hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
1757c182b12f55c79e5d7989984e96836c9b0525
2,150
py
Python
CraftProtocol/Protocol/v1_8/Packet/Play/ClientSettingsPacket.py
Toranktto/CraftProtocol
a6f4a67756c3868820ab76df5e148d76b020d990
[ "MIT" ]
21
2018-05-12T20:18:02.000Z
2022-02-18T17:33:50.000Z
CraftProtocol/Protocol/v1_8/Packet/Play/ClientSettingsPacket.py
Toranktto/CraftProtocol
a6f4a67756c3868820ab76df5e148d76b020d990
[ "MIT" ]
1
2018-06-23T09:13:39.000Z
2018-06-27T01:22:27.000Z
CraftProtocol/Protocol/v1_8/Packet/Play/ClientSettingsPacket.py
Toranktto/CraftProtocol
a6f4a67756c3868820ab76df5e148d76b020d990
[ "MIT" ]
2
2018-05-19T21:36:00.000Z
2020-10-02T03:23:13.000Z
#!/usr/bin/env python from CraftProtocol.Protocol.Packet.BasePacket import BasePacket from CraftProtocol.Protocol.Packet.PacketDirection import PacketDirection from CraftProtocol.StreamIO import StreamIO class ClientSettingsPacket(BasePacket): PACKET_ID = 0x15 PACKET_DIRECTION = PacketDirection.SERVERBOUND def __init__(self, locale, view_distance, chat_mode, chat_colors, skin_parts): BasePacket.__init__(self) self._locale = unicode(locale) self._view_distance = int(view_distance) self._chat_mode = int(chat_mode) self._chat_colors = bool(chat_colors) self._skin_parts = int(skin_parts) def get_locale(self): return self._locale def set_locale(self, locale): self._locale = unicode(locale) def get_view_distance(self): return self._view_distance def set_view_distance(self, view_distance): self._view_distance = int(view_distance) def get_chat_mode(self): return self._chat_mode def set_chat_mode(self, chat_mode): self._chat_mode = int(chat_mode) def is_chat_colors(self): return self._chat_colors def set_chat_colors(self, chat_colors): self._chat_colors = bool(chat_colors) def get_skin_parts(self): return self._skin_parts def set_skin_parts(self, skin_parts): self._skin_parts = int(skin_parts) @staticmethod def write(stream, packet): StreamIO.write_string(stream, packet.get_locale()) StreamIO.write_byte(stream, packet.get_view_distance()) StreamIO.write_varint(stream, packet.get_chat_mode()) StreamIO.write_bool(stream, packet.is_chat_colors()) StreamIO.write_ubyte(stream, packet.get_skin_parts()) @staticmethod def read(stream, packet_size): locale = StreamIO.read_string(stream) view_distance = StreamIO.read_byte(stream) chat_mode = StreamIO.read_varint(stream) chat_colors = StreamIO.read_bool(stream) skin_parts = StreamIO.read_ubyte(stream) return ClientSettingsPacket(locale, view_distance, chat_mode, chat_colors, skin_parts)
32.089552
94
0.713953
54242c3a5ff99883e8cb54dd6ec506173de03862
936
py
Python
iv/Leetcode/easy/283_move_zero.py
iamsuman/iv
bf68d3fd45455b6041e74b09272f69503bf7a8ac
[ "MIT" ]
2
2020-09-19T22:28:15.000Z
2020-10-03T01:44:53.000Z
iv/Leetcode/easy/283_move_zero.py
iamsuman/iv
bf68d3fd45455b6041e74b09272f69503bf7a8ac
[ "MIT" ]
null
null
null
iv/Leetcode/easy/283_move_zero.py
iamsuman/iv
bf68d3fd45455b6041e74b09272f69503bf7a8ac
[ "MIT" ]
1
2020-10-03T01:43:30.000Z
2020-10-03T01:43:30.000Z
""" Given an array nums, write a function to move all 0's to the end of it while maintaining the relative order of the non-zero elements. """ class Solution: def moveZeroes(self, nums: list) -> None: """ Do not return anything, modify nums in-place instead. """ lastfound = 0 for i in range(len(nums)): if nums[i] != 0: nums[lastfound] = nums[i] lastfound += 1 continue for i in range(lastfound, len(nums)): nums[i] = 0 def moveZeroes2(self, nums: list) -> None: for i in range(len(nums)): if nums[i] != 0: continue for j in range(i + 1, len(nums)): if nums[j] == 0: continue nums[i], nums[j] = nums[j], nums[i] break nums = [0,1,0,3,12] s = Solution() s.moveZeroes(nums) print(nums)
24.631579
133
0.494658
3b6d77f1b00ae3c13074ddda0710ce9bc0eae050
86
py
Python
exercicio20.py
Alexkakakaka/infosatc-lp-avaliativo-01
eff4350eb2ec8bebd169155b3ac86a6396544fd9
[ "MIT" ]
null
null
null
exercicio20.py
Alexkakakaka/infosatc-lp-avaliativo-01
eff4350eb2ec8bebd169155b3ac86a6396544fd9
[ "MIT" ]
null
null
null
exercicio20.py
Alexkakakaka/infosatc-lp-avaliativo-01
eff4350eb2ec8bebd169155b3ac86a6396544fd9
[ "MIT" ]
null
null
null
K = float(input("Digite um numero")) L = K/0.45 print("Convertido massa em libras:",L)
28.666667
38
0.686047
9f5b1476089bcef73ad991f0b0546b6f2f490c86
1,767
py
Python
sdk/python/pulumi_azure_native/devices/v20200101/_enums.py
pulumi-bot/pulumi-azure-native
f7b9490b5211544318e455e5cceafe47b628e12c
[ "Apache-2.0" ]
31
2020-09-21T09:41:01.000Z
2021-02-26T13:21:59.000Z
sdk/python/pulumi_azure_native/devices/v20200101/_enums.py
pulumi-bot/pulumi-azure-native
f7b9490b5211544318e455e5cceafe47b628e12c
[ "Apache-2.0" ]
231
2020-09-21T09:38:45.000Z
2021-03-01T11:16:03.000Z
sdk/python/pulumi_azure_native/devices/v20200101/_enums.py
pulumi-bot/pulumi-azure-native
f7b9490b5211544318e455e5cceafe47b628e12c
[ "Apache-2.0" ]
4
2020-09-29T14:14:59.000Z
2021-02-10T20:38:16.000Z
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** from enum import Enum __all__ = [ 'AccessRightsDescription', 'AllocationPolicy', 'IotDpsSku', 'IpFilterActionType', 'IpFilterTargetType', 'State', ] class AccessRightsDescription(str, Enum): """ Rights that this key has. """ SERVICE_CONFIG = "ServiceConfig" ENROLLMENT_READ = "EnrollmentRead" ENROLLMENT_WRITE = "EnrollmentWrite" DEVICE_CONNECT = "DeviceConnect" REGISTRATION_STATUS_READ = "RegistrationStatusRead" REGISTRATION_STATUS_WRITE = "RegistrationStatusWrite" class AllocationPolicy(str, Enum): """ Allocation policy to be used by this provisioning service. """ HASHED = "Hashed" GEO_LATENCY = "GeoLatency" STATIC = "Static" class IotDpsSku(str, Enum): """ Sku name. """ S1 = "S1" class IpFilterActionType(str, Enum): """ The desired action for requests captured by this rule. """ ACCEPT = "Accept" REJECT = "Reject" class IpFilterTargetType(str, Enum): """ Target for requests captured by this rule. """ ALL = "all" SERVICE_API = "serviceApi" DEVICE_API = "deviceApi" class State(str, Enum): """ Current state of the provisioning service. """ ACTIVATING = "Activating" ACTIVE = "Active" DELETING = "Deleting" DELETED = "Deleted" ACTIVATION_FAILED = "ActivationFailed" DELETION_FAILED = "DeletionFailed" TRANSITIONING = "Transitioning" SUSPENDING = "Suspending" SUSPENDED = "Suspended" RESUMING = "Resuming" FAILING_OVER = "FailingOver" FAILOVER_FAILED = "FailoverFailed"
22.653846
80
0.65931
e1cbf1508dddd3c46dbf4e9e2680af36f0b491a2
17,287
py
Python
houseSock.py
Scor09/house
32b0d16f43fa1fd45a6e5c70ac23672716838459
[ "MIT" ]
null
null
null
houseSock.py
Scor09/house
32b0d16f43fa1fd45a6e5c70ac23672716838459
[ "MIT" ]
null
null
null
houseSock.py
Scor09/house
32b0d16f43fa1fd45a6e5c70ac23672716838459
[ "MIT" ]
1
2020-01-07T03:02:21.000Z
2020-01-07T03:02:21.000Z
# MIT License # Copyright (c) 2018 NCC Group Plc # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from houseGlobal import house_global, socketio, thread, thread_lock, random_token, login_manager from flask_socketio import SocketIO, emit from flask_socketio import disconnect from houseStatic import * from houseUtil import * import functools import hmac from flask_login import current_user, login_user, UserMixin from flask_socketio import disconnect class User(UserMixin): def __init__(self, id): self.id = id def __repr__(self): return "User: %s" % (self.id) session_user = User(random_token) @login_manager.user_loader def user_loader(uuid): if uuid != session_user.id: return return session_user def authenticated_only(f): @functools.wraps(f) def wrapped(*args, **kwargs): if not current_user.is_authenticated: disconnect() else: return f(*args, **kwargs) return wrapped @socketio.on('connect', namespace='/eventBus') def sock_connect(): emit('log', {'data': 'Connected'}) @socketio.on('authentication', namespace='/eventBus') def sock_auth(msg): uuid = str(msg.get('uuid')) # print (stylize("[+] Login.. with uuid : {}".format(uuid), Info)) if hmac.compare_digest(str(uuid), str(random_token)): this_user = User(uuid) login_user(this_user) emit("authenticated..") else: emit("auth_failed..") @socketio.on('enableAutoRefresh', namespace='/eventBus') @authenticated_only def enableAutoRefresh(): house_global.monitor_refresh = 1 @socketio.on('diableAutoRefresh', namespace='/eventBus') @authenticated_only def diableAutoRefresh(): house_global.monitor_refresh = 0 @socketio.on('refresh_device', namespace='/eventBus') @authenticated_only def refresh_device(): getDevice() # emit('update_device', {'data': cgi.escape(str(house_global.device))}) @socketio.on('check_monitor_running', namespace='/eventBus') @authenticated_only def check_monitor_running(): # not working, house_global.monitor_script.unload() won't destroy it, did not find a destroy script method print (stylize("[+]Checking if Monitor is running...", Info)) IPython.embed() if (house_global.monitor_script != '') & (house_global.monitor_script != None): emit('monitor_running_status', {'running': 1}) else: emit('monitor_running_status', {'running': 0}) # getDevice() @socketio.on('set_device_id', namespace='/eventBus') @authenticated_only def set_device(msg): # clean up script for previous devices unload_script() device_id = msg.get('id') setDevice(device_id) # emit('update_device', {'data': cgi.escape(str(house_global.device))}) @socketio.on('setPackage', namespace='/eventBus') @authenticated_only def setpkg(msg): house_global.package_name = msg.get('packagename') setPackage(house_global.package_name) emit('update_package', {'data': cgi.escape(str(house_global.package_name))}) @socketio.on("setEnumConfig", namespace='/eventBus') @authenticated_only def update_EnumConfig(message): enum_option = message.get('option') class_to_find = message.get('class_to_find') class_pattern = message.get('class_pattern') if class_to_find != None: house_global.enum_class = class_to_find if ('.' in class_to_find) else house_global.packagename + '.' + class_to_find if class_pattern != None: house_global.enum_class_pattern = class_pattern if enum_option != None: house_global.enum_option = enum_option update_conf() emit("EnumConfigDone") @socketio.on('get_monitor_message', namespace='/eventBus') @authenticated_only def get_monitor_message(): # ret_html = render_template('history.html', tree=make_tree(path,'enum')) # emit('update_monitor_message', {'mon_type': mon_type.upper(), 'monitor_message': house_global.monitor_message}) emit('update_monitor_message', {'monitor_message': house_global.monitor_message, 'monitor_new': list(house_global.monitor_queue)}) house_global.monitor_queue = set() @socketio.on('get_enum_history', namespace='/eventBus') @authenticated_only def get_enum_history(): path = './cache/enum' ret_html = render_template('history.html', tree=make_tree(path,'enum')) emit("update_enum_history", {'data': ret_html}) @socketio.on('get_hooks_history', namespace='/eventBus') @authenticated_only def hooks_history(): path = './cache/hook' ret_html = render_template('history.html', tree=make_tree(path,'hook')) emit("update_hooks_history", {'data': ret_html}) @socketio.on('get_intercept_history', namespace='/eventBus') @authenticated_only def get_intercept_history(): path = './cache/intercept' ret_html = render_template('history.html', tree=make_tree(path,'intercept')) emit("update_intercept_history", {'data': ret_html}) @socketio.on('get_history_script', namespace='/eventBus') @authenticated_only def get_history_script(data): path = data.get("filepath") option = data.get("option") try: with open(path,'r') as f: script_content = f.read() emit("update_script_content",{'script': script_content, "option": option}) except Exception as e: emit("update_script_content",{'script': "[!] Failed to get script: " + str(e), "option": option}) @socketio.on('save_script', namespace='/eventBus') @authenticated_only def save_script(save_script_data): option = save_script_data.get("option") filename = save_script_data.get("filename") if (filename): filename = os.path.split(filename)[1] script = save_script_data.get("script") if option == "hook": try: with open("./cache/hook/" + filename, 'w') as f: f.write(script) except Exception as e: raise e elif option == "enum": try: with open("./cache/enum/" + filename, 'w') as f: f.write(script) except Exception as e: raise e elif option == "intercept": try: with open("./cache/intercept/" + filename, 'w') as f: f.write(script) except Exception as e: raise e else: print (stylize("Failed to save the file!", Error)) @socketio.on('deleteScript', namespace='/eventBus') @authenticated_only def deleteScript(data): path = data.get('path') if path != None: if path.startswith('./cache/enum'): fn = './cache/enum/' + os.path.basename(path) op = "enum" elif path.startswith('./cache/hook'): fn = './cache/hook/' + os.path.basename(path) op = "hook" elif path.startswith('./cache/intercept'): fn = './cache/intercept/' + os.path.basename(path) op = "intercept" else: return else: emit('new_error_message',{'data' : "[!] What are you trying to delete?"}) return try: os.remove(fn) emit("refresh_history_script",{'option': op}) except Exception as e: emit('new_error_message',{'data' : "[!] Cannot delete: " + str(e)}) @socketio.on('gen_script', namespace='/eventBus') @authenticated_only def gen_script(message): house_global.hooks_list = message.get('hooks_list') update_conf() house_global.script_to_load = '' house_global.hooks_list = house_global.hook_conf.get('hooks_list') build_hook_script() emit("update_hooks") @socketio.on('unload_script', namespace='/eventBus') @authenticated_only def doUnload(): print (stylize("[+]Unloading script..", Info)) unload_script() @socketio.on('clear_hookMessage', namespace='/eventBus') @authenticated_only def clear_hookMessage(): house_global.messages = [] print (stylize("[+] Hook Message Cleard", Info)) @socketio.on('clear_monitorMessage', namespace='/eventBus') @authenticated_only def clear_monitorMessage(message): clear_type = message.get('monitor_type').upper() if (clear_type != None) & (clear_type in house_global.monitor_message.keys()): house_global.monitor_message[clear_type] = [] @socketio.on('clear_EnumMessage', namespace='/eventBus') @authenticated_only def clear_EnumMessage(): house_global.enum_messages = [] @socketio.on('quitRepl', namespace = '/eventBus') @authenticated_only def doneRepl(): quitRepl() @socketio.on('loadHookScript', namespace='/eventBus') @authenticated_only def doLoadHook(message): clear_hook_msg() j_script = message.get('script') if j_script != None: house_global.script_to_load = j_script house_global.hook_script = j_script cache_script("hooks_cache", house_global.hook_script) try: load_script() except Exception as e: print ("doLoadHook exception caught!" + str(e)) clear_hook_msg() hook_exception = {"exception" : str(e)} house_global.messages.insert(0,hook_exception) emit("new_hook_message",hook_exception) @socketio.on('loadEnumScript', namespace='/eventBus') @authenticated_only def doLoadEnum(message): j_script = message.get('script') if j_script != None: house_global.script_to_load = j_script house_global.enum_script_to_load = j_script house_global.enum_messages = [] cache_script("enum_cache", house_global.enum_script_to_load) try: load_script() except Exception as e: doLoadEnum_exception = {"exception" : str(e)} house_global.enum_messages = [ ] house_global.enum_messages.insert(0,doLoadEnum_exception) emit("update_enum_messages") @socketio.on('doEnv', namespace='/eventBus') def doEnv(): # with open('./scripts/enum/env.js') as f: # house_global.script_to_load = f.read() house_global.script_to_load = build_env_script() try: load_script() except Exception as e: # IPython.embed() emit('update_env_info',{'error': cgi.escape("[!]load_script Exception: {}".format(str(e)))}) @socketio.on('loadStetho', namespace='/eventBus') def doLoadStetho(): try: preload_stetho_script() except Exception as e: # IPython.embed() emit('sideload_stetho_error',{'error': cgi.escape("[!]preload_stetho_script Exception: {}".format(str(e)))}) @socketio.on('runpreload', namespace='/eventBus') def runpreload(preload_message): house_global.preload_conf = preload_message.get('preload_settings') update_conf() try: run_preload_script() except Exception as e: # IPython.embed() emit('runpreload',{'error': cgi.escape("[!]preload_script Exception: {}".format(str(e)))}) @socketio.on('loadMonitor', namespace='/eventBus') def doloadMonitor(monitor_message): house_global.monitor_conf = monitor_message.get('monitor_settings') update_conf() try: loadMonitor() # check_monitor_running() except Exception as e: # IPython.embed() emit('doloadMonitor',{'error': cgi.escape("[!]doloadMonitor Exception: {}".format(str(e)))}) @socketio.on('endpreload', namespace='/eventBus') def endpreload(): house_global.preload_conf = {"PRELOAD_STETHO": 0, "PRELOAD_SSLSTRIP": 1, "PRELOAD_SETPROXY" : 0} update_conf() try: unload_script("preload") # check_monitor_running() except Exception as e: # IPython.embed() emit('endpreload',{'error': cgi.escape("[!]endpreload Exception: {}".format(str(e)))}) @socketio.on('unloadMonitor', namespace='/eventBus') def dounloadMonitor(): house_global.monitor_conf = {"SWITCH_FILEIO": 0, "SWITCH_HTTP": 0, "SWITCH_MISC": 0, "SWITCH_WEBVIEW": 0, "SWITCH_SQL": 0, "SWITCH_IPC": 0} update_conf() try: unload_script("monitor") # check_monitor_running() except Exception as e: # IPython.embed() emit('dounloadMonitor',{'error': cgi.escape("[!]dounloadMonitor Exception: {}".format(str(e)))}) @socketio.on('doInspect', namespace='/eventBus') @authenticated_only def doInspect(message): house_global.device = frida.get_usb_device() house_global.onMessageException = '' ins_classname = message.get('ins_classname') ins_methodname = message.get('ins_methodname') if (ins_classname != None) & (ins_methodname != None): house_global.inspect_conf['classname'] = ins_classname house_global.inspect_conf['methodname'] = ins_methodname update_conf() house_global.inspect_result = 'Please wait' house_global.script_to_load = prepare_script_fragment(ins_classname, ins_methodname, "inspect") try: load_script() except Exception as e: house_global.inspect_result = "<p><code>[!] Exception: {}</code></p>".format(str(e)) print (stylize("Exception caught in doInspect: {}".format(e), Info)) update_inspect_result = {'classname': house_global.inspect_conf["classname"], 'methodname' : house_global.inspect_conf["methodname"], 'inspect_result': (str(house_global.inspect_result))} cache_inspect_html() socketio.emit('update_inspect_result', update_inspect_result, namespace='/eventBus') house_global.onMessageException = '' @socketio.on('fetchInspect', namespace='/eventBus') @authenticated_only def fetchInspect(): overloadIndex = house_global.inspect_conf.get("overloadIndex") if house_global.inspect_result == '': with open("./config/inspect_cache.html",'w+') as f: house_global.inspect_result = f.read() update_inspect_result = {'classname': house_global.inspect_conf["classname"], 'methodname' : house_global.inspect_conf["methodname"], 'inspect_result': house_global.inspect_result, 'overloadIndex' : overloadIndex} emit('update_inspect_result', update_inspect_result) @socketio.on('genIntercept', namespace='/eventBus') @authenticated_only def genIntercept(message): ins_methodindex = message.get('intercept_index') if (ins_methodindex != None): house_global.inspect_conf['overloadIndex'] = int(ins_methodindex) else: house_global.inspect_conf['overloadIndex'] = 0 update_conf() with open('./config/intercept_conf.json') as f: intercept_conf = f.read() try: j_intercept = json.loads(intercept_conf) except Exception as e: raise e print (stylize("[+]Lets do intercept",Info)) clazz_name = j_intercept.get("classname") methodname = j_intercept.get("methodname") overloadIndex = j_intercept.get("overloadIndex") if overloadIndex == None: overloadIndex = 0 house_global.intercept_script = prepare_script_fragment(clazz_name, methodname, "intercept", overloadIndex) socketio.emit('update_intercept_script', {'script': house_global.intercept_script}, namespace='/eventBus') @socketio.on('load_intercept_script', namespace='/eventBus') @authenticated_only def load_intercept_script(message): house_global.intercept_script = message.get('script') house_global.script_to_load = message.get('script') cache_script("intercept_cache", house_global.intercept_script) try: load_script() except Exception as e: house_global.intercept_exception = "[!] intercept_exception: {}".format(str(e)) socketio.emit('new_intercept', {'data': house_global.intercept_exception, 'time': house_global.new_intercept_time}, namespace='/eventBus') @socketio.on('intercept_param', namespace='/eventBus') @authenticated_only def sock_intercept(message): j_option = message['option'] j_param = message['data'] time_stamp = message['time'].replace('"','') if (j_option == "intercept_param"): print (stylize("[+] Posting {} @ {} to Frida..".format(json.loads(j_param),time_stamp),Info)) house_global.script.post({'type': 'input', 'payload': json.loads(j_param), 'time': time_stamp, 'option': "intercept_param"}) elif (j_option == "intercept_repl"): print (stylize("[+] Posting {} to Frida REPL..".format(j_param),Info)) house_global.script.post({'type': 'input', 'payload': j_param, 'time': time_stamp, 'option': "intercept_repl"})
36.165272
217
0.682883
df6a9e311c0891bdb4c25acc51ad3ca054655b60
3,772
py
Python
benchmarks/benchmark_iterating.py
NihalHarish/datasets
67574a8d74796bc065a8b9b49ec02f7b1200c172
[ "Apache-2.0" ]
9
2021-04-26T14:43:52.000Z
2021-11-08T09:47:24.000Z
benchmarks/benchmark_iterating.py
NihalHarish/datasets
67574a8d74796bc065a8b9b49ec02f7b1200c172
[ "Apache-2.0" ]
null
null
null
benchmarks/benchmark_iterating.py
NihalHarish/datasets
67574a8d74796bc065a8b9b49ec02f7b1200c172
[ "Apache-2.0" ]
3
2021-01-03T22:08:20.000Z
2021-08-12T20:09:39.000Z
import json import os import tempfile from utils import generate_example_dataset, get_duration import datasets SPEED_TEST_N_EXAMPLES = 50_000 SMALL_TEST = 5_000 RESULTS_BASEPATH, RESULTS_FILENAME = os.path.split(__file__) RESULTS_FILE_PATH = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) @get_duration def read(dataset: datasets.Dataset, length): for i in range(length): _ = dataset[i] @get_duration def read_batch(dataset: datasets.Dataset, length, batch_size): for i in range(0, len(dataset), batch_size): _ = dataset[i : i + batch_size] @get_duration def read_formatted(dataset: datasets.Dataset, length, type): with dataset.formatted_as(type=type): for i in range(length): _ = dataset[i] @get_duration def read_formatted_batch(dataset: datasets.Dataset, length, batch_size, type): with dataset.formatted_as(type=type): for i in range(0, length, batch_size): _ = dataset[i : i + batch_size] def benchmark_iterating(): times = {"num examples": SPEED_TEST_N_EXAMPLES} functions = [ (read, {"length": SMALL_TEST}), (read, {"length": SPEED_TEST_N_EXAMPLES}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 10}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 100}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1_000}), (read_formatted, {"type": "numpy", "length": SMALL_TEST}), (read_formatted, {"type": "pandas", "length": SMALL_TEST}), (read_formatted, {"type": "torch", "length": SMALL_TEST}), (read_formatted, {"type": "tensorflow", "length": SMALL_TEST}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 10}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 1_000}), ] functions_shuffled = [ (read, {"length": SMALL_TEST}), (read, {"length": SPEED_TEST_N_EXAMPLES}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 10}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 100}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1_000}), (read_formatted, {"type": "numpy", "length": SMALL_TEST}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 10}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 1_000}), ] with tempfile.TemporaryDirectory() as tmp_dir: print("generating dataset") features = datasets.Features( {"list": datasets.Sequence(datasets.Value("float32")), "numbers": datasets.Value("float32")} ) dataset = generate_example_dataset( os.path.join(tmp_dir, "dataset.arrow"), features, num_examples=SPEED_TEST_N_EXAMPLES, seq_shapes={"list": (100,)}, ) print("first set of iterations") for func, kwargs in functions: print(func.__name__, str(kwargs)) times[func.__name__ + " " + " ".join(str(v) for v in kwargs.values())] = func(dataset, **kwargs) print("shuffling dataset") dataset = dataset.shuffle() print("Second set of iterations (after shuffling") for func, kwargs in functions_shuffled: print("shuffled ", func.__name__, str(kwargs)) times["shuffled " + func.__name__ + " " + " ".join(str(v) for v in kwargs.values())] = func( dataset, **kwargs ) with open(RESULTS_FILE_PATH, "wb") as f: f.write(json.dumps(times).encode("utf-8")) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
37.72
108
0.635472
6b1863243edf99b5d1c26511baf66237d21ae231
6,457
py
Python
httpolice/inputs/har.py
vfaronov/httpolice
0008cb746798eb8a7981d57f16f0b91b87e1a8d6
[ "MIT" ]
1,027
2016-04-25T11:17:13.000Z
2022-02-06T23:47:45.000Z
httpolice/inputs/har.py
vfaronov/httpolice
0008cb746798eb8a7981d57f16f0b91b87e1a8d6
[ "MIT" ]
9
2016-07-25T11:30:34.000Z
2021-03-23T20:42:29.000Z
httpolice/inputs/har.py
vfaronov/httpolice
0008cb746798eb8a7981d57f16f0b91b87e1a8d6
[ "MIT" ]
27
2016-05-19T22:17:39.000Z
2020-09-18T05:53:39.000Z
import base64 import io import json from urllib.parse import urlparse from httpolice.exchange import Exchange from httpolice.helpers import pop_pseudo_headers from httpolice.inputs.common import InputError from httpolice.known import h, m, st from httpolice.request import Request from httpolice.response import Response from httpolice.structure import FieldName, StatusCode, Unavailable from httpolice.util.text import decode_path FIDDLER = [u'Fiddler'] CHROME = [u'WebInspector'] FIREFOX = [u'Firefox'] EDGE = [u'F12 Developer Tools'] def har_input(paths): for path in paths: # According to the spec, HAR files are UTF-8 with an optional BOM. path = decode_path(path) with io.open(path, 'rt', encoding='utf-8-sig') as f: try: data = json.load(f) except ValueError as exc: raise InputError('%s: bad HAR file: %s' % (path, exc)) from exc try: creator = data['log']['creator']['name'] for entry in data['log']['entries']: yield _process_entry(entry, creator, path) except (TypeError, KeyError) as exc: raise InputError('%s: cannot understand HAR file: %r' % (path, exc)) from exc def _process_entry(data, creator, path): req = _process_request(data['request'], creator, path) resp = _process_response(data['response'], req, creator, path) return Exchange(req, [resp] if resp is not None else []) def _process_request(data, creator, path): version, header_entries = _process_message(data, creator) method = data['method'] parsed = urlparse(data['url']) scheme = parsed.scheme if method == m.CONNECT: target = parsed.netloc elif any(name == h.host for (name, _) in header_entries): # With HAR, we can't tell if the request was to a proxy or to a server. # So we force most requests into the "origin form" of the target, target = parsed.path if parsed.query: target += u'?' + parsed.query else: # However, if the request has no ``Host`` header, # the user won't be able to see the target host # unless we set the full URL ("absolute form") as the target. # To prevent this from having an effect on the proxy logic, # we explicitly set `Request.is_to_proxy` to `None` later. target = data['url'] if data['bodySize'] == 0: # No body, or a body of length 0 (which we do not distinguish). body = b'' elif data['bodySize'] > 0: # A message body was present, but we cannot recover it, # because message body is the body *with* ``Content-Encoding``, # and HAR does not include that. body = Unavailable() else: # Unknown. Maybe there was a body, maybe there wasn't. body = None text = None post = data.get('postData') if post and post.get('text'): text = post['text'] if creator in FIDDLER and method == m.CONNECT and u'Fiddler' in text: # Fiddler's HAR export adds a body with debug information # to CONNECT requests. text = None body = b'' req = Request(scheme, method, target, version, header_entries, body, remark=u'from %s' % path) if text is not None: req.unicode_body = text req.is_to_proxy = None # See above. return req def _process_response(data, req, creator, path): if data['status'] == 0: # Indicates error in Chrome. return None version, header_entries = _process_message(data, creator) status = StatusCode(data['status']) reason = data['statusText'] if creator in FIDDLER and req.method == m.CONNECT and status.successful: # Fiddler's HAR export adds extra debug headers to CONNECT responses # after the tunnel is closed. header_entries = [(name, value) for (name, value) in header_entries if name not in [u'EndTime', u'ClientToServerBytes', u'ServerToClientBytes']] # The logic for body is mostly like that for requests (see above). if data['bodySize'] == 0 or data['content']['size'] == 0 or \ status == st.not_modified: # Firefox also includes body on 304 body = b'' elif creator in FIREFOX: # Firefox seems to exports bogus bodySize: # see test/har_data/firefox_gif.har body = None # Browsers may set ``bodySize = -1`` even when ``content.size >= 0``. elif data['bodySize'] > 0 or data['content']['size'] > 0: body = Unavailable() else: body = None resp = Response(version, status, reason, header_entries, body=body, remark=u'from %s' % path) if data['content'].get('text') and status != st.not_modified: if data['content'].get('encoding', u'').lower() == u'base64': try: decoded_body = base64.b64decode(data['content']['text']) except ValueError: pass else: if creator in FIDDLER and req.method == m.CONNECT and \ status.successful and b'Fiddler' in decoded_body: # Fiddler's HAR export adds a body with debug information # to CONNECT responses. resp.body = b'' else: resp.decoded_body = decoded_body elif 'encoding' not in data['content']: resp.unicode_body = data['content']['text'] return resp def _process_message(data, creator): header_entries = [(FieldName(d['name']), d['value']) for d in data['headers']] pop_pseudo_headers(header_entries) # Web browsers' HAR export poorly reflects the actual traffic on the wire. # Their httpVersion can't be trusted, and they often mangle lower-level # parts of the protocol, e.g. at the time of writing Chrome sometimes omits # the Host header from HTTP/1.1 requests. Just consider their HTTP version # to be always unknown, and a lot of this pain goes away. version = None if data['httpVersion'].startswith(u'HTTP/') and \ creator not in CHROME + FIREFOX + EDGE: version = data['httpVersion'] return version, header_entries
38.664671
79
0.602292
41a34fa36edf581c273cf650e4dfd8268c732634
3,141
py
Python
tests/integration_tests/dashboard_utils.py
nieaijun99/superset
86368dd406b9e828f31186a4b6179d24758a7d87
[ "Apache-2.0" ]
2
2021-12-21T15:57:16.000Z
2022-01-31T02:22:02.000Z
tests/integration_tests/dashboard_utils.py
nieaijun99/superset
86368dd406b9e828f31186a4b6179d24758a7d87
[ "Apache-2.0" ]
null
null
null
tests/integration_tests/dashboard_utils.py
nieaijun99/superset
86368dd406b9e828f31186a4b6179d24758a7d87
[ "Apache-2.0" ]
2
2021-12-21T13:41:18.000Z
2021-12-26T22:16:43.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Utils to provide dashboards for tests""" import json from typing import Any, Dict, List, Optional from pandas import DataFrame from superset import ConnectorRegistry, db from superset.connectors.sqla.models import SqlaTable from superset.models.core import Database from superset.models.dashboard import Dashboard from superset.models.slice import Slice from superset.utils.core import DatasourceType, get_example_default_schema def get_table( table_name: str, database: Database, schema: Optional[str] = None, ): schema = schema or get_example_default_schema() table_source = ConnectorRegistry.sources["table"] return ( db.session.query(table_source) .filter_by(database_id=database.id, schema=schema, table_name=table_name) .one_or_none() ) def create_table_metadata( table_name: str, database: Database, table_description: str = "", fetch_values_predicate: Optional[str] = None, schema: Optional[str] = None, ) -> SqlaTable: schema = schema or get_example_default_schema() table = get_table(table_name, database, schema) if not table: table_source = ConnectorRegistry.sources["table"] table = table_source(schema=schema, table_name=table_name) if fetch_values_predicate: table.fetch_values_predicate = fetch_values_predicate table.database = database table.description = table_description db.session.merge(table) db.session.commit() return table def create_slice( title: str, viz_type: str, table: SqlaTable, slices_dict: Dict[str, str] ) -> Slice: return Slice( slice_name=title, viz_type=viz_type, datasource_type=DatasourceType.TABLE, datasource_id=table.id, params=json.dumps(slices_dict, indent=4, sort_keys=True), ) def create_dashboard( slug: str, title: str, position: str, slices: List[Slice] ) -> Dashboard: dash = db.session.query(Dashboard).filter_by(slug=slug).one_or_none() if not dash: dash = Dashboard() dash.dashboard_title = title if position is not None: js = position pos = json.loads(js) dash.position_json = json.dumps(pos, indent=4) dash.slug = slug if slices is not None: dash.slices = slices db.session.merge(dash) db.session.commit() return dash
31.727273
81
0.720471
2919d7a8668edd013807391b5a92799b369efd18
1,571
py
Python
tf-undistributed/train_val_split.py
markandersonintel/distributed-tensorflow
5fa31d8aa0c7eec54890d91155712096975e9075
[ "Apache-2.0" ]
null
null
null
tf-undistributed/train_val_split.py
markandersonintel/distributed-tensorflow
5fa31d8aa0c7eec54890d91155712096975e9075
[ "Apache-2.0" ]
null
null
null
tf-undistributed/train_val_split.py
markandersonintel/distributed-tensorflow
5fa31d8aa0c7eec54890d91155712096975e9075
[ "Apache-2.0" ]
null
null
null
import os from shutil import copyfile from shutil import rmtree import random def split(): datafolder = 'data/' trainfolder = 'train/' valfolder = 'val/' valpercentage = .2 if not os.path.exists(datafolder): print(datafolder,'does not exist.') return; if os.path.exists(trainfolder): try: rmtree(trainfolder, ignore_errors=True) os.makedirs(trainfolder) except OSError as e: print(e) if os.path.exists(valfolder): try: rmtree(valfolder, ignore_errors=True) os.makedirs(valfolder) except OSError as e: print(e) for root, dirs, files in os.walk(datafolder): for dir in dirs: datasubfolder = datafolder+dir+'/' trainsubfolder = trainfolder+dir+'/' valsubfolder = valfolder+dir+'/' os.makedirs(trainsubfolder) os.makedirs(valsubfolder) files = os.listdir(datasubfolder) random.shuffle(files) for i in range(int(len(files)*(1-valpercentage))): if not i%1000: print('train ' + dir + ' ' + str(i)) file = files.pop() copyfile(datasubfolder + file, trainsubfolder + file) for i in range(len(files)): if not i%1000: print('val ' + dir + ' ' + str(i)) file = files.pop() copyfile(datasubfolder + file, valsubfolder + file) split()
34.152174
70
0.527689
722ef645e7a54ca886dac115ae13d4bf80f8a4a7
5,858
py
Python
tests/scripts/thread-cert/Cert_5_3_04_AddressMapCache.py
tpmanley/openthread
bc02c6c05cf52884bc6cd9fad8dc8fc16364a147
[ "BSD-3-Clause" ]
null
null
null
tests/scripts/thread-cert/Cert_5_3_04_AddressMapCache.py
tpmanley/openthread
bc02c6c05cf52884bc6cd9fad8dc8fc16364a147
[ "BSD-3-Clause" ]
2
2019-02-25T10:21:34.000Z
2022-01-23T13:05:08.000Z
tests/scripts/thread-cert/Cert_5_3_04_AddressMapCache.py
tpmanley/openthread
bc02c6c05cf52884bc6cd9fad8dc8fc16364a147
[ "BSD-3-Clause" ]
1
2020-10-22T16:33:36.000Z
2020-10-22T16:33:36.000Z
#!/usr/bin/env python3 # # Copyright (c) 2016, The OpenThread Authors. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of the copyright holder nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # import unittest import node import config import command LEADER = 1 DUT_ROUTER1 = 2 SED1 = 3 ED1 = 4 ED2 = 5 ED3 = 6 ED4 = 7 MTDS = [SED1, ED1, ED2, ED3, ED4] class Cert_5_3_4_AddressMapCache(unittest.TestCase): def setUp(self): self.simulator = config.create_default_simulator() self.nodes = {} for i in range(1, 8): self.nodes[i] = node.Node(i, (i in MTDS), simulator=self.simulator) self.nodes[LEADER].set_panid(0xface) self.nodes[LEADER].set_mode('rsdn') self.nodes[LEADER].add_whitelist(self.nodes[DUT_ROUTER1].get_addr64()) self.nodes[LEADER].add_whitelist(self.nodes[ED1].get_addr64()) self.nodes[LEADER].add_whitelist(self.nodes[ED2].get_addr64()) self.nodes[LEADER].add_whitelist(self.nodes[ED3].get_addr64()) self.nodes[LEADER].add_whitelist(self.nodes[ED4].get_addr64()) self.nodes[LEADER].enable_whitelist() self.nodes[DUT_ROUTER1].set_panid(0xface) self.nodes[DUT_ROUTER1].set_mode('rsdn') self.nodes[DUT_ROUTER1].add_whitelist(self.nodes[LEADER].get_addr64()) self.nodes[DUT_ROUTER1].add_whitelist(self.nodes[SED1].get_addr64()) self.nodes[DUT_ROUTER1].enable_whitelist() self.nodes[DUT_ROUTER1].set_router_selection_jitter(1) self.nodes[SED1].set_panid(0xface) self.nodes[SED1].set_mode('s') self.nodes[SED1].add_whitelist(self.nodes[DUT_ROUTER1].get_addr64()) # Set the SED1's timeout in order to receive the icmp reply when keep # alive with DUT_ROUTER. self.nodes[SED1].set_timeout(5) self.nodes[SED1].enable_whitelist() for ED in [ED1, ED2, ED3, ED4]: self.nodes[ED].set_panid(0xface) self.nodes[ED].set_mode('rsn') self.nodes[ED].add_whitelist(self.nodes[LEADER].get_addr64()) self.nodes[ED].enable_whitelist() def tearDown(self): for n in list(self.nodes.values()): n.stop() n.destroy() self.simulator.stop() def test(self): # 1 self.nodes[LEADER].start() self.simulator.go(5) self.assertEqual(self.nodes[LEADER].get_state(), 'leader') self.nodes[DUT_ROUTER1].start() for i in MTDS: self.nodes[i].start() self.simulator.go(5) self.assertEqual(self.nodes[DUT_ROUTER1].get_state(), 'router') for i in MTDS: self.assertEqual(self.nodes[i].get_state(), 'child') # This method flushes the message queue so calling this method again # will return only the newly logged messages. dut_messages = self.simulator.get_messages_sent_by(DUT_ROUTER1) # 2 for ED in [ED1, ED2, ED3, ED4]: ed_mleid = self.nodes[ED].get_ip6_address( config.ADDRESS_TYPE.ML_EID ) self.assertTrue(self.nodes[SED1].ping(ed_mleid)) self.simulator.go(5) # Verify DUT_ROUTER1 generated an Address Query Request to find # each node's RLOC. dut_messages = self.simulator.get_messages_sent_by(DUT_ROUTER1) msg = dut_messages.next_coap_message('0.02', '/a/aq') command.check_address_query( msg, self.nodes[DUT_ROUTER1], config.REALM_LOCAL_ALL_ROUTERS_ADDRESS, ) # 3 & 4 # This method flushes the message queue so calling this method again # will return only the newly logged messages. dut_messages = self.simulator.get_messages_sent_by(DUT_ROUTER1) for ED in [ED1, ED2, ED3, ED4]: ed_mleid = self.nodes[ED].get_ip6_address( config.ADDRESS_TYPE.ML_EID ) self.assertTrue(self.nodes[SED1].ping(ed_mleid)) self.simulator.go(5) # Verify DUT_ROUTER1 didn't generate an Address Query Request. dut_messages = self.simulator.get_messages_sent_by(DUT_ROUTER1) msg = dut_messages.next_coap_message('0.02', '/a/aq', False) assert ( msg is None ), "Error: The DUT sent an unexpected Address Query Request" if __name__ == '__main__': unittest.main()
38.539474
79
0.662854
10cdeddbcbe69c44b6e8d37feebd141c15549b07
6,610
py
Python
pajbot/modules/pointlottery.py
KasperHelsted/pajbot
c366dcfc5e6076f9adcfce24c7a666653068b031
[ "MIT" ]
null
null
null
pajbot/modules/pointlottery.py
KasperHelsted/pajbot
c366dcfc5e6076f9adcfce24c7a666653068b031
[ "MIT" ]
null
null
null
pajbot/modules/pointlottery.py
KasperHelsted/pajbot
c366dcfc5e6076f9adcfce24c7a666653068b031
[ "MIT" ]
1
2020-03-11T19:37:10.000Z
2020-03-11T19:37:10.000Z
import logging from numpy import random from pajbot.models.command import Command from pajbot.models.command import CommandExample from pajbot.modules.base import BaseModule log = logging.getLogger(__name__) class PointLotteryModule(BaseModule): ID = __name__.split(".")[-1] NAME = "Point Lottery" DESCRIPTION = "Lets players participate in lottery for points" CATEGORY = "Game" SETTINGS = [] def __init__(self, bot): super().__init__(bot) self.lottery_running = False self.lottery_users = [] self.lottery_points = 0 def load_commands(self, **options): self.commands["pointlottery"] = Command.raw_command( self.lottery, delay_all=0, delay_user=5, description="Lottery for points", examples=[ CommandExample( None, "Lottery start", chat="user:!pointlottery start\n" "bot:A Lottery has begun. Type !pointlottery join {points} to join the lottery!", description="Start lottery", ).parse(), CommandExample( None, "Lottery join", chat="user:!pointlottery join {}", description="You don't get confirmation whether you joined the lottery or not.", ).parse(), CommandExample( None, "Lottery stop", chat="user:!pointlottery stop\n" "bot:The lottery has finished! {} won {} points", description="Finish lottery", ).parse(), CommandExample( None, "Lottery join", chat="user:!pointlottery {}", description="You don't get confirmation whether you joined the lottery or not.", ).parse(), ], ) def lottery(self, **options): message = options["message"] source = options["source"] commands = { "start": (self.process_start, 500), "begin": (self.process_start, 500), "join": (self.process_join, 100), "": (self.process_join, 100), "end": (self.process_end, 500), "stop": (self.process_end, 500), "status": (self.process_status, 100), } try: if message.split(" ")[0].isdigit(): command = "" else: command = str(message.split(" ")[0]) cb, level = commands[command] if source.level < level: # User does not have access to run this command return False cb(**options) except (KeyError, ValueError, TypeError, AttributeError): return False def process_start(self, **options): source = options["source"] bot = options["bot"] if self.lottery_running: bot.say("{0}, a lottery is already running OMGScoots".format(source.username_raw)) return False self.lottery_users = [] self.lottery_running = True self.lottery_points = 0 bot.websocket_manager.emit("notification", {"message": "A lottery has been started!"}) bot.execute_delayed( 0.75, bot.websocket_manager.emit, ("notification", {"message": "Type !pointlottery join to enter!"}) ) bot.me( "A lottery has begun. Type !pointlottery join {tickets} or !pointlottery {tickets} to join the lottery! " "The more tickets you buy, the more chances to win you have! " "1 ticket costs 1 point" ) def process_join(self, **options): source = options["source"] message = options["message"] bot = options["bot"] if not self.lottery_running: log.debug("No lottery running") return False if source in [user for user, points in self.lottery_users if user == source]: return False try: if len(message.split(" ")) == 1: tickets = int(message.split(" ")[0]) else: tickets = int(message.split(" ")[1]) if not source.can_afford(tickets): bot.me("Sorry, {0}, you don't have enough points! FeelsBadMan".format(source.username_raw)) return False if tickets <= 0: bot.me("Sorry, {0}, you have to buy at least 1 ticket! FeelsBadMan".format(source.username_raw)) return False source.points -= tickets self.lottery_points += tickets log.info("Lottery points is now at {}".format(self.lottery_points)) except (ValueError, TypeError, AttributeError): bot.me("Sorry, {0}, I didn't recognize your command! FeelsBadMan".format(source.username_raw)) return False # Added user to the lottery self.lottery_users.append((source, tickets)) def process_end(self, **options): bot = options["bot"] if not self.lottery_running: return False self.lottery_running = False if not self.lottery_users: bot.me("Wow, no one joined the lottery DansGame") return False winner = self.weighted_choice(self.lottery_users) log.info("at end, lottery points is now at {}".format(self.lottery_points)) bot.websocket_manager.emit( "notification", {"message": "{} won {} points in the lottery!".format(winner.username_raw, self.lottery_points)}, ) bot.me( "The lottery has finished! {0} won {1} points! PogChamp".format(winner.username_raw, self.lottery_points) ) winner.points += self.lottery_points winner.save() self.lottery_users = [] def process_status(self, **options): bot = options["bot"] if not self.lottery_running: return False bot.me( "{} people have joined the lottery so far, for a total of {} points".format( len(self.lottery_users), self.lottery_points ) ) @staticmethod def weighted_choice(choices): total = sum(w for c, w in choices) r = random.uniform(0, total) upto = 0 for c, w in choices: if upto + w >= r: return c upto += w assert False, "Shouldn't get here"
33.383838
117
0.543722
f0f7283f5930c31495d9e4dbb04ec69eb9e43246
439
py
Python
nose2/tests/functional/support/scenario/slow/test_slow.py
Metaswitch/nose2
1fdb46ef9eb279fb1f9b2321dc978977876e8230
[ "BSD-2-Clause" ]
null
null
null
nose2/tests/functional/support/scenario/slow/test_slow.py
Metaswitch/nose2
1fdb46ef9eb279fb1f9b2321dc978977876e8230
[ "BSD-2-Clause" ]
null
null
null
nose2/tests/functional/support/scenario/slow/test_slow.py
Metaswitch/nose2
1fdb46ef9eb279fb1f9b2321dc978977876e8230
[ "BSD-2-Clause" ]
1
2019-11-24T12:11:52.000Z
2019-11-24T12:11:52.000Z
import time import unittest import logging log = logging.getLogger(__name__) class TestSlow(unittest.TestCase): def test_ok(self): print("hide this") time.sleep(2) def test_fail(self): print("show this") log.debug("hola") time.sleep(2) self.assertEqual(1, 2) def test_err(self): print("show this too") log.debug("ciao") time.sleep(2) {}['x']
18.291667
34
0.574032
a0d3bbdd9c82da419a89e54082798ca68188d71a
2,645
py
Python
potara/similaritymeasures.py
sildar/potara
cb98b337531e4833058c95ac1eb29d8bcdac0104
[ "MIT" ]
86
2015-04-09T08:47:38.000Z
2021-12-31T03:16:53.000Z
potara/similaritymeasures.py
sildar/potara
cb98b337531e4833058c95ac1eb29d8bcdac0104
[ "MIT" ]
11
2016-02-24T03:02:58.000Z
2021-01-20T16:30:30.000Z
potara/similaritymeasures.py
sildar/potara
cb98b337531e4833058c95ac1eb29d8bcdac0104
[ "MIT" ]
31
2015-04-13T12:50:16.000Z
2021-08-23T08:42:35.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Contains several similarity measures. These measures deal with raw strings which words are supposed to be white-space separated. """ from collections import Counter from operator import itemgetter import math def cosine(s1, s2): """ Retuns the cosine value between two strings >>> cosine("This is a sentence", "This is a sentence") 1.0 """ vec1 = Counter(s1.split()) vec2 = Counter(s2.split()) intersection = set(vec1.keys()) & set(vec2.keys()) numerator = sum([vec1[x] * vec2[x] for x in intersection]) sum1 = sum([vec1[x]**2 for x in vec1.keys()]) sum2 = sum([vec2[x]**2 for x in vec2.keys()]) denominator = math.sqrt(sum1) * math.sqrt(sum2) if not denominator: return 0.0 else: return float(numerator) / denominator def w2v(s1, s2, wordmodel): """ Calculates the similarity between two strings given a word model that gives word-word similarity. The word model is supposed to hold a vocab field that contains the vocabulary. It must have a similarity(word1, word2) method. """ if s1 == s2: return 1.0 intersection = set(s1.split()) & set(s2.split()) # give 1 point per common word commonwords = len(intersection) # We want at least one common word if commonwords == 0: return 0 # remove common words l1 = [word for word in s1.split() if word not in intersection] l2 = [word for word in s2.split() if word not in intersection] # change order depending on size if len(l1) > len(l2): l1, l2 = l2, l1 totalscore = 0 for t1 in l1: sublist = [] hasitem = False for i, t2 in enumerate(l2): # check if POS are here if len(t1.split('/')) > 1: # compare same POS words if t1.split('/')[1][:2] == t2.split('/')[1][:2]: if t1 in wordmodel.wv and t2 in wordmodel.wv: sublist.append((i, wordmodel.wv.similarity(t1, t2))) hasitem = True # if we don't know one of the words # consider them as dissimilar else: sublist.append((i, 0)) else: sublist.append((i, 0)) if hasitem: maxitem, subscore = max(sublist, key=itemgetter(1)) l2.pop(maxitem) totalscore += subscore num = float(commonwords + totalscore) denum = min(len(s1.split()), len(s2.split())) score = num / denum return score
26.989796
76
0.567108
45544ee9f2232c52ae106632c2d90919702d7a92
2,800
py
Python
dna/query_ontology_specific_classes.py
ontoinsights/deep_narrative_analysis
2c01e4d870de30a325d9aa84896d346a3ccb4bbd
[ "CC-BY-4.0" ]
9
2020-03-02T03:41:48.000Z
2022-03-30T09:28:38.000Z
dna/query_ontology_specific_classes.py
ontoinsights/deep_narrative_analysis
2c01e4d870de30a325d9aa84896d346a3ccb4bbd
[ "CC-BY-4.0" ]
null
null
null
dna/query_ontology_specific_classes.py
ontoinsights/deep_narrative_analysis
2c01e4d870de30a325d9aa84896d346a3ccb4bbd
[ "CC-BY-4.0" ]
null
null
null
# Query ontology class details # To avoid passing a store name parameter, the ontology files are preloaded into an 'ontologies' database # Called by create_event_turtle.py from database import query_ontology from utilities import empty_string, owl_thing domain_query_norp_emotion_or_enum = \ 'prefix : <urn:ontoinsights:dna:> SELECT ?class ?prob WHERE { ' \ '{ SERVICE <db://ontologies-database> { ?domain_class_type rdfs:subClassOf+ :class_type } } ' \ '{ SERVICE <db://domain-database> { ?class rdfs:subClassOf* ?domain_class_type . ' \ '{ { ?class :noun_synonym ?nsyn . FILTER(?nsyn = "keyword") . BIND(100 as ?prob) } UNION ' \ '{ ?class rdfs:label ?label . FILTER(?label = "keyword") . BIND(85 as ?prob) } UNION ' \ '{ ?class :noun_synonym ?nsyn . FILTER(CONTAINS(?nsyn, "keyword")) . BIND(90 as ?prob) } UNION ' \ '{ ?class rdfs:label ?label . FILTER(CONTAINS(?label, "keyword")) . BIND(85 as ?prob) } UNION ' \ '{ ?class :definition ?defn . FILTER(CONTAINS(lcase(?defn), " keyword ")) . BIND(80 as ?prob) } UNION ' \ '{ ?class :definition ?defn . FILTER(CONTAINS(lcase(?defn), "keyword")) . BIND(75 as ?prob) } } } } ' \ '} ORDER BY DESC(?prob)' query_norp_emotion_or_enum = \ 'prefix : <urn:ontoinsights:dna:> SELECT ?class ?prob WHERE { ' \ '?class rdfs:subClassOf+ :class_type . ' \ '{ { ?class :noun_synonym ?nsyn . FILTER(?nsyn = "keyword") . BIND(100 as ?prob) } UNION ' \ '{ ?class rdfs:label ?label . FILTER(?label = "keyword") . BIND(85 as ?prob) } UNION ' \ '{ ?class :noun_synonym ?nsyn . FILTER(CONTAINS(?nsyn, "keyword")) . BIND(90 as ?prob) } UNION ' \ '{ ?class rdfs:label ?label . FILTER(CONTAINS(?label, "keyword")) . BIND(85 as ?prob) } UNION ' \ '{ ?class :definition ?defn . FILTER(CONTAINS(lcase(?defn), " keyword ")) . BIND(80 as ?prob) } UNION ' \ '{ ?class :definition ?defn . FILTER(CONTAINS(lcase(?defn), "keyword")) . BIND(75 as ?prob) } } ' \ '} ORDER BY DESC(?prob)' def get_norp_emotion_or_enum(noun_text: str) -> (str, str): """ Check if the input text is a kind of ethnicity, religion, line of work or political ideology. @param noun_text: String holding the text to be categorized. @return: A tuple consisting of a string indicating either 'Ethnicity', 'ReligiousBelief', 'LineOfBusiness' or 'PoliticalIdeology', and the specific subclass """ for class_type in ('Ethnicity', 'ReligiousBelief', 'LineOfBusiness', 'PoliticalIdeology'): result = query_ontology( noun_text, query_norp_emotion_or_enum.replace('class_type', class_type), domain_query_norp_emotion_or_enum.replace('class_type', class_type)) if result != owl_thing: return class_type, result return empty_string, empty_string
59.574468
109
0.658214
6cd61170c0b767169dda44e3fc52ea646493e784
3,043
py
Python
janitor/engineering.py
Ram-N/pyjanitor
b85d9c9e8d823e356cb095643db0af05e351b009
[ "MIT" ]
null
null
null
janitor/engineering.py
Ram-N/pyjanitor
b85d9c9e8d823e356cb095643db0af05e351b009
[ "MIT" ]
null
null
null
janitor/engineering.py
Ram-N/pyjanitor
b85d9c9e8d823e356cb095643db0af05e351b009
[ "MIT" ]
null
null
null
""" Engineering-specific data cleaning functions. """ import numpy as np import pandas as pd import pandas_flavor as pf from janitor import check from .utils import import_message try: import unyt except ImportError: import_message("engineering", "unyt", "conda install -c conda-forge unyt") @pf.register_dataframe_method def convert_units( df: pd.DataFrame, column_name: str = None, existing_units: str = None, to_units: str = None, dest_column_name: str = None, ) -> pd.DataFrame: """ Converts a column of numeric values from one unit to another. Functional usage example: .. code-block:: python import pandas as pd import janitor.engineering df = pd.DataFrame(...) df = janitor.engineering.convert_units( df=df, column_name='temp_F', existing_units='degF', to_units='degC', dest_column_name='temp_C' ) Method chaining usage example: .. code-block:: python import pandas as pd import janitor.engineering df = pd.DataFrame(...) df = df.convert_units( column_name='temp_F', existing_units='degF', to_units='degC', dest_column_name='temp_C' ) Unit conversion can only take place if the existing_units and to_units are of the same type (e.g., temperature or pressure). The provided unit types can be any unit name or alternate name provided in the unyt package's Listing of Units table: https://unyt.readthedocs.io/en/stable/unit_listing.html#unit-listing. Volume units are not provided natively in unyt. However, exponents are supported, and therefore some volume units can be converted. For example, a volume in cubic centimeters can be converted to cubic meters using existing_units='cm**3' and to_units='m**3'. This method mutates the original DataFrame. :param df: A pandas dataframe. :param column_name: Name of the column containing numeric values that are to be converted from one set of units to another. :param existing_units: The unit type to convert from. :param to_units: The unit type to convert to. :param dest_column_name: The name of the new column containing the converted values that will be created. :returns: A pandas DataFrame with a new column of unit-converted values. """ # Check all inputs are correct data type check("column_name", column_name, [str]) check("existing_units", existing_units, [str]) check("to_units", to_units, [str]) check("dest_column_name", dest_column_name, [str]) # Check that column_name is a numeric column if not np.issubdtype(df[column_name].dtype, np.number): raise TypeError(f"{column_name} must be a numeric column.") original_vals = df[column_name].values * unyt.Unit(existing_units) converted_vals = original_vals.to(to_units) df[dest_column_name] = np.array(converted_vals) return df
29.833333
78
0.678607
3f1ef6ce7357d20969a260bb0d6f57f2517d53ea
222
py
Python
Python/pythonChallenge/5.py
JanStoltman/100DaysOfCode
1d18b76ed1e3e942e8392006a5d4bfb41484d047
[ "MIT" ]
null
null
null
Python/pythonChallenge/5.py
JanStoltman/100DaysOfCode
1d18b76ed1e3e942e8392006a5d4bfb41484d047
[ "MIT" ]
null
null
null
Python/pythonChallenge/5.py
JanStoltman/100DaysOfCode
1d18b76ed1e3e942e8392006a5d4bfb41484d047
[ "MIT" ]
null
null
null
import urllib2,pickle url = "http://www.pythonchallenge.com/pc/def/banner.p" req = urllib2.urlopen(url).read() data = pickle.loads(req) print data #for line in data: # print ''.join(elem[0]*elem[1] for elem in line)
22.2
54
0.698198
c249ef05a39971272570c44647ad173174573b38
1,963
py
Python
SC/aq_dashboard.py
alqu7095/DS-Unit-3-Sprint-3-Productization-and-Cloud
ff1d2a7ab04f503ca346734a9089203c632172bb
[ "MIT" ]
null
null
null
SC/aq_dashboard.py
alqu7095/DS-Unit-3-Sprint-3-Productization-and-Cloud
ff1d2a7ab04f503ca346734a9089203c632172bb
[ "MIT" ]
null
null
null
SC/aq_dashboard.py
alqu7095/DS-Unit-3-Sprint-3-Productization-and-Cloud
ff1d2a7ab04f503ca346734a9089203c632172bb
[ "MIT" ]
null
null
null
from flask import Flask import requests import openaq from flask_sqlalchemy import SQLAlchemy import pandas as pd from flask import render_template from .models import DB, Record api = openaq.OpenAQ() def create_app(): app = Flask(__name__) app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///db.sqlite3' DB.init_app(app) @app.route('/') def root(): status, body = api.measurements(city='Los Angeles', parameter = 'pm25') LA_25 = [] for i in range(0,len(body['results'])): LA_25.append((body['results'][i]['date']['utc'], body['results'][i]['value'])) risk = DB.session.query(Record).filter(Record.value>10).all() record = Record.query.all() return render_template("root.html", risk=risk, record=record, LA_25=LA_25) @app.route('/refresh', methods = ['POST', 'GET']) def refresh(): DB.drop_all() DB.create_all() status, body = api.measurements(city="Los Angeles", parameter = 'pm25') if request.method == 'GET': for i in range(0, len(body['results'])): DB.session.add( Record( datetime = body['results'][i]['date']['utc'], value = body ['results'][i]['value'])) DB.session.commit() record = Record.query.all() return render_template('refresh.html', records = records) @app.route('/dashboard', methods=['GET']) def dashboard(): risk = DB.session.query(Record).filter(Record.value>10).all() record = Record.query.all() return render_template("dashboard.html", risk=risk, record=record) return app DB = SQLAlchemy() class Record(DB.Model): id= DB.Column(DB.Integer, primary_key=True) datetime = DB.Column(DB.String(25)) value = DB.Column(DB.Float, nullable=False) def __repr__(self): return 'Record{}, {}'.format(self.datetime, self.value)
29.298507
90
0.599083
bf4f7bee2af60c6d48dd9cc60c36890984d86fc3
689
py
Python
backend/app/main.py
flsworld/comment-rick-n-morty
fdab96ca5d14fedd2428fbdad7e49ec8e31b4ddd
[ "MIT" ]
null
null
null
backend/app/main.py
flsworld/comment-rick-n-morty
fdab96ca5d14fedd2428fbdad7e49ec8e31b4ddd
[ "MIT" ]
null
null
null
backend/app/main.py
flsworld/comment-rick-n-morty
fdab96ca5d14fedd2428fbdad7e49ec8e31b4ddd
[ "MIT" ]
null
null
null
from fastapi import FastAPI from app.api.router import api_router from app.core.config import settings description = """ Comment R&M API helps you do awesome stuff 🚀 ## Characters Characters from the animated series ## Episodes Episodes from the animated series ## Appearances An appearance represents a character in an episode ## Comments Comment made by a user either on * character * episode * appearance ## User (_not implemented_) """ def get_application(): app = FastAPI( title=settings.PROJECT_NAME, version=settings.VERSION, description=description ) return app app = get_application() app.include_router(api_router, prefix=settings.API_PREFIX)
16.023256
86
0.753266
14486cbfa7549cfe8daf7b33116acecea5bf62c4
526
py
Python
Aula_54/Dao/base_dao.py
Mateus-Silva11/AulasPython
d34dc4f62ade438e68b0a80e0baac4d6ec0d378e
[ "MIT" ]
null
null
null
Aula_54/Dao/base_dao.py
Mateus-Silva11/AulasPython
d34dc4f62ade438e68b0a80e0baac4d6ec0d378e
[ "MIT" ]
null
null
null
Aula_54/Dao/base_dao.py
Mateus-Silva11/AulasPython
d34dc4f62ade438e68b0a80e0baac4d6ec0d378e
[ "MIT" ]
null
null
null
import sqlalchemy as db # criando a class base_dao Orientação a objeto simplificando o codigo class BaseDao: def __init__(self): #criando a conexeção com o banco de dados # ----database+conector://user:passwd@url:porta/database conexao = db.create_engine("mysql+mysqlconnector://topskills01:ts2019@mysql.topskills.dev:3306/topskills01") #criando uma sessao criador_sessao = db.orm.sessionmaker() criador_sessao.configure(bind=conexao) self.sessao = criador_sessao()
43.833333
116
0.712928
110d5b55f447cf2f02df1bc26a4277efba24f1a3
477
py
Python
data/scripts/templates/object/tangible/deed/city_deed/shared_garden_tatooine_med_03_deed.py
obi-two/GameServer
7d37024e2291a97d49522610cd8f1dbe5666afc2
[ "MIT" ]
20
2015-02-23T15:11:56.000Z
2022-03-18T20:56:48.000Z
data/scripts/templates/object/tangible/deed/city_deed/shared_garden_tatooine_med_03_deed.py
apathyboy/swganh
665128efe9154611dec4cb5efc61d246dd095984
[ "MIT" ]
null
null
null
data/scripts/templates/object/tangible/deed/city_deed/shared_garden_tatooine_med_03_deed.py
apathyboy/swganh
665128efe9154611dec4cb5efc61d246dd095984
[ "MIT" ]
20
2015-04-04T16:35:59.000Z
2022-03-24T14:54:37.000Z
#### NOTICE: THIS FILE IS AUTOGENERATED #### MODIFICATIONS MAY BE LOST IF DONE IMPROPERLY #### PLEASE SEE THE ONLINE DOCUMENTATION FOR EXAMPLES from swgpy.object import * def create(kernel): result = Tangible() result.template = "object/tangible/deed/city_deed/shared_garden_tatooine_med_03_deed.iff" result.attribute_template_id = 2 result.stfName("deed","garden_tatooine_med_03_deed") #### BEGIN MODIFICATIONS #### #### END MODIFICATIONS #### return result
28.058824
90
0.744235
a3caf39b5642ec5764d6241a59d2e3004c226158
736
py
Python
tests/utils/test_math.py
lx120/tinynn
88b941a706700ca7f6b1cc4ae7f271df7049348c
[ "MIT" ]
217
2019-08-19T07:23:57.000Z
2022-03-31T13:00:46.000Z
tests/utils/test_math.py
lx120/tinynn
88b941a706700ca7f6b1cc4ae7f271df7049348c
[ "MIT" ]
19
2019-09-06T17:11:13.000Z
2022-03-12T00:02:47.000Z
tests/utils/test_math.py
lx120/tinynn
88b941a706700ca7f6b1cc4ae7f271df7049348c
[ "MIT" ]
57
2019-09-06T12:12:24.000Z
2022-03-29T03:33:01.000Z
import numpy as np import tinynn as tn tn.seeder.random_seed(31) def test_softmax(): x = np.array([1.0, 2.0, 3.0, 4.0]) a = np.exp(x - np.max(x)) expect = a / a.sum() assert np.allclose(tn.math.softmax(x), expect) x = np.array([1e10, 1e10]) expect = [0.5, 0.5] assert np.allclose(tn.math.softmax(x), expect) def test_log_softmax(): x = np.random.uniform(0, 1, 10) assert np.allclose(tn.math.log_softmax(x), np.log(tn.math.softmax(x))) x = np.random.uniform(1e10, 1e10, 10) assert np.allclose(tn.math.log_softmax(x), np.log(tn.math.softmax(x))) def test_sigmoid(): assert tn.math.sigmoid(1e10) == 1.0 assert tn.math.sigmoid(-1e10) == 0.0 assert tn.math.sigmoid(0) == 0.5
23.741935
74
0.629076
5f3507eb5ecfa89fb9b5be5b4548773a2c25a3c1
1,111
py
Python
blog/urls.py
ZiYin-ss/python-blog
df2b18384a6ff691ea4b35a0659d54979eb9da15
[ "MIT" ]
null
null
null
blog/urls.py
ZiYin-ss/python-blog
df2b18384a6ff691ea4b35a0659d54979eb9da15
[ "MIT" ]
null
null
null
blog/urls.py
ZiYin-ss/python-blog
df2b18384a6ff691ea4b35a0659d54979eb9da15
[ "MIT" ]
null
null
null
"""blog URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.conf.urls import url from django.contrib import admin from django.urls import path, include from blog.settings import DEBUG, MEDIA_ROOT urlpatterns = [ path('admin/', admin.site.urls), path('', include('post.urls')), path('ckeditor/', include('ckeditor_uploader.urls')), path('search/', include('haystack.urls')), ] from django.views.static import serve if DEBUG: urlpatterns += url(r'media/(?P<path>.*)/$', serve, {"document_root": MEDIA_ROOT}),
33.666667
86
0.70117
9123a8f0a0461930239491c951ec5a47ff13dc92
18,627
py
Python
evennia/scripts/scripts.py
pakhnu/my-world
405983dca81e70fc64d58d6a60126ffa5e8ada8c
[ "BSD-3-Clause" ]
null
null
null
evennia/scripts/scripts.py
pakhnu/my-world
405983dca81e70fc64d58d6a60126ffa5e8ada8c
[ "BSD-3-Clause" ]
null
null
null
evennia/scripts/scripts.py
pakhnu/my-world
405983dca81e70fc64d58d6a60126ffa5e8ada8c
[ "BSD-3-Clause" ]
null
null
null
""" This module defines Scripts, out-of-character entities that can store data both on themselves and on other objects while also having the ability to run timers. """ from twisted.internet.defer import Deferred, maybeDeferred from twisted.internet.task import LoopingCall from django.core.exceptions import ObjectDoesNotExist from django.utils.translation import ugettext as _ from evennia.typeclasses.models import TypeclassBase from evennia.scripts.models import ScriptDB from evennia.scripts.manager import ScriptManager from evennia.utils import logger from future.utils import with_metaclass __all__ = ["DefaultScript", "DoNothing", "Store"] _GA = object.__getattribute__ _SESSIONS = None class ExtendedLoopingCall(LoopingCall): """ LoopingCall that can start at a delay different than `self.interval`. """ start_delay = None callcount = 0 def start(self, interval, now=True, start_delay=None, count_start=0): """ Start running function every interval seconds. This overloads the LoopingCall default by offering the start_delay keyword and ability to repeat. Args: interval (int): Repeat interval in seconds. now (bool, optional): Whether to start immediately or after `start_delay` seconds. start_delay (int): The number of seconds before starting. If None, wait interval seconds. Only valid if `now` is `False`. It is used as a way to start with a variable start time after a pause. count_start (int): Number of repeats to start at. The count goes up every time the system repeats. This is used to implement something repeating `N` number of times etc. Raises: AssertError: if trying to start a task which is already running. ValueError: If interval is set to an invalid value < 0. Notes: As opposed to Twisted's inbuilt count mechanism, this system will count also if force_repeat() was called rather than just the number of `interval` seconds since the start. This allows us to force-step through a limited number of steps if we want. """ assert not self.running, ("Tried to start an already running " "ExtendedLoopingCall.") if interval < 0: raise ValueError("interval must be >= 0") self.running = True deferred = self._deferred = Deferred() self.starttime = self.clock.seconds() self.interval = interval self._runAtStart = now self.callcount = max(0, count_start) self.start_delay = start_delay if start_delay is None else max(0, start_delay) if now: # run immediately self() elif start_delay is not None and start_delay >= 0: # start after some time: for this to work we need to # trick _scheduleFrom by temporarily setting a different # self.interval for it to check. real_interval, self.interval = self.interval, start_delay self._scheduleFrom(self.starttime) # re-set the actual interval (this will be picked up # next time it runs self.interval = real_interval else: self._scheduleFrom(self.starttime) return deferred def __call__(self): """ Tick one step. We update callcount (tracks number of calls) as well as null start_delay (needed in order to correctly estimate next_call_time at all times). """ self.callcount += 1 if self.start_delay: self.start_delay = None self.starttime = self.clock.seconds() super(ExtendedLoopingCall, self).__call__() def force_repeat(self): """ Force-fire the callback Raises: AssertionError: When trying to force a task that is not running. """ assert self.running, ("Tried to fire an ExtendedLoopingCall " "that was not running.") self.call.cancel() self.call = None self.starttime = self.clock.seconds() self() def next_call_time(self): """ Get the next call time. This also takes the eventual effect of start_delay into account. Returns: next (int or None): The time in seconds until the next call. This takes `start_delay` into account. Returns `None` if the task is not running. """ if self.running: total_runtime = self.clock.seconds() - self.starttime interval = self.start_delay or self.interval return interval - (total_runtime % self.interval) return None class ScriptBase(with_metaclass(TypeclassBase, ScriptDB)): """ Base class for scripts. Don't inherit from this, inherit from the class `DefaultScript` below instead. """ objects = ScriptManager() class DefaultScript(ScriptBase): """ This is the base TypeClass for all Scripts. Scripts describe events, timers and states in game, they can have a time component or describe a state that changes under certain conditions. """ def __eq__(self, other): """ Compares two Scripts. Compares dbids. Args: other (Script): A script to compare with. """ try: return other.dbid == self.dbid except Exception: return False def _start_task(self): """ Start task runner. """ self.ndb._task = ExtendedLoopingCall(self._step_task) if self.db._paused_time: # the script was paused; restarting callcount = self.db._paused_callcount or 0 self.ndb._task.start(self.db_interval, now=False, start_delay=self.db._paused_time, count_start=callcount) del self.db._paused_time del self.db._paused_repeats else: # starting script anew self.ndb._task.start(self.db_interval, now=not self.db_start_delay) def _stop_task(self): """ Stop task runner """ task = self.ndb._task if task and task.running: task.stop() def _step_errback(self, e): """ Callback for runner errors """ cname = self.__class__.__name__ estring = _("Script %(key)s(#%(dbid)s) of type '%(cname)s': at_repeat() error '%(err)s'.") % \ {"key": self.key, "dbid": self.dbid, "cname": cname, "err": e.getErrorMessage()} try: self.db_obj.msg(estring) except Exception: pass logger.log_err(estring) def _step_callback(self): """ Step task runner. No try..except needed due to defer wrap. """ if not self.is_valid(): self.stop() return # call hook self.at_repeat() # check repeats callcount = self.ndb._task.callcount maxcount = self.db_repeats if maxcount > 0 and maxcount <= callcount: self.stop() def _step_task(self): """ Step task. This groups error handling. """ try: return maybeDeferred(self._step_callback).addErrback(self._step_errback) except Exception: logger.log_trace() # Public methods def time_until_next_repeat(self): """ Get time until the script fires it `at_repeat` hook again. Returns: next (int): Time in seconds until the script runs again. If not a timed script, return `None`. Notes: This hook is not used in any way by the script's stepping system; it's only here for the user to be able to check in on their scripts and when they will next be run. """ task = self.ndb._task if task: try: return int(round(task.next_call_time())) except TypeError: pass return None def remaining_repeats(self): """ Get the number of returning repeats for limited Scripts. Returns: remaining (int or `None`): The number of repeats remaining until the Script stops. Returns `None` if it has unlimited repeats. """ task = self.ndb._task if task: return max(0, self.db_repeats - task.callcount) def start(self, force_restart=False): """ Called every time the script is started (for persistent scripts, this is usually once every server start) Args: force_restart (bool, optional): Normally an already started script will not be started again. if `force_restart=True`, the script will always restart the script, regardless of if it has started before. Returns: result (int): 0 or 1 depending on if the script successfully started or not. Used in counting. """ if self.is_active and not force_restart: # script already runs and should not be restarted. return 0 obj = self.obj if obj: # check so the scripted object is valid and initalized try: obj.cmdset except AttributeError: # this means the object is not initialized. logger.log_trace() self.is_active = False return 0 # try to restart a paused script try: if self.unpause(manual_unpause=False): return 1 except RuntimeError: # manually paused. return 0 # start the script from scratch self.is_active = True try: self.at_start() except Exception: logger.log_trace() if self.db_interval > 0: self._start_task() return 1 def stop(self, kill=False): """ Called to stop the script from running. This also deletes the script. Args: kill (bool, optional): - Stop the script without calling any relevant script hooks. Returns: result (int): 0 if the script failed to stop, 1 otherwise. Used in counting. """ if not kill: try: self.at_stop() except Exception: logger.log_trace() self._stop_task() try: self.delete() except AssertionError: logger.log_trace() return 0 except ObjectDoesNotExist: return 0 return 1 def pause(self, manual_pause=True): """ This stops a running script and stores its active state. It WILL NOT call the `at_stop()` hook. """ self.db._manual_pause = manual_pause if not self.db._paused_time: # only allow pause if not already paused task = self.ndb._task if task: self.db._paused_time = task.next_call_time() self.db._paused_callcount = task.callcount self._stop_task() self.is_active = False def unpause(self, manual_unpause=True): """ Restart a paused script. This WILL call the `at_start()` hook. Args: manual_unpause (bool, optional): This is False if unpause is called by the server reload/reset mechanism. Returns: result (bool): True if unpause was triggered, False otherwise. Raises: RuntimeError: If trying to automatically resart this script (usually after a reset/reload), but it was manually paused, and so should not the auto-unpaused. """ if not manual_unpause and self.db._manual_pause: # if this script was paused manually (by a direct call of pause), # it cannot be automatically unpaused (e.g. by a @reload) raise RuntimeError if self.db._paused_time: # only unpause if previously paused self.is_active = True try: self.at_start() except Exception: logger.log_trace() self._start_task() return True def restart(self, interval=None, repeats=None, start_delay=None): """ Restarts an already existing/running Script from the beginning, optionally using different settings. This will first call the stop hooks, and then the start hooks again. Args: interval (int, optional): Allows for changing the interval of the Script. Given in seconds. if `None`, will use the already stored interval. repeats (int, optional): The number of repeats. If unset, will use the previous setting. start_delay (bool, optional): If we should wait `interval` seconds before starting or not. If `None`, re-use the previous setting. """ try: self.at_stop() except Exception: logger.log_trace() self._stop_task() self.is_active = False if interval is not None: self.interval = interval if repeats is not None: self.repeats = repeats if start_delay is not None: self.start_delay = start_delay self.start() def reset_callcount(self, value=0): """ Reset the count of the number of calls done. Args: value (int, optional): The repeat value to reset to. Default is to set it all the way back to 0. Notes: This is only useful if repeats != 0. """ task = self.ndb._task if task: task.callcount = max(0, int(value)) def force_repeat(self): """ Fire a premature triggering of the script callback. This will reset the timer and count down repeats as if the script had fired normally. """ task = self.ndb._task if task: task.force_repeat() def at_first_save(self): """ This is called after very first time this object is saved. Generally, you don't need to overload this, but only the hooks called by this method. """ self.at_script_creation() if hasattr(self, "_createdict"): # this will only be set if the utils.create_script # function was used to create the object. We want # the create call's kwargs to override the values # set by hooks. cdict = self._createdict updates = [] if not cdict.get("key"): if not self.db_key: self.db_key = "#%i" % self.dbid updates.append("db_key") elif self.db_key != cdict["key"]: self.db_key = cdict["key"] updates.append("db_key") if cdict.get("interval") and self.interval != cdict["interval"]: self.db_interval = cdict["interval"] updates.append("db_interval") if cdict.get("start_delay") and self.start_delay != cdict["start_delay"]: self.db_start_delay = cdict["start_delay"] updates.append("db_start_delay") if cdict.get("repeats") and self.repeats != cdict["repeats"]: self.db_repeats = cdict["repeats"] updates.append("db_repeats") if cdict.get("persistent") and self.persistent != cdict["persistent"]: self.db_persistent = cdict["persistent"] updates.append("db_persistent") if updates: self.save(update_fields=updates) if not cdict.get("autostart"): # don't auto-start the script return # auto-start script (default) self.start() def at_script_creation(self): """ Only called once, by the create function. """ pass def is_valid(self): """ Is called to check if the script is valid to run at this time. Should return a boolean. The method is assumed to collect all needed information from its related self.obj. """ return not self._is_deleted def at_start(self): """ Called whenever the script is started, which for persistent scripts is at least once every server start. It will also be called when starting again after a pause (such as after a server reload) """ pass def at_repeat(self): """ Called repeatedly if this Script is set to repeat regularly. """ pass def at_stop(self): """ Called whenever when it's time for this script to stop (either because is_valid returned False or it runs out of iterations) """ pass def at_server_reload(self): """ This hook is called whenever the server is shutting down for restart/reboot. If you want to, for example, save non-persistent properties across a restart, this is the place to do it. """ pass def at_server_shutdown(self): """ This hook is called whenever the server is shutting down fully (i.e. not for a restart). """ pass # Some useful default Script types used by Evennia. class DoNothing(DefaultScript): """ A script that does nothing. Used as default fallback. """ def at_script_creation(self): """ Setup the script """ self.key = "sys_do_nothing" self.desc = "This is an empty placeholder script." class Store(DefaultScript): """ Simple storage script """ def at_script_creation(self): """ Setup the script """ self.key = "sys_storage" self.desc = "This is a generic storage container."
31.732538
102
0.571643
ed2f21b005e347f409fc308b43b9bb80520b4697
3,430
py
Python
examples/python/native/cifar10_cnn_concat.py
rvinaybharadwaj/FlexFlow
bb8a3e24ac623ac48cd97e103b37ba7e715d3d3a
[ "Apache-2.0" ]
2
2021-03-17T12:00:35.000Z
2021-03-17T12:18:28.000Z
examples/python/native/cifar10_cnn_concat.py
rvinaybharadwaj/FlexFlow
bb8a3e24ac623ac48cd97e103b37ba7e715d3d3a
[ "Apache-2.0" ]
null
null
null
examples/python/native/cifar10_cnn_concat.py
rvinaybharadwaj/FlexFlow
bb8a3e24ac623ac48cd97e103b37ba7e715d3d3a
[ "Apache-2.0" ]
null
null
null
from flexflow.core import * from flexflow.keras.datasets import cifar10 from accuracy import ModelAccuracy def top_level_task(): ffconfig = FFConfig() alexnetconfig = NetConfig() print(alexnetconfig.dataset_path) ffconfig.parse_args() print("Python API batchSize(%d) workersPerNodes(%d) numNodes(%d)" %(ffconfig.get_batch_size(), ffconfig.get_workers_per_node(), ffconfig.get_num_nodes())) ffmodel = FFModel(ffconfig) dims_input = [ffconfig.get_batch_size(), 3, 32, 32] input_tensor = ffmodel.create_tensor(dims_input, DataType.DT_FLOAT) t1 = ffmodel.conv2d(input_tensor, 32, 3, 3, 1, 1, 1, 1, ActiMode.AC_MODE_RELU) t1 = ffmodel.conv2d(t1, 32, 3, 3, 1, 1, 1, 1, ActiMode.AC_MODE_RELU) t2 = ffmodel.conv2d(input_tensor, 32, 3, 3, 1, 1, 1, 1, ActiMode.AC_MODE_RELU) t2 = ffmodel.conv2d(t2, 32, 3, 3, 1, 1, 1, 1, ActiMode.AC_MODE_RELU) t3 = ffmodel.conv2d(input_tensor, 32, 3, 3, 1, 1, 1, 1, ActiMode.AC_MODE_RELU) t3 = ffmodel.conv2d(t3, 32, 3, 3, 1, 1, 1, 1, ActiMode.AC_MODE_RELU) t = ffmodel.concat([t1, t2, t3], 1) t = ffmodel.pool2d(t, 2, 2, 2, 2, 0, 0,) t1 = ffmodel.conv2d(t, 64, 3, 3, 1, 1, 1, 1, ActiMode.AC_MODE_RELU) t2 = ffmodel.conv2d(t, 64, 3, 3, 1, 1, 1, 1, ActiMode.AC_MODE_RELU) t = ffmodel.concat([t1, t2], 1) t = ffmodel.conv2d(t, 64, 3, 3, 1, 1, 1, 1, ActiMode.AC_MODE_RELU) t = ffmodel.pool2d(t, 2, 2, 2, 2, 0, 0) t = ffmodel.flat(t); t = ffmodel.dense(t, 512, ActiMode.AC_MODE_RELU) t = ffmodel.dense(t, 10) t = ffmodel.softmax(t) ffoptimizer = SGDOptimizer(ffmodel, 0.01) ffmodel.set_sgd_optimizer(ffoptimizer) ffmodel.compile(loss_type=LossType.LOSS_SPARSE_CATEGORICAL_CROSSENTROPY, metrics=[MetricsType.METRICS_ACCURACY, MetricsType.METRICS_SPARSE_CATEGORICAL_CROSSENTROPY]) label_tensor = ffmodel.get_label_tensor() num_samples = 10000 (x_train, y_train), (x_test, y_test) = cifar10.load_data(num_samples) x_train = x_train.astype('float32') x_train /= 255 full_input_array = x_train print(full_input_array.__array_interface__["strides"]) y_train = y_train.astype('int32') full_label_array = y_train dims_full_input = [num_samples, 3, 32, 32] full_input = ffmodel.create_tensor(dims_full_input, DataType.DT_FLOAT) dims_full_label = [num_samples, 1] full_label = ffmodel.create_tensor(dims_full_label, DataType.DT_INT32) full_input.attach_numpy_array(ffconfig, full_input_array) full_label.attach_numpy_array(ffconfig, full_label_array) dataloader_input = SingleDataLoader(ffmodel, input_tensor, full_input, num_samples, DataType.DT_FLOAT) dataloader_label = SingleDataLoader(ffmodel, label_tensor, full_label, num_samples, DataType.DT_INT32) full_input.detach_numpy_array(ffconfig) full_label.detach_numpy_array(ffconfig) num_samples = dataloader_input.get_num_samples() ffmodel.init_layers() epochs = ffconfig.get_epochs() ts_start = ffconfig.get_current_time() ffmodel.fit(x=dataloader_input, y=dataloader_label, epochs=epochs) ts_end = ffconfig.get_current_time() run_time = 1e-6 * (ts_end - ts_start); print("epochs %d, ELAPSED TIME = %.4fs, THROUGHPUT = %.2f samples/s\n" %(epochs, run_time, num_samples * epochs / run_time)); perf_metrics = ffmodel.get_perf_metrics() accuracy = perf_metrics.get_accuracy() if accuracy < ModelAccuracy.CIFAR10_CNN.value: assert 0, 'Check Accuracy' if __name__ == "__main__": print("cifar10 cnn concat") top_level_task()
38.539326
167
0.737026
b1647c267dc651f218079210988d83f539769102
37
py
Python
loop.py
pexceful/test
02e1336a3f5383dd9cc0569cbc5105b39b8799ad
[ "MIT" ]
null
null
null
loop.py
pexceful/test
02e1336a3f5383dd9cc0569cbc5105b39b8799ad
[ "MIT" ]
null
null
null
loop.py
pexceful/test
02e1336a3f5383dd9cc0569cbc5105b39b8799ad
[ "MIT" ]
null
null
null
for i in range(69): print (i)
12.333333
20
0.513514
873c4bb37ec797c4ec251cbf24cefca20d45d25e
22,602
py
Python
a5_public/nmt_model.py
thophan92/cs224n-winter2019
f3f8041b35e949e73167135d662a2bd93e7406de
[ "MIT" ]
null
null
null
a5_public/nmt_model.py
thophan92/cs224n-winter2019
f3f8041b35e949e73167135d662a2bd93e7406de
[ "MIT" ]
null
null
null
a5_public/nmt_model.py
thophan92/cs224n-winter2019
f3f8041b35e949e73167135d662a2bd93e7406de
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ CS224N 2018-19: Homework 5 nmt_model.py: NMT Model Pencheng Yin <pcyin@cs.cmu.edu> Sahil Chopra <schopra8@stanford.edu> """ from collections import namedtuple import sys from typing import List, Tuple, Dict, Set, Union import torch import torch.nn as nn import torch.nn.utils import torch.nn.functional as F from torch.nn.utils.rnn import pad_packed_sequence, pack_padded_sequence from model_embeddings import ModelEmbeddings from char_decoder import CharDecoder Hypothesis = namedtuple('Hypothesis', ['value', 'score']) import random class NMT(nn.Module): """ Simple Neural Machine Translation Model: - Bidrectional LSTM Encoder - Unidirection LSTM Decoder - Global Attention Model (Luong, et al. 2015) """ def __init__(self, embed_size, hidden_size, vocab, dropout_rate=0.2, no_char_decoder=False): """ Init NMT Model. @param embed_size (int): Embedding size (dimensionality) @param hidden_size (int): Hidden Size (dimensionality) @param vocab (Vocab): Vocabulary object containing src and tgt languages See vocab.py for documentation. @param dropout_rate (float): Dropout probability, for attention """ super(NMT, self).__init__() self.model_embeddings_source = ModelEmbeddings(embed_size, vocab.src) self.model_embeddings_target = ModelEmbeddings(embed_size, vocab.tgt) self.hidden_size = hidden_size self.dropout_rate = dropout_rate self.vocab = vocab ### COPY OVER YOUR CODE FROM ASSIGNMENT 4 self.encoder = nn.LSTM(embed_size, hidden_size, bidirectional=True, bias=True) self.decoder = nn.LSTMCell(embed_size + hidden_size, hidden_size, bias=True) self.h_projection = nn.Linear(2 * hidden_size, hidden_size, bias=False) self.c_projection = nn.Linear(2 * hidden_size, hidden_size, bias=False) self.att_projection = nn.Linear(2 * hidden_size, hidden_size, bias=False) self.combined_output_projection = nn.Linear(3 * hidden_size, hidden_size, bias=False) self.target_vocab_projection = nn.Linear(hidden_size, len(vocab.tgt), bias=False) self.dropout = nn.Dropout(dropout_rate) ### END YOUR CODE FROM ASSIGNMENT 4 if not no_char_decoder: self.charDecoder = CharDecoder(hidden_size, target_vocab=vocab.tgt) else: self.charDecoder = None def forward(self, source: List[List[str]], target: List[List[str]]) -> torch.Tensor: """ Take a mini-batch of source and target sentences, compute the log-likelihood of target sentences under the language models learned by the NMT system. @param source (List[List[str]]): list of source sentence tokens @param target (List[List[str]]): list of target sentence tokens, wrapped by `<s>` and `</s>` @returns scores (Tensor): a variable/tensor of shape (b, ) representing the log-likelihood of generating the gold-standard target sentence for each example in the input batch. Here b = batch size. """ # Compute sentence lengths source_lengths = [len(s) for s in source] # Convert list of lists into tensors ## A4 code # source_padded = self.vocab.src.to_input_tensor(source, device=self.device) # Tensor: (src_len, b) # target_padded = self.vocab.tgt.to_input_tensor(target, device=self.device) # Tensor: (tgt_len, b) # enc_hiddens, dec_init_state = self.encode(source_padded, source_lengths) # enc_masks = self.generate_sent_masks(enc_hiddens, source_lengths) # combined_outputs = self.decode(enc_hiddens, enc_masks, dec_init_state, target_padded) ## End A4 code ### YOUR CODE HERE for part 1k ### TODO: ### Modify the code lines above as needed to fetch the character-level tensor ### to feed into encode() and decode(). You should: ### - Keep `target_padded` from A4 code above for predictions ### - Add `source_padded_chars` for character level padded encodings for source ### - Add `target_padded_chars` for character level padded encodings for target ### - Modify calls to encode() and decode() to use the character level encodings target_padded = self.vocab.tgt.to_input_tensor(target, device=self.device) # (max_sentence_length, batch_size) source_padded_chars = self.vocab.src.to_input_tensor_char(source, device=self.device) # (max_sentence_length, batch_size, max_word_length) target_padded_chars = self.vocab.tgt.to_input_tensor_char(target, device=self.device) # (max_sentence_length, batch_size, max_word_length) enc_hiddens, dec_init_state = self.encode(source_padded_chars, source_lengths) enc_masks = self.generate_sent_masks(enc_hiddens, source_lengths) combined_outputs = self.decode(enc_hiddens, enc_masks, dec_init_state, target_padded_chars) ### END YOUR CODE P = F.log_softmax(self.target_vocab_projection(combined_outputs), dim=-1) # Zero out, probabilities for which we have nothing in the target text target_masks = (target_padded != self.vocab.tgt['<pad>']).float() # Compute log probability of generating true target words target_gold_words_log_prob = torch.gather(P, index=target_padded[1:].unsqueeze(-1), dim=-1).squeeze(-1) * target_masks[1:] scores = target_gold_words_log_prob.sum() # mhahn2 Small modification from A4 code. if self.charDecoder is not None: max_word_len = target_padded_chars.shape[-1] target_words = target_padded[1:].contiguous().view(-1) target_chars = target_padded_chars[1:].contiguous().view(-1, max_word_len) # TODO actively add .contiguous() target_outputs = combined_outputs.view(-1, 256) target_chars_oov = target_chars #torch.index_select(target_chars, dim=0, index=oovIndices) rnn_states_oov = target_outputs #torch.index_select(target_outputs, dim=0, index=oovIndices) oovs_losses = self.charDecoder.train_forward(target_chars_oov.t(), (rnn_states_oov.unsqueeze(0), rnn_states_oov.unsqueeze(0))) scores = scores - oovs_losses return scores def encode(self, source_padded: torch.Tensor, source_lengths: List[int]) -> Tuple[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: """ Apply the encoder to source sentences to obtain encoder hidden states. Additionally, take the final states of the encoder and project them to obtain initial states for decoder. @param source_padded (Tensor): Tensor of padded source sentences with shape (src_len, b, max_word_length), where b = batch_size, src_len = maximum source sentence length. Note that these have already been sorted in order of longest to shortest sentence. @param source_lengths (List[int]): List of actual lengths for each of the source sentences in the batch @returns enc_hiddens (Tensor): Tensor of hidden units with shape (b, src_len, h*2), where b = batch size, src_len = maximum source sentence length, h = hidden size. @returns dec_init_state (tuple(Tensor, Tensor)): Tuple of tensors representing the decoder's initial hidden state and cell. """ enc_hiddens, dec_init_state = None, None ### COPY OVER YOUR CODE FROM ASSIGNMENT 4 ### Except replace "self.model_embeddings.source" with "self.model_embeddings_source" X = self.model_embeddings_source( source_padded) # source_padded.shape : (src_len, b) --> X.shape : (sentence_length, batch_size, emb_word_size) X = pack_padded_sequence(X, lengths=source_lengths) enc_hiddens, (last_hidden, last_cell) = self.encoder(X) enc_hiddens, _ = pad_packed_sequence(enc_hiddens) enc_hiddens = enc_hiddens.transpose(0, 1) last_hidden = torch.cat((last_hidden[0], last_hidden[1]), 1) # concatenate forward and backward vectors init_decoder_hidden = self.h_projection(last_hidden) last_cell = torch.cat((last_cell[0], last_cell[1]), 1) init_decoder_cell = self.c_projection(last_cell) dec_init_state = (init_decoder_hidden, init_decoder_cell) ### END YOUR CODE FROM ASSIGNMENT 4 return enc_hiddens, dec_init_state def decode(self, enc_hiddens: torch.Tensor, enc_masks: torch.Tensor, dec_init_state: Tuple[torch.Tensor, torch.Tensor], target_padded: torch.Tensor) -> torch.Tensor: """Compute combined output vectors for a batch. @param enc_hiddens (Tensor): Hidden states (b, src_len, h*2), where b = batch size, src_len = maximum source sentence length, h = hidden size. @param enc_masks (Tensor): Tensor of sentence masks (b, src_len), where b = batch size, src_len = maximum source sentence length. @param dec_init_state (tuple(Tensor, Tensor)): Initial state and cell for decoder @param target_padded (Tensor): Gold-standard padded target sentences (tgt_len, b, max_word_length), where tgt_len = maximum target sentence length, b = batch size. @returns combined_outputs (Tensor): combined output tensor (tgt_len, b, h), where tgt_len = maximum target sentence length, b = batch_size, h = hidden size """ # Chop of the <END> token for max length sentences. target_padded = target_padded[:-1] # Initialize the decoder state (hidden and cell) dec_state = dec_init_state # Initialize previous combined output vector o_{t-1} as zero batch_size = enc_hiddens.size(0) o_prev = torch.zeros(batch_size, self.hidden_size, device=self.device) # Initialize a list we will use to collect the combined output o_t on each step combined_outputs = [] ### COPY OVER YOUR CODE FROM ASSIGNMENT 4 ### Except replace "self.model_embeddings.target" with "self.model_embeddings_target" enc_hiddens_proj = self.att_projection(enc_hiddens) # enc_hiddens_proj.shape : (b, src_len, h) Y = self.model_embeddings_target(target_padded) # Y.shape : (tgt_len, b, e) # for Y_t in torch.split(Y, 1, dim=0): # Y_t = torch.squeeze(Y_t) # Ybar_t = torch.cat((Y_t, o_prev)) # dec_state, o_t, e_t = self.step(Ybar_t, dec_state, enc_hiddens, enc_hiddens_proj, enc_masks) # combined_outputs.append(o_t) # o_prev = o_t for Y_t in torch.split(Y, split_size_or_sections=1): Y_t = Y_t.squeeze(0) Ybar_t = torch.cat([Y_t, o_prev], dim=-1) dec_state, o_t, _ = self.step(Ybar_t, dec_state, enc_hiddens, enc_hiddens_proj, enc_masks) combined_outputs.append(o_t) o_prev = o_t combined_outputs = torch.stack(combined_outputs) ### END YOUR CODE FROM ASSIGNMENT 4 return combined_outputs def step(self, Ybar_t: torch.Tensor, dec_state: Tuple[torch.Tensor, torch.Tensor], enc_hiddens: torch.Tensor, enc_hiddens_proj: torch.Tensor, enc_masks: torch.Tensor) -> Tuple[Tuple, torch.Tensor, torch.Tensor]: """ Compute one forward step of the LSTM decoder, including the attention computation. @param Ybar_t (Tensor): Concatenated Tensor of [Y_t o_prev], with shape (b, e + h). The input for the decoder, where b = batch size, e = embedding size, h = hidden size. @param dec_state (tuple(Tensor, Tensor)): Tuple of tensors both with shape (b, h), where b = batch size, h = hidden size. First tensor is decoder's prev hidden state, second tensor is decoder's prev cell. @param enc_hiddens (Tensor): Encoder hidden states Tensor, with shape (b, src_len, h * 2), where b = batch size, src_len = maximum source length, h = hidden size. @param enc_hiddens_proj (Tensor): Encoder hidden states Tensor, projected from (h * 2) to h. Tensor is with shape (b, src_len, h), where b = batch size, src_len = maximum source length, h = hidden size. @param enc_masks (Tensor): Tensor of sentence masks shape (b, src_len), where b = batch size, src_len is maximum source length. @returns dec_state (tuple (Tensor, Tensor)): Tuple of tensors both shape (b, h), where b = batch size, h = hidden size. First tensor is decoder's new hidden state, second tensor is decoder's new cell. @returns combined_output (Tensor): Combined output Tensor at timestep t, shape (b, h), where b = batch size, h = hidden size. @returns e_t (Tensor): Tensor of shape (b, src_len). It is attention scores distribution. Note: You will not use this outside of this function. We are simply returning this value so that we can sanity check your implementation. """ combined_output = None ### COPY OVER YOUR CODE FROM ASSIGNMENT 4 dec_state = self.decoder(Ybar_t, dec_state) (dec_hidden, dec_cell) = dec_state # (b, src_len, h) x (b, h, 1) --> (b, src_len, 1) --> (b, src_len) e_t = torch.bmm(enc_hiddens_proj, dec_hidden.unsqueeze(2)).squeeze(2) ### END YOUR CODE FROM ASSIGNMENT 4 # Set e_t to -inf where enc_masks has 1 if enc_masks is not None: e_t.data.masked_fill_(enc_masks.byte(), -float('inf')) ### COPY OVER YOUR CODE FROM ASSIGNMENT 4 alpha_t = nn.functional.softmax(e_t, dim=-1) # (b, src_len) # (b, 1, src_len) x (b, src_len, 2h) --> (b, 1, 2h) --> (b, 2h) alpha_t_view = (alpha_t.size(0), 1, alpha_t.size(1)) a_t = torch.bmm(alpha_t.view(*alpha_t_view), enc_hiddens).squeeze(1) # a_t = alpha_t.unsqueeze(1).bmm(enc_hiddens).squeeze(1) # (b, 2h) U_t = torch.cat((a_t, dec_hidden), dim=1) # (b, 3h) V_t = self.combined_output_projection(U_t) # (b, h) O_t = self.dropout(torch.tanh(V_t)) # (b, h) ### END YOUR CODE FROM ASSIGNMENT 4 combined_output = O_t return dec_state, combined_output, e_t def generate_sent_masks(self, enc_hiddens: torch.Tensor, source_lengths: List[int]) -> torch.Tensor: """ Generate sentence masks for encoder hidden states. @param enc_hiddens (Tensor): encodings of shape (b, src_len, 2*h), where b = batch size, src_len = max source length, h = hidden size. @param source_lengths (List[int]): List of actual lengths for each of the sentences in the batch. @returns enc_masks (Tensor): Tensor of sentence masks of shape (b, src_len), where src_len = max source length, h = hidden size. """ enc_masks = torch.zeros(enc_hiddens.size(0), enc_hiddens.size(1), dtype=torch.float) for e_id, src_len in enumerate(source_lengths): enc_masks[e_id, src_len:] = 1 return enc_masks.to(self.device) def beam_search(self, src_sent: List[str], beam_size: int=5, max_decoding_time_step: int=70) -> List[Hypothesis]: """ Given a single source sentence, perform beam search, yielding translations in the target language. @param src_sent (List[str]): a single source sentence (words) @param beam_size (int): beam size @param max_decoding_time_step (int): maximum number of time steps to unroll the decoding RNN @returns hypotheses (List[Hypothesis]): a list of hypothesis, each hypothesis has two fields: value: List[str]: the decoded target sentence, represented as a list of words score: float: the log-likelihood of the target sentence """ ## A4 code # src_sents_var = self.vocab.src.to_input_tensor([src_sent], self.device) ## End A4 code src_sents_var = self.vocab.src.to_input_tensor_char([src_sent], self.device) src_encodings, dec_init_vec = self.encode(src_sents_var, [len(src_sent)]) src_encodings_att_linear = self.att_projection(src_encodings) h_tm1 = dec_init_vec att_tm1 = torch.zeros(1, self.hidden_size, device=self.device) eos_id = self.vocab.tgt['</s>'] hypotheses = [['<s>']] hyp_scores = torch.zeros(len(hypotheses), dtype=torch.float, device=self.device) completed_hypotheses = [] t = 0 while len(completed_hypotheses) < beam_size and t < max_decoding_time_step: t += 1 hyp_num = len(hypotheses) exp_src_encodings = src_encodings.expand(hyp_num, src_encodings.size(1), src_encodings.size(2)) exp_src_encodings_att_linear = src_encodings_att_linear.expand(hyp_num, src_encodings_att_linear.size(1), src_encodings_att_linear.size(2)) ## A4 code # y_tm1 = self.vocab.tgt.to_input_tensor(list([hyp[-1]] for hyp in hypotheses), device=self.device) # y_t_embed = self.model_embeddings_target(y_tm1) ## End A4 code y_tm1 = self.vocab.tgt.to_input_tensor_char(list([hyp[-1]] for hyp in hypotheses), device=self.device) y_t_embed = self.model_embeddings_target(y_tm1) y_t_embed = torch.squeeze(y_t_embed, dim=0) x = torch.cat([y_t_embed, att_tm1], dim=-1) (h_t, cell_t), att_t, _ = self.step(x, h_tm1, exp_src_encodings, exp_src_encodings_att_linear, enc_masks=None) # log probabilities over target words log_p_t = F.log_softmax(self.target_vocab_projection(att_t), dim=-1) live_hyp_num = beam_size - len(completed_hypotheses) contiuating_hyp_scores = (hyp_scores.unsqueeze(1).expand_as(log_p_t) + log_p_t).view(-1) top_cand_hyp_scores, top_cand_hyp_pos = torch.topk(contiuating_hyp_scores, k=live_hyp_num) prev_hyp_ids = top_cand_hyp_pos / len(self.vocab.tgt) hyp_word_ids = top_cand_hyp_pos % len(self.vocab.tgt) new_hypotheses = [] live_hyp_ids = [] new_hyp_scores = [] decoderStatesForUNKsHere = [] for prev_hyp_id, hyp_word_id, cand_new_hyp_score in zip(prev_hyp_ids, hyp_word_ids, top_cand_hyp_scores): prev_hyp_id = prev_hyp_id.item() hyp_word_id = hyp_word_id.item() cand_new_hyp_score = cand_new_hyp_score.item() hyp_word = self.vocab.tgt.id2word[hyp_word_id] # Record output layer in case UNK was generated if hyp_word == "<unk>": hyp_word = "<unk>"+str(len(decoderStatesForUNKsHere)) decoderStatesForUNKsHere.append(att_t[prev_hyp_id]) new_hyp_sent = hypotheses[prev_hyp_id] + [hyp_word] if hyp_word == '</s>': completed_hypotheses.append(Hypothesis(value=new_hyp_sent[1:-1], score=cand_new_hyp_score)) else: new_hypotheses.append(new_hyp_sent) live_hyp_ids.append(prev_hyp_id) new_hyp_scores.append(cand_new_hyp_score) if len(decoderStatesForUNKsHere) > 0 and self.charDecoder is not None: # decode UNKs decoderStatesForUNKsHere = torch.stack(decoderStatesForUNKsHere, dim=0) decodedWords = self.charDecoder.decode_greedy((decoderStatesForUNKsHere.unsqueeze(0), decoderStatesForUNKsHere.unsqueeze(0)), max_length=21, device=self.device) assert len(decodedWords) == decoderStatesForUNKsHere.size()[0], "Incorrect number of decoded words" for hyp in new_hypotheses: if hyp[-1].startswith("<unk>"): hyp[-1] = decodedWords[int(hyp[-1][5:])]#[:-1] if len(completed_hypotheses) == beam_size: break live_hyp_ids = torch.tensor(live_hyp_ids, dtype=torch.long, device=self.device) h_tm1 = (h_t[live_hyp_ids], cell_t[live_hyp_ids]) att_tm1 = att_t[live_hyp_ids] hypotheses = new_hypotheses hyp_scores = torch.tensor(new_hyp_scores, dtype=torch.float, device=self.device) if len(completed_hypotheses) == 0: completed_hypotheses.append(Hypothesis(value=hypotheses[0][1:], score=hyp_scores[0].item())) completed_hypotheses.sort(key=lambda hyp: hyp.score, reverse=True) return completed_hypotheses @property def device(self) -> torch.device: """ Determine which device to place the Tensors upon, CPU or GPU. """ return self.att_projection.weight.device @staticmethod def load(model_path: str, no_char_decoder=False): """ Load the model from a file. @param model_path (str): path to model """ params = torch.load(model_path, map_location=lambda storage, loc: storage) args = params['args'] model = NMT(vocab=params['vocab'], no_char_decoder=no_char_decoder, **args) model.load_state_dict(params['state_dict']) return model def save(self, path: str): """ Save the odel to a file. @param path (str): path to the model """ print('save model parameters to [%s]' % path, file=sys.stderr) params = { 'args': dict(embed_size=self.model_embeddings_source.embed_size, hidden_size=self.hidden_size, dropout_rate=self.dropout_rate), 'vocab': self.vocab, 'state_dict': self.state_dict() } torch.save(params, path)
51.485194
176
0.631714
12eb0ac032ca0ddfbe6dece3e9903078f5562987
10,942
py
Python
tests/zpill.py
kjhosein/cloud-custodian
b1b24b3d497849f2b80c45071d73e15f2a868ea9
[ "Apache-2.0" ]
null
null
null
tests/zpill.py
kjhosein/cloud-custodian
b1b24b3d497849f2b80c45071d73e15f2a868ea9
[ "Apache-2.0" ]
null
null
null
tests/zpill.py
kjhosein/cloud-custodian
b1b24b3d497849f2b80c45071d73e15f2a868ea9
[ "Apache-2.0" ]
null
null
null
# Copyright 2016-2017 Capital One Services, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function, unicode_literals from datetime import datetime, timedelta, tzinfo import fnmatch import json import unittest import os import shutil import zipfile import boto3 from botocore.response import StreamingBody import jmespath from placebo import pill import placebo from six import StringIO ########################################################################### # BEGIN PLACEBO MONKEY PATCH # # Placebo is effectively abandoned upstream, since mitch went back to work at AWS, irony... # These monkeypatch patches represent fixes on trunk of that repo that have not been released # into an extant version, we carry them here. We can drop this when this issue is resolved # # https://github.com/garnaat/placebo/issues/63 # # License - Apache 2.0 # Copyright (c) 2015 Mitch Garnaat class UTC(tzinfo): """UTC""" def utcoffset(self, dt): return timedelta(0) def tzname(self, dt): return "UTC" def dst(self, dt): return timedelta(0) utc = UTC() def deserialize(obj): """Convert JSON dicts back into objects.""" # Be careful of shallow copy here target = dict(obj) class_name = None if "__class__" in target: class_name = target.pop("__class__") if "__module__" in obj: obj.pop("__module__") # Use getattr(module, class_name) for custom types if needed if class_name == "datetime": return datetime(tzinfo=utc, **target) if class_name == "StreamingBody": return StringIO(target["body"]) # Return unrecognized structures as-is return obj def serialize(obj): """Convert objects into JSON structures.""" # Record class and module information for deserialization result = {"__class__": obj.__class__.__name__} try: result["__module__"] = obj.__module__ except AttributeError: pass # Convert objects to dictionary representation based on type if isinstance(obj, datetime): result["year"] = obj.year result["month"] = obj.month result["day"] = obj.day result["hour"] = obj.hour result["minute"] = obj.minute result["second"] = obj.second result["microsecond"] = obj.microsecond return result if isinstance(obj, StreamingBody): result["body"] = obj.read() obj._raw_stream = StringIO(result["body"]) obj._amount_read = 0 return result # Raise a TypeError if the object isn't recognized raise TypeError("Type not serializable") placebo.pill.serialize = serialize placebo.pill.deserialize = deserialize # END PLACEBO MONKEY ########################################################################## class BluePill(pill.Pill): def playback(self): super(BluePill, self).playback() self._avail = self.get_available() def get_available(self): return set( [ os.path.join(self.data_path, n) for n in fnmatch.filter(os.listdir(self.data_path), "*.json") ] ) def get_next_file_path(self, service, operation): fn = super(BluePill, self).get_next_file_path(service, operation) # couple of double use cases if fn in self._avail: self._avail.remove(fn) else: print("\ndouble use %s\n" % fn) return fn def stop(self): result = super(BluePill, self).stop() if self._avail: print("Unused json files \n %s" % ("\n".join(sorted(self._avail)))) return result class ZippedPill(pill.Pill): def __init__(self, path, prefix=None, debug=False): super(ZippedPill, self).__init__(prefix, debug) self.path = path self._used = set() self.archive = None def playback(self): self.archive = zipfile.ZipFile(self.path, "r") self._files = set(self.archive.namelist()) return super(ZippedPill, self).playback() def record(self): self.archive = zipfile.ZipFile(self.path, "a", zipfile.ZIP_DEFLATED) self._files = set() files = set([n for n in self.archive.namelist() if n.startswith(self.prefix)]) if not files: return super(ZippedPill, self).record() # We can't update files in a zip, so copy self.archive.close() os.rename(self.path, "%s.tmp" % self.path) src = zipfile.ZipFile("%s.tmp" % self.path, "r") self.archive = zipfile.ZipFile(self.path, "w", zipfile.ZIP_DEFLATED) for n in src.namelist(): if n in files: continue self.archive.writestr(n, src.read(n)) os.remove("%s.tmp" % self.path) return super(ZippedPill, self).record() def stop(self): super(ZippedPill, self).stop() if self.archive: self.archive.close() def save_response(self, service, operation, response_data, http_response=200): filepath = self.get_new_file_path(service, operation) pill.LOG.debug("save_response: path=%s", filepath) json_data = {"status_code": http_response, "data": response_data} self.archive.writestr( filepath, json.dumps(json_data, indent=4, default=pill.serialize), zipfile.ZIP_DEFLATED, ) self._files.add(filepath) def load_response(self, service, operation): response_file = self.get_next_file_path(service, operation) self._used.add(response_file) pill.LOG.debug("load_responses: %s", response_file) response_data = json.loads( self.archive.read(response_file), object_hook=pill.deserialize ) return ( pill.FakeHttpResponse(response_data["status_code"]), response_data["data"] ) def get_new_file_path(self, service, operation): base_name = "{0}.{1}".format(service, operation) if self.prefix: base_name = "{0}.{1}".format(self.prefix, base_name) pill.LOG.debug("get_new_file_path: %s", base_name) index = 0 glob_pattern = os.path.join(self._data_path, base_name + "*") for file_path in fnmatch.filter(self._files, glob_pattern): file_name = os.path.basename(file_path) m = self.filename_re.match(file_name) if m: i = int(m.group("index")) if i > index: index = i index += 1 return os.path.join(self._data_path, "{0}_{1}.json".format(base_name, index)) def get_next_file_path(self, service, operation): base_name = "{0}.{1}".format(service, operation) if self.prefix: base_name = "{0}.{1}".format(self.prefix, base_name) pill.LOG.debug("get_next_file_path: %s", base_name) next_file = None while next_file is None: index = self._index.setdefault(base_name, 1) fn = os.path.join(self._data_path, base_name + "_{0}.json".format(index)) if fn in self._files: next_file = fn self._index[base_name] += 1 self._files.add(fn) elif index != 1: self._index[base_name] = 1 else: # we are looking for the first index and it's not here raise IOError("response file ({0}) not found".format(fn)) return fn def attach(session, data_path, prefix=None, debug=False): pill = ZippedPill(data_path, prefix=prefix, debug=debug) pill.attach(session, prefix) return pill class PillTest(unittest.TestCase): archive_path = os.path.join( os.path.dirname(os.path.abspath(__file__)), "placebo_data.zip" ) placebo_dir = os.path.join( os.path.dirname(os.path.abspath(__file__)), "data", "placebo" ) output_dir = os.path.join( os.path.dirname(os.path.abspath(__file__)), "data", "output" ) recording = False def assertJmes(self, expr, instance, expected): value = jmespath.search(expr, instance) self.assertEqual(value, expected) def cleanUp(self): self.pill = None def record_flight_data(self, test_case, zdata=False, augment=False): self.recording = True test_dir = os.path.join(self.placebo_dir, test_case) if not (zdata or augment): if os.path.exists(test_dir): shutil.rmtree(test_dir) os.makedirs(test_dir) session = boto3.Session() default_region = session.region_name if not zdata: pill = placebo.attach(session, test_dir) else: pill = attach(session, self.archive_path, test_case, debug=True) pill.record() self.pill = pill self.addCleanup(pill.stop) self.addCleanup(self.cleanUp) def factory(region=None, assume=None): if region and region != default_region: new_session = boto3.Session(region_name=region) assert not zdata new_pill = placebo.attach(new_session, test_dir, debug=True) new_pill.record() self.addCleanup(new_pill.stop) return new_session return session return factory def replay_flight_data(self, test_case, zdata=False, region=None): """ The `region` argument is to allow functional tests to override the default region. It is unused when replaying stored data. """ if os.environ.get("C7N_FUNCTIONAL") == "yes": self.recording = True return lambda region=region, assume=None: boto3.Session(region_name=region) if not zdata: test_dir = os.path.join(self.placebo_dir, test_case) if not os.path.exists(test_dir): raise RuntimeError("Invalid Test Dir for flight data %s" % test_dir) session = boto3.Session() if not zdata: pill = placebo.attach(session, test_dir) # pill = BluePill() # pill.attach(session, test_dir) else: pill = attach(session, self.archive_path, test_case, False) pill.playback() self.addCleanup(pill.stop) self.addCleanup(self.cleanUp) return lambda region=None, assume=None: session
32.858859
93
0.61561
74bb4253cc3841ff6d81fc81ca5850e23c65ad05
1,279
py
Python
install.py
ohrn/critic
26d38be643703d8bf9e6bfdb370c887251b1c109
[ "Apache-2.0" ]
null
null
null
install.py
ohrn/critic
26d38be643703d8bf9e6bfdb370c887251b1c109
[ "Apache-2.0" ]
null
null
null
install.py
ohrn/critic
26d38be643703d8bf9e6bfdb370c887251b1c109
[ "Apache-2.0" ]
null
null
null
# -*- mode: python; encoding: utf-8 -*- # # Copyright 2012 Jens Lindström, Opera Software ASA # # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy of # the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. from __future__ import print_function import sys if __name__ == "__main__": # To avoid accidentally creating files owned by root. sys.dont_write_bytecode = True # Python version check is done before imports below so # that python 2.6/2.5 users can see the error message. import pythonversion pythonversion.check("""\ NOTE: This script must be run in the Python interpreter that will be used to run Critic. """) if sys.flags.optimize > 0: print(""" ERROR: Please run this script without -O or -OO options. """) sys.exit(1) from installation import install_main install_main.main()
30.452381
80
0.724003
dbaa624ae9d6a5a5949db692e52c0c1deb18b8df
28,542
py
Python
tensorflow/contrib/gan/python/losses/python/losses_impl_test.py
M155K4R4/Tensorflow
e5e03ef3148303b3dfed89a1492dedf92b45be25
[ "Apache-2.0" ]
13
2018-07-23T18:53:35.000Z
2021-11-18T19:56:45.000Z
tensorflow/contrib/gan/python/losses/python/losses_impl_test.py
M155K4R4/Tensorflow
e5e03ef3148303b3dfed89a1492dedf92b45be25
[ "Apache-2.0" ]
1
2018-03-28T23:47:43.000Z
2018-03-28T23:47:43.000Z
tensorflow/contrib/gan/python/losses/python/losses_impl_test.py
M155K4R4/Tensorflow
e5e03ef3148303b3dfed89a1492dedf92b45be25
[ "Apache-2.0" ]
13
2018-09-07T13:28:38.000Z
2020-07-17T15:06:24.000Z
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for TFGAN losses.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.gan.python.losses.python import losses_impl as tfgan_losses from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import random_seed from tensorflow.python.ops import array_ops from tensorflow.python.ops import clip_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables from tensorflow.python.ops.distributions import categorical from tensorflow.python.ops.distributions import normal from tensorflow.python.ops.losses import losses as tf_losses from tensorflow.python.platform import test # TODO(joelshor): Use `parameterized` tests when opensourced. class _LossesTest(object): def init_constants(self): self._discriminator_real_outputs_np = [-5.0, 1.4, 12.5, 2.7] self._discriminator_gen_outputs_np = [10.0, 4.4, -5.5, 3.6] self._weights = 2.3 self._discriminator_real_outputs = constant_op.constant( self._discriminator_real_outputs_np, dtype=dtypes.float32) self._discriminator_gen_outputs = constant_op.constant( self._discriminator_gen_outputs_np, dtype=dtypes.float32) def test_generator_all_correct(self): loss = self._g_loss_fn(self._discriminator_gen_outputs) self.assertEqual(self._discriminator_gen_outputs.dtype, loss.dtype) self.assertEqual(self._generator_loss_name, loss.op.name) with self.test_session(): self.assertAlmostEqual(self._expected_g_loss, loss.eval(), 5) def test_discriminator_all_correct(self): loss = self._d_loss_fn( self._discriminator_real_outputs, self._discriminator_gen_outputs) self.assertEqual(self._discriminator_gen_outputs.dtype, loss.dtype) self.assertEqual(self._discriminator_loss_name, loss.op.name) with self.test_session(): self.assertAlmostEqual(self._expected_d_loss, loss.eval(), 5) def test_generator_loss_collection(self): self.assertEqual(0, len(ops.get_collection('collection'))) self._g_loss_fn( self._discriminator_gen_outputs, loss_collection='collection') self.assertEqual(1, len(ops.get_collection('collection'))) def test_discriminator_loss_collection(self): self.assertEqual(0, len(ops.get_collection('collection'))) self._d_loss_fn( self._discriminator_real_outputs, self._discriminator_gen_outputs, loss_collection='collection') self.assertEqual(1, len(ops.get_collection('collection'))) def test_generator_no_reduction(self): loss = self._g_loss_fn( self._discriminator_gen_outputs, reduction=tf_losses.Reduction.NONE) self.assertAllEqual([4], loss.shape) def test_discriminator_no_reduction(self): loss = self._d_loss_fn( self._discriminator_real_outputs, self._discriminator_gen_outputs, reduction=tf_losses.Reduction.NONE) self.assertAllEqual([4], loss.shape) def test_generator_patch(self): loss = self._g_loss_fn( array_ops.reshape(self._discriminator_gen_outputs, [2, 2])) self.assertEqual(self._discriminator_gen_outputs.dtype, loss.dtype) with self.test_session(): self.assertAlmostEqual(self._expected_g_loss, loss.eval(), 5) def test_discriminator_patch(self): loss = self._d_loss_fn( array_ops.reshape(self._discriminator_real_outputs, [2, 2]), array_ops.reshape(self._discriminator_gen_outputs, [2, 2])) self.assertEqual(self._discriminator_gen_outputs.dtype, loss.dtype) with self.test_session(): self.assertAlmostEqual(self._expected_d_loss, loss.eval(), 5) def test_generator_loss_with_placeholder_for_logits(self): logits = array_ops.placeholder(dtypes.float32, shape=(None, 4)) weights = array_ops.ones_like(logits, dtype=dtypes.float32) loss = self._g_loss_fn(logits, weights=weights) self.assertEqual(logits.dtype, loss.dtype) with self.test_session() as sess: loss = sess.run(loss, feed_dict={ logits: [[10.0, 4.4, -5.5, 3.6]], }) self.assertAlmostEqual(self._expected_g_loss, loss, 5) def test_discriminator_loss_with_placeholder_for_logits(self): logits = array_ops.placeholder(dtypes.float32, shape=(None, 4)) logits2 = array_ops.placeholder(dtypes.float32, shape=(None, 4)) real_weights = array_ops.ones_like(logits, dtype=dtypes.float32) generated_weights = array_ops.ones_like(logits, dtype=dtypes.float32) loss = self._d_loss_fn( logits, logits2, real_weights=real_weights, generated_weights=generated_weights) with self.test_session() as sess: loss = sess.run(loss, feed_dict={ logits: [self._discriminator_real_outputs_np], logits2: [self._discriminator_gen_outputs_np], }) self.assertAlmostEqual(self._expected_d_loss, loss, 5) def test_generator_with_python_scalar_weight(self): loss = self._g_loss_fn( self._discriminator_gen_outputs, weights=self._weights) with self.test_session(): self.assertAlmostEqual(self._expected_g_loss * self._weights, loss.eval(), 4) def test_discriminator_with_python_scalar_weight(self): loss = self._d_loss_fn( self._discriminator_real_outputs, self._discriminator_gen_outputs, real_weights=self._weights, generated_weights=self._weights) with self.test_session(): self.assertAlmostEqual(self._expected_d_loss * self._weights, loss.eval(), 4) def test_generator_with_scalar_tensor_weight(self): loss = self._g_loss_fn(self._discriminator_gen_outputs, weights=constant_op.constant(self._weights)) with self.test_session(): self.assertAlmostEqual(self._expected_g_loss * self._weights, loss.eval(), 4) def test_discriminator_with_scalar_tensor_weight(self): weights = constant_op.constant(self._weights) loss = self._d_loss_fn( self._discriminator_real_outputs, self._discriminator_gen_outputs, real_weights=weights, generated_weights=weights) with self.test_session(): self.assertAlmostEqual(self._expected_d_loss * self._weights, loss.eval(), 4) def test_generator_add_summaries(self): self.assertEqual(0, len(ops.get_collection(ops.GraphKeys.SUMMARIES))) self._g_loss_fn(self._discriminator_gen_outputs, add_summaries=True) self.assertLess(0, len(ops.get_collection(ops.GraphKeys.SUMMARIES))) def test_discriminator_add_summaries(self): self.assertEqual(0, len(ops.get_collection(ops.GraphKeys.SUMMARIES))) self._d_loss_fn( self._discriminator_real_outputs, self._discriminator_gen_outputs, add_summaries=True) self.assertLess(0, len(ops.get_collection(ops.GraphKeys.SUMMARIES))) class LeastSquaresLossTest(test.TestCase, _LossesTest): """Tests for least_squares_xxx_loss.""" def setUp(self): super(LeastSquaresLossTest, self).setUp() self.init_constants() self._expected_g_loss = 17.69625 self._expected_d_loss = 41.73375 self._generator_loss_name = 'lsq_generator_loss/value' self._discriminator_loss_name = 'lsq_discriminator_loss/add' self._g_loss_fn = tfgan_losses.least_squares_generator_loss self._d_loss_fn = tfgan_losses.least_squares_discriminator_loss class ModifiedLossTest(test.TestCase, _LossesTest): """Tests for modified_xxx_loss.""" def setUp(self): super(ModifiedLossTest, self).setUp() self.init_constants() self._expected_g_loss = 1.38582 self._expected_d_loss = 6.19637 self._generator_loss_name = 'generator_modified_loss/value' self._discriminator_loss_name = 'discriminator_modified_loss/add_1' self._g_loss_fn = tfgan_losses.modified_generator_loss self._d_loss_fn = tfgan_losses.modified_discriminator_loss class MinimaxLossTest(test.TestCase, _LossesTest): """Tests for minimax_xxx_loss.""" def setUp(self): super(MinimaxLossTest, self).setUp() self.init_constants() self._expected_g_loss = -4.82408 self._expected_d_loss = 6.19637 self._generator_loss_name = 'generator_minimax_loss/Neg' self._discriminator_loss_name = 'discriminator_minimax_loss/add_1' self._g_loss_fn = tfgan_losses.minimax_generator_loss self._d_loss_fn = tfgan_losses.minimax_discriminator_loss class WassersteinLossTest(test.TestCase, _LossesTest): """Tests for wasserstein_xxx_loss.""" def setUp(self): super(WassersteinLossTest, self).setUp() self.init_constants() self._expected_g_loss = -3.12500 self._expected_d_loss = 0.22500 self._generator_loss_name = 'generator_wasserstein_loss/value' self._discriminator_loss_name = 'discriminator_wasserstein_loss/sub' self._g_loss_fn = tfgan_losses.wasserstein_generator_loss self._d_loss_fn = tfgan_losses.wasserstein_discriminator_loss # TODO(joelshor): Use `parameterized` tests when opensourced. # TODO(joelshor): Refactor this test to use the same code as the other losses. class ACGANLossTest(test.TestCase): """Tests for wasserstein_xxx_loss.""" def setUp(self): super(ACGANLossTest, self).setUp() self._g_loss_fn = tfgan_losses.acgan_generator_loss self._d_loss_fn = tfgan_losses.acgan_discriminator_loss self._discriminator_gen_classification_logits_np = [[10.0, 4.4, -5.5, 3.6], [-4.0, 4.4, 5.2, 4.6], [1.1, 2.4, -3.5, 5.6], [1.1, 2.4, -3.5, 5.6]] self._discriminator_real_classification_logits_np = [[-2.0, 0.4, 12.5, 2.7], [-1.2, 1.9, 12.3, 2.6], [-2.4, -1.7, 2.5, 2.7], [1.1, 2.4, -3.5, 5.6]] self._one_hot_labels_np = [[0, 1, 0, 0], [0, 0, 1, 0], [1, 0, 0, 0], [1, 0, 0, 0]] self._weights = 2.3 self._discriminator_gen_classification_logits = constant_op.constant( self._discriminator_gen_classification_logits_np, dtype=dtypes.float32) self._discriminator_real_classification_logits = constant_op.constant( self._discriminator_real_classification_logits_np, dtype=dtypes.float32) self._one_hot_labels = constant_op.constant( self._one_hot_labels_np, dtype=dtypes.float32) self._generator_kwargs = { 'discriminator_gen_classification_logits': self._discriminator_gen_classification_logits, 'one_hot_labels': self._one_hot_labels, } self._discriminator_kwargs = { 'discriminator_gen_classification_logits': self._discriminator_gen_classification_logits, 'discriminator_real_classification_logits': self._discriminator_real_classification_logits, 'one_hot_labels': self._one_hot_labels, } self._generator_loss_name = 'acgan_generator_loss/value' self._discriminator_loss_name = 'acgan_discriminator_loss/add' self._expected_g_loss = 3.84974 self._expected_d_loss = 9.43950 def test_generator_all_correct(self): loss = self._g_loss_fn(**self._generator_kwargs) self.assertEqual( self._discriminator_gen_classification_logits.dtype, loss.dtype) self.assertEqual(self._generator_loss_name, loss.op.name) with self.test_session(): self.assertAlmostEqual(self._expected_g_loss, loss.eval(), 5) def test_discriminator_all_correct(self): loss = self._d_loss_fn(**self._discriminator_kwargs) self.assertEqual( self._discriminator_gen_classification_logits.dtype, loss.dtype) self.assertEqual(self._discriminator_loss_name, loss.op.name) with self.test_session(): self.assertAlmostEqual(self._expected_d_loss, loss.eval(), 5) def test_generator_loss_collection(self): self.assertEqual(0, len(ops.get_collection('collection'))) self._g_loss_fn(loss_collection='collection', **self._generator_kwargs) self.assertEqual(1, len(ops.get_collection('collection'))) def test_discriminator_loss_collection(self): self.assertEqual(0, len(ops.get_collection('collection'))) self._d_loss_fn(loss_collection='collection', **self._discriminator_kwargs) self.assertEqual(1, len(ops.get_collection('collection'))) def test_generator_no_reduction(self): loss = self._g_loss_fn( reduction=tf_losses.Reduction.NONE, **self._generator_kwargs) self.assertAllEqual([4], loss.shape) def test_discriminator_no_reduction(self): loss = self._d_loss_fn( reduction=tf_losses.Reduction.NONE, **self._discriminator_kwargs) self.assertAllEqual([4], loss.shape) def test_generator_patch(self): patch_args = {x: array_ops.reshape(y, [2, 2, 4]) for x, y in self._generator_kwargs.items()} loss = self._g_loss_fn(**patch_args) with self.test_session(): self.assertAlmostEqual(self._expected_g_loss, loss.eval(), 5) def test_discriminator_patch(self): patch_args = {x: array_ops.reshape(y, [2, 2, 4]) for x, y in self._discriminator_kwargs.items()} loss = self._d_loss_fn(**patch_args) with self.test_session(): self.assertAlmostEqual(self._expected_d_loss, loss.eval(), 5) def test_generator_loss_with_placeholder_for_logits(self): gen_logits = array_ops.placeholder(dtypes.float32, shape=(None, 4)) one_hot_labels = array_ops.placeholder(dtypes.int32, shape=(None, 4)) loss = self._g_loss_fn(gen_logits, one_hot_labels) with self.test_session() as sess: loss = sess.run( loss, feed_dict={ gen_logits: self._discriminator_gen_classification_logits_np, one_hot_labels: self._one_hot_labels_np, }) self.assertAlmostEqual(self._expected_g_loss, loss, 5) def test_discriminator_loss_with_placeholder_for_logits_and_weights(self): gen_logits = array_ops.placeholder(dtypes.float32, shape=(None, 4)) real_logits = array_ops.placeholder(dtypes.float32, shape=(None, 4)) one_hot_labels = array_ops.placeholder(dtypes.int32, shape=(None, 4)) loss = self._d_loss_fn(gen_logits, real_logits, one_hot_labels) with self.test_session() as sess: loss = sess.run( loss, feed_dict={ gen_logits: self._discriminator_gen_classification_logits_np, real_logits: self._discriminator_real_classification_logits_np, one_hot_labels: self._one_hot_labels_np, }) self.assertAlmostEqual(self._expected_d_loss, loss, 5) def test_generator_with_python_scalar_weight(self): loss = self._g_loss_fn(weights=self._weights, **self._generator_kwargs) with self.test_session(): self.assertAlmostEqual(self._expected_g_loss * self._weights, loss.eval(), 4) def test_discriminator_with_python_scalar_weight(self): loss = self._d_loss_fn( real_weights=self._weights, generated_weights=self._weights, **self._discriminator_kwargs) with self.test_session(): self.assertAlmostEqual(self._expected_d_loss * self._weights, loss.eval(), 4) def test_generator_with_scalar_tensor_weight(self): loss = self._g_loss_fn( weights=constant_op.constant(self._weights), **self._generator_kwargs) with self.test_session(): self.assertAlmostEqual(self._expected_g_loss * self._weights, loss.eval(), 4) def test_discriminator_with_scalar_tensor_weight(self): weights = constant_op.constant(self._weights) loss = self._d_loss_fn(real_weights=weights, generated_weights=weights, **self._discriminator_kwargs) with self.test_session(): self.assertAlmostEqual(self._expected_d_loss * self._weights, loss.eval(), 4) def test_generator_add_summaries(self): self.assertEqual(0, len(ops.get_collection(ops.GraphKeys.SUMMARIES))) self._g_loss_fn(add_summaries=True, **self._generator_kwargs) self.assertLess(0, len(ops.get_collection(ops.GraphKeys.SUMMARIES))) def test_discriminator_add_summaries(self): self.assertEqual(0, len(ops.get_collection(ops.GraphKeys.SUMMARIES))) self._d_loss_fn(add_summaries=True, **self._discriminator_kwargs) self.assertLess(0, len(ops.get_collection(ops.GraphKeys.SUMMARIES))) class _PenaltyTest(object): def test_all_correct(self): loss = self._penalty_fn(**self._kwargs) self.assertEqual(self._expected_dtype, loss.dtype) self.assertEqual(self._expected_op_name, loss.op.name) with self.test_session(): variables.global_variables_initializer().run() self.assertAlmostEqual(self._expected_loss, loss.eval(), 6) def test_loss_collection(self): self.assertEqual(0, len(ops.get_collection('collection'))) self._penalty_fn(loss_collection='collection', **self._kwargs) self.assertEqual(1, len(ops.get_collection('collection'))) def test_no_reduction(self): loss = self._penalty_fn(reduction=tf_losses.Reduction.NONE, **self._kwargs) self.assertAllEqual([self._batch_size], loss.shape) def test_python_scalar_weight(self): loss = self._penalty_fn(weights=2.3, **self._kwargs) with self.test_session(): variables.global_variables_initializer().run() self.assertAlmostEqual(self._expected_loss * 2.3, loss.eval(), 3) def test_scalar_tensor_weight(self): loss = self._penalty_fn(weights=constant_op.constant(2.3), **self._kwargs) with self.test_session(): variables.global_variables_initializer().run() self.assertAlmostEqual(self._expected_loss * 2.3, loss.eval(), 3) class GradientPenaltyTest(test.TestCase, _PenaltyTest): """Tests for wasserstein_gradient_penalty.""" def setUp(self): super(GradientPenaltyTest, self).setUp() self._penalty_fn = tfgan_losses.wasserstein_gradient_penalty self._generated_data_np = [[3.1, 2.3, -12.3, 32.1]] self._real_data_np = [[-12.3, 23.2, 16.3, -43.2]] self._expected_dtype = dtypes.float32 with variable_scope.variable_scope('fake_scope') as self._scope: self._discriminator_fn(0.0, 0.0) self._kwargs = { 'generated_data': constant_op.constant( self._generated_data_np, dtype=self._expected_dtype), 'real_data': constant_op.constant( self._real_data_np, dtype=self._expected_dtype), 'generator_inputs': None, 'discriminator_fn': self._discriminator_fn, 'discriminator_scope': self._scope, } self._expected_loss = 9.00000 self._expected_op_name = 'wasserstein_gradient_penalty/value' self._batch_size = 1 def _discriminator_fn(self, inputs, _): ops.add_to_collection('fake_update_ops', constant_op.constant(1.0)) return variable_scope.get_variable('dummy_d', initializer=2.0) * inputs def test_loss_with_placeholder(self): generated_data = array_ops.placeholder(dtypes.float32, shape=(None, None)) real_data = array_ops.placeholder(dtypes.float32, shape=(None, None)) loss = tfgan_losses.wasserstein_gradient_penalty( generated_data, real_data, self._kwargs['generator_inputs'], self._kwargs['discriminator_fn'], self._kwargs['discriminator_scope']) self.assertEqual(generated_data.dtype, loss.dtype) with self.test_session() as sess: variables.global_variables_initializer().run() loss = sess.run(loss, feed_dict={ generated_data: self._generated_data_np, real_data: self._real_data_np, }) self.assertAlmostEqual(self._expected_loss, loss, 5) def test_loss_with_gradient_norm_target(self): """Test loss value with non default gradient norm target.""" generated_data = array_ops.placeholder(dtypes.float32, shape=(None, None)) real_data = array_ops.placeholder(dtypes.float32, shape=(None, None)) loss = tfgan_losses.wasserstein_gradient_penalty( generated_data, real_data, self._kwargs['generator_inputs'], self._kwargs['discriminator_fn'], self._kwargs['discriminator_scope'], target=2.0) with self.test_session() as sess: variables.global_variables_initializer().run() loss = sess.run( loss, feed_dict={ generated_data: self._generated_data_np, real_data: self._real_data_np, }) self.assertAlmostEqual(1.0, loss, 5) def test_reuses_scope(self): """Test that gradient penalty reuses discriminator scope.""" num_vars = len(ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES)) tfgan_losses.wasserstein_gradient_penalty(**self._kwargs) self.assertEqual( num_vars, len(ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES))) def test_works_with_get_collection(self): """Tests that gradient penalty works inside other scopes.""" # We ran the discriminator once in the setup, so there should be an op # already in the collection. self.assertEqual(1, len(ops.get_collection( 'fake_update_ops', self._kwargs['discriminator_scope'].name))) # Make sure the op is added to the collection even if it's in a name scope. with ops.name_scope('loss'): tfgan_losses.wasserstein_gradient_penalty(**self._kwargs) self.assertEqual(2, len(ops.get_collection( 'fake_update_ops', self._kwargs['discriminator_scope'].name))) # Make sure the op is added to the collection even if it's in a variable # scope. with variable_scope.variable_scope('loss_vscope'): tfgan_losses.wasserstein_gradient_penalty(**self._kwargs) self.assertEqual(3, len(ops.get_collection( 'fake_update_ops', self._kwargs['discriminator_scope'].name))) class MutualInformationPenaltyTest(test.TestCase, _PenaltyTest): """Tests for mutual_information_penalty.""" def setUp(self): super(MutualInformationPenaltyTest, self).setUp() self._penalty_fn = tfgan_losses.mutual_information_penalty self._structured_generator_inputs = [1.0, 2.0] self._predicted_distributions = [categorical.Categorical(logits=[1.0, 2.0]), normal.Normal([0.0], [1.0])] self._expected_dtype = dtypes.float32 self._kwargs = { 'structured_generator_inputs': self._structured_generator_inputs, 'predicted_distributions': self._predicted_distributions, } self._expected_loss = 1.61610 self._expected_op_name = 'mutual_information_loss/mul' self._batch_size = 2 class CombineAdversarialLossTest(test.TestCase): """Tests for combine_adversarial_loss.""" def setUp(self): super(CombineAdversarialLossTest, self).setUp() self._generated_data_np = [[3.1, 2.3, -12.3, 32.1]] self._real_data_np = [[-12.3, 23.2, 16.3, -43.2]] self._generated_data = constant_op.constant( self._generated_data_np, dtype=dtypes.float32) self._real_data = constant_op.constant( self._real_data_np, dtype=dtypes.float32) self._generated_inputs = None self._expected_loss = 9.00000 def _test_correct_helper(self, use_weight_factor): variable_list = [variables.Variable(1.0)] main_loss = variable_list[0] * 2 adversarial_loss = variable_list[0] * 3 gradient_ratio_epsilon = 1e-6 if use_weight_factor: weight_factor = constant_op.constant(2.0) gradient_ratio = None adv_coeff = 2.0 expected_loss = 1.0 * 2 + adv_coeff * 1.0 * 3 else: weight_factor = None gradient_ratio = constant_op.constant(0.5) adv_coeff = 2.0 / (3 * 0.5 + gradient_ratio_epsilon) expected_loss = 1.0 * 2 + adv_coeff * 1.0 * 3 combined_loss = tfgan_losses.combine_adversarial_loss( main_loss, adversarial_loss, weight_factor=weight_factor, gradient_ratio=gradient_ratio, gradient_ratio_epsilon=gradient_ratio_epsilon, variables=variable_list) with self.test_session(use_gpu=True): variables.global_variables_initializer().run() self.assertNear(expected_loss, combined_loss.eval(), 1e-5) def test_correct_useweightfactor(self): self._test_correct_helper(True) def test_correct_nouseweightfactor(self): self._test_correct_helper(False) def _test_no_weight_skips_adversarial_loss_helper(self, use_weight_factor): """Test the 0 adversarial weight or grad ratio skips adversarial loss.""" main_loss = constant_op.constant(1.0) adversarial_loss = constant_op.constant(1.0) weight_factor = 0.0 if use_weight_factor else None gradient_ratio = None if use_weight_factor else 0.0 combined_loss = tfgan_losses.combine_adversarial_loss( main_loss, adversarial_loss, weight_factor=weight_factor, gradient_ratio=gradient_ratio, gradient_summaries=False) with self.test_session(use_gpu=True): self.assertEqual(1.0, combined_loss.eval()) def test_no_weight_skips_adversarial_loss_useweightfactor(self): self._test_no_weight_skips_adversarial_loss_helper(True) def test_no_weight_skips_adversarial_loss_nouseweightfactor(self): self._test_no_weight_skips_adversarial_loss_helper(False) def test_stable_global_norm_avoids_overflow(self): tensors = [array_ops.ones([4]), array_ops.ones([4, 4]) * 1e19, None] gnorm_is_inf = math_ops.is_inf(clip_ops.global_norm(tensors)) stable_gnorm_is_inf = math_ops.is_inf( tfgan_losses._numerically_stable_global_norm(tensors)) with self.test_session(use_gpu=True): self.assertTrue(gnorm_is_inf.eval()) self.assertFalse(stable_gnorm_is_inf.eval()) def test_stable_global_norm_unchanged(self): """Test that preconditioning doesn't change global norm value.""" random_seed.set_random_seed(1234) tensors = [random_ops.random_uniform([3]*i, -10.0, 10.0) for i in range(6)] gnorm = clip_ops.global_norm(tensors) precond_gnorm = tfgan_losses._numerically_stable_global_norm(tensors) with self.test_session(use_gpu=True) as sess: for _ in range(10): # spot check closeness on more than one sample. gnorm_np, precond_gnorm_np = sess.run([gnorm, precond_gnorm]) self.assertNear(gnorm_np, precond_gnorm_np, 1e-4) class CycleConsistencyLossTest(test.TestCase): """Tests for cycle_consistency_loss.""" def setUp(self): super(CycleConsistencyLossTest, self).setUp() self._data_x_np = [[1.0, 2, 3], [4, 5, 6]] self._reconstructed_data_x_np = [[7.0, 8, 9], [10, 11, 12]] self._data_y_np = [1.0, 9] self._reconstructed_data_y_np = [-2.0, 3] self._data_x = constant_op.constant(self._data_x_np, dtype=dtypes.float32) self._reconstructed_data_x = constant_op.constant( self._reconstructed_data_x_np, dtype=dtypes.float32) self._data_y = constant_op.constant(self._data_y_np, dtype=dtypes.float32) self._reconstructed_data_y = constant_op.constant( self._reconstructed_data_y_np, dtype=dtypes.float32) def test_correct_loss(self): loss = tfgan_losses.cycle_consistency_loss( self._data_x, self._reconstructed_data_x, self._data_y, self._reconstructed_data_y) with self.test_session(use_gpu=True): variables.global_variables_initializer().run() self.assertNear(5.25, loss.eval(), 1e-5) if __name__ == '__main__': test.main()
42.097345
83
0.713335
5a9a926c8e4843485b838d0f2a91f8492753fe55
289
py
Python
st_marys/pipelines.py
nbanion/blah
cf14d33d6f6222f4ba8e7582f11150a887508fa2
[ "MIT" ]
null
null
null
st_marys/pipelines.py
nbanion/blah
cf14d33d6f6222f4ba8e7582f11150a887508fa2
[ "MIT" ]
8
2019-10-12T16:38:21.000Z
2019-10-21T03:20:56.000Z
st_marys/pipelines.py
nbanion/blah
cf14d33d6f6222f4ba8e7582f11150a887508fa2
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html class StMarysPipeline(object): def process_item(self, item, spider): return item
24.083333
66
0.712803
1bba371c954dbca889533f304ca64467f503494e
40
py
Python
maps/spice_islands/__init__.py
56kyle/bloons_auto
419d55b51d1cddc49099593970adf1c67985b389
[ "MIT" ]
null
null
null
maps/spice_islands/__init__.py
56kyle/bloons_auto
419d55b51d1cddc49099593970adf1c67985b389
[ "MIT" ]
null
null
null
maps/spice_islands/__init__.py
56kyle/bloons_auto
419d55b51d1cddc49099593970adf1c67985b389
[ "MIT" ]
null
null
null
from .spice_islands import SpiceIslands
20
39
0.875
81c6d9adb42681e3a614f7af89d9c2b4524cfb4d
1,450
py
Python
pypiorg/app.py
paulburnz314/flask_talkpython
65a13c0fc6ab37d13cc996172d7e120e346116a9
[ "MIT" ]
null
null
null
pypiorg/app.py
paulburnz314/flask_talkpython
65a13c0fc6ab37d13cc996172d7e120e346116a9
[ "MIT" ]
null
null
null
pypiorg/app.py
paulburnz314/flask_talkpython
65a13c0fc6ab37d13cc996172d7e120e346116a9
[ "MIT" ]
null
null
null
import os import sys from flask import Flask # import app.data.__all_models # from flask_sqlalchemy import SQLAlchemy # from flask_migrate import Migrate # from app.config import Config # abspath returns absolute path of a path # join means join to path strings # dirname returns the directory of a file # __file__ refers to the script's file name # pardir is represented by .. # below most likely equals the \flask-talkpython directory basedir = os.path.abspath(os.path.join(os.path.dirname(__file__), '..')) sys.path.insert(0, basedir) import pypiorg.data.db_session as db_session # db = SQLAlchemy() # migrate = Migrate() app = Flask(__name__) def main(): # app.config.from_object(config_class) # db.init_app(app) # migrate.init_app(app, db) register_blueprints() setup_db() app.run(debug=True) return basedir # print(f'Connecting to database with {config_class.SQLALCHEMY_DATABASE_URI}') def setup_db(): db_file = os.path.join(os.path.dirname(__file__), 'db', 'app.sqlite') db_session.global_init(db_file) def register_blueprints(): from pypiorg.views.home_views import bp as home_bp app.register_blueprint(home_bp) from pypiorg.views.package_views import bp as package_bp app.register_blueprint(package_bp) from pypiorg.views.cms_views import bp as cms_bp app.register_blueprint(cms_bp) from pypiorg.views.account_views import bp as account_bp app.register_blueprint(account_bp) if __name__ == '__main__': main()
25.892857
79
0.775172
83639e3d429f438857b498bf839d646192101206
5,759
py
Python
srunner/tools/scenario_config_parser.py
Disiok/scenario_runner
b883f61005375012b47b17c9b857daad141d1506
[ "MIT" ]
1
2020-07-01T08:01:04.000Z
2020-07-01T08:01:04.000Z
srunner/tools/scenario_config_parser.py
Disiok/scenario_runner
b883f61005375012b47b17c9b857daad141d1506
[ "MIT" ]
null
null
null
srunner/tools/scenario_config_parser.py
Disiok/scenario_runner
b883f61005375012b47b17c9b857daad141d1506
[ "MIT" ]
null
null
null
#!/usr/bin/env python # Copyright (c) 2019 Intel Corporation # # This work is licensed under the terms of the MIT license. # For a copy, see <https://opensource.org/licenses/MIT>. """ This module provides access to a scenario configuration parser """ import glob import os import xml.etree.ElementTree as ET from srunner.scenarioconfigs.scenario_configuration import ScenarioConfiguration, ActorConfigurationData from srunner.scenarioconfigs.route_scenario_configuration import RouteConfiguration, TargetConfiguration class ScenarioConfigurationParser(object): """ Pure static class providing access to parser methods for scenario configuration files (*.xml) """ @staticmethod def parse_scenario_configuration(scenario_config_file, scenario_name): """ Parse scenario configuration file and provide a list of ScenarioConfigurations @return If scenario_name starts with "group:" all scenarios within the config file will be returned. Otherwise only the scenario, that matches the scenario_name. """ single_scenario_only = True if scenario_name.startswith("group:"): single_scenario_only = False scenario_name = scenario_name[6:] tree = ET.parse(scenario_config_file) scenario_configurations = [] for scenario in tree.iter("scenario"): new_config = ScenarioConfiguration() new_config.town = scenario.attrib.get('town', None) new_config.name = scenario.attrib.get('name', None) new_config.type = scenario.attrib.get('type', None) new_config.other_actors = [] new_config.ego_vehicles = [] new_config.trigger_points = [] for weather in scenario.iter("weather"): new_config.weather.cloudiness = float(weather.attrib.get("cloudiness", 0)) new_config.weather.precipitation = float(weather.attrib.get("precipitation", 0)) new_config.weather.precipitation_deposits = float(weather.attrib.get("precipitation_deposits", 0)) new_config.weather.wind_intensity = float(weather.attrib.get("wind_intensity", 0.35)) new_config.weather.sun_azimuth_angle = float(weather.attrib.get("sun_azimuth_angle", 0.0)) new_config.weather.sun_altitude_angle = float(weather.attrib.get("sun_altitude_angle", 15.0)) new_config.weather.fog_density = float(weather.attrib.get("fog_density", 0.0)) new_config.weather.fog_distance = float(weather.attrib.get("fog_distance", 0.0)) new_config.weather.wetness = float(weather.attrib.get("wetness", 0.0)) for ego_vehicle in scenario.iter("ego_vehicle"): new_config.ego_vehicles.append(ActorConfigurationData.parse_from_node(ego_vehicle, 'hero')) new_config.trigger_points.append(new_config.ego_vehicles[-1].transform) for target in scenario.iter("target"): new_config.target = TargetConfiguration(target) for route in scenario.iter("route"): route_conf = RouteConfiguration() route_conf.parse_xml(route) new_config.route = route_conf for other_actor in scenario.iter("other_actor"): new_config.other_actors.append(ActorConfigurationData.parse_from_node(other_actor, 'scenario')) if single_scenario_only: if new_config.name == scenario_name: scenario_configurations.append(new_config) else: scenario_configurations.append(new_config) return scenario_configurations @staticmethod def get_list_of_scenarios(config_file_name): """ Parse *all* config files and provide a list with all scenarios @return """ list_of_config_files = glob.glob("{}/srunner/examples/*.xml".format(os.getenv('ROOT_SCENARIO_RUNNER', "./"))) list_of_config_files += glob.glob("{}/srunner/examples/*.xosc".format(os.getenv('ROOT_SCENARIO_RUNNER', "./"))) if config_file_name != '': list_of_config_files.append(config_file_name) scenarios = [] for file_name in list_of_config_files: if ".xosc" in file_name: tree = ET.parse(file_name) scenarios.append("{} (OpenSCENARIO)".format(tree.find("FileHeader").attrib.get('description', None))) else: tree = ET.parse(file_name) for scenario in tree.iter("scenario"): scenarios.append(scenario.attrib.get('name', None)) return scenarios @staticmethod def find_scenario_config(scenario_name, config_file_name): """ Parse *all* config files and find first match for scenario config """ list_of_config_files = glob.glob("{}/srunner/examples/*.xml".format(os.getenv('ROOT_SCENARIO_RUNNER', "./"))) if config_file_name != '': list_of_config_files.append(config_file_name) if scenario_name.startswith("group:"): scenario_name = scenario_name[6:] for file_name in list_of_config_files: tree = ET.parse(file_name) for scenario in tree.iter("scenario"): if scenario.attrib.get('type', None) == scenario_name: return file_name else: for file_name in list_of_config_files: tree = ET.parse(file_name) for scenario in tree.iter("scenario"): if scenario.attrib.get('name', None) == scenario_name: return file_name return None
40.272727
119
0.641952
9b24c94a638cf1ba168a444fcf48ea086f4213ea
25,881
py
Python
multiworld/envs/pygame/multiobject_pygame_env.py
williamd4112/multiworld
bfcbe52db9ac67913ca38b7b3313afb8fdcfaaf7
[ "Apache-2.0" ]
null
null
null
multiworld/envs/pygame/multiobject_pygame_env.py
williamd4112/multiworld
bfcbe52db9ac67913ca38b7b3313afb8fdcfaaf7
[ "Apache-2.0" ]
null
null
null
multiworld/envs/pygame/multiobject_pygame_env.py
williamd4112/multiworld
bfcbe52db9ac67913ca38b7b3313afb8fdcfaaf7
[ "Apache-2.0" ]
null
null
null
from collections import OrderedDict import logging import numpy as np from gym import spaces from pygame import Color import random from multiworld.core.multitask_env import MultitaskEnv from multiworld.core.serializable import Serializable from multiworld.envs.env_util import ( get_stat_in_paths, create_stats_ordered_dict, ) from multiworld.envs.pygame.pygame_viewer import PygameViewer from multiworld.envs.pygame.walls import VerticalWall, HorizontalWall class Multiobj2DEnv(MultitaskEnv, Serializable): """ A little 2D point whose life goal is to reach a target. """ def __init__( self, render_dt_msec=0, action_l2norm_penalty=0, # disabled for now render_onscreen=False, render_size=84, reward_type="dense", action_scale=1.0, target_radius=0.60, boundary_dist=4, ball_radius=0.50, include_colors_in_obs = False, walls=None, num_colors = 8, change_colors=True, fixed_colors = False, fixed_goal=None, randomize_position_on_reset=True, images_are_rgb=False, # else black and white show_goal=True, use_env_labels = False, num_objects=1, include_white=False, **kwargs ): if walls is None: walls = [] if walls is None: walls = [] if fixed_goal is not None: fixed_goal = np.array(fixed_goal) if len(kwargs) > 0: LOGGER = logging.getLogger(__name__) LOGGER.log(logging.WARNING, "WARNING, ignoring kwargs:", kwargs) self.quick_init(locals()) self.render_dt_msec = render_dt_msec self.action_l2norm_penalty = action_l2norm_penalty self.render_onscreen = render_onscreen self.render_size = render_size self.reward_type = reward_type self.action_scale = action_scale self.target_radius = target_radius self.boundary_dist = boundary_dist self.ball_radius = ball_radius self.walls = walls self.fixed_goal = fixed_goal self.randomize_position_on_reset = randomize_position_on_reset self.images_are_rgb = images_are_rgb self.show_goal = show_goal self.num_objects = num_objects self.max_target_distance = self.boundary_dist - self.target_radius self.change_colors = change_colors self.fixed_colors = fixed_colors self.num_colors = num_colors self._target_position = None self._position = np.zeros((2)) self.include_white = include_white self.initial_pass = False self.white_passed = False if change_colors: self.randomize_colors() else: self.object_colors = [Color('blue')] u = np.ones(2) self.action_space = spaces.Box(-u, u, dtype=np.float32) self.include_colors_in_obs = include_colors_in_obs o = self.boundary_dist * np.ones(2) ohe_range = spaces.Box(np.zeros(self.num_colors), np.ones(self.num_colors), dtype='float32') if include_colors_in_obs and self.fixed_colors: high = np.concatenate((o, np.ones(self.num_colors))) low = np.concatenate((-o, np.zeros(self.num_colors))) else: high = o low = -o self.obs_range = spaces.Box(low, high, dtype='float32') self.use_env_labels = use_env_labels if self.use_env_labels: self.observation_space = spaces.Dict([ ('label', ohe_range), ('observation', self.obs_range), ('desired_goal', self.obs_range), ('achieved_goal', self.obs_range), ('state_observation', self.obs_range), ('state_desired_goal', self.obs_range), ('state_achieved_goal', self.obs_range), ]) else: self.observation_space = spaces.Dict([ ('observation', self.obs_range), ('desired_goal', self.obs_range), ('achieved_goal', self.obs_range), ('state_observation', self.obs_range), ('state_desired_goal', self.obs_range), ('state_achieved_goal', self.obs_range), ]) self.drawer = None self.render_drawer = None self.color_index = 0 self.colors = [Color('green'), Color('red'), Color('blue'), Color('black'), Color('purple'), Color('brown'), Color('pink'), Color('orange'), Color('grey'), Color('yellow')] def randomize_colors(self): self.object_colors = [] rgbs = np.random.randint(0, 256, (self.num_objects, 3)) for i in range(self.num_objects): if self.fixed_colors: self.object_colors.append(self.colors[self.color_index]) self.color_index = (self.color_index + 1) % 10 else: rgb = map(int, rgbs[i, :]) self.object_colors.append(Color(*rgb, 255)) def step(self, velocities): assert self.action_scale <= 1.0 velocities = np.clip(velocities, a_min=-1, a_max=1) * self.action_scale new_position = self._position + velocities for wall in self.walls: new_position = wall.handle_collision( self._position, new_position ) self._position = new_position self._position = np.clip( self._position, a_min=-self.boundary_dist, a_max=self.boundary_dist, ) distance_to_target = np.linalg.norm( self._position - self._target_position ) is_success = distance_to_target < self.target_radius ob = self._get_obs() reward = self.compute_reward(velocities, ob) info = { 'radius': self.target_radius, 'target_position': self._target_position, 'distance_to_target': distance_to_target, 'velocity': velocities, 'speed': np.linalg.norm(velocities), 'is_success': is_success, } done = False return ob, reward, done, info def reset(self): if self.white_passed: self.include_white = False if self.change_colors: self.randomize_colors() self._target_position = self.sample_goal()['state_desired_goal'] if self.randomize_position_on_reset: self._position = self._sample_position( self.obs_range.low, self.obs_range.high, ) if self.initial_pass: self.white_passed = True self.initial_pass = True return self._get_obs() def _position_inside_wall(self, pos): for wall in self.walls: if wall.contains_point(pos): return True return False def _sample_position(self, low, high): pos = np.random.uniform(low, high) while self._position_inside_wall(pos) is True: pos = np.random.uniform(low, high) return pos def _get_obs(self): obs = self._position.copy() if self.use_env_labels: return dict( observation=obs, label = ohe, desired_goal=self._target_position.copy(), achieved_goal=self._position.copy(), state_observation=self._position.copy(), state_desired_goal=self._target_position.copy(), state_achieved_goal=self._position.copy(), ) else: return dict( observation=obs, desired_goal=self._target_position.copy(), achieved_goal=self._position.copy(), state_observation=self._position.copy(), state_desired_goal=self._target_position.copy(), state_achieved_goal=self._position.copy(), ) def compute_rewards(self, actions, obs): achieved_goals = obs['state_achieved_goal'] desired_goals = obs['state_desired_goal'] d = np.linalg.norm(achieved_goals - desired_goals, axis=-1) if self.reward_type == "sparse": return -(d > self.target_radius).astype(np.float32) elif self.reward_type == "dense": return -d elif self.reward_type == 'vectorized_dense': return -np.abs(achieved_goals - desired_goals) else: raise NotImplementedError() def compute_reward_gym(self, achieved_goal, desired_goal, info): d = np.linalg.norm(achieved_goal - desired_goal, axis=-1) if self.reward_type == "sparse": return -(d > self.target_radius).astype(np.float32) elif self.reward_type == "dense": return -d elif self.reward_type == 'vectorized_dense': return -np.abs(achieved_goal - desired_goal) else: raise NotImplementedError() def get_diagnostics(self, paths, prefix=''): statistics = OrderedDict() for stat_name in [ 'radius', 'target_position', 'distance_to_target', 'velocity', 'speed', 'is_success', ]: stat_name = stat_name stat = get_stat_in_paths(paths, 'env_infos', stat_name) statistics.update(create_stats_ordered_dict( '%s%s' % (prefix, stat_name), stat, always_show_all_stats=True, )) statistics.update(create_stats_ordered_dict( 'Final %s%s' % (prefix, stat_name), [s[-1] for s in stat], always_show_all_stats=True, )) return statistics def get_goal(self): return { 'desired_goal': self._target_position.copy(), 'state_desired_goal': self._target_position.copy(), } def sample_goals(self, batch_size): if not self.fixed_goal is None: goals = np.repeat( self.fixed_goal.copy()[None], batch_size, 0 ) else: goals = np.zeros((batch_size, self.obs_range.low.size)) for b in range(batch_size): if batch_size > 1: logging.warning("This is very slow!") goals[b, :] = self._sample_position( self.obs_range.low, self.obs_range.high, ) return { 'desired_goal': goals, 'state_desired_goal': goals, } def set_position(self, pos): self._position[0] = pos[0] self._position[1] = pos[1] """Functions for ImageEnv wrapper""" def get_image(self, width=None, height=None): """Returns a black and white image""" if self.drawer is None: if width != height: raise NotImplementedError() self.drawer = PygameViewer( screen_width=width, screen_height=height, x_bounds=(-self.boundary_dist - self.ball_radius, self.boundary_dist + self.ball_radius), y_bounds=(-self.boundary_dist - self.ball_radius, self.boundary_dist + self.ball_radius), render_onscreen=self.render_onscreen, ) self.draw(self.drawer, False) img = self.drawer.get_image() if self.images_are_rgb: return img.transpose((1, 0, 2)) else: r, g, b = img[:, :, 0], img[:, :, 1], img[:, :, 2] img = (-r + b).transpose().flatten() return img def set_to_goal(self, goal_dict): goal = goal_dict["state_desired_goal"] self._position = goal self._target_position = goal def get_env_state(self): return self._get_obs() def set_env_state(self, state): position = state["state_observation"] goal = state["state_desired_goal"] self._position = position self._target_position = goal def draw(self, drawer, tick): # if self.drawer is not None: # self.drawer.fill(Color('white')) # if self.render_drawer is not None: # self.render_drawer.fill(Color('white')) drawer.fill(Color('white')) if self.show_goal: drawer.draw_solid_circle( self._target_position, self.target_radius, Color('green'), ) if not self.include_white: drawer.draw_solid_circle( self._position, self.ball_radius, self.object_colors[0], ) for wall in self.walls: drawer.draw_segment( wall.endpoint1, wall.endpoint2, Color('black'), ) drawer.draw_segment( wall.endpoint2, wall.endpoint3, Color('black'), ) drawer.draw_segment( wall.endpoint3, wall.endpoint4, Color('black'), ) drawer.draw_segment( wall.endpoint4, wall.endpoint1, Color('black'), ) drawer.render() if tick: drawer.tick(self.render_dt_msec) def render(self, close=False): if close: self.render_drawer = None return if self.render_drawer is None or self.render_drawer.terminated: self.render_drawer = PygameViewer( self.render_size, self.render_size, x_bounds=(-self.boundary_dist-self.ball_radius, self.boundary_dist+self.ball_radius), y_bounds=(-self.boundary_dist-self.ball_radius, self.boundary_dist+self.ball_radius), render_onscreen=True, ) self.draw(self.render_drawer, True) def get_diagnostics(self, paths, prefix=''): statistics = OrderedDict() for stat_name in [ 'distance_to_target', ]: stat_name = stat_name stat = get_stat_in_paths(paths, 'env_infos', stat_name) statistics.update(create_stats_ordered_dict( '%s%s' % (prefix, stat_name), stat, always_show_all_stats=True, )) statistics.update(create_stats_ordered_dict( 'Final %s%s' % (prefix, stat_name), [s[-1] for s in stat], always_show_all_stats=True, )) return statistics """Static visualization/utility methods""" @staticmethod def true_model(state, action): velocities = np.clip(action, a_min=-1, a_max=1) position = state new_position = position + velocities return np.clip( new_position, a_min=-Point2DEnv.boundary_dist, a_max=Point2DEnv.boundary_dist, ) @staticmethod def true_states(state, actions): real_states = [state] for action in actions: next_state = Point2DEnv.true_model(state, action) real_states.append(next_state) state = next_state return real_states @staticmethod def plot_trajectory(ax, states, actions, goal=None): assert len(states) == len(actions) + 1 x = states[:, 0] y = -states[:, 1] num_states = len(states) plasma_cm = plt.get_cmap('plasma') for i, state in enumerate(states): color = plasma_cm(float(i) / num_states) ax.plot(state[0], -state[1], marker='o', color=color, markersize=10, ) actions_x = actions[:, 0] actions_y = -actions[:, 1] ax.quiver(x[:-1], y[:-1], x[1:] - x[:-1], y[1:] - y[:-1], scale_units='xy', angles='xy', scale=1, width=0.005) ax.quiver(x[:-1], y[:-1], actions_x, actions_y, scale_units='xy', angles='xy', scale=1, color='r', width=0.0035, ) ax.plot( [ -Point2DEnv.boundary_dist, -Point2DEnv.boundary_dist, ], [ Point2DEnv.boundary_dist, -Point2DEnv.boundary_dist, ], color='k', linestyle='-', ) ax.plot( [ Point2DEnv.boundary_dist, -Point2DEnv.boundary_dist, ], [ Point2DEnv.boundary_dist, Point2DEnv.boundary_dist, ], color='k', linestyle='-', ) ax.plot( [ Point2DEnv.boundary_dist, Point2DEnv.boundary_dist, ], [ Point2DEnv.boundary_dist, -Point2DEnv.boundary_dist, ], color='k', linestyle='-', ) ax.plot( [ Point2DEnv.boundary_dist, -Point2DEnv.boundary_dist, ], [ -Point2DEnv.boundary_dist, -Point2DEnv.boundary_dist, ], color='k', linestyle='-', ) if goal is not None: ax.plot(goal[0], -goal[1], marker='*', color='g', markersize=15) ax.set_ylim( -Point2DEnv.boundary_dist - 1, Point2DEnv.boundary_dist + 1, ) ax.set_xlim( -Point2DEnv.boundary_dist - 1, Point2DEnv.boundary_dist + 1, ) def initialize_camera(self, init_fctn): pass class Multiobj2DWallEnv(Multiobj2DEnv): """Point2D with walls""" def __init__( self, wall_shape="", wall_thickness=1.0, inner_wall_max_dist=1, change_walls=False, **kwargs ): self.quick_init(locals()) super().__init__(**kwargs) self.inner_wall_max_dist = inner_wall_max_dist self.wall_shape = wall_shape self.wall_shapes = ["right", "left", "bottom", "top"] self.wall_thickness = wall_thickness self.change_walls = change_walls if self.change_walls: self.randomize_walls() else: self.fixed_wall(wall_shape) def randomize_walls(self): self.walls = [] random.shuffle(self.wall_shapes) for w in self.wall_shapes[:3]: if np.random.uniform() < 0.333: self.add_wall(w) def add_wall(self, wall): if wall == "right": # Right wall self.walls.append(VerticalWall( self.ball_radius, self.inner_wall_max_dist, -self.inner_wall_max_dist, self.inner_wall_max_dist, )) if wall == "left":# Left wall self.walls.append(VerticalWall( self.ball_radius, -self.inner_wall_max_dist, -self.inner_wall_max_dist, self.inner_wall_max_dist, )) if wall == "bottom":# Bottom wall self.walls.append(HorizontalWall( self.ball_radius, self.inner_wall_max_dist, -self.inner_wall_max_dist, self.inner_wall_max_dist, )) if wall == "top": self.walls.append(HorizontalWall( self.ball_radius, -self.inner_wall_max_dist, -self.inner_wall_max_dist, self.inner_wall_max_dist, )) def fixed_wall(self, wall_shape): if wall_shape == "u": self.walls = [ # Right wall VerticalWall( self.ball_radius, self.inner_wall_max_dist, -self.inner_wall_max_dist, self.inner_wall_max_dist, ), # Left wall VerticalWall( self.ball_radius, -self.inner_wall_max_dist, -self.inner_wall_max_dist, self.inner_wall_max_dist, ), # Bottom wall HorizontalWall( self.ball_radius, self.inner_wall_max_dist, -self.inner_wall_max_dist, self.inner_wall_max_dist, ) ] if wall_shape == "-" or wall_shape == "h": self.walls = [ HorizontalWall( self.ball_radius, self.inner_wall_max_dist, -self.inner_wall_max_dist, self.inner_wall_max_dist, ) ] if wall_shape == "--": self.walls = [ HorizontalWall( self.ball_radius, 0, -self.inner_wall_max_dist, self.inner_wall_max_dist, ) ] if wall_shape == "big-u": self.walls = [ VerticalWall( self.ball_radius, self.inner_wall_max_dist*2, -self.inner_wall_max_dist*2, self.inner_wall_max_dist, self.wall_thickness ), # Left wall VerticalWall( self.ball_radius, -self.inner_wall_max_dist*2, -self.inner_wall_max_dist*2, self.inner_wall_max_dist, self.wall_thickness ), # Bottom wall HorizontalWall( self.ball_radius, self.inner_wall_max_dist, -self.inner_wall_max_dist*2, self.inner_wall_max_dist*2, self.wall_thickness ), ] if wall_shape == "easy-u": self.walls = [ VerticalWall( self.ball_radius, self.inner_wall_max_dist*2, -self.inner_wall_max_dist*0.5, self.inner_wall_max_dist, self.wall_thickness ), # Left wall VerticalWall( self.ball_radius, -self.inner_wall_max_dist*2, -self.inner_wall_max_dist*0.5, self.inner_wall_max_dist, self.wall_thickness ), # Bottom wall HorizontalWall( self.ball_radius, self.inner_wall_max_dist, -self.inner_wall_max_dist*2, self.inner_wall_max_dist*2, self.wall_thickness ), ] if wall_shape == "big-h": self.walls = [ # Bottom wall HorizontalWall( self.ball_radius, self.inner_wall_max_dist, -self.inner_wall_max_dist*2, self.inner_wall_max_dist*2, ), ] if wall_shape == "box": self.walls = [ # Bottom wall VerticalWall( self.ball_radius, 0, 0, 0, self.wall_thickness ), ] if wall_shape == "none": self.walls = [] # def reset(self): # if self.change_colors: # if self.fixed_colors: # self.color_index = (self.color_index + 1) % 10 # self.pm_color = self.colors[self.color_index] # else: # rgbs = np.random.randint(0, 256, (1, 3)) # rgb = map(int, rgbs[0, :]) # self.pm_color = Color(*rgb, 255) # else: # pm_color = Color('blue') # if self.change_walls: # self.randomize_walls() # if self.randomize_position_on_reset: # self._position = self._sample_position( # self.obs_range.low, # self.obs_range.high) # self._target_position = self.sample_goal()['state_desired_goal'] # return self._get_obs() def reset(self): if self.white_passed: self.include_white = False if self.change_colors: self.randomize_colors() if self.change_walls: self.randomize_walls() self._target_position = self.sample_goal()['state_desired_goal'] if self.randomize_position_on_reset: self._position = self._sample_position( self.obs_range.low, self.obs_range.high, ) if self.initial_pass: self.white_passed = True self.initial_pass = True return self._get_obs() if __name__ == "__main__": import gym import cv2 e = Multiobj2DEnv( render_onscreen=True, show_goal=False, fixed_colors=True, num_colors=7 ) from multiworld.core.image_env import ImageEnv from multiworld.envs.mujoco.cameras import sawyer_init_camera_zoomed_in e.reset() for i in range(1000): img = e.get_image(100, 100) if i % 20 == 0: print('reset') e.reset() cv2.imshow('im', img) cv2.waitKey(10)
33.920052
180
0.524516
49fac59a3cce64570d0887fff3e479694e411592
5,872
py
Python
mtm/mtm.py
imclab/python-ssa-mtm
9c081485c9bb78773f1d9a3587dd1c070e23b495
[ "MIT" ]
2
2019-01-09T07:10:52.000Z
2020-07-21T00:44:50.000Z
mtm/mtm.py
imclab/python-ssa-mtm
9c081485c9bb78773f1d9a3587dd1c070e23b495
[ "MIT" ]
null
null
null
mtm/mtm.py
imclab/python-ssa-mtm
9c081485c9bb78773f1d9a3587dd1c070e23b495
[ "MIT" ]
2
2019-01-09T07:10:53.000Z
2020-07-21T00:44:52.000Z
# -*- coding: utf-8 -*- # # # mtm.py # # purpose: Wrap mtm2.f # author: Filipe P. A. Fernandes # e-mail: ocefpaf@gmail # web: http://ocefpaf.tiddlyspot.com/ # created: 27-Jul-2012 # modified: Fri 27 Jul 2012 06:43:45 PM BRT # # obs: MultiTaper Spectral Analysis. # import mtm2 import numpy as np import matplotlib.pyplot as plt #import matplotlib.font_manager as fm #from matplotlib import rcParams #rcParams['font.family'] = 'sans-serif' #rcParams['font.sans-serif'] = ['Tahoma'] def compute_mtm(arr, dt=1.0, npi=2, nwin=3, f1=0.0, f2=0.0, inorm=0, ispec=1, iresh=1, ithresh=3, inoise=0, ilog=1, ismooth=1, isignal=0, irecon=0, nsignals=0, iplotresh=1, iplotftest=1, iplotsmoo=1, iplotraw=1, iplotconf=1, icon=0): r"""This function compute mtm spectrum on a time-series array. It returns five arrays: * 3 columns array spec_raw with the frequency, the raw spectrum and ftest in the last one. * 3 columns array spec_resh with the frequency, the reshape signal spectrum and the harmonic. * 2 columns array spec_smoo with the frequency and the smooth spectrum. * 5 columns array spec_conf with the frequency, the confidence for the spectrum obtained. * 3 columns array recon with the frequency, the reconstructed signal. It has a large number of parameters which are initially set to some values: The time step parameter: `dt` = 1.0 in years To compute mtm on monthly data, set dt = 0.0833333333 (1/12 year) The resolution in `p` multiples of Rayleigh frequency: npi = 2 The number of tapers: suggested nwin = 2 * npi - 1 if nwin > (2 * npi - 1) then nwin = 2 * npi - 1 The spectrum: f1 = 0.0 (fmin) f2 = fny = 0.5/dt (fmax) The normalization: inorm = 0 inorm = (0) none (1) N (2) 1/dt The spectrum resolution: ispec = 1 ispec = (0) high-resolution or (1) adaptive estimate Reshaping flag: iresh = 1 iresh = reshaping (yes=1)? if iresh = 1 itresh = sig. level for harmonic peak detection/reshaping (0) 50% (1) 90% (2) 95% (3) 99% (4) 99.5% (5) 99.9% ithresh = 3 Some hypothesis parameters: inoise = (0) red noise, (1) white noise, (2) locally-white noise inoise = 0 ilog = red noise background fit: (0) linear,(1) log ilog = 1 ismooth = background estimation: (0) raw, (1) robust' ismooth = 1 Signal assumption: isignal = (0) harmonic or narrowband, (1) narrowband, (2) harmonic isignal = 0 if isignal=2 then inoise=2, iplotsmoo=0, iplotconf=0 if isignal=1 then iplotftest=0 and iplotresh=0 Reconstruction: irecon = 0 signals to reconstruct: nsignals=0 Display option parameters: (1) raw spectrum - iplotraw (2) reshaped & harmonic spectra - iplotresh (3) median smoothed background - iplotsmoo (4) 50% 90% 95% 99% conf levels - iplotconf (5) F-test spectrum - iplotftest iplotresh = 1 iplotftest = 1 iplotsmoo = 1 iplotraw = 1 iplotconf = 1 Constraint Option: icon = (0) min misfit, (1) min norm, (2) min slope, (3) min rough icon=0 """ if nwin > (2 * npi - 1): nwin = 2 * npi - 1 if f2 == 0: f2 = 0.5 / dt if isignal == 2: inoise = 2 iplotsmoo = 0 iplotconf = 0 if isignal == 1: iplotftest = 0 iplotresh = 0 spec_raw, spec_resh, spec_smoo, spec_conf, recon_sig = mtm2.mtm_mann( arr, dt, npi, nwin, f1, f2, inorm, ispec, iresh, ithresh, inoise, ilog, ismooth, isignal, irecon, nsignals, iplotresh, iplotftest, iplotsmoo, iplotraw, iplotconf, icon) spec_raw = resize_spec(spec_raw) spec_resh = resize_spec(spec_resh) spec_smoo = resize_spec(spec_smoo) spec_conf = resize_spec(spec_conf) recon_sig = resize_spec(recon_sig) return spec_raw, spec_resh, spec_smoo, spec_conf, recon_sig def plot_spec(spec_raw): fig, ax = plt.subplots() #prop = fm.FontProperties(fname='/Library/Fonts/Tahoma.ttf') #ax.set_xlabel('Frequency [years]', fontsize=10, color='black', #fontproperties=prop) m = np.array([1.0, 2.0, 5.0, 10.0, 20.0, 100.0]) ohm = 1.0 / m ax.loglog(spec_raw[:, 0], spec_raw[:, 1], linewidth=0.5) for i in range(0, 6): ax.text(ohm[i], 200000, str(int(m[i]))) ax.set_xlabel('Frequency [1/years]', fontsize=12, color='black') ax.set_ylabel('Spectral Power', fontsize=12, color='black') ax.set_title('MTM Spectrum', fontsize=12, color='black') ax.text(2, 200000, 'Period [year]') ax.text(.01, 0.01, r'Nino3 from Speedy') #ax.axis([0.005, 10, 0.01, 1000000]) plt.grid(True) plt.show() def resize_spec(arr): arr = np.asanyarray(arr) if arr.ndim != 2: raise ValueError("Array must be 2D.") size = 1 nrow, ncol = arr.shape for i in range(1, nrow): if arr[i, 0] != 0: size = size + 1 if size != 1: arr = arr[0:size, 0:ncol] return arr def find_inequalities(arr, fmin, fmax): if3 = 0 nrow, ncol = arr.shape if7 = nrow - 1 while arr[if3, 0] < fmin and if3 < nrow: if3 = if3 + 1 while arr[if7, 0] > fmax and if7 > 0: if7 = if7 - 1 return if3, if7 if __name__ == '__main__': X = [1.0135518, -0.7113242, -0.3906069, 1.565203, 0.0439317, -1.1656093, 1.0701692, 1.0825379, -1.2239744, -0.0321446, 1.1815997, -1.4969448, -0.7455299, 1.0973884, -0.2188716, -1.0719573, 0.9922009, 0.4374216, -1.6880219, 0.2609807] X = np.atleast_2d(X) spec_raw, spec_resh, spec_smoo, spec_conf, recon_sig = compute_mtm(X) plot_spec(spec_raw)
32.622222
79
0.604394
9f2b9a943dd8c9ba18ae389f7c8571bdad3ba99f
31,252
py
Python
pymatgen/io/abinit/abitimer.py
Chessmag/pymatgen
61a4bb7a1792e1ea2379abd45b3c40efb816fd64
[ "MIT" ]
1
2021-10-18T01:26:50.000Z
2021-10-18T01:26:50.000Z
pymatgen/io/abinit/abitimer.py
Chessmag/pymatgen
61a4bb7a1792e1ea2379abd45b3c40efb816fd64
[ "MIT" ]
null
null
null
pymatgen/io/abinit/abitimer.py
Chessmag/pymatgen
61a4bb7a1792e1ea2379abd45b3c40efb816fd64
[ "MIT" ]
null
null
null
# coding: utf-8 # Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. """ This module provides objects for extracting timing data from the ABINIT output files It also provides tools to analye and to visualize the parallel efficiency. """ import sys import os import collections import numpy as np from monty.string import is_string, list_strings from pymatgen.util.num import minloc from pymatgen.util.plotting import add_fig_kwargs, get_ax_fig_plt import logging logger = logging.getLogger(__name__) def alternate(*iterables): """ [a[0], b[0], ... , a[1], b[1], ..., a[n], b[n] ...] >>> alternate([1,4], [2,5], [3,6]) [1, 2, 3, 4, 5, 6] """ items = [] for tup in zip(*iterables): items.extend([item for item in tup]) return items class AbinitTimerParserError(Exception): """Errors raised by AbinitTimerParser""" class AbinitTimerParser(collections.abc.Iterable): """ Responsible for parsing a list of output files, extracting the timing results and analyzing the results. Assume the Abinit output files have been produced with `timopt -1`. Example: parser = AbinitTimerParser() parser.parse(list_of_files) To analyze all *.abo files withing top, use: parser, paths, okfiles = AbinitTimerParser.walk(top=".", ext=".abo") """ # The markers enclosing the data. BEGIN_TAG = "-<BEGIN_TIMER" END_TAG = "-<END_TIMER>" Error = AbinitTimerParserError # DEFAULT_MPI_RANK = "0" @classmethod def walk(cls, top=".", ext=".abo"): """ Scan directory tree starting from top, look for files with extension `ext` and parse timing data. Return: (parser, paths, okfiles) where `parser` is the new object, `paths` is the list of files found and `okfiles` is the list of files that have been parsed successfully. (okfiles == paths) if all files have been parsed. """ paths = [] for root, dirs, files in os.walk(top): for f in files: if f.endswith(ext): paths.append(os.path.join(root, f)) parser = cls() okfiles = parser.parse(paths) return parser, paths, okfiles def __init__(self): """Initialize object.""" # List of files that have been parsed. self._filenames = [] # timers[filename][mpi_rank] # contains the timer extracted from the file filename associated to the MPI rank mpi_rank. self._timers = collections.OrderedDict() def __iter__(self): return self._timers.__iter__() def __len__(self): return len(self._timers) @property def filenames(self): """List of files that have been parsed successfully.""" return self._filenames def parse(self, filenames): """ Read and parse a filename or a list of filenames. Files that cannot be opened are ignored. A single filename may also be given. Return: list of successfully read files. """ filenames = list_strings(filenames) read_ok = [] for fname in filenames: try: fh = open(fname) except IOError: logger.warning("Cannot open file %s" % fname) continue try: self._read(fh, fname) read_ok.append(fname) except self.Error as e: logger.warning("exception while parsing file %s:\n%s" % (fname, str(e))) continue finally: fh.close() # Add read_ok to the list of files that have been parsed. self._filenames.extend(read_ok) return read_ok def _read(self, fh, fname): """Parse the TIMER section""" if fname in self._timers: raise self.Error("Cannot overwrite timer associated to: %s " % fname) def parse_line(line): """Parse single line.""" name, vals = line[:25], line[25:].split() try: ctime, cfract, wtime, wfract, ncalls, gflops = vals except ValueError: # v8.3 Added two columns at the end [Speedup, Efficacity] ctime, cfract, wtime, wfract, ncalls, gflops, speedup, eff = vals return AbinitTimerSection(name, ctime, cfract, wtime, wfract, ncalls, gflops) sections, info, cpu_time, wall_time = None, None, None, None data = {} inside, has_timer = 0, False for line in fh: # print(line.strip()) if line.startswith(self.BEGIN_TAG): has_timer = True sections = [] info = {} inside = 1 line = line[len(self.BEGIN_TAG):].strip()[:-1] info["fname"] = fname for tok in line.split(","): key, val = [s.strip() for s in tok.split("=")] info[key] = val elif line.startswith(self.END_TAG): inside = 0 timer = AbinitTimer(sections, info, cpu_time, wall_time) mpi_rank = info["mpi_rank"] data[mpi_rank] = timer elif inside: inside += 1 line = line[1:].strip() if inside == 2: d = dict() for tok in line.split(","): key, val = [s.strip() for s in tok.split("=")] d[key] = float(val) cpu_time, wall_time = d["cpu_time"], d["wall_time"] elif inside > 5: sections.append(parse_line(line)) else: try: parse_line(line) except Exception: parser_failed = True if not parser_failed: raise self.Error("line should be empty: " + str(inside) + line) if not has_timer: raise self.Error("%s: No timer section found" % fname) # Add it to the dict self._timers[fname] = data def timers(self, filename=None, mpi_rank="0"): """ Return the list of timers associated to the given `filename` and MPI rank mpi_rank. """ if filename is not None: return [self._timers[filename][mpi_rank]] else: return [self._timers[filename][mpi_rank] for filename in self._filenames] def section_names(self, ordkey="wall_time"): """ Return the names of sections ordered by ordkey. For the time being, the values are taken from the first timer. """ section_names = [] # FIXME this is not trivial for idx, timer in enumerate(self.timers()): if idx == 0: section_names = [s.name for s in timer.order_sections(ordkey)] # check = section_names # else: # new_set = set( [s.name for s in timer.order_sections(ordkey)]) # section_names.intersection_update(new_set) # check = check.union(new_set) # if check != section_names: # print("sections", section_names) # print("check",check) return section_names def get_sections(self, section_name): """ Return the list of sections stored in self.timers() given `section_name` A fake section is returned if the timer does not have section_name. """ sections = [] for timer in self.timers(): for sect in timer.sections: if sect.name == section_name: sections.append(sect) break else: sections.append(AbinitTimerSection.fake()) return sections def pefficiency(self): """ Analyze the parallel efficiency. Return: :class:`ParallelEfficiency` object. """ timers = self.timers() # Number of CPUs employed in each calculation. ncpus = [timer.ncpus for timer in timers] # Find the minimum number of cpus used and its index in timers. min_idx = minloc(ncpus) min_ncpus = ncpus[min_idx] # Reference timer ref_t = timers[min_idx] # Compute the parallel efficiency (total and section efficiency) peff = {} ctime_peff = [(min_ncpus * ref_t.wall_time) / (t.wall_time * ncp) for (t, ncp) in zip(timers, ncpus)] wtime_peff = [(min_ncpus * ref_t.cpu_time) / (t.cpu_time * ncp) for (t, ncp) in zip(timers, ncpus)] n = len(timers) peff["total"] = {} peff["total"]["cpu_time"] = ctime_peff peff["total"]["wall_time"] = wtime_peff peff["total"]["cpu_fract"] = n * [100] peff["total"]["wall_fract"] = n * [100] for sect_name in self.section_names(): # print(sect_name) ref_sect = ref_t.get_section(sect_name) sects = [t.get_section(sect_name) for t in timers] try: ctime_peff = [(min_ncpus * ref_sect.cpu_time) / (s.cpu_time * ncp) for (s, ncp) in zip(sects, ncpus)] wtime_peff = [(min_ncpus * ref_sect.wall_time) / (s.wall_time * ncp) for (s, ncp) in zip(sects, ncpus)] except ZeroDivisionError: ctime_peff = n * [-1] wtime_peff = n * [-1] assert sect_name not in peff peff[sect_name] = {} peff[sect_name]["cpu_time"] = ctime_peff peff[sect_name]["wall_time"] = wtime_peff peff[sect_name]["cpu_fract"] = [s.cpu_fract for s in sects] peff[sect_name]["wall_fract"] = [s.wall_fract for s in sects] return ParallelEfficiency(self._filenames, min_idx, peff) def summarize(self, **kwargs): """ Return pandas DataFrame with the most important results stored in the timers. """ import pandas as pd colnames = ["fname", "wall_time", "cpu_time", "mpi_nprocs", "omp_nthreads", "mpi_rank"] frame = pd.DataFrame(columns=colnames) for i, timer in enumerate(self.timers()): frame = frame.append({k: getattr(timer, k) for k in colnames}, ignore_index=True) frame["tot_ncpus"] = frame["mpi_nprocs"] * frame["omp_nthreads"] # Compute parallel efficiency (use the run with min number of cpus to normalize). i = frame["tot_ncpus"].values.argmin() ref_wtime = frame.iloc[i]["wall_time"] ref_ncpus = frame.iloc[i]["tot_ncpus"] frame["peff"] = (ref_ncpus * ref_wtime) / (frame["wall_time"] * frame["tot_ncpus"]) return frame @add_fig_kwargs def plot_efficiency(self, key="wall_time", what="good+bad", nmax=5, ax=None, **kwargs): """ Plot the parallel efficiency Args: key: Parallel efficiency is computed using the wall_time. what: Specifies what to plot: `good` for sections with good parallel efficiency. `bad` for sections with bad efficiency. Options can be concatenated with `+`. nmax: Maximum number of entries in plot ax: matplotlib :class:`Axes` or None if a new figure should be created. ================ ==================================================== kwargs Meaning ================ ==================================================== linewidth matplotlib linewidth. Default: 2.0 markersize matplotlib markersize. Default: 10 ================ ==================================================== Returns: `matplotlib` figure """ ax, fig, plt = get_ax_fig_plt(ax=ax) lw = kwargs.pop("linewidth", 2.0) msize = kwargs.pop("markersize", 10) what = what.split("+") timers = self.timers() peff = self.pefficiency() n = len(timers) xx = np.arange(n) # ax.set_color_cycle(['g', 'b', 'c', 'm', 'y', 'k']) ax.set_prop_cycle(color=['g', 'b', 'c', 'm', 'y', 'k']) lines, legend_entries = [], [] # Plot sections with good efficiency. if "good" in what: good = peff.good_sections(key=key, nmax=nmax) for g in good: # print(g, peff[g]) yy = peff[g][key] line, = ax.plot(xx, yy, "-->", linewidth=lw, markersize=msize) lines.append(line) legend_entries.append(g) # Plot sections with bad efficiency. if "bad" in what: bad = peff.bad_sections(key=key, nmax=nmax) for b in bad: # print(b, peff[b]) yy = peff[b][key] line, = ax.plot(xx, yy, "-.<", linewidth=lw, markersize=msize) lines.append(line) legend_entries.append(b) # Add total if not already done if "total" not in legend_entries: yy = peff["total"][key] total_line, = ax.plot(xx, yy, "r", linewidth=lw, markersize=msize) lines.append(total_line) legend_entries.append("total") ax.legend(lines, legend_entries, loc="best", shadow=True) # ax.set_title(title) ax.set_xlabel('Total_NCPUs') ax.set_ylabel('Efficiency') ax.grid(True) # Set xticks and labels. labels = ["MPI=%d, OMP=%d" % (t.mpi_nprocs, t.omp_nthreads) for t in timers] ax.set_xticks(xx) ax.set_xticklabels(labels, fontdict=None, minor=False, rotation=15) return fig @add_fig_kwargs def plot_pie(self, key="wall_time", minfract=0.05, **kwargs): """ Plot pie charts of the different timers. Args: key: Keyword used to extract data from timers. minfract: Don't show sections whose relative weight is less that minfract. Returns: `matplotlib` figure """ timers = self.timers() n = len(timers) # Make square figures and axes import matplotlib.pyplot as plt from matplotlib.gridspec import GridSpec fig = plt.gcf() gspec = GridSpec(n, 1) for idx, timer in enumerate(timers): ax = plt.subplot(gspec[idx, 0]) ax.set_title(str(timer)) timer.pie(ax=ax, key=key, minfract=minfract, show=False) return fig @add_fig_kwargs def plot_stacked_hist(self, key="wall_time", nmax=5, ax=None, **kwargs): """ Plot stacked histogram of the different timers. Args: key: Keyword used to extract data from the timers. Only the first `nmax` sections with largest value are show. mmax: Maximum nuber of sections to show. Other entries are grouped together in the `others` section. ax: matplotlib :class:`Axes` or None if a new figure should be created. Returns: `matplotlib` figure """ ax, fig, plt = get_ax_fig_plt(ax=ax) mpi_rank = "0" timers = self.timers(mpi_rank=mpi_rank) n = len(timers) names, values = [], [] rest = np.zeros(n) for idx, sname in enumerate(self.section_names(ordkey=key)): sections = self.get_sections(sname) svals = np.asarray([s.__dict__[key] for s in sections]) if idx < nmax: names.append(sname) values.append(svals) else: rest += svals names.append("others (nmax=%d)" % nmax) values.append(rest) # The dataset is stored in values. Now create the stacked histogram. ind = np.arange(n) # the locations for the groups width = 0.35 # the width of the bars colors = nmax * ['r', 'g', 'b', 'c', 'k', 'y', 'm'] bars = [] bottom = np.zeros(n) for idx, vals in enumerate(values): color = colors[idx] bar = ax.bar(ind, vals, width, color=color, bottom=bottom) bars.append(bar) bottom += vals ax.set_ylabel(key) ax.set_title("Stacked histogram with the %d most important sections" % nmax) ticks = ind + width / 2.0 labels = ["MPI=%d, OMP=%d" % (t.mpi_nprocs, t.omp_nthreads) for t in timers] ax.set_xticks(ticks) ax.set_xticklabels(labels, rotation=15) # Add legend. ax.legend([bar[0] for bar in bars], names, loc="best") return fig def plot_all(self, show=True, **kwargs): """ Call all plot methods provided by the parser. """ figs = [] app = figs.append app(self.plot_stacked_hist(show=show)) app(self.plot_efficiency(show=show)) app(self.plot_pie(show=show)) return figs class ParallelEfficiency(dict): """ Store results concerning the parallel efficiency of the job. """ def __init__(self, filenames, ref_idx, *args, **kwargs): """ Args: filennames: List of filenames ref_idx: Index of the Reference time (calculation done with the smallest number of cpus) """ self.update(*args, **kwargs) self.filenames = filenames self._ref_idx = ref_idx def _order_by_peff(self, key, criterion, reverse=True): self.estimator = { "min": min, "max": max, "mean": lambda items: sum(items) / len(items), }[criterion] data = [] for (sect_name, peff) in self.items(): # Ignore values where we had a division by zero. if all([v != -1 for v in peff[key]]): values = peff[key][:] # print(sect_name, values) if len(values) > 1: ref_value = values.pop(self._ref_idx) assert ref_value == 1.0 data.append((sect_name, self.estimator(values))) data.sort(key=lambda t: t[1], reverse=reverse) return tuple([sect_name for (sect_name, e) in data]) def totable(self, stop=None, reverse=True): """ Return table (list of lists) with timing results. Args: stop: Include results up to stop. None for all reverse: Put items with highest wall_time in first positions if True. """ osects = self._order_by_peff("wall_time", criterion="mean", reverse=reverse) if stop is not None: osects = osects[:stop] n = len(self.filenames) table = [["AbinitTimerSection"] + alternate(self.filenames, n * ["%"])] for sect_name in osects: peff = self[sect_name]["wall_time"] fract = self[sect_name]["wall_fract"] vals = alternate(peff, fract) table.append([sect_name] + ["%.2f" % val for val in vals]) return table def good_sections(self, key="wall_time", criterion="mean", nmax=5): """ Return first `nmax` sections with best value of key `key` using criterion `criterion`. """ good_sections = self._order_by_peff(key, criterion=criterion) return good_sections[:nmax] def bad_sections(self, key="wall_time", criterion="mean", nmax=5): """ Return first `nmax` sections with worst value of key `key` using criterion `criterion`. """ bad_sections = self._order_by_peff(key, criterion=criterion, reverse=False) return bad_sections[:nmax] class AbinitTimerSection: """Record with the timing results associated to a section of code.""" STR_FIELDS = [ "name" ] NUMERIC_FIELDS = [ "wall_time", "wall_fract", "cpu_time", "cpu_fract", "ncalls", "gflops", ] FIELDS = tuple(STR_FIELDS + NUMERIC_FIELDS) @classmethod def fake(cls): """Return a fake section. Mainly used to fill missing entries if needed.""" return AbinitTimerSection("fake", 0.0, 0.0, 0.0, 0.0, -1, 0.0) def __init__(self, name, cpu_time, cpu_fract, wall_time, wall_fract, ncalls, gflops): """ Args: name: Name of the sections. cpu_time: CPU time in seconds. cpu_fract: Percentage of CPU time. wall_time: Wall-time in seconds. wall_fract: Percentage of wall-time. ncalls: Number of calls gflops: Gigaflops. """ self.name = name.strip() self.cpu_time = float(cpu_time) self.cpu_fract = float(cpu_fract) self.wall_time = float(wall_time) self.wall_fract = float(wall_fract) self.ncalls = int(ncalls) self.gflops = float(gflops) def to_tuple(self): """Convert object to tuple.""" return tuple([self.__dict__[at] for at in AbinitTimerSection.FIELDS]) def to_dict(self): """Convert object to dictionary.""" return {at: self.__dict__[at] for at in AbinitTimerSection.FIELDS} def to_csvline(self, with_header=False): """Return a string with data in CSV format. Add header if `with_header`""" string = "" if with_header: string += "# " + " ".join(at for at in AbinitTimerSection.FIELDS) + "\n" string += ", ".join(str(v) for v in self.to_tuple()) + "\n" return string def __str__(self): """String representation.""" string = "" for a in AbinitTimerSection.FIELDS: string += a + " = " + self.__dict__[a] + "," return string[:-1] class AbinitTimer: """Container class storing the timing results.""" def __init__(self, sections, info, cpu_time, wall_time): """ Args: sections: List of sections info: Dictionary with extra info. cpu_time: Cpu-time in seconds. wall_time: Wall-time in seconds. """ # Store sections and names self.sections = tuple(sections) self.section_names = tuple([s.name for s in self.sections]) self.info = info self.cpu_time = float(cpu_time) self.wall_time = float(wall_time) self.mpi_nprocs = int(info["mpi_nprocs"]) self.omp_nthreads = int(info["omp_nthreads"]) self.mpi_rank = info["mpi_rank"].strip() self.fname = info["fname"].strip() def __str__(self): string = "file=%s, wall_time=%.1f, mpi_nprocs=%d, omp_nthreads=%d" % ( self.fname, self.wall_time, self.mpi_nprocs, self.omp_nthreads) # string += ", rank = " + self.mpi_rank return string @property def ncpus(self): """Total number of CPUs employed.""" return self.mpi_nprocs * self.omp_nthreads def get_section(self, section_name): """Return section associated to `section_name`.""" try: idx = self.section_names.index(section_name) except Exception: raise sect = self.sections[idx] assert sect.name == section_name return sect def to_csv(self, fileobj=sys.stdout): """Write data on file fileobj using CSV format.""" openclose = is_string(fileobj) if openclose: fileobj = open(fileobj, "w") for idx, section in enumerate(self.sections): fileobj.write(section.to_csvline(with_header=(idx == 0))) fileobj.flush() if openclose: fileobj.close() def to_table(self, sort_key="wall_time", stop=None): """Return a table (list of lists) with timer data""" table = [list(AbinitTimerSection.FIELDS), ] ord_sections = self.order_sections(sort_key) if stop is not None: ord_sections = ord_sections[:stop] for osect in ord_sections: row = [str(item) for item in osect.to_tuple()] table.append(row) return table # Maintain old API totable = to_table def get_dataframe(self, sort_key="wall_time", **kwargs): """ Return a pandas DataFrame with entries sorted according to `sort_key`. """ import pandas as pd frame = pd.DataFrame(columns=AbinitTimerSection.FIELDS) for osect in self.order_sections(sort_key): frame = frame.append(osect.to_dict(), ignore_index=True) # Monkey patch frame.info = self.info frame.cpu_time = self.cpu_time frame.wall_time = self.wall_time frame.mpi_nprocs = self.mpi_nprocs frame.omp_nthreads = self.omp_nthreads frame.mpi_rank = self.mpi_rank frame.fname = self.fname return frame def get_values(self, keys): """ Return a list of values associated to a particular list of keys. """ if is_string(keys): return [s.__dict__[keys] for s in self.sections] else: values = [] for k in keys: values.append([s.__dict__[k] for s in self.sections]) return values def names_and_values(self, key, minval=None, minfract=None, sorted=True): """ Select the entries whose value[key] is >= minval or whose fraction[key] is >= minfract Return the names of the sections and the corresponding values. """ values = self.get_values(key) names = self.get_values("name") new_names, new_values = [], [] other_val = 0.0 if minval is not None: assert minfract is None for n, v in zip(names, values): if v >= minval: new_names.append(n) new_values.append(v) else: other_val += v new_names.append("below minval " + str(minval)) new_values.append(other_val) elif minfract is not None: assert minval is None total = self.sum_sections(key) for n, v in zip(names, values): if v / total >= minfract: new_names.append(n) new_values.append(v) else: other_val += v new_names.append("below minfract " + str(minfract)) new_values.append(other_val) else: # all values new_names, new_values = names, values if sorted: # Sort new_values and rearrange new_names. nandv = [nv for nv in zip(new_names, new_values)] nandv.sort(key=lambda t: t[1]) new_names, new_values = [n[0] for n in nandv], [n[1] for n in nandv] return new_names, new_values def _reduce_sections(self, keys, operator): return operator(self.get_values(keys)) def sum_sections(self, keys): """Sum value of keys.""" return self._reduce_sections(keys, sum) def order_sections(self, key, reverse=True): """Sort sections according to the value of key.""" return sorted(self.sections, key=lambda s: s.__dict__[key], reverse=reverse) @add_fig_kwargs def cpuwall_histogram(self, ax=None, **kwargs): """ Plot histogram with cpu- and wall-time on axis `ax`. Args: ax: matplotlib :class:`Axes` or None if a new figure should be created. Returns: `matplotlib` figure """ ax, fig, plt = get_ax_fig_plt(ax=ax) nk = len(self.sections) ind = np.arange(nk) # the x locations for the groups width = 0.35 # the width of the bars cpu_times = self.get_values("cpu_time") rects1 = plt.bar(ind, cpu_times, width, color='r') wall_times = self.get_values("wall_time") rects2 = plt.bar(ind + width, wall_times, width, color='y') # Add ylable and title ax.set_ylabel('Time (s)') # plt.title('CPU-time and Wall-time for the different sections of the code') ticks = self.get_values("name") ax.set_xticks(ind + width, ticks) ax.legend((rects1[0], rects2[0]), ('CPU', 'Wall'), loc="best") return fig @add_fig_kwargs def pie(self, key="wall_time", minfract=0.05, ax=None, **kwargs): """ Plot pie chart for this timer. Args: key: Keyword used to extract data from the timer. minfract: Don't show sections whose relative weight is less that minfract. ax: matplotlib :class:`Axes` or None if a new figure should be created. Returns: `matplotlib` figure """ ax, fig, plt = get_ax_fig_plt(ax=ax) # Set aspect ratio to be equal so that pie is drawn as a circle. ax.axis("equal") # Don't show section whose value is less that minfract labels, vals = self.names_and_values(key, minfract=minfract) ax.pie(vals, explode=None, labels=labels, autopct='%1.1f%%', shadow=True) return fig @add_fig_kwargs def scatter_hist(self, ax=None, **kwargs): """ Scatter plot + histogram. Args: ax: matplotlib :class:`Axes` or None if a new figure should be created. Returns: `matplotlib` figure """ from mpl_toolkits.axes_grid1 import make_axes_locatable ax, fig, plt = get_ax_fig_plt(ax=ax) x = np.asarray(self.get_values("cpu_time")) y = np.asarray(self.get_values("wall_time")) # the scatter plot: axScatter = plt.subplot(1, 1, 1) axScatter.scatter(x, y) axScatter.set_aspect("auto") # create new axes on the right and on the top of the current axes # The first argument of the new_vertical(new_horizontal) method is # the height (width) of the axes to be created in inches. divider = make_axes_locatable(axScatter) axHistx = divider.append_axes("top", 1.2, pad=0.1, sharex=axScatter) axHisty = divider.append_axes("right", 1.2, pad=0.1, sharey=axScatter) # make some labels invisible plt.setp(axHistx.get_xticklabels() + axHisty.get_yticklabels(), visible=False) # now determine nice limits by hand: binwidth = 0.25 xymax = np.max([np.max(np.fabs(x)), np.max(np.fabs(y))]) lim = (int(xymax / binwidth) + 1) * binwidth bins = np.arange(-lim, lim + binwidth, binwidth) axHistx.hist(x, bins=bins) axHisty.hist(y, bins=bins, orientation='horizontal') # the xaxis of axHistx and yaxis of axHisty are shared with axScatter, # thus there is no need to manually adjust the xlim and ylim of these axis. # axHistx.axis["bottom"].major_ticklabels.set_visible(False) for tl in axHistx.get_xticklabels(): tl.set_visible(False) axHistx.set_yticks([0, 50, 100]) # axHisty.axis["left"].major_ticklabels.set_visible(False) for tl in axHisty.get_yticklabels(): tl.set_visible(False) axHisty.set_xticks([0, 50, 100]) # plt.draw() return fig
33.895879
119
0.565308
ebdd9074b2abe09a12e479c79af89c5258c3c947
10,110
py
Python
wetterdienst/provider/eccc/observation/metadata/unit.py
bh-chaker/wetterdienst
b0d51bb4c7392eb47834e4978e26882d74b22e35
[ "MIT" ]
155
2020-07-03T05:09:22.000Z
2022-03-28T06:57:39.000Z
wetterdienst/provider/eccc/observation/metadata/unit.py
bh-chaker/wetterdienst
b0d51bb4c7392eb47834e4978e26882d74b22e35
[ "MIT" ]
453
2020-07-02T21:21:52.000Z
2022-03-31T21:35:36.000Z
wetterdienst/provider/eccc/observation/metadata/unit.py
bh-chaker/wetterdienst
b0d51bb4c7392eb47834e4978e26882d74b22e35
[ "MIT" ]
21
2020-09-07T12:13:27.000Z
2022-03-26T16:26:09.000Z
# -*- coding: utf-8 -*- # Copyright (c) 2018-2021, earthobservations developers. # Distributed under the MIT License. See LICENSE for more info. from wetterdienst.metadata.unit import OriginUnit, SIUnit, UnitEnum from wetterdienst.util.parameter import DatasetTreeCore class EcccObservationUnit(DatasetTreeCore): class HOURLY(UnitEnum): TEMPERATURE_AIR_MEAN_200 = ( OriginUnit.DEGREE_CELSIUS.value, SIUnit.DEGREE_KELVIN.value, ) QUALITY_TEMPERATURE_AIR_MEAN_200 = ( OriginUnit.DIMENSIONLESS.value, SIUnit.DIMENSIONLESS.value, ) TEMPERATURE_DEW_POINT_MEAN_200 = ( OriginUnit.DEGREE_CELSIUS.value, SIUnit.DEGREE_KELVIN.value, ) QUALITY_TEMPERATURE_DEW_POINT_MEAN_200 = ( OriginUnit.DIMENSIONLESS.value, SIUnit.DIMENSIONLESS.value, ) HUMIDITY = OriginUnit.PERCENT.value, SIUnit.PERCENT.value QUALITY_HUMIDITY = ( OriginUnit.DIMENSIONLESS.value, SIUnit.DIMENSIONLESS.value, ) WIND_DIRECTION = ( OriginUnit.WIND_DIRECTION.value, SIUnit.WIND_DIRECTION.value, ) QUALITY_WIND_DIRECTION = ( OriginUnit.DIMENSIONLESS.value, SIUnit.DIMENSIONLESS.value, ) WIND_SPEED = ( OriginUnit.KILOMETER_PER_HOUR.value, SIUnit.METER_PER_SECOND.value, ) QUALITY_WIND_SPEED = ( OriginUnit.DIMENSIONLESS.value, SIUnit.DIMENSIONLESS.value, ) VISIBILITY = OriginUnit.KILOMETER.value, SIUnit.METER.value QUALITY_VISIBILITY = ( OriginUnit.DIMENSIONLESS.value, SIUnit.DIMENSIONLESS.value, ) PRESSURE_AIR_SITE = ( OriginUnit.KILOPASCAL.value, SIUnit.PASCAL.value, ) QUALITY_PRESSURE_AIR_SITE = ( OriginUnit.DIMENSIONLESS.value, SIUnit.DIMENSIONLESS.value, ) HUMIDEX = OriginUnit.DIMENSIONLESS.value, SIUnit.DIMENSIONLESS.value QUALITY_HUMIDEX = OriginUnit.DIMENSIONLESS.value, SIUnit.DIMENSIONLESS.value WIND_GUST_MAX = ( OriginUnit.KILOMETER_PER_HOUR.value, SIUnit.METER_PER_SECOND.value, ) QUALITY_WIND_GUST_MAX = ( OriginUnit.DIMENSIONLESS.value, SIUnit.DIMENSIONLESS.value, ) WEATHER = OriginUnit.DIMENSIONLESS.value, SIUnit.DIMENSIONLESS.value class DAILY(UnitEnum): # Data Quality quality of all variables? TEMPERATURE_AIR_MAX_200 = ( OriginUnit.DEGREE_CELSIUS.value, SIUnit.DEGREE_KELVIN.value, ) QUALITY_TEMPERATURE_AIR_MAX_200 = ( OriginUnit.DIMENSIONLESS.value, SIUnit.DIMENSIONLESS.value, ) TEMPERATURE_AIR_MIN_200 = ( OriginUnit.DEGREE_CELSIUS.value, SIUnit.DEGREE_KELVIN.value, ) QUALITY_TEMPERATURE_AIR_MIN_200 = ( OriginUnit.DIMENSIONLESS.value, SIUnit.DIMENSIONLESS.value, ) TEMPERATURE_AIR_MEAN_200 = ( OriginUnit.DEGREE_CELSIUS.value, SIUnit.DEGREE_KELVIN.value, ) QUALITY_TEMPERATURE_AIR_MEAN_200 = ( OriginUnit.DIMENSIONLESS.value, SIUnit.DIMENSIONLESS.value, ) NDAYS_HEATING_DEGREE = ( OriginUnit.DEGREE_CELSIUS.value, SIUnit.DEGREE_KELVIN.value, ) QUALITY_NDAYS_HEATING_DEGREE = ( OriginUnit.DIMENSIONLESS.value, SIUnit.DIMENSIONLESS.value, ) NDAYS_COOLING_DEGREE = ( OriginUnit.DEGREE_CELSIUS.value, SIUnit.DEGREE_KELVIN.value, ) QUALITY_NDAYS_COOLING_DEGREE = ( OriginUnit.DIMENSIONLESS.value, SIUnit.DIMENSIONLESS.value, ) PRECIPITATION_HEIGHT_LIQUID = ( OriginUnit.MILLIMETER.value, SIUnit.KILOGRAM_PER_SQUARE_METER.value, ) QUALITY_PRECIPITATION_HEIGHT_LIQUID = ( OriginUnit.DIMENSIONLESS.value, SIUnit.DIMENSIONLESS.value, ) SNOW_DEPTH_NEW = OriginUnit.CENTIMETER.value, SIUnit.METER.value QUALITY_SNOW_DEPTH_NEW = ( OriginUnit.DIMENSIONLESS.value, SIUnit.DIMENSIONLESS.value, ) PRECIPITATION_HEIGHT = ( OriginUnit.MILLIMETER.value, SIUnit.KILOGRAM_PER_SQUARE_METER.value, ) QUALITY_PRECIPITATION_HEIGHT = ( OriginUnit.DIMENSIONLESS.value, SIUnit.DIMENSIONLESS.value, ) SNOW_DEPTH = OriginUnit.CENTIMETER.value, SIUnit.METER.value QUALITY_SNOW_DEPTH = ( OriginUnit.DIMENSIONLESS.value, SIUnit.DIMENSIONLESS.value, ) WIND_DIRECTION_GUST_MAX = ( OriginUnit.WIND_DIRECTION.value, SIUnit.WIND_DIRECTION.value, ) QUALITY_WIND_DIRECTION_GUST_MAX = ( OriginUnit.DIMENSIONLESS.value, SIUnit.DIMENSIONLESS.value, ) WIND_GUST_MAX = ( OriginUnit.KILOMETER_PER_HOUR.value, SIUnit.METER_PER_SECOND.value, ) QUALITY_WIND_GUST_MAX = ( OriginUnit.DIMENSIONLESS.value, SIUnit.DIMENSIONLESS.value, ) class MONTHLY(UnitEnum): TEMPERATURE_AIR_MAX_200_MEAN = ( OriginUnit.DEGREE_CELSIUS.value, SIUnit.DEGREE_KELVIN.value, ) QUALITY_TEMPERATURE_AIR_MAX_200_MEAN = ( OriginUnit.DIMENSIONLESS.value, SIUnit.DIMENSIONLESS.value, ) TEMPERATURE_AIR_MIN_200_MEAN = ( OriginUnit.DEGREE_CELSIUS.value, SIUnit.DEGREE_KELVIN.value, ) QUALITY_TEMPERATURE_AIR_MIN_200_MEAN = ( OriginUnit.DIMENSIONLESS.value, SIUnit.DIMENSIONLESS.value, ) TEMPERATURE_AIR_MEAN_200 = ( OriginUnit.DEGREE_CELSIUS.value, SIUnit.DEGREE_KELVIN.value, ) QUALITY_TEMPERATURE_AIR_MEAN_200 = ( OriginUnit.DIMENSIONLESS.value, SIUnit.DIMENSIONLESS.value, ) TEMPERATURE_AIR_MAX_200 = ( OriginUnit.DEGREE_CELSIUS.value, SIUnit.DEGREE_KELVIN.value, ) QUALITY_TEMPERATURE_AIR_MAX_200 = ( OriginUnit.DIMENSIONLESS.value, SIUnit.DIMENSIONLESS.value, ) TEMPERATURE_AIR_MIN_200 = ( OriginUnit.DEGREE_CELSIUS.value, SIUnit.DEGREE_KELVIN.value, ) QUALITY_TEMPERATURE_AIR_MIN_200 = ( OriginUnit.DIMENSIONLESS.value, SIUnit.DIMENSIONLESS.value, ) PRECIPITATION_HEIGHT_LIQUID = ( OriginUnit.MILLIMETER.value, SIUnit.KILOGRAM_PER_SQUARE_METER.value, ) QUALITY_PRECIPITATION_HEIGHT_LIQUID = ( OriginUnit.DIMENSIONLESS.value, SIUnit.DIMENSIONLESS.value, ) SNOW_DEPTH_NEW = OriginUnit.CENTIMETER.value, SIUnit.METER.value QUALITY_SNOW_DEPTH_NEW = ( OriginUnit.DIMENSIONLESS.value, SIUnit.DIMENSIONLESS.value, ) PRECIPITATION_HEIGHT = ( OriginUnit.MILLIMETER.value, SIUnit.KILOGRAM_PER_SQUARE_METER.value, ) QUALITY_PRECIPITATION_HEIGHT = ( OriginUnit.DIMENSIONLESS.value, SIUnit.DIMENSIONLESS.value, ) # should name include previous day? how is it measured? SNOW_DEPTH = OriginUnit.CENTIMETER.value, SIUnit.METER.value QUALITY_SNOW_DEPTH = ( OriginUnit.DIMENSIONLESS.value, SIUnit.DIMENSIONLESS.value, ) WIND_DIRECTION_GUST_MAX = ( OriginUnit.WIND_DIRECTION.value, SIUnit.WIND_DIRECTION.value, ) QUALITY_WIND_DIRECTION_GUST_MAX = ( OriginUnit.DIMENSIONLESS.value, SIUnit.DIMENSIONLESS.value, ) WIND_GUST_MAX = ( OriginUnit.KILOMETER_PER_HOUR.value, SIUnit.METER_PER_SECOND.value, ) QUALITY_WIND_GUST_MAX = ( OriginUnit.DIMENSIONLESS.value, SIUnit.DIMENSIONLESS.value, ) class ANNUAL(UnitEnum): TEMPERATURE_AIR_MAX_200_MEAN = ( OriginUnit.DEGREE_CELSIUS.value, SIUnit.DEGREE_KELVIN.value, ) TEMPERATURE_AIR_MIN_200_MEAN = ( OriginUnit.DEGREE_CELSIUS.value, SIUnit.DEGREE_KELVIN.value, ) PRECIPITATION_FREQUENCY = OriginUnit.PERCENT.value, SIUnit.PERCENT.value TEMPERATURE_AIR_MAX_200 = ( OriginUnit.DEGREE_CELSIUS.value, SIUnit.DEGREE_KELVIN.value, ) # 'highest temp.year' # 'highest temp. period' # 'highest temp. data quality' TEMPERATURE_AIR_MIN_200 = ( OriginUnit.DEGREE_CELSIUS.value, SIUnit.DEGREE_KELVIN.value, ) # 'lowest temp. year' # 'lowest temp. period' # 'lowest temp. data quality' PRECIPITATION_HEIGHT_MAX = ( OriginUnit.MILLIMETER.value, SIUnit.KILOGRAM_PER_SQUARE_METER.value, ) # 'greatest precip. year' # 'greatest precip. period' # 'greatest precip. data quality' PRECIPITATION_HEIGHT_LIQUID_MAX = ( OriginUnit.MILLIMETER.value, SIUnit.KILOGRAM_PER_SQUARE_METER.value, ) # 'greatest rainfall year' # 'greatest rainfall period' # 'greatest rainfall data quality' SNOW_DEPTH_NEW_MAX = OriginUnit.CENTIMETER.value, SIUnit.METER.value # 'greatest snowfall year' # 'greatest snowfall period' # 'greatest snowfall data quality' SNOW_DEPTH_MAX = OriginUnit.CENTIMETER.value, SIUnit.METER.value # 'most snow on the ground year' # 'most snow on the ground period' # 'most snow on the ground data quality'
35.104167
84
0.609298
164cf366e05cfa38df5c72d3b5a4b3501478d058
59,119
py
Python
api/chalicelib/core/sessions.py
tares003/openreplay
098a0675286710f261425a2aece51644c86e1900
[ "MIT" ]
1
2022-02-16T11:41:05.000Z
2022-02-16T11:41:05.000Z
api/chalicelib/core/sessions.py
tares003/openreplay
098a0675286710f261425a2aece51644c86e1900
[ "MIT" ]
null
null
null
api/chalicelib/core/sessions.py
tares003/openreplay
098a0675286710f261425a2aece51644c86e1900
[ "MIT" ]
null
null
null
import schemas from chalicelib.core import events, metadata, events_ios, \ sessions_mobs, issues, projects, errors, resources, assist, performance_event from chalicelib.utils import pg_client, helper, dev, metrics_helper SESSION_PROJECTION_COLS = """s.project_id, s.session_id::text AS session_id, s.user_uuid, s.user_id, -- s.user_agent, s.user_os, s.user_browser, s.user_device, s.user_device_type, s.user_country, s.start_ts, s.duration, s.events_count, s.pages_count, s.errors_count, s.user_anonymous_id, s.platform, s.issue_score, to_jsonb(s.issue_types) AS issue_types, favorite_sessions.session_id NOTNULL AS favorite, COALESCE((SELECT TRUE FROM public.user_viewed_sessions AS fs WHERE s.session_id = fs.session_id AND fs.user_id = %(userId)s LIMIT 1), FALSE) AS viewed """ def __group_metadata(session, project_metadata): meta = [] for m in project_metadata.keys(): if project_metadata[m] is not None and session.get(m) is not None: meta.append({project_metadata[m]: session[m]}) session.pop(m) return meta def get_by_id2_pg(project_id, session_id, user_id, full_data=False, include_fav_viewed=False, group_metadata=False): with pg_client.PostgresClient() as cur: extra_query = [] if include_fav_viewed: extra_query.append("""COALESCE((SELECT TRUE FROM public.user_favorite_sessions AS fs WHERE s.session_id = fs.session_id AND fs.user_id = %(userId)s), FALSE) AS favorite""") extra_query.append("""COALESCE((SELECT TRUE FROM public.user_viewed_sessions AS fs WHERE s.session_id = fs.session_id AND fs.user_id = %(userId)s), FALSE) AS viewed""") query = cur.mogrify( f"""\ SELECT s.*, s.session_id::text AS session_id, (SELECT project_key FROM public.projects WHERE project_id = %(project_id)s LIMIT 1) AS project_key {"," if len(extra_query) > 0 else ""}{",".join(extra_query)} {(",json_build_object(" + ",".join([f"'{m}',p.{m}" for m in metadata._get_column_names()]) + ") AS project_metadata") if group_metadata else ''} FROM public.sessions AS s {"INNER JOIN public.projects AS p USING (project_id)" if group_metadata else ""} WHERE s.project_id = %(project_id)s AND s.session_id = %(session_id)s;""", {"project_id": project_id, "session_id": session_id, "userId": user_id} ) # print("===============") # print(query) cur.execute(query=query) data = cur.fetchone() if data is not None: data = helper.dict_to_camel_case(data) if full_data: if data["platform"] == 'ios': data['events'] = events_ios.get_by_sessionId(project_id=project_id, session_id=session_id) for e in data['events']: if e["type"].endswith("_IOS"): e["type"] = e["type"][:-len("_IOS")] data['crashes'] = events_ios.get_crashes_by_session_id(session_id=session_id) data['userEvents'] = events_ios.get_customs_by_sessionId(project_id=project_id, session_id=session_id) data['mobsUrl'] = sessions_mobs.get_ios(sessionId=session_id) else: data['events'] = events.get_by_sessionId2_pg(project_id=project_id, session_id=session_id, group_clickrage=True) all_errors = events.get_errors_by_session_id(session_id=session_id) data['stackEvents'] = [e for e in all_errors if e['source'] != "js_exception"] # to keep only the first stack data['errors'] = [errors.format_first_stack_frame(e) for e in all_errors if e['source'] == "js_exception"][ :500] # limit the number of errors to reduce the response-body size data['userEvents'] = events.get_customs_by_sessionId2_pg(project_id=project_id, session_id=session_id) data['mobsUrl'] = sessions_mobs.get_web(sessionId=session_id) data['resources'] = resources.get_by_session_id(session_id=session_id) data['metadata'] = __group_metadata(project_metadata=data.pop("projectMetadata"), session=data) data['issues'] = issues.get_by_session_id(session_id=session_id) data['live'] = assist.is_live(project_id=project_id, session_id=session_id, project_key=data["projectKey"]) return data else: return assist.get_live_session_by_id(project_id=project_id, session_id=session_id) def __get_sql_operator(op: schemas.SearchEventOperator): return { schemas.SearchEventOperator._is: "=", schemas.SearchEventOperator._is_any: "IN", schemas.SearchEventOperator._on: "=", schemas.SearchEventOperator._on_any: "IN", schemas.SearchEventOperator._is_not: "!=", schemas.SearchEventOperator._not_on: "!=", schemas.SearchEventOperator._contains: "ILIKE", schemas.SearchEventOperator._not_contains: "NOT ILIKE", schemas.SearchEventOperator._starts_with: "ILIKE", schemas.SearchEventOperator._ends_with: "ILIKE", }.get(op, "=") def __is_negation_operator(op: schemas.SearchEventOperator): return op in [schemas.SearchEventOperator._is_not, schemas.SearchEventOperator._not_on, schemas.SearchEventOperator._not_contains] def __reverse_sql_operator(op): return "=" if op == "!=" else "!=" if op == "=" else "ILIKE" if op == "NOT ILIKE" else "NOT ILIKE" def __get_sql_operator_multiple(op: schemas.SearchEventOperator): return " IN " if op not in [schemas.SearchEventOperator._is_not, schemas.SearchEventOperator._not_on, schemas.SearchEventOperator._not_contains] else " NOT IN " def __get_sql_value_multiple(values): if isinstance(values, tuple): return values return tuple(values) if isinstance(values, list) else (values,) def _multiple_conditions(condition, values, value_key="value", is_not=False): query = [] for i in range(len(values)): k = f"{value_key}_{i}" query.append(condition.replace(value_key, k)) return "(" + (" AND " if is_not else " OR ").join(query) + ")" def _multiple_values(values, value_key="value"): query_values = {} if values is not None and isinstance(values, list): for i in range(len(values)): k = f"{value_key}_{i}" query_values[k] = values[i] return query_values def _isAny_opreator(op: schemas.SearchEventOperator): return op in [schemas.SearchEventOperator._on_any, schemas.SearchEventOperator._is_any] @dev.timed def search2_pg(data: schemas.SessionsSearchPayloadSchema, project_id, user_id, favorite_only=False, errors_only=False, error_status="ALL", count_only=False, issue=None): full_args, query_part, sort = search_query_parts(data, error_status, errors_only, favorite_only, issue, project_id, user_id) with pg_client.PostgresClient() as cur: if errors_only: main_query = cur.mogrify(f"""SELECT DISTINCT er.error_id, ser.status, ser.parent_error_id, ser.payload, COALESCE((SELECT TRUE FROM public.user_favorite_sessions AS fs WHERE s.session_id = fs.session_id AND fs.user_id = %(userId)s), FALSE) AS favorite, COALESCE((SELECT TRUE FROM public.user_viewed_errors AS ve WHERE er.error_id = ve.error_id AND ve.user_id = %(userId)s LIMIT 1), FALSE) AS viewed {query_part};""", full_args) elif count_only: main_query = cur.mogrify(f"""SELECT COUNT(DISTINCT s.session_id) AS count_sessions, COUNT(DISTINCT s.user_uuid) AS count_users {query_part};""", full_args) elif data.group_by_user: main_query = cur.mogrify(f"""SELECT COUNT(*) AS count, jsonb_agg(users_sessions) FILTER ( WHERE rn <= 200 ) AS sessions FROM (SELECT user_id, count(full_sessions) AS user_sessions_count, jsonb_agg(full_sessions) FILTER (WHERE rn <= 1) AS last_session, ROW_NUMBER() OVER (ORDER BY count(full_sessions) DESC) AS rn FROM (SELECT *, ROW_NUMBER() OVER (PARTITION BY user_id ORDER BY start_ts DESC) AS rn FROM (SELECT DISTINCT ON(s.session_id) {SESSION_PROJECTION_COLS} {query_part} ORDER BY s.session_id desc) AS filtred_sessions ORDER BY favorite DESC, issue_score DESC, {sort} {data.order}) AS full_sessions GROUP BY user_id ORDER BY user_sessions_count DESC) AS users_sessions;""", full_args) else: main_query = cur.mogrify(f"""SELECT COUNT(full_sessions) AS count, COALESCE(JSONB_AGG(full_sessions) FILTER (WHERE rn <= 200), '[]'::JSONB) AS sessions FROM (SELECT *, ROW_NUMBER() OVER (ORDER BY favorite DESC, issue_score DESC, session_id desc, start_ts desc) AS rn FROM (SELECT DISTINCT ON(s.session_id) {SESSION_PROJECTION_COLS} {query_part} ORDER BY s.session_id desc) AS filtred_sessions ORDER BY favorite DESC, issue_score DESC, {sort} {data.order}) AS full_sessions;""", full_args) # main_query = cur.mogrify(f"""SELECT * FROM # (SELECT DISTINCT ON(s.session_id) {SESSION_PROJECTION_COLS} # {query_part} # ORDER BY s.session_id desc) AS filtred_sessions # ORDER BY favorite DESC, issue_score DESC, {sort} {order};""", # full_args) # print("--------------------") # print(main_query) cur.execute(main_query) # print("--------------------") if count_only: return helper.dict_to_camel_case(cur.fetchone()) sessions = cur.fetchone() total = sessions["count"] sessions = sessions["sessions"] # sessions = [] # total = cur.rowcount # row = cur.fetchone() # limit = 200 # while row is not None and len(sessions) < limit: # if row.get("favorite"): # limit += 1 # sessions.append(row) # row = cur.fetchone() if errors_only: return sessions if not data.group_by_user and data.sort is not None and data.sort != "session_id": sessions = sorted(sessions, key=lambda s: s[helper.key_to_snake_case(data.sort)], reverse=data.order.upper() == "DESC") return { 'total': total, 'sessions': helper.list_to_camel_case(sessions) } @dev.timed def search2_series(data: schemas.SessionsSearchPayloadSchema, project_id: int, density: int, view_type: schemas.MetricViewType): step_size = int(metrics_helper.__get_step_size(endTimestamp=data.endDate, startTimestamp=data.startDate, density=density, factor=1, decimal=True)) full_args, query_part, sort = search_query_parts(data=data, error_status=None, errors_only=False, favorite_only=False, issue=None, project_id=project_id, user_id=None) full_args["step_size"] = step_size with pg_client.PostgresClient() as cur: if view_type == schemas.MetricViewType.line_chart: main_query = cur.mogrify(f"""WITH full_sessions AS (SELECT DISTINCT ON(s.session_id) s.session_id, s.start_ts {query_part}) SELECT generated_timestamp AS timestamp, COUNT(s) AS count FROM generate_series(%(startDate)s, %(endDate)s, %(step_size)s) AS generated_timestamp LEFT JOIN LATERAL ( SELECT 1 AS s FROM full_sessions WHERE start_ts >= generated_timestamp AND start_ts <= generated_timestamp + %(step_size)s) AS sessions ON (TRUE) GROUP BY generated_timestamp ORDER BY generated_timestamp;""", full_args) else: main_query = cur.mogrify(f"""SELECT count(DISTINCT s.session_id) AS count {query_part};""", full_args) # print("--------------------") # print(main_query) cur.execute(main_query) # print("--------------------") if view_type == schemas.MetricViewType.line_chart: sessions = cur.fetchall() else: sessions = cur.fetchone()["count"] return sessions def search_query_parts(data, error_status, errors_only, favorite_only, issue, project_id, user_id): ss_constraints = [] full_args = {"project_id": project_id, "startDate": data.startDate, "endDate": data.endDate, "projectId": project_id, "userId": user_id} extra_constraints = [ "s.project_id = %(project_id)s", "s.duration IS NOT NULL" ] extra_from = "" fav_only_join = "" if favorite_only and not errors_only: fav_only_join = "LEFT JOIN public.user_favorite_sessions AS fs ON fs.session_id = s.session_id" extra_constraints.append("fs.user_id = %(userId)s") full_args["userId"] = user_id events_query_part = "" if len(data.filters) > 0: meta_keys = None for i, f in enumerate(data.filters): if not isinstance(f.value, list): f.value = [f.value] filter_type = f.type f.value = helper.values_for_operator(value=f.value, op=f.operator) f_k = f"f_value{i}" full_args = {**full_args, **_multiple_values(f.value, value_key=f_k)} op = __get_sql_operator(f.operator) \ if filter_type not in [schemas.FilterType.events_count] else f.operator is_any = _isAny_opreator(f.operator) if not is_any and len(f.value) == 0: continue is_not = False if __is_negation_operator(f.operator): is_not = True if filter_type == schemas.FilterType.user_browser: if is_any: extra_constraints.append('s.user_browser IS NOT NULL') ss_constraints.append('ms.user_browser IS NOT NULL') else: extra_constraints.append( _multiple_conditions(f's.user_browser {op} %({f_k})s', f.value, is_not=is_not, value_key=f_k)) ss_constraints.append( _multiple_conditions(f'ms.user_browser {op} %({f_k})s', f.value, is_not=is_not, value_key=f_k)) elif filter_type in [schemas.FilterType.user_os, schemas.FilterType.user_os_ios]: if is_any: extra_constraints.append('s.user_os IS NOT NULL') ss_constraints.append('ms.user_os IS NOT NULL') else: extra_constraints.append( _multiple_conditions(f's.user_os {op} %({f_k})s', f.value, is_not=is_not, value_key=f_k)) ss_constraints.append( _multiple_conditions(f'ms.user_os {op} %({f_k})s', f.value, is_not=is_not, value_key=f_k)) elif filter_type in [schemas.FilterType.user_device, schemas.FilterType.user_device_ios]: if is_any: extra_constraints.append('s.user_device IS NOT NULL') ss_constraints.append('ms.user_device IS NOT NULL') else: extra_constraints.append( _multiple_conditions(f's.user_device {op} %({f_k})s', f.value, is_not=is_not, value_key=f_k)) ss_constraints.append( _multiple_conditions(f'ms.user_device {op} %({f_k})s', f.value, is_not=is_not, value_key=f_k)) elif filter_type in [schemas.FilterType.user_country, schemas.FilterType.user_country_ios]: if is_any: extra_constraints.append('s.user_country IS NOT NULL') ss_constraints.append('ms.user_country IS NOT NULL') else: extra_constraints.append( _multiple_conditions(f's.user_country {op} %({f_k})s', f.value, is_not=is_not, value_key=f_k)) ss_constraints.append( _multiple_conditions(f'ms.user_country {op} %({f_k})s', f.value, is_not=is_not, value_key=f_k)) elif filter_type in [schemas.FilterType.utm_source]: if is_any: extra_constraints.append('s.utm_source IS NOT NULL') ss_constraints.append('ms.utm_source IS NOT NULL') else: extra_constraints.append( _multiple_conditions(f's.utm_source {op} %({f_k})s::text', f.value, is_not=is_not, value_key=f_k)) ss_constraints.append( _multiple_conditions(f'ms.utm_source {op} %({f_k})s::text', f.value, is_not=is_not, value_key=f_k)) elif filter_type in [schemas.FilterType.utm_medium]: if is_any: extra_constraints.append('s.utm_medium IS NOT NULL') ss_constraints.append('ms.utm_medium IS NOT NULL') else: extra_constraints.append( _multiple_conditions(f's.utm_medium {op} %({f_k})s::text', f.value, is_not=is_not, value_key=f_k)) ss_constraints.append( _multiple_conditions(f'ms.utm_medium {op} %({f_k})s::text', f.value, is_not=is_not, value_key=f_k)) elif filter_type in [schemas.FilterType.utm_campaign]: if is_any: extra_constraints.append('s.utm_campaign IS NOT NULL') ss_constraints.append('ms.utm_campaign IS NOT NULL') else: extra_constraints.append( _multiple_conditions(f's.utm_campaign {op} %({f_k})s::text', f.value, is_not=is_not, value_key=f_k)) ss_constraints.append( _multiple_conditions(f'ms.utm_campaign {op} %({f_k})s::text', f.value, is_not=is_not, value_key=f_k)) elif filter_type == schemas.FilterType.duration: if len(f.value) > 0 and f.value[0] is not None: extra_constraints.append("s.duration >= %(minDuration)s") ss_constraints.append("ms.duration >= %(minDuration)s") full_args["minDuration"] = f.value[0] if len(f.value) > 1 and f.value[1] is not None and int(f.value[1]) > 0: extra_constraints.append("s.duration <= %(maxDuration)s") ss_constraints.append("ms.duration <= %(maxDuration)s") full_args["maxDuration"] = f.value[1] elif filter_type == schemas.FilterType.referrer: extra_from += f"INNER JOIN {events.event_type.LOCATION.table} AS p USING(session_id)" if is_any: extra_constraints.append('p.base_referrer IS NOT NULL') else: extra_constraints.append( _multiple_conditions(f"p.base_referrer {op} %({f_k})s", f.value, is_not=is_not, value_key=f_k)) elif filter_type == events.event_type.METADATA.ui_type: # get metadata list only if you need it if meta_keys is None: meta_keys = metadata.get(project_id=project_id) meta_keys = {m["key"]: m["index"] for m in meta_keys} if f.source in meta_keys.keys(): if is_any: extra_constraints.append(f"s.{metadata.index_to_colname(meta_keys[f.source])} IS NOT NULL") ss_constraints.append(f"ms.{metadata.index_to_colname(meta_keys[f.source])} IS NOT NULL") else: extra_constraints.append( _multiple_conditions( f"s.{metadata.index_to_colname(meta_keys[f.source])} {op} %({f_k})s::text", f.value, is_not=is_not, value_key=f_k)) ss_constraints.append( _multiple_conditions( f"ms.{metadata.index_to_colname(meta_keys[f.source])} {op} %({f_k})s::text", f.value, is_not=is_not, value_key=f_k)) elif filter_type in [schemas.FilterType.user_id, schemas.FilterType.user_id_ios]: if is_any: extra_constraints.append('s.user_id IS NOT NULL') ss_constraints.append('ms.user_id IS NOT NULL') else: extra_constraints.append( _multiple_conditions(f"s.user_id {op} %({f_k})s::text", f.value, is_not=is_not, value_key=f_k)) ss_constraints.append( _multiple_conditions(f"ms.user_id {op} %({f_k})s::text", f.value, is_not=is_not, value_key=f_k)) elif filter_type in [schemas.FilterType.user_anonymous_id, schemas.FilterType.user_anonymous_id_ios]: if is_any: extra_constraints.append('s.user_anonymous_id IS NOT NULL') ss_constraints.append('ms.user_anonymous_id IS NOT NULL') else: extra_constraints.append( _multiple_conditions(f"s.user_anonymous_id {op} %({f_k})s::text", f.value, is_not=is_not, value_key=f_k)) ss_constraints.append( _multiple_conditions(f"ms.user_anonymous_id {op} %({f_k})s::text", f.value, is_not=is_not, value_key=f_k)) elif filter_type in [schemas.FilterType.rev_id, schemas.FilterType.rev_id_ios]: if is_any: extra_constraints.append('s.rev_id IS NOT NULL') ss_constraints.append('ms.rev_id IS NOT NULL') else: extra_constraints.append( _multiple_conditions(f"s.rev_id {op} %({f_k})s::text", f.value, is_not=is_not, value_key=f_k)) ss_constraints.append( _multiple_conditions(f"ms.rev_id {op} %({f_k})s::text", f.value, is_not=is_not, value_key=f_k)) elif filter_type == schemas.FilterType.platform: # op = __get_sql_operator(f.operator) extra_constraints.append( _multiple_conditions(f"s.user_device_type {op} %({f_k})s", f.value, is_not=is_not, value_key=f_k)) ss_constraints.append( _multiple_conditions(f"ms.user_device_type {op} %({f_k})s", f.value, is_not=is_not, value_key=f_k)) elif filter_type == schemas.FilterType.issue: if is_any: extra_constraints.append("array_length(s.issue_types, 1) > 0") ss_constraints.append("array_length(ms.issue_types, 1) > 0") else: extra_constraints.append( _multiple_conditions(f"%({f_k})s {op} ANY (s.issue_types)", f.value, is_not=is_not, value_key=f_k)) ss_constraints.append( _multiple_conditions(f"%({f_k})s {op} ANY (ms.issue_types)", f.value, is_not=is_not, value_key=f_k)) elif filter_type == schemas.FilterType.events_count: extra_constraints.append( _multiple_conditions(f"s.events_count {op} %({f_k})s", f.value, is_not=is_not, value_key=f_k)) ss_constraints.append( _multiple_conditions(f"ms.events_count {op} %({f_k})s", f.value, is_not=is_not, value_key=f_k)) # --------------------------------------------------------------------------- if len(data.events) > 0: # ss_constraints = [s.decode('UTF-8') for s in ss_constraints] events_query_from = [] event_index = 0 or_events = data.events_order == schemas.SearchEventOrder._or # events_joiner = " FULL JOIN " if or_events else " INNER JOIN LATERAL " events_joiner = " UNION " if or_events else " INNER JOIN LATERAL " for i, event in enumerate(data.events): event_type = event.type is_any = _isAny_opreator(event.operator) if not isinstance(event.value, list): event.value = [event.value] if not is_any and len(event.value) == 0 \ or event_type in [schemas.PerformanceEventType.location_dom_complete, schemas.PerformanceEventType.location_largest_contentful_paint_time, schemas.PerformanceEventType.location_ttfb, schemas.PerformanceEventType.location_avg_cpu_load, schemas.PerformanceEventType.location_avg_memory_usage ] and (event.source is None or len(event.source) == 0): continue op = __get_sql_operator(event.operator) is_not = False if __is_negation_operator(event.operator): is_not = True op = __reverse_sql_operator(op) if event_index == 0 or or_events: event_from = "%s INNER JOIN public.sessions AS ms USING (session_id)" event_where = ["ms.project_id = %(projectId)s", "main.timestamp >= %(startDate)s", "main.timestamp <= %(endDate)s", "ms.start_ts >= %(startDate)s", "ms.start_ts <= %(endDate)s", "ms.duration IS NOT NULL"] else: event_from = "%s" event_where = ["main.timestamp >= %(startDate)s", "main.timestamp <= %(endDate)s", "main.session_id=event_0.session_id"] if data.events_order == schemas.SearchEventOrder._then: event_where.append(f"event_{event_index - 1}.timestamp <= main.timestamp") e_k = f"e_value{i}" s_k = e_k + "_source" if event.type != schemas.PerformanceEventType.time_between_events: event.value = helper.values_for_operator(value=event.value, op=event.operator) full_args = {**full_args, **_multiple_values(event.value, value_key=e_k), **_multiple_values(event.source, value_key=s_k)} # if event_type not in list(events.SUPPORTED_TYPES.keys()) \ # or event.value in [None, "", "*"] \ # and (event_type != events.event_type.ERROR.ui_type \ # or event_type != events.event_type.ERROR_IOS.ui_type): # continue if event_type == events.event_type.CLICK.ui_type: event_from = event_from % f"{events.event_type.CLICK.table} AS main " if not is_any: event_where.append( _multiple_conditions(f"main.{events.event_type.CLICK.column} {op} %({e_k})s", event.value, value_key=e_k)) elif event_type == events.event_type.INPUT.ui_type: event_from = event_from % f"{events.event_type.INPUT.table} AS main " if not is_any: event_where.append( _multiple_conditions(f"main.{events.event_type.INPUT.column} {op} %({e_k})s", event.value, value_key=e_k)) if event.source is not None and len(event.source) > 0: event_where.append(_multiple_conditions(f"main.value ILIKE %(custom{i})s", event.source, value_key=f"custom{i}")) full_args = {**full_args, **_multiple_values(event.source, value_key=f"custom{i}")} elif event_type == events.event_type.LOCATION.ui_type: event_from = event_from % f"{events.event_type.LOCATION.table} AS main " if not is_any: event_where.append( _multiple_conditions(f"main.{events.event_type.LOCATION.column} {op} %({e_k})s", event.value, value_key=e_k)) elif event_type == events.event_type.CUSTOM.ui_type: event_from = event_from % f"{events.event_type.CUSTOM.table} AS main " if not is_any: event_where.append( _multiple_conditions(f"main.{events.event_type.CUSTOM.column} {op} %({e_k})s", event.value, value_key=e_k)) elif event_type == events.event_type.REQUEST.ui_type: event_from = event_from % f"{events.event_type.REQUEST.table} AS main " if not is_any: event_where.append( _multiple_conditions(f"main.{events.event_type.REQUEST.column} {op} %({e_k})s", event.value, value_key=e_k)) elif event_type == events.event_type.GRAPHQL.ui_type: event_from = event_from % f"{events.event_type.GRAPHQL.table} AS main " if not is_any: event_where.append( _multiple_conditions(f"main.{events.event_type.GRAPHQL.column} {op} %({e_k})s", event.value, value_key=e_k)) elif event_type == events.event_type.STATEACTION.ui_type: event_from = event_from % f"{events.event_type.STATEACTION.table} AS main " if not is_any: event_where.append( _multiple_conditions(f"main.{events.event_type.STATEACTION.column} {op} %({e_k})s", event.value, value_key=e_k)) elif event_type == events.event_type.ERROR.ui_type: event_from = event_from % f"{events.event_type.ERROR.table} AS main INNER JOIN public.errors AS main1 USING(error_id)" event.source = tuple(event.source) if not is_any and event.value not in [None, "*", ""]: event_where.append( _multiple_conditions(f"(main1.message {op} %({e_k})s OR main1.name {op} %({e_k})s)", event.value, value_key=e_k)) if event.source[0] not in [None, "*", ""]: event_where.append(_multiple_conditions(f"main1.source = %({s_k})s", event.value, value_key=s_k)) # ----- IOS elif event_type == events.event_type.CLICK_IOS.ui_type: event_from = event_from % f"{events.event_type.CLICK_IOS.table} AS main " if not is_any: event_where.append( _multiple_conditions(f"main.{events.event_type.CLICK_IOS.column} {op} %({e_k})s", event.value, value_key=e_k)) elif event_type == events.event_type.INPUT_IOS.ui_type: event_from = event_from % f"{events.event_type.INPUT_IOS.table} AS main " if not is_any: event_where.append( _multiple_conditions(f"main.{events.event_type.INPUT_IOS.column} {op} %({e_k})s", event.value, value_key=e_k)) if event.source is not None and len(event.source) > 0: event_where.append(_multiple_conditions(f"main.value ILIKE %(custom{i})s", event.source, value_key="custom{i}")) full_args = {**full_args, **_multiple_values(event.source, f"custom{i}")} elif event_type == events.event_type.VIEW_IOS.ui_type: event_from = event_from % f"{events.event_type.VIEW_IOS.table} AS main " if not is_any: event_where.append( _multiple_conditions(f"main.{events.event_type.VIEW_IOS.column} {op} %({e_k})s", event.value, value_key=e_k)) elif event_type == events.event_type.CUSTOM_IOS.ui_type: event_from = event_from % f"{events.event_type.CUSTOM_IOS.table} AS main " if not is_any: event_where.append( _multiple_conditions(f"main.{events.event_type.CUSTOM_IOS.column} {op} %({e_k})s", event.value, value_key=e_k)) elif event_type == events.event_type.REQUEST_IOS.ui_type: event_from = event_from % f"{events.event_type.REQUEST_IOS.table} AS main " if not is_any: event_where.append( _multiple_conditions(f"main.{events.event_type.REQUEST_IOS.column} {op} %({e_k})s", event.value, value_key=e_k)) elif event_type == events.event_type.ERROR_IOS.ui_type: event_from = event_from % f"{events.event_type.ERROR_IOS.table} AS main INNER JOIN public.crashes_ios AS main1 USING(crash_id)" if not is_any and event.value not in [None, "*", ""]: event_where.append( _multiple_conditions(f"(main1.reason {op} %({e_k})s OR main1.name {op} %({e_k})s)", event.value, value_key=e_k)) elif event_type == schemas.PerformanceEventType.fetch_failed: event_from = event_from % f"{events.event_type.REQUEST.table} AS main " if not is_any: event_where.append( _multiple_conditions(f"main.{events.event_type.REQUEST.column} {op} %({e_k})s", event.value, value_key=e_k)) col = performance_event.get_col(event_type) colname = col["column"] event_where.append(f"main.{colname} = FALSE") # elif event_type == schemas.PerformanceEventType.fetch_duration: # event_from = event_from % f"{events.event_type.REQUEST.table} AS main " # if not is_any: # event_where.append( # _multiple_conditions(f"main.{events.event_type.REQUEST.column} {op} %({e_k})s", # event.value, value_key=e_k)) # col = performance_event.get_col(event_type) # colname = col["column"] # tname = "main" # e_k += "_custom" # full_args = {**full_args, **_multiple_values(event.source, value_key=e_k)} # event_where.append(f"{tname}.{colname} IS NOT NULL AND {tname}.{colname}>0 AND " + # _multiple_conditions(f"{tname}.{colname} {event.sourceOperator} %({e_k})s", # event.source, value_key=e_k)) elif event_type in [schemas.PerformanceEventType.location_dom_complete, schemas.PerformanceEventType.location_largest_contentful_paint_time, schemas.PerformanceEventType.location_ttfb, schemas.PerformanceEventType.location_avg_cpu_load, schemas.PerformanceEventType.location_avg_memory_usage ]: event_from = event_from % f"{events.event_type.LOCATION.table} AS main " col = performance_event.get_col(event_type) colname = col["column"] tname = "main" if col.get("extraJoin") is not None: tname = "ej" event_from += f" INNER JOIN {col['extraJoin']} AS {tname} USING(session_id)" event_where += [f"{tname}.timestamp >= main.timestamp", f"{tname}.timestamp >= %(startDate)s", f"{tname}.timestamp <= %(endDate)s"] if not is_any: event_where.append( _multiple_conditions(f"main.{events.event_type.LOCATION.column} {op} %({e_k})s", event.value, value_key=e_k)) e_k += "_custom" full_args = {**full_args, **_multiple_values(event.source, value_key=e_k)} event_where.append(f"{tname}.{colname} IS NOT NULL AND {tname}.{colname}>0 AND " + _multiple_conditions(f"{tname}.{colname} {event.sourceOperator} %({e_k})s", event.source, value_key=e_k)) elif event_type == schemas.PerformanceEventType.time_between_events: event_from = event_from % f"{getattr(events.event_type, event.value[0].type).table} AS main INNER JOIN {getattr(events.event_type, event.value[1].type).table} AS main2 USING(session_id) " if not isinstance(event.value[0].value, list): event.value[0].value = [event.value[0].value] if not isinstance(event.value[1].value, list): event.value[1].value = [event.value[1].value] event.value[0].value = helper.values_for_operator(value=event.value[0].value, op=event.value[0].operator) event.value[1].value = helper.values_for_operator(value=event.value[1].value, op=event.value[0].operator) e_k1 = e_k + "_e1" e_k2 = e_k + "_e2" full_args = {**full_args, **_multiple_values(event.value[0].value, value_key=e_k1), **_multiple_values(event.value[1].value, value_key=e_k2)} s_op = __get_sql_operator(event.value[0].operator) event_where += ["main2.timestamp >= %(startDate)s", "main2.timestamp <= %(endDate)s"] if event_index > 0 and not or_events: event_where.append("main2.session_id=event_0.session_id") event_where.append( _multiple_conditions( f"main.{getattr(events.event_type, event.value[0].type).column} {s_op} %({e_k1})s", event.value[0].value, value_key=e_k1)) s_op = __get_sql_operator(event.value[1].operator) event_where.append( _multiple_conditions( f"main2.{getattr(events.event_type, event.value[1].type).column} {s_op} %({e_k2})s", event.value[1].value, value_key=e_k2)) e_k += "_custom" full_args = {**full_args, **_multiple_values(event.source, value_key=e_k)} event_where.append( _multiple_conditions(f"main2.timestamp - main.timestamp {event.sourceOperator} %({e_k})s", event.source, value_key=e_k)) else: continue if event_index == 0 or or_events: event_where += ss_constraints if is_not: if event_index == 0 or or_events: events_query_from.append(f"""\ (SELECT session_id, 0 AS timestamp FROM sessions WHERE EXISTS(SELECT session_id FROM {event_from} WHERE {" AND ".join(event_where)} AND sessions.session_id=ms.session_id) IS FALSE AND project_id = %(projectId)s AND start_ts >= %(startDate)s AND start_ts <= %(endDate)s AND duration IS NOT NULL ) {"" if or_events else (f"AS event_{event_index}" + ("ON(TRUE)" if event_index > 0 else ""))}\ """) else: events_query_from.append(f"""\ (SELECT event_0.session_id, event_{event_index - 1}.timestamp AS timestamp WHERE EXISTS(SELECT session_id FROM {event_from} WHERE {" AND ".join(event_where)}) IS FALSE ) AS event_{event_index} {"ON(TRUE)" if event_index > 0 else ""}\ """) else: events_query_from.append(f"""\ (SELECT main.session_id, MIN(main.timestamp) AS timestamp FROM {event_from} WHERE {" AND ".join(event_where)} GROUP BY 1 ) {"" if or_events else (f"AS event_{event_index} " + ("ON(TRUE)" if event_index > 0 else ""))}\ """) event_index += 1 if event_index > 0: if or_events: events_query_part = f"""SELECT session_id, MIN(timestamp) AS first_event_ts, MAX(timestamp) AS last_event_ts FROM ({events_joiner.join(events_query_from)}) AS u GROUP BY 1 {fav_only_join}""" else: events_query_part = f"""SELECT event_0.session_id, MIN(event_0.timestamp) AS first_event_ts, MAX(event_{event_index - 1}.timestamp) AS last_event_ts FROM {events_joiner.join(events_query_from)} GROUP BY 1 {fav_only_join}""" else: data.events = [] # --------------------------------------------------------------------------- if data.startDate is not None: extra_constraints.append("s.start_ts >= %(startDate)s") if data.endDate is not None: extra_constraints.append("s.start_ts <= %(endDate)s") # if data.platform is not None: # if data.platform == schemas.PlatformType.mobile: # extra_constraints.append(b"s.user_os in ('Android','BlackBerry OS','iOS','Tizen','Windows Phone')") # elif data.platform == schemas.PlatformType.desktop: # extra_constraints.append( # b"s.user_os in ('Chrome OS','Fedora','Firefox OS','Linux','Mac OS X','Ubuntu','Windows')") if data.order is None: data.order = "DESC" sort = 'session_id' if data.sort is not None and data.sort != "session_id": sort += " " + data.order + "," + helper.key_to_snake_case(data.sort) else: sort = 'session_id' if errors_only: extra_from += f" INNER JOIN {events.event_type.ERROR.table} AS er USING (session_id) INNER JOIN public.errors AS ser USING (error_id)" extra_constraints.append("ser.source = 'js_exception'") if error_status != "ALL": extra_constraints.append("ser.status = %(error_status)s") full_args["status"] = error_status.lower() if favorite_only: extra_from += " INNER JOIN public.user_favorite_errors AS ufe USING (error_id)" extra_constraints.append("ufe.user_id = %(user_id)s") # extra_constraints = [extra.decode('UTF-8') + "\n" for extra in extra_constraints] if not favorite_only and not errors_only and user_id is not None: extra_from += """LEFT JOIN (SELECT user_id, session_id FROM public.user_favorite_sessions WHERE user_id = %(userId)s) AS favorite_sessions USING (session_id)""" extra_join = "" if issue is not None: extra_join = """ INNER JOIN LATERAL(SELECT TRUE FROM events_common.issues INNER JOIN public.issues AS p_issues USING (issue_id) WHERE issues.session_id=f.session_id AND p_issues.type=%(issue_type)s AND p_issues.context_string=%(issue_contextString)s AND timestamp >= f.first_event_ts AND timestamp <= f.last_event_ts) AS issues ON(TRUE) """ full_args["issue_contextString"] = issue["contextString"] full_args["issue_type"] = issue["type"] query_part = f"""\ FROM {f"({events_query_part}) AS f" if len(events_query_part) > 0 else "public.sessions AS s"} {extra_join} {"INNER JOIN public.sessions AS s USING(session_id)" if len(events_query_part) > 0 else ""} {extra_from} WHERE {" AND ".join(extra_constraints)}""" return full_args, query_part, sort def search_by_metadata(tenant_id, user_id, m_key, m_value, project_id=None): if project_id is None: all_projects = projects.get_projects(tenant_id=tenant_id, recording_state=False) else: all_projects = [ projects.get_project(tenant_id=tenant_id, project_id=int(project_id), include_last_session=False, include_gdpr=False)] all_projects = {int(p["projectId"]): p["name"] for p in all_projects} project_ids = list(all_projects.keys()) available_keys = metadata.get_keys_by_projects(project_ids) for i in available_keys: available_keys[i]["user_id"] = schemas.FilterType.user_id available_keys[i]["user_anonymous_id"] = schemas.FilterType.user_anonymous_id results = {} for i in project_ids: if m_key not in available_keys[i].values(): available_keys.pop(i) results[i] = {"total": 0, "sessions": [], "missingMetadata": True} project_ids = list(available_keys.keys()) if len(project_ids) > 0: with pg_client.PostgresClient() as cur: sub_queries = [] for i in project_ids: col_name = list(available_keys[i].keys())[list(available_keys[i].values()).index(m_key)] sub_queries.append(cur.mogrify( f"(SELECT COALESCE(COUNT(s.*)) AS count FROM public.sessions AS s WHERE s.project_id = %(id)s AND s.{col_name} = %(value)s) AS \"{i}\"", {"id": i, "value": m_value}).decode('UTF-8')) query = f"""SELECT {", ".join(sub_queries)};""" cur.execute(query=query) rows = cur.fetchone() sub_queries = [] for i in rows.keys(): results[i] = {"total": rows[i], "sessions": [], "missingMetadata": False, "name": all_projects[int(i)]} if rows[i] > 0: col_name = list(available_keys[int(i)].keys())[list(available_keys[int(i)].values()).index(m_key)] sub_queries.append( cur.mogrify( f"""( SELECT * FROM ( SELECT DISTINCT ON(favorite_sessions.session_id, s.session_id) {SESSION_PROJECTION_COLS} FROM public.sessions AS s LEFT JOIN (SELECT session_id FROM public.user_favorite_sessions WHERE user_favorite_sessions.user_id = %(userId)s ) AS favorite_sessions USING (session_id) WHERE s.project_id = %(id)s AND s.duration IS NOT NULL AND s.{col_name} = %(value)s ) AS full_sessions ORDER BY favorite DESC, issue_score DESC LIMIT 10 )""", {"id": i, "value": m_value, "userId": user_id}).decode('UTF-8')) if len(sub_queries) > 0: cur.execute("\nUNION\n".join(sub_queries)) rows = cur.fetchall() for i in rows: results[str(i["project_id"])]["sessions"].append(helper.dict_to_camel_case(i)) return results def search_by_issue(user_id, issue, project_id, start_date, end_date): constraints = ["s.project_id = %(projectId)s", "p_issues.context_string = %(issueContextString)s", "p_issues.type = %(issueType)s"] if start_date is not None: constraints.append("start_ts >= %(startDate)s") if end_date is not None: constraints.append("start_ts <= %(endDate)s") with pg_client.PostgresClient() as cur: cur.execute( cur.mogrify( f"""SELECT DISTINCT ON(favorite_sessions.session_id, s.session_id) {SESSION_PROJECTION_COLS} FROM public.sessions AS s INNER JOIN events_common.issues USING (session_id) INNER JOIN public.issues AS p_issues USING (issue_id) LEFT JOIN (SELECT user_id, session_id FROM public.user_favorite_sessions WHERE user_id = %(userId)s) AS favorite_sessions USING (session_id) WHERE {" AND ".join(constraints)} ORDER BY s.session_id DESC;""", { "issueContextString": issue["contextString"], "issueType": issue["type"], "userId": user_id, "projectId": project_id, "startDate": start_date, "endDate": end_date })) rows = cur.fetchall() return helper.list_to_camel_case(rows) def get_favorite_sessions(project_id, user_id, include_viewed=False): with pg_client.PostgresClient() as cur: query_part = cur.mogrify(f"""\ FROM public.sessions AS s LEFT JOIN public.user_favorite_sessions AS fs ON fs.session_id = s.session_id WHERE fs.user_id = %(userId)s""", {"projectId": project_id, "userId": user_id} ) extra_query = b"" if include_viewed: extra_query = cur.mogrify(""",\ COALESCE((SELECT TRUE FROM public.user_viewed_sessions AS fs WHERE s.session_id = fs.session_id AND fs.user_id = %(userId)s), FALSE) AS viewed""", {"projectId": project_id, "userId": user_id}) cur.execute(f"""\ SELECT s.project_id, s.session_id::text AS session_id, s.user_uuid, s.user_id, -- s.user_agent, s.user_os, s.user_browser, s.user_device, s.user_country, s.start_ts, s.duration, s.events_count, s.pages_count, s.errors_count, TRUE AS favorite {extra_query.decode('UTF-8')} {query_part.decode('UTF-8')} ORDER BY s.session_id LIMIT 50;""") sessions = cur.fetchall() return helper.list_to_camel_case(sessions) def get_user_sessions(project_id, user_id, start_date, end_date): with pg_client.PostgresClient() as cur: constraints = ["s.project_id = %(projectId)s", "s.user_id = %(userId)s"] if start_date is not None: constraints.append("s.start_ts >= %(startDate)s") if end_date is not None: constraints.append("s.start_ts <= %(endDate)s") query_part = f"""\ FROM public.sessions AS s WHERE {" AND ".join(constraints)}""" cur.execute(cur.mogrify(f"""\ SELECT s.project_id, s.session_id::text AS session_id, s.user_uuid, s.user_id, -- s.user_agent, s.user_os, s.user_browser, s.user_device, s.user_country, s.start_ts, s.duration, s.events_count, s.pages_count, s.errors_count {query_part} ORDER BY s.session_id LIMIT 50;""", { "projectId": project_id, "userId": user_id, "startDate": start_date, "endDate": end_date })) sessions = cur.fetchall() return helper.list_to_camel_case(sessions) def get_session_user(project_id, user_id): with pg_client.PostgresClient() as cur: query = cur.mogrify( """\ SELECT user_id, count(*) as session_count, max(start_ts) as last_seen, min(start_ts) as first_seen FROM "public".sessions WHERE project_id = %(project_id)s AND user_id = %(user_id)s AND duration is not null GROUP BY user_id; """, {"project_id": project_id, "user_id": user_id} ) cur.execute(query=query) data = cur.fetchone() return helper.dict_to_camel_case(data) def get_session_ids_by_user_ids(project_id, user_ids): with pg_client.PostgresClient() as cur: query = cur.mogrify( """\ SELECT session_id FROM public.sessions WHERE project_id = %(project_id)s AND user_id IN %(user_id)s;""", {"project_id": project_id, "user_id": tuple(user_ids)} ) ids = cur.execute(query=query) return ids def delete_sessions_by_session_ids(session_ids): with pg_client.PostgresClient(long_query=True) as cur: query = cur.mogrify( """\ DELETE FROM public.sessions WHERE session_id IN %(session_ids)s;""", {"session_ids": tuple(session_ids)} ) cur.execute(query=query) return True def delete_sessions_by_user_ids(project_id, user_ids): with pg_client.PostgresClient(long_query=True) as cur: query = cur.mogrify( """\ DELETE FROM public.sessions WHERE project_id = %(project_id)s AND user_id IN %(user_id)s;""", {"project_id": project_id, "user_id": tuple(user_ids)} ) cur.execute(query=query) return True def count_all(): with pg_client.PostgresClient(long_query=True) as cur: row = cur.execute(query="SELECT COUNT(session_id) AS count FROM public.sessions") return row.get("count", 0)
54.892293
203
0.518311
3376ad41740ce43c7aeebeebf3d549d2f66a7c1d
1,577
py
Python
src/accounts/migrations/0001_initial.py
Saruni0305/oop-work-2
371787017cdd8446220b646c0070c4e53065bff5
[ "MIT" ]
24
2018-11-17T21:02:06.000Z
2021-11-18T23:02:00.000Z
src/accounts/migrations/0001_initial.py
Saruni0305/oop-work-2
371787017cdd8446220b646c0070c4e53065bff5
[ "MIT" ]
9
2020-06-05T21:43:20.000Z
2021-11-15T17:49:01.000Z
src/accounts/migrations/0001_initial.py
SaruniM/oop-work-2
371787017cdd8446220b646c0070c4e53065bff5
[ "MIT" ]
15
2019-03-08T20:19:17.000Z
2021-12-29T10:16:14.000Z
# -*- coding: utf-8 -*- # Generated by Django 1.11.8 on 2017-12-31 17:58 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='User', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('password', models.CharField(max_length=128, verbose_name='password')), ('last_login', models.DateTimeField(blank=True, null=True, verbose_name='last login')), ('email', models.EmailField(max_length=255, unique=True)), ('active', models.BooleanField(default=True)), ('staff', models.BooleanField(default=False)), ('admin', models.BooleanField(default=False)), ('timestamp', models.DateTimeField(auto_now_add=True)), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='GuestModel', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('email', models.EmailField(max_length=254)), ('active', models.BooleanField(default=True)), ('update', models.DateTimeField(auto_now=True)), ('timestamp', models.DateTimeField(auto_now_add=True)), ], ), ]
36.674419
114
0.567533
03dba78cf64649ea49e6e5e3a78d739d706ce563
25,375
py
Python
examples/autoignition-mpi.py
illinois-ceesd/mirgecom
6ae28905dbb9d073a9f778111d12b10e474fe799
[ "MIT" ]
3
2020-08-18T16:31:30.000Z
2021-03-02T20:20:07.000Z
examples/autoignition-mpi.py
illinois-ceesd/mirgecom
6ae28905dbb9d073a9f778111d12b10e474fe799
[ "MIT" ]
356
2020-05-29T04:44:50.000Z
2022-03-31T00:09:49.000Z
examples/autoignition-mpi.py
illinois-ceesd/mirgecom
6ae28905dbb9d073a9f778111d12b10e474fe799
[ "MIT" ]
16
2020-09-11T20:56:57.000Z
2021-07-28T19:21:05.000Z
"""Demonstrate combustive mixture with Pyrometheus.""" __copyright__ = """ Copyright (C) 2020 University of Illinois Board of Trustees """ __license__ = """ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import logging import numpy as np import pyopencl as cl import pyopencl.tools as cl_tools from functools import partial from meshmode.array_context import ( PyOpenCLArrayContext, PytatoPyOpenCLArrayContext ) from mirgecom.profiling import PyOpenCLProfilingArrayContext from meshmode.mesh import BTAG_ALL, BTAG_NONE # noqa from grudge.eager import EagerDGDiscretization from grudge.shortcuts import make_visualizer from logpyle import IntervalTimer, set_dt from mirgecom.euler import extract_vars_for_logging, units_for_logging from mirgecom.euler import euler_operator from mirgecom.simutil import ( get_sim_timestep, generate_and_distribute_mesh, write_visfile, allsync ) from mirgecom.io import make_init_message from mirgecom.mpi import mpi_entry_point from mirgecom.integrators import rk4_step from mirgecom.steppers import advance_state from mirgecom.boundary import AdiabaticSlipBoundary from mirgecom.initializers import MixtureInitializer from mirgecom.eos import PyrometheusMixture from mirgecom.gas_model import GasModel from arraycontext import thaw from mirgecom.logging_quantities import ( initialize_logmgr, logmgr_add_many_discretization_quantities, logmgr_add_cl_device_info, logmgr_add_device_memory_usage, set_sim_state ) import cantera logger = logging.getLogger(__name__) class MyRuntimeError(RuntimeError): """Simple exception for fatal driver errors.""" pass @mpi_entry_point def main(ctx_factory=cl.create_some_context, use_logmgr=True, use_leap=False, use_profiling=False, casename=None, rst_filename=None, actx_class=PyOpenCLArrayContext, log_dependent=True): """Drive example.""" cl_ctx = ctx_factory() if casename is None: casename = "mirgecom" from mpi4py import MPI comm = MPI.COMM_WORLD rank = comm.Get_rank() nproc = comm.Get_size() from mirgecom.simutil import global_reduce as _global_reduce global_reduce = partial(_global_reduce, comm=comm) logmgr = initialize_logmgr(use_logmgr, filename=f"{casename}.sqlite", mode="wu", mpi_comm=comm) if use_profiling: queue = cl.CommandQueue(cl_ctx, properties=cl.command_queue_properties.PROFILING_ENABLE) else: queue = cl.CommandQueue(cl_ctx) actx = actx_class( queue, allocator=cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue))) # Some discretization parameters dim = 2 nel_1d = 8 order = 1 # {{{ Time stepping control # This example runs only 3 steps by default (to keep CI ~short) # With the mixture defined below, equilibrium is achieved at ~40ms # To run to equilibrium, set t_final >= 40ms. # Time stepper selection if use_leap: from leap.rk import RK4MethodBuilder timestepper = RK4MethodBuilder("state") else: timestepper = rk4_step # Time loop control parameters current_step = 0 t_final = 1e-8 current_cfl = 1.0 current_dt = 1e-9 current_t = 0 constant_cfl = False # i.o frequencies nstatus = 1 nviz = 5 nhealth = 1 nrestart = 5 # }}} Time stepping control debug = False rst_path = "restart_data/" rst_pattern = ( rst_path + "{cname}-{step:04d}-{rank:04d}.pkl" ) if rst_filename: # read the grid from restart data rst_filename = f"{rst_filename}-{rank:04d}.pkl" from mirgecom.restart import read_restart_data restart_data = read_restart_data(actx, rst_filename) local_mesh = restart_data["local_mesh"] local_nelements = local_mesh.nelements global_nelements = restart_data["global_nelements"] assert restart_data["num_parts"] == nproc rst_time = restart_data["t"] rst_step = restart_data["step"] rst_order = restart_data["order"] else: # generate the grid from scratch from meshmode.mesh.generation import generate_regular_rect_mesh box_ll = -0.005 box_ur = 0.005 generate_mesh = partial(generate_regular_rect_mesh, a=(box_ll,)*dim, b=(box_ur,) * dim, nelements_per_axis=(nel_1d,)*dim) local_mesh, global_nelements = generate_and_distribute_mesh(comm, generate_mesh) local_nelements = local_mesh.nelements from grudge.dof_desc import DISCR_TAG_BASE, DISCR_TAG_QUAD from meshmode.discretization.poly_element import \ default_simplex_group_factory, QuadratureSimplexGroupFactory discr = EagerDGDiscretization( actx, local_mesh, discr_tag_to_group_factory={ DISCR_TAG_BASE: default_simplex_group_factory( base_dim=local_mesh.dim, order=order), DISCR_TAG_QUAD: QuadratureSimplexGroupFactory(2*order + 1) }, mpi_communicator=comm ) nodes = thaw(discr.nodes(), actx) ones = discr.zeros(actx) + 1.0 vis_timer = None if logmgr: logmgr_add_cl_device_info(logmgr, queue) logmgr_add_device_memory_usage(logmgr, queue) vis_timer = IntervalTimer("t_vis", "Time spent visualizing") logmgr.add_quantity(vis_timer) logmgr.add_watches([ ("step.max", "step = {value}, "), ("t_sim.max", "sim time: {value:1.6e} s\n"), ("t_step.max", "------- step walltime: {value:6g} s, "), ("t_log.max", "log walltime: {value:6g} s") ]) if log_dependent: logmgr_add_many_discretization_quantities(logmgr, discr, dim, extract_vars_for_logging, units_for_logging) logmgr.add_watches([ ("min_pressure", "\n------- P (min, max) (Pa) = ({value:1.9e}, "), ("max_pressure", "{value:1.9e})\n"), ("min_temperature", "------- T (min, max) (K) = ({value:7g}, "), ("max_temperature", "{value:7g})\n")]) # {{{ Set up initial state using Cantera # Use Cantera for initialization # -- Pick up a CTI for the thermochemistry config # --- Note: Users may add their own CTI file by dropping it into # --- mirgecom/mechanisms alongside the other CTI files. from mirgecom.mechanisms import get_mechanism_cti mech_cti = get_mechanism_cti("uiuc") cantera_soln = cantera.Solution(phase_id="gas", source=mech_cti) nspecies = cantera_soln.n_species # Initial temperature, pressure, and mixutre mole fractions are needed to # set up the initial state in Cantera. temperature_seed = 1500.0 # Initial temperature hot enough to burn # Parameters for calculating the amounts of fuel, oxidizer, and inert species equiv_ratio = 1.0 ox_di_ratio = 0.21 stoich_ratio = 3.0 # Grab the array indices for the specific species, ethylene, oxygen, and nitrogen i_fu = cantera_soln.species_index("C2H4") i_ox = cantera_soln.species_index("O2") i_di = cantera_soln.species_index("N2") x = np.zeros(nspecies) # Set the species mole fractions according to our desired fuel/air mixture x[i_fu] = (ox_di_ratio*equiv_ratio)/(stoich_ratio+ox_di_ratio*equiv_ratio) x[i_ox] = stoich_ratio*x[i_fu]/equiv_ratio x[i_di] = (1.0-ox_di_ratio)*x[i_ox]/ox_di_ratio # Uncomment next line to make pylint fail when it can't find cantera.one_atm one_atm = cantera.one_atm # pylint: disable=no-member # one_atm = 101325.0 # Let the user know about how Cantera is being initilized print(f"Input state (T,P,X) = ({temperature_seed}, {one_atm}, {x}") # Set Cantera internal gas temperature, pressure, and mole fractios cantera_soln.TPX = temperature_seed, one_atm, x # Pull temperature, total density, mass fractions, and pressure from Cantera # We need total density, and mass fractions to initialize the fluid/gas state. can_t, can_rho, can_y = cantera_soln.TDY can_p = cantera_soln.P # *can_t*, *can_p* should not differ (significantly) from user's initial data, # but we want to ensure that we use exactly the same starting point as Cantera, # so we use Cantera's version of these data. # }}} # {{{ Create Pyrometheus thermochemistry object & EOS # Create a Pyrometheus EOS with the Cantera soln. Pyrometheus uses Cantera and # generates a set of methods to calculate chemothermomechanical properties and # states for this particular mechanism. from mirgecom.thermochemistry import make_pyrometheus_mechanism_class pyro_mechanism = make_pyrometheus_mechanism_class(cantera_soln)(actx.np) eos = PyrometheusMixture(pyro_mechanism, temperature_guess=temperature_seed) gas_model = GasModel(eos=eos) from pytools.obj_array import make_obj_array def get_temperature_update(cv, temperature): y = cv.species_mass_fractions e = gas_model.eos.internal_energy(cv) / cv.mass return pyro_mechanism.get_temperature_update_energy(e, temperature, y) from mirgecom.gas_model import make_fluid_state def get_fluid_state(cv, tseed): return make_fluid_state(cv=cv, gas_model=gas_model, temperature_seed=tseed) compute_temperature_update = actx.compile(get_temperature_update) construct_fluid_state = actx.compile(get_fluid_state) # }}} # {{{ MIRGE-Com state initialization # Initialize the fluid/gas state with Cantera-consistent data: # (density, pressure, temperature, mass_fractions) print(f"Cantera state (rho,T,P,Y) = ({can_rho}, {can_t}, {can_p}, {can_y}") velocity = np.zeros(shape=(dim,)) initializer = MixtureInitializer(dim=dim, nspecies=nspecies, pressure=can_p, temperature=can_t, massfractions=can_y, velocity=velocity) my_boundary = AdiabaticSlipBoundary() boundaries = {BTAG_ALL: my_boundary} if rst_filename: current_step = rst_step current_t = rst_time if logmgr: from mirgecom.logging_quantities import logmgr_set_time logmgr_set_time(logmgr, current_step, current_t) if order == rst_order: current_cv = restart_data["cv"] temperature_seed = restart_data["temperature_seed"] else: rst_cv = restart_data["cv"] old_discr = EagerDGDiscretization(actx, local_mesh, order=rst_order, mpi_communicator=comm) from meshmode.discretization.connection import make_same_mesh_connection connection = make_same_mesh_connection(actx, discr.discr_from_dd("vol"), old_discr.discr_from_dd("vol")) current_cv = connection(rst_cv) temperature_seed = connection(restart_data["temperature_seed"]) else: # Set the current state from time 0 current_cv = initializer(eos=gas_model.eos, x_vec=nodes) temperature_seed = temperature_seed * ones # The temperature_seed going into this function is: # - At time 0: the initial temperature input data (maybe from Cantera) # - On restart: the restarted temperature seed from restart file (saving # the *seed* allows restarts to be deterministic current_fluid_state = construct_fluid_state(current_cv, temperature_seed) current_dv = current_fluid_state.dv temperature_seed = current_dv.temperature # Inspection at physics debugging time if debug: print("Initial MIRGE-Com state:") print(f"Initial DV pressure: {current_fluid_state.pressure}") print(f"Initial DV temperature: {current_fluid_state.temperature}") # }}} visualizer = make_visualizer(discr) initname = initializer.__class__.__name__ eosname = gas_model.eos.__class__.__name__ init_message = make_init_message(dim=dim, order=order, nelements=local_nelements, global_nelements=global_nelements, dt=current_dt, t_final=t_final, nstatus=nstatus, nviz=nviz, cfl=current_cfl, constant_cfl=constant_cfl, initname=initname, eosname=eosname, casename=casename) # Cantera equilibrate calculates the expected end state @ chemical equilibrium # i.e. the expected state after all reactions cantera_soln.equilibrate("UV") eq_temperature, eq_density, eq_mass_fractions = cantera_soln.TDY eq_pressure = cantera_soln.P # Report the expected final state to the user if rank == 0: logger.info(init_message) logger.info(f"Expected equilibrium state:" f" {eq_pressure=}, {eq_temperature=}," f" {eq_density=}, {eq_mass_fractions=}") def my_write_status(dt, cfl, dv=None): status_msg = f"------ {dt=}" if constant_cfl else f"----- {cfl=}" if ((dv is not None) and (not log_dependent)): temp = dv.temperature press = dv.pressure from grudge.op import nodal_min_loc, nodal_max_loc tmin = allsync(actx.to_numpy(nodal_min_loc(discr, "vol", temp)), comm=comm, op=MPI.MIN) tmax = allsync(actx.to_numpy(nodal_max_loc(discr, "vol", temp)), comm=comm, op=MPI.MAX) pmin = allsync(actx.to_numpy(nodal_min_loc(discr, "vol", press)), comm=comm, op=MPI.MIN) pmax = allsync(actx.to_numpy(nodal_max_loc(discr, "vol", press)), comm=comm, op=MPI.MAX) dv_status_msg = f"\nP({pmin}, {pmax}), T({tmin}, {tmax})" status_msg = status_msg + dv_status_msg if rank == 0: logger.info(status_msg) def my_write_viz(step, t, dt, state, ts_field, dv, production_rates, cfl): viz_fields = [("cv", state), ("dv", dv), ("production_rates", production_rates), ("dt" if constant_cfl else "cfl", ts_field)] write_visfile(discr, viz_fields, visualizer, vizname=casename, step=step, t=t, overwrite=True, vis_timer=vis_timer) def my_write_restart(step, t, state, temperature_seed): rst_fname = rst_pattern.format(cname=casename, step=step, rank=rank) if rst_fname == rst_filename: if rank == 0: logger.info("Skipping overwrite of restart file.") else: rst_data = { "local_mesh": local_mesh, "cv": state.cv, "temperature_seed": temperature_seed, "t": t, "step": step, "order": order, "global_nelements": global_nelements, "num_parts": nproc } from mirgecom.restart import write_restart_file write_restart_file(actx, rst_data, rst_fname, comm) def my_health_check(cv, dv): import grudge.op as op health_error = False pressure = dv.pressure temperature = dv.temperature from mirgecom.simutil import check_naninf_local, check_range_local if check_naninf_local(discr, "vol", pressure): health_error = True logger.info(f"{rank=}: Invalid pressure data found.") if check_range_local(discr, "vol", pressure, 1e5, 2.6e5): health_error = True logger.info(f"{rank=}: Pressure range violation.") if check_naninf_local(discr, "vol", temperature): health_error = True logger.info(f"{rank=}: Invalid temperature data found.") if check_range_local(discr, "vol", temperature, 1.498e3, 1.6e3): health_error = True logger.info(f"{rank=}: Temperature range violation.") # This check is the temperature convergence check # The current *temperature* is what Pyrometheus gets # after a fixed number of Newton iterations, *n_iter*. # Calling `compute_temperature` here with *temperature* # input as the guess returns the calculated gas temperature after # yet another *n_iter*. # The difference between those two temperatures is the # temperature residual, which can be used as an indicator of # convergence in Pyrometheus `get_temperature`. # Note: The local max jig below works around a very long compile # in lazy mode. temp_resid = compute_temperature_update(cv, temperature) / temperature temp_err = (actx.to_numpy(op.nodal_max_loc(discr, "vol", temp_resid))) if temp_err > 1e-8: health_error = True logger.info(f"{rank=}: Temperature is not converged {temp_resid=}.") return health_error from mirgecom.inviscid import get_inviscid_timestep def get_dt(state): return get_inviscid_timestep(discr, state=state) compute_dt = actx.compile(get_dt) from mirgecom.inviscid import get_inviscid_cfl def get_cfl(state, dt): return get_inviscid_cfl(discr, dt=dt, state=state) compute_cfl = actx.compile(get_cfl) def get_production_rates(cv, temperature): return eos.get_production_rates(cv, temperature) compute_production_rates = actx.compile(get_production_rates) def my_get_timestep(t, dt, state): # richer interface to calculate {dt,cfl} returns node-local estimates t_remaining = max(0, t_final - t) if constant_cfl: ts_field = current_cfl * compute_dt(state) from grudge.op import nodal_min_loc dt = allsync(actx.to_numpy(nodal_min_loc(discr, "vol", ts_field)), comm=comm, op=MPI.MIN) cfl = current_cfl else: ts_field = compute_cfl(state, current_dt) from grudge.op import nodal_max_loc cfl = allsync(actx.to_numpy(nodal_max_loc(discr, "vol", ts_field)), comm=comm, op=MPI.MAX) return ts_field, cfl, min(t_remaining, dt) def my_pre_step(step, t, dt, state): cv, tseed = state fluid_state = construct_fluid_state(cv, tseed) dv = fluid_state.dv try: if logmgr: logmgr.tick_before() from mirgecom.simutil import check_step do_viz = check_step(step=step, interval=nviz) do_restart = check_step(step=step, interval=nrestart) do_health = check_step(step=step, interval=nhealth) do_status = check_step(step=step, interval=nstatus) if do_health: health_errors = global_reduce(my_health_check(cv, dv), op="lor") if health_errors: if rank == 0: logger.info("Fluid solution failed health check.") raise MyRuntimeError("Failed simulation health check.") ts_field, cfl, dt = my_get_timestep(t=t, dt=dt, state=fluid_state) if do_status: my_write_status(dt=dt, cfl=cfl, dv=dv) if do_restart: my_write_restart(step=step, t=t, state=fluid_state, temperature_seed=tseed) if do_viz: production_rates = compute_production_rates(fluid_state.cv, fluid_state.temperature) my_write_viz(step=step, t=t, dt=dt, state=cv, dv=dv, production_rates=production_rates, ts_field=ts_field, cfl=cfl) except MyRuntimeError: if rank == 0: logger.info("Errors detected; attempting graceful exit.") # my_write_viz(step=step, t=t, dt=dt, state=cv) # my_write_restart(step=step, t=t, state=fluid_state) raise return state, dt def my_post_step(step, t, dt, state): cv, tseed = state fluid_state = construct_fluid_state(cv, tseed) # Logmgr needs to know about EOS, dt, dim? # imo this is a design/scope flaw if logmgr: set_dt(logmgr, dt) set_sim_state(logmgr, dim, cv, gas_model.eos) logmgr.tick_after() return make_obj_array([cv, fluid_state.temperature]), dt def my_rhs(t, state): cv, tseed = state from mirgecom.gas_model import make_fluid_state fluid_state = make_fluid_state(cv=cv, gas_model=gas_model, temperature_seed=tseed) return make_obj_array([ euler_operator(discr, state=fluid_state, time=t, boundaries=boundaries, gas_model=gas_model) + eos.get_species_source_terms(cv, fluid_state.temperature), 0*tseed]) current_dt = get_sim_timestep(discr, current_fluid_state, current_t, current_dt, current_cfl, t_final, constant_cfl) current_step, current_t, current_state = \ advance_state(rhs=my_rhs, timestepper=timestepper, pre_step_callback=my_pre_step, post_step_callback=my_post_step, dt=current_dt, state=make_obj_array([current_cv, temperature_seed]), t=current_t, t_final=t_final) # Dump the final data if rank == 0: logger.info("Checkpointing final state ...") final_cv, tseed = current_state final_fluid_state = construct_fluid_state(final_cv, tseed) final_dv = final_fluid_state.dv final_dm = compute_production_rates(final_cv, final_dv.temperature) ts_field, cfl, dt = my_get_timestep(t=current_t, dt=current_dt, state=final_fluid_state) my_write_viz(step=current_step, t=current_t, dt=dt, state=final_cv, dv=final_dv, production_rates=final_dm, ts_field=ts_field, cfl=cfl) my_write_status(dt=dt, cfl=cfl, dv=final_dv) my_write_restart(step=current_step, t=current_t, state=final_fluid_state, temperature_seed=tseed) if logmgr: logmgr.close() elif use_profiling: print(actx.tabulate_profiling_data()) finish_tol = 1e-16 assert np.abs(current_t - t_final) < finish_tol if __name__ == "__main__": import argparse casename = "autoignition" parser = argparse.ArgumentParser(description=f"MIRGE-Com Example: {casename}") parser.add_argument("--lazy", action="store_true", help="switch to a lazy computation mode") parser.add_argument("--profiling", action="store_true", help="turn on detailed performance profiling") parser.add_argument("--log", action="store_true", default=True, help="turn on logging") parser.add_argument("--leap", action="store_true", help="use leap timestepper") parser.add_argument("--restart_file", help="root name of restart file") parser.add_argument("--casename", help="casename to use for i/o") args = parser.parse_args() from warnings import warn warn("Automatically turning off DV logging. MIRGE-Com Issue(578)") log_dependent = False if args.profiling: if args.lazy: raise ValueError("Can't use lazy and profiling together.") actx_class = PyOpenCLProfilingArrayContext else: if args.lazy: log_dependent = False actx_class = PytatoPyOpenCLArrayContext else: actx_class = PyOpenCLArrayContext logging.basicConfig(format="%(message)s", level=logging.INFO) if args.casename: casename = args.casename rst_filename = None if args.restart_file: rst_filename = args.restart_file main(use_logmgr=args.log, use_leap=args.leap, use_profiling=args.profiling, casename=casename, rst_filename=rst_filename, actx_class=actx_class, log_dependent=log_dependent) # vim: foldmethod=marker
39.648438
85
0.647764
e985bd0f16edf042c605bd328098f8e34f1f2e0a
662
py
Python
vcr/serializers/gzipserializer.py
mrgrassho/vcrpy-custom
695076ef53f4989dab023ae35215a033c2182fd2
[ "MIT" ]
null
null
null
vcr/serializers/gzipserializer.py
mrgrassho/vcrpy-custom
695076ef53f4989dab023ae35215a033c2182fd2
[ "MIT" ]
null
null
null
vcr/serializers/gzipserializer.py
mrgrassho/vcrpy-custom
695076ef53f4989dab023ae35215a033c2182fd2
[ "MIT" ]
null
null
null
import yaml # Use the libYAML versions if possible try: from yaml import CLoader as Loader, CDumper as Dumper import zlib from base64 import b64encode, b64decode except ImportError: from yaml import Loader, Dumper def deserialize(b64encoded_cassete): compressed_cassete = b64decode(b64encoded_cassete.encode()) cassette_string = zlib.decompress(compressed_cassete).decode() return yaml.load(cassette_string, Loader=Loader) def serialize(cassette_dict): cassette_string = yaml.dump(cassette_dict, Dumper=Dumper) compressed_cassete = zlib.compress(cassette_string.encode()) return b64encode(compressed_cassete).decode()
31.52381
66
0.777946
96be88e3ec643dbd19e58fcf4364bce0fafb6c5b
7,285
py
Python
scipy/integrate/odepack.py
FRidh/scipy
dabfb4586e0b656b5f6da8b301643b918259e61f
[ "BSD-3-Clause" ]
39
2016-11-08T11:24:30.000Z
2021-11-18T06:50:21.000Z
scipy/integrate/odepack.py
FRidh/scipy
dabfb4586e0b656b5f6da8b301643b918259e61f
[ "BSD-3-Clause" ]
1
2015-09-30T05:26:54.000Z
2016-03-22T15:09:56.000Z
scipy/integrate/odepack.py
FRidh/scipy
dabfb4586e0b656b5f6da8b301643b918259e61f
[ "BSD-3-Clause" ]
13
2017-04-08T08:03:12.000Z
2021-08-25T08:38:52.000Z
# Author: Travis Oliphant from __future__ import division, print_function, absolute_import __all__ = ['odeint'] from . import _odepack from copy import copy import warnings class ODEintWarning(Warning): pass _msgs = {2: "Integration successful.", 1: "Nothing was done; the integration time was 0.", -1: "Excess work done on this call (perhaps wrong Dfun type).", -2: "Excess accuracy requested (tolerances too small).", -3: "Illegal input detected (internal error).", -4: "Repeated error test failures (internal error).", -5: "Repeated convergence failures (perhaps bad Jacobian or tolerances).", -6: "Error weight became zero during problem.", -7: "Internal workspace insufficient to finish (internal error)." } def odeint(func, y0, t, args=(), Dfun=None, col_deriv=0, full_output=0, ml=None, mu=None, rtol=None, atol=None, tcrit=None, h0=0.0, hmax=0.0, hmin=0.0, ixpr=0, mxstep=0, mxhnil=0, mxordn=12, mxords=5, printmessg=0): """ Integrate a system of ordinary differential equations. Solve a system of ordinary differential equations using lsoda from the FORTRAN library odepack. Solves the initial value problem for stiff or non-stiff systems of first order ode-s:: dy/dt = func(y,t0,...) where y can be a vector. Parameters ---------- func : callable(y, t0, ...) Computes the derivative of y at t0. y0 : array Initial condition on y (can be a vector). t : array A sequence of time points for which to solve for y. The initial value point should be the first element of this sequence. args : tuple, optional Extra arguments to pass to function. Dfun : callable(y, t0, ...) Gradient (Jacobian) of `func`. col_deriv : bool, optional True if `Dfun` defines derivatives down columns (faster), otherwise `Dfun` should define derivatives across rows. full_output : bool, optional True if to return a dictionary of optional outputs as the second output printmessg : bool, optional Whether to print the convergence message Returns ------- y : array, shape (len(t), len(y0)) Array containing the value of y for each desired time in t, with the initial value `y0` in the first row. infodict : dict, only returned if full_output == True Dictionary containing additional output information ======= ============================================================ key meaning ======= ============================================================ 'hu' vector of step sizes successfully used for each time step. 'tcur' vector with the value of t reached for each time step. (will always be at least as large as the input times). 'tolsf' vector of tolerance scale factors, greater than 1.0, computed when a request for too much accuracy was detected. 'tsw' value of t at the time of the last method switch (given for each time step) 'nst' cumulative number of time steps 'nfe' cumulative number of function evaluations for each time step 'nje' cumulative number of jacobian evaluations for each time step 'nqu' a vector of method orders for each successful step. 'imxer' index of the component of largest magnitude in the weighted local error vector (e / ewt) on an error return, -1 otherwise. 'lenrw' the length of the double work array required. 'leniw' the length of integer work array required. 'mused' a vector of method indicators for each successful time step: 1: adams (nonstiff), 2: bdf (stiff) ======= ============================================================ Other Parameters ---------------- ml, mu : int, optional If either of these are not None or non-negative, then the Jacobian is assumed to be banded. These give the number of lower and upper non-zero diagonals in this banded matrix. For the banded case, `Dfun` should return a matrix whose rows contain the non-zero bands (starting with the lowest diagonal). Thus, the return matrix `jac` from `Dfun` should have shape ``(ml + mu + 1, len(y0))`` when ``ml >=0`` or ``mu >=0``. The data in `jac` must be stored such that ``jac[i - j + mu, j]`` holds the derivative of the `i`th equation with respect to the `j`th state variable. If `col_deriv` is True, the transpose of this `jac` must be returned. rtol, atol : float, optional The input parameters `rtol` and `atol` determine the error control performed by the solver. The solver will control the vector, e, of estimated local errors in y, according to an inequality of the form ``max-norm of (e / ewt) <= 1``, where ewt is a vector of positive error weights computed as ``ewt = rtol * abs(y) + atol``. rtol and atol can be either vectors the same length as y or scalars. Defaults to 1.49012e-8. tcrit : ndarray, optional Vector of critical points (e.g. singularities) where integration care should be taken. h0 : float, (0: solver-determined), optional The step size to be attempted on the first step. hmax : float, (0: solver-determined), optional The maximum absolute step size allowed. hmin : float, (0: solver-determined), optional The minimum absolute step size allowed. ixpr : bool, optional Whether to generate extra printing at method switches. mxstep : int, (0: solver-determined), optional Maximum number of (internally defined) steps allowed for each integration point in t. mxhnil : int, (0: solver-determined), optional Maximum number of messages printed. mxordn : int, (0: solver-determined), optional Maximum order to be allowed for the non-stiff (Adams) method. mxords : int, (0: solver-determined), optional Maximum order to be allowed for the stiff (BDF) method. See Also -------- ode : a more object-oriented integrator based on VODE. quad : for finding the area under a curve. """ if ml is None: ml = -1 # changed to zero inside function call if mu is None: mu = -1 # changed to zero inside function call t = copy(t) y0 = copy(y0) output = _odepack.odeint(func, y0, t, args, Dfun, col_deriv, ml, mu, full_output, rtol, atol, tcrit, h0, hmax, hmin, ixpr, mxstep, mxhnil, mxordn, mxords) if output[-1] < 0: warning_msg = _msgs[output[-1]] + " Run with full_output = 1 to get quantitative information." warnings.warn(warning_msg, ODEintWarning) elif printmessg: warning_msg = _msgs[output[-1]] warnings.warn(warning_msg, ODEintWarning) if full_output: output[1]['message'] = _msgs[output[-1]] output = output[:-1] if len(output) == 1: return output[0] else: return output
43.106509
102
0.613452
19ba8983dba3b7513a0bfecfd4859025c0cc4087
8,010
py
Python
src/api/dcps/python/test/test_instance_operations.py
brezillon/opensplice
725ae9d949c83fce1746bd7d8a154b9d0a81fe3e
[ "Apache-2.0" ]
133
2017-11-09T02:10:00.000Z
2022-03-29T09:45:10.000Z
src/api/dcps/python/test/test_instance_operations.py
brezillon/opensplice
725ae9d949c83fce1746bd7d8a154b9d0a81fe3e
[ "Apache-2.0" ]
131
2017-11-07T14:48:43.000Z
2022-03-13T15:30:47.000Z
src/api/dcps/python/test/test_instance_operations.py
brezillon/opensplice
725ae9d949c83fce1746bd7d8a154b9d0a81fe3e
[ "Apache-2.0" ]
94
2017-11-09T02:26:19.000Z
2022-02-24T06:38:25.000Z
# # Vortex OpenSplice # # This software and documentation are Copyright 2006 to TO_YEAR ADLINK # Technology Limited, its affiliated companies and licensors. All rights # reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ''' Created on Jan 5, 2018 @author: prismtech ''' import unittest import os import dds import ddsutil class TestInstanceOperations(unittest.TestCase): idl_path = os.path.join('idl', 'Shapes.idl') shape_type_name = 'ShapeType' def test_registration(self): dp = dds.DomainParticipant() gci = ddsutil.get_dds_classes_from_idl(self.idl_path, self.shape_type_name) ShapeType = gci.get_class('ShapeType') Inner = gci.get_class('Inner') t = gci.register_topic(dp, 'ST_test_registration') wr = dp.create_datawriter(t) #data = ShapeType(color='RED') data = ShapeType(color='RED',x=0,y=0,z=0,t=Inner(foo=0)) h = wr.register_instance(data) self.assertIsNotNone(h, 'handle is None') self.assertIsInstance(h, int, 'handle is not int') wr.unregister_instance(data, h) def test_unregistration(self): dp = dds.DomainParticipant() gci = ddsutil.get_dds_classes_from_idl(self.idl_path, self.shape_type_name) ShapeType = gci.get_class('ShapeType') Inner = gci.get_class('Inner') t = gci.register_topic(dp, 'ST_test_unregistration') wr = dp.create_datawriter(t) #data = ShapeType(color='RED') data = ShapeType(color='RED',x=0,y=0,z=0,t=Inner(foo=0)) data2 = ShapeType(color='BLUE',x=0,y=0,z=0,t=Inner(foo=0)) data3 = ShapeType(color='YELLOW',x=0,y=0,z=0,t=Inner(foo=0)) data4 = ShapeType(color='PINK',x=0,y=0,z=0,t=Inner(foo=0)) dataNever = ShapeType(color='NEVER',x=0,y=0,z=0,t=Inner(foo=0)) h = wr.register_instance(data) h2 = wr.register_instance(data2) h3 = wr.register_instance(data3) h4 = wr.register_instance(data4) self.assertIsNotNone(h, 'handle is None') self.assertIsInstance(h, int, 'handle is not int') # test expected success paths wr.unregister_instance(handle=h) wr.unregister_instance(data=data2) # test failure paths try: wr.unregister_instance() self.fail('should not succeed; unregistering inconsistent data') except dds.DDSException: pass # unregister something that's already unregistered try: wr.unregister_instance(handle=h) self.fail('should not succeed; duplicate unregistration') except dds.DDSException: pass # unregister something that was never registered try: wr.unregister_instance(data=dataNever) self.fail('should not succeed; instance never registered') except dds.DDSException: pass # The following are not failures, but will produce oslp-error.log entries # unregister something where data does not match wr.unregister_instance(dataNever, h4) def test_wr_instance_lookup(self): dp = dds.DomainParticipant() gci = ddsutil.get_dds_classes_from_idl(self.idl_path, self.shape_type_name) ShapeType = gci.get_class('ShapeType') Inner = gci.get_class('Inner') t = gci.register_topic(dp, 'ST_test_wr_instance_lookup') wr = dp.create_datawriter(t) #data = ShapeType(color='RED') data = ShapeType(color='RED',x=0,y=0,z=0,t=Inner(foo=0)) dataUnreg = ShapeType(color='GREEN',x=0,y=0,z=0,t=Inner(foo=0)) h = wr.register_instance(data) hlookup = wr.lookup_instance(data) self.assertEqual(hlookup, h) hUnreg = wr.lookup_instance(dataUnreg) self.assertIsNone(hUnreg) # def test_wr_get_key(self): # dp = dds.DomainParticipant() # # gci = ddsutil.get_dds_classes_from_idl(self.idl_path, self.shape_type_name) # ShapeType = gci.get_class('ShapeType') # Inner = gci.get_class('Inner') # # t = gci.register_topic(dp, 'ST_test_wr_get_key') # # wr = dp.create_datawriter(t) # #data = ShapeType(color='RED') # data = ShapeType(color='RED',x=1,y=2,z=3,t=Inner(foo=4)) # dataUnreg = ShapeType(color='GREEN',x=0,y=0,z=0,t=Inner(foo=0)) # # h = wr.register_instance(data) # # dataLookup = wr.get_key(h) # self.assertEqual(dataLookup.color, data.color) # self.assertEqual(dataLookup.x, 0) # self.assertEqual(dataLookup.y, 0) # self.assertEqual(dataLookup.z, 0) # self.assertEqual(dataLookup.t.foo, 0) # # try: # wr.get_key(11231997) # self.fail('Expected exception on invalid handle') # except dds.DDSException: # pass def test_take_instance(self): dp = dds.DomainParticipant() gci = ddsutil.get_dds_classes_from_idl(self.idl_path, self.shape_type_name) ShapeType = gci.get_class('ShapeType') Inner = gci.get_class('Inner') t = gci.register_topic(dp, 'ST_test_take_instance') rd = dp.create_datareader(t) wr = dp.create_datawriter(t) dataR = ShapeType(color='RED',x=1,y=1,z=1,t=Inner(foo=1)) dataG = ShapeType(color='GREEN',x=1,y=1,z=1,t=Inner(foo=1)) keyR = ShapeType(color='RED',x=0,y=0,z=0,t=Inner(foo=0)) hR = rd.lookup_instance(keyR) self.assertIsNone(hR) wr.write(dataR) wr.write(dataG) keyR = ShapeType(color='RED',x=0,y=0,z=0,t=Inner(foo=0)) hR = rd.lookup_instance(keyR) self.assertIsInstance(hR, int) data = rd.take_instance(hR,n=2) self.assertEqual(1, len(data)) found = [d.color for d, _ in data] self.assertIn('RED',found) #do it again data = rd.take_instance(hR,n=2) self.assertEqual(0, len(data)) def test_read_instance(self): dp = dds.DomainParticipant() gci = ddsutil.get_dds_classes_from_idl(self.idl_path, self.shape_type_name) ShapeType = gci.get_class('ShapeType') Inner = gci.get_class('Inner') t = gci.register_topic(dp, 'ST_test_read_instance') rd = dp.create_datareader(t) wr = dp.create_datawriter(t) dataR = ShapeType(color='RED',x=1,y=1,z=1,t=Inner(foo=1)) dataG = ShapeType(color='GREEN',x=1,y=1,z=1,t=Inner(foo=1)) keyR = ShapeType(color='RED',x=0,y=0,z=0,t=Inner(foo=0)) hR = rd.lookup_instance(keyR) self.assertIsNone(hR) wr.write(dataR) wr.write(dataG) hR = rd.lookup_instance(keyR) self.assertIsInstance(hR, int) data = rd.read_instance(hR,n=2) self.assertEqual(1, len(data)) found = [d.color for d, _ in data] self.assertIn('RED',found) #do it again data = rd.read_instance(hR,n=2) self.assertEqual(1, len(data)) found = [d.color for d, _ in data] self.assertIn('RED',found) if __name__ == "__main__": #import sys;sys.argv = ['', 'TestInstanceOperations.test_register_instance'] unittest.main()
34.085106
85
0.607116
551bacb09ffe983de8bc4b0940f7459b262f390e
2,114
py
Python
swerve/core/qml.py
Swerved/Hulkster
a7b5fd9cefe17032d3a738247cb2633d3ecddb31
[ "blessing" ]
null
null
null
swerve/core/qml.py
Swerved/Hulkster
a7b5fd9cefe17032d3a738247cb2633d3ecddb31
[ "blessing" ]
null
null
null
swerve/core/qml.py
Swerved/Hulkster
a7b5fd9cefe17032d3a738247cb2633d3ecddb31
[ "blessing" ]
null
null
null
""" Property Bindings for QML https://stackoverflow.com/questions/62378735/how-to-acheive-simpliefed-two-way-data-binding-in-python-and-qt-quick-qml-applic """ from PySide2 import QtCore class PropertyMeta(type(QtCore.QObject)): def __new__(cls, name, bases, attrs): for key in list(attrs.keys()): attr = attrs[key] if not isinstance(attr, Property): continue initial_value = attr.initial_value type_ = type(initial_value) notifier = QtCore.Signal(type_) attrs[key] = PropertyImpl( initial_value, name=key, type_=type_, notify=notifier ) attrs[signal_attribute_name(key)] = notifier return super().__new__(cls, name, bases, attrs) class Property: """ Property definition. This property will be patched by the PropertyMeta metaclass into a PropertyImpl type. """ def __init__(self, initial_value, name=""): self.initial_value = initial_value self.name = name class PropertyImpl(QtCore.Property): """ Actual property implementation using a signal to notify any change. """ def __init__(self, initial_value, name="", type_=None, notify=None): super().__init__(type_, self.getter, self.setter, notify=notify) self.initial_value = initial_value self.name = name def getter(self, inst): return getattr(inst, value_attribute_name(self.name), self.initial_value) def setter(self, inst, value): last_value = getattr(inst, self.name) if last_value != value: setattr(inst, value_attribute_name(self.name), value) notifier_signal = getattr(inst, signal_attribute_name(self.name)) notifier_signal.emit(value) def signal_attribute_name(property_name): """ Return a magic key for the attribute storing the signal name. """ return f"_{property_name}_prop_signal_" def value_attribute_name(property_name): """ Return a magic key for the attribute storing the property value. """ return f"_{property_name}_prop_value_"
33.03125
125
0.667928
29bb5ecdbe6fd583da3aece9cb12e417a905d199
23,839
py
Python
python/tvm/micro/contrib/zephyr.py
YSHsieh7777/tvm
b51973fb48deb34ff725bf1206f1b683f8bc2773
[ "Zlib", "Unlicense", "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0" ]
3
2019-06-18T12:53:48.000Z
2021-11-17T10:56:51.000Z
python/tvm/micro/contrib/zephyr.py
YSHsieh7777/tvm
b51973fb48deb34ff725bf1206f1b683f8bc2773
[ "Zlib", "Unlicense", "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0" ]
null
null
null
python/tvm/micro/contrib/zephyr.py
YSHsieh7777/tvm
b51973fb48deb34ff725bf1206f1b683f8bc2773
[ "Zlib", "Unlicense", "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0" ]
1
2021-02-06T01:56:20.000Z
2021-02-06T01:56:20.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Defines a compiler integration that uses an externally-supplied Zephyr project.""" import collections import logging import multiprocessing import os import re import tempfile import textwrap import shlex import shutil import subprocess import sys import yaml import tvm.micro from . import base from .. import compiler from .. import debugger from ..transport import debug from ..transport import file_descriptor from ..transport import serial from ..transport import Transport, TransportClosedError, TransportTimeouts from ..transport import wakeup _LOG = logging.getLogger(__name__) class SubprocessEnv(object): def __init__(self, default_overrides): self.default_overrides = default_overrides def run(self, cmd, **kw): env = dict(os.environ) for k, v in self.default_overrides.items(): env[k] = v return subprocess.check_output(cmd, env=env, **kw, universal_newlines=True) class ProjectNotFoundError(Exception): """Raised when the project_dir supplied to ZephyrCompiler does not exist.""" class FlashRunnerNotSupported(Exception): """Raised when the FLASH_RUNNER for a project isn't supported by this Zephyr adapter.""" class ZephyrCompiler(tvm.micro.Compiler): """A Compiler instance that builds against a pre-existing zephyr project.""" def __init__( self, project_dir=None, board=None, west_cmd=None, zephyr_base=None, zephyr_toolchain_variant=None, env_vars=None, ): """Configure the compiler for use. Parameters ---------- project_dir : str Path to the pre-existing Zephyr project. board : str Name of the Zephyr board to build for (i.e. passed to `west build -b`) west_cmd : Optional[list] If given, argv that invoke the west build tool. Used only for flashing. zephyr_base : Optional[str] If given, path to Zephyr, as would normally be present in the ZEPHYR_BASE environment variable. If not given, consults this environment variable. This value must be set in one of those two places. zephyr_toolchain_variant: Optional[str] If given, overrides the toolchain used by Zephyr. If not given, uses the default zephyr toolchain. When running on OS X outside of docker, you need to specify this. env_vars : Optional[Dict[str,str]] If given, additional environment variables present when invoking west, cmake, or make. """ self._project_dir = project_dir if not os.path.exists(project_dir): # Raise this error instead of a potentially-more-cryptic compiler error due to a missing # prj.conf. raise ProjectNotFoundError( f"project_dir supplied to ZephyrCompiler does not exist: {project_dir}" ) self._board = board if west_cmd is None: self._west_cmd = [sys.executable, "-mwest.app.main"] elif isinstance(west_cmd, str): self._west_cmd = [west_cmd] elif isinstance(west_cmd, list): self._west_cmd = west_cmd else: raise TypeError("west_cmd: expected string, list, or None; got %r" % (west_cmd,)) env = {} if zephyr_toolchain_variant is not None: env["ZEPHYR_TOOLCHAIN_VARIANT"] = zephyr_toolchain_variant self._zephyr_base = zephyr_base or os.environ["ZEPHYR_BASE"] assert ( self._zephyr_base is not None ), f"Must specify zephyr_base=, or ZEPHYR_BASE must be in environment variables" env["ZEPHYR_BASE"] = self._zephyr_base if env_vars: env.update(env_vars) self._subprocess_env = SubprocessEnv(env) OPT_KEY_TO_CMAKE_DEFINE = { "cflags": "CFLAGS", "ccflags": "CXXFLAGS", "ldflags": "LDFLAGS", } @classmethod def _options_to_cmake_args(cls, options): args = [] for key, define in cls.OPT_KEY_TO_CMAKE_DEFINE.items(): if key in options: quoted_opts = [shlex.quote(o).replace(";", "\\;") for o in options[key]] args.append(f'-DEXTRA_{define}={" ".join(quoted_opts)}') if "cmake_args" in options: args.extend(options["cmake_args"]) return args def library(self, output, sources, options=None): project_name = os.path.basename(output) if project_name.startswith("lib"): project_name = project_name[3:] lib_prj_conf = os.path.join(output, "prj.conf") if self._project_dir is not None: project_dir_conf = os.path.join(self._project_dir, "prj.conf") if os.path.exists(project_dir_conf): shutil.copy(project_dir_conf, lib_prj_conf) else: with open(lib_prj_conf, "w") as prj_conf_f: prj_conf_f.write("CONFIG_CPLUSPLUS=y\n") cmakelists_path = os.path.join(output, "CMakeLists.txt") with open(cmakelists_path, "w") as cmake_f: sources = " ".join(f'"{o}"' for o in sources) cmake_f.write( textwrap.dedent( f"""\ cmake_minimum_required(VERSION 3.13.1) find_package(Zephyr HINTS $ENV{{ZEPHYR_BASE}}) project({project_name}_prj) target_sources(app PRIVATE) zephyr_library_named({project_name}) target_sources({project_name} PRIVATE {sources}) target_sources(app PRIVATE main.c) target_link_libraries(app PUBLIC {project_name}) """ ) ) if "include_dirs" in options: cmake_f.write( f"target_include_directories({project_name} PRIVATE " f'{" ".join(os.path.abspath(d) for d in options["include_dirs"])})\n' ) with open(os.path.join(output, "main.c"), "w"): pass # expected not to exist after populate_tvm_libs build_dir = os.path.join(output, "__tvm_build") os.mkdir(build_dir) self._subprocess_env.run( ["cmake", "..", f"-DBOARD={self._board}"] + self._options_to_cmake_args(options), cwd=build_dir, ) num_cpus = multiprocessing.cpu_count() self._subprocess_env.run( ["make", f"-j{num_cpus}", "VERBOSE=1", project_name], cwd=build_dir ) return tvm.micro.MicroLibrary(build_dir, [f"lib{project_name}.a"]) def _print_make_statistics(self, output): output = output.splitlines() lines = iter(output) for line in lines: if line.startswith("Memory region"): # print statistics header _LOG.info(line) _LOG.info("--------------------- ---------- ------------ ---------") line = next(lines) # while there is a region print it try: while ":" in line: _LOG.info(line) line = next(lines) else: break except StopIteration: pass def binary(self, output, objects, options=None, link_main=True, main_options=None): assert link_main, "Must pass link_main=True" assert self._project_dir is not None, "Must supply project_dir= to build binaries" copied_libs = base.populate_tvm_objs(self._project_dir, objects) # expected not to exist after populate_tvm_objs cmake_args = [ "cmake", os.path.abspath(self._project_dir), f"-DBOARD={self._board}", ] + self._options_to_cmake_args(options) if "include_dirs" in options: cmake_args.append( "-DTVM_INCLUDE_DIRS=" f'{";".join(os.path.abspath(d) for d in options["include_dirs"])}' ) cmake_args.append(f'-DTVM_LIBS={";".join(copied_libs)}') self._subprocess_env.run(cmake_args, cwd=output) make_output = self._subprocess_env.run(["make"], cwd=output) self._print_make_statistics(make_output) return tvm.micro.MicroBinary( output, binary_file=os.path.join("zephyr", "zephyr.elf"), debug_files=[os.path.join("zephyr", "zephyr.elf")], labelled_files={ "cmake_cache": ["CMakeCache.txt"], "device_tree": [os.path.join("zephyr", "zephyr.dts")], }, immobile="qemu" in self._board, ) @property def flasher_factory(self): return compiler.FlasherFactory( ZephyrFlasher, (self._board,), dict( zephyr_base=self._zephyr_base, project_dir=self._project_dir, subprocess_env=self._subprocess_env.default_overrides, west_cmd=self._west_cmd, ), ) CACHE_ENTRY_RE = re.compile(r"(?P<name>[^:]+):(?P<type>[^=]+)=(?P<value>.*)") CMAKE_BOOL_MAP = dict( [(k, True) for k in ("1", "ON", "YES", "TRUE", "Y")] + [(k, False) for k in ("0", "OFF", "NO", "FALSE", "N", "IGNORE", "NOTFOUND", "")] ) def read_cmake_cache(file_name): """Read a CMakeCache.txt-like file and return a dictionary of values.""" entries = collections.OrderedDict() with open(file_name, encoding="utf-8") as f: for line in f: m = CACHE_ENTRY_RE.match(line.rstrip("\n")) if not m: continue if m.group("type") == "BOOL": value = CMAKE_BOOL_MAP[m.group("value").upper()] else: value = m.group("value") entries[m.group("name")] = value return entries class BoardError(Exception): """Raised when an attached board cannot be opened (i.e. missing /dev nodes, etc).""" class BoardAutodetectFailed(Exception): """Raised when no attached hardware is found matching the board= given to ZephyrCompiler.""" class ZephyrFlasher(tvm.micro.compiler.Flasher): """A Flasher implementation that delegates to Zephyr/west.""" def __init__( self, board, zephyr_base=None, project_dir=None, subprocess_env=None, nrfjprog_snr=None, openocd_serial=None, flash_args=None, debug_rpc_session=None, serial_timeouts=None, west_cmd=None, ): zephyr_base = zephyr_base or os.environ["ZEPHYR_BASE"] sys.path.insert(0, os.path.join(zephyr_base, "scripts", "dts")) try: import dtlib # pylint: disable=import-outside-toplevel self._dtlib = dtlib finally: sys.path.pop(0) self._board = board self._zephyr_base = zephyr_base self._project_dir = project_dir self._west_cmd = west_cmd self._flash_args = flash_args self._openocd_serial = openocd_serial self._autodetected_openocd_serial = None self._subprocess_env = SubprocessEnv(subprocess_env) self._debug_rpc_session = debug_rpc_session self._nrfjprog_snr = nrfjprog_snr self._serial_timeouts = serial_timeouts def _get_nrf_device_args(self): nrfjprog_args = ["nrfjprog", "--ids"] nrfjprog_ids = subprocess.check_output(nrfjprog_args, encoding="utf-8") if not nrfjprog_ids.strip("\n"): raise BoardAutodetectFailed( f'No attached boards recognized by {" ".join(nrfjprog_args)}' ) boards = nrfjprog_ids.split("\n")[:-1] if len(boards) > 1: if self._nrfjprog_snr is None: raise BoardError( "Multiple boards connected; specify one with nrfjprog_snr=: " f'{", ".join(boards)}' ) if str(self._nrfjprog_snr) not in boards: raise BoardError( f"nrfjprog_snr ({self._nrfjprog_snr}) not found in {nrfjprog_args}: {boards}" ) return ["--snr", str(self._nrfjprog_snr)] if not boards: return [] return ["--snr", boards[0]] # kwargs passed to usb.core.find to find attached boards for the openocd flash runner. BOARD_USB_FIND_KW = { "nucleo_f746zg": {"idVendor": 0x0483, "idProduct": 0x374B}, "stm32f746g_disco": {"idVendor": 0x0483, "idProduct": 0x374B}, } def openocd_serial(self, cmake_entries): """Find the serial port to use for a board with OpenOCD flash strategy.""" if self._openocd_serial is not None: return self._openocd_serial if self._autodetected_openocd_serial is None: import usb # pylint: disable=import-outside-toplevel find_kw = self.BOARD_USB_FIND_KW[cmake_entries["BOARD"]] boards = usb.core.find(find_all=True, **find_kw) serials = [] for b in boards: serials.append(b.serial_number) if len(serials) == 0: raise BoardAutodetectFailed(f"No attached USB devices matching: {find_kw!r}") serials.sort() self._autodetected_openocd_serial = serials[0] _LOG.debug("zephyr openocd driver: autodetected serial %s", serials[0]) return self._autodetected_openocd_serial def _get_openocd_device_args(self, cmake_entries): return ["--serial", self.openocd_serial(cmake_entries)] @classmethod def _get_flash_runner(cls, cmake_entries): flash_runner = cmake_entries.get("ZEPHYR_BOARD_FLASH_RUNNER") if flash_runner is not None: return flash_runner with open(cmake_entries["ZEPHYR_RUNNERS_YAML"]) as f: doc = yaml.load(f, Loader=yaml.FullLoader) return doc["flash-runner"] def _get_device_args(self, cmake_entries): flash_runner = self._get_flash_runner(cmake_entries) if flash_runner == "nrfjprog": return self._get_nrf_device_args() if flash_runner == "openocd": return self._get_openocd_device_args(cmake_entries) raise BoardError( f"Don't know how to find serial terminal for board {cmake_entries['BOARD']} with flash " f"runner {flash_runner}" ) def flash(self, micro_binary): cmake_entries = read_cmake_cache( micro_binary.abspath(micro_binary.labelled_files["cmake_cache"][0]) ) if "qemu" in cmake_entries["BOARD"]: return ZephyrQemuTransport(micro_binary.base_dir, startup_timeout_sec=30.0) build_dir = os.path.dirname( micro_binary.abspath(micro_binary.labelled_files["cmake_cache"][0]) ) # The nRF5340DK requires an additional `nrfjprog --recover` before each flash cycle. # This is because readback protection is enabled by default when this device is flashed. # Otherwise, flashing may fail with an error such as the following: # ERROR: The operation attempted is unavailable due to readback protection in # ERROR: your device. Please use --recover to unlock the device. if ( self._board.startswith("nrf5340dk") and self._get_flash_runner(cmake_entries) == "nrfjprog" ): recover_args = ["nrfjprog", "--recover"] recover_args.extend(self._get_nrf_device_args()) self._subprocess_env.run(recover_args, cwd=build_dir) west_args = ( self._west_cmd + ["flash", "--build-dir", build_dir, "--skip-rebuild"] + self._get_device_args(cmake_entries) ) if self._flash_args is not None: west_args.extend(self._flash_args) self._subprocess_env.run(west_args, cwd=build_dir) return self.transport(micro_binary) def _find_nrf_serial_port(self, cmake_entries): com_ports = subprocess.check_output( ["nrfjprog", "--com"] + self._get_device_args(cmake_entries), encoding="utf-8" ) ports_by_vcom = {} for line in com_ports.split("\n")[:-1]: parts = line.split() ports_by_vcom[parts[2]] = parts[1] return {"port_path": ports_by_vcom["VCOM2"]} def _find_openocd_serial_port(self, cmake_entries): return {"grep": self.openocd_serial(cmake_entries)} def _find_serial_port(self, micro_binary): cmake_entries = read_cmake_cache( micro_binary.abspath(micro_binary.labelled_files["cmake_cache"][0]) ) flash_runner = self._get_flash_runner(cmake_entries) if flash_runner == "nrfjprog": return self._find_nrf_serial_port(cmake_entries) if flash_runner == "openocd": return self._find_openocd_serial_port(cmake_entries) raise FlashRunnerNotSupported( f"Don't know how to deduce serial port for flash runner {flash_runner}" ) def transport(self, micro_binary): """Instantiate the transport for use with non-QEMU Zephyr.""" dt_inst = self._dtlib.DT( micro_binary.abspath(micro_binary.labelled_files["device_tree"][0]) ) uart_baud = ( dt_inst.get_node("/chosen") .props["zephyr,console"] .to_path() .props["current-speed"] .to_num() ) _LOG.debug("zephyr transport: found UART baudrate from devicetree: %d", uart_baud) port_kwargs = self._find_serial_port(micro_binary) serial_transport = serial.SerialTransport( timeouts=self._serial_timeouts, baudrate=uart_baud, **port_kwargs ) if self._debug_rpc_session is None: return serial_transport return debug.DebugWrapperTransport( debugger.RpcDebugger( self._debug_rpc_session, debugger.DebuggerFactory( ZephyrDebugger, ( " ".join(shlex.quote(x) for x in self._west_cmd), os.path.dirname(micro_binary.abspath(micro_binary.label("cmake_cache")[0])), micro_binary.abspath(micro_binary.debug_files[0]), self._zephyr_base, ), {}, ), ), serial_transport, ) class QemuStartupFailureError(Exception): """Raised when the qemu pipe is not present within startup_timeout_sec.""" class QemuFdTransport(file_descriptor.FdTransport): """An FdTransport subclass that escapes written data to accomodate the QEMU monitor. It's supposedly possible to disable the monitor, but Zephyr controls most of the command-line arguments for QEMU and there are too many options which implictly enable the monitor, so this approach seems more robust. """ def write_monitor_quit(self): file_descriptor.FdTransport.write(self, b"\x01x", 1.0) def close(self): file_descriptor.FdTransport.close(self) def timeouts(self): assert False, "should not get here" def write(self, data, timeout_sec): """Write data, escaping for QEMU monitor.""" to_write = bytearray() escape_pos = [] for i, b in enumerate(data): if b == 0x01: to_write.append(b) escape_pos.append(i) to_write.append(b) num_written = file_descriptor.FdTransport.write(self, to_write, timeout_sec) num_written -= sum(1 if x < num_written else 0 for x in escape_pos) return num_written class ZephyrQemuTransport(Transport): """The user-facing Zephyr QEMU transport class.""" def __init__(self, base_dir, startup_timeout_sec=5.0, **kwargs): self.base_dir = base_dir self.startup_timeout_sec = startup_timeout_sec self.kwargs = kwargs self.proc = None self.fd_transport = None self.pipe_dir = None def timeouts(self): return TransportTimeouts( session_start_retry_timeout_sec=2.0, session_start_timeout_sec=self.startup_timeout_sec, session_established_timeout_sec=5.0, ) def open(self): self.pipe_dir = tempfile.mkdtemp() self.pipe = os.path.join(self.pipe_dir, "fifo") self.write_pipe = os.path.join(self.pipe_dir, "fifo.in") self.read_pipe = os.path.join(self.pipe_dir, "fifo.out") os.mkfifo(self.write_pipe) os.mkfifo(self.read_pipe) self.proc = subprocess.Popen( ["make", "run", f"QEMU_PIPE={self.pipe}"], cwd=self.base_dir, **self.kwargs, ) # NOTE: although each pipe is unidirectional, open both as RDWR to work around a select # limitation on linux. Without this, non-blocking I/O can't use timeouts because named # FIFO are always considered ready to read when no one has opened them for writing. self.fd_transport = wakeup.WakeupTransport( QemuFdTransport( os.open(self.read_pipe, os.O_RDWR | os.O_NONBLOCK), os.open(self.write_pipe, os.O_RDWR | os.O_NONBLOCK), self.timeouts(), ), b"\xfe\xff\xfd\x03\0\0\0\0\0\x02" b"fw", ) self.fd_transport.open() def close(self): if self.fd_transport is not None: self.fd_transport.child_transport.write_monitor_quit() self.proc.wait() self.fd_transport.close() self.fd_transport = None if self.proc is not None: self.proc = None if self.pipe_dir is not None: shutil.rmtree(self.pipe_dir) self.pipe_dir = None def read(self, n, timeout_sec): if self.fd_transport is None: raise TransportClosedError() return self.fd_transport.read(n, timeout_sec) def write(self, data, timeout_sec): if self.fd_transport is None: raise TransportClosedError() return self.fd_transport.write(data, timeout_sec) class ZephyrDebugger(debugger.GdbDebugger): """A Zephyr debugger implementation.""" def __init__(self, west_cmd, build_dir, elf_path, zephyr_base): super(ZephyrDebugger, self).__init__() self._west_cmd = shlex.split(west_cmd) self._build_dir = build_dir self._elf_path = elf_path self._zephyr_base = zephyr_base def popen_kwargs(self): env = dict(os.environ) env["ZEPHYR_BASE"] = self._zephyr_base return dict( args=self._west_cmd + [ "debug", "--skip-rebuild", "--build-dir", self._build_dir, "--elf-file", self._elf_path, ], env=env, )
35.84812
100
0.608163
e8dc330e0cd659f91bc0d09987ce9d2246f68c1b
25,508
py
Python
python/ray/tune/logger.py
yuanchi2807/ray
cf512254bb4bcd71ff1818dff5c868ab10c5f620
[ "Apache-2.0" ]
1
2021-09-20T15:45:59.000Z
2021-09-20T15:45:59.000Z
python/ray/tune/logger.py
yuanchi2807/ray
cf512254bb4bcd71ff1818dff5c868ab10c5f620
[ "Apache-2.0" ]
53
2021-10-06T20:08:04.000Z
2022-03-21T20:17:25.000Z
python/ray/tune/logger.py
yuanchi2807/ray
cf512254bb4bcd71ff1818dff5c868ab10c5f620
[ "Apache-2.0" ]
1
2022-03-24T22:48:21.000Z
2022-03-24T22:48:21.000Z
import csv import json import logging import numpy as np import os import yaml from typing import Iterable, TYPE_CHECKING, Dict, List, Optional, TextIO, Type import ray.cloudpickle as cloudpickle from ray.tune.callback import Callback from ray.tune.utils.util import SafeFallbackEncoder from ray.util.debug import log_once from ray.tune.result import ( TRAINING_ITERATION, TIME_TOTAL_S, TIMESTEPS_TOTAL, EXPR_PARAM_FILE, EXPR_PARAM_PICKLE_FILE, EXPR_PROGRESS_FILE, EXPR_RESULT_FILE, ) from ray.tune.utils import flatten_dict from ray.util.annotations import PublicAPI if TYPE_CHECKING: from ray.tune.trial import Trial # noqa: F401 logger = logging.getLogger(__name__) tf = None VALID_SUMMARY_TYPES = [int, float, np.float32, np.float64, np.int32, np.int64] class Logger: """Logging interface for ray.tune. By default, the UnifiedLogger implementation is used which logs results in multiple formats (TensorBoard, rllab/viskit, plain json, custom loggers) at once. Arguments: config: Configuration passed to all logger creators. logdir: Directory for all logger creators to log to. trial (Trial): Trial object for the logger to access. """ def __init__(self, config: Dict, logdir: str, trial: Optional["Trial"] = None): self.config = config self.logdir = logdir self.trial = trial self._init() def _init(self): pass def on_result(self, result): """Given a result, appends it to the existing log.""" raise NotImplementedError def update_config(self, config): """Updates the config for logger.""" pass def close(self): """Releases all resources used by this logger.""" pass def flush(self): """Flushes all disk writes to storage.""" pass class NoopLogger(Logger): def on_result(self, result): pass class JsonLogger(Logger): """Logs trial results in json format. Also writes to a results file and param.json file when results or configurations are updated. Experiments must be executed with the JsonLogger to be compatible with the ExperimentAnalysis tool. """ def _init(self): self.update_config(self.config) local_file = os.path.join(self.logdir, EXPR_RESULT_FILE) self.local_out = open(local_file, "a") def on_result(self, result: Dict): json.dump(result, self, cls=SafeFallbackEncoder) self.write("\n") self.local_out.flush() def write(self, b): self.local_out.write(b) def flush(self): if not self.local_out.closed: self.local_out.flush() def close(self): self.local_out.close() def update_config(self, config: Dict): self.config = config config_out = os.path.join(self.logdir, EXPR_PARAM_FILE) with open(config_out, "w") as f: json.dump(self.config, f, indent=2, sort_keys=True, cls=SafeFallbackEncoder) config_pkl = os.path.join(self.logdir, EXPR_PARAM_PICKLE_FILE) with open(config_pkl, "wb") as f: cloudpickle.dump(self.config, f) class CSVLogger(Logger): """Logs results to progress.csv under the trial directory. Automatically flattens nested dicts in the result dict before writing to csv: {"a": {"b": 1, "c": 2}} -> {"a/b": 1, "a/c": 2} """ def _init(self): """CSV outputted with Headers as first set of results.""" progress_file = os.path.join(self.logdir, EXPR_PROGRESS_FILE) self._continuing = os.path.exists(progress_file) self._file = open(progress_file, "a") self._csv_out = None def on_result(self, result: Dict): tmp = result.copy() if "config" in tmp: del tmp["config"] result = flatten_dict(tmp, delimiter="/") if self._csv_out is None: self._csv_out = csv.DictWriter(self._file, result.keys()) if not self._continuing: self._csv_out.writeheader() self._csv_out.writerow( {k: v for k, v in result.items() if k in self._csv_out.fieldnames} ) self._file.flush() def flush(self): if not self._file.closed: self._file.flush() def close(self): self._file.close() class TBXLogger(Logger): """TensorBoardX Logger. Note that hparams will be written only after a trial has terminated. This logger automatically flattens nested dicts to show on TensorBoard: {"a": {"b": 1, "c": 2}} -> {"a/b": 1, "a/c": 2} """ VALID_HPARAMS = (str, bool, int, float, list, type(None)) VALID_NP_HPARAMS = (np.bool8, np.float32, np.float64, np.int32, np.int64) def _init(self): try: from tensorboardX import SummaryWriter except ImportError: if log_once("tbx-install"): logger.info('pip install "ray[tune]" to see TensorBoard files.') raise self._file_writer = SummaryWriter(self.logdir, flush_secs=30) self.last_result = None def on_result(self, result: Dict): step = result.get(TIMESTEPS_TOTAL) or result[TRAINING_ITERATION] tmp = result.copy() for k in ["config", "pid", "timestamp", TIME_TOTAL_S, TRAINING_ITERATION]: if k in tmp: del tmp[k] # not useful to log these flat_result = flatten_dict(tmp, delimiter="/") path = ["ray", "tune"] valid_result = {} for attr, value in flat_result.items(): full_attr = "/".join(path + [attr]) if isinstance(value, tuple(VALID_SUMMARY_TYPES)) and not np.isnan(value): valid_result[full_attr] = value self._file_writer.add_scalar(full_attr, value, global_step=step) elif (isinstance(value, list) and len(value) > 0) or ( isinstance(value, np.ndarray) and value.size > 0 ): valid_result[full_attr] = value # Must be video if isinstance(value, np.ndarray) and value.ndim == 5: self._file_writer.add_video( full_attr, value, global_step=step, fps=20 ) continue try: self._file_writer.add_histogram(full_attr, value, global_step=step) # In case TensorboardX still doesn't think it's a valid value # (e.g. `[[]]`), warn and move on. except (ValueError, TypeError): if log_once("invalid_tbx_value"): logger.warning( "You are trying to log an invalid value ({}={}) " "via {}!".format(full_attr, value, type(self).__name__) ) self.last_result = valid_result self._file_writer.flush() def flush(self): if self._file_writer is not None: self._file_writer.flush() def close(self): if self._file_writer is not None: if self.trial and self.trial.evaluated_params and self.last_result: flat_result = flatten_dict(self.last_result, delimiter="/") scrubbed_result = { k: value for k, value in flat_result.items() if isinstance(value, tuple(VALID_SUMMARY_TYPES)) } self._try_log_hparams(scrubbed_result) self._file_writer.close() def _try_log_hparams(self, result): # TBX currently errors if the hparams value is None. flat_params = flatten_dict(self.trial.evaluated_params) scrubbed_params = { k: v for k, v in flat_params.items() if isinstance(v, self.VALID_HPARAMS) } np_params = { k: v.tolist() for k, v in flat_params.items() if isinstance(v, self.VALID_NP_HPARAMS) } scrubbed_params.update(np_params) removed = { k: v for k, v in flat_params.items() if not isinstance(v, self.VALID_HPARAMS + self.VALID_NP_HPARAMS) } if removed: logger.info( "Removed the following hyperparameter values when " "logging to tensorboard: %s", str(removed), ) from tensorboardX.summary import hparams try: experiment_tag, session_start_tag, session_end_tag = hparams( hparam_dict=scrubbed_params, metric_dict=result ) self._file_writer.file_writer.add_summary(experiment_tag) self._file_writer.file_writer.add_summary(session_start_tag) self._file_writer.file_writer.add_summary(session_end_tag) except Exception: logger.exception( "TensorboardX failed to log hparams. " "This may be due to an unsupported type " "in the hyperparameter values." ) DEFAULT_LOGGERS = (JsonLogger, CSVLogger, TBXLogger) class UnifiedLogger(Logger): """Unified result logger for TensorBoard, rllab/viskit, plain json. Arguments: config: Configuration passed to all logger creators. logdir: Directory for all logger creators to log to. loggers (list): List of logger creators. Defaults to CSV, Tensorboard, and JSON loggers. """ def __init__( self, config: Dict, logdir: str, trial: Optional["Trial"] = None, loggers: Optional[List[Type[Logger]]] = None, ): if loggers is None: self._logger_cls_list = DEFAULT_LOGGERS else: self._logger_cls_list = loggers if JsonLogger not in self._logger_cls_list: if log_once("JsonLogger"): logger.warning( "JsonLogger not provided. The ExperimentAnalysis tool is " "disabled." ) super(UnifiedLogger, self).__init__(config, logdir, trial) def _init(self): self._loggers = [] for cls in self._logger_cls_list: try: self._loggers.append(cls(self.config, self.logdir, self.trial)) except Exception as exc: if log_once(f"instantiate:{cls.__name__}"): logger.warning( "Could not instantiate %s: %s.", cls.__name__, str(exc) ) def on_result(self, result): for _logger in self._loggers: _logger.on_result(result) def update_config(self, config): for _logger in self._loggers: _logger.update_config(config) def close(self): for _logger in self._loggers: _logger.close() def flush(self): for _logger in self._loggers: _logger.flush() @PublicAPI class LoggerCallback(Callback): """Base class for experiment-level logger callbacks This base class defines a general interface for logging events, like trial starts, restores, ends, checkpoint saves, and receiving trial results. Callbacks implementing this interface should make sure that logging utilities are cleaned up properly on trial termination, i.e. when ``log_trial_end`` is received. This includes e.g. closing files. """ def log_trial_start(self, trial: "Trial"): """Handle logging when a trial starts. Args: trial (Trial): Trial object. """ pass def log_trial_restore(self, trial: "Trial"): """Handle logging when a trial restores. Args: trial (Trial): Trial object. """ pass def log_trial_save(self, trial: "Trial"): """Handle logging when a trial saves a checkpoint. Args: trial (Trial): Trial object. """ pass def log_trial_result(self, iteration: int, trial: "Trial", result: Dict): """Handle logging when a trial reports a result. Args: trial (Trial): Trial object. result (dict): Result dictionary. """ pass def log_trial_end(self, trial: "Trial", failed: bool = False): """Handle logging when a trial ends. Args: trial (Trial): Trial object. failed (bool): True if the Trial finished gracefully, False if it failed (e.g. when it raised an exception). """ pass def on_trial_result( self, iteration: int, trials: List["Trial"], trial: "Trial", result: Dict, **info, ): self.log_trial_result(iteration, trial, result) def on_trial_start( self, iteration: int, trials: List["Trial"], trial: "Trial", **info ): self.log_trial_start(trial) def on_trial_restore( self, iteration: int, trials: List["Trial"], trial: "Trial", **info ): self.log_trial_restore(trial) def on_trial_save( self, iteration: int, trials: List["Trial"], trial: "Trial", **info ): self.log_trial_save(trial) def on_trial_complete( self, iteration: int, trials: List["Trial"], trial: "Trial", **info ): self.log_trial_end(trial, failed=False) def on_trial_error( self, iteration: int, trials: List["Trial"], trial: "Trial", **info ): self.log_trial_end(trial, failed=True) class LegacyLoggerCallback(LoggerCallback): """Supports logging to trial-specific `Logger` classes. Previously, Ray Tune logging was handled via `Logger` classes that have been instantiated per-trial. This callback is a fallback to these `Logger`-classes, instantiating each `Logger` class for each trial and logging to them. Args: logger_classes (Iterable[Type[Logger]]): Logger classes that should be instantiated for each trial. """ def __init__(self, logger_classes: Iterable[Type[Logger]]): self.logger_classes = list(logger_classes) self._class_trial_loggers: Dict[Type[Logger], Dict["Trial", Logger]] = {} def log_trial_start(self, trial: "Trial"): trial.init_logdir() for logger_class in self.logger_classes: trial_loggers = self._class_trial_loggers.get(logger_class, {}) if trial not in trial_loggers: logger = logger_class(trial.config, trial.logdir, trial) trial_loggers[trial] = logger self._class_trial_loggers[logger_class] = trial_loggers def log_trial_restore(self, trial: "Trial"): for logger_class, trial_loggers in self._class_trial_loggers.items(): if trial in trial_loggers: trial_loggers[trial].flush() def log_trial_save(self, trial: "Trial"): for logger_class, trial_loggers in self._class_trial_loggers.items(): if trial in trial_loggers: trial_loggers[trial].flush() def log_trial_result(self, iteration: int, trial: "Trial", result: Dict): for logger_class, trial_loggers in self._class_trial_loggers.items(): if trial in trial_loggers: trial_loggers[trial].on_result(result) def log_trial_end(self, trial: "Trial", failed: bool = False): for logger_class, trial_loggers in self._class_trial_loggers.items(): if trial in trial_loggers: trial_loggers[trial].close() class JsonLoggerCallback(LoggerCallback): """Logs trial results in json format. Also writes to a results file and param.json file when results or configurations are updated. Experiments must be executed with the JsonLoggerCallback to be compatible with the ExperimentAnalysis tool. """ def __init__(self): self._trial_configs: Dict["Trial", Dict] = {} self._trial_files: Dict["Trial", TextIO] = {} def log_trial_start(self, trial: "Trial"): if trial in self._trial_files: self._trial_files[trial].close() # Update config self.update_config(trial, trial.config) # Make sure logdir exists trial.init_logdir() local_file = os.path.join(trial.logdir, EXPR_RESULT_FILE) self._trial_files[trial] = open(local_file, "at") def log_trial_result(self, iteration: int, trial: "Trial", result: Dict): if trial not in self._trial_files: self.log_trial_start(trial) json.dump(result, self._trial_files[trial], cls=SafeFallbackEncoder) self._trial_files[trial].write("\n") self._trial_files[trial].flush() def log_trial_end(self, trial: "Trial", failed: bool = False): if trial not in self._trial_files: return self._trial_files[trial].close() del self._trial_files[trial] def update_config(self, trial: "Trial", config: Dict): self._trial_configs[trial] = config config_out = os.path.join(trial.logdir, EXPR_PARAM_FILE) with open(config_out, "w") as f: json.dump( self._trial_configs[trial], f, indent=2, sort_keys=True, cls=SafeFallbackEncoder, ) config_pkl = os.path.join(trial.logdir, EXPR_PARAM_PICKLE_FILE) with open(config_pkl, "wb") as f: cloudpickle.dump(self._trial_configs[trial], f) class CSVLoggerCallback(LoggerCallback): """Logs results to progress.csv under the trial directory. Automatically flattens nested dicts in the result dict before writing to csv: {"a": {"b": 1, "c": 2}} -> {"a/b": 1, "a/c": 2} """ def __init__(self): self._trial_continue: Dict["Trial", bool] = {} self._trial_files: Dict["Trial", TextIO] = {} self._trial_csv: Dict["Trial", csv.DictWriter] = {} def log_trial_start(self, trial: "Trial"): if trial in self._trial_files: self._trial_files[trial].close() # Make sure logdir exists trial.init_logdir() local_file = os.path.join(trial.logdir, EXPR_PROGRESS_FILE) self._trial_continue[trial] = os.path.exists(local_file) self._trial_files[trial] = open(local_file, "at") self._trial_csv[trial] = None def log_trial_result(self, iteration: int, trial: "Trial", result: Dict): if trial not in self._trial_files: self.log_trial_start(trial) tmp = result.copy() tmp.pop("config", None) result = flatten_dict(tmp, delimiter="/") if not self._trial_csv[trial]: self._trial_csv[trial] = csv.DictWriter( self._trial_files[trial], result.keys() ) if not self._trial_continue[trial]: self._trial_csv[trial].writeheader() self._trial_csv[trial].writerow( {k: v for k, v in result.items() if k in self._trial_csv[trial].fieldnames} ) self._trial_files[trial].flush() def log_trial_end(self, trial: "Trial", failed: bool = False): if trial not in self._trial_files: return del self._trial_csv[trial] self._trial_files[trial].close() del self._trial_files[trial] class TBXLoggerCallback(LoggerCallback): """TensorBoardX Logger. Note that hparams will be written only after a trial has terminated. This logger automatically flattens nested dicts to show on TensorBoard: {"a": {"b": 1, "c": 2}} -> {"a/b": 1, "a/c": 2} """ VALID_HPARAMS = (str, bool, int, float, list, type(None)) VALID_NP_HPARAMS = (np.bool8, np.float32, np.float64, np.int32, np.int64) def __init__(self): try: from tensorboardX import SummaryWriter self._summary_writer_cls = SummaryWriter except ImportError: if log_once("tbx-install"): logger.info('pip install "ray[tune]" to see TensorBoard files.') raise self._trial_writer: Dict["Trial", SummaryWriter] = {} self._trial_result: Dict["Trial", Dict] = {} def log_trial_start(self, trial: "Trial"): if trial in self._trial_writer: self._trial_writer[trial].close() trial.init_logdir() self._trial_writer[trial] = self._summary_writer_cls( trial.logdir, flush_secs=30 ) self._trial_result[trial] = {} def log_trial_result(self, iteration: int, trial: "Trial", result: Dict): if trial not in self._trial_writer: self.log_trial_start(trial) step = result.get(TIMESTEPS_TOTAL) or result[TRAINING_ITERATION] tmp = result.copy() for k in ["config", "pid", "timestamp", TIME_TOTAL_S, TRAINING_ITERATION]: if k in tmp: del tmp[k] # not useful to log these flat_result = flatten_dict(tmp, delimiter="/") path = ["ray", "tune"] valid_result = {} for attr, value in flat_result.items(): full_attr = "/".join(path + [attr]) if isinstance(value, tuple(VALID_SUMMARY_TYPES)) and not np.isnan(value): valid_result[full_attr] = value self._trial_writer[trial].add_scalar(full_attr, value, global_step=step) elif (isinstance(value, list) and len(value) > 0) or ( isinstance(value, np.ndarray) and value.size > 0 ): valid_result[full_attr] = value # Must be video if isinstance(value, np.ndarray) and value.ndim == 5: self._trial_writer[trial].add_video( full_attr, value, global_step=step, fps=20 ) continue try: self._trial_writer[trial].add_histogram( full_attr, value, global_step=step ) # In case TensorboardX still doesn't think it's a valid value # (e.g. `[[]]`), warn and move on. except (ValueError, TypeError): if log_once("invalid_tbx_value"): logger.warning( "You are trying to log an invalid value ({}={}) " "via {}!".format(full_attr, value, type(self).__name__) ) self._trial_result[trial] = valid_result self._trial_writer[trial].flush() def log_trial_end(self, trial: "Trial", failed: bool = False): if trial in self._trial_writer: if trial and trial.evaluated_params and self._trial_result[trial]: flat_result = flatten_dict(self._trial_result[trial], delimiter="/") scrubbed_result = { k: value for k, value in flat_result.items() if isinstance(value, tuple(VALID_SUMMARY_TYPES)) } self._try_log_hparams(trial, scrubbed_result) self._trial_writer[trial].close() del self._trial_writer[trial] del self._trial_result[trial] def _try_log_hparams(self, trial: "Trial", result: Dict): # TBX currently errors if the hparams value is None. flat_params = flatten_dict(trial.evaluated_params) scrubbed_params = { k: v for k, v in flat_params.items() if isinstance(v, self.VALID_HPARAMS) } np_params = { k: v.tolist() for k, v in flat_params.items() if isinstance(v, self.VALID_NP_HPARAMS) } scrubbed_params.update(np_params) removed = { k: v for k, v in flat_params.items() if not isinstance(v, self.VALID_HPARAMS + self.VALID_NP_HPARAMS) } if removed: logger.info( "Removed the following hyperparameter values when " "logging to tensorboard: %s", str(removed), ) from tensorboardX.summary import hparams try: experiment_tag, session_start_tag, session_end_tag = hparams( hparam_dict=scrubbed_params, metric_dict=result ) self._trial_writer[trial].file_writer.add_summary(experiment_tag) self._trial_writer[trial].file_writer.add_summary(session_start_tag) self._trial_writer[trial].file_writer.add_summary(session_end_tag) except Exception: logger.exception( "TensorboardX failed to log hparams. " "This may be due to an unsupported type " "in the hyperparameter values." ) # Maintain backwards compatibility. from ray.tune.integration.mlflow import ( # noqa: E402 MLflowLogger as _MLflowLogger, ) MLflowLogger = _MLflowLogger # The capital L is a typo, but needs to remain for backwards compatibility. MLFLowLogger = _MLflowLogger def pretty_print(result): result = result.copy() result.update(config=None) # drop config from pretty print result.update(hist_stats=None) # drop hist_stats from pretty print out = {} for k, v in result.items(): if v is not None: out[k] = v cleaned = json.dumps(out, cls=SafeFallbackEncoder) return yaml.safe_dump(json.loads(cleaned), default_flow_style=False)
33.607378
88
0.601968
7e6ae4c8def60153196a4e2bedc03f3c8c8584fc
6,656
py
Python
qa/rpc-tests/setmaxconnections.py
steve-cw-chung/dogecoin
35914ee5c76e41777307366f579eecbbad9b35de
[ "MIT" ]
null
null
null
qa/rpc-tests/setmaxconnections.py
steve-cw-chung/dogecoin
35914ee5c76e41777307366f579eecbbad9b35de
[ "MIT" ]
null
null
null
qa/rpc-tests/setmaxconnections.py
steve-cw-chung/dogecoin
35914ee5c76e41777307366f579eecbbad9b35de
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2021 The Dogecoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # # Exercise setmaxconnections RPC command # # from the constants MAX_ADDNODE_CONNECTIONS and PROTECTED_INBOUND_PEERS in src/net.h MAX_ADDNODE_CONNECTIONS = 8 PROTECTED_INBOUND_PEERS = 4 + 8 + 4 + 4 MINIMUM_CONNECTIONS = MAX_ADDNODE_CONNECTIONS MINIMUM_CONNECTIONS_INTERNAL = MAX_ADDNODE_CONNECTIONS + PROTECTED_INBOUND_PEERS from test_framework.mininode import * from test_framework.test_framework import BitcoinTestFramework from test_framework.util import * class TestNode(NodeConnCB): def __init__(self): NodeConnCB.__init__(self) self.connection = None self.peer_disconnected = False self.ping_counter = 0 def add_connection(self, conn): self.connection = conn def close(self): self.connection.handle_close() self.peer_disconnected = True class SetMaxConnectionCountTest (BitcoinTestFramework): def __init__(self): super().__init__() self.setup_clean_chain = True self.nodes = [] self.client_nodes = [] self.num_nodes = 1 def create_testnode(self, node_idx=0): node = TestNode() conn = NodeConn('127.0.0.1', p2p_port(node_idx), self.nodes[node_idx], node) node.add_connection(conn) return node def setup_network(self): self.nodes.append(start_node(0, self.options.tmpdir, ["-debug", "-nmaxconnections=0"])) self.is_network_split = False NetworkThread().start() def wait_for_verack(self, nodes, timeout_seconds=5): def nodes_veracked(): for node in nodes: if not node.verack_received: return False return True wait_until(nodes_veracked, timeout=timeout_seconds) def connect_nodes(self, nodes, count): for i in range(0, count): nodes.append(self.create_testnode()) self.wait_for_verack(nodes) def run_test(self): self.test_rpc_argument_validation() # these numbers must meet or exceed PROTECTED_INBOUND_CONNECTIONS # otherwise there aren't enough nodes to disconnect self.test_node_connection_changes(20) self.test_node_connection_changes(30) # max_count has to be at least 20 # min_count can be closer to 20 self.test_node_disconnections(40, 20) def test_rpc_argument_validation(self): first_node = self.nodes[0] try: first_node.setmaxconnections() raise AssertionError("Must check for no parameter provided") except JSONRPCException as e: assert("1. maxconnectioncount" in e.error['message']) try: first_node.setmaxconnections("good doge bad doge") raise AssertionError("Must check for no numeric parameter provided") except JSONRPCException as e: assert("JSON value is not an integer as expected" in e.error['message']) try: first_node.setmaxconnections(-1) raise AssertionError(f"Must check for parameter value >= {MINIMUM_CONNECTIONS}") except JSONRPCException as e: assert(f"maxconnectioncount must be >= {MINIMUM_CONNECTIONS}" in e.error['message']) try: first_node.setmaxconnections(7) raise AssertionError(f"Must check for parameter value >= {MINIMUM_CONNECTIONS}") except JSONRPCException as e: assert(f"maxconnectioncount must be >= {MINIMUM_CONNECTIONS}" in e.error['message']) try: first_node.setmaxconnections(MINIMUM_CONNECTIONS) assert(True) except JSONRPCException as e: raise AssertionError(f"Must allow parameter value >= {MINIMUM_CONNECTIONS}") def wait_for_n_disconnections(self, nodes, count, timeout): def disconnected(): closed_conns = [node.peer_disconnected for node in nodes] print(f'Len {len(closed_conns)}, waiting for {count} of {len(nodes)} => {len(closed_conns) >= count}') return len(closed_conns) >= count return wait_until(disconnected, timeout=timeout) def test_node_connection_changes(self, extras): first_node = self.nodes[0] # MINIMUM_CONNECTIONS outgoing connections plus 1 feeler max_connections = 1 + MINIMUM_CONNECTIONS + extras first_node.setmaxconnections(max_connections) client_nodes = [] self.connect_nodes(client_nodes, extras) x = first_node.getconnectioncount() assert(x <= extras) # attempt to add more nodes self.connect_nodes(client_nodes, 3) # the new nodes should not increase the connection count x = first_node.getconnectioncount() assert(x <= extras) first_node.setmaxconnections(MINIMUM_CONNECTIONS) disconnectable_connections=max_connections - MINIMUM_CONNECTIONS_INTERNAL assert(self.wait_for_n_disconnections(client_nodes, count=disconnectable_connections, timeout=30)) # disconnect to clean up for the next test for node in client_nodes: node.close() def test_node_disconnections(self, max_count, min_count): first_node = self.nodes[0] attempted_nodes = [] # MINIMUM_CONNECTIONS outgoing connections plus 1 feeler # plus 20 connections protected from eviction first_node.setmaxconnections(20 + 1 + MINIMUM_CONNECTIONS + max_count) client_nodes = [] self.connect_nodes(client_nodes, max_count) x = first_node.getconnectioncount() assert(x <= max_count) first_node.setmaxconnections(min_count) def nodes_disconnected(): disc_count = 0 for node in attempted_nodes: if node.peer_disconnected: disc_count += 1 else: node.sync_with_ping(0.1) if disc_count < max_count - min_count: return False return True wait_until(nodes_disconnected, timeout=30) # try asserting this two ways, for debugging the test x = first_node.getconnectioncount() assert(x < max_count) actual_min = max(min_count, MINIMUM_CONNECTIONS_INTERNAL) assert(x == actual_min) # disconnect to clean up for the next test for node in attempted_nodes: node.close() if __name__ == '__main__': SetMaxConnectionCountTest().main()
34.848168
114
0.662109
481b509e4cb5c60412e24a54570f60e996a90d57
8,268
py
Python
tests/sources/test_license.py
junjihashimoto/webots
12eb8c010275f390ae97d91d5c04906ffa00c262
[ "Apache-2.0" ]
null
null
null
tests/sources/test_license.py
junjihashimoto/webots
12eb8c010275f390ae97d91d5c04906ffa00c262
[ "Apache-2.0" ]
null
null
null
tests/sources/test_license.py
junjihashimoto/webots
12eb8c010275f390ae97d91d5c04906ffa00c262
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # Copyright 1996-2019 Cyberbotics Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test that checks that all the source files have the Apache 2 license.""" import unittest import datetime import os import fnmatch from io import open APACHE2_LICENSE_C = """/* * Copyright 1996-20XX Cyberbotics Ltd. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */""".replace('20XX', str(datetime.datetime.now().year)) APACHE2_LICENSE_CPP = """// Copyright 1996-20XX Cyberbotics Ltd. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License.""".replace('20XX', str(datetime.datetime.now().year)) APACHE2_LICENSE_PYTHON = """# Copyright 1996-20XX Cyberbotics Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.""".replace('20XX', str(datetime.datetime.now().year)) PYTHON_OPTIONAL_HEADER = """#!/usr/bin/env python """ PYTHON3_OPTIONAL_HEADER = """#!/usr/bin/env python3 """ class TestLicense(unittest.TestCase): """Unit test for checking that all the source files have the Apache 2 license.""" def setUp(self): """Get all the source files which require a license check.""" directories = [ 'src/lib/Controller', 'src/webots', 'src/wren', 'projects', 'include/controller', 'include/plugins', 'resources/languages/cpp', 'scripts' ] skippedDirectoryPaths = [ 'src/webots/external', 'projects/default/controllers/ros/include', 'projects/default/resources/sumo', 'projects/default/libraries/vehicle/java', 'projects/default/libraries/vehicle/python', 'projects/humans/c3d/controllers/c3d_viewer', 'projects/languages/ros/controllers/ros_python/kinetic', 'projects/languages/ros/controllers/ros_python/python', 'projects/robots/epfl/lis/controllers/blimp', 'projects/robots/epfl/lis/plugins/physics/blimp_physics', 'projects/robots/gctronic/e-puck/transfer/library', 'projects/robots/gctronic/e-puck/transfer/xc16', 'projects/robots/mobsya/thymio/controllers/thymio2_aseba/aseba', 'projects/robots/mobsya/thymio/libraries/dashel', 'projects/robots/mobsya/thymio/libraries/dashel-src', 'projects/robots/robotis/darwin-op/libraries/robotis-op2/robotis/Framework', 'projects/robots/robotis/darwin-op/libraries/robotis-op2/robotis/Linux', 'projects/robots/robotis/darwin-op/remote_control/libjpeg-turbo', 'projects/robots/robotis/darwin-op/libraries', 'projects/samples/robotbenchmark', 'projects/vehicles/controllers/ros_automobile/include' ] skippedFilePaths = [ 'projects/robots/gctronic/e-puck/controllers/e-puck2_server/play_melody.c', 'projects/robots/gctronic/e-puck/controllers/e-puck2_server/play_melody.h' ] skippedDirectories = [ 'build' ] extensions = ['*.c', '*.cpp', '*.h', '*.hpp', '*.py', '*.java', 'Makefile'] self.sources = [] for directory in directories: for rootPath, dirNames, fileNames in os.walk(os.environ['WEBOTS_HOME'] + os.sep + directory.replace('/', os.sep)): shouldContinue = False relativeRootPath = rootPath.replace(os.environ['WEBOTS_HOME'] + os.sep, '') for path in skippedDirectoryPaths: if rootPath.startswith(os.environ['WEBOTS_HOME'] + os.sep + path.replace('/', os.sep)): shouldContinue = True break currentDirectories = rootPath.replace(os.environ['WEBOTS_HOME'], '').split(os.sep) for directory in skippedDirectories: if directory in currentDirectories: shouldContinue = True break if fileNames == '__init__.py': shouldContinue = True if shouldContinue: continue for extension in extensions: for fileName in fnmatch.filter(fileNames, extension): if os.path.join(relativeRootPath, fileName).replace(os.sep, '/') in skippedFilePaths: continue file = os.path.join(rootPath, fileName) self.sources.append(file) def test_sources_have_license(self): """Test that sources have the license.""" for source in self.sources: with open(source, 'r', encoding='utf-8') as content_file: content = content_file.read() if source.endswith('.c') or source.endswith('.h'): self.assertTrue( content.startswith(APACHE2_LICENSE_C), msg='Source file "%s" doesn\'t contain the correct Apache 2.0 License:\n%s' % (source, APACHE2_LICENSE_C) ) elif source.endswith('.cpp') or source.endswith('.hpp') or source.endswith('.java'): self.assertTrue( content.startswith(APACHE2_LICENSE_CPP), msg='Source file "%s" doesn\'t contain the correct Apache 2.0 License:\n%s' % (source, APACHE2_LICENSE_CPP) ) elif source.endswith('.py') or source.endswith('Makefile'): self.assertTrue( content.startswith(APACHE2_LICENSE_PYTHON) or content.startswith(PYTHON_OPTIONAL_HEADER + APACHE2_LICENSE_PYTHON) or content.startswith(PYTHON3_OPTIONAL_HEADER + APACHE2_LICENSE_PYTHON), msg='Source file "%s" doesn\'t contain the correct Apache 2.0 License:\n%s' % (source, APACHE2_LICENSE_PYTHON) ) else: self.assertTrue( False, msg='Unsupported file extension "%s".' % source ) if __name__ == '__main__': unittest.main()
43.978723
126
0.620827
05e48ddac63f21b99f039b1744b101ef5fd78816
8,166
py
Python
mmedit/models/backbones/sr_backbones/tof.py
rivergold/mmediting
fd972635c48bb065db29d1b5090592a87c7263d2
[ "Apache-2.0" ]
null
null
null
mmedit/models/backbones/sr_backbones/tof.py
rivergold/mmediting
fd972635c48bb065db29d1b5090592a87c7263d2
[ "Apache-2.0" ]
null
null
null
mmedit/models/backbones/sr_backbones/tof.py
rivergold/mmediting
fd972635c48bb065db29d1b5090592a87c7263d2
[ "Apache-2.0" ]
2
2021-09-07T05:21:18.000Z
2021-09-17T22:34:54.000Z
import torch import torch.nn as nn import torch.nn.functional as F from mmcv.cnn import ConvModule from mmcv.runner import load_checkpoint from mmedit.models.common import flow_warp from mmedit.models.registry import BACKBONES from mmedit.utils import get_root_logger class BasicModule(nn.Module): """Basic module of SPyNet. Note that unlike the common spynet architecture, the basic module here contains batch normalization. """ def __init__(self): super(BasicModule, self).__init__() self.basic_module = nn.Sequential( ConvModule( in_channels=8, out_channels=32, kernel_size=7, stride=1, padding=3, norm_cfg=dict(type='BN'), act_cfg=dict(type='ReLU')), ConvModule( in_channels=32, out_channels=64, kernel_size=7, stride=1, padding=3, norm_cfg=dict(type='BN'), act_cfg=dict(type='ReLU')), ConvModule( in_channels=64, out_channels=32, kernel_size=7, stride=1, padding=3, norm_cfg=dict(type='BN'), act_cfg=dict(type='ReLU')), ConvModule( in_channels=32, out_channels=16, kernel_size=7, stride=1, padding=3, norm_cfg=dict(type='BN'), act_cfg=dict(type='ReLU')), ConvModule( in_channels=16, out_channels=2, kernel_size=7, stride=1, padding=3, norm_cfg=None, act_cfg=None)) def forward(self, tensor_input): """ Args: tensor_input (Tensor): Input tensor with shape (b, 8, h, w). 8 channels contain: [reference image (3), neighbor image (3), initial flow (2)]. Returns: Tensor: Estimated flow with shape (b, 2, h, w) """ return self.basic_module(tensor_input) class SPyNet(nn.Module): """SPyNet architecture. Note that this implementation is specifically for TOFlow. It differs from the common SPyNet in the following aspects: 1. The basic modules here contain BatchNorm. 2. Normalization and denormalization are not done here, as they are done in TOFlow. Paper: Optical Flow Estimation using a Spatial Pyramid Network Code reference: https://github.com/Coldog2333/pytoflow """ def __init__(self, load_path=None): super(SPyNet, self).__init__() self.basic_module = nn.ModuleList([BasicModule() for _ in range(4)]) def forward(self, ref, supp): """ Args: ref (Tensor): Reference image with shape of (b, 3, h, w). supp: The supporting image to be warped: (b, 3, h, w). Returns: Tensor: Estimated optical flow: (b, 2, h, w). """ num_batches, _, h, w = ref.size() ref = [ref] supp = [supp] # generate downsampled frames for _ in range(3): ref.insert( 0, F.avg_pool2d( input=ref[0], kernel_size=2, stride=2, count_include_pad=False)) supp.insert( 0, F.avg_pool2d( input=supp[0], kernel_size=2, stride=2, count_include_pad=False)) # flow computation flow = ref[0].new_zeros(num_batches, 2, h // 16, w // 16) for i in range(4): flow_up = F.interpolate( input=flow, scale_factor=2, mode='bilinear', align_corners=True) * 2.0 flow = flow_up + self.basic_module[i]( torch.cat([ ref[i], flow_warp(supp[i], flow_up.permute(0, 2, 3, 1)), flow_up ], 1)) return flow @BACKBONES.register_module() class TOFlow(nn.Module): """PyTorch implementation of TOFlow. In TOFlow, the LR frames are pre-upsampled and have the same size with the GT frames. Paper: Xue et al., Video Enhancement with Task-Oriented Flow, IJCV 2018 Code reference: 1. https://github.com/anchen1011/toflow 2. https://github.com/Coldog2333/pytoflow Args: adapt_official_weights (bool): Whether to adapt the weights translated from the official implementation. Set to false if you want to train from scratch. Default: False """ def __init__(self, adapt_official_weights=False): super(TOFlow, self).__init__() self.adapt_official_weights = adapt_official_weights self.ref_idx = 0 if adapt_official_weights else 3 # The mean and std are for img with range (0, 1) self.register_buffer( 'mean', torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1)) self.register_buffer( 'std', torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1)) # flow estimation module self.spynet = SPyNet() # reconstruction module self.conv1 = nn.Conv2d(3 * 7, 64, 9, 1, 4) self.conv2 = nn.Conv2d(64, 64, 9, 1, 4) self.conv3 = nn.Conv2d(64, 64, 1) self.conv4 = nn.Conv2d(64, 3, 1) # activation function self.relu = nn.ReLU(inplace=True) def normalize(self, img): """Normalize the input image. Args: img (Tensor): Input image. Returns: Tensor: Normalized image. """ return (img - self.mean) / self.std def denormalize(self, img): """Denormalize the output image. Args: img (Tensor): Output image. Returns: Tensor: Denormalized image. """ return img * self.std + self.mean def forward(self, lrs): """ Args: lrs: Input lr frames: (b, 7, 3, h, w). Returns: Tensor: SR frame: (b, 3, h, w). """ # In the official implementation, the 0-th frame is the reference frame if self.adapt_official_weights: lrs = lrs[:, [3, 0, 1, 2, 4, 5, 6], :, :, :] num_batches, num_lrs, _, h, w = lrs.size() lrs = self.normalize(lrs.view(-1, 3, h, w)) lrs = lrs.view(num_batches, num_lrs, 3, h, w) lr_ref = lrs[:, self.ref_idx, :, :, :] lr_aligned = [] for i in range(7): # 7 frames if i == self.ref_idx: lr_aligned.append(lr_ref) else: lr_supp = lrs[:, i, :, :, :] flow = self.spynet(lr_ref, lr_supp) lr_aligned.append(flow_warp(lr_supp, flow.permute(0, 2, 3, 1))) # reconstruction hr = torch.stack(lr_aligned, dim=1) hr = hr.view(num_batches, -1, h, w) hr = self.relu(self.conv1(hr)) hr = self.relu(self.conv2(hr)) hr = self.relu(self.conv3(hr)) hr = self.conv4(hr) + lr_ref return self.denormalize(hr) def init_weights(self, pretrained=None, strict=True): """Init weights for models. Args: pretrained (str, optional): Path for pretrained weights. If given None, pretrained weights will not be loaded. Defaults to None. strict (boo, optional): Whether strictly load the pretrained model. Defaults to True. """ if isinstance(pretrained, str): logger = get_root_logger() load_checkpoint(self, pretrained, strict=strict, logger=logger) elif pretrained is None: pass # use default initialization else: raise TypeError('"pretrained" must be a str or None. ' f'But received {type(pretrained)}.')
31.167939
79
0.52841
f15bfe153051ea5c40d291d1aa581aef1a7e1f03
5,477
py
Python
src/HavokMud/logging_support.py
Beirdo/HavokMud-redux
c681a320a99f299744abb2ef5b728779ad5d7710
[ "MIT" ]
null
null
null
src/HavokMud/logging_support.py
Beirdo/HavokMud-redux
c681a320a99f299744abb2ef5b728779ad5d7710
[ "MIT" ]
null
null
null
src/HavokMud/logging_support.py
Beirdo/HavokMud-redux
c681a320a99f299744abb2ef5b728779ad5d7710
[ "MIT" ]
null
null
null
import logging import logging.config import os LOGDIR = "/var/log/havokmud" class AccountLogMessage(object): def __init__(self, account, message, _global=False): self.ip = account.ip_address self.email = account.email self.message = message self._global = _global def __str__(self): return self.message class PlayerLogMessage(AccountLogMessage): def __init__(self, player, message, _global=False, account=False): AccountLogMessage.__init__(self, player.account, message, _global) self.player = player.name self._account = account class LogFilter(logging.Filter): def __init__(self, logType=None): logging.Filter.__init__(self) if logType is None: logType = "global" self.logType = logType def filter(self, record): record.logType = self.logType message = record.msg logType = self.logType if isinstance(message, str): if logType in ["global", "all"]: record.ip = "-" record.email = "-" record.player = "-" return True if isinstance(message, AccountLogMessage): # noinspection PyProtectedMember if logType in ["account", "all"] or (logType == "global" and message._global): record.ip = message.ip record.email = message.email record.player = "-" return True if isinstance(message, PlayerLogMessage): # noinspection PyProtectedMember if logType in ["player", "all"] or (logType == 'global' and message._global) \ or ("logType" == "account" and message._account): record.ip = message.ip record.email = message.email record.player = message.player return True return False class AccountLogHandler(logging.Handler): files = {} def emit(self, record): msg = self.format(record) fp = self.files.get(record.email, None) if not fp: filename = os.path.join(LOGDIR, "account-%s.log" % record.email) fp = open(filename, "a") self.files[record.email] = fp fp.write(msg + "\n") fp.flush() def closeEmail(self, email): fp = self.files.pop(email, None) if fp: fp.close() class PlayerLogHandler(logging.Handler): files = {} def emit(self, record): msg = self.format(record) fp = self.files.get(record.player, None) if not fp: filename = os.path.join(LOGDIR, "player-%s.log" % record.player) fp = open(filename, "a") self.files[record.player] = fp fp.write(msg + "\n") fp.flush() def closePlayer(self, player): fp = self.files.pop(player, None) if fp: fp.close() def logging_setup(logLevel, console=True): logConfig = { "version": 1, "disable_existing_loggers": False, "filters": { "allFilter": { "()": LogFilter, "logType": "all", }, "globalFilter": { "()": LogFilter, "logType": "global", }, "accountFilter": { "()": LogFilter, "logType": "account", }, "playerFilter": { "()": LogFilter, "logType": "player", } }, "handlers": { 'console': { 'class': 'logging.StreamHandler', 'filters': ['allFilter'], 'level': logLevel, 'formatter': 'console', }, 'global': { 'class': 'logging.FileHandler', 'filters': ['globalFilter'], 'level': logLevel, 'formatter': 'default', 'filename': os.path.join(LOGDIR, 'global.log'), 'mode': "a", 'encoding': 'utf-8', }, 'account': { 'class': 'HavokMud.logging_support.AccountLogHandler', 'filters': ['accountFilter'], 'level': logging.DEBUG, 'formatter': 'default', }, 'player': { 'class': 'HavokMud.logging_support.PlayerLogHandler', 'filters': ['playerFilter'], 'level': logging.DEBUG, 'formatter': 'default', } }, "formatters": { "default": { "format": '%(asctime)s %(levelname)s [PID %(process)d] (%(name)s:%(lineno)d) %(ip)s %(email)s ' '%(player)s %(message)s', }, "console": { "format": '%(asctime)s %(levelname)s (%(name)s:%(lineno)d) %(ip)s %(email)s %(player)s %(message)s' } }, "root": { 'handlers': ['global', 'account', 'player'], 'level': logging.DEBUG, } } if console: logConfig["root"]["handlers"].append("console") os.makedirs(LOGDIR, 0o1777, exist_ok=True) logging.config.dictConfig(logConfig) def logging_additional_setup(logLevelConfig): for (module, levelname) in logLevelConfig.items(): logging.getLogger(module).setLevel(getattr(logging, levelname, "DEBUG"))
30.259669
115
0.50356
edeacde1e693fdf92d440db9887e835d1b86a4c9
12,180
py
Python
photoshop/views.py
kmranrg/BabyPhotoshop
52efb2bad9f46e6c2d1351aae0b1e1587a98d736
[ "BSD-3-Clause" ]
null
null
null
photoshop/views.py
kmranrg/BabyPhotoshop
52efb2bad9f46e6c2d1351aae0b1e1587a98d736
[ "BSD-3-Clause" ]
null
null
null
photoshop/views.py
kmranrg/BabyPhotoshop
52efb2bad9f46e6c2d1351aae0b1e1587a98d736
[ "BSD-3-Clause" ]
null
null
null
from django.shortcuts import render from django.core.files.storage import FileSystemStorage from os import path, remove from PIL import ImageEnhance, Image, ImageFilter # Create your views here. def index(request): return render(request, 'index.html') def sharpness(sharpnessValue, imageFileName): imageFileName = str(imageFileName) sharpnessValue = float(sharpnessValue) img = Image.open(imageFileName) enhancer = ImageEnhance.Sharpness(img) img = enhancer.enhance(sharpnessValue) if imageFileName[-3:] == "jpg": img.save("media/sharpness_kumar_anurag.jpg") return "jpg" elif imageFileName[-3:] == "png": img.save("media/sharpness_kumar_anurag.png") return "png" elif imageFileName[-4:] == "jpeg": img.save("media/sharpness_kumar_anurag.jpeg") return "jpeg" else: return "fileNotSaved" def saturate(saturationValue, imageFileName): imageFileName = str(imageFileName) saturationValue = float(saturationValue) img = Image.open(imageFileName) color = ImageEnhance.Color(img) img = color.enhance(saturationValue) if imageFileName[-3:] == "jpg": img.save("media/saturated_kumar_anurag.jpg") return "jpg" elif imageFileName[-3:] == "png": img.save("media/saturated_kumar_anurag.png") return "png" elif imageFileName[-4:] == "jpeg": img.save("media/saturated_kumar_anurag.jpeg") return "jpeg" else: return "fileNotSaved" def transpose(transposeValue, imageFileName): imageFileName = str(imageFileName) transposeValue = str(transposeValue) img = Image.open(imageFileName) if transposeValue == "FLIP_LEFT_RIGHT": img = img.transpose(Image.FLIP_LEFT_RIGHT) elif transposeValue == "FLIP_TOP_BOTTOM": img = img.transpose(Image.FLIP_TOP_BOTTOM) elif transposeValue == "ROTATE_90": img = img.transpose(Image.ROTATE_90) elif transposeValue == "ROTATE_180": img = img.transpose(Image.ROTATE_180) elif transposeValue == "ROTATE_270": img = img.transpose(Image.ROTATE_270) else: return "fileNotSaved" if imageFileName[-3:] == "jpg": img.save("media/transposed_kumar_anurag.jpg") return "jpg" elif imageFileName[-3:] == "png": img.save("media/transposed_kumar_anurag.png") return "png" elif imageFileName[-4:] == "jpeg": img.save("media/transposed_kumar_anurag.jpeg") return "jpeg" else: return "fileNotSaved" def brightness(brightnessValue, imageFileName): imageFileName = str(imageFileName) brightnessValue = float(brightnessValue) img = Image.open(imageFileName) brightness = ImageEnhance.Brightness(img) img = brightness.enhance(brightnessValue) if imageFileName[-3:] == "jpg": img.save("media/brightness_kumar_anurag.jpg") return "jpg" elif imageFileName[-3:] == "png": img.save("media/brightness_kumar_anurag.png") return "png" elif imageFileName[-4:] == "jpeg": img.save("media/brightness_kumar_anurag.jpeg") return "jpeg" else: return "fileNotSaved" def contrast(contrastValue, imageFileName): imageFileName = str(imageFileName) contrastValue = float(contrastValue) img = Image.open(imageFileName) contrast = ImageEnhance.Contrast(img) img = contrast.enhance(contrastValue) if imageFileName[-3:] == "jpg": img.save("media/contrast_kumar_anurag.jpg") return "jpg" elif imageFileName[-3:] == "png": img.save("media/contrast_kumar_anurag.png") return "png" elif imageFileName[-4:] == "jpeg": img.save("media/contrast_kumar_anurag.jpeg") return "jpeg" else: return "fileNotSaved" def gaussianBlur(gblurValue, imageFileName): imageFileName = str(imageFileName) gblurValue = float(gblurValue) img = Image.open(imageFileName) img = img.filter(ImageFilter.GaussianBlur(radius=gblurValue)) if imageFileName[-3:] == "jpg": img.save("media/gblur_kumar_anurag.jpg") return "jpg" elif imageFileName[-3:] == "png": img.save("media/gblur_kumar_anurag.png") return "png" elif imageFileName[-4:] == "jpeg": img.save("media/gblur_kumar_anurag.jpeg") return "jpeg" else: return "fileNotSaved" def convert_to_pdf(imageFileName): imageFileName = str(imageFileName) img = Image.open(imageFileName) try: img.save("media/pdf_kumar_anurag.pdf") return "pdf" except ValueError: rgb = Image.new('RGB', img.size, (255, 255, 255)) # white background rgb.paste(img, mask=img.split()[3]) # paste using alpha channel as mask rgb.save("media/pdf_kumar_anurag.pdf", 'PDF', resoultion=100.0) return "pdf" except: return "fileNotSaved" def photo_pdf(request): usr_uploaded_file = "" if request.method == 'POST': uploaded_file = request.FILES['imageFileForPDF'] usr_uploaded_file = str(uploaded_file.name) # deleting the file if filename already exists if path.exists("media/"+usr_uploaded_file): remove("media/"+usr_uploaded_file) # saving the file fs = FileSystemStorage() fs.save(uploaded_file.name, uploaded_file) # calling convert_to_pdf function fileType = convert_to_pdf("media/"+usr_uploaded_file) if fileType == "fileNotSaved": usr_uploaded_file = "File not uploaded. Please upload jpg, png and jpeg file formats only" else: usr_uploaded_file = {"name":uploaded_file.name, "type":fileType} return render(request, 'photo_pdf.html', {'usr_uploaded_file': usr_uploaded_file}) def photo_gaussian_blur(request): usr_uploaded_file = "" usr_gaussianBlurValue = 0 if request.method == 'POST': uploaded_file = request.FILES['imageFileForGaussianBlur'] usr_uploaded_file = str(uploaded_file.name) gaussianBlurValue = float(request.POST["gaussianBlurValue"]) usr_gaussianBlurValue = gaussianBlurValue # deleting the file if filename already exists if path.exists("media/"+usr_uploaded_file): remove("media/"+usr_uploaded_file) # saving the file fs = FileSystemStorage() fs.save(uploaded_file.name, uploaded_file) # calling gaussianBlur function fileType = gaussianBlur(usr_gaussianBlurValue , "media/"+usr_uploaded_file) if fileType == "fileNotSaved": usr_uploaded_file = "File not uploaded. Please upload jpg, png and jpeg file formats only" else: usr_uploaded_file = {"name":uploaded_file.name, "type":fileType} return render(request, 'photo_gaussian_blur.html', {'usr_uploaded_file': usr_uploaded_file}) def photo_contrast(request): usr_uploaded_file = "" usr_contrastValue = 0 if request.method == 'POST': uploaded_file = request.FILES['imageFileForContrast'] usr_uploaded_file = str(uploaded_file.name) contrastValue = float(request.POST["contrastValue"]) usr_contrastValue = contrastValue # deleting the file if filename already exists if path.exists("media/"+usr_uploaded_file): remove("media/"+usr_uploaded_file) # saving the file fs = FileSystemStorage() fs.save(uploaded_file.name, uploaded_file) # calling contrast function fileType = contrast(usr_contrastValue , "media/"+usr_uploaded_file) if fileType == "fileNotSaved": usr_uploaded_file = "File not uploaded. Please upload jpg, png and jpeg file formats only" else: usr_uploaded_file = {"name":uploaded_file.name, "type":fileType} return render(request, 'photo_contrast.html', {'usr_uploaded_file': usr_uploaded_file}) def photo_brightness(request): usr_uploaded_file = "" usr_brightnessValue = 0 if request.method == 'POST': uploaded_file = request.FILES['imageFileForBrightness'] usr_uploaded_file = str(uploaded_file.name) brightnessValue = float(request.POST["brightnessValue"]) usr_brightnessValue = brightnessValue # deleting the file if filename already exists if path.exists("media/"+usr_uploaded_file): remove("media/"+usr_uploaded_file) # saving the file fs = FileSystemStorage() fs.save(uploaded_file.name, uploaded_file) # calling brightness function fileType = brightness(usr_brightnessValue , "media/"+usr_uploaded_file) if fileType == "fileNotSaved": usr_uploaded_file = "File not uploaded. Please upload jpg, png and jpeg file formats only" else: usr_uploaded_file = {"name":uploaded_file.name, "type":fileType} return render(request, 'photo_brightness.html', {'usr_uploaded_file': usr_uploaded_file}) def photo_transpose(request): usr_uploaded_file = "" usr_transposeValue = 0 if request.method == 'POST': uploaded_file = request.FILES['imageFileForTranspose'] usr_uploaded_file = str(uploaded_file.name) transposeValue = str(request.POST["transposeValue"]) usr_transposeValue = transposeValue # deleting the file if filename already exists if path.exists("media/"+usr_uploaded_file): remove("media/"+usr_uploaded_file) # saving the file fs = FileSystemStorage() fs.save(uploaded_file.name, uploaded_file) # calling transpose function fileType = transpose(usr_transposeValue , "media/"+usr_uploaded_file) if fileType == "fileNotSaved": usr_uploaded_file = "File not uploaded. Please upload jpg, png and jpeg file formats only" else: usr_uploaded_file = {"name":uploaded_file.name, "type":fileType} return render(request, 'photo_transpose.html', {'usr_uploaded_file': usr_uploaded_file}) def photo_saturation(request): usr_uploaded_file = "" usr_saturationValue = 0 if request.method == 'POST': uploaded_file = request.FILES['imageFileForSaturation'] usr_uploaded_file = str(uploaded_file.name) saturationValue = float(request.POST["saturationValue"]) usr_saturationValue = saturationValue # deleting the file if filename already exists if path.exists("media/"+usr_uploaded_file): remove("media/"+usr_uploaded_file) # saving the file fs = FileSystemStorage() fs.save(uploaded_file.name, uploaded_file) # calling saturate function fileType = saturate(usr_saturationValue, "media/"+usr_uploaded_file) if fileType == "fileNotSaved": usr_uploaded_file = "File not uploaded. Please upload jpg, png and jpeg file formats only" else: usr_uploaded_file = {"name":uploaded_file.name, "type":fileType} return render(request, 'photo_saturation.html', {'usr_uploaded_file': usr_uploaded_file}) def photo_sharpness(request): usr_uploaded_file = "" usr_sharpnessValue = 0 if request.method == 'POST': uploaded_file = request.FILES['imageFileForSharpness'] usr_uploaded_file = str(uploaded_file.name) sharpnessValue = float(request.POST["sharpnessValue"]) usr_sharpnessValue = sharpnessValue # deleting the file if filename already exists if path.exists("media/"+usr_uploaded_file): remove("media/"+usr_uploaded_file) # saving the file fs = FileSystemStorage() fs.save(uploaded_file.name, uploaded_file) # calling sharpness function fileType = sharpness(usr_sharpnessValue , "media/"+usr_uploaded_file) if fileType == "fileNotSaved": usr_uploaded_file = "File not uploaded. Please upload jpg, png and jpeg file formats only" else: usr_uploaded_file = {"name":uploaded_file.name, "type":fileType} return render(request, 'photo_sharpness.html', {'usr_uploaded_file': usr_uploaded_file})
34.213483
103
0.666092
27dbd3e3b8ace7587c10551fec9b3d89a4a402b7
10,733
py
Python
python_modules/dagster/dagster/core/types/config_schema.py
sd2k/dagster
d15542e2be374a0c35f2b1623c1fff98f002c605
[ "Apache-2.0" ]
null
null
null
python_modules/dagster/dagster/core/types/config_schema.py
sd2k/dagster
d15542e2be374a0c35f2b1623c1fff98f002c605
[ "Apache-2.0" ]
null
null
null
python_modules/dagster/dagster/core/types/config_schema.py
sd2k/dagster
d15542e2be374a0c35f2b1623c1fff98f002c605
[ "Apache-2.0" ]
null
null
null
import hashlib from dagster import check from dagster.config.config_type import ConfigType, ConfigTypeKind from dagster.core.decorator_utils import ( split_function_parameters, validate_decorated_fn_positionals, ) from dagster.core.errors import DagsterInvalidDefinitionError from dagster.utils import ensure_gen, ensure_single_item from dagster.utils.backcompat import canonicalize_backcompat_args, rename_warning class DagsterTypeLoader(object): @property def schema_type(self): check.not_implemented( "Must override schema_type in {klass}".format(klass=type(self).__name__) ) def compute_loaded_input_version(self, _config_value): return None def construct_from_config_value(self, _context, config_value): """ How to create a runtime value from config data. """ return config_value def required_resource_keys(self): return frozenset() class InputHydrationConfig(DagsterTypeLoader): def __init__(self): rename_warning("DagsterTypeLoader", "InputHydrationConfig", "0.10.0") super(InputHydrationConfig, self).__init__() class DagsterTypeMaterializer(object): @property def schema_type(self): check.not_implemented( "Must override schema_type in {klass}".format(klass=type(self).__name__) ) def materialize_runtime_values(self, _context, _config_value, _runtime_value): """ How to materialize a runtime value given configuration. """ check.not_implemented("Must implement") def required_resource_keys(self): return frozenset() class OutputMaterializationConfig(DagsterTypeMaterializer): def __init__(self): rename_warning("DagsterTypeMaterializer", "OutputMaterializationConfig", "0.10.0") super(OutputMaterializationConfig, self).__init__() class DagsterTypeLoaderFromDecorator(DagsterTypeLoader): def __init__( self, config_type, func, required_resource_keys, loader_version=None, external_version_fn=lambda: None, ): self._config_type = check.inst_param(config_type, "config_type", ConfigType) self._func = check.callable_param(func, "func") self._required_resource_keys = check.opt_set_param( required_resource_keys, "required_resource_keys", of_type=str ) self._loader_version = loader_version self._external_version_fn = external_version_fn @property def schema_type(self): return self._config_type def compute_loaded_input_version(self, config_value): version = "" if self._loader_version: version += str(self._loader_version) ext_version = self._external_version_fn(config_value) if ext_version: version += str(ext_version) return hashlib.sha1(version.encode("utf-8")).hexdigest() def construct_from_config_value(self, context, config_value): return self._func(context, config_value) def required_resource_keys(self): return frozenset(self._required_resource_keys) def _create_type_loader_for_decorator( config_type, func, required_resource_keys, loader_version=None, external_version_fn=lambda: None ): return DagsterTypeLoaderFromDecorator( config_type, func, required_resource_keys, loader_version, external_version_fn ) def input_hydration_config(config_schema=None, required_resource_keys=None, config_cls=None): """Deprecated in favor of dagster_type_loader""" rename_warning("dagster_type_loader", "input_hydration_config", "0.10.0") config_schema = canonicalize_backcompat_args( config_schema, "config_schema", config_cls, "config_cls", "0.10.0", ) return dagster_type_loader(config_schema, required_resource_keys) def dagster_type_loader( config_schema, required_resource_keys=None, loader_version=None, external_version_fn=lambda: None, ): """Create an dagster type loader that maps config data to a runtime value. The decorated function should take the execution context and parsed config value and return the appropriate runtime value. Args: config_schema (ConfigSchema): The schema for the config that's passed to the decorated function. loader_version (str): (Experimental) The version of the decorated compute function. Two loading functions should have the same version if and only if they deterministically produce the same outputs when provided the same inputs. external_version_fn (Callable): A function that takes in the same parameters as the loader function (config_value) and returns a representation of the version of the external asset (str). Two external assets with identical versions are treated as identical to one another. Examples: .. code-block:: python @dagster_type_loader(Permissive()) def load_dict(_context, value): return value """ from dagster.config.field import resolve_to_config_type config_type = resolve_to_config_type(config_schema) EXPECTED_POSITIONALS = ["context", "*"] def wrapper(func): fn_positionals, _ = split_function_parameters(func, EXPECTED_POSITIONALS) missing_positional = validate_decorated_fn_positionals(fn_positionals, EXPECTED_POSITIONALS) if missing_positional: raise DagsterInvalidDefinitionError( "@dagster_type_loader '{solid_name}' decorated function does not have required positional " "parameter '{missing_param}'. Solid functions should only have keyword arguments " "that match input names and a first positional parameter named 'context'.".format( solid_name=func.__name__, missing_param=missing_positional ) ) return _create_type_loader_for_decorator( config_type, func, required_resource_keys, loader_version, external_version_fn ) return wrapper def input_selector_schema(config_cls, required_resource_keys=None): """ Deprecated in favor of dagster_type_loader. A decorator for annotating a function that can take the selected properties from a ``config_value`` in to an instance of a custom type. Args: config_cls (Selector) """ rename_warning("dagster_type_loader", "input_selector_schema", "0.10.0") from dagster.config.field import resolve_to_config_type config_type = resolve_to_config_type(config_cls) check.param_invariant(config_type.kind == ConfigTypeKind.SELECTOR, "config_cls") def _wrap(func): def _selector(context, config_value): selector_key, selector_value = ensure_single_item(config_value) return func(context, selector_key, selector_value) return _create_type_loader_for_decorator(config_type, _selector, required_resource_keys) return _wrap class DagsterTypeMaterializerForDecorator(DagsterTypeMaterializer): def __init__(self, config_type, func, required_resource_keys): self._config_type = check.inst_param(config_type, "config_type", ConfigType) self._func = check.callable_param(func, "func") self._required_resource_keys = check.opt_set_param( required_resource_keys, "required_resource_keys", of_type=str ) @property def schema_type(self): return self._config_type def materialize_runtime_values(self, context, config_value, runtime_value): return ensure_gen(self._func(context, config_value, runtime_value)) def required_resource_keys(self): return frozenset(self._required_resource_keys) def _create_output_materializer_for_decorator(config_type, func, required_resource_keys): return DagsterTypeMaterializerForDecorator(config_type, func, required_resource_keys) def output_materialization_config(config_schema=None, required_resource_keys=None, config_cls=None): """Deprecated in favor of dagster_type_materializer""" rename_warning("dagster_type_materializer", "output_materialization_config", "0.10.0") config_schema = canonicalize_backcompat_args( config_schema, "config_schema", config_cls, "config_cls", "0.10.0", ) return dagster_type_materializer(config_schema, required_resource_keys) def dagster_type_materializer(config_schema, required_resource_keys=None): """Create an output materialization hydration config that configurably materializes a runtime value. The decorated function should take the execution context, the parsed config value, and the runtime value and the parsed config data, should materialize the runtime value, and should return an appropriate :py:class:`AssetMaterialization`. Args: config_schema (Any): The type of the config data expected by the decorated function. Examples: .. code-block:: python # Takes a list of dicts such as might be read in using csv.DictReader, as well as a config value, and writes @dagster_type_materializer(str) def materialize_df(_context, path, value): with open(path, 'w') as fd: writer = csv.DictWriter(fd, fieldnames=value[0].keys()) writer.writeheader() writer.writerows(rowdicts=value) return AssetMaterialization.file(path) """ from dagster.config.field import resolve_to_config_type config_type = resolve_to_config_type(config_schema) return lambda func: _create_output_materializer_for_decorator( config_type, func, required_resource_keys ) def output_selector_schema(config_cls, required_resource_keys=None): """ Deprecated in favor of dagster_type_materializer. A decorator for a annotating a function that can take the selected properties of a ``config_value`` and an instance of a custom type and materialize it. Args: config_cls (Selector): """ rename_warning("dagster_type_materializer", "output_selector_schema", "0.10.0") from dagster.config.field import resolve_to_config_type config_type = resolve_to_config_type(config_cls) check.param_invariant(config_type.kind == ConfigTypeKind.SELECTOR, "config_cls") def _wrap(func): def _selector(context, config_value, runtime_value): selector_key, selector_value = ensure_single_item(config_value) return func(context, selector_key, selector_value, runtime_value) return _create_output_materializer_for_decorator( config_type, _selector, required_resource_keys ) return _wrap
37.138408
107
0.724122
43c46b118676e930174fb52942f6f952fd173a19
33,223
py
Python
aikit/cross_validation.py
gfournier/aikit
23257f365a4f387cbb86f0ed3994b696a81b57c6
[ "BSD-2-Clause" ]
23
2018-09-14T07:29:21.000Z
2021-07-08T19:48:23.000Z
aikit/cross_validation.py
gfournier/aikit
23257f365a4f387cbb86f0ed3994b696a81b57c6
[ "BSD-2-Clause" ]
40
2019-05-28T09:17:25.000Z
2022-01-31T15:53:36.000Z
aikit/cross_validation.py
gfournier/aikit
23257f365a4f387cbb86f0ed3994b696a81b57c6
[ "BSD-2-Clause" ]
11
2018-11-21T09:38:45.000Z
2020-09-25T10:24:54.000Z
# -*- coding: utf-8 -*- """ Created on Thu Aug 23 09:40:33 2018 @author: Lionel Massoulard """ import numpy as np import pandas as pd import scipy.sparse as sp from collections import OrderedDict from time import time import numbers from joblib import Parallel, delayed import sklearn.model_selection from sklearn.model_selection._split import BaseCrossValidator, _num_samples, train_test_split try: from sklearn.utils.validation import _check_fit_params # In sklearn 0.22 except ImportError: _check_fit_params = None if _check_fit_params is None: from sklearn.model_selection._validation import _index_param_value def _check_fit_params(X, fit_params, indices=None): return {k: _index_param_value(X, v, indices) for k,v in fit_params.items()} import sklearn.base from aikit.tools.helper_functions import function_has_named_argument def is_clusterer(estimator): """Returns True if the given estimator is (probably) a clusterer. Parameters ---------- estimator : object Estimator object to test. Returns ------- out : bool True if estimator is a regressor and False otherwise. """ return getattr(estimator, "_estimator_type", None) == "clusterer" def create_cv(cv=3, y=None, classifier=False, shuffle=False, random_state=None): """Input checker utility for building a cross-validator, difference from sklearn.model_selection.check_cv : * shuffle and random_state params Parameters ---------- cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, if classifier is True and ``y`` is either binary or multiclass, :class:`StratifiedKFold` is used. In all other cases, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. y : array-like, optional The target variable for supervised learning problems. classifier : boolean, optional, default False Whether the task is a classification task, in which case stratified KFold will be used. shuffle : boolean, optional, default False if True will use shuffle = True from StratiedKFold random_state : int or None, default = None will be passed to the StratifiedKFold object Returns ------- checked_cv : a cross-validator instance. The return value is a cross-validator which generates the train/test splits via the ``split`` method. """ if cv is None: cv = 3 if isinstance(cv, sklearn.model_selection._split.numbers.Integral): if ( classifier and (y is not None) and (sklearn.model_selection._split.type_of_target(y) in ("binary", "multiclass")) ): return sklearn.model_selection.StratifiedKFold(cv, shuffle=shuffle, random_state=random_state) else: return sklearn.model_selection.KFold(cv, shuffle=shuffle, random_state=random_state) if not hasattr(cv, "split") or isinstance(cv, str): if not isinstance(cv, sklearn.model_selection._split.Iterable) or isinstance(cv, str): raise ValueError( "Expected cv as an integer, cross-validation " "object (from sklearn.model_selection) " "or an iterable. Got %s." % cv ) return sklearn.model_selection._split._CVIterableWrapper(cv) return cv # New style cv objects are passed without any modification def create_scoring(estimator, scoring): """ create the scoring object, see sklearn check_scoring function """ if not isinstance(scoring, (tuple, list)) and not isinstance(scoring, dict): scoring = [scoring] scorers = OrderedDict() ### Handle scoring ### if isinstance(scoring, dict): # I assume dictionnary with key = name of scoring and value = scoring for k, s in scoring.items(): scorers[k] = sklearn.model_selection._validation.check_scoring(estimator, scoring=s) else: def find_name(s): if s is None: return "default_score" return str(s) for i, s in enumerate(scoring): k = find_name(s) if k in scorers: s = s + ("_%d" % i) if k in scorers: raise ValueError("duplicate scorer %s" % s) scorers[k] = sklearn.model_selection._validation.check_scoring(estimator, scoring=s) return scorers def _score_with_group(estimator, X_test, y_test, groups_test, scorer, is_multimetric=False): """Compute the score(s) of an estimator on a given test set. Will return a single float if is_multimetric is False and a dict of floats, if is_multimetric is True """ # Copy of sklearn '_score' but where the 'groups' can be passed to the scorer if isinstance(y_test, pd.DataFrame): y_test = y_test.values if is_multimetric: return _multimetric_score_with_group(estimator, X_test, y_test, groups_test, scorer) else: has_group = groups_test is not None and function_has_named_argument(scorer, "groups") # True if : # * group is passed to the function # * the scorer accepts a 'group' argument if y_test is None: if has_group: score = scorer(estimator, X_test, groups_test) else: score = scorer(estimator, X_test) else: if has_group: score = scorer(estimator, X_test, y_test, groups_test) else: score = scorer(estimator, X_test, y_test) if hasattr(score, "item"): try: # e.g. unwrap memmapped scalars score = score.item() except ValueError: # non-scalar? pass if not isinstance(score, numbers.Number): raise ValueError( "scoring must return a number, got %s (%s) " "instead. (scorer=%r)" % (str(score), type(score), scorer) ) return score def _multimetric_score_with_group(estimator, X_test, y_test, groups_test, scorers): """Return a dict of score for multimetric scoring""" # Copy of sklearn '_multimetric_score' but where the 'groups' can be passed to the scorer scores = {} for name, scorer in scorers.items(): has_group = groups_test is not None and function_has_named_argument(scorer, "groups") if y_test is None: if has_group: score = scorer(estimator, X_test, groups_test) else: score = scorer(estimator, X_test) else: if has_group: score = scorer(estimator, X_test, y_test, groups_test) else: score = scorer(estimator, X_test, y_test) if hasattr(score, "item"): try: # e.g. unwrap memmapped scalars score = score.item() except ValueError: # non-scalar? pass if isinstance(score, dict): for k, v in score.items(): scores[str(name) + "_" + str(k)] = v elif isinstance(score, pd.Series): for k, v in score.to_dict().items(): scores[str(name) + "_" + str(k)] = v else: scores[name] = score if not isinstance(score, numbers.Number): raise ValueError( "scoring must return a number, got %s (%s) " "instead. (scorer=%s)" % (str(score), type(score), name) ) return scores def _compute_one_fold( fold_index, train, test, multi_output_proba, all_classes, classes, estimator, X, y, groups, scorers, verbose, fit_params, return_predict, method, no_scoring, ): if verbose: print("cv %d started\n" % fold_index) ### Clone the estimator ### cloned_estimator = sklearn.base.clone(estimator) ### split train test ### X_train, y_train = sklearn.model_selection._validation._safe_split(estimator, X, y, train) if groups is not None: groups_train, _ = sklearn.model_selection._validation._safe_split(estimator, groups, None, train) else: groups_train = None X_test, y_test = sklearn.model_selection._validation._safe_split(estimator, X, y, test, train) if groups is not None: groups_test, _ = sklearn.model_selection._validation._safe_split(estimator, groups, None, test, train) else: groups_test = None if hasattr(X_test, "index"): index_test = X_test.index else: index_test = test fit_params = fit_params if fit_params is not None else {} fit_params = _check_fit_params(X, fit_params, train) # Try to subset the fit_params if that is possible, Ex : 'sample_weight=np.array(....)' should be subsetted but not 'epochs=10' start_fit = time() ### Fit estimator ### if y_train is None: if groups_train is not None and function_has_named_argument(cloned_estimator.fit, "groups"): cloned_estimator.fit(X_train, groups=groups_train, **fit_params) else: cloned_estimator.fit(X_train, **fit_params) else: if groups_train is not None and function_has_named_argument(cloned_estimator.fit, "groups"): cloned_estimator.fit(X_train, y_train, groups=groups_train, **fit_params) else: cloned_estimator.fit(X_train, y_train, **fit_params) fit_time = time() - start_fit result_predict = None if return_predict: func = getattr(cloned_estimator, method) predictions = func(X_test) ## re-alignement with class ## if method in ("predict_proba", "predict_log_proba", "decision_function"): def _align_predict(predictions, classes, cloned_estimator_classes_): float_min = np.finfo(predictions.dtype).min default_values = {"decision_function": float_min, "predict_log_proba": float_min, "predict_proba": 0} predictions_for_all_classes = pd.DataFrame(default_values[method], index=index_test, columns=classes) for j, c in enumerate(cloned_estimator_classes_): predictions_for_all_classes[c] = predictions[:, j] return predictions_for_all_classes if multi_output_proba: predictions = [ _align_predict(p, c, cloned_c) for p, c, cloned_c in zip(predictions, all_classes, cloned_estimator.classes_) ] else: predictions = _align_predict(predictions, classes, cloned_estimator.classes_) result_predict = (predictions, test) result = OrderedDict() ### Score test ### test_scores_dictionary = None if not no_scoring: start_score = time() test_scores_dictionary = _score_with_group( cloned_estimator, X_test, y_test, groups_test, scorer=scorers, is_multimetric=True ) # Here : scorers is a dictionary of scorers, hence is_multimetric = True score_time = time() - start_score ### Score train ### train_scores_dictionary = _score_with_group( cloned_estimator, X_train, y_train, groups_train, scorer=scorers, is_multimetric=True ) ### Put everything into a dictionnary ### for k, v in test_scores_dictionary.items(): result["test_%s" % k] = v for k, v in train_scores_dictionary.items(): result["train_%s" % k] = v result["fit_time"] = fit_time if not no_scoring: result["score_time"] = score_time result["n_test_samples"] = sklearn.model_selection._validation._num_samples(X_test) result["fold_nb"] = fold_index return result, result_predict, test_scores_dictionary def cross_validation( estimator, X, y, groups=None, scoring=None, cv=None, verbose=1, fit_params=None, return_predict=False, method=None, no_scoring=False, stopping_round=None, stopping_threshold=None, approximate_cv=False, n_jobs=1, parallel_kwargs=None, **kwargs ): """ Does a cross-validation on a model, Modification of sklearn cross-validation, The main differences from sklearn function are * allow more than one scoring * allow return scores and probas or predictions * return score on test and train set for each fold * bypass complete cv if score are too low * call the 'approx_cross_validation' method in the estimator if it exists (allow specific approximate cv for each estimator) Parameters ---------- estimator : estimator object implementing 'fit' The object to use to fit the data. X : array-like The data to fit. Can be, for example a list, or an array at least 2d. y : array-like, optional, default: None The target variable to try to predict in the case of supervised learning. groups : array-like, optional, default: None The groups to use for the CVs scoring : string or list of string for each scores Can also be a dictionnary of scorers A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, if ``y`` is binary or multiclass, :class:`StratifiedKFold` used. If the estimator is a classifier or if ``y`` is neither binary nor multiclass, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. fit_params : dict or None Parameters to pass to the fit method of the estimator. verbose : integer, optional The verbosity level. return_predict: boolean, default:False if True will also return the out-of-sample predictions method : None or string the name of the method to use to return predict ('transform','predict','predict_proba',...). if None will guess based on type of estimator no_scoring : boolean, default: False if True won't score predictions, cv_result will None in that case stopping_round : int or None if not None the number of the round on which to start looking if the cv must be stopped (ex: stopping_round = 0, stops after first round) stopping_threshold : number of None if not None the value bellow which we'll stop the CV approximate_cv : boolean, default:False if True will try to do an approximate cv by call the method on the estimator (if it exist) n_jobs : int or None, optional (default=None) The number of CPUs to use to do the computation. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details. parallel_kwargs : kwargs to pass to drive parallelization **kwargs : keywords arguments to be passed to method call Returns ------- cv_res : pd.DataFrame (None if 'no_scoring = True') outsample prediction (only if return_predict is True) """ if not return_predict and no_scoring: raise ValueError("Nothing will be returned") ############################ ### Argument preparation ### ############################ ### make everything indexable ### X, y = sklearn.model_selection._validation.indexable(X, y) if groups is not None: groups, _ = sklearn.model_selection._validation.indexable(groups, None) if isinstance(scoring, str): scoring = [scoring] ### Scoring ### scorers = None if not no_scoring: scorers = create_scoring(estimator, scoring) # Here : scorers is a dictionary of scorers objects estimator_is_classifier = sklearn.base.is_classifier(estimator) estimator_is_regressor = sklearn.base.is_regressor(estimator) ### Checks ### if not estimator_is_classifier and not estimator_is_regressor: # This is a transformer if not return_predict: raise ValueError("This is a transformer it should only be called with 'return_predict = True'") if not no_scoring: raise ValueError("This is a transformer it should only be called with 'no_scoring = True'") ### Handle cv ### cv = create_cv(cv, y, classifier=estimator_is_classifier, shuffle=True, random_state=123) ### Handle fit params ### if fit_params is None: fit_params = {} ##################################### ### Method to use for predictions ### ##################################### if method is None: if estimator_is_classifier: method = "predict_proba" elif estimator_is_regressor: method = "predict" else: method = "transform" if hasattr(estimator, "approx_cross_validation") and approximate_cv: if verbose: print("use approx_cross_validation of estimator (%s)" % str(type(estimator))) ########################################################## ### estimator can do its own 'approx_cross_validation' ### ########################################################## result = estimator.approx_cross_validation( X=X, y=y, groups=groups, cv=cv, scoring=scoring, verbose=verbose, fit_params=fit_params, return_predict=return_predict, method=method, no_scoring=no_scoring, stopping_round=stopping_round, stopping_threshold=stopping_threshold, **kwargs ) return result ########################################### ### Check that cv_transform is possible ### ########################################### if method == "transform" and return_predict: if hasattr(estimator, "can_cv_transform"): if not estimator.can_cv_transform(): raise ValueError( "You can't use both method = 'transform' and return_predict for this estimator : %s" % (str(type(estimator))) ) ########################################################################## ### estimator doesn't have a special 'approx_cross_val_predict' method ### ########################################################################## prediction_blocks = [] all_results = [] multi_output_proba = False all_classes = None classes = None if method in ("predict_proba", "predict_log_proba", "decision_function"): if getattr(y, "ndim", 1) == 1 or y.shape[1] == 1: classes = np.sort(np.unique(y)) # ca vda pas marcher en multi output multi_output_proba = False else: if y.ndim > 2: raise TypeError("This function doesn't work for y that has %d dimension" % y.ndim) multi_output_proba = True all_classes = [] for d in range(y.shape[1]): if hasattr(y, "iloc"): classes = np.sort(np.unique(y.iloc[:, d].values)) else: classes = np.sort(np.unique(y[:, d])) all_classes.append(classes) stop_cv = False max_main_scorer = None ################# ### Main Loop ### ################# if no_scoring: try_early_stopping = False else: try_early_stopping = stopping_round is not None and stopping_threshold is not None if not try_early_stopping: if parallel_kwargs is None: parallel_kwargs = {} if "pre_dispatch" not in parallel_kwargs: parallel_kwargs["pre_dispatch"] = "2*n_jobs" if "verbose" not in parallel_kwargs: parallel_kwargs["verbose"] = True parallel = Parallel(n_jobs=n_jobs, **parallel_kwargs) temp_results = parallel( delayed(_compute_one_fold)( fold_index=fold_index, train=train, test=test, multi_output_proba=multi_output_proba, all_classes=all_classes, classes=classes, estimator=estimator, X=X, y=y, groups=groups, scorers=scorers, verbose=verbose, fit_params=fit_params, return_predict=return_predict, method=method, no_scoring=no_scoring, ) for fold_index, (train, test) in enumerate(cv.split(X, y, groups=groups)) ) for result, result_prediction, test_scores_dictionary in temp_results: all_results.append(result) prediction_blocks.append(result_prediction) # No early stopping in that case... else: if n_jobs > 1 and verbose: print("I won't use Parallel since you ask for early stopping") for fold_index, (train, test) in enumerate(cv.split(X, y, groups=groups)): if verbose: print("cv %d started\n" % fold_index) result, result_prediction, test_scores_dictionary = _compute_one_fold( fold_index=fold_index, train=train, test=test, multi_output_proba=multi_output_proba, all_classes=all_classes, classes=classes, estimator=estimator, X=X, y=y, groups=groups, scorers=scorers, verbose=verbose, fit_params=fit_params, return_predict=return_predict, method=method, no_scoring=no_scoring, ) all_results.append(result) prediction_blocks.append(result_prediction) ### Look if I need to stop ### if not no_scoring: stop_cv = False if stopping_round is not None and fold_index >= stopping_round and stopping_threshold is not None: if isinstance(scoring, list) and scoring[0] in test_scores_dictionary: main_score_name = scoring[0] else: main_score_name = sorted(test_scores_dictionary.keys())[0] if max_main_scorer is None: max_main_scorer = test_scores_dictionary[main_score_name] else: max_main_scorer = max(max_main_scorer, test_scores_dictionary[main_score_name]) if max_main_scorer <= stopping_threshold: # I stop if ALL the scorers are bad stop_cv = True if stop_cv: break ### Merge everything together ### # Concatenate the predictions if return_predict: if stop_cv: predictions = None if verbose: print("I can't return predictions since I stopped the CV") else: predictions = [pred_block_i for pred_block_i, _ in prediction_blocks] test_indices = np.concatenate([indices_i for _, indices_i in prediction_blocks]) if not sklearn.model_selection._validation._check_is_permutation( test_indices, sklearn.model_selection._validation._num_samples(X) ): if verbose: print("I can't return predictions as this CV isn't a partition only works for partitions") predictions = None else: inv_test_indices = np.empty(len(test_indices), dtype=int) inv_test_indices[test_indices] = np.arange(len(test_indices)) def _concat(predictions, inv_test_indices): # Check for sparse predictions if sp.issparse(predictions[0]): predictions = sp.vstack(predictions, format=predictions[0].format) predictions = predictions[inv_test_indices] elif hasattr(predictions[0], "iloc"): predictions = pd.concat(predictions, axis=0) predictions = predictions.iloc[inv_test_indices, :] else: predictions = np.concatenate(predictions) predictions = predictions[inv_test_indices] return predictions if multi_output_proba: predictions = [_concat([p[d] for p in predictions], inv_test_indices) for d in range(y.shape[1])] else: predictions = _concat(predictions, inv_test_indices) ### Result ### if not no_scoring: cv_res = pd.DataFrame(all_results) else: cv_res = None if return_predict: return cv_res, predictions else: return cv_res ######################################## #### score prediction for clustering ### ######################################## def score_from_params_clustering( estimator, X, scoring=None, verbose=1, fit_params=None, return_predict=False, method=None, no_scoring=False, **kwargs ): """ scores a clustering model Parameters ---------- estimator : estimator object implementing 'fit' The clusterer object to use to fit the data. X : array-like The data to fit. Can be, for example a list, or an array at least 2d. scoring : string or list of string for each scores Can also be a dictionnary of scorers A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. fit_params : dict or None Parameters to pass to the fit method of the estimator. verbose : integer, optional The verbosity level. return_predict: boolean, default:False if True will return the predictions method : None or string the name of the method to use to return predict ('transform','predict'). if None will guess based on type of estimator no_scoring : boolean, default: False if True won't score predictions, result will None in that case **kwargs : keywords arguments to be passed to method call Returns ------- cv_res : pd.DataFrame (None if 'no_scoring = True') prediction (only if return_predict is True) """ if not return_predict and no_scoring: raise ValueError("Nothing will be returned") estimator_is_clusterer = is_clusterer(estimator) ### Checks ### if not estimator_is_clusterer: # This is a transformer if not return_predict: raise ValueError("This is a transformer it should only be called with 'return_predict = True'") if not no_scoring: raise ValueError("This is a transformer it should only be called with 'no_scoring = True'") ############################ ### Argument preparation ### ############################ if isinstance(scoring, str): scoring = [scoring] ### Scoring ### if not no_scoring: scorers = create_scoring(estimator, scoring) # Here : scorers is a dictionary of scorers objects ### Handle fit params ### if fit_params is None: fit_params = {} ##################################### ### Method to use for predictions ### ##################################### ### TODO: method depends on the scoring function if method is None: method = "fit_predict" # method = "transform" ### Clone the estimator ### cloned_estimator = sklearn.base.clone(estimator) start_fit = time() ### Fit estimator ### pred = cloned_estimator.fit_predict(X, **fit_params) fit_time = time() - start_fit if return_predict: predictions = pred ### Score ### if not no_scoring: start_score = time() scores_dictionnary = _score_with_group(cloned_estimator, X, None, None, scorer=scorers, is_multimetric=True) # Remark : the predict is actually done twice... # Here : scorers is a dictionary of scorers, hence is_multimetric = True score_time = time() - start_score ### Put everything into a dictionnary ### result = OrderedDict() if not no_scoring: for k, v in scores_dictionnary.items(): result["test_%s" % k] = v result["fit_time"] = fit_time if not no_scoring: result["score_time"] = score_time ### Result ### if not no_scoring: res = pd.DataFrame([result]) else: res = None if return_predict: return res, predictions else: return res # In[] class IndexTrainTestCv(BaseCrossValidator): """ cv like object but with only 1 fold. Use that object if you want to specify exactly which observations are used from training and testing. This object behaves likes any cross-validation object so you can use it in cross-validation functions. Parameters ---------- test_index : array like the index of the testing set """ def __init__(self, test_index): self.test_index = test_index def get_n_splits(self, X, y=None, groups=None): return 1 def _iter_test_indices(self, X, y=None, groups=None): yield self.test_index class RandomTrainTestCv(BaseCrossValidator): """ cv like object but with only 1 fold Use that object if you want to do a random train/test split. This object behaves likes any cross-validation object so you can use it in cross-validation functions. Parameters ---------- test_size : float, default = 0.1 the percentage of observations to keep in the test set random_state : int, default = 123 the random state to use to make the random split """ def __init__(self, test_size=0.1, random_state=123): self.test_size = test_size self.random_state = random_state def get_n_splits(self, X, y=None, groups=None): return 1 def _iter_test_indices(self, X, y=None, groups=None): n = _num_samples(X) index = np.arange(n) train_index, test_index = train_test_split(index, test_size=self.test_size, random_state=self.random_state) yield test_index class SpecialGroupCV(BaseCrossValidator): """ crossvalidator object that compute its folds based on the groups Parameters ---------- base_cv : cv object the cv to use ON the groups groups_columns : None or columns if groups is a DataFrame or array, the columns corresponding to the split """ def __init__(self, base_cv, groups_column=None): self.base_cv = base_cv self.groups_column = groups_column def get_n_splits(self, X=None, y=None, groups=None): if groups is None: raise ValueError("The 'groups' parameter should not be None.") ugroups = np.sort(np.unique(self._groups_to_use(groups))) return self.base_cv.get_n_splits(ugroups) def _groups_to_use(self, groups): if self.groups_column is None: if hasattr(groups, "values"): groups = groups.values shape = getattr(groups, "shape", None) if shape is not None and len(shape) > 1: groups = groups[:, 0] # retrieve first column else: groups = groups[self.groups_column] return groups def _iter_test_masks(self, X, y, groups=None): if groups is None: raise ValueError("The 'groups' parameter should not be None.") groups = self._groups_to_use(groups) ugroups = np.sort(np.unique(groups)) for index_train, index_test in self.base_cv.split(ugroups): groups_test = np.sort(np.unique(ugroups[index_test])) # groups to keep in test boolean_test_index = pd.Series(groups).isin(groups_test).values yield boolean_test_index
33.256256
146
0.604461
87cf0393cba6c3c7f1662ba9624bdbd45fe92e0f
2,931
py
Python
tests/test_table_creator.py
schafrn/s3parq
f854819540e069f53fe42938a9bb6b8f800907b5
[ "MIT" ]
null
null
null
tests/test_table_creator.py
schafrn/s3parq
f854819540e069f53fe42938a9bb6b8f800907b5
[ "MIT" ]
null
null
null
tests/test_table_creator.py
schafrn/s3parq
f854819540e069f53fe42938a9bb6b8f800907b5
[ "MIT" ]
null
null
null
import pytest from mock import patch import s3parq.publish_redshift as rs from s3parq.session_helper import SessionHelper class MockScopeObj(): def execute(self, schema_string: str): pass def scope_execute_mock(mock_session_helper): pass class Test(): # Test that the function is called with the table name @patch('s3parq.publish_redshift.SessionHelper') @patch('tests.test_table_creator.scope_execute_mock') def test_create_table(self, mock_session_helper, mock_execute): mock_execute.return_value = MockScopeObj() mock_session_helper.db_session_scope.return_value.__enter__ = scope_execute_mock table_name = "my_string" schema_name = "my_schema" path = "s3://lol" columns = {'grouped_col': 'object', 'text_col': 'object', 'int_col': 'int64', 'float_col': 'float64'} partitions = {'fish': 'object'} expected_sql = f'CREATE EXTERNAL TABLE IF NOT EXISTS {schema_name}.{table_name} {columns} \ PARTITIONED BY {partitions} STORED AS PARQUET \ LOCATION "{path}";' with mock_session_helper.db_session_scope() as mock_scope: rs.create_table(table_name, schema_name, columns, partitions, path, mock_session_helper) assert mock_scope.execute.called_once_with(expected_sql) # Test that the function is called with the table name without partitions @patch('s3parq.publish_redshift.SessionHelper') @patch('tests.test_table_creator.scope_execute_mock') def test_create_table_without_partitions(self, mock_session_helper, mock_execute): mock_execute.return_value = MockScopeObj() mock_session_helper.db_session_scope.return_value.__enter__ = scope_execute_mock table_name = "my_string" schema_name = "my_schema" path = "s3://lol" columns = {'grouped_col': 'object', 'text_col': 'object', 'int_col': 'int64', 'float_col': 'float64'} partitions = {} expected_sql = f'CREATE EXTERNAL TABLE IF NOT EXISTS {schema_name}.{table_name} {columns} \ STORED AS PARQUET \ LOCATION "{path}";' with mock_session_helper.db_session_scope() as mock_scope: rs.create_table(table_name, schema_name, columns, partitions, path, mock_session_helper) assert mock_scope.execute.called_once_with(expected_sql) #Test to check that the passed in datatype maps correctly def test_datatype_mapper(self): columns = {'grouped_col': 'object', 'text_col': 'object', 'int_col': 'int64', 'float_col': 'float64'} expected = {'grouped_col': 'VARCHAR', 'text_col': 'VARCHAR', 'int_col': 'BIGINT', 'float_col': 'FLOAT'} sql = "" for key, val in expected.items(): sql += f'{key} {val}, ' sql = "(" + sql[:-2] + ")" actual = rs._datatype_mapper(columns) assert actual == sql
42.478261
111
0.669737
6bd396487493814fb8cb42657951c90f99beb143
1,479
py
Python
stats/frames.py
fc8240/Python-Baseball
68c94963006838c22770b3ce69b18a98af68acab
[ "MIT" ]
null
null
null
stats/frames.py
fc8240/Python-Baseball
68c94963006838c22770b3ce69b18a98af68acab
[ "MIT" ]
null
null
null
stats/frames.py
fc8240/Python-Baseball
68c94963006838c22770b3ce69b18a98af68acab
[ "MIT" ]
null
null
null
import pandas as pd import matplotlib.pyplot as plt try: from data import games plays_frame = games.query("type == 'play' & event != 'NP'") plays_frame.columns = ['type', 'inning', 'team', 'player', 'count', 'pitches', 'event', 'game_id', 'year'] info = games.query("type == 'info' & (multi2 == 'visteam' | multi2 == 'hometeam')") info = info.loc[:, ['year', 'game_id', 'multi2', 'multi3']] info.columns = ['year', 'game_id', 'team', 'defense'] info.loc[info['team'] == 'visteam', 'team'] = '1' info.loc[info['team'] == 'hometeam', 'team'] = '0' info = info.sort_values(['year', 'game_id', 'team']).reset_index(drop=True) events = plays_frame.query("~(event.str.contains('^\d+') & ~event.str.contains('E'))") events = events.query("~event.str.contains('^(?:P|C|F|I|O)')") events = events.drop(['type', 'player', 'count', 'pitches'], axis=1) events = events.sort_values(['team', 'inning']).reset_index() replacements = { r'^(?:S|D|T).*': 'H', r'^HR.*': 'HR', r'^W.*': 'BB', r'.*K.*': 'SO', r'^HP.*': 'HBP', r'.*E.*\..*B-.*': 'RO', r'.*E.*': 'E', } event_type = events['event'].replace(replacements, regex=True) events = events.assign(event_type=event_type) events = events.groupby(['year', 'game_id', 'team', 'event_type']).size().reset_index(name='count') except ImportError: print('It looks as if `data.py` is incomplete.')
43.5
111
0.555781
65502fd927e25057221882134dea60be9b1a9b95
1,320
py
Python
gcloud/tasktmpl3/migrations/0005_tasktemplate_tmp_field.py
gangh/bk-sops
29f4b4915be42650c2eeee637e0cf798e4066f09
[ "Apache-2.0" ]
1
2019-12-23T07:23:35.000Z
2019-12-23T07:23:35.000Z
gcloud/tasktmpl3/migrations/0005_tasktemplate_tmp_field.py
bk-sops/bk-sops
9f5950b13473bf7b5032528b20016b7a571bb3cd
[ "Apache-2.0" ]
9
2020-02-12T03:15:49.000Z
2021-06-10T22:04:51.000Z
gcloud/tasktmpl3/migrations/0005_tasktemplate_tmp_field.py
bk-sops/bk-sops
9f5950b13473bf7b5032528b20016b7a571bb3cd
[ "Apache-2.0" ]
1
2022-01-17T11:32:05.000Z
2022-01-17T11:32:05.000Z
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making 蓝鲸智云PaaS平台社区版 (BlueKing PaaS Community Edition) available. Copyright (C) 2017-2019 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('pipeline', '0013_old_template_process'), ('tasktmpl3', '0004_auto_20180822_1206'), ] operations = [ migrations.AddField( model_name='tasktemplate', name='tmp_field', field=models.ForeignKey(related_name='tmp_field_id', on_delete=django.db.models.deletion.SET_NULL, blank=True, to='pipeline.PipelineTemplate', null=True), ), ]
38.823529
166
0.738636
2743bc2c43954cd790a7312943facee63d01fc87
292
py
Python
config.py
Wilscos/recommender-systems-bibliometric-analysis
bbba45340bf4d494278784ca1376e443f47d5012
[ "MIT" ]
null
null
null
config.py
Wilscos/recommender-systems-bibliometric-analysis
bbba45340bf4d494278784ca1376e443f47d5012
[ "MIT" ]
null
null
null
config.py
Wilscos/recommender-systems-bibliometric-analysis
bbba45340bf4d494278784ca1376e443f47d5012
[ "MIT" ]
null
null
null
import os import pathlib MASTER = pathlib.Path().absolute() DATA_PATH = os.path.join(MASTER, 'data') PLOT_PATH = os.path.join(MASTER, 'plots') PDF_PATH = os.path.join(DATA_PATH, 'articles_pdf') TXT_PATH = os.path.join(DATA_PATH, 'texts') POS_PATH = os.path.join(DATA_PATH, 'pos_tags.json')
26.545455
51
0.736301
6489923fe5c2757dd3b558298b99d07c6fdcdfcf
5,093
py
Python
cache_utils/tests.py
listingmirror/django-cache-utils
086a8a60625023aa744b3f0de90bd8d9198681be
[ "BSD-3-Clause" ]
25
2015-04-26T13:44:03.000Z
2022-02-14T16:08:35.000Z
cache_utils/tests.py
listingmirror/django-cache-utils
086a8a60625023aa744b3f0de90bd8d9198681be
[ "BSD-3-Clause" ]
20
2015-06-04T23:45:06.000Z
2022-03-29T23:57:41.000Z
cache_utils/tests.py
listingmirror/django-cache-utils
086a8a60625023aa744b3f0de90bd8d9198681be
[ "BSD-3-Clause" ]
20
2015-10-30T02:27:38.000Z
2022-02-24T01:40:44.000Z
# -*- coding: utf-8 -*- from unittest import TestCase from django.core.cache import cache from cache_utils.decorators import cached from cache_utils.utils import sanitize_memcached_key, _func_type, _func_info def foo(a, b): pass class Foo(object): def foo(self, a, b): pass @classmethod def bar(cls, x): pass class Store(object): """ Class for encoding error test """ def __unicode__(self): return u'Вася' def __repr__(self): return u'Вася'.encode('utf8') class FuncTypeTest(TestCase): def assertFuncType(self, func, tp): self.assertEqual(_func_type(func), tp) def test_func(self): self.assertFuncType(foo, 'function') def test_method(self): self.assertFuncType(Foo.foo, 'method') def test_classmethod(self): self.assertFuncType(Foo.bar, 'classmethod') class FuncInfoTest(TestCase): def assertFuncInfo(self, func, args_in, name, args_out): info = _func_info(func, args_in) self.assertEqual(info[0], name) self.assertEqual(info[1], args_out) def test_func(self): self.assertFuncInfo(foo, [1, 2], 'cache_utils.tests.foo:11', [1, 2]) def test_method(self): foo_obj = Foo() self.assertFuncInfo(Foo.foo, [foo_obj, 1, 2], 'cache_utils.tests.Foo.foo:17', [1, 2]) def test_classmethod(self): self.assertFuncInfo(Foo.bar, [Foo, 1], 'cache_utils.tests.Foo.bar:20', [1]) class SanitizeTest(TestCase): def test_sanitize_keys(self): key = u"12345678901234567890123456789012345678901234567890" self.assertTrue(len(key) >= 40) key = sanitize_memcached_key(key, 40) self.assertTrue(len(key) <= 40) class ClearMemcachedTest(TestCase): def tearDown(self): cache._cache.flush_all() def setUp(self): cache._cache.flush_all() class InvalidationTest(ClearMemcachedTest): def test_group_invalidation(self): cache.set('vasia', 'foo', 60, group='names') cache.set('petya', 'bar', 60, group='names') cache.set('red', 'good', 60, group='colors') self.assertEqual(cache.get('vasia', group='names'), 'foo') self.assertEqual(cache.get('petya', group='names'), 'bar') self.assertEqual(cache.get('red', group='colors'), 'good') cache.invalidate_group('names') self.assertEqual(cache.get('petya', group='names'), None) self.assertEqual(cache.get('vasia', group='names'), None) self.assertEqual(cache.get('red', group='colors'), 'good') cache.set('vasia', 'foo', 60, group='names') self.assertEqual(cache.get('vasia', group='names'), 'foo') def test_func_invalidation(self): self.call_count = 0 @cached(60) def my_func(a, b): self.call_count += 1 return self.call_count self.assertEqual(my_func(1, 2), 1) self.assertEqual(my_func(1, 2), 1) self.assertEqual(my_func(3, 2), 2) self.assertEqual(my_func(3, 2), 2) my_func.invalidate(3, 2) self.assertEqual(my_func(1, 2), 1) self.assertEqual(my_func(3, 2), 3) self.assertEqual(my_func(3, 2), 3) def test_method_invalidation(self): self.call_count = 0 this = self class Foo(object): @cached(60) def bar(self, x): this.call_count += 1 return this.call_count foo = Foo() self.assertEqual(foo.bar(1), 1) self.assertEqual(foo.bar(1), 1) Foo.bar.invalidate(1) self.assertEqual(foo.bar(1), 2) def test_invalidate_nonexisting(self): @cached(60) def foo(x): return 1 foo.invalidate(5) # this shouldn't raise exception class DecoratorTest(ClearMemcachedTest): def test_decorator(self): self._x = 0 @cached(60, group='test-group') def my_func(params=""): self._x = self._x + 1 return u"%d%s" % (self._x, params) self.assertEqual(my_func(), "1") self.assertEqual(my_func(), "1") self.assertEqual(my_func("x"), u"2x") self.assertEqual(my_func("x"), u"2x") self.assertEqual(my_func(u"Василий"), u"3Василий") self.assertEqual(my_func(u"Василий"), u"3Василий") self.assertEqual(my_func(u"й"*240), u"4"+u"й"*240) self.assertEqual(my_func(u"й"*240), u"4"+u"й"*240) self.assertEqual(my_func(u"Ы"*500), u"5"+u"Ы"*500) self.assertEqual(my_func(u"Ы"*500), u"5"+u"Ы"*500) def test_key_override(self): """ Test the cache key naming. """ @cached(60*5, key='foo') def foo(): return 'test' key = foo.get_cache_key() self.assertEqual(key, '[cached]foo()') # Now test with args and kwargs argo @cached(60*5, key='func_with_args') def bar(i, foo='bar'): return i * 5 key = bar.get_cache_key(2, foo='hello') self.assertEqual(key, "[cached]func_with_args((2,){'foo':'hello'})")
26.94709
93
0.597683
873eb6de4b696f1240de38efcf7c40168581d257
1,780
py
Python
menpo/shape/base.py
apapaion/menpo
9834f0437ca3cbe6a972c2a62f7c970ae950cf32
[ "BSD-3-Clause" ]
311
2015-01-01T17:16:18.000Z
2021-12-20T11:25:23.000Z
menpo/shape/base.py
apapaion/menpo
9834f0437ca3cbe6a972c2a62f7c970ae950cf32
[ "BSD-3-Clause" ]
298
2015-01-02T17:30:22.000Z
2022-01-02T22:12:17.000Z
menpo/shape/base.py
apapaion/menpo
9834f0437ca3cbe6a972c2a62f7c970ae950cf32
[ "BSD-3-Clause" ]
80
2015-02-02T14:17:36.000Z
2021-12-22T10:09:28.000Z
from menpo.base import Vectorizable from menpo.landmark import Landmarkable from menpo.transform.base import Transformable from menpo.visualize import LandmarkableViewable, Viewable class Shape(Vectorizable, Transformable, Landmarkable, LandmarkableViewable, Viewable): """ Abstract representation of shape. Shapes are :map:`Transformable`, :map:`Vectorizable`, :map:`Landmarkable`, :map:`LandmarkableViewable` and :map:`Viewable`. This base class handles transforming landmarks when the shape is transformed. Therefore, implementations of :map:`Shape` have to implement the abstract :meth:`_transform_self_inplace` method that handles transforming the :map:`Shape` itself. """ def _transform_inplace(self, transform): """ Transform the landmarks and the shape itself. Parameters ---------- transform : `function` A function to transform the spatial data with. Returns ------- self : `type(self)` A pointer to `self` (the result of :meth:`_transform_self_inplace`). """ if self.has_landmarks: self.landmarks._transform_inplace(transform) return self._transform_self_inplace(transform) def _transform_self_inplace(self, transform): """ Implement this method to transform the concrete implementation of a shape. This is then called by the Shape's :meth:`_transform_inplace` method, which will have updated the landmarks beforehand. Parameters ---------- transform : `function` A function to transform the spatial data with. Returns ------- self : `type(self)` A pointer to `self`. """ pass
34.230769
87
0.653933
21cdbfdd2f46ccb6d24b0dd201d61edff9807ad9
8,974
py
Python
openmdao/core/tests/test_system.py
fzahle/OpenMDAO
ce53b0a0862ac1162d5daad7b0ca34ae085ee47c
[ "Apache-2.0" ]
1
2016-05-10T17:01:17.000Z
2016-05-10T17:01:17.000Z
openmdao/core/tests/test_system.py
gsoxley/OpenMDAO
709401e535cf6933215abd942d4b4d49dbf61b2b
[ "Apache-2.0" ]
3
2016-05-10T16:55:46.000Z
2018-10-22T23:28:52.000Z
openmdao/core/tests/test_system.py
gsoxley/OpenMDAO
709401e535cf6933215abd942d4b4d49dbf61b2b
[ "Apache-2.0" ]
2
2018-04-05T15:53:54.000Z
2018-10-22T22:48:00.000Z
""" Unit tests for the system interface.""" import unittest from six import assertRaisesRegex import numpy as np from openmdao.api import Problem, Group, IndepVarComp, ExecComp from openmdao.utils.assert_utils import assert_rel_error, assert_warning class TestSystem(unittest.TestCase): def test_vector_context_managers(self): g1 = Group() g1.add_subsystem('Indep', IndepVarComp('a', 5.0), promotes=['a']) g2 = g1.add_subsystem('G2', Group(), promotes=['*']) g2.add_subsystem('C1', ExecComp('b=2*a'), promotes=['a', 'b']) model = Group() model.add_subsystem('G1', g1, promotes=['b']) model.add_subsystem('Sink', ExecComp('c=2*b'), promotes=['b']) p = Problem(model=model) p.set_solver_print(level=0) # Test pre-setup errors with self.assertRaises(Exception) as cm: inputs, outputs, residuals = model.get_nonlinear_vectors() self.assertEqual(str(cm.exception), "Cannot get vectors because setup has not yet been called.") with self.assertRaises(Exception) as cm: d_inputs, d_outputs, d_residuals = model.get_linear_vectors('vec') self.assertEqual(str(cm.exception), "Cannot get vectors because setup has not yet been called.") p.setup() p.run_model() # Test inputs with original values inputs, outputs, residuals = model.get_nonlinear_vectors() self.assertEqual(inputs['G1.G2.C1.a'], 5.) inputs, outputs, residuals = g1.get_nonlinear_vectors() self.assertEqual(inputs['G2.C1.a'], 5.) # Test inputs after setting a new value inputs, outputs, residuals = g2.get_nonlinear_vectors() inputs['C1.a'] = -1. inputs, outputs, residuals = model.get_nonlinear_vectors() self.assertEqual(inputs['G1.G2.C1.a'], -1.) inputs, outputs, residuals = g1.get_nonlinear_vectors() self.assertEqual(inputs['G2.C1.a'], -1.) # Test outputs with original values inputs, outputs, residuals = model.get_nonlinear_vectors() self.assertEqual(outputs['G1.G2.C1.b'], 10.) inputs, outputs, residuals = g2.get_nonlinear_vectors() # Test outputs after setting a new value inputs, outputs, residuals = model.get_nonlinear_vectors() outputs['G1.G2.C1.b'] = 123. self.assertEqual(outputs['G1.G2.C1.b'], 123.) inputs, outputs, residuals = g2.get_nonlinear_vectors() outputs['C1.b'] = 789. self.assertEqual(outputs['C1.b'], 789.) # Test residuals inputs, outputs, residuals = model.get_nonlinear_vectors() residuals['G1.G2.C1.b'] = 99.0 self.assertEqual(residuals['G1.G2.C1.b'], 99.0) # Test linear d_inputs, d_outputs, d_residuals = model.get_linear_vectors('linear') d_outputs['G1.G2.C1.b'] = 10. self.assertEqual(d_outputs['G1.G2.C1.b'], 10.) # Test linear with invalid vec_name with self.assertRaises(Exception) as cm: d_inputs, d_outputs, d_residuals = model.get_linear_vectors('bad_name') self.assertEqual(str(cm.exception), "There is no linear vector named %s" % 'bad_name') def test_set_checks_shape(self): indep = IndepVarComp() indep.add_output('a') indep.add_output('x', shape=(5, 1)) g1 = Group() g1.add_subsystem('Indep', indep, promotes=['a', 'x']) g2 = g1.add_subsystem('G2', Group(), promotes=['*']) g2.add_subsystem('C1', ExecComp('b=2*a'), promotes=['a', 'b']) g2.add_subsystem('C2', ExecComp('y=2*x', x=np.zeros((5, 1)), y=np.zeros((5, 1))), promotes=['x', 'y']) model = Group() model.add_subsystem('G1', g1, promotes=['b', 'y']) model.add_subsystem('Sink', ExecComp(('c=2*b', 'z=2*y'), y=np.zeros((5, 1)), z=np.zeros((5, 1))), promotes=['b', 'y']) p = Problem(model=model) p.setup() p.set_solver_print(level=0) p.run_model() msg = "Incompatible shape for '.*': Expected (.*) but got (.*)" num_val = -10 arr_val = -10*np.ones((5, 1)) bad_val = -10*np.ones((10)) inputs, outputs, residuals = g2.get_nonlinear_vectors() # # set input # # assign array to scalar with assertRaisesRegex(self, ValueError, msg): inputs['C1.a'] = arr_val # assign scalar to array inputs['C2.x'] = num_val assert_rel_error(self, inputs['C2.x'], arr_val, 1e-10) # assign array to array inputs['C2.x'] = arr_val assert_rel_error(self, inputs['C2.x'], arr_val, 1e-10) # assign bad array shape to array with assertRaisesRegex(self, ValueError, msg): inputs['C2.x'] = bad_val # assign list to array inputs['C2.x'] = arr_val.tolist() assert_rel_error(self, inputs['C2.x'], arr_val, 1e-10) # assign bad list shape to array with assertRaisesRegex(self, ValueError, msg): inputs['C2.x'] = bad_val.tolist() # # set output # # assign array to scalar with assertRaisesRegex(self, ValueError, msg): outputs['C1.b'] = arr_val # assign scalar to array outputs['C2.y'] = num_val assert_rel_error(self, outputs['C2.y'], arr_val, 1e-10) # assign array to array outputs['C2.y'] = arr_val assert_rel_error(self, outputs['C2.y'], arr_val, 1e-10) # assign bad array shape to array with assertRaisesRegex(self, ValueError, msg): outputs['C2.y'] = bad_val # assign list to array outputs['C2.y'] = arr_val.tolist() assert_rel_error(self, outputs['C2.y'], arr_val, 1e-10) # assign bad list shape to array with assertRaisesRegex(self, ValueError, msg): outputs['C2.y'] = bad_val.tolist() # # set residual # # assign array to scalar with assertRaisesRegex(self, ValueError, msg): residuals['C1.b'] = arr_val # assign scalar to array residuals['C2.y'] = num_val assert_rel_error(self, residuals['C2.y'], arr_val, 1e-10) # assign array to array residuals['C2.y'] = arr_val assert_rel_error(self, residuals['C2.y'], arr_val, 1e-10) # assign bad array shape to array with assertRaisesRegex(self, ValueError, msg): residuals['C2.y'] = bad_val # assign list to array residuals['C2.y'] = arr_val.tolist() assert_rel_error(self, residuals['C2.y'], arr_val, 1e-10) # assign bad list shape to array with assertRaisesRegex(self, ValueError, msg): residuals['C2.y'] = bad_val.tolist() def test_deprecated_solver_names(self): class DummySolver(): pass model = Group() # check nl_solver setter & getter msg = "The 'nl_solver' attribute provides backwards compatibility " \ "with OpenMDAO 1.x ; use 'nonlinear_solver' instead." with assert_warning(DeprecationWarning, msg): model.nl_solver = DummySolver() with assert_warning(DeprecationWarning, msg): solver = model.nl_solver self.assertTrue(isinstance(solver, DummySolver)) # check ln_solver setter & getter msg = "The 'ln_solver' attribute provides backwards compatibility " \ "with OpenMDAO 1.x ; use 'linear_solver' instead." with assert_warning(DeprecationWarning, msg): model.ln_solver = DummySolver() with assert_warning(DeprecationWarning, msg): solver = model.ln_solver self.assertTrue(isinstance(solver, DummySolver)) def test_deprecated_metadata(self): from openmdao.api import Problem, IndepVarComp from openmdao.test_suite.components.options_feature_vector import VectorDoublingComp prob = Problem() prob.model.add_subsystem('inputs', IndepVarComp('x', shape=3)) prob.model.add_subsystem('double', VectorDoublingComp()) msg = "The 'metadata' attribute provides backwards compatibility " \ "with earlier version of OpenMDAO; use 'options' instead." with assert_warning(DeprecationWarning, msg): prob.model.double.metadata['size'] = 3 prob.model.connect('inputs.x', 'double.x') prob.setup() prob['inputs.x'] = [1., 2., 3.] prob.run_model() assert_rel_error(self, prob['double.y'], [2., 4., 6.]) if __name__ == "__main__": unittest.main()
34.121673
92
0.585358
fb456b19d9a00a7fd5e0d692313892c0fd834462
27,188
py
Python
nnunet/network_architecture/generic_BTS_Netv5_5.py
zjdcts/H-FC
60a00322d77ae07519174a3eb0b02270aa8578c1
[ "Apache-2.0" ]
2
2022-03-17T07:12:58.000Z
2022-03-17T07:13:02.000Z
nnunet/network_architecture/generic_BTS_Netv5_5.py
zjdcts/H-FC
60a00322d77ae07519174a3eb0b02270aa8578c1
[ "Apache-2.0" ]
null
null
null
nnunet/network_architecture/generic_BTS_Netv5_5.py
zjdcts/H-FC
60a00322d77ae07519174a3eb0b02270aa8578c1
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from copy import deepcopy from nnunet.utilities.nd_softmax import softmax_helper from torch import nn import torch import numpy as np from nnunet.network_architecture.initialization import InitWeights_He from nnunet.network_architecture.neural_network import SegmentationNetwork import torch.nn.functional class ConvDropoutNormNonlin(nn.Module): """ fixes a bug in ConvDropoutNormNonlin where lrelu was used regardless of nonlin. Bad. """ def __init__(self, input_channels, output_channels, conv_op=nn.Conv2d, conv_kwargs=None, norm_op=nn.BatchNorm2d, norm_op_kwargs=None, dropout_op=nn.Dropout2d, dropout_op_kwargs=None, nonlin=nn.LeakyReLU, nonlin_kwargs=None): super(ConvDropoutNormNonlin, self).__init__() if nonlin_kwargs is None: nonlin_kwargs = {'negative_slope': 1e-2, 'inplace': True} if dropout_op_kwargs is None: dropout_op_kwargs = {'p': 0.5, 'inplace': True} if norm_op_kwargs is None: norm_op_kwargs = {'eps': 1e-5, 'affine': True, 'momentum': 0.1} if conv_kwargs is None: conv_kwargs = {'kernel_size': 3, 'stride': 1, 'padding': 1, 'dilation': 1, 'bias': True} self.nonlin_kwargs = nonlin_kwargs self.nonlin = nonlin self.dropout_op = dropout_op self.dropout_op_kwargs = dropout_op_kwargs self.norm_op_kwargs = norm_op_kwargs self.conv_kwargs = conv_kwargs self.conv_op = conv_op self.norm_op = norm_op self.conv = self.conv_op(input_channels, output_channels, **self.conv_kwargs) if self.dropout_op is not None and self.dropout_op_kwargs['p'] is not None and self.dropout_op_kwargs[ 'p'] > 0: self.dropout = self.dropout_op(**self.dropout_op_kwargs) else: self.dropout = None self.instnorm = self.norm_op(output_channels, **self.norm_op_kwargs) self.lrelu = self.nonlin(**self.nonlin_kwargs) def forward(self, x): x = self.conv(x) if self.dropout is not None: x = self.dropout(x) return self.lrelu(self.instnorm(x)) class ConvDropoutNonlinNorm(ConvDropoutNormNonlin): def forward(self, x): x = self.conv(x) if self.dropout is not None: x = self.dropout(x) return self.instnorm(self.lrelu(x)) class StackedConvLayers(nn.Module): def __init__(self, input_feature_channels, output_feature_channels, num_convs, conv_op=nn.Conv2d, conv_kwargs=None, norm_op=nn.BatchNorm2d, norm_op_kwargs=None, dropout_op=nn.Dropout2d, dropout_op_kwargs=None, nonlin=nn.LeakyReLU, nonlin_kwargs=None, first_stride=None, basic_block=ConvDropoutNormNonlin): ''' stacks ConvDropoutNormLReLU layers. initial_stride will only be applied to first layer in the stack. The other parameters affect all layers :param input_feature_channels: :param output_feature_channels: :param num_convs: :param dilation: :param kernel_size: :param padding: :param dropout: :param initial_stride: :param conv_op: :param norm_op: :param dropout_op: :param inplace: :param neg_slope: :param norm_affine: :param conv_bias: ''' self.input_channels = input_feature_channels self.output_channels = output_feature_channels if nonlin_kwargs is None: nonlin_kwargs = {'negative_slope': 1e-2, 'inplace': True} if dropout_op_kwargs is None: dropout_op_kwargs = {'p': 0.5, 'inplace': True} if norm_op_kwargs is None: norm_op_kwargs = {'eps': 1e-5, 'affine': True, 'momentum': 0.1} if conv_kwargs is None: conv_kwargs = {'kernel_size': 3, 'stride': 1, 'padding': 1, 'dilation': 1, 'bias': True} self.nonlin_kwargs = nonlin_kwargs self.nonlin = nonlin self.dropout_op = dropout_op self.dropout_op_kwargs = dropout_op_kwargs self.norm_op_kwargs = norm_op_kwargs self.conv_kwargs = conv_kwargs self.conv_op = conv_op self.norm_op = norm_op if first_stride is not None: self.conv_kwargs_first_conv = deepcopy(conv_kwargs) self.conv_kwargs_first_conv['stride'] = first_stride else: self.conv_kwargs_first_conv = conv_kwargs super(StackedConvLayers, self).__init__() self.blocks = nn.Sequential( *([basic_block(input_feature_channels, output_feature_channels, self.conv_op, self.conv_kwargs_first_conv, self.norm_op, self.norm_op_kwargs, self.dropout_op, self.dropout_op_kwargs, self.nonlin, self.nonlin_kwargs)] + [basic_block(output_feature_channels, output_feature_channels, self.conv_op, self.conv_kwargs, self.norm_op, self.norm_op_kwargs, self.dropout_op, self.dropout_op_kwargs, self.nonlin, self.nonlin_kwargs) for _ in range(num_convs - 1)])) def forward(self, x): return self.blocks(x) def print_module_training_status(module): if isinstance(module, nn.Conv2d) or isinstance(module, nn.Conv3d) or isinstance(module, nn.Dropout3d) or \ isinstance(module, nn.Dropout2d) or isinstance(module, nn.Dropout) or isinstance(module, nn.InstanceNorm3d) \ or isinstance(module, nn.InstanceNorm2d) or isinstance(module, nn.InstanceNorm1d) \ or isinstance(module, nn.BatchNorm2d) or isinstance(module, nn.BatchNorm3d) or isinstance(module, nn.BatchNorm1d): print(str(module), module.training) class Upsample(nn.Module): def __init__(self, size=None, scale_factor=None, mode='nearest', align_corners=False): super(Upsample, self).__init__() self.align_corners = align_corners self.mode = mode self.scale_factor = scale_factor self.size = size def forward(self, x): return nn.functional.interpolate(x, size=self.size, scale_factor=self.scale_factor, mode=self.mode, align_corners=self.align_corners) class BasicConv(nn.Module): def __init__(self, in_planes, out_planes, kernel_size, stride=1, padding=0, dilation=1, groups=1, relu=True, bn=True, bias=False): super(BasicConv, self).__init__() self.out_channels = out_planes self.conv = nn.Conv3d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias) self.bn = nn.BatchNorm3d(out_planes, eps=1e-5, momentum=0.01, affine=True) if bn else None self.relu = nn.ReLU() if relu else None def forward(self, x): x = self.conv(x) if self.bn is not None: x = self.bn(x) if self.relu is not None: x = self.relu(x) return x class Flatten(nn.Module): def forward(self, x): return x.view(x.size(0), -1) class ChannelGate(nn.Module): def __init__(self, gate_channels, reduction_ratio=16, pool_types=['avg', 'max']): super(ChannelGate, self).__init__() self.gate_channels = gate_channels self.mlp = nn.Sequential( Flatten(), nn.Linear(gate_channels, gate_channels // reduction_ratio), nn.ReLU(), nn.Linear(gate_channels // reduction_ratio, gate_channels) ) self.pool_types = pool_types def forward(self, x): channel_att_sum = None for pool_type in self.pool_types: if pool_type == 'avg': avg_pool = nn.functional.avg_pool3d(x, (x.size(2), x.size(3), x.size(4)), stride=(x.size(2), x.size(3), x.size(4))) channel_att_raw = self.mlp(avg_pool) elif pool_type == 'max': max_pool = nn.functional.max_pool3d(x, (x.size(2), x.size(3), x.size(4)), stride=(x.size(2), x.size(3), x.size(4))) channel_att_raw = self.mlp(max_pool) if channel_att_sum is None: channel_att_sum = channel_att_raw else: channel_att_sum = channel_att_sum + channel_att_raw scale = torch.sigmoid(channel_att_sum).unsqueeze(2).unsqueeze(3).unsqueeze(4).expand_as(x) return x * scale class ChannelPool(nn.Module): def forward(self, x): return torch.cat((torch.max(x, 1)[0].unsqueeze(1), torch.mean(x, 1).unsqueeze(1)), dim=1) class SpatialGate(nn.Module): def __init__(self): super(SpatialGate, self).__init__() kernel_size = 7 self.compress = ChannelPool() self.spatial = BasicConv(2, 1, kernel_size, stride=1, padding=(kernel_size - 1) // 2, relu=False) def forward(self, x): x_compress = self.compress(x) x_out = self.spatial(x_compress) scale = torch.sigmoid(x_out) # broadcasting return x * scale class FeedForward(nn.Module): def __init__(self, dim, hidden_dim, out_dim, drop=0.1): super().__init__() self.net = nn.Sequential( nn.Linear(dim, hidden_dim), nn.ReLU(inplace=True), nn.Linear(hidden_dim, out_dim), nn.ReLU(inplace=True), nn.Dropout(drop), ) def forward(self, x): return self.net(x) class SpAtt(nn.Module): def __init__(self, in_planes, num_layers, region_size=2, reduction=2): super(SpAtt, self).__init__() self.conv1 = BasicConv(in_planes, in_planes // reduction, 3, padding=1) self.fc = nn.ModuleList() self.sigmoid = nn.Sigmoid() self.rs = region_size self.num_layers = num_layers for i in range(num_layers): self.fc.append(FeedForward(region_size ** 3, 64, region_size ** 3)) # self.fc.append(FeedForward(region_size ** 3, 64, region_size ** 3)) self.conv2 = BasicConv(in_planes // reduction, 1, 3, padding=1) def forward(self, x): residual = x out = None x = self.conv1(x) for i in range(self.num_layers): x = x.unfold(4, self.rs, self.rs).unfold(3, self.rs, self.rs).unfold(2, self.rs, self.rs).contiguous() b, c, h, w, d, _, _, _ = x.size() x = self.fc[i](x.view(b, c, h, w, d, -1)) x = x.view(b, c, h, w, d, self.rs, self.rs, self.rs).permute(0, 1, 2, 5, 3, 6, 4, 7).contiguous(). \ view(b, c, h * self.rs, w * self.rs, d * self.rs) if out is None: out = nn.functional.interpolate(x, scale_factor=2 ** i, mode='trilinear', align_corners=False) else: out += nn.functional.interpolate(x, scale_factor=2 ** i, mode='trilinear', align_corners=False) x = nn.functional.interpolate(x, scale_factor=0.5, mode='trilinear', align_corners=False) # b, c, h, w, d = x.size() # x = self.fc[-1](x.view(b, c, -1)) # x = x.view(b, c, h, w, d) # if out is None: # out = nn.functional.interpolate(x, scale_factor=2 ** self.num_layers, mode='trilinear', align_corners=False) # else: # out += nn.functional.interpolate(x, scale_factor=2 ** self.num_layers, mode='trilinear', # align_corners=False) return residual * self.sigmoid(self.conv2(out)) class CBAM(nn.Module): def __init__(self, gate_channels, num_layers, reduction_ratio=16, pool_types=['avg', 'max'], no_spatial=False): super(CBAM, self).__init__() self.ChannelGate = ChannelGate(gate_channels, reduction_ratio, pool_types) self.no_spatial = no_spatial if not no_spatial: # self.SpatialGate = SpatialGate() self.SpatialGate = SpAtt(gate_channels, num_layers) def forward(self, x): x_out = self.ChannelGate(x) if not self.no_spatial: x_out = self.SpatialGate(x_out) return x_out class Generic_BTS_Netv5_5(SegmentationNetwork): DEFAULT_BATCH_SIZE_3D = 2 DEFAULT_PATCH_SIZE_3D = (64, 192, 160) SPACING_FACTOR_BETWEEN_STAGES = 2 BASE_NUM_FEATURES_3D = 30 MAX_NUMPOOL_3D = 999 MAX_NUM_FILTERS_3D = 320 DEFAULT_PATCH_SIZE_2D = (256, 256) BASE_NUM_FEATURES_2D = 30 DEFAULT_BATCH_SIZE_2D = 50 MAX_NUMPOOL_2D = 999 MAX_FILTERS_2D = 480 use_this_for_batch_size_computation_2D = 19739648 use_this_for_batch_size_computation_3D = 520000000 # 505789440 def __init__(self, input_channels, base_num_features, num_classes, num_pool, num_conv_per_stage=2, feat_map_mul_on_downscale=2, conv_op=nn.Conv2d, norm_op=nn.BatchNorm2d, norm_op_kwargs=None, dropout_op=nn.Dropout2d, dropout_op_kwargs=None, nonlin=nn.LeakyReLU, nonlin_kwargs=None, deep_supervision=True, dropout_in_localization=False, final_nonlin=softmax_helper, weightInitializer=InitWeights_He(1e-2), pool_op_kernel_sizes=None, conv_kernel_sizes=None, upscale_logits=False, convolutional_pooling=False, convolutional_upsampling=False, max_num_features=None, basic_block=ConvDropoutNormNonlin, seg_output_use_bias=False): """ basically more flexible than v1, architecture is the same Does this look complicated? Nah bro. Functionality > usability This does everything you need, including world peace. Questions? -> f.isensee@dkfz.de """ super(Generic_BTS_Netv5_5, self).__init__() self.convolutional_upsampling = convolutional_upsampling self.convolutional_pooling = convolutional_pooling self.upscale_logits = upscale_logits if nonlin_kwargs is None: nonlin_kwargs = {'negative_slope': 1e-2, 'inplace': True} if dropout_op_kwargs is None: dropout_op_kwargs = {'p': 0.5, 'inplace': True} if norm_op_kwargs is None: norm_op_kwargs = {'eps': 1e-5, 'affine': True, 'momentum': 0.1} self.conv_kwargs = {'stride': 1, 'dilation': 1, 'bias': True} self.nonlin = nonlin self.nonlin_kwargs = nonlin_kwargs self.dropout_op_kwargs = dropout_op_kwargs self.norm_op_kwargs = norm_op_kwargs self.weightInitializer = weightInitializer self.conv_op = conv_op self.norm_op = norm_op self.dropout_op = dropout_op self.num_classes = num_classes self.final_nonlin = final_nonlin self._deep_supervision = deep_supervision self.do_ds = deep_supervision if conv_op == nn.Conv2d: upsample_mode = 'bilinear' pool_op = nn.MaxPool2d transpconv = nn.ConvTranspose2d if pool_op_kernel_sizes is None: pool_op_kernel_sizes = [(2, 2)] * num_pool if conv_kernel_sizes is None: conv_kernel_sizes = [(3, 3)] * (num_pool + 1) elif conv_op == nn.Conv3d: upsample_mode = 'trilinear' pool_op = nn.MaxPool3d transpconv = nn.ConvTranspose3d if pool_op_kernel_sizes is None: pool_op_kernel_sizes = [(2, 2, 2)] * num_pool if conv_kernel_sizes is None: conv_kernel_sizes = [(3, 3, 3)] * (num_pool + 1) else: raise ValueError("unknown convolution dimensionality, conv op: %s" % str(conv_op)) self.input_shape_must_be_divisible_by = np.prod(pool_op_kernel_sizes, 0, dtype=np.int64) self.pool_op_kernel_sizes = pool_op_kernel_sizes self.conv_kernel_sizes = conv_kernel_sizes self.conv_pad_sizes = [] for krnl in self.conv_kernel_sizes: self.conv_pad_sizes.append([1 if i == 3 else 0 for i in krnl]) if max_num_features is None: if self.conv_op == nn.Conv3d: self.max_num_features = self.MAX_NUM_FILTERS_3D else: self.max_num_features = self.MAX_FILTERS_2D else: self.max_num_features = max_num_features self.conv_blocks_context = [] self.conv_blocks_localization = [] self.td = [] self.tu = [] self.seg_outputs = [] self.cbam = nn.ModuleList() output_features = base_num_features input_features = input_channels for d in range(num_pool): # determine the first stride if d != 0 and self.convolutional_pooling: first_stride = pool_op_kernel_sizes[d - 1] else: first_stride = None self.conv_kwargs['kernel_size'] = self.conv_kernel_sizes[d] self.conv_kwargs['padding'] = self.conv_pad_sizes[d] # add convolutions self.conv_blocks_context.append(StackedConvLayers(input_features, output_features, num_conv_per_stage, self.conv_op, self.conv_kwargs, self.norm_op, self.norm_op_kwargs, self.dropout_op, self.dropout_op_kwargs, self.nonlin, self.nonlin_kwargs, first_stride, basic_block=basic_block)) self.cbam.append(CBAM(output_features, max(1, num_pool - d - 1))) if not self.convolutional_pooling: self.td.append(pool_op(pool_op_kernel_sizes[d])) input_features = output_features output_features = int(np.round(output_features * feat_map_mul_on_downscale)) output_features = min(output_features, self.max_num_features) # now the bottleneck. # determine the first stride if self.convolutional_pooling: first_stride = pool_op_kernel_sizes[-1] else: first_stride = None # the output of the last conv must match the number of features from the skip connection if we are not using # convolutional upsampling. If we use convolutional upsampling then the reduction in feature maps will be # done by the transposed conv if self.convolutional_upsampling: final_num_features = output_features else: final_num_features = self.conv_blocks_context[-1].output_channels self.conv_kwargs['kernel_size'] = self.conv_kernel_sizes[num_pool] self.conv_kwargs['padding'] = self.conv_pad_sizes[num_pool] self.conv_blocks_context.append(nn.Sequential( StackedConvLayers(input_features, output_features, num_conv_per_stage - 1, self.conv_op, self.conv_kwargs, self.norm_op, self.norm_op_kwargs, self.dropout_op, self.dropout_op_kwargs, self.nonlin, self.nonlin_kwargs, first_stride, basic_block=basic_block), StackedConvLayers(output_features, final_num_features, 1, self.conv_op, self.conv_kwargs, self.norm_op, self.norm_op_kwargs, self.dropout_op, self.dropout_op_kwargs, self.nonlin, self.nonlin_kwargs, basic_block=basic_block))) self.cbam.append(CBAM(final_num_features, 1)) # if we don't want to do dropout in the localization pathway then we set the dropout prob to zero here if not dropout_in_localization: old_dropout_p = self.dropout_op_kwargs['p'] self.dropout_op_kwargs['p'] = 0.0 # now lets build the localization pathway for u in range(num_pool): nfeatures_from_down = final_num_features nfeatures_from_skip = self.conv_blocks_context[ -(2 + u)].output_channels # self.conv_blocks_context[-1] is bottleneck, so start with -2 n_features_after_tu_and_concat = nfeatures_from_skip * 2 # the first conv reduces the number of features to match those of skip # the following convs work on that number of features # if not convolutional upsampling then the final conv reduces the num of features again if u != num_pool - 1 and not self.convolutional_upsampling: final_num_features = self.conv_blocks_context[-(3 + u)].output_channels else: final_num_features = nfeatures_from_skip if not self.convolutional_upsampling: self.tu.append(Upsample(scale_factor=pool_op_kernel_sizes[-(u + 1)], mode=upsample_mode)) else: self.tu.append(transpconv(nfeatures_from_down, nfeatures_from_skip, pool_op_kernel_sizes[-(u + 1)], pool_op_kernel_sizes[-(u + 1)], bias=False)) self.conv_kwargs['kernel_size'] = self.conv_kernel_sizes[- (u + 1)] self.conv_kwargs['padding'] = self.conv_pad_sizes[- (u + 1)] self.conv_blocks_localization.append(nn.Sequential( StackedConvLayers(n_features_after_tu_and_concat, nfeatures_from_skip, num_conv_per_stage - 1, self.conv_op, self.conv_kwargs, self.norm_op, self.norm_op_kwargs, self.dropout_op, self.dropout_op_kwargs, self.nonlin, self.nonlin_kwargs, basic_block=basic_block), StackedConvLayers(nfeatures_from_skip, final_num_features, 1, self.conv_op, self.conv_kwargs, self.norm_op, self.norm_op_kwargs, self.dropout_op, self.dropout_op_kwargs, self.nonlin, self.nonlin_kwargs, basic_block=basic_block) )) for ds in range(len(self.conv_blocks_localization)): self.seg_outputs.append(conv_op(self.conv_blocks_localization[ds][-1].output_channels, num_classes, 1, 1, 0, 1, 1, seg_output_use_bias)) self.upscale_logits_ops = [] cum_upsample = np.cumprod(np.vstack(pool_op_kernel_sizes), axis=0)[::-1] for usl in range(num_pool - 1): if self.upscale_logits: self.upscale_logits_ops.append(Upsample(scale_factor=tuple([int(i) for i in cum_upsample[usl + 1]]), mode=upsample_mode)) else: self.upscale_logits_ops.append(lambda x: x) if not dropout_in_localization: self.dropout_op_kwargs['p'] = old_dropout_p # register all modules properly self.conv_blocks_localization = nn.ModuleList(self.conv_blocks_localization) self.conv_blocks_context = nn.ModuleList(self.conv_blocks_context) self.td = nn.ModuleList(self.td) self.tu = nn.ModuleList(self.tu) self.seg_outputs = nn.ModuleList(self.seg_outputs) if self.upscale_logits: self.upscale_logits_ops = nn.ModuleList( self.upscale_logits_ops) # lambda x:x is not a Module so we need to distinguish here if self.weightInitializer is not None: self.apply(self.weightInitializer) # self.apply(print_module_training_status) def forward(self, x): skips = [] seg_outputs = [] for d in range(len(self.conv_blocks_context) - 1): x = self.conv_blocks_context[d](x) x = self.cbam[d](x) skips.append(x) if not self.convolutional_pooling: x = self.td[d](x) x = self.conv_blocks_context[-1](x) x = self.cbam[-1](x) for u in range(len(self.tu)): x = self.tu[u](x) x = torch.cat((x, skips[-(u + 1)]), dim=1) x = self.conv_blocks_localization[u](x) seg_outputs.append(self.final_nonlin(self.seg_outputs[u](x))) if self._deep_supervision and self.do_ds: return tuple([seg_outputs[-1]] + [i(j) for i, j in zip(list(self.upscale_logits_ops)[::-1], seg_outputs[:-1][::-1])]) else: return seg_outputs[-1] @staticmethod def compute_approx_vram_consumption(patch_size, num_pool_per_axis, base_num_features, max_num_features, num_modalities, num_classes, pool_op_kernel_sizes, deep_supervision=False, conv_per_stage=2): """ This only applies for num_conv_per_stage and convolutional_upsampling=True not real vram consumption. just a constant term to which the vram consumption will be approx proportional (+ offset for parameter storage) :param deep_supervision: :param patch_size: :param num_pool_per_axis: :param base_num_features: :param max_num_features: :param num_modalities: :param num_classes: :param pool_op_kernel_sizes: :return: """ if not isinstance(num_pool_per_axis, np.ndarray): num_pool_per_axis = np.array(num_pool_per_axis) npool = len(pool_op_kernel_sizes) map_size = np.array(patch_size) tmp = np.int64((conv_per_stage * 2 + 1) * np.prod(map_size, dtype=np.int64) * base_num_features + num_modalities * np.prod(map_size, dtype=np.int64) + num_classes * np.prod(map_size, dtype=np.int64)) num_feat = base_num_features for p in range(npool): for pi in range(len(num_pool_per_axis)): map_size[pi] /= pool_op_kernel_sizes[p][pi] num_feat = min(num_feat * 2, max_num_features) num_blocks = (conv_per_stage * 2 + 1) if p < ( npool - 1) else conv_per_stage # conv_per_stage + conv_per_stage for the convs of encode/decode and 1 for transposed conv tmp += num_blocks * np.prod(map_size, dtype=np.int64) * num_feat if deep_supervision and p < (npool - 2): tmp += np.prod(map_size, dtype=np.int64) * num_classes # print(p, map_size, num_feat, tmp) return tmp
45.013245
147
0.617405
53bb5936b5c59c77bfea56da9dd3efe0cee4c117
489
py
Python
official/vision/keypoints/models/__init__.py
ChenXinhao/Models
91fa3b9710caefaeeb0d95cab003b58c2c8ba043
[ "Apache-2.0" ]
null
null
null
official/vision/keypoints/models/__init__.py
ChenXinhao/Models
91fa3b9710caefaeeb0d95cab003b58c2c8ba043
[ "Apache-2.0" ]
null
null
null
official/vision/keypoints/models/__init__.py
ChenXinhao/Models
91fa3b9710caefaeeb0d95cab003b58c2c8ba043
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. from .simplebaseline import ( simplebaseline_res50, simplebaseline_res101, simplebaseline_res152, )
34.928571
88
0.748466
6a40e198b75e479a57dd99f5d3a651eb34f4db37
36,553
py
Python
TrainingExtensions/tensorflow/test/python/test_qc_quantize_op.py
styler00dollar/Colab-docker-aimet
9e70d1e3729be8e890bc58e1f5af30a706a15e96
[ "BSD-3-Clause" ]
945
2020-04-30T02:23:55.000Z
2022-03-31T08:44:32.000Z
TrainingExtensions/tensorflow/test/python/test_qc_quantize_op.py
seaun163/aimet
de94e5522e0c9250fb422d064b77ef9ecc70f239
[ "BSD-3-Clause" ]
563
2020-05-01T03:07:22.000Z
2022-03-30T05:35:58.000Z
TrainingExtensions/tensorflow/test/python/test_qc_quantize_op.py
seaun163/aimet
de94e5522e0c9250fb422d064b77ef9ecc70f239
[ "BSD-3-Clause" ]
186
2020-04-30T00:55:26.000Z
2022-03-30T09:54:51.000Z
# ============================================================================= # @@-COPYRIGHT-START-@@ # # Copyright (c) 2019, Qualcomm Innovation Center, Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # # SPDX-License-Identifier: BSD-3-Clause # # @@-COPYRIGHT-END-@@ # ============================================================================= import pytest import unittest import numpy as np import os import tensorflow as tf from aimet_tensorflow.utils.constants import QuantizeOpIndices import libpymo from aimet_tensorflow import quantsim_straight_through_grad tf.compat.v1.logging.set_verbosity(tf.logging.WARN) os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" class TestTrainingExtensionsQcQuantizeOp(unittest.TestCase): def test_qc_quantize_op_cpu(self): """ test custom op with CPU """ zero_out_module = tf.load_op_library('libaimet_tf_ops.so') graph = tf.Graph() config = tf.compat.v1.ConfigProto(log_device_placement=False) sess = tf.compat.v1.Session(graph=graph, config=config) bitwidth = 8 use_symm_encoding = True with graph.as_default(): # place holder for the input with tf.device("/device:CPU:0"): inp = tf.compat.v1.placeholder(tf.float32, shape=[10], name='input') tensor_quantizer = libpymo.TensorQuantizer(libpymo.QuantizationMode.QUANTIZATION_TF_ENHANCED, libpymo.RoundingMode.ROUND_NEAREST) tensor_quantizer_val = libpymo.PtrToInt64(tensor_quantizer) tensor_quant_ref = tf.Variable(initial_value=tensor_quantizer_val, trainable=False, dtype=tf.int64) encoding_min = tf.Variable(initial_value=0.0, trainable=True, dtype=tf.double) encoding_max = tf.Variable(initial_value=0.0, trainable=True, dtype=tf.double) bit_width = tf.Variable(initial_value=bitwidth, trainable=False, dtype=tf.int8) use_symmetric_encoding = tf.Variable(initial_value=use_symm_encoding, trainable=False, dtype=tf.bool) mode_var = tf.Variable(initial_value=int(libpymo.TensorQuantizerOpMode.updateStats), trainable=False, dtype=tf.int32) sess.run([mode_var.initializer, tensor_quant_ref.initializer, encoding_min.initializer, encoding_max.initializer, bit_width.initializer, use_symmetric_encoding.initializer]) pass_through_op_output = zero_out_module.qc_quantize(name='quant_op', in_tensor=inp, op_mode=mode_var, tensor_quantizer_reference=tensor_quant_ref, encoding_min=encoding_min, encoding_max=encoding_max, bit_width=bit_width, use_symmetric_encoding=use_symmetric_encoding) inp_tensor = sess.graph.get_tensor_by_name('input:0') inp_data = np.random.rand(10) # get the output print(inp_data) out_data = sess.run(pass_through_op_output, feed_dict={inp_tensor: inp_data}) print(out_data) # compare qc_quantize op's output with input self.assertTrue(np.allclose(out_data, inp_data)) # compute encodings self.assertFalse(tensor_quantizer.isEncodingValid) encoding = tensor_quantizer.computeEncoding(bitwidth, use_symm_encoding, False, False) self.assertTrue(tensor_quantizer.isEncodingValid) print('min=', encoding.min, ', max=', encoding.max) # get the output inp_data = np.random.rand(10) * 2 print(inp_data) mode_var.load(int(libpymo.TensorQuantizerOpMode.quantizeDequantize), sess) out_data = sess.run(pass_through_op_output, feed_dict={inp_tensor: inp_data}) print(out_data) # compare qc_quantize op's output with input self.assertFalse(np.allclose(out_data, inp_data)) sess.close() def test_qc_quantize_op_oneshot_cpu(self): """ test custom op with CPU """ zero_out_module = tf.load_op_library('libaimet_tf_ops.so') graph = tf.Graph() config = tf.compat.v1.ConfigProto(log_device_placement=False) sess = tf.compat.v1.Session(graph=graph, config=config) bitwidth = 8 use_symm_encoding = False with graph.as_default(): # place holder for the input with tf.device("/device:CPU:0"): inp = tf.compat.v1.placeholder(tf.float32, shape=[10], name='input') tensor_quantizer = libpymo.TensorQuantizer(libpymo.QuantizationMode.QUANTIZATION_TF_ENHANCED, libpymo.RoundingMode.ROUND_NEAREST) tensor_quantizer_val = libpymo.PtrToInt64(tensor_quantizer) tensor_quant_ref = tf.Variable(initial_value=tensor_quantizer_val, trainable=False, dtype=tf.int64) mode_var = tf.Variable(initial_value=int(libpymo.TensorQuantizerOpMode.oneShotQuantizeDequantize), trainable=False, dtype=tf.int32) encoding_min = tf.Variable(initial_value=0.0, trainable=True, dtype=tf.double) encoding_max = tf.Variable(initial_value=0.0, trainable=True, dtype=tf.double) bit_width = tf.Variable(initial_value=bitwidth, trainable=False, dtype=tf.int8) use_symmetric_encoding = tf.Variable(initial_value=use_symm_encoding, trainable=False, dtype=tf.bool) sess.run([mode_var.initializer, tensor_quant_ref.initializer, encoding_min.initializer, encoding_max.initializer, bit_width.initializer, use_symmetric_encoding.initializer]) pass_through_op_output = zero_out_module.qc_quantize(name='quant_op', in_tensor=inp, op_mode=mode_var, tensor_quantizer_reference=tensor_quant_ref, encoding_min=encoding_min, encoding_max=encoding_max, bit_width=bit_width, use_symmetric_encoding=use_symmetric_encoding) inp_tensor = sess.graph.get_tensor_by_name('input:0') inp_data = np.random.rand(10) * 256 # get the output print(inp_data) out_data = sess.run(pass_through_op_output, feed_dict={inp_tensor: inp_data}) print(out_data) self.assertTrue(tensor_quantizer.isEncodingValid) encoding = tensor_quantizer.computeEncoding(bitwidth, use_symm_encoding, False, False) print('min=', encoding.min, ', max=', encoding.max) # compare qc_quantize op's output with input self.assertFalse(np.allclose(out_data, inp_data)) sess.close() @pytest.mark.cuda def test_qc_quantize_op_gpu(self): """ test custom op with GPU """ zero_out_module = tf.load_op_library('libaimet_tf_ops.so') graph = tf.Graph() config = tf.compat.v1.ConfigProto(log_device_placement=False) sess = tf.compat.v1.Session(graph=graph, config=config) bitwidth = 8 use_symm_encoding = False with graph.as_default(): inp = tf.compat.v1.placeholder(tf.float32, shape=[10], name='input') tensor_quantizer = libpymo.TensorQuantizer(libpymo.QuantizationMode.QUANTIZATION_TF_ENHANCED, libpymo.RoundingMode.ROUND_NEAREST) tensor_quantizer_val = libpymo.PtrToInt64(tensor_quantizer) tensor_quant_ref = tf.Variable(initial_value=tensor_quantizer_val, trainable=False, dtype=tf.int64) mode_var = tf.Variable(initial_value=int(libpymo.TensorQuantizerOpMode.updateStats), trainable=False, dtype=tf.int32) encoding_min = tf.Variable(initial_value=0.0, trainable=True, dtype=tf.double) encoding_max = tf.Variable(initial_value=0.0, trainable=True, dtype=tf.double) bit_width = tf.Variable(initial_value=bitwidth, trainable=False, dtype=tf.int8) use_symmetric_encoding = tf.Variable(initial_value=use_symm_encoding, trainable=False, dtype=tf.bool) sess.run([mode_var.initializer, tensor_quant_ref.initializer, encoding_min.initializer, encoding_max.initializer, bit_width.initializer, use_symmetric_encoding.initializer]) # place holder for the input with tf.device("/device:GPU:0"): pass_through_op_output = zero_out_module.qc_quantize(name='quant_op', in_tensor=inp, op_mode=mode_var, tensor_quantizer_reference=tensor_quant_ref, encoding_min=encoding_min, encoding_max=encoding_max, bit_width=bit_width, use_symmetric_encoding=use_symmetric_encoding) inp_tensor = sess.graph.get_tensor_by_name('input:0') inp_data = np.random.rand(10) # get the output print(inp_data) with tf.device("/device:GPU:0"): out_data = sess.run(pass_through_op_output, feed_dict={inp_tensor: inp_data}) print(out_data) # compare qc_quantize op's output with input self.assertTrue(np.allclose(out_data, inp_data)) # compute encodings self.assertFalse(tensor_quantizer.isEncodingValid) encoding = tensor_quantizer.computeEncoding(bitwidth, use_symm_encoding, False, False) self.assertTrue(tensor_quantizer.isEncodingValid) print('min=', encoding.min, ', max=', encoding.max) # get the output inp_data = np.random.rand(10) * 2 print(inp_data) mode_var.load(int(libpymo.TensorQuantizerOpMode.quantizeDequantize), sess) with tf.device("/device:GPU:0"): out_data = sess.run(pass_through_op_output, feed_dict={inp_tensor: inp_data}) print(out_data) # compare qc_quantize op's output with input self.assertFalse(np.allclose(out_data, inp_data)) sess.close() def test_qc_quantize_static_op_cpu(self): """ test custom static op with CPU """ zero_out_module = tf.load_op_library('libaimet_tf_ops.so') graph = tf.Graph() config = tf.compat.v1.ConfigProto(log_device_placement=False) sess = tf.compat.v1.Session(graph=graph, config=config) with graph.as_default(): # place holder for the input with tf.device("/device:CPU:0"): inp = tf.compat.v1.placeholder(tf.float32, shape=[10], name='input') pass_through_op_output = zero_out_module.qc_quantize_static(name='quant_op', in_tensor=inp, encoding_min=-1.0, encoding_max=1.0, bitwidth=8, quant_scheme=libpymo.QuantizationMode.QUANTIZATION_TF_ENHANCED, op_mode=libpymo.TensorQuantizerOpMode.passThrough, is_symmetric=False) inp_tensor = sess.graph.get_tensor_by_name('input:0') inp_data = np.random.rand(10).astype(np.float32) # get the output print(inp_data) out_data = sess.run(pass_through_op_output, feed_dict={inp_tensor: inp_data}) print(out_data) # compare qc_quantize op's output with input self.assertTrue(np.allclose(out_data, inp_data, atol=1e-6)) sess.close() graph = tf.Graph() config = tf.compat.v1.ConfigProto(log_device_placement=False) sess = tf.compat.v1.Session(graph=graph, config=config) with graph.as_default(): # place holder for the input with tf.device("/device:CPU:0"): inp = tf.compat.v1.placeholder(tf.float32, shape=[10], name='input') pass_through_op_output = zero_out_module.qc_quantize_static(name='quant_op', in_tensor=inp, encoding_min=-1.0, encoding_max=0.5, bitwidth=8, quant_scheme=libpymo.QuantizationMode.QUANTIZATION_TF_ENHANCED, op_mode=libpymo.TensorQuantizerOpMode.quantizeDequantize, is_symmetric=False) inp_tensor = sess.graph.get_tensor_by_name('input:0') inp_data = np.random.rand(10).astype(np.float32) # get the output print(inp_data) out_data = sess.run(pass_through_op_output, feed_dict={inp_tensor: inp_data}) print(out_data) # compare qc_quantize op's output with input self.assertFalse(np.allclose(out_data, inp_data, atol=1e-1)) sess.close() graph = tf.Graph() config = tf.compat.v1.ConfigProto(log_device_placement=False) sess = tf.compat.v1.Session(graph=graph, config=config) with graph.as_default(): # place holder for the input with tf.device("/device:CPU:0"): inp = tf.compat.v1.placeholder(tf.float32, shape=[10], name='input') pass_through_op_output = zero_out_module.qc_quantize_static(name='quant_op', in_tensor=inp, encoding_min=-1.0, encoding_max=1.0, bitwidth=8, quant_scheme=libpymo.QuantizationMode.QUANTIZATION_TF_ENHANCED, op_mode=libpymo.TensorQuantizerOpMode.oneShotQuantizeDequantize, is_symmetric=False) inp_tensor = sess.graph.get_tensor_by_name('input:0') inp_data = np.random.rand(10).astype(np.float32) # get the output print(inp_data) out_data = sess.run(pass_through_op_output, feed_dict={inp_tensor: inp_data}) print(out_data) # compare qc_quantize op's output with input self.assertFalse(np.allclose(out_data, inp_data, atol=1e-3)) sess.close() @pytest.mark.cuda def test_qc_quantize_static_op_gpu(self): """ test custom static op with GPU """ zero_out_module = tf.load_op_library('libaimet_tf_ops.so') graph = tf.Graph() config = tf.compat.v1.ConfigProto(log_device_placement=False) sess = tf.compat.v1.Session(graph=graph, config=config) with graph.as_default(): # place holder for the input with tf.device("/device:GPU:0"): inp = tf.compat.v1.placeholder(tf.float32, shape=[10], name='input') pass_through_op_output = zero_out_module.qc_quantize_static(name='quant_op', in_tensor=inp, encoding_min=-1.0, encoding_max=1.0, bitwidth=8, quant_scheme=libpymo.QuantizationMode.QUANTIZATION_TF_ENHANCED, op_mode=libpymo.TensorQuantizerOpMode.passThrough, is_symmetric=False) inp_tensor = sess.graph.get_tensor_by_name('input:0') inp_data = np.random.rand(10).astype(np.float32) # get the output print(inp_data) out_data = sess.run(pass_through_op_output, feed_dict={inp_tensor: inp_data}) print(out_data) # compare qc_quantize op's output with input self.assertTrue(np.allclose(out_data, inp_data, atol=1e-6)) sess.close() graph = tf.Graph() config = tf.compat.v1.ConfigProto(log_device_placement=False) sess = tf.compat.v1.Session(graph=graph, config=config) with graph.as_default(): # place holder for the input with tf.device("/device:GPU:0"): inp = tf.compat.v1.placeholder(tf.float32, shape=[10], name='input') pass_through_op_output = zero_out_module.qc_quantize_static(name='quant_op', in_tensor=inp, encoding_min=-1.0, encoding_max=0.5, bitwidth=8, quant_scheme=libpymo.QuantizationMode.QUANTIZATION_TF_ENHANCED, op_mode=libpymo.TensorQuantizerOpMode.quantizeDequantize, is_symmetric=False) inp_tensor = sess.graph.get_tensor_by_name('input:0') inp_data = np.random.rand(10).astype(np.float32) # get the output print(inp_data) out_data = sess.run(pass_through_op_output, feed_dict={inp_tensor: inp_data}) print(out_data) # compare qc_quantize op's output with input self.assertFalse(np.allclose(out_data, inp_data, atol=1e-1)) sess.close() graph = tf.Graph() config = tf.compat.v1.ConfigProto(log_device_placement=False) sess = tf.compat.v1.Session(graph=graph, config=config) with graph.as_default(): # place holder for the input with tf.device("/device:GPU:0"): inp = tf.compat.v1.placeholder(tf.float32, shape=[10], name='input') pass_through_op_output = zero_out_module.qc_quantize_static(name='quant_op', in_tensor=inp, encoding_min=-1.0, encoding_max=1.0, bitwidth=8, quant_scheme=libpymo.QuantizationMode.QUANTIZATION_TF_ENHANCED, op_mode=libpymo.TensorQuantizerOpMode.oneShotQuantizeDequantize, is_symmetric=False) inp_tensor = sess.graph.get_tensor_by_name('input:0') inp_data = np.random.rand(10).astype(np.float32) # get the output print(inp_data) out_data = sess.run(pass_through_op_output, feed_dict={inp_tensor: inp_data}) print(out_data) # compare qc_quantize op's output with input self.assertFalse(np.allclose(out_data, inp_data, atol=1e-3)) sess.close() def test_qc_quantize_op_straight_through_gradient_computation(self): """ test to validate tensorflow quantize op straight through estimator gradient computation """ from aimet_tensorflow import quantsim_straight_through_grad zero_out_module = tf.load_op_library('libaimet_tf_ops.so') graph = tf.Graph() config = tf.compat.v1.ConfigProto(log_device_placement=False) sess = tf.compat.v1.Session(graph=graph, config=config) with graph.as_default(): inp = tf.compat.v1.placeholder(tf.float32, shape=[2, 2], name='input') tensor_quantizer = libpymo.TensorQuantizer(libpymo.QuantizationMode.QUANTIZATION_TF_ENHANCED, libpymo.RoundingMode.ROUND_NEAREST) tensor_quantizer_val = libpymo.PtrToInt64(tensor_quantizer) tensor_quant_ref = tf.Variable(initial_value=tensor_quantizer_val, trainable=False, dtype=tf.int64) mode_var = tf.Variable(initial_value=int(libpymo.TensorQuantizerOpMode.oneShotQuantizeDequantize), trainable=False, dtype=tf.int32) # fix min max and bitwidth to be used encoding_min = tf.Variable(initial_value=0.0, trainable=True, dtype=tf.double) encoding_max = tf.Variable(initial_value=5.0, trainable=True, dtype=tf.double) bit_width = tf.Variable(initial_value=8, trainable=False, dtype=tf.int8) use_symmetric_encoding = tf.Variable(initial_value=False, trainable=False, dtype=tf.bool) sess.run([mode_var.initializer, tensor_quant_ref.initializer, encoding_min.initializer, encoding_max.initializer, bit_width.initializer, use_symmetric_encoding.initializer]) # use default gradient pass_through_op_output = zero_out_module.qc_quantize(name='quant_op', in_tensor=inp, op_mode=mode_var, tensor_quantizer_reference=tensor_quant_ref, encoding_min=encoding_min, encoding_max=encoding_max, bit_width=bit_width, use_symmetric_encoding=use_symmetric_encoding) # pass_through_op = graph.get_operation_by_name('quant_op') inp_tensor = sess.graph.get_tensor_by_name('input:0') # set the encodings tensor_quantizer.isEncodingValid = True mode_var.load(int(libpymo.TensorQuantizerOpMode.quantizeDequantize), sess) # compute default gradient grads = tf.gradients(pass_through_op_output, [inp_tensor]) dlossbydx = grads # send input, note the last value sent here is > 5.0 , # we set encodings earlier to be min = 0.0 , max = 5.0 # input has data > p inp_data = [[1.4581, 0.4829], [0.3125, 5.6150]] # check the gradient returned is a gated version, in this case should be [[1.0, 1.0],[1.0, 0.0]] with graph.as_default(): input_gradient = sess.run([dlossbydx], feed_dict={inp_tensor: inp_data})[0] # validate valid clamping in gradient computation self.assertTrue(input_gradient[0][0][0] == 1.0) self.assertTrue(input_gradient[0][0][1] == 1.0) self.assertTrue(input_gradient[0][1][0] == 1.0) self.assertTrue(input_gradient[0][1][1] == 0.0) # pass input in correct range inp_data = [[1.4581, 0.4829], [0.3125, 1.6150]] # check the gradient returned is a gated version, in this case should be [[1.0, 1.0],[1.0, 0.0]] with graph.as_default(): input_gradient = sess.run([dlossbydx], feed_dict={inp_tensor: inp_data})[0] # validate no clamping case in gradient computation self.assertTrue(input_gradient[0][0][0] == 1.0) self.assertTrue(input_gradient[0][0][1] == 1.0) self.assertTrue(input_gradient[0][1][0] == 1.0) self.assertTrue(input_gradient[0][1][1] == 1.0) # pass input with data < n , first value here is -0.5 inp_data = [[-0.5, 0.4829], [0.3125, 1.6150]] # check the gradient returned is a gated version, in this case should be [[1.0, 1.0],[1.0, 0.0]] with graph.as_default(): input_gradient = sess.run([dlossbydx], feed_dict={inp_tensor: inp_data})[0] # validate valid clamping case in gradient computation self.assertTrue(input_gradient[0][0][0] == 0.0) self.assertTrue(input_gradient[0][0][1] == 1.0) self.assertTrue(input_gradient[0][1][0] == 1.0) self.assertTrue(input_gradient[0][1][1] == 1.0) def test_qc_quantize_recurrent_param_op(self): """ test custom recurrent param quantize op with CPU """ zero_out_module = tf.load_op_library('libaimet_tf_ops.so') graph = tf.Graph() config = tf.compat.v1.ConfigProto(log_device_placement=False) sess = tf.compat.v1.Session(graph=graph, config=config) bitwidth = 8 use_symm_encoding = True with graph.as_default(): # place holder for the input with tf.device("/device:CPU:0"): inp = tf.compat.v1.placeholder(tf.float32, shape=[10], name='input') tensor_quantizer = libpymo.TensorQuantizer(libpymo.QuantizationMode.QUANTIZATION_TF, libpymo.RoundingMode.ROUND_NEAREST) tensor_quantizer_val = libpymo.PtrToInt64(tensor_quantizer) tensor_quant_ref = tf.Variable(initial_value=tensor_quantizer_val, trainable=False, dtype=tf.int64) time_step_tensor = tf.constant(1, dtype=tf.int32) encoding_min = tf.Variable(initial_value=-0.5, trainable=True, dtype=tf.double) encoding_max = tf.Variable(initial_value=0.5, trainable=True, dtype=tf.double) bit_width = tf.Variable(initial_value=bitwidth, trainable=False, dtype=tf.int8) use_symmetric_encoding = tf.Variable(initial_value=use_symm_encoding, trainable=False, dtype=tf.bool) mode_var = tf.Variable(initial_value=int(libpymo.TensorQuantizerOpMode.oneShotQuantizeDequantize), trainable=False, dtype=tf.int32) sess.run([mode_var.initializer, tensor_quant_ref.initializer, encoding_min.initializer, encoding_max.initializer, bit_width.initializer, use_symmetric_encoding.initializer]) pass_through_op_output = zero_out_module.qc_quantize_recurrent_param(name='quant_op', in_tensor=inp, op_mode=mode_var, tensor_quantizer_reference=tensor_quant_ref, encoding_min=encoding_min, encoding_max=encoding_max, bit_width=bit_width, use_symmetric_encoding=use_symmetric_encoding, time_steps=time_step_tensor) inp_tensor = sess.graph.get_tensor_by_name('input:0') # inp_data = np.random.rand(10).astype(np.float32) np.random.seed(18) inp_data = np.random.randint(low=-1, high=2, size=10).astype(np.float32) # get the output print(inp_data) out_data = sess.run(pass_through_op_output, feed_dict={inp_tensor: inp_data}) print(out_data) # compare qc_quantize op's output with input # encodings being set to -0.5 and 0.5 should not have a bearing on this quantized output # we should not observe truncation if op's encoding min/max input values are used instead of cached values self.assertTrue(np.allclose(out_data, inp_data, atol=1e-6)) sess.close() def test_qc_quantize_op_gradient_computation(self): """ test to validate tensorflow custom gradient computation against golden test data (in this case : an equivalent Pytorch test with auto grad) """ zero_out_module = tf.load_op_library('libaimet_tf_ops.so') graph = tf.Graph() config = tf.ConfigProto(log_device_placement=False) sess = tf.Session(graph=graph, config=config) with graph.as_default(): # place holder for the input with tf.device("/device:CPU:0"): inp = tf.placeholder(tf.float32, shape=[2, 2], name='input') tensor_quantizer = libpymo.TensorQuantizer(libpymo.QuantizationMode.QUANTIZATION_TF_ENHANCED, libpymo.RoundingMode.ROUND_NEAREST) tensor_quantizer_val = libpymo.PtrToInt64(tensor_quantizer) tensor_quant_ref = tf.Variable(initial_value=tensor_quantizer_val, trainable=False, dtype=tf.int64) mode_var = tf.Variable(initial_value=int(libpymo.TensorQuantizerOpMode.oneShotQuantizeDequantize), trainable=False, dtype=tf.int32) # fix min max and bitwidth to be used encoding_min = tf.Variable(initial_value=0.0, trainable=True, dtype=tf.double) encoding_max = tf.Variable(initial_value=5.0, trainable=True, dtype=tf.double) bit_width = tf.Variable(initial_value=8, trainable=False, dtype=tf.int8) use_symmetric_encoding = tf.Variable(initial_value=False, trainable=False, dtype=tf.bool) sess.run([mode_var.initializer, tensor_quant_ref.initializer, encoding_min.initializer, encoding_max.initializer, bit_width.initializer, use_symmetric_encoding.initializer]) with graph.gradient_override_map( {"QcQuantize": "QcQuantizeRangeLearningCustomGradient"}): pass_through_op_output = zero_out_module.qc_quantize(name='quant_op', in_tensor=inp, op_mode=mode_var, tensor_quantizer_reference=tensor_quant_ref, encoding_min=encoding_min, encoding_max=encoding_max, bit_width=bit_width, use_symmetric_encoding=use_symmetric_encoding) pass_through_op = graph.get_operation_by_name('quant_op') inp_tensor = sess.graph.get_tensor_by_name('input:0') # fixed input data used inp_data = [[0.4581, 0.4829], [0.3125, 0.6150]] # get the output data @todo match these tensor_quantizer.isEncodingValid = True mode_var.load(int(libpymo.TensorQuantizerOpMode.quantizeDequantize), sess) # for matching with golden output, truncate to 4 tf_output_data = np.around(sess.run(pass_through_op_output, feed_dict={inp_tensor: inp_data}), 4) exp_output = [[0.4510, 0.4902], [0.3137, 0.6078]] # dummy loss function to match with Pytorch def custom_loss(y_actual, y_pred): return tf.reduce_sum(tf.subtract(y_pred, y_actual-y_actual)) with graph.as_default(): var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES) labels_placeholder = tf.placeholder(tf.float32, [2, 2], name='labels') # output tensor logits = sess.graph.get_tensor_by_name('quant_op:0') # dummy loss function is set to sum(output) current_loss = custom_loss(labels_placeholder, logits) labels = np.ones((2), dtype=int) # np.random.randint(2, size=batches) one_hot_labels = np.eye(2)[labels] update_ops = [] global_step = tf.train.create_global_step() # Stochastic GD in tf with momentum param optimizer = tf.train.MomentumOptimizer(learning_rate=0.05, momentum=0.5) gradients = optimizer.compute_gradients(current_loss, var_list) grad_updates = optimizer.apply_gradients(gradients, global_step=global_step) init_global = tf.global_variables_initializer() init_local = tf.local_variables_initializer() init = tf.group(init_global, init_local) sess.run(init) update_ops.append(grad_updates) update_op = tf.group(*update_ops) with tf.control_dependencies([update_op]): train_op = tf.identity(current_loss, name='train_op') # enable this to check current loss value used _ = sess.run(current_loss, feed_dict={inp_tensor: inp_data, labels_placeholder: one_hot_labels}) # start training _ = sess.run(train_op, feed_dict={inp_tensor: inp_data, labels_placeholder: one_hot_labels}) tf_enc_min_after_train = sess.run(pass_through_op.inputs[QuantizeOpIndices.encoding_min]) tf_enc_max_after_train = sess.run(pass_through_op.inputs[QuantizeOpIndices.encoding_max]) # match outputs self.assertTrue(np.allclose(exp_output, tf_output_data)) # compare min and max after update with expected values (Pytorch values) expected_enc_min_after_train = -5.7160621508955956e-05 expected_enc_max_after_train = 5.000057220458984 self.assertAlmostEqual(tf_enc_min_after_train, expected_enc_min_after_train, 6) self.assertAlmostEqual(tf_enc_max_after_train, expected_enc_max_after_train, 6) sess.close()
53.05225
140
0.572046
1f2c8c9110006e29e721717eeefa09ee02643c3e
548
py
Python
models/BOS_SVM.py
probeu/RDS
1c6cb75a000a5d95ef61a4e26b45de6b587a011d
[ "MIT" ]
10
2020-06-12T12:29:29.000Z
2020-09-05T06:28:34.000Z
models/BOS_SVM.py
ReML-AI/RDS
1c6cb75a000a5d95ef61a4e26b45de6b587a011d
[ "MIT" ]
1
2020-06-22T12:08:52.000Z
2020-06-22T12:08:52.000Z
models/BOS_SVM.py
probeu/RDS
1c6cb75a000a5d95ef61a4e26b45de6b587a011d
[ "MIT" ]
3
2020-06-15T17:21:16.000Z
2020-08-27T02:22:54.000Z
import numpy as np from sklearn.svm import SVR class BOS_SVM: def __init__(self): pass def run(self, state, action): data_x, data_y = state train_x, train_y, test_x, test_y = ( data_x[action == 1], data_y[action == 1].ravel(), data_x[action == 0], data_y[action == 0].ravel(), ) np.random.seed(123) model = SVR(kernel='linear') model.fit(train_x, train_y) return np.expand_dims(model.predict(test_x), axis=1)
26.095238
60
0.536496
27d6b61321c60319bee66bfe49f4ebca87f8a1eb
1,450
py
Python
data/settings.py
lothesven/Help-MacGyver-to-escape
4df57a172fb1eb0e32af24bbfc177064d91ff69b
[ "Unlicense" ]
null
null
null
data/settings.py
lothesven/Help-MacGyver-to-escape
4df57a172fb1eb0e32af24bbfc177064d91ff69b
[ "Unlicense" ]
1
2019-07-12T16:38:20.000Z
2019-07-12T16:38:20.000Z
data/settings.py
lothesven/Help-MacGyver-to-escape
4df57a172fb1eb0e32af24bbfc177064d91ff69b
[ "Unlicense" ]
null
null
null
"""Contains all settings constants such as:\n colors, fonts, sounds, images, positions, structures and sizes""" import os.path from pygame import font DIRECTORY = os.path.abspath(os.path.dirname(__file__)) HEIGHT, WIDTH = 600, 600 MARGIN = 40 FOOTLOGS = 80 TILESIZE = 40 MENU = os.path.join(DIRECTORY, "images", "macgyver_t.jpg") WIN = os.path.join(DIRECTORY, "images", "macgyver_victory.jpg") LOSE = os.path.join(DIRECTORY, "images", "macgyver_failure.jpg") MACGYVER = os.path.join(DIRECTORY, "images", "macgyver.png") GUARD = os.path.join(DIRECTORY, "images", "guard.png") WALLSNFLOORS = os.path.join(DIRECTORY, "images", "wallsnfloors.png") NEEDLE = os.path.join(DIRECTORY, "images", "needle.png") PLASTUBE = os.path.join(DIRECTORY, "images", "plastic_tube.png") ETHER = os.path.join(DIRECTORY, "images", "ether.png") SYRINGE = os.path.join(DIRECTORY, "images", "syringe.png") FOOTSTEPS = os.path.join(DIRECTORY, "sounds", "footsteps.ogg") ERROR = os.path.join(DIRECTORY, "sounds", "error.ogg") AMBIANT = os.path.join(DIRECTORY, "sounds", "ambiant.ogg") WINNING = os.path.join(DIRECTORY, "sounds", "winning.ogg") VICTORY = os.path.join(DIRECTORY, "sounds", "victory.ogg") FAILURE = os.path.join(DIRECTORY, "sounds", "failure.ogg") font.init() FONT = font.Font(os.path.join(DIRECTORY, "fonts", "niew_cromagnon.ttf"), 30) MAZE = os.path.join(DIRECTORY, "maze") WHITE = (255, 255, 255) BLACK = (0, 0, 0) GREEN = (0, 255, 0) RED = (255, 0, 0)
35.365854
76
0.707586
503e515a2d49e7822e79270dc3185ee187e08440
1,547
py
Python
RunModel_CoNLL_Format.py
tommasoc80/event_interoperability
0dcdb72a2bd32f65e021c15d44a40a37601e9367
[ "CC0-1.0" ]
null
null
null
RunModel_CoNLL_Format.py
tommasoc80/event_interoperability
0dcdb72a2bd32f65e021c15d44a40a37601e9367
[ "CC0-1.0" ]
null
null
null
RunModel_CoNLL_Format.py
tommasoc80/event_interoperability
0dcdb72a2bd32f65e021c15d44a40a37601e9367
[ "CC0-1.0" ]
null
null
null
#!/usr/bin/python # This scripts loads a pretrained model and a input file in CoNLL format (each line a token, sentences separated by an empty line). # The input sentences are passed to the model for tagging. Prints the tokens and the tags in a CoNLL format to stdout # Usage: python RunModel_ConLL_Format.py modelPath inputPathToConllFile # For pretrained models see docs/ from __future__ import print_function from util.preprocessing import readCoNLL, createMatrices, addCharInformation, addCasingInformation from neuralnets.BiLSTM import BiLSTM import sys import logging if len(sys.argv) < 3: print("Usage: python RunModel_CoNLL_Format.py modelPath inputPathToConllFile") exit() modelPath = sys.argv[1] inputPath = sys.argv[2] # path to test set inputColumns = {0: "tokens"} #inputColumns = {2: "tokens"} # :: Prepare the input :: sentences = readCoNLL(inputPath, inputColumns) #print(sentences) addCharInformation(sentences) addCasingInformation(sentences) # :: Load the model :: lstmModel = BiLSTM.loadModel(modelPath) dataMatrix = createMatrices(sentences, lstmModel.mappings, True) # :: Tag the input :: tags = lstmModel.tagSentences(dataMatrix) # :: Output to stdout :: for sentenceIdx in range(len(sentences)): tokens = sentences[sentenceIdx]['tokens'] for tokenIdx in range(len(tokens)): tokenTags = [] for modelName in sorted(tags.keys()): tokenTags.append(tags[modelName][sentenceIdx][tokenIdx]) print("%s\t%s" % (tokens[tokenIdx], "\t".join(tokenTags))) print("")
30.333333
131
0.738849
62b35b79ea0bcca181dc64abe40436b3f1b57f1d
1,234
py
Python
main/auth/google.py
ssxenon01/contact-sharing
ad2bec5b03f123837eab6a7126896a8faf17639c
[ "MIT" ]
1
2015-09-12T10:12:16.000Z
2015-09-12T10:12:16.000Z
main/auth/google.py
ssxenon01/contact-sharing
ad2bec5b03f123837eab6a7126896a8faf17639c
[ "MIT" ]
null
null
null
main/auth/google.py
ssxenon01/contact-sharing
ad2bec5b03f123837eab6a7126896a8faf17639c
[ "MIT" ]
null
null
null
# coding: utf-8 from __future__ import absolute_import from google.appengine.api import users import flask import auth import model import util from main import app @app.route('/signin/google/') def signin_google(): auth.save_request_params() google_url = users.create_login_url(flask.url_for('google_authorized')) return flask.redirect(google_url) @app.route('/_s/callback/google/authorized/') def google_authorized(): google_user = users.get_current_user() if google_user is None: flask.flash('You denied the request to sign in.') return flask.redirect(util.get_next_url()) user_db = retrieve_user_from_google(google_user) return auth.signin_user_db(user_db) def retrieve_user_from_google(google_user): auth_id = 'federated_%s' % google_user.user_id() user_db = model.User.get_by('auth_ids', auth_id) if user_db: if not user_db.admin and users.is_current_user_admin(): user_db.admin = True user_db.put() return user_db return auth.create_user_db( auth_id=auth_id, name=util.create_name_from_email(google_user.email()), username=google_user.email(), email=google_user.email(), verified=True, admin=users.is_current_user_admin(), )
24.68
73
0.740681
7d1a423f796912b6a820e050ad98b3e355a32e9c
1,365
py
Python
project/urls.py
Rajkumar-brk/Emotion-recognition-using-Text
d854247e1ce2721bcdf19bc237957c78ff1d100c
[ "MIT" ]
52
2019-07-26T04:19:57.000Z
2022-03-29T12:03:41.000Z
project/urls.py
Rajkumar-brk/Emotion-recognition-using-Text
d854247e1ce2721bcdf19bc237957c78ff1d100c
[ "MIT" ]
2
2019-09-17T02:11:52.000Z
2021-12-07T01:30:35.000Z
project/urls.py
Rajkumar-brk/Emotion-recognition-using-Text
d854247e1ce2721bcdf19bc237957c78ff1d100c
[ "MIT" ]
87
2019-07-26T18:22:24.000Z
2022-03-29T07:15:36.000Z
"""project URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path,include from user import views as user_view from django.contrib.auth import views as auth from .router import router from rest_framework.authtoken import views urlpatterns = [ path('admin/', admin.site.urls), ######### api path ########################## path('api/',include(router.urls)), path('api-token-auth/',views.obtain_auth_token,name='api-tokn-auth'), #####user related path########################## path('',include('user.urls')), path('login/',user_view.Login,name='login'), path('logout/',auth.LogoutView.as_view(template_name='user/index.html'),name='logout'), path('register/',user_view.register,name='register'), ]
34.125
91
0.676923
49efa0df5be83a301cd2551d1a02c0fc8c39d482
95
py
Python
mailclient/apps.py
sudhanshu456/email-client-django
fc59dc1a3ba4e7f5fec5f8ce82dfae73a64ff537
[ "MIT" ]
null
null
null
mailclient/apps.py
sudhanshu456/email-client-django
fc59dc1a3ba4e7f5fec5f8ce82dfae73a64ff537
[ "MIT" ]
null
null
null
mailclient/apps.py
sudhanshu456/email-client-django
fc59dc1a3ba4e7f5fec5f8ce82dfae73a64ff537
[ "MIT" ]
null
null
null
from django.apps import AppConfig class MailclientConfig(AppConfig): name = 'mailclient'
15.833333
34
0.768421
12483ef4de2e39137f52b9282b4e28830906dde5
11,591
py
Python
fsdet/data/builtin.py
luweishuang/few-shot-object-detection
956517f4e714a205583ce113ebc56b38af53df09
[ "Apache-2.0" ]
null
null
null
fsdet/data/builtin.py
luweishuang/few-shot-object-detection
956517f4e714a205583ce113ebc56b38af53df09
[ "Apache-2.0" ]
null
null
null
fsdet/data/builtin.py
luweishuang/few-shot-object-detection
956517f4e714a205583ce113ebc56b38af53df09
[ "Apache-2.0" ]
null
null
null
""" This file registers pre-defined datasets at hard-coded paths, and their metadata. We hard-code metadata for common datasets. This will enable: 1. Consistency check when loading the datasets 2. Use models on these standard datasets directly and run demos, without having to download the dataset annotations We hard-code some paths to the dataset that's assumed to exist in "./datasets/". Here we only register the few-shot datasets and complete COCO, PascalVOC and LVIS have been handled by the builtin datasets in detectron2. """ import os from detectron2.data import MetadataCatalog from detectron2.data.datasets.lvis import register_lvis_instances from .builtin_meta import _get_builtin_metadata from .meta_coco import register_meta_coco from .meta_lvis import register_meta_lvis from .meta_pascal_voc import register_meta_pascal_voc from .meta_powertower import register_meta_powertower # ==== Predefined datasets and splits for COCO ========== _PREDEFINED_SPLITS_COCO = {} _PREDEFINED_SPLITS_COCO["coco"] = { "coco_2014_train": ( "coco/train2014", "coco/annotations/instances_train2014.json", ), "coco_2014_val": ( "coco/val2014", "coco/annotations/instances_val2014.json", ), "coco_2014_minival": ( "coco/val2014", "coco/annotations/instances_minival2014.json", ), "coco_2014_minival_100": ( "coco/val2014", "coco/annotations/instances_minival2014_100.json", ), "coco_2014_valminusminival": ( "coco/val2014", "coco/annotations/instances_valminusminival2014.json", ), "coco_2017_train": ( "coco/train2017", "coco/annotations/instances_train2017.json", ), "coco_2017_val": ( "coco/val2017", "coco/annotations/instances_val2017.json", ), "coco_2017_test": ( "coco/test2017", "coco/annotations/image_info_test2017.json", ), "coco_2017_test-dev": ( "coco/test2017", "coco/annotations/image_info_test-dev2017.json", ), "coco_2017_val_100": ( "coco/val2017", "coco/annotations/instances_val2017_100.json", ), } def register_all_coco(root="datasets"): # for dataset_name, splits_per_dataset in _PREDEFINED_SPLITS_COCO.items(): # for key, (image_root, json_file) in splits_per_dataset.items(): # # Assume pre-defined datasets live in `./datasets`. # register_coco_instances( # key, # _get_builtin_metadata(dataset_name), # os.path.join(root, json_file) # if "://" not in json_file # else json_file, # os.path.join(root, image_root), # ) # register meta datasets METASPLITS = [ ( "coco_trainval_all", "coco/trainval2014", "cocosplit/datasplit/trainvalno5k.json", ), ( "coco_trainval_base", "coco/trainval2014", "cocosplit/datasplit/trainvalno5k.json", ), ("coco_test_all", "coco/val2014", "cocosplit/datasplit/5k.json"), ("coco_test_base", "coco/val2014", "cocosplit/datasplit/5k.json"), ("coco_test_novel", "coco/val2014", "cocosplit/datasplit/5k.json"), ] # register small meta datasets for fine-tuning stage for prefix in ["all", "novel"]: for shot in [1, 2, 3, 5, 10, 30]: for seed in range(10): seed = "" if seed == 0 else "_seed{}".format(seed) name = "coco_trainval_{}_{}shot{}".format(prefix, shot, seed) METASPLITS.append((name, "coco/trainval2014", "")) for name, imgdir, annofile in METASPLITS: register_meta_coco( name, _get_builtin_metadata("coco_fewshot"), os.path.join(root, imgdir), os.path.join(root, annofile), ) # ==== Predefined datasets and splits for LVIS ========== _PREDEFINED_SPLITS_LVIS = { "lvis_v0.5": { # "lvis_v0.5_train": ("coco/train2017", "lvis/lvis_v0.5_train.json"), "lvis_v0.5_train_freq": ( "coco/train2017", "lvis/lvis_v0.5_train_freq.json", ), "lvis_v0.5_train_common": ( "coco/train2017", "lvis/lvis_v0.5_train_common.json", ), "lvis_v0.5_train_rare": ( "coco/train2017", "lvis/lvis_v0.5_train_rare.json", ), # "lvis_v0.5_val": ("coco/val2017", "lvis/lvis_v0.5_val.json"), # "lvis_v0.5_val_rand_100": ( # "coco/val2017", # "lvis/lvis_v0.5_val_rand_100.json", # ), # "lvis_v0.5_test": ( # "coco/test2017", # "lvis/lvis_v0.5_image_info_test.json", # ), }, } def register_all_lvis(root="datasets"): for dataset_name, splits_per_dataset in _PREDEFINED_SPLITS_LVIS.items(): for key, (image_root, json_file) in splits_per_dataset.items(): # Assume pre-defined datasets live in `./datasets`. register_lvis_instances( key, _get_builtin_metadata(dataset_name), os.path.join(root, json_file) if "://" not in json_file else json_file, os.path.join(root, image_root), ) # register meta datasets METASPLITS = [ ( "lvis_v0.5_train_shots", "coco/train2017", "lvissplit/lvis_shots.json", ), ( "lvis_v0.5_train_rare_novel", "coco/train2017", "lvis/lvis_v0.5_train_rare.json", ), ("lvis_v0.5_val_novel", "coco/val2017", "lvis/lvis_v0.5_val.json"), ] for name, image_root, json_file in METASPLITS: dataset_name = "lvis_v0.5_fewshot" if "novel" in name else "lvis_v0.5" register_meta_lvis( name, _get_builtin_metadata(dataset_name), os.path.join(root, json_file) if "://" not in json_file else json_file, os.path.join(root, image_root), ) # ==== Predefined splits for PASCAL VOC =========== def register_all_pascal_voc(root="datasets"): # SPLITS = [ # ("voc_2007_trainval", "VOC2007", "trainval"), # ("voc_2007_train", "VOC2007", "train"), # ("voc_2007_val", "VOC2007", "val"), # ("voc_2007_test", "VOC2007", "test"), # ("voc_2012_trainval", "VOC2012", "trainval"), # ("voc_2012_train", "VOC2012", "train"), # ("voc_2012_val", "VOC2012", "val"), # ] # for name, dirname, split in SPLITS: # year = 2007 if "2007" in name else 2012 # register_pascal_voc(name, os.path.join(root, dirname), split, year) # MetadataCatalog.get(name).evaluator_type = "pascal_voc" # register meta datasets METASPLITS = [ ("voc_2007_trainval_base1", "VOC2007", "trainval", "base1", 1), ("voc_2007_trainval_base2", "VOC2007", "trainval", "base2", 2), ("voc_2007_trainval_base3", "VOC2007", "trainval", "base3", 3), ("voc_2012_trainval_base1", "VOC2012", "trainval", "base1", 1), ("voc_2012_trainval_base2", "VOC2012", "trainval", "base2", 2), ("voc_2012_trainval_base3", "VOC2012", "trainval", "base3", 3), ("voc_2007_trainval_all1", "VOC2007", "trainval", "base_novel_1", 1), ("voc_2007_trainval_all2", "VOC2007", "trainval", "base_novel_2", 2), ("voc_2007_trainval_all3", "VOC2007", "trainval", "base_novel_3", 3), ("voc_2012_trainval_all1", "VOC2012", "trainval", "base_novel_1", 1), ("voc_2012_trainval_all2", "VOC2012", "trainval", "base_novel_2", 2), ("voc_2012_trainval_all3", "VOC2012", "trainval", "base_novel_3", 3), ("voc_2007_test_base1", "VOC2007", "test", "base1", 1), ("voc_2007_test_base2", "VOC2007", "test", "base2", 2), ("voc_2007_test_base3", "VOC2007", "test", "base3", 3), ("voc_2007_test_novel1", "VOC2007", "test", "novel1", 1), ("voc_2007_test_novel2", "VOC2007", "test", "novel2", 2), ("voc_2007_test_novel3", "VOC2007", "test", "novel3", 3), ("voc_2007_test_all1", "VOC2007", "test", "base_novel_1", 1), ("voc_2007_test_all2", "VOC2007", "test", "base_novel_2", 2), ("voc_2007_test_all3", "VOC2007", "test", "base_novel_3", 3), ] # register small meta datasets for fine-tuning stage for prefix in ["all", "novel"]: for sid in range(1, 4): for shot in [1, 2, 3, 5, 10]: for year in [2007, 2012]: for seed in range(100): seed = "" if seed == 0 else "_seed{}".format(seed) name = "voc_{}_trainval_{}{}_{}shot{}".format( year, prefix, sid, shot, seed ) dirname = "VOC{}".format(year) img_file = "{}_{}shot_split_{}_trainval".format( prefix, shot, sid ) keepclasses = ( "base_novel_{}".format(sid) if prefix == "all" else "novel{}".format(sid) ) METASPLITS.append( (name, dirname, img_file, keepclasses, sid) ) for name, dirname, split, keepclasses, sid in METASPLITS: year = 2007 if "2007" in name else 2012 register_meta_pascal_voc( name, _get_builtin_metadata("pascal_voc_fewshot"), os.path.join(root, dirname), split, year, keepclasses, sid, ) MetadataCatalog.get(name).evaluator_type = "pascal_voc" # ==== Predefined splits for powertower =========== def register_all_powertower(root="datasets"): # register meta datasets METASPLITS = [ # name, dirname, img_file, keepclasses, sid ("powertower_trainval_base", "powertower", "trainval", "base1"), ("powertower_trainval_all", "powertower", "trainval", "base_novel_1"), ("powertower_test_base", "powertower", "test", "base1"), ("powertower_test_novel", "powertower", "test", "novel1"), ("powertower_test_all", "powertower", "test", "base_novel_1"), ] # register small meta datasets for fine-tuning stage for prefix in ["all", "novel"]: for shot in [1, 5, 10]: for seed in range(100): seed = "" if seed == 0 else "_seed{}".format(seed) name = "powertower_trainval_{}_{}shot{}".format(prefix, shot, seed) dirname = "powertower" img_file = "{}_{}shot_split_trainval".format(prefix, shot) keepclasses = ( "base_novel" if prefix == "all" else "novel" ) METASPLITS.append( (name, dirname, img_file, keepclasses) ) for name, dirname, split, keepclasses in METASPLITS: register_meta_powertower( name, _get_builtin_metadata("powertower_fewshot"), os.path.join(root, dirname), split, keepclasses ) MetadataCatalog.get(name).evaluator_type = "powertower" # Register them all under "./datasets" register_all_coco() register_all_lvis() register_all_pascal_voc() register_all_powertower()
37.390323
87
0.570356
47711d6f57d1e19b269abd90dd4ff104cb3a9aad
409
py
Python
code/course_py_docker/wsgi.py
leandrolasnor/todo
cdf1377511427c942b2819954880acba3830f685
[ "Apache-2.0" ]
null
null
null
code/course_py_docker/wsgi.py
leandrolasnor/todo
cdf1377511427c942b2819954880acba3830f685
[ "Apache-2.0" ]
null
null
null
code/course_py_docker/wsgi.py
leandrolasnor/todo
cdf1377511427c942b2819954880acba3830f685
[ "Apache-2.0" ]
null
null
null
""" WSGI config for course_py_docker project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.0/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'course_py_docker.settings') application = get_wsgi_application()
24.058824
78
0.794621
337a8fa821705d9ae2f4a8df167f1faf0c0d9695
2,700
py
Python
packages/cspell-lib/samples/src/sample.py
DenysVuika/cspell
126b28fc501d4e709699b381edc09e0c9dad48fb
[ "MIT" ]
406
2019-05-29T15:57:00.000Z
2022-03-31T17:34:41.000Z
packages/cspell-lib/samples/src/sample.py
DenysVuika/cspell
126b28fc501d4e709699b381edc09e0c9dad48fb
[ "MIT" ]
1,002
2019-05-13T08:18:49.000Z
2022-03-31T06:52:11.000Z
packages/cspell-lib/samples/src/sample.py
DenysVuika/cspell
126b28fc501d4e709699b381edc09e0c9dad48fb
[ "MIT" ]
50
2019-06-14T20:54:27.000Z
2022-02-28T23:34:18.000Z
""" Roman Numbers Sample Python file. with email address: ExampleCode <possiblyhelpfulcodeexamples@code.example.com> """ import re class OutOfRangeError(ValueError): pass class NotIntegerError(ValueError): pass class InvalidRomanNumeral(ValueError): pass romanNumeralValues = { 'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000, 'II': 2, 'III': 3, 'IV': 4, 'IX': 9, 'XX': 20, 'XXX': 30, 'XL': 40, 'XC': 90, 'CC': 200, 'CCC': 300, 'CD': 400, 'CM': 900, 'MM': 2000, 'MMM': 3000, 'MMMM': 4000, } ordered = sorted([(a[1], a[0]) for a in romanNumeralValues.items()], reverse=True) def to_roman(number): if not isinstance(number, int): raise NotIntegerError('Non-integers cannot be converted.') if not (0 < number < 5000): raise OutOfRangeError('Valid numbers are 1 to 4999, got {0}'.format(number)) r = '' for (num, numeral) in ordered: if num <= number: number -= num r += numeral return r # Match against the numerals required for each digit reMatchRoman = re.compile(r''' ^ (M{0,4})? # thousands (CM|CD|D?C{0,3})? # hundreds (XC|XL|L?X{0,3})? # tens (IX|IV|V?I{0,3})? # ones $ ''', re.VERBOSE) # Split numerals up so we can look them up in romanNumeralValues reSplitNumerals = re.compile(r"CM|D|CD|XC|L|XL|IX|V|IV|M+|C+|X+|I+") def is_valid(roman): return reMatchRoman.match(roman) != None def to_number(roman): if not isinstance(roman, str): raise InvalidRomanNumeral('Only valid roman numerals are allowed.') roman = roman.upper().strip() if not roman: raise InvalidRomanNumeral('Only valid roman numerals are allowed.') match = reMatchRoman.match(roman.upper()) if match == None: raise InvalidRomanNumeral('Only valid roman numerals are allowed.') value = 0 for digit in match.groups(): for numeral in reSplitNumerals.findall(digit): value += romanNumeralValues[numeral] return value binary = b'binary' unicode = u'unicode' if __name__ == '__main__': print(to_roman(1984)) print(is_valid(to_roman(1999))) print(is_valid('hello')) print(to_roman(1492)) print(to_number(to_roman(1492))) print(to_roman(1888)) print(to_number(to_roman(1888))) for n in range(1, 4999): # print(to_roman(n)) is_valid(to_roman(n)) if n != to_number(to_roman(n)): raise ValueError('Failed on %d' % n) print('Done.') ''' Deliberate misspelling for testing purposes: garbbage. Django terms: bbcontains bboverlaps createsuperuser dbshell '''
23.478261
84
0.612222
767854b0fbace8cf6d38a03e5b1457428e94741a
5,192
py
Python
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_pad.py
L-Net-1992/Paddle
4d0ca02ba56760b456f3d4b42a538555b9b6c307
[ "Apache-2.0" ]
11
2016-08-29T07:43:26.000Z
2016-08-29T07:51:24.000Z
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_pad.py
L-Net-1992/Paddle
4d0ca02ba56760b456f3d4b42a538555b9b6c307
[ "Apache-2.0" ]
null
null
null
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_pad.py
L-Net-1992/Paddle
4d0ca02ba56760b456f3d4b42a538555b9b6c307
[ "Apache-2.0" ]
1
2021-12-09T08:59:17.000Z
2021-12-09T08:59:17.000Z
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from trt_layer_auto_scan_test import TrtLayerAutoScanTest, SkipReasons from program_config import TensorConfig, ProgramConfig import numpy as np import paddle.inference as paddle_infer from functools import partial from typing import Optional, List, Callable, Dict, Any, Set import unittest class TrtConvertPadTest(TrtLayerAutoScanTest): def is_program_valid(self, program_config: ProgramConfig) -> bool: inputs = program_config.inputs weights = program_config.weights attrs = [ program_config.ops[i].attrs for i in range(len(program_config.ops)) ] if attrs[0]['pad_value'] != 0.0: return False for x in attrs[0]['paddings']: if x < 0: return False return True def sample_program_configs(self): def generate_input1(attrs: List[Dict[str, Any]]): return np.ones([1, 3, 64, 64]).astype(np.float32) def generate_weight1(attrs: List[Dict[str, Any]]): return np.random.random([24, 3, 3, 3]).astype(np.float32) for pad_value in [0.0, 1.0, 2.0, -100, 100.0]: for paddings in [[0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 0, 0, 1, 2, 3, 4], [0, 0, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, -1, -1, 1, 1]]: dics = [{"pad_value": pad_value, "paddings": paddings}, {}] ops_config = [{ "op_type": "pad", "op_inputs": { "X": ["input_data"] }, "op_outputs": { "Out": ["pad_output_data"] }, "op_attrs": dics[0] }] ops = self.generate_op_config(ops_config) program_config = ProgramConfig( ops=ops, weights={}, inputs={ "input_data": TensorConfig(data_gen=partial(generate_input1, dics)) }, outputs=["pad_output_data"]) yield program_config def sample_predictor_configs( self, program_config) -> (paddle_infer.Config, List[int], float): def generate_dynamic_shape(attrs): self.dynamic_shape.min_input_shape = {"input_data": [1, 3, 32, 32]} self.dynamic_shape.max_input_shape = {"input_data": [4, 3, 64, 64]} self.dynamic_shape.opt_input_shape = {"input_data": [1, 3, 64, 64]} def clear_dynamic_shape(): self.dynamic_shape.min_input_shape = {} self.dynamic_shape.max_input_shape = {} self.dynamic_shape.opt_input_shape = {} def generate_trt_nodes_num(attrs, dynamic_shape): for x in range(len(program_config.ops[0].attrs['paddings']) - 4): if program_config.ops[0].attrs['paddings'][x] != 0: return 0, 3 return 1, 2 attrs = [ program_config.ops[i].attrs for i in range(len(program_config.ops)) ] # for static_shape clear_dynamic_shape() self.trt_param.precision = paddle_infer.PrecisionType.Float32 yield self.create_inference_config(), generate_trt_nodes_num( attrs, False), 1e-5 self.trt_param.precision = paddle_infer.PrecisionType.Half yield self.create_inference_config(), generate_trt_nodes_num( attrs, False), 1e-2 # for dynamic_shape generate_dynamic_shape(attrs) self.trt_param.precision = paddle_infer.PrecisionType.Float32 yield self.create_inference_config(), generate_trt_nodes_num( attrs, True), 1e-5 self.trt_param.precision = paddle_infer.PrecisionType.Half yield self.create_inference_config(), generate_trt_nodes_num( attrs, True), 1e-2 def add_skip_trt_case(self): def teller1(program_config, predictor_config): for x in range(len(program_config.ops[0].attrs['paddings']) - 4): if program_config.ops[0].attrs['paddings'][x] != 0: return True return False self.add_skip_case( teller1, SkipReasons.TRT_NOT_IMPLEMENTED, "NOT Implemented: we need to add support pad not only inplement on h or w, such as paddings = [0, 0, 1, 1, 1, 1, 1, 1]" ) pass def test(self): self.add_skip_trt_case() self.run_test() if __name__ == "__main__": unittest.main()
37.085714
131
0.585901
2167091cd087a4618b75242f018ca06db6d9c38a
230
py
Python
test.py
qwc-services/qwc-data-service
b20f47ad08275439233034ef3b31a4c437be3fc7
[ "MIT" ]
2
2021-08-11T10:34:44.000Z
2022-02-24T10:26:39.000Z
test.py
qwc-services/qwc-data-service
b20f47ad08275439233034ef3b31a4c437be3fc7
[ "MIT" ]
7
2020-10-17T15:38:39.000Z
2022-01-08T09:59:21.000Z
test.py
qwc-services/qwc-data-service
b20f47ad08275439233034ef3b31a4c437be3fc7
[ "MIT" ]
5
2019-05-17T11:27:55.000Z
2020-12-28T09:24:25.000Z
import unittest # from tests.api_tests import * from tests.feature_validation_tests import * # from tests.feature_validation_tests_somap import * if __name__ == '__main__': # run all imported test cases unittest.main()
20.909091
52
0.76087
79bcf770250a23086d0fc88be1ad1dc2cfedf0ac
2,075
py
Python
oauth2_provider/admin.py
redhawkIT/django-oauth-toolkit
3909595f5d212b689fa9903ea70001503850d689
[ "BSD-2-Clause-FreeBSD" ]
2
2021-03-21T03:35:24.000Z
2021-04-20T05:49:19.000Z
oauth2_provider/admin.py
redhawkIT/django-oauth-toolkit
3909595f5d212b689fa9903ea70001503850d689
[ "BSD-2-Clause-FreeBSD" ]
4
2018-06-20T11:33:43.000Z
2021-05-28T08:02:21.000Z
oauth2_provider/admin.py
redhawkIT/django-oauth-toolkit
3909595f5d212b689fa9903ea70001503850d689
[ "BSD-2-Clause-FreeBSD" ]
4
2018-06-20T11:14:46.000Z
2021-05-21T15:56:02.000Z
from django.contrib import admin from oauth2_provider.models import ( get_access_token_admin_class, get_access_token_model, get_application_admin_class, get_application_model, get_grant_admin_class, get_grant_model, get_id_token_admin_class, get_id_token_model, get_refresh_token_admin_class, get_refresh_token_model, ) class ApplicationAdmin(admin.ModelAdmin): list_display = ("id", "name", "user", "client_type", "authorization_grant_type") list_filter = ("client_type", "authorization_grant_type", "skip_authorization") radio_fields = { "client_type": admin.HORIZONTAL, "authorization_grant_type": admin.VERTICAL, } raw_id_fields = ("user",) class AccessTokenAdmin(admin.ModelAdmin): list_display = ("token", "user", "application", "expires") raw_id_fields = ("user", "source_refresh_token") class GrantAdmin(admin.ModelAdmin): list_display = ("code", "application", "user", "expires") raw_id_fields = ("user",) class IDTokenAdmin(admin.ModelAdmin): list_display = ("jti", "user", "application", "expires") raw_id_fields = ("user",) class RefreshTokenAdmin(admin.ModelAdmin): list_display = ("token", "user", "application") raw_id_fields = ("user", "access_token") application_model = get_application_model() access_token_model = get_access_token_model() grant_model = get_grant_model() id_token_model = get_id_token_model() refresh_token_model = get_refresh_token_model() application_admin_class = get_application_admin_class() access_token_admin_class = get_access_token_admin_class() grant_admin_class = get_grant_admin_class() id_token_admin_class = get_id_token_admin_class() refresh_token_admin_class = get_refresh_token_admin_class() admin.site.register(application_model, application_admin_class) admin.site.register(access_token_model, access_token_admin_class) admin.site.register(grant_model, grant_admin_class) admin.site.register(id_token_model, id_token_admin_class) admin.site.register(refresh_token_model, refresh_token_admin_class)
32.421875
84
0.773976
b1f3186e133d4b984298a17501a5e530a15f3a57
1,559
py
Python
examples/user/components/run_examples.py
willic3/pythia
2657b95a0c07fd3c914ab6b5f7ec89a8edba004c
[ "BSD-3-Clause" ]
1
2015-11-30T08:01:39.000Z
2015-11-30T08:01:39.000Z
examples/user/components/run_examples.py
willic3/pythia
2657b95a0c07fd3c914ab6b5f7ec89a8edba004c
[ "BSD-3-Clause" ]
27
2018-05-24T18:31:25.000Z
2021-10-16T03:57:52.000Z
examples/user/components/run_examples.py
willic3/pythia
2657b95a0c07fd3c914ab6b5f7ec89a8edba004c
[ "BSD-3-Clause" ]
7
2019-07-19T02:30:56.000Z
2021-06-02T22:00:01.000Z
#!/usr/bin/env python # ====================================================================== # # Brad T. Aagaard, U.S. Geological Survey # # This code was developed as part of the Computational Infrastructure # for Geodynamics (http://geodynamics.org). # # Copyright (c) 2010-2017 University of California, Davis # # See COPYING for license information. # # ====================================================================== # import step01_facility import step02_facilityvault import step03_facilityarray def run_app(app, args=[]): print("Running '{}' with args={} ...".format(app.__doc__, args)) app.run(argv=[app.name] + args) print("Finished running '{}'.\n".format(app.__doc__)) def run_step01(): app = step01_facility.GreeterApp() run_app(app) run_app(app, args=["--greeter.greeting=Howdy there"]) run_app(app, args=["--greeter=greeters.Alien"]) run_app(app, args=["step01_human.cfg"]) def run_step02(): app = step02_facilityvault.GreeterApp() run_app(app) run_app(app, args=["--greeter=robot"]) run_app(app, args=["--greeter=robot", "--robot.model=RPT56"]) run_app(app, args=["step02_robot.cfg"]) def run_step03(): app = step03_facilityarray.GreeterApp() run_app(app) run_app(app, args=["--greeters.left=greeters.Human"]) run_app(app, args=["--greeters.right=remotehuman"]) run_app(app, args=["step03_leftright.cfg"]) run_app(app, args=["step03_three.cfg"]) def run(): run_step01() run_step02() run_step03() if __name__ == "__main__": run()
25.983333
72
0.613214
49509263e7bebc04f863b0921f3a6d11b1d554d0
23,100
py
Python
controls/pyqgis_controls/main.py
cabesuon/ideuy_controls
508217725ffd4993d574acec6ea9d80c0401591a
[ "MIT" ]
null
null
null
controls/pyqgis_controls/main.py
cabesuon/ideuy_controls
508217725ffd4993d574acec6ea9d80c0401591a
[ "MIT" ]
null
null
null
controls/pyqgis_controls/main.py
cabesuon/ideuy_controls
508217725ffd4993d574acec6ea9d80c0401591a
[ "MIT" ]
null
null
null
""" Module that controls the correct flow of the hydrography. Examples: $python main.py -h. $python main.py dbname dbschema user password output rem conf. $python main.py dbname dbschema user password output rem conf. $python main.py test_vector_db duplicate_geoms test_user test_password output --server localhost --port 5432. Attributes: _: gettext pyqgis_controls.main """ import sys import argparse import json import gettext import logging from qgis.core import QgsApplication, QgsDataSourceUri, QgsVectorLayer from qgis.core import QgsGeometry, QgsSpatialIndex, QgsWkbTypes, QgsFeature from PyQt5.QtGui import * from src.common.time import ( get_time ) from common.file import FileManager, FileManagerError _ = gettext.gettext logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) def get_args(): """ Get and return arguments from input. """ parser = argparse.ArgumentParser( description=_( 'check the correct direction of the flow, the existence endorheic basin and that' + ' the surfaces at rest have no flow direction.' ) ) parser.add_argument('dbname', help=_('database name')) parser.add_argument('dbschema', help=_('database schema')) parser.add_argument('user', help=_('database user')) parser.add_argument('password', help=_('database password')) parser.add_argument('output', help=_('output folder')) parser.add_argument('rem', help=_( 'shapefile of the polyline with the limits of the consignment' )) parser.add_argument('conf', help=_('json file with the configuration of the control')) parser.add_argument('-s', '--server', default='localhost', help=_('database host')) parser.add_argument('-p', '--port', type=int, default=5432, help=_('database port')) parser.add_argument('-q', '--dirqgis', default='C:\\OSGeo4W64\\apps\\qgis\\', help=_( 'osgeo app qgis directori' )) parser.add_argument('-tol1', '--t1', type=float, default=0.1, help=_('Z lines tolerance')) parser.add_argument('-tol2', '--t2', type=float, default=0.01, help=_('Z polygon tolerance')) args = parser.parse_args() return args def qgs_init(pp): """ PyQGIS initialization. """ QgsApplication.setPrefixPath(pp, True) qgs = QgsApplication([], False) qgs.initQgis() return qgs def qgs_exit(qgs): """ Exit PyQGIS. """ qgs.exitQgis() def create_indexes(l, u, args): """ Return list and dictionary with spatial indexes. """ logger.info('{}.'.format(_('Constructing spatial indexes...'))) dic_featid = {} l_ind = {} for i in l: u.setDataSource(args.dbschema, i, "geom") vector_layer = QgsVectorLayer(u.uri(False), i, "postgres") it_features = vector_layer.getFeatures() index = QgsSpatialIndex(it_features) l_ind[i] = index all_features = {feature.id(): feature['id'] for feature in vector_layer.getFeatures()} dic_featid[i] = all_features logger.info('{}.'.format(_('Finished contruction of spatial indexes...'))) return l_ind, dic_featid def init_file_manager(out_dir): """ Initialize and return the file manager, and create output folders. """ fman = None try: fman = FileManager(out_dir, '.') except FileManagerError as err: logger.error('{}: {}'.format(_('ERROR'), str(err)), exc_info=True) fman = None return fman def get_intersections_continuity(c, json_cont): """ Return list with the layers to intersect, given one layer. """ return json_cont[c] def control_1(capa1, uri, args, nom_sal, fman): """ Verify the correct flow of the layer. """ uri.setDataSource(args.dbschema, capa1, "geom") capa_eje = QgsVectorLayer(uri.uri(False), capa1, "postgres") iterador_features = capa_eje.getFeatures() cantidad_errores = 0 for feature in iterador_features: geometria_feature = feature.geometry() vertices_feature = geometria_feature.vertices() cantidad_vertices = 0 min_altura = 0 max_altura = 0 flujo = '' pedir_nuevo_punto = False tiene_error = False while (vertices_feature.hasNext() and (not tiene_error)): cantidad_vertices = cantidad_vertices + 1 punto_vertice = vertices_feature.next() if cantidad_vertices == 1: first_vertex = punto_vertice.z() if ((cantidad_vertices == 2) or pedir_nuevo_punto): altura_2 = punto_vertice.z() if abs(altura_2 - first_vertex) > args.t1: if (altura_2 - first_vertex) > 0: flujo = _('up') pedir_nuevo_punto = False max_altura = altura_2 elif (altura_2 - first_vertex) < 0: flujo = _('down') pedir_nuevo_punto = False min_altura = altura_anterior else: pedir_nuevo_punto = True elif (cantidad_vertices != 1 and not pedir_nuevo_punto): # Verify that the next vertex has the same flow direction with the previous if flujo == _('down'): if (punto_vertice.z() - altura_anterior > args.t1) or ( punto_vertice.z() - min_altura > args.t1): if (punto_vertice.z() - altura_anterior) > args.t1: dif_imprimir = punto_vertice.z() - altura_anterior texto_imprimir = _('Error - Previous vertex inflexion') else: dif_imprimir = punto_vertice.z() - min_altura texto_imprimir = _('Error - Relative inflexion') tiene_error = True cantidad_errores = cantidad_errores + 1 fman.append_csv_file(nom_sal, [ capa1, feature['id'], texto_imprimir, punto_vertice.z(), abs(dif_imprimir), punto_vertice.x(), punto_vertice.y()]) if punto_vertice.z() < min_altura: min_altura = punto_vertice.z() else: if (punto_vertice.z() - altura_anterior < -1 * args.t1) or ( punto_vertice.z() - max_altura < -1 * args.t1): if (punto_vertice.z() - altura_anterior) < (-1 * args.t1): dif_imprimir = punto_vertice.z() - altura_anterior texto_imprimir = _('Error - Previous vertex inflexion') else: dif_imprimir = punto_vertice.z() - max_altura texto_imprimir = _('Error - Relative inflexion') tiene_error = True cantidad_errores = cantidad_errores + 1 fman.append_csv_file(nom_sal, [ capa1, feature['id'], texto_imprimir, punto_vertice.z(), abs(dif_imprimir), punto_vertice.x(), punto_vertice.y() ]) if punto_vertice.z() > max_altura: max_altura = punto_vertice.z() altura_anterior = punto_vertice.z() def control(capa_verificar, c, l_capas_interectar, u, lindx, n_sal, args, df, l_continuity, fman): """ Return two list. The first list has the features to be possible max height, and the second list possible endorreics. """ posible_endorreica = [] posible_cota_1 = [] posible_cota_2 = [] contador = 0 indice_capa = lindx[c] hrow = [_('Input_Layer'), _('OBJECTID'), _('Description'), _('Height'), _('Height_difference'), _('X_Coordinate'), _('Y_Coordinate')] fman.start_csv_file(n_sal, hrow) it_features = capa_verificar.getFeatures() lc_inter = get_intersections_continuity(c, l_continuity) for feature in it_features: feature_id = feature['id'] contador = contador + 1 feature_id2 = feature.id() contador_intersecciones = 0 c_1 = 0 c_2 = 0 geometria = feature.geometry() if (not geometria.isNull() and not geometria.isEmpty()): lines = geometria.constGet() n_vertices = lines.vertexCount() primer_vertice = geometria.vertexAt(0) ultimo_vertice = geometria.vertexAt(n_vertices-1) (c_1, c_2) = interseccion_misma_z( c, u, primer_vertice, ultimo_vertice, fman, n_sal, feature_id, indice_capa, args, df, lindx, lc_inter) contador_intersecciones = c_1 + c_2 # Posible endorreics if contador_intersecciones == 2: posible_endorreica.append(feature_id2) else: # Posible max height if c_1 == 1: posible_cota_1.append([feature_id2, primer_vertice.z()]) if c_2 == 1: posible_cota_2.append([feature_id2, ultimo_vertice.z()]) posibles_cotas = posible_cota_1 + posible_cota_2 return (posibles_cotas, posible_endorreica) def interseccion_misma_z( in_capa, in_uri, v1, v2, fman, n_out, fid, indx, args, df, lindx, lc_inter ): """ Return the number of intersection of the first and last vertex with the input layer.""" altura1 = v1.z() altura2 = v2.z() geom_v1 = QgsGeometry(v1) geom_v2 = QgsGeometry(v2) contador1 = 0 contador2 = 0 in_uri.setDataSource(args.dbschema, in_capa, "geom") capa_iterar = QgsVectorLayer(in_uri.uri(False), in_capa, "postgres") lista_i1 = indx.intersects(geom_v1.boundingBox()) features_intersect1 = capa_iterar.getFeatures(lista_i1) lista_features_inter1 = [] for feature2 in features_intersect1: geometria2 = feature2.geometry() if geom_v1.intersects(geometria2): contador1 = contador1 + 1 geom_inter = geom_v1.intersection(geometria2) lista_features_inter1.append(feature2.id()) interseccion_misma_z2(in_capa, geom_inter, altura1, fid, fman, n_out, args) bandera_repetido = False if contador1 == 2: # If exists two intersection, check the continuity # Verify if the features have the same atributes if same_feat(lista_features_inter1, capa_iterar): f = QgsFeature(fid) f.setGeometry(geom_v1) # Chequeo si intersecta otra capa de las definidas if not interseccion_todas_capas(in_capa, f, lc_inter, lindx, args): bandera_repetido = True fman.append_csv_file(n_out, [in_capa, fid, _('Error - Continuity'), '', '']) lista_i2 = indx.intersects(geom_v2.boundingBox()) features_intersect2 = capa_iterar.getFeatures(lista_i2) lista_features_inter2 = [] for feature2 in features_intersect2: geometria2 = feature2.geometry() if geom_v2.intersects(geometria2): contador2 = contador2 + 1 geom_inter = geom_v2.intersection(geometria2) lista_features_inter2.append(feature2.id()) interseccion_misma_z2(in_capa, geom_inter, altura2, fid, fman, n_out, args) if contador2 == 2: if ((not bandera_repetido) and (same_feat(lista_features_inter2, capa_iterar))): f = QgsFeature(fid) f.setGeometry(geom_v2) # Verify if intersects with the other layers if not interseccion_todas_capas(in_capa, f, lc_inter, lindx, args): fman.append_csv_file(n_out, [in_capa, fid, _('Error - Continuity'), '', '']) return (contador1, contador2) def same_feat(lf, c): """ Return True if the two features have the same atributes. """ feat1 = c.getFeature(lf[0]) feat2 = c.getFeature(lf[1]) return feat1.attributes()[1:] == feat2.attributes()[1:] def interseccion_misma_z2(c, g, altura, fid, fman, n_out, args): """ Writes in file if the intersect geometry has different height from the vertex. """ # Point intersection if g.wkbType() == QgsWkbTypes.PointZ: if abs(g.constGet().z() - altura) >= args.t2: fman.append_csv_file( n_out, [ c, fid, _('Error - Difference in height intersection'), altura, abs(g.constGet().z() - altura), g.constGet().x(), g.constGet().y()]) # Polyline intersection elif (g.wkbType() == QgsWkbTypes.LineStringZ or g.wkbType() == QgsWkbTypes.MultiLineStringZ): it_vertices = g.vertices() has_error = False while (it_vertices.hasNext() and (not has_error)): p_vertice = it_vertices.next() if abs(p_vertice.z() - altura) >= args.t2: fman.append_csv_file( n_out, [ c, fid, _('Error - Difference in height intersection'), altura, abs(p_vertice.z() - altura), p_vertice.x(), p_vertice.y()]) has_error = True # MultiPoint intersection elif g.wkbType() == QgsWkbTypes.MultiPointZ: multipolygon = g.constGet() num_geom = g.numGeometries() for i in range(num_geom): punto = multipolygon.geometryN(i) if abs(punto.z() - altura) >= args.t2: fman.append_csv_file( n_out, [ c, fid, _('Error - Difference in height intersection'), altura, abs(punto.z() - altura), punto.x(), punto.y()]) break def is_max_height(c, c_nom, l_fid, l_ci, l_index, args): """ Return list of errors of nodes whos have not the max height. """ id_itera = [] alt_itera = [] resultado = [] for fid in l_fid: id_itera.append(fid[0]) alt_itera.append(fid[0]) count = 0 it_feat3 = c.getFeatures(id_itera) for feat_id in it_feat3: geom_f = feat_id.geometry() vertices_f = geom_f.vertices() encontre = False while (vertices_f.hasNext() and not encontre): p_verti = vertices_f.next() if p_verti.z() > alt_itera[count]: encontre = True if encontre: ritc = interseccion_todas_capas(c_nom, feat_id, l_ci, l_index, args) if not ritc: resultado.append([ c_nom, feat_id['id'], _('Error - Node with no maximum height'), '', '', '', '']) count = count + 1 return resultado def is_endorreics(c, le, u, geom_remesa, l_index, l_inter, args): """ Return list of endorheic currents.""" u.setDataSource(args.dbschema, c, "geom") capa = QgsVectorLayer(u.uri(False), c, "postgres") resultado = [] for e in le: f = capa.getFeature(e) fid = f['id'] if not f.geometry().intersects(geom_remesa): existe_inter = interseccion_todas_capas(c, f, l_inter, l_index, args) if not existe_inter: resultado.append([c, fid, _('Error - Endorheic'), '', '', '', '']) return resultado def interseccion_todas_capas(c, f, lc, l_index, args): """ Return true if exist intesection with other layers, false otherwise. """ uri2 = QgsDataSourceUri() uri2.setConnection(args.server, str(args.port), args.dbname, args.user, args.password) geom = f.geometry() bbox_geom = geom.boundingBox() for cap in lc: if cap != c: index_capa = l_index[cap] lfea = index_capa.intersects(bbox_geom) uri2.setDataSource(args.dbschema, cap, "geom") capa_inter = QgsVectorLayer(uri2.uri(False), cap, 'postgres') if lfea != []: it_feat = capa_inter.getFeatures(lfea) for f_inter in it_feat: geom_inter = f_inter.geometry() if geom_inter.intersects(geom): return True return False def control_4(capa_4, uri, indices, args, nam_sal, lista_intersectar, fman): """ Verify that the height is constant. """ uri.setDataSource(args.dbschema, capa_4, "geom") capa_eje = QgsVectorLayer(uri.uri(False), capa_4, "postgres") iterador_features = capa_eje.getFeatures() hrow = [_('Input_Layer'), _('OBJECTID'), _('Description'), _('Intersection_Layer'), _('OBJECTID'), _('Height'), _('Height_difference'), _('X_Coordinate'), _('Y_Coordinate') ] fman.start_csv_file(nam_sal, hrow) # Iterate with the features of the layer for feature in iterador_features: geometria_feature = feature.geometry() vertices_feature = geometria_feature.vertices() primer_vertice = True hay_error = False alt_total = 0 # The first vertex determine the height of the polygon while vertices_feature.hasNext(): punto_vertice = vertices_feature.next() alt_actual = punto_vertice.z() if primer_vertice: alt_total = alt_actual primer_vertice = False if abs(alt_total - alt_actual) >= args.t2: fman.append_csv_file( nam_sal, [ capa_4, feature['id'], _('Error - Polygon height'), '', '', alt_total, abs(alt_total - alt_actual), punto_vertice.x(), punto_vertice.y()]) hay_error = True # Verify the intersection has the same height if not hay_error: for capa in lista_intersectar: intersectar_capa( capa, geometria_feature, alt_total, capa_4, feature['id'], uri, indices, args, fman, nam_sal) def intersectar_capa( c, g_f, altura_pol, c_original, fea_original, uri, indexs, args, fman, nam_sal): """ Intersect with layer verifing that the height is the same. """ uri.setDataSource(args.dbschema, c, "geom") capa_cargada = QgsVectorLayer(uri.uri(False), c, "postgres") index = indexs[c] hay_error = False lista_resultante = index.intersects(g_f.boundingBox()) features_intersect = capa_cargada.getFeatures(lista_resultante) for f in features_intersect: if g_f.intersects(f.geometry()): geom_interseccion = g_f.intersection(f.geometry()) # Interseccion punto if geom_interseccion.wkbType() == QgsWkbTypes.PointZ: if abs(geom_interseccion.get().z() - altura_pol) >= args.t2: fman.append_csv_file(nam_sal, [ c_original, fea_original, _('Error - Intersection height'), c, f['id'], altura_pol, altura_pol - geom_interseccion.get().z()]) # Interseccion linea o multilinea elif ( geom_interseccion.wkbType() == QgsWkbTypes.LineStringZ or geom_interseccion.wkbType() == QgsWkbTypes.MultiLineStringZ): it_vertices = geom_interseccion.vertices() while (it_vertices.hasNext() and (not hay_error)): p_vertice = it_vertices.next() if abs(p_vertice.z() - altura_pol) >= args.t2: fman.append_csv_file( nam_sal, [ c_original, fea_original, _('Error - Intersection height'), c, f['id'], altura_pol, altura_pol - p_vertice.z()]) hay_error = True # Interseccion multipunto elif geom_interseccion.wkbType() == QgsWkbTypes.MultiPointZ: multipolygon = geom_interseccion.get() num_geom = multipolygon.numGeometries() for i in range(num_geom): punto = multipolygon.geometryN(i) if abs(punto.z() - altura_pol) >= args.t2: fman.append_csv_file(nam_sal, [ c_original, fea_original, _('Error - Intersection height'), c, f['id'], altura_pol, altura_pol - punto.z()]) break else: fman.append_csv_file(nam_sal, [geom_interseccion.wkbType()]) def get_geometry_layer(dir_layer): """ Return the geometry of one feature of a layer. """ vector_layer = QgsVectorLayer(dir_layer, 'layer', "ogr") it_features = vector_layer.getFeatures() for feature in it_features: f = feature return f.geometry() def load_config(dir_file_conf): """ Return the json configuration of the control. """ with open(dir_file_conf) as json_data: file = json.load(json_data) return file if __name__ == '__main__': args = get_args() params = ' '.join(sys.argv) # start qgis qgs = qgs_init(args.dirqgis) # uri conection db uri = QgsDataSourceUri() uri.setConnection(args.server, str(args.port), args.dbname, args.user, args.password) # load configuration f_config = load_config(args.conf) # initialization of variables l_ind = {} d_feat = {} l_continuity = f_config["continuidad"] fman = init_file_manager(args.output) consignment_geometry = get_geometry_layer(args.rem) l_ind, d_feat = create_indexes(f_config["indices"], uri, args) # iteration of layers to verify control 1, 2, 3 for name_l_flow in f_config["flujo"]: date_time = get_time().strftime("%Y%m%d_%H%M%S_") logger.info('{}: {}.'.format(_('Control 1,2,3: Verifing layer'), name_l_flow)) uri.setDataSource(args.dbschema, name_l_flow, "geom") layer_check = QgsVectorLayer(uri.uri(False), name_l_flow, "postgres") result_name = args.dbschema + '_' + date_time \ + 'Control_Vertex_Height_' + name_l_flow +'.csv' cotas, endorreicas = control( layer_check, name_l_flow, f_config["endorreicas"], uri, l_ind, result_name, args, d_feat, l_continuity, fman) r_cota = is_max_height( layer_check, name_l_flow, cotas, f_config["endorreicas"], l_ind, args) r_endo = is_endorreics( name_l_flow, endorreicas, uri, consignment_geometry, l_ind, f_config["endorreicas"], args) fman.append_csv_file(result_name, r_cota) fman.append_csv_file(result_name, r_endo) control_1(name_l_flow, uri, args, result_name, fman) # iteration of layers to verify control 4 for name_l_constant_height in f_config["altura_area"]: date_time = get_time().strftime("%Y%m%d_%H%M%S_") logger.info('{}: {}.'.format(_('Control 4: Verifing layer'), name_l_constant_height)) result_name = args.dbschema + '_' + date_time + 'Control_Polygon_Height_' \ + name_l_constant_height +'.csv' control_4(name_l_constant_height, uri, l_ind, args, result_name, f_config["flujo"], fman) logger.info('{}.'.format(_('End'))) # exit qgis qgs_exit(qgs)
42.385321
111
0.599048
28342bcafee742ffd58724a6243756276c902e06
80,274
py
Python
databricks/koalas/indexes/base.py
LSturtew/koalas
c8a3c88efeeae8ec06d2494a5e2391af21608cfb
[ "Apache-2.0" ]
null
null
null
databricks/koalas/indexes/base.py
LSturtew/koalas
c8a3c88efeeae8ec06d2494a5e2391af21608cfb
[ "Apache-2.0" ]
null
null
null
databricks/koalas/indexes/base.py
LSturtew/koalas
c8a3c88efeeae8ec06d2494a5e2391af21608cfb
[ "Apache-2.0" ]
null
null
null
# # Copyright (C) 2019 Databricks, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from functools import partial from typing import Any, List, Optional, Tuple, Union import warnings import pandas as pd import numpy as np from pandas.api.types import ( is_list_like, is_interval_dtype, is_bool_dtype, is_categorical_dtype, is_integer_dtype, is_float_dtype, is_numeric_dtype, is_object_dtype, ) from pandas.core.accessor import CachedAccessor from pandas.io.formats.printing import pprint_thing from pandas.api.types import CategoricalDtype, is_hashable from pandas._libs import lib from pyspark import sql as spark from pyspark.sql import functions as F from pyspark.sql.types import DataType, FractionalType, IntegralType, TimestampType from databricks import koalas as ks # For running doctests and reference resolution in PyCharm. from databricks.koalas.config import get_option, option_context from databricks.koalas.base import IndexOpsMixin from databricks.koalas.frame import DataFrame from databricks.koalas.missing.indexes import MissingPandasLikeIndex from databricks.koalas.series import Series, first_series from databricks.koalas.spark.accessors import SparkIndexMethods from databricks.koalas.utils import ( is_name_like_tuple, is_name_like_value, name_like_string, same_anchor, scol_for, verify_temp_column_name, validate_bool_kwarg, ERROR_MESSAGE_CANNOT_COMBINE, ) from databricks.koalas.internal import ( InternalFrame, DEFAULT_SERIES_NAME, SPARK_DEFAULT_INDEX_NAME, SPARK_INDEX_NAME_FORMAT, ) from databricks.koalas.typedef import Scalar class Index(IndexOpsMixin): """ Koalas Index that corresponds to pandas Index logically. This might hold Spark Column internally. Parameters ---------- data : array-like (1-dimensional) dtype : dtype, default None If dtype is None, we find the dtype that best fits the data. If an actual dtype is provided, we coerce to that dtype if it's safe. Otherwise, an error will be raised. copy : bool Make a copy of input ndarray. name : object Name to be stored in the index. tupleize_cols : bool (default: True) When True, attempt to create a MultiIndex if possible. See Also -------- MultiIndex : A multi-level, or hierarchical, Index. DatetimeIndex : Index of datetime64 data. Int64Index : A special case of :class:`Index` with purely integer labels. Float64Index : A special case of :class:`Index` with purely float labels. Examples -------- >>> ks.DataFrame({'a': ['a', 'b', 'c']}, index=[1, 2, 3]).index Int64Index([1, 2, 3], dtype='int64') >>> ks.DataFrame({'a': [1, 2, 3]}, index=list('abc')).index Index(['a', 'b', 'c'], dtype='object') >>> ks.Index([1, 2, 3]) Int64Index([1, 2, 3], dtype='int64') >>> ks.Index(list('abc')) Index(['a', 'b', 'c'], dtype='object') From a Series: >>> s = ks.Series([1, 2, 3], index=[10, 20, 30]) >>> ks.Index(s) Int64Index([1, 2, 3], dtype='int64') From an Index: >>> idx = ks.Index([1, 2, 3]) >>> ks.Index(idx) Int64Index([1, 2, 3], dtype='int64') """ def __new__(cls, data=None, dtype=None, copy=False, name=None, tupleize_cols=True, **kwargs): if not is_hashable(name): raise TypeError("Index.name must be a hashable type") if isinstance(data, Series): if dtype is not None: data = data.astype(dtype) if name is not None: data = data.rename(name) internal = InternalFrame( spark_frame=data._internal.spark_frame, index_spark_columns=data._internal.data_spark_columns, index_names=data._internal.column_labels, index_dtypes=data._internal.data_dtypes, column_labels=[], data_spark_columns=[], data_dtypes=[], ) return DataFrame(internal).index elif isinstance(data, Index): if copy: data = data.copy() if dtype is not None: data = data.astype(dtype) if name is not None: data = data.rename(name) return data return ks.from_pandas( pd.Index( data=data, dtype=dtype, copy=copy, name=name, tupleize_cols=tupleize_cols, **kwargs ) ) @staticmethod def _new_instance(anchor: DataFrame) -> "Index": from databricks.koalas.indexes.category import CategoricalIndex from databricks.koalas.indexes.datetimes import DatetimeIndex from databricks.koalas.indexes.multi import MultiIndex from databricks.koalas.indexes.numeric import Float64Index, Int64Index if anchor._internal.index_level > 1: instance = object.__new__(MultiIndex) elif isinstance(anchor._internal.index_dtypes[0], CategoricalDtype): instance = object.__new__(CategoricalIndex) elif isinstance( anchor._internal.spark_type_for(anchor._internal.index_spark_columns[0]), IntegralType ): instance = object.__new__(Int64Index) elif isinstance( anchor._internal.spark_type_for(anchor._internal.index_spark_columns[0]), FractionalType ): instance = object.__new__(Float64Index) elif isinstance( anchor._internal.spark_type_for(anchor._internal.index_spark_columns[0]), TimestampType ): instance = object.__new__(DatetimeIndex) else: instance = object.__new__(Index) instance._anchor = anchor return instance @property def _kdf(self) -> DataFrame: return self._anchor @property def _internal(self) -> InternalFrame: internal = self._kdf._internal return internal.copy( column_labels=internal.index_names, data_spark_columns=internal.index_spark_columns, data_dtypes=internal.index_dtypes, column_label_names=None, ) @property def _column_label(self): return self._kdf._internal.index_names[0] def _with_new_scol(self, scol: spark.Column, *, dtype=None) -> "Index": """ Copy Koalas Index with the new Spark Column. :param scol: the new Spark Column :return: the copied Index """ internal = self._internal.copy( index_spark_columns=[scol.alias(SPARK_DEFAULT_INDEX_NAME)], index_dtypes=[dtype], column_labels=[], data_spark_columns=[], data_dtypes=[], ) return DataFrame(internal).index spark = CachedAccessor("spark", SparkIndexMethods) # This method is used via `DataFrame.info` API internally. def _summary(self, name=None) -> str: """ Return a summarized representation. Parameters ---------- name : str name to use in the summary representation Returns ------- String with a summarized representation of the index """ head, tail, total_count = tuple( self._internal.spark_frame.select( F.first(self.spark.column), F.last(self.spark.column), F.count(F.expr("*")) ) .toPandas() .iloc[0] ) if total_count > 0: index_summary = ", %s to %s" % (pprint_thing(head), pprint_thing(tail)) else: index_summary = "" if name is None: name = type(self).__name__ return "%s: %s entries%s" % (name, total_count, index_summary) @property def size(self) -> int: """ Return an int representing the number of elements in this object. Examples -------- >>> df = ks.DataFrame([(.2, .3), (.0, .6), (.6, .0), (.2, .1)], ... columns=['dogs', 'cats'], ... index=list('abcd')) >>> df.index.size 4 >>> df.set_index('dogs', append=True).index.size 4 """ return len(self) @property def shape(self) -> tuple: """ Return a tuple of the shape of the underlying data. Examples -------- >>> idx = ks.Index(['a', 'b', 'c']) >>> idx Index(['a', 'b', 'c'], dtype='object') >>> idx.shape (3,) >>> midx = ks.MultiIndex.from_tuples([('a', 'x'), ('b', 'y'), ('c', 'z')]) >>> midx # doctest: +SKIP MultiIndex([('a', 'x'), ('b', 'y'), ('c', 'z')], ) >>> midx.shape (3,) """ return (len(self._kdf),) def identical(self, other) -> bool: """ Similar to equals, but check that other comparable attributes are also equal. Returns ------- bool If two Index objects have equal elements and same type True, otherwise False. Examples -------- >>> from databricks.koalas.config import option_context >>> idx = ks.Index(['a', 'b', 'c']) >>> midx = ks.MultiIndex.from_tuples([('a', 'x'), ('b', 'y'), ('c', 'z')]) For Index >>> idx.identical(idx) True >>> with option_context('compute.ops_on_diff_frames', True): ... idx.identical(ks.Index(['a', 'b', 'c'])) True >>> with option_context('compute.ops_on_diff_frames', True): ... idx.identical(ks.Index(['b', 'b', 'a'])) False >>> idx.identical(midx) False For MultiIndex >>> midx.identical(midx) True >>> with option_context('compute.ops_on_diff_frames', True): ... midx.identical(ks.MultiIndex.from_tuples([('a', 'x'), ('b', 'y'), ('c', 'z')])) True >>> with option_context('compute.ops_on_diff_frames', True): ... midx.identical(ks.MultiIndex.from_tuples([('c', 'z'), ('b', 'y'), ('a', 'x')])) False >>> midx.identical(idx) False """ from databricks.koalas.indexes.multi import MultiIndex self_name = self.names if isinstance(self, MultiIndex) else self.name other_name = other.names if isinstance(other, MultiIndex) else other.name return ( self_name == other_name # to support non-index comparison by short-circuiting. and self.equals(other) ) def equals(self, other) -> bool: """ Determine if two Index objects contain the same elements. Returns ------- bool True if "other" is an Index and it has the same elements as calling index; False otherwise. Examples -------- >>> from databricks.koalas.config import option_context >>> idx = ks.Index(['a', 'b', 'c']) >>> idx.name = "name" >>> midx = ks.MultiIndex.from_tuples([('a', 'x'), ('b', 'y'), ('c', 'z')]) >>> midx.names = ("nameA", "nameB") For Index >>> idx.equals(idx) True >>> with option_context('compute.ops_on_diff_frames', True): ... idx.equals(ks.Index(['a', 'b', 'c'])) True >>> with option_context('compute.ops_on_diff_frames', True): ... idx.equals(ks.Index(['b', 'b', 'a'])) False >>> idx.equals(midx) False For MultiIndex >>> midx.equals(midx) True >>> with option_context('compute.ops_on_diff_frames', True): ... midx.equals(ks.MultiIndex.from_tuples([('a', 'x'), ('b', 'y'), ('c', 'z')])) True >>> with option_context('compute.ops_on_diff_frames', True): ... midx.equals(ks.MultiIndex.from_tuples([('c', 'z'), ('b', 'y'), ('a', 'x')])) False >>> midx.equals(idx) False """ if same_anchor(self, other): return True elif type(self) == type(other): if get_option("compute.ops_on_diff_frames"): # TODO: avoid using default index? with option_context("compute.default_index_type", "distributed-sequence"): # Directly using Series from both self and other seems causing # some exceptions when 'compute.ops_on_diff_frames' is enabled. # Working around for now via using frame. return ( self.to_series("self").reset_index(drop=True) == other.to_series("other").reset_index(drop=True) ).all() else: raise ValueError(ERROR_MESSAGE_CANNOT_COMBINE) else: return False def transpose(self) -> "Index": """ Return the transpose, For index, It will be index itself. Examples -------- >>> idx = ks.Index(['a', 'b', 'c']) >>> idx Index(['a', 'b', 'c'], dtype='object') >>> idx.transpose() Index(['a', 'b', 'c'], dtype='object') For MultiIndex >>> midx = ks.MultiIndex.from_tuples([('a', 'x'), ('b', 'y'), ('c', 'z')]) >>> midx # doctest: +SKIP MultiIndex([('a', 'x'), ('b', 'y'), ('c', 'z')], ) >>> midx.transpose() # doctest: +SKIP MultiIndex([('a', 'x'), ('b', 'y'), ('c', 'z')], ) """ return self T = property(transpose) def _to_internal_pandas(self) -> pd.Index: """ Return a pandas Index directly from _internal to avoid overhead of copy. This method is for internal use only. """ return self._kdf._internal.to_pandas_frame.index def to_pandas(self) -> pd.Index: """ Return a pandas Index. .. note:: This method should only be used if the resulting pandas object is expected to be small, as all the data is loaded into the driver's memory. Examples -------- >>> df = ks.DataFrame([(.2, .3), (.0, .6), (.6, .0), (.2, .1)], ... columns=['dogs', 'cats'], ... index=list('abcd')) >>> df['dogs'].index.to_pandas() Index(['a', 'b', 'c', 'd'], dtype='object') """ return self._to_internal_pandas().copy() def toPandas(self) -> pd.Index: warnings.warn( "Index.toPandas is deprecated as of Index.to_pandas. Please use the API instead.", FutureWarning, ) return self.to_pandas() toPandas.__doc__ = to_pandas.__doc__ def to_numpy(self, dtype=None, copy=False) -> np.ndarray: """ A NumPy ndarray representing the values in this Index or MultiIndex. .. note:: This method should only be used if the resulting NumPy ndarray is expected to be small, as all the data is loaded into the driver's memory. Parameters ---------- dtype : str or numpy.dtype, optional The dtype to pass to :meth:`numpy.asarray` copy : bool, default False Whether to ensure that the returned value is a not a view on another array. Note that ``copy=False`` does not *ensure* that ``to_numpy()`` is no-copy. Rather, ``copy=True`` ensure that a copy is made, even if not strictly necessary. Returns ------- numpy.ndarray Examples -------- >>> ks.Series([1, 2, 3, 4]).index.to_numpy() array([0, 1, 2, 3]) >>> ks.DataFrame({'a': ['a', 'b', 'c']}, index=[[1, 2, 3], [4, 5, 6]]).index.to_numpy() array([(1, 4), (2, 5), (3, 6)], dtype=object) """ result = np.asarray(self._to_internal_pandas()._values, dtype=dtype) if copy: result = result.copy() return result @property def values(self) -> np.ndarray: """ Return an array representing the data in the Index. .. warning:: We recommend using `Index.to_numpy()` instead. .. note:: This method should only be used if the resulting NumPy ndarray is expected to be small, as all the data is loaded into the driver's memory. Returns ------- numpy.ndarray Examples -------- >>> ks.Series([1, 2, 3, 4]).index.values array([0, 1, 2, 3]) >>> ks.DataFrame({'a': ['a', 'b', 'c']}, index=[[1, 2, 3], [4, 5, 6]]).index.values array([(1, 4), (2, 5), (3, 6)], dtype=object) """ warnings.warn("We recommend using `{}.to_numpy()` instead.".format(type(self).__name__)) return self.to_numpy() @property def asi8(self) -> np.ndarray: """ Integer representation of the values. .. warning:: We recommend using `Index.to_numpy()` instead. .. note:: This method should only be used if the resulting NumPy ndarray is expected to be small, as all the data is loaded into the driver's memory. Returns ------- numpy.ndarray An ndarray with int64 dtype. Examples -------- >>> ks.Index([1, 2, 3]).asi8 array([1, 2, 3]) Returns None for non-int64 dtype >>> ks.Index(['a', 'b', 'c']).asi8 is None True """ warnings.warn("We recommend using `{}.to_numpy()` instead.".format(type(self).__name__)) if isinstance(self.spark.data_type, IntegralType): return self.to_numpy() elif isinstance(self.spark.data_type, TimestampType): return np.array(list(map(lambda x: x.astype(np.int64), self.to_numpy()))) else: return None @property def spark_type(self) -> DataType: """ Returns the data type as defined by Spark, as a Spark DataType object.""" warnings.warn( "Index.spark_type is deprecated as of Index.spark.data_type. " "Please use the API instead.", FutureWarning, ) return self.spark.data_type @property def has_duplicates(self) -> bool: """ If index has duplicates, return True, otherwise False. Examples -------- >>> idx = ks.Index([1, 5, 7, 7]) >>> idx.has_duplicates True >>> idx = ks.Index([1, 5, 7]) >>> idx.has_duplicates False >>> idx = ks.Index(["Watermelon", "Orange", "Apple", ... "Watermelon"]) >>> idx.has_duplicates True >>> idx = ks.Index(["Orange", "Apple", ... "Watermelon"]) >>> idx.has_duplicates False """ sdf = self._internal.spark_frame.select(self.spark.column) scol = scol_for(sdf, sdf.columns[0]) return sdf.select(F.count(scol) != F.countDistinct(scol)).first()[0] @property def is_unique(self) -> bool: """ Return if the index has unique values. Examples -------- >>> idx = ks.Index([1, 5, 7, 7]) >>> idx.is_unique False >>> idx = ks.Index([1, 5, 7]) >>> idx.is_unique True >>> idx = ks.Index(["Watermelon", "Orange", "Apple", ... "Watermelon"]) >>> idx.is_unique False >>> idx = ks.Index(["Orange", "Apple", ... "Watermelon"]) >>> idx.is_unique True """ return not self.has_duplicates @property def name(self) -> Union[Any, Tuple]: """Return name of the Index.""" return self.names[0] @name.setter def name(self, name: Union[Any, Tuple]) -> None: self.names = [name] @property def names(self) -> List[Union[Any, Tuple]]: """Return names of the Index.""" return [ name if name is None or len(name) > 1 else name[0] for name in self._internal.index_names # type: ignore ] @names.setter def names(self, names: List[Union[Any, Tuple]]) -> None: if not is_list_like(names): raise ValueError("Names must be a list-like") if self._internal.index_level != len(names): raise ValueError( "Length of new names must be {}, got {}".format( self._internal.index_level, len(names) ) ) if self._internal.index_level == 1: self.rename(names[0], inplace=True) else: self.rename(names, inplace=True) @property def nlevels(self) -> int: """ Number of levels in Index & MultiIndex. Examples -------- >>> kdf = ks.DataFrame({"a": [1, 2, 3]}, index=pd.Index(['a', 'b', 'c'], name="idx")) >>> kdf.index.nlevels 1 >>> kdf = ks.DataFrame({'a': [1, 2, 3]}, index=[list('abc'), list('def')]) >>> kdf.index.nlevels 2 """ return self._internal.index_level def rename( self, name: Union[Any, Tuple, List[Union[Any, Tuple]]], inplace: bool = False ) -> Optional["Index"]: """ Alter Index or MultiIndex name. Able to set new names without level. Defaults to returning new index. Parameters ---------- name : label or list of labels Name(s) to set. inplace : boolean, default False Modifies the object directly, instead of creating a new Index or MultiIndex. Returns ------- Index or MultiIndex The same type as the caller or None if inplace is True. Examples -------- >>> df = ks.DataFrame({'a': ['A', 'C'], 'b': ['A', 'B']}, columns=['a', 'b']) >>> df.index.rename("c") Int64Index([0, 1], dtype='int64', name='c') >>> df.set_index("a", inplace=True) >>> df.index.rename("d") Index(['A', 'C'], dtype='object', name='d') You can also change the index name in place. >>> df.index.rename("e", inplace=True) >>> df.index Index(['A', 'C'], dtype='object', name='e') >>> df # doctest: +NORMALIZE_WHITESPACE b e A A C B Support for MultiIndex >>> kidx = ks.MultiIndex.from_tuples([('a', 'x'), ('b', 'y')]) >>> kidx.names = ['hello', 'koalas'] >>> kidx # doctest: +SKIP MultiIndex([('a', 'x'), ('b', 'y')], names=['hello', 'koalas']) >>> kidx.rename(['aloha', 'databricks']) # doctest: +SKIP MultiIndex([('a', 'x'), ('b', 'y')], names=['aloha', 'databricks']) """ names = self._verify_for_rename(name) internal = self._kdf._internal.copy(index_names=names) if inplace: self._kdf._update_internal_frame(internal) return None else: return DataFrame(internal).index def _verify_for_rename(self, name): if is_hashable(name): if is_name_like_tuple(name): return [name] elif is_name_like_value(name): return [(name,)] raise TypeError("Index.name must be a hashable type") # TODO: add downcast parameter for fillna function def fillna(self, value: Scalar) -> "Index": """ Fill NA/NaN values with the specified value. Parameters ---------- value : scalar Scalar value to use to fill holes (e.g. 0). This value cannot be a list-likes. Returns ------- Index : filled with value Examples -------- >>> ki = ks.DataFrame({'a': ['a', 'b', 'c']}, index=[1, 2, None]).index >>> ki Float64Index([1.0, 2.0, nan], dtype='float64') >>> ki.fillna(0) Float64Index([1.0, 2.0, 0.0], dtype='float64') """ if not isinstance(value, (float, int, str, bool)): raise TypeError("Unsupported type %s" % type(value).__name__) sdf = self._internal.spark_frame.fillna(value) result = DataFrame(self._kdf._internal.with_new_sdf(sdf)).index # TODO: dtype? return result # TODO: ADD keep parameter def drop_duplicates(self) -> "Index": """ Return Index with duplicate values removed. Returns ------- deduplicated : Index See Also -------- Series.drop_duplicates : Equivalent method on Series. DataFrame.drop_duplicates : Equivalent method on DataFrame. Examples -------- Generate an pandas.Index with duplicate values. >>> idx = ks.Index(['lama', 'cow', 'lama', 'beetle', 'lama', 'hippo']) >>> idx.drop_duplicates().sort_values() Index(['beetle', 'cow', 'hippo', 'lama'], dtype='object') """ sdf = self._internal.spark_frame.select( self._internal.index_spark_columns ).drop_duplicates() internal = InternalFrame( spark_frame=sdf, index_spark_columns=[ scol_for(sdf, col) for col in self._internal.index_spark_column_names ], index_names=self._internal.index_names, index_dtypes=self._internal.index_dtypes, ) return DataFrame(internal).index def to_series(self, name: Union[Any, Tuple] = None) -> Series: """ Create a Series with both index and values equal to the index keys useful with map for returning an indexer based on an index. Parameters ---------- name : string, optional name of resulting Series. If None, defaults to name of original index Returns ------- Series : dtype will be based on the type of the Index values. Examples -------- >>> df = ks.DataFrame([(.2, .3), (.0, .6), (.6, .0), (.2, .1)], ... columns=['dogs', 'cats'], ... index=list('abcd')) >>> df['dogs'].index.to_series() a a b b c c d d dtype: object """ if not is_hashable(name): raise TypeError("Series.name must be a hashable type") scol = self.spark.column if name is not None: scol = scol.alias(name_like_string(name)) elif self._internal.index_level == 1: name = self.name column_labels = [ name if is_name_like_tuple(name) else (name,) ] # type: List[Optional[Tuple]] internal = self._internal.copy( column_labels=column_labels, data_spark_columns=[scol], column_label_names=None ) return first_series(DataFrame(internal)) def to_frame(self, index=True, name=None) -> DataFrame: """ Create a DataFrame with a column containing the Index. Parameters ---------- index : boolean, default True Set the index of the returned DataFrame as the original Index. name : object, default None The passed name should substitute for the index name (if it has one). Returns ------- DataFrame DataFrame containing the original Index data. See Also -------- Index.to_series : Convert an Index to a Series. Series.to_frame : Convert Series to DataFrame. Examples -------- >>> idx = ks.Index(['Ant', 'Bear', 'Cow'], name='animal') >>> idx.to_frame() # doctest: +NORMALIZE_WHITESPACE animal animal Ant Ant Bear Bear Cow Cow By default, the original Index is reused. To enforce a new Index: >>> idx.to_frame(index=False) animal 0 Ant 1 Bear 2 Cow To override the name of the resulting column, specify `name`: >>> idx.to_frame(name='zoo') # doctest: +NORMALIZE_WHITESPACE zoo animal Ant Ant Bear Bear Cow Cow """ if name is None: if self._internal.index_names[0] is None: name = (DEFAULT_SERIES_NAME,) else: name = self._internal.index_names[0] elif not is_name_like_tuple(name): if is_name_like_value(name): name = (name,) else: raise TypeError("unhashable type: '{}'".format(type(name).__name__)) return self._to_frame(index=index, names=[name]) def _to_frame(self, index, names): if index: index_spark_columns = self._internal.index_spark_columns index_names = self._internal.index_names index_dtypes = self._internal.index_dtypes else: index_spark_columns = [] index_names = [] index_dtypes = [] internal = InternalFrame( spark_frame=self._internal.spark_frame, index_spark_columns=index_spark_columns, index_names=index_names, index_dtypes=index_dtypes, column_labels=names, data_spark_columns=self._internal.index_spark_columns, data_dtypes=self._internal.index_dtypes, ) return DataFrame(internal) def is_boolean(self) -> bool: """ Return if the current index type is a boolean type. Examples -------- >>> ks.DataFrame({'a': [1]}, index=[True]).index.is_boolean() True """ return is_bool_dtype(self.dtype) def is_categorical(self) -> bool: """ Return if the current index type is a categorical type. Examples -------- >>> ks.DataFrame({'a': [1]}, index=[1]).index.is_categorical() False """ return is_categorical_dtype(self.dtype) def is_floating(self) -> bool: """ Return if the current index type is a floating type. Examples -------- >>> ks.DataFrame({'a': [1]}, index=[1]).index.is_floating() False """ return is_float_dtype(self.dtype) def is_integer(self) -> bool: """ Return if the current index type is a integer type. Examples -------- >>> ks.DataFrame({'a': [1]}, index=[1]).index.is_integer() True """ return is_integer_dtype(self.dtype) def is_interval(self) -> bool: """ Return if the current index type is an interval type. Examples -------- >>> ks.DataFrame({'a': [1]}, index=[1]).index.is_interval() False """ return is_interval_dtype(self.dtype) def is_numeric(self) -> bool: """ Return if the current index type is a numeric type. Examples -------- >>> ks.DataFrame({'a': [1]}, index=[1]).index.is_numeric() True """ return is_numeric_dtype(self.dtype) def is_object(self) -> bool: """ Return if the current index type is a object type. Examples -------- >>> ks.DataFrame({'a': [1]}, index=["a"]).index.is_object() True """ return is_object_dtype(self.dtype) def is_type_compatible(self, kind) -> bool: """ Whether the index type is compatible with the provided type. Examples -------- >>> kidx = ks.Index([1, 2, 3]) >>> kidx.is_type_compatible('integer') True >>> kidx = ks.Index([1.0, 2.0, 3.0]) >>> kidx.is_type_compatible('integer') False >>> kidx.is_type_compatible('floating') True """ return kind == self.inferred_type def dropna(self) -> "Index": """ Return Index or MultiIndex without NA/NaN values Examples -------- >>> df = ks.DataFrame([[1, 2], [4, 5], [7, 8]], ... index=['cobra', 'viper', None], ... columns=['max_speed', 'shield']) >>> df max_speed shield cobra 1 2 viper 4 5 NaN 7 8 >>> df.index.dropna() Index(['cobra', 'viper'], dtype='object') Also support for MultiIndex >>> midx = pd.MultiIndex([['lama', 'cow', 'falcon'], ... [None, 'weight', 'length']], ... [[0, 1, 1, 1, 1, 1, 2, 2, 2], ... [0, 1, 1, 0, 1, 2, 1, 1, 2]]) >>> s = ks.Series([45, 200, 1.2, 30, 250, 1.5, 320, 1, None], ... index=midx) >>> s lama NaN 45.0 cow weight 200.0 weight 1.2 NaN 30.0 weight 250.0 length 1.5 falcon weight 320.0 weight 1.0 length NaN dtype: float64 >>> s.index.dropna() # doctest: +SKIP MultiIndex([( 'cow', 'weight'), ( 'cow', 'weight'), ( 'cow', 'weight'), ( 'cow', 'length'), ('falcon', 'weight'), ('falcon', 'weight'), ('falcon', 'length')], ) """ sdf = self._internal.spark_frame.select(self._internal.index_spark_columns).dropna() internal = InternalFrame( spark_frame=sdf, index_spark_columns=[ scol_for(sdf, col) for col in self._internal.index_spark_column_names ], index_names=self._internal.index_names, index_dtypes=self._internal.index_dtypes, ) return DataFrame(internal).index def unique(self, level=None) -> "Index": """ Return unique values in the index. Be aware the order of unique values might be different than pandas.Index.unique Parameters ---------- level : int or str, optional, default is None Returns ------- Index without duplicates See Also -------- Series.unique groupby.SeriesGroupBy.unique Examples -------- >>> ks.DataFrame({'a': ['a', 'b', 'c']}, index=[1, 1, 3]).index.unique().sort_values() Int64Index([1, 3], dtype='int64') >>> ks.DataFrame({'a': ['a', 'b', 'c']}, index=['d', 'e', 'e']).index.unique().sort_values() Index(['d', 'e'], dtype='object') MultiIndex >>> ks.MultiIndex.from_tuples([("A", "X"), ("A", "Y"), ("A", "X")]).unique() ... # doctest: +SKIP MultiIndex([('A', 'X'), ('A', 'Y')], ) """ if level is not None: self._validate_index_level(level) scols = self._internal.index_spark_columns sdf = self._kdf._internal.spark_frame.select(scols).distinct() return DataFrame( InternalFrame( spark_frame=sdf, index_spark_columns=[ scol_for(sdf, col) for col in self._internal.index_spark_column_names ], index_names=self._internal.index_names, index_dtypes=self._internal.index_dtypes, ) ).index # TODO: add error parameter def drop(self, labels) -> "Index": """ Make new Index with passed list of labels deleted. Parameters ---------- labels : array-like Returns ------- dropped : Index Examples -------- >>> index = ks.Index([1, 2, 3]) >>> index Int64Index([1, 2, 3], dtype='int64') >>> index.drop([1]) Int64Index([2, 3], dtype='int64') """ internal = self._internal.resolved_copy sdf = internal.spark_frame[~internal.index_spark_columns[0].isin(labels)] internal = InternalFrame( spark_frame=sdf, index_spark_columns=[ scol_for(sdf, col) for col in self._internal.index_spark_column_names ], index_names=self._internal.index_names, index_dtypes=self._internal.index_dtypes, column_labels=[], data_spark_columns=[], data_dtypes=[], ) return DataFrame(internal).index def _validate_index_level(self, level): """ Validate index level. For single-level Index getting level number is a no-op, but some verification must be done like in MultiIndex. """ if isinstance(level, int): if level < 0 and level != -1: raise IndexError( "Too many levels: Index has only 1 level," " %d is not a valid level number" % (level,) ) elif level > 0: raise IndexError("Too many levels:" " Index has only 1 level, not %d" % (level + 1)) elif level != self.name: raise KeyError( "Requested level ({}) does not match index name ({})".format(level, self.name) ) def get_level_values(self, level) -> "Index": """ Return Index if a valid level is given. Examples: -------- >>> kidx = ks.Index(['a', 'b', 'c'], name='ks') >>> kidx.get_level_values(0) Index(['a', 'b', 'c'], dtype='object', name='ks') >>> kidx.get_level_values('ks') Index(['a', 'b', 'c'], dtype='object', name='ks') """ self._validate_index_level(level) return self def copy(self, name=None, deep=None) -> "Index": """ Make a copy of this object. name sets those attributes on the new object. Parameters ---------- name : string, optional to set name of index deep : None this parameter is not supported but just dummy parameter to match pandas. Examples -------- >>> df = ks.DataFrame([[1, 2], [4, 5], [7, 8]], ... index=['cobra', 'viper', 'sidewinder'], ... columns=['max_speed', 'shield']) >>> df max_speed shield cobra 1 2 viper 4 5 sidewinder 7 8 >>> df.index Index(['cobra', 'viper', 'sidewinder'], dtype='object') Copy index >>> df.index.copy() Index(['cobra', 'viper', 'sidewinder'], dtype='object') Copy index with name >>> df.index.copy(name='snake') Index(['cobra', 'viper', 'sidewinder'], dtype='object', name='snake') """ result = self._kdf.copy().index if name: result.name = name return result def droplevel(self, level) -> "Index": """ Return index with requested level(s) removed. If resulting index has only 1 level left, the result will be of Index type, not MultiIndex. Parameters ---------- level : int, str, tuple, or list-like, default 0 If a string is given, must be the name of a level If list-like, elements must be names or indexes of levels. Returns ------- Index or MultiIndex Examples -------- >>> midx = ks.DataFrame({'a': ['a', 'b']}, index=[['a', 'x'], ['b', 'y'], [1, 2]]).index >>> midx # doctest: +SKIP MultiIndex([('a', 'b', 1), ('x', 'y', 2)], ) >>> midx.droplevel([0, 1]) # doctest: +SKIP Int64Index([1, 2], dtype='int64') >>> midx.droplevel(0) # doctest: +SKIP MultiIndex([('b', 1), ('y', 2)], ) >>> midx.names = [("a", "b"), "b", "c"] >>> midx.droplevel([('a', 'b')]) # doctest: +SKIP MultiIndex([('b', 1), ('y', 2)], names=['b', 'c']) """ names = self.names nlevels = self.nlevels if not is_list_like(level): level = [level] int_level = set() for n in level: if isinstance(n, int): if n < 0: n = n + nlevels if n < 0: raise IndexError( "Too many levels: Index has only {} levels, " "{} is not a valid level number".format(nlevels, (n - nlevels)) ) if n >= nlevels: raise IndexError( "Too many levels: Index has only {} levels, not {}".format(nlevels, n + 1) ) else: if n not in names: raise KeyError("Level {} not found".format(n)) n = names.index(n) int_level.add(n) if len(level) >= nlevels: raise ValueError( "Cannot remove {} levels from an index with {} " "levels: at least one level must be " "left.".format(len(level), nlevels) ) index_spark_columns, index_names, index_dtypes = zip( *[ item for i, item in enumerate( zip( self._internal.index_spark_columns, self._internal.index_names, self._internal.index_dtypes, ) ) if i not in int_level ] ) internal = self._internal.copy( index_spark_columns=list(index_spark_columns), index_names=list(index_names), index_dtypes=list(index_dtypes), column_labels=[], data_spark_columns=[], data_dtypes=[], ) return DataFrame(internal).index def symmetric_difference(self, other, result_name=None, sort=None) -> "Index": """ Compute the symmetric difference of two Index objects. Parameters ---------- other : Index or array-like result_name : str sort : True or None, default None Whether to sort the resulting index. * True : Attempt to sort the result. * None : Do not sort the result. Returns ------- symmetric_difference : Index Notes ----- ``symmetric_difference`` contains elements that appear in either ``idx1`` or ``idx2`` but not both. Equivalent to the Index created by ``idx1.difference(idx2) | idx2.difference(idx1)`` with duplicates dropped. Examples -------- >>> s1 = ks.Series([1, 2, 3, 4], index=[1, 2, 3, 4]) >>> s2 = ks.Series([1, 2, 3, 4], index=[2, 3, 4, 5]) >>> s1.index.symmetric_difference(s2.index) Int64Index([5, 1], dtype='int64') You can set name of result Index. >>> s1.index.symmetric_difference(s2.index, result_name='koalas') Int64Index([5, 1], dtype='int64', name='koalas') You can set sort to `True`, if you want to sort the resulting index. >>> s1.index.symmetric_difference(s2.index, sort=True) Int64Index([1, 5], dtype='int64') You can also use the ``^`` operator: >>> s1.index ^ s2.index Int64Index([5, 1], dtype='int64') """ if type(self) != type(other): raise NotImplementedError( "Doesn't support symmetric_difference between Index & MultiIndex for now" ) sdf_self = self._kdf._internal.spark_frame.select(self._internal.index_spark_columns) sdf_other = other._kdf._internal.spark_frame.select(other._internal.index_spark_columns) sdf_symdiff = sdf_self.union(sdf_other).subtract(sdf_self.intersect(sdf_other)) if sort: sdf_symdiff = sdf_symdiff.sort(self._internal.index_spark_column_names) internal = InternalFrame( spark_frame=sdf_symdiff, index_spark_columns=[ scol_for(sdf_symdiff, col) for col in self._internal.index_spark_column_names ], index_names=self._internal.index_names, index_dtypes=self._internal.index_dtypes, ) result = DataFrame(internal).index if result_name: result.name = result_name return result # TODO: return_indexer def sort_values(self, ascending=True) -> "Index": """ Return a sorted copy of the index. .. note:: This method is not supported for pandas when index has NaN value. pandas raises unexpected TypeError, but we support treating NaN as the smallest value. Parameters ---------- ascending : bool, default True Should the index values be sorted in an ascending order. Returns ------- sorted_index : ks.Index or ks.MultiIndex Sorted copy of the index. See Also -------- Series.sort_values : Sort values of a Series. DataFrame.sort_values : Sort values in a DataFrame. Examples -------- >>> idx = ks.Index([10, 100, 1, 1000]) >>> idx Int64Index([10, 100, 1, 1000], dtype='int64') Sort values in ascending order (default behavior). >>> idx.sort_values() Int64Index([1, 10, 100, 1000], dtype='int64') Sort values in descending order. >>> idx.sort_values(ascending=False) Int64Index([1000, 100, 10, 1], dtype='int64') Support for MultiIndex. >>> kidx = ks.MultiIndex.from_tuples([('a', 'x', 1), ('c', 'y', 2), ('b', 'z', 3)]) >>> kidx # doctest: +SKIP MultiIndex([('a', 'x', 1), ('c', 'y', 2), ('b', 'z', 3)], ) >>> kidx.sort_values() # doctest: +SKIP MultiIndex([('a', 'x', 1), ('b', 'z', 3), ('c', 'y', 2)], ) >>> kidx.sort_values(ascending=False) # doctest: +SKIP MultiIndex([('c', 'y', 2), ('b', 'z', 3), ('a', 'x', 1)], ) """ sdf = self._internal.spark_frame sdf = sdf.orderBy(self._internal.index_spark_columns, ascending=ascending).select( self._internal.index_spark_columns ) internal = InternalFrame( spark_frame=sdf, index_spark_columns=[ scol_for(sdf, col) for col in self._internal.index_spark_column_names ], index_names=self._internal.index_names, index_dtypes=self._internal.index_dtypes, ) return DataFrame(internal).index def sort(self, *args, **kwargs) -> None: """ Use sort_values instead. """ raise TypeError("cannot sort an Index object in-place, use sort_values instead") def min(self) -> Union[Scalar, Tuple[Scalar, ...]]: """ Return the minimum value of the Index. Returns ------- scalar Minimum value. See Also -------- Index.max : Return the maximum value of the object. Series.min : Return the minimum value in a Series. DataFrame.min : Return the minimum values in a DataFrame. Examples -------- >>> idx = ks.Index([3, 2, 1]) >>> idx.min() 1 >>> idx = ks.Index(['c', 'b', 'a']) >>> idx.min() 'a' For a MultiIndex, the maximum is determined lexicographically. >>> idx = ks.MultiIndex.from_tuples([('a', 'x', 1), ('b', 'y', 2)]) >>> idx.min() ('a', 'x', 1) """ sdf = self._internal.spark_frame min_row = ( sdf.select(F.min(F.struct(self._internal.index_spark_columns)).alias("min_row")) .select("min_row.*") .toPandas() ) result = tuple(min_row.iloc[0]) return result if len(result) > 1 else result[0] def max(self) -> Union[Scalar, Tuple[Scalar, ...]]: """ Return the maximum value of the Index. Returns ------- scalar Maximum value. See Also -------- Index.min : Return the minimum value in an Index. Series.max : Return the maximum value in a Series. DataFrame.max : Return the maximum values in a DataFrame. Examples -------- >>> idx = ks.Index([3, 2, 1]) >>> idx.max() 3 >>> idx = ks.Index(['c', 'b', 'a']) >>> idx.max() 'c' For a MultiIndex, the maximum is determined lexicographically. >>> idx = ks.MultiIndex.from_tuples([('a', 'x', 1), ('b', 'y', 2)]) >>> idx.max() ('b', 'y', 2) """ sdf = self._internal.spark_frame max_row = ( sdf.select(F.max(F.struct(self._internal.index_spark_columns)).alias("max_row")) .select("max_row.*") .toPandas() ) result = tuple(max_row.iloc[0]) return result if len(result) > 1 else result[0] def delete(self, loc) -> "Index": """ Make new Index with passed location(-s) deleted. .. note:: this API can be pretty expensive since it is based on a global sequence internally. Returns ------- new_index : Index Examples -------- >>> kidx = ks.Index([10, 10, 9, 8, 4, 2, 4, 4, 2, 2, 10, 10]) >>> kidx Int64Index([10, 10, 9, 8, 4, 2, 4, 4, 2, 2, 10, 10], dtype='int64') >>> kidx.delete(0).sort_values() Int64Index([2, 2, 2, 4, 4, 4, 8, 9, 10, 10, 10], dtype='int64') >>> kidx.delete([0, 1, 2, 3, 10, 11]).sort_values() Int64Index([2, 2, 2, 4, 4, 4], dtype='int64') MultiIndex >>> kidx = ks.MultiIndex.from_tuples([('a', 'x', 1), ('b', 'y', 2), ('c', 'z', 3)]) >>> kidx # doctest: +SKIP MultiIndex([('a', 'x', 1), ('b', 'y', 2), ('c', 'z', 3)], ) >>> kidx.delete([0, 2]).sort_values() # doctest: +SKIP MultiIndex([('b', 'y', 2)], ) """ length = len(self) def is_len_exceeded(index): """Check if the given index is exceeded the length or not""" return index >= length if index >= 0 else abs(index) > length if not is_list_like(loc): if is_len_exceeded(loc): raise IndexError( "index {} is out of bounds for axis 0 with size {}".format(loc, length) ) loc = [loc] else: for index in loc: if is_len_exceeded(index): raise IndexError( "index {} is out of bounds for axis 0 with size {}".format(index, length) ) loc = [int(item) for item in loc] loc = [item if item >= 0 else length + item for item in loc] # we need a temporary column such as '__index_value_0__' # since 'InternalFrame.attach_default_index' will be failed # when self._scol has name of '__index_level_0__' index_value_column_format = "__index_value_{}__" sdf = self._internal._sdf index_value_column_names = [ verify_temp_column_name(sdf, index_value_column_format.format(i)) for i in range(self._internal.index_level) ] index_value_columns = [ index_scol.alias(index_vcol_name) for index_scol, index_vcol_name in zip( self._internal.index_spark_columns, index_value_column_names ) ] sdf = sdf.select(index_value_columns) sdf = InternalFrame.attach_default_index(sdf, default_index_type="distributed-sequence") # sdf here looks as below # +-----------------+-----------------+-----------------+-----------------+ # |__index_level_0__|__index_value_0__|__index_value_1__|__index_value_2__| # +-----------------+-----------------+-----------------+-----------------+ # | 0| a| x| 1| # | 1| b| y| 2| # | 2| c| z| 3| # +-----------------+-----------------+-----------------+-----------------+ # delete rows which are matched with given `loc` sdf = sdf.where(~F.col(SPARK_INDEX_NAME_FORMAT(0)).isin(loc)) sdf = sdf.select(index_value_column_names) # sdf here looks as below, we should alias them back to origin spark column names # +-----------------+-----------------+-----------------+ # |__index_value_0__|__index_value_1__|__index_value_2__| # +-----------------+-----------------+-----------------+ # | c| z| 3| # +-----------------+-----------------+-----------------+ index_origin_columns = [ F.col(index_vcol_name).alias(index_scol_name) for index_vcol_name, index_scol_name in zip( index_value_column_names, self._internal.index_spark_column_names ) ] sdf = sdf.select(index_origin_columns) internal = InternalFrame( spark_frame=sdf, index_spark_columns=[ scol_for(sdf, col) for col in self._internal.index_spark_column_names ], index_names=self._internal.index_names, index_dtypes=self._internal.index_dtypes, ) return DataFrame(internal).index def append(self, other: "Index") -> "Index": """ Append a collection of Index options together. Parameters ---------- other : Index Returns ------- appended : Index Examples -------- >>> kidx = ks.Index([10, 5, 0, 5, 10, 5, 0, 10]) >>> kidx Int64Index([10, 5, 0, 5, 10, 5, 0, 10], dtype='int64') >>> kidx.append(kidx) Int64Index([10, 5, 0, 5, 10, 5, 0, 10, 10, 5, 0, 5, 10, 5, 0, 10], dtype='int64') Support for MiltiIndex >>> kidx = ks.MultiIndex.from_tuples([('a', 'x'), ('b', 'y')]) >>> kidx # doctest: +SKIP MultiIndex([('a', 'x'), ('b', 'y')], ) >>> kidx.append(kidx) # doctest: +SKIP MultiIndex([('a', 'x'), ('b', 'y'), ('a', 'x'), ('b', 'y')], ) """ from databricks.koalas.indexes.multi import MultiIndex if type(self) is not type(other): raise NotImplementedError( "append() between Index & MultiIndex currently is not supported" ) sdf_self = self._internal.spark_frame.select(self._internal.index_spark_columns) sdf_other = other._internal.spark_frame.select(other._internal.index_spark_columns) sdf_appended = sdf_self.union(sdf_other) # names should be kept when MultiIndex, but Index wouldn't keep its name. if isinstance(self, MultiIndex): index_names = self._internal.index_names else: index_names = None internal = InternalFrame( # TODO: dtypes? spark_frame=sdf_appended, index_spark_columns=[ scol_for(sdf_appended, col) for col in self._internal.index_spark_column_names ], index_names=index_names, ) return DataFrame(internal).index def argmax(self) -> int: """ Return a maximum argument indexer. Parameters ---------- skipna : bool, default True Returns ------- maximum argument indexer Examples -------- >>> kidx = ks.Index([10, 9, 8, 7, 100, 5, 4, 3, 100, 3]) >>> kidx Int64Index([10, 9, 8, 7, 100, 5, 4, 3, 100, 3], dtype='int64') >>> kidx.argmax() 4 """ sdf = self._internal.spark_frame.select(self.spark.column) sequence_col = verify_temp_column_name(sdf, "__distributed_sequence_column__") sdf = InternalFrame.attach_distributed_sequence_column(sdf, column_name=sequence_col) # spark_frame here looks like below # +-----------------+---------------+ # |__index_level_0__|__index_value__| # +-----------------+---------------+ # | 0| 10| # | 4| 100| # | 2| 8| # | 3| 7| # | 6| 4| # | 5| 5| # | 7| 3| # | 8| 100| # | 1| 9| # +-----------------+---------------+ return ( sdf.orderBy( scol_for(sdf, self._internal.data_spark_column_names[0]).desc(), F.col(sequence_col).asc(), ) .select(sequence_col) .first()[0] ) def argmin(self) -> int: """ Return a minimum argument indexer. Parameters ---------- skipna : bool, default True Returns ------- minimum argument indexer Examples -------- >>> kidx = ks.Index([10, 9, 8, 7, 100, 5, 4, 3, 100, 3]) >>> kidx Int64Index([10, 9, 8, 7, 100, 5, 4, 3, 100, 3], dtype='int64') >>> kidx.argmin() 7 """ sdf = self._internal.spark_frame.select(self.spark.column) sequence_col = verify_temp_column_name(sdf, "__distributed_sequence_column__") sdf = InternalFrame.attach_distributed_sequence_column(sdf, column_name=sequence_col) return ( sdf.orderBy( scol_for(sdf, self._internal.data_spark_column_names[0]).asc(), F.col(sequence_col).asc(), ) .select(sequence_col) .first()[0] ) def set_names(self, names, level=None, inplace=False) -> Optional["Index"]: """ Set Index or MultiIndex name. Able to set new names partially and by level. Parameters ---------- names : label or list of label Name(s) to set. level : int, label or list of int or label, optional If the index is a MultiIndex, level(s) to set (None for all levels). Otherwise level must be None. inplace : bool, default False Modifies the object directly, instead of creating a new Index or MultiIndex. Returns ------- Index The same type as the caller or None if inplace is True. See Also -------- Index.rename : Able to set new names without level. Examples -------- >>> idx = ks.Index([1, 2, 3, 4]) >>> idx Int64Index([1, 2, 3, 4], dtype='int64') >>> idx.set_names('quarter') Int64Index([1, 2, 3, 4], dtype='int64', name='quarter') For MultiIndex >>> idx = ks.MultiIndex.from_tuples([('a', 'x'), ('b', 'y')]) >>> idx # doctest: +SKIP MultiIndex([('a', 'x'), ('b', 'y')], ) >>> idx.set_names(['kind', 'year'], inplace=True) >>> idx # doctest: +SKIP MultiIndex([('a', 'x'), ('b', 'y')], names=['kind', 'year']) >>> idx.set_names('species', level=0) # doctest: +SKIP MultiIndex([('a', 'x'), ('b', 'y')], names=['species', 'year']) """ from databricks.koalas.indexes.multi import MultiIndex if isinstance(self, MultiIndex): if level is not None: self_names = self.names self_names[level] = names names = self_names return self.rename(name=names, inplace=inplace) def difference(self, other, sort=None) -> "Index": """ Return a new Index with elements from the index that are not in `other`. This is the set difference of two Index objects. Parameters ---------- other : Index or array-like sort : True or None, default None Whether to sort the resulting index. * True : Attempt to sort the result. * None : Do not sort the result. Returns ------- difference : Index Examples -------- >>> idx1 = ks.Index([2, 1, 3, 4]) >>> idx2 = ks.Index([3, 4, 5, 6]) >>> idx1.difference(idx2, sort=True) Int64Index([1, 2], dtype='int64') MultiIndex >>> midx1 = ks.MultiIndex.from_tuples([('a', 'x', 1), ('b', 'y', 2), ('c', 'z', 3)]) >>> midx2 = ks.MultiIndex.from_tuples([('a', 'x', 1), ('b', 'z', 2), ('k', 'z', 3)]) >>> midx1.difference(midx2) # doctest: +SKIP MultiIndex([('b', 'y', 2), ('c', 'z', 3)], ) """ from databricks.koalas.indexes.multi import MultiIndex if not is_list_like(other): raise TypeError("Input must be Index or array-like") if not isinstance(sort, (type(None), type(True))): raise ValueError( "The 'sort' keyword only takes the values of None or True; {} was passed.".format( sort ) ) # Handling MultiIndex if isinstance(self, MultiIndex) and not isinstance(other, MultiIndex): if not all([isinstance(item, tuple) for item in other]): raise TypeError("other must be a MultiIndex or a list of tuples") other = MultiIndex.from_tuples(other) if not isinstance(other, Index): other = Index(other) sdf_self = self._internal.spark_frame sdf_other = other._internal.spark_frame idx_self = self._internal.index_spark_columns idx_other = other._internal.index_spark_columns sdf_diff = sdf_self.select(idx_self).subtract(sdf_other.select(idx_other)) internal = InternalFrame( spark_frame=sdf_diff, index_spark_columns=[ scol_for(sdf_diff, col) for col in self._internal.index_spark_column_names ], index_names=self._internal.index_names, index_dtypes=self._internal.index_dtypes, ) result = DataFrame(internal).index # Name(s) will be kept when only name(s) of (Multi)Index are the same. if isinstance(self, type(other)) and isinstance(self, MultiIndex): if self.names == other.names: result.names = self.names elif isinstance(self, type(other)) and not isinstance(self, MultiIndex): if self.name == other.name: result.name = self.name return result if sort is None else result.sort_values() @property def is_all_dates(self) -> bool: """ Return if all data types of the index are datetime. remember that since Koalas does not support multiple data types in an index, so it returns True if any type of data is datetime. Examples -------- >>> from datetime import datetime >>> idx = ks.Index([datetime(2019, 1, 1, 0, 0, 0), datetime(2019, 2, 3, 0, 0, 0)]) >>> idx DatetimeIndex(['2019-01-01', '2019-02-03'], dtype='datetime64[ns]', freq=None) >>> idx.is_all_dates True >>> idx = ks.Index([datetime(2019, 1, 1, 0, 0, 0), None]) >>> idx DatetimeIndex(['2019-01-01', 'NaT'], dtype='datetime64[ns]', freq=None) >>> idx.is_all_dates True >>> idx = ks.Index([0, 1, 2]) >>> idx Int64Index([0, 1, 2], dtype='int64') >>> idx.is_all_dates False """ return isinstance(self.spark.data_type, TimestampType) def repeat(self, repeats: int) -> "Index": """ Repeat elements of a Index/MultiIndex. Returns a new Index/MultiIndex where each element of the current Index/MultiIndex is repeated consecutively a given number of times. Parameters ---------- repeats : int The number of repetitions for each element. This should be a non-negative integer. Repeating 0 times will return an empty Index. Returns ------- repeated_index : Index/MultiIndex Newly created Index/MultiIndex with repeated elements. See Also -------- Series.repeat : Equivalent function for Series. Examples -------- >>> idx = ks.Index(['a', 'b', 'c']) >>> idx Index(['a', 'b', 'c'], dtype='object') >>> idx.repeat(2) Index(['a', 'b', 'c', 'a', 'b', 'c'], dtype='object') For MultiIndex, >>> midx = ks.MultiIndex.from_tuples([('x', 'a'), ('x', 'b'), ('y', 'c')]) >>> midx # doctest: +SKIP MultiIndex([('x', 'a'), ('x', 'b'), ('y', 'c')], ) >>> midx.repeat(2) # doctest: +SKIP MultiIndex([('x', 'a'), ('x', 'b'), ('y', 'c'), ('x', 'a'), ('x', 'b'), ('y', 'c')], ) >>> midx.repeat(0) # doctest: +SKIP MultiIndex([], ) """ if not isinstance(repeats, int): raise ValueError( "`repeats` argument must be integer, but got {}".format(type(repeats).__name__) ) elif repeats < 0: raise ValueError("negative dimensions are not allowed") kdf = DataFrame(self._internal.resolved_copy) # type: DataFrame if repeats == 0: return DataFrame(kdf._internal.with_filter(F.lit(False))).index else: return ks.concat([kdf] * repeats).index def asof(self, label) -> Scalar: """ Return the label from the index, or, if not present, the previous one. Assuming that the index is sorted, return the passed index label if it is in the index, or return the previous index label if the passed one is not in the index. .. note:: This API is dependent on :meth:`Index.is_monotonic_increasing` which can be expensive. Parameters ---------- label : object The label up to which the method returns the latest index label. Returns ------- object The passed label if it is in the index. The previous label if the passed label is not in the sorted index or `NaN` if there is no such label. Examples -------- `Index.asof` returns the latest index label up to the passed label. >>> idx = ks.Index(['2013-12-31', '2014-01-02', '2014-01-03']) >>> idx.asof('2014-01-01') '2013-12-31' If the label is in the index, the method returns the passed label. >>> idx.asof('2014-01-02') '2014-01-02' If all of the labels in the index are later than the passed label, NaN is returned. >>> idx.asof('1999-01-02') nan """ sdf = self._internal.spark_frame if self.is_monotonic_increasing: sdf = sdf.where(self.spark.column <= F.lit(label).cast(self.spark.data_type)).select( F.max(self.spark.column) ) elif self.is_monotonic_decreasing: sdf = sdf.where(self.spark.column >= F.lit(label).cast(self.spark.data_type)).select( F.min(self.spark.column) ) else: raise ValueError("index must be monotonic increasing or decreasing") result = sdf.toPandas().iloc[0, 0] return result if result is not None else np.nan def union(self, other, sort=None) -> "Index": """ Form the union of two Index objects. Parameters ---------- other : Index or array-like sort : bool or None, default None Whether to sort the resulting Index. Returns ------- union : Index Examples -------- Index >>> idx1 = ks.Index([1, 2, 3, 4]) >>> idx2 = ks.Index([3, 4, 5, 6]) >>> idx1.union(idx2).sort_values() Int64Index([1, 2, 3, 4, 5, 6], dtype='int64') MultiIndex >>> midx1 = ks.MultiIndex.from_tuples([("x", "a"), ("x", "b"), ("x", "c"), ("x", "d")]) >>> midx2 = ks.MultiIndex.from_tuples([("x", "c"), ("x", "d"), ("x", "e"), ("x", "f")]) >>> midx1.union(midx2).sort_values() # doctest: +SKIP MultiIndex([('x', 'a'), ('x', 'b'), ('x', 'c'), ('x', 'd'), ('x', 'e'), ('x', 'f')], ) """ from databricks.koalas.indexes.multi import MultiIndex sort = True if sort is None else sort sort = validate_bool_kwarg(sort, "sort") if type(self) is not type(other): if isinstance(self, MultiIndex): if not isinstance(other, list) or not all( [isinstance(item, tuple) for item in other] ): raise TypeError("other must be a MultiIndex or a list of tuples") other = MultiIndex.from_tuples(other) else: if isinstance(other, MultiIndex): # TODO: We can't support different type of values in a single column for now. raise NotImplementedError( "Union between Index and MultiIndex is not yet supported" ) elif isinstance(other, Series): other = other.to_frame() other = other.set_index(other.columns[0]).index elif isinstance(other, DataFrame): raise ValueError("Index data must be 1-dimensional") else: other = Index(other) sdf_self = self._internal.spark_frame.select(self._internal.index_spark_columns) sdf_other = other._internal.spark_frame.select(other._internal.index_spark_columns) sdf = sdf_self.union(sdf_other.subtract(sdf_self)) if isinstance(self, MultiIndex): sdf = sdf.drop_duplicates() if sort: sdf = sdf.sort(self._internal.index_spark_column_names) internal = InternalFrame( # TODO: dtypes? spark_frame=sdf, index_spark_columns=[ scol_for(sdf, col) for col in self._internal.index_spark_column_names ], index_names=self._internal.index_names, ) return DataFrame(internal).index def holds_integer(self) -> bool: """ Whether the type is an integer type. Always return False for MultiIndex. Notes ----- When Index contains null values the result can be different with pandas since Koalas cast integer to float when Index contains null values. >>> ks.Index([1, 2, 3, None]) Float64Index([1.0, 2.0, 3.0, nan], dtype='float64') Examples -------- >>> kidx = ks.Index([1, 2, 3, 4]) >>> kidx.holds_integer() True Returns False for string type. >>> kidx = ks.Index(["A", "B", "C", "D"]) >>> kidx.holds_integer() False Returns False for float type. >>> kidx = ks.Index([1.1, 2.2, 3.3, 4.4]) >>> kidx.holds_integer() False """ return isinstance(self.spark.data_type, IntegralType) def intersection(self, other) -> "Index": """ Form the intersection of two Index objects. This returns a new Index with elements common to the index and `other`. Parameters ---------- other : Index or array-like Returns ------- intersection : Index Examples -------- >>> idx1 = ks.Index([1, 2, 3, 4]) >>> idx2 = ks.Index([3, 4, 5, 6]) >>> idx1.intersection(idx2).sort_values() Int64Index([3, 4], dtype='int64') """ from databricks.koalas.indexes.multi import MultiIndex if isinstance(other, DataFrame): raise ValueError("Index data must be 1-dimensional") elif isinstance(other, MultiIndex): # Always returns a no-named empty Index if `other` is MultiIndex. return self._kdf.head(0).index.rename(None) elif isinstance(other, Index): spark_frame_other = other.to_frame().to_spark() keep_name = self.name == other.name elif isinstance(other, Series): spark_frame_other = other.to_frame().to_spark() keep_name = True elif is_list_like(other): other = Index(other) if isinstance(other, MultiIndex): return other.to_frame().head(0).index spark_frame_other = other.to_frame().to_spark() keep_name = True else: raise TypeError("Input must be Index or array-like") spark_frame_self = self.to_frame(name=SPARK_DEFAULT_INDEX_NAME).to_spark() spark_frame_intersected = spark_frame_self.intersect(spark_frame_other) if keep_name: index_names = self._internal.index_names else: index_names = None internal = InternalFrame( # TODO: dtypes? spark_frame=spark_frame_intersected, index_spark_columns=[scol_for(spark_frame_intersected, SPARK_DEFAULT_INDEX_NAME)], index_names=index_names, ) return DataFrame(internal).index def item(self) -> Union[Scalar, Tuple[Scalar, ...]]: """ Return the first element of the underlying data as a python scalar. Returns ------- scalar The first element of Index. Raises ------ ValueError If the data is not length-1. Examples -------- >>> kidx = ks.Index([10]) >>> kidx.item() 10 """ return self.to_series().item() def insert(self, loc: int, item) -> "Index": """ Make new Index inserting new item at location. Follows Python list.append semantics for negative values. Parameters ---------- loc : int item : object Returns ------- new_index : Index Examples -------- >>> kidx = ks.Index([1, 2, 3, 4, 5]) >>> kidx.insert(3, 100) Int64Index([1, 2, 3, 100, 4, 5], dtype='int64') For negative values >>> kidx = ks.Index([1, 2, 3, 4, 5]) >>> kidx.insert(-3, 100) Int64Index([1, 2, 100, 3, 4, 5], dtype='int64') """ if loc < 0: length = len(self) loc = loc + length loc = 0 if loc < 0 else loc index_name = self._internal.index_spark_column_names[0] sdf_before = self.to_frame(name=index_name)[:loc].to_spark() sdf_middle = Index([item]).to_frame(name=index_name).to_spark() sdf_after = self.to_frame(name=index_name)[loc:].to_spark() sdf = sdf_before.union(sdf_middle).union(sdf_after) internal = self._internal.with_new_sdf(sdf) # TODO: dtype? return DataFrame(internal).index def view(self) -> "Index": """ this is defined as a copy with the same identity """ return self.copy() def to_list(self) -> List: """ Return a list of the values. These are each a scalar type, which is a Python scalar (for str, int, float) or a pandas scalar (for Timestamp/Timedelta/Interval/Period) .. note:: This method should only be used if the resulting list is expected to be small, as all the data is loaded into the driver's memory. Examples -------- Index >>> idx = ks.Index([1, 2, 3, 4, 5]) >>> idx.to_list() [1, 2, 3, 4, 5] MultiIndex >>> tuples = [(1, 'red'), (1, 'blue'), (2, 'red'), (2, 'green')] >>> midx = ks.MultiIndex.from_tuples(tuples) >>> midx.to_list() [(1, 'red'), (1, 'blue'), (2, 'red'), (2, 'green')] """ return self._to_internal_pandas().tolist() tolist = to_list @property def inferred_type(self) -> str: """ Return a string of the type inferred from the values. Examples -------- >>> from datetime import datetime >>> ks.Index([1, 2, 3]).inferred_type 'integer' >>> ks.Index([1.0, 2.0, 3.0]).inferred_type 'floating' >>> ks.Index(['a', 'b', 'c']).inferred_type 'string' >>> ks.Index([True, False, True, False]).inferred_type 'boolean' """ return lib.infer_dtype([self.to_series().head(1).item()]) def __getattr__(self, item: str) -> Any: if hasattr(MissingPandasLikeIndex, item): property_or_func = getattr(MissingPandasLikeIndex, item) if isinstance(property_or_func, property): return property_or_func.fget(self) # type: ignore else: return partial(property_or_func, self) raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, item)) def __repr__(self): max_display_count = get_option("display.max_rows") if max_display_count is None: return repr(self._to_internal_pandas()) pindex = self._kdf._get_or_create_repr_pandas_cache(max_display_count).index pindex_length = len(pindex) repr_string = repr(pindex[:max_display_count]) if pindex_length > max_display_count: footer = "\nShowing only the first {}".format(max_display_count) return repr_string + footer return repr_string def __iter__(self): return MissingPandasLikeIndex.__iter__(self) def __xor__(self, other): return self.symmetric_difference(other) def __bool__(self): raise ValueError( "The truth value of a {0} is ambiguous. " "Use a.empty, a.bool(), a.item(), a.any() or a.all().".format(self.__class__.__name__) )
32.486443
100
0.517664
630a20308d6773943d29e7d3558c570d542d4cbb
2,772
py
Python
backend/models/entry.py
methodpark/digitaleswarten
024c0b88df54e9727925b202e139b3c5b2ce73d6
[ "Apache-2.0" ]
10
2020-03-20T19:14:43.000Z
2020-10-29T21:31:40.000Z
backend/models/entry.py
methodpark/digitaleswarten
024c0b88df54e9727925b202e139b3c5b2ce73d6
[ "Apache-2.0" ]
41
2020-03-20T20:27:55.000Z
2020-03-24T21:49:37.000Z
backend/models/entry.py
methodpark/digitaleswarten
024c0b88df54e9727925b202e139b3c5b2ce73d6
[ "Apache-2.0" ]
1
2020-03-21T09:31:51.000Z
2020-03-21T09:31:51.000Z
from flask import abort from sqlalchemy import desc from sqlalchemy.exc import IntegrityError from app import db from models.queue import Queue from utils.id_generator import generate_entry_id class Entry(db.Model): id = db.Column(db.String, primary_key=True) queue_id = db.Column(db.String, db.ForeignKey('queue.id'), primary_key=True) queue = db.relationship('Queue', backref=db.backref('slots')) name = db.Column(db.String) ticket_number = db.Column(db.Integer) state = db.Column(db.String, default='waiting') def set_state(self, new_state): """ Modifies the state of an entry in the queue. Args: - new_state (String): must either be "waiting" or "called" Returns: - (Bool): True on success, False if the entered value was not in the value range """ if new_state not in ['waiting', 'called']: return False self.state = new_state return True def __repr__(self): return f'<Entry {id}>' def short_json(self): return { 'id': self.id, 'ticketNumber' : self.ticket_number, 'state': self.state } def full_json(self): return { 'id': self.id, 'name': self.name, 'ticketNumber' : self.ticket_number, 'state': self.state } def add_new_entry_to_db(db, place, queue, entry_name): """ Creates a new entry with entry_name and returns. """ entry_id = generate_entry_id(entry_name) place_queues = Queue.query.filter_by(place=place).all() largest_place_entry = None for pl_queue in place_queues: largest_queue_entry = db.session.query(Entry) \ .filter_by(queue=pl_queue) \ .order_by(desc(Entry.ticket_number)) \ .limit(1) \ .first() if largest_queue_entry is None: continue elif largest_place_entry is None: largest_place_entry = largest_queue_entry elif largest_place_entry.ticket_number < largest_queue_entry.ticket_number: largest_place_entry = largest_queue_entry else: continue if largest_place_entry is None: ticket_number = 1 else: ticket_number = largest_place_entry.ticket_number + 1 try: new_entry = Entry(id=entry_id, name=entry_name, queue=queue, ticket_number=ticket_number) db.session.add(new_entry) db.session.commit() except IntegrityError: abort(500) return new_entry
33
97
0.58153
bd0df77786bddd609b3dec2deef8ebe43b8d6880
3,125
py
Python
habitat/datasets/roomnav/util.py
medhini/habitat-api
f0d4cdaacb12be43e58bf0b87f43074240faf99b
[ "MIT" ]
null
null
null
habitat/datasets/roomnav/util.py
medhini/habitat-api
f0d4cdaacb12be43e58bf0b87f43074240faf99b
[ "MIT" ]
null
null
null
habitat/datasets/roomnav/util.py
medhini/habitat-api
f0d4cdaacb12be43e58bf0b87f43074240faf99b
[ "MIT" ]
null
null
null
import csv from typing import List import os import gzip import habitat import random MP3D_SCENES_SPLITS_PATH = \ "datasets/scenes/scenes_mp3d.csv" GIBSON_SCENES_SPLITS_PATH = \ "datasets/scenes/scenes_gibson_fullplus.csv" GIBSON_HABITAT_SCENES_SPLITS_PATH = \ "datasets/scenes/scenes_gibson_habtiat.csv" def get_mp3d_scenes(split: str = "train", scene_template: str = "{scene}") -> List[str]: scenes = [] with open(MP3D_SCENES_SPLITS_PATH, newline='') as csvfile: spamreader = csv.DictReader(csvfile, delimiter=',', quotechar='|') for row in spamreader: if split in row["set"].split() or split == "*": scenes.append(scene_template.format(scene=row["id"])) return scenes def get_gibson_scenes(split: str = "train", scene_template: str = "{scene}") -> List[str]: scenes = [] with open(GIBSON_SCENES_SPLITS_PATH, newline='') as csvfile: spamreader = csv.DictReader(csvfile, delimiter=',', quotechar='|') for row in spamreader: if row[split] == '1' or split == "*": scenes.append(scene_template.format(scene=row["id"])) return scenes def get_habitat_gibson_scenes(split: str = "train", scene_template: str = "{scene}") -> List[str]: scenes = [] with open(GIBSON_HABITAT_SCENES_SPLITS_PATH, newline='') as csvfile: spamreader = csv.DictReader(csvfile, delimiter=',', quotechar='|') for row in spamreader: if row[split] == '1' or split == "*": scenes.append(scene_template.format(scene=row["id"])) return scenes def get_avg_geo_dist(dataset): sum_geo_dist = 0 for episode in dataset.episodes: sum_geo_dist += episode.info["geodesic_distance"] return sum_geo_dist / len(dataset.episodes) def generate_sampled_train(config_path="datasets/pointnav/gibson.yaml", num_episodes=1000): config = habitat.get_config(config_path, config_dir="habitat-api/configs") config.defrost() config.DATASET.SPLIT = "train" config.freeze() print("Dataset is loading.") dataset = habitat.make_dataset(id_dataset=config.DATASET.TYPE, config=config.DATASET) print(config.DATASET.SPLIT + ": Len episodes: ", len(dataset.episodes)) dataset.episodes = random.sample(dataset.episodes, num_episodes) print("Average geo distance: ", get_avg_geo_dist(dataset)) json_str = str(dataset.to_json()) output_dir = "data/datasets/pointnav/gibson/v1/{}_small_2/".format( config.DATASET.SPLIT) if not os.path.exists(output_dir): os.mkdir(output_dir) main_dataset_file = "{}/{}_small_2.json.gz".format( output_dir, config.DATASET.SPLIT) with gzip.GzipFile(main_dataset_file, 'wb') as f: f.write(json_str.encode("utf-8")) print("Dataset file: {}".format(main_dataset_file)) def generate_mini_train_splits(): generate_sampled_train("datasets/pointnav/gibson.yaml") #generate_sampled_train("datasets/pointnav/mp3d.yaml")
36.337209
78
0.65472
4bdeb8de9d562eed43566992e947d670909ff7f6
30
py
Python
src/tasks/routes/__init__.py
rrickgauer/tasks
6b40e71a56868497f902704808f9862196e29e87
[ "Apache-2.0" ]
null
null
null
src/tasks/routes/__init__.py
rrickgauer/tasks
6b40e71a56868497f902704808f9862196e29e87
[ "Apache-2.0" ]
59
2021-01-15T19:57:52.000Z
2021-09-15T01:26:52.000Z
src/tasks/routes/__init__.py
rrickgauer/tasks
6b40e71a56868497f902704808f9862196e29e87
[ "Apache-2.0" ]
null
null
null
from . import login as login
10
28
0.733333
3d136c4f0ff95c19d0e34f9b4358cc7307312945
920
py
Python
exercícios/EX_CursoEmVideo/ex106.py
jose-carlos-code/CursoEmvideo-python
8c9b82db2c2b906f6d8f2359a680b9b3af25da43
[ "MIT" ]
1
2021-01-11T15:10:36.000Z
2021-01-11T15:10:36.000Z
exercícios/EX_CursoEmVideo/ex106.py
jose-carlos-code/CursoEmvideo-python
8c9b82db2c2b906f6d8f2359a680b9b3af25da43
[ "MIT" ]
null
null
null
exercícios/EX_CursoEmVideo/ex106.py
jose-carlos-code/CursoEmvideo-python
8c9b82db2c2b906f6d8f2359a680b9b3af25da43
[ "MIT" ]
null
null
null
import time c = ( '\033[m', # 0 - sem cores '\033[0;30;41m', # 1 - vermelho '\033[0;30;42m', # 2 - verde '\033[0;30;43m', # 3 - amarelo '\033[0;30;44m', # 4 - azul '\033[0;30;45m', # 5 - roxo '\033[7;30m', # 6 - branco ) def ajuda(com): titulo(f'acessando o manual do comando \'{com} \'', 4) print(c[6], end='') help(com) print(c[0], end='') time.sleep(1) def titulo(msg, cor=0): tam = len(msg) + 4 print(c[cor], end='') print('~'*tam) print(F' {msg}') print('~'*tam) print(c[0], end='') time.sleep(1) #programa principal comando = '' while True: titulo('SISTEMA DE AJUDAD PYHELP', 2) comando = str(input('função ou biblioteca > ')) if comando.upper() == 'FIM': break else: ajuda(comando) titulo('FINALIZANDO...', 6) time.sleep(1.3) titulo('FIM DO PROGRAMA', 2)
23.589744
58
0.504348
ff943d93283c1657ddd517edea0692b51a513233
757
py
Python
run_onnx_on_tvm.py
mshr-h/nucleo-f746zg-microtvm-example
284005b60a10e7560fbb6d10e6311996f3774269
[ "MIT" ]
null
null
null
run_onnx_on_tvm.py
mshr-h/nucleo-f746zg-microtvm-example
284005b60a10e7560fbb6d10e6311996f3774269
[ "MIT" ]
null
null
null
run_onnx_on_tvm.py
mshr-h/nucleo-f746zg-microtvm-example
284005b60a10e7560fbb6d10e6311996f3774269
[ "MIT" ]
null
null
null
import tvm from tvm import relay import numpy as np import onnx from tvm.contrib import graph_executor model_path = "add.onnx" onnx_model = onnx.load(model_path) input1_name = "Input1" input2_name = "Input2" shape_dict = {input1_name: [1], input2_name: [1]} mod, params = relay.frontend.from_onnx(onnx_model, shape_dict) target = "llvm" with tvm.transform.PassContext(opt_level=3): lib = relay.build(mod, target, params=params) dev = tvm.cpu(0) dtype = "float32" m_ = graph_executor.GraphModule(lib["default"](dev)) input1 = tvm.nd.array(np.array([4], dtype=dtype)) input2 = tvm.nd.array(np.array([7], dtype=dtype)) m_.set_input("Input1", input1) m_.set_input("Input2", input2) m_.run() output = m_.get_output(0).asnumpy() print('TVM:', output)
22.939394
62
0.729194
90b35ab7c8980bd936130dea7d3b95be78c7ed4d
119
py
Python
db/__init__.py
NovaSBE-DSKC/retention-evaluation
5b68b9282f0b5479a9dc5238faef68067c76b861
[ "MIT" ]
null
null
null
db/__init__.py
NovaSBE-DSKC/retention-evaluation
5b68b9282f0b5479a9dc5238faef68067c76b861
[ "MIT" ]
null
null
null
db/__init__.py
NovaSBE-DSKC/retention-evaluation
5b68b9282f0b5479a9dc5238faef68067c76b861
[ "MIT" ]
null
null
null
from .connection import get_connector, get_connection, execute, get_engine from .tables import * from .pandas import *
29.75
74
0.806723
623a4b6502bb6e50ea178404c7b6d7ddc56454ce
3,079
py
Python
test/functional/wallet_keypool.py
DancingAxolotl/encocoinplus
b3dcc750c48a4f4e2ffebd104e5426544fe2f6b8
[ "MIT" ]
4
2020-07-07T04:51:03.000Z
2021-05-17T10:28:51.000Z
test/functional/wallet_keypool.py
DancingAxolotl/encocoinplus
b3dcc750c48a4f4e2ffebd104e5426544fe2f6b8
[ "MIT" ]
13
2020-05-08T11:14:37.000Z
2020-05-12T10:03:53.000Z
test/functional/wallet_keypool.py
DancingAxolotl/encocoinplus
b3dcc750c48a4f4e2ffebd104e5426544fe2f6b8
[ "MIT" ]
22
2020-02-10T09:17:20.000Z
2020-07-10T10:33:26.000Z
#!/usr/bin/env python3 # Copyright (c) 2014-2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the wallet keypool and interaction with wallet encryption/locking.""" from test_framework.test_framework import BitcoinTestFramework from test_framework.util import * class KeyPoolTest(BitcoinTestFramework): def set_test_params(self): self.num_nodes = 1 def run_test(self): nodes = self.nodes addr_before_encrypting = nodes[0].getnewaddress() addr_before_encrypting_data = nodes[0].validateaddress(addr_before_encrypting) # Encrypt wallet and wait to terminate nodes[0].node_encrypt_wallet('test') # Restart node 0 self.start_node(0) # Keep creating keys addr = nodes[0].getnewaddress() addr_data = nodes[0].validateaddress(addr) assert_raises_rpc_error(-12, "Keypool ran out, please call keypoolrefill first, or unlock the wallet.", nodes[0].getnewaddress) # put six (plus 2) new keys in the keypool (100% external-, +100% internal-keys, 1 in min) nodes[0].walletpassphrase('test', 12000) nodes[0].keypoolrefill(6) nodes[0].walletlock() wi = nodes[0].getwalletinfo() assert_equal(wi['keypoolsize'], 7) # drain the internal keys nodes[0].getrawchangeaddress() nodes[0].getrawchangeaddress() nodes[0].getrawchangeaddress() nodes[0].getrawchangeaddress() nodes[0].getrawchangeaddress() nodes[0].getrawchangeaddress() nodes[0].getrawchangeaddress() addr = set() # the next one should fail assert_raises_rpc_error(-12, "Keypool ran out", nodes[0].getrawchangeaddress) # drain the external keys #addr.add(nodes[0].getnewaddress()) #addr.add(nodes[0].getnewaddress()) #addr.add(nodes[0].getnewaddress()) #addr.add(nodes[0].getnewaddress()) #addr.add(nodes[0].getnewaddress()) #addr.add(nodes[0].getnewaddress()) #addr.add(nodes[0].getnewaddress()) #assert(len(addr) == 7) # the next one should fail #assert_raises_rpc_error(-12, "Error: Keypool ran out, please call keypoolrefill first", nodes[0].getnewaddress) # refill keypool with three new addresses nodes[0].walletpassphrase('test', 1) nodes[0].keypoolrefill(3) # test walletpassphrase timeout time.sleep(1.1) assert_equal(nodes[0].getwalletinfo()["unlocked_until"], 0) # drain them by mining #nodes[0].generate(1) #nodes[0].generate(1) #nodes[0].generate(1) #assert_raises_rpc_error(-12, "Keypool ran out", nodes[0].generate, 1) nodes[0].walletpassphrase('test', 100) nodes[0].keypoolrefill(100) wi = nodes[0].getwalletinfo() assert_equal(wi['keypoolsize'], 101) if __name__ == '__main__': KeyPoolTest().main()
38.012346
120
0.645664
5318a688e75fd0eee31385ebefcf3d8a5fdb3609
5,986
py
Python
plugins/commands.py
maxsupun/Mod-app-bot
527ab2c9ee68d71f9dd23da3c12bf6d01adbc0ac
[ "MIT" ]
1
2021-09-09T13:44:55.000Z
2021-09-09T13:44:55.000Z
plugins/commands.py
matheeshaofficial/Mod-app-bot
527ab2c9ee68d71f9dd23da3c12bf6d01adbc0ac
[ "MIT" ]
null
null
null
plugins/commands.py
matheeshaofficial/Mod-app-bot
527ab2c9ee68d71f9dd23da3c12bf6d01adbc0ac
[ "MIT" ]
null
null
null
import os import time import traceback import psutil import shutil import string import asyncio import info import logging from pyromod import listen from pyrogram import Client, filters from asyncio import TimeoutError from pyrogram.errors import MessageNotModified from pyrogram.types import InlineKeyboardButton, InlineKeyboardMarkup, Message from pyrogram import Client, filters from info import START_MSG, CHANNELS, ADMINS, INVITE_MSG from helpers.database.access_db import db from helpers.database.database import Database from helpers.forcesub import ForceSub from helpers.broadcast import broadcast_handler from helpers.database.add_user import AddUserToDatabase from helpers.humanbytes import humanbytes from utils import Media logger = logging.getLogger(__name__) @Client.on_message(filters.command('start')) async def start(bot, message): if message.from_user.id in info.BANNED_USERS: await message.reply_text("Sorry, You are banned to use me ☹️ Please Contact Bot Owner 😊") return await AddUserToDatabase(bot, message) FSub = await ForceSub(bot, message) if FSub == 400: return """Start command handler""" if len(message.command) > 1 and message.command[1] == 'subscribe': await message.reply(INVITE_MSG.format(message.from_user.mention)) else: buttons = [ [ InlineKeyboardButton('Updates Channel 🗣', url='https://t.me/SDBOTs_inifinity'), InlineKeyboardButton('Go Inline 🎭', switch_inline_query=''), ], [ InlineKeyboardButton('Search Mod app 🔎', switch_inline_query_current_chat=''), ], ] reply_markup = InlineKeyboardMarkup(buttons) await message.reply(START_MSG.format(message.from_user.mention), reply_markup=reply_markup) @Client.on_message(filters.command('channel') & filters.user(ADMINS)) async def channel_info(bot, message): await AddUserToDatabase(bot, message) FSub = await ForceSub(bot, message) if FSub == 400: return """Send basic information of channel""" if isinstance(CHANNELS, (int, str)): channels = [CHANNELS] elif isinstance(CHANNELS, list): channels = CHANNELS else: raise ValueError("Unexpected type of CHANNELS") text = '📑 **Indexed channels/groups**\n' for channel in channels: chat = await bot.get_chat(channel) if chat.username: text += '\n@' + chat.username else: text += '\n' + chat.title or chat.first_name text += f'\n\n**Total:** {len(CHANNELS)}' if len(text) < 4096: await message.reply(text) else: file = 'Indexed channels.txt' with open(file, 'w') as f: f.write(text) await message.reply_document(file) os.remove(file) @Client.on_message(filters.command('total') & filters.user(ADMINS)) async def total(bot, message): await AddUserToDatabase(bot, message) FSub = await ForceSub(bot, message) if FSub == 400: return """Show total files in database""" msg = await message.reply("Processing...⏳\n@SDBOTs_inifinity Projects 🇱🇰", quote=True) try: total = await Media.count_documents() await msg.edit(f'📁 Total files saved Tg film Bot Database: {total}') except Exception as e: logger.exception('Failed to check total files') await msg.edit(f'Error: {e}') @Client.on_message(filters.command('logger') & filters.user(ADMINS)) async def log_file(bot, message): await AddUserToDatabase(bot, message) FSub = await ForceSub(bot, message) if FSub == 400: return """Send log file""" try: await message.reply_document('TelegramBot.log') except Exception as e: await message.reply(str(e)) @Client.on_message(filters.command('delete') & filters.user(ADMINS)) async def delete(bot, message): await AddUserToDatabase(bot, message) FSub = await ForceSub(bot, message) if FSub == 400: return """Delete file from database""" reply = message.reply_to_message if reply and reply.media: msg = await message.reply("Processing...⏳\n@SDBOTs_inifinity Projects 🇱🇰", quote=True) else: await message.reply('Reply to file with /delete which you want to delete', quote=True) return for file_type in ("document", "video", "audio"): media = getattr(reply, file_type, None) if media is not None: break else: await msg.edit('This is not supported file format') return result = await Media.collection.delete_one({ 'file_name': media.file_name, 'file_size': media.file_size, 'mime_type': media.mime_type, 'caption': reply.caption }) if result.deleted_count: await msg.edit('File is successfully deleted from database\n@hSDBOTs_inifinity Projects🇱🇰') else: await msg.edit('File not found in database\n@SDBOTs_inifinity Projects🇱🇰') @Client.on_message(filters.private & filters.command("broadcast") & filters.user(info.BOT_OWNER) & filters.reply) async def _broadcast(_, bot: Message): await broadcast_handler(bot) @Client.on_message(filters.private & filters.command("stats") & filters.user(info.BOT_OWNER)) async def show_status_count(_, bot: Message): total, used, free = shutil.disk_usage(".") total = humanbytes(total) used = humanbytes(used) free = humanbytes(free) cpu_usage = psutil.cpu_percent() ram_usage = psutil.virtual_memory().percent disk_usage = psutil.disk_usage('/').percent total_users = await db.total_users_count() await bot.reply_text( text=f"**💽 Total Disk Space:** {total} \n**💿 Used Space:** {used}({disk_usage}%) \n**📊 Free Space:** {free} \n**CPU Usage:** {cpu_usage}% \n**RAM Usage:** {ram_usage}%\n\n**Total Users 👀:** `{total_users}`\n\n@{info.BOT_USERNAME} 🤖", parse_mode="Markdown", quote=True )
35.005848
241
0.669395
bbfaea7f04879e85d1c4573de38e5d8d7838ac7c
19,415
py
Python
third_party/nucleus/util/vis.py
peterdfields/deepvariant
33fe874a7b2b4fdb67b0f6e361dd9e45f1f52676
[ "BSD-3-Clause" ]
4
2019-03-30T13:25:25.000Z
2020-10-14T18:47:21.000Z
third_party/nucleus/util/vis.py
kchennen/deepvariant
b92646f51df8cf157147e93ecd7a082c7b6db457
[ "BSD-3-Clause" ]
2
2019-09-07T05:07:35.000Z
2019-09-07T05:08:18.000Z
third_party/nucleus/util/vis.py
kchennen/deepvariant
b92646f51df8cf157147e93ecd7a082c7b6db457
[ "BSD-3-Clause" ]
1
2020-05-04T15:13:37.000Z
2020-05-04T15:13:37.000Z
# Copyright 2019 Google LLC. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from this # software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # Lint as: python3 """Utility functions for visualization and inspection of pileup examples. Visualization and inspection utility functions enable showing image-like array data including those used in DeepVariant. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from IPython import display import numpy as np from PIL import Image from PIL import ImageDraw from tensorflow.python.platform import gfile from third_party.nucleus.protos import variants_pb2 DEEPVARIANT_CHANNEL_NAMES = [ 'read base', 'base quality', 'mapping quality', 'strand', 'read supports variant', 'base differs from ref', 'alternate allele 1', 'alternate allele 2' ] def get_image_array_from_example(example): """Decode image/encoded and image/shape of an Example into a numpy array. Parse image/encoded and image/shape features from a tensorflow Example and decode the image into that shape. Args: example: a tensorflow Example containing features that include "image/encoded" and "image/shape" Returns: numpy array of dtype np.uint8. """ features = example.features.feature img = features['image/encoded'].bytes_list.value[0] shape = features['image/shape'].int64_list.value[0:3] return np.frombuffer(img, np.uint8).reshape(shape) def split_3d_array_into_channels(arr): """Split 3D array into a list of 2D arrays. e.g. given a numpy array of shape (100, 200, 6), return a list of 6 channels, each with shape (100, 200). Args: arr: a 3D numpy array. Returns: list of 2D numpy arrays. """ return [arr[:, :, i] for i in range(arr.shape[-1])] def channels_from_example(example): """Extract image from an Example and return the list of channels. Args: example: a tensorflow Example containing features that include "image/encoded" and "image/shape" Returns: list of 2D numpy arrays, one for each channel. """ image = get_image_array_from_example(example) return split_3d_array_into_channels(image) def convert_6_channels_to_rgb(channels): """Convert 6-channel image from DeepVariant to RGB for quick visualization. The 6 channels are: "read base", "base quality", "mapping quality", "strand", "supports variant", "base != reference". Args: channels: a list of 6 numpy arrays. Returns: 3D numpy array of 3 colors (Red, green, blue). """ base = channels[0] # qual is the minimum of base quality and mapping quality at each position # 254 is the max value for quality scores because the SAM specification has # 255 reserved for unavailable values. qual = np.minimum(channels[1], channels[2]) strand = channels[3] # alpha is <supports variant> * <base != reference> alpha = np.multiply(channels[4] / 254.0, channels[5] / 254.0) return np.multiply(np.stack([base, qual, strand]), alpha).astype(np.uint8).transpose([1, 2, 0]) def scale_colors_for_png(arr, vmin=0, vmax=255): """Scale an array to integers between 0 and 255 to prep it for a PNG image. Args: arr: numpy array. Input array made up of integers or floats. vmin: number. Minimum data value to map to 0. Values below this will be clamped to this value and therefore become 0. vmax: number. Maximum data value to map to 255. Values above this will be clamped to this value and therefore become 255. Returns: numpy array of dtype np.uint8 (integers between 0 and 255). """ if vmax == 0 or vmax <= vmin: raise ValueError('vmin must be non-zero and higher than vmin.') # Careful not to modify the original array scaled = np.copy(arr) # Snap numbers in the array falling outside the range into the range, # otherwise they will produce artifacts due to byte overflow scaled[scaled > vmax] = vmax scaled[scaled < vmin] = vmin # Scale the input into the range of vmin to vmax if vmin != 0 or vmax != 255: scaled = ((scaled - vmin) / (vmax - vmin)) * 255 return scaled.astype(np.uint8) def _get_image_type_from_array(arr): """Find image type based on array dimensions. Raises error on invalid image dimensions. Args: arr: numpy array. Input array. Returns: str. "RGB" or "L", meant for PIL.Image.fromarray. """ if len(arr.shape) == 3 and arr.shape[2] == 3: # 8-bit x 3 colors return 'RGB' elif len(arr.shape) == 2: # 8-bit, gray-scale return 'L' else: raise ValueError( 'Input array must have either 2 dimensions or 3 dimensions where the ' 'third dimension has 3 channels. i.e. arr.shape is (x,y) or (x,y,3). ' 'Found shape {}.'.format(arr.shape)) def autoscale_colors_for_png(arr, vmin=None, vmax=None): """Adjust an array to prepare it for saving to an image. Re-scale numbers in the input array to go from 0 to 255 to adapt them for a PNG image. Args: arr: numpy array. Should be 2-dimensional or 3-dimensional where the third dimension has 3 channels. vmin: number (float or int). Minimum data value, which will correspond to black in greyscale or lack of each color in RGB images. Default None takes the minimum of the data from arr. vmax: number (float or int). Maximum data value, which will correspond to white in greyscale or full presence of each color in RGB images. Default None takes the max of the data from arr. Returns: (modified numpy array, image_mode) """ image_mode = _get_image_type_from_array(arr) if vmin is None: vmin = np.min(arr) if vmax is None: vmax = np.max(arr) # In cases where all elements are the same, fix the vmax so that even though # the whole image will be black, the user can at least see the shape if vmin == vmax: vmax = vmin + 1 scaled = scale_colors_for_png(arr, vmin=vmin, vmax=vmax) return scaled, image_mode def add_header(img, labels, mark_midpoints=True, header_height=20): """Adds labels to the image, evenly distributed across the top. This is primarily useful for showing the names of channels. Args: img: A PIL Image. labels: list of strs. Labels for segments to write across the top. mark_midpoints: bool. Whether to add a small vertical line marking the center of each segment of the image. header_height: int. Height of the header in pixels. Returns: A new PIL Image, taller than the original img and annotated. """ # Create a taller image to make space for a header at the top. new_height = header_height + img.size[1] new_width = img.size[0] if img.mode == 'RGB': placeholder_size = (new_height, new_width, 3) else: placeholder_size = (new_height, new_width) placeholder = np.ones(placeholder_size, dtype=np.uint8) * 255 # Divide the image width into segments. segment_width = img.size[0] / len(labels) # Calculate midpoints for all segments. midpoints = [int(segment_width * (i + 0.5)) for i in range(len(labels))] if mark_midpoints: # For each label, add a small line to mark the middle. for x_position in midpoints: placeholder[header_height - 5:header_height, x_position] = 0 # If image has an even width, it will need 2 pixels marked as the middle. if segment_width % 2 == 0: placeholder[header_height - 5:header_height, x_position + 1] = 0 bigger_img = Image.fromarray(placeholder, mode=img.mode) # Place the original image inside the taller placeholder image. bigger_img.paste(img, (0, header_height)) # Add a label for each segment. draw = ImageDraw.Draw(bigger_img) for i in range(len(labels)): text = labels[i] text_width = draw.textsize(text)[0] # xy refers to the left top corner of the text, so to center the text on # the midpoint, subtract half the text width from the midpoint position. x_position = int(midpoints[i] - text_width / 2) draw.text(xy=(x_position, 0), text=text, fill='black') return bigger_img def save_to_png(arr, path=None, image_mode=None, show=True, labels=None, scale=None): """Make a PNG and show it from a numpy array of dtype=np.uint8. Args: arr: numpy array. Input array to save. path: str. File path at which to save the image. A .png prefix is added if the path does not already have one. Leave empty to save at /tmp/tmp.png, which is useful when only temporarily showing the image in a Colab notebook. image_mode: "RGB" or "L". Leave as default=None to choose based on image dimensions. show: bool. Whether to display the image using IPython (for notebooks). labels: list of str. Labels to show across the top of the image. scale: integer. Number of pixels wide and tall to show each cell in the array. This sizes up the image while keeping exactly the same number of pixels for every cell in the array, preserving resolution and preventing any interpolation or overlapping of pixels. Default None adapts to the size of the image to multiply it up until a limit of 500 pixels, a convenient size for use in notebooks. If saving to a file for automated processing, scale=1 is recommended to keep output files small and simple while still retaining all the information content. Returns: None. Saves an image at path and optionally shows it with IPython.display. """ if image_mode is None: image_mode = _get_image_type_from_array(arr) img = Image.fromarray(arr, mode=image_mode) if labels is not None: img = add_header(img, labels) if scale is None: scale = max(1, int(500 / max(arr.shape))) if scale != 1: img = img.resize((img.size[0] * scale, img.size[1] * scale)) # Saving to a temporary file is needed even when showing in a notebook if path is None: path = '/tmp/tmp.png' elif not path.endswith('.png'): # Only PNG is supported because JPEG files are unnecessarily 3 times larger. path = '{}.png'.format(path) with gfile.Open(path, 'wb') as fout: img.save(fout, format=path.split('.')[-1]) # Show image (great for notebooks) if show: display.display(display.Image(path)) def array_to_png(arr, path=None, show=True, vmin=None, vmax=None, scale=None, labels=None): """Save an array as a PNG image with PIL and show it. Args: arr: numpy array. Should be 2-dimensional or 3-dimensional where the third dimension has 3 channels. path: str. Path for the image output. Default is /tmp/tmp.png for quickly showing the image in a notebook. show: bool. Whether to show the image using IPython utilities, only works in notebooks. vmin: number. Minimum data value, which will correspond to black in greyscale or lack of each color in RGB images. Default None takes the minimum of the data from arr. vmax: number. Maximum data value, which will correspond to white in greyscale or full presence of each color in RGB images. Default None takes the max of the data from arr. scale: integer. Number of pixels wide and tall to show each cell in the array. This sizes up the image while keeping exactly the same number of pixels for every cell in the array, preserving resolution and preventing any interpolation or overlapping of pixels. Default None adapts to the size of the image to multiply it up until a limit of 500 pixels, a convenient size for use in notebooks. If saving to a file for automated processing, scale=1 is recommended to keep output files small and simple while still retaining all the information content. labels: list of str. Labels to show across the top of the image. Returns: None. Saves an image at path and optionally shows it with IPython.display. """ scaled, image_mode = autoscale_colors_for_png(arr, vmin=vmin, vmax=vmax) save_to_png( scaled, path=path, show=show, image_mode=image_mode, labels=labels, scale=scale) def _deepvariant_channel_names(num_channels): """Get DeepVariant channel names for the given number of channels.""" # Add additional empty labels if there are more channels than expected. filler_labels = [ 'channel {}'.format(i + 1) for i in range(len(DEEPVARIANT_CHANNEL_NAMES), num_channels) ] labels = DEEPVARIANT_CHANNEL_NAMES + filler_labels # Trim off any extra labels. return labels[0:num_channels] def draw_deepvariant_pileup(example=None, channels=None, composite_type=None, annotated=True, labels=None, path=None, show=True, scale=None): """Quick utility for showing a pileup example as channels or RGB. Args: example: A tensorflow Example containing image/encoded and image/shape features. Will be parsed through channels_from_example. Ignored if channels are provided directly. Either example OR channels is required. channels: list of 2D arrays containing the data to draw. Either example OR channels is required. composite_type: str or None. Method for combining channels. One of [None,"RGB"]. annotated: bool. Whether to add channel labels and mark midpoints. labels: list of str. Which labels to add to the image. If annotated=True, use default channels labels for DeepVariant. path: str. Output file path for saving as an image. If None, just show plot. show: bool. Whether to display the image for ipython notebooks. Set to False to prevent extra output when running in bulk. scale: integer. Multiplier to enlarge the image. Default: None, which will set it automatically for a human-readable size. Set to 1 for no scaling. Returns: None. Saves an image at path and optionally shows it with IPython.display. """ if example and not channels: channels = channels_from_example(example) elif not channels: raise ValueError('Either example OR channels must be specified.') if composite_type is None: img_array = np.concatenate(channels, axis=1) if annotated and labels is None: labels = _deepvariant_channel_names(len(channels)) elif composite_type == 'RGB': img_array = convert_6_channels_to_rgb(channels) if annotated and labels is None: labels = [''] # Creates one midpoint with no label. else: raise ValueError( "Unrecognized composite_type: {}. Must be None or 'RGB'".format( composite_type)) array_to_png( img_array, path=path, show=show, scale=scale, labels=labels, vmin=0, vmax=254) def variant_from_example(example): """Extract Variant object from the 'variant/encoded' feature of an Example. Args: example: a DeepVariant-style make_examples output example. Returns: A Nucleus Variant. """ features = example.features.feature var_string = features['variant/encoded'].bytes_list.value[0] return variants_pb2.Variant.FromString(var_string) def locus_id_from_variant(variant): """Create a locus ID of form "chr:pos_ref" from a Variant object. Args: variant: a nucleus variant. Returns: str. """ return '{}:{}_{}'.format(variant.reference_name, variant.start, variant.reference_bases) def alt_allele_indices_from_example(example): """Extract indices of the particular alt allele(s) the example represents. Args: example: a DeepVariant make_examples output example. Returns: list of indices. """ features = example.features.feature val = features['alt_allele_indices/encoded'].bytes_list.value[0] # Extract the encoded proto into unsigned integers and convert to regular ints mapped = [int(x) for x in np.frombuffer(val, dtype=np.uint8)] # Format is [<field id + type>, <number of elements in array>, ...<array>]. # Extract the array only, leaving out the metadata. return mapped[2:] def alt_bases_from_indices(alt_allele_indices, alternate_bases): """Get alt allele bases based on their indices. e.g. one alt allele: [0], ["C"] => "C" or with two alt alleles: [0,2], ["C", "TT", "A"] => "C-A" Args: alt_allele_indices: list of integers. Indices of the alt alleles for a particular example. alternate_bases: list of strings. All alternate alleles for the variant. Returns: str. Alt allele(s) at the indices, joined by '-' if more than 1. """ alleles = [alternate_bases[i] for i in alt_allele_indices] # Avoiding '/' to support use in file paths. return '-'.join(alleles) def alt_from_example(example): """Get alt allele(s) from a DeepVariant example. Args: example: a DeepVariant make_examples output example. Returns: str. The bases of the alt alleles, joined by a -. """ variant = variant_from_example(example) indices = alt_allele_indices_from_example(example) return alt_bases_from_indices(indices, variant.alternate_bases) def locus_id_with_alt(example): """Get complete locus ID from a DeepVariant example. Args: example: a DeepVariant make_examples output example. Returns: str in the form "chr:pos_ref_alt. """ variant = variant_from_example(example) locus_id = locus_id_from_variant(variant) alt = alt_from_example(example) return '{}_{}'.format(locus_id, alt) def label_from_example(example): """Get the "label" from an example. Args: example: a DeepVariant make_examples output example. Returns: integer (0, 1, or 2 for regular DeepVariant examples) or None if the example has no label. """ val = example.features.feature['label'].int64_list.value if val: return int(val[0]) else: return None
35.108499
80
0.699768
793b9156e6335de4c37dc86b19f5b660dc4c2730
7,278
py
Python
fem/gui/vtk_widget/vtk_graphics/interactor_styles/my_interactor_style.py
mjredmond/FEMApp
dd8cc53acf80d0a1bb83ce9c89bcfd51e85c6be8
[ "MIT" ]
1
2019-08-03T21:40:26.000Z
2019-08-03T21:40:26.000Z
fem/gui/vtk_widget/vtk_graphics/interactor_styles/my_interactor_style.py
mjredmond/FEMApp
dd8cc53acf80d0a1bb83ce9c89bcfd51e85c6be8
[ "MIT" ]
null
null
null
fem/gui/vtk_widget/vtk_graphics/interactor_styles/my_interactor_style.py
mjredmond/FEMApp
dd8cc53acf80d0a1bb83ce9c89bcfd51e85c6be8
[ "MIT" ]
null
null
null
from __future__ import print_function, absolute_import import vtk from fem.utilities import MrSignal from ..picking import PickingManager from ...vtk_graphics import VTKGraphics from ...vtk_graphics.rendering import ( vtkPVInteractorStyle, vtkPVTrackballPan, vtkPVTrackballRotate, vtkPVTrackballZoom, vtkCameraManipulator, vtkCameraManipulatorGUIHelper ) class MyInteractorStyle(vtkPVInteractorStyle): def __init__(self): vtkPVInteractorStyle.__init__(self) self._rotate = vtkPVTrackballRotate() self._pan = vtkPVTrackballPan() self._zoom = vtkPVTrackballZoom() self._hover = None """:type: gui.vtk_widget.vtk_graphics.interactor_styles.hovered_interactor_style.HoveredInteractorStyle""" self._pan.GUIHelper = vtkCameraManipulatorGUIHelper() self._buttons_pressed = set() # these need to be implemented #selection_data.translation_factor_changed.connect(self.set_translation_factor) #selection_data.rotation_factor_changed.connect(self.set_rotation_factor) #selection_data.zoom_scale_factor_changed.connect(self.set_zoom_scale_factor) self._box_picker = None """:type: gui.vtk_widget.vtk_graphics.picking.BoxPicker""" self._poly_picker = None """:type: gui.vtk_widget.vtk_graphics.picking.PolyPicker""" #selection_data.box_picker_activate.connect(self.box_picker_activate) #selection_data.poly_picker_activate.connect(self.poly_picker_activate) self._active_picker = None self.vtk_graphics = None """:type: VTKGRaphics""" self.picking_manager = None """:type: PickingManager""" self.zoom_changed = MrSignal() def build(self): self.AddManipulator(self._rotate) self.AddManipulator(self._pan) self.AddManipulator(self._zoom) self.AddManipulator(self._hover) self._rotate.Button = 1 self._pan.Button = 2 self._zoom.Button = 3 self._hover.Button = -1 self.vtk_graphics = VTKGraphics.instance() self.picking_manager = PickingManager.instance() def set_hover_interactor_style(self, hover): self._hover = hover def set_box_picker(self, box_picker): self._box_picker = box_picker self._box_picker.done_picking.connect(self._reset_mousemove) def set_poly_picker(self, poly_picker): self._poly_picker = poly_picker self._poly_picker.done_picking.connect(self._reset_mousemove) def box_picker_activate(self): self._active_picker = self._box_picker self._picker_activate() def poly_picker_activate(self): self._active_picker = self._poly_picker self._picker_activate() def _picker_activate(self): self.RemoveObservers("MouseMoveEvent") self.RemoveObservers("LeftButtonPressEvent") self.RemoveObservers("LeftButtonReleaseEvent") self.AddObserver("MouseMoveEvent", self._PickerOnMouseMove) self.AddObserver("LeftButtonPressEvent", self._PickerOnButtonDown) self.AddObserver("LeftButtonReleaseEvent", self._PickerOnButtonUp) def _reset_mousemove(self): self.picking_manager.picking_done() self.RemoveObservers("MouseMoveEvent") self.RemoveObservers("LeftButtonPressEvent") self.RemoveObservers("LeftButtonReleaseEvent") self.AddObserver("MouseMoveEvent", self._OnMouseMove) self.AddObserver("LeftButtonPressEvent", self._OnLeftButtonDown) self.AddObserver("LeftButtonReleaseEvent", self._OnLeftButtonUp) def _PickerOnMouseMove(self, *args): current_renderer = self.GetCurrentRenderer() interactor = self.GetInteractor() event_pos = interactor.GetEventPosition() if not current_renderer: self.FindPokedRenderer(event_pos[0], event_pos[1]) current_renderer = self.GetCurrentRenderer() if current_renderer: self._active_picker.OnMouseMove(event_pos[0], event_pos[1], current_renderer, interactor) self.InvokeEvent(vtk.vtkCommand.InteractionEvent) def _PickerOnButtonDown(self, *args): current_renderer = self.GetCurrentRenderer() interactor = self.GetInteractor() event_pos = interactor.GetEventPosition() if not current_renderer: self.FindPokedRenderer(event_pos[0], event_pos[1]) current_renderer = self.GetCurrentRenderer() self.InvokeEvent(vtk.vtkCommand.StartInteractionEvent) self._active_picker.StartInteraction() self._active_picker.OnButtonDown(event_pos[0], event_pos[1], current_renderer, interactor) def _PickerOnButtonUp(self, *args): current_renderer = self.GetCurrentRenderer() interactor = self.GetInteractor() event_pos = interactor.GetEventPosition() if not current_renderer: self.FindPokedRenderer(event_pos[0], event_pos[1]) current_renderer = self.GetCurrentRenderer() self._active_picker.OnButtonUp(event_pos[0], event_pos[1], current_renderer, interactor) self.InvokeEvent(vtk.vtkCommand.EndInteractionEvent) def set_center_of_rotation(self, center): self.CenterOfRotation[:] = center[:] def set_translation_factor(self, factor): self.TranslationFactor = factor def set_rotation_factor(self, factor): self.RotationFactor = factor def set_zoom_scale_factor(self, factor): self.ZoomScaleFactor = factor def OnButtonDown(self, button, shift, control): if self.CurrentManipulator is self._hover: self.OnButtonUp(self._hover.Button) #self._hover.unload() if button > 0: self._buttons_pressed.add(button) vtkPVInteractorStyle.OnButtonDown(self, button, shift, control) def OnButtonUp(self, button): vtkPVInteractorStyle.OnButtonUp(self, button) if button > 0: try: self._buttons_pressed.remove(button) except KeyError: return if not self._buttons_pressed: old_down = self._down_pos vtkPVInteractorStyle.OnButtonDown(self, self._hover.Button, self._hover.Shift, self._hover.Control) self._down_pos = old_down if self._down_pos == self._up_pos: if self._hover.cell_picker.ClosestCellGlobalId > 0: new_center = self._hover.cell_picker.CellCenter else: new_center = None self.picking_manager.single_pick( self._down_pos, new_center, self._hover.cell_picker.ClosestCellGlobalId ) def finalize(self): self._box_picker.done_picking.disconnect(self._reset_mousemove) self._poly_picker.done_picking.disconnect(self._reset_mousemove) self._reset_mousemove() self._box_picker = None self._poly_picker = None self._active_picker = None self.RemoveAllManipulators() self._rotate = None self._pan = None self._zoom = None self._hover = None self.vtk_graphics = None
34.169014
115
0.681506
3a97cc5fd6d9ba5653f8e837919cc4637160c046
5,769
py
Python
kubernetes_asyncio/client/models/v1beta1_network_policy_egress_rule.py
weltonrodrigo/kubernetes_asyncio
b793f3e9ea43cbd0f4ff40ace1b0b677682f4042
[ "Apache-2.0" ]
null
null
null
kubernetes_asyncio/client/models/v1beta1_network_policy_egress_rule.py
weltonrodrigo/kubernetes_asyncio
b793f3e9ea43cbd0f4ff40ace1b0b677682f4042
[ "Apache-2.0" ]
13
2021-04-12T02:03:48.000Z
2022-03-28T02:08:46.000Z
kubernetes_asyncio/client/models/v1beta1_network_policy_egress_rule.py
weltonrodrigo/kubernetes_asyncio
b793f3e9ea43cbd0f4ff40ace1b0b677682f4042
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Kubernetes No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 The version of the OpenAPI document: v1.16.14 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from kubernetes_asyncio.client.configuration import Configuration class V1beta1NetworkPolicyEgressRule(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'ports': 'list[V1beta1NetworkPolicyPort]', 'to': 'list[V1beta1NetworkPolicyPeer]' } attribute_map = { 'ports': 'ports', 'to': 'to' } def __init__(self, ports=None, to=None, local_vars_configuration=None): # noqa: E501 """V1beta1NetworkPolicyEgressRule - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._ports = None self._to = None self.discriminator = None if ports is not None: self.ports = ports if to is not None: self.to = to @property def ports(self): """Gets the ports of this V1beta1NetworkPolicyEgressRule. # noqa: E501 List of destination ports for outgoing traffic. Each item in this list is combined using a logical OR. If this field is empty or missing, this rule matches all ports (traffic not restricted by port). If this field is present and contains at least one item, then this rule allows traffic only if the traffic matches at least one port in the list. # noqa: E501 :return: The ports of this V1beta1NetworkPolicyEgressRule. # noqa: E501 :rtype: list[V1beta1NetworkPolicyPort] """ return self._ports @ports.setter def ports(self, ports): """Sets the ports of this V1beta1NetworkPolicyEgressRule. List of destination ports for outgoing traffic. Each item in this list is combined using a logical OR. If this field is empty or missing, this rule matches all ports (traffic not restricted by port). If this field is present and contains at least one item, then this rule allows traffic only if the traffic matches at least one port in the list. # noqa: E501 :param ports: The ports of this V1beta1NetworkPolicyEgressRule. # noqa: E501 :type: list[V1beta1NetworkPolicyPort] """ self._ports = ports @property def to(self): """Gets the to of this V1beta1NetworkPolicyEgressRule. # noqa: E501 List of destinations for outgoing traffic of pods selected for this rule. Items in this list are combined using a logical OR operation. If this field is empty or missing, this rule matches all destinations (traffic not restricted by destination). If this field is present and contains at least one item, this rule allows traffic only if the traffic matches at least one item in the to list. # noqa: E501 :return: The to of this V1beta1NetworkPolicyEgressRule. # noqa: E501 :rtype: list[V1beta1NetworkPolicyPeer] """ return self._to @to.setter def to(self, to): """Sets the to of this V1beta1NetworkPolicyEgressRule. List of destinations for outgoing traffic of pods selected for this rule. Items in this list are combined using a logical OR operation. If this field is empty or missing, this rule matches all destinations (traffic not restricted by destination). If this field is present and contains at least one item, this rule allows traffic only if the traffic matches at least one item in the to list. # noqa: E501 :param to: The to of this V1beta1NetworkPolicyEgressRule. # noqa: E501 :type: list[V1beta1NetworkPolicyPeer] """ self._to = to def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, V1beta1NetworkPolicyEgressRule): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, V1beta1NetworkPolicyEgressRule): return True return self.to_dict() != other.to_dict()
38.205298
412
0.644132
41c456831bdbc07e0178b19cb79cd58800a81fb5
3,757
py
Python
travis_pypi_setup.py
vault-the/rigor
02f5ddb18092a114dc0a23c8fb60975e2b906e85
[ "MIT" ]
null
null
null
travis_pypi_setup.py
vault-the/rigor
02f5ddb18092a114dc0a23c8fb60975e2b906e85
[ "MIT" ]
null
null
null
travis_pypi_setup.py
vault-the/rigor
02f5ddb18092a114dc0a23c8fb60975e2b906e85
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- """Update encrypted deploy password in Travis config file """ from __future__ import print_function import base64 import json import os from getpass import getpass import yaml from cryptography.hazmat.primitives.serialization import load_pem_public_key from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives.asymmetric.padding import PKCS1v15 try: from urllib import urlopen except: from urllib.request import urlopen GITHUB_REPO = 'genomoncology/rigor' TRAVIS_CONFIG_FILE = os.path.join( os.path.dirname(os.path.abspath(__file__)), '.travis.yml') def load_key(pubkey): """Load public RSA key, with work-around for keys using incorrect header/footer format. Read more about RSA encryption with cryptography: https://cryptography.io/latest/hazmat/primitives/asymmetric/rsa/ """ try: return load_pem_public_key(pubkey.encode(), default_backend()) except ValueError: # workaround for https://github.com/travis-ci/travis-api/issues/196 pubkey = pubkey.replace('BEGIN RSA', 'BEGIN').replace('END RSA', 'END') return load_pem_public_key(pubkey.encode(), default_backend()) def encrypt(pubkey, password): """Encrypt password using given RSA public key and encode it with base64. The encrypted password can only be decrypted by someone with the private key (in this case, only Travis). """ key = load_key(pubkey) encrypted_password = key.encrypt(password, PKCS1v15()) return base64.b64encode(encrypted_password) def fetch_public_key(repo): """Download RSA public key Travis will use for this repo. Travis API docs: http://docs.travis-ci.com/api/#repository-keys """ keyurl = 'https://api.travis-ci.org/repos/{0}/key'.format(repo) data = json.loads(urlopen(keyurl).read().decode()) if 'key' not in data: errmsg = "Could not find public key for repo: {}.\n".format(repo) errmsg += "Have you already added your GitHub repo to Travis?" raise ValueError(errmsg) return data['key'] def prepend_line(filepath, line): """Rewrite a file adding a line to its beginning. """ with open(filepath) as f: lines = f.readlines() lines.insert(0, line) with open(filepath, 'w') as f: f.writelines(lines) def load_yaml_config(filepath): with open(filepath) as f: return yaml.load(f) def save_yaml_config(filepath, config): with open(filepath, 'w') as f: yaml.dump(config, f, default_flow_style=False) def update_travis_deploy_password(encrypted_password): """Update the deploy section of the .travis.yml file to use the given encrypted password. """ config = load_yaml_config(TRAVIS_CONFIG_FILE) config['deploy']['password'] = dict(secure=encrypted_password) save_yaml_config(TRAVIS_CONFIG_FILE, config) line = ('# This file was autogenerated and will overwrite' ' each time you run travis_pypi_setup.py\n') prepend_line(TRAVIS_CONFIG_FILE, line) def main(args): public_key = fetch_public_key(args.repo) password = args.password or getpass('PyPI password: ') update_travis_deploy_password(encrypt(public_key, password.encode())) print("Wrote encrypted password to .travis.yml -- you're ready to deploy") if '__main__' == __name__: import argparse parser = argparse.ArgumentParser(description=__doc__) parser.add_argument('--repo', default=GITHUB_REPO, help='GitHub repo (default: %s)' % GITHUB_REPO) parser.add_argument('--password', help='PyPI password (will prompt if not provided)') args = parser.parse_args() main(args)
30.544715
79
0.700559
f6eb7cf181a2aca3d16f96e4bafdfbd9e5141671
4,130
py
Python
msm_pele/AdaptivePELE/freeEnergies/oldScripts/repeatSnapshotsPeleAdaptive.py
danielSoler93/msm_pele
80b187ceb6446059f6c7b0dd2c0968f0db4a17a1
[ "MIT" ]
13
2017-06-14T14:42:22.000Z
2022-01-25T08:46:04.000Z
msm_pele/AdaptivePELE/freeEnergies/oldScripts/repeatSnapshotsPeleAdaptive.py
danielSoler93/msm_pele
80b187ceb6446059f6c7b0dd2c0968f0db4a17a1
[ "MIT" ]
16
2018-01-16T01:32:02.000Z
2021-02-19T17:05:12.000Z
msm_pele/AdaptivePELE/freeEnergies/oldScripts/repeatSnapshotsPeleAdaptive.py
danielSoler93/msm_pele
80b187ceb6446059f6c7b0dd2c0968f0db4a17a1
[ "MIT" ]
8
2018-02-20T10:47:07.000Z
2022-03-21T12:28:07.000Z
import os import numpy import glob import re import argparse def parseArguments(): desc = "Adds repeated snapshots in rejected steps. If total steps are provided, add also steps until the end" parser = argparse.ArgumentParser(description=desc) parser.add_argument("-t", "--totalSteps", type=int, default=0, help="Total number of steps in traj") parser.add_argument("folderTraj", help="Folder where the epochs trajs are stored") args = parser.parse_args() return args.totalSteps, args.folderTraj totalSteps, folderTraj = parseArguments() inputTrajectoryFolder = "%s/extractedCoordinates/" baseTrajectoryName = "coord_" reportName = '*report_' outputTrajectoryFolder = "%s/repeatedExtractedCoordinates/" allFolders = os.listdir(folderTraj) Epochs = [epoch for epoch in allFolders if epoch.isdigit()] for folder in Epochs: pathFolder = os.path.join(folderTraj, folder) inputTrajectoryFolderEpoch = inputTrajectoryFolder % pathFolder outputTrajectoryFolderEpoch = outputTrajectoryFolder % pathFolder if not os.path.exists(outputTrajectoryFolderEpoch): os.makedirs(outputTrajectoryFolderEpoch) inputTrajectories = glob.glob(inputTrajectoryFolderEpoch + baseTrajectoryName + '*') for inputTrajectory in inputTrajectories: trajectoryNumber = re.sub('\.dat$', '', inputTrajectory) trajectoryNumber = re.sub(inputTrajectoryFolderEpoch + baseTrajectoryName, '', trajectoryNumber) try: reportFile = glob.glob(os.path.join(pathFolder, reportName + trajectoryNumber))[0] except: print "Couldn't find file that matches: ", reportName + trajectoryNumber continue with open(inputTrajectory) as f: trajectory = f.read().splitlines() steps = numpy.loadtxt(reportFile, dtype='int', comments='#', usecols=(1,)) # Improvement: Whenever the initial step is added in the trajectory, # we can add steps[0] times the initial structure completeTrajectory = [] counter = 0 """ if len(trajectory) == 0: #one step traj, we could repeat #steps/epoch times snapshot = trajectory[i].split() snapshot[0] = str(counter) snapshot = ' '.join(snapshot) completeTrajectory.append(snapshot) """ if len(trajectory) > 0: for i in range(len(trajectory) - 1): try: repeated = steps[i+1] - steps[i] except: # sys.exit("sth wrong in trajectory " + inputTrajectory) print "sth wrong in trajectory " + inputTrajectory # continue # Changed behavior, write until the end of the information in report file snapshot = trajectory[i].split() snapshot[0] = str(counter) snapshot = ' '.join(snapshot) completeTrajectory.append(snapshot) break for j in range(repeated): snapshot = trajectory[i].split() snapshot[0] = str(counter) snapshot = ' '.join(snapshot) completeTrajectory.append(snapshot) counter += 1 # !!!! # WARNING!!! Add last snapshot DID NOT CHECK when report/traj don't match # !!!! if totalSteps == 0: iterations = range(1) else: iterations = range(totalSteps + 1 - counter) for i in iterations: snapshot = trajectory[-1].split() snapshot[0] = str(counter) snapshot = ' '.join(snapshot) completeTrajectory.append(snapshot) counter += 1 outputFilename = outputTrajectoryFolderEpoch + baseTrajectoryName + trajectoryNumber + '.dat' outputFile = open(outputFilename, 'w') for snapshot in completeTrajectory: outputFile.write("%s\n" % snapshot) outputFile.close()
40.490196
113
0.6
670034f28a2ac81a84820180757e8f3ccfcf35b5
1,094
py
Python
azure-keyvault/azure/keyvault/v7_0/models/backup_certificate_result.py
JonathanGailliez/azure-sdk-for-python
f0f051bfd27f8ea512aea6fc0c3212ee9ee0029b
[ "MIT" ]
2
2019-06-12T13:44:34.000Z
2020-06-01T13:24:04.000Z
azure-keyvault/azure/keyvault/v7_0/models/backup_certificate_result.py
JonathanGailliez/azure-sdk-for-python
f0f051bfd27f8ea512aea6fc0c3212ee9ee0029b
[ "MIT" ]
5
2018-04-26T01:14:29.000Z
2021-01-05T00:45:39.000Z
azure-keyvault/azure/keyvault/v7_0/models/backup_certificate_result.py
JonathanGailliez/azure-sdk-for-python
f0f051bfd27f8ea512aea6fc0c3212ee9ee0029b
[ "MIT" ]
8
2018-04-24T22:52:48.000Z
2021-11-16T06:29:28.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class BackupCertificateResult(Model): """The backup certificate result, containing the backup blob. Variables are only populated by the server, and will be ignored when sending a request. :ivar value: The backup blob containing the backed up certificate. :vartype value: bytes """ _validation = { 'value': {'readonly': True}, } _attribute_map = { 'value': {'key': 'value', 'type': 'base64'}, } def __init__(self, **kwargs): super(BackupCertificateResult, self).__init__(**kwargs) self.value = None
30.388889
76
0.593236
c2b8c93e9fa2b94fa6e24e17b1bad6ffd79a21ab
1,296
py
Python
firmware/adafruit-circuitpython-bundle-5.x-mpy-20200915/examples/max7219_simpletest.py
freeglow/microcontroller-cpy
5adfda49da6eefaece81be2a2f26122d68736355
[ "MIT" ]
null
null
null
firmware/adafruit-circuitpython-bundle-5.x-mpy-20200915/examples/max7219_simpletest.py
freeglow/microcontroller-cpy
5adfda49da6eefaece81be2a2f26122d68736355
[ "MIT" ]
null
null
null
firmware/adafruit-circuitpython-bundle-5.x-mpy-20200915/examples/max7219_simpletest.py
freeglow/microcontroller-cpy
5adfda49da6eefaece81be2a2f26122d68736355
[ "MIT" ]
null
null
null
import time from board import TX, RX, A1 import busio import digitalio from adafruit_max7219 import matrices mosi = TX clk = RX cs = digitalio.DigitalInOut(A1) spi = busio.SPI(clk, MOSI=mosi) matrix = matrices.Matrix8x8(spi, cs) while True: print("Cycle start") # all lit up matrix.fill(True) matrix.show() time.sleep(0.5) # all off matrix.fill(False) matrix.show() time.sleep(0.5) # one column of leds lit for i in range(8): matrix.pixel(1, i, 1) matrix.show() time.sleep(0.5) # now scroll the column to the right for j in range(8): matrix.scroll(1, 0) matrix.show() time.sleep(0.5) # show a string one character at a time adafruit = "Adafruit" for char in adafruit: matrix.fill(0) matrix.text(char, 0, 0) matrix.show() time.sleep(1.0) # scroll the last character off the display for i in range(8): matrix.scroll(-1, 0) matrix.show() time.sleep(0.5) # scroll a string across the display for pixel_position in range(len(adafruit) * 8): matrix.fill(0) matrix.text(adafruit, -pixel_position, 0) matrix.show() time.sleep(0.25)
22.736842
52
0.578704
769425234d1745165cba95fae1dbe5a99d43cc05
8,350
py
Python
train.py
biomiker/pytorch-retinanet
0f0c1671df49adc189677a59c5137737e73c63a4
[ "Apache-2.0" ]
null
null
null
train.py
biomiker/pytorch-retinanet
0f0c1671df49adc189677a59c5137737e73c63a4
[ "Apache-2.0" ]
null
null
null
train.py
biomiker/pytorch-retinanet
0f0c1671df49adc189677a59c5137737e73c63a4
[ "Apache-2.0" ]
null
null
null
import argparse import collections from datetime import timedelta import time import os,sys import glob import numpy as np import torch import torch.optim as optim from torchvision import transforms from retinanet import model from retinanet.dataloader import CocoDataset, CSVDataset, collater, Resizer, AspectRatioBasedSampler, Augmenter, \ Normalizer from torch.utils.data import DataLoader from retinanet import coco_eval from retinanet import csv_eval assert torch.__version__.split('.')[0] == '1' print('CUDA available: {}'.format(torch.cuda.is_available())) def main(args=None): parser = argparse.ArgumentParser(description='Simple training script for training a RetinaNet network.') parser.add_argument('--dataset', help='Dataset type, must be one of csv or coco.') parser.add_argument('--coco_path', help='Path to COCO directory') parser.add_argument('--csv_images_path', help='Path to which CSV image paths are relative') parser.add_argument('--csv_train', help='Path to file containing training annotations (see readme)') parser.add_argument('--csv_classes', help='Path to file containing class list (see readme)') parser.add_argument('--csv_val', help='Path to file containing validation annotations (optional, see readme)') parser.add_argument('--depth', help='Resnet depth, must be one of 18, 34, 50, 101, 152', type=int, default=50) parser.add_argument('--epochs', help='Number of epochs', type=int, default=100) parser.add_argument('--checkpoint', help='Saved .pt file from which to resume training, or \'latest\' for latest in current directory') parser = parser.parse_args(args) # Create the data loaders if parser.dataset == 'coco': if parser.coco_path is None: raise ValueError('Must provide --coco_path when training on COCO,') dataset_train = CocoDataset(parser.coco_path, set_name='train2017', transform=transforms.Compose([Normalizer(), Augmenter(), Resizer()])) dataset_val = CocoDataset(parser.coco_path, set_name='val2017', transform=transforms.Compose([Normalizer(), Resizer()])) elif parser.dataset == 'csv': if parser.csv_train is None: raise ValueError('Must provide --csv_train when training on CSV,') if parser.csv_classes is None: raise ValueError('Must provide --csv_classes when training on CSV,') dataset_train = CSVDataset(train_file=parser.csv_train, class_list=parser.csv_classes, transform=transforms.Compose([Normalizer(), Augmenter(), Resizer()]), root_dir=parser.csv_images_path) if parser.csv_val is None: dataset_val = None print('No validation annotations provided.') else: dataset_val = CSVDataset(train_file=parser.csv_val, class_list=parser.csv_classes, transform=transforms.Compose([Normalizer(), Resizer()])) else: raise ValueError('Dataset type not understood (must be csv or coco), exiting.') sampler = AspectRatioBasedSampler(dataset_train, batch_size=2, drop_last=False) dataloader_train = DataLoader(dataset_train, num_workers=3, collate_fn=collater, batch_sampler=sampler) if dataset_val is not None: sampler_val = AspectRatioBasedSampler(dataset_val, batch_size=1, drop_last=False) dataloader_val = DataLoader(dataset_val, num_workers=3, collate_fn=collater, batch_sampler=sampler_val) # Create the model epoch_offset = 0 if parser.checkpoint: if parser.checkpoint == 'latest': glob_str = f"./{parser.dataset}_retinanet_*.pt" checkpoints = glob.glob(glob_str) if not checkpoints: print(f"No checkpoints ({glob_str}) found") sys.exit() checkpoints.sort(key=checkpoint_epoch) checkpoint = checkpoints[-1] print("Latest: ", checkpoint) else: checkpoint = parser.checkpoint epoch_offset = checkpoint_epoch(checkpoint) print(f"Resuming from checkpoint {parser.checkpoint}, first epoch = {epoch_offset + 1}") retinanet = torch.load(checkpoint) else: if parser.depth == 18: retinanet = model.resnet18(num_classes=dataset_train.num_classes(), pretrained=True) elif parser.depth == 34: retinanet = model.resnet34(num_classes=dataset_train.num_classes(), pretrained=True) elif parser.depth == 50: retinanet = model.resnet50(num_classes=dataset_train.num_classes(), pretrained=True) elif parser.depth == 101: retinanet = model.resnet101(num_classes=dataset_train.num_classes(), pretrained=True) elif parser.depth == 152: retinanet = model.resnet152(num_classes=dataset_train.num_classes(), pretrained=True) else: raise ValueError('Unsupported model depth, must be one of 18, 34, 50, 101, 152') use_gpu = True if use_gpu: if torch.cuda.is_available(): retinanet = retinanet.cuda() if torch.cuda.is_available(): retinanet = torch.nn.DataParallel(retinanet).cuda() else: retinanet = torch.nn.DataParallel(retinanet) retinanet.training = True optimizer = optim.Adam(retinanet.parameters(), lr=1e-5) scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=3, verbose=True) loss_hist = collections.deque(maxlen=500) retinanet.train() retinanet.module.freeze_bn() print('Num training images: {}'.format(len(dataset_train))) start_time = time.time() for epoch_index in range(epoch_offset, parser.epochs + epoch_offset): # epoch_numbers start from 1 please epoch_num = epoch_index + 1 epoch_start = time.time() retinanet.train() retinanet.module.freeze_bn() epoch_loss = [] for iter_num, data in enumerate(dataloader_train): try: optimizer.zero_grad() if torch.cuda.is_available(): classification_loss, regression_loss = retinanet([data['img'].cuda().float(), data['annot']]) else: classification_loss, regression_loss = retinanet([data['img'].float(), data['annot']]) classification_loss = classification_loss.mean() regression_loss = regression_loss.mean() loss = classification_loss + regression_loss if bool(loss == 0): continue loss.backward() torch.nn.utils.clip_grad_norm_(retinanet.parameters(), 0.1) optimizer.step() loss_hist.append(float(loss)) epoch_loss.append(float(loss)) print( 'Epoch: {} | Iteration: {} | Classification loss: {:1.5f} | Regression loss: {:1.5f} | Running loss: {:1.5f}'.format( epoch_num, iter_num, float(classification_loss), float(regression_loss), np.mean(loss_hist))) del classification_loss del regression_loss except Exception as e: print(e) continue epoch_elapsed = time.time() - epoch_start total_elapsed = time.time() - start_time print(f"COMPLETE: Epoch {epoch_num}/{parser.epochs + epoch_offset} in {str(timedelta(seconds=epoch_elapsed)).split('.',1)[0]}, total time = {str(timedelta(seconds=total_elapsed)).split('.',1)[0]}") if parser.dataset == 'coco': print('Evaluating dataset') coco_eval.evaluate_coco(dataset_val, retinanet) elif parser.dataset == 'csv' and parser.csv_val is not None: print('Evaluating dataset') mAP = csv_eval.evaluate(dataset_val, retinanet) scheduler.step(np.mean(epoch_loss)) torch.save(retinanet.module, '{}_retinanet_{}.pt'.format(parser.dataset, epoch_num)) retinanet.eval() torch.save(retinanet, 'model_final.pt') def checkpoint_epoch(filename): return int(os.path.splitext(os.path.basename(filename))[0].split("_")[2]) if __name__ == '__main__': main()
37.276786
205
0.643473
424d5338081127cc736e5e4fa9ae75d84b73d9c3
2,723
py
Python
src/bouton.py
QuentinBubu/trophees-nsi-2022
3402b584de7b07b54b6e97332d279f670efe48c2
[ "MIT" ]
null
null
null
src/bouton.py
QuentinBubu/trophees-nsi-2022
3402b584de7b07b54b6e97332d279f670efe48c2
[ "MIT" ]
2
2022-03-01T10:51:46.000Z
2022-03-15T19:51:18.000Z
src/bouton.py
QuentinBubu/trophees-nsi-2022
3402b584de7b07b54b6e97332d279f670efe48c2
[ "MIT" ]
1
2022-03-29T17:02:17.000Z
2022-03-29T17:02:17.000Z
""" Une simple classe de boutons """ import pygame class Bouton: def __init__(self, pos, size, texture_path, texture_path_clicked, func=None): """Un bouton interractible Args: pos (tuple(int)): la position size (tuple(int)): la taille du bouton texture_path (string): la texture du bouton texture_path_clicked (string): la texture du bouton quand il est cliqué func (function): la fonction à executer si le bouton est cliqué """ self.pos = pos self.size = size self.texture = pygame.image.load(texture_path) self.texture = pygame.transform.scale(self.texture, self.size) self.texture_clicked = pygame.image.load(texture_path_clicked) self.texture_clicked = pygame.transform.scale(self.texture_clicked, self.size) self.function = func self.clicked = False ######################GETTER ET SETTER################################### def set_size(self, new_size): self.size = new_size def set_pos(self, new_pos): self.pos = new_pos def set_texture(self, new_t): self.texture = pygame.image.load(new_t) self.texture = pygame.transform.scale(self.texture, self.size) def set_texture_clicked(self, new_tc): self.texture_clicked = pygame.image.load(new_tc) self.texture_clicked = pygame.transform.scale(self.texture_clicked, self.size) def set_clicked(self, state): self.clicked = state ######################################################################### def is_clicked(self): """Renvoie True si le Bouton est cliqué Returns: bool : True si cliqué, False si non """ m_posX, m_posY = pygame.mouse.get_pos() if (self.pos[0] < m_posX < self.pos[0] + self.size[0]) and (self.pos[1] < m_posY < self.pos[1] + self.size[1]): return True return False def click(self): """Etat de clique du bouton Returns: NoneType ou ______________ : ____________________ """ if self.function != None: return self.function() def draw(self, window: pygame.surface.Surface): """Dessin du bouton Args: window (pygame.surface.Surface): surface de dessin """ if self.clicked: window.screen.blit(self.texture_clicked, self.pos) else: window.screen.blit(self.texture, self.pos) def actualiser(self, window: pygame.surface.Surface): """actualise le dessin du bouton Args: window (pygame.surface.Surface): dessin du bouton """ self.draw(window)
30.595506
119
0.583915
999452616ff48da5281cc2e20c62355430eda43c
971
py
Python
examples/restore_cybers.py
pgarcia14180/henka
850a01a272deaf414e70a818012f8b239018f460
[ "MIT" ]
null
null
null
examples/restore_cybers.py
pgarcia14180/henka
850a01a272deaf414e70a818012f8b239018f460
[ "MIT" ]
null
null
null
examples/restore_cybers.py
pgarcia14180/henka
850a01a272deaf414e70a818012f8b239018f460
[ "MIT" ]
null
null
null
from henka.config_helpers.henka_config import HenkaConfig as MainConfig from henka.processes.henka import henka as dataprocess def restore_cyber(date): config = [{ 'name': 'upd', 'source': { 'name': 'elasticsearch', 'index_name': 'txd_cyber', 'url': 'localhost', 'port': '9200', 'scheme': 'http', 'body': { 'es_range': {'fectrx_n8':{'gte': date, 'lte': date}}, 'tienda': 32 }, 'search_or_agg': 'search' }, 'process': { 'mock': { 'vta_transaction': 'Y', } }, 'save': { 'name': 'elasticsearch', 'index_name': 'txd_item_upd'+'-'+date, 'index_id': 'id', 'url': 'localhost', 'port': '9200', 'scheme': 'http', } }] dataprocess(MainConfig(*config))
29.424242
73
0.431514
2d50d13427b80e55795a3f3de7af331d3726d607
769
py
Python
assignments/14-open/test.py
pmoma/biosys-analytics
8822e6751699acd297679219e76d36666820846f
[ "MIT" ]
null
null
null
assignments/14-open/test.py
pmoma/biosys-analytics
8822e6751699acd297679219e76d36666820846f
[ "MIT" ]
null
null
null
assignments/14-open/test.py
pmoma/biosys-analytics
8822e6751699acd297679219e76d36666820846f
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 """test for open.py""" from subprocess import getstatusoutput, getoutput import os.path import re open = './open.py' def test_exists(): """scripts exist""" assert os.path.exists(open) def test_usage(): """usage""" (retval, out) = getstatusoutput(open) assert retval > 0 assert re.match("usage", out, re.IGNORECASE) def test_word1(): """runs test1""" out1 = getoutput(open + ' Foo') assert out1.rstrip() == 'FFoFoo' def test_word2(): """runs test2""" out1 = getoutput(open + ' Python') assert out1.rstrip() == 'PPyPytPythPythoPython' def test_word3(): """runs test3""" out1 = getoutput(open + ' foobarbaz') assert out1.rstrip() == 'ffofoofoobfoobafoobarfoobarbfoobarbafoobarbaz'
21.971429
75
0.647594
3d63c3a391813161ea477c2b09430800353f0efb
4,125
py
Python
softdelete/tests/test_views.py
BehaviorCloud/django-softdelete
f74fb5a2ef2c3777d1c2a30513cf57c641649096
[ "BSD-2-Clause" ]
null
null
null
softdelete/tests/test_views.py
BehaviorCloud/django-softdelete
f74fb5a2ef2c3777d1c2a30513cf57c641649096
[ "BSD-2-Clause" ]
null
null
null
softdelete/tests/test_views.py
BehaviorCloud/django-softdelete
f74fb5a2ef2c3777d1c2a30513cf57c641649096
[ "BSD-2-Clause" ]
null
null
null
from django.conf import settings from django.test import TestCase, Client from django.contrib.auth.models import User from django.db import models from softdelete.test_softdelete_app.models import TestModelOne, TestModelTwo, TestModelThree from softdelete.models import * from softdelete.signals import * import logging try: from django.core.urlresolvers import reverse except ImportError: from django.urls import reverse class ViewBase(TestCase): def setUp(self): u, c = User.objects.get_or_create(username="undelete_test") u.is_active = True u.set_password("undelete_password") gr = create_group() if USE_SOFTDELETE_GROUP: gr = Group.objects.get(name="Softdelete User") u.groups.add(gr) u.save() gr.save() else: assign_permissions(u) u.save() self.tmo1 = TestModelOne.objects.create(extra_bool=True) self.tmo3 = TestModelThree.objects.create(extra_int=3) for x in range(10): TestModelTwo.objects.create(extra_int=x, tmo=self.tmo1) self.tmo2 = TestModelOne.objects.create(extra_bool=False) for x in range(10): TestModelTwo.objects.create(extra_int=x*x, tmo=self.tmo2) self.tmo2.delete() class ViewTest(ViewBase): def __init__(self, *args, **kwargs): settings.USE_SOFTDELETE_GROUP = kwargs.get('USE_SOFTDELETE_GROUP', False) if 'USE_SOFTDELETE_GROUP' in kwargs: del kwargs['USE_SOFTDELETE_GROUP'] super(ViewTest, self).__init__(*args, **kwargs) def setUp(self): super(ViewTest, self).setUp() self.client = Client() self.client.login(username="undelete_test", password="undelete_password") def test_authorization(self): rv = self.client.get(reverse("softdelete.changeset.list")) pk = ChangeSet.objects.latest('created_date').pk for view_name in [reverse("softdelete.changeset.list"), reverse("softdelete.changeset.view", args=(pk,)), reverse("softdelete.changeset.undelete", args=(pk,)),]: cli2 = Client() rv = cli2.get(view_name) self.assertEquals(rv.status_code, 302) self.assertTrue((settings.DOMAIN + reverse('auth_login')) in rv['Location']) self.assertEquals(cli2.get(rv['Location']).status_code, 200) cli2.login(username='undelete_test', password='undelete_password') rv = cli2.get(view_name) self.assertEquals(rv.status_code, 200) def test_undelete(self): self.cs_count = ChangeSet.objects.count() self.rs_count = SoftDeleteRecord.objects.count() self.t_count = TestModelThree.objects.count() self.tmo3.delete() self.assertEquals(self.t_count-1, TestModelThree.objects.count()) self.assertEquals(0, self.tmo3.tmos.count()) self.assertEquals(self.cs_count+1, ChangeSet.objects.count()) self.assertEquals(self.rs_count+1, SoftDeleteRecord.objects.count()) rv = self.client.get(reverse("softdelete.changeset.undelete", args=(ChangeSet.objects.latest("created_date").pk,))) self.assertEquals(rv.status_code,200) rv = self.client.post(reverse("softdelete.changeset.undelete", args=(ChangeSet.objects.latest("created_date").pk,)), {'action': 'Undelete'}) self.assertEquals(rv.status_code, 302) rv = self.client.get(rv['Location']) self.assertEquals(rv.status_code, 200) self.assertEquals(self.cs_count, ChangeSet.objects.count()) self.assertEquals(self.rs_count, SoftDeleteRecord.objects.count()) self.assertEquals(self.t_count, TestModelThree.objects.count()) self.assertEquals(0, self.tmo3.tmos.count()) class GroupViewTest(ViewTest): def __init__(self, *args, **kwargs): super(GroupViewTest, self).__init__(USE_SOFTDELETE_GROUP=True, *args, **kwargs)
44.354839
92
0.641697
5b7bf668fc19541e9d4117163ae0d302103935f6
3,182
py
Python
tests/test_uas.py
bbc/connected-data-pseudocone
452479cd44fa7d32ecb3d54b801da9024d6984ce
[ "MIT" ]
null
null
null
tests/test_uas.py
bbc/connected-data-pseudocone
452479cd44fa7d32ecb3d54b801da9024d6984ce
[ "MIT" ]
5
2018-07-30T09:01:03.000Z
2019-01-16T11:16:39.000Z
tests/test_uas.py
bbc/connected-data-pseudocone
452479cd44fa7d32ecb3d54b801da9024d6984ce
[ "MIT" ]
null
null
null
# from unittest.mock import MagicMock, patch # # import pytest # import requests # from requests import HTTPError # # from app.uas import UASClient # from app.settings import DEFAULT_UAS_HOST # # # def test_client_init(): # """Test no exception thrown when initialising client.""" # uasclient = UASClient('', '') # # # @patch('app.uas.requests.Session.get') # def test_client_get_activity_history_session_headers(mock_session_get): # expected_headers = { # 'User-Agent': 'python-requests/2.18.4', # 'Accept-Encoding': 'gzip, deflate', # 'Accept': 'application/json', # 'Connection': 'keep-alive', # 'X-API-Key': 'test_api_key', # 'Host': '', # 'Cookie': 'ckns_atkn=test_cookie' # } # uasclient = UASClient('test_api_key', 'test_host') # _ = uasclient.get_activity_history('test_activity', 'test_cookie') # assert uasclient.session.headers == expected_headers # # # def test_client_get_activity_bad_host_fail(): # uasclient = UASClient('', 'http://bad_host') # with pytest.raises(requests.exceptions.ConnectionError): # uasclient.get_activity_history('', '') # # def test_client_get_activity_bad_url_fail(): # uasclient = UASClient('', 'bad_host') # with pytest.raises(requests.exceptions.MissingSchema): # uasclient.get_activity_history('', '') # # # @pytest.mark.integration # def test_client_get_activity_bad_cookie_fail(): # uasclient = UASClient('bad_cookie', DEFAULT_UAS_HOST) # with pytest.raises(HTTPError): # uasclient.get_activity_history('', '') # # # mock_uas_response = { # 'other_stuff': {}, # 'items': [ # {'activityType': 'plays', 'resourceId': 'p05psmxq', 'resourceType': 'clip', 'resourceDomain': 'radio', # 'created': '2018-03-26T10:32:58Z', 'action': 'paused', # 'actionContext': 'urn:bbc:radio:version_offset:p05psmxt#2', # '@id': 'urn:bbc:radio:clip:p05psmxq'}, # {'activityType': 'plays', 'resourceId': 'p05ysllr', 'resourceType': 'episode', 'resourceDomain': 'tv', # 'created': '2018-03-18T23:34:24Z', 'action': 'ended', # 'actionContext': 'urn:bbc:tv:version_offset:p05ysm2y#1959', # '@id': 'urn:bbc:tv:episode:p05ysllr'} # ] # } # # expected_get_activity_history_response = mock_uas_response['items'] # # # @patch('app.uas.requests.Session.get') # def test_client_get_activity_history(mock_session_get): # uasclient = UASClient('test_api_key', 'test_host') # # mock_response = MagicMock() # mock_response.json.return_value = mock_uas_response # # mock_session_get.return_value = mock_response # # response = uasclient.get_activity_history('', '') # assert response == expected_get_activity_history_response # # # @pytest.mark.integration # def test_client_check_uas_connection(): # uasclient = UASClient('test_api_key', DEFAULT_UAS_HOST) # uasclient.check_uas_connection() # # # def test_client_check_uas_connection_bad_host(): # uasclient = UASClient('test_api_key', 'http://bad_host') # with pytest.raises(requests.exceptions.ConnectionError): # uasclient.check_uas_connection() # # # # # # #
32.804124
112
0.670333
319814495d3d65c743285ce192be02c3103a057a
56,524
py
Python
src/base/android/jni_generator/jni_generator_tests.py
btwiuse/naiveproxy
67852b0abc88e59d5853c4a5db47541f298fb469
[ "BSD-3-Clause" ]
null
null
null
src/base/android/jni_generator/jni_generator_tests.py
btwiuse/naiveproxy
67852b0abc88e59d5853c4a5db47541f298fb469
[ "BSD-3-Clause" ]
null
null
null
src/base/android/jni_generator/jni_generator_tests.py
btwiuse/naiveproxy
67852b0abc88e59d5853c4a5db47541f298fb469
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Tests for jni_generator.py. This test suite contains various tests for the JNI generator. It exercises the low-level parser all the way up to the code generator and ensures the output matches a golden file. """ from __future__ import print_function import difflib import inspect import optparse import os import sys import unittest import jni_generator import jni_registration_generator from jni_generator import CalledByNative from jni_generator import IsMainDexJavaClass from jni_generator import NativeMethod from jni_generator import Param from jni_generator import ProxyHelpers _SCRIPT_NAME = 'base/android/jni_generator/jni_generator.py' _INCLUDES = ('base/android/jni_generator/jni_generator_helper.h') _JAVA_SRC_DIR = os.path.join('java', 'src', 'org', 'chromium', 'example', 'jni_generator') # Set this environment variable in order to regenerate the golden text # files. _REBASELINE_ENV = 'REBASELINE' class TestOptions(object): """The mock options object which is passed to the jni_generator.py script.""" def __init__(self): self.namespace = None self.script_name = _SCRIPT_NAME self.includes = _INCLUDES self.ptr_type = 'long' self.cpp = 'cpp' self.javap = 'javap' self.native_exports_optional = True self.enable_profiling = False self.enable_tracing = False self.use_proxy_hash = False self.always_mangle = False class BaseTest(unittest.TestCase): @staticmethod def _MergeRegistrationForTests(results, header_guard='HEADER_GUARD', namespace='test'): results.sort(key=lambda d: d['FULL_CLASS_NAME']) combined_dict = {} for key in jni_registration_generator.MERGEABLE_KEYS: combined_dict[key] = ''.join(d.get(key, '') for d in results) combined_dict['HEADER_GUARD'] = header_guard combined_dict['NAMESPACE'] = namespace return combined_dict def _JoinScriptDir(self, path): script_dir = os.path.dirname(sys.argv[0]) return os.path.join(script_dir, path) def _JoinGoldenPath(self, golden_file_name): return self._JoinScriptDir(os.path.join('golden', golden_file_name)) def _ReadGoldenFile(self, golden_file_name): golden_file_name = self._JoinGoldenPath(golden_file_name) if not os.path.exists(golden_file_name): return None with open(golden_file_name, 'r') as f: return f.read() def _CreateJniHeaderFromFile(self, fname, qualified_clazz, options=None): with open(self._JoinScriptDir(fname)) as f: content = f.read() opts = options if opts is None: opts = TestOptions() jni_from_java = jni_generator.JNIFromJavaSource(content, qualified_clazz, opts) return jni_from_java.GetContent() def AssertObjEquals(self, first, second): if isinstance(first, str): return self.assertEqual(first, second) dict_first = first.__dict__ dict_second = second.__dict__ self.assertEqual(dict_first.keys(), dict_second.keys()) for key, value in dict_first.items(): if (type(value) is list and len(value) and isinstance(type(value[0]), object)): self.AssertListEquals(value, second.__getattribute__(key)) else: actual = second.__getattribute__(key) self.assertEqual(value, actual, 'Key ' + key + ': ' + str(value) + '!=' + str(actual)) def AssertListEquals(self, first, second): self.assertEqual(len(first), len(second)) for i in range(len(first)): if isinstance(first[i], object): self.AssertObjEquals(first[i], second[i]) else: self.assertEqual(first[i], second[i]) def AssertTextEquals(self, golden_text, generated_text): if not self.CompareText(golden_text, generated_text): self.fail('Golden text mismatch.') def CompareText(self, golden_text, generated_text): def FilterText(text): return [ l.strip() for l in text.split('\n') if not l.startswith('// Copyright') ] stripped_golden = FilterText(golden_text) stripped_generated = FilterText(generated_text) if stripped_golden == stripped_generated: return True print(self.id()) for line in difflib.context_diff(stripped_golden, stripped_generated): print(line) print('\n\nGenerated') print('=' * 80) print(generated_text) print('=' * 80) print('Run with:') print('REBASELINE=1', sys.argv[0]) print('to regenerate the data files.') def AssertGoldenTextEquals(self, generated_text, suffix='', golden_file=None): """Compares generated text with the corresponding golden_file By default compares generated_text with the file at script_dir/golden/{caller_name}[suffix].golden. If the parameter golden_file is provided it will instead compare the generated text with script_dir/golden/golden_file.""" # This is the caller test method. caller = inspect.stack()[1][3] if golden_file is None: self.assertTrue( caller.startswith('test'), 'AssertGoldenTextEquals can only be called from a ' 'test* method, not %s' % caller) golden_file = '%s%s.golden' % (caller, suffix) golden_text = self._ReadGoldenFile(golden_file) if os.environ.get(_REBASELINE_ENV): if golden_text != generated_text: with open(self._JoinGoldenPath(golden_file), 'w') as f: f.write(generated_text) return # golden_text is None if no file is found. Better to fail than in # AssertTextEquals so we can give a clearer message. if golden_text is None: self.fail( 'Golden file %s does not exist.' % self._JoinGoldenPath(golden_file)) self.AssertTextEquals(golden_text, generated_text) class TestGenerator(BaseTest): def testInspectCaller(self): def willRaise(): # This function can only be called from a test* method. self.AssertGoldenTextEquals('') self.assertRaises(AssertionError, willRaise) def testNatives(self): test_data = """" import android.graphics.Bitmap; import android.view.View; interface OnFrameAvailableListener {} private native int nativeInit(); private native void nativeDestroy(int nativeChromeBrowserProvider); private native long nativeAddBookmark( int nativeChromeBrowserProvider, String url, String title, boolean isFolder, long parentId); private static native String nativeGetDomainAndRegistry(String url); private static native void nativeCreateHistoricalTabFromState( byte[] state, int tab_index); private native byte[] nativeGetStateAsByteArray(View view); private static native String[] nativeGetAutofillProfileGUIDs(); private native void nativeSetRecognitionResults( int sessionId, String[] results); private native long nativeAddBookmarkFromAPI( int nativeChromeBrowserProvider, String url, Long created, Boolean isBookmark, Long date, byte[] favicon, String title, Integer visits); native int nativeFindAll(String find); private static native OnFrameAvailableListener nativeGetInnerClass(); private native Bitmap nativeQueryBitmap( int nativeChromeBrowserProvider, String[] projection, String selection, String[] selectionArgs, String sortOrder); private native void nativeGotOrientation( int nativeDataFetcherImplAndroid, double alpha, double beta, double gamma); private static native Throwable nativeMessWithJavaException(Throwable e); """ jni_params = jni_generator.JniParams( 'org/chromium/example/jni_generator/SampleForTests') jni_params.ExtractImportsAndInnerClasses(test_data) natives = jni_generator.ExtractNatives(test_data, 'int') golden_natives = [ NativeMethod( return_type='int', static=False, name='Init', params=[], java_class_name=None), NativeMethod( return_type='void', static=False, name='Destroy', params=[Param(datatype='int', name='nativeChromeBrowserProvider')], java_class_name=None), NativeMethod( return_type='long', static=False, name='AddBookmark', params=[ Param(datatype='int', name='nativeChromeBrowserProvider'), Param(datatype='String', name='url'), Param(datatype='String', name='title'), Param(datatype='boolean', name='isFolder'), Param(datatype='long', name='parentId') ], java_class_name=None), NativeMethod( return_type='String', static=True, name='GetDomainAndRegistry', params=[Param(datatype='String', name='url')], java_class_name=None), NativeMethod( return_type='void', static=True, name='CreateHistoricalTabFromState', params=[ Param(datatype='byte[]', name='state'), Param(datatype='int', name='tab_index') ], java_class_name=None), NativeMethod( return_type='byte[]', static=False, name='GetStateAsByteArray', params=[Param(datatype='View', name='view')], java_class_name=None), NativeMethod( return_type='String[]', static=True, name='GetAutofillProfileGUIDs', params=[], java_class_name=None), NativeMethod( return_type='void', static=False, name='SetRecognitionResults', params=[ Param(datatype='int', name='sessionId'), Param(datatype='String[]', name='results') ], java_class_name=None), NativeMethod( return_type='long', static=False, name='AddBookmarkFromAPI', params=[ Param(datatype='int', name='nativeChromeBrowserProvider'), Param(datatype='String', name='url'), Param(datatype='Long', name='created'), Param(datatype='Boolean', name='isBookmark'), Param(datatype='Long', name='date'), Param(datatype='byte[]', name='favicon'), Param(datatype='String', name='title'), Param(datatype='Integer', name='visits') ], java_class_name=None), NativeMethod( return_type='int', static=False, name='FindAll', params=[Param(datatype='String', name='find')], java_class_name=None), NativeMethod( return_type='OnFrameAvailableListener', static=True, name='GetInnerClass', params=[], java_class_name=None), NativeMethod( return_type='Bitmap', static=False, name='QueryBitmap', params=[ Param(datatype='int', name='nativeChromeBrowserProvider'), Param(datatype='String[]', name='projection'), Param(datatype='String', name='selection'), Param(datatype='String[]', name='selectionArgs'), Param(datatype='String', name='sortOrder'), ], java_class_name=None), NativeMethod( return_type='void', static=False, name='GotOrientation', params=[ Param(datatype='int', name='nativeDataFetcherImplAndroid'), Param(datatype='double', name='alpha'), Param(datatype='double', name='beta'), Param(datatype='double', name='gamma'), ], java_class_name=None), NativeMethod( return_type='Throwable', static=True, name='MessWithJavaException', params=[Param(datatype='Throwable', name='e')], java_class_name=None) ] self.AssertListEquals(golden_natives, natives) h1 = jni_generator.InlHeaderFileGenerator('', 'org/chromium/TestJni', natives, [], [], jni_params, TestOptions()) self.AssertGoldenTextEquals(h1.GetContent()) h2 = jni_registration_generator.HeaderGenerator( '', 'org/chromium/TestJni', natives, jni_params, True, use_proxy_hash=False) content = TestGenerator._MergeRegistrationForTests([h2.Generate()]) self.AssertGoldenTextEquals( jni_registration_generator.CreateFromDict(content, use_hash=False), suffix='Registrations') def testInnerClassNatives(self): test_data = """ class MyInnerClass { @NativeCall("MyInnerClass") private native int nativeInit(); } """ natives = jni_generator.ExtractNatives(test_data, 'int') golden_natives = [ NativeMethod( return_type='int', static=False, name='Init', params=[], java_class_name='MyInnerClass') ] self.AssertListEquals(golden_natives, natives) jni_params = jni_generator.JniParams('') h = jni_generator.InlHeaderFileGenerator('', 'org/chromium/TestJni', natives, [], [], jni_params, TestOptions()) self.AssertGoldenTextEquals(h.GetContent()) def testInnerClassNativesMultiple(self): test_data = """ class MyInnerClass { @NativeCall("MyInnerClass") private native int nativeInit(); } class MyOtherInnerClass { @NativeCall("MyOtherInnerClass") private native int nativeInit(); } """ natives = jni_generator.ExtractNatives(test_data, 'int') golden_natives = [ NativeMethod( return_type='int', static=False, name='Init', params=[], java_class_name='MyInnerClass'), NativeMethod( return_type='int', static=False, name='Init', params=[], java_class_name='MyOtherInnerClass') ] self.AssertListEquals(golden_natives, natives) jni_params = jni_generator.JniParams('') h = jni_generator.InlHeaderFileGenerator('', 'org/chromium/TestJni', natives, [], [], jni_params, TestOptions()) self.AssertGoldenTextEquals(h.GetContent()) def testInnerClassNativesBothInnerAndOuter(self): test_data = """ class MyOuterClass { private native int nativeInit(); class MyOtherInnerClass { @NativeCall("MyOtherInnerClass") private native int nativeInit(); } } """ natives = jni_generator.ExtractNatives(test_data, 'int') golden_natives = [ NativeMethod( return_type='int', static=False, name='Init', params=[], java_class_name=None), NativeMethod( return_type='int', static=False, name='Init', params=[], java_class_name='MyOtherInnerClass') ] self.AssertListEquals(golden_natives, natives) jni_params = jni_generator.JniParams('') h = jni_generator.InlHeaderFileGenerator('', 'org/chromium/TestJni', natives, [], [], jni_params, TestOptions()) self.AssertGoldenTextEquals(h.GetContent()) h2 = jni_registration_generator.HeaderGenerator( '', 'org/chromium/TestJni', natives, jni_params, True, use_proxy_hash=False) content = TestGenerator._MergeRegistrationForTests([h2.Generate()]) self.AssertGoldenTextEquals( jni_registration_generator.CreateFromDict(content, use_hash=False), suffix='Registrations') def testCalledByNatives(self): test_data = """" import android.graphics.Bitmap; import android.view.View; import java.io.InputStream; import java.util.List; class InnerClass {} @CalledByNative @SomeOtherA @SomeOtherB public InnerClass showConfirmInfoBar(int nativeInfoBar, String buttonOk, String buttonCancel, String title, Bitmap icon) { InfoBar infobar = new ConfirmInfoBar(nativeInfoBar, mContext, buttonOk, buttonCancel, title, icon); return infobar; } @CalledByNative InnerClass showAutoLoginInfoBar(int nativeInfoBar, String realm, String account, String args) { AutoLoginInfoBar infobar = new AutoLoginInfoBar(nativeInfoBar, mContext, realm, account, args); if (infobar.displayedAccountCount() == 0) infobar = null; return infobar; } @CalledByNative("InfoBar") void dismiss(); @SuppressWarnings("unused") @CalledByNative private static boolean shouldShowAutoLogin(View view, String realm, String account, String args) { AccountManagerContainer accountManagerContainer = new AccountManagerContainer((Activity)contentView.getContext(), realm, account, args); String[] logins = accountManagerContainer.getAccountLogins(null); return logins.length != 0; } @CalledByNative static InputStream openUrl(String url) { return null; } @CalledByNative private void activateHardwareAcceleration(final boolean activated, final int iPid, final int iType, final int iPrimaryID, final int iSecondaryID) { if (!activated) { return } } @CalledByNative public static @Status int updateStatus(@Status int status) { return getAndUpdateStatus(status); } @CalledByNativeUnchecked private void uncheckedCall(int iParam); @CalledByNative public byte[] returnByteArray(); @CalledByNative public boolean[] returnBooleanArray(); @CalledByNative public char[] returnCharArray(); @CalledByNative public short[] returnShortArray(); @CalledByNative public int[] returnIntArray(); @CalledByNative public long[] returnLongArray(); @CalledByNative public double[] returnDoubleArray(); @CalledByNative public Object[] returnObjectArray(); @CalledByNative public byte[][] returnArrayOfByteArray(); @CalledByNative public Bitmap.CompressFormat getCompressFormat(); @CalledByNative public List<Bitmap.CompressFormat> getCompressFormatList(); """ jni_params = jni_generator.JniParams('org/chromium/Foo') jni_params.ExtractImportsAndInnerClasses(test_data) called_by_natives = jni_generator.ExtractCalledByNatives( jni_params, test_data, always_mangle=False) golden_called_by_natives = [ CalledByNative( return_type='InnerClass', system_class=False, static=False, name='showConfirmInfoBar', method_id_var_name='showConfirmInfoBar', java_class_name='', params=[ Param(datatype='int', name='nativeInfoBar'), Param(datatype='String', name='buttonOk'), Param(datatype='String', name='buttonCancel'), Param(datatype='String', name='title'), Param(datatype='Bitmap', name='icon') ], env_call=('Object', ''), unchecked=False, ), CalledByNative( return_type='InnerClass', system_class=False, static=False, name='showAutoLoginInfoBar', method_id_var_name='showAutoLoginInfoBar', java_class_name='', params=[ Param(datatype='int', name='nativeInfoBar'), Param(datatype='String', name='realm'), Param(datatype='String', name='account'), Param(datatype='String', name='args') ], env_call=('Object', ''), unchecked=False, ), CalledByNative( return_type='void', system_class=False, static=False, name='dismiss', method_id_var_name='dismiss', java_class_name='InfoBar', params=[], env_call=('Void', ''), unchecked=False, ), CalledByNative( return_type='boolean', system_class=False, static=True, name='shouldShowAutoLogin', method_id_var_name='shouldShowAutoLogin', java_class_name='', params=[ Param(datatype='View', name='view'), Param(datatype='String', name='realm'), Param(datatype='String', name='account'), Param(datatype='String', name='args') ], env_call=('Boolean', ''), unchecked=False, ), CalledByNative( return_type='InputStream', system_class=False, static=True, name='openUrl', method_id_var_name='openUrl', java_class_name='', params=[Param(datatype='String', name='url')], env_call=('Object', ''), unchecked=False, ), CalledByNative( return_type='void', system_class=False, static=False, name='activateHardwareAcceleration', method_id_var_name='activateHardwareAcceleration', java_class_name='', params=[ Param(datatype='boolean', name='activated'), Param(datatype='int', name='iPid'), Param(datatype='int', name='iType'), Param(datatype='int', name='iPrimaryID'), Param(datatype='int', name='iSecondaryID'), ], env_call=('Void', ''), unchecked=False, ), CalledByNative( return_type='int', system_class=False, static=True, name='updateStatus', method_id_var_name='updateStatus', java_class_name='', params=[ Param(annotations=['@Status'], datatype='int', name='status') ], env_call=('Integer', ''), unchecked=False, ), CalledByNative( return_type='void', system_class=False, static=False, name='uncheckedCall', method_id_var_name='uncheckedCall', java_class_name='', params=[Param(datatype='int', name='iParam')], env_call=('Void', ''), unchecked=True, ), CalledByNative( return_type='byte[]', system_class=False, static=False, name='returnByteArray', method_id_var_name='returnByteArray', java_class_name='', params=[], env_call=('Void', ''), unchecked=False, ), CalledByNative( return_type='boolean[]', system_class=False, static=False, name='returnBooleanArray', method_id_var_name='returnBooleanArray', java_class_name='', params=[], env_call=('Void', ''), unchecked=False, ), CalledByNative( return_type='char[]', system_class=False, static=False, name='returnCharArray', method_id_var_name='returnCharArray', java_class_name='', params=[], env_call=('Void', ''), unchecked=False, ), CalledByNative( return_type='short[]', system_class=False, static=False, name='returnShortArray', method_id_var_name='returnShortArray', java_class_name='', params=[], env_call=('Void', ''), unchecked=False, ), CalledByNative( return_type='int[]', system_class=False, static=False, name='returnIntArray', method_id_var_name='returnIntArray', java_class_name='', params=[], env_call=('Void', ''), unchecked=False, ), CalledByNative( return_type='long[]', system_class=False, static=False, name='returnLongArray', method_id_var_name='returnLongArray', java_class_name='', params=[], env_call=('Void', ''), unchecked=False, ), CalledByNative( return_type='double[]', system_class=False, static=False, name='returnDoubleArray', method_id_var_name='returnDoubleArray', java_class_name='', params=[], env_call=('Void', ''), unchecked=False, ), CalledByNative( return_type='Object[]', system_class=False, static=False, name='returnObjectArray', method_id_var_name='returnObjectArray', java_class_name='', params=[], env_call=('Void', ''), unchecked=False, ), CalledByNative( return_type='byte[][]', system_class=False, static=False, name='returnArrayOfByteArray', method_id_var_name='returnArrayOfByteArray', java_class_name='', params=[], env_call=('Void', ''), unchecked=False, ), CalledByNative( return_type='Bitmap.CompressFormat', system_class=False, static=False, name='getCompressFormat', method_id_var_name='getCompressFormat', java_class_name='', params=[], env_call=('Void', ''), unchecked=False, ), CalledByNative( return_type='List<Bitmap.CompressFormat>', system_class=False, static=False, name='getCompressFormatList', method_id_var_name='getCompressFormatList', java_class_name='', params=[], env_call=('Void', ''), unchecked=False, ), ] self.AssertListEquals(golden_called_by_natives, called_by_natives) h = jni_generator.InlHeaderFileGenerator('', 'org/chromium/TestJni', [], called_by_natives, [], jni_params, TestOptions()) self.AssertGoldenTextEquals(h.GetContent()) def testCalledByNativeParseError(self): try: jni_params = jni_generator.JniParams('') jni_generator.ExtractCalledByNatives( jni_params, """ @CalledByNative public static int foo(); // This one is fine @CalledByNative scooby doo """, always_mangle=False) self.fail('Expected a ParseError') except jni_generator.ParseError as e: self.assertEqual(('@CalledByNative', 'scooby doo'), e.context_lines) def testFullyQualifiedClassName(self): contents = """ // Copyright (c) 2010 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. package org.chromium.content.browser; import org.chromium.base.BuildInfo; """ self.assertEqual( 'org/chromium/content/browser/Foo', jni_generator.ExtractFullyQualifiedJavaClassName( 'org/chromium/content/browser/Foo.java', contents)) self.assertEqual( 'org/chromium/content/browser/Foo', jni_generator.ExtractFullyQualifiedJavaClassName( 'frameworks/Foo.java', contents)) self.assertRaises(SyntaxError, jni_generator.ExtractFullyQualifiedJavaClassName, 'com/foo/Bar', 'no PACKAGE line') def testMethodNameMangling(self): jni_params = jni_generator.JniParams('') self.assertEqual( 'closeV', jni_generator.GetMangledMethodName(jni_params, 'close', [], 'void')) self.assertEqual( 'readI_AB_I_I', jni_generator.GetMangledMethodName(jni_params, 'read', [ Param(name='p1', datatype='byte[]'), Param(name='p2', datatype='int'), Param(name='p3', datatype='int'), ], 'int')) self.assertEqual( 'openJIIS_JLS', jni_generator.GetMangledMethodName(jni_params, 'open', [ Param(name='p1', datatype='java/lang/String'), ], 'java/io/InputStream')) def testMethodNameAlwaysMangle(self): test_data = """ import f.o.o.Bar; import f.o.o.Baz; class Clazz { @CalledByNative public Baz methodz(Bar bar) { return null; } } """ jni_params = jni_generator.JniParams('org/chromium/Foo') jni_params.ExtractImportsAndInnerClasses(test_data) called_by_natives = jni_generator.ExtractCalledByNatives( jni_params, test_data, always_mangle=True) self.assertEqual(1, len(called_by_natives)) method = called_by_natives[0] self.assertEqual('methodzFOOB_FOOB', method.method_id_var_name) def testFromJavaPGenerics(self): contents = """ public abstract class java.util.HashSet<T> extends java.util.AbstractSet<E> implements java.util.Set<E>, java.lang.Cloneable, java.io.Serializable { public void dummy(); Signature: ()V public java.lang.Class<?> getClass(); Signature: ()Ljava/lang/Class<*>; } """ jni_from_javap = jni_generator.JNIFromJavaP( contents.split('\n'), TestOptions()) self.assertEqual(2, len(jni_from_javap.called_by_natives)) self.AssertGoldenTextEquals(jni_from_javap.GetContent()) def testSnippnetJavap6_7_8(self): content_javap6 = """ public class java.util.HashSet { public boolean add(java.lang.Object); Signature: (Ljava/lang/Object;)Z } """ content_javap7 = """ public class java.util.HashSet { public boolean add(E); Signature: (Ljava/lang/Object;)Z } """ content_javap8 = """ public class java.util.HashSet { public boolean add(E); descriptor: (Ljava/lang/Object;)Z } """ jni_from_javap6 = jni_generator.JNIFromJavaP( content_javap6.split('\n'), TestOptions()) jni_from_javap7 = jni_generator.JNIFromJavaP( content_javap7.split('\n'), TestOptions()) jni_from_javap8 = jni_generator.JNIFromJavaP( content_javap8.split('\n'), TestOptions()) self.assertTrue(jni_from_javap6.GetContent()) self.assertTrue(jni_from_javap7.GetContent()) self.assertTrue(jni_from_javap8.GetContent()) # Ensure the javap7 is correctly parsed and uses the Signature field rather # than the "E" parameter. self.AssertTextEquals(jni_from_javap6.GetContent(), jni_from_javap7.GetContent()) # Ensure the javap8 is correctly parsed and uses the descriptor field. self.AssertTextEquals(jni_from_javap7.GetContent(), jni_from_javap8.GetContent()) def testFromJavaP(self): contents = self._ReadGoldenFile('testInputStream.javap') jni_from_javap = jni_generator.JNIFromJavaP( contents.split('\n'), TestOptions()) self.assertEqual(10, len(jni_from_javap.called_by_natives)) self.AssertGoldenTextEquals(jni_from_javap.GetContent()) def testConstantsFromJavaP(self): for f in ['testMotionEvent.javap', 'testMotionEvent.javap7']: contents = self._ReadGoldenFile(f) jni_from_javap = jni_generator.JNIFromJavaP( contents.split('\n'), TestOptions()) self.assertEqual(86, len(jni_from_javap.called_by_natives)) self.AssertGoldenTextEquals(jni_from_javap.GetContent()) def testREForNatives(self): # We should not match "native SyncSetupFlow" inside the comment. test_data = """ /** * Invoked when the setup process is complete so we can disconnect from the * private native void nativeSyncSetupFlowHandler();. */ public void destroy() { Log.v(TAG, "Destroying native SyncSetupFlow"); if (mNativeSyncSetupFlow != 0) { nativeSyncSetupEnded(mNativeSyncSetupFlow); mNativeSyncSetupFlow = 0; } } private native void nativeSyncSetupEnded( int nativeAndroidSyncSetupFlowHandler); """ jni_from_java = jni_generator.JNIFromJavaSource( test_data, 'foo/bar', TestOptions()) self.AssertGoldenTextEquals(jni_from_java.GetContent()) def testRaisesOnNonJNIMethod(self): test_data = """ class MyInnerClass { private int Foo(int p0) { } } """ self.assertRaises(SyntaxError, jni_generator.JNIFromJavaSource, test_data, 'foo/bar', TestOptions()) def testJniSelfDocumentingExample(self): generated_text = self._CreateJniHeaderFromFile( os.path.join(_JAVA_SRC_DIR, 'SampleForTests.java'), 'org/chromium/example/jni_generator/SampleForTests') self.AssertGoldenTextEquals( generated_text, golden_file='SampleForTests_jni.golden') def testNoWrappingPreprocessorLines(self): test_data = """ package com.google.lookhowextremelylongiam.snarf.icankeepthisupallday; class ReallyLongClassNamesAreAllTheRage { private static native int nativeTest(); } """ jni_from_java = jni_generator.JNIFromJavaSource( test_data, ('com/google/lookhowextremelylongiam/snarf/' 'icankeepthisupallday/ReallyLongClassNamesAreAllTheRage'), TestOptions()) jni_lines = jni_from_java.GetContent().split('\n') line = next( line for line in jni_lines if line.lstrip().startswith('#ifndef')) self.assertTrue( len(line) > 80, ('Expected #ifndef line to be > 80 chars: ', line)) def testImports(self): import_header = """ // Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. package org.chromium.content.app; import android.app.Service; import android.content.Context; import android.content.Intent; import android.graphics.SurfaceTexture; import android.os.Bundle; import android.os.IBinder; import android.os.ParcelFileDescriptor; import android.os.Process; import android.os.RemoteException; import android.util.Log; import android.view.Surface; import java.util.ArrayList; import org.chromium.base.annotations.CalledByNative; import org.chromium.base.annotations.JNINamespace; import org.chromium.content.app.ContentMain; import org.chromium.content.browser.SandboxedProcessConnection; import org.chromium.content.common.ISandboxedProcessCallback; import org.chromium.content.common.ISandboxedProcessService; import org.chromium.content.common.WillNotRaise.AnException; import org.chromium.content.common.WillRaise.AnException; import static org.chromium.Bar.Zoo; class Foo { public static class BookmarkNode implements Parcelable { } public interface PasswordListObserver { } } """ jni_params = jni_generator.JniParams('org/chromium/content/app/Foo') jni_params.ExtractImportsAndInnerClasses(import_header) self.assertTrue('Lorg/chromium/content/common/ISandboxedProcessService' in jni_params._imports) self.assertTrue('Lorg/chromium/Bar/Zoo' in jni_params._imports) self.assertTrue('Lorg/chromium/content/app/Foo$BookmarkNode' in jni_params. _inner_classes) self.assertTrue('Lorg/chromium/content/app/Foo$PasswordListObserver' in jni_params._inner_classes) self.assertEqual('Lorg/chromium/content/app/ContentMain$Inner;', jni_params.JavaToJni('ContentMain.Inner')) self.assertRaises(SyntaxError, jni_params.JavaToJni, 'AnException') def testJniParamsJavaToJni(self): jni_params = jni_generator.JniParams('') self.AssertTextEquals('I', jni_params.JavaToJni('int')) self.AssertTextEquals('[B', jni_params.JavaToJni('byte[]')) self.AssertTextEquals('[Ljava/nio/ByteBuffer;', jni_params.JavaToJni('java/nio/ByteBuffer[]')) def testNativesLong(self): test_options = TestOptions() test_options.ptr_type = 'long' test_data = """" private native void nativeDestroy(long nativeChromeBrowserProvider); """ jni_params = jni_generator.JniParams('') jni_params.ExtractImportsAndInnerClasses(test_data) natives = jni_generator.ExtractNatives(test_data, test_options.ptr_type) golden_natives = [ NativeMethod( return_type='void', static=False, name='Destroy', params=[Param(datatype='long', name='nativeChromeBrowserProvider')], java_class_name=None, ptr_type=test_options.ptr_type), ] self.AssertListEquals(golden_natives, natives) h = jni_generator.InlHeaderFileGenerator( '', 'org/chromium/TestJni', natives, [], [], jni_params, test_options) self.AssertGoldenTextEquals(h.GetContent()) def testMainDexAnnotation(self): mainDexEntries = [ '@MainDex public class Test {', '@MainDex public class Test{', """@MainDex public class Test { """, """@MainDex public class Test { """, '@MainDex /* This class is a test */ public class Test {', '@MainDex public class Test implements java.io.Serializable {', '@MainDex public class Test implements java.io.Serializable, Bidule {', '@MainDex public class Test extends BaseTest {', """@MainDex public class Test extends BaseTest implements Bidule { """, """@MainDex public class Test extends BaseTest implements Bidule, Machin, Chose { """, """@MainDex public class Test implements Testable<java.io.Serializable> { """, '@MainDex public class Test implements Testable<java.io.Serializable> ' ' {', '@a.B @MainDex @C public class Test extends Testable<Serializable> {', """public class Test extends Testable<java.io.Serializable> { @MainDex void func() {} """, ] for entry in mainDexEntries: self.assertEqual(True, IsMainDexJavaClass(entry), entry) def testNoMainDexAnnotation(self): noMainDexEntries = [ 'public class Test {', '@NotMainDex public class Test {', '// @MainDex public class Test {', '/* @MainDex */ public class Test {', 'public class Test implements java.io.Serializable {', '@MainDexNot public class Test {', 'public class Test extends BaseTest {' ] for entry in noMainDexEntries: self.assertEqual(False, IsMainDexJavaClass(entry)) def testNativeExportsOnlyOption(self): test_data = """ package org.chromium.example.jni_generator; /** The pointer to the native Test. */ long nativeTest; class Test { private static native int nativeStaticMethod(long nativeTest, int arg1); private native int nativeMethod(long nativeTest, int arg1); @CalledByNative private void testMethodWithParam(int iParam); @CalledByNative private String testMethodWithParamAndReturn(int iParam); @CalledByNative private static int testStaticMethodWithParam(int iParam); @CalledByNative private static double testMethodWithNoParam(); @CalledByNative private static String testStaticMethodWithNoParam(); class MyInnerClass { @NativeCall("MyInnerClass") private native int nativeInit(); } class MyOtherInnerClass { @NativeCall("MyOtherInnerClass") private native int nativeInit(); } } """ options = TestOptions() options.native_exports_optional = False jni_from_java = jni_generator.JNIFromJavaSource( test_data, 'org/chromium/example/jni_generator/SampleForTests', options) self.AssertGoldenTextEquals(jni_from_java.GetContent()) def testOuterInnerRaises(self): test_data = """ package org.chromium.media; @CalledByNative static int getCaptureFormatWidth(VideoCapture.CaptureFormat format) { return format.getWidth(); } """ def willRaise(): jni_generator.JNIFromJavaSource(test_data, 'org/chromium/media/VideoCaptureFactory', TestOptions()) self.assertRaises(SyntaxError, willRaise) def testSingleJNIAdditionalImport(self): test_data = """ package org.chromium.foo; @JNIAdditionalImport(Bar.class) class Foo { @CalledByNative private static void calledByNative(Bar.Callback callback) { } private static native void nativeDoSomething(Bar.Callback callback); } """ jni_from_java = jni_generator.JNIFromJavaSource(test_data, 'org/chromium/foo/Foo', TestOptions()) self.AssertGoldenTextEquals(jni_from_java.GetContent()) def testMultipleJNIAdditionalImport(self): test_data = """ package org.chromium.foo; @JNIAdditionalImport({Bar1.class, Bar2.class}) class Foo { @CalledByNative private static void calledByNative(Bar1.Callback callback1, Bar2.Callback callback2) { } private static native void nativeDoSomething(Bar1.Callback callback1, Bar2.Callback callback2); } """ jni_from_java = jni_generator.JNIFromJavaSource(test_data, 'org/chromium/foo/Foo', TestOptions()) self.AssertGoldenTextEquals(jni_from_java.GetContent()) def testTracing(self): test_data = """ package org.chromium.foo; @JNINamespace("org::chromium_foo") class Foo { @CalledByNative Foo(); @CalledByNative void callbackFromNative(); native void nativeInstanceMethod(long nativeInstance); static native void nativeStaticMethod(); } """ options_with_tracing = TestOptions() options_with_tracing.enable_tracing = True jni_from_java = jni_generator.JNIFromJavaSource( test_data, 'org/chromium/foo/Foo', options_with_tracing) self.AssertGoldenTextEquals(jni_from_java.GetContent()) def testStaticBindingCaller(self): test_data = """ package org.chromium.foo; class Bar { static native void nativeShouldBindCaller(Object caller); static native void nativeShouldBindCaller(Object caller, int a); static native void nativeFoo(long nativeNativeObject, Bar caller); static native void nativeFoo(long nativeNativeObject, Bar caller, int a); native void nativeCallNativeMethod(long nativePtr); @NativeClassQualifiedName("Foo::Bar") native void nativeCallWithQualifiedObject(long nativePtr); } """ jni_from_java = jni_generator.JNIFromJavaSource(test_data, 'org/chromium/foo/Foo', TestOptions()) self.AssertGoldenTextEquals(jni_from_java.GetContent()) class ProxyTestGenerator(BaseTest): def _BuildRegDictFromSample(self, options=None): if options is None: options = TestOptions() path = self._JoinScriptDir( os.path.join(_JAVA_SRC_DIR, 'SampleForAnnotationProcessor.java')) reg_dict = jni_registration_generator._DictForPath(path) reg_dict = self._MergeRegistrationForTests([reg_dict]) return reg_dict def testProxyNativesWithNatives(self): test_data = """ package org.chromium.foo; class Foo { @NativeMethods interface Natives { void foo(); String bar(String s, int y, char x, short z); String[] foobar(String[] a); void baz(long nativePtr, BazClass caller); void fooBar(long nativePtr); } void justARegularFunction(); native void nativeInstanceMethod(long nativeInstance); static native void nativeStaticMethod(); } """ options_with_tracing = TestOptions() options_with_tracing.enable_tracing = True jni_from_java = jni_generator.JNIFromJavaSource( test_data, 'org/chromium/foo/Foo', options_with_tracing) self.AssertGoldenTextEquals(jni_from_java.GetContent()) def testEscapingProxyNatives(self): test_data = """ class SampleProxyJni { @NativeMethods interface Natives { void foo_bar(); void foo__bar(); } } """ qualified_clazz = 'org/chromium/example/SampleProxyJni' natives = jni_generator.ProxyHelpers.ExtractStaticProxyNatives( qualified_clazz, test_data, 'long') golden_natives = [ NativeMethod( return_type='void', static=True, name='foo_bar', params=[], java_class_name=None, is_proxy=True, proxy_name='org_chromium_example_SampleProxyJni_foo_1bar'), NativeMethod( return_type='void', static=True, name='foo__bar', params=[], java_class_name=None, is_proxy=True, proxy_name='org_chromium_example_SampleProxyJni_foo_1_1bar'), ] self.AssertListEquals(natives, golden_natives) def testProxyNativesMainDex(self): test_data = """ @MainDex class Foo() { @NativeMethods interface Natives { void thisismaindex(); } void dontmatchme(); public static void metoo(); public static native void this_is_a_non_proxy_native(); } """ non_main_dex_test_data = """ class Bar() { @NativeMethods interface Natives { void foo(); void bar(); } } """ qualified_clazz = 'test/foo/Foo' jni_params = TestOptions() natives = jni_generator.ProxyHelpers.ExtractStaticProxyNatives( qualified_clazz, test_data, 'long') golden_natives = [ NativeMethod( return_type='void', static=True, name='thisismaindex', params=[], java_class_name=None, is_proxy=True, proxy_name='test_foo_Foo_thisismaindex'), ] self.AssertListEquals(natives, golden_natives) jni_params = jni_generator.JniParams(qualified_clazz) main_dex_header = jni_registration_generator.HeaderGenerator( '', qualified_clazz, natives, jni_params, main_dex=True, use_proxy_hash=False).Generate() content = TestGenerator._MergeRegistrationForTests([main_dex_header]) self.AssertGoldenTextEquals( jni_registration_generator.CreateFromDict(content, use_hash=False)) other_qualified_clazz = 'test/foo/Bar' other_natives = jni_generator.ProxyHelpers.ExtractStaticProxyNatives( other_qualified_clazz, non_main_dex_test_data, 'long') jni_params = jni_generator.JniParams(other_qualified_clazz) non_main_dex_header = jni_registration_generator.HeaderGenerator( '', other_qualified_clazz, other_natives, jni_params, main_dex=False, use_proxy_hash=False).Generate() content = TestGenerator._MergeRegistrationForTests([main_dex_header] + [non_main_dex_header]) self.AssertGoldenTextEquals( jni_registration_generator.CreateFromDict(content, use_hash=False), 'AndNonMainDex') def testProxyNatives(self): test_data = """ class SampleProxyJni { private void do_not_match(); @NativeMethods interface Natives { @NativeClassQualifiedName("FooAndroid::BarDelegate") void foo(long nativePtr); int bar(int x, int y); String foobar(String x, String y); } void dontmatchme(); public static void metoo(); public static native void this_is_a_non_proxy_native(); } """ bad_spaced_test_data = """ class SampleProxyJni{ @NativeMethods interface Natives { @NativeClassQualifiedName("FooAndroid::BarDelegate") void foo(long nativePtr); int bar(int x, int y); String foobar(String x, String y); } } """ qualified_clazz = 'org/chromium/example/SampleProxyJni' natives = jni_generator.ProxyHelpers.ExtractStaticProxyNatives( qualified_clazz, test_data, 'long') bad_spacing_natives = jni_generator.ProxyHelpers \ .ExtractStaticProxyNatives(qualified_clazz, bad_spaced_test_data, 'long') golden_natives = [ NativeMethod( return_type='void', static=True, name='foo', native_class_name='FooAndroid::BarDelegate', params=[Param(datatype='long', name='nativePtr')], java_class_name=None, is_proxy=True, proxy_name='org_chromium_example_SampleProxyJni_foo', ptr_type='long'), NativeMethod( return_type='int', static=True, name='bar', params=[ Param(datatype='int', name='x'), Param(datatype='int', name='y') ], java_class_name=None, is_proxy=True, proxy_name='org_chromium_example_SampleProxyJni_bar'), NativeMethod( return_type='String', static=True, name='foobar', params=[ Param(datatype='String', name='x'), Param(datatype='String', name='y') ], java_class_name=None, is_proxy=True, proxy_name='org_chromium_example_SampleProxyJni_foobar'), ] self.AssertListEquals(golden_natives, natives) self.AssertListEquals(golden_natives, bad_spacing_natives) jni_params = jni_generator.JniParams(qualified_clazz) h1 = jni_generator.InlHeaderFileGenerator('', qualified_clazz, natives, [], [], jni_params, TestOptions()) self.AssertGoldenTextEquals(h1.GetContent()) h2 = jni_registration_generator.HeaderGenerator( '', qualified_clazz, natives, jni_params, False, use_proxy_hash=False) content = TestGenerator._MergeRegistrationForTests([h2.Generate()]) proxy_opts = jni_registration_generator.ProxyOptions() self.AssertGoldenTextEquals( jni_registration_generator.CreateProxyJavaFromDict(content, proxy_opts), suffix='Java') self.AssertGoldenTextEquals( jni_registration_generator.CreateFromDict(content, proxy_opts.use_hash), suffix='Registrations') def testProxyHashedExample(self): opts = TestOptions() opts.use_proxy_hash = True path = os.path.join(_JAVA_SRC_DIR, 'SampleForAnnotationProcessor.java') generated_text = self._CreateJniHeaderFromFile( path, 'org/chromium/example/jni_generator/SampleForAnnotationProcessor', opts) self.AssertGoldenTextEquals( generated_text, golden_file='HashedSampleForAnnotationProcessor_jni.golden') reg_dict = jni_registration_generator._DictForPath( self._JoinScriptDir(path)) reg_dict = self._MergeRegistrationForTests([reg_dict]) proxy_opts = jni_registration_generator.ProxyOptions() self.AssertGoldenTextEquals( jni_registration_generator.CreateProxyJavaFromDict( reg_dict, proxy_opts), golden_file='HashedSampleForAnnotationProcessorGenJni.golden') def testProxyJniExample(self): generated_text = self._CreateJniHeaderFromFile( os.path.join(_JAVA_SRC_DIR, 'SampleForAnnotationProcessor.java'), 'org/chromium/example/jni_generator/SampleForAnnotationProcessor') self.AssertGoldenTextEquals( generated_text, golden_file='SampleForAnnotationProcessor_jni.golden') def testGenJniFlags(self): reg_dict = self._BuildRegDictFromSample() proxy_options = jni_registration_generator.ProxyOptions() content = jni_registration_generator.CreateProxyJavaFromDict( reg_dict, proxy_options) self.AssertGoldenTextEquals(content, 'Disabled') proxy_options = jni_registration_generator.ProxyOptions(enable_mocks=True) content = jni_registration_generator.CreateProxyJavaFromDict( reg_dict, proxy_options) self.AssertGoldenTextEquals(content, 'MocksEnabled') proxy_options = jni_registration_generator.ProxyOptions( enable_mocks=True, require_mocks=True) content = jni_registration_generator.CreateProxyJavaFromDict( reg_dict, proxy_options) self.AssertGoldenTextEquals(content, 'MocksRequired') def testProxyTypeInfoPreserved(self): test_data = """ package org.chromium.foo; class Foo { @NativeMethods interface Natives { char[][] fooProxy(byte[][] b); SomeJavaType[][] barProxy(String[][] s, short z); String[] foobarProxy(String[] a, int[][] b); byte[][] bazProxy(long nativePtr, BazClass caller, SomeJavaType[][] someObjects); } """ natives = ProxyHelpers.ExtractStaticProxyNatives('org/chromium/foo/FooJni', test_data, 'long') golden_natives = [ NativeMethod( static=True, java_class_name=None, return_type='char[][]', name='fooProxy', params=[Param(datatype='byte[][]', name='b')], is_proxy=True, proxy_name='org_chromium_foo_FooJni_fooProxy'), NativeMethod( static=True, java_class_name=None, return_type='Object[][]', name='barProxy', params=[ Param(datatype='String[][]', name='s'), Param(datatype='short', name='z') ], is_proxy=True, proxy_name='org_chromium_foo_FooJni_barProxy'), NativeMethod( static=True, java_class_name=None, return_type='String[]', name='foobarProxy', params=[ Param(datatype='String[]', name='a'), Param(datatype='int[][]', name='b') ], is_proxy=True, proxy_name='org_chromium_foo_FooJni_foobarProxy'), NativeMethod( static=True, java_class_name=None, return_type='byte[][]', name='bazProxy', params=[ Param(datatype='long', name='nativePtr'), Param(datatype='Object', name='caller'), Param(datatype='Object[][]', name='someObjects') ], is_proxy=True, proxy_name='org_chromium_foo_FooJni_bazProxy', ptr_type='long') ] self.AssertListEquals(golden_natives, natives) def TouchStamp(stamp_path): dir_name = os.path.dirname(stamp_path) if not os.path.isdir(dir_name): os.makedirs(dir_name) with open(stamp_path, 'a'): os.utime(stamp_path, None) def main(argv): parser = optparse.OptionParser() parser.add_option('--stamp', help='Path to touch on success.') parser.add_option( '-v', '--verbose', action='store_true', help='Whether to output details.') options, _ = parser.parse_args(argv[1:]) test_result = unittest.main( argv=argv[0:1], exit=False, verbosity=(2 if options.verbose else 1)) if test_result.result.wasSuccessful() and options.stamp: TouchStamp(options.stamp) return not test_result.result.wasSuccessful() if __name__ == '__main__': sys.exit(main(sys.argv))
34.215496
80
0.622231