0) # check the entry is not there in app db self.app_db.wait_for_n_keys("NAPT_TWICE_TABLE", 0) #check the entry is not there in asic db self.asic_db.wait_for_n_keys("ASIC_STATE:SAI_OBJECT_TYPE_NAT_ENTRY", 0) # clear interfaces self.clear_interfaces(dvs) def test_VerifyConntrackTimeoutForNatEntry(self, dvs, testlog): # get neighbor and arp entry dvs.servers[0].runcmd("ping -c 1 18.18.18.2") # add a static nat entry dvs.runcmd("config nat add static basic 67.66.65.1 18.18.18.2") # check the conntrack timeout for static entry def _check_conntrack_for_static_entry(): output = dvs.runcmd("conntrack -j -L -s 18.18.18.2 -p udp -q 67.66.65.1") if len(output) != 2: return (False, None) conntrack_list = list(output[1].split(" ")) src_exists = "src=18.18.18.2" in conntrack_list dst_exists = "dst=67.66.65.1" in conntrack_list proto_exists = "udp" in conntrack_list if not src_exists or not dst_exists or not proto_exists: return (False, None) proto_index = conntrack_list.index("udp") if int(conntrack_list[proto_index + 7]) > 432000 or int(conntrack_list[proto_index + 7]) < 431900: return (False, None) return (True, None) wait_for_result(_check_conntrack_for_static_entry) # delete a static nat entry dvs.runcmd("config nat remove static basic 67.66.65.1 18.18.18.2") # Add Dummy always-pass test at end as workaroud # for issue when Flaky fail on final test it invokes module tear-down before retrying def test_nonflaky_dummy(): pass
39.039634
182
0.620773
e6a5916da8516ca978c7505bb56075d47bacaa77
826
py
Python
tools/webcam/webcam_apis/nodes/__init__.py
ivmtorres/mmpose
662cb50c639653ae2fc19d3421ce10bd02246b85
[ "Apache-2.0" ]
1
2022-02-13T12:27:40.000Z
2022-02-13T12:27:40.000Z
tools/webcam/webcam_apis/nodes/__init__.py
ivmtorres/mmpose
662cb50c639653ae2fc19d3421ce10bd02246b85
[ "Apache-2.0" ]
null
null
null
tools/webcam/webcam_apis/nodes/__init__.py
ivmtorres/mmpose
662cb50c639653ae2fc19d3421ce10bd02246b85
[ "Apache-2.0" ]
null
null
null
# Copyright (c) OpenMMLab. All rights reserved. from .builder import NODES from .faceswap_nodes import FaceSwapNode from .frame_effect_nodes import (BackgroundNode, BugEyeNode, MoustacheNode, NoticeBoardNode, PoseVisualizerNode, SaiyanNode, SunglassesNode) from .helper_nodes import ModelResultBindingNode, MonitorNode, RecorderNode from .mmdet_nodes import DetectorNode from .mmpose_nodes import TopDownPoseEstimatorNode from .xdwendwen_nodes import XDwenDwenNode __all__ = [ 'NODES', 'PoseVisualizerNode', 'DetectorNode', 'TopDownPoseEstimatorNode', 'MonitorNode', 'BugEyeNode', 'SunglassesNode', 'ModelResultBindingNode', 'NoticeBoardNode', 'RecorderNode', 'FaceSwapNode', 'MoustacheNode', 'SaiyanNode', 'BackgroundNode', 'XDwenDwenNode' ]
45.888889
78
0.74092
c9be5f2f7eab533dd99ab06dfcdb9543e8e88a5d
5,558
py
Python
models/SSCNet.py
reinforcementdriving/JS3C-Net
40326fdbebc688c10a6247f46ed08463de0db206
[ "MIT" ]
136
2020-12-07T16:05:13.000Z
2022-03-28T11:42:23.000Z
models/SSCNet.py
reinforcementdriving/JS3C-Net
40326fdbebc688c10a6247f46ed08463de0db206
[ "MIT" ]
14
2021-01-14T13:06:06.000Z
2022-03-19T07:20:16.000Z
models/SSCNet.py
reinforcementdriving/JS3C-Net
40326fdbebc688c10a6247f46ed08463de0db206
[ "MIT" ]
23
2020-12-26T12:01:12.000Z
2022-01-20T01:24:23.000Z
# *_*coding:utf-8 *_* """ Author: Jiantao Gao File: complt_sscnet.py Date: 2020/4/27 17:46 """ import torch import torch.nn as nn from models import model_utils import spconv def get_model(config): return SSCNet(config) class SSCNet_Decoder(nn.Module): def __init__(self, input_dim, nPlanes, classes): super().__init__() # Block 1 self.b1_conv1=nn.Sequential(nn.Conv3d(input_dim, 16, 7, 2, padding=3), nn.BatchNorm3d(16),nn.ReLU()) self.b1_conv2=nn.Sequential(nn.Conv3d(16, nPlanes[0], 3, 1, padding=1), nn.BatchNorm3d(nPlanes[0]),nn.ReLU()) self.b1_conv3=nn.Sequential(nn.Conv3d(nPlanes[0], nPlanes[0], 3, 1, padding=1), nn.BatchNorm3d(nPlanes[0]),nn.ReLU()) self.b1_res=nn.Sequential(nn.Conv3d(16, nPlanes[0], 3, 1,padding=1), nn.BatchNorm3d(nPlanes[0]),nn.ReLU()) self.pool1=nn.Sequential(nn.MaxPool3d(2, 2)) # Block 2 self.b2_conv1=nn.Sequential(nn.Conv3d(nPlanes[0], nPlanes[1], 3, 1, padding=1), nn.BatchNorm3d(nPlanes[1]),nn.ReLU()) self.b2_conv2=nn.Sequential(nn.Conv3d(nPlanes[1], nPlanes[1], 3, 1, padding=1), nn.BatchNorm3d(nPlanes[1]),nn.ReLU()) self.b2_res=nn.Sequential(nn.Conv3d(nPlanes[0], nPlanes[1], 3, 1, padding=1), nn.BatchNorm3d(nPlanes[1]),nn.ReLU()) # Block 3 self.b3_conv1=nn.Sequential(nn.Conv3d(nPlanes[1], nPlanes[2], 3, 1, padding=1), nn.BatchNorm3d(nPlanes[2]),nn.ReLU()) self.b3_conv2=nn.Sequential(nn.Conv3d(nPlanes[2], nPlanes[2], 3, 1, padding=1), nn.BatchNorm3d(nPlanes[2]),nn.ReLU()) # Block 4 self.b4_conv1=nn.Sequential(nn.Conv3d(nPlanes[2], nPlanes[3], 3, 1, dilation=2, padding=2), nn.BatchNorm3d(nPlanes[3]),nn.ReLU()) self.b4_conv2=nn.Sequential(nn.Conv3d(nPlanes[3], nPlanes[3], 3, 1, dilation=2, padding=2), nn.BatchNorm3d(nPlanes[3]),nn.ReLU()) # Block 5 self.b5_conv1=nn.Sequential(nn.Conv3d(nPlanes[3], nPlanes[4], 3, 1, dilation=2, padding=2), nn.BatchNorm3d(nPlanes[4]),nn.ReLU()) self.b5_conv2=nn.Sequential(nn.Conv3d(nPlanes[4], nPlanes[4], 3, 1, dilation=2, padding=2), nn.BatchNorm3d(nPlanes[4]),nn.ReLU()) # Prediction self.pre_conv1=nn.Sequential(nn.Conv3d(nPlanes[2]+nPlanes[3]+nPlanes[4], int((nPlanes[2]+nPlanes[3]+nPlanes[4])/3*2), 1, 1),\ nn.BatchNorm3d(int((nPlanes[2]+nPlanes[3]+nPlanes[4])/3*2)),nn.ReLU()) self.pre_conv2=nn.Sequential(nn.Conv3d(int((nPlanes[2]+nPlanes[3]+nPlanes[4])/3*2), classes, 1, 1)) def forward(self, x): # Block 1 x = self.b1_conv1(x) res_x = self.b1_res(x) x = self.b1_conv2(x) x = self.b1_conv3(x) x = x + res_x # Block 2 res_x = self.b2_res(x) x = self.b2_conv1(x) x = self.b2_conv2(x) x = x +res_x # Block 3 b3_x1 = self.b3_conv1(x) b3_x2 = self.b3_conv2(b3_x1) b3_x = b3_x1 + b3_x2 # Block 4 b4_x1 = self.b4_conv1(b3_x) b4_x2 = self.b4_conv2(b4_x1) b4_x = b4_x1 +b4_x2 # Block 5 b5_x1 = self.b5_conv1(b4_x) b5_x2 = self.b5_conv2(b5_x1) b5_x = b5_x1 + b5_x2 # Concat b3,b4,b5 x = torch.cat((b3_x, b4_x, b5_x),dim=1) # Prediction x = self.pre_conv1(x) x = self.pre_conv2(x) return x class SSCNet(nn.Module): def __init__(self, args): nn.Module.__init__(self) self.args = args classes = args['DATA']['classes_completion'] m = args['Completion']['m'] if args['Completion']['feeding'] == 'feat': input_dim = args['Segmentation']['m'] elif args['Completion']['feeding'] == 'both': input_dim = args['Segmentation']['m'] + args['DATA']['classes_seg'] else: input_dim = args['DATA']['classes_seg'] self.Decoder = SSCNet_Decoder(input_dim=input_dim, nPlanes=[m, m, m, m, m], classes=classes) self.upsample = nn.Sequential(nn.Conv3d(in_channels=classes, out_channels=classes * 8, kernel_size=1, stride=1), nn.BatchNorm3d(classes * 8), nn.ReLU(), model_utils.PixelShuffle3D(upscale_factor=2)) if args['Completion']['interaction']: self.interaction_module = model_utils.interaction_module(args, self.args['Completion']['point_cloud_range'], self.args['Completion']['voxel_size'], self.args['Completion']['search_k'], feat_relation=args['Completion']['feat_relation']) def forward(self, feat): x = feat.dense() x = self.Decoder(x) if self.args['Completion']['interaction']: coord, features = model_utils.extract_coord_features(x) if self.args['Completion']['feeding'] == 'both': feat.features = feat.features[:, self.args['DATA']['classes_seg']:] x = spconv.SparseConvTensor(features=features.float(), indices=coord.int(), spatial_shape=[int(s/2) for s in self.args['Completion']['full_scale']], batch_size=self.args['TRAIN']['batch_size']) x = self.interaction_module(feat, x) x = self.upsample(x) return [x]
44.111111
137
0.56765
1d73005832a418da8ae44cce561d109cbe46c10e
7,765
py
Python
GraphDefinitions.py
MojaveTom/HomeGraphing
d8e4e296f71bd153f86ce41432df2e41ce8b58c4
[ "MIT" ]
null
null
null
GraphDefinitions.py
MojaveTom/HomeGraphing
d8e4e296f71bd153f86ce41432df2e41ce8b58c4
[ "MIT" ]
1
2019-05-25T17:17:57.000Z
2019-05-25T17:17:57.000Z
GraphDefinitions.py
MojaveTom/HomeGraphing
d8e4e296f71bd153f86ce41432df2e41ce8b58c4
[ "MIT" ]
null
null
null
''' Define the schema for graph definition dictionary. ''' import os # https://docs.python.org/3/library/os.html import sys # https://docs.python.org/3/library/sys.html import json # https://docs.python.org/3/library/json.html import toml # https://github.com/uiri/toml https://github.com/toml-lang/toml # comment json strips python and "//" comments form json before applying json.load routines. import commentjson # https://github.com/vaidik/commentjson https://commentjson.readthedocs.io/en/latest/ # Lark is used by commentjson -- import commented out, but here for documentation. # import lark # https://github.com/lark-parser/lark https://lark-parser.readthedocs.io/en/latest/ import logging # https://docs.python.org/3/library/logging.html from progparams.GetLoggingDict import setConsoleLoggingLevel, setLogFileLoggingLevel, getConsoleLoggingLevel, getLogFileLoggingLevel # https://github.com/keleshev/schema from schema import Schema, And, Or, Use, Optional, SchemaError # import matplotlib.cm as cm import bokeh.palettes as bp import bokeh.colors as bc import glob from itertools import chain flatten = chain.from_iterable logger = logging.getLogger(__name__) debug = logger.debug critical = logger.critical info = logger.info MyPath = os.path.dirname(os.path.realpath(__file__)) ProgName, ext = os.path.splitext(os.path.basename(sys.argv[0])) ProgPath = os.path.dirname(os.path.realpath(sys.argv[0])) # logger.debug('bokeh __palettes__ are: %s' % bp.__palettes__) bokehKnownColors = bc.named.__all__ # This makes the VSCode happy, but I don't think it will work as I intend. # bokehPaletteFamilies = list(bp._PalettesModule.all_palettes) ## The following works for Python, but not for VSCode. bokehPaletteFamilies = list(bp.all_palettes.keys()) palettesAndColors = bokehPaletteFamilies + bokehKnownColors # logger.debug('bokeh palette families are: %s' % bokehPaletteFamilies) # And(str, lambda s: s in cm.datad.keys()) # # And(str, lambda s: s in cm.datad.keys()) # Or( gds = {str: {'GraphTitle': str , 'DBHost': And(Use(str.lower), Use(str.lower), lambda s: s in ('rc', 'ss'), error='DBHost must be "RC" or "SS"') , 'outputFile': str , Optional('ShowGraph', default=True): bool , Optional('graph_color_map', default='Dark2'): Or( And(str, lambda s: s in bokehPaletteFamilies) , None, error='Graph color map not defined.') , 'XaxisTitle': str , 'Yaxes': [{'title': str , Optional('color_map', default=None): Or( And(str, lambda s: s in palettesAndColors) , None, error='Axis color map not defined.') , Optional('color', default=None): Or( And(str, lambda s: s in bokehKnownColors) , None, error='Axis color not defined.') , Optional('location', default='left'): And(str, lambda s: s in ('left', 'right'), error='Axis location must be "left" or "right".')}] , 'items': [ { 'query': Or(str, None) , 'variableNames': [str] , 'datafile': str , 'dataname': str , Optional('axisNum', default=0): Use(int) , Optional('includeInLegend', default=True): Use(bool) , Optional('lineType', default='line'): And(str, lambda s: s in ('line', 'step'), error='Item lineType must be "line" or "step".') , Optional('dataTimeZone', default='serverLocal'): And(str, lambda s: s in ('serverLocal', 'UTC'), error='Item dataTimeZone must be "serverLocal" or "UTC".') , Optional('lineMods', default={"glyph.line_width": "2", "muted_glyph.line_width": "4"}): {str: str} , Optional('color_map', default=None): Or( And(str, lambda s: s in bokehPaletteFamilies) , None, error='Axis color map not defined.') , Optional('color', default=None): Or( And(str, lambda s: s in bokehKnownColors) , None, error='Axis color not defined.') } ] } } # Doesn't work since some of the keys are class objects defined in schema. # Can't pickle gds either. # with open(os.path.join(MyPath, "GraphDefsSchema.json"), 'w') as file: # json.dump(gds, file, indent=2) def GetGraphDefs(GraphDefFile=None, *args, **kwargs): ''' Load a toml or json file with graph definitions in it. The graph definitions dictionary is validated. ''' logger.debug(f"Entered GetGraphDefs with argument {GraphDefFile}, and kwargs {kwargs!r}") logger.debug('MyPath in GraphDefinitions.GetGraphDefs is: %s' % MyPath) if kwargs.get('loggingLevel') is not None: setConsoleLoggingLevel(kwargs.get('loggingLevel')) pass if kwargs.get('GraphDefFile') is not None: fns = kwargs['GraphDefFile'] if isinstance(fns, str): fns = (fns,) else: if GraphDefFile is None: GraphDefFile = "OneLineGraph" # Look for .toml, .jsonc and .json files with GraphDefFile in the main program's dir then in cwd. fns = [ os.path.join(ProgPath, f"{GraphDefFile}") # First try un-adorned file name , os.path.join(ProgPath, f"{GraphDefFile}*.toml") , os.path.join(ProgPath, f"{GraphDefFile}*.jsonc") , os.path.join(ProgPath, f"{GraphDefFile}*.json") , f"{GraphDefFile}" , f"{GraphDefFile}*.toml" , f"{GraphDefFile}*.jsonc" , f"{GraphDefFile}*.json" ] debug(f"Looking for graph definition file in default locations.") # glob process graph def paths # Make a list of actual files to read. fns = list(flatten([glob.glob(x) for x in fns])) debug(f"Looking for first good JSON or TOML graph defs file in {fns!r}") if fns is None: return None, None # no graph defs, and no files to read it from. for fn in fns: try: debug(f"Trying to load graph definitions from file: {fn}") fnExt = os.path.splitext(fn)[1] if fnExt == ".json" or fnExt == ".jsonc": GraphDefs = commentjson.load(open(fn)) elif fnExt == ".toml": GraphDefs = toml.load(fn) else: critical(f"Unrecognized file type from which to load graph definitions: {fnExt}") return None, fn debug(f"Successfully loaded GraphDefs: {GraphDefs}\n\nFrom file {fn}") break # exit the for loop without doing the else clause. except json.JSONDecodeError as e: info(f"Json file: {fn} did not load successfully: {e}") except FileNotFoundError as f: info(f"Param file: {fn} does not exist. {f}") except IsADirectoryError as d: info(f"Param file: {fn} is a directory! {d}") except toml.TomlDecodeError as t: info(f"Toml file: {fn} did not load successfully: {t}") else: critical(f'No graph definitions file was found and loaded.') return None, None try: debug(f'Validating the loaded graph definitions dictionary.') GraphDefsSchema = Schema(gds, name = 'Graphing Schema') GraphDefs = GraphDefsSchema.validate(GraphDefs) logger.debug('Graph definitions file is valid.') except SchemaError as e: logger.critical('Graph definition dictionary is not valid. %s', e) logger.debug('%s' % e.autos) return None, fn return GraphDefs, fn
49.775641
132
0.61056
02c385d0079dcd89765916768fc7d57338c3f284
918
py
Python
Pacote Dowload/CursoemVideo/ex 069.py
AMF1971/Cursoemvideo-Python
814ce748ab72e2d6b09a4e15f943bd72b0922f8c
[ "MIT" ]
null
null
null
Pacote Dowload/CursoemVideo/ex 069.py
AMF1971/Cursoemvideo-Python
814ce748ab72e2d6b09a4e15f943bd72b0922f8c
[ "MIT" ]
null
null
null
Pacote Dowload/CursoemVideo/ex 069.py
AMF1971/Cursoemvideo-Python
814ce748ab72e2d6b09a4e15f943bd72b0922f8c
[ "MIT" ]
null
null
null
# Crie um programa que leia a idade e o sexo de vรกrias pessoas. A cada pessoa cadastrada, # o programa deverรก perguntar se o usuรกrio quer ou nรฃo continuar. No final, mostre: #A) quantas pessoas tem mais de 18 anos. #B) quantos homens foram cadastrados. #C) quantas mulheres tem menos de 20 anos. tot18 = totH = totM20 = 0 while True: idade = int(input('Idade:')) sexo = ' ' while sexo not in 'MF': sexo = str(input('Sexo: [M/F]')).strip().upper()[0] if idade >= 18: tot18 += 1 if sexo == 'M': totH += 1 if sexo == 'F' and idade < 20: totM20 += 1 resp = ' ' while resp not in 'SN': resp = str(input('Quer continuar? [S/N]')).strip().upper()[0] if resp == 'N': break print(f'Total de pessoas com mais de 18 anos {tot18}') print(f'Ao todo temos {totH} homens cadastrados') print(f'E temos {totM20} mulheres com menos de 20 anos')
27.818182
89
0.608932
9d30dc0dbd2a639c06078643dae38c5fa0392ef7
11,672
py
Python
tools/engine/tester.py
jameslong95/FasterSeg
872e04964ea46494a6018d9915cee5476e361c27
[ "MIT" ]
1
2020-05-11T00:41:43.000Z
2020-05-11T00:41:43.000Z
tools/engine/tester.py
jameslong95/FasterSeg
872e04964ea46494a6018d9915cee5476e361c27
[ "MIT" ]
null
null
null
tools/engine/tester.py
jameslong95/FasterSeg
872e04964ea46494a6018d9915cee5476e361c27
[ "MIT" ]
null
null
null
import os import os.path as osp import cv2 import numpy as np import time from tqdm import tqdm import torch import torch.nn.functional as F import torch.multiprocessing as mp from engine.logger import get_logger from utils.pyt_utils import load_model, link_file, ensure_dir from utils.img_utils import pad_image_to_shape, normalize logger = get_logger() class Tester(object): def __init__(self, dataset, class_num, image_mean, image_std, network, multi_scales, is_flip, devices=0, out_idx=0, threds=3, config=None, logger=None, verbose=False, save_path=None, show_image=False): self.dataset = dataset self.ndata = self.dataset.get_length() self.class_num = class_num self.image_mean = image_mean self.image_std = image_std self.multi_scales = multi_scales self.is_flip = is_flip self.network = network self.devices = devices if type(self.devices) == int: self.devices = [self.devices] self.out_idx = out_idx self.threds = threds self.config = config self.logger = logger self.context = mp.get_context('spawn') self.val_func = None self.results_queue = self.context.Queue(self.ndata) self.verbose = verbose self.save_path = save_path if save_path is not None: ensure_dir(save_path) self.show_image = show_image def run(self, model_path, model_indice, log_file, log_file_link): """There are four evaluation modes: 1.only eval a .pth model: -e *.pth 2.only eval a certain epoch: -e epoch 3.eval all epochs in a given section: -e start_epoch-end_epoch 4.eval all epochs from a certain started epoch: -e start_epoch- """ if '.pth' in model_indice: models = [model_indice, ] elif "-" in model_indice: start_epoch = int(model_indice.split("-")[0]) end_epoch = model_indice.split("-")[1] models = os.listdir(model_path) models.remove("epoch-last.pth") sorted_models = [None] * len(models) model_idx = [0] * len(models) for idx, m in enumerate(models): num = m.split(".")[0].split("-")[1] model_idx[idx] = num sorted_models[idx] = m model_idx = np.array([int(i) for i in model_idx]) down_bound = model_idx >= start_epoch up_bound = [True] * len(sorted_models) if end_epoch: end_epoch = int(end_epoch) assert start_epoch < end_epoch up_bound = model_idx <= end_epoch bound = up_bound * down_bound model_slice = np.array(sorted_models)[bound] models = [os.path.join(model_path, model) for model in model_slice] else: models = [os.path.join(model_path, 'epoch-%s.pth' % model_indice), ] results = open(log_file, 'a') link_file(log_file, log_file_link) for model in models: logger.info("Load Model: %s" % model) self.val_func = load_model(self.network, model) result_line, mIoU = self.multi_process_evaluation() results.write('Model: ' + model + '\n') results.write(result_line) results.write('\n') results.flush() results.close() def run_online(self): """ eval during training """ self.val_func = self.network self.single_process_evaluation() def single_process_evaluation(self): with torch.no_grad(): for idx in tqdm(range(self.ndata)): dd = self.dataset[idx] self.func_per_iteration(dd, self.devices[0], iter=idx) def run_online_multiprocess(self): """ eval during training """ self.val_func = self.network self.multi_process_single_gpu_evaluation() def multi_process_single_gpu_evaluation(self): # start_eval_time = time.perf_counter() stride = int(np.ceil(self.ndata / self.threds)) # start multi-process on single-gpu procs = [] for d in range(self.threds): e_record = min((d + 1) * stride, self.ndata) shred_list = list(range(d * stride, e_record)) device = self.devices[0] logger.info('Thread %d handle %d data.' % (d, len(shred_list))) p = self.context.Process(target=self.worker, args=(shred_list, device)) procs.append(p) for p in procs: p.start() for p in procs: p.join() def multi_process_evaluation(self): start_eval_time = time.perf_counter() nr_devices = len(self.devices) stride = int(np.ceil(self.ndata / nr_devices)) # start multi-process on multi-gpu procs = [] for d in range(nr_devices): e_record = min((d + 1) * stride, self.ndata) shred_list = list(range(d * stride, e_record)) device = self.devices[d] logger.info('GPU %s handle %d data.' % (device, len(shred_list))) p = self.context.Process(target=self.worker, args=(shred_list, device)) procs.append(p) for p in procs: p.start() for p in procs: p.join() def worker(self, shred_list, device): start_load_time = time.time() # logger.info('Load Model on Device %d: %.2fs' % (device, time.time() - start_load_time)) for idx in shred_list: dd = self.dataset[idx] results_dict = self.func_per_iteration(dd, device, iter=idx) self.results_queue.put(results_dict) def func_per_iteration(self, data, device, iter=None): raise NotImplementedError def compute_metric(self, results): raise NotImplementedError # evaluate the whole image at once def whole_eval(self, img, output_size, input_size=None, device=None): if input_size is not None: img, margin = self.process_image(img, input_size) else: img = self.process_image(img, input_size) pred = self.val_func_process(img, device) if input_size is not None: pred = pred[:, margin[0]:(pred.shape[1] - margin[1]), margin[2]:(pred.shape[2] - margin[3])] pred = pred.permute(1, 2, 0) pred = pred.cpu().numpy() if output_size is not None: pred = cv2.resize(pred, (output_size[1], output_size[0]), interpolation=cv2.INTER_LINEAR) pred = pred.argmax(2) return pred # slide the window to evaluate the image def sliding_eval(self, img, crop_size, stride_rate, device=None): ori_rows, ori_cols, c = img.shape processed_pred = np.zeros((ori_rows, ori_cols, self.class_num)) for s in self.multi_scales: img_scale = cv2.resize(img, None, fx=s, fy=s, interpolation=cv2.INTER_LINEAR) new_rows, new_cols, _ = img_scale.shape processed_pred += self.scale_process(img_scale, (ori_rows, ori_cols), crop_size, stride_rate, device) pred = processed_pred.argmax(2) return pred def scale_process(self, img, ori_shape, crop_size, stride_rate, device=None): new_rows, new_cols, c = img.shape long_size = new_cols if new_cols > new_rows else new_rows if long_size <= crop_size: input_data, margin = self.process_image(img, crop_size) score = self.val_func_process(input_data, device) score = score[:, margin[0]:(score.shape[1] - margin[1]), margin[2]:(score.shape[2] - margin[3])] else: stride = int(np.ceil(crop_size * stride_rate)) img_pad, margin = pad_image_to_shape(img, crop_size, cv2.BORDER_CONSTANT, value=0) pad_rows = img_pad.shape[0] pad_cols = img_pad.shape[1] r_grid = int(np.ceil((pad_rows - crop_size) / stride)) + 1 c_grid = int(np.ceil((pad_cols - crop_size) / stride)) + 1 data_scale = torch.zeros(self.class_num, pad_rows, pad_cols).cuda( device) count_scale = torch.zeros(self.class_num, pad_rows, pad_cols).cuda( device) for grid_yidx in range(r_grid): for grid_xidx in range(c_grid): s_x = grid_xidx * stride s_y = grid_yidx * stride e_x = min(s_x + crop_size, pad_cols) e_y = min(s_y + crop_size, pad_rows) s_x = e_x - crop_size s_y = e_y - crop_size img_sub = img_pad[s_y:e_y, s_x: e_x, :] count_scale[:, s_y: e_y, s_x: e_x] += 1 input_data, tmargin = self.process_image(img_sub, crop_size) temp_score = self.val_func_process(input_data, device) temp_score = temp_score[:, tmargin[0]:(temp_score.shape[1] - tmargin[1]), tmargin[2]:(temp_score.shape[2] - tmargin[3])] data_scale[:, s_y: e_y, s_x: e_x] += temp_score # score = data_scale / count_scale score = data_scale score = score[:, margin[0]:(score.shape[1] - margin[1]), margin[2]:(score.shape[2] - margin[3])] score = score.permute(1, 2, 0) data_output = cv2.resize(score.cpu().numpy(), (ori_shape[1], ori_shape[0]), interpolation=cv2.INTER_LINEAR) return data_output def val_func_process(self, input_data, device=None): input_data = np.ascontiguousarray(input_data[None, :, :, :], dtype=np.float32) input_data = torch.FloatTensor(input_data).cuda(device) with torch.cuda.device(input_data.get_device()): self.val_func.eval() self.val_func.to(input_data.get_device()) with torch.no_grad(): score = self.val_func(input_data) if (isinstance(score, tuple) or isinstance(score, list)) and len(score) > 1: score = score[self.out_idx] score = score[0] # a single image pass, ignore batch dim if self.is_flip: input_data = input_data.flip(-1) score_flip = self.val_func(input_data) score_flip = score_flip[0] score += score_flip.flip(-1) score = torch.exp(score) # score = score.data return score def process_image(self, img, crop_size=None): p_img = img if img.shape[2] < 3: im_b = p_img im_g = p_img im_r = p_img p_img = np.concatenate((im_b, im_g, im_r), axis=2) p_img = normalize(p_img, self.image_mean, self.image_std) if crop_size is not None: p_img, margin = pad_image_to_shape(p_img, crop_size, cv2.BORDER_CONSTANT, value=0) p_img = p_img.transpose(2, 0, 1) return p_img, margin p_img = p_img.transpose(2, 0, 1) return p_img
37.290735
97
0.558687
b58c882560a3be07791b4f51026b4399d6951a77
304
py
Python
gde/models/mnist/_convnet.py
MIPT-Oulu/greedy_ensembles_training
de72d8f84f151a0398c49aaf56c1cc9c709f79b7
[ "Apache-2.0" ]
10
2021-06-01T05:15:18.000Z
2021-12-26T03:59:53.000Z
gde/models/mnist/_convnet.py
Oulu-IMEDS/greedy_ensembles_training
de72d8f84f151a0398c49aaf56c1cc9c709f79b7
[ "Apache-2.0" ]
null
null
null
gde/models/mnist/_convnet.py
Oulu-IMEDS/greedy_ensembles_training
de72d8f84f151a0398c49aaf56c1cc9c709f79b7
[ "Apache-2.0" ]
1
2021-06-06T07:08:43.000Z
2021-06-06T07:08:43.000Z
from torch import nn from gde.models.cifar import PreResNet as PreResNetMeta class PreResNet8(PreResNetMeta): def __init__(self, num_classes=10): super(PreResNet8, self).__init__( num_classes=num_classes, depth=8, dropout_rate=0 ) self.avgpool = nn.AvgPool2d(7)
27.636364
60
0.697368
5f70a15b5073cda988a72f44b044dbddf9dd8331
13,330
py
Python
ndcube/tests/test_ndcube.py
DanRyanIrish/ndcube
f98f97ad9e65a8ddd79f047d76c596599cf94882
[ "BSD-2-Clause", "BSD-3-Clause" ]
null
null
null
ndcube/tests/test_ndcube.py
DanRyanIrish/ndcube
f98f97ad9e65a8ddd79f047d76c596599cf94882
[ "BSD-2-Clause", "BSD-3-Clause" ]
null
null
null
ndcube/tests/test_ndcube.py
DanRyanIrish/ndcube
f98f97ad9e65a8ddd79f047d76c596599cf94882
[ "BSD-2-Clause", "BSD-3-Clause" ]
null
null
null
import astropy.units as u import numpy as np import pytest from astropy.coordinates import SkyCoord, SpectralCoord from astropy.wcs.wcsapi import BaseHighLevelWCS, BaseLowLevelWCS from astropy.wcs.wcsapi.wrappers import SlicedLowLevelWCS from ndcube.tests import helpers def generate_data(shape): data = np.arange(np.product(shape)) return data.reshape(shape) def test_wcs_object(all_ndcubes): assert isinstance(all_ndcubes.wcs.low_level_wcs, BaseLowLevelWCS) assert isinstance(all_ndcubes.wcs, BaseHighLevelWCS) @pytest.mark.parametrize("ndc, item", ( ("ndcube_3d_ln_lt_l", np.s_[:, :, 0]), ("ndcube_3d_ln_lt_l", np.s_[..., 0]), ("ndcube_3d_ln_lt_l", np.s_[1:2, 1:2, 0]), ("ndcube_3d_ln_lt_l", np.s_[..., 0]), ("ndcube_3d_ln_lt_l", np.s_[:, :, 0]), ("ndcube_3d_ln_lt_l", np.s_[1:2, 1:2, 0]), ("ndcube_4d_ln_lt_l_t", np.s_[:, :, 0, 0]), ("ndcube_4d_ln_lt_l_t", np.s_[..., 0, 0]), ("ndcube_4d_ln_lt_l_t", np.s_[1:2, 1:2, 1, 1]), ), indirect=("ndc",)) def test_slicing_ln_lt(ndc, item): sndc = ndc[item] assert len(sndc.dimensions) == 2 assert set(sndc.wcs.world_axis_physical_types) == {"custom:pos.helioprojective.lat", "custom:pos.helioprojective.lon"} if sndc.uncertainty is not None: assert np.allclose(sndc.data, sndc.uncertainty.array) if sndc.mask is not None: assert np.allclose(sndc.data > 0, sndc.mask) if ndc.extra_coords and ndc.extra_coords.keys(): ec = sndc.extra_coords assert set(ec.keys()) == {"time", "hello"} wcs = sndc.wcs assert isinstance(wcs, BaseHighLevelWCS) assert isinstance(wcs.low_level_wcs, SlicedLowLevelWCS) assert wcs.pixel_n_dim == 2 assert wcs.world_n_dim == 2 assert np.allclose(wcs.array_shape, sndc.data.shape) assert np.allclose(sndc.wcs.axis_correlation_matrix, np.ones(2, dtype=bool)) @pytest.mark.parametrize("ndc, item", ( ("ndcube_3d_ln_lt_l", np.s_[0, 0, :]), ("ndcube_3d_ln_lt_l", np.s_[0, 0, ...]), ("ndcube_3d_ln_lt_l", np.s_[1, 1, 1:2]), ("ndcube_3d_ln_lt_l", np.s_[0, 0, :]), ("ndcube_3d_ln_lt_l", np.s_[0, 0, ...]), ("ndcube_3d_ln_lt_l", np.s_[1, 1, 1:2]), ("ndcube_4d_ln_lt_l_t", np.s_[0, 0, :, 0]), ("ndcube_4d_ln_lt_l_t", np.s_[0, 0, ..., 0]), ("ndcube_4d_ln_lt_l_t", np.s_[1, 1, 1:2, 1]), ), indirect=("ndc",)) def test_slicing_wave(ndc, item): sndc = ndc[item] assert len(sndc.dimensions) == 1 assert set(sndc.wcs.world_axis_physical_types) == {"em.wl"} if sndc.uncertainty is not None: assert np.allclose(sndc.data, sndc.uncertainty.array) if sndc.mask is not None: assert np.allclose(sndc.data > 0, sndc.mask) if ndc.extra_coords and ndc.extra_coords.keys(): ec = sndc.extra_coords assert set(ec.keys()) == {"bye"} wcs = sndc.wcs assert isinstance(wcs, BaseHighLevelWCS) assert isinstance(wcs.low_level_wcs, SlicedLowLevelWCS) assert wcs.pixel_n_dim == 1 assert wcs.world_n_dim == 1 assert np.allclose(wcs.array_shape, sndc.data.shape) assert np.allclose(sndc.wcs.axis_correlation_matrix, np.ones(1, dtype=bool)) @pytest.mark.parametrize("ndc, item", ( ("ndcube_3d_ln_lt_l", np.s_[0, :, :]), ("ndcube_3d_ln_lt_l", np.s_[0, ...]), ("ndcube_3d_ln_lt_l", np.s_[1, 1:2]), ("ndcube_3d_ln_lt_l", np.s_[0, :, :]), ("ndcube_3d_ln_lt_l", np.s_[0, ...]), ("ndcube_3d_ln_lt_l", np.s_[1, :, 1:2]), ("ndcube_4d_ln_lt_l_t", np.s_[0, :, :, 0]), ("ndcube_4d_ln_lt_l_t", np.s_[0, ..., 0]), ("ndcube_4d_ln_lt_l_t", np.s_[1, 1:2, 1:2, 1]), ), indirect=("ndc",)) def test_slicing_split_celestial(ndc, item): sndc = ndc[item] assert len(sndc.dimensions) == 2 if sndc.uncertainty is not None: assert np.allclose(sndc.data, sndc.uncertainty.array) if sndc.mask is not None: assert np.allclose(sndc.data > 0, sndc.mask) if ndc.extra_coords and ndc.extra_coords.keys(): ec = sndc.extra_coords assert set(ec.keys()) == {"hello", "bye"} assert isinstance(sndc.wcs, BaseHighLevelWCS) assert isinstance(sndc.wcs.low_level_wcs, SlicedLowLevelWCS) wcs = sndc.wcs assert wcs.pixel_n_dim == 2 assert wcs.world_n_dim == 3 assert np.allclose(wcs.array_shape, sndc.data.shape) assert set(wcs.world_axis_physical_types) == {"custom:pos.helioprojective.lat", "custom:pos.helioprojective.lon", "em.wl"} assert np.allclose(wcs.axis_correlation_matrix, np.array([[True, False], [False, True], [False, True]], dtype=bool)) @pytest.mark.parametrize("axes", ([-1], [2], ["em"])) def test_axis_world_coords_single(axes, ndcube_3d_ln_lt_l): coords = ndcube_3d_ln_lt_l.axis_world_coords_values(*axes) assert u.allclose(coords, [1.02e-09, 1.04e-09, 1.06e-09, 1.08e-09]*u.m) @pytest.mark.parametrize("axes", ([-1], [2], ["em"])) def test_axis_world_coords_single_edges(axes, ndcube_3d_ln_lt_l): coords = ndcube_3d_ln_lt_l.axis_world_coords_values(*axes, edges=True) assert u.allclose(coords, [1.01e-09, 1.03e-09, 1.05e-09, 1.07e-09, 1.09e-09]*u.m) @pytest.mark.parametrize("ndc, item", ( ("ndcube_3d_ln_lt_l", np.s_[0, 0, :]), ("ndcube_3d_ln_lt_l", np.s_[0, 0, ...]), ("ndcube_3d_ln_lt_l", np.s_[0, 0, :]), ("ndcube_3d_ln_lt_l", np.s_[0, 0, ...]), ), indirect=("ndc",)) def test_axis_world_coords_sliced_all_3d(ndc, item): coords = ndc[item].axis_world_coords_values() assert u.allclose(coords, [1.02e-09, 1.04e-09, 1.06e-09, 1.08e-09] * u.m) @pytest.mark.parametrize("ndc, item", ( ("ndcube_4d_ln_lt_l_t", np.s_[0, 0, :, 0]), ("ndcube_4d_ln_lt_l_t", np.s_[0, 0, ..., 0]), ), indirect=("ndc",)) def test_axis_world_coords_sliced_all_4d(ndc, item): coords = ndc[item].axis_world_coords_values() expected = [2.0e-11, 4.0e-11, 6.0e-11, 8.0e-11, 1.0e-10, 1.2e-10, 1.4e-10, 1.6e-10, 1.8e-10, 2.0e-10] * u.m assert u.allclose(coords, expected) @pytest.mark.xfail def test_axis_world_coords_all(ndcube_3d_ln_lt_l): coords = ndcube_3d_ln_lt_l.axis_world_coord() assert len(coords) == 2 assert isinstance(coords[0], SkyCoord) assert u.allclose(coords[0].Tx, [[0.60002173, 0.59999127, 0.5999608], [1., 1., 1.]] * u.deg) assert u.allclose(coords[0].Ty, [[1.26915033e-05, 4.99987815e-01, 9.99962939e-01], [1.26918126e-05, 5.00000000e-01, 9.99987308e-01]] * u.deg) assert isinstance(coords[1], u.Quantity) assert u.allclose(coords[1], [1.02e-09, 1.04e-09, 1.06e-09, 1.08e-09] * u.m) def test_axis_world_coords_values_all(ndcube_3d_ln_lt_l): coords = ndcube_3d_ln_lt_l.axis_world_coords_values() assert len(coords) == 3 assert all(isinstance(c, u.Quantity) for c in coords) assert u.allclose(coords[0], [[0.00277778, 0.00277778, 0.00277778], [0.00555556, 0.00555556, 0.00555556]] * u.deg) assert u.allclose(coords[1], [[-0.00555556, -0.00416667, -0.00277778], [-0.00555556, -0.00416667, -0.00277778]] * u.deg) assert u.allclose(coords[2], [1.02e-09, 1.04e-09, 1.06e-09, 1.08e-09] * u.m) def test_array_axis_physical_types(ndcube_4d_ln_lt_l_t): expected = [ ('custom:pos.helioprojective.lon', 'custom:pos.helioprojective.lat'), ('custom:pos.helioprojective.lon', 'custom:pos.helioprojective.lat'), ('em.wl',), ('time',)] output = ndcube_4d_ln_lt_l_t.array_axis_physical_types for i in range(len(expected)): assert all([physical_type in expected[i] for physical_type in output[i]]) def test_crop(ndcube_4d_ln_lt_l_t): intervals = ndcube_4d_ln_lt_l_t.wcs.array_index_to_world([1, 2], [0, 1], [0, 1], [0, 2]) lower_corner = [coord[0] for coord in intervals] upper_corner = [coord[-1] for coord in intervals] expected = ndcube_4d_ln_lt_l_t[1:3, 0:2, 0:2, 0:3] output = ndcube_4d_ln_lt_l_t.crop(lower_corner, upper_corner) helpers.assert_cubes_equal(output, expected) def test_crop_with_nones(ndcube_4d_ln_lt_l_t): lower_corner = [None] * 3 upper_corner = [None] * 3 interval0 = ndcube_4d_ln_lt_l_t.wcs.array_index_to_world([1, 2], [0, 1], [0, 1], [0, 2])[0] lower_corner[0] = interval0[0] upper_corner[0] = interval0[-1] expected = ndcube_4d_ln_lt_l_t[:, :, :, 0:3] output = ndcube_4d_ln_lt_l_t.crop(lower_corner, upper_corner) helpers.assert_cubes_equal(output, expected) def test_crop_1d_independent(ndcube_4d_ln_lt_l_t): cube_1d = ndcube_4d_ln_lt_l_t[0, 0, :, 0] wl_range = SpectralCoord([3e-11, 4.5e-11], unit=u.m) expected = cube_1d[0:2] output = cube_1d.crop([wl_range[0]], [wl_range[-1]]) helpers.assert_cubes_equal(output, expected) def test_crop_1d_dependent(ndcube_4d_ln_lt_l_t): cube_1d = ndcube_4d_ln_lt_l_t[0, :, 0, 0] sky_range = cube_1d.wcs.array_index_to_world([0, 1]) expected = cube_1d[0:2] output = cube_1d.crop([sky_range[0]], [sky_range[-1]]) helpers.assert_cubes_equal(output, expected) def test_crop_by_values(ndcube_4d_ln_lt_l_t): intervals = ndcube_4d_ln_lt_l_t.wcs.array_index_to_world_values([1, 2], [0, 1], [0, 1], [0, 2]) units = [u.min, u.m, u.deg, u.deg] lower_corner = [coord[0] * unit for coord, unit in zip(intervals, units)] upper_corner = [coord[-1] * unit for coord, unit in zip(intervals, units)] expected = ndcube_4d_ln_lt_l_t[1:3, 0:2, 0:2, 0:3] output = ndcube_4d_ln_lt_l_t.crop_by_values(lower_corner, upper_corner) helpers.assert_cubes_equal(output, expected) def test_crop_by_coords_with_units(ndcube_4d_ln_lt_l_t): intervals = ndcube_4d_ln_lt_l_t.wcs.array_index_to_world_values([1, 2], [0, 1], [0, 1], [0, 2]) units = [u.min, u.m, u.deg, u.deg] lower_corner = [coord[0] for coord in intervals] upper_corner = [coord[-1] for coord in intervals] lower_corner[0] *= u.min upper_corner[0] *= u.min lower_corner[1] *= u.m upper_corner[1] *= u.m lower_corner[2] *= u.deg units[0] = None expected = ndcube_4d_ln_lt_l_t[1:3, 0:2, 0:2, 0:3] output = ndcube_4d_ln_lt_l_t.crop_by_values(lower_corner, upper_corner, units=units) helpers.assert_cubes_equal(output, expected) def test_crop_by_values_with_nones(ndcube_4d_ln_lt_l_t): lower_corner = [None] * 4 lower_corner[0] = 0.5 * u.min upper_corner = [None] * 4 upper_corner[0] = 1.1 * u.min expected = ndcube_4d_ln_lt_l_t[:, :, :, 0:3] output = ndcube_4d_ln_lt_l_t.crop_by_values(lower_corner, upper_corner) helpers.assert_cubes_equal(output, expected) def test_crop_by_values_all_nones(ndcube_4d_ln_lt_l_t): lower_corner = [None] * 4 upper_corner = [None] * 4 output = ndcube_4d_ln_lt_l_t.crop_by_values(lower_corner, upper_corner) helpers.assert_cubes_equal(output, ndcube_4d_ln_lt_l_t) def test_crop_by_values_indexerror(ndcube_4d_ln_lt_l_t): intervals = ndcube_4d_ln_lt_l_t.wcs.array_index_to_world_values([1, 2], [0, 1], [0, 1], [0, 2]) units = [u.min, u.m, u.deg, u.deg] lower_corner = [coord[0] * unit for coord, unit in zip(intervals, units)] upper_corner = [coord[-1] * unit for coord, unit in zip(intervals, units)] lower_corner[1] *= -1 upper_corner[1] *= -1 with pytest.raises(IndexError): ndcube_4d_ln_lt_l_t.crop_by_values(lower_corner, upper_corner) def test_crop_by_values_1d_dependent(ndcube_4d_ln_lt_l_t): cube_1d = ndcube_4d_ln_lt_l_t[0, :, 0, 0] print(cube_1d.array_axis_physical_types) lat_range, lon_range = cube_1d.wcs.low_level_wcs.array_index_to_world_values([0, 1]) lower_corner = [lat_range[0] * u.deg, lon_range[0] * u.deg] upper_corner = [lat_range[-1] * u.deg, lon_range[-1] * u.deg] expected = cube_1d[0:2] output = cube_1d.crop_by_values(lower_corner, upper_corner) helpers.assert_cubes_equal(output, expected)
43.562092
99
0.597299
d4454778c9bc57cff49a6951be433982bb587624
31
py
Python
applied/encoders/__init__.py
ndoll1998/AppliedTransformers
76cbdef6fdd765b2178af71038a61e3e71e0cec9
[ "MIT" ]
3
2020-09-02T03:51:49.000Z
2020-09-18T14:09:48.000Z
applied/encoders/__init__.py
ndoll1998/AppliedTransformers
76cbdef6fdd765b2178af71038a61e3e71e0cec9
[ "MIT" ]
null
null
null
applied/encoders/__init__.py
ndoll1998/AppliedTransformers
76cbdef6fdd765b2178af71038a61e3e71e0cec9
[ "MIT" ]
2
2021-01-30T12:37:43.000Z
2021-05-19T06:29:31.000Z
from .huggingface import BERT
15.5
30
0.806452
4d7ab152eb8554d25021a280124e4dc0b6d9eaf0
3,120
py
Python
athene/minigames/move_to_beacon/agent.py
alkurbatov/athene
867797f7f7888ffab73a041eb17ec1b3753199bc
[ "MIT" ]
3
2018-08-27T10:49:41.000Z
2019-01-29T14:55:45.000Z
athene/minigames/move_to_beacon/agent.py
alkurbatov/athene
867797f7f7888ffab73a041eb17ec1b3753199bc
[ "MIT" ]
null
null
null
athene/minigames/move_to_beacon/agent.py
alkurbatov/athene
867797f7f7888ffab73a041eb17ec1b3753199bc
[ "MIT" ]
null
null
null
# The MIT License (MIT) # # Copyright (c) 2017-2018 Alexander Kurbatov """A simple agent to play in the MoveToBeacon minigame. There is not much of machine learning inside because the purpose is to set up a very simple agent and test that everything works on a very simple task. Here we use a very simple state machine to complete the task in two iterations. To run this code do: $ python -m pysc2.bin.agent --map MoveToBeacon --agent athene.minigames.move_to_beacon.Agent """ from pysc2.agents import base_agent from pysc2.lib import actions from pysc2.lib import features from pysc2.lib import units from athene.api.actions import \ ACTION_DO_NOTHING, \ ACTION_MOVE_TO_BEACON, \ ACTION_SELECT_MARINE from athene.api.geometry import DIAMETERS from athene.api.screen import UnitPos class Agent(base_agent.BaseAgent): def __init__(self): super().__init__() self.smart_action = ACTION_DO_NOTHING def step(self, obs): super().step(obs) if obs.first(): print('[INFO] Game started!') self.smart_action = ACTION_SELECT_MARINE return actions.FUNCTIONS.no_op() if obs.last(): print('[INFO] Game Finished!') return actions.FUNCTIONS.no_op() if self.smart_action == ACTION_SELECT_MARINE: unit_type = obs.observation.feature_screen.unit_type marine_y, marine_x = (unit_type == units.Terran.Marine).nonzero() if not marine_y.any(): # NOTE (alkurbatov): Sometimes we are too fast and the marine # hasn't been placed on the screen yet. return actions.FUNCTIONS.no_op() if len(marine_y) < DIAMETERS.get(units.Terran.Marine): # NOTE (alkurbatov): Sometimes we receive not fully formed # marine coordinates probably because we are too fast again. # Just ignore it. return actions.FUNCTIONS.no_op() # NOTE (alkurbatov): There is only one marine on the screen and # no other objects around it so it is safe to select any point # in the list. marine = UnitPos(marine_x, marine_y) self.smart_action = ACTION_MOVE_TO_BEACON return actions.FUNCTIONS.select_point('select', marine.pos) if self.smart_action == ACTION_MOVE_TO_BEACON: if actions.FUNCTIONS.Move_screen.id not in obs.observation.available_actions: print('[WARNING] Nothing selected?') self.smart_action = ACTION_SELECT_MARINE return actions.FUNCTIONS.no_op() player_relative = obs.observation.feature_screen.player_relative beacon_y, beacon_x = (player_relative == features.PlayerRelative.NEUTRAL).nonzero() if not beacon_y.any(): print('[WARNING] Where is your beacon?') return actions.FUNCTIONS.no_op() beacon = UnitPos(beacon_x, beacon_y) return actions.FUNCTIONS.Move_screen('now', beacon.pos) return actions.FUNCTIONS.no_op()
35.454545
95
0.651923
0f5f04aef3b858789498988c0576b66c0b681a12
1,505
py
Python
nci-checker.py
kdruken/nci-checker-v2
e37d24e401c01f1bad348ab64160455020828810
[ "MIT" ]
null
null
null
nci-checker.py
kdruken/nci-checker-v2
e37d24e401c01f1bad348ab64160455020828810
[ "MIT" ]
null
null
null
nci-checker.py
kdruken/nci-checker-v2
e37d24e401c01f1bad348ab64160455020828810
[ "MIT" ]
null
null
null
#!/usr/bin/env python ''' Usage: python nci-checker.py <file> [--check <options>] Options: --help Print this usage message and exit --check Specify specific checkers (optional, default is all) ''' import checkers import sys, os from datetime import datetime from output import Output def main(): start_time = datetime.now() path = [] for item in sys.argv[1:]: if item in ['--help', '-help', '-h', '--h']: print __doc__ sys.exit() if os.path.exists(item): path = item if not path: sys.exit('No file specified or path does not exist.') print 'Checking: ', os.path.abspath(path), '\n' checks = { 'cf': checkers.CFChecker(path), 'acdd': checkers.ACDDChecker(path), 'gdal': checkers.GDALChecker(path), 'h5': checkers.HDF5Checker(path), 'meta': checkers.NetCDF4Checker(path), } for item in checks.keys(): checks[item] = checks[item].check() out = Output(path, checks) if os.path.isfile(path): out.simple_report() out.single_file() out.to_screen() elif os.path.isdir(path): # launch batch script result = batch(xxxx) # print xxx pass # Display total duration for compliance check end_time = datetime.now() print "\n"*3 print "Duration: {}".format(end_time - start_time) if __name__ == "__main__": main()
19.294872
64
0.566777
84ba0fb7c6372e6bce7468e3c56e97d9619af051
1,303
py
Python
src/random_facts.py
tehwalris/open-data-backend
265dab05bdca16a3997e570db5ab99b5edfc04c7
[ "MIT" ]
null
null
null
src/random_facts.py
tehwalris/open-data-backend
265dab05bdca16a3997e570db5ab99b5edfc04c7
[ "MIT" ]
null
null
null
src/random_facts.py
tehwalris/open-data-backend
265dab05bdca16a3997e570db5ab99b5edfc04c7
[ "MIT" ]
null
null
null
import pandas as pd import numpy as np import json from .path import get_path_from_root from .memoize import memoize from .response import json_from_df source = { "src_url": "https://data.stadt-zuerich.ch/dataset/prd_ssz_gang-dur-zueri_od1005", "src_label": "Schul- und Sportdepartement, Stadt Zรผrich", } def _load_data(): df = pd.read_csv( get_path_from_root("data/random_facts/data.csv"), parse_dates=[], dtype={}, ) df = df.rename( columns={ "RaumNr": "placeId", "Raum": "placeName", "Oberthema": "category", "Zahl": "value", "Thema": "topic", } ) df = df.drop(columns=["Vergleichszahl", "Vergleichstext", "Bemerkungen"]) df["topic_slug"] = df["topic"].str.extract(r"^([^:]+)", expand=True)[0] return df load_data = memoize(_load_data) def make_answer_fact(topic_slug, unit): def answer_fact(): df = load_data() df = df[df["topic_slug"] == topic_slug] if df.empty: raise ValueError("unknown topic") df = df[df["placeId"] <= 12] df = df[["placeId", "placeName", "value"]] return { "unit": unit, "values": json.loads(json_from_df(df)), } return answer_fact
25.057692
85
0.576362
1a3613dff1cdfc6a420222a030f7083c34976694
864
py
Python
Code Challenges/python/checkPalindrome_codesignal.py
lineality/Coding-Challenges-Study-Practice
76d868b11b42b3bd3634f9a62abecb2e1eaac76d
[ "MIT" ]
null
null
null
Code Challenges/python/checkPalindrome_codesignal.py
lineality/Coding-Challenges-Study-Practice
76d868b11b42b3bd3634f9a62abecb2e1eaac76d
[ "MIT" ]
1
2021-06-24T17:39:48.000Z
2021-06-24T17:39:48.000Z
Code Challenges/python/checkPalindrome_codesignal.py
lineality/Coding-Study
76d868b11b42b3bd3634f9a62abecb2e1eaac76d
[ "MIT" ]
null
null
null
# not working, not sure why (as parts work separately # outside of function) # (User's) Problem # We have: # a string # We need: # is that string a paindrome? yes/no # We must: # boolean output # name of function is # checkPalindrome # Solution (Product) # Strategy 1: # turn string into a list(array) # Make a compare_list which is the reverse order of # the original list # compare the two, if they are the same: true, else false def checkPalindrome(inputString): # make input a list input_as_list = list(inputString) # make a reverse list # (first make a copy) reverse_order = input_as_list # (this function has no input or output, it reverses in place) reverse_order.reverse() # compare two lists if input_as_list == reverse_order: return True else: return False
24
66
0.664352
9d9a3f2dd8b1444db250b6addc9aec5fd940f3ca
7,724
py
Python
elegantrl/vrepdoggo/ddpg_steplength_difference.py
lotharelvin/ElegantRL
602b1cf8019bef107a5e0c0d6f655f4f5a42f3ce
[ "Apache-2.0" ]
null
null
null
elegantrl/vrepdoggo/ddpg_steplength_difference.py
lotharelvin/ElegantRL
602b1cf8019bef107a5e0c0d6f655f4f5a42f3ce
[ "Apache-2.0" ]
null
null
null
elegantrl/vrepdoggo/ddpg_steplength_difference.py
lotharelvin/ElegantRL
602b1cf8019bef107a5e0c0d6f655f4f5a42f3ce
[ "Apache-2.0" ]
null
null
null
import torch import torch.nn as nn import numpy as np import numpy.random as rd from collections import deque import random import os import doggo_env class ActorDPG(nn.Module): def __init__(self, state_dim, action_dim, mid_dim): super(ActorDPG, self).__init__() self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.net = nn.Sequential( nn.Linear(state_dim, mid_dim), nn.ReLU(), nn.Linear(mid_dim, mid_dim), nn.ReLU(), nn.Linear(mid_dim, action_dim), nn.Tanh(), ) def forward(self, s, noise_std=0.0): a = self.net(s) return a if noise_std == 0.0 else self.add_noise(a, noise_std) def add_noise(self, action, noise_std): normal_noise = ((torch.rand_like(action, device=self.device)) * noise_std).clamp_(-0.5, 0.5) a_noise = (action + normal_noise).clamp_(-1.0, 1.0) return a_noise class Critic(nn.Module): def __init__(self, state_dim, action_dim, mid_dim): super(Critic, self).__init__() self.devide = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.net = nn.Sequential( nn.Linear(state_dim + action_dim, mid_dim), nn.ReLU(), nn.Linear(mid_dim, mid_dim), nn.ReLU(), nn.Linear(mid_dim, 1), # ่พ“ๅ‡บๅ•็‹ฌ็š„Qๅ€ผ๏ผŒไธ็”จๆฟ€ๆดปๅ‡ฝๆ•ฐ ) def forward(self, s, a): x = torch.cat((s, a), dim=1) # ็”ฑไบŽๆ˜ฏbatch,sๅ’Œaๅฎž้™…ไธŠไธบไบŒ็ปดtensor๏ผŒๅฏนdim=1ๆ“ไฝœๅฐฑๆ˜ฏๆจชๅ‘ๆ‹ผๆŽฅ q = self.net(x) return q class AgentDDPG: def __init__(self, state_dim, action_dim, net_dim): self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") "network" self.act = ActorDPG(state_dim, action_dim, net_dim).to(self.device) self.act_optimizer = torch.optim.Adam(self.act.parameters(), lr=2e-4) self.act_target = ActorDPG(state_dim, action_dim, net_dim).to(self.device) self.act_target.load_state_dict(self.act.state_dict()) self.cri = Critic(state_dim, action_dim, net_dim) self.cri_optimizer = torch.optim.Adam(self.cri.parameters(), lr=2e-4) self.cri_target = Critic(state_dim, action_dim, net_dim) self.cri_target.load_state_dict(self.cri.state_dict()) self.criterion = nn.MSELoss() # criticไฝฟ็”จmse่ฏฏๅทฎ "training record" self.step = 0 "extensions" self.ou_noise = OrnsteinUhlenbeckProcess(size=action_dim, sigma=0.3) "code below are memory" self.replay_buffer = deque(maxlen=10000) self.discount_factor = 0.99 def store_transition(self, state, action, reward, next_state): self.replay_buffer.append((state, action, reward, next_state)) def select_action(self, states, explore_noise=0.0): states = torch.tensor(states, dtype=torch.float32, device=self.device) actions = self.act(states, explore_noise).cpu().data.numpy() return actions @staticmethod def soft_target_update(target, source, tau=5e-3): for target_param, param in zip(target.parameters(), source.parameters()): target_param.data.copy_(tau * param.data + (1.0 - tau) * target_param.data) def save_or_load_model(self, mod_dir, is_save,times): act_save_path = '{}/actor{}.pth'.format(mod_dir,times) cri_save_path = '{}/critic{}.pth'.format(mod_dir,times) if is_save: torch.save(self.act.state_dict(), act_save_path) torch.save(self.cri.state_dict(), cri_save_path) print("save act and cri:", mod_dir) elif os.path.exists(act_save_path): act_dict = torch.load(act_save_path, map_location=lambda storage, loc: storage) self.act.load_state_dict(act_dict) self.act_target.load_state_dict(act_dict) cri_dict = torch.load(cri_save_path, map_location=lambda storage, loc: storage) self.cri.load_state_dict(cri_dict) self.cri_target.load_state_dict(cri_dict) else: print("FileNotFound when load_model: {}".format(mod_dir)) def update_parameters(self, batch_size): loss_a_sum = 0.0 loss_c_sum = 0.0 if len(self.replay_buffer) < batch_size: return update_times = self.step for _ in range(update_times): with torch.no_grad(): replay_batch = random.sample(self.replay_buffer, batch_size) states = [replay[0] for replay in replay_batch] states = torch.tensor(states).float() actions = [replay[1] for replay in replay_batch] actions = torch.tensor(actions).float() rewards = [[replay[2]] for replay in replay_batch] rewards = torch.tensor(rewards).float() next_states = [replay[3] for replay in replay_batch] next_states = torch.tensor(next_states).float() # data processing next_action = self.act_target(next_states) next_q_target = self.cri_target(next_states, next_action) # print("next q target",next_q_target) # print("rewards",rewards) q_target = rewards + self.discount_factor * next_q_target "critic loss" q_eval = self.cri(states, actions) # print("q_eval",q_eval) critic_loss = self.criterion(q_eval, q_target) loss_c_sum += critic_loss.item() self.cri_optimizer.zero_grad() critic_loss.backward() self.cri_optimizer.step() "actor loss" action_cur = self.act(states) actor_loss = -self.cri(states, action_cur).mean() # ้‡‡็”จ-Qๅ€ผ็š„ๅนณๅ‡ๅ€ผๆ›ดๆ–ฐ loss_a_sum += actor_loss self.act_optimizer.zero_grad() actor_loss.backward() self.act_optimizer.step() self.soft_target_update(self.act_target, self.act) self.soft_target_update(self.cri_target, self.cri) loss_a_avg = loss_a_sum / update_times loss_c_avg = loss_c_sum / update_times return loss_a_avg, loss_c_avg class OrnsteinUhlenbeckProcess: def __init__(self, size, theta=0.15, sigma=0.3, x0=0.0, dt=1e-2): self.theta = theta self.sigma = sigma self.x0 = x0 self.dt = dt self.size = size def __call__(self): noise = self.sigma * np.sqrt(self.dt) * rd.mormal(size=self.size) x = self.x0 - self.theta * self.x0 * self.dt + noise self.x0 = x return x if __name__ == "__main__": env = doggo_env.VrepDoggo() episode = 2000 score_list = [] state_dim = 4 action_dim = 4 agent = AgentDDPG(state_dim, action_dim, 32) for i in range(episode): env.pre_read() env.start_new_simulation() s = env.reset() score = 0 while True: a = agent.select_action(s, 0.1) env.make_log("/Users/ouyangyikang/Downloads/CoppeliaSim_Edu_V4_1_0_Mac/models/logs.txt") #ๅœจไธ‹ไธ€ไธช็Šถๆ€ๅ‰ๆ‰“log next_s, reward, done, _ = env.step(0.01, a) agent.store_transition(s, a, reward, next_s) agent.update_parameters(64) score += reward s = next_s agent.step += 1 if done: score_list.append(score) print("episode:", i, "score:", score) break if i % 50 == 0: dir = '/Users/ouyangyikang/Downloads/CoppeliaSim_Edu_V4_1_0_Mac/models' agent.save_or_load_model(dir,is_save=True, times=i) # import matplotlib.pyplot as plt # # plt.plot(score_list, color='green') # plt.show() #
36.262911
100
0.611212
794dbd8fd6bd42e6b27c901deb0aafa877641475
584
py
Python
blousebrothers/confs/management/commands/clean_conf_images.py
sladinji/blousebrothers
461de3ba011c0aaed3f0014136c4497b6890d086
[ "MIT" ]
1
2022-01-27T11:58:10.000Z
2022-01-27T11:58:10.000Z
blousebrothers/confs/management/commands/clean_conf_images.py
sladinji/blousebrothers
461de3ba011c0aaed3f0014136c4497b6890d086
[ "MIT" ]
5
2021-03-19T00:01:54.000Z
2022-03-11T23:46:21.000Z
blousebrothers/confs/management/commands/clean_conf_images.py
sladinji/blousebrothers
461de3ba011c0aaed3f0014136c4497b6890d086
[ "MIT" ]
null
null
null
from django.core.management.base import BaseCommand from blousebrothers.confs.models import Conference class Command(BaseCommand): help = 'Check conference images given his conference slug' def add_arguments(self, parser): # This is an optional argument parser.add_argument('slug', nargs='+', type=str) def handle(self, *args, **options): print(options["slug"]) obj = Conference.objects.prefetch_related( "questions__answers", "questions__images", ).get(slug=options['slug'][0]) obj.check_images()
34.352941
62
0.666096
7ba86d8b37e0b4faac555e045f40c36f91a577d9
2,364
py
Python
retrieval/biencoder/sbert_scripts/generate_sbert_predictions_biencoder.py
viswavi/dataset-recommendation
8193e5ad5f4bad25852b565e96d943530d307422
[ "Apache-2.0" ]
null
null
null
retrieval/biencoder/sbert_scripts/generate_sbert_predictions_biencoder.py
viswavi/dataset-recommendation
8193e5ad5f4bad25852b565e96d943530d307422
[ "Apache-2.0" ]
null
null
null
retrieval/biencoder/sbert_scripts/generate_sbert_predictions_biencoder.py
viswavi/dataset-recommendation
8193e5ad5f4bad25852b565e96d943530d307422
[ "Apache-2.0" ]
null
null
null
''' python sbert_scripts/generate_sbert_predictions_biencoder.py \ --model-directory sbert_models/bert_hard_negatives\ --search-collection dataset_search_collection.jsonl \ --test-queries tevatron_data/test_queries.jsonl \ --output-file sbert_models/bert_hard_negatives/sbert.trec \ --results-limit 5 ''' import argparse import jsonlines import numpy as np import os import sys import faiss from sentence_transformers import SentenceTransformer sys.path.insert(1, os.path.join(sys.path[0], '..')) from generate_knn_results import knn_search, write_hits_to_tsv from prepare_tevatron_data import format_search_text parser = argparse.ArgumentParser() parser.add_argument('--model-directory', type=str, default="sbert_models/bert_hard_negatives") parser.add_argument("--search-collection", type=str, default="dataset_search_collection.jsonl", help="Test collection of queries and documents") parser.add_argument('--test-queries', type=str, default="test_queries.jsonl", help="List of newline-delimited queries") parser.add_argument('--output-file', type=str, default="sbert_models/bert_hard_negatives/sbert.trec", help="Retrieval file, in TREC format") parser.add_argument('--results-limit', type=int, default=5) def construct_search_index(search_collection, model): dataset_texts = [] dataset_ids = [] for dataset_row in jsonlines.open(search_collection): dataset_texts.append(format_search_text(dataset_row)) dataset_ids.append(dataset_row["id"]) dataset_encodings = model.encode(dataset_texts) vectors = np.array(dataset_encodings, dtype=np.float32) index = faiss.IndexFlatL2(vectors.shape[1]) # index = faiss.GpuIndexFlatL2(vectors.shape[0]) index.add(vectors) return index, dataset_ids if __name__ == "__main__": args = parser.parse_args() model = SentenceTransformer(args.model_directory) query_texts = [] for row in jsonlines.open(args.test_queries): query_texts.append(row["text"]) query_encodings = model.encode(query_texts) faiss_index, dataset_ids = construct_search_index(args.search_collection, model) knn_distances, knn_indices = faiss_index.search(query_encodings, args.results_limit) all_hits = knn_search(knn_distances, knn_indices, dataset_ids) write_hits_to_tsv(args.output_file, all_hits, query_texts, args.results_limit)
41.473684
144
0.77242
58e0377456773f63ec9668c7d5f74eb5ab13b1e6
1,122
py
Python
test/optim/test.py
wxwoods/mctorch
7cd6eb51fdd01fa75ed9245039a4f145ba342de2
[ "BSD-3-Clause" ]
1
2019-07-23T11:20:58.000Z
2019-07-23T11:20:58.000Z
test/optim/test.py
wxwoods/mctorch
7cd6eb51fdd01fa75ed9245039a4f145ba342de2
[ "BSD-3-Clause" ]
null
null
null
test/optim/test.py
wxwoods/mctorch
7cd6eb51fdd01fa75ed9245039a4f145ba342de2
[ "BSD-3-Clause" ]
null
null
null
import json import torch import torch.legacy.optim as optim def rosenbrock(tensor): x, y = tensor return (1 - x) ** 2 + 100 * (y - x ** 2) ** 2 def drosenbrock(tensor): x, y = tensor return torch.DoubleTensor((-400 * x * (y - x ** 2) - 2 * (1 - x), 200 * (y - x ** 2))) algorithms = { 'adadelta': optim.adadelta, 'adagrad': optim.adagrad, 'adam': optim.adam, 'adamax': optim.adamax, 'asgd': optim.asgd, 'cg': optim.cg, 'nag': optim.nag, 'rmsprop': optim.rmsprop, 'rprop': optim.rprop, 'sgd': optim.sgd, 'lbfgs': optim.lbfgs, } with open('tests.json', 'r') as f: tests = json.loads(f.read()) for test in tests: print(test['algorithm'] + '\t') algorithm = algorithms[test['algorithm']] for config in test['config']: print('================================================================================\t') params = torch.DoubleTensor((1.5, 1.5)) for i in range(100): algorithm(lambda x: (rosenbrock(x), drosenbrock(x)), params, config) print('{:.8f}\t{:.8f}\t'.format(params[0], params[1]))
27.365854
99
0.524064
a693d1b5b602c466a43d111ceb99a4bed86dea0e
6,142
py
Python
tests/test_dataset.py
whn09/deepar
7430057eb2de8c0f9b48983123e646fadadd92ce
[ "MIT" ]
null
null
null
tests/test_dataset.py
whn09/deepar
7430057eb2de8c0f9b48983123e646fadadd92ce
[ "MIT" ]
null
null
null
tests/test_dataset.py
whn09/deepar
7430057eb2de8c0f9b48983123e646fadadd92ce
[ "MIT" ]
null
null
null
import pandas as pd import unittest from deepar.dataset.time_series import MockTs, TimeSeries class TestRecurrentTs(unittest.TestCase): def setUp(self): self.data_to_pad = pd.DataFrame({'feature_1': [i for i in range(6)], 'feature_2': [i for i in range(6)], 'target': [i for i in range(6)]}) # print(self.data_to_pad) self.input_data = pd.DataFrame({'feature_1': [i for i in range(100)], 'feature_2': [i for i in range(100)], 'target': [i for i in range(100)], 'category': [str(int(i//10 + 1)) for i in range(100)]}) # print(self.input_data) self.data_to_pad_with_categorical = pd.DataFrame({'one_hot_yes': [1, 1, 1, 1, 1, 1], 'feature_2': [i for i in range(6)], 'one_hot_no': [0, 0, 0, 0, 0, 0], 'target': [i for i in range(6)]}) self.data_to_pad_with_multiple_categorical = pd.DataFrame({'one_hot_yes': [1, 1, 1, 1, 1, 1], 'feature_2': [i for i in range(6)], 'one_hot_no': [0, 0, 0, 0, 0, 0], 'other_no': [0, 0, 0, 0, 0, 0], 'other_yes': [1, 1, 1, 1, 1, 1], 'target': [i for i in range(6)]}) def test_len_padding(self): rec_instance = TimeSeries(pandas_df=self.data_to_pad) results = rec_instance._pad_ts(pandas_df=self.data_to_pad, desired_len=10) self.assertEqual(results.shape[0], 10) def test_zero_len_padding(self): rec_instance = TimeSeries(pandas_df=self.data_to_pad) results = rec_instance._pad_ts(pandas_df=self.data_to_pad, desired_len=6) # len is the same as the original time series self.assertEqual(results.shape[0], 6) def test_next_batch_production(self): rec_ts = TimeSeries(self.input_data) X_feature_space, y_target = rec_ts.next_batch(batch_size=4, n_steps=10) self.assertEqual(len(X_feature_space), 4) self.assertEqual(len(X_feature_space[0]), 10) self.assertEqual(len(X_feature_space[0][0]), 2) self.assertEqual(X_feature_space[3][0][0], y_target[3][0][0]) def test_padding_with_one_hot(self): rec_ts = TimeSeries(pandas_df=self.data_to_pad_with_categorical, one_hot_root_list=['one_hot']) results = rec_ts._pad_ts(pandas_df=self.data_to_pad_with_categorical, desired_len=10) self.assertEqual(results.shape[0], 10) self.assertEqual(results.one_hot_yes.values[0], 1) self.assertEqual(results.one_hot_no.values[0], 0) def test_padding_with_one_hot_multiple(self): rec_ts = TimeSeries(pandas_df=self.data_to_pad_with_categorical, one_hot_root_list=['one_hot', 'other']) results = rec_ts._pad_ts(pandas_df=self.data_to_pad_with_multiple_categorical, desired_len=10) self.assertEqual(results.shape[0], 10) self.assertEqual(results.one_hot_yes.values[0], 1) self.assertEqual(results.one_hot_no.values[0], 0) self.assertEqual(results.other_yes.values[0], 1) self.assertEqual(results.other_no.values[0], 0) def test_next_batch_covariates(self): """ Feature space is supplied in input if target_only is False (no need to lag y dataset) """ rec_ts = TimeSeries(self.input_data) X_feature_space, y_target = rec_ts.next_batch(batch_size=1, n_steps=10) print('X_feature_space:', X_feature_space.shape, X_feature_space) print('y_target:', y_target.shape, y_target) self.assertEqual(len(X_feature_space), 1) self.assertEqual(len(X_feature_space[0][0]), 2) def test_next_batch_covariates_2(self): """ Feature space is supplied in input if target_only is False (no need to lag y dataset) """ rec_ts = TimeSeries(self.input_data) X_feature_space, y_target = rec_ts.next_batch(batch_size=2, n_steps=10) print('X_feature_space:', X_feature_space.shape, X_feature_space) print('y_target:', y_target.shape, y_target) self.assertEqual(len(X_feature_space), 2) self.assertEqual(len(X_feature_space[0][0]), 2) def test_next_batch_covariates_3(self): """ Feature space is supplied in input if target_only is False (no need to lag y dataset) """ rec_ts = TimeSeries(self.input_data) X_feature_space, y_target = rec_ts.next_batch(batch_size=2, n_steps=20) print('X_feature_space:', X_feature_space.shape, X_feature_space) print('y_target:', y_target.shape, y_target) self.assertEqual(len(X_feature_space), 2) self.assertEqual(len(X_feature_space[0][0]), 2) def test_sample_ts(self): """ When the length of the pandas df is longer than required length the function should sample from the time series and return that sample """ rec_instance = TimeSeries(pandas_df=self.data_to_pad) results = rec_instance._sample_ts(pandas_df=self.data_to_pad, desired_len=3) self.assertEqual(results.shape[0], 3) def test_mockts(self): ts = MockTs() batch = ts.next_batch(1, 20) print('batch:', batch[0].shape, batch[1].shape) print(batch) test_data = ts.generate_test_data(20) print('test_data:', len(test_data)) print(test_data) if __name__ == '__main__': unittest.main()
47.246154
102
0.569196
2a7873e0d060947c9b7b9499ca082294a5dfe49b
1,297
py
Python
setup.py
adeo/iwc-tfc-client
f2606d8d6f6d5499e41553abb53594ca830396e5
[ "MIT" ]
9
2019-11-18T13:38:10.000Z
2021-09-24T21:59:10.000Z
setup.py
adeo/iwc-tfc-client
f2606d8d6f6d5499e41553abb53594ca830396e5
[ "MIT" ]
10
2019-11-10T23:46:54.000Z
2022-03-30T15:46:56.000Z
setup.py
adeo/iwc-tfc-client
f2606d8d6f6d5499e41553abb53594ca830396e5
[ "MIT" ]
4
2019-11-18T14:06:04.000Z
2021-11-09T15:42:44.000Z
import setuptools from tfc_client import __version__ with open("README.md", "r") as fh: long_description = fh.read() setuptools.setup( name="tfc_client", version=__version__, author="Alexandre Dath for ADEO", author_email="alex.dath@gmail.com", license="MIT", keywords="API Terraform TFC", description="A developer friendly Terraform Cloud API client", long_description_content_type="text/markdown", long_description=long_description, url="https://github.com/adeo/iwc-tfc-client", packages=setuptools.find_packages(), classifiers=[ "Development Status :: 4 - Beta", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.7", "Topic :: Software Development :: Libraries", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], python_requires=">=3.7", extras_require={ "dev": ["black", "twine", "wheel"], "test": ["pytest", "coverage", "pytest-cov"], }, tests_require=["pytest", "pytest-cov"], install_requires=[ "requests", "pydantic>=0.32.2", "pydantic[email]", "email-validator>=1.0.3", "idna>=2.0.0", "dnspython>=1.15.0", "inflection", ], )
28.822222
66
0.607556
1c0fa696533ffa9356f96de6451ad369c0cc5bec
37,870
py
Python
src/webpy1/src/spider/ganji.py
ptphp/PyLib
07ac99cf2deb725475f5771b123b9ea1375f5e65
[ "Apache-2.0" ]
1
2020-02-17T08:18:29.000Z
2020-02-17T08:18:29.000Z
src/webpy1/src/spider/ganji.py
ptphp/PyLib
07ac99cf2deb725475f5771b123b9ea1375f5e65
[ "Apache-2.0" ]
null
null
null
src/webpy1/src/spider/ganji.py
ptphp/PyLib
07ac99cf2deb725475f5771b123b9ea1375f5e65
[ "Apache-2.0" ]
null
null
null
#coding=UTF-8 ''' Created on 2011-7-6 @author: Administrator ''' from urlparse import urlparse import cookielib from pyquery.pyquery import PyQuery #@UnresolvedImport import re import datetime #@UnusedImport import urllib2 from lxml import etree #@UnresolvedImport from lxml.cssselect import CSSSelector #@UnresolvedImport import simplejson as js #@UnusedImport @UnresolvedImport from config import housetype, checkPath, makePath,fitment,toward,deposit import threading from BeautifulSoup import BeautifulSoup #@UnresolvedImport from spider.globalvars import fetch_quere import time import gc homepath="e:\\home\\spider\\" class LinkCrawl(object): def __init__(self,citycode="",kind=""): cj = cookielib.MozillaCookieJar() self.br=urllib2.build_opener(urllib2.HTTPHandler(),urllib2.HTTPCookieProcessor(cj),urllib2.HTTPRedirectHandler()) self.header={ "User-Agent":'Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0; GTB6.6; .NET CLR 3.5.30729)', } self.endtime=str(datetime.date.today() -datetime.timedelta(days=7)) self.clinks=[] self.pn=[] self.citycode=citycode self.baseUrl="http://%s.ganji.com"%self.citycode self.kind=kind if kind=="1":#ๅ‡บๅ”ฎ self.urlpath="/fang5/a1u2%s/" self.folder="sell\\" elif kind=="2":#ๅ‡บ็งŸ self.urlpath="/fang1/u2%s/" self.folder="rent\\" elif kind=="3":#ๆฑ‚่ดญ self.urlpath="/fang4/u2f0/a1%s/" self.folder="buy\\" elif kind=="4":#ๆฑ‚็งŸ self.urlpath="/fang2/u2f0/a1%s/" self.folder="req\\" def __getAllNeedLinks(self): cond=True idx=0 checkit="0" while cond: url=self.baseUrl+self.urlpath%("f"+str(idx*32)) #url="http://gz.ganji.com/fang2/u2f0/a1f768/" print url try: req=urllib2.Request(url, None, self.header) p=self.br.open(req).read() except: continue else: check=PyQuery(p)("ul.pageLink li a.c").text() if check==None or check==checkit: cond=False break else: checkit=check links=PyQuery(p)("div.list dl") p=None print len(links) for link in links: lk=self.baseUrl+PyQuery(link)(" a.list_title").attr("href") if self.kind=="3" or self.kind=="4": tm=PyQuery(link)("dd span.time").text() if re.match('''\d{2}-\d{2}''', tm): Y=int(time.strftime('%Y', time.localtime())) tm="%s-%s"%(Y,tm.strip()) if tm<self.endtime: break elif "ๅˆ†้’Ÿ" in tm: pass elif "ๅฐๆ—ถ" in tm: pass else: cond=False break if not checkPath(homepath,self.folder,lk): fetch_quere.put({"mod":"ganji","link":lk,"citycode":self.citycode,"kind":self.kind}) # if lk not in self.clinks: # self.clinks.append(lk) idx=idx+1 print len(self.clinks) def runme(self): #self.__initPageNum() self.__getAllNeedLinks() class ContentCrawl(object): def __init__(self,links,citycode,kind): cj = cookielib.MozillaCookieJar() self.br=urllib2.build_opener(urllib2.HTTPHandler(),urllib2.HTTPCookieProcessor(cj),urllib2.HTTPRedirectHandler()) self.pdb={} self.header={ "User-Agent":'Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0; GTB6.6; .NET CLR 3.5.30729)', } self.urls=links self.kind=kind self.fd={} self.citycode=citycode if kind=="1": self.folder="sell\\" elif kind=="2": self.folder="rent\\" elif kind=="3": self.folder="buy\\" else: self.folder="req\\" #js resgx self.xiaoqu_regex="xiaoqu : '(.*?)'," self.address_regex="address : '(.*?)'," self.house_room_regex="(\d+)ๅฎค" self.house_hall_regex="(\d+)ๅŽ…" self.house_toilet_regex="(\d+)ๅซ" self.house_desc_regex="ๆˆฟๅฑ‹ๆฆ‚ๅ†ต</p>(.*?)</p>" self.house_floor_regex="<li>ๆฅผๅฑ‚: ็ฌฌ(\d+)ๅฑ‚/ๆ€ป(\d+)ๅฑ‚</li>" self.house_totalarea_regex="<li>้ข็งฏ: (\d+) ใŽก</li>" self.house_totalarea_regex_qiu="(\d+)ใŽก" self.house_type_regex3="<li>ๆˆทๅž‹: (.*)</li>" self.house_toward_regex="<li>ๆœๅ‘: (.*)</li>" self.house_type_regex="<li>็ฑปๅž‹: (.*)</li>" self.cityarea_regex="<li>ๅŒบๅŸŸ:([\s\S]*?)</li>" self.house_age_regex="<li>ๆˆฟ้พ„: (\d+) ๅนด</li>" self.house_fitment_regex="<li>่ฃ…ไฟฎ: (.*)</li>" self.house_support_regex="<li>้…็ฝฎ: (.*) </li>" self.house_price_regex="<li>ๅ”ฎไปท: <span>(.*)</span>.*</li>" self.house_price_regex_2="<li>็งŸ้‡‘: <span>(.*)</span>.*</li>" self.borough_name_regex="<li>ๅฐๅŒบ:(.*)</li>" self.house_deposit_regex="<li>็งŸ้‡‘: (.*)</li>" self.house_price_regex_zu = "<li>ๆœŸๆœ›็งŸ้‡‘: (.*)</li>" self.borough_name_regex_reg = "<li>ๆœŸๆœ›ๅฐๅŒบ: (.*)</li>" self.house_addr_regex_reg = "<li>ๅฐๅŒบๅœฐๅ€:(.*)</li>" self.house_price_regex_gou = "<li>ๆœŸๆœ›ๅ”ฎไปท: (.*)</li>" def __addText(self,tag, no_tail=False): text = [] if tag.text: text.append(tag.text) for child in tag.getchildren(): text.append(self.__addText(child)) if not no_tail and tag.tail: text.append(tag.tail) return "".join(text) def getText(self,html): text=[] for tag in html: text.append(self.__addText(tag, no_tail=True)) return ' '.join([t.strip() for t in text if t.strip()]) def sell(self,url): request = urllib2.Request(url, None, self.header) response = urllib2.urlopen(request).read() tree = etree.HTML(response) soup =BeautifulSoup(response) self.fd['house_flag'] = 1 self.fd['belong']=0 detail_mer = soup.find('div',{'class':'detail_mer'}) #้žไธชไบบๆˆฟๆบ return if u"ไธชไบบๆˆฟๆบ" not in str(detail_mer):return Dname = detail_mer.find('span',{'class':'Dname'}) if Dname: self.fd['owner_name'] = Dname.string else: self.fd['owner_name'] = None ganji_phone_call_class = detail_mer.find('span',{'class':'ganji_phone_call_class'}) if ganji_phone_call_class: self.fd['owner_phone'] = ganji_phone_call_class.contents[0] if str(ganji_phone_call_class).find('src='): self.fd['owner_phone'] = 'http://'+urlparse(url)[1]+ganji_phone_call_class.img['src'] else: self.fd['owner_phone'] = None else: self.fd['owner_phone'] = None #ๆฒกๆœ‰่”็ณปๆ–นๅผ return if not self.fd['owner_phone']:return if re.search("<span class=\"city\"><a .*?>(.*?)</a>", response): cityname=re.search("<span class=\"city\"><a .*?>(.*?)</a>", response).group(1) self.fd['cityname'] = cityname else: return if re.search(self.house_floor_regex, response): house_floor=re.search(self.house_floor_regex, response).group(1) house_topfloor=re.search(self.house_floor_regex, response).group(2) self.fd['house_floor'] = house_floor self.fd['house_topfloor'] = house_topfloor else: self.fd['house_floor'] = None self.fd['house_topfloor'] = None if re.search(self.house_totalarea_regex, response): house_totalarea=re.search(self.house_totalarea_regex, response).group(1) self.fd['house_totalarea'] = house_totalarea else: self.fd['house_totalarea'] = None #็ฑปๅž‹ if re.search(self.house_type_regex, response): house_type=re.search(self.house_type_regex, response).group(1) self.fd['house_type'] = housetype(house_type) else: self.fd['house_type'] = None if re.search(self.house_price_regex, response): house_price=re.search(self.house_price_regex, response).group(1) if house_price=="้ข่ฎฎ": house_price="0" self.fd['house_price'] = house_price else: self.fd['house_price'] = None posttime=CSSSelector('span.pub_time')(tree)!=None and CSSSelector('span.pub_time')(tree)[0].text.strip() or None if posttime: Y=int(time.strftime('%Y', time.localtime())) M=int(posttime.split(' ')[0].split('-')[0]) D=int(posttime.split(' ')[0].split('-')[1]) s = datetime.datetime(Y,M,D,0,0) posttime=int(time.mktime(s.timetuple())) self.fd['posttime'] =posttime else: self.fd['posttime'] =None if re.search(self.house_room_regex, response): house_room=re.search(self.house_room_regex, response).group(1) self.fd['house_room'] = house_room else: self.fd['house_room'] = '0' if re.search(self.house_hall_regex, response): house_hall=re.search(self.house_hall_regex, response).group(1) self.fd['house_hall'] = house_hall else: self.fd['house_hall'] = '0' if re.search(self.house_toilet_regex, response): house_toilet=re.search(self.house_toilet_regex, response).group(1) self.fd['house_toilet'] = house_toilet else: self.fd['house_toilet'] = '0' house_title=CSSSelector("div.detail_title h1")(tree)[0] !=None and CSSSelector("div.detail_title h1")(tree)[0].text.strip() or None self.fd['house_title'] = house_title #ๆ่ฟฐ detail_box = soup.find('div',{'class':'detail_box'}) if detail_box: house_desc = str(detail_box('p')[1]) self.fd['house_desc'] = re.sub("<.*?>|\n|\r|\t|่”็ณปๆˆ‘ๆ—ถ่ฏท่ฏดๆ˜Žๆ˜ฏไปŽ่ตถ้›†็ฝ‘ไธŠ็œ‹ๅˆฐ็š„","",house_desc) else: self.fd['house_desc'] = None d_i = soup.find('ul',{'class':'d_i'}) #ๅฐๅŒบๅ #ๅ…ˆๅค„็†JS if re.search(self.xiaoqu_regex, response): borough_name=re.search(self.xiaoqu_regex, response).group(1) self.fd['borough_name'] = borough_name if re.search(self.address_regex, response): house_addr=re.search(self.address_regex, response).group(1) self.fd['house_addr'] = house_addr else: if d_i.find(text="ๅฐๅŒบ: "): borough_box = d_i.find(text="ๅฐๅŒบ: ").parent borough_name = borough_box.find("a") if borough_name: self.fd['borough_name'] = borough_name.string else: self.fd['borough_name'] = None #ๅœฐๅ€ if borough_name and borough_name.nextSibling: house_addr = borough_name.nextSibling.string self.fd['house_addr'] = re.sub("\(|\)| ","",house_addr) else: self.fd['house_addr'] = None else: if re.search(self.borough_name_regex, response): borough_name=re.search(self.borough_name_regex, response).group(1) self.fd['borough_name'] = re.sub("\(.*\)| ","",borough_name) #ๅŒบๅŸŸ area_box = d_i.find(text="ๅŒบๅŸŸ: ").parent area_a = area_box('a') if area_a and len(area_a)>1: self.fd['cityarea'] = area_a[0].string self.fd['section'] = area_a[1].string elif area_a and len(area_a)==1: self.fd['cityarea'] = area_a[0].string self.fd['section'] = None else: self.fd['cityarea'] = None self.fd['section'] = None if re.search(self.house_age_regex, response): house_age=re.search(self.house_age_regex, response).group(1) self.fd['house_age'] = house_age else: self.fd['house_age'] = None #ๆœๅ‘ if re.search(self.house_toward_regex, response): house_toward=re.search(self.house_toward_regex, response).group(1) self.fd['house_toward'] = toward(house_toward) else: self.fd['house_toward'] = None if re.search(self.house_fitment_regex, response): house_fitment=re.search(self.house_fitment_regex, response).group(1) self.fd['house_fitment'] = fitment(house_fitment) else: self.fd['house_fitment'] = 2 request = None response = None soup=None tree=None del tree del request del response del soup def buy(self,url): self.fd['city'] = self.citycode self.fd['house_flag'] = 3 # self.fd['belong']="1" request = urllib2.Request(url, None, self.header) response = urllib2.urlopen(request).read() tree = etree.HTML(response) soup =BeautifulSoup(response) detail_mer = soup.find('div',{'class':'detail_mer'}) #้žไธชไบบๆˆฟๆบ return if u"ไธชไบบๆˆฟๆบ" not in str(detail_mer):return Dname = detail_mer.find('span',{'class':'Dname'}) if Dname: self.fd['owner_name'] = Dname.string else: self.fd['owner_name'] = None ganji_phone_call_class = detail_mer.find('span',{'class':'ganji_phone_call_class'}) if ganji_phone_call_class: self.fd['owner_phone'] = ganji_phone_call_class.contents[0] if str(ganji_phone_call_class).find('src='): self.fd['owner_phone'] = 'http://'+urlparse(url)[1]+ganji_phone_call_class.img['src'] else: self.fd['owner_phone'] = None else: self.fd['owner_phone'] = None #ๆฒกๆœ‰่”็ณปๆ–นๅผ return if not self.fd['owner_phone']:return if re.search("<span class=\"city\"><a .*?>(.*?)</a>", response): cityname=re.search("<span class=\"city\"><a .*?>(.*?)</a>", response).group(1) self.fd['cityname'] = cityname else: return self.fd['house_floor'] = 0 self.fd['house_topfloor'] = 0 self.fd['house_type'] = 0 self.fd['house_age'] = 0 self.fd['house_toward'] = 0 self.fd['house_fitment'] = 0 if re.search(self.house_totalarea_regex_qiu, response): house_totalarea=re.search(self.house_totalarea_regex_qiu, response).group(1) self.fd['house_totalarea'] = house_totalarea self.fd['house_totalarea_max'] = house_totalarea self.fd['house_totalarea_min'] = house_totalarea else: self.fd['house_totalarea'] = 0 self.fd['house_totalarea_max'] = 0 self.fd['house_totalarea_min'] = 0 if re.search(self.house_price_regex_gou, response): house_price_zu = re.search(self.house_price_regex_gou, response).group(1) house_price_zu = house_price_zu.replace('ไธ‡','') if house_price_zu.find("ไปฅไธŠ") != -1: self.fd['house_price_max'] = 0 self.fd['house_price_min'] = house_price_zu.replace('ไปฅไธŠ','') self.fd['house_price'] = self.fd['house_price_min'] elif house_price_zu.find("ไปฅไธ‹") != -1: self.fd['house_price_max'] = house_price_zu.replace('ไปฅไธ‹','') self.fd['house_price_min'] = 0 self.fd['house_price'] = self.fd['house_price_max'] elif house_price_zu.find("-") != -1: self.fd['house_price_max'] = house_price_zu.split('-')[1] self.fd['house_price_min'] = house_price_zu.split('-')[0] self.fd['house_price'] = house_price_zu.split('-')[1] else: self.fd['house_price_max'] = 0 self.fd['house_price_min'] = 0 self.fd['house_price'] = 0 else: self.fd['house_price_max'] = 0 self.fd['house_price_min'] = 0 self.fd['house_price'] = 0 posttime=CSSSelector('span.pub_time')(tree)!=None and CSSSelector('span.pub_time')(tree)[0].text.strip() or None if posttime: Y=int(time.strftime('%Y', time.localtime())) M=int(posttime.split(' ')[0].split('-')[0]) D=int(posttime.split(' ')[0].split('-')[1]) s = datetime.datetime(Y,M,D,0,0) posttime=int(time.mktime(s.timetuple())) self.fd['posttime'] =posttime else: self.fd['posttime'] =None if re.search(self.house_room_regex, response): house_room=re.search(self.house_room_regex, response).group(1) self.fd['house_room'] = house_room else: self.fd['house_room'] = '0' if re.search(self.house_hall_regex, response): house_hall=re.search(self.house_hall_regex, response).group(1) self.fd['house_hall'] = house_hall else: self.fd['house_hall'] = '0' if re.search(self.house_toilet_regex, response): house_toilet=re.search(self.house_toilet_regex, response).group(1) self.fd['house_toilet'] = house_toilet else: self.fd['house_toilet'] = '0' house_title=CSSSelector("div.detail_title h1")(tree)[0] !=None and CSSSelector("div.detail_title h1")(tree)[0].text.strip() or None self.fd['house_title'] = house_title #ๆ่ฟฐ detail_box = soup.find('div',{'class':'detail_box'}) if detail_box: house_desc = str(detail_box('p')[1]) self.fd['house_desc'] = re.sub("<.*?>|\n|\r|\t|่”็ณปๆˆ‘ๆ—ถ่ฏท่ฏดๆ˜Žๆ˜ฏไปŽ่ตถ้›†็ฝ‘ไธŠ็œ‹ๅˆฐ็š„","",house_desc) else: self.fd['house_desc'] = None d_i = soup.find('ul',{'class':'d_i'}) #ๅฐๅŒบๅ #ๅ…ˆๅค„็†JS if re.search(self.xiaoqu_regex, response): borough_name=re.search(self.xiaoqu_regex, response).group(1) self.fd['borough_name'] = borough_name if re.search(self.address_regex, response): house_addr=re.search(self.address_regex, response).group(1) self.fd['house_addr'] = house_addr else: if d_i.find(text="ๅฐๅŒบ: "): borough_box = d_i.find(text="ๅฐๅŒบ: ").parent borough_name = borough_box.find("a") if borough_name: self.fd['borough_name'] = borough_name.string else: self.fd['borough_name'] = None else: if re.search(self.borough_name_regex_reg, response): borough_name=re.search(self.borough_name_regex_reg, response).group(1) self.fd['borough_name'] = borough_name if re.search(self.house_addr_regex_reg, response): house_addr=re.search(self.house_addr_regex_reg, response).group(1) self.fd['house_addr'] = house_addr else: self.fd['house_addr'] = '' #ๅŒบๅŸŸ area_box = d_i.find(text="ๅŒบๅŸŸ: ").parent area_a = area_box('a') if area_a and len(area_a)>1: self.fd['cityarea'] = area_a[0].string self.fd['section'] = area_a[1].string elif area_a and len(area_a)==1: self.fd['cityarea'] = area_a[0].string self.fd['section'] = None else: self.fd['cityarea'] = None self.fd['section'] = None request = None response = None soup=None tree=None del tree del request del response del soup def rent(self,url): self.fd['city'] = urlparse(url)[1].replace('.ganji.com',"") request = urllib2.Request(url, None, self.header) response = urllib2.urlopen(request).read() tree = etree.HTML(response) if re.search("<span class=\"city\"><a .*?>(.*?)</a>", response): cityname=re.search("<span class=\"city\"><a .*?>(.*?)</a>", response).group(1) self.fd['cityname'] = cityname else: return self.fd['house_flag'] = 2 self.fd['house_type'] = 0 self.fd['house_floor'] = "" self.fd['house_topfloor'] = "" soup =BeautifulSoup(response) detail_mer = soup.find('div',{'class':'detail_mer'}) #้žไธชไบบๆˆฟๆบ return if u"ไธชไบบๆˆฟๆบ" not in str(detail_mer):return Dname = detail_mer.find('span',{'class':'Dname'}) if Dname: self.fd['owner_name'] = Dname.string else: self.fd['owner_name'] = None ganji_phone_call_class = detail_mer.find('span',{'class':'ganji_phone_call_class'}) if ganji_phone_call_class: self.fd['owner_phone'] = ganji_phone_call_class.contents[0] if str(ganji_phone_call_class).find('src='): self.fd['owner_phone'] = 'http://'+urlparse(url)[1]+ganji_phone_call_class.img['src'] else: self.fd['owner_phone'] = None else: self.fd['owner_phone'] = None #ๆฒกๆœ‰่”็ณปๆ–นๅผ return if not self.fd['owner_phone']:return if re.search(self.house_totalarea_regex, response): house_totalarea=re.search(self.house_totalarea_regex, response).group(1) self.fd['house_totalarea'] = house_totalarea else: self.fd['house_totalarea'] = None if re.search(self.house_price_regex_2, response): house_price=re.search(self.house_price_regex_2, response).group(1) if house_price=="้ข่ฎฎ": house_price="0" self.fd['house_price'] = house_price else: self.fd['house_price'] = None # house_price=tree.xpath("/html/body/div[2]/div/div/ul/li/span") and tree.xpath("/html/body/div[2]/div/div/ul/li/span")[0].text.strip() or None # v['house_price'] = house_price posttime=CSSSelector('span.pub_time')(tree)!=None and CSSSelector('span.pub_time')(tree)[0].text.strip() or None if posttime: Y=int(time.strftime('%Y', time.localtime())) M=int(posttime.split(' ')[0].split('-')[0]) D=int(posttime.split(' ')[0].split('-')[1]) s = datetime.datetime(Y,M,D,0,0) posttime=int(time.mktime(s.timetuple())) self.fd['posttime'] =posttime else: self.fd['posttime'] =None house_title=CSSSelector("div.detail_title h1")(tree)[0] !=None and CSSSelector("div.detail_title h1")(tree)[0].text.strip() or None self.fd['house_title'] = house_title if re.search(self.house_room_regex, response): house_room=re.search(self.house_room_regex, response).group(1) self.fd['house_room'] = house_room else: self.fd['house_room'] = '0' if re.search(self.house_hall_regex, response): house_hall=re.search(self.house_hall_regex, response).group(1) self.fd['house_hall'] = house_hall else: self.fd['house_hall'] = '0' if re.search(self.house_toilet_regex, response): house_toilet=re.search(self.house_toilet_regex, response).group(1) self.fd['house_toilet'] = house_toilet else: self.fd['house_toilet'] = '0' house_title=CSSSelector("div.detail_title h1")(tree)[0] !=None and CSSSelector("div.detail_title h1")(tree)[0].text.strip() or None self.fd['house_title'] = house_title #ๆ่ฟฐ detail_box = soup.find('div',{'class':'detail_box'}) if detail_box: house_desc = str(detail_box('p')[1]) self.fd['house_desc'] = re.sub("<.*?>|\n|\r|\t|่”็ณปๆˆ‘ๆ—ถ่ฏท่ฏดๆ˜Žๆ˜ฏไปŽ่ตถ้›†็ฝ‘ไธŠ็œ‹ๅˆฐ็š„","",house_desc) else: self.fd['house_desc'] = None d_i = soup.find('ul',{'class':'d_i'}) #ๅฐๅŒบๅ #ๅ…ˆๅค„็†JS if re.search(self.xiaoqu_regex, response): borough_name=re.search(self.xiaoqu_regex, response).group(1) self.fd['borough_name'] = borough_name if re.search(self.address_regex, response): house_addr=re.search(self.address_regex, response).group(1) self.fd['house_addr'] = house_addr else: if d_i.find(text="ๅฐๅŒบ: "): borough_box = d_i.find(text="ๅฐๅŒบ: ").parent borough_name = borough_box.find("a") if borough_name: self.fd['borough_name'] = borough_name.string else: self.fd['borough_name'] = None #ๅœฐๅ€ if borough_name and borough_name.nextSibling: house_addr = borough_name.nextSibling.string self.fd['house_addr'] = re.sub("\(|\)| ","",house_addr) else: self.fd['house_addr'] = None else: if re.search(self.borough_name_regex, response): borough_name=re.search(self.borough_name_regex, response).group(1) self.fd['borough_name'] = re.sub("\(.*\)| ","",borough_name) #ๅŒบๅŸŸ area_box = d_i.find(text="ๅŒบๅŸŸ: ").parent area_a = area_box('a') if area_a and len(area_a)>1: self.fd['cityarea'] = area_a[0].string self.fd['section'] = area_a[1].string elif area_a and len(area_a)==1: self.fd['cityarea'] = area_a[0].string self.fd['section'] = None else: self.fd['cityarea'] = None self.fd['section'] = None if re.search(self.house_age_regex, response): house_age=re.search(self.house_age_regex, response).group(1) self.fd['house_age'] = house_age else: self.fd['house_age'] = None #ๆœๅ‘ if re.search(self.house_toward_regex, response): house_toward=re.search(self.house_toward_regex, response).group(1) self.fd['house_toward'] = toward(house_toward) else: self.fd['house_toward'] = None if re.search(self.house_fitment_regex, response): house_fitment=re.search(self.house_fitment_regex, response).group(1) self.fd['house_fitment'] = fitment(house_fitment) else: self.fd['house_fitment'] = 2 if re.search(self.house_deposit_regex, response): house_deposit=re.search(self.house_deposit_regex, response).group(1) self.fd['house_deposit'] = deposit(house_deposit) else: self.fd['house_deposit'] = None request = None response = None soup=None tree=None del tree del request del response del soup def require(self,url): self.fd['city'] = urlparse(url)[1].replace('.ganji.com',"") request = urllib2.Request(url, None, self.header) response = urllib2.urlopen(request).read() tree = etree.HTML(response) if re.search("<span class=\"city\"><a .*?>(.*?)</a>", response): cityname=re.search("<span class=\"city\"><a .*?>(.*?)</a>", response).group(1) self.fd['cityname'] = cityname else: return self.fd['house_flag'] = 4 self.fd['house_type'] = 0 self.fd['house_floor'] = "" self.fd['house_topfloor'] = "" self.fd['house_totalarea']=0 self.fd['house_age'] = 0 self.fd['house_toward'] = 0 self.fd['house_fitment'] = 0 self.fd['house_deposit'] = 0 self.fd['house_totalarea_max'] = 0 self.fd['house_totalarea_min'] = 0 self.fd['house_totalarea'] = 0 soup =BeautifulSoup(response) detail_mer = soup.find('div',{'class':'detail_mer'}) #้žไธชไบบๆˆฟๆบ return if u"ไธชไบบๆˆฟๆบ" not in str(detail_mer):return Dname = detail_mer.find('span',{'class':'Dname'}) if Dname: self.fd['owner_name'] = Dname.string else: self.fd['owner_name'] = None ganji_phone_call_class = detail_mer.find('span',{'class':'ganji_phone_call_class'}) if ganji_phone_call_class: self.fd['owner_phone'] = ganji_phone_call_class.contents[0] if str(ganji_phone_call_class).find('src='): self.fd['owner_phone'] = 'http://'+urlparse(url)[1]+ganji_phone_call_class.img['src'] else: self.fd['owner_phone'] = None else: self.fd['owner_phone'] = None #ๆฒกๆœ‰่”็ณปๆ–นๅผ return if not self.fd['owner_phone']:return if re.search(self.house_price_regex_zu, response): house_price_zu = re.search(self.house_price_regex_zu, response).group(1) house_price_zu = house_price_zu.replace('ๅ…ƒ/ๆœˆ','') if house_price_zu.find("ไปฅไธŠ") != -1: self.fd['house_price_max'] = 0 self.fd['house_price_min'] = house_price_zu.replace('ไปฅไธŠ','') self.fd['house_price'] = house_price_zu.replace('ไปฅไธŠ','') elif house_price_zu.find("ไปฅไธ‹") != -1: self.fd['house_price_max'] = house_price_zu.replace('ไปฅไธ‹','') self.fd['house_price_min'] = 0 self.fd['house_price'] = house_price_zu.replace('ไปฅไธ‹','') elif house_price_zu.find("-") != -1: self.fd['house_price_max'] = house_price_zu.split('-')[1] self.fd['house_price_min'] = house_price_zu.split('-')[0] self.fd['house_price'] = house_price_zu.split('-')[1] else: self.fd['house_price_max'] = 0 self.fd['house_price_min'] = 0 self.fd['house_price'] = 0 else: self.fd['house_price_max'] = 0 self.fd['house_price_min'] = 0 self.fd['house_price'] = 0 posttime=CSSSelector('span.pub_time')(tree)!=None and CSSSelector('span.pub_time')(tree)[0].text.strip() or None if posttime: Y=int(time.strftime('%Y', time.localtime())) M=int(posttime.split(' ')[0].split('-')[0]) D=int(posttime.split(' ')[0].split('-')[1]) s = datetime.datetime(Y,M,D,0,0) posttime=int(time.mktime(s.timetuple())) self.fd['posttime'] =posttime else: self.fd['posttime'] =None house_title=CSSSelector("div.detail_title h1")(tree)[0] !=None and CSSSelector("div.detail_title h1")(tree)[0].text.strip() or None self.fd['house_title'] = house_title if re.search(self.house_room_regex, response): house_room=re.search(self.house_room_regex, response).group(1) self.fd['house_room'] = house_room else: self.fd['house_room'] = '0' if re.search(self.house_hall_regex, response): house_hall=re.search(self.house_hall_regex, response).group(1) self.fd['house_hall'] = house_hall else: self.fd['house_hall'] = '0' if re.search(self.house_toilet_regex, response): house_toilet=re.search(self.house_toilet_regex, response).group(1) self.fd['house_toilet'] = house_toilet else: self.fd['house_toilet'] = '0' house_title=CSSSelector("div.detail_title h1")(tree)[0] !=None and CSSSelector("div.detail_title h1")(tree)[0].text.strip() or None self.fd['house_title'] = house_title #ๆ่ฟฐ detail_box = soup.find('div',{'class':'detail_box'}) if detail_box: house_desc = str(detail_box('p')[1]) self.fd['house_desc'] = re.sub("<.*?>|\n|\r|\t|่”็ณปๆˆ‘ๆ—ถ่ฏท่ฏดๆ˜Žๆ˜ฏไปŽ่ตถ้›†็ฝ‘ไธŠ็œ‹ๅˆฐ็š„","",house_desc) else: self.fd['house_desc'] = None d_i = soup.find('ul',{'class':'d_i'}) #ๅฐๅŒบๅ #ๅ…ˆๅค„็†JS if re.search(self.xiaoqu_regex, response): borough_name=re.search(self.xiaoqu_regex, response).group(1) self.fd['borough_name'] = borough_name if re.search(self.address_regex, response): house_addr=re.search(self.address_regex, response).group(1) self.fd['house_addr'] = house_addr else: if re.search(self.borough_name_regex_reg, response): borough_name=re.search(self.borough_name_regex_reg, response).group(1) self.fd['borough_name'] = borough_name if re.search(self.house_addr_regex_reg, response): house_addr=re.search(self.house_addr_regex_reg, response).group(1) self.fd['house_addr'] = house_addr else: self.fd['house_addr'] = '' #ๅŒบๅŸŸ area_box = d_i.find(text="ๅŒบๅŸŸ: ").parent area_a = area_box('a') if area_a and len(area_a)>1: self.fd['cityarea'] = area_a[0].string self.fd['section'] = area_a[1].string elif area_a and len(area_a)==1: self.fd['cityarea'] = area_a[0].string self.fd['section'] = None else: self.fd['cityarea'] = None self.fd['section'] = None request = None response = None soup=None tree=None del tree del request del response del soup def extractDict(self): if checkPath(homepath,self.folder,self.urls): pass else: try: if self.kind=="1": self.sell(self.urls) elif self.kind=="2": self.rent(self.urls) elif self.kind=="3": self.buy(self.urls) else: self.require(self.urls) makePath(homepath,self.folder,self.urls) #่ถ…่ฟ‡ไธƒๅคฉ if (time.time() -self.fd["posttime"]) > 7*24*36000:return except:pass self.fd["c"]="houseapi" self.fd["a"]="savehouse" self.fd["is_checked"] = 1 self.fd["web_flag"] = "gj" return self.fd if not self.fd["is_checked"]: for i in self.fd.items(): print i[0],i[1] print "*"*80 # if len(self.fd)==7 or len(self.fd)==17: # print "#####################################" # continue # req=urllib2.Request("http://site.jjr360.com/app.php", urllib.urlencode(self.fd)) # p=self.br.open(req).read().strip() # print p.decode('gbk') # print "*"*80 class fetchData(threading.Thread): def __init__(self,d): threading.Thread.__init__(self) self.d=d def run(self): lc=LinkCrawl(self.d["citycode"],self.d["kind"]) clinks=lc.runme() cc=ContentCrawl(clinks,self.d["citycode"],self.d["kind"]) cc.extractDict() class getLinksThread(threading.Thread): def __init__(self,d): threading.Thread.__init__(self) self.d=d def run(self): gc.enable() lc=LinkCrawl(self.d["citycode"],self.d["kind"]) lc.runme() del gc.garbage[:] def getLinks(d): gc.enable() lc=LinkCrawl(d["citycode"],d["kind"]) lc.runme() del gc.garbage[:] def getContent(clinks,citycode,kind): gc.enable() cc=ContentCrawl(clinks,citycode,kind) fd=cc.extractDict() del gc.garbage[:] return fd if __name__=="__main__": lc=LinkCrawl(citycode="su",kind="1") lc.runme()# #url1 = "http://su.ganji.com/fang5/11071015_233901.htm" #url2 = "http://su.ganji.com/fang1/11071017_418972.htm" #url3 = "http://su.ganji.com/fang4/11062413_4152.htm" #url4 = "http://su.ganji.com/fang2/11070900_21214.htm" #cc=ContentCrawl([url3],citycode="su",kind="3") #cc.extractDict() # while 1: # for i in range(1,5): # k = "%s" % str(i) # try: # lc=LinkCrawl(citycode="su",kind=k) # clinks=lc.runme() # cc=ContentCrawl(clinks,citycode="su",kind=k) # cc.extractDict() # except: # pass
40.287234
154
0.528439
083d0746bfb5439520db3aa4334f131bb14eb840
504
py
Python
tests/test_class_oelint_file_nospaces.py
QuakeSaver/oelint-adv
e03617b51c7ebdeb8ea245eb61da3e3e03195b37
[ "BSD-2-Clause" ]
null
null
null
tests/test_class_oelint_file_nospaces.py
QuakeSaver/oelint-adv
e03617b51c7ebdeb8ea245eb61da3e3e03195b37
[ "BSD-2-Clause" ]
null
null
null
tests/test_class_oelint_file_nospaces.py
QuakeSaver/oelint-adv
e03617b51c7ebdeb8ea245eb61da3e3e03195b37
[ "BSD-2-Clause" ]
null
null
null
import pytest from base import TestBaseClass class TestClassOelintFileNoSpaces(TestBaseClass): @pytest.mark.parametrize('id', ['oelint.file.nospaces']) @pytest.mark.parametrize('occurrence', [1]) @pytest.mark.parametrize('input', [ { 'oelint adv-test.bb': ''' VAR = "1" ''' } ], ) def test_bad(self, input, id, occurrence): self.check_for_id(self._create_args(input), id, occurrence)
24
67
0.561508
c02048790bdcc79c365d23bbf2b8933b8ef39f8a
221
py
Python
timm/loss/__init__.py
chilung/dvit_repo
e2d51717c131048b860b5dfa61b85f2a9d3438db
[ "MIT" ]
90
2021-03-28T17:33:03.000Z
2022-03-26T01:44:20.000Z
timm/loss/__init__.py
chilung/dvit_repo
e2d51717c131048b860b5dfa61b85f2a9d3438db
[ "MIT" ]
7
2021-03-30T10:57:59.000Z
2021-12-19T13:40:12.000Z
timm/loss/__init__.py
chilung/dvit_repo
e2d51717c131048b860b5dfa61b85f2a9d3438db
[ "MIT" ]
19
2021-04-09T06:27:50.000Z
2022-02-11T14:24:25.000Z
from .cross_entropy import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy, SoftTargetCrossEntropyCosReg from .jsd import JsdCrossEntropy from .asymmetric_loss import AsymmetricLossMultiLabel, AsymmetricLossSingleLabel
73.666667
107
0.909502
ed9108a60b1d5a6e468201edaa763c1004a18f0a
55,690
py
Python
tensorflow/c01/t9/retrain.py
tomsnail/opencv_tf_py
cf9aa7fa250546564cff56aa33b5a39991b0d8f1
[ "Apache-2.0" ]
null
null
null
tensorflow/c01/t9/retrain.py
tomsnail/opencv_tf_py
cf9aa7fa250546564cff56aa33b5a39991b0d8f1
[ "Apache-2.0" ]
null
null
null
tensorflow/c01/t9/retrain.py
tomsnail/opencv_tf_py
cf9aa7fa250546564cff56aa33b5a39991b0d8f1
[ "Apache-2.0" ]
1
2020-05-22T09:19:56.000Z
2020-05-22T09:19:56.000Z
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # NOTICE: This work was derived from tensorflow/examples/image_retraining # and modified to use TensorFlow Hub modules. # pylint: disable=line-too-long r"""Simple transfer learning with image modules from TensorFlow Hub. This example shows how to train an image classifier based on any TensorFlow Hub module that computes image feature vectors. By default, it uses the feature vectors computed by Inception V3 trained on ImageNet. For more options, search https://tfhub.dev for image feature vector modules. The top layer receives as input a 2048-dimensional vector (assuming Inception V3) for each image. We train a softmax layer on top of this representation. If the softmax layer contains N labels, this corresponds to learning N + 2048*N model parameters for the biases and weights. Here's an example, which assumes you have a folder containing class-named subfolders, each full of images for each label. The example folder flower_photos should have a structure like this: ~/flower_photos/daisy/photo1.jpg ~/flower_photos/daisy/photo2.jpg ... ~/flower_photos/rose/anotherphoto77.jpg ... ~/flower_photos/sunflower/somepicture.jpg The subfolder names are important, since they define what label is applied to each image, but the filenames themselves don't matter. (For a working example, download http://download.tensorflow.org/example_images/flower_photos.tgz and run tar xzf flower_photos.tgz to unpack it.) Once your images are prepared, and you have pip-installed tensorflow-hub and a sufficiently recent version of tensorflow, you can run the training with a command like this: ```bash python retrain.py --image_dir ~/flower_photos ``` You can replace the image_dir argument with any folder containing subfolders of images. The label for each image is taken from the name of the subfolder it's in. This produces a new model file that can be loaded and run by any TensorFlow program, for example the tensorflow/examples/label_image sample code. By default this script will use the highly accurate, but comparatively large and slow Inception V3 model architecture. It's recommended that you start with this to validate that you have gathered good training data, but if you want to deploy on resource-limited platforms, you can try the `--tfhub_module` flag with a Mobilenet model. For more information on Mobilenet, see https://research.googleblog.com/2017/06/mobilenets-open-source-models-for.html For example: Run floating-point version of Mobilenet: ```bash python retrain.py --image_dir ~/flower_photos \ --tfhub_module https://tfhub.dev/google/imagenet/mobilenet_v1_100_224/feature_vector/1 ``` Run Mobilenet, instrumented for quantization: ```bash python retrain.py --image_dir ~/flower_photos/ \ --tfhub_module https://tfhub.dev/google/imagenet/mobilenet_v1_100_224/quantops/feature_vector/1 ``` These instrumented models can be converted to fully quantized mobile models via TensorFlow Lite. There are different Mobilenet models to choose from, with a variety of file size and latency options. - The first number can be '100', '075', '050', or '025' to control the number of neurons (activations of hidden layers); the number of weights (and hence to some extent the file size and speed) shrinks with the square of that fraction. - The second number is the input image size. You can choose '224', '192', '160', or '128', with smaller sizes giving faster speeds. To use with TensorBoard: By default, this script will log summaries to /tmp/retrain_logs directory Visualize the summaries with this command: tensorboard --logdir /tmp/retrain_logs To use with Tensorflow Serving, run this tool with --saved_model_dir set to some increasingly numbered export location under the model base path, e.g.: ```bash python retrain.py (... other args as before ...) \ --saved_model_dir=/tmp/saved_models/$(date +%s)/ tensorflow_model_server --port=9000 --model_name=my_image_classifier \ --model_base_path=/tmp/saved_models/ ``` """ # pylint: enable=line-too-long from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import collections from datetime import datetime import hashlib import os.path import random import re import sys import numpy as np import tensorflow as tf import tensorflow_hub as hub FLAGS = None MAX_NUM_IMAGES_PER_CLASS = 2 ** 27 - 1 # ~134M # The location where variable checkpoints will be stored. CHECKPOINT_NAME = './tmp/_retrain_checkpoint' # A module is understood as instrumented for quantization with TF-Lite # if it contains any of these ops. FAKE_QUANT_OPS = ('FakeQuantWithMinMaxVars', 'FakeQuantWithMinMaxVarsPerChannel') def create_image_lists(image_dir, testing_percentage, validation_percentage): """Builds a list of training images from the file system. Analyzes the sub folders in the image directory, splits them into stable training, testing, and validation sets, and returns a data structure describing the lists of images for each label and their paths. Args: image_dir: String path to a folder containing subfolders of images. testing_percentage: Integer percentage of the images to reserve for tests. validation_percentage: Integer percentage of images reserved for validation. Returns: An OrderedDict containing an entry for each label subfolder, with images split into training, testing, and validation sets within each label. The order of items defines the class indices. """ if not tf.gfile.Exists(image_dir): tf.logging.error("Image directory '" + image_dir + "' not found.") return None result = collections.OrderedDict() sub_dirs = sorted(x[0] for x in tf.gfile.Walk(image_dir)) # The root directory comes first, so skip it. is_root_dir = True for sub_dir in sub_dirs: if is_root_dir: is_root_dir = False continue extensions = sorted(set(os.path.normcase(ext) # Smash case on Windows. for ext in ['JPEG', 'JPG', 'jpeg', 'jpg', 'png'])) file_list = [] dir_name = os.path.basename( # tf.gfile.Walk() returns sub-directory with trailing '/' when it is in # Google Cloud Storage, which confuses os.path.basename(). sub_dir[:-1] if sub_dir.endswith('/') else sub_dir) if dir_name == image_dir: continue tf.logging.info("Looking for images in '" + dir_name + "'") for extension in extensions: file_glob = os.path.join(image_dir, dir_name, '*.' + extension) file_list.extend(tf.gfile.Glob(file_glob)) if not file_list: tf.logging.warning('No files found') continue if len(file_list) < 20: tf.logging.warning( 'WARNING: Folder has less than 20 images, which may cause issues.') elif len(file_list) > MAX_NUM_IMAGES_PER_CLASS: tf.logging.warning( 'WARNING: Folder {} has more than {} images. Some images will ' 'never be selected.'.format(dir_name, MAX_NUM_IMAGES_PER_CLASS)) label_name = re.sub(r'[^a-z0-9]+', ' ', dir_name.lower()) training_images = [] testing_images = [] validation_images = [] for file_name in file_list: base_name = os.path.basename(file_name) # We want to ignore anything after '_nohash_' in the file name when # deciding which set to put an image in, the data set creator has a way of # grouping photos that are close variations of each other. For example # this is used in the plant disease data set to group multiple pictures of # the same leaf. hash_name = re.sub(r'_nohash_.*$', '', file_name) # This looks a bit magical, but we need to decide whether this file should # go into the training, testing, or validation sets, and we want to keep # existing files in the same set even if more files are subsequently # added. # To do that, we need a stable way of deciding based on just the file name # itself, so we do a hash of that and then use that to generate a # probability value that we use to assign it. hash_name_hashed = hashlib.sha1(tf.compat.as_bytes(hash_name)).hexdigest() percentage_hash = ((int(hash_name_hashed, 16) % (MAX_NUM_IMAGES_PER_CLASS + 1)) * (100.0 / MAX_NUM_IMAGES_PER_CLASS)) if percentage_hash < validation_percentage: validation_images.append(base_name) elif percentage_hash < (testing_percentage + validation_percentage): testing_images.append(base_name) else: training_images.append(base_name) result[label_name] = { 'dir': dir_name, 'training': training_images, 'testing': testing_images, 'validation': validation_images, } return result def get_image_path(image_lists, label_name, index, image_dir, category): """Returns a path to an image for a label at the given index. Args: image_lists: OrderedDict of training images for each label. label_name: Label string we want to get an image for. index: Int offset of the image we want. This will be moduloed by the available number of images for the label, so it can be arbitrarily large. image_dir: Root folder string of the subfolders containing the training images. category: Name string of set to pull images from - training, testing, or validation. Returns: File system path string to an image that meets the requested parameters. """ if label_name not in image_lists: tf.logging.fatal('Label does not exist %s.', label_name) label_lists = image_lists[label_name] if category not in label_lists: tf.logging.fatal('Category does not exist %s.', category) category_list = label_lists[category] if not category_list: tf.logging.fatal('Label %s has no images in the category %s.', label_name, category) mod_index = index % len(category_list) base_name = category_list[mod_index] sub_dir = label_lists['dir'] full_path = os.path.join(image_dir, sub_dir, base_name) return full_path def get_bottleneck_path(image_lists, label_name, index, bottleneck_dir, category, module_name): """Returns a path to a bottleneck file for a label at the given index. Args: image_lists: OrderedDict of training images for each label. label_name: Label string we want to get an image for. index: Integer offset of the image we want. This will be moduloed by the available number of images for the label, so it can be arbitrarily large. bottleneck_dir: Folder string holding cached files of bottleneck values. category: Name string of set to pull images from - training, testing, or validation. module_name: The name of the image module being used. Returns: File system path string to an image that meets the requested parameters. """ module_name = (module_name.replace('://', '~') # URL scheme. .replace('/', '~') # URL and Unix paths. .replace(':', '~').replace('\\', '~')) # Windows paths. return get_image_path(image_lists, label_name, index, bottleneck_dir, category) + '_' + module_name + '.txt' def create_module_graph(module_spec): """Creates a graph and loads Hub Module into it. Args: module_spec: the hub.ModuleSpec for the image module being used. Returns: graph: the tf.Graph that was created. bottleneck_tensor: the bottleneck values output by the module. resized_input_tensor: the input images, resized as expected by the module. wants_quantization: a boolean, whether the module has been instrumented with fake quantization ops. """ height, width = hub.get_expected_image_size(module_spec) with tf.Graph().as_default() as graph: resized_input_tensor = tf.placeholder(tf.float32, [None, height, width, 3]) m = hub.Module(module_spec) bottleneck_tensor = m(resized_input_tensor) wants_quantization = any(node.op in FAKE_QUANT_OPS for node in graph.as_graph_def().node) return graph, bottleneck_tensor, resized_input_tensor, wants_quantization def run_bottleneck_on_image(sess, image_data, image_data_tensor, decoded_image_tensor, resized_input_tensor, bottleneck_tensor): """Runs inference on an image to extract the 'bottleneck' summary layer. Args: sess: Current active TensorFlow Session. image_data: String of raw JPEG data. image_data_tensor: Input data layer in the graph. decoded_image_tensor: Output of initial image resizing and preprocessing. resized_input_tensor: The input node of the recognition graph. bottleneck_tensor: Layer before the final softmax. Returns: Numpy array of bottleneck values. """ # First decode the JPEG image, resize it, and rescale the pixel values. resized_input_values = sess.run(decoded_image_tensor, {image_data_tensor: image_data}) # Then run it through the recognition network. bottleneck_values = sess.run(bottleneck_tensor, {resized_input_tensor: resized_input_values}) bottleneck_values = np.squeeze(bottleneck_values) return bottleneck_values def ensure_dir_exists(dir_name): """Makes sure the folder exists on disk. Args: dir_name: Path string to the folder we want to create. """ if not os.path.exists(dir_name): os.makedirs(dir_name) def create_bottleneck_file(bottleneck_path, image_lists, label_name, index, image_dir, category, sess, jpeg_data_tensor, decoded_image_tensor, resized_input_tensor, bottleneck_tensor): """Create a single bottleneck file.""" tf.logging.debug('Creating bottleneck at ' + bottleneck_path) image_path = get_image_path(image_lists, label_name, index, image_dir, category) if not tf.gfile.Exists(image_path): tf.logging.fatal('File does not exist %s', image_path) image_data = tf.gfile.GFile(image_path, 'rb').read() try: bottleneck_values = run_bottleneck_on_image( sess, image_data, jpeg_data_tensor, decoded_image_tensor, resized_input_tensor, bottleneck_tensor) except Exception as e: raise RuntimeError('Error during processing file %s (%s)' % (image_path, str(e))) bottleneck_string = ','.join(str(x) for x in bottleneck_values) with open(bottleneck_path, 'w') as bottleneck_file: bottleneck_file.write(bottleneck_string) def get_or_create_bottleneck(sess, image_lists, label_name, index, image_dir, category, bottleneck_dir, jpeg_data_tensor, decoded_image_tensor, resized_input_tensor, bottleneck_tensor, module_name): """Retrieves or calculates bottleneck values for an image. If a cached version of the bottleneck data exists on-disk, return that, otherwise calculate the data and save it to disk for future use. Args: sess: The current active TensorFlow Session. image_lists: OrderedDict of training images for each label. label_name: Label string we want to get an image for. index: Integer offset of the image we want. This will be modulo-ed by the available number of images for the label, so it can be arbitrarily large. image_dir: Root folder string of the subfolders containing the training images. category: Name string of which set to pull images from - training, testing, or validation. bottleneck_dir: Folder string holding cached files of bottleneck values. jpeg_data_tensor: The tensor to feed loaded jpeg data into. decoded_image_tensor: The output of decoding and resizing the image. resized_input_tensor: The input node of the recognition graph. bottleneck_tensor: The output tensor for the bottleneck values. module_name: The name of the image module being used. Returns: Numpy array of values produced by the bottleneck layer for the image. """ label_lists = image_lists[label_name] sub_dir = label_lists['dir'] sub_dir_path = os.path.join(bottleneck_dir, sub_dir) ensure_dir_exists(sub_dir_path) bottleneck_path = get_bottleneck_path(image_lists, label_name, index, bottleneck_dir, category, module_name) if not os.path.exists(bottleneck_path): create_bottleneck_file(bottleneck_path, image_lists, label_name, index, image_dir, category, sess, jpeg_data_tensor, decoded_image_tensor, resized_input_tensor, bottleneck_tensor) with open(bottleneck_path, 'r') as bottleneck_file: bottleneck_string = bottleneck_file.read() did_hit_error = False try: bottleneck_values = [float(x) for x in bottleneck_string.split(',')] except ValueError: tf.logging.warning('Invalid float found, recreating bottleneck') did_hit_error = True if did_hit_error: create_bottleneck_file(bottleneck_path, image_lists, label_name, index, image_dir, category, sess, jpeg_data_tensor, decoded_image_tensor, resized_input_tensor, bottleneck_tensor) with open(bottleneck_path, 'r') as bottleneck_file: bottleneck_string = bottleneck_file.read() # Allow exceptions to propagate here, since they shouldn't happen after a # fresh creation bottleneck_values = [float(x) for x in bottleneck_string.split(',')] return bottleneck_values def cache_bottlenecks(sess, image_lists, image_dir, bottleneck_dir, jpeg_data_tensor, decoded_image_tensor, resized_input_tensor, bottleneck_tensor, module_name): """Ensures all the training, testing, and validation bottlenecks are cached. Because we're likely to read the same image multiple times (if there are no distortions applied during training) it can speed things up a lot if we calculate the bottleneck layer values once for each image during preprocessing, and then just read those cached values repeatedly during training. Here we go through all the images we've found, calculate those values, and save them off. Args: sess: The current active TensorFlow Session. image_lists: OrderedDict of training images for each label. image_dir: Root folder string of the subfolders containing the training images. bottleneck_dir: Folder string holding cached files of bottleneck values. jpeg_data_tensor: Input tensor for jpeg data from file. decoded_image_tensor: The output of decoding and resizing the image. resized_input_tensor: The input node of the recognition graph. bottleneck_tensor: The penultimate output layer of the graph. module_name: The name of the image module being used. Returns: Nothing. """ how_many_bottlenecks = 0 ensure_dir_exists(bottleneck_dir) for label_name, label_lists in image_lists.items(): for category in ['training', 'testing', 'validation']: category_list = label_lists[category] for index, unused_base_name in enumerate(category_list): get_or_create_bottleneck( sess, image_lists, label_name, index, image_dir, category, bottleneck_dir, jpeg_data_tensor, decoded_image_tensor, resized_input_tensor, bottleneck_tensor, module_name) how_many_bottlenecks += 1 if how_many_bottlenecks % 100 == 0: tf.logging.info( str(how_many_bottlenecks) + ' bottleneck files created.') def get_random_cached_bottlenecks(sess, image_lists, how_many, category, bottleneck_dir, image_dir, jpeg_data_tensor, decoded_image_tensor, resized_input_tensor, bottleneck_tensor, module_name): """Retrieves bottleneck values for cached images. If no distortions are being applied, this function can retrieve the cached bottleneck values directly from disk for images. It picks a random set of images from the specified category. Args: sess: Current TensorFlow Session. image_lists: OrderedDict of training images for each label. how_many: If positive, a random sample of this size will be chosen. If negative, all bottlenecks will be retrieved. category: Name string of which set to pull from - training, testing, or validation. bottleneck_dir: Folder string holding cached files of bottleneck values. image_dir: Root folder string of the subfolders containing the training images. jpeg_data_tensor: The layer to feed jpeg image data into. decoded_image_tensor: The output of decoding and resizing the image. resized_input_tensor: The input node of the recognition graph. bottleneck_tensor: The bottleneck output layer of the CNN graph. module_name: The name of the image module being used. Returns: List of bottleneck arrays, their corresponding ground truths, and the relevant filenames. """ class_count = len(image_lists.keys()) bottlenecks = [] ground_truths = [] filenames = [] if how_many >= 0: # Retrieve a random sample of bottlenecks. for unused_i in range(how_many): label_index = random.randrange(class_count) label_name = list(image_lists.keys())[label_index] image_index = random.randrange(MAX_NUM_IMAGES_PER_CLASS + 1) image_name = get_image_path(image_lists, label_name, image_index, image_dir, category) bottleneck = get_or_create_bottleneck( sess, image_lists, label_name, image_index, image_dir, category, bottleneck_dir, jpeg_data_tensor, decoded_image_tensor, resized_input_tensor, bottleneck_tensor, module_name) bottlenecks.append(bottleneck) ground_truths.append(label_index) filenames.append(image_name) else: # Retrieve all bottlenecks. for label_index, label_name in enumerate(image_lists.keys()): for image_index, image_name in enumerate( image_lists[label_name][category]): image_name = get_image_path(image_lists, label_name, image_index, image_dir, category) bottleneck = get_or_create_bottleneck( sess, image_lists, label_name, image_index, image_dir, category, bottleneck_dir, jpeg_data_tensor, decoded_image_tensor, resized_input_tensor, bottleneck_tensor, module_name) bottlenecks.append(bottleneck) ground_truths.append(label_index) filenames.append(image_name) return bottlenecks, ground_truths, filenames def get_random_distorted_bottlenecks( sess, image_lists, how_many, category, image_dir, input_jpeg_tensor, distorted_image, resized_input_tensor, bottleneck_tensor): """Retrieves bottleneck values for training images, after distortions. If we're training with distortions like crops, scales, or flips, we have to recalculate the full model for every image, and so we can't use cached bottleneck values. Instead we find random images for the requested category, run them through the distortion graph, and then the full graph to get the bottleneck results for each. Args: sess: Current TensorFlow Session. image_lists: OrderedDict of training images for each label. how_many: The integer number of bottleneck values to return. category: Name string of which set of images to fetch - training, testing, or validation. image_dir: Root folder string of the subfolders containing the training images. input_jpeg_tensor: The input layer we feed the image data to. distorted_image: The output node of the distortion graph. resized_input_tensor: The input node of the recognition graph. bottleneck_tensor: The bottleneck output layer of the CNN graph. Returns: List of bottleneck arrays and their corresponding ground truths. """ class_count = len(image_lists.keys()) bottlenecks = [] ground_truths = [] for unused_i in range(how_many): label_index = random.randrange(class_count) label_name = list(image_lists.keys())[label_index] image_index = random.randrange(MAX_NUM_IMAGES_PER_CLASS + 1) image_path = get_image_path(image_lists, label_name, image_index, image_dir, category) if not tf.gfile.Exists(image_path): tf.logging.fatal('File does not exist %s', image_path) jpeg_data = tf.gfile.GFile(image_path, 'rb').read() # Note that we materialize the distorted_image_data as a numpy array before # sending running inference on the image. This involves 2 memory copies and # might be optimized in other implementations. distorted_image_data = sess.run(distorted_image, {input_jpeg_tensor: jpeg_data}) bottleneck_values = sess.run(bottleneck_tensor, {resized_input_tensor: distorted_image_data}) bottleneck_values = np.squeeze(bottleneck_values) bottlenecks.append(bottleneck_values) ground_truths.append(label_index) return bottlenecks, ground_truths def should_distort_images(flip_left_right, random_crop, random_scale, random_brightness): """Whether any distortions are enabled, from the input flags. Args: flip_left_right: Boolean whether to randomly mirror images horizontally. random_crop: Integer percentage setting the total margin used around the crop box. random_scale: Integer percentage of how much to vary the scale by. random_brightness: Integer range to randomly multiply the pixel values by. Returns: Boolean value indicating whether any distortions should be applied. """ return (flip_left_right or (random_crop != 0) or (random_scale != 0) or (random_brightness != 0)) def add_input_distortions(flip_left_right, random_crop, random_scale, random_brightness, module_spec): """Creates the operations to apply the specified distortions. During training it can help to improve the results if we run the images through simple distortions like crops, scales, and flips. These reflect the kind of variations we expect in the real world, and so can help train the model to cope with natural data more effectively. Here we take the supplied parameters and construct a network of operations to apply them to an image. Cropping ~~~~~~~~ Cropping is done by placing a bounding box at a random position in the full image. The cropping parameter controls the size of that box relative to the input image. If it's zero, then the box is the same size as the input and no cropping is performed. If the value is 50%, then the crop box will be half the width and height of the input. In a diagram it looks like this: < width > +---------------------+ | | | width - crop% | | < > | | +------+ | | | | | | | | | | | | | | +------+ | | | | | +---------------------+ Scaling ~~~~~~~ Scaling is a lot like cropping, except that the bounding box is always centered and its size varies randomly within the given range. For example if the scale percentage is zero, then the bounding box is the same size as the input and no scaling is applied. If it's 50%, then the bounding box will be in a random range between half the width and height and full size. Args: flip_left_right: Boolean whether to randomly mirror images horizontally. random_crop: Integer percentage setting the total margin used around the crop box. random_scale: Integer percentage of how much to vary the scale by. random_brightness: Integer range to randomly multiply the pixel values by. graph. module_spec: The hub.ModuleSpec for the image module being used. Returns: The jpeg input layer and the distorted result tensor. """ input_height, input_width = hub.get_expected_image_size(module_spec) input_depth = hub.get_num_image_channels(module_spec) jpeg_data = tf.placeholder(tf.string, name='DistortJPGInput') decoded_image = tf.image.decode_jpeg(jpeg_data, channels=input_depth) # Convert from full range of uint8 to range [0,1] of float32. decoded_image_as_float = tf.image.convert_image_dtype(decoded_image, tf.float32) decoded_image_4d = tf.expand_dims(decoded_image_as_float, 0) margin_scale = 1.0 + (random_crop / 100.0) resize_scale = 1.0 + (random_scale / 100.0) margin_scale_value = tf.constant(margin_scale) resize_scale_value = tf.random_uniform(shape=[], minval=1.0, maxval=resize_scale) scale_value = tf.multiply(margin_scale_value, resize_scale_value) precrop_width = tf.multiply(scale_value, input_width) precrop_height = tf.multiply(scale_value, input_height) precrop_shape = tf.stack([precrop_height, precrop_width]) precrop_shape_as_int = tf.cast(precrop_shape, dtype=tf.int32) precropped_image = tf.image.resize_bilinear(decoded_image_4d, precrop_shape_as_int) precropped_image_3d = tf.squeeze(precropped_image, axis=[0]) cropped_image = tf.random_crop(precropped_image_3d, [input_height, input_width, input_depth]) if flip_left_right: flipped_image = tf.image.random_flip_left_right(cropped_image) else: flipped_image = cropped_image brightness_min = 1.0 - (random_brightness / 100.0) brightness_max = 1.0 + (random_brightness / 100.0) brightness_value = tf.random_uniform(shape=[], minval=brightness_min, maxval=brightness_max) brightened_image = tf.multiply(flipped_image, brightness_value) distort_result = tf.expand_dims(brightened_image, 0, name='DistortResult') return jpeg_data, distort_result def variable_summaries(var): """Attach a lot of summaries to a Tensor (for TensorBoard visualization).""" with tf.name_scope('summaries'): mean = tf.reduce_mean(var) tf.summary.scalar('mean', mean) with tf.name_scope('stddev'): stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean))) tf.summary.scalar('stddev', stddev) tf.summary.scalar('max', tf.reduce_max(var)) tf.summary.scalar('min', tf.reduce_min(var)) tf.summary.histogram('histogram', var) def add_final_retrain_ops(class_count, final_tensor_name, bottleneck_tensor, quantize_layer, is_training): """Adds a new softmax and fully-connected layer for training and eval. We need to retrain the top layer to identify our new classes, so this function adds the right operations to the graph, along with some variables to hold the weights, and then sets up all the gradients for the backward pass. The set up for the softmax and fully-connected layers is based on: https://www.tensorflow.org/tutorials/mnist/beginners/index.html Args: class_count: Integer of how many categories of things we're trying to recognize. final_tensor_name: Name string for the new final node that produces results. bottleneck_tensor: The output of the main CNN graph. quantize_layer: Boolean, specifying whether the newly added layer should be instrumented for quantization with TF-Lite. is_training: Boolean, specifying whether the newly add layer is for training or eval. Returns: The tensors for the training and cross entropy results, and tensors for the bottleneck input and ground truth input. """ batch_size, bottleneck_tensor_size = bottleneck_tensor.get_shape().as_list() assert batch_size is None, 'We want to work with arbitrary batch size.' with tf.name_scope('input'): bottleneck_input = tf.placeholder_with_default( bottleneck_tensor, shape=[batch_size, bottleneck_tensor_size], name='BottleneckInputPlaceholder') ground_truth_input = tf.placeholder( tf.int64, [batch_size], name='GroundTruthInput') # Organizing the following ops so they are easier to see in TensorBoard. layer_name = 'final_retrain_ops' with tf.name_scope(layer_name): with tf.name_scope('weights'): initial_value = tf.truncated_normal( [bottleneck_tensor_size, class_count], stddev=0.001) layer_weights = tf.Variable(initial_value, name='final_weights') variable_summaries(layer_weights) with tf.name_scope('biases'): layer_biases = tf.Variable(tf.zeros([class_count]), name='final_biases') variable_summaries(layer_biases) with tf.name_scope('Wx_plus_b'): logits = tf.matmul(bottleneck_input, layer_weights) + layer_biases tf.summary.histogram('pre_activations', logits) final_tensor = tf.nn.softmax(logits, name=final_tensor_name) # The tf.contrib.quantize functions rewrite the graph in place for # quantization. The imported model graph has already been rewritten, so upon # calling these rewrites, only the newly added final layer will be # transformed. if quantize_layer: if is_training: tf.contrib.quantize.create_training_graph() else: tf.contrib.quantize.create_eval_graph() tf.summary.histogram('activations', final_tensor) # If this is an eval graph, we don't need to add loss ops or an optimizer. if not is_training: return None, None, bottleneck_input, ground_truth_input, final_tensor with tf.name_scope('cross_entropy'): cross_entropy_mean = tf.losses.sparse_softmax_cross_entropy( labels=ground_truth_input, logits=logits) tf.summary.scalar('cross_entropy', cross_entropy_mean) with tf.name_scope('train'): optimizer = tf.train.GradientDescentOptimizer(FLAGS.learning_rate) train_step = optimizer.minimize(cross_entropy_mean) return (train_step, cross_entropy_mean, bottleneck_input, ground_truth_input, final_tensor) def add_evaluation_step(result_tensor, ground_truth_tensor): """Inserts the operations we need to evaluate the accuracy of our results. Args: result_tensor: The new final node that produces results. ground_truth_tensor: The node we feed ground truth data into. Returns: Tuple of (evaluation step, prediction). """ with tf.name_scope('accuracy'): with tf.name_scope('correct_prediction'): prediction = tf.argmax(result_tensor, 1) correct_prediction = tf.equal(prediction, ground_truth_tensor) with tf.name_scope('accuracy'): evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) tf.summary.scalar('accuracy', evaluation_step) return evaluation_step, prediction def run_final_eval(train_session, module_spec, class_count, image_lists, jpeg_data_tensor, decoded_image_tensor, resized_image_tensor, bottleneck_tensor): """Runs a final evaluation on an eval graph using the test data set. Args: train_session: Session for the train graph with the tensors below. module_spec: The hub.ModuleSpec for the image module being used. class_count: Number of classes image_lists: OrderedDict of training images for each label. jpeg_data_tensor: The layer to feed jpeg image data into. decoded_image_tensor: The output of decoding and resizing the image. resized_image_tensor: The input node of the recognition graph. bottleneck_tensor: The bottleneck output layer of the CNN graph. """ test_bottlenecks, test_ground_truth, test_filenames = ( get_random_cached_bottlenecks(train_session, image_lists, FLAGS.test_batch_size, 'testing', FLAGS.bottleneck_dir, FLAGS.image_dir, jpeg_data_tensor, decoded_image_tensor, resized_image_tensor, bottleneck_tensor, FLAGS.tfhub_module)) (eval_session, _, bottleneck_input, ground_truth_input, evaluation_step, prediction) = build_eval_session(module_spec, class_count) test_accuracy, predictions = eval_session.run( [evaluation_step, prediction], feed_dict={ bottleneck_input: test_bottlenecks, ground_truth_input: test_ground_truth }) tf.logging.info('Final test accuracy = %.1f%% (N=%d)' % (test_accuracy * 100, len(test_bottlenecks))) if FLAGS.print_misclassified_test_images: tf.logging.info('=== MISCLASSIFIED TEST IMAGES ===') for i, test_filename in enumerate(test_filenames): if predictions[i] != test_ground_truth[i]: tf.logging.info('%70s %s' % (test_filename, list(image_lists.keys())[predictions[i]])) def build_eval_session(module_spec, class_count): """Builds an restored eval session without train operations for exporting. Args: module_spec: The hub.ModuleSpec for the image module being used. class_count: Number of classes Returns: Eval session containing the restored eval graph. The bottleneck input, ground truth, eval step, and prediction tensors. """ # If quantized, we need to create the correct eval graph for exporting. eval_graph, bottleneck_tensor, resized_input_tensor, wants_quantization = ( create_module_graph(module_spec)) eval_sess = tf.Session(graph=eval_graph) with eval_graph.as_default(): # Add the new layer for exporting. (_, _, bottleneck_input, ground_truth_input, final_tensor) = add_final_retrain_ops( class_count, FLAGS.final_tensor_name, bottleneck_tensor, wants_quantization, is_training=False) # Now we need to restore the values from the training graph to the eval # graph. tf.train.Saver().restore(eval_sess, CHECKPOINT_NAME) evaluation_step, prediction = add_evaluation_step(final_tensor, ground_truth_input) return (eval_sess, resized_input_tensor, bottleneck_input, ground_truth_input, evaluation_step, prediction) def save_graph_to_file(graph_file_name, module_spec, class_count): """Saves an graph to file, creating a valid quantized one if necessary.""" sess, _, _, _, _, _ = build_eval_session(module_spec, class_count) graph = sess.graph output_graph_def = tf.graph_util.convert_variables_to_constants( sess, graph.as_graph_def(), [FLAGS.final_tensor_name]) with tf.gfile.GFile(graph_file_name, 'wb') as f: f.write(output_graph_def.SerializeToString()) def prepare_file_system(): # Set up the directory we'll write summaries to for TensorBoard if tf.gfile.Exists(FLAGS.summaries_dir): tf.gfile.DeleteRecursively(FLAGS.summaries_dir) tf.gfile.MakeDirs(FLAGS.summaries_dir) if FLAGS.intermediate_store_frequency > 0: ensure_dir_exists(FLAGS.intermediate_output_graphs_dir) return def add_jpeg_decoding(module_spec): """Adds operations that perform JPEG decoding and resizing to the graph.. Args: module_spec: The hub.ModuleSpec for the image module being used. Returns: Tensors for the node to feed JPEG data into, and the output of the preprocessing steps. """ input_height, input_width = hub.get_expected_image_size(module_spec) input_depth = hub.get_num_image_channels(module_spec) jpeg_data = tf.placeholder(tf.string, name='DecodeJPGInput') decoded_image = tf.image.decode_jpeg(jpeg_data, channels=input_depth) # Convert from full range of uint8 to range [0,1] of float32. decoded_image_as_float = tf.image.convert_image_dtype(decoded_image, tf.float32) decoded_image_4d = tf.expand_dims(decoded_image_as_float, 0) resize_shape = tf.stack([input_height, input_width]) resize_shape_as_int = tf.cast(resize_shape, dtype=tf.int32) resized_image = tf.image.resize_bilinear(decoded_image_4d, resize_shape_as_int) return jpeg_data, resized_image def export_model(module_spec, class_count, saved_model_dir): """Exports model for serving. Args: module_spec: The hub.ModuleSpec for the image module being used. class_count: The number of classes. saved_model_dir: Directory in which to save exported model and variables. """ # The SavedModel should hold the eval graph. sess, in_image, _, _, _, _ = build_eval_session(module_spec, class_count) with sess.graph.as_default() as graph: tf.saved_model.simple_save( sess, saved_model_dir, inputs={'image': in_image}, outputs={'prediction': graph.get_tensor_by_name('final_result:0')}, legacy_init_op=tf.group(tf.tables_initializer(), name='legacy_init_op') ) def logging_level_verbosity(logging_verbosity): """Converts logging_level into TensorFlow logging verbosity value Args: logging_level: String value representing logging level: 'DEBUG', 'INFO', 'WARN', 'ERROR', 'FATAL' """ name_to_level = { 'FATAL': tf.logging.FATAL, 'ERROR': tf.logging.ERROR, 'WARN': tf.logging.WARN, 'INFO': tf.logging.INFO, 'DEBUG': tf.logging.DEBUG } try: return name_to_level[logging_verbosity] except Exception as e: raise RuntimeError('Not supported logs verbosity (%s). Use one of %s.' % (str(e), list(name_to_level))) def main(_): # Needed to make sure the logging output is visible. # See https://github.com/tensorflow/tensorflow/issues/3047 logging_verbosity = logging_level_verbosity(FLAGS.logging_verbosity) tf.logging.set_verbosity(logging_verbosity) if not FLAGS.image_dir: tf.logging.error('Must set flag --image_dir.') return -1 # Prepare necessary directories that can be used during training prepare_file_system() # Look at the folder structure, and create lists of all the images. image_lists = create_image_lists(FLAGS.image_dir, FLAGS.testing_percentage, FLAGS.validation_percentage) class_count = len(image_lists.keys()) if class_count == 0: tf.logging.error('No valid folders of images found at ' + FLAGS.image_dir) return -1 if class_count == 1: tf.logging.error('Only one valid folder of images found at ' + FLAGS.image_dir + ' - multiple classes are needed for classification.') return -1 # See if the command-line flags mean we're applying any distortions. do_distort_images = should_distort_images( FLAGS.flip_left_right, FLAGS.random_crop, FLAGS.random_scale, FLAGS.random_brightness) # Set up the pre-trained graph. module_spec = hub.load_module_spec(FLAGS.tfhub_module) graph, bottleneck_tensor, resized_image_tensor, wants_quantization = ( create_module_graph(module_spec)) # Add the new layer that we'll be training. with graph.as_default(): (train_step, cross_entropy, bottleneck_input, ground_truth_input, final_tensor) = add_final_retrain_ops( class_count, FLAGS.final_tensor_name, bottleneck_tensor, wants_quantization, is_training=True) with tf.Session(graph=graph) as sess: # Initialize all weights: for the module to their pretrained values, # and for the newly added retraining layer to random initial values. init = tf.global_variables_initializer() sess.run(init) # Set up the image decoding sub-graph. jpeg_data_tensor, decoded_image_tensor = add_jpeg_decoding(module_spec) if do_distort_images: # We will be applying distortions, so set up the operations we'll need. (distorted_jpeg_data_tensor, distorted_image_tensor) = add_input_distortions( FLAGS.flip_left_right, FLAGS.random_crop, FLAGS.random_scale, FLAGS.random_brightness, module_spec) else: # We'll make sure we've calculated the 'bottleneck' image summaries and # cached them on disk. cache_bottlenecks(sess, image_lists, FLAGS.image_dir, FLAGS.bottleneck_dir, jpeg_data_tensor, decoded_image_tensor, resized_image_tensor, bottleneck_tensor, FLAGS.tfhub_module) # Create the operations we need to evaluate the accuracy of our new layer. evaluation_step, _ = add_evaluation_step(final_tensor, ground_truth_input) # Merge all the summaries and write them out to the summaries_dir merged = tf.summary.merge_all() train_writer = tf.summary.FileWriter(FLAGS.summaries_dir + '/train', sess.graph) validation_writer = tf.summary.FileWriter( FLAGS.summaries_dir + '/validation') # Create a train saver that is used to restore values into an eval graph # when exporting models. train_saver = tf.train.Saver() # Run the training for as many cycles as requested on the command line. for i in range(FLAGS.how_many_training_steps): # Get a batch of input bottleneck values, either calculated fresh every # time with distortions applied, or from the cache stored on disk. if do_distort_images: (train_bottlenecks, train_ground_truth) = get_random_distorted_bottlenecks( sess, image_lists, FLAGS.train_batch_size, 'training', FLAGS.image_dir, distorted_jpeg_data_tensor, distorted_image_tensor, resized_image_tensor, bottleneck_tensor) else: (train_bottlenecks, train_ground_truth, _) = get_random_cached_bottlenecks( sess, image_lists, FLAGS.train_batch_size, 'training', FLAGS.bottleneck_dir, FLAGS.image_dir, jpeg_data_tensor, decoded_image_tensor, resized_image_tensor, bottleneck_tensor, FLAGS.tfhub_module) # Feed the bottlenecks and ground truth into the graph, and run a training # step. Capture training summaries for TensorBoard with the `merged` op. train_summary, _ = sess.run( [merged, train_step], feed_dict={bottleneck_input: train_bottlenecks, ground_truth_input: train_ground_truth}) train_writer.add_summary(train_summary, i) # Every so often, print out how well the graph is training. is_last_step = (i + 1 == FLAGS.how_many_training_steps) if (i % FLAGS.eval_step_interval) == 0 or is_last_step: train_accuracy, cross_entropy_value = sess.run( [evaluation_step, cross_entropy], feed_dict={bottleneck_input: train_bottlenecks, ground_truth_input: train_ground_truth}) tf.logging.info('%s: Step %d: Train accuracy = %.1f%%' % (datetime.now(), i, train_accuracy * 100)) tf.logging.info('%s: Step %d: Cross entropy = %f' % (datetime.now(), i, cross_entropy_value)) # TODO: Make this use an eval graph, to avoid quantization # moving averages being updated by the validation set, though in # practice this makes a negligable difference. validation_bottlenecks, validation_ground_truth, _ = ( get_random_cached_bottlenecks( sess, image_lists, FLAGS.validation_batch_size, 'validation', FLAGS.bottleneck_dir, FLAGS.image_dir, jpeg_data_tensor, decoded_image_tensor, resized_image_tensor, bottleneck_tensor, FLAGS.tfhub_module)) # Run a validation step and capture training summaries for TensorBoard # with the `merged` op. validation_summary, validation_accuracy = sess.run( [merged, evaluation_step], feed_dict={bottleneck_input: validation_bottlenecks, ground_truth_input: validation_ground_truth}) validation_writer.add_summary(validation_summary, i) tf.logging.info('%s: Step %d: Validation accuracy = %.1f%% (N=%d)' % (datetime.now(), i, validation_accuracy * 100, len(validation_bottlenecks))) # Store intermediate results intermediate_frequency = FLAGS.intermediate_store_frequency if (intermediate_frequency > 0 and (i % intermediate_frequency == 0) and i > 0): # If we want to do an intermediate save, save a checkpoint of the train # graph, to restore into the eval graph. train_saver.save(sess, CHECKPOINT_NAME) intermediate_file_name = (FLAGS.intermediate_output_graphs_dir + 'intermediate_' + str(i) + '.pb') tf.logging.info('Save intermediate result to : ' + intermediate_file_name) save_graph_to_file(intermediate_file_name, module_spec, class_count) # After training is complete, force one last save of the train checkpoint. train_saver.save(sess, CHECKPOINT_NAME) # We've completed all our training, so run a final test evaluation on # some new images we haven't used before. run_final_eval(sess, module_spec, class_count, image_lists, jpeg_data_tensor, decoded_image_tensor, resized_image_tensor, bottleneck_tensor) # Write out the trained graph and labels with the weights stored as # constants. tf.logging.info('Save final result to : ' + FLAGS.output_graph) if wants_quantization: tf.logging.info('The model is instrumented for quantization with TF-Lite') save_graph_to_file(FLAGS.output_graph, module_spec, class_count) with tf.gfile.GFile(FLAGS.output_labels, 'w') as f: f.write('\n'.join(image_lists.keys()) + '\n') if FLAGS.saved_model_dir: export_model(module_spec, class_count, FLAGS.saved_model_dir) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--image_dir', type=str, default='', help='Path to folders of labeled images.' ) parser.add_argument( '--output_graph', type=str, default='./tmp/output_graph.pb', help='Where to save the trained graph.' ) parser.add_argument( '--intermediate_output_graphs_dir', type=str, default='./tmp/intermediate_graph/', help='Where to save the intermediate graphs.' ) parser.add_argument( '--intermediate_store_frequency', type=int, default=0, help="""\ How many steps to store intermediate graph. If "0" then will not store.\ """ ) parser.add_argument( '--output_labels', type=str, default='./tmp/output_labels.txt', help='Where to save the trained graph\'s labels.' ) parser.add_argument( '--summaries_dir', type=str, default='/tmp/retrain_logs', help='Where to save summary logs for TensorBoard.' ) parser.add_argument( '--how_many_training_steps', type=int, default=4000, help='How many training steps to run before ending.' ) parser.add_argument( '--learning_rate', type=float, default=0.01, help='How large a learning rate to use when training.' ) parser.add_argument( '--testing_percentage', type=int, default=10, help='What percentage of images to use as a test set.' ) parser.add_argument( '--validation_percentage', type=int, default=10, help='What percentage of images to use as a validation set.' ) parser.add_argument( '--eval_step_interval', type=int, default=10, help='How often to evaluate the training results.' ) parser.add_argument( '--train_batch_size', type=int, default=100, help='How many images to train on at a time.' ) parser.add_argument( '--test_batch_size', type=int, default=-1, help="""\ How many images to test on. This test set is only used once, to evaluate the final accuracy of the model after training completes. A value of -1 causes the entire test set to be used, which leads to more stable results across runs.\ """ ) parser.add_argument( '--validation_batch_size', type=int, default=100, help="""\ How many images to use in an evaluation batch. This validation set is used much more often than the test set, and is an early indicator of how accurate the model is during training. A value of -1 causes the entire validation set to be used, which leads to more stable results across training iterations, but may be slower on large training sets.\ """ ) parser.add_argument( '--print_misclassified_test_images', default=False, help="""\ Whether to print out a list of all misclassified test images.\ """, action='store_true' ) parser.add_argument( '--bottleneck_dir', type=str, default='./tmp/bottleneck', help='Path to cache bottleneck layer values as files.' ) parser.add_argument( '--final_tensor_name', type=str, default='final_result', help="""\ The name of the output classification layer in the retrained graph.\ """ ) parser.add_argument( '--flip_left_right', default=False, help="""\ Whether to randomly flip half of the training images horizontally.\ """, action='store_true' ) parser.add_argument( '--random_crop', type=int, default=0, help="""\ A percentage determining how much of a margin to randomly crop off the training images.\ """ ) parser.add_argument( '--random_scale', type=int, default=0, help="""\ A percentage determining how much to randomly scale up the size of the training images by.\ """ ) parser.add_argument( '--random_brightness', type=int, default=0, help="""\ A percentage determining how much to randomly multiply the training image input pixels up or down by.\ """ ) parser.add_argument( '--tfhub_module', type=str, default=( './tfhub/1.tar.gz'), help="""\ Which TensorFlow Hub module to use. For more options, search https://tfhub.dev for image feature vector modules.\ """) parser.add_argument( '--saved_model_dir', type=str, default='', help='Where to save the exported graph.') parser.add_argument( '--logging_verbosity', type=str, default='INFO', choices=['DEBUG', 'INFO', 'WARN', 'ERROR', 'FATAL'], help='How much logging output should be produced.') FLAGS, unparsed = parser.parse_known_args() tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
41.374443
99
0.697109
067fc185730d21a25cacf5ffb7e51c038af68d6e
16,606
py
Python
qiskit/opflow/state_fns/state_fn.py
ewinston/qiskit-sdk-py
4d64125aba4ff31f15d0054b90437bcef352782e
[ "Apache-2.0" ]
null
null
null
qiskit/opflow/state_fns/state_fn.py
ewinston/qiskit-sdk-py
4d64125aba4ff31f15d0054b90437bcef352782e
[ "Apache-2.0" ]
1
2018-06-15T08:15:47.000Z
2018-06-15T14:38:19.000Z
qiskit/opflow/state_fns/state_fn.py
ewinston/qiskit-sdk-py
4d64125aba4ff31f15d0054b90437bcef352782e
[ "Apache-2.0" ]
null
null
null
# This code is part of Qiskit. # # (C) Copyright IBM 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ StateFn Class """ from typing import Callable, Dict, List, Optional, Set, Tuple, Union import numpy as np from qiskit import QuantumCircuit from qiskit.circuit import Instruction, ParameterExpression from qiskit.opflow.operator_base import OperatorBase from qiskit.quantum_info import Statevector from qiskit.result import Result class StateFn(OperatorBase): r""" A class for representing state functions and measurements. State functions are defined to be complex functions over a single binary string (as compared to an operator, which is defined as a function over two binary strings, or a function taking a binary function to another binary function). This function may be called by the eval() method. Measurements are defined to be functionals over StateFns, taking them to real values. Generally, this real value is interpreted to represent the probability of some classical state (binary string) being observed from a probabilistic or quantum system represented by a StateFn. This leads to the equivalent definition, which is that a measurement m is a function over binary strings producing StateFns, such that the probability of measuring a given binary string b from a system with StateFn f is equal to the inner product between f and m(b). NOTE: State functions here are not restricted to wave functions, as there is no requirement of normalization. """ def __init_subclass__(cls): cls.__new__ = lambda cls, *args, **kwargs: super().__new__(cls) @staticmethod # pylint: disable=unused-argument def __new__(cls, primitive: Union[str, dict, Result, list, np.ndarray, Statevector, QuantumCircuit, Instruction, OperatorBase] = None, coeff: Union[complex, ParameterExpression] = 1.0, is_measurement: bool = False) -> 'StateFn': """ A factory method to produce the correct type of StateFn subclass based on the primitive passed in. Primitive, coeff, and is_measurement arguments are passed into subclass's init() as-is automatically by new(). Args: primitive: The primitive which defines the behavior of the underlying State function. coeff: A coefficient by which the state function is multiplied. is_measurement: Whether the StateFn is a measurement operator Returns: The appropriate StateFn subclass for ``primitive``. Raises: TypeError: Unsupported primitive type passed. """ # Prevents infinite recursion when subclasses are created if cls.__name__ != StateFn.__name__: return super().__new__(cls) # pylint: disable=cyclic-import if isinstance(primitive, (str, dict, Result)): from .dict_state_fn import DictStateFn return DictStateFn.__new__(DictStateFn) if isinstance(primitive, (list, np.ndarray, Statevector)): from .vector_state_fn import VectorStateFn return VectorStateFn.__new__(VectorStateFn) if isinstance(primitive, (QuantumCircuit, Instruction)): from .circuit_state_fn import CircuitStateFn return CircuitStateFn.__new__(CircuitStateFn) if isinstance(primitive, OperatorBase): from .operator_state_fn import OperatorStateFn return OperatorStateFn.__new__(OperatorStateFn) raise TypeError('Unsupported primitive type {} passed into StateFn ' 'factory constructor'.format(type(primitive))) # TODO allow normalization somehow? def __init__(self, primitive: Union[str, dict, Result, list, np.ndarray, Statevector, QuantumCircuit, Instruction, OperatorBase] = None, coeff: Union[complex, ParameterExpression] = 1.0, is_measurement: bool = False) -> None: """ Args: primitive: The primitive which defines the behavior of the underlying State function. coeff: A coefficient by which the state function is multiplied. is_measurement: Whether the StateFn is a measurement operator """ super().__init__() self._primitive = primitive self._is_measurement = is_measurement self._coeff = coeff @property def primitive(self): """ The primitive which defines the behavior of the underlying State function. """ return self._primitive @property def coeff(self) -> Union[complex, ParameterExpression]: """ A coefficient by which the state function is multiplied. """ return self._coeff @property def is_measurement(self) -> bool: """ Whether the StateFn object is a measurement Operator. """ return self._is_measurement def primitive_strings(self) -> Set[str]: raise NotImplementedError @property def num_qubits(self) -> int: raise NotImplementedError def add(self, other: OperatorBase) -> OperatorBase: raise NotImplementedError def adjoint(self) -> OperatorBase: raise NotImplementedError def _expand_dim(self, num_qubits: int) -> 'StateFn': raise NotImplementedError def permute(self, permutation: List[int]) -> OperatorBase: """Permute the qubits of the state function. Args: permutation: A list defining where each qubit should be permuted. The qubit at index j of the circuit should be permuted to position permutation[j]. Returns: A new StateFn containing the permuted primitive. """ raise NotImplementedError def equals(self, other: OperatorBase) -> bool: if not isinstance(other, type(self)) or not self.coeff == other.coeff: return False return self.primitive == other.primitive # Will return NotImplementedError if not supported def mul(self, scalar: Union[complex, ParameterExpression]) -> OperatorBase: if not isinstance(scalar, (int, float, complex, ParameterExpression)): raise ValueError('Operators can only be scalar multiplied by float or complex, not ' '{} of type {}.'.format(scalar, type(scalar))) return self.__class__(self.primitive, coeff=self.coeff * scalar, is_measurement=self.is_measurement) def tensor(self, other: OperatorBase) -> OperatorBase: r""" Return tensor product between self and other, overloaded by ``^``. Note: You must be conscious of Qiskit's big-endian bit printing convention. Meaning, Plus.tensor(Zero) produces a \|+โŸฉ on qubit 0 and a \|0โŸฉ on qubit 1, or \|+โŸฉโจ‚\|0โŸฉ, but would produce a QuantumCircuit like \|0โŸฉ-- \|+โŸฉ-- Because Terra prints circuits and results with qubit 0 at the end of the string or circuit. Args: other: The ``OperatorBase`` to tensor product with self. Returns: An ``OperatorBase`` equivalent to the tensor product of self and other. """ raise NotImplementedError def tensorpower(self, other: int) -> Union[OperatorBase, int]: if not isinstance(other, int) or other <= 0: raise TypeError('Tensorpower can only take positive int arguments') temp = StateFn(self.primitive, coeff=self.coeff, is_measurement=self.is_measurement) # type: OperatorBase for _ in range(other - 1): temp = temp.tensor(self) return temp def _expand_shorter_operator_and_permute( self, other: OperatorBase, permutation: Optional[List[int]] = None ) -> Tuple[OperatorBase, OperatorBase]: # pylint: disable=cyclic-import from ..operator_globals import Zero if self == StateFn({'0': 1}, is_measurement=True): # Zero is special - we'll expand it to the correct qubit number. return StateFn('0' * other.num_qubits, is_measurement=True), other elif other == Zero: # Zero is special - we'll expand it to the correct qubit number. return self, StateFn('0' * self.num_qubits) return super()._expand_shorter_operator_and_permute(other, permutation) def to_matrix(self, massive: bool = False) -> np.ndarray: raise NotImplementedError def to_density_matrix(self, massive: bool = False) -> np.ndarray: """ Return matrix representing product of StateFn evaluated on pairs of basis states. Overridden by child classes. Args: massive: Whether to allow large conversions, e.g. creating a matrix representing over 16 qubits. Returns: The NumPy array representing the density matrix of the State function. Raises: ValueError: If massive is set to False, and exponentially large computation is needed. """ raise NotImplementedError def compose(self, other: OperatorBase, permutation: Optional[List[int]] = None, front: bool = False) -> OperatorBase: r""" Composition (Linear algebra-style: A@B(x) = A(B(x))) is not well defined for states in the binary function model, but is well defined for measurements. Args: other: The Operator to compose with self. permutation: ``List[int]`` which defines permutation on other operator. front: If front==True, return ``other.compose(self)``. Returns: An Operator equivalent to the function composition of self and other. Raises: ValueError: If self is not a measurement, it cannot be composed from the right. """ # TODO maybe allow outers later to produce density operators or projectors, but not yet. if not self.is_measurement and not front: raise ValueError( 'Composition with a Statefunction in the first operand is not defined.') new_self, other = self._expand_shorter_operator_and_permute(other, permutation) if front: return other.compose(self) # TODO maybe include some reduction here in the subclasses - vector and Op, op and Op, etc. from ..primitive_ops.circuit_op import CircuitOp if self.primitive == {'0' * self.num_qubits: 1.0} and isinstance(other, CircuitOp): # Returning CircuitStateFn return StateFn(other.primitive, is_measurement=self.is_measurement, coeff=self.coeff * other.coeff) from ..list_ops.composed_op import ComposedOp return ComposedOp([new_self, other]) def power(self, exponent: int) -> OperatorBase: """ Compose with Self Multiple Times, undefined for StateFns. Args: exponent: The number of times to compose self with self. Raises: ValueError: This function is not defined for StateFns. """ raise ValueError('Composition power over Statefunctions or Measurements is not defined.') def __str__(self) -> str: prim_str = str(self.primitive) if self.coeff == 1.0: return "{}({})".format('StateFunction' if not self.is_measurement else 'Measurement', self.coeff) else: return "{}({}) * {}".format('StateFunction' if not self.is_measurement else 'Measurement', self.coeff, prim_str) def __repr__(self) -> str: return "{}({}, coeff={}, is_measurement={})".format(self.__class__.__name__, repr(self.primitive), self.coeff, self.is_measurement) def eval( self, front: Optional[ Union[str, Dict[str, complex], np.ndarray, OperatorBase, Statevector] ] = None, ) -> Union[OperatorBase, complex]: raise NotImplementedError @property def parameters(self): params = set() if isinstance(self.primitive, (OperatorBase, QuantumCircuit)): params.update(self.primitive.parameters) if isinstance(self.coeff, ParameterExpression): params.update(self.coeff.parameters) return params def assign_parameters(self, param_dict: dict) -> OperatorBase: param_value = self.coeff if isinstance(self.coeff, ParameterExpression): unrolled_dict = self._unroll_param_dict(param_dict) if isinstance(unrolled_dict, list): from ..list_ops.list_op import ListOp return ListOp([self.assign_parameters(param_dict) for param_dict in unrolled_dict]) if self.coeff.parameters <= set(unrolled_dict.keys()): binds = {param: unrolled_dict[param] for param in self.coeff.parameters} param_value = float(self.coeff.bind(binds)) return self.traverse(lambda x: x.assign_parameters(param_dict), coeff=param_value) # Try collapsing primitives where possible. Nothing to collapse here. def reduce(self) -> OperatorBase: return self def traverse(self, convert_fn: Callable, coeff: Optional[Union[complex, ParameterExpression]] = None ) -> OperatorBase: r""" Apply the convert_fn to the internal primitive if the primitive is an Operator (as in the case of ``OperatorStateFn``). Otherwise do nothing. Used by converters. Args: convert_fn: The function to apply to the internal OperatorBase. coeff: A coefficient to multiply by after applying convert_fn. If it is None, self.coeff is used instead. Returns: The converted StateFn. """ if coeff is None: coeff = self.coeff if isinstance(self.primitive, OperatorBase): return StateFn(convert_fn(self.primitive), coeff=coeff, is_measurement=self.is_measurement) else: return self def to_matrix_op(self, massive: bool = False) -> OperatorBase: """ Return a ``VectorStateFn`` for this ``StateFn``. Args: massive: Whether to allow large conversions, e.g. creating a matrix representing over 16 qubits. Returns: A VectorStateFn equivalent to self. """ # pylint: disable=cyclic-import from .vector_state_fn import VectorStateFn return VectorStateFn(self.to_matrix(massive=massive), is_measurement=self.is_measurement) def to_circuit_op(self) -> OperatorBase: """ Returns a ``CircuitOp`` equivalent to this Operator. """ raise NotImplementedError # TODO to_dict_op def sample(self, shots: int = 1024, massive: bool = False, reverse_endianness: bool = False) -> Dict[str, float]: """ Sample the state function as a normalized probability distribution. Returns dict of bitstrings in order of probability, with values being probability. Args: shots: The number of samples to take to approximate the State function. massive: Whether to allow large conversions, e.g. creating a matrix representing over 16 qubits. reverse_endianness: Whether to reverse the endianness of the bitstrings in the return dict to match Terra's big-endianness. Returns: A dict containing pairs sampled strings from the State function and sampling frequency divided by shots. """ raise NotImplementedError
41.10396
99
0.630917
1db4b1283512372db71b73b4beb3fb5090923aa3
12,897
py
Python
qt_widgets/slider.py
marl0ny/grids-on-the-complex-plane
7dfc635baad2c7cb13caf2b71055da18a57ea642
[ "MIT" ]
null
null
null
qt_widgets/slider.py
marl0ny/grids-on-the-complex-plane
7dfc635baad2c7cb13caf2b71055da18a57ea642
[ "MIT" ]
null
null
null
qt_widgets/slider.py
marl0ny/grids-on-the-complex-plane
7dfc635baad2c7cb13caf2b71055da18a57ea642
[ "MIT" ]
null
null
null
""" Slider widgets. """ from . import QtWidgets, QtCore, QtGui from .labelled_line_edit import LabelWithLineEdit from .editable_label import EditableLabel from typing import Any, List class Slider(QtWidgets.QSlider): """ Slider class """ def __init__(self, slider_id: Any, orientation: QtCore.Qt.Orientation, context: Any) -> None: """ Constructor. Parameters: slider_id: slider identification. orientation: slider orientation. context: the object that is using this slider. """ QtWidgets.QSlider.__init__(self, orientation, context) self._slider_id = slider_id self._observers = [] self._lim = [self.minimum(), self.maximum()] self.setRange(0, 200) self.valueChanged.connect(self.notify_change) def set_observers(self, slider_observers: list) -> None: """ Set slider observers. Parameters: slider_observers: the objects that will observe this slider. """ self._observers = slider_observers def add_observers(self, slider_observer: QtWidgets.QWidget) -> None: """ Add a slider observer. Parameters: slider_observer: an observer. """ self._observers.append(slider_observer) def set_number_of_ticks(self, number_of_ticks: int) -> None: """ Set the total number of intervals in the slider. Parameters: number_of_ticks: total number of intervals. """ self.setRange(1, number_of_ticks) def set_range(self, min_val: float, max_val: float) -> None: """ Set the range of the slider. Parameters: min_val: The lowest possible value that the slider can take. max_val: The largest possible value that the slider can take. """ self._lim = [min_val, max_val] def get_range(self) -> List[float]: """ Get the range of the slider. Returns: A list containing the minimum and maximum value of the slider. """ return self._lim def _transform(self, slider_val: int) -> float: """ Transform rules for the slider. """ lim = self._lim slider_val = slider_val - self.minimum() m = (lim[1] - lim[0])/(self.maximum() - self.minimum()) return m*slider_val + lim[0] def set_value(self, value: float) -> None: """ Set a value for the slider. Parameters: value: the value to set the slider to. """ lim = self._lim value = value - lim[0] m = (self.maximum() - self.minimum())/(lim[1] - lim[0]) slider_float_value = m*value + self.minimum() slider_value = int(slider_float_value) if slider_float_value - slider_value > 0.5: slider_value += 1 self.setSliderPosition(slider_value) def notify_change(self, val: int) -> None: """ Notify to observers that the slider has changed. Parameters: val: the value that the slider changed to. """ val = self._transform(val) for observer in self._observers: observer.on_slider_changed({'value': val, 'id': self._slider_id}) def get_value(self) -> float: """ Get the value of the slider. Returns: the value of the slider. """ return self._transform(self.value()) def get_slider_info(self) -> dict: """ Get information about the slider. Returns: A dictionary containing information about the slider. """ val = self._transform(self.value()) return {'value': val, 'id': self._slider_id} class SliderBoxRangeControls(QtWidgets.QFrame): """ A range control widget for the HorizontalSliderBox class. """ def __init__(self, slider_lim: List[int], number_of_ticks: int, parent: "HorizontalSliderBox" = None) -> None: """ Constructor. Parameters: slider_lim: list containing the initial minimum and maximum values of the slider number_of_ticks: number of ticks of the slider. parent: the parent HorizontalSliderBox widget. """ QtWidgets.QFrame.__init__(self, parent) self._parent = parent layout = QtWidgets.QVBoxLayout(self) self._layout = layout self.setLayout(layout) self.setFrameShape(QtWidgets.QFrame.StyledPanel) min_label = "min: " max_label = "max: " ticks_label = "number of ticks: " min_label_line_edit = LabelWithLineEdit(min_label, self) # min_label_line_edit.setFocusPolicy(QtCore.Qt.NoFocus) min_label_line_edit.set_line_edit(str(slider_lim[0])) max_label_line_edit = LabelWithLineEdit(max_label, self) # max_label_line_edit.setFocusPolicy(QtCore.Qt.NoFocus) max_label_line_edit.set_line_edit(str(slider_lim[1])) tick_label_line_edit = LabelWithLineEdit(ticks_label, self) # tick_label_line_edit.setFocusPolicy(QtCore.Qt.NoFocus) tick_label_line_edit.set_line_edit(str(number_of_ticks)) layout.addWidget(min_label_line_edit) layout.addWidget(max_label_line_edit) layout.addWidget(tick_label_line_edit) button = QtWidgets.QPushButton("Close") if parent is not None: button.clicked.connect(parent.close_range_controls) layout.addWidget(button) # self.setMinimumHeight(parent.height() if parent # is not None else 100) if parent is not None: # parent.setMinimumHeight(2*parent.height() + self.height()) parent.setMinimumHeight(3*parent.height() + self.height()) def line_edit_returned(self, *args: Any) -> None: """ Perform an action when the line edit is returned. """ # TODO Need to improve this. min_val = float(self._layout.itemAt(0).widget().text()) max_val = float(self._layout.itemAt(1).widget().text()) tick_val = int(self._layout.itemAt(2).widget().text()) if min_val >= max_val or tick_val <= 1 or tick_val > 65535: return if self._parent is not None: value = self._parent.get_value() self._parent.set_number_of_ticks(tick_val) self._parent.set_range(min_val, max_val) if value > max_val: value = max_val if value < min_val: value = min_val m = (tick_val - 1)/(max_val - min_val) slider = self._parent.get_slider() slider_info = self._parent.get_slider_info() tick_float_value = m*(value - min_val) if (tick_float_value % 1.0) >= 0.5: tick_float_value += (1.0 - tick_float_value % 1.0) tick_value = int(tick_float_value + slider.minimum()) value = (tick_value - slider.minimum())/m + min_val slider.setValue(tick_value) slider_info['value'] = value self._parent.on_slider_changed(slider_info) class HorizontalSliderBox(QtWidgets.QFrame): """ GUI Box containing a slider as well as some other widgets. """ def __init__(self, context: Any, slider_id: Any) -> None: """ Constructor. Parameters: context: the object that is using the widget. slider_id: the id of the slider. """ # QtWidgets.QGroupBox.__init__(self) QtWidgets.QFrame.__init__(self) self.setFrameShape(QtWidgets.QFrame.StyledPanel) self.setMinimumWidth(250) self.setMaximumWidth(300) self.setMaximumHeight(100) self._enable_range_controls = True self._range_controls = None self._varname_equals_string = "%s =" self._string_format = self._varname_equals_string + " %.2f" self._number_format = "%.2f" self._layout = QtWidgets.QVBoxLayout() self._label = EditableLabel("Set " + str(slider_id), parent=self) self._slider = Slider(slider_id, QtCore.Qt.Horizontal, context) self._layout.addWidget(self._label) self._layout.addWidget(self._slider) self.setLayout(self._layout) def set_range(self, min_val: float, max_val: float) -> None: """ Set the range of the slider. Parameters: min_val: The lowest possible value that the slider can take. max_val: The largest possible value that the slider can take. """ self._slider.set_range(min_val, max_val) def set_number_of_ticks(self, number_of_ticks: int) -> None: """ Set the total number of intervals in the slider. Parameters: number_of_ticks: total number of intervals. """ self._slider.setRange(0, number_of_ticks - 1) def get_slider(self) -> Slider: """ Getter for the slider. Returns: the slider. """ return self._slider def set_value(self, value: float) -> None: """ Set a value for the slider. Parameters: value: the value to set the slider to. """ self._slider.set_value(value) def get_value(self) -> float: """ Get the slider value. Returns: the slider value. """ return self._slider.get_value() def set_observers(self, slider_observers: list) -> None: """ Set slider observers. Parameters: slider_observers: the objects that will observe the slider. """ slider_observers.append(self) self._slider.set_observers(slider_observers) def set_value_string_format(self, string_format: str) -> None: """ Set the value string format. Parameters: string format: the string format to display the value of the slider. """ self._number_format = string_format self._string_format = self._varname_equals_string + ' ' + string_format def on_slider_changed(self, slider_input: dict) -> None: """ Respond to changes in the slider. Parameters: slider_input: the changes from the slider. """ val = slider_input['value'] slider_id = slider_input['id'] self._label.set_line_edit_label(self._varname_equals_string % slider_id) self._label.setCurrentIndex(0) self._label.set_line_edit(self._number_format % val) self._label.setText(self._string_format % (slider_id, val)) def destroy_slider(self) -> None: """ Destroy the slider. """ self._layout.removeWidget(self._slider) self._slider.destroy() self._slider.close() self.close() def get_slider_info(self) -> dict: """ Get information about the slider. Returns: A dictionary containing information about the slider. """ return self._slider.get_slider_info() def mousePressEvent(self, qt_event: QtGui.QMouseEvent) -> None: """ Respond to a mouse press event. Parameters: qt_event: the mouse event. """ if (self._enable_range_controls and qt_event.buttons() == QtCore.Qt.RightButton and not self._range_controls): pass self._show_range_controls = True q = QtWidgets.QMenu("menu", self) q.addAction("Set range", self.build_range_controls) q.exec_(QtCore.QPoint(QtGui.QCursor.pos())) def toggle_range_controls(self) -> None: """ Toggle the range controls. """ self._enable_range_controls = \ not self._enable_range_controls def build_range_controls(self, *arg: Any) -> None: """ Build the range control widgets. """ self.setMaximumHeight(220) slider_lim = self._slider.get_range() n_ticks = self._slider.maximum() \ - self._slider.minimum() + 1 self._range_controls = \ SliderBoxRangeControls(slider_lim, n_ticks, self) self._layout.addWidget(self._range_controls) def close_range_controls(self) -> None: """ Close the range control widgets. """ self.setMinimumHeight(0) self.setMaximumHeight(100) self._range_controls.line_edit_returned() self._range_controls.close() self._range_controls = None
32.568182
79
0.593781
8bbb539954a8fd14a57150a79423cf45c7c0a58c
2,660
py
Python
src/dlqmc/mplext.py
noegroup/dlqmc-project
ed7561ec0156df6d6309e49c1276646173ec8641
[ "MIT" ]
3
2020-12-22T16:26:36.000Z
2021-08-11T16:54:46.000Z
src/dlqmc/mplext.py
noegroup/dlqmc-project
ed7561ec0156df6d6309e49c1276646173ec8641
[ "MIT" ]
5
2020-07-26T23:13:16.000Z
2020-07-26T23:13:45.000Z
src/dlqmc/mplext.py
noegroup/dlqmc-project
ed7561ec0156df6d6309e49c1276646173ec8641
[ "MIT" ]
1
2021-06-18T05:00:39.000Z
2021-06-18T05:00:39.000Z
import matplotlib as mpl import matplotlib.scale import matplotlib.ticker import matplotlib.transforms import numpy as np def corr_ene_tf(a): with np.errstate(divide='ignore', invalid='ignore'): out = -np.log10(1 - a) out = np.where(a >= 1, 10, out) return out def corr_ene_inv_tf(a): return 1 - 10 ** (-a) class CorrelationEnergyTransform(mpl.transforms.Transform): input_dims = 1 output_dims = 1 is_separable = True has_inverse = True def transform_non_affine(self, a): return corr_ene_tf(a) def inverted(self): return InvertedCorrelationEnergyTransform() class InvertedCorrelationEnergyTransform(mpl.transforms.Transform): input_dims = 1 output_dims = 1 is_separable = True has_inverse = True def transform_non_affine(self, a): return corr_ene_inv_tf(a) def inverted(self): return CorrelationEnergyTransform() class CorrelationEnergyLocator(mpl.ticker.Locator): def __init__(self, subs=1): self.subs = subs def __call__(self): vmin, vmax = self.axis.get_view_interval() return self.tick_values(vmin, vmax) def tick_values(self, vmin, vmax): vmin = np.floor(corr_ene_tf(vmin)) vmax = np.ceil(corr_ene_tf(vmax)) bases = np.arange(vmin, vmax + 1e-10) decades = corr_ene_inv_tf(bases) ticks = np.concatenate( [ np.arange(decades[i], decades[i + 1], 10 ** -bases[i] / self.subs) for i in range(len(decades) - 1) ] ) return ticks def view_limits(self, vmin, vmax): lims = corr_ene_tf(np.array([vmin, vmax])) rng = lims[1] - lims[0] lims = np.array([lims[0] - 0.05 * rng, lims[1] + 0.05 * rng]) return tuple(corr_ene_inv_tf(lims)) class CorrelationEnergyFormatter(mpl.ticker.Formatter): def __call__(self, x, pos=None): acc = max(0, int(np.round(corr_ene_tf(x))) - 2) return f'{100 * x:.{acc}f}%' class CorrelationEnegryScale(mpl.scale.ScaleBase): name = 'corr_energy' def __init__(self, axis, subs=10): self.subs = subs def get_transform(self): return CorrelationEnergyTransform() def set_default_locators_and_formatters(self, axis): axis.set_major_locator(CorrelationEnergyLocator()) axis.set_minor_locator(CorrelationEnergyLocator(self.subs)) axis.set_major_formatter(CorrelationEnergyFormatter()) def limit_range_for_scale(self, vmin, vmax, minpos): return min(vmin, 1 - 1e-10), min(vmax, 1 - 1e-10) mpl.scale.register_scale(CorrelationEnegryScale)
27.142857
82
0.649248
890d458c330348b158dace8db272ca96bf6d74d5
520
py
Python
scvi/model/__init__.py
SarahND97/scvi-tools
fbb4acf72b09cef6e4a9465255a7f95caf3f3eb5
[ "BSD-3-Clause" ]
null
null
null
scvi/model/__init__.py
SarahND97/scvi-tools
fbb4acf72b09cef6e4a9465255a7f95caf3f3eb5
[ "BSD-3-Clause" ]
null
null
null
scvi/model/__init__.py
SarahND97/scvi-tools
fbb4acf72b09cef6e4a9465255a7f95caf3f3eb5
[ "BSD-3-Clause" ]
null
null
null
from ._amortizedlda import AmortizedLDA from ._autozi import AUTOZI from ._condscvi import CondSCVI from ._destvi import DestVI from ._hybridvi import HYBRIDVI from ._linear_scvi import LinearSCVI from ._multivi import MULTIVI from ._peakvi import PEAKVI from ._scanvi import SCANVI from ._scvi import SCVI from ._totalvi import TOTALVI __all__ = [ "SCVI", "TOTALVI", "LinearSCVI", "AUTOZI", "SCANVI", "PEAKVI", "CondSCVI", "DestVI", "MULTIVI", "AmortizedLDA", "HYBRIDVI" ]
19.259259
39
0.709615
ec70417fd415953004a86eb97ef2732c6d1a1ee8
466
py
Python
src/computeCentroid.py
CANGA/MIRA
2f1214d34b884790fa8660b5208cd12495800f92
[ "BSD-3-Clause" ]
2
2019-04-23T20:28:50.000Z
2021-08-12T15:09:49.000Z
src/computeCentroid.py
CANGA/Remapping-Intercomparison
2f1214d34b884790fa8660b5208cd12495800f92
[ "BSD-3-Clause" ]
10
2020-03-18T17:08:39.000Z
2021-08-15T21:09:25.000Z
src/computeCentroid.py
CANGA/Remapping-Intercomparison
2f1214d34b884790fa8660b5208cd12495800f92
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Feb 25 16:28:19 2019 @author: TempestGuerra """ import numpy as np def computeCentroid(NP, cell): # Centroid by averaging corner sphere-center vectors centroid = np.mat([0.0, 0.0, 0.0]) for pp in range(NP): centroid += cell[:, pp] centroid *= 1.0 / NP # Renormalize the centroid vector RO = np.linalg.norm(centroid) centroid *= 1.0 / RO return centroid
18.64
56
0.622318
ad176f8936e9c20e41422f4eeb588e62d513965d
4,542
py
Python
grand/backends/backend.py
aplbrain/grand
d85669df17a40834a13478ae200e984e13b41650
[ "Apache-2.0" ]
31
2020-10-16T16:46:02.000Z
2022-03-04T20:45:05.000Z
grand/backends/backend.py
aplbrain/grand
d85669df17a40834a13478ae200e984e13b41650
[ "Apache-2.0" ]
15
2020-10-15T16:28:49.000Z
2022-02-10T16:41:32.000Z
grand/backends/backend.py
aplbrain/grand
d85669df17a40834a13478ae200e984e13b41650
[ "Apache-2.0" ]
null
null
null
from typing import Hashable, Iterable import abc import pandas as pd class Backend(abc.ABC): """ Abstract base class for the management of persisted graph structure. Do not use this class directly. """ def __init__(self, directed: bool = False): """ Create a new Backend instance. Arguments: directed (bool: False): Whether to make the backend graph directed Returns: None """ ... def ingest_from_edgelist_dataframe( self, edgelist: pd.DataFrame, source_column: str, target_column: str ) -> None: """ Ingest an edgelist from a Pandas DataFrame. """ ... def is_directed(self) -> bool: """ Return True if the backend graph is directed. Arguments: None Returns: bool: True if the backend graph is directed. """ ... def add_node(self, node_name: Hashable, metadata: dict): """ Add a new node to the graph. Arguments: node_name (Hashable): The ID of the node metadata (dict: None): An optional dictionary of metadata Returns: Hashable: The ID of this node, as inserted """ ... def get_node_by_id(self, node_name: Hashable): """ Return the data associated with a node. Arguments: node_name (Hashable): The node ID to look up Returns: dict: The metadata associated with this node """ ... def all_nodes_as_iterable(self, include_metadata: bool = False) -> Iterable: """ Get a generator of all of the nodes in this graph. Arguments: include_metadata (bool: False): Whether to include node metadata in the response Returns: Generator: A generator of all nodes (arbitrary sort) """ ... def has_node(self, u: Hashable) -> bool: """ Return true if the node exists in the graph. Arguments: u (Hashable): The ID of the node to check Returns: bool: True if the node exists """ ... def add_edge(self, u: Hashable, v: Hashable, metadata: dict): """ Add a new edge to the graph between two nodes. If the graph is directed, this edge will start (source) at the `u` node and end (target) at the `v` node. Arguments: u (Hashable): The source node ID v (Hashable): The target node ID metadata (dict): Optional metadata to associate with the edge Returns: Hashable: The edge ID, as inserted. """ ... def all_edges_as_iterable(self, include_metadata: bool = False) -> Iterable: """ Get a list of all edges in this graph, arbitrary sort. Arguments: include_metadata (bool: False): Whether to include edge metadata Returns: Generator: A generator of all edges (arbitrary sort) """ ... def get_edge_by_id(self, u: Hashable, v: Hashable): """ Get an edge by its source and target IDs. Arguments: u (Hashable): The source node ID v (Hashable): The target node ID Returns: dict: Metadata associated with this edge """ ... def get_node_successors( self, u: Hashable, include_metadata: bool = False ) -> Iterable: return self.get_node_neighbors(u, include_metadata) def get_node_neighbors( self, u: Hashable, include_metadata: bool = False ) -> Iterable: """ Get a generator of all downstream nodes from this node. Arguments: u (Hashable): The source node ID Returns: Generator """ ... def get_node_predecessors( self, u: Hashable, include_metadata: bool = False ) -> Iterable: """ Get a generator of all upstream nodes from this node. Arguments: u (Hashable): The source node ID Returns: Generator """ ... def get_node_count(self) -> Iterable: """ Get an integer count of the number of nodes in this graph. Arguments: None Returns: int: The count of nodes """ return len([i for i in self.all_nodes_as_iterable()])
23.292308
80
0.551299
f899e885a5bd42f51ccaf91875bccedc713efb56
1,181
py
Python
setup.py
teresam856/jbrowse-jupyter
977038e160cb6cb876aa6eb4467ed199c40c8807
[ "Apache-2.0" ]
2
2021-11-10T23:07:51.000Z
2022-01-26T09:14:33.000Z
setup.py
teresam856/jbrowse-jupyter
977038e160cb6cb876aa6eb4467ed199c40c8807
[ "Apache-2.0" ]
10
2021-11-08T22:28:01.000Z
2021-12-07T08:09:13.000Z
setup.py
teresam856/jbrowse-jupyter
977038e160cb6cb876aa6eb4467ed199c40c8807
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 import setuptools with open('requirements.txt') as f: requires = f.read().splitlines() with open("README.md", "r", encoding="utf-8") as fh: long_description = fh.read() # TODO: figure out install requires vs requirements.txt and look up classifiers setuptools.setup( name="jbrowse-jupyter", version="0.0.2", author="Teresa De Jesus Martinez", author_email="tere486martinez@gmail.com", maintainer="Teresa De Jesus Martinez; JBrowse Team", maintainer_email="tere486martinez@gmail.com", description="Jupyter interface to the JBrowse's Linear Genome View", license="Apache-2.0", include_package_data=True, long_description=long_description, install_requires=requires, long_description_content_type="text/markdown", url="https://github.com/teresam856/jbrowse-jupyter", project_urls={ "Bug Tracker": "https://github.com/teresam856/jbrowse-jupyter/issues", }, packages=['jbrowse_jupyter'], python_requires=">=3.8", classifiers=[ "Development Status :: 1 - Planning", "Programming Language :: Python :: 3", "Topic :: Scientific/Engineering", ], )
32.805556
79
0.690093
280648b2a97664e8026a1eaefd6f52e3dcf1bd56
5,415
py
Python
data/p3BR/R2/benchmark/startQiskit_noisy64.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
data/p3BR/R2/benchmark/startQiskit_noisy64.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
data/p3BR/R2/benchmark/startQiskit_noisy64.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
# qubit number=3 # total number=10 import numpy as np from qiskit import QuantumCircuit, execute, Aer, QuantumRegister, ClassicalRegister, transpile, BasicAer, IBMQ from qiskit.visualization import plot_histogram from typing import * from pprint import pprint from math import log2 from collections import Counter from qiskit.test.mock import FakeVigo, FakeYorktown kernel = 'circuit/bernstein' def bitwise_xor(s: str, t: str) -> str: length = len(s) res = [] for i in range(length): res.append(str(int(s[i]) ^ int(t[i]))) return ''.join(res[::-1]) def bitwise_dot(s: str, t: str) -> str: length = len(s) res = 0 for i in range(length): res += int(s[i]) * int(t[i]) return str(res % 2) def build_oracle(n: int, f: Callable[[str], str]) -> QuantumCircuit: # implement the oracle O_f # NOTE: use multi_control_toffoli_gate ('noancilla' mode) # https://qiskit.org/documentation/_modules/qiskit/aqua/circuits/gates/multi_control_toffoli_gate.html # https://quantumcomputing.stackexchange.com/questions/3943/how-do-you-implement-the-toffoli-gate-using-only-single-qubit-and-cnot-gates # https://quantumcomputing.stackexchange.com/questions/2177/how-can-i-implement-an-n-bit-toffoli-gate controls = QuantumRegister(n, "ofc") target = QuantumRegister(1, "oft") oracle = QuantumCircuit(controls, target, name="Of") for i in range(2 ** n): rep = np.binary_repr(i, n) if f(rep) == "1": for j in range(n): if rep[j] == "0": oracle.x(controls[j]) oracle.mct(controls, target[0], None, mode='noancilla') for j in range(n): if rep[j] == "0": oracle.x(controls[j]) # oracle.barrier() # oracle.draw('mpl', filename=(kernel + '-oracle.png')) return oracle def build_circuit(n: int, f: Callable[[str], str]) -> QuantumCircuit: # implement the Bernstein-Vazirani circuit zero = np.binary_repr(0, n) b = f(zero) # initial n + 1 bits input_qubit = QuantumRegister(n+1, "qc") classicals = ClassicalRegister(n, "qm") prog = QuantumCircuit(input_qubit, classicals) # inverse last one (can be omitted if using O_f^\pm) prog.x(input_qubit[n]) # circuit begin prog.h(input_qubit[1]) # number=1 prog.cx(input_qubit[0],input_qubit[2]) # number=7 prog.x(input_qubit[2]) # number=8 prog.cx(input_qubit[0],input_qubit[2]) # number=9 prog.cx(input_qubit[2],input_qubit[1]) # number=6 prog.cx(input_qubit[2],input_qubit[1]) # number=4 prog.z(input_qubit[2]) # number=3 prog.y(input_qubit[2]) # number=5 # apply H to get superposition for i in range(n): prog.h(input_qubit[i]) prog.h(input_qubit[n]) prog.barrier() # apply oracle O_f oracle = build_oracle(n, f) prog.append( oracle.to_gate(), [input_qubit[i] for i in range(n)] + [input_qubit[n]]) # apply H back (QFT on Z_2^n) for i in range(n): prog.h(input_qubit[i]) prog.barrier() # measure return prog def get_statevector(prog: QuantumCircuit) -> Any: state_backend = Aer.get_backend('statevector_simulator') statevec = execute(prog, state_backend).result() quantum_state = statevec.get_statevector() qubits = round(log2(len(quantum_state))) quantum_state = { "|" + np.binary_repr(i, qubits) + ">": quantum_state[i] for i in range(2 ** qubits) } return quantum_state def evaluate(backend_str: str, prog: QuantumCircuit, shots: int, b: str) -> Any: # Q: which backend should we use? # get state vector quantum_state = get_statevector(prog) # get simulate results # provider = IBMQ.load_account() # backend = provider.get_backend(backend_str) # qobj = compile(prog, backend, shots) # job = backend.run(qobj) # job.result() backend = Aer.get_backend(backend_str) # transpile/schedule -> assemble -> backend.run results = execute(prog, backend, shots=shots).result() counts = results.get_counts() a = Counter(counts).most_common(1)[0][0][::-1] return { "measurements": counts, # "state": statevec, "quantum_state": quantum_state, "a": a, "b": b } def bernstein_test_1(rep: str): """011 . x + 1""" a = "011" b = "1" return bitwise_xor(bitwise_dot(a, rep), b) def bernstein_test_2(rep: str): """000 . x + 0""" a = "000" b = "0" return bitwise_xor(bitwise_dot(a, rep), b) def bernstein_test_3(rep: str): """111 . x + 1""" a = "111" b = "1" return bitwise_xor(bitwise_dot(a, rep), b) if __name__ == "__main__": n = 2 a = "11" b = "1" f = lambda rep: \ bitwise_xor(bitwise_dot(a, rep), b) prog = build_circuit(n, f) sample_shot =4000 writefile = open("../data/startQiskit_noisy64.csv", "w") # prog.draw('mpl', filename=(kernel + '.png')) backend = FakeYorktown() circuit1 = transpile(prog, FakeYorktown()) circuit1.h(qubit=2) circuit1.x(qubit=3) circuit1.measure_all() info = execute(circuit1,backend=backend, shots=sample_shot).result().get_counts() print(info, file=writefile) print("results end", file=writefile) print(circuit1.depth(), file=writefile) print(circuit1, file=writefile) writefile.close()
29.112903
140
0.628624
64b03d7997f13938552987c62ce5a666a2801b1f
167
py
Python
test/python/input_readlines/wsgi.py
afxcn/unit
a336928e1027af92d0c9bb2ccb369a3f9b53abae
[ "Apache-2.0" ]
2,633
2017-09-06T16:10:12.000Z
2022-03-24T07:18:45.000Z
test/python/input_readlines/wsgi.py
afxcn/unit
a336928e1027af92d0c9bb2ccb369a3f9b53abae
[ "Apache-2.0" ]
637
2017-09-06T23:43:11.000Z
2022-03-31T19:28:46.000Z
test/python/input_readlines/wsgi.py
afxcn/unit
a336928e1027af92d0c9bb2ccb369a3f9b53abae
[ "Apache-2.0" ]
365
2017-09-06T22:39:55.000Z
2022-03-29T13:06:38.000Z
def application(environ, start_response): body = environ['wsgi.input'].readlines() start_response('200', [('X-Lines-Count', str(len(body)))]) return body
27.833333
62
0.670659
255da472decf04a2e37315aca01e6a74140fae99
647
py
Python
custom_metrics.py
ivanlen/time_series_classification_and_ensembles
0a1d814927257a8c60fba332e7be339d46c40e00
[ "MIT" ]
19
2018-12-05T20:34:27.000Z
2022-03-26T09:28:36.000Z
custom_metrics.py
ivanlen/time_series_classification_and_ensembles
0a1d814927257a8c60fba332e7be339d46c40e00
[ "MIT" ]
null
null
null
custom_metrics.py
ivanlen/time_series_classification_and_ensembles
0a1d814927257a8c60fba332e7be339d46c40e00
[ "MIT" ]
12
2019-01-21T07:33:04.000Z
2021-11-28T21:14:35.000Z
import tensorflow as tf def as_keras_metric(method): import functools from keras import backend as K import tensorflow as tf @functools.wraps(method) def wrapper(self, args, **kwargs): """ Wrapper for turning tensorflow metrics into keras metrics """ value, update_op = method(self, args, **kwargs) K.get_session().run(tf.local_variables_initializer()) with tf.control_dependencies([update_op]): value = tf.identity(value) return value return wrapper def auc_roc(): return as_keras_metric(tf.metrics.auc) def recall(): return as_keras_metric(tf.metrics.recall)
30.809524
73
0.684699
c1c61db90c59e1732d29c608351ecc801bc95791
1,702
py
Python
ooobuild/lo/ucb/x_property_set_registry_factory.py
Amourspirit/ooo_uno_tmpl
64e0c86fd68f24794acc22d63d8d32ae05dd12b8
[ "Apache-2.0" ]
null
null
null
ooobuild/lo/ucb/x_property_set_registry_factory.py
Amourspirit/ooo_uno_tmpl
64e0c86fd68f24794acc22d63d8d32ae05dd12b8
[ "Apache-2.0" ]
null
null
null
ooobuild/lo/ucb/x_property_set_registry_factory.py
Amourspirit/ooo_uno_tmpl
64e0c86fd68f24794acc22d63d8d32ae05dd12b8
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 # # Copyright 2022 :Barry-Thomas-Paul: Moss # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http: // www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Interface Class # this is a auto generated file generated by Cheetah # Libre Office Version: 7.3 # Namespace: com.sun.star.ucb import typing from abc import abstractmethod from ..uno.x_interface import XInterface as XInterface_8f010a43 if typing.TYPE_CHECKING: from .x_property_set_registry import XPropertySetRegistry as XPropertySetRegistry_c2e0e84 class XPropertySetRegistryFactory(XInterface_8f010a43): """ A factory for property set registries. See Also: `API XPropertySetRegistryFactory <https://api.libreoffice.org/docs/idl/ref/interfacecom_1_1sun_1_1star_1_1ucb_1_1XPropertySetRegistryFactory.html>`_ """ __ooo_ns__: str = 'com.sun.star.ucb' __ooo_full_ns__: str = 'com.sun.star.ucb.XPropertySetRegistryFactory' __ooo_type_name__: str = 'interface' __pyunointerface__: str = 'com.sun.star.ucb.XPropertySetRegistryFactory' @abstractmethod def createPropertySetRegistry(self, URL: str) -> 'XPropertySetRegistry_c2e0e84': """ creates a property set registry. """ __all__ = ['XPropertySetRegistryFactory']
36.212766
156
0.758519
2f33e381b3a5049bc342f8772b167fe36bf9654f
998
gyp
Python
gpu/command_buffer/command_buffer_nacl.gyp
iplo/Chain
8bc8943d66285d5258fffc41bed7c840516c4422
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
231
2015-01-08T09:04:44.000Z
2021-12-30T03:03:10.000Z
gpu/command_buffer/command_buffer_nacl.gyp
JasonEric/chromium
c7361d39be8abd1574e6ce8957c8dbddd4c6ccf7
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
1
2017-02-14T21:55:58.000Z
2017-02-14T21:55:58.000Z
gpu/command_buffer/command_buffer_nacl.gyp
JasonEric/chromium
c7361d39be8abd1574e6ce8957c8dbddd4c6ccf7
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
268
2015-01-21T05:53:28.000Z
2022-03-25T22:09:01.000Z
# Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. { 'variables': { 'chromium_code': 1, }, 'includes': [ '../../build/common_untrusted.gypi', 'command_buffer.gypi', ], 'conditions': [ ['disable_nacl==0 and disable_nacl_untrusted==0', { 'targets': [ { 'target_name': 'gles2_utils_nacl', 'type': 'none', 'variables': { 'gles2_utils_target': 1, 'nacl_untrusted_build': 1, 'nlib_target': 'libgles2_utils_nacl.a', 'build_glibc': 0, 'build_newlib': 0, 'build_irt': 1, }, 'dependencies': [ '../../native_client/tools.gyp:prep_toolchain', '../../base/base_untrusted.gyp:base_untrusted', '../../third_party/khronos/khronos.gyp:khronos_headers', ], }, ], }], ], }
26.972973
72
0.532064
b495b6699b5d02ca8c466c984820be5c497d626e
679
py
Python
python/paddle/fluid/trainer.py
xuezhong/Paddle
be9ec5208160bfed02e767bdb23db5aba9cf5eb0
[ "Apache-2.0" ]
2
2019-04-03T05:36:17.000Z
2020-04-29T03:38:54.000Z
python/paddle/fluid/trainer.py
xuezhong/Paddle
be9ec5208160bfed02e767bdb23db5aba9cf5eb0
[ "Apache-2.0" ]
1
2016-12-22T10:52:40.000Z
2016-12-22T13:28:20.000Z
python/paddle/fluid/trainer.py
xuezhong/Paddle
be9ec5208160bfed02e767bdb23db5aba9cf5eb0
[ "Apache-2.0" ]
3
2019-01-07T06:50:29.000Z
2019-03-13T08:48:23.000Z
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # NOTE: Trainer is moved into fluid.contrib.trainer. __all__ = []
39.941176
74
0.756996
2ba293c5dfc3783f449b8bc6e0b060a90a4d0c3e
1,708
py
Python
examples/demo_meta_codepy.py
developmentseed/pyopencl
a36176cda33d125fe9cfb2b3221cbdee4cd81b03
[ "Apache-2.0" ]
null
null
null
examples/demo_meta_codepy.py
developmentseed/pyopencl
a36176cda33d125fe9cfb2b3221cbdee4cd81b03
[ "Apache-2.0" ]
null
null
null
examples/demo_meta_codepy.py
developmentseed/pyopencl
a36176cda33d125fe9cfb2b3221cbdee4cd81b03
[ "Apache-2.0" ]
null
null
null
import pyopencl as cl import numpy import numpy.linalg as la local_size = 256 thread_strides = 32 macroblock_count = 33 dtype = numpy.float32 total_size = local_size*thread_strides*macroblock_count ctx = cl.create_some_context() queue = cl.CommandQueue(ctx) a = numpy.random.randn(total_size).astype(dtype) b = numpy.random.randn(total_size).astype(dtype) mf = cl.mem_flags a_buf = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a) b_buf = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b) c_buf = cl.Buffer(ctx, mf.WRITE_ONLY, b.nbytes) from cgen import FunctionBody, \ FunctionDeclaration, Typedef, POD, Value, \ Pointer, Module, Block, Initializer, Assign, Const from cgen.opencl import CLKernel, CLGlobal, \ CLRequiredWorkGroupSize mod = Module([ FunctionBody( CLKernel(CLRequiredWorkGroupSize((local_size,), FunctionDeclaration( Value("void", "add"), arg_decls=[CLGlobal(Pointer(Const(POD(dtype, name)))) for name in ["tgt", "op1", "op2"]]))), Block([ Initializer(POD(numpy.int32, "idx"), "get_local_id(0) + %d * get_group_id(0)" % (local_size*thread_strides)) ]+[ Assign( "tgt[idx+%d]" % (o*local_size), "op1[idx+%d] + op2[idx+%d]" % ( o*local_size, o*local_size)) for o in range(thread_strides)]))]) knl = cl.Program(ctx, str(mod)).build().add knl(queue, (local_size*macroblock_count,), (local_size,), c_buf, a_buf, b_buf) c = numpy.empty_like(a) cl.enqueue_copy(queue, c, c_buf).wait() assert la.norm(c-(a+b)) == 0
29.964912
66
0.622365
cd642e316f035785758dd38ced43b59535bda9fe
398
py
Python
codango/userprofile/migrations/0003_auto_20151118_1454.py
andela-ooshodi/codango-debug
fa68f4305586c2d7f28307f10204c3b50f731fef
[ "MIT" ]
null
null
null
codango/userprofile/migrations/0003_auto_20151118_1454.py
andela-ooshodi/codango-debug
fa68f4305586c2d7f28307f10204c3b50f731fef
[ "MIT" ]
null
null
null
codango/userprofile/migrations/0003_auto_20151118_1454.py
andela-ooshodi/codango-debug
fa68f4305586c2d7f28307f10204c3b50f731fef
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('userprofile', '0002_auto_20151118_1451'), ] operations = [ migrations.RenameField( model_name='userprofile', old_name='fb_id', new_name='social_id', ), ]
19.9
51
0.605528
9fbce803ce7c6a336c7f168b5116921d65f42ad3
2,557
py
Python
tests/test_parser.py
ninoNinkovic/python-edl
c7f5cbb524194a070d892137a46902f7a89a930a
[ "MIT" ]
3
2018-02-16T13:10:31.000Z
2021-03-09T15:51:19.000Z
tests/test_parser.py
ninoNinkovic/python-edl
c7f5cbb524194a070d892137a46902f7a89a930a
[ "MIT" ]
null
null
null
tests/test_parser.py
ninoNinkovic/python-edl
c7f5cbb524194a070d892137a46902f7a89a930a
[ "MIT" ]
null
null
null
#!/usr/bin/python """ Module EDL unit test suite """ import unittest from edl import Parser class ParserTestCase(unittest.TestCase): """tests the Parser """ def runTest(self): print "Running Parser Tests" self.test_pal() self.test_ntsc() self.test_24fps() self.test_2398fps() def test_24fps(self): p = Parser('24') with open('tests/test_data/test_24.edl') as f: s = p.parse(f) self.assertEqual(s.events[0].clip_name, 'clip 1', 'Failed clip name test') self.assertEqual(s.events[0].src_length(), 1440, 'Wrong source frame length') self.assertEqual(s.events[0].rec_length(), 1440, 'Wrong record frame length') self.assertEqual(s.events[0].src_end_tc.frame_number, 87840, 'Wrong source end timecode') self.assertEqual(s.events[0].rec_start_tc.frame_number, 0, 'Wrong record start timecode') self.assertEqual(s.events[0].rec_end_tc.frame_number, 1440, 'Wrong record end timecode') self.assertEqual(s.events[1].clip_name, 'clip #2', 'Failed clip name test char 2') self.assertEqual(s.events[2].clip_name, 'clip -3', 'Failed clip name test char 3') self.assertEqual(s.events[3].clip_name, 'clip $4', 'Failed clip name test char 4') self.assertEqual(s.events[4].clip_name, 'clip &5', 'Failed clip name test char 5') self.assertEqual(s.events[5].src_start_tc.frame_number, 697, "Wrong Source start complex event") self.assertEqual(s.events[5].src_end_tc.frame_number, 697, "Wrong Source end complex event") self.assertEqual(s.events[5].rec_start_tc.frame_number, 2857, "Wrong Source start complex event") self.assertEqual(s.events[5].rec_end_tc.frame_number, 2857, "Wrong Source end complex event") def test_pal(self): p = Parser('25') with open('tests/test_data/test_25.edl') as f: s = p.parse(f) def test_ntsc(self): p = Parser('29.97') with open('tests/test_data/test_2997NDF.edl') as f: s = p.parse(f) def test_2398fps(self): p = Parser('23.98') with open('tests/test_data/test_2398.edl') as f: s = p.parse(f)
36.528571
69
0.558467
77fafa8a5f21ae33c7c956b171e9430478fe08bd
14,711
py
Python
mmseg/models/decode_heads/point_head.py
shuaizzZ/mmsegmentation
a6c6b348dbf8c4a0a39ffbdb832a1e82309c533c
[ "Apache-2.0" ]
null
null
null
mmseg/models/decode_heads/point_head.py
shuaizzZ/mmsegmentation
a6c6b348dbf8c4a0a39ffbdb832a1e82309c533c
[ "Apache-2.0" ]
null
null
null
mmseg/models/decode_heads/point_head.py
shuaizzZ/mmsegmentation
a6c6b348dbf8c4a0a39ffbdb832a1e82309c533c
[ "Apache-2.0" ]
null
null
null
# Modified from https://github.com/facebookresearch/detectron2/tree/master/projects/PointRend/point_head/point_head.py # noqa import torch import torch.nn as nn from mmcv.cnn import ConvModule, normal_init # TODO win10 not support, 2020.11.26 from mmcv.ops import point_sample from mmseg.models.builder import HEADS from mmseg.ops import resize from ..losses import accuracy from .cascade_decode_head import BaseCascadeDecodeHead def calculate_uncertainty(seg_logits): """Estimate uncertainty based on seg logits. For each location of the prediction ``seg_logits`` we estimate uncertainty as the difference between top first and top second predicted logits. Args: seg_logits (Tensor): Semantic segmentation logits, shape (batch_size, num_classes, height, width). Returns: scores (Tensor): T uncertainty scores with the most uncertain locations having the highest uncertainty score, shape ( batch_size, 1, height, width) """ top2_scores = torch.topk(seg_logits, k=2, dim=1)[0] return (top2_scores[:, 1] - top2_scores[:, 0]).unsqueeze(1) @HEADS.register_module() class PointHead(BaseCascadeDecodeHead): """A mask point head use in PointRend. ``PointHead`` use shared multi-layer perceptron (equivalent to nn.Conv1d) to predict the logit of input points. The fine-grained feature and coarse feature will be concatenate together for predication. Args: num_fcs (int): Number of fc layers in the head. Default: 3. in_channels (int): Number of input channels. Default: 256. fc_channels (int): Number of fc channels. Default: 256. num_classes (int): Number of classes for logits. Default: 80. class_agnostic (bool): Whether use class agnostic classification. If so, the output channels of logits will be 1. Default: False. coarse_pred_each_layer (bool): Whether concatenate coarse feature with the output of each fc layer. Default: True. conv_cfg (dict|None): Dictionary to construct and config conv layer. Default: dict(type='Conv1d')) norm_cfg (dict|None): Dictionary to construct and config norm layer. Default: None. loss_point (dict): Dictionary to construct and config loss layer of point head. Default: dict(type='CrossEntropyLoss', use_mask=True, loss_weight=1.0). """ def __init__(self, num_fcs=3, coarse_pred_each_layer=True, conv_cfg=dict(type='Conv1d'), norm_cfg=None, act_cfg=dict(type='ReLU', inplace=False), **kwargs): super(PointHead, self).__init__( input_transform='multiple_select', conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg, **kwargs) self.num_fcs = num_fcs self.coarse_pred_each_layer = coarse_pred_each_layer fc_in_channels = sum(self.in_channels) + self.num_classes fc_channels = self.channels self.fcs = nn.ModuleList() for k in range(num_fcs): fc = ConvModule( fc_in_channels, fc_channels, kernel_size=1, stride=1, padding=0, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg) self.fcs.append(fc) fc_in_channels = fc_channels fc_in_channels += self.num_classes if self.coarse_pred_each_layer \ else 0 self.fc_seg = nn.Conv1d( fc_in_channels, self.num_classes, kernel_size=1, stride=1, padding=0) if self.dropout_ratio > 0: self.dropout = nn.Dropout(self.dropout_ratio) delattr(self, 'conv_seg') def init_weights(self): """Initialize weights of classification layer.""" normal_init(self.fc_seg, std=0.001) def cls_seg(self, feat): """Classify each pixel with fc.""" if self.dropout is not None: feat = self.dropout(feat) output = self.fc_seg(feat) return output def forward(self, fine_grained_point_feats, coarse_point_feats): x = torch.cat([fine_grained_point_feats, coarse_point_feats], dim=1) for fc in self.fcs: x = fc(x) if self.coarse_pred_each_layer: x = torch.cat((x, coarse_point_feats), dim=1) return self.cls_seg(x) def _get_fine_grained_point_feats(self, x, points): """Sample from fine grained features. Args: x (list[Tensor]): Feature pyramid from by neck or backbone. points (Tensor): Point coordinates, shape (batch_size, num_points, 2). Returns: fine_grained_feats (Tensor): Sampled fine grained feature, shape (batch_size, sum(channels of x), num_points). """ fine_grained_feats_list = [ point_sample(_, points, align_corners=self.align_corners) for _ in x ] if len(fine_grained_feats_list) > 1: fine_grained_feats = torch.cat(fine_grained_feats_list, dim=1) else: fine_grained_feats = fine_grained_feats_list[0] return fine_grained_feats def _get_coarse_point_feats(self, prev_output, points): """Sample from fine grained features. Args: prev_output (list[Tensor]): Prediction of previous decode head. points (Tensor): Point coordinates, shape (batch_size, num_points, 2). Returns: coarse_feats (Tensor): Sampled coarse feature, shape (batch_size, num_classes, num_points). """ coarse_feats = point_sample( prev_output, points, align_corners=self.align_corners) return coarse_feats def forward_train(self, inputs, prev_output, img_metas, gt_semantic_seg, train_cfg): """Forward function for training. Args: inputs (list[Tensor]): List of multi-level img features. prev_output (Tensor): The output of previous decode head. img_metas (list[dict]): List of image info dict where each dict has: 'img_shape', 'scale_factor', 'flip', and may also contain 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. For details on the values of these keys see `mmseg/datasets/pipelines/formatting.py:Collect`. gt_semantic_seg (Tensor): Semantic segmentation masks used if the architecture supports semantic segmentation task. train_cfg (dict): The training config. Returns: dict[str, Tensor]: a dictionary of loss components """ x = self._transform_inputs(inputs) with torch.no_grad(): points = self.get_points_train( prev_output, calculate_uncertainty, cfg=train_cfg) fine_grained_point_feats = self._get_fine_grained_point_feats( x, points) coarse_point_feats = self._get_coarse_point_feats(prev_output, points) point_logits = self.forward(fine_grained_point_feats, coarse_point_feats) point_label = point_sample( gt_semantic_seg.float(), points, mode='nearest', align_corners=self.align_corners) point_label = point_label.squeeze(1).long() losses = self.losses(point_logits, point_label) return losses def forward_test(self, inputs, prev_output, img_metas, test_cfg): """Forward function for testing. Args: inputs (list[Tensor]): List of multi-level img features. prev_output (Tensor): The output of previous decode head. img_metas (list[dict]): List of image info dict where each dict has: 'img_shape', 'scale_factor', 'flip', and may also contain 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. For details on the values of these keys see `mmseg/datasets/pipelines/formatting.py:Collect`. test_cfg (dict): The testing config. Returns: Tensor: Output segmentation map. """ x = self._transform_inputs(inputs) refined_seg_logits = prev_output.clone() for _ in range(test_cfg.subdivision_steps): refined_seg_logits = resize( refined_seg_logits, scale_factor=test_cfg.scale_factor, mode='bilinear', align_corners=self.align_corners) batch_size, channels, height, width = refined_seg_logits.shape point_indices, points = self.get_points_test( refined_seg_logits, calculate_uncertainty, cfg=test_cfg) fine_grained_point_feats = self._get_fine_grained_point_feats( x, points) coarse_point_feats = self._get_coarse_point_feats( prev_output, points) point_logits = self.forward(fine_grained_point_feats, coarse_point_feats) point_indices = point_indices.unsqueeze(1).expand(-1, channels, -1) refined_seg_logits = refined_seg_logits.reshape( batch_size, channels, height * width) refined_seg_logits = refined_seg_logits.scatter_( 2, point_indices, point_logits) refined_seg_logits = refined_seg_logits.view( batch_size, channels, height, width) return refined_seg_logits def losses(self, point_logits, point_label): """Compute segmentation loss.""" loss = dict() loss['loss_point'] = self.loss_decode( point_logits, point_label, ignore_index=self.ignore_index) loss['acc_point'] = accuracy(point_logits, point_label) return loss def get_points_train(self, seg_logits, uncertainty_func, cfg): """Sample points for training. Sample points in [0, 1] x [0, 1] coordinate space based on their uncertainty. The uncertainties are calculated for each point using 'uncertainty_func' function that takes point's logit prediction as input. Args: seg_logits (Tensor): Semantic segmentation logits, shape ( batch_size, num_classes, height, width). uncertainty_func (func): uncertainty calculation function. cfg (dict): Training config of point head. Returns: point_coords (Tensor): A tensor of shape (batch_size, num_points, 2) that contains the coordinates of ``num_points`` sampled points. """ num_points = cfg.num_points oversample_ratio = cfg.oversample_ratio importance_sample_ratio = cfg.importance_sample_ratio assert oversample_ratio >= 1 assert 0 <= importance_sample_ratio <= 1 batch_size = seg_logits.shape[0] num_sampled = int(num_points * oversample_ratio) point_coords = torch.rand( batch_size, num_sampled, 2, device=seg_logits.device) point_logits = point_sample(seg_logits, point_coords) # It is crucial to calculate uncertainty based on the sampled # prediction value for the points. Calculating uncertainties of the # coarse predictions first and sampling them for points leads to # incorrect results. To illustrate this: assume uncertainty func( # logits)=-abs(logits), a sampled point between two coarse # predictions with -1 and 1 logits has 0 logits, and therefore 0 # uncertainty value. However, if we calculate uncertainties for the # coarse predictions first, both will have -1 uncertainty, # and sampled point will get -1 uncertainty. point_uncertainties = uncertainty_func(point_logits) num_uncertain_points = int(importance_sample_ratio * num_points) num_random_points = num_points - num_uncertain_points idx = torch.topk( point_uncertainties[:, 0, :], k=num_uncertain_points, dim=1)[1] shift = num_sampled * torch.arange( batch_size, dtype=torch.long, device=seg_logits.device) idx += shift[:, None] point_coords = point_coords.view(-1, 2)[idx.view(-1), :].view( batch_size, num_uncertain_points, 2) if num_random_points > 0: rand_point_coords = torch.rand( batch_size, num_random_points, 2, device=seg_logits.device) point_coords = torch.cat((point_coords, rand_point_coords), dim=1) return point_coords def get_points_test(self, seg_logits, uncertainty_func, cfg): """Sample points for testing. Find ``num_points`` most uncertain points from ``uncertainty_map``. Args: seg_logits (Tensor): A tensor of shape (batch_size, num_classes, height, width) for class-specific or class-agnostic prediction. uncertainty_func (func): uncertainty calculation function. cfg (dict): Testing config of point head. Returns: point_indices (Tensor): A tensor of shape (batch_size, num_points) that contains indices from [0, height x width) of the most uncertain points. point_coords (Tensor): A tensor of shape (batch_size, num_points, 2) that contains [0, 1] x [0, 1] normalized coordinates of the most uncertain points from the ``height x width`` grid . """ num_points = cfg.subdivision_num_points uncertainty_map = uncertainty_func(seg_logits) batch_size, _, height, width = uncertainty_map.shape h_step = 1.0 / height w_step = 1.0 / width uncertainty_map = uncertainty_map.view(batch_size, height * width) num_points = min(height * width, num_points) point_indices = uncertainty_map.topk(num_points, dim=1)[1] point_coords = torch.zeros( batch_size, num_points, 2, dtype=torch.float, device=seg_logits.device) point_coords[:, :, 0] = w_step / 2.0 + (point_indices % width).float() * w_step point_coords[:, :, 1] = h_step / 2.0 + (point_indices // width).float() * h_step return point_indices, point_coords
41.911681
126
0.622935
be4484265a8d370098164d367f72475375f5aadb
953
py
Python
REST/delete-Interface-IOS_XE-restconf.py
AnkitDeshwal89/NETMIKO
81c164e9cff46d11b56612f6adc343b6bcdfe87a
[ "Apache-2.0" ]
null
null
null
REST/delete-Interface-IOS_XE-restconf.py
AnkitDeshwal89/NETMIKO
81c164e9cff46d11b56612f6adc343b6bcdfe87a
[ "Apache-2.0" ]
null
null
null
REST/delete-Interface-IOS_XE-restconf.py
AnkitDeshwal89/NETMIKO
81c164e9cff46d11b56612f6adc343b6bcdfe87a
[ "Apache-2.0" ]
null
null
null
import requests from pprint import pprint from urllib3.exceptions import InsecureRequestWarning import json requests.packages.urllib3.disable_warnings(category=InsecureRequestWarning) #Set up connection parameters intf = input("Enter the Interface Name :") router = { "ip":"192.168.129.139", "port":443, "user":"ankit", "password":"deshwal", "interf":intf } #Set API header By default we get XML , we will set to JSON headers = { "Accept": "application/yang-data+json", "Content-Type":"application/yang-data+json" } payload = {} url = f"https://{router['ip']}/restconf/data/ietf-interfaces:interfaces/interface={router['interf']}" response = requests.request("DELETE",url,headers=headers,data=payload,auth=(router['user'],router['password']),verify=False) print(response) if response.ok: print("Interface delete sucessfully") #api_data =response.json() #pprint(api_data)
29.78125
124
0.693599
b20509c492cbc6d0a3b28e1f17d1b64138e7c6a4
3,715
py
Python
alfred/nn/enc_lang.py
arjunakula/amazon_alfred_latest
e50c8572064f597b0a9f3c99ea12af3c52e3f820
[ "MIT" ]
44
2021-04-28T08:32:01.000Z
2022-03-20T02:35:21.000Z
alfred/nn/enc_lang.py
arjunakula/amazon_alfred_latest
e50c8572064f597b0a9f3c99ea12af3c52e3f820
[ "MIT" ]
6
2021-05-15T13:17:14.000Z
2021-11-18T01:27:31.000Z
alfred/nn/enc_lang.py
arjunakula/amazon_alfred_latest
e50c8572064f597b0a9f3c99ea12af3c52e3f820
[ "MIT" ]
6
2021-06-08T19:01:38.000Z
2021-11-10T17:56:28.000Z
import os import torch import numpy as np from torch import nn from torch.nn import functional as F from torch.nn.utils.rnn import pad_sequence from alfred.gen import constants from alfred.nn.encodings import PosLangEncoding, InstrLangEncoding class EncoderLang(nn.Module): def __init__(self, num_layers, args, embs_ann, subgoal_token='<<instr>>', goal_token='<<goal>>'): ''' transformer encoder for language inputs ''' super(EncoderLang, self).__init__() self.subgoal_token = subgoal_token self.goal_token = goal_token # transofmer layers encoder_layer = nn.TransformerEncoderLayer( args.demb, args.encoder_heads, args.demb, args.dropout['transformer']['encoder']) if args.encoder_lang['shared']: enc_transformer = nn.TransformerEncoder( encoder_layer, num_layers) self.enc_transformers = nn.ModuleDict({ data: enc_transformer for data in embs_ann.keys()}) else: self.enc_transformers = nn.ModuleDict({ data: nn.TransformerEncoder( encoder_layer, num_layers) for data in embs_ann.keys()}) # encodings self.enc_pos = PosLangEncoding(args.demb) if args.encoder_lang['pos_enc'] else None self.enc_instr = InstrLangEncoding(args.demb) if args.encoder_lang['instr_enc'] else None self.enc_layernorm = nn.LayerNorm(args.demb) self.enc_dropout = nn.Dropout(args.dropout['lang'], inplace=True) def forward(self, lang_pad, embedder, vocab, pad): ''' pass embedded inputs through embeddings and encode them using a transformer ''' # pad the input language sequences and embed them with a linear layer mask_pad = (lang_pad == pad) emb_lang = embedder(lang_pad) # add positional encodings mask_token = EncoderLang.mask_token( lang_pad, vocab, {self.subgoal_token, self.goal_token}) emb_lang = self.encode_inputs(emb_lang, mask_token, mask_pad) # pass the inputs through the encoder hiddens = EncoderLang.encoder( self.enc_transformers, emb_lang, mask_pad, vocab) lengths = (lang_pad != pad).sum(dim=1) return hiddens, lengths @staticmethod def mask_token(lang_pad, vocab, tokens): ''' returns mask of the tokens ''' tokens_mask = torch.zeros_like(lang_pad).long() for token in tokens: tokens_mask += lang_pad == vocab.word2index(token) return tokens_mask.bool() @staticmethod def encoder(encoders, emb_lang, mask_pad, vocab, mask_attn=None): ''' compute encodings for all tokens using a normal flat encoder ''' # skip mask: mask padded words if mask_attn is None: # attention mask: all tokens can attend to all others mask_attn = torch.zeros( (mask_pad.shape[1], mask_pad.shape[1]), device=mask_pad.device).float() # encode the inputs output = encoders[vocab.name]( emb_lang.transpose(0, 1), mask_attn, mask_pad).transpose(0, 1) return output def encode_inputs(self, emb_lang, mask_token, mask_pad): ''' add positional encodings, apply layernorm and dropout ''' emb_lang = self.enc_pos(emb_lang) if self.enc_pos else emb_lang emb_lang = self.enc_instr(emb_lang, mask_token) if self.enc_instr else emb_lang emb_lang = self.enc_dropout(emb_lang) emb_lang = self.enc_layernorm(emb_lang) return emb_lang
38.298969
97
0.632301
85a9995946a3562a57d8cc336ab34a603fd2978a
146
py
Python
maskrcnn_benchmark/data/__init__.py
meryusha/seeds_faster
a80cd144c2826cdee5dd929087005f57567ae367
[ "MIT" ]
1
2021-12-06T10:47:31.000Z
2021-12-06T10:47:31.000Z
maskrcnn_benchmark/data/__init__.py
SilvioGiancola/seeds_faster
4c6a1f1fa71beff7c9d0722d134eb1291f57983e
[ "MIT" ]
null
null
null
maskrcnn_benchmark/data/__init__.py
SilvioGiancola/seeds_faster
4c6a1f1fa71beff7c9d0722d134eb1291f57983e
[ "MIT" ]
1
2019-07-18T13:57:07.000Z
2019-07-18T13:57:07.000Z
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. from .build import make_data_loader from .build import make_data_loader_AL
48.666667
71
0.815068
4e56115382190d567432d61e445964b433d04681
3,020
py
Python
tests/test_sequential.py
ethereon/merlin
0babfed51e65197086d74479a1ca9150259b4f7f
[ "BSD-3-Clause" ]
1
2019-08-15T16:22:20.000Z
2019-08-15T16:22:20.000Z
tests/test_sequential.py
ethereon/merlin
0babfed51e65197086d74479a1ca9150259b4f7f
[ "BSD-3-Clause" ]
null
null
null
tests/test_sequential.py
ethereon/merlin
0babfed51e65197086d74479a1ca9150259b4f7f
[ "BSD-3-Clause" ]
null
null
null
import pytest import tensorflow as tf from merlin.modules.module import Module from merlin.modules.util import Sequential from merlin.util.testing import private_context class ConstantAdder(Module): def __init__(self, value, name=None): super().__init__(name=name) self.value = value self.variable = None def compute(self, input): if self.variable is None: # A contrived variable to test scoping self.variable = tf.Variable(self.value, name='value') return self.variable + input def test_basic(): with Sequential(name='composite') as seq: seq += ConstantAdder(value=42.) seq += ConstantAdder(value=16.) seq += [ConstantAdder(value=1.), ConstantAdder(value=2.)] assert seq(12.).numpy() == 73. @private_context def test_scoping(): with Sequential(name='alpha') as seq: adder = ConstantAdder(value=42., name='beta') seq += adder seq(0.) assert adder.variable.name == 'alpha/beta/value:0' @private_context def test_scoping_explicit(): with Sequential(scoped=True) as seq: adder = ConstantAdder(value=42., name='beta') seq += adder seq(0.) assert adder.variable.name == 'sequential/beta/value:0' @private_context def test_no_scoping(): adder = ConstantAdder(value=42., name='beta') seq = Sequential([adder]) seq(0.) assert adder.variable.name == 'beta/value:0' @private_context def test_no_scoping_guard(): with pytest.raises(RuntimeError): with Sequential() as seq: seq += ConstantAdder(value=42., name='beta') @private_context def test_accessors(): alpha = ConstantAdder(value=42., name='alpha') beta = ConstantAdder(value=16., name='beta') seq = Sequential([alpha, beta]) assert len(seq) == 2 assert seq[0] is alpha assert seq[1] is beta assert seq['alpha'] is alpha assert seq['beta'] is beta assert seq / 'alpha' is alpha assert seq / 'beta' is beta assert seq.alpha is alpha assert seq.beta is beta def test_iteration(): alpha = ConstantAdder(value=42.) beta = ConstantAdder(value=16.) seq = Sequential([alpha, beta]) assert list(seq) == [alpha, beta] def test_add_flattened(): a = ConstantAdder(value=1.) b = ConstantAdder(value=2.) c = ConstantAdder(value=3.) d = ConstantAdder(value=4.) e = ConstantAdder(value=5.) f = ConstantAdder(value=6.) seq = Sequential() seq.add_flattened([a, [b, [c, d], e], f]) assert list(seq) == [a, b, c, d, e, f] @private_context def test_nested_access(): with Sequential(name='alpha') as alpha: with Sequential(name='beta') as beta: with Sequential(name='gamma') as gamma: leaf = ConstantAdder(value=42., name='leaf') gamma += leaf beta += gamma alpha += beta alpha(0.) assert alpha['beta/gamma/leaf'] == leaf assert leaf.variable.name == 'alpha/beta/gamma/leaf/value:0'
26.491228
65
0.636093
54fdf15515eaa75f85d5b36df61b5c9cf0ed709f
7,094
py
Python
venv/lib/python3.8/site-packages/tensorflow/_api/v2/compat/v1/nn/__init__.py
JIANG-CX/data_labeling
8d2470bbb537dfc09ed2f7027ed8ee7de6447248
[ "MIT" ]
1
2021-05-24T10:08:51.000Z
2021-05-24T10:08:51.000Z
venv/lib/python3.8/site-packages/tensorflow/_api/v2/compat/v1/nn/__init__.py
JIANG-CX/data_labeling
8d2470bbb537dfc09ed2f7027ed8ee7de6447248
[ "MIT" ]
null
null
null
venv/lib/python3.8/site-packages/tensorflow/_api/v2/compat/v1/nn/__init__.py
JIANG-CX/data_labeling
8d2470bbb537dfc09ed2f7027ed8ee7de6447248
[ "MIT" ]
null
null
null
# This file is MACHINE GENERATED! Do not edit. # Generated by: tensorflow/python/tools/api/generator/create_python_api.py script. """Wrappers for primitive Neural Net (NN) Operations. """ from __future__ import print_function as _print_function import sys as _sys from . import rnn_cell from tensorflow.python.ops.array_ops import depth_to_space from tensorflow.python.ops.array_ops import space_to_batch from tensorflow.python.ops.array_ops import space_to_depth from tensorflow.python.ops.candidate_sampling_ops import all_candidate_sampler from tensorflow.python.ops.candidate_sampling_ops import compute_accidental_hits from tensorflow.python.ops.candidate_sampling_ops import fixed_unigram_candidate_sampler from tensorflow.python.ops.candidate_sampling_ops import learned_unigram_candidate_sampler from tensorflow.python.ops.candidate_sampling_ops import log_uniform_candidate_sampler from tensorflow.python.ops.candidate_sampling_ops import uniform_candidate_sampler from tensorflow.python.ops.ctc_ops import collapse_repeated from tensorflow.python.ops.ctc_ops import ctc_beam_search_decoder from tensorflow.python.ops.ctc_ops import ctc_beam_search_decoder_v2 from tensorflow.python.ops.ctc_ops import ctc_greedy_decoder from tensorflow.python.ops.ctc_ops import ctc_loss from tensorflow.python.ops.ctc_ops import ctc_loss_v2 from tensorflow.python.ops.ctc_ops import ctc_unique_labels from tensorflow.python.ops.embedding_ops import embedding_lookup from tensorflow.python.ops.embedding_ops import embedding_lookup_sparse from tensorflow.python.ops.embedding_ops import safe_embedding_lookup_sparse from tensorflow.python.ops.gen_math_ops import tanh from tensorflow.python.ops.gen_nn_ops import conv3d_backprop_filter_v2 from tensorflow.python.ops.gen_nn_ops import conv3d_backprop_filter_v2 as conv3d_backprop_filter from tensorflow.python.ops.gen_nn_ops import elu from tensorflow.python.ops.gen_nn_ops import l2_loss from tensorflow.python.ops.gen_nn_ops import lrn from tensorflow.python.ops.gen_nn_ops import lrn as local_response_normalization from tensorflow.python.ops.gen_nn_ops import quantized_avg_pool from tensorflow.python.ops.gen_nn_ops import quantized_conv2d from tensorflow.python.ops.gen_nn_ops import quantized_max_pool from tensorflow.python.ops.gen_nn_ops import quantized_relu_x from tensorflow.python.ops.gen_nn_ops import relu from tensorflow.python.ops.gen_nn_ops import selu from tensorflow.python.ops.gen_nn_ops import softsign from tensorflow.python.ops.math_ops import sigmoid from tensorflow.python.ops.math_ops import softplus from tensorflow.python.ops.nn_impl import batch_norm_with_global_normalization from tensorflow.python.ops.nn_impl import batch_normalization from tensorflow.python.ops.nn_impl import compute_average_loss from tensorflow.python.ops.nn_impl import depthwise_conv2d from tensorflow.python.ops.nn_impl import fused_batch_norm from tensorflow.python.ops.nn_impl import l2_normalize from tensorflow.python.ops.nn_impl import log_poisson_loss from tensorflow.python.ops.nn_impl import moments from tensorflow.python.ops.nn_impl import nce_loss from tensorflow.python.ops.nn_impl import normalize_moments from tensorflow.python.ops.nn_impl import relu_layer from tensorflow.python.ops.nn_impl import sampled_softmax_loss from tensorflow.python.ops.nn_impl import scale_regularization_loss from tensorflow.python.ops.nn_impl import separable_conv2d from tensorflow.python.ops.nn_impl import sigmoid_cross_entropy_with_logits from tensorflow.python.ops.nn_impl import sufficient_statistics from tensorflow.python.ops.nn_impl import swish from tensorflow.python.ops.nn_impl import swish as silu from tensorflow.python.ops.nn_impl import weighted_cross_entropy_with_logits from tensorflow.python.ops.nn_impl import weighted_moments from tensorflow.python.ops.nn_impl import zero_fraction from tensorflow.python.ops.nn_ops import atrous_conv2d from tensorflow.python.ops.nn_ops import atrous_conv2d_transpose from tensorflow.python.ops.nn_ops import avg_pool from tensorflow.python.ops.nn_ops import avg_pool as avg_pool2d from tensorflow.python.ops.nn_ops import avg_pool1d from tensorflow.python.ops.nn_ops import avg_pool3d from tensorflow.python.ops.nn_ops import avg_pool_v2 from tensorflow.python.ops.nn_ops import bias_add from tensorflow.python.ops.nn_ops import conv1d from tensorflow.python.ops.nn_ops import conv1d_transpose from tensorflow.python.ops.nn_ops import conv2d from tensorflow.python.ops.nn_ops import conv2d_backprop_filter from tensorflow.python.ops.nn_ops import conv2d_backprop_input from tensorflow.python.ops.nn_ops import conv2d_transpose from tensorflow.python.ops.nn_ops import conv3d_transpose from tensorflow.python.ops.nn_ops import conv3d_v1 as conv3d from tensorflow.python.ops.nn_ops import conv_transpose from tensorflow.python.ops.nn_ops import convolution from tensorflow.python.ops.nn_ops import crelu from tensorflow.python.ops.nn_ops import depthwise_conv2d_native from tensorflow.python.ops.nn_ops import depthwise_conv2d_native_backprop_filter from tensorflow.python.ops.nn_ops import depthwise_conv2d_native_backprop_filter as depthwise_conv2d_backprop_filter from tensorflow.python.ops.nn_ops import depthwise_conv2d_native_backprop_input from tensorflow.python.ops.nn_ops import depthwise_conv2d_native_backprop_input as depthwise_conv2d_backprop_input from tensorflow.python.ops.nn_ops import dilation2d_v1 as dilation2d from tensorflow.python.ops.nn_ops import dropout from tensorflow.python.ops.nn_ops import erosion2d from tensorflow.python.ops.nn_ops import fractional_avg_pool from tensorflow.python.ops.nn_ops import fractional_max_pool from tensorflow.python.ops.nn_ops import in_top_k from tensorflow.python.ops.nn_ops import leaky_relu from tensorflow.python.ops.nn_ops import log_softmax from tensorflow.python.ops.nn_ops import max_pool from tensorflow.python.ops.nn_ops import max_pool1d from tensorflow.python.ops.nn_ops import max_pool2d from tensorflow.python.ops.nn_ops import max_pool3d from tensorflow.python.ops.nn_ops import max_pool_v2 from tensorflow.python.ops.nn_ops import max_pool_with_argmax_v1 as max_pool_with_argmax from tensorflow.python.ops.nn_ops import pool from tensorflow.python.ops.nn_ops import relu6 from tensorflow.python.ops.nn_ops import softmax from tensorflow.python.ops.nn_ops import softmax_cross_entropy_with_logits from tensorflow.python.ops.nn_ops import softmax_cross_entropy_with_logits_v2_helper as softmax_cross_entropy_with_logits_v2 from tensorflow.python.ops.nn_ops import sparse_softmax_cross_entropy_with_logits from tensorflow.python.ops.nn_ops import top_k from tensorflow.python.ops.nn_ops import with_space_to_batch from tensorflow.python.ops.nn_ops import xw_plus_b from tensorflow.python.ops.rnn import bidirectional_dynamic_rnn from tensorflow.python.ops.rnn import dynamic_rnn from tensorflow.python.ops.rnn import raw_rnn from tensorflow.python.ops.rnn import static_bidirectional_rnn from tensorflow.python.ops.rnn import static_rnn from tensorflow.python.ops.rnn import static_state_saving_rnn del _print_function
58.147541
124
0.880603
50ff78a395e011f6f4c2d0adc2687de1f076e9d1
5,593
py
Python
style_transfer/sub_networks/Vgg.py
haonguyen1107/style_transfer
8df9b20ce8ebc446cf2c0a67393001b3cf318fed
[ "MIT" ]
null
null
null
style_transfer/sub_networks/Vgg.py
haonguyen1107/style_transfer
8df9b20ce8ebc446cf2c0a67393001b3cf318fed
[ "MIT" ]
6
2021-05-21T16:38:24.000Z
2022-02-10T02:01:14.000Z
style_transfer/sub_networks/Vgg.py
haonguyen1107/style_transfer
8df9b20ce8ebc446cf2c0a67393001b3cf318fed
[ "MIT" ]
null
null
null
from style_transfer.sub_networks.Sub_network import Sub_network import tensorflow as tf from style_transfer.layer import upsample_nearest class VGG(Sub_network): _VGG19 = [ ('prep', 'prep', {}), ('conv', 'conv1_1', {'filters': 64}), ('conv', 'conv1_2', {'filters': 64}), ('pool', 'pool1', {}), ('conv', 'conv2_1', {'filters': 128}), ('conv', 'conv2_2', {'filters': 128}), ('pool', 'pool2', {}), ('conv', 'conv3_1', {'filters': 256}), ('conv', 'conv3_2', {'filters': 256}), ('conv', 'conv3_3', {'filters': 256}), ('conv', 'conv3_4', {'filters': 256}), ('pool', 'pool3', {}), ('conv', 'conv4_1', {'filters': 512}), ('conv', 'conv4_2', {'filters': 512}), ('conv', 'conv4_3', {'filters': 512}), ('conv', 'conv4_4', {'filters': 512}), ('pool', 'pool4', {}), ('conv', 'conv5_1', {'filters': 512}), ('conv', 'conv5_2', {'filters': 512}), ('conv', 'conv5_3', {'filters': 512}), ('conv', 'conv5_4', {'filters': 512}), ('pool', 'pool5', {}) ] _DECODER = [ ('conv', 'conv4_1', {'filters': 256}), ('upsample', 'upsample3', {}), ('conv', 'conv3_4', {'filters': 256}), ('conv', 'conv3_3', {'filters': 256}), ('conv', 'conv3_2', {'filters': 256}), ('conv', 'conv3_1', {'filters': 128}), ('upsample', 'upsample2', {}), ('conv', 'conv2_2', {'filters': 128}), ('conv', 'conv2_1', {'filters': 64}), ('upsample', 'upsample1', {}), ('conv', 'conv1_2', {'filters': 64}), ('conv', 'conv1_1', {'filters': 3}) ] def build_subnetwork(self, inputs, weights, last_layer='conv4_1' ): definition = self._truncate(self._VGG19, [last_layer]) with tf.compat.v1.variable_scope('vgg'): layers = self._build_net(definition, inputs, weights, activation=tf.nn.relu, trainable=False) return layers def subnetwork_layer_params(self, layer): for _, name, params in self._VGG19: if name == layer: return params raise ValueError('Unknown layer: ' + layer) def build_decoder(self, inputs, weights, trainable, activation=tf.nn.relu): with tf.compat.v1.variable_scope('decoder'): layers = self._build_net(self._DECODER, inputs, weights, activation=activation, trainable=trainable) return layers['conv1_1'] def _build_net(self, definition, inputs, weights, activation, trainable): layer, layers = inputs, {} for type, name, params in definition: if type == 'conv': layer = tf.pad(tensor=layer, paddings=[[0, 0], [1, 1], [1, 1], [0, 0]], mode='reflect') if weights: # pretrained weights provided W_init = tf.compat.v1.constant_initializer(weights[name + '_W']) b_init = tf.compat.v1.constant_initializer(weights[name + '_b']) else: W_init = tf.compat.v1.keras.initializers.VarianceScaling(scale=1.0, mode="fan_avg", distribution="uniform") b_init = tf.compat.v1.zeros_initializer() layer = tf.compat.v1.layers.conv2d(layer, name=name, padding='valid', activation=activation, kernel_size=3, kernel_initializer=W_init, bias_initializer=b_init, trainable=trainable, **params) elif type == 'pool': layer = tf.compat.v1.layers.max_pooling2d(layer, name=name, strides=2, pool_size=2 ) elif type == 'upsample': layer = upsample_nearest(layer, scale=2) elif type == 'prep': layer = self._vgg_preprocess(layer) else: raise ValueError('Unknown layer: %s' % type) layers[name] = layer return layers def _truncate(self, definition, used_layers): names = [name for _, name, _ in definition] return definition[:max(names.index(name) for name in used_layers) + 1] def _vgg_preprocess(self, inputs): """Preprocess image for the VGG network using the convolutional layer The layer expects an RGB image with pixel values in [0,1]. The layer flips the channels (RGB -> BGR), scales the values to [0,255] range, and subtracts the VGG mean pixel. """ #data_format = 'NCHW' if data_format == 'channels_first' else 'NHWC' W = tf.Variable([[[ [0, 0, 255], [0, 255, 0], [255, 0, 0] ]]], trainable=False, dtype=tf.float32) # VGG19 mean pixel value is taken from # https://gist.github.com/ksimonyan/211839e770f7b538e2d8#file-readme-md b = tf.Variable([-103.939, -116.779, -123.68], trainable=False, dtype=tf.float32) conv2d = tf.nn.conv2d(input=inputs, filters=W, strides=(1, 1, 1, 1), padding='VALID') return tf.nn.bias_add(conv2d, b)
44.388889
127
0.495441
856496f4ff906d563584c3d40dc096c27dd8ddac
2,784
py
Python
core/funcoes.py
bruno-zaccariello/sgeheroku
c3d1a0292a33ffc3296746838dc8324c1496ff7e
[ "Apache-2.0" ]
null
null
null
core/funcoes.py
bruno-zaccariello/sgeheroku
c3d1a0292a33ffc3296746838dc8324c1496ff7e
[ "Apache-2.0" ]
4
2020-02-11T23:12:36.000Z
2021-11-15T17:47:44.000Z
core/funcoes.py
bruno-zaccariello/sgeheroku
c3d1a0292a33ffc3296746838dc8324c1496ff7e
[ "Apache-2.0" ]
null
null
null
""" Mรณdulo auxiliar com funรงรตes para views e outros """ from django.core.serializers import serialize # from xml.etree import ElementTree # import requests from django.db.models import Q from core.models import Produto, Pessoa __all__ = ['filtra_produtos', 'filtra_pessoas', 'paginar', 'arruma_url_page', 'JSON'] def arruma_url_page(request): """ Arruma a url de views que possuem paginaรงรฃo e pesquisa """ url = str(request.get_full_path()) if "&page=" in url: url = url[:-7] elif url.endswith('/'): url += '?' return url def filtra_produtos(codigo, palavra_chave): """ Funรงรฃo para fazer a filtragem de produtos """ return Produto.objects.filter( Q(nomeproduto__icontains=palavra_chave) | Q(descricao__icontains=palavra_chave), codproduto__icontains=codigo, hide=False ).order_by('codproduto') def filtra_pessoas(codigo, palavraChave): """ Funรงรฃo para fazer a filtragem de clientes """ return Pessoa.objects.filter( Q(nomecompleto_razaosocial__icontains=palavraChave) | Q(apelido_nomefantasia=palavraChave) | Q(email=palavraChave), hide=False, pkid_pessoa__icontains=codigo ).order_by('pkid_pessoa') def paginar(lista): """ Funรงรฃo inutilizada """ page = 1 ctrl = 0 page_content = {1: []} for i in lista: page_content[page] += [i] ctrl += 1 if ctrl == 10: ctrl = 0 page += 1 page_content[page] = [] if page != 1 and not page_content[page]: page_content.pop(page) return page_content def JSON(object): return serialize('json', object) # def calcula_frete( # nCdEmpresa='', # sDsSenha='', # nCdServico="4014", # sCepOrigem="", # sCepDestino="", # nVlPeso="0.5", # nCdFormato=1, # nVlComprimento=16, # nVlAltura=2, # nVlLargura=11, # nVlDiametro="0", # ): # """ Funรงรฃo para consumir a API do correios """ # url = 'http://ws.correios.com.br/calculador/CalcPrecoPrazo.asmx/CalcPrecoPrazo?' # url += f'nCdEmpresa={nCdEmpresa}' # url += f'&sDsSenha={sDsSenha}' # url += f'&nCdServico={nCdServico}' # url += f'&sCepOrigem={sCepOrigem}' # url += f'&sCepDestino={sCepDestino}' # url += f'&nVlPeso={nVlPeso}' # url += f'&nCdFormato={nCdFormato}' # url += f'&nVlComprimento={nVlComprimento}' # url += f'&nVlAltura={nVlAltura}' # url += f'&nVlLargura={nVlLargura}' # url += f'&nVlDiametro={nVlDiametro}' # retorno = requests.get(url) # tree = ElementTree.fromstring(retorno.content) # dici = {} # for child in tree.iter('*'): # tag = child.tag.split('}')[1] # dici[tag] = str(child.text) # return dici
27.294118
86
0.613865
39bdc2fa3a09d6639107c22d13ef5363d40756d2
2,811
py
Python
tests/unit/test_music_handler.py
rbaltrusch/bach_generator
a5de2d55c982b94d22c62d2cbc8adecd25456069
[ "MIT" ]
null
null
null
tests/unit/test_music_handler.py
rbaltrusch/bach_generator
a5de2d55c982b94d22c62d2cbc8adecd25456069
[ "MIT" ]
null
null
null
tests/unit/test_music_handler.py
rbaltrusch/bach_generator
a5de2d55c982b94d22c62d2cbc8adecd25456069
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """Tests for the music_handler module""" from typing import Type import music21 import pytest from bach_generator.src import music_handler SIXTEENTH = "16th" EIGHT = "8th" @pytest.mark.usefixtures("midi_file") def test_extract_notes_from_part(midi_file): score = music21.stream.Score() for note_name in midi_file.notes: note = music21.note.Note(nameWithOctave=note_name, type="16th") score.append(note) notes = music_handler.extract_notes_from_part(score) assert [note.nameWithOctave for note in notes] == midi_file.notes @pytest.mark.usefixtures("midi_file") @pytest.mark.parametrize( "handler_type", [music_handler.SimpleMusicHandler, music_handler.CopyMusicHandler] ) def test_parse_file(midi_file, handler_type: Type[music_handler.BaseMusicHandler]): handler = handler_type() notes = handler.parse(midi_file.path) assert notes == midi_file.notes def test_instantiate_fail(): with pytest.raises(TypeError): music_handler.BaseMusicHandler() @pytest.mark.usefixtures("midi_file") @pytest.mark.parametrize( "handler_type, duration", [ (music_handler.SimpleMusicHandler, SIXTEENTH), (music_handler.CopyMusicHandler, EIGHT), # original duration ], ) def test_regenerate_score( handler_type: Type[music_handler.BaseMusicHandler], duration, midi_file ): handler = handler_type() notes = handler.parse(midi_file.path) score = handler.generate_score(notes) assert isinstance(score, music21.stream.Score) notes = music_handler.extract_notes_from_part(score) assert all(note.duration.type == duration for note in notes) @pytest.mark.parametrize("note_names", [[], ["A2"], ["A5", "A3", "B4"]]) def test_simple_score_generation(note_names): handler = music_handler.SimpleMusicHandler() score = handler.generate_score(note_names) notes = music_handler.extract_notes_from_part(score) assert len(notes) == len(note_names) assert all(note.nameWithOctave == name for note, name in zip(notes, note_names)) @pytest.mark.usefixtures("midi_file") @pytest.mark.parametrize("note_names", [[], ["A2"], ["A5", "A3", "B4"]]) def test_copy_score_generation(note_names, midi_file): handler = music_handler.CopyMusicHandler() handler.parse(midi_file.path) parts = list(handler.generate_score(note_names)) notes = music_handler.extract_notes_from_part(parts[0]) assert len(notes) == len(midi_file.notes) assert all(note.nameWithOctave == name for note, name in zip(notes, note_names)) @pytest.mark.parametrize("note_names", [[], ["A2"], ["A5", "A3", "B4", "G4"]]) def test_copy_handler_without_part(note_names): handler = music_handler.CopyMusicHandler() with pytest.raises(TypeError): handler.generate_score(note_names)
33.86747
86
0.73248
2fc29fa77d05da4b27a84e4ca3486451e1a411e0
727
py
Python
leetcode/python/208_implement_trie_prefix_tree.py
VVKot/leetcode-solutions
7d6e599b223d89a7861929190be715d3b3604fa4
[ "MIT" ]
4
2019-04-22T11:57:36.000Z
2019-10-29T09:12:56.000Z
leetcode/python/208_implement_trie_prefix_tree.py
VVKot/coding-competitions
7d6e599b223d89a7861929190be715d3b3604fa4
[ "MIT" ]
null
null
null
leetcode/python/208_implement_trie_prefix_tree.py
VVKot/coding-competitions
7d6e599b223d89a7861929190be715d3b3604fa4
[ "MIT" ]
null
null
null
class Trie: WORD_MARK = '*' def __init__(self): self.trie = {} def insert(self, word: str) -> None: trie = self.trie for ch in word: trie = trie.setdefault(ch, {}) trie[self.WORD_MARK] = self.WORD_MARK def search(self, word: str) -> bool: trie = self.trie for ch in word: if ch in trie: trie = trie[ch] else: return False return self.WORD_MARK in trie def startsWith(self, prefix: str) -> bool: trie = self.trie for ch in prefix: if ch in trie: trie = trie[ch] else: return False return bool(trie)
23.451613
46
0.480055
8a69407669d3d0a09192eb6e02c5528a4af944f4
4,280
py
Python
setup.py
SparXalt/deafwave-blockchain
579eac55d55285f750c622bf66a1aa30ed6d949d
[ "Apache-2.0" ]
null
null
null
setup.py
SparXalt/deafwave-blockchain
579eac55d55285f750c622bf66a1aa30ed6d949d
[ "Apache-2.0" ]
null
null
null
setup.py
SparXalt/deafwave-blockchain
579eac55d55285f750c622bf66a1aa30ed6d949d
[ "Apache-2.0" ]
null
null
null
from setuptools import setup dependencies = [ "blspy==1.0.2", # Signature library "chiavdf==1.0.1", # timelord and vdf verification "chiabip158==1.0", # bip158-style wallet filters "chiapos==1.0.2", # proof of space "clvm==0.9.6", "clvm_rs==0.1.7", "clvm_tools==0.4.3", "aiohttp==3.7.4", # HTTP server for full node rpc "aiosqlite==0.17.0", # asyncio wrapper for sqlite, to store blocks "bitstring==3.1.7", # Binary data management library "colorlog==5.0.1", # Adds color to logs "concurrent-log-handler==0.9.19", # Concurrently log and rotate logs "cryptography==3.4.7", # Python cryptography library for TLS - keyring conflict "keyring==23.0.1", # Store keys in MacOS Keychain, Windows Credential Locker # Secure storage for keys on Linux (Will be replaced) "keyrings.cryptfile==1.3.4", # "keyrings.cryptfile==1.3.8", # Secure storage for keys on Linux (Will be replaced) # See https://github.com/frispete/keyrings.cryptfile/issues/15 "PyYAML==5.4.1", # Used for config file format "setproctitle==1.2.2", # Gives the deafwave processes readable names "sortedcontainers==2.3.0", # For maintaining sorted mempools "websockets==8.1.0", # For use in wallet RPC and electron UI "click==7.1.2", # For the CLI "dnspython==2.1.0", # Query DNS seeds ] upnp_dependencies = [ "miniupnpc==2.1", # Allows users to open ports on their router ] dev_dependencies = [ "pytest", "pytest-asyncio", "flake8", "mypy", "black", "aiohttp_cors", # For blackd "ipython", # For asyncio debugging ] kwargs = dict( name="deafwave-blockchain", author="Mariano Sorgente", author_email="mariano@deafwave.net", description="Deafwave blockchain full node, farmer, timelord, and wallet.", url="https://deafwave.net/", license="Apache License", python_requires=">=3.7, <4", keywords="deafwave blockchain node", install_requires=dependencies, setup_requires=["setuptools_scm"], extras_require=dict( uvloop=["uvloop"], dev=dev_dependencies, upnp=upnp_dependencies, ), packages=[ "build_scripts", "deafwave", "deafwave.cmds", "deafwave.consensus", "deafwave.daemon", "deafwave.full_node", "deafwave.timelord", "deafwave.farmer", "deafwave.harvester", "deafwave.introducer", "deafwave.plotting", "deafwave.protocols", "deafwave.rpc", "deafwave.server", "deafwave.simulator", "deafwave.types.blockchain_format", "deafwave.types", "deafwave.util", "deafwave.wallet", "deafwave.wallet.puzzles", "deafwave.wallet.rl_wallet", "deafwave.wallet.cc_wallet", "deafwave.wallet.did_wallet", "deafwave.wallet.settings", "deafwave.wallet.trading", "deafwave.wallet.util", "deafwave.ssl", "mozilla-ca", ], entry_points={ "console_scripts": [ "deafwave = deafwave.cmds.deafwave:main", "deafwave_wallet = deafwave.server.start_wallet:main", "deafwave_full_node = deafwave.server.start_full_node:main", "deafwave_harvester = deafwave.server.start_harvester:main", "deafwave_farmer = deafwave.server.start_farmer:main", "deafwave_introducer = deafwave.server.start_introducer:main", "deafwave_timelord = deafwave.server.start_timelord:main", "deafwave_timelord_launcher = deafwave.timelord.timelord_launcher:main", "deafwave_full_node_simulator = deafwave.simulator.start_simulator:main", ] }, package_data={ "deafwave": ["pyinstaller.spec"], "deafwave.wallet.puzzles": ["*.clvm", "*.clvm.hex"], "deafwave.util": ["initial-*.yaml", "english.txt"], "deafwave.ssl": ["deafwave_ca.crt", "deafwave_ca.key", "dst_root_ca.pem"], "mozilla-ca": ["cacert.pem"], }, use_scm_version={"fallback_version": "unknown-no-.git-directory"}, long_description=open("README.md").read(), long_description_content_type="text/markdown", zip_safe=False, ) if __name__ == "__main__": setup(**kwargs)
35.966387
90
0.63014
985d59217598a6a84899984137a64db1fd9a8050
359
py
Python
adminapp/migrations/0010_alter_exhibit_options.py
mofresh27/MuseumExperience-Group2-Python-BE-1
d6ca7aceeddfcfdefdf112ab5e40cf74d6b472ce
[ "MIT" ]
null
null
null
adminapp/migrations/0010_alter_exhibit_options.py
mofresh27/MuseumExperience-Group2-Python-BE-1
d6ca7aceeddfcfdefdf112ab5e40cf74d6b472ce
[ "MIT" ]
1
2021-07-19T14:27:28.000Z
2021-07-19T14:27:28.000Z
adminapp/migrations/0010_alter_exhibit_options.py
mofresh27/MuseumExperience-Group2-Python-BE-1
d6ca7aceeddfcfdefdf112ab5e40cf74d6b472ce
[ "MIT" ]
2
2021-07-14T21:56:46.000Z
2021-07-15T16:11:41.000Z
# Generated by Django 3.2.4 on 2021-07-10 20:17 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('adminapp', '0009_auto_20210709_0156'), ] operations = [ migrations.AlterModelOptions( name='exhibit', options={'verbose_name_plural': 'Exhibit'}, ), ]
19.944444
55
0.610028
4d8be3344c3be84c10da9ee8a613a7f1d460d285
9,831
py
Python
Student Registration Project Files/realtimedetector.py
mastadict/automated-student-register
43ea2f9cced1129a0a6cec88d791894d0a0c9a20
[ "MIT" ]
1
2020-12-09T15:12:24.000Z
2020-12-09T15:12:24.000Z
Student Registration Project Files/realtimedetector.py
mastadict/automated-student-register
43ea2f9cced1129a0a6cec88d791894d0a0c9a20
[ "MIT" ]
4
2021-06-08T19:44:04.000Z
2022-03-11T23:44:05.000Z
Student Registration Project Files/realtimedetector.py
khoisan25/automated-student-register
43ea2f9cced1129a0a6cec88d791894d0a0c9a20
[ "MIT" ]
null
null
null
#!/usr/bin/python ''' Author: Guido Diepen <gdiepen@deloitte.nl> ''' #Import the OpenCV and dlib libraries import cv2 import dlib import threading import time #Initialize a face cascade using the frontal face haar cascade provided with #the OpenCV library #Make sure that you copy this file from the opencv project to the root of this #project folder faceCascade = cv2.CascadeClassifier('frontalface.xml') #The deisred output width and height OUTPUT_SIZE_WIDTH = 575 OUTPUT_SIZE_HEIGHT = 400 #We are not doing really face recognition def doRecognizePerson(faceNames, fid): time.sleep(2) faceNames[ fid ] = "Person " + str(fid) def detectAndTrackMultipleFaces(): #Open the first webcame device camID = int(open('resources/cam.txt').read()) capture = cv2.VideoCapture(camID) #Create two opencv named windows cv2.namedWindow("base-image", cv2.WINDOW_AUTOSIZE) cv2.namedWindow("result-image", cv2.WINDOW_AUTOSIZE) #Position the windows next to eachother cv2.moveWindow("base-image",0,100) cv2.moveWindow("result-image",400,100) #Start the window thread for the two windows we are using cv2.startWindowThread() #The color of the rectangle we draw around the face rectangleColor = (0,255,0) #variables holding the current frame number and the current faceid frameCounter = 0 currentFaceID = 0 #Variables holding the correlation trackers and the name per faceid faceTrackers = {} faceNames = {} try: while True: #Retrieve the latest image from the webcam rc,fullSizeBaseImage = capture.read() #Resize the image to 320x240 baseImage = cv2.resize( fullSizeBaseImage, ( 320, 240)) #Check if a key was pressed and if it was x, then break #from the infinite loop if cv2.waitKey(2) & 0xFF == ord('x'): break #Result image is the image we will show the user, which is a #combination of the original image from the webcam and the #overlayed rectangle for the largest face resultImage = baseImage.copy() #STEPS: # * Update all trackers and remove the ones that are not # relevant anymore # * Every 10 frames: # + Use face detection on the current frame and look # for faces. # + For each found face, check if centerpoint is within # existing tracked box. If so, nothing to do # + If centerpoint is NOT in existing tracked box, then # we add a new tracker with a new face-id #Increase the framecounter frameCounter += 1 #Update all the trackers and remove the ones for which the update #indicated the quality was not good enough fidsToDelete = [] for fid in faceTrackers.keys(): trackingQuality = faceTrackers[ fid ].update( baseImage ) #If the tracking quality is good enough, we must delete #this tracker if trackingQuality < 7: fidsToDelete.append( fid ) for fid in fidsToDelete: print("Removing fid " + str(fid) + " from list of trackers") faceTrackers.pop( fid , None ) #Every 10 frames, we will have to determine which faces #are present in the frame if (frameCounter % 10) == 0: #For the face detection, we need to make use of a gray #colored image so we will convert the baseImage to a #gray-based image gray = cv2.cvtColor(baseImage, cv2.COLOR_BGR2GRAY) #Now use the haar cascade detector to find all faces #in the image faces = faceCascade.detectMultiScale(gray, 1.5, 7) #Loop over all faces and check if the area for this #face is the largest so far #We need to convert it to int here because of the #requirement of the dlib tracker. If we omit the cast to #int here, you will get cast errors since the detector #returns numpy.int32 and the tracker requires an int for (_x,_y,_w,_h) in faces: x = int(_x) y = int(_y) w = int(_w) h = int(_h) #calculate the centerpoint x_bar = x + 0.5 * w y_bar = y + 0.5 * h #Variable holding information which faceid we #matched with matchedFid = None #Now loop over all the trackers and check if the #centerpoint of the face is within the box of a #tracker for fid in faceTrackers.keys(): tracked_position = faceTrackers[fid].get_position() t_x = int(tracked_position.left()) t_y = int(tracked_position.top()) t_w = int(tracked_position.width()) t_h = int(tracked_position.height()) #calculate the centerpoint t_x_bar = t_x + 0.5 * t_w t_y_bar = t_y + 0.5 * t_h #check if the centerpoint of the face is within the #rectangleof a tracker region. Also, the centerpoint #of the tracker region must be within the region #detected as a face. If both of these conditions hold #we have a match if ( ( t_x <= x_bar <= (t_x + t_w)) and ( t_y <= y_bar <= (t_y + t_h)) and ( x <= t_x_bar <= (x + w )) and ( y <= t_y_bar <= (y + h ))): matchedFid = fid #If no matched fid, then we have to create a new tracker if matchedFid is None: print("Creating new tracker " + str(currentFaceID)) #Create and store the tracker tracker = dlib.correlation_tracker() tracker.start_track(baseImage, dlib.rectangle( x-10, y-20, x+w+10, y+h+20)) faceTrackers[ currentFaceID ] = tracker #Start a new thread that is used to simulate #face recognition. This is not yet implemented in this #version :) t = threading.Thread( target = doRecognizePerson , args=(faceNames, currentFaceID)) t.start() #Increase the currentFaceID counter currentFaceID += 1 #Now loop over all the trackers we have and draw the rectangle #around the detected faces. If we 'know' the name for this person #(i.e. the recognition thread is finished), we print the name #of the person, otherwise the message indicating we are detecting #the name of the person for fid in faceTrackers.keys(): tracked_position = faceTrackers[fid].get_position() t_x = int(tracked_position.left()) t_y = int(tracked_position.top()) t_w = int(tracked_position.width()) t_h = int(tracked_position.height()) cv2.rectangle(resultImage, (t_x, t_y), (t_x + t_w , t_y + t_h), rectangleColor ,2) if fid in faceNames.keys(): cv2.putText(resultImage, faceNames[fid] , (int(t_x + t_w/2), int(t_y)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2) else: cv2.putText(resultImage, "Detecting..." , (int(t_x + t_w/2), int(t_y)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2) #Since we want to show something larger on the screen than the #original 320x240, we resize the image again # #Note that it would also be possible to keep the large version #of the baseimage and make the result image a copy of this large #base image and use the scaling factor to draw the rectangle #at the right coordinates. largeResult = cv2.resize(resultImage, (OUTPUT_SIZE_WIDTH,OUTPUT_SIZE_HEIGHT)) #Finally, we want to show the images on the screen cv2.imshow("base-image", baseImage) cv2.imshow("result-image", largeResult) #To ensure we can also deal with the user pressing Ctrl-C in the console #we have to check for the KeyboardInterrupt exception and break out of #the main loop except KeyboardInterrupt as e: pass #Destroy any OpenCV windows and exit the application cv2.destroyAllWindows() exit(0) if __name__ == '__main__': detectAndTrackMultipleFaces()
35.490975
79
0.522327
3930d034e0fae17ed3c63b0c3517864718c8f781
466
py
Python
sources/malshare.py
asrabon/MalFind
ca3fcf59b335f3bd0e1d4596f545a917c4a0e613
[ "MIT" ]
1
2021-12-13T17:19:09.000Z
2021-12-13T17:19:09.000Z
sources/malshare.py
asrabon/MalFind
ca3fcf59b335f3bd0e1d4596f545a917c4a0e613
[ "MIT" ]
null
null
null
sources/malshare.py
asrabon/MalFind
ca3fcf59b335f3bd0e1d4596f545a917c4a0e613
[ "MIT" ]
null
null
null
import requests SEARCH_URL = "https://malshare.com/api.php?api_key={}&action=search&query={}" SAMPLE_URL = "https://malshare.com/sample.php?action=detail&hash={}" def search(file_hash, api_key): r = requests.get( SEARCH_URL.format(api_key, file_hash), timeout=30 ) search_submissions = r.json() if len(search_submissions) > 0: md5 = search_submissions[0]["md5"] return SAMPLE_URL.format(md5) return None
23.3
77
0.656652
4a7227c2fd3b323e97ab507ad9797313ca6afa00
1,085
py
Python
MangAdventure/urls.py
fossabot/MangAdventure
20e1f27056b8c4b9cb58ce6e815a5bb93739fe11
[ "MIT" ]
null
null
null
MangAdventure/urls.py
fossabot/MangAdventure
20e1f27056b8c4b9cb58ce6e815a5bb93739fe11
[ "MIT" ]
null
null
null
MangAdventure/urls.py
fossabot/MangAdventure
20e1f27056b8c4b9cb58ce6e815a5bb93739fe11
[ "MIT" ]
null
null
null
from django.contrib import admin from django.conf import settings from .views import index, search, opensearch, contribute, robots try: from django.urls import include, re_path as url except ImportError: from django.conf.urls import include, url urlpatterns = [ url(r'^$', index, name='index'), url(r'^', include('config.urls')), url(r'^search/$', search, name='search'), url(r'^admin/', admin.site.urls), url(r'^reader/', include('reader.urls')), url(r'^api/', include('api.urls')), url(r'^groups/', include('groups.urls')), url(r'^user/', include('users.urls')), url(r'^opensearch\.xml$', opensearch, name='opensearch'), url(r'^contribute\.json$', contribute, name='contribute'), url(r'^robots\.txt$', robots, name='robots') ] if settings.DEBUG: from django.conf.urls.static import static urlpatterns += static( settings.MEDIA_URL, document_root=settings.MEDIA_ROOT ) handler404 = 'MangAdventure.views.handler404' handler500 = 'MangAdventure.views.handler500' handler503 = 'MangAdventure.views.handler503'
31.911765
64
0.682028
33bdfb784d6a50ee474514775db5e5496b3f4c5b
1,700
py
Python
python/ecs/fargate-service-with-autoscaling/app.py
damshenas/aws-cdk-examples
85d247df404444cde6ef913aae31aaa47cd93daa
[ "Apache-2.0" ]
1
2022-02-02T20:23:28.000Z
2022-02-02T20:23:28.000Z
python/ecs/fargate-service-with-autoscaling/app.py
damshenas/aws-cdk-examples
85d247df404444cde6ef913aae31aaa47cd93daa
[ "Apache-2.0" ]
null
null
null
python/ecs/fargate-service-with-autoscaling/app.py
damshenas/aws-cdk-examples
85d247df404444cde6ef913aae31aaa47cd93daa
[ "Apache-2.0" ]
null
null
null
from aws_cdk import ( aws_ec2 as ec2, aws_ecs as ecs, aws_ecs_patterns as ecs_patterns, App, CfnOutput, Duration, Stack ) from constructs import Construct class AutoScalingFargateService(Stack): def __init__(self, scope: Construct, id: str, **kwargs) -> None: super().__init__(scope, id, **kwargs) # Create a cluster vpc = ec2.Vpc( self, "Vpc", max_azs=2 ) cluster = ecs.Cluster( self, 'fargate-service-autoscaling', vpc=vpc ) # Create Fargate Service fargate_service = ecs_patterns.NetworkLoadBalancedFargateService( self, "sample-app", cluster=cluster, task_image_options={ 'image': ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample") } ) fargate_service.service.connections.security_groups[0].add_ingress_rule( peer = ec2.Peer.ipv4(vpc.vpc_cidr_block), connection = ec2.Port.tcp(80), description="Allow http inbound from VPC" ) # Setup AutoScaling policy scaling = fargate_service.service.auto_scale_task_count( max_capacity=2 ) scaling.scale_on_cpu_utilization( "CpuScaling", target_utilization_percent=50, scale_in_cooldown=Duration.seconds(60), scale_out_cooldown=Duration.seconds(60), ) CfnOutput( self, "LoadBalancerDNS", value=fargate_service.load_balancer.load_balancer_dns_name ) app = App() AutoScalingFargateService(app, "aws-fargate-application-autoscaling") app.synth()
28.333333
85
0.608235
38a2f8504722c74ebe7ae9c3e50877c9fd820c79
342
py
Python
bets/views.py
mattchere/letsmakebets
d34ffbc98022250eb9352ccddb63a5f25a92ab6a
[ "MIT" ]
null
null
null
bets/views.py
mattchere/letsmakebets
d34ffbc98022250eb9352ccddb63a5f25a92ab6a
[ "MIT" ]
null
null
null
bets/views.py
mattchere/letsmakebets
d34ffbc98022250eb9352ccddb63a5f25a92ab6a
[ "MIT" ]
null
null
null
from .models import Bet, Bettor, Taker from django.shortcuts import render from django.views import generic def index(request): """ View function for homepage of site. """ return render(request, 'index.html') class BetListView(generic.ListView): model = Bet class BetDetailView(generic.DetailView): model = Bet
17.1
40
0.710526
f640e87a9d13f9f365aef5d920bd1b7f59e0a591
22,038
py
Python
flink-python/pyflink/table/tests/test_table_environment_api.py
sundargates/flink
aa489269a1429f25136765af94b05d10ef5b7fd3
[ "Apache-2.0" ]
null
null
null
flink-python/pyflink/table/tests/test_table_environment_api.py
sundargates/flink
aa489269a1429f25136765af94b05d10ef5b7fd3
[ "Apache-2.0" ]
null
null
null
flink-python/pyflink/table/tests/test_table_environment_api.py
sundargates/flink
aa489269a1429f25136765af94b05d10ef5b7fd3
[ "Apache-2.0" ]
null
null
null
################################################################################ # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # # distributed under the License is distributed on an "AS IS" BASIS, # # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # # limitations under the License. ################################################################################ import glob import os import pathlib import sys from py4j.protocol import Py4JJavaError from pyflink.find_flink_home import _find_flink_source_root from pyflink.java_gateway import get_gateway from pyflink.dataset import ExecutionEnvironment from pyflink.datastream import StreamExecutionEnvironment from pyflink.table import DataTypes, CsvTableSink, StreamTableEnvironment, EnvironmentSettings from pyflink.table.descriptors import FileSystem, OldCsv, Schema from pyflink.table.table_config import TableConfig from pyflink.table.table_environment import BatchTableEnvironment from pyflink.table.types import RowType from pyflink.testing import source_sink_utils from pyflink.testing.test_case_utils import PyFlinkStreamTableTestCase, PyFlinkBatchTableTestCase, \ PyFlinkBlinkBatchTableTestCase from pyflink.util.exceptions import TableException from pyflink.util.utils import get_j_env_configuration class TableEnvironmentTest(object): def test_set_sys_executable_for_local_mode(self): jvm = get_gateway().jvm actual_executable = get_j_env_configuration(self.t_env) \ .getString(jvm.PythonOptions.PYTHON_EXECUTABLE.key(), None) self.assertEqual(sys.executable, actual_executable) def test_explain(self): schema = RowType()\ .add('a', DataTypes.INT())\ .add('b', DataTypes.STRING())\ .add('c', DataTypes.STRING()) t_env = self.t_env t = t_env.from_elements([], schema) result = t.select("1 + a, b, c") actual = t_env.explain(result) assert isinstance(actual, str) def test_explain_with_extended(self): schema = RowType() \ .add('a', DataTypes.INT()) \ .add('b', DataTypes.STRING()) \ .add('c', DataTypes.STRING()) t_env = self.t_env t = t_env.from_elements([], schema) result = t.select("1 + a, b, c") actual = t_env.explain(result, True) assert isinstance(actual, str) def test_register_java_function(self): t_env = self.t_env t_env.register_java_function("scalar_func", "org.apache.flink.table.expressions.utils.RichFunc0") t_env.register_java_function( "agg_func", "org.apache.flink.table.functions.aggfunctions.ByteMaxAggFunction") t_env.register_java_function("table_func", "org.apache.flink.table.utils.TableFunc1") actual = t_env.list_user_defined_functions() expected = ['scalar_func', 'agg_func', 'table_func'] self.assert_equals(actual, expected) class StreamTableEnvironmentTests(TableEnvironmentTest, PyFlinkStreamTableTestCase): def test_register_table_source_scan(self): t_env = self.t_env field_names = ["a", "b", "c"] field_types = [DataTypes.BIGINT(), DataTypes.STRING(), DataTypes.STRING()] source_path = os.path.join(self.tempdir + '/streaming.csv') csv_source = self.prepare_csv_source(source_path, [], field_types, field_names) t_env.register_table_source("Source", csv_source) result = t_env.scan("Source") self.assertEqual( 'CatalogTable: (identifier: [`default_catalog`.`default_database`.`Source`]' ', fields: [a, b, c])', result._j_table.getQueryOperation().asSummaryString()) def test_register_table_sink(self): t_env = self.t_env field_names = ["a", "b", "c"] field_types = [DataTypes.BIGINT(), DataTypes.STRING(), DataTypes.STRING()] t_env.register_table_sink( "Sinks", source_sink_utils.TestAppendSink(field_names, field_types)) t_env.from_elements([(1, "Hi", "Hello")], ["a", "b", "c"]).insert_into("Sinks") self.t_env.execute("test") actual = source_sink_utils.results() expected = ['1,Hi,Hello'] self.assert_equals(actual, expected) def test_from_table_source(self): field_names = ["a", "b", "c"] field_types = [DataTypes.BIGINT(), DataTypes.STRING(), DataTypes.STRING()] source_path = os.path.join(self.tempdir + '/streaming.csv') csv_source = self.prepare_csv_source(source_path, [], field_types, field_names) result = self.t_env.from_table_source(csv_source) self.assertEqual( 'TableSource: (fields: [a, b, c])', result._j_table.getQueryOperation().asSummaryString()) def test_list_tables(self): source_path = os.path.join(self.tempdir + '/streaming.csv') field_names = ["a", "b", "c"] field_types = [DataTypes.INT(), DataTypes.STRING(), DataTypes.STRING()] data = [] csv_source = self.prepare_csv_source(source_path, data, field_types, field_names) t_env = self.t_env t_env.register_table_source("Orders", csv_source) t_env.register_table_sink( "Sinks", source_sink_utils.TestAppendSink(field_names, field_types)) t_env.register_table_sink( "Results", source_sink_utils.TestAppendSink(field_names, field_types)) actual = t_env.list_tables() expected = ['Orders', 'Results', 'Sinks'] self.assert_equals(actual, expected) def test_temporary_tables(self): t_env = self.t_env t_env.connect(FileSystem().path(os.path.join(self.tempdir + '/temp_1.csv'))) \ .with_format(OldCsv() .field_delimiter(',') .field("a", DataTypes.INT()) .field("b", DataTypes.STRING())) \ .with_schema(Schema() .field("a", DataTypes.INT()) .field("b", DataTypes.STRING())) \ .create_temporary_table("temporary_table_1") t_env.connect(FileSystem().path(os.path.join(self.tempdir + '/temp_2.csv'))) \ .with_format(OldCsv() .field_delimiter(',') .field("a", DataTypes.INT()) .field("b", DataTypes.STRING())) \ .with_schema(Schema() .field("a", DataTypes.INT()) .field("b", DataTypes.STRING())) \ .create_temporary_table("temporary_table_2") actual = t_env.list_temporary_tables() expected = ['temporary_table_1', 'temporary_table_2'] self.assert_equals(actual, expected) t_env.drop_temporary_table("temporary_table_1") actual = t_env.list_temporary_tables() expected = ['temporary_table_2'] self.assert_equals(actual, expected) def test_temporary_views(self): t_env = self.t_env t_env.create_temporary_view( "temporary_view_1", t_env.from_elements([(1, 'Hi', 'Hello')], ['a', 'b', 'c'])) t_env.create_temporary_view( "temporary_view_2", t_env.from_elements([(1, 'Hi')], ['a', 'b'])) actual = t_env.list_temporary_views() expected = ['temporary_view_1', 'temporary_view_2'] self.assert_equals(actual, expected) t_env.drop_temporary_view("temporary_view_1") actual = t_env.list_temporary_views() expected = ['temporary_view_2'] self.assert_equals(actual, expected) def test_from_path(self): t_env = self.t_env t_env.create_temporary_view( "temporary_view_1", t_env.from_elements([(1, 'Hi', 'Hello')], ['a', 'b', 'c'])) result = t_env.from_path("temporary_view_1") self.assertEqual( 'CatalogTable: (identifier: [`default_catalog`.`default_database`.`temporary_view_1`]' ', fields: [a, b, c])', result._j_table.getQueryOperation().asSummaryString()) def test_insert_into(self): t_env = self.t_env field_names = ["a", "b", "c"] field_types = [DataTypes.BIGINT(), DataTypes.STRING(), DataTypes.STRING()] t_env.register_table_sink( "Sinks", source_sink_utils.TestAppendSink(field_names, field_types)) t_env.insert_into("Sinks", t_env.from_elements([(1, "Hi", "Hello")], ["a", "b", "c"])) self.t_env.execute("test") actual = source_sink_utils.results() expected = ['1,Hi,Hello'] self.assert_equals(actual, expected) def test_explain_with_multi_sinks(self): t_env = self.t_env source = t_env.from_elements([(1, "Hi", "Hello"), (2, "Hello", "Hello")], ["a", "b", "c"]) field_names = ["a", "b", "c"] field_types = [DataTypes.BIGINT(), DataTypes.STRING(), DataTypes.STRING()] t_env.register_table_sink( "sink1", source_sink_utils.TestAppendSink(field_names, field_types)) t_env.register_table_sink( "sink2", source_sink_utils.TestAppendSink(field_names, field_types)) t_env.sql_update("insert into sink1 select * from %s where a > 100" % source) t_env.sql_update("insert into sink2 select * from %s where a < 100" % source) actual = t_env.explain(extended=True) assert isinstance(actual, str) def test_sql_query(self): t_env = self.t_env source = t_env.from_elements([(1, "Hi", "Hello"), (2, "Hello", "Hello")], ["a", "b", "c"]) field_names = ["a", "b", "c"] field_types = [DataTypes.BIGINT(), DataTypes.STRING(), DataTypes.STRING()] t_env.register_table_sink( "sinks", source_sink_utils.TestAppendSink(field_names, field_types)) result = t_env.sql_query("select a + 1, b, c from %s" % source) result.insert_into("sinks") self.t_env.execute("test") actual = source_sink_utils.results() expected = ['2,Hi,Hello', '3,Hello,Hello'] self.assert_equals(actual, expected) def test_sql_update(self): t_env = self.t_env source = t_env.from_elements([(1, "Hi", "Hello"), (2, "Hello", "Hello")], ["a", "b", "c"]) field_names = ["a", "b", "c"] field_types = [DataTypes.BIGINT(), DataTypes.STRING(), DataTypes.STRING()] t_env.register_table_sink( "sinks", source_sink_utils.TestAppendSink(field_names, field_types)) t_env.sql_update("insert into sinks select * from %s" % source) self.t_env.execute("test_sql_job") actual = source_sink_utils.results() expected = ['1,Hi,Hello', '2,Hello,Hello'] self.assert_equals(actual, expected) def test_create_table_environment(self): table_config = TableConfig() table_config.set_max_generated_code_length(32000) table_config.set_null_check(False) table_config.set_local_timezone("Asia/Shanghai") env = StreamExecutionEnvironment.get_execution_environment() t_env = StreamTableEnvironment.create(env, table_config) readed_table_config = t_env.get_config() self.assertFalse(readed_table_config.get_null_check()) self.assertEqual(readed_table_config.get_max_generated_code_length(), 32000) self.assertEqual(readed_table_config.get_local_timezone(), "Asia/Shanghai") def test_create_table_environment_with_blink_planner(self): t_env = StreamTableEnvironment.create( self.env, environment_settings=EnvironmentSettings.new_instance().use_blink_planner().build()) planner = t_env._j_tenv.getPlanner() self.assertEqual( planner.getClass().getName(), "org.apache.flink.table.planner.delegation.StreamPlanner") t_env = StreamTableEnvironment.create( environment_settings=EnvironmentSettings.new_instance().build()) planner = t_env._j_tenv.getPlanner() self.assertEqual( planner.getClass().getName(), "org.apache.flink.table.planner.StreamPlanner") t_env = StreamTableEnvironment.create( environment_settings=EnvironmentSettings.new_instance().use_blink_planner().build()) planner = t_env._j_tenv.getPlanner() self.assertEqual( planner.getClass().getName(), "org.apache.flink.table.planner.delegation.StreamPlanner") def test_table_environment_with_blink_planner(self): self.env.set_parallelism(1) t_env = StreamTableEnvironment.create( self.env, environment_settings=EnvironmentSettings.new_instance().use_blink_planner().build()) source_path = os.path.join(self.tempdir + '/streaming.csv') sink_path = os.path.join(self.tempdir + '/result.csv') field_names = ["a", "b", "c"] field_types = [DataTypes.INT(), DataTypes.STRING(), DataTypes.STRING()] data = [(1, 'hi', 'hello'), (2, 'hello', 'hello')] csv_source = self.prepare_csv_source(source_path, data, field_types, field_names) t_env.register_table_source("source", csv_source) t_env.register_table_sink( "sink", CsvTableSink(field_names, field_types, sink_path)) source = t_env.scan("source") result = source.alias("a, b, c").select("1 + a, b, c") result.insert_into("sink") t_env.execute("blink_test") results = [] with open(sink_path, 'r') as f: results.append(f.readline()) results.append(f.readline()) self.assert_equals(results, ['2,hi,hello\n', '3,hello,hello\n']) def test_set_jars(self): self.verify_set_java_dependencies("pipeline.jars") def test_set_classpaths(self): self.verify_set_java_dependencies("pipeline.classpaths") def verify_set_java_dependencies(self, config_key): original_class_loader = \ get_gateway().jvm.Thread.currentThread().getContextClassLoader() try: jar_urls = [] func1_class_name = "org.apache.flink.python.util.TestScalarFunction1" func2_class_name = "org.apache.flink.python.util.TestScalarFunction2" func1_jar_pattern = "flink-python/target/func1/flink-python*-tests.jar" func2_jar_pattern = "flink-python/target/func2/flink-python*-tests.jar" self.ensure_jar_not_loaded(func1_class_name, func1_jar_pattern) self.ensure_jar_not_loaded(func2_class_name, func2_jar_pattern) jar_urls.extend(self.get_jar_url(func1_jar_pattern)) jar_urls.extend(self.get_jar_url(func2_jar_pattern)) # test set the "pipeline.jars" multiple times self.t_env.get_config().get_configuration().set_string(config_key, ";".join(jar_urls)) first_class_loader = get_gateway().jvm.Thread.currentThread().getContextClassLoader() self.t_env.get_config().get_configuration().set_string(config_key, jar_urls[0]) self.t_env.get_config().get_configuration().set_string(config_key, ";".join(jar_urls)) second_class_loader = get_gateway().jvm.Thread.currentThread().getContextClassLoader() self.assertEqual(first_class_loader, second_class_loader) source = self.t_env.from_elements([(1, "Hi"), (2, "Hello")], ["a", "b"]) self.t_env.register_java_function("func1", func1_class_name) self.t_env.register_java_function("func2", func2_class_name) table_sink = source_sink_utils.TestAppendSink( ["a", "b"], [DataTypes.STRING(), DataTypes.STRING()]) self.t_env.register_table_sink("sink", table_sink) source.select("func1(a, b), func2(a, b)").insert_into("sink") self.t_env.execute("test") actual = source_sink_utils.results() expected = ['1 and Hi,1 or Hi', '2 and Hello,2 or Hello'] self.assert_equals(actual, expected) finally: get_gateway().jvm.Thread.currentThread().setContextClassLoader(original_class_loader) def ensure_jar_not_loaded(self, func_class_name, jar_filename_pattern): test_jars = glob.glob(os.path.join(_find_flink_source_root(), jar_filename_pattern)) if not test_jars: self.fail("'%s' is not available. Please compile the test jars first." % jar_filename_pattern) try: self.t_env.register_java_function("func", func_class_name) except Py4JJavaError: pass else: self.fail("The scalar function '%s' should not be able to be loaded. Please remove " "the '%s' from the classpath of the PythonGatewayServer process." % (func_class_name, jar_filename_pattern)) @staticmethod def get_jar_url(jar_filename_pattern): test_jars = glob.glob(os.path.join(_find_flink_source_root(), jar_filename_pattern)) return [pathlib.Path(jar_path).as_uri() for jar_path in test_jars] class BatchTableEnvironmentTests(TableEnvironmentTest, PyFlinkBatchTableTestCase): def test_explain_with_multi_sinks(self): t_env = self.t_env source = t_env.from_elements([(1, "Hi", "Hello"), (2, "Hello", "Hello")], ["a", "b", "c"]) field_names = ["a", "b", "c"] field_types = [DataTypes.BIGINT(), DataTypes.STRING(), DataTypes.STRING()] t_env.register_table_sink( "sink1", CsvTableSink(field_names, field_types, "path1")) t_env.register_table_sink( "sink2", CsvTableSink(field_names, field_types, "path2")) t_env.sql_update("insert into sink1 select * from %s where a > 100" % source) t_env.sql_update("insert into sink2 select * from %s where a < 100" % source) with self.assertRaises(TableException): t_env.explain(extended=True) def test_create_table_environment(self): table_config = TableConfig() table_config.set_max_generated_code_length(32000) table_config.set_null_check(False) table_config.set_local_timezone("Asia/Shanghai") env = ExecutionEnvironment.get_execution_environment() t_env = BatchTableEnvironment.create(env, table_config) readed_table_config = t_env.get_config() self.assertFalse(readed_table_config.get_null_check()) self.assertEqual(readed_table_config.get_max_generated_code_length(), 32000) self.assertEqual(readed_table_config.get_local_timezone(), "Asia/Shanghai") def test_create_table_environment_with_blink_planner(self): t_env = BatchTableEnvironment.create( environment_settings=EnvironmentSettings.new_instance().in_batch_mode() .use_blink_planner().build()) planner = t_env._j_tenv.getPlanner() self.assertEqual( planner.getClass().getName(), "org.apache.flink.table.planner.delegation.BatchPlanner") def test_table_environment_with_blink_planner(self): t_env = BatchTableEnvironment.create( environment_settings=EnvironmentSettings.new_instance().in_batch_mode() .use_blink_planner().build()) source_path = os.path.join(self.tempdir + '/streaming.csv') sink_path = os.path.join(self.tempdir + '/results') field_names = ["a", "b", "c"] field_types = [DataTypes.INT(), DataTypes.STRING(), DataTypes.STRING()] data = [(1, 'hi', 'hello'), (2, 'hello', 'hello')] csv_source = self.prepare_csv_source(source_path, data, field_types, field_names) t_env.register_table_source("source", csv_source) t_env.register_table_sink( "sink", CsvTableSink(field_names, field_types, sink_path)) source = t_env.scan("source") result = source.alias("a, b, c").select("1 + a, b, c") result.insert_into("sink") t_env.execute("blink_test") results = [] for root, dirs, files in os.walk(sink_path): for sub_file in files: with open(os.path.join(root, sub_file), 'r') as f: line = f.readline() while line is not None and line != '': results.append(line) line = f.readline() self.assert_equals(results, ['2,hi,hello\n', '3,hello,hello\n']) class BlinkBatchTableEnvironmentTests(PyFlinkBlinkBatchTableTestCase): def test_explain_with_multi_sinks(self): t_env = self.t_env source = t_env.from_elements([(1, "Hi", "Hello"), (2, "Hello", "Hello")], ["a", "b", "c"]) field_names = ["a", "b", "c"] field_types = [DataTypes.BIGINT(), DataTypes.STRING(), DataTypes.STRING()] t_env.register_table_sink( "sink1", CsvTableSink(field_names, field_types, "path1")) t_env.register_table_sink( "sink2", CsvTableSink(field_names, field_types, "path2")) t_env.sql_update("insert into sink1 select * from %s where a > 100" % source) t_env.sql_update("insert into sink2 select * from %s where a < 100" % source) actual = t_env.explain(extended=True) self.assertIsInstance(actual, str)
42.299424
100
0.637308
129c94f17fa4fe205481d0cdc728c2124db88cb2
256
py
Python
aioTelegramLogs/utils.py
AniWaffl/aioTelegramLogs
47819de02f8e7c1012fae8e274f7d1fac06d8603
[ "MIT" ]
2
2020-11-28T19:47:01.000Z
2021-12-29T21:35:19.000Z
aioTelegramLogs/utils.py
AniWaffl/aioTelegramLogs
47819de02f8e7c1012fae8e274f7d1fac06d8603
[ "MIT" ]
null
null
null
aioTelegramLogs/utils.py
AniWaffl/aioTelegramLogs
47819de02f8e7c1012fae8e274f7d1fac06d8603
[ "MIT" ]
null
null
null
# ะ ัั‚ะพ ัˆะพะฑั‹ ะฑะธะฑะปะธะพั‚ะตะบะฐ ะดะตะปะฐะปะฐ ะฝะพั€ะผะฐะปัŒะฝั‹ะต ะทะฐะฟั€ะพัั‹ ะฝะฐ ัะตั€ะฒะตั€ def escape_html(text): """ Escapes all html characters in text :param str text: :rtype: str """ return text.replace('&', '&amp;').replace('<', '&lt;').replace('>', '&gt;')
28.444444
79
0.605469
ffc37db1565f151250b189480f8eaa35db64d8ae
811
py
Python
server/problem_sets/static/static_problem_set.py
iiridescent/problem-sets
e906fe7509cd158ecdb5920853636339d4d531c3
[ "MIT" ]
null
null
null
server/problem_sets/static/static_problem_set.py
iiridescent/problem-sets
e906fe7509cd158ecdb5920853636339d4d531c3
[ "MIT" ]
5
2021-03-09T10:36:59.000Z
2022-02-26T14:36:08.000Z
server/problem_sets/static/static_problem_set.py
vinhowe/problem-sets
e906fe7509cd158ecdb5920853636339d4d531c3
[ "MIT" ]
null
null
null
from dataclasses import dataclass from problem_sets.serialization import serialize_recursive from problem_sets.static.data.static_problem_set_entity import StaticProblemSetEntity from problem_sets.static.static_problem import static_content_list_to_widget_list @dataclass class StaticProblemSet(StaticProblemSetEntity): def serialize(self) -> dict: data = self.__dict__.copy() del data['instruction_contents'] del data['answer_contents'] data['instructionContents'] = serialize_recursive( static_content_list_to_widget_list(self.instruction_contents)) data['answerContents'] = serialize_recursive(static_content_list_to_widget_list(self.answer_contents)) return data @classmethod def deserialize(cls, serialized: dict): pass
33.791667
110
0.771887
b0ba7fd83fe7ba1a58f2737fbcdf7b27fed32730
2,676
py
Python
egs/librispeech/ASR/transducer_stateless/joiner.py
TIFOSI528/icefall
6f7860a0a60b53026216fa4ba19048955951333e
[ "Apache-2.0" ]
null
null
null
egs/librispeech/ASR/transducer_stateless/joiner.py
TIFOSI528/icefall
6f7860a0a60b53026216fa4ba19048955951333e
[ "Apache-2.0" ]
null
null
null
egs/librispeech/ASR/transducer_stateless/joiner.py
TIFOSI528/icefall
6f7860a0a60b53026216fa4ba19048955951333e
[ "Apache-2.0" ]
1
2022-03-23T02:39:34.000Z
2022-03-23T02:39:34.000Z
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn class Joiner(nn.Module): def __init__(self, input_dim: int, output_dim: int): super().__init__() self.input_dim = input_dim self.output_dim = output_dim self.output_linear = nn.Linear(input_dim, output_dim) def forward( self, encoder_out: torch.Tensor, decoder_out: torch.Tensor, encoder_out_len: torch.Tensor, decoder_out_len: torch.Tensor, ) -> torch.Tensor: """ Args: encoder_out: Output from the encoder. Its shape is (N, T, self.input_dim). decoder_out: Output from the decoder. Its shape is (N, U, self.input_dim). encoder_out_len: A 1-D tensor of shape (N,) containing valid number of frames before padding in `encoder_out`. decoder_out_len: A 1-D tensor of shape (N,) containing valid number of frames before padding in `decoder_out`. Returns: Return a tensor of shape (sum_all_TU, self.output_dim). """ assert encoder_out.ndim == decoder_out.ndim == 3 assert encoder_out.size(0) == decoder_out.size(0) assert encoder_out.size(2) == self.input_dim assert decoder_out.size(2) == self.input_dim N = encoder_out.size(0) encoder_out_len = encoder_out_len.tolist() decoder_out_len = decoder_out_len.tolist() encoder_out_list = [ encoder_out[i, : encoder_out_len[i], :] for i in range(N) ] decoder_out_list = [ decoder_out[i, : decoder_out_len[i], :] for i in range(N) ] x = [ e.unsqueeze(1) + d.unsqueeze(0) for e, d in zip(encoder_out_list, decoder_out_list) ] x = [p.reshape(-1, self.input_dim) for p in x] x = torch.cat(x) activations = torch.tanh(x) logits = self.output_linear(activations) return logits
32.634146
74
0.627055
66259119fa6c0a2f85a8e25f238fd108c2c5ae8b
422
py
Python
src/models/face_detection.py
monim67/openvino-computer-pointer-controller
5ea50b33ae37ee29f52252eb0db2cafd36fc6df4
[ "MIT" ]
null
null
null
src/models/face_detection.py
monim67/openvino-computer-pointer-controller
5ea50b33ae37ee29f52252eb0db2cafd36fc6df4
[ "MIT" ]
null
null
null
src/models/face_detection.py
monim67/openvino-computer-pointer-controller
5ea50b33ae37ee29f52252eb0db2cafd36fc6df4
[ "MIT" ]
null
null
null
""" model: face-detection-adas-binary-0001 input: BxCxHxW input shape: (1, 3, 384, 672) output: (image_id, label, conf, x_min, y_min, x_max, y_max) output shape: (1, 1, N, 7) """ from .base_model import BaseModel class FaceDetect(BaseModel): model_name = "face-detection-adas-binary-0001" precision_directory_dict = { "FP32": "FP32-INT1", "FP16": "FP32-INT1", "INT8": "FP32-INT1", }
22.210526
59
0.63981
e17bd98a135f31645ae528d7aa4882ad6711b460
1,659
py
Python
accounts/urls.py
SolomonMbak/3_a
d5d7656091e866efa2cd5dcc7bd5bc54627ac62a
[ "Apache-2.0" ]
2
2019-08-07T05:50:25.000Z
2020-05-19T17:28:05.000Z
accounts/urls.py
SolomonMbak/3_a
d5d7656091e866efa2cd5dcc7bd5bc54627ac62a
[ "Apache-2.0" ]
11
2020-02-12T01:19:56.000Z
2022-03-11T23:55:28.000Z
accounts/urls.py
SolomonMbak/3_a
d5d7656091e866efa2cd5dcc7bd5bc54627ac62a
[ "Apache-2.0" ]
null
null
null
from django.urls import path from . import views from django.contrib.auth import views as auth_views app_name = "accounts" urlpatterns = [ path("register/", views.register, name="register"), path("account/", views.account, name="account"), path("logout/", views.logout_request, name="logout"), path("login/", views.login_request, name="login"), # path('accounts/password-reset/', # auth_views.PasswordResetView.as_view(), name='password_reset'), # path('accounts/password-reset/', auth_views.PasswordResetView.as_view( # template_name='accounts/password_reset_form.html'), name='password_reset'), # path('accounts/password-reset/done', # auth_views.PasswordResetDoneView.as_view(), name='password_reset_done'), # path('accounts/password-reset-confirm/<uidb64>/<token>/', # auth_views.PasswordResetConfirmView.as_view(), name='password_reset_confirm'), # path('accounts/password-reset-complete/', # auth_views.PasswordResetCompleteView.as_view(), name='password_reset_complete'), # path("", views.index, name="index"), # path("about/", views.about, name="about"), # path("password-reset/", views.password_reset, name="password_reset"), # path("change_password/", views.change_password, name="change_password"), # path("account/login/", views.login_request, name="login"), # path("<single_slug>", views.single_slug, name="single_slug"), # path("privacy_policy/", views.privacy_policy, name="privacy_policy"), # path("terms/", views.terms, name="terms"), # path("publish_a_course/", views.publish_a_course, name="publish_a_course"), ]
40.463415
91
0.694394
2f96e2c6fd00231ad1221ec9869bf4db9125ac49
954
py
Python
doc/gauss/listings/generators/gauss.py
lijun99/pyre
004dfd4c06489b4ba5b32877338ca6440f2d523b
[ "BSD-3-Clause" ]
3
2019-08-02T21:02:47.000Z
2021-09-08T13:59:43.000Z
doc/gauss/listings/generators/gauss.py
lijun99/pyre
004dfd4c06489b4ba5b32877338ca6440f2d523b
[ "BSD-3-Clause" ]
null
null
null
doc/gauss/listings/generators/gauss.py
lijun99/pyre
004dfd4c06489b4ba5b32877338ca6440f2d523b
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # michael a.g. aรฏvรกzis # orthologue # (c) 1998-2019 all rights reserved # def gauss(): """ The driver for the generator based implementation """ from Disk import Disk from Mersenne import Mersenne # inputs N = 10**5 box = [(0,1), (0,1)] # the point cloud cloud = Mersenne() # the region of integration disk = Disk(center=(0,0), radius=1) # the integration algorithm # build the point sample sample = cloud.points(N, box) # count the interior points interior = count(disk.interior(sample)) # print the estimate of ฯ€ print("ฯ€: {:.8f}".format(4*interior/N)) return def count(iterable): #@\label{line:driver:generators:count}@ """ Count the entries of iterable """ counter = 0 for item in iterable: counter += 1 return counter # main if __name__ == "__main__": gauss() # end of file
18.705882
60
0.606918
59c14eddfd03c5b034cb37c57da65e7575577d50
3,121
py
Python
example.py
boxblox/gdxtools
8d440a85f54c5a290be2cbe6d96c3d05a3f2ea44
[ "MIT" ]
2
2019-11-01T01:05:36.000Z
2020-02-08T01:42:41.000Z
example.py
boxblox/gdxtools
8d440a85f54c5a290be2cbe6d96c3d05a3f2ea44
[ "MIT" ]
null
null
null
example.py
boxblox/gdxtools
8d440a85f54c5a290be2cbe6d96c3d05a3f2ea44
[ "MIT" ]
null
null
null
import pandas as pd import gdxtools as gt if __name__ == '__main__': # create instance of gams gdx data gdxin = gt.gdxrw.gdxReader('trnsport_output.gdx') # get all symbols inside a GDX gdxin.symbols # get symbol types from a GDX file gdxin.symbolType # get symbol dimensions from a GDX file gdxin.symbolDimension # read in single items i = gdxin.rgdx(name='i') j = gdxin.rgdx(name='j') # read in multiple items m = gdxin.rgdx(name=['i', 'j']) # read in parameters and turn it into 'c' into a dataframe c = gdxin.rgdx(name='c') # create a simple index/value pandas dataframe c_df = pd.DataFrame(data=zip(c['values'].keys(), c['values'].values()), columns=['index', 'value']) # might also be helpful to split out the index tuple into different columns c_df2 = pd.DataFrame(data=c['values'].keys(), columns=c['domain']) c_df2['value'] = c['values'].values() # read in a variable and turn it into a dataframe x = gdxin.rgdx(name='x') x_df = pd.DataFrame(data=x['values'].keys(), columns=c['domain']) x_df['LO'] = [x['values'][i]['lower'] for i in x['values'].keys()] x_df['L'] = [x['values'][i]['level'] for i in x['values'].keys()] x_df['UP'] = [x['values'][i]['upper'] for i in x['values'].keys()] x_df['scale'] = [x['values'][i]['scale'] for i in x['values'].keys()] x_df['M'] = [x['values'][i]['marginal'] for i in x['values'].keys()] # -------------------------------------------------------------------------- # Write out another GDX with the similar structure to the original input gdx # Does NOT support EQUATIONS or VARIABLES # Check can be run with gdxdiff # -------------------------------------------------------------------------- gdxout = gt.gdxrw.gdxWriter('./trnsport_output_chk.gdx') # add sets without domain checking (universe domain) gdxout.add_set(gamssetname='i', toset=i['elements'], desc=i['text']) gdxout.add_set(gamssetname='j', toset=j['elements'], desc=j['text']) # there are no subsets in this example, but if you wanted to run domain checking you would use this: # gdxout.add_set_dc(gamssetname=, domain=, toset=, desc=) # add parameters and do the domain checking a = gdxin.rgdx(name='a') gdxout.add_parameter_dc(gamsparametername='a', domain=a['domain'], toparameter=a['values'], desc=a['text']) b = gdxin.rgdx(name='b') gdxout.add_parameter_dc(gamsparametername='b', domain=b['domain'], toparameter=b['values'], desc=b['text']) d = gdxin.rgdx(name='d') gdxout.add_parameter_dc(gamsparametername='d', domain=d['domain'], toparameter=d['values'], desc=d['text']) f = gdxin.rgdx(name='f') gdxout.add_scalar(gamsparametername='f', toparameter=f['values'], desc=f['text']) c = gdxin.rgdx(name='c') gdxout.add_parameter_dc(gamsparametername='c', domain=c['domain'], toparameter=c['values'], desc=c['text']) gdxout.export_gdx()
38.060976
104
0.585069
c6193867a749b05d40016b87bbe8334564844a24
37
py
Python
examples/list_folder.py
mohan3d/PyOpenload
83222bd0c55b474c1bb3c27732a79d95455c5d28
[ "MIT" ]
35
2016-09-13T21:29:00.000Z
2019-10-25T07:55:15.000Z
examples/list_folder.py
mohan3d/PyOpenload
83222bd0c55b474c1bb3c27732a79d95455c5d28
[ "MIT" ]
15
2017-05-14T20:20:59.000Z
2019-09-22T11:10:44.000Z
examples/list_folder.py
mohan3d/PyOpenload
83222bd0c55b474c1bb3c27732a79d95455c5d28
[ "MIT" ]
12
2017-01-28T17:45:54.000Z
2019-07-20T07:45:27.000Z
resp = ol.list_folder() print(resp)
9.25
23
0.702703
02dc1cfdd69bd6f884580c7338cbb3a281976a68
43,762
py
Python
src/sage/algebras/free_algebra.py
fredstro/sage
c936d2cda81ec7ec3552a3bdb29c994b40d1bb24
[ "BSL-1.0" ]
null
null
null
src/sage/algebras/free_algebra.py
fredstro/sage
c936d2cda81ec7ec3552a3bdb29c994b40d1bb24
[ "BSL-1.0" ]
null
null
null
src/sage/algebras/free_algebra.py
fredstro/sage
c936d2cda81ec7ec3552a3bdb29c994b40d1bb24
[ "BSL-1.0" ]
null
null
null
""" Free algebras AUTHORS: - David Kohel (2005-09) - William Stein (2006-11-01): add all doctests; implemented many things. - Simon King (2011-04): Put free algebras into the category framework. Reimplement free algebra constructor, using a :class:`~sage.structure.factory.UniqueFactory` for handling different implementations of free algebras. Allow degree weights for free algebras in letterplace implementation. EXAMPLES:: sage: F = FreeAlgebra(ZZ,3,'x,y,z') sage: F.base_ring() Integer Ring sage: G = FreeAlgebra(F, 2, 'm,n'); G Free Algebra on 2 generators (m, n) over Free Algebra on 3 generators (x, y, z) over Integer Ring sage: G.base_ring() Free Algebra on 3 generators (x, y, z) over Integer Ring The above free algebra is based on a generic implementation. By :trac:`7797`, there is a different implementation :class:`~sage.algebras.letterplace.free_algebra_letterplace.FreeAlgebra_letterplace` based on Singular's letterplace rings. It is currently restricted to weighted homogeneous elements and is therefore not the default. But the arithmetic is much faster than in the generic implementation. Moreover, we can compute Groebner bases with degree bound for its two-sided ideals, and thus provide ideal containment tests:: sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace') sage: F Free Associative Unital Algebra on 3 generators (x, y, z) over Rational Field sage: I = F*[x*y+y*z,x^2+x*y-y*x-y^2]*F sage: I.groebner_basis(degbound=4) Twosided Ideal (y*z*y*y - y*z*y*z + y*z*z*y - y*z*z*z, y*z*y*x + y*z*y*z + y*z*z*x + y*z*z*z, y*y*z*y - y*y*z*z + y*z*z*y - y*z*z*z, y*y*z*x + y*y*z*z + y*z*z*x + y*z*z*z, y*y*y - y*y*z + y*z*y - y*z*z, y*y*x + y*y*z + y*z*x + y*z*z, x*y + y*z, x*x - y*x - y*y - y*z) of Free Associative Unital Algebra on 3 generators (x, y, z) over Rational Field sage: y*z*y*y*z*z + 2*y*z*y*z*z*x + y*z*y*z*z*z - y*z*z*y*z*x + y*z*z*z*z*x in I True Positive integral degree weights for the letterplace implementation was introduced in :trac:`7797`:: sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace', degrees=[2,1,3]) sage: x.degree() 2 sage: y.degree() 1 sage: z.degree() 3 sage: I = F*[x*y-y*x, x^2+2*y*z, (x*y)^2-z^2]*F sage: Q.<a,b,c> = F.quo(I) sage: TestSuite(Q).run() sage: a^2*b^2 c*c TESTS:: sage: F = FreeAlgebra(GF(5),3,'x') sage: TestSuite(F).run() sage: F is loads(dumps(F)) True sage: F = FreeAlgebra(GF(5),3,'x', implementation='letterplace') sage: TestSuite(F).run() sage: F is loads(dumps(F)) True :: sage: F.<x,y,z> = FreeAlgebra(GF(5),3) sage: TestSuite(F).run() sage: F is loads(dumps(F)) True sage: F.<x,y,z> = FreeAlgebra(GF(5),3, implementation='letterplace') sage: TestSuite(F).run() sage: F is loads(dumps(F)) True :: sage: F = FreeAlgebra(GF(5),3, ['xx', 'zba', 'Y']) sage: TestSuite(F).run() sage: F is loads(dumps(F)) True sage: F = FreeAlgebra(GF(5),3, ['xx', 'zba', 'Y'], implementation='letterplace') sage: TestSuite(F).run() sage: F is loads(dumps(F)) True :: sage: F = FreeAlgebra(GF(5),3, 'abc') sage: TestSuite(F).run() sage: F is loads(dumps(F)) True sage: F = FreeAlgebra(GF(5),3, 'abc', implementation='letterplace') sage: TestSuite(F).run() sage: F is loads(dumps(F)) True :: sage: F = FreeAlgebra(FreeAlgebra(ZZ,2,'ab'), 2, 'x') sage: TestSuite(F).run() sage: F is loads(dumps(F)) True Note that the letterplace implementation can only be used if the corresponding (multivariate) polynomial ring has an implementation in Singular:: sage: FreeAlgebra(FreeAlgebra(ZZ,2,'ab'), 2, 'x', implementation='letterplace') Traceback (most recent call last): ... NotImplementedError: The letterplace implementation is not available for the free algebra you requested """ #***************************************************************************** # Copyright (C) 2005 David Kohel <kohel@maths.usyd.edu> # Copyright (C) 2005,2006 William Stein <wstein@gmail.com> # Copyright (C) 2011 Simon King <simon.king@uni-jena.de> # # Distributed under the terms of the GNU General Public License (GPL) # http://www.gnu.org/licenses/ #***************************************************************************** import six from sage.categories.rings import Rings from sage.monoids.free_monoid import FreeMonoid from sage.monoids.free_monoid_element import FreeMonoidElement from sage.algebras.free_algebra_element import FreeAlgebraElement import sage.structure.parent_gens from sage.structure.factory import UniqueFactory from sage.misc.cachefunc import cached_method from sage.all import PolynomialRing from sage.rings.ring import Algebra from sage.rings.polynomial.multi_polynomial_libsingular import MPolynomialRing_libsingular from sage.categories.algebras_with_basis import AlgebrasWithBasis from sage.combinat.free_module import CombinatorialFreeModule, CombinatorialFreeModuleElement from sage.combinat.words.word import Word from sage.structure.category_object import normalize_names class FreeAlgebraFactory(UniqueFactory): """ A constructor of free algebras. See :mod:`~sage.algebras.free_algebra` for examples and corner cases. EXAMPLES:: sage: FreeAlgebra(GF(5),3,'x') Free Algebra on 3 generators (x0, x1, x2) over Finite Field of size 5 sage: F.<x,y,z> = FreeAlgebra(GF(5),3) sage: (x+y+z)^2 x^2 + x*y + x*z + y*x + y^2 + y*z + z*x + z*y + z^2 sage: FreeAlgebra(GF(5),3, 'xx, zba, Y') Free Algebra on 3 generators (xx, zba, Y) over Finite Field of size 5 sage: FreeAlgebra(GF(5),3, 'abc') Free Algebra on 3 generators (a, b, c) over Finite Field of size 5 sage: FreeAlgebra(GF(5),1, 'z') Free Algebra on 1 generators (z,) over Finite Field of size 5 sage: FreeAlgebra(GF(5),1, ['alpha']) Free Algebra on 1 generators (alpha,) over Finite Field of size 5 sage: FreeAlgebra(FreeAlgebra(ZZ,1,'a'), 2, 'x') Free Algebra on 2 generators (x0, x1) over Free Algebra on 1 generators (a,) over Integer Ring Free algebras are globally unique:: sage: F = FreeAlgebra(ZZ,3,'x,y,z') sage: G = FreeAlgebra(ZZ,3,'x,y,z') sage: F is G True sage: F.<x,y,z> = FreeAlgebra(GF(5),3) # indirect doctest sage: F is loads(dumps(F)) True sage: F is FreeAlgebra(GF(5),['x','y','z']) True sage: copy(F) is F is loads(dumps(F)) True sage: TestSuite(F).run() By :trac:`7797`, we provide a different implementation of free algebras, based on Singular's "letterplace rings". Our letterplace wrapper allows for chosing positive integral degree weights for the generators of the free algebra. However, only (weighted) homogenous elements are supported. Of course, isomorphic algebras in different implementations are not identical:: sage: G = FreeAlgebra(GF(5),['x','y','z'], implementation='letterplace') sage: F == G False sage: G is FreeAlgebra(GF(5),['x','y','z'], implementation='letterplace') True sage: copy(G) is G is loads(dumps(G)) True sage: TestSuite(G).run() :: sage: H = FreeAlgebra(GF(5),['x','y','z'], implementation='letterplace', degrees=[1,2,3]) sage: F != H != G True sage: H is FreeAlgebra(GF(5),['x','y','z'], implementation='letterplace', degrees=[1,2,3]) True sage: copy(H) is H is loads(dumps(H)) True sage: TestSuite(H).run() Free algebras commute with their base ring. :: sage: K.<a,b> = FreeAlgebra(QQ,2) sage: K.is_commutative() False sage: L.<c> = FreeAlgebra(K,1) sage: L.is_commutative() False sage: s = a*b^2 * c^3; s a*b^2*c^3 sage: parent(s) Free Algebra on 1 generators (c,) over Free Algebra on 2 generators (a, b) over Rational Field sage: c^3 * a * b^2 a*b^2*c^3 """ def create_key(self,base_ring, arg1=None, arg2=None, sparse=False, order='degrevlex', names=None, name=None, implementation=None, degrees=None): """ Create the key under which a free algebra is stored. TESTS:: sage: FreeAlgebra.create_key(GF(5),['x','y','z']) (Finite Field of size 5, ('x', 'y', 'z')) sage: FreeAlgebra.create_key(GF(5),['x','y','z'],3) (Finite Field of size 5, ('x', 'y', 'z')) sage: FreeAlgebra.create_key(GF(5),3,'xyz') (Finite Field of size 5, ('x', 'y', 'z')) sage: FreeAlgebra.create_key(GF(5),['x','y','z'], implementation='letterplace') (Multivariate Polynomial Ring in x, y, z over Finite Field of size 5,) sage: FreeAlgebra.create_key(GF(5),['x','y','z'],3, implementation='letterplace') (Multivariate Polynomial Ring in x, y, z over Finite Field of size 5,) sage: FreeAlgebra.create_key(GF(5),3,'xyz', implementation='letterplace') (Multivariate Polynomial Ring in x, y, z over Finite Field of size 5,) sage: FreeAlgebra.create_key(GF(5),3,'xyz', implementation='letterplace', degrees=[1,2,3]) ((1, 2, 3), Multivariate Polynomial Ring in x, y, z, x_ over Finite Field of size 5) """ if arg1 is None and arg2 is None and names is None: # this is used for pickling if degrees is None: return (base_ring,) return tuple(degrees),base_ring PolRing = None # test if we can use libSingular/letterplace if implementation is not None and implementation != 'generic': try: PolRing = PolynomialRing(base_ring, arg1, arg2, sparse=sparse, order=order, names=names, name=name, implementation=implementation if implementation != 'letterplace' else None) if not isinstance(PolRing, MPolynomialRing_libsingular): if PolRing.ngens() == 1: PolRing = PolynomialRing(base_ring, 1, PolRing.variable_names()) if not isinstance(PolRing, MPolynomialRing_libsingular): raise TypeError else: raise TypeError except (TypeError, NotImplementedError) as msg: raise NotImplementedError("The letterplace implementation is not available for the free algebra you requested") if PolRing is not None: if degrees is None: return (PolRing,) from sage.all import TermOrder T = PolRing.term_order() + TermOrder('lex',1) varnames = list(PolRing.variable_names()) newname = 'x' while newname in varnames: newname += '_' varnames.append(newname) return tuple(degrees),PolynomialRing(PolRing.base(), varnames, sparse=sparse, order=T, implementation=implementation if implementation != 'letterplace' else None) # normalise the generator names from sage.all import Integer if isinstance(arg1, (int, long, Integer)): arg1, arg2 = arg2, arg1 if not names is None: arg1 = names elif not name is None: arg1 = name if arg2 is None: arg2 = len(arg1) names = normalize_names(arg2, arg1) return base_ring, names def create_object(self, version, key): """ Construct the free algebra that belongs to a unique key. NOTE: Of course, that method should not be called directly, since it does not use the cache of free algebras. TESTS:: sage: FreeAlgebra.create_object('4.7.1', (QQ['x','y'],)) Free Associative Unital Algebra on 2 generators (x, y) over Rational Field sage: FreeAlgebra.create_object('4.7.1', (QQ['x','y'],)) is FreeAlgebra(QQ,['x','y']) False """ if len(key) == 1: from sage.algebras.letterplace.free_algebra_letterplace import FreeAlgebra_letterplace return FreeAlgebra_letterplace(key[0]) if isinstance(key[0], tuple): from sage.algebras.letterplace.free_algebra_letterplace import FreeAlgebra_letterplace return FreeAlgebra_letterplace(key[1], degrees=key[0]) return FreeAlgebra_generic(key[0], len(key[1]), key[1]) FreeAlgebra = FreeAlgebraFactory('FreeAlgebra') def is_FreeAlgebra(x): """ Return True if x is a free algebra; otherwise, return False. EXAMPLES:: sage: from sage.algebras.free_algebra import is_FreeAlgebra sage: is_FreeAlgebra(5) False sage: is_FreeAlgebra(ZZ) False sage: is_FreeAlgebra(FreeAlgebra(ZZ,100,'x')) True sage: is_FreeAlgebra(FreeAlgebra(ZZ,10,'x',implementation='letterplace')) True sage: is_FreeAlgebra(FreeAlgebra(ZZ,10,'x',implementation='letterplace', degrees=range(1,11))) True """ from sage.algebras.letterplace.free_algebra_letterplace import FreeAlgebra_letterplace return isinstance(x, (FreeAlgebra_generic,FreeAlgebra_letterplace)) class FreeAlgebra_generic(CombinatorialFreeModule, Algebra): """ The free algebra on `n` generators over a base ring. INPUT: - ``R`` -- a ring - ``n`` -- an integer - ``names`` -- the generator names EXAMPLES:: sage: F.<x,y,z> = FreeAlgebra(QQ, 3); F Free Algebra on 3 generators (x, y, z) over Rational Field sage: mul(F.gens()) x*y*z sage: mul([ F.gen(i%3) for i in range(12) ]) x*y*z*x*y*z*x*y*z*x*y*z sage: mul([ F.gen(i%3) for i in range(12) ]) + mul([ F.gen(i%2) for i in range(12) ]) x*y*x*y*x*y*x*y*x*y*x*y + x*y*z*x*y*z*x*y*z*x*y*z sage: (2 + x*z + x^2)^2 + (x - y)^2 4 + 5*x^2 - x*y + 4*x*z - y*x + y^2 + x^4 + x^3*z + x*z*x^2 + x*z*x*z TESTS: Free algebras commute with their base ring. :: sage: K.<a,b> = FreeAlgebra(QQ) sage: K.is_commutative() False sage: L.<c,d> = FreeAlgebra(K) sage: L.is_commutative() False sage: s = a*b^2 * c^3; s a*b^2*c^3 sage: parent(s) Free Algebra on 2 generators (c, d) over Free Algebra on 2 generators (a, b) over Rational Field sage: c^3 * a * b^2 a*b^2*c^3 """ Element = FreeAlgebraElement def __init__(self, R, n, names): """ The free algebra on `n` generators over a base ring. EXAMPLES:: sage: F.<x,y,z> = FreeAlgebra(QQ, 3); F # indirect doctet Free Algebra on 3 generators (x, y, z) over Rational Field TEST: Note that the following is *not* the recommended way to create a free algebra:: sage: from sage.algebras.free_algebra import FreeAlgebra_generic sage: FreeAlgebra_generic(ZZ, 3, 'abc') Free Algebra on 3 generators (a, b, c) over Integer Ring """ if R not in Rings(): raise TypeError("Argument R must be a ring.") self.__ngens = n indices = FreeMonoid(n, names=names) cat = AlgebrasWithBasis(R) CombinatorialFreeModule.__init__(self, R, indices, prefix='F', category=cat) self._assign_names(indices.variable_names()) def one_basis(self): """ Return the index of the basis element `1`. EXAMPLES:: sage: F = FreeAlgebra(QQ, 2, 'x,y') sage: F.one_basis() 1 sage: F.one_basis().parent() Free monoid on 2 generators (x, y) """ return self._indices.one() def is_field(self, proof=True): """ Return True if this Free Algebra is a field, which is only if the base ring is a field and there are no generators EXAMPLES:: sage: A = FreeAlgebra(QQ,0,'') sage: A.is_field() True sage: A = FreeAlgebra(QQ,1,'x') sage: A.is_field() False """ if self.__ngens == 0: return self.base_ring().is_field(proof) return False def is_commutative(self): """ Return True if this free algebra is commutative. EXAMPLES:: sage: R.<x> = FreeAlgebra(QQ,1) sage: R.is_commutative() True sage: R.<x,y> = FreeAlgebra(QQ,2) sage: R.is_commutative() False """ return self.__ngens <= 1 and self.base_ring().is_commutative() def __cmp__(self, other): """ Two free algebras are considered the same if they have the same base ring, number of generators and variable names, and the same implementation. EXAMPLES:: sage: F = FreeAlgebra(QQ,3,'x') sage: F == FreeAlgebra(QQ,3,'x') True sage: F is FreeAlgebra(QQ,3,'x') True sage: F == FreeAlgebra(ZZ,3,'x') False sage: F == FreeAlgebra(QQ,4,'x') False sage: F == FreeAlgebra(QQ,3,'y') False Note that since :trac:`7797` there is a different implementation of free algebras. Two corresponding free algebras in different implementations are not equal, but there is a coercion:: """ if not isinstance(other, FreeAlgebra_generic): return -1 c = cmp(self.base_ring(), other.base_ring()) if c: return c c = cmp(self.__ngens, other.ngens()) if c: return c c = cmp(self.variable_names(), other.variable_names()) if c: return c return 0 def _repr_(self): """ Text representation of this free algebra. EXAMPLES:: sage: F = FreeAlgebra(QQ,3,'x') sage: F # indirect doctest Free Algebra on 3 generators (x0, x1, x2) over Rational Field sage: F.rename('QQ<<x0,x1,x2>>') sage: F #indirect doctest QQ<<x0,x1,x2>> sage: FreeAlgebra(ZZ,1,['a']) Free Algebra on 1 generators (a,) over Integer Ring """ return "Free Algebra on {} generators {} over {}".format( self.__ngens, self.gens(), self.base_ring()) def _element_constructor_(self, x): """ Convert ``x`` into ``self``. EXAMPLES:: sage: R.<x,y> = FreeAlgebra(QQ,2) sage: R(3) # indirect doctest 3 TESTS:: sage: F.<x,y,z> = FreeAlgebra(GF(5),3) sage: L.<x,y,z> = FreeAlgebra(ZZ,3,implementation='letterplace') sage: F(x) # indirect doctest x sage: F.1*L.2 y*z sage: (F.1*L.2).parent() is F True :: sage: K.<z> = GF(25) sage: F.<a,b,c> = FreeAlgebra(K,3) sage: L.<a,b,c> = FreeAlgebra(K,3, implementation='letterplace') sage: F.1+(z+1)*L.2 b + (z+1)*c Check that :trac:`15169` is fixed:: sage: A.<x> = FreeAlgebra(CC) sage: A(2) 2.00000000000000 We check that the string coercions work correctly over inexact fields:: sage: F.<x,y> = FreeAlgebra(CC) sage: F('2') 2.00000000000000 sage: F('x') 1.00000000000000*x Check that it also converts factorizations:: sage: f = Factorization([(x,2),(y,3)]); f 1.00000000000000*x^2 * 1.00000000000000*y^3 sage: F(f) 1.00000000000000*x^2*y^3 """ if isinstance(x, FreeAlgebraElement): P = x.parent() if P is self: return x if P is not self.base_ring(): return self.element_class(self, x) elif hasattr(x,'letterplace_polynomial'): P = x.parent() if self.has_coerce_map_from(P): # letterplace versus generic ngens = P.ngens() M = self._indices def exp_to_monomial(T): out = [] for i in xrange(len(T)): if T[i]: out.append((i%ngens,T[i])) return M(out) return self.element_class(self, dict([(exp_to_monomial(T),c) for T,c in x.letterplace_polynomial().dict().iteritems()])) # ok, not a free algebra element (or should not be viewed as one). if isinstance(x, six.string_types): from sage.all import sage_eval G = self.gens() d = {str(v): G[i] for i,v in enumerate(self.variable_names())} return self(sage_eval(x, locals=d)) R = self.base_ring() # coercion from free monoid if isinstance(x, FreeMonoidElement) and x.parent() is self._indices: return self.element_class(self, {x: R.one()}) # coercion from the PBW basis if isinstance(x, PBWBasisOfFreeAlgebra.Element) \ and self.has_coerce_map_from(x.parent()._alg): return self(x.parent().expansion(x)) # Check if it's a factorization from sage.structure.factorization import Factorization if isinstance(x, Factorization): return self.prod(f**i for f,i in x) # coercion via base ring x = R(x) if x == 0: return self.element_class(self, {}) return self.element_class(self, {self.one_basis(): x}) def _coerce_map_from_(self, R): """ Return ``True`` if there is a coercion from ``R`` into ``self`` and ``False`` otherwise. The things that coerce into ``self`` are: - This free algebra. - Anything with a coercion into ``self.monoid()``. - Free algebras in the same variables over a base with a coercion map into ``self.base_ring()``. - The underlying monoid. - The PBW basis of ``self``. - Anything with a coercion into ``self.base_ring()``. TESTS:: sage: F = FreeAlgebra(ZZ, 3, 'x,y,z') sage: G = FreeAlgebra(QQ, 3, 'x,y,z') sage: H = FreeAlgebra(ZZ, 1, 'y') sage: F._coerce_map_from_(G) False sage: G._coerce_map_from_(F) True sage: F._coerce_map_from_(H) False sage: F._coerce_map_from_(QQ) False sage: G._coerce_map_from_(QQ) True sage: F._coerce_map_from_(G.monoid()) True sage: F._coerce_map_from_(F.pbw_basis()) True sage: F.has_coerce_map_from(PolynomialRing(ZZ, 3, 'x,y,z')) False sage: K.<z> = GF(25) sage: F.<a,b,c> = FreeAlgebra(K,3) sage: F._coerce_map_from_(ZZ) True sage: F._coerce_map_from_(QQ) False sage: F._coerce_map_from_(F.monoid()) True sage: F._coerce_map_from_(F.pbw_basis()) True sage: G = FreeAlgebra(ZZ, 3, 'a,b,c') sage: F._coerce_map_from_(G) True sage: G._coerce_map_from_(F) False sage: L.<a,b,c> = FreeAlgebra(K,3, implementation='letterplace') sage: F.1 + (z+1) * L.2 b + (z+1)*c """ if self._indices.has_coerce_map_from(R): return True # free algebras in the same variable over any base that coerces in: if is_FreeAlgebra(R): if R.variable_names() == self.variable_names(): return self.base_ring().has_coerce_map_from(R.base_ring()) if isinstance(R, PBWBasisOfFreeAlgebra): return self.has_coerce_map_from(R._alg) return self.base_ring().has_coerce_map_from(R) def gen(self, i): """ The ``i``-th generator of the algebra. EXAMPLES:: sage: F = FreeAlgebra(ZZ,3,'x,y,z') sage: F.gen(0) x """ if i < 0 or not i < self.__ngens: raise IndexError("Argument i (= {}) must be between 0 and {}.".format(i, self.__ngens-1)) R = self.base_ring() F = self._indices return self.element_class(self, {F.gen(i): R.one()}) @cached_method def algebra_generators(self): """ Return the algebra generators of ``self``. EXAMPLES:: sage: F = FreeAlgebra(ZZ,3,'x,y,z') sage: F.algebra_generators() Finite family {'y': y, 'x': x, 'z': z} """ ret = {} for i in range(self.__ngens): x = self.gen(i) ret[str(x)] = x from sage.sets.family import Family return Family(ret) @cached_method def gens(self): """ Return the generators of ``self``. EXAMPLES:: sage: F = FreeAlgebra(ZZ,3,'x,y,z') sage: F.gens() (x, y, z) """ return tuple(self.gen(i) for i in range(self.__ngens)) def product_on_basis(self, x, y): """ Return the product of the basis elements indexed by ``x`` and ``y``. EXAMPLES:: sage: F = FreeAlgebra(ZZ,3,'x,y,z') sage: I = F.basis().keys() sage: x,y,z = I.gens() sage: F.product_on_basis(x*y, z*y) x*y*z*y """ return self.monomial(x * y) def quotient(self, mons, mats=None, names=None): """ Return a quotient algebra. The quotient algebra is defined via the action of a free algebra `A` on a (finitely generated) free module. The input for the quotient algebra is a list of monomials (in the underlying monoid for `A`) which form a free basis for the module of `A`, and a list of matrices, which give the action of the free generators of `A` on this monomial basis. EXAMPLES: Here is the quaternion algebra defined in terms of three generators:: sage: n = 3 sage: A = FreeAlgebra(QQ,n,'i') sage: F = A.monoid() sage: i, j, k = F.gens() sage: mons = [ F(1), i, j, k ] sage: M = MatrixSpace(QQ,4) sage: mats = [M([0,1,0,0, -1,0,0,0, 0,0,0,-1, 0,0,1,0]), M([0,0,1,0, 0,0,0,1, -1,0,0,0, 0,-1,0,0]), M([0,0,0,1, 0,0,-1,0, 0,1,0,0, -1,0,0,0]) ] sage: H.<i,j,k> = A.quotient(mons, mats); H Free algebra quotient on 3 generators ('i', 'j', 'k') and dimension 4 over Rational Field """ if mats is None: return super(FreeAlgebra_generic, self).quotient(mons, names) import free_algebra_quotient return free_algebra_quotient.FreeAlgebraQuotient(self, mons, mats, names) quo = quotient def ngens(self): """ The number of generators of the algebra. EXAMPLES:: sage: F = FreeAlgebra(ZZ,3,'x,y,z') sage: F.ngens() 3 """ return self.__ngens def monoid(self): """ The free monoid of generators of the algebra. EXAMPLES:: sage: F = FreeAlgebra(ZZ,3,'x,y,z') sage: F.monoid() Free monoid on 3 generators (x, y, z) """ return self._indices def g_algebra(self, relations, names=None, order='degrevlex', check=True): """ The `G`-Algebra derived from this algebra by relations. By default is assumed, that two variables commute. .. TODO:: - Coercion doesn't work yet, there is some cheating about assumptions - The optional argument ``check`` controls checking the degeneracy conditions. Furthermore, the default values interfere with non-degeneracy conditions. EXAMPLES:: sage: A.<x,y,z> = FreeAlgebra(QQ,3) sage: G = A.g_algebra({y*x: -x*y}) sage: (x,y,z) = G.gens() sage: x*y x*y sage: y*x -x*y sage: z*x x*z sage: (x,y,z) = A.gens() sage: G = A.g_algebra({y*x: -x*y+1}) sage: (x,y,z) = G.gens() sage: y*x -x*y + 1 sage: (x,y,z) = A.gens() sage: G = A.g_algebra({y*x: -x*y+z}) sage: (x,y,z) = G.gens() sage: y*x -x*y + z """ from sage.matrix.constructor import Matrix base_ring = self.base_ring() n = self.__ngens cmat = Matrix(base_ring, n) dmat = Matrix(self, n) for i in xrange(n): for j in xrange(i+1,n): cmat[i,j] = 1 for (to_commute,commuted) in relations.iteritems(): #This is dirty, coercion is broken assert isinstance(to_commute, FreeAlgebraElement), to_commute.__class__ assert isinstance(commuted, FreeAlgebraElement), commuted ((v1,e1),(v2,e2)) = list(list(to_commute)[0][0]) assert e1 == 1 assert e2 == 1 assert v1 > v2 c_coef = None d_poly = None for (m,c) in commuted: if list(m) == [(v2,1),(v1,1)]: c_coef = c #buggy coercion workaround d_poly = commuted - self(c) * self(m) break assert not c_coef is None,list(m) v2_ind = self.gens().index(v2) v1_ind = self.gens().index(v1) cmat[v2_ind,v1_ind] = c_coef if d_poly: dmat[v2_ind,v1_ind] = d_poly from sage.rings.polynomial.plural import g_Algebra return g_Algebra(base_ring, cmat, dmat, names = names or self.variable_names(), order=order, check=check) def poincare_birkhoff_witt_basis(self): """ Return the Poincare-Birkhoff-Witt (PBW) basis of ``self``. EXAMPLES:: sage: F.<x,y> = FreeAlgebra(QQ, 2) sage: F.poincare_birkhoff_witt_basis() The Poincare-Birkhoff-Witt basis of Free Algebra on 2 generators (x, y) over Rational Field """ return PBWBasisOfFreeAlgebra(self) pbw_basis = poincare_birkhoff_witt_basis def pbw_element(self, elt): """ Return the element ``elt`` in the Poincare-Birkhoff-Witt basis. EXAMPLES:: sage: F.<x,y> = FreeAlgebra(QQ, 2) sage: F.pbw_element(x*y - y*x + 2) 2*PBW[1] + PBW[x*y] sage: F.pbw_element(F.one()) PBW[1] sage: F.pbw_element(x*y*x + x^3*y) PBW[x*y]*PBW[x] + PBW[y]*PBW[x]^2 + PBW[x^3*y] + PBW[x^2*y]*PBW[x] + PBW[x*y]*PBW[x]^2 + PBW[y]*PBW[x]^3 """ PBW = self.pbw_basis() if elt == self.zero(): return PBW.zero() l = {} while elt: # != 0 lst = list(elt) support = [i[0].to_word() for i in lst] min_elt = support[0] for word in support[1:len(support)-1]: if min_elt.lex_less(word): min_elt = word coeff = lst[support.index(min_elt)][1] min_elt = min_elt.to_monoid_element() l[min_elt] = l.get(min_elt, 0) + coeff elt = elt - coeff * self.lie_polynomial(min_elt) return PBW.sum_of_terms([(k, v) for k,v in l.items() if v != 0], distinct=True) def lie_polynomial(self, w): """ Return the Lie polynomial associated to the Lyndon word ``w``. If ``w`` is not Lyndon, then return the product of Lie polynomials of the Lyndon factorization of ``w``. INPUT: - ``w`` -- a word or an element of the free monoid EXAMPLES:: sage: F = FreeAlgebra(QQ, 3, 'x,y,z') sage: M.<x,y,z> = FreeMonoid(3) sage: F.lie_polynomial(x*y) x*y - y*x sage: F.lie_polynomial(y*x) y*x sage: F.lie_polynomial(x^2*y*x) x^2*y*x - x*y*x^2 sage: F.lie_polynomial(y*z*x*z*x*z) y*z*x*z*x*z - y*z*x*z^2*x - y*z^2*x^2*z + y*z^2*x*z*x - z*y*x*z*x*z + z*y*x*z^2*x + z*y*z*x^2*z - z*y*z*x*z*x TESTS: We test some corner cases and alternative inputs:: sage: F.lie_polynomial(Word('xy')) x*y - y*x sage: F.lie_polynomial('xy') x*y - y*x sage: F.lie_polynomial(M.one()) 1 sage: F.lie_polynomial(Word([])) 1 sage: F.lie_polynomial('') 1 """ if not w: return self.one() M = self._indices if len(w) == 1: return self(M(w)) ret = self.one() # We have to be careful about order here. # Since the Lyndon factors appear from left to right # we must multiply from left to right as well. for factor in Word(w).lyndon_factorization(): if len(factor) == 1: ret = ret * self(M(factor)) continue x,y = factor.standard_factorization() x = M(x) y = M(y) ret = ret * (self(x * y) - self(y * x)) return ret class PBWBasisOfFreeAlgebra(CombinatorialFreeModule): """ The Poincare-Birkhoff-Witt basis of the free algebra. EXAMPLES:: sage: F.<x,y> = FreeAlgebra(QQ, 2) sage: PBW = F.pbw_basis() sage: px, py = PBW.gens() sage: px * py PBW[x*y] + PBW[y]*PBW[x] sage: py * px PBW[y]*PBW[x] sage: px * py^3 * px - 2*px * py -2*PBW[x*y] - 2*PBW[y]*PBW[x] + PBW[x*y^3]*PBW[x] + PBW[y]*PBW[x*y^2]*PBW[x] + PBW[y]^2*PBW[x*y]*PBW[x] + PBW[y]^3*PBW[x]^2 We can convert between the two bases:: sage: p = PBW(x*y - y*x + 2); p 2*PBW[1] + PBW[x*y] sage: F(p) 2 + x*y - y*x sage: f = F.pbw_element(x*y*x + x^3*y + x + 3) sage: F(PBW(f)) == f True sage: p = px*py + py^4*px^2 sage: F(p) x*y + y^4*x^2 sage: PBW(F(p)) == p True Note that multiplication in the PBW basis agrees with multiplication as monomials:: sage: F(px * py^3 * px - 2*px * py) == x*y^3*x - 2*x*y True TESTS: Check that going between the two bases is the identity:: sage: F = FreeAlgebra(QQ, 2, 'x,y') sage: PBW = F.pbw_basis() sage: M = F.monoid() sage: L = [j.to_monoid_element() for i in range(6) for j in Words('xy', i)] sage: all(PBW(F(PBW(m))) == PBW(m) for m in L) True sage: all(F(PBW(F(m))) == F(m) for m in L) True """ @staticmethod def __classcall_private__(cls, R, n=None, names=None): """ Normalize input to ensure a unique representation. EXAMPLES:: sage: from sage.algebras.free_algebra import PBWBasisOfFreeAlgebra sage: PBW1 = FreeAlgebra(QQ, 2, 'x,y').pbw_basis() sage: PBW2.<x,y> = PBWBasisOfFreeAlgebra(QQ) sage: PBW3 = PBWBasisOfFreeAlgebra(QQ, 2, ['x','y']) sage: PBW1 is PBW2 and PBW2 is PBW3 True """ if n is None and names is None: if not isinstance(R, FreeAlgebra_generic): raise ValueError("{} is not a free algebra".format(R)) alg = R else: if n is None: n = len(names) alg = FreeAlgebra(R, n, names) return super(PBWBasisOfFreeAlgebra, cls).__classcall__(cls, alg) def __init__(self, alg): """ Initialize ``self``. EXAMPLES:: sage: PBW = FreeAlgebra(QQ, 2, 'x,y').pbw_basis() sage: TestSuite(PBW).run() """ R = alg.base_ring() self._alg = alg category = AlgebrasWithBasis(R) CombinatorialFreeModule.__init__(self, R, alg.monoid(), prefix='PBW', category=category) self._assign_names(alg.variable_names()) def _repr_(self): """ Return a string representation of ``self``. EXAMPLES:: sage: FreeAlgebra(QQ, 2, 'x,y').pbw_basis() The Poincare-Birkhoff-Witt basis of Free Algebra on 2 generators (x, y) over Rational Field """ return "The Poincare-Birkhoff-Witt basis of {}".format(self._alg) def _repr_term(self, w): """ Return a representation of term indexed by ``w``. EXAMPLES:: sage: PBW = FreeAlgebra(QQ, 2, 'x,y').pbw_basis() sage: x,y = PBW.gens() sage: x*y # indirect doctest PBW[x*y] + PBW[y]*PBW[x] sage: y*x PBW[y]*PBW[x] sage: x^3 PBW[x]^3 sage: PBW.one() PBW[1] sage: 3*PBW.one() 3*PBW[1] """ if len(w) == 0: return super(PBWBasisOfFreeAlgebra, self)._repr_term(w) ret = '' p = 1 cur = None for x in w.to_word().lyndon_factorization(): if x == cur: p += 1 else: if len(ret) != 0: if p != 1: ret += "^{}".format(p) ret += "*" ret += super(PBWBasisOfFreeAlgebra, self)._repr_term(x.to_monoid_element()) cur = x p = 1 if p != 1: ret += "^{}".format(p) return ret def _element_constructor_(self, x): """ Convert ``x`` into ``self``. EXAMPLES:: sage: F.<x,y> = FreeAlgebra(QQ, 2) sage: R = F.pbw_basis() sage: R(3) 3*PBW[1] sage: R(x*y) PBW[x*y] + PBW[y]*PBW[x] """ if isinstance(x, FreeAlgebraElement): return self._alg.pbw_element(self._alg(x)) return CombinatorialFreeModule._element_constructor_(self, x) def _coerce_map_from_(self, R): """ Return ``True`` if there is a coercion from ``R`` into ``self`` and ``False`` otherwise. The things that coerce into ``self`` are: - Anything that coerces into the associated free algebra of ``self`` TESTS:: sage: F = FreeAlgebra(ZZ, 3, 'x,y,z').pbw_basis() sage: G = FreeAlgebra(QQ, 3, 'x,y,z').pbw_basis() sage: H = FreeAlgebra(ZZ, 1, 'y').pbw_basis() sage: F._coerce_map_from_(G) False sage: G._coerce_map_from_(F) True sage: F._coerce_map_from_(H) False sage: F._coerce_map_from_(QQ) False sage: G._coerce_map_from_(QQ) True sage: F._coerce_map_from_(G._alg.monoid()) True sage: F.has_coerce_map_from(PolynomialRing(ZZ, 3, 'x,y,z')) False sage: F.has_coerce_map_from(FreeAlgebra(ZZ, 3, 'x,y,z')) True """ return self._alg.has_coerce_map_from(R) def one_basis(self): """ Return the index of the basis element for `1`. EXAMPLES:: sage: PBW = FreeAlgebra(QQ, 2, 'x,y').pbw_basis() sage: PBW.one_basis() 1 sage: PBW.one_basis().parent() Free monoid on 2 generators (x, y) """ return self._indices.one() def algebra_generators(self): """ Return the generators of ``self`` as an algebra. EXAMPLES:: sage: PBW = FreeAlgebra(QQ, 2, 'x,y').pbw_basis() sage: gens = PBW.algebra_generators(); gens (PBW[x], PBW[y]) sage: all(g.parent() is PBW for g in gens) True """ return tuple(self.monomial(x) for x in self._indices.gens()) gens = algebra_generators def gen(self, i): """ Return the ``i``-th generator of ``self``. EXAMPLES:: sage: PBW = FreeAlgebra(QQ, 2, 'x,y').pbw_basis() sage: PBW.gen(0) PBW[x] sage: PBW.gen(1) PBW[y] """ return self.algebra_generators()[i] def free_algebra(self): """ Return the associated free algebra of ``self``. EXAMPLES:: sage: PBW = FreeAlgebra(QQ, 2, 'x,y').pbw_basis() sage: PBW.free_algebra() Free Algebra on 2 generators (x, y) over Rational Field """ return self._alg def product(self, u, v): """ Return the product of two elements ``u`` and ``v``. EXAMPLES:: sage: F = FreeAlgebra(QQ, 2, 'x,y') sage: PBW = F.pbw_basis() sage: x, y = PBW.gens() sage: PBW.product(x, y) PBW[x*y] + PBW[y]*PBW[x] sage: PBW.product(y, x) PBW[y]*PBW[x] sage: PBW.product(y^2*x, x*y*x) PBW[y]^2*PBW[x^2*y]*PBW[x] + PBW[y]^2*PBW[x*y]*PBW[x]^2 + PBW[y]^3*PBW[x]^3 TESTS: Check that multiplication agrees with the multiplication in the free algebra:: sage: F = FreeAlgebra(QQ, 2, 'x,y') sage: PBW = F.pbw_basis() sage: x, y = PBW.gens() sage: F(x*y) x*y sage: F(x*y*x) x*y*x sage: PBW(F(x)*F(y)*F(x)) == x*y*x True """ return self(self.expansion(u) * self.expansion(v)) def expansion(self, t): """ Return the expansion of the element ``t`` of the Poincare-Birkhoff-Witt basis in the monomials of the free algebra. EXAMPLES:: sage: F = FreeAlgebra(QQ, 2, 'x,y') sage: PBW = F.pbw_basis() sage: x,y = F.monoid().gens() sage: PBW.expansion(PBW(x*y)) x*y - y*x sage: PBW.expansion(PBW.one()) 1 sage: PBW.expansion(PBW(x*y*x) + 2*PBW(x) + 3) 3 + 2*x + x*y*x - y*x^2 TESTS: Check that we have the correct parent:: sage: PBW.expansion(PBW(x*y)).parent() is F True sage: PBW.expansion(PBW.one()).parent() is F True """ return sum([i[1] * self._alg.lie_polynomial(i[0]) for i in list(t)], self._alg.zero()) class Element(CombinatorialFreeModuleElement): def expand(self): """ Expand ``self`` in the monomials of the free algebra. EXAMPLES:: sage: F = FreeAlgebra(QQ, 2, 'x,y') sage: PBW = F.pbw_basis() sage: x,y = F.monoid().gens() sage: f = PBW(x^2*y) + PBW(x) + PBW(y^4*x) sage: f.expand() x + x^2*y - x*y*x + y^4*x """ return self.parent().expansion(self)
33.329779
352
0.534939
599b33e35c1a23e92d28d82efc52732675fab326
5,687
py
Python
publ/cli.py
PlaidWeb/Publ
67efc5e32bf25dbac72a83d1167de038b79db5a7
[ "MIT" ]
27
2018-11-30T21:32:26.000Z
2022-03-20T19:46:25.000Z
publ/cli.py
PlaidWeb/Publ
67efc5e32bf25dbac72a83d1167de038b79db5a7
[ "MIT" ]
249
2018-09-30T07:04:37.000Z
2022-03-29T04:31:00.000Z
publ/cli.py
PlaidWeb/Publ
67efc5e32bf25dbac72a83d1167de038b79db5a7
[ "MIT" ]
4
2019-03-01T06:46:13.000Z
2019-06-30T17:45:46.000Z
""" CLI utilities for Publ """ # pylint:disable=too-many-arguments import itertools import logging import os.path import re import time import arrow import click import slugify from flask.cli import AppGroup, with_appcontext from pony import orm from . import queries from .config import config LOGGER = logging.getLogger(__name__) publ_cli = AppGroup('publ', short_help="Publ-specific commands") # pylint:disable=invalid-name @publ_cli.command('reindex', short_help="Reindex the content store") @click.option('--quietly', '-q', 'quietly', is_flag=True, help="Quietly") @click.option('--fresh', '-f', 'fresh', is_flag=True, help="Start with a fresh database") @with_appcontext def reindex_command(quietly, fresh): """ Forces a reindex of the content store. This is particularly useful to ensure that all content has been indexed before performing another action, such as sending out notifications. """ from . import index, model if fresh: model.reset() spinner = itertools.cycle('|/-\\') index.scan_index(config.content_folder, False) while index.in_progress(): if not quietly: qlen = index.queue_size() or '' print(f"\rIndexing... {next(spinner)} {qlen} ", end='', flush=True) time.sleep(0.1) if not quietly: print("Done") @publ_cli.command('token', short_help="Generate a bearer token") @click.argument('identity') @click.option('--scope', '-s', help="The token's permission scope") @click.option('--lifetime', '-l', help="The token's lifetime (in seconds)", default=3600) @with_appcontext def token_command(identity, scope, lifetime): """ Generates a bearer token for use with external applications. """ from . import tokens print(tokens.get_token(identity, int(lifetime), scope)) @publ_cli.command('normalize', short_help="Normalize entry filenames") @click.argument('category', nargs=-1) @click.option('--recurse', '-r', 'recurse', is_flag=True, help="Include subdirectories") @click.option('--all', '-a', 'all_entries', is_flag=True, help="Apply to all entries, not just reachable ones") @click.option('--dry-run', '-n', 'dry_run', is_flag=True, help="Show, but don't apply, changes") @click.option('--format', '-f', 'format_str', help="Filename format to use", default="{date} {sid} {title}") @click.option('--verbose', '-v', 'verbose', is_flag=True, help="Show detailed actions") @with_appcontext @orm.db_session def normalize_command(category, recurse, dry_run, format_str, verbose, all_entries): """ Normalizes the filenames of content files based on a standardized format. This will only normalize entries which are already in the content index. If no categories are specified, it defaults to the root category. To include the root category in a list of other categories, use an empty string parameter, e.g.: flask publ normalize '' blog Available tokens for --format/-f: {date} The entry's publish date, in YYYYMMDD format {time} The entry's publish time, in HHMMSS format {id} The entry's ID {status} The entry's publish status {sid} If the entry is reachable, the ID, otherwise the status {title} The entry's title, normalized to filename-safe characters {slug} The entry's slug text {type} The entry's type """ # pylint:disable=too-many-locals from .model import PublishStatus entries = queries.build_query({ 'category': category or '', 'recurse': recurse, '_future': True, '_all': all_entries, }) fname_slugify = slugify.UniqueSlugify(max_length=100, safe_chars='-.', separator=' ') for entry in entries: path = os.path.dirname(entry.file_path) basename, ext = os.path.splitext(os.path.basename(entry.file_path)) status = PublishStatus(entry.status) eid = entry.id if status == PublishStatus.DRAFT: # Draft entries don't get a stable entry ID eid = status.name sid = entry.id if status in (PublishStatus.PUBLISHED, PublishStatus.HIDDEN, PublishStatus.SCHEDULED) else status.name date = arrow.get(entry.local_date) dest_basename = format_str.format( date=date.format('YYYYMMDD'), time=date.format('HHmmss'), id=eid, status=status.name, sid=sid, title=entry.title, slug=entry.slug_text, type=entry.entry_type).strip() dest_basename = re.sub(r' +', ' ', dest_basename) dest_basename = fname_slugify(dest_basename) if dest_basename != basename: dest_path = os.path.join(path, dest_basename + ext) if verbose: print(f'{entry.file_path} -> {dest_path}') if not os.path.isfile(entry.file_path): LOGGER.warning('File %s does not exist; is the index up-to-date?', entry.file_path) elif os.path.exists(dest_path): LOGGER.warning('File %s already exists', dest_path) elif not dry_run: try: os.rename(entry.file_path, dest_path) except OSError: LOGGER.exception('Error moving %s to %s', entry.file_path, dest_path) entry.file_path = dest_path orm.commit() def setup(app): """ Register the CLI commands with the command parser """ app.cli.add_command(publ_cli)
33.452941
99
0.629506
599318540b498896b040f8b56f2ba355b4ec70f6
161
py
Python
python/Journal.LinesByBlock.py
BIMpraxis/Journalysis
af0c042b28d01ba5e44dafc2bbe9556434e897b8
[ "MIT" ]
26
2017-11-23T19:30:03.000Z
2022-02-09T10:35:10.000Z
python/Journal.LinesByBlock.py
BIMpraxis/Journalysis
af0c042b28d01ba5e44dafc2bbe9556434e897b8
[ "MIT" ]
51
2017-11-16T15:02:32.000Z
2022-03-01T13:51:58.000Z
python/Journal.LinesByBlock.py
BIMpraxis/Journalysis
af0c042b28d01ba5e44dafc2bbe9556434e897b8
[ "MIT" ]
9
2017-11-20T09:20:01.000Z
2021-09-15T13:08:30.000Z
import clr OUT = [] if IN[0].__repr__() == 'Journal': if isinstance(IN[1], list): OUT = IN[0].GetLinesByBlocks(IN[1]) else: OUT = IN[0].GetLinesByBlock(IN[1])
26.833333
64
0.645963
75ff7101b226381d3bdb98df021396de19fd09e6
1,901
py
Python
backend/path-slice.py
marborkowski/nasa-space-apps-challenge
b8d1a57e7274de8dbecff1073ad56e80988c6593
[ "MIT" ]
null
null
null
backend/path-slice.py
marborkowski/nasa-space-apps-challenge
b8d1a57e7274de8dbecff1073ad56e80988c6593
[ "MIT" ]
null
null
null
backend/path-slice.py
marborkowski/nasa-space-apps-challenge
b8d1a57e7274de8dbecff1073ad56e80988c6593
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (c) 2016 - Piotr Skonieczka # import Image import pylab def get_polygon(list_of_points): return [(list_of_points[idx], list_of_points[idx+1]) for idx in xrange(len(list_of_points)-1)] def get_track(x1, y1, x2, y2): # Bresengham algorithm list_of_points = list() dx = abs(x1 - x2) dy = abs(y1 - y2) x_step = 1 if x1 < x2 else -1 y_step = 1 if y1 < y2 else -1 error = dx - dy while x1 != x2 and y1 != y2: list_of_points.append((x1, y1)) doubled_error = 2 * error if doubled_error > -dy: error -= dy x1 += x_step if doubled_error < dx: error += dx y1 += y_step list_of_points.append((x2, y2)) return list_of_points def get_track_of_polygon(polygon): return [get_track(p1[0], p1[1], p2[0], p2[1]) for p1, p2 in polygon] def get_image_cross_section(image, polygon): crossection_points = reduce(list.__add__, get_track_of_polygon(polygon)) crossection_pixels = map(lambda point: image.getpixel(point), crossection_points) return crossection_pixels def draw_the_track_cross_section(image, crossection_points): track_polygon = get_polygon(crossection_points) cross_section = get_image_cross_section(image, track_polygon) pylab.plot(map(lambda pixel: 255 - pixel[2], cross_section)) pylab.ylim(0, 255) pylab.xlim(0, len(cross_section)) pylab.xticks([]) pylab.autoscale(False) pylab.show() def main(): demo_image = Image.open("temporary-image.jpg", "r") # Some points p1 = (62, 1022) p2 = (30, 890) p3 = (415, 555) p4 = (252, 918) track1 = [p1, p4] track2 = [p1, p2, p3, p4] draw_the_track_cross_section(demo_image, track1) draw_the_track_cross_section(demo_image, track2) if __name__ == '__main__': main()
22.364706
98
0.642294
07132933343aa219a87da459baa1bf7e849944b1
5,450
py
Python
aispace/utils/str_utils.py
SmileGoat/AiSpace
35fc120667e4263c99b300815e0bf018f5064a40
[ "Apache-2.0" ]
32
2020-01-16T07:59:03.000Z
2022-03-31T09:24:00.000Z
aispace/utils/str_utils.py
SmileGoat/AiSpace
35fc120667e4263c99b300815e0bf018f5064a40
[ "Apache-2.0" ]
9
2020-06-05T03:27:06.000Z
2022-03-12T01:00:17.000Z
aispace/utils/str_utils.py
SmileGoat/AiSpace
35fc120667e4263c99b300815e0bf018f5064a40
[ "Apache-2.0" ]
3
2020-06-09T02:22:50.000Z
2021-07-19T06:07:07.000Z
# -*- coding: utf-8 -*- # @Time : 2019-11-04 11:08 # @Author : yingyuankai # @Email : yingyuankai@aliyun.com # @File : str_utils.py from typing import Union, List import unicodedata import six import nltk from nltk.util import ngrams import re from random import randint from datetime import datetime import hashlib def truncate_seq_pair(tokens_a: Union[List[int], List[str]], tokens_b: Union[List[int], List[str]], max_length: int): r"""Truncates a sequence pair in place to the maximum length. This is a simple heuristic which will always truncate the longer sequence one token at a time. This makes more sense than truncating an equal percent of tokens from each, since if one sequence is very short then each token that's truncated likely contains more information than a longer sequence. Example: .. code-block:: python tokens_a = [1, 2, 3, 4, 5] tokens_b = [6, 7] truncate_seq_pair(tokens_a, tokens_b, 5) tokens_a # [1, 2, 3] tokens_b # [6, 7] Args: tokens_a: A list of tokens or token ids. tokens_b: A list of tokens or token ids. max_length: maximum sequence length. """ while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop() def preprocess_text(inputs, lower=False, remove_space=True, keep_accents=False): if remove_space: outputs = ' '.join(inputs.strip().split()) else: outputs = inputs outputs = outputs.replace("``", '"').replace("''", '"') if six.PY2 and isinstance(outputs, str): outputs = outputs.decode('utf-8') if not keep_accents: outputs = unicodedata.normalize('NFKD', outputs) outputs = ''.join([c for c in outputs if not unicodedata.combining(c)]) if lower: outputs = outputs.lower() return outputs def printable_text(text): """Returns text encoded in a way suitable for print or `tf.logging`.""" # These functions want `str` for both Python2 and Python3, but in one case # it's a Unicode string and in the other it's a byte string. if six.PY3: if isinstance(text, str): return text elif isinstance(text, bytes): return text.decode("utf-8", "ignore") else: raise ValueError("Unsupported string type: %s" % (type(text))) elif six.PY2: if isinstance(text, str): return text elif isinstance(text, unicode): return text.encode("utf-8") else: raise ValueError("Unsupported string type: %s" % (type(text))) else: raise ValueError("Not running on Python2 or Python 3?") def mixed_segmentation(in_str, rm_punc=False): """ split Chinese with English :param in_str: :param rm_punc: :return: """ in_str = str(in_str).lower().strip() segs_out = [] temp_str = "" sp_char = ['-', ':', '_', '*', '^', '/', '\\', '~', '`', '+', '=', '๏ผŒ', 'ใ€‚', '๏ผš', '๏ผŸ', '๏ผ', 'โ€œ', 'โ€', '๏ผ›', 'โ€™', 'ใ€Š', 'ใ€‹', 'โ€ฆโ€ฆ', 'ยท', 'ใ€', 'ใ€Œ', 'ใ€', '๏ผˆ', '๏ผ‰', '๏ผ', '๏ฝž', 'ใ€Ž', 'ใ€'] for char in in_str: if rm_punc and char in sp_char: continue if re.search(r'[\u4e00-\u9fa5]', char) or char in sp_char: if temp_str != "": ss = nltk.word_tokenize(temp_str) segs_out.extend(ss) temp_str = "" segs_out.append(char) else: temp_str += char # handling last part if temp_str != "": ss = nltk.word_tokenize(temp_str) segs_out.extend(ss) return segs_out def remove_punctuation(in_str): """ remove punctuation :param in_str: :return: """ in_str = str(in_str).lower().strip() sp_char = ['-', ':', '_', '*', '^', '/', '\\', '~', '`', '+', '=', '๏ผŒ', 'ใ€‚', '๏ผš', '๏ผŸ', '๏ผ', 'โ€œ', 'โ€', '๏ผ›', 'โ€™', 'ใ€Š', 'ใ€‹', 'โ€ฆโ€ฆ', 'ยท', 'ใ€', 'ใ€Œ', 'ใ€', '๏ผˆ', '๏ผ‰', '๏ผ', '๏ฝž', 'ใ€Ž', 'ใ€'] out_segs = [] for char in in_str: if char in sp_char: continue else: out_segs.append(char) return ''.join(out_segs) def find_lcs(s1, s2): """ find longest common string :param s1: :param s2: :return: """ m = [[0 for i in range(len(s2) + 1)] for j in range(len(s1) + 1)] mmax = 0 p = 0 for i in range(len(s1)): for j in range(len(s2)): if s1[i] == s2[j]: m[i + 1][j + 1] = m[i][j] + 1 if m[i + 1][j + 1] > mmax: mmax = m[i + 1][j + 1] p = i + 1 return s1[p - mmax:p], mmax def uuid_maker(): """ make uuid according time and random number :return: """ return '{0:%Y%m%d%H%M%S%f}'.format(datetime.now()) + ''.join( [str(randint(1, 10)) for i in range(5)]) def text_to_ngrams(sequence, n_gram=3): result = [] if isinstance(sequence, list): sequence = ''.join(sequence) for i in range(1, n_gram + 1): subword = [''.join(itm) for itm in ngrams(sequence, i)] result.extend(subword) return result def compute_md5_hash(my_string): m = hashlib.md5() m.update(my_string.encode('utf-8')) return m.hexdigest()
29.144385
85
0.535413
b65e923175e2be6b22dd2fa993f2b5ae7e9babba
39,856
py
Python
paprika/setup.py
jeff231li/pAPRika
babd0ec7cf7e9a982e814d44cbe3e0e1dd8f31a8
[ "BSD-3-Clause" ]
3
2019-11-02T18:21:46.000Z
2019-12-03T22:47:41.000Z
paprika/setup.py
jeff231li/pAPRika
babd0ec7cf7e9a982e814d44cbe3e0e1dd8f31a8
[ "BSD-3-Clause" ]
null
null
null
paprika/setup.py
jeff231li/pAPRika
babd0ec7cf7e9a982e814d44cbe3e0e1dd8f31a8
[ "BSD-3-Clause" ]
null
null
null
""" This class contains a simulation setup wrapper for use with the OpenFF Evaluator. """ import logging import os import shutil import subprocess as sp from pathlib import Path import numpy as np import parmed as pmd import pkg_resources import pytraj as pt import simtk.openmm as openmm import simtk.unit as unit from paprika import align from paprika.restraints import static_DAT_restraint, DAT_restraint from paprika.restraints.read_yaml import read_yaml from paprika.restraints.restraints import create_window_list logger = logging.getLogger(__name__) _PI_ = np.pi def _get_installed_benchmarks(): _installed_benchmarks = {} for entry_point in pkg_resources.iter_entry_points(group="taproom.benchmarks"): _installed_benchmarks[entry_point.name] = entry_point.load() return _installed_benchmarks def read_openmm_system_from_xml(filename): with open(filename, "rb") as file: return openmm.XmlSerializer.deserialize(file.read().decode()) class Setup(object): """ The Setup class provides a wrapper function around the preparation of the host-guest system and the application of restraints. """ def __init__(self, host, guest=None, backend="openmm", directory_path="benchmarks", additional_benchmarks=None, generate_gaff_files=False, gaff_version="gaff2", guest_orientation=None, build=True): self.host = host self.guest = guest if guest is not None else "release" self.backend = backend self.directory = Path(directory_path).joinpath(self.host).joinpath(f"{self.guest}-{guest_orientation}" if guest_orientation is not None else f"{self.guest}") self.desolvated_window_paths = [] self.window_list = [] if self.backend == "amber": # Generate `frcmod` and dummy atom files. raise NotImplementedError self.directory.mkdir(parents=True, exist_ok=True) installed_benchmarks = get_benchmarks() if additional_benchmarks is not None: installed_benchmarks.update(additional_benchmarks) host_yaml, guest_yaml = self.parse_yaml(installed_benchmarks, guest_orientation) self.benchmark_path = host_yaml.parent self.host_yaml = read_yaml(host_yaml) if guest: self.guest_yaml = read_yaml(guest_yaml["yaml"]) if build: # Here, we build desolvated windows and pass the files to the OpenFF Evaluator. # These files are stored in `self.desolvated_window_paths`. self.build_desolvated_windows(guest_orientation) if generate_gaff_files: generate_gaff(mol2_file=self.benchmark_path.joinpath(self.host_yaml["structure"]), residue_name=self.host_yaml["resname"], output_name=self.host, directory_path=self.directory, gaff=gaff_version) if guest: generate_gaff(mol2_file=self.benchmark_path.joinpath( self.guest).joinpath(self.guest_yaml["structure"]), output_name=self.guest, residue_name=self.guest_yaml["name"], directory_path=self.directory, gaff=gaff_version) if not build: self.populate_window_list(input_pdb=os.path.join(self.directory, f"{self.host}-{self.guest}.pdb" if self.guest is not None else f"{self.host}.pdb")) def parse_yaml(self, installed_benchmarks, guest_orientation): """ Read the YAML recipe for the host and guest. Returns ------- """ try: if guest_orientation: host_yaml = installed_benchmarks["host_guest_systems"][self.host]["yaml"][guest_orientation] else: host_yaml = installed_benchmarks["host_guest_systems"][self.host]["yaml"]["p"] except KeyError: logger.error(f"Cannot find YAML recipe for host: {self.host}") logger.debug(installed_benchmarks) raise FileNotFoundError try: guest_yaml = installed_benchmarks["host_guest_systems"][self.host][self.guest] except KeyError: if self.guest == "release": guest_yaml = None else: logger.error(f"Cannot find YAML recipe for guest: {self.guest}") logger.debug(installed_benchmarks) raise FileNotFoundError return host_yaml, guest_yaml def align(self, input_pdb): structure = pmd.load_file(str(input_pdb), structure=True) intermediate_pdb = self.directory.joinpath(f"tmp.pdb") destination_pdb = self.directory.joinpath(f"{self.host}-{self.guest}.pdb") if not self.guest == "release": # Align the host-guest complex so the first guest atom is at (0, 0, 0) and the second guest atom lies # along the positive z-axis. guest_angle_restraint_mask = self.guest_yaml["restraints"]["guest"][-1]["restraint"][ "atoms" ].split() aligned_structure = align.zalign( structure, guest_angle_restraint_mask[1], guest_angle_restraint_mask[2] ) aligned_structure.save(str(intermediate_pdb), overwrite=True) else: # Create a PDB file just for the host. host = pmd.load_file(str(input_pdb), structure=True) host_coordinates = host[f":{self.host_yaml['resname'].upper()}"].coordinates # Cheap way to get the center of geometry offset_coordinates = pmd.geometry.center_of_mass(host_coordinates, masses=np.ones(len(host_coordinates))) # Find the principal components, take the two largest, and find the vector orthogonal to that # (should be cross-product right hand rule, I think). Use that vector to align with the z-axis. # This may not generalize to non-radially-symmetric host molecules. aligned_coords = np.empty_like(structure.coordinates) for atom in range(len(structure.atoms)): aligned_coords[atom] = structure.coordinates[atom] - offset_coordinates structure.coordinates = aligned_coords inertia_tensor = np.dot(structure.coordinates.transpose(), structure.coordinates) eigenvalues, eigenvectors = np.linalg.eig(inertia_tensor) order = np.argsort(eigenvalues) axis_3, axis_2, axis_1 = eigenvectors[:, order].transpose() dummy_axis = np.cross(axis_1, axis_2) self._add_dummy_to_PDB(input_pdb=input_pdb, output_pdb=intermediate_pdb, offset_coordinates=offset_coordinates, dummy_atom_tuples=[(0, 0, 0), (dummy_axis[0], dummy_axis[1], dummy_axis[2])]) structure = pmd.load_file(str(intermediate_pdb), structure=True) for atom in structure.atoms: atom.mass = 1.0 aligned_structure = align.zalign( structure, ":DM1", ":DM2" ) aligned_structure["!:DM1&!:DM2"].save(str(intermediate_pdb), overwrite=True) # Save aligned PDB file with CONECT records. positions_pdb = openmm.app.PDBFile(str(intermediate_pdb)) topology_pdb = openmm.app.PDBFile(str(input_pdb)) positions = positions_pdb.positions topology = topology_pdb.topology with open(destination_pdb, "w") as file: openmm.app.PDBFile.writeFile(topology, positions, file) os.remove(intermediate_pdb) def populate_window_list(self, input_pdb): logger.debug("Setting up dummy restraint to build window list.") _dummy_restraint = self._create_dummy_restraint( initial_structure=str(input_pdb), ) self.window_list = create_window_list([_dummy_restraint]) return _dummy_restraint def build_desolvated_windows(self, guest_orientation): if self.guest != "release": if not guest_orientation: initial_structure = self.benchmark_path.joinpath(self.guest).joinpath( self.guest_yaml["complex"] ) else: base_name = Path(self.guest_yaml["complex"]).stem orientation_structure = base_name + f"-{guest_orientation}.pdb" initial_structure = self.benchmark_path.joinpath(self.guest).joinpath( orientation_structure ) else: initial_structure = self.directory.joinpath(self.benchmark_path.joinpath(self.host_yaml["structure"])) host = pt.iterload(str(initial_structure), str(initial_structure)) host.save(str(self.directory.joinpath(f"{self.host}.pdb")), overwrite=True, options='conect') initial_structure = str(self.directory.joinpath(f"{self.host}.pdb")) self.align(input_pdb=initial_structure) _dummy_restraint = self.populate_window_list(input_pdb=initial_structure) for window in self.window_list: logger.debug(f"Translating guest in window {window}...") self.directory.joinpath("windows").joinpath(window).mkdir( parents=True, exist_ok=True ) self.translate(window, topology_pdb=initial_structure, restraint=_dummy_restraint) window_pdb_file_name = f"{self.host}-{self.guest}.pdb" self.desolvated_window_paths.append( str( self.directory.joinpath("windows") .joinpath(window) .joinpath(window_pdb_file_name) ) ) def _create_dummy_restraint(self, initial_structure): if self.guest != "release": windows = [ self.host_yaml["calculation"]["windows"]["attach"], self.host_yaml["calculation"]["windows"]["pull"], None, ] else: windows = [ None, None, self.host_yaml["calculation"]["windows"]["release"] ] guest_restraint = DAT_restraint() guest_restraint.auto_apr = True guest_restraint.continuous_apr = True guest_restraint.amber_index = False if self.backend == "openmm" else True guest_restraint.topology = str(initial_structure) guest_restraint.mask1 = "@1" guest_restraint.mask2 = "@2" if self.guest != "release": restraint = self.guest_yaml["restraints"]["guest"][0] guest_restraint.attach["target"] = restraint["restraint"]["attach"][ "target" ] guest_restraint.attach["fc_final"] = restraint["restraint"]["attach"][ "force_constant" ] guest_restraint.attach["fraction_list"] = self.host_yaml["calculation"][ "lambda" ]["attach"] guest_restraint.pull["target_final"] = self.host_yaml["calculation"]["target"][ "pull" ] guest_restraint.pull["num_windows"] = windows[1] else: # Remember, the purpose of this *fake* restraint is *only* to figure out how many windows to make, # so we can use the OpenFF Evaluator to solvate the structures for us. To figure out how many winodws # we need, just setting the lambda values should be sufficient. guest_restraint.auto_apr = False guest_restraint.continuous_apr = False guest_restraint.release["target"] = 1.0 guest_restraint.release["fc_final"] = 1.0 guest_restraint.release["fraction_list"] = self.host_yaml["calculation"][ "lambda" ]["release"] guest_restraint.initialize() return guest_restraint def translate(self, window, topology_pdb, restraint): window_path = self.directory.joinpath("windows").joinpath(window) if window[0] == "a": # Copy the initial structure. source_pdb = self.directory.joinpath(f"{self.host}-{self.guest}.pdb") shutil.copy(source_pdb, window_path) elif window[0] == "p": # Translate the guest. source_pdb = self.directory.joinpath(f"{self.host}-{self.guest}.pdb") structure = pmd.load_file(str(source_pdb), structure=True) target_difference = ( restraint.phase["pull"]["targets"][int(window[1:])] - restraint.pull["target_initial"] ) for atom in structure.atoms: if atom.residue.name == self.guest.upper(): atom.xz += target_difference intermediate_pdb = window_path.joinpath(f"tmp.pdb") destination_pdb = window_path.joinpath(f"{self.host}-{self.guest}.pdb") structure.save(str(intermediate_pdb), overwrite=True) input_pdb = openmm.app.PDBFile(str(intermediate_pdb)) topology_pdb = openmm.app.PDBFile(str(topology_pdb)) positions = input_pdb.positions topology = topology_pdb.topology with open(destination_pdb, "w") as file: openmm.app.PDBFile.writeFile(topology, positions, file) os.remove(intermediate_pdb) elif window[0] == "r": try: # Copy the final pull window, if it exists source_pdb = ( self.directory.joinpath("windows") .joinpath(f"p{self.host_yaml['calculation']['windows']['pull']:03d}") .joinpath(f"{self.host}-{self.guest}.pdb") ) shutil.copy(source_pdb, window_path) except FileNotFoundError: # Copy the initial structure, assuming we are doing a standalone release calculation. shutil.copy(self.directory.joinpath(f"{self.host}-{self.guest}.pdb"), window_path) def _add_dummy_to_PDB(self, input_pdb, output_pdb, offset_coordinates, dummy_atom_tuples): input_pdb_file = openmm.app.PDBFile(input_pdb) positions = input_pdb_file.positions # When we pass in a guest, we have multiple coordinates and the function expects to address the first guest # atom coordinates. # When we pass in the center of mass of the host, we'll only have one set of coordinates. if len(np.shape(offset_coordinates)) < 2: offset_coordinates = [offset_coordinates, ] for index, dummy_atom_tuple in enumerate(dummy_atom_tuples): positions.append( openmm.Vec3( offset_coordinates[0][0] + dummy_atom_tuple[0], offset_coordinates[0][1] + dummy_atom_tuple[1], offset_coordinates[0][2] + dummy_atom_tuple[2], ) * unit.angstrom ) topology = input_pdb_file.topology for dummy_index in range(len(dummy_atom_tuples)): dummy_chain = topology.addChain(None) dummy_residue = topology.addResidue(f"DM{dummy_index + 1}", dummy_chain) topology.addAtom(f"DUM", None, dummy_residue) with open(output_pdb, "w") as file: openmm.app.PDBFile.writeFile(topology, positions, file) def _add_dummy_to_System(self, system, dummy_atom_tuples): [system.addParticle(mass=207) for _ in range(len(dummy_atom_tuples))] for force_index in range(system.getNumForces()): force = system.getForce(force_index) if not isinstance(force, openmm.NonbondedForce): continue force.addParticle(0.0, 1.0, 0.0) force.addParticle(0.0, 1.0, 0.0) force.addParticle(0.0, 1.0, 0.0) return system def add_dummy_atoms( self, reference_pdb="reference.pdb", solvated_pdb="output.pdb", solvated_xml="system.xml", dummy_pdb="output.pdb", dummy_xml="output.xml", ): reference_structure = pmd.load_file(reference_pdb, structure=True) # Determine the offset coordinates for the new dummy atoms. if self.guest == "release": host_coordinates = reference_structure[f":{self.host_yaml['resname'].upper()}"].coordinates # Cheap way to get the center of geometry offset_coordinates = pmd.geometry.center_of_mass(host_coordinates, masses=np.ones(len(host_coordinates))) else: guest_angle_restraint_mask = self.guest_yaml["restraints"]["guest"][-1]["restraint"][ "atoms" ].split() offset_coordinates = reference_structure[f':{self.guest_yaml["name"].upper()} | :{self.host_yaml["resname"].upper()}']\ [guest_angle_restraint_mask[1]].coordinates # First add dummy atoms to structure logger.debug(f"Adding dummy atoms to {solvated_pdb}") try: self._add_dummy_to_PDB(solvated_pdb, dummy_pdb, offset_coordinates, dummy_atom_tuples=[(0, 0, -6.0), (0, 0, -9.0), (0, 2.2, -11.2)]) except FileNotFoundError: logger.warning(f"Missing {solvated_pdb}") self._wrap(dummy_pdb) # Add dummy atoms to System if solvated_xml is not None: try: system = read_openmm_system_from_xml(solvated_xml) system = self._add_dummy_to_System(system, dummy_atom_tuples=[(0, 0, -6.0), (0, 0, -9.0), (0, 2.2, -11.2)]) system_xml = openmm.XmlSerializer.serialize(system) with open(dummy_xml, "w") as file: file.write(system_xml) except FileNotFoundError: logger.warning(f"Missing {solvated_xml}") @staticmethod def _wrap(file, mask=":DM3"): logging.info(f"Re-wrapping {file} to avoid pulling near periodic boundaries.") structure = pmd.load_file(file, structure=True) anchor = structure[mask] anchor_z = anchor.atoms[0].xz for atom in structure.atoms: atom.xz -= anchor_z - 2.0 structure.save(file, overwrite=True) def initialize_restraints(self, structure="output.pdb"): if self.guest != "release": windows = [ self.host_yaml["calculation"]["windows"]["attach"], self.host_yaml["calculation"]["windows"]["pull"], None, ] else: windows = [None, None, self.host_yaml["calculation"]["windows"]["release"] ] static_restraints = [] for restraint in self.host_yaml["restraints"]["static"]: static = static_DAT_restraint( restraint_mask_list=restraint["restraint"]["atoms"].split(), num_window_list=windows, ref_structure=str(structure), force_constant=restraint["restraint"]["force_constant"], amber_index=False if self.backend == "openmm" else True, ) static_restraints.append(static) conformational_restraints = [] if self.host_yaml["restraints"]["conformational"]: for conformational in self.host_yaml["restraints"][ "conformational" ]: mask = conformational["restraint"]["atoms"].split() conformational_restraint = DAT_restraint() conformational_restraint.auto_apr = True conformational_restraint.continuous_apr = True conformational_restraint.amber_index = False if self.backend == "openmm" else True conformational_restraint.topology = str(structure) conformational_restraint.mask1 = mask[0] conformational_restraint.mask2 = mask[1] conformational_restraint.mask3 = mask[2] if len(mask) > 2 else None conformational_restraint.mask4 = mask[3] if len(mask) > 3 else None if self.guest != "release": conformational_restraint.attach["target"] = conformational["restraint"][ "target" ] conformational_restraint.attach["fc_final"] = conformational["restraint"][ "force_constant" ] conformational_restraint.attach["fraction_list"] = self.host_yaml["calculation"][ "lambda" ]["attach"] conformational_restraint.pull["target_final"] = conformational["restraint"][ "target" ] conformational_restraint.pull["num_windows"] = windows[1] else: conformational_restraint.auto_apr = False conformational_restraint.continuous_apr = False conformational_restraint.release["target"] = conformational["restraint"][ "target" ] conformational_restraint.release["fc_final"] = conformational["restraint"][ "force_constant" ] conformational_restraint.release["fraction_list"] = self.host_yaml["calculation"][ "lambda" ]["release"] conformational_restraint.initialize() conformational_restraints.append(conformational_restraint) else: logger.debug("Skipping conformational restraints...") symmetry_restraints = [] if self.guest != "release" and "symmetry_correction" in self.guest_yaml: for symmetry in self.guest_yaml["symmetry_correction"]["restraints"]: symmetry_restraint = DAT_restraint() symmetry_restraint.auto_apr = True symmetry_restraint.continuous_apr = True symmetry_restraint.amber_index = False if self.backend == "openmm" else True symmetry_restraint.topology = str(structure) symmetry_restraint.mask1 = symmetry["atoms"].split()[0] symmetry_restraint.mask2 = symmetry["atoms"].split()[1] symmetry_restraint.mask3 = symmetry["atoms"].split()[2] symmetry_restraint.attach["fc_final"] = symmetry["force_constant"] symmetry_restraint.attach["fraction_list"] = [1.0] * len(self.host_yaml["calculation"][ "lambda" ]["attach"]) # This target should be overridden by the custom values. symmetry_restraint.attach["target"] = 999.99 symmetry_restraint.custom_restraint_values["r2"] = 91 symmetry_restraint.custom_restraint_values["r3"] = 91 # 0 force constant between 91 degrees and 180 degrees. symmetry_restraint.custom_restraint_values["rk3"] = 0.0 symmetry_restraint.initialize() symmetry_restraints.append(symmetry_restraint) else: logger.debug("Skipping symmetry restraints...") wall_restraints = [] if self.guest != "release" and "wall_restraints" in self.guest_yaml['restraints']: for wall in self.guest_yaml["restraints"]["wall_restraints"]: wall_restraint = DAT_restraint() wall_restraint.auto_apr = True wall_restraint.continuous_apr = True wall_restraint.amber_index = False if self.backend == "openmm" else True wall_restraint.topology = str(structure) wall_restraint.mask1 = wall["restraint"]["atoms"].split()[0] wall_restraint.mask2 = wall["restraint"]["atoms"].split()[1] wall_restraint.attach["fc_final"] = wall["restraint"]["force_constant"] wall_restraint.attach["fraction_list"] = [1.0] * len(self.host_yaml["calculation"][ "lambda" ]["attach"]) wall_restraint.attach["target"] = wall["restraint"]["target"] # Minimum distance is 0 Angstrom wall_restraint.custom_restraint_values["r1"] = 0 wall_restraint.custom_restraint_values["r2"] = 0 # Harmonic force constant beyond target distance. wall_restraint.custom_restraint_values["rk2"] = wall["restraint"]["force_constant"] wall_restraint.custom_restraint_values["rk3"] = wall["restraint"]["force_constant"] wall_restraint.initialize() wall_restraints.append(wall_restraint) else: logger.debug("Skipping wall restraints...") guest_restraints = [] for restraint in [] if not hasattr(self, 'guest_yaml') else self.guest_yaml["restraints"]["guest"]: mask = restraint["restraint"]["atoms"].split() guest_restraint = DAT_restraint() guest_restraint.auto_apr = True guest_restraint.continuous_apr = True guest_restraint.amber_index = False if self.backend == "openmm" else True guest_restraint.topology = str(structure) guest_restraint.mask1 = mask[0] guest_restraint.mask2 = mask[1] guest_restraint.mask3 = mask[2] if len(mask) > 2 else None guest_restraint.mask4 = mask[3] if len(mask) > 3 else None guest_restraint.attach["target"] = restraint["restraint"]["attach"][ "target" ] guest_restraint.attach["fc_final"] = restraint["restraint"]["attach"][ "force_constant" ] guest_restraint.attach["fraction_list"] = self.host_yaml["calculation"][ "lambda" ]["attach"] guest_restraint.pull["target_final"] = restraint["restraint"]["pull"][ "target" ] guest_restraint.pull["num_windows"] = windows[1] guest_restraint.initialize() guest_restraints.append(guest_restraint) return ( static_restraints, conformational_restraints, symmetry_restraints, wall_restraints, guest_restraints, ) def initialize_calculation(self, window, structure_path="output.pdb", input_xml="system.xml", output_xml="system.xml"): if self.backend == "amber": # Write simulation input files in each directory raise NotImplementedError try: system = read_openmm_system_from_xml(input_xml) except FileNotFoundError: logger.warning(f"Cannot read XML from {input_xml}") # Apply the positional restraints. structure = pmd.load_file(structure_path, structure=True) for atom in structure.atoms: if atom.name == "DUM": positional_restraint = openmm.CustomExternalForce( "k * ((x-x0)^2 + (y-y0)^2 + (z-z0)^2)" ) positional_restraint.addPerParticleParameter("k") positional_restraint.addPerParticleParameter("x0") positional_restraint.addPerParticleParameter("y0") positional_restraint.addPerParticleParameter("z0") # I haven't found a way to get this to use ParmEd's unit library here. # ParmEd correctly reports `atom.positions` as units of ร…ngstroms. # But then we can't access atom indices. # Using `atom.xx` works for coordinates, but is unitless. k = 50.0 * unit.kilocalories_per_mole / unit.angstroms ** 2 x0 = 0.1 * atom.xx * unit.nanometers y0 = 0.1 * atom.xy * unit.nanometers z0 = 0.1 * atom.xz * unit.nanometers positional_restraint.addParticle(atom.idx, [k, x0, y0, z0]) system.addForce(positional_restraint) positional_restraint.setForceGroup(15) for restraint in self.static_restraints: system = apply_openmm_restraints(system, restraint, window, ForceGroup=10) for restraint in self.conformational_restraints: system = apply_openmm_restraints(system, restraint, window, ForceGroup=11) for restraint in self.guest_restraints: system = apply_openmm_restraints(system, restraint, window, ForceGroup=12) for restraint in self.symmetry_restraints: system = apply_openmm_restraints(system, restraint, window, flat_bottom=True, ForceGroup=13) for restraint in self.wall_restraints: system = apply_openmm_restraints(system, restraint, window, flat_bottom=True, ForceGroup=14) system_xml = openmm.XmlSerializer.serialize(system) with open(output_xml, "w") as file: file.write(system_xml) def get_benchmarks(): """ Determine the installed benchmarks. """ installed_benchmarks = _get_installed_benchmarks() return installed_benchmarks def apply_openmm_restraints(system, restraint, window, flat_bottom=False, ForceGroup=None): if window[0] == "a": phase = "attach" elif window[0] == "p": phase = "pull" elif window[0] == "r": phase = "release" window_number = int(window[1:]) if flat_bottom and phase == "attach" and restraint.mask3: flat_bottom_force = openmm.CustomAngleForce('step(-(theta - theta_0)) * k * (theta - theta_0)^2') # If theta is greater than theta_0, then the argument to step is negative, which means the force is off. flat_bottom_force.addPerAngleParameter("k") flat_bottom_force.addPerAngleParameter("theta_0") theta_0 = 91.0 * unit.degrees k = ( restraint.phase[phase]["force_constants"][window_number] * unit.kilocalories_per_mole / unit.radian ** 2 ) flat_bottom_force.addAngle( restraint.index1[0], restraint.index2[0], restraint.index3[0], [k, theta_0], ) system.addForce(flat_bottom_force) if ForceGroup: flat_bottom_force.setForceGroup(ForceGroup) return system elif flat_bottom and phase == "attach" and not restraint.mask3: flat_bottom_force = openmm.CustomBondForce('step((r - r_0)) * k * (r - r_0)^2') # If x is greater than x_0, then the argument to step is positive, which means the force is on. flat_bottom_force.addPerBondParameter("k") flat_bottom_force.addPerBondParameter("r_0") r_0 = restraint.phase[phase]["targets"][window_number] * unit.angstrom k = ( restraint.phase[phase]["force_constants"][window_number] * unit.kilocalories_per_mole / unit.radian ** 2 ) flat_bottom_force.addBond( restraint.index1[0], restraint.index2[0], [k, r_0], ) system.addForce(flat_bottom_force) if ForceGroup: flat_bottom_force.setForceGroup(ForceGroup) return system elif flat_bottom and phase == "pull": return system elif flat_bottom and phase == "release": return system if restraint.mask2 and not restraint.mask3: if not restraint.group1 and not restraint.group2: bond_restraint = openmm.CustomBondForce("k * (r - r_0)^2") bond_restraint.addPerBondParameter("k") bond_restraint.addPerBondParameter("r_0") r_0 = restraint.phase[phase]["targets"][window_number] * unit.angstroms k = ( restraint.phase[phase]["force_constants"][window_number] * unit.kilocalories_per_mole / unit.angstrom ** 2 ) bond_restraint.addBond(restraint.index1[0], restraint.index2[0], [k, r_0]) system.addForce(bond_restraint) else: bond_restraint = openmm.CustomCentroidBondForce( 2, "k * (distance(g1, g2) - r_0)^2" ) bond_restraint.addPerBondParameter("k") bond_restraint.addPerBondParameter("r_0") r_0 = restraint.phase[phase]["targets"][window_number] * unit.angstroms k = ( restraint.phase[phase]["force_constants"][window_number] * unit.kilocalories_per_mole / unit.angstrom ** 2 ) g1 = bond_restraint.addGroup(restraint.index1) g2 = bond_restraint.addGroup(restraint.index2) bond_restraint.addBond([g1, g2], [k, r_0]) system.addForce(bond_restraint) if ForceGroup: bond_restraint.setForceGroup(ForceGroup) elif restraint.mask3 and not restraint.mask4: if not restraint.group1 and not restraint.group2 and not restraint.group3: angle_restraint = openmm.CustomAngleForce("k * (theta - theta_0)^2") angle_restraint.addPerAngleParameter("k") angle_restraint.addPerAngleParameter("theta_0") theta_0 = restraint.phase[phase]["targets"][window_number] * unit.degrees k = ( restraint.phase[phase]["force_constants"][window_number] * unit.kilocalories_per_mole / unit.radian ** 2 ) angle_restraint.addAngle( restraint.index1[0], restraint.index2[0], restraint.index3[0], [k, theta_0], ) system.addForce(angle_restraint) else: # Probably needs openmm.CustomCentroidAngleForce (?) raise NotImplementedError if ForceGroup: angle_restraint.setForceGroup(ForceGroup) elif restraint.mask4: if ( not restraint.group1 and not restraint.group2 and not restraint.group3 and not restraint.group4 ): dihedral_restraint = openmm.CustomTorsionForce(f"k * min(min(abs(theta - theta_0), abs(theta - theta_0 + 2 * {_PI_})), abs(theta - theta_0 - 2 * {_PI_}))^2") dihedral_restraint.addPerTorsionParameter("k") dihedral_restraint.addPerTorsionParameter("theta_0") theta_0 = restraint.phase[phase]["targets"][window_number] * unit.degrees k = ( restraint.phase[phase]["force_constants"][window_number] * unit.kilocalories_per_mole / unit.radian ** 2 ) dihedral_restraint.addTorsion( restraint.index1[0], restraint.index2[0], restraint.index3[0], restraint.index4[0], [k, theta_0], ) system.addForce(dihedral_restraint) else: # Probably needs openmm.CustomCentroidTorsionForce (?) raise NotImplementedError if ForceGroup: dihedral_restraint.setForceGroup(ForceGroup) return system def generate_gaff(mol2_file, residue_name, output_name=None, need_gaff_atom_types=True, generate_frcmod=True, directory_path="benchmarks", gaff="gaff2"): if output_name is None: output_name = mol2_file.stem if need_gaff_atom_types: _generate_gaff_atom_types(mol2_file=mol2_file, residue_name=residue_name, output_name=output_name, gaff=gaff, directory_path=directory_path) logging.debug("Checking to see if we have a multi-residue MOL2 file that should be converted " "to single-residue...") structure = pmd.load_file(os.path.join(directory_path, f"{output_name}.{gaff}.mol2"), structure=True) if len(structure.residues) > 1: structure[":1"].save("tmp.mol2") if os.path.exists("tmp.mol2"): os.rename("tmp.mol2", os.path.join(directory_path, f"{output_name}.{gaff}.mol2")) logging.debug("Saved single-residue MOL2 file for `tleap`.") else: raise RuntimeError("Unable to convert multi-residue MOL2 file to single-residue for `tleap`.") if generate_frcmod: _generate_frcmod(mol2_file=f'{output_name}.{gaff}.mol2', gaff=gaff, output_name=output_name, directory_path=directory_path) else: raise NotImplementedError() def _generate_gaff_atom_types(mol2_file, residue_name, output_name, gaff="gaff2", directory_path="benchmarks"): p = sp.Popen(["antechamber", "-i", str(mol2_file), "-fi", "mol2", "-o", f"{output_name}.{gaff}.mol2", "-fo", "mol2", "-rn", f"{residue_name.upper()}", "-at", f"{gaff}", "-an", "no", "-dr", "no", "-pf", "yes"], cwd=directory_path) p.communicate() files = ["ANTECHAMBER_AC.AC", "ANTECHAMBER_AC.AC0", "ANTECHAMBER_BOND_TYPE.AC", "ANTECHAMBER_BOND_TYPE.AC0", "ATOMTYPE.INF"] files = [directory_path.joinpath(i) for i in files] for file in files: if file.exists(): logger.debug(f"Removing temporary file: {file}") file.unlink() if not os.path.exists(f"{output_name}.{gaff}.mol2"): # Try with the newer (AmberTools 19) version of `antechamber` which doesn't have the `-dr` flag p = sp.Popen(["antechamber", "-i", str(mol2_file), "-fi", "mol2", "-o", f"{output_name}.{gaff}.mol2", "-fo", "mol2", "-rn", f"{residue_name.upper()}", "-at", f"{gaff}", "-an", "no", "-pf", "yes"], cwd=directory_path) p.communicate() files = ["ANTECHAMBER_AC.AC", "ANTECHAMBER_AC.AC0", "ANTECHAMBER_BOND_TYPE.AC", "ANTECHAMBER_BOND_TYPE.AC0", "ATOMTYPE.INF"] files = [directory_path.joinpath(i) for i in files] for file in files: if file.exists(): logger.debug(f"Removing temporary file: {file}") file.unlink() def _generate_frcmod(mol2_file, gaff, output_name, directory_path="benchmarks"): sp.Popen(["parmchk2", "-i", str(mol2_file), "-f", "mol2", "-o", f"{output_name}.{gaff}.frcmod", "-s", f"{gaff}" ], cwd=directory_path)
42.948276
169
0.580465
9ebcb89749c04f152ab414d6e4c940e06282b368
1,761
py
Python
reinforcement_learning/rl_network_compression_ray_custom/src/tensorflow_resnet/compressor/train.py
jerrypeng7773/amazon-sagemaker-examples
c5ddecce1f739a345465b9a38b064983a129141d
[ "Apache-2.0" ]
2,610
2020-10-01T14:14:53.000Z
2022-03-31T18:02:31.000Z
reinforcement_learning/rl_network_compression_ray_custom/src/tensorflow_resnet/compressor/train.py
jerrypeng7773/amazon-sagemaker-examples
c5ddecce1f739a345465b9a38b064983a129141d
[ "Apache-2.0" ]
1,959
2020-09-30T20:22:42.000Z
2022-03-31T23:58:37.000Z
reinforcement_learning/rl_network_compression_ray_custom/src/tensorflow_resnet/compressor/train.py
jerrypeng7773/amazon-sagemaker-examples
c5ddecce1f739a345465b9a38b064983a129141d
[ "Apache-2.0" ]
2,052
2020-09-30T22:11:46.000Z
2022-03-31T23:02:51.000Z
import logging import math import tensorflow as tf def tensorflow_train( estimator, data_dir, batch_size, input_function, epochs=None, epochs_between_evals=1 ): """ This method will train a tensorflow model. Args: estimator: `tf.estimator.Estimator` object. data_dir: Directory where data is stored. batch_size: Mini batch size to train with. input_function: A function that will return a `tf.data.FixedLengthRecordDataset`. epochs: Number of epochs to train, if None will run eval only. epoch_between_evals: frequency of validation. """ def input_fn_train(num_epochs): return input_function( is_training=True, data_dir=data_dir, batch_size=batch_size, num_epochs=num_epochs, dtype=tf.float32, ) def input_fn_eval(): return input_function( is_training=False, data_dir=data_dir, batch_size=batch_size, num_epochs=1, dtype=tf.float32, ) if epochs is None: schedule, n_loops = [0], 1 else: n_loops = math.ceil(epochs / epochs_between_evals) schedule = [epochs_between_evals for _ in range(int(n_loops))] schedule[-1] = epochs - sum(schedule[:-1]) eval_results = None for cycle_index, num_train_epochs in enumerate(schedule): logging.info("Starting cycle: %d/%d", cycle_index, int(n_loops)) if num_train_epochs: estimator.train(input_fn=lambda: input_fn_train(num_train_epochs)) logging.info("Starting to evaluate.") eval_results = estimator.evaluate(input_fn=input_fn_eval) logging.info(eval_results) return eval_results
29.847458
89
0.645656
fc7fb926a4dd771ec9a2a88f5f589ac18145ffb1
753
py
Python
cloudmesh-exercises/e-cloudmesh-common-2.py
cybertraining-dsc/sp20-516-223
2e7188579a63e0cebf51880cd7c82307ae1b919c
[ "Apache-2.0" ]
1
2020-04-05T17:53:51.000Z
2020-04-05T17:53:51.000Z
cloudmesh-exercises/e-cloudmesh-common-2.py
iumsds/sp20-516-223
c67f0a966d10387d51575d097fad663791b47a00
[ "Apache-2.0" ]
1
2020-01-20T17:41:57.000Z
2020-01-20T17:41:57.000Z
cloudmesh-exercises/e-cloudmesh-common-2.py
iumsds/sp20-516-223
c67f0a966d10387d51575d097fad663791b47a00
[ "Apache-2.0" ]
8
2020-02-02T23:18:26.000Z
2020-04-05T06:17:24.000Z
# fa20-516-223 E.Cloudmesh.Common.2 from cloudmesh.common.Shell import Shell from cloudmesh.common.debug import VERBOSE from cloudmesh.common.dotdict import dotdict dist = Shell.distribution() VERBOSE(dist) # Convert the dict to dotdict. dist = dotdict(dist) print(f"Platform is {dist.platform}") if dist.platform == 'linux': if dist.ID == 'ubuntu': print('Nice you have ubuntu') if dist.VERSION_ID in ['"19.10"', '"18.04"']: print('and you have the right version as well. Good Job!') else: print('but you do not have the right version. Try harder!!!') else: print("You should use ubuntu") elif dist.platform == 'windows': print("Good Luck!!!") else: print("Unknown version")
26.892857
73
0.656042
98877642ce5b60c2f78e398ff84ec6fa125d5c01
1,521
py
Python
open_catalyst/ocpmodels/common/relaxation/ml_relaxation.py
henrique/hpc
b796e7aec0339b8a2d33e7af3c875ebe74f038aa
[ "Apache-2.0" ]
16
2020-10-26T15:35:20.000Z
2022-03-16T08:10:35.000Z
ocpmodels/common/relaxation/ml_relaxation.py
jg8610/ocp
5f16b64911e0dac3001d4cc7427d60469a967370
[ "MIT", "BSD-3-Clause" ]
23
2021-06-09T08:23:41.000Z
2022-03-14T17:37:24.000Z
ocpmodels/common/relaxation/ml_relaxation.py
jg8610/ocp
5f16b64911e0dac3001d4cc7427d60469a967370
[ "MIT", "BSD-3-Clause" ]
5
2021-01-11T22:17:54.000Z
2022-02-01T21:23:27.000Z
""" Copyright (c) Facebook, Inc. and its affiliates. This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree. """ from pathlib import Path import torch from ocpmodels.common.meter import mae, mae_ratio, mean_l2_distance from ocpmodels.common.registry import registry from .optimizers.lbfgs_torch import LBFGS, TorchCalc def ml_relax( batch, model, steps, fmax, relax_opt, device="cuda:0", transform=None, ): """ Runs ML-based relaxations. Args: batch: object model: object steps: int Max number of steps in the structure relaxation. fmax: float Structure relaxation terminates when the max force of the system is no bigger than fmax. relax_opt: str Optimizer and corresponding parameters to be used for structure relaxations. """ batch = batch[0] ids = batch.sid calc = TorchCalc(model, transform) # Run ML-based relaxation traj_dir = relax_opt.get("traj_dir", None) optimizer = LBFGS( batch, calc, maxstep=relax_opt.get("maxstep", 0.04), memory=relax_opt["memory"], damping=relax_opt.get("damping", 1.0), alpha=relax_opt.get("alpha", 70.0), device=device, traj_dir=Path(traj_dir) if traj_dir is not None else None, traj_names=ids, ) relaxed_batch = optimizer.run(fmax=fmax, steps=steps) return relaxed_batch
25.35
88
0.650888
e48a5aae4ecb69ead0115561c4bf64574b667bdd
7,657
py
Python
game_board.py
jeff012345/clue-part-duo
bd9ccd2ccdbc2fe358a696b31644b93e70ff874b
[ "MIT" ]
null
null
null
game_board.py
jeff012345/clue-part-duo
bd9ccd2ccdbc2fe358a696b31644b93e70ff874b
[ "MIT" ]
null
null
null
game_board.py
jeff012345/clue-part-duo
bd9ccd2ccdbc2fe358a696b31644b93e70ff874b
[ "MIT" ]
null
null
null
from __future__ import annotations from typing import List, Set, Dict, Tuple, Optional import pygame import pygame_gui from player import * from definitions import Room from ai_players import RLPlayer from Clue import Director, GameStatus from threading import Lock, Condition, Barrier from log_book_ui import LogBookPanel from panels import * from game_board_util import scale_position, PlayerPiece from player_roll import PlayerRoll black = (0,0,0) white = (255,255,255) red = (255,0,0) board_width = 882 display_width = LogBookPanel.PANEL_WIDTH + board_width display_height = 865 def run(director: Director, run_game_lock: Lock, end_game_lock: Lock, human: HumanPlayer, turn_lock: Lock): pygame.init() pygame.display.set_caption('Clue') game_display = pygame.display.set_mode((display_width, display_height)) manager = pygame_gui.UIManager((display_width, display_height), 'theme.json') clock = pygame.time.Clock() crashed = False # load images board_img = pygame.image.load('assets/board.jpg') start_button_rect = pygame.Rect(((display_width / 2) - 50, (display_height / 2) - 25), (100, 50)) start_button = pygame_gui.elements.UIButton(relative_rect=start_button_rect, text='Start Game', manager=manager) board_surface = pygame.Surface((board_width, display_height)) player_pieces: List[PlayerPiece] = list(map(lambda p: PlayerPiece(p, board_surface), director.players)) on_end_turn = lambda: end_turn(turn_lock) player_roll = PlayerRoll(board_surface, human, on_end_turn) log_book_ui = LogBookPanel(manager) guess_panel = GuessPanel(manager, display_width, display_height, human, on_end_turn) start_turn_menu = StartTurnPanel(manager, display_width, display_height, player_roll, guess_panel, human) match_pick_panel = MatchPickPanel(manager, display_width, display_height, human, on_end_turn) human.on_turn = lambda turn: on_player_turn(manager, turn, turn_lock, start_turn_menu, match_pick_panel, on_end_turn) started = False while end_game_lock.locked() is False and not started: time_delta = clock.tick(60) / 1000.0 for event in pygame.event.get(): if event.type == pygame.QUIT: quit_game(end_game_lock, run_game_lock, turn_lock) break elif event.type == pygame.USEREVENT: if event.user_type == pygame_gui.UI_BUTTON_PRESSED: if event.ui_element == start_button: start_button.kill() run_game_lock.release() started = True manager.process_events(event) game_display.fill(white) manager.update(time_delta) manager.draw_ui(game_display) pygame.display.update() if started: # start the game log_book_ui.show() while end_game_lock.locked() is False: time_delta = clock.tick(60) / 1000.0 for event in pygame.event.get(): if event.type == pygame.QUIT: quit_game(end_game_lock, run_game_lock, turn_lock) break start_turn_menu.process_events(event) log_book_ui.process_events(event) player_roll.process_events(event) match_pick_panel.process_events(event) guess_panel.process_events(event) manager.process_events(event) game_display.fill(white) board_surface.blit(board_img, (0, 0)) if director.game_status == GameStatus.RUNNING: for player in player_pieces: player.draw() player_roll.draw() game_display.blit(board_surface, (LogBookPanel.PANEL_WIDTH, 0)) manager.update(time_delta) manager.draw_ui(game_display) pygame.display.update() pygame.quit() def on_player_turn(manager, turn_data: HumanTurn, lock: Lock, start_turn_menu: StartTurnPanel, \ match_pick_panel: MatchPickPanel, on_end_turn: Callable[[Lock]]): print("player turn") lock.acquire() print("starting player turn") if isinstance(turn_data, PickMatchTurn): match_pick_panel.show(turn_data) elif isinstance(turn_data, GuessOutcome): if turn_data.match is None: message = "No one showed a card!" else: player_name = turn_data.showing_player.character.pretty() card: Enum = None if turn_data.match.character is not None: card = turn_data.match.character elif turn_data.match.weapon is not None: card = turn_data.match.weapon else: card = turn_data.match.room message = player_name + " has showed you " + str(card) rect = create_modal_rect(display_width, display_height, 300, 160) EndTurnWindow(rect, manager, on_end_turn, "Guess Result", message) elif isinstance(turn_data, AccusationOutcome): message = None if turn_data.correct: message = 'You Win! Your accusation is correct!' else: message = 'You have lost! Your accusation is incorrect.' message += '<br><br><strong>Solution:</strong> ' + str(turn_data.solution) rect = create_modal_rect(display_width, display_height, 400, 200) EndTurnWindow(rect, manager, on_end_turn, "Accusation Result", message) elif isinstance(turn_data, OpponentGuess): player_name = turn_data.opponent.character.pretty() message = "Player " + player_name + " made a guess.<br><br >" + str(turn_data.guess) rect = create_modal_rect(display_width, display_height, 400, 200) EndTurnWindow(rect, manager, on_end_turn, "Opponent Guess", message) elif isinstance(turn_data, DealCard): message = "You have been dealt the following cards<br>" for card in turn_data.cards: message += str(card) + "<br>" rect = create_modal_rect(display_width, display_height, 400, 200) EndTurnWindow(rect, manager, on_end_turn, "Dealt Cards", message) elif isinstance(turn_data, GameOver): player_name = turn_data.winner.character.pretty() message = "You have lost! " + player_name + " is the winner!" message += "<br><strong>Solution:</strong> " + str(turn_data.solution) if isinstance(turn_data.winner, RLPlayer): message += "<br>Winner was the AI" rect = create_modal_rect(display_width, display_height, 400, 200) EndTurnWindow(rect, manager, on_end_turn, "Game Over", message) else: start_turn_menu.show() def end_turn(lock: Lock): print("player end turn") lock.release() def quit_game(end_game_lock, run_game_lock, turn_lock): end_game_lock.acquire() if run_game_lock.locked(): run_game_lock.release() if turn_lock.locked(): turn_lock.release() if __name__ == "__main__": human = NaiveComputerPlayer()# HumanPlayer() players = [ NaiveComputerPlayer(), NaiveComputerPlayer(), NaiveComputerPlayer(), NaiveComputerPlayer(), NaiveComputerPlayer(), human ] run_game_lock = Lock() end_game_lock = Lock() turn_lock = Lock() director = Director(end_game_lock, players, turn_lock) run(director, run_game_lock, end_game_lock, human, turn_lock)
35.780374
121
0.642027
af53f01f0bd1e029b9942ba5a1f6d783de18f93f
556
py
Python
backend/home/migrations/0001_load_initial_data.py
crowdbotics-dev/testtemplateapp1234-23630
c3a1684aac0feca1ed5fbb9735f19aa05345d96e
[ "FTL", "AML", "RSA-MD" ]
null
null
null
backend/home/migrations/0001_load_initial_data.py
crowdbotics-dev/testtemplateapp1234-23630
c3a1684aac0feca1ed5fbb9735f19aa05345d96e
[ "FTL", "AML", "RSA-MD" ]
null
null
null
backend/home/migrations/0001_load_initial_data.py
crowdbotics-dev/testtemplateapp1234-23630
c3a1684aac0feca1ed5fbb9735f19aa05345d96e
[ "FTL", "AML", "RSA-MD" ]
null
null
null
from django.db import migrations def create_site(apps, schema_editor): Site = apps.get_model("sites", "Site") custom_domain = "testtemplateapp1234-23630.botics.co" site_params = { "name": "TesttemplateApp1234", } if custom_domain: site_params["domain"] = custom_domain Site.objects.update_or_create(defaults=site_params, id=1) class Migration(migrations.Migration): dependencies = [ ("sites", "0002_alter_domain_unique"), ] operations = [ migrations.RunPython(create_site), ]
21.384615
61
0.669065
4854068268530eebecd0e9b87979ab494154ca4e
668
py
Python
home/migrations/0001_initial.py
d-shaktiranjan/E_Note_Book
2746392bc88f11ce5fb0d4bb3a1a911b3d2bc766
[ "Apache-2.0" ]
null
null
null
home/migrations/0001_initial.py
d-shaktiranjan/E_Note_Book
2746392bc88f11ce5fb0d4bb3a1a911b3d2bc766
[ "Apache-2.0" ]
1
2022-01-27T18:56:50.000Z
2022-01-27T18:56:50.000Z
home/migrations/0001_initial.py
d-shaktiranjan/E_Note_Book
2746392bc88f11ce5fb0d4bb3a1a911b3d2bc766
[ "Apache-2.0" ]
null
null
null
# Generated by Django 3.1.4 on 2021-01-03 15:46 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='NoteBook', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('noteName', models.CharField(max_length=10)), ('about', models.CharField(max_length=25)), ('teachers', models.CharField(max_length=20)), ('dateTime', models.DateTimeField()), ], ), ]
26.72
114
0.565868
d513d5aa8b9dcde68465fe954ffc5ac47706b888
378
py
Python
azkm/__main__.py
frogrammer/azure-knowledgemining-cli
15ffded9ebb6edc0009c6b77ddee64757be6fc7d
[ "Apache-2.0" ]
null
null
null
azkm/__main__.py
frogrammer/azure-knowledgemining-cli
15ffded9ebb6edc0009c6b77ddee64757be6fc7d
[ "Apache-2.0" ]
null
null
null
azkm/__main__.py
frogrammer/azure-knowledgemining-cli
15ffded9ebb6edc0009c6b77ddee64757be6fc7d
[ "Apache-2.0" ]
null
null
null
"""azkm CLI entry point.""" from azkm.flight_checks import prereqs import firehelper import sys from azkm.commands import * # noqa def main(): """azkm CLI. """ if len(sys.argv) == 1: prereqs.confirm_cmd() else: prereqs.check_cmd() start_cli() def start_cli(): firehelper.start_fire_cli('azkm') if __name__ == '__main__': main()
16.434783
38
0.62963
dbc5545f33eccd1c63a3a0100dfc2adab717810d
2,098
py
Python
main.py
daniel4lee/PSO-car-simulator
b4aebca0fed614e33acc3e7d665085d55a67b82a
[ "MIT" ]
1
2022-03-23T21:51:59.000Z
2022-03-23T21:51:59.000Z
main.py
daniel4lee/PSO-car-simulator
b4aebca0fed614e33acc3e7d665085d55a67b82a
[ "MIT" ]
1
2018-10-08T12:53:42.000Z
2018-10-08T13:46:13.000Z
main.py
daniel4lee/PSO-car-simulator
b4aebca0fed614e33acc3e7d665085d55a67b82a
[ "MIT" ]
2
2020-04-26T08:22:53.000Z
2021-05-18T09:51:24.000Z
""" the main excution file """ import os from os.path import join, isfile from collections import namedtuple import sys from PyQt5.QtWidgets import QApplication from PSO_system.GUI.gui_root import GuiRoot import numpy as np def main(): """Read data as dictionary""" sys.argv += ['--style', 'fusion'] app = QApplication(sys.argv) gui_root = GuiRoot(read_file(), read_training_file()) sys.exit(app.exec_()) def read_file(): """Read txt file in same location""" road_map = namedtuple('road_map', ['start', 'x', 'y']) datapath = join(os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__))), "map_data") folderfiles = os.listdir(datapath) dataset = {} paths = (join(datapath, f) for f in folderfiles if isfile(join(datapath, f))) for idx, content in enumerate(list(map(lambda path: open(path, 'r'), paths))): i = 0 for line in content: if i == 0: dataset[folderfiles[idx]] = road_map(list(map(float, line.split(','))), [], []) else: dataset[folderfiles[idx]].x.append(float(line.split(',')[0])) dataset[folderfiles[idx]].y.append(float(line.split(',')[1])) i += 1 return dataset def read_training_file(): """Read txt file in same location""" train_data = namedtuple('train_data', ['wheel_angle', 'v_x']) datapath = join(os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__))), "training_data") folderfiles = os.listdir(datapath) dataset = {} paths = (join(datapath, f) for f in folderfiles if isfile(join(datapath, f))) for idx, content in enumerate(list(map(lambda path: open(path, 'r'), paths))): i = 0 for line in content: if i == 0: dataset[folderfiles[idx]] = train_data([], []) dataset[folderfiles[idx]].wheel_angle.append(float(line.split(' ')[-1])) t = line.split(' ') del t[-1] dataset[folderfiles[idx]].v_x.append(np.array(list(map(float, t)))) i += 1 return dataset main()
39.584906
108
0.608198
992348a73e9b9b5ff6df854b9656ee3f11ca9d77
9,030
py
Python
interactive.py
vliu15/dialogue-seq2seq
d78354cdb568963f8e85fce1202e85690535f01c
[ "MIT" ]
27
2019-04-17T11:02:39.000Z
2021-12-16T09:42:41.000Z
interactive.py
lixinyu-up/dialogue-seq2seq
d78354cdb568963f8e85fce1202e85690535f01c
[ "MIT" ]
1
2019-03-01T09:21:09.000Z
2019-03-02T22:49:48.000Z
interactive.py
vliu15/transformer-rnn-pytorch
d78354cdb568963f8e85fce1202e85690535f01c
[ "MIT" ]
13
2019-03-31T05:16:49.000Z
2021-07-09T13:08:14.000Z
''' This script handles local interactive inference ''' import torch import torch.nn as nn import torch.nn.functional as F import argparse import numpy as np import spacy from seq2seq.Models import Seq2Seq from seq2seq.Translator import Translator from seq2seq.Beam import Beam from seq2seq import Constants class Interactive(Translator): def __init__(self, opt): super().__init__(opt) def translate_batch(self, src_seq, src_pos): ''' Translation work in one batch ''' def get_inst_idx_to_tensor_position_map(inst_idx_list): ''' Indicate the position of an instance in a tensor. ''' return {inst_idx: tensor_position for tensor_position, inst_idx in enumerate(inst_idx_list)} def collect_active_part(beamed_tensor, curr_active_inst_idx, n_prev_active_inst, n_bm): ''' Collect tensor parts associated to active instances. ''' _, *d_hs = beamed_tensor.size() n_curr_active_inst = len(curr_active_inst_idx) new_shape = (n_curr_active_inst * n_bm, *d_hs) beamed_tensor = beamed_tensor.view(n_prev_active_inst, -1) beamed_tensor = beamed_tensor.index_select(0, curr_active_inst_idx) beamed_tensor = beamed_tensor.view(*new_shape) return beamed_tensor def collate_active_info( src_seq, src_enc, inst_idx_to_position_map, active_inst_idx_list): #- Active sentences are collected so the decoder will not run on completed sentences n_prev_active_inst = len(inst_idx_to_position_map) active_inst_idx = [inst_idx_to_position_map[k] for k in active_inst_idx_list] active_inst_idx = torch.LongTensor(active_inst_idx).to(self.device) active_src_seq = collect_active_part(src_seq, active_inst_idx, n_prev_active_inst, n_bm) active_src_enc = collect_active_part(src_enc, active_inst_idx, n_prev_active_inst, n_bm) active_inst_idx_to_position_map = get_inst_idx_to_tensor_position_map(active_inst_idx_list) return active_src_seq, active_src_enc, active_inst_idx_to_position_map def beam_decode_step( inst_dec_beams, len_dec_seq, src_seq, enc_output, inst_idx_to_position_map, n_bm): ''' Decode and update beam status, and then return active beam idx ''' def prepare_beam_dec_seq(inst_dec_beams, len_dec_seq): dec_partial_seq = [b.get_current_state() for b in inst_dec_beams if not b.done] dec_partial_seq = torch.stack(dec_partial_seq).to(self.device) dec_partial_seq = dec_partial_seq.view(-1, len_dec_seq) return dec_partial_seq def prepare_beam_dec_pos(len_dec_seq, n_active_inst, n_bm): dec_partial_pos = torch.arange(1, len_dec_seq + 1, dtype=torch.long, device=self.device) dec_partial_pos = dec_partial_pos.unsqueeze(0).repeat(n_active_inst * n_bm, 1) return dec_partial_pos def predict_word(dec_seq, dec_pos, src_seq, enc_output, n_active_inst, n_bm): dec_output, *_ = self.model.decoder(dec_seq, dec_pos, src_seq, enc_output) dec_output = dec_output[:, -1, :] # Pick the last step: (bh * bm) * d_h word_prob = self.model.tgt_word_prj(dec_output) word_prob[:, Constants.UNK] = -float('inf') word_prob = F.log_softmax(word_prob, dim=1) word_prob = word_prob.view(n_active_inst, n_bm, -1) return word_prob def collect_active_inst_idx_list(inst_beams, word_prob, inst_idx_to_position_map): active_inst_idx_list = [] for inst_idx, inst_position in inst_idx_to_position_map.items(): is_inst_complete = inst_beams[inst_idx].advance(word_prob[inst_position]) if not is_inst_complete: active_inst_idx_list += [inst_idx] return active_inst_idx_list n_active_inst = len(inst_idx_to_position_map) dec_seq = prepare_beam_dec_seq(inst_dec_beams, len_dec_seq) dec_pos = prepare_beam_dec_pos(len_dec_seq, n_active_inst, n_bm) word_prob = predict_word(dec_seq, dec_pos, src_seq, enc_output, n_active_inst, n_bm) # Update the beam with predicted word prob information and collect incomplete instances active_inst_idx_list = collect_active_inst_idx_list( inst_dec_beams, word_prob, inst_idx_to_position_map) return active_inst_idx_list def collect_hypothesis_and_scores(inst_dec_beams, n_best): all_hyp, all_scores = [], [] for inst_idx in range(len(inst_dec_beams)): scores, tail_idxs = inst_dec_beams[inst_idx].sort_scores() all_scores += [scores[:n_best]] hyps = [inst_dec_beams[inst_idx].get_hypothesis(i) for i in tail_idxs[:n_best]] all_hyp += [hyps] return all_hyp, all_scores with torch.no_grad(): #- Zero out hidden state to batch size 1 self.model.session.zero_lstm_state(1, self.device) #- Encode src_enc, *_ = self.model.encoder(src_seq, src_pos) src_enc, *_ = self.model.session(src_enc) #- Repeat data for beam search n_bm = self.opt.beam_size n_inst, len_s, d_h = src_enc.size() src_seq = src_seq.repeat(1, n_bm).view(n_inst * n_bm, len_s) src_enc = src_enc.repeat(1, n_bm, 1).view(n_inst * n_bm, len_s, d_h) #- Prepare beams inst_dec_beams = [Beam(n_bm, device=self.device) for _ in range(n_inst)] #- Bookkeeping for active or not active_inst_idx_list = list(range(n_inst)) inst_idx_to_position_map = get_inst_idx_to_tensor_position_map(active_inst_idx_list) #- Decode for len_dec_seq in range(1, self.model_opt.max_subseq_len + 1): active_inst_idx_list = beam_decode_step( inst_dec_beams, len_dec_seq, src_seq, src_enc, inst_idx_to_position_map, n_bm) if not active_inst_idx_list: break # all instances have finished their path to <EOS> src_seq, src_enc, inst_idx_to_position_map = collate_active_info( src_seq, src_enc, inst_idx_to_position_map, active_inst_idx_list) hyp, scores = collect_hypothesis_and_scores(inst_dec_beams, self.opt.n_best) return hyp, scores def interactive(opt): def prepare_seq(seq, max_seq_len, word2idx, device): ''' Prepares sequence for inference ''' seq = nlp(seq) seq = [token.text for token in seq[:max_seq_len]] seq = [word2idx.get(w.lower(), Constants.UNK) for w in seq] seq = [Constants.BOS] + seq + [Constants.EOS] seq = np.array(seq + [Constants.PAD] * (max_seq_len - len(seq))) pos = np.array([pos_i+1 if w_i != Constants.PAD else 0 for pos_i, w_i in enumerate(seq)]) seq = torch.LongTensor(seq).unsqueeze(0) pos = torch.LongTensor(pos).unsqueeze(0) return seq.to(device), pos.to(device) #- Load preprocessing file for vocabulary prepro = torch.load(opt.prepro_file) src_word2idx = prepro['dict']['src'] tgt_idx2word = {idx: word for word, idx in prepro['dict']['tgt'].items()} del prepro # to save memory #- Prepare interactive shell nlp = spacy.blank('en') s2s = Interactive(opt) max_seq_len = s2s.model_opt.max_subseq_len print('[Info] Model opts: {}'.format(s2s.model_opt)) #- Interact with console console_input = '' console_output = '[Seq2Seq](score:--.--) human , what do you have to say ( type \' exit \' to quit ) ?\n[Human] ' while True: console_input = input(console_output) # get user input if console_input == 'exit': break seq, pos = prepare_seq(console_input, max_seq_len, src_word2idx, s2s.device) console_output, score = s2s.translate_batch(seq, pos) console_output = console_output[0][0] score = score[0][0] console_output = '[Seq2Seq](score:{score:2.2f}) '.format(score=score.item()) + \ ' '.join([tgt_idx2word.get(word, Constants.UNK_WORD) for word in console_output]) + '\n[Human] ' print('[Seq2Seq](score:--.--) thanks for talking with me !') if __name__ == "__main__": parser = argparse.ArgumentParser(description='translate.py') parser.add_argument('-model', required=True, help='Path to model .chkpt file') parser.add_argument('-prepro_file', required=True, help='Path to preprocessed data for vocab') parser.add_argument('-beam_size', type=int, default=5, help='Beam size') parser.add_argument('-no_cuda', action='store_true') opt = parser.parse_args() opt.cuda = not opt.no_cuda opt.n_best = 1 interactive(opt)
45.15
117
0.653378
a44232881d599052a397795e687023a6bf1adc0a
2,503
py
Python
src/test/tinc/tincrepo/mpp/lib/regress/regress_gpdbverify.py
rodel-talampas/gpdb
9c955e350334abbd922102f289f782697eb52069
[ "PostgreSQL", "Apache-2.0" ]
9
2018-04-20T03:31:01.000Z
2020-05-13T14:10:53.000Z
src/test/tinc/tincrepo/mpp/lib/regress/regress_gpdbverify.py
rodel-talampas/gpdb
9c955e350334abbd922102f289f782697eb52069
[ "PostgreSQL", "Apache-2.0" ]
36
2017-09-21T09:12:27.000Z
2020-06-17T16:40:48.000Z
src/test/tinc/tincrepo/mpp/lib/regress/regress_gpdbverify.py
rodel-talampas/gpdb
9c955e350334abbd922102f289f782697eb52069
[ "PostgreSQL", "Apache-2.0" ]
32
2017-08-31T12:50:52.000Z
2022-03-01T07:34:53.000Z
""" Copyright (c) 2004-Present Pivotal Software, Inc. This program and the accompanying materials are made available under the terms of the under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import os import time import unittest2 as unittest from tinctest.lib import local_path from mpp.lib.PSQL import PSQL from mpp.lib.gpdbverify import GpdbVerify class GpdbVerifyRegressionTests(unittest.TestCase): def __init__(self, methodName): self.gpv = GpdbVerify() super(GpdbVerifyRegressionTests, self).__init__(methodName) def setUp(self): PSQL.run_sql_command('create database gptest;', dbname='postgres') def tearDown(self): PSQL.run_sql_command('drop database gptest', dbname='postgres') def test_gpcheckcat(self): (a,b,c,d) = self.gpv.gpcheckcat() self.assertIn(a,(0,1,2)) def test_gpcheckmirrorseg(self): (res,fix_file) = self.gpv.gpcheckmirrorseg() self.assertIn(res, (True,False)) def test_check_db_is_running(self): self.assertTrue(self.gpv.check_db_is_running()) def test_run_repairscript(self): repair_script = local_path('gpcheckcat_repair') res = self.gpv.run_repair_script(repair_script) self.assertIn(res, (True,False)) def test_ignore_extra_m(self): fix_file = local_path('fix_file') res = self.gpv.ignore_extra_m(fix_file) self.assertIn(res, (True,False)) def test_cleanup_old_file(self): old_time = int(time.strftime("%Y%m%d%H%M%S")) - 1005000 old_file = local_path('checkmirrorsegoutput_%s' % old_time) open(old_file,'w') self.gpv.cleanup_day_old_out_files(local_path('')) self.assertFalse(os.path.isfile(old_file)) def test_not_cleanup_todays_file(self): new_file = local_path('checkmirrorsegoutput_%s' % time.strftime("%Y%m%d%H%M%S")) open(new_file,'w') self.gpv.cleanup_day_old_out_files(local_path('')) self.assertTrue(os.path.isfile(new_file))
35.253521
88
0.704754
88a868d18117582e3d77dc88677ec1a63e6b23e0
49,602
py
Python
application.py
Has3ong/KaKao_Suwon
ddba8ea5623f84893d0f62ad8afc985bb4bd786f
[ "MIT" ]
1
2019-07-10T03:57:54.000Z
2019-07-10T03:57:54.000Z
application.py
Has3ong/KaKao_Suwon
ddba8ea5623f84893d0f62ad8afc985bb4bd786f
[ "MIT" ]
2
2020-10-27T22:00:15.000Z
2021-06-02T00:36:00.000Z
application.py
Has3ong/KaKao_Suwon
ddba8ea5623f84893d0f62ad8afc985bb4bd786f
[ "MIT" ]
null
null
null
# -- coding: utf-8 -- import os import json from flask import Flask, request, jsonify from datetime import datetime import requests import time import threading import pymongo ip = 'localhost' port = 27017 connection = pymongo.MongoClient(ip, port) database = connection.get_database('Suwon') mongo = database.get_collection('Data') from docs.Menu import oMenu from docs.Dust import oDust from docs.Weather import oWeather from docs.PhoneBook import oPhoneBook from docs.BusShuttle import oBusShuttle from docs.Calendar import oCalendar from docs.Notice import oNotice from docs.sNotice import sNotice app = Flask(__name__) print("Menu") #o_Menu = oMenu() print("Weather") o_Weather = oWeather() print("Dust") o_Dust = oDust() print("PhoneBook") o_PhoneBook = oPhoneBook() print("BusShuttle") o_BusShuttle = oBusShuttle() print("Calendar") o_Calendar = oCalendar() print("Notice") o_Notice = oNotice() print("sNotice") s_Notice = sNotice() # 1day = 86400, 1hour = 3600 def Threading1d(): threading.Timer(86400, Threading1d).start() o_Notice.Update() def ThreadingWeather(): threading.Timer(43200, ThreadingWeather).start() o_Weather.Update() def Threading4h(): threading.Timer(14400, Threading4h).start() today = datetime.today().weekday() if today > 4: return 0 #o_Menu.Update() def Threading1h(): threading.Timer(3600, Threading1h).start() o_Dust.Update() @app.route('/keyboard') def Keyboard(): dataSend = { } return jsonify(dataSend) @app.route('/message', methods=['POST']) def Message(): content = request.get_json() content = content['userRequest'] content = content['utterance'] data = str(datetime.now().date()) """ try: mongo.insert_one( { "contents": content, "date": data, } ) except Exception: print("MongoDB Connection Failed") """ if content == u"์‹œ์ž‘ํ•˜๊ธฐ": dataSend = { "version": "2.0", "template": { "outputs": [ { "basicCard": { "title": "", "description": "์•ˆ๋…•ํ•˜์„ธ์š”. \n์ˆ˜์›๋Œ€ํ•™๊ต ์•Œ๋ฆผ์ด ์ž…๋‹ˆ๋‹ค. \n์ˆ˜์›๋Œ€ํ•™๊ต์— ๊ด€๋ จ๋œ ์ •๋ณด๋ฅผ ๊ฐ„๋‹จํ•˜๊ฒŒ ์•Œ๋ ค๋“œ๋ฆด๊ฒŒ์š”!", "thumbnail": { "imageUrl": "https://proxy.goorm.io//service/5ccda9890e70de7aa094ede1_dbagmjvzeyafyjerlac.run.goorm.io/9080//file/load/App_Index.png?path=d29ya3NwYWNlJTJGU3V3b25Cb3QlMkZJbWFnZSUyRkFwcF9JbmRleC5wbmc=&docker_id=dbagmjvzeyafyjerlac&secure_session_id=ukvGkLMs6b_IfPgimh-pjWVtciFqdpSu" } } } ], "quickReplies": [ { "label": "ํ•™๊ต์ •๋ณด", "action": "message", "messageText": "ํ•™๊ต์ •๋ณด" }, { "label": "๋ฒ„์Šค์…”ํ‹€", "action": "message", "messageText": "์…”ํ‹€๋ฒ„์Šค" }, { "label": "ํ•™์‹", "action": "message", "messageText": "ํ•™์‹" }, { "label": "๋‚ ์”จ", "action": "message", "messageText": "๋‚ ์”จ" }, { "label": "์ข…๊ฐ• D-DAY", "action": "message", "messageText": "์ข…๊ฐ•์ผ ๊ณ„์‚ฐํ•ด์ค˜" } ] } } elif content == u"ํ•™๊ต์ •๋ณด": dataSend = { "version": "2.0", "template": { "outputs": [ { "basicCard": { "title": "", "description": "ํ•™๊ต์—์„œ ๊ธ‰ํžˆ ํ•„์š”ํ•  ๋•Œ ์ฐพ๊ธฐ ํž˜๋“ค์—ˆ๋˜ ์ •๋ณด๋ฅผ ์•Œ๋ ค๋“œ๋ฆด๊ฒŒ์š”!", "thumbnail": { "imageUrl": "https://proxy.goorm.io//service/5ccda9890e70de7aa094ede1_dbagmjvzeyafyjerlac.run.goorm.io/9080//file/load/App_Information.png?path=d29ya3NwYWNlJTJGU3V3b25Cb3QlMkZJbWFnZSUyRkFwcF9JbmZvcm1hdGlvbi5wbmc=&docker_id=dbagmjvzeyafyjerlac&secure_session_id=ukvGkLMs6b_IfPgimh-pjWVtciFqdpSu" } } } ], "quickReplies": [ { "label": "๊ต๋‚ด์ „ํ™”๋ฒˆํ˜ธ", "action": "message", "messageText": "๊ต๋‚ด์ „ํ™”๋ฒˆํ˜ธ" }, { "label": "ํ•™์‚ฌ์ผ์ •", "action": "message", "messageText": "ํ•™์‚ฌ์ผ์ •" }, { "label": "ํŽธ์˜์‹œ์„ค", "action": "message", "messateText": "ํŽธ์˜์‹œ์„ค" } # { # "label": "๊ณต์ง€์‚ฌํ•ญ", # "action": "message", # "messageText": "๊ณต์ง€์‚ฌํ•ญ" # } ] } } elif content == u"ํ•™์‹": dataSend = { "version": "2.0", "template": { "outputs": [ { "basicCard": { "title": "ํ•™์‹", "description": "์ข…ํ•ฉ๊ฐ•์˜๋™, ์•„๋งˆ๋žœ์Šค ํ™€์ค‘ ์„ ํƒํ•ด์ฃผ์„ธ์š”. \n\n๋งํฌ : http://www.suwon.ac.kr/?menuno=762 \n๋งํฌ : http://www.suwon.ac.kr/?menuno=1793", "thumbnail": { "imageUrl": "https://proxy.goorm.io//service/5ccda9890e70de7aa094ede1_dbagmjvzeyafyjerlac.run.goorm.io/9080//file/load/App_Menu.png?path=d29ya3NwYWNlJTJGU3V3b25Cb3QlMkZJbWFnZSUyRkFwcF9NZW51LnBuZw==&docker_id=dbagmjvzeyafyjerlac&secure_session_id=ukvGkLMs6b_IfPgimh-pjWVtciFqdpSu" } } } ] } } elif content == u"์ข…ํ•ฉ๊ฐ•์˜๋™ ํ•™์‹ ์•Œ๋ ค์ฃผ์„ธ์š”": today = datetime.today().weekday() if today > 4: dataSend = { "version": "2.0", "template": { "outputs": [ { "carousel": { "type": "basicCard", "items": [ { "title": "", "description": "์˜ค๋Š˜์€ ํœด์ผ์ž…๋‹ˆ๋‹ค." } ] } } ] } } else: dataSend = { "version": "2.0", "template": { "outputs": [ { "carousel": { "type": "basicCard", "items": [ { "title": "", "description": o_Menu.JongHab[today][0] }, { "title": "", "description": o_Menu.JongHab[today][1] }, { "title": "", "description": o_Menu.JongHab[today][2] }, { "title": "", "description": o_Menu.JongHab[today][3] } ] } } ] } } elif content == u"์•„๋งˆ๋žœ์Šคํ™€ ํ•™์‹ ์•Œ๋ ค์ฃผ์„ธ์š”": today = datetime.today().weekday() if today > 4: dataSend = { "version": "2.0", "template": { "outputs": [ { "carousel": { "type": "basicCard", "items": [ { "title": "", "description": "์˜ค๋Š˜์€ ํœด์ผ์ž…๋‹ˆ๋‹ค." } ] } } ] } } else: dataSend = { "version": "2.0", "template": { "outputs": [ { "carousel": { "type": "basicCard", "items": [ { "title": "", "description": o_Menu.Amarense[today] } ] } } ] } } elif content == u"๋ช…๋ น์–ด": dataSend = { "version": "2.0", "template": { "outputs": [ { "simpleText": { "text": "์‚ฌ์šฉ๊ฐ€๋Šฅํ•œ ๋ช…๋ น์–ด๋Š” '์†Œ๊ฐœ', '๋ฏธ์„ธ๋จผ์ง€', 'ํ•™์‹', '๋‚ ์”จ', '๊ต๋‚ด์ „ํ™”๋ฒˆํ˜ธ', '์…”ํ‹€๋ฒ„์Šค', 'ํ•™์‚ฌ์ผ์ •'์ž…๋‹ˆ๋‹ค." } } ] } } elif content == u"๋‚ ์”จ": dataSend = { "version": "2.0", "template": { "outputs": [ { "carousel": { "type": "basicCard", "items": [ { "title": "", "description": "", "thumbnail": { "imageUrl": "https://proxy.goorm.io//service/5ccda9890e70de7aa094ede1_dbagmjvzeyafyjerlac.run.goorm.io/9080//file/load/App_Today.png?path=d29ya3NwYWNlJTJGU3V3b25Cb3QlMkZJbWFnZSUyRkFwcF9Ub2RheS5wbmc=&docker_id=dbagmjvzeyafyjerlac&secure_session_id=ukvGkLMs6b_IfPgimh-pjWVtciFqdpSu" }, "buttons": [ { "action": "message", "label": "์˜ค๋Š˜์˜ ๋‚ ์”จ", "messageText": "์˜ค๋Š˜ ๋‚ ์”จ ์•Œ๋ ค์ค˜" } ] }, { "title": "", "description": "", "thumbnail": { "imageUrl": "https://proxy.goorm.io//service/5ccda9890e70de7aa094ede1_dbagmjvzeyafyjerlac.run.goorm.io/9080//file/load/App_Tomorow.png?path=d29ya3NwYWNlJTJGU3V3b25Cb3QlMkZJbWFnZSUyRkFwcF9Ub21vcm93LnBuZw==&docker_id=dbagmjvzeyafyjerlac&secure_session_id=ukvGkLMs6b_IfPgimh-pjWVtciFqdpSu" }, "buttons": [ { "action": "message", "label": "๋‚ด์ผ์˜ ๋‚ ์”จ", "messageText": "๋‚ด์ผ ๋‚ ์”จ ์•Œ๋ ค์ค˜" } ] } ] } } ] } } ''' dataSend = { "version": "2.0", "template": { "outputs": [ { "carousel": { "type" : "basicCard", "items": [ { "title" : "์˜ค๋Š˜์˜ ๋‚ ์”จ", "description" : o_Weather.today + o_Dust.today, "thumbnail" : { "imageUrl" : "https://proxy.goorm.io//service/5ccda9890e70de7aa094ede1_dbagmjvzeyafyjerlac.run.goorm.io/9080//file/load/App_Today.png?path=d29ya3NwYWNlJTJGU3V3b25Cb3QlMkZJbWFnZSUyRkFwcF9Ub2RheS5wbmc=&docker_id=dbagmjvzeyafyjerlac&secure_session_id=ukvGkLMs6b_IfPgimh-pjWVtciFqdpSu" } }, { "title" : "๋‚ด์ผ์˜ ๋‚ ์”จ", "description" : o_Weather.tomorrow, "thumbnail" :{ "imageUrl" : "https://proxy.goorm.io//service/5ccda9890e70de7aa094ede1_dbagmjvzeyafyjerlac.run.goorm.io/9080//file/load/App_Tomorow.png?path=d29ya3NwYWNlJTJGU3V3b25Cb3QlMkZJbWFnZSUyRkFwcF9Ub21vcm93LnBuZw==&docker_id=dbagmjvzeyafyjerlac&secure_session_id=ukvGkLMs6b_IfPgimh-pjWVtciFqdpSu" } } ] } } ] } } ''' elif content == u"์˜ค๋Š˜ ๋‚ ์”จ ์•Œ๋ ค์ค˜": dataSend = { "version": "2.0", "template": { "outputs": [ { "basicCard": { "title": "", "description": o_Weather.today + o_Dust.today } } ] } } elif content == u"๋‚ด์ผ ๋‚ ์”จ ์•Œ๋ ค์ค˜": dataSend = { "version": "2.0", "template": { "outputs": [ { "basicCard": { "title": "", "description": o_Weather.tomorrow } } ] } } elif content == u"์ข…๊ฐ•์ผ ๊ณ„์‚ฐํ•ด์ค˜": nowtime = datetime.now() endtime = datetime(2020, 6, 22, 0, 0, 0) d_days = (endtime - nowtime).days dataSend = { "version": "2.0", "template": { "outputs": [ { "basicCard": { "title": "", "description": "์ข…๊ฐ•๊นŒ์ง€ " + str(d_days) + " ์ผ ๋‚จ์•˜์Šต๋‹ˆ๋‹ค.๐ŸŽ‰", "thumbnail": { "imageUrl": "https://proxy.goorm.io//service/5ccda9890e70de7aa094ede1_dbagmjvzeyafyjerlac.run.goorm.io/9080//file/load/App_DDAY.png?path=d29ya3NwYWNlJTJGU3V3b25Cb3QlMkZJbWFnZSUyRkFwcF9EREFZLnBuZw==&docker_id=dbagmjvzeyafyjerlac&secure_session_id=ukvGkLMs6b_IfPgimh-pjWVtciFqdpSu" } } } ] } } elif content == u"ํ•™์‚ฌ์ผ์ •": dataSend = { "version": "2.0", "template": { "outputs": [ { "carousel": { "type": "basicCard", "items": [ { "title": "ํ•™์‚ฌ์ผ์ •", "description": "๋งํฌ : http://www.suwon.ac.kr/?menuno=727", "thumbnail": { "imageUrl": "https://proxy.goorm.io//service/5ccda9890e70de7aa094ede1_dbagmjvzeyafyjerlac.run.goorm.io/9080//file/load/App_Information.png?path=d29ya3NwYWNlJTJGU3V3b25Cb3QlMkZJbWFnZSUyRkFwcF9JbmZvcm1hdGlvbi5wbmc=&docker_id=dbagmjvzeyafyjerlac&secure_session_id=-eu90FRT1mUI5U8ZfBLyu-KBEQXB_1LN" }, "buttons": [ { "action": "message", "label": "1ํ•™๊ธฐ ํ•™์‚ฌ์ผ์ •", "messageText": "1ํ•™๊ธฐ ํ•™์‚ฌ์ผ์ • ์•Œ๋ ค์ค˜" }, { "action": "message", "label": "2ํ•™๊ธฐ ํ•™์‚ฌ์ผ์ •", "messageText": "2ํ•™๊ธฐ ํ•™์‚ฌ์ผ์ • ์•Œ๋ ค์ค˜" }, ] } ] } } ] } } elif content == u"1ํ•™๊ธฐ ํ•™์‚ฌ์ผ์ • ์•Œ๋ ค์ค˜": dataSend = { "version": "2.0", "template": { "outputs": [ { "carousel": { "type": "basicCard", "items": [ { "title": "1์›” ํ•™์‚ฌ์ผ์ •๐Ÿ“†", "description": o_Calendar.Jan }, { "title": "2์›” ํ•™์‚ฌ์ผ์ •๐Ÿ“†", "description": o_Calendar.Feb }, { "title": "3์›” ํ•™์‚ฌ์ผ์ •๐Ÿ“†", "description": o_Calendar.Mar }, { "title": "4์›” ํ•™์‚ฌ์ผ์ •๐Ÿ“†", "description": o_Calendar.Apr }, { "title": "5์›” ํ•™์‚ฌ์ผ์ •๐Ÿ“†", "description": o_Calendar.May }, { "title": "6์›” ํ•™์‚ฌ์ผ์ •๐Ÿ“†", "description": o_Calendar.June } ] } } ] } } elif content == u"2ํ•™๊ธฐ ํ•™์‚ฌ์ผ์ • ์•Œ๋ ค์ค˜": dataSend = { "version": "2.0", "template": { "outputs": [ { "carousel": { "type": "basicCard", "items": [ { "title": "7์›” ํ•™์‚ฌ์ผ์ •๐Ÿ“†", "description": o_Calendar.July }, { "title": "8์›” ํ•™์‚ฌ์ผ์ •๐Ÿ“†", "description": o_Calendar.Aug }, { "title": "9์›” ํ•™์‚ฌ์ผ์ •๐Ÿ“†", "description": o_Calendar.Sep }, { "title": "10์›” ํ•™์‚ฌ์ผ์ •๐Ÿ“†", "description": o_Calendar.Oct }, { "title": "11์›” ํ•™์‚ฌ์ผ์ •๐Ÿ“†", "description": o_Calendar.Nov }, { "title": "12์›” ํ•™์‚ฌ์ผ์ •๐Ÿ“†", "description": o_Calendar.Dec } ] } } ] } } elif content == u"ํŽธ์˜์‹œ์„ค": dataSend = { "version": "2.0", "template": { "outputs": [ { "carousel": { "type": "basicCard", "items": [ { "title": "์นดํŽ˜๐Ÿต", "description": "ACE๊ต์œก๊ด€ - ์œตํ•ฉ๋ฌธํ™”์˜ˆ์ˆ ๋Œ€ํ•™ - ์‚ฌํšŒ๊ด€", "thumbnail": { "imageUrl": "https://proxy.goorm.io//service/5ccda9890e70de7aa094ede1_dbagmjvzeyafyjerlac.run.goorm.io/9080//file/load/App_Cafe.png?path=d29ya3NwYWNlJTJGU3V3b25Cb3QlMkZJbWFnZSUyRkFwcF9DYWZlLnBuZw==&docker_id=dbagmjvzeyafyjerlac&secure_session_id=WK1r5NHmB5cAiSu-chkrikcJuyS6wE7a" }, }, { "title": "๋งค์ ๐Ÿฉ", "description": "์‚ฌํšŒ๊ด€ - ๊ฑด๊ฐ•๊ณผํ•™๋Œ€ํ•™ - ๊ณต๊ณผ๋Œ€ํ•™\n์ œ4๊ณตํ•™๊ด€ - ACE๊ต์œก๊ด€ - ์œตํ•ฉ๋ฌธํ™”์˜ˆ์ˆ ๋Œ€ํ•™ - ๊ฒฝ์ƒ๋Œ€ํ•™", "thumbnail": { "imageUrl": "https://proxy.goorm.io//service/5ccda9890e70de7aa094ede1_dbagmjvzeyafyjerlac.run.goorm.io/9080//file/load/App_Store.png?path=d29ya3NwYWNlJTJGU3V3b25Cb3QlMkZJbWFnZSUyRkFwcF9TdG9yZS5wbmc=&docker_id=dbagmjvzeyafyjerlac&secure_session_id=WK1r5NHmB5cAiSu-chkrikcJuyS6wE7a" }, }, { "title": "๋ณต์‚ฌ์‹ค๐Ÿ–จ", "description": "๋„์„œ๊ด€ 2์ธต - ์ธ๋ฌธ์‚ฌํšŒ๋Œ€ํ•™ - ๊ณต๊ณผ๋Œ€ํ•™", "thumbnail": { "imageUrl": "https://proxy.goorm.io//service/5ccda9890e70de7aa094ede1_dbagmjvzeyafyjerlac.run.goorm.io/9080//file/load/App_Boksa.png?path=d29ya3NwYWNlJTJGU3V3b25Cb3QlMkZJbWFnZSUyRkFwcF9Cb2tzYS5wbmc=&docker_id=dbagmjvzeyafyjerlac&secure_session_id=WK1r5NHmB5cAiSu-chkrikcJuyS6wE7a" }, }, { "title": "Link", "description": "http://www.suwon.ac.kr/?menuno=763" } ] } } ] } } elif content == u"์…”ํ‹€๋ฒ„์Šค": dataSend = { "version": "2.0", "template": { "outputs": [ { "carousel": { "type": "basicCard", "items": [ { "title": "์…”ํ‹€๋ฒ„์Šค", "description": "", "thumbnail": { "imageUrl": "https://proxy.goorm.io//service/5ccda9890e70de7aa094ede1_dbagmjvzeyafyjerlac.run.goorm.io/9080//file/load/App_Bus1.png?path=d29ya3NwYWNlJTJGU3V3b25Cb3QlMkZJbWFnZSUyRkFwcF9CdXMxLnBuZw==&docker_id=dbagmjvzeyafyjerlac&secure_session_id=ukvGkLMs6b_IfPgimh-pjWVtciFqdpSu" }, "buttons": [ { "action": "message", "label": "๊ต๋‚ด ์…”ํ‹€ ์‹œ๊ฐ„ํ‘œ", "messageText": "๊ต๋‚ด ์…”ํ‹€ ์‹œ๊ฐ„ํ‘œ ์•Œ๋ ค์ค˜" }, { "action": "message", "label": "์ƒ๋ก์ˆ˜ ์…”ํ‹€๋ฒ„์Šค", "messageText": "์ƒ๋ก์ˆ˜ ์…”ํ‹€๋ฒ„์Šค ์•Œ๋ ค์ค˜" }, { "action": "message", "label": "์†ก๋‚ด ์…”ํ‹€๋ฒ„์Šค", "messageText": "์†ก๋‚ด ์…”ํ‹€๋ฒ„์Šค ์•Œ๋ ค์ค˜" } ] }, { "title": "์…”ํ‹€๋ฒ„์Šค", "description": "", "thumbnail": { "imageUrl": "https://proxy.goorm.io//service/5ccda9890e70de7aa094ede1_dbagmjvzeyafyjerlac.run.goorm.io/9080//file/load/App_Bus2.png?path=d29ya3NwYWNlJTJGU3V3b25Cb3QlMkZJbWFnZSUyRkFwcF9CdXMyLnBuZw==&docker_id=dbagmjvzeyafyjerlac&secure_session_id=-eu90FRT1mUI5U8ZfBLyu-KBEQXB_1LN" }, "buttons": [ { "action": "message", "label": "๊ธˆ์ • ์…”ํ‹€๋ฒ„์Šค", "messageText": "๊ธˆ์ • ์…”ํ‹€๋ฒ„์Šค ์•Œ๋ ค์ค˜" }, { "action": "message", "label": "์„ฑ๋‚จ(์•ผํƒ‘) ์…”ํ‹€๋ฒ„์Šค", "messageText": "์„ฑ๋‚จ ์…”ํ‹€๋ฒ„์Šค ์•Œ๋ ค์ค˜" }, { "action": "message", "label": "์ˆ˜์› ์…”ํ‹€๋ฒ„์Šค", "messageText": "์ˆ˜์› ์…”ํ‹€๋ฒ„์Šค ์•Œ๋ ค์ค˜" } ] }, { "title": "์…”ํ‹€๋ฒ„์Šค", "description": "๋งํฌ : http://www.suwon.ac.kr/?menuno=655", "thumbnail": { "imageUrl": "https://proxy.goorm.io//service/5ccda9890e70de7aa094ede1_dbagmjvzeyafyjerlac.run.goorm.io/9080//file/load/App_Bus3.png?path=d29ya3NwYWNlJTJGU3V3b25Cb3QlMkZJbWFnZSUyRkFwcF9CdXMzLnBuZw==&docker_id=dbagmjvzeyafyjerlac&secure_session_id=vehspVjlqUmLG5081o_9ITtwVcY1zp64" }, "buttons": [ { "action": "message", "label": "๊ฐ•๋‚จ ์…”ํ‹€๋ฒ„์Šค", "messageText": "๊ฐ•๋‚จ ์…”ํ‹€๋ฒ„์Šค ์•Œ๋ ค์ค˜" } ] } ] } } ] } } elif content == u"๊ต๋‚ด ์…”ํ‹€ ์‹œ๊ฐ„ํ‘œ ์•Œ๋ ค์ค˜": dataSend = { "version": "2.0", "template": { "outputs": [ { "carousel": { "type": "basicCard", "items": [ { "title": "", "description": o_BusShuttle.InShuttle } ] } } ] } } elif content == u"์†ก๋‚ด ์…”ํ‹€๋ฒ„์Šค ์•Œ๋ ค์ค˜": dataSend = { "version": "2.0", "template": { "outputs": [ { "carousel": { "type": "basicCard", "items": [ { "title": "", "description": o_BusShuttle.OutShuttle_SongNae } ] } } ] } } elif content == u"์ƒ๋ก์ˆ˜ ์…”ํ‹€๋ฒ„์Šค ์•Œ๋ ค์ค˜": dataSend = { "version": "2.0", "template": { "outputs": [ { "carousel": { "type": "basicCard", "items": [ { "title": "", "description": o_BusShuttle.OutShuttle_SangRokSu } ] } } ] } } elif content == u"๊ธˆ์ • ์…”ํ‹€๋ฒ„์Šค ์•Œ๋ ค์ค˜": dataSend = { "version": "2.0", "template": { "outputs": [ { "carousel": { "type": "basicCard", "items": [ { "title": "", "description": o_BusShuttle.OutShuttle_GeumJeong } ] } } ] } } elif content == u"์„ฑ๋‚จ ์…”ํ‹€๋ฒ„์Šค ์•Œ๋ ค์ค˜": dataSend = { "version": "2.0", "template": { "outputs": [ { "carousel": { "type": "basicCard", "items": [ { "title": "", "description": o_BusShuttle.OutShuttle_SeongNam } ] } } ] } } elif content == u"์ˆ˜์› ์…”ํ‹€๋ฒ„์Šค ์•Œ๋ ค์ค˜": dataSend = { "version": "2.0", "template": { "outputs": [ { "carousel": { "type": "basicCard", "items": [ { "title": "", "description": o_BusShuttle.OutShuttle_Suwon } ] } } ] } } elif content == u"๊ฐ•๋‚จ ์…”ํ‹€๋ฒ„์Šค ์•Œ๋ ค์ค˜": dataSend = { "version": "2.0", "template": { "outputs": [ { "carousel": { "type": "basicCard", "items": [ { "title": "", "description": o_BusShuttle.OutShuttle_GangNam } ] } } ] } } # ์‹ ๋„๋ฆผ ์…”ํ‹€๋ฒ„์Šค ์‚ฌ๋ผ์ง elif content == u"์‹ ๋„๋ฆผ ์…”ํ‹€๋ฒ„์Šค ์•Œ๋ ค์ค˜": dataSend = { "version": "2.0", "template": { "outputs": [ { "carousel": { "type": "basicCard", "items": [ { "title": "", "description": o_BusShuttle.OutShuttle_SinDoRim } ] } } ] } } elif content == u"๊ต๋‚ด์ „ํ™”๋ฒˆํ˜ธ": dataSend = { "version": "2.0", "template": { "outputs": [ { "carousel": { "type": "basicCard", "items": [ { "title": "", "description": "๊ต๋‚ด ์•ˆ๋‚ด 031-220-2114", "thumbnail": { "imageUrl": "https://proxy.goorm.io//service/5ccda9890e70de7aa094ede1_dbagmjvzeyafyjerlac.run.goorm.io/9080//file/load/App_Information.png?path=d29ya3NwYWNlJTJGU3V3b25Cb3QlMkZJbWFnZSUyRkFwcF9JbmZvcm1hdGlvbi5wbmc=&docker_id=dbagmjvzeyafyjerlac&secure_session_id=-eu90FRT1mUI5U8ZfBLyu-KBEQXB_1LN" }, "buttons": [ { "action": "message", "label": "์ธ๋ฌธ์‚ฌํšŒ๋Œ€ํ•™", "messageText": "์ธ๋ฌธ์‚ฌํšŒ๋Œ€ํ•™ ์ „ํ™”๋ฒˆํ˜ธ ์•Œ๋ ค์ค˜" }, { "action": "message", "label": "๊ฒฝ์ƒ๋Œ€ํ•™", "messageText": "๊ฒฝ์ƒ๋Œ€ํ•™ ์ „ํ™”๋ฒˆํ˜ธ ์•Œ๋ ค์ค˜" }, { "action": "message", "label": "๊ณต๊ณผ๋Œ€ํ•™", "messageText": "๊ณต๊ณผ๋Œ€ํ•™ ์ „ํ™”๋ฒˆํ˜ธ ์•Œ๋ ค์ค˜" } ] }, { "title": "", "description": "๊ต๋‚ด ์•ˆ๋‚ด 031-220-2114", "thumbnail": { "imageUrl": "https://proxy.goorm.io//service/5ccda9890e70de7aa094ede1_dbagmjvzeyafyjerlac.run.goorm.io/9080//file/load/App_Information.png?path=d29ya3NwYWNlJTJGU3V3b25Cb3QlMkZJbWFnZSUyRkFwcF9JbmZvcm1hdGlvbi5wbmc=&docker_id=dbagmjvzeyafyjerlac&secure_session_id=-eu90FRT1mUI5U8ZfBLyu-KBEQXB_1LN" }, "buttons": [ { "action": "message", "label": "ICT ์œตํ•ฉ๋Œ€ํ•™", "messageText": "ICT ์œตํ•ฉ๋Œ€ํ•™ ์ „ํ™”๋ฒˆํ˜ธ ์•Œ๋ ค์ค˜" }, { "action": "message", "label": "๋ฏธ์ˆ ๋Œ€ํ•™", "messageText": "๋ฏธ์ˆ ๋Œ€ํ•™ ์ „ํ™”๋ฒˆํ˜ธ ์•Œ๋ ค์ค˜" }, { "action": "message", "label": "์Œ์•…๋Œ€ํ•™", "messageText": "์Œ์•…๋Œ€ํ•™ ์ „ํ™”๋ฒˆํ˜ธ ์•Œ๋ ค์ค˜" } ] }, { "title": "", "description": "๊ต๋‚ด ์•ˆ๋‚ด 031-220-2114 \n๋งํฌ : http://www.suwon.ac.kr/?menuno=653", "thumbnail": { "imageUrl": "https://proxy.goorm.io//service/5ccda9890e70de7aa094ede1_dbagmjvzeyafyjerlac.run.goorm.io/9080//file/load/App_Information.png?path=d29ya3NwYWNlJTJGU3V3b25Cb3QlMkZJbWFnZSUyRkFwcF9JbmZvcm1hdGlvbi5wbmc=&docker_id=dbagmjvzeyafyjerlac&secure_session_id=-eu90FRT1mUI5U8ZfBLyu-KBEQXB_1LN" }, "buttons": [ { "action": "message", "label": "์œตํ•ฉ๋ฌธํ™” ์˜ˆ์ˆ ๋Œ€ํ•™", "messageText": "์œตํ•ฉ๋ฌธํ™” ์˜ˆ์ˆ ๋Œ€ํ•™ ์ „ํ™”๋ฒˆํ˜ธ ์•Œ๋ ค์ค˜" }, { "action": "message", "label": "๊ฑด๊ฐ•๊ณผํ•™๋Œ€ํ•™", "messageText": "๊ฑด๊ฐ•๊ณผํ•™๋Œ€ํ•™ ์ „ํ™”๋ฒˆํ˜ธ ์•Œ๋ ค์ค˜" } ] } ] } } ] } } elif content == u"์ธ๋ฌธ์‚ฌํšŒ๋Œ€ํ•™ ์ „ํ™”๋ฒˆํ˜ธ ์•Œ๋ ค์ค˜": dataSend = { "version": "2.0", "template": { "outputs": [ { "carousel": { "type": "basicCard", "items": [ { "title": "", "description": o_PhoneBook.InMun1 } ] } } ] } } elif content == u"๊ฒฝ์ƒ๋Œ€ํ•™ ์ „ํ™”๋ฒˆํ˜ธ ์•Œ๋ ค์ค˜": dataSend = { "version": "2.0", "template": { "outputs": [ { "carousel": { "type": "basicCard", "items": [ { "title": "", "description": o_PhoneBook.GyungSang1 } ] } } ] } } elif content == u"๊ณต๊ณผ๋Œ€ํ•™ ์ „ํ™”๋ฒˆํ˜ธ ์•Œ๋ ค์ค˜": dataSend = { "version": "2.0", "template": { "outputs": [ { "carousel": { "type": "basicCard", "items": [ { "title": "", "description": o_PhoneBook.GongGwa1 } ] } } ] } } elif content == u"ICT ์œตํ•ฉ๋Œ€ํ•™ ์ „ํ™”๋ฒˆํ˜ธ ์•Œ๋ ค์ค˜": dataSend = { "version": "2.0", "template": { "outputs": [ { "carousel": { "type": "basicCard", "items": [ { "title": "", "description": o_PhoneBook.ICT1 } ] } } ] } } elif content == u"๋ฏธ์ˆ ๋Œ€ํ•™ ์ „ํ™”๋ฒˆํ˜ธ ์•Œ๋ ค์ค˜": dataSend = { "version": "2.0", "template": { "outputs": [ { "carousel": { "type": "basicCard", "items": [ { "title": "", "description": o_PhoneBook.Art1 } ] } } ] } } elif content == u"์Œ์•…๋Œ€ํ•™ ์ „ํ™”๋ฒˆํ˜ธ ์•Œ๋ ค์ค˜": dataSend = { "version": "2.0", "template": { "outputs": [ { "carousel": { "type": "basicCard", "items": [ { "title": "", "description": o_PhoneBook.Music } ] } } ] } } elif content == u"์œตํ•ฉ๋ฌธํ™” ์˜ˆ์ˆ ๋Œ€ํ•™ ์ „ํ™”๋ฒˆํ˜ธ ์•Œ๋ ค์ค˜": dataSend = { "version": "2.0", "template": { "outputs": [ { "carousel": { "type": "basicCard", "items": [ { "title": "", "description": o_PhoneBook.MunHwa1 } ] } } ] } } elif content == u"๊ฑด๊ฐ•๊ณผํ•™๋Œ€ํ•™ ์ „ํ™”๋ฒˆํ˜ธ ์•Œ๋ ค์ค˜": dataSend = { "version": "2.0", "template": { "outputs": [ { "carousel": { "type": "basicCard", "items": [ { "title": "", "description": o_PhoneBook.GunGang1 } ] } } ] } } elif content == u"๊ณต์ง€์‚ฌํ•ญ": dataSend = { "version": "2.0", "template": { "outputs": [ { "basicCard": { "title": "", "description": "ํ•™๊ต ๊ณต์ง€์‚ฌํ•ญ๊ณผ ์•Œ๋ฆผ์ด ๊ณต์ง€์‚ฌํ•ญ์„ ์•Œ๋ ค๋“œ๋ฆด๊ฒŒ์š”.", "thumbnail": { "imageUrl": "https://proxy.goorm.io//service/5ccda9890e70de7aa094ede1_dbagmjvzeyafyjerlac.run.goorm.io/9080//file/load/App_Notice.png?path=d29ya3NwYWNlJTJGU3V3b25Cb3QlMkZJbWFnZSUyRkFwcF9Ob3RpY2UucG5n&docker_id=dbagmjvzeyafyjerlac&secure_session_id=IlC0-R5MuofCrIMCXBNPinjASPWLUMb3" } } } ], "quickReplies": [ { "label": "์ˆ˜์›๋Œ€ ๊ณต์ง€์‚ฌํ•ญ", "action": "message", "messageText": "์ˆ˜์›๋Œ€ ๊ณต์ง€์‚ฌํ•ญ ์•Œ๋ ค์ค˜" }, { "label": "์•Œ๋ฆผ์ด ๊ณต์ง€์‚ฌํ•ญ", "action": "message", "messageText": "์•Œ๋ฆผ์ด ๊ณต์ง€์‚ฌํ•ญ ์•Œ๋ ค์ค˜" } ] } } elif content == u"์ˆ˜์›๋Œ€ ๊ณต์ง€์‚ฌํ•ญ ์•Œ๋ ค์ค˜": dataSend = { "version": "2.0", "template": { "outputs": [ { "listCard": { "header": { "title": "์ˆ˜์›๋Œ€ํ•™๊ต ๊ณต์ง€์‚ฌํ•ญ", "imageUrl": "https://proxy.goorm.io//service/5ccda9890e70de7aa094ede1_dbagmjvzeyafyjerlac.run.goorm.io/9080//file/load/App_Banner.png?path=d29ya3NwYWNlJTJGU3V3b25Cb3QlMkZJbWFnZSUyRkFwcF9CYW5uZXIucG5n&docker_id=dbagmjvzeyafyjerlac&secure_session_id=IlC0-R5MuofCrIMCXBNPinjASPWLUMb3" }, "items": [ { "title": o_Notice.res[0], }, { "title": o_Notice.res[1] }, { "title": o_Notice.res[2] }, { "title": o_Notice.res[3] }, { "title": o_Notice.res[4] }, ], "buttons": [ { "label": "๊ตฌ๊ฒฝ๊ฐ€๊ธฐ", "action": "webLink", "webLinkUrl": "http://www.suwon.ac.kr/?menuno=674" } ] } } ], "quickReplies": [ { "label": "๋”๋ณด๊ธฐ", "action": "message", "messageText": "์ˆ˜์›๋Œ€ ๊ณต์ง€์‚ฌํ•ญ2 ์•Œ๋ ค์ค˜" } ] } } elif content == u"์ˆ˜์›๋Œ€ ๊ณต์ง€์‚ฌํ•ญ2 ์•Œ๋ ค์ค˜": dataSend = { "version": "2.0", "template": { "outputs": [ { "listCard": { "header": { "title": "์ˆ˜์›๋Œ€ํ•™๊ต ๊ณต์ง€์‚ฌํ•ญ", "imageUrl": "https://proxy.goorm.io//service/5ccda9890e70de7aa094ede1_dbagmjvzeyafyjerlac.run.goorm.io/9080//file/load/App_Banner.png?path=d29ya3NwYWNlJTJGU3V3b25Cb3QlMkZJbWFnZSUyRkFwcF9CYW5uZXIucG5n&docker_id=dbagmjvzeyafyjerlac&secure_session_id=IlC0-R5MuofCrIMCXBNPinjASPWLUMb3" }, "items": [ { "title": o_Notice.res[5], }, { "title": o_Notice.res[6] }, { "title": o_Notice.res[7] }, { "title": o_Notice.res[8] }, { "title": o_Notice.res[9] }, ], "buttons": [ { "label": "๊ตฌ๊ฒฝ๊ฐ€๊ธฐ", "action": "webLink", "webLinkUrl": "http://www.suwon.ac.kr/?menuno=674" } ] } } ] } } elif content == u"์•Œ๋ฆผ์ด ๊ณต์ง€์‚ฌํ•ญ ์•Œ๋ ค์ค˜": dataSend = { "version": "2.0", "template": { "outputs": [ { "simpleText": { "text": s_Notice.data } } ] } } elif content == u"๊ฐœ๋ฐœ์ค‘": dataSend = { "version": "2.0", "template": { "outputs": [ { "simpleText": { "text": "๐Ÿ˜€๐Ÿ˜๐Ÿ˜‚๐Ÿคฃ๐Ÿ˜ƒ๐Ÿ˜„๐Ÿ˜…๐Ÿ˜˜๐Ÿค—๐Ÿ™„๐Ÿ˜ถ๐Ÿ™‚๐Ÿ˜๐Ÿ˜Žโ˜บ๏ธ๐Ÿ˜‘๐Ÿ˜๐Ÿ˜š๐Ÿ˜‹๐Ÿ˜Š๐Ÿ˜™๐Ÿคจ๐Ÿค”๐Ÿ˜—๐Ÿ˜‰๐Ÿ˜†๐Ÿฅฐ๐Ÿคฉ๐Ÿ˜๐Ÿ˜ฃ๐Ÿ˜ฅ๐Ÿ˜ฎ๐Ÿค๐Ÿ˜ฏ๐Ÿ˜ช๐Ÿคค๐Ÿ˜๐Ÿ˜œ๐Ÿ˜›๐Ÿ˜Œ๐Ÿ˜ด๐Ÿ˜ซ๐Ÿ˜’๐Ÿ˜“๐Ÿ˜”๐Ÿ˜•๐Ÿ™ƒ๐Ÿค‘๐Ÿ˜ฒ๐Ÿ˜ข๐Ÿ˜ค๐Ÿคฏ๐Ÿ˜ฌ๐Ÿ˜ฉ๐Ÿ˜Ÿ๐Ÿ˜ž๐Ÿ˜จ๐Ÿ˜ง๐Ÿ˜–๐Ÿ™๐Ÿ˜ฆโ˜น๐Ÿ˜ญ๐Ÿ˜ฐ๐Ÿ˜ฑ๐Ÿฅต๐Ÿฅถ๐Ÿ˜ณ๐Ÿคช๐Ÿ˜ต๐Ÿคข๐Ÿฅบ๐Ÿ˜ˆ๐Ÿ‘ปโ˜ โ˜ป๐Ÿฅด๐Ÿค•๐Ÿค’๐Ÿฅณ๐Ÿค“๐Ÿ’€๐Ÿ‘บ๐Ÿง๐Ÿค ๐Ÿ˜ท๐Ÿคฌ๐Ÿ˜‡๐Ÿคญ๐Ÿ‘น๐Ÿคก๐Ÿคซ๐Ÿคง๐Ÿ˜ ๐Ÿ˜ก๐Ÿคฎ๐Ÿคฅ๐Ÿ‘ฟ๐Ÿ‘พ๐Ÿ‘ฝ๐Ÿค–๐Ÿ’ฉ๐Ÿ˜บ๐Ÿ˜ธ๐Ÿ˜น๐Ÿ™ˆ๐Ÿ˜พ๐Ÿ˜ฟ๐Ÿ™€๐Ÿ˜ฝ๐Ÿ˜ผ๐Ÿ˜ป๐Ÿง‘๐Ÿ‘ง๐Ÿ‘จโ€โš•๏ธ๐Ÿ‘ฉโ€โš•๏ธ๐Ÿ‘จโ€๐ŸŒพ๐Ÿ‘จโ€๐Ÿญ๐Ÿ‘ฉโ€๐Ÿญ๐Ÿ‘ฉโ€โš–๐Ÿ‘ฉโ€๐Ÿ”ง๐Ÿ‘จโ€โš–๐Ÿ‘ต๐Ÿ‘ฆ๐Ÿง’๐Ÿ‘ด๐Ÿ‘ฉโ€๐Ÿซ๐Ÿ‘จโ€๐Ÿ”ง๐Ÿ‘ฉโ€๐Ÿณ๐Ÿ‘จโ€๐Ÿซ๐Ÿง“๐Ÿ‘ถ๐Ÿ™Š๐Ÿ‘ฉ๐Ÿ‘ฉโ€๐ŸŽ“๐Ÿ‘จโ€๐Ÿณ๐Ÿ‘ฉโ€๐ŸŒพ๐Ÿ‘จโ€๐ŸŽ“๐Ÿ‘จ๐Ÿ™‰๐Ÿ‘จโ€๐Ÿ’ผ๐Ÿ‘ฉโ€๐Ÿ’ผ๐Ÿ‘จโ€๐Ÿ”ฌ๐Ÿ‘ฉโ€๐Ÿ”ฌ๐Ÿ‘จโ€๐Ÿ’ป๐Ÿ‘ฉโ€๐Ÿ’ป๐Ÿ‘จโ€๐ŸŽค๐Ÿ‘ฉโ€๐Ÿš€๐Ÿ‘จโ€๐Ÿš€๐Ÿ‘ฉโ€โœˆ๏ธ๐Ÿ‘จโ€โœˆ๏ธ๐Ÿ‘ฉโ€๐ŸŽจ๐Ÿ‘จโ€๐ŸŽจ๐Ÿ‘ฉโ€๐ŸŽค๐Ÿ’‚โ€โ™‚๏ธ๐Ÿ•ต๏ธโ€โ™€๏ธ๐Ÿ•ต๏ธโ€โ™‚๏ธ๐Ÿ‘ฎโ€โ™€๏ธ๐Ÿ‘ฎโ€โ™‚๏ธ๐Ÿ‘ฉโ€๐Ÿš’๐Ÿ‘จโ€๐Ÿš’๐Ÿงžโ€โ™€๏ธ๐ŸงŸโ€โ™‚๏ธ๐ŸงŸโ€โ™€๏ธ๐Ÿ™โ€โ™‚๏ธ๐Ÿ™โ€โ™€๏ธ๐Ÿ™Žโ€โ™‚๏ธ๐Ÿ™Žโ€โ™€๏ธ๐Ÿ™‹โ€โ™‚๏ธ๐Ÿ’โ€โ™€๏ธ๐Ÿ’โ€โ™‚๏ธ๐Ÿ™†โ€โ™€๏ธ๐Ÿ™†โ€โ™‚๏ธ๐Ÿ™…โ€โ™€๏ธ๐Ÿ™…๐Ÿผโ€โ™‚๏ธ๐Ÿคทโ€โ™€๏ธ๐Ÿคทโ€โ™‚๏ธ๐Ÿคฆโ€โ™€๏ธ๐Ÿคฆโ€โ™‚๏ธ๐Ÿ™‡โ€โ™€๏ธ๐Ÿ™‡โ€โ™‚๏ธ๐Ÿ™‹โ€โ™€๏ธ๐Ÿ–ค๐Ÿ’Ÿ๐Ÿ’ค๐Ÿ’š๐Ÿ’›๐Ÿ’•๐Ÿ’ž๐Ÿ’“๐Ÿงกโค๐Ÿ’—๐Ÿ’–๐Ÿ’”โฃ๐Ÿ’๐Ÿ’˜๐Ÿ’Œ๐Ÿ’™๐Ÿ’œ๐Ÿ’ฃ๐Ÿ—ฏ๐Ÿ—จ๐Ÿฅผ๐Ÿ‘”๐Ÿ’ข๐Ÿ’ฌ๐Ÿฅฝ๐Ÿ•ถ๐Ÿ’ซ๐Ÿ’จ๐Ÿ‘“๐Ÿ•ณ๐Ÿ’ฆ๐Ÿ’ฅ๐Ÿ’ญ๐Ÿ‘—๐Ÿงฆ๐Ÿงฅ๐Ÿงค๐Ÿงฃ๐Ÿ‘–๐Ÿ‘•๐Ÿ‘˜๐Ÿ‘™๐Ÿ‘š๐Ÿ‘›๐Ÿ‘œ๐Ÿ‘œ๐Ÿ‘๐Ÿ›๐Ÿ‘ก๐Ÿ‘ ๐Ÿฅฟ๐Ÿฅพ๐Ÿ‘Ÿ๐Ÿ‘ž๐ŸŽ’๐Ÿงขโ›‘๐ŸŽ“๐ŸŽฉ๐Ÿ‘’๐Ÿ‘‘๐Ÿ‘ข๐Ÿ“ฟ๐Ÿ’„๐Ÿ’๐Ÿ’Ž๐Ÿงถ๐Ÿงตโ™Ÿโ™ฃ๏ธ๐ŸŽจ๐Ÿ–ผโ™ฆ๏ธโ™ฅ๏ธ๐ŸŽญ๐ŸŽดโ™ ๏ธ๐Ÿงฟ๐ŸŽฎ๐Ÿ•น๐ŸŽฐ๐ŸŽฒ๐Ÿงฉ๐Ÿงธ๐Ÿ€„๐Ÿƒ๐Ÿ”ฎ๐ŸŽฑ๐ŸŽฏ๐ŸฅŒ๐Ÿ›ท๐ŸŽฟ๐ŸŽฝ๐ŸŽฃโ›ธโ›ณ๐Ÿฅ…๐Ÿฅ‹๐ŸฅŠ๐Ÿธ๐Ÿฅ๐ŸŽณ๐Ÿ๐Ÿ‘๐Ÿ’๐Ÿฅ๐Ÿ“๐ŸŽพ๐Ÿ‰๐Ÿˆ๐Ÿ๐Ÿ€๐ŸฅŽโšพ๏ธโšฝ๏ธ๐Ÿฅ‰๐ŸŽŸ๐ŸŽซ๐ŸŽ๐ŸŽโœจ๐ŸŽˆ๐Ÿงจ๐ŸŽŽ๐ŸŽ—๐Ÿฅˆ๐Ÿฅ‡๐ŸŽ๐ŸŽ๐ŸŽ‡๐ŸŽ†๐ŸŽ‹๐ŸŽ€๐Ÿ…๐Ÿ†๐Ÿงง๐ŸŽŠ๐ŸŽ‰๐ŸŽ‘๐ŸŽ–๐ŸŽƒ๐ŸŽ„โ›„๐ŸŒ‚โ˜‚๏ธโ˜„๐Ÿ”ฅโ˜”โ›ฑ๐Ÿ’ง๐ŸŒŠโšกโ„โ˜ƒ๏ธ๐ŸŒˆ๐ŸŒ€๐ŸŒง๐ŸŒฆ๐ŸŒฅ๐ŸŒฌ๐ŸŒซ๐ŸŒคโ›ˆ๐ŸŒช๐ŸŒฉโ›…โ˜๏ธ๐ŸŒจ๐Ÿ•ฐโฒโฑโฐ๐ŸŒ๐ŸŒŽ๐ŸŒ‹โ›ฐ๐Ÿž๐ŸŸ๐ŸŒ๐Ÿ•๐Ÿ—๐Ÿงฑ๐Ÿ–๐Ÿ—บ๐Ÿงญ๐Ÿ”๐Ÿ”‡๐Ÿ”ˆ๐Ÿ”•๐Ÿ””๐ŸŽผ๐Ÿ”‰๐Ÿ”Š๐ŸŽต๐Ÿ“ข๐ŸŽถ๐ŸŽ™๐Ÿ“ฃ๐Ÿ“ฏ๐ŸŽš๐ŸŽน๐ŸŽธ๐ŸŽท๐Ÿ“ป๐ŸŽง๐ŸŽค๐ŸŽ›๐Ÿ“žโ˜Ž๏ธ๐Ÿ“ฒ๐Ÿ“ฑ๐Ÿฅ๐ŸŽป๐ŸŽบ๐Ÿ–จ๐Ÿ–ฅ๐Ÿ’ป๐Ÿ”Œ๐Ÿ”‹๐Ÿ“ ๐Ÿ“Ÿ๐Ÿ”๐Ÿ”Ž๐Ÿ”ฆ๐Ÿฎ๐Ÿ“”๐Ÿ“•๐Ÿ“–๐Ÿ“—๐Ÿ“˜๐Ÿ’ด๐Ÿ’ฐ๐Ÿท๐Ÿ”–๐Ÿ“‘๐Ÿ—ž๐Ÿ“ฐ๐Ÿ’ฒโœ‰๐Ÿ“ง๐Ÿ“จ๐Ÿ“ฉ๐Ÿ“ค๐Ÿ“ฅ๐Ÿ“๐Ÿ—’๐Ÿ“†๐Ÿ–๐Ÿ–Œ๐Ÿ“…๐Ÿ—‚๐Ÿ–Š๐Ÿ–‹๐Ÿ“‚๐Ÿ“โœ’โœ๐Ÿ’ผ๐Ÿ“ฆ๐Ÿ“ซ๐Ÿ“ช๐Ÿ“ฌ๐Ÿ“ญ๐Ÿ“ฎ๐Ÿ—ณ๐Ÿ“Œ๐Ÿ“‹โœ‚๏ธ๐Ÿ—ƒ๐Ÿ”‘๐Ÿ”๐Ÿ”๐Ÿ“๐Ÿ“Š๐Ÿ“‰๐Ÿ“๐Ÿ”“๐Ÿ”’๐Ÿ–‡๐Ÿ“ˆ๐Ÿ“‡๐Ÿ“Ž๐Ÿ—‘๐Ÿ—„๐Ÿ“๐Ÿ—“โš”๐Ÿ—œ๐Ÿงชโš—โš™๐Ÿ—ก๐Ÿ› ๐Ÿ”ฉ๐Ÿงฒ๐Ÿงฐ๐Ÿ”งโš’โ›๐Ÿ›กโ›“๐Ÿ”—๐Ÿน๐Ÿ”จ๐Ÿ—๐Ÿ”ซโš–๐Ÿ’Š๐Ÿ’‰๐Ÿ“ก๐Ÿ”ญ๐Ÿ”ฌ๐Ÿงฌ๐Ÿงซ๐Ÿšช๐Ÿ›๐Ÿ›‹๐Ÿงบ๐Ÿงน๐Ÿงท๐Ÿ›’โšฐโšฑโšฑ๐Ÿ—ฟ๐Ÿงป๐Ÿšฝ๐Ÿšฟ๐Ÿงผ๐Ÿงฝ๐Ÿงด๐Ÿงด๐Ÿ›๐Ÿšธโ›”๐Ÿšซ๐Ÿšณ๐Ÿšณ๐Ÿšญ๐Ÿšฏ๐Ÿšฑโš ๏ธโœ…โ˜‘โญ•โœ”โœ–โŒโŽโœณใ€ฝ๏ธโžฟโžฐโž—โž–โž•โ—โ€ผโ‡โ—ใ€ฐ๏ธยฉ๏ธยฎ๏ธโ‰๏ธโ“โ„ข๏ธ#๏ธโƒฃ*๏ธโƒฃโ•โ”๐Ÿ’ ๐Ÿ”ป๐Ÿ”บ๏ธ๐Ÿ”น๏ธ๐Ÿ”ธ๏ธ๐Ÿ”ท๏ธ๐Ÿ”ถ๏ธ๐Ÿ”˜๐Ÿ”ฒ๐Ÿ”ณ๐Ÿ”ด๐Ÿ”ตโšชโšซโฌœ๐Ÿก๐ŸฅŸ๐Ÿฉ๐Ÿช๐Ÿฅ ๐ŸŽ‚๐Ÿฐ๐Ÿฅก๐Ÿฆ๐Ÿง๐Ÿฅง๐Ÿง๐Ÿจ๐Ÿซโ˜•๐Ÿฅ›๐Ÿผ๐Ÿฏ๐Ÿฎ๐Ÿญ๐Ÿฌ๐Ÿต๐Ÿถ๐Ÿพ๐Ÿท๐Ÿธ๐Ÿน๐Ÿน๐Ÿบ๐Ÿบ๐Ÿน๐Ÿธ๐Ÿท๐Ÿพ๐Ÿถ๐Ÿต๐Ÿป๐Ÿฅ‚๐Ÿฅƒ๐Ÿฅค๐Ÿฝ๐Ÿฅข๐Ÿด๐Ÿ–จ" } } ] } } else: dataSend = { "version": "2.0", "template": { "outputs": [ { "simpleText": { "text": "์•„์ง ๊ณต๋ถ€ํ•˜๊ณ ์žˆ์Šต๋‹ˆ๋‹ค." } } ] } } return jsonify(dataSend) """ "buttons": [ { "action": "message", "label": "์ข…ํ•ฉ๊ฐ•์˜๋™", "messageText": "์ข…ํ•ฉ๊ฐ•์˜๋™ ํ•™์‹ ์•Œ๋ ค์ฃผ์„ธ์š”" }, { "action": "message", "label": "์•„๋งˆ๋žœ์Šค ํ™€", "messageText": "์•„๋งˆ๋žœ์Šคํ™€ ํ•™์‹ ์•Œ๋ ค์ฃผ์„ธ์š”" } ] """ if __name__ == "__main__": ThreadingWeather() Threading1d() Threading1h() Threading4h() app.run(host='0.0.0.0', port=8888)
40.19611
828
0.283799