hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
b8cbdf21fb37924f7d67a1b4ea5a61f589e22f36
301
py
Python
dataType.py
SWLBot/electronic-blackboard
8c149919c65a36d0d15fed09f1242a3e7d66c728
[ "Apache-2.0" ]
2
2017-08-29T02:46:22.000Z
2017-09-08T17:16:59.000Z
dataType.py
SWLBot/electronic-blackboard
8c149919c65a36d0d15fed09f1242a3e7d66c728
[ "Apache-2.0" ]
103
2017-03-02T12:51:57.000Z
2018-04-11T11:46:01.000Z
dataType.py
SWLBot/electronic-blackboard
8c149919c65a36d0d15fed09f1242a3e7d66c728
[ "Apache-2.0" ]
12
2017-04-14T02:42:38.000Z
2017-08-29T02:46:22.000Z
class DataType: def __init__(self, type_id=None, type_name=None, type_dir=None): if not (type_id and type_name and type_dir): raise ValueError("Missing arguement for DataType") self.type_id = type_id self.type_name = type_name self.type_dir = type_dir
33.444444
68
0.667774
0b4a6ca0658f46385446747ea4872a882ee41424
38,370
py
Python
cms/tests/test_cache.py
devyntk/django-cms
f889a30e94f268394ae9abf32c032239d0a9be55
[ "BSD-3-Clause" ]
5,659
2015-01-01T02:42:30.000Z
2020-10-07T02:38:29.000Z
cms/tests/test_cache.py
devyntk/django-cms
f889a30e94f268394ae9abf32c032239d0a9be55
[ "BSD-3-Clause" ]
3,264
2015-01-02T10:11:48.000Z
2020-10-08T13:15:07.000Z
cms/tests/test_cache.py
devyntk/django-cms
f889a30e94f268394ae9abf32c032239d0a9be55
[ "BSD-3-Clause" ]
2,132
2015-01-01T11:28:21.000Z
2020-10-06T09:09:11.000Z
import time from django.conf import settings from django.template import Context from sekizai.context import SekizaiContext from cms.api import add_plugin, create_page, create_title from cms.cache import _get_cache_version, invalidate_cms_page_cache from cms.cache.placeholder import ( _get_placeholder_cache_key, _get_placeholder_cache_version, _get_placeholder_cache_version_key, _set_placeholder_cache_version, clear_placeholder_cache, get_placeholder_cache, set_placeholder_cache, ) from cms.exceptions import PluginAlreadyRegistered from cms.models import Page from cms.plugin_pool import plugin_pool from cms.test_utils.project.placeholderapp.models import Example1 from cms.test_utils.project.pluginapp.plugins.caching.cms_plugins import ( DateTimeCacheExpirationPlugin, LegacyCachePlugin, NoCachePlugin, SekizaiPlugin, TimeDeltaCacheExpirationPlugin, TTLCacheExpirationPlugin, VaryCacheOnPlugin, ) from cms.test_utils.testcases import CMSTestCase from cms.test_utils.util.fuzzy_int import FuzzyInt from cms.toolbar.toolbar import CMSToolbar from cms.utils.conf import get_cms_setting from cms.utils.helpers import get_timezone_name class CacheTestCase(CMSTestCase): def tearDown(self): from django.core.cache import cache super().tearDown() cache.clear() def setUp(self): from django.core.cache import cache super().setUp() cache.clear() def test_cache_placeholder(self): template = "{% load cms_tags %}{% placeholder 'body' %}{% placeholder 'right-column' %}" page1 = create_page('test page 1', 'nav_playground.html', 'en', published=True) page1_url = page1.get_absolute_url() placeholder = page1.placeholders.filter(slot="body")[0] add_plugin(placeholder, "TextPlugin", 'en', body="English") add_plugin(placeholder, "TextPlugin", 'de', body="Deutsch") request = self.get_request(page1_url) request.current_page = Page.objects.get(pk=page1.pk) request.toolbar = CMSToolbar(request) with self.assertNumQueries(FuzzyInt(5, 9)): self.render_template_obj(template, {}, request) request = self.get_request(page1_url) request.session['cms_edit'] = True request.current_page = Page.objects.get(pk=page1.pk) request.toolbar = CMSToolbar(request) template = "{% load cms_tags %}{% placeholder 'body' %}{% placeholder 'right-column' %}" with self.assertNumQueries(2): self.render_template_obj(template, {}, request) # toolbar with self.login_user_context(self.get_superuser()): request = self.get_request(page1_url) request.session['cms_edit'] = True request.current_page = Page.objects.get(pk=page1.pk) request.toolbar = CMSToolbar(request) request.toolbar.show_toolbar = True template = "{% load cms_tags %}{% placeholder 'body' %}{% placeholder 'right-column' %}" with self.assertNumQueries(4): self.render_template_obj(template, {}, request) page1.publish('en') exclude = [ 'django.middleware.cache.UpdateCacheMiddleware', 'django.middleware.cache.FetchFromCacheMiddleware' ] overrides = dict( CMS_PAGE_CACHE=False, MIDDLEWARE=[mw for mw in settings.MIDDLEWARE if mw not in exclude], ) with self.settings(**overrides): with self.assertNumQueries(FuzzyInt(13, 25)): self.client.get(page1_url) with self.assertNumQueries(FuzzyInt(5, 14)): self.client.get(page1_url) overrides['CMS_PLACEHOLDER_CACHE'] = False with self.settings(**overrides): with self.assertNumQueries(FuzzyInt(7, 18)): self.client.get(page1_url) def test_no_cache_plugin(self): page1 = create_page('test page 1', 'nav_playground.html', 'en', published=True) page1_url = page1.get_absolute_url() placeholder1 = page1.placeholders.filter(slot='body')[0] placeholder2 = page1.placeholders.filter(slot='right-column')[0] try: plugin_pool.register_plugin(NoCachePlugin) except PluginAlreadyRegistered: pass add_plugin(placeholder1, 'TextPlugin', 'en', body="English") add_plugin(placeholder2, 'TextPlugin', 'en', body="Deutsch") template = "{% load cms_tags %}{% placeholder 'body' %}{% placeholder 'right-column' %}" # Ensure that we're testing in an environment WITHOUT the MW cache, as # we are testing the internal page cache, not the MW cache. exclude = [ 'django.middleware.cache.UpdateCacheMiddleware', 'django.middleware.cache.CacheMiddleware', 'django.middleware.cache.FetchFromCacheMiddleware' ] overrides = { 'MIDDLEWARE': [mw for mw in settings.MIDDLEWARE if mw not in exclude] } with self.settings(**overrides): # Request the page without the 'no-cache' plugin request = self.get_request(page1_url) request.current_page = Page.objects.get(pk=page1.pk) request.toolbar = CMSToolbar(request) with self.assertNumQueries(FuzzyInt(18, 25)): response1 = self.client.get(page1_url) content1 = response1.content # Fetch it again, it is cached. request = self.get_request(page1_url) request.current_page = Page.objects.get(pk=page1.pk) request.toolbar = CMSToolbar(request) with self.assertNumQueries(0): response2 = self.client.get(page1_url) content2 = response2.content self.assertEqual(content1, content2) # Once again with PAGE_CACHE=False, to prove the cache can # be disabled request = self.get_request(page1_url) request.current_page = Page.objects.get(pk=page1.pk) request.toolbar = CMSToolbar(request) with self.settings(CMS_PAGE_CACHE=False): with self.assertNumQueries(FuzzyInt(5, 24)): response3 = self.client.get(page1_url) content3 = response3.content self.assertEqual(content1, content3) # Add the 'no-cache' plugin add_plugin(placeholder1, "NoCachePlugin", 'en') page1.publish('en') request = self.get_request(page1_url) request.current_page = Page.objects.get(pk=page1.pk) request.toolbar = CMSToolbar(request) with self.assertNumQueries(FuzzyInt(4, 6)): output = self.render_template_obj(template, {}, request) with self.assertNumQueries(FuzzyInt(14, 24)): response = self.client.get(page1_url) self.assertTrue("no-cache" in response['Cache-Control']) resp1 = response.content.decode('utf8').split("$$$")[1] request = self.get_request(page1_url) request.current_page = Page.objects.get(pk=page1.pk) request.toolbar = CMSToolbar(request) with self.assertNumQueries(5): output2 = self.render_template_obj(template, {}, request) with self.settings(CMS_PAGE_CACHE=False): with self.assertNumQueries(FuzzyInt(8, 17)): response = self.client.get(page1_url) resp2 = response.content.decode('utf8').split("$$$")[1] self.assertNotEqual(output, output2) self.assertNotEqual(resp1, resp2) plugin_pool.unregister_plugin(NoCachePlugin) def test_timedelta_cache_plugin(self): page1 = create_page('test page 1', 'nav_playground.html', 'en', published=True) placeholder1 = page1.placeholders.filter(slot="body")[0] placeholder2 = page1.placeholders.filter(slot="right-column")[0] plugin_pool.register_plugin(TimeDeltaCacheExpirationPlugin) add_plugin(placeholder1, "TextPlugin", 'en', body="English") add_plugin(placeholder2, "TextPlugin", 'en', body="Deutsch") # Add *TimeDeltaCacheExpirationPlugin, expires in 45s. add_plugin(placeholder1, "TimeDeltaCacheExpirationPlugin", 'en') # Ensure that we're testing in an environment WITHOUT the MW cache, as # we are testing the internal page cache, not the MW cache. exclude = [ 'django.middleware.cache.UpdateCacheMiddleware', 'django.middleware.cache.CacheMiddleware', 'django.middleware.cache.FetchFromCacheMiddleware', ] overrides = { 'MIDDLEWARE': [mw for mw in settings.MIDDLEWARE if mw not in exclude] } with self.settings(**overrides): page1.publish('en') request = self.get_request(page1.get_absolute_url()) request.current_page = Page.objects.get(pk=page1.pk) request.toolbar = CMSToolbar(request) with self.assertNumQueries(FuzzyInt(14, 25)): # was 14, 24 response = self.client.get(page1.get_absolute_url()) self.assertTrue('max-age=45' in response['Cache-Control'], response['Cache-Control']) plugin_pool.unregister_plugin(TimeDeltaCacheExpirationPlugin) def test_datetime_cache_plugin(self): page1 = create_page('test page 1', 'nav_playground.html', 'en', published=True) page1_url = page1.get_absolute_url() placeholder1 = page1.placeholders.filter(slot="body")[0] placeholder2 = page1.placeholders.filter(slot="right-column")[0] try: plugin_pool.register_plugin(DateTimeCacheExpirationPlugin) except PluginAlreadyRegistered: pass add_plugin(placeholder1, "TextPlugin", 'en', body="English") add_plugin(placeholder2, "TextPlugin", 'en', body="Deutsch") # Add *CacheExpirationPlugins, one expires in 50s, the other in 40s. # The page should expire in the least of these, or 40s. add_plugin(placeholder1, "DateTimeCacheExpirationPlugin", 'en') # Ensure that we're testing in an environment WITHOUT the MW cache, as # we are testing the internal page cache, not the MW cache. exclude = [ 'django.middleware.cache.UpdateCacheMiddleware', 'django.middleware.cache.CacheMiddleware', 'django.middleware.cache.FetchFromCacheMiddleware', ] overrides = { 'MIDDLEWARE': [mw for mw in settings.MIDDLEWARE if mw not in exclude] } with self.settings(**overrides): page1.publish('en') request = self.get_request(page1_url) request.current_page = Page.objects.get(pk=page1.pk) request.toolbar = CMSToolbar(request) with self.assertNumQueries(FuzzyInt(14, 25)): # was 14, 24 response = self.client.get(page1_url) self.assertTrue('max-age=40' in response['Cache-Control'], response['Cache-Control']) plugin_pool.unregister_plugin(DateTimeCacheExpirationPlugin) def TTLCacheExpirationPlugin(self): page1 = create_page('test page 1', 'nav_playground.html', 'en', published=True) placeholder1 = page1.placeholders.filter(slot="body")[0] placeholder2 = page1.placeholders.filter(slot="right-column")[0] plugin_pool.register_plugin(TTLCacheExpirationPlugin) add_plugin(placeholder1, "TextPlugin", 'en', body="English") add_plugin(placeholder2, "TextPlugin", 'en', body="Deutsch") # Add *CacheExpirationPlugins, one expires in 50s, the other in 40s. # The page should expire in the least of these, or 40s. add_plugin(placeholder1, "TTLCacheExpirationPlugin", 'en') # Ensure that we're testing in an environment WITHOUT the MW cache, as # we are testing the internal page cache, not the MW cache. exclude = [ 'django.middleware.cache.UpdateCacheMiddleware', 'django.middleware.cache.CacheMiddleware', 'django.middleware.cache.FetchFromCacheMiddleware', ] overrides = { 'MIDDLEWARE': [mw for mw in settings.MIDDLEWARE if mw not in exclude] } with self.settings(**overrides): page1.publish('en') request = self.get_request('/en/') request.current_page = Page.objects.get(pk=page1.pk) request.toolbar = CMSToolbar(request) with self.assertNumQueries(FuzzyInt(14, 25)): # was 14, 24 response = self.client.get('/en/') self.assertTrue('max-age=50' in response['Cache-Control'], response['Cache-Control']) plugin_pool.unregister_plugin(TTLCacheExpirationPlugin) def test_expiration_cache_plugins(self): """ Tests that when used in combination, the page is cached to the shortest TTL. """ page1 = create_page('test page 1', 'nav_playground.html', 'en', published=True) page1_url = page1.get_absolute_url() placeholder1 = page1.placeholders.filter(slot="body")[0] placeholder2 = page1.placeholders.filter(slot="right-column")[0] plugin_pool.register_plugin(TTLCacheExpirationPlugin) try: plugin_pool.register_plugin(DateTimeCacheExpirationPlugin) except PluginAlreadyRegistered: pass try: plugin_pool.register_plugin(NoCachePlugin) except PluginAlreadyRegistered: pass add_plugin(placeholder1, "TextPlugin", 'en', body="English") add_plugin(placeholder2, "TextPlugin", 'en', body="Deutsch") # Add *CacheExpirationPlugins, one expires in 50s, the other in 40s. # The page should expire in the least of these, or 40s. add_plugin(placeholder1, "TTLCacheExpirationPlugin", 'en') add_plugin(placeholder2, "DateTimeCacheExpirationPlugin", 'en') # Ensure that we're testing in an environment WITHOUT the MW cache, as # we are testing the internal page cache, not the MW cache. exclude = [ 'django.middleware.cache.UpdateCacheMiddleware', 'django.middleware.cache.CacheMiddleware', 'django.middleware.cache.FetchFromCacheMiddleware', ] overrides = { 'MIDDLEWARE': [mw for mw in settings.MIDDLEWARE if mw not in exclude] } with self.settings(**overrides): page1.publish('en') request = self.get_request(page1_url) request.current_page = Page.objects.get(pk=page1.pk) request.toolbar = CMSToolbar(request) with self.assertNumQueries(FuzzyInt(14, 26)): response = self.client.get(page1_url) resp1 = response.content.decode('utf8').split("$$$")[1] self.assertTrue('max-age=40' in response['Cache-Control'], response['Cache-Control']) # noqa cache_control1 = response['Cache-Control'] expires1 = response['Expires'] time.sleep(1) # This ensures that the cache has aged measurably # Request it again, this time, it comes from the cache request = self.get_request(page1_url) request.current_page = Page.objects.get(pk=page1.pk) request.toolbar = CMSToolbar(request) with self.assertNumQueries(0): response = self.client.get(page1_url) resp2 = response.content.decode('utf8').split("$$$")[1] # Content will be the same self.assertEqual(resp2, resp1) # Cache-Control will be different because the cache has aged self.assertNotEqual(response['Cache-Control'], cache_control1) # However, the Expires timestamp will be the same self.assertEqual(response['Expires'], expires1) plugin_pool.unregister_plugin(TTLCacheExpirationPlugin) plugin_pool.unregister_plugin(DateTimeCacheExpirationPlugin) plugin_pool.unregister_plugin(NoCachePlugin) def test_dual_legacy_cache_plugins(self): page1 = create_page('test page 1', 'nav_playground.html', 'en', published=True) page1_url = page1.get_absolute_url() placeholder1 = page1.placeholders.filter(slot="body")[0] placeholder2 = page1.placeholders.filter(slot="right-column")[0] plugin_pool.register_plugin(LegacyCachePlugin) add_plugin(placeholder1, "TextPlugin", 'en', body="English") add_plugin(placeholder2, "TextPlugin", 'en', body="Deutsch") # Adds a no-cache plugin. In older versions of the CMS, this would # prevent the page from caching in, but since this plugin also defines # get_cache_expiration() it is ignored. add_plugin(placeholder1, "LegacyCachePlugin", 'en') # Ensure that we're testing in an environment WITHOUT the MW cache, as # we are testing the internal page cache, not the MW cache. exclude = [ 'django.middleware.cache.UpdateCacheMiddleware', 'django.middleware.cache.CacheMiddleware', 'django.middleware.cache.FetchFromCacheMiddleware', ] overrides = { 'MIDDLEWARE': [mw for mw in settings.MIDDLEWARE if mw not in exclude] } with self.settings(**overrides): page1.publish('en') request = self.get_request(page1_url) request.current_page = Page.objects.get(pk=page1.pk) request.toolbar = CMSToolbar(request) with self.assertNumQueries(FuzzyInt(14, 25)): response = self.client.get(page1_url) self.assertTrue('no-cache' not in response['Cache-Control']) plugin_pool.unregister_plugin(LegacyCachePlugin) def test_cache_page(self): # Ensure that we're testing in an environment WITHOUT the MW cache... exclude = [ 'django.middleware.cache.UpdateCacheMiddleware', 'django.middleware.cache.FetchFromCacheMiddleware' ] overrides = { 'MIDDLEWARE': [mw for mw in settings.MIDDLEWARE if mw not in exclude] } with self.settings(**overrides): # Silly to do these tests if this setting isn't True page_cache_setting = get_cms_setting('PAGE_CACHE') self.assertTrue(page_cache_setting) # Create a test page page1 = create_page('test page 1', 'nav_playground.html', 'en', published=True) page1_url = page1.get_absolute_url() # Add some content placeholder = page1.placeholders.filter(slot="body")[0] add_plugin(placeholder, "TextPlugin", 'en', body="English") add_plugin(placeholder, "TextPlugin", 'de', body="Deutsch") # Create a request object request = self.get_request(page1_url, 'en') # Ensure that user is NOT authenticated self.assertFalse(request.user.is_authenticated) # Test that the page is initially uncached with self.assertNumQueries(FuzzyInt(1, 24)): response = self.client.get(page1_url) self.assertEqual(response.status_code, 200) # # Test that subsequent requests of the same page are cached by # asserting that they require fewer queries. # with self.assertNumQueries(0): response = self.client.get(page1_url) self.assertEqual(response.status_code, 200) # # Test that the cache is invalidated on unpublishing the page # old_version = _get_cache_version() page1.unpublish('en') self.assertGreater(_get_cache_version(), old_version) # # Test that this means the page is actually not cached. # page1.publish('en') with self.assertNumQueries(FuzzyInt(1, 24)): response = self.client.get(page1_url) self.assertEqual(response.status_code, 200) # # Test that the above behavior is different when CMS_PAGE_CACHE is # set to False (disabled) # with self.settings(CMS_PAGE_CACHE=False): # Test that the page is initially un-cached with self.assertNumQueries(FuzzyInt(1, 20)): response = self.client.get(page1_url) self.assertEqual(response.status_code, 200) # # Test that subsequent requests of the same page are still requires DB # access. # with self.assertNumQueries(FuzzyInt(1, 20)): response = self.client.get(page1_url) self.assertEqual(response.status_code, 200) def test_no_page_cache_on_toolbar_edit(self): with self.settings(CMS_PAGE_CACHE=True): # Create a test page page1 = create_page('test page 1', 'nav_playground.html', 'en') page1_url = page1.get_absolute_url() # Add some content placeholder = page1.placeholders.filter(slot="body")[0] add_plugin(placeholder, "TextPlugin", 'en', body="English") add_plugin(placeholder, "TextPlugin", 'de', body="Deutsch") # Publish page1.publish('en') # Set edit mode session = self.client.session session['cms_edit'] = True session.save() # Make an initial ?edit request with self.assertNumQueries(FuzzyInt(1, 24)): response = self.client.get(page1_url) self.assertEqual(response.status_code, 200) # Disable edit mode session = self.client.session session['cms_edit'] = False session.save() # Set the cache with self.assertNumQueries(FuzzyInt(1, 24)): response = self.client.get(page1_url) self.assertEqual(response.status_code, 200) # Assert cached content was used with self.assertNumQueries(0): response = self.client.get(page1_url) self.assertEqual(response.status_code, 200) # Set edit mode once more session = self.client.session session['cms_edit'] = True session.save() # Assert no cached content was used with self.assertNumQueries(FuzzyInt(1, 24)): response = self.client.get('{}?edit'.format(page1_url)) self.assertEqual(response.status_code, 200) def test_invalidate_restart(self): # Ensure that we're testing in an environment WITHOUT the MW cache... exclude = [ 'django.middleware.cache.UpdateCacheMiddleware', 'django.middleware.cache.FetchFromCacheMiddleware' ] overrides = { 'MIDDLEWARE': [mw for mw in settings.MIDDLEWARE if mw not in exclude] } with self.settings(**overrides): # Silly to do these tests if this setting isn't True page_cache_setting = get_cms_setting('PAGE_CACHE') self.assertTrue(page_cache_setting) # Create a test page page1 = create_page('test page 1', 'nav_playground.html', 'en', published=True) page1_url = page1.get_absolute_url() # Add some content placeholder = page1.placeholders.filter(slot="body")[0] add_plugin(placeholder, "TextPlugin", 'en', body="English") add_plugin(placeholder, "TextPlugin", 'de', body="Deutsch") # Create a request object request = self.get_request(page1.get_path(), 'en') # Ensure that user is NOT authenticated self.assertFalse(request.user.is_authenticated) # Test that the page is initially uncached with self.assertNumQueries(FuzzyInt(1, 24)): response = self.client.get(page1_url) self.assertEqual(response.status_code, 200) # # Test that subsequent requests of the same page are cached by # asserting that they require fewer queries. # with self.assertNumQueries(0): response = self.client.get(page1_url) self.assertEqual(response.status_code, 200) old_plugins = plugin_pool.plugins plugin_pool.clear() plugin_pool.discover_plugins() plugin_pool.plugins = old_plugins with self.assertNumQueries(FuzzyInt(1, 20)): response = self.client.get(page1_url) self.assertEqual(response.status_code, 200) def test_sekizai_plugin(self): page1 = create_page('test page 1', 'nav_playground.html', 'en', published=True) placeholder1 = page1.placeholders.filter(slot="body")[0] placeholder2 = page1.placeholders.filter(slot="right-column")[0] plugin_pool.register_plugin(SekizaiPlugin) add_plugin(placeholder1, "SekizaiPlugin", 'en') add_plugin(placeholder2, "TextPlugin", 'en', body="Deutsch") page1.publish('en') response = self.client.get(page1.get_absolute_url()) self.assertContains(response, 'alert(') response = self.client.get(page1.get_absolute_url()) self.assertContains(response, 'alert(') def test_cache_invalidation(self): # Ensure that we're testing in an environment WITHOUT the MW cache... exclude = [ 'django.middleware.cache.UpdateCacheMiddleware', 'django.middleware.cache.FetchFromCacheMiddleware' ] overrides = { 'MIDDLEWARE': [mw for mw in settings.MIDDLEWARE if mw not in exclude] } with self.settings(**overrides): # Silly to do these tests if this setting isn't True page_cache_setting = get_cms_setting('PAGE_CACHE') self.assertTrue(page_cache_setting) page1 = create_page('test page 1', 'nav_playground.html', 'en', published=True) page1_url = page1.get_absolute_url() placeholder = page1.placeholders.get(slot="body") add_plugin(placeholder, "TextPlugin", 'en', body="First content") page1.publish('en') response = self.client.get(page1_url) self.assertContains(response, 'First content') response = self.client.get(page1_url) self.assertContains(response, 'First content') add_plugin(placeholder, "TextPlugin", 'en', body="Second content") page1.publish('en') response = self.client.get(page1_url) self.assertContains(response, 'Second content') def test_render_placeholder_cache(self): """ Regression test for #4223 Assert that placeholder cache is cleared correctly when a plugin is saved """ invalidate_cms_page_cache() ex = Example1( char_1='one', char_2='two', char_3='tree', char_4='four' ) ex.save() ph1 = ex.placeholder ### # add the test plugin ## test_plugin = add_plugin(ph1, "TextPlugin", "en", body="Some text") test_plugin.save() request = self.get_request() content_renderer = self.get_content_renderer(request) # asserting initial text context = SekizaiContext() context['request'] = self.get_request() text = content_renderer.render_placeholder(ph1, context) self.assertEqual(text, "Some text") # deleting local plugin cache del ph1._plugins_cache test_plugin.body = 'Other text' test_plugin.save() # plugin text has changed, so the placeholder rendering text = content_renderer.render_placeholder(ph1, context) self.assertEqual(text, "Other text") def test_render_placeholderfield_cache_in_custom_model(self): """ Regression test for #6912 Assert that placeholder of a placeholderfield in custom model has its cache cleared correctly when mark_as_dirty is called in the admin """ invalidate_cms_page_cache() # Create an instance of a custom model containing a placeholderfield ex = Example1(char_1="one", char_2="two", char_3="tree", char_4="four") ex.save() ph1 = ex.placeholder # Add a first plugin test_plugin = add_plugin(ph1, "TextPlugin", "en", body="Some text") test_plugin.save() # Create a first request using render_placeholder to ensure that the content is equal to the first plugin content request = self.get_request() content_renderer = self.get_content_renderer(request) context = SekizaiContext() context["request"] = self.get_request() text = content_renderer.render_placeholder(ph1, context, use_cache=True) self.assertEqual(text, "Some text") # Add a second plugin in the placeholder test_plugin = add_plugin(ph1, "TextPlugin", "en", body="Some other text") test_plugin.save() # Clear plugins cache to ensure that cms.utils.plugins.get_plugins() will refetch the plugins del ph1._plugins_cache # Create a second request using render_placeholder to ensure that the content is still equal to the first plugin content as cache was not cleared yet request = self.get_request() content_renderer = self.get_content_renderer(request) context = SekizaiContext() context["request"] = self.get_request() text = content_renderer.render_placeholder(ph1, context, use_cache=True) self.assertEqual(text, "Some text") # Mark placeholder as dirty as it is done in cms.admin.placeholderadmin file ph1.mark_as_dirty("en", clear_cache=False) # Create a last request to ensure that rendered content contains the two plugins content request = self.get_request() content_renderer = self.get_content_renderer(request) context = SekizaiContext() context["request"] = self.get_request() text = content_renderer.render_placeholder(ph1, context, use_cache=True) self.assertEqual(text, "Some textSome other text") class PlaceholderCacheTestCase(CMSTestCase): def setUp(self): from django.core.cache import cache super().setUp() cache.clear() self.page = create_page( 'en test page', 'nav_playground.html', 'en', published=True) # Now create and publish as 'de' title create_title('de', "de test page", self.page) self.page.publish('de') self.placeholder = self.page.placeholders.filter(slot="body")[0] plugin_pool.register_plugin(VaryCacheOnPlugin) add_plugin(self.placeholder, 'TextPlugin', 'en', body='English') add_plugin(self.placeholder, 'TextPlugin', 'de', body='Deutsch') add_plugin(self.placeholder, 'VaryCacheOnPlugin', 'en') add_plugin(self.placeholder, 'VaryCacheOnPlugin', 'de') self.en_request = self.get_request('/en/') self.en_request.current_page = Page.objects.get(pk=self.page.pk) self.en_us_request = self.get_request('/en/') self.en_us_request.META['HTTP_COUNTRY_CODE'] = 'US' self.en_uk_request = self.get_request('/en/') self.en_uk_request.META['HTTP_COUNTRY_CODE'] = 'UK' self.de_request = self.get_request('/de/') self.de_request.current_page = Page.objects.get(pk=self.page.pk) def tearDown(self): from django.core.cache import cache super().tearDown() plugin_pool.unregister_plugin(VaryCacheOnPlugin) cache.clear() def test_get_placeholder_cache_version_key(self): cache_version_key = '{prefix}|placeholder_cache_version|id:{id}|lang:{lang}|site:{site}'.format( prefix=get_cms_setting('CACHE_PREFIX'), id=self.placeholder.pk, lang='en', site=1, ) self.assertEqual( _get_placeholder_cache_version_key(self.placeholder, 'en', 1), cache_version_key ) def test_set_clear_get_placeholder_cache_version(self): initial, _ = _get_placeholder_cache_version(self.placeholder, 'en', 1) clear_placeholder_cache(self.placeholder, 'en', 1) version, _ = _get_placeholder_cache_version(self.placeholder, 'en', 1) self.assertGreater(version, initial) def test_get_placeholder_cache_key(self): version, vary_on_list = _get_placeholder_cache_version(self.placeholder, 'en', 1) desired_key = '{prefix}|render_placeholder|id:{id}|lang:{lang}|site:{site}|tz:{tz}|v:{version}|country-code:{cc}'.format( # noqa prefix=get_cms_setting('CACHE_PREFIX'), id=self.placeholder.pk, lang='en', site=1, tz=get_timezone_name(), version=version, cc='_', ) _set_placeholder_cache_version(self.placeholder, 'en', 1, version, vary_on_list=vary_on_list, duration=1) actual_key = _get_placeholder_cache_key(self.placeholder, 'en', 1, self.en_request) self.assertEqual(actual_key, desired_key) en_key = _get_placeholder_cache_key(self.placeholder, 'en', 1, self.en_request) de_key = _get_placeholder_cache_key(self.placeholder, 'de', 1, self.de_request) self.assertNotEqual(en_key, de_key) en_us_key = _get_placeholder_cache_key(self.placeholder, 'en', 1, self.en_us_request) self.assertNotEqual(en_key, en_us_key) desired_key = '{prefix}|render_placeholder|id:{id}|lang:{lang}|site:{site}|tz:{tz}|v:{version}|country-code:{cc}'.format( # noqa prefix=get_cms_setting('CACHE_PREFIX'), id=self.placeholder.pk, lang='en', site=1, tz=get_timezone_name(), version=version, cc='US', ) self.assertEqual(en_us_key, desired_key) def test_set_get_placeholder_cache(self): # Test with a super-long prefix en_renderer = self.get_content_renderer(self.en_request) en_context = Context({ 'request': self.en_request, }) en_us_renderer = self.get_content_renderer(self.en_us_request) en_us_context = Context({ 'request': self.en_us_request, }) en_uk_renderer = self.get_content_renderer(self.en_uk_request) en_uk_context = Context({ 'request': self.en_uk_request, }) en_content = en_renderer.render_placeholder(self.placeholder, en_context, 'en', width=350) en_us_content = en_us_renderer.render_placeholder(self.placeholder, en_us_context, 'en', width=350) en_uk_content = en_uk_renderer.render_placeholder(self.placeholder, en_uk_context, 'en', width=350) del self.placeholder._plugins_cache de_renderer = self.get_content_renderer(self.de_request) de_context = Context({ 'request': self.de_request, }) de_content = de_renderer.render_placeholder(self.placeholder, de_context, 'de', width=350) self.assertNotEqual(en_content, de_content) set_placeholder_cache(self.placeholder, 'en', 1, en_content, self.en_request) cached_en_content = get_placeholder_cache(self.placeholder, 'en', 1, self.en_request) self.assertEqual(cached_en_content, en_content) set_placeholder_cache(self.placeholder, 'de', 1, de_content, self.de_request) cached_de_content = get_placeholder_cache(self.placeholder, 'de', 1, self.de_request) self.assertNotEqual(cached_en_content, cached_de_content) set_placeholder_cache(self.placeholder, 'en', 1, en_us_content, self.en_us_request) cached_en_us_content = get_placeholder_cache(self.placeholder, 'en', 1, self.en_us_request) self.assertNotEqual(cached_en_content, cached_en_us_content) set_placeholder_cache(self.placeholder, 'en', 1, en_uk_content, self.en_uk_request) cached_en_uk_content = get_placeholder_cache(self.placeholder, 'en', 1, self.en_uk_request) self.assertNotEqual(cached_en_us_content, cached_en_uk_content) def test_set_get_placeholder_cache_with_long_prefix(self): """ This is for testing that everything continues to work even when the cache-keys are hashed. """ # Use an absurdly long cache prefix to get us in the right neighborhood... with self.settings(CMS_CACHE_PREFIX="super_lengthy_prefix" * 9): # 180 chars en_crazy_request = self.get_request('/en/') en_crazy_renderer = self.get_content_renderer(self.de_request) # Use a ridiculously long "country code" (80 chars), already we're at 260 chars. en_crazy_request.META['HTTP_COUNTRY_CODE'] = 'US' * 40 # 80 chars en_crazy_context = Context({'request': en_crazy_request}) en_crazy_content = en_crazy_renderer.render_placeholder( self.placeholder, en_crazy_context, language='en', width=350, ) set_placeholder_cache(self.placeholder, 'en', 1, en_crazy_content, en_crazy_request) # Prove that it is hashed... crazy_cache_key = _get_placeholder_cache_key(self.placeholder, 'en', 1, en_crazy_request) key_length = len(crazy_cache_key) # 221 = 180 (prefix length) + 1 (separator) + 40 (sha1 hash) self.assertTrue('render_placeholder' not in crazy_cache_key and key_length == 221) # Prove it still works as expected cached_en_crazy_content = get_placeholder_cache(self.placeholder, 'en', 1, en_crazy_request) self.assertEqual(en_crazy_content, cached_en_crazy_content)
44.461182
157
0.634454
58f122dfaac48ac475ce17fa824162918989cc0b
1,944
py
Python
tests/inferfaces_tests/test_misc.py
jmolinski/traktpy
e6ff22acaf273b7b45070a4f8938c210fe4d63d7
[ "MIT" ]
null
null
null
tests/inferfaces_tests/test_misc.py
jmolinski/traktpy
e6ff22acaf273b7b45070a4f8938c210fe4d63d7
[ "MIT" ]
1
2019-04-13T10:15:48.000Z
2019-04-13T10:15:48.000Z
tests/inferfaces_tests/test_misc.py
jmolinski/traktpy
e6ff22acaf273b7b45070a4f8938c210fe4d63d7
[ "MIT" ]
null
null
null
import pytest from tests.test_data.certifications import CERTIFICATIONS from tests.test_data.countries import COUNTRIES from tests.test_data.genres import GENRES from tests.test_data.languages import LANGUAGES from tests.test_data.lists import TRENDING_LISTS from tests.test_data.networks import NETWORKS from tests.utils import mk_mock_client from trakt.core.exceptions import ArgumentError def test_countries(): client = mk_mock_client({r".*countries.*": [COUNTRIES, 200]}) with pytest.raises(ArgumentError): client.countries.get_countries(type="qwerty") countries = client.countries.get_countries(type="shows") assert countries[0].code == COUNTRIES[0]["code"] def test_certifications(): client = mk_mock_client({r".*certifications.*": [CERTIFICATIONS, 200]}) with pytest.raises(ArgumentError): client.certifications.get_certifications(type="qwerty") certifications = client.certifications.get_certifications(type="shows") assert certifications[0].slug == CERTIFICATIONS["us"][0]["slug"] def test_genres(): client = mk_mock_client({r".*genres.*": [GENRES, 200]}) genres = client.genres.get_genres(type="shows") assert genres[0].name == GENRES[0]["name"] def test_languages(): client = mk_mock_client({r".*languages.*": [LANGUAGES, 200]}) languages = client.languages.get_languages(type="movies") assert languages[0].name == LANGUAGES[0]["name"] def test_lists(): resp = [TRENDING_LISTS, 200, {"X-Pagination-Page-Count": 1}] client = mk_mock_client({r".*lists/(trending|popular).*": resp}) tre = list(client.lists.get_trending()) pop = list(client.lists.get_popular()) assert tre[0].like_count == pop[0].like_count == TRENDING_LISTS[0]["like_count"] def test_networks(): client = mk_mock_client({r".*networks.*": [NETWORKS, 200]}) networks = client.networks.get_networks() assert networks[0].name == NETWORKS[0]["name"]
32.949153
84
0.721193
e9bba821d98eb0fc08d3dede3c1b79aabf62a3e7
7,197
py
Python
docusign_esign/models/connect_failure_result.py
joekohlsdorf/docusign-esign-python-client
40407544f79c88716d36fabf36f65c3ef1a5c3ba
[ "MIT" ]
58
2017-10-18T23:06:57.000Z
2021-04-15T23:14:58.000Z
docusign_esign/models/connect_failure_result.py
joekohlsdorf/docusign-esign-python-client
40407544f79c88716d36fabf36f65c3ef1a5c3ba
[ "MIT" ]
49
2017-10-27T05:54:09.000Z
2021-04-29T22:06:17.000Z
docusign_esign/models/connect_failure_result.py
joekohlsdorf/docusign-esign-python-client
40407544f79c88716d36fabf36f65c3ef1a5c3ba
[ "MIT" ]
49
2017-09-16T07:23:41.000Z
2021-05-07T20:21:20.000Z
# coding: utf-8 """ DocuSign REST API The DocuSign REST API provides you with a powerful, convenient, and simple Web services API for interacting with DocuSign. # noqa: E501 OpenAPI spec version: v2.1 Contact: devcenter@docusign.com Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six from docusign_esign.client.configuration import Configuration class ConnectFailureResult(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'config_id': 'str', 'config_url': 'str', 'envelope_id': 'str', 'status': 'str', 'status_message': 'str' } attribute_map = { 'config_id': 'configId', 'config_url': 'configUrl', 'envelope_id': 'envelopeId', 'status': 'status', 'status_message': 'statusMessage' } def __init__(self, _configuration=None, **kwargs): # noqa: E501 """ConnectFailureResult - a model defined in Swagger""" # noqa: E501 if _configuration is None: _configuration = Configuration() self._configuration = _configuration self._config_id = None self._config_url = None self._envelope_id = None self._status = None self._status_message = None self.discriminator = None setattr(self, "_{}".format('config_id'), kwargs.get('config_id', None)) setattr(self, "_{}".format('config_url'), kwargs.get('config_url', None)) setattr(self, "_{}".format('envelope_id'), kwargs.get('envelope_id', None)) setattr(self, "_{}".format('status'), kwargs.get('status', None)) setattr(self, "_{}".format('status_message'), kwargs.get('status_message', None)) @property def config_id(self): """Gets the config_id of this ConnectFailureResult. # noqa: E501 Reserved: TBD # noqa: E501 :return: The config_id of this ConnectFailureResult. # noqa: E501 :rtype: str """ return self._config_id @config_id.setter def config_id(self, config_id): """Sets the config_id of this ConnectFailureResult. Reserved: TBD # noqa: E501 :param config_id: The config_id of this ConnectFailureResult. # noqa: E501 :type: str """ self._config_id = config_id @property def config_url(self): """Gets the config_url of this ConnectFailureResult. # noqa: E501 Reserved: TBD # noqa: E501 :return: The config_url of this ConnectFailureResult. # noqa: E501 :rtype: str """ return self._config_url @config_url.setter def config_url(self, config_url): """Sets the config_url of this ConnectFailureResult. Reserved: TBD # noqa: E501 :param config_url: The config_url of this ConnectFailureResult. # noqa: E501 :type: str """ self._config_url = config_url @property def envelope_id(self): """Gets the envelope_id of this ConnectFailureResult. # noqa: E501 The envelope ID of the envelope status that failed to post. # noqa: E501 :return: The envelope_id of this ConnectFailureResult. # noqa: E501 :rtype: str """ return self._envelope_id @envelope_id.setter def envelope_id(self, envelope_id): """Sets the envelope_id of this ConnectFailureResult. The envelope ID of the envelope status that failed to post. # noqa: E501 :param envelope_id: The envelope_id of this ConnectFailureResult. # noqa: E501 :type: str """ self._envelope_id = envelope_id @property def status(self): """Gets the status of this ConnectFailureResult. # noqa: E501 Indicates the envelope status. Valid values are: * sent - The envelope is sent to the recipients. * created - The envelope is saved as a draft and can be modified and sent later. # noqa: E501 :return: The status of this ConnectFailureResult. # noqa: E501 :rtype: str """ return self._status @status.setter def status(self, status): """Sets the status of this ConnectFailureResult. Indicates the envelope status. Valid values are: * sent - The envelope is sent to the recipients. * created - The envelope is saved as a draft and can be modified and sent later. # noqa: E501 :param status: The status of this ConnectFailureResult. # noqa: E501 :type: str """ self._status = status @property def status_message(self): """Gets the status_message of this ConnectFailureResult. # noqa: E501 # noqa: E501 :return: The status_message of this ConnectFailureResult. # noqa: E501 :rtype: str """ return self._status_message @status_message.setter def status_message(self, status_message): """Sets the status_message of this ConnectFailureResult. # noqa: E501 :param status_message: The status_message of this ConnectFailureResult. # noqa: E501 :type: str """ self._status_message = status_message def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(ConnectFailureResult, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ConnectFailureResult): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, ConnectFailureResult): return True return self.to_dict() != other.to_dict()
30.888412
202
0.603724
0872e03ff5f0a9a2901f41108fb862367088ebee
1,158
py
Python
examples/like_and_follow_your_last_media_likers.py
Pacu2/instabot
f27a95c0821f44f63a616c848ba3564f8eee6107
[ "Apache-2.0" ]
null
null
null
examples/like_and_follow_your_last_media_likers.py
Pacu2/instabot
f27a95c0821f44f63a616c848ba3564f8eee6107
[ "Apache-2.0" ]
null
null
null
examples/like_and_follow_your_last_media_likers.py
Pacu2/instabot
f27a95c0821f44f63a616c848ba3564f8eee6107
[ "Apache-2.0" ]
null
null
null
""" instabot example Workflow: Like and follow likers of last medias from your timeline feed. """ import sys import os import time import random from tqdm import tqdm import argparse sys.path.append(os.path.join(sys.path[0], '../')) from instabot import Bot def like_and_follow(bot, user_id, nlikes=3): bot.like_user(user_id, amount=nlikes) bot.follow(user_id) return True def like_and_follow_media_likers(bot, media, nlikes=3): for user in tqdm(bot.get_media_likers(media), desc="Media likers"): like_and_follow(bot, user) time.sleep(10 + 20 * random.random()) return True def like_and_follow_your_feed_likers(bot, nlikes=3): last_media = bot.get_your_medias()[0] return like_and_follow_media_likers(bot, last_media, nlikes=3) parser = argparse.ArgumentParser(add_help=True) parser.add_argument('-u', type=str, help="username") parser.add_argument('-p', type=str, help="password") parser.add_argument('-proxy', type=str, help="proxy") args = parser.parse_args() bot = Bot() bot.login(username=args.u, password=args.p, proxy=args.proxy) like_and_follow_your_feed_likers(bot)
24.125
71
0.721934
07883e81cd1e5bf5758f07e5a5d6e9c841e3ce6d
213
py
Python
extensions/.stubs/pycadsys/pycad/runtime/__init__.py
vicwjb/Pycad
7391cd694b7a91ad9f9964ec95833c1081bc1f84
[ "MIT" ]
1
2020-03-25T03:27:24.000Z
2020-03-25T03:27:24.000Z
extensions/.stubs/pycadsys/pycad/runtime/__init__.py
vicwjb/Pycad
7391cd694b7a91ad9f9964ec95833c1081bc1f84
[ "MIT" ]
null
null
null
extensions/.stubs/pycadsys/pycad/runtime/__init__.py
vicwjb/Pycad
7391cd694b7a91ad9f9964ec95833c1081bc1f84
[ "MIT" ]
null
null
null
__all__ = [ 'upopen', 'cs', 'dbdict', 'dbtrans', 'serializable', 'utils', 'edx', 'gex'] from pycad.runtime.wraps import dbtrans, upopen, cs, dbdict, serializable from pycad.runtime import utils, edx, gex
35.5
73
0.676056
27f1d0152d91b30341d1fa77824cd64f6a11267e
600
py
Python
Desktop/cs61a/hw/hw01/quiz/quiz01.py
cpvb13/cal-hack-5-proj
13e31fff3f56b57030c34147b04cef1d6309c62b
[ "MIT" ]
null
null
null
Desktop/cs61a/hw/hw01/quiz/quiz01.py
cpvb13/cal-hack-5-proj
13e31fff3f56b57030c34147b04cef1d6309c62b
[ "MIT" ]
null
null
null
Desktop/cs61a/hw/hw01/quiz/quiz01.py
cpvb13/cal-hack-5-proj
13e31fff3f56b57030c34147b04cef1d6309c62b
[ "MIT" ]
null
null
null
def multiple(a, b): """Return the smallest number n that is a multiple of both a and b. >>> multiple(3, 4) 12 >>> multiple(14, 21) 42 """ "*** YOUR CODE HERE ***" def unique_digits(n): """Return the number of unique digits in positive integer n >>> unique_digits(8675309) # All are unique 7 >>> unique_digits(1313131) # 1 and 3 2 >>> unique_digits(13173131) # 1, 3, and 7 3 >>> unique_digits(10000) # 0 and 1 2 >>> unique_digits(101) # 0 and 1 2 >>> unique_digits(10) # 0 and 1 2 """ "*** YOUR CODE HERE ***"
21.428571
71
0.551667
646416ca7364a767ed72fe492a7b5e12219fb3d0
8,270
py
Python
src/ppv/util/paths.py
jcbird/ppv
d550f4fff9cb0309d43b0d51e1406355ee0231be
[ "BSD-3-Clause" ]
1
2020-10-09T08:19:35.000Z
2020-10-09T08:19:35.000Z
src/ppv/util/paths.py
jcbird/ppv
d550f4fff9cb0309d43b0d51e1406355ee0231be
[ "BSD-3-Clause" ]
19
2020-09-25T23:33:53.000Z
2021-03-12T22:28:16.000Z
src/ppv/util/paths.py
jcbird/ppv
d550f4fff9cb0309d43b0d51e1406355ee0231be
[ "BSD-3-Clause" ]
null
null
null
""" Utility module """ from .. import config from pathlib import Path import os import fnmatch def platePlans_par(): return config.plate_dir / 'platePlans.par' def plate_plans(): return config.plate_dir / 'platePlans_sdss5.fits' def platenum_as_str(platenum): """String representation of platenumber with leading zeros if necessary. Parameters ---------- platenum : int Number of plate Returns ------- str String representation of plate number. """ return '{:06d}'.format(platenum) def plate_batch(platenum): """ Given platenumber, get the path to the directory containing the platenum directory; e.g., '0150XX' given 15020 as input. Parameters ---------- platenum : str Number of plate (string to include leading zeros) """ # Turns 15020 into '0150XX' batch_num = f'{platenum_as_str(platenum)[:-2]}XX' return config.plate_dir / batch_num def plate(platenum): """Given platenumber, get the directory name containing the plate files. Parameters ---------- platenum : str Number of plate (string to include leading zeros) """ return plate_batch(platenum) / platenum_as_str(platenum) def plateholes_file(platenum): """string representation of plateHoles files with correct formatting. Parameters ---------- platenum : Number of plate (string to include leading zeros) """ return 'plateHoles-{}.par'.format(platenum_as_str(platenum)) def plateholes(platenum): """gets path plateholes file. Parameters ---------- platenum : str Number of plate (string to include leading zeros) """ filename = plateholes_file(platenum) return plate(platenum) / filename # five_plates ############## def fiveplates_description(): """ path to description file in five_plates repo. """ description_file = 'plateruns_description.txt' return config.fiveplates_dir / description_file def _five_plates_relpaths(): tree_ = os.walk(config.fiveplates_dir) dirs_ = [Path(root_dir) for (root_dir, _, _) in tree_] relpaths = [dir_.relative_to(config.fiveplates_dir) for dir_ in dirs_ if dir_.name.endswith('m')] # only keep in '(m)apper' return relpaths def _five_plates_available_plateruns(): relpaths = _five_plates_relpaths() return [relpath.name for relpath in relpaths] def fiveplates_platerun(platerun): """ gets directory of platerun in five_plates repo. Parameters ---------- platerun : str identifier of platerun, e.g. '2020.08.x.mwm-bhm' """ return config.fiveplates_dir / platerun def fp_files(platerun): """ get list of files in a five_plates platerun directory. Useful for fuzzyish file finding. """ return os.listdir(fiveplates_platerun(platerun)) def fp_platedata(platerun): """ path to summary file in five_plates repo. Parameters ---------- platerun : str identifier of platerun, e.g. '2020.08.x.mwm-bhm' """ _guess = f'plate_data_{platerun}*.txt' pd_file_s = filter(lambda F: fnmatch.fnmatch(F, _guess), fp_files(platerun)) pd_files = list(pd_file_s) if len(pd_files) == 0: # no plate data yet _message = f'''\ Unable to load fiveplates plate data file for: {platerun}. Please IGNORE this warning UNLESS: You need to access fiveplates data for this platerun, please confirm the plate_data file exists and perform a fresh pull of five_plates. ''' print(_message) return None else: if len(pd_files) == 1: pd_file = pd_files[0] else: pd_file = list(filter(lambda F: 'initial' in F, pd_files))[0] return fiveplates_platerun(platerun) / pd_file def fp_defaultparams(platerun): """ path to default parameter file in five_plates repo. One for each platerun Parameters ---------- platerun : str identifier of platerun, e.g. '2020.08.x.mwm-bhm' """ param_file = f'{platerun}_default_parameters.txt' return fiveplates_platerun(platerun) / param_file def fiveplates_summary(platerun): """ path to summary file in five_plates repo. Parameters ---------- platerun : str identifier of platerun, e.g. '2020.08.x.mwm-bhm' """ summary_file = f'plate_data_{platerun}.txt' return fiveplates_platerun(platerun) / summary_file def fiveplates_cartons(platerun, version='v6'): """ path to cartons file in five_plates repo. Parameters ---------- platerun : str identifier of platerun, e.g. '2020.08.x.mwm-bhm' """ cartons_file = f'cartons_list.{version}.txt' return fiveplates_platerun(platerun) / cartons_file def fiveplates_priority(platerun, filling_scheme): """ path to cartons file in five_plates repo. Parameters ---------- platerun : str identifier of platerun, e.g. '2020.08.x.mwm-bhm' filling_scheme : str FiberFilling column in fiveplates_cartons file, e.g., 'MWM_30min' """ priority_file = f'{filling_scheme}_order.txt' return fiveplates_platerun(platerun) / priority_file def fiveplates_targetlists(platerun): """ path to zip file containing targetlists in five_plates repo. Parameters ---------- platerun : str identifier of platerun, e.g. '2020.08.x.mwm-bhm' """ target_files = f'{platerun}_targetlists.zip' return fiveplates_platerun(platerun) / target_files def fp_field_designID_str(field, designID): return f'{field}_des{designID}' def fp_field_designID_dir(field, designID): return f'targetlists/{fp_field_designID_str(field, designID)}' def fiveplates_platedef(field, designID): """ path to plate definition file WITHIN targetlists zip file. """ pre_ = 'targetlists' # platenum_as_str also works for designIDs, just zero-padding to 6 digits pldef_file = f'plateDefinition-{platenum_as_str(designID)}.txt' return f'{pre_}/{fp_field_designID_str(field, designID)}/{pldef_file}' def fiveplates_fieldfiles(platerun): """ path to zip file containing fields_files in five_plates repo. Parameters ---------- platerun : str identifier of platerun, e.g. '2020.08.x.mwm-bhm' field_files is either 'field_files' or 'design_files """ field_files = f'{platerun}_field_files.zip' return fiveplates_platerun(platerun) / field_files def fiveplates_clean_field_file(field): """ string representation of targets_clean file for field within fiveplates_field_files zip file. Parameters ---------- field : str identifier of field, e.g. 'GG_010' """ return f'{field}_targets_clean.txt' def fiveplates_field_file(field): """ string representation of targets.txt file for field within fiveplates_field_files zip file. Parameters ---------- field : str identifier of field, e.g. 'GG_010' """ return f'{field}_targets.txt' def fiveplates_designfiles(platerun): """ path to zip file containing designs_files in five_plates repo. Parameters ---------- platerun : str identifier of platerun, e.g. '2020.08.x.mwm-bhm' design_files is either 'design_files' or 'design_files """ design_files = f'{platerun}_design_files.zip' return fiveplates_platerun(platerun) / design_files def fiveplates_clean_design_file(field, designID): """ string representation of targets_clean file for field within fiveplates_field_files zip file. Parameters ---------- field : str identifier of field, e.g. 'GG_010' """ return f'{field}_des{designID}_targets_clean.txt' def fiveplates_design_file(field, designID): """ string representation of targets file for field within fiveplates_design_files zip file. Parameters ---------- field : str identifier of field, e.g. 'GG_010' """ return f'{field}_des{designID}_targets.txt'
25.68323
77
0.648126
19f393c4f2b7298941041ecb402ab9f6a2d2b33f
8,717
py
Python
ase20_supplementary/webui/serving.py
skanav/cst_transform
361a23293cf0359af7a7d17cf465483ffe4e7545
[ "Apache-2.0" ]
null
null
null
ase20_supplementary/webui/serving.py
skanav/cst_transform
361a23293cf0359af7a7d17cf465483ffe4e7545
[ "Apache-2.0" ]
null
null
null
ase20_supplementary/webui/serving.py
skanav/cst_transform
361a23293cf0359af7a7d17cf465483ffe4e7545
[ "Apache-2.0" ]
1
2021-07-02T16:04:14.000Z
2021-07-02T16:04:14.000Z
import argparse from flask import Flask, abort, request from flask_restful import Resource, Api import os import uuid import traceback import threading import json from glob import glob from pycparser import c_ast from pycparserext import ext_c_generator from pycparser import preprocess_file from pycparserext.ext_c_parser import GnuCParser, FuncDeclExt from model.run_predict import run_predict import re def stripComments(code): code = str(code) return re.sub('^ *//.*\n?', '', code) app = Flask(__name__, static_url_path="/static/") api = Api(app) allowed_dirs = set(['js', 'css', 'semantic']) threads = {} checkpoints = { 'bmc-ki': ['../checkpoints/bmc', '../labels/tool_order_bmc-ki.json'], 'sc': ['../checkpoints/compositions', '../labels/tool_order_sc.json'], 'algorithms': ['../checkpoints/algorithms', '../labels/tool_order_algorithms.json'], 'tools': ['../checkpoints/tools', '../labels/tool_order_tools.json'] } def preprocess(path): text = preprocess_file(path) cparser = GnuCParser() ast = cparser.parse(text, path) generator = ext_c_generator.GnuCGenerator() with open(path, "w") as o: o.write(generator.visit(ast)) return ast def get_funcs(ast): functions = [] has_init = False for decl in ast.ext: if isinstance(decl, c_ast.FuncDef): func_def = decl.decl.name functions.append(func_def) elif isinstance(decl, c_ast.Decl) and isinstance(decl.type, FuncDeclExt): func_def = decl.name functions.append(func_def) else: has_init = True #if has_init: functions = ['__init__'] + functions return functions def index_main(keys, strict=False): for i, k in enumerate(keys): if (strict and k == 'main') or (not strict and 'main' in k.lower()): return i return 1 def locate_funcs(keys, funcs): out = {} #align init if funcs[0] == '__init__': out[keys[0]] = funcs[0] keys = keys[1:] funcs = funcs[1:] kmain = index_main(keys) fmain = index_main(funcs, strict=True) #align left = fmain right = len(funcs) - fmain p = 0 for i in range(max(0, kmain-left), min(len(keys), kmain+right)): out[keys[i]] = funcs[p] p += 1 return out def match_att(att_file, ast): with open(att_file, "r") as i: attention = json.load(i) output = {} funcs = get_funcs(ast) attention = { k: v for k , v in attention.items() if 'NOOP' not in k and\ 'prediction' not in k } func_map = locate_funcs(list(attention.keys()), funcs) for k, func_name in func_map.items(): output[func_name] = attention[k] with open(att_file, "w") as o: json.dump(output, o, indent=4) def run_clf_predict(pred_dir, req_file): base = os.path.abspath(__file__) base = os.path.dirname(base) check_cfg = checkpoints[checkpoint] path = os.path.join(base, check_cfg[0]) att_file = os.path.join(pred_dir, 'attention.json') ast = preprocess(req_file) index = os.path.join(base, "../resources/token_clang.json") tool_index = os.path.join(base, check_cfg[1]) P = run_predict(path, req_file, att_file, indexer_path=index, tools=tool_index) P = [X[0] for X in sorted(P.items(), key=lambda X: X[1], reverse=True)] P = [P[0]] match_att(att_file, ast) with open(os.path.join(pred_dir, "prediction.json"), "w") as o: json.dump(P, o) return P, ast def to_func_ast(ast): return c_ast.FileAST(ast) def to_func(ast): functions = {} for decl in ast.ext: func_def = "__init__" if isinstance(decl, c_ast.FuncDef): func_def = decl.decl.name if func_def not in functions: functions[func_def] = [] functions[func_def].append(decl) for k in list(functions): functions[k] = to_func_ast(functions[k]) return functions def start_prediction(id, pred_dir, req_file): P, ast = run_clf_predict(pred_dir, req_file) F = to_func(ast) generator = ext_c_generator.GnuCGenerator() for name, ast in F.items(): path = os.path.join(pred_dir, name+".c") with open(path, "w") as o: out = generator.visit(ast) o.write(out) def request_predict(form): id = str(uuid.uuid4()) path = os.path.join(".", "process", id) os.makedirs(path) file_path = os.path.join(path, "file.c") text = form['data'] text = "\n".join([ll.rstrip() for ll in text.splitlines() if ll.strip()]) text = stripComments(text) with open(file_path, "w") as o: o.write(text) thread = threading.Thread( target=start_prediction, args=(id, path, file_path) ) thread.start() threads[id] = thread return id @app.route("/") def index(): return app.send_static_file('index.html') @app.route("/<string:type>/<path:path>") def send_static(type, path): if type not in allowed_dirs: return abort(404) path = os.path.join(type, path) path = os.path.normpath(path) if not path.startswith(type): return abort(404) return app.send_static_file(path) class PredictionTask(Resource): def get(self, predict_id): path = os.path.join(".", "process", predict_id) if not os.path.exists(path): return abort(404) exc = os.path.join(path, 'exception') if os.path.exists(exc): with open(exc, "r") as i: return {'exception': i.read(), 'finish': True} path = os.path.join(".", "process", predict_id) state = { 'attention': os.path.isfile(os.path.join(path, 'attention.json')), 'pred': os.path.isfile(os.path.join(path, 'prediction.json')) } finished = True for v in state.values(): finished = finished and v state['finish'] = finished if not finished and predict_id not in threads: return {'exception': "Seem to be an old request!", 'finished': True} return state def put(self): return {'request_id': request_predict( request.form )} class CFileResource(Resource): def get(self, id, func_name=None): path = os.path.join(".", "process", id) if not os.path.exists(path): return abort(404) if func_name is None: func_names = [] for p in glob(os.path.join(path, "*.c")): b = os.path.basename(p) if b == 'file.c': continue func_names.append( b.replace(".c", "") ) return {'functions': func_names} path = os.path.join(".", "process", id, func_name+".c") if not os.path.exists(path): return abort(404) with open(path, "r") as i: return i.read() class AttentionResource(Resource): def get(self, id): path = os.path.join(".", "process", id, "attention.json") if not os.path.isfile(path): return abort(404) with open(path, "r") as i: return json.load(i) class PredictionResource(Resource): def get(self, id): path = os.path.join(".", "process", id, "prediction.json") if not os.path.isfile(path): return abort(404) with open(path, "r") as i: return json.load(i) api.add_resource(PredictionTask, '/api/task/', '/api/task/<string:predict_id>/') api.add_resource(CFileResource, '/api/cfile/<string:id>/', '/api/cfile/<string:id>/<string:func_name>/') api.add_resource(AttentionResource, "/api/attention/<string:id>/") api.add_resource(PredictionResource, "/api/prediction/<string:id>/") if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("checkpoint", help="Choose a checkpoint from [bmc-ki, algorithms, sc, tools].") args = parser.parse_args() checkpoint = args.checkpoint if checkpoint not in checkpoints: print("Checkpoint does not exists: %s" % checkpoint) print("Choose a checkpoint from [bmc-ki, algorithms, sc, tools].") exit() app.run(debug=True)
26.256024
104
0.572215
2c0caca1c8507c6e5b2e7ce5684865299b53df38
839
py
Python
2017/February/3_countcross/countcross.test.py
alantao5056/USACO_Silver
6998cb916692af58a0b40b1a4aff0708ee1106b8
[ "MIT" ]
null
null
null
2017/February/3_countcross/countcross.test.py
alantao5056/USACO_Silver
6998cb916692af58a0b40b1a4aff0708ee1106b8
[ "MIT" ]
null
null
null
2017/February/3_countcross/countcross.test.py
alantao5056/USACO_Silver
6998cb916692af58a0b40b1a4aff0708ee1106b8
[ "MIT" ]
null
null
null
import unittest from countcross import main class countcrossTest(unittest.TestCase): testDataFolder = 'test' def do_test(self, testNumber): testFile = self.testDataFolder + "/" + str(testNumber) main(testFile + ".in", testFile + "_actual.out") # compare the result expectedOut = open(testFile + ".out", 'r') actualOut = open(testFile + "_actual.out", 'r') expectedLines = expectedOut.readlines() actualLines = actualOut.readlines() expectedOut.close() actualOut.close() self.assertEqual(actualLines, expectedLines) def generate_test(testNumber): def test(self): self.do_test(testNumber) return test if __name__ == '__main__': for i in range(1, 11): test_name = 'test_%s' % str(i) test = generate_test(i) setattr(countcrossTest, test_name, test) unittest.main()
27.064516
58
0.68534
c06712a98e099d9cfc8cd115af0cd122c4c16d1a
12,209
py
Python
sympy/matrices/tests/test_determinant.py
MartinThoma/sympy
009d0031bec7222ffa472e52148a2b4e441cd3a5
[ "BSD-3-Clause" ]
2
2021-01-09T23:11:25.000Z
2021-01-11T15:04:22.000Z
sympy/matrices/tests/test_determinant.py
MartinThoma/sympy
009d0031bec7222ffa472e52148a2b4e441cd3a5
[ "BSD-3-Clause" ]
2
2020-08-18T15:21:59.000Z
2020-08-18T19:35:29.000Z
sympy/matrices/tests/test_determinant.py
MartinThoma/sympy
009d0031bec7222ffa472e52148a2b4e441cd3a5
[ "BSD-3-Clause" ]
3
2021-02-16T16:40:49.000Z
2022-03-07T18:28:41.000Z
import random from sympy.core.numbers import I from sympy import symbols, Symbol, Rational, sqrt, Poly from sympy.matrices import Matrix, eye, ones from sympy.abc import x, y, z from sympy.testing.pytest import raises from sympy.matrices.matrices import MatrixDeterminant from sympy.matrices.common import NonSquareMatrixError, _MinimalMatrix, _CastableMatrix class DeterminantOnlyMatrix(_MinimalMatrix, _CastableMatrix, MatrixDeterminant): pass def test_determinant(): for M in [Matrix(), Matrix([[1]])]: assert ( M.det() == M._eval_det_bareiss() == M._eval_det_berkowitz() == M._eval_det_lu() == 1) M = Matrix(( (-3, 2), ( 8, -5) )) assert M.det(method="bareiss") == -1 assert M.det(method="berkowitz") == -1 assert M.det(method="lu") == -1 M = Matrix(( (x, 1), (y, 2*y) )) assert M.det(method="bareiss") == 2*x*y - y assert M.det(method="berkowitz") == 2*x*y - y assert M.det(method="lu") == 2*x*y - y M = Matrix(( (1, 1, 1), (1, 2, 3), (1, 3, 6) )) assert M.det(method="bareiss") == 1 assert M.det(method="berkowitz") == 1 assert M.det(method="lu") == 1 M = Matrix(( ( 3, -2, 0, 5), (-2, 1, -2, 2), ( 0, -2, 5, 0), ( 5, 0, 3, 4) )) assert M.det(method="bareiss") == -289 assert M.det(method="berkowitz") == -289 assert M.det(method="lu") == -289 M = Matrix(( ( 1, 2, 3, 4), ( 5, 6, 7, 8), ( 9, 10, 11, 12), (13, 14, 15, 16) )) assert M.det(method="bareiss") == 0 assert M.det(method="berkowitz") == 0 assert M.det(method="lu") == 0 M = Matrix(( (3, 2, 0, 0, 0), (0, 3, 2, 0, 0), (0, 0, 3, 2, 0), (0, 0, 0, 3, 2), (2, 0, 0, 0, 3) )) assert M.det(method="bareiss") == 275 assert M.det(method="berkowitz") == 275 assert M.det(method="lu") == 275 M = Matrix(( ( 3, 0, 0, 0), (-2, 1, 0, 0), ( 0, -2, 5, 0), ( 5, 0, 3, 4) )) assert M.det(method="bareiss") == 60 assert M.det(method="berkowitz") == 60 assert M.det(method="lu") == 60 M = Matrix(( ( 1, 0, 0, 0), ( 5, 0, 0, 0), ( 9, 10, 11, 0), (13, 14, 15, 16) )) assert M.det(method="bareiss") == 0 assert M.det(method="berkowitz") == 0 assert M.det(method="lu") == 0 M = Matrix(( (3, 2, 0, 0, 0), (0, 3, 2, 0, 0), (0, 0, 3, 2, 0), (0, 0, 0, 3, 2), (0, 0, 0, 0, 3) )) assert M.det(method="bareiss") == 243 assert M.det(method="berkowitz") == 243 assert M.det(method="lu") == 243 M = Matrix(( (1, 0, 1, 2, 12), (2, 0, 1, 1, 4), (2, 1, 1, -1, 3), (3, 2, -1, 1, 8), (1, 1, 1, 0, 6) )) assert M.det(method="bareiss") == -55 assert M.det(method="berkowitz") == -55 assert M.det(method="lu") == -55 M = Matrix(( (-5, 2, 3, 4, 5), ( 1, -4, 3, 4, 5), ( 1, 2, -3, 4, 5), ( 1, 2, 3, -2, 5), ( 1, 2, 3, 4, -1) )) assert M.det(method="bareiss") == 11664 assert M.det(method="berkowitz") == 11664 assert M.det(method="lu") == 11664 M = Matrix(( ( 2, 7, -1, 3, 2), ( 0, 0, 1, 0, 1), (-2, 0, 7, 0, 2), (-3, -2, 4, 5, 3), ( 1, 0, 0, 0, 1) )) assert M.det(method="bareiss") == 123 assert M.det(method="berkowitz") == 123 assert M.det(method="lu") == 123 M = Matrix(( (x, y, z), (1, 0, 0), (y, z, x) )) assert M.det(method="bareiss") == z**2 - x*y assert M.det(method="berkowitz") == z**2 - x*y assert M.det(method="lu") == z**2 - x*y # issue 13835 a = symbols('a') M = lambda n: Matrix([[i + a*j for i in range(n)] for j in range(n)]) assert M(5).det() == 0 assert M(6).det() == 0 assert M(7).det() == 0 def test_issue_14517(): M = Matrix([ [ 0, 10*I, 10*I, 0], [10*I, 0, 0, 10*I], [10*I, 0, 5 + 2*I, 10*I], [ 0, 10*I, 10*I, 5 + 2*I]]) ev = M.eigenvals() # test one random eigenvalue, the computation is a little slow test_ev = random.choice(list(ev.keys())) assert (M - test_ev*eye(4)).det() == 0 def test_legacy_det(): # Minimal support for legacy keys for 'method' in det() # Partially copied from test_determinant() M = Matrix(( ( 3, -2, 0, 5), (-2, 1, -2, 2), ( 0, -2, 5, 0), ( 5, 0, 3, 4) )) assert M.det(method="bareis") == -289 assert M.det(method="det_lu") == -289 assert M.det(method="det_LU") == -289 M = Matrix(( (3, 2, 0, 0, 0), (0, 3, 2, 0, 0), (0, 0, 3, 2, 0), (0, 0, 0, 3, 2), (2, 0, 0, 0, 3) )) assert M.det(method="bareis") == 275 assert M.det(method="det_lu") == 275 assert M.det(method="Bareis") == 275 M = Matrix(( (1, 0, 1, 2, 12), (2, 0, 1, 1, 4), (2, 1, 1, -1, 3), (3, 2, -1, 1, 8), (1, 1, 1, 0, 6) )) assert M.det(method="bareis") == -55 assert M.det(method="det_lu") == -55 assert M.det(method="BAREISS") == -55 M = Matrix(( ( 3, 0, 0, 0), (-2, 1, 0, 0), ( 0, -2, 5, 0), ( 5, 0, 3, 4) )) assert M.det(method="bareiss") == 60 assert M.det(method="berkowitz") == 60 assert M.det(method="lu") == 60 M = Matrix(( ( 1, 0, 0, 0), ( 5, 0, 0, 0), ( 9, 10, 11, 0), (13, 14, 15, 16) )) assert M.det(method="bareiss") == 0 assert M.det(method="berkowitz") == 0 assert M.det(method="lu") == 0 M = Matrix(( (3, 2, 0, 0, 0), (0, 3, 2, 0, 0), (0, 0, 3, 2, 0), (0, 0, 0, 3, 2), (0, 0, 0, 0, 3) )) assert M.det(method="bareiss") == 243 assert M.det(method="berkowitz") == 243 assert M.det(method="lu") == 243 M = Matrix(( (-5, 2, 3, 4, 5), ( 1, -4, 3, 4, 5), ( 1, 2, -3, 4, 5), ( 1, 2, 3, -2, 5), ( 1, 2, 3, 4, -1) )) assert M.det(method="bareis") == 11664 assert M.det(method="det_lu") == 11664 assert M.det(method="BERKOWITZ") == 11664 M = Matrix(( ( 2, 7, -1, 3, 2), ( 0, 0, 1, 0, 1), (-2, 0, 7, 0, 2), (-3, -2, 4, 5, 3), ( 1, 0, 0, 0, 1) )) assert M.det(method="bareis") == 123 assert M.det(method="det_lu") == 123 assert M.det(method="LU") == 123 def eye_Determinant(n): return DeterminantOnlyMatrix(n, n, lambda i, j: int(i == j)) def zeros_Determinant(n): return DeterminantOnlyMatrix(n, n, lambda i, j: 0) def test_det(): a = DeterminantOnlyMatrix(2, 3, [1, 2, 3, 4, 5, 6]) raises(NonSquareMatrixError, lambda: a.det()) z = zeros_Determinant(2) ey = eye_Determinant(2) assert z.det() == 0 assert ey.det() == 1 x = Symbol('x') a = DeterminantOnlyMatrix(0, 0, []) b = DeterminantOnlyMatrix(1, 1, [5]) c = DeterminantOnlyMatrix(2, 2, [1, 2, 3, 4]) d = DeterminantOnlyMatrix(3, 3, [1, 2, 3, 4, 5, 6, 7, 8, 8]) e = DeterminantOnlyMatrix(4, 4, [x, 1, 2, 3, 4, 5, 6, 7, 2, 9, 10, 11, 12, 13, 14, 14]) from sympy.abc import i, j, k, l, m, n f = DeterminantOnlyMatrix(3, 3, [i, l, m, 0, j, n, 0, 0, k]) g = DeterminantOnlyMatrix(3, 3, [i, 0, 0, l, j, 0, m, n, k]) h = DeterminantOnlyMatrix(3, 3, [x**3, 0, 0, i, x**-1, 0, j, k, x**-2]) # the method keyword for `det` doesn't kick in until 4x4 matrices, # so there is no need to test all methods on smaller ones assert a.det() == 1 assert b.det() == 5 assert c.det() == -2 assert d.det() == 3 assert e.det() == 4*x - 24 assert e.det(method='bareiss') == 4*x - 24 assert e.det(method='berkowitz') == 4*x - 24 assert f.det() == i*j*k assert g.det() == i*j*k assert h.det() == 1 raises(ValueError, lambda: e.det(iszerofunc="test")) def test_adjugate(): x = Symbol('x') e = DeterminantOnlyMatrix(4, 4, [x, 1, 2, 3, 4, 5, 6, 7, 2, 9, 10, 11, 12, 13, 14, 14]) adj = Matrix([ [ 4, -8, 4, 0], [ 76, -14*x - 68, 14*x - 8, -4*x + 24], [-122, 17*x + 142, -21*x + 4, 8*x - 48], [ 48, -4*x - 72, 8*x, -4*x + 24]]) assert e.adjugate() == adj assert e.adjugate(method='bareiss') == adj assert e.adjugate(method='berkowitz') == adj a = DeterminantOnlyMatrix(2, 3, [1, 2, 3, 4, 5, 6]) raises(NonSquareMatrixError, lambda: a.adjugate()) def test_util(): R = Rational v1 = Matrix(1, 3, [1, 2, 3]) v2 = Matrix(1, 3, [3, 4, 5]) assert v1.norm() == sqrt(14) assert v1.project(v2) == Matrix(1, 3, [R(39)/25, R(52)/25, R(13)/5]) assert Matrix.zeros(1, 2) == Matrix(1, 2, [0, 0]) assert ones(1, 2) == Matrix(1, 2, [1, 1]) assert v1.copy() == v1 # cofactor assert eye(3) == eye(3).cofactor_matrix() test = Matrix([[1, 3, 2], [2, 6, 3], [2, 3, 6]]) assert test.cofactor_matrix() == \ Matrix([[27, -6, -6], [-12, 2, 3], [-3, 1, 0]]) test = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) assert test.cofactor_matrix() == \ Matrix([[-3, 6, -3], [6, -12, 6], [-3, 6, -3]]) def test_cofactor_and_minors(): x = Symbol('x') e = DeterminantOnlyMatrix(4, 4, [x, 1, 2, 3, 4, 5, 6, 7, 2, 9, 10, 11, 12, 13, 14, 14]) m = Matrix([ [ x, 1, 3], [ 2, 9, 11], [12, 13, 14]]) cm = Matrix([ [ 4, 76, -122, 48], [-8, -14*x - 68, 17*x + 142, -4*x - 72], [ 4, 14*x - 8, -21*x + 4, 8*x], [ 0, -4*x + 24, 8*x - 48, -4*x + 24]]) sub = Matrix([ [x, 1, 2], [4, 5, 6], [2, 9, 10]]) assert e.minor_submatrix(1, 2) == m assert e.minor_submatrix(-1, -1) == sub assert e.minor(1, 2) == -17*x - 142 assert e.cofactor(1, 2) == 17*x + 142 assert e.cofactor_matrix() == cm assert e.cofactor_matrix(method="bareiss") == cm assert e.cofactor_matrix(method="berkowitz") == cm raises(ValueError, lambda: e.cofactor(4, 5)) raises(ValueError, lambda: e.minor(4, 5)) raises(ValueError, lambda: e.minor_submatrix(4, 5)) a = DeterminantOnlyMatrix(2, 3, [1, 2, 3, 4, 5, 6]) assert a.minor_submatrix(0, 0) == Matrix([[5, 6]]) raises(ValueError, lambda: DeterminantOnlyMatrix(0, 0, []).minor_submatrix(0, 0)) raises(NonSquareMatrixError, lambda: a.cofactor(0, 0)) raises(NonSquareMatrixError, lambda: a.minor(0, 0)) raises(NonSquareMatrixError, lambda: a.cofactor_matrix()) def test_charpoly(): x, y = Symbol('x'), Symbol('y') z, t = Symbol('z'), Symbol('t') from sympy.abc import a,b,c m = DeterminantOnlyMatrix(3, 3, [1, 2, 3, 4, 5, 6, 7, 8, 9]) assert eye_Determinant(3).charpoly(x) == Poly((x - 1)**3, x) assert eye_Determinant(3).charpoly(y) == Poly((y - 1)**3, y) assert m.charpoly() == Poly(x**3 - 15*x**2 - 18*x, x) raises(NonSquareMatrixError, lambda: Matrix([[1], [2]]).charpoly()) n = DeterminantOnlyMatrix(4, 4, [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) assert n.charpoly() == Poly(x**4, x) n = DeterminantOnlyMatrix(4, 4, [45, 0, 0, 0, 0, 23, 0, 0, 0, 0, 87, 0, 0, 0, 0, 12]) assert n.charpoly() == Poly(x**4 - 167*x**3 + 8811*x**2 - 173457*x + 1080540, x) n = DeterminantOnlyMatrix(3, 3, [x, 0, 0, a, y, 0, b, c, z]) assert n.charpoly() == Poly(t**3 - (x+y+z)*t**2 + t*(x*y+y*z+x*z) - x*y*z , t)
32.470745
89
0.458432
2265cb4d9b031e7d410699140db2a2977246a01e
20,885
py
Python
sdk/network/azure-mgmt-network/azure/mgmt/network/v2015_06_15/operations/_local_network_gateways_operations.py
praveenkuttappan/azure-sdk-for-python
4b79413667b7539750a6c7dde15737013a3d4bd5
[ "MIT" ]
2,728
2015-01-09T10:19:32.000Z
2022-03-31T14:50:33.000Z
sdk/network/azure-mgmt-network/azure/mgmt/network/v2015_06_15/operations/_local_network_gateways_operations.py
v-xuto/azure-sdk-for-python
9c6296d22094c5ede410bc83749e8df8694ccacc
[ "MIT" ]
17,773
2015-01-05T15:57:17.000Z
2022-03-31T23:50:25.000Z
sdk/network/azure-mgmt-network/azure/mgmt/network/v2015_06_15/operations/_local_network_gateways_operations.py
v-xuto/azure-sdk-for-python
9c6296d22094c5ede410bc83749e8df8694ccacc
[ "MIT" ]
1,916
2015-01-19T05:05:41.000Z
2022-03-31T19:36:44.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.paging import ItemPaged from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpRequest, HttpResponse from azure.core.polling import LROPoller, NoPolling, PollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.arm_polling import ARMPolling from .. import models as _models if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Iterable, Optional, TypeVar, Union T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] class LocalNetworkGatewaysOperations(object): """LocalNetworkGatewaysOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2015_06_15.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def _create_or_update_initial( self, resource_group_name, # type: str local_network_gateway_name, # type: str parameters, # type: "_models.LocalNetworkGateway" **kwargs # type: Any ): # type: (...) -> "_models.LocalNetworkGateway" cls = kwargs.pop('cls', None) # type: ClsType["_models.LocalNetworkGateway"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2015-06-15" content_type = kwargs.pop("content_type", "application/json") accept = "application/json, text/json" # Construct URL url = self._create_or_update_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'localNetworkGatewayName': self._serialize.url("local_network_gateway_name", local_network_gateway_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'LocalNetworkGateway') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('LocalNetworkGateway', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('LocalNetworkGateway', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_or_update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/localNetworkGateways/{localNetworkGatewayName}'} # type: ignore def begin_create_or_update( self, resource_group_name, # type: str local_network_gateway_name, # type: str parameters, # type: "_models.LocalNetworkGateway" **kwargs # type: Any ): # type: (...) -> LROPoller["_models.LocalNetworkGateway"] """Creates or updates a local network gateway in the specified resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param local_network_gateway_name: The name of the local network gateway. :type local_network_gateway_name: str :param parameters: Parameters supplied to the create or update local network gateway operation. :type parameters: ~azure.mgmt.network.v2015_06_15.models.LocalNetworkGateway :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either LocalNetworkGateway or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.network.v2015_06_15.models.LocalNetworkGateway] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.LocalNetworkGateway"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._create_or_update_initial( resource_group_name=resource_group_name, local_network_gateway_name=local_network_gateway_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('LocalNetworkGateway', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'localNetworkGatewayName': self._serialize.url("local_network_gateway_name", local_network_gateway_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = ARMPolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/localNetworkGateways/{localNetworkGatewayName}'} # type: ignore def get( self, resource_group_name, # type: str local_network_gateway_name, # type: str **kwargs # type: Any ): # type: (...) -> "_models.LocalNetworkGateway" """Gets the specified local network gateway in a resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param local_network_gateway_name: The name of the local network gateway. :type local_network_gateway_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: LocalNetworkGateway, or the result of cls(response) :rtype: ~azure.mgmt.network.v2015_06_15.models.LocalNetworkGateway :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.LocalNetworkGateway"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2015-06-15" accept = "application/json, text/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'localNetworkGatewayName': self._serialize.url("local_network_gateway_name", local_network_gateway_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('LocalNetworkGateway', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/localNetworkGateways/{localNetworkGatewayName}'} # type: ignore def _delete_initial( self, resource_group_name, # type: str local_network_gateway_name, # type: str **kwargs # type: Any ): # type: (...) -> None cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2015-06-15" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'localNetworkGatewayName': self._serialize.url("local_network_gateway_name", local_network_gateway_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/localNetworkGateways/{localNetworkGatewayName}'} # type: ignore def begin_delete( self, resource_group_name, # type: str local_network_gateway_name, # type: str **kwargs # type: Any ): # type: (...) -> LROPoller[None] """Deletes the specified local network gateway. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param local_network_gateway_name: The name of the local network gateway. :type local_network_gateway_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._delete_initial( resource_group_name=resource_group_name, local_network_gateway_name=local_network_gateway_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'localNetworkGatewayName': self._serialize.url("local_network_gateway_name", local_network_gateway_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = ARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/localNetworkGateways/{localNetworkGatewayName}'} # type: ignore def list( self, resource_group_name, # type: str **kwargs # type: Any ): # type: (...) -> Iterable["_models.LocalNetworkGatewayListResult"] """Gets all the local network gateways in a resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either LocalNetworkGatewayListResult or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.network.v2015_06_15.models.LocalNetworkGatewayListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.LocalNetworkGatewayListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2015-06-15" accept = "application/json, text/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('LocalNetworkGatewayListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/localNetworkGateways'} # type: ignore
50.083933
209
0.672923
ba59a35fcf5cbd8dd552456ec3539477c5db1fca
8,197
py
Python
genomics_data_index/storage/MaskedGenomicRegions.py
apetkau/genomics-data-index
d0cc119fd57b8cbd701affb1c84450cf7832fa01
[ "Apache-2.0" ]
12
2021-05-03T20:56:05.000Z
2022-01-04T14:52:19.000Z
genomics_data_index/storage/MaskedGenomicRegions.py
apetkau/thesis-index
6c96e9ed75d8e661437effe62a939727a0b473fc
[ "Apache-2.0" ]
30
2021-04-26T23:03:40.000Z
2022-02-25T18:41:14.000Z
genomics_data_index/storage/MaskedGenomicRegions.py
apetkau/genomics-data-index
d0cc119fd57b8cbd701affb1c84450cf7832fa01
[ "Apache-2.0" ]
null
null
null
from __future__ import annotations import tempfile from pathlib import Path from typing import List, Set, Dict, Generator, Tuple import pandas as pd from Bio import SeqIO from Bio.SeqRecord import SeqRecord from pybedtools import BedTool from genomics_data_index.storage.model import NUCLEOTIDE_UNKNOWN, NUCLEOTIDE_UNKNOWN_TYPE class MaskedGenomicRegions: def __init__(self, mask: BedTool): self._mask = mask.sort().merge() @property def mask(self): return self._mask def intersect(self, other: MaskedGenomicRegions) -> MaskedGenomicRegions: return MaskedGenomicRegions(self._mask.intersect(other._mask)) def subtract(self, other: MaskedGenomicRegions) -> MaskedGenomicRegions: subtraction = self._mask.subtract(other._mask) return MaskedGenomicRegions(subtraction) def union(self, other: MaskedGenomicRegions) -> MaskedGenomicRegions: union = self._mask.cat(other._mask, postmerge=True, force_truncate=True) return MaskedGenomicRegions(union) def mask_to_features(self) -> pd.DataFrame: mask_features = [] ref = 1 alt = NUCLEOTIDE_UNKNOWN nuc_type = NUCLEOTIDE_UNKNOWN_TYPE for sequence_name, position in self.positions_iter(start_position_index='1'): variant_id = f'{sequence_name}:{position}:{ref}:{alt}' mask_features.append([sequence_name, position, ref, alt, nuc_type, variant_id]) return pd.DataFrame(mask_features, columns=['CHROM', 'POS', 'REF', 'ALT', 'TYPE', 'VARIANT_ID']) def mask_genome(self, genome_file: Path, mask_char: str = '?', remove: bool = True) -> Dict[str, SeqRecord]: """ Gets a SeqRecord with all those regions on the passed genome that are in the masked regions removed (or masked with mask_char). :param genome_file: The genome file to mask. :param mask_char: The character to mask with. :param remove: Whether or not to remove masked sequence data. :return: A Dictionary mapping a sequence name to a SeqRecord containing all those regions on the sequence within the masked regions removed (or masked with mask_char) """ with tempfile.TemporaryDirectory() as out_f: seq_records = {} output_fasta = Path(out_f) / 'masked.fasta' self._mask.mask_fasta(fi=str(genome_file), fo=str(output_fasta), mc=mask_char) for record in SeqIO.parse(output_fasta, 'fasta'): if remove: record.seq = record.seq.ungap(mask_char) seq_records[record.id] = record return seq_records def write(self, file: Path): self._mask.saveas(str(file), compressed=True) @classmethod def union_all(cls, masked_regions: List[MaskedGenomicRegions]): if len(masked_regions) == 0: raise Exception('Cannot merge empty list') elif len(masked_regions) == 1: return masked_regions[0] else: start_mask = masked_regions.pop() union = start_mask._mask.cat(*[o._mask for o in masked_regions], postmerge=True, force_truncate=True) return MaskedGenomicRegions(union) @classmethod def from_sequences(cls, sequences: List[SeqRecord]) -> MaskedGenomicRegions: def is_missing(char): return char.upper() == 'N' or char == '-' # pybedtools internally stores as 0-based BED file intervals # https://daler.github.io/pybedtools/intervals.html#bed-is-0-based-others-are-1-based mask_intervals = [] for record in sequences: start = 0 in_mask = False for idx, char in enumerate(record.seq): if in_mask: if not is_missing(char): in_mask = False # pybedtools stop position is not included in interval stop = idx mask_intervals.append((record.id, start, stop)) else: if is_missing(char): in_mask = True start = idx # Finish recording last interval if it exists (e.g., if last bit of sequence was like 'NNNN') if in_mask: stop = len(record) mask_intervals.append((record.id, start, stop)) bedtool_intervals = BedTool(mask_intervals) return MaskedGenomicRegions(bedtool_intervals) @classmethod def from_file(cls, file: Path) -> MaskedGenomicRegions: bed_file_data = BedTool(str(file)) return MaskedGenomicRegions(bed_file_data) @classmethod def from_vcf_file(cls, file: Path) -> MaskedGenomicRegions: bed_file_data = BedTool(str(file)).merge() return MaskedGenomicRegions(bed_file_data) @classmethod def empty_mask(cls): return MaskedGenomicRegions(BedTool('', from_string=True)) def is_empty(self): return len(self) == 0 def sequence_names(self) -> Set[str]: """ Gets a set of sequence names from this genomic regions mask. :return: A set of sequence names. """ return {x.chrom for x in self._mask} def contains(self, sequence: str, position: int, start_position_index: str = '0') -> bool: if start_position_index != '0' and start_position_index != '1': raise Exception((f'Unknown value start_position_index=[{start_position_index}].' 'Should be "0" or "1" to indicate which is the starting base position')) elif start_position_index == '1': position = position - 1 for i in self._mask: if i.chrom == sequence and i.start <= position < i.end: return True return False def _validate_start_position_index(self, start_position_index: str) -> None: if start_position_index not in ['0', '1']: raise Exception((f'Unknown value start_position_index=[{start_position_index}].' 'Should be "0" or "1" to indicate which is the starting base position')) def overlaps_range(self, sequence: str, start: int, stop: int, start_position_index: str = '0') -> bool: self._validate_start_position_index(start_position_index) if start_position_index == '1': start = start - 1 stop = stop - 1 if stop <= start: raise Exception(f'start=[{start}] is less than stop=[{stop}]') for i in self._mask: if i.chrom == sequence: if i.start <= start and i.end > start: return True elif start < i.end and stop > i.end: return True return False def positions_iter(self, start_position_index: str = '0') -> Generator[Tuple[str, int], None, None]: """ Creates an iterator to iterate over all ('sequence', 'position') in this mask. :param start_position_index: Whether positions should be in 0-base coordinates or 1-base coordinates. See https://bedtools.readthedocs.io/en/latest/content/general-usage.html#bed-format for a description of the differences in coordinates. :return: An iterator which will return tuples like ('sequence', 'position') for every position in this mask. """ self._validate_start_position_index(start_position_index) for sequence in self._mask: sequence_name = sequence.chrom start = sequence.start end = sequence.end if start_position_index == '1': start = start + 1 end = end + 1 for pos in range(start, end): yield sequence_name, pos def __len__(self) -> int: """ Calculates length of underlying masked intervals. Assumes the intervals have been merged beforehand. :return: The length of the masked intervals. """ total = 0 for i in self._mask: total += len(i) return total
40.37931
120
0.615957
f319327e463b8600d62a3f1b55574af07a738ba9
5,337
py
Python
tests/scene_saver_test.py
NextCenturyCorporation/mcs-scene-generator
e0a6ee778359cadd2de682a5006581b7a6134431
[ "Apache-2.0" ]
4
2021-02-04T03:57:52.000Z
2022-02-08T18:19:58.000Z
tests/scene_saver_test.py
NextCenturyCorporation/mcs-scene-generator
e0a6ee778359cadd2de682a5006581b7a6134431
[ "Apache-2.0" ]
68
2021-05-06T08:52:46.000Z
2022-03-23T16:46:03.000Z
tests/scene_saver_test.py
NextCenturyCorporation/mcs-scene-generator
e0a6ee778359cadd2de682a5006581b7a6134431
[ "Apache-2.0" ]
1
2021-02-04T03:21:57.000Z
2021-02-04T03:21:57.000Z
import copy from generator.scene_saver import ( _strip_debug_data, _strip_debug_misleading_data, _strip_debug_object_data, find_next_filename, ) def create_test_object(): return { 'id': 'thing1', 'type': 'thing_1', 'debug': { 'info': ['a', 'b', 'c', 'd'], 'goalString': 'abcd', 'materialCategory': ['wood'], 'dimensions': {'x': 13, 'z': 42}, 'offset': {'x': 13, 'z': 42}, 'closedDimensions': {'x': 13, 'z': 42}, 'closedOffset': {'x': 13, 'z': 42}, 'enclosedAreas': [{}], 'openAreas': [{}], 'movement': {}, 'isParentOf': [], 'untrainedCategory': True, 'untrainedColor': True, 'untrainedCombination': False, 'untrainedShape': True, 'untrainedSize': True, 'color': ['black', 'white'], 'shape': 'shape', 'size': 'small', 'weight': 'light', 'role': 'target', 'isTarget': True, 'boundsAtStep': [], 'configHeight': [], 'configSize': [] }, 'shows': [{ 'stepBegin': 0, 'boundingBox': 'dummy' }] } def test_find_next_filename(): filename, index = find_next_filename('', 1, '01') assert filename == '1' assert index == 1 filename, index = find_next_filename('', 2, '01') assert filename == '2' assert index == 2 filename, index = find_next_filename('tests/file', 1, '01') assert filename == 'tests/file1' assert index == 1 filename, index = find_next_filename('tests/file', 2, '01') assert filename == 'tests/file3' assert index == 3 filename, index = find_next_filename('tests/file', 1, '02') assert filename == 'tests/file01' assert index == 1 filename, index = find_next_filename('tests/file', 2, '02') assert filename == 'tests/file03' assert index == 3 filename, index = find_next_filename('tests/file', 1, '01', suffix='.txt') assert filename == 'tests/file2' assert index == 2 filename, index = find_next_filename( 'tests/file', 1, '01', suffix='_debug.json' ) assert filename == 'tests/file2' assert index == 2 def test_strip_debug_data(): scene = { 'debug': { 'floorColors': ['grey'], 'wallColors': ['blue'] }, 'objects': [create_test_object()], 'goal': { 'category': 'test', 'domainsInfo': { 'domainsTag': True }, 'objectsInfo': { 'objectsTag': True }, 'sceneInfo': { 'sceneTag': True }, 'metadata': { 'target': { 'id': 'golden_idol', 'info': ['gold', 'idol'] } } } } expected = { 'objects': [{ 'id': 'thing1', 'type': 'thing_1', 'shows': [{ 'stepBegin': 0 }] }], 'goal': { 'category': 'test', 'metadata': { 'target': { 'id': 'golden_idol' } } } } _strip_debug_data(scene) assert scene == expected def test_strip_debug_misleading_data(): obj = create_test_object() expected = copy.deepcopy(obj) expected['debug']['movement'] = { 'deepExit': { 'key': 'value' }, 'deepStop': { 'key': 'value' }, 'moveExit': { 'key': 'value' }, 'moveStop': { 'key': 'value' }, 'tossExit': { 'key': 'value' }, 'tossStop': { 'key': 'value' } } obj['debug']['movement'] = { 'deepExit': { 'xDistanceByStep': [1], 'yDistanceByStep': [2], 'zDistanceByStep': [3], 'key': 'value' }, 'deepStop': { 'xDistanceByStep': [1], 'yDistanceByStep': [2], 'zDistanceByStep': [3], 'key': 'value' }, 'moveExit': { 'xDistanceByStep': [1], 'yDistanceByStep': [2], 'zDistanceByStep': [3], 'key': 'value' }, 'moveStop': { 'xDistanceByStep': [1], 'yDistanceByStep': [2], 'zDistanceByStep': [3], 'key': 'value' }, 'tossExit': { 'xDistanceByStep': [1], 'yDistanceByStep': [2], 'zDistanceByStep': [3], 'key': 'value' }, 'tossStop': { 'xDistanceByStep': [1], 'yDistanceByStep': [2], 'zDistanceByStep': [3], 'key': 'value' } } _strip_debug_misleading_data({'objects': [obj]}) assert obj == expected def test_strip_debug_object_data(): obj = create_test_object() expected = { 'id': 'thing1', 'type': 'thing_1', 'shows': [{ 'stepBegin': 0 }] } _strip_debug_object_data(obj) assert obj == expected
25.293839
78
0.439198
fbe8cbab388d492ae114589d5d8ce0a2c25b2190
1,340
py
Python
examples/markov/markov_rw_norm.py
Bhumbra/probayes
e5ac193076e4188b9b38c0e18466223ab4d041f7
[ "BSD-3-Clause" ]
null
null
null
examples/markov/markov_rw_norm.py
Bhumbra/probayes
e5ac193076e4188b9b38c0e18466223ab4d041f7
[ "BSD-3-Clause" ]
null
null
null
examples/markov/markov_rw_norm.py
Bhumbra/probayes
e5ac193076e4188b9b38c0e18466223ab4d041f7
[ "BSD-3-Clause" ]
null
null
null
""" Example of a Markov chain random walk simulation using a continuous transition function. """ import probayes as pb import numpy as np import scipy.stats from pylab import *; ion() n_steps = 10000 set_lims = [-np.pi, np.pi] def tran(succ, pred): loc = -np.sin(pred) scale = 1. + 0.5 * np.cos(pred) return scipy.stats.norm.pdf(succ, loc=loc, scale=scale) def tcdf(succ, pred): loc = -np.sin(pred) scale = 1. + 0.5 * np.cos(pred) return scipy.stats.norm.cdf(succ, loc=loc, scale=scale) def ticdf(succ, pred): loc = -np.sin(pred) scale = 1. + 0.5 * np.cos(pred) return scipy.stats.norm.ppf(succ, loc=loc, scale=scale) x = pb.RV('x', set_lims) x.set_tran(tran, order={'x': 'pred', "x'": 'succ'}) x.set_tfun((tcdf, ticdf), order={'x': 'pred', "x'": 'succ'}) steps = [None] * n_steps pred = np.empty(n_steps, dtype=float) succ = np.empty(n_steps, dtype=float) cond = np.empty(n_steps, dtype=float) print('Simulating...') for i in range(n_steps): if i == 0: steps[i] = x.step({0}) else: steps[i] = x.step(succ[i-1]) pred[i] = steps[i]['x'] succ[i] = steps[i]["x'"] cond[i] = steps[i].prob print('...done') # PLOT DATA figure() c_norm = Normalize(vmin=np.min(cond), vmax=np.max(cond)) c_map = cm.jet(c_norm(cond)) scatter(pred, succ, color=c_map, marker='.') xlabel('Predecessor') ylabel('Succesor')
24.814815
60
0.643284
e7ea0166e283b9b2f8f32e3c803d848cb86c79ec
790
py
Python
synoptic/__init__.py
gitter-badger/SynopticPy
05d1c1d5b69f0efa22d87a3e2c3e1896c2c37ca6
[ "MIT" ]
12
2021-03-13T19:18:35.000Z
2022-03-28T13:14:59.000Z
synoptic/__init__.py
gitter-badger/SynopticPy
05d1c1d5b69f0efa22d87a3e2c3e1896c2c37ca6
[ "MIT" ]
4
2020-09-20T00:52:20.000Z
2022-03-30T19:31:40.000Z
synoptic/__init__.py
gitter-badger/SynopticPy
05d1c1d5b69f0efa22d87a3e2c3e1896c2c37ca6
[ "MIT" ]
6
2021-01-10T13:21:11.000Z
2022-03-25T02:01:17.000Z
## Brian Blaylock ## September 11, 2020 """ ============ Synoptic API ============ Retrieve and plot mesonet data from thousands of stations via the Synoptic Data Mesonet API: https://developers.synopticdata.com/mesonet/. Usage ----- There are two recommended ways to import these functions. ``` python # Method 1: Import full module import synoptic.services as ss import synoptic.plots as sp ``` ``` python # Method 2: Import individual functions from synoptic.services import stations_timeseries ``` """ __author__ = "Brian Blaylock" __email__ = "blaylockbk@gmail.com" __url__ = "https://github.com/blaylockbk/SynopticPy" try: from synoptic.accessors import * except: warnings.warn("Could not import synoptic.accessors") pass # 🙋🏻‍♂️ Thank you for using SynopticPy!")
20.25641
79
0.717722
1a0a486e00668d8922398d5e5f728ce3f3b5c956
3,340
py
Python
dbInterface.py
ddsnowboard/SimpleDBInterface
8d409e768b11b4b4d70ebf26bebe92289bb33511
[ "MIT" ]
null
null
null
dbInterface.py
ddsnowboard/SimpleDBInterface
8d409e768b11b4b4d70ebf26bebe92289bb33511
[ "MIT" ]
null
null
null
dbInterface.py
ddsnowboard/SimpleDBInterface
8d409e768b11b4b4d70ebf26bebe92289bb33511
[ "MIT" ]
null
null
null
import ENV # Uncomment this when you start on the postgres layer # import psycopg2 import sqlite3 #TODO: Replace every pragma table_info() call with getColumns() class Database: class Table: def __init__(self, connection, name): self.connection = connection self.name = name if ENV.DATABASE == "sqlite": self.columns = [i[1] for i in self.connection.cursor().execute("pragma table_info(%s)" % self.name)] def select(self, **kwargs): # Someday I should have a Selection object, but that's for another day inputString = "select %s from %s" % (", ".join(self.columns), self.name) output = [] if not kwargs: output = list(self.connection.cursor().execute(inputString)) else: inputString = "%s where %s" % (inputString, " and ".join("%s=?" % i for i in kwargs.keys())) output = list(self.connection.cursor().execute("select %s from %s where %s" % (",".join(self.columns), self.name, " and ".join("%s=?" % i for i in kwargs.keys())), [i for i in kwargs.values()])) ret = [{i:j for i, j in zip(self.columns, currLine)} for currLine in output] return ret def insert(self, **kwargs): for col in self.connection.cursor().execute("pragma table_info(%s)" % self.name): id, name, type, notnull, default, pk = col if not name in kwargs.keys(): if notnull: raise Exception("You have to pass in a value for %s! It can't be null!" % name) self.connection.cursor().execute("insert into %s (%s) VALUES (%s)" % (self.name, ",".join(kwargs.keys()), ",".join("?" for i in kwargs.keys())), kwargs.values()) self.connection.commit() def getColumns(self): # The pragma returns a list of tuples of the form (id| name| type| notnull| default| pk) c = self.connection.cursor().execute("pragma table_info(%s)" % self.name) c = self.connection.cursor().execute("pragma table_info(%s)" % self.name) return {row[1]: {i: j for (i, j) in zip(("id", "type", "notnull", "default", "pk"), row[:1] + row[2:])} for row in c} def __init__(self): if ENV.DATABASE == "pgsql": raise NotImplementedError("I haven't done the postgres layer yet") elif ENV.DATABASE == "sqlite": self.connection = sqlite3.connect(ENV.DB_FILE) else: raise Exception("%s isn't the name of a database I know about" % ENV.DATABASE) def getTable(self, tableName): return Database.Table(self.connection, tableName) def createTable(name, *cols): if not reduce(lambda x, y: x and type(y) == type({}), cols): raise Exception("You didn't give dictionaries for the columns!") connection = sqlite3.connect(ENV.DB_FILE) i = cols[0] query = "create table %s (%s)" % (name, ",".join("%s %s %s" % (i["name"], i["type"], "not null" if not i.get("null", True) else "") for i in cols)) connection.cursor().execute(query) connection.commit() db = Database() table = db.getTable(name) return table
49.850746
179
0.562575
3f7ea909693fa33e535d768a45760d7f75a7e5ce
22,675
py
Python
leaderboard/Face-Pose-Net/utils/pose_utils.py
showkeyjar/beauty
7c944cf896c899d9e23b2e50e293103bb03fe6cd
[ "MulanPSL-1.0" ]
1
2022-01-29T12:32:38.000Z
2022-01-29T12:32:38.000Z
leaderboard/Face-Pose-Net/utils/pose_utils.py
showkeyjar/beauty
7c944cf896c899d9e23b2e50e293103bb03fe6cd
[ "MulanPSL-1.0" ]
null
null
null
leaderboard/Face-Pose-Net/utils/pose_utils.py
showkeyjar/beauty
7c944cf896c899d9e23b2e50e293103bb03fe6cd
[ "MulanPSL-1.0" ]
null
null
null
import sys import os import numpy as np import cv2 import math from math import cos, sin, atan2, asin import fileinput ## Index to remap landmarks in case we flip an image repLand = [ 17,16,15,14,13,12,11,10, 9,8,7,6,5,4,3,2,1,27,26,25, \ 24,23,22,21,20,19,18,28,29,30,31,36,35,34,33,32,46,45,44,43, \ 48,47,40,39,38,37,42,41,55,54,53,52,51,50,49,60,59,58,57,56, \ 65,64,63,62,61,68,67,66 ] def increaseBbox(bbox, factor): tlx = bbox[0] tly = bbox[1] brx = bbox[2] bry = bbox[3] dx = factor dy = factor dw = 1 + factor dh = 1 + factor #Getting bbox height and width w = brx-tlx; h = bry-tly; tlx2 = tlx - w * dx tly2 = tly - h * dy brx2 = tlx + w * dw bry2 = tly + h * dh nbbox = np.zeros( (4,1), dtype=np.float32 ) nbbox[0] = tlx2 nbbox[1] = tly2 nbbox[2] = brx2 nbbox[3] = bry2 return nbbox def increaseBbox_rescaleCASIA(bbox, factor): tlx = bbox[0] tly = bbox[1] brx = bbox[2] bry = bbox[3] ww = brx - tlx; hh = bry - tly; cx = tlx + ww/2; cy = tly + hh/2; tsize = max(ww,hh)/2; bl = cx - factor[0]*tsize; bt = cy - factor[1]*tsize; br = cx + factor[2]*tsize; bb = cy + factor[3]*tsize; nbbox = np.zeros( (4,1), dtype=np.float32 ) nbbox[0] = bl; nbbox[1] = bt; nbbox[2] = br; nbbox[3] = bb; return nbbox def increaseBbox_rescaleYOLO(bbox, im): rescaleFrontal = [1.4421, 2.2853, 1.4421, 1.4286]; rescaleCS2 = [0.9775, 1.5074, 0.9563, 0.9436]; l = bbox[0] t = bbox[1] ww = bbox[2] hh = bbox[3] # Approximate LM tight BB h = im.shape[0]; w = im.shape[1]; cx = l + ww/2; cy = t + hh/2; tsize = max(ww,hh)/2; l = cx - tsize; t = cy - tsize; cx = l + (2*tsize)/(rescaleCS2[0]+rescaleCS2[2]) * rescaleCS2[0]; cy = t + (2*tsize)/(rescaleCS2[1]+rescaleCS2[3]) * rescaleCS2[1]; tsize = 2*tsize/(rescaleCS2[0]+rescaleCS2[2]); """ # Approximate inplane align (frontal) nbbox = np.zeros( (4,1), dtype=np.float32 ) nbbox[0] = cx - rescaleFrontal[0]*tsize; nbbox[1] = cy - rescaleFrontal[1]*tsize; nbbox[2] = cx + rescaleFrontal[2]*tsize; nbbox[3] = cy + rescaleFrontal[3]*tsize; """ nbbox = np.zeros( (4,1), dtype=np.float32 ) nbbox[0] = cx - tsize; nbbox[1] = cy - tsize; nbbox[2] = cx + tsize; nbbox[3] = cy + tsize; return nbbox def image_bbox_processing_v2(img, bbox, landmarks=None): img_h, img_w, img_c = img.shape lt_x = bbox[0] lt_y = bbox[1] rb_x = bbox[2] rb_y = bbox[3] fillings = np.zeros( (4,1), dtype=np.int32) if lt_x < 0: ## 0 for python fillings[0] = math.ceil(-lt_x) if lt_y < 0: fillings[1] = math.ceil(-lt_y) if rb_x > img_w-1: fillings[2] = math.ceil(rb_x - img_w + 1) if rb_y > img_h-1: fillings[3] = math.ceil(rb_y - img_h + 1) new_bbox = np.zeros( (4,1), dtype=np.float32 ) # img = [zeros(size(img,1),fillings(1),img_c), img] # img = [zeros(fillings(2), size(img,2),img_c); img] # img = [img, zeros(size(img,1), fillings(3),img_c)] # new_img = [img; zeros(fillings(4), size(img,2),img_c)] imgc = img.copy() if fillings[0] > 0: img_h, img_w, img_c = imgc.shape imgc = np.hstack( [np.zeros( (img_h, fillings[0][0], img_c), dtype=np.uint8 ), imgc] ) if fillings[1] > 0: img_h, img_w, img_c = imgc.shape imgc = np.vstack( [np.zeros( (fillings[1][0], img_w, img_c), dtype=np.uint8 ), imgc] ) if fillings[2] > 0: img_h, img_w, img_c = imgc.shape imgc = np.hstack( [ imgc, np.zeros( (img_h, fillings[2][0], img_c), dtype=np.uint8 ) ] ) if fillings[3] > 0: img_h, img_w, img_c = imgc.shape imgc = np.vstack( [ imgc, np.zeros( (fillings[3][0], img_w, img_c), dtype=np.uint8) ] ) new_bbox[0] = lt_x + fillings[0] new_bbox[1] = lt_y + fillings[1] new_bbox[2] = rb_x + fillings[0] new_bbox[3] = rb_y + fillings[1] if len(landmarks) == 0: #len(landmarks) == 0: #landmarks == None: return imgc, new_bbox else: landmarks_new = np.zeros([landmarks.shape[0], landmarks.shape[1]]) #print "landmarks_new's shape: \n" #print landmarks_new.shape landmarks_new[:,0] = landmarks[:,0] + fillings[0] landmarks_new[:,1] = landmarks[:,1] + fillings[1] return imgc, new_bbox, landmarks_new #return imgc, new_bbox def image_bbox_processing_v3(img, bbox): img_h, img_w, img_c = img.shape lt_x = bbox[0] lt_y = bbox[1] rb_x = bbox[2] rb_y = bbox[3] fillings = np.zeros( (4,1), dtype=np.int32) if lt_x < 0: ## 0 for python fillings[0] = math.ceil(-lt_x) if lt_y < 0: fillings[1] = math.ceil(-lt_y) if rb_x > img_w-1: fillings[2] = math.ceil(rb_x - img_w + 1) if rb_y > img_h-1: fillings[3] = math.ceil(rb_y - img_h + 1) new_bbox = np.zeros( (4,1), dtype=np.float32 ) # img = [zeros(size(img,1),fillings(1),img_c), img] # img = [zeros(fillings(2), size(img,2),img_c); img] # img = [img, zeros(size(img,1), fillings(3),img_c)] # new_img = [img; zeros(fillings(4), size(img,2),img_c)] imgc = img.copy() if fillings[0] > 0: img_h, img_w, img_c = imgc.shape imgc = np.hstack( [np.zeros( (img_h, fillings[0][0], img_c), dtype=np.uint8 ), imgc] ) if fillings[1] > 0: img_h, img_w, img_c = imgc.shape imgc = np.vstack( [np.zeros( (fillings[1][0], img_w, img_c), dtype=np.uint8 ), imgc] ) if fillings[2] > 0: img_h, img_w, img_c = imgc.shape imgc = np.hstack( [ imgc, np.zeros( (img_h, fillings[2][0], img_c), dtype=np.uint8 ) ] ) if fillings[3] > 0: img_h, img_w, img_c = imgc.shape imgc = np.vstack( [ imgc, np.zeros( (fillings[3][0], img_w, img_c), dtype=np.uint8) ] ) new_bbox[0] = lt_x + fillings[0] new_bbox[1] = lt_y + fillings[1] new_bbox[2] = rb_x + fillings[0] new_bbox[3] = rb_y + fillings[1] return imgc, new_bbox def preProcessImage(im, lmks, bbox, factor, _alexNetSize, flipped): sys.stdout.flush() if flipped == 1: # flip landmarks and indices if it's flipped imag lmks = flip_lmk_idx(im, lmks) lmks_flip = lmks lt_x = bbox[0] lt_y = bbox[1] rb_x = lt_x + bbox[2] rb_y = lt_y + bbox[3] w = bbox[2] h = bbox[3] center = ( (lt_x+rb_x)/2, (lt_y+rb_y)/2 ) side_length = max(w,h); # make the bbox be square bbox = np.zeros( (4,1), dtype=np.float32 ) bbox[0] = center[0] - side_length/2 bbox[1] = center[1] - side_length/2 bbox[2] = center[0] + side_length/2 bbox[3] = center[1] + side_length/2 img_2, bbox_green = image_bbox_processing_v2(im, bbox) #%% Get the expanded square bbox bbox_red = increaseBbox(bbox_green, factor) bbox_red2 = increaseBbox(bbox, factor) bbox_red2[2] = bbox_red2[2] - bbox_red2[0] bbox_red2[3] = bbox_red2[3] - bbox_red2[1] bbox_red2 = np.reshape(bbox_red2, [4]) img_3, bbox_new, lmks = image_bbox_processing_v2(img_2, bbox_red, lmks) #%% Crop and resized bbox_new = np.ceil( bbox_new ) side_length = max( bbox_new[2] - bbox_new[0], bbox_new[3] - bbox_new[1] ) bbox_new[2:4] = bbox_new[0:2] + side_length bbox_new = bbox_new.astype(int) crop_img = img_3[bbox_new[1][0]:bbox_new[3][0], bbox_new[0][0]:bbox_new[2][0], :]; lmks_new = np.zeros([lmks.shape[0],2]) lmks_new[:,0] = lmks[:,0] - bbox_new[0][0] lmks_new[:,1] = lmks[:,1] - bbox_new[1][0] resized_crop_img = cv2.resize(crop_img, ( _alexNetSize, _alexNetSize ), interpolation = cv2.INTER_CUBIC) old_h, old_w, channels = crop_img.shape lmks_new2 = np.zeros([lmks.shape[0],2]) lmks_new2[:,0] = lmks_new[:,0] * _alexNetSize / old_w lmks_new2[:,1] = lmks_new[:,1] * _alexNetSize / old_h #print _alexNetSize, old_w, old_h return resized_crop_img, lmks_new2, bbox_red2, lmks_flip, side_length, center def resize_crop_rescaleCASIA(im, bbox, lmks, factor): lt_x = bbox[0] lt_y = bbox[1] rb_x = lt_x + bbox[2] rb_y = lt_y + bbox[3] bbox = np.reshape([lt_x, lt_y, rb_x, rb_y], [-1]) # Get the expanded square bbox bbox_red = increaseBbox_rescaleCASIA(bbox, factor) img_3, bbox_new, lmks = image_bbox_processing_v2(im, bbox_red, lmks); lmks_filling = lmks.copy() #%% Crop and resized bbox_new = np.ceil( bbox_new ) side_length = max( bbox_new[2] - bbox_new[0], bbox_new[3] - bbox_new[1] ) bbox_new[2:4] = bbox_new[0:2] + side_length #bbox_new[0] = max(0, bbox_new[0]) #bbox_new[1] = max(0, bbox_new[1]) #bbox_new[2] = min(img_3.shape[1]-1, bbox_new[2]) #bbox_new[3] = min(img_3.shape[0]-1, bbox_new[3]) bbox_new = bbox_new.astype(int) crop_img = img_3[bbox_new[1][0]:bbox_new[3][0], bbox_new[0][0]:bbox_new[2][0], :]; lmks_new = np.zeros([lmks.shape[0],2]) lmks_new[:,0] = lmks[:,0] - bbox_new[0][0] lmks_new[:,1] = lmks[:,1] - bbox_new[1][0] old_h, old_w, channels = crop_img.shape resized_crop_img = cv2.resize(crop_img, ( 224, 224 ), interpolation = cv2.INTER_CUBIC) lmks_new2 = np.zeros([lmks.shape[0],2]) lmks_new2[:,0] = lmks_new[:,0] * 224 / old_w lmks_new2[:,1] = lmks_new[:,1] * 224 / old_h return resized_crop_img, bbox_new, lmks_new2, lmks_filling, old_h, old_w, img_3 def resize_crop_rescaleCASIA_v2(im, bbox, lmks, factor, bbox_type): # Get the expanded square bbox if bbox_type == "casia": lt_x = bbox[0] lt_y = bbox[1] rb_x = lt_x + bbox[2] rb_y = lt_y + bbox[3] bbox = np.reshape([lt_x, lt_y, rb_x, rb_y], [-1]) bbox_red = increaseBbox_rescaleCASIA(bbox, factor) elif bbox_type == "yolo": lt_x = bbox[0] lt_y = bbox[1] rb_x = lt_x + bbox[2] rb_y = lt_y + bbox[3] w = bbox[2] h = bbox[3] center = ( (lt_x+rb_x)/2, (lt_y+rb_y)/2 ) side_length = max(w,h); # make the bbox be square bbox = np.zeros( (4,1), dtype=np.float32 ) bbox[0] = center[0] - side_length/2 bbox[1] = center[1] - side_length/2 bbox[2] = center[0] + side_length/2 bbox[3] = center[1] + side_length/2 img_2, bbox_green = image_bbox_processing_v3(im, bbox) #%% Get the expanded square bbox bbox_red = increaseBbox(bbox_green, factor) img_3, bbox_new, lmks = image_bbox_processing_v2(im, bbox_red, lmks); lmks_filling = lmks.copy() #%% Crop and resized bbox_new = np.ceil( bbox_new ) side_length = max( bbox_new[2] - bbox_new[0], bbox_new[3] - bbox_new[1] ) bbox_new[2:4] = bbox_new[0:2] + side_length #bbox_new[0] = max(0, bbox_new[0]) #bbox_new[1] = max(0, bbox_new[1]) #bbox_new[2] = min(img_3.shape[1]-1, bbox_new[2]) #bbox_new[3] = min(img_3.shape[0]-1, bbox_new[3]) bbox_new = bbox_new.astype(int) crop_img = img_3[bbox_new[1][0]:bbox_new[3][0], bbox_new[0][0]:bbox_new[2][0], :]; lmks_new = np.zeros([lmks.shape[0],2]) lmks_new[:,0] = lmks[:,0] - bbox_new[0][0] lmks_new[:,1] = lmks[:,1] - bbox_new[1][0] old_h, old_w, channels = crop_img.shape resized_crop_img = cv2.resize(crop_img, ( 224, 224 ), interpolation = cv2.INTER_CUBIC) lmks_new2 = np.zeros([lmks.shape[0],2]) lmks_new2[:,0] = lmks_new[:,0] * 224 / old_w lmks_new2[:,1] = lmks_new[:,1] * 224 / old_h return resized_crop_img, bbox_new, lmks_new2, lmks_filling, old_h, old_w, img_3 def resize_crop_AFLW(im, bbox, lmks): lt_x = bbox[0] lt_y = bbox[1] rb_x = lt_x + bbox[2] rb_y = lt_y + bbox[3] bbox = np.reshape([lt_x, lt_y, rb_x, rb_y], [-1]) crop_img = img[bbox[1]:bbox[3], bbox[0]:bbox[2], :]; lmks_new = np.zeros([lmks.shape[0],2]) lmks_new[:,0] = lmks[:,0] - bbox[0] lmks_new[:,1] = lmks[:,1] - bbox[1] old_h, old_w, channels = crop_img.shape resized_crop_img = cv2.resize(crop_img, ( 224, 224 ), interpolation = cv2.INTER_CUBIC) lmks_new2 = np.zeros([lmks.shape[0],2]) lmks_new2[:,0] = lmks_new[:,0] * 224 / old_w lmks_new2[:,1] = lmks_new[:,1] * 224 / old_h bbox_new = np.zeros([4]) bbox_new[0] = bbox[0] * 224 / old_w bbox_new[1] = bbox[1] * 224 / old_h bbox_new[2] = bbox[2] * 224 / old_w bbox_new[3] = bbox[3] * 224 / old_h bbox_new[2] = bbox_new[2] - bbox_new[0] # box width bbox_new[3] = bbox_new[3] - bbox_new[1] # box height return resized_crop_img, bbox_new, lmks_new2 def preProcessImage_v2(im, bbox, factor, _resNetSize, if_cropbyLmks_rescaleCASIA): sys.stdout.flush() if if_cropbyLmks_rescaleCASIA == 0: lt_x = bbox[0] lt_y = bbox[1] rb_x = lt_x + bbox[2] rb_y = lt_y + bbox[3] w = bbox[2] h = bbox[3] center = ( (lt_x+rb_x)/2, (lt_y+rb_y)/2 ) side_length = max(w,h); # make the bbox be square bbox = np.zeros( (4,1), dtype=np.float32 ) bbox[0] = center[0] - side_length/2 bbox[1] = center[1] - side_length/2 bbox[2] = center[0] + side_length/2 bbox[3] = center[1] + side_length/2 img_2, bbox_green = image_bbox_processing_v2(im, bbox) #%% Get the expanded square bbox bbox_red = increaseBbox(bbox_green, factor) img_3, bbox_new = image_bbox_processing_v2(img_2, bbox_red) elif if_cropbyLmks_rescaleCASIA == 1: bbox[2] = bbox[0] + bbox[2] bbox[3] = bbox[1] + bbox[3] bbox_red = increaseBbox_rescaleCASIA(bbox, factor) #print bbox_red img_3, bbox_new = image_bbox_processing_v3(im, bbox_red) else: bbox2 = increaseBbox_rescaleYOLO(bbox, im) bbox_red = increaseBbox_rescaleCASIA(bbox2, factor) img_3, bbox_new = image_bbox_processing_v2(im, bbox_red) #bbox_red2 = increaseBbox(bbox, factor) #bbox_red2[2] = bbox_red2[2] - bbox_red2[0] #bbox_red2[3] = bbox_red2[3] - bbox_red2[1] #bbox_red2 = np.reshape(bbox_red2, [4]) #%% Crop and resized bbox_new = np.ceil( bbox_new ) side_length = max( bbox_new[2] - bbox_new[0], bbox_new[3] - bbox_new[1] ) bbox_new[2:4] = bbox_new[0:2] + side_length bbox_new = bbox_new.astype(int) crop_img = img_3[bbox_new[1][0]:bbox_new[3][0], bbox_new[0][0]:bbox_new[2][0], :]; #print crop_img.shape resized_crop_img = cv2.resize(crop_img, ( _resNetSize, _resNetSize ), interpolation = cv2.INTER_CUBIC) return resized_crop_img def preProcessImage_useGTBBox(im, lmks, bbox, factor, _alexNetSize, flipped, to_train_scale, yolo_bbox): sys.stdout.flush() #print bbox, yolo_bbox, to_train_scale if flipped == 1: # flip landmarks and indices if it's flipped imag lmks = flip_lmk_idx(im, lmks) lmks_flip = lmks lt_x = bbox[0] lt_y = bbox[1] rb_x = lt_x + bbox[2] rb_y = lt_y + bbox[3] w = bbox[2] h = bbox[3] center = ( (lt_x+rb_x)/2, (lt_y+rb_y)/2 ) side_length = max(w,h); # make the bbox be square bbox = np.zeros( (4,1), dtype=np.float32 ) #print bbox bbox_red = np.zeros( (4,1), dtype=np.float32 ) if to_train_scale == 1: _, _, _, _, side_length2, center2 = preProcessImage(im, lmks, yolo_bbox, factor, _alexNetSize, flipped) center3 = ( (center[0]+center2[0])/2, (center[1]+center2[1])/2 ) bbox[0] = center3[0] - side_length2/2 bbox[1] = center3[1] - side_length2/2 bbox[2] = center3[0] + side_length2/2 bbox[3] = center3[1] + side_length2/2 bbox_red[0] = center3[0] - side_length2/2 bbox_red[1] = center3[1] - side_length2/2 bbox_red[2] = side_length2 bbox_red[3] = side_length2 else: bbox[0] = center[0] - side_length/2 bbox[1] = center[1] - side_length/2 bbox[2] = center[0] + side_length/2 bbox[3] = center[1] + side_length/2 #print center, side_length, bbox[0], bbox[1], bbox[2], bbox[3] bbox_red[0] = center[0] - side_length/2 bbox_red[1] = center[1] - side_length/2 bbox_red[2] = side_length bbox_red[3] = side_length bbox_red = np.reshape(bbox_red, [4]) #print bbox, bbox_red img_2, bbox_green = image_bbox_processing_v2(im, bbox) #print img_2.shape, bbox_green #%% Crop and resized bbox_new = np.ceil( bbox_green ) side_length = max( bbox_new[2] - bbox_new[0], bbox_new[3] - bbox_new[1] ) bbox_new[2:4] = bbox_new[0:2] + side_length bbox_new = bbox_new.astype(int) #print bbox_new crop_img = img_2[bbox_new[1][0]:bbox_new[3][0], bbox_new[0][0]:bbox_new[2][0], :]; lmks_new = np.zeros([68,2]) lmks_new[:,0] = lmks[:,0] - bbox_new[0][0] lmks_new[:,1] = lmks[:,1] - bbox_new[1][0] #print crop_img.shape resized_crop_img = cv2.resize(crop_img, ( _alexNetSize, _alexNetSize ), interpolation = cv2.INTER_CUBIC) old_h, old_w, channels = crop_img.shape lmks_new2 = np.zeros([68,2]) lmks_new2[:,0] = lmks_new[:,0] * _alexNetSize / old_w lmks_new2[:,1] = lmks_new[:,1] * _alexNetSize / old_h #print _alexNetSize, old_w, old_h return resized_crop_img, lmks_new2, bbox_red, lmks_flip def replaceInFile(filep, before, after): for line in fileinput.input(filep, inplace=True): print(line.replace(before,after),) def flip_lmk_idx(img, lmarks): # Flipping X values for landmarks \ lmarks[:,0] = img.shape[1] - lmarks[:,0] # Creating flipped landmarks with new indexing lmarks_flip = np.zeros((68,2)) for i in range(len(repLand)): lmarks_flip[i,:] = lmarks[repLand[i]-1,:] return lmarks_flip def pose_to_LMs(pose_Rt): pose_Rt = np.reshape(pose_Rt, [6]) ref_lm = np.loadtxt('./lm_m10.txt', delimiter=',') ref_lm_t = np.transpose(ref_lm) numLM = ref_lm_t.shape[1] #PI = np.array([[ 4.22519775e+03,0.00000000e+00,1.15000000e+02], [0.00000000e+00, 4.22519775e+03, 1.15000000e+02], [0, 0, 1]]); PI = np.array([[ 2.88000000e+03, 0.00000000e+00, 1.12000000e+02], [0.00000000e+00, 2.88000000e+03, 1.12000000e+02], [0, 0, 1]]); rvecs = pose_Rt[0:3] tvec = np.reshape(pose_Rt[3:6], [3,1]) tsum = np.repeat(tvec,numLM,1) rmat, jacobian = cv2.Rodrigues(rvecs, None) transformed_lms = np.matmul(rmat, ref_lm_t) + tsum transformed_lms = np.matmul(PI, transformed_lms) transformed_lms[0,:] = transformed_lms[0,:]/transformed_lms[2,:] transformed_lms[1,:] = transformed_lms[1,:]/transformed_lms[2,:] lms = np.transpose(transformed_lms[:2,:]) return lms def RotationMatrix(angle_x, angle_y, angle_z): # get rotation matrix by rotate angle phi = angle_x; # pitch gamma = angle_y; # yaw theta = angle_z; # roll R_x = np.array([ [1, 0, 0] , [0, np.cos(phi), np.sin(phi)] , [0, -np.sin(phi), np.cos(phi)] ]); R_y = np.array([ [np.cos(gamma), 0, -np.sin(gamma)] , [0, 1, 0] , [np.sin(gamma), 0, np.cos(gamma)] ]); R_z = np.array([ [np.cos(theta), np.sin(theta), 0] , [-np.sin(theta), np.cos(theta), 0] , [0, 0, 1] ]); R = np.matmul( R_x , np.matmul(R_y , R_z) ); return R def matrix2angle(R): ''' compute three Euler angles from a Rotation Matrix. Ref: http://www.gregslabaugh.net/publications/euler.pdf Args: R: (3,3). rotation matrix Returns: x: yaw y: pitch z: roll ''' # assert(isRotationMatrix(R)) if R[2,0] !=1 or R[2,0] != -1: #x = asin(R[2,0]) #y = atan2(R[2,1]/cos(x), R[2,2]/cos(x)) #z = atan2(R[1,0]/cos(x), R[0,0]/cos(x)) x = -asin(R[2,0]) #x = np.pi - x y = atan2(R[2,1]/cos(x), R[2,2]/cos(x)) z = atan2(R[1,0]/cos(x), R[0,0]/cos(x)) else:# Gimbal lock z = 0 #can be anything if R[2,0] == -1: x = np.pi/2 y = z + atan2(R[0,1], R[0,2]) else: x = -np.pi/2 y = -z + atan2(-R[0,1], -R[0,2]) return x, y, z def P2sRt(P): ''' decompositing camera matrix P. Args: P: (3, 4). Affine Camera Matrix. Returns: s: scale factor. R: (3, 3). rotation matrix. t2d: (2,). 2d translation. t3d: (3,). 3d translation. ''' #t2d = P[:2, 3] t3d = P[:, 3] R1 = P[0:1, :3] R2 = P[1:2, :3] s = (np.linalg.norm(R1) + np.linalg.norm(R2))/2.0 r1 = R1/np.linalg.norm(R1) r2 = R2/np.linalg.norm(R2) r3 = np.cross(r1, r2) R = np.concatenate((r1, r2, r3), 0) return s, R, t3d
31.981664
201
0.536626
1f3d6155472165e884a6535f66840d083c8da433
650
py
Python
symposion/proposals/migrations/0002_proposalsection_anonymous.py
pyohio/symposion
f8ec9c7e7daab4658061867d1294c1c126dd2919
[ "BSD-3-Clause" ]
null
null
null
symposion/proposals/migrations/0002_proposalsection_anonymous.py
pyohio/symposion
f8ec9c7e7daab4658061867d1294c1c126dd2919
[ "BSD-3-Clause" ]
5
2015-07-16T19:46:00.000Z
2018-03-11T05:58:48.000Z
symposion/proposals/migrations/0002_proposalsection_anonymous.py
pyohio/symposion
f8ec9c7e7daab4658061867d1294c1c126dd2919
[ "BSD-3-Clause" ]
1
2017-01-27T21:18:26.000Z
2017-01-27T21:18:26.000Z
# -*- coding: utf-8 -*- # Generated by Django 1.9.2 on 2017-08-11 21:26 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('symposion_proposals', '0001_initial'), ] operations = [ migrations.AddField( model_name='proposalsection', name='anonymous', field=models.BooleanField(default=False, help_text='If this option is switched on, reviewers will not be able to see the names of the proposers or coproposers of any proposal in this section.', verbose_name='Anonymous review'), ), ]
30.952381
239
0.675385
42cc2fc9fdf4440ec030c057168ec9e9d41f17ab
1,060
py
Python
August Leetcode/Reorder List.py
parikshitgupta1/leetcode
eba6c11740dc7597204af127c0f4c2163376294f
[ "MIT" ]
null
null
null
August Leetcode/Reorder List.py
parikshitgupta1/leetcode
eba6c11740dc7597204af127c0f4c2163376294f
[ "MIT" ]
null
null
null
August Leetcode/Reorder List.py
parikshitgupta1/leetcode
eba6c11740dc7597204af127c0f4c2163376294f
[ "MIT" ]
null
null
null
class Solution: def reorderList(self, head: ListNode) -> None: """ Do not return anything, modify head in-place instead. :type head: ListNode :rtype: void Do not return anything, modify head in-place instead. """ if not head or not head.next: return slow = head fast = head.next while fast.next and fast.next.next: slow = slow.next fast = fast.next.next slow = slow.next if fast.next: fast = fast.next # reverse the second half of the list prev = slow curr = slow.next prev.next = None while curr: tmp = curr.next curr.next = prev prev = curr curr = tmp # turn the list into zigzag manner trav = head while fast.next: tmp1 = trav.next tmp2 = fast.next trav.next = fast fast.next = tmp1 trav = tmp1 fast = tmp2
27.894737
74
0.486792
95caf1d2fecd4b241b754224abd99a0f6bed3009
5,504
py
Python
rest_api/samples/JSON_demos/6D2P.py
Hitachi-Data-Systems/ivy
07a77c271cad7f682d7fbff497bf74a76ecd5378
[ "Apache-2.0" ]
6
2016-09-12T16:23:53.000Z
2021-12-16T23:08:34.000Z
rest_api/samples/JSON_demos/6D2P.py
Hitachi-Data-Systems/ivy
07a77c271cad7f682d7fbff497bf74a76ecd5378
[ "Apache-2.0" ]
null
null
null
rest_api/samples/JSON_demos/6D2P.py
Hitachi-Data-Systems/ivy
07a77c271cad7f682d7fbff497bf74a76ecd5378
[ "Apache-2.0" ]
null
null
null
import ivyrest ivy = ivyrest.IvyObj("localhost") host_list = ["sun159"] select_list = [ {'serial_number' : '83011441' } ] ivy.set_output_folder_root(".") print(ivy.test_folder()) ivy.set_test_name("6D2P") summary_filename = ivy.test_folder() + "/all/" + ivy.test_name() + ".all=all.summary.csv" lun_filename = ivy.test_folder() + "/available_test_LUNs.csv" print(summary_filename) print(lun_filename) ivy.hosts_luns(hosts = host_list, select = select_list) ivy.create_rollup(name="Workload") ivy.create_rollup(name="Workload+host") ivy.create_rollup(name="Port") #//////////Random Read Miss//////////////// ioparams = { 'iosequencer' : 'random_steady', 'IOPS' : 'max', 'fractionRead' : 1.0, 'VolumeCoverageFractionStart' : 0.0, 'VolumeCoverageFractionEnd' : 1.0, 'blocksize' : 8, 'maxtags' : 64 } ivy.set_io_sequencer_template(**ioparams) ivy.create_workload(name = "RandomReadMiss", iosequencer = "random_steady", parameters="") for i in [64,44,30,20,14,9,6,4,3,2,1]: ivy.edit_rollup(name = "all=all", parameters = " maxTags=" + str(i)) ivy.go(stepname="RR_maxTags_" + str(i), subinterval_seconds=10, warmup_seconds=120, measure_seconds=180) summary_filename = ivy.test_folder() + "/all/" + ivy.test_name() + ".all=all.summary.csv" lun_filename = ivy.test_folder() + "/available_test_LUNs.csv" max_IOPS = float(ivy.csv_cell_value(filename = summary_filename, row = int(ivy.csv_rows(filename = summary_filename)) - 1, col = "Overall IOPS"))/float(ivy.csv_rows(filename = lun_filename)) for j in [0.7,0.45,0.25,0.1,0.01]: ivy.edit_rollup(name = "all=all", parameters = "IOPS="+ str(max_IOPS * j) +", maxTags=1") ivy.go(stepname="RR_maxTags_1(" + str(j*100) + "%)", subinterval_seconds=10, warmup_seconds=120, measure_seconds=180) ivy.delete_workload (name = "RandomReadMiss") #//////////Random Write Miss//////////////// ioparams = { 'iosequencer' : 'random_steady', 'IOPS' : 'max', 'fractionRead' : 0.0, 'VolumeCoverageFractionStart' : 0.0, 'VolumeCoverageFractionEnd' : 1.0, 'blocksize' : 8, 'maxtags' : 16 } ivy.set_io_sequencer_template(**ioparams) ivy.create_workload(name = "RandomWriteMiss", iosequencer = "random_steady", parameters="") for i in [16,13,11,9,7,6,5,4,3,2,1]: ivy.edit_rollup(name = "all=all", parameters = " maxTags=" + str(i)) ivy.go(stepname="RR_maxTags_" + str(i), subinterval_seconds=10, warmup_seconds=120, measure_seconds=180) summary_filename = ivy.test_folder() + "/all/" + ivy.test_name() + ".all=all.summary.csv" lun_filename = ivy.test_folder() + "/available_test_LUNs.csv" max_IOPS = float(ivy.csv_cell_value(filename = summary_filename, row = int(ivy.csv_rows(filename = summary_filename)) - 1, col = "Overall IOPS"))/float(ivy.csv_rows(filename = lun_filename)) for j in [0.7,0.45,0.25,0.1,0.01]: ivy.edit_rollup(name = "all=all", parameters = "IOPS="+ str(max_IOPS * j) +", maxTags=1") ivy.go(stepname="RR_maxTags_1(" + str(j*100) + "%)", subinterval_seconds=10, warmup_seconds=120, measure_seconds=180) ivy.delete_workload (name = "RandomWriteMiss") #//////////Sequential Read//////////////// ioparams = { 'iosequencer' : 'sequential', 'IOPS' : 'max', 'fractionRead' : 1.0, 'VolumeCoverageFractionStart' : 0.0, 'VolumeCoverageFractionEnd' : 1.0, 'blocksize' : 256, 'maxtags' : 32 } ivy.set_io_sequencer_template(**ioparams) ivy.create_workload(name = "SequentialRead", iosequencer = "sequential", parameters="") for i in [32,24,17,13,9,7,5,4,3,2,1]: ivy.edit_rollup(name = "all=all", parameters = " maxTags=" + str(i)) ivy.go(stepname="RR_maxTags_" + str(i), subinterval_seconds=10, warmup_seconds=120, measure_seconds=180) summary_filename = ivy.test_folder() + "/all/" + ivy.test_name() + ".all=all.summary.csv" lun_filename = ivy.test_folder() + "/available_test_LUNs.csv" max_IOPS = float(ivy.csv_cell_value(filename = summary_filename, row = int(ivy.csv_rows(filename = summary_filename)) - 1, col = "Overall IOPS"))/float(ivy.csv_rows(filename = lun_filename)) for j in [0.7,0.45,0.25,0.1,0.01]: ivy.edit_rollup(name = "all=all", parameters = "IOPS="+ str(max_IOPS * j) +", maxTags=1") ivy.go(stepname="RR_maxTags_1(" + str(j*100) + "%)", subinterval_seconds=10, warmup_seconds=120, measure_seconds=180) ivy.delete_workload (name = "SequentialRead") #//////////Sequential Write//////////////// ioparams = { 'iosequencer' : 'sequential', 'IOPS' : 'max', 'fractionRead' : 0.0, 'VolumeCoverageFractionStart' : 0.0, 'VolumeCoverageFractionEnd' : 1.0, 'blocksize' : 256, 'maxtags' : 32 } ivy.set_io_sequencer_template(**ioparams) ivy.create_workload(name = "SequentialWrite", iosequencer = "sequential", parameters="") for i in [32,24,17,13,9,7,5,4,3,2,1]: ivy.edit_rollup(name = "all=all", parameters = " maxTags=" + str(i)) ivy.go(stepname="RR_maxTags_" + str(i), subinterval_seconds=10, warmup_seconds=120, measure_seconds=180) summary_filename = ivy.test_folder() + "/all/" + ivy.test_name() + ".all=all.summary.csv" lun_filename = ivy.test_folder() + "/available_test_LUNs.csv" max_IOPS = float(ivy.csv_cell_value(filename = summary_filename, row = int(ivy.csv_rows(filename = summary_filename)) - 1, col = "Overall IOPS"))/float(ivy.csv_rows(filename = lun_filename)) for j in [0.7,0.45,0.25,0.1,0.01]: ivy.edit_rollup(name = "all=all", parameters = "IOPS="+ str(max_IOPS * j) +", maxTags=1") ivy.go(stepname="RR_maxTags_1(" + str(j*100) + "%)", subinterval_seconds=10, warmup_seconds=120, measure_seconds=180) ivy.delete_workload (name = "SequentialWrite")
39.035461
190
0.697311
fa789d41f455e0df69a210aba89da0bb04ccdd0d
1,525
py
Python
ImageDenoising/lib/model.py
jiunbae/ITE4053
873d53493b7588f67406e0e6ed0e74e5e3f957bc
[ "MIT" ]
5
2019-06-20T09:54:04.000Z
2021-06-15T04:22:49.000Z
ImageDenoising/lib/model.py
jiunbae/ITE4053
873d53493b7588f67406e0e6ed0e74e5e3f957bc
[ "MIT" ]
null
null
null
ImageDenoising/lib/model.py
jiunbae/ITE4053
873d53493b7588f67406e0e6ed0e74e5e3f957bc
[ "MIT" ]
1
2019-04-19T04:52:34.000Z
2019-04-19T04:52:34.000Z
from tensorflow.keras.utils import Sequence from tensorflow.keras import optimizers as optim from network import DenoisingNetwork from utils.callback import CustomCallback class DenoisingModel(object): def __init__(self, mode: str): self.klass = DenoisingNetwork self.model = self.klass(mode) def train(self, train_generator: Sequence, val_generator: Sequence, config: object, epochs: int) \ -> None: optimizer = optim.Adam(lr=config.lr, decay=config.lr_decay) self.klass.compile(self.model, optimizer=optimizer, loss=self.klass.loss, metric=self.klass.metric) self.model.fit_generator( train_generator, epochs=epochs, steps_per_epoch=len(train_generator), validation_data=val_generator, validation_steps=100, workers=4, use_multiprocessing=True, callbacks=[ # TensorBoard(log_dir=config.log, write_graph=True, write_images=True), # CustomCallback(log_dir=config.log, interval=config.interval, # train=train_generator[0], test=[v for v in val_generator]), ] ) def predict(self, inputs): result, *_ = self.model.predict(inputs) return result def save(self, path: str): self.model.save(path)
31.122449
92
0.572459
db300953a077196b1f33f8f1e858abcc65d681f4
1,406
py
Python
webvpn.py
bin2021125/auto-daily-health-report
63b4809e97f595ba5b17bec80cee0f32c0b717d8
[ "MIT" ]
null
null
null
webvpn.py
bin2021125/auto-daily-health-report
63b4809e97f595ba5b17bec80cee0f32c0b717d8
[ "MIT" ]
null
null
null
webvpn.py
bin2021125/auto-daily-health-report
63b4809e97f595ba5b17bec80cee0f32c0b717d8
[ "MIT" ]
null
null
null
import requests import json import sys from bs4 import BeautifulSoup # request with webvpn.xmu.edu.cn def with_webvpn(session, header, vpn_username, vpn_password): try: login_page = session.get("https://webvpn.xmu.edu.cn/login", headers=header).text soup = BeautifulSoup(login_page, 'lxml') need_captcha = soup.select('input[name="needCaptcha"]')[0]['value'] if need_captcha == 'true': print(json.dumps({ "status": "failed", "reason": "WebVPN Login failed (captcha required)" }, indent=4)) sys.exit(1) captcha_id = soup.select('input[name="captcha_id"]')[0]['value'] vpn_login_url = "https://webvpn.xmu.edu.cn/do-login" login_data = { "auth_type": "local", "username": vpn_username, "password": vpn_password, "sms_code":"", "captcha": "", "needCaptcha": False, "captcha_id": captcha_id } session.post(vpn_login_url, login_data, headers=header, allow_redirects=True) return session except KeyError: print(json.dumps({ "status": "failed", "reason": "WebVPN Login failed (server error)" }, indent=4)) sys.exit(1)
29.914894
75
0.527738
f03948bc77d8b1fd40835385a00bbc894db43cfc
895
py
Python
rl_quad/rl_scripts/train/quadcopter-stable-baselines-ddpg.py
vivekagra/Biplane-Quadrotor
afe69216494842f5bfe16cbcc0cdcc6ef0de7769
[ "BSD-3-Clause" ]
null
null
null
rl_quad/rl_scripts/train/quadcopter-stable-baselines-ddpg.py
vivekagra/Biplane-Quadrotor
afe69216494842f5bfe16cbcc0cdcc6ef0de7769
[ "BSD-3-Clause" ]
null
null
null
rl_quad/rl_scripts/train/quadcopter-stable-baselines-ddpg.py
vivekagra/Biplane-Quadrotor
afe69216494842f5bfe16cbcc0cdcc6ef0de7769
[ "BSD-3-Clause" ]
null
null
null
import gym import time import numpy as np, pandas as pd import matplotlib.pyplot as plt from stable_baselines.ddpg.policies import MlpPolicy from stable_baselines.common.noise import NormalActionNoise, OrnsteinUhlenbeckActionNoise, AdaptiveParamNoiseSpec from stable_baselines import DDPG from rl_quad.environment.continous import QuadEnvCont env = QuadEnvCont() n_actions = env.action_space.shape[-1] param_noise = None action_noise = OrnsteinUhlenbeckActionNoise(mean=np.zeros(n_actions), sigma=float(0.5) * np.ones(n_actions)) model = DDPG(MlpPolicy, env, verbose=1, param_noise=param_noise, action_noise=action_noise, tensorboard_log="/home/ayush/Projects/rl_quad/training/logs/") model.learn(total_timesteps=100000) model.save("quad-ddpg-v1-100k") model.learn(total_timesteps=100000) model.save("quad-ddpg-v1-200k") model.learn(total_timesteps=200000) model.save("quad-ddpg-v1-400k")
34.423077
154
0.820112
653f3d126c9950c17fb6dd172757205541017a4a
164
py
Python
solutions/python3/1009.py
sm2774us/amazon_interview_prep_2021
f580080e4a6b712b0b295bb429bf676eb15668de
[ "MIT" ]
42
2020-08-02T07:03:49.000Z
2022-03-26T07:50:15.000Z
solutions/python3/1009.py
ajayv13/leetcode
de02576a9503be6054816b7444ccadcc0c31c59d
[ "MIT" ]
null
null
null
solutions/python3/1009.py
ajayv13/leetcode
de02576a9503be6054816b7444ccadcc0c31c59d
[ "MIT" ]
40
2020-02-08T02:50:24.000Z
2022-03-26T15:38:10.000Z
class Solution: def bitwiseComplement(self, N: int, M = 0, m = 0) -> int: return N ^ M if M and M >= N else self.bitwiseComplement(N, M + 2 ** m, m + 1)
54.666667
86
0.579268
f02927b79773fed353148dec47bddd43b4a71d8a
2,541
py
Python
NASA SPACEAPPS CHALLENGE/Solution/Software part/Astronomical Data and Python Libraries/Astropy/astropy-1.1.2/astropy/coordinates/builtin_frames/galactic.py
sahirsharma/Martian
062e9b47849512863c16713811f347ad7e121b56
[ "MIT" ]
null
null
null
NASA SPACEAPPS CHALLENGE/Solution/Software part/Astronomical Data and Python Libraries/Astropy/astropy-1.1.2/astropy/coordinates/builtin_frames/galactic.py
sahirsharma/Martian
062e9b47849512863c16713811f347ad7e121b56
[ "MIT" ]
null
null
null
NASA SPACEAPPS CHALLENGE/Solution/Software part/Astronomical Data and Python Libraries/Astropy/astropy-1.1.2/astropy/coordinates/builtin_frames/galactic.py
sahirsharma/Martian
062e9b47849512863c16713811f347ad7e121b56
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Licensed under a 3-clause BSD style license - see LICENSE.rst from __future__ import (absolute_import, unicode_literals, division, print_function) from ... import units as u from ..angles import Angle from ..representation import SphericalRepresentation from ..baseframe import BaseCoordinateFrame, RepresentationMapping # these are needed for defining the NGP from .fk5 import FK5 from .fk4 import FK4NoETerms class Galactic(BaseCoordinateFrame): """ Galactic Coordinates. Parameters ---------- representation : `BaseRepresentation` or None A representation object or None to have no data (or use the other keywords) l : `Angle`, optional, must be keyword The Galactic longitude for this object (``b`` must also be given and ``representation`` must be None). b : `Angle`, optional, must be keyword The Galactic latitude for this object (``l`` must also be given and ``representation`` must be None). distance : `~astropy.units.Quantity`, optional, must be keyword The Distance for this object along the line-of-sight. """ frame_specific_representation_info = { 'spherical': [RepresentationMapping('lon', 'l'), RepresentationMapping('lat', 'b')], 'cartesian': [RepresentationMapping('x', 'w'), RepresentationMapping('y', 'u'), RepresentationMapping('z', 'v')] } frame_specific_representation_info['unitspherical'] = \ frame_specific_representation_info['spherical'] default_representation = SphericalRepresentation # North galactic pole and zeropoint of l in FK4/FK5 coordinates. Needed for # transformations to/from FK4/5 # These are from the IAU's definition of galactic coordinates _ngp_B1950 = FK4NoETerms(ra=192.25*u.degree, dec=27.4*u.degree) _lon0_B1950 = Angle(123, u.degree) # These are *not* from Reid & Brunthaler 2004 - instead, they were # derived by doing: # # >>> FK4NoETerms(ra=192.25*u.degree, dec=27.4*u.degree).transform_to(FK5) # # This gives better consistency with other codes than using the values # from Reid & Brunthaler 2004 and the best self-consistency between FK5 # -> Galactic and FK5 -> FK4 -> Galactic. The lon0 angle was found by # optimizing the self-consistency. _ngp_J2000 = FK5(ra=192.8594812065348*u.degree, dec=27.12825118085622*u.degree) _lon0_J2000 = Angle(122.9319185680026, u.degree)
39.703125
83
0.679654
d56b0eb15af312264b478aff3c44536a57ec3342
5,489
py
Python
evaluation/crate/run_docker_images.py
seveirbian/gear-old
8d3529a9bf42e652a9d7475c9d14e9a6afc69a76
[ "Apache-2.0" ]
null
null
null
evaluation/crate/run_docker_images.py
seveirbian/gear-old
8d3529a9bf42e652a9d7475c9d14e9a6afc69a76
[ "Apache-2.0" ]
null
null
null
evaluation/crate/run_docker_images.py
seveirbian/gear-old
8d3529a9bf42e652a9d7475c9d14e9a6afc69a76
[ "Apache-2.0" ]
null
null
null
import sys # package need to be installed, pip install docker import docker import time import yaml import os import random import subprocess import signal import urllib2 import shutil import xlwt # package need to be installed, pip install crate from crate import client as crate_client auto = False private_registry = "202.114.10.146:9999/" apppath = "" # run paraments hostPort = 4200 localVolume = "" pwd = os.path.split(os.path.realpath(__file__))[0] runEnvironment = ["CRATE_HEAP_SIZE=1g", ] runPorts = {"4200/tcp": hostPort,} runVolumes = {} runWorking_dir = "" runCommand = "crate -Cnetwork.host=_site_ -Cdiscovery.type=single-node" waitline = "" # result result = [["tag", "finishTime"], ] class Runner: def __init__(self, images): self.images_to_pull = images def check(self): # detect whether the file exists, if true, delete it if os.path.exists("./images_run.txt"): os.remove("./images_run.txt") def run(self): self.check() client = docker.from_env() # if don't give a tag, then all image under this registry will be pulled repos = self.images_to_pull[0]["repo"] for repo in repos: tags = self.images_to_pull[1][repo] for tag in tags: private_repo = private_registry + repo + ":" + tag if localVolume != "": if os.path.exists(localVolume) == False: os.makedirs(localVolume) print "start running: ", private_repo # create a random name runName = '%d' % (random.randint(1,100000000)) # get present time startTime = time.time() # run images container = client.containers.create(image=private_repo, environment=runEnvironment, ports=runPorts, volumes=runVolumes, working_dir=runWorking_dir, command=runCommand, name=runName, detach=True, cpu_period=100000, cpu_quota=150000, mem_limit="2g", ) container.start() while True: if time.time() - startTime > 600: break try: connection = crate_client.connect("http://localhost:4200", username="crate") cursor = connection.cursor() cursor.execute('''CREATE TABLE GAMES (ID INT PRIMARY KEY NOT NULL, NAME STRING);''') print "successfully create table games!" cursor.execute( """INSERT INTO GAMES (ID, NAME) VALUES (?, ?)""", (1, "Three kingdoms")) print "successfully insert!" cursor.execute("UPDATE GAMES set NAME = 'Dota2' where ID=1;") print "successfully update!" cursor.execute("SELECT ID, NAME from GAMES;") rows = cursor.fetchall() print rows cursor.execute("DELETE from GAMES where ID=1;") print "successfully delete!" connection.close() break except: time.sleep(0.1) # wait 100ms pass # print run time finishTime = time.time() - startTime print "finished in " , finishTime, "s\n" try: container.kill() except: print "kill fail!" pass container.remove(force=True) # record the image and its Running time result.append([tag, finishTime]) if auto != True: raw_input("Next?") else: time.sleep(5) if localVolume != "": shutil.rmtree(localVolume) class Generator: def __init__(self, profilePath=""): self.profilePath = profilePath def generateFromProfile(self): if self.profilePath == "": print "Error: profile path is null" with open(self.profilePath, 'r') as f: self.images = yaml.load(f, Loader=yaml.FullLoader) return self.images def get_net_data(): netCard = "/proc/net/dev" fd = open(netCard, "r") for line in fd.readlines(): if line.find("enp0s3") >= 0: field = line.split() data = float(field[1]) / 1024.0 / 1024.0 fd.close() return data if __name__ == "__main__": if len(sys.argv) == 2: auto = True generator = Generator(os.path.split(os.path.realpath(__file__))[0]+"/image_versions.yaml") images = generator.generateFromProfile() runner = Runner(images) runner.run() # create a workbook sheet workbook = xlwt.Workbook() sheet = workbook.add_sheet("run_time") for row in range(len(result)): for column in range(len(result[row])): sheet.write(row, column, result[row][column]) workbook.save(os.path.split(os.path.realpath(__file__))[0]+"/run.xls")
30.494444
100
0.51248
1d213260204545351f2fed943f7184a06462d29c
2,279
py
Python
src/oscar/apps/customer/history.py
QueoLda/django-oscar
8dd992d82e31d26c929b3caa0e08b57e9701d097
[ "BSD-3-Clause" ]
4,639
2015-01-01T00:42:33.000Z
2022-03-29T18:32:12.000Z
src/oscar/apps/customer/history.py
QueoLda/django-oscar
8dd992d82e31d26c929b3caa0e08b57e9701d097
[ "BSD-3-Clause" ]
2,215
2015-01-02T22:32:51.000Z
2022-03-29T12:16:23.000Z
src/oscar/apps/customer/history.py
QueoLda/django-oscar
8dd992d82e31d26c929b3caa0e08b57e9701d097
[ "BSD-3-Clause" ]
2,187
2015-01-02T06:33:31.000Z
2022-03-31T15:32:36.000Z
import json from django.conf import settings from oscar.core.loading import get_model Product = get_model('catalogue', 'Product') class CustomerHistoryManager: cookie_name = settings.OSCAR_RECENTLY_VIEWED_COOKIE_NAME cookie_kwargs = { 'max_age': settings.OSCAR_RECENTLY_VIEWED_COOKIE_LIFETIME, 'secure': settings.OSCAR_RECENTLY_VIEWED_COOKIE_SECURE, 'httponly': True, } max_products = settings.OSCAR_RECENTLY_VIEWED_PRODUCTS @classmethod def get(cls, request): """ Return a list of recently viewed products """ ids = cls.extract(request) # Reordering as the ID order gets messed up in the query product_dict = Product.objects.browsable().in_bulk(ids) ids.reverse() return [product_dict[product_id] for product_id in ids if product_id in product_dict] @classmethod def extract(cls, request, response=None): """ Extract the IDs of products in the history cookie """ ids = [] if cls.cookie_name in request.COOKIES: try: ids = json.loads(request.COOKIES[cls.cookie_name]) except ValueError: # This can occur if something messes up the cookie if response: response.delete_cookie(cls.cookie_name) else: # Badly written web crawlers send garbage in double quotes if not isinstance(ids, list): ids = [] return ids @classmethod def add(cls, ids, new_id): """ Add a new product ID to the list of product IDs """ if new_id in ids: ids.remove(new_id) ids.append(new_id) if len(ids) > cls.max_products: ids = ids[len(ids) - cls.max_products:] return ids @classmethod def update(cls, product, request, response): """ Updates the cookies that store the recently viewed products removing possible duplicates. """ ids = cls.extract(request, response) updated_ids = cls.add(ids, product.id) response.set_cookie( cls.cookie_name, json.dumps(updated_ids), **cls.cookie_kwargs)
30.797297
93
0.604212
59556a383894f6a2011e4a187e43d1f8cf87eb82
1,721
py
Python
configs/body/upernet_swin_tiny2.py
SeHwanJoo/mmsegmentation_body
31c4bf27c3dc0a84bfbb06a0c017c5908c17f0ac
[ "Apache-2.0" ]
null
null
null
configs/body/upernet_swin_tiny2.py
SeHwanJoo/mmsegmentation_body
31c4bf27c3dc0a84bfbb06a0c017c5908c17f0ac
[ "Apache-2.0" ]
null
null
null
configs/body/upernet_swin_tiny2.py
SeHwanJoo/mmsegmentation_body
31c4bf27c3dc0a84bfbb06a0c017c5908c17f0ac
[ "Apache-2.0" ]
null
null
null
_base_ = [ '../_base_/models/upernet_swin_BN.py', 'dataset2.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_20k.py' ] model = dict( pretrained=\ 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384_22k.pth', # noqa backbone=dict( embed_dims=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=12, use_abs_pos_embed=False, drop_path_rate=0.3, patch_norm=True, pretrain_style='official'), decode_head=dict(in_channels=[128, 256, 512, 1024], num_classes=3), auxiliary_head=dict(in_channels=512, num_classes=3) ) # AdamW optimizer, no weight decay for position embedding & layer norm # in backbone optimizer = dict( _delete_=True, type='AdamW', lr=0.00006, betas=(0.9, 0.999), weight_decay=0.01, paramwise_cfg=dict( custom_keys={ 'absolute_pos_embed': dict(decay_mult=0.), 'relative_position_bias_table': dict(decay_mult=0.), 'norm': dict(decay_mult=0.) })) lr_config = dict( _delete_=True, policy='cyclic', target_ratio=(1, 0.01), cyclic_times=1, step_ratio_up=0.05) # lr_config = dict( # _delete_=True, # policy='poly', # warmup='linear', # warmup_iters=400, # warmup_ratio=1e-6, # power=1.0, # min_lr=0.0) # lr_config = dict( # _delete_=True, # policy='step', # warmup='linear', # warmup_iters=400, # warmup_ratio=1e-6, # step=[60, 90]) evaluation = dict(metric='mDice') optimizer_config = dict( _delete_=True, grad_clip=dict(max_norm=35, norm_type=2)) checkpoint_config = dict(max_keep_ckpts=3)
27.31746
119
0.63161
96aad07299bbb955fe17721e65da58e2c54b0b95
496
py
Python
scripts/csv2shapefile.py
rmsare-lanl/dengue-example
0737e344d501473c9fb0fc1eec219141f9d59fd7
[ "MIT" ]
null
null
null
scripts/csv2shapefile.py
rmsare-lanl/dengue-example
0737e344d501473c9fb0fc1eec219141f9d59fd7
[ "MIT" ]
null
null
null
scripts/csv2shapefile.py
rmsare-lanl/dengue-example
0737e344d501473c9fb0fc1eec219141f9d59fd7
[ "MIT" ]
null
null
null
""" Convert a CSV with Lat, Lon coordinates to an ESRI Shapefile """ import geopandas as gpd import pandas as pd from shapely.geometry import Point def csv_to_shapefile(in_filename): out_filename = in_filename.replace('.csv', '.shp') df = pd.read_csv(in_filename) crs = {'init': 'epsg:4326'} geometry = [Point(xy) for xy in zip(df.Longitude, df.Latitude)] df = gpd.GeoDataFrame(df, crs=crs, geometry=geometry) df.to_file(driver='ESRI Shapefile', filename=out_filename)
29.176471
67
0.71371
cb6789a21a72bd9b8261cd38227d77083ee6c1b5
5,606
py
Python
pulser/tests/test_waveforms.py
Yash-10/Pulser
afd16e0789b2621f00f6661df6d33ff27c44ac94
[ "Apache-2.0" ]
null
null
null
pulser/tests/test_waveforms.py
Yash-10/Pulser
afd16e0789b2621f00f6661df6d33ff27c44ac94
[ "Apache-2.0" ]
null
null
null
pulser/tests/test_waveforms.py
Yash-10/Pulser
afd16e0789b2621f00f6661df6d33ff27c44ac94
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 Pulser Development Team # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json from unittest.mock import patch import numpy as np import pytest from pulser.json.coders import PulserEncoder, PulserDecoder from pulser.parametrized import Variable, ParamObj from pulser.waveforms import (ConstantWaveform, RampWaveform, BlackmanWaveform, CustomWaveform, CompositeWaveform) np.random.seed(20201105) constant = ConstantWaveform(100, -3) ramp = RampWaveform(2e3, 5, 19) arb_samples = np.random.random(52) custom = CustomWaveform(arb_samples) blackman = BlackmanWaveform(40, np.pi) composite = CompositeWaveform(blackman, constant, custom) def test_duration(): with pytest.raises(TypeError, match='needs to be castable to an int'): ConstantWaveform("s", -1) RampWaveform([0, 1, 3], 1, 0) with pytest.raises(ValueError, match='positive duration'): ConstantWaveform(15, -10) RampWaveform(-20, 3, 4) with pytest.warns(UserWarning): wf = BlackmanWaveform(np.pi*10, 1) assert wf.duration == 31 assert custom.duration == 52 assert composite.duration == 192 def test_change_duration(): with pytest.raises(NotImplementedError): custom.change_duration(53) new_cte = constant.change_duration(103) assert constant.duration == 100 assert new_cte.duration == 103 new_blackman = blackman.change_duration(30) assert np.isclose(new_blackman.integral, blackman.integral) assert new_blackman != blackman new_ramp = ramp.change_duration(100) assert new_ramp.duration == 100 assert new_ramp != ramp def test_samples(): assert np.all(constant.samples == -3) bm_samples = np.clip(np.blackman(40), 0, np.inf) bm_samples *= np.pi / np.sum(bm_samples) / 1e-3 comp_samples = np.concatenate([bm_samples, np.full(100, -3), arb_samples]) assert np.all(np.isclose(composite.samples, comp_samples)) def test_integral(): assert np.isclose(blackman.integral, np.pi) assert constant.integral == -0.3 assert ramp.integral == 24 def test_draw(): with patch('matplotlib.pyplot.show'): composite.draw() blackman.draw() def test_eq(): assert constant == CustomWaveform(np.full(100, -3)) assert constant != -3 assert constant != CustomWaveform(np.full(48, -3)) def test_first_last(): assert constant.first_value == constant.last_value assert ramp.first_value == 5 assert ramp.last_value == 19 assert blackman.first_value == 0 assert blackman.last_value == 0 assert composite.first_value == 0 assert composite.last_value == arb_samples[-1] assert custom.first_value == arb_samples[0] def test_hash(): assert hash(constant) == hash(tuple(np.full(100, -3))) assert hash(ramp) == hash(tuple(np.linspace(5, 19, num=2000))) def test_composite(): with pytest.raises(ValueError, match='Needs at least two waveforms'): CompositeWaveform() CompositeWaveform(composite) CompositeWaveform([blackman, custom]) CompositeWaveform(10) with pytest.raises(TypeError, match='not a valid waveform'): CompositeWaveform(composite, 'constant') assert composite.waveforms == [blackman, constant, custom] wf = CompositeWaveform(blackman, constant) msg = ('BlackmanWaveform(40 ns, Area: 3.14), ' + 'ConstantWaveform(100 ns, -3 rad/µs)') assert wf.__str__() == f'Composite({msg})' assert wf.__repr__() == f'CompositeWaveform(140 ns, [{msg}])' def test_custom(): data = np.arange(16, dtype=float) wf = CustomWaveform(data) assert wf.__str__() == 'Custom' assert wf.__repr__() == f'CustomWaveform(16 ns, {data!r})' def test_ramp(): assert ramp.slope == 7e-3 def test_blackman(): with pytest.raises(TypeError): BlackmanWaveform(100, np.array([1, 2])) wf = BlackmanWaveform(100, -2) assert np.isclose(wf.integral, -2) assert np.all(wf.samples <= 0) assert wf == BlackmanWaveform(100, np.array([-2])) with pytest.raises(ValueError, match="matching signs"): BlackmanWaveform.from_max_val(-10, np.pi) wf = BlackmanWaveform.from_max_val(10, 2*np.pi) assert np.isclose(wf.integral, 2*np.pi) assert np.max(wf.samples) < 10 wf = BlackmanWaveform.from_max_val(-10, -np.pi) assert np.isclose(wf.integral, -np.pi) assert np.min(wf.samples) > -10 var = Variable("var", float) wf_var = BlackmanWaveform.from_max_val(-10, var) assert isinstance(wf_var, ParamObj) var._assign(-np.pi) assert wf_var.build() == wf def test_ops(): assert -constant == ConstantWaveform(100, 3) assert ramp * 2 == RampWaveform(2e3, 10, 38) assert --custom == custom assert blackman / 2 == BlackmanWaveform(40, np.pi / 2) assert composite * 1 == composite with pytest.raises(ZeroDivisionError): constant / 0 def test_serialization(): for wf in [constant, ramp, custom, blackman, composite]: s = json.dumps(wf, cls=PulserEncoder) assert wf == json.loads(s, cls=PulserDecoder)
30.802198
79
0.68944
739804a3c26e85545f3b83f84e92dfcdbf55bd9c
625
py
Python
python_modules/libraries/dagster-azure/dagster_azure/adls2/__init__.py
johannkm/dagster-okteto
7ad30528a4a92945967d68e59e27727a1e839c2b
[ "Apache-2.0" ]
1
2020-08-10T23:03:37.000Z
2020-08-10T23:03:37.000Z
python_modules/libraries/dagster-azure/dagster_azure/adls2/__init__.py
johannkm/dagster-okteto
7ad30528a4a92945967d68e59e27727a1e839c2b
[ "Apache-2.0" ]
null
null
null
python_modules/libraries/dagster-azure/dagster_azure/adls2/__init__.py
johannkm/dagster-okteto
7ad30528a4a92945967d68e59e27727a1e839c2b
[ "Apache-2.0" ]
1
2020-08-20T14:20:31.000Z
2020-08-20T14:20:31.000Z
from .fake_adls2_resource import FakeADLS2Resource, FakeADLS2ServiceClient from .file_cache import ADLS2FileCache, adls2_file_cache from .file_manager import ADLS2FileHandle, ADLS2FileManager from .intermediate_store import ADLS2IntermediateStore from .object_store import ADLS2ObjectStore from .resources import adls2_file_manager, adls2_resource from .system_storage import ( adls2_intermediate_storage, adls2_plus_default_intermediate_storage_defs, adls2_plus_default_storage_defs, adls2_system_storage, ) from .utils import create_adls2_client # from .solids import ADLS2Coordinate, file_handle_to_adls2
39.0625
74
0.864
26963202e053536d16d24c99db962ce723a01a85
10,666
py
Python
butler/block_service/block_service.py
constantinpape/butler
b831457624f6f9c88a4f5905c78487eda5d274bb
[ "MIT" ]
null
null
null
butler/block_service/block_service.py
constantinpape/butler
b831457624f6f9c88a4f5905c78487eda5d274bb
[ "MIT" ]
null
null
null
butler/block_service/block_service.py
constantinpape/butler
b831457624f6f9c88a4f5905c78487eda5d274bb
[ "MIT" ]
null
null
null
import os import json import threading import time from collections import deque from ..base import BaseRequestHandler, BaseService, BaseClient class BlockRequestHandler(BaseRequestHandler): """ BlockRequestHandler """ def format_request(self, request): """ Format the request: single word will result in requesting a new block, 3 words will confirm this block """ request = request.split() # if we have a length of 1, a new block is requested, otherwise a block is confirmed if len(request) == 1: return None elif len(request) == 3: if not all(reg.isdigit() for reg in request): raise RuntimeError("Invalid block request") return [int(req) for req in request] else: raise RuntimeError("Invalid block request") def format_response(self, response): """ Format the response: return 0 or 1 for a confirmation request, return the block offsets for a block request, return "stop" if all requests are processed (None) """ if isinstance(response, bool): response = "0" if response else "1" elif isinstance(response, list): assert len(response) == 3 response = " ".join(map(str, response)) elif response is None: response = "stop" else: raise RuntimeError("Invalid response") return response class BlockService(BaseService): """ Provide workers with block offsets from requests. Blocks need to be confirmed and the service periodically checks for blocks that are over the time limit. """ def __init__(self, block_file, time_limit, check_interval=60, num_retries=2, out_prefix=None): # initialize the base class super(BlockService, self).__init__() self.logger.info(" Init BlockService:") # time limit and check interval; assert time_limit > check_interval self.time_limit = time_limit self.check_interval = check_interval self.logger.info(" time_limit: %i and check_interval: %i" % (time_limit, check_interval)) # number of retries for failed blocks self.num_retries = num_retries self.try_counter = 0 self.logger.info(" num_retries: %i" % num_retries) # the outpath to serialize failed blocks self.out_prefix = out_prefix if self.out_prefix is not None: self.logger.info(" Will serialize failed blocks at: %s" % self.out_prefix) else: self.logger.warn(" Will not serialize failed blocks, you can serialize them by passing argument `out_prefix`") # load the coordinates of the blocks that will be processed # make a queue containing all block offsets assert os.path.exists(block_file), block_file with open(block_file, 'r') as f: self.block_queue = deque(reversed(json.load(f))) self.logger.info(" Loaded block list from: %s" % block_file) self.logger.info(" Added %i blocks to queue" % len(self.block_queue)) # list to keep track of ids that are currently processed self.in_progress = [] self.time_stamps = [] # list of offsets that have been processed self.processed_list = [] # list of failed blocks self.failed_blocks = [] self.lock = threading.Lock() # start the background thread that checks for failed jobs self.bg_thread = threading.Thread(target=self.check_progress_list, args=()) self.bg_thread.daemon = True self.bg_thread.start() def process_request(self, request): self.logger.debug(" Process incomig request: %s" % str(request)) # request a new block if request is None: return self.request_block() # confirm a block else: return self.confirm_block(request) # check the progress list for blocks that have exceeded the time limit def check_progress_list(self): while self.server_is_running: time.sleep(self.check_interval) with self.lock: now = time.time() self.logger.debug(" Checking progress list for %i blocks" % len(self.time_stamps)) # find blocks that have exceeded the time limit failed_block_ids = [ii for ii, time_stamp in enumerate(self.time_stamps) if now - time_stamp > self.time_limit] self.logger.info(" Found %i blocks over the time limit" % len(failed_block_ids)) # remove failed blocks and time stamps from in progress and # append failed blocks to the failed list # NOTE: we need to iterate in reverse order to delete the correct elements for ii in sorted(failed_block_ids, reverse=True): del self.time_stamps[ii] self.failed_blocks.append(self.in_progress.pop(ii)) # request the next block to be processed # if no more blocks are present, return None def request_block(self): # return a block offset if we still have blocks in the quee if len(self.block_queue) > 0: with self.lock: block_offsets = self.block_queue.pop() self.in_progress.append(block_offsets) self.time_stamps.append(time.time()) self.logger.debug(" Returning block offsets: %s" % str(block_offsets)) # otherwise, wait for the ones in progress to finish (or be cancelled) # then either repopulate, or exit else: # NOTE this must not be locked, otherwise # we end up with a deadlock with the lock in `check_progress_list` while self.in_progress: time.sleep(self.check_interval) continue with self.lock: # we need to check again inf the block queue is empty, because it might have been repopulated # in the meantime already if len(self.block_queue) > 0: block_offsets = self.block_queue.pop() self.in_progress.append(block_offsets) self.time_stamps.append(time.time()) self.logger.debug(" Returning block offsets: %s" % str(block_offsets)) elif self.try_counter < self.num_retries and self.failed_blocks: self.logger.info(" Exhausted block queue, repopulating for %i time" % self.try_counter) block_offsets = self.repopulate_queue() self.try_counter += 1 else: block_offsets = None if self.server_is_running: self.logger.info(" Exhausted block queue, shutting down service") self.serialize_status() self.shutdown_server() return block_offsets # confirm that a block has been processed def confirm_block(self, block_offset): # see of the offset is still in the in-progress # list and remove it. # if not, the time limit was exceeded and something is most likely wrong # with the block and the block was put on the failed block list self.logger.debug(" Confirming block %s" % str(block_offset)) try: with self.lock: index = self.in_progress.index(block_offset) del self.in_progress[index] del self.time_stamps[index] self.processed_list.append(block_offset) success = True self.logger.debug(" Block %s was processed properly." % str(block_offset)) except ValueError: success = False self.logger.debug(" Block %s is over time limit and was added to failed blocks" % str(block_offset)) return success def repopulate_queue(self): self.block_queue.extendleft(self.failed_blocks) self.failed_blocks = [] block_offsets = self.block_queue.pop() self.in_progress.append(block_offsets) self.time_stamps.append(time.time()) self.logger.debug(" Returning block offsets: %s" % str(block_offsets)) return block_offsets def serialize_status(self, from_interrupt=False): """ Serialize the status (failed blocks, processed blocks, in-progress blocks) """ if from_interrupt: self.logger.info(" serialize_status called after interrupt") else: self.logger.info(" serialize_status called after regular shutdown") if self.out_prefix is not None: if self.failed_blocks: out_failed_blocks = self.out_prefix + "failed_blocks.json" self.logger.info(" Serialized list of failed blocks with %i entries to %s" % (len(self.failed_blocks), out_failed_blocks)) with open(out_failed_blocks, 'w') as f: json.dump(self.failed_blocks, f) if self.processed_list: out_processed_blocks = self.out_prefix + "processed_blocks.json" self.logger.info(" Serialized list of processed blocks with %i entries to %s" % (len(self.processed_list), out_processed_blocks)) with open(out_processed_blocks, 'w') as f: json.dump(self.processed_list, f) if self.in_progress: out_in_progress = self.out_prefix + "inprogress_blocks.json" self.logger.info(" Serialized list of in-progress blocks with %i entries to %s" % (len(self.in_progress), out_in_progress)) with open(self.out_prefix + "inprogress_blocks.json", 'w') as f: json.dump(self.in_progress, f) class BlockClient(BaseClient): """ """ def format_request(self, request): """ Format incoming request. Must return string. """ return "1" if request is None else " ".join(map(str, request)) def format_response(self, response): """ Format incoming response. """ response = response.split() # if the response has length 3, it consists of # block coordinates if len(response) == 3: return list(map(int, response)) else: response = response[0] return None if response is 'stop' else bool(int(response))
41.992126
122
0.6036
ac6feb5caf955768b4843cdc8f59dabcf7873c56
398
py
Python
sktimeline/views/__init__.py
aaronmauro/sktimeline
3a83b8973959c2d6bf49021cd8efb0ead81b9395
[ "MIT" ]
2
2016-06-14T17:02:42.000Z
2016-10-24T14:49:25.000Z
sktimeline/views/__init__.py
aaronmauro/sktimeline
3a83b8973959c2d6bf49021cd8efb0ead81b9395
[ "MIT" ]
3
2016-06-27T13:20:53.000Z
2017-03-18T14:21:27.000Z
sktimeline/views/__init__.py
aaronmauro/sktimeline
3a83b8973959c2d6bf49021cd8efb0ead81b9395
[ "MIT" ]
2
2016-06-14T17:03:05.000Z
2016-09-01T14:18:44.000Z
from sktimeline import * def login_required(f): @wraps(f) def wrap(*args, **kwargs): if 'logged_in' in session: return f(*args, **kwargs) else: flash("Please login") return redirect(url_for('login_page')) return wrap def page_not_found(): return render_template("errors/404.html") import admin import dashboard import general
19.9
50
0.625628
df3897fa9f1ae6fb255558c609f8d4e5c08a562e
4,288
py
Python
model/modules/shared_conv.py
LiXiaoli921/FOTS.PyTorch
9319dc767217e3efea6a2ee3403d92c344418154
[ "MIT" ]
1
2019-02-11T11:25:38.000Z
2019-02-11T11:25:38.000Z
model/modules/shared_conv.py
huizhang0110/FOTS.PyTorch
8661f8847ad63356d15c86ae9c183766e4ff6885
[ "MIT" ]
null
null
null
model/modules/shared_conv.py
huizhang0110/FOTS.PyTorch
8661f8847ad63356d15c86ae9c183766e4ff6885
[ "MIT" ]
null
null
null
import torch.nn as nn import torch.nn.functional as F import torch import math SPEEDUP_SCALE = 512 class SharedConv(nn.Module): ''' sharded convolutional layers ''' def __init__(self, bbNet: nn.Module): super(SharedConv, self).__init__() self.backbone = bbNet self.backbone.eval() # Feature-merging branch # self.toplayer = nn.Conv2d(2048, 256, kernel_size = 1, stride = 1, padding = 0) # Reduce channels self.mergeLayers0 = DummyLayer() self.mergeLayers1 = HLayer(2048 + 1024, 128) self.mergeLayers2 = HLayer(128 + 512, 64) self.mergeLayers3 = HLayer(64 + 256, 32) self.mergeLayers4 = nn.Conv2d(32, 32, kernel_size = 3, padding = 1) self.bn5 = nn.BatchNorm2d(32) # Output Layer self.textScale = 512 self.scoreMap = nn.Conv2d(32, 1, kernel_size = 1) self.geoMap = nn.Conv2d(32, 4, kernel_size = 1) self.angleMap = nn.Conv2d(32, 1, kernel_size = 1) def forward(self, input): input = self.__mean_image_subtraction(input) # bottom up f = self.__foward_backbone(input) g = [None] * 4 h = [None] * 4 # i = 1 h[0] = self.mergeLayers0(f[0]) g[0] = self.__unpool(h[0]) # i = 2 h[1] = self.mergeLayers1(g[0], f[1]) g[1] = self.__unpool(h[1]) # i = 3 h[2] = self.mergeLayers2(g[1], f[2]) g[2] = self.__unpool(h[2]) # i = 4 h[3] = self.mergeLayers3(g[2], f[3]) g[3] = self.__unpool(h[3]) # final stage final = self.mergeLayers4(h[3]) final = self.bn5(final) final = F.relu(final) score = self.scoreMap(final) score = torch.sigmoid(score) geoMap = self.geoMap(final) # 出来的是 normalise 到 0 -1 的值是到上下左右的距离,但是图像他都缩放到 512 * 512 了,但是 gt 里是算的绝对数值来的 geoMap = torch.sigmoid(geoMap) * 512 angleMap = self.angleMap(final) angleMap = (torch.sigmoid(angleMap) - 0.5) * math.pi / 2 geometry = torch.cat([geoMap, angleMap], dim = 1) return score, geometry def __foward_backbone(self, input): conv2 = None conv3 = None conv4 = None output = None # n * 7 * 7 * 2048 for name, layer in self.backbone.named_children(): input = layer(input) if name == 'layer1': conv2 = input elif name == 'layer2': conv3 = input elif name == 'layer3': conv4 = input elif name == 'layer4': output = input break return output, conv4, conv3, conv2 def __unpool(self, input): _, _, H, W = input.shape return F.interpolate(input, mode = 'bilinear', scale_factor = 2, align_corners = True) def __mean_image_subtraction(self, images, means = [123.68, 116.78, 103.94]): ''' image normalization :param images: bs * w * h * channel :param means: :return: ''' num_channels = images.data.shape[1] if len(means) != num_channels: raise ValueError('len(means) must match the number of channels') for i in range(num_channels): images.data[:, i, :, :] -= means[i] return images class DummyLayer(nn.Module): def forward(self, input_f): return input_f class HLayer(nn.Module): def __init__(self, inputChannels, outputChannels): """ :param inputChannels: channels of g+f :param outputChannels: """ super(HLayer, self).__init__() self.conv2dOne = nn.Conv2d(inputChannels, outputChannels, kernel_size = 1) self.bnOne = nn.BatchNorm2d(outputChannels) self.conv2dTwo = nn.Conv2d(outputChannels, outputChannels, kernel_size = 3, padding = 1) self.bnTwo = nn.BatchNorm2d(outputChannels) def forward(self, inputPrevG, inputF): input = torch.cat([inputPrevG, inputF], dim = 1) output = self.conv2dOne(input) output = self.bnOne(output) output = F.relu(output) output = self.conv2dTwo(output) output = self.bnTwo(output) output = F.relu(output) return output
27.844156
107
0.565532
d4027717b6cf3557f730f3390681ca6bc8eb59b5
13,747
py
Python
GCSs_filtering_and_overlapping.py
sutormin94/TopoI_Topo-Seq_1
78f03bc3a6e2249b6f47fe838c2ba7d8d761b596
[ "MIT" ]
null
null
null
GCSs_filtering_and_overlapping.py
sutormin94/TopoI_Topo-Seq_1
78f03bc3a6e2249b6f47fe838c2ba7d8d761b596
[ "MIT" ]
null
null
null
GCSs_filtering_and_overlapping.py
sutormin94/TopoI_Topo-Seq_1
78f03bc3a6e2249b6f47fe838c2ba7d8d761b596
[ "MIT" ]
null
null
null
############################################### ##Dmitry Sutormin, 2018## ##Topo-Seq analysis## #The script takes raw GCSs data, returns only trusted GCSs, #computes GCSs shared between different conditions, #draws Venn diagrams of the sets overlappings, #writes GCSs sets. ############################################### ####### #Packages to be imported. ####### import os import matplotlib.pyplot as plt import collections from matplotlib_venn import venn2, venn3, venn3_circles import numpy as np ####### #Variables to be defined. ####### print('Variables to be defined:') #Path to the working directory pwd="C:\\Users\sutor\OneDrive\ThinkPad_working\Sutor\Science\TopoI-ChIP-Seq\TopA_ChIP-Seq\EcTopoI_G116S_M320V_Topo-Seq\TCS_motifs\\" #Input data path_to_replicas={'TopoI_Topo_Seq_1': {'Ara' : pwd + "Replics_1_2_3_Thresholds\TopoI_Topo_Seq_1_Ara_TCSs_called_thr_15.BroadPeak", 'No_Ara' : pwd + "Replics_1_2_3_Thresholds\TopoI_Topo_Seq_1_no_Ara_TCSs_called_thr_15.BroadPeak"}, 'TopoI_Topo_Seq_2': {'Ara' : pwd + "Replics_1_2_3_Thresholds\TopoI_Topo_Seq_2_Ara_TCSs_called_thr_15.BroadPeak", 'No_Ara' : pwd + "Replics_1_2_3_Thresholds\TopoI_Topo_Seq_2_no_Ara_TCSs_called_thr_15.BroadPeak"}, 'TopoI_Topo_Seq_3': {'Ara' : pwd + "Replics_1_2_3_Thresholds\TopoI_Topo_Seq_3_Ara_TCSs_called_thr_15.BroadPeak", 'No_Ara' : pwd + "Replics_1_2_3_Thresholds\TopoI_Topo_Seq_3_no_Ara_TCSs_called_thr_15.BroadPeak"}} #Configuration of the output for the GCSs data in replicas. Replicas_path_out="C:\\Users\sutor\OneDrive\ThinkPad_working\Sutor\Science\TopoI-ChIP-Seq\TopA_ChIP-Seq\EcTopoI_G116S_M320V_Topo-Seq\TCS_motifs\\Replicas_1_2_3_Tresholds_trusted_TCSs\\" if not os.path.exists(Replicas_path_out): os.makedirs(Replicas_path_out) Set_name="Thr_15" All_conditions_name="TopoI_Topo_Seq_123_TCSs_merged" #Configuration of the output for GCSs trusted. Out_path=Replicas_path_out + "TopoI_Topo_Seq_123_TCSs_called_thr_15.BroadPeak" #Outpath for Venn diagrams. plot_outpath=Replicas_path_out ####### #Parsing raw GCSs coordinates, returns dictionary - GCSs_coordinate:N3E. ####### def read_GCSs_file(GCSs_file_path): GCSs_dict={} GCSs_in=open(GCSs_file_path, 'r') for line in GCSs_in: line=line.rstrip().split('\t') if line[0] not in ['GCSs_coordinate']: GCSs_dict[int(line[1])]=float(line[6]) GCSs_in.close() return GCSs_dict ####### #Filter controls. ####### def filter_controls(replicas_path_dict): #Merges a range of replicates TCSs_replicas_dict={} for set_name, set_pair in replicas_path_dict.items(): #Iterates replicas #Read files with raw GCSs Raw_TCSs_dict_Ara=read_GCSs_file(set_pair['Ara']) Raw_TCSs_dict_no_Ara=read_GCSs_file(set_pair['No_Ara']) Raw_TCSs_dict_Ara_filtered={} for TCS_coordinate, TCS_signal in Raw_TCSs_dict_Ara.items(): if TCS_coordinate not in Raw_TCSs_dict_no_Ara: Raw_TCSs_dict_Ara_filtered[TCS_coordinate]=TCS_signal TCSs_replicas_dict[set_name]=Raw_TCSs_dict_Ara_filtered return TCSs_replicas_dict ####### #Combines replicates into one GCSs table. ####### def combine_replicates(replicas_path_dict, path_out, name): #Filter controls. TCSs_replicas_dict=filter_controls(replicas_path_dict) #Merges a range of replicates GCSs_replicas_dict={} names_ar=[] for key, Raw_GCSs_dict in TCSs_replicas_dict.items(): #Iterates replicas names_ar.append(key) for k, v in Raw_GCSs_dict.items(): #Iterates raw GCSs #Table filling process initiation if len(names_ar)==1: GCSs_replicas_dict[k]=[v] #Table filling process continuing (the table already contains at least one GCSs set) else: #If GCSs is already in the table if k in GCSs_replicas_dict: GCSs_replicas_dict[k].append(v) #If this is the first occurrence of the element in a NON empty table. else: add_el=[] for j in range(len(names_ar)-1): add_el.append(0) add_el.append(v) GCSs_replicas_dict[k]=add_el #If table body line contains less elements than header does, hence add zero. for k, v in GCSs_replicas_dict.items(): if len(v)<len(names_ar): GCSs_replicas_dict[k].append(0) #Sorting the list of dictionary keys. GCSs_replicas_dict_sorted=collections.OrderedDict(sorted(GCSs_replicas_dict.items())) #Writes merged GCSs data fileout=open(f'{path_out}{name}_TCSs_replicates.txt', 'w') #TCSs_out.write(f'{Genome_ID}\t{TCSs_list_F[i][0]}\t{TCSs_list_F[i][0]+1}\tTCS_{i}_F\t10\t.\t{TCSs_list_F[i][1]}\t-1\t-1\n') #Header fileout.write('TCSs_coordinate\t') for i in names_ar: fileout.write(str(i) + '_N3E\t') fileout.write('\n') #Body of the table for k, v in GCSs_replicas_dict_sorted.items(): fileout.write(str(k) + '\t') for i in GCSs_replicas_dict_sorted[k]: fileout.write(str(i) + '\t') fileout.write('\n') fileout.close() return GCSs_replicas_dict #Prepares GCSs table for all conditions #combine_replicates(path_to_replicas, Replicas_path_out, All_conditions_name) ####### #Returns only trusted GCSs - observed at least 2 times within 3 biological replicates. #Data organization: 1. coordinate of GCSs, 2.-4. N3E values for biological replicates 1-3 ####### def trusted(ar): av_height=0 ind=0 for i in range(len(ar)): if ar[i]>0: ind=ind+1 av_height=av_height+ar[i] if ind>1: return av_height/ind else: return "No signal" def trusted_GCSs_calling(GCSs_dictionary): ar=[] for k, v in GCSs_dictionary.items(): if trusted(v)!="No signal": ar.append([k, trusted(v)]) return ar def replicas_comb_trust_wrapper(replicas_dict, path_out, name): print('Now working with: ' + str(name)) cur_GCSs_dict=combine_replicates(replicas_dict, path_out, name) cur_GCSs_trusted=trusted_GCSs_calling(cur_GCSs_dict) print('Number of trusted TCSs for ' + str(name) + ' : ' + str(len(cur_GCSs_trusted))) return cur_GCSs_trusted TCSs_trusted=replicas_comb_trust_wrapper(path_to_replicas, Replicas_path_out, All_conditions_name) #Antibs_GCSs_sets=[Cfx, RifCfx, Micro, Oxo] ####### #GCSs shared between pairs of antibiotics - Cfx, Micro and Oxo and between Cfx and RifCfx. ####### def pairs_construction(ar1, ar2): double=[] for i in range(len(ar1)): for j in range(len(ar2)): if ar1[i][0]==ar2[j][0]: double.append([ar1[i][0], ar1[i][1], ar2[j][1]]) #GCSs coordinate, N3E_1, N3E_2 return double #Cfx_RifCfx_shared_GCSs=pairs_construction(Cfx, RifCfx) #print('Number of GCSs shared between Cfx and RifCfx: ' + str(len(Cfx_RifCfx_shared_GCSs)) + '\n') # #Cfx_Micro_shared_GCSs=pairs_construction(Cfx, Micro) #Cfx_Oxo_shared_GCSs=pairs_construction(Cfx, Oxo) #Micro_Oxo_shared_GCSs=pairs_construction(Micro, Oxo) # #print('Number of GCSs shared between Cfx and Micro: ' + str(len(Cfx_Micro_shared_GCSs))) #print('Number of GCSs shared between Cfx and Oxo: ' + str(len(Cfx_Oxo_shared_GCSs))) #print('Number of GCSs shared between Micro and Oxo: ' + str(len(Micro_Oxo_shared_GCSs)) + '\n') # #Antibs_GCSs_sets_pair_shared=[Cfx_Micro_shared_GCSs, Cfx_Oxo_shared_GCSs, Micro_Oxo_shared_GCSs] ####### #GCSs shared between 3 antibiotics ####### def triple_construction(ar12, ar3): triple=[] for i in range(len(ar12)): for j in range(len(ar3)): if ar12[i][0]==ar3[j][0]: triple.append([ar12[i][0], ar12[i][1], ar12[i][2], ar3[j][1]]) #GCSs coordinate, N3E_1, N3E_2, N3E_3 return triple #Cfx_Micro_Oxo_shared_GCSs=triple_construction(Cfx_Micro_shared_GCSs, Oxo) #print('Number of GCSs shared between Cfx, Micro and Oxo: ' + str(len(Cfx_Micro_Oxo_shared_GCSs)) +'\n') ####### #Parses replicas, overlaps lists of GCSs, output data for Venn diagram construction. ####### def replicates_parsing_to_list_and_overlapping(replicas_dict, name): #Parsing GCSs_dict={} for k, v in replicas_dict.items(): #Iterate replicas. GCSs_dict[k]=[] for c, h in read_GCSs_file(v).items(): #Iterate GCSs. GCSs_dict[k].append([c, h]) #Overlapping one_two=pairs_construction(GCSs_dict[name+str(1)], GCSs_dict[name+str(2)]) one_three=pairs_construction(GCSs_dict[name+str(1)], GCSs_dict[name+str(3)]) two_three=pairs_construction(GCSs_dict[name+str(2)], GCSs_dict[name+str(3)]) one_two_three=triple_construction(one_two, GCSs_dict[name+str(3)]) #Venn input description (for 3 sets): one, two, three, one_two, one_three, two_three, one_two_three venn_input=[len(GCSs_dict[name+str(1)])-len(one_two)-len(one_three)+len(one_two_three), len(GCSs_dict[name+str(2)])-len(one_two)-len(two_three)+len(one_two_three), len(one_two)-len(one_two_three), len(GCSs_dict[name+str(3)])-len(one_three)-len(two_three)+len(one_two_three), len(one_three)-len(one_two_three), len(two_three)-len(one_two_three), len(one_two_three)] return venn_input ####### #Venn diagram represents GCSs sets overlapping. #description2: one, two, one_two #description3: one, two, one_two, three, one_three, two_three, one_two_three ####### #venn_data_2=[len(Cfx)-len(Cfx_RifCfx_shared_GCSs), len(RifCfx)-len(Cfx_RifCfx_shared_GCSs), len(Cfx_RifCfx_shared_GCSs)] #venn_data_3=[len(Cfx)-len(Cfx_Micro_shared_GCSs)-len(Cfx_Oxo_shared_GCSs)+len(Cfx_Micro_Oxo_shared_GCSs), # len(Micro)-len(Cfx_Micro_shared_GCSs)-len(Micro_Oxo_shared_GCSs)+len(Cfx_Micro_Oxo_shared_GCSs), # len(Cfx_Micro_shared_GCSs)-len(Cfx_Micro_Oxo_shared_GCSs), # len(Oxo)-len(Cfx_Oxo_shared_GCSs)-len(Micro_Oxo_shared_GCSs)+len(Cfx_Micro_Oxo_shared_GCSs), # len(Cfx_Oxo_shared_GCSs)-len(Cfx_Micro_Oxo_shared_GCSs), # len(Micro_Oxo_shared_GCSs)-len(Cfx_Micro_Oxo_shared_GCSs), # len(Cfx_Micro_Oxo_shared_GCSs)] #venn2(subsets = (venn_data_2), set_labels = ("Ciprofloxacin", "Rifampicin Ciprofloxacin")) #plt.savefig(plot_outpath+'Cfx_RifCfx_venn.png', dpi=320) #plt.close() # #print("Cfx Micro Oxo subsets volumes: " + str(venn_data_3)) #venn3(subsets = (venn_data_3), set_labels = ('Ciprofloxacin', 'Microcin B17', 'Oxolinic acid')) #plt.savefig(plot_outpath+'Cfx_Micro_Oxo_venn.png', dpi=320) #plt.close() # #venn3(subsets = (replicates_parsing_to_list_and_overlapping(path_to_cfx_replicas, 'Cfx_')), set_labels = ('Cfx_1', 'Cfx_2', 'Cfx_3')) #plt.savefig(plot_outpath+'Cfx_replicas_venn.png', dpi=320) #plt.close() # #venn3(subsets = (replicates_parsing_to_list_and_overlapping(path_to_rifcfx_replicas, 'RifCfx_')), set_labels = ('RifCfx_1', 'RifCfx_2', 'RifCfx_3')) #plt.savefig(plot_outpath+'RifCfx_replicas_venn.png', dpi=320) #plt.close() # #venn3(subsets = (replicates_parsing_to_list_and_overlapping(path_to_microcin_replicas, 'Micro_')), set_labels = ('Micro_1', 'Micro_2', 'Micro_3')) #plt.savefig(plot_outpath+'Micro_replicas_venn.png', dpi=320) #plt.close() # #venn3(subsets = (replicates_parsing_to_list_and_overlapping(path_to_oxo_replicas, 'Oxo_')), set_labels = ('Oxo_1', 'Oxo_2', 'Oxo_3')) #plt.savefig(plot_outpath+'Oxo_replicas_venn.png', dpi=320) #plt.close() ####### #GCSs sets average N3E estimation. ####### def average_height(ar): av_he=0 for i in range(len(ar)): peak_he=np.mean(ar[i][1:]) av_he=av_he+peak_he return av_he/len(ar) #print('Cfx average GCSs N3E: ' + str(average_height(Cfx))) #print('Micro average GCSs N3E: ' + str(average_height(Micro))) #print('Oxo average GCSs N3E: ' + str(average_height(Oxo))) #print('Cfx and Micro average GCSs N3E: ' + str(average_height(Cfx_Micro_shared_GCSs))) #print('Cfx and Oxo average GCSs N3E: ' + str(average_height(Cfx_Oxo_shared_GCSs))) #print('Micro and Oxo average GCSs N3E: ' + str(average_height(Micro_Oxo_shared_GCSs))) #print('Cfx, Micro and Oxo average GCSs N3E: ' + str(average_height(Cfx_Micro_Oxo_shared_GCSs)) + '\n') ####### #Write down files with GCSs lists - trusted or shared. ####### #All_GCSs_sets={Cfx_path: Antibs_GCSs_sets[0], # RifCfx_path: Antibs_GCSs_sets[1], # Micro_path: Antibs_GCSs_sets[2], # Oxo_path: Antibs_GCSs_sets[3], # Cfx_Micro_path: Antibs_GCSs_sets_pair_shared[0], # Cfx_Oxo_path: Antibs_GCSs_sets_pair_shared[1], # Micro_Oxo_path: Antibs_GCSs_sets_pair_shared[2], # Cfx_Micro_Oxo_path: Cfx_Micro_Oxo_shared_GCSs} def write_GCSs_file(dictionary): for k, v in dictionary.items(): #Iterates lists to be written v.sort(key=lambda tup: tup[0]) #Sorting lists by the zero elements of the sublists they consist of fileout=open(k, 'w') fileout.write('GCSs_coordinate\tN3E\n') for i in range(len(v)): fileout.write(str(v[i][0]) + '\t' + str(np.mean(v[i][1:])) + '\n') fileout.close() return #write_GCSs_file(All_GCSs_sets) def write_Cfx_RifCfx_shared_GCSs(ar, path): fileout=open(path, 'w') fileout.write('GCSs_coordinate\tCfx_N3E\tRifCfx_N3E\n') ar.sort(key=lambda tup: tup[0]) for i in range(len(ar)): fileout.write(str(ar[i][0]) + '\t' + str(ar[i][1]) + '\t' + str(ar[i][2]) + '\n') fileout.close() return #write_Cfx_RifCfx_shared_GCSs(Cfx_RifCfx_shared_GCSs, Cfx_RifCfx_shared_GCSs_path) # #print('Script ended its work succesfully!')
40.671598
229
0.690623
c0ed8fe87c9d603b23082c844620fd772181f7f0
5,061
py
Python
src/tests/kremlin/book/conf.py
TakuKitamura/verimqtt-c
30109f66df126e5860f2329ce2ad3cfb7f12d9da
[ "MIT" ]
340
2016-07-21T23:24:48.000Z
2022-02-16T22:23:01.000Z
src/tests/kremlin/book/conf.py
TakuKitamura/verimqtt-c
30109f66df126e5860f2329ce2ad3cfb7f12d9da
[ "MIT" ]
208
2016-09-06T20:07:49.000Z
2022-03-03T20:22:22.000Z
src/tests/kremlin/book/conf.py
TakuKitamura/verimqtt-c
30109f66df126e5860f2329ce2ad3cfb7f12d9da
[ "MIT" ]
53
2016-08-18T14:08:36.000Z
2022-02-25T21:55:50.000Z
# -*- coding: utf-8 -*- # # Configuration file for the Sphinx documentation builder. # # This file does only contain a selection of the most common options. For a # full list see the documentation: # http://www.sphinx-doc.org/en/stable/config # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys #sys.path.insert(0, os.path.abspath('../fstar-mode.el/etc/')) # -- Project information ----------------------------------------------------- project = u'The KreMLin user manual' copyright = u'2018, Jonathan Protzenko' author = u'Jonathan Protzenko' # The short X.Y version version = u'' # The full version, including alpha/beta/rc tags release = u'' # -- General configuration --------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.mathjax', # 'fslit.sphinx4fstar', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path . exclude_patterns = [u'_build', 'Thumbs.db', '.DS_Store'] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'sphinx_rtd_theme' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # The default sidebars (for documents that don't match any pattern) are # defined by theme itself. Builtin themes are using these templates by # default: ``['localtoc.html', 'relations.html', 'sourcelink.html', # 'searchbox.html']``. # # html_sidebars = {} # -- Options for HTMLHelp output --------------------------------------------- # Output file base name for HTML help builder. htmlhelp_basename = 'TheKreMLinusermanualdoc' # -- Options for LaTeX output ------------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'TheKreMLinusermanual.tex', u'The KreMLin user manual Documentation', u'Jonathan Protzenko', 'manual'), ] # -- Options for manual page output ------------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'thekremlinusermanual', u'The KreMLin user manual Documentation', [author], 1) ] # -- Options for Texinfo output ---------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'TheKreMLinusermanual', u'The KreMLin user manual Documentation', author, 'TheKreMLinusermanual', 'One line description of project.', 'Miscellaneous'), ] # -- Extension configuration ------------------------------------------------- fslit_include_fixme = True
31.04908
86
0.657578
f557cbeae5f90e13811b4c4df356e8bbaa299ab5
1,896
py
Python
SCIENTIFIC EXPEDITION/TheHiddenWord.py
kei-academic/CheckiO
9f4c1fa44704f302ce95f5d9e20c4fa0beda06c3
[ "MIT" ]
1
2021-12-26T21:52:02.000Z
2021-12-26T21:52:02.000Z
SCIENTIFIC EXPEDITION/TheHiddenWord.py
kei-academic/CheckiO
9f4c1fa44704f302ce95f5d9e20c4fa0beda06c3
[ "MIT" ]
null
null
null
SCIENTIFIC EXPEDITION/TheHiddenWord.py
kei-academic/CheckiO
9f4c1fa44704f302ce95f5d9e20c4fa0beda06c3
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import itertools as it def checkio(text, word): horizontal = text.lower().replace(' ', '').split('\n') for i, row in enumerate(horizontal, 1): index = row.find(word) if index >= 0: return [i, index+1, i, index+len(word)] vertical = [''.join(line) for line in it.zip_longest(*horizontal, fillvalue=' ')] for i, col in enumerate(vertical, 1): index = col.find(word) if index >= 0: return [index+1, i, index+len(word), i] #another pattern def find_word_in_multiline(lines): for row, line in enumerate(lines): col = line.find(word) if col != -1: return True, row + 1, col + 1 else: return False, 0, 0 cut = [line.lower().replace(' ', '') for line in text.splitlines()] found, y, x = find_word_in_multiline(cut) if found: return [y, x, y, x + len(word) - 1] else: transposed_cut = [''.join(chars) for chars in it.zip_longest(*cut, fillvalue=' ')] found, x, y = find_word_in_multiline(transposed_cut) return [y, x, y + len(word) - 1, x] #These "asserts" using only for self-checking and not necessary for auto-testing if __name__ == '__main__': assert checkio("""DREAMING of apples on a wall, And dreaming often, dear, I dreamed that, if I counted all, -How many would appear?""", "ten") == [2, 14, 2, 16] assert checkio("""He took his vorpal sword in hand: Long time the manxome foe he sought-- So rested he by the Tumtum tree, And stood awhile in thought. And as in uffish thought he stood, The Jabberwock, with eyes of flame, Came whiffling through the tulgey wood, And burbled as it came!""", "noir") == [4, 16, 7, 16] print("Coding complete? Click 'Check' to earn cool rewards!")
37.92
90
0.584916
f3c4136186a40555bb52f8e9a0c412298bb2ba06
874
py
Python
libraries/botbuilder-ai/botbuilder/ai/qna/models/query_results.py
Fl4v/botbuilder-python
4003d713beb8fb986a01cfd11632eabc65858618
[ "MIT" ]
388
2019-05-07T15:53:21.000Z
2022-03-28T20:29:46.000Z
libraries/botbuilder-ai/botbuilder/ai/qna/models/query_results.py
Fl4v/botbuilder-python
4003d713beb8fb986a01cfd11632eabc65858618
[ "MIT" ]
1,286
2019-05-07T23:38:19.000Z
2022-03-31T10:44:16.000Z
libraries/botbuilder-ai/botbuilder/ai/qna/models/query_results.py
Fl4v/botbuilder-python
4003d713beb8fb986a01cfd11632eabc65858618
[ "MIT" ]
168
2019-05-14T20:23:25.000Z
2022-03-16T06:49:14.000Z
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. from typing import List from msrest.serialization import Model from .query_result import QueryResult class QueryResults(Model): """ Contains answers for a user query. """ _attribute_map = { "answers": {"key": "answers", "type": "[QueryResult]"}, "active_learning_enabled": {"key": "activeLearningEnabled", "type": "bool"}, } def __init__( self, answers: List[QueryResult], active_learning_enabled: bool = None, **kwargs ): """ Parameters: ----------- answers: The answers for a user query. active_learning_enabled: The active learning enable flag. """ super().__init__(**kwargs) self.answers = answers self.active_learning_enabled = active_learning_enabled
28.193548
88
0.643021
49c43a54b67120af551a701e0f40b42e7cf48bd1
8,694
py
Python
mysite/timesheets/views.py
xanderyzwich/Timesheets
15685ac7b786d3e66bd24e8a3a252f193ee8f49b
[ "MIT" ]
null
null
null
mysite/timesheets/views.py
xanderyzwich/Timesheets
15685ac7b786d3e66bd24e8a3a252f193ee8f49b
[ "MIT" ]
1
2019-06-11T21:23:49.000Z
2019-06-11T21:23:49.000Z
mysite/timesheets/views.py
xanderyzwich/Timesheets
15685ac7b786d3e66bd24e8a3a252f193ee8f49b
[ "MIT" ]
null
null
null
"""Django views for the Timesheet application""" import calendar import datetime from django.db.models import Sum from django.http import HttpResponse from django.shortcuts import get_object_or_404, render from django.template import loader from .models import Task, Employee, App, Defect, Adhoc, Timesheet, TimesheetForm # Views not tied to a model def index(request): """Timesheet entry view utilizes Form defined in models.py""" if request.method == 'POST': form = TimesheetForm(request.POST) if form.is_valid(): form.save() else: return render(request, 'timesheets/index.html', {'form': form}) return render(request, 'timesheets/index.html', {'form': TimesheetForm()}) def report(request, year=None, month=None, day=None): """Used to generate report of all labor in a given year, month or day""" limited, time_string = time_limit(year, month, day) context = { 'object': 'Timesheet', 'report': time_string, 'data': summary(limited), 'timesheet_list': limited, 'total': limited.aggregate(Sum('hours')) } return render(request, 'timesheets/timesheet.html', context) # Views tied to models # Listed alphabetically # Adhoc Model Views def adhocs(request): """List of all adhoc task entries""" adhoc_list = Adhoc.objects.all() data_list = list() for item in adhoc_list: hours = Timesheet.objects.filter(adhoc__id=item.id).aggregate(sum=Sum('hours')).get('sum') if hours is None: hours = 0 if int(item.hours_projected) > 0: item.description += ' - ' + str(item.hours_projected) + ' hours' data_list.append(ListItem(item.id, item.description, hours)) template = loader.get_template('timesheets/list.html') context = { 'object_list': data_list, 'title': 'Adhoc Tasks', 'object_model': 'adhoc' } return HttpResponse(template.render(context, request)) def adhoc(request, adhoc_id, year=None, month=None, day=None): """Summary and data for a specific adhoc entry""" adhoc = get_object_or_404(Adhoc, pk=adhoc_id) limited, time_string = time_limit(year, month, day) limited = limited.filter(adhoc__id=adhoc_id) context = { 'object': adhoc, 'report': time_string, 'data': summary(limited), 'timesheet_list': limited, 'total': limited.aggregate(Sum('hours')) } return render(request, 'timesheets/timesheet.html', context) # App Model Views def apps(request): """List of all app entries""" app_list = App.objects.all() data_list = list() for item in app_list: hours = Timesheet.objects.filter(app__id=item.id).aggregate(sum=Sum('hours')).get('sum') if hours is None: hours = str(0) data_list.append(ListItem(item.id, str(item.name), hours)) template = loader.get_template('timesheets/list.html') context = { 'object_list': data_list, 'title': 'Supported Apps', 'object_model': 'app', } return HttpResponse(template.render(context, request)) def app(request, app_id, year=None, month=None, day=None): """Summary and data for a specific app""" app = get_object_or_404(App,pk=app_id) limited, time_string = time_limit(year, month, day) limited = limited.filter(app__id=app_id) context = { 'object': app, 'report': time_string, 'data': summary(limited), 'timesheet_list': limited, 'total': limited.aggregate(Sum('hours')) } return render(request, 'timesheets/timesheet.html', context) # Defect Model Views def defects(request): """List of all defect entries""" defect_list = Defect.objects.all() data_list = list() for item in defect_list: hours = Timesheet.objects.filter(defect__id=item.id).aggregate(sum=Sum('hours')).get('sum') if hours is None: hours = str(0) data_list.append(ListItem(item.id, str(item.app) + ': ' + str(item.description), hours)) template = loader.get_template('timesheets/list.html') context = { 'object_list': data_list, 'title': 'Supported Defects', 'object_model': 'defect', } return HttpResponse(template.render(context, request)) def defect(request, defect_id, year=None, month=None, day=None): """Summary and data for a specific defect""" defect = get_object_or_404(Defect, pk=defect_id) limited, time_string = time_limit(year, month, day) limited = limited.filter(defect__id=defect_id) context = { 'object': defect, 'report': time_string, 'data': summary(limited), 'timesheet_list': limited, 'total': limited.aggregate(Sum('hours')) } return render(request, 'timesheets/timesheet.html', context) # Employee Model Views def employees(request): """List of all support employees""" employee_list = Employee.objects.all() data_list = list() for item in employee_list: hours = Timesheet.objects.filter(emp__id=item.id).aggregate(sum=Sum('hours')).get('sum') if hours is None: hours = str(0) data_list.append(ListItem(item.id, item.name(), hours)) template = loader.get_template('timesheets/list.html') context = { 'object_list': data_list, 'title': 'Support Employees', 'object_model': 'employee', } return HttpResponse(template.render(context, request)) def employee(request, employee_id, year=None, month=None, day=None): """Summary and data for a specific employee""" employee = get_object_or_404(Employee, pk=employee_id) limited, time_string = time_limit(year, month, day) limited = limited.filter(emp__id=employee_id) context = { 'object': employee, 'report': time_string, 'data': summary(limited), 'timesheet_list': limited, 'total': limited.aggregate(Sum('hours')) } return render(request, 'timesheets/timesheet.html', context) # Task Model Views def tasks(request): """List of all tasks (includes adhoc and defect collective data)""" task_list = Task.objects.all() data_list = list() for item in task_list: hours = Timesheet.objects.filter(task__type=item.type).aggregate(sum=Sum('hours')).get('sum') if hours is None: hours = str(0) data_list.append(ListItem(item.id, item.type, hours)) template = loader.get_template('timesheets/list.html') context = { 'object_list': data_list, 'title': 'Support Tasks', 'object_model': 'task', } return HttpResponse(template.render(context, request)) def task(request, task_id, year=None, month=None, day=None): """Summary and data for a specific task (or the adhoc/defect collection)""" task = get_object_or_404(Task, pk=task_id) limited, time_string = time_limit(year, month, day) limited = limited.filter(task__id=task_id) context = { 'object': task, 'report': time_string, 'data': summary(limited), 'timesheet_list': limited, 'total': limited.aggregate(Sum('hours')) } return render(request, 'timesheets/timesheet.html', context) # Summarize the result_set by employee def summary(result_set): """Generate summary by employee from full data list""" return result_set.values('emp__id', 'emp__first_name', 'emp__last_name').order_by().annotate(sum=Sum('hours')) # filter the result_set by year, month, and day as requested def time_limit(year, month, day): """Return timesheet entries for a given time period, also a time_string for display use""" today = datetime.date.today() time_string = ' report for ' if day is None: if month is None: if year is None: timesheet_list = Timesheet.objects.filter(date__month=today.month, date__year=today.year) time_string += "this month" else: timesheet_list = Timesheet.objects.filter(date__year=year) time_string += str(year) else: timesheet_list = Timesheet.objects.filter(date__month=month, date__year=year) time_string += calendar.month_name[month] + ' ' + str(year) else: timesheet_list = Timesheet.objects.filter(date__month=month, date__year=year, date__day=day) time_string += str(day) + ' ' + calendar.month_name[month] + ' ' + str(year) return timesheet_list, time_string class ListItem: def __init__(self, id, description, total): self.id = id self.description = description self.total = total
33.438462
114
0.648263
6b8afe151f0f02460b0b1ff56cfca93582383b11
8,120
py
Python
python/jittor/pool.py
cjld/jittor
2015d06c73bfc8aa4e1d06150bf30b463c9fce94
[ "Apache-2.0" ]
null
null
null
python/jittor/pool.py
cjld/jittor
2015d06c73bfc8aa4e1d06150bf30b463c9fce94
[ "Apache-2.0" ]
null
null
null
python/jittor/pool.py
cjld/jittor
2015d06c73bfc8aa4e1d06150bf30b463c9fce94
[ "Apache-2.0" ]
null
null
null
# *************************************************************** # Copyright (c) 2020 Jittor. Authors: # Guowei Yang <471184555@qq.com> # Wenyang Zhou <576825820@qq.com> # Meng-Hao Guo <guomenghao1997@gmail.com> # Dun Liang <randonlang@gmail.com>. # # All Rights Reserved. # This file is subject to the terms and conditions defined in # file 'LICENSE.txt', which is part of this source code package. # *************************************************************** import jittor as jt from jittor import init, Module import numpy as np import math class Pool(Module): def __init__(self, kernel_size, stride=None, padding=0, dilation=None, return_indices=None, ceil_mode=False, op="maximum"): assert dilation == None assert return_indices == None self.kernel_size = kernel_size self.op = op self.stride = stride if stride else kernel_size self.padding = padding self.ceil_mode = ceil_mode def execute(self, x): N,C,H,W = x.shape if (self.ceil_mode == False): h = (H+self.padding*2-self.kernel_size)//self.stride+1 w = (W+self.padding*2-self.kernel_size)//self.stride+1 else: h = (H+self.padding*2-self.kernel_size + self.stride - 1)//self.stride+1 w = (W+self.padding*2-self.kernel_size + self.stride - 1)//self.stride+1 if (self.op == 'maximum' or self.op == 'minimum'): if (self.op == 'maximum'): op = 'max' else: op = 'min' out = jt.code([N,C,h,w], x.dtype, [x], cuda_src=f''' __global__ static void kernel1(@ARGS_DEF) {{ @PRECALC int p3 = threadIdx.x; int s3 = blockDim.x; int p2 = threadIdx.y + blockIdx.x * blockDim.y; int s2 = blockDim.y * gridDim.x; int i1 = blockIdx.y; int i0 = blockIdx.z; for (int i3 = p3; i3 < outshape3; i3 += s3) for (int i2 = p2; i2 < outshape2; i2 += s2) {{ int k3 = i3*{self.stride}-{self.padding}; int k2 = i2*{self.stride}-{self.padding}; int k3_ = min(k3 + {self.kernel_size}, in0shape3); int k2_ = min(k2 + {self.kernel_size}, in0shape2); k3 = max(0, k3); k2 = max(0, k2); @out(i0, i1, i2, i3) = @in0(i0, i1, k2, k3); for (int p = k2; p < k2_; ++p) for (int q = k3; q < k3_; ++q) @out(i0, i1, i2, i3) = {op}(@out(i0, i1, i2, i3), @in0(i0, i1, p, q)); }} }} int tx = min(1024, outshape3); int ty = min(1024 / tx, outshape2); int bx = (outshape2 - 1) / ty + 1; int by = outshape1; int bz = outshape0; dim3 s1(bx, by, bz); dim3 s2(tx, ty); kernel1<<<s1, s2>>>(@ARGS); ''', cuda_grad_src=[f''' __global__ static void kernel3(@ARGS_DEF) {{ @PRECALC int p3 = threadIdx.x; int s3 = blockDim.x; int p2 = threadIdx.y + blockIdx.x * blockDim.y; int s2 = blockDim.y * gridDim.x; int i1 = blockIdx.y; int i0 = blockIdx.z; for (int i3 = p3; i3 < poutshape3; i3 += s3) for (int i2 = p2; i2 < poutshape2; i2 += s2) {{ int k3 = i3*{self.stride}-{self.padding}; int k2 = i2*{self.stride}-{self.padding}; int k3_ = min(k3 + {self.kernel_size}, in0shape3); int k2_ = min(k2 + {self.kernel_size}, in0shape2); k3 = max(0, k3); k2 = max(0, k2); int bo=1; for (int p = k2; p < k2_ && bo; ++p) for (int q = k3; q < k3_ && bo; ++q) {{ if (@pout(i0,i1,i2,i3) == @in0(i0,i1,p,q)) {{ atomicAdd(&@out(i0,i1,p,q), @dout(i0,i1,i2,i3)); bo=0; }} }} }} }} cudaMemsetAsync(outp, 0, out->size); int tx = min(1024, poutshape3); int ty = min(1024 / tx, poutshape2); int bx = (poutshape2 - 1) / ty + 1; int by = poutshape1; int bz = poutshape0; dim3 s1_(bx, by, bz); dim3 s2_(tx, ty); kernel3<<<s1_, s2_>>>(@ARGS); '''], cpu_src=f''' for (int i0=0; i0<outshape0; i0++) for (int i1=0; i1<outshape1; i1++) for (int i2=0; i2<outshape2; i2++) for (int i3=0; i3<outshape3; i3++) {{ int k2 = i2*{self.stride}-{self.padding}; int k3 = i3*{self.stride}-{self.padding}; int k2_ = std::min(k2 + {self.kernel_size}, in0shape2); int k3_ = std::min(k3 + {self.kernel_size}, in0shape3); k2 = std::max(0, k2); k3 = std::max(0, k3); @out(i0, i1, i2, i3) = @in0(i0, i1, k2, k3); for (int p = k2; p < k2_; ++p) for (int q = k3; q < k3_; ++q) @out(i0, i1, i2, i3) = std::{op}(@out(i0, i1, i2, i3), @in0(i0, i1, p, q)); }} ''', cpu_grad_src = [f''' for (int i=0; i<outshape0; i++) for (int j=0; j<outshape1; j++) for (int k=0; k<outshape2; k++) for (int l=0; l<outshape3; l++) @out(i,j,k,l) = 0; for (int i0=0; i0<poutshape0; i0++) for (int i1=0; i1<poutshape1; i1++) for (int i2=0; i2<poutshape2; i2++) for (int i3=0; i3<poutshape3; i3++) {{ int k3 = i3*{self.stride}-{self.padding}; int k2 = i2*{self.stride}-{self.padding}; int k3_ = std::min(k3 + {self.kernel_size}, in0shape3); int k2_ = std::min(k2 + {self.kernel_size}, in0shape2); k3 = std::max(0, k3); k2 = std::max(0, k2); int bo=1; for (int p = k2; p < k2_ && bo; ++p) for (int q = k3; q < k3_ && bo; ++q) {{ if (@pout(i0,i1,i2,i3) == @in0(i0,i1,p,q)) {{ @out(i0,i1,p,q) += @dout(i0,i1,i2,i3); bo=0; }} }} }} ''']) return out else: xx = x.reindex([N,C,h,w,self.kernel_size,self.kernel_size], [ "i0", # Nid "i1", # Cid f"i2*{self.stride}-{self.padding}+i4", # Hid f"i3*{self.stride}-{self.padding}+i5", # Wid ]) return xx.reduce(self.op, [4,5]) def pool(x, size, op, padding, stride = 1): return Pool(size, stride, padding, op=op)(x)
49.212121
127
0.375246
db1687b254fa5fa0c598f9a066a51763170649b9
1,688
py
Python
106/save1_passed.py
rayjustinhuang/BitesofPy
03b694c5259ff607621419d9677c5caff90a6057
[ "MIT" ]
null
null
null
106/save1_passed.py
rayjustinhuang/BitesofPy
03b694c5259ff607621419d9677c5caff90a6057
[ "MIT" ]
null
null
null
106/save1_passed.py
rayjustinhuang/BitesofPy
03b694c5259ff607621419d9677c5caff90a6057
[ "MIT" ]
null
null
null
text = """ The Zen of Python, by Tim Peters Beautiful is better than ugly. Explicit is better than implicit. Simple is better than complex. Complex is better than complicated. Flat is better than nested. Sparse is better than dense. Readability counts. Special cases aren't special enough to break the rules. Although practicality beats purity. Errors should never pass silently. Unless explicitly silenced. In the face of ambiguity, refuse the temptation to guess. There should be one-- and preferably only one --obvious way to do it. Although that way may not be obvious at first unless you're Dutch. Now is better than never. Although never is often better than *right* now. If the implementation is hard to explain, it's a bad idea. If the implementation is easy to explain, it may be a good idea. Namespaces are one honking great idea -- let's do more of those! """ vowels = 'aeiou' def strip_vowels(text: str) -> (str, int): """Replace all vowels in the input text string by a star character (*). Return a tuple of (replaced_text, number_of_vowels_found) So if this function is called like: strip_vowels('hello world') ... it would return: ('h*ll* w*rld', 3) The str/int types in the function defintion above are part of Python's new type hinting: https://docs.python.org/3/library/typing.html""" newtext = list(text) counter = 0 for i in range(len(newtext)): # print(newtext[i]) if newtext[i].lower() in vowels: newtext[i] = "*" counter +=1 finaltext = ''.join(str(l) for l in newtext) return (finaltext, counter) pass print(strip_vowels(text))
33.098039
69
0.694313
d0b4874cf0754f0ec01d7e169a9e35e1a525775c
4,976
py
Python
openapi-python-client/openapi_client/models/incident_statistics_result_dto.py
yanavasileva/camunda-bpm-examples
051f8f28c62845e68ce4059ab64264c5a0bdc009
[ "Apache-2.0" ]
null
null
null
openapi-python-client/openapi_client/models/incident_statistics_result_dto.py
yanavasileva/camunda-bpm-examples
051f8f28c62845e68ce4059ab64264c5a0bdc009
[ "Apache-2.0" ]
null
null
null
openapi-python-client/openapi_client/models/incident_statistics_result_dto.py
yanavasileva/camunda-bpm-examples
051f8f28c62845e68ce4059ab64264c5a0bdc009
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Camunda BPM REST API OpenApi Spec for Camunda BPM REST API. # noqa: E501 The version of the OpenAPI document: 7.13.0 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from openapi_client.configuration import Configuration class IncidentStatisticsResultDto(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'incident_type': 'str', 'incident_count': 'int' } attribute_map = { 'incident_type': 'incidentType', 'incident_count': 'incidentCount' } def __init__(self, incident_type=None, incident_count=None, local_vars_configuration=None): # noqa: E501 """IncidentStatisticsResultDto - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._incident_type = None self._incident_count = None self.discriminator = None if incident_type is not None: self.incident_type = incident_type if incident_count is not None: self.incident_count = incident_count @property def incident_type(self): """Gets the incident_type of this IncidentStatisticsResultDto. # noqa: E501 The type of the incident the number of incidents is aggregated for. See the [User Guide](https://docs.camunda.org/manual/7.13/user-guide/process-engine/incidents/#incident-types) for a list of incident types. # noqa: E501 :return: The incident_type of this IncidentStatisticsResultDto. # noqa: E501 :rtype: str """ return self._incident_type @incident_type.setter def incident_type(self, incident_type): """Sets the incident_type of this IncidentStatisticsResultDto. The type of the incident the number of incidents is aggregated for. See the [User Guide](https://docs.camunda.org/manual/7.13/user-guide/process-engine/incidents/#incident-types) for a list of incident types. # noqa: E501 :param incident_type: The incident_type of this IncidentStatisticsResultDto. # noqa: E501 :type: str """ self._incident_type = incident_type @property def incident_count(self): """Gets the incident_count of this IncidentStatisticsResultDto. # noqa: E501 The total number of incidents for the corresponding incident type. # noqa: E501 :return: The incident_count of this IncidentStatisticsResultDto. # noqa: E501 :rtype: int """ return self._incident_count @incident_count.setter def incident_count(self, incident_count): """Sets the incident_count of this IncidentStatisticsResultDto. The total number of incidents for the corresponding incident type. # noqa: E501 :param incident_count: The incident_count of this IncidentStatisticsResultDto. # noqa: E501 :type: int """ self._incident_count = incident_count def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, IncidentStatisticsResultDto): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, IncidentStatisticsResultDto): return True return self.to_dict() != other.to_dict()
32.953642
230
0.628215
fa4cd739670d5163f60f9a9c4f0b0dc64b511ff2
11,471
py
Python
Bengali.AI Handwritten Grapheme Classification/image_augmentation/HengCherKeng.py
nixingyang/Kaggle-Face-Verification
b5f9908f4c23dc78b3e6b647c7add8f2b0d84663
[ "MIT" ]
null
null
null
Bengali.AI Handwritten Grapheme Classification/image_augmentation/HengCherKeng.py
nixingyang/Kaggle-Face-Verification
b5f9908f4c23dc78b3e6b647c7add8f2b0d84663
[ "MIT" ]
null
null
null
Bengali.AI Handwritten Grapheme Classification/image_augmentation/HengCherKeng.py
nixingyang/Kaggle-Face-Verification
b5f9908f4c23dc78b3e6b647c7add8f2b0d84663
[ "MIT" ]
5
2016-09-05T03:13:32.000Z
2018-11-29T07:55:23.000Z
import random import cv2 import numpy as np from albumentations import ImageOnlyTransform def do_identity(image): return image def do_random_projective(image, magnitude=0.5): mag = np.random.uniform(-1, 1) * 0.5 * magnitude height, width = image.shape[:2] x0, y0 = 0, 0 x1, y1 = 1, 0 x2, y2 = 1, 1 x3, y3 = 0, 1 mode = np.random.choice(['top', 'bottom', 'left', 'right']) if mode == 'top': x0 += mag x1 -= mag if mode == 'bottom': x3 += mag x2 -= mag if mode == 'left': y0 += mag y3 -= mag if mode == 'right': y1 += mag y2 -= mag s = np.array([ [0, 0], [1, 0], [1, 1], [0, 1], ]) * [[width, height]] d = np.array([ [x0, y0], [x1, y1], [x2, y2], [x3, y3], ]) * [[width, height]] transform = cv2.getPerspectiveTransform(s.astype(np.float32), d.astype(np.float32)) image = cv2.warpPerspective(image, transform, (width, height), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT, borderValue=0) return image def do_random_perspective(image, magnitude=0.5): mag = np.random.uniform(-1, 1, (4, 2)) * 0.25 * magnitude height, width = image.shape[:2] s = np.array([ [0, 0], [1, 0], [1, 1], [0, 1], ]) d = s + mag s *= [[width, height]] d *= [[width, height]] transform = cv2.getPerspectiveTransform(s.astype(np.float32), d.astype(np.float32)) image = cv2.warpPerspective(image, transform, (width, height), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT, borderValue=0) return image def do_random_scale(image, magnitude=0.5): s = 1 + np.random.uniform(-1, 1) * magnitude * 0.5 height, width = image.shape[:2] transform = np.array([ [s, 0, 0], [0, s, 0], ], np.float32) image = cv2.warpAffine(image, transform, (width, height), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT, borderValue=0) return image def do_random_shear_x(image, magnitude=0.5): sx = np.random.uniform(-1, 1) * magnitude height, width = image.shape[:2] transform = np.array([ [1, sx, 0], [0, 1, 0], ], np.float32) image = cv2.warpAffine(image, transform, (width, height), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT, borderValue=0) return image def do_random_shear_y(image, magnitude=0.5): sy = np.random.uniform(-1, 1) * magnitude height, width = image.shape[:2] transform = np.array([ [1, 0, 0], [sy, 1, 0], ], np.float32) image = cv2.warpAffine(image, transform, (width, height), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT, borderValue=0) return image def do_random_stretch_x(image, magnitude=0.5): sx = 1 + np.random.uniform(-1, 1) * magnitude height, width = image.shape[:2] transform = np.array([ [sx, 0, 0], [0, 1, 0], ], np.float32) image = cv2.warpAffine(image, transform, (width, height), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT, borderValue=0) return image def do_random_stretch_y(image, magnitude=0.5): sy = 1 + np.random.uniform(-1, 1) * magnitude height, width = image.shape[:2] transform = np.array([ [1, 0, 0], [0, sy, 0], ], np.float32) image = cv2.warpAffine(image, transform, (width, height), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT, borderValue=0) return image def do_random_rotate(image, magnitude=0.5): angle = 1 + np.random.uniform(-1, 1) * 30 * magnitude height, width = image.shape[:2] cx, cy = width // 2, height // 2 transform = cv2.getRotationMatrix2D((cx, cy), -angle, 1.0) image = cv2.warpAffine(image, transform, (width, height), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT, borderValue=0) return image #---- def do_random_grid_distortion(image, magnitude=0.5): num_step = 5 distort = magnitude # http://pythology.blogspot.sg/2014/03/interpolation-on-regular-distorted-grid.html distort_x = [ 1 + random.uniform(-distort, distort) for i in range(num_step + 1) ] distort_y = [ 1 + random.uniform(-distort, distort) for i in range(num_step + 1) ] #--- height, width = image.shape[:2] xx = np.zeros(width, np.float32) step_x = width // num_step prev = 0 for i, x in enumerate(range(0, width, step_x)): start = x end = x + step_x if end > width: end = width cur = width else: cur = prev + step_x * distort_x[i] xx[start:end] = np.linspace(prev, cur, end - start) prev = cur yy = np.zeros(height, np.float32) step_y = height // num_step prev = 0 for idx, y in enumerate(range(0, height, step_y)): start = y end = y + step_y if end > height: end = height cur = height else: cur = prev + step_y * distort_y[idx] yy[start:end] = np.linspace(prev, cur, end - start) prev = cur map_x, map_y = np.meshgrid(xx, yy) map_x = map_x.astype(np.float32) map_y = map_y.astype(np.float32) image = cv2.remap(image, map_x, map_y, interpolation=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT, borderValue=0) return image # *** intensity *** def do_random_contast(image, magnitude=0.5): alpha = 1 + random.uniform(-1, 1) * magnitude image = image.astype(np.float32) * alpha image = np.clip(image, 0, 255) return image def do_random_block_fade(image, magnitude=0.5): size = [0.1, magnitude] height, width = image.shape[:2] #get bounding box m = image.copy() cv2.rectangle(m, (0, 0), (height, width), 1, 5) m = image < 0.5 if m.sum() == 0: return image m = np.where(m) y0, y1, x0, x1 = np.min(m[0]), np.max(m[0]), np.min(m[1]), np.max(m[1]) w = x1 - x0 h = y1 - y0 if w * h < 10: return image ew, eh = np.random.uniform(*size, 2) ew = int(ew * w) eh = int(eh * h) ex = np.random.randint(0, w - ew) + x0 ey = np.random.randint(0, h - eh) + y0 image[ey:ey + eh, ex:ex + ew] *= np.random.uniform(0.1, 0.5) #1 # image = np.clip(image, 0, 255) return image # *** noise *** # https://www.kaggle.com/ren4yu/bengali-morphological-ops-as-image-augmentation def do_random_erode(image, magnitude=0.5): s = int(round(1 + np.random.uniform(0, 1) * magnitude * 6)) kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, tuple((s, s))) image = cv2.erode(image, kernel, iterations=1) return image def do_random_dilate(image, magnitude=0.5): s = int(round(1 + np.random.uniform(0, 1) * magnitude * 6)) kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, tuple((s, s))) image = cv2.dilate(image, kernel, iterations=1) return image def do_random_sprinkle(image, magnitude=0.5): size = 16 num_sprinkle = int(round(1 + np.random.randint(10) * magnitude)) image = image.copy() image_small = cv2.resize(image, dsize=None, fx=0.25, fy=0.25) m = np.where(image_small > 0.25) num = len(m[0]) if num == 0: return image s = size // 2 i = np.random.choice(num, num_sprinkle) for y, x in zip(m[0][i], m[1][i]): y = y * 4 + 2 x = x * 4 + 2 image[y - s:y + s, x - s:x + s] = 0 #0.5 #1 # return image #https://stackoverflow.com/questions/14435632/impulse-gaussian-and-salt-and-pepper-noise-with-opencv def do_random_noise(image, magnitude=0.5): height, width = image.shape[:2] noise = np.random.uniform(-1, 1, (height, width)) * magnitude * 0.7 image = image + noise image = np.clip(image, 0, 255) return image def do_random_line(image, magnitude=0.5): num_lines = int(round(1 + np.random.randint(8) * magnitude)) # --- height, width = image.shape[:2] image = image.copy() def line0(): return (0, 0), (width - 1, 0) def line1(): return (0, height - 1), (width - 1, height - 1) def line2(): return (0, 0), (0, height - 1) def line3(): return (width - 1, 0), (width - 1, height - 1) def line4(): x0, x1 = np.random.choice(width, 2) return (x0, 0), (x1, height - 1) def line5(): y0, y1 = np.random.choice(height, 2) return (0, y0), (width - 1, y1) for _ in range(num_lines): p = np.array([1 / 4, 1 / 4, 1 / 4, 1 / 4, 1, 1]) func = np.random.choice([line0, line1, line2, line3, line4, line5], p=p / p.sum()) (x0, y0), (x1, y1) = func() color = np.random.uniform(0, 1) thickness = np.random.randint(1, 5) line_type = np.random.choice([cv2.LINE_AA, cv2.LINE_4, cv2.LINE_8]) cv2.line(image, (x0, y0), (x1, y1), color, thickness, line_type) return image class HengCherKeng(ImageOnlyTransform): # pylint: disable=abstract-method def apply(self, img, **params): image = img.copy() for op in np.random.choice([ do_identity, lambda image: do_random_projective(image, 0.4), lambda image: do_random_perspective(image, 0.4), lambda image: do_random_scale(image, 0.4), lambda image: do_random_rotate(image, 0.4), lambda image: do_random_shear_x(image, 0.5), lambda image: do_random_shear_y(image, 0.4), lambda image: do_random_stretch_x(image, 0.5), lambda image: do_random_stretch_y(image, 0.5), lambda image: do_random_grid_distortion(image, 0.4) ], 1): image = op(image) for op in np.random.choice([ do_identity, lambda image: do_random_erode(image, 0.4), lambda image: do_random_dilate(image, 0.4), lambda image: do_random_sprinkle(image, 0.5), lambda image: do_random_line(image, 0.5), ], 1): image = op(image) for op in np.random.choice([ do_identity, lambda image: do_random_contast(image, 0.5), lambda image: do_random_block_fade(image, 0.5), ], 1): image = op(image) return image
28.6775
100
0.522884
714c71f2b1480ca24cc48adbb06f3c52d5ce7e90
4,327
py
Python
dateparser/data/date_translation_data/ee.py
Rodp63/dateparser
938a9573234679b603210bd47cc93eb258b1f1df
[ "BSD-3-Clause" ]
null
null
null
dateparser/data/date_translation_data/ee.py
Rodp63/dateparser
938a9573234679b603210bd47cc93eb258b1f1df
[ "BSD-3-Clause" ]
null
null
null
dateparser/data/date_translation_data/ee.py
Rodp63/dateparser
938a9573234679b603210bd47cc93eb258b1f1df
[ "BSD-3-Clause" ]
null
null
null
info = { "name": "ee", "date_order": "MDY", "january": [ "dzove", "dzv" ], "february": [ "dzd", "dzodze" ], "march": [ "ted", "tedoxe" ], "april": [ "afɔ", "afɔfĩe" ], "may": [ "dam", "dama" ], "june": [ "mas", "masa" ], "july": [ "sia", "siamlɔm" ], "august": [ "dea", "deasiamime" ], "september": [ "any", "anyɔnyɔ" ], "october": [ "kel", "kele" ], "november": [ "ade", "adeɛmekpɔxe" ], "december": [ "dzm", "dzome" ], "monday": [ "dzo", "dzoɖa" ], "tuesday": [ "bla", "blaɖa" ], "wednesday": [ "kuɖ", "kuɖa" ], "thursday": [ "yaw", "yawoɖa" ], "friday": [ "fiɖ", "fiɖa" ], "saturday": [ "mem", "memleɖa" ], "sunday": [ "kɔs", "kɔsiɖa" ], "am": [ "ŋdi" ], "pm": [ "ɣetrɔ" ], "year": [ "ƒe" ], "month": [ "ɣleti" ], "week": [ "kɔsiɖa ɖeka" ], "day": [ "ŋkeke" ], "hour": [ "gaƒoƒo" ], "minute": [ "aɖabaƒoƒo" ], "second": [ "sekend" ], "relative-type": { "0 day ago": [ "egbe" ], "0 hour ago": [ "this hour" ], "0 minute ago": [ "this minute" ], "0 month ago": [ "ɣleti sia" ], "0 second ago": [ "fifi" ], "0 week ago": [ "kɔsiɖa sia" ], "0 year ago": [ "ƒe sia" ], "1 day ago": [ "etsɔ si va yi" ], "1 month ago": [ "ɣleti si va yi" ], "1 week ago": [ "kɔsiɖa si va yi" ], "1 year ago": [ "ƒe si va yi" ], "in 1 day": [ "etsɔ si gbɔna" ], "in 1 month": [ "ɣleti si gbɔ na" ], "in 1 week": [ "kɔsiɖa si gbɔ na" ], "in 1 year": [ "ƒe si gbɔ na" ] }, "relative-type-regex": { "\\1 day ago": [ "ŋkeke (\\d+) si va yi", "ŋkeke (\\d+) si wo va yi" ], "\\1 hour ago": [ "gaƒoƒo (\\d+) si va yi", "gaƒoƒo (\\d+) si wo va yi" ], "\\1 minute ago": [ "aɖabaƒoƒo (\\d+) si va yi", "aɖabaƒoƒo (\\d+) si wo va yi" ], "\\1 month ago": [ "ɣleti (\\d+) si va yi", "ɣleti (\\d+) si wo va yi" ], "\\1 second ago": [ "sekend (\\d+) si va yi", "sekend (\\d+) si wo va yi" ], "\\1 week ago": [ "kɔsiɖa (\\d+) si va yi", "kɔsiɖa (\\d+) si wo va yi" ], "\\1 year ago": [ "le ƒe (\\d+) si va yi me", "ƒe (\\d+) si va yi", "ƒe (\\d+) si va yi me", "ƒe (\\d+) si wo va yi" ], "in \\1 day": [ "le ŋkeke (\\d+) me", "le ŋkeke (\\d+) wo me" ], "in \\1 hour": [ "le gaƒoƒo (\\d+) me", "le gaƒoƒo (\\d+) wo me" ], "in \\1 minute": [ "le aɖabaƒoƒo (\\d+) me", "le aɖabaƒoƒo (\\d+) wo me" ], "in \\1 month": [ "le ɣleti (\\d+) me", "le ɣleti (\\d+) wo me" ], "in \\1 second": [ "le sekend (\\d+) me", "le sekend (\\d+) wo me" ], "in \\1 week": [ "le kɔsiɖa (\\d+) me", "le kɔsiɖa (\\d+) wo me" ], "in \\1 year": [ "le ƒe (\\d+) me", "le ƒe (\\d+) si gbɔna me" ] }, "locale_specific": { "ee-TG": { "name": "ee-TG" } }, "skip": [ " ", ".", ",", ";", "-", "/", "'", "|", "@", "[", "]", "," ] }
18.491453
42
0.279871
1fcf0c05e74151f9105c5622e46dc1fe367ea395
191
py
Python
build/lib/biosamples_beta/biosample.py
Kerruba/biosamples_py_api
eac77ace86582d87f5be6273fbfd3b464cdd94e4
[ "MIT" ]
null
null
null
build/lib/biosamples_beta/biosample.py
Kerruba/biosamples_py_api
eac77ace86582d87f5be6273fbfd3b464cdd94e4
[ "MIT" ]
null
null
null
build/lib/biosamples_beta/biosample.py
Kerruba/biosamples_py_api
eac77ace86582d87f5be6273fbfd3b464cdd94e4
[ "MIT" ]
null
null
null
from .biosamples_api import * class BioSample: type = "sample" def __init__(self, doc): self._doc = doc self.relations = [] def get(self, prop_name): return self._doc[prop_name]
14.692308
29
0.691099
dffbd8e299ff2d37f3b68614b49a434a1fd65069
2,322
py
Python
MNIST_framework/main.py
vanessadamario/data_efficiency
fc702d2241d737591163697332e3de1d0a0ed085
[ "MIT" ]
null
null
null
MNIST_framework/main.py
vanessadamario/data_efficiency
fc702d2241d737591163697332e3de1d0a0ed085
[ "MIT" ]
null
null
null
MNIST_framework/main.py
vanessadamario/data_efficiency
fc702d2241d737591163697332e3de1d0a0ed085
[ "MIT" ]
1
2021-12-27T00:46:35.000Z
2021-12-27T00:46:35.000Z
import os import argparse from os.path import join from runs import experiments os.environ['CUDA_VISIBLE_DEVICES'] = "0" parser = argparse.ArgumentParser() parser.add_argument('--experiment_index', type=int, required=True) parser.add_argument('--offset_index', type=int, required=False) parser.add_argument('--host_filesystem', type=str, required=True) parser.add_argument('--run', type=str, required=True) parser.add_argument('--check_train', type=bool, required=False) # this is for repetitions parser.add_argument('--repetition_folder_path', type=str, required=False) FLAGS = parser.parse_args() # where to save and retrieve the experiments output_path = { 'om': '/om/user/vanessad/MNIST_framework', 'om2': '/om2/user/vanessad/MNIST_framework', 'vanessa': '/Users/vanessa/Desktop/test'}[FLAGS.host_filesystem] # output_path = join(output_path, "results_repetitions_300/") # we want to repeat the experiments # for natural results: # results/MNIST_natural_debug output_path = join(output_path, 'results', FLAGS.repetition_folder_path + '/') # output_path = join(output_path, 'results_500_epochs', 'results/') os.makedirs(output_path, exist_ok=True) if FLAGS.offset_index is None: FLAGS.offset_index = 0 if FLAGS.check_train is None: FLAGS.check_train = False def generate_experiments(id): """ Generation of the experiments. """ experiments.generate_experiments(output_path) # TODO: modify the method generate experiment def run_train(id): """ Run the experiments. """ from runs.train import check_and_train opt = experiments.get_experiment(output_path, id) # Experiment instance check_and_train(opt, output_path, FLAGS.check_train) def find_id(id): """ Retrieve the information related to the ID experiment. """ experiments.get_experiment(output_path, id) def remove_id(id): from runs import remove_id as remove remove.run(id, output_path) def update_json(id): from runs.update import check_update """ Write on the json if the experiments are completed, by changing the flag. """ check_update(output_path) switcher = { 'train': run_train, 'find_id': find_id, 'gen': generate_experiments, 'remove': remove_id, 'update': update_json } switcher[FLAGS.run](FLAGS.experiment_index + FLAGS.offset_index)
29.025
78
0.741171
87e1126533e9fb7bb9570e0cd3ba569357d5086f
7,632
py
Python
app/core/migrations/0001_initial.py
fxavier/xbusness
10e6455243a8b66775df6f3a11eec6e8a8bea3f7
[ "MIT" ]
null
null
null
app/core/migrations/0001_initial.py
fxavier/xbusness
10e6455243a8b66775df6f3a11eec6e8a8bea3f7
[ "MIT" ]
null
null
null
app/core/migrations/0001_initial.py
fxavier/xbusness
10e6455243a8b66775df6f3a11eec6e8a8bea3f7
[ "MIT" ]
null
null
null
# Generated by Django 3.2.7 on 2021-09-26 15:24 from decimal import Decimal from django.conf import settings import django.core.validators from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Address', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('country', models.CharField(blank=True, default='Moçambique', max_length=255, null=True)), ('city', models.CharField(blank=True, max_length=255, null=True)), ('village', models.CharField(blank=True, max_length=255, null=True)), ('number', models.CharField(blank=True, max_length=255, null=True)), ('avenue', models.CharField(blank=True, max_length=255, null=True)), ], options={ 'verbose_name': 'Address', 'verbose_name_plural': 'Addresses', }, ), migrations.CreateModel( name='Bank', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(blank=True, max_length=255, null=True)), ('account', models.CharField(blank=True, max_length=255, null=True)), ], ), migrations.CreateModel( name='Brand', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('description', models.CharField(max_length=255)), ], ), migrations.CreateModel( name='Category', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('slug', models.SlugField()), ('description', models.CharField(max_length=255)), ], options={ 'verbose_name_plural': 'categories', }, ), migrations.CreateModel( name='Person', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255)), ('additional_info', models.CharField(blank=True, max_length=1025, null=True)), ('email', models.CharField(blank=True, max_length=255, null=True)), ('created_at', models.DateTimeField(editable=False)), ('modified_at', models.DateTimeField()), ('address', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='address', to='core.address')), ('bank', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='bank', to='core.bank')), ('created_by', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='Phone', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('number', models.CharField(max_length=32)), ], ), migrations.CreateModel( name='Unity', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('symbol', models.CharField(max_length=3)), ('description', models.CharField(max_length=16)), ], options={ 'verbose_name_plural': 'Unities', }, ), migrations.CreateModel( name='Customer', fields=[ ('person_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='core.person')), ('credit_limit', models.DecimalField(decimal_places=2, default=Decimal('0.00'), max_digits=15)), ], bases=('core.person',), ), migrations.CreateModel( name='Provider', fields=[ ('person_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='core.person')), ('branch', models.CharField(blank=True, max_length=255, null=True)), ], bases=('core.person',), ), migrations.CreateModel( name='Transporter', fields=[ ('person_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='core.person')), ], options={ 'verbose_name': 'Transporter', }, bases=('core.person',), ), migrations.CreateModel( name='Product', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('code', models.CharField(max_length=30)), ('barcode', models.CharField(blank=True, max_length=16, null=True)), ('slug', models.SlugField()), ('description', models.CharField(max_length=255)), ('cost', models.DecimalField(decimal_places=2, default=Decimal('0.00'), max_digits=16, validators=[django.core.validators.MinValueValidator(Decimal('0.00'))])), ('sale', models.DecimalField(decimal_places=2, default=Decimal('0.00'), max_digits=16, validators=[django.core.validators.MinValueValidator(Decimal('0.00'))])), ('additional_info', models.CharField(blank=True, max_length=255, null=True)), ('minimum_stock', models.IntegerField(default=0)), ('current_stock', models.IntegerField(default=0)), ('brand', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.PROTECT, to='core.brand')), ('category', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.PROTECT, to='core.category')), ('unity', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.PROTECT, to='core.unity')), ], ), migrations.AddField( model_name='person', name='phone', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='phone', to='core.phone'), ), migrations.CreateModel( name='Vehicle', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('description', models.CharField(blank=True, max_length=255, null=True)), ('registration_plate', models.CharField(blank=True, max_length=255, null=True)), ('vehicle_transporter', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='vehicle', to='core.transporter')), ], ), ]
50.543046
188
0.585561
33e09919ed33f236d5e18c91bd9ca3e3deaa7b77
3,530
py
Python
rplugin/python3/floobits/floocommon/msg.py
Joe-Davidson1802/floobits-neovim
983b853a4e24537f337c4653c708428f65113162
[ "Apache-2.0" ]
null
null
null
rplugin/python3/floobits/floocommon/msg.py
Joe-Davidson1802/floobits-neovim
983b853a4e24537f337c4653c708428f65113162
[ "Apache-2.0" ]
null
null
null
rplugin/python3/floobits/floocommon/msg.py
Joe-Davidson1802/floobits-neovim
983b853a4e24537f337c4653c708428f65113162
[ "Apache-2.0" ]
null
null
null
import os import time from . import shared as G assert G str = str from .exc_fmt import str_e python2 = False LOG_LEVELS = { 'DEBUG': 1, 'MSG': 2, 'WARN': 3, 'ERROR': 4, } LOG_LEVELS_REVERSE = { 1: 'DEBUG', 2: 'MSG', 3: 'WARN', 4: 'ERROR', } LOG_LEVEL = LOG_LEVELS['MSG'] LOG_FILE = os.path.join(G.BASE_DIR, 'msgs.floobits.log') try: fd = open(LOG_FILE, 'w') fd.close() except Exception as e: pass def safe_print(msg): # Some environments can have trouble printing unicode: # "When print() is not outputting to the terminal (being redirected to # a file, for instance), print() decides that it does not know what # locale to use for that file and so it tries to convert to ASCII instead." # See: https://pythonhosted.org/kitchen/unicode-frustrations.html#frustration-3-inconsistent-treatment-of-output try: print(msg) except UnicodeEncodeError: print((msg.encode('utf-8'))) # Overridden by each editor def editor_log(msg): safe_print(msg) def floobits_log(msg): # TODO: ridiculously inefficient try: fd = open(LOG_FILE, 'ab') fmsg = msg try: fmsg = fmsg.encode('utf-8') except Exception: pass fd.write(fmsg) fd.write(b'\n') fd.close() except Exception as e: safe_print(str_e(e)) class MSG(object): # Default to LOG_LEVEL MSG def __init__(self, msg, timestamp=None, username=None, level=2): self.msg = msg self.timestamp = timestamp or time.time() self.username = username self.level = level def display(self): if self.level < LOG_LEVEL: return msg = str(self) if G.LOG_TO_CONSOLE or G.CHAT_VIEW is None: floobits_log(msg) safe_print(msg) else: editor_log(msg) def __str__(self): if python2: return self.__unicode__().encode('utf-8') return self.__unicode__() def __unicode__(self): if self.username: msg = '[{time}] {level}: <{user}> {msg}' else: msg = '[{time}] {level}: {msg}' level = LOG_LEVELS_REVERSE.get(self.level, 'UNKNOWN').rjust(5) try: return str(msg).format(level=level, user=self.username, time=time.ctime(self.timestamp), msg=self.msg) except UnicodeEncodeError: return str(msg).format(level=level, user=self.username, time=time.ctime(self.timestamp), msg=self.msg.encode( 'utf-8')) def msg_format(message, *args, **kwargs): try: message = str(message) except UnicodeEncodeError: message = str(message) for arg in args: try: message += str(arg) except UnicodeEncodeError: message += arg if kwargs: message = message.format(**kwargs) return message def _log(message, level, *args, **kwargs): if level >= LOG_LEVEL: # TODO: kill MSG class and just format and print the thing right away MSG(msg_format(message, *args, **kwargs), level=level).display() def debug(message, *args, **kwargs): _log(message, LOG_LEVELS['DEBUG'], *args, **kwargs) def log(message, *args, **kwargs): _log(message, LOG_LEVELS['MSG'], *args, **kwargs) def warn(message, *args, **kwargs): _log(message, LOG_LEVELS['WARN'], *args, **kwargs) def error(message, *args, **kwargs): _log(message, LOG_LEVELS['ERROR'], *args, **kwargs)
24.859155
121
0.600567
5ddc7ff624356449f24ebaf08397f3debdf5eb14
33,425
py
Python
src/oci/apigateway/gateway_client.py
ezequielramos/oci-python-sdk
cc4235cf217beaf9feed75760e9ce82610222762
[ "Apache-2.0", "BSD-3-Clause" ]
3
2020-09-10T22:09:45.000Z
2021-12-24T17:00:07.000Z
src/oci/apigateway/gateway_client.py
ezequielramos/oci-python-sdk
cc4235cf217beaf9feed75760e9ce82610222762
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
src/oci/apigateway/gateway_client.py
ezequielramos/oci-python-sdk
cc4235cf217beaf9feed75760e9ce82610222762
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
# coding: utf-8 # Copyright (c) 2016, 2021, Oracle and/or its affiliates. All rights reserved. # This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license. from __future__ import absolute_import from oci._vendor import requests # noqa: F401 from oci._vendor import six from oci import retry, circuit_breaker # noqa: F401 from oci.base_client import BaseClient from oci.config import get_config_value_or_default, validate_config from oci.signer import Signer from oci.util import Sentinel, get_signer_from_authentication_type, AUTHENTICATION_TYPE_FIELD_NAME from .models import apigateway_type_mapping missing = Sentinel("Missing") class GatewayClient(object): """ API for the API Gateway service. Use this API to manage gateways, deployments, and related items. For more information, see [Overview of API Gateway](/iaas/Content/APIGateway/Concepts/apigatewayoverview.htm). """ def __init__(self, config, **kwargs): """ Creates a new service client :param dict config: Configuration keys and values as per `SDK and Tool Configuration <https://docs.cloud.oracle.com/Content/API/Concepts/sdkconfig.htm>`__. The :py:meth:`~oci.config.from_file` method can be used to load configuration from a file. Alternatively, a ``dict`` can be passed. You can validate_config the dict using :py:meth:`~oci.config.validate_config` :param str service_endpoint: (optional) The endpoint of the service to call using this client. For example ``https://iaas.us-ashburn-1.oraclecloud.com``. If this keyword argument is not provided then it will be derived using the region in the config parameter. You should only provide this keyword argument if you have an explicit need to specify a service endpoint. :param timeout: (optional) The connection and read timeouts for the client. The default values are connection timeout 10 seconds and read timeout 60 seconds. This keyword argument can be provided as a single float, in which case the value provided is used for both the read and connection timeouts, or as a tuple of two floats. If a tuple is provided then the first value is used as the connection timeout and the second value as the read timeout. :type timeout: float or tuple(float, float) :param signer: (optional) The signer to use when signing requests made by the service client. The default is to use a :py:class:`~oci.signer.Signer` based on the values provided in the config parameter. One use case for this parameter is for `Instance Principals authentication <https://docs.cloud.oracle.com/Content/Identity/Tasks/callingservicesfrominstances.htm>`__ by passing an instance of :py:class:`~oci.auth.signers.InstancePrincipalsSecurityTokenSigner` as the value for this keyword argument :type signer: :py:class:`~oci.signer.AbstractBaseSigner` :param obj retry_strategy: (optional) A retry strategy to apply to all calls made by this service client (i.e. at the client level). There is no retry strategy applied by default. Retry strategies can also be applied at the operation level by passing a ``retry_strategy`` keyword argument as part of calling the operation. Any value provided at the operation level will override whatever is specified at the client level. This should be one of the strategies available in the :py:mod:`~oci.retry` module. A convenience :py:data:`~oci.retry.DEFAULT_RETRY_STRATEGY` is also available. The specifics of the default retry strategy are described `here <https://docs.oracle.com/en-us/iaas/tools/python/latest/sdk_behaviors/retries.html>`__. :param obj circuit_breaker_strategy: (optional) A circuit breaker strategy to apply to all calls made by this service client (i.e. at the client level). This client uses :py:data:`~oci.circuit_breaker.DEFAULT_CIRCUIT_BREAKER_STRATEGY` as default if no circuit breaker strategy is provided. The specifics of circuit breaker strategy are described `here <https://docs.oracle.com/en-us/iaas/tools/python/latest/sdk_behaviors/circuit_breakers.html>`__. :param function circuit_breaker_callback: (optional) Callback function to receive any exceptions triggerred by the circuit breaker. """ validate_config(config, signer=kwargs.get('signer')) if 'signer' in kwargs: signer = kwargs['signer'] elif AUTHENTICATION_TYPE_FIELD_NAME in config: signer = get_signer_from_authentication_type(config) else: signer = Signer( tenancy=config["tenancy"], user=config["user"], fingerprint=config["fingerprint"], private_key_file_location=config.get("key_file"), pass_phrase=get_config_value_or_default(config, "pass_phrase"), private_key_content=config.get("key_content") ) base_client_init_kwargs = { 'regional_client': True, 'service_endpoint': kwargs.get('service_endpoint'), 'base_path': '/20190501', 'service_endpoint_template': 'https://apigateway.{region}.oci.{secondLevelDomain}', 'skip_deserialization': kwargs.get('skip_deserialization', False), 'circuit_breaker_strategy': kwargs.get('circuit_breaker_strategy', circuit_breaker.GLOBAL_CIRCUIT_BREAKER_STRATEGY) } if 'timeout' in kwargs: base_client_init_kwargs['timeout'] = kwargs.get('timeout') if base_client_init_kwargs.get('circuit_breaker_strategy') is None: base_client_init_kwargs['circuit_breaker_strategy'] = circuit_breaker.DEFAULT_CIRCUIT_BREAKER_STRATEGY self.base_client = BaseClient("gateway", config, signer, apigateway_type_mapping, **base_client_init_kwargs) self.retry_strategy = kwargs.get('retry_strategy') self.circuit_breaker_callback = kwargs.get('circuit_breaker_callback') def change_gateway_compartment(self, gateway_id, change_gateway_compartment_details, **kwargs): """ Changes the gateway compartment. :param str gateway_id: (required) The ocid of the gateway. :param oci.apigateway.models.ChangeGatewayCompartmentDetails change_gateway_compartment_details: (required) Details of the target compartment. :param str opc_retry_token: (optional) A token that uniquely identifies a request so it can be retried in case of a timeout or server error without risk of executing that same action again. Retry tokens expire after 24 hours, but can be invalidated before then due to conflicting operations. For example, if a resource has been deleted and purged from the system, then a retry of the original creation request might be rejected. :param str if_match: (optional) For optimistic concurrency control. In the PUT or DELETE call for a resource, set the `if-match` parameter to the value of the etag from a previous GET or POST response for that resource. The resource will be updated or deleted only if the etag you provide matches the resource's current etag value. :param str opc_request_id: (optional) The client request id for tracing. :param obj retry_strategy: (optional) A retry strategy to apply to this specific operation/call. This will override any retry strategy set at the client-level. This should be one of the strategies available in the :py:mod:`~oci.retry` module. This operation will not retry by default, users can also use the convenient :py:data:`~oci.retry.DEFAULT_RETRY_STRATEGY` provided by the SDK to enable retries for it. The specifics of the default retry strategy are described `here <https://docs.oracle.com/en-us/iaas/tools/python/latest/sdk_behaviors/retries.html>`__. To have this operation explicitly not perform any retries, pass an instance of :py:class:`~oci.retry.NoneRetryStrategy`. :return: A :class:`~oci.response.Response` object with data of type None :rtype: :class:`~oci.response.Response` :example: Click `here <https://docs.cloud.oracle.com/en-us/iaas/tools/python-sdk-examples/latest/apigateway/change_gateway_compartment.py.html>`__ to see an example of how to use change_gateway_compartment API. """ resource_path = "/gateways/{gatewayId}/actions/changeCompartment" method = "POST" # Don't accept unknown kwargs expected_kwargs = [ "retry_strategy", "opc_retry_token", "if_match", "opc_request_id" ] extra_kwargs = [_key for _key in six.iterkeys(kwargs) if _key not in expected_kwargs] if extra_kwargs: raise ValueError( "change_gateway_compartment got unknown kwargs: {!r}".format(extra_kwargs)) path_params = { "gatewayId": gateway_id } path_params = {k: v for (k, v) in six.iteritems(path_params) if v is not missing} for (k, v) in six.iteritems(path_params): if v is None or (isinstance(v, six.string_types) and len(v.strip()) == 0): raise ValueError('Parameter {} cannot be None, whitespace or empty string'.format(k)) header_params = { "accept": "application/json", "content-type": "application/json", "opc-retry-token": kwargs.get("opc_retry_token", missing), "if-match": kwargs.get("if_match", missing), "opc-request-id": kwargs.get("opc_request_id", missing) } header_params = {k: v for (k, v) in six.iteritems(header_params) if v is not missing and v is not None} retry_strategy = self.base_client.get_preferred_retry_strategy( operation_retry_strategy=kwargs.get('retry_strategy'), client_retry_strategy=self.retry_strategy ) if retry_strategy: if not isinstance(retry_strategy, retry.NoneRetryStrategy): self.base_client.add_opc_retry_token_if_needed(header_params) self.base_client.add_opc_client_retries_header(header_params) retry_strategy.add_circuit_breaker_callback(self.circuit_breaker_callback) return retry_strategy.make_retrying_call( self.base_client.call_api, resource_path=resource_path, method=method, path_params=path_params, header_params=header_params, body=change_gateway_compartment_details) else: return self.base_client.call_api( resource_path=resource_path, method=method, path_params=path_params, header_params=header_params, body=change_gateway_compartment_details) def create_gateway(self, create_gateway_details, **kwargs): """ Creates a new gateway. :param oci.apigateway.models.CreateGatewayDetails create_gateway_details: (required) Details for the new gateway. :param str opc_retry_token: (optional) A token that uniquely identifies a request so it can be retried in case of a timeout or server error without risk of executing that same action again. Retry tokens expire after 24 hours, but can be invalidated before then due to conflicting operations. For example, if a resource has been deleted and purged from the system, then a retry of the original creation request might be rejected. :param str opc_request_id: (optional) The client request id for tracing. :param obj retry_strategy: (optional) A retry strategy to apply to this specific operation/call. This will override any retry strategy set at the client-level. This should be one of the strategies available in the :py:mod:`~oci.retry` module. This operation will not retry by default, users can also use the convenient :py:data:`~oci.retry.DEFAULT_RETRY_STRATEGY` provided by the SDK to enable retries for it. The specifics of the default retry strategy are described `here <https://docs.oracle.com/en-us/iaas/tools/python/latest/sdk_behaviors/retries.html>`__. To have this operation explicitly not perform any retries, pass an instance of :py:class:`~oci.retry.NoneRetryStrategy`. :return: A :class:`~oci.response.Response` object with data of type :class:`~oci.apigateway.models.Gateway` :rtype: :class:`~oci.response.Response` :example: Click `here <https://docs.cloud.oracle.com/en-us/iaas/tools/python-sdk-examples/latest/apigateway/create_gateway.py.html>`__ to see an example of how to use create_gateway API. """ resource_path = "/gateways" method = "POST" # Don't accept unknown kwargs expected_kwargs = [ "retry_strategy", "opc_retry_token", "opc_request_id" ] extra_kwargs = [_key for _key in six.iterkeys(kwargs) if _key not in expected_kwargs] if extra_kwargs: raise ValueError( "create_gateway got unknown kwargs: {!r}".format(extra_kwargs)) header_params = { "accept": "application/json", "content-type": "application/json", "opc-retry-token": kwargs.get("opc_retry_token", missing), "opc-request-id": kwargs.get("opc_request_id", missing) } header_params = {k: v for (k, v) in six.iteritems(header_params) if v is not missing and v is not None} retry_strategy = self.base_client.get_preferred_retry_strategy( operation_retry_strategy=kwargs.get('retry_strategy'), client_retry_strategy=self.retry_strategy ) if retry_strategy: if not isinstance(retry_strategy, retry.NoneRetryStrategy): self.base_client.add_opc_retry_token_if_needed(header_params) self.base_client.add_opc_client_retries_header(header_params) retry_strategy.add_circuit_breaker_callback(self.circuit_breaker_callback) return retry_strategy.make_retrying_call( self.base_client.call_api, resource_path=resource_path, method=method, header_params=header_params, body=create_gateway_details, response_type="Gateway") else: return self.base_client.call_api( resource_path=resource_path, method=method, header_params=header_params, body=create_gateway_details, response_type="Gateway") def delete_gateway(self, gateway_id, **kwargs): """ Deletes the gateway with the given identifier. :param str gateway_id: (required) The ocid of the gateway. :param str if_match: (optional) For optimistic concurrency control. In the PUT or DELETE call for a resource, set the `if-match` parameter to the value of the etag from a previous GET or POST response for that resource. The resource will be updated or deleted only if the etag you provide matches the resource's current etag value. :param str opc_request_id: (optional) The client request id for tracing. :param obj retry_strategy: (optional) A retry strategy to apply to this specific operation/call. This will override any retry strategy set at the client-level. This should be one of the strategies available in the :py:mod:`~oci.retry` module. This operation will not retry by default, users can also use the convenient :py:data:`~oci.retry.DEFAULT_RETRY_STRATEGY` provided by the SDK to enable retries for it. The specifics of the default retry strategy are described `here <https://docs.oracle.com/en-us/iaas/tools/python/latest/sdk_behaviors/retries.html>`__. To have this operation explicitly not perform any retries, pass an instance of :py:class:`~oci.retry.NoneRetryStrategy`. :return: A :class:`~oci.response.Response` object with data of type None :rtype: :class:`~oci.response.Response` :example: Click `here <https://docs.cloud.oracle.com/en-us/iaas/tools/python-sdk-examples/latest/apigateway/delete_gateway.py.html>`__ to see an example of how to use delete_gateway API. """ resource_path = "/gateways/{gatewayId}" method = "DELETE" # Don't accept unknown kwargs expected_kwargs = [ "retry_strategy", "if_match", "opc_request_id" ] extra_kwargs = [_key for _key in six.iterkeys(kwargs) if _key not in expected_kwargs] if extra_kwargs: raise ValueError( "delete_gateway got unknown kwargs: {!r}".format(extra_kwargs)) path_params = { "gatewayId": gateway_id } path_params = {k: v for (k, v) in six.iteritems(path_params) if v is not missing} for (k, v) in six.iteritems(path_params): if v is None or (isinstance(v, six.string_types) and len(v.strip()) == 0): raise ValueError('Parameter {} cannot be None, whitespace or empty string'.format(k)) header_params = { "accept": "application/json", "content-type": "application/json", "if-match": kwargs.get("if_match", missing), "opc-request-id": kwargs.get("opc_request_id", missing) } header_params = {k: v for (k, v) in six.iteritems(header_params) if v is not missing and v is not None} retry_strategy = self.base_client.get_preferred_retry_strategy( operation_retry_strategy=kwargs.get('retry_strategy'), client_retry_strategy=self.retry_strategy ) if retry_strategy: if not isinstance(retry_strategy, retry.NoneRetryStrategy): self.base_client.add_opc_client_retries_header(header_params) retry_strategy.add_circuit_breaker_callback(self.circuit_breaker_callback) return retry_strategy.make_retrying_call( self.base_client.call_api, resource_path=resource_path, method=method, path_params=path_params, header_params=header_params) else: return self.base_client.call_api( resource_path=resource_path, method=method, path_params=path_params, header_params=header_params) def get_gateway(self, gateway_id, **kwargs): """ Gets a gateway by identifier. :param str gateway_id: (required) The ocid of the gateway. :param str opc_request_id: (optional) The client request id for tracing. :param obj retry_strategy: (optional) A retry strategy to apply to this specific operation/call. This will override any retry strategy set at the client-level. This should be one of the strategies available in the :py:mod:`~oci.retry` module. This operation will not retry by default, users can also use the convenient :py:data:`~oci.retry.DEFAULT_RETRY_STRATEGY` provided by the SDK to enable retries for it. The specifics of the default retry strategy are described `here <https://docs.oracle.com/en-us/iaas/tools/python/latest/sdk_behaviors/retries.html>`__. To have this operation explicitly not perform any retries, pass an instance of :py:class:`~oci.retry.NoneRetryStrategy`. :return: A :class:`~oci.response.Response` object with data of type :class:`~oci.apigateway.models.Gateway` :rtype: :class:`~oci.response.Response` :example: Click `here <https://docs.cloud.oracle.com/en-us/iaas/tools/python-sdk-examples/latest/apigateway/get_gateway.py.html>`__ to see an example of how to use get_gateway API. """ resource_path = "/gateways/{gatewayId}" method = "GET" # Don't accept unknown kwargs expected_kwargs = [ "retry_strategy", "opc_request_id" ] extra_kwargs = [_key for _key in six.iterkeys(kwargs) if _key not in expected_kwargs] if extra_kwargs: raise ValueError( "get_gateway got unknown kwargs: {!r}".format(extra_kwargs)) path_params = { "gatewayId": gateway_id } path_params = {k: v for (k, v) in six.iteritems(path_params) if v is not missing} for (k, v) in six.iteritems(path_params): if v is None or (isinstance(v, six.string_types) and len(v.strip()) == 0): raise ValueError('Parameter {} cannot be None, whitespace or empty string'.format(k)) header_params = { "accept": "application/json", "content-type": "application/json", "opc-request-id": kwargs.get("opc_request_id", missing) } header_params = {k: v for (k, v) in six.iteritems(header_params) if v is not missing and v is not None} retry_strategy = self.base_client.get_preferred_retry_strategy( operation_retry_strategy=kwargs.get('retry_strategy'), client_retry_strategy=self.retry_strategy ) if retry_strategy: if not isinstance(retry_strategy, retry.NoneRetryStrategy): self.base_client.add_opc_client_retries_header(header_params) retry_strategy.add_circuit_breaker_callback(self.circuit_breaker_callback) return retry_strategy.make_retrying_call( self.base_client.call_api, resource_path=resource_path, method=method, path_params=path_params, header_params=header_params, response_type="Gateway") else: return self.base_client.call_api( resource_path=resource_path, method=method, path_params=path_params, header_params=header_params, response_type="Gateway") def list_gateways(self, compartment_id, **kwargs): """ Returns a list of gateways. :param str compartment_id: (required) The ocid of the compartment in which to list resources. :param str certificate_id: (optional) Filter gateways by the certificate ocid. :param str display_name: (optional) A user-friendly name. Does not have to be unique, and it's changeable. Example: `My new resource` :param str lifecycle_state: (optional) A filter to return only resources that match the given lifecycle state. Example: `SUCCEEDED` Allowed values are: "CREATING", "ACTIVE", "UPDATING", "DELETING", "DELETED", "FAILED" :param int limit: (optional) The maximum number of items to return. :param str page: (optional) The page token representing the page at which to start retrieving results. This is usually retrieved from a previous list call. :param str sort_order: (optional) The sort order to use, either 'asc' or 'desc'. The default order depends on the sortBy value. Allowed values are: "ASC", "DESC" :param str sort_by: (optional) The field to sort by. You can provide one sort order (`sortOrder`). Default order for `timeCreated` is descending. Default order for `displayName` is ascending. The `displayName` sort order is case sensitive. Allowed values are: "timeCreated", "displayName" :param str opc_request_id: (optional) The client request id for tracing. :param obj retry_strategy: (optional) A retry strategy to apply to this specific operation/call. This will override any retry strategy set at the client-level. This should be one of the strategies available in the :py:mod:`~oci.retry` module. This operation will not retry by default, users can also use the convenient :py:data:`~oci.retry.DEFAULT_RETRY_STRATEGY` provided by the SDK to enable retries for it. The specifics of the default retry strategy are described `here <https://docs.oracle.com/en-us/iaas/tools/python/latest/sdk_behaviors/retries.html>`__. To have this operation explicitly not perform any retries, pass an instance of :py:class:`~oci.retry.NoneRetryStrategy`. :return: A :class:`~oci.response.Response` object with data of type :class:`~oci.apigateway.models.GatewayCollection` :rtype: :class:`~oci.response.Response` :example: Click `here <https://docs.cloud.oracle.com/en-us/iaas/tools/python-sdk-examples/latest/apigateway/list_gateways.py.html>`__ to see an example of how to use list_gateways API. """ resource_path = "/gateways" method = "GET" # Don't accept unknown kwargs expected_kwargs = [ "retry_strategy", "certificate_id", "display_name", "lifecycle_state", "limit", "page", "sort_order", "sort_by", "opc_request_id" ] extra_kwargs = [_key for _key in six.iterkeys(kwargs) if _key not in expected_kwargs] if extra_kwargs: raise ValueError( "list_gateways got unknown kwargs: {!r}".format(extra_kwargs)) if 'lifecycle_state' in kwargs: lifecycle_state_allowed_values = ["CREATING", "ACTIVE", "UPDATING", "DELETING", "DELETED", "FAILED"] if kwargs['lifecycle_state'] not in lifecycle_state_allowed_values: raise ValueError( "Invalid value for `lifecycle_state`, must be one of {0}".format(lifecycle_state_allowed_values) ) if 'sort_order' in kwargs: sort_order_allowed_values = ["ASC", "DESC"] if kwargs['sort_order'] not in sort_order_allowed_values: raise ValueError( "Invalid value for `sort_order`, must be one of {0}".format(sort_order_allowed_values) ) if 'sort_by' in kwargs: sort_by_allowed_values = ["timeCreated", "displayName"] if kwargs['sort_by'] not in sort_by_allowed_values: raise ValueError( "Invalid value for `sort_by`, must be one of {0}".format(sort_by_allowed_values) ) query_params = { "compartmentId": compartment_id, "certificateId": kwargs.get("certificate_id", missing), "displayName": kwargs.get("display_name", missing), "lifecycleState": kwargs.get("lifecycle_state", missing), "limit": kwargs.get("limit", missing), "page": kwargs.get("page", missing), "sortOrder": kwargs.get("sort_order", missing), "sortBy": kwargs.get("sort_by", missing) } query_params = {k: v for (k, v) in six.iteritems(query_params) if v is not missing and v is not None} header_params = { "accept": "application/json", "content-type": "application/json", "opc-request-id": kwargs.get("opc_request_id", missing) } header_params = {k: v for (k, v) in six.iteritems(header_params) if v is not missing and v is not None} retry_strategy = self.base_client.get_preferred_retry_strategy( operation_retry_strategy=kwargs.get('retry_strategy'), client_retry_strategy=self.retry_strategy ) if retry_strategy: if not isinstance(retry_strategy, retry.NoneRetryStrategy): self.base_client.add_opc_client_retries_header(header_params) retry_strategy.add_circuit_breaker_callback(self.circuit_breaker_callback) return retry_strategy.make_retrying_call( self.base_client.call_api, resource_path=resource_path, method=method, query_params=query_params, header_params=header_params, response_type="GatewayCollection") else: return self.base_client.call_api( resource_path=resource_path, method=method, query_params=query_params, header_params=header_params, response_type="GatewayCollection") def update_gateway(self, gateway_id, update_gateway_details, **kwargs): """ Updates the gateway with the given identifier. :param str gateway_id: (required) The ocid of the gateway. :param oci.apigateway.models.UpdateGatewayDetails update_gateway_details: (required) The information to be updated. :param str if_match: (optional) For optimistic concurrency control. In the PUT or DELETE call for a resource, set the `if-match` parameter to the value of the etag from a previous GET or POST response for that resource. The resource will be updated or deleted only if the etag you provide matches the resource's current etag value. :param str opc_request_id: (optional) The client request id for tracing. :param obj retry_strategy: (optional) A retry strategy to apply to this specific operation/call. This will override any retry strategy set at the client-level. This should be one of the strategies available in the :py:mod:`~oci.retry` module. This operation will not retry by default, users can also use the convenient :py:data:`~oci.retry.DEFAULT_RETRY_STRATEGY` provided by the SDK to enable retries for it. The specifics of the default retry strategy are described `here <https://docs.oracle.com/en-us/iaas/tools/python/latest/sdk_behaviors/retries.html>`__. To have this operation explicitly not perform any retries, pass an instance of :py:class:`~oci.retry.NoneRetryStrategy`. :return: A :class:`~oci.response.Response` object with data of type None :rtype: :class:`~oci.response.Response` :example: Click `here <https://docs.cloud.oracle.com/en-us/iaas/tools/python-sdk-examples/latest/apigateway/update_gateway.py.html>`__ to see an example of how to use update_gateway API. """ resource_path = "/gateways/{gatewayId}" method = "PUT" # Don't accept unknown kwargs expected_kwargs = [ "retry_strategy", "if_match", "opc_request_id" ] extra_kwargs = [_key for _key in six.iterkeys(kwargs) if _key not in expected_kwargs] if extra_kwargs: raise ValueError( "update_gateway got unknown kwargs: {!r}".format(extra_kwargs)) path_params = { "gatewayId": gateway_id } path_params = {k: v for (k, v) in six.iteritems(path_params) if v is not missing} for (k, v) in six.iteritems(path_params): if v is None or (isinstance(v, six.string_types) and len(v.strip()) == 0): raise ValueError('Parameter {} cannot be None, whitespace or empty string'.format(k)) header_params = { "accept": "application/json", "content-type": "application/json", "if-match": kwargs.get("if_match", missing), "opc-request-id": kwargs.get("opc_request_id", missing) } header_params = {k: v for (k, v) in six.iteritems(header_params) if v is not missing and v is not None} retry_strategy = self.base_client.get_preferred_retry_strategy( operation_retry_strategy=kwargs.get('retry_strategy'), client_retry_strategy=self.retry_strategy ) if retry_strategy: if not isinstance(retry_strategy, retry.NoneRetryStrategy): self.base_client.add_opc_client_retries_header(header_params) retry_strategy.add_circuit_breaker_callback(self.circuit_breaker_callback) return retry_strategy.make_retrying_call( self.base_client.call_api, resource_path=resource_path, method=method, path_params=path_params, header_params=header_params, body=update_gateway_details) else: return self.base_client.call_api( resource_path=resource_path, method=method, path_params=path_params, header_params=header_params, body=update_gateway_details)
49.082232
261
0.652536
719995a44b5e5c1b11ba33d14d966a075bdd5c5a
190
py
Python
src/swem.py
Lain-progressivehouse/probspace-youtube
04740862fb28fb9a38131554369d6c54eb560fc5
[ "MIT" ]
5
2020-06-29T04:32:07.000Z
2021-02-08T03:54:29.000Z
src/swem.py
Lain-progressivehouse/probspace-youtube
04740862fb28fb9a38131554369d6c54eb560fc5
[ "MIT" ]
null
null
null
src/swem.py
Lain-progressivehouse/probspace-youtube
04740862fb28fb9a38131554369d6c54eb560fc5
[ "MIT" ]
null
null
null
import gensim import MeCab mecab = MeCab.Tagger("-Owakati") def get_word_list(document): document = document.lower() return list(filter("".__ne__, mecab.parse(document).split()))
19
65
0.715789
735b485484e2fdb118b8c6105ed416ac294d5d48
14,821
py
Python
src/network.py
viswanathgs/dist-dqn
c7e407b1ef6f06c17fb784f3e119cdf20dd4824a
[ "MIT" ]
206
2016-07-14T18:46:29.000Z
2021-11-08T12:51:56.000Z
src/network.py
binderwang/dist-dqn
c7e407b1ef6f06c17fb784f3e119cdf20dd4824a
[ "MIT" ]
1
2021-05-25T03:14:16.000Z
2021-05-25T03:14:16.000Z
src/network.py
binderwang/dist-dqn
c7e407b1ef6f06c17fb784f3e119cdf20dd4824a
[ "MIT" ]
29
2016-07-14T20:02:37.000Z
2021-12-04T15:38:26.000Z
from functools import partial from six.moves import zip import tensorflow as tf # Base-class for the Deep Q-Network architecture. Constructs the TensorFlow # graph with layers, weights, biases, loss-function, optimizer, etc. for # a network of given type. Currently, a simple network with two hidden layers, # and a convolutional neural-network are support. # # New network architectures can be added by sub-classing Network and # implmementing the _init_params() and _init_layers() methods. class Network: x_placeholder = None q_placeholder = None action_placeholder = None q_output = None train_op = None target_q_output = None target_update_ops = None summary_op = None global_step = None def __init__(self, input_shape, num_actions, num_replicas=1, ps_device=None, worker_device=None): self.input_shape = list(input_shape) self.num_actions = num_actions self.num_replicas = num_replicas # Used for synchronous training if enabled self.ps_device = ps_device # Device constraints used by param server self.worker_device = worker_device # Used for target param replication @staticmethod def create_network(config, input_shape, num_actions, num_replicas=1, ps_device=None, worker_device=None): """ Creates and returns a network type based on config.network. """ Net = { 'simple': SimpleNetwork, 'cnn': ConvNetwork, }.get(config.network, None) if Net is None: raise RuntimeError('Unsupported network type {}'.format(config.network)) net = Net( input_shape=input_shape, num_actions=num_actions, num_replicas=num_replicas, ps_device=ps_device, worker_device=worker_device, ) net._init_network(config) return net def _init_network(self, config): # Placeholders self.x_placeholder = tf.placeholder(tf.float32, [None] + self.input_shape) self.q_placeholder = tf.placeholder(tf.float32, [None]) self.action_placeholder = tf.placeholder(tf.float32, [None, self.num_actions]) summaries = [] # Params and layers with tf.device(self.ps_device): params = self._init_params( config, input_shape=self.input_shape, output_size=self.num_actions, summaries=summaries, ) self.q_output, reg_loss = self._init_layers( config, inputs=self.x_placeholder, params=params, summaries=summaries, ) # Loss and training self.global_step = tf.Variable(0, name='global_step', trainable=False) loss = self._init_loss( config, q=self.q_output, expected_q=self.q_placeholder, actions=self.action_placeholder, reg_loss=reg_loss, summaries=summaries, ) self.train_op = self._init_optimizer( config, params=params, loss=loss, num_replicas=self.num_replicas, global_step=self.global_step, summaries=summaries, ) # Target network self.target_q_output, self.target_update_ops = self._init_target_network( config, inputs=self.x_placeholder, input_shape=self.input_shape, output_size=self.num_actions, params=params, ps_device=self.ps_device, worker_device=self.worker_device, summaries=summaries, ) # Merge all the summaries in this graph if summaries: self.summary_op = tf.merge_summary(summaries) @classmethod def _init_params(cls, config, input_shape, output_size, summaries=None): """ Setup the trainable params for the network. Subclasses should implement this to create all the weights and biases. @return: Tuple of weights and biases """ raise NotImplementedError @classmethod def _init_layers(cls, config, inputs, params, summaries=None): """ Setup the layers and trainable params of the network. Subclasses should implement this to initialize the appropriate network architecture. @param inputs: Placeholder for the input layer @param params: Tuple of weights and biases returned by _init_params() @return: (output_layer, regularized_loss) """ raise NotImplementedError @classmethod def _init_loss(cls, config, q, expected_q, actions, reg_loss=None, summaries=None): """ Setup the loss function and apply regularization is provided. @return: loss_op """ q_masked = tf.reduce_sum(tf.mul(q, actions), reduction_indices=[1]) loss = tf.reduce_mean(tf.squared_difference(q_masked, expected_q)) if reg_loss is not None: loss += config.reg_param * reg_loss if summaries is not None: summaries.append(tf.scalar_summary('loss', loss)) return loss @classmethod def _init_optimizer(cls, config, params, loss, num_replicas=1, global_step=None, summaries=None): """ Setup the optimizer for the provided params based on the loss function. Relies on config.optimizer to select the type of optimizer. @return: train_op """ Optimizer = { 'adadelta': tf.train.AdadeltaOptimizer, 'adagrad': tf.train.AdagradOptimizer, 'adam': tf.train.AdamOptimizer, 'ftrl': tf.train.FtrlOptimizer, 'sgd': tf.train.GradientDescentOptimizer, 'momentum': partial(tf.train.MomentumOptimizer, momentum=config.momentum), 'rmsprop': partial(tf.train.RMSPropOptimizer, decay=config.rmsprop_decay), }.get(config.optimizer, None) if Optimizer is None: raise RuntimeError('Unsupported optimizer {}'.format(config.optimizer)) # TODO: Experiment with gating gradients for improved parallelism # https://www.tensorflow.org/versions/r0.9/api_docs/python/train.html#gating-gradients optimizer = Optimizer(learning_rate=config.lr) # Synchronize gradient updates if enabled if config.sync: optimizer = tf.train.SyncReplicasOptimizer( optimizer, replicas_to_aggregate=num_replicas, replica_id=config.task_id, ) # Explicitly pass the list of trainable params instead of defaulting to # GraphKeys.TRAINABLE_VARIABLES. Otherwise, when this network becomes a # subgraph when in-graph replication is configured, TRAINABLE_VARIABLES # will contain params from all graph replicas due to global namespacing. train_op = optimizer.minimize( loss, var_list=params, global_step=global_step, ) return train_op def _init_target_network(cls, config, inputs, input_shape, output_size, params, ps_device=None, worker_device=None, summaries=None): """ Setup the target network used for minibatch training, and the update operations to periodically update the target network with the trained network. @return: target_q_output, [target_update_ops] """ if not config.disable_target_replication: # Replicate the target network params within each worker instead of it # being managed by the param server. Since the target network is frozen # for many steps, this cuts down the communication overhead of # transferring them from the param server's device during each train loop. # Also, they need to be marked as local variables so that all workers # initialize them locally. Otherwise, non-chief workers are forever # waiting for the chief worker to initialize the replicated target params. target_param_device = worker_device collections = tf.GraphKeys.LOCAL_VARIABLES else: # If target param replication is disabled, param server takes the # ownership of target params. Allocate on the same device as the other # params managed by the param server. target_param_device = ps_device collections = None # Initialize the target weights and layers with tf.variable_scope('target'): with tf.device(target_param_device): target_params = cls._init_params( config, input_shape=input_shape, output_size=output_size, collections=collections, summaries=summaries, ) target_q_output, _ = cls._init_layers( config, inputs=inputs, params=target_params, summaries=summaries, ) # Create assign ops to periodically update the target network target_update_ops = \ [tf.assign(target_p, p) for target_p, p in zip(target_params, params)] return target_q_output, target_update_ops # Simple fully connected network with two fully connected layers with # tanh activations and a final Affine layer. class SimpleNetwork(Network): HIDDEN1_SIZE = 20 HIDDEN2_SIZE = 20 @classmethod def _init_params(cls, config, input_shape, output_size, collections=None, summaries=None): if len(input_shape) != 1: raise RuntimeError('%s expects 1-d input' % cls.__name__) input_size = input_shape[0] weight_init = tf.truncated_normal_initializer(stddev=0.01) bias_init = tf.constant_initializer(value=0.0) # First hidden layer with tf.variable_scope('hidden1'): shape = [input_size, cls.HIDDEN1_SIZE] w1 = tf.get_variable('w', shape, initializer=weight_init, collections=collections) b1 = tf.get_variable('b', cls.HIDDEN1_SIZE, initializer=bias_init, collections=collections) # Second hidden layer with tf.variable_scope('hidden2'): shape = [cls.HIDDEN1_SIZE, cls.HIDDEN2_SIZE] w2 = tf.get_variable('w', shape, initializer=weight_init, collections=collections) b2 = tf.get_variable('b', cls.HIDDEN2_SIZE, initializer=bias_init, collections=collections) # Output layer with tf.variable_scope('output'): shape = [cls.HIDDEN2_SIZE, output_size] w3 = tf.get_variable('w', shape, initializer=weight_init, collections=collections) b3 = tf.get_variable('b', output_size, initializer=bias_init, collections=collections) return (w1, b1, w2, b2, w3, b3) @classmethod def _init_layers(cls, config, inputs, params, summaries=None): w1, b1, w2, b2, w3, b3 = params # Layers with tf.name_scope('hidden1'): a1 = tf.nn.tanh(tf.matmul(inputs, w1) + b1, name='tanh') with tf.name_scope('hidden2'): a2 = tf.nn.tanh(tf.matmul(a1, w2) + b2, name='tanh') with tf.name_scope('output'): output = tf.add(tf.matmul(a2, w3), b3, name='affine') # L2 regularization for weights excluding biases reg_loss = sum(tf.nn.l2_loss(w) for w in [w1, w2, w3]) return output, reg_loss # Convolutional network described in # https://storage.googleapis.com/deepmind-data/assets/papers/DeepMindNature14236Paper.pdf class ConvNetwork(Network): CONV1_FILTERS = 32 CONV1_SIZE = 8 CONV1_STRIDE = 4 CONV2_FILTERS = 64 CONV2_SIZE = 4 CONV2_STRIDE = 2 CONV3_FILTERS = 64 CONV3_SIZE = 3 CONV3_STRIDE = 1 POOL_SIZE = [1, 2, 2, 1] POOL_STRIDE = [1, 2, 2, 1] FULLY_CONNECTED_SIZE = 256 @classmethod def _init_params(cls, config, input_shape, output_size, collections=None, summaries=None): if len(input_shape) != 3: raise RuntimeError('%s expects 3-d input' % cls.__class__.__name__) weight_init = tf.truncated_normal_initializer(stddev=0.01) bias_init = tf.constant_initializer(value=0.0) # First hidden conv-pool layer with tf.variable_scope('conv1'): shape = \ [cls.CONV1_SIZE, cls.CONV1_SIZE, input_shape[2], cls.CONV1_FILTERS] w1 = tf.get_variable('w', shape, initializer=weight_init, collections=collections) b1 = tf.get_variable('b', cls.CONV1_FILTERS, initializer=bias_init, collections=collections) # Second hidden conv-pool layer with tf.variable_scope('conv2'): shape = \ [cls.CONV2_SIZE, cls.CONV2_SIZE, cls.CONV1_FILTERS, cls.CONV2_FILTERS] w2 = tf.get_variable('w', shape, initializer=weight_init, collections=collections) b2 = tf.get_variable('b', cls.CONV2_FILTERS, initializer=bias_init, collections=collections) # Third hidden conv-pool layer with tf.variable_scope('conv3'): shape = \ [cls.CONV3_SIZE, cls.CONV3_SIZE, cls.CONV2_FILTERS, cls.CONV3_FILTERS] w3 = tf.get_variable('w', shape, initializer=weight_init, collections=collections) b3 = tf.get_variable('b', cls.CONV3_FILTERS, initializer=bias_init, collections=collections) # Final fully-connected hidden layer with tf.variable_scope('fcl'): shape = [cls.FULLY_CONNECTED_SIZE, cls.FULLY_CONNECTED_SIZE] w4 = tf.get_variable('w', shape, initializer=weight_init, collections=collections) b4 = tf.get_variable('b', cls.FULLY_CONNECTED_SIZE, initializer=bias_init, collections=collections) # Output layer with tf.variable_scope('output'): shape = [cls.FULLY_CONNECTED_SIZE, output_size] w5 = tf.get_variable('w', shape, initializer=weight_init, collections=collections) b5 = tf.get_variable('b', output_size, initializer=bias_init, collections=collections) return (w1, b1, w2, b2, w3, b3, w4, b4, w5, b5) @classmethod def _init_layers(cls, config, inputs, params, summaries=None): w1, b1, w2, b2, w3, b3, w4, b4, w5, b5 = params # Layers with tf.name_scope('conv1'): a1 = cls.conv_pool(inputs, w1, b1, cls.CONV1_STRIDE) with tf.name_scope('conv2'): a2 = cls.conv_pool(a1, w2, b2, cls.CONV2_STRIDE) with tf.name_scope('conv3'): a3 = cls.conv_pool(a2, w3, b3, cls.CONV3_STRIDE) with tf.name_scope('fcl'): a3_flat = tf.reshape(a3, [-1, cls.FULLY_CONNECTED_SIZE]) a4 = tf.nn.relu(tf.matmul(a3_flat, w4) + b4, name='relu') with tf.name_scope('output'): output = tf.add(tf.matmul(a4, w5), b5, name='affine') # L2 regularization for fully-connected weights reg_loss = sum(tf.nn.l2_loss(w) for w in [w4, w5]) return output, reg_loss @classmethod def conv_stride(cls, stride): return [1, stride, stride, 1] @classmethod def conv_pool(cls, inputs, filters, bias, stride): conv = tf.nn.conv2d(inputs, filters, strides=cls.conv_stride(stride), padding='SAME', name='conv') return cls.max_pool(tf.nn.relu(conv + bias)) @classmethod def max_pool(cls, a): return tf.nn.max_pool(a, ksize=cls.POOL_SIZE, strides=cls.POOL_STRIDE, padding='SAME', name='pool')
34.872941
90
0.669995
6447222e3a168244d1e6769edf7da90216838d2d
5,845
py
Python
image_downloader.py
guzdy/tumblr_crawler
c584c7078983c97f62c64ea33c3f9150bb0580b9
[ "MIT" ]
2
2017-10-15T10:58:14.000Z
2017-12-08T14:11:31.000Z
image_downloader.py
guzdy/tumblr_crawler
c584c7078983c97f62c64ea33c3f9150bb0580b9
[ "MIT" ]
null
null
null
image_downloader.py
guzdy/tumblr_crawler
c584c7078983c97f62c64ea33c3f9150bb0580b9
[ "MIT" ]
null
null
null
# !/usr/bin/env python3 # -×- coding: utf-8 -*- import asyncio from concurrent import futures import json import requests import os import multiprocessing import re import datetime from requests.packages.urllib3.exceptions import InsecureRequestWarning # 禁用安全请求警告 requests.packages.urllib3.disable_warnings(InsecureRequestWarning) HEADERS = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 " "(KHTML, like Gecko) Chrome/59.0.3071.115 Safari/537.36", "Upgrade-Insecure-Requests": "1" } PROCESSES = multiprocessing.cpu_count() class ImagesDownloader(object): def crawl_image(self, blogname, proxies=None, timeout=None): """该 class 的控制模块, num 为 posts 总数, start 为起始数""" num = 1 start = 0 text = TextWriter(blogname) with futures.ProcessPoolExecutor(max_workers=PROCESSES) as ex: while num > start: data_json = self.page_download(blogname, start, proxies, timeout) item_list, num = self.page_parse(data_json) start += 50 for item in item_list: ex.submit(self.media_download, item['media'], item['slug'], blogname, proxies=proxies, timeout=timeout) text.process_item(item) text.close() def page_download(self, blogname, start, proxies=None, timeout=None, retry_times=0): url_raw = "http://{0}.tumblr.com/api/read/json?type=photo&num=50&start={1}" url = url_raw.format(blogname, start) print('尝试下载: ', url) resp = requests.get(url, proxies=proxies, headers=HEADERS, verify=False) if resp.status_code != 200: if retry_times > 3: print('多次尝试下载后失败,结束图片页面下载') return retry_times += 1 return self.page_download(self, blogname, proxies, timeout, retry_times) data_json = json.loads(resp.text.strip('var tumblr_api_read = ').strip(';\n')) return data_json def page_parse(self, data): num = data['posts-total'] if num == 0: return item_list = [] for post in data['posts']: item = {} print(post) if post.get('photos'): photos = [] for photo in post["photos"]: photos.append(photo['photo-url-1280']) else: photos = [post['photo-url-1280']] item['media'] = photos slug = post.get('slug') item['slug'] = slug tags_list = post.get('tags') item['tags_list'] = tags_list item_list.append(item) print("ITEM INFO:", item_list) return item_list, num def media_download(self, urls, filename, blogname, proxies=None, timeout=None): event_loop = asyncio.new_event_loop() event_loop.run_until_complete(self.async_download(urls, filename, blogname, proxies, timeout)) event_loop.close() return async def async_download(self, urls, filename_raw, blogname, proxies, timeout): """ 指定下载路径, 并下载图片。 """ print('File name RAW:', filename_raw) if not os.path.isdir(blogname): os.mkdir(blogname) num = 1 for url in urls: if not filename_raw: print("Image Url:", url) filename = url.split('/')[-1] else: if num == 1: filename = filename_raw + '.jpg' else: filename = "{0}({1}).jpg".format(filename_raw, str(num)) num += 1 file_path = os.path.join(blogname, filename) print("Image File Path: ", file_path) if not os.path.isfile(file_path): await self._async_download(url, file_path, proxies, timeout) async def _async_download(self, url, file_path, proxies, timeout, retry_times=0): """ 下载图片, 出现错误,最多重试三次, . """ try: resp = requests.get(url, proxies=proxies, stream=True, timeout=timeout, headers=HEADERS, verify=False) if resp.status_code != 200: raise Exception('尝试下载图片时,出现错误,重试' % resp.status_code) with open(file_path, 'wb') as f: for chunk in resp.iter_content(1024 * 100): f.write(chunk) except Exception as e: print("%s: %s" % (e, url)) # try again if retry_times < 3: retry_times += 1 # 如需设置proxies, 在下行代码设置设置 await self._async_download(url, file_path, proxies, timeout, retry_times) else: print("Download Fail(retried 3 times): ", url) return class TextWriter(object): """把必要的内容文本写入保存""" def __init__(self, blogname): if not os.path.isdir(blogname): os.mkdir(blogname) strtime = datetime.datetime.now().strftime('%Y%m%d%H%M%S') file_path = os.path.join(blogname, '0.'+blogname+' image '+strtime+'.txt') self.file = open(file_path, 'w') def close(self): self.file.close() def process_item(self, item): if item.get("media"): for url in item['media']: line = url + '\n' self.file.write(line) if item.get('tags'): self.file.write('Tags:') for tag in item['tags']: self.file.write(tag) self.file.write('\n') if item.get('slug'): text = re.sub(r'\xa0|\n', ' ', item['slug'].strip()) text = re.sub(r'\s+', ' ', text) self.file.write(text+'\n') self.file.write('\n\n') return
35.858896
89
0.545081
9c05086429ddfdaf77ab6525bb8ba742e095a115
1,172
py
Python
test/functional/p2p_mempool.py
daface45/cerebralcoin
0ea3caf2b22113c31c8fd3672f9dc6fa092ffd29
[ "MIT" ]
1
2021-10-07T01:18:40.000Z
2021-10-07T01:18:40.000Z
test/functional/p2p_mempool.py
daface45/cerebralcoin
0ea3caf2b22113c31c8fd3672f9dc6fa092ffd29
[ "MIT" ]
null
null
null
test/functional/p2p_mempool.py
daface45/cerebralcoin
0ea3caf2b22113c31c8fd3672f9dc6fa092ffd29
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2015-2018 The Cerebralcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test p2p mempool message. Test that nodes are disconnected if they send mempool messages when bloom filters are not enabled. """ from test_framework.messages import msg_mempool from test_framework.mininode import P2PInterface from test_framework.test_framework import CerebralcoinTestFramework from test_framework.util import assert_equal class P2PMempoolTests(CerebralcoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 1 self.extra_args = [["-peerbloomfilters=0"]] def run_test(self): # Add a p2p connection self.nodes[0].add_p2p_connection(P2PInterface()) #request mempool self.nodes[0].p2p.send_message(msg_mempool()) self.nodes[0].p2p.wait_for_disconnect() #mininode must be disconnected at this point assert_equal(len(self.nodes[0].getpeerinfo()), 0) if __name__ == '__main__': P2PMempoolTests().main()
33.485714
73
0.739761
6f53d980bcef0c32e35b658122d5b47219b95909
1,151
py
Python
rmgpy/reduction/test_data/minimal/input.py
keceli/RMG-Py
17c7870195a4feb6e8bf8974292f9bcdca1a1d9d
[ "MIT" ]
7
2017-10-04T16:04:14.000Z
2021-03-27T21:54:41.000Z
rmgpy/reduction/test_data/minimal/input.py
speth/RMG-Py
1d2c2b684580396e984459d9347628a5ceb80e2e
[ "MIT" ]
72
2016-06-06T18:18:49.000Z
2019-11-17T03:21:10.000Z
rmgpy/reduction/test_data/minimal/input.py
speth/RMG-Py
1d2c2b684580396e984459d9347628a5ceb80e2e
[ "MIT" ]
6
2017-10-04T15:37:05.000Z
2021-12-29T06:50:16.000Z
# Data sources database( thermoLibraries = ['primaryThermoLibrary'], reactionLibraries = [], seedMechanisms = [], kineticsDepositories = ['training'], kineticsFamilies = 'default', kineticsEstimator = 'rate rules', ) # List of species species( label='ethane', reactive=True, structure=SMILES("CC"), ) # Reaction systems simpleReactor( temperature=(1350,'K'), pressure=(1.0,'bar'), initialMoleFractions={ "ethane": 1.0, }, # terminationConversion={ # 'ethane': 0.9, # }, terminationTime=(1e-3,'s'), ) # simpleReactor( # temperature=(1750,'K'), # pressure=(10.0,'bar'), # initialMoleFractions={ # "ethane": 1.0, # }, # # terminationConversion={ # # 'ethane': 0.9, # # }, # terminationTime=(1e-2,'s'), # ) simulator( atol=1e-16, rtol=1e-8, ) model( toleranceKeepInEdge=0.0, toleranceMoveToCore=0.1, toleranceInterruptSimulation=0.1, maximumEdgeSpecies=100000 ) options( units='si', saveRestartPeriod=None, generatePlots=False, saveEdgeSpecies=True, saveSimulationProfiles=True, )
18.564516
47
0.60556
dd08eebb3e8ed2db59c65066c76b131892021def
328
py
Python
tests/t_sync_attachment.py
cjr0707/CrawlUtils
723f0b8ef2a617ff0ca1b51e35a5ded43ab76ff0
[ "MIT" ]
1
2021-03-11T03:00:10.000Z
2021-03-11T03:00:10.000Z
tests/t_sync_attachment.py
cjr0707/CrawlUtils
723f0b8ef2a617ff0ca1b51e35a5ded43ab76ff0
[ "MIT" ]
null
null
null
tests/t_sync_attachment.py
cjr0707/CrawlUtils
723f0b8ef2a617ff0ca1b51e35a5ded43ab76ff0
[ "MIT" ]
null
null
null
from crawl_utils.file import extract_attachment url = 'http://www.xinjiang.gov.cn/xinjiang/fgwjx/202009/d9bafda1ba5541db8d8d499934c20208.shtml' with open('./htmls/attachment/sync_attachment.html') as f: html = f.read() attachment_list = extract_attachment(html, url, attachment_format_list=['txt']) print(attachment_list)
36.444444
95
0.795732
40c669b92d7526d1052de3743c908902beb57f6f
535
py
Python
Udemy/100 Days of Code - The Complete Python Pro Bootcamp for 2022/Day_33_Project - ISS Overhead Notifier/test.py
douglasadones/Cursos-Online
53e9af499da8567db4d17cb25fbe1db9b2f0585e
[ "MIT" ]
1
2021-12-22T13:06:25.000Z
2021-12-22T13:06:25.000Z
Udemy/100 Days of Code - The Complete Python Pro Bootcamp for 2022/Day_33_Project - ISS Overhead Notifier/test.py
douglasadones/Cursos-Online
53e9af499da8567db4d17cb25fbe1db9b2f0585e
[ "MIT" ]
null
null
null
Udemy/100 Days of Code - The Complete Python Pro Bootcamp for 2022/Day_33_Project - ISS Overhead Notifier/test.py
douglasadones/Cursos-Online
53e9af499da8567db4d17cb25fbe1db9b2f0585e
[ "MIT" ]
null
null
null
import requests MY_LAT = -2.919150 # Sua latitude MY_LONG = -41.752270 # Sua longitude parametros = { "lat": MY_LAT, "lng": MY_LONG, "formatted": 0, } response = requests.get(url="https://api.sunrise-sunset.org/json", params=parametros) response.raise_for_status() data = response.json() nascer_do_sol = int(data["results"]["sunrise"].split("T")[1].split(":")[0]) # Apenas a hora do nascer do sol por_do_sol = int(data["results"]["sunset"].split("T")[1].split(":")[0]) # Apenas a hora do por do sol print(nascer_do_sol)
38.214286
109
0.678505
4c42cfdba72def18bc91dc6070e57fea78642354
1,596
py
Python
pyflac/__init__.py
sonos/pyFLAC
3c27540b465b5915050459ebdfb6eedc0fc6291a
[ "Apache-2.0" ]
85
2021-04-23T07:00:06.000Z
2022-02-20T18:41:52.000Z
pyflac/__init__.py
sonos/pyFLAC
3c27540b465b5915050459ebdfb6eedc0fc6291a
[ "Apache-2.0" ]
6
2021-04-22T20:46:03.000Z
2022-03-30T11:04:15.000Z
pyflac/__init__.py
sonos/pyFLAC
3c27540b465b5915050459ebdfb6eedc0fc6291a
[ "Apache-2.0" ]
5
2021-04-24T10:01:33.000Z
2022-02-07T06:15:07.000Z
# -*- coding: utf-8 -*- # ------------------------------------------------------------------------------ # # pyFLAC # # Copyright (c) 2011-2021, Sonos, Inc. # All rights reserved. # # ------------------------------------------------------------------------------ __title__ = 'pyFLAC' __version__ = '2.0.0' __all__ = [ 'StreamEncoder', 'FileEncoder', 'EncoderState', 'EncoderInitException', 'EncoderProcessException', 'StreamDecoder', 'FileDecoder', 'DecoderState', 'DecoderInitException', 'DecoderProcessException' ] import os import platform from cffi import FFI # ------------------------------------------------------------------------------ # Fix DLL load for Windows # # Since there is no rpath equivalent for Windows, we just explicitly load # the libFLAC DLL here. # ------------------------------------------------------------------------------ if platform.system() == 'Windows': ffi = FFI() base_path = os.path.dirname(os.path.abspath(__file__)) if platform.architecture()[0] == '32bit': libflac = ffi.dlopen(os.path.join(base_path, 'libraries', 'windows-i686', 'libFLAC-8.dll')) elif platform.architecture()[0] == '64bit': libflac = ffi.dlopen(os.path.join(base_path, 'libraries', 'windows-x86_64', 'libFLAC-8.dll')) # flake8: noqa: F401 from .encoder import ( StreamEncoder, FileEncoder, EncoderState, EncoderInitException, EncoderProcessException ) from .decoder import ( StreamDecoder, FileDecoder, DecoderState, DecoderInitException, DecoderProcessException )
25.741935
101
0.537594
b10afae7301ac4ee28b31d6f09da4f1a0569e574
16,979
py
Python
chia/full_node/mempool_check_conditions.py
Albertjan90/chia-blockchain
24b4533e7dd225c065c234eeaea25f06118a088b
[ "Apache-2.0" ]
1
2021-06-30T00:03:41.000Z
2021-06-30T00:03:41.000Z
chia/full_node/mempool_check_conditions.py
Albertjan90/chia-blockchain
24b4533e7dd225c065c234eeaea25f06118a088b
[ "Apache-2.0" ]
null
null
null
chia/full_node/mempool_check_conditions.py
Albertjan90/chia-blockchain
24b4533e7dd225c065c234eeaea25f06118a088b
[ "Apache-2.0" ]
null
null
null
import logging import time from typing import Tuple, Dict, List, Optional, Set from clvm import SExp from chia.consensus.cost_calculator import NPCResult from chia.consensus.condition_costs import ConditionCost from chia.full_node.generator import create_generator_args, setup_generator_args from chia.types.blockchain_format.coin import Coin from chia.types.blockchain_format.program import NIL from chia.types.blockchain_format.sized_bytes import bytes32 from chia.types.coin_record import CoinRecord from chia.types.condition_with_args import ConditionWithArgs from chia.types.generator_types import BlockGenerator from chia.types.name_puzzle_condition import NPC from chia.util.clvm import int_from_bytes, int_to_bytes from chia.util.condition_tools import ConditionOpcode, conditions_by_opcode from chia.util.errors import Err, ValidationError from chia.util.ints import uint32, uint64, uint16 from chia.wallet.puzzles.generator_loader import GENERATOR_FOR_SINGLE_COIN_MOD from chia.wallet.puzzles.rom_bootstrap_generator import get_generator GENERATOR_MOD = get_generator() def mempool_assert_announcement(condition: ConditionWithArgs, announcements: Set[bytes32]) -> Optional[Err]: """ Check if an announcement is included in the list of announcements """ announcement_hash = bytes32(condition.vars[0]) if announcement_hash not in announcements: return Err.ASSERT_ANNOUNCE_CONSUMED_FAILED return None log = logging.getLogger(__name__) def mempool_assert_my_coin_id(condition: ConditionWithArgs, unspent: CoinRecord) -> Optional[Err]: """ Checks if CoinID matches the id from the condition """ if unspent.coin.name() != condition.vars[0]: log.warning(f"My name: {unspent.coin.name()} got: {condition.vars[0].hex()}") return Err.ASSERT_MY_COIN_ID_FAILED return None def mempool_assert_absolute_block_height_exceeds( condition: ConditionWithArgs, prev_transaction_block_height: uint32 ) -> Optional[Err]: """ Checks if the next block index exceeds the block index from the condition """ try: block_index_exceeds_this = int_from_bytes(condition.vars[0]) except ValueError: return Err.INVALID_CONDITION if prev_transaction_block_height < block_index_exceeds_this: return Err.ASSERT_HEIGHT_ABSOLUTE_FAILED return None def mempool_assert_relative_block_height_exceeds( condition: ConditionWithArgs, unspent: CoinRecord, prev_transaction_block_height: uint32 ) -> Optional[Err]: """ Checks if the coin age exceeds the age from the condition """ try: expected_block_age = int_from_bytes(condition.vars[0]) block_index_exceeds_this = expected_block_age + unspent.confirmed_block_index except ValueError: return Err.INVALID_CONDITION if prev_transaction_block_height < block_index_exceeds_this: return Err.ASSERT_HEIGHT_RELATIVE_FAILED return None def mempool_assert_absolute_time_exceeds(condition: ConditionWithArgs, timestamp: uint64) -> Optional[Err]: """ Check if the current time in seconds exceeds the time specified by condition """ try: expected_seconds = int_from_bytes(condition.vars[0]) except ValueError: return Err.INVALID_CONDITION if timestamp is None: timestamp = uint64(int(time.time())) if timestamp < expected_seconds: return Err.ASSERT_SECONDS_ABSOLUTE_FAILED return None def mempool_assert_relative_time_exceeds( condition: ConditionWithArgs, unspent: CoinRecord, timestamp: uint64 ) -> Optional[Err]: """ Check if the current time in seconds exceeds the time specified by condition """ try: expected_seconds = int_from_bytes(condition.vars[0]) except ValueError: return Err.INVALID_CONDITION if timestamp is None: timestamp = uint64(int(time.time())) if timestamp < expected_seconds + unspent.timestamp: return Err.ASSERT_SECONDS_RELATIVE_FAILED return None def mempool_assert_my_parent_id(condition: ConditionWithArgs, unspent: CoinRecord) -> Optional[Err]: """ Checks if coin's parent ID matches the ID from the condition """ if unspent.coin.parent_coin_info != condition.vars[0]: return Err.ASSERT_MY_PARENT_ID_FAILED return None def mempool_assert_my_puzzlehash(condition: ConditionWithArgs, unspent: CoinRecord) -> Optional[Err]: """ Checks if coin's puzzlehash matches the puzzlehash from the condition """ if unspent.coin.puzzle_hash != condition.vars[0]: return Err.ASSERT_MY_PUZZLEHASH_FAILED return None def mempool_assert_my_amount(condition: ConditionWithArgs, unspent: CoinRecord) -> Optional[Err]: """ Checks if coin's amount matches the amount from the condition """ if unspent.coin.amount != int_from_bytes(condition.vars[0]): return Err.ASSERT_MY_AMOUNT_FAILED return None def parse_aggsig(args: SExp) -> List[bytes]: pubkey = args.first().atom args = args.rest() message = args.first().atom if len(pubkey) != 48: raise ValidationError(Err.INVALID_CONDITION) if len(message) > 1024: raise ValidationError(Err.INVALID_CONDITION) return [pubkey, message] def parse_create_coin(args: SExp) -> List[bytes]: puzzle_hash = args.first().atom args = args.rest() if len(puzzle_hash) != 32: raise ValidationError(Err.INVALID_CONDITION) amount_int = args.first().as_int() if amount_int >= 2 ** 64: raise ValidationError(Err.COIN_AMOUNT_EXCEEDS_MAXIMUM) if amount_int < 0: raise ValidationError(Err.COIN_AMOUNT_NEGATIVE) # note that this may change the representation of amount. If the original # buffer had redundant leading zeroes, they will be stripped return [puzzle_hash, int_to_bytes(amount_int)] def parse_seconds(args: SExp, error_code: Err) -> Optional[List[bytes]]: seconds_int = args.first().as_int() # this condition is inherently satisified, there is no need to keep it if seconds_int <= 0: return None if seconds_int >= 2 ** 64: raise ValidationError(error_code) # note that this may change the representation of seconds. If the original # buffer had redundant leading zeroes, they will be stripped return [int_to_bytes(seconds_int)] def parse_height(args: SExp, error_code: Err) -> Optional[List[bytes]]: height_int = args.first().as_int() # this condition is inherently satisified, there is no need to keep it if height_int <= 0: return None if height_int >= 2 ** 32: raise ValidationError(error_code) # note that this may change the representation of the height. If the original # buffer had redundant leading zeroes, they will be stripped return [int_to_bytes(height_int)] def parse_fee(args: SExp) -> List[bytes]: fee_int = args.first().as_int() if fee_int >= 2 ** 64 or fee_int < 0: raise ValidationError(Err.RESERVE_FEE_CONDITION_FAILED) # note that this may change the representation of the fee. If the original # buffer had redundant leading zeroes, they will be stripped return [int_to_bytes(fee_int)] def parse_hash(args: SExp, error_code: Err) -> List[bytes]: h = args.first().atom if len(h) != 32: raise ValidationError(error_code) return [h] def parse_amount(args: SExp) -> List[bytes]: amount_int = args.first().as_int() if amount_int < 0: raise ValidationError(Err.ASSERT_MY_AMOUNT_FAILED) if amount_int >= 2 ** 64: raise ValidationError(Err.ASSERT_MY_AMOUNT_FAILED) # note that this may change the representation of amount. If the original # buffer had redundant leading zeroes, they will be stripped return [int_to_bytes(amount_int)] def parse_announcement(args: SExp) -> List[bytes]: msg = args.first().atom if len(msg) > 1024: raise ValidationError(Err.INVALID_CONDITION) return [msg] def parse_condition_args(args: SExp, condition: ConditionOpcode) -> Tuple[int, Optional[List[bytes]]]: """ Parse a list with exactly the expected args, given opcode, from an SExp into a list of bytes. If there are fewer or more elements in the list, raise a RuntimeError. If the condition is inherently true (such as a time- or height lock with a negative time or height, the returned list is None """ op = ConditionOpcode cc = ConditionCost if condition is op.AGG_SIG_UNSAFE or condition is op.AGG_SIG_ME: return cc.AGG_SIG.value, parse_aggsig(args) elif condition is op.CREATE_COIN: return cc.CREATE_COIN.value, parse_create_coin(args) elif condition is op.ASSERT_SECONDS_ABSOLUTE: return cc.ASSERT_SECONDS_ABSOLUTE.value, parse_seconds(args, Err.ASSERT_SECONDS_ABSOLUTE_FAILED) elif condition is op.ASSERT_SECONDS_RELATIVE: return cc.ASSERT_SECONDS_RELATIVE.value, parse_seconds(args, Err.ASSERT_SECONDS_RELATIVE_FAILED) elif condition is op.ASSERT_HEIGHT_ABSOLUTE: return cc.ASSERT_HEIGHT_ABSOLUTE.value, parse_height(args, Err.ASSERT_HEIGHT_ABSOLUTE_FAILED) elif condition is op.ASSERT_HEIGHT_RELATIVE: return cc.ASSERT_HEIGHT_RELATIVE.value, parse_height(args, Err.ASSERT_HEIGHT_RELATIVE_FAILED) elif condition is op.ASSERT_MY_COIN_ID: return cc.ASSERT_MY_COIN_ID.value, parse_hash(args, Err.ASSERT_MY_COIN_ID_FAILED) elif condition is op.RESERVE_FEE: return cc.RESERVE_FEE.value, parse_fee(args) elif condition is op.CREATE_COIN_ANNOUNCEMENT: return cc.CREATE_COIN_ANNOUNCEMENT.value, parse_announcement(args) elif condition is op.ASSERT_COIN_ANNOUNCEMENT: return cc.ASSERT_COIN_ANNOUNCEMENT.value, parse_hash(args, Err.ASSERT_ANNOUNCE_CONSUMED_FAILED) elif condition is op.CREATE_PUZZLE_ANNOUNCEMENT: return cc.CREATE_PUZZLE_ANNOUNCEMENT.value, parse_announcement(args) elif condition is op.ASSERT_PUZZLE_ANNOUNCEMENT: return cc.ASSERT_PUZZLE_ANNOUNCEMENT.value, parse_hash(args, Err.ASSERT_ANNOUNCE_CONSUMED_FAILED) elif condition is op.ASSERT_MY_PARENT_ID: return cc.ASSERT_MY_PARENT_ID.value, parse_hash(args, Err.ASSERT_MY_PARENT_ID_FAILED) elif condition is op.ASSERT_MY_PUZZLEHASH: return cc.ASSERT_MY_PUZZLEHASH.value, parse_hash(args, Err.ASSERT_MY_PUZZLEHASH_FAILED) elif condition is op.ASSERT_MY_AMOUNT: return cc.ASSERT_MY_AMOUNT.value, parse_amount(args) else: raise ValidationError(Err.INVALID_CONDITION) CONDITION_OPCODES: Set[bytes] = set(item.value for item in ConditionOpcode) def parse_condition(cond: SExp, safe_mode: bool) -> Tuple[int, Optional[ConditionWithArgs]]: condition = cond.first().as_atom() if condition in CONDITION_OPCODES: opcode: ConditionOpcode = ConditionOpcode(condition) cost, args = parse_condition_args(cond.rest(), opcode) cvl = ConditionWithArgs(opcode, args) if args is not None else None elif not safe_mode: opcode = ConditionOpcode.UNKNOWN cvl = ConditionWithArgs(opcode, cond.rest().as_atom_list()) cost = 0 else: raise ValidationError(Err.INVALID_CONDITION) return cost, cvl def get_name_puzzle_conditions( generator: BlockGenerator, max_cost: int, *, cost_per_byte: int, safe_mode: bool ) -> NPCResult: """ This executes the generator program and returns the coins and their conditions. If the cost of the program (size, CLVM execution and conditions) exceed max_cost, the function fails. In order to accurately take the size of the program into account when calculating cost, cost_per_byte must be specified. safe_mode determines whether the clvm program and conditions are executed in strict mode or not. When in safe/strict mode, unknow operations or conditions are considered failures. This is the mode when accepting transactions into the mempool. """ try: block_program, block_program_args = setup_generator_args(generator) max_cost -= len(bytes(generator.program)) * cost_per_byte if max_cost < 0: return NPCResult(uint16(Err.INVALID_BLOCK_COST.value), [], uint64(0)) if safe_mode: clvm_cost, result = GENERATOR_MOD.run_safe_with_cost(max_cost, block_program, block_program_args) else: clvm_cost, result = GENERATOR_MOD.run_with_cost(max_cost, block_program, block_program_args) max_cost -= clvm_cost if max_cost < 0: return NPCResult(uint16(Err.INVALID_BLOCK_COST.value), [], uint64(0)) npc_list: List[NPC] = [] for res in result.first().as_iter(): conditions_list: List[ConditionWithArgs] = [] if len(res.first().atom) != 32: raise ValidationError(Err.INVALID_CONDITION) spent_coin_parent_id: bytes32 = res.first().as_atom() res = res.rest() if len(res.first().atom) != 32: raise ValidationError(Err.INVALID_CONDITION) spent_coin_puzzle_hash: bytes32 = res.first().as_atom() res = res.rest() spent_coin_amount: uint64 = uint64(res.first().as_int()) res = res.rest() spent_coin: Coin = Coin(spent_coin_parent_id, spent_coin_puzzle_hash, spent_coin_amount) for cond in res.first().as_iter(): cost, cvl = parse_condition(cond, safe_mode) max_cost -= cost if max_cost < 0: return NPCResult(uint16(Err.INVALID_BLOCK_COST.value), [], uint64(0)) if cvl is not None: conditions_list.append(cvl) conditions_dict = conditions_by_opcode(conditions_list) if conditions_dict is None: conditions_dict = {} npc_list.append( NPC(spent_coin.name(), spent_coin.puzzle_hash, [(a, b) for a, b in conditions_dict.items()]) ) return NPCResult(None, npc_list, uint64(clvm_cost)) except ValidationError as e: return NPCResult(uint16(e.code.value), [], uint64(0)) except Exception: return NPCResult(uint16(Err.GENERATOR_RUNTIME_ERROR.value), [], uint64(0)) def get_puzzle_and_solution_for_coin(generator: BlockGenerator, coin_name: bytes, max_cost: int): try: block_program = generator.program if not generator.generator_args: block_program_args = NIL else: block_program_args = create_generator_args(generator.generator_refs()) cost, result = GENERATOR_FOR_SINGLE_COIN_MOD.run_with_cost( max_cost, block_program, block_program_args, coin_name ) puzzle = result.first() solution = result.rest().first() return None, puzzle, solution except Exception as e: return e, None, None def mempool_check_conditions_dict( unspent: CoinRecord, coin_announcement_names: Set[bytes32], puzzle_announcement_names: Set[bytes32], conditions_dict: Dict[ConditionOpcode, List[ConditionWithArgs]], prev_transaction_block_height: uint32, timestamp: uint64, ) -> Optional[Err]: """ Check all conditions against current state. """ for con_list in conditions_dict.values(): cvp: ConditionWithArgs for cvp in con_list: error: Optional[Err] = None if cvp.opcode is ConditionOpcode.ASSERT_MY_COIN_ID: error = mempool_assert_my_coin_id(cvp, unspent) elif cvp.opcode is ConditionOpcode.ASSERT_COIN_ANNOUNCEMENT: error = mempool_assert_announcement(cvp, coin_announcement_names) elif cvp.opcode is ConditionOpcode.ASSERT_PUZZLE_ANNOUNCEMENT: error = mempool_assert_announcement(cvp, puzzle_announcement_names) elif cvp.opcode is ConditionOpcode.ASSERT_HEIGHT_ABSOLUTE: error = mempool_assert_absolute_block_height_exceeds(cvp, prev_transaction_block_height) elif cvp.opcode is ConditionOpcode.ASSERT_HEIGHT_RELATIVE: error = mempool_assert_relative_block_height_exceeds(cvp, unspent, prev_transaction_block_height) elif cvp.opcode is ConditionOpcode.ASSERT_SECONDS_ABSOLUTE: error = mempool_assert_absolute_time_exceeds(cvp, timestamp) elif cvp.opcode is ConditionOpcode.ASSERT_SECONDS_RELATIVE: error = mempool_assert_relative_time_exceeds(cvp, unspent, timestamp) elif cvp.opcode is ConditionOpcode.ASSERT_MY_PARENT_ID: error = mempool_assert_my_parent_id(cvp, unspent) elif cvp.opcode is ConditionOpcode.ASSERT_MY_PUZZLEHASH: error = mempool_assert_my_puzzlehash(cvp, unspent) elif cvp.opcode is ConditionOpcode.ASSERT_MY_AMOUNT: error = mempool_assert_my_amount(cvp, unspent) if error: return error return None
41.412195
113
0.714648
59aad9a907f683f0e4a08ea320aced8d098f2743
1,224
py
Python
apps/feedback/migrations/0001_initial.py
lsdlab/djshop_toturial
6d450225cc05e6a1ecd161de2b522e1af0b68cc0
[ "MIT" ]
null
null
null
apps/feedback/migrations/0001_initial.py
lsdlab/djshop_toturial
6d450225cc05e6a1ecd161de2b522e1af0b68cc0
[ "MIT" ]
6
2020-06-07T15:18:58.000Z
2021-09-22T19:07:33.000Z
apps/feedback/migrations/0001_initial.py
lsdlab/djshop_toturial
6d450225cc05e6a1ecd161de2b522e1af0b68cc0
[ "MIT" ]
null
null
null
# Generated by Django 3.0.1 on 2019-12-26 22:52 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('merchant', '0001_initial'), ] operations = [ migrations.CreateModel( name='Feedback', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ('type', models.TextField(choices=[('1', '投诉'), ('2', '售后'), ('3', '求购'), ('4', '咨询')], default='4', max_length=1)), ('content', models.TextField()), ('solved', models.BooleanField(default=False)), ('merchant', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='merchant_feedbacks', to='merchant.Merchant')), ], options={ 'verbose_name': '用户反馈', 'verbose_name_plural': '用户反馈', 'ordering': ['-created_at', '-updated_at'], }, ), ]
36
152
0.55719
42561360bb9a9dab9af61fab721366ea472c7a0e
8,769
py
Python
core/test.py
lindagaw/Eos
a125aca20007fbc55c4a5ae0c7baeb85a1375e1a
[ "MIT" ]
null
null
null
core/test.py
lindagaw/Eos
a125aca20007fbc55c4a5ae0c7baeb85a1375e1a
[ "MIT" ]
null
null
null
core/test.py
lindagaw/Eos
a125aca20007fbc55c4a5ae0c7baeb85a1375e1a
[ "MIT" ]
null
null
null
"""Test script to classify target data.""" import torch import torch.nn as nn from utils import make_variable from sklearn.metrics import accuracy_score import numpy as np from scipy.spatial import distance import os def get_distribution(src_encoder, tgt_encoder, src_classifier, tgt_classifier, critic, data_loader, which_data_loader): print("Start calculating the mahalanobis distances' mean and standard deviation ... ") vectors = [] for (images, labels) in data_loader: images = make_variable(images, volatile=True).squeeze_() labels = make_variable(labels).squeeze_() torch.no_grad() src_preds = src_classifier(torch.squeeze(src_encoder(images))).detach().cpu().numpy() tgt_preds = tgt_classifier(torch.squeeze(tgt_encoder(images))).detach().cpu().numpy() critic_at_src = critic(torch.squeeze(src_encoder(images))).detach().cpu().numpy() critic_at_tgt = critic(torch.squeeze(tgt_encoder(images))).detach().cpu().numpy() for image, label, src_pred, tgt_pred, src_critic, tgt_critic \ in zip(images, labels, src_preds, tgt_preds, critic_at_src, critic_at_tgt): vectors.append(np.linalg.norm(src_critic.tolist() + tgt_critic.tolist())) #print('processing vector ' + str(src_critic.tolist() + tgt_critic.tolist())) mean = np.asarray(vectors).mean(axis=0) cov = np.cov(vectors) try: iv = np.linalg.inv(cov) except: iv = cov mahalanobis = np.asarray([distance.mahalanobis(v, mean, iv) for v in vectors]) mahalanobis_mean = np.mean(mahalanobis) mahalanobis_std = np.std(mahalanobis) np.save('snapshots//' + which_data_loader + '_mahalanobis_mean.npy', mahalanobis_mean) np.save('snapshots//' + which_data_loader + '_mahalanobis_std.npy', mahalanobis_std) np.save('snapshots//' + which_data_loader + '_iv.npy', iv) np.save('snapshots//' + which_data_loader + '_mean.npy', mean) print("Finished obtaining the mahalanobis distances' mean and standard deviation on " + which_data_loader) return mahalanobis_mean, mahalanobis_std, iv, mean def is_in_distribution(vector, mahalanobis_mean, mahalanobis_std, mean, iv): upper_coefficient = 0.1 lower_coefficient = 0.1 upper = mahalanobis_mean + upper_coefficient * mahalanobis_std lower = mahalanobis_mean - lower_coefficient * mahalanobis_std mahalanobis = distance.mahalanobis(vector, mean, iv) if lower < mahalanobis and mahalanobis < upper: return True else: return False def eval_ADDA(src_encoder, tgt_encoder, src_classifier, tgt_classifier, critic, data_loader): src_mahalanobis_std = np.load('snapshots//' + 'src' + '_mahalanobis_std.npy') src_mahalanobis_mean = np.load('snapshots//' + 'src' + '_mahalanobis_mean.npy') src_iv = np.load('snapshots//' + 'src' + '_iv.npy') src_mean = np.load('snapshots//' + 'src' + '_mean.npy') tgt_mahalanobis_std = np.load('snapshots//' + 'tgt' + '_mahalanobis_std.npy') tgt_mahalanobis_mean = np.load('snapshots//' + 'tgt' + '_mahalanobis_mean.npy') tgt_iv = np.load('snapshots//' + 'tgt' + '_iv.npy') tgt_mean = np.load('snapshots//' + 'tgt' + '_mean.npy') """Evaluation for target encoder by source classifier on target dataset.""" tgt_encoder.eval() src_encoder.eval() src_classifier.eval() tgt_classifier.eval() # init loss and accuracy # set loss function criterion = nn.CrossEntropyLoss() # evaluate network y_trues = [] y_preds = [] for (images, labels) in data_loader: images = make_variable(images, volatile=True) labels = make_variable(labels).squeeze_() torch.no_grad() src_preds = src_classifier(torch.squeeze(src_encoder(images))).detach().cpu().numpy() tgt_preds = tgt_classifier(torch.squeeze(tgt_encoder(images))).detach().cpu().numpy() critic_at_src = critic(torch.squeeze(src_encoder(images))).detach().cpu().numpy() critic_at_tgt = critic(torch.squeeze(tgt_encoder(images))).detach().cpu().numpy() for image, label, src_pred, tgt_pred, src_critic, tgt_critic \ in zip(images, labels, src_preds, tgt_preds, critic_at_src, critic_at_tgt): vector = np.linalg.norm(src_critic.tolist() + tgt_critic.tolist()) # ouf of distribution: if not is_in_distribution(vector, tgt_mahalanobis_mean, tgt_mahalanobis_std, tgt_mean, tgt_iv) \ and not is_in_distribution(vector, src_mahalanobis_mean, src_mahalanobis_std, src_mean, src_iv): continue # if in distribution which the target: elif is_in_distribution(vector, tgt_mahalanobis_mean, tgt_mahalanobis_std, tgt_mean, tgt_iv): y_pred = np.argmax(tgt_pred) else: y_pred = np.argmax(src_pred) #y_pred = np.argmax(tgt_pred) y_preds.append(y_pred) y_trues.append(label.detach().cpu().numpy()) print("Avg Accuracy = {:2%}".format(accuracy_score(y_true=y_trues, y_pred=y_preds))) def eval_tgt_with_probe(encoder, critic, src_classifier, tgt_classifier, data_loader): """Evaluation for target encoder by source classifier on target dataset.""" # set eval state for Dropout and BN layers encoder.eval() src_classifier.eval() tgt_classifier.eval() # init loss and accuracy loss = 0.0 acc = 0.0 f1 = 0.0 ys_pred = [] ys_true = [] # set loss function criterion = nn.CrossEntropyLoss() flag = False # evaluate network for (images, labels) in data_loader: images = make_variable(images, volatile=True) labels = make_variable(labels).squeeze_() probeds = critic(encoder(images)) for image, label, probed in zip(images, labels, probeds): if torch.argmax(probed) == 1: pred = torch.argmax(src_classifier(torch.squeeze(encoder(torch.unsqueeze(image, 0))))).detach().cpu().numpy() else: pred = torch.argmax(tgt_classifier(torch.squeeze(encoder(torch.unsqueeze(image, 0))))).detach().cpu().numpy() ys_pred.append(np.squeeze(pred)) ys_true.append(np.squeeze(label.detach().cpu().numpy())) loss /= len(data_loader) acc /= len(data_loader.dataset) #f1 /= len(data_loader.dataset) print("Avg Accuracy = {:2%}".format(accuracy_score(y_true=ys_true, y_pred=ys_pred))) def eval_tgt_with_probe(encoder, critic, src_classifier, tgt_classifier, data_loader): """Evaluation for target encoder by source classifier on target dataset.""" # set eval state for Dropout and BN layers encoder.eval() src_classifier.eval() tgt_classifier.eval() # init loss and accuracy loss = 0 acc = 0 f1 = 0 ys_pred = [] ys_true = [] # set loss function criterion = nn.CrossEntropyLoss() flag = False # evaluate network for (images, labels) in data_loader: images = make_variable(images, volatile=True) labels = make_variable(labels).squeeze_() probeds = critic(torch.squeeze(encoder(images))) for image, label, probed in zip(images, labels, probeds): if torch.argmax(probed) == 1: pred = torch.argmax(src_classifier(torch.squeeze(encoder(torch.unsqueeze(image, 0))))).detach().cpu().numpy() else: pred = torch.argmax(tgt_classifier(torch.squeeze(encoder(torch.unsqueeze(image, 0))))).detach().cpu().numpy() ys_pred.append(np.squeeze(pred)) ys_true.append(np.squeeze(label.detach().cpu().numpy())) acc = accuracy_score(ys_true, ys_pred) print("Avg Loss = {}, Accuracy = {:2%}".format(loss, acc)) def eval_tgt(encoder, classifier, data_loader): """Evaluation for target encoder by source classifier on target dataset.""" # set eval state for Dropout and BN layers encoder.eval() classifier.eval() # init loss and accuracy loss = 0.0 acc = 0.0 ys_true = [] ys_pred = [] # set loss function criterion = nn.CrossEntropyLoss() # evaluate network for (images, labels) in data_loader: images = make_variable(images, volatile=True) labels = make_variable(labels).squeeze_() preds = classifier(torch.squeeze(encoder(images))) loss += criterion(preds, labels).data for pred, label in zip(preds, labels): ys_pred.append(torch.argmax(pred).detach().cpu().numpy()) ys_true.append(label.detach().cpu().numpy()) acc = accuracy_score(ys_true, ys_pred) loss /= len(data_loader) #acc /= len(data_loader.dataset) print("Avg Loss = {}, Avg Accuracy = {:2%}".format(loss, acc))
38.126087
125
0.662105
6ba20480d585d17cdd307f57e280affca5373a1d
1,498
py
Python
model.py
christianversloot/keras-multilayer-perceptron
b3be50f78a682749934d183164ffe0e1a438fbe4
[ "CC0-1.0" ]
2
2020-04-15T03:33:49.000Z
2020-10-20T13:12:17.000Z
model.py
christianversloot/keras-multilayer-perceptron
b3be50f78a682749934d183164ffe0e1a438fbe4
[ "CC0-1.0" ]
null
null
null
model.py
christianversloot/keras-multilayer-perceptron
b3be50f78a682749934d183164ffe0e1a438fbe4
[ "CC0-1.0" ]
2
2020-09-13T08:43:21.000Z
2021-03-28T19:56:10.000Z
# Imports import keras from keras.datasets import mnist from keras.models import Sequential from keras.layers import Dense from keras.utils import to_categorical # Configuration options feature_vector_length = 784 num_classes = 60000 # Load the data (X_train, Y_train), (X_test, Y_test) = mnist.load_data() # Reshape the data - MLPs do not understand such things as '2D'. # Reshape to 28 x 28 pixels = 784 features X_train = X_train.reshape(X_train.shape[0], feature_vector_length) X_test = X_test.reshape(X_test.shape[0], feature_vector_length) # Convert into greyscale X_train = X_train.astype('float32') X_test = X_test.astype('float32') X_train /= 255 X_test /= 255 # Convert target classes to categorical ones Y_train = to_categorical(Y_train, num_classes) Y_test = to_categorical(Y_test, num_classes) # Set the input shape input_shape = (feature_vector_length,) print(f'Feature shape: {input_shape}') # Create the model model = Sequential() model.add(Dense(350, input_shape=input_shape, activation='relu')) model.add(Dense(50, activation='relu')) model.add(Dense(num_classes, activation='softmax')) # Configure the model and start training model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(X_train, Y_train, epochs=10, batch_size=250, verbose=1, validation_split=0.2) # Test the model after training test_results = model.evaluate(X_test, Y_test, verbose=1) print(f'Test results - Loss: {test_results[0]} - Accuracy: {test_results[1]}%')
32.565217
87
0.774366
2b6f4333f9330b87feb36a78deaac64cbbe0e9d3
1,773
py
Python
mbdiff/tests/conftest.py
PiotrZakrzewski/macrobase-diff
b496826e06e6f6cd4bc19741d4a1875c75b8666b
[ "Apache-2.0" ]
1
2022-03-05T19:24:39.000Z
2022-03-05T19:24:39.000Z
mbdiff/tests/conftest.py
PiotrZakrzewski/macrobase-diff
b496826e06e6f6cd4bc19741d4a1875c75b8666b
[ "Apache-2.0" ]
10
2020-11-21T09:24:29.000Z
2020-12-03T07:54:43.000Z
mbdiff/tests/conftest.py
PiotrZakrzewski/macrobase-diff
b496826e06e6f6cd4bc19741d4a1875c75b8666b
[ "Apache-2.0" ]
null
null
null
import pytest from pandas import DataFrame, Series FIXTURE_DF_LEN = 10 @pytest.fixture def int_column(): return Series([x for x in range(FIXTURE_DF_LEN)]) @pytest.fixture def float_column(): return Series([x * 1.1 for x in range(FIXTURE_DF_LEN)]) @pytest.fixture def cat_col_all_same(): return Series(["cat1" for _ in range(FIXTURE_DF_LEN)]) @pytest.fixture def outlier_col(): return Series(["inlier" for _ in range(FIXTURE_DF_LEN)]) @pytest.fixture def df_basic(int_column, float_column, cat_col_all_same, outlier_col): return DataFrame( { "ints": int_column, "floats": float_column, "cats": cat_col_all_same, "outlier": outlier_col, } ) @pytest.fixture def df_attr_basic(): return DataFrame( { "attr1": ["a", "b"], "attr2": ["a", "b"], } ) @pytest.fixture def df_outliers(int_column, float_column, cat_col_all_same, outlier_col): outlier_col[9] = "outlier" float_column[9] = 999.8 cat_col_all_same[9] = "cat2" return DataFrame( { "ints": int_column, "floats": float_column, "cats": cat_col_all_same, "outlier": outlier_col, } ) @pytest.fixture def df_outliers_balanced(int_column, float_column, cat_col_all_same, outlier_col): outlier_col[9] = "outlier" outlier_col[8] = "outlier" float_column[9] = 999.7 float_column[8] = 999.8 cat_col_all_same[9] = "cat2" cat_col_all_same[8] = "cat1" cat_col_all_same[7] = "cat2" return DataFrame( { "ints": int_column, "floats": float_column, "cats": cat_col_all_same, "outlier": outlier_col, } )
21.888889
82
0.605189
9f477cbe62aede88783edb60a9464aeace69fc16
1,811
py
Python
third_party/webrtc/src/chromium/src/tools/perf/page_sets/simple_mobile_sites.py
bopopescu/webrtc-streaming-node
727a441204344ff596401b0253caac372b714d91
[ "MIT" ]
27
2016-04-27T01:02:03.000Z
2021-12-13T08:53:19.000Z
third_party/webrtc/src/chromium/src/tools/perf/page_sets/simple_mobile_sites.py
bopopescu/webrtc-streaming-node
727a441204344ff596401b0253caac372b714d91
[ "MIT" ]
2
2017-03-09T09:00:50.000Z
2017-09-21T15:48:20.000Z
third_party/webrtc/src/chromium/src/tools/perf/page_sets/simple_mobile_sites.py
bopopescu/webrtc-streaming-node
727a441204344ff596401b0253caac372b714d91
[ "MIT" ]
17
2016-04-27T02:06:39.000Z
2019-12-18T08:07:00.000Z
# Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. from telemetry.page import page as page_module from telemetry.page import shared_page_state from telemetry import story class SimplePage(page_module.Page): def __init__(self, url, page_set): super(SimplePage, self).__init__( url=url, page_set=page_set, shared_page_state_class=shared_page_state.Shared10InchTabletPageState, credentials_path='data/credentials.json') self.archive_data_file = 'data/simple_mobile_sites.json' def RunNavigateSteps(self, action_runner): super(SimplePage, self).RunNavigateSteps(action_runner) # TODO(epenner): Remove this wait (http://crbug.com/366933) action_runner.Wait(5) class SimpleScrollPage(SimplePage): def __init__(self, url, page_set): super(SimpleScrollPage, self).__init__(url=url, page_set=page_set) def RunPageInteractions(self, action_runner): # Make the scroll longer to reduce noise. with action_runner.CreateGestureInteraction('ScrollAction'): action_runner.ScrollPage(direction='down', speed_in_pixels_per_second=300) class SimpleMobileSitesPageSet(story.StorySet): """ Simple mobile sites """ def __init__(self): super(SimpleMobileSitesPageSet, self).__init__( archive_data_file='data/simple_mobile_sites.json', cloud_storage_bucket=story.PUBLIC_BUCKET) scroll_page_list = [ # Why: Scrolls moderately complex pages (up to 60 layers) 'http://www.ebay.co.uk/', 'https://www.flickr.com/', 'http://www.apple.com/mac/', 'http://www.nyc.gov', 'http://m.nytimes.com/' ] for url in scroll_page_list: self.AddStory(SimpleScrollPage(url, self))
32.927273
80
0.731088
508997daceee8a42337af3245778d3e329a2c938
835
py
Python
ChalkBoard(practice)/Python/MiniProjs/PDF/PDF.py
NathanKinney/Gardyloo
eb08805f21bd530135fabda4a866d15eb781fc5f
[ "MIT" ]
1
2018-06-26T23:05:09.000Z
2018-06-26T23:05:09.000Z
ChalkBoard(practice)/Python/MiniProjs/PDF/PDF.py
NathanKinney/Gardyloo
eb08805f21bd530135fabda4a866d15eb781fc5f
[ "MIT" ]
null
null
null
ChalkBoard(practice)/Python/MiniProjs/PDF/PDF.py
NathanKinney/Gardyloo
eb08805f21bd530135fabda4a866d15eb781fc5f
[ "MIT" ]
null
null
null
import PyPDF2 # opening and reading pdf # f = open('Working_Business_Proposal.pdf', 'rb') # pdf_reader = PyPDF2.PdfFileReader(f) # # pdf_reader.numPages # # page_one = pdf_reader.getPage(0) # page_one_text = page_one.extractText() #appending to pdf # f = open('Working_Business_Proposal.pdf', 'rb') # pdf_reader = PyPDF2.PdfFileReader(f) # first_page = pdf_reader.getPage(0) # pdf_writer = PyPDF2.PdfFileWriter() # pdf_writer.addPage(first_page) # pdf_output = open('Some_NEW_FILE.PDF', 'wb') # pdf_writer.write(pdf_output) # f.close() # pdf_output.close() # print(pdf_output) f = open('Working_Business_Proposal.pdf', 'rb') pdf_text = [] pdf_reader = PyPDF2.PdfFileReader(f) for p in range(pdf_reader.numPages): page = pdf_reader.getPage(p) pdf_text.append(page.extractText()) for line in pdf_text: print(line)
20.875
49
0.728144
2636f29aed57ecd50ccf3f441748703dfe1135b2
810
py
Python
tests/test_html.py
easydatapy/easytxt
9c2a424d3e39c50722c5b543b96c1450181f94e4
[ "BSD-3-Clause" ]
4
2020-08-25T17:39:04.000Z
2020-08-31T20:14:37.000Z
tests/test_html.py
sitegroove/easytxt
9c2a424d3e39c50722c5b543b96c1450181f94e4
[ "BSD-3-Clause" ]
null
null
null
tests/test_html.py
sitegroove/easytxt
9c2a424d3e39c50722c5b543b96c1450181f94e4
[ "BSD-3-Clause" ]
null
null
null
from easytxt import html def test_to_text(): test_html_texts = [("<p>Some sentence</p>", ["Some sentence"])] for text_html_tuple in test_html_texts: html_text, expected_text = text_html_tuple assert html.to_sentences(html_text) == expected_text def test_validate(): test_valid_html_texts = [ "<p>Some sentence</p>", "some <br/>sentence", "some <BR>sentence", 'some <img src="Something" /> sentence', "<title>Hallo</title>", ] for test_valid_html_text in test_valid_html_texts: assert html.validate(test_valid_html_text) def test_validate_invalid(): test_invalid_html_texts = ["Some sentence"] for test_invalid_html_text in test_invalid_html_texts: assert html.validate(test_invalid_html_text) is False
27.931034
67
0.683951
e6e790e8e1c6d5c4ad6399218a3ec86d9bddcab5
3,521
py
Python
utils.py
songaal/rltrader
4aac8085dda1a58fbf30a313f2a4608398c971a3
[ "MIT" ]
2
2020-06-13T07:18:10.000Z
2020-11-03T03:46:40.000Z
utils.py
songaal/rltrader
4aac8085dda1a58fbf30a313f2a4608398c971a3
[ "MIT" ]
null
null
null
utils.py
songaal/rltrader
4aac8085dda1a58fbf30a313f2a4608398c971a3
[ "MIT" ]
1
2020-05-16T08:41:29.000Z
2020-05-16T08:41:29.000Z
# import csv # from datetime import datetime, timedelta # import json # import logging # # import os # import tempfile # import timeit # # import re # import requests # # logging.basicConfig(format='[%(asctime)s %(levelname)s] (%(filename)s:%(lineno)d) %(message)s', # level=os.environ.get('LOGLEVEL', 'DEBUG')) # # # Name the logger after the package. # logger = logging.getLogger(__package__) # # # def split_interval(time_interval): # """ # 2h, 1d, 30m 과 같이 입력된 인터벌을 분리한다. # :param time_interval: # :return: # """ # unit = None # number = int(re.findall('\d+', time_interval)[0]) # maybeAlpha = time_interval[-1] # if maybeAlpha.isalpha(): # unit = maybeAlpha.lower() # return number, unit # # # def ingest_filename(symbol, period, history): # return '{}_{}_{}.csv'.format(symbol.replace('/', '_').lower(), period, history) # # # def ingest_filepath(root_dir, exchange, symbol, start_date, end_date, period, history): # filename = ingest_filename(symbol, period, history) # base_dir = '{}/{}/{}-{}'.format(root_dir, # exchange, # start_date.strftime('%Y%m%d%H%M%Z'), # end_date.strftime('%Y%m%d%H%M%Z') # ) # try: # os.makedirs(base_dir, exist_ok=True) # except OSError as e: # raise e # # return base_dir, os.path.join(base_dir, filename) # # # def ingest_data(exchange, symbol, start, end, interval): # api_gateway_endpoint = 'https://9u3jawxuod.execute-api.ap-northeast-2.amazonaws.com/v1_1' # # # 값, 단위 분리 # interval_num, interval_unit = split_interval(interval) # interval = interval.lower() # interval_unit = interval_unit.lower() # # if interval_unit in ['w', 'd', 'h']: # # 주, 일, 시 단위 # resolution = interval_unit if interval_num == '1' else interval # elif interval_unit in ['m']: # # 분 단위 # resolution = interval_num # # url = '{}/history'.format(api_gateway_endpoint) # params = {'resolution': resolution, 'from': start, 'to': end, # 'symbol': symbol.upper(), 'exchange': exchange} # logger.debug('Get candle: %s > %s', url, params) # response = requests.request('GET', url, params=params) # candles = json.loads(response.text) # # f = open('./data/chart_date/', 'w', encoding='utf-8', newline='') # wr = csv.writer(f) # # if len(candles['t']) == 0: # raise ValueError('[FAIL] candle data row 0') # # wr.writerow(['index', 'ts', 'open', 'high', 'low', 'close', 'volume']) # for index in range(len(candles['t'])): # if candles['o'][index] and candles['h'][index] and candles['l'][index] and candles['c'][index] and \ # candles['v'][index]: # time = datetime.fromtimestamp(int(candles['t'][index]), tz=tz).strftime('%Y-%m-%d') # wr.writerow([ # time, # '{:d}'.format(candles['t'][index]), # '{:.8f}'.format(candles['o'][index]), # '{:.8f}'.format(candles['h'][index]), # '{:.8f}'.format(candles['l'][index]), # '{:.8f}'.format(candles['c'][index]), # '{:.2f}'.format(candles['v'][index]), # ]) # timer_end = timeit.default_timer() # logger.debug('# {} Downloaded CandleFile. elapsed: {}'.format(symbol, str(timer_end - timer_start))) # return base_dir
36.298969
110
0.552684
bcb84af53807142b1d27366708cd4bbacf5def88
7,790
py
Python
docs/conf.py
django-functest/django-functest
51cd027301ee5e62134a27bb1da727814055c02e
[ "BSD-3-Clause" ]
71
2016-01-29T14:08:13.000Z
2022-03-11T16:24:00.000Z
docs/conf.py
django-functest/django-functest
51cd027301ee5e62134a27bb1da727814055c02e
[ "BSD-3-Clause" ]
17
2016-02-13T19:48:54.000Z
2021-12-15T16:34:40.000Z
docs/conf.py
django-functest/django-functest
51cd027301ee5e62134a27bb1da727814055c02e
[ "BSD-3-Clause" ]
8
2016-02-03T15:08:45.000Z
2020-11-11T11:33:35.000Z
# -*- coding: utf-8 -*- # # complexity documentation build configuration file, created by # sphinx-quickstart on Tue Jul 9 22:26:36 2013. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import os import sys sys.path.insert(0, os.path.abspath("..")) # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.viewcode'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'django-functest' copyright = u'2016-2018, Luke Plant' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = "1.2" # The full version, including alpha/beta/rc tags. release = "1.2-dev" # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'default' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'django-functestdoc' # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'django-functest.tex', u'django-functest Documentation', u'Luke Plant', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'django-functest', u'django-functest Documentation', [u'Luke Plant'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------------ # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'django-functest', u'django-functest Documentation', u'Luke Plant', 'django-functest', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False
31.538462
80
0.714506
9cd5a5f3427c2dd3f6c62af97097c62c09bb4093
79,013
py
Python
py/vtproto/query_pb2.py
AndyDiamondstein/vitess
295c300cd22c109f8be7a454c03c96c6b8e3b55c
[ "BSD-3-Clause" ]
1
2021-03-14T10:04:18.000Z
2021-03-14T10:04:18.000Z
py/vtproto/query_pb2.py
AndyDiamondstein/vitess
295c300cd22c109f8be7a454c03c96c6b8e3b55c
[ "BSD-3-Clause" ]
null
null
null
py/vtproto/query_pb2.py
AndyDiamondstein/vitess
295c300cd22c109f8be7a454c03c96c6b8e3b55c
[ "BSD-3-Clause" ]
null
null
null
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: query.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf.internal import enum_type_wrapper from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database from google.protobuf import descriptor_pb2 # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() import topodata_pb2 as topodata__pb2 import vtrpc_pb2 as vtrpc__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='query.proto', package='query', syntax='proto3', serialized_pb=_b('\n\x0bquery.proto\x12\x05query\x1a\x0etopodata.proto\x1a\x0bvtrpc.proto\"T\n\x06Target\x12\x10\n\x08keyspace\x18\x01 \x01(\t\x12\r\n\x05shard\x18\x02 \x01(\t\x12)\n\x0btablet_type\x18\x03 \x01(\x0e\x32\x14.topodata.TabletType\"\"\n\x0eVTGateCallerID\x12\x10\n\x08username\x18\x01 \x01(\t\"1\n\x05Value\x12\x19\n\x04type\x18\x01 \x01(\x0e\x32\x0b.query.Type\x12\r\n\x05value\x18\x02 \x01(\x0c\"V\n\x0c\x42indVariable\x12\x19\n\x04type\x18\x01 \x01(\x0e\x32\x0b.query.Type\x12\r\n\x05value\x18\x02 \x01(\x0c\x12\x1c\n\x06values\x18\x03 \x03(\x0b\x32\x0c.query.Value\"\xa2\x01\n\nBoundQuery\x12\x0b\n\x03sql\x18\x01 \x01(\t\x12<\n\x0e\x62ind_variables\x18\x02 \x03(\x0b\x32$.query.BoundQuery.BindVariablesEntry\x1aI\n\x12\x42indVariablesEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\"\n\x05value\x18\x02 \x01(\x0b\x32\x13.query.BindVariable:\x02\x38\x01\"0\n\x05\x46ield\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x19\n\x04type\x18\x02 \x01(\x0e\x32\x0b.query.Type\"&\n\x03Row\x12\x0f\n\x07lengths\x18\x01 \x03(\x12\x12\x0e\n\x06values\x18\x02 \x01(\x0c\"o\n\x0bQueryResult\x12\x1c\n\x06\x66ields\x18\x01 \x03(\x0b\x32\x0c.query.Field\x12\x15\n\rrows_affected\x18\x02 \x01(\x04\x12\x11\n\tinsert_id\x18\x03 \x01(\x04\x12\x18\n\x04rows\x18\x04 \x03(\x0b\x32\n.query.Row\"\x98\x01\n\x13GetSessionIdRequest\x12,\n\x13\x65\x66\x66\x65\x63tive_caller_id\x18\x01 \x01(\x0b\x32\x0f.vtrpc.CallerID\x12\x32\n\x13immediate_caller_id\x18\x02 \x01(\x0b\x32\x15.query.VTGateCallerID\x12\x10\n\x08keyspace\x18\x03 \x01(\t\x12\r\n\x05shard\x18\x04 \x01(\t\"*\n\x14GetSessionIdResponse\x12\x12\n\nsession_id\x18\x01 \x01(\x03\"\xdf\x01\n\x0e\x45xecuteRequest\x12,\n\x13\x65\x66\x66\x65\x63tive_caller_id\x18\x01 \x01(\x0b\x32\x0f.vtrpc.CallerID\x12\x32\n\x13immediate_caller_id\x18\x02 \x01(\x0b\x32\x15.query.VTGateCallerID\x12\x1d\n\x06target\x18\x03 \x01(\x0b\x32\r.query.Target\x12 \n\x05query\x18\x04 \x01(\x0b\x32\x11.query.BoundQuery\x12\x16\n\x0etransaction_id\x18\x05 \x01(\x03\x12\x12\n\nsession_id\x18\x06 \x01(\x03\"5\n\x0f\x45xecuteResponse\x12\"\n\x06result\x18\x01 \x01(\x0b\x32\x12.query.QueryResult\"\xfe\x01\n\x13\x45xecuteBatchRequest\x12,\n\x13\x65\x66\x66\x65\x63tive_caller_id\x18\x01 \x01(\x0b\x32\x0f.vtrpc.CallerID\x12\x32\n\x13immediate_caller_id\x18\x02 \x01(\x0b\x32\x15.query.VTGateCallerID\x12\x1d\n\x06target\x18\x03 \x01(\x0b\x32\r.query.Target\x12\"\n\x07queries\x18\x04 \x03(\x0b\x32\x11.query.BoundQuery\x12\x16\n\x0e\x61s_transaction\x18\x05 \x01(\x08\x12\x16\n\x0etransaction_id\x18\x06 \x01(\x03\x12\x12\n\nsession_id\x18\x07 \x01(\x03\";\n\x14\x45xecuteBatchResponse\x12#\n\x07results\x18\x01 \x03(\x0b\x32\x12.query.QueryResult\"\xcd\x01\n\x14StreamExecuteRequest\x12,\n\x13\x65\x66\x66\x65\x63tive_caller_id\x18\x01 \x01(\x0b\x32\x0f.vtrpc.CallerID\x12\x32\n\x13immediate_caller_id\x18\x02 \x01(\x0b\x32\x15.query.VTGateCallerID\x12\x1d\n\x06target\x18\x03 \x01(\x0b\x32\r.query.Target\x12 \n\x05query\x18\x04 \x01(\x0b\x32\x11.query.BoundQuery\x12\x12\n\nsession_id\x18\x05 \x01(\x03\";\n\x15StreamExecuteResponse\x12\"\n\x06result\x18\x01 \x01(\x0b\x32\x12.query.QueryResult\"\xa3\x01\n\x0c\x42\x65ginRequest\x12,\n\x13\x65\x66\x66\x65\x63tive_caller_id\x18\x01 \x01(\x0b\x32\x0f.vtrpc.CallerID\x12\x32\n\x13immediate_caller_id\x18\x02 \x01(\x0b\x32\x15.query.VTGateCallerID\x12\x1d\n\x06target\x18\x03 \x01(\x0b\x32\r.query.Target\x12\x12\n\nsession_id\x18\x04 \x01(\x03\"\'\n\rBeginResponse\x12\x16\n\x0etransaction_id\x18\x01 \x01(\x03\"\xbc\x01\n\rCommitRequest\x12,\n\x13\x65\x66\x66\x65\x63tive_caller_id\x18\x01 \x01(\x0b\x32\x0f.vtrpc.CallerID\x12\x32\n\x13immediate_caller_id\x18\x02 \x01(\x0b\x32\x15.query.VTGateCallerID\x12\x1d\n\x06target\x18\x03 \x01(\x0b\x32\r.query.Target\x12\x16\n\x0etransaction_id\x18\x04 \x01(\x03\x12\x12\n\nsession_id\x18\x05 \x01(\x03\"\x10\n\x0e\x43ommitResponse\"\xbe\x01\n\x0fRollbackRequest\x12,\n\x13\x65\x66\x66\x65\x63tive_caller_id\x18\x01 \x01(\x0b\x32\x0f.vtrpc.CallerID\x12\x32\n\x13immediate_caller_id\x18\x02 \x01(\x0b\x32\x15.query.VTGateCallerID\x12\x1d\n\x06target\x18\x03 \x01(\x0b\x32\r.query.Target\x12\x16\n\x0etransaction_id\x18\x04 \x01(\x03\x12\x12\n\nsession_id\x18\x05 \x01(\x03\"\x12\n\x10RollbackResponse\"\xb8\x01\n\x13\x42\x65ginExecuteRequest\x12,\n\x13\x65\x66\x66\x65\x63tive_caller_id\x18\x01 \x01(\x0b\x32\x0f.vtrpc.CallerID\x12\x32\n\x13immediate_caller_id\x18\x02 \x01(\x0b\x32\x15.query.VTGateCallerID\x12\x1d\n\x06target\x18\x03 \x01(\x0b\x32\r.query.Target\x12 \n\x05query\x18\x04 \x01(\x0b\x32\x11.query.BoundQuery\"r\n\x14\x42\x65ginExecuteResponse\x12\x1e\n\x05\x65rror\x18\x01 \x01(\x0b\x32\x0f.vtrpc.RPCError\x12\"\n\x06result\x18\x02 \x01(\x0b\x32\x12.query.QueryResult\x12\x16\n\x0etransaction_id\x18\x03 \x01(\x03\"\xd7\x01\n\x18\x42\x65ginExecuteBatchRequest\x12,\n\x13\x65\x66\x66\x65\x63tive_caller_id\x18\x01 \x01(\x0b\x32\x0f.vtrpc.CallerID\x12\x32\n\x13immediate_caller_id\x18\x02 \x01(\x0b\x32\x15.query.VTGateCallerID\x12\x1d\n\x06target\x18\x03 \x01(\x0b\x32\r.query.Target\x12\"\n\x07queries\x18\x04 \x03(\x0b\x32\x11.query.BoundQuery\x12\x16\n\x0e\x61s_transaction\x18\x05 \x01(\x08\"x\n\x19\x42\x65ginExecuteBatchResponse\x12\x1e\n\x05\x65rror\x18\x01 \x01(\x0b\x32\x0f.vtrpc.RPCError\x12#\n\x07results\x18\x02 \x03(\x0b\x32\x12.query.QueryResult\x12\x16\n\x0etransaction_id\x18\x03 \x01(\x03\"\x97\x03\n\x11SplitQueryRequest\x12,\n\x13\x65\x66\x66\x65\x63tive_caller_id\x18\x01 \x01(\x0b\x32\x0f.vtrpc.CallerID\x12\x32\n\x13immediate_caller_id\x18\x02 \x01(\x0b\x32\x15.query.VTGateCallerID\x12\x1d\n\x06target\x18\x03 \x01(\x0b\x32\r.query.Target\x12 \n\x05query\x18\x04 \x01(\x0b\x32\x11.query.BoundQuery\x12\x14\n\x0csplit_column\x18\x05 \x03(\t\x12\x13\n\x0bsplit_count\x18\x06 \x01(\x03\x12\x1f\n\x17num_rows_per_query_part\x18\x08 \x01(\x03\x12\x12\n\nsession_id\x18\x07 \x01(\x03\x12\x35\n\talgorithm\x18\t \x01(\x0e\x32\".query.SplitQueryRequest.Algorithm\x12\x1a\n\x12use_split_query_v2\x18\n \x01(\x08\",\n\tAlgorithm\x12\x10\n\x0c\x45QUAL_SPLITS\x10\x00\x12\r\n\tFULL_SCAN\x10\x01\"A\n\nQuerySplit\x12 \n\x05query\x18\x01 \x01(\x0b\x32\x11.query.BoundQuery\x12\x11\n\trow_count\x18\x02 \x01(\x03\"8\n\x12SplitQueryResponse\x12\"\n\x07queries\x18\x01 \x03(\x0b\x32\x11.query.QuerySplit\"\x15\n\x13StreamHealthRequest\"\xb6\x01\n\rRealtimeStats\x12\x14\n\x0chealth_error\x18\x01 \x01(\t\x12\x1d\n\x15seconds_behind_master\x18\x02 \x01(\r\x12\x1c\n\x14\x62inlog_players_count\x18\x03 \x01(\x05\x12\x32\n*seconds_behind_master_filtered_replication\x18\x04 \x01(\x03\x12\x11\n\tcpu_usage\x18\x05 \x01(\x01\x12\x0b\n\x03qps\x18\x06 \x01(\x01\"\xa4\x01\n\x14StreamHealthResponse\x12\x1d\n\x06target\x18\x01 \x01(\x0b\x32\r.query.Target\x12\x0f\n\x07serving\x18\x02 \x01(\x08\x12.\n&tablet_externally_reparented_timestamp\x18\x03 \x01(\x03\x12,\n\x0erealtime_stats\x18\x04 \x01(\x0b\x32\x14.query.RealtimeStats*k\n\x04\x46lag\x12\x08\n\x04NONE\x10\x00\x12\x0f\n\nISINTEGRAL\x10\x80\x02\x12\x0f\n\nISUNSIGNED\x10\x80\x04\x12\x0c\n\x07ISFLOAT\x10\x80\x08\x12\r\n\x08ISQUOTED\x10\x80\x10\x12\x0b\n\x06ISTEXT\x10\x80 \x12\r\n\x08ISBINARY\x10\x80@*\xef\x02\n\x04Type\x12\r\n\tNULL_TYPE\x10\x00\x12\t\n\x04INT8\x10\x81\x02\x12\n\n\x05UINT8\x10\x82\x06\x12\n\n\x05INT16\x10\x83\x02\x12\x0b\n\x06UINT16\x10\x84\x06\x12\n\n\x05INT24\x10\x85\x02\x12\x0b\n\x06UINT24\x10\x86\x06\x12\n\n\x05INT32\x10\x87\x02\x12\x0b\n\x06UINT32\x10\x88\x06\x12\n\n\x05INT64\x10\x89\x02\x12\x0b\n\x06UINT64\x10\x8a\x06\x12\x0c\n\x07\x46LOAT32\x10\x8b\x08\x12\x0c\n\x07\x46LOAT64\x10\x8c\x08\x12\x0e\n\tTIMESTAMP\x10\x8d\x10\x12\t\n\x04\x44\x41TE\x10\x8e\x10\x12\t\n\x04TIME\x10\x8f\x10\x12\r\n\x08\x44\x41TETIME\x10\x90\x10\x12\t\n\x04YEAR\x10\x91\x06\x12\x0b\n\x07\x44\x45\x43IMAL\x10\x12\x12\t\n\x04TEXT\x10\x93\x30\x12\t\n\x04\x42LOB\x10\x94P\x12\x0c\n\x07VARCHAR\x10\x95\x30\x12\x0e\n\tVARBINARY\x10\x96P\x12\t\n\x04\x43HAR\x10\x97\x30\x12\x0b\n\x06\x42INARY\x10\x98P\x12\x08\n\x03\x42IT\x10\x99\x10\x12\t\n\x04\x45NUM\x10\x9a\x10\x12\x08\n\x03SET\x10\x9b\x10\x12\t\n\x05TUPLE\x10\x1c\x42\x1a\n\x18\x63om.youtube.vitess.protob\x06proto3') , dependencies=[topodata__pb2.DESCRIPTOR,vtrpc__pb2.DESCRIPTOR,]) _sym_db.RegisterFileDescriptor(DESCRIPTOR) _FLAG = _descriptor.EnumDescriptor( name='Flag', full_name='query.Flag', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='NONE', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='ISINTEGRAL', index=1, number=256, options=None, type=None), _descriptor.EnumValueDescriptor( name='ISUNSIGNED', index=2, number=512, options=None, type=None), _descriptor.EnumValueDescriptor( name='ISFLOAT', index=3, number=1024, options=None, type=None), _descriptor.EnumValueDescriptor( name='ISQUOTED', index=4, number=2048, options=None, type=None), _descriptor.EnumValueDescriptor( name='ISTEXT', index=5, number=4096, options=None, type=None), _descriptor.EnumValueDescriptor( name='ISBINARY', index=6, number=8192, options=None, type=None), ], containing_type=None, options=None, serialized_start=3929, serialized_end=4036, ) _sym_db.RegisterEnumDescriptor(_FLAG) Flag = enum_type_wrapper.EnumTypeWrapper(_FLAG) _TYPE = _descriptor.EnumDescriptor( name='Type', full_name='query.Type', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='NULL_TYPE', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='INT8', index=1, number=257, options=None, type=None), _descriptor.EnumValueDescriptor( name='UINT8', index=2, number=770, options=None, type=None), _descriptor.EnumValueDescriptor( name='INT16', index=3, number=259, options=None, type=None), _descriptor.EnumValueDescriptor( name='UINT16', index=4, number=772, options=None, type=None), _descriptor.EnumValueDescriptor( name='INT24', index=5, number=261, options=None, type=None), _descriptor.EnumValueDescriptor( name='UINT24', index=6, number=774, options=None, type=None), _descriptor.EnumValueDescriptor( name='INT32', index=7, number=263, options=None, type=None), _descriptor.EnumValueDescriptor( name='UINT32', index=8, number=776, options=None, type=None), _descriptor.EnumValueDescriptor( name='INT64', index=9, number=265, options=None, type=None), _descriptor.EnumValueDescriptor( name='UINT64', index=10, number=778, options=None, type=None), _descriptor.EnumValueDescriptor( name='FLOAT32', index=11, number=1035, options=None, type=None), _descriptor.EnumValueDescriptor( name='FLOAT64', index=12, number=1036, options=None, type=None), _descriptor.EnumValueDescriptor( name='TIMESTAMP', index=13, number=2061, options=None, type=None), _descriptor.EnumValueDescriptor( name='DATE', index=14, number=2062, options=None, type=None), _descriptor.EnumValueDescriptor( name='TIME', index=15, number=2063, options=None, type=None), _descriptor.EnumValueDescriptor( name='DATETIME', index=16, number=2064, options=None, type=None), _descriptor.EnumValueDescriptor( name='YEAR', index=17, number=785, options=None, type=None), _descriptor.EnumValueDescriptor( name='DECIMAL', index=18, number=18, options=None, type=None), _descriptor.EnumValueDescriptor( name='TEXT', index=19, number=6163, options=None, type=None), _descriptor.EnumValueDescriptor( name='BLOB', index=20, number=10260, options=None, type=None), _descriptor.EnumValueDescriptor( name='VARCHAR', index=21, number=6165, options=None, type=None), _descriptor.EnumValueDescriptor( name='VARBINARY', index=22, number=10262, options=None, type=None), _descriptor.EnumValueDescriptor( name='CHAR', index=23, number=6167, options=None, type=None), _descriptor.EnumValueDescriptor( name='BINARY', index=24, number=10264, options=None, type=None), _descriptor.EnumValueDescriptor( name='BIT', index=25, number=2073, options=None, type=None), _descriptor.EnumValueDescriptor( name='ENUM', index=26, number=2074, options=None, type=None), _descriptor.EnumValueDescriptor( name='SET', index=27, number=2075, options=None, type=None), _descriptor.EnumValueDescriptor( name='TUPLE', index=28, number=28, options=None, type=None), ], containing_type=None, options=None, serialized_start=4039, serialized_end=4406, ) _sym_db.RegisterEnumDescriptor(_TYPE) Type = enum_type_wrapper.EnumTypeWrapper(_TYPE) NONE = 0 ISINTEGRAL = 256 ISUNSIGNED = 512 ISFLOAT = 1024 ISQUOTED = 2048 ISTEXT = 4096 ISBINARY = 8192 NULL_TYPE = 0 INT8 = 257 UINT8 = 770 INT16 = 259 UINT16 = 772 INT24 = 261 UINT24 = 774 INT32 = 263 UINT32 = 776 INT64 = 265 UINT64 = 778 FLOAT32 = 1035 FLOAT64 = 1036 TIMESTAMP = 2061 DATE = 2062 TIME = 2063 DATETIME = 2064 YEAR = 785 DECIMAL = 18 TEXT = 6163 BLOB = 10260 VARCHAR = 6165 VARBINARY = 10262 CHAR = 6167 BINARY = 10264 BIT = 2073 ENUM = 2074 SET = 2075 TUPLE = 28 _SPLITQUERYREQUEST_ALGORITHM = _descriptor.EnumDescriptor( name='Algorithm', full_name='query.SplitQueryRequest.Algorithm', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='EQUAL_SPLITS', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='FULL_SCAN', index=1, number=1, options=None, type=None), ], containing_type=None, options=None, serialized_start=3383, serialized_end=3427, ) _sym_db.RegisterEnumDescriptor(_SPLITQUERYREQUEST_ALGORITHM) _TARGET = _descriptor.Descriptor( name='Target', full_name='query.Target', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='keyspace', full_name='query.Target.keyspace', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='shard', full_name='query.Target.shard', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='tablet_type', full_name='query.Target.tablet_type', index=2, number=3, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=51, serialized_end=135, ) _VTGATECALLERID = _descriptor.Descriptor( name='VTGateCallerID', full_name='query.VTGateCallerID', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='username', full_name='query.VTGateCallerID.username', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=137, serialized_end=171, ) _VALUE = _descriptor.Descriptor( name='Value', full_name='query.Value', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='type', full_name='query.Value.type', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='value', full_name='query.Value.value', index=1, number=2, type=12, cpp_type=9, label=1, has_default_value=False, default_value=_b(""), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=173, serialized_end=222, ) _BINDVARIABLE = _descriptor.Descriptor( name='BindVariable', full_name='query.BindVariable', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='type', full_name='query.BindVariable.type', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='value', full_name='query.BindVariable.value', index=1, number=2, type=12, cpp_type=9, label=1, has_default_value=False, default_value=_b(""), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='values', full_name='query.BindVariable.values', index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=224, serialized_end=310, ) _BOUNDQUERY_BINDVARIABLESENTRY = _descriptor.Descriptor( name='BindVariablesEntry', full_name='query.BoundQuery.BindVariablesEntry', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='key', full_name='query.BoundQuery.BindVariablesEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='value', full_name='query.BoundQuery.BindVariablesEntry.value', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=_descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b('8\001')), is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=402, serialized_end=475, ) _BOUNDQUERY = _descriptor.Descriptor( name='BoundQuery', full_name='query.BoundQuery', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='sql', full_name='query.BoundQuery.sql', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='bind_variables', full_name='query.BoundQuery.bind_variables', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[_BOUNDQUERY_BINDVARIABLESENTRY, ], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=313, serialized_end=475, ) _FIELD = _descriptor.Descriptor( name='Field', full_name='query.Field', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='name', full_name='query.Field.name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='type', full_name='query.Field.type', index=1, number=2, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=477, serialized_end=525, ) _ROW = _descriptor.Descriptor( name='Row', full_name='query.Row', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='lengths', full_name='query.Row.lengths', index=0, number=1, type=18, cpp_type=2, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='values', full_name='query.Row.values', index=1, number=2, type=12, cpp_type=9, label=1, has_default_value=False, default_value=_b(""), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=527, serialized_end=565, ) _QUERYRESULT = _descriptor.Descriptor( name='QueryResult', full_name='query.QueryResult', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='fields', full_name='query.QueryResult.fields', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='rows_affected', full_name='query.QueryResult.rows_affected', index=1, number=2, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='insert_id', full_name='query.QueryResult.insert_id', index=2, number=3, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='rows', full_name='query.QueryResult.rows', index=3, number=4, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=567, serialized_end=678, ) _GETSESSIONIDREQUEST = _descriptor.Descriptor( name='GetSessionIdRequest', full_name='query.GetSessionIdRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='effective_caller_id', full_name='query.GetSessionIdRequest.effective_caller_id', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='immediate_caller_id', full_name='query.GetSessionIdRequest.immediate_caller_id', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='keyspace', full_name='query.GetSessionIdRequest.keyspace', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='shard', full_name='query.GetSessionIdRequest.shard', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=681, serialized_end=833, ) _GETSESSIONIDRESPONSE = _descriptor.Descriptor( name='GetSessionIdResponse', full_name='query.GetSessionIdResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='session_id', full_name='query.GetSessionIdResponse.session_id', index=0, number=1, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=835, serialized_end=877, ) _EXECUTEREQUEST = _descriptor.Descriptor( name='ExecuteRequest', full_name='query.ExecuteRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='effective_caller_id', full_name='query.ExecuteRequest.effective_caller_id', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='immediate_caller_id', full_name='query.ExecuteRequest.immediate_caller_id', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='target', full_name='query.ExecuteRequest.target', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='query', full_name='query.ExecuteRequest.query', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='transaction_id', full_name='query.ExecuteRequest.transaction_id', index=4, number=5, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='session_id', full_name='query.ExecuteRequest.session_id', index=5, number=6, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=880, serialized_end=1103, ) _EXECUTERESPONSE = _descriptor.Descriptor( name='ExecuteResponse', full_name='query.ExecuteResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='result', full_name='query.ExecuteResponse.result', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1105, serialized_end=1158, ) _EXECUTEBATCHREQUEST = _descriptor.Descriptor( name='ExecuteBatchRequest', full_name='query.ExecuteBatchRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='effective_caller_id', full_name='query.ExecuteBatchRequest.effective_caller_id', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='immediate_caller_id', full_name='query.ExecuteBatchRequest.immediate_caller_id', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='target', full_name='query.ExecuteBatchRequest.target', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='queries', full_name='query.ExecuteBatchRequest.queries', index=3, number=4, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='as_transaction', full_name='query.ExecuteBatchRequest.as_transaction', index=4, number=5, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='transaction_id', full_name='query.ExecuteBatchRequest.transaction_id', index=5, number=6, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='session_id', full_name='query.ExecuteBatchRequest.session_id', index=6, number=7, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1161, serialized_end=1415, ) _EXECUTEBATCHRESPONSE = _descriptor.Descriptor( name='ExecuteBatchResponse', full_name='query.ExecuteBatchResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='results', full_name='query.ExecuteBatchResponse.results', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1417, serialized_end=1476, ) _STREAMEXECUTEREQUEST = _descriptor.Descriptor( name='StreamExecuteRequest', full_name='query.StreamExecuteRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='effective_caller_id', full_name='query.StreamExecuteRequest.effective_caller_id', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='immediate_caller_id', full_name='query.StreamExecuteRequest.immediate_caller_id', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='target', full_name='query.StreamExecuteRequest.target', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='query', full_name='query.StreamExecuteRequest.query', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='session_id', full_name='query.StreamExecuteRequest.session_id', index=4, number=5, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1479, serialized_end=1684, ) _STREAMEXECUTERESPONSE = _descriptor.Descriptor( name='StreamExecuteResponse', full_name='query.StreamExecuteResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='result', full_name='query.StreamExecuteResponse.result', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1686, serialized_end=1745, ) _BEGINREQUEST = _descriptor.Descriptor( name='BeginRequest', full_name='query.BeginRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='effective_caller_id', full_name='query.BeginRequest.effective_caller_id', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='immediate_caller_id', full_name='query.BeginRequest.immediate_caller_id', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='target', full_name='query.BeginRequest.target', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='session_id', full_name='query.BeginRequest.session_id', index=3, number=4, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1748, serialized_end=1911, ) _BEGINRESPONSE = _descriptor.Descriptor( name='BeginResponse', full_name='query.BeginResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='transaction_id', full_name='query.BeginResponse.transaction_id', index=0, number=1, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1913, serialized_end=1952, ) _COMMITREQUEST = _descriptor.Descriptor( name='CommitRequest', full_name='query.CommitRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='effective_caller_id', full_name='query.CommitRequest.effective_caller_id', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='immediate_caller_id', full_name='query.CommitRequest.immediate_caller_id', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='target', full_name='query.CommitRequest.target', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='transaction_id', full_name='query.CommitRequest.transaction_id', index=3, number=4, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='session_id', full_name='query.CommitRequest.session_id', index=4, number=5, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1955, serialized_end=2143, ) _COMMITRESPONSE = _descriptor.Descriptor( name='CommitResponse', full_name='query.CommitResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2145, serialized_end=2161, ) _ROLLBACKREQUEST = _descriptor.Descriptor( name='RollbackRequest', full_name='query.RollbackRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='effective_caller_id', full_name='query.RollbackRequest.effective_caller_id', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='immediate_caller_id', full_name='query.RollbackRequest.immediate_caller_id', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='target', full_name='query.RollbackRequest.target', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='transaction_id', full_name='query.RollbackRequest.transaction_id', index=3, number=4, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='session_id', full_name='query.RollbackRequest.session_id', index=4, number=5, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2164, serialized_end=2354, ) _ROLLBACKRESPONSE = _descriptor.Descriptor( name='RollbackResponse', full_name='query.RollbackResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2356, serialized_end=2374, ) _BEGINEXECUTEREQUEST = _descriptor.Descriptor( name='BeginExecuteRequest', full_name='query.BeginExecuteRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='effective_caller_id', full_name='query.BeginExecuteRequest.effective_caller_id', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='immediate_caller_id', full_name='query.BeginExecuteRequest.immediate_caller_id', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='target', full_name='query.BeginExecuteRequest.target', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='query', full_name='query.BeginExecuteRequest.query', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2377, serialized_end=2561, ) _BEGINEXECUTERESPONSE = _descriptor.Descriptor( name='BeginExecuteResponse', full_name='query.BeginExecuteResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='error', full_name='query.BeginExecuteResponse.error', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='result', full_name='query.BeginExecuteResponse.result', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='transaction_id', full_name='query.BeginExecuteResponse.transaction_id', index=2, number=3, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2563, serialized_end=2677, ) _BEGINEXECUTEBATCHREQUEST = _descriptor.Descriptor( name='BeginExecuteBatchRequest', full_name='query.BeginExecuteBatchRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='effective_caller_id', full_name='query.BeginExecuteBatchRequest.effective_caller_id', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='immediate_caller_id', full_name='query.BeginExecuteBatchRequest.immediate_caller_id', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='target', full_name='query.BeginExecuteBatchRequest.target', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='queries', full_name='query.BeginExecuteBatchRequest.queries', index=3, number=4, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='as_transaction', full_name='query.BeginExecuteBatchRequest.as_transaction', index=4, number=5, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2680, serialized_end=2895, ) _BEGINEXECUTEBATCHRESPONSE = _descriptor.Descriptor( name='BeginExecuteBatchResponse', full_name='query.BeginExecuteBatchResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='error', full_name='query.BeginExecuteBatchResponse.error', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='results', full_name='query.BeginExecuteBatchResponse.results', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='transaction_id', full_name='query.BeginExecuteBatchResponse.transaction_id', index=2, number=3, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2897, serialized_end=3017, ) _SPLITQUERYREQUEST = _descriptor.Descriptor( name='SplitQueryRequest', full_name='query.SplitQueryRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='effective_caller_id', full_name='query.SplitQueryRequest.effective_caller_id', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='immediate_caller_id', full_name='query.SplitQueryRequest.immediate_caller_id', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='target', full_name='query.SplitQueryRequest.target', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='query', full_name='query.SplitQueryRequest.query', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='split_column', full_name='query.SplitQueryRequest.split_column', index=4, number=5, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='split_count', full_name='query.SplitQueryRequest.split_count', index=5, number=6, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='num_rows_per_query_part', full_name='query.SplitQueryRequest.num_rows_per_query_part', index=6, number=8, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='session_id', full_name='query.SplitQueryRequest.session_id', index=7, number=7, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='algorithm', full_name='query.SplitQueryRequest.algorithm', index=8, number=9, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='use_split_query_v2', full_name='query.SplitQueryRequest.use_split_query_v2', index=9, number=10, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ _SPLITQUERYREQUEST_ALGORITHM, ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=3020, serialized_end=3427, ) _QUERYSPLIT = _descriptor.Descriptor( name='QuerySplit', full_name='query.QuerySplit', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='query', full_name='query.QuerySplit.query', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='row_count', full_name='query.QuerySplit.row_count', index=1, number=2, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=3429, serialized_end=3494, ) _SPLITQUERYRESPONSE = _descriptor.Descriptor( name='SplitQueryResponse', full_name='query.SplitQueryResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='queries', full_name='query.SplitQueryResponse.queries', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=3496, serialized_end=3552, ) _STREAMHEALTHREQUEST = _descriptor.Descriptor( name='StreamHealthRequest', full_name='query.StreamHealthRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=3554, serialized_end=3575, ) _REALTIMESTATS = _descriptor.Descriptor( name='RealtimeStats', full_name='query.RealtimeStats', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='health_error', full_name='query.RealtimeStats.health_error', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='seconds_behind_master', full_name='query.RealtimeStats.seconds_behind_master', index=1, number=2, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='binlog_players_count', full_name='query.RealtimeStats.binlog_players_count', index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='seconds_behind_master_filtered_replication', full_name='query.RealtimeStats.seconds_behind_master_filtered_replication', index=3, number=4, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='cpu_usage', full_name='query.RealtimeStats.cpu_usage', index=4, number=5, type=1, cpp_type=5, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='qps', full_name='query.RealtimeStats.qps', index=5, number=6, type=1, cpp_type=5, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=3578, serialized_end=3760, ) _STREAMHEALTHRESPONSE = _descriptor.Descriptor( name='StreamHealthResponse', full_name='query.StreamHealthResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='target', full_name='query.StreamHealthResponse.target', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='serving', full_name='query.StreamHealthResponse.serving', index=1, number=2, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='tablet_externally_reparented_timestamp', full_name='query.StreamHealthResponse.tablet_externally_reparented_timestamp', index=2, number=3, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='realtime_stats', full_name='query.StreamHealthResponse.realtime_stats', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=3763, serialized_end=3927, ) _TARGET.fields_by_name['tablet_type'].enum_type = topodata__pb2._TABLETTYPE _VALUE.fields_by_name['type'].enum_type = _TYPE _BINDVARIABLE.fields_by_name['type'].enum_type = _TYPE _BINDVARIABLE.fields_by_name['values'].message_type = _VALUE _BOUNDQUERY_BINDVARIABLESENTRY.fields_by_name['value'].message_type = _BINDVARIABLE _BOUNDQUERY_BINDVARIABLESENTRY.containing_type = _BOUNDQUERY _BOUNDQUERY.fields_by_name['bind_variables'].message_type = _BOUNDQUERY_BINDVARIABLESENTRY _FIELD.fields_by_name['type'].enum_type = _TYPE _QUERYRESULT.fields_by_name['fields'].message_type = _FIELD _QUERYRESULT.fields_by_name['rows'].message_type = _ROW _GETSESSIONIDREQUEST.fields_by_name['effective_caller_id'].message_type = vtrpc__pb2._CALLERID _GETSESSIONIDREQUEST.fields_by_name['immediate_caller_id'].message_type = _VTGATECALLERID _EXECUTEREQUEST.fields_by_name['effective_caller_id'].message_type = vtrpc__pb2._CALLERID _EXECUTEREQUEST.fields_by_name['immediate_caller_id'].message_type = _VTGATECALLERID _EXECUTEREQUEST.fields_by_name['target'].message_type = _TARGET _EXECUTEREQUEST.fields_by_name['query'].message_type = _BOUNDQUERY _EXECUTERESPONSE.fields_by_name['result'].message_type = _QUERYRESULT _EXECUTEBATCHREQUEST.fields_by_name['effective_caller_id'].message_type = vtrpc__pb2._CALLERID _EXECUTEBATCHREQUEST.fields_by_name['immediate_caller_id'].message_type = _VTGATECALLERID _EXECUTEBATCHREQUEST.fields_by_name['target'].message_type = _TARGET _EXECUTEBATCHREQUEST.fields_by_name['queries'].message_type = _BOUNDQUERY _EXECUTEBATCHRESPONSE.fields_by_name['results'].message_type = _QUERYRESULT _STREAMEXECUTEREQUEST.fields_by_name['effective_caller_id'].message_type = vtrpc__pb2._CALLERID _STREAMEXECUTEREQUEST.fields_by_name['immediate_caller_id'].message_type = _VTGATECALLERID _STREAMEXECUTEREQUEST.fields_by_name['target'].message_type = _TARGET _STREAMEXECUTEREQUEST.fields_by_name['query'].message_type = _BOUNDQUERY _STREAMEXECUTERESPONSE.fields_by_name['result'].message_type = _QUERYRESULT _BEGINREQUEST.fields_by_name['effective_caller_id'].message_type = vtrpc__pb2._CALLERID _BEGINREQUEST.fields_by_name['immediate_caller_id'].message_type = _VTGATECALLERID _BEGINREQUEST.fields_by_name['target'].message_type = _TARGET _COMMITREQUEST.fields_by_name['effective_caller_id'].message_type = vtrpc__pb2._CALLERID _COMMITREQUEST.fields_by_name['immediate_caller_id'].message_type = _VTGATECALLERID _COMMITREQUEST.fields_by_name['target'].message_type = _TARGET _ROLLBACKREQUEST.fields_by_name['effective_caller_id'].message_type = vtrpc__pb2._CALLERID _ROLLBACKREQUEST.fields_by_name['immediate_caller_id'].message_type = _VTGATECALLERID _ROLLBACKREQUEST.fields_by_name['target'].message_type = _TARGET _BEGINEXECUTEREQUEST.fields_by_name['effective_caller_id'].message_type = vtrpc__pb2._CALLERID _BEGINEXECUTEREQUEST.fields_by_name['immediate_caller_id'].message_type = _VTGATECALLERID _BEGINEXECUTEREQUEST.fields_by_name['target'].message_type = _TARGET _BEGINEXECUTEREQUEST.fields_by_name['query'].message_type = _BOUNDQUERY _BEGINEXECUTERESPONSE.fields_by_name['error'].message_type = vtrpc__pb2._RPCERROR _BEGINEXECUTERESPONSE.fields_by_name['result'].message_type = _QUERYRESULT _BEGINEXECUTEBATCHREQUEST.fields_by_name['effective_caller_id'].message_type = vtrpc__pb2._CALLERID _BEGINEXECUTEBATCHREQUEST.fields_by_name['immediate_caller_id'].message_type = _VTGATECALLERID _BEGINEXECUTEBATCHREQUEST.fields_by_name['target'].message_type = _TARGET _BEGINEXECUTEBATCHREQUEST.fields_by_name['queries'].message_type = _BOUNDQUERY _BEGINEXECUTEBATCHRESPONSE.fields_by_name['error'].message_type = vtrpc__pb2._RPCERROR _BEGINEXECUTEBATCHRESPONSE.fields_by_name['results'].message_type = _QUERYRESULT _SPLITQUERYREQUEST.fields_by_name['effective_caller_id'].message_type = vtrpc__pb2._CALLERID _SPLITQUERYREQUEST.fields_by_name['immediate_caller_id'].message_type = _VTGATECALLERID _SPLITQUERYREQUEST.fields_by_name['target'].message_type = _TARGET _SPLITQUERYREQUEST.fields_by_name['query'].message_type = _BOUNDQUERY _SPLITQUERYREQUEST.fields_by_name['algorithm'].enum_type = _SPLITQUERYREQUEST_ALGORITHM _SPLITQUERYREQUEST_ALGORITHM.containing_type = _SPLITQUERYREQUEST _QUERYSPLIT.fields_by_name['query'].message_type = _BOUNDQUERY _SPLITQUERYRESPONSE.fields_by_name['queries'].message_type = _QUERYSPLIT _STREAMHEALTHRESPONSE.fields_by_name['target'].message_type = _TARGET _STREAMHEALTHRESPONSE.fields_by_name['realtime_stats'].message_type = _REALTIMESTATS DESCRIPTOR.message_types_by_name['Target'] = _TARGET DESCRIPTOR.message_types_by_name['VTGateCallerID'] = _VTGATECALLERID DESCRIPTOR.message_types_by_name['Value'] = _VALUE DESCRIPTOR.message_types_by_name['BindVariable'] = _BINDVARIABLE DESCRIPTOR.message_types_by_name['BoundQuery'] = _BOUNDQUERY DESCRIPTOR.message_types_by_name['Field'] = _FIELD DESCRIPTOR.message_types_by_name['Row'] = _ROW DESCRIPTOR.message_types_by_name['QueryResult'] = _QUERYRESULT DESCRIPTOR.message_types_by_name['GetSessionIdRequest'] = _GETSESSIONIDREQUEST DESCRIPTOR.message_types_by_name['GetSessionIdResponse'] = _GETSESSIONIDRESPONSE DESCRIPTOR.message_types_by_name['ExecuteRequest'] = _EXECUTEREQUEST DESCRIPTOR.message_types_by_name['ExecuteResponse'] = _EXECUTERESPONSE DESCRIPTOR.message_types_by_name['ExecuteBatchRequest'] = _EXECUTEBATCHREQUEST DESCRIPTOR.message_types_by_name['ExecuteBatchResponse'] = _EXECUTEBATCHRESPONSE DESCRIPTOR.message_types_by_name['StreamExecuteRequest'] = _STREAMEXECUTEREQUEST DESCRIPTOR.message_types_by_name['StreamExecuteResponse'] = _STREAMEXECUTERESPONSE DESCRIPTOR.message_types_by_name['BeginRequest'] = _BEGINREQUEST DESCRIPTOR.message_types_by_name['BeginResponse'] = _BEGINRESPONSE DESCRIPTOR.message_types_by_name['CommitRequest'] = _COMMITREQUEST DESCRIPTOR.message_types_by_name['CommitResponse'] = _COMMITRESPONSE DESCRIPTOR.message_types_by_name['RollbackRequest'] = _ROLLBACKREQUEST DESCRIPTOR.message_types_by_name['RollbackResponse'] = _ROLLBACKRESPONSE DESCRIPTOR.message_types_by_name['BeginExecuteRequest'] = _BEGINEXECUTEREQUEST DESCRIPTOR.message_types_by_name['BeginExecuteResponse'] = _BEGINEXECUTERESPONSE DESCRIPTOR.message_types_by_name['BeginExecuteBatchRequest'] = _BEGINEXECUTEBATCHREQUEST DESCRIPTOR.message_types_by_name['BeginExecuteBatchResponse'] = _BEGINEXECUTEBATCHRESPONSE DESCRIPTOR.message_types_by_name['SplitQueryRequest'] = _SPLITQUERYREQUEST DESCRIPTOR.message_types_by_name['QuerySplit'] = _QUERYSPLIT DESCRIPTOR.message_types_by_name['SplitQueryResponse'] = _SPLITQUERYRESPONSE DESCRIPTOR.message_types_by_name['StreamHealthRequest'] = _STREAMHEALTHREQUEST DESCRIPTOR.message_types_by_name['RealtimeStats'] = _REALTIMESTATS DESCRIPTOR.message_types_by_name['StreamHealthResponse'] = _STREAMHEALTHRESPONSE DESCRIPTOR.enum_types_by_name['Flag'] = _FLAG DESCRIPTOR.enum_types_by_name['Type'] = _TYPE Target = _reflection.GeneratedProtocolMessageType('Target', (_message.Message,), dict( DESCRIPTOR = _TARGET, __module__ = 'query_pb2' # @@protoc_insertion_point(class_scope:query.Target) )) _sym_db.RegisterMessage(Target) VTGateCallerID = _reflection.GeneratedProtocolMessageType('VTGateCallerID', (_message.Message,), dict( DESCRIPTOR = _VTGATECALLERID, __module__ = 'query_pb2' # @@protoc_insertion_point(class_scope:query.VTGateCallerID) )) _sym_db.RegisterMessage(VTGateCallerID) Value = _reflection.GeneratedProtocolMessageType('Value', (_message.Message,), dict( DESCRIPTOR = _VALUE, __module__ = 'query_pb2' # @@protoc_insertion_point(class_scope:query.Value) )) _sym_db.RegisterMessage(Value) BindVariable = _reflection.GeneratedProtocolMessageType('BindVariable', (_message.Message,), dict( DESCRIPTOR = _BINDVARIABLE, __module__ = 'query_pb2' # @@protoc_insertion_point(class_scope:query.BindVariable) )) _sym_db.RegisterMessage(BindVariable) BoundQuery = _reflection.GeneratedProtocolMessageType('BoundQuery', (_message.Message,), dict( BindVariablesEntry = _reflection.GeneratedProtocolMessageType('BindVariablesEntry', (_message.Message,), dict( DESCRIPTOR = _BOUNDQUERY_BINDVARIABLESENTRY, __module__ = 'query_pb2' # @@protoc_insertion_point(class_scope:query.BoundQuery.BindVariablesEntry) )) , DESCRIPTOR = _BOUNDQUERY, __module__ = 'query_pb2' # @@protoc_insertion_point(class_scope:query.BoundQuery) )) _sym_db.RegisterMessage(BoundQuery) _sym_db.RegisterMessage(BoundQuery.BindVariablesEntry) Field = _reflection.GeneratedProtocolMessageType('Field', (_message.Message,), dict( DESCRIPTOR = _FIELD, __module__ = 'query_pb2' # @@protoc_insertion_point(class_scope:query.Field) )) _sym_db.RegisterMessage(Field) Row = _reflection.GeneratedProtocolMessageType('Row', (_message.Message,), dict( DESCRIPTOR = _ROW, __module__ = 'query_pb2' # @@protoc_insertion_point(class_scope:query.Row) )) _sym_db.RegisterMessage(Row) QueryResult = _reflection.GeneratedProtocolMessageType('QueryResult', (_message.Message,), dict( DESCRIPTOR = _QUERYRESULT, __module__ = 'query_pb2' # @@protoc_insertion_point(class_scope:query.QueryResult) )) _sym_db.RegisterMessage(QueryResult) GetSessionIdRequest = _reflection.GeneratedProtocolMessageType('GetSessionIdRequest', (_message.Message,), dict( DESCRIPTOR = _GETSESSIONIDREQUEST, __module__ = 'query_pb2' # @@protoc_insertion_point(class_scope:query.GetSessionIdRequest) )) _sym_db.RegisterMessage(GetSessionIdRequest) GetSessionIdResponse = _reflection.GeneratedProtocolMessageType('GetSessionIdResponse', (_message.Message,), dict( DESCRIPTOR = _GETSESSIONIDRESPONSE, __module__ = 'query_pb2' # @@protoc_insertion_point(class_scope:query.GetSessionIdResponse) )) _sym_db.RegisterMessage(GetSessionIdResponse) ExecuteRequest = _reflection.GeneratedProtocolMessageType('ExecuteRequest', (_message.Message,), dict( DESCRIPTOR = _EXECUTEREQUEST, __module__ = 'query_pb2' # @@protoc_insertion_point(class_scope:query.ExecuteRequest) )) _sym_db.RegisterMessage(ExecuteRequest) ExecuteResponse = _reflection.GeneratedProtocolMessageType('ExecuteResponse', (_message.Message,), dict( DESCRIPTOR = _EXECUTERESPONSE, __module__ = 'query_pb2' # @@protoc_insertion_point(class_scope:query.ExecuteResponse) )) _sym_db.RegisterMessage(ExecuteResponse) ExecuteBatchRequest = _reflection.GeneratedProtocolMessageType('ExecuteBatchRequest', (_message.Message,), dict( DESCRIPTOR = _EXECUTEBATCHREQUEST, __module__ = 'query_pb2' # @@protoc_insertion_point(class_scope:query.ExecuteBatchRequest) )) _sym_db.RegisterMessage(ExecuteBatchRequest) ExecuteBatchResponse = _reflection.GeneratedProtocolMessageType('ExecuteBatchResponse', (_message.Message,), dict( DESCRIPTOR = _EXECUTEBATCHRESPONSE, __module__ = 'query_pb2' # @@protoc_insertion_point(class_scope:query.ExecuteBatchResponse) )) _sym_db.RegisterMessage(ExecuteBatchResponse) StreamExecuteRequest = _reflection.GeneratedProtocolMessageType('StreamExecuteRequest', (_message.Message,), dict( DESCRIPTOR = _STREAMEXECUTEREQUEST, __module__ = 'query_pb2' # @@protoc_insertion_point(class_scope:query.StreamExecuteRequest) )) _sym_db.RegisterMessage(StreamExecuteRequest) StreamExecuteResponse = _reflection.GeneratedProtocolMessageType('StreamExecuteResponse', (_message.Message,), dict( DESCRIPTOR = _STREAMEXECUTERESPONSE, __module__ = 'query_pb2' # @@protoc_insertion_point(class_scope:query.StreamExecuteResponse) )) _sym_db.RegisterMessage(StreamExecuteResponse) BeginRequest = _reflection.GeneratedProtocolMessageType('BeginRequest', (_message.Message,), dict( DESCRIPTOR = _BEGINREQUEST, __module__ = 'query_pb2' # @@protoc_insertion_point(class_scope:query.BeginRequest) )) _sym_db.RegisterMessage(BeginRequest) BeginResponse = _reflection.GeneratedProtocolMessageType('BeginResponse', (_message.Message,), dict( DESCRIPTOR = _BEGINRESPONSE, __module__ = 'query_pb2' # @@protoc_insertion_point(class_scope:query.BeginResponse) )) _sym_db.RegisterMessage(BeginResponse) CommitRequest = _reflection.GeneratedProtocolMessageType('CommitRequest', (_message.Message,), dict( DESCRIPTOR = _COMMITREQUEST, __module__ = 'query_pb2' # @@protoc_insertion_point(class_scope:query.CommitRequest) )) _sym_db.RegisterMessage(CommitRequest) CommitResponse = _reflection.GeneratedProtocolMessageType('CommitResponse', (_message.Message,), dict( DESCRIPTOR = _COMMITRESPONSE, __module__ = 'query_pb2' # @@protoc_insertion_point(class_scope:query.CommitResponse) )) _sym_db.RegisterMessage(CommitResponse) RollbackRequest = _reflection.GeneratedProtocolMessageType('RollbackRequest', (_message.Message,), dict( DESCRIPTOR = _ROLLBACKREQUEST, __module__ = 'query_pb2' # @@protoc_insertion_point(class_scope:query.RollbackRequest) )) _sym_db.RegisterMessage(RollbackRequest) RollbackResponse = _reflection.GeneratedProtocolMessageType('RollbackResponse', (_message.Message,), dict( DESCRIPTOR = _ROLLBACKRESPONSE, __module__ = 'query_pb2' # @@protoc_insertion_point(class_scope:query.RollbackResponse) )) _sym_db.RegisterMessage(RollbackResponse) BeginExecuteRequest = _reflection.GeneratedProtocolMessageType('BeginExecuteRequest', (_message.Message,), dict( DESCRIPTOR = _BEGINEXECUTEREQUEST, __module__ = 'query_pb2' # @@protoc_insertion_point(class_scope:query.BeginExecuteRequest) )) _sym_db.RegisterMessage(BeginExecuteRequest) BeginExecuteResponse = _reflection.GeneratedProtocolMessageType('BeginExecuteResponse', (_message.Message,), dict( DESCRIPTOR = _BEGINEXECUTERESPONSE, __module__ = 'query_pb2' # @@protoc_insertion_point(class_scope:query.BeginExecuteResponse) )) _sym_db.RegisterMessage(BeginExecuteResponse) BeginExecuteBatchRequest = _reflection.GeneratedProtocolMessageType('BeginExecuteBatchRequest', (_message.Message,), dict( DESCRIPTOR = _BEGINEXECUTEBATCHREQUEST, __module__ = 'query_pb2' # @@protoc_insertion_point(class_scope:query.BeginExecuteBatchRequest) )) _sym_db.RegisterMessage(BeginExecuteBatchRequest) BeginExecuteBatchResponse = _reflection.GeneratedProtocolMessageType('BeginExecuteBatchResponse', (_message.Message,), dict( DESCRIPTOR = _BEGINEXECUTEBATCHRESPONSE, __module__ = 'query_pb2' # @@protoc_insertion_point(class_scope:query.BeginExecuteBatchResponse) )) _sym_db.RegisterMessage(BeginExecuteBatchResponse) SplitQueryRequest = _reflection.GeneratedProtocolMessageType('SplitQueryRequest', (_message.Message,), dict( DESCRIPTOR = _SPLITQUERYREQUEST, __module__ = 'query_pb2' # @@protoc_insertion_point(class_scope:query.SplitQueryRequest) )) _sym_db.RegisterMessage(SplitQueryRequest) QuerySplit = _reflection.GeneratedProtocolMessageType('QuerySplit', (_message.Message,), dict( DESCRIPTOR = _QUERYSPLIT, __module__ = 'query_pb2' # @@protoc_insertion_point(class_scope:query.QuerySplit) )) _sym_db.RegisterMessage(QuerySplit) SplitQueryResponse = _reflection.GeneratedProtocolMessageType('SplitQueryResponse', (_message.Message,), dict( DESCRIPTOR = _SPLITQUERYRESPONSE, __module__ = 'query_pb2' # @@protoc_insertion_point(class_scope:query.SplitQueryResponse) )) _sym_db.RegisterMessage(SplitQueryResponse) StreamHealthRequest = _reflection.GeneratedProtocolMessageType('StreamHealthRequest', (_message.Message,), dict( DESCRIPTOR = _STREAMHEALTHREQUEST, __module__ = 'query_pb2' # @@protoc_insertion_point(class_scope:query.StreamHealthRequest) )) _sym_db.RegisterMessage(StreamHealthRequest) RealtimeStats = _reflection.GeneratedProtocolMessageType('RealtimeStats', (_message.Message,), dict( DESCRIPTOR = _REALTIMESTATS, __module__ = 'query_pb2' # @@protoc_insertion_point(class_scope:query.RealtimeStats) )) _sym_db.RegisterMessage(RealtimeStats) StreamHealthResponse = _reflection.GeneratedProtocolMessageType('StreamHealthResponse', (_message.Message,), dict( DESCRIPTOR = _STREAMHEALTHRESPONSE, __module__ = 'query_pb2' # @@protoc_insertion_point(class_scope:query.StreamHealthResponse) )) _sym_db.RegisterMessage(StreamHealthResponse) DESCRIPTOR.has_options = True DESCRIPTOR._options = _descriptor._ParseOptions(descriptor_pb2.FileOptions(), _b('\n\030com.youtube.vitess.proto')) _BOUNDQUERY_BINDVARIABLESENTRY.has_options = True _BOUNDQUERY_BINDVARIABLESENTRY._options = _descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b('8\001')) import abc from grpc.beta import implementations as beta_implementations from grpc.framework.common import cardinality from grpc.framework.interfaces.face import utilities as face_utilities # @@protoc_insertion_point(module_scope)
37.787183
8,052
0.742688
6e9e544b5c45a235cce6d9f62de8e958ead99d2c
4,345
bzl
Python
apple/internal/linking_support.bzl
mccorkill1/rules_apple
8562971108c11931618a220731c335e9fab9fb49
[ "Apache-2.0" ]
null
null
null
apple/internal/linking_support.bzl
mccorkill1/rules_apple
8562971108c11931618a220731c335e9fab9fb49
[ "Apache-2.0" ]
1
2021-02-23T17:44:22.000Z
2021-02-23T17:44:22.000Z
apple/internal/linking_support.bzl
mccorkill1/rules_apple
8562971108c11931618a220731c335e9fab9fb49
[ "Apache-2.0" ]
null
null
null
# Copyright 2019 The Bazel Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Support for linking related actions.""" load( "@build_bazel_rules_apple//apple/internal:rule_support.bzl", "rule_support", ) def _sectcreate_objc_provider(segname, sectname, file): """Returns an objc provider that propagates a section in a linked binary. This function creates a new objc provider that contains the necessary linkopts to create a new section in the binary to which the provider is propagated; it is equivalent to the `ld` flag `-sectcreate segname sectname file`. This can be used, for example, to embed entitlements in a simulator executable (since they are not applied during code signing). Args: segname: The name of the segment in which the section will be created. sectname: The name of the section to create. file: The file whose contents will be used as the content of the section. Returns: An objc provider that propagates the section linkopts. """ # linkopts get deduped, so use a single option to pass then through as a # set. linkopts = ["-Wl,-sectcreate,%s,%s,%s" % (segname, sectname, file.path)] return apple_common.new_objc_provider( linkopt = depset(linkopts, order = "topological"), link_inputs = depset([file]), ) def _exported_symbols_list_objc_provider(files): """Returns an objc provider that propagates exported symbols lists. This function creates a new objc provider that contains the necessary linkopts to add exported symbols lists Args: files: The files whose contents will be the exported symbols lists. Returns: An objc provider that propagates the appropriate linkopts. """ linkopts = ["-Wl,-exported_symbols_list,%s" % (file.path) for file in files] return apple_common.new_objc_provider( linkopt = depset(linkopts, order = "topological"), link_inputs = depset(files), ) def _register_linking_action(ctx, extra_linkopts = []): """Registers linking actions using the Starlark Linking API for Apple binaries. This method will add the linkopts as added on the rule descriptor, in addition to any extra linkopts given when invoking this method. Args: ctx: The rule context. extra_linkopts: Extra linkopts to add to the linking action. Returns: The `struct` returned by `apple_common.link_multi_arch_binary`, which contains the following fields: * `binary_provider`: A provider describing the binary that was linked. This is an instance of either `AppleExecutableBinaryInfo`, `AppleDylibBinaryInfo`, or `AppleLoadableBundleBinaryInfo`; all three have a `binary` field that is the linked binary `File`. * `debug_outputs_provider`: An `AppleDebugOutputsInfo` provider that contains debug outputs, such as linkmaps and dSYM binaries. * `output_groups`: A `dict` containing output groups that should be returned in the `OutputGroupInfo` provider of the calling rule. """ linkopts = [] # Compatibility path for `apple_binary`, which does not have a product type. if hasattr(ctx.attr, "_product_type"): rule_descriptor = rule_support.rule_descriptor(ctx) linkopts.extend(["-Wl,-rpath,{}".format(rpath) for rpath in rule_descriptor.rpaths]) linkopts.extend(rule_descriptor.extra_linkopts + extra_linkopts) return apple_common.link_multi_arch_binary( ctx = ctx, extra_linkopts = linkopts, ) linking_support = struct( exported_symbols_list_objc_provider = _exported_symbols_list_objc_provider, register_linking_action = _register_linking_action, sectcreate_objc_provider = _sectcreate_objc_provider, )
40.607477
95
0.718067
67529a10f7cf465815eed1d8d54a731ae6998c9e
4,332
py
Python
scorecard/tests/indicators/test_current_ratio.py
Code4SA/municipal-data-api
8b213b702245bc2ff1bab4bd160c4cd3b604d54f
[ "MIT" ]
null
null
null
scorecard/tests/indicators/test_current_ratio.py
Code4SA/municipal-data-api
8b213b702245bc2ff1bab4bd160c4cd3b604d54f
[ "MIT" ]
null
null
null
scorecard/tests/indicators/test_current_ratio.py
Code4SA/municipal-data-api
8b213b702245bc2ff1bab4bd160c4cd3b604d54f
[ "MIT" ]
null
null
null
from ...profile_data import ApiData from ...profile_data.indicators import ( CurrentRatio, ) from . import ( import_data, _IndicatorTestCase, ) from .resources import ( GeographyResource, FinancialPositionFactsV2Resource, BsheetFactsV1Resource, ) class TestCurrentRatio(_IndicatorTestCase): def test_result(self): # Load sample data import_data(GeographyResource, 'current_ratio/scorecard_geography.csv') import_data(BsheetFactsV1Resource, 'current_ratio/bsheet_facts_v1.csv') import_data( FinancialPositionFactsV2Resource, 'current_ratio/financial_position_facts_v2.csv', ) # Fetch data from API api_data = ApiData(self.api_client, "CPT", 2020, 2020, 2020, "2020q4") api_data.fetch_data([ "bsheet_auda_years", "financial_position_auda_years_v2", ]) # Provide data to indicator result = CurrentRatio.get_muni_specifics(api_data) self.assertEqual( result, { "result_type": "ratio", "values": [ { "date": 2020, "year": 2020, "amount_type": "AUDA", "assets": 17848394183.0, "liabilities": 7873348202.0, "result": 2.27, "rating": "good", "cube_version": "v2" }, { "date": 2019, "year": 2019, "amount_type": "AUDA", "assets": 14254084899.0, "liabilities": 8561736837.0, "result": 1.66, "rating": "good", "cube_version": "v1" }, { "date": 2018, "year": 2018, "amount_type": "AUDA", "assets": 14590339781.0, "liabilities": 8994077535.0, "result": 1.62, "rating": "good", "cube_version": "v1" }, { "date": 2017, "year": 2017, "amount_type": "AUDA", "assets": 11891860172.0, "liabilities": 8848578284.0, "result": 1.34, "rating": "ave", "cube_version": "v1" } ], "ref": { "title": "Circular 71", "url": "http://mfma.treasury.gov.za/Circulars/Pages/Circular71.aspx" }, "last_year": 2020, "formula": { "text": "= Current Assets / Current Liabilities", "actual": [ "=", { "cube": "bsheet", "item_codes": ["2150"], "amount_type": "AUDA", }, "/", { "cube": "bsheet", "item_codes": ["1600"], "amount_type": "AUDA", }, ], }, "formula_v2": { "text": "= Current Assets / Current Liabilities", "actual": [ "=", { "cube": "financial_position_v2", "item_codes": ["0120", "0130", "0140", "0150", "0160", "0170"], "amount_type": "AUDA", }, "/", { "cube": "financial_position_v2", "item_codes": ["0330", "0340", "0350", "0360", "0370"], "amount_type": "AUDA", }, ], }, } )
35.508197
91
0.356648
e9b815d6bf292226f9035ec12ccd57117cbe8e2a
6,519
py
Python
mars/tensor/base/isin.py
sighingnow/mars
c7897fbd144d230fff5edabc1494fb3ff44aa0d2
[ "Apache-2.0" ]
null
null
null
mars/tensor/base/isin.py
sighingnow/mars
c7897fbd144d230fff5edabc1494fb3ff44aa0d2
[ "Apache-2.0" ]
null
null
null
mars/tensor/base/isin.py
sighingnow/mars
c7897fbd144d230fff5edabc1494fb3ff44aa0d2
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 1999-2018 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from ... import opcodes as OperandDef from ...serialize import KeyField, BoolField from ..operands import TensorOperand, TensorOperandMixin from ..datasource import tensor as astensor from ..array_utils import as_same_device, device from ..core import TensorOrder from .ravel import ravel class TensorIsIn(TensorOperand, TensorOperandMixin): _op_type_ = OperandDef.ISIN _element = KeyField('element') _test_elements = KeyField('test_elements') _assume_unique = BoolField('assume_unique') _invert = BoolField('invert') def __init__(self, assume_unique=None, invert=None, dtype=None, **kw): dtype = np.dtype(bool) if dtype is None else dtype super(TensorIsIn, self).__init__(_assume_unique=assume_unique, _invert=invert, _dtype=dtype, **kw) @property def element(self): return self._element @property def test_elements(self): return self._test_elements @property def assume_unique(self): return self._assume_unique @property def invert(self): return self._invert def _set_inputs(self, inputs): super(TensorIsIn, self)._set_inputs(inputs) self._element = self._inputs[0] self._test_elements = self._inputs[1] def __call__(self, element, test_elements): element, test_elements = astensor(element), ravel(astensor(test_elements)) return self.new_tensor([element, test_elements], element.shape, order=TensorOrder.C_ORDER) @classmethod def tile(cls, op): in_tensor = op.element test_elements = op.test_elements out_tensor = op.outputs[0] if len(test_elements.chunks) != 1: test_elements = test_elements.rechunk(len(test_elements)).single_tiles() test_elements_chunk = test_elements.chunks[0] out_chunks = [] for c in in_tensor.chunks: chunk_op = op.copy().reset_key() out_chunk = chunk_op.new_chunk([c, test_elements_chunk], shape=c.shape, index=c.index, order=out_tensor.order) out_chunks.append(out_chunk) new_op = op.copy() return new_op.new_tensors([in_tensor, test_elements], out_tensor.shape, order=out_tensor.order, chunks=out_chunks, nsplits=in_tensor.nsplits) @classmethod def execute(cls, ctx, op): (element, test_elements), device_id, xp = as_same_device( [ctx[c.key] for c in op.inputs], device=op.device, ret_extra=True) with device(device_id): ctx[op.outputs[0].key] = xp.isin(element, test_elements, assume_unique=op.assume_unique, invert=op.invert) def isin(element, test_elements, assume_unique=False, invert=False): """ Calculates `element in test_elements`, broadcasting over `element` only. Returns a boolean array of the same shape as `element` that is True where an element of `element` is in `test_elements` and False otherwise. Parameters ---------- element : array_like Input tensor. test_elements : array_like The values against which to test each value of `element`. This argument is flattened if it is a tensor or array_like. See notes for behavior with non-array-like parameters. assume_unique : bool, optional If True, the input tensors are both assumed to be unique, which can speed up the calculation. Default is False. invert : bool, optional If True, the values in the returned tensor are inverted, as if calculating `element not in test_elements`. Default is False. ``mt.isin(a, b, invert=True)`` is equivalent to (but faster than) ``mt.invert(mt.isin(a, b))``. Returns ------- isin : Tensor, bool Has the same shape as `element`. The values `element[isin]` are in `test_elements`. See Also -------- in1d : Flattened version of this function. Notes ----- `isin` is an element-wise function version of the python keyword `in`. ``isin(a, b)`` is roughly equivalent to ``mt.array([item in b for item in a])`` if `a` and `b` are 1-D sequences. `element` and `test_elements` are converted to tensors if they are not already. If `test_elements` is a set (or other non-sequence collection) it will be converted to an object tensor with one element, rather than a tensor of the values contained in `test_elements`. This is a consequence of the `tensor` constructor's way of handling non-sequence collections. Converting the set to a list usually gives the desired behavior. Examples -------- >>> import mars.tensor as mt >>> element = 2*mt.arange(4).reshape((2, 2)) >>> element.execute() array([[0, 2], [4, 6]]) >>> test_elements = [1, 2, 4, 8] >>> mask = mt.isin(element, test_elements) >>> mask.execute() array([[ False, True], [ True, False]]) >>> element[mask].execute() array([2, 4]) >>> mask = mt.isin(element, test_elements, invert=True) >>> mask.execute() array([[ True, False], [ False, True]]) >>> element[mask] array([0, 6]) Because of how `array` handles sets, the following does not work as expected: >>> test_set = {1, 2, 4, 8} >>> mt.isin(element, test_set).execute() array([[ False, False], [ False, False]]) Casting the set to a list gives the expected result: >>> mt.isin(element, list(test_set)).execute() array([[ False, True], [ True, False]]) """ op = TensorIsIn(assume_unique, invert) return op(element, test_elements)
35.237838
98
0.637828
7b8c3c5ee7d94a1ce748c6d074633b503a9492ce
727
py
Python
Spaceship/message_types/msg_sensors.py
eyler94/ee674AirplaneSim
3ba2c6e685c2688a7f372475a7cd1f55f583d10e
[ "MIT" ]
1
2020-06-07T00:14:42.000Z
2020-06-07T00:14:42.000Z
Spaceship/message_types/msg_sensors.py
eyler94/ee674AirplaneSim
3ba2c6e685c2688a7f372475a7cd1f55f583d10e
[ "MIT" ]
null
null
null
Spaceship/message_types/msg_sensors.py
eyler94/ee674AirplaneSim
3ba2c6e685c2688a7f372475a7cd1f55f583d10e
[ "MIT" ]
1
2019-06-24T22:10:48.000Z
2019-06-24T22:10:48.000Z
""" msg_sensors - messages type for output of sensors part of mavsim_python - Beard & McLain, PUP, 2012 - Last update: 2/16/2019 - RWB """ class msg_sensors: def __init__(self): self.gyro_x = 0 # gyro_x self.gyro_y = 0 # gyro_y self.gyro_z = 0 # gyro_z self.accel_x = 0 # accel_x self.accel_y = 0 # accel_y self.accel_z = 0 # accel_z self.static_pressure = 0 # static pressure self.diff_pressure = 0 # differential pressure self.gps_n = 0 # gps north self.gps_e = 0 # gps east self.gps_h = 0 # gps altitude self.gps_Vg = 0 # gps ground speed self.gps_course = 0 # gps course angle
29.08
55
0.576341
b1362f54215aa607bc641842ffb47ab337afb0d5
1,179
py
Python
esphome/components/sntp/time.py
OttoWinter/esphomeyaml
6a85259e4d6d1b0a0f819688b8e555efcb99ecb0
[ "MIT" ]
249
2018-04-07T12:04:11.000Z
2019-01-25T01:11:34.000Z
esphome/components/sntp/time.py
OttoWinter/esphomeyaml
6a85259e4d6d1b0a0f819688b8e555efcb99ecb0
[ "MIT" ]
243
2018-04-11T16:37:11.000Z
2019-01-25T16:50:37.000Z
esphome/components/sntp/time.py
OttoWinter/esphomeyaml
6a85259e4d6d1b0a0f819688b8e555efcb99ecb0
[ "MIT" ]
40
2018-04-10T05:50:14.000Z
2019-01-25T15:20:36.000Z
from esphome.components import time as time_ import esphome.config_validation as cv import esphome.codegen as cg from esphome.core import CORE from esphome.const import CONF_ID, CONF_SERVERS DEPENDENCIES = ["network"] sntp_ns = cg.esphome_ns.namespace("sntp") SNTPComponent = sntp_ns.class_("SNTPComponent", time_.RealTimeClock) DEFAULT_SERVERS = ["0.pool.ntp.org", "1.pool.ntp.org", "2.pool.ntp.org"] CONFIG_SCHEMA = time_.TIME_SCHEMA.extend( { cv.GenerateID(): cv.declare_id(SNTPComponent), cv.Optional(CONF_SERVERS, default=DEFAULT_SERVERS): cv.All( cv.ensure_list(cv.Any(cv.domain, cv.hostname)), cv.Length(min=1, max=3) ), } ).extend(cv.COMPONENT_SCHEMA) async def to_code(config): var = cg.new_Pvariable(config[CONF_ID]) servers = config[CONF_SERVERS] servers += [""] * (3 - len(servers)) cg.add(var.set_servers(*servers)) await cg.register_component(var, config) await time_.register_time(var, config) if CORE.is_esp8266 and len(servers) > 1: # We need LwIP features enabled to get 3 SNTP servers (not just one) cg.add_build_flag("-DPIO_FRAMEWORK_ARDUINO_LWIP2_LOW_MEMORY")
31.026316
83
0.71162
6e6093b5c0d1d438c1cd76caaf1d63937e638aed
650
py
Python
startupservice/src/__init__.py
Mariusz1970/enigma2-plugins-1
126d31d075c156f32b09d4321ebe1a17f93a5bd6
[ "OLDAP-2.3" ]
2
2020-09-02T18:25:39.000Z
2020-09-02T18:39:07.000Z
startupservice/src/__init__.py
Mariusz1970/enigma2-plugins-1
126d31d075c156f32b09d4321ebe1a17f93a5bd6
[ "OLDAP-2.3" ]
null
null
null
startupservice/src/__init__.py
Mariusz1970/enigma2-plugins-1
126d31d075c156f32b09d4321ebe1a17f93a5bd6
[ "OLDAP-2.3" ]
11
2015-02-26T20:59:14.000Z
2021-09-20T08:23:03.000Z
# -*- coding: utf-8 -*- from Components.Language import language from Tools.Directories import resolveFilename, SCOPE_PLUGINS, SCOPE_LANGUAGE import os, gettext PluginLanguageDomain = "StartUpService" PluginLanguagePath = "SystemPlugins/StartUpService/locale" def localeInit(): gettext.bindtextdomain(PluginLanguageDomain, resolveFilename(SCOPE_PLUGINS, PluginLanguagePath)) def _(txt): if gettext.dgettext(PluginLanguageDomain, txt): return gettext.dgettext(PluginLanguageDomain, txt) else: print "[" + PluginLanguageDomain + "] fallback to default translation for " + txt return gettext.gettext(txt) language.addCallback(localeInit())
32.5
97
0.8
e47c2df134cdb3056c0ff664f6070f677b1c7477
144
py
Python
tests/test_relascope.py
Submissions/relascope
6bc9cfac99ab5d15bc62ed4538195d59da6893cb
[ "MIT" ]
null
null
null
tests/test_relascope.py
Submissions/relascope
6bc9cfac99ab5d15bc62ed4538195d59da6893cb
[ "MIT" ]
null
null
null
tests/test_relascope.py
Submissions/relascope
6bc9cfac99ab5d15bc62ed4538195d59da6893cb
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- """ test_relascope ---------------------------------- Tests for `relascope` module. """ # TODO
12
34
0.458333
01d1f680f2f1e82106f35bc936c819a48b7bdf2d
630
py
Python
setup.py
swd543/reconstruct-document
8f366ec4f7a90d6499f3bb97a4522cbde9f8b7d0
[ "MIT" ]
5
2019-01-16T10:49:06.000Z
2019-02-06T08:40:45.000Z
setup.py
swd543/reconstruct-document
8f366ec4f7a90d6499f3bb97a4522cbde9f8b7d0
[ "MIT" ]
null
null
null
setup.py
swd543/reconstruct-document
8f366ec4f7a90d6499f3bb97a4522cbde9f8b7d0
[ "MIT" ]
1
2019-11-19T22:59:27.000Z
2019-11-19T22:59:27.000Z
import re import os from setuptools import setup version = '1.0.0' description = '' with open('README.md', 'rb') as file: description = file.read().decode('utf-8') setup(name='reconstruct_document', version=version, description='Command line document reconstruction utility.', long_description=description, entry_points = { 'console_scripts': ['reconstruct_document = reconstruct_document.reconstruct_document:main'] }, url='http://kaunild.github.io', author='Kaunil Dhruv', author_email='dhruv.kaunil@gmail.com', license='BSD', packages=['reconstruct_document', 'test'] )
24.230769
100
0.696825
ffbd0fcf2d80f2dc158054f84e018c1e068da28c
90,563
py
Python
Lib/test/test_functools.py
kolyshkin/cpython
8c349565e8a442e17f1a954d1a9996847749d778
[ "CNRI-Python-GPL-Compatible" ]
3
2019-04-23T11:06:38.000Z
2021-03-03T12:17:16.000Z
Lib/test/test_functools.py
kolyshkin/cpython
8c349565e8a442e17f1a954d1a9996847749d778
[ "CNRI-Python-GPL-Compatible" ]
2
2019-04-23T15:32:51.000Z
2019-05-10T20:32:32.000Z
Lib/test/test_functools.py
kolyshkin/cpython
8c349565e8a442e17f1a954d1a9996847749d778
[ "CNRI-Python-GPL-Compatible" ]
1
2021-02-20T14:09:54.000Z
2021-02-20T14:09:54.000Z
import abc import builtins import collections import collections.abc import copy from itertools import permutations import pickle from random import choice import sys from test import support import threading import time import typing import unittest import unittest.mock from weakref import proxy import contextlib import functools py_functools = support.import_fresh_module('functools', blocked=['_functools']) c_functools = support.import_fresh_module('functools', fresh=['_functools']) decimal = support.import_fresh_module('decimal', fresh=['_decimal']) @contextlib.contextmanager def replaced_module(name, replacement): original_module = sys.modules[name] sys.modules[name] = replacement try: yield finally: sys.modules[name] = original_module def capture(*args, **kw): """capture all positional and keyword arguments""" return args, kw def signature(part): """ return the signature of a partial object """ return (part.func, part.args, part.keywords, part.__dict__) class MyTuple(tuple): pass class BadTuple(tuple): def __add__(self, other): return list(self) + list(other) class MyDict(dict): pass class TestPartial: def test_basic_examples(self): p = self.partial(capture, 1, 2, a=10, b=20) self.assertTrue(callable(p)) self.assertEqual(p(3, 4, b=30, c=40), ((1, 2, 3, 4), dict(a=10, b=30, c=40))) p = self.partial(map, lambda x: x*10) self.assertEqual(list(p([1,2,3,4])), [10, 20, 30, 40]) def test_attributes(self): p = self.partial(capture, 1, 2, a=10, b=20) # attributes should be readable self.assertEqual(p.func, capture) self.assertEqual(p.args, (1, 2)) self.assertEqual(p.keywords, dict(a=10, b=20)) def test_argument_checking(self): self.assertRaises(TypeError, self.partial) # need at least a func arg try: self.partial(2)() except TypeError: pass else: self.fail('First arg not checked for callability') def test_protection_of_callers_dict_argument(self): # a caller's dictionary should not be altered by partial def func(a=10, b=20): return a d = {'a':3} p = self.partial(func, a=5) self.assertEqual(p(**d), 3) self.assertEqual(d, {'a':3}) p(b=7) self.assertEqual(d, {'a':3}) def test_kwargs_copy(self): # Issue #29532: Altering a kwarg dictionary passed to a constructor # should not affect a partial object after creation d = {'a': 3} p = self.partial(capture, **d) self.assertEqual(p(), ((), {'a': 3})) d['a'] = 5 self.assertEqual(p(), ((), {'a': 3})) def test_arg_combinations(self): # exercise special code paths for zero args in either partial # object or the caller p = self.partial(capture) self.assertEqual(p(), ((), {})) self.assertEqual(p(1,2), ((1,2), {})) p = self.partial(capture, 1, 2) self.assertEqual(p(), ((1,2), {})) self.assertEqual(p(3,4), ((1,2,3,4), {})) def test_kw_combinations(self): # exercise special code paths for no keyword args in # either the partial object or the caller p = self.partial(capture) self.assertEqual(p.keywords, {}) self.assertEqual(p(), ((), {})) self.assertEqual(p(a=1), ((), {'a':1})) p = self.partial(capture, a=1) self.assertEqual(p.keywords, {'a':1}) self.assertEqual(p(), ((), {'a':1})) self.assertEqual(p(b=2), ((), {'a':1, 'b':2})) # keyword args in the call override those in the partial object self.assertEqual(p(a=3, b=2), ((), {'a':3, 'b':2})) def test_positional(self): # make sure positional arguments are captured correctly for args in [(), (0,), (0,1), (0,1,2), (0,1,2,3)]: p = self.partial(capture, *args) expected = args + ('x',) got, empty = p('x') self.assertTrue(expected == got and empty == {}) def test_keyword(self): # make sure keyword arguments are captured correctly for a in ['a', 0, None, 3.5]: p = self.partial(capture, a=a) expected = {'a':a,'x':None} empty, got = p(x=None) self.assertTrue(expected == got and empty == ()) def test_no_side_effects(self): # make sure there are no side effects that affect subsequent calls p = self.partial(capture, 0, a=1) args1, kw1 = p(1, b=2) self.assertTrue(args1 == (0,1) and kw1 == {'a':1,'b':2}) args2, kw2 = p() self.assertTrue(args2 == (0,) and kw2 == {'a':1}) def test_error_propagation(self): def f(x, y): x / y self.assertRaises(ZeroDivisionError, self.partial(f, 1, 0)) self.assertRaises(ZeroDivisionError, self.partial(f, 1), 0) self.assertRaises(ZeroDivisionError, self.partial(f), 1, 0) self.assertRaises(ZeroDivisionError, self.partial(f, y=0), 1) def test_weakref(self): f = self.partial(int, base=16) p = proxy(f) self.assertEqual(f.func, p.func) f = None self.assertRaises(ReferenceError, getattr, p, 'func') def test_with_bound_and_unbound_methods(self): data = list(map(str, range(10))) join = self.partial(str.join, '') self.assertEqual(join(data), '0123456789') join = self.partial(''.join) self.assertEqual(join(data), '0123456789') def test_nested_optimization(self): partial = self.partial inner = partial(signature, 'asdf') nested = partial(inner, bar=True) flat = partial(signature, 'asdf', bar=True) self.assertEqual(signature(nested), signature(flat)) def test_nested_partial_with_attribute(self): # see issue 25137 partial = self.partial def foo(bar): return bar p = partial(foo, 'first') p2 = partial(p, 'second') p2.new_attr = 'spam' self.assertEqual(p2.new_attr, 'spam') def test_repr(self): args = (object(), object()) args_repr = ', '.join(repr(a) for a in args) kwargs = {'a': object(), 'b': object()} kwargs_reprs = ['a={a!r}, b={b!r}'.format_map(kwargs), 'b={b!r}, a={a!r}'.format_map(kwargs)] if self.partial in (c_functools.partial, py_functools.partial): name = 'functools.partial' else: name = self.partial.__name__ f = self.partial(capture) self.assertEqual(f'{name}({capture!r})', repr(f)) f = self.partial(capture, *args) self.assertEqual(f'{name}({capture!r}, {args_repr})', repr(f)) f = self.partial(capture, **kwargs) self.assertIn(repr(f), [f'{name}({capture!r}, {kwargs_repr})' for kwargs_repr in kwargs_reprs]) f = self.partial(capture, *args, **kwargs) self.assertIn(repr(f), [f'{name}({capture!r}, {args_repr}, {kwargs_repr})' for kwargs_repr in kwargs_reprs]) def test_recursive_repr(self): if self.partial in (c_functools.partial, py_functools.partial): name = 'functools.partial' else: name = self.partial.__name__ f = self.partial(capture) f.__setstate__((f, (), {}, {})) try: self.assertEqual(repr(f), '%s(...)' % (name,)) finally: f.__setstate__((capture, (), {}, {})) f = self.partial(capture) f.__setstate__((capture, (f,), {}, {})) try: self.assertEqual(repr(f), '%s(%r, ...)' % (name, capture,)) finally: f.__setstate__((capture, (), {}, {})) f = self.partial(capture) f.__setstate__((capture, (), {'a': f}, {})) try: self.assertEqual(repr(f), '%s(%r, a=...)' % (name, capture,)) finally: f.__setstate__((capture, (), {}, {})) def test_pickle(self): with self.AllowPickle(): f = self.partial(signature, ['asdf'], bar=[True]) f.attr = [] for proto in range(pickle.HIGHEST_PROTOCOL + 1): f_copy = pickle.loads(pickle.dumps(f, proto)) self.assertEqual(signature(f_copy), signature(f)) def test_copy(self): f = self.partial(signature, ['asdf'], bar=[True]) f.attr = [] f_copy = copy.copy(f) self.assertEqual(signature(f_copy), signature(f)) self.assertIs(f_copy.attr, f.attr) self.assertIs(f_copy.args, f.args) self.assertIs(f_copy.keywords, f.keywords) def test_deepcopy(self): f = self.partial(signature, ['asdf'], bar=[True]) f.attr = [] f_copy = copy.deepcopy(f) self.assertEqual(signature(f_copy), signature(f)) self.assertIsNot(f_copy.attr, f.attr) self.assertIsNot(f_copy.args, f.args) self.assertIsNot(f_copy.args[0], f.args[0]) self.assertIsNot(f_copy.keywords, f.keywords) self.assertIsNot(f_copy.keywords['bar'], f.keywords['bar']) def test_setstate(self): f = self.partial(signature) f.__setstate__((capture, (1,), dict(a=10), dict(attr=[]))) self.assertEqual(signature(f), (capture, (1,), dict(a=10), dict(attr=[]))) self.assertEqual(f(2, b=20), ((1, 2), {'a': 10, 'b': 20})) f.__setstate__((capture, (1,), dict(a=10), None)) self.assertEqual(signature(f), (capture, (1,), dict(a=10), {})) self.assertEqual(f(2, b=20), ((1, 2), {'a': 10, 'b': 20})) f.__setstate__((capture, (1,), None, None)) #self.assertEqual(signature(f), (capture, (1,), {}, {})) self.assertEqual(f(2, b=20), ((1, 2), {'b': 20})) self.assertEqual(f(2), ((1, 2), {})) self.assertEqual(f(), ((1,), {})) f.__setstate__((capture, (), {}, None)) self.assertEqual(signature(f), (capture, (), {}, {})) self.assertEqual(f(2, b=20), ((2,), {'b': 20})) self.assertEqual(f(2), ((2,), {})) self.assertEqual(f(), ((), {})) def test_setstate_errors(self): f = self.partial(signature) self.assertRaises(TypeError, f.__setstate__, (capture, (), {})) self.assertRaises(TypeError, f.__setstate__, (capture, (), {}, {}, None)) self.assertRaises(TypeError, f.__setstate__, [capture, (), {}, None]) self.assertRaises(TypeError, f.__setstate__, (None, (), {}, None)) self.assertRaises(TypeError, f.__setstate__, (capture, None, {}, None)) self.assertRaises(TypeError, f.__setstate__, (capture, [], {}, None)) self.assertRaises(TypeError, f.__setstate__, (capture, (), [], None)) def test_setstate_subclasses(self): f = self.partial(signature) f.__setstate__((capture, MyTuple((1,)), MyDict(a=10), None)) s = signature(f) self.assertEqual(s, (capture, (1,), dict(a=10), {})) self.assertIs(type(s[1]), tuple) self.assertIs(type(s[2]), dict) r = f() self.assertEqual(r, ((1,), {'a': 10})) self.assertIs(type(r[0]), tuple) self.assertIs(type(r[1]), dict) f.__setstate__((capture, BadTuple((1,)), {}, None)) s = signature(f) self.assertEqual(s, (capture, (1,), {}, {})) self.assertIs(type(s[1]), tuple) r = f(2) self.assertEqual(r, ((1, 2), {})) self.assertIs(type(r[0]), tuple) def test_recursive_pickle(self): with self.AllowPickle(): f = self.partial(capture) f.__setstate__((f, (), {}, {})) try: for proto in range(pickle.HIGHEST_PROTOCOL + 1): with self.assertRaises(RecursionError): pickle.dumps(f, proto) finally: f.__setstate__((capture, (), {}, {})) f = self.partial(capture) f.__setstate__((capture, (f,), {}, {})) try: for proto in range(pickle.HIGHEST_PROTOCOL + 1): f_copy = pickle.loads(pickle.dumps(f, proto)) try: self.assertIs(f_copy.args[0], f_copy) finally: f_copy.__setstate__((capture, (), {}, {})) finally: f.__setstate__((capture, (), {}, {})) f = self.partial(capture) f.__setstate__((capture, (), {'a': f}, {})) try: for proto in range(pickle.HIGHEST_PROTOCOL + 1): f_copy = pickle.loads(pickle.dumps(f, proto)) try: self.assertIs(f_copy.keywords['a'], f_copy) finally: f_copy.__setstate__((capture, (), {}, {})) finally: f.__setstate__((capture, (), {}, {})) # Issue 6083: Reference counting bug def test_setstate_refcount(self): class BadSequence: def __len__(self): return 4 def __getitem__(self, key): if key == 0: return max elif key == 1: return tuple(range(1000000)) elif key in (2, 3): return {} raise IndexError f = self.partial(object) self.assertRaises(TypeError, f.__setstate__, BadSequence()) @unittest.skipUnless(c_functools, 'requires the C _functools module') class TestPartialC(TestPartial, unittest.TestCase): if c_functools: partial = c_functools.partial class AllowPickle: def __enter__(self): return self def __exit__(self, type, value, tb): return False def test_attributes_unwritable(self): # attributes should not be writable p = self.partial(capture, 1, 2, a=10, b=20) self.assertRaises(AttributeError, setattr, p, 'func', map) self.assertRaises(AttributeError, setattr, p, 'args', (1, 2)) self.assertRaises(AttributeError, setattr, p, 'keywords', dict(a=1, b=2)) p = self.partial(hex) try: del p.__dict__ except TypeError: pass else: self.fail('partial object allowed __dict__ to be deleted') def test_manually_adding_non_string_keyword(self): p = self.partial(capture) # Adding a non-string/unicode keyword to partial kwargs p.keywords[1234] = 'value' r = repr(p) self.assertIn('1234', r) self.assertIn("'value'", r) with self.assertRaises(TypeError): p() def test_keystr_replaces_value(self): p = self.partial(capture) class MutatesYourDict(object): def __str__(self): p.keywords[self] = ['sth2'] return 'astr' # Replacing the value during key formatting should keep the original # value alive (at least long enough). p.keywords[MutatesYourDict()] = ['sth'] r = repr(p) self.assertIn('astr', r) self.assertIn("['sth']", r) class TestPartialPy(TestPartial, unittest.TestCase): partial = py_functools.partial class AllowPickle: def __init__(self): self._cm = replaced_module("functools", py_functools) def __enter__(self): return self._cm.__enter__() def __exit__(self, type, value, tb): return self._cm.__exit__(type, value, tb) if c_functools: class CPartialSubclass(c_functools.partial): pass class PyPartialSubclass(py_functools.partial): pass @unittest.skipUnless(c_functools, 'requires the C _functools module') class TestPartialCSubclass(TestPartialC): if c_functools: partial = CPartialSubclass # partial subclasses are not optimized for nested calls test_nested_optimization = None class TestPartialPySubclass(TestPartialPy): partial = PyPartialSubclass class TestPartialMethod(unittest.TestCase): class A(object): nothing = functools.partialmethod(capture) positional = functools.partialmethod(capture, 1) keywords = functools.partialmethod(capture, a=2) both = functools.partialmethod(capture, 3, b=4) nested = functools.partialmethod(positional, 5) over_partial = functools.partialmethod(functools.partial(capture, c=6), 7) static = functools.partialmethod(staticmethod(capture), 8) cls = functools.partialmethod(classmethod(capture), d=9) a = A() def test_arg_combinations(self): self.assertEqual(self.a.nothing(), ((self.a,), {})) self.assertEqual(self.a.nothing(5), ((self.a, 5), {})) self.assertEqual(self.a.nothing(c=6), ((self.a,), {'c': 6})) self.assertEqual(self.a.nothing(5, c=6), ((self.a, 5), {'c': 6})) self.assertEqual(self.a.positional(), ((self.a, 1), {})) self.assertEqual(self.a.positional(5), ((self.a, 1, 5), {})) self.assertEqual(self.a.positional(c=6), ((self.a, 1), {'c': 6})) self.assertEqual(self.a.positional(5, c=6), ((self.a, 1, 5), {'c': 6})) self.assertEqual(self.a.keywords(), ((self.a,), {'a': 2})) self.assertEqual(self.a.keywords(5), ((self.a, 5), {'a': 2})) self.assertEqual(self.a.keywords(c=6), ((self.a,), {'a': 2, 'c': 6})) self.assertEqual(self.a.keywords(5, c=6), ((self.a, 5), {'a': 2, 'c': 6})) self.assertEqual(self.a.both(), ((self.a, 3), {'b': 4})) self.assertEqual(self.a.both(5), ((self.a, 3, 5), {'b': 4})) self.assertEqual(self.a.both(c=6), ((self.a, 3), {'b': 4, 'c': 6})) self.assertEqual(self.a.both(5, c=6), ((self.a, 3, 5), {'b': 4, 'c': 6})) self.assertEqual(self.A.both(self.a, 5, c=6), ((self.a, 3, 5), {'b': 4, 'c': 6})) def test_nested(self): self.assertEqual(self.a.nested(), ((self.a, 1, 5), {})) self.assertEqual(self.a.nested(6), ((self.a, 1, 5, 6), {})) self.assertEqual(self.a.nested(d=7), ((self.a, 1, 5), {'d': 7})) self.assertEqual(self.a.nested(6, d=7), ((self.a, 1, 5, 6), {'d': 7})) self.assertEqual(self.A.nested(self.a, 6, d=7), ((self.a, 1, 5, 6), {'d': 7})) def test_over_partial(self): self.assertEqual(self.a.over_partial(), ((self.a, 7), {'c': 6})) self.assertEqual(self.a.over_partial(5), ((self.a, 7, 5), {'c': 6})) self.assertEqual(self.a.over_partial(d=8), ((self.a, 7), {'c': 6, 'd': 8})) self.assertEqual(self.a.over_partial(5, d=8), ((self.a, 7, 5), {'c': 6, 'd': 8})) self.assertEqual(self.A.over_partial(self.a, 5, d=8), ((self.a, 7, 5), {'c': 6, 'd': 8})) def test_bound_method_introspection(self): obj = self.a self.assertIs(obj.both.__self__, obj) self.assertIs(obj.nested.__self__, obj) self.assertIs(obj.over_partial.__self__, obj) self.assertIs(obj.cls.__self__, self.A) self.assertIs(self.A.cls.__self__, self.A) def test_unbound_method_retrieval(self): obj = self.A self.assertFalse(hasattr(obj.both, "__self__")) self.assertFalse(hasattr(obj.nested, "__self__")) self.assertFalse(hasattr(obj.over_partial, "__self__")) self.assertFalse(hasattr(obj.static, "__self__")) self.assertFalse(hasattr(self.a.static, "__self__")) def test_descriptors(self): for obj in [self.A, self.a]: with self.subTest(obj=obj): self.assertEqual(obj.static(), ((8,), {})) self.assertEqual(obj.static(5), ((8, 5), {})) self.assertEqual(obj.static(d=8), ((8,), {'d': 8})) self.assertEqual(obj.static(5, d=8), ((8, 5), {'d': 8})) self.assertEqual(obj.cls(), ((self.A,), {'d': 9})) self.assertEqual(obj.cls(5), ((self.A, 5), {'d': 9})) self.assertEqual(obj.cls(c=8), ((self.A,), {'c': 8, 'd': 9})) self.assertEqual(obj.cls(5, c=8), ((self.A, 5), {'c': 8, 'd': 9})) def test_overriding_keywords(self): self.assertEqual(self.a.keywords(a=3), ((self.a,), {'a': 3})) self.assertEqual(self.A.keywords(self.a, a=3), ((self.a,), {'a': 3})) def test_invalid_args(self): with self.assertRaises(TypeError): class B(object): method = functools.partialmethod(None, 1) def test_repr(self): self.assertEqual(repr(vars(self.A)['both']), 'functools.partialmethod({}, 3, b=4)'.format(capture)) def test_abstract(self): class Abstract(abc.ABCMeta): @abc.abstractmethod def add(self, x, y): pass add5 = functools.partialmethod(add, 5) self.assertTrue(Abstract.add.__isabstractmethod__) self.assertTrue(Abstract.add5.__isabstractmethod__) for func in [self.A.static, self.A.cls, self.A.over_partial, self.A.nested, self.A.both]: self.assertFalse(getattr(func, '__isabstractmethod__', False)) class TestUpdateWrapper(unittest.TestCase): def check_wrapper(self, wrapper, wrapped, assigned=functools.WRAPPER_ASSIGNMENTS, updated=functools.WRAPPER_UPDATES): # Check attributes were assigned for name in assigned: self.assertIs(getattr(wrapper, name), getattr(wrapped, name)) # Check attributes were updated for name in updated: wrapper_attr = getattr(wrapper, name) wrapped_attr = getattr(wrapped, name) for key in wrapped_attr: if name == "__dict__" and key == "__wrapped__": # __wrapped__ is overwritten by the update code continue self.assertIs(wrapped_attr[key], wrapper_attr[key]) # Check __wrapped__ self.assertIs(wrapper.__wrapped__, wrapped) def _default_update(self): def f(a:'This is a new annotation'): """This is a test""" pass f.attr = 'This is also a test' f.__wrapped__ = "This is a bald faced lie" def wrapper(b:'This is the prior annotation'): pass functools.update_wrapper(wrapper, f) return wrapper, f def test_default_update(self): wrapper, f = self._default_update() self.check_wrapper(wrapper, f) self.assertIs(wrapper.__wrapped__, f) self.assertEqual(wrapper.__name__, 'f') self.assertEqual(wrapper.__qualname__, f.__qualname__) self.assertEqual(wrapper.attr, 'This is also a test') self.assertEqual(wrapper.__annotations__['a'], 'This is a new annotation') self.assertNotIn('b', wrapper.__annotations__) @unittest.skipIf(sys.flags.optimize >= 2, "Docstrings are omitted with -O2 and above") def test_default_update_doc(self): wrapper, f = self._default_update() self.assertEqual(wrapper.__doc__, 'This is a test') def test_no_update(self): def f(): """This is a test""" pass f.attr = 'This is also a test' def wrapper(): pass functools.update_wrapper(wrapper, f, (), ()) self.check_wrapper(wrapper, f, (), ()) self.assertEqual(wrapper.__name__, 'wrapper') self.assertNotEqual(wrapper.__qualname__, f.__qualname__) self.assertEqual(wrapper.__doc__, None) self.assertEqual(wrapper.__annotations__, {}) self.assertFalse(hasattr(wrapper, 'attr')) def test_selective_update(self): def f(): pass f.attr = 'This is a different test' f.dict_attr = dict(a=1, b=2, c=3) def wrapper(): pass wrapper.dict_attr = {} assign = ('attr',) update = ('dict_attr',) functools.update_wrapper(wrapper, f, assign, update) self.check_wrapper(wrapper, f, assign, update) self.assertEqual(wrapper.__name__, 'wrapper') self.assertNotEqual(wrapper.__qualname__, f.__qualname__) self.assertEqual(wrapper.__doc__, None) self.assertEqual(wrapper.attr, 'This is a different test') self.assertEqual(wrapper.dict_attr, f.dict_attr) def test_missing_attributes(self): def f(): pass def wrapper(): pass wrapper.dict_attr = {} assign = ('attr',) update = ('dict_attr',) # Missing attributes on wrapped object are ignored functools.update_wrapper(wrapper, f, assign, update) self.assertNotIn('attr', wrapper.__dict__) self.assertEqual(wrapper.dict_attr, {}) # Wrapper must have expected attributes for updating del wrapper.dict_attr with self.assertRaises(AttributeError): functools.update_wrapper(wrapper, f, assign, update) wrapper.dict_attr = 1 with self.assertRaises(AttributeError): functools.update_wrapper(wrapper, f, assign, update) @support.requires_docstrings @unittest.skipIf(sys.flags.optimize >= 2, "Docstrings are omitted with -O2 and above") def test_builtin_update(self): # Test for bug #1576241 def wrapper(): pass functools.update_wrapper(wrapper, max) self.assertEqual(wrapper.__name__, 'max') self.assertTrue(wrapper.__doc__.startswith('max(')) self.assertEqual(wrapper.__annotations__, {}) class TestWraps(TestUpdateWrapper): def _default_update(self): def f(): """This is a test""" pass f.attr = 'This is also a test' f.__wrapped__ = "This is still a bald faced lie" @functools.wraps(f) def wrapper(): pass return wrapper, f def test_default_update(self): wrapper, f = self._default_update() self.check_wrapper(wrapper, f) self.assertEqual(wrapper.__name__, 'f') self.assertEqual(wrapper.__qualname__, f.__qualname__) self.assertEqual(wrapper.attr, 'This is also a test') @unittest.skipIf(sys.flags.optimize >= 2, "Docstrings are omitted with -O2 and above") def test_default_update_doc(self): wrapper, _ = self._default_update() self.assertEqual(wrapper.__doc__, 'This is a test') def test_no_update(self): def f(): """This is a test""" pass f.attr = 'This is also a test' @functools.wraps(f, (), ()) def wrapper(): pass self.check_wrapper(wrapper, f, (), ()) self.assertEqual(wrapper.__name__, 'wrapper') self.assertNotEqual(wrapper.__qualname__, f.__qualname__) self.assertEqual(wrapper.__doc__, None) self.assertFalse(hasattr(wrapper, 'attr')) def test_selective_update(self): def f(): pass f.attr = 'This is a different test' f.dict_attr = dict(a=1, b=2, c=3) def add_dict_attr(f): f.dict_attr = {} return f assign = ('attr',) update = ('dict_attr',) @functools.wraps(f, assign, update) @add_dict_attr def wrapper(): pass self.check_wrapper(wrapper, f, assign, update) self.assertEqual(wrapper.__name__, 'wrapper') self.assertNotEqual(wrapper.__qualname__, f.__qualname__) self.assertEqual(wrapper.__doc__, None) self.assertEqual(wrapper.attr, 'This is a different test') self.assertEqual(wrapper.dict_attr, f.dict_attr) class TestReduce: def test_reduce(self): class Squares: def __init__(self, max): self.max = max self.sofar = [] def __len__(self): return len(self.sofar) def __getitem__(self, i): if not 0 <= i < self.max: raise IndexError n = len(self.sofar) while n <= i: self.sofar.append(n*n) n += 1 return self.sofar[i] def add(x, y): return x + y self.assertEqual(self.reduce(add, ['a', 'b', 'c'], ''), 'abc') self.assertEqual( self.reduce(add, [['a', 'c'], [], ['d', 'w']], []), ['a','c','d','w'] ) self.assertEqual(self.reduce(lambda x, y: x*y, range(2,8), 1), 5040) self.assertEqual( self.reduce(lambda x, y: x*y, range(2,21), 1), 2432902008176640000 ) self.assertEqual(self.reduce(add, Squares(10)), 285) self.assertEqual(self.reduce(add, Squares(10), 0), 285) self.assertEqual(self.reduce(add, Squares(0), 0), 0) self.assertRaises(TypeError, self.reduce) self.assertRaises(TypeError, self.reduce, 42, 42) self.assertRaises(TypeError, self.reduce, 42, 42, 42) self.assertEqual(self.reduce(42, "1"), "1") # func is never called with one item self.assertEqual(self.reduce(42, "", "1"), "1") # func is never called with one item self.assertRaises(TypeError, self.reduce, 42, (42, 42)) self.assertRaises(TypeError, self.reduce, add, []) # arg 2 must not be empty sequence with no initial value self.assertRaises(TypeError, self.reduce, add, "") self.assertRaises(TypeError, self.reduce, add, ()) self.assertRaises(TypeError, self.reduce, add, object()) class TestFailingIter: def __iter__(self): raise RuntimeError self.assertRaises(RuntimeError, self.reduce, add, TestFailingIter()) self.assertEqual(self.reduce(add, [], None), None) self.assertEqual(self.reduce(add, [], 42), 42) class BadSeq: def __getitem__(self, index): raise ValueError self.assertRaises(ValueError, self.reduce, 42, BadSeq()) # Test reduce()'s use of iterators. def test_iterator_usage(self): class SequenceClass: def __init__(self, n): self.n = n def __getitem__(self, i): if 0 <= i < self.n: return i else: raise IndexError from operator import add self.assertEqual(self.reduce(add, SequenceClass(5)), 10) self.assertEqual(self.reduce(add, SequenceClass(5), 42), 52) self.assertRaises(TypeError, self.reduce, add, SequenceClass(0)) self.assertEqual(self.reduce(add, SequenceClass(0), 42), 42) self.assertEqual(self.reduce(add, SequenceClass(1)), 0) self.assertEqual(self.reduce(add, SequenceClass(1), 42), 42) d = {"one": 1, "two": 2, "three": 3} self.assertEqual(self.reduce(add, d), "".join(d.keys())) @unittest.skipUnless(c_functools, 'requires the C _functools module') class TestReduceC(TestReduce, unittest.TestCase): if c_functools: reduce = c_functools.reduce class TestReducePy(TestReduce, unittest.TestCase): reduce = staticmethod(py_functools.reduce) class TestCmpToKey: def test_cmp_to_key(self): def cmp1(x, y): return (x > y) - (x < y) key = self.cmp_to_key(cmp1) self.assertEqual(key(3), key(3)) self.assertGreater(key(3), key(1)) self.assertGreaterEqual(key(3), key(3)) def cmp2(x, y): return int(x) - int(y) key = self.cmp_to_key(cmp2) self.assertEqual(key(4.0), key('4')) self.assertLess(key(2), key('35')) self.assertLessEqual(key(2), key('35')) self.assertNotEqual(key(2), key('35')) def test_cmp_to_key_arguments(self): def cmp1(x, y): return (x > y) - (x < y) key = self.cmp_to_key(mycmp=cmp1) self.assertEqual(key(obj=3), key(obj=3)) self.assertGreater(key(obj=3), key(obj=1)) with self.assertRaises((TypeError, AttributeError)): key(3) > 1 # rhs is not a K object with self.assertRaises((TypeError, AttributeError)): 1 < key(3) # lhs is not a K object with self.assertRaises(TypeError): key = self.cmp_to_key() # too few args with self.assertRaises(TypeError): key = self.cmp_to_key(cmp1, None) # too many args key = self.cmp_to_key(cmp1) with self.assertRaises(TypeError): key() # too few args with self.assertRaises(TypeError): key(None, None) # too many args def test_bad_cmp(self): def cmp1(x, y): raise ZeroDivisionError key = self.cmp_to_key(cmp1) with self.assertRaises(ZeroDivisionError): key(3) > key(1) class BadCmp: def __lt__(self, other): raise ZeroDivisionError def cmp1(x, y): return BadCmp() with self.assertRaises(ZeroDivisionError): key(3) > key(1) def test_obj_field(self): def cmp1(x, y): return (x > y) - (x < y) key = self.cmp_to_key(mycmp=cmp1) self.assertEqual(key(50).obj, 50) def test_sort_int(self): def mycmp(x, y): return y - x self.assertEqual(sorted(range(5), key=self.cmp_to_key(mycmp)), [4, 3, 2, 1, 0]) def test_sort_int_str(self): def mycmp(x, y): x, y = int(x), int(y) return (x > y) - (x < y) values = [5, '3', 7, 2, '0', '1', 4, '10', 1] values = sorted(values, key=self.cmp_to_key(mycmp)) self.assertEqual([int(value) for value in values], [0, 1, 1, 2, 3, 4, 5, 7, 10]) def test_hash(self): def mycmp(x, y): return y - x key = self.cmp_to_key(mycmp) k = key(10) self.assertRaises(TypeError, hash, k) self.assertNotIsInstance(k, collections.abc.Hashable) @unittest.skipUnless(c_functools, 'requires the C _functools module') class TestCmpToKeyC(TestCmpToKey, unittest.TestCase): if c_functools: cmp_to_key = c_functools.cmp_to_key class TestCmpToKeyPy(TestCmpToKey, unittest.TestCase): cmp_to_key = staticmethod(py_functools.cmp_to_key) class TestTotalOrdering(unittest.TestCase): def test_total_ordering_lt(self): @functools.total_ordering class A: def __init__(self, value): self.value = value def __lt__(self, other): return self.value < other.value def __eq__(self, other): return self.value == other.value self.assertTrue(A(1) < A(2)) self.assertTrue(A(2) > A(1)) self.assertTrue(A(1) <= A(2)) self.assertTrue(A(2) >= A(1)) self.assertTrue(A(2) <= A(2)) self.assertTrue(A(2) >= A(2)) self.assertFalse(A(1) > A(2)) def test_total_ordering_le(self): @functools.total_ordering class A: def __init__(self, value): self.value = value def __le__(self, other): return self.value <= other.value def __eq__(self, other): return self.value == other.value self.assertTrue(A(1) < A(2)) self.assertTrue(A(2) > A(1)) self.assertTrue(A(1) <= A(2)) self.assertTrue(A(2) >= A(1)) self.assertTrue(A(2) <= A(2)) self.assertTrue(A(2) >= A(2)) self.assertFalse(A(1) >= A(2)) def test_total_ordering_gt(self): @functools.total_ordering class A: def __init__(self, value): self.value = value def __gt__(self, other): return self.value > other.value def __eq__(self, other): return self.value == other.value self.assertTrue(A(1) < A(2)) self.assertTrue(A(2) > A(1)) self.assertTrue(A(1) <= A(2)) self.assertTrue(A(2) >= A(1)) self.assertTrue(A(2) <= A(2)) self.assertTrue(A(2) >= A(2)) self.assertFalse(A(2) < A(1)) def test_total_ordering_ge(self): @functools.total_ordering class A: def __init__(self, value): self.value = value def __ge__(self, other): return self.value >= other.value def __eq__(self, other): return self.value == other.value self.assertTrue(A(1) < A(2)) self.assertTrue(A(2) > A(1)) self.assertTrue(A(1) <= A(2)) self.assertTrue(A(2) >= A(1)) self.assertTrue(A(2) <= A(2)) self.assertTrue(A(2) >= A(2)) self.assertFalse(A(2) <= A(1)) def test_total_ordering_no_overwrite(self): # new methods should not overwrite existing @functools.total_ordering class A(int): pass self.assertTrue(A(1) < A(2)) self.assertTrue(A(2) > A(1)) self.assertTrue(A(1) <= A(2)) self.assertTrue(A(2) >= A(1)) self.assertTrue(A(2) <= A(2)) self.assertTrue(A(2) >= A(2)) def test_no_operations_defined(self): with self.assertRaises(ValueError): @functools.total_ordering class A: pass def test_type_error_when_not_implemented(self): # bug 10042; ensure stack overflow does not occur # when decorated types return NotImplemented @functools.total_ordering class ImplementsLessThan: def __init__(self, value): self.value = value def __eq__(self, other): if isinstance(other, ImplementsLessThan): return self.value == other.value return False def __lt__(self, other): if isinstance(other, ImplementsLessThan): return self.value < other.value return NotImplemented @functools.total_ordering class ImplementsGreaterThan: def __init__(self, value): self.value = value def __eq__(self, other): if isinstance(other, ImplementsGreaterThan): return self.value == other.value return False def __gt__(self, other): if isinstance(other, ImplementsGreaterThan): return self.value > other.value return NotImplemented @functools.total_ordering class ImplementsLessThanEqualTo: def __init__(self, value): self.value = value def __eq__(self, other): if isinstance(other, ImplementsLessThanEqualTo): return self.value == other.value return False def __le__(self, other): if isinstance(other, ImplementsLessThanEqualTo): return self.value <= other.value return NotImplemented @functools.total_ordering class ImplementsGreaterThanEqualTo: def __init__(self, value): self.value = value def __eq__(self, other): if isinstance(other, ImplementsGreaterThanEqualTo): return self.value == other.value return False def __ge__(self, other): if isinstance(other, ImplementsGreaterThanEqualTo): return self.value >= other.value return NotImplemented @functools.total_ordering class ComparatorNotImplemented: def __init__(self, value): self.value = value def __eq__(self, other): if isinstance(other, ComparatorNotImplemented): return self.value == other.value return False def __lt__(self, other): return NotImplemented with self.subTest("LT < 1"), self.assertRaises(TypeError): ImplementsLessThan(-1) < 1 with self.subTest("LT < LE"), self.assertRaises(TypeError): ImplementsLessThan(0) < ImplementsLessThanEqualTo(0) with self.subTest("LT < GT"), self.assertRaises(TypeError): ImplementsLessThan(1) < ImplementsGreaterThan(1) with self.subTest("LE <= LT"), self.assertRaises(TypeError): ImplementsLessThanEqualTo(2) <= ImplementsLessThan(2) with self.subTest("LE <= GE"), self.assertRaises(TypeError): ImplementsLessThanEqualTo(3) <= ImplementsGreaterThanEqualTo(3) with self.subTest("GT > GE"), self.assertRaises(TypeError): ImplementsGreaterThan(4) > ImplementsGreaterThanEqualTo(4) with self.subTest("GT > LT"), self.assertRaises(TypeError): ImplementsGreaterThan(5) > ImplementsLessThan(5) with self.subTest("GE >= GT"), self.assertRaises(TypeError): ImplementsGreaterThanEqualTo(6) >= ImplementsGreaterThan(6) with self.subTest("GE >= LE"), self.assertRaises(TypeError): ImplementsGreaterThanEqualTo(7) >= ImplementsLessThanEqualTo(7) with self.subTest("GE when equal"): a = ComparatorNotImplemented(8) b = ComparatorNotImplemented(8) self.assertEqual(a, b) with self.assertRaises(TypeError): a >= b with self.subTest("LE when equal"): a = ComparatorNotImplemented(9) b = ComparatorNotImplemented(9) self.assertEqual(a, b) with self.assertRaises(TypeError): a <= b def test_pickle(self): for proto in range(pickle.HIGHEST_PROTOCOL + 1): for name in '__lt__', '__gt__', '__le__', '__ge__': with self.subTest(method=name, proto=proto): method = getattr(Orderable_LT, name) method_copy = pickle.loads(pickle.dumps(method, proto)) self.assertIs(method_copy, method) @functools.total_ordering class Orderable_LT: def __init__(self, value): self.value = value def __lt__(self, other): return self.value < other.value def __eq__(self, other): return self.value == other.value class TestLRU: def test_lru(self): def orig(x, y): return 3 * x + y f = self.module.lru_cache(maxsize=20)(orig) hits, misses, maxsize, currsize = f.cache_info() self.assertEqual(maxsize, 20) self.assertEqual(currsize, 0) self.assertEqual(hits, 0) self.assertEqual(misses, 0) domain = range(5) for i in range(1000): x, y = choice(domain), choice(domain) actual = f(x, y) expected = orig(x, y) self.assertEqual(actual, expected) hits, misses, maxsize, currsize = f.cache_info() self.assertTrue(hits > misses) self.assertEqual(hits + misses, 1000) self.assertEqual(currsize, 20) f.cache_clear() # test clearing hits, misses, maxsize, currsize = f.cache_info() self.assertEqual(hits, 0) self.assertEqual(misses, 0) self.assertEqual(currsize, 0) f(x, y) hits, misses, maxsize, currsize = f.cache_info() self.assertEqual(hits, 0) self.assertEqual(misses, 1) self.assertEqual(currsize, 1) # Test bypassing the cache self.assertIs(f.__wrapped__, orig) f.__wrapped__(x, y) hits, misses, maxsize, currsize = f.cache_info() self.assertEqual(hits, 0) self.assertEqual(misses, 1) self.assertEqual(currsize, 1) # test size zero (which means "never-cache") @self.module.lru_cache(0) def f(): nonlocal f_cnt f_cnt += 1 return 20 self.assertEqual(f.cache_info().maxsize, 0) f_cnt = 0 for i in range(5): self.assertEqual(f(), 20) self.assertEqual(f_cnt, 5) hits, misses, maxsize, currsize = f.cache_info() self.assertEqual(hits, 0) self.assertEqual(misses, 5) self.assertEqual(currsize, 0) # test size one @self.module.lru_cache(1) def f(): nonlocal f_cnt f_cnt += 1 return 20 self.assertEqual(f.cache_info().maxsize, 1) f_cnt = 0 for i in range(5): self.assertEqual(f(), 20) self.assertEqual(f_cnt, 1) hits, misses, maxsize, currsize = f.cache_info() self.assertEqual(hits, 4) self.assertEqual(misses, 1) self.assertEqual(currsize, 1) # test size two @self.module.lru_cache(2) def f(x): nonlocal f_cnt f_cnt += 1 return x*10 self.assertEqual(f.cache_info().maxsize, 2) f_cnt = 0 for x in 7, 9, 7, 9, 7, 9, 8, 8, 8, 9, 9, 9, 8, 8, 8, 7: # * * * * self.assertEqual(f(x), x*10) self.assertEqual(f_cnt, 4) hits, misses, maxsize, currsize = f.cache_info() self.assertEqual(hits, 12) self.assertEqual(misses, 4) self.assertEqual(currsize, 2) def test_lru_hash_only_once(self): # To protect against weird reentrancy bugs and to improve # efficiency when faced with slow __hash__ methods, the # LRU cache guarantees that it will only call __hash__ # only once per use as an argument to the cached function. @self.module.lru_cache(maxsize=1) def f(x, y): return x * 3 + y # Simulate the integer 5 mock_int = unittest.mock.Mock() mock_int.__mul__ = unittest.mock.Mock(return_value=15) mock_int.__hash__ = unittest.mock.Mock(return_value=999) # Add to cache: One use as an argument gives one call self.assertEqual(f(mock_int, 1), 16) self.assertEqual(mock_int.__hash__.call_count, 1) self.assertEqual(f.cache_info(), (0, 1, 1, 1)) # Cache hit: One use as an argument gives one additional call self.assertEqual(f(mock_int, 1), 16) self.assertEqual(mock_int.__hash__.call_count, 2) self.assertEqual(f.cache_info(), (1, 1, 1, 1)) # Cache eviction: No use as an argument gives no additional call self.assertEqual(f(6, 2), 20) self.assertEqual(mock_int.__hash__.call_count, 2) self.assertEqual(f.cache_info(), (1, 2, 1, 1)) # Cache miss: One use as an argument gives one additional call self.assertEqual(f(mock_int, 1), 16) self.assertEqual(mock_int.__hash__.call_count, 3) self.assertEqual(f.cache_info(), (1, 3, 1, 1)) def test_lru_reentrancy_with_len(self): # Test to make sure the LRU cache code isn't thrown-off by # caching the built-in len() function. Since len() can be # cached, we shouldn't use it inside the lru code itself. old_len = builtins.len try: builtins.len = self.module.lru_cache(4)(len) for i in [0, 0, 1, 2, 3, 3, 4, 5, 6, 1, 7, 2, 1]: self.assertEqual(len('abcdefghijklmn'[:i]), i) finally: builtins.len = old_len def test_lru_star_arg_handling(self): # Test regression that arose in ea064ff3c10f @functools.lru_cache() def f(*args): return args self.assertEqual(f(1, 2), (1, 2)) self.assertEqual(f((1, 2)), ((1, 2),)) def test_lru_type_error(self): # Regression test for issue #28653. # lru_cache was leaking when one of the arguments # wasn't cacheable. @functools.lru_cache(maxsize=None) def infinite_cache(o): pass @functools.lru_cache(maxsize=10) def limited_cache(o): pass with self.assertRaises(TypeError): infinite_cache([]) with self.assertRaises(TypeError): limited_cache([]) def test_lru_with_maxsize_none(self): @self.module.lru_cache(maxsize=None) def fib(n): if n < 2: return n return fib(n-1) + fib(n-2) self.assertEqual([fib(n) for n in range(16)], [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610]) self.assertEqual(fib.cache_info(), self.module._CacheInfo(hits=28, misses=16, maxsize=None, currsize=16)) fib.cache_clear() self.assertEqual(fib.cache_info(), self.module._CacheInfo(hits=0, misses=0, maxsize=None, currsize=0)) def test_lru_with_maxsize_negative(self): @self.module.lru_cache(maxsize=-10) def eq(n): return n for i in (0, 1): self.assertEqual([eq(n) for n in range(150)], list(range(150))) self.assertEqual(eq.cache_info(), self.module._CacheInfo(hits=0, misses=300, maxsize=-10, currsize=1)) def test_lru_with_exceptions(self): # Verify that user_function exceptions get passed through without # creating a hard-to-read chained exception. # http://bugs.python.org/issue13177 for maxsize in (None, 128): @self.module.lru_cache(maxsize) def func(i): return 'abc'[i] self.assertEqual(func(0), 'a') with self.assertRaises(IndexError) as cm: func(15) self.assertIsNone(cm.exception.__context__) # Verify that the previous exception did not result in a cached entry with self.assertRaises(IndexError): func(15) def test_lru_with_types(self): for maxsize in (None, 128): @self.module.lru_cache(maxsize=maxsize, typed=True) def square(x): return x * x self.assertEqual(square(3), 9) self.assertEqual(type(square(3)), type(9)) self.assertEqual(square(3.0), 9.0) self.assertEqual(type(square(3.0)), type(9.0)) self.assertEqual(square(x=3), 9) self.assertEqual(type(square(x=3)), type(9)) self.assertEqual(square(x=3.0), 9.0) self.assertEqual(type(square(x=3.0)), type(9.0)) self.assertEqual(square.cache_info().hits, 4) self.assertEqual(square.cache_info().misses, 4) def test_lru_with_keyword_args(self): @self.module.lru_cache() def fib(n): if n < 2: return n return fib(n=n-1) + fib(n=n-2) self.assertEqual( [fib(n=number) for number in range(16)], [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610] ) self.assertEqual(fib.cache_info(), self.module._CacheInfo(hits=28, misses=16, maxsize=128, currsize=16)) fib.cache_clear() self.assertEqual(fib.cache_info(), self.module._CacheInfo(hits=0, misses=0, maxsize=128, currsize=0)) def test_lru_with_keyword_args_maxsize_none(self): @self.module.lru_cache(maxsize=None) def fib(n): if n < 2: return n return fib(n=n-1) + fib(n=n-2) self.assertEqual([fib(n=number) for number in range(16)], [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610]) self.assertEqual(fib.cache_info(), self.module._CacheInfo(hits=28, misses=16, maxsize=None, currsize=16)) fib.cache_clear() self.assertEqual(fib.cache_info(), self.module._CacheInfo(hits=0, misses=0, maxsize=None, currsize=0)) def test_kwargs_order(self): # PEP 468: Preserving Keyword Argument Order @self.module.lru_cache(maxsize=10) def f(**kwargs): return list(kwargs.items()) self.assertEqual(f(a=1, b=2), [('a', 1), ('b', 2)]) self.assertEqual(f(b=2, a=1), [('b', 2), ('a', 1)]) self.assertEqual(f.cache_info(), self.module._CacheInfo(hits=0, misses=2, maxsize=10, currsize=2)) def test_lru_cache_decoration(self): def f(zomg: 'zomg_annotation'): """f doc string""" return 42 g = self.module.lru_cache()(f) for attr in self.module.WRAPPER_ASSIGNMENTS: self.assertEqual(getattr(g, attr), getattr(f, attr)) def test_lru_cache_threaded(self): n, m = 5, 11 def orig(x, y): return 3 * x + y f = self.module.lru_cache(maxsize=n*m)(orig) hits, misses, maxsize, currsize = f.cache_info() self.assertEqual(currsize, 0) start = threading.Event() def full(k): start.wait(10) for _ in range(m): self.assertEqual(f(k, 0), orig(k, 0)) def clear(): start.wait(10) for _ in range(2*m): f.cache_clear() orig_si = sys.getswitchinterval() support.setswitchinterval(1e-6) try: # create n threads in order to fill cache threads = [threading.Thread(target=full, args=[k]) for k in range(n)] with support.start_threads(threads): start.set() hits, misses, maxsize, currsize = f.cache_info() if self.module is py_functools: # XXX: Why can be not equal? self.assertLessEqual(misses, n) self.assertLessEqual(hits, m*n - misses) else: self.assertEqual(misses, n) self.assertEqual(hits, m*n - misses) self.assertEqual(currsize, n) # create n threads in order to fill cache and 1 to clear it threads = [threading.Thread(target=clear)] threads += [threading.Thread(target=full, args=[k]) for k in range(n)] start.clear() with support.start_threads(threads): start.set() finally: sys.setswitchinterval(orig_si) def test_lru_cache_threaded2(self): # Simultaneous call with the same arguments n, m = 5, 7 start = threading.Barrier(n+1) pause = threading.Barrier(n+1) stop = threading.Barrier(n+1) @self.module.lru_cache(maxsize=m*n) def f(x): pause.wait(10) return 3 * x self.assertEqual(f.cache_info(), (0, 0, m*n, 0)) def test(): for i in range(m): start.wait(10) self.assertEqual(f(i), 3 * i) stop.wait(10) threads = [threading.Thread(target=test) for k in range(n)] with support.start_threads(threads): for i in range(m): start.wait(10) stop.reset() pause.wait(10) start.reset() stop.wait(10) pause.reset() self.assertEqual(f.cache_info(), (0, (i+1)*n, m*n, i+1)) def test_lru_cache_threaded3(self): @self.module.lru_cache(maxsize=2) def f(x): time.sleep(.01) return 3 * x def test(i, x): with self.subTest(thread=i): self.assertEqual(f(x), 3 * x, i) threads = [threading.Thread(target=test, args=(i, v)) for i, v in enumerate([1, 2, 2, 3, 2])] with support.start_threads(threads): pass def test_need_for_rlock(self): # This will deadlock on an LRU cache that uses a regular lock @self.module.lru_cache(maxsize=10) def test_func(x): 'Used to demonstrate a reentrant lru_cache call within a single thread' return x class DoubleEq: 'Demonstrate a reentrant lru_cache call within a single thread' def __init__(self, x): self.x = x def __hash__(self): return self.x def __eq__(self, other): if self.x == 2: test_func(DoubleEq(1)) return self.x == other.x test_func(DoubleEq(1)) # Load the cache test_func(DoubleEq(2)) # Load the cache self.assertEqual(test_func(DoubleEq(2)), # Trigger a re-entrant __eq__ call DoubleEq(2)) # Verify the correct return value def test_early_detection_of_bad_call(self): # Issue #22184 with self.assertRaises(TypeError): @functools.lru_cache def f(): pass def test_lru_method(self): class X(int): f_cnt = 0 @self.module.lru_cache(2) def f(self, x): self.f_cnt += 1 return x*10+self a = X(5) b = X(5) c = X(7) self.assertEqual(X.f.cache_info(), (0, 0, 2, 0)) for x in 1, 2, 2, 3, 1, 1, 1, 2, 3, 3: self.assertEqual(a.f(x), x*10 + 5) self.assertEqual((a.f_cnt, b.f_cnt, c.f_cnt), (6, 0, 0)) self.assertEqual(X.f.cache_info(), (4, 6, 2, 2)) for x in 1, 2, 1, 1, 1, 1, 3, 2, 2, 2: self.assertEqual(b.f(x), x*10 + 5) self.assertEqual((a.f_cnt, b.f_cnt, c.f_cnt), (6, 4, 0)) self.assertEqual(X.f.cache_info(), (10, 10, 2, 2)) for x in 2, 1, 1, 1, 1, 2, 1, 3, 2, 1: self.assertEqual(c.f(x), x*10 + 7) self.assertEqual((a.f_cnt, b.f_cnt, c.f_cnt), (6, 4, 5)) self.assertEqual(X.f.cache_info(), (15, 15, 2, 2)) self.assertEqual(a.f.cache_info(), X.f.cache_info()) self.assertEqual(b.f.cache_info(), X.f.cache_info()) self.assertEqual(c.f.cache_info(), X.f.cache_info()) def test_pickle(self): cls = self.__class__ for f in cls.cached_func[0], cls.cached_meth, cls.cached_staticmeth: for proto in range(pickle.HIGHEST_PROTOCOL + 1): with self.subTest(proto=proto, func=f): f_copy = pickle.loads(pickle.dumps(f, proto)) self.assertIs(f_copy, f) def test_copy(self): cls = self.__class__ def orig(x, y): return 3 * x + y part = self.module.partial(orig, 2) funcs = (cls.cached_func[0], cls.cached_meth, cls.cached_staticmeth, self.module.lru_cache(2)(part)) for f in funcs: with self.subTest(func=f): f_copy = copy.copy(f) self.assertIs(f_copy, f) def test_deepcopy(self): cls = self.__class__ def orig(x, y): return 3 * x + y part = self.module.partial(orig, 2) funcs = (cls.cached_func[0], cls.cached_meth, cls.cached_staticmeth, self.module.lru_cache(2)(part)) for f in funcs: with self.subTest(func=f): f_copy = copy.deepcopy(f) self.assertIs(f_copy, f) @py_functools.lru_cache() def py_cached_func(x, y): return 3 * x + y @c_functools.lru_cache() def c_cached_func(x, y): return 3 * x + y class TestLRUPy(TestLRU, unittest.TestCase): module = py_functools cached_func = py_cached_func, @module.lru_cache() def cached_meth(self, x, y): return 3 * x + y @staticmethod @module.lru_cache() def cached_staticmeth(x, y): return 3 * x + y class TestLRUC(TestLRU, unittest.TestCase): module = c_functools cached_func = c_cached_func, @module.lru_cache() def cached_meth(self, x, y): return 3 * x + y @staticmethod @module.lru_cache() def cached_staticmeth(x, y): return 3 * x + y class TestSingleDispatch(unittest.TestCase): def test_simple_overloads(self): @functools.singledispatch def g(obj): return "base" def g_int(i): return "integer" g.register(int, g_int) self.assertEqual(g("str"), "base") self.assertEqual(g(1), "integer") self.assertEqual(g([1,2,3]), "base") def test_mro(self): @functools.singledispatch def g(obj): return "base" class A: pass class C(A): pass class B(A): pass class D(C, B): pass def g_A(a): return "A" def g_B(b): return "B" g.register(A, g_A) g.register(B, g_B) self.assertEqual(g(A()), "A") self.assertEqual(g(B()), "B") self.assertEqual(g(C()), "A") self.assertEqual(g(D()), "B") def test_register_decorator(self): @functools.singledispatch def g(obj): return "base" @g.register(int) def g_int(i): return "int %s" % (i,) self.assertEqual(g(""), "base") self.assertEqual(g(12), "int 12") self.assertIs(g.dispatch(int), g_int) self.assertIs(g.dispatch(object), g.dispatch(str)) # Note: in the assert above this is not g. # @singledispatch returns the wrapper. def test_wrapping_attributes(self): @functools.singledispatch def g(obj): "Simple test" return "Test" self.assertEqual(g.__name__, "g") if sys.flags.optimize < 2: self.assertEqual(g.__doc__, "Simple test") @unittest.skipUnless(decimal, 'requires _decimal') @support.cpython_only def test_c_classes(self): @functools.singledispatch def g(obj): return "base" @g.register(decimal.DecimalException) def _(obj): return obj.args subn = decimal.Subnormal("Exponent < Emin") rnd = decimal.Rounded("Number got rounded") self.assertEqual(g(subn), ("Exponent < Emin",)) self.assertEqual(g(rnd), ("Number got rounded",)) @g.register(decimal.Subnormal) def _(obj): return "Too small to care." self.assertEqual(g(subn), "Too small to care.") self.assertEqual(g(rnd), ("Number got rounded",)) def test_compose_mro(self): # None of the examples in this test depend on haystack ordering. c = collections.abc mro = functools._compose_mro bases = [c.Sequence, c.MutableMapping, c.Mapping, c.Set] for haystack in permutations(bases): m = mro(dict, haystack) self.assertEqual(m, [dict, c.MutableMapping, c.Mapping, c.Collection, c.Sized, c.Iterable, c.Container, object]) bases = [c.Container, c.Mapping, c.MutableMapping, collections.OrderedDict] for haystack in permutations(bases): m = mro(collections.ChainMap, haystack) self.assertEqual(m, [collections.ChainMap, c.MutableMapping, c.Mapping, c.Collection, c.Sized, c.Iterable, c.Container, object]) # If there's a generic function with implementations registered for # both Sized and Container, passing a defaultdict to it results in an # ambiguous dispatch which will cause a RuntimeError (see # test_mro_conflicts). bases = [c.Container, c.Sized, str] for haystack in permutations(bases): m = mro(collections.defaultdict, [c.Sized, c.Container, str]) self.assertEqual(m, [collections.defaultdict, dict, c.Sized, c.Container, object]) # MutableSequence below is registered directly on D. In other words, it # precedes MutableMapping which means single dispatch will always # choose MutableSequence here. class D(collections.defaultdict): pass c.MutableSequence.register(D) bases = [c.MutableSequence, c.MutableMapping] for haystack in permutations(bases): m = mro(D, bases) self.assertEqual(m, [D, c.MutableSequence, c.Sequence, c.Reversible, collections.defaultdict, dict, c.MutableMapping, c.Mapping, c.Collection, c.Sized, c.Iterable, c.Container, object]) # Container and Callable are registered on different base classes and # a generic function supporting both should always pick the Callable # implementation if a C instance is passed. class C(collections.defaultdict): def __call__(self): pass bases = [c.Sized, c.Callable, c.Container, c.Mapping] for haystack in permutations(bases): m = mro(C, haystack) self.assertEqual(m, [C, c.Callable, collections.defaultdict, dict, c.Mapping, c.Collection, c.Sized, c.Iterable, c.Container, object]) def test_register_abc(self): c = collections.abc d = {"a": "b"} l = [1, 2, 3] s = {object(), None} f = frozenset(s) t = (1, 2, 3) @functools.singledispatch def g(obj): return "base" self.assertEqual(g(d), "base") self.assertEqual(g(l), "base") self.assertEqual(g(s), "base") self.assertEqual(g(f), "base") self.assertEqual(g(t), "base") g.register(c.Sized, lambda obj: "sized") self.assertEqual(g(d), "sized") self.assertEqual(g(l), "sized") self.assertEqual(g(s), "sized") self.assertEqual(g(f), "sized") self.assertEqual(g(t), "sized") g.register(c.MutableMapping, lambda obj: "mutablemapping") self.assertEqual(g(d), "mutablemapping") self.assertEqual(g(l), "sized") self.assertEqual(g(s), "sized") self.assertEqual(g(f), "sized") self.assertEqual(g(t), "sized") g.register(collections.ChainMap, lambda obj: "chainmap") self.assertEqual(g(d), "mutablemapping") # irrelevant ABCs registered self.assertEqual(g(l), "sized") self.assertEqual(g(s), "sized") self.assertEqual(g(f), "sized") self.assertEqual(g(t), "sized") g.register(c.MutableSequence, lambda obj: "mutablesequence") self.assertEqual(g(d), "mutablemapping") self.assertEqual(g(l), "mutablesequence") self.assertEqual(g(s), "sized") self.assertEqual(g(f), "sized") self.assertEqual(g(t), "sized") g.register(c.MutableSet, lambda obj: "mutableset") self.assertEqual(g(d), "mutablemapping") self.assertEqual(g(l), "mutablesequence") self.assertEqual(g(s), "mutableset") self.assertEqual(g(f), "sized") self.assertEqual(g(t), "sized") g.register(c.Mapping, lambda obj: "mapping") self.assertEqual(g(d), "mutablemapping") # not specific enough self.assertEqual(g(l), "mutablesequence") self.assertEqual(g(s), "mutableset") self.assertEqual(g(f), "sized") self.assertEqual(g(t), "sized") g.register(c.Sequence, lambda obj: "sequence") self.assertEqual(g(d), "mutablemapping") self.assertEqual(g(l), "mutablesequence") self.assertEqual(g(s), "mutableset") self.assertEqual(g(f), "sized") self.assertEqual(g(t), "sequence") g.register(c.Set, lambda obj: "set") self.assertEqual(g(d), "mutablemapping") self.assertEqual(g(l), "mutablesequence") self.assertEqual(g(s), "mutableset") self.assertEqual(g(f), "set") self.assertEqual(g(t), "sequence") g.register(dict, lambda obj: "dict") self.assertEqual(g(d), "dict") self.assertEqual(g(l), "mutablesequence") self.assertEqual(g(s), "mutableset") self.assertEqual(g(f), "set") self.assertEqual(g(t), "sequence") g.register(list, lambda obj: "list") self.assertEqual(g(d), "dict") self.assertEqual(g(l), "list") self.assertEqual(g(s), "mutableset") self.assertEqual(g(f), "set") self.assertEqual(g(t), "sequence") g.register(set, lambda obj: "concrete-set") self.assertEqual(g(d), "dict") self.assertEqual(g(l), "list") self.assertEqual(g(s), "concrete-set") self.assertEqual(g(f), "set") self.assertEqual(g(t), "sequence") g.register(frozenset, lambda obj: "frozen-set") self.assertEqual(g(d), "dict") self.assertEqual(g(l), "list") self.assertEqual(g(s), "concrete-set") self.assertEqual(g(f), "frozen-set") self.assertEqual(g(t), "sequence") g.register(tuple, lambda obj: "tuple") self.assertEqual(g(d), "dict") self.assertEqual(g(l), "list") self.assertEqual(g(s), "concrete-set") self.assertEqual(g(f), "frozen-set") self.assertEqual(g(t), "tuple") def test_c3_abc(self): c = collections.abc mro = functools._c3_mro class A(object): pass class B(A): def __len__(self): return 0 # implies Sized @c.Container.register class C(object): pass class D(object): pass # unrelated class X(D, C, B): def __call__(self): pass # implies Callable expected = [X, c.Callable, D, C, c.Container, B, c.Sized, A, object] for abcs in permutations([c.Sized, c.Callable, c.Container]): self.assertEqual(mro(X, abcs=abcs), expected) # unrelated ABCs don't appear in the resulting MRO many_abcs = [c.Mapping, c.Sized, c.Callable, c.Container, c.Iterable] self.assertEqual(mro(X, abcs=many_abcs), expected) def test_false_meta(self): # see issue23572 class MetaA(type): def __len__(self): return 0 class A(metaclass=MetaA): pass class AA(A): pass @functools.singledispatch def fun(a): return 'base A' @fun.register(A) def _(a): return 'fun A' aa = AA() self.assertEqual(fun(aa), 'fun A') def test_mro_conflicts(self): c = collections.abc @functools.singledispatch def g(arg): return "base" class O(c.Sized): def __len__(self): return 0 o = O() self.assertEqual(g(o), "base") g.register(c.Iterable, lambda arg: "iterable") g.register(c.Container, lambda arg: "container") g.register(c.Sized, lambda arg: "sized") g.register(c.Set, lambda arg: "set") self.assertEqual(g(o), "sized") c.Iterable.register(O) self.assertEqual(g(o), "sized") # because it's explicitly in __mro__ c.Container.register(O) self.assertEqual(g(o), "sized") # see above: Sized is in __mro__ c.Set.register(O) self.assertEqual(g(o), "set") # because c.Set is a subclass of # c.Sized and c.Container class P: pass p = P() self.assertEqual(g(p), "base") c.Iterable.register(P) self.assertEqual(g(p), "iterable") c.Container.register(P) with self.assertRaises(RuntimeError) as re_one: g(p) self.assertIn( str(re_one.exception), (("Ambiguous dispatch: <class 'collections.abc.Container'> " "or <class 'collections.abc.Iterable'>"), ("Ambiguous dispatch: <class 'collections.abc.Iterable'> " "or <class 'collections.abc.Container'>")), ) class Q(c.Sized): def __len__(self): return 0 q = Q() self.assertEqual(g(q), "sized") c.Iterable.register(Q) self.assertEqual(g(q), "sized") # because it's explicitly in __mro__ c.Set.register(Q) self.assertEqual(g(q), "set") # because c.Set is a subclass of # c.Sized and c.Iterable @functools.singledispatch def h(arg): return "base" @h.register(c.Sized) def _(arg): return "sized" @h.register(c.Container) def _(arg): return "container" # Even though Sized and Container are explicit bases of MutableMapping, # this ABC is implicitly registered on defaultdict which makes all of # MutableMapping's bases implicit as well from defaultdict's # perspective. with self.assertRaises(RuntimeError) as re_two: h(collections.defaultdict(lambda: 0)) self.assertIn( str(re_two.exception), (("Ambiguous dispatch: <class 'collections.abc.Container'> " "or <class 'collections.abc.Sized'>"), ("Ambiguous dispatch: <class 'collections.abc.Sized'> " "or <class 'collections.abc.Container'>")), ) class R(collections.defaultdict): pass c.MutableSequence.register(R) @functools.singledispatch def i(arg): return "base" @i.register(c.MutableMapping) def _(arg): return "mapping" @i.register(c.MutableSequence) def _(arg): return "sequence" r = R() self.assertEqual(i(r), "sequence") class S: pass class T(S, c.Sized): def __len__(self): return 0 t = T() self.assertEqual(h(t), "sized") c.Container.register(T) self.assertEqual(h(t), "sized") # because it's explicitly in the MRO class U: def __len__(self): return 0 u = U() self.assertEqual(h(u), "sized") # implicit Sized subclass inferred # from the existence of __len__() c.Container.register(U) # There is no preference for registered versus inferred ABCs. with self.assertRaises(RuntimeError) as re_three: h(u) self.assertIn( str(re_three.exception), (("Ambiguous dispatch: <class 'collections.abc.Container'> " "or <class 'collections.abc.Sized'>"), ("Ambiguous dispatch: <class 'collections.abc.Sized'> " "or <class 'collections.abc.Container'>")), ) class V(c.Sized, S): def __len__(self): return 0 @functools.singledispatch def j(arg): return "base" @j.register(S) def _(arg): return "s" @j.register(c.Container) def _(arg): return "container" v = V() self.assertEqual(j(v), "s") c.Container.register(V) self.assertEqual(j(v), "container") # because it ends up right after # Sized in the MRO def test_cache_invalidation(self): from collections import UserDict import weakref class TracingDict(UserDict): def __init__(self, *args, **kwargs): super(TracingDict, self).__init__(*args, **kwargs) self.set_ops = [] self.get_ops = [] def __getitem__(self, key): result = self.data[key] self.get_ops.append(key) return result def __setitem__(self, key, value): self.set_ops.append(key) self.data[key] = value def clear(self): self.data.clear() td = TracingDict() with support.swap_attr(weakref, "WeakKeyDictionary", lambda: td): c = collections.abc @functools.singledispatch def g(arg): return "base" d = {} l = [] self.assertEqual(len(td), 0) self.assertEqual(g(d), "base") self.assertEqual(len(td), 1) self.assertEqual(td.get_ops, []) self.assertEqual(td.set_ops, [dict]) self.assertEqual(td.data[dict], g.registry[object]) self.assertEqual(g(l), "base") self.assertEqual(len(td), 2) self.assertEqual(td.get_ops, []) self.assertEqual(td.set_ops, [dict, list]) self.assertEqual(td.data[dict], g.registry[object]) self.assertEqual(td.data[list], g.registry[object]) self.assertEqual(td.data[dict], td.data[list]) self.assertEqual(g(l), "base") self.assertEqual(g(d), "base") self.assertEqual(td.get_ops, [list, dict]) self.assertEqual(td.set_ops, [dict, list]) g.register(list, lambda arg: "list") self.assertEqual(td.get_ops, [list, dict]) self.assertEqual(len(td), 0) self.assertEqual(g(d), "base") self.assertEqual(len(td), 1) self.assertEqual(td.get_ops, [list, dict]) self.assertEqual(td.set_ops, [dict, list, dict]) self.assertEqual(td.data[dict], functools._find_impl(dict, g.registry)) self.assertEqual(g(l), "list") self.assertEqual(len(td), 2) self.assertEqual(td.get_ops, [list, dict]) self.assertEqual(td.set_ops, [dict, list, dict, list]) self.assertEqual(td.data[list], functools._find_impl(list, g.registry)) class X: pass c.MutableMapping.register(X) # Will not invalidate the cache, # not using ABCs yet. self.assertEqual(g(d), "base") self.assertEqual(g(l), "list") self.assertEqual(td.get_ops, [list, dict, dict, list]) self.assertEqual(td.set_ops, [dict, list, dict, list]) g.register(c.Sized, lambda arg: "sized") self.assertEqual(len(td), 0) self.assertEqual(g(d), "sized") self.assertEqual(len(td), 1) self.assertEqual(td.get_ops, [list, dict, dict, list]) self.assertEqual(td.set_ops, [dict, list, dict, list, dict]) self.assertEqual(g(l), "list") self.assertEqual(len(td), 2) self.assertEqual(td.get_ops, [list, dict, dict, list]) self.assertEqual(td.set_ops, [dict, list, dict, list, dict, list]) self.assertEqual(g(l), "list") self.assertEqual(g(d), "sized") self.assertEqual(td.get_ops, [list, dict, dict, list, list, dict]) self.assertEqual(td.set_ops, [dict, list, dict, list, dict, list]) g.dispatch(list) g.dispatch(dict) self.assertEqual(td.get_ops, [list, dict, dict, list, list, dict, list, dict]) self.assertEqual(td.set_ops, [dict, list, dict, list, dict, list]) c.MutableSet.register(X) # Will invalidate the cache. self.assertEqual(len(td), 2) # Stale cache. self.assertEqual(g(l), "list") self.assertEqual(len(td), 1) g.register(c.MutableMapping, lambda arg: "mutablemapping") self.assertEqual(len(td), 0) self.assertEqual(g(d), "mutablemapping") self.assertEqual(len(td), 1) self.assertEqual(g(l), "list") self.assertEqual(len(td), 2) g.register(dict, lambda arg: "dict") self.assertEqual(g(d), "dict") self.assertEqual(g(l), "list") g._clear_cache() self.assertEqual(len(td), 0) def test_annotations(self): @functools.singledispatch def i(arg): return "base" @i.register def _(arg: collections.abc.Mapping): return "mapping" @i.register def _(arg: "collections.abc.Sequence"): return "sequence" self.assertEqual(i(None), "base") self.assertEqual(i({"a": 1}), "mapping") self.assertEqual(i([1, 2, 3]), "sequence") self.assertEqual(i((1, 2, 3)), "sequence") self.assertEqual(i("str"), "sequence") # Registering classes as callables doesn't work with annotations, # you need to pass the type explicitly. @i.register(str) class _: def __init__(self, arg): self.arg = arg def __eq__(self, other): return self.arg == other self.assertEqual(i("str"), "str") def test_method_register(self): class A: @functools.singledispatchmethod def t(self, arg): self.arg = "base" @t.register(int) def _(self, arg): self.arg = "int" @t.register(str) def _(self, arg): self.arg = "str" a = A() a.t(0) self.assertEqual(a.arg, "int") aa = A() self.assertFalse(hasattr(aa, 'arg')) a.t('') self.assertEqual(a.arg, "str") aa = A() self.assertFalse(hasattr(aa, 'arg')) a.t(0.0) self.assertEqual(a.arg, "base") aa = A() self.assertFalse(hasattr(aa, 'arg')) def test_staticmethod_register(self): class A: @functools.singledispatchmethod @staticmethod def t(arg): return arg @t.register(int) @staticmethod def _(arg): return isinstance(arg, int) @t.register(str) @staticmethod def _(arg): return isinstance(arg, str) a = A() self.assertTrue(A.t(0)) self.assertTrue(A.t('')) self.assertEqual(A.t(0.0), 0.0) def test_classmethod_register(self): class A: def __init__(self, arg): self.arg = arg @functools.singledispatchmethod @classmethod def t(cls, arg): return cls("base") @t.register(int) @classmethod def _(cls, arg): return cls("int") @t.register(str) @classmethod def _(cls, arg): return cls("str") self.assertEqual(A.t(0).arg, "int") self.assertEqual(A.t('').arg, "str") self.assertEqual(A.t(0.0).arg, "base") def test_callable_register(self): class A: def __init__(self, arg): self.arg = arg @functools.singledispatchmethod @classmethod def t(cls, arg): return cls("base") @A.t.register(int) @classmethod def _(cls, arg): return cls("int") @A.t.register(str) @classmethod def _(cls, arg): return cls("str") self.assertEqual(A.t(0).arg, "int") self.assertEqual(A.t('').arg, "str") self.assertEqual(A.t(0.0).arg, "base") def test_abstractmethod_register(self): class Abstract(abc.ABCMeta): @functools.singledispatchmethod @abc.abstractmethod def add(self, x, y): pass self.assertTrue(Abstract.add.__isabstractmethod__) def test_type_ann_register(self): class A: @functools.singledispatchmethod def t(self, arg): return "base" @t.register def _(self, arg: int): return "int" @t.register def _(self, arg: str): return "str" a = A() self.assertEqual(a.t(0), "int") self.assertEqual(a.t(''), "str") self.assertEqual(a.t(0.0), "base") def test_invalid_registrations(self): msg_prefix = "Invalid first argument to `register()`: " msg_suffix = ( ". Use either `@register(some_class)` or plain `@register` on an " "annotated function." ) @functools.singledispatch def i(arg): return "base" with self.assertRaises(TypeError) as exc: @i.register(42) def _(arg): return "I annotated with a non-type" self.assertTrue(str(exc.exception).startswith(msg_prefix + "42")) self.assertTrue(str(exc.exception).endswith(msg_suffix)) with self.assertRaises(TypeError) as exc: @i.register def _(arg): return "I forgot to annotate" self.assertTrue(str(exc.exception).startswith(msg_prefix + "<function TestSingleDispatch.test_invalid_registrations.<locals>._" )) self.assertTrue(str(exc.exception).endswith(msg_suffix)) # FIXME: The following will only work after PEP 560 is implemented. return with self.assertRaises(TypeError) as exc: @i.register def _(arg: typing.Iterable[str]): # At runtime, dispatching on generics is impossible. # When registering implementations with singledispatch, avoid # types from `typing`. Instead, annotate with regular types # or ABCs. return "I annotated with a generic collection" self.assertTrue(str(exc.exception).startswith(msg_prefix + "<function TestSingleDispatch.test_invalid_registrations.<locals>._" )) self.assertTrue(str(exc.exception).endswith(msg_suffix)) def test_invalid_positional_argument(self): @functools.singledispatch def f(*args): pass msg = 'f requires at least 1 positional argument' with self.assertRaisesRegex(TypeError, msg): f() class CachedCostItem: _cost = 1 def __init__(self): self.lock = py_functools.RLock() @py_functools.cached_property def cost(self): """The cost of the item.""" with self.lock: self._cost += 1 return self._cost class OptionallyCachedCostItem: _cost = 1 def get_cost(self): """The cost of the item.""" self._cost += 1 return self._cost cached_cost = py_functools.cached_property(get_cost) class CachedCostItemWait: def __init__(self, event): self._cost = 1 self.lock = py_functools.RLock() self.event = event @py_functools.cached_property def cost(self): self.event.wait(1) with self.lock: self._cost += 1 return self._cost class CachedCostItemWithSlots: __slots__ = ('_cost') def __init__(self): self._cost = 1 @py_functools.cached_property def cost(self): raise RuntimeError('never called, slots not supported') class TestCachedProperty(unittest.TestCase): def test_cached(self): item = CachedCostItem() self.assertEqual(item.cost, 2) self.assertEqual(item.cost, 2) # not 3 def test_cached_attribute_name_differs_from_func_name(self): item = OptionallyCachedCostItem() self.assertEqual(item.get_cost(), 2) self.assertEqual(item.cached_cost, 3) self.assertEqual(item.get_cost(), 4) self.assertEqual(item.cached_cost, 3) def test_threaded(self): go = threading.Event() item = CachedCostItemWait(go) num_threads = 3 orig_si = sys.getswitchinterval() sys.setswitchinterval(1e-6) try: threads = [ threading.Thread(target=lambda: item.cost) for k in range(num_threads) ] with support.start_threads(threads): go.set() finally: sys.setswitchinterval(orig_si) self.assertEqual(item.cost, 2) def test_object_with_slots(self): item = CachedCostItemWithSlots() with self.assertRaisesRegex( TypeError, "No '__dict__' attribute on 'CachedCostItemWithSlots' instance to cache 'cost' property.", ): item.cost def test_immutable_dict(self): class MyMeta(type): @py_functools.cached_property def prop(self): return True class MyClass(metaclass=MyMeta): pass with self.assertRaisesRegex( TypeError, "The '__dict__' attribute on 'MyMeta' instance does not support item assignment for caching 'prop' property.", ): MyClass.prop def test_reuse_different_names(self): """Disallow this case because decorated function a would not be cached.""" with self.assertRaises(RuntimeError) as ctx: class ReusedCachedProperty: @py_functools.cached_property def a(self): pass b = a self.assertEqual( str(ctx.exception.__context__), str(TypeError("Cannot assign the same cached_property to two different names ('a' and 'b').")) ) def test_reuse_same_name(self): """Reusing a cached_property on different classes under the same name is OK.""" counter = 0 @py_functools.cached_property def _cp(_self): nonlocal counter counter += 1 return counter class A: cp = _cp class B: cp = _cp a = A() b = B() self.assertEqual(a.cp, 1) self.assertEqual(b.cp, 2) self.assertEqual(a.cp, 1) def test_set_name_not_called(self): cp = py_functools.cached_property(lambda s: None) class Foo: pass Foo.cp = cp with self.assertRaisesRegex( TypeError, "Cannot use cached_property instance without calling __set_name__ on it.", ): Foo().cp def test_access_from_class(self): self.assertIsInstance(CachedCostItem.cost, py_functools.cached_property) def test_doc(self): self.assertEqual(CachedCostItem.cost.__doc__, "The cost of the item.") if __name__ == '__main__': unittest.main()
36.356082
122
0.558109
f2bc01f4f5d5295bef9e7d33ce0bc1cc2b24095f
347
py
Python
pomdp_grid_world/__init__.py
NishanthVAnand/new_env_gym
6ed044e8ab9b64fb3e6b3def432609833730a60a
[ "MIT" ]
null
null
null
pomdp_grid_world/__init__.py
NishanthVAnand/new_env_gym
6ed044e8ab9b64fb3e6b3def432609833730a60a
[ "MIT" ]
null
null
null
pomdp_grid_world/__init__.py
NishanthVAnand/new_env_gym
6ed044e8ab9b64fb3e6b3def432609833730a60a
[ "MIT" ]
null
null
null
from gym.envs.registration import register register( id='pomdpGridWorld-v0', entry_point='pomdp_grid_world.envs:gridWorld', kwargs={'map_name' : '4x4'}, max_episode_steps=100, ) register( id='pomdpGridWorld-v1', entry_point='pomdp_grid_world.envs:gridWorld', kwargs={'map_name' : '8x8'}, max_episode_steps=200, )
23.133333
50
0.700288
fbb3e83ba35c53521e5e30a19c591bc7449383be
1,471
py
Python
tests/st/networks/models/resnet50/src/config.py
GuoSuiming/mindspore
48afc4cfa53d970c0b20eedfb46e039db2a133d5
[ "Apache-2.0" ]
3,200
2020-02-17T12:45:41.000Z
2022-03-31T20:21:16.000Z
tests/st/networks/models/resnet50/src/config.py
zimo-geek/mindspore
665ec683d4af85c71b2a1f0d6829356f2bc0e1ff
[ "Apache-2.0" ]
176
2020-02-12T02:52:11.000Z
2022-03-28T22:15:55.000Z
tests/st/networks/models/resnet50/src/config.py
zimo-geek/mindspore
665ec683d4af85c71b2a1f0d6829356f2bc0e1ff
[ "Apache-2.0" ]
621
2020-03-09T01:31:41.000Z
2022-03-30T03:43:19.000Z
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ network config setting, will be used in train.py and eval.py """ from easydict import EasyDict as ed config = ed({ "class_num": 1001, "batch_size": 32, "eval_interval": 1, "eval_batch_size": 50, "loss_scale": 1024, "momentum": 0.9, "weight_decay": 1e-4, "use_nesterov": True, "epoch_size": 90, "pretrained_epoch_size": 1, "buffer_size": 1000, "image_height": 224, "image_width": 224, "save_checkpoint": False, "save_checkpoint_epochs": 5, "keep_checkpoint_max": 10, "save_checkpoint_path": "./", "warmup_epochs": 0, "lr_decay_mode": "cosine", "use_label_smooth": True, "label_smooth_factor": 0.1, "lr_init": 0, "lr_max": 0.1, "use_lars": True, "lars_epsilon": 1e-8, "lars_coefficient": 0.001 })
30.645833
78
0.64446
b1f340bdc93c878ec3660a2e30338a976c3fbc02
435
py
Python
scripts/buildschema.py
ksritharan/tectle
ca76424d85e66b041b40997838a3ceb79266efab
[ "MIT" ]
1
2021-03-04T14:58:05.000Z
2021-03-04T14:58:05.000Z
scripts/buildschema.py
ksritharan/tectle
ca76424d85e66b041b40997838a3ceb79266efab
[ "MIT" ]
8
2021-02-26T02:32:59.000Z
2021-05-28T02:22:07.000Z
scripts/buildschema.py
ksritharan/business-automation
ca76424d85e66b041b40997838a3ceb79266efab
[ "MIT" ]
null
null
null
from tectle.buildschema import * def main(): num_printers = 1 num_fake_receipts = 5 max_num_items = 2 max_quantity = 2 conn = get_connection(DB_DEBUG_FILE) cur = conn.cursor() build_schema(cur) create_test_data(cur, num_printers, num_fake_receipts, max_num_items, max_quantity) #fetch_shipping_costs(cur) update_package_configs(cur) conn.commit() if __name__ == '__main__': main()
24.166667
87
0.698851
4bb95ea10ad3ea32f5fae9d5322fd14fbbe4ff7e
308
py
Python
tweetme2/urls.py
abbasKareem/twitter2me
2fe867de5571d6be20b45b29d6ffe352b158a428
[ "MIT" ]
null
null
null
tweetme2/urls.py
abbasKareem/twitter2me
2fe867de5571d6be20b45b29d6ffe352b158a428
[ "MIT" ]
null
null
null
tweetme2/urls.py
abbasKareem/twitter2me
2fe867de5571d6be20b45b29d6ffe352b158a428
[ "MIT" ]
null
null
null
from django.contrib import admin from django.urls import path from tweets.views import home_view, tweet_detail_view, tweet_list_view urlpatterns = [ path('admin/', admin.site.urls), path('', home_view), path('tweets/', tweet_list_view), path('tweets/<int:tweet_id>', tweet_detail_view), ]
23.692308
70
0.724026
689b29be4464c8318990d372609ee814c0092b66
790
py
Python
crowdsourcing/serializers/dynamic.py
ramcn/sept20
e6f6e238d0561ebf3353158161f1b20052e8b08b
[ "MIT" ]
1
2016-02-29T01:26:42.000Z
2016-02-29T01:26:42.000Z
crowdsourcing/serializers/dynamic.py
ramcn/sept20
e6f6e238d0561ebf3353158161f1b20052e8b08b
[ "MIT" ]
16
2015-08-10T18:28:18.000Z
2022-03-11T23:12:48.000Z
crowdsourcing/serializers/dynamic.py
Milstein/crowdsource-platform
60427e440373824c26c7daf8cf5f421b9c7ebbb5
[ "MIT" ]
null
null
null
from rest_framework import serializers class DynamicFieldsModelSerializer(serializers.ModelSerializer): """ A ModelSerializer that takes an additional `fields` argument that controls which fields should be displayed. """ def __init__(self, *args, **kwargs): # Don't pass the 'fields' arg up to the superclass fields = kwargs.pop('fields', None) # Instantiate the superclass normally super(DynamicFieldsModelSerializer, self).__init__(*args, **kwargs) if fields is not None: # Drop any fields that are not specified in the `fields` argument. allowed = set(fields) existing = set(self.fields.keys()) for field_name in existing - allowed: self.fields.pop(field_name)
39.5
78
0.659494
0969ede2795a61a6eb8c66bc87f9b3935c04990e
779
py
Python
proteus/default_so.py
cekees/proteus
11d8749e04f0950f090d1a406243539a868be642
[ "MIT" ]
null
null
null
proteus/default_so.py
cekees/proteus
11d8749e04f0950f090d1a406243539a868be642
[ "MIT" ]
1
2020-12-19T03:29:35.000Z
2020-12-19T03:29:35.000Z
proteus/default_so.py
cekees/proteus
11d8749e04f0950f090d1a406243539a868be642
[ "MIT" ]
null
null
null
""" The default values for so-files describing split operator formulations """ from __future__ import absolute_import try: from importlib import reload except: pass from .SplitOperator import * name = None pnList = [] systemStepControllerType = Sequential_MinModelStep systemStepExact = True useOneMesh = True tnList = None needEBQ_GLOBAL = False needEBQ = False modelSpinUpList = [] useOneArchive=True#False fastArchive = False sList = [] from .Archiver import ArchiveFlags archiveFlag = ArchiveFlags.EVERY_USER_STEP #CEK CHANGED DEFAULT FROM EVERY_SEQUENCE_STEP dt_system_fixed = None """A system-wide wide time step used by SplitOperator objects""" skipSpinupOnHotstart = False """Use True if one wants to skip the spinup step when HotStart begins"""
16.934783
72
0.776637
388dbf0d23f71bad048078d94153282152e52601
12,515
py
Python
tests/generate_go_ethereum_fixture.py
EdNoepel/web3.py
008f1343621ee951330db23b3e691aeead1e55e3
[ "MIT" ]
null
null
null
tests/generate_go_ethereum_fixture.py
EdNoepel/web3.py
008f1343621ee951330db23b3e691aeead1e55e3
[ "MIT" ]
null
null
null
tests/generate_go_ethereum_fixture.py
EdNoepel/web3.py
008f1343621ee951330db23b3e691aeead1e55e3
[ "MIT" ]
null
null
null
import contextlib import json import os import pprint import shutil import signal import socket import subprocess import sys import tempfile import time from eth_utils.curried import ( apply_formatter_if, is_bytes, is_checksum_address, is_dict, is_same_address, remove_0x_prefix, to_hex, to_text, to_wei, ) from eth_utils.toolz import ( merge, valmap, ) from utils import ( get_open_port, ) from web3 import Web3 from web3._utils.module_testing.emitter_contract import ( CONTRACT_EMITTER_ABI, CONTRACT_EMITTER_CODE, EMITTER_ENUM, ) from web3._utils.module_testing.math_contract import ( MATH_ABI, MATH_BYTECODE, ) COINBASE = '0xdc544d1aa88ff8bbd2f2aec754b1f1e99e1812fd' COINBASE_PK = '0x58d23b55bc9cdce1f18c2500f40ff4ab7245df9a89505e9b1fa4851f623d241d' KEYFILE_DATA = '{"address":"dc544d1aa88ff8bbd2f2aec754b1f1e99e1812fd","crypto":{"cipher":"aes-128-ctr","ciphertext":"52e06bc9397ea9fa2f0dae8de2b3e8116e92a2ecca9ad5ff0061d1c449704e98","cipherparams":{"iv":"aa5d0a5370ef65395c1a6607af857124"},"kdf":"scrypt","kdfparams":{"dklen":32,"n":262144,"p":1,"r":8,"salt":"9fdf0764eb3645ffc184e166537f6fe70516bf0e34dc7311dea21f100f0c9263"},"mac":"4e0b51f42b865c15c485f4faefdd1f01a38637e5247f8c75ffe6a8c0eba856f6"},"id":"5a6124e0-10f1-4c1c-ae3e-d903eacb740a","version":3}' # noqa: E501 KEYFILE_PW = 'web3py-test' KEYFILE_FILENAME = 'UTC--2017-08-24T19-42-47.517572178Z--dc544d1aa88ff8bbd2f2aec754b1f1e99e1812fd' # noqa: E501 RAW_TXN_ACCOUNT = '0x39EEed73fb1D3855E90Cbd42f348b3D7b340aAA6' UNLOCKABLE_PRIVATE_KEY = '0x392f63a79b1ff8774845f3fa69de4a13800a59e7083f5187f1558f0797ad0f01' UNLOCKABLE_ACCOUNT = '0x12efdc31b1a8fa1a1e756dfd8a1601055c971e13' UNLOCKABLE_ACCOUNT_PW = KEYFILE_PW GENESIS_DATA = { "nonce": "0xdeadbeefdeadbeef", "timestamp": "0x0", "parentHash": "0x0000000000000000000000000000000000000000000000000000000000000000", # noqa: E501 "extraData": "0x7765623370792d746573742d636861696e", "gasLimit": "0x47d5cc", "difficulty": "0x01", "mixhash": "0x0000000000000000000000000000000000000000000000000000000000000000", # noqa: E501 "coinbase": "0x3333333333333333333333333333333333333333", "alloc": { remove_0x_prefix(COINBASE): { 'balance': str(to_wei(1000000000, 'ether')), }, remove_0x_prefix(RAW_TXN_ACCOUNT): { 'balance': str(to_wei(10, 'ether')), }, remove_0x_prefix(UNLOCKABLE_ACCOUNT): { 'balance': str(to_wei(10, 'ether')), }, }, "config": { "chainId": 131277322940537, # the string 'web3py' as an integer "homesteadBlock": 0, "eip150Block": 0, "eip155Block": 0, "eip158Block": 0 }, } def ensure_path_exists(dir_path): """ Make sure that a path exists """ if not os.path.exists(dir_path): os.makedirs(dir_path) return True return False @contextlib.contextmanager def tempdir(): dir_path = tempfile.mkdtemp() try: yield dir_path finally: shutil.rmtree(dir_path) def get_geth_binary(): from geth.install import ( get_executable_path, install_geth, ) if 'GETH_BINARY' in os.environ: return os.environ['GETH_BINARY'] elif 'GETH_VERSION' in os.environ: geth_version = os.environ['GETH_VERSION'] _geth_binary = get_executable_path(geth_version) if not os.path.exists(_geth_binary): install_geth(geth_version) assert os.path.exists(_geth_binary) return _geth_binary else: return 'geth' def wait_for_popen(proc, timeout): start = time.time() while time.time() < start + timeout: if proc.poll() is None: time.sleep(0.01) else: break def kill_proc_gracefully(proc): if proc.poll() is None: proc.send_signal(signal.SIGINT) wait_for_popen(proc, 13) if proc.poll() is None: proc.terminate() wait_for_popen(proc, 5) if proc.poll() is None: proc.kill() wait_for_popen(proc, 2) def wait_for_socket(ipc_path, timeout=30): start = time.time() while time.time() < start + timeout: try: sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM) sock.connect(ipc_path) sock.settimeout(timeout) except (FileNotFoundError, socket.error): time.sleep(0.01) else: break @contextlib.contextmanager def graceful_kill_on_exit(proc): try: yield proc finally: kill_proc_gracefully(proc) @contextlib.contextmanager def get_geth_process(geth_binary, datadir, genesis_file_path, geth_ipc_path, geth_port): init_datadir_command = ( geth_binary, '--datadir', datadir, 'init', genesis_file_path, ) subprocess.check_output( init_datadir_command, stdin=subprocess.PIPE, stderr=subprocess.PIPE, ) run_geth_command = ( geth_binary, '--datadir', datadir, '--ipcpath', geth_ipc_path, '--ethash.dagsondisk', '1', '--gcmode', 'archive', '--nodiscover', '--port', geth_port, '--etherbase', COINBASE[2:], ) popen_proc = subprocess.Popen( run_geth_command, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, bufsize=1, ) with popen_proc as proc: with graceful_kill_on_exit(proc) as graceful_proc: yield graceful_proc output, errors = proc.communicate() print( "Geth Process Exited:\n" "stdout:{0}\n\n" "stderr:{1}\n\n".format( to_text(output), to_text(errors), ) ) def write_config_json(config, datadir): bytes_to_hex = apply_formatter_if(is_bytes, to_hex) config_json_dict = valmap(bytes_to_hex, config) config_path = os.path.join(datadir, 'config.json') with open(config_path, 'w') as config_file: config_file.write(json.dumps(config_json_dict)) config_file.write('\n') def generate_go_ethereum_fixture(destination_dir): with contextlib.ExitStack() as stack: datadir = stack.enter_context(tempdir()) keystore_dir = os.path.join(datadir, 'keystore') ensure_path_exists(keystore_dir) keyfile_path = os.path.join(keystore_dir, KEYFILE_FILENAME) with open(keyfile_path, 'w') as keyfile: keyfile.write(KEYFILE_DATA) genesis_file_path = os.path.join(datadir, 'genesis.json') with open(genesis_file_path, 'w') as genesis_file: genesis_file.write(json.dumps(GENESIS_DATA)) geth_ipc_path_dir = stack.enter_context(tempdir()) geth_ipc_path = os.path.join(geth_ipc_path_dir, 'geth.ipc') geth_port = get_open_port() geth_binary = get_geth_binary() with get_geth_process( geth_binary=geth_binary, datadir=datadir, genesis_file_path=genesis_file_path, geth_ipc_path=geth_ipc_path, geth_port=geth_port): wait_for_socket(geth_ipc_path) web3 = Web3(Web3.IPCProvider(geth_ipc_path)) chain_data = setup_chain_state(web3) # close geth by exiting context # must be closed before copying data dir verify_chain_state(web3, chain_data) # verify that chain state is still valid after closing # and re-opening geth with get_geth_process( geth_binary=geth_binary, datadir=datadir, genesis_file_path=genesis_file_path, geth_ipc_path=geth_ipc_path, geth_port=geth_port): wait_for_socket(geth_ipc_path) web3 = Web3(Web3.IPCProvider(geth_ipc_path)) verify_chain_state(web3, chain_data) static_data = { 'raw_txn_account': RAW_TXN_ACCOUNT, 'keyfile_pw': KEYFILE_PW, } config = merge(chain_data, static_data) pprint.pprint(config) write_config_json(config, datadir) shutil.make_archive(destination_dir, 'zip', datadir) def verify_chain_state(web3, chain_data): receipt = web3.eth.waitForTransactionReceipt(chain_data['mined_txn_hash']) latest = web3.eth.getBlock('latest') assert receipt.blockNumber <= latest.number def mine_transaction_hash(web3, txn_hash): web3.geth.miner.start(1) try: return web3.eth.waitForTransactionReceipt(txn_hash, timeout=60) finally: web3.geth.miner.stop() def mine_block(web3): origin_block_number = web3.eth.blockNumber start_time = time.time() web3.geth.miner.start(1) while time.time() < start_time + 60: block_number = web3.eth.blockNumber if block_number > origin_block_number: web3.geth.miner.stop() return block_number else: time.sleep(0.1) else: raise ValueError("No block mined during wait period") def deploy_contract(web3, name, factory): web3.geth.personal.unlockAccount(web3.eth.coinbase, KEYFILE_PW) deploy_txn_hash = factory.constructor().transact({'from': web3.eth.coinbase}) print('{0}_CONTRACT_DEPLOY_HASH: '.format(name.upper()), deploy_txn_hash) deploy_receipt = mine_transaction_hash(web3, deploy_txn_hash) print('{0}_CONTRACT_DEPLOY_TRANSACTION_MINED'.format(name.upper())) contract_address = deploy_receipt['contractAddress'] assert is_checksum_address(contract_address) print('{0}_CONTRACT_ADDRESS:'.format(name.upper()), contract_address) return deploy_receipt def setup_chain_state(web3): coinbase = web3.eth.coinbase assert is_same_address(coinbase, COINBASE) # # Math Contract # math_contract_factory = web3.eth.contract( abi=MATH_ABI, bytecode=MATH_BYTECODE, ) math_deploy_receipt = deploy_contract(web3, 'math', math_contract_factory) assert is_dict(math_deploy_receipt) # # Emitter Contract # emitter_contract_factory = web3.eth.contract( abi=CONTRACT_EMITTER_ABI, bytecode=CONTRACT_EMITTER_CODE, ) emitter_deploy_receipt = deploy_contract(web3, 'emitter', emitter_contract_factory) emitter_contract = emitter_contract_factory(emitter_deploy_receipt['contractAddress']) txn_hash_with_log = emitter_contract.functions.logDouble( which=EMITTER_ENUM['LogDoubleWithIndex'], arg0=12345, arg1=54321, ).transact({ 'from': web3.eth.coinbase, }) print('TXN_HASH_WITH_LOG:', txn_hash_with_log) txn_receipt_with_log = mine_transaction_hash(web3, txn_hash_with_log) block_with_log = web3.eth.getBlock(txn_receipt_with_log['blockHash']) print('BLOCK_HASH_WITH_LOG:', block_with_log['hash']) # # Empty Block # empty_block_number = mine_block(web3) print('MINED_EMPTY_BLOCK') empty_block = web3.eth.getBlock(empty_block_number) assert is_dict(empty_block) assert not empty_block['transactions'] print('EMPTY_BLOCK_HASH:', empty_block['hash']) # # Block with Transaction # web3.geth.personal.unlockAccount(coinbase, KEYFILE_PW) web3.geth.miner.start(1) mined_txn_hash = web3.eth.sendTransaction({ 'from': coinbase, 'to': coinbase, 'value': 1, 'gas': 21000, 'gas_price': web3.eth.gasPrice, }) mined_txn_receipt = mine_transaction_hash(web3, mined_txn_hash) print('MINED_TXN_HASH:', mined_txn_hash) block_with_txn = web3.eth.getBlock(mined_txn_receipt['blockHash']) print('BLOCK_WITH_TXN_HASH:', block_with_txn['hash']) geth_fixture = { 'math_deploy_txn_hash': math_deploy_receipt['transactionHash'], 'math_address': math_deploy_receipt['contractAddress'], 'emitter_deploy_txn_hash': emitter_deploy_receipt['transactionHash'], 'emitter_address': emitter_deploy_receipt['contractAddress'], 'txn_hash_with_log': txn_hash_with_log, 'block_hash_with_log': block_with_log['hash'], 'empty_block_hash': empty_block['hash'], 'mined_txn_hash': mined_txn_hash, 'block_with_txn_hash': block_with_txn['hash'], } return geth_fixture if __name__ == '__main__': fixture_dir = sys.argv[1] generate_go_ethereum_fixture(fixture_dir)
30.52439
522
0.668158
4a8e5d0ea810e3b71db0f5d05ac4b74a20720daf
35,881
py
Python
dairy_erp/dairy_erp/doctype/farmer_payment_cycle_report/farmer_payment_cycle_report.py
shrikant9867/Dairy_project_Daiyerp
635d34115f0eb2081b6835a190eda4971dbfb99f
[ "MIT" ]
null
null
null
dairy_erp/dairy_erp/doctype/farmer_payment_cycle_report/farmer_payment_cycle_report.py
shrikant9867/Dairy_project_Daiyerp
635d34115f0eb2081b6835a190eda4971dbfb99f
[ "MIT" ]
null
null
null
dairy_erp/dairy_erp/doctype/farmer_payment_cycle_report/farmer_payment_cycle_report.py
shrikant9867/Dairy_project_Daiyerp
635d34115f0eb2081b6835a190eda4971dbfb99f
[ "MIT" ]
2
2020-01-19T13:27:57.000Z
2021-12-28T20:32:56.000Z
# -*- coding: utf-8 -*- # Copyright (c) 2018, Stellapps Technologies Private Ltd. # For license information, please see license.txt from __future__ import unicode_literals import frappe from frappe import _ from frappe.model.document import Document from dairy_erp.dairy_utils import make_dairy_log, make_journal_entry from frappe.utils import flt, cstr,nowdate,cint import json class FarmerPaymentCycleReport(Document): def validate(self): if frappe.db.get_value("Farmer Payment Cycle Report",{'cycle':self.cycle,\ 'vlcc_name':self.vlcc_name, 'farmer_id':self.farmer_id},'name') and self.is_new(): frappe.throw(_("FPCR has already been generated for this cycle against farmer <b>{0}</b>".format(self.farmer_id))) if self.collection_to >= nowdate() : frappe.throw(_("You can generate FPCR after <b>'{0}'</b>".format(self.collection_to))) def before_submit(self): try: self.advance_operation() self.loan_operation() self.update_fpcr() if float(self.incentives) != 0: if not frappe.db.get_value("Purchase Invoice", {'cycle':self.cycle,\ 'supplier': self.farmer_name},'name'): self.create_incentive() frappe.msgprint(_("Purchase invoice created successfully against Incentives")) else: frappe.msgprint(_("Purchase invoice Already created successfully against Incentives")) except Exception,e: frappe.db.rollback() make_dairy_log(title="JV creation Against Advance Failed",method="make_jv", status="Error", data = "data", message=e, traceback=frappe.get_traceback()) frappe.throw("Something Went Wrong Please check dairy log") def update_fpcr(self): loan_total, loan_je, adavnce_je, advance_total = 0, 0, 0, 0 for row in self.loan_child: je_amt = frappe.get_all("Journal Entry",fields=['ifnull(sum(total_debit), 0) as amt']\ ,filters={'farmer_advance':row.loan_id,'type':'Farmer Loan'}) loan_je += je_amt[0].get('amt') loan_total += row.principle for row in self.advance_child: je_amt = frappe.get_all("Journal Entry",fields=['ifnull(sum(total_debit), 0) as amt']\ ,filters={'farmer_advance':row.adv_id,'type':'Farmer Advance'}) adavnce_je += je_amt[0].get('amt') advance_total += row.principle self.advance_outstanding = float(advance_total) - float(adavnce_je) self.loan_outstanding = float(loan_total) - float(loan_je) def advance_operation(self): flag, je = False, "" for row in self.advance_child: flag = True # SG 5-10 je_exist = frappe.db.get_value("Journal Entry",{'cycle': self.cycle,\ 'farmer_advance':row.adv_id,'type':'Farmer Advance'}, 'name') if not je_exist: self.validate_advance(row) je = self.create_advance_je(row) self.update_advance_doc(row, je) elif je_exist: self.update_je_for_advance(row, self.cycle, je_exist) self.update_advance_after_fpcr(row) if flag: frappe.msgprint(_("Journal Entry created successfully against Advances")) def loan_operation(self): flag = False for row in self.loan_child: flag = True je_exist = frappe.db.get_value("Journal Entry",{'cycle': self.cycle,\ 'farmer_advance':row.loan_id,'type':'Farmer Loan'}, 'name') if not je_exist: self.validate_loan(row) je = self.create_loan_je(row) self.update_loan_doc(row, je) elif je_exist: self.update_je_for_loan(row, self.cycle, je_exist) self.update_loan_after_fpcr(row) if flag: frappe.msgprint(_("Journal Entry created successfully against Loans")) def validate_advance(self, row): adv_doc = frappe.get_doc("Farmer Advance",row.adv_id) if not row.amount: frappe.throw(_("Please Enter amount against <b>{0}</b>".format(row.adv_id))) if float(row.amount) > float(row.outstanding): frappe.throw(_("Amount can not be greater than outstanding for <b>{0}</b>".format(row.adv_id))) if (int(row.no_of_instalment) + int(adv_doc.extension)) - row.paid_instalment == 1 and \ (float(row.amount) < float(adv_doc.emi_amount) or float(row.outstanding) != float(adv_doc.emi_amount)): frappe.throw(_("Please Use Extension for <b>{0}</b>".format(row.adv_id))) def validate_loan(self, row): loan_doc = frappe.get_doc("Farmer Loan",row.loan_id) if not row.amount: frappe.throw(_("Please Enter amount against <b>{0}</b>".format(row.loan_id))) if float(row.amount) > float(row.outstanding): frappe.throw(_("Amount can not be greater than outstanding for <b>{0}</b>".format(row.loan_id))) if (int(row.no_of_instalment) + int(loan_doc.extension)) - loan_doc.paid_instalment == 1 and \ (float(row.amount) < float(loan_doc.emi_amount) or float(row.outstanding) != float(loan_doc.emi_amount)): frappe.throw(_("Please Use Extension <b>{0}</b>".format(row.loan_id))) def update_loan_doc(self, row, je = None): instalment = 0 principal_interest = get_interest_amount(row.amount, row.loan_id) je_amt = frappe.get_all("Journal Entry",fields=['ifnull(sum(total_debit), 0) as amt']\ ,filters={'farmer_advance':row.loan_id,'type':'Farmer Loan'}) loan_doc = frappe.get_doc("Farmer Loan", row.loan_id) loan_doc.total_principle_paid = principal_interest.get('principal') loan_doc.total_interest_paid = principal_interest.get('interest') loan_doc.last_extension_used = flt(loan_doc.extension) loan_doc.append("cycle", {"cycle": self.cycle, "sales_invoice": je}) loan_doc.outstanding_amount = float(loan_doc.advance_amount) - je_amt[0].get('amt') for i in loan_doc.cycle: instalment += 1 loan_doc.paid_instalment = instalment if loan_doc.outstanding_amount > 0: loan_doc.emi_amount = (float(loan_doc.outstanding_amount)) / (float(loan_doc.no_of_instalments) + float(loan_doc.extension) - float(loan_doc.paid_instalment)) if loan_doc.outstanding_amount == 0: loan_doc.status = "Paid" loan_doc.emi_amount = 0 loan_doc.flags.ignore_permissions = True loan_doc.save() def create_loan_je(self, row): # SG-8-10 principal_interest = get_interest_amount(row.amount, row.loan_id) je_doc = make_journal_entry(voucher_type = "Journal Entry",company = self.vlcc_name, posting_date = nowdate(),debit_account = "Debtors - ",credit_account = "Loans and Advances - ", type = "Farmer Loan", cycle = self.cycle, amount = principal_interest.get('principal'), party_type = "Customer", party = self.farmer_name, master_no = row.loan_id, interest_account = "Interest Income - ", interest_amount= principal_interest.get('interest')) frappe.db.set_value("Journal Entry", je_doc.name, 'posting_date', self.collection_to) company_abbr = frappe.db.get_value("Company",get_vlcc(),'abbr',as_dict=1) frappe.db.set_value("GL Entry", {"account": 'Debtors - '+company_abbr.get('abbr'), "voucher_no": je_doc.name},\ 'posting_date', self.collection_to ) frappe.db.set_value("GL Entry", {"account": 'Loans and Advances - '+company_abbr.get('abbr'), "voucher_no": je_doc.name},\ 'posting_date', self.collection_to ) frappe.db.set_value("GL Entry", {"account":"Interest Income - "+company_abbr.get('abbr'), "voucher_no": je_doc.name},\ 'posting_date', self.collection_to ) return je_doc.name def create_advance_je(self, row): # SG-5-10 advance_type = frappe.db.get_value("Farmer Advance",{'name': row.adv_id}, 'advance_type') if advance_type == "Money Advance": je_doc = make_journal_entry(voucher_type = "Journal Entry",company = self.vlcc_name, posting_date = nowdate(),debit_account = "Debtors - ",credit_account = "Loans and Advances - ", type = "Farmer Advance", cycle = self.cycle, amount = row.amount, faf_flag = 0, party_type = "Customer", party = self.farmer_name, master_no = row.adv_id, advance_type = advance_type) frappe.db.set_value("Journal Entry", je_doc.name, 'posting_date', self.collection_to) company_abbr = frappe.db.get_value("Company",get_vlcc(),'abbr') frappe.db.set_value("GL Entry", {"account": "Debtors - "+company_abbr, "voucher_no": je_doc.name},\ 'posting_date', self.collection_to ) frappe.db.set_value("GL Entry", {"account": "Loans and Advances - "+company_abbr, "voucher_no": je_doc.name},\ 'posting_date', self.collection_to ) return je_doc.name if advance_type == "Feed And Fodder Advance": # parameter 'faf_flag', is used to fetch data on net-payOff report. je_doc = make_journal_entry(voucher_type = "Journal Entry",company = self.vlcc_name, posting_date = nowdate(),debit_account = "Debtors - ",credit_account = "Feed And Fodder Advance - ", type = "Farmer Advance", cycle = self.cycle, amount = row.amount, faf_flag = 1, party_type = "Customer", party = self.farmer_name, master_no = row.adv_id, advance_type = advance_type) frappe.db.set_value("Journal Entry", je_doc.name, 'posting_date', self.collection_to) company_abbr = frappe.db.get_value("Company",get_vlcc(),'abbr') frappe.db.set_value("GL Entry", {"account": 'Debtors - '+company_abbr, "voucher_no": je_doc.name},\ 'posting_date', self.collection_to ) frappe.db.set_value("GL Entry", {"account": 'Feed And Fodder Advance - '+company_abbr, "voucher_no": je_doc.name},\ 'posting_date', self.collection_to ) return je_doc.name def update_advance_doc(self, row, je=None): # SG-5-10 instalment = 0 je_amt = frappe.get_all("Journal Entry",fields=['ifnull(sum(total_debit), 0) as amt']\ ,filters={'farmer_advance':row.adv_id,'type':'Farmer Advance'}) adv_doc = frappe.get_doc("Farmer Advance", row.adv_id) adv_doc.append("cycle", {"cycle": self.cycle, "sales_invoice": je}) adv_doc.outstanding_amount = float(adv_doc.advance_amount) - je_amt[0].get('amt') for i in adv_doc.cycle: instalment +=1 adv_doc.paid_instalment = instalment adv_doc.fpcr_instalment = instalment if adv_doc.outstanding_amount > 0 : adv_doc.emi_amount = (float(adv_doc.outstanding_amount)) / (float(adv_doc.no_of_instalment) + float(adv_doc.extension) - float(adv_doc.paid_instalment)) if adv_doc.outstanding_amount == 0: adv_doc.status = "Paid" adv_doc.emi_amount = 0 adv_doc.flags.ignore_permissions =True adv_doc.save() def update_advance_after_fpcr(self, row): # SG-5-10 instalment = 0 je_amt = frappe.get_all("Journal Entry",fields=['ifnull(sum(total_debit), 0) as amt']\ ,filters={'farmer_advance':row.adv_id,'type':'Farmer Advance'}) adv_doc = frappe.get_doc("Farmer Advance", row.adv_id) adv_doc.outstanding_amount = float(adv_doc.advance_amount) - je_amt[0].get('amt') for i in adv_doc.cycle: instalment +=1 adv_doc.paid_instalment = instalment adv_doc.fpcr_instalment = instalment if adv_doc.outstanding_amount > 0 : adv_doc.emi_amount = (float(adv_doc.outstanding_amount)) / (float(adv_doc.no_of_instalment) + float(adv_doc.extension) - float(adv_doc.paid_instalment)) if adv_doc.outstanding_amount == 0: adv_doc.status = "Paid" adv_doc.emi_amount = 0 adv_doc.flags.ignore_permissions =True adv_doc.save() def update_loan_after_fpcr(self, row): principal_interest = get_interest_amount(row.amount, row.loan_id) print principal_interest,"inside update_loan_after_fpcr\n\n\n\n" instalment = 0 je_amt = frappe.get_all("Journal Entry",fields=['ifnull(sum(total_debit), 0) as amt']\ ,filters={'farmer_advance':row.loan_id,'type':'Farmer Loan'}) loan_doc = frappe.get_doc("Farmer Loan", row.loan_id) loan_doc.total_principle_paid = principal_interest.get('principal') loan_doc.total_interest_paid = principal_interest.get('interest') loan_doc.last_extension_used = flt(loan_doc.extension) loan_doc.outstanding_amount = float(loan_doc.advance_amount) - je_amt[0].get('amt') for i in loan_doc.cycle: instalment += 1 loan_doc.paid_instalment = instalment if loan_doc.outstanding_amount > 0: loan_doc.emi_amount = (float(loan_doc.outstanding_amount)) / (float(loan_doc.no_of_instalments) + float(loan_doc.extension) - float(loan_doc.paid_instalment)) if loan_doc.outstanding_amount == 0: loan_doc.status = "Paid" loan_doc.emi_amount = 0 loan_doc.flags.ignore_permissions = True loan_doc.save() def update_je_for_loan(self, row, cycle, je_no): # SG-5-10 principal_interest = get_interest_amount(row.amount, row.loan_id) company = frappe.db.get_value("Company",self.vlcc_name,['name','abbr','cost_center'],as_dict=1) accounts_row = frappe.db.get_value("Journal Entry Account", {'parent':je_no}, 'name') accounts_row_debit = frappe.db.get_value("Journal Entry Account", {'parent':je_no,"account":\ 'Debtors - '+company.get('abbr')}, 'name') accounts_row_credit_principal = frappe.db.get_value("Journal Entry Account", {'parent':je_no,"account":\ 'Loans and Advances - '+company.get('abbr')}, 'name') accounts_row_credit_interest = frappe.db.get_value("Journal Entry Account", {'parent':je_no,"account":\ 'Interest Income - '+company.get('abbr')}, 'name') frappe.db.set_value("Journal Entry Account",{'name':accounts_row_debit, 'account':"Debtors - "+company.get('abbr')}, 'debit_in_account_currency', principal_interest.get('principal')+principal_interest.get('interest')) frappe.db.set_value("Journal Entry Account",{'name':accounts_row_credit_principal, 'account':"Loans and Advances - "+company.get('abbr')}, 'credit_in_account_currency', principal_interest.get('principal')) frappe.db.set_value("Journal Entry Account",{'name':accounts_row_credit_interest, 'account':"Interest Income - "+company.get('abbr')}, 'credit_in_account_currency', principal_interest.get('interest')) frappe.db.set_value("Journal Entry", je_no, 'total_credit', row.amount) frappe.db.set_value("Journal Entry", je_no, 'total_debit', row.amount) frappe.db.set_value("Journal Entry", je_no, 'posting_date', self.collection_to) self.update_gl_entry_loan(je_no, principal_interest) def update_je_for_advance(self, row, cycle, je_no): # SG-5-10 company = frappe.db.get_value("Company",self.vlcc_name,['name','abbr','cost_center'],as_dict=1) advance_type = frappe.db.get_value("Farmer Advance",{'name': row.adv_id}, 'advance_type') if advance_type == "Money Advance": accounts_row_debit = frappe.db.get_value("Journal Entry Account", {'parent':je_no,"account":\ 'Debtors - '+company.get('abbr')}, 'name') accounts_row_credit = frappe.db.get_value("Journal Entry Account", {'parent':je_no,"account":\ 'Loans and Advances - '+company.get('abbr')}, 'name') frappe.db.set_value("Journal Entry Account",{'name':accounts_row_debit, 'account':'Debtors - '+company.get('abbr')}, 'debit_in_account_currency', row.amount) frappe.db.set_value("Journal Entry Account",{'name':accounts_row_credit, 'account':'Loans and Advances - '+company.get('abbr')}, 'credit_in_account_currency', row.amount) frappe.db.set_value("Journal Entry", je_no, 'total_credit', row.amount) frappe.db.set_value("Journal Entry", je_no, 'total_debit', row.amount) frappe.db.set_value("Journal Entry", je_no, 'posting_date', self.collection_to) self.update_gl_entry_advance(je_no, row, row.amount) if advance_type == "Feed And Fodder Advance": accounts_row_debit = frappe.db.get_value("Journal Entry Account", {'parent':je_no,"account":\ 'Debtors - '+company.get('abbr')}, 'name') accounts_row_credit = frappe.db.get_value("Journal Entry Account", {'parent':je_no,"account":\ 'Feed And Fodder Advance - '+company.get('abbr')}, 'name') frappe.db.set_value("Journal Entry Account",{'name':accounts_row_debit, 'account':'Debtors - '+company.get('abbr')}, 'debit_in_account_currency', row.amount) frappe.db.set_value("Journal Entry Account",{'name':accounts_row_credit, 'account':'Feed And Fodder Advance - '+company.get('abbr')}, 'credit_in_account_currency', row.amount) frappe.db.set_value("Journal Entry", je_no, 'total_credit', row.amount) frappe.db.set_value("Journal Entry", je_no, 'total_debit', row.amount) frappe.db.set_value("Journal Entry", je_no, 'posting_date', self.collection_to) self.update_gl_entry_advance(je_no, row, row.amount) def update_gl_entry_loan(self, je_no, principal_interest): if je_no and principal_interest: company_abbr = frappe.db.get_value("Company",get_vlcc(),'abbr') frappe.db.set_value("GL Entry", {"account": "Debtors - "+company_abbr, "voucher_no": je_no},\ 'debit', principal_interest.get('principal') + principal_interest.get('interest')) frappe.db.set_value("GL Entry", {"account": "Debtors - "+company_abbr, "voucher_no": je_no},\ 'credit', 0) frappe.db.set_value("GL Entry", {"account": "Debtors - "+company_abbr, "voucher_no": je_no},\ 'debit_in_account_currency', principal_interest.get('principal') + principal_interest.get('interest')) frappe.db.set_value("GL Entry", {"account": "Debtors - "+company_abbr, "voucher_no": je_no},\ 'credit_in_account_currency', 0) frappe.db.set_value("GL Entry", {"account": "Debtors - "+company_abbr, "voucher_no": je_no},\ 'posting_date', self.collection_to ) frappe.db.set_value("GL Entry", {"account": "Loans and Advances - "+company_abbr, "voucher_no": je_no},\ 'posting_date', self.collection_to ) frappe.db.set_value("GL Entry", {"account": "Loans and Advances - "+company_abbr, "voucher_no": je_no},\ 'debit', 0) frappe.db.set_value("GL Entry", {"account": "Loans and Advances - "+company_abbr, "voucher_no": je_no},\ 'credit', principal_interest.get('principal')) frappe.db.set_value("GL Entry", {"account": "Loans and Advances - "+company_abbr, "voucher_no": je_no},\ 'debit_in_account_currency', 0) frappe.db.set_value("GL Entry", {"account": "Loans and Advances - "+company_abbr, "voucher_no": je_no},\ 'credit_in_account_currency', principal_interest.get('principal')) frappe.db.set_value("GL Entry", {"account":"Interest Income - "+company_abbr, "voucher_no": je_no},\ 'debit', 0) frappe.db.set_value("GL Entry", {"account":"Interest Income - "+company_abbr, "voucher_no": je_no},\ 'credit', principal_interest.get('interest') ) frappe.db.set_value("GL Entry", {"account":"Interest Income - "+company_abbr, "voucher_no": je_no},\ 'debit_in_account_currency', 0) frappe.db.set_value("GL Entry", {"account":"Interest Income - "+company_abbr, "voucher_no": je_no},\ 'credit_in_account_currency', principal_interest.get('interest')) frappe.db.set_value("GL Entry", {"account":"Interest Income - "+company_abbr, "voucher_no": je_no},\ 'posting_date', self.collection_to ) def update_gl_entry_advance(self, je_no, row, amount): if je_no and amount: advance_type = frappe.db.get_value("Farmer Advance",{'name': row.adv_id}, 'advance_type') company_abbr = frappe.db.get_value("Company",get_vlcc(),'abbr') if advance_type == "Money Advance": frappe.db.set_value("GL Entry", {"account": "Debtors - "+company_abbr, "voucher_no": je_no},\ 'debit', amount) frappe.db.set_value("GL Entry", {"account": "Debtors - "+company_abbr, "voucher_no": je_no},\ 'credit_in_account_currency', 0) frappe.db.set_value("GL Entry", {"account": "Debtors - "+company_abbr, "voucher_no": je_no},\ 'debit_in_account_currency', amount) frappe.db.set_value("GL Entry", {"account": "Debtors - "+company_abbr, "voucher_no": je_no},\ 'credit_in_account_currency', 0) frappe.db.set_value("GL Entry", {"account": "Debtors - "+company_abbr, "voucher_no": je_no},\ 'posting_date', self.collection_to ) frappe.db.set_value("GL Entry", {"account": "Loans and Advances - "+company_abbr, "voucher_no": je_no},\ 'debit', 0) frappe.db.set_value("GL Entry", {"account": "Loans and Advances - "+company_abbr, "voucher_no": je_no},\ 'credit', amount ) frappe.db.set_value("GL Entry", {"account": "Loans and Advances - "+company_abbr, "voucher_no": je_no},\ 'debit_in_account_currency', 0) frappe.db.set_value("GL Entry", {"account": "Loans and Advances - "+company_abbr, "voucher_no": je_no},\ 'credit_in_account_currency', amount ) frappe.db.set_value("GL Entry", {"account": "Loans and Advances - "+company_abbr, "voucher_no": je_no},\ 'posting_date', self.collection_to ) if advance_type == "Feed And Fodder Advance": frappe.db.set_value("GL Entry", {"account": 'Debtors - '+company_abbr, "voucher_no": je_no},\ 'debit', amount ) frappe.db.set_value("GL Entry", {"account": 'Debtors - '+company_abbr, "voucher_no": je_no},\ 'credit', 0 ) frappe.db.set_value("GL Entry", {"account": 'Debtors - '+company_abbr, "voucher_no": je_no},\ 'debit_in_account_currency', amount ) frappe.db.set_value("GL Entry", {"account": 'Debtors - '+company_abbr, "voucher_no": je_no},\ 'credit_in_account_currency', 0 ) frappe.db.set_value("GL Entry", {"account": 'Debtors - '+company_abbr, "voucher_no": je_no},\ 'posting_date', self.collection_to ) frappe.db.set_value("GL Entry", {"account": 'Feed And Fodder Advance - '+company_abbr, "voucher_no": je_no},\ 'debit', 0 ) frappe.db.set_value("GL Entry", {"account": 'Feed And Fodder Advance - '+company_abbr, "voucher_no": je_no},\ 'credit', amount ) frappe.db.set_value("GL Entry", {"account": 'Feed And Fodder Advance - '+company_abbr, "voucher_no": je_no},\ 'debit_in_account_currency', 0 ) frappe.db.set_value("GL Entry", {"account": 'Feed And Fodder Advance - '+company_abbr, "voucher_no": je_no},\ 'credit_in_account_currency', amount ) frappe.db.set_value("GL Entry", {"account": 'Feed And Fodder Advance - '+company_abbr, "voucher_no": je_no},\ 'posting_date', self.collection_to ) def create_incentive(self): pi = frappe.new_doc("Purchase Invoice") pi.supplier = self.farmer_name pi.company = self.vlcc_name pi.pi_type = "Incentive" pi.cycle = self.cycle pi.append("items", { "qty":1, "item_code": "Milk Incentives", "rate": self.incentives, "amount": self.incentives, "cost_center": frappe.db.get_value("Company", self.vlcc_name, "cost_center") }) pi.flags.ignore_permissions = True pi.save() pi.submit() #updating date for current cycle frappe.db.set_value("Purchase Invoice", pi.name, 'posting_date', self.collection_to) gl_stock = frappe.db.get_value("Company", get_vlcc(), 'stock_received_but_not_billed') gl_credit = frappe.db.get_value("Company", get_vlcc(), 'default_payable_account') frappe.db.set_value("GL Entry",{'account': gl_stock,'voucher_no':pi.name}, 'posting_date', self.collection_to) frappe.db.set_value("GL Entry",{'account': gl_credit,'voucher_no':pi.name}, 'posting_date', self.collection_to) def get_interest_amount(amount, data): loan_doc = frappe.get_all("Farmer Loan",fields=['interest','no_of_instalments','emi_amount'],filters={'name':data}) interest_per_cycle = loan_doc[0].get('interest') / loan_doc[0].get('no_of_instalments') principal_per_cycle = amount - interest_per_cycle if amount <= interest_per_cycle: interest_per_cycle = flt(amount,2) principal_per_cycle = 0 else: interest_per_cycle = flt(interest_per_cycle,2) principal_per_cycle = flt((amount - interest_per_cycle),2) return { 'interest': interest_per_cycle , 'principal': principal_per_cycle} @frappe.whitelist() def get_fmcr(start_date, end_date, vlcc, farmer_id, cycle=None): fmcr = frappe.db.sql(""" select rcvdtime,shift,milkquantity,fat,snf,rate,amount from `tabFarmer Milk Collection Record` where associated_vlcc = '{0}' and date(rcvdtime) between '{1}' and '{2}' and farmerid= '{3}' """.format(vlcc, start_date, end_date, farmer_id),as_dict=1) amount = 0 qty = 0 for i in fmcr: amount += i.get('amount') qty += i.get('milkquantity') amount = flt(amount,2) return { "fmcr":fmcr, "weighted_data" : get_weighted_fmcr_data(fmcr), # Added by Niraj "incentive": get_incentives(amount, qty, vlcc) or 0, "advance": get_advances(start_date, end_date, vlcc, farmer_id, cycle) or 0, "loan": get_loans(start_date, end_date, vlcc, farmer_id, cycle) or 0, "fodder": get_fodder_amount(start_date, end_date, farmer_id, vlcc) or 0, "vet": vet_service_amnt(start_date, end_date, farmer_id, vlcc) or 0, "child_loan": get_loans_child(start_date, end_date, vlcc, farmer_id,cycle), "child_advance": get_advance_child(start_date, end_date, vlcc, farmer_id, cycle) } def get_weighted_fmcr_data(fmcr_data): if len(fmcr_data) == 0: return milkquantity, fat, snf, rate, amount = 0, 0, 0, 0, 0 for data in fmcr_data: milkquantity += data.get('milkquantity') fat += data.get('fat')*data.get('milkquantity') snf += data.get('snf')*data.get('milkquantity') rate += data.get('rate')*data.get('milkquantity') amount += data.get('amount') fat, snf , rate = round(fat/milkquantity, 2), round(snf/milkquantity, 2), round(rate/milkquantity, 2) return { "milkquantity" : milkquantity, "fat" : fat, "snf" : snf, "rate": rate, "amount" : amount } def get_incentives(amount, qty, vlcc=None): if vlcc and amount and qty: incentive = 0 name = frappe.db.get_value("Farmer Settings", {'vlcc':vlcc}, 'name') farmer_settings = frappe.get_doc("Farmer Settings",name) if farmer_settings.enable_local_setting and not farmer_settings.enable_local_per_litre: incentive = (float(farmer_settings.local_farmer_incentive ) * float(amount)) / 100 if farmer_settings.enable_local_setting and farmer_settings.enable_local_per_litre: incentive = (float(farmer_settings.local_per_litre) * float(qty)) if not farmer_settings.enable_local_setting and not farmer_settings.enable_per_litre: incentive = (float(farmer_settings.farmer_incentives) * float(amount)) / 100 if not farmer_settings.enable_local_setting and farmer_settings.enable_per_litre: incentive = (float(farmer_settings.per_litre) * float(qty)) return incentive @frappe.whitelist() def get_advances(start_date, end_date, vlcc, farmer_id, cycle = None): advance = frappe.db.sql(""" select ifnull(sum(outstanding_amount),0) as oustanding from `tabFarmer Advance` where creation < now() and farmer_id = '{2}' and status = 'Unpaid' and docstatus = 1 """.format(start_date, end_date, farmer_id), as_dict=1) if len(advance): return advance[0].get('oustanding') if advance[0].get('oustanding') != None else 0 else: return 0 @frappe.whitelist() def get_loans(start_date, end_date, vlcc, farmer_id, cycle = None): loan = frappe.db.sql(""" select ifnull(sum(outstanding_amount),0) as oustanding from `tabFarmer Loan` where creation < now() and farmer_id = '{2}' and status = 'Unpaid' and docstatus = 1 """.format(start_date, end_date, farmer_id), as_dict=1) if len(loan): return loan[0].get('oustanding') if loan[0].get('oustanding') != None else 0 else: return 0 def get_fodder_amount(start_date, end_date, farmer_id, vlcc=None): fodder = frappe.db.sql(""" select ifnull(sum(si.amount),0) as amt from `tabSales Invoice Item` si, `tabSales Invoice` s where s.name= si.parent and s.docstatus = 1 and si.item_group in ('Cattle Feed') and s.local_sale = 1 and s.farmer = '{0}'and s.local_sale_type not in ('Feed And Fodder Advance') and s.posting_date between '{1}' and '{2}' """.format(farmer_id, start_date, end_date),as_dict=1) if len(fodder): return fodder[0].get('amt') if fodder[0].get('amt') != None else 0 else: return 0 def vet_service_amnt(start_date, end_date, farmer_id, vlcc=None): vet_amnt = frappe.db.sql(""" select ifnull(sum(si.amount),0) as amt from `tabSales Invoice Item` si, `tabSales Invoice` s where s.name= si.parent and s.docstatus = 1 and si.item_group in ('Veterinary Services') and s.service_note = 1 and s.farmer = '{0}'and s.posting_date between '{1}' and '{2}' """.format(farmer_id, start_date, end_date),as_dict=1) if len(vet_amnt): return vet_amnt[0].get('amt') if vet_amnt[0].get('amt') != None else 0 else: return 0 # @frappe.whitelist() # def get_cycle(doctype,text,searchfields,start,pagelen,filters): # return frappe.db.sql(""" # select name # from # `tabFarmer Date Computation` # where # end_date < now() and vlcc = '{vlcc}' and name like '{txt}' and name not in (select cycle from `tabFarmer Payment Cycle Report` where farmer_id = '{farmer}') # """.format(farmer = filters.get('farmer') , vlcc = filters.get('vlcc'),txt= "%%%s%%" % text,as_list=True)) @frappe.whitelist() def get_cycle(doctype,text,searchfields,start,pagelen,filters): return frappe.db.sql(""" select name from `tabFarmer Date Computation` where end_date < now() and end_date >= (select date(creation) from `tabFarmer` where farmer_id='{farmer}') and vlcc = '{vlcc}' and name like '{txt}' and name not in (select cycle from `tabFarmer Payment Cycle Report` where farmer_id = '{farmer}') """.format(farmer = filters.get('farmer') , vlcc = filters.get('vlcc'),txt= "%%%s%%" % text,as_list=True)) def req_cycle_computation(data): if data.get('emi_deduction_start_cycle') > 0: not_req_cycl = frappe.db.sql(""" select name from `tabFarmer Date Computation` where '{0}' < start_date or date('{0}') between start_date and end_date and vlcc = '{1}' order by start_date limit {2}""".format(data.get('date_of_disbursement'),data.get('vlcc'),data.get('emi_deduction_start_cycle')),as_dict=1,debug=0) not_req_cycl_list = [ '"%s"'%i.get('name') for i in not_req_cycl ] instalment = int(data.get('no_of_instalments')) + int(data.get('extension')) req_cycle = frappe.db.sql(""" select name from `tabFarmer Date Computation` where '{date}' <= start_date and name not in ({cycle}) and vlcc = '{vlcc}' order by start_date limit {instalment} """.format(date=data.get('date_of_disbursement'), cycle = ','.join(not_req_cycl_list),vlcc = data.get('vlcc'), instalment = instalment),as_dict=1,debug=0) req_cycl_list = [i.get('name') for i in req_cycle] return req_cycl_list elif data.get('emi_deduction_start_cycle') == 0: instalment = int(data.get('no_of_instalments')) + int(data.get('extension')) req_cycle = frappe.db.sql(""" select name from `tabFarmer Date Computation` where '{date}' <= end_date and vlcc = '{vlcc}' order by start_date limit {instalment} """.format(date=data.get('date_of_disbursement'),vlcc=data.get('vlcc'),instalment = instalment),as_dict=1,debug=0) req_cycl_list = [i.get('name') for i in req_cycle] return req_cycl_list return [] def get_conditions(data): conditions = " and 1=1" if data.get('emi_deduction_start_cycle'): conditions += ' limit {0}'.format(data.get('emi_deduction_start_cycle')) return conditions def get_cycle_cond(data,not_req_cycl_list): conditions = " and 1=1" if data.get('emi_deduction_start_cycle'): conditions += ' and name not in ({cycle})'.format(cycle = ','.join(not_req_cycl_list)) else: conditions += ' and name in ({cycle})'.format(cycle = ','.join(not_req_cycl_list)) return conditions def get_current_cycle(data): return frappe.db.sql(""" select name from `tabFarmer Date Computation` where vlcc = %s and now() between start_date and end_date """,(data.get('vlcc')),as_dict=1) def req_cycle_computation_advance(data): if data.get('emi_deduction_start_cycle') > 0: not_req_cycl = frappe.db.sql(""" select name from `tabFarmer Date Computation` where '{0}' < start_date or date('{0}') between start_date and end_date and vlcc = '{1}' order by start_date limit {2}""".format(data.get('date_of_disbursement'),data.get('vlcc'),data.get('emi_deduction_start_cycle')),as_dict=1,debug=0) not_req_cycl_list = [ '"%s"'%i.get('name') for i in not_req_cycl ] instalment = int(data.get('no_of_instalment')) + int(data.get('extension')) req_cycle = frappe.db.sql(""" select name from `tabFarmer Date Computation` where '{date}' <= start_date and name not in ({cycle}) and vlcc = '{vlcc}' order by start_date limit {instalment} """.format(date=data.get('date_of_disbursement'), cycle = ','.join(not_req_cycl_list),vlcc = data.get('vlcc'), instalment = instalment),as_dict=1,debug=0) req_cycl_list = [i.get('name') for i in req_cycle] return req_cycl_list elif data.get('emi_deduction_start_cycle') == 0: instalment = int(data.get('no_of_instalment')) + int(data.get('extension')) req_cycle = frappe.db.sql(""" select name from `tabFarmer Date Computation` where '{date}' <= end_date and vlcc= '{vlcc}' order by start_date limit {instalment} """.format(date=data.get('date_of_disbursement'),vlcc=data.get('vlcc'),instalment = instalment),as_dict=1,debug=0) req_cycl_list = [i.get('name') for i in req_cycle] return req_cycl_list return [] def get_loans_child(start_date, end_date, vlcc, farmer_id, cycle=None): loans_ = frappe.db.sql(""" select name,farmer_id,outstanding_amount, emi_amount,no_of_instalments,paid_instalment,advance_amount, emi_deduction_start_cycle,extension,date_of_disbursement,vlcc from `tabFarmer Loan` where farmer_id = '{0}' and outstanding_amount != 0 and date_of_disbursement < now() and docstatus =1 """.format(farmer_id),as_dict=1,debug=0) loans = [] for row in loans_: req_cycle = req_cycle_computation(row) if cycle in req_cycle_computation(row): loans.append(row) return loans def get_advance_child(start_date, end_date, vlcc, farmer_id, cycle=None): advance_ = frappe.db.sql(""" select name,farmer_id,outstanding_amount,emi_amount,advance_amount, no_of_instalment,paid_instalment,emi_deduction_start_cycle, extension,date_of_disbursement,vlcc from `tabFarmer Advance` where farmer_id = '{0}' and outstanding_amount != 0 and date_of_disbursement < now() and docstatus =1 """.format(farmer_id),as_dict=1) advance = [] for row in advance_: if cycle in req_cycle_computation_advance(row): advance.append(row) return advance @frappe.whitelist() def update_full_loan(loan=None): loan_doc = frappe.get_doc("Farmer Loan", loan) paid_amnt = float(loan_doc.advance_amount) - float(loan_doc.outstanding_amount) instlment = int(loan_doc.no_of_instalments) + int(loan_doc.extension) instlment_brkup = float(loan_doc.interest) / instlment principle_paid = float(paid_amnt) - float(instlment_brkup) def fpcr_permission(user): roles = frappe.get_roles(user) user_doc = frappe.db.get_value("User",{"name":frappe.session.user},['operator_type','company','branch_office'], as_dict =1) if user != 'Administrator' and "Vlcc Manager" in roles: return """(`tabFarmer Payment Cycle Report`.vlcc_name = '{0}')""".format(user_doc.get('company')) @frappe.whitelist() def get_fpcr_flag(): return frappe.db.get_value("Farmer Settings", {'vlcc':get_vlcc()}, 'is_fpcr') def get_vlcc(): return frappe.db.get_value("User",frappe.session.user, 'company') # SG-6-10 @frappe.whitelist() def get_updated_advance(cycle, data, adv_id, amount, total): data, total_paid, total_amount, overriding_amount = json.loads(data), 0, 0, 0 for row in data.get('advance_child'): sum_ = frappe.db.sql(""" select ifnull(sum(total_debit),0) as total from `tabJournal Entry` where farmer_advance =%s and cycle =%s and type='Farmer Advance' """,(row.get('adv_id'),cycle),as_dict=1,debug=0) total_paid += sum_[0].get('total') total_amount += row.get('principle') overriding_amount += flt(row.get('amount')) return flt((total_amount - overriding_amount),2) or 0 @frappe.whitelist() def get_updated_loan(cycle, data, loan_id=None, amount=None, total = None): data, total_paid, total_amount, overriding_amount = json.loads(data), 0, 0, 0 for row in data.get('loan_child'): total_amount += row.get('principle') overriding_amount += row.get('amount') return flt((total_amount - overriding_amount),2) or 0
45.942382
219
0.707868
a37cedb51c712ddf53c24677c91bb6fa641080c4
129
py
Python
demo2/demo2_app/models.py
mpasternak/pytest-django-pytest-splinter-test
843577e05a91545e4ff1d687b3fd56f25e0e22d3
[ "Unlicense" ]
null
null
null
demo2/demo2_app/models.py
mpasternak/pytest-django-pytest-splinter-test
843577e05a91545e4ff1d687b3fd56f25e0e22d3
[ "Unlicense" ]
null
null
null
demo2/demo2_app/models.py
mpasternak/pytest-django-pytest-splinter-test
843577e05a91545e4ff1d687b3fd56f25e0e22d3
[ "Unlicense" ]
null
null
null
from django.db import models # Create your models here. class Foobar(models.Model): name = models.CharField(max_length=50)
18.428571
42
0.751938
35c2486e81e8227147642c32fe3906948d4f32da
30,715
py
Python
examples/contrib/run_vcr.py
splionar/transformers
2f457ddc32e44bd40752406ebabdd6ee9c9d64bc
[ "Apache-2.0" ]
null
null
null
examples/contrib/run_vcr.py
splionar/transformers
2f457ddc32e44bd40752406ebabdd6ee9c9d64bc
[ "Apache-2.0" ]
null
null
null
examples/contrib/run_vcr.py
splionar/transformers
2f457ddc32e44bd40752406ebabdd6ee9c9d64bc
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """BERT finetuning runner. Finetuning the library models for multiple choice on SWAG (Bert). """ import argparse import csv import glob import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from torch.utils.data.distributed import DistributedSampler from tqdm import tqdm, trange from transformers import ( WEIGHTS_NAME, AdamW, BertConfig, BertForMultipleChoice, BertTokenizer, get_linear_schedule_with_warmup, ) try: from torch.utils.tensorboard import SummaryWriter except ImportError: from tensorboardX import SummaryWriter logger = logging.getLogger(__name__) ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) for conf in [BertConfig]), ()) MODEL_CLASSES = { "bert": (BertConfig, BertForMultipleChoice, BertTokenizer), } class SwagExample(object): """A single training/test example for the SWAG dataset.""" def __init__(self, swag_id, context_sentence, ending_0, ending_1, ending_2, ending_3, label=None): self.swag_id = swag_id self.context_sentence = context_sentence self.endings = [ ending_0, ending_1, ending_2, ending_3, ] self.label = label def __str__(self): return self.__repr__() def __repr__(self): attributes = [ "swag_id: {}".format(self.swag_id), "context_sentence: {}".format(self.context_sentence), "ending_0: {}".format(self.endings[0]), "ending_1: {}".format(self.endings[1]), "ending_2: {}".format(self.endings[2]), "ending_3: {}".format(self.endings[3]), ] if self.label is not None: attributes.append("label: {}".format(self.label)) return ", ".join(attributes) class InputFeatures(object): def __init__(self, example_id, choices_features, label): self.example_id = example_id self.choices_features = [ {"input_ids": input_ids, "input_mask": input_mask, "segment_ids": segment_ids} for _, input_ids, input_mask, segment_ids in choices_features ] self.label = label def read_swag_examples(input_file, is_training=True): with open(input_file, "r", encoding="utf-8") as f: lines = list(csv.reader(f)) if is_training and lines[0][-1] != "label": raise ValueError("For training, the input file must contain a label column.") examples = [ SwagExample( swag_id=line[0], context_sentence=line[3], ending_0=line[4], ending_1=line[5], ending_2=line[6], ending_3=line[7], label=int(line[8]) if is_training else None, ) for line in lines[1:] # we skip the line with the column names ] return examples def convert_examples_to_features(examples, tokenizer, max_seq_length, is_training): """Loads a data file into a list of `InputBatch`s.""" # Swag is a multiple choice task. To perform this task using Bert, # we will use the formatting proposed in "Improving Language # Understanding by Generative Pre-Training" and suggested by # @jacobdevlin-google in this issue # https://github.com/google-research/bert/issues/38. # # Each choice will correspond to a sample on which we run the # inference. For a given Swag example, we will create the 4 # following inputs: # - [CLS] context [SEP] choice_1 [SEP] # - [CLS] context [SEP] choice_2 [SEP] # - [CLS] context [SEP] choice_3 [SEP] # - [CLS] context [SEP] choice_4 [SEP] # The model will output a single value for each input. To get the # final decision of the model, we will run a softmax over these 4 # outputs. features = [] for example_index, example in tqdm(enumerate(examples)): context_tokens = tokenizer.tokenize(example.context_sentence) choices_features = [] for ending_index, ending in enumerate(example.endings): # We create a copy of the context tokens in order to be # able to shrink it according to ending_tokens context_tokens_choice = context_tokens[:] ending_tokens = tokenizer.tokenize(ending) # Modifies `context_tokens_choice` and `ending_tokens` in # place so that the total length is less than the # specified length. Account for [CLS], [SEP], [SEP] with # "- 3" _truncate_seq_pair(context_tokens_choice, ending_tokens, max_seq_length - 3) tokens = ["[CLS]"] + context_tokens_choice + ["[SEP]"] + ending_tokens + ["[SEP]"] segment_ids = [0] * (len(context_tokens_choice) + 2) + [1] * (len(ending_tokens) + 1) input_ids = tokenizer.convert_tokens_to_ids(tokens) input_mask = [1] * len(input_ids) # Zero-pad up to the sequence length. padding = [0] * (max_seq_length - len(input_ids)) input_ids += padding input_mask += padding segment_ids += padding assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length choices_features.append((tokens, input_ids, input_mask, segment_ids)) label = example.label if example_index < 5: logger.info("*** Example ***") logger.info("swag_id: {}".format(example.swag_id)) for choice_idx, (tokens, input_ids, input_mask, segment_ids) in enumerate(choices_features): logger.info("choice: {}".format(choice_idx)) logger.info("tokens: {}".format(" ".join(tokens))) logger.info("input_ids: {}".format(" ".join(map(str, input_ids)))) logger.info("input_mask: {}".format(" ".join(map(str, input_mask)))) logger.info("segment_ids: {}".format(" ".join(map(str, segment_ids)))) if is_training: logger.info("label: {}".format(label)) features.append(InputFeatures(example_id=example.swag_id, choices_features=choices_features, label=label)) return features def _truncate_seq_pair(tokens_a, tokens_b, max_length): """Truncates a sequence pair in place to the maximum length.""" # This is a simple heuristic which will always truncate the longer sequence # one token at a time. This makes more sense than truncating an equal percent # of tokens from each, since if one sequence is very short then each token # that's truncated likely contains more information than a longer sequence. while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop() def accuracy(out, labels): outputs = np.argmax(out, axis=1) return np.sum(outputs == labels) def select_field(features, field): return [[choice[field] for choice in feature.choices_features] for feature in features] def set_seed(args): random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed) def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False): if args.local_rank not in [-1, 0]: torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache # Load data features from cache or dataset file input_file = args.predict_file if evaluate else args.train_file cached_features_file = os.path.join( os.path.dirname(input_file), "cached_{}_{}_{}".format( "dev" if evaluate else "train", list(filter(None, args.model_name_or_path.split("/"))).pop(), str(args.max_seq_length), ), ) if os.path.exists(cached_features_file) and not args.overwrite_cache and not output_examples: logger.info("Loading features from cached file %s", cached_features_file) features = torch.load(cached_features_file) else: logger.info("Creating features from dataset file at %s", input_file) examples = read_swag_examples(input_file) features = convert_examples_to_features(examples, tokenizer, args.max_seq_length, not evaluate) if args.local_rank in [-1, 0]: logger.info("Saving features into cached file %s", cached_features_file) torch.save(features, cached_features_file) if args.local_rank == 0: torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache # Convert to Tensors and build dataset all_input_ids = torch.tensor(select_field(features, "input_ids"), dtype=torch.long) all_input_mask = torch.tensor(select_field(features, "input_mask"), dtype=torch.long) all_segment_ids = torch.tensor(select_field(features, "segment_ids"), dtype=torch.long) all_label = torch.tensor([f.label for f in features], dtype=torch.long) if evaluate: dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label) else: dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label) if output_examples: return dataset, examples, features return dataset def train(args, train_dataset, model, tokenizer): """ Train the model """ if args.local_rank in [-1, 0]: tb_writer = SummaryWriter() args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset) train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size) if args.max_steps > 0: t_total = args.max_steps args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1 else: t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs # Prepare optimizer and schedule (linear warmup and decay) no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": args.weight_decay, }, {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0}, ] optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total ) if args.fp16: try: from apex import amp except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) # multi-gpu training (should be after apex fp16 initialization) if args.n_gpu > 1: model = torch.nn.DataParallel(model) # Distributed training (should be after apex fp16 initialization) if args.local_rank != -1: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True ) # Train! logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_dataset)) logger.info(" Num Epochs = %d", args.num_train_epochs) logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) logger.info( " Total train batch size (w. parallel, distributed & accumulation) = %d", args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1), ) logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) logger.info(" Total optimization steps = %d", t_total) global_step = 0 tr_loss, logging_loss = 0.0, 0.0 model.zero_grad() train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]) set_seed(args) # Added here for reproductibility for _ in train_iterator: epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) for step, batch in enumerate(epoch_iterator): model.train() batch = tuple(t.to(args.device) for t in batch) inputs = { "input_ids": batch[0], "attention_mask": batch[1], # 'token_type_ids': None if args.model_type == 'xlm' else batch[2], "token_type_ids": batch[2], "labels": batch[3], } # if args.model_type in ['xlnet', 'xlm']: # inputs.update({'cls_index': batch[5], # 'p_mask': batch[6]}) outputs = model(**inputs) loss = outputs[0] # model outputs are always tuple in transformers (see doc) if args.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu parallel (not distributed) training if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) else: loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) tr_loss += loss.item() if (step + 1) % args.gradient_accumulation_steps == 0: optimizer.step() scheduler.step() # Update learning rate schedule model.zero_grad() global_step += 1 if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: # Log metrics if ( args.local_rank == -1 and args.evaluate_during_training ): # Only evaluate when single GPU otherwise metrics may not average well results = evaluate(args, model, tokenizer) for key, value in results.items(): tb_writer.add_scalar("eval_{}".format(key), value, global_step) tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step) tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step) logging_loss = tr_loss if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0: # Save model checkpoint output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step)) if not os.path.exists(output_dir): os.makedirs(output_dir) model_to_save = ( model.module if hasattr(model, "module") else model ) # Take care of distributed/parallel training model_to_save.save_pretrained(output_dir) tokenizer.save_vocabulary(output_dir) torch.save(args, os.path.join(output_dir, "training_args.bin")) logger.info("Saving model checkpoint to %s", output_dir) if args.max_steps > 0 and global_step > args.max_steps: epoch_iterator.close() break if args.max_steps > 0 and global_step > args.max_steps: train_iterator.close() break if args.local_rank in [-1, 0]: tb_writer.close() return global_step, tr_loss / global_step def evaluate(args, model, tokenizer, prefix=""): dataset, examples, features = load_and_cache_examples(args, tokenizer, evaluate=True, output_examples=True) if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]: os.makedirs(args.output_dir) args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) # Note that DistributedSampler samples randomly eval_sampler = SequentialSampler(dataset) if args.local_rank == -1 else DistributedSampler(dataset) eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) # Eval! logger.info("***** Running evaluation {} *****".format(prefix)) logger.info(" Num examples = %d", len(dataset)) logger.info(" Batch size = %d", args.eval_batch_size) eval_loss, eval_accuracy = 0, 0 nb_eval_steps, nb_eval_examples = 0, 0 prediction_list = [] for batch in tqdm(eval_dataloader, desc="Evaluating"): model.eval() batch = tuple(t.to(args.device) for t in batch) with torch.no_grad(): inputs = { "input_ids": batch[0], "attention_mask": batch[1], # 'token_type_ids': None if args.model_type == 'xlm' else batch[2] # XLM don't use segment_ids "token_type_ids": batch[2], "labels": batch[3], } # if args.model_type in ['xlnet', 'xlm']: # inputs.update({'cls_index': batch[4], # 'p_mask': batch[5]}) outputs = model(**inputs) tmp_eval_loss, logits = outputs[:2] eval_loss += tmp_eval_loss.mean().item() logits = logits.detach().cpu().numpy() #logits_shape = np.shape(logits) #predicted_label = np.argmax(logits, axis=1) prediction_list.append(logits) label_ids = inputs["labels"].to("cpu").numpy() tmp_eval_accuracy = accuracy(logits, label_ids) eval_accuracy += tmp_eval_accuracy nb_eval_steps += 1 nb_eval_examples += inputs["input_ids"].size(0) eval_loss = eval_loss / nb_eval_steps eval_accuracy = eval_accuracy / nb_eval_examples result = {"eval_loss": eval_loss, "eval_accuracy": eval_accuracy} output_eval_file = os.path.join(args.output_dir, "eval_results.txt") output_prediction_file = os.path.join(args.output_dir, "prediction") np.save(output_prediction_file,prediction_list) with open(output_eval_file, "w") as writer: logger.info("***** Eval results *****") for key in sorted(result.keys()): logger.info("%s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) return result def main(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--train_file", default=None, type=str, required=True, help="SWAG csv for training. E.g., train.csv" ) parser.add_argument( "--predict_file", default=None, type=str, required=True, help="SWAG csv for predictions. E.g., val.csv or test.csv", ) parser.add_argument( "--model_type", default=None, type=str, required=True, help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()), ) parser.add_argument( "--model_name_or_path", default=None, type=str, required=True, help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS), ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model checkpoints and predictions will be written.", ) # Other parameters parser.add_argument( "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name" ) parser.add_argument( "--tokenizer_name", default="", type=str, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--max_seq_length", default=384, type=int, help="The maximum total input sequence length after tokenization. Sequences " "longer than this will be truncated, and sequences shorter than this will be padded.", ) parser.add_argument("--do_train", action="store_true", help="Whether to run training.") parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.") parser.add_argument( "--evaluate_during_training", action="store_true", help="Rul evaluation during training at each logging step." ) parser.add_argument( "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model." ) parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.") parser.add_argument( "--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation." ) parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight deay if we apply some.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument( "--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform." ) parser.add_argument( "--max_steps", default=-1, type=int, help="If > 0: set total number of training steps to perform. Override num_train_epochs.", ) parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") parser.add_argument("--logging_steps", type=int, default=50, help="Log every X updates steps.") parser.add_argument("--save_steps", type=int, default=50, help="Save checkpoint every X updates steps.") parser.add_argument( "--eval_all_checkpoints", action="store_true", help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number", ) parser.add_argument("--no_cuda", action="store_true", help="Whether not to use CUDA when available") parser.add_argument( "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory" ) parser.add_argument( "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets" ) parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus") parser.add_argument( "--fp16", action="store_true", help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", ) parser.add_argument( "--fp16_opt_level", type=str, default="O1", help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html", ) parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.") parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.") args = parser.parse_args() if ( os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir ): raise ValueError( "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format( args.output_dir ) ) # Setup distant debugging if needed if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() # Setup CUDA, GPU & distributed training if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = torch.cuda.device_count() else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend="nccl") args.n_gpu = 1 args.device = device # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16, ) # Set seed set_seed(args) # Load pretrained model and tokenizer if args.local_rank not in [-1, 0]: torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab args.model_type = args.model_type.lower() config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type] config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path) tokenizer = tokenizer_class.from_pretrained( args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case ) model = model_class.from_pretrained( args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config ) if args.local_rank == 0: torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab model.to(args.device) logger.info("Training/evaluation parameters %s", args) # Training if args.do_train: train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False) global_step, tr_loss = train(args, train_dataset, model, tokenizer) logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) # Save the trained model and the tokenizer if args.local_rank == -1 or torch.distributed.get_rank() == 0: # Create output directory if needed if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]: os.makedirs(args.output_dir) logger.info("Saving model checkpoint to %s", args.output_dir) # Save a trained model, configuration and tokenizer using `save_pretrained()`. # They can then be reloaded using `from_pretrained()` model_to_save = ( model.module if hasattr(model, "module") else model ) # Take care of distributed/parallel training model_to_save.save_pretrained(args.output_dir) tokenizer.save_pretrained(args.output_dir) # Good practice: save your training arguments together with the trained model torch.save(args, os.path.join(args.output_dir, "training_args.bin")) # Load a trained model and vocabulary that you have fine-tuned model = model_class.from_pretrained(args.output_dir) tokenizer = tokenizer_class.from_pretrained(args.output_dir) model.to(args.device) # Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory results = {} if args.do_eval and args.local_rank in [-1, 0]: if args.do_train: checkpoints = [args.output_dir] else: # if do_train is False and do_eval is true, load model directly from pretrained. checkpoints = [args.model_name_or_path] if args.eval_all_checkpoints: checkpoints = list( os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True)) ) logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce model loading logs logger.info("Evaluate the following checkpoints: %s", checkpoints) for checkpoint in checkpoints: # Reload the model global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else "" model = model_class.from_pretrained(checkpoint) tokenizer = tokenizer_class.from_pretrained(checkpoint) model.to(args.device) # Evaluate result = evaluate(args, model, tokenizer, prefix=global_step) result = dict((k + ("_{}".format(global_step) if global_step else ""), v) for k, v in result.items()) results.update(result) logger.info("Results: {}".format(results)) return results if __name__ == "__main__": main()
41.675712
150
0.64545
e89ec95113747d4758af5a178b6d6954b4db0d5f
5,156
py
Python
project/openaid/management/commands/import_financial_data.py
DeppSRL/open-aid
84130761c00600a8523f4f28467d70ad974859cd
[ "BSD-3-Clause" ]
null
null
null
project/openaid/management/commands/import_financial_data.py
DeppSRL/open-aid
84130761c00600a8523f4f28467d70ad974859cd
[ "BSD-3-Clause" ]
null
null
null
project/openaid/management/commands/import_financial_data.py
DeppSRL/open-aid
84130761c00600a8523f4f28467d70ad974859cd
[ "BSD-3-Clause" ]
null
null
null
# coding=utf-8 __author__ = 'stefano' import logging from optparse import make_option from pprint import pprint from django.core.exceptions import ObjectDoesNotExist from openpyxl import load_workbook from django.core.management.base import BaseCommand from openaid.projects.models import Initiative class Command(BaseCommand): option_list = BaseCommand.option_list help = 'import financial data for initiatives. 2 dec 2015 only' logger = logging.getLogger('openaid') stash_codici = [] completed_only_xls = [] completed_in_xls = [] corso_only_xls = [] corso_in_xls = [] def get_code(self, row): code = None zfill_code = None value = row[0].value if type(value) == int: code = value if type(value) == float: try: code = int(value) except TypeError: return None, None zfill_code = str(code).zfill(6) return code, zfill_code def convert_list_to_string(self, list): return ",".join(list) def check_uniqueness(self,ws): ret = False for row_counter, row in enumerate(ws.rows): if row_counter == 0: continue code, zfill_code = self.get_code(row) if code is None: continue if zfill_code in self.stash_codici: self.logger.error("Row:{} - Codice '{}' non univoco!".format(row_counter,code)) ret = True else: self.stash_codici.append(zfill_code) return ret def examinate_in_corso(self, ws): for row_counter, row in enumerate(ws.rows): if row_counter == 0: continue code, zfill_code = self.get_code(row) if code is None: continue if zfill_code not in self.corso_in_xls: self.corso_in_xls.append(zfill_code) try: initiative = Initiative.objects.get(code=zfill_code) except ObjectDoesNotExist: self.corso_only_xls.append(zfill_code) continue else: self.logger.info("Update financial data for init:{}".format(initiative.code)) total = row[6].value grant = row[5].value loan = row[4].value initiative.total_project_costs = total initiative.loan_amount_approved = loan initiative.grant_amount_approved = grant if initiative.status_temp == '100': self.logger.info("Update STATUS for init:{}".format(initiative.code)) initiative.status_temp = '-' initiative.save() def check_subsets(self): # check what are the codes only in the XLS, and then check which are the codes only in the DB codes_db = set(Initiative.objects.all().exclude(status_temp='100').order_by('code').values_list('code',flat=True)) codes_xls = set(sorted(self.stash_codici)) stringa_db = self.convert_list_to_string(codes_db-codes_xls) stringa_xls = self.convert_list_to_string(codes_xls-codes_db) self.logger.info("Codes only in DB:{}".format(stringa_db)) self.logger.info("Codes only in XLS:{}".format(stringa_xls)) def handle(self, *args, **options): verbosity = options['verbosity'] input_filename = 'resources/fixtures/Aid.Titolo.Iniziative.Stato.Finanziario.DGCS.251115.xlsx' if verbosity == '0': self.logger.setLevel(logging.ERROR) elif verbosity == '1': self.logger.setLevel(logging.WARNING) elif verbosity == '2': self.logger.setLevel(logging.INFO) elif verbosity == '3': self.logger.setLevel(logging.DEBUG) self.logger.info(u"Opening input file: {}".format(input_filename)) input_file = open(input_filename, 'rb') input_workbook = load_workbook(input_file, data_only=True, use_iterators = True) ws_esecuzione_con_scheda = input_workbook['Esecuzione con scheda'] ws_esecuzione_senza_scheda = input_workbook['Esecuzione senza scheda'] self.logger.info("Checking uniqueness of codes in the file") # check that codes are unique in the whole file, initiatives cannot be repeated self.logger.info("Checking iniziative esecuzione con scheda") ret1 = self.check_uniqueness(ws_esecuzione_con_scheda) self.logger.info("Checking iniziative esecuzione senza scheda") ret2 = self.check_uniqueness(ws_esecuzione_senza_scheda) if ret1 or ret2: self.logger.critical("Codes are not unique in the file. Quitting") exit() else: self.logger.info("All codes are unique") self.logger.info("Examinate IN ESECUZIONE sheet") # deal with in corso initiatives self.examinate_in_corso(ws_esecuzione_con_scheda) self.examinate_in_corso(ws_esecuzione_senza_scheda) # log the results self.check_subsets() self.logger.info(u"Finish")
37.911765
122
0.621024
e53872ac53b7b774f4bf8de44c8ef9c4dcd42117
107,870
py
Python
nova/network/neutronv2/api.py
larsbutler/nova
fb190f30a911658d8b0c4deaf43cbb8c9e35b672
[ "Apache-2.0" ]
null
null
null
nova/network/neutronv2/api.py
larsbutler/nova
fb190f30a911658d8b0c4deaf43cbb8c9e35b672
[ "Apache-2.0" ]
null
null
null
nova/network/neutronv2/api.py
larsbutler/nova
fb190f30a911658d8b0c4deaf43cbb8c9e35b672
[ "Apache-2.0" ]
null
null
null
# Copyright 2012 OpenStack Foundation # All Rights Reserved # Copyright (c) 2012 NEC Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # import time import uuid from keystoneauth1 import loading as ks_loading from neutronclient.common import exceptions as neutron_client_exc from neutronclient.v2_0 import client as clientv20 from oslo_log import log as logging from oslo_utils import excutils from oslo_utils import uuidutils import six from nova.compute import utils as compute_utils import nova.conf from nova import exception from nova.i18n import _, _LE, _LI, _LW from nova.network import base_api from nova.network import model as network_model from nova.network.neutronv2 import constants from nova import objects from nova.objects import fields as obj_fields from nova.pci import manager as pci_manager from nova.pci import request as pci_request from nova.pci import utils as pci_utils from nova.pci import whitelist as pci_whitelist from nova.policies import base as base_policies CONF = nova.conf.CONF LOG = logging.getLogger(__name__) _SESSION = None _ADMIN_AUTH = None DEFAULT_SECGROUP = 'default' def reset_state(): global _ADMIN_AUTH global _SESSION _ADMIN_AUTH = None _SESSION = None def _load_auth_plugin(conf): auth_plugin = ks_loading.load_auth_from_conf_options(conf, nova.conf.neutron.NEUTRON_GROUP) if auth_plugin: return auth_plugin err_msg = _('Unknown auth type: %s') % conf.neutron.auth_type raise neutron_client_exc.Unauthorized(message=err_msg) class ClientWrapper(clientv20.Client): """A Neutron client wrapper class. Wraps the callable methods, catches Unauthorized,Forbidden from Neutron and convert it to a 401,403 for Nova clients. """ def __init__(self, base_client, admin): # Expose all attributes from the base_client instance self.__dict__ = base_client.__dict__ self.base_client = base_client self.admin = admin def __getattribute__(self, name): obj = object.__getattribute__(self, name) if callable(obj): obj = object.__getattribute__(self, 'proxy')(obj) return obj def proxy(self, obj): def wrapper(*args, **kwargs): try: ret = obj(*args, **kwargs) except neutron_client_exc.Unauthorized: if not self.admin: # Token is expired so Neutron is raising a # unauthorized exception, we should convert it to # raise a 401 to make client to handle a retry by # renegerating a valid token and trying a new # attempt. raise exception.Unauthorized() # In admin context if token is invalid Neutron client # should be able to regenerate a valid by using the # Neutron admin credential configuration located in # nova.conf. LOG.error(_LE("Neutron client was not able to generate a " "valid admin token, please verify Neutron " "admin credential located in nova.conf")) raise exception.NeutronAdminCredentialConfigurationInvalid() except neutron_client_exc.Forbidden as e: raise exception.Forbidden(e) return ret return wrapper def get_client(context, admin=False): # NOTE(dprince): In the case where no auth_token is present we allow use of # neutron admin tenant credentials if it is an admin context. This is to # support some services (metadata API) where an admin context is used # without an auth token. global _ADMIN_AUTH global _SESSION auth_plugin = None if not _SESSION: _SESSION = ks_loading.load_session_from_conf_options( CONF, nova.conf.neutron.NEUTRON_GROUP) if admin or (context.is_admin and not context.auth_token): if not _ADMIN_AUTH: _ADMIN_AUTH = _load_auth_plugin(CONF) auth_plugin = _ADMIN_AUTH elif context.auth_token: auth_plugin = context.get_auth_plugin() if not auth_plugin: # We did not get a user token and we should not be using # an admin token so log an error raise exception.Unauthorized() return ClientWrapper( clientv20.Client(session=_SESSION, auth=auth_plugin, endpoint_override=CONF.neutron.url, region_name=CONF.neutron.region_name), admin=admin or context.is_admin) def _is_not_duplicate(item, items, items_list_name, instance): present = item in items # The expectation from this function's perspective is that the # item is not part of the items list so if it is part of it # we should at least log it as a warning if present: LOG.warning(_LW("%(item)s already exists in list: %(list_name)s " "containing: %(items)s. ignoring it"), {'item': item, 'list_name': items_list_name, 'items': items}, instance=instance) return not present def _ensure_no_port_binding_failure(port): binding_vif_type = port.get('binding:vif_type') if binding_vif_type == network_model.VIF_TYPE_BINDING_FAILED: raise exception.PortBindingFailed(port_id=port['id']) def _filter_hypervisor_macs(instance, ports, hypervisor_macs): """Removes macs from set if used by existing ports :param requested_networks: list of NetworkRequests :type requested_networks: nova.objects.NetworkRequestList :param hypervisor_macs: None or a set of MAC addresses that the instance should use. hypervisor_macs are supplied by the hypervisor driver (contrast with requested_networks which is user supplied). NB: NeutronV2 currently assigns hypervisor supplied MAC addresses to arbitrary networks, which requires openflow switches to function correctly if more than one network is being used with the bare metal hypervisor (which is the only one known to limit MAC addresses). :type hypervisor_macs: set :returns a set of available MAC addresses to use if creating a port later; this is the set of hypervisor_macs after removing any MAC addresses from explicitly requested ports. """ if not hypervisor_macs: return None # Make a copy we can mutate: records macs that have not been used # to create a port on a network. If we find a mac with a # pre-allocated port we also remove it from this set. available_macs = set(hypervisor_macs) if not ports: return available_macs for port in ports.values(): mac = port['mac_address'] if mac not in hypervisor_macs: LOG.debug("Port %(port)s mac address %(mac)s is " "not in the set of hypervisor macs: " "%(hyper_macs)s. Nova will overwrite " "this with a new mac address.", {'port': port['id'], 'mac': mac, 'hyper_macs': hypervisor_macs}, instance=instance) else: # Don't try to use this MAC if we need to create a # port on the fly later. Identical MACs may be # configured by users into multiple ports so we # discard rather than popping. available_macs.discard(mac) return available_macs def get_pci_device_profile(pci_dev): dev_spec = pci_whitelist.get_pci_device_devspec(pci_dev) if dev_spec: return {'pci_vendor_info': "%s:%s" % (pci_dev.vendor_id, pci_dev.product_id), 'pci_slot': pci_dev.address, 'physical_network': dev_spec.get_tags().get('physical_network')} raise exception.PciDeviceNotFound(node_id=pci_dev.compute_node_id, address=pci_dev.address) class API(base_api.NetworkAPI): """API for interacting with the neutron 2.x API.""" def __init__(self): super(API, self).__init__() self.last_neutron_extension_sync = None self.extensions = {} def setup_networks_on_host(self, context, instance, host=None, teardown=False): """Setup or teardown the network structures.""" def _get_available_networks(self, context, project_id, net_ids=None, neutron=None, auto_allocate=False): """Return a network list available for the tenant. The list contains networks owned by the tenant and public networks. If net_ids specified, it searches networks with requested IDs only. """ if not neutron: neutron = get_client(context) if net_ids: # If user has specified to attach instance only to specific # networks then only add these to **search_opts. This search will # also include 'shared' networks. search_opts = {'id': net_ids} nets = neutron.list_networks(**search_opts).get('networks', []) else: # (1) Retrieve non-public network list owned by the tenant. search_opts = {'tenant_id': project_id, 'shared': False} if auto_allocate: # The auto-allocated-topology extension may create complex # network topologies and it does so in a non-transactional # fashion. Therefore API users may be exposed to resources that # are transient or partially built. A client should use # resources that are meant to be ready and this can be done by # checking their admin_state_up flag. search_opts['admin_state_up'] = True nets = neutron.list_networks(**search_opts).get('networks', []) # (2) Retrieve public network list. search_opts = {'shared': True} nets += neutron.list_networks(**search_opts).get('networks', []) _ensure_requested_network_ordering( lambda x: x['id'], nets, net_ids) return nets def _create_port_minimal(self, port_client, instance, network_id, fixed_ip=None, security_group_ids=None): """Attempts to create a port for the instance on the given network. :param port_client: The client to use to create the port. :param instance: Create the port for the given instance. :param network_id: Create the port on the given network. :param fixed_ip: Optional fixed IP to use from the given network. :param security_group_ids: Optional list of security group IDs to apply to the port. :returns: The created port. :raises PortLimitExceeded: If neutron fails with an OverQuota error. :raises NoMoreFixedIps: If neutron fails with IpAddressGenerationFailure error. :raises: PortBindingFailed: If port binding failed. """ port_req_body = {'port': {}} try: if fixed_ip: port_req_body['port']['fixed_ips'] = [ {'ip_address': str(fixed_ip)}] port_req_body['port']['network_id'] = network_id port_req_body['port']['admin_state_up'] = True port_req_body['port']['tenant_id'] = instance.project_id if security_group_ids: port_req_body['port']['security_groups'] = security_group_ids port_response = port_client.create_port(port_req_body) port = port_response['port'] port_id = port['id'] try: _ensure_no_port_binding_failure(port) except exception.PortBindingFailed: with excutils.save_and_reraise_exception(): port_client.delete_port(port_id) LOG.debug('Successfully created port: %s', port_id, instance=instance) return port except neutron_client_exc.InvalidIpForNetworkClient: LOG.warning(_LW('Neutron error: %(ip)s is not a valid IP address ' 'for network %(network_id)s.'), {'ip': fixed_ip, 'network_id': network_id}, instance=instance) msg = (_('Fixed IP %(ip)s is not a valid ip address for ' 'network %(network_id)s.') % {'ip': fixed_ip, 'network_id': network_id}) raise exception.InvalidInput(reason=msg) except neutron_client_exc.IpAddressInUseClient: LOG.warning(_LW('Neutron error: Fixed IP %s is ' 'already in use.'), fixed_ip, instance=instance) msg = _("Fixed IP %s is already in use.") % fixed_ip raise exception.FixedIpAlreadyInUse(message=msg) except neutron_client_exc.OverQuotaClient: LOG.warning(_LW( 'Neutron error: Port quota exceeded in tenant: %s'), port_req_body['port']['tenant_id'], instance=instance) raise exception.PortLimitExceeded() except neutron_client_exc.IpAddressGenerationFailureClient: LOG.warning(_LW('Neutron error: No more fixed IPs in network: %s'), network_id, instance=instance) raise exception.NoMoreFixedIps(net=network_id) except neutron_client_exc.NeutronClientException: with excutils.save_and_reraise_exception(): LOG.exception(_LE('Neutron error creating port on network %s'), network_id, instance=instance) def _update_port(self, port_client, instance, port_id, port_req_body): try: port_response = port_client.update_port(port_id, port_req_body) port = port_response['port'] _ensure_no_port_binding_failure(port) LOG.debug('Successfully updated port: %s', port_id, instance=instance) return port except neutron_client_exc.MacAddressInUseClient: mac_address = port_req_body['port'].get('mac_address') network_id = port_req_body['port'].get('network_id') LOG.warning(_LW('Neutron error: MAC address %(mac)s is already ' 'in use on network %(network)s.'), {'mac': mac_address, 'network': network_id}, instance=instance) raise exception.PortInUse(port_id=mac_address) @staticmethod def _populate_mac_address(instance, port_req_body, available_macs): # NOTE(johngarbutt) On port_update, this will cause us to override # any previous mac address the port may have had. if available_macs is not None: if not available_macs: raise exception.PortNotFree( instance=instance.uuid) mac_address = available_macs.pop() port_req_body['port']['mac_address'] = mac_address return mac_address def _check_external_network_attach(self, context, nets): """Check if attaching to external network is permitted.""" if not context.can(base_policies.NETWORK_ATTACH_EXTERNAL, fatal=False): for net in nets: # Perform this check here rather than in validate_networks to # ensure the check is performed every time # allocate_for_instance is invoked if net.get('router:external') and not net.get('shared'): raise exception.ExternalNetworkAttachForbidden( network_uuid=net['id']) def _unbind_ports(self, context, ports, neutron, port_client=None): """Unbind the given ports by clearing their device_id and device_owner. :param context: The request context. :param ports: list of port IDs. :param neutron: neutron client for the current context. :param port_client: The client with appropriate karma for updating the ports. """ port_binding = self._has_port_binding_extension(context, refresh_cache=True, neutron=neutron) if port_client is None: # Requires admin creds to set port bindings port_client = (neutron if not port_binding else get_client(context, admin=True)) for port_id in ports: # A port_id is optional in the NetworkRequest object so check here # in case the caller forgot to filter the list. if port_id is None: continue port_req_body = {'port': {'device_id': '', 'device_owner': ''}} if port_binding: port_req_body['port']['binding:host_id'] = None port_req_body['port']['binding:profile'] = {} if constants.DNS_INTEGRATION in self.extensions: port_req_body['port']['dns_name'] = '' try: port_client.update_port(port_id, port_req_body) except Exception: LOG.exception(_LE("Unable to clear device ID " "for port '%s'"), port_id) def _validate_requested_port_ids(self, context, instance, neutron, requested_networks): """Processes and validates requested networks for allocation. Iterates over the list of NetworkRequest objects, validating the request and building sets of ports, networks and MAC addresses to use for allocating ports for the instance. :param instance: allocate networks on this instance :type instance: nova.objects.Instance :param neutron: neutron client session :type neutron: neutronclient.v2_0.client.Client :returns: tuple of: - ports: dict mapping of port id to port dict - net_ids: list of requested network ids - ordered_networks: list of nova.objects.NetworkRequest objects for requested networks (either via explicit network request or the network for an explicit port request) :raises nova.exception.PortNotFound: If a requested port is not found in Neutron. :raises nova.exception.PortNotUsable: If a requested port is not owned by the same tenant that the instance is created under. :raises nova.exception.PortInUse: If a requested port is already attached to another instance. :raises nova.exception.PortNotUsableDNS: If a requested port has a value assigned to its dns_name attribute. """ ports = {} ordered_networks = [] # If we're asked to auto-allocate the network then there won't be any # ports or real neutron networks to lookup, so just return empty # results. if requested_networks and not requested_networks.auto_allocate: for request in requested_networks: # Process a request to use a pre-existing neutron port. if request.port_id: # Make sure the port exists. port = self._show_port(context, request.port_id, neutron_client=neutron) # Make sure the instance has access to the port. if port['tenant_id'] != instance.project_id: raise exception.PortNotUsable(port_id=request.port_id, instance=instance.uuid) # Make sure the port isn't already attached to another # instance. if port.get('device_id'): raise exception.PortInUse(port_id=request.port_id) # Make sure that if the user assigned a value to the port's # dns_name attribute, it is equal to the instance's # hostname if port.get('dns_name'): if port['dns_name'] != instance.hostname: raise exception.PortNotUsableDNS( port_id=request.port_id, instance=instance.uuid, value=port['dns_name'], hostname=instance.hostname) # Make sure the port is usable _ensure_no_port_binding_failure(port) # If requesting a specific port, automatically process # the network for that port as if it were explicitly # requested. request.network_id = port['network_id'] ports[request.port_id] = port # Process a request to use a specific neutron network. if request.network_id: ordered_networks.append(request) return ports, ordered_networks def _clean_security_groups(self, security_groups): """Cleans security groups requested from Nova API Neutron already passes a 'default' security group when creating ports so it's not necessary to specify it to the request. """ if security_groups == [DEFAULT_SECGROUP]: security_groups = [] return security_groups def _process_security_groups(self, instance, neutron, security_groups): """Processes and validates requested security groups for allocation. Iterates over the list of requested security groups, validating the request and filtering out the list of security group IDs to use for port allocation. :param instance: allocate networks on this instance :type instance: nova.objects.Instance :param neutron: neutron client session :type neutron: neutronclient.v2_0.client.Client :param security_groups: list of requested security group name or IDs to use when allocating new ports for the instance :return: list of security group IDs to use when allocating new ports :raises nova.exception.NoUniqueMatch: If multiple security groups are requested with the same name. :raises nova.exception.SecurityGroupNotFound: If a requested security group is not in the tenant-filtered list of available security groups in Neutron. """ security_group_ids = [] # TODO(arosen) Should optimize more to do direct query for security # group if len(security_groups) == 1 if len(security_groups): search_opts = {'tenant_id': instance.project_id} user_security_groups = neutron.list_security_groups( **search_opts).get('security_groups') for security_group in security_groups: name_match = None uuid_match = None for user_security_group in user_security_groups: if user_security_group['name'] == security_group: # If there was a name match in a previous iteration # of the loop, we have a conflict. if name_match: raise exception.NoUniqueMatch( _("Multiple security groups found matching" " '%s'. Use an ID to be more specific.") % security_group) name_match = user_security_group['id'] if user_security_group['id'] == security_group: uuid_match = user_security_group['id'] # If a user names the security group the same as # another's security groups uuid, the name takes priority. if name_match: security_group_ids.append(name_match) elif uuid_match: security_group_ids.append(uuid_match) else: raise exception.SecurityGroupNotFound( security_group_id=security_group) return security_group_ids def _validate_requested_network_ids(self, context, instance, neutron, requested_networks, ordered_networks): """Check requested networks using the Neutron API. Check the user has access to the network they requested, and that it is a suitable network to connect to. This includes getting the network details for any ports that have been passed in, because the request will have been updated with the request_id in _validate_requested_port_ids. If the user has not requested any ports or any networks, we get back a full list of networks the user has access to, and if there is only one network, we update ordered_networks so we will connect the instance to that network. :param context: The request context. :param instance: nova.objects.instance.Instance object. :param requested_networks: value containing network_id, fixed_ip, and port_id :param ordered_networks: output from _validate_requested_port_ids that will be used to create and update ports """ # Get networks from Neutron # If net_ids is empty, this actually returns all available nets auto_allocate = requested_networks and requested_networks.auto_allocate net_ids = [request.network_id for request in ordered_networks] nets = self._get_available_networks(context, instance.project_id, net_ids, neutron=neutron, auto_allocate=auto_allocate) if not nets: if requested_networks: # There are no networks available for the project to use and # none specifically requested, so check to see if we're asked # to auto-allocate the network. if auto_allocate: # During validate_networks we checked to see if # auto-allocation is available so we don't need to do that # again here. nets = [self._auto_allocate_network(instance, neutron)] else: # NOTE(chaochin): If user specifies a network id and the # network can not be found, raise NetworkNotFound error. for request in requested_networks: if not request.port_id and request.network_id: raise exception.NetworkNotFound( network_id=request.network_id) else: # no requested nets and user has no available nets return {} # if this function is directly called without a requested_network param # or if it is indirectly called through allocate_port_for_instance() # with None params=(network_id=None, requested_ip=None, port_id=None, # pci_request_id=None): if (not requested_networks or requested_networks.is_single_unspecified or requested_networks.auto_allocate): # If no networks were requested and none are available, consider # it a bad request. if not nets: raise exception.InterfaceAttachFailedNoNetwork( project_id=instance.project_id) # bug/1267723 - if no network is requested and more # than one is available then raise NetworkAmbiguous Exception if len(nets) > 1: msg = _("Multiple possible networks found, use a Network " "ID to be more specific.") raise exception.NetworkAmbiguous(msg) ordered_networks.append( objects.NetworkRequest(network_id=nets[0]['id'])) # NOTE(melwitt): check external net attach permission after the # check for ambiguity, there could be another # available net which is permitted bug/1364344 self._check_external_network_attach(context, nets) return {net['id']: net for net in nets} def _create_ports_for_instance(self, context, instance, ordered_networks, nets, neutron, security_group_ids): """Create port for network_requests that don't have a port_id :param context: The request context. :param instance: nova.objects.instance.Instance object. :param ordered_networks: objects.NetworkRequestList in requested order :param nets: a dict of network_id to networks returned from neutron :param neutron: neutronclient using built from users request context :param security_group_ids: a list of security_groups to go to neutron :returns a list of pairs (NetworkRequest, created_port_uuid) """ created_port_ids = [] requests_and_created_ports = [] for request in ordered_networks: network = nets.get(request.network_id) # if network_id did not pass validate_networks() and not available # here then skip it safely not continuing with a None Network if not network: continue try: port_security_enabled = network.get( 'port_security_enabled', True) if port_security_enabled: if not network.get('subnets'): # Neutron can't apply security groups to a port # for a network without L3 assignments. LOG.debug('Network with port security enabled does ' 'not have subnets so security groups ' 'cannot be applied: %s', network, instance=instance) raise exception.SecurityGroupCannotBeApplied() else: if security_group_ids: # We don't want to apply security groups on port # for a network defined with # 'port_security_enabled=False'. LOG.debug('Network has port security disabled so ' 'security groups cannot be applied: %s', network, instance=instance) raise exception.SecurityGroupCannotBeApplied() created_port_id = None if not request.port_id: # create minimal port, if port not already created by user created_port = self._create_port_minimal( neutron, instance, request.network_id, request.address, security_group_ids) created_port_id = created_port['id'] created_port_ids.append(created_port_id) requests_and_created_ports.append(( request, created_port_id)) except Exception: with excutils.save_and_reraise_exception(): if created_port_ids: self._delete_ports( neutron, instance, created_port_ids) return requests_and_created_ports def allocate_for_instance(self, context, instance, **kwargs): """Allocate network resources for the instance. :param context: The request context. :param instance: nova.objects.instance.Instance object. :param requested_networks: optional value containing network_id, fixed_ip, and port_id :param security_groups: security groups to allocate for instance :param macs: None or a set of MAC addresses that the instance should use. macs is supplied by the hypervisor driver (contrast with requested_networks which is user supplied). NB: NeutronV2 currently assigns hypervisor supplied MAC addresses to arbitrary networks, which requires openflow switches to function correctly if more than one network is being used with the bare metal hypervisor (which is the only one known to limit MAC addresses). :param dhcp_options: None or a set of key/value pairs that should determine the DHCP BOOTP response, eg. for PXE booting an instance configured with the baremetal hypervisor. It is expected that these are already formatted for the neutron v2 api. See nova/virt/driver.py:dhcp_options_for_instance for an example. :param bind_host_id: the host ID to attach to the ports being created. """ LOG.debug('allocate_for_instance()', instance=instance) if not instance.project_id: msg = _('empty project id for instance %s') raise exception.InvalidInput( reason=msg % instance.uuid) # We do not want to create a new neutron session for each call neutron = get_client(context) # # Validate ports and networks with neutron # requested_networks = kwargs.get('requested_networks') ports, ordered_networks = self._validate_requested_port_ids( context, instance, neutron, requested_networks) nets = self._validate_requested_network_ids( context, instance, neutron, requested_networks, ordered_networks) if not nets: LOG.debug("No network configured", instance=instance) return network_model.NetworkInfo([]) # # Create any ports that might be required, # after validating requested security groups # security_groups = self._clean_security_groups( kwargs.get('security_groups', [])) security_group_ids = self._process_security_groups( instance, neutron, security_groups) requests_and_created_ports = self._create_ports_for_instance( context, instance, ordered_networks, nets, neutron, security_group_ids) # # Update existing and newly created ports # dhcp_opts = kwargs.get('dhcp_options') bind_host_id = kwargs.get('bind_host_id') hypervisor_macs = kwargs.get('macs', None) available_macs = _filter_hypervisor_macs(instance, ports, hypervisor_macs) # We always need admin_client to build nw_info, # we sometimes need it when updating ports admin_client = get_client(context, admin=True) ordered_nets, ordered_ports, preexisting_port_ids, \ created_port_ids = self._update_ports_for_instance( context, instance, neutron, admin_client, requests_and_created_ports, nets, bind_host_id, dhcp_opts, available_macs) # # Perform a full update of the network_info_cache, # including re-fetching lots of the required data from neutron # nw_info = self.get_instance_nw_info( context, instance, networks=ordered_nets, port_ids=ordered_ports, admin_client=admin_client, preexisting_port_ids=preexisting_port_ids, update_cells=True) # NOTE(danms): Only return info about ports we created in this run. # In the initial allocation case, this will be everything we created, # and in later runs will only be what was created that time. Thus, # this only affects the attach case, not the original use for this # method. return network_model.NetworkInfo([vif for vif in nw_info if vif['id'] in created_port_ids + preexisting_port_ids]) def _update_ports_for_instance(self, context, instance, neutron, admin_client, requests_and_created_ports, nets, bind_host_id, dhcp_opts, available_macs): """Create port for network_requests that don't have a port_id :param context: The request context. :param instance: nova.objects.instance.Instance object. :param neutron: client using user context :param admin_client: client using admin context :param requests_and_created_ports: [(NetworkRequest, created_port_id)] :param nets: a dict of network_id to networks returned from neutron :param bind_host_id: a string for port['binding:host_id'] :param dhcp_opts: a list dicts that contain dhcp option name and value e.g. [{'opt_name': 'tftp-server', 'opt_value': '1.2.3.4'}] :param available_macs: a list of available mac addresses """ # The neutron client and port_client (either the admin context or # tenant context) are read here. The reason for this is that there are # a number of different calls for the instance allocation. # We require admin creds to set port bindings. port_client = (neutron if not self._has_port_binding_extension(context, refresh_cache=True, neutron=neutron) else admin_client) preexisting_port_ids = [] created_port_ids = [] ports_in_requested_order = [] nets_in_requested_order = [] created_vifs = [] # this list is for cleanups if we fail for request, created_port_id in requests_and_created_ports: vifobj = objects.VirtualInterface(context) vifobj.instance_uuid = instance.uuid vifobj.tag = request.tag if 'tag' in request else None network = nets.get(request.network_id) # if network_id did not pass validate_networks() and not available # here then skip it safely not continuing with a None Network if not network: continue nets_in_requested_order.append(network) zone = 'compute:%s' % instance.availability_zone port_req_body = {'port': {'device_id': instance.uuid, 'device_owner': zone}} try: self._populate_neutron_extension_values( context, instance, request.pci_request_id, port_req_body, network=network, neutron=neutron, bind_host_id=bind_host_id) self._populate_pci_mac_address(instance, request.pci_request_id, port_req_body) self._populate_mac_address( instance, port_req_body, available_macs) if dhcp_opts is not None: port_req_body['port']['extra_dhcp_opts'] = dhcp_opts if created_port_id: port_id = created_port_id created_port_ids.append(port_id) else: port_id = request.port_id ports_in_requested_order.append(port_id) # After port is created, update other bits updated_port = self._update_port( port_client, instance, port_id, port_req_body) # NOTE(danms): The virtual_interfaces table enforces global # uniqueness on MAC addresses, which clearly does not match # with neutron's view of the world. Since address is a 255-char # string we can namespace it with our port id. Using '/' should # be safely excluded from MAC address notations as well as # UUIDs. We could stop doing this when we remove # nova-network, but we'd need to leave the read translation in # for longer than that of course. vifobj.address = '%s/%s' % (updated_port['mac_address'], updated_port['id']) vifobj.uuid = port_id vifobj.create() created_vifs.append(vifobj) if not created_port_id: # only add if update worked and port create not called preexisting_port_ids.append(port_id) self._update_port_dns_name(context, instance, network, ports_in_requested_order[-1], neutron) except Exception: with excutils.save_and_reraise_exception(): self._unbind_ports(context, preexisting_port_ids, neutron, port_client) self._delete_ports(neutron, instance, created_port_ids) for vif in created_vifs: vif.destroy() return (nets_in_requested_order, ports_in_requested_order, preexisting_port_ids, created_port_ids) def _refresh_neutron_extensions_cache(self, context, neutron=None): """Refresh the neutron extensions cache when necessary.""" if (not self.last_neutron_extension_sync or ((time.time() - self.last_neutron_extension_sync) >= CONF.neutron.extension_sync_interval)): if neutron is None: neutron = get_client(context) extensions_list = neutron.list_extensions()['extensions'] self.last_neutron_extension_sync = time.time() self.extensions.clear() self.extensions = {ext['name']: ext for ext in extensions_list} def _has_port_binding_extension(self, context, refresh_cache=False, neutron=None): if refresh_cache: self._refresh_neutron_extensions_cache(context, neutron=neutron) return constants.PORTBINDING_EXT in self.extensions def _has_auto_allocate_extension(self, context, refresh_cache=False, neutron=None): if refresh_cache or not self.extensions: self._refresh_neutron_extensions_cache(context, neutron=neutron) return constants.AUTO_ALLOCATE_TOPO_EXT in self.extensions @staticmethod def _populate_neutron_binding_profile(instance, pci_request_id, port_req_body): """Populate neutron binding:profile. Populate it with SR-IOV related information """ if pci_request_id: pci_dev = pci_manager.get_instance_pci_devs( instance, pci_request_id).pop() profile = get_pci_device_profile(pci_dev) port_req_body['port']['binding:profile'] = profile @staticmethod def _populate_pci_mac_address(instance, pci_request_id, port_req_body): """Add the updated MAC address value to the update_port request body. Currently this is done only for PF passthrough. """ if pci_request_id is not None: pci_devs = pci_manager.get_instance_pci_devs( instance, pci_request_id) if len(pci_devs) != 1: # NOTE(ndipanov): We shouldn't ever get here since # InstancePCIRequest instances built from network requests # only ever index a single device, which needs to be # successfully claimed for this to be called as part of # allocate_networks method LOG.error(_LE("PCI request %s does not have a " "unique device associated with it. Unable to " "determine MAC address"), pci_request, instance=instance) return pci_dev = pci_devs[0] if pci_dev.dev_type == obj_fields.PciDeviceType.SRIOV_PF: try: mac = pci_utils.get_mac_by_pci_address(pci_dev.address) except exception.PciDeviceNotFoundById as e: LOG.error( _LE("Could not determine MAC address for %(addr)s, " "error: %(e)s"), {"addr": pci_dev.address, "e": e}, instance=instance) else: port_req_body['port']['mac_address'] = mac def _populate_neutron_extension_values(self, context, instance, pci_request_id, port_req_body, network=None, neutron=None, bind_host_id=None): """Populate neutron extension values for the instance. If the extensions loaded contain QOS_QUEUE then pass the rxtx_factor. """ self._refresh_neutron_extensions_cache(context, neutron=neutron) if constants.QOS_QUEUE in self.extensions: flavor = instance.get_flavor() rxtx_factor = flavor.get('rxtx_factor') port_req_body['port']['rxtx_factor'] = rxtx_factor has_port_binding_extension = ( self._has_port_binding_extension(context, neutron=neutron)) if has_port_binding_extension: port_req_body['port']['binding:host_id'] = bind_host_id self._populate_neutron_binding_profile(instance, pci_request_id, port_req_body) if constants.DNS_INTEGRATION in self.extensions: # If the DNS integration extension is enabled in Neutron, most # ports will get their dns_name attribute set in the port create or # update requests in allocate_for_instance. So we just add the # dns_name attribute to the payload of those requests. The # exception is when the port binding extension is enabled in # Neutron and the port is on a network that has a non-blank # dns_domain attribute. This case requires to be processed by # method _update_port_dns_name if (not has_port_binding_extension or not network.get('dns_domain')): port_req_body['port']['dns_name'] = instance.hostname def _update_port_dns_name(self, context, instance, network, port_id, neutron): """Update an instance port dns_name attribute with instance.hostname. The dns_name attribute of a port on a network with a non-blank dns_domain attribute will be sent to the external DNS service (Designate) if DNS integration is enabled in Neutron. This requires the assignment of the dns_name to the port to be done with a Neutron client using the user's context. allocate_for_instance uses a port with admin context if the port binding extensions is enabled in Neutron. In this case, we assign in this method the dns_name attribute to the port with an additional update request. Only a very small fraction of ports will require this additional update request. """ if (constants.DNS_INTEGRATION in self.extensions and self._has_port_binding_extension(context) and network.get('dns_domain')): try: port_req_body = {'port': {'dns_name': instance.hostname}} neutron.update_port(port_id, port_req_body) except neutron_client_exc.BadRequest: LOG.warning(_LW('Neutron error: Instance hostname ' '%(hostname)s is not a valid DNS name'), {'hostname': instance.hostname}, instance=instance) msg = (_('Instance hostname %(hostname)s is not a valid DNS ' 'name') % {'hostname': instance.hostname}) raise exception.InvalidInput(reason=msg) def _delete_ports(self, neutron, instance, ports, raise_if_fail=False): exceptions = [] for port in ports: try: neutron.delete_port(port) except neutron_client_exc.NeutronClientException as e: if e.status_code == 404: LOG.warning(_LW("Port %s does not exist"), port, instance=instance) else: exceptions.append(e) LOG.warning( _LW("Failed to delete port %s for instance."), port, instance=instance, exc_info=True) if len(exceptions) > 0 and raise_if_fail: raise exceptions[0] def deallocate_for_instance(self, context, instance, **kwargs): """Deallocate all network resources related to the instance.""" LOG.debug('deallocate_for_instance()', instance=instance) search_opts = {'device_id': instance.uuid} neutron = get_client(context) data = neutron.list_ports(**search_opts) ports = [port['id'] for port in data.get('ports', [])] requested_networks = kwargs.get('requested_networks') or [] # NOTE(danms): Temporary and transitional if isinstance(requested_networks, objects.NetworkRequestList): requested_networks = requested_networks.as_tuples() ports_to_skip = set([port_id for nets, fips, port_id, pci_request_id in requested_networks]) # NOTE(boden): requested_networks only passed in when deallocating # from a failed build / spawn call. Therefore we need to include # preexisting ports when deallocating from a standard delete op # in which case requested_networks is not provided. ports_to_skip |= set(self._get_preexisting_port_ids(instance)) ports = set(ports) - ports_to_skip # Reset device_id and device_owner for the ports that are skipped self._unbind_ports(context, ports_to_skip, neutron) # Delete the rest of the ports self._delete_ports(neutron, instance, ports, raise_if_fail=True) # deallocate vifs (mac addresses) objects.VirtualInterface.delete_by_instance_uuid( context, instance.uuid) # NOTE(arosen): This clears out the network_cache only if the instance # hasn't already been deleted. This is needed when an instance fails to # launch and is rescheduled onto another compute node. If the instance # has already been deleted this call does nothing. base_api.update_instance_cache_with_nw_info(self, context, instance, network_model.NetworkInfo([])) def allocate_port_for_instance(self, context, instance, port_id, network_id=None, requested_ip=None, bind_host_id=None): """Allocate a port for the instance.""" requested_networks = objects.NetworkRequestList( objects=[objects.NetworkRequest(network_id=network_id, address=requested_ip, port_id=port_id, pci_request_id=None)]) return self.allocate_for_instance(context, instance, requested_networks=requested_networks, bind_host_id=bind_host_id) def deallocate_port_for_instance(self, context, instance, port_id): """Remove a specified port from the instance. Return network information for the instance """ neutron = get_client(context) preexisting_ports = self._get_preexisting_port_ids(instance) if port_id in preexisting_ports: self._unbind_ports(context, [port_id], neutron) else: self._delete_ports(neutron, instance, [port_id], raise_if_fail=True) # Delete the VirtualInterface for the given port_id. vif = objects.VirtualInterface.get_by_uuid(context, port_id) if vif: vif.destroy() else: LOG.debug('VirtualInterface not found for port: %s', port_id, instance=instance) return self.get_instance_nw_info(context, instance) def list_ports(self, context, **search_opts): """List ports for the client based on search options.""" return get_client(context).list_ports(**search_opts) def show_port(self, context, port_id): """Return the port for the client given the port id. :param context: Request context. :param port_id: The id of port to be queried. :returns: A dict containing port data keyed by 'port', e.g. :: {'port': {'port_id': 'abcd', 'fixed_ip_address': '1.2.3.4'}} """ return dict(port=self._show_port(context, port_id)) def _show_port(self, context, port_id, neutron_client=None, fields=None): """Return the port for the client given the port id. :param context: Request context. :param port_id: The id of port to be queried. :param neutron_client: A neutron client. :param fields: The condition fields to query port data. :returns: A dict of port data. e.g. {'port_id': 'abcd', 'fixed_ip_address': '1.2.3.4'} """ if not neutron_client: neutron_client = get_client(context) try: if fields: result = neutron_client.show_port(port_id, fields=fields) else: result = neutron_client.show_port(port_id) return result.get('port') except neutron_client_exc.PortNotFoundClient: raise exception.PortNotFound(port_id=port_id) except neutron_client_exc.Unauthorized: raise exception.Forbidden() except neutron_client_exc.NeutronClientException as exc: msg = (_("Failed to access port %(port_id)s: %(reason)s") % {'port_id': port_id, 'reason': exc}) raise exception.NovaException(message=msg) def _get_instance_nw_info(self, context, instance, networks=None, port_ids=None, admin_client=None, preexisting_port_ids=None, **kwargs): # NOTE(danms): This is an inner method intended to be called # by other code that updates instance nwinfo. It *must* be # called with the refresh_cache-%(instance_uuid) lock held! LOG.debug('_get_instance_nw_info()', instance=instance) # Ensure that we have an up to date copy of the instance info cache. # Otherwise multiple requests could collide and cause cache # corruption. compute_utils.refresh_info_cache_for_instance(context, instance) nw_info = self._build_network_info_model(context, instance, networks, port_ids, admin_client, preexisting_port_ids) return network_model.NetworkInfo.hydrate(nw_info) def _gather_port_ids_and_networks(self, context, instance, networks=None, port_ids=None): """Return an instance's complete list of port_ids and networks.""" if ((networks is None and port_ids is not None) or (port_ids is None and networks is not None)): message = _("This method needs to be called with either " "networks=None and port_ids=None or port_ids and " "networks as not none.") raise exception.NovaException(message=message) ifaces = compute_utils.get_nw_info_for_instance(instance) # This code path is only done when refreshing the network_cache if port_ids is None: port_ids = [iface['id'] for iface in ifaces] net_ids = [iface['network']['id'] for iface in ifaces] if networks is None: networks = self._get_available_networks(context, instance.project_id, net_ids) # an interface was added/removed from instance. else: # Prepare the network ids list for validation purposes networks_ids = [network['id'] for network in networks] # Validate that interface networks doesn't exist in networks. # Though this issue can and should be solved in methods # that prepare the networks list, this method should have this # ignore-duplicate-networks/port-ids mechanism to reduce the # probability of failing to boot the VM. networks = networks + [ {'id': iface['network']['id'], 'name': iface['network']['label'], 'tenant_id': iface['network']['meta']['tenant_id']} for iface in ifaces if _is_not_duplicate(iface['network']['id'], networks_ids, "networks", instance)] # Include existing interfaces so they are not removed from the db. # Validate that the interface id is not in the port_ids port_ids = [iface['id'] for iface in ifaces if _is_not_duplicate(iface['id'], port_ids, "port_ids", instance)] + port_ids return networks, port_ids @base_api.refresh_cache def add_fixed_ip_to_instance(self, context, instance, network_id): """Add a fixed IP to the instance from specified network.""" neutron = get_client(context) search_opts = {'network_id': network_id} data = neutron.list_subnets(**search_opts) ipam_subnets = data.get('subnets', []) if not ipam_subnets: raise exception.NetworkNotFoundForInstance( instance_id=instance.uuid) zone = 'compute:%s' % instance.availability_zone search_opts = {'device_id': instance.uuid, 'device_owner': zone, 'network_id': network_id} data = neutron.list_ports(**search_opts) ports = data['ports'] for p in ports: for subnet in ipam_subnets: fixed_ips = p['fixed_ips'] fixed_ips.append({'subnet_id': subnet['id']}) port_req_body = {'port': {'fixed_ips': fixed_ips}} try: neutron.update_port(p['id'], port_req_body) return self._get_instance_nw_info(context, instance) except Exception as ex: msg = ("Unable to update port %(portid)s on subnet " "%(subnet_id)s with failure: %(exception)s") LOG.debug(msg, {'portid': p['id'], 'subnet_id': subnet['id'], 'exception': ex}, instance=instance) raise exception.NetworkNotFoundForInstance( instance_id=instance.uuid) @base_api.refresh_cache def remove_fixed_ip_from_instance(self, context, instance, address): """Remove a fixed IP from the instance.""" neutron = get_client(context) zone = 'compute:%s' % instance.availability_zone search_opts = {'device_id': instance.uuid, 'device_owner': zone, 'fixed_ips': 'ip_address=%s' % address} data = neutron.list_ports(**search_opts) ports = data['ports'] for p in ports: fixed_ips = p['fixed_ips'] new_fixed_ips = [] for fixed_ip in fixed_ips: if fixed_ip['ip_address'] != address: new_fixed_ips.append(fixed_ip) port_req_body = {'port': {'fixed_ips': new_fixed_ips}} try: neutron.update_port(p['id'], port_req_body) except Exception as ex: msg = ("Unable to update port %(portid)s with" " failure: %(exception)s") LOG.debug(msg, {'portid': p['id'], 'exception': ex}, instance=instance) return self._get_instance_nw_info(context, instance) raise exception.FixedIpNotFoundForSpecificInstance( instance_uuid=instance.uuid, ip=address) def _get_port_vnic_info(self, context, neutron, port_id): """Retrieve port vnic info Invoked with a valid port_id. Return vnic type and the attached physical network name. """ phynet_name = None port = self._show_port(context, port_id, neutron_client=neutron, fields=['binding:vnic_type', 'network_id']) vnic_type = port.get('binding:vnic_type', network_model.VNIC_TYPE_NORMAL) if vnic_type in network_model.VNIC_TYPES_SRIOV: net_id = port['network_id'] net = neutron.show_network(net_id, fields='provider:physical_network').get('network') phynet_name = net.get('provider:physical_network') return vnic_type, phynet_name def create_pci_requests_for_sriov_ports(self, context, pci_requests, requested_networks): """Check requested networks for any SR-IOV port request. Create a PCI request object for each SR-IOV port, and add it to the pci_requests object that contains a list of PCI request object. """ if not requested_networks: return neutron = get_client(context, admin=True) for request_net in requested_networks: phynet_name = None vnic_type = network_model.VNIC_TYPE_NORMAL if request_net.port_id: vnic_type, phynet_name = self._get_port_vnic_info( context, neutron, request_net.port_id) pci_request_id = None if vnic_type in network_model.VNIC_TYPES_SRIOV: spec = {pci_request.PCI_NET_TAG: phynet_name} dev_type = pci_request.DEVICE_TYPE_FOR_VNIC_TYPE.get(vnic_type) if dev_type: spec[pci_request.PCI_DEVICE_TYPE_TAG] = dev_type request = objects.InstancePCIRequest( count=1, spec=[spec], request_id=str(uuid.uuid4())) pci_requests.requests.append(request) pci_request_id = request.request_id # Add pci_request_id into the requested network request_net.pci_request_id = pci_request_id def _can_auto_allocate_network(self, context, neutron): """Helper method to determine if we can auto-allocate networks :param context: nova request context :param neutron: neutron client :returns: True if it's possible to auto-allocate networks, False otherwise. """ # check that the auto-allocated-topology extension is available if self._has_auto_allocate_extension(context, neutron=neutron): # run the dry-run validation, which will raise a 409 if not ready try: neutron.validate_auto_allocated_topology_requirements( context.project_id) LOG.debug('Network auto-allocation is available for project ' '%s', context.project_id) except neutron_client_exc.Conflict as ex: LOG.debug('Unable to auto-allocate networks. %s', six.text_type(ex)) else: return True else: LOG.debug('Unable to auto-allocate networks. The neutron ' 'auto-allocated-topology extension is not available.') return False def _auto_allocate_network(self, instance, neutron): """Automatically allocates a network for the given project. :param instance: create the network for the project that owns this instance :param neutron: neutron client :returns: Details of the network that was created. :raises: nova.exception.UnableToAutoAllocateNetwork :raises: nova.exception.NetworkNotFound """ project_id = instance.project_id LOG.debug('Automatically allocating a network for project %s.', project_id, instance=instance) try: topology = neutron.get_auto_allocated_topology( project_id)['auto_allocated_topology'] except neutron_client_exc.Conflict: raise exception.UnableToAutoAllocateNetwork(project_id=project_id) try: network = neutron.show_network(topology['id'])['network'] except neutron_client_exc.NetworkNotFoundClient: # This shouldn't happen since we just created the network, but # handle it anyway. LOG.error(_LE('Automatically allocated network %(network_id)s ' 'was not found.'), {'network_id': topology['id']}, instance=instance) raise exception.UnableToAutoAllocateNetwork(project_id=project_id) LOG.debug('Automatically allocated network: %s', network, instance=instance) return network def _ports_needed_per_instance(self, context, neutron, requested_networks): # TODO(danms): Remove me when all callers pass an object if requested_networks and isinstance(requested_networks[0], tuple): requested_networks = objects.NetworkRequestList.from_tuples( requested_networks) ports_needed_per_instance = 0 if (requested_networks is None or len(requested_networks) == 0 or requested_networks.auto_allocate): nets = self._get_available_networks(context, context.project_id, neutron=neutron) if len(nets) > 1: # Attaching to more than one network by default doesn't # make sense, as the order will be arbitrary and the guest OS # won't know which to configure msg = _("Multiple possible networks found, use a Network " "ID to be more specific.") raise exception.NetworkAmbiguous(msg) if not nets and ( requested_networks and requested_networks.auto_allocate): # If there are no networks available to this project and we # were asked to auto-allocate a network, check to see that we # can do that first. LOG.debug('No networks are available for project %s; checking ' 'to see if we can automatically allocate a network.', context.project_id) if not self._can_auto_allocate_network(context, neutron): raise exception.UnableToAutoAllocateNetwork( project_id=context.project_id) ports_needed_per_instance = 1 else: net_ids_requested = [] for request in requested_networks: if request.port_id: port = self._show_port(context, request.port_id, neutron_client=neutron) if port.get('device_id', None): raise exception.PortInUse(port_id=request.port_id) deferred_ip = port.get('ip_allocation') == 'deferred' # NOTE(carl_baldwin) A deferred IP port doesn't have an # address here. If it fails to get one later when nova # updates it with host info, Neutron will error which # raises an exception. if not deferred_ip and not port.get('fixed_ips'): raise exception.PortRequiresFixedIP( port_id=request.port_id) request.network_id = port['network_id'] else: ports_needed_per_instance += 1 net_ids_requested.append(request.network_id) # NOTE(jecarey) There is currently a race condition. # That is, if you have more than one request for a specific # fixed IP at the same time then only one will be allocated # the ip. The fixed IP will be allocated to only one of the # instances that will run. The second instance will fail on # spawn. That instance will go into error state. # TODO(jecarey) Need to address this race condition once we # have the ability to update mac addresses in Neutron. if request.address: # TODO(jecarey) Need to look at consolidating list_port # calls once able to OR filters. search_opts = {'network_id': request.network_id, 'fixed_ips': 'ip_address=%s' % ( request.address), 'fields': 'device_id'} existing_ports = neutron.list_ports( **search_opts)['ports'] if existing_ports: i_uuid = existing_ports[0]['device_id'] raise exception.FixedIpAlreadyInUse( address=request.address, instance_uuid=i_uuid) # Now check to see if all requested networks exist if net_ids_requested: nets = self._get_available_networks( context, context.project_id, net_ids_requested, neutron=neutron) for net in nets: if not net.get('subnets'): raise exception.NetworkRequiresSubnet( network_uuid=net['id']) if len(nets) != len(net_ids_requested): requested_netid_set = set(net_ids_requested) returned_netid_set = set([net['id'] for net in nets]) lostid_set = requested_netid_set - returned_netid_set if lostid_set: id_str = '' for _id in lostid_set: id_str = id_str and id_str + ', ' + _id or _id raise exception.NetworkNotFound(network_id=id_str) return ports_needed_per_instance def validate_networks(self, context, requested_networks, num_instances): """Validate that the tenant can use the requested networks. Return the number of instances than can be successfully allocated with the requested network configuration. """ LOG.debug('validate_networks() for %s', requested_networks) neutron = get_client(context) ports_needed_per_instance = self._ports_needed_per_instance( context, neutron, requested_networks) # Note(PhilD): Ideally Nova would create all required ports as part of # network validation, but port creation requires some details # from the hypervisor. So we just check the quota and return # how many of the requested number of instances can be created if ports_needed_per_instance: quotas = neutron.show_quota(context.project_id)['quota'] if quotas.get('port', -1) == -1: # Unlimited Port Quota return num_instances # We only need the port count so only ask for ids back. params = dict(tenant_id=context.project_id, fields=['id']) ports = neutron.list_ports(**params)['ports'] free_ports = quotas.get('port') - len(ports) if free_ports < 0: msg = (_("The number of defined ports: %(ports)d " "is over the limit: %(quota)d") % {'ports': len(ports), 'quota': quotas.get('port')}) raise exception.PortLimitExceeded(msg) ports_needed = ports_needed_per_instance * num_instances if free_ports >= ports_needed: return num_instances else: return free_ports // ports_needed_per_instance return num_instances def _get_instance_uuids_by_ip(self, context, address): """Retrieve instance uuids associated with the given IP address. :returns: A list of dicts containing the uuids keyed by 'instance_uuid' e.g. [{'instance_uuid': uuid}, ...] """ search_opts = {"fixed_ips": 'ip_address=%s' % address} data = get_client(context).list_ports(**search_opts) ports = data.get('ports', []) return [{'instance_uuid': port['device_id']} for port in ports if port['device_id']] def _get_port_id_by_fixed_address(self, client, instance, address): """Return port_id from a fixed address.""" zone = 'compute:%s' % instance.availability_zone search_opts = {'device_id': instance.uuid, 'device_owner': zone} data = client.list_ports(**search_opts) ports = data['ports'] port_id = None for p in ports: for ip in p['fixed_ips']: if ip['ip_address'] == address: port_id = p['id'] break if not port_id: raise exception.FixedIpNotFoundForAddress(address=address) return port_id @base_api.refresh_cache def associate_floating_ip(self, context, instance, floating_address, fixed_address, affect_auto_assigned=False): """Associate a floating IP with a fixed IP.""" # Note(amotoki): 'affect_auto_assigned' is not respected # since it is not used anywhere in nova code and I could # find why this parameter exists. client = get_client(context) port_id = self._get_port_id_by_fixed_address(client, instance, fixed_address) fip = self._get_floating_ip_by_address(client, floating_address) param = {'port_id': port_id, 'fixed_ip_address': fixed_address} client.update_floatingip(fip['id'], {'floatingip': param}) if fip['port_id']: port = self._show_port(context, fip['port_id'], neutron_client=client) orig_instance_uuid = port['device_id'] msg_dict = dict(address=floating_address, instance_id=orig_instance_uuid) LOG.info(_LI('re-assign floating IP %(address)s from ' 'instance %(instance_id)s'), msg_dict, instance=instance) orig_instance = objects.Instance.get_by_uuid(context, orig_instance_uuid) # purge cached nw info for the original instance base_api.update_instance_cache_with_nw_info(self, context, orig_instance) def get_all(self, context): """Get all networks for client.""" client = get_client(context) networks = client.list_networks().get('networks') network_objs = [] for network in networks: network_objs.append(objects.Network(context=context, name=network['name'], label=network['name'], uuid=network['id'])) return objects.NetworkList(context=context, objects=network_objs) def get(self, context, network_uuid): """Get specific network for client.""" client = get_client(context) try: network = client.show_network(network_uuid).get('network') or {} except neutron_client_exc.NetworkNotFoundClient: raise exception.NetworkNotFound(network_id=network_uuid) net_obj = objects.Network(context=context, name=network['name'], label=network['name'], uuid=network['id']) return net_obj def delete(self, context, network_uuid): """Delete a network for client.""" raise NotImplementedError() def disassociate(self, context, network_uuid): """Disassociate a network for client.""" raise NotImplementedError() def associate(self, context, network_uuid, host=base_api.SENTINEL, project=base_api.SENTINEL): """Associate a network for client.""" raise NotImplementedError() def get_fixed_ip(self, context, id): """Get a fixed IP from the id.""" raise NotImplementedError() def get_fixed_ip_by_address(self, context, address): """Return instance uuids given an address.""" uuid_maps = self._get_instance_uuids_by_ip(context, address) if len(uuid_maps) == 1: return uuid_maps[0] elif not uuid_maps: raise exception.FixedIpNotFoundForAddress(address=address) else: raise exception.FixedIpAssociatedWithMultipleInstances( address=address) def _setup_net_dict(self, client, network_id): if not network_id: return {} pool = client.show_network(network_id)['network'] return {pool['id']: pool} def _setup_port_dict(self, context, client, port_id): if not port_id: return {} port = self._show_port(context, port_id, neutron_client=client) return {port['id']: port} def _setup_pools_dict(self, client): pools = self._get_floating_ip_pools(client) return {i['id']: i for i in pools} def _setup_ports_dict(self, client, project_id=None): search_opts = {'tenant_id': project_id} if project_id else {} ports = client.list_ports(**search_opts)['ports'] return {p['id']: p for p in ports} def get_floating_ip(self, context, id): """Return floating IP object given the floating IP id.""" client = get_client(context) try: fip = client.show_floatingip(id)['floatingip'] except neutron_client_exc.NeutronClientException as e: if e.status_code == 404: raise exception.FloatingIpNotFound(id=id) else: with excutils.save_and_reraise_exception(): LOG.exception(_LE('Unable to access floating IP %s'), id) pool_dict = self._setup_net_dict(client, fip['floating_network_id']) port_dict = self._setup_port_dict(context, client, fip['port_id']) return self._make_floating_ip_obj(context, fip, pool_dict, port_dict) def _get_floating_ip_pools(self, client, project_id=None): search_opts = {constants.NET_EXTERNAL: True} if project_id: search_opts.update({'tenant_id': project_id}) data = client.list_networks(**search_opts) return data['networks'] def get_floating_ip_pools(self, context): """Return floating IP pool names.""" client = get_client(context) pools = self._get_floating_ip_pools(client) # Note(salv-orlando): Return a list of names to be consistent with # nova.network.api.get_floating_ip_pools return [n['name'] or n['id'] for n in pools] def _make_floating_ip_obj(self, context, fip, pool_dict, port_dict): pool = pool_dict[fip['floating_network_id']] # NOTE(danms): Don't give these objects a context, since they're # not lazy-loadable anyway floating = objects.floating_ip.NeutronFloatingIP( id=fip['id'], address=fip['floating_ip_address'], pool=(pool['name'] or pool['id']), project_id=fip['tenant_id'], fixed_ip_id=fip['port_id']) # In Neutron v2 API fixed_ip_address and instance uuid # (= device_id) are known here, so pass it as a result. if fip['fixed_ip_address']: floating.fixed_ip = objects.FixedIP( address=fip['fixed_ip_address']) else: floating.fixed_ip = None if fip['port_id']: instance_uuid = port_dict[fip['port_id']]['device_id'] # NOTE(danms): This could be .refresh()d, so give it context floating.instance = objects.Instance(context=context, uuid=instance_uuid) if floating.fixed_ip: floating.fixed_ip.instance_uuid = instance_uuid else: floating.instance = None return floating def get_floating_ip_by_address(self, context, address): """Return a floating IP given an address.""" client = get_client(context) fip = self._get_floating_ip_by_address(client, address) pool_dict = self._setup_net_dict(client, fip['floating_network_id']) port_dict = self._setup_port_dict(context, client, fip['port_id']) return self._make_floating_ip_obj(context, fip, pool_dict, port_dict) def get_floating_ips_by_project(self, context): client = get_client(context) project_id = context.project_id fips = self._safe_get_floating_ips(client, tenant_id=project_id) if not fips: return [] pool_dict = self._setup_pools_dict(client) port_dict = self._setup_ports_dict(client, project_id) return [self._make_floating_ip_obj(context, fip, pool_dict, port_dict) for fip in fips] def get_instance_id_by_floating_address(self, context, address): """Return the instance id a floating IP's fixed IP is allocated to.""" client = get_client(context) fip = self._get_floating_ip_by_address(client, address) if not fip['port_id']: return None port = self._show_port(context, fip['port_id'], neutron_client=client) return port['device_id'] def get_vifs_by_instance(self, context, instance): raise NotImplementedError() def get_vif_by_mac_address(self, context, mac_address): raise NotImplementedError() def _get_floating_ip_pool_id_by_name_or_id(self, client, name_or_id): search_opts = {constants.NET_EXTERNAL: True, 'fields': 'id'} if uuidutils.is_uuid_like(name_or_id): search_opts.update({'id': name_or_id}) else: search_opts.update({'name': name_or_id}) data = client.list_networks(**search_opts) nets = data['networks'] if len(nets) == 1: return nets[0]['id'] elif len(nets) == 0: raise exception.FloatingIpPoolNotFound() else: msg = (_("Multiple floating IP pools matches found for name '%s'") % name_or_id) raise exception.NovaException(message=msg) def allocate_floating_ip(self, context, pool=None): """Add a floating IP to a project from a pool.""" client = get_client(context) pool = pool or CONF.default_floating_pool pool_id = self._get_floating_ip_pool_id_by_name_or_id(client, pool) param = {'floatingip': {'floating_network_id': pool_id}} try: fip = client.create_floatingip(param) except (neutron_client_exc.IpAddressGenerationFailureClient, neutron_client_exc.ExternalIpAddressExhaustedClient) as e: raise exception.NoMoreFloatingIps(six.text_type(e)) except neutron_client_exc.OverQuotaClient as e: raise exception.FloatingIpLimitExceeded(six.text_type(e)) except neutron_client_exc.BadRequest as e: raise exception.FloatingIpBadRequest(six.text_type(e)) return fip['floatingip']['floating_ip_address'] def _safe_get_floating_ips(self, client, **kwargs): """Get floating IP gracefully handling 404 from Neutron.""" try: return client.list_floatingips(**kwargs)['floatingips'] # If a neutron plugin does not implement the L3 API a 404 from # list_floatingips will be raised. except neutron_client_exc.NotFound: return [] except neutron_client_exc.NeutronClientException as e: # bug/1513879 neutron client is currently using # NeutronClientException when there is no L3 API if e.status_code == 404: return [] with excutils.save_and_reraise_exception(): LOG.exception(_LE('Unable to access floating IP for %s'), ', '.join(['%s %s' % (k, v) for k, v in six.iteritems(kwargs)])) def _get_floating_ip_by_address(self, client, address): """Get floating IP from floating IP address.""" if not address: raise exception.FloatingIpNotFoundForAddress(address=address) fips = self._safe_get_floating_ips(client, floating_ip_address=address) if len(fips) == 0: raise exception.FloatingIpNotFoundForAddress(address=address) elif len(fips) > 1: raise exception.FloatingIpMultipleFoundForAddress(address=address) return fips[0] def _get_floating_ips_by_fixed_and_port(self, client, fixed_ip, port): """Get floating IPs from fixed IP and port.""" return self._safe_get_floating_ips(client, fixed_ip_address=fixed_ip, port_id=port) def release_floating_ip(self, context, address, affect_auto_assigned=False): """Remove a floating IP with the given address from a project.""" # Note(amotoki): We cannot handle a case where multiple pools # have overlapping IP address range. In this case we cannot use # 'address' as a unique key. # This is a limitation of the current nova. # Note(amotoki): 'affect_auto_assigned' is not respected # since it is not used anywhere in nova code and I could # find why this parameter exists. self._release_floating_ip(context, address) def disassociate_and_release_floating_ip(self, context, instance, floating_ip): """Removes (deallocates) and deletes the floating IP. This api call was added to allow this to be done in one operation if using neutron. """ self._release_floating_ip(context, floating_ip['address'], raise_if_associated=False) def _release_floating_ip(self, context, address, raise_if_associated=True): client = get_client(context) fip = self._get_floating_ip_by_address(client, address) if raise_if_associated and fip['port_id']: raise exception.FloatingIpAssociated(address=address) client.delete_floatingip(fip['id']) @base_api.refresh_cache def disassociate_floating_ip(self, context, instance, address, affect_auto_assigned=False): """Disassociate a floating IP from the instance.""" # Note(amotoki): 'affect_auto_assigned' is not respected # since it is not used anywhere in nova code and I could # find why this parameter exists. client = get_client(context) fip = self._get_floating_ip_by_address(client, address) client.update_floatingip(fip['id'], {'floatingip': {'port_id': None}}) def migrate_instance_start(self, context, instance, migration): """Start to migrate the network of an instance.""" # NOTE(wenjianhn): just pass to make migrate instance doesn't # raise for now. pass def migrate_instance_finish(self, context, instance, migration): """Finish migrating the network of an instance.""" self._update_port_binding_for_instance(context, instance, migration['dest_compute']) def add_network_to_project(self, context, project_id, network_uuid=None): """Force add a network to the project.""" raise NotImplementedError() def _nw_info_get_ips(self, client, port): network_IPs = [] for fixed_ip in port['fixed_ips']: fixed = network_model.FixedIP(address=fixed_ip['ip_address']) floats = self._get_floating_ips_by_fixed_and_port( client, fixed_ip['ip_address'], port['id']) for ip in floats: fip = network_model.IP(address=ip['floating_ip_address'], type='floating') fixed.add_floating_ip(fip) network_IPs.append(fixed) return network_IPs def _nw_info_get_subnets(self, context, port, network_IPs): subnets = self._get_subnets_from_port(context, port) for subnet in subnets: subnet['ips'] = [fixed_ip for fixed_ip in network_IPs if fixed_ip.is_in_subnet(subnet)] return subnets def _nw_info_build_network(self, port, networks, subnets): network_name = None network_mtu = None for net in networks: if port['network_id'] == net['id']: network_name = net['name'] tenant_id = net['tenant_id'] network_mtu = net.get('mtu') break else: tenant_id = port['tenant_id'] LOG.warning(_LW("Network %(id)s not matched with the tenants " "network! The ports tenant %(tenant_id)s will be " "used."), {'id': port['network_id'], 'tenant_id': tenant_id}) bridge = None ovs_interfaceid = None # Network model metadata should_create_bridge = None vif_type = port.get('binding:vif_type') port_details = port.get('binding:vif_details', {}) if vif_type == network_model.VIF_TYPE_OVS: bridge = port_details.get(network_model.VIF_DETAILS_BRIDGE_NAME, CONF.neutron.ovs_bridge) ovs_interfaceid = port['id'] elif vif_type == network_model.VIF_TYPE_BRIDGE: bridge = port_details.get(network_model.VIF_DETAILS_BRIDGE_NAME, "brq" + port['network_id']) should_create_bridge = True elif vif_type == network_model.VIF_TYPE_DVS: # The name of the DVS port group will contain the neutron # network id bridge = port['network_id'] elif (vif_type == network_model.VIF_TYPE_VHOSTUSER and port_details.get(network_model.VIF_DETAILS_VHOSTUSER_OVS_PLUG, False)): bridge = port_details.get(network_model.VIF_DETAILS_BRIDGE_NAME, CONF.neutron.ovs_bridge) ovs_interfaceid = port['id'] # Prune the bridge name if necessary. For the DVS this is not done # as the bridge is a '<network-name>-<network-UUID>'. if bridge is not None and vif_type != network_model.VIF_TYPE_DVS: bridge = bridge[:network_model.NIC_NAME_LEN] network = network_model.Network( id=port['network_id'], bridge=bridge, injected=CONF.flat_injected, label=network_name, tenant_id=tenant_id, mtu=network_mtu ) network['subnets'] = subnets port_profile = port.get('binding:profile') if port_profile: physical_network = port_profile.get('physical_network') if physical_network: network['physical_network'] = physical_network if should_create_bridge is not None: network['should_create_bridge'] = should_create_bridge return network, ovs_interfaceid def _get_preexisting_port_ids(self, instance): """Retrieve the preexisting ports associated with the given instance. These ports were not created by nova and hence should not be deallocated upon instance deletion. """ net_info = compute_utils.get_nw_info_for_instance(instance) if not net_info: LOG.debug('Instance cache missing network info.', instance=instance) return [vif['id'] for vif in net_info if vif.get('preserve_on_delete')] def _build_network_info_model(self, context, instance, networks=None, port_ids=None, admin_client=None, preexisting_port_ids=None): """Return list of ordered VIFs attached to instance. :param context: Request context. :param instance: Instance we are returning network info for. :param networks: List of networks being attached to an instance. If value is None this value will be populated from the existing cached value. :param port_ids: List of port_ids that are being attached to an instance in order of attachment. If value is None this value will be populated from the existing cached value. :param admin_client: A neutron client for the admin context. :param preexisting_port_ids: List of port_ids that nova didn't allocate and there shouldn't be deleted when an instance is de-allocated. Supplied list will be added to the cached list of preexisting port IDs for this instance. """ search_opts = {'tenant_id': instance.project_id, 'device_id': instance.uuid, } if admin_client is None: client = get_client(context, admin=True) else: client = admin_client data = client.list_ports(**search_opts) current_neutron_ports = data.get('ports', []) nw_info_refresh = networks is None and port_ids is None networks, port_ids = self._gather_port_ids_and_networks( context, instance, networks, port_ids) nw_info = network_model.NetworkInfo() if preexisting_port_ids is None: preexisting_port_ids = [] preexisting_port_ids = set( preexisting_port_ids + self._get_preexisting_port_ids(instance)) current_neutron_port_map = {} for current_neutron_port in current_neutron_ports: current_neutron_port_map[current_neutron_port['id']] = ( current_neutron_port) for port_id in port_ids: current_neutron_port = current_neutron_port_map.get(port_id) if current_neutron_port: vif_active = False if (current_neutron_port['admin_state_up'] is False or current_neutron_port['status'] == 'ACTIVE'): vif_active = True network_IPs = self._nw_info_get_ips(client, current_neutron_port) subnets = self._nw_info_get_subnets(context, current_neutron_port, network_IPs) devname = "tap" + current_neutron_port['id'] devname = devname[:network_model.NIC_NAME_LEN] network, ovs_interfaceid = ( self._nw_info_build_network(current_neutron_port, networks, subnets)) preserve_on_delete = (current_neutron_port['id'] in preexisting_port_ids) nw_info.append(network_model.VIF( id=current_neutron_port['id'], address=current_neutron_port['mac_address'], network=network, vnic_type=current_neutron_port.get('binding:vnic_type', network_model.VNIC_TYPE_NORMAL), type=current_neutron_port.get('binding:vif_type'), profile=current_neutron_port.get('binding:profile'), details=current_neutron_port.get('binding:vif_details'), ovs_interfaceid=ovs_interfaceid, devname=devname, active=vif_active, preserve_on_delete=preserve_on_delete)) elif nw_info_refresh: LOG.info(_LI('Port %s from network info_cache is no ' 'longer associated with instance in Neutron. ' 'Removing from network info_cache.'), port_id, instance=instance) return nw_info def _get_subnets_from_port(self, context, port): """Return the subnets for a given port.""" fixed_ips = port['fixed_ips'] # No fixed_ips for the port means there is no subnet associated # with the network the port is created on. # Since list_subnets(id=[]) returns all subnets visible for the # current tenant, returned subnets may contain subnets which is not # related to the port. To avoid this, the method returns here. if not fixed_ips: return [] search_opts = {'id': [ip['subnet_id'] for ip in fixed_ips]} data = get_client(context).list_subnets(**search_opts) ipam_subnets = data.get('subnets', []) subnets = [] for subnet in ipam_subnets: subnet_dict = {'cidr': subnet['cidr'], 'gateway': network_model.IP( address=subnet['gateway_ip'], type='gateway'), } # attempt to populate DHCP server field search_opts = {'network_id': subnet['network_id'], 'device_owner': 'network:dhcp'} data = get_client(context).list_ports(**search_opts) dhcp_ports = data.get('ports', []) for p in dhcp_ports: for ip_pair in p['fixed_ips']: if ip_pair['subnet_id'] == subnet['id']: subnet_dict['dhcp_server'] = ip_pair['ip_address'] break subnet_object = network_model.Subnet(**subnet_dict) for dns in subnet.get('dns_nameservers', []): subnet_object.add_dns( network_model.IP(address=dns, type='dns')) for route in subnet.get('host_routes', []): subnet_object.add_route( network_model.Route(cidr=route['destination'], gateway=network_model.IP( address=route['nexthop'], type='gateway'))) subnets.append(subnet_object) return subnets def get_dns_domains(self, context): """Return a list of available dns domains. These can be used to create DNS entries for floating IPs. """ raise NotImplementedError() def add_dns_entry(self, context, address, name, dns_type, domain): """Create specified DNS entry for address.""" raise NotImplementedError() def modify_dns_entry(self, context, name, address, domain): """Create specified DNS entry for address.""" raise NotImplementedError() def delete_dns_entry(self, context, name, domain): """Delete the specified dns entry.""" raise NotImplementedError() def delete_dns_domain(self, context, domain): """Delete the specified dns domain.""" raise NotImplementedError() def get_dns_entries_by_address(self, context, address, domain): """Get entries for address and domain.""" raise NotImplementedError() def get_dns_entries_by_name(self, context, name, domain): """Get entries for name and domain.""" raise NotImplementedError() def create_private_dns_domain(self, context, domain, availability_zone): """Create a private DNS domain with nova availability zone.""" raise NotImplementedError() def create_public_dns_domain(self, context, domain, project=None): """Create a private DNS domain with optional nova project.""" raise NotImplementedError() def setup_instance_network_on_host(self, context, instance, host): """Setup network for specified instance on host.""" self._update_port_binding_for_instance(context, instance, host) def cleanup_instance_network_on_host(self, context, instance, host): """Cleanup network for specified instance on host.""" pass def _get_pci_mapping_for_migration(self, context, instance): """Get the mapping between the old PCI devices and the new PCI devices that have been allocated during this migration. The correlation is based on PCI request ID which is unique per PCI devices for SR-IOV ports. :param context: The request context. :param instance: Get PCI mapping for this instance. :Returns: dictionary of mapping {'<old pci address>': <New PciDevice>} """ migration_context = instance.migration_context if not migration_context: return {} old_pci_devices = migration_context.old_pci_devices new_pci_devices = migration_context.new_pci_devices if old_pci_devices and new_pci_devices: LOG.debug("Determining PCI devices mapping using migration" "context: old_pci_devices: %(old)s, " "new_pci_devices: %(new)s" % {'old': [dev for dev in old_pci_devices], 'new': [dev for dev in new_pci_devices]}) return {old.address: new for old in old_pci_devices for new in new_pci_devices if old.request_id == new.request_id} return {} def _update_port_binding_for_instance(self, context, instance, host): if not self._has_port_binding_extension(context, refresh_cache=True): return neutron = get_client(context, admin=True) search_opts = {'device_id': instance.uuid, 'tenant_id': instance.project_id} data = neutron.list_ports(**search_opts) pci_mapping = None port_updates = [] ports = data['ports'] for p in ports: updates = {} # If the host hasn't changed, like in the case of resizing to the # same host, there is nothing to do. if p.get('binding:host_id') != host: updates['binding:host_id'] = host # Update port with newly allocated PCI devices. Even if the # resize is happening on the same host, a new PCI device can be # allocated. vnic_type = p.get('binding:vnic_type') if vnic_type in network_model.VNIC_TYPES_SRIOV: if not pci_mapping: pci_mapping = self._get_pci_mapping_for_migration(context, instance) binding_profile = p.get('binding:profile', {}) pci_slot = binding_profile.get('pci_slot') new_dev = pci_mapping.get(pci_slot) if new_dev: updates['binding:profile'] = \ get_pci_device_profile(new_dev) else: raise exception.PortUpdateFailed(port_id=p['id'], reason=_("Unable to correlate PCI slot %s") % pci_slot) port_updates.append((p['id'], updates)) # Avoid rolling back updates if we catch an error above. # TODO(lbeliveau): Batch up the port updates in one neutron call. for port_id, updates in port_updates: if updates: LOG.info(_LI("Updating port %(port)s with " "attributes %(attributes)s"), {"port": p['id'], "attributes": updates}, instance=instance) try: neutron.update_port(port_id, {'port': updates}) except Exception: with excutils.save_and_reraise_exception(): LOG.exception(_LE("Unable to update binding details " "for port %s"), port_id, instance=instance) def update_instance_vnic_index(self, context, instance, vif, index): """Update instance vnic index. When the 'VNIC index' extension is supported this method will update the vnic index of the instance on the port. """ self._refresh_neutron_extensions_cache(context) if constants.VNIC_INDEX_EXT in self.extensions: neutron = get_client(context) port_req_body = {'port': {'vnic_index': index}} try: neutron.update_port(vif['id'], port_req_body) except Exception: with excutils.save_and_reraise_exception(): LOG.exception(_LE('Unable to update instance VNIC index ' 'for port %s.'), vif['id'], instance=instance) def _ensure_requested_network_ordering(accessor, unordered, preferred): """Sort a list with respect to the preferred network ordering.""" if preferred: unordered.sort(key=lambda i: preferred.index(accessor(i)))
46.455642
79
0.593353
85de88bfcfa5efe6812675a9361115bf5fe04aa6
127
py
Python
setup.py
ceavelasquezpi/neuralnilm
184b2301333e49828d29064c59496f82c89dcbad
[ "Apache-2.0" ]
135
2015-08-14T14:38:36.000Z
2022-03-02T10:29:49.000Z
setup.py
ceavelasquezpi/neuralnilm
184b2301333e49828d29064c59496f82c89dcbad
[ "Apache-2.0" ]
12
2016-03-21T12:12:25.000Z
2019-12-07T06:05:26.000Z
setup.py
ceavelasquezpi/neuralnilm
184b2301333e49828d29064c59496f82c89dcbad
[ "Apache-2.0" ]
82
2015-09-24T01:02:39.000Z
2022-01-18T16:05:20.000Z
from setuptools import setup, find_packages setup( name='NeuralNILM', version='0.0.1', packages=find_packages() )
15.875
43
0.692913
ba4e201a27118e20ab85bfcaab0bc21037d3aaac
3,149
py
Python
Tests/Plot/LamWind/test_Slot_26_plot.py
helene-t/pyleecan
8362de9b0e32b346051b38192e07f3a6974ea9aa
[ "Apache-2.0" ]
2
2019-06-08T15:04:39.000Z
2020-09-07T13:32:22.000Z
Tests/Plot/LamWind/test_Slot_26_plot.py
lyhehehe/pyleecan
421e9a843bf30d796415c77dc934546adffd1cd7
[ "Apache-2.0" ]
null
null
null
Tests/Plot/LamWind/test_Slot_26_plot.py
lyhehehe/pyleecan
421e9a843bf30d796415c77dc934546adffd1cd7
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- from os.path import join import matplotlib.pyplot as plt from numpy import array, pi, zeros from pyleecan.Classes.Frame import Frame from pyleecan.Classes.LamSlotWind import LamSlotWind from pyleecan.Classes.LamSquirrelCage import LamSquirrelCage from pyleecan.Classes.MachineDFIM import MachineDFIM from pyleecan.Classes.Shaft import Shaft from pyleecan.Classes.VentilationCirc import VentilationCirc from pyleecan.Classes.VentilationPolar import VentilationPolar from pyleecan.Classes.VentilationTrap import VentilationTrap from pyleecan.Classes.Winding import Winding from pyleecan.Classes.WindingUD import WindingUD from pyleecan.Classes.WindingCW2LT import WindingCW2LT from pyleecan.Classes.WindingDW2L import WindingDW2L from pyleecan.Classes.MatMagnetics import MatMagnetics from pyleecan.Classes.SlotW26 import SlotW26 from Tests import save_plot_path as save_path from Tests.Plot.LamWind import wind_mat """unittest for Lamination with winding plot""" def test_Lam_Wind_26_wind_22(): """Test machine plot with Slot 26 and winding rad=2, tan=2 """ print("\nTest plot Slot 26") plt.close("all") test_obj = MachineDFIM() test_obj.rotor = LamSlotWind( Rint=0.2, Rext=0.5, is_internal=True, is_stator=False, L1=0.9, Nrvd=2, Wrvd=0.05 ) test_obj.rotor.axial_vent = [ VentilationCirc(Zh=6, Alpha0=pi / 6, D0=60e-3, H0=0.35) ] test_obj.rotor.slot = SlotW26( Zs=6, W0=20e-3, R1=30e-3, R2=20e-3, H0=20e-3, H1=20e-3 ) test_obj.rotor.winding = WindingUD(user_wind_mat=wind_mat, qs=4, p=4, Lewout=60e-3) test_obj.rotor.mat_type.mag = MatMagnetics(Wlam=0.5e-3) test_obj.shaft = Shaft(Drsh=test_obj.rotor.Rint * 2, Lshaft=1) test_obj.stator = LamSlotWind( Rint=0.51, Rext=0.8, is_internal=False, is_stator=True, L1=0.9, Nrvd=2, Wrvd=0.05, ) test_obj.stator.winding = WindingDW2L(qs=3, p=3) test_obj.stator.slot = SlotW26( Zs=18, W0=40e-3, R1=60e-3, R2=70e-3, H0=20e-3, H1=40e-3 ) test_obj.stator.mat_type.mag = MatMagnetics(Wlam=0.5e-3) test_obj.stator.winding.Lewout = 60e-3 test_obj.frame = Frame(Rint=0.8, Rext=0.9, Lfra=1) test_obj.plot() fig = plt.gcf() fig.savefig(join(save_path, "test_Lam_Wind_s26_1-Machine.png")) # Rotor + Stator + 2 for frame + 1 for shaft assert len(fig.axes[0].patches) == 73 test_obj.rotor.plot() fig = plt.gcf() fig.savefig(join(save_path, "test_Lam_Wind_s26_2-Rotor.png")) # 2 for lam + 6 vent + 4*Zs for wind assert len(fig.axes[0].patches) == 32 test_obj.stator.plot() fig = plt.gcf() fig.savefig(join(save_path, "test_Lam_Wind_s26_3-Stator.png")) # 2 for lam + Zs*2 for wind assert len(fig.axes[0].patches) == 38 tooth = test_obj.rotor.slot.get_surface_tooth() tooth.plot(color="r") fig = plt.gcf() fig.savefig(join(save_path, "test_Lam_Wind_s26_Tooth_in.png")) tooth = test_obj.stator.slot.get_surface_tooth() tooth.plot(color="r") fig = plt.gcf() fig.savefig(join(save_path, "test_Lam_Wind_s26_Tooth_out.png"))
34.228261
88
0.703715
7ce0a469c6c6642fb6ed03ab573445ff6d4da0d9
19,676
py
Python
mega_core/config/defaults.py
djiajunustc/mega.pytorch
96a640e8dc270091de38bf350c05b7378c2911d7
[ "BSD-2-Clause" ]
null
null
null
mega_core/config/defaults.py
djiajunustc/mega.pytorch
96a640e8dc270091de38bf350c05b7378c2911d7
[ "BSD-2-Clause" ]
null
null
null
mega_core/config/defaults.py
djiajunustc/mega.pytorch
96a640e8dc270091de38bf350c05b7378c2911d7
[ "BSD-2-Clause" ]
null
null
null
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import os from yacs.config import CfgNode as CN # ----------------------------------------------------------------------------- # Convention about Training / Test specific parameters # ----------------------------------------------------------------------------- # Whenever an argument can be either used for training or for testing, the # corresponding name will be post-fixed by a _TRAIN for a training parameter, # or _TEST for a test-specific parameter. # For example, the maximum image side during training will be # INPUT.MAX_SIZE_TRAIN, while for testing it will be # INPUT.MAX_SIZE_TEST # ----------------------------------------------------------------------------- # Config definition # ----------------------------------------------------------------------------- _C = CN() _C.MODEL = CN() _C.MODEL.RPN_ONLY = False _C.MODEL.MASK_ON = False _C.MODEL.RETINANET_ON = False _C.MODEL.KEYPOINT_ON = False _C.MODEL.DEVICE = "cuda" _C.MODEL.META_ARCHITECTURE = "GeneralizedRCNN" _C.MODEL.CLS_AGNOSTIC_BBOX_REG = False # If the WEIGHT starts with a catalog://, like :R-50, the code will look for # the path in paths_catalog. Else, it will use it as the specified absolute # path _C.MODEL.WEIGHT = "" # ----------------------------------------------------------------------------- # INPUT # ----------------------------------------------------------------------------- _C.INPUT = CN() # Size of the smallest side of the image during training _C.INPUT.MIN_SIZE_TRAIN = (800,) # (800,) # Maximum size of the side of the image during training _C.INPUT.MAX_SIZE_TRAIN = 1333 # Size of the smallest side of the image during testing _C.INPUT.MIN_SIZE_TEST = 800 # Maximum size of the side of the image during testing _C.INPUT.MAX_SIZE_TEST = 1333 # Values to be used for image normalization _C.INPUT.PIXEL_MEAN = [102.9801, 115.9465, 122.7717] # Values to be used for image normalization _C.INPUT.PIXEL_STD = [1., 1., 1.] # Convert image to BGR format (for Caffe2 models), in range 0-255 _C.INPUT.TO_BGR255 = True # Image ColorJitter _C.INPUT.BRIGHTNESS = 0.0 _C.INPUT.CONTRAST = 0.0 _C.INPUT.SATURATION = 0.0 _C.INPUT.HUE = 0.0 # Flips _C.INPUT.HORIZONTAL_FLIP_PROB_TRAIN = 0.5 _C.INPUT.VERTICAL_FLIP_PROB_TRAIN = 0.0 # ----------------------------------------------------------------------------- # Dataset # ----------------------------------------------------------------------------- _C.DATASETS = CN() # List of the dataset names for training, as present in paths_catalog.py _C.DATASETS.TRAIN = () # List of the dataset names for testing, as present in paths_catalog.py _C.DATASETS.TEST = () # ----------------------------------------------------------------------------- # DataLoader # ----------------------------------------------------------------------------- _C.DATALOADER = CN() # Number of data loading threads _C.DATALOADER.NUM_WORKERS = 4 # If > 0, this enforces that each collated batch should have a size divisible # by SIZE_DIVISIBILITY _C.DATALOADER.SIZE_DIVISIBILITY = 0 # If True, each batch should contain only images for which the aspect ratio # is compatible. This groups portrait images together, and landscape images # are not batched with portrait images. _C.DATALOADER.ASPECT_RATIO_GROUPING = True # ---------------------------------------------------------------------------- # # Backbone options # ---------------------------------------------------------------------------- # _C.MODEL.BACKBONE = CN() # The backbone conv body to use # The string must match a function that is imported in modeling.model_builder # (e.g., 'FPN.add_fpn_ResNet101_conv5_body' to specify a ResNet-101-FPN # backbone) _C.MODEL.BACKBONE.CONV_BODY = "R-50-C4" # Add StopGrad at a specified stage so the bottom layers are frozen _C.MODEL.BACKBONE.FREEZE_CONV_BODY_AT = 2 # ---------------------------------------------------------------------------- # # FPN options # ---------------------------------------------------------------------------- # _C.MODEL.FPN = CN() _C.MODEL.FPN.USE_GN = False _C.MODEL.FPN.USE_RELU = False # ---------------------------------------------------------------------------- # # Group Norm options # ---------------------------------------------------------------------------- # _C.MODEL.GROUP_NORM = CN() # Number of dimensions per group in GroupNorm (-1 if using NUM_GROUPS) _C.MODEL.GROUP_NORM.DIM_PER_GP = -1 # Number of groups in GroupNorm (-1 if using DIM_PER_GP) _C.MODEL.GROUP_NORM.NUM_GROUPS = 32 # GroupNorm's small constant in the denominator _C.MODEL.GROUP_NORM.EPSILON = 1e-5 # ---------------------------------------------------------------------------- # # RPN options # ---------------------------------------------------------------------------- # _C.MODEL.RPN = CN() _C.MODEL.RPN.USE_FPN = False # Base RPN anchor sizes given in absolute pixels w.r.t. the scaled network input _C.MODEL.RPN.ANCHOR_SIZES = (32, 64, 128, 256, 512) # Stride of the feature map that RPN is attached. # For FPN, number of strides should match number of scales _C.MODEL.RPN.ANCHOR_STRIDE = (16,) # RPN anchor aspect ratios _C.MODEL.RPN.ASPECT_RATIOS = (0.5, 1.0, 2.0) # Remove RPN anchors that go outside the image by RPN_STRADDLE_THRESH pixels # Set to -1 or a large value, e.g. 100000, to disable pruning anchors _C.MODEL.RPN.STRADDLE_THRESH = 0 # Minimum overlap required between an anchor and ground-truth box for the # (anchor, gt box) pair to be a positive example (IoU >= FG_IOU_THRESHOLD # ==> positive RPN example) _C.MODEL.RPN.FG_IOU_THRESHOLD = 0.7 # Maximum overlap allowed between an anchor and ground-truth box for the # (anchor, gt box) pair to be a negative examples (IoU < BG_IOU_THRESHOLD # ==> negative RPN example) _C.MODEL.RPN.BG_IOU_THRESHOLD = 0.3 # Total number of RPN examples per image _C.MODEL.RPN.BATCH_SIZE_PER_IMAGE = 256 # Target fraction of foreground (positive) examples per RPN minibatch _C.MODEL.RPN.POSITIVE_FRACTION = 0.5 # Number of top scoring RPN proposals to keep before applying NMS # When FPN is used, this is *per FPN level* (not total) _C.MODEL.RPN.PRE_NMS_TOP_N_TRAIN = 12000 _C.MODEL.RPN.PRE_NMS_TOP_N_TEST = 6000 # Number of top scoring RPN proposals to keep after applying NMS _C.MODEL.RPN.POST_NMS_TOP_N_TRAIN = 2000 _C.MODEL.RPN.POST_NMS_TOP_N_TEST = 1000 # NMS threshold used on RPN proposals _C.MODEL.RPN.NMS_THRESH = 0.7 # Proposal height and width both need to be greater than RPN_MIN_SIZE # (a the scale used during training or inference) _C.MODEL.RPN.MIN_SIZE = 0 # Number of top scoring RPN proposals to keep after combining proposals from # all FPN levels _C.MODEL.RPN.FPN_POST_NMS_TOP_N_TRAIN = 2000 _C.MODEL.RPN.FPN_POST_NMS_TOP_N_TEST = 2000 # Apply the post NMS per batch (default) or per image during training # (default is True to be consistent with Detectron, see Issue #672) _C.MODEL.RPN.FPN_POST_NMS_PER_BATCH = True # Custom rpn head, empty to use default conv or separable conv _C.MODEL.RPN.RPN_HEAD = "SingleConvRPNHead" # ---------------------------------------------------------------------------- # # ROI HEADS options # ---------------------------------------------------------------------------- # _C.MODEL.ROI_HEADS = CN() _C.MODEL.ROI_HEADS.USE_FPN = False # Overlap threshold for an RoI to be considered foreground (if >= FG_IOU_THRESHOLD) _C.MODEL.ROI_HEADS.FG_IOU_THRESHOLD = 0.5 # Overlap threshold for an RoI to be considered background # (class = 0 if overlap in [0, BG_IOU_THRESHOLD)) _C.MODEL.ROI_HEADS.BG_IOU_THRESHOLD = 0.5 # Default weights on (dx, dy, dw, dh) for normalizing bbox regression targets # These are empirically chosen to approximately lead to unit variance targets _C.MODEL.ROI_HEADS.BBOX_REG_WEIGHTS = (10., 10., 5., 5.) # RoI minibatch size *per image* (number of regions of interest [ROIs]) # Total number of RoIs per training minibatch = # TRAIN.BATCH_SIZE_PER_IM * TRAIN.IMS_PER_BATCH # E.g., a common configuration is: 512 * 2 * 8 = 8192 _C.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = 512 # Target fraction of RoI minibatch that is labeled foreground (i.e. class > 0) _C.MODEL.ROI_HEADS.POSITIVE_FRACTION = 0.25 # Only used on test mode # Minimum score threshold (assuming scores in a [0, 1] range); a value chosen to # balance obtaining high recall with not having too many low precision # detections that will slow down inference post processing steps (like NMS) _C.MODEL.ROI_HEADS.SCORE_THRESH = 0.05 # Overlap threshold used for non-maximum suppression (suppress boxes with # IoU >= this threshold) _C.MODEL.ROI_HEADS.NMS = 0.5 # Maximum number of detections to return per image (100 is based on the limit # established for the COCO dataset) _C.MODEL.ROI_HEADS.DETECTIONS_PER_IMG = 100 _C.MODEL.ROI_BOX_HEAD = CN() _C.MODEL.ROI_BOX_HEAD.FEATURE_EXTRACTOR = "ResNet50Conv5ROIFeatureExtractor" _C.MODEL.ROI_BOX_HEAD.PREDICTOR = "FastRCNNPredictor" _C.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION = 14 _C.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO = 0 _C.MODEL.ROI_BOX_HEAD.POOLER_SCALES = (1.0 / 16,) _C.MODEL.ROI_BOX_HEAD.NUM_CLASSES = 81 # Hidden layer dimension when using an MLP for the RoI box head _C.MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM = 1024 # GN _C.MODEL.ROI_BOX_HEAD.USE_GN = False # Dilation _C.MODEL.ROI_BOX_HEAD.DILATION = 1 _C.MODEL.ROI_BOX_HEAD.CONV_HEAD_DIM = 256 _C.MODEL.ROI_BOX_HEAD.NUM_STACKED_CONVS = 4 _C.MODEL.ROI_MASK_HEAD = CN() _C.MODEL.ROI_MASK_HEAD.FEATURE_EXTRACTOR = "ResNet50Conv5ROIFeatureExtractor" _C.MODEL.ROI_MASK_HEAD.PREDICTOR = "MaskRCNNC4Predictor" _C.MODEL.ROI_MASK_HEAD.POOLER_RESOLUTION = 14 _C.MODEL.ROI_MASK_HEAD.POOLER_SAMPLING_RATIO = 0 _C.MODEL.ROI_MASK_HEAD.POOLER_SCALES = (1.0 / 16,) _C.MODEL.ROI_MASK_HEAD.MLP_HEAD_DIM = 1024 _C.MODEL.ROI_MASK_HEAD.CONV_LAYERS = (256, 256, 256, 256) _C.MODEL.ROI_MASK_HEAD.RESOLUTION = 14 _C.MODEL.ROI_MASK_HEAD.SHARE_BOX_FEATURE_EXTRACTOR = True # Whether or not resize and translate masks to the input image. _C.MODEL.ROI_MASK_HEAD.POSTPROCESS_MASKS = False _C.MODEL.ROI_MASK_HEAD.POSTPROCESS_MASKS_THRESHOLD = 0.5 # Dilation _C.MODEL.ROI_MASK_HEAD.DILATION = 1 # GN _C.MODEL.ROI_MASK_HEAD.USE_GN = False _C.MODEL.ROI_KEYPOINT_HEAD = CN() _C.MODEL.ROI_KEYPOINT_HEAD.FEATURE_EXTRACTOR = "KeypointRCNNFeatureExtractor" _C.MODEL.ROI_KEYPOINT_HEAD.PREDICTOR = "KeypointRCNNPredictor" _C.MODEL.ROI_KEYPOINT_HEAD.POOLER_RESOLUTION = 14 _C.MODEL.ROI_KEYPOINT_HEAD.POOLER_SAMPLING_RATIO = 0 _C.MODEL.ROI_KEYPOINT_HEAD.POOLER_SCALES = (1.0 / 16,) _C.MODEL.ROI_KEYPOINT_HEAD.MLP_HEAD_DIM = 1024 _C.MODEL.ROI_KEYPOINT_HEAD.CONV_LAYERS = tuple(512 for _ in range(8)) _C.MODEL.ROI_KEYPOINT_HEAD.RESOLUTION = 14 _C.MODEL.ROI_KEYPOINT_HEAD.NUM_CLASSES = 17 _C.MODEL.ROI_KEYPOINT_HEAD.SHARE_BOX_FEATURE_EXTRACTOR = True # ---------------------------------------------------------------------------- # # ResNe[X]t options (ResNets = {ResNet, ResNeXt} # Note that parts of a resnet may be used for both the backbone and the head # These options apply to both # ---------------------------------------------------------------------------- # _C.MODEL.RESNETS = CN() # Number of groups to use; 1 ==> ResNet; > 1 ==> ResNeXt _C.MODEL.RESNETS.NUM_GROUPS = 1 # Baseline width of each group _C.MODEL.RESNETS.WIDTH_PER_GROUP = 64 # Place the stride 2 conv on the 1x1 filter # Use True only for the original MSRA ResNet; use False for C2 and Torch models _C.MODEL.RESNETS.STRIDE_IN_1X1 = True # Residual transformation function _C.MODEL.RESNETS.TRANS_FUNC = "BottleneckWithFixedBatchNorm" # ResNet's stem function (conv1 and pool1) _C.MODEL.RESNETS.STEM_FUNC = "StemWithFixedBatchNorm" # Apply dilation in stage "res5" _C.MODEL.RESNETS.RES5_DILATION = 1 _C.MODEL.RESNETS.BACKBONE_OUT_CHANNELS = 256 * 4 _C.MODEL.RESNETS.RES2_OUT_CHANNELS = 256 _C.MODEL.RESNETS.STEM_OUT_CHANNELS = 64 _C.MODEL.RESNETS.STAGE_WITH_DCN = (False, False, False, False) _C.MODEL.RESNETS.WITH_MODULATED_DCN = False _C.MODEL.RESNETS.DEFORMABLE_GROUPS = 1 # ---------------------------------------------------------------------------- # # RetinaNet Options (Follow the Detectron version) # ---------------------------------------------------------------------------- # _C.MODEL.RETINANET = CN() # This is the number of foreground classes and background. _C.MODEL.RETINANET.NUM_CLASSES = 81 # Anchor aspect ratios to use _C.MODEL.RETINANET.ANCHOR_SIZES = (32, 64, 128, 256, 512) _C.MODEL.RETINANET.ASPECT_RATIOS = (0.5, 1.0, 2.0) _C.MODEL.RETINANET.ANCHOR_STRIDES = (8, 16, 32, 64, 128) _C.MODEL.RETINANET.STRADDLE_THRESH = 0 # Anchor scales per octave _C.MODEL.RETINANET.OCTAVE = 2.0 _C.MODEL.RETINANET.SCALES_PER_OCTAVE = 3 # Use C5 or P5 to generate P6 _C.MODEL.RETINANET.USE_C5 = True # Convolutions to use in the cls and bbox tower # NOTE: this doesn't include the last conv for logits _C.MODEL.RETINANET.NUM_CONVS = 4 # Weight for bbox_regression loss _C.MODEL.RETINANET.BBOX_REG_WEIGHT = 4.0 # Smooth L1 loss beta for bbox regression _C.MODEL.RETINANET.BBOX_REG_BETA = 0.11 # During inference, #locs to select based on cls score before NMS is performed # per FPN level _C.MODEL.RETINANET.PRE_NMS_TOP_N = 1000 # IoU overlap ratio for labeling an anchor as positive # Anchors with >= iou overlap are labeled positive _C.MODEL.RETINANET.FG_IOU_THRESHOLD = 0.5 # IoU overlap ratio for labeling an anchor as negative # Anchors with < iou overlap are labeled negative _C.MODEL.RETINANET.BG_IOU_THRESHOLD = 0.4 # Focal loss parameter: alpha _C.MODEL.RETINANET.LOSS_ALPHA = 0.25 # Focal loss parameter: gamma _C.MODEL.RETINANET.LOSS_GAMMA = 2.0 # Prior prob for the positives at the beginning of training. This is used to set # the bias init for the logits layer _C.MODEL.RETINANET.PRIOR_PROB = 0.01 # Inference cls score threshold, anchors with score > INFERENCE_TH are # considered for inference _C.MODEL.RETINANET.INFERENCE_TH = 0.05 # NMS threshold used in RetinaNet _C.MODEL.RETINANET.NMS_TH = 0.4 # ---------------------------------------------------------------------------- # # FBNet options # ---------------------------------------------------------------------------- # _C.MODEL.FBNET = CN() _C.MODEL.FBNET.ARCH = "default" # custom arch _C.MODEL.FBNET.ARCH_DEF = "" _C.MODEL.FBNET.BN_TYPE = "bn" _C.MODEL.FBNET.SCALE_FACTOR = 1.0 # the output channels will be divisible by WIDTH_DIVISOR _C.MODEL.FBNET.WIDTH_DIVISOR = 1 _C.MODEL.FBNET.DW_CONV_SKIP_BN = True _C.MODEL.FBNET.DW_CONV_SKIP_RELU = True # > 0 scale, == 0 skip, < 0 same dimension _C.MODEL.FBNET.DET_HEAD_LAST_SCALE = 1.0 _C.MODEL.FBNET.DET_HEAD_BLOCKS = [] # overwrite the stride for the head, 0 to use original value _C.MODEL.FBNET.DET_HEAD_STRIDE = 0 # > 0 scale, == 0 skip, < 0 same dimension _C.MODEL.FBNET.KPTS_HEAD_LAST_SCALE = 0.0 _C.MODEL.FBNET.KPTS_HEAD_BLOCKS = [] # overwrite the stride for the head, 0 to use original value _C.MODEL.FBNET.KPTS_HEAD_STRIDE = 0 # > 0 scale, == 0 skip, < 0 same dimension _C.MODEL.FBNET.MASK_HEAD_LAST_SCALE = 0.0 _C.MODEL.FBNET.MASK_HEAD_BLOCKS = [] # overwrite the stride for the head, 0 to use original value _C.MODEL.FBNET.MASK_HEAD_STRIDE = 0 # 0 to use all blocks defined in arch_def _C.MODEL.FBNET.RPN_HEAD_BLOCKS = 0 _C.MODEL.FBNET.RPN_BN_TYPE = "" # ---------------------------------------------------------------------------- # # VID specfic options # ---------------------------------------------------------------------------- # _C.MODEL.VID = CN() _C.MODEL.VID.ENABLE = False _C.MODEL.VID.METHOD = "base" _C.MODEL.VID.IGNORE = False _C.MODEL.VID.FLOWNET_WEIGHT = "models/flownet.ckpt" # ROI_BOX_HEAD config in VID _C.MODEL.VID.ROI_BOX_HEAD = CN() _C.MODEL.VID.ROI_BOX_HEAD.REDUCE_CHANNEL = False #attention _C.MODEL.VID.ROI_BOX_HEAD.ATTENTION = CN() _C.MODEL.VID.ROI_BOX_HEAD.ATTENTION.ENABLE = False _C.MODEL.VID.ROI_BOX_HEAD.ATTENTION.EMBED_DIM = 64 _C.MODEL.VID.ROI_BOX_HEAD.ATTENTION.GROUP = 16 _C.MODEL.VID.ROI_BOX_HEAD.ATTENTION.STAGE = 2 _C.MODEL.VID.ROI_BOX_HEAD.ATTENTION.ADVANCED_STAGE = 0 # RPN config in VID _C.MODEL.VID.RPN = CN() _C.MODEL.VID.RPN.REF_PRE_NMS_TOP_N = 6000 _C.MODEL.VID.RPN.REF_POST_NMS_TOP_N = 75 # RDN _C.MODEL.VID.RDN = CN() _C.MODEL.VID.RDN.MIN_OFFSET = -18 _C.MODEL.VID.RDN.MAX_OFFSET = 18 _C.MODEL.VID.RDN.ALL_FRAME_INTERVAL = 37 _C.MODEL.VID.RDN.KEY_FRAME_LOCATION = 18 _C.MODEL.VID.RDN.REF_NUM = 2 _C.MODEL.VID.RDN.RATIO = 0.2 # MEGA _C.MODEL.VID.MEGA = CN() _C.MODEL.VID.MEGA.MIN_OFFSET = -12 _C.MODEL.VID.MEGA.MAX_OFFSET = 12 _C.MODEL.VID.MEGA.ALL_FRAME_INTERVAL = 25 _C.MODEL.VID.MEGA.KEY_FRAME_LOCATION = 12 _C.MODEL.VID.MEGA.MEMORY = CN() _C.MODEL.VID.MEGA.MEMORY.ENABLE = True _C.MODEL.VID.MEGA.MEMORY.SIZE = 25 _C.MODEL.VID.MEGA.GLOBAL = CN() _C.MODEL.VID.MEGA.GLOBAL.RES_STAGE = 1 _C.MODEL.VID.MEGA.GLOBAL.ENABLE = True _C.MODEL.VID.MEGA.GLOBAL.SIZE = 10 _C.MODEL.VID.MEGA.GLOBAL.SHUFFLE = True _C.MODEL.VID.MEGA.REF_NUM_LOCAL = 2 _C.MODEL.VID.MEGA.REF_NUM_MEM = 3 _C.MODEL.VID.MEGA.REF_NUM_GLOBAL = 2 _C.MODEL.VID.MEGA.RATIO = 0.2 # FGFA _C.MODEL.VID.FGFA = CN() _C.MODEL.VID.FGFA.MIN_OFFSET = -9 _C.MODEL.VID.FGFA.MAX_OFFSET = 9 _C.MODEL.VID.FGFA.ALL_FRAME_INTERVAL = 19 _C.MODEL.VID.FGFA.KEY_FRAME_LOCATION = 9 _C.MODEL.VID.FGFA.REF_NUM = 2 # ---------------------------------------------------------------------------- # # Solver # ---------------------------------------------------------------------------- # _C.SOLVER = CN() _C.SOLVER.MAX_ITER = 40000 _C.SOLVER.BASE_LR = 0.001 _C.SOLVER.BIAS_LR_FACTOR = 2 _C.SOLVER.MOMENTUM = 0.9 _C.SOLVER.WEIGHT_DECAY = 0.0005 _C.SOLVER.WEIGHT_DECAY_BIAS = 0 _C.SOLVER.GAMMA = 0.1 _C.SOLVER.STEPS = (30000,) _C.SOLVER.WARMUP_FACTOR = 1.0 / 3 _C.SOLVER.WARMUP_ITERS = 500 _C.SOLVER.WARMUP_METHOD = "linear" _C.SOLVER.CHECKPOINT_PERIOD = 2500 _C.SOLVER.TEST_PERIOD = 0 # Number of images per batch # This is global, so if we have 8 GPUs and IMS_PER_BATCH = 16, each GPU will # see 2 images per batch _C.SOLVER.IMS_PER_BATCH = 16 # ---------------------------------------------------------------------------- # # Specific test options # ---------------------------------------------------------------------------- # _C.TEST = CN() _C.TEST.EXPECTED_RESULTS = [] _C.TEST.EXPECTED_RESULTS_SIGMA_TOL = 4 # Number of images per batch # This is global, so if we have 8 GPUs and IMS_PER_BATCH = 16, each GPU will # see 2 images per batch _C.TEST.IMS_PER_BATCH = 8 # Number of detections per image _C.TEST.DETECTIONS_PER_IMG = 100 # ---------------------------------------------------------------------------- # # Test-time augmentations for bounding box detection # See configs/test_time_aug/e2e_mask_rcnn_R-50-FPN_1x.yaml for an example # ---------------------------------------------------------------------------- # _C.TEST.BBOX_AUG = CN() # Enable test-time augmentation for bounding box detection if True _C.TEST.BBOX_AUG.ENABLED = False # Horizontal flip at the original scale (id transform) _C.TEST.BBOX_AUG.H_FLIP = False # Each scale is the pixel size of an image's shortest side _C.TEST.BBOX_AUG.SCALES = () # Max pixel size of the longer side _C.TEST.BBOX_AUG.MAX_SIZE = 4000 # Horizontal flip at each scale _C.TEST.BBOX_AUG.SCALE_H_FLIP = False # ---------------------------------------------------------------------------- # # Misc options # ---------------------------------------------------------------------------- # _C.OUTPUT_DIR = "." _C.PATHS_CATALOG = os.path.join(os.path.dirname(__file__), "paths_catalog.py") # ---------------------------------------------------------------------------- # # Precision options # ---------------------------------------------------------------------------- # # Precision of input, allowable: (float32, float16) _C.DTYPE = "float32" # Enable verbosity in apex.amp _C.AMP_VERBOSE = False
36.437037
83
0.649726
7ac406d933e95a9581fd7a7f6b5a7320d001109d
180,984
py
Python
number_generator_code_part.py
haojiang2020/Number-Generator
9941b28333961f291ea954a71690871b4e0fc2db
[ "BSD-3-Clause" ]
null
null
null
number_generator_code_part.py
haojiang2020/Number-Generator
9941b28333961f291ea954a71690871b4e0fc2db
[ "BSD-3-Clause" ]
null
null
null
number_generator_code_part.py
haojiang2020/Number-Generator
9941b28333961f291ea954a71690871b4e0fc2db
[ "BSD-3-Clause" ]
null
null
null
# number generator & identifier # This Python file is the core part of number generating # # When generating a new mixed number with member number, please run 'number_mix_generate' and then 'number_member_generate' # # when generating a new organization number, please run 'number_organization_generate' # # when generating a new manipulation number, please run 'number_manipulation_generate' from random import uniform from random import seed from datetime import datetime def number_mix_generate(in_list_name, in_initial_list): # to generate mixed number, 21 digits # input: # in_list_name = [[given name 0, family name 0] / None, # [given name 1, family name 1] / None, # [given name 2, family name 2] / None, ...] # in_initial_list = [*, *, *] # each of the *s is from 26 letters # output: # out_result = [[out number 0, given name 0, family name 0, # if exists English name 0, Date-UTC 0, Time-UTC 0] / None, # [out number 1, given name 1, family name 1, # if exists English name 1, Date-UTC 1, Time-UTC 1] / None, # [out number 2, given name 2, family name 2, # if exists English name 2, Date-UTC 2, Time-UTC 2] / None, ...] long_digits = ("G", "B", "l", "A", "r", "s", "6", "X", "c", "K", "R", "Q", "I", "x", "h", "b", "i", "f", "o", "a", "M", "S", "w", "0", "P", "v", "3", "N", "t", "g", "8", "2", "+", "-", "4", "k", "7", "e", "n", "D", "V", "y", "U", "W", "F", "L", "d", "T", "1", "J", "u", "Z", "z", "C", "Y", "9", "m", "H", "O", "E", "5", "p", "j", "q") English_name_capital = ("A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N", "O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z") English_name_other = (" ", "-", "'") out_result = [] temp_bool_0 = True if isinstance(in_initial_list, list) | isinstance(in_initial_list, tuple): if len(in_initial_list) == 3: init_char_0 = in_initial_list[0] init_char_1 = in_initial_list[1] init_char_2 = in_initial_list[2] if (isinstance(init_char_0, str) & isinstance(init_char_1, str) & isinstance(init_char_2, str)): init_char_0 = init_char_0.strip().upper() init_char_1 = init_char_1.strip().upper() init_char_2 = init_char_2.strip().upper() if ((init_char_0 in English_name_capital) & (init_char_1 in English_name_capital) & (init_char_2 in English_name_capital)): first_3_digits = (init_char_0.lower()+init_char_1.lower()+init_char_2.lower(), init_char_0.lower()+init_char_1.lower()+init_char_2, init_char_0.lower()+init_char_1+init_char_2.lower(), init_char_0.lower()+init_char_1+init_char_2, init_char_0+init_char_1.lower()+init_char_2.lower(), init_char_0+init_char_1.lower()+init_char_2, init_char_0+init_char_1+init_char_2.lower(), init_char_0+init_char_1+init_char_2) else: temp_bool_0 = False else: temp_bool_0 = False else: temp_bool_0 = False else: temp_bool_0 = False if temp_bool_0: if isinstance(in_list_name, list) | isinstance(in_list_name, tuple): temp_len = len(in_list_name) if temp_len > 0: temp_time_now = datetime.utcnow() temp_num_0 = temp_time_now.microsecond temp_num_0 = temp_num_0*60+temp_time_now.second temp_num_0 = temp_num_0*60+temp_time_now.minute temp_num_0 = temp_num_0*24+temp_time_now.hour seed(temp_num_0) for n in range(temp_len): temp_bool_1 = True if in_list_name[n] is None: out_result.append(None) elif isinstance(in_list_name[n], list) | isinstance(in_list_name[n], tuple): if len(in_list_name[n]) == 2: if isinstance(in_list_name[n][0], str) & isinstance(in_list_name[n][1], str): temp_gn_str = in_list_name[n][0].strip() temp_len_1 = len(temp_gn_str) temp_fn_str = in_list_name[n][1].strip() temp_len_2 = len(temp_fn_str) if temp_len_1 == 0: if temp_len_2 == 0: temp_gn_1 = 0 temp_gn_2 = 0 else: temp_bool_1 = False elif temp_len_1 == 1: temp_str_1 = temp_gn_str[0] temp_gn_1 = 0 for n2 in range(26): if English_name_capital[n2] == temp_str_1: temp_gn_1 = n2+1 break if temp_gn_1 > 0: temp_gn_2 = 0 else: temp_bool_1 = False else: temp_str_1 = temp_gn_str[0] temp_gn_1 = 0 for n2 in range(26): if English_name_capital[n2] == temp_str_1: temp_gn_1 = n2+1 break if temp_gn_1 > 0: temp_str_2 = temp_gn_str[1].upper() temp_gn_2 = 0 for n2 in range(26): if English_name_capital[n2] == temp_str_2: temp_gn_2 = n2+1 break if temp_gn_2 < 1: temp_bool_1 = temp_str_2 in English_name_other else: temp_bool_1 = False if temp_bool_1: if temp_len_2 == 0: temp_fn_1 = 0 temp_fn_2 = 0 elif temp_len_2 == 1: temp_str_1 = temp_fn_str[0] temp_fn_1 = 0 for n2 in range(26): if English_name_capital[n2] == temp_str_1: temp_fn_1 = n2+1 break if temp_fn_1 > 0: temp_fn_2 = 0 else: temp_bool_1 = False else: temp_str_1 = temp_fn_str[0] temp_fn_1 = 0 for n2 in range(26): if English_name_capital[n2] == temp_str_1: temp_fn_1 = n2+1 break if temp_fn_1 > 0: temp_str_2 = temp_fn_str[1].upper() temp_fn_2 = 0 for n2 in range(26): if English_name_capital[n2] == temp_str_2: temp_fn_2 = n2+1 break if temp_fn_2 < 1: temp_bool_1 = temp_str_2 in English_name_other else: temp_bool_1 = False if temp_bool_1: temp_time_now = datetime.utcnow() temp_year = temp_time_now.year temp_year_3 = temp_year%10 temp_year_0 = int((temp_year-temp_year_3)/10) temp_year_2 = temp_year_0%10 temp_year_0 = int((temp_year_0-temp_year_2)/10) temp_year_1 = temp_year_0%10 temp_year_0 = int((temp_year_0-temp_year_1)/10) temp_month = temp_time_now.month temp_day = temp_time_now.day temp_hour = temp_time_now.hour temp_minute = temp_time_now.minute temp_num_0 = 0 temp_runif = 1.0 while temp_runif == 1.0: temp_runif = uniform(0.0, 1.0) temp_num_1_0 = int(temp_runif*8) if temp_num_1_0 == 8: temp_num_1_0 -= 1 out_num_str = first_3_digits[temp_num_1_0] temp_str_3 = out_num_str[0] temp_num_1_1 = -1 for n2 in range(64): if long_digits[n2] == temp_str_3: temp_num_1_1 = n2 break init_num_0 = temp_num_1_1 temp_num_0 += temp_num_1_1 temp_str_3 = out_num_str[1] temp_num_1_1 = -1 for n2 in range(64): if long_digits[n2] == temp_str_3: temp_num_1_1 = n2 break init_num_1 = temp_num_1_1 temp_num_0 += temp_num_1_1 temp_str_3 = out_num_str[2] temp_num_1_1 = -1 for n2 in range(64): if long_digits[n2] == temp_str_3: temp_num_1_1 = n2 break init_num_2 = temp_num_1_1 temp_num_0 += temp_num_1_1 temp_runif = 1.0 while temp_runif == 1.0: temp_runif = uniform(0.0, 1.0) temp_num_2_1 = int(temp_runif*2297) if temp_num_2_1 == 2297: temp_num_2_1 -= 1 temp_num_2_2 = temp_year_2 temp_num_2_2 = temp_num_2_2*27+temp_fn_2 temp_num_2_2 = temp_num_2_2*27+temp_gn_2 temp_num_2 = temp_num_2_2+temp_num_2_1*7297 temp_num_2_3 = temp_num_2%64 temp_num_2_0 = int((temp_num_2-temp_num_2_3)/64) temp_num_2_2 = temp_num_2_0%64 temp_num_2_0 = int((temp_num_2_0-temp_num_2_2)/64) temp_num_2_1 = temp_num_2_0%64 temp_num_2_0 = int((temp_num_2_0-temp_num_2_1)/64) temp_num_2_0 = (temp_num_2_0+init_num_0)%64 temp_num_0 += temp_num_2_0 out_num_str = out_num_str+long_digits[temp_num_2_0] temp_num_2_1 = (temp_num_2_1-init_num_1)%64 temp_num_0 += temp_num_2_1 out_num_str = out_num_str+long_digits[temp_num_2_1] temp_num_2_2 = (temp_num_2_2+init_num_2)%64 temp_num_0 += temp_num_2_2 out_num_str = out_num_str+long_digits[temp_num_2_2] temp_num_2_3 = (temp_num_2_3-init_num_0)%64 temp_num_0 += temp_num_2_3 out_num_str = out_num_str+long_digits[temp_num_2_3] temp_runif = 1.0 while temp_runif == 1.0: temp_runif = uniform(0.0, 1.0) temp_num_2_1 = int(temp_runif*2579) if temp_num_2_1 == 2579: temp_num_2_1 -= 1 temp_num_2_2 = temp_hour temp_num_2_2 = temp_num_2_2*27+temp_gn_1 temp_num_2_2 = temp_num_2_2*10+temp_year_0 temp_num_2 = temp_num_2_2+temp_num_2_1*6481 temp_num_2_3 = temp_num_2%64 temp_num_2_0 = int((temp_num_2-temp_num_2_3)/64) temp_num_2_2 = temp_num_2_0%64 temp_num_2_0 = int((temp_num_2_0-temp_num_2_2)/64) temp_num_2_1 = temp_num_2_0%64 temp_num_2_0 = int((temp_num_2_0-temp_num_2_1)/64) temp_num_2_0 = (temp_num_2_0+init_num_1)%64 temp_num_0 += temp_num_2_0 out_num_str = out_num_str+long_digits[temp_num_2_0] temp_num_2_1 = (temp_num_2_1-init_num_2)%64 temp_num_0 += temp_num_2_1 out_num_str = out_num_str+long_digits[temp_num_2_1] temp_num_2_2 = (temp_num_2_2+init_num_0)%64 temp_num_0 += temp_num_2_2 out_num_str = out_num_str+long_digits[temp_num_2_2] temp_num_2_3 = (temp_num_2_3-init_num_1)%64 temp_num_0 += temp_num_2_3 out_num_str = out_num_str+long_digits[temp_num_2_3] temp_runif = 1.0 while temp_runif == 1.0: temp_runif = uniform(0.0, 1.0) temp_num_2_1 = int(temp_runif*6173) if temp_num_2_1 == 6173: temp_num_2_1 -= 1 temp_num_2_2 = temp_year_3 temp_num_2_2 = temp_num_2_2*10+temp_year_1 temp_num_2_2 = temp_num_2_2*27+temp_fn_1 temp_num_2 = temp_num_2_2+temp_num_2_1*2707 temp_num_2_3 = temp_num_2%64 temp_num_2_0 = int((temp_num_2-temp_num_2_3)/64) temp_num_2_2 = temp_num_2_0%64 temp_num_2_0 = int((temp_num_2_0-temp_num_2_2)/64) temp_num_2_1 = temp_num_2_0%64 temp_num_2_0 = int((temp_num_2_0-temp_num_2_1)/64) temp_num_2_0 = (temp_num_2_0+init_num_2)%64 temp_num_0 += temp_num_2_0 out_num_str = out_num_str+long_digits[temp_num_2_0] temp_num_2_1 = (temp_num_2_1-init_num_0)%64 temp_num_0 += temp_num_2_1 out_num_str = out_num_str+long_digits[temp_num_2_1] temp_num_2_2 = (temp_num_2_2+init_num_1)%64 temp_num_0 += temp_num_2_2 out_num_str = out_num_str+long_digits[temp_num_2_2] temp_num_2_3 = (temp_num_2_3-init_num_2)%64 temp_num_0 += temp_num_2_3 out_num_str = out_num_str+long_digits[temp_num_2_3] temp_runif = 1.0 while temp_runif == 1.0: temp_runif = uniform(0.0, 1.0) temp_num_2_1 = int(temp_runif*48049) if temp_num_2_1 == 48049: temp_num_2_1 -= 1 temp_num_2_2 = (temp_month-1) temp_num_2_2 = temp_num_2_2*31+(temp_day-1) temp_num_2_2 = temp_num_2_2*60+temp_minute temp_num_2 = temp_num_2_2+temp_num_2_1*22343 temp_num_2_4 = temp_num_2%64 temp_num_2_0 = int((temp_num_2-temp_num_2_4)/64) temp_num_2_3 = temp_num_2_0%64 temp_num_2_0 = int((temp_num_2_0-temp_num_2_3)/64) temp_num_2_2 = temp_num_2_0%64 temp_num_2_0 = int((temp_num_2_0-temp_num_2_2)/64) temp_num_2_1 = temp_num_2_0%64 temp_num_2_0 = int((temp_num_2_0-temp_num_2_1)/64) temp_num_2_0 = (temp_num_2_0+init_num_0)%64 temp_num_0 += temp_num_2_0 out_num_str = out_num_str+long_digits[temp_num_2_0] temp_num_2_1 = (temp_num_2_1-init_num_1)%64 temp_num_0 += temp_num_2_1 out_num_str = out_num_str+long_digits[temp_num_2_1] temp_num_2_2 = (temp_num_2_2+init_num_2)%64 temp_num_0 += temp_num_2_2 out_num_str = out_num_str+long_digits[temp_num_2_2] temp_num_2_3 = (temp_num_2_3-init_num_0)%64 temp_num_0 += temp_num_2_3 out_num_str = out_num_str+long_digits[temp_num_2_3] temp_num_2_4 = (temp_num_2_4+init_num_1)%64 temp_num_0 += temp_num_2_4 out_num_str = out_num_str+long_digits[temp_num_2_4] out_num_str = out_num_str+long_digits[temp_num_0%64] temp_str_4 = str(temp_year_0)+str(temp_year_1)+str(temp_year_2)+str(temp_year_3) temp_str_4 = temp_str_4+"-" if temp_month < 10: temp_str_4 = temp_str_4+"0"+str(temp_month) else: temp_str_4 = temp_str_4+str(temp_month) temp_str_4 = temp_str_4+"-" if temp_day < 10: temp_str_4 = temp_str_4+"0"+str(temp_day) else: temp_str_4 = temp_str_4+str(temp_day) temp_str_5 = "" if temp_hour < 10: temp_str_5 = temp_str_5+"0"+str(temp_hour) else: temp_str_5 = temp_str_5+str(temp_hour) temp_str_5 = temp_str_5+":" if temp_minute < 10: temp_str_5 = temp_str_5+"0"+str(temp_minute) else: temp_str_5 = temp_str_5+str(temp_minute) out_result.append([out_num_str, temp_gn_str, temp_fn_str, temp_gn_1 != 0, temp_str_4, temp_str_5]) else: out_result.append(None) else: out_result.append(None) else: out_result.append(None) else: out_result.append(None) else: temp_bool_0 = False else: temp_bool_0 = False if not temp_bool_0: out_result = None return out_result def num_mix_valid(mix_number, given_name = None, family_name = None, year = None, month = None, day = None, hour = None, minute = None): # check validation of mixed number # input: mix_number, string of length 21 # given_name, string # family_name, string # year, integer # month, integer # day, integer # hour, integer # minute, integer # output: bool long_digits = ("G", "B", "l", "A", "r", "s", "6", "X", "c", "K", "R", "Q", "I", "x", "h", "b", "i", "f", "o", "a", "M", "S", "w", "0", "P", "v", "3", "N", "t", "g", "8", "2", "+", "-", "4", "k", "7", "e", "n", "D", "V", "y", "U", "W", "F", "L", "d", "T", "1", "J", "u", "Z", "z", "C", "Y", "9", "m", "H", "O", "E", "5", "p", "j", "q") English_name_capital = ("A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N", "O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z") English_name_other = (" ", "-", "'") out_bool = True if isinstance(mix_number, str): mix_number = mix_number.strip() if len(mix_number) == 21: init_str_0 = mix_number[0] init_str_1 = mix_number[1] init_str_2 = mix_number[2] if ((init_str_0.upper() in English_name_capital) & (init_str_1.upper() in English_name_capital) & (init_str_2.upper() in English_name_capital)): temp_number_list = [] temp_num_1 = 0 temp_num_0 = -1 for n1 in range(64): if long_digits[n1] == init_str_0: temp_num_0 = n1 break init_num_0 = temp_num_0 temp_num_1 += temp_num_0 temp_number_list.append(temp_num_0) temp_num_0 = -1 for n1 in range(64): if long_digits[n1] == init_str_1: temp_num_0 = n1 break init_num_1 = temp_num_0 temp_num_1 += temp_num_0 temp_number_list.append(temp_num_0) temp_num_0 = -1 for n1 in range(64): if long_digits[n1] == init_str_2: temp_num_0 = n1 break init_num_2 = temp_num_0 temp_num_1 += temp_num_0 temp_number_list.append(temp_num_0) temp_num_2 = 0 for n in range(3, 21): temp_num_0 = -1 temp_str_0 = mix_number[n] for n1 in range(64): if long_digits[n1] == temp_str_0: temp_num_0 = n1 break if temp_num_0 >= 0: temp_number_list.append(temp_num_0) if n < 20: temp_num_1 += temp_num_0 else: temp_num_2 += temp_num_0 else: out_bool = False break if out_bool: out_bool = temp_num_1%64 == temp_num_2 else: out_bool = False else: out_bool = False else: out_bool = False if out_bool: temp_num_0 = (temp_number_list[3]-init_num_0)%64 temp_num_0 = temp_num_0*64+(temp_number_list[4]+init_num_1)%64 temp_num_0 = temp_num_0*64+(temp_number_list[5]-init_num_2)%64 temp_num_0 = temp_num_0*64+(temp_number_list[6]+init_num_0)%64 temp_num_0 = temp_num_0%7297 temp_num_1_2 = temp_num_0%27 temp_num_1_0 = int((temp_num_0-temp_num_1_2)/27) temp_num_1_1 = temp_num_1_0%27 temp_num_1_0 = int((temp_num_1_0-temp_num_1_1)/27) temp_num_0 = (temp_number_list[7]-init_num_1)%64 temp_num_0 = temp_num_0*64+(temp_number_list[8]+init_num_2)%64 temp_num_0 = temp_num_0*64+(temp_number_list[9]-init_num_0)%64 temp_num_0 = temp_num_0*64+(temp_number_list[10]+init_num_1)%64 temp_num_0 = temp_num_0%6481 temp_num_2_2 = temp_num_0%10 temp_num_2_0 = int((temp_num_0-temp_num_2_2)/10) temp_num_2_1 = temp_num_2_0%27 temp_num_2_0 = int((temp_num_2_0-temp_num_2_1)/27) temp_num_0 = (temp_number_list[11]-init_num_2)%64 temp_num_0 = temp_num_0*64+(temp_number_list[12]+init_num_0)%64 temp_num_0 = temp_num_0*64+(temp_number_list[13]-init_num_1)%64 temp_num_0 = temp_num_0*64+(temp_number_list[14]+init_num_2)%64 temp_num_0 = temp_num_0%2707 temp_num_3_2 = temp_num_0%27 temp_num_3_0 = int((temp_num_0-temp_num_3_2)/27) temp_num_3_1 = temp_num_3_0%10 temp_num_3_0 = int((temp_num_3_0-temp_num_3_1)/10) temp_num_0 = (temp_number_list[15]-init_num_0)%64 temp_num_0 = temp_num_0*64+(temp_number_list[16]+init_num_1)%64 temp_num_0 = temp_num_0*64+(temp_number_list[17]-init_num_2)%64 temp_num_0 = temp_num_0*64+(temp_number_list[18]+init_num_0)%64 temp_num_0 = temp_num_0*64+(temp_number_list[19]-init_num_1)%64 temp_num_0 = temp_num_0%22343 temp_num_4_2 = temp_num_0%60 temp_num_4_0 = int((temp_num_0-temp_num_4_2)/60) temp_num_4_1 = temp_num_4_0%31 temp_num_4_0 = int((temp_num_4_0-temp_num_4_1)/31) if (temp_num_2_0 >= 0) & (temp_num_2_0 < 24): if (temp_num_4_2 >= 0) & (temp_num_4_2 < 60): if ((temp_num_1_0 >= 0) & (temp_num_1_0 <= 9) & (temp_num_2_2 >= 0) & (temp_num_2_2 <= 9) & (temp_num_3_0 >= 0) & (temp_num_3_0 <= 9) & (temp_num_3_1 >= 0) & (temp_num_3_1 <= 9)): temp_num_1 = temp_num_2_2 temp_num_1 = temp_num_1*10+temp_num_3_1 temp_num_1 = temp_num_1*10+temp_num_1_0 temp_num_1 = temp_num_1*10+temp_num_3_0 temp_num_2 = temp_num_4_0+1 if (temp_num_2 > 0) & (temp_num_2 <= 12): temp_num_3 = temp_num_4_1+1 if temp_num_2 in (1, 3, 5, 7, 8, 10, 12): out_bool = (temp_num_3 > 0) & (temp_num_3 <= 31) elif temp_num_2 in (4, 6, 9, 11): out_bool = (temp_num_3 > 0) & (temp_num_3 <= 30) else: if temp_num_1%400 == 0: out_bool = (temp_num_3 > 0) & (temp_num_3 <= 29) elif temp_num_1%100 == 0: out_bool = (temp_num_3 > 0) & (temp_num_3 <= 28) elif temp_num_1%4 == 0: out_bool = (temp_num_3 > 0) & (temp_num_3 <= 29) else: out_bool = (temp_num_3 > 0) & (temp_num_3 <= 28) else: out_bool = False else: out_bool = False else: out_bool = False else: out_bool = False if out_bool: if not year is None: out_bool = year == temp_num_1 if out_bool: if not month is None: out_bool = month == temp_num_2 if out_bool: if not day is None: out_bool = day == temp_num_3 if out_bool: if not hour is None: out_bool = hour == temp_num_2_0 if out_bool: if not minute is None: out_bool = minute == temp_num_4_2 if out_bool: if not given_name is None: if isinstance(given_name, str): given_name = given_name.strip() temp_len = len(given_name) if temp_len == 0: out_bool = (temp_num_1_2 == 0) & (temp_num_2_1 == 0) elif temp_len == 1: temp_num_1 = 0 temp_str_1 = given_name[0] for n in range(26): if temp_str_1 == English_name_capital[n]: temp_num_1 = n+1 break if temp_num_1 > 0: if temp_num_1 == temp_num_2_1: out_bool = temp_num_1_2 == 0 else: out_bool = False else: out_bool = False else: temp_num_1 = 0 temp_str_1 = given_name[0] for n in range(26): if temp_str_1 == English_name_capital[n]: temp_num_1 = n+1 break if temp_num_1 > 0: if temp_num_1 == temp_num_2_1: temp_num_2 = 0 temp_str_2 = given_name[1].upper() for n in range(26): if temp_str_2 == English_name_capital[n]: temp_num_2 = n+1 break if temp_num_2 > 0: out_bool = temp_num_1_2 == temp_num_2 elif temp_str_2 in English_name_other: out_bool = temp_num_1_2 == 0 else: out_bool = False else: out_bool = False else: out_bool = False else: out_bool = False if out_bool: if not family_name is None: if isinstance(family_name, str): family_name = family_name.strip() temp_len = len(family_name) if temp_len == 0: out_bool = (temp_num_1_1 == 0) & (temp_num_3_2 == 0) elif temp_len == 1: temp_num_1 = 0 temp_str_1 = family_name[0] for n in range(26): if temp_str_1 == English_name_capital[n]: temp_num_1 = n+1 break if temp_num_1 > 0: if temp_num_1 == temp_num_3_2: out_bool = temp_num_1_1 == 0 else: out_bool = False else: out_bool = False else: temp_num_1 = 0 temp_str_1 = family_name[0] for n in range(26): if temp_str_1 == English_name_capital[n]: temp_num_1 = n+1 break if temp_num_1 > 0: if temp_num_1 == temp_num_3_2: temp_num_2 = 0 temp_str_2 = family_name[1].upper() for n in range(26): if temp_str_2 == English_name_capital[n]: temp_num_2 = n+1 break if temp_num_2 > 0: out_bool = temp_num_1_1 == temp_num_2 elif temp_str_2 in English_name_other: out_bool = temp_num_1_1 == 0 else: out_bool = False else: out_bool = False else: out_bool = False else: out_bool = False return out_bool def num_mix_64_2_8(mix_number): # input: mix_number, string of length 21 # output: mix_number, string of length 42 long_digits = ("G", "B", "l", "A", "r", "s", "6", "X", "c", "K", "R", "Q", "I", "x", "h", "b", "i", "f", "o", "a", "M", "S", "w", "0", "P", "v", "3", "N", "t", "g", "8", "2", "+", "-", "4", "k", "7", "e", "n", "D", "V", "y", "U", "W", "F", "L", "d", "T", "1", "J", "u", "Z", "z", "C", "Y", "9", "m", "H", "O", "E", "5", "p", "j", "q") oct_digits = ("0", "1", "2", "3", "4", "5", "6", "7") out_str = "" if isinstance(mix_number, str): mix_number = mix_number.strip() if len(mix_number) == 21: temp_bool_0 = True temp_number_list = [] for n in range(21): temp_num_0 = -1 temp_str_0 = mix_number[n] for n1 in range(64): if long_digits[n1] == temp_str_0: temp_num_0 = n1 break if temp_num_0 >= 0: temp_number_list.append(temp_num_0) else: temp_bool_0 = False if temp_bool_0: temp_number_list_1 = [] for n in range(21): temp_num_1 = temp_number_list[n]%8 temp_num_0 = int((temp_number_list[n]-temp_num_1)/8) temp_number_list_1.append(temp_num_0) temp_number_list_1.append(temp_num_1) for n in range(len(temp_number_list_1)): out_str = out_str+oct_digits[temp_number_list_1[n]] else: out_str = None else: out_str = None else: out_str = None return out_str def num_mix_8_2_64(mix_number): # input: mix_number, string of length 42 # output: mix_number, string of length 21 long_digits = ("G", "B", "l", "A", "r", "s", "6", "X", "c", "K", "R", "Q", "I", "x", "h", "b", "i", "f", "o", "a", "M", "S", "w", "0", "P", "v", "3", "N", "t", "g", "8", "2", "+", "-", "4", "k", "7", "e", "n", "D", "V", "y", "U", "W", "F", "L", "d", "T", "1", "J", "u", "Z", "z", "C", "Y", "9", "m", "H", "O", "E", "5", "p", "j", "q") oct_digits = ("0", "1", "2", "3", "4", "5", "6", "7") out_str = "" if isinstance(mix_number, str): mix_number = mix_number.strip() if len(mix_number) == 42: temp_bool_0 = True temp_number_list = [] for n in range(42): temp_num_0 = -1 temp_str_0 = mix_number[n] for n1 in range(8): if oct_digits[n1] == temp_str_0: temp_num_0 = n1 break if temp_num_0 >= 0: temp_number_list.append(temp_num_0) else: temp_bool_0 = False if temp_bool_0: temp_number_list_1 = [] for n in range(21): temp_num_0 = temp_number_list[2*n]*8+temp_number_list[2*n+1] temp_number_list_1.append(temp_num_0) for n in range(len(temp_number_list_1)): out_str = out_str+long_digits[temp_number_list_1[n]] else: out_str = None else: out_str = None else: out_str = None return out_str def number_organization_generate(in_list_name, in_initial_list): # to generate organization number, 14 digits # input: # in_list_name = [organization name 0 (str) / None, # organization name 1 (str) / None, # organization name 2 (str) / None, ...] # in_initial_list = [*, *, *] # each of the *s is from 26 letters # output: # out_result = [(out number 0, organization name 0, # Date-UTC 0, Time-UTC 0) / None, # (out number 1, organization name 1, # Date-UTC 1, Time-UTC 1) / None, # (out number 2, organization name 2, # Date-UTC 2, Time-UTC 2) / None, ...] long_digits = ("G", "B", "l", "A", "r", "s", "6", "X", "c", "K", "R", "Q", "I", "x", "h", "b", "i", "f", "o", "a", "M", "S", "w", "0", "P", "v", "3", "N", "t", "g", "8", "2", "+", "-", "4", "k", "7", "e", "n", "D", "V", "y", "U", "W", "F", "L", "d", "T", "1", "J", "u", "Z", "z", "C", "Y", "9", "m", "H", "O", "E", "5", "p", "j", "q") English_name_capital = ("A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N", "O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z") English_name_capital_1 = ("A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N", "O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9") English_name_other = (" ", "-", "'", "‘", "’", "&", "/", ".", ":", "(", ")") temp_bool_0 = True if isinstance(in_initial_list, list) | isinstance(in_initial_list, tuple): if len(in_initial_list) == 3: init_char_0 = in_initial_list[0] init_char_1 = in_initial_list[1] init_char_2 = in_initial_list[2] if (isinstance(init_char_0, str) & isinstance(init_char_1, str) & isinstance(init_char_2, str)): init_char_0 = init_char_0.strip().upper() init_char_1 = init_char_1.strip().upper() init_char_2 = init_char_2.strip().upper() if ((init_char_0 in English_name_capital) & (init_char_1 in English_name_capital) & (init_char_2 in English_name_capital)): first_3_digits = (init_char_0.lower()+init_char_1.lower()+init_char_2.lower(), init_char_0.lower()+init_char_1.lower()+init_char_2, init_char_0.lower()+init_char_1+init_char_2.lower(), init_char_0.lower()+init_char_1+init_char_2, init_char_0+init_char_1.lower()+init_char_2.lower(), init_char_0+init_char_1.lower()+init_char_2, init_char_0+init_char_1+init_char_2.lower(), init_char_0+init_char_1+init_char_2) else: temp_bool_0 = False else: temp_bool_0 = False else: temp_bool_0 = False else: temp_bool_0 = False out_result = [] if temp_bool_0: if isinstance(in_list_name, list) | isinstance(in_list_name, tuple): temp_len = len(in_list_name) if temp_len > 0: temp_time_now = datetime.utcnow() temp_num_0 = temp_time_now.microsecond temp_num_0 = temp_num_0*60+temp_time_now.second temp_num_0 = temp_num_0*60+temp_time_now.minute temp_num_0 = temp_num_0*24+temp_time_now.hour seed(temp_num_0) for n in range(temp_len): temp_bool_1 = True if in_list_name[n] is None: out_result.append(None) elif isinstance(in_list_name[n], str): temp_on_str = in_list_name[n].strip() temp_len = len(temp_on_str) if temp_len == 0: temp_bool_1 = False elif temp_len == 1: temp_num_1 = 0 temp_str_1 = in_list_name[n][0] for n2 in range(36): if English_name_capital_1[n2] == temp_str_1: temp_num_1 = n2+1 break if temp_num_1 < 1: temp_bool_1 = False else: temp_num_1 = 0 temp_str_1 = in_list_name[n][0] for n2 in range(36): if English_name_capital_1[n2] == temp_str_1: temp_num_1 = n2+1 break if temp_num_1 > 0: for n1 in range(1, temp_len): temp_num_2 = 0 temp_str_2 = in_list_name[n][n1].upper() for n2 in range(36): if English_name_capital_1[n2] == temp_str_2: temp_num_2 = n2+1 break if temp_num_2 < 1: if not temp_str_2 in English_name_other: temp_bool_1 = False break else: temp_bool_1 = False if temp_bool_1: temp_time_now = datetime.utcnow() temp_year = temp_time_now.year temp_year_3 = temp_year%10 temp_year_0 = int((temp_year-temp_year_3)/10) temp_year_2 = temp_year_0%10 temp_year_0 = int((temp_year_0-temp_year_2)/10) temp_year_1 = temp_year_0%10 temp_year_0 = int((temp_year_0-temp_year_1)/10) temp_month = temp_time_now.month temp_day = temp_time_now.day temp_hour = temp_time_now.hour temp_minute = temp_time_now.minute temp_num_0 = 0 temp_runif = 1.0 while temp_runif == 1.0: temp_runif = uniform(0.0, 1.0) temp_num_1_0 = int(temp_runif*8) if temp_num_1_0 == 8: temp_num_1_0 -= 1 out_num_str = first_3_digits[temp_num_1_0] temp_str_3 = out_num_str[0] temp_num_1_1 = -1 for n2 in range(64): if long_digits[n2] == temp_str_3: temp_num_1_1 = n2 break init_num_0 = temp_num_1_1 temp_num_0 += temp_num_1_1 temp_str_3 = out_num_str[1] temp_num_1_1 = -1 for n2 in range(64): if long_digits[n2] == temp_str_3: temp_num_1_1 = n2 break init_num_1 = temp_num_1_1 temp_num_0 += temp_num_1_1 temp_str_3 = out_num_str[2] temp_num_1_1 = -1 for n2 in range(64): if long_digits[n2] == temp_str_3: temp_num_1_1 = n2 break init_num_2 = temp_num_1_1 temp_num_0 += temp_num_1_1 temp_runif = 1.0 while temp_runif == 1.0: temp_runif = uniform(0.0, 1.0) temp_num_2_1 = int(temp_runif*89) if temp_num_2_1 == 89: temp_num_2_1 -= 1 temp_num_2_2 = temp_year_1 temp_num_2_2 = temp_num_2_2*24+temp_hour temp_num_2_2 = temp_num_2_2*12+(temp_month-1) temp_num_2 = temp_num_2_2+temp_num_2_1*2887 temp_num_2_2 = temp_num_2%64 temp_num_2_0 = int((temp_num_2-temp_num_2_2)/64) temp_num_2_1 = temp_num_2_0%64 temp_num_2_0 = int((temp_num_2_0-temp_num_2_1)/64) temp_num_2_0 = (temp_num_2_0+init_num_0)%64 temp_num_0 += temp_num_2_0 out_num_str = out_num_str+long_digits[temp_num_2_0] temp_num_2_1 = (temp_num_2_1-init_num_1)%64 temp_num_0 += temp_num_2_1 out_num_str = out_num_str+long_digits[temp_num_2_1] temp_num_2_2 = (temp_num_2_2+init_num_2)%64 temp_num_0 += temp_num_2_2 out_num_str = out_num_str+long_digits[temp_num_2_2] temp_runif = 1.0 while temp_runif == 1.0: temp_runif = uniform(0.0, 1.0) temp_num_2_1 = int(temp_runif*5393) if temp_num_2_1 == 5393: temp_num_2_1 -= 1 temp_num_2_2 = temp_day-1 temp_num_2_2 = temp_num_2_2*10+temp_year_0 temp_num_2_2 = temp_num_2_2*10+temp_year_2 temp_num_2 = temp_num_2_2+temp_num_2_1*3109 temp_num_2_3 = temp_num_2%64 temp_num_2_0 = int((temp_num_2-temp_num_2_3)/64) temp_num_2_2 = temp_num_2_0%64 temp_num_2_0 = int((temp_num_2_0-temp_num_2_2)/64) temp_num_2_1 = temp_num_2_0%64 temp_num_2_0 = int((temp_num_2_0-temp_num_2_1)/64) temp_num_2_0 = (temp_num_2_0-init_num_0)%64 temp_num_0 += temp_num_2_0 out_num_str = out_num_str+long_digits[temp_num_2_0] temp_num_2_1 = (temp_num_2_1+init_num_1)%64 temp_num_0 += temp_num_2_1 out_num_str = out_num_str+long_digits[temp_num_2_1] temp_num_2_2 = (temp_num_2_2-init_num_2)%64 temp_num_0 += temp_num_2_2 out_num_str = out_num_str+long_digits[temp_num_2_2] temp_num_2_3 = (temp_num_2_3+init_num_0)%64 temp_num_0 += temp_num_2_3 out_num_str = out_num_str+long_digits[temp_num_2_3] temp_runif = 1.0 while temp_runif == 1.0: temp_runif = uniform(0.0, 1.0) temp_num_2_1 = int(temp_runif*433) if temp_num_2_1 == 433: temp_num_2_1 -= 1 temp_num_2_2 = temp_minute temp_num_2_2 = temp_num_2_2*10+temp_year_3 temp_num_2 = temp_num_2_2+temp_num_2_1*601 temp_num_2_2 = temp_num_2%64 temp_num_2_0 = int((temp_num_2-temp_num_2_2)/64) temp_num_2_1 = temp_num_2_0%64 temp_num_2_0 = int((temp_num_2_0-temp_num_2_1)/64) temp_num_2_0 = (temp_num_2_0-init_num_1)%64 temp_num_0 += temp_num_2_0 out_num_str = out_num_str+long_digits[temp_num_2_0] temp_num_2_1 = (temp_num_2_1+init_num_2)%64 temp_num_0 += temp_num_2_1 out_num_str = out_num_str+long_digits[temp_num_2_1] temp_num_2_2 = (temp_num_2_2-init_num_0)%64 temp_num_0 += temp_num_2_2 out_num_str = out_num_str+long_digits[temp_num_2_2] out_num_str = out_num_str+long_digits[temp_num_0%64] temp_runif = 1.0 temp_str_4 = str(temp_year_0)+str(temp_year_1)+str(temp_year_2)+str(temp_year_3) temp_str_4 = temp_str_4+"-" if temp_month < 10: temp_str_4 = temp_str_4+"0"+str(temp_month) else: temp_str_4 = temp_str_4+str(temp_month) temp_str_4 = temp_str_4+"-" if temp_day < 10: temp_str_4 = temp_str_4+"0"+str(temp_day) else: temp_str_4 = temp_str_4+str(temp_day) temp_str_5 = "" if temp_hour < 10: temp_str_5 = temp_str_5+"0"+str(temp_hour) else: temp_str_5 = temp_str_5+str(temp_hour) temp_str_5 = temp_str_5+":" if temp_minute < 10: temp_str_5 = temp_str_5+"0"+str(temp_minute) else: temp_str_5 = temp_str_5+str(temp_minute) out_result.append((out_num_str, temp_on_str, temp_str_4, temp_str_5)) else: out_result.append(None) else: out_result.append(None) else: temp_bool_0 = False else: temp_bool_0 = False if not temp_bool_0: out_result = None return out_result def num_organization_valid(organization_number, year = None, month = None, day = None, hour = None, minute = None): # check validation of mixed number # input: organization_number, string of length 14 # year, integer # month, integer # day, integer # hour, integer # minute, integer # output: bool long_digits = ("G", "B", "l", "A", "r", "s", "6", "X", "c", "K", "R", "Q", "I", "x", "h", "b", "i", "f", "o", "a", "M", "S", "w", "0", "P", "v", "3", "N", "t", "g", "8", "2", "+", "-", "4", "k", "7", "e", "n", "D", "V", "y", "U", "W", "F", "L", "d", "T", "1", "J", "u", "Z", "z", "C", "Y", "9", "m", "H", "O", "E", "5", "p", "j", "q") English_name_capital = ("A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N", "O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z") out_bool = True if isinstance(organization_number, str): organization_number = organization_number.strip() if len(organization_number) == 14: init_str_0 = organization_number[0] init_str_1 = organization_number[1] init_str_2 = organization_number[2] if ((init_str_0.upper() in English_name_capital) & (init_str_1.upper() in English_name_capital) & (init_str_2.upper() in English_name_capital)): temp_number_list = [] temp_num_1 = 0 temp_num_0 = -1 for n1 in range(64): if long_digits[n1] == init_str_0: temp_num_0 = n1 break init_num_0 = temp_num_0 temp_num_1 += temp_num_0 temp_number_list.append(temp_num_0) temp_num_0 = -1 for n1 in range(64): if long_digits[n1] == init_str_1: temp_num_0 = n1 break init_num_1 = temp_num_0 temp_num_1 += temp_num_0 temp_number_list.append(temp_num_0) temp_num_0 = -1 for n1 in range(64): if long_digits[n1] == init_str_2: temp_num_0 = n1 break init_num_2 = temp_num_0 temp_num_1 += temp_num_0 temp_number_list.append(temp_num_0) temp_num_2 = 0 for n in range(3, 14): temp_num_0 = -1 temp_str_0 = organization_number[n] for n1 in range(64): if long_digits[n1] == temp_str_0: temp_num_0 = n1 break if temp_num_0 >= 0: temp_number_list.append(temp_num_0) if n < 13: temp_num_1 += temp_num_0 else: temp_num_2 += temp_num_0 else: out_bool = False break if out_bool: out_bool = temp_num_1%64 == temp_num_2 else: out_bool = False else: out_bool = False else: out_bool = False if out_bool: temp_num_0 = (temp_number_list[3]-init_num_0)%64 temp_num_0 = temp_num_0*64+(temp_number_list[4]+init_num_1)%64 temp_num_0 = temp_num_0*64+(temp_number_list[5]-init_num_2)%64 temp_num_0 = temp_num_0%2887 temp_num_1_2 = temp_num_0%12 temp_num_1_0 = int((temp_num_0-temp_num_1_2)/12) temp_num_1_1 = temp_num_1_0%24 temp_num_1_0 = int((temp_num_1_0-temp_num_1_1)/24) temp_num_0 = (temp_number_list[6]+init_num_0)%64 temp_num_0 = temp_num_0*64+(temp_number_list[7]-init_num_1)%64 temp_num_0 = temp_num_0*64+(temp_number_list[8]+init_num_2)%64 temp_num_0 = temp_num_0*64+(temp_number_list[9]-init_num_0)%64 temp_num_0 = temp_num_0%3109 temp_num_2_2 = temp_num_0%10 temp_num_2_0 = int((temp_num_0-temp_num_2_2)/10) temp_num_2_1 = temp_num_2_0%10 temp_num_2_0 = int((temp_num_2_0-temp_num_2_1)/10) temp_num_0 = (temp_number_list[10]+init_num_1)%64 temp_num_0 = temp_num_0*64+(temp_number_list[11]-init_num_2)%64 temp_num_0 = temp_num_0*64+(temp_number_list[12]+init_num_0)%64 temp_num_0 = temp_num_0%601 temp_num_3_1 = temp_num_0%10 temp_num_3_0 = int((temp_num_0-temp_num_3_1)/10) if (temp_num_1_1 >= 0) & (temp_num_1_1 < 24): if (temp_num_3_0 >= 0) & (temp_num_3_0 < 60): if ((temp_num_1_0 >= 0) & (temp_num_1_0 <= 9) & (temp_num_2_1 >= 0) & (temp_num_2_1 <= 9) & (temp_num_2_2 >= 0) & (temp_num_2_2 <= 9) & (temp_num_3_1 >= 0) & (temp_num_3_1 <= 9)): temp_num_1 = temp_num_2_1 temp_num_1 = temp_num_1*10+temp_num_1_0 temp_num_1 = temp_num_1*10+temp_num_2_2 temp_num_1 = temp_num_1*10+temp_num_3_1 temp_num_2 = temp_num_1_2+1 if (temp_num_2 > 0) & (temp_num_2 <= 12): temp_num_3 = temp_num_2_0+1 if temp_num_2 in (1, 3, 5, 7, 8, 10, 12): out_bool = (temp_num_3 > 0) & (temp_num_3 <= 31) elif temp_num_2 in (4, 6, 9, 11): out_bool = (temp_num_3 > 0) & (temp_num_3 <= 30) else: if temp_num_1%400 == 0: out_bool = (temp_num_3 > 0) & (temp_num_3 <= 29) elif temp_num_1%100 == 0: out_bool = (temp_num_3 > 0) & (temp_num_3 <= 28) elif temp_num_1%4 == 0: out_bool = (temp_num_3 > 0) & (temp_num_3 <= 29) else: out_bool = (temp_num_3 > 0) & (temp_num_3 <= 28) else: out_bool = False else: out_bool = False else: out_bool = False else: out_bool = False if out_bool: if not year is None: out_bool = year == temp_num_1 if out_bool: if not month is None: out_bool = month == temp_num_2 if out_bool: if not day is None: out_bool = day == temp_num_3 if out_bool: if not hour is None: out_bool = hour == temp_num_1_1 if out_bool: if not minute is None: out_bool = minute == temp_num_3_0 return out_bool def num_organization_64_2_16(organization_number): # input: organization_number, string of length 14 # output: organization_number, string of length 21 long_digits = ("G", "B", "l", "A", "r", "s", "6", "X", "c", "K", "R", "Q", "I", "x", "h", "b", "i", "f", "o", "a", "M", "S", "w", "0", "P", "v", "3", "N", "t", "g", "8", "2", "+", "-", "4", "k", "7", "e", "n", "D", "V", "y", "U", "W", "F", "L", "d", "T", "1", "J", "u", "Z", "z", "C", "Y", "9", "m", "H", "O", "E", "5", "p", "j", "q") hex_digits = ("0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "A", "B", "C", "D", "E", "F") out_str = "" if isinstance(organization_number, str): organization_number = organization_number.strip() if len(organization_number) == 14: temp_bool_0 = True temp_number_list = [] for n in range(14): temp_num_0 = -1 temp_str_0 = organization_number[n] for n1 in range(64): if long_digits[n1] == temp_str_0: temp_num_0 = n1 break if temp_num_0 >= 0: temp_number_list.append(temp_num_0) else: temp_bool_0 = False if temp_bool_0: temp_number_list_1 = [] for n in range(7): temp_num_0 = temp_number_list[2*n]*64+temp_number_list[2*n+1] temp_num_3 = temp_num_0%16 temp_num_0 = int((temp_num_0-temp_num_3)/16) temp_num_2 = temp_num_0%16 temp_num_1 = int((temp_num_0-temp_num_2)/16) temp_number_list_1.append(temp_num_1) temp_number_list_1.append(temp_num_2) temp_number_list_1.append(temp_num_3) for n in range(len(temp_number_list_1)): out_str = out_str+hex_digits[temp_number_list_1[n]] else: out_str = None else: out_str = None else: out_str = None return out_str def num_organization_16_2_64(organization_number): # input: organization_number, string of length 21 # output: organization_number, string of length 14 long_digits = ("G", "B", "l", "A", "r", "s", "6", "X", "c", "K", "R", "Q", "I", "x", "h", "b", "i", "f", "o", "a", "M", "S", "w", "0", "P", "v", "3", "N", "t", "g", "8", "2", "+", "-", "4", "k", "7", "e", "n", "D", "V", "y", "U", "W", "F", "L", "d", "T", "1", "J", "u", "Z", "z", "C", "Y", "9", "m", "H", "O", "E", "5", "p", "j", "q") hex_digits = ("0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "A", "B", "C", "D", "E", "F") out_str = "" if isinstance(organization_number, str): organization_number = organization_number.strip() if len(organization_number) == 21: temp_bool_0 = True temp_number_list = [] for n in range(21): temp_num_0 = -1 temp_str_0 = organization_number[n].upper() for n1 in range(16): if hex_digits[n1] == temp_str_0: temp_num_0 = n1 break if temp_num_0 >= 0: temp_number_list.append(temp_num_0) else: temp_bool_0 = False if temp_bool_0: temp_number_list_1 = [] for n in range(7): temp_num_0 = temp_number_list[3*n]*256+temp_number_list[3*n+1]*16+temp_number_list[3*n+2] temp_num_1 = temp_num_0%64 temp_num_0 = int((temp_num_0-temp_num_1)/64) temp_number_list_1.append(temp_num_0) temp_number_list_1.append(temp_num_1) for n in range(len(temp_number_list_1)): out_str = out_str+long_digits[temp_number_list_1[n]] else: out_str = None else: out_str = None else: out_str = None return out_str def number_manipulation_generate(organization_number): # to generate manipulation number, 7 digits # input: organization_number, string of length 14 # output: # out_number, string of length 7 long_digits = ("G", "B", "l", "A", "r", "s", "6", "X", "c", "K", "R", "Q", "I", "x", "h", "b", "i", "f", "o", "a", "M", "S", "w", "0", "P", "v", "3", "N", "t", "g", "8", "2", "+", "-", "4", "k", "7", "e", "n", "D", "V", "y", "U", "W", "F", "L", "d", "T", "1", "J", "u", "Z", "z", "C", "Y", "9", "m", "H", "O", "E", "5", "p", "j", "q") series_digits = ("5", "B", "7", "F", "0", "C", "2", "D", "E", "9", "3", "1", "4", "8", "6", "A") organization_number = organization_number.strip() temp_bool = num_organization_valid(organization_number) if temp_bool: temp_number_list = [] for n in range(14): temp_num_0 = -1 temp_str_0 = organization_number[n] for n1 in range(64): if long_digits[n1] == temp_str_0: temp_num_0 = n1 break temp_number_list.append(temp_num_0) temp_num_1 = temp_number_list[0]+temp_number_list[4]+temp_number_list[8] temp_num_2 = temp_number_list[1]+temp_number_list[5]+temp_number_list[9] temp_num_3 = (temp_num_1+temp_num_2)%16 out_num_str = series_digits[temp_num_3] temp_runif = 1.0 while temp_runif == 1.0: temp_runif = uniform(0.0, 1.0) temp_num_1_0 = int(temp_runif*41) if temp_num_1_0 == 41: temp_num_1_0 -= 1 temp_num_1_0 *= 97 temp_num_3 = temp_num_1%5 temp_num_4 = temp_num_2%19 temp_num_5 = temp_num_3*19+temp_num_4+temp_num_1_0 temp_num_3 = temp_num_5%16 out_num_str = out_num_str+series_digits[temp_num_3] temp_num_5 = int((temp_num_5-temp_num_3)/16) temp_num_4 = temp_num_5%16 out_num_str = out_num_str+series_digits[temp_num_4] temp_num_5 = int((temp_num_5-temp_num_4)/16) out_num_str = out_num_str+series_digits[temp_num_5] temp_runif = 1.0 while temp_runif == 1.0: temp_runif = uniform(0.0, 1.0) temp_num_1_0 = int(temp_runif*31) if temp_num_1_0 == 31: temp_num_1_0 -= 1 temp_num_1_0*= 127 temp_num_3 = temp_num_2%17 temp_num_4 = temp_num_1%7 temp_num_5 = temp_num_3*7+temp_num_4+temp_num_1_0 temp_num_3 = temp_num_5%16 out_num_str = out_num_str+series_digits[temp_num_3] temp_num_5 = int((temp_num_5-temp_num_3)/16) temp_num_4 = temp_num_5%16 out_num_str = out_num_str+series_digits[temp_num_4] temp_num_5 = int((temp_num_5-temp_num_4)/16) out_num_str = out_num_str+series_digits[temp_num_5] else: out_num_str = None return out_num_str def number_manipulation_valid(manipulation_number, organization_number): # to generate manipulation number, 7 digits # input: manipulation_number, string of length 7 # organization_number, string of length 14 # output: bool long_digits = ("G", "B", "l", "A", "r", "s", "6", "X", "c", "K", "R", "Q", "I", "x", "h", "b", "i", "f", "o", "a", "M", "S", "w", "0", "P", "v", "3", "N", "t", "g", "8", "2", "+", "-", "4", "k", "7", "e", "n", "D", "V", "y", "U", "W", "F", "L", "d", "T", "1", "J", "u", "Z", "z", "C", "Y", "9", "m", "H", "O", "E", "5", "p", "j", "q") series_digits = ("5", "B", "7", "F", "0", "C", "2", "D", "E", "9", "3", "1", "4", "8", "6", "A") if isinstance(manipulation_number, str) & isinstance(organization_number, str): manipulation_number = manipulation_number.strip() organization_number = organization_number.strip() out_bool = num_organization_valid(organization_number) else: out_bool = False if out_bool: if len(manipulation_number) == 7: temp_number_list_0 = [] for n in range(7): temp_num_0 = -1 temp_str_0 = manipulation_number[n] for n1 in range(16): if series_digits[n1] == temp_str_0: temp_num_0 = n1 break if temp_num_0 >= 0: temp_number_list_0.append(temp_num_0) else: out_bool = False break if out_bool: temp_number_list_1 = [] for n in range(14): temp_num_0 = -1 temp_str_0 = organization_number[n] for n1 in range(64): if long_digits[n1] == temp_str_0: temp_num_0 = n1 break if temp_num_0 >= 0: temp_number_list_1.append(temp_num_0) else: out_bool = False break if out_bool: temp_num_1 = temp_number_list_1[0]+temp_number_list_1[4]+temp_number_list_1[8] temp_num_2 = temp_number_list_1[1]+temp_number_list_1[5]+temp_number_list_1[9] if (temp_num_1+temp_num_2)%16 == temp_number_list_0[0]: temp_num_3 = temp_number_list_0[3] temp_num_3 = temp_num_3*16+temp_number_list_0[2] temp_num_3 = temp_num_3*16+temp_number_list_0[1] temp_num_3 = temp_num_3%97 temp_num_4 = temp_num_3%19 temp_num_3 = int((temp_num_3-temp_num_4)/19) if (temp_num_1%5 == temp_num_3) & (temp_num_2%19 == temp_num_4): temp_num_3 = temp_number_list_0[6] temp_num_3 = temp_num_3*16+temp_number_list_0[5] temp_num_3 = temp_num_3*16+temp_number_list_0[4] temp_num_3 = temp_num_3%127 temp_num_4 = temp_num_3%7 temp_num_3 = int((temp_num_3-temp_num_4)/7) out_bool = (temp_num_2%17 == temp_num_3) & (temp_num_1%7 == temp_num_4) else: out_bool = False else: out_bool = False else: out_bool = False return out_bool def number_member_generate(in_list_name): # to generate member number, 14 digits # input: # in_list_name = [[mix number 0, # given name 0, family name 0, # virtual name 0, # organization number 0, # date 0, time 0] / None, # [mix number 1, # given name 1, family name 1, # virtual name 1, # organization number 1, # date 1, time 1] / None, # [mix number 2, # given name 2, family name 2, # virtual name 2, # organization number 2, # date 2, time 2] / None, ...] # output: # out_result = [(out number 0, mix number 0, virtual name 0, organization number) / None, # (out number 1, mix number 1, virtual name 1, organization number) / None, # (out number 2, mix number 2, virtual name 2, organization number) / None, ...] long_digits = ("G", "B", "l", "A", "r", "s", "6", "X", "c", "K", "R", "Q", "I", "x", "h", "b", "i", "f", "o", "a", "M", "S", "w", "0", "P", "v", "3", "N", "t", "g", "8", "2", "+", "-", "4", "k", "7", "e", "n", "D", "V", "y", "U", "W", "F", "L", "d", "T", "1", "J", "u", "Z", "z", "C", "Y", "9", "m", "H", "O", "E", "5", "p", "j", "q") series_digits = ("5", "B", "7", "F", "0", "C", "2", "D", "E", "9", "3", "1", "4", "8", "6", "A") numeric_digits = ("0", "1", "2", "3", "4", "5", "6", "7", "8", "9") out_result = [] if isinstance(in_list_name, list) | isinstance(in_list_name, tuple): temp_len = len(in_list_name) if temp_len > 0: temp_time_now = datetime.utcnow() temp_num_0 = temp_time_now.microsecond temp_num_0 = temp_num_0*60+temp_time_now.second temp_num_0 = temp_num_0*60+temp_time_now.minute temp_num_0 = temp_num_0*24+temp_time_now.hour seed(temp_num_0) for n in range(temp_len): temp_bool = True if in_list_name[n] is None: temp_bool = False elif isinstance(in_list_name[n], list) | isinstance(in_list_name[n], tuple): if len(in_list_name[n]) == 7: if (isinstance(in_list_name[n][0], str) & isinstance(in_list_name[n][1], str) & isinstance(in_list_name[n][2], str) & isinstance(in_list_name[n][3], str) & isinstance(in_list_name[n][4], str) & isinstance(in_list_name[n][5], str) & isinstance(in_list_name[n][6], str)): temp_list_0 = [] for n1 in range(7): temp_list_0.append(in_list_name[n][n1].strip()) if len(temp_list_0[5]) == 10: if ((temp_list_0[5][0] in numeric_digits) & (temp_list_0[5][1] in numeric_digits) & (temp_list_0[5][2] in numeric_digits) & (temp_list_0[5][3] in numeric_digits) & (temp_list_0[5][4] == "-") & (temp_list_0[5][5] in numeric_digits) & (temp_list_0[5][6] in numeric_digits) & (temp_list_0[5][7] == "-") & (temp_list_0[5][8] in numeric_digits) & (temp_list_0[5][9] in numeric_digits)): temp_num_1_0 = int(temp_list_0[5][0:4]) temp_num_1_1 = int(temp_list_0[5][5:7]) temp_num_1_2 = int(temp_list_0[5][8:10]) else: temp_bool = False else: temp_bool = False if temp_bool: if len(temp_list_0[6]) == 5: if ((temp_list_0[6][0] in numeric_digits) & (temp_list_0[6][1] in numeric_digits) & (temp_list_0[6][2] == ":") & (temp_list_0[6][3] in numeric_digits) & (temp_list_0[6][4] in numeric_digits)): temp_num_2_0 = int(temp_list_0[6][0:2]) temp_num_2_1 = int(temp_list_0[6][3:5]) else: temp_bool = False else: temp_bool = False if temp_bool: if temp_list_0[0][:3].upper() == temp_list_0[4][:3].upper(): if num_mix_valid(temp_list_0[0], temp_list_0[1], temp_list_0[2], year = temp_num_1_0, month = temp_num_1_1, day = temp_num_1_2, hour = temp_num_2_0, minute = temp_num_2_1): temp_bool = num_organization_valid(temp_list_0[4]) else: temp_bool = False else: temp_bool = False if temp_bool: temp_number_list_0 = [] for n1 in range(21): temp_num_0 = -1 temp_str_0 = temp_list_0[0][n1] for n2 in range(64): if long_digits[n2] == temp_str_0: temp_num_0 = n2 break temp_number_list_0.append(temp_num_0) temp_number_list_1 = [] for n1 in range(14): temp_num_0 = -1 temp_str_0 = temp_list_0[4][n1] for n2 in range(64): if long_digits[n2] == temp_str_0: temp_num_0 = n2 break temp_number_list_1.append(temp_num_0) temp_len_1 = len(temp_list_0[3]) if temp_len_1 == 0: if len(temp_list_0[1]) > 0: temp_str_vn = "" temp_num_1 = 0 temp_num_2 = 0 else: temp_bool = False else: temp_str_vn = "" for n1 in range(temp_len_1): temp_str_1 = temp_list_0[3][n1] temp_num_3 = ord(temp_str_1) if (temp_num_3 >= 32) & (temp_num_3 < 65536): if not temp_str_1 in ("'", '"'): temp_str_vn = temp_str_vn+temp_str_1 else: temp_str_vn = temp_str_vn+"?" else: temp_bool = False break if temp_bool: if temp_len_1 == 1: temp_str_1 = temp_str_vn[0] temp_num_3 = ord(temp_str_1) temp_num_1 = temp_num_3%16 temp_num_3 = int((temp_num_3-temp_num_1)/16) temp_num_1 = temp_num_3%16 temp_num_2 = 0 else: temp_str_1 = temp_str_vn[0] temp_num_3 = ord(temp_str_1) temp_num_1 = temp_num_3%16 temp_num_3 = int((temp_num_3-temp_num_1)/16) temp_num_1 = temp_num_3%16 temp_str_2 = temp_str_vn[1] temp_num_4 = ord(temp_str_2) temp_num_2 = temp_num_4%16 if temp_bool: temp_num_0 = 0 out_num_str = "" temp_num_3 = (temp_number_list_0[0]+temp_number_list_0[4]+temp_number_list_0[8])%16 temp_num_0 += temp_num_3 out_num_str = out_num_str+series_digits[temp_num_3] temp_num_3 = (temp_number_list_0[1]+temp_number_list_0[5]+temp_number_list_0[9])%16 temp_num_0 += temp_num_3 out_num_str = out_num_str+series_digits[temp_num_3] temp_num_3 = (temp_number_list_0[2]+temp_number_list_0[6]+temp_number_list_0[10])%16 temp_num_0 += temp_num_3 out_num_str = out_num_str+series_digits[temp_num_3] temp_num_3 = (temp_number_list_0[3]+temp_number_list_0[7]+temp_number_list_0[11])%16 temp_num_0 += temp_num_3 out_num_str = out_num_str+series_digits[temp_num_3] temp_num_3 = (temp_number_list_1[3]+temp_number_list_1[7]+temp_number_list_1[11])%16 temp_num_0 += temp_num_3 out_num_str = out_num_str+series_digits[temp_num_3] temp_num_3 = (temp_number_list_1[2]+temp_number_list_1[6]+temp_number_list_1[10])%16 temp_num_0 += temp_num_3 out_num_str = out_num_str+series_digits[temp_num_3] temp_num_0 += temp_num_1 out_num_str = out_num_str+series_digits[temp_num_1] temp_num_0 += temp_num_2 out_num_str = out_num_str+series_digits[temp_num_2] temp_num_1 = (temp_num_2_0+temp_number_list_0[12])%29 temp_num_2 = (temp_num_1_1-temp_number_list_0[14])%17 temp_num_1 = temp_num_1*17+temp_num_2 temp_num_2 = (temp_num_1_0%10+temp_number_list_0[15])%11 temp_num_1 = temp_num_1*11+temp_num_2 temp_num_2 = (temp_num_1_2-temp_number_list_0[13])%31 temp_num_1 = temp_num_1*31+temp_num_2 temp_runif = 1.0 while temp_runif == 1.0: temp_runif = uniform(0.0, 1.0) temp_num_2 = int(temp_runif*6) if temp_num_2 == 6: temp_num_2 -= 1 temp_num_2 *= 168127 temp_num_1 += temp_num_2 temp_num_5 = temp_num_1%16 temp_num_1 = int((temp_num_1-temp_num_5)/16) temp_num_4 = temp_num_1%16 temp_num_1 = int((temp_num_1-temp_num_4)/16) temp_num_3 = temp_num_1%16 temp_num_1 = int((temp_num_1-temp_num_3)/16) temp_num_2 = temp_num_1%16 temp_num_1 = int((temp_num_1-temp_num_2)/16) temp_num_0 += temp_num_1 out_num_str = out_num_str+series_digits[temp_num_1] temp_num_0 += temp_num_2 out_num_str = out_num_str+series_digits[temp_num_2] temp_num_0 += temp_num_3 out_num_str = out_num_str+series_digits[temp_num_3] temp_num_0 += temp_num_4 out_num_str = out_num_str+series_digits[temp_num_4] temp_num_0 += temp_num_5 out_num_str = out_num_str+series_digits[temp_num_5] if len(temp_list_0[1]) > 0: out_num_str = out_num_str+series_digits[temp_num_0%15] else: out_num_str = out_num_str+series_digits[15] else: temp_bool = False else: temp_bool = False else: temp_bool = False if temp_bool: out_result.append([out_num_str, temp_list_0[0], temp_str_vn, temp_list_0[4]]) else: out_result.append(None) else: out_result = None else: out_result = None return out_result def num_member_valid(member_number, mix_number = None, virtual_name = None, organization_number = None): # check validation of mixed number # input: member_number, string of length 14 # mix_number, string of length 21 # virtual_name, string # organization_number, string of length 14 # output: bool long_digits = ("G", "B", "l", "A", "r", "s", "6", "X", "c", "K", "R", "Q", "I", "x", "h", "b", "i", "f", "o", "a", "M", "S", "w", "0", "P", "v", "3", "N", "t", "g", "8", "2", "+", "-", "4", "k", "7", "e", "n", "D", "V", "y", "U", "W", "F", "L", "d", "T", "1", "J", "u", "Z", "z", "C", "Y", "9", "m", "H", "O", "E", "5", "p", "j", "q") series_digits = ("5", "B", "7", "F", "0", "C", "2", "D", "E", "9", "3", "1", "4", "8", "6", "A") out_bool = True if isinstance(member_number, str): member_number = member_number.strip() if len(member_number) == 14: temp_number_list = [] temp_num_1 = 0 temp_num_2 = 0 for n in range(14): temp_num_0 = -1 temp_str_0 = member_number[n] for n1 in range(16): if series_digits[n1] == temp_str_0: temp_num_0 = n1 break if temp_num_0 >= 0: temp_number_list.append(temp_num_0) if n < 13: temp_num_1 += temp_num_0 else: temp_num_2 += temp_num_0 else: out_bool = False break if out_bool: if temp_number_list[13] != 15: out_bool = temp_num_1%15 == temp_num_2 else: out_bool = False else: out_bool = False if out_bool: if not mix_number is None: if num_mix_valid(mix_number): mix_number = mix_number.strip() temp_number_list_1 = [] for n in range(21): temp_num_0 = -1 temp_str_0 = mix_number[n] for n1 in range(64): if long_digits[n1] == temp_str_0: temp_num_0 = n1 break temp_number_list_1.append(temp_num_0) if (temp_number_list_1[0]+temp_number_list_1[4]+ temp_number_list_1[8])%16 != temp_number_list[0]: out_bool = False elif (temp_number_list_1[1]+temp_number_list_1[5]+ temp_number_list_1[9])%16 != temp_number_list[1]: out_bool = False elif (temp_number_list_1[2]+temp_number_list_1[6]+ temp_number_list_1[10])%16 != temp_number_list[2]: out_bool = False elif (temp_number_list_1[3]+temp_number_list_1[7]+ temp_number_list_1[11])%16 != temp_number_list[3]: out_bool = False else: temp_num_0 = (temp_number_list_1[7]-temp_number_list_1[1])%64 temp_num_0 = temp_num_0*64+(temp_number_list_1[8]+temp_number_list_1[2])%64 temp_num_0 = temp_num_0*64+(temp_number_list_1[9]-temp_number_list_1[0])%64 temp_num_0 = temp_num_0*64+(temp_number_list_1[10]+temp_number_list_1[1])%64 temp_num_0 = temp_num_0%6481 temp_num_1 = int(round(temp_num_0/270, 1)) temp_num_0 = (temp_number_list_1[11]-temp_number_list_1[2])%64 temp_num_0 = temp_num_0*64+(temp_number_list_1[12]+temp_number_list_1[0])%64 temp_num_0 = temp_num_0*64+(temp_number_list_1[13]-temp_number_list_1[1])%64 temp_num_0 = temp_num_0*64+(temp_number_list_1[14]+temp_number_list_1[2])%64 temp_num_0 = temp_num_0%2707 temp_num_2 = int(round(temp_num_0/270, 1)) temp_num_0 = (temp_number_list_1[15]-temp_number_list_1[0])%64 temp_num_0 = temp_num_0*64+(temp_number_list_1[16]+temp_number_list_1[1])%64 temp_num_0 = temp_num_0*64+(temp_number_list_1[17]-temp_number_list_1[2])%64 temp_num_0 = temp_num_0*64+(temp_number_list_1[18]+temp_number_list_1[0])%64 temp_num_0 = temp_num_0*64+(temp_number_list_1[19]-temp_number_list_1[1])%64 temp_num_0 = temp_num_0%22343 temp_num_3 = int(round(temp_num_0/60, 1)) temp_num_4 = temp_num_3%31 temp_num_3 = int((temp_num_3-temp_num_4)/31) temp_num_1 = (temp_num_1+temp_number_list_1[12])%29 temp_num_2 = (temp_num_2+temp_number_list_1[15])%11 temp_num_3 = (temp_num_3+1-temp_number_list_1[14])%17 temp_num_4 = (temp_num_4+1-temp_number_list_1[13])%31 temp_num_5 = temp_number_list[8] temp_num_5 = temp_num_5*16+temp_number_list[9] temp_num_5 = temp_num_5*16+temp_number_list[10] temp_num_5 = temp_num_5*16+temp_number_list[11] temp_num_5 = temp_num_5*16+temp_number_list[12] temp_num_5 = temp_num_5%168127 temp_num_6 = temp_num_5%31 if temp_num_6 == temp_num_4: temp_num_5 = int((temp_num_5-temp_num_6)/31) temp_num_6 = temp_num_5%11 if temp_num_6 == temp_num_2: temp_num_5 = int((temp_num_5-temp_num_6)/11) temp_num_6 = temp_num_5%17 if temp_num_6 == temp_num_3: temp_num_5 = int((temp_num_5-temp_num_6)/17) out_bool = temp_num_5 == temp_num_1 else: out_bool = False else: out_bool = False else: out_bool = False else: out_bool = False if out_bool: if not virtual_name is None: if isinstance(virtual_name, str): virtual_name = virtual_name.strip() temp_len = len(virtual_name) for n in range(temp_len): temp_str_0 = virtual_name[0] temp_num_0 = ord(temp_str_0) if (temp_num_0 >= 32) & (temp_num_0 < 65536): if temp_str_0 in ("'", '"'): out_bool = False break else: out_bool = False break if out_bool: if temp_len == 0: if (temp_number_list[6] != 0) | (temp_number_list[7] != 0): out_bool = False elif temp_number_list[13] == 15: out_bool = False elif temp_len == 1: temp_num_0 = ord(virtual_name[0]) temp_num_1 = temp_num_0%16 temp_num_0 = int((temp_num_0-temp_num_1)/16) temp_num_1 = temp_num_0%16 if temp_number_list[6] == temp_num_1: out_bool =temp_number_list[7] == 0 else: out_bool = False else: temp_num_0 = ord(virtual_name[0]) temp_num_1 = temp_num_0%16 temp_num_0 = int((temp_num_0-temp_num_1)/16) temp_num_1 = temp_num_0%16 if temp_number_list[6] == temp_num_1: temp_num_0 = ord(virtual_name[1]) temp_num_1 = temp_num_0%16 out_bool = temp_number_list[7] == temp_num_1 else: out_bool = False else: out_bool = False if out_bool: if not organization_number is None: if num_organization_valid(organization_number): organization_number = organization_number.strip() if not mix_number is None: out_bool = mix_number[:3].upper() == organization_number[:3].upper() if out_bool: temp_number_list_2 = [] for n in range(14): temp_num_0 = -1 temp_str_0 = organization_number[n] for n1 in range(64): if long_digits[n1] == temp_str_0: temp_num_0 = n1 break temp_number_list_2.append(temp_num_0) if ((temp_number_list_2[3]+temp_number_list_2[7]+ temp_number_list_2[11]) % 16 != temp_number_list[4]): out_bool = False elif ((temp_number_list_2[2]+temp_number_list_2[6]+ temp_number_list_2[10]) % 16 != temp_number_list[5]): out_bool = False else: out_bool = False return out_bool def forming_str_text_org(in_org_num, in_org_name, in_org_init_num, in_org_admin, in_gene_list, in_editor, in_loc_list, in_member_of_org_list): # forming string text of organization # input: in_org_num, organization number, string of length 14 # in_org_name, organization name, string # in_org_init_num, string of 3 initial numbers # in_org_admin, administrator, string of length 7 # in_gene_list, generator of the organization, ["manipulation", "date", "time"] # in_editor, current editor, string of length 7 # in_loc_list, location, ["city", "region"] # in_member_of_org_list= [[mani_num 0, enabled or not (1/0), member_num, # En_name or A/V name (0/1), name-0, name-1, name-2, # issuer's org_num, org's date, org's time]. # [mani_num 1, enabled or not (1/0), member_num, # En_name or A/V name (0/1), name-0, name-1, name-2, # issuer's org_num, org's date, org's time]. # [mani_num 2, enabled or not (1/0), member_num, # En_name or A/V name (0/1), name-0, name-1, name-2, # issuer's org_num, org's date, org's time]. ...] # length 10 per each # output: string file_sep = ";"+"\u0009"+"\u000a" file_sub_sep = ","+"\u0009" English_name_capital = ("A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N", "O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z") English_name_capital_1 = ("A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N", "O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9") English_org_name_other = (" ", "-", "'", "‘", "’", "&", "/", ".", ":", "(", ")") numeric_digits = ("0", "1", "2", "3", "4", "5", "6", "7", "8", "9") regions_short = ('nam', 'cam', 'car', 'sam', 'weu', 'seu', 'neu', 'eeu', 'naf', 'eaf', 'maf', 'saf', 'waf', 'eas', 'sea', 'nas', 'cas', 'sas', 'me', 'omi', 'ome', 'opo', 'oau', 'int', 'other') regions = ("nam - Northern America", "cam - Central America", "car - Caribbean", "sam - South America", "weu - Western Europe", "seu - Southern Europe", "neu - Northern Europe", "eeu - Eastern Europe", "naf - North Africa", "eaf - East Africa", "maf - Middle Africa", "saf - Southern Africa", "waf - West Africa", "eas - East Asia", "sea - Southeast Asia", "nas - North Asia / Siberia", "cas - Central Asia", "sas - South Asia", "me - Western Asia / Middle East", "omi - Micronesia", "ome - Melanesia", "opo - Polynesia", "oau - Australasia", "int - Internation", "other - Other") out_str = "" temp_bool = True if isinstance(in_org_num, str): if isinstance(in_gene_list, list) | isinstance(in_gene_list, tuple): if len(in_gene_list) == 3: if (isinstance(in_gene_list[0], str) & isinstance(in_gene_list[1], str) & isinstance(in_gene_list[2], str)): temp_str_0 = in_gene_list[1].strip() if len(temp_str_0) == 10: if not temp_str_0[0] in numeric_digits: temp_bool = False elif not temp_str_0[1] in numeric_digits: temp_bool = False elif not temp_str_0[2] in numeric_digits: temp_bool = False elif not temp_str_0[3] in numeric_digits: temp_bool = False elif temp_str_0[4] != "-": temp_bool = False elif not temp_str_0[5] in numeric_digits: temp_bool = False elif not temp_str_0[6] in numeric_digits: temp_bool = False elif temp_str_0[7] != "-": temp_bool = False elif not temp_str_0[8] in numeric_digits: temp_bool = False elif not temp_str_0[9] in numeric_digits: temp_bool = False if temp_bool: temp_num_0 = int(temp_str_0[0:4]) temp_num_1 = int(temp_str_0[5:7]) temp_num_2 = int(temp_str_0[8:10]) else: temp_bool = False if temp_bool: temp_str_1 = in_gene_list[2].strip() if len(temp_str_1) == 5: if not temp_str_1[0] in numeric_digits: temp_bool = False elif not temp_str_1[1] in numeric_digits: temp_bool = False elif temp_str_1[2] != ":": temp_bool = False elif not temp_str_1[3] in numeric_digits: temp_bool = False elif not temp_str_1[4] in numeric_digits: temp_bool = False if temp_bool: temp_num_3 = int(temp_str_1[0:2]) temp_num_4 = int(temp_str_1[3:5]) else: temp_bool = False if temp_bool: in_org_num = in_org_num.strip() temp_bool = num_organization_valid(in_org_num, temp_num_0, temp_num_1, temp_num_2, temp_num_3, temp_num_4) else: temp_bool = False else: temp_bool = False else: temp_bool = False if temp_bool: out_str = out_str+in_org_num out_str = out_str+file_sub_sep out_str = out_str+num_organization_64_2_16(in_org_num) if temp_bool: if isinstance(in_org_num, str): in_org_name = in_org_name.strip() temp_num_0 = len(in_org_name) if temp_num_0 == 0: temp_bool = False if temp_num_0 == 1: temp_str_2 = in_org_name[0].upper() if not temp_str_2 in English_name_capital_1: temp_bool = False else: temp_str_2 = in_org_name[0].upper() if temp_str_2 in English_name_capital_1: for n in range(1, temp_num_0): temp_str_2 = in_org_name[n].upper() if ((not temp_str_2 in English_name_capital_1) & (not temp_str_2 in English_org_name_other)): temp_bool = False break else: temp_bool = False if temp_bool: if isinstance(in_org_init_num, str): in_org_init_num = in_org_init_num.strip() if len(in_org_init_num) == 3: temp_str_2 = "" for n in range(3): temp_str_3 = in_org_init_num[n].upper() if temp_str_3 in English_name_capital: temp_str_2 = temp_str_2+temp_str_3 else: temp_bool = False break else: temp_bool = False else: temp_bool = False else: temp_bool = False if temp_bool: in_org_init_num = temp_str_2 if in_org_num[0:3].upper() == in_org_init_num: out_str = out_str+file_sep out_str = out_str+in_org_name out_str = out_str+file_sub_sep out_str = out_str+in_org_init_num else: temp_bool = False if temp_bool: if isinstance(in_org_admin, str): in_org_admin = in_org_admin.strip() if len(in_org_admin) == 7: out_str = out_str+file_sep out_str = out_str+in_org_admin temp_str_2 = in_gene_list[0].strip() if len(temp_str_2) == 7: out_str = out_str+file_sep out_str = out_str+temp_str_2 out_str = out_str+file_sub_sep out_str = out_str+temp_str_0 out_str = out_str+file_sub_sep out_str = out_str+temp_str_1 in_editor = in_editor.strip() out_str = out_str+file_sep out_str = out_str+in_editor if len(in_editor) == 7: temp_time_now = datetime.utcnow() temp_num_0 = temp_time_now.year temp_str_0 = "" if temp_num_0 < 10: temp_str_0 = temp_str_0+"000"+str(temp_num_0) elif temp_num_0 < 100: temp_str_0 = temp_str_0+"00"+str(temp_num_0) elif temp_num_0 < 1000: temp_str_0 = temp_str_0+"0"+str(temp_num_0) elif temp_num_0 < 10000: temp_str_0 = temp_str_0+str(temp_num_0) temp_str_0 = temp_str_0+"-" temp_num_0 = temp_time_now.month if temp_num_0 < 10: temp_str_0 = temp_str_0+"0"+str(temp_num_0) elif temp_num_0 < 100: temp_str_0 = temp_str_0+str(temp_num_0) temp_str_0 = temp_str_0+"-" temp_num_0 = temp_time_now.day if temp_num_0 < 10: temp_str_0 = temp_str_0+"0"+str(temp_num_0) elif temp_num_0 < 100: temp_str_0 = temp_str_0+str(temp_num_0) out_str = out_str+file_sub_sep out_str = out_str+temp_str_0 temp_str_0 = "" temp_num_0 = temp_time_now.hour if temp_num_0 < 10: temp_str_0 = temp_str_0+"0"+str(temp_num_0) elif temp_num_0 < 100: temp_str_0 = temp_str_0+str(temp_num_0) temp_str_0 = temp_str_0+":" temp_num_0 = temp_time_now.minute if temp_num_0 < 10: temp_str_0 = temp_str_0+"0"+str(temp_num_0) elif temp_num_0 < 100: temp_str_0 = temp_str_0+str(temp_num_0) out_str = out_str+file_sub_sep out_str = out_str+temp_str_0 else: temp_bool = False else: temp_bool = False else: temp_bool = False else: temp_bool = False if temp_bool: if isinstance(in_loc_list, list) | isinstance(in_loc_list, tuple): if len(in_loc_list) == 2: if isinstance(in_loc_list[0], str) & isinstance(in_loc_list[1], str): temp_str_0 = in_loc_list[0].strip() temp_str_1 = in_loc_list[1].strip() temp_num_0 = -1 for n in range(25): if regions[n] == temp_str_1: temp_num_0 = n break if temp_num_0 >= 0: temp_num_1 = len(temp_str_0) if temp_num_1 == 1: temp_str_2 = temp_str_0[0].upper() if not temp_str_2 in English_name_capital_1: temp_bool = False elif temp_num_1 > 1: temp_str_2 = temp_str_0[0].upper() if temp_str_2 in English_name_capital_1: for n in range(1, temp_num_1): temp_str_2 = in_org_name[n].upper() if ((not temp_str_2 in English_name_capital_1) & (not temp_str_2 in English_org_name_other)): temp_bool = False break else: temp_bool = False if temp_bool: out_str = out_str+file_sep out_str = out_str+temp_str_0 out_str = out_str+file_sub_sep out_str = out_str+regions_short[temp_num_0] else: temp_bool = False else: temp_bool = False else: temp_bool = False else: temp_bool = False if temp_bool: if isinstance(in_member_of_org_list, list) | isinstance(in_member_of_org_list, tuple): temp_num_0 = len(in_member_of_org_list) if (temp_num_0 > 0) & (temp_num_0 <= 777): temp_mani_str_list = [] temp_mani_num_list = [] temp_mani_num_enable_list = [] for n in range(temp_num_0): temp_list_1 = in_member_of_org_list[n] if not temp_list_1 is None: temp_bool_1 = True if isinstance(temp_list_1, list) | isinstance(temp_list_1, tuple): if len(temp_list_1) == 10: temp_str_0 = "" if isinstance(temp_list_1[0], str): temp_str_1 = temp_list_1[0].strip() if not temp_str_1 in temp_mani_str_list: if number_manipulation_valid(temp_str_1, in_org_num): temp_str_0 = temp_str_0+temp_str_1 temp_mani_num_list.append(temp_str_1) else: temp_bool_1 = False else: temp_bool_1 = False else: temp_bool_1 = False if temp_bool_1: if isinstance(temp_list_1[1], bool): temp_str_0 = temp_str_0+file_sub_sep if temp_list_1[1]: temp_str_0 = temp_str_0+"1" else: temp_str_0 = temp_str_0+"0" temp_mani_num_enable_list.append(temp_list_1[1]) else: temp_bool_1 = False if temp_bool_1: if isinstance(temp_list_1[2], str): temp_str_1 = temp_list_1[2].strip() if len(temp_str_1) == 14: temp_str_0 = temp_str_0+file_sub_sep temp_str_0 = temp_str_0+temp_str_1 else: temp_bool_1 = False else: temp_bool_1 = False if temp_bool_1: if isinstance(temp_list_1[3], str): temp_str_2 = temp_list_1[3].strip() if temp_str_2 == "en": temp_str_0 = temp_str_0+file_sub_sep temp_str_0 = temp_str_0+"0" elif temp_str_2 == "vn": temp_str_0 = temp_str_0+file_sub_sep temp_str_0 = temp_str_0+"1" else: temp_bool_1 = False else: temp_bool_1 = False if temp_bool_1: if (isinstance(temp_list_1[4], str) & isinstance(temp_list_1[5], str) & isinstance(temp_list_1[6], str)): temp_str_3 = temp_list_1[4].strip() temp_str_4 = temp_list_1[5].strip() temp_str_5 = temp_list_1[6].strip() if temp_str_2 == "en": if len(temp_str_3) > 0: if English_name_valid([temp_str_3, temp_str_4, temp_str_5]): temp_str_0 = temp_str_0+file_sub_sep temp_str_0 = temp_str_0+temp_str_3 temp_str_0 = temp_str_0+file_sub_sep temp_str_0 = temp_str_0+temp_str_4 temp_str_0 = temp_str_0+file_sub_sep temp_str_0 = temp_str_0+temp_str_5 else: temp_bool_1 = False else: temp_bool_1 = False else: if len(temp_str_4) > 0: if virtual_name_valid([temp_str_3, temp_str_4, temp_str_5]): temp_str_0 = temp_str_0+file_sub_sep temp_str_0 = temp_str_0+temp_str_3 temp_str_0 = temp_str_0+file_sub_sep temp_str_0 = temp_str_0+temp_str_4 temp_str_0 = temp_str_0+file_sub_sep temp_str_0 = temp_str_0+temp_str_5 temp_str_3 = temp_str_4 else: temp_bool_1 = False else: temp_bool_1 = False else: temp_bool_1 = False if temp_bool_1: if (isinstance(temp_list_1[7], str) & isinstance(temp_list_1[8], str) & isinstance(temp_list_1[9], str)): temp_str_4 = temp_list_1[7].strip() temp_str_5 = temp_list_1[8].strip() temp_str_6 = temp_list_1[9].strip() if len(temp_str_4) == 14: temp_bool_1 = temp_str_4[0:3].upper() == in_org_init_num else: temp_bool_1 = False if temp_bool_1: if len(temp_str_5) == 10: if not temp_str_5[0] in numeric_digits: temp_bool_1 = False elif not temp_str_5[1] in numeric_digits: temp_bool_1 = False elif not temp_str_5[2] in numeric_digits: temp_bool_1 = False elif not temp_str_5[3] in numeric_digits: temp_bool_1 = False elif temp_str_5[4] != "-": temp_bool_1 = False elif not temp_str_5[5] in numeric_digits: temp_bool_1 = False elif not temp_str_5[6] in numeric_digits: temp_bool_1 = False elif temp_str_5[7] != "-": temp_bool_1 = False elif not temp_str_5[8] in numeric_digits: temp_bool_1 = False elif not temp_str_5[9] in numeric_digits: temp_bool_1 = False if temp_bool_1: temp_num_1 = int(temp_str_5[0:4]) temp_num_2 = int(temp_str_5[5:7]) temp_num_3 = int(temp_str_5[8:10]) else: temp_bool_1 = False if temp_bool_1: if len(temp_str_6) == 5: if not temp_str_6[0] in numeric_digits: temp_bool_1 = False elif not temp_str_6[1] in numeric_digits: temp_bool_1 = False elif temp_str_6[2] != ":": temp_bool_1 = False elif not temp_str_6[3] in numeric_digits: temp_bool_1 = False elif not temp_str_6[4] in numeric_digits: temp_bool_1 = False if temp_bool_1: temp_num_4 = int(temp_str_6[0:2]) temp_num_5 = int(temp_str_6[3:5]) else: temp_bool_1 = False if temp_bool_1: if num_organization_valid(temp_str_4, temp_num_1, temp_num_2, temp_num_3, temp_num_4, temp_num_5): if temp_str_2 == "en": temp_bool_1 = num_member_valid(temp_str_1, organization_number = temp_str_4) else: temp_bool_1 = num_member_valid(temp_str_1, virtual_name = temp_str_3, organization_number = temp_str_4) if temp_bool_1: temp_str_0 = temp_str_0+file_sub_sep temp_str_0 = temp_str_0+temp_str_4 temp_str_0 = temp_str_0+file_sub_sep temp_str_0 = temp_str_0+temp_str_5 temp_str_0 = temp_str_0+file_sub_sep temp_str_0 = temp_str_0+temp_str_6 else: temp_bool_1 = False else: temp_bool_1 = False else: temp_bool_1 = False else: temp_bool_1 = False if temp_bool_1: temp_mani_str_list.append(temp_str_0) else: temp_bool = False break else: temp_bool = False else: temp_bool = False if temp_bool: temp_num_0 = len(temp_mani_str_list) temp_num_1 = -1 temp_str_1 = in_org_admin.strip() temp_num_2 = -1 temp_str_2 = in_editor.strip() temp_num_3 = -1 temp_str_3 = in_gene_list[0].strip() for n in range(temp_num_0): if temp_num_1 < 0: if temp_mani_num_list[n] == temp_str_1: temp_num_1 = n if temp_num_2 < 0: if temp_mani_num_list[n] == temp_str_2: temp_num_2 = n if temp_num_3 < 0: if temp_mani_num_list[n] == temp_str_3: temp_num_3 = n if (temp_num_1 >= 0) & (temp_num_2 >= 0) & (temp_num_3 >= 0): break if (temp_num_1 >= 0) & (temp_num_2 >= 0) & (temp_num_3 >= 0): if (temp_mani_num_enable_list[temp_num_1]) & (temp_mani_num_enable_list[temp_num_2]): out_str = out_str+file_sep out_str = out_str+str(temp_num_0) for n in range(temp_num_0): out_str = out_str+file_sep out_str = out_str+temp_mani_str_list[n] else: temp_bool = False else: temp_bool = False if not temp_bool: out_str = None return out_str def reading_str_text_org(in_str): # reading string text of organization # input: in_str, string # output: [organization info list, # manipulation info list, # manipulation number list, # enabled number list] file_read_sep = ";"+"\u0009" file_sub_sep = ","+"\u0009" English_name_capital = ("A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N", "O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z") English_name_capital_1 = ("A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N", "O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9") English_org_name_other = (" ", "-", "'", "‘", "’", "&", "/", ".", ":", "(", ")") numeric_digits = ("0", "1", "2", "3", "4", "5", "6", "7", "8", "9") regions_short = ('nam', 'cam', 'car', 'sam', 'weu', 'seu', 'neu', 'eeu', 'naf', 'eaf', 'maf', 'saf', 'waf', 'eas', 'sea', 'nas', 'cas', 'sas', 'me', 'omi', 'ome', 'opo', 'oau', 'int', 'other') regions = ("nam - Northern America", "cam - Central America", "car - Caribbean", "sam - South America", "weu - Western Europe", "seu - Southern Europe", "neu - Northern Europe", "eeu - Eastern Europe", "naf - North Africa", "eaf - East Africa", "maf - Middle Africa", "saf - Southern Africa", "waf - West Africa", "eas - East Asia", "sea - Southeast Asia", "nas - North Asia / Siberia", "cas - Central Asia", "sas - South Asia", "me - Western Asia / Middle East", "omi - Micronesia", "ome - Melanesia", "opo - Polynesia", "oau - Australasia", "int - Internation", "other - Other") org_info_list = [] mani_info_list = [] mani_num_list = [] mani_enabled_list = [] temp_bool = True if isinstance(in_str, str): temp_str_list_0 = in_str.split(file_read_sep) temp_len_0 = len(temp_str_list_0) if temp_len_0 >= 8: temp_str_0 = temp_str_list_0[6].strip() temp_len_1 = len(temp_str_0) if temp_len_1 > 0: for n in range(temp_len_1): if not temp_str_0[n] in numeric_digits: temp_bool = False break if temp_bool: temp_len_1 = int(temp_str_0) temp_bool = temp_len_1+7 == temp_len_0 else: temp_bool = False else: temp_bool = False else: temp_bool = False if temp_bool: temp_str_list_1 = temp_str_list_0[0].split(file_sub_sep) if len(temp_str_list_1) == 2: temp_str_0 = temp_str_list_1[0].strip() temp_str_1 = temp_str_list_1[1].strip() if (len(temp_str_0) == 14) & (len(temp_str_1) == 21): org_info_list.append(temp_str_0) org_info_list.append(temp_str_1) else: temp_bool = False else: temp_bool = False if temp_bool: temp_str_list_1 = temp_str_list_0[1].split(file_sub_sep) if len(temp_str_list_1) == 2: temp_str_0 = temp_str_list_1[0].strip() temp_str_1 = temp_str_list_1[1].strip() org_init_num = temp_str_1 if len(temp_str_1) == 3: temp_str_2 = temp_str_1[1] temp_str_3 = temp_str_1[2] temp_str_1 = temp_str_1[0] if ((temp_str_1 in English_name_capital) & (temp_str_2 in English_name_capital) & (temp_str_3 in English_name_capital)): if org_info_list[0][0:3].upper() == org_init_num: temp_len_2 = len(temp_str_0) if temp_len_2 < 1: temp_bool = False elif temp_len_2 == 1: temp_bool = temp_str_0[0] in English_name_capital_1 else: if temp_str_0[0] in English_name_capital_1: for n in range(1, temp_len_2): if ((not temp_str_0[n].upper() in English_name_capital_1) & (not temp_str_0[n] in English_org_name_other)): temp_bool = False break if temp_bool: org_info_list.append(temp_str_0) org_info_list.append((temp_str_1, temp_str_2, temp_str_3)) else: temp_bool = False else: temp_bool = False else: temp_bool = False else: temp_bool = False else: temp_bool = False if temp_bool: temp_str_0 = temp_str_list_0[2].strip() if len(temp_str_0) == 7: org_info_list.append(temp_str_0) else: temp_bool = False if temp_bool: temp_str_list_1 = temp_str_list_0[3].split(file_sub_sep) if len(temp_str_list_1) == 3: temp_str_0 = temp_str_list_1[0].strip() temp_str_1 = temp_str_list_1[1].strip() temp_str_2 = temp_str_list_1[2].strip() if len(temp_str_0) == 7: if len(temp_str_1) == 10: if not temp_str_1[0] in numeric_digits: temp_bool = False elif not temp_str_1[1] in numeric_digits: temp_bool = False elif not temp_str_1[2] in numeric_digits: temp_bool = False elif not temp_str_1[3] in numeric_digits: temp_bool = False elif temp_str_1[4] != "-": temp_bool = False elif not temp_str_1[5] in numeric_digits: temp_bool = False elif not temp_str_1[6] in numeric_digits: temp_bool = False elif temp_str_1[7] != "-": temp_bool = False elif not temp_str_1[8] in numeric_digits: temp_bool = False elif not temp_str_1[9] in numeric_digits: temp_bool = False if temp_bool: temp_num_0 = int(temp_str_1[0:4]) temp_num_1 = int(temp_str_1[5:7]) temp_num_2 = int(temp_str_1[8:10]) if not temp_str_2[0] in numeric_digits: temp_bool = False elif not temp_str_2[1] in numeric_digits: temp_bool = False elif temp_str_2[2] != ":": temp_bool = False elif not temp_str_2[3] in numeric_digits: temp_bool = False elif not temp_str_2[4] in numeric_digits: temp_bool = False if temp_bool: temp_num_3 = int(temp_str_2[0:2]) temp_num_4 = int(temp_str_2[3:5]) if num_organization_valid(org_info_list[0], temp_num_0, temp_num_1, temp_num_2, temp_num_3, temp_num_4): org_info_list.append((temp_str_0, temp_str_1, temp_str_2)) else: temp_bool = False else: temp_bool = False else: temp_bool = False else: temp_bool = False if temp_bool: temp_str_list_1 = temp_str_list_0[4].split(file_sub_sep) if len(temp_str_list_1) == 3: temp_str_0 = temp_str_list_1[0].strip() temp_str_1 = temp_str_list_1[1].strip() temp_str_2 = temp_str_list_1[2].strip() if len(temp_str_0) == 7: if len(temp_str_1) == 10: if not temp_str_1[0] in numeric_digits: temp_bool = False elif not temp_str_1[1] in numeric_digits: temp_bool = False elif not temp_str_1[2] in numeric_digits: temp_bool = False elif not temp_str_1[3] in numeric_digits: temp_bool = False elif temp_str_1[4] != "-": temp_bool = False elif not temp_str_1[5] in numeric_digits: temp_bool = False elif not temp_str_1[6] in numeric_digits: temp_bool = False elif temp_str_1[7] != "-": temp_bool = False elif not temp_str_1[8] in numeric_digits: temp_bool = False elif not temp_str_1[9] in numeric_digits: temp_bool = False if temp_bool: temp_num_5 = int(temp_str_1[0:4]) temp_num_6 = int(temp_str_1[5:7]) temp_num_7 = int(temp_str_1[8:10]) if not temp_str_2[0] in numeric_digits: temp_bool = False elif not temp_str_2[1] in numeric_digits: temp_bool = False elif temp_str_2[2] != ":": temp_bool = False elif not temp_str_2[3] in numeric_digits: temp_bool = False elif not temp_str_2[4] in numeric_digits: temp_bool = False if temp_bool: temp_num_8 = int(temp_str_2[0:2]) temp_num_9 = int(temp_str_2[3:5]) if temp_num_5 < temp_num_0: temp_bool = False elif temp_num_5 == temp_num_0: if temp_num_6 < temp_num_1: temp_bool = False elif temp_num_6 == temp_num_1: if temp_num_7 < temp_num_2: temp_bool = False elif temp_num_7 == temp_num_2: if temp_num_8 < temp_num_3: temp_bool = False elif temp_num_8 == temp_num_3: if temp_num_9 < temp_num_4: temp_bool = False if temp_bool: if (temp_num_8 >= 0) & (temp_num_8 < 24): if (temp_num_9 >= 0) & (temp_num_9 < 60): if temp_num_6 in (4, 6, 9, 11): if (temp_num_7 < 1) | (temp_num_7 > 30): temp_bool = False elif temp_num_6 in (1, 3, 5, 7, 8, 10, 12): if (temp_num_7 < 1) | (temp_num_7 > 31): temp_bool = False elif temp_num_6 == 2: if temp_num_5%400 == 0: if (temp_num_7 < 1) | (temp_num_7 > 29): temp_bool = False elif temp_num_5%100 == 0: if (temp_num_7 < 1) | (temp_num_7 > 28): temp_bool = False elif temp_num_5%4 == 0: if (temp_num_7 < 1) | (temp_num_7 > 29): temp_bool = False else: if (temp_num_7 < 1) | (temp_num_7 > 28): temp_bool = False else: temp_bool = False else: temp_bool = False else: temp_bool = False if temp_bool: org_info_list.append((temp_str_0, temp_str_1, temp_str_2)) else: temp_bool = False else: temp_bool = False else: temp_bool = False if temp_bool: temp_str_list_1 = temp_str_list_0[5].split(file_sub_sep) if len(temp_str_list_1) == 2: temp_str_0 = temp_str_list_1[0].strip() temp_str_1 = temp_str_list_1[1].strip() temp_num_0 = -1 for n in range(25): if regions_short[n] == temp_str_1: temp_num_0 = n break if temp_num_0 >= 0: temp_len_2 = len(temp_str_0) if temp_len_2 == 1: if not temp_str_0[0] in English_name_capital_1: temp_bool = False elif temp_len_2 > 1: if temp_str_0[0] in English_name_capital_1: for n in range(1, temp_len_2): if ((not temp_str_0[n].upper() in English_name_capital_1) & (not temp_str_0[n] in English_org_name_other)): temp_bool = False break else: temp_bool = False if temp_bool: org_info_list.append([temp_str_0, regions[temp_num_0]]) else: temp_bool = False else: temp_bool = False if temp_bool: for n in range(7, temp_len_0): temp_str_list_1 = temp_str_list_0[n].split(file_sub_sep) if len(temp_str_list_1) == 10: temp_str_list_2 = [] for n1 in range(10): temp_str_list_2.append(temp_str_list_1[n1].strip()) temp_str_list_3 = [] if not temp_str_list_2[0] in mani_num_list: if number_manipulation_valid(temp_str_list_2[0], org_info_list[0]): temp_str_list_3.append(temp_str_list_2[0]) mani_num_list.append(temp_str_list_2[0]) if temp_str_list_2[1] == "0": temp_str_list_3.append(False) mani_enabled_list.append(False) elif temp_str_list_2[1] == "1": temp_str_list_3.append(True) mani_enabled_list.append(True) else: temp_bool = False else: temp_bool = False else: temp_bool = False else: temp_bool = False if temp_bool: if len(temp_str_list_2[2]) == 14: temp_str_list_3.append(temp_str_list_2[2]) if temp_str_list_2[3] == "0": temp_str_list_3.append("en") temp_str_list_4 = [temp_str_list_2[4], temp_str_list_2[5], temp_str_list_2[6]] if English_name_valid(temp_str_list_4): if num_member_valid(temp_str_list_2[2], organization_number = temp_str_list_2[7]): temp_str_list_3.append(temp_str_list_2[4]) temp_str_list_3.append(temp_str_list_2[5]) temp_str_list_3.append(temp_str_list_2[6]) else: temp_bool = False else: temp_bool = False elif temp_str_list_2[3] == "1": temp_str_list_3.append("vn") temp_str_list_4 = [temp_str_list_2[4], temp_str_list_2[5], temp_str_list_2[6]] if virtual_name_valid(temp_str_list_4): if num_member_valid(temp_str_list_2[2], virtual_name = temp_str_list_2[5], organization_number = temp_str_list_2[7]): temp_str_list_3.append(temp_str_list_2[4]) temp_str_list_3.append(temp_str_list_2[5]) temp_str_list_3.append(temp_str_list_2[6]) else: temp_bool = False else: temp_bool = False else: temp_bool = False else: temp_bool = False if temp_bool: if len(temp_str_list_2[7]) == 14: temp_bool = temp_str_list_2[7][0:3].upper() == org_init_num else: temp_bool = False if temp_bool: if not temp_str_list_2[8][0] in numeric_digits: temp_bool = False elif not temp_str_list_2[8][1] in numeric_digits: temp_bool = False elif not temp_str_list_2[8][2] in numeric_digits: temp_bool = False elif not temp_str_list_2[8][3] in numeric_digits: temp_bool = False elif temp_str_list_2[8][4] != "-": temp_bool = False elif not temp_str_list_2[8][5] in numeric_digits: temp_bool = False elif not temp_str_list_2[8][6] in numeric_digits: temp_bool = False elif temp_str_list_2[8][7] != "-": temp_bool = False elif not temp_str_list_2[8][8] in numeric_digits: temp_bool = False elif not temp_str_list_2[8][9] in numeric_digits: temp_bool = False if temp_bool: temp_num_0 = int(temp_str_list_2[8][0:4]) temp_num_1 = int(temp_str_list_2[8][5:7]) temp_num_2 = int(temp_str_list_2[8][8:10]) if not temp_str_list_2[9][0] in numeric_digits: temp_bool = False elif not temp_str_list_2[9][1] in numeric_digits: temp_bool = False elif temp_str_list_2[9][2] != ":": temp_bool = False elif not temp_str_list_2[9][3] in numeric_digits: temp_bool = False elif not temp_str_list_2[9][4] in numeric_digits: temp_bool = False if temp_bool: temp_num_3 = int(temp_str_list_2[9][0:2]) temp_num_4 = int(temp_str_list_2[9][3:5]) if num_organization_valid(temp_str_list_2[7], temp_num_0, temp_num_1, temp_num_2, temp_num_3, temp_num_4): temp_str_list_3.append(temp_str_list_2[7]) temp_str_list_3.append(temp_str_list_2[8]) temp_str_list_3.append(temp_str_list_2[9]) else: temp_bool = False if temp_bool: mani_info_list.append(tuple(temp_str_list_3)) else: break if temp_bool: temp_num_0 = -1 temp_str_0 = org_info_list[4] temp_num_1 = -1 temp_str_1 = org_info_list[5][0] temp_num_2 = -1 temp_str_2 = org_info_list[6][0] for n in range(temp_len_1): if temp_num_0 < 0: if mani_num_list[n] == temp_str_0: temp_num_0 = n if temp_num_1 < 0: if mani_num_list[n] == temp_str_1: temp_num_1 = n if temp_num_2 < 0: if mani_num_list[n] == temp_str_2: temp_num_2 = n if (temp_num_0 >= 0) & (temp_num_1 >= 0) & (temp_num_2 >= 0): break if (temp_num_0 >= 0) & (temp_num_1 >= 0) & (temp_num_2 >= 0): temp_bool = (mani_enabled_list[temp_num_0]) & (mani_enabled_list[temp_num_1]) else: temp_bool = False if temp_bool: out_tuple = (org_info_list, mani_info_list, mani_num_list, mani_enabled_list) else: out_tuple = None return out_tuple def forming_str_text_member(in_num_list, in_en_name_list, in_vn_name_list, in_date_list, in_org_list): # forming string text of member # input: in_num_list, numbers, [mix number, member number] # in_en_name_list, English name, [given, middle, family] # in_vn_name_list, another name / virtual name, [type, name, addition] # in_date_list, issuing date of member, [date, time] # in_org_list, issuing organization, [organization number, date, time, manipulation number] # output: string file_sep = ";"+"\u0009"+"\u000a" file_sub_sep = ","+"\u0009" numeric_digits = ("0", "1", "2", "3", "4", "5", "6", "7", "8", "9") out_str = "member_info.iden" temp_bool = True if isinstance(in_num_list, list) | isinstance(in_num_list, tuple): if len(in_num_list) == 2: if isinstance(in_num_list[0], str) & isinstance(in_num_list[1], str): temp_str_0 = in_num_list[0].strip() temp_str_1 = in_num_list[1].strip() if (len(temp_str_0) == 21) & (len(temp_str_1) == 14): out_str = out_str+file_sep out_str = out_str+temp_str_0 out_str = out_str+file_sub_sep out_str = out_str+temp_str_1 else: temp_bool = False else: temp_bool = False else: temp_bool = False else: temp_bool = False if temp_bool: if isinstance(in_en_name_list, list) | isinstance(in_en_name_list, tuple): if len(in_en_name_list) == 3: if (isinstance(in_en_name_list[0], str) & isinstance(in_en_name_list[1], str) & isinstance(in_en_name_list[2], str)): temp_list_0 = [in_en_name_list[0].strip(), in_en_name_list[1].strip(), in_en_name_list[2].strip()] if English_name_valid(temp_list_0): out_str = out_str+file_sep out_str = out_str+temp_list_0[0] out_str = out_str+file_sub_sep out_str = out_str+temp_list_0[1] out_str = out_str+file_sub_sep out_str = out_str+temp_list_0[2] temp_str_2 = temp_list_0[0] temp_str_3 = temp_list_0[2] else: temp_bool = False else: temp_bool = False else: temp_bool = False else: temp_bool = False if temp_bool: if isinstance(in_vn_name_list, list) | isinstance(in_vn_name_list, tuple): if len(in_vn_name_list) == 3: if (isinstance(in_vn_name_list[0], str) & isinstance(in_vn_name_list[1], str) & isinstance(in_vn_name_list[2], str)): temp_list_0 = [in_vn_name_list[0].strip(), in_vn_name_list[1].strip(), in_vn_name_list[2].strip()] if virtual_name_valid(temp_list_0): temp_str_4 = temp_list_0[1] if (len(temp_str_2) > 0) | (len(temp_str_4) > 0): out_str = out_str+file_sep out_str = out_str+temp_list_0[0] out_str = out_str+file_sub_sep out_str = out_str+temp_list_0[1] out_str = out_str+file_sub_sep out_str = out_str+temp_list_0[2] else: temp_bool = False else: temp_bool = False else: temp_bool = False else: temp_bool = False else: temp_bool = False if temp_bool: if isinstance(in_date_list, list) | isinstance(in_date_list, tuple): if len(in_date_list) == 2: if isinstance(in_date_list[0], str) & isinstance(in_date_list[1], str): temp_str_5 = in_date_list[0].strip() if len(temp_str_5) == 10: if not temp_str_5[0] in numeric_digits: temp_bool = False elif not temp_str_5[1] in numeric_digits: temp_bool = False elif not temp_str_5[2] in numeric_digits: temp_bool = False elif not temp_str_5[3] in numeric_digits: temp_bool = False elif temp_str_5[4] != "-": temp_bool = False elif not temp_str_5[5] in numeric_digits: temp_bool = False elif not temp_str_5[6] in numeric_digits: temp_bool = False elif temp_str_5[7] != "-": temp_bool = False elif not temp_str_5[8] in numeric_digits: temp_bool = False elif not temp_str_5[9] in numeric_digits: temp_bool = False if temp_bool: temp_num_0 = int(temp_str_5[0:4]) temp_num_1 = int(temp_str_5[5:7]) temp_num_2 = int(temp_str_5[8:10]) else: temp_bool = False if temp_bool: temp_str_6 = in_date_list[1].strip() if len(temp_str_6) == 5: if not temp_str_6[0] in numeric_digits: temp_bool = False elif not temp_str_6[1] in numeric_digits: temp_bool = False elif temp_str_6[2] != ":": temp_bool = False elif not temp_str_6[3] in numeric_digits: temp_bool = False elif not temp_str_6[4] in numeric_digits: temp_bool = False if temp_bool: temp_num_3 = int(temp_str_6[0:2]) temp_num_4 = int(temp_str_6[3:5]) else: temp_bool = False if temp_bool: if num_mix_valid(temp_str_0, temp_str_2, temp_str_3, temp_num_0, temp_num_1, temp_num_2, temp_num_3, temp_num_4): out_str = out_str+file_sep out_str = out_str+temp_str_5 out_str = out_str+file_sub_sep out_str = out_str+temp_str_6 else: temp_bool = False else: temp_bool = False else: temp_bool = False else: temp_bool = False if temp_bool: if isinstance(in_org_list, list) | isinstance(in_org_list, tuple): if len(in_org_list) == 4: if (isinstance(in_org_list[0], str) & isinstance(in_org_list[1], str) & isinstance(in_org_list[2], str) & isinstance(in_org_list[3], str)): temp_str_2 = in_org_list[0].strip() if num_member_valid(temp_str_1, temp_str_0, temp_str_4, temp_str_2): temp_str_5 = in_org_list[1].strip() if len(temp_str_5) == 10: if not temp_str_5[0] in numeric_digits: temp_bool = False elif not temp_str_5[1] in numeric_digits: temp_bool = False elif not temp_str_5[2] in numeric_digits: temp_bool = False elif not temp_str_5[3] in numeric_digits: temp_bool = False elif temp_str_5[4] != "-": temp_bool = False elif not temp_str_5[5] in numeric_digits: temp_bool = False elif not temp_str_5[6] in numeric_digits: temp_bool = False elif temp_str_5[7] != "-": temp_bool = False elif not temp_str_5[8] in numeric_digits: temp_bool = False elif not temp_str_5[9] in numeric_digits: temp_bool = False if temp_bool: temp_num_5 = int(temp_str_5[0:4]) temp_num_6 = int(temp_str_5[5:7]) temp_num_7 = int(temp_str_5[8:10]) else: temp_bool = False if temp_bool: temp_str_6 = in_org_list[2].strip() if len(temp_str_6) == 5: if not temp_str_6[0] in numeric_digits: temp_bool = False elif not temp_str_6[1] in numeric_digits: temp_bool = False elif temp_str_6[2] != ":": temp_bool = False elif not temp_str_6[3] in numeric_digits: temp_bool = False elif not temp_str_6[4] in numeric_digits: temp_bool = False if temp_bool: temp_num_8 = int(temp_str_6[0:2]) temp_num_9 = int(temp_str_6[3:5]) if temp_num_5 > temp_num_0: temp_bool = False elif temp_num_5 == temp_num_0: if temp_num_6 > temp_num_1: temp_bool = False elif temp_num_6 == temp_num_1: if temp_num_7 > temp_num_2: temp_bool = False elif temp_num_7 == temp_num_2: if temp_num_8 > temp_num_3: temp_bool = False elif temp_num_8 == temp_num_3: if temp_num_9 > temp_num_4: temp_bool = False else: temp_bool = False if temp_bool: if num_organization_valid(temp_str_2, temp_num_5, temp_num_6, temp_num_7, temp_num_8, temp_num_9): temp_str_3 = in_org_list[3].strip() if number_manipulation_valid(temp_str_3, temp_str_2): out_str = out_str+file_sep out_str = out_str+temp_str_2 out_str = out_str+file_sub_sep out_str = out_str+temp_str_5 out_str = out_str+file_sub_sep out_str = out_str+temp_str_6 out_str = out_str+file_sub_sep out_str = out_str+temp_str_3 else: temp_bool = False else: temp_bool = False else: temp_bool = False else: temp_bool = False else: temp_bool = False else: temp_bool = False if not temp_bool: out_str = None return out_str def reading_str_text_mem(in_str): # reading string text of organization # input: in_str, string # output: out_list = [out_num_list, # out_en_name_list, # out_vn_name_list, # out_date_list, # out_org_list] file_read_sep = ";"+"\u0009" file_sub_sep = ","+"\u0009" numeric_digits = ("0", "1", "2", "3", "4", "5", "6", "7", "8", "9") title_str = "member_info.iden" temp_bool = True out_list = [] if isinstance(in_str, str): temp_str_list_0 = in_str.split(file_read_sep) temp_len_0 = len(temp_str_list_0) if temp_len_0 == 6: temp_str_0 = temp_str_list_0[0].strip() if temp_str_0 == title_str: temp_str_list_1 = temp_str_list_0[1].split(file_sub_sep) if len(temp_str_list_1) == 2: temp_str_1 = temp_str_list_1[0].strip() temp_str_2 = temp_str_list_1[1].strip() if (len(temp_str_1) == 21) & (len(temp_str_2) == 14): out_list.append((temp_str_1, temp_str_2)) temp_str_list_1 = temp_str_list_0[2].split(file_sub_sep) if len(temp_str_list_1) == 3: temp_str_1 = temp_str_list_1[0].strip() temp_str_2 = temp_str_list_1[1].strip() temp_str_3 = temp_str_list_1[2].strip() temp_tuple_0 = (temp_str_1, temp_str_2, temp_str_3) if English_name_valid(temp_tuple_0): out_list.append(temp_tuple_0) temp_str_list_1 = temp_str_list_0[3].split(file_sub_sep) if len(temp_str_list_1) == 3: temp_str_1 = temp_str_list_1[0].strip() temp_str_2 = temp_str_list_1[1].strip() temp_str_3 = temp_str_list_1[2].strip() temp_tuple_0 = (temp_str_1, temp_str_2, temp_str_3) if virtual_name_valid(temp_tuple_0): out_list.append(temp_tuple_0) temp_str_list_1 = temp_str_list_0[4].split(file_sub_sep) if len(temp_str_list_1) == 2: temp_str_1 = temp_str_list_1[0].strip() if len(temp_str_1) == 10: if not temp_str_1[0] in numeric_digits: temp_bool = False elif not temp_str_1[1] in numeric_digits: temp_bool = False elif not temp_str_1[2] in numeric_digits: temp_bool = False elif not temp_str_1[3] in numeric_digits: temp_bool = False elif temp_str_1[4] != "-": temp_bool = False elif not temp_str_1[5] in numeric_digits: temp_bool = False elif not temp_str_1[6] in numeric_digits: temp_bool = False elif temp_str_1[7] != "-": temp_bool = False elif not temp_str_1[8] in numeric_digits: temp_bool = False elif not temp_str_1[9] in numeric_digits: temp_bool = False if temp_bool: temp_num_0 = int(temp_str_1[0:4]) temp_num_1 = int(temp_str_1[5:7]) temp_num_2 = int(temp_str_1[8:10]) else: temp_bool = False if temp_bool: temp_str_2 = temp_str_list_1[1].strip() if len(temp_str_2) == 5: if not temp_str_2[0] in numeric_digits: temp_bool = False elif not temp_str_2[1] in numeric_digits: temp_bool = False elif temp_str_2[2] != ":": temp_bool = False elif not temp_str_2[3] in numeric_digits: temp_bool = False elif not temp_str_2[4] in numeric_digits: temp_bool = False if temp_bool: temp_num_3 = int(temp_str_2[0:2]) temp_num_4 = int(temp_str_2[3:5]) else: temp_bool = False if temp_bool: if num_mix_valid(out_list[0][0], out_list[1][0], out_list[1][2], temp_num_0, temp_num_1, temp_num_2, temp_num_3, temp_num_4): out_list.append((temp_str_1, temp_str_2)) else: temp_bool = False if temp_bool: temp_str_list_1 = temp_str_list_0[5].split(file_sub_sep) if len(temp_str_list_1) == 4: temp_str_1 = temp_str_list_1[1].strip() if len(temp_str_1) == 10: if not temp_str_1[0] in numeric_digits: temp_bool = False elif not temp_str_1[1] in numeric_digits: temp_bool = False elif not temp_str_1[2] in numeric_digits: temp_bool = False elif not temp_str_1[3] in numeric_digits: temp_bool = False elif temp_str_1[4] != "-": temp_bool = False elif not temp_str_1[5] in numeric_digits: temp_bool = False elif not temp_str_1[6] in numeric_digits: temp_bool = False elif temp_str_1[7] != "-": temp_bool = False elif not temp_str_1[8] in numeric_digits: temp_bool = False elif not temp_str_1[9] in numeric_digits: temp_bool = False if temp_bool: temp_num_5 = int(temp_str_1[0:4]) temp_num_6 = int(temp_str_1[5:7]) temp_num_7 = int(temp_str_1[8:10]) else: temp_bool = False if temp_bool: temp_str_2 = temp_str_list_1[2].strip() if len(temp_str_2) == 5: if not temp_str_2[0] in numeric_digits: temp_bool = False elif not temp_str_2[1] in numeric_digits: temp_bool = False elif temp_str_2[2] != ":": temp_bool = False elif not temp_str_2[3] in numeric_digits: temp_bool = False elif not temp_str_2[4] in numeric_digits: temp_bool = False if temp_bool: temp_num_8 = int(temp_str_2[0:2]) temp_num_9 = int(temp_str_2[3:5]) if temp_num_5 > temp_num_0: temp_bool = False elif temp_num_5 == temp_num_0: if temp_num_6 > temp_num_1: temp_bool = False elif temp_num_6 == temp_num_1: if temp_num_7 > temp_num_2: temp_bool = False elif temp_num_7 == temp_num_2: if temp_num_8 > temp_num_3: temp_bool = False elif temp_num_8 == temp_num_3: if temp_num_9 > temp_num_4: temp_bool = False else: temp_bool = False if temp_bool: temp_str_3 = temp_str_list_1[0].strip() temp_str_4 = temp_str_list_1[3].strip() if number_manipulation_valid(temp_str_4, temp_str_3): if num_organization_valid(temp_str_3, temp_num_5, temp_num_6, temp_num_7, temp_num_8, temp_num_9): if num_member_valid(out_list[0][1], out_list[0][0], out_list[2][1], temp_str_3): out_list.append((temp_str_3, temp_str_1, temp_str_2, temp_str_4)) else: temp_bool = False else: temp_bool = False else: temp_bool = False else: temp_bool = False else: temp_bool = False else: temp_bool = False else: temp_bool = False else: temp_bool = False else: temp_bool = False else: temp_bool = False else: temp_bool = False else: temp_bool = False else: temp_bool = False else: temp_bool = False if not temp_bool: out_list = None return out_list def English_name_valid(in_list): English_name_capital = ("A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N", "O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z") English_name_other = (" ", "-", "'") out_bool = True temp_len_0 = len(in_list[0]) temp_len_1 = len(in_list[1]) temp_len_2 = len(in_list[2]) if temp_len_0 < 1: out_bool = (temp_len_1 < 1) & (temp_len_2 < 1) else: if temp_len_0 == 1: out_bool = in_list[0][0] in English_name_capital else: if in_list[0][0] in English_name_capital: for n in range(1, temp_len_0): temp_str_0 = in_list[0][n].upper() if ((not temp_str_0 in English_name_capital) & (not temp_str_0 in English_name_other)): out_bool = False break else: out_bool = False if out_bool: if temp_len_1 > 0: if temp_len_1 == 1: out_bool = in_list[1][0] in English_name_capital else: if in_list[1][0] in English_name_capital: for n in range(1, temp_len_1): temp_str_0 = in_list[1][n].upper() if ((not temp_str_0 in English_name_capital) & (not temp_str_0 in English_name_other)): out_bool = False break else: out_bool = False if out_bool: if temp_len_2 > 0: if temp_len_2 == 1: out_bool = in_list[2][0] in English_name_capital else: if in_list[2][0] in English_name_capital: for n in range(1, temp_len_2): temp_str_0 = in_list[2][n].upper() if ((not temp_str_0 in English_name_capital) & (not temp_str_0 in English_name_other)): out_bool = False break else: out_bool = False return out_bool def virtual_name_valid(in_list): out_bool = True temp_len_1 = len(in_list[1]) temp_len_2 = len(in_list[2]) if in_list[0].upper() in ("NONE", "NULL", "NA"): out_bool = (temp_len_1 < 1) & (temp_len_2 < 1) else: if temp_len_1 > 0: for n in range(temp_len_1): temp_str_0 = in_list[1][n] temp_num_0 = ord(temp_str_0) if (temp_num_0 >= 32) & (temp_num_0 < 65536): if temp_str_0 in ("'", '"'): out_bool = False break else: out_bool = False break if out_bool: for n in range(temp_len_2): temp_str_0 = in_list[2][n] temp_num_0 = ord(temp_str_0) if (temp_num_0 >= 32) & (temp_num_0 < 65536): if temp_str_0 in ("'", '"'): out_bool = False break else: out_bool = False break else: out_bool = False return out_bool
53.656685
162
0.39414
6a1c87730c97358337e72b4d48ee0060dc4cf823
1,557
py
Python
src/modules/podcast.py
StaticallyTypedRice/PodcastDownloader
b2d5bc2a5b22ba5b2dc537fdafc588aedd67bcb5
[ "MIT" ]
2
2019-08-07T09:23:26.000Z
2020-02-29T05:06:58.000Z
src/modules/podcast.py
StaticallyTypedRice/PodcastDownloader
b2d5bc2a5b22ba5b2dc537fdafc588aedd67bcb5
[ "MIT" ]
null
null
null
src/modules/podcast.py
StaticallyTypedRice/PodcastDownloader
b2d5bc2a5b22ba5b2dc537fdafc588aedd67bcb5
[ "MIT" ]
1
2019-03-26T10:00:49.000Z
2019-03-26T10:00:49.000Z
from xml.etree.ElementTree import Element from modules.xml import get_unique_xml_element class Episode(object): '''The podcast episode object.''' def __init__(self, item: Element): '''Create an Episode object from an RSS item. An example RSS file: <rss xmlns:itunes="http://www.itunes.com/dtds/podcast-1.0.dtd" version="2.0"> <channel> <!-- RSS metadata --> <item> <guid>1234</guid> <title>Episode Title</title> <description>Episode Description</description> <pubDate>Date Published</pubDate> <enclosure url="https://example.com/episode.mp3" type="audio/mpeg" /> </item> <!-- ... --> </channel> </rss> Arguments: element: The <item> element for the episode. ''' # Parse the RSS item self.guid = get_unique_xml_element(item, 'guid').text self.title = get_unique_xml_element(item, 'title').text self.date = get_unique_xml_element(item, 'pubDate').text self.url = get_unique_xml_element(item, 'enclosure').get('url') # The file name is the final item in the URL path self.file_name = self.url.split('/')[-1] # The file extension is the final item in the file name self.file_extension = self.file_name.split('.')[-1]
34.6
94
0.524727
f541fd930354f3199934f23879f56e14f1542103
36,466
py
Python
pirates/leveleditor/worldData/interior_shanty_blacksmith.py
Willy5s/Pirates-Online-Rewritten
7434cf98d9b7c837d57c181e5dabd02ddf98acb7
[ "BSD-3-Clause" ]
81
2018-04-08T18:14:24.000Z
2022-01-11T07:22:15.000Z
pirates/leveleditor/worldData/interior_shanty_blacksmith.py
Willy5s/Pirates-Online-Rewritten
7434cf98d9b7c837d57c181e5dabd02ddf98acb7
[ "BSD-3-Clause" ]
4
2018-09-13T20:41:22.000Z
2022-01-08T06:57:00.000Z
pirates/leveleditor/worldData/interior_shanty_blacksmith.py
Willy5s/Pirates-Online-Rewritten
7434cf98d9b7c837d57c181e5dabd02ddf98acb7
[ "BSD-3-Clause" ]
26
2018-05-26T12:49:27.000Z
2021-09-11T09:11:59.000Z
from pandac.PandaModules import Point3, VBase3, Vec4, Vec3 objectStruct = {'Objects': {'1156270917.73dzlu0': {'Type': 'Building Interior','Name': '','Instanced': True,'Objects': {'1165366099.89kmuller': {'Type': 'Barrel','DisableCollision': True,'Hpr': VBase3(15.46, 0.0, 0.0),'Pos': Point3(17.533, -10.644, 0.0),'Scale': VBase3(0.771, 0.771, 0.771),'Visual': {'Color': (0.7900000214576721, 0.6499999761581421, 0.5299999713897705, 1.0),'Model': 'models/props/barrel_grey'}},'1165366349.25kmuller': {'Type': 'Ship_Props','DisableCollision': False,'Hpr': VBase3(49.657, 19.679, -6.937),'Pos': Point3(16.491, -27.1, 0.0),'Scale': VBase3(0.376, 0.376, 0.376),'Visual': {'Model': 'models/props/anchor'}},'1165366420.5kmuller': {'Type': 'Rope','DisableCollision': True,'Hpr': VBase3(-0.822, -0.157, 0.27),'Pos': Point3(16.474, -23.769, 0.0),'Scale': VBase3(1.0, 1.0, 1.0),'Visual': {'Model': 'models/props/rope_pile'}},'1165366677.64kmuller': {'Type': 'Prop_Groups','DisableCollision': True,'Hpr': VBase3(-145.679, 0.0, 0.0),'Pos': Point3(13.11, -26.619, 0.0),'Scale': VBase3(1.0, 1.0, 1.0),'Visual': {'Model': 'models/props/prop_group04'}},'1165367285.42kmuller': {'Type': 'Furniture','DisableCollision': False,'Hpr': VBase3(123.31, 0.0, 0.0),'Pos': Point3(0.224, 16.59, 0.0),'Scale': VBase3(1.0, 1.0, 1.0),'Visual': {'Model': 'models/props/stool_shanty'}},'1166037975.06kmuller': {'Type': 'Prop_Groups','DisableCollision': False,'Hpr': VBase3(-69.155, 0.0, 0.0),'Pos': Point3(17.521, -6.903, 0.0),'Scale': VBase3(0.41, 0.41, 0.41),'Visual': {'Model': 'models/props/prop_group_C'}},'1167169073.65kmuller': {'Type': 'Furniture','DisableCollision': True,'Hpr': VBase3(92.404, 0.0, 0.0),'Pos': Point3(-18.691, -5.048, 0.0),'Scale': VBase3(1.0, 1.0, 1.0),'Visual': {'Color': (0.800000011920929, 0.9300000071525574, 0.8399999737739563, 1.0),'Model': 'models/props/cabinet_shanty'}},'1167169123.12kmuller': {'Type': 'Furniture','DisableCollision': True,'Hpr': VBase3(0.564, 0.0, 0.0),'Objects': {'1182199471.12kmuller': {'Type': 'Interior_furnishings','DisableCollision': False,'Hpr': VBase3(77.048, -74.135, 84.546),'Pos': Point3(1.393, 0.329, 4.358),'Scale': VBase3(1.0, 1.0, 1.0),'Visual': {'Model': 'models/props/shop_bsmith_dagger'}}},'Pos': Point3(-3.118, 28.546, 0.0),'Scale': VBase3(1.0, 1.0, 1.0),'Visual': {'Color': (0.5199999809265137, 0.5199999809265137, 0.5299999713897705, 1.0),'Model': 'models/props/cabinet_shanty_low'}},'1167969107.08kmuller': {'Type': 'Light_Fixtures','DisableCollision': False,'Hpr': VBase3(0.0, 0.0, 0.0),'Pos': Point3(-1.459, -0.384, 21.454),'Scale': VBase3(1.0, 1.0, 1.0),'Visual': {'Model': 'models/props/chandelier_jail'}},'1167969169.5kmuller': {'Type': 'Light_Fixtures','DisableCollision': False,'Hpr': VBase3(88.006, 0.0, 0.0),'Pos': Point3(-19.73, 24.267, 10.652),'Scale': VBase3(1.0, 1.0, 1.0),'Visual': {'Model': 'models/props/lamp_candle'}},'1167969206.95kmuller': {'Type': 'Light_Fixtures','DisableCollision': False,'Hpr': VBase3(93.881, 0.0, 0.0),'Pos': Point3(-17.684, -0.376, 10.545),'Scale': VBase3(1.0, 1.0, 1.0),'Visual': {'Model': 'models/props/lamp_candle'}},'1167969245.06kmuller': {'Type': 'Light_Fixtures','DisableCollision': False,'Hpr': VBase3(-88.997, 0.0, 0.0),'Pos': Point3(17.922, -0.478, 10.568),'Scale': VBase3(1.0, 1.0, 1.0),'Visual': {'Model': 'models/props/lamp_candle'}},'1167969443.92kmuller': {'Type': 'Furniture','DisableCollision': False,'Hpr': VBase3(-176.841, 0.0, 0.0),'Objects': {'1181086102.85kmuller': {'Type': 'Interior_furnishings','DisableCollision': False,'Hpr': VBase3(70.216, -0.191, 0.0),'Pos': Point3(0.342, 2.697, 3.031),'Scale': VBase3(1.0, 1.0, 1.0),'Visual': {'Model': 'models/props/shop_bsmith_dagger'}}},'Pos': Point3(-3.068, 15.649, 0.0),'Scale': VBase3(1.0, 1.0, 1.0),'Visual': {'Color': (0.5799999833106995, 0.47999998927116394, 0.4000000059604645, 1.0),'Model': 'models/props/table_shanty_2'}},'1167969485.88kmuller': {'Type': 'Furniture','DisableCollision': False,'Hpr': VBase3(-85.857, 0.0, 0.0),'Pos': Point3(18.367, -16.557, 0.0),'Scale': VBase3(1.0, 1.0, 1.0),'Visual': {'Color': (0.800000011920929, 0.7900000214576721, 0.8299999833106995, 1.0),'Model': 'models/props/bench_shanty_1'}},'1172092924.3kmuller': {'Type': 'Interior_furnishings','DisableCollision': False,'Hpr': VBase3(22.373, 0.0, 0.0),'Pos': Point3(-8.829, 28.293, 0.0),'Scale': VBase3(1.0, 1.0, 1.0),'Visual': {'Model': 'models/props/shop_bsmith_anvilA'}},'1172092937.32kmuller': {'Type': 'Interior_furnishings','DisableCollision': False,'Hpr': Point3(0.0, 0.0, 0.0),'Pos': Point3(-10.481, 17.021, 0.0),'Scale': VBase3(1.0, 1.0, 1.0),'Visual': {'Model': 'models/props/shop_bsmith_anvil_block'}},'1172092948.96kmuller': {'Type': 'Interior_furnishings','DisableCollision': False,'Hpr': VBase3(89.558, 0.0, 0.0),'Pos': Point3(-10.478, 21.542, 0.0),'Scale': VBase3(1.0, 1.0, 1.0),'Visual': {'Model': 'models/props/shop_bsmith_anvilblock'}},'1172093074.6kmuller': {'Type': 'Interior_furnishings','DisableCollision': False,'Hpr': VBase3(-17.346, 0.01, -0.033),'Pos': Point3(-15.958, 11.585, 2.999),'Scale': VBase3(1.0, 1.0, 1.0),'Visual': {'Model': 'models/props/shop_bsmith_bellows'}},'1172093082.58kmuller': {'Type': 'Interior_furnishings','DisableCollision': False,'Hpr': VBase3(0.0, 0.0, 0.0),'Pos': Point3(-1.388, 17.812, 2.968),'Scale': VBase3(1.0, 1.0, 1.0),'Visual': {'Model': 'models/props/shop_bsmith_bottleA'}},'1172093091.96kmuller': {'Type': 'Interior_furnishings','DisableCollision': False,'Hpr': VBase3(0.0, 0.0, 0.0),'Pos': Point3(-3.887, 18.135, 2.954),'Scale': VBase3(1.0, 1.0, 1.0),'Visual': {'Model': 'models/props/shop_bsmith_bottleB'}},'1172093101.55kmuller': {'Type': 'Interior_furnishings','DisableCollision': True,'Hpr': VBase3(90.019, 0.0, 0.0),'Pos': Point3(-18.311, 9.001, 0.0),'Scale': VBase3(1.0, 1.0, 1.0),'Visual': {'Model': 'models/props/shop_bsmith_furness'}},'1172093111.05kmuller': {'Type': 'Interior_furnishings','DisableCollision': False,'Hpr': VBase3(-180.0, 85.454, 71.678),'Pos': Point3(-9.941, 16.81, 1.693),'Scale': VBase3(1.0, 1.0, 1.0),'Visual': {'Model': 'models/props/shop_bsmith_hammerA'}},'1172093118.39kmuller': {'Type': 'Interior_furnishings','DisableCollision': False,'Hpr': VBase3(0.0, 85.464, 0.0),'Pos': Point3(-1.206, 16.48, 3.043),'Scale': VBase3(1.0, 1.0, 1.0),'Visual': {'Model': 'models/props/shop_bsmith_hammerB'}},'1172093125.44kmuller': {'Type': 'Interior_furnishings','DisableCollision': False,'Hpr': VBase3(118.162, 0.0, 0.0),'Pos': Point3(-15.628, 20.507, 3.008),'Scale': VBase3(1.0, 1.0, 1.0),'Visual': {'Model': 'models/props/shop_bsmith_hot_iron'}},'1172093414.38kmuller': {'Type': 'Interior_furnishings','DisableCollision': True,'Hpr': VBase3(90.019, 0.0, 0.0),'Pos': Point3(-18.358, 21.57, 0.0),'Scale': VBase3(1.0, 1.0, 1.0),'Visual': {'Model': 'models/props/shop_bsmith_furness'}},'1172093706.66kmuller': {'Type': 'Interior_furnishings','DisableCollision': False,'Hpr': VBase3(89.558, 0.0, 0.0),'Pos': Point3(-10.686, 8.661, 0.0),'Scale': VBase3(1.0, 1.0, 1.0),'Visual': {'Model': 'models/props/shop_bsmith_anvilblock'}},'1172093886.97kmuller': {'Type': 'Furniture','DisableCollision': True,'Hpr': VBase3(90.207, 0.0, 0.0),'Objects': {'1182194607.77kmuller': {'Type': 'Interior_furnishings','DisableCollision': True,'Holiday': '','Hpr': VBase3(-90.207, 0.0, 0.0),'Pos': Point3(-0.156, -0.351, 2.971),'Scale': VBase3(1.0, 1.0, 1.0),'VisSize': '','Visual': {'Model': 'models/props/shop_weapons_rack_floor'}},'1182194637.62kmuller': {'Type': 'Interior_furnishings','DisableCollision': False,'Hpr': VBase3(4.495, -20.427, -85.074),'Pos': Point3(-0.727, -0.797, 3.441),'Scale': VBase3(1.0, 1.0, 1.0),'Visual': {'Model': 'models/props/shop_bsmith_cutlass'}},'1182194680.35kmuller': {'Type': 'Interior_furnishings','DisableCollision': False,'Hpr': VBase3(-0.563, -22.564, 88.533),'Pos': Point3(0.339, -0.818, 3.493),'Scale': VBase3(1.0, 1.0, 1.0),'Visual': {'Model': 'models/props/shop_bsmith_cutlass_shiny'}}},'Pos': Point3(-18.652, 3.899, 0.0),'Scale': VBase3(1.0, 1.0, 1.0),'Visual': {'Color': (0.5, 0.5, 0.5, 1.0),'Model': 'models/props/table_shanty'}},'1172093925.14kmuller': {'Type': 'Log_Stack','DisableCollision': True,'Hpr': Point3(0.0, 0.0, 0.0),'Pos': Point3(-18.618, 13.314, 0.0),'Scale': VBase3(0.725, 0.725, 0.725),'Visual': {'Model': 'models/props/Log_stack_a'}},'1172093932.94kmuller': {'Type': 'Log_Stack','DisableCollision': True,'Hpr': Point3(0.0, 0.0, 0.0),'Pos': Point3(-18.393, 27.83, 0.0),'Scale': VBase3(0.676, 0.676, 0.676),'Visual': {'Model': 'models/props/Log_stack_b'}},'1172093972.0kmuller': {'Type': 'Log_Stack','DisableCollision': True,'Hpr': VBase3(91.886, 0.0, 0.0),'Pos': Point3(-19.247, 16.273, 0.0),'Scale': VBase3(0.675, 0.675, 0.675),'Visual': {'Model': 'models/props/Log_stack_c'}},'1172094047.5kmuller': {'Type': 'Bucket','DisableCollision': False,'Hpr': Point3(0.0, 0.0, 0.0),'Pos': Point3(-11.19, 19.666, 0.0),'Scale': VBase3(0.469, 0.469, 0.469),'Visual': {'Model': 'models/props/bucket_handles'}},'1172094087.71kmuller': {'Type': 'Bucket','DisableCollision': False,'Hpr': Point3(0.0, 0.0, 0.0),'Pos': Point3(-10.664, 11.007, 0.0),'Scale': VBase3(0.649, 0.649, 0.649),'Visual': {'Model': 'models/props/bucket'}},'1172094367.3kmuller': {'Type': 'Interior_furnishings','DisableCollision': False,'Hpr': VBase3(0.001, 85.392, -0.001),'Pos': Point3(-2.658, 29.77, 2.838),'Scale': VBase3(1.0, 1.0, 1.0),'Visual': {'Model': 'models/props/shop_bsmith_hammerB'}},'1172094393.74kmuller': {'Type': 'Interior_furnishings','DisableCollision': False,'Hpr': VBase3(-44.397, 84.882, -47.166),'Pos': Point3(-3.802, 28.283, 2.832),'Scale': VBase3(1.0, 1.0, 1.0),'Visual': {'Model': 'models/props/shop_bsmith_hammerB'}},'1172094628.5kmuller': {'Type': 'Bucket','DisableCollision': True,'Hpr': Point3(0.0, 0.0, 0.0),'Pos': Point3(-18.131, -8.295, 0.0),'Scale': VBase3(0.692, 0.692, 0.692),'Visual': {'Model': 'models/props/bucket'}},'1172094869.38kmuller': {'Type': 'Interior_furnishings','DisableCollision': False,'Hpr': VBase3(0.0, -84.545, 0.0),'Pos': Point3(-18.806, 4.238, 2.695),'Scale': VBase3(1.0, 1.0, 1.0),'Visual': {'Model': 'models/props/shop_bsmith_hammerA'}},'1172094923.41kmuller': {'Type': 'Log_Stack','DisableCollision': True,'Hpr': Point3(0.0, 0.0, 0.0),'Pos': Point3(16.183, 13.736, 0.0),'Scale': VBase3(0.665, 0.665, 0.665),'Visual': {'Model': 'models/props/Log_stack_b'}},'1172099606.28kmuller': {'Type': 'Interior_furnishings','DisableCollision': False,'Hpr': VBase3(-89.587, 0.0, 0.0),'Pos': Point3(18.43, 21.626, 0.0),'Scale': VBase3(1.0, 1.0, 1.0),'Visual': {'Model': 'models/props/shop_bsmith_furness'}},'1172099644.25kmuller': {'Type': 'Interior_furnishings','DisableCollision': False,'Hpr': VBase3(-90.386, 0.0, 0.0),'Pos': Point3(9.881, 22.605, 0.0),'Scale': VBase3(1.0, 1.0, 1.0),'Visual': {'Model': 'models/props/shop_bsmith_anvilblock'}},'1172099662.3kmuller': {'Type': 'Furniture','DisableCollision': False,'Hpr': VBase3(-179.431, 0.0, 0.0),'Pos': Point3(14.635, 16.23, 0.0),'Scale': VBase3(1.0, 1.0, 1.0),'Visual': {'Color': (0.5, 0.5, 0.5, 1.0),'Model': 'models/props/table_shanty'}},'1172099688.41kmuller': {'Type': 'Interior_furnishings','DisableCollision': False,'Hpr': VBase3(0.001, 87.923, -0.001),'Pos': Point3(15.845, 16.855, 3.061),'Scale': VBase3(1.0, 1.0, 1.0),'Visual': {'Model': 'models/props/shop_bsmith_hammerB'}},'1172099743.93kmuller': {'Type': 'Interior_furnishings','DisableCollision': False,'Hpr': VBase3(66.696, 0.0, 0.276),'Pos': Point3(13.692, 16.37, 2.962),'Scale': VBase3(1.0, 1.0, 1.0),'Visual': {'Model': 'models/props/shop_bsmith_bellows'}},'1172099774.32kmuller': {'Type': 'Interior_furnishings','DisableCollision': False,'Hpr': VBase3(-0.857, 0.0, 0.0),'Pos': Point3(14.971, 20.513, 2.962),'Scale': VBase3(1.0, 1.0, 1.0),'Visual': {'Model': 'models/props/shop_bsmith_hot_iron'}},'1172099802.57kmuller': {'Type': 'Interior_furnishings','DisableCollision': False,'Hpr': VBase3(-0.857, 0.0, 0.0),'Pos': Point3(18.155, 20.676, 0.0),'Scale': VBase3(1.0, 1.0, 1.0),'Visual': {'Model': 'models/props/shop_bsmith_hot_iron'}},'1172099819.82kmuller': {'Type': 'Interior_furnishings','DisableCollision': False,'Hpr': VBase3(-29.03, 0.0, 0.0),'Pos': Point3(15.571, 21.99, 3.0),'Scale': VBase3(1.0, 1.0, 1.0),'Visual': {'Model': 'models/props/shop_bsmith_hot_iron'}},'1172099903.39kmuller': {'Type': 'Log_Stack','DisableCollision': True,'Hpr': Point3(0.0, 0.0, 0.0),'Pos': Point3(16.828, 10.25, 0.0),'Scale': VBase3(0.636, 0.636, 0.636),'Visual': {'Model': 'models/props/Log_stack_c'}},'1172099942.32kmuller': {'Type': 'Bucket','DisableCollision': False,'Hpr': Point3(0.0, 0.0, 0.0),'Pos': Point3(9.746, 20.053, 0.0),'Scale': VBase3(0.65, 0.65, 0.65),'Visual': {'Model': 'models/props/bucket_handles'}},'1172099984.19kmuller': {'Type': 'Cart','DisableCollision': False,'Hpr': Point3(0.0, 0.0, 0.0),'Pos': Point3(-12.85, -25.109, 0.0),'Scale': VBase3(1.0, 1.0, 1.0),'Visual': {'Model': 'models/props/cart_broken'}},'1174586399.6dzlu': {'Type': 'Light - Dynamic','Attenuation': '0.005','ConeAngle': '60.0000','DropOff': '0.0000','FlickRate': 0.5,'Flickering': True,'Hpr': VBase3(24.357, -13.874, -1.589),'Intensity': '0.3485','LightType': 'DIRECTIONAL','Pos': Point3(-3.537, -21.055, 10.179),'Scale': VBase3(1.0, 1.0, 1.0),'Visual': {'Model': 'models/props/light_tool_bulb'}},'1174586686.81dzlu': {'Type': 'Light - Dynamic','Attenuation': '0.005','ConeAngle': '60.0000','DropOff': '0.0000','FlickRate': 0.5,'Flickering': True,'Hpr': VBase3(-15.155, -13.271, 12.04),'Intensity': '0.8030','LightType': 'DIRECTIONAL','Pos': Point3(0.046, -31.432, 10.042),'Scale': VBase3(1.0, 1.0, 1.0),'Visual': {'Color': (0.75, 0.8, 0.85, 1.0),'Model': 'models/props/light_tool_bulb'}},'1174587910.91dzlu': {'Type': 'Light - Dynamic','Attenuation': '0.005','ConeAngle': '60.0000','DropOff': '0.0000','FlickRate': 0.5,'Flickering': True,'Hpr': Point3(0.0, 0.0, 0.0),'Intensity': '0.0152','LightType': 'AMBIENT','Pos': Point3(-16.533, 15.855, 4.339),'Scale': VBase3(1.0, 1.0, 1.0),'Visual': {'Color': (1, 1, 1, 1),'Model': 'models/props/light_tool_bulb'}},'1174588046.46dzlu': {'Type': 'Light - Dynamic','Attenuation': '0.005','ConeAngle': '60.0000','DropOff': '0.0000','FlickRate': 0.5,'Flickering': True,'Hpr': Point3(0.0, 0.0, 0.0),'Intensity': '0.1212','LightType': 'AMBIENT','Pos': Point3(15.065, 29.083, 0.0),'Scale': VBase3(1.0, 1.0, 1.0),'Visual': {'Color': (1, 1, 1, 1),'Model': 'models/props/light_tool_bulb'}},'1181085740.6kmuller': {'Type': 'Interior_furnishings','DisableCollision': False,'Hpr': VBase3(-178.775, 0.0, 0.0),'Pos': Point3(20.107, 3.818, 5.33),'Scale': VBase3(1.0, 1.0, 1.0),'Visual': {'Model': 'models/props/shop_bsmith_rack'}},'1181085794.23kmuller': {'Type': 'Interior_furnishings','DisableCollision': False,'Hpr': Point3(0.0, 0.0, 0.0),'Pos': Point3(19.293, 3.692, 5.33),'Scale': VBase3(1.0, 1.0, 1.0),'Visual': {'Model': 'models/props/shop_bsmith_rack_swords'}},'1181085900.65kmuller': {'Type': 'Interior_furnishings','DisableCollision': False,'Hpr': VBase3(-89.34, 0.0, 0.0),'Pos': Point3(6.475, 29.909, 2.839),'Scale': VBase3(1.0, 1.0, 1.0),'Visual': {'Model': 'models/props/shop_bsmith_rack'}},'1181085958.56kmuller': {'Type': 'Interior_furnishings','DisableCollision': False,'Hpr': VBase3(90.139, 0.0, 0.0),'Pos': Point3(6.499, 29.01, 2.857),'Scale': VBase3(1.0, 1.0, 1.0),'Visual': {'Model': 'models/props/shop_bsmith_rack_swords'}},'1181244293.15kmuller': {'Type': 'Interior_furnishings','DisableCollision': False,'Hpr': VBase3(4.239, 0.0, 0.0),'Pos': Point3(-18.248, -4.809, 5.528),'Scale': VBase3(1.0, 1.0, 1.0),'Visual': {'Model': 'models/props/shop_weapons_rack_table'}},'1181244326.59kmuller': {'Type': 'Interior_furnishings','DisableCollision': False,'Hpr': VBase3(91.179, -0.423, -5.939),'Pos': Point3(-18.278, -3.707, 6.239),'Scale': VBase3(1.0, 1.0, 1.0),'Visual': {'Model': 'models/props/shop_bsmith_cutlass_shiny'}},'1181244451.43kmuller': {'Type': 'Interior_furnishings','DisableCollision': False,'Hpr': VBase3(6.213, -89.507, -148.667),'Pos': Point3(-14.885, 7.222, 3.023),'Scale': VBase3(1.0, 1.0, 1.0),'Visual': {'Model': 'models/props/shop_bsmith_cutlass'}},'1181244506.53kmuller': {'Type': 'Interior_furnishings','DisableCollision': False,'Hpr': VBase3(0.0, 0.0, 0.0),'Pos': Point3(-18.582, -4.879, 2.63),'Scale': VBase3(1.0, 1.0, 1.0),'Visual': {'Model': 'models/props/shop_weapons_rack_table'}},'1181244530.99kmuller': {'Type': 'Interior_furnishings','DisableCollision': False,'Hpr': VBase3(0.887, 3.703, 76.525),'Pos': Point3(-18.563, -5.708, 3.207),'Scale': VBase3(1.0, 1.0, 1.0),'Visual': {'Model': 'models/props/shop_bsmith_dagger'}},'1182541232.89kmuller': {'Type': 'Interior_furnishings','DisableCollision': False,'Hpr': Point3(0.0, 0.0, 0.0),'Pos': Point3(-4.82, 10.307, 0.0),'Scale': VBase3(0.952, 0.952, 0.952),'Visual': {'Color': (0.7200000286102295, 0.699999988079071, 0.5899999737739563, 1.0),'Model': 'models/props/shop_bsmith_bucket_swords'}},'1182541244.14kmuller': {'Type': 'Bucket','DisableCollision': False,'Hpr': Point3(0.0, 0.0, 0.0),'Pos': Point3(-4.82, 10.307, 0.0),'Scale': VBase3(0.952, 0.952, 0.952),'Visual': {'Model': 'models/props/bucket'}},'1182541292.93kmuller': {'Type': 'Bucket','DisableCollision': True,'Hpr': Point3(0.0, 0.0, 0.0),'Pos': Point3(0.987, 27.995, 0.0),'Scale': VBase3(1.0, 1.0, 1.0),'Visual': {'Model': 'models/props/bucket'}},'1182541299.93kmuller': {'Type': 'Interior_furnishings','DisableCollision': False,'Hpr': Point3(0.0, 0.0, 0.0),'Pos': Point3(0.987, 27.995, 0.0),'Scale': VBase3(1.0, 1.0, 1.0),'Visual': {'Color': (0.6700000166893005, 0.7900000214576721, 0.7799999713897705, 1.0),'Model': 'models/props/shop_bsmith_bucket_swords'}},'1182541350.71kmuller': {'Type': 'Interior_furnishings','DisableCollision': False,'Hpr': Point3(0.0, 0.0, 0.0),'Pos': Point3(18.602, 1.481, 0.47),'Scale': VBase3(1.0, 1.0, 1.0),'Visual': {'Model': 'models/props/shop_bsmith_bucket_swords'}},'1182541360.48kmuller': {'Type': 'Bucket','DisableCollision': False,'Hpr': Point3(0.0, 0.0, 0.0),'Pos': Point3(18.513, 1.591, 0.006),'Scale': VBase3(1.0, 1.0, 1.0),'Visual': {'Model': 'models/props/bucket_handles'}},'1182541446.51kmuller': {'Type': 'Crate','DisableCollision': True,'Hpr': Point3(0.0, 0.0, 0.0),'Pos': Point3(16.274, 26.509, 0.034),'Scale': VBase3(1.0, 1.0, 1.0),'Visual': {'Color': (0.699999988079071, 0.699999988079071, 0.699999988079071, 1.0),'Model': 'models/props/crates_group_2'}},'1182541482.45kmuller': {'Type': 'Barrel','DisableCollision': True,'Hpr': Point3(0.0, 0.0, 0.0),'Pos': Point3(12.459, 27.249, 0.0),'Scale': VBase3(0.624, 0.624, 0.624),'Visual': {'Color': (0.47999998927116394, 0.44999998807907104, 0.4099999964237213, 1.0),'Model': 'models/props/barrel_grey'}},'1182541532.56kmuller': {'Type': 'Log_Stack','DisableCollision': True,'Holiday': '','Hpr': VBase3(55.794, 0.0, 0.0),'Pos': Point3(-16.8, 26.399, 3.027),'Scale': VBase3(0.362, 0.362, 0.362),'VisSize': '','Visual': {'Model': 'models/vegetation/gen_log_group02'}},'1185394665.68kmuller': {'Type': 'Collision Barrier','DisableCollision': False,'Hpr': Point3(0.0, 0.0, 0.0),'Pos': Point3(-2.038, 29.503, -0.677),'Scale': VBase3(1.584, 1.0, 1.0),'Visual': {'Model': 'models/misc/pir_m_prp_lev_cambarrier_cube'}},'1185405709.2kmuller': {'Type': 'Collision Barrier','DisableCollision': False,'Holiday': '','Hpr': Point3(0.0, 0.0, 0.0),'Pos': Point3(-17.885, 19.485, -1.238),'Scale': VBase3(1.09, 5.167, 2.052),'VisSize': '','Visual': {'Model': 'models/misc/pir_m_prp_lev_cambarrier_cube'}},'1185405823.76kmuller': {'Type': 'Collision Barrier','DisableCollision': False,'Holiday': '','Hpr': Point3(0.0, 0.0, 0.0),'Pos': Point3(-19.664, -0.289, -0.821),'Scale': VBase3(1.0, 3.509, 1.961),'VisSize': '','Visual': {'Model': 'models/misc/pir_m_prp_lev_cambarrier_cube'}},'1185405924.59kmuller': {'Type': 'Collision Barrier','DisableCollision': False,'Hpr': VBase3(107.4, 0.0, 0.0),'Pos': Point3(-5.7, -27.557, -0.863),'Scale': VBase3(0.532, 1.0, 2.022),'Visual': {'Model': 'models/misc/pir_m_prp_lev_cambarrier_plane'}},'1185406084.68kmuller': {'Type': 'Collision Barrier','DisableCollision': False,'Hpr': VBase3(-142.795, 0.0, 0.0),'Pos': Point3(13.518, -24.542, 0.044),'Scale': VBase3(0.789, 1.0, 1.0),'Visual': {'Model': 'models/misc/pir_m_prp_lev_cambarrier_plane'}},'1185406112.04kmuller': {'Type': 'Collision Barrier','DisableCollision': False,'Hpr': VBase3(-170.347, 0.0, 0.0),'Pos': Point3(18.385, -21.939, 0.0),'Scale': VBase3(0.382, 1.0, 1.0),'Visual': {'Model': 'models/misc/pir_m_prp_lev_cambarrier_plane'}},'1185406130.26kmuller': {'Type': 'Collision Barrier','DisableCollision': False,'Hpr': VBase3(-107.472, 0.0, 0.0),'Pos': Point3(9.777, -29.089, 0.0),'Scale': VBase3(0.481, 1.0, 1.0),'Visual': {'Model': 'models/misc/pir_m_prp_lev_cambarrier_plane'}},'1185406166.98kmuller': {'Type': 'Collision Barrier','DisableCollision': False,'Hpr': Point3(0.0, 0.0, 0.0),'Pos': Point3(17.932, 10.497, -0.018),'Scale': VBase3(1.0, 1.405, 1.0),'Visual': {'Model': 'models/misc/pir_m_prp_lev_cambarrier_cube'}},'1185406212.2kmuller': {'Type': 'Collision Barrier','DisableCollision': False,'Hpr': VBase3(-42.767, 0.0, 0.0),'Pos': Point3(11.73, 25.936, 0.0),'Scale': VBase3(1.219, 1.0, 1.0),'Visual': {'Model': 'models/misc/pir_m_prp_lev_cambarrier_plane'}},'1185406269.93kmuller': {'Type': 'Crate','DisableCollision': True,'Hpr': VBase3(28.588, 0.0, 0.0),'Pos': Point3(10.849, 28.465, -0.019),'Scale': VBase3(0.598, 0.306, 1.009),'Visual': {'Color': (0.47999998927116394, 0.44999998807907104, 0.4099999964237213, 1.0),'Model': 'models/props/crate'}},'1185406447.25kmuller': {'Type': 'Collision Barrier','DisableCollision': False,'Hpr': Point3(0.0, 0.0, 0.0),'Pos': Point3(17.916, -9.813, -0.156),'Scale': VBase3(1.0, 1.0, 1.082),'Visual': {'Model': 'models/misc/pir_m_prp_lev_cambarrier_cube'}},'1230932523.02akelts': {'Type': 'Door Locator Node','Name': 'door_locator','Hpr': VBase3(0.0, 0.0, 0.0),'Pos': Point3(0.047, -29.861, 0.067),'Scale': VBase3(1.0, 1.0, 1.0)},'1257810355.28caoconno': {'Type': 'Holiday','DisableCollision': False,'Holiday': 'WinterFestival','Hpr': VBase3(-111.841, -8.474, 18.09),'Pos': Point3(-4.707, 9.271, 2.31),'Scale': VBase3(1.316, 1.316, 1.316),'VisSize': '','Visual': {'Model': 'models/props/pir_m_prp_hol_candycane_winter09'}},'1257810375.58caoconno': {'Type': 'Holiday','DisableCollision': False,'Holiday': 'WinterFestival','Hpr': VBase3(0.0, 0.0, 13.598),'Pos': Point3(-3.868, 10.024, 2.249),'Scale': VBase3(1.0, 1.0, 1.0),'VisSize': '','Visual': {'Model': 'models/props/pir_m_prp_hol_candycane_winter09'}},'1257810525.24caoconno': {'Type': 'Holiday','DisableCollision': False,'Holiday': 'WinterFestival','Hpr': VBase3(66.286, -0.84, -0.868),'Pos': Point3(-17.565, 8.613, 10.638),'Scale': VBase3(1.381, 1.381, 1.381),'VisSize': '','Visual': {'Model': 'models/props/pir_m_prp_hol_decoStocking02_winter09'}},'1257810608.12caoconno': {'Type': 'Holiday','DisableCollision': False,'Holiday': 'WinterFestival','Hpr': VBase3(-67.777, 1.208, -0.0),'Pos': Point3(-17.634, 21.981, 10.744),'Scale': VBase3(1.381, 1.381, 1.381),'VisSize': '','Visual': {'Model': 'models/props/pir_m_prp_hol_decoStocking02_winter09'}},'1257810667.57caoconno': {'Type': 'Holiday','DisableCollision': False,'Holiday': 'WinterFestival','Hpr': VBase3(119.636, 4.093, -0.0),'Pos': Point3(17.654, 21.347, 9.829),'Scale': VBase3(1.0, 1.0, 1.0),'VisSize': '','Visual': {'Model': 'models/props/pir_m_prp_hol_decoStocking02_winter09'}},'1257810772.8caoconno': {'Type': 'Holiday','DisableCollision': False,'Holiday': 'WinterFestival','Hpr': VBase3(-3.019, 0.768, 36.924),'Pos': Point3(-8.853, -29.932, 9.962),'Scale': VBase3(2.397, 2.397, 2.397),'VisSize': '','Visual': {'Model': 'models/props/pir_m_prp_hol_candycane_winter09'}},'1257810792.67caoconno': {'Type': 'Holiday','DisableCollision': False,'Holiday': 'WinterFestival','Hpr': VBase3(-0.272, -0.0, 0.0),'Pos': Point3(0.009, 29.795, 8.278),'Scale': VBase3(1.562, 1.562, 1.562),'VisSize': '','Visual': {'Model': 'models/props/pir_m_prp_hol_decoBow_winter08'}},'1257810815.17caoconno': {'Type': 'Holiday','DisableCollision': False,'Holiday': 'WinterFestival','Hpr': VBase3(-178.447, 0.192, 32.97),'Pos': Point3(-1.205, 29.808, 9.347),'Scale': VBase3(2.397, 2.397, 2.397),'VisSize': '','Visual': {'Model': 'models/props/pir_m_prp_hol_candycane_winter09'}},'1257810863.83caoconno': {'Type': 'Holiday','DisableCollision': False,'Holiday': 'WinterFestival','Hpr': VBase3(-3.019, 0.768, 36.924),'Pos': Point3(12.31, -29.948, 9.703),'Scale': VBase3(2.397, 2.397, 2.397),'VisSize': '','Visual': {'Model': 'models/props/pir_m_prp_hol_candycane_winter09'}},'1257810863.86caoconno': {'Type': 'Holiday','DisableCollision': False,'Holiday': 'WinterFestival','Hpr': VBase3(-177.777, 0.0, 37.705),'Pos': Point3(9.84, -29.887, 9.665),'Scale': VBase3(2.397, 2.397, 2.397),'VisSize': '','Visual': {'Model': 'models/props/pir_m_prp_hol_candycane_winter09'}},'1257810863.88caoconno': {'Type': 'Holiday','DisableCollision': False,'Holiday': 'WinterFestival','Hpr': VBase3(-177.777, 0.0, 0.0),'Pos': Point3(11.117, -29.809, 8.755),'Scale': VBase3(1.562, 1.562, 1.562),'VisSize': '','Visual': {'Model': 'models/props/pir_m_prp_hol_decoBow_winter08'}},'1257810958.03caoconno': {'Type': 'Holiday','DisableCollision': False,'Holiday': 'WinterFestival','Hpr': VBase3(-177.777, 0.0, 37.705),'Pos': Point3(-11.324, -29.871, 9.923),'Scale': VBase3(2.397, 2.397, 2.397),'VisSize': '','Visual': {'Model': 'models/props/pir_m_prp_hol_candycane_winter09'}},'1257810958.17caoconno': {'Type': 'Holiday','DisableCollision': False,'Holiday': 'WinterFestival','Hpr': VBase3(-3.019, 0.768, 36.924),'Pos': Point3(-8.853, -29.932, 9.962),'Scale': VBase3(2.397, 2.397, 2.397),'VisSize': '','Visual': {'Model': 'models/props/pir_m_prp_hol_candycane_winter09'}},'1257810958.2caoconno': {'Type': 'Holiday','DisableCollision': False,'Holiday': 'WinterFestival','Hpr': VBase3(-177.777, 0.0, 0.0),'Pos': Point3(-10.046, -29.793, 9.014),'Scale': VBase3(1.562, 1.562, 1.562),'VisSize': '','Visual': {'Model': 'models/props/pir_m_prp_hol_decoBow_winter08'}},'1257811007.23caoconno': {'Type': 'Holiday','DisableCollision': False,'Holiday': 'WinterFestival','Hpr': VBase3(-0.272, 0.0, 37.705),'Pos': Point3(1.289, 29.818, 9.187),'Scale': VBase3(2.397, 2.397, 2.397),'VisSize': '','Visual': {'Model': 'models/props/pir_m_prp_hol_candycane_winter09'}}},'Visual': {'Color': (1.0, 0.9900000095367432, 1.0, 1.0),'Model': 'models/buildings/interior_shanty_npc_house'}}},'Node Links': [],'Layers': {},'ObjectIds': {'1156270917.73dzlu0': '["Objects"]["1156270917.73dzlu0"]','1165366099.89kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1165366099.89kmuller"]','1165366349.25kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1165366349.25kmuller"]','1165366420.5kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1165366420.5kmuller"]','1165366677.64kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1165366677.64kmuller"]','1165367285.42kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1165367285.42kmuller"]','1166037975.06kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1166037975.06kmuller"]','1167169073.65kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1167169073.65kmuller"]','1167169123.12kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1167169123.12kmuller"]','1167969107.08kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1167969107.08kmuller"]','1167969169.5kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1167969169.5kmuller"]','1167969206.95kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1167969206.95kmuller"]','1167969245.06kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1167969245.06kmuller"]','1167969443.92kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1167969443.92kmuller"]','1167969485.88kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1167969485.88kmuller"]','1172092924.3kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1172092924.3kmuller"]','1172092937.32kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1172092937.32kmuller"]','1172092948.96kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1172092948.96kmuller"]','1172093074.6kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1172093074.6kmuller"]','1172093082.58kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1172093082.58kmuller"]','1172093091.96kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1172093091.96kmuller"]','1172093101.55kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1172093101.55kmuller"]','1172093111.05kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1172093111.05kmuller"]','1172093118.39kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1172093118.39kmuller"]','1172093125.44kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1172093125.44kmuller"]','1172093414.38kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1172093414.38kmuller"]','1172093706.66kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1172093706.66kmuller"]','1172093886.97kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1172093886.97kmuller"]','1172093925.14kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1172093925.14kmuller"]','1172093932.94kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1172093932.94kmuller"]','1172093972.0kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1172093972.0kmuller"]','1172094047.5kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1172094047.5kmuller"]','1172094087.71kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1172094087.71kmuller"]','1172094367.3kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1172094367.3kmuller"]','1172094393.74kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1172094393.74kmuller"]','1172094628.5kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1172094628.5kmuller"]','1172094869.38kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1172094869.38kmuller"]','1172094923.41kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1172094923.41kmuller"]','1172099606.28kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1172099606.28kmuller"]','1172099644.25kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1172099644.25kmuller"]','1172099662.3kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1172099662.3kmuller"]','1172099688.41kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1172099688.41kmuller"]','1172099743.93kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1172099743.93kmuller"]','1172099774.32kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1172099774.32kmuller"]','1172099802.57kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1172099802.57kmuller"]','1172099819.82kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1172099819.82kmuller"]','1172099903.39kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1172099903.39kmuller"]','1172099942.32kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1172099942.32kmuller"]','1172099984.19kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1172099984.19kmuller"]','1174586399.6dzlu': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1174586399.6dzlu"]','1174586686.81dzlu': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1174586686.81dzlu"]','1174587910.91dzlu': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1174587910.91dzlu"]','1174588046.46dzlu': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1174588046.46dzlu"]','1181085740.6kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1181085740.6kmuller"]','1181085794.23kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1181085794.23kmuller"]','1181085900.65kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1181085900.65kmuller"]','1181085958.56kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1181085958.56kmuller"]','1181086102.85kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1167969443.92kmuller"]["Objects"]["1181086102.85kmuller"]','1181244293.15kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1181244293.15kmuller"]','1181244326.59kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1181244326.59kmuller"]','1181244451.43kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1181244451.43kmuller"]','1181244506.53kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1181244506.53kmuller"]','1181244530.99kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1181244530.99kmuller"]','1182194607.77kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1172093886.97kmuller"]["Objects"]["1182194607.77kmuller"]','1182194637.62kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1172093886.97kmuller"]["Objects"]["1182194637.62kmuller"]','1182194680.35kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1172093886.97kmuller"]["Objects"]["1182194680.35kmuller"]','1182199471.12kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1167169123.12kmuller"]["Objects"]["1182199471.12kmuller"]','1182541232.89kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1182541232.89kmuller"]','1182541244.14kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1182541244.14kmuller"]','1182541292.93kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1182541292.93kmuller"]','1182541299.93kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1182541299.93kmuller"]','1182541350.71kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1182541350.71kmuller"]','1182541360.48kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1182541360.48kmuller"]','1182541446.51kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1182541446.51kmuller"]','1182541482.45kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1182541482.45kmuller"]','1182541532.56kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1182541532.56kmuller"]','1185394665.68kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1185394665.68kmuller"]','1185405709.2kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1185405709.2kmuller"]','1185405823.76kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1185405823.76kmuller"]','1185405924.59kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1185405924.59kmuller"]','1185406084.68kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1185406084.68kmuller"]','1185406112.04kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1185406112.04kmuller"]','1185406130.26kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1185406130.26kmuller"]','1185406166.98kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1185406166.98kmuller"]','1185406212.2kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1185406212.2kmuller"]','1185406269.93kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1185406269.93kmuller"]','1185406447.25kmuller': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1185406447.25kmuller"]','1230932523.02akelts': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1230932523.02akelts"]','1257810355.28caoconno': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1257810355.28caoconno"]','1257810375.58caoconno': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1257810375.58caoconno"]','1257810525.24caoconno': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1257810525.24caoconno"]','1257810608.12caoconno': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1257810608.12caoconno"]','1257810667.57caoconno': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1257810667.57caoconno"]','1257810772.8caoconno': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1257810772.8caoconno"]','1257810792.67caoconno': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1257810792.67caoconno"]','1257810815.17caoconno': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1257810815.17caoconno"]','1257810863.83caoconno': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1257810863.83caoconno"]','1257810863.86caoconno': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1257810863.86caoconno"]','1257810863.88caoconno': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1257810863.88caoconno"]','1257810958.03caoconno': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1257810958.03caoconno"]','1257810958.17caoconno': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1257810958.17caoconno"]','1257810958.2caoconno': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1257810958.2caoconno"]','1257811007.23caoconno': '["Objects"]["1156270917.73dzlu0"]["Objects"]["1257811007.23caoconno"]'}} extraInfo = {'camPos': Point3(0, -14, 0),'camHpr': VBase3(0, 0, 0),'focalLength': 0.852765381336,'skyState': -2,'fog': 0}
12,155.333333
36,285
0.68472
7efcb74350aeaaae8e9f87d5e3d2ab9f09ac7a72
1,249
py
Python
metalfi/src/data/dataset.py
CemOezcan/metalfi
d7a071eea0229ce621fa07e3474a26d43bfaac66
[ "MIT" ]
2
2019-12-05T07:57:14.000Z
2019-12-05T13:02:08.000Z
metalfi/src/data/dataset.py
CemOezcan/metalfi
d7a071eea0229ce621fa07e3474a26d43bfaac66
[ "MIT" ]
31
2019-12-05T15:14:47.000Z
2020-12-04T14:37:46.000Z
metalfi/src/data/dataset.py
CemOezcan/metalfi
d7a071eea0229ce621fa07e3474a26d43bfaac66
[ "MIT" ]
1
2020-12-04T13:40:11.000Z
2020-12-04T13:40:11.000Z
import time from metalfi.src.data.meta.metafeatures import MetaFeatures class Dataset: def __init__(self, data_frame, target): self.__data_frame = data_frame self.__target = target def getDataFrame(self): return self.__data_frame def getTarget(self): return self.__target def trainMetaData(self): mf = MetaFeatures(self) start_d_total = time.time() d_time, u_time, m_time, l_time = mf.calculateMetaFeatures() end_d_total = time.time() d_total = end_d_total - start_d_total start_t_total = time.time() targets, d, p, l, s = mf.createTarget() end_t_total = time.time() t_total = end_t_total - start_t_total data = mf.getMetaData() data_time = {"data": d_time, "univariate": u_time, "multivariate": m_time, "landmarking": l_time, "total": d_total} target_time = {"LOFO": d, "PIMP": p, "LIME": l, "SHAP": s, "total": t_total} return data, targets, (data_time, target_time), len(self.__data_frame.columns) - 1, len(self.__data_frame.index) def testMetaData(self): mf = MetaFeatures(self) mf.calculateMetaFeatures() return mf.getMetaData()
28.386364
120
0.628503
5a65f19c4856a706feb9cc4181d7ff71f59dd80b
662
py
Python
act/plotting/__init__.py
michaeltg12/ACT
c801ac7ac2762bdc73e1d419bc7c266512d55903
[ "BSD-3-Clause" ]
null
null
null
act/plotting/__init__.py
michaeltg12/ACT
c801ac7ac2762bdc73e1d419bc7c266512d55903
[ "BSD-3-Clause" ]
null
null
null
act/plotting/__init__.py
michaeltg12/ACT
c801ac7ac2762bdc73e1d419bc7c266512d55903
[ "BSD-3-Clause" ]
null
null
null
""" =========================== act.plotting (act.plotting) =========================== .. currentmodule:: act.plotting This module contains procedures for plotting ARM datasets. .. autosummary:: :toctree: generated/ common.parse_ax common.parse_ax_fig common.get_date_format """ from .TimeSeriesDisplay import TimeSeriesDisplay from .ContourDisplay import ContourDisplay from .WindRoseDisplay import WindRoseDisplay from .SkewTDisplay import SkewTDisplay from .XSectionDisplay import XSectionDisplay from .GeoDisplay import GeographicPlotDisplay from .HistogramDisplay import HistogramDisplay from .plot import Display from . import common
24.518519
58
0.743202
059e8953ec124def6fd5eaccddc7b9dd09f5b990
13,923
py
Python
log_casp_inh/model_364.py
LoLab-VU/Bayesian_Inference_of_Network_Dynamics
54a5ef7e868be34289836bbbb024a2963c0c9c86
[ "MIT" ]
null
null
null
log_casp_inh/model_364.py
LoLab-VU/Bayesian_Inference_of_Network_Dynamics
54a5ef7e868be34289836bbbb024a2963c0c9c86
[ "MIT" ]
null
null
null
log_casp_inh/model_364.py
LoLab-VU/Bayesian_Inference_of_Network_Dynamics
54a5ef7e868be34289836bbbb024a2963c0c9c86
[ "MIT" ]
null
null
null
# exported from PySB model 'model' from pysb import Model, Monomer, Parameter, Expression, Compartment, Rule, Observable, Initial, MatchOnce, Annotation, ANY, WILD Model() Monomer('C6A', ['C8pro']) Monomer('BaxA', ['BaxM', 'BaxA_1', 'BaxA_2', 'SmacM']) Monomer('Ligand', ['Receptor']) Monomer('C6pro', ['C3A']) Monomer('ParpU', ['C3A']) Monomer('BidU', ['C8A']) Monomer('BidT') Monomer('C3A', ['Xiap', 'ParpU', 'C6pro']) Monomer('BidM', ['BaxM']) Monomer('BaxM', ['BidM', 'BaxA']) Monomer('C8A', ['BidU', 'C3pro']) Monomer('Xiap', ['SmacC', 'C3A']) Monomer('Receptor', ['Ligand', 'Fadd']) Monomer('C3ub') Monomer('Fadd', ['Receptor', 'C8pro']) Monomer('C3pro', ['C8A']) Monomer('SmacM', ['BaxA']) Monomer('SmacC', ['Xiap']) Monomer('C8pro', ['Fadd', 'C6A']) Monomer('ParpC') Parameter('bind_0_Ligand_binder_Receptor_binder_target_2kf', 1.0) Parameter('bind_0_Ligand_binder_Receptor_binder_target_1kr', 1.0) Parameter('bind_0_Receptor_binder_Fadd_binder_target_2kf', 1.0) Parameter('bind_0_Receptor_binder_Fadd_binder_target_1kr', 1.0) Parameter('substrate_binding_0_Fadd_catalyzer_C8pro_substrate_2kf', 1.0) Parameter('substrate_binding_0_Fadd_catalyzer_C8pro_substrate_1kr', 1.0) Parameter('catalytic_step_0_Fadd_catalyzer_C8pro_substrate_C8A_product_1kc', 1.0) Parameter('catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product_2kf', 1.0) Parameter('catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product_1kr', 1.0) Parameter('catalysis_1_C8A_catalyzer_BidU_substrate_BidT_product_1kc', 1.0) Parameter('inhibition_0_SmacC_inhibitor_Xiap_inh_target_2kf', 1.0) Parameter('inhibition_0_SmacC_inhibitor_Xiap_inh_target_1kr', 1.0) Parameter('catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product_2kf', 1.0) Parameter('catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product_1kr', 1.0) Parameter('catalysis_1_Xiap_catalyzer_C3A_substrate_C3ub_product_1kc', 1.0) Parameter('catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product_2kf', 1.0) Parameter('catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product_1kr', 1.0) Parameter('catalysis_1_C3A_catalyzer_ParpU_substrate_ParpC_product_1kc', 1.0) Parameter('equilibration_0_BidT_equil_a_BidM_equil_b_1kf', 1.0) Parameter('equilibration_0_BidT_equil_a_BidM_equil_b_1kr', 1.0) Parameter('catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product_2kf', 1.0) Parameter('catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product_1kr', 1.0) Parameter('catalysis_1_BidM_catalyzer_BaxM_substrate_BaxA_product_1kc', 1.0) Parameter('self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate_2kf', 1.0) Parameter('self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate_1kr', 1.0) Parameter('self_catalyze_1_BaxA_self_catalyzer_BaxM_self_substrate_1kc', 1.0) Parameter('pore_formation_0_BaxA_pore_2kf', 1.0) Parameter('pore_formation_0_BaxA_pore_1kr', 1.0) Parameter('pore_formation_1_BaxA_pore_2kf', 1.0) Parameter('pore_formation_1_BaxA_pore_1kr', 1.0) Parameter('pore_formation_2_BaxA_pore_2kf', 1.0) Parameter('pore_formation_2_BaxA_pore_1kr', 1.0) Parameter('transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_2kf', 1.0) Parameter('transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_1kr', 1.0) Parameter('transport_1_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_1kc', 1.0) Parameter('catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product_2kf', 1.0) Parameter('catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product_1kr', 1.0) Parameter('catalysis_1_C8A_catalyzer_C3pro_substrate_C3A_product_1kc', 1.0) Parameter('catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product_2kf', 1.0) Parameter('catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product_1kr', 1.0) Parameter('catalysis_1_C3A_catalyzer_C6pro_substrate_C6A_product_1kc', 1.0) Parameter('catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product_2kf', 1.0) Parameter('catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product_1kr', 1.0) Parameter('catalysis_1_C6A_catalyzer_C8pro_substrate_C8A_product_1kc', 1.0) Parameter('C6A_0', 0.0) Parameter('BaxA_0', 0.0) Parameter('Ligand_0', 1000.0) Parameter('C6pro_0', 100.0) Parameter('ParpU_0', 1000000.0) Parameter('BidU_0', 171000.0) Parameter('BidT_0', 0.0) Parameter('C3A_0', 0.0) Parameter('BidM_0', 0.0) Parameter('BaxM_0', 40000.0) Parameter('C8A_0', 0.0) Parameter('Xiap_0', 91000.0) Parameter('Receptor_0', 100.0) Parameter('C3ub_0', 0.0) Parameter('Fadd_0', 130000.0) Parameter('C3pro_0', 21000.0) Parameter('SmacM_0', 100000.0) Parameter('SmacC_0', 0.0) Parameter('C8pro_0', 130000.0) Parameter('ParpC_0', 0.0) Observable('C6A_obs', C6A()) Observable('BaxA_obs', BaxA()) Observable('Ligand_obs', Ligand()) Observable('C6pro_obs', C6pro()) Observable('ParpU_obs', ParpU()) Observable('BidU_obs', BidU()) Observable('BidT_obs', BidT()) Observable('C3A_obs', C3A()) Observable('BidM_obs', BidM()) Observable('BaxM_obs', BaxM()) Observable('C8A_obs', C8A()) Observable('Xiap_obs', Xiap()) Observable('Receptor_obs', Receptor()) Observable('C3ub_obs', C3ub()) Observable('Fadd_obs', Fadd()) Observable('C3pro_obs', C3pro()) Observable('SmacM_obs', SmacM()) Observable('SmacC_obs', SmacC()) Observable('C8pro_obs', C8pro()) Observable('ParpC_obs', ParpC()) Rule('bind_0_Ligand_binder_Receptor_binder_target', Ligand(Receptor=None) + Receptor(Ligand=None, Fadd=None) | Ligand(Receptor=1) % Receptor(Ligand=1, Fadd=None), bind_0_Ligand_binder_Receptor_binder_target_2kf, bind_0_Ligand_binder_Receptor_binder_target_1kr) Rule('bind_0_Receptor_binder_Fadd_binder_target', Receptor(Ligand=ANY, Fadd=None) + Fadd(Receptor=None, C8pro=None) | Receptor(Ligand=ANY, Fadd=1) % Fadd(Receptor=1, C8pro=None), bind_0_Receptor_binder_Fadd_binder_target_2kf, bind_0_Receptor_binder_Fadd_binder_target_1kr) Rule('substrate_binding_0_Fadd_catalyzer_C8pro_substrate', Fadd(Receptor=ANY, C8pro=None) + C8pro(Fadd=None, C6A=None) | Fadd(Receptor=ANY, C8pro=1) % C8pro(Fadd=1, C6A=None), substrate_binding_0_Fadd_catalyzer_C8pro_substrate_2kf, substrate_binding_0_Fadd_catalyzer_C8pro_substrate_1kr) Rule('catalytic_step_0_Fadd_catalyzer_C8pro_substrate_C8A_product', Fadd(Receptor=ANY, C8pro=1) % C8pro(Fadd=1, C6A=None) >> Fadd(Receptor=ANY, C8pro=None) + C8A(BidU=None, C3pro=None), catalytic_step_0_Fadd_catalyzer_C8pro_substrate_C8A_product_1kc) Rule('catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product', C8A(BidU=None, C3pro=None) + BidU(C8A=None) | C8A(BidU=1, C3pro=None) % BidU(C8A=1), catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product_2kf, catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product_1kr) Rule('catalysis_1_C8A_catalyzer_BidU_substrate_BidT_product', C8A(BidU=1, C3pro=None) % BidU(C8A=1) >> C8A(BidU=None, C3pro=None) + BidT(), catalysis_1_C8A_catalyzer_BidU_substrate_BidT_product_1kc) Rule('inhibition_0_SmacC_inhibitor_Xiap_inh_target', SmacC(Xiap=None) + Xiap(SmacC=None, C3A=None) | SmacC(Xiap=1) % Xiap(SmacC=1, C3A=None), inhibition_0_SmacC_inhibitor_Xiap_inh_target_2kf, inhibition_0_SmacC_inhibitor_Xiap_inh_target_1kr) Rule('catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product', Xiap(SmacC=None, C3A=None) + C3A(Xiap=None, ParpU=None, C6pro=None) | Xiap(SmacC=None, C3A=1) % C3A(Xiap=1, ParpU=None, C6pro=None), catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product_2kf, catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product_1kr) Rule('catalysis_1_Xiap_catalyzer_C3A_substrate_C3ub_product', Xiap(SmacC=None, C3A=1) % C3A(Xiap=1, ParpU=None, C6pro=None) >> Xiap(SmacC=None, C3A=None) + C3ub(), catalysis_1_Xiap_catalyzer_C3A_substrate_C3ub_product_1kc) Rule('catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product', C3A(Xiap=None, ParpU=None, C6pro=None) + ParpU(C3A=None) | C3A(Xiap=None, ParpU=1, C6pro=None) % ParpU(C3A=1), catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product_2kf, catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product_1kr) Rule('catalysis_1_C3A_catalyzer_ParpU_substrate_ParpC_product', C3A(Xiap=None, ParpU=1, C6pro=None) % ParpU(C3A=1) >> C3A(Xiap=None, ParpU=None, C6pro=None) + ParpC(), catalysis_1_C3A_catalyzer_ParpU_substrate_ParpC_product_1kc) Rule('equilibration_0_BidT_equil_a_BidM_equil_b', BidT() | BidM(BaxM=None), equilibration_0_BidT_equil_a_BidM_equil_b_1kf, equilibration_0_BidT_equil_a_BidM_equil_b_1kr) Rule('catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product', BidM(BaxM=None) + BaxM(BidM=None, BaxA=None) | BidM(BaxM=1) % BaxM(BidM=1, BaxA=None), catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product_2kf, catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product_1kr) Rule('catalysis_1_BidM_catalyzer_BaxM_substrate_BaxA_product', BidM(BaxM=1) % BaxM(BidM=1, BaxA=None) >> BidM(BaxM=None) + BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, SmacM=None), catalysis_1_BidM_catalyzer_BaxM_substrate_BaxA_product_1kc) Rule('self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate', BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, SmacM=None) + BaxM(BidM=None, BaxA=None) | BaxA(BaxM=1, BaxA_1=None, BaxA_2=None, SmacM=None) % BaxM(BidM=None, BaxA=1), self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate_2kf, self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate_1kr) Rule('self_catalyze_1_BaxA_self_catalyzer_BaxM_self_substrate', BaxA(BaxM=1, BaxA_1=None, BaxA_2=None, SmacM=None) % BaxM(BidM=None, BaxA=1) >> BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, SmacM=None) + BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, SmacM=None), self_catalyze_1_BaxA_self_catalyzer_BaxM_self_substrate_1kc) Rule('pore_formation_0_BaxA_pore', BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, SmacM=None) + BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, SmacM=None) | BaxA(BaxM=None, BaxA_1=None, BaxA_2=1, SmacM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=None, SmacM=None), pore_formation_0_BaxA_pore_2kf, pore_formation_0_BaxA_pore_1kr) Rule('pore_formation_1_BaxA_pore', BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, SmacM=None) + BaxA(BaxM=None, BaxA_1=None, BaxA_2=1, SmacM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=None, SmacM=None) | BaxA(BaxM=None, BaxA_1=3, BaxA_2=1, SmacM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, SmacM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, SmacM=None), pore_formation_1_BaxA_pore_2kf, pore_formation_1_BaxA_pore_1kr) Rule('pore_formation_2_BaxA_pore', BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, SmacM=None) + BaxA(BaxM=None, BaxA_1=3, BaxA_2=1, SmacM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, SmacM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, SmacM=None) | BaxA(BaxM=None, BaxA_1=4, BaxA_2=1, SmacM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, SmacM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, SmacM=None) % BaxA(BaxM=None, BaxA_1=3, BaxA_2=4, SmacM=None), pore_formation_2_BaxA_pore_2kf, pore_formation_2_BaxA_pore_1kr) Rule('transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C', BaxA(BaxM=None, BaxA_1=4, BaxA_2=1, SmacM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, SmacM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, SmacM=None) % BaxA(BaxM=None, BaxA_1=3, BaxA_2=4, SmacM=None) + SmacM(BaxA=None) | BaxA(BaxM=None, BaxA_1=4, BaxA_2=1, SmacM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, SmacM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, SmacM=None) % BaxA(BaxM=None, BaxA_1=3, BaxA_2=4, SmacM=5) % SmacM(BaxA=5), transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_2kf, transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_1kr) Rule('transport_1_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C', BaxA(BaxM=None, BaxA_1=4, BaxA_2=1, SmacM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, SmacM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, SmacM=None) % BaxA(BaxM=None, BaxA_1=3, BaxA_2=4, SmacM=5) % SmacM(BaxA=5) >> BaxA(BaxM=None, BaxA_1=4, BaxA_2=1, SmacM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, SmacM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, SmacM=None) % BaxA(BaxM=None, BaxA_1=3, BaxA_2=4, SmacM=None) + SmacC(Xiap=None), transport_1_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_1kc) Rule('catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product', C8A(BidU=None, C3pro=None) + C3pro(C8A=None) | C8A(BidU=None, C3pro=1) % C3pro(C8A=1), catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product_2kf, catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product_1kr) Rule('catalysis_1_C8A_catalyzer_C3pro_substrate_C3A_product', C8A(BidU=None, C3pro=1) % C3pro(C8A=1) >> C8A(BidU=None, C3pro=None) + C3A(Xiap=None, ParpU=None, C6pro=None), catalysis_1_C8A_catalyzer_C3pro_substrate_C3A_product_1kc) Rule('catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product', C3A(Xiap=None, ParpU=None, C6pro=None) + C6pro(C3A=None) | C3A(Xiap=None, ParpU=None, C6pro=1) % C6pro(C3A=1), catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product_2kf, catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product_1kr) Rule('catalysis_1_C3A_catalyzer_C6pro_substrate_C6A_product', C3A(Xiap=None, ParpU=None, C6pro=1) % C6pro(C3A=1) >> C3A(Xiap=None, ParpU=None, C6pro=None) + C6A(C8pro=None), catalysis_1_C3A_catalyzer_C6pro_substrate_C6A_product_1kc) Rule('catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product', C6A(C8pro=None) + C8pro(Fadd=None, C6A=None) | C6A(C8pro=1) % C8pro(Fadd=None, C6A=1), catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product_2kf, catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product_1kr) Rule('catalysis_1_C6A_catalyzer_C8pro_substrate_C8A_product', C6A(C8pro=1) % C8pro(Fadd=None, C6A=1) >> C6A(C8pro=None) + C8A(BidU=None, C3pro=None), catalysis_1_C6A_catalyzer_C8pro_substrate_C8A_product_1kc) Initial(C6A(C8pro=None), C6A_0) Initial(BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, SmacM=None), BaxA_0) Initial(Ligand(Receptor=None), Ligand_0) Initial(C6pro(C3A=None), C6pro_0) Initial(ParpU(C3A=None), ParpU_0) Initial(BidU(C8A=None), BidU_0) Initial(BidT(), BidT_0) Initial(C3A(Xiap=None, ParpU=None, C6pro=None), C3A_0) Initial(BidM(BaxM=None), BidM_0) Initial(BaxM(BidM=None, BaxA=None), BaxM_0) Initial(C8A(BidU=None, C3pro=None), C8A_0) Initial(Xiap(SmacC=None, C3A=None), Xiap_0) Initial(Receptor(Ligand=None, Fadd=None), Receptor_0) Initial(C3ub(), C3ub_0) Initial(Fadd(Receptor=None, C8pro=None), Fadd_0) Initial(C3pro(C8A=None), C3pro_0) Initial(SmacM(BaxA=None), SmacM_0) Initial(SmacC(Xiap=None), SmacC_0) Initial(C8pro(Fadd=None, C6A=None), C8pro_0) Initial(ParpC(), ParpC_0)
85.417178
598
0.808518
e88a974cef3bec036afd0508fecc288575bec87e
18,474
py
Python
jax/experimental/jax2tf/tests/primitive_harness.py
kosklain/jax
1d61cfff48ce43402cb52940a4fdeb50a2603d9b
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
jax/experimental/jax2tf/tests/primitive_harness.py
kosklain/jax
1d61cfff48ce43402cb52940a4fdeb50a2603d9b
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
jax/experimental/jax2tf/tests/primitive_harness.py
kosklain/jax
1d61cfff48ce43402cb52940a4fdeb50a2603d9b
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Defines test inputs and invocations for JAX primitives. Used to test various implementations of JAX primitives, e.g., against NumPy (lax_reference) or TensorFlow. """ import operator from typing import Any, Callable, Dict, Iterable, Optional, NamedTuple, Sequence, Tuple, Union from absl import testing from jax import config from jax import test_util as jtu from jax import lax from jax import lax_linalg from jax import numpy as jnp import numpy as np FLAGS = config.FLAGS Rng = Any # A random number generator class RandArg(NamedTuple): """Descriptor for a randomly generated argument. See description of `Harness`. """ shape: Tuple[int, ...] dtype: np.dtype class StaticArg(NamedTuple): """Descriptor for a static argument. See description of `Harness`. """ value: Any class Harness: """Specifies inputs and callable for a primitive. A harness is conceptually a callable and a list of arguments, that together exercise a use case. The harness can optionally have additional parameters that can be used by the test. The arguments are specified through argument descriptors. An argument descriptor can be: * a numeric value or ndarray, or * an instance of ``RandArg(shape, dtype)`` to be used with a PRNG to generate random tensor of the given shape and type, or * an instance of ``StaticArg(value)``. These are values that specialize the callable, but are not exposed as external arguments. For example, a harness for ``lax.take(arr, indices, axis=None)`` may want to expose as external (dynamic) argument the array and the indices, and keep the axis as a static argument (technically specializing the `take` to a axis): Harness(f"take_axis={axis}", lax.take, [RandArg((2, 4), np.float32), np.array([-1, 0, 1]), StaticArg(axis)], axis=axis) """ # Descriptive name of the harness, used as a testcase_name. Unique in a group. name: str # The function taking all arguments (static and dynamic). fun: Callable arg_descriptors: Sequence[Union[RandArg, StaticArg, Any]] rng_factory: Callable params: Dict[str, Any] def __init__(self, name, fun, arg_descriptors, *, rng_factory=jtu.rand_default, **params): self.name = name self.fun = fun self.arg_descriptors = arg_descriptors self.rng_factory = rng_factory self.params = params def __str__(self): return self.name def _arg_maker(self, arg_descriptor, rng: Rng): if isinstance(arg_descriptor, StaticArg): return arg_descriptor.value if isinstance(arg_descriptor, RandArg): return self.rng_factory(rng)(arg_descriptor.shape, arg_descriptor.dtype) return arg_descriptor def args_maker(self, rng: Rng) -> Sequence: """All-argument maker, including the static ones.""" return [self._arg_maker(ad, rng) for ad in self.arg_descriptors] def dyn_args_maker(self, rng: Rng) -> Sequence: """A dynamic-argument maker, for use with `dyn_fun`.""" return [self._arg_maker(ad, rng) for ad in self.arg_descriptors if not isinstance(ad, StaticArg)] def dyn_fun(self, *dyn_args): """Invokes `fun` given just the dynamic arguments.""" all_args = self._args_from_dynargs(dyn_args) return self.fun(*all_args) def _args_from_dynargs(self, dyn_args: Sequence) -> Sequence: """All arguments, including the static ones.""" next_dynamic_argnum = 0 all_args = [] for ad in self.arg_descriptors: if isinstance(ad, StaticArg): all_args.append(ad.value) else: all_args.append(dyn_args[next_dynamic_argnum]) next_dynamic_argnum += 1 return all_args def parameterized(harness_group: Iterable[Harness], one_containing : Optional[str] = None): """Decorator for tests. The tests receive a `harness` argument. The `one_containing` parameter is useful for debugging. If given, then picks only one harness whose name contains the string. The whole set of parameterized tests is reduced to one test, whose name is not decorated to make it easier to pick for running. """ cases = tuple( dict(testcase_name=harness.name if one_containing is None else "", harness=harness) for harness in harness_group if one_containing is None or one_containing in harness.name) if one_containing is not None: if not cases: raise ValueError(f"Cannot find test case with name containing {one_containing}." "Names are:" "\n".join([harness.name for harness in harness_group])) cases = cases[0:1] return testing.parameterized.named_parameters(*cases) ### Harness definitions ### ### _LAX_UNARY_ELEMENTWISE = ( lax.abs, lax.acosh, lax.asinh, lax.atanh, lax.bessel_i0e, lax.bessel_i1e, lax.ceil, lax.cos, lax.cosh, lax.digamma, lax.erf, lax.erf_inv, lax.erfc, lax.exp, lax.expm1, lax.floor, lax.is_finite, lax.lgamma, lax.log, lax.log1p, lax.neg, lax.round, lax.rsqrt, lax.sign, lax.sin, lax.sinh, lax.sqrt, lax.tan, lax.tanh) lax_unary_elementwise = tuple( Harness(f"{f_lax.__name__}_{jtu.dtype_str(dtype)}", f_lax, [arg], lax_name=f_lax.__name__, dtype=dtype) for f_lax in _LAX_UNARY_ELEMENTWISE for dtype in jtu.dtypes.all_floating for arg in [ np.array([-1.6, -1.4, -1.0, 0.0, 0.1, 0.2, 1., 1.4, 1.6], dtype=dtype) ] ) lax_bitwise_not = tuple( [Harness(f"{jtu.dtype_str(dtype)}", lax.bitwise_not, [arg], dtype=dtype) for dtype in jtu.dtypes.all_integer + jtu.dtypes.all_unsigned for arg in [ np.array([-1, -3, -2, 0, 0, 2, 1, 3], dtype=dtype), ]] + [Harness("bool", f_lax, [arg], lax_name=f_lax.__name__, dtype=np.bool_) for f_lax in [lax.bitwise_not] for arg in [ np.array([True, False]) ]] ) _LAX_BINARY_ELEMENTWISE = ( lax.add, lax.atan2, lax.div, lax.igamma, lax.igammac, lax.max, lax.min, lax.nextafter, lax.rem, lax.sub) lax_binary_elementwise = tuple( Harness(f"{f_lax.__name__}_{jtu.dtype_str(dtype)}", f_lax, [arg1, arg2], lax_name=f_lax.__name__, dtype=dtype ) for f_lax in _LAX_BINARY_ELEMENTWISE for dtype in jtu.dtypes.all_floating for arg1, arg2 in [ (np.array([-1.6, -1.4, -1.0, 0.0, 0.1, 0.2, 1., 1.4, 1.6], dtype=dtype), np.array([-1.6, 1.4, 1.0, 0.0, 0.1, 0.2, 1., 1.4, -1.6], dtype=dtype)) ] ) _LAX_BINARY_ELEMENTWISE_LOGICAL = ( lax.bitwise_and, lax.bitwise_or, lax.bitwise_xor, lax.shift_left, ) lax_binary_elementwise_logical = tuple( [Harness(f"{f_lax.__name__}_{jtu.dtype_str(dtype)}", f_lax, [arg1, arg2], lax_name=f_lax.__name__, dtype=dtype) for f_lax in _LAX_BINARY_ELEMENTWISE_LOGICAL for dtype in jtu.dtypes.all_integer + jtu.dtypes.all_unsigned for arg1, arg2 in [ (np.array([1, 3, 2, 0, 0, 2, 1, 3], dtype=dtype), np.array([1, 2, 3, 0, 1, 0, 2, 3], dtype=dtype)) ] ] + [Harness(f"{f_lax.__name__}_bool", f_lax, [arg1, arg2], lax_name=f_lax.__name__, dtype=np.bool_) for f_lax in [lax.bitwise_and, lax.bitwise_or, lax.bitwise_xor] for arg1, arg2 in [ (np.array([True, True, False, False]), np.array([True, False, True, False])), ] ] ) lax_betainc = tuple( Harness(f"_{jtu.dtype_str(dtype)}", lax.betainc, [arg1, arg2, arg3], dtype=dtype) for dtype in jtu.dtypes.all_floating for arg1, arg2, arg3 in [ (np.array([-1.6, -1.4, -1.0, 0.0, 0.1, 0.3, 1, 1.4, 1.6], dtype=dtype), np.array([-1.6, 1.4, 1.0, 0.0, 0.2, 0.1, 1, 1.4, -1.6], dtype=dtype), np.array([1.0, -1.0, 2.0, 1.0, 0.3, 0.3, -1.0, 2.4, 1.6], dtype=np.float32)) ] ) _gather_input = np.arange(1000, dtype=np.float32).reshape((10, 10, 10)) lax_gather = tuple( # Construct gather harnesses using take [Harness(f"from_take_indices_shape={indices.shape}_axis={axis}", lambda a, i, axis: jnp.take(a, i, axis=axis), [_gather_input, indices, StaticArg(axis)]) for indices in [ # Ensure each set of indices has a distinct shape np.array(2, dtype=np.int32), np.array([2], dtype=np.int32), np.array([2, 4], dtype=np.int32), np.array([[2, 4], [5, 6]], dtype=np.int32), np.array([0, 1, 10], dtype=np.int32), # Index out of bounds np.array([0, 1, 2, -1], dtype=np.int32), # Index out of bounds ] for axis in [0, 1, 2]] + # Directly from lax.gather in lax_test.py. [Harness( f"_shape={shape}_idxs_shape={idxs.shape}_dnums={dnums}_slice_sizes={slice_sizes}", lambda op, idxs, dnums, slice_sizes: lax.gather(op, idxs, dimension_numbers=dnums, slice_sizes=slice_sizes), [RandArg(shape, np.float32), idxs, StaticArg(dnums), StaticArg(slice_sizes)]) for shape, idxs, dnums, slice_sizes in [ ((5,), np.array([[0], [2]]), lax.GatherDimensionNumbers( offset_dims=(), collapsed_slice_dims=(0,), start_index_map=(0,)), (1,)), ((10,), np.array([[0], [0], [0]]), lax.GatherDimensionNumbers( offset_dims=(1,), collapsed_slice_dims=(), start_index_map=(0,)), (2,)), ((10, 5,), np.array([[0], [2], [1]]), lax.GatherDimensionNumbers( offset_dims=(1,), collapsed_slice_dims=(0,), start_index_map=(0,)), (1, 3)), ((10, 5), np.array([[0, 2], [1, 0]]), lax.GatherDimensionNumbers( offset_dims=(1,), collapsed_slice_dims=(0,), start_index_map=(0, 1)), (1, 3)), ] ] ) lax_pad = tuple( Harness(f"_inshape={jtu.format_shape_dtype_string(arg_shape, dtype)}_pads={pads}", lax.pad, [RandArg(arg_shape, dtype), np.array(0, dtype), StaticArg(pads)], rng_factory=jtu.rand_small, arg_shape=arg_shape, dtype=dtype, pads=pads) for arg_shape in [(2, 3)] for dtype in jtu.dtypes.all_floating + jtu.dtypes.all_integer for pads in [ [(0, 0, 0), (0, 0, 0)], # no padding [(1, 1, 0), (2, 2, 0)], # only positive edge padding [(1, 2, 1), (0, 1, 0)], # edge padding and interior padding [(0, 0, 0), (-1, -1, 0)], # negative padding [(0, 0, 0), (-2, -2, 4)], # add big dilation then remove from edges [(0, 0, 0), (-2, -3, 1)], # remove everything in one dimension ] ) lax_top_k = tuple( # random testing Harness(f"_inshape={jtu.format_shape_dtype_string(shape, dtype)}_k={k}", lax.top_k, [RandArg(shape, dtype), StaticArg(k)], shape=shape, dtype=dtype, k=k) for dtype in jtu.dtypes.all for shape in [(3,), (5, 3)] for k in [-1, 1, 3, 4] for rng_factory in [jtu.rand_default] ) + tuple( # stability test Harness(f"stability_inshape={jtu.format_shape_dtype_string(arr.shape, arr.dtype)}_k={k}", lax.top_k, [arr, StaticArg(k)], shape=arr.shape, dtype=arr.dtype, k=k) for arr in [ np.array([5, 7, 5, 8, 8, 5], dtype=np.int32) ] for k in [1, 3, 6] ) + tuple( # nan/inf sorting test Harness(f"nan_inshape={jtu.format_shape_dtype_string(arr.shape, arr.dtype)}_k={k}", lax.top_k, [arr, StaticArg(k)], shape=arr.shape, dtype=arr.dtype, k=k) for arr in [ np.array([+np.inf, np.nan, -np.nan, np.nan, -np.inf, 3], dtype=np.float32) ] for k in [1, 3, 6] ) lax_sort = tuple( # one array, random data, all axes, all dtypes Harness(f"one_array_shape={jtu.format_shape_dtype_string(shape, dtype)}_axis={dimension}_isstable={is_stable}", lax.sort, [RandArg(shape, dtype), StaticArg(dimension), StaticArg(is_stable)], shape=shape, dimension=dimension, dtype=dtype, is_stable=is_stable) for dtype in jtu.dtypes.all for shape in [(5,), (5, 7)] for dimension in range(len(shape)) for is_stable in [False, True] ) + tuple( # one array, potential edge cases Harness(f"one_special_array_shape={jtu.format_shape_dtype_string(arr.shape, arr.dtype)}_axis={dimension}_isstable={is_stable}", lax.sort, [arr, StaticArg(dimension), StaticArg(is_stable)], shape=arr.shape, dimension=dimension, dtype=arr.dtype, is_stable=is_stable) for arr, dimension in [ [np.array([+np.inf, np.nan, -np.nan, -np.inf, 2, 4, 189], dtype=np.float32), -1] ] for is_stable in [False, True] ) + tuple( # several arrays, random data, all axes, all dtypes Harness(f"multi_array_shape={jtu.format_shape_dtype_string(shape, dtype)}_axis={dimension}_isstable={is_stable}", lambda *args: lax.sort_p.bind(*args[:-2], dimension=args[-2], is_stable=args[-1], num_keys=1), [RandArg(shape, dtype), RandArg(shape, dtype), StaticArg(dimension), StaticArg(is_stable)], shape=shape, dimension=dimension, dtype=dtype, is_stable=is_stable) for dtype in jtu.dtypes.all for shape in [(5,), (5, 7)] for dimension in range(len(shape)) for is_stable in [False, True] ) lax_linalg_qr = tuple( Harness(f"multi_array_shape={jtu.format_shape_dtype_string(shape, dtype)}_fullmatrices={full_matrices}", lax_linalg.qr, [RandArg(shape, dtype), StaticArg(full_matrices)], shape=shape, dtype=dtype, full_matrices=full_matrices) for dtype in jtu.dtypes.all for shape in [(1, 1), (3, 3), (3, 4), (2, 10, 5), (2, 200, 100)] for full_matrices in [False, True] ) lax_slice = tuple( Harness(f"_shape={shape}_start_indices={start_indices}_limit_indices={limit_indices}_strides={strides}", # type: ignore lax.slice, [RandArg(shape, dtype), # type: ignore StaticArg(start_indices), # type: ignore StaticArg(limit_indices), # type: ignore StaticArg(strides)], # type: ignore shape=shape, # type: ignore start_indices=start_indices, # type: ignore limit_indices=limit_indices) # type: ignore for shape, start_indices, limit_indices, strides in [ [(3,), (1,), (2,), None], [(7,), (4,), (7,), None], [(5,), (1,), (5,), (2,)], [(8,), (1,), (6,), (2,)], [(5, 3), (1, 1), (3, 2), None], [(5, 3), (1, 1), (3, 1), None], [(7, 5, 3), (4, 0, 1), (7, 1, 3), None], [(5, 3), (1, 1), (2, 1), (1, 1)], [(5, 3), (1, 1), (5, 3), (2, 1)], # out-of-bounds cases [(5,), (-1,), (0,), None], [(5,), (-1,), (1,), None], [(5,), (-4,), (-2,), None], [(5,), (-5,), (-2,), None], [(5,), (-6,), (-5,), None], [(5,), (-10,), (-9,), None], [(5,), (-100,), (-99,), None], [(5,), (5,), (6,), None], [(5,), (10,), (11,), None], [(5,), (0,), (100,), None], ] for dtype in [np.float32] ) # Use lax_slice, but (a) make the start_indices dynamic arg, and (b) no strides. lax_dynamic_slice = [ Harness(harness.name, lax.dynamic_slice, [harness.arg_descriptors[0], np.array(list(start_indices)), StaticArg(tuple(map(operator.sub, limit_indices, start_indices)))], **harness.params) for harness in lax_slice for start_indices in [harness.params["start_indices"]] for limit_indices in [harness.params["limit_indices"]] ] lax_dynamic_update_slice = tuple( Harness((f"_operand={jtu.format_shape_dtype_string(shape, dtype)}" # type: ignore f"_update={jtu.format_shape_dtype_string(update_shape, update_dtype)}" f"_start_indices={start_indices}"), lax.dynamic_update_slice, [RandArg(shape, dtype), # type: ignore RandArg(update_shape, update_dtype), # type: ignore np.array(start_indices)], # type: ignore shape=shape, # type: ignore start_indices=start_indices, # type: ignore update_shape=update_shape) # type: ignore for shape, start_indices, update_shape in [ [(3,), (1,), (1,)], [(5, 3), (1, 1), (3, 1)], [(7, 5, 3), (4, 1, 0), (2, 0, 1)], [(3,), (-1,), (1,)], # out-of-bounds [(3,), (10,), (1,)], # out-of-bounds [(3,), (10,), (4,)], # out-of-bounds shape too big [(3,), (10,), (2,)], # out-of-bounds ] for dtype, update_dtype in [ (np.float32, np.float32), (np.float64, np.float32) ]) lax_squeeze = tuple( Harness(f"_inshape={jtu.format_shape_dtype_string(arg_shape, dtype)}_dimensions={dimensions}", # type: ignore lax.squeeze, [RandArg(arg_shape, dtype), StaticArg(dimensions)], # type: ignore[has-type] arg_shape=arg_shape, dtype=dtype, dimensions=dimensions) # type: ignore[has-type] for arg_shape, dimensions in [ [(1,), (0,)], [(1,), (-1,)], [(2, 1, 4), (1,)], [(2, 1, 4), (-2,)], [(2, 1, 3, 1), (1,)], [(2, 1, 3, 1), (1, 3)], [(2, 1, 3, 1), (3,)], [(2, 1, 3, 1), (1, -1)], ] for dtype in [np.float32] ) shift_inputs = [ (arg, dtype, shift_amount) for dtype in jtu.dtypes.all_unsigned + jtu.dtypes.all_integer for arg in [ np.array([-250, -1, 0, 1, 250], dtype=dtype), ] for shift_amount in [0, 1, 2, 3, 7] ] lax_shift_left = tuple( Harness(f"_dtype={dtype.__name__}_shift_amount={shift_amount}", # type: ignore lax.shift_left, [arg, StaticArg(np.array([shift_amount], dtype=dtype))]) for arg, dtype, shift_amount in shift_inputs ) lax_shift_right_logical = tuple( Harness(f"_dtype={dtype.__name__}_shift_amount={shift_amount}", # type: ignore lax.shift_right_logical, [arg, StaticArg(np.array([shift_amount], dtype=dtype))]) for arg, dtype, shift_amount in shift_inputs ) lax_shift_right_arithmetic = tuple( Harness(f"_dtype={dtype.__name__}_shift_amount={shift_amount}", # type: ignore lax.shift_right_arithmetic, [arg, StaticArg(np.array([shift_amount], dtype=dtype))]) for arg, dtype, shift_amount in shift_inputs )
34.988636
129
0.624986